| 630.7<br>1265<br>n0.669<br>cop.8 |  |
|----------------------------------|--|
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |



# UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN AGRICULTURE



**Bulletin 669** 

UNIVERSITY OF ILLINOIS · AGRICULTURAL EXPERIMENT STATION

#### CONTENTS

| Page                                                                                    |   |
|-----------------------------------------------------------------------------------------|---|
| MATERIAL TESTED                                                                         |   |
| FIELD PROCEDURES AND ANALYSIS OF DATA                                                   | ; |
| MEASURING PERFORMANCE                                                                   | ) |
| test results                                                                            | > |
| EXTREME NORTHERN ILLINOIS (Woodstock): Double Crosses 7                                 | , |
| NORTHERN ILLINOIS (DeKalb): Double Crosses and Three-Way<br>Crosses and Standards8      | 3 |
| WEST NORTH-CENTRAL ILLINOIS (Galesburg): Double Crosses16                               | > |
| NORTH-CENTRAL ILLINOIS (Peoria): Double Crosses                                         | , |
| EAST NORTH-CENTRAL ILLINOIS (Ashkum): Double Crosses                                    | 3 |
| CENTRAL ILLINOIS (Stanford): Double Crosses                                             | , |
| WEST-CENTRAL ILLINOIS (Bowen): Double Crosses                                           | ) |
| EAST-CENTRAL ILLINOIS (Urbana): Double Crosses and<br>Three-Way Crosses and Standards21 |   |
| WEST SOUTH-CENTRAL ILLINOIS (Greenfield): Double Crosses29                              | , |
| SOUTHERN ILLINOIS (Brownstown): Double Crosses                                          | ) |
| EXTREME SOUTHERN ILLINOIS (Carbondale): Double Crosses32                                | 2 |
| WEST EXTREME SOUTHERN ILLINOIS (Wolf Lake): Double Crosses33                            | 3 |
| DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX<br>TO TABLES                          | 1 |

Special acknowledgment is due R. W. Jugenheimer, Assistant Dean and Assistant Director of the Agricultural Experiment Station, wha developed a considerable amount of the material in this bulletin. Acknowledgment is also due W. C. Jacobs and R. D. Seif for processing the data.

Urbana, Illinois

March, 1961

Publications in the Bulletin series report the results of investigations made or sponsored by the Experiment Station





# PERFORMANCE OF EXPERIMENTAL CORN HYBRIDS IN ILLINOIS, 1960

By Earl R. Leng, R. J. LAMBERT, M. L. PEASLEY, G. L. Ross, and K. E. Williams'

ONE OF THE OBJECTIVES OF CORN BREEDERS at the Illinois Agricultural Experiment Station is to develop improved corn inbreds and hybrids for use by seedsmen and farmers of the state. Such development requires considerable breeding work and adequate testing of performance at a number of locations and for a period of years. This bulletin summarizes results of experimental corn hybrid performance trials conducted in 1960. The experimental corn hybrids tested were selected on the basis of their performance in preliminary tests or in advanced tests of previous years.

In 1960 experimental corn hybrids were tested at twelve different locations in the state: Ashkum, Bowen, Brownstown, Carbondale, DeKalb, Galesburg, Greenfield, Peoria, Stanford, Urbana, Wolf Lake, and Woodstock. The maturity series tested at each location, the soil types, the distribution of rainfall during the growing season, dates of planting and harvesting, and planting rates per acre are given in Table 1.

### MATERIAL TESTED

A total of 205 corn hybrids, consisting of 109 double crosses, 93 three-way crosses, and 3 single crosses, were tested in advanced corn performance trials in 1960. Most of the hybrids tested were developed by corn breeders at the University of Illinois.

**Double crosses tested.** Double crosses tested were divided into maturity groups, each consisting of a different set of 25 hybrids. The groups used were based on the AES (Agricultural Experiment Station) maturity series; the groups adapted to Illinois range in maturity from "600" in extreme northern Illinois to the "900" group in southern areas of the state. For testing purposes, hybrids comparable in maturity to those of the AES "800" series were divided into "800" and "850" series. The "800 series" hybrids were grown in north-central Illinois and the "850 series" in central Illinois. Illinois Station hybrids of comparable maturity rating are as follows: 600 series = Illinois 1555A; 700 series = Illinois 1352; 800 series = Illinois 1421; 850 series = Illinois 1570; and 900 series = Illinois 1851.

<sup>&</sup>lt;sup>1</sup> EARL R. LENG, Professor of Agronomy; R. J. LAMBERT, and M. L. PEASLEY, Research Assistants; G. L. Ross, and K. E. WILLIAMS, Crops Testing Technicians.

**Three-way crosses tested.** Three-way crosses are useful for evaluating the combining ability of an inbred line. Thirty-one inbreds crossed with three single-cross testers, (WF9 × Oh43), (WF9 × B37), and (B41 × Oh7A), were tested at Brownstown, DeKalb, and Urbana in 1959 and 1960. The test at Brownstown, however, was abandoned in 1960 because of poor stand, so 1959 and 1960 summaries are available only for DeKalb and Urbana.

#### Table 1. — GENERAL INFORMATION: Illinois Experimental Corn Hybrids, 1960

(All planting rates 16,000 plants per acre, except at Galesburg where it was 18,000, and at Brownstown, where it was 14,000)

| Location   | Maturity<br>series | Soil                      | Soil Monthly rainfall (in.) |           |      | (in.) | Date<br>of    | Date<br>of   |
|------------|--------------------|---------------------------|-----------------------------|-----------|------|-------|---------------|--------------|
| Location   | tested             | type                      | May                         | June      | July | Aug.  | plant-<br>ing | har-<br>vest |
|            |                    | N                         | orthern                     | Illinois  | 5    |       |               |              |
| Woodstock  | 600                | Proctor<br>silt loam      | 5.6                         | 3.9       | 3.0  | 2.3   | May 15        | Oct. 29      |
| DeKalb     | 600,<br>700        | Flanagan<br>silt loam     | 6.2                         | 4.1       | 4.8  | 3.0   | May 24        | Nov. 5       |
|            |                    | Nor                       | th-Cent                     | ral Illin | ois  |       |               |              |
| Galesburg  | 800                | Sable silty<br>clay loam  | 6.1                         | 5.8       | 2.2  | 5.4   | June 1        | Oct. 28      |
| Peoria     | 700                | Muscatine<br>silt loam    | 6.3                         | 5.4       | 3.5  | 5.3   | June 8        | Nov. 17      |
| Ashkum     | 700                | Milford<br>clay loam      | 3.1                         | 5.0       | 1.1  | 5.1   | May 31        | Nov. 15      |
| Stanford   | 800                | Muscatine<br>silt loam    | 3.6                         | 8.3       | 4.8  | 2.2   | May 12        | Oct. 6       |
|            |                    | (                         | Central                     | Illinois  |      |       |               |              |
| Bowen      | 850                | Virden silty<br>clay loam | 6.7                         | 8.6       | 3.7  | 5.0   | June 1        | Oct. 25      |
| Urbana     | 850,<br>900        | Brenton<br>silt loam      | 4.1                         | 6.2       | 2.8  | 1.3   | May 4         | Oct. 6       |
|            |                    | S                         | outhern                     | Illinois  |      |       |               |              |
| Greenfield | 850,<br>900        | Herrick<br>silt loam      | 5.8                         | 4.2       | 3.1  | 2.1   | June 2        | Oct. 22      |
| Brownstown | n 900              | Cisne silt<br>loam        | 5.9                         | 7.2       | 1.8  | 2.2   | June 9        | Nov. 17      |
| Carbondale | 900                | Weir silt<br>loam         | 5.5                         | 4.1       | 1.2  | 3.8   | June 2        | Oct. 7       |
| Wolf Lake  | 900                | Riley fine<br>sandy loam  | 3.9                         | 3.5       | 2.8  | 4.6   | May 10        | Oct. 4       |

COOPERATORS: EARL HUGHES, McHenry county; RALPH ANDERSON, Knox county; MELVIN KRAFT, Iroquois county; W. T. Schwenk and Sons, Peoria county; ELDON GOLDEN, Hancock county; ROBERT BUTH, McLean county; CHARLES ROSS, Macoupin county; Shawnee High School, Union county. Trials in DeKalb and Champaign counties were located on University of Illinois farms managed by R. E. BELL and C. H. FARNHAM. P. E. JOHNSON, Assistant Professor of Soil Fertility, supervised field operations on the test in Fayette county, and D. R. BROWNING of Southern Illinois University supervised field operations on the Union county and Jackson county test fields.

[March,

Performance trials of this type are necessary to properly evaluate improved corn inbreds. The performance of an inbred in a combination with three different single-cross testers is a measure of the combining ability of the inbred line being tested. Tests at a number of locations and for several years more accurately measure combining ability than tests for only one year or at one location.

Availability of material tested. A number of the Illinois Station corn hybrids listed in this report are not yet in commercial production. The Experiment Station release policy is to make available to the public seed of inbred lines that have demonstrated superior performance for desirable agronomic characters. Small amounts of seed (up to 100 kernels) of *released* Illinois inbred lines are available for a nominal fee. Requests for seed of released Illinois inbred lines should be addressed to the Department of Agronomy, University of Illinois, Urbana, Illinois. Station Bulletin 657 lists the Illinois inbred lines released up to and including 1960, and also presents data on some of their important agronomic characteristics. Seed of single crosses that are used as parents for some Illinois Station hybrids reported in this bulletin may be obtained from the Illinois Seed Producers Association, Champaign, Illinois.

# FIELD PROCEDURES AND ANALYSIS OF DATA

Method of planting. All test locations except Carbondale were planted with a mounted four-row John Deere tractor planter, slightly modified for planting experimental plots. The Carbondale location was planted by hand. All locations were planted on land prepared in the normal manner for corn. Individual plots were one row 11 hills in length. Planting simulated "power check," with a variable number of kernels being dropped approximately each 20 inches, depending on the planting rate used. All plots were band-treated for weed control with Atrazine at a rate of 12 pounds per acre. The plots were not thinned.

**Method of harvest.** All plots were harvested with a one-row Ford picker-sheller modified to harvest experimental plots. The shelled corn from each plot was bagged, weighed, and sampled for moisture using a Radson moisture meter. No adjustment was made for dropped ears or for ears on broken stalks that were not harvested.

**Field-plot design and analysis of data.** The experimental designs used for all trials were lattice designs with 3 replications. All field data were recorded on mark-sense cards and processed with digital computers at the University of Illinois.

1961]

# MEASURING PERFORMANCE

All hybrids tested were compared for grain yield, kernel moisture, erect plants at harvest, and stand. Data on other agronomic characters such as dropped ears, leaf blight reaction, stalk rot, and smutted plants were recorded when natural conditions permitted measuring true varietal differences.

Yield of grain. Acre yields are reported as shelled corn containing 15.5 percent moisture, the upper limit for No. 2 corn.

**Erect plants.** A count of erect plants in each plot of an entry was taken at harvest time for each location. Only plants leaning at an angle of 45° or more or broken below the ear were considered lodged; all others were counted as erect.

**Stand.** A count was made in late summer at all locations of the total number of plants in each plot of a hybrid. The percent stand was computed by comparing the actual number of plants in each plot with the number of kernels planted. Stand differences may have been caused by failure of seed to germinate or by disease, insect damage, cultivation injury, or other factors.

### TEST RESULTS

Results from the tests are summarized in Tables 2 to 13. The following facts should be considered when comparing the performance of hybrids in a test.

1. Results covering two and three years at a location are more reliable than results for only one year. The performance of hybrids tested only in 1960 should not be used as a measure of their true ability since further testing will be necessary before valid conclusions can be drawn. This is true of all hybrids tested at Ashkum, Bowen, Carbondale, Galesburg, Greenfield, Stanford, Wolf Lake, and Woodstock. Results from these tests are not ranked by yield but are listed according to hybrid designation. Two- and three-year summaries are available for Brownstown, DeKalb, Peoria, and Urbana, and entries are ranked according to yield in these summaries.

2. Small differences between hybrids do not necessarily indicate that one hybrid is truly superior to another. Interpretation of the data and comparisons between hybrids are made more meaningful by use of certain statistical procedures. One procedure used to compare the difference between hybrids is the "Multiple Range Test."<sup>1</sup> Using this

<sup>&</sup>lt;sup>1</sup>DUNCAN, D. B. "Multiple Range and Multiple F Tests." *Biometrics* 11 (1) 1-43, 1955.

statistical test, the difference necessary for significance between two or more hybrids can be calculated. Whenever the observed difference between two or more hybrids exceeds the amount calculated for that range, the two hybrids are significantly different. To find the difference necessary for significance the hybrids are first ranked according to performance for a particular character. Then the "number in range" can be computed by counting the hybrids to be compared and the number of hybrids falling between them in performance. For example, if hybrids A and E are to be compared and the rank in performance is A, B, C, D, E, the "number in range" would be 5. When the "number in range" has been determined, the corresponding "difference necessary for significance" can be read from the figures at the bottom of each table. If the observed difference exceeds the "difference necessary for significance," the performances of the hybrids are considered different.

| Entry                                                      | Pedigree                                                                                                                                                                                                                                                                                    | Acre<br>yield        | Moisture<br>in grain                 | Erect<br>plants                       | Stand                                |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|---------------------------------------|--------------------------------------|
|                                                            | 1960                                                                                                                                                                                                                                                                                        | results              |                                      |                                       |                                      |
|                                                            |                                                                                                                                                                                                                                                                                             | bu.                  | percl.                               | perct.                                | perct.                               |
| 111. 1555A (c<br>111. 1559B <sup>a</sup> (<br>111. 1861 (W | $\begin{array}{l} F9 \times M14) (1.205 \times 187-2) \\ heck) (WF9 \times Oh51A) (1.224 \times Oh28) \\ WF9 \times Oh51A) (M14 \times Oh28) \\ F9 \times M14) (1.224 \times Oh28) \\ F9 \times M14) (1.205 \times Oh43) \\ \end{array}$                                                    |                      | 21.7<br>20.1<br>22.5<br>22.5<br>24.8 | 90.5<br>98.3<br>98.3<br>92.1<br>92.3  | 95.4<br>87.8<br>87.8<br>87.1<br>98.4 |
| Ill. 1952 (W<br>Ill. 1955 (W<br>Ill. 1957 (W               | $\begin{array}{l} F9 \times Hy2) (M14 \times B14) \\ 64A \times A545) (M14 \times B14) \\ 64A \times B14) (M14 \times A297) \\ 64A \times B14) (M14 \times A545) \\ 126A \times M14) (B14 \times A545) \\ \end{array}$                                                                      | 93.6<br>83.9<br>79.9 | 22.4<br>22.2<br>20.9<br>20.4<br>22.8 | 93.8<br>93.4<br>97.4<br>98.1<br>94.1  | 87.8<br>93.1<br>83.3<br>89.3<br>91.6 |
| Ill. 1960 (W<br>Ill. 1961 (W<br>Ill. 1962 (W               | $\begin{array}{l} 64A \times M14) (B14 \times A297) \\ 64A \times M14) (B14 \times A545) \\ 64A \times A239) (B14 \times A545) \\ 64A \times A297) (B14 \times A545) \\ 64A \times A297) (B14 \times A545) \\ WF9 \times R165) (R168 \times B14) \\ \ldots \end{array}$                     | 86.1<br>87.5<br>84.6 | 23.4<br>22.7<br>22.9<br>21.5<br>24.4 | 92.8<br>95.9<br>100.0<br>94.5<br>96.2 | 95.4<br>96.9<br>86.3<br>92.4<br>81.0 |
| Ill. 3152 (W<br>Ill. 3173 (A5<br>Ill. 3174 (A2             | $\begin{array}{l} 64A \times A297) (B14 \times B21) \\ F9 \times M14) (B14 \times Oh43) \\ 545 \times N24) (B14 \times Oh43) \\ 977 \times Oh43) (B37 \times Oh28) \\ 14 \times Oh43) (R168 \times B14) \\ \end{array}$                                                                     | 86.8<br>84.0<br>76.3 | 21.9<br>23.5<br>22.8<br>22.8<br>22.8 | 95.4<br>97.5<br>96.1<br>92.7<br>97.5  | 96.2<br>94.6<br>90.1<br>93.9<br>96.2 |
| 111. 3303 (M<br>I11. 3313 (W<br>I11. 6201 (W               | $(W64A \times M14) (R172 \times B14) \dots 14 \times Oh43) (R172 \times B14) \dots 64A \times Oh43) (R172 \times B14) \dots 64A \times Oh43) (L12 \times B14) \dots 64A \times Oh43) (Oh51 \times R53) \dots 64A \times Oh43) (Oh51 \times R53) \dots 0.0000000000000000000000000000000000$ | 81.3<br>69.5<br>77.2 | 22.6<br>23.0<br>23.8<br>21.2<br>20.4 | 94.0<br>95.7<br>98.9<br>83.5<br>90.6  | 90.1<br>90.1<br>78.7<br>96.9<br>96.2 |
| Average                                                    |                                                                                                                                                                                                                                                                                             |                      | 22.5                                 | 94.8                                  | 0.19                                 |
| Num                                                        | ber in range                                                                                                                                                                                                                                                                                | Differ               | ence necessa                         |                                       | ficance                              |
| 3-<br>6-<br>11-                                            | 5<br>10                                                                                                                                                                                                                                                                                     | 4.4<br>4.6<br>4.7    | 0.7<br>0.8<br>0.8<br>0.8<br>0.9      | 1.9<br>2.1<br>2.3<br>2.3<br>2.4       | 3.0<br>3.4<br>3.6<br>3.7<br>3.7      |

Table 2. - DOUBLE CROSSES OF 600 MATURITY Tested at Woodstock, 1960

• Illinois Station hybrids with A or B endings in the numerical designation are permutations of a basic arrangement. <sup>b</sup> (-1) indicates that W64A has replaced WF9 in Ill. 3302A (WF9×M14)(R172×B14).

1961)

[March,

#### Table 3. — DOUBLE CROSSES OF 600 MATURITY AND 700 MATURITY AND THREE-WAY CROSSES AND STANDARDS Tested at DeKalb, 1958-1960

| Entry                                                             | Pedigree                                                                                                                                                                                                                            |                         | Acre<br>yield                                     | Moisture<br>in grain                         | Erect<br>plants                              | Stand                                        |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                                                   | DOUBLE                                                                                                                                                                                                                              | CROSSES OF              | 600 MA                                            | TURITY                                       |                                              |                                              |
|                                                                   |                                                                                                                                                                                                                                     |                         | bu.                                               | perci.                                       | perct.                                       | perct                                        |
|                                                                   |                                                                                                                                                                                                                                     | Summary: 195            | 8-1960                                            |                                              |                                              |                                              |
| III. 3152 (WH<br>III. 3174 (A29<br>III. 1962 (W6                  | 45 × N24) (B14 × Oh43)<br>F9 × M14) (B14 × Oh43)<br>97 × Oh43) (B37 × Oh28)<br>54A × A297) (B14 × A54)<br>F9 × Hy2) (M14 × B14)                                                                                                     | ))<br>5)                | 124.3<br>122.5<br>118.7<br>118.3                  | 28.9<br>28.2<br>27.4<br>24.7<br>28.0         | 91.0<br>87.6<br>86.9<br>86.0<br>81.9         | 96.2<br>96.2<br>95.4<br>96.3<br>96.4         |
| ll. 1952 (W6<br>ll. 3009 (W6<br>ll. 1959 (W6                      | VF9×Oh51A) (M14×C<br>54A×A545) (M14×B14<br>54A×A297) (B14×B21<br>54A×M14) (B14×A29<br>54A×A239) (B14×A54                                                                                                                            | ŧ)<br>)                 | 116.6<br>116.1<br>116.1                           | 25.9<br>26.7<br>25.8<br>26.0<br>25.1         | 78.7<br>84.4<br>88.3<br>90.6<br>85.7         | 96.6<br>96.4<br>94.6<br>97.1<br>97.0         |
| III. 1958 (Oh:<br>III. 1955 (W6<br>III. 1957 (W6<br>III. 1555A (W | 54A×M14) (B14×A54)<br>26A×M14) (B14×A54)<br>54A×B14) (M14×A29)<br>54A×B14) (M14×A29)<br>54A×B14) (M14×A54)<br>59×M14) (I.205×187-2)                                                                                                 | 5)<br>7)<br>5)<br>Dh28) | 113.4<br>111.3<br>110.6<br>107.5                  | 26.4<br>25.0<br>24.4<br>26.6<br>24.0<br>26.3 | 82.7<br>80.2<br>88.1<br>80.0<br>77.8<br>65.7 | 96.7<br>97.4<br>96.4<br>95.1<br>95.5<br>97.2 |
| Average                                                           |                                                                                                                                                                                                                                     |                         | 115.3                                             | 26.2                                         | 83.5                                         | 96.3                                         |
|                                                                   | er in range                                                                                                                                                                                                                         |                         |                                                   | rence necessa                                |                                              |                                              |
| 3-5<br>6-1                                                        | 5<br>                                                                                                                                                                                                                               |                         | N.S.<br>N.S.<br>N.S.<br>N.S.                      | 2.2<br>2.4<br>2.5<br>2.6                     | N.S.<br>N.S.<br>N.S.<br>N.S.                 | N.S.<br>N.S.<br>N.S.<br>N.S.                 |
|                                                                   |                                                                                                                                                                                                                                     | Summary: 195            | 9-1960                                            |                                              |                                              |                                              |
| ll. 3301 (M1<br>ll. 3173 (A54<br>ll. 1962 (W6                     | $4 \times Oh43) (R172 \times B14)$<br>$4 \times Oh43) (R168 \times B14)$<br>$45 \times N24) (B14 \times Oh43)$<br>$44 \times A297) (B14 \times A54)$<br>$44 \times A297) (B14 \times A54)$<br>$(W64A \times M14) (R172 \times A54)$ | 5)                      | 122.7<br>121.7                                    | 26.8<br>26.2<br>27.0<br>23.5<br>25.5         | 92.6<br>97.4<br>92.4<br>86.4<br>92.6         | 98.1<br>96.9<br>94.3<br>96.6<br>98.8         |
| ll. 1960 (W6<br>ll. 1959 (W6<br>ll. 3152 (WF                      | 97×Oh43)(B37×Oh28<br>44A×M14)(B14×A545<br>44A×M14)(B14×A297<br>79×M14)(B14×Oh43)<br>44A×Oh43)(L12×B14                                                                                                                               | i)                      | 113.3<br>113.0<br>112.6<br>112.6<br>112.5         | 26.9<br>24.7<br>24.1<br>26.5<br>25.1         | 87.9<br>91.0<br>91.7<br>94.6<br>95.3         | 93.5<br>95.1<br>97.3<br>94.4<br>94.8         |
| ll. 1559B (W<br>ll. 1952 (W6<br>ll. 19 <b>3</b> 6 (WF             | 94A×A297) (B14×B21<br>VF9×Oh51A) (M14×C<br>94A×A545) (M14×B14<br>79×Hy2) (M14×B14)<br>94A×A239) (B14×A54                                                                                                                            | 9h28)                   | 112.3<br>111.3<br>110.3<br>107.9<br>107.4         | 24.7<br>25.0<br>25.4<br>25.9<br>24.9         | 89.9<br>90.2<br>90.4<br>86.8<br>87.7         | 93.2<br>94.9<br>95.9<br>94.6<br>95.5         |
| (11. 1958 (Oh)<br>(11. 1955 (W6<br>(11. 1957 (W6<br>(11. 1555A (W | /F9×R165) (R168×B1<br>26A×M14) (B14×A54<br>44A×B14) (M14×A29<br>44A×B14) (M14×A545<br>/F9×Oh51A) (I.224×C<br>79×M14) (I.205×187-2                                                                                                   | 5)<br>/)<br>))<br>Dh28) | 106.9<br>106.7<br>105.8<br>105.7<br>100.1<br>94.7 | 27.8<br>23.6<br>23.1<br>24.4<br>23.3<br>24.2 | 95.2<br>87.3<br>86.0<br>87.0<br>85.3<br>83.7 | 95.1<br>96.6<br>95.0<br>93.1<br>94.5<br>95.9 |
|                                                                   |                                                                                                                                                                                                                                     |                         | 110.9                                             | 25.2                                         | 90.1                                         | 95.4                                         |
| Numb                                                              | er in range                                                                                                                                                                                                                         |                         | Differe                                           | ence necessary                               | for signifi                                  | cance                                        |
| 3-5<br>6-1                                                        | 0<br>1                                                                                                                                                                                                                              |                         | N.S.<br>N.S.<br>N.S.<br>N.S.                      | 2.0<br>2.2<br>2.3<br>2.4                     | N.S.<br>N.S.<br>N.S.<br>N.S.                 | N.S.<br>N.S.<br>N.S.<br>N.S.                 |

| Entry                                        | Pedigree                                                |                                                                                                               | Acre<br>yield           | Moisture<br>in grain                 | Erect<br>plants                      | Stand                                |
|----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                              | DOUBLE                                                  | CROSSES OF 600                                                                                                | MATURI                  | TY — con                             | cluded                               |                                      |
|                                              |                                                         |                                                                                                               | bu.                     | percl.                               | percl.                               | percl.                               |
|                                              |                                                         | 1960 resu                                                                                                     | lts                     |                                      |                                      |                                      |
| (ll. 1555A<br>(ll. 1559B<br>(ll. 1861 ()     | (check) (WF9×0<br>(WF9×0h51A)(<br>WF9×M14)(I.22         | $5 \times 187-2$ )<br>Dh51 A) (I.224 × Oh28)<br>$M14 \times Oh28$ )<br>$4 \times Oh28$ )<br>$5 \times Oh43$ ) | 104.8<br>106.3<br>95.5  | 25.4<br>25.5<br>26.9<br>23.5<br>30.0 | 87.0<br>93.3<br>87.2<br>77.1<br>94.4 | 93.1<br>92.4<br>93.1<br>86.3<br>93.1 |
| (11. 1952 ()<br>(11. 1955 ()<br>(11. 1957 () | W64A×A545)(M<br>W64A×B14)(M1<br>W64A×B14)(M1            | $\times$ B14)<br>14 × B14)<br>4 × A297)<br>4 × A545)<br>4 × A545)                                             | 98.9<br>94.9<br>100.1   | 30.3<br>28.5<br>25.6<br>26.2<br>24.9 | 89.6<br>95.1<br>93.4<br>92.1<br>92.7 | 89.3<br>93.9<br>90.1<br>86.3<br>93.9 |
| 11. 1960 (*<br>11. 1961 (*<br>11. 1962 (*    | W64A × M14) (B1<br>W64A × A239) (B1<br>W64A × A297) (B1 | $4 \times A297$ )<br>$4 \times A545$ )<br>$4 \times A545$ )<br>$4 \times A545$ )<br>$168 \times B14$ )        | 110.8<br>97.3<br>113.4  | 26.3<br>26.8<br>27.2<br>25.5<br>29.9 | 96.8<br>94.1<br>94.2<br>95.1<br>96.5 | 94.6<br>90.9<br>91.6<br>93.9<br>90.9 |
| 11. 3152 (<br>11. 3173 (<br>11. 3174 (       | WF9×M14) (B14<br>A545×N24) (B14<br>A297×Oh43) (B3       | $4 \times B21$ )<br>×Oh43).<br>×Oh43).<br>7×Oh28).<br>8×B14).                                                 | 110.0<br>106.9<br>107.3 | 27.2<br>28.5<br>29.8<br>28.5<br>28.2 | 94.8<br>96.7<br>95.0<br>93.8<br>98.2 | 87.8<br>90.1<br>89.3<br>87.1<br>93.9 |
| (11. 3303 ()<br>(11. 3313 ()<br>(11. 6201 () | M14×Oh43)(R17<br>W64A×Oh43)(L1<br>WF9×B14)(R53          | (R172×B14)<br>2×B14)<br>(2×B14)<br>×Oh7)<br>551×R53)                                                          | 116.6<br>106.6<br>92.6  | 26.8<br>28.5<br>27.2<br>25.1<br>23.7 | 94.6<br>96.0<br>97.5<br>82.9<br>86.4 | 97.7<br>96.2<br>91.6<br>85.6<br>84.0 |
| Avera                                        | ge                                                      |                                                                                                               | 103.9                   | 27.0                                 | 92.5                                 | 91.0                                 |
| Nu                                           | mber in range                                           |                                                                                                               | Differ                  | ence necessar                        | y for signif                         | icance                               |
| 1                                            | 3-5<br>6-10<br>1-15                                     |                                                                                                               | 5.3<br>5.6<br>5.7       | 1.0<br>1.1<br>1.1<br>1.2<br>1.2      | 2.5<br>2.8<br>3.0<br>3.1<br>3.1      | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. |

### Table 3. — DeKalb — continued

[March,

| Entry                                                                         | Pedigree                                                                                                                                                                                                  | Acre<br>yield                                         | Moisture<br>in grain                 | Erect<br>plants                        | Stand                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|
|                                                                               | DOUBLE C                                                                                                                                                                                                  | ROSSES OF 700 MA                                      | TURITY                               |                                        |                                              |
|                                                                               |                                                                                                                                                                                                           | bu.                                                   | perct.                               | perct.                                 | perct.                                       |
|                                                                               | S                                                                                                                                                                                                         | ummary: 1958-1960                                     |                                      |                                        |                                              |
| ll. 3152 (WI<br>ll. 1936 (WI<br>JES 702 (W<br>ll. 21 (WF9                     | $^{69} \times M14$ ) (B14 × Oh43)                                                                                                                                                                         | 120.5           119.6           105.1           104.3 | 28.7<br>27.0<br>28.3<br>27.2         | 86.4<br>83.8<br>78.6<br>71.9           | 92.9<br>93.9<br>97.4<br>97.1                 |
|                                                                               |                                                                                                                                                                                                           |                                                       | 26.8                                 | 67.8                                   | 97.0                                         |
|                                                                               | er in range                                                                                                                                                                                               |                                                       | 27.6<br>rence necessar               | 77.7<br>v for signif                   | 95.7                                         |
|                                                                               | 5                                                                                                                                                                                                         |                                                       | N.S.                                 | N.S.                                   | N.S.                                         |
|                                                                               |                                                                                                                                                                                                           | ummary: 1959-1960                                     |                                      |                                        |                                              |
| II. 3382 (WI                                                                  | $(9 \times R109R)(R14 \times Ob43)$                                                                                                                                                                       | 119.1                                                 | 28.5                                 | 93.8                                   | 94.3                                         |
| ll. 3381 (WH<br>ll. 3270 (WH                                                  | $^{79} \times R71$ (B14 × Oh43)<br>$^{79} \times Oh43$ (R74 × R168)                                                                                                                                       | 116.8                                                 | 28.0<br>28.1                         | 93.5<br>95.8                           | 93.5<br>97.0                                 |
| II. 3303 (M1                                                                  | $4 \times Oh43$ (R172 × B14)                                                                                                                                                                              | 114.5                                                 | 27.2                                 | 93.8<br>92.0                           | 97.0                                         |
| II. 3275 (WI                                                                  | $(9 \times 0h43)(R114 \times R168)$ .                                                                                                                                                                     | 110.6                                                 | 27.1                                 | 95.1                                   | 96.3                                         |
| II. 1936 (WI                                                                  | <sup>7</sup> 9×Hy2)(M14×B14)<br><sup>7</sup> 9×Oh43)(R74×R109B).                                                                                                                                          | 110.1<br>109.8                                        | 24.4<br>28.2                         | 89.7<br>89.1                           | 90.9<br>88.1                                 |
| II. 3152 (WI                                                                  | $^{79} \times M14) (B14 \times Oh43) \dots$                                                                                                                                                               | 109.5                                                 | 27.2                                 | 92.8                                   | 89.4                                         |
| II. 3383 (WI                                                                  | $^{59}\times M14$ ) (B14 × Oh43)<br>$^{59}\times M14$ ) (R172 × Oh43)<br>$^{59}\times Oh43$ ) (R71 × R109B).                                                                                              | 109.4                                                 | 27.2                                 | 87.3                                   | 94.3                                         |
| II. 3205 (WI                                                                  | $(9 \times 0.0143)(R/1 \times R109B).$                                                                                                                                                                    | 107.5                                                 | 28.4                                 | 94.8                                   | 94.7                                         |
| AES 702 (W                                                                    | ×38-11)(Hy2×187-2)<br>F9×Hy2)(M14×C103)<br>79×M14)(I.205×187-2)                                                                                                                                           |                                                       | 25.0<br>25.9                         | 83.1<br>89.2                           | 97.0<br>96.2                                 |
| II. 1277 (WI                                                                  | <sup>79</sup> ×M14)(1.205×187-2)                                                                                                                                                                          |                                                       | 24.9                                 | 86.8                                   | 95.5                                         |
| Average                                                                       |                                                                                                                                                                                                           | 108.0                                                 | 26.9                                 | 91.0                                   | 93.8                                         |
| Numb                                                                          | er in range                                                                                                                                                                                               | Diffe                                                 | rence necessar                       | y for signif                           | icance                                       |
| 2-1                                                                           | .3                                                                                                                                                                                                        | N.S.                                                  | N.S.                                 | N.S.                                   | N.S.                                         |
|                                                                               |                                                                                                                                                                                                           | 1960 results                                          |                                      |                                        |                                              |
| AES 703 (W)<br>AES 704 (W)<br>AES 705 (W)<br>III. 21 (WF9                     | F9×Hy2)(M14×C103)<br>F9×Oh43)(B14×B38)<br>F9×Oh43)(B14×B37)<br>F9×B14)(C103×Oh43)<br>×38-11)(Hy2×187-2)                                                                                                   |                                                       | 26.4<br>33.1<br>32.7<br>32.1<br>24.9 | 85.8<br>97.4<br>98.4<br>97.5<br>89.6   | 92.4<br>89.3<br>93.9<br>90.9<br>94.6         |
| ll. 1277 (WH<br>ll. 1922 (WH<br>ll. 1936 (WH<br>ll. 1968 (WH<br>ll. 1969 (WH  | $79 \times M14$ )(I.205 × 187-2)<br>$79 \times Hy2$ )(R71 × R105)<br>$79 \times Hy2$ )(M14 × B14)<br>$79 \times B14$ )(R163 × R169)<br>$79 \times B14$ )(R165 × R168)                                     | 97.5<br>89.0<br>103.3<br>118.6<br>                    | 26.9<br>33.4<br>27.3<br>27.3<br>28.1 | 93.4<br>97.2<br>95.4<br>92.9<br>93.3   | 92.4<br>81.8<br>81.8<br>90.1<br>90.9         |
| 11. 3022 (WH<br>11. 3029 (WH<br>11. 3042 (WH<br>11. 3152 (che<br>11. 3182A (W | $79 \times B14$ ) (N22A × Oh43)<br>$79 \times B14$ ) (Oh43 × Oh45)<br>$79 \times B14$ ) (B40 × Oh45)<br>$79 \times B14$ ) (B40 × Oh45)<br>$79 \times R105$ ) (R151 × R154)                                | 99.1<br>95.5<br>106.6<br>9h43)100.8                   | 32.4<br>32.8<br>31.9<br>30.0<br>27.7 | 97.7<br>99.1<br>95.3<br>93.2<br>94.9   | 96.9<br>93.1<br>96.2<br>80.3<br>89.3         |
| 11. 3265 (WH<br>11. 3266 (WH<br>11. 3270 (WH<br>11. 3275 (WH<br>11. 3303 (M1  | $79 \times Oh43) (R71 \times R109B)$ .<br>$79 \times Oh43) (R74 \times R109B)$ .<br>$79 \times Oh43) (R74 \times R168)$ .<br>$79 \times Oh43) (R114 \times R168)$ .<br>$4 \times Oh43) (R172 \times B14)$ |                                                       | 28.4<br>30.1<br>31.1<br>28.5<br>29.2 | 95.8<br>92.2<br>97.6<br>98.4<br>94.7   | 90.9<br>80.3<br>94.6<br>93.9<br>84.8         |
| II. 3315A (W                                                                  | /F9×Hy2) (R109B×B14)<br>9×H55) (R74×R101)<br>79×R71) (B14×Oh43)<br>79×R109B) (B14×Oh43)<br>79×M14) (R172×Oh43)                                                                                            |                                                       | 32.6<br>31.3<br>31.5<br>31.5<br>29.6 | 94.9<br>92.5<br>96.3<br>94.9<br>90.7   | 93.1<br>94.6<br>87.1<br>89.3<br>88.6         |
| Average                                                                       | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                   |                                                       | 30.0                                 | 94.8                                   | 90.0                                         |
|                                                                               | er in range                                                                                                                                                                                               |                                                       | rence necessar                       |                                        |                                              |
| 2.<br>3-5<br>6-1<br>11-1                                                      | 5<br>0                                                                                                                                                                                                    |                                                       | 3.0<br>3.3<br>3.5<br>3.6<br>3.7      | 6.5<br>7.2<br>7.6<br>7.8<br>7.9<br>7.9 | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. |
|                                                                               |                                                                                                                                                                                                           |                                                       |                                      |                                        |                                              |

#### Table 3. — DeKalb — continued

| Entry                                                                | Acre<br>yield                          | Moisture<br>in grain                         | Erect<br>plants                              | Stand                                        |
|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| THREE-WAY CROSSES AND STAN                                           | IDARDS,                                | SUMMA                                        | RY: 195                                      | 69-1960                                      |
|                                                                      | bu.                                    | perct.                                       | perct.                                       | perct.                                       |
| Inbred lines crossed with                                            |                                        | Oh43)                                        |                                              |                                              |
| 271.<br>274.<br>276.<br>278.<br>284.                                 | 98.7<br>101.2<br>99.4                  | 30.1<br>29.1<br>28.8<br>29.4<br>25.8         | 94.3<br>95.5<br>81.4<br>91.4<br>83.8         | 88.2<br>81.0<br>83.4<br>88.4<br>83.3         |
| t101.<br>104.<br>109B.<br>1112.<br>1113.                             | 99.2<br>99.9<br>101.8                  | 26.4<br>28.0<br>28.5<br>28.9<br>26.7         | 90.5<br>91.0<br>96.8<br>96.5<br>90.3         | 88.3<br>81.4<br>83.0<br>85.2<br>89.5         |
| k114.<br>k134.<br>k135.<br>k135.<br>k151.<br>k154.                   |                                        | 27.3<br>28.7<br>29.8<br>28.8<br>27.4         | 95.8<br>93.9<br>87.5<br>90.9<br>90.6         | 84.3<br>83.1<br>85.6<br>89.1<br>91.3         |
| 1158<br>1159<br>1166<br>1168<br>1172                                 | 100.2<br>89.7<br>96.0                  | 26.2<br>30.5<br>25.6<br>25.5<br>28.1         | 92.4<br>93.1<br>88.4<br>96.2<br>92.4         | 89.5<br>83.3<br>87.6<br>99.5<br>96.8         |
| 1180                                                                 | 106.2<br>98.8<br>89.2                  | 29.9<br>24.6<br>26.6<br>28.7<br>29.1         | 88.2<br>86.0<br>97.6<br>89.9<br>93.6         | 84.2<br>82.0<br>84.5<br>85.5<br>88.6         |
| 193.<br>194.<br>195.<br>196.<br>197.<br>198.                         | 97.9<br>96.0<br>98.4<br>99.7           | 29.4<br>30.1<br>27.7<br>26.5<br>33.6<br>30.6 | 94.1<br>88.1<br>91.3<br>97.3<br>91.4<br>92.4 | 87.3<br>83.6<br>88.2<br>85.4<br>90.0<br>84.1 |
| Average                                                              |                                        | 28.3                                         | 91.7                                         | 86.6                                         |
| Inbred lines crossed wi                                              | th (WF9                                | × B37)                                       |                                              |                                              |
| 71<br>74                                                             | 92.3<br>89.5<br>92.3<br>90.9           | 30.0<br>30.2<br>29.5<br>30.3<br>26.4         | 96.0<br>97.4<br>89.5<br>85.8<br>81.7         | 89.2<br>80.7<br>86.1<br>92.5<br>87.0         |
| 101                                                                  | 91.1<br>96.8<br>97.4                   | 25.3<br>27.9<br>29.5<br>29.7<br>28.6         | 87.7<br>81.4<br>98.4<br>97.5<br>95.4         | 88.2<br>92.3<br>86.0<br>89.9<br>87.7         |
| 114<br>134<br>135<br>151<br>154                                      | 100.2<br>90.1<br>106.0                 | 30.3<br>30.5<br>30.2<br>30.2<br>27.4         | 96.4<br>95.6<br>85.5<br>92.4<br>87.9         | 87.3<br>82.9<br>82.0<br>89.1<br>92.8         |
| 158                                                                  | 89.0<br>90.8<br>101.3                  | 28.0<br>30.9<br>28.4<br>26.5<br>28.2         | 93.9<br>96.6<br>92.1<br>99.6<br>96.9         | 80.1<br>94.9<br>91.5<br>92.8<br>93.1         |
| 180<br>181.                                                          | 100.1<br>86.6<br>75.7                  | 30.3<br>26.4<br>26.7<br>29.6<br>28.8         | 97.5<br>90.5<br>94.7<br>98.1<br>91.0         | 81.2<br>93.6<br>76.7<br>90.0<br>85.6         |
| 183                                                                  | . 97.1                                 |                                              |                                              | 86.8                                         |
| 182.<br>183.<br>192.<br>193.<br>194.<br>195.<br>196.<br>197.<br>198. | 94.0<br>97.0<br>98.2<br>102.0<br>105.9 | 29.7<br>31.9<br>27.1<br>29.0<br>32.9<br>32.4 | 95.8<br>95.7<br>90.9<br>94.2<br>84.6<br>89.5 | 88.3<br>84.6<br>87.7<br>86.0<br>90.4         |

#### Table 3. — DeKalb — continued

| Entry                                                | Acre<br>yield                                | Moisture<br>In grain                         | Erect<br>plants                              | Stand                                        |
|------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| THREE-WAY CROSSES AND ST.<br>1959-1960 — conti       |                                              | RDS, SUI                                     | MMARY                                        | ?:                                           |
|                                                      | bu.                                          | perct.                                       | perct.                                       | perct.                                       |
| Inbred lines crossed with                            | (B41 ×                                       | Oh7A)                                        |                                              |                                              |
| R71.<br>R74.<br>R76.<br>R76.<br>R78.<br>R84.         | 85.8<br>105.0<br>95.6<br>79.9<br>66.5        | 32.7<br>31.4<br>31.3<br>31.6<br>27.8         | 83.3<br>92.1<br>73.1<br>72.2<br>79.2         | 89.1<br>84.1<br>90.4<br>88.1<br>94.1         |
| R101<br>R104<br>R109B<br>R112<br>R113                | 82.9<br>89.6<br>94.3<br>86.7<br>85.6         | 25.9<br>29.5<br>33.2<br>32.4<br>28.7         | 83.6<br>83.3<br>86.9<br>96.0<br>95.8         | 92.7<br>89.5<br>91.8<br>91.4<br>88.6         |
| R114<br>R134<br>R135<br>R151<br>R154.*.              | 88.7<br>98.3<br>71.6<br>102.2<br>100.2       | 30.5<br>33.4<br>34.1<br>28.6<br>29.3         | 92.0<br>91.2<br>86.3<br>80.4<br>88.9         | 95.0<br>81.8<br>93.1<br>90.4<br>84.5         |
| R158<br>R159<br>R166<br>R168<br>R172                 | 89.0<br>82.3<br>79.0<br>97.4<br>93.0         | 28.1<br>33.9<br>30.4<br>27.5<br>29.5         | 90.7<br>95.7<br>71.5<br>97.1<br>89.5         | 89.8<br>89.5<br>92.2<br>89.5<br>87.7         |
| R180<br>R181<br>R182<br>R183<br>R183<br>R192         | 82.6<br>99.7<br>91.2<br>82.3<br>81.9         | 31.4<br>25.6<br>29.5<br>30.3<br>30.0         | 76.8<br>80.4<br>91.6<br>94.3<br>84.6         | 89.9<br>90.8<br>89.1<br>87.4<br>88.3         |
| R193<br>R194<br>R195<br>R196<br>R196<br>R197<br>R197 | 86.7<br>70.8<br>80.1<br>84.0<br>92.0<br>84.1 | 30.4<br>33.9<br>27.3<br>30.9<br>31.7<br>33.9 | 89.6<br>87.5<br>93.7<br>85.4<br>82.1<br>74.5 | 92.2<br>92.2<br>95.0<br>90.5<br>95.8<br>94.1 |
| Average                                              | 87.4                                         | 30.5                                         | 86.1                                         | 90.3                                         |
| Single-cross tes                                     | sters                                        |                                              |                                              |                                              |
| WF9×Oh43<br>WF9×B37<br>B41×Oh7A                      | 100.5<br>87.3<br>65.2                        | 29.6<br>31.1<br>34.1                         | 94.8<br>97.6<br>55.7                         | 85.4<br>90.4<br>92.8                         |
| Average                                              | 84.3                                         | 31.6                                         | 82.7                                         | 89.5                                         |
| Number in range                                      |                                              | ence necessar                                |                                              |                                              |
| 2                                                    | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.         | 7.5<br>8.4<br>9.0<br>9.5<br>10.0             | 8.0<br>8.9<br>9.5<br>10.0<br>10.6            | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.         |

### Table 3. — DeKalb — continued

| Entry                                                                                                                                                                                                    | Acre<br>yield                                                                                                                                | Moisture<br>In grain                                                                                                 | Erect<br>plants                                                                                                              | Stand                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| THREE-WAY CROSSES AND ST                                                                                                                                                                                 |                                                                                                                                              | RDS, SUN                                                                                                             | MARY                                                                                                                         | :                                                                                                                            |
| 1959-1960 — cont                                                                                                                                                                                         | bu.                                                                                                                                          | perci.                                                                                                               | percl.                                                                                                                       | percl                                                                                                                        |
| Mean of inbred lines crossed                                                                                                                                                                             |                                                                                                                                              |                                                                                                                      |                                                                                                                              |                                                                                                                              |
|                                                                                                                                                                                                          | 92.6                                                                                                                                         | 30.9                                                                                                                 | 91.2                                                                                                                         | 88.9                                                                                                                         |
|                                                                                                                                                                                                          | 97.8                                                                                                                                         | 30.3                                                                                                                 | 95.1                                                                                                                         | 82.0                                                                                                                         |
| 876<br>878                                                                                                                                                                                               | 96.4<br>90.1                                                                                                                                 | 29.9<br>30.5                                                                                                         | 81.4<br>83.2                                                                                                                 | 86.6<br>89.7                                                                                                                 |
| 884                                                                                                                                                                                                      | 81.0                                                                                                                                         | 26.7                                                                                                                 | 81.7                                                                                                                         | 88.2                                                                                                                         |
| 8101                                                                                                                                                                                                     | 89.0                                                                                                                                         | 25.9                                                                                                                 | 87.3                                                                                                                         | 89.8                                                                                                                         |
| ξ104<br>ξ109Β                                                                                                                                                                                            | 93.3<br>97.1                                                                                                                                 | 28.5<br>30.4                                                                                                         | 85.3<br>94.1                                                                                                                 | 87.8<br>87.0                                                                                                                 |
| R112                                                                                                                                                                                                     | 95.3                                                                                                                                         | 30.4                                                                                                                 | 96.7                                                                                                                         | 88.9                                                                                                                         |
| k113                                                                                                                                                                                                     | 94.1<br>95.5                                                                                                                                 | 28.1<br>29.4                                                                                                         | 93.9<br>94.8                                                                                                                 | 88.6<br>88.9                                                                                                                 |
| £134                                                                                                                                                                                                     | 103.2                                                                                                                                        | 30.9                                                                                                                 | 94.0                                                                                                                         | 82.6                                                                                                                         |
| £135<br>£151                                                                                                                                                                                             | 84.5<br>105.3                                                                                                                                | $31.4 \\ 29.3$                                                                                                       | 86.5<br>88.0                                                                                                                 | 86.9<br>89.5                                                                                                                 |
|                                                                                                                                                                                                          | 101.4                                                                                                                                        | 28.1                                                                                                                 | 89.2                                                                                                                         | 89.6                                                                                                                         |
| K158                                                                                                                                                                                                     | 93.2                                                                                                                                         | 27.5                                                                                                                 | 92.4                                                                                                                         | 86.5                                                                                                                         |
| 8159<br>8166                                                                                                                                                                                             | 90.6<br>86.6                                                                                                                                 | 31.8<br>28.2                                                                                                         | 95.2<br>84.0                                                                                                                 | 89.3<br>90.5                                                                                                                 |
| K168                                                                                                                                                                                                     | 98.2<br>95.3                                                                                                                                 | 26.5<br>28.6                                                                                                         | 97.7<br>93.0                                                                                                                 | 94.0<br>92.6                                                                                                                 |
| \$180                                                                                                                                                                                                    | 90.4                                                                                                                                         | 30.6                                                                                                                 | 87.6                                                                                                                         | 85.2                                                                                                                         |
| <b>R181</b>                                                                                                                                                                                              | 102.0                                                                                                                                        | 25.5                                                                                                                 | 85.7                                                                                                                         | 88.8                                                                                                                         |
| K182                                                                                                                                                                                                     | 92.2<br>82.4                                                                                                                                 | 27.7<br>29.5                                                                                                         | 94.7<br>94.1                                                                                                                 | 83.5<br>87.7                                                                                                                 |
| x192                                                                                                                                                                                                     | 91.3                                                                                                                                         | 29.3                                                                                                                 | 89.8                                                                                                                         | 87.6                                                                                                                         |
| 8193<br>8194                                                                                                                                                                                             | 93.9<br>88.6                                                                                                                                 | 29.9<br>32.0                                                                                                         | 93.2<br>90.5                                                                                                                 | 88.8<br>88.1                                                                                                                 |
| R195                                                                                                                                                                                                     | 91.5                                                                                                                                         | 27.4                                                                                                                 | 92.0                                                                                                                         | 89.3                                                                                                                         |
| R196<br>R197                                                                                                                                                                                             | 94.8<br>99.3                                                                                                                                 | 28.8<br>32.8                                                                                                         | 92.3<br>86.1                                                                                                                 | 87.9<br>90.7                                                                                                                 |
| R198                                                                                                                                                                                                     | 92.1                                                                                                                                         | 32.3                                                                                                                 | 85.5                                                                                                                         | 89.6                                                                                                                         |
| Average                                                                                                                                                                                                  | 93.5                                                                                                                                         | 29.3                                                                                                                 | 90.2                                                                                                                         | 88.2                                                                                                                         |
| THREE-WAY CROSSES AND STA                                                                                                                                                                                | NDARI                                                                                                                                        | DS: 1960                                                                                                             | RESUI                                                                                                                        | .TS                                                                                                                          |
| Inbred lines crossed with                                                                                                                                                                                | (WF9 >                                                                                                                                       | (Oh43)                                                                                                               |                                                                                                                              |                                                                                                                              |
| 871                                                                                                                                                                                                      | 90.5<br>98.5                                                                                                                                 | 31.7<br>31.0                                                                                                         | 92.6<br>97.9                                                                                                                 | 81.7<br>70.4                                                                                                                 |
| 876                                                                                                                                                                                                      | 94.7                                                                                                                                         | 30.5                                                                                                                 | 89.4                                                                                                                         | 75.7                                                                                                                         |
| 278                                                                                                                                                                                                      | 88.3<br>91.5                                                                                                                                 | 31.2<br>26.2                                                                                                         | 92.8<br>84.9                                                                                                                 | 84.8<br>80.2                                                                                                                 |
| \$101                                                                                                                                                                                                    | 89.9                                                                                                                                         | 27.1                                                                                                                 | 89.1                                                                                                                         | 82.5                                                                                                                         |
| k104                                                                                                                                                                                                     | 98.5<br>94.2                                                                                                                                 | 29.7                                                                                                                 | 98.0                                                                                                                         | 70.4                                                                                                                         |
| 8109B                                                                                                                                                                                                    | 93.1                                                                                                                                         | 30.0<br>31.5                                                                                                         | 97.0<br>97.0                                                                                                                 | 76.4<br>78.0                                                                                                                 |
| 8113                                                                                                                                                                                                     | 89.9                                                                                                                                         | 28.5                                                                                                                 | 95.9                                                                                                                         | 82.5                                                                                                                         |
| K114                                                                                                                                                                                                     | 93.7<br>93.7                                                                                                                                 | 29.8<br>30.1                                                                                                         | 98.8<br>94.1                                                                                                                 | 77.2<br>77.2                                                                                                                 |
| 2134                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                      | 95.5                                                                                                                         | 84.0                                                                                                                         |
| 135                                                                                                                                                                                                      | 88.9                                                                                                                                         | 33.3                                                                                                                 |                                                                                                                              |                                                                                                                              |
| 1135<br>151                                                                                                                                                                                              |                                                                                                                                              | $33.3 \\ 30.4 \\ 29.5$                                                                                               | 96.3<br>93.6                                                                                                                 | 82.5<br>90.8                                                                                                                 |
| k135<br>k151<br>k154                                                                                                                                                                                     | 88.9<br>89.9<br>84.1<br>89.9                                                                                                                 | 30.4<br>29.5<br>27.5                                                                                                 | 96.3<br>93.6<br>92.6                                                                                                         | 90.8<br>82.5                                                                                                                 |
| 1135.<br>1151.<br>1154.<br>1158.<br>1159.                                                                                                                                                                | 88.9<br>89.9<br>84.1<br>89.9<br>95.8                                                                                                         | 30.4<br>29.5<br>27.5<br>31.8                                                                                         | 96.3<br>93.6<br>92.6<br>96.9                                                                                                 | 90.8<br>82.5<br>74.2                                                                                                         |
| 135.<br>151.<br>154.<br>158.<br>159.<br>166.<br>168.                                                                                                                                                     | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7                                                                                         | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3                                                                         | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2                                                                                 | 90.8<br>82.5<br>74.2<br>84.8<br>99.9                                                                                         |
| 1135<br>1151<br>154<br>158<br>159<br>166<br>1168                                                                                                                                                         | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9                                                                                 | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0                                                                 | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4                                                                         | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4                                                                                 |
| 135.         151.         154.         158.         159.         166.         168.         1172.         1180.                                                                                           | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9                                                                 | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0<br>32.2<br>27.5                                                 | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4<br>89.3<br>94.8                                                         | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7                                                                 |
| 135.         151.         154.         158.         166.         1172.         1180.         1181.         1182.                                                                                         | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9<br>92.1                                                         | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0<br>32.2<br>27.5<br>27.6                                         | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4<br>89.3<br>94.8<br>99.0                                                 | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7<br>79.5                                                         |
| L135.<br>L151.<br>L154.<br>L158.<br>L159.<br>L166.<br>L168.<br>L168.<br>L172.<br>L180.<br>L181.<br>L181.<br>L182.<br>L183.                                                                               | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9                                                                 | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0<br>32.2<br>27.5                                                 | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4<br>89.3<br>94.8                                                         | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7                                                                 |
| 135.         151.         154.         155.         159.         166.         172.         180.         181.         182.         182.         183.         192.         193.                            | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9<br>92.1<br>93.7<br>90.5<br>91.5                                 | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0<br>32.2<br>27.5<br>27.6<br>30.5<br>30.8<br>31.5                 | 96.3<br>93.6<br>92.6<br>92.6<br>99.2<br>99.2<br>91.4<br>89.3<br>94.8<br>99.0<br>99.1<br>96.1<br>95.0                         | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7<br>79.5<br>77.2<br>81.7<br>80.2                                 |
| 134.         135.         135.         154.         158.         1159.         166.         168.         172.         180.         181.         182.         183.         193.         194.         195. | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9<br>94.2<br>96.9<br>92.1<br>93.7<br>90.5<br>91.5<br>96.3<br>91.0 | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0<br>32.2<br>27.5<br>27.6<br>30.5<br>30.8<br>31.5<br>31.4<br>30.0 | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4<br>89.3<br>94.8<br>99.0<br>99.1<br>96.1<br>95.0<br>95.7<br>93.0         | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7<br>79.5<br>77.2<br>81.7<br>80.2<br>73.4<br>81.0                 |
| 135         (151         154         158         159         166         168         172         180         181         182         183         192         193         194         195         196     | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9<br>92.1<br>93.7<br>90.5<br>91.5<br>96.3<br>91.0<br>94.7         | 30.4<br>29.5<br>27.5<br>31.8<br>27.3<br>30.0<br>32.2<br>27.5<br>27.6<br>30.8<br>31.4<br>30.0<br>31.4<br>30.0<br>27.3 | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4<br>89.3<br>94.8<br>99.0<br>99.1<br>96.1<br>95.0<br>95.7<br>93.0<br>98.1 | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7<br>79.5<br>77.2<br>81.7<br>80.2<br>73.4<br>81.2<br>73.4<br>81.7 |
| 135.         151.         154.         158.         159.         166.         1168.         1172.         1180.         1181.         1182.         1183.         1193.         1194.         1195.      | 88.9<br>89.9<br>84.1<br>89.9<br>95.8<br>88.3<br>77.7<br>80.9<br>94.2<br>96.9<br>94.2<br>96.9<br>92.1<br>93.7<br>90.5<br>91.5<br>96.3<br>91.0 | 30.4<br>29.5<br>27.5<br>31.8<br>25.4<br>27.3<br>30.0<br>32.2<br>27.5<br>27.6<br>30.5<br>30.8<br>31.5<br>31.4<br>30.0 | 96.3<br>93.6<br>92.6<br>96.9<br>89.2<br>99.2<br>91.4<br>89.3<br>94.8<br>99.0<br>99.1<br>96.1<br>95.0<br>95.7<br>93.0         | 90.8<br>82.5<br>74.2<br>84.8<br>99.9<br>95.4<br>76.4<br>72.7<br>79.5<br>77.2<br>81.7<br>80.2<br>73.4<br>81.0                 |

### Table 3. — DeKalb — continued

[March,

| Entry                |                            | Acre<br>yield  | Moisture<br>in grain | Erect<br>plants     | Stand        |
|----------------------|----------------------------|----------------|----------------------|---------------------|--------------|
| THREE-WAY<br>1960 H  | CROSSES AN<br>RESULTS — co |                |                      | S:                  |              |
|                      |                            | bu.            | perci.               | perct.              | perct.       |
| Inbred line          | s crossed with             | (WF9           | × B37)               |                     |              |
| R71<br>R74           |                            | 85.1<br>85.7   | 30.4<br>31.4         | 94.1<br>95.7        | 89.3<br>88.6 |
| R76                  |                            | 92.1           | 31.4                 | 89.4                | 79.5         |
| R78                  |                            | 84.1<br>91.0   | 31.6<br>27.3         | 86.9<br>77.1        | 90.8<br>81.0 |
| R101<br>R104         |                            | 90.5<br>86.2   | 25.2<br>28.9         | 87.0<br>83.0        | 81.7<br>87.8 |
| R109B                |                            | 92.6           | 31.1                 | 98.0                | 78.7         |
| R112<br>R113         |                            | 89.4<br>92.1   | $32.4 \\ 31.7$       | 97.2<br>97.0        | 83.3<br>79.5 |
| R114                 |                            | 92.1           | 32.1                 | 94.7                | 79.5         |
| R134<br>R135         |                            | 95.3<br>88.9   | $32.3 \\ 33.5$       | 97.0<br>87.0        | 74.9<br>84.0 |
| R151                 |                            | 89.9<br>84.6   | $31.0 \\ 28.6$       | 93.4<br>94.2        | 82.5<br>90.1 |
| R158                 |                            | 95.8           | 29.8                 | 96.7                | 74.2         |
| R159                 |                            | 83.5<br>86.2   | 33.2<br>29.8         | 98.4<br>93.8        | 91.6<br>87.8 |
| R168                 |                            | 85.1<br>85.7   | 27.5<br>29.3         | 100.0 98.2          | 89.3<br>88.6 |
| R180                 |                            | 96.9           | 32.3                 | 98.1                | 72.7         |
| R181                 |                            | 85.1<br>89.9   | 28.7<br>28.5         | 91.5<br>93.2        | 89.3<br>82.5 |
| R183                 |                            | 88.3           | 30.1                 | 98.2                | 84.8         |
| R192                 |                            | 92.6<br>93.1   | 29.8<br>31.0         | 93.4<br>99.0        | 78.7<br>78.0 |
| R194                 |                            | 89.4           | 33.2                 | 95.7                | 83.3         |
| R195<br>R196         |                            | 94.7<br>91.5   | 29.0<br>30.8         | 91.0<br>94.4        | 75.7<br>80.2 |
| <b>X197</b>          |                            | 93.1<br>88.9   | $34.1 \\ 33.4$       | 89.1<br>94.5        | 78.0<br>84.0 |
| Average              |                            | 89.7           | 30.6                 | 93.4                | 82.9         |
| Inbred lines         | s crossed with             | (B41 ×         | Oh7A)                |                     |              |
| R71                  |                            | 89.5           | 33.8                 | 79.7                | 83.3         |
| R74<br>R76<br>R78    |                            | 95.9<br>88.9   | $33.4 \\ 32.3$       | 92.3<br>71.2        | 74.2<br>84.0 |
| ₹78<br>₹84           |                            | 91.6<br>83.6   | $32.1 \\ 27.0$       | 81.0<br>77.6        | 80.2<br>91.6 |
| R 101                |                            | 85.7           | 25.9                 | 86.1                | 88.6         |
| R104                 |                            | 90.0<br>87.3   | $30.9 \\ 35.2$       | 91.5<br>82.9        | 82.5<br>86.3 |
| R112<br>R113         |                            | 84.1<br>90.5   | 35.0<br>31.2         | 96.8<br>97.2        | 86.3<br>81.7 |
| R114                 |                            | 82.5           | 32.5                 | 93.6                | 93.1         |
| R134<br>R135         |                            | 99.1<br>85.7   | 35.6<br>37.6         | 95.3<br>82.5        | 69.6<br>88.6 |
| R151                 |                            | 88.9           | 29.1                 | 84.0                | 84.0         |
| R154                 |                            | 95.9<br>86.8   | 31.2<br>29.0         | 94.9<br>89.5        | 74.2<br>87.0 |
| R159                 |                            | 90.0           | 34.8                 | 96.2                | 82.5<br>87.0 |
| R166                 |                            | 86.8<br>90.0   | $31.6 \\ 28.5$       | 79.2<br>97.2        | 82.5         |
| R172                 |                            | 91.6           | 31.8                 | 92.0                | 80.2         |
| R180<br>R181         |                            | $89.5 \\ 88.4$ | 33.6<br>27.5         | 81.4<br>85.3        | 83.3<br>84.8 |
| R182<br>R183         |                            | 89.5<br>90.5   | 30.9<br>31.6         | 90.1<br>93.9        | 83.3<br>81.7 |
| R183                 |                            | 90.0           | 30.6                 | 84.6                | 82.5         |
| R193<br>R194         |                            | 86.8<br>86.8   | 32.6<br>33.8         | 92.0<br>84.6        | 87.0<br>87.0 |
| R194<br>R195<br>R196 |                            | 83.1<br>87.9   | 27.2<br>33.0         | 91.0<br>86.6        | 92.3<br>85.5 |
| R197                 |                            | 82.5           | 32.6                 | 80.9                | 93.1         |
| Average              |                            | 84.1           | 36.0<br>31.9         | 84.5<br><b>87.6</b> | 90.8<br>84.5 |
| Average              |                            | 88.5           | 31.9                 | 01.0                | 04.5         |

#### Table 3. — DeKalb — continued

(Table is concluded on next page)

14

| THREE-WAY CROSSES AN<br>1960 RESULTS — co<br>Single-cross test<br>Standards<br>×38-11)(Oh7×CL21E).<br>(WF9)(R71×R109B).<br>1×B14)(WF9×Oh43).<br>(R101)(H49×H55).<br>in range | nclude                                                                            |                                                                                                                                                                                                                                      | S:<br>percl.<br>94.7<br>98.2<br>64.4<br>85.8<br>94.0<br>90.5<br>98.2<br>91.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | perct.<br>72.7<br>81.8<br>88.6<br>81.1<br>88.6<br>95.4 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Single-cross test<br>Standards<br>× 38-11) (Oh7×CL.21E).<br>(WF9) (R71×R109B).<br>1×B14) (WF9×Oh43).<br>(R101) (H49×H55).<br>in range                                        | <i>bu.</i><br>ers<br>97.0<br>90.6<br>85.3<br>91.0<br>85.8<br>80.5<br>90.6<br>83.1 | <i>percl.</i><br>31.3<br>34.2<br>34.2<br>33.2<br>32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                        | 94.7<br>98.2<br>64.4<br><b>85.8</b><br>94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.7<br>81.8<br>88.6<br>81.1<br>88.6<br>95.4           |
| Standards<br>×38-11)(Oh7×CL21E).<br><wf9)(r71×r109b).<br>1×B14)(WF9×Oh43).<br/>(R101)(H49×H55).<br/>in range</wf9)(r71×r109b).<br>                                           | ers<br>97.0<br>90.6<br>85.3<br>91.0<br>85.8<br>80.5<br>90.6<br>83.1               | 31.3<br>34.2<br>34.2<br>33.2<br>32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                                         | 94.7<br>98.2<br>64.4<br><b>85.8</b><br>94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.7<br>81.8<br>88.6<br>81.1<br>88.6<br>95.4           |
| Standards<br>×38-11)(Oh7×CL21E).<br><wf9)(r71×r109b).<br>1×B14)(WF9×Oh43).<br/>(R101)(H49×H55).<br/>in range</wf9)(r71×r109b).<br>                                           | 97.0<br>90.6<br>85.3<br>91.0<br>85.8<br>80.5<br>90.6<br>83.1                      | 34.2<br>34.2<br>33.2<br>32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                                                 | 98.2<br>64.4<br>85.8<br>94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81.8<br>88.6<br>81.1<br>88.6<br>95.4                   |
| Standards<br>×38-11)(Oh7×CI.21E).<br><wf9)(r71×r109b).<br>1×B14)(WF9×Oh43).<br/>(R101)(H49×H55).<br/>in range</wf9)(r71×r109b).<br>                                          | 90.6<br>85.3<br>91.0<br>85.8<br>80.5<br>90.6<br>83.1                              | 34.2<br>34.2<br>33.2<br>32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                                                 | 98.2<br>64.4<br>85.8<br>94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81.8<br>88.6<br>81.1<br>88.6<br>95.4                   |
| Standards<br>× 38-11) (Oh7×CI.21E).<br>< WF9) (R71×R109B).<br>× B14) (WF9×Oh43).<br>< R101) (H49×H55).<br>in range                                                           | 85.3<br>91.0<br>85.8<br>80.5<br>90.6<br>83.1                                      | 34.2<br>33.2<br>32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                                                         | 64.4<br>85.8<br>94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.6<br>81.1<br>88.6<br>95.4                           |
| Standards<br>×38-11)(Oh7×CL21E).<br><wf9)(r71×r109b).<br>1×B14)(WF9×Oh43).<br/>(R101)(H49×H55).<br/>in range</wf9)(r71×r109b).<br>                                           | 91.0<br>85.8<br>80.5<br>90.6<br>83.1                                              | 33.2<br>32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                                                                 | <b>85</b> .8<br>94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.1<br>88.6<br>95.4                                   |
| Standards           ×38-11)(Oh7×C1.21E). <wf9)(r71×r109b).< td="">           1×B14)(WF9×Oh43).           (R101)(H49×H55).           in range</wf9)(r71×r109b).<>             | 85.8<br>80.5<br>90.6<br>83.1                                                      | 32.6<br>32.3<br>30.0<br>34.8                                                                                                                                                                                                         | 94.0<br>90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88.6<br>95.4                                           |
| × 38-11) (Oh7×CI.21E).<br>(WF9)(R71×R109B).<br>1×B14)(WF9×Oh43).<br>(R101)(H49×H55).<br>in range                                                                             | 80.5<br>90.6<br>83.1                                                              | 32.3<br>30.0<br>34.8                                                                                                                                                                                                                 | 90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95.4                                                   |
| <pre><wf9)(r71×r109b)< td=""><td>80.5<br/>90.6<br/>83.1</td><td>32.3<br/>30.0<br/>34.8</td><td>90.5<br/>98.2</td><td>95.4</td></wf9)(r71×r109b)<></pre>                      | 80.5<br>90.6<br>83.1                                                              | 32.3<br>30.0<br>34.8                                                                                                                                                                                                                 | 90.5<br>98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95.4                                                   |
| 4×B14)(WF9×Oh43).<br>(R101)(H49×H55)<br>in range                                                                                                                             | 90.6<br>83.1                                                                      | 30.0<br>34.8                                                                                                                                                                                                                         | 98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |
| in range                                                                                                                                                                     |                                                                                   |                                                                                                                                                                                                                                      | 91.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.8                                                   |
| in range                                                                                                                                                                     | 85.0                                                                              | 32 4                                                                                                                                                                                                                                 | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93.2                                                   |
|                                                                                                                                                                              |                                                                                   | 36.1                                                                                                                                                                                                                                 | 93.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89.8                                                   |
|                                                                                                                                                                              |                                                                                   | rence necessa                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                                                                                                                                                                              | N.S.                                                                              | 10.9                                                                                                                                                                                                                                 | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N.S.                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.S.<br>N.S.                                           |
|                                                                                                                                                                              | N.S.                                                                              | 13.7                                                                                                                                                                                                                                 | 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N.S.                                                   |
| ••••••                                                                                                                                                                       | N.S.                                                                              | 13.9                                                                                                                                                                                                                                 | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N.S.                                                   |
| Mean of inbred lines crossed v                                                                                                                                               | with th                                                                           | ree tester                                                                                                                                                                                                                           | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
|                                                                                                                                                                              | 88.4                                                                              | 32.0                                                                                                                                                                                                                                 | 88.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.8                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.7                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.8<br>85.3                                           |
|                                                                                                                                                                              | 88.8                                                                              | 26.8                                                                                                                                                                                                                                 | 79.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.3                                                   |
|                                                                                                                                                                              | 88.7                                                                              | 26.1                                                                                                                                                                                                                                 | 87.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.3                                                   |
|                                                                                                                                                                              | 91.6                                                                              |                                                                                                                                                                                                                                      | 90.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.3                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.5<br>82.5                                           |
|                                                                                                                                                                              | 90.9                                                                              | 30.5                                                                                                                                                                                                                                 | 96.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.3                                                   |
|                                                                                                                                                                              | 89.4                                                                              | 31.5                                                                                                                                                                                                                                 | 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.3                                                   |
|                                                                                                                                                                              | 96.0                                                                              | 32.8                                                                                                                                                                                                                                 | 95.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.0                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.6                                                   |
| •••••••••••••••••                                                                                                                                                            |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.0<br>85.1                                           |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.3                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82.8                                                   |
|                                                                                                                                                                              | 87.2                                                                              | 29.0                                                                                                                                                                                                                                 | 87.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.6                                                   |
|                                                                                                                                                                              | 84.3                                                                              |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.6                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.1                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.5<br>82.3                                           |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.8                                                   |
|                                                                                                                                                                              | 90.9                                                                              | 30.8                                                                                                                                                                                                                                 | 97.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.3                                                   |
|                                                                                                                                                                              | 91.1                                                                              | 30.4                                                                                                                                                                                                                                 | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.0                                                   |
|                                                                                                                                                                              | 90.5                                                                              | 31.7                                                                                                                                                                                                                                 | 95.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.8                                                   |
|                                                                                                                                                                              | 90.9                                                                              | 32.8                                                                                                                                                                                                                                 | 92.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.3                                                   |
|                                                                                                                                                                              |                                                                                   |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.0<br>80.5                                           |
|                                                                                                                                                                              | 88.0                                                                              | 34.4                                                                                                                                                                                                                                 | 88.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.3                                                   |
|                                                                                                                                                                              | 89.4                                                                              | 34.1                                                                                                                                                                                                                                 | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.3                                                   |
|                                                                                                                                                                              | 89.9                                                                              | 30.9                                                                                                                                                                                                                                 | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82.6                                                   |
|                                                                                                                                                                              | Mean of inbred lines crossed v                                                    | N.S.<br>N.S.<br>N.S.<br>Mean of inbred lines crossed with th<br>93.4<br>92.0<br>92.0<br>92.0<br>92.0<br>92.0<br>92.0<br>92.0<br>93.8<br>91.6<br>91.6<br>91.6<br>91.6<br>91.4<br>91.4<br>91.4<br>91.4<br>91.4<br>91.4<br>91.4<br>91.4 | N.S.         13.0           N.S.         13.7           N.S.         13.7           N.S.         13.9           Mean of inbred lines crossed with three tester         93.4           92.0         31.5           88.4         32.0           92.0         31.5           88.0         31.6           88.1         26.8           91.6         29.9           91.4         32.1           91.6         29.9           91.4         32.1           88.9         33.0           90.9         30.5           89.4         31.5           96.0         32.8           87.8         34.9           88.2         29.8           89.4         31.5           90.9         30.2           88.2         29.8           89.4         31.5           90.9         33.3           89.4         31.5           90.9         30.2           88.2         29.8           90.9         33.3           89.4         33.3           90.5         29.0           90.2         27.9 </td <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |

### Table 3. — DeKalb — concluded

| Entry                                           | Pedigree                                                                                                                                                                                                                                             | Acre<br>yield                | Moisture<br>in grain                         | Erect<br>plants                            | Stand                                        |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|
|                                                 | 1960 re:                                                                                                                                                                                                                                             | sults                        |                                              |                                            |                                              |
|                                                 |                                                                                                                                                                                                                                                      | bu.                          | perct.                                       | percl.                                     | percl.                                       |
| AES 809 (W<br>AES 810 (W<br>Ill. 1421 (ch       | /F9×B14) (C103×Oh43)<br>/F9×P8) (C103×Oh43)<br>/F9×H50) (Oh7B×Oh45)<br>eck) (WF9×Hy2) (P8×Oh7)<br>F9×38-11) (Hy2×B14)                                                                                                                                | 95.6<br>106.8<br>111.9       | 24.6<br>27.4<br>27.2<br>27.3<br>24.0         | 97.8<br>85.7<br>95.7<br>87.0<br>90.0       | 92.0<br>84.0<br>86.0<br>89.3<br>86.6         |
| 111. 3042 (W<br>111. 3049 (W<br>111. 3080 (W    | y2×Oh7) (B14×C103)<br>F9×B14) (B40×Oh45)<br>F9×Hy2) (R71×R109B)<br>F9×Hy2) (R101×Oh451)<br>F9×Oh7) (B14×Oh43)                                                                                                                                        | 108.8<br>91.5<br>94.1        | 26.0<br>26.2<br>26.7<br>25.2<br>26.3         | 92.7<br>89.7<br>90.5<br>74.8<br>96.8       | 90.6<br>96.6<br>85.3<br>90.0<br>84.6         |
| III. 3237 (W<br>III. 3244 (W<br>III. 3291 (W    | $\begin{array}{l} F9 \times R154) (R105 \times R153) \dots \\ F9 \times R101) (R151 \times R154) \dots \\ F9 \times R151) (R105 \times R153) \dots \\ F9 \times P8) (B14 \times Oh43) \dots \\ F9 \times P8) (Hy2 \times C103) \dots \\ \end{array}$ | 115.0<br>104.1<br>108.1      | 28.1<br>24.7<br>26.6<br>25.3<br>28.0         | 87.5<br>92.9<br>87.9<br>96.5<br>89.6       | 88.6<br>81.3<br>93.3<br>92.6<br>96.6         |
| III. 3346 (H4<br>III. 3348 (H4<br>III. 3351 (H4 | 49×H55)(R71×R74)<br>49×H55)(R71×R168)<br>49×H55)(R74×R109B)<br>49×H55)(R109B×R168)<br>F9×Oh41)(Hy2×Oh7)                                                                                                                                              | 130.2<br>125.4<br>108.6      | 28.9<br>27.9<br>26.7<br>26.6<br>24.3         | 90.4<br>97.1<br>89.6<br>91.4<br>78.0       | 98.0<br>80.0<br>89.3<br>93.3<br>91.3         |
| III. 8002ª [(H<br>III. 8003 (W<br>III. 8004 (W  | y2 × R138) (Oh7 × Oh7B)<br>+y2 × B14) Hy2][[Oh7 × C103) Oh7]<br>F9 × Oh7) (H55 × C103)<br>F9 × Hy2] (R74 × B14)<br>F9 × Hs21) (Hy2 × L317)                                                                                                           | 119.6<br>120.6<br>93.0       | 28.0<br>26.1<br>26.2<br>27.1<br>27.6         | 84.6<br>89.4<br>93.4<br>93.0<br>89.8       | 88.0<br>94.0<br>90.0<br>86.0<br>88.0         |
| Average                                         |                                                                                                                                                                                                                                                      | 108.3                        | 26.5                                         | 90.1                                       | 89.4                                         |
|                                                 | ber in range                                                                                                                                                                                                                                         |                              | ence necessar                                |                                            |                                              |
| 3-<br>6-<br>11-<br>16-                          | 5                                                                                                                                                                                                                                                    | 17.8<br>18.9<br>19.4<br>19.6 | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | 8.5<br>9.5<br>10.0<br>10.3<br>10.4<br>10.5 | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. |

### Table 4. — DOUBLE CROSSES OF 800 MATURITY Tested at Galesburg, 1960

\* Back-cross hybrid.

16

# Table 5. — DOUBLE CROSSES OF 700 MATURITY Tested at Peoria, 1958-1960

| Entry                                                                        | Pedigree                                                                                                                                                              | Acre<br>yield                        | Moisture<br>in grain                                            | Erect<br>plants                                              | Stand                                                   |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|
|                                                                              | Summary: 1958                                                                                                                                                         | -1960                                |                                                                 |                                                              |                                                         |
| [1]. 3029 (WH                                                                | $79 \times B14$ ) (N22A $\times$ Oh43).<br>$79 \times B14$ ) (Oh43 $\times$ Oh45).<br>$70 \times B14$ ) (Oh43 $\times$ Oh45).                                         | 103.8                                | perct.<br>22.0<br>22.7                                          | perct.<br>93.5<br>93.4                                       | <i>perct.</i><br>93.1<br>91.7                           |
| ll. 1968 (WH<br>AES 703 (WI                                                  | <sup>79</sup> ×B14)(B40×Oh45)<br><sup>79</sup> ×B14)(R163×R169)<br><sup>79</sup> ×Oh43)(B14×B38)<br><sup>79</sup> ×B14)(R165×R168)                                    | 102.0<br>100.1<br>99.2<br>98.6       | 24.0<br>20.9<br>21.7<br>20.7                                    | 90.2<br>87.9<br>94.9<br>90.8                                 | 93.1<br>93.7<br>92.3<br>95.3                            |
| AES 705 (W)<br>11. 21 (WF9<br>AES 704 (W)                                    | F9×B14)(C103×Oh43)<br>×38-11)(Hy2×187-2).<br>F9×Oh43)(B14×B37).<br>F9×Hy2)(M14×C103).                                                                                 | 96.8<br>95.7<br>93.1<br>92.3         | 23.0<br>20.4<br>21.9<br>21.4                                    | 90.3<br>76.7<br>97.8<br>87.5                                 | 94.6<br>93.3<br>90.4<br>90.6                            |
|                                                                              |                                                                                                                                                                       | 98.9                                 | 21.9                                                            | 90.3                                                         | 92.8                                                    |
|                                                                              | er in range<br>10                                                                                                                                                     | N.S.                                 | N.S.                                                            | N.S.                                                         | N.S.                                                    |
|                                                                              | Summary: 1959                                                                                                                                                         | -1960                                |                                                                 |                                                              |                                                         |
| 11. 3022 (WH<br>11. 3182A (W<br>11. 3029 (WH                                 | 9×H55)(R74×R101).<br><sup>7</sup> 9×B14)(N22A×Oh43).<br><sup>7</sup> F9×R105)(R151×R154).<br><sup>7</sup> 9×B14)(Oh43×Oh45).<br><sup>7</sup> 9×Oh43)(B14×B38).        | 98.3<br>95.3<br>90.5<br>87.8<br>87.1 | 25.2<br>23.9<br>24.3<br>24.2<br>23.9                            | 86.4<br>95.6<br>75.0<br>97.0<br>94.8                         | 89.6<br>91.3<br>93.7<br>87.6<br>90.5                    |
| ll. 1968 (WH<br>ll. 3042 (WH<br>ll. 1969 (WH<br>ll. 21 (WF9)                 | <sup>79</sup> ×B14)(R163×R169)<br><sup>79</sup> ×B14)(B40×Oh45)<br><sup>79</sup> ×B14)(R165×R168)<br>×38-11)(Hy2×187-2)                                               | 86.8<br>86.7<br>85.4<br>83.0         | 22.9<br>25.7<br>22.3<br>21.6                                    | 87.2<br>91.5<br>90.3<br>85.2                                 | 90.6<br>90.0<br>93.0<br>92.1                            |
| ll. 3315A (W<br>AES 705 (W<br>AES 704 (W)                                    | F9×Hy2)(M14×C103).<br>/F9×Hy2)(R109B×B14)<br>F9×B14)(C103×Oh43).<br>F9×Oh43)(B14×B37).                                                                                | 81.2<br>79.9<br>79.7<br>75.4         | 22.5<br>22.5<br>25.6<br>23.5                                    | 92.6<br>94.1<br>93.0<br>97.6                                 | 86.7<br>89.0<br>91.9<br>86.4                            |
|                                                                              | er in range                                                                                                                                                           | 85.9<br>Differ                       | 23.7<br>rence necessa:                                          | 90.8<br>ry for signi                                         | <b>90.2</b><br>ficance                                  |
| 3-5                                                                          | 3                                                                                                                                                                     | N.S.<br>N.S.<br>N.S.                 | 2.4<br>2.6<br>2.7                                               | 9.8<br>10.7<br>11.0                                          | N.S.<br>N.S.<br>N.S.                                    |
|                                                                              | 1960 results                                                                                                                                                          |                                      |                                                                 |                                                              |                                                         |
| AES 703 (W)<br>AES 704 (W)<br>AES 705 (W)                                    | F9×Hy2)(M14×C103)<br>F9×Oh43)(B14×B38)<br>F9×Oh43)(B14×B37)<br>F9×B14)(C103×Oh43)<br>×38-11)(Hy2×187-2)                                                               | 64.6<br>72.8<br>65.5<br>66.9<br>77.7 | 23.5<br>26.0<br>24.8<br>28.9<br>22.4                            | 92.4<br>95.8<br>97.3<br>88.0<br>82.2                         | 79.5<br>87.1<br>80.3<br>88.6<br>90.9                    |
| ll. 1922 (WF<br>ll. 1936 (WF<br>ll. 1968 (WF                                 | <sup>79</sup> ×M14)(1.205×187-2)<br><sup>79</sup> ×Hy2)(R71×R105)<br><sup>79</sup> ×Hy2)(M14×B14)<br><sup>79</sup> ×B14)(R163×R169)<br><sup>79</sup> ×B14)(R165×R168) | $78.8 \\ 47.4$                       | 23.2<br>26.6<br>23.8<br>25.5<br>23.9                            | 89.7<br>95.6<br>86.8<br>82.8<br>87.4                         | 81.0<br>87.8<br>97.7<br>87.8<br>90.1                    |
| 11. 3029 (WH<br>11. 3042 (WH<br>11. 3152 (che<br>11. 3182A (W                | <sup>79</sup> ×B14)(N22A×Oh43)<br><sup>79</sup> ×B14)(Oh43×Oh45)<br><sup>79</sup> ×B14)(B40×Oh45)<br>(k) (WF9×M14)(B14×Oh43)<br>/F9×R105)(R151×R154)                  | 67.8<br>59.1<br>67.5<br>63.2         | 26.2<br>26.1<br>27.6<br>23.5<br>25.1                            | 95.6<br>96.3<br>86.6<br>94.4<br>81.7                         | 89.3<br>83.3<br>84.8<br>83.3<br>90.9                    |
| 11. 3265 (WH<br>11. 3266 (WH<br>11. 3270 (WH<br>11. 3275 (WH<br>11. 3303 (MH | 79 × Oh43) (R71 × R109 B)<br>79 × Oh43) (R74 × R109 B).<br>79 × Oh43) (R74 × R168).<br>79 × Oh43) (R14 × R168).<br>4 × Oh43) (R172 × B14).                            | 70.1<br>68.3<br>69.2<br>75.3<br>84.1 | 26.6<br>28.0<br>24.1<br>23.3<br>24.1                            | 94.6<br>92.9<br>95.7<br>97.5<br>94.9                         | 87.8<br>86.3<br>84.8<br>83.3<br>88.6                    |
| ll. 3315A (W<br>ll. 3347 (H4<br>ll. 3381 (WH<br>ll. 3382 (WH                 | /F9×Hy2)(R109B×B14)<br>9×H55)(R74×R101)<br>79×R71)(B14×Oh43)<br>79×R109B)(B14×Oh43)<br>79×M14)(R172×Oh43)                                                             | 65.7<br>84.2<br>61.4<br>73.4         | 23.2<br>26.8<br>25.4<br>27.1<br>24.4                            | 94.6<br>83.2<br>89.7<br>94.4<br>98.2                         | 83.3<br>83.3<br>84.0<br>79.5<br>90.9                    |
| Average                                                                      |                                                                                                                                                                       | 69.1                                 | 25.2                                                            | 91.5                                                         | 86.2                                                    |
| 2<br>3-5<br>6-1<br>11-1<br>16-2                                              | er in range<br>0                                                                                                                                                      | 15.9<br>17.6<br>18.7<br>19.1<br>19.4 | rence necessa:<br>3,2<br>3,6<br>3,8<br>3,9<br>3,9<br>3,9<br>3,9 | ry for signi<br>11.3<br>12.5<br>13.2<br>13.6<br>13.7<br>13.8 | ficance<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. |

[March,

| Entry         | Pedigree                                                               | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand   |
|---------------|------------------------------------------------------------------------|---------------|----------------------|-----------------|---------|
|               | 1960 r                                                                 | esults        |                      |                 |         |
|               |                                                                        | bu.           | percl.               | perci.          | perct.  |
|               | F9×Hy2)(M14×C103)                                                      |               | 21.4                 | 88.0            | 95.4    |
| AES 703 (W    | F9×Oh43)(B14×B38)                                                      |               | 25.6                 | 95.5            | 90.1    |
|               | $(B14 \times B37)$                                                     |               | 24.3                 | 95.0            | 91.6    |
| AES 705 (W    | $F9 \times B14$ )(C103 $\times$ Oh43)                                  | 80.1          | 24.1                 | 96.0            | 94.6    |
| Ill. 21 (WF9  | ×38-11) (Hy2×187-2)                                                    | 77 <b>.7</b>  | 21.9                 | 92.9            | 97.7    |
| III. 1277 (W  | $F9 \times M14$ (I.205 $\times 187$ -2)                                |               | 22.0                 | 90.6            | 88.6    |
|               | F9×Hy2)(R71×R105)                                                      |               | 26.5                 | 95.2            | 90.9    |
|               | $F9 \times Hy2$ (M14 $\times$ B14)                                     |               | 24.0                 | 96.1            | 97.7    |
| III. 1968 (W  | $F9 \times B14$ (R163 $\times$ R169)                                   |               | 19.1                 | 89.5            | 93.1    |
| Ill. 1969 (W  | F9×B14) (R165×R168)                                                    | 87.8          | 20.3                 | 89.2            | 96.2    |
| III. 3022 (W) | $F9 \times B14$ )(N22A $\times$ Oh43)                                  | 80.7          | 23.6                 | 97.7            | 95.4    |
|               | $F9 \times B14$ (Oh43 × Oh45)                                          |               | 23.0                 | 96.4            | 86.3    |
| III 3042 (W   | $F9 \times B14$ (B40 × Oh45)                                           | 83.6          | 24.2                 | 91.2            | 97.7    |
| 111 3152 (ch  | eck) (WF9 $\times$ M14)(B14 $\times$ Oh43)                             |               | 21.5                 | 91.7            | 93.1    |
|               | VF9×R105)(R151×R154)                                                   |               | 23.3                 | 89.4            | 92.4    |
|               | F9×Oh43)(R71×R109B)                                                    |               | 25.8                 | 97.7            | 96.9    |
| 111. 3203 (W) | $F_9 \times Oh43)(R71 \times R109B)F_9 \times Oh43)(R74 \times R109B)$ |               | 23.8                 | 96.0            | 99.2    |
|               | $F9 \times Oh43)(R74 \times R169B)F9 \times Oh43)(R74 \times R168)$    |               | 24.0                 | 92.6            | 96.2    |
|               | $F9 \times Oh43)(R114 \times R168)$                                    |               | 22.7                 | 91.5            | 98.4    |
| 111 3303 (M   | $14 \times Oh43)(R172 \times B14)$                                     | 81.9          | 22.2                 | 94.5            | 97.7    |
|               |                                                                        |               |                      | ,               |         |
|               | $VF9 \times Hy2)(R109B \times B14)$                                    |               | 24.4                 | 94.3            | 92.4    |
|               | $(9 \times H55)(R74 \times R101)$                                      |               | 25.0                 | 91.2            | 95.4    |
|               | $F9 \times R71$ (B14 × Oh43)                                           |               | 24.3                 | 93.1            | 99.2    |
|               | $F9 \times R109B$ (B14 $\times$ Oh43)                                  |               | 22.1                 | 94.6            | 98.4    |
| III. 3383 (W  | $F9 \times M14$ (R172 $\times$ Oh43)                                   |               | 22.4                 | 93.6            | 95.4    |
| Average       |                                                                        | 81.9          | 23.2                 | 93.3            | 94.8    |
| Numl          | ber in range                                                           | Diffe         | rence necessa        | ry for signi    | ficance |
| 2.            |                                                                        | N.S.          | 3.4                  | N.S.            | N.S.    |
|               | 5                                                                      |               | 3.8                  | N.S.            | N.S.    |
|               | 10                                                                     |               | 4.0                  | N.S.            | N.S.    |
| 11-           | 15                                                                     | N.S.          | 4.1                  | N.S.            | N.S.    |
| 16-           | 25                                                                     | N.S.          | 4.2                  | N.S.            | N.S.    |

## Table 6. — DOUBLE CROSSES OF 700 MATURITY Tested at Ashkum, 1960

| Entry        | Pedigree                                | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand   |
|--------------|-----------------------------------------|---------------|----------------------|-----------------|---------|
|              | 19                                      | 50 results    |                      |                 |         |
|              |                                         | bu.           | percl.               | perct.          | percl.  |
| AES 705 (W   | $F9 \times B14$ (C103 $\times$ Oh43)    |               | 21.8                 | 96.8            | 90.1    |
|              | F9×P8)(C103×Oh43)                       |               | 21.2                 | 97.4            | 93.1    |
| FS 810 (W    | F9×H50) (Oh7B×Oh45)                     |               | 19.5                 | 98.4            | 87.8    |
| 11 1421 (che | ck) (WF9 $\times$ Hy2)(P8 $\times$ Oh7) |               | 19.0                 | 98.3            | 93.9    |
| 11. 1983 (WE | 9×38-11)(Hy2×B14)                       | 116.2         | 17.6                 | 96.9            | 100.0   |
| 11. 1996 (Hv | 2×Oh7)(B14×C103)                        |               | 20.4                 | 96.7            | 90.9    |
|              | 9×B14)(B40×Oh45)                        |               | 20.7                 | 97.6            | 93.9    |
|              | <sup>9</sup> ×Hy2)(R71×R109B)           |               | 20.1                 | 98.2            | 90.1    |
| 11. 3080 (WF | $^{9}\times$ Hy2)(R101 × Oh451)         |               | 21.3                 | 93.8            | 96.9    |
|              | <sup>9</sup> ×Oh7) (B14×Oh43)           |               | 18.0                 | 99.1            | 88.6    |
| 11. 3183 (WE | <sup>79</sup> ×R154)(R105×R153)         |               | 20.8                 | 100.0           | 83.3    |
| 11. 3237 (WE | 9×R101)(R151×R154)                      |               | 16.4                 | 96.6            | 90.9    |
| 11. 3244 (WI | <sup>9</sup> ×R151)(R105×R153)          |               | 20.7                 | 100.0           | 92.4    |
| 11, 3291 (WE | <sup>9</sup> ×P8)(B14×Oh43)             |               | 21.3                 | 96.2            | 100.0   |
| 11. 3294 (WF | <sup>79</sup> ×P8)(Hy2×C103)            |               | 20.0                 | 92.8            | 96.2    |
| 11, 3343 (H4 | 9×H55)(R71×R74)                         | 110.2         | 21.5                 | 98.2            | 90.1    |
|              | $9 \times H55)(R71 \times R168)$        |               | 20.8                 | 99.1            | 92.4    |
|              | $9 \times H55$ (R74 × R109B)            |               | 22.3                 | 99.2            | 96.2    |
|              | $9 \times H55$ (R109B $\times$ R168)    |               | 22.2                 | 96.8            | 95.4    |
|              | <sup>9</sup> ×Oh41)(Hy2×Oh7)            |               | 19.1                 | 96.6            | 89.3    |
| 11. 8001 (Hy | $2 \times R138$ (Oh $7 \times Oh7B$ )   | 110.8         | 20.3                 | 96.0            | 93.1    |
| 11. 8002 (H  | /2×B14)Hy2][(Oh7×C103)Oh7].             | 108.6         | 19.2                 | 98.3            | 95.4    |
|              | 9×Oh7)(1155×C103)                       |               | 19.0                 | 97.5            | 92.4    |
| 11. 8004 (WI | $^{6}9 \times Hy2$ (R74 $\times$ B14)   |               | 20.4                 | 99.1            | 92.4    |
| J.S. 13 (WF  | 9×38-11) (Hy2×L317)                     |               | 18.5                 | 95.3            | 99.2    |
| Average      |                                         | 105.0         | 20.1                 | 97.4            | 93.0    |
| Numb         | er in range                             | Differ        | ence necessar        | y for signi     | ficance |
| 2            |                                         | N.S.          | 2.0                  | N.S.            | N.S.    |
|              |                                         |               | 2.3                  | N.S.            | N.S.    |
|              | 0                                       |               | 2.4                  | N.S.            | N.S.    |
|              | 5                                       |               | 2.5                  | N.S.            | N.S.    |

#### Table 7. — DOUBLE CROSSES OF 800 MATURITY Tested at Stanford, 1960

| Entry                                           | Pedigree                                                                                                                                                                                                                                                    | Acre<br>yield                        | Moisture<br>in grain                 | Erect<br>plants                              | Stand                                       |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------------|
|                                                 |                                                                                                                                                                                                                                                             | 960 results                          |                                      |                                              |                                             |
|                                                 |                                                                                                                                                                                                                                                             | bu.                                  | perct.                               | perct.                                       | perct.                                      |
| Ill. 1332 (W<br>Ill. 1570 (ch<br>Ill. 1660 (Of  | $\begin{array}{l} F9 \times 38-11) (C103 \times Oh45) \dots \\ F9 \times 38-11) (Hy2 \times Oh7) \dots \\ eck) (WF9 \times 38-11) (Hy2 \times Oh41) \\ 17 \times C1.21E) (K4 \times K201) \dots \\ 17 \times CI.21E) (38-11 \times Oh41) \dots \end{array}$ |                                      | 21.5<br>20.8<br>20.9<br>27.8<br>23.3 | 79.9<br>87.8<br>84.5<br>78.5<br>88.0         | 90.9<br>91.6<br>93.9<br>87.8<br>88.6        |
| Ill. 1996 (Hy<br>Ill. 3154 (K2<br>Ill. 3190 (K2 | F9×Oh7A)(C103×38-11)<br>/2×Oh7)(C103×B14)<br>/01×CI.21E)(R132×R134)<br>/01×CI.03)(Ky126×Oh7B)<br>/9×H55)(R71×R105)                                                                                                                                          |                                      | 21.7<br>21.6<br>27.8<br>24.1<br>25.2 | 89.0<br>88.9<br>86.9<br>81.8<br>93.9         | 75.0<br>88.6<br>75.7<br>90.9<br>86.3        |
| Ill. 3348 (H4<br>Ill. 3350 (H4<br>Ill. 3351 (H4 | 19×H55)(R74×R101)<br>9×H55)(R74×R109B)<br>19×H55)(R101×Oh41)<br>9×H55)(R109B×R168)<br>9×H51)(R71×R105)                                                                                                                                                      |                                      | 22.1<br>24.8<br>23.3<br>22.7<br>24.1 | 89.3<br>96.7<br>95.2<br>84.8<br>84.1         | 86.3<br>93.9<br>94.6<br>88.6<br>94.6        |
| [11, 3367 (W)<br>[11, 3373 (W)<br>[11, 6021 (R7 | $9 \times H51$ )(R74 × R101)<br>F9 × R74)(Oh7 × CI.21E)<br>F9 × C103)(R101 × Oh41)<br>5 × R76)(R84 × K4)<br>8 × 38-11)(R84 × K4)                                                                                                                            |                                      | 22.9<br>22.9<br>21.7<br>20.6<br>21.9 | 94.7<br>92.1<br>88.5<br>86.8<br>74.5         | 90.1<br>87.1<br>86.3<br>92.4<br>87.8        |
| Ind. 851 (H4<br>Ind. 873 (H4<br>Ind. 874 (H4    | $\begin{array}{l} 9\times H55) (B14\times C103) \dots \\ 9\times H55) (H59\times B14) \dots \\ 9\times H52) (H59\times B14) \dots \\ 9\times H52) (H59\times H60) \dots \\ 9\times 38-11) (Hy2\times L317) \dots \end{array}$                               |                                      | 22.9<br>24.9<br>24.0<br>22.3<br>21.1 | 91.4<br>86.5<br>93.7<br>90.3<br>78.3         | 87.1<br>86.3<br>87.8<br>95.4<br>90.9        |
| Average                                         | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                     |                                      | 23.1                                 | 87.4                                         | 88.7                                        |
| Numl                                            | per in range                                                                                                                                                                                                                                                |                                      | ence necessar                        | y for signif                                 | icance                                      |
| 3<br>6-<br>11-<br>16-                           | 5                                                                                                                                                                                                                                                           | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | 1.7<br>1.9<br>2.0<br>2.1<br>2.1      | 10.5<br>11.6<br>12.3<br>12.6<br>12.7<br>12.8 | 9.2<br>10.2<br>10.8<br>11.1<br>11.2<br>11.3 |

### Table 8. — DOUBLE CROSSES OF 850 MATURITY Tested at Bowen, 1960

#### Table 9. — DOUBLE CROSSES OF 850 MATURITY AND 900 MATURITY AND THREE-WAY CROSSES AND STANDARDS Tested at Urbana, 1958-1960

| Entry Pedigree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acre<br>yield | Moisture<br>in grain | Erect<br>plants       | Stand        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-----------------------|--------------|
| DOUBLE CROSSES OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 850 MA        | TURITY               |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bu.           | perci.               | perct.                | percl.       |
| Summary: 1958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1960         |                      |                       |              |
| U.S. 13 (WF9 $\times$ 38-11)(Hy2 $\times$ L317).<br>III. 6052 (R78 $\times$ 38-11)(R84 $\times$ K4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.4          | 21.4                 | 89.0                  | 95.6         |
| (ll. 1570 (WF9 $\times$ 38-11)(Hy2 $\times$ Oh41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95.9<br>95.1  | 21.9<br>21.2         | 85.7<br>93.4          | 94.2<br>93.7 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.9<br>92.4  | 20.9<br>20.9         | 91.0<br>93.3          | 96.2<br>94.1 |
| (III. 1978 (WF9 $\times$ Oh7A)(C103 $\times$ 38-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.9          | 20.9                 | 93.3<br>90.7          | 92.5         |
| 11. 1978 (WF9×Oh7A)(C103×38-11).<br>11. 1332 (WF9×38-11)(Πy2×Oh7).<br>11. 1996 (Hy2×Oh7)(C103×B14).<br>AES 805 (WF9×38-11)(C103×Oh45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90.7          | 20.3                 | 97.7                  | 95.8         |
| AES 805 $(WF9 \times 38-11)(C103 \times B14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.6<br>81.1  | 20.2<br>21.7         | 96.3<br>94.7          | 90.3<br>93.1 |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91.7          | 21.2                 | 92.4                  | 93.9         |
| Number in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Differ        | ence necessar        | y for signif          | icance       |
| 2-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.S.          | N.S.                 | N.S.                  | N.S.         |
| Summary: 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1960         |                      |                       |              |
| $\begin{array}{c} \text{II. 3350} & (\text{H49} \times \text{H55})(\text{R101} \times \text{Oh41}) \\ \text{II. 3347} & (\text{H49} \times \text{H55})(\text{R74} \times \text{R101}) \\ \text{II. 3357} & (\text{H49} \times \text{H51})(\text{R74} \times \text{R101}) \\ \text{II. 3354} & (\text{H49} \times \text{H51})(\text{R71} \times \text{R105}) \\ \text{II. 3344} & (\text{H49} \times \text{H55})(\text{R71} \times \text{R105}) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.9         | 23.8                 | 92.9                  | 96.2         |
| $(11, 3347 (H49 \times H53)(R74 \times R101)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.9<br>92.1  | 22.4<br>23.4         | 96.1<br>95.8          | 88.6<br>91.5 |
| $(11. 3354 (H49 \times H51)(R71 \times R105)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91.8<br>90.8  | 25.1<br>24.6         | 87.6<br>95.9          | 92.1<br>92.9 |
| 11. 3344 (1149×1133)( $R/1 \times R103$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.2          | 24.0                 | 95.9<br>95.3          | 92.9         |
| II. 3367 (WF9×R74)(Oh7×CI.21E)<br>II. 3351 (H49×H55)(R109B×R168)<br>II. 6052 (R78×38-11)(R84×K4)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.0          | 23.3                 | 94.0                  | 95.8         |
| II. $6052$ (R78 $\times$ 38-11)(R84 $\times$ K4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85.7<br>84.4  | 23.7<br>22.7         | 91.3<br>94.2          | 96.3<br>95.1 |
| 11. $6021 (R75 \times R76) (R84 \times K4) \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.2          | 22.2                 | 95.5                  | 95.2         |
| 11. 1976 ( $Oh7 \times CI.21E$ )(38-11 $\times Oh41$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.5<br>82.1  | 21.4<br>22.2         | 96.2<br>95.8          | 92.9<br>93.6 |
| II. $3373$ (WF9×C103)(R101×Oh41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80.7          | 21.3                 | 95.2                  | 93.2         |
| 11. 1976 (Oh7×C1.21E)(38-11×Oh41)<br>11. 1570 (WF9×38-11)(Hy2×Oh41)<br>11. 3373 (WF9×C103)(R101×Oh41)<br>11. 3348 (H49×H55)(R74×R109B)<br>11. 1332 (WF9×38-11)(Hy2×Oh7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.7<br>76.6  | 24.7<br>21.1         | 93.2<br>99.1          | 90.5<br>95.0 |
| $(11, 1978 (WF9 \times Oh7A)(C103 \times 38-11))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.1          | 23.6                 | 98.9                  | 89.1         |
| III. 1978 (WF9×Oh7A)(C103×38-11)<br>III. 1996 (Hy2×Oh7)(C103×B14)<br>AES 805 (WF9×38-11)(C103×Oh45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.5          | 21.0                 | 95.9                  | 87.9<br>91.7 |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.6<br>84.4  | 22.8<br>22.8         | 97.3<br>9 <b>5</b> .0 | 91.7         |
| Number in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | ence necessar        |                       |              |
| 2-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N.S.          | N.S.                 | N.S.                  | N.S.         |
| 1960 results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                      |                       |              |
| AES 805 (WF9×38-11)(C103×Oh45).<br>II. 1332 (WF9×38-11)(Hy2×Oh7).<br>II. 1570 (check) (WF9×38-11)(Hy2×Oh41).<br>II. 1560 (Oh7×CL21E)(K4×K201).<br>II. 1660 (Oh7×CL21E)(X4×K201).<br>II. 1060 (Oh7×CL21E)(X4×K201).<br>II. 1057×CL21E)(X4×K201).<br>II. 1057 | 77.6          | 27.4<br>24.7         | 98.1                  | 84.8         |
| II. $1332 (WF9 \times 38-11)(Hy2 \times Oh7)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.9<br>89.9  | 24.7<br>26.2         | 99.0<br>97.1          | 90.1<br>87.8 |
| 11. 1660 $(Oh7 \times CI.21 E)(K4 \times K201)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.5          | 22.8                 | 100.0                 | 83.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.0<br>95.6  | 23.7<br>27.1         | 100.0<br>100.0        | 87.8<br>81.0 |
| ll. 1978 (WF9 $\times$ Oh7A)(C103 $\times$ 38-11).<br>ll. 1996 (Hy2 $\times$ Oh7)(C103 $\times$ B14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.6          | 24.0<br>27.7         | 100.0                 | 77.2         |
| II. 1996 (11y2×Oh7)(C103×B14).<br>II. 3154 (K201×C1.21E)(R132×R134).<br>II. 3190 (K201×C103)(Ky126×Oh7B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106.3<br>82.1 | 27.7<br>28.1         | 98.3<br>100.0         | 87.8<br>79.5 |
| 11. 3344 $(H49 \times H55)(R71 \times R105)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92.7          | 25.4                 | 96.7                  | 88.6         |
| II. 3347 (H49×H55)(R74×R101).<br>II. 3348 (H49×H55)(R74×R109B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94.0          | 26.4                 | 100.0                 | 82.5<br>81.8 |
| 11. $3348$ (H49×H55)(R74×R109B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71.8<br>103.8 | 28.3<br>25.3         | 94.5<br>99.2          | 93.1         |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.1<br>92.5  | 26.4<br>26.8         | 100.0<br>99.0         | 91.6<br>85.6 |
| 11 2257 (IL40) (IL51) (D.74) (D.101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.8          | 26.2                 | 100.0                 | 86.3         |
| II. 3367 (WF9×R74)(Oh7×CI.21E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92.6          | 24.1                 | 100.0                 | 81.8         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.4<br>106.4 | 24.5<br>25.0         | $100.0 \\ 100.0$      | 87.8<br>92.4 |
| 11. 6052 (R78×38-11)(R84×K4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.1         | 27.0                 | 100.0                 | 100.0        |
| $11, 8005 (HA9 \times H55)(B14 \times C103)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.7<br>95.2  | 28.0<br>23.8         | 100.0<br>99.1         | 89.3<br>93.1 |
| nd. 873 (H49×H52)(H59×B14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101.0         | 24.1                 | 100.0                 | 94.6         |
| Ind. 851 (H49×H55)(H59×B14).<br>nd. 873 (H49×H52)(H59×B14).<br>nd. 873 (H49×H52)(H59×B14).<br>nd. 874 (H49×H52)(H59×H60).<br>J.S. 13 (WF9×38-11)(Hy2×L317).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.5<br>99.7  | 24.8<br>26.7         | 98.2<br>100.0         | 89.3<br>90.9 |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.4          | 25.8                 | 99.2                  | 87.5         |
| Number in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Differ        | ence necessar        | y for signif          | icance       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.S.          | N.S.                 | N.S.                  | N.S.         |

| Entry                                           | Pedigree                                                                                                                                                                                                                                                                                                                                                                   | Acre<br>yield    | Moisture<br>in grain                 | Erect<br>plants                      | Stand                                 |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------|---------------------------------------|
|                                                 | DOUBLE CRO                                                                                                                                                                                                                                                                                                                                                                 | SSES OF 900 MA   | TURITY                               |                                      |                                       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                            | bu.              | perct.                               | perct.                               | perct.                                |
|                                                 | Sum                                                                                                                                                                                                                                                                                                                                                                        | mary: 1959-1960  |                                      |                                      |                                       |
| III. 3355 (H4<br>III. 3360 (H4<br>III. 1856 (CI | .21E×K201)(R74×R101)<br>19×H51)(R71×R109B)<br>19×H51)(R101×Oh41)<br>21E×K201)(Oh7×38-11)<br>17×CI.21E)(38-11×C103)                                                                                                                                                                                                                                                         | 92.1<br>         | 22.2<br>20.5<br>21.0<br>22.4<br>20.5 | 83.2<br>90.3<br>83.4<br>88.1<br>93.2 | 93.9<br>97.6<br>97.0<br>98.3<br>98.1  |
| Average                                         |                                                                                                                                                                                                                                                                                                                                                                            | 88.5             | 21.3                                 | 87.6                                 | 97.0                                  |
|                                                 | ber in range                                                                                                                                                                                                                                                                                                                                                               |                  | rence necessar                       |                                      |                                       |
| 2-                                              | 5                                                                                                                                                                                                                                                                                                                                                                          | N.S.             | N.S.                                 | N.S.                                 | N.S.                                  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                            | 1960 results     |                                      |                                      |                                       |
| Ill. 1349 (K1<br>Ill. 1539A (H<br>Ill. 1657 (K2 | hite) (K64×Mo22)(T111×T11<br>155×K201)(38-11×Mo940)<br>2201×C1.21E)(38-11×C1.7)<br>01×C1.21E)(K4×Oh7)<br>7×CI.21E)(K4×K201)                                                                                                                                                                                                                                                | 94.4<br>97.4<br> | 26.8<br>22.4<br>23.1<br>24.1<br>24.2 | 90.6<br>78.3<br>77.2<br>76.5<br>79.2 | 97.7<br>89.3<br>97.7<br>100.0<br>96.2 |
| III. 1856 (CI<br>III. 3129 (K2<br>III. 3133 (K2 | eck) (Oh7×CI.21E)(38-11×C1<br>.21E×K201)(Oh7×38-11)<br>201×38-11)(R101×Mo01930)<br>201×38-11)(R127×Mo0221)<br>201×38-11)(R71A×Mo0221)                                                                                                                                                                                                                                      |                  | 21.3<br>23.2<br>20.4<br>21.9<br>20.6 | 89.8<br>81.8<br>80.6<br>81.2<br>76.8 | 96.9<br>100.0<br>96.2<br>93.9<br>94.6 |
| 111. 3154 (K2<br>111. 3190 (K2<br>111. 3193 (38 | $\begin{array}{l} 201 \times 38\text{-}11)(\text{CI.21E} \times \text{Ky126}) \dots \\ 201 \times \text{CI.21E})(\text{R132} \times \text{R134}) \dots \\ 201 \times \text{C103})(\text{Ky126} \times \text{Oh7B}) \dots \\ 11 \times \text{K12})(\text{K201} \times \text{Oh7B}) \dots \\ \text{K201} \times \text{Ky126})(\text{N82481} \times \text{Oh7B}) \end{array}$ |                  | 22.6<br>23.6<br>22.5<br>22.7<br>22.8 | 76.9<br>76.8<br>81.5<br>87.8<br>73.7 | 89.3<br>93.9<br>87.8<br>98.4<br>97.7  |
| 11. 3210 (CI<br>11. 3214 (K2<br>11. 3251 (K2    | $\begin{array}{l} & \langle 201 \times Ky126 \rangle (C103 \times K12) \dots \\ .21E \times Ky126 \rangle (C103 \times K12) \dots \\ .01 \times Ky126 \rangle (K12 \times Oh7B) \dots \\ .01 \times 38-11 \rangle (K11 \times Ky126) \dots \\ .01 \times 38-11 \rangle (K11 \times Ky126) \dots \\ .01 \times 38-11 \rangle (K11 \times R109B) \dots \end{array}$          | 83.7<br>         | 24.5<br>24.7<br>23.1<br>23.1<br>21.4 | 82.2<br>85.2<br>77.5<br>85.9<br>84.8 | 91.6<br>95.4<br>87.8<br>97.7<br>99.2  |
| [11. 3364 (C1<br>[11. 9001 (Of<br>[nd. 851 (H4  | 49×H51)(R101×Oh41)<br>.21E×K201)(R74×R101)<br>17×CI.21E)(CI.7×C103)<br>19×H55)(H59×B14)<br>49×H52)(H59×H60)                                                                                                                                                                                                                                                                |                  | 22.2<br>22.2<br>21.5<br>22.0<br>20.7 | 80.4<br>76.3<br>75.8<br>73.8<br>83.9 | 95.4<br>93.1<br>88.6<br>93.9<br>99.2  |
| Average                                         |                                                                                                                                                                                                                                                                                                                                                                            |                  | 22.7                                 | 80.6                                 | 94.9                                  |
|                                                 | ber in range                                                                                                                                                                                                                                                                                                                                                               |                  | rence necessar                       |                                      |                                       |
| 3-<br>6-                                        | 5<br>10                                                                                                                                                                                                                                                                                                                                                                    |                  | 1.7<br>1.9<br>2.0<br>2.1             | N.S.<br>N.S.<br>N.S.<br>N.S.         | N.S.<br>N.S.<br>N.S.<br>N.S.          |

### Table 9. — Urbana — continued

| Entry           |                                 |                     |                           | Acre<br>yield       | Moisture<br>in grain                                      | Erect<br>plants     | Stand        |
|-----------------|---------------------------------|---------------------|---------------------------|---------------------|-----------------------------------------------------------|---------------------|--------------|
| THREE-WAY       | CROSSES                         | AND                 | STANDA                    | ARDS,               | SUMM                                                      | ARY:                | 1959-1960    |
|                 |                                 |                     |                           | bu.                 | perct.                                                    | perct.              | perci.       |
|                 | Inbred line                     | es cros             | sed with (                | WF9>                | (Oh43)                                                    |                     |              |
| R71             |                                 |                     |                           | 88.9                | 20.4                                                      | 94.2                | 86.8         |
| R74             |                                 |                     |                           | 55.5<br>88.5        | 22.9<br>21.8                                              | 96.8<br>91.1        | 60.5<br>84.2 |
| R78             |                                 |                     |                           | 76.9                | 22.9                                                      | 87.4                | 77.5         |
| R84<br>R101     |                                 |                     |                           | 81.5<br>92.1        | 22.4<br>20.2                                              | 94.6<br>89.0        | 88.3<br>94.6 |
| R104            |                                 |                     |                           | 78.1                | 20.1                                                      | 95.2                | 79.1         |
| R109B<br>R112   |                                 | • • • • • • • •     |                           | 75.9<br>88.9        | 22.6<br>21.1                                              | 96.9<br>90.3        | 72.9<br>86.2 |
| R112<br>R113    |                                 | · · · · · · · · · · |                           | 73.2                | 20.4                                                      | 93.8                | 77.9         |
| R114            |                                 |                     |                           | 72.7                | 20.2                                                      | 97.9                | 82.5         |
| R132<br>R134    |                                 |                     |                           | 91.9<br>91.5        | 21.6<br>22.0                                              | 86.8<br>97.0        | 95.4<br>88.5 |
| R151<br>R154    | • • • • • • • • • • • • • • • • |                     |                           | 83.4                | 22.0                                                      | 96.0                | 75.5<br>71.9 |
| R154            |                                 |                     |                           | 78.2<br>87.1        | 23.0<br>20.5                                              | 84.9<br>96.3        | 91.3         |
| R159            |                                 |                     |                           | 65.6                | 22.5                                                      | 99.2                | 75.1         |
| R166<br>R168    | •••••                           |                     | • • • • • • • • • • • •   | 79.6<br>91.5        | 21.9<br>19.4                                              | 81.8<br>93.3        | 81.1<br>90.5 |
| R172            |                                 |                     |                           | 83,8                | 20.5                                                      | 95.6                | 79.5         |
| R180<br>R181    | • • • • • • • • • • • • • • •   |                     |                           | 79.2<br>92.1        | 22.4                                                      | 90.9                | 84.7         |
| R182            |                                 |                     |                           | 66.5                | $18.1 \\ 19.9$                                            | 91.4<br>97.5        | 87.4<br>73.3 |
| R183<br>R192    | •••••                           | • • • • • • • • •   | • • • • • • • • • • • • • | 70.7<br>92.9        | $23.3 \\ 23.4$                                            | 98.4<br>93.9        | 86.8<br>93.2 |
| R193            |                                 |                     |                           | 83.1                | 21.7                                                      | 89.8                | 86.0         |
| R194            |                                 |                     |                           | 90.0                | 21.7                                                      | 90.7                | 93.7         |
| R195<br>R196    |                                 |                     |                           | 80.2<br>87.8        | $   \begin{array}{r}     18.2 \\     20.7   \end{array} $ | 96.8<br>96.7        | 86.5<br>91.9 |
| R197            |                                 |                     |                           | 91.3                | 24.2                                                      | 90.5<br>90.7        | 84.5         |
| R198<br>Average |                                 |                     |                           | 95.6<br>82.4        | 23.5<br>21.4                                              | 90.7<br>93.1        | 91.5<br>83.8 |
|                 |                                 |                     | sed with (                |                     |                                                           |                     |              |
| R71             |                                 |                     |                           | 95.9                | 23.0                                                      | 96.2                | 90.7         |
| R74             |                                 |                     |                           | 87.2<br>82.1        | 23.6                                                      | 96.0                | 85.5         |
| R76<br>R78      |                                 |                     |                           | 82.1                | 21.6<br>21.8                                              | $96.4 \\ 88.7$      | 85.8<br>87.7 |
| R84             |                                 |                     |                           | 68.6                | 21.3                                                      | 96.7                | 85.9         |
| R101<br>R104    | •••••                           | • • • • • • • • •   |                           | 91.3<br>89.3        | 21.4<br>21.0                                              | 98.0<br>87.3        | 89.2<br>93.8 |
| R109B           |                                 |                     |                           | 75.0                | 23.6                                                      | 94.9                | 82.7         |
| R112<br>R113    |                                 |                     |                           | 85.2<br>76.0        | 21.8<br>21.1                                              | 93.9<br>97.2        | 86.7<br>85.1 |
| R114            |                                 |                     |                           | 74.6                | 22.8                                                      | 95.5                | 83.7         |
| R132<br>R134    |                                 |                     |                           | 85.9<br>85.6        | 21.7<br>23.3                                              | 81.2<br>99.6        | 82.4<br>84.9 |
| R151            |                                 |                     |                           | 93.8                | 24.8                                                      | 94.7                | 88.7         |
| R154            |                                 |                     |                           | 97.9                | 21.9                                                      | 90.0                | 95.2         |
| R158<br>R159    |                                 |                     |                           | 61.7<br>80.0        | 21.5<br>22.6                                              | 96.8<br>98.8        | 67.0<br>93.8 |
| R166            |                                 |                     |                           | 88.8<br>88.0        | 21.5                                                      | 94.6                | 87.4         |
| R168<br>R172    |                                 |                     |                           | 84.1                | 19.2<br>22.1                                              | 99.2<br>99.2        | 89.3<br>87.8 |
| R180            |                                 |                     |                           | 77.2                | 22.0                                                      | 97.2                | 83.2         |
| R181<br>R182    |                                 |                     |                           | 92.4<br>79.2        | 21.2<br>20.2                                              | $\frac{98.7}{98.4}$ | 88.8<br>92.3 |
| R183<br>R192    |                                 |                     |                           | 64.4                | 24.6                                                      | 99.2                | 80.3         |
|                 |                                 |                     |                           | 88.5                | 24.4                                                      | 98.0                | 90.0         |
| R193<br>R194    |                                 |                     |                           | $\frac{78.3}{88.4}$ | 24.2<br>24.4                                              | 93.0<br>96.7        | 86.5<br>92.8 |
| R195<br>R196    |                                 |                     |                           | 80.6<br>80.0        | 21.1<br>21.5                                              | 96.4<br>93.6        | 85.3<br>86.4 |
| R197            |                                 |                     |                           | 92.7                | 24.1                                                      | 89.0                | 90.8         |
| R198            |                                 |                     |                           | 81.4                | 25.4                                                      | 94.9                | 86.7         |
| Average         |                                 | • • • • • • • • •   |                           | 83.1                | 22.4                                                      | 95.1                | 87.0         |

#### Table 9. — Urbana — continued

[March,

| Entry                                                 | Acre<br>yield                                  | Moisture<br>in grain                             | Erect<br>plants                                              | Stand                                        |
|-------------------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|
| THREE-WAY CROSSES AND STA<br>1959-1960 — conti        |                                                | RDS, SUI                                         | MMARY                                                        | 7:                                           |
|                                                       | bu.                                            | perct.                                           | perct.                                                       | perci.                                       |
| Inbred lines crossed with                             | (B41 ×                                         | Oh7A)                                            |                                                              |                                              |
| R71<br>R74<br>R76<br>R78<br>R84                       | 101.6<br>91.2<br>85.5<br>69.9<br>63.6          | 26.3<br>26.8<br>26.3<br>22.9<br>23.7             | 93.7<br>95.2<br>92.0<br>74.8<br>97.9                         | 95.0<br>90.0<br>90.4<br>75.6<br>85.1         |
| R101<br>R104<br>R109B<br>R112<br>R113                 | 81.1<br>86.9<br>60.2<br>74.7<br>70.1           | 23.4<br>23.7<br>27.1<br>24.4<br>23.7             | 98.3<br>94.4<br>96.7<br>92.6<br>97.8                         | 95.4<br>82.4<br>72.0<br>81.4<br>88.2         |
| R114<br>R132<br>R134<br>R151<br>R154                  | 71.8<br>72.9<br>79.4<br>85.4<br>83.3           | 21.9<br>24.9<br>26.0<br>24.9<br>23.8             | 94.4<br>84.4<br>95.2<br>93.2<br>78.4                         | 82.5<br>80.6<br>84.6<br>81.5<br>79.5         |
| R158<br>159<br>R166<br>R168<br>R172                   | 65.1<br>65.7<br>93.9<br>71.7<br>71.8           | 24.5<br>26.4<br>25.1<br>21.3<br>23.7             | 99.2<br>98.1<br>79.0<br>98.4<br>96.6                         | 75.6<br>83.6<br>97.3<br>66.3<br>73.4         |
| K180<br>K181<br>K182<br>K183<br>K192<br>K192          | 78.6<br>76.3<br>62.4<br>63.1<br>71.2           | 24.4<br>22.3<br>23.0<br>26.7<br>26.3             | 95.2<br>88.5<br>99.6<br>96.3<br>88.1                         | 86.0<br>73.3<br>71.0<br>81.5<br>76.8         |
| 2193<br>2194<br>1195<br>2196<br>2197<br>2197<br>2197  | 76.1<br>74.6<br>64.4<br>77.2<br>77.1<br>78.8   | 24.1<br>26.2<br>22.9<br>23.8<br>28.0<br>27.4     | 94.4<br>94.4<br>96.4<br>95.1<br>94.1<br>94.1                 | 82.8<br>88.7<br>73.3<br>81.5<br>83.2<br>90.9 |
| Average                                               | 75.8                                           | 24.7                                             | 93.1                                                         | 82.2                                         |
| Single-cross test                                     |                                                |                                                  |                                                              |                                              |
| VF9×Oh43.<br>VF9×B37.<br>341×Oh7A.                    | 91.5<br>83.4<br>71.2                           | 21.7<br>23.6<br>28.0                             | 93.5<br>94.5<br>82.8                                         | 90.7<br>92.8<br>90.4                         |
| Average                                               | 82.0                                           | 24.4                                             | 90.3                                                         | 91.3                                         |
| Number in range<br>2<br>3-5<br>6-10<br>11-20<br>21-31 | Differ<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | ence necessar<br>7.7<br>8.6<br>9.2<br>9.7<br>9.8 | y for signif<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | 11.0<br>12.2<br>13.0<br>13.7<br>13.9         |

#### Table 9. — Urbana — continued

| Entry                                          | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand       |
|------------------------------------------------|---------------|----------------------|-----------------|-------------|
| THREE-WAY CROSSES AND STA<br>1959-1960 — conti |               | RDS, SUI             | MMARY           | ζ:          |
|                                                | bu.           | perci.               | perci.          | percl.      |
| Mean of inbred lines crossed                   | with th       | ree tester           | s               |             |
| R71                                            | 95.5          | 23.2                 | 94.7            | 90.8        |
| R74                                            | 78.0          | 24.4                 | 96.0            | 78.7        |
| R76                                            | 85.4          | 23.2                 | 93.2            | 86.8        |
| R78                                            | 76.0          | 22.5                 | 83.6            | 80.3        |
| R84                                            | 72.9          | 22.5                 | 96.4            | 86.4        |
| R101                                           | 88.2          | 21.7                 | 95.0            | 93.1        |
| R104                                           | 84.8          | 21.6                 | 92.3            | 85.1        |
| R109B                                          | 70.4          | 24.5                 | 96.2            | 75.9        |
| R112                                           | 82.9          | 22.4                 | 92.3            | 84.8        |
| R113                                           | 73.1          | 21.7                 | 96.3            | 83.7        |
| R114.                                          | 73.0          | 21.6                 | 95.9            | 82.9        |
| R132.                                          | 83.6          | 22.7                 | 84.1            | 86.1        |
| R134.                                          | 85.5          | 23.8                 | 97.3            | 86.0        |
| R151.                                          | 87.5          | 23.9                 | 94.6            | 81.9        |
| R154.                                          | 86.5          | 22.9                 | 84.4            | 82.2        |
| R158                                           | 71.3          | 22.2                 | 97.4            | 78.0        |
| R159                                           | 70.4          | 23.9                 | 98.7            | 84.2        |
| R166                                           | 87.4          | 22.8                 | 85.1            | 88.6        |
| R168                                           | 83.7          | 20.0                 | 97.0            | 82.0        |
| R172                                           | 79.9          | 22.1                 | 97.1            | 80.2        |
| R180                                           | 78.3          | 22.9                 | 94.4            | 84.6        |
| R181                                           | 86.9          | 20.5                 | 92.9            | 83.2        |
| R182                                           | 69.4          | 21.1                 | 98.5            | 78.9        |
| R183                                           | 66.1          | 24.9                 | 98.0            | 82.9        |
| R192                                           | 84.2          | 24.7                 | 93.3            | 86.7        |
| R193                                           | 79.2          | 23.3                 | 92.5            | 85.1        |
| R194                                           | 84.3          | 24.1                 | 93.9            | 91.7        |
| R195                                           | 75.1          | 20.7                 | 96.5            | 81.7        |
| R196                                           | 81.7          | 22.0                 | 95.1            | 86.6        |
| R197                                           | 87.0          | 25.4                 | 91.2            | 86.1        |
| R198                                           | 85.3          | 25.4                 | 93.2            | 89.7        |
| <b>Average</b>                                 | 80.4          | 25.4                 | <b>93.8</b>     | <b>84.4</b> |

#### Table 9. — Urbana — continued

| Entry                                                        | Acre<br>yield                                | Moisture<br>in grain                         | Erect<br>plants                         | Stand                                        |
|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------|
| THREE-WAY CROSSES AND STAN                                   | IDARD                                        | S: 1960                                      | RESUL                                   | TS                                           |
|                                                              | bu.                                          | perci.                                       | perci.                                  | perct.                                       |
| Inbred lines crossed with (                                  | WF9 $	imes$                                  | Oh43)                                        |                                         |                                              |
| R71                                                          | 87.4                                         | 20.8                                         | 97.1                                    | 78.0                                         |
| R74                                                          | 49.4                                         | 23.2                                         | 100.0                                   | 34.8                                         |
| R76                                                          | 90.1                                         | 22.0                                         | 98.8                                    | 81.0                                         |
| R78                                                          | 76.8                                         | 23.0                                         | 100.0                                   | 65.9                                         |
| R84                                                          | 90.8                                         | 23.1                                         | 98.3                                    | 81.8                                         |
| R101.                                                        | 99.4                                         | 19.8                                         | 94.4                                    | 91.6                                         |
| R104.                                                        | 76.1                                         | 19.6                                         | 100.0                                   | 65.1                                         |
| R109B.                                                       | 74.1                                         | 22.2                                         | 98.7                                    | 62.9                                         |
| R112.                                                        | 89.4                                         | 21.8                                         | 100.0                                   | 80.3                                         |
| R113.                                                        | 76.1                                         | 20.2                                         | 100.0                                   | 65.1                                         |
| R114.                                                        | 84.1                                         | 20.6                                         | 100.0                                   | 74.2                                         |
| R132.                                                        | 100.1                                        | 22.2                                         | 100.0                                   | 92.4                                         |
| R134.                                                        | 93.4                                         | 22.4                                         | 100.0                                   | 84.8                                         |
| R154.                                                        | 71.4                                         | 21.6                                         | 100.0                                   | 59.8                                         |
| R154.                                                        | 66.8                                         | 24.1                                         | 100.0                                   | 54.5                                         |
| R158.                                                        | 94.1                                         | 21.2                                         | 99.1                                    | 85.6                                         |
| R159.                                                        | 71.4                                         | 22.9                                         | 100.0                                   | 59.8                                         |
| R166.                                                        | 80.8                                         | 21.6                                         | 100.0                                   | 70.4                                         |
| R168.                                                        | 93.4                                         | 19.5                                         | 99.0                                    | 84.8                                         |
| R172.                                                        | 76.8                                         | 20.3                                         | 100.0                                   | 65.9                                         |
| R180                                                         | 86.1                                         | 22.7                                         | 97.9                                    | 76.5                                         |
|                                                              | 89.4                                         | 17.6                                         | 100.0                                   | 80.3                                         |
|                                                              | 69.4                                         | 19.7                                         | 100.0                                   | 57.6                                         |
|                                                              | 87.4                                         | 24.5                                         | 100.0                                   | 78.0                                         |
|                                                              | 97.4                                         | 23.4                                         | 100.0                                   | 89.4                                         |
| R193<br>R194<br>R195<br>R195<br>R196<br>R197<br>R197<br>R198 | 87.4<br>98.1<br>88.1<br>96.1<br>88.1<br>96.1 | 22.5<br>21.1<br>20.8<br>20.7<br>25.2<br>23.3 | 100.0<br>100.0<br>100.0<br>94.3<br>98.3 | 78.0<br>90.1<br>78.8<br>87.9<br>78.8<br>87.9 |
| Average                                                      | 81.8                                         | 21.7                                         | 99.2                                    | 74.9                                         |
| Inbred lines crossed with (                                  | (WF9 	imes                                   | B37)                                         |                                         |                                              |
| R71                                                          | 96.1                                         | 22.3                                         | 100.0                                   | 87.8                                         |
| R74                                                          | 86.8                                         | 23.5                                         | 97.5                                    | 77.2                                         |
| R76.                                                         | 90.1                                         | 21.1                                         | 99.0                                    | 81.0                                         |
| R78                                                          | 88.8                                         | 21.3                                         | 99.2                                    | 79.6                                         |
| R84.                                                         | 86.1                                         | 21.1                                         | 99.1                                    | 76.5                                         |
| R101.                                                        | 92.8                                         | 20.6                                         | 100.0                                   | 84.1                                         |
| R104.                                                        | 99.4                                         | 20.2                                         | 95.2                                    | 91.6                                         |
| R109B.                                                       | 86.1                                         | 22.9                                         | 98.1                                    | 76.5                                         |
| R112.                                                        | 91.4                                         | 21.8                                         | 99.0                                    | 82.5                                         |
| R113.                                                        | 86.1                                         | 21.1                                         | 100.0                                   | 76.5                                         |
| R114                                                         | 84.1                                         | 24.0                                         | 100.0                                   | 74.2                                         |
| R132                                                         | 82.1                                         | 21.1                                         | 96.5                                    | 71.9                                         |
| R134                                                         | 88.8                                         | 23.5                                         | 100.0                                   | 79.5                                         |
| R151                                                         | 91.4                                         | 26.1                                         | 100.0                                   | 82.5                                         |
| R154                                                         | 102.1                                        | 21.8                                         | 100.0                                   | 94.7                                         |
| R158.                                                        | 60.1                                         | 22.2                                         | 96.8                                    | 47.0                                         |
| R159.                                                        | 99.4                                         | 21.9                                         | 100.0                                   | 91.6                                         |
| R166.                                                        | 90.1                                         | 20.6                                         | 100.0                                   | 81.0                                         |
| R168.                                                        | 93.4                                         | 18.2                                         | 100.0                                   | 84.8                                         |
| R172.                                                        | 89.4                                         | 21.8                                         | 100.0                                   | 80.3                                         |
| R180                                                         | 82.8                                         | 23.0                                         | 100.0                                   | 72.7                                         |
| R181                                                         | 92.1                                         | 21.8                                         | 100.0                                   | 83.3                                         |
| R182                                                         | 96.1                                         | 20.1                                         | 100.0                                   | 87.9                                         |
| R183                                                         | 80.8                                         | 25.0                                         | 100.0                                   | 70.4                                         |
| R192                                                         | 92.8                                         | 25.1                                         | 100.0                                   | 84.1                                         |
| R193                                                         | 88.8                                         | 26.0                                         | 100.0                                   | 79.5                                         |
| R194                                                         | 96.8                                         | 23.5                                         | 100.0                                   | 88.6                                         |
| R195                                                         | 88.8                                         | 21.8                                         | 100.0                                   | 79.5                                         |
| R196                                                         | 87.4                                         | 20.7                                         | 100.0                                   | 78.0                                         |
| R197                                                         | 96.8                                         | 24.2                                         | 96.5                                    | 88.6                                         |
| R198                                                         | 91.4                                         | 26.1                                         | 100.0                                   | 82.5                                         |
| Average                                                      | 89.7                                         | 21.8                                         | 99.3                                    | 80.5                                         |

#### Table 9. — Urbana — continued

| Entry                              | Pedigree                                                                                   |                 | Acre<br>yield                                | Moisture<br>in grain                         | Erect<br>plants                                 | Stand                                        |
|------------------------------------|--------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------|----------------------------------------------|
|                                    | THREE-WAY C                                                                                | ROSSES ANI      |                                              |                                              | S:                                              |                                              |
|                                    | 1900 RI                                                                                    | 250L15-C0       | itinue                                       | a                                            |                                                 |                                              |
|                                    |                                                                                            |                 | bu.                                          | percl.                                       | percl.                                          | perci.                                       |
|                                    | Inbred lines of                                                                            | crossed with (] | B41 $	imes$                                  | Oh7A)                                        |                                                 |                                              |
| R74<br>R76<br>R78                  |                                                                                            |                 | 00.1<br>92.1<br>92.8<br>72.1<br>86.1         | 26.1<br>28.1<br>27.1<br>21.7<br>24.7         | 96.2<br>100.0<br>100.0<br>84.5<br>100.0         | 92.4<br>83.3<br>84.1<br>60.6<br>76.5         |
| R104<br>R109B<br>R112              |                                                                                            |                 | 00,1<br>87,4<br>67,4<br>80,1<br>89,4         | 23.0<br>24.7<br>27.5<br>25.1<br>22.9         | 99.1<br>100.0<br>100.0<br>95.8<br>98.3          | 92.4<br>78.0<br>55.3<br>69.7<br>80.3         |
| R132<br>R134<br>R151               |                                                                                            |                 | 83.4<br>80.1<br>85.4<br>80.8<br>76.8         | 21.9<br>25.4<br>26.1<br>24.6<br>24.3         | 100.0<br>100.0<br>98.1<br>95.5<br>100.0         | 73.5<br>69.7<br>75.7<br>70.4<br>65.9         |
| R159<br>R166<br>R168               |                                                                                            |                 | 72.1<br>82.8<br>03.4<br>66.8<br>70.8         | 25.4<br>27.3<br>25.5<br>21.5<br>24.3         | 100.0<br>98.9<br>99.2<br>100.0<br>100.0         | 60.6<br>72.7<br>96.2<br>54.5<br>59.1         |
| R181<br>R182<br>R183               |                                                                                            |                 | 87.4<br>69.4<br>64.8<br>81.4<br>72.8         | 24.6<br>22.5<br>23.2<br>28.0<br>26.5         | 100.0<br>100.0<br>100.0<br>97.9<br>98.8         | 78.0<br>57.6<br>52.3<br>71.2<br>61.3         |
| R194<br>R195<br>R196<br>R197       |                                                                                            | ••••••          | 82.1<br>91.4<br>68.8<br>81.4<br>87.4<br>94.1 | 24.6<br>26.5<br>23.8<br>23.6<br>29.2<br>29.1 | 100.0<br>98.0<br>100.0<br>100.0<br>97.3<br>99.0 | 71.9<br>82.5<br>56.8<br>71.2<br>78.0<br>85.6 |
|                                    | • • • • • • • • • • • • • • • • • • • •                                                    |                 | 82.3                                         | 25.1                                         | 98.6                                            | 72.2                                         |
|                                    | Sin                                                                                        | gle-cross teste | ers                                          |                                              |                                                 |                                              |
| $WF9 \times B37\\B41 \times Oh7A.$ |                                                                                            | •••••           | 94.0<br>96.8<br>91.4<br>94.1                 | 23.4<br>25.3<br>28.9<br><b>25</b> .9         | 100.0<br>100.0<br>93.6<br>97.9                  | 86.4<br>88.6<br>81.8<br><b>85.6</b>          |
| Average                            |                                                                                            |                 |                                              |                                              |                                                 | 00.0                                         |
| [11. 3049 (Hy<br>[11. 3152A (N     | 03×38-11) (Oh7×CI.21E)<br>/2×WF9) (R71×R109B)<br>/14×B14) (WF9×Oh43)<br>4×R101) (II49×H55) |                 | 02.7<br>99.3<br>00.0<br>00.7                 | 28.0<br>25.4<br>20.4<br>25.2                 | 100.0<br>99.2<br>99.2<br>100.0                  | 95.4<br>90.9<br>93.2<br>93.2                 |
| Average                            |                                                                                            | 1               | 00.7                                         | 24.8                                         | 99.6                                            | 93.2                                         |
| Numb                               | oer in range                                                                               |                 |                                              | ence necessar                                |                                                 |                                              |
| 3-5<br>6-1<br>11-2                 | 5<br>10<br>20                                                                              |                 | 14.8<br>16.5<br>17.5<br>18.5<br>19.5         | 11.4<br>12.7<br>13.6<br>14.4<br>15.1         | 4.5<br>5.0<br>5.3<br>5.6<br>6.0                 | 16.7<br>18.7<br>19.9<br>21.0<br>22.2         |

#### Table 9. — Urbana — continued

[March,

| Entry                                                          | Acre<br>yield                        | Moisture<br>in grain                                 | Erect<br>plants                                                 | Stand                                                        |
|----------------------------------------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|
| THREE-WAY CROSSES AN<br>1960 RESULTS — c                       |                                      |                                                      | S:                                                              |                                                              |
|                                                                | bu.                                  | perct.                                               | perct.                                                          | percl.                                                       |
| Mean of inbred lines crossed                                   | with th                              | aree tester                                          | s                                                               |                                                              |
| R71.<br>R74.<br>R76.<br>R78.<br>R78.                           | 76.1<br>91.0<br>79.2                 | 23.1<br>24.9<br>23.4<br>22.0<br>23.0                 | 97.8<br>99.2<br>99.3<br>94.6<br>99.1                            | 86.1<br>65.1<br>82.0<br>68.7<br>78.2                         |
| R101<br>R104<br>R109B<br>R112<br>R113                          | 87.6<br>75.9<br>87.0                 | 21.1<br>21.5<br>24.2<br>22.9<br>21.4                 | 97.9<br>98.4<br>98.9<br>98.3<br>99.5                            | 89.4<br>78.2<br>64.9<br>77.5<br>74.0                         |
| R114.<br>R132.<br>R134.<br>R151.<br>R154.                      | 87.4<br>89.2<br>81.2                 | 22.2<br>22.9<br>24.0<br>24.1<br>23.4                 | 100.0<br>98.8<br>99.4<br>98.5<br>100.0                          | 74.0<br>78.0<br>80.0<br>70.9<br>71.7                         |
| R158<br>R159.<br>R166.<br>R168.<br>R172.                       | 84.5<br>91.4<br>84.5                 | 22.9<br>24.0<br>22.6<br>19.7<br>22.1                 | 98.6<br>99.6<br>99.7<br>99.7<br>100.0                           | 64.4<br>74.7<br>82.5<br>74.7<br>68.4                         |
| R180.<br>R181.<br>R182.<br>R183.<br>R183.<br>R192.             | 83.6<br>76.8<br>83.2                 | 23.4<br>20.6<br>21.0<br>25.8<br>25.0                 | 99.3<br>100.0<br>100.0<br>99.3<br>99.6                          | 75.7<br>73.7<br>65.9<br>73.2<br>78.3                         |
| R193.<br>R194.<br>R195.<br>R196.<br>R197.<br>R198.<br>Average. | 95.4<br>81.9<br>88.3<br>90.8<br>93.9 | 24.4<br>23.7<br>22.1<br>21.7<br>26.2<br>26.2<br>23.1 | 100.0<br>99.4<br>100.0<br>100.0<br>96.0<br>99.1<br><b>99</b> .0 | 76.5<br>87.1<br>71.7<br>79.0<br>81.8<br>85.3<br><b>75</b> .9 |

### Table 9. — Urbana — concluded

28

a

| Entry         | Pedigree                                    | Acre<br>yield   | Moisture<br>in grain | Erect<br>plants | Stand   |
|---------------|---------------------------------------------|-----------------|----------------------|-----------------|---------|
|               | 1960 results,                               | 850 maturity se | ries                 |                 |         |
|               |                                             | bu.             | perct.               | perci.          | perct.  |
| AES 805 (W)   | F9×38-11)(C103×Oh45)                        |                 | 20.7                 | 97.0            | 75.0    |
| ll. 1332 (WF  | 9×38-11)(Hy2×Oh7)                           |                 | 20.1                 | 97.5            | 73.4    |
| ll. 1570 (che | ck) $(WF9 \times 38-11)(Hy2 \times Oh41)$ . | 67.1            | 21.2                 | 95.8            | 88.6    |
| ll. 1660 (Oh  | $7 \times CI.21 E$ (K4 $\times$ K201)       | 103.0           | 25.3                 | 95.4            | 62.8    |
| ll. 1976 (Oh  | 7×CI.21E)(38-11×Oh41)                       | 80.3            | 22.9                 | 90.6            | 79.5    |
| II. 1978 (WF  | <sup>9</sup> ×Oh7A)(C103×38-11)             |                 | 20.8                 | 100.0           | 65.9    |
|               | $2 \times Oh7)(C103 \times B14)$            |                 | 20.4                 | 94.2            | 84.0    |
| II. 3154 (K2) | $01 \times CI.21E$ (R132 × R134)            |                 | 27.2                 | 88.9            | 61.3    |
| ll. 3190 (K2) | 01×C103)(Ky126×Oh7B)                        | 102.9           | 26.6                 | 96.9            | 74.2    |
| 11. 3344 (H4  | Q×H55)(R71×R105)                            | 107.4           | 24.5                 | 98.3            | 90.9    |
| IL 3347 (H4)  | 9×H55)(R74×R101)                            |                 | 22.3                 | 100.0           | 70.4    |
| 11. 3348 (H4) | 9×H55)(R74×R109B)                           |                 | 23.8                 | 100.0           | 78.7    |
| 11. 3350 (H4  | 9×H55)(R101×Oh41)                           |                 | 22.2                 | 95.4            | 75.0    |
| II. 3351 (H49 | $(R109B \times R168)$                       |                 | 22.1                 | 94.4            | 78.7    |
| 11. 3354 (H4  | XH51)(R71×R105)                             |                 | 22.3                 | 100.0           | 81.0    |
| 1. 3357 (H4   | 9×H51)(R74×R101)                            |                 | 21.3                 | 95.6            | 88.6    |
| 11 3367 (WF   | 9×R74)(Oh7×CI 21E)                          |                 | 25.3                 | 98.0            | 78.7    |
| ll. 3373 (WF  | 9×C103)(R101×Oh41)                          |                 | 21.4                 | 98.0            | 75.7    |
|               | $5 \times R76$ (R84 $\times K4$ )           |                 | 21.1                 | 98.1            | 71.2    |
| ll. 6052 (R78 | $3 \times 38-11$ (R84 × K4)                 |                 | 21.2                 | 90.1            | 76.5    |
| 11. 8005 (H4) | 9×H55)(B14×C103)                            |                 | 23.8                 | 96.5            | 69.6    |
| nd. 851 (H4   | 9×1155)(H59×B14)                            |                 | 21.9                 | 97.3            | 86.3    |
|               | $9 \times H52$ (H59 $\times B14$ )          |                 | 22.8                 | 96.8            | 68.9    |
| nd. 874 (H4   | 9×H52)(H59×H60)                             |                 | 21.7                 | 98.3            | 83.3    |
| J.S. 13 (WF9  | X38-11)(Hy2XL317)                           |                 | 19.9                 | 92.5            | 74.2    |
| Average       |                                             | 88.1            | 22.5                 | 96.2            | 76.5    |
| Numb          | er in range                                 | Diffe           | rence necessa        | ry for slgni    | ficance |
| 2.            |                                             | 20.8            | 2.0                  | 6.1             | N.S.    |
| 3-5           |                                             |                 | 2.2                  | 6.8             | N.S.    |
|               | 0                                           | 24.5            | 2.4                  | 7.2             | N.S.    |
| 11-1          | 5                                           | 25.1            | 2.4                  | 7.4             | N.S.    |
|               | 0                                           |                 | 2.4                  | 7.5             | N.S.    |
| 21-2          | 5                                           |                 | 2.5                  | 7.5             | N.S.    |

## Table 10. — DOUBLE CROSSES OF 850 AND 900 MATURITY Tested at Greenfield, 1960

| 1960 resu | lts, 900 | maturity | series |
|-----------|----------|----------|--------|
|-----------|----------|----------|--------|

| $\begin{array}{l} AES \ 904 \ (white) \ (K64 \times Mo22) (T111 \times T115) \\ Ill. \ 1349 \ (K155 \times K201) (38-11 \times Mo940) \\ Ill. \ 1539A \ (K201 \times C1.21 E) (38-11 \times C1.7) \\ Ill. \ 1657 \ (K201 \times C1.21 E) (K4 \times Ch7) \\ Ill. \ 1660 \ (Oh7 \times C1.21 E) (K4 \times K201) \\ \end{array}$ | 94.0                                  | 27.3 | 94.5 | 98.4    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|------|---------|
|                                                                                                                                                                                                                                                                                                                                 | 90.6                                  | 21.3 | 93.6 | 96.2    |
|                                                                                                                                                                                                                                                                                                                                 | 75.9                                  | 24.8 | 87.5 | 84.8    |
|                                                                                                                                                                                                                                                                                                                                 | 95.2                                  | 24.5 | 93.1 | 98.4    |
|                                                                                                                                                                                                                                                                                                                                 | 74.9                                  | 24.6 | 94.4 | 90.1    |
| Ill. 1851 (check) (Oh7×CI.21E)(38-11×C103)         Ill. 1856 (CI.21E×K201)(Oh7×38-11).         Ill. 3129 (K201×38-11)(R101×M001930).         Ill. 3135 (K201×38-11)(R127×M00221).         Ill. 3135 (K201×38-11)(R71A×M00221).                                                                                                  | 94.1                                  | 23.2 | 94.5 | 96.2    |
|                                                                                                                                                                                                                                                                                                                                 | 93.9                                  | 23.7 | 88.1 | 90.1    |
|                                                                                                                                                                                                                                                                                                                                 | 88.8                                  | 22.2 | 90.5 | 96.2    |
|                                                                                                                                                                                                                                                                                                                                 | 81.0                                  | 22.7 | 88.3 | 85.6    |
|                                                                                                                                                                                                                                                                                                                                 | 65.1                                  | 22.3 | 93.9 | 87.8    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                           | 79.4                                  | 26.7 | 91.3 | 93.9    |
|                                                                                                                                                                                                                                                                                                                                 | 90.0                                  | 24.6 | 91.5 | 97.7    |
|                                                                                                                                                                                                                                                                                                                                 | 82.1                                  | 24.6 | 91.1 | 93.1    |
|                                                                                                                                                                                                                                                                                                                                 | 77.0                                  | 24.9 | 91.4 | 90.1    |
|                                                                                                                                                                                                                                                                                                                                 | 82.6                                  | 24.9 | 89.5 | 93.9    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                            | 83.0                                  | 26.2 | 91.4 | 96.9    |
|                                                                                                                                                                                                                                                                                                                                 | 79.0                                  | 25.9 | 91.5 | 91.6    |
|                                                                                                                                                                                                                                                                                                                                 | 78.1                                  | 23.4 | 92.1 | 87.1    |
|                                                                                                                                                                                                                                                                                                                                 | 84.5                                  | 24.1 | 94.5 | 95.4    |
|                                                                                                                                                                                                                                                                                                                                 | 86.4                                  | 21.2 | 96.1 | 96.2    |
| Ill. 3360 (H49×H51)(R101×Oh41).                                                                                                                                                                                                                                                                                                 | 93.7                                  | 21.8 | 98.3 | 92.4    |
| Ill. 3364 (C1.21E×K201)(R74×R101).                                                                                                                                                                                                                                                                                              | 98.5                                  | 25.6 | 98.3 | 90.1    |
| Ill. 9001 (Oh7×C1.21E)(C1.7×C103).                                                                                                                                                                                                                                                                                              | 81.0                                  | 22.9 | 94.2 | 90.9    |
| Ind. 851 (H49×H55)(H59×B14).                                                                                                                                                                                                                                                                                                    | 91.6                                  | 24.0 | 94.5 | 96.9    |
| Ind. 874 (H49×H52)(H59×H60).                                                                                                                                                                                                                                                                                                    | 82.4                                  | 22.1 | 92.8 | 93.1    |
| Average                                                                                                                                                                                                                                                                                                                         | 84.9                                  | 24.0 | 92.7 | 92.9    |
| Number in range                                                                                                                                                                                                                                                                                                                 | Difference necessary for significance |      |      | ficance |
| 2-25                                                                                                                                                                                                                                                                                                                            | N.S.                                  | N.S. | N.S. | N.S.    |

[March,

| Entry                       | Pedigree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acre<br>yield | Moisture<br>in grain | Erect<br>plants | Stand        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-----------------|--------------|
|                             | Summary: 1958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1960         |                      |                 |              |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bu.           | perct.               | perct.          | perct.       |
| II. 3198A (                 | K201 × Ky126) (N82481 × Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96.6          | 19.3                 | 76.6            | 94.0         |
| ll. 3190 (K                 | 201×C103)(Ky126×Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.7          | 19.7                 | 82.4            | 91.8         |
| ll. 1660 (O                 | $h7 \times CI.21E)(K4 \times K201)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93.1          | 21.1                 | 80.3            | 96.1         |
| 11. 3193 (38<br>11. 1856 (K | -11×K12)(K201×Oh7B)<br>201×CI.21E)(Oh7×38-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88.6<br>88.6  | 18.5<br>19.8         | 80.6<br>80.5    | 94.5<br>97.9 |
|                             | $201 \times Ky126)(K12 \times Oh7B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 20.2                 | 67.9            | 90.7         |
| ll. 1851 (O                 | $h7 \times CI.21E^{1}(38-11) \times C103)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86.9          | 18.7                 | 77.6            | 99.5         |
|                             | $K201 \times CI.21E$ )(38-11 $\times CI.7$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 19.3                 | 88.9            | 95.7         |
| 11. 3204A (                 | K201×Ky126)(C103×K12)<br>I.21E×Ky126)(C103×K12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86.3<br>86.3  | $20.6 \\ 20.7$       | 84.1<br>85.6    | 94.7<br>94.9 |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                 |              |
| 11. 3133 (K                 | 201×38-11)(R71A×Mo0221)<br>201×38-11)(R101×Mo01930)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.9<br>82.8  | 18.3<br>18.7         | 82.8<br>84.8    | 91.8<br>97.0 |
|                             | $201 \times 38-11$ (R127 $\times$ Mo0221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 19.4                 | 83.0            | 93.5         |
|                             | 201×38-11) (CI.21E×Ky126)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 20.3                 | 86.2            | 89.4         |
| Averag                      | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.6          | 19.6                 | 81.5            | 94.4         |
| Num                         | ber in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diffe         | rence necessa        | ry for signi    | ificance     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | .8                   | N.S.            | N.S.         |
|                             | -5<br>-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | .9<br>.9             | N.S.<br>N.S.    | N.S.<br>N.S. |
|                             | Summary: 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1960         |                      |                 | 1            |
| AES 904 (w                  | hite) (K64×Mo22)(T111×T115)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.2          | 23.2                 | 45.4            | 95.8         |
|                             | $K201 \times Ky126$ (N82481 $\times$ Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 20.8                 | 68.1            | 91.7         |
| II. 3154 (K                 | 201×CI.21E)(R132×R134)<br>h7×CI.21E)(K4×K201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.9<br>74.1  | 22.8<br>22.2         | 63.1            | 92.3<br>95.9 |
| il. 3190 (K                 | $201 \times C103$ (Ky126 × Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.9          | 20.8                 | $72.2 \\ 73.7$  | 88.2         |
|                             | 201×38-11)(R71A×Mo0221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 19.3                 | 73.4            | 87.6         |
| ll. 3214 (K                 | 201 × Ky126) (K12 × Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69.7          | 21.8                 | 52.3            | 85.1         |
| II. 1851 (O                 | $h7 \times CI.21E$ )(38-11 $\times C103$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.5          | 19.9                 | 67.8            | 100.0        |
|                             | 3-11 × K12) (K201 × Oh7B)<br>201 × CI.21 E) (Oh7 × 38-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 20.0<br>21.2         | 71.3<br>71.8    | 93.3<br>97.4 |
|                             | 201 × 38-11)(K11 × Ky126)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 20.7                 | 75.5            | 97.4         |
| II 1530A (                  | $K_{201} \times G_{1,21} \times$ | 67.8          | 20.7                 | 75.5<br>83.0    | 92.8         |
| II. 3133 (K                 | $201 \times 38-11)(R127 \times Mo0221)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66.4          | 20.9                 | 77.0            | 89.7         |
| 11. 3360 (H                 | 49×H51)(R101×Oh41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 65.3          | 19.2                 | 71.8            | 91.7         |
| ll. 3204A (                 | $K201 \times Ky126)(C103 \times K12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65.3          | 22.0                 | 76.4            | 92.3         |
|                             | $(201 \times 38-11)$ (R101 × M <sub>0</sub> 01930)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 20.2                 | 79.7            | 95.8         |
| II. 3210 (C<br>II. 3355 (H  | 1.21E×Ky126)(C103×K12)<br>49×H51)(R71×R109B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.5          | 22.2<br>19.9         | $79.4 \\ 74.4$  | 91.8<br>95.3 |
|                             | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 21.0                 | 71.3            | 92.3         |
| Num                         | ber in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diffe         | rence necessa        | ry for signi    | ificance     |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.2          | 1.3                  | 17.5            | N.S.         |
|                             | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1.4                  | 19.3            | N.S.         |
|                             | -10<br>-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 1.5                  | 20.1<br>20.4    | N.S.<br>N.S. |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                 |              |

### Table 11. — DOUBLE CROSSES OF 900 MATURITY Tested at Brownstown, 1958-1960

| Entry                                           | Pedigree                                                                                                                                                                                                                                                                   | Acre<br>yield                        | Moisture<br>in grain                   | Erect<br>plants                              | Stand                                        |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|
|                                                 | 1960 result                                                                                                                                                                                                                                                                | s                                    |                                        |                                              |                                              |
|                                                 |                                                                                                                                                                                                                                                                            | bu.                                  | percl.                                 | perci.                                       | percl.                                       |
| III. 1349 (K1<br>III. 1539A (H<br>III. 1657 (K2 | hite) $(K64 \times Mo22)(T111 \times T115)$<br>$155 \times K201)(38-11 \times Mo940)$ .<br>$K201 \times C1.21 E)(38-11 \times C1.7)$ .<br>$201 \times C1.21 E)(K4 \times Oh7)$ .<br>$17 \times C1.21 E)(K4 \times K201)$ .                                                 | . 34.3<br>. 43.3<br>. 36.8           | 22.8<br>20.0<br>19.8<br>20.6<br>21.9   | 19.9<br>57.1<br>76.7<br>34.1<br>58.8         | 93.1<br>94.8<br>90.5<br>89.7<br>94.0         |
| III. 1856 (CI<br>III. 3129 (K2<br>III. 3133 (K2 | eck) (Oh7×C1.21E)(38-11×C103)<br>.21E×K201)(Oh7×38-11)<br>201×38-11)(R101×Mo01930)<br>201×38-11)(R127×Mo0221)<br>201×38-11)(R71A×Mo0221)                                                                                                                                   | . 44.6<br>. 43.3<br>. 36.4           | 18.7<br>20.3<br>19.3<br>20.1<br>18.6   | 55.5<br>56.4<br>74.5<br>71.0<br>64.1         | 100.0<br>95.7<br>93.1<br>83.7<br>79.4        |
| III. 3154 (K2<br>III. 3190 (K2<br>III. 3193 (38 | 201×38-11) (CI.21 E×Ky126)<br>201×CI.21 E) (R132×R134).<br>201×CI03) (Ky126×Oh7B)<br>-11×K12) (K201×Oh7B)<br>K201×Ky126) (N82481×Oh7B)                                                                                                                                     | 49.5<br>42.9<br>41.2                 | 21.2<br>22.1<br>19.7<br>19.0<br>19.7   | 67.4<br>50.2<br>61.4<br>62.2<br>62.6         | 71.7<br>87.1<br>82.0<br>88.8<br>86.3         |
| 111. 3210 (CI<br>111. 3214 (K2<br>111. 3251 (K2 | $\begin{array}{l} K201 \times Ky126)(C103 \times K12) \\ \\ .21E \times Ky126)(C103 \times K12) \\ .01 \times Ky126)(K12 \times 0h7B) \\ .01 \times 38-10)(K11 \times Vh7B) \\ .01 \times 38-10)(K11 \times Ky126) \\ \\ .09 \times H51)(R71 \times R109B) \\ \end{array}$ | 38.3<br>41.4<br>38.8                 | 21.3<br>21.0<br>21.2<br>19.4<br>18.2   | 64.0<br>67.5<br>36.4<br>69.1<br>62.3         | 87.1<br>90.5<br>75.2<br>88.0<br>92.3         |
| III. 3364 (CI<br>III. 9001 (OI<br>Ind. 851 (H4  | 49×H51)(R101×Oh41).<br>1.21E×K201)(R74×R101).<br>17×CI.21E)(CI.7×C103).<br>49×H55)(H59×H4).<br>49×H52)(H59×H60).                                                                                                                                                           | 46.7<br>43.2<br>46.3                 | 17.9<br>19.3<br>19.0<br>19.4<br>20.6   | 63.0<br>63.7<br>57.9<br>34.5<br>63.1         | 86.3<br>89.7<br>90.5<br>94.8<br>90.5         |
| Average                                         | 8                                                                                                                                                                                                                                                                          | 41.5                                 | 20.0                                   | 58.1                                         | 88.6                                         |
| Numl                                            | ber in range                                                                                                                                                                                                                                                               |                                      | rence necessa                          |                                              |                                              |
| 3-<br>6-<br>11-<br>16-                          | 5                                                                                                                                                                                                                                                                          | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | 1.8<br>2.0<br>2.1<br>2.2<br>2.2<br>2.2 | 24.9<br>27.7<br>29.3<br>30.0<br>30.5<br>30.6 | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. |

# Table 11. — Brownstown — concluded

[March,

| Entry                                           | Pedigree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acre<br>yield           | Moisture<br>in grain                 | Erect<br>plants                         | Stand                                |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|
|                                                 | 1960 resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ts                      |                                      |                                         |                                      |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bu.                     | perct.                               | perct.                                  | perct.                               |
| Ill, 1349 (K)<br>Ill, 1539A (H<br>Ill, 1657 (K) | hite) (K64×Mo22)(T111×T115)<br>155×K201)(38-11×Mo940)<br>K201×C1.21E)(38-11×C1.7)<br>01×C1.21E)(K4×Oh7)<br>h7×C1.21E)(K4×K201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96.9<br>106.0<br>100.6  | 28.7<br>25.6<br>27.1<br>26.9<br>28.8 | 100.0<br>99.1<br>98.1<br>100.0<br>100.0 | 72.5<br>86.6<br>89.1<br>78.3<br>70.8 |
| Ill. 1856 (CI<br>Ill. 3129 (Ka<br>Ill. 3133 (Ka | eck) (Oh7×CI.21E)(38-11×C103)<br>.21E×K201)(Oh7×38-11).<br>201×38-11)(R101×M001930).<br>201×38-11)(R127×M00221)<br>201×38-11)(R71A×M00221)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96.3<br>91.8<br>105.5   | 26.2<br>27.4<br>24.6<br>25.7<br>25.6 | 100.0<br>98.3<br>100.0<br>100.0<br>97.2 | 80.8<br>87.5<br>73.3<br>80.0<br>70.0 |
| III. 3154 (K.<br>III. 3190 (K.<br>III. 3193 (38 | 201×38-11) (CI.21 E×Ky126)<br>201×CI.21 E) (R132×R134).<br>201×CI03) (Ky126×Oh7B)<br>-11×K12) (K201×Oh7B)<br>K201×Ky126) (N82481×Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.1<br>106.9<br>103.7 | 30.2<br>27.2<br>25.0<br>24.1<br>28.7 | 100.0<br>98.1<br>100.0<br>100.0<br>99.0 | 78.3<br>90.0<br>84.1<br>81.6<br>82.5 |
| Ill. 3210 (CI<br>Ill. 3214 (K2<br>Ill. 3251 (K2 | $\begin{array}{l} K201 \times Ky126) (C103 \times K12) \\12 E \times Ky126) (C103 \times K12) \\201 \times Ky126) (K12 \times Oh7B) \\201 \times Sy126) (K12 \times Oh7B) \\201 \times 38-11) (K11 \times Ky126) \\301 \times Sy126 \\301 \times Sy126$ | 95.1<br>95.6<br>103.2   | 30.3<br>33.1<br>28.4<br>25.5<br>22.2 | 99.0<br>100.0<br>100.0<br>97.2<br>98.1  | 67.5<br>73.3<br>75.8<br>84.1<br>87.5 |
| Ill. 3364 (CI<br>Ill. 9001 (Of<br>Ind. 851 (H4  | 49×H51)(R101×Oh41).<br>.21E×K201)(R74×R101).<br>.7×C1.21E)(C1.7×C103).<br>.49×H55)(H59×B14).<br>49×H52)(H59×H60).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.3<br>99.2<br>100.6   | 24.9<br>26.2<br>23.3<br>27.3<br>22.8 | 100.0<br>100.0<br>100.0<br>99.1<br>99.0 | 85.0<br>80.8<br>71.6<br>80.0<br>90.8 |
| Average                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 100.8                 | 26.6                                 | 99.3                                    | 80.0                                 |
|                                                 | ber in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | ence necessar                        |                                         |                                      |
| 3-<br>6-<br>11-                                 | 5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N.S.<br>N.S.<br>N.S.    | 5.1<br>5.6<br>5.9<br>6.1<br>6.2      | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.    | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. |

### Table 12. — DOUBLE CROSSES OF 900 MATURITY Tested at Carbondale, 1960

#### 1961]

| Entry                                         | Pedigree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acre<br>yield                                | Moisture<br>in grain                   | Erect<br>plants                              | Stand                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|---------------------------------------------|
|                                               | 1960 results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                        |                                              |                                             |
| P00                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bu.                                          | perct.                                 | perct.                                       | percl.                                      |
| ll. 1349 (K1<br>ll. 1539A (k<br>ll. 1657 (K2  | hite) (K64 $\times$ Mo22)(T111 $\times$ T115).<br>(55 $\times$ K201)(38-11 $\times$ Mo940).<br>(201 $\times$ C1.21 E)(38-11 $\times$ C1.7).<br>(01 $\times$ C1.21 E)(K4 $\times$ Oh7).<br>7 $\times$ C1.21 E)(K4 $\times$ C0h7).<br>(7 $\times$ C1.21 E)(K4 $\times$ C1.7).<br>(7 $\times$ C1.21 E)(K4 $\times$ C0h7).<br>(7 $\times$ C1.21 E)(K4 $\times$ C1.7).<br>(7 | 69.3<br>61.3<br>61.4<br>64.1<br>67.2         | 20.6<br>17.8<br>17.1<br>18.8<br>18.6   | 91.8<br>88.0<br>72.1<br>84.3<br>74.8         | 80.3<br>89.3<br>82.5<br>87.8<br>90.9        |
| ll. 1856 (CI<br>ll. 3129 (K2<br>ll. 3133 (K2  | eck) $(Oh7 \times C1.21 E)(38-11 \times C103)$<br>$.21 E \times K201)(Oh7 \times 38-11)$<br>$.01 \times 38-11)(R101 \times Mo01930)$<br>$.01 \times 38-11)(R127 \times Mo0221)$<br>$.01 \times 38-11)(R71A \times Mo0221)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59.7<br>55.9<br>78.2<br>86.8<br>67.2         | 17.3<br>18.0<br>17.9<br>18.4<br>17.5   | 90.6<br>66.7<br>87.1<br>84.1<br>88.9         | 90.9<br>87.1<br>91.6<br>85.6<br>76.5        |
| ll. 3154 (K2<br>ll. 3190 (K2<br>ll. 3193 (38- | 201 × 38-11) (C1.21 E × Ky126)<br>201 × C1.21 E) (R132 × R134)<br>201 × C103) (Ky126 × Oh7B)<br>-11 × K12) (K201 × Oh7B)<br>-201 × Ky126) (N82481 × Oh7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.7<br>82.3<br>66.8<br>66.4<br>66.1         | 18.5<br>20.3<br>17.5<br>18.6<br>18.0   | 76.9<br>78.4<br>83.3<br>82.6<br>70.4         | 87.8<br>90.9<br>88.6<br>92.4<br>83.3        |
| ll. 3210 (CI<br>ll. 3214 (K2<br>ll. 3251 (K2  | ζ201 × Ky126) (C103 × K12)<br>.21E × Ky126) (C103 × K12)<br>01 × Ky126) (K12 × Oh7B)<br>01 × 38-11) (K11 × Ky126)<br>9 × H51) (R71 × R109B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.6<br>70.2<br>50.0<br>64.3<br>82.2         | 19.0<br>18.5<br>18.2<br>19.9<br>18.9   | 92.9<br>86.5<br>84.4<br>84.6<br>87.7         | 84.8<br>89.3<br>80.3<br>94.6<br>87.8        |
| ll. 3364 (CI<br>ll. 9001 (Oh<br>nd. 851 (H4   | 49×H51)(R101×Oh41)<br>.21E×K201)(R74×R101)<br>17×C1.21E)(C1.7×C103)<br>49×H55)(H59×B14)<br>49×H55)(H59×H60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.3<br>81.4<br>61.1<br>76.9<br>70.6         | 18.6<br>19.7<br>17.4<br>18.6<br>17.9   | 76.2<br>83.0<br>76.9<br>82.7<br>70.9         | 93.1<br>85.6<br>91.6<br>78.0<br>99.2        |
| Average                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.7                                         | 18.5                                   | 81.8                                         | 87.6                                        |
|                                               | ber in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | rence necessa                          |                                              |                                             |
| 3-<br>6-<br>11-<br>16-                        | 5<br>10<br>15<br>20<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | 1.8<br>2.0<br>2.1<br>2.2<br>2.2<br>2.2 | N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S.<br>N.S. | 9.5<br>10.5<br>11.1<br>11.4<br>11.5<br>11.6 |

#### Table 13. — DOUBLE CROSSES OF 900 MATURITY Tested at Wolf Lake, 1960

# DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

(The order of the single crosses does not indicate which should be used as seed or pollen parent.)

=

| Hybrid                                                                    | Pedigree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table No.                                                                                       |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| AES 703 (III. 3019A)<br>AES 704 (III. 3016A)<br>AES 705 (III. 3011)       | $\begin{array}{c}(C103 \times M14)  (Hy2 \times WF9) \\(WF9 \times Oh43)  (B14 \times B38) \\(WF9 \times Oh43)  (B14 \times B37) \\(C103 \times Oh43)  (WF9 \times B14) \\(C103 \times Oh43)  (WF9 \times 38-11) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| AES 810<br>AES 904W<br>III. 21<br>III. 1277                               | $\begin{array}{c}(C103 \times Oh43) (P8 \times WF9) \\(WF9 \times H50) (Oh7B \times Oh45) \\(K64 \times Mo22) (T111 \times T115) \\(Hy2 \times 187-2) (WF9 \times 38-11) \\(M14 \times WF9) (I.205 \times 187-2) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| III. 1349<br>III. 1421<br>III. 1539A<br>III. 1555A                        | $\begin{array}{c}(Hy2 \times Oh7) (WF9 \times 38-11)\\(K155 \times K201) (38-11 \times Mo940)\\(WF9 \times Hy2) (P8 \times Oh7)\\(38-11 \times Cl.7) (K201 \times Cl.21E)\\(WF9 \times Oh51A) (l.224 \times Oh20) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0)9, 10, 11, 12, 13<br>4, 7<br>9, 10, 11, 12, 13<br>8)2, 3                                      |
| III. 1570           III. 1657           III. 1660           III. 1851     | $\begin{array}{c}(M14 \times Oh28) (WF9 \times Oh51A) \\(Hy2 \times Oh41) (WF9 \times 38-11) \\(K201 \times Cl.21E) (K4 \times Oh7) \\(K4 \times K201) (Oh7 \times Cl.21E) \\(C103 \times 38-11) (Oh7 \times Cl.21E) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 |
| III. 1861.           III. 1863.           III. 1922.           III. 1936. | $\begin{array}{c}(38-11 \times \text{Oh7}) (\text{K201} \times \text{Cl.21E}) \\(\text{WF9} \times \text{M14}) (\text{I.224} \times \text{Oh28}) \\(\text{WF9} \times \text{M14}) (\text{I.205} \times \text{Oh43}) \\(\text{Hy2} \times \text{WF9}) (\text{R71} \times \text{R105}) \\(\text{Hy2} \times \text{WF9}) (\text{M14} \times \text{B14}) \\(\text{Hy2} \times \text{WF9}) (\text{M14} \times \text{B14}) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2, 3<br>2, 3<br>3, 5, 6<br>2, 3, 5, 6                                                           |
| III. 1955<br>III. 1957<br>III. 1958                                       | $\begin{array}{c}(M14 \times B14) (A545 \times W64A). \\(M14 \times A297) (B14 \times W64A). \\(M14 \times A545) (B14 \times W64A). \\(M14 \times Oh26A) (B14 \times A545). \\(M14 \times W64A) (B14 \times A297). \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| III. 1961<br>III. 1962<br>III. 1968                                       | $\begin{array}{c}(M14 \times W64A) \ (B14 \times A545) .\\(B14 \times A545) \ (A239 \times W64A) \\(B14 \times A545) \ (A297 \times W64A) \\(R163 \times R169) \ (WF9 \times B14) .\\(R165 \times R168) \ (WF9 \times R164) .\\(R165 \times R164) \ (WF9 \times R164) .\\(R165 \times R164)$ |                                                                                                 |
| III. 1976<br>III. 1978<br>III. 1983                                       | $\begin{array}{c}(R165 \times WF9)(R168 \times B14)..\\(38\text{-}11 \times Oh41)(Oh7 \times Cl.21E)\\(C103 \times 38\text{-}11)(WF9 \times Oh7A)\\(Hy2 \times B14)(WF9 \times 38\text{-}11)..\\(C103 \times B14)(Hy2 \times Oh7)..\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| III. 3022           III. 3029           III. 3042                         | $\begin{array}{c}(B14 \times B21)(A297 \times W64A).\\(WF9 \times B14)(N22A \times Oh43).\\(WF9 \times B14)(Oh43 \times Oh45).\\(WF9 \times B14)(Oh43 \times Oh45).\\(WF9 \times B14)(B40 \times Oh45).\\(Hy2 \times WF9)(R71 \times R109B).\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |
| III. 3129           III. 3133           III. 3135                         | (Hy2 × WF9) (R101 × Oh451).<br>(R101 × M₀01930) (38-11 × K2<br>(R127 × M₀0221) (38-11 × K2<br>(R71A × M₀0221) (38-11 × K2<br>(38-11 × K201) (Ky126 × Cl.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9, 10, 11, 12, 13         9, 10, 11, 12, 13         9, 10, 11, 12, 13         9, 10, 11, 12, 13 |

(Index is concluded on next page)

# Index to tables — concluded

| Hybrid                                                                | Pedigree                                                                                                                                                                                                                              | Table No.                                                            |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| III. 3154           III. 3160           III. 3173                     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                  | 8, 9, 10, 11, 12, 13<br>4, 7<br>2, 3                                 |
| III. 3183           III. 3190           III. 3193                     | (R105 × WF9) (R151 × R154)<br>(R105 × R153) (R154 × WF9)<br>(C103 × K201) (Ky126 × Oh7B)<br>(38-11 × K12) (K201 × Oh7B)<br>(NB2481 × Oh7B) (K201 × Ky126) .                                                                           |                                                                      |
| III. 3210           III. 3214           III. 3237                     | (C103 × K12) (K201 × Ky126)<br>(C103 × K12) (Ky126 × CL21E)<br>(K201 × Ky126) (K12 × Oh7B)<br>(R101 × WF9) (R151 × R154)<br>(R105 × R153) (R151 × WF9)                                                                                | 9, 10, 11, 12, 13<br>9, 10, 11, 12, 13<br>4, 7                       |
| III. 3265           III. 3266           III. 3270                     | $\begin{array}{c}(38-11 \times K201) (K11 \times Ky126) \\ (R71 \times R109B) (WF9 \times Oh43) \\ (R74 \times R109B) (WF9 \times Oh43) \\ (R74 \times R168) (WF9 \times Oh43) \\ (R14 \times R168) (WF9 \times Oh43) \\ \end{array}$ | 3, 5, 6<br>3, 5, 6<br>3, 5, 6                                        |
| III. 3291         III. 3294         III. 3301         III. 3302A1     |                                                                                                                                                                                                                                       |                                                                      |
| III. 3315A         III. 3343         III. 3344                        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                  |                                                                      |
| III. 3348           III. 3350           III. 3351           III. 3354 | (R74 × R101) (H49 × H55)<br>(R74 × R109B) (H49 × H55)<br>(R101 × Oh41) (H49 × H55)<br>(R109B × R168) (H49 × H55)<br>(R71 × R105) (H49 × H51)                                                                                          | 4, 7, 8, 9, 10<br>8, 9, 10<br>4, 7, 8, 9, 10<br>8, 9, 10<br>8, 9, 10 |
| III. 3357           III. 3360           III. 3364                     | (R71 × R109B) (H49 × H51).<br>(R74 × R101) (H49 × H51).<br>(R101 × Oh41) (H49 × H51).<br>(R74 × R101) (K201 × Cl.21E).<br>(R74 × WF9) (Oh7 × Cl.21E).                                                                                 | 8, 9, 10<br>9, 10, 11, 12, 13<br>9, 10, 11, 12, 13                   |
| III. 3381<br>III. 3382<br>III. 3383                                   | (C103 × WF9) (R101 × Oh41)<br>(R71 × WF9) (B14 × Oh43)<br>(R109B × WF9) (B14 × Oh43)<br>(M14 × WF9) (R172 × Oh43)<br>(Hy2 × Oh7) (WF9 × Oh41)                                                                                         | 3, 5, 6<br>3, 5, 6<br>3, 5, 6                                        |
| III. 6052           III. 6201           III. 6202           III. 8001 | (R75 × R76) (R84 × K4)<br>(R78 × 38-11) (R84 × K4)<br>(R53 × Oh7) (WF9 × B14)<br>(R53 × Oh51) (Oh43 × W64A)<br>(Hy2 × R138) (Oh7 × Oh7B)                                                                                              |                                                                      |
| III. 8002           III. 8003           III. 8004           III. 8005 | $[(Hy2 \times B14) Hy2] [(Oh7 \times C103) O \\ (WF9 \times Oh7) (H55 \times C103) \\ (WF9 \times Hy2) (R74 \times B14) \\ (H49 \times H55) (B14 \times C103) \\ (Oh7 \times Cl.21E) (Cl.7 \times C103)$                              | h7]4,7<br>4,7<br>4,7<br>8,9,10                                       |
| Ind. 851<br>Ind. 873<br>Ind. 874                                      | (H49 × H55) (H59 × B14)<br>(H49 × H52) (H59 × B14)<br>(H49 × H52) (H59 × H60)<br>(WF9 × 38-11) (Hy2 × L317)                                                                                                                           | 8, 9, 10, 11, 12, 13<br>                                             |

4M-3-61-73109





