Evaluation and Management of the Injured Child

American College of Surgeons Committee on Trauma 1995

Evaluation and Management of the Injured Child Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS, FRCS(C) • Burton H. Harris, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III, MD, FACS • David E. Wesson, MD, FACS Joseph J. Tepas III

Planning Treatment

The three most common causes of death are:

- Airway obstruction
- Blood loss
- Central nervous system (CNS) injury

Consider these critical issues in pediatric trauma:

- Beware of hypothermia. Children lose body heat rapidly. The room and IV fluids should be warmed.
- Multisystem injury is common. Check all regions.
- Head injury is frequent. Observe closely for altered consciousness.

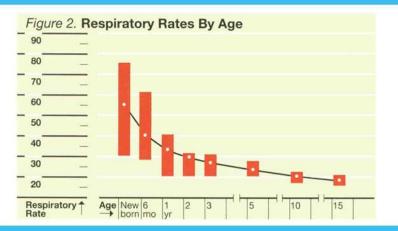
Determine Pediatric Trauma Score (Figure 1)

PTS	+2	+1	-1	
Size	>20 kg	10–20 kg	<10 kg	
Airway	Normal	Maintainable	Unmaintainable	
Systolic BP	>90 mmHg	<90-50 mmHG	<50 mmHg	
CNS	Awake	Obtunded or Any Loss of Consciousness	Comatose	
Open Wound	None	Minor	Major or Penetrating	
Skeletal	None	Closed Fractures	Open or Multiple Fractures	

The PTS is an anatomic and physiologic scoring system useful for triage and prediction of severity of injury. PTS>8 = no mortality; PTS \leq 8 = 30% mortality.

1. Airway & Breathing

A child's airway anatomy is special:


- The upper airway may easily be occluded
- The tonsils and tongue are large
- The larynx is anterior and high in the neck
- The trachea is short avoid inadvertent extubation or endobronchial intubation

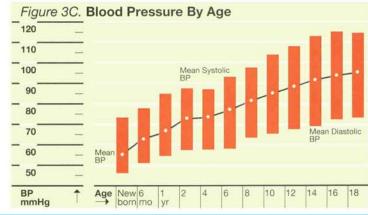
Suggestions for airway access:

- Sniffing" position
- Chin lift or jaw thrust (for obstruction by tongue or foreign material)
- Use oral airway with bag and mask
- Orotracheal intubation preferred following preoxygenation, sedation, and paralysis

Figure 3A. Resuscitation From Hypovolemia

Needle cricothyroidotomy is preferable to tracheostomy

2. Circulation


- Hypovolemia causes tachycardia and peripheral vasoconstriction before hypotension
- Hemorrhage or hypovolemia makes surgical consultation essential
- Be alert for shock caused by gradual or internal blood loss

Physiologic Guidelines

- Normal blood volume = 80 ml/kg
- Hypotension: Loss of 24% of blood volume
- Blood pressure and heart rates are age-related

Special Considerations

- Administer oxygen to all injured children
- Hyperventilate for CNS injury. Ideal pCO₂ = 30 torr
- Consider NG tube to relieve gastric distention

Maintain adequate urine output:

Infant	2ml/kg/hr		
Child	1–1.5	ml/kg/hr	
Adolescent	0.5-1	ml/ka/hr	

This publication is designed to offer information suitable for use by an appropriately trained physician. The information provided is not intended to be comprehensive or to offer a defined standard of care. The user agrees to release and indemnify the American College of Surgeons from claims arising from use of the publication.

Monitor all vital signs closely:

- Complete a neurologic examination. Calculate Glasgow Coma Scale for all patients, and obtain neurosurgical consultation if indicated
- Infuse mannitol (0.5–1.0 gm/kg over 20 min) for rapid CNS deterioration or lateralizing signs (in consultation with a trauma surgeon or neurosurgical consultant)
- Be alert to ongoing, occult bleeding, and incomplete volume resuscitation

Figure 4 lists equipment necessary for pediatric resuscitation

Figure 4. Equipment Airway/Breathing Circulation Supplemental Equipment Oral NG Chest Bag-Valve Laryngoscope ET RP Urinary Mask O. Mask Airways Tubes Stylet Suction Cuff Catheter Tubes Premature Premature Infant 2.5-3.0 Premature 22-24 Newborn 1—Straight Newborn 0-6 Infant Infant 3.0-3.5 22-24 12F 12-18F 5-8F mo., 3.5 kg Small Uncuffed Catheter Anderson 6-12 mo. PED Small PED 1—Straight 3.5-4.5 8-10F 22-24 12F 14-20F 8F 7kg Uncuffed Anderso 1-3 yrs. PED Small PED 1-Straight 10F 12F 14-24F 10F 10-12 kg Uncuffed Catheter Andersor 4-7 yrs. 12F PED Medium PED 2-Straight 5.0-5.5 14F Child 20-22 20-32F 10-12F 16-18 kg or Curved Catheter Anderson Uncuffed 8-10 yrs. 2-3 Straight 12F Medium PED 5.5-6.5 Child 20-22