HENRY FROWDE, M.A.
publisher to the university of oxford
LONDON, EDINBURGH
NEW YORK

A.TREATISE

os
ELECTRICTLY AND MAGNETHM

MANWEVI

A TREATISE

JAMBA THEHK MAXWBLI, MA.

Vol. 11

OXbいた!
AT THR: Clathenion phess
1004

[^0]
(0NTENTK

$1 \cdot 111 \% 111$.

 - HADTRA

A) 1

 are alwate wactly sumad

 that, *

Arb.

 through the centro
393. The north end of a magne in thin tratiso in that whiteh print:

 is considered $f^{m o n t i v e}$

 end..

CHADTER LI.

397. Application to any mayn- En

402. Surface-interge of magnotic indmathas ** .. . *

405. Vector-potential of magnetio inductiast* \%is

(HA1THK $1 /$

407. Itefinition of a mugnetic matran in
 at any print ..
Art. Page
408. The potential of a magnetic shell at any point is the product of its strength multiplied by the solid angle its boundary sub- tends at the point 35
409. Another method of proof 35
410. The potential at a point on the positive side of a shell of strength Φ exceeds that on the nearest point on the negative side by $4 \pi \Phi$ 36
411. Lamellar distribution of magnetism 36
412. Complex lamellar distribution.. 37
413. Potential of a solenoidal magnet 37
414. Potential of a lamellar magnet 37
415. Vector-potential of a lamellar magnet 38
416. On the solid angle subtended at a given point by a closed curve 39
417. The solid angle expressed by the length of a curve on the sphere 40
418. Solid angle found by two line-integrations 40
419. Π expressed as a determinant 41
420. The solid angle is a cyclic function 42
421. Theory of the vector-potential of a closed curve 43
422. Potential energy of a magnetic shell placed in a magnetic field 45
CHAPTER IV.
INDUCED MAGNETIZATION.
423. When a body under the action of magnetic force becomes itself magnetized the phenomenon is called magnetic induction 47
424. Magnetic induction in different substances 49
425. Definition of the coefficient of induced magnetization 50
426. Mathematical theory of magnetic induction. Poisson's method 50
427. Faraday's method 53
428. Case of a body surrounded by a magnetic medium 55
429. Poisson's physical theory of the cause of induced magnetism 57
CHAPTER V.
PARTICULAR PROBLEMS IN MAGNETIC INDUCTION.
430. Theory of a hollow spherical shell 59
431. Case when κ is large. 61
432. When $i=1$ 61
433. Corresponding case in two dimensions. (Fig. XV) 62
434. Case of a solid sphere, the coefficients of magnetization being different in different directions 63
Art. Page
435. The nine coefficients reduced to six. (Fig. XVI) 64
436. Theory of an ellipsoid acted on by a uniform magnetic force 66
437. Cases of very flat and of very long ellipsoids 68
438. Statement of problems solved by Neumann, Kirchhoff, and Green 72
439. Method of approximation to a solution of the general problem when κ is very small. Magnetic bodies tend towards places of most intense magnetic force, and diamagnetic bodies tend to places of weakest force 73
440. On ship's magnetism 74
CHAPTER VI.
WEBER'S THEORY OF INDUCED MAGNETISM.
441. Experiments indicating a maximum of magnetization 79
442. Weber's mathematical theory of temporary magnetization 81
443. Modification of the theory to account for residual magnetization 85
444. Explanation of phenomena by the modified theory 87
445. Magnetization, demagnetization, and remagnetization 90
446. Effects of magnetization on the dimensions of the magnet 92
447. Experiments of Joule 93
CHAPTER VII.
MAGNETIC MEASUREMENTS.
448. Suspension of the magnet 95
449. Methods of observation by mirror and scale. Photographic method 96
450. Principle of collimation employed in the Kew magnetometer 101
451. Determination of the axis of a magnet and of the direction of the horizontal component of the magnetic force 101
452. Measurement of the moment of a magnet and of the intensity of the horizontal component of magnetic force 104
453. Observations of deflexion 107
454. Method of tangents and method of sines 109
455. Observation of vibrations. 110
456. Elimination of the effects of magnetic induction 112
457. Statical method of measuring the horizontal force 114
458. Bifilar suspension 115
459. System of observations in an observatory 119
460. Observation of the dip-circle 120
Art. Page
461. J. A. Broun's method of correction 123
462. Joule's suspension 124
463. Balance vertical force magnetometer 126
CHAPTER VIII.
ON TERRESTRIAL MAGNETISM.
464. Elements of the magnetic force 129
465. Combination of the results of the magnetic survey of a country 130
466. Deduction of the expansion of the magnetic potential of the earth in spherical harmonics 132
467. Definition of the earth's magnetic poles. They are not at the extremities of the magnetic axis. False poles. They do not exist on the earth's surface 132
468. Gauss' calculation of the 24 coefficients of the first four har- monics 133
469. Separation of external from internal causes of magnetic force 134
470. The solar and lunar variations 135
471. The periodic variations 135
472. The disturbances and their period of 11 years 135
473. Reflexions on magnetic investigations 136
PART IV.
ELEOTROMAGNETISM.
CHAPTER I.
ELEOTROMAGNETIC FORCE.
474. Örsted's discovery of the action of an electric current on a magnet 138
475. The space near an clectric current is a magnetic field 139
476. Action of a vertical current on a magnet 139
477. Proof that the force due to a straight current of indefinitely great length varies inversely as the distance 139
478. Electromagnetic measure of the current 140
479. Potential function due to a straight current. It is a function of many values 140481．The action of this current compural with that ent an numpatioside of this celpe to imtinity ．．11111

and size on any pint wht in the chatrat tand11．
$11:$
18485．Magnetice putantial of a chowe ，in wit
$1 i 1$

 cireuit．（F゙y．ぶ1ll） 11
113：
current－
489．Reaction on the eirerait 1 H
490．Forco acting on a wire caryisug an carmat and fitanes in the magnetic field 114
$11 *$
$11 *$
491．Theory of electromagustie rotationm
 ruother． 1 51
493．（）ur mothod of invertigntion in that at lampay 151
 1： 4
495．Dimensions of the whit of enarmt 15：
 it oppores it． $\$ 18$
 plane 1 1． 1
 duo to a current 12
499．（Vencrality of these law 1．
 1．An ${ }^{2}$
 ductor，not on the weetrie cunsom amed 1．4

（HAITEH 11.

 of electric curveиta ）縕多
503．His mothod of experinmotinn 1．旗
Mage
Art. 159
504. Ampère's balance
504. Ampère's balance 159 tralize each other
505. Ampère's first experiment. Equal and opposite currents neu-
506. Second experiment. A crooked conductor is equivalent to at straight one carrying the same current. 160
507. Third experiment. The action of a closed current as an ele- ment of another current is perpendicular to that element 161
508. Fourth experiment. Equal currents in systems geometrically similar produce equal forces 162
509. In all of these experiments the acting current is a closed one 163
510. Both circuits may, however, for mathematical purposes be con- ceived as consisting of elementary portions, and the action of the circuits as the resultant of the action of these elements 163
511. Necessary form of the relations between two elementary por- tions of lines 164
512. The geometrical quantities which determine their relative position 164
513. Form of the components of their mutual action 165
514. Resolution of these in three directions, parallel, respectively, to the line joining them and to the elements themselves.. 167
515. General expression for the action of a finite current on the ello- ment of another $1(i 7$
516. Condition furnished by Ampère's third case of equilibrium 168
517. Theory of the directrix and the determinants of electrodynamic action 169
518. Expression of the determinants in terms of the compouents of the vector-potential of the current 170
519. The part of the force which is indeterminate can be expressed as the space-variation of a potential 170
520. Complete expression for the action between two finite currents 171
521. Mutual potential of two closed currents 171
522. Appropriateness of quatornions in this investigation 171
523. Determination of the form of the functions by Amperre's fourth case of equilibrium 172
524. The electrodynamic and electromagnetic units of currents 172
525. Final expressions for electromagnetic force between two ele- ments 173
526. Four different admissible forms of the theory 173
527. Of these Ampère's is to be preferred 174

(HAMTER 11.

Art.
528. Paraday's diseovery. Nuture uf his methents.. I: 's

530. Phenomena of magntometret rie imbution is.
531. (deneral law of inductinn of virmotw $1:^{13}$
532. Illustrations of the divetion of indment enrenta li"
533. Induction by the motion of the vath In"

the material of the comblufin" I en $^{\text {. }}$

538. Conjugnte prsitions of f wo cuiln !n"

544. Thomson's application иf the man pravithe* 1th

CHADTER $1 V$.

 current. of water

550. Nu 10 ,
 momentum

＇HADTER 1

A：1
 11！
 futhic al labrentate 1＂1
 ${ }_{8}^{4}$ ： 14

 441
 \＃11
 －
 ＊${ }^{*}$（1） 1

 \％ 4
 ？

 ： 171
 H1430 男期
＂HALTHE V！

 841
 $\because 11$
 $3: 1$
 31
 W 11
 ＊）
 ＊管镜
678．Another matoritumbal toxt ？ 14
 18

they wuhl introdure olocitwantive latew，which are nut who werved 数新 1

(WAPTER YII.

Ait. 190.
 :3:3:
579. Wectromotive fore in weh cirent $2: 1$
580. Electromagnetic fores ****
581. Casc of two circuits : 0×2
582. Theory of indured currente
583. Mechaniral ution hotwon the cirmity 485
584. All the phememat of thathal athon of two circuite degend on a single quatity, the fatman of the twor circuita 228

("HAPTER VIH.

585. The electrokinetir momatum of the wombary cireuit 285
586. Expressed an a limememergral 2 ${ }^{2} 101$
587. Any systom of montiguth circuita in equivalent tat the cireuit formed by their enterior bomatary *2?

589. A crooked protion of a cirnit equivalout to a meraight pertion
 232
591. Its relation to the mannetin inhuction, EA. Euntions (A) 835
592. Justification of these names $2 \begin{gathered}2 \\ 2\end{gathered}$
593. Conventions with respert to tho signo of tranalations anal rota* tions 231
594. Theory of a Aliding piece 235
595. Flectromotive forer due to the mation of a contuctor 2
596. Electromannetic force on the hliling piore 237
597. Four definitions of a line of manetic: indactions 237
598. Cenerul equation of ofectromotive fores, (it) を5
599. Amalysis of the cherthomotive forse.. 缕 10
6000. The wencral "quation reformel to moving axem 41
601. The motion of the aves chames mothimp but the aprareat valun of the clectrice pritential. 243
Art. Page
602. Electromagnetic force on a conductor 243
603. Electromagnetic force on an element of a conducting body. Equations (C) 244
CHAPTER IX.
GENERAL EQUATIONS OF THE ELECTROMAGNETIC FIELD.
604. Recapitulation 247
605. Equations of magnetization, (D) 248
G06. Relation between magnetic force and electric currents 249
607. Equations of electric currents, (E) 250
608. Equations of electric displacement, (F) 252
609. Equations of electric conductivity, (G) 253
610. Equations of total currents, (H) 253
611. Currents in terms of electromotive force, (I) 253
612. Volume-density of free electricity, (J) 254
613. Surface-density of free electricity, (K) 254
614. Equations of magnetic permeability, (L) 254
615. Ampère's theory of magnets 254
616. Electric curreuts in terms of electrokinetic momentum 255
617. Vector-potential of electric currents 256
618. Quaternion expressions for electromagnetic quantities 257
619. Quaternion equations of the electromagnetic field 258
Appendix to Chapter IX 259
CHAPTER X.
DIMENSIONS OF ELECTRIC UNITS.
620. Two systems of units 263
621. The twelve primary quantities. 263
622. Fifteen relations among these quantities 264
623. Dimensions in terms of $[e]$ and $[m]$.. 265
624. Reciprocal properties of the two systems 266
625. The electrostatic and the electromagnetic systems 266
626. Dimensions of the twelve quantities in the two systems 267
627. The six derived units 267
628. The ratio of the corresponding units in the two systems 267
629. Practical system of electric units. Table of practical units 268

（HASITFR XL．

Art．
 tricity and the potential

 force ．．．．．＂．．．．．．．．．．．．．．＊＊
 foreo
 current
$x+x$
 magnetic fur＊．＊．．＊＊＊＊．．．．．．\quad ．${ }^{*}$
636．Mothot of thin tymatiset＊．．．．．．．．

639．Tho force acting on
ization
＊：\％＊＊
 through it
 merlimm
 mena

$$
y^{x}
$$

 is the maynolice foreot

646．Numerical value of magne is twamata
Appendix I
Apprmix：It
转洂算
＂戠数

＂HAリI＂月H X 11

$1^{*}{ }_{n+1}$

 ？

 ＂3 ${ }^{1}$ 为
 ＊

 ＊

 －准静

 ＂
 ＂造青量
\％

谷新案

＂ 18 绊

 ${ }_{8}^{11} 18$
 4．7

 粠動：

 数部
${ }^{4} 10$
 駩学至部

Art. Page
675. A plane electric circuit. A spherical shell. An ellipsoidal shell 308
676. A solenoid 309
677. A long solenoid 310
678. Force near the ends 311
679. A pair of induction coils 311
680. Proper thickness of wire 312
681. An endless solenoid 313
CHAPTER XIII.
PARALLEL CURRENTS.
682. Cylindrical conductors 315
683. The external magnetic action of a cylindric wire depends only on the whole current through it 316
684. The vector-potential 317
685. Kinetic energy of the current 317
686. Repulsion between the direct and the return current 318
687. Tension of the wires. Ampère's experiment 318
688. Self-induction of a wire doubled on itself 320
689. Currents of varying intensity in a cylindric wire 320
690. Relation between the electromotive force and the total current 322
691. Geometrical mean distance of two figures in a plane 324
692. Particular cases 326
693. Application of the method to a coil of insulated wires 328
CHAPTER XIV.
CIRCULAR CURRENTS.
694. Potential due to a spherical bowl 331
695. Solid angle subtended by a circle at any point 333
696. Potential energy of two circular currents 334
697. Moment of the couple acting between two coils 335
698. Values of P_{i}^{\prime} 336
699. Attraction between two parallel circular currents 336
700. Calculation of the coefficients for a coil of finite section 337
701. Potential of two parallel circles expressed by elliptic integrals 338
Art. Page
702. Lines of force round a circular current. (Fig. XVIII) $3!11$
703. Differential equation of the potential of two circles 341
704. Approximation when the circles are very near one another 342
705. Further approximation 3.43
706. Coil of maximum self-induction 345
Appendix I $3 \cdot 4$
Appendix II 350
Appendix III 350
CHAPTER XV.
ELECTROMAGNETIC INSTRUMENTS.
707. Standard galvanometers and sensitive galvanometers 351
708. Construction of a standard coil 352
709. Mathematical theory of the galvanometer 353
710. Principle of the tangent galvanometer and the sine galvano- meter 354
711. Galvanometer with a single coil 354
712. Gaugain's eccentric suspension. 356
713. Helmholtz's double coil. (Fig. XIX) 356
714. Galvanometer with four coils 357
715. Galvanometer with three coils 35 ふ
716. Proper thickness of the wire of a galvanometer 359
717. Sensitive galvanometers 360)
718. Theory of the galvanometer of greatest sensibility 360
719. Law of thickness of the wire 361
720. Galvanometer with wire of uniform thickness 36.1
721. Suspended coils. Mode of suspension 364
722. Thomson's sensitive coil 365
723. Determination of magnetic force by means of suspended coil and tangent galvanometer 366
724. Thomson's suspended coil and galvanometer combined 366
725. Weber's electrodynamometer 367
726. Joule's current-weigher 371
727. Suction of solenoids 372
728. Uniform force normal to suspended coil 372
729. Electrodynamometer with torsion-arm 373

（HATMRE XVI．

13＊Art．
$\therefore 1: 1$ ＂18：＂

 $11: 8$
734．J）ata and（quavita 15：
 gations in：
 3 \％
737．Whon to stop the expriman en ． 78
 ＂等：
739．Two series of olmaryathen ：15 s）
 ？ 1 盘 14
741．Dead beat galvanmefre 141
 等蝶是
 新相
 3148
 啨揞
 特

 数期
749．（orrection for daupha＊ 期
 楼相
751．Method of malligliention

（HAPTEK XVH．

 metakitrentht． 103
75．3．Jotermination of 6
754．Determination of y_{1} 期
 14
 34%
 䋨解
Appondix to（＇lmpter AII 就䋨

CHAPTER XVIII.

ELECTROMAGNETIC UNIT OF RESISTANCE.

Art. Page
758. Definition of resistance 402
759. Kirchhoff's method 402
760. Weber's method by transient currents 404
761. His method of observation 405
762. Weber's method by damping 405
763. Thomson's method by a revolving coil 408
764. Mathematical theory of the revolving coil 409
765. Calculation of the resistance 410
766. Corrections 411
767. Joule's calorimetric method 411

CHAPTER XIX.

COMPARISON OF THE ELECTROSTATIC WITH THE ELECTROMAGNETIC UNITS.
768. Nature and importance of the investigation 413
769. The ratio of the units is a velocity 414
770. Current by convection 415
771. Weber and Kohlrausch's method 416
772. Thomson's method by separate electrometer and electrodyna- mometer 417
773. Maxwell's method by combined electrometer and electrodyna- mometer 418
774. Electromagnetic measurement of the capacity of a condenser. Jenkin's method 419
775. Method by an intermittent current 420
776. Condenser and Wippe as an arm of Wheatstone's bridge 421
777. Correction when the action is too rapid 423
778. Capacity of a condenser compared with the self-induction of a coil 425
779. Coil and condenser combined 427
780. Electrostatic measure of resistance compared with its electro- magnetic measure 430

CHAPTER XX.

ELECTROMAGNETIC THEORY OF LIGHT.

Art. Page
781. Comparison of the properties of the electromagnetic medium with those of the medium in the undulatory theory of light 431
782. Energy of light during its propagation 432
783. Equation of propagation of an electromagnetic disturbance 433
784. Solution when the medium is a non-conductor 434
785. Characteristics of wave-propagation 435
786. Velocity of propagation of electromagnetic disturbances 435
787. Comparison of this velocity with that of light 436
788. The specific inductive capacity of a dielectric is the square of its index of refraction 437
789. Comparison of these quantities in the case of paraffin 437
790. Theory of plane waves 438
791. The electric displacement and the magnetic disturbance are in the plane of the wave-front, and perpendicular to each other 439
792. Energy and stress during radiation 440
793. Pressure exerted by light 441
794. Equations of motion in a crystallized medium 442
795. Propagation of plane waves 444
796. Only two waves are propagated 444
797. The theory agrees with that of Fresnel 445
798. Relation between electric conductivity and opacity 445
799. Comparison with facts 446
800. Transparent metals 446
801. Solution of the equations when the medium is a conductor 447
802. Case of an infinite medium, the initial state being given 447
803. Characteristics of diffusion 448
804. Disturbance of the electromagnetic field when a current begins to flow 448
805. Rapid approximation to an ultimate state 449
CHAPTER XXI.
MAGNETIC ACTION ON LIGHT.
806. Possible forms of the relation between magnetism and light 451
807. The rotation of the plane of polarization by magnetic action 452
808. The laws of the phenomena 452
809. Verdet's discovery of negative rotation in ferromagnetic media 453
Art. Page
810. Rotation produced by quartz, turpentine, \&c., independently of magnetism 453
811. Kinematical analysis of the phenomena 454
812. The velocity of a circularly-polarized ray is different according to its direction of rotation 455
813. Right and left-handed rays 455
814. In media which of themselves have the rotatory property the velocity is different for right and left-handed configurations 456
815. In media acted on by magnetism the velocity is different for opposite directions of rotation 456
816. The luminiferous disturbance, mathematically considered, is a vector 457
817. Kinematic equations of circularly-polarized light 457
818. Kinetic and potential energy of the medium 458
819. Condition of wave-propagation 459
820. The action of magnetism must depend on a real rotation about the direction of the magnetic force as an axis 459
821. Statement of the results of the analysis of the phenomenon 460
822. Hypothesis of molecular vortices 461
823. Variation of the vortices according to Helmholta's law 462
824. Variation of the kinetic energy in the disturbed medium 462
825. Expression in terms of the current and the velocity 463
826. The kinetic energy in the case of plaue waves 463
827. The equations of motion 464
828. Velocity of a circularly-polarized ray 464
829. The magnetic rotation 465
830. Researches of Verdet 466
831. Note on a mechanical theory of molecular vortices 468
CHAPTER XXII.
FERROMAGNDTISM AND DIAMAGNETISM EXPLAINED BY MOLIGCUIAAR CURRENTS.
832. Magnetism is a phenomenon of molecules 471
833. The phenomena of magnetic molecules may be imitated by electric currents 472
834. Difference between the elementary theory of continuous mag- nets and the theory of molecular currents 472
835. Simplicity of the electric theory 473
836. Theory of a current in a perfectly conducting circuit 474
837. Case in which the current is entirely due to induction 474
Art． 1 an：
838．Weber＇s theory of diamargatimm 18：
839．Marnecrystallic imbution 17.8
840．Theory of a profect cumbertat 17月
 ！ 7
 excites

814．Modifications of Weleres therery 10 m
815．（Yonsequmees of the then！y $18:$
（H．11mER A M11．

 1N0
 INH
 ｜N
849．Two new forms of Amprese teranula H＊
 particles in motion 10：
 18：
 scruation of energy 1＊：
 （hanss is not．． 1． 1
 ｜ H $^{\text {｜}}$
855．Potential of two currents 140
 1N：
857．Segregating fore in a cmaturn s 1为第
858．Case of movimer comblations 1＊＊
 4＊＊
860 ．That of Weber ayreon with the flacomaneas 46＂
861．Letter of（haman to Wedar．． Is
80i2．Theory of litmum 1＊ 3
863 ．Theory of（ ${ }^{2}$ ．Nemmant 1：4
864 ．Thenry of lhetti． 1！1
 118
 462

PART III.

MAGNETISM.

CHAPTER I.

ELEMENTARY THEORY OF MAGNETISM.

371.] Certain bodies, as, for instance, the iron ore called loadstone, the earth itself, and pieces of steel which have been subjected to certain treatment, are found to possess tho following properties, and are called Magnets.
If, near any part of the earth's surface except the Magnetic Poles, a magnet be suspended so as to turn freely about a vertical axis, it will in general tend to set itself in a cortain azimuth, and if disturbed from this position it will oscillato about it. An unmagnetized body has no such tendency, but is in equilibrium in all azimutbs alike.
372.] It is found that the force which acts on the body tonds to cause a certain line in the body, called the Axis of the Magnet, to become parallel to a certain line in space, called the Direction of the Magnetic Force.

Let us suppose the magnet suspended so as to be froe to turn in all directions about a fixed point. To eliminate the action of its weight we may suppose this point to he its centre of gravity. Let it come to a position of equilibrium. Mark two points on the magnet, and note their positions in space. Then let the magnet be placed in a new position of equilibrium, and note the positions in space of the two marked points on the magnet.

Since the axis of the magnet coincides with the direction of magnetic force in both positions. we hova to find that re.
vol. II.
in the magnet which occupies the same position in space before and after the motion. It appears, from the theory of the motion of bodies of invariable form, that such a line always exists, and that a motion equivalent to the actual motion might have taken place by simple rotation round this line.

To find the line, join the first and last positions of each of the marked points, and draw planes bisecting theso lines at right angles. The intersection of these planes will be the line required, which indicates the direction of the axis of the magnet and the direction of the magnetic force in space.
The method just described is not convenient for the practical determination of these directions. We shall return to this subject when we treat of Magnetic Measurements.

The direction of the magnetic force is found to be different at different parts of the earth's surface. If the end of the axis of the magnet which points in a northerly direction be marked, it has been found that the direction in which it sets itsolf in general deviates from the true meridian to a considerable extent, and that the marked end points on the whole downwards in the northern hemisphere and upwards in the southern.

The azimuth of the direction of the magnetic force, measured from the true north in a westerly direction, is called the Variation, or the Magnetic Declination. The angle between the direction of the magnetic force and the horizontal plane is called the Magnetic Dip. These two angles determine the direction of the magnetic force, and, when the magnetic intensity is also known, the magnetic force is completely determined. The determination of the values of these three elements at different parts of the earth's surface, the discussion of the manner in which they vary according to the place and time of observation, and the investigation of the causes of the magnetic force and its variations, constitute the science of Terrestrial Magnetism.
373.] Let us now suppose that the axes of several magnets have been determined, and the end of each which points north marked. Then, if one of these magnets be freely suspended and another brought near it, it is found that two marked ends repel each other, that a marked and an unmarked end attract each other, and that two unmarked ends repel each other.
If the magnets are in the form of long rods or wires, uniformly and longitudinally magnetized, (see below, Art. 384,)

 tinnel leturen them.

 ntentronally, thost

$$
1 \quad i^{1}
$$

 lengeth whit foren, thent
whones it fullow that

[^1]

 which is specified in exactly the sans way in Aren 11, 18.
375.] The acouracy of this law nas he considumel the have been estahlished by the experinerte of Cimhomh with the thenton

 results which would he inemsistent with and otherg of the bisw

 phonomena.
376.] The quantity which we havehtherte callow the atronght

 in tho poles of magnots.

Since the exprosion of the law of forew hedween gives drat.

 numerical value, much of the mathemation trentureme of mang.

> Retation beturen the tata wo Maypure
 always equal and oppositu to that at the whor, of tovengerneally thus:-
 algobraically) is sero.

Hence in a fich of force which in unformand parallot throughty out the space oceupind hy the magraet, the forem noting whe thes

 determinato direction, but not to note the namgert ma whelo in any direction.
This may be onsily provid by putiag the tuagnot into a manall vessel and floating it in water. The venol will turn in moprains

 worla, ita pula will ber of equal ntrough lout of opponito kimi.

 otherwise. In fact, a theory of matwis mane.s, it

 facts.

 the one fluid to be mow concentration in wn and and the :
 This is the theory of Poissm.

A particle of a magnetizahb homy is, wh has thersy, man to a small insulated combuctor withat rhatse, when ,.3a ? two-fluid theory containe indetinity lar mon an an an

 sides of the magnotized partielo.

 forco.

This is exprewsed by saying that in the datery rame forex so a

electrified body this would correspond to a kind of electric resistance, which, unlike the resistance observed in metals, would be equivalent to complete insulation for electromotive forces below a certain value.

This theory of magnetism, like the corresponding theory of electricity, is evidently too large for the facts, and requires to be restricted by artificial conditions. For it not only gives no reason why one body may not differ from another on account of having more of both fluids, but it enables us to say what would be the properties of a body containing an excess of one magnetic fluid. It is true that a reason is given why such a body cannot exist, but this reason is only introduced as an after-thought to explain this particular fact. It does not grow out of the theory.
381.] We must therefore seek for a mode of expression which shall not be capable of expressing too much, and which shall leave room for the introduction of new ideas as these are developed from new facts. This, I think, we shall obtain if we begin by saying that the particles of a magnet are Polarized.

Meaning of the term 'Polarization.'

When a particle of a body possesses properties related to a certain line or direction in the body, and when the body, retaining these properties, is turned so that this direction is reversed, then if as regards other bodies these properties of the particle are reversed, the particle, in reference to these properties, is said to be polarized, and the properties are said to constitute a particular kind of polarization.

Thus we may say that the ratation of a body about an axis constitutes a kind of polarization, because if, while the rotation continues, the direction of the axis is turned end for end, the body will be rotating in the opposite direction as regards space.

A conducting particle through which there is a current of electricity may be said to be polarized, because if it were turned round, and if the current continued to flow in the same direction as regards the particle, its direction in space would be reversed.

In short, if any mathematical or physical quantity is of the nature of a vector, as defined in Art. 11, then any body or particle to which this directed quantity or vector belongs may
be said to be Polarized *, because it has opposite properties in the two opposite directions or poles of the directed quantity.

The poles of the earth, for example, have reference to its rotation, and have accordingly different names.

Meaning of the term ' Magnetic Polarization.'

382.] In speaking of the state of the particles of a magnet as magnetic polarization, we imply that each of the smallest parts into which a magnet may be divided has certain properties related to a definite direction through the particle, called its Axis of Magnetization, and that the properties related to one end of this axis are opposite to the properties related to the other end.

The properties which we attribute to the particle are of the same kind as those which we observe in the complete magnet, and in assuming that the particles possess these properties, we only assert what we can prove by breaking the magnet up into small pieces, for each of these is found to be a magnet.

Properties of a Magnetized Particle.

383.] Let the element $d x d y d z$ be a particle of a magnet, and let us assume that its magnetic properties are those of a magnet the strength of whose positive pale is m, and whose length is $d s$. Then if P is any point in space distant r from the positive pole and r^{\prime} from the negative pole, the magnetic potential at P will be $\frac{m}{r}$ due to the positive pole, and $-\frac{n}{r^{\prime}}$ due to the negative pole, or

$$
\begin{equation*}
V=\frac{m}{r r^{\prime}}\left(r^{\prime}-r\right) . \tag{1}
\end{equation*}
$$

If $d s$, the distance between the poles, is very small, we may put

$$
\begin{equation*}
r^{\prime}-r=d s \cos \epsilon \tag{2}
\end{equation*}
$$

[^2]where ϵ is the angle between the vector drawn from the magnet to P and the axis of the magnet *, or in the limit
\[

$$
\begin{equation*}
V=\frac{m d s}{r^{2}} \cos \epsilon \tag{3}
\end{equation*}
$$

\]

Magnetic Moment.

384.] The product of the length of a uniformly and longitudinally magnetized bar magnet into the strength of its positive pole is called its Magnetic Moment.

Intersity of Magnetization.

The intensity of magnetization of a magnetic particle is the ratio of its magnetic moment to its volume. We shall denote it by I.

The magnetization at any point of a magnet may be defined by its intensity and its direction. Its direction may be defined by its direction-cosines λ, μ, ν.

Components of Magnetization.

The magnetization at a point of a magnet (being a vector or directed quantity) may be expressed in terms of its three components referred to the axes of coordinates. Calling these $A, B, C, \quad A=I \lambda, \quad B=I_{\mu}, \quad C=I \nu$,
and the numerical value of I is given by the equation

$$
\begin{equation*}
I^{2}=A^{2}+B^{2}+C^{2} \tag{5}
\end{equation*}
$$

385.] If the portion of the magnet which we consider is the differential element of volume $d x d y d z$, and if I denotes the intensity of magnetization of this element, its magnetic moment is $I d x d y d z$. Substituting this for $m d s$ in equation (3), and remembering that

$$
\begin{equation*}
r \cos \epsilon=\lambda(\xi-x)+\mu(\eta-y)+\nu(\zeta-z), \tag{6}
\end{equation*}
$$

where ξ, η, ζ are the coordinates of the extremity of the vector r drawn from the point (x, y, z), we find for the potential at the point (ξ, η, ζ) due to the magnetized element at (x, y, z),

$$
\begin{equation*}
\{A(\xi-x)+B(\eta-y)+C(\zeta-z)\} \frac{1}{r^{3}} d x d y d z \tag{7}
\end{equation*}
$$

To obtain the potential at the point (ξ, η, ζ) due to a magnet of finite dimensions, we must find the integral of this expression for

[^3]every element of volume included within the space occupied by the magnet, or
\[

$$
\begin{equation*}
V=\iiint\{A(\xi-x)+B(\eta-y)+C(\zeta-z)\} \frac{1}{r^{3}} d x d y d z \tag{8}
\end{equation*}
$$

\]

Integrated by parts, this becomes

$$
\begin{aligned}
V= & \iint A \frac{1}{r} d y d z+\iint B \frac{1}{r} d z d x+\iint C \frac{1}{r} d x d y \\
& -\iiint \frac{1}{r}\left(\frac{d A}{d x}+\frac{d B}{d y}+\frac{d C}{d z}\right) d x d y d z
\end{aligned}
$$

where the double integration in the first three terms refers to the surface of the magnet, and the triple integration in the fourth to the space within it.

If l, m, n denote the direction-cosines of the normal drawn outwards from the element of surface $d S$, we may write, as in Art. 21, for the sum of the first three terms

$$
\iint(l . A+m B+n C) \frac{1}{r} d S
$$

where the integration is to be extended over the whole surface of the magnet.

If we now introduce two new symbols σ and ρ, defined by the equations

$$
\begin{aligned}
& \sigma=l A+m B+n C \\
& \rho=-\left(\frac{d A}{d x}+\frac{d B}{d y}+\frac{d C}{d z}\right)
\end{aligned}
$$

the expression for the potential may be written

$$
V=\iint \frac{\sigma}{r} d S+\iiint \frac{\rho}{r} d x d y d z
$$

386.] This expression is identical with that for the electric potential due to a body on the surface of which there is an electrification whose surface-density is σ, while throughout its substance there is a bodily electrification whose volume-density is ρ. Hence, if we assume σ and ρ to be the surface- and volumedensities of the distribution of an imaginary substance, which we have called 'magnetic matter,' the potential due to this imaginary distribution will be identical with that due to the actual magnetization of every element of the magnet.

The surface-density σ is the resolved part of the intensity of magnetization I in the direction of the normal to the surface
drawn outwards, and the volume-density ρ is the 'convergence' (see Art. 25) of the magnetization at a given point in the magnet.

This method of representing the action of a magnet as due to a distribution of 'magnetic matter' is very convenient, but we must always remember that it is only an artificial method of representing the action of a system of polarized particles.

On the Action of one Magnetic Molecule on another.
387.] If, as in the chapter on Spherical Harmonics, Art. 129 b, we make

$$
\begin{equation*}
\frac{d}{d \hbar}=l \frac{d}{d x}+m \frac{d}{d y}+n \frac{d}{d z}, \tag{1}
\end{equation*}
$$

where l, m, n are the direction-cosines of the axis h, then the potential due to a magnetic molecule at the origin, whose axis is parallel to h_{1}, and whose magnetic moment is m_{1}, is

$$
\begin{equation*}
V_{1}=-\frac{d}{d h_{1}} \frac{m_{1}}{r}=\frac{m_{1}}{r^{2}} \lambda_{1}, \tag{2}
\end{equation*}
$$

where λ_{1} is the cosine of the angle betweon h_{1} and r.
Again, if a second magnetic molecule whose moment is m_{2}, and whose axis is parallel to h_{2}, is placed at the extremity of the radius vector r, the potential energy due to the action of the one magnet on the other is

$$
\begin{align*}
W=m_{2} \frac{d V_{1}}{d h_{2}} & =-m_{1} m_{2} \frac{d^{2}}{d h_{1} d h_{2}}\left(\frac{1}{r}\right), \tag{3}\\
& =\frac{m_{1} m_{2}}{r^{3}}\left(\mu_{12}-3 \lambda_{1} \lambda_{2}\right), \tag{4}
\end{align*}
$$

where μ_{12} is the cosine of the angle which the axes make with each other, and λ_{1}, λ_{2} are the cosines of the angles which they make with r.

Let us next determine the moment of the couple with which the first magnet tends to turn the second round its centre.

Let us suppose the second magnet turned through an angle $d \phi$ in a plane perpendicular to a third axis h_{3}, then the work done against the magnetic forces will be $\frac{d W}{d \phi} d \phi$, and the moment of the forces on the magnet in this plane will be

$$
\begin{equation*}
-\frac{d W}{d \phi}=-\frac{m_{1} m_{2}}{r^{3}}\left(\frac{d \mu_{12}}{d \phi}-3 \lambda_{1} \frac{d \lambda_{2}}{d \phi}\right) . \tag{5}
\end{equation*}
$$

The actual moment acting on the second magnet may therefore be considered as the resultant of two couples, of which the first acts in a plane parallel to the axes of both magnets, and tends to increase the angle between them with a couple whose moment is

$$
\begin{equation*}
\frac{m_{1} m_{2}}{r^{3}} \sin \left(h_{1} h_{2}\right) \tag{6}
\end{equation*}
$$

while the second couple acts in the plane passing through r and the axis of the second magnet, and tends to diminish the angle between these directions with a couple whose moment is

$$
\begin{equation*}
\frac{3 m_{1} m_{2}}{r^{3}} \cos \left(r h_{1}\right) \sin \left(r h_{2}\right) \tag{7}
\end{equation*}
$$

where $\left(r h_{1}\right),\left(r h_{2}\right),\left(h_{1} h_{2}\right)$ denote the angles between the lines r, $h_{1}, h_{2}{ }^{*}$.

To determine the force acting on the second magnet in a direction parallel to a line h_{3}, we have to calculate

$$
\begin{align*}
-\frac{d W}{d h_{3}} & =m_{1} m_{2} \frac{d^{3}}{d h_{1} d h_{2} d h_{3}}\left(\frac{1}{r}\right), \tag{8}\\
& =-m_{1} m_{2} \frac{\mid 3!Y_{3}}{r^{4}}, \text { by Art. } 129 c \\
& =3 \frac{m_{1} m_{2}}{r^{4}}\left\{\lambda_{1} \mu_{23}+\lambda_{2} \mu_{31}+\lambda_{3} \mu_{72}-5 \lambda_{1} \lambda_{2} \lambda_{3}\right\}, \text { by Art. } 133,(9) \\
& =3 \lambda_{3} \frac{m_{1} m_{2}}{r^{4}}\left(\mu_{12}-5 \lambda_{1} \lambda_{2}\right)+3 \mu_{13} \frac{m_{1} m_{2}}{r^{4}} \lambda_{2}+3 \mu_{23} \frac{m_{1} m_{2}}{r^{4}} \lambda_{1} . \tag{10}
\end{align*}
$$

If we suppose the actual force compounded of three forces, R, H_{1} and H_{2}, in the directions of r, h_{1} and h_{2} respectively, then the force in the direction of h_{3} is

$$
\begin{equation*}
\lambda_{3} R+\mu_{73} H_{1}+\mu_{23} H_{2} \tag{11}
\end{equation*}
$$

[^4]Since the direction of h_{3} is arbitrary, we must have

$$
\left.\begin{array}{c}
R=\frac{3 m_{1} m_{2}}{r^{4}}\left(\mu_{12}-5 \lambda_{1} \lambda_{2}\right), \tag{12}\\
H_{1}=\frac{3 m_{1} m_{2}}{r^{4}} \lambda_{2}, \quad H_{2}=\frac{3 m_{1} m_{2}}{r^{4}} \lambda_{1}
\end{array}\right\}
$$

The force R is a repulsion, tending to increase $r ; H_{1}$ and H_{2} act on the second magnet in the directions of the axes of the first and second magnets respectively.

This analysis of the forces acting between two small magnets was first given in terms of the Quaternion Analysis by Professor Tait in the Quarterly Math. Journ. for Jan. 1860. See also his work on Quaternions, Arts. 442-443, 2nd Edition.

Particular Positions.

388.] (1) If λ_{1} and λ_{2} are each equal to 1 , that is, if the axes of the magnets are in one straight line and in the same direction, $\mu_{12}=1$, and the force between the magnets is a repulsion

$$
\begin{equation*}
R+H_{1}+H_{2}=-\frac{6 m_{1} m_{2}}{r^{4}} \tag{13}
\end{equation*}
$$

The negative sign indicates that the force is an attraction.
(2) If λ_{1} and λ_{2} are zero, and μ_{12} unity, the axes of the magnets are parallel to each other and perpendicular to r, and the force is a repulsion

$$
\begin{equation*}
\frac{3 m_{1} m_{2}}{r^{4}} \tag{14}
\end{equation*}
$$

In neither of these cases is there any couple.

$$
\begin{equation*}
\text { (3) If } \lambda_{1}=1 \text { and } \lambda_{2}=0 \text {, then } \mu_{12}=0 . \tag{15}
\end{equation*}
$$

The force on the second magnet will be $\frac{3 m_{1} m_{2}}{r^{4}}$ in the direction of its axis, and the couple will be $\frac{2 m_{1} m_{2}}{r^{3}}$, tending to turn it

Fig. 1.
parallel to the first magnet. . This is equivalent to a single force $\frac{3 m_{1} m_{2}}{r^{4}}$ acting parallel to the direction of the axis of the second
magnot, and cutting r at a paint two-thirda of its bingth from m_{2} *.
 m_{2} being in the direction of the axis of m, lut having the own

 from m_{1} to m_{n}.

 part of the fored due to m_{2}, tahern in the dirattion of h_{i}, will lwo
 magnetic foree at agiven point it a givoth direction ly theath of

Fig. 2. the axes of thesw magnate to proluse this dilet, wr have oaty to phes as magret in them given diteretion at the
 tion of matdo equilitriute of thes axim

 their aves sh the drewtowen mulurateal

 of terrestrial magnetism, if it wints.
 as regards its direction, thon anee the coughe metinge su it whinhem,
 that of the first. Henew

$$
\begin{equation*}
\left(h_{1} h_{2}\right)=\left(h_{1} r\right)+\left(r h_{2}\right) \tag{16}
\end{equation*}
$$

and the complo la ing

We find when than in ande
ir
 the bulue of 11 hewema...

 of gronter reanlenat fores.

 whets

In Phe Xlk, at the end of thin rolume the liam of fores

 ditweltien of tha thation of the hation of wateh.

 of the phas.

- Megnami firdel

If a mall magko whome niwoth in m, and whom lowsth
is $d s$, be placed so that its positive pole is at a point where the potential is V, and its negative pole at a point where the potential is V^{\prime}, the potential energy of this magnet will be $m\left(V-V^{\prime}\right)$, or, if $d s$ is measured from the negative pole to the positive,

$$
\begin{equation*}
m \frac{d V}{d s} d s \tag{1}
\end{equation*}
$$

If I is the intensity of the magnetization, and λ, μ, ν its direc-tion-cosines, we may write,

$$
m d s=I d x d y d z
$$

$$
\text { and } \frac{d V}{d s}=\lambda \frac{d V}{d x}+\mu \frac{d V}{d y}+\nu \frac{d V}{d z}
$$

and, finally, if A, B, C are the components of magnetization,

$$
A=\lambda I, \quad B=\mu I, \quad C=\nu I
$$

so that the expression (1) for the potential energy of the element of the magnet becomes

$$
\begin{equation*}
\left(A \frac{d V}{d x}+B \frac{d V}{d y}+C \frac{d V}{d z}\right) d x d y d z \tag{2}
\end{equation*}
$$

To obtain the potential energy of a magnet of finite size, we must integrate this expression for every element of the magnet. We thus obtain

$$
\begin{equation*}
W=\iiint\left(A \frac{d V}{d x}+B \frac{d V}{d y}+C \frac{d V}{d z}\right) d x d y d z \tag{3}
\end{equation*}
$$

as the value of the potential energy of the magnet with respect to the magnetic field in which it is placed.

The potential energy is here expressed in terms of the components of magnetization and of those of the magnetic force arising from external causes.

By integration by parts we may express it in terms of the distribution of magnetic matter and of magnetic potential, thus, $W=\iint(A l+B m+C n) V d S-\iiint V\left(\frac{d A}{d x}+\frac{d B}{d y}+\frac{d C}{d z}\right) d x d y d z$, where l, m, n are the direction-cosines of the normal at the element of surface $d S$. If we substitute in this equation the expressions for the surface- and volume-density of magnetic matter as given in Art. 385, the expression becomes

$$
\begin{equation*}
W=\iint V_{\sigma} d S+\iiint V_{\rho} d x d y d z \tag{5}
\end{equation*}
$$

We nay write "yntion (3) in the form
 firese.

 if wr writ.

the integrations being extombed aver the whole sulathene of thes nugnet, the value of 10 maty le writton

$$
\begin{equation*}
W^{\circ} \propto h(h+m j+n y) \tag{N}
\end{equation*}
$$

 If e in the angle which then axin of the magnot make with the

W - Иincoms.

 lif S_{C} then
 the magrot round anoticed and in

$$
\begin{align*}
& \text { " } 1 \mathrm{~W} \\
& \text { й } \tag{1:3}
\end{align*}
$$

 Hurwher"tic.
3n1.) Iat V tho putantial due tes anit prok plaved at the point ($6,9, \$$). The value of V at the point y_{1}, in

$$
\begin{equation*}
\left.V=\|(6-x)^{2}+(\eta-y)^{2}+(6-x)^{3}\right) \cdot \tag{1}
\end{equation*}
$$

vom. 41.

This expression may be expanded in terms of spherical harmonics, with their centre at the origin. We have then

$$
\begin{equation*}
V=V_{0}+V_{1}+V_{2}+\& c . \tag{2}
\end{equation*}
$$

where $\nabla_{0}=\frac{1}{r}, r$ being the distance of (ξ, η, ζ) from the origin, (3)

$$
\begin{align*}
& V_{1}=\frac{\xi x+\eta y+\zeta z}{r^{3}} \tag{4}\\
& V_{2}=\frac{3(\xi x+\eta y+\zeta z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)\left(\xi^{2}+\eta^{2}+\zeta^{2}\right)}{2 r^{5}} \tag{5}
\end{align*}
$$

\&c.
To determine the value of the potential energy when the magnet is placed in the field of force expressed by this potential, we have to integrate the expression for W in equation (3) of Art. 389 with respect to x, y and z, considering ξ, η, ζ and r as constants.

If we consider only the terms introduced by V_{0}, V_{1} and V_{2} the result will depend on the following volume-integrals,

$$
\begin{array}{r}
l K=\iiint A d x d y d z, m K=\iiint B d x d y d z, n K=\iiint C d x d y d z ;(6) \\
L=\iiint A x d x d y d z, M=\iiint B y d x d y d z, N=\iiint C z d x d y d z ;(7) \\
P=\iiint(B z+C y) d x d y d z, \quad Q=\iiint(C x+A z) d x d y d z, \\
R=\iiint(A y+B x) d x d y d z .
\end{array}
$$

We thus find for the value of the potential energy of the magnet placed in presence of the unit pole at the point (ξ, η, ζ), $W=K \frac{l \xi+m \eta+n \zeta}{r^{3}}$

$$
\frac{\xi^{2}(2 L-M-N)+\eta^{2}(2 M-N-L)+\zeta^{2}(2 N-L-M)+3(P \eta \zeta+Q \zeta \xi+R \xi \eta}{r^{5}}
$$

$$
+\& c
$$

This expression may also be regarded as the potential energy of the unit pole in presence of the magnet, or more simply as the potential at the point ξ, η, ζ due to the magnet.
Nemblury Arme
 thons of the condinatos sul the proition of the arigith. In the firmt phere, wo shall make the direetion of the atis of of parmeled to the axin of the magne. This in maivalont to making

$$
\begin{equation*}
l: 1, m=0, n \quad o \tag{10}
\end{equation*}
$$

If wo change the origin of cordinutan to the print $\left(x^{\prime}, y^{\prime}, 8^{\prime}\right)$, the directions of the asor romainimg unchanged, the volumeintegraly $/ h^{*}, m h^{*}$ nad $n h^{*}$ will romain unohagged, hut the othore will be altered an followa:

If we now make the direction of the axis of a parallot to

 noll Q and $t /$ vanimh. Wis may therefore watu the potontial thum.

$$
\begin{equation*}
K_{r^{2}}^{k}+\ln ^{2}\left(\frac{M}{r^{2}} N\right)+\pi H^{2} K^{C}+\ldots \tag{11}
\end{equation*}
$$

 the avin drmwn through it in tho direetion formody delthed as
 cipal axin of the maynot.

We may ninuplify the rwoult ntill mors by turning the nxw of y and spound that of through hat then ang whome tangont in I $M-N^{\prime}$ 'Thim will catum I' to hocome wro, anul the final form of the potential may lwe writken

$$
\begin{equation*}
K^{k}+\left(y^{\prime}-C^{\prime}\right)(M-N)+N c \tag{15}
\end{equation*}
$$

This is the simplest form of the first two terms of the potential of a magnet. When the axes of y and z are thus placed they may be called the Secondary axes of the magnet.

We may also determine the centre of a magnet by finding the position of the origin of coordinates, for which the surfaceintegral of the square of the second term of the potential, extended over a sphere of unit radius, is a minimum.

The quantity which is to be made a minimum is, by Art. 141,

$$
\begin{equation*}
4\left(L^{2}+M^{2}+N^{2}-M N-N L-L M\right)+3\left(P^{2}+Q^{2}+R^{2}\right) \tag{16}
\end{equation*}
$$

The changes in the values of this quantity due to a change of position of the origin may be deduced from equations (11) and (12). Hence the conditions of a minimum are

$$
\left.\begin{array}{l}
2 l(2 L-M-N)+3 n Q+3 n R=0, \tag{17}\\
2 m(2 M-N-L)+3 l R+3 n P=0, \\
2 n(2 N-L-M)+3 m P+3 l Q=0 .
\end{array}\right\}
$$

If we assume $l=1, m=0, n=0$, these conditions become

$$
\begin{equation*}
2 L-M-N=0, \quad Q=0, \quad R=0 \tag{18}
\end{equation*}
$$

which are the conditions made use of in the previous investigation.

This investigation may be compared with that by which the potential of a system of gravitating matter is expanded. In the latter case, the most convenient point to assume as the origin is the centre of gravity of the system, and the most convenient axes are the principal axes of inertia through that point.

In the case of the magnet, the point corresponding to the centre of gravity is at an infinite distance in the direction of the axis, and the point which we call the centre of the magnet is a point having different properties from those of the centre of gravity. The quantities L, M, N correspond to the moments of inertia, and P, Q, R to the products of inertia of a material body, except that L, M, and N are not necessarily positive quantities.

When the centre of the magnet is taken as the origin, the spherical harmonic of the second order is of the sectorial form, having its axis coinciding with that of the magnet, and this is true of no other point.

When the magnet is symmetrical on all sides of this axis, as in the case of a figure of revolution, the term involving the harmonic of the second order disappears entirely.
393.] At all parts of the earth's surface, except some parts of
the Polar regions, one end of a magnet points towards the north, or at least in a northerly direction, and the other in a southerly direction. In speaking of the ends of a magnet we shall adopt the popular method of calling the end which points to the north the north end of the magnet. When, however, we speak in the language of the theory of magnetic fluids we shall use the words Boreal and Austral. Boreal magnetism is an imaginary kind of matter supposed to be most abundant in the northern parts of the earth, and Austral magnetism is the imaginary magnetic matter which prevails in the southern regions of the earth. The magnetism of the north end of a magnet is Austral, and that of the south end is Boreal. When therefore we speak of the north and south ends of a magnet we do not compare the magnet with the earth as the great magnet, but merely express the position which the magnet endeavours to take up when free to move. When, on the other hand, we wish to compare the distribution of imaginary magnetic fluid in the magnet with that in the earth we shall use the more grandiloquent words Boreal and Austral magnetism.
394.] In speaking of a field of magnetic force we shall use the phrase Magnetic North to indicate the direction in which the north end of a compass needle would point if placed in the field of force.

In speaking of a line of magnetic force we shall always suppose it to be traced from magnetic south to magnetic north, and shall call this direction positive. In the same way the direction of magnetization of a magnet is indicated by a line drawn from the south end of the magnet towards the north end, and the end of the magnet which points north is reckoned the positive end.

We shall consider Austral magnetism, that is, the magnetism of that end of a magnet which points north, as positivo. If we denote its numerical value by m, then the magnetic potential

$$
V=\Sigma\left(\frac{m}{r}\right),
$$

and the positive direction of a line of force is that in which V diminishes.

CHAPTER II.

MAGNETIC FORCE and MAGNETIC INDUCTION.

395.] We have already (Art. 385) determined the magnetic potential at a given point due to a magnet, the magnetization of which is given at every point of its substance, and we have shewn that the mathematical result may be expressed either in terms of the actual magnetization of every element of the magnet, or in terms of an imaginary distribution of 'magnetic matter,' partly condensed on the surface of the magnet and partly diffused throughout its substance.

The magnetic potential, as thus defined, is found by the same mathematical process, whether the given point is outside the magnet or within it. The force exerted on a unit magnetic pole placed at any point outside the magnet is deduced from the potential by the same process of differentiation as in the corresponding electrical problem. If the components of this force ${ }^{\circ}$ are $a, \beta, \gamma, \quad a=-\frac{d V}{d x}, \quad \beta=-\frac{d V}{d y}, \quad \gamma=-\frac{d V}{d z}$.

To determine by experiment the magnetic force at a point within the magnet we must begin by removing part of the magnetized substance, so as to form a cavity within which we are to place the magnetic pole. The force acting on the pole will depend, in general, on the form of this cavity, and on the inclination of the walls of the cavity to the direction of magnetization. Hence it is necessary, in order to avoid ambiguity in speaking of the magnetic force within a magnet, to specify the form and position of the cavity within which the force is to be measured. It is manifest that when the form and position of the cavity is specified, the point within it at which the
 the substane of the batmet, and therefoe the ordinary methend

39M.) Lat us now consider a portion of a magnet in which the diroction und intonaty of tho mangetation are uniform. Within thin furtion lot a onvity ho hollowen ant the form of a colimber, the asio of which is parallen th the dirertion of
 at the midthe perite si the nas,

 theres will twa n uniform nuperticial dintribution, of which the
 positive and.

Lact the lengeth of the axin of the oylimes lew als, and ita
 tion on as magnetie palo plaved at the midhle print of the axim

$$
\begin{equation*}
n=1 n l\left(1-\frac{h}{\left.\sqrt{k^{2}+n^{2}}\right)}\right. \tag{2}
\end{equation*}
$$

 lengeth to the alianoter of the oghmer. Howes. howewt manll Wa samke the cmity, the fores arisity from the surfaco diatilus. tion on ith walls will romaina ingoveral, huitu.

 Whent the makntication in not tham wotricted. them will in

 figuron tho forwe at cormopowding frinto are fromentional the the linwar ditmothions of the therow, hen altoration of the fores on
 will diminimh indeffitoly an the size of the cavity in diminialod,
while the effect due to the surface-density on the walls of the cavity remains, in general, finite.

If, therefore, we assume the dimensions of the cylinder so small that the magnetization of the part removed may be regarded as everywhere parallel to the axis of the cylinder, and of constant magnitude I, the force on a magnetic pole placed at the middle point of the axis of the cylindrical hollow will be compounded of two forces. The first of these is that due to the distribution of magnetic matter on the outer surface of the magnet, and throughout its interior, exclusive of the portion hollowed out. The components of this force are a, β and γ, derived from the potential by equations (1). The second is the force R, acting along the axis of the cylinder in the direction of magnetization. The value of this force depends on the ratio of the length to the diameter of the cylindric cavity.
398.] Case I. Let this ratio be very great, or let the diameter of the cylinder be small compared with its length. Expanding the expression for R in powers of $\frac{a}{b}$, we find

$$
\begin{equation*}
R=4 \pi I\left\{\frac{1}{2} \frac{a^{2}}{b^{2}}-\frac{3}{8} \frac{a^{4}}{b^{4}}+\& c .\right\} \tag{3}
\end{equation*}
$$

a quantity which vanishes when the ratio of b to α is made infinite. Hence, when the cavity is a very narrow cylinder with its axis parallel to the direction of magnetization, the magnetic force within the cavity is not affected by the surface distribution on the ends of the cylinder, and the components of this force are simply a, β, γ, where

$$
\begin{equation*}
a=-\frac{d V}{d x}, \quad \beta=-\frac{d V}{d y}, \quad \gamma=-\frac{d V}{d z} \tag{4}
\end{equation*}
$$

We shall define the force within a cavity of this form as the magnetic force within the magnet. Sir William Thomson has called this the Polar definition of magnetic force. When we have occasion to consider this force as a vector we shall denote it by \mathfrak{S}.
399.] Case II. Let the length of the cylinder be very small compared with its diameter, so that the cylinder becomes a thin disk. Expanding the expression for R in powers of $\frac{b}{a}$, it becomes

$$
\begin{equation*}
R=4 \pi I\left\{1-\frac{b}{a}+\frac{1}{2} \frac{b^{3}}{a^{3}}-\& c .\right\} \tag{5}
\end{equation*}
$$

the ultimate value of which, when the ratio of a to b is made infinite, is $4 \pi I$.

- Hence, when the cavity is in the form of a thin disk, whose plane is normal to the direction of magnetization, a unit magnetic pole placed at the middle of the axis experiences a force $4 \pi I$ in the direction of magnetization, arising from the superficial magnetism on the circular surfaces of the disk *.

Since the components of I are A, B and C, the components of this force are $4 \pi A, 4 \pi B$, and $4 \pi C$. This must be compounded with the force whose components are a, β, γ.
400.] Let the actual force on the unit pole be denoted ly the vector \mathfrak{B}, and its components by a, b and c, then

$$
\left.\begin{array}{l}
a=a+4 \pi A \\
b=\beta+4 \pi B \tag{6}\\
c=\gamma+4 \pi C
\end{array}\right\}
$$

We shall define the force within a hollow disk, whose plane sides are normal to the direction of magnetization, as the Magnetic Induction within the magnet. Sir William Thomson has called this the Electromagnetic definition of magnetic force.

The three vectors, the magnetization \mathfrak{J}, the magnetic force \mathfrak{J}, and the magnetic induction \mathfrak{B}, are connected by the vector equation

$$
\begin{equation*}
\mathfrak{B}=\mathfrak{J}+4 \pi \mathfrak{I} . \tag{7}
\end{equation*}
$$

Line-Integral of Maynetic Force.

401.] Since the magnetic force, as defined in Art. 398, is that due to the distribution of free magnetism on the surface and through the interior of the magnet, and is not affected by the surface-magnetism of the cavity, it may be derived directly from the general expression for the potential of the magnet, and the

> * On the force within cavities of other forms.

1. Any narrow crevasse. The force arising from the surface-magnetism is $4 \pi I \cos \epsilon$ in the direction of the normal to the plane of the crevasse, where 6 is the angle between this normal and the direction of magnetization. When the crevasse is parallel to the direction of magnetization the force is the magnotic force \mathfrak{g}; when the crevasse is perpendioular to the direction of magnetization the force is the magnetic induction \mathfrak{B}.
2. In an infinitely elongated cylindor, the axis of which makes an angle ϵ with the direction of magnetization, the force arising from the surface-magnetism is $2 \pi I \sin \epsilon$, perpendicular to the axis in the plane containing the axis and the direction of magnetization.
3. In a sphere the force arising from surface magnetism is $\frac{4}{} \pi \pi I$ in the direction of magnetization.
 the point A to the print $I A$ is

 as the value of the intratal

$$
\begin{equation*}
U=\| \|_{6}=0 \times \pi \tag{149}
\end{equation*}
$$

 bo either clowed or bombled by a chowed rars*

 may be written

$$
U=\iint\left(1+x_{0} x_{0}+x_{1}\right) \cdot(x
$$

If we substituth for the compenente of the matuctio indiowtean
 magnetization as given in Art, Aot, wo bhat
 tion extends is a clowed ona*, and wo monll investigate hem value

 forco and frow Motricity, wo ang apply tho mowte givan in Art. 77 to the firmb twrm in the value of Y by sulanituthen w, il. \%

 magrectim within the clowell murfack for x. Une myolmaio sum of the fres detricity.

Wo thus ohtain the equation

$$
\begin{equation*}
\iint(l+m+x+m y)+\mathbb{N}=M \tag{1热}
\end{equation*}
$$

 nothing to the ale

 the ratio of the maguetio anamot to the volune, will las

$$
l \begin{align*}
& m \tag{13}\\
& i^{3}
\end{align*}
$$

 the seetion.

$$
\begin{equation*}
h^{2} \text {, iseoses. } \tag{1111}
\end{equation*}
$$

Honese, if we denate lyy d.l| the fons of tha fore magnetions

$$
\begin{align*}
& 1 \text { com *ots. } \tag{15}
\end{align*}
$$

 chonel suthers, wo Chat.

$$
M=\iint \operatorname{cosec} d x
$$

$$
\begin{equation*}
M \quad j j d .1+m b n d M \tag{11}
\end{equation*}
$$

 the right hatul sioke of x"putest (11). Thas saluw of y the that

$$
\begin{equation*}
y=4 n M \Delta n M \quad 0 \tag{17}
\end{equation*}
$$

 rhard mingure in Boro.

$\begin{equation*} \\|^{\prime \prime} \tag{113} \end{equation*}$

 the components of the namerne ambartors

 not on that of the sum fare itwar.

 a curve, x, may la a line of imblutiont mos

 induction.

The induction acrow may nerthon of ouch on tulw an the nathe If the induction in unity the tulos an callesi a 1 'met tulw wh the duction.

 must be carcfully distinguimod.

 negative pele to the ponitive withon the sumgoct, on that the lamo

The importance of the magnetic induction as a physical quantity will be more clearly seen when we study electromagnetic phenomena. When the magnetic field is explored by a moving wire, as in Faraday's Exp. Res. 3076, it is the magnetic induction and not the magnetic force which is directly measured.

The Vector-Potential of Magnetic Induction.

405.] Since, as we have shewn in Art. 403 , the magnetic induction through a surface bounded by a closed curve depends on the closed curve, and not on the form of the surface which is bounded by it, it must be possible to determine the induction through a closed curve by a process depending only on the nature of that curve, and not involving the construction of a surface forming a diaphragm of the curve.

This may be done by finding a vector \mathfrak{A} related to \mathfrak{B}, the magnetic induction, in such a way that the line-integral of \mathfrak{H}, extended round the closed curve, is equal to the surfaceintegral of \mathfrak{B}, extended over a surface bounded by the closed curve.

If, in Art. 24, we write F, G, H for the components of \mathfrak{N}, and a, b, c for the components of \mathfrak{B}, we find for the relation between these components

$$
\begin{equation*}
a=\frac{d H}{d y}-\frac{d G}{d z}, \quad b=\frac{d F}{d z}-\frac{d H}{d x}, \quad c=\frac{d G}{d x}-\frac{d F^{\prime}}{d y} . \tag{21}
\end{equation*}
$$

The vector \mathfrak{N}, whose components are F, G, H, is called the vector-potential of magnetic induction.

If a magnetic molecule whose moment is m and the direction of whose axis of magnetization is (λ, μ, ν) be at the origin of coordinates, the potential at a point (x, y, z) distance r from the origin is, by Art. 387,

$$
\begin{aligned}
& -m\left(\lambda \frac{d}{d x}+\mu \frac{d}{d y}+v \frac{d}{d z}\right) \frac{1}{r} \\
\therefore \quad c & =m\left(\lambda \frac{d^{2}}{d x d z}+\mu \frac{d^{2}}{d y d z}+v \frac{d^{2}}{d z^{2}}\right) \frac{1}{r},
\end{aligned}
$$

which, by Laplace's equation, may be thrown into the form

$$
m \frac{d}{d x}\left(\lambda \frac{d}{d z}-v \frac{d}{d x}\right) \frac{1}{r}-m \frac{d}{d y}\left(\nu \frac{d}{d y}-\mu \frac{d}{d z}\right) \frac{1}{r} .
$$

The quantities a, b may be dealt with in a similar manner.

Hence

$$
\begin{aligned}
& I=m\left(y_{i l}^{\prime \prime}-\mu_{i l}^{d}\right)_{i}^{\prime} . \\
& =\begin{array}{c}
n|\mu * \cdot n| \\
m^{3}
\end{array}
\end{aligned}
$$

From this expression (i and $I /$ tany for foum lev gyanames

 of the radius vector and maltipliond by then mitue of them angote between the axis of magnotization and Her shdiun worloe, nand liw
 the axis of magnetizations and the smitun vereme, and in ouch that
 magnetization the wetor potentinl in alrewn in tho dirwetion of rotation of the hande of a watch.

Hence, for a magnet of any form in which $A,{ }^{\prime \prime}$, arm tho
 nonts of the vector-potutial at the prome (\% mis), arw

 extended over the npace cocughiond by the thatwer.
406.7 The menlar, or ordinary, patantial of magnotio forme. Art. 385, becomew when oxpermed the thane notation.

we find for the value of the x-component of the magnetic induction,

$$
\begin{align*}
a= & \frac{d H}{d \eta}-\frac{d G}{d \zeta} \\
= & \iiint\left\{A\left(\frac{d^{2} p}{d y d \eta}+\frac{d^{2} p}{d z d \zeta}\right)-B \frac{d^{2} p}{d x d \eta}-C \frac{d^{2} p}{d x d \zeta}\right\} d x d y d z \\
= & -\frac{d}{d \xi} \iiint\left\{A \frac{d p}{d x}+B \frac{d p}{d y}+C \frac{d p}{d z}\right\} d x d y d z \\
& \quad-\iiint A\left(\frac{d^{2} p}{d x^{2}}+\frac{d^{2} p}{d y^{2}}+\frac{d^{2} p}{d z^{2}}\right) d x d y d z . \tag{24}
\end{align*}
$$

The first term of this expression is evidently $-\frac{d V}{d \xi}$, or, a the component of the magnetic force.

The quantity under the integral sign in the second term is zero for every element of volume except that in which the point (ξ, η, ζ) is included. If the value of A at the point (ξ, η, ζ) is (A), the value of the second term is easily proved to be $4 \pi(A)$, where (A) is evidently zero at all points outside the magnet.

We may now write the value of the x-component of the magnetic induction

$$
\begin{equation*}
a=a+4 \pi(A) \tag{25}
\end{equation*}
$$

an equation which is identical with the first of those given in Art. 400. The equations for b and c will also agree with those of Art. 400.

We have already seen that the magnetic force \mathfrak{J} is derived from the scalar magnetic potential V by the application of Hamilton's operator ∇ so that we may write, as in Art. 17,

$$
\begin{equation*}
\mathfrak{S}=-\nabla V \tag{26}
\end{equation*}
$$

and that this equation is true both without and within the magnet.

It appears from the present investigation that the magnetic induction \mathfrak{B} is derived from the vector-potential \mathfrak{A} by the application of the same operator, and that the result is true within the magnet as well as without it.

The application of this operator to a vector-function produces, in general, a scalar quantity as well as a vector. The scalar part, however, which we have called the convergence of the
vector-function, vanishes when the vector-function satisfies the solenoidal condition

$$
\begin{equation*}
\frac{d F}{d \xi}+\frac{d G}{d \eta}+\frac{d H}{d \zeta}=0 \tag{27}
\end{equation*}
$$

By differentiating the expressions for F, G, H in equations (22), we find that this equation is satisfied by these quantities.

We may therefore write the relation between the magnetic induction and its vector-potential

$$
\mathfrak{B}=\nabla \mathfrak{A}
$$

which may be expressed in words by saying that the magnetic induction is the curl of its vector-potential. See Art. 25.

CHAPTER III.

MAGNETIC SOLENOIDS AND SHELLS*.

On Particular Forms of Magnets.

407.] If a long narrow filament of magnetic matter like a wire is magnetized everywhere in a longitudinal direction, then the product of any transverse section of the filament into the mean intensity of the magnetization across it is called the strength of the magnet at that section. If the filament were cut in two at the section without altering the magnetization, the two surfaces, when separated, would be found to have equal and opposite quantities of superficial magnetization, each of which is numerically equal to the strength of the magnet at the section.

A filament of magnetic matter, so magnetized that its strength is the same at every section, at whatever part of its length the section be made, is called a Magnetic Solenoid.

If m is the strength of the solenoid, $d s$ an element of its length, s being measured from the negative to the positive pole of the magnet, r the distance of that element from a given point, and ϵ the angle which r makes with the axis of magnetization of the element, the potential at the given point due to the element is

$$
\frac{m d s \cos \epsilon}{r^{2}}=-\frac{m}{r^{2}} \frac{d r}{d s} d s .
$$

Integrating this expression with respect to s, so as to take into account all the elements of the solenoid, the potential is found to be

$$
V=m\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

r_{1} being the distance of the positive end of the solenoid, and r_{2} ;hat of the negative end from the point where V is measured.

[^5]

 or curved, between these prate
 its poles.

 point of the nag met.

 may be called ('onghex whom
 then the potential due to the nation a

 filament with a dimer denary
$$
x=0
$$
Mepmetia Mrher.
409. 1 If a thin wholl of mathetir mather in magntizal in a
 magnetization at any phon maltightid hy the thirknow of the
 at that phacs.

 magurtio mbedl.
 the strongth of the whell, then the premetin at my point, f, due fo the olement of the shell, in
Il it instome
 drawn ott warla from the poritive mile of the shell.

\[

$$
\begin{aligned}
& \text { Filus dxcone. }
\end{aligned}
$$
\]

whenew
and therefore in the cone of a situthe sughertie mbell

$$
y^{\circ}=4 \operatorname{los}_{0,0}
$$

 "t the yimen ymatal.

 of the whell.
 to thim wlestewt in

[^6]Hence, intagrating with roment soll mach vemonta, theo energy due to the position of the shath in that fixhl in minal to the product of the stronth of the holl and the murfure intweral of the magnetic induetion tahon owe the nuther of the ahell.

Since this surface-integral is the whas for nay foo surfares

 depends only on the form of ite oblew

 action of the pole and the whell in
of mow,
and this, by Grewn's theoren, in "and twe the frombet of the strength of the prole inte the frotential whe the the whell we the

 surface of a magnetio whell, and travelo abotig nat path in menes

 neighbouring point on the nerghtave ande by ofo.

 everywhere 4π, beimp peritus when the gexative mater of than
 magnet phewd eithre stuninh or inmale the abwell

 the magnet, then the contition of lanwine magnotizatan are

The quantity, ϕ, which thum conphely nelerinituw the mas.
metization at any point may be called the Potential of Magnetization. It must be carefully distinguished from the Magnetic Potential.
413.] A magnet which can be divided into complex magnetic shells is said to have a complex lamellar distribution of magmetism. The condition of such a distribution is that the lines of magnetization must be such that a system of surfaces can be drawn cutting them at right angles. This condition is expressed by the well-known equation

$$
A\left(\frac{d C}{d y}-\frac{d B}{d z}\right)+B\left(\frac{d A}{d z}-\frac{d C}{d x}\right)+C\left(\frac{d B}{d x}-\frac{d A}{d y}\right)=0 .
$$

Forms of the Potentials of Solenoidal and Lamellar Magnets.
414.] The general expression for the scalar potential of a magnet is

$$
V=\iiint\left(A \frac{d p}{d x}+B \frac{d p}{d y}+C \frac{d p}{d z}\right) d x d y d z,
$$

Where p denotes the potential at (x, y, z), due to a unit magnetic pole placed at (ξ, η, ζ), or in other words, the reciprocal of the distance between (ξ, η, ζ), the point at which the potential is maeasured, and (x, y, z), the position of the element of the maagnet to which it is due.

This quantity may be integrated by parts, as in Arts. 96, 386, $\boldsymbol{V}=\iint p(A l+B m+C n) d S-\iiint p\left(\frac{d A}{d x}+\frac{d B}{d y}+\frac{d C}{d z}\right) d x d y d z$, Where l, m, n are the direction-cosines of the normal drawn out\mathbf{w} ards from $d S$, an element of the surface of the magnet.

When the magnet is solenoidal the expression under the integral sign in the second term is zero for every point within the magnet, so that the triple integral is zero, and the scalar potential at any point, whether outside or inside the magnet, is given by the surface-integral in the first term.

The scalar potential of a solenoidal magnet is therefore completely determined when the normal component of the magnetization at every point of the surface is known, and it is in dependent of the form of the solenoids within the magnet. .
415.] In the case of a lamellar magnet the magnetization is determined by ϕ, the potential of magnetization, so that

$$
A=\frac{d \phi}{d x}, \quad B=\frac{d \phi}{d y}, \quad C=\frac{d \phi}{d z} .
$$

 is not included in the substance of the mather

 zero, for il wo write

$$
\begin{aligned}
& I_{:}^{*} l_{4}^{*} \text {. }
\end{aligned}
$$

 tho equations

By integration by part we may fat thin an than font of the o surface-integral

 they masy for masomed.

 sertor with the apherw it traven the elowsel retwe. This asen

 fictather hisen fant "。

 wholo bugeth of the elowat arse

 and pathag

[^7]term is 2π. If the axis of z does not pass through it this term is zero.
418.] This method of calculating a solid angle involves a choice of axes which is to some extent arbitrary, and it does not depend solely on the closed curve. Hence the following method, in which no surface is supposed to be constructed, may be stated for the sake of geometrical propriety.

As the radius vector from the given point traces out the closed curve, let a plane passing through the given point roll on the closed curve so as to be a tangent plane at each point of the curve in succession. Let a line of unit-length be drawn from the given point perpendicular to this plane. As the plane rolls round the closed curve the extremity of the perpendicular will trace a second closed curve. Let the length of the second closed curve be σ, then the solid angle subtended by the first closed curve is

$$
\omega=2 \pi-\sigma .
$$

This follows from the well-known theorem that the area of a closed curve on a sphere of unit radius, together with the circumference of the polar curve, is numerically equal to the circumference of a great circle of the sphere.

This construction is sometimes convenient for calculating the solid angle subtended by a rectilinear figure. For our own purpose, which is to form clear ideas of physical phenomena, the following method is to be preferred, as it employs no constructions which do not flow from the physical data of the problem.
419.] A closed curve s is given in space, and we have to find the solid angle subtended by s at a given point P.

If we consider the solid angle as the potential of a magnetic shell of unit strength whose edge coincides with the closed curve, we must define it as the work done by a unit magnetic pole against the magnetic force while it moves from an infinite distance to the point P. Hence, if σ is the path of the pole as it approaches the point P, the potential must be the result of a line-integration along this path. It must also be the result of a line-integration along the closed curve s. The proper form of the expression for the solid angle must therefore be that of a double integration with respect to the two curves s and σ.

When P is at an infinite distance, the solid angle is evidently
zero. As the point P approaches, the closed curve, as seen from the moving point, appears to open out, and the whole solid angle may be conceived to be generated by the apparent motion of the different elements of the closed curve as the moving point approaches.
As the point P moves from P to P^{\prime} over the element $d \sigma$, the element $Q Q^{\prime}$ of the closed curve, which we denote by $d s$, will change its position relatively to P, and the line on the unit sphere corresponding to $Q Q^{\prime}$ will sweep over an area on the spherical surface, which we may write

$$
\begin{equation*}
d \omega=\Pi d s d \sigma . \tag{1}
\end{equation*}
$$

To find Π let us suppose P fixed while the closed curve is moved parallel to itself through a distance $d \sigma$ equal to $P P^{\prime}$ but in the opposite direction. The relative motion of the point P will be the same as in the real case.
During this motion the element $Q Q^{\prime}$ will generate an area in the form of a parallelogram whose sides are parallel and equal to $Q Q^{\prime}$ and $P P^{\prime}$. If we construct a pyramid on this parallelogram as base with its vertex at P, the solid angle of this pyramid will be the increment $d \omega$ which we are in search of.

To determine the value of this solid angle, let θ and θ^{\prime} be the angles which $d s$ and $d \sigma$ make with $P Q$ respectively, and let ϕ be the

Fig. 3. angle between the planes of these two angles, then the area of the projection of the parallelogram $d s . d \sigma$ on a plane perpendicular to $P Q$ or r will be

$$
d s d \sigma \sin \theta \sin \theta^{\prime} \sin \phi
$$

and since this is equal to $r^{2} d \omega$, we find

$$
\begin{equation*}
d \omega=\Pi d s d \sigma=\frac{1}{r^{2}} \sin \theta \sin \theta^{\prime} \sin \phi d s d \sigma \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Pi=\frac{1}{r^{2}} \sin \theta \sin \theta^{\prime} \sin \dot{\phi} \tag{3}
\end{equation*}
$$

420.] We may express the angles θ, θ^{\prime}, and ϕ in terms of r, and its differential coefficients with respect to s and σ, for $\cos \theta=\frac{d r}{d s}, \quad \cos \theta^{\prime}=\frac{d r}{d \sigma}, \quad$ and $\sin \theta \sin \theta^{\prime} \cos \phi=r \frac{d^{2} r}{d s d_{\sigma}}$.

Wo thas find tha following valu for 11 ,

$$
\frac{1}{1}+l_{1}+11 i_{1}
$$

 which we must take the thish fath. Wre than hand an the value of 11 ,*

This expression gives the value of 11 irse from the atminguty of sign introduced by equation (a).
 curve at the point ${ }^{\prime}$, may now be wata

$$
\omega=\| \| H=\|
$$

 nu infinite distanee from the elowed our on

[^8]edge. The value of ω at P exceeds that at P^{\prime} by 4π, that is, by the surface of a sphere of radius unity.

Hence, if a closed curve be drawn so as to pass once through the shell, or in other words, if it be linked once with the edge of the shell, the value of the integral $\iint \Pi d s d \sigma$ extended round both curves will be 4π.

This integral therefore, considered as depending only on the closed curve s and the arbitrary curve $A P$, is an instance of a function of multiple values, since, if we pass from A to P along different paths the integral will have different values according to the number of times which the curve $A P$ is twined round the curve s.

If one form of the curve between A and P can be transformed into another by continuous motion without intersecting the curve s, the integral will have the same value for both curves, but if during the transformation it intersects the closed curve n times the values of the integral will differ by $4 \pi n$.

If s and σ are any two closed curves in space, then, if they are not linked together, the integral extended once round both is zero.

If they are intertwined n times in the same direction, the value of the integral is $4 \pi n$. It is possible, however, for two curves to be intertwined alternately in opposite directions, so that they are inseparably linked together though the value of the integral is zero. See Fig. 4.

It was the discovery by Gauss of this very integral, expressing the work done on a magnetic pole while describing a closed curve in presence of a closed electric current, and indicating the geometrical connexion between

Fig. 4. the two closed curves, that led him to lament the small progress made in the Geometry of Position since the time of Leibnitz, Euler and Vandermonde. We have now, however, some progress to report, chiefly due to Riemann, Helmholtz, and Listing.
422.] Let us now investigate the result of integrating with. respect to s round the closed curve.

One of the terms of Π in equation (7) is

$$
\begin{equation*}
-\frac{\xi-x}{r^{3}} \frac{d \eta}{d \sigma} \frac{d z}{d s}=\frac{d \eta}{d \sigma} \frac{d}{d \xi}\left(\frac{1}{r} \frac{d z}{d s}\right) \tag{8}
\end{equation*}
$$

If wo now write for hrevity
 term of II may he written

$$
\begin{aligned}
& \text { d. . } 411 \\
& \text { at diek. }
\end{aligned}
$$

and the corresponding turn of / 11 if wall la

$$
\begin{aligned}
& d+1 d \\
& d=d E^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{d \omega}{d \omega}=-\int 11 d x
\end{aligned}
$$

 words, it is the magntie forew in the atasmembe if if

 magnotic foree

$$
\begin{align*}
& n=-\frac{1 h_{0}}{} \quad \text { all } \quad \text { an }
\end{align*}
$$

 doterminate for avery juint in maner

 geometrical construction:

 dimetion of which in alwasa parally to that of \& but whome

 pmentin! is 1 , is

 is whatud user the sherll.

 nul we tuay wate

 frosu the fospitive nutse of the whell.

 the bomenary of the tirm whell.
 ponni the boundary of the neonal nhell; vion it in

$$
\begin{equation*}
\int_{0}^{1} 11 x^{2} \cdot n^{2} \tag{11}
\end{equation*}
$$

In like manner

$$
\begin{aligned}
& G=\phi^{\prime} \int \frac{1}{r} \frac{d y^{\prime}}{d s^{\prime}} d s^{\prime} \\
& H=\phi^{\prime} \int \frac{1}{r} \frac{d z}{d z^{\prime}} d s^{\prime}
\end{aligned}
$$

Substituting these values in the expression for M we find

$$
\begin{equation*}
M=-\phi \phi^{\prime} \iint \frac{1}{r}\left(\frac{d x}{d s} \frac{d x^{\prime}}{d s^{\prime}}+\frac{d y}{d s} \frac{d y^{\prime}}{d s^{\prime}}+\frac{d z}{d s} \frac{d z^{\prime}}{d s^{\prime}}\right) d s d s^{\prime} \tag{15}
\end{equation*}
$$

where the integration is extended once round s and once round s^{\prime}. This expression gives the potential energy due to the mutual action of the two shells, and is, as it ought to be, the same when s and s^{\prime} are interchanged. This expression with its sign reversed, when the strength of each shell is unity, is called the potential of the two closed curves s and s^{\prime}. It is a quantity of great importance in the theory of electric currents. If we write ϵ for the angle between the directions of the elements $d s$ and $d s^{\prime}$, the potential of s and s^{\prime} may be written

$$
\begin{equation*}
\iint \frac{\cos \epsilon}{r} d s d s^{\prime} \tag{16}
\end{equation*}
$$

It is evidently a quantity of the dimension of a line.

CHAPTER IV.

INDUCED MAGNETIZATION.

424.] WE have hitherto considered the actual distribution of magnetization in a magnet as given explicitly among the data of the investigation. We have not made any assumption as to whether this magnetization is permanent or temporary, except in those parts of our reasoning in which we have supposed the magnet broken up into small portions, or small portions removed from the magnet in such a way as not to alter the magnetization of any part.

We have now to consider the magnetization of bodies with respect to the mode in which it may be produced and changed. A bar of iron held parallel to the direction of the earth's magnetic force is found to become magnetic, with its poles turned the opposite way from those of the earth, or the same way as those of a compass needle in stable equilibrium.

Any piece of soft iron placed in a magnetic field is found to exhibit magnetic properties. If it be placed in a part of the field where the magnetic force is great, as between the poles of a horseshoe magnet, the magnetism of the iron becomes intense. If the iron is removed from the magnetic field, its magnetic properties are greatly weakened or disappear entirely. If the magnetic properties of the iron depend entirely on the magnetic force of the field in which it is placed, and vanish when it is removed from the field, it is called Soft iron. Iron which is soft in the magnetic sense is also soft in the literal sense. It is easy to bend it and give it a permanent set, and difficult to break it.
Iron which retains its magnetic properties when removed from the magnetic field is called Hard iron. Such iron does not take up the magnetic state so readily as soft iron. The operation of
hammering, or any other kind of vibration, allows hard iron under the influence of magnetic force to assume the magnetic state more readily, and to part with it more readily when the magnetizing force is removed *. Iron which is magnetically hard is also more stiff to bend and more apt to break.
The processes of hammering, rolling, wire-drawing, and sudden cooling tend to harden iron, and that of annealing tends to soften it.
The magnetic as well as the mechanical differences between steel of hard and soft temper are much greater than those between hard and soft iron. Soft steel is almost as easily magnetized and demagnetized as iron, while the hardest steel is the best material for magnets which we wish to be permanent.
Cast iron, though it contains more carbon than steel, is not so retentive of magnetization.
If a magnet could be constructed so that the distribution of its magnetization is not altered by any magnetic force brought to act upon it, it might be called a rigidly magnetized body. The only known body which fulfils this condition is a conducting circuit round which a constant electric current is made to flow.
Such a circuit exhibits magnetic properties, and may therefore be called an electromagnet, but these magnetic properties are not affected by the other magnetic forces in the field. We shall return to this subject in Part IV.
All actual magnets, whether made of hardened steel or of loadstone, are found to be affected by any magnetic force which is brought to bear upon them.
It is convenient, for scientific purposes, to make a distinction between the permanent and the temporary magnetization, defining the permanent magnetization as that which exists independently of the magnetic force, and the temporary magnetization as that which depends on this force. We must observe, however, that this distinction is not founded on a knowledge of the intimate nature of the magnetizable substances: it is only the expression of an hypothesis introduced for the sake of bringing calculation to bear on the phenomena. We shall return to the physical theory of magnetization in Chapter VI.

[^9] Gation on the asmantion that the maznetiation of any partiche

 houring particleq.

 is said to low imbert by the rangotiang fores.

 iron, in which the ratist of the bughetiontion to the magnotio

(Other sulwtanew, wueh as the butula nickol nul colbult, are

 to give imlientions of pularaty.

 Dintmatnetic.
 tion to the magnetise forse which proalnese it is seovedituply

 of Magnecryatallie phomonona.

[^10]
 Seo Art. 436 .

 value of the mametic form.

 duced Magnotization.
 induced magnetism is
\[

$$
\begin{equation*}
3 \quad \because \tag{11}
\end{equation*}
$$

\]

 tho comdition of hasimg a potastom!

$$
11.4
$$

15

[^11]

\[

\left.$$
\begin{array}{cc}
A & a n k \tag{:3}\\
i & a, b \\
i & a \gamma
\end{array}
$$\right\}
\]

Multiplying these equations hy di, dy, d: remertively, and mblinge, we find
 may write the mecont meminer $\quad-n$ all.

Hence, if a is conatant throughout the substance, the tirat
 y and : which wo shall call forl the oquation beomen

$$
\begin{align*}
& \text { dt adt } \text {. }
\end{align*}
$$

It was down in Art. 3 ss that if p in the volume tonsity of frew magnetimn.

$$
y=-\left(\begin{array}{cc}
1 / 1 \\
1 / 11 \\
{ }^{1} / 1 /
\end{array}+\frac{111}{1 L_{2}}\right),
$$

which lwowne in virture of orpatiena (3).

$$
m \quad-\quad\left(\begin{array}{l}
d x \\
d i
\end{array} \frac{d y}{d y}+\frac{d y}{d y}\right)
$$

Hith, by Art. 7%

Honer
whenes

$$
(1 \mid 1 \pi a)_{0}=0 .
$$

$$
\begin{equation*}
10 \tag{6}
\end{equation*}
$$

 surfine of the tooly, If $\%$ lhe thermal drawn inwand from

$$
\begin{equation*}
y=-\frac{d \phi}{d y} \tag{7}
\end{equation*}
$$

 therofore be found from the surfore int enal

$$
4 \int_{n}
$$

 we have at the surface

$$
\begin{aligned}
& \text { 4. } 81 .
\end{aligned}
$$

$$
\begin{aligned}
& =-1 \pi x^{2 l} l^{\circ} \text { log (11). }
\end{aligned}
$$

 redued to the following mathernaturad of poderem.
 conditions:
 must matinfy Laphas'n mantions.

 equation.

 (10).

 is not the same ana, lat im roluteol ba it an foullow

$$
\begin{equation*}
4 \sin ^{2} k-11 \|=4=0 \tag{111}
\end{equation*}
$$

The codflement a which we have horn umed whe introluced bey F. K. Nequmam.

 cupation (1\%)
 torne of the magntic fores is

$$
\begin{equation*}
y=\mathrm{m}, \mathrm{~h} . \tag{1:}
\end{equation*}
$$

Honer, sliminating B, wo find

$$
\begin{equation*}
48(1+4 \pi n) \tag{11}
\end{equation*}
$$

an the rolation lutwoen the twagnetie induction and the maguetio
 fores.

 numerical quatity.

If we best wate

$$
\mu \quad 1 \mid 1 \pi \alpha,
$$

 magnotu forow, and wo may onll then atio the magrotis induc-
 conflicient of inturend tumporization.

If we write l^{\prime} for the tutal magnetio potential compunstod

 maguctic fores, as follown:

The componenta t, b, ir matimy the molonnindal condition

Hence, the potential U must satisfy Laplace's equation

$$
\begin{equation*}
\frac{d^{2} U}{d x^{2}}+\frac{d^{2} U}{d y^{2}}+\frac{d^{2} U}{d z^{2}}=0 \tag{18}
\end{equation*}
$$

at every point where μ is constant, that is, at every point within the homogeneous substance, or in empty space.

At the surface itself, if ν is a normal drawn towards the magnetic substance, and v^{\prime} one drawn outwards, and if the symbols of quantities outside the substance are distinguished by accents, the condition of continuity of the magnetic induction is

$$
\begin{equation*}
a \frac{d x}{d \nu}+b \frac{d y}{d \nu}+c \frac{d z}{d \nu}+a^{\prime} \frac{d x}{d \nu^{\prime}}+b^{\prime} \frac{d y}{d \nu^{\prime}}+c^{\prime} \frac{d z}{d \nu^{\prime}}=0 ; \tag{19}
\end{equation*}
$$

or, by equations (16),

$$
\begin{equation*}
\mu \frac{d U}{d \nu}+\mu^{\prime} \frac{d U^{\prime}}{d v^{\prime}}=0 \tag{20}
\end{equation*}
$$

μ^{\prime}, the coefficient of induction outside the magnet, will bo unity unless the surrounding medium be magnetic or diamagnetic.

If we substitute for U its value in terms of V and Ω, and for μ its value in terms of κ, we obtain the same equation (10) as we arrived at by Poisson's method.

The problem of induced magnetism, when considered with respect to the relation between magnetic induction and magnetic force, corresponds exactly with the problem of the conduction of electric currents through heterogeneous media, as given in Art. 310.

The magnetic force is derived from the magnetic potential, precisely as the electric force is derived from the electric potential.

The magnetic induction is a quantity of the nature of a flux, and satisfies the same conditions of continuity as the electric current does.

In isotropic media the magnetic induction depends on the magnetic force in a manner which exactly corresponds with that in which the electric current depends on the electromotive force.

The specific magnetic inductive capacity in the one problem corresponds to the specific conductivity in the other. Hence Thomson, in his Theory of Induced Magnetism (Reprint, 1872, p. 484), has called this quantity the permeability of the medium.

We are now prepared to consider the theory of induced magnetism from what I conceive to be Faraday's point of view.

When magnetic force acts on any medium, whether magnetic or diamagnetic, or neutral, it produces within it a phenomenon called Magnetic Induction.

Magnetic induction is a directed quantity of the nature of a flux, and it satisfies the same conditions of continuity as electric currents and other fluxes do.

In isotropic media the magnetic force and the magnetic induction are in the same direction, and the magnetic induction. is the product of the magnetic force into a quantity called the coefficient of induction, which we have expressed by μ.

In empty space the coefficient of induction is unity. In bodies capable of induced magnetization the coefficient of induction is $1+4 \pi \kappa=\mu$, where κ is the quantity already defined as the coefficient of induced magnetization.
429.] Let μ, μ^{\prime} be the values of μ on opposite sides of at surface separating two media, then if V, V^{\prime} are the potentials in the two media, the magnetic forces towards the surface in the two media are $\frac{d V}{d v}$ and $\frac{d V^{\prime}}{d \nu^{\prime}}$.

The quantities of magnetic induction through the element of surface $d S$ are $\mu \frac{d V}{d \nu} d S$ and $\mu^{\prime} \frac{d V^{\prime}}{d \nu^{\prime}} d S^{\prime}$ in the two media respectively reckoned towards $d S$.

Since the total flux towards $d S$ is zero,

$$
\mu \frac{d V}{d v}+\mu^{\prime} \frac{d V^{\prime}}{d v^{\prime}}=0
$$

But by the theory of the potential near a surface of density σ,

$$
\frac{d V}{d v}+\frac{d V^{\prime}}{d v^{\prime}}+4 \pi \sigma=0
$$

Hence

$$
\frac{d V}{d \nu}\left(1-\frac{\mu}{\mu^{\prime}}\right)+4 \pi \sigma=0 .
$$

If κ_{1} is the ratio of the superficial magnetization to the normal force in the first medium whose cocfficient is μ, we have

$$
4 \pi \kappa_{\mathbf{1}}=\frac{\mu-\mu^{\prime}}{\mu^{\prime}}
$$

Hence κ_{1} will be positive or negative according as μ is greater or less than μ^{\prime}. If we put $\mu=4 \pi \kappa+1$ and $\mu^{\prime}=4 \pi \kappa^{\prime}+1$,

$$
\kappa_{1}=\frac{\kappa-\kappa^{\prime}}{4 \pi \kappa^{\prime}+1} .
$$

In this expression κ and κ^{\prime} are the coefficients of induced magnetization of the first and second media deduced from experiments made in air, and κ_{1} is the coefficient of induced magnetization of the first medium when surrounded by the second medium.

If κ^{\prime} is greater than κ, then κ_{1} is negative, or the apparent magnetization of the first medium is in the opposite direction to the magnetizing force.

Thus, if a vessel containing a weak aqueous solution of a paramagnetic salt of iron is suspended in a stronger solution of the same salt, and acted on by a magnet, the vessel moves as if it were magnetized in the opposite direction from that in which a magnet would set itself if suspended in the same place.

This may be explained by the hypothesis that the solution in the vessel is really magnetized in the same direction as the magnetic force, but that the solution which surrounds the vessel is magnetized more strongly in the same direction. Hence the vessel is like a weak magnet placed between two strong ones all magnetized in the same direction, so that opposite poles are in contact. The north pole of the weak magnet points in the same direction as those of the strong ones, but since it is in contact with the south pole of a stronger magnet, there is an excess of south magnetism in the neighbourhood of its north pole, which causes the weak magnet to appear oppositely magnetized.

In some substances, however, the apparent magnetization is negative even when they are suspended in what is called a vacuum.

If we assume $\kappa=0$ for a vacuum, it will be negative for these substances. No substance, however, has been discovered for which K has a negative value numerically greater than $\frac{1}{4 \pi}$, and therefore for all known substances μ is positive.

Substances for which κ is negative, and therefore μ less than unity, are called Diamagnetic substances. Those for which κ is positive, and μ greater than unity, are called Paramagnetic, Ferromagnetic, or simply magnetic, substances.

We shall consider the physical theory of the diamagnetic and paramagnetic properties when we come to electromagnetism, Arts. 832-845.
430.] The mathematical theory of magnetic induction was first given by Poisson*. The physical hypothesis on which he founded his theory was that of two magnetic fluids, an hypothosis which has the same mathematical advantages and physical difficulties as the theory of two electric fluids. In order, however, to explain the fact that, though a piece of soft iron can be magnetized by induction, it cannot be charged with unoqual quantities of the two kinds of magnetism, he supposes that the substance in general is a non-conductor of these fluids, and that only certain small portions of the substance contain the fluids under circumstances in which they are free to obey the forces which act on them. These small magnetic elements of the substance contain each precisely equal quantities of the two fluids, and within each element the fluids move with perfect freedom, but the fluids can never pass from one magnetic element to another.
The problem therefore is of the same kind as that relating to a number of small conductors of electricity disseminated through a dielectric insulating medium. The conductors may be of any form provided they are small and do not touch each other.

If they are elongated bodies all turned in the samo general direction, or if they are crowded more in one direction than another, the medium, as Poisson himself shews, will not be isotropic. Poisson therefore, to avoid useless intricacy, examines the case in which each magnetio element is spherical, and the elements are disseminated without regard to axes. He supposes that the whole volume of all the magnetic elements in unit of volume of the substance is k.
We have already considered in Art. 314 the electric conductivity of a medium in which small spheres of another medium are distributed.

If the conductivity of the medium is μ_{1}, and that of the spheres μ_{2}, we have found that the conductivity of the composite system is

$$
\mu=\mu_{1} \frac{2 \mu_{1}+\mu_{2}+2 k\left(\mu_{2}-\mu_{1}\right)}{2 \mu_{1}+\mu_{2}-k\left(\mu_{2}-\mu_{1}\right)} .
$$

Putting $\mu_{1}=1$ and $\mu_{2}=\infty$, this becomes

$$
\mu=\frac{1+2 k}{1-k} .
$$

[^12]This quantity μ is the electrie comburivily of a mammem
 medium of conductivity units, the axernate shame if the spheres in unit of volume lwing k.

The symbol μ also represents the comethinnt if sabpurar in duction of a medium, consisting of Mhere fiat whels the |me
 it is unity.
 efficient, represents the ratio of the whum it the waremes elements to the whole volume of the malistane.

Tho symbol μ we shall all the ('wetherint of Manathe latuetion. Its advantage is that it farihatum the transonamaina of

The relations of these three symbeld are ns fillows

$$
\begin{array}{lr}
k=\begin{array}{c}
4 \pi n \\
4 \pi n+3
\end{array} & k=\begin{array}{c}
\mu-1 \\
\mu, 2 \\
\mu-1 \\
4 \pi
\end{array} \\
k=\begin{array}{c}
3 k \\
1+2 k \\
1-k
\end{array} & \mu=4,1
\end{array}
$$

 with equal spheres so that the ratio of then whane b., tho wheld.
 that so large a proportion of the velunse of jten in arampand by solid molecules, whatever lue their form. Thas in onse wane

 magnetization.

[^13]
(HAPTER

A Hullan spherienl shell.

4:31.] The: first rxample of the cotaphete molution of a problem in magnetio induction was that wivan ly Poismon for the evos of a hollow spherical shell actorl on ly nuy magnotio fores whatever.

For simplicity we shall shppene the shikin of the magnetion foreen to be in the ninere outsible the atroll.

 form

$$
\begin{equation*}
V^{*}=\ell_{n} N_{u}+\ell_{1} N_{2}+\mathbb{N}+f_{6} N_{1},{ }^{6}+\ldots \tag{111}
\end{equation*}
$$

This serios will be convergent provilied r is lown than the distance of the nonrost magnet of the byatom which proalueson this potential. Honos, for the hollow sphesical moll mal the spaco within it, this oxpanaion in convergent.

 harmonio S_{0}, wo shall tind that if H_{1} in that whoh swavernando

 tontial must not become intinite within tho mphosw whose smitum is a_{1}.
 the nerios may contain both pomitive und mentive powern of r. of the form

$$
A_{2} S_{4} y^{+}+B_{2} S_{4} r(r+3)
$$

Outside the shell, where r is greater than α_{2}, since the series must be convergent however great r may be, we must have only negative powers of r, of the form

$$
B_{3} S_{i} r^{-(i+1)} .
$$

The conditions which must be satisfied by the function Ω are: It must be 1^{0} finite, and 2^{0} continuous, and 3° must vanish at an infinite distance, and it must 4^{0} everywhere satisfy Laplace's equation.
On account of $1^{0}, B_{1}=0$.
On account of 2^{0}, when $r=a_{1}$,

$$
\begin{equation*}
\left(A_{1}-A_{2}\right) a_{1}^{2 i+1}-B_{2}=0, \tag{2}
\end{equation*}
$$

and when $r=a_{2}$,

$$
\begin{equation*}
\left(A_{2}-A_{3}\right) a_{2}^{2 i+1}+B_{2}-B_{3}=0 . \tag{3}
\end{equation*}
$$

On account of $3^{0}, A_{3}=0$, and the condition 4^{0} is satisfied everywhere, since the functions are harmonic.

But, besides these, there are other conditions to be satisfied at the inner and outer surfaces in virtue of equation (10), Art. 427.

At the inner surface where $r=a_{1}$,

$$
\begin{equation*}
(1+4 \pi \kappa) \frac{d \Omega_{2}}{d r}-\frac{d \Omega_{1}}{d r}+4 \pi \kappa \frac{d V}{d r}=0 \tag{4}
\end{equation*}
$$

and at the outer surface where $r=\alpha_{2}$,

$$
\begin{equation*}
-(1+4 \pi \kappa) \frac{d \Omega_{2}}{d r}+\frac{d \Omega_{3}}{d r}-4 \pi \kappa \frac{d V}{d r}=0 . \tag{5}
\end{equation*}
$$

From these conditions we obtain the equations $(1+4 \pi \kappa)\left\{i A_{2} a_{1}{ }^{2 i+1}-(i+1) B_{2}\right\}-i A_{1} a_{1}{ }^{2 i+1}+4 \pi \kappa i C_{i} a_{1}{ }^{2 i+1}=0$, (6) $(1+4 \pi \kappa)\left\{i A_{2} a_{2}{ }^{2 i+1}-(i+1) B_{2}\right\}+(i+1) B_{3}+4 \pi \kappa i C_{i} a_{2}{ }^{2 i+1}=0$; (7) and if we put

$$
\begin{equation*}
N_{i}=\frac{1}{(1+4 \pi \kappa)(2 i+1)^{2}+(4 \pi \kappa)^{2} i(i+1)\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{2 i+1}\right)}, \tag{8}
\end{equation*}
$$

we find

$$
\begin{align*}
& A_{1}=-(4 \pi \kappa)^{2} i(i+1)\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{2 i+1}\right) N_{i} C_{i} \tag{9}\\
& A_{2}=-4 \pi \kappa i\left[2 i+1+4 \pi \kappa(i+1)\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{2 i+1}\right)\right] N_{i} C_{i} \tag{10}\\
& B_{2}=4 \pi \kappa i(2 i+1) c_{1}^{2 i+1} N_{i} C_{i}, \tag{11}\\
& B_{3}=-4 \pi \kappa i\{2 i+1+4 \pi \kappa(i+1)\}\left(a_{2}^{2 i+1}-{a_{1}}^{2 i+1}\right) N_{i} C_{i} \tag{12}
\end{align*}
$$

These quantities being substituted in the harmonic expansions give the part of the potential due to the magnetization of the shell. The quantity N_{i} is always positive, since $1+4 \pi \kappa$ can
never be negative. Hence A_{1} is always negative, or in other words, the action of the magnetized shell on a point within it is always opposed to that of the external magnetic force, whether the shell be paramagnetic or diamagnetic. The actual value of the resultant potential within the shell is

$$
\begin{array}{cc}
& \left(C_{i}+A_{1}\right) S_{i} r^{i} \\
\text { or } \quad(1+4 \pi \kappa)(2 i+1)^{2} N_{i} C_{i} S_{i} r^{i} . \tag{13}
\end{array}
$$

432.] When κ is a large number, as it is in the case of soft iron, then, unless the shell is very thin, the magnetic force within it is but a small fraction of the external force.

In this way Sir W. Thomson has rendered his marine galvanometer independent of external magnetic force by enclosing it in a tube of soft iron.
433.] The case of greatest practical importance is that in which $i=1$. In this case

$$
\left.\begin{array}{l}
N_{1}=\frac{1}{9(1+4 \pi \kappa)+2(4 \pi \kappa)^{2}\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{3}\right)} \\
A_{1}=-2(4 \pi \kappa)^{2}\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{3}\right) N_{1} C_{1} \\
A_{2}=-4 \pi \kappa\left[3+8 \pi \kappa\left(-1\left(\frac{a_{1}}{a_{2}}\right)^{3}\right)\right] N_{1} C_{1} \tag{15}\\
B_{2}=12 \pi \kappa a_{1}^{3} N_{1} C_{1} \\
B_{3}=-4 \pi \kappa(3+8 \pi \kappa)\left(a_{2}^{3}-a_{1}^{3}\right) N_{1} C_{1}
\end{array}\right\}
$$

The magnetic force within the hollow shell is in this case uniform and equal in magnitude to

$$
\begin{equation*}
C_{1}+A_{1}=\frac{9(1+4 \pi \kappa)}{9(1+4 \pi \kappa)+2(4 \pi \kappa)^{2}\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{3}\right)} C_{1} . \tag{16}
\end{equation*}
$$

If we wish to determine κ by measuring the magnetic force within a hollow shell and comparing it with the external magnetic force. the best value of the thickness of the shell may be found from the equation

$$
\begin{equation*}
1-\frac{a_{1}^{3}}{a_{2}{ }^{3}}=\frac{91+4 \pi \kappa}{2} \frac{(4 \pi \kappa)^{2}}{} . \tag{17}
\end{equation*}
$$

$\left\{\right.$ This value of $\frac{a_{1}}{a_{2}}$ makes $\frac{d}{d \kappa}\left\{1+\frac{A_{1}}{C_{1}}\right\}$ a maximum, so that for a given error in $\frac{\left(C_{1}+A_{1}\right)}{C_{1}}$ the corresponding error in κ is as small as possible.\} The magnetic force inside the shell is then half of its value outside.

Since, in the case of iron, κ is a number between 20 and 30 , the thickness of the shell ought to be about the two hundredth part of its radius. This method is applicable only when the value of κ is large. When it is very small the value of A_{1} becomes insensible, since it depends on the square of κ.

For a nearly solid sphere with a very small spherical hollow

$$
\left.\begin{array}{l}
A_{1}=-\frac{2(4 \pi \kappa)^{2}}{(3+4 \pi \kappa)(3+8 \pi \kappa)} C_{1} \tag{18}\\
A_{2}=-\frac{4 \pi \kappa}{3+4 \pi \kappa} C_{1} \\
B_{3}=-\frac{4 \pi \kappa}{3+4 \pi \kappa} C_{1} a_{2}^{3} .
\end{array}\right\}
$$

The whole of this investigation might have been deduced directly from that of conduction through a spherical shell, as given in Art. 312, by putting $k_{1}=(1+4 \pi \kappa) k_{2}$ in the expressions there given, remembering that A_{1} and A_{2} in the problem of conduction are equivalent to $C_{1}+A_{1}$ and $C_{1}+A_{2}$ in the problem of magnetic induction.
434.] The corresponding solution in two dimensions is graphically represented in Fig. XV, at the end of this volume. The lines of induction, which at a distance from the centre of the figure are nearly horizontal, are represented as disturbed by a cylindric rod magnetized transversely and placed in its position of stable equilibrium. The lines which cut this system at right angles represent the equipotential surfaces, one of which is a cylinder. The large dotted circle represents the section of a cylinder of a paramagnetic substance, and the dotted horizontal straight lines within it, which are continuous with the external lines of induction, represent the lines of induction within the substance. The dotted vertical lines represent the internal equipotential surfaces, and are continuous with the external system. It will be observed that the lines of induction are drawn nearer together within the substance, and the equipotential surfaces are separated farther apart by the paramagnetic cylinder, which, in the language of Faraday, conducts the lines of induction better than the surrounding medium.

If we consider the system of vertical lines as lines of induction, and the horizontal system as equipotential surfaces, we have, in the first place, the case of a cylinder magnetized trans*
versely and placed in the position of unstable equilibrium among the lines of force, which it causes to diverge. In the second place, considering the large dotted circle as the section of a diamagnetic cylinder, the dotted straight lines within it, together with the lines external to it, represent the effect of a diamagnetic substance in separating the lines of induction and drawing together the equipotential surfaces, such a substance being a worse conductor of magnetic induction than the surrounding medium.

Case of a Sphere in which the Coefficients of Magnetization are Different in Different Directions.
435.] Let a, β, γ be the components of magnetic force, and A, B, C those of the magnetization at any point, then the most general linear relation between these quantities is given by the equations

$$
\left.\begin{array}{c}
A=r_{1} a+p_{3} \beta+q_{2} \gamma_{1} \tag{1}\\
B=q_{3} a+r_{2} \beta+p_{1} \gamma, \\
C=p_{2} a+q_{1} \beta+r_{3} \gamma,
\end{array}\right\}
$$

where the coefficients r, p, q are the nine coefficients of magnetization.

Let us now suppose that these are the conditions of magnetization within a sphere of radius a, and that the magnetization at every point of the substance is uniform and in the same direction, having the components A, B, C.

Let us also suppose that the external magnetizing force is also uniform and parallel to one direction, and has for its components X, Y, Z.

The value of V is therefore

$$
\begin{equation*}
V=-(X x+Y y+Z z) \tag{2}
\end{equation*}
$$

and that of Ω^{\prime}, the potential outside the sphere of the magnetization, is by Art. 391,

$$
\begin{equation*}
\Omega^{\prime}=\frac{4 \pi}{3} \frac{a^{3}}{r^{3}}(A x+B y+C z) . \tag{3}
\end{equation*}
$$

The value of Ω, the potential within the sphere of the magnetization, is

$$
\begin{equation*}
\Omega=\frac{4 \pi}{3}(A x+B y+C z) . \tag{4}
\end{equation*}
$$

The actual potential within the sphere is $V+\Omega$, so that we
shall have for the components of the magnetic force within the sphere

$$
\left.\begin{array}{l}
a=X-\frac{4}{3} \pi A \\
\beta=Y-\frac{4}{3} \pi B \tag{5}\\
\gamma=Z-\frac{4}{3} \pi C
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\text { Hence } \\
\begin{array}{c}
\left(1+\frac{4}{3} \pi r_{1}\right) A+\quad \frac{4}{3} \pi p_{3} B+\quad \\
\frac{4}{3} \pi q_{3} A+\left(1+\frac{4}{3} \pi r_{2}\right) B+\quad
\end{array} \quad \frac{4}{3} \pi p_{2} C=r_{1} X+p_{3} Y+q_{2} Z, \\
\frac{4}{3} \pi p_{2} A+\quad \frac{4}{3} \pi q_{1} B+\left(1+\frac{4}{3} \pi r_{3}\right) C=p_{2} X+q_{1} Y+p_{1} Z, \tag{6}
\end{array}\right\}
$$

Solving these equations, we find

$$
\left.\begin{array}{l}
A=r_{1}^{\prime} X+p_{3}^{\prime} Y+q_{2}^{\prime} Z, \\
B=q_{3}^{\prime} X+r_{2}^{\prime} Y+p_{1}^{\prime} Z, \tag{7}\\
C=p_{2}^{\prime} X+q_{1}^{\prime} Y+r_{3}^{\prime} Z,
\end{array}\right\}
$$

where $D^{\prime} r_{1}^{\prime}=r_{1}+\frac{4}{3} \pi\left(r_{3} r_{1}-p_{2} q_{2}+r_{1} r_{2}-p_{3} q_{3}\right)+\left(\frac{4}{3} \pi\right)^{2} D$,
$D^{\prime} p_{1}^{\prime}=p_{1}-\frac{4}{3} \pi\left(q_{2} q_{3}-p_{1} r_{1}\right)$,
$D^{\prime} q_{1}^{\prime}=q_{1}-\frac{4}{3} \pi\left(p_{2} p_{3}-q_{1} r_{1}\right)$,
\&c.,
where D is the determinant of the coefficients on the right side of equations (6), and D^{\prime} that of the coefficients on the left.

The new system of coefficients $p^{\prime}, q^{\prime}, r^{\prime}$ will be symmetrical only when the system p, q, r is symmetrical, that is, when the coefficients of the form p are equal to the corresponding ones of the form q.
436.] *The moment of the couple tending to turn the sphere about the axis of x from y towards z is found by considering the couples arising from an elementary volume and taking the sum of the moments for the whole sphere. The result is

$$
\begin{align*}
L & =\frac{4}{3} \pi a^{3}(\gamma B-\beta C) \\
& =\frac{4}{3} \pi a^{3}\left\{p_{1}^{\prime} Z^{2}-q_{1}^{\prime} Y^{2}+\left(r_{2}^{\prime}-r_{3}{ }^{\prime}\right) Y Z+X\left(q_{3}^{\prime} Z-p_{2}^{\prime} Y\right)\right\} \tag{9}
\end{align*}
$$

[^14]If we make

$$
X=0, \quad Y=F \cos \theta, \quad Z=F \sin \theta,
$$

this corresponds to a magnetic force F in the plane of $y z$, and inclined to y at an angle θ. If we now turn the sphere while this force remains constant the work done in turning the sphere will be $\int_{0}^{2 \pi} L d \theta$ in each complete revolution. But this is equal to

$$
\begin{equation*}
\frac{4}{3} \pi^{2} a^{3} F^{\prime 2}\left(p_{1}^{\prime}-q_{1}^{\prime}\right) . \tag{10}
\end{equation*}
$$

Hence, in order that the revolving sphere may not become an inexhaustible source of energy, $p_{1}^{\prime}=q_{1}{ }^{\prime}$, and similarly $p_{2}^{\prime}=q_{2}^{\prime}$ and $p_{3}{ }^{\prime}=q_{3}{ }^{\prime}$.

These conditions shew that in the original equations the coefficient of B in the third equation is equal to that of C in the second, and so on. Hence, the system of equations is symmetrical, and the equations become when referred to the principal axes of magnetization,

$$
\left.\begin{array}{l}
A=\frac{r_{1}}{1+\frac{4}{3} \pi r_{1}} X, \\
B=\frac{r_{2}}{1+\frac{4}{3} \pi r_{2}} Y, \tag{11}\\
C=\frac{r_{3}}{1+\frac{4}{3} \pi r_{3}} Z .
\end{array}\right\}
$$

The moment of the couple tending to turn the sphere round the axis of x is

$$
\begin{equation*}
L=\frac{4}{3} \pi \alpha^{3} \frac{r_{2}-r_{3}}{\left(1+\frac{4}{3} \pi r_{2}\right)\left(1+\frac{4}{3} \pi r_{3}\right)} Y Z . \tag{12}
\end{equation*}
$$

In most castes the differences between the coefficients of magnetization in different directions are very small, so that we may put, if r represents the mean value of the coeffieients,

$$
\begin{equation*}
L=\frac{2}{8} \pi \alpha^{3} \frac{r_{2}-r_{3}}{\left(1+\frac{4}{3} \pi r\right)^{2}} F^{2} \sin 2 \theta . \tag{13}
\end{equation*}
$$

This is the force tending to turn a crystalline sphere about the axis of x from y towards z. It always tends to place the axis of greatest magnetic coefficient (or least diamagnetic coefficient) parallel to the line of magnetic force.

The corresponding case in two dimensions is represented in Eig. XVI.

If we suppose the upper side of the figure to be towards the north, the figure represents the lines of force and equipotential surfaces as disturbed by a transversely magnetized cylinder

 mamar by loisson.
 tion of a budy of any form of matione bonaty form领
 magnotized in the direetion of at whit the datersaty f

 of x.

 the potemial due to the two lenhom,

 is that of the hody urguetiond with intonaty,
 'rody was shifted through the dintanow - in and mondo of detusity
-p. Thronghout that part of sumen common to the looly in its two positions the density is horo, for, an far as attraction is concorned, the two "pual and opewite densition anmihilate onels others. There remains therefore a shell of pemitive mather on one side and of wergative mattor on the oblore, and we may regrard the resultant potential as the to those. The thicknesm of the shall at a point where the nomal drawn outwards makes an angle e with the axim of re in beote aml its donsity is mo The surfarodensity is therefore porcose, am, in the cose in (1) which the potantint is $h_{l,}$, thos surfase donaity is p cose .

In this why we can fund the magnotic potentinl of any lumly uniformly magnotizal parnllel to a given dirwetion. Now if this uniform magnotization is due to magnotic induction, the magnetizing foren at all phints within the berly must atro twe uniform tud parallel.

This fore consiste of two parta, che due to "xtormal canses, and the wher due to tho magnotization of the lenly. If these

 and paralld for all printo within the lowly.

Honers, in ordor that thim mothon tany low to a matution of the problem of magnotic induction, ${ }^{\text {" }} 1 \mathrm{I}^{*}$ must bo a linear function of the coorlinatw x, y, z within tho hody, and therofore V numt he a qualratio function of the coordinater,

Now the only case with which we are acquanted in which I* is a qualratio function of the coordinatos within the lnoly are thowe in whioh the body is boundes! by a complete worfoce of the swome degres, ant the only enw an which much a buly in of finite dimenmions is when it in an mlipwod. Wis shall therefore apply the mothon to the caum of an ollijmont.

Lut

$$
\begin{equation*}
x^{3}+\frac{y_{n}^{4}+z^{2}}{z^{2}}+1 \tag{1}
\end{equation*}
$$

be the equation of the vilimoil, ani lot $\Phi_{\text {a }}$ denote the detinite integral

$$
\begin{equation*}
\int_{0}^{*} \frac{d\left(\phi^{2}\right)}{\sqrt{\left(\alpha^{2}+\psi^{2}\right)\left(k^{2}+\phi^{2}\right)\left(c^{+}+\phi^{*}\right)}} \tag{2}
\end{equation*}
$$

[^15]Thon if wo make

$$
A=1 l, \quad \| \quad l i n, \quad t=1
$$

 will be

$$
\Omega=-I\left(H H_{0}, H_{n y}, S_{n}\right.
$$

 are X, Y, Z, its potential will low

$$
V^{*}=-(X+y+\eta)
$$

 within the body are thorufore

$$
X+A L, \quad y=\| l, \quad \%,
$$

 respectively to other three, mo that wo olvalishane

$$
\begin{aligned}
& A=\kappa_{1}\left(X+A L_{0}\right)+\dot{x}_{3}\left(H^{\prime}+M M+A_{5}(A \cdot M\right.
\end{aligned}
$$

$$
\begin{align*}
& C=\kappa_{2}^{\prime}(X+A l)+x_{2}^{\prime}(H+H M)+\cdots+1
\end{align*}
$$

 problem.

 the external magnetic force.

$$
n_{1}^{\prime}=x_{8}^{\prime}=w_{2}^{\prime} 0
$$

We have then

$$
\left.\begin{array}{l}
A=\frac{\kappa_{1}}{1-\kappa_{1} L} X, \tag{10}\\
B=\frac{\kappa_{2}}{1-\kappa_{2} M} Y, \\
C=\frac{\kappa_{3}}{1-\kappa_{3} N} Z .
\end{array}\right\}
$$

If the ellipsoid has two axes equal, and is of the planetary or flattened form,

$$
\left.\begin{array}{c}
\text { ened form, } \quad b=c=\frac{a}{\sqrt{1-e^{2}}} ; \\
L=-4 \pi\left(\frac{1}{e^{2}}-\frac{\sqrt{1-e^{2}}}{e^{3}} \sin ^{-1} e\right), \tag{12}\\
M=N=-2 \pi\left(\frac{\sqrt{1-e^{2}}}{e^{3}} \sin ^{-1} e-\frac{1-e^{2}}{e^{2}}\right) .
\end{array}\right\}
$$

If the ellipsoid is of the ovary or elongated form,

$$
\left.\begin{array}{c}
a=b=\sqrt{1-e^{2}} c ; \\
L=M=-2 \pi\left(\frac{1}{e^{2}}-\frac{1-e^{2}}{2 e^{3}} \log \frac{1+e}{1-e}\right), \tag{14}\\
N=-4 \pi\left(\frac{1}{e^{2}}-1\right)\left(\frac{1}{2 e} \log \frac{1+e}{1-e}-1\right) .
\end{array}\right\}
$$

In the case of a sphere, when $e=0$,

$$
\begin{equation*}
L=M=N=-\frac{4}{3} \pi \tag{15}
\end{equation*}
$$

In the case of a very flattened planetoid L becomes in the limit equal to -4π, and M and N become $-\pi^{2} \frac{a}{c}$.

In the case of a very elongated ovoid L and M approximate to the value -2π, while N approximates to the form

$$
-4 \pi \frac{\alpha^{2}}{c^{2}}\left(\log \frac{2 c}{a}-1\right),
$$

and vanishes when $e=1$.
It appears from these results that-
(1) When κ, the coefficient of magnetization, is very small, whether positive or negative, the induced magnetization is nearly equal to the magnetizing force multiplied by κ, and is almost independent of the form of the body.
(2) When κ is a large positive quantity, the magnetization depends principally on the form of the body, and is almost independent of the precise value of κ, except in the case of a
longitudinal force acting on an ovoid so elongated that N_{K} is a small quantity though κ is large.
(3) If the value of κ could be negative and equal to $\frac{1}{4 \pi}$ we should have an infinite value of the magnetization in the case of a magnetizing force acting normally to a flat plate or disk. The absurdity of this result confirms what we said in Art. 428.

Hence, experiments to determine the value of κ may be made on bodies of any form, provided κ is very small, as it is in the case of all diamagnetic bodies, and all magnetic bodies except iron, nickel and cobalt.

If, however, as in the case of iron, κ is a large number, experiments made on spheres or flattened figures are not suitable to determine k ; for instance, in the case of a sphere the ratio of the magnetization to the magnetizing force is as 1 to 4.22 if $\kappa=30$, as it is in some kinds of iron, and if κ wero infinite the ratio would be as 1 to $4 \cdot 19$, so that a very small error in the determination of the magnetization would introduce a very large one in the value of κ.

But if we make use of a piece of iron in the form of a very elongated ovoid, then, as long as N_{κ} is of moderate value compared with unity, we may deduce the value of κ from a determination of the magnetization, and the smaller the value of N the more accurate will be the value of κ.

In fact, if N_{κ} be made small enough, a small error in the value of N itself will not introduce much error, so that we may use any elongated body, such as a wire or long rod, instead of an ovoid*.

We must remember, however, that it is only when the product N_{κ} is small compared with unity that this substitution is allowable. In fact the distribution of magnetism on a long cylinder with flat ends does not resemble that on a long ovoid, for the free magnetism is very much concentrated towards the ends of the cylinder, whereas it varies directly as the distance from the equator in the case of the ovoid.

The distribution of electricity on a cylinder, however, is really parable with that on an ovoid, as we have already seen, 152.
results also enable us to understand why the magnetic

[^16]moment of a permanent magnet con lie mado so murli greater when the magnet has an whogatend firm. If wh were to magnotize a disk with intonsity I in a direction mormal to its surface, and then loaw it to itself, the inturior partielos would experionce a constant domandizing tiren apul to $4 \pi I$, and this, if not sufficiont of itsenff to destruy part of the mag notization, would senn do son if aidel by vibrations on changes of temperature*.

If we wore to magnetian a eylimber tranaversuly the demagnotizing foren would be only $2 \pi l$.

If the magnet wore a sphere tho denagnotizing fore, would be $\frac{1}{4} \pi \%$.

In a disk magnetized transwormely the demannotizing foren is $\pi^{\frac{a}{a}} I$, and in an olongatel woid magnotizal lompitudimally it

Honew an elongated magnet in lows likuly th lowe itw mannetina than a short thick one.
The monont of the foreo acting on an ollipeonl having diffrent magnetise rowlicionts for the thres axem whish tomd to turn it ahomethen n in of x, is

$$
\begin{aligned}
& \left(1-x_{a} M\right)\left(1-\kappa_{a}, b^{\circ}\right.
\end{aligned}
$$

Hence, if κ_{a} and κ_{3} are namall, thim foreo will dopend principally on the erystalline quality of the lonly noul not on its shanne, prow vided its dimensions are not vary unapual, hat if κ_{3} and κ_{1} are considerable, as in the chas of iron, the fore will depmal principally on the shape of the lanly, nad it will turn men to set its longor axis parallel to the linw of fores.

If a sullionotly mirom, yot uniform, find of magnotio fores could be obtained, an olongatent inotropis dinargactio bonly

$$
-\frac{\Delta}{1-1} 4_{0}^{1}
$$

$$
\stackrel{x}{1+5}
$$

Thus the magnetio ladution through the dity in the value it would have in the ats if the dink were removed.)
would also set itself with its longest dimension parallel to the lines of magnetic force *.
439.] The question of the distribution of the magnetization of an ellipsoid of revolution under the action of any magnetic forces has been investigated by J. Neumann \dagger. Kirchhoff \ddagger has extended the method to the case of a cylinder of infinite length acted on by any force.
Green, in the 17th section of his Essay, has given an investigation of the distribution of magnetism in a cylinder of finite length acted on by a uniform external force X parallel to its axis. Though some of the steps of this investigation are not very rigorous, it is probable that the result represents. roughly the actual magnetization in this most important case. It certainly expresses very fairly the transition from the case of a cylinder for which κ is a large number to that in which it is very small, but it fails entirely in the case in which κ is negative, as in diamagnetic substances.
Green finds that the linear density of free magnetism at a distance x from the middle of a cylinder whose radius is a and whose length is $2 l$, is

$$
\lambda=\pi \kappa X p a \frac{\frac{p x}{\frac{p}{u}}-e^{-\frac{p x}{a}}}{e^{\frac{p}{a}}+e^{-\frac{p}{a}},}
$$

where p is a numerical quantity to be found from the equation

$$
0.231863-2 \log _{\epsilon} p+2 p=\frac{1}{\pi \kappa p^{2}} .
$$

The following are a few of the corresponding values of p and κ.

κ	p	κ	p
∞	0	11.802	0.07
336.4	0.01	9.137	0.08
62.02	0.02	7.517	0.09
48.416	0.03	6.319	0.10
29.475	0.04	0.1427	1.00
20.185	0.05	0.0002	10.00
14.794	0.06	0.0000	∞
		negative	imaginary.

[^17]When the length of the cylinder is great compared with its radius, the whole quantity of free magnetism on either side of the middle of the cylinder is, as it ought to be,

$$
M=\pi \alpha^{2} \kappa X
$$

Of this $\frac{1}{2} p M$ is on the flat end of the cylinder *, and the distance of the centre of gravity of the whole quantity M from the end of the cylinder is $\frac{a}{p}$.

When κ is very small p is large, and nearly the whole free magnetism is on the ends of the cylinder. As κ incroases p^{r} diminishes, and the free magnetism is spread over a greater distance from the ends. When κ is infinite the free magnotism at any point of the cylinder is simply proportional to its distanco from the middle point, the distribution being similar to that of free electricity on a conductor in a field of uniform force.
440.] In all substances except iron, nickel, and cobalt, the coefficient of magnetization is so small that the induced magnetization of the body produces only a very slight alteration of the forces in the magnetic field. We may thereforo assume, as a first approximation, that the actual magnetic force within the body is the same as if the body had not been there. The suporficial magnetization of the body is therefore, as a first approximation, $\kappa \frac{d V}{d \nu}$, where $\frac{d V}{d \nu}$ is the rate of increase of the magnetic potential due to the external magnet along a normal to the surface drawn inwards. If we now calculate the potential due to this superficial distribution, we may use it in proceoding to a second approximation.

To find the mechanical energy due to the distribution of

* \{The quantity of free magnetism on the curved surface on the positive side of the cylinder

$$
=\int_{0}^{l} \lambda d x=\pi a^{2} \kappa X\left(1-\text { вech } \frac{p l}{a}\right)
$$

The quantity on the flat end, supposing the density to be the same as on the curved surface when $x=l$, is

$$
\frac{\pi \kappa X p a}{2 \pi a} \tanh \frac{p l}{a} \cdot \pi a^{2}
$$

Thus the total quantity of free magnetism is

$$
\pi a^{2} \kappa X\left(1-\operatorname{sech} \frac{p l}{a}+\frac{p}{2} \tanh \frac{p l}{a}\right) .
$$

When $p l / a$ is large this is equal to

$$
\left.M\left(1+\frac{p}{2}\right)\right\}
$$

 integral

$$
B \quad\|\|
$$

 in Art. 100 that this is meal t. the when

$$
E=-\frac{1}{2} \iint_{d} \|^{d} d
$$

 the resultant magnet ie fores.

$$
B=\quad\|!\cdot\|
$$

during a dinplaternont $8, \%$ in $\mathrm{d}:$. What force in the direction of x, and nite.

$$
\begin{aligned}
& X=-\frac{d B}{d x}=\frac{1}{2} d x \iiint \pi \cdot d+d y \cdot k \quad\| \|
\end{aligned}
$$

which shows that the fore e noting on the to sa

$$
1 \cdot 1, \ldots
$$

 diamagnetic bodies dement on that peymaty.
Naifs Meymerima

 charts it appeared likely that hos declination stay worth a the mariner in determining him mining place

The greatest ditheulty in magation hal always been to amerr. tain the lomgitule: but sine the deolimation is dillerent at. ditferent points on the same prallol of latitude, an olservation of the declimation tegnther with a howledge of the latitude wond anable the mariner te dimi his pation un the mogetio chart.

 without taking into acotant the netion of the ship, as a magnotio looly, on the needle.
 of any form under the inthernes of the eathis magnotio fores. even though not malijecten to mexhmical strain or other dinturbe ances, is, an wo have wen, \boldsymbol{n} vory diflioult prohlom.

In this case, however, the prohlom is simplitien hy the fullowing considerations.
 point of the ship, ant mo far form any irn that thes magntinat

 the same.

The iron of the whip, in maprosal to la of two himhe only.

(口) Sifft iron, tho magurtination of which in inducen by tho warth or other mazneta.

In strictuews wo butat altuit that thes hatest iron in mot only capable of induction but that it may lowe pate of itm serallend permanont maxumizathon it various waya

 represwont by mappoming it compenolen of the hard irun and

 nuljected to may wetrandinary nifow of wonther, tho supponition
 netigution and jurtly to maluction lemen to malloisatly acourato rosulte when mpplisel to the corrention of then compana.

The equationa on which the theory of the varintion of the compase is founded worvgiven by loinon in the afth volutne of

The only assumption relative to induced magnetism which is involved in these equations is, that if a magnetic force X due to external magnetism produces in the iron of the ship an induced magnetization, and if this induced magnetization exerts on the compass needle a disturbing force whose components are $X^{\prime}, \boldsymbol{I}^{\prime \prime}$, Z^{\prime}, then, if the external magnetic force is altered in a given ratio, the components of the disturbing force will be altered in the same ratio.

It is true that when the magnetic force acting on iron is very great the induced magnetization is no longer proportional to the external magnetic force, but this want of proportionality is insensible for magnetic forces of the magnitude of thoso due to the earth's action.
Hence, in practice we may assume that if a magnetic force whose value is unity produces through the intervention of the iron of the ship a disturbing force at the compass-needle whose components are a in the direction of x, d in that of y, and g in that of z, the components of the disturbing force due to a force X in the direction of x will be $a X, d X$, and $g X$.
If therefore we assume axes fixed in the ship, so that x is towards the ship's head, y to the starboard side, and z towards the keel, and if X, Y, Z represent the components of the earth's magnetic foree in these directions, and $X^{\prime}, Y^{\prime}, Z^{\prime}$ the components of the combined magnetic force of the earth and ship on the compass-needle,

$$
\left.\begin{array}{rl}
X^{\prime} & =X+a X+b Y+c Z+P, \tag{1}\\
Y^{\prime} & =Y+d X+e Y+f Z+Q, \\
Z^{\prime} & =Z+g X+h Y+k Z+R .
\end{array}\right\}
$$

In these equations $a, b, c, d, e, f, g, h, k$ are nine constant coefficients depending on the amount, the arrangement, and the capacity for induction of the soft iron of the ship.
P, Q, and R are constant quantities depending on the permanent magnetization of the ship.
It is evident that these equations are sufficiently general if magnetic induction is a linear function of magnetic force, for they are neither more nor less than the most general expression of a vector as a linear function of another vector.
It may also be shewn that they are not too general, for, by a
proper arrangement of iron, any one of the coefficients may be made to vary independently of the others.

Thus, a long thin rod of iron under the action of a longitudinal magnetic force acquires poles, the strength of each of which is numerically equal to the cross-section of the rod multiplied by the magnetizing force and by the coefficient of induced magnetization. A magnetic force transverse to the rod produces a much feebler magnetization, the effect of which is almost insensible at a distance of a few diameters.

If a long iron rod be placed fore and aft with one end at a distance x from the compass-needle, measured towards the ship's head, then, if the section of the rod is A, and its coefficient of magnetization κ, the strength of the pole will be $A_{\kappa} X$, and, if $A=\frac{a x^{2}}{\kappa}$, the force exerted by this pole on the compass-needle will be $a X$. The rod may be supposed so long that the effect of the other pole on the compass may be neglected.

We have thus obtained the means of giving any required value to the coefficient a.

If we place another rod of section B with one extremity at the same point, distant x from the compass toward the head of the vessel, and extending to starboard to such a distance that the distant pole produces no sensible effect on the compass, the disturbing force due to this rod will be in the direction of x, and equal to $\frac{B_{\kappa} Y}{x^{2}}$, or if $B=\frac{b x^{2}}{\kappa}$, the force will be $l Y$.

This rod therefore introduces the coefficient b.
A third rod extending downwards from the same point will introduce the coefficient c.

The coefficients d, e, f may be produced by three rods extending to head, to starboard, and downward from a point to starboard of the compass, and $g, h, 7$ by three rods in parallel directions. from a point below the compass.

Hence each of the nine coefficients can be soparatoly varied by means of iron rods properly placed.

The quantities P, Q, R are simply the components of the force on the compass arising from the permanent magnetization of the ship together with that part of the induced magnetization which is due to the action of this permanent magnetization.

A complete discussion of the equations (1), and of the relation
 as indicated by the compass, is giwn in Mr. Arehibuht Sumth in

A valuable graphice methen of invertigntimg the frollow in thore given. Taking a fixed point at ongon, a han in hawn from this point representing in direction mal wasenituh the horizontal part of the actual manatio fore on the compant neodle. As the ship is swung rommen as to lang: hos low into different azimuthe in suceession, the werrenitg of this line
 ticular azimuth.

Such a curve, by means of which the dieretion mat matment, of the fore on the compass is given in turme of the mathethe course of the ship, is called a lyogomath.

There are two varieties of the Hywergan, In thas fitst, the curve is traced on a plane fixed in mow mater dup then round. In tho second kind, the curve in travel on a flans fixed with respect to the mhip.

The dygogram of the first kind in the limman of lament, that of the second kind in an dijpes. For the comatraequen
 to the mathematioian an they are inumetant to the nambator, the reader is referred to the Almiralty Vonuel of tho Iremetem of the liomphess.

('llarter lo.

We have seen that Poisson suppesed the marnetiantion to consist in asparntion of the mannetio flution within agnotic molceule. If we wish to avenit the notnutition oxistonce of magntio duids, we may state the sume in another form, by mying that onch molewe of the
 r's theory diflers fron thim in anaming that the mole. - the iron are alway magnets, seven before the appliof the magndiging fores, hut that in ordinary iron ?notio axes of the moloculo are turnsel indithorently in rection, mo that the iron as a whole exhibits no magnetic \%s.
a magnotic forco acta on the iron it tonde th turn the the moloenlew all in one dirontion, and wo to caune the a whole, to breome a magnet.

 n of which it is capable. Hones. Wehnere therery implien sonco of a limiting intounity of magnotivation, and tho ontal evidonce that much a limit ximen in themfore F to the theory. Bxperimonta showing an appromeh ting value of magnotization have luen male by doule *, 't, and Ewing and Low中.
xperimenta of leets 8 on electrotype iron doponited

Trang. 1889. A. n, mill.

under the action of magnetic force furnish the most completo evidence of this limit:-

A silver wire was varnished, and a very narrow line on the metal was laid bare by making a fine longitudinal scratch on the varnish. The wire was then immersed in a solution of $几$ salt of iron, and placed in a magnetic field with the scratch in the direction of a line of magnetic forcc. By making tho wire the cathode of an electric current through the solution, iron was deposited on the narrow exposed surface of the wire, molecule by molecule. The filament of iron thus formed was then examined magnetically. Its magnetic moment was found to be very great for so small a mass of iron, and when a powerful magnetizing force was made to act in the same direction the increase of temporary magnetization was found to be very small, and the permanent magnetization was not altered. A magnetizing force in the reverse direction at once reduced tho filament to the condition of iron magnetized in the ordinary way.

Weber's theory, which supposes that in this caso the magnetizing force placed the axis of each molecule in tho samo direction during the instant of its deposition, agrees very woll with what is observed.

Beetz found that when the electrolysis is continued under the action of the magnetizing force the intensity of magnetization of the subsequently deposited iron diminishes. The axes of the molecules are probably deflected from tho line of magnetizing force when they are being laid down side by side with the molecules already deposited, so that an approximation to parallelism can be obtained only in the case of a very thin filament of iron.

If, as Weber supposes, the molecules of iron are already magnets, any magnetic force sufficient to render thoir axes parallel as they are electrolytically deposited will bo sufficiont to produce the highest intensity of magnetization in the doposited filament.

If, on the other hand, the molecules of iron are not magnets, but are only capable of magnetization, the magnetization of the deposited filament will depend on the magnetizing force in the same way in which that of soft iron in general depends on it. The experiments of Beetz leave no room for the latter hypothesis.
443.7 We shall mow asmus, with Wepor, that in every unit of volume of the iron the are 1 magnetio moleoules, and that the mametio monewt of theh in m. If the axes of nll the moleculen were phocel parallel to one another, the magnotio moment of the unit of colume woult the

$$
M \cdots m
$$

and this would low the groatost intunity of magnetization of which the iron in capable.
 the axes of ita meleculom to he phered indifforntly in all directions.

To express this, we may suppose a aphere to be doseribed, and a radiue drawn from the centre parallel to the direction of the axis of moh of the n motectules. The distribution of the extromition of these, radii will repmenat that of the axes of the molecules. In the ense of ardinary irom theno "pointe are

 than a with the min of a is

$$
y(1-\cos n)
$$

and the number of moteruhne whese aten make anghe with that of x betweon and a fla in therofore
ninushle.

Thim in the arrangetnent of the malowhen in n piewe of iron which has mever lwan nagumpizat.

Lat us now enppense that a magnetio feres in in moto to act on the iron in the direction of the axin of x, and let un consider a molvente whoss astis wan originally inelinel of the axis of a.

If this molsevise in perfotly frow to turn, it will phave itandf with ita axin parallel to the avie of ar, and if all the monoculew
 sufficient to dovologe the very higheat dugrow of wagextiatian. This, howover, in not the cans.

The moleouley do not turn with their axom parallel to and this in ather hecaum such molvoule in actod on by a fores bending to premerve it in ite original direction, or beoumban
equivalent effect is produced by the mutual action of the entire system of molecules.

Weber adopts the former of these suppositions as the simplest, and supposes that each molecule, when deflected, tends to return to its original position with a force which is the same as that which a magnetic force D, acting in the original direction of its axis, would produce.

The position which the axis actually assumes is therefore in the direction of the resultant of X and D.

Let $A P B$ represent a section of a sphere whose radius represents, on a certain scale, the force D.

Let the radius $O P$ be parallel to the axis of a particular molocule in its original position.

Fig. 5.

Fig. 6.

Let $S O$ ropresent on the same scale the magnetizing force X which is supposed to act from S towards O. Then, if the molecule is acted on by the force X in the direction $S O$, and by a force D in a direction parallel to $O P$, the original direction of its axis, its axis will set itself in the direction $S P$, that of the resultant of X and D.

Since the axes of the molecules are originally in all directions, P may be at any point of the sphere indifferently. In Fig. 5, in which X is less than $D, S P$, the final position of the axis, may be in any direction whatever, but not indifferently, for more of the molecules will have their axes turned towards A than towards B. In Fig. 6, in which X is greater than D, the axes of the molecules will be all confined within the cone TSS' touching the sphere.

Hence there are two different cases according as X is less or greater than D.

Lot
$a=\Lambda\left(0 T^{\prime}\right.$, the original inclination of the axis of a molecule to the axis of x.
$\theta=A S P$, the inclination of the axis when deflocted by the forco X.
$\beta=A P^{\prime} O$, the angle of deflexion.
$S^{\prime}()=X^{*}$, the magnetizing forco.
$O I^{\prime}=I$, the force tending towards the original position.
$N P=R$, the rosultant of X and D.
$m=$ magnotic moment of the molecule.
Then the moment of the statical couple due to X, tending to diminish the angle θ, is

$$
m L==m X \sin \theta
$$

and the moment of the couple due to D, tending to incroase θ, is

$$
m L=m D \sin \beta
$$

Equating these values, and remomboring that $\beta=a-0$, we find

$$
\tan \theta=\begin{gather*}
D \sin \alpha \tag{1}\\
X+I) \cos \alpha
\end{gather*}
$$

to detormine the direction of the axis after deflexion.
We have noxt to find the intensity of magnetization produced in the mass by the forco X, and for this purpose we must resolve the magnetic moment of every molecule in the direction of x, and add all these resolved parts.

The resolved part of the moment of a molecule in the direction of x is $m \cos \theta$.
The number of molecules whose original inclinations lay betweon α and $a+d \alpha$ is

$$
\frac{n}{2} \sin a d \alpha .
$$

We have therefore to integrate

$$
\begin{equation*}
I=\int_{0}^{\pi m \cdot n} \cos \theta \sin a d a \tag{2}
\end{equation*}
$$

remembering that θ is a function of a.

[^18]We may express both θ and a in terms of R, and the expression to be integrated becomes

$$
\begin{equation*}
-\frac{m n}{4 X^{2} D}\left(R^{2}+X^{2}-D^{2}\right) d R, \tag{3}
\end{equation*}
$$

the general integral of which is

$$
\begin{equation*}
-\frac{m n R}{12 X^{2} D}\left(R^{2}+3 X^{2}-3 D^{2}\right)+C \tag{4}
\end{equation*}
$$

In the first case, that in which X is less than D, the limits of integration are from $R=D+X$ to $R=D-X$. In the second case, in which X is greater than D, the limits are from $R=X+D$ to $R=X-D$.

When X is less than D,

$$
\begin{equation*}
I=\frac{2}{3} \frac{m n}{D} X \tag{5}
\end{equation*}
$$

When X is equal to D,

$$
\begin{equation*}
I=\frac{2}{3} m n \tag{6}
\end{equation*}
$$

When X is greater than D,

$$
\begin{equation*}
I=m n\left(1-\frac{1}{3} \frac{D^{2}}{X^{2}}\right) \tag{7}
\end{equation*}
$$

and when X becomes infinite, $\quad I=m n$.
According to this form of the theory, which is that adopted by Weber*, as the magnetizing force increases from 0 to D, the magnetization increases in the same proportion. When the magnetizing force attains the value D, the magnetization is two-thirds of its limiting value. When the magnetizing force is further increased, the magnetization, instead of increasing indefinitely, tends towards a finite limit.

Fig. 7.
The law of magnetization is expressed in Fig. 7, where the magnetizing force is reckoned from 0 towards the right, and the

[^19] own experiments give malts in sutinfactory acordaner with this law. It is probahle, lowewor, that the value of If is net the sume for all the molecthes of the same piece of iron, so that

44.1 The theory in thim form gives no woome of the romidual magnetization which is found to wist after the magnetizing fores in romoved. I have thorefore thought it desirnhle to "xumitu, the wentes of baking a further aswmption relating to the conditions under which the pration of "yuilibium of a molerulo may lat promannty altered.

Lat un suppone that the asian of a magetio moleoule, if dem floctud through any angle of less than si, will roturn to itw original powition whon the dellocting fore in removel, but that
 removel, the axim will mot moturn ta its original position, hat will |a fermanatly deflected through an anglo $\beta-\beta_{0}$, whioh

 imagimation in following out tho spoculation muggentand by Wintur.
lat

$$
\begin{equation*}
I_{r}=I \min _{\mathrm{f}} \mathrm{l}_{a}, \tag{5}
\end{equation*}
$$

ther, if the moment of the complo acting on a molocule in lom than ma, there will ber nermanont deflexion, hat it it
 (9)

To trnce the rwates of thin mupponition, doworibe a mphere whowe cwntre in 11 and raliun (II. I.

 will begin to produco an permatont dethexion of mome of the muslecules.

Let us take thes cam of Dis. B, in which X^{*} in gronter than I. but loa than D. Through is an vertex draw a doublo cone

[^20]touching the sphere L. Let this cone meet the sphere D in P and Q. Then if the axis of a molecule in its original position lies between $O A$ and $O P$, or between $O B$ and $O Q$, it will be

Fig. 8.

Fig. 9.
deflected through an angle less than β_{0}, and will not be permanently deflected. But if the axis of the molecule lies originally between $O P$ and $O Q$, then a couple whose moment is greater than L will act upon it and will deflect it into the position $S P$, and when the force X ceases to act it will not resume its original direction, but will be permanently set in the direction OP.

Let us put

$$
L=X \sin \theta_{0} \quad \text { where } \quad \theta_{0}=P S A \text { or } Q S B
$$

then all those molecules whose axes, on the former hypothesis, would have values of θ between θ_{0} and $\pi-\theta_{0}$ will be made to have the value θ_{0} during the action of the force X.

During the action of the force X, therefore, those molecules whose axes when deflected lie within either sheet of the double cone whose semivertical angle is θ_{0} will be arranged as in the former case, but all those whose axes on the former theory would lie outside of these sheets will be permanently deflected, so that their axes will form a dense fringe round that sheet of the cone which lies towards A.

As X increases, the number of molecules belonging to the cone about B continually diminishes, and when. X becomes equal to D all the molecules have been wrenched out of their former positions of equilibrium, and have been forced into the fringe of the cone round A, so that when X becomes greater than D all the molecules form part of the cone round A or of its fringe.

When the fores X is removed，then in the came in which X is lows than l_{0}＂worything whome to its primitiventate．When x°

$$
A 11 O^{\prime}=\theta_{n}+\frac{1}{n}
$$

$$
H m y=u_{0}-H_{1}
$$

Within these conses the nxen of the molecules are distributed uniformly．Hut all the molenenot the origimal direction of whos ane bay outaide of hoth these comes，have besa wronched from their primitive position and form a frimge round the cons nbout A．

If I° in equater than D ，then the cone round B is completely dianormad，and all the moleoulew which formed it are converted

40．］Troating this cane in the sane，way an heforo＊，we find

[^21]

（1＂
 in the dived tretw，whe：we hate then

 Nu， 10

for the intensity of the temporary magnetization during the action of the force X, which is supposed to act on iron which has never before been magnetized,

When X is less than $L, \quad I=\frac{2}{3} M \frac{X}{D}$.
When X is equal to $L, \quad I=\frac{2}{3} M \frac{L}{D}$.
When X is between L and D,

$$
I=M\left\{\frac{2}{3} \frac{X}{D}+\left(1-\frac{L^{2}}{X^{2}}\right)\left[\sqrt{1-\frac{L^{2}}{D^{2}}}-\frac{2}{3} \sqrt{\frac{X^{2}}{\overline{D^{2}}}-\frac{L^{2}}{D^{2}}}\right]\right\}
$$

When X is equal to D,

$$
I=M\left\{\frac{2}{3}+\frac{1}{3}\left(1-\frac{L^{2}}{D^{2}}\right)^{\frac{3}{2}}\right\}
$$

When X is greater than D,
$I=M\left\{\frac{1}{3} \frac{X}{D}+\frac{1}{2}-\frac{1}{6} \frac{D}{X}+\frac{\left(D^{2}-L^{2}\right)^{\frac{3}{2}}}{6 X^{2} D}-\frac{\sqrt{X^{2}-L^{2}}}{6 X^{2} D}\left(2 X^{2}-3 X D+L^{2}\right)\right\}$.
When X is infinite, $\quad I=M$.
When X is less than L the magnetization follows the former law, and is proportional to the magnetizing force, As soon as X exceeds L the magnetization assumes a more rapid rate of increase on account of the molecules beginning to be transferred from the one cone to the other. This rapid increase, however, soon comes to an end as the number of molecules forming the negative cone diminishes, and at last the magnetization reaches the limiting value M.

If we were to assume that the values of L and of D are different for different molecules, we should obtain a result in which the different stages of magnetization are not so distinctly marked.

The residual magnetization, I^{\prime}, produced by the magnetizing force X, and observed after the force has been removed, is as follows:

When X is less than L, \quad No residual magnetization.
When X is between L and D,

$$
I^{\prime}=M\left(1-\frac{L^{2}}{D^{2}}\right)\left(1-\frac{\boldsymbol{L}^{2}}{\bar{X}^{2}}\right)
$$

When X is equal to D,

$$
I^{\prime}=M\left(1-\frac{L^{2}}{D^{2}}\right)^{2}
$$

Whon X ingreatur than l.

When I° is infinite,

$$
l^{\prime} \quad{ }_{1}^{1}, V\left\{1+\sqrt{1-\frac{l}{n} 1^{n}}\right.
$$

If wo makn

$$
M \quad 1000, \quad l . \quad 3, \quad l=b
$$

wo find the fullowing valuen of the tomperary and the residual magnotianthon:- -

	Twnuperary Mataxtimatom. l	Itwointual Magne tiontum. $I^{\prime \prime}$
0	0	0
1	135	0
2	267	0
1	100	0
1	89	280
\%	+8\%	110
i	mil	4N\%
7	H4*	5037
N	H!3:	57\%
*	1000	\$10

These rebulta are hat town in Fig. 10.

标, 10
The curve of tomporary maznotiotion in at firm a motraight

The curve of residual magnetization begins when $X=L$, and approaches an asymptote whose ordinate $=.81 \mathrm{M}$.
It must be remernbered that the residual magnetism thus found corresponds to the case in which, when the external fore is removed, there is no demagnetizing force arising from the distribution of magnetism in the body itself. The calculations are therefore applicable only to very elongated bodies magnetized longitudinally. In the case of short thick bodies the residual magnetism will be diminished by the reaction of the free magnetism in the same way as if an extornal reversed magnetizing forco were made to act upon it *.
446.] The scientific value of a theory of this kind, in which we make so many assumptions, and introduce so many adjustable constants, cannot be estimated merely by its numorical agreement with certain sets of experiments. If it has any valuo it is because it enables us to form a mental image of what takes place in a picce of iron during magnetization. To tost tho theory, we shall apply it to the case in which a piece of iron, after being subjected to a magnetizing force X_{0}, is again subjected to a magnetizing force X_{1}.

If the new force X_{1} acts in the same direction as that in which X_{0} acted, which we shall call the positive direction, then X_{1}, if less than X_{0}, will produce no permanent set of the molecules, and when X_{1} is removed the residual magnetization will be the same as that produced by X_{0}. If X_{1} is greater than X_{0}, then it will produce exactly the same effect as if X_{0} had not acted.
But let us suppose X_{1} to act in the negative direction, and let us suppose $\quad X_{0}=L \operatorname{cosec} \theta_{0}$, and $X_{1}=-L \operatorname{cosec} \theta_{1}$.

[^22]As X_{1} increases numerically, θ_{1} diminishes. The first molecules on which X_{1} will produce a permanent deflexion are those which form the fringe of the cone round A^{*}, and these have an inclination when undeflected of $\theta_{0}+\beta_{0}$.

As soon as $\theta_{1}-\beta_{0}$ becomes less than $\theta_{0}+\beta_{0}$ the process of demagnetization will commence. Since, at this instant, $\theta_{1}=\theta_{0}+2 \beta_{0}$, X_{1}, the force required to begin the demagnetization, is less than X_{0}, the force which produced the magnetization.
If the values of D and of L were the same for all the molecules, the slightest increase of X_{1} would wrench the whole of the fringe of molecules whose axes have the inclination $\theta_{0}+\beta_{0}$ into a position in which their axes are inclined $\theta_{1}+\beta_{0}$ to the negative axis $O B$.
Though the demagnetization does not take place in a manner so sudden as this, it takes place so rapidly as to afford some confirmation of this mode of explaining the process.
Let us now suppose that by giving a proper value to the reverse force X_{1} we have on the removal of X_{1} exactly demagnetized the piece of iron.
The axes of the molecules will not now be arranged indifferently in all directions, as in a piece of iron which has never been magnetized, but will form three groups.
(1) Within a cone of semiangle $\theta_{1}-\beta_{0}$ surrounding the positive pole, the axes of the molecules remain in their primitive positions.
(2) The same is the case within a cone of semiangle $\theta_{0}-\beta_{0}$ surrounding the negative pole.
(3) The directions of the axes of all the other molecules form a conical sheet surrounding the negative pole, and are at an inclination $\theta_{1}+\beta_{0}$.

When X_{0} is greater than D the second group is absent. When X_{1} is greater than D the first group is also absent.

The state of the iron, therefore, though apparently demagnetized, is different from that of a piece of iron which has never been magnetized.

To shew this, let us consider the effect of a magnetizing force X_{2} acting in either the positive or the negative direction. The first permanent effect of such a force will be on the third group

[^23]of inolecules, whose axes make angles $=\theta_{1}+\beta_{0}$ with the negative axis.

If the force X_{2} acts in the negative direction it will begin to produce a permanent effect as soon as $\theta_{2}+\boldsymbol{\beta}_{0}$ becomes less than $\theta_{1}+\beta_{0}$, that is, as soon as X_{2} becomes greater than X_{1}. But if X_{2} acts in the positive direction it will begin to remagnetize the iron as soon as $\theta_{2}-\beta_{0}$ becomes less than $\theta_{1}+\beta_{0}$, that is, when $\theta_{2}=\theta_{1}+2 \beta_{0}$, or while X_{2} is still much less than X_{1}.

It appears therefore from our hypothesis that-
When a piece of iron is magnetized by means of a force X_{0}, its residual magnetism cannot be increased without the application of a force greater than X_{0}. A reverse force, less than X_{0}, is sufficient to diminish its residual magnetization.

If the iron is exactly demagnetized by the reversed force X_{1}, then it cannot be magnetized in the reversed direction without the application of a force greater than X_{1}, but a positive force less than X_{1} is sufficient to begin to remagnetize the iron in its original direction.

Those results are consistent with what has boen actually observed by Ritchie *, Jacobi \dagger, Marianini \ddagger, and Joulo §.

A very complete account of the relations of the magnetization of iron and steel to magnetic forces and to mechanical strains is given by Wiedemann in his Galvanismus. By a detailed comparison of the effects of magnetization with those of torsion, he shews that the ideas of elasticity and plasticity which we derive from experiments on the temporary and permanent torsion of wires can be applied with equal propriety to the temporary and permanent magnetization of iron and steel.
447.] Matteucci || found that the extension of a hard iron bar during the action of the magnetizing force increases its tomporary magnetism 9. This has been confirmed by Wertheim. In the case of soft iron bars the magnetism is diminished by extension.

The permanent magnetism of an iron bar increases when it is extonded, and diminishes when it is compressed.

[^24]Hence, if a piece of iron is first magnetized in one direction, and then extended in another direction, the direction of magnetization will tend to approach the direction of extension. If it be compressed, the direction of magnetization will tend to become normal to the direction of compression.

This explains the result of an experiment of Wiedemann's. A current was passed downward through a vertical wire. If, either during the passage of the current or after it has ceased, the wire be twisted in the direction of a right-handed screw, the lower end becomes a north pole.

Fig. 11.

Fig. 12.

Here the downward current magnetizes every part of the wire in a tangential direction, as indicated by the letters $N S$.

The twisting of the wire in the direction of a right-handed screw causes the portion $A B C D$ to be extended along the diagonal $A C$ and compressed along the diagonal $B D$. The direction of magnetization therefore tends to approach $A C$ and. to recede from $B D$, and thus the lower end becomes a north pole and the upper end a south pole.

Effect of Magnetization on the Dimensions of the Magnet.
448.] Joule ${ }^{*}$, in 1842 , found that an iron bar becomes lengthened when it is rendered magnetic by an electric current in a coil which surrounds it. He afterwards \dagger shewed, by placing the bar in water within a glass tube, that the volume of the iron is not augmented by this magnetization, and concluded that its transverse dimensions were contracted.

Finally, he passed an electric current through the axis of an

[^25]iron tube, and back outside the tube, so as to make the tube into a closed magnetic solenoid, the magnetization being at right angles to the axis of the tube. The length of the axis of the tube was found in this case to be shortened.

He found that an iron rod under longitudinal pressure is also elongated when it is magnetized. When, however, the rod is under considerable longitudinal tension, the effect of magnetization is to shorten it.

This was the case with a wire of a quarter of an inch diameter when the tension exceeded 600 pounds weight.

In the case of a hard steel wire the effect of the magnetizing force was in every case to shorten the wire, whether the wire was under tension or pressure. The change of length lasted only as long as the magnetizing force was in action, no alteration of length was observed due to the permanent magnetization of the steel.

Joule found the elongation of iron wires to be nearly proportional to the square of the actual magnetization, so that the first effect of a demagnetizing current was to shorten the wire *.

On the other hand, he found that the shortening effect on wires under tension, and on steel, varied as the product of the magnetization and the magnetizing current.

Wiedemann found that if a vertical wire is magnetized with its south end uppermost, and if a current is then passed downwards through the wire, the lower end of the wire, if free, twists in the direction of the hands of a watch as seen from above, or, in other words, the wire becomes twisted like a right-handed screw if the relation between the longitudinal current and the magnetizing current is right-handed.

In this case the resultant magnetization due to the action of the current and the previously existing magnetization is in the direction of a right-handed screw round the wire. Hence the twisting would indicate that when the iron is magnetized it expands in the direction of magnetization and contracts in directions at right angles to the magnetization. This agrees with Joule's results.

For further developments of the theory of magnetization, see Arts. 832-845.

[^26]
CHAPTER VII.

MAGNETIC MEASUREMENTS,

449.] THE principal magnetic measurements are the determination of the magnetic axis and magnetic moment of a magnet, and that of the direction and intensity of the magnetic force at a given place.

Since these measurements are made near the surface of the earth, the magnets are always acted on by gravity as well as by terrestrial magnetism, and since the magnets are made of steel their magnetism is partly permanent and partly induced. The permanent magnetism is altered by changes of temperature, by strong induction, and by violent blows ; the induced magnetism varies with every variation of the external magnetic force.

The most convenient way of observing the force acting on a magnet is by making the magnet free to turn about a vertical axis. In ordinary compasses this is done by balancing the magnet on a vertical pivot. The finer the point of the pivot the smaller is the moment of the friction which interferes with the action of the magnetic force. For more refined observations the magnet is suspended by a thread composed of a silk fibre without twist, either single, or doubled on itself a sufficient number of times, and so formed into a thread of parallel fibres, each of which supports as nearly as possible an equal part of the weight. The force of torsion of such a thread is much less than that of a metal wire of equal strength, and it may be calculated in terms of the observed azimuth of the magnet, which is not the case with the force arising from the friction of a pivot.

The suspension fibre can be raised or lowered by turning a horizontal screw which works in a fixed nut. The fibre is wound round the thread of the screw, so that when the screw
 line.

 of ita four sides upyermant.

Fin 13.

 tion of the mangutio atm whthat tase

 vertiond.
 with at arrangetucat for masoretarn isug itn angrular pomithons. Fow aos
 abla a divilual cirolon phemed lolow

 needle.

[^27]possible with the axis of magnetization. This is the method adopted by Gauss and Weber.

Another method is to attach to one end of the magnet a lens and to the other end a scale engraved on glass, the distance of the lens from the scale being equal to the principal focal length of the lens. The straight line joining the zero of the scale with the optical centre of the lens ought to coincide as nearly as possible with the magnetic axis.

As these optical methods of ascertaining the angular position of suspended apparatus are of great importance in many physical researches, we shall here consider once for all their mathematical theory.

Theory of the Mirror Method.

We shall suppose that the apparatus whose angular position is to be determined is capable of revolving about a vertical axis. This axis is in general a fibre or wire by which it is suspended. The mirror should be truly plane, so that a scale of millimetres may be seen distinctly by reflexion at a distance of several metres from the mirror.

The normal through the middle of the mirror should pass through the axis of suspension, and should be accurately horizontal. We shall refer to this normal as the line of collimation of the apparatus.

Having roughly ascertained the mean direction of the line of collimation during the experiments which are to be made, a telescope is erected at a convenient distance in front of the mirror, and a little above the level of the mirror.

The telescope is capable of motion in a vertical plane, it is directed towards the suspension-fibre just above the mirror, and a fixed mark is erected in the line of vision, at a horizontal distance from the object-glass equal to twice the distance of the mirror from the object-glass. The apparatus should, if possible, be so arranged that this mark is on a wall or other fixed object. In order to see the mark and the suspension-fibre at the same time through the telescope, a cap may be placed over the objectglass having a slit along a vertical diameter. This should be removed for the other observations. The telescope is then adjusted so that the mark is seen distinctly to coincide with the vertical wire at the focus of the telescope. A plumb-line is
then adjusted so as to pass close in front of the optical centre of the object-glass and to hang below the telescope. Below the telescope and just behind the plumb-line a scale of equal parts is placed so as to be bisected at right angles by the plane through the mark, the suspension-fibre, and the plumb-line. The sum of the heights of the scale and the object-glass from the floor should be equal to twice the height of the mirror. The telescope being now directed towards the mirror, the observer will see in it the reflexion of the scale. If the part of the scale where the plumb-line crosses it appears to coincide with the vertical wiro of the telescope, then the line of collimation of the mirror coincides with the plane through the mark and the optical centre of the object-glass. If the vertical wire coincides with any other division of the scale, the angular position of the line of collimation is to be found as follows :-

Fig. 14.
Let the plane of the paper be horizontal, and let the various points be projected on this plane. Let O be the centro of the object-glass of the telescope, P the fixed mark: P and tho vertical wire of the telescope are conjugate foci with respect to the object-glass. Let M be the point where $O P$ cuts the plane of the mirror. Let $M N$ be the normal to the mirror; then $O M N=\theta$ is the angle which the line of collimation makes with the fixed plane. Let $M S$ be a line in the plane of $O M$ and $M N$, such that $N M S=O M N$, then S will be the part of the scale which will be seen by reflexion to coincide with the vertical wire of the telescope. Now, since $M N$ is horizontal, the projected angles $O M N$ and $N M S$ in the figure are equal, and $O M S=2 \theta$. Hence $O S=O M \tan 2 \theta$.

We have therefore to measure $O M$ in terms of the divisions of the scale; then, if s_{0} is the division of the scale which coincides with the plumb-line, and s the observed division,

$$
s-s_{0}=O M \tan 2 \theta,
$$

whence θ may be found. In measuring $O M$ we must remember that if the mirror is of glass, silvered at the back, the virtual reflecting surface is at a distance behind the front surface of the glass $=\frac{t}{\mu}$, where t is the thickness of the glass, and μ is the index of refraction.

We must also remember that if the line of suspension does not pass through the point of reflexion, the position of M will alter with θ. Hence, when it is possible, it is advisable to make the centre of the mirror coincide with the line of suspension.

Fig. 15.
It is also advisable, especially when large angular motions have to be observed, to make the scale in the form of a concave cylindric surface, whose axis is the line of suspension. The angles are then observed at once in circular measure without reference to a table of tangents. The scale should be carefully adjusted, so that the axis of the cylinder coincides with the suspension-fibre. The numbers on the scale should always run from the one end to the other in the same direction so as to avoid negative readings. Fig. 15 represents the middle portion of a scale to be used with a mirror and an inverting telescope.

This method of observation is the best when the motions are slow. The observer sits at the telescope and sees the image of the scale moving to right or to left past the vertical wire of the telescope. With a clock beside him he can note the instant at which a given division of the scale passes the wire, or the division of the scale which is passing at a given tick of the
 oscillation.

 transit of this mark may fur momel

 the time of pasnuget.

 ohservatorien.

 a dark line actoss a putch of light.
 the form of athor, having at ane and a lons, and at the other a
 Loss, light in mbited from twhind the seale, and after passing throngh the lens it in viewod by anane of a bleseoper.

Sines the mende is at the pineigal foede of the low, rays from any divinion of the male mange from the lens parallet, and it

 If a piven division of the meabermeders with the intersetpon of tho croms wires, then the, line joining that division with the
 mation of the tolewoom. Hy tixing the magnet and moving the tolsarope, wo may anernain the angular vahe of the divisions of
 paniton of the tolomone knowa, we may determine the position of the magnet at my instat lis moshling off the division of the

 moter in which the wholo mparatus in suppothed on one tripel, mad in whirl the owcillation the to nowidental disturbmows sapilly matmide.

Detromination of the throtion of the Awia of the Mrefuet.

 the axim of a in in the direction of the bougth of the bar, ant
 Whopiped.
 utul the litw of collimation anke with these axes reapertively.

 vertienl compmont, mul lut ob the minuth in whioh II note, reckoned from the north towarion then wowt.
 bo the mamuth of the ntirrup, and the rembing of the index of
the torsion circle, then $a-\beta$ is the azimuth of the lower end of the suspension-fibre.

Let γ be the value of $\alpha-\beta$ when there is no torsion, thon the moment of the force of torsion tending to diminish α will bo

$$
\tau(\alpha-\beta-\gamma),
$$

where τ is a coefficient of torsion depending on the nature of the fibre.

To determine λ_{x}, the angle between the axis of x and the projection of the line of collimation on the plane of $x z$, fix the stirrup so that y is vertical and upwards, z to the north and x to the west, and observe the azimuth ζ of the lino of collimation. Then remove the magnet, turn it through an angle π about the axis of z and replace it in this inverted position, and olsserve the azimuth ζ^{\prime} of the line of collimation when y is downwards and x to the east,

$$
\begin{align*}
\zeta & =a+\frac{\pi}{2}-\lambda_{x} \tag{1}\\
\zeta^{\prime} & =a-\frac{\pi}{2}+\lambda_{x} \tag{2}\\
\lambda_{x} & =\frac{\pi}{2}+\frac{1}{2}\left(\zeta^{\prime}-\zeta\right) . \tag{3}
\end{align*}
$$

Hence
Next, hang the stirrup to the suspension-fibre, and place the magnet in it, adjusting it carefully so that y may bo vertical and upwards, then the moment of the force tending to increase α is

$$
\begin{equation*}
M H \sin m \sin \left(\delta-a-\frac{\pi}{2}+l_{x}\right)-\tau(a-\beta-\gamma) \tag{1}
\end{equation*}
$$

where l_{x} is the angle between the axis of x and the projection of the magnetic axis on the plane of $x z$.

But if ζ is the observed azimuth of the line of collimation

$$
\begin{equation*}
\zeta=a+\frac{\pi}{2}-\lambda_{x} \tag{5}
\end{equation*}
$$

so that the force may be written

$$
\begin{equation*}
M H \sin m \sin \left(\delta-\zeta+l_{x}-\lambda_{x}\right)-\tau\left(\zeta+\lambda_{x}-\frac{\pi}{2}-\beta-\gamma\right) \tag{6}
\end{equation*}
$$

When the apparatus is in equilibrium this quantity is zoro for a particular value of ζ.

When the apparatus never comes to rest, but must bo observed in a state of vibration, the value of ζ corresponding to the position of equilibrium may be calculated by a method which will be described in Art. 735.

When the force of torsion is small compared with the moment
of the magnetic force, we may put $\delta-\zeta+l_{x}-\lambda_{x}$ for the sine of that angle.
If we give to β, the reading of the torsion circle, two different values, β_{1} and β_{2}, and if ζ_{1} and ζ_{2} are the corresponding values of ζ,

$$
\begin{equation*}
M H\left(\zeta_{2}-\zeta_{1}\right) \sin m=\tau\left(\zeta_{1}-\zeta_{2}-\beta_{1}+\beta_{2}\right), \tag{7}
\end{equation*}
$$

or, if we put

$$
\begin{equation*}
\frac{\zeta_{2}-\zeta_{1}}{\zeta_{1}-\zeta_{2}-\beta_{1}+\beta_{2}}=\tau^{\prime}, \text { then } \tau=\tau^{\prime} M H \sin m \tag{8}
\end{equation*}
$$

and equation (6) becomes, dividing by $M H \sin m$,

$$
\begin{equation*}
\delta-\zeta+l_{x}-\lambda_{x}-\tau^{\prime}\left(\zeta+\lambda_{x}-\frac{\pi}{2}-\beta-\gamma\right)=0 . \tag{9}
\end{equation*}
$$

If we now reverse the magnet so that y is downwards, and adjust the apparatus till y is exactly vertical, and if ζ^{\prime} is the new value of the azimuth, and δ^{\prime} the corresponding declination,

$$
\begin{equation*}
\delta^{\prime}-\zeta^{\prime}-l_{x}+\lambda_{x}-\tau^{\prime}\left(\zeta^{\prime}-\lambda_{x}+\frac{\pi}{2}-\beta-\gamma\right)=0 \tag{10}
\end{equation*}
$$

whence

$$
\begin{equation*}
\frac{\delta+\delta^{\prime}}{2}=\frac{1}{2}\left(\zeta+\zeta^{\prime}\right)+\frac{1}{2} \tau^{\prime}\left\{\zeta+\zeta^{\prime}-2(\beta+\gamma)\right\} . \tag{11}
\end{equation*}
$$

The reading of the torsion circle should now be adjusted, so that the coefficient of τ^{\prime} may be as nearly as possible zero. For this purpose we must determine γ, the value of $\alpha-\beta$ when there is no torsion. This may be done by placing a non-magnetic bar of the same weight as the magnet in the stirrup, and determining $\alpha-\beta$ when there is equilibrium. Since τ^{\prime} is small, great accuracy is not required. Another method is to use a torsion bar of the same weight as the magnet, containing within it a very small magnet whose magnetic moment is $\frac{1}{n}$ of that of the principal magnet. Since τ remains the same, τ^{\prime} will become $n \tau^{\prime}$, and if ζ_{1} and ζ_{1}^{\prime} are the values of ζ as found by the torsion bar,

$$
\begin{equation*}
\frac{\delta+\delta^{\prime}}{2}=\frac{1}{2}\left(\zeta_{1}+\zeta_{1}^{\prime}\right)+\frac{1}{2} n \tau^{\prime}\left\{\zeta_{1}+\zeta_{1}^{\prime}-2(\beta+\gamma)\right\} \tag{12}
\end{equation*}
$$

Subtracting this equation from (11),

$$
\begin{equation*}
2(n-1)(\beta+\gamma)=\left(n+\frac{1}{\tau^{\prime}}\right)\left(\zeta_{1}+\zeta_{1}^{\prime}\right)-\left(1+\frac{1}{\tau^{\prime}}\right)\left(\zeta+\zeta^{\prime}\right) \tag{13}
\end{equation*}
$$

Having found the value of $\beta+\gamma$ in this way, β, the reading of the torsion circle, should be altered till

$$
\begin{equation*}
\zeta+\zeta^{\prime}-2(\beta+\gamma)=0 \tag{14}
\end{equation*}
$$

as nearly as possible in the ordinary position of the apparatus.

 curately known.

 during the experiments, wo that we may monenter

 sponding values of 8 , then

$$
x^{6}-y_{0}=\eta^{3}-\eta .
$$

$$
\mid(n-n)
$$

$$
\delta=\frac{1}{2}\left(\zeta+\zeta^{\prime}+\eta \quad \eta\right)+1 \theta^{\prime}, \quad \because \quad 2
$$

 subtract (10) from (9) ath mid (B .

$$
l_{x}=\lambda_{x}+\frac{1}{5}(5)-(n-n)+1 ; \quad \because x, n
$$

 can find the value of m. If ther nesm of combersatwes in magestio of

 other tho product of these two ymatitiom.

[^28]magnet whose magnetic moment is M, at a point distant r from the centre of the magnet in the positive direction of the axis of the magnet, is
\[

$$
\begin{equation*}
R=2 \frac{M}{r^{3}} \tag{1}
\end{equation*}
$$

\]

and is in the direction of r. If the magnet is of finite size but spherical, and magnetized uniformly in the direction of its axis, this value of the force will still be exact. If the magnet is a solenoidal bar magnet of length $2 L$,

$$
\begin{equation*}
R=2 \frac{M}{r^{3}}\left(1+2 \frac{L^{2}}{r^{2}}+3 \frac{L^{4}}{r^{4}}+\& c .\right) . \tag{2}
\end{equation*}
$$

If the magnet be of any kind, provided its dimensions are all small, compared with r,

$$
\begin{equation*}
R=2 \frac{M}{r^{3}}\left(1+A_{1} \frac{1}{r}+A_{2} \frac{1}{r^{2}}+\& \mathrm{cc} .\right), \tag{3}
\end{equation*}
$$

where $A_{1}, A_{2}, \& \mathrm{c}$. are coefficients depending on the distribution of the magnetization of the bar.
Let H be the intensity of the horizontal part of terrestrial magnetism at any place. H is directed towards magnetic north. Let r be measured towards magnetic west, then the magnetic force at the extremity of r will be H towards the north and R towards the west. The resultant force will make an angle θ with the magnetic meridian, measured towards the west, and such that

$$
\begin{equation*}
R=H \tan \theta . \tag{4}
\end{equation*}
$$

Hence, to determine $\frac{R}{H}$ we proceed as follows:-
The direction of the magnetic north having been ascertained, a magnet, whose dimensions should not be too great, is suspended as in the former experiments, and the deflecting magnet M is placed so that its centre is at a distance r from that of the suspended magnet, in the same horizontal plane, and due magnetic east.

The axis of M is carefully adjusted so as to be horizontal and in the direction of r.

The suspended magnet is observed before M is brought near and also after it is placed in position. If θ is the observed deflexion, we have, if we use the approximate formula (1),

$$
\begin{equation*}
\frac{M}{H}=\frac{r^{3}}{2} \tan \theta ; \tag{5}
\end{equation*}
$$

or, if we use the formula (3),

$$
\begin{equation*}
\frac{1}{2} \frac{H}{M} r^{3} \tan \theta=1+A_{1} \frac{1}{r}+A_{2} \frac{1}{r^{2}}+\& c . \tag{6}
\end{equation*}
$$

Here we must bear in mind that though the deflexion θ can be observed with great accuracy, the distance r betwoen the centres of the magnets is a quantity which cannot be precisely determinecd, unless both magnets are fixed and their centres defined ly marks.

This difficulty is overcome thus:
The magnet M is placed on a divided seale which extends cast and west on both sides of the suspended magnet. The middle, point between the ends of M is rockoned the centre of the magnet. This point may bo markod on the magnet and its position observed on the scale, or the positions of the emends may be observed and the arithmetical mean taken. Call this s_{1}, and let the line of the suspension-fibre of the suspended magnets when produced cut the seale at s_{0}, then $r_{1}=s_{1}-s_{0}$, whore s_{1} is known accurately and s_{0} approximately. Let θ_{1} be the deflexion observed in this position of M.

Now reverse M, that is, place it on the scale with its emls reversed, then r_{1} will be the same, but M and $\Lambda_{1}, \Lambda_{\mathrm{z}}$, de. will have their signs changed, so that if 0_{2} is the deflexion to the west,

$$
\begin{equation*}
-\frac{1}{2} \frac{H}{M} r_{1}^{3} \tan \theta_{2}=1-A_{1} \frac{1}{r_{1}}+A_{2} \frac{1}{r_{1}^{2}}-\& c \tag{7}
\end{equation*}
$$

Taking the arithmetical moan of (6) and (7),

$$
\begin{equation*}
\frac{1}{4} \frac{H}{M} r_{1}^{3}\left(\tan \theta_{1}-\tan \theta_{2}\right)=1+\Lambda_{2} \frac{1}{r_{1}{ }^{2}}+\Lambda_{4}{ }_{r_{1}{ }^{4}}{ }^{1}+\& \mathrm{cc} \tag{8}
\end{equation*}
$$

Now remove M to the west side of the suspended magnet, and place it with its contre at the point markorl $2 x_{0}-s_{1}$ on the scale. Let the deflexion when the axis is in the first position be θ_{3}, and when it is in the second θ_{4}, then, as before,

$$
\begin{equation*}
\frac{1}{4} \frac{H I}{M} r_{2}^{3}\left(\tan \theta_{3}-\tan \theta_{4}\right)=1+A_{2} \frac{1}{r_{2}{ }^{2}}+A_{4} \frac{1}{r_{2}^{4}}+\& c \tag{9}
\end{equation*}
$$

Let us suppose that the true position of the centre of the suspended magnet is not s_{0} but $s_{0}+\sigma$, then

$$
\begin{gather*}
r_{1}=r-\sigma, \quad r_{2}=r+\sigma \tag{10}\\
\frac{1}{2}\left(r_{1}^{n}+r_{2}^{n}\right)=r^{n}\left\{1+\frac{n(n-1)}{2} \frac{\sigma^{2}}{r^{2}}+\& c .\right\} \tag{array}
\end{gather*}
$$

and since $\frac{\sigma^{2}}{r^{2}}$ may be neglected if the measurements are carefully made, we are sure that we may take the arithmetical moan of - $r_{1}{ }^{n}$ and $r_{2}{ }^{n}$ for r^{n}.

Hence, taking the arithmetical moan of (8) and (9),

 Hetormination.

To eliminate A_{2}, mpert the vieqiment, wing distaneros

If we suly "qual, as they will he if they akpon on the determatition of l) only, nom if thew is no mostainty nhent is, thon, by matiply.

 we ohtan mother, acomding the gotural rule in the theory of the conhimation of fillihme mensuramenta when the prohathe

Lat un write

whenew

$$
\pm\left(1, r^{a}\right) \pm\left(r^{9}\right)- \pm\left(1 r^{3}\right) \pm\left(r^{n}\right)
$$

 than half the square of the lempth of the manno .1f. If if whe

 Report of the Magnotie Asseciation.'

When the ohserver ean make mbly two "sbo of apatan at at distances r_{1} and r_{2}, the rahues of $\begin{gathered}\because / \\ H\end{gathered}$ these experiments are

$$
Q=\begin{gathered}
2 M \\
M
\end{gathered}=\begin{gathered}
H_{1} r_{1}^{\prime} \quad l, r_{2} \\
r_{1}-r_{2}^{*}
\end{gathered} \quad . \quad . \begin{aligned}
& H_{3} r_{3} \\
& H_{3} r_{3}
\end{aligned}
$$

$$
\begin{gathered}
o n
\end{gathered}=\begin{gathered}
r_{1} 8 H_{1} \cdots r_{2} H_{2} \\
r_{1}^{2} r_{3}
\end{gathered}
$$

 that the probable value of wither in aln then the probnhe vahe of the error in the calculated value of Q will |we ity, whem

$$
r_{t}=1.5181 r_{x}
$$

If one ohservation only is takra the bent lintmave in whent

$$
\frac{\Delta D}{D} \quad \sqrt{ } B_{r}^{n}, \dagger
$$

 and $8 r$ is the proballe error of a memareanent of aneatses.

* Nee Airy's Magnetimm,

\dagger \{In this cano neglecting the worm in 1 , wo hates
and thia in a minimum when

$$
\left.{ }_{H}^{8 t}-\sqrt{3}_{p}^{A_{n}}\right\}
$$

Method of Sines.

455.] The method which we have just described may be called the Method of Tangents, because the tangent of the deflexion is a measure of the magnetic force.

If the line r_{1}, instead of being measured east or west, is adjusted till it is at right angles with the axis of the deflected magnet, then R is the same as before, but in order that the suspended magnet may remain perpendicular to r, the resolved part of the force H in the direction of r must be equal and opposite to R. Hence, if θ is the deflexion, $R=H \sin \theta$.

This method is called the Method of Sines. It can be applied only when R is less than H.

In the Kew portable apparatus this method is employed. The suspended magnet hangs from a part of the apparatus which revolves along with the telescope and the arm for the deflecting magnet, and the rotation of the whole is measured on the azimuth circle.

The apparatus is first adjusted so that the axis of the telescope coincides with the mean position of the line of collimation of the magnet in its undisturbed state. If the magnet is vibrating, the true azimuth of magnetic north is found by observing the extremities of the oscillation of the transparent scale and making the proper correction of the reading of the azimuth circle.

The deflecting magnet is then placed upon a straight rod which passes through the axis of the revolving apparatus at right angles to the axis of the telescope, and is adjusted so that the axis of the deflecting magnet is in a line passing through the centre of the suspended magnet.

The whole of the revolving apparatus is then moved till the line of collimation of the suspended magnet again coincides with the axis of the telescope, and the new arimuth reading is corrected, if necessary, by the mean of the scale readings at the extremities of an oscillation.

The difference of the corrected azimuths gives the deflexion, after which we proceed as in the method of tangents, except that in the expression for D we put $\sin \theta$ instead of $\tan \theta$.

In this method there is no correction for the torsion of the suspending fibre, since the relative position of the fibre, telescope, and magnet is the same at every observation.

The axes of the two magnets remain always at right angles
in this mothor, so that the corroctions for fineth wan f... same accurately made.

 deflected from the magnetio neridiant.

 ahle statical couplo and the mateme fore

 moasurement.
Methere vi lidembenes.

 positive and negative.
 wo put

$$
\begin{aligned}
& { }_{{ }_{n}}^{1}\left(T_{2}+T_{n}+8 \mathrm{c} .\right.
\end{aligned}
$$

then T_{n+1} is the mean time of the positive passages, and ought to agree with $T_{n+1}^{\prime \prime}$, the mean time of the negative passages, if the point has been properly chosen. The mean of these results is to be taken as the mean time of the middle passage.

After a large number of vibrations have taken place, but before the vibrations have ceased to be distinct and regular, the observer makes another series of observations, from which he deduces the mean time of the middle passage of the second series.
By calculating the period of vibration either from the first series of observations or from the second, he ought to be able to be certain of the number of whole vibrations which have taken place in the interval between the time of middle passage in the two series. Dividing the interval between the mean times of middle passage in the two series by this number of vibrations, the mean time of vibration is obtained.
The observed time of vibration is then to be reduced to the time of vibration in infinitely small arcs by a formula of the same kind as that used in pendulum observations, and if the vibrations are found to diminish rapidly in amplitude, there is another correction for resistance, see Art. 740. These corrections, however, are very small ${ }^{\circ}$ when the magnet hangs by a fibre, and when the arc of vibration is only a few degrees.
The equation of motion of the magnet is

$$
A \frac{d^{2} \theta}{d t^{2}}+M H \sin \theta+H M \tau^{\prime}(\theta-\gamma)=0,
$$

where θ is the angle between the magnetic axis and the direction of the force H, A is the moment of inertia of the magnet and suspended apparatus, M is the magnetic moment of the magnet, H the intensity of the horizontal magnetic force, and $M H \tau^{\prime}$ the coefficient of torsion : τ^{\prime} is determined as in Art. 452, and is a very small quantity. The value of θ for equilibrium is

$$
\theta_{0}=\frac{\tau^{\prime} \gamma}{1+\tau^{\prime}}, \text { a very small angle, }
$$

and the solution of the equation for small values of the amplitude is

$$
\theta=C \cos \left(2 \pi \frac{t}{T}+a\right)+\theta_{0},
$$

where T is the periodic time, a a constant, C the amplitude, and

$$
T^{2}=\frac{4 \pi^{2} A}{M H\left(1+\tau^{\prime}\right)} ;
$$

whonce we find the value of M / h.

$$
M H=\frac{1 t^{2} .1}{1+11+1} .
$$

 a body whose moment of ind in is ham w.

we get
and

$$
\begin{aligned}
& H^{2}=\left(M H 1\binom{M}{M} \quad V_{1} \quad 1\right.
\end{aligned}
$$

 magnetie foree.

 to vibrate, itm axis is north and somb son limt the sucta, ond

 ments on the magnot.

 swinging.

north, at a distance r from the centre of the suspended magnet, the line r making an angle whose cosine is $\sqrt{\frac{1}{3}}$ with the magnetic meridian. The action of the deflecting magnet on the suspended one is then at right angles to its own direction, and is equal to

$$
R=\sqrt{2} \frac{M}{r^{3}} .
$$

Here M is the magnetic moment when the axis points north, as in the experiment of vibration, so that no correction has to be made for induction.

This method, however, is extremely difficult, owing to the large errors which would be introduced by a slight displacement of the deflecting magnet, and as the correction by reversing the deflecting magnet is not applicable here, this method is not to be followed except when the object is to determine the coefficient of induction.

The following method, in which the magnet while vibrating is freed from the inductive action of terrestrial magnetism, is due to Dr. J. P. Joule*.

Two magnets are prepared whose magnetic moments are as nearly equal as possible. In the deflexion experiments these magnets are used separately, or they may be placed simultaneously on opposite sides of the suspended magnet to produce a greater deflexion. In these experiments the inductive force of terrestrial magnetism is transverse to the axis.

Let one of these magnets be suspended, and let the other be placed parallel to it with its centre exactly below that of the suspended magnet, and with its axis in the same direction. The force which the fixed magnet exerts on the suspended one is in the opposite direction from that of terrestrial magnetism. If the fixed magnet be gradually brought nearer to the suspended one the time of vibration will increase, till at a certain point the equilibrium will cease to be stable, and beyond this point the suspended magnet will make oscillations in the reverse position. By experimenting in this way a position of the fixed magnet is found at which it exactly neutralizes the effect of terrestrial magnetism on the suspended one. The two magnets are fastened together so as to be parallel, with their axes turned the same way, and at the distance just found by

[^29]

 earth on the lower one

 induction is requiret.

 foree at any instant.

 detlexion,
Whanal l

We have then

 so that

By observing θ^{\prime}, the deflexion of the magnet when in equilibrium, we can calculate $M H$ provided we know τ.

If we only wish to know the relative value of H at different times it is not necessary to know either M or τ.

We may easily determine τ in absolute measure by suspending a non-magnetic body from the same wire and observing its time of oscillation, then if A is the moment of inertia of this body, and T the time of a complete vibration,

$$
\tau=\frac{4 \pi^{2} A}{T^{2}}
$$

The chief objection to the use of the torsion balance is that the zero-reading a_{0} is liable to change. Under the constant twisting force, arising from the tendency of the magnet to turn to the north, the wire gradually acquires a permanent twist, so that it becomes necessary to determine the zero-reading of the torsion circle afresh at short intervals of time.

Bifilar Suspension.

459.] The method of suspending the magnet by two wires or fibres was introduced by Gauss and Weber. As the bifilar suspension is used in many electrical instruments, we shall investigate it more in detail. The general appearance of the suspension is shewn in Fig. 16, and Fig. 17 represents the projection of the wires on a horizontal plane.
$A B$ and $A^{\prime} B^{\prime}$ are the projections of the two wires.
$A A^{\prime}$ and $B B^{\prime}$ are the lines joining the upper and the lower ends of the wires.
α and b are the lengths of the lines $A A^{\prime}$ and $B B^{\prime}$.
a and β their azimuths.
W and W^{\prime} the vertical components of the tensions of the wires.
Q and Q^{\prime} their horizontal components.
h the vertical distance between $A A^{\prime}$ and $B B^{\prime}$.
The forces which act on the magnet are-its weight, the couple arising from terrestrial magnetism, the torsion (if any) of the wires and their tensions. Of these the effects of magnetism and of torsion are of the nature of couples. Hence the resultant of the tensions must consist of a vertical force, equal to the weight of the magnet, together with a couple. The resultant of the vertical components of the tensions is therefore
along the line whose projection is 0 , the intersection of $A A^{\prime}$ and $B B^{\prime}$, and either of these lines is divided in O in the ratio of W^{\prime} to W.
The horizontal components of the tensions form a couple, and are therefore equal in magnitude and parallel in direction. Calling either of them Q, the moment of the couple which they form is

$$
\begin{equation*}
L=Q \cdot P P^{\prime}, \tag{1}
\end{equation*}
$$

where $P P^{\prime}$ is the distance between the parallel lines $A B$ and $A^{\prime} B^{\prime}$.

To find the value of L we have the equations of moments

$$
\begin{equation*}
Q h=W \cdot A B=W^{\prime} \cdot A^{\prime} B^{\prime}, \tag{2}
\end{equation*}
$$

and the geometrical equation

$$
\begin{equation*}
\left(A B+A^{\prime} B^{\prime}\right) P P^{\prime}=a b \sin (a-\beta), \tag{3}
\end{equation*}
$$

whence we obtain,

$$
\begin{equation*}
L=Q \cdot P P^{\prime}=\frac{\alpha b}{h} \frac{W W^{\prime}}{W+W^{\prime}} \sin (\alpha-\beta) . \tag{4}
\end{equation*}
$$

If m is the mass of the suspended apparatus, and g the intensity of gravity, $\quad W+W^{\prime}=m g$.
If we also write $\quad W-W^{\prime}=n m g$,
we find

$$
\begin{equation*}
L=\frac{1}{4}\left(1-n^{2}\right) m g \frac{\alpha b}{h} \sin (a-\beta) . \tag{5}
\end{equation*}
$$

The value of L is therefore a maximum with respect to n when n is zero, that is, when the weight of the suspended mass is equally borne by the two wires.

We may adjust the tensions of the wires to equality by observing the time of vibration, and making it a minimum, or we may obtain a self-acting adjustment by attaching the ends of the wires, as in Fig. 16, to a pulley, which turns on its axis till the tensions are equal.

The distance between the upper ends of the suspension wires is regulated by means of two other pulleys. The distance between the lower ends of the wires is also capable of adjustment.

By this adjustment of the tension, the couple arising from the tensions of the wires becomes

$$
L=\frac{1}{4} \frac{a b}{h} m g \sin (\alpha-\beta) .
$$

The moment of the couple arising from the torsion of the wires is of the form $\quad \tau(\gamma-\beta)$, where τ is the sum of the coefficients of torsion of the wires.

The wires ought to be without torsion when $a=\beta$, we may then make $\gamma=a$.
The moment of the couple arising from the horizontal magnetic force is of the form

$$
M H \sin (\delta-\theta),
$$

where δ is the magnetic declination, and θ is the azimuth of the

Fig. 16.

Fig. 17.
axis of the magnet. We shall avoid the introduction of unnecessary symbols without sacrificing generality if we assume that the axis of the magnet is parallel to $B B^{\prime}$, or that $\beta=\theta$.

The equation of motion then becomes

$$
\begin{equation*}
A \frac{d^{2} \theta}{d t^{2}}=M H \sin (\delta-\theta)+\frac{1}{4} \frac{a b}{h} m g \sin (\alpha-\theta)+\tau(a-\theta) \tag{8}
\end{equation*}
$$

 tho manduetis.

 total fureo.

 fores is $/ I$ tha i, and the theal fores on $/ /$ me

 free to roll on them.

 sot itsalf in the direfinh of the total magnotie fores.
 that it. wopht how bot inthenere its provition of cquilitrima,

 angen whel thin line manes with the malime to zore, when we

 to the heriantal.

Leet fine the perpodicular from the entre of inertia on the plane wh whels the nxis rolla, then p will le a fumetion of t, whatever to the mhape of the rollitge surfaces If heoth the rellimg anctiona of the buta of the axia are circular wo have an "quation of the form,

$$
\begin{equation*}
10=\tan (t)(\theta) \tag{1}
\end{equation*}
$$

Whes at is the dintane of the astre of inotin from the line
 which thin lime maken with the lime of collmantion.

 litrima

> Mamenta is m!m
must lat a maximum with anper tho or
if the and of the axis are oy lindrical.

Also, if T be the time of vibration about the position of equilibrium,

$$
\begin{equation*}
M I+m g a \sin (\theta+a)=\frac{4 \pi^{2} A}{T^{2}} \tag{4}
\end{equation*}
$$

where A is the moment of inertia of the needle about its axis of rotation, and θ is determined by (3).

In determining the dip a reading is taken with the dip-circle in the magnetic meridian and with the graduation towards the west.

Let θ_{1} be this reading, then we have

$$
\begin{equation*}
M I \sin \left(\theta_{1}+\lambda-i\right)=m g a \cos \left(\theta_{1}+\alpha\right) . \tag{5}
\end{equation*}
$$

The instrument is now turned about a vertical axis through 180°, so that the graduation is to the east, and if θ_{2} is the now reading,

$$
\begin{equation*}
M I \sin \left(\theta_{2}+\lambda-\pi+i\right)=m g a \cos \left(\theta_{2}+a\right) . \tag{6}
\end{equation*}
$$

Taking (6) from (5), and remembering that θ_{1} is nearly equal. to i, and θ_{2} nearly equal to $\pi \rightarrow i$, and that λ is a small angle, such that mgad may be neglected in comparison with $M I$,

$$
\begin{equation*}
M I\left(\theta_{1}-\theta_{2}+\pi-2 i\right)=2 m g a \cos i \cos \alpha . \tag{7}
\end{equation*}
$$

Now take the magnet from its bearings and place it in the deflexion apparatus, Art. 453, so as to indicate its own magnetic moment by the deflexion of a suspended magnet, then

$$
\begin{equation*}
M=\frac{1}{2} r^{3} H D \tag{8}
\end{equation*}
$$

where D is the tangent of the deflexion.
Next, reverse the magnetism of the needle and determine its new magnetic moment M^{\prime}, by observing a new deflexion the tangent of which is D^{\prime}, then the distance being the same as before,

$$
\begin{align*}
M^{\prime} & =\frac{1}{2} r^{3} H D^{\prime} \tag{9}\\
M D^{\prime} & =M^{\prime} D \tag{10}
\end{align*}
$$

Then place it on its bearings and take two readings, θ_{3} and θ_{4}, in which θ_{3} is nearly $\pi+i$, and θ_{4} nearly $-i$,

$$
\begin{align*}
M^{\prime} I \sin \left(\theta_{3}+\lambda^{\prime}-\pi-i\right) & =m g a \cos \left(\theta_{3}+a\right) \tag{11}\\
M^{\prime} I \sin \left(\theta_{4}+\lambda^{\prime}+i\right) & =m g a \cos \left(\theta_{4}+a\right), \tag{12}
\end{align*}
$$

whence, as before,

$$
\begin{equation*}
M^{\prime} I\left(\theta_{3}-\theta_{4}-\pi-2 i\right)=-2 m g a \cos i \cos a, \tag{13}
\end{equation*}
$$

and on adding (7),

$$
\begin{align*}
M I\left(\theta_{1}-\theta_{2}+\pi-2 i\right)+M^{\prime} I\left(\theta_{3}-\theta_{4}-\pi-2 i\right) & =0 \tag{14}\\
\text { or } \quad D\left(\theta_{1}-\theta_{2}+\pi-2 i\right)+D^{\prime}\left(\theta_{3}-\theta_{4}-\pi-2 i\right) & =0
\end{align*}
$$

Whones we finel the rig.

$$
\begin{array}{ccc}
H\left(\theta_{3} \quad \|_{2} n\right)+l\left(l_{1}\right. & \left.\theta_{1}-n\right) \tag{16}\\
2 H+2 H
\end{array}
$$

In taking oboe vatione with the diferigele, the vertien axis

 the phate of the cirelo in the magnotie meriblan, and with

 which suover enterotrie with the dipeitele. 'The cromswires
 burk on the tmathet, and the position of the arm in then remi

 from the axhe of thes magne wot luing ennentric with the dipcirele.
 vervationa are mate.

The angum in then turnel round mo that the onde of the axto are revorwel, nat four more olmorvations atw male looking at the other mide of the maynet.
"Tho magnotization of the magent in then wevomel so that the
 dhervationa am taken in this atate, atul the nixtorn observations vonbine to determite the towe dip.

46\%.] It in fomm that in mpite of the utmomb care the dip, an than donlucel from ohnorvationn male with owe dipecirelo, diflore pereeptibly from that dexluces from ohwervations with another dipecirclo at tho matne place, Mr. Hroun has pointed ont the etbot dhe to ollipuidity of the bearing of the axle, and how to sorreos it by taking obmorvation with the magnet magnotimed to different atrongths.

The prineiple of thin mothol may be matud thus, Wo shall suppose that the error of any one obwervation is a small
quantity not exceeding a degree. We shall also suppose that some unknown but regular force acts upon the magnet, disturbing it from its true position.

If L is the moment of this force, θ_{0} the true dip, and θ the observed dip, then

$$
\begin{align*}
L & =M I \sin \left(\theta-\theta_{0}\right), \tag{17}\\
& =M I\left(\theta-\theta_{0}\right), \tag{18}
\end{align*}
$$

since $\theta-\theta_{0}$ is small.
It is evident that the greater M becomes the nearer docs the needle approach its proper position. Now let the operation of taking the dip be performed twice, first with the magnetization equal to M_{1}, the greatest that the needle is capable of, and nest with the magnetization equal to M_{2}, a much smaller value but sufficient to make the readings distinct and the error still moderate. Let θ_{1} and θ_{2} be the dips deduced from these two sets of observations, and let L be the mean value of the unknown disturbing force for the eight positions of each dctermination, which we shall suppose the same for both detcrminations. Then

$$
\begin{equation*}
L=M_{1} I\left(\theta_{1}-\theta_{0}\right)=M_{2} I\left(\theta_{2}-\theta_{0}\right) . \tag{19}
\end{equation*}
$$

Hence $\quad \theta_{0}=\frac{M_{1} \theta_{1}-M_{2} \theta_{2}}{M_{1}-M_{2}}, \quad L=M_{1} M_{2} I \frac{\theta_{1}-\theta_{2}}{M_{2}-M_{1}}$.
If we find that several experiments give nearly equal values for L, then we may consider that θ_{0} must be very nearly the true value of the dip.
463.] Dr. Joule has recently constructed a new dip-circle, in which the axis of the needle, instead of rolling on horizontal agate planes, is slung on two filaments of silk or spider's thread, the ends of the filaments being attached to the arms of a delicate balance. The axis of the needle thus rolls on two loops of silk fibre, and Dr. Joule finds that its freedom of motion is much greater than when it rolls on agate planes.

In Fig. 18, NS is the needle, $C C^{\prime}$ is its axis, consisting of a straight cylindrical wire, and $P C Q, P^{\prime} C^{\prime \prime} Q^{\prime}$ are the filaments on which the axis rolls. $P O Q$ is the balance, consisting of a double bent lever supported by a wire, $O^{\prime} O^{\prime}$, stretched horizontally between the prongs of a forked piece, and having a counterpoise R which can be screwed up or down, so that the balance is in neutral equilibrium about $0^{\prime} 0^{\prime}$.

In order that the needle may be in neutral equilibrium as the needle rolls on the filaments the centre of gravity must neither rise nor fall. Hence the distance $O C$ must remain constant as the needle rolls. This condition will be fulfilled if the arms of the balance $O P$ and $O Q$ are equal, and if the filaments are at right angles to the arms.
Dr. Joule finds that the needle should not be more than five inches long. When it is eight inches long, the bending of the needle tends to diminish the apparent dip by a fraction of a minute. The axis of the needle was originally of steel wire, straightened by being brought to a red heat while stretched by a weight, but Dr. Joule found that with the new suspension it is not necessary to use steel wire, for platinum and even standard gold are hard enough.
The balance is attached to a wire $O^{\prime} O^{\prime}$ about a foot long stretched horizontally between the prongs of a fork. This fork is turned round in azimuth by means of a circle at the top of a tripod which supports the whole. Six complete observations of the dip can be obtained in one hour, and the average error of a single observation is a

Fig. 18. fraction of a minute of arc.

It is proposed that the dip-needle in the Cambridge Physical Laboratory shall be observed by means of a double image instrument, consisting of two totally reflecting prisms placed as in Fig. 19 and mounted on a vertical graduated circle, so that the plane of refexion may be turned round a horizontal axis nearly coinciding with the prolongation of the axis of

 about the axis of the wermal wite then in tow base

 circle.

 of inertia of the magnet num ita nate.
 much more accuratu that it in unal to drelues that botas fors from the horizontal fores by moan of the myation

$$
I=11 \text { noto }
$$

 equilibrium with its magnotio axim nemely harimontal.

If Z is the vertical component of the magrewtionco, If We
magnetic moment, and θ the small angle which the magnetic axis makes with the horizon,

$$
M Z \cos \theta=m g a \cos (\alpha-\theta)
$$

where m is the mass of the magnet, g the force of gravity, a the distance of the centre of gravity from the axis of suspension, and a the angle which the plane through the axis and the centre of gravity makes with the magnetic axis.
Hence, for the small variation of vertical force δZ, there will be since θ is very small a variation of the angular position of the magnet $\delta \theta$ such that

$$
M \delta Z=m g a \sin (\alpha-\theta) \delta \theta .
$$

In practice this instrument is not used to determine the absolute value of the vertical force, but only to register its small variations.

For this purpose it is sufficient to know the absolute value of Z when $\theta=0$, and the value of $\frac{d Z}{d \theta}$.

The value of Z, when the horizontal force and the dip are known, is found from the equation $\mathbb{Z}=H \tan \theta_{0}$, where θ_{0} is the dip and H the horizontal force.

To find the deflexion due to a given variation of Z, take a magnet and place it with its axis east and west, and with its centre at a known distance r_{1} east or west from the declinometer, as in experiments on deflexion, and let the tangent of deflexion be D_{1}.

Then place it with its axis vertical and with its centre at a distance r_{2} above or below the centre of the vertical force magnetometer, and let the tangent of the deflexion produced in the magnetometer be D_{2}. Then, if the moment of the deflecting magnet is M^{\prime},

$$
\begin{gathered}
2 M=H r_{1}^{3} D_{1}=\frac{d Z}{d \theta} r_{2}^{3} D_{2} . \\
\frac{d Z}{d \theta}=H \frac{r_{1}^{3}}{r_{2}^{3}} \frac{D_{1}}{D_{2}} .
\end{gathered}
$$

The actual value of the vertical force at any instant is

$$
Z=Z_{0}+\theta \frac{d Z}{d \theta},
$$

where Z_{0} is the value of Z when $\theta=0$.
For continuous observations of the variations of magnetic

 magnetometer gives the sataten of the butase : th

 and dip.

CHAPTER VIII.

ON TERRESTRIAL MAGNETISM.

465.] Our knowledge of Terrestrial Magnetism is derived from the study of the distribution of magnetic force on the earth's surface at any one time, and of the changes in that distribution at different times.

The magnetic force at any one place and time is known when its three coordinates are known. These coordinates may be given in the form of the declination or azimuth of the force, the dip or inclination to the horizon, and the total intensity.

The most convenient method, however, for investigating the general distribution of magnetic force on the earth's surface is to consider the magnitudes of the three components of the force,

$$
\left.\begin{array}{l}
X=H \cos \delta, \text { directed due north } \\
Y=H \sin \delta, \text { directed due west, } \tag{1}\\
Z=H \tan \theta, \text { directed vertically downwards, }
\end{array}\right\}
$$

where H denotes the horizontal force, δ the declination, and θ the dip.

If V is the magnetic potential at the earth's surface, and if we consider the earth a sphere of radius a, then

$$
\begin{equation*}
X=-\frac{1}{a} \frac{d V}{d l}, \quad Y=-\frac{1}{a \cos l} \frac{d V}{d \lambda}, \quad Z=\frac{d V}{d r} \tag{2}
\end{equation*}
$$

where l is the latitude, λ the longitude, and r the distance from the centre of the earth.

A knowledge of V over the surface of the earth may be obtained from the observations of horizontal force alone as follows.

Let V_{0} be the value of V at the true north pole, then, taking VOL. II.
the linc-integral alomg any mordian, we tim,

$$
\begin{equation*}
V=\left.u\right|_{\square} ^{+} x+1+1, \tag{is}
\end{equation*}
$$

Thus the potential may fue found for mot pom wh the wathes surface provided we know the valus of f, the whtherly

 for V_{0}.
 the value of X along any given mothlian, ath abo, Ame af over the whole surface.
Lot

$$
\begin{equation*}
V_{y}=-4 \int_{y}^{4} x d l+v_{\infty} \tag{111}
\end{equation*}
$$

 from the pole to the parallel/, then

$$
\begin{equation*}
V=V_{1}-4 \int_{A}^{3} \operatorname{rcos} h d A \tag{14}
\end{equation*}
$$

where the integration is performon! nomp the forallol ? fanes tha given moridian λ_{0} to the reypurst pant.
 carth's surface has bern malle, m, that the bataon if if iff or of both are known for nvery fuint of the wathe matham ont a

 placos there are large tracts of the wartion nutame nlone whed wo have no data.

Muyumtir durarg.

 represented with sufficient acenmey by the formath

$$
\begin{equation*}
V=\text { const. }-a\left(A_{1} l+A_{2} A+\frac{1}{3} H_{1} l^{3}+H_{8} l A+\mid H_{2} A^{3}, \text { En }^{2}\right) \tag{n}
\end{equation*}
$$

whence

$$
\begin{align*}
X & =A_{1}+B_{1} l+B_{2} \lambda, \tag{7}\\
Y \cos l & =A_{2}+B_{2} l+B_{3} \lambda . \tag{8}
\end{align*}
$$

Let there be n stations whose latitudes are $l_{1}, l_{2}, \ldots \& c$. and longtitudes λ_{1}, λ_{2}, \&c., and let X and Y be found for each station.

Let

$$
\begin{equation*}
l_{0}=\frac{1}{n} \Sigma(l), \quad \text { and } \lambda_{0}=\frac{1}{n} \Sigma(\lambda), \tag{9}
\end{equation*}
$$

l_{0} and λ_{0} may be called the latitude and longitude of the central station. Let

$$
\begin{equation*}
X_{0}=\frac{1}{n} \Sigma(X), \quad \text { and } \quad Y_{0} \cos l_{0}=\frac{1}{n} \Sigma(Y \cos l) \tag{10}
\end{equation*}
$$

then X_{0} and Y_{0} are the values of X and Y at the imaginary central station, then

$$
\begin{align*}
X & =X_{0}+B_{1}\left(l-l_{0}\right)+B_{2}\left(\lambda-\lambda_{0}\right), \tag{11}\\
Y \cos l & =Y_{0} \cos l_{0}+B_{2}\left(l-l_{0}\right)+B_{3}\left(\lambda-\lambda_{0}\right) . \tag{12}
\end{align*}
$$

We have n equations of the form (11) and n of the form (12). If we denote the probable error in the determination of X by ξ, and in that of $Y \cos l$ by η, then we may calculate ξ and η on the supposition that they arise from errors of observation of H and δ.

Let the probable error of H be h, and that of δ, Δ, then since

$$
\begin{aligned}
d X & =\cos \delta . d H-H \sin \delta . d \delta \\
\xi^{2} & =h^{2} \cos ^{2} \delta+\Delta^{2} H^{2} \sin ^{2} \delta
\end{aligned}
$$

Similarly $\quad \eta^{2}=h^{2} \sin ^{2} \delta+\Delta^{2} H^{2} \cos ^{2} \delta$.
If the variations of X and Y from their values as given by equations of the form (11) and (12) considerably exceed the probable errors of observation, we may conclude that they are due to local attractions, and then we have no reason to give the ratio of ξ to η any other value than unity.

According to the method of least squares we multiply the equations of the form (11) by η, and those of the form (12) by ξ to make their probable error the same. We then multiply each equation by the coefficient of one of the unknown quantities B_{1}, B_{2}, or B_{3} and add the results, thus obtaining three equations from which to find B_{1}, B_{2}, B_{3}, viz.

$$
\begin{array}{cc}
P_{1}=B_{1} b_{1}+B_{2} b_{2}, \\
\eta^{2} P_{2}+\xi^{2} Q_{1}= & B_{1} \eta^{2} b_{2}+B_{2}\left(\xi^{2} b_{1}+\eta^{2} b_{3}\right)+B_{3} \xi^{2} b_{2}, \\
Q_{2}= & B_{2} b_{2} \\
\text { K } 2 & +B_{3} b_{3} ;
\end{array}
$$

in which we write for conciseness,

$$
b_{1}=\Sigma\left(l^{2}\right)-n l_{0}^{2}, \quad b_{2}=\Sigma(l \lambda)-n l_{0} \lambda_{0}, \quad b_{3}=\Sigma\left(\lambda^{2}\right)-n \lambda_{0}{ }^{2},
$$

$$
P_{1}=\Sigma(l X)-n l_{0} X_{0}, \quad Q_{1}=\Sigma(l Y \cos l)-n l_{0} Y_{0} \cos l_{0}
$$

$$
P_{2}=\Sigma(\lambda X)-n \lambda_{0} X_{0}, \quad Q_{2}=\Sigma(\lambda Y \cos l)-n \lambda_{0} Y_{0} \cos l_{0}
$$

By calculating B_{1}, B_{2}, and B_{3}, and substituting in equations (11) and (12), we can obtain the values of X and Y at any point within the limits of the survey free from the local disturbances which are found to exist where the rock near the station is magnetic, as most igneous rocks are.

Surveys of this kind can be made only in countries where magnetic instruments can be carried about and sot up in a great many stations. For other parts of the world we must be content to find the distribution of the magnetic elements by interpolation between their values at a few stations at great distances from each other.
467.] Let us now suppose that by processes of this kind, or by the equivalent graphical process of constructing charts of the lines of equal values of the magnetic elcments, the values of X and Y, and thence of the potential V, are known over the whole surface of the globe. The next step is to expand V in the form of a series of spherical surface harmonics.

If the earth were magnetized uniformly and in the same, direction throughout its interior, V would be a harmonic of the first degree, the magnetic meridians would be great circles passing through two magnetic poles diametrically opposite, the magnetic equator would be a great circle, the horizontal force would be equal at all points of the magnetic equator, and if H_{0} is this constant value, the value at any other point would be $H=H_{0} \cos l^{\prime}$, where l^{\prime} is the magnetic latitude. The vertical force at any point would be $Z=2 I_{0} \sin l^{\prime}$, and if θ is the dip, $\tan \theta$ would be $=2 \tan l^{\prime}$.

In the case of the earth, the magnetic equator is defined to be the line of no dip. It is not a great circle of the sphere.

The magnetic poles are defined to be the points where there is no horizontal force, or where the dip is 90°. There are two such points, one in the northern and one in the southern regions, but they are not diametrically opposite, and the line joining them is not parallel to the magnetic axis of the earth.
468.] The magnetic poles are the points where the value of V
on the surface of the earth is a maximum or minimum, or is stationary.

At any point where the potential is a minimum the north end of the dip-needle points vertically downwards, and if a compassneedle be placed anywhere near such a point, the north end will point towards that point.

At points where the potential is a maximum the south end of the dip-needle points downwards, and in the neighbourhood the south end of the compass-needle points towards the point.

If there are p minima of V on the earth's surface there must be $p-1$ other points, where the north end of the dip-needle points downwards, but where the compass-needle, when carried in a circle round the point, instead of revolving so that its north end points constantly to the centre, revolves in the opposite direction, so as to turn sometimes its north end and sometimes its south end towards the point.

If we call the points where the potential is a minimum true north poles, then these other points may be called false north poles, because the compass-needle is not true to them. If there are p true north poles, there must be $p-1$ false north poles, and in like manner, if there are q true south poles, there must be $q-1$ false south poles. The number of poles of the same name must be odd, so that the opinion at one time prevalent, that there are two north poles and two south poles, is erroneous. According to Gauss there is in fact only one true north pole and one true south pole on the earth's surface, and therefore there are no false poles. The line joining these poles is not a diameter of the earth, and it is not parallel to the earth's magnetic axis.
469.] Most of the early investigators into the nature of the earth's magnetism endeavoured to express it as the result of the action of one or more bar magnets, the positions of the poles of which were to be determined. Gauss was the first to express the distribution of the earth's magnetism in a perfectly general way by expanding its potential in a series of solid harmonics, the coefficients of which he determined for the first four degrees. These coefficients are 24 in number, 3 for the first degree, 5 for the second, 7 for the third, and 9 for the fourth. All these terms are found necessary in order to give a tolerably accurate representation of the actual state of the earth's magnetism.

 of the horizontal fore at wery print on the enthatata,

 to the earthis surface.
 spherical harmonics.

$$
\begin{aligned}
& V=A_{i}^{r}+K c \cdot+A_{i}\left({ }_{a}^{r}\right)^{r}+\ldots \ldots
\end{aligned}
$$

 the part due to canses within the amble.

The observations of horizontal fores give un the onm ax theme
 order i is

$$
I_{0}=A_{0}+U_{0}
$$

The observations of vertical fores giva, an

$$
Z=\frac{d V}{d r}
$$

and the term of the order $;$ in $n \%$ in

$$
u Z_{0}=i, 1, \cdots\left(i+1 H H_{0}\right.
$$

Hence tho part due to "xtermal camers in

$$
A_{i}=\begin{gathered}
(i+1) I_{i}+n \%_{0} \\
\Delta+1
\end{gathered}
$$

and the part duo to caumen within the math in

$$
B_{i}=\begin{gathered}
i V_{i}-1 / Z_{1} \\
2+1
\end{gathered}
$$

The oxpansion of V has hitherta beeds calculataval waly fors the mean value of V at or near cortain opoold. So spymaciablide part
of this mean value appears to be due to causes external to the earth.
471.] We do not yet know enough of the.form of the expansion of the solar and lunar parts of the variations of V to determine by this method whether any part of these variations arises from magnetic force acting from without. It is certain, however, as the calculations of MM. Stoney and Chambers have shewn, that the principal part of these variations cannot arise from any direct magnetic action of the sun or moon, supposing these bodies to be magnetic*.
472.] The principal changes in the magnetic force to which attention has been directed are as follows.

I. The more Regular Variations.

(1) The Solar variations, depending on the hour of the day and the time of the year.
(2) The Lunar variations, depending on the moon's hour angle and on her other elements of position.
(3) These variations do not repeat themselves in different years, but seem to be subject to a variation of longer period of about eleven years.
(4) Besides this, there is a secular alteration in the state of the earth's magnetism, which has been going on ever since magnetic observations have been made, and is producing changes of the magnetic elements of far greater magnitude than any of the variations of small period.

II. The Disturbances.

473.] Besides the more regular changes, the magnetic elements are subject to sudden disturbances of greater or less amount. It is found that these disturbances are more powerful and frequent at one time than at another, and that at times of great disturbance the laws of the regular variations are masked, though

[^30]they are very distinet at times of mand divemtame $\quad 16$, wo

 in stations widdly distant.

Mr. Airy has fomm that a large propertion of the dotant.

 through a wire phaed umberatht the tanges

 extonsive.

 of tidal action causes the menidiurnal wintasta

 netism, that ite magnetio perlem mowe showly frons onse pant of the globe to another? When we conming that the atsombat of tho magnetization of the great glown of the emath on quater ceans.

our steel magnets, these immense changes in so large a body force us to conclude that we are not yet acquainted with one of the most powerful agents in nature, the scene of whose activity lies in those inner depths of the earth, to the knowledge of which we have so few means of access*.

* \{Balfour Stewart suggested that the diurnal variations are due to electric current induced in the rarified air in the upper regions of the atmosphere as it moves across the earth's lines of force. Schuster, Phil. Trans. A, 1889, p. 467, by applying Gauss's method, has lately shewn that the greater part of these disturbances have their origin above the surface of the earth. $\}$

PART IV.

ELECTROMAGNETISM.

CHAPTER I.

ELECTROMAGNETIC FORCE.

475.] It had been noticed by many different observers that in certain cases magnetism is produced or destroyed in needles by electric discharges through them or near them, and conjectures of various kinds had been made as to the relation between magnetism and electricity, but the laws of these phenomena, and the form of these relations, remained entirely unknown till Hans Christian Örsted*, at a private lecture to a few advanced students at Copenhagen, observed that a wire connecting the ends of a voltaic battery affected a magnet in its vicinity. This discovery he published in a tract entitled Experimenta circa effectum Conflictils Electrici in Acum Magneticam, dated July 21, 1820.

Experiments on the relation of the magnet to bodies charged with electricity had been tried without any result till Örsted endeavoured to ascertain the effect of a wire heated by an electric current. He discovered, however, that the current itself, and not the heat of the wire, was the cause of the action, and that the 'electric conflict acts in a revolving manner,' that is, that a magnet placed near a wire transmitting an electric current tends to set itself perpendicular to the wire, and with the

[^31]same end always pointing forwards as the magnet is moved. round the wire.
476.] It appears therefore that in the space surrounding a wire transmitting an electric current a magnet is acted on by forces dependent on the position of the wire and on the strength of the current. The space in which these forces act may therefore be considered as a magnetic field, and we may study it in the same way as we have already studied the field in the neighbourhood of ordinary magnets, by tracing the course of the lines of magnetic force, and measuring the intensity of the force at every point.
477.] Let us begin with the case of an indefinitcly long straight wire carrying an electric current. If a man were to place himself in imagination in the position of the wire, so that the current should flow from his head to his feet, then a magnet suspended freely before him would set itself so that the end which points north would, under the action of the current, point to his right hand.

The lines of magnetic force are everywhere at right angles to planes drawn through the wire, and are therefore circles each in a plane perpendicular to the wire, which passes through its centre. The pole of a magnet which points north, if carried round one of these circles from left to right, would experience a force acting always in the direction of its motion. The other pole of the same magnet would experience a force in the opposite direction.
478.] To compare these forces let the wire be supposed vertical, and the current a descending one, and let a magnet bo placed on an apparatus which is free to rotate about a vertical axis coinciding with the wire. It is found that under

Fig. 21. these circumstances the current has no effect in causing the rotation of the apparatus as a whole about itself as an axis. Hence the action of the vertical current on the two poles of the magnet is such that the statical moments of the two forces about the current as an axis are equal and opposite. Let m_{1}
and m_{2} be the strengths of the two poles, r_{1} and r_{2} their distances from the axis of the wire, T_{1} and T_{2} the intensities of the magnetic force due to the current at the two poles respectively, then the force on n_{1} is $m_{1} T_{1}$, and since it is at right angles to the axis its moment is $m_{1} T_{1} r_{1}$. Similarly that of the force on the other pole is $m_{2} T_{2} r_{2}$, and since there is no motion observed,

$$
m_{1} T_{1} r_{1}+m_{2} T_{2} r_{2}=0
$$

But we know that in all magnets

$$
\begin{gathered}
m_{1}+m_{2}=0 \\
T_{1} r_{1}=T_{2} r_{2}
\end{gathered}
$$

Hence
or the electromagnetic force due to a straight current of infinite length is perpendicular to the current, and varies inversely as the distance from it.
479.] Since the product T_{r} depends on the strength of the current it may be employed as a measure of the current. This method of measurement is different from that founded upon electrostatic phenomena, and as it depends on the magnetic phenomena produced by electric currents it is called the Electromagnetic system of measurement. In the electromagnetic system if i is the current, $\quad \operatorname{Tr}=2 i$.
480.] If the wire be taken for the axis of z, then the rectangular components of T are

$$
X=-2 i \frac{y}{r^{2}}, \quad Y=2 i \frac{x}{r^{2}}, \quad Z=0
$$

Here $X d x+Y d y+Z d z$ is a complete differential, being that of

$$
2 i \tan ^{-1} \frac{y}{x}+C
$$

Hence the magnetic force in the field can be deduced from a potential function, as in several former instances, but the potential is in this case a function having an infinite series of values whose common difference is $4 \pi i$. The differential coefficients of the potential with respect to the coordinates have, however, definite and single values at every point.

The existence of a potential function in the field near an electric current is not a self-evident result of the principle of the conservation of energy, for in all actual currents there is a continual expenditure of the electric energy of the battery in overcoming the resistance of the wire, so that unless the amount
of this expenditure were accurately known, it might be suspected that part of the energy of the battery was employed in causing work to be done on a magnet moving in a cycle. In fact, if a magnetic pole, m, moves round a closed curve which embraces the wire, work is actually done to the amount of $4 \pi m i$. It is only for closed paths which do not embrace the wire that the line-integral of the force vanishes. We must therefore for the present consider the law of force and the existence of a potential as resting on the evidence of the experiment already described.
481.] If we consider the space surrounding an infinite straight line we shall see that it is a cyclic space, because it returns into itself. If we now conceive a plane, or any other surface, commencing at the straight line and extending on one side of it to infinity, this surface may be regarded as a diaphragm which reduces the cyclic space to an acyclic one. If from any fixed point lines be drawn to any other point without cutting the diaphragm, and the potential be defined as the line-integral of the force taken along one of these lines, the potential at any point will then have a single definite value.

The magnetic field is now identical in all respects with that due to a magnetic shell coinciding with this surface, the strength of the shell being i. This shell is bounded on one edge by the infinite straight line. The other parts of its boundary are at an infinite distance from the part of the field under consideration.
482.] In all actual experiments the current forms a closed circuit of finite dimensions. We shall therefore compare the magnetic action of a finite circuit with that of a magnetic shell of which the circuit is the bounding edge.

It has been shewn by numerous experiments, of which the earliest are those of Ampère, and the most accurate those of Weber, that the magnetic action of a small plane circuit at distances which are great compared with the dimensions of the circuit is the same as that of a magnet whose axis is normal to the plane of the circuit, and whose magnetic moment is equal to the area of the circuit multiplied by the strength of the current*.

[^32]

 troduced by Ampere for thin parpone
 through the point I. On thim whemer alraw tho.. astion of line

 from I, and with the radii of corvature of Ho surfate

 olements as it is in the original cirent

 tions.

 hose which coincide with the origitan raterat Thos ental witmot If the elemmary cirouita in therofure equinalone bo Hat at tho riginal circuit.

 he olomentary shell on f^{\prime} in empivalobt the that of the oldenventary
 otie sholl of strongth i, comencling woth tho enafaco is mat oundod by the original circuit, and the wanketir actuon of te whole shell on l ' is equivalont th that of the cheost.

It is manifest that the action of the circuit is independent of the form of the surface S, which was drawn in a perfectly arbitrary manner so as to fill it up. We see from this that the action of a magnetic shell depends only on the form of its edge and not on the form of the shell itself. This result we obtained before, in Art. 410, but it is instructive to see how it may be deduced from electromagnetic considerations.
The magnetic force due to the circuit at any point is therefore identical in magnitude and direction with that due to a magnetic shell bounded by the circuit and not passing through the point, the strength of the shell being numerically equal to that of the current. The direction of the current in the circuit is related to the direction of magnetization of the shell, so that if a man were to stand with his feet on that side of the shell which we call the positive side, and which tends to point to the north, the current in front of him would be from right to left.
485.] The magnetic potential of the circuit, however, differs from that of the magnetic shell for those points which are in the substance of the magnetic shell.
If ω is the solid angle subtended at the point P by the magnetic shell, reckoned positive when the positive or austral side of the shell is next to P, then the magnetic potential at any point not in the shell itself is $\omega \phi$, where ϕ is the strength of the shell. At any point in the substance of the shell itself we may suppose the shell divided into two parts whose strengths are ϕ_{1} and ϕ_{2}, where $\phi_{1}+\phi_{2}=\phi$, such that the point is on the positive side of ϕ_{1} and on the negative side of ϕ_{2}. The potential at this point is

$$
\omega\left(\phi_{1}+\phi_{2}\right)-4 \pi \phi_{2} .
$$

On the negative side of the shell the potential becomes $\phi(\omega-4 \pi)$. In this case therefore the potential is continuous, and at every point has a single determinate value. In the case of the electric circuit, on the other hand, the magnetic potential at every point not in the conducting wire itself is equal to $i \omega$, where i is the strength of the current, and ω is the solid angle subtended by a circuit at the point, and is reckoned positive when the current, as seen from P, circulates in the direction opposite to that of the hands of a watch.
The quantity $i \omega$ is a function having an infinite series of values whose common difference is $4 \pi i$. The differential coefficients of
 torminate values for every $p^{\text {mint of atmer. }}$
486.] If a long thin thexibh whmathlmann wow flame in

 round the wire, and if they were free thentes then the the fines.

 and round the current while the other pulve thew sen That thas process may be repented intutititely, the louts of ther buathere must be transferred from one side of tha whe we to the nethert

 when ono branch is sponed to het the thastact pan the ratsent continues to flow through the oflow lasulag wo.l fors the

 it is divided at B, and aftur thowing thatagh thas nom leff and
 the cup of mercury (), and a wetion wire lwawalde, bown wheh the current flows.
 oapable of revolving nhout a vertion atio through 1", atal the
 through the aperture of the trengh. whe frome, ang the berth pole, leing heneath the phane of the trongh, ntw thon thom nimew

 trough which lias in front of the magrong ha that whath hee behind it, so that in wory complome tevedutan thos wagnet
 of the magnot revolves atrut the deocending curront in the
 of sign) subtended by the circular trough at the twed pollow, the
work done by the electromagnetic foree in a complete revolution is

$$
m i\left(4 \pi-\omega-\omega^{\prime}\right)
$$

where m is the strength of either pole, and i the strength of the current*.
487.] Let us now endeavour to form a notion of the state of the magnetic field near a linear electric circuit.

Let the value of ω, the solid angle subtended by the circuit, be found for every point of space, and let the surfaces for which ω is constant be described. These surfaces will be the equipotential surfaces. Each of these surfaces will be bounded by the circuit, and any two surfaces, ω_{1} and ω_{2}, will meet in the circuit at an angle $\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) \dagger$.

* [This problem may be discussed as follows: Referring to Fig. 23, Art. 491, let us take $O P$ in any position and introduce imaginary balancing currents i along $B O$ and x, y along $O B$. As the magnet attached to $O P$ is carried through a complete revolution no work is done on the south pole by the current i, supposed to pass along $A B O Z$, that pole describing a closed curve which does not embrace the current. The north pole however describes a closed curve which does embrace the current, and the work done upon it is $4 \pi \mathrm{mi}$. We have now to estimate the effects of the currents x in the circuit $B P O B$ and y in the circuit $B R P O B$. The potential of the north pole which is below the planes of those circuits will be

$$
-m x \omega_{\theta}+m y\left(\omega-\omega_{\theta}\right) \text { and, of the south, }-m x \omega_{\theta}^{\prime}-m y\left(-\omega^{\prime}+\omega_{\theta}^{\prime}\right),
$$

where ω_{θ} and ω_{θ}^{\prime} denote the solid angles subtended at the two poles by $B O P$, and ω, ω^{\prime} those subtended by the circular trough. The resultant potential is

$$
m y\left(\omega+\omega^{\prime}\right)-m i\left(\omega_{\theta}+\omega_{\theta}^{\prime}\right) .
$$

Hence as $O P$ revolves from $O P$ in the direction $N E S W$ back to $O P$ again the potential will change by $-m i\left(\omega+\omega^{\prime}\right)$. The work done by the currents is therefore that given in the text.]
\{The following is a slightly different way of obtaining this result:-The currents through the wires and the mercury trough are equivalent to a circular current $i-x$ round the trough, a current i round the circuit $P O B$ and a current i through $A B, B O$, and the vertical wire $0 Z$. The circular current will evidently not produce any force tending to make either pole travel round a circle co-axial with the circuit of the current. The North pole threads the circuit $A B, B O$, and the vertical $O Z$, once in each revolution, the work done on it is therefore $4 \pi i m$. If Ω and Ω^{\prime} are the numerical values of the solid angle subtended by the circuit $P O B$ at the north and south poles of the magnet respectively, then the potential energy of the magnet and circait is $-m i\left(\Omega+\Omega^{\prime}\right)$. Hence if θ is the angle $P O B$, the work done on the magnet in a complete revolution is

$$
-\int_{0}^{2 \pi} m i \frac{d}{d \theta}\left(\Omega+\Omega^{\prime}\right) d \theta=-m i\left(\omega+\omega^{\prime}\right)
$$

Hence the whole work done on the magnet is

$$
\left.m i\left\{4 \pi-\left(\omega+\omega^{\prime}\right)\right\}\right\} .
$$

$+\left\{\right.$ This can be deduced as follows:-Consider a point P on the surface ω_{1} near the line of intersection of the two equipotential surfaces, let O be a point on the line of intersection near P, then describe a sphere of unit radius with centre O. The solid angle subtended at P by the circuit will be measured by the area cut off the unit sphere by the tangent plane at O to the surface ω_{1}, and by an irregularly shaped cone determined by the shape of the circuit at some distance from O. Now consider a point Q on the second surface ω_{2} near to O, the solid angle subtended by the circuit at this point will be measured by the area cut off the unit sphere with centre 0 by the

 the line of the eirenit at matres of $t:$

 will be identieal with that of the averiar rasame

[^33]in a field of magnetic force of which the potential is V, is, by Art. 410,
$$
=\phi \iint\left(l \frac{d V}{d x}+m \frac{d V}{d y}+n \frac{d V}{d z}\right) d S,
$$
where l, m, n are the direction-cosines of the normal drawn from the positive side of the element $d S^{\prime}$ of the shell, and the integration is extended over the surface of the shell.

Now the surface-integral

$$
N=\iint(l a+m b+n c) d \cdot S
$$

where a, b, c are the components of the magnetic induction, represents the quantity of magnetic induction through the shell, or, in the language of Faraday, the number of lines of magnetic induction, reckoned algebraically, which pass through the shell from the negative to the positive side, lines which pass through the shell in the opposite direction being reckoned negative.

Remembering that the shell does not belong to the magnetic system to which the potential V is due, and that the magnetic force is therefore equal to the magnetic induction, we have

$$
a=-\frac{d V}{d x}, \quad b=-\frac{d V}{d y}, \quad c=-\frac{d V}{d z},
$$

and we may write the value of M,

$$
M=-\phi, N
$$

If δx_{1} represents any displacement of the shell, and X_{1} the force acting on tho shell so as to aid the displacement, then by the principle of conservation of energy,
or

$$
\begin{gathered}
X_{1} \delta x_{1}+\delta M=0, \\
X_{1}=\phi \frac{d N}{d x_{1}} .
\end{gathered}
$$

We have now determined the nature of the force which corresponds to any given displacement of the shell. It aids or resists that displacement accordingly as the displacement increases or diminishes N, the number of lines of induction which pass through the shell.

The same is true of the equivalent electric circuit. Any displacement of the circuit will be aided or resisted according as it increases or diminishes the number of lines of induction which pass through the circuit in the positive direction.

We must remember that the positive direction of a line of magnetic induction is the direction in which the pole of a magnet which points north tends to move along the line, and that a line of induction passes through the circuit in the positive direction, when the direction of the line of induction is related to the direction of the current of vitreous electricity in the circuit as the longitudinal to the rotational motion of a right-handed screw. See Art. 23.
490.] It is manifest that the force corresponding to any displacement of the circuit as a whole may be deduced at once from the theory of the magnetic shell. But this is not all. If a portion of the circuit is flexible, so that it may be displaced independently of the rest, we may make the edge of the shell capable of the same kind of displacement by cutting up the surface of the shell into a sufficient number of portions connected by flexible joints. Hence we conclude that if by the displacement of any portion of the circuit in a given direction the number of lines of induction which pass through the circuit can be increased, this displacement will be aided by the electromagnetic force acting on the circuit.

Every portion of the circuit therefore is acted on by a force urging it across the lines of magnetic induction so as to include a greater number of these lines within the embrace of the circuit, and the work done by the force.during this displacement is numerically equal to the number of the additional lines of induction multiplied by the strength of the current.

Let the element $d s$ of a circuit, in which a current of strength i is flowing, be moved parallel to itself through a space δx, it will sweep out an area in the form of a parallelogram whose sides are parallel and equal to $d s$ and δx respectively.

If the magnetic induction is denoted by \mathfrak{B}, and if its direction makes an angle ϵ with the normal to the parallelogram, the value of the increment of N corresponding to the displacement is found by multiplying the area of the parallelogram by $\mathfrak{B} \cos \epsilon$. The result of this operation is represented geometrically by the volume of a parallelopiped whose edges represent in magnitude and direction δx, $d s$, and \mathfrak{B}, and it is to be reckoned positive if when we point in these three directions in the order here given the pointer moves round the diagonal of the parallelopiped in the direction of the hands
of a watch*. The volume of this parallelopiped is equal to $X \delta x$.
If θ is the angle between $d s$ and \mathfrak{B}, the area of the parallelogram whose sides are $d s$ and \mathfrak{B} is $d s \cdot \mathfrak{B} \sin \theta$, and if η is the angle which the displacement δx makes with the normal to this parallelogram, the volume of the parallelopiped is

$$
d s . \mathfrak{B} \sin \theta \cdot \delta x \cos \eta=\delta N .
$$

Now

$$
\begin{gathered}
X \delta x=i \delta N=i d s . \mathfrak{B} \sin \theta \delta x \cos \eta, \\
X=i d s \cdot \mathfrak{B} \sin \theta \cos \eta
\end{gathered}
$$

and
is the force which urges $d s$, resolved in the direction δx.
The direction of this force is therefore perpendicular to the parallelogram, and its magnitude is equal to $i . d s . \mathfrak{B} \sin \theta$.

This is the area of a parallelogram whose sides represent in magnitude and direction $i d s$ and \mathfrak{B}. The force acting on $d s$ is therefore represented in magnitude by the area of this parallel ogram, and in direction by a normal to its plane drawn in the direction of the longitudinal motion of a right-handed screw, the handle of which is turned from the direction of the current $i d s$ to that of the magnetic induction \mathfrak{B}.

We may express in the language of Quaternions, both the direction and the magnitude of this force by saying that it is the vector part of the result of multiplying the vector $i d s$, the element of the current, by the vector \mathfrak{B}, the magnetic induction.
491.] We have thus completely determined the force which acts on any portion of an electric circuit placed
 in a magnetic field. If the circuit is moved in any way so that, after assuming various forms and positions, it returns to its original place, the strength of the current remaining constant during the motion, the whole amount of work done by the electromagnetic forces will be zero. Since this is true of any cycle of motions of the circuit, it follows that it is impossible to maintain by electromagnetic forces a motion of continuous rotation in any part of a linear circuit of constant strength against the resistance of friction, \&c.

[^34]

 have curents in the neqution dasertan

fin. Whak the wita than ensen it

 4. Hosen al.as: Niz. Theres

 current in which is x, thowing in the paestise Anserterta, and
 the negative direction.
 direction, normal to the fluter of the rese le
 to that of the hamls of n watelt, the area aof then finat careath

 The whole work done is therefore
depending only on the strength of the curront in $P O$. Hence, if i is maintained constant, the arm $O P$ will be carried round and round the circle with a uniforn force whose moment is $\frac{1}{2} i .0 P^{2}$. .n. If, as in northern latitudes, ${ }^{\infty}$ acts downwards, and if the current is inwards, the rotation will be in the negative direction, that is, in the direction $I Q B R$.
49:.] We are now able to pass from the mutual action of magnets and currents to the action of one circuit on another. For we know that the magnetic properties of an electric circuit O_{1}, with respect to any magnctic system M_{2}, are identical with those of a magnetic shell s_{1}, whose edge coincides with the circuit, and whose strength is numerically equal to that of the olectric curront. Let the magnetic systen $M I_{2}$ be a magnetic sholl S_{2}^{\prime}, then the mutual action between S_{1} and S_{2} is identical with that between S_{1} and a circuit \dot{C}_{2}^{\prime}, coinciding with the edge of \mathcal{S}_{2}^{\prime} and cqual in numerical strength, and this latter action is identical with that between C_{1} and C_{2}.

Hence the mutual action between two circuits C_{1} and C_{2} is identical with that between the corrosponding magnetic shells S_{1} and S_{2}.

We havo already invostigatod, in Art. 423, the mutual action of two magnetic shells whose edges are the closed curves s_{1} and s_{2}.

If we make

$$
M=\int_{0}^{\beta_{2}} \int_{0}^{\beta_{1} \cos \epsilon} d s_{1} d s_{2}
$$

where ϵ is the angle between the directions of the elements $d s_{1}$ and $d s_{2}$, and r is the distance between them, the integrations being extended ono round s_{2} and one round s_{1}, and if we call M the potential of the two closed curves s_{1} and s_{2}, then the potential enorgy duo to the mutual action of two magnetic shells whose strengths are i_{1} and i_{2} bounded by the two circuits is

$$
-i_{1} i_{2} M
$$

and the forco X, which aids any displacement δx, is

$$
i_{1} i_{2} \frac{d M}{d x} .
$$

The wholo theory of the force acting on any portion of an electric circuit due to the action of another electric circuit may be deduced from this result.
493.] The method which we have followed in this chapter is that of Faraday. Instead of beginning, as we shall do, following

Ampere, in the next chapter, with the have neline of a funtan of one circuit on a partion of annther, we whow, bast, that a

 magnetic shell. Wo thas thetermisa tha fora methes on the

 the action of one circuit on the whole an ang pashen of theo other.

 conductor.
 vortically downwards. In this came the wat of a maphel which points north will point to the righe hatel of n anat 1 wath hion fow

 having their contres in the avis of the catwas, that theat gemathes direction is north, cust, south, wowt.

Let another descending vertical current lne flawed hur west wh
 aro hore direeted tuwarda the north. The thertsena of the forme

 the current, to the north, the deretion of the mangerse asadurtions. The serow will then move townals the wat, that in. Hie forso

 in tho sume direetion attraet ench wher.

In the namo way we may whew that tur pabliol citwita

 from a straight current of strongth a im, as we lanve alaw a 18 Art. 479,

$$
z_{i}^{i}
$$

Hence, a portion of a meond conductur paralled the thes firnt, and carrying a current i^{\prime} in the mane dirwtion, will bentractad
towards the first with a force

$$
F=2 i i^{\prime} \frac{a}{r},
$$

where a is the length of the portion considered, and r is its distance from the first conductor.

Since the ratio of a to r is a numerical quantity independent of the absolute value of either of these lines, the product of two currents measured in the electromagnetic system must be of the dimensions of a force, hence the dimensions of the unit current are

$$
[i]=\left[F^{\frac{1}{2}}\right]=\left[M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1}\right] .
$$

496.] Another method of determining the direction of the force which acts on a circuit is to consider the relation of the magnetic action of the current to that of other currents and magnets.

If on one side of the wire which carries the current the magnetic action due to the current is in the same or nearly the same direction as that due to other currents, then, on the other side of the wire, these forces will be in opposite or nearly opposite directions, and the force acting on the wire will be from the side on which the forces strengthen each other to the side on which they oppose each other.

Thus, if a descending current is placed in a field of magnetic force directed towards the north, its magnetic action will be to the north on the west side, and to the south on the east side. Hence the forces strengthen each other on the west side and oppose each other on the east side, and the circuit will therefore be acted on by a force from west to east. See Fig. 22, p. 149.

In Fig. XVII at the end of this volume the small circle represents a section of the wire carrying a descending current, and placed in a uniform field of magnetic force acting towards the left-hand of the figure. The magnetic force is greater below the wire than above it. It will therefore be urged from the bottom towards the top of the figure.
497.] If two currents are in the same plane but not parallel, we may apply this principle. Let one of the conductors be an infinite straight wire in the plane of the paper, supposed horizontal. On the right side of the current* the magnetic force acts

[^35]downwards and on the left side it acts upwards. The same is true of the magnetic force due to any short portion of a secondcurrent in the same plane. If the second current is on the right side of the first, the magnetic forces will strengthen each other on its right side and oppose each other on its left side. Hence the circuit conveying the second current will be acted on by a force urging it from its right side to its left side. The magnitude of this force depends only on the position of the second current and not on its direction. If the second circuit is on the left side of the first it will be urged from left to right.

Fig. 24.
Relation between the electric current and the lines of magnetic induction indicated by a right-handed screw.

Hence, if the second current is in the same direction as the first its circuit is attracted; if in the opposite direction it is repelled; if it flows at right angles to the first and away from it, it is urged in the direction of the first current; and if it flows towards the first current, it is urged in the direction opposite to that in which the first current flows.

In considering the mutual action of two currents it is not necessary to bear in mind the relations between electricity and magnetism which we have endeavoured to illustrate by means of a right-handed screw. Even if we have forgotten these relations we shall arrive at correct results, provided we adhere consistently to one of the two possible forms of the relation.
 the ehectrie cirenit sa far as we have investigated therm.

 armagenent for polucing an wertio ratont along a dofinite $\mathrm{p}^{\text {ath }}$.
 howerl.

If any clowe erme la drawn and the line-intromb of the
 is not linked with the circuit, the line integral is \%ros but if it is linhed with the eireut, so that the curmati flows through the
 of integration rouml the closed curve wothl coineide with that,
 in the direetion in which the ehetrie eument Hows. That person moving along the ehowd enver in the diewetion of interation, and pmang thromgh the ehetrie eiment, the diestion of the current
 expers thin in anothre wy hy saying that the rehation betwoen the ditertions of the twa domed eurves may be expresed by deserthing a right handed mewo round the wotric cirenit and a right-handed serrew romel the choned curve. If the dirmetion of rotation of the theral of wither, as we pas nomg it coimeines with the penative direetion in the other, then the linesintegral will he proitive, and in the "pposite case it will be ungative.
 quatity of the cin ront, nut mot on any other thime whatever. It dows mot depent on the nature of the combeter thromp wheh the enerent is pasing, nas for instaner, whother it he a motal or an slectrolyte, or an impurent monductor. Wis hate ranson for helieving that even when there in no proper combuction, but morely a variation of Moetrio displatement, an in the ghas of a L.eyden jar duringe chatge or diselhage, the magntio dibet of the wectrie movement im precisely the sams.

Axain, the value of the line integral 4 ni doess not dopend on the mature of the molium in which the chosed curve is drawn. It is the mane whether the elosel curve is drawnontirely through

 of the current and arows tha＊line of indurthers．

 three right－hamble acrowne，
 portional to the strongth of the current ne and pant，mat bo the
 length of the comdurtor in nutarrionlly mpal ha，the arwa of this
 direction in which the motion of turnitg tho hamber of an ruth handed serew from the direction of the cursent to the Atimetion of the magnotic induction would chane the serve te tureve．

Hence we have a new olvetronagretio detination of a line of
magnetic induction. It is that line to which the force on the conductor is always perpendicular.

It may also be defined as a line along which, if an electric current be transmitted, the conductor carrying it will experience no force.
501.] It must be carefully remembered, that the mechanical force which urges a conductor carrying a current across the lines of magnetic force, acts, not on the electric current, but on the conductor which carries it. If the conductor be a rotating disk or a fluid it will move in obedience to this force, and this motion may or may not be accompanied by a change of position of the electric current which it carries. [But if the current itself be free to choose any path through a fixed solid conductor or a network of wires, then, when a constant magnetic force is made to act on the system, the path of the current through the conductors is not permanently altered, but after certain transient phenomena, called induction currents, have subsided, the distribution of the current will be found to be the same as if no magnetic force were in action.]*

The only force which acts on electric currents is electromotive force, which must be distinguished from the mechanical force which is the subject of this chapter.

[^36]
(HAPlefi

502.] We have consiberot in the fiont whatses the sublute of

 the method of this trention in the wexs whates

 romarkablo rewultes both in the dincomen wow racta and in the

 development of them in a mathernation fosam, and thor eom

 point of view, of the rotolles of two bucthadio owe senufletely

503.] Ampère's theory of the mutual action of electric currents is founded on four experimental facts and one assumption.

Ampère's fundamental experiments are all of them examples of what has been called the null method of comparing forces. See Art. 214. Instead of measuring the force by the dynamical effect of communicating motion to a body, or the statical method of placing it in equilibrium with the weight of a body or the elasticity of a fibre, in the null method two forces, due to the same source, are made to act simultaneously on a body already in equilibrium, and no effect is produced, which shews that these forces are themselves in equilibrium. This method is peculiarly valuable for comparing the effects of the electric current when it passes through circuits of different forms. By connecting all the conductors in one continuous series, we ensure that the strength of the current is the same at every point of its course, and since the current begins everywhere throughout its course almost at the same instant, we may prove that the forces due to its action on a suspended body are in equilibrium by observing that the body is not at all affected by the starting or the stopping of the current.
504.] Ampère's balance consists of a light frame capable of revolving about a vertical axis, and carrying a wire which forms two circuits of equal area, in the same plane or in parallel planes, in which the current flows in opposite directions. The object of this arrangement is to get rid of the effects of terrestrial magnetism on the conducting wire. When an electric circuit is freo to move it tends to place itself so as to embrace the largest possible number of the lines of induction. If these lines are due to terrestrial magnetism, this position, for a circuit in a vertical plane, will be when the plane of the circuit is magnetic east and west, and when the direction of the current is opposed to the apparent course of the sun.

By rigidly connecting two circuits of equal area in parallel planes, in which equal currents run in opposite directions, a combination is formed which is unaffected by terrestrial magnetism, and is therefore called an Astatic Combination, see Fig. 26. It is acted on, however, by forces arising from currents or magnets which are so near it that they act differently on the two circuits.
505.] Ampère's first experiment is on the effect of two equal
currents close thather in "ymem?

 A curront, flowing through thas asowhol wafs mast lock

the same current running in the straight line joining its extremities, provided the crooked line is in no part of its course far from the straight one. Hence any small element of a circuit is equivalent to two or more component elements, the relation between the component elements and the resultant element being the same as that between component and resultant displacements or velocities.
507.] In the third experiment a conductor capable of moving only in the direction of its length is substituted for the astatic balance. The current enters the conductor and leaves it at fixed points of space, and it is found that no closed circuit placed in the neighbourhood is able to move the conductor.

Fig. 27.
The conductor in this experiment is a wire in the form of a circular arc suspended on a frame which is capable of rotation about a vertical axis. The circular are is horizontal, and its centre coincides with the vertical axis. Two small troughs are filled with mercury till the convex surface of the mercury rises above the level of the troughs. The troughs are placed under the circular are and adjusted till the mercury touches the wire, which is of copper well amalgamated. The current is made to enter one of these troughs, to traverse the part of the circular arc between the troughs, and to escape by the other trough. Thus part of the circular arc is traversed by the current, and the arc is at the same time capable of moving with considerable VOL. II.
freedom in the direction of its length. Any closed currents or magnets may now be made to approach the moveable conductor without producing the slightest tendency to move it in the direction of its length.
508.] In the fourth experiment with the astatic balance two circuits are employed, each similar to one of those in the balance, but one of them, C, having dimensions n times greater, and the other, A, n times less. These are placed on opposite sides of the circuit of the balance, which we shall call B, so that they are similarly placed with respect to it, the distance of C from B being n times greater than the distance of B from A.

Fig. 28.
The direction and strength of the current is the same in A and C. Its direction in B may be the same or opposite. Under these circumstances it is found that B is in equilibrium under the action of A and C, whatever be the forms and distances of the three circuits, provided they have the relations given above.

Since the actions between the complete circuits may be considered to be due to actions between the elements of the circuits, we may use the following method of determining the law of these actions.

Let A_{1}, B_{1}, C_{1}, Fig. 28, be corresponding elements of the three circuits, and let A_{2}, B_{2}, C_{2} be also corresponding elements in antoher part of the circuits. Then the situation of B_{1} with respect to A_{2} is similar to the situation of C_{1} with respect to B_{2},
 ditaner and dimmanne of H_{1} mad A, respertively. If the law of Weftemagntio netiom in a fumetion of the distance, then the artion, whatever hita form or quality hetwern h_{1} and A_{2}, may lu written

$$
r^{\prime} \quad H_{1}, A, f\left(H_{1} A_{2}\right) w h_{1}
$$

and that betwern (', and b_{2}

$$
l^{\prime \prime} \quad r_{1}, l_{3}, f_{1}^{\prime} l l, l_{n}
$$

$$
F^{\prime \prime} \quad \|^{\prime} H_{1}, A_{g} f\left(n H_{1} A_{2}\right), h_{1}
$$

and this is equal th F by wreriment, so that wo have

$$
n^{2} f\left(n A_{3} H_{1}\right)=f\left(A^{2} H_{1}\right) ;
$$

505) It may he oherevel with reforene to these oxperiments that wory olectrie curront forma a chanel cireuit. The curronts
 course it chowed cirouta, It might for mpensed that in the case of the current of dimolarge of a combetor hy a mpro wo might have a corront forming nu ufon finto line but neording to the vinw of this lwete "vent this case in that of a closad eirmit. No "xperimenta on tho matual netion of uncloned curwota have beon nush Hoter no ntatement about the matual notion of two donewte of circuite onn ha mail to rest on purely experimental grounde, It in trun we tmy render a portion of a circuit movenhle, so an to nacortain the action of the othor curronts

 reath of the "xpriment in the netion of one or morn dosed curente turn the wholo er a part of a domel enront.
\$10.| In the analymin of the flownema, however, we may reknel the netion of a clased cirebit on an olemest of itself of of another circuit an the resultant of a number of monarath foreos. deqwaling en the nepurate pertw into which the tirnt circuit may to concoi vot, for mathonationt purpoust, to be divided.

[^37]This is a merely mathematical analysis of the action, and is therefore perfectly legitimate, whether these forces can really act separately or not.
511.] We shall begin by considering the purely geometrical relations between two lines in space representing the circuits, and between elementary portions of these lines.

Let there be two curves in space in each of which a fixed point is taken, from which the arcs are measured in a defined direction along the curves. Let

Fig. 29. A, A^{\prime} be these points. Let $P Q$ and $P^{\prime} Q^{\prime}$ be elements of the two curves.

$$
\text { Let } \left.\begin{array}{rl}
A P=s, & A^{\prime} P^{\prime}=s^{\prime}, \tag{1}\\
P Q=d s, & P^{\prime} Q^{\prime}=d s^{\prime},
\end{array}\right\}
$$

and let the distance $P P^{\prime}$ be denoted by r. Let the angle $P^{\prime} P Q$ be denoted by θ, and $P P^{\prime} Q^{\prime}$ by θ^{\prime}, and let the angle between the planes of these angles be denoted by η.

The relative position of the two elements is sufficiently defined by their distance r and the three angles θ, θ^{\prime}, and η, for if these be given their relative position is as completely determined as if they formed part of the same rigid body.
512.] If we use rectangular coordinates and make x, y, z the coordinates of P, and $x^{\prime}, y^{\prime}, z^{\prime}$ those of P^{\prime}, and if we denote by l, m, n and by $l^{\prime}, m^{\prime}, n^{\prime}$ the direction-cosines of $P Q$, and of $P^{\prime} Q^{\prime}$ respectively, then

$$
\left.\begin{array}{ll}
\frac{d x}{d s}=l, & \frac{d y}{d s}=m, \tag{2}\\
\frac{d z}{d s}=n \\
\frac{d x^{\prime}}{d s^{\prime}}=l^{\prime}, & \frac{d y^{\prime}}{d s^{\prime}}=m^{\prime},
\end{array} \frac{d z^{\prime}}{d s^{\prime}}=n^{\prime},\right\}
$$

and

$$
\left.\begin{array}{c}
l\left(x^{\prime}-x\right)+m\left(y^{\prime}-y\right)+n\left(z^{\prime}-z\right)=r \cos \theta \\
l^{\prime}\left(x^{\prime}-x\right)+m^{\prime}\left(y^{\prime}-y\right)+n^{\prime}\left(z^{\prime}-z\right)=-r \cos \theta^{\prime}, \tag{3}\\
l l^{\prime}+m m^{\prime}+n n^{\prime}=\cos \epsilon,
\end{array}\right\}
$$

where ϵ is the angle between the directions of the elements themselves, and

$$
\begin{equation*}
\cos \epsilon=-\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \eta \tag{4}
\end{equation*}
$$

Again,

$$
\begin{equation*}
r^{2}=\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2} \tag{5}
\end{equation*}
$$

whence

$$
\left.\begin{array}{rl}
\text { whence } \quad r \frac{d r}{d s} & =-\left(x^{\prime}-x\right) \frac{d x}{d s}-\left(y^{\prime}-y\right) \frac{d y}{d s}-\left(z^{\prime}-z\right) \frac{d z}{d s} \\
& =-r \cos \theta \\
\text { Similarly } \quad r \frac{d r}{d s^{\prime}} & =\left(x^{\prime}-x\right) \frac{d x^{\prime}}{d s^{\prime}}+\left(y^{\prime}-y\right) \frac{d y^{\prime}}{d s^{\prime}}+\left(z^{\prime}-z\right) \frac{d z^{\prime}}{d s^{\prime}} \tag{6}\\
& =-r \cos \theta^{\prime}
\end{array}\right\}
$$

and differentiating $r \frac{d r}{d s}$ with respect to s^{\prime},

$$
\left.\begin{array}{rl}
r \frac{d^{2} r}{d s d s^{\prime}}+\frac{d r}{d s} \frac{d r}{d s^{\prime}} & =-\frac{d x}{d s} \frac{d x^{\prime}}{d s^{\prime}}-\frac{d y}{d s} \frac{d y^{\prime}}{d s^{\prime}}-\frac{d z}{d s} \frac{d z^{\prime}}{d s^{\prime}}, \\
& =-\left(l l^{\prime}+m m^{\prime}+n n^{\prime}\right), \tag{7}\\
& =-\cos \epsilon .
\end{array}\right\}
$$

We can therefore express the three angles θ, θ^{\prime}, and η, and the auxiliary angle ϵ in terms of the differential coefficients of r with respect to s and s^{\prime} as follows,

$$
\left.\begin{array}{rl}
\cos \theta & =-\frac{d r}{d s}, \\
\cos \theta^{\prime} & =-\frac{d r}{d s^{\prime}}, \\
\cos \epsilon & =-r \frac{d^{2} r}{d s d s^{\prime}}-\frac{d r}{d s} \frac{d r}{d s^{\prime}}, \tag{8}\\
\sin \theta \sin \theta^{\prime} \cos \eta & =-r \frac{d^{2} r}{d s d s^{\prime}} .
\end{array}\right\}
$$

513.] We shall next consider in what way it is mathematically conceivable that the elements $P Q$ and $P^{\prime} Q^{\prime}$ might act on each other, and in doing so we shall not at first assume that their mutual action is necessarily in the line joining them.

We have seen that we may suppose each element resolved into other elements, provided that these components, when combined according to the rule of addition of vectors, produce the original element as their resultant.

We shall therefore consider $d s$ as resolved into $\cos \theta d s=a$ in the direction of r, and $\sin \theta d s=\beta$ in a direction perpendicular to r in the plane $P^{\prime} P Q$.

Fig. 30.

We shall also consider $d s^{\prime}$ as resolved into $\cos \theta^{\prime} d s^{\prime}=a^{\prime}$ in the direction of r reversed, $\sin \theta^{\prime} \cos \eta d s^{\prime}=\beta^{\prime}$ in a direction
 in a direction perpendicular to a' and f^{\prime}.

Let us consider the action hetwern the emmennent an and sha tho one hand, and $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ on the other.
 them must therefore be in this lime. We whall anpane it tw lio an attraction $=A$ un" $: i^{\prime}$,
where A is a function of r, and i, i are the internitions of the
 the condition of ehanging nign with innl withi.
(2) β and β^{\prime} are parallel to moh wher nul prownhondar to

$$
h_{i} s_{1} y^{\prime} i i^{\prime}
$$

This foreo is evidently in the line juming and A°, fir it anast bo in the plane in which they buth les, and if wo wem tw momare β and β^{\prime} in the roverwed direction, the whin, of this "शposmion would remain the same, which shews that, if it seprembtion fors, that force has no component in the dirsedion of a hat mant therofore be directed along r. Let us asam, that thin "spowion, when positive, represents an attraction.
(3) β and γ^{\prime} are perpendienhar to wheh ather and to the line,

 engraged with forees, wo we whall loave thim out of aremat ".
 expressed liy \quad iotitio.

 cither a foreo in the direction of 0^{4}, or as complo in How fluse of α and β^{\prime}. An we are not investigating complas, we mball take it an a foreo areting on a in the direction of i,
 diroction.

[^38]We have for the mane reasen a foreo

$$
l^{\prime} a \gamma^{\prime} i i^{\prime}
$$

actimg on "in the direction of γ^{\prime}, and a foreo

$$
l^{\prime}, \sin i i^{\prime}
$$

 compundmed of the following forems.

$$
\begin{aligned}
& \text { I (.tan } \left.+1, A_{i} f^{\prime}\right) i^{\prime \prime} \text { in the theretion of } r \text {. }
\end{aligned}
$$

$$
\begin{align*}
& Z \text { ("ay" }{ }^{\prime} \text { in the dimetion of } \gamma^{\prime} \text {. } \tag{9}
\end{align*}
$$

anl
Let us mupeme that this action on l_{w} is the resultant of three

 then in toran of $0, \theta^{\prime}$, and η.

In torme of the dithratimb coedtionts of r.

In tornamell, m, n, anll, m', $n^{\prime \prime}$,
$\left\{-\cdots\left(A+2 c^{\prime}+n\right)_{r^{\prime}}^{\prime}(l \&+m y+n \S)\left(l^{\prime} \varepsilon+m^{\prime} \eta+n^{\prime} \S\right)+B\left(l^{\prime}+m m^{\prime}+n n^{\prime}\right)\right.$,

thi. We have nowt to calculate, the foree with which the tinite curmot a' acta on the finta current as. 'The current * whonde from A, where a 0 , to f, where it haw the value s.
 has the value as. The coordinato of pintes on wither current are functiona of " or of of

If F is any function of the position of a point, then wo shall use the muberift (o, ab to denots the axcosh of its valuo at P over that at A, thum

$$
F_{l, n}^{\prime}, H_{r} H_{r}-F_{A}
$$

Such function nocumarily dimpperar whon the circuit in closed.

Let the components of the total force with which $A^{\prime} P^{\prime}$ acts on $A P$ be $i i^{\prime} X, i i^{\prime} Y$, and $i i^{\prime} Z$. Then the component parallel to X of the force with which $d s^{\prime}$ acts on $d s$ will be $i i^{\prime} \frac{d^{2} X}{d s d s^{\prime}} d s d s^{\prime}$.

Hence

$$
\begin{equation*}
\frac{d^{2} X}{d s d s^{\prime}}=R \frac{\xi}{r}+S l+S^{\prime} l^{\prime} \tag{13}
\end{equation*}
$$

Substituting the values of R, S, and $S^{\prime \prime}$ from (12), remembering that

$$
\begin{equation*}
l^{\prime} \xi+m^{\prime} \eta+n^{\prime} \zeta=r \frac{d r}{d s^{\prime}} \tag{14}
\end{equation*}
$$

and arranging the terms with respect to l, m, n, we find

$$
\begin{align*}
\frac{d^{2} X}{d s d s^{\prime}} & =l\left\{-(A+2 C+B) \frac{1}{r^{2}} \frac{d r}{s^{\prime}} \xi^{2}+C \frac{d r}{d s^{\prime}}+(B+C) \frac{l^{\prime} \xi}{r}\right\} \\
& +m\left\{-(A+2 C+B) \frac{1}{r^{2}} \frac{d r}{d s^{\prime}} \xi^{\prime}+C \frac{l^{\prime} \eta}{r}+B \frac{m^{\prime} \xi}{r}\right\} \\
& +n\left\{-(A+2 C+B) \frac{1}{r^{2}} \frac{d r}{d s^{\prime}} \xi \zeta+C \frac{l^{\prime} \zeta}{r}+B \frac{n^{\prime} \xi}{r}\right\} . \tag{15}
\end{align*}
$$

Since A, B, and C are functions of r, we may write

$$
\begin{equation*}
P=\int_{r}^{\infty}(A+2 C+B) \frac{1}{r^{2}} d r, \quad Q=\int_{r}^{\infty} C d r \tag{16}
\end{equation*}
$$

the integration being taken between r and \propto because A, B, C vanish when $r=\infty$.

$$
\text { Hence } \quad(A+B) \frac{1}{r^{2}}=-\frac{d P}{d r}, \quad \text { and } \quad C=-\frac{d Q}{d r}
$$

516.] Now we know, by Ampère's third case of equilibrium, that when s^{\prime} is a closed circuit, the force acting on $d s$ is perpendicular to the direction of $d s$, or, in other words, the component of the force in the direction of $d s$ itself is zero. Let us therefore assume the direction of the axis of x so as to be parallel to $d s$ by making $l=1, m=0, n=0$. Equation (15) then becomes

$$
\begin{equation*}
\frac{d^{2} X}{d s d s^{\prime}}=\frac{d P}{d s^{\prime}} \xi^{2}-\frac{d Q}{d s^{\prime}}+(B+C) \frac{l^{\prime} \xi}{r} \tag{18}
\end{equation*}
$$

To find $\frac{d X}{d s}$, the force on $d s$ referred to unit of length, we must integrate this expression with respect to s^{\prime}. Integrating the first term by parts, we find

$$
\begin{equation*}
\frac{d X}{d s}=\left(P \xi^{2}-Q\right)_{\left(s^{\prime}, 0\right)}-\int_{0}^{s^{\prime}}(2 P r-B-C) \frac{l^{\prime} \xi}{r} d s^{\prime} \tag{19}
\end{equation*}
$$

517.] action of a closed circuit on an element. 169

When s^{\prime} is a closed circuit this expression must be zero. The first term will disappear of itself. The second term, however, will not in general disappear in the case of a closed circuit unless the quantity under the sign of integration is always zero. Hence, to satisfy Ampère's condition, we must put

$$
\begin{equation*}
P=\frac{1}{2 r}(B+C) . \tag{20}
\end{equation*}
$$

517.] We can now eliminate P, and find the general value of $\frac{d X}{d s}$,

$$
\begin{gather*}
\frac{d X}{d s}=\left\{\frac{B+C}{2} \frac{\xi}{r}(l \xi+m \eta+n \zeta)+Q\right\}_{\left(s^{\prime}, 0\right)} \\
+m \int_{0}^{s^{\prime}} \frac{B-C}{2} \frac{m^{\prime} \xi-l^{\prime} \eta}{r} d s^{\prime}-n \int_{0}^{s^{\prime}} \frac{B-C}{2} \frac{l^{\prime} \zeta-n^{\prime} \xi}{r} d s^{\prime} . \tag{21}
\end{gather*}
$$

When s^{\prime} is a closed circuit the first term of this expression vanishes, and if we make

$$
\left.\begin{array}{l}
a^{\prime}=\int_{0}^{s^{\prime}} \frac{B-C}{2} \frac{n^{\prime} \eta-m^{\prime} \zeta}{r} d s^{\prime}, \\
\beta^{\prime}=\int_{0}^{s^{\prime}} \frac{B-C}{2} \frac{l^{\prime} \zeta-n^{\prime} \xi}{r} d s^{\prime} \tag{22}\\
\gamma^{\prime}=\int_{0}^{s^{\prime}} \frac{B-C}{2} \frac{m^{\prime} \xi-l^{\prime} \eta}{r} d s^{\prime}
\end{array}\right\}
$$

where the integration is extended round the closed circuit s^{\prime}, we may write

Similarly

$$
\left.\begin{array}{l}
\frac{d X}{d s}=m \gamma^{\prime}-n \beta^{\prime} . \tag{23}\\
\frac{d Y}{d s}=n a^{\prime}-l \gamma^{\prime} \\
\frac{d Z}{d s}=l \beta^{\prime}-m \alpha^{\prime} .
\end{array}\right\}
$$

The quantities $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ are sometimes called the determinants of the circuit s^{\prime} referred to the point P. Their resultant is called by Ampère the directrix of the electrodynamic action.
It is evident from the equation, that the force whose components are $\frac{d X}{d s} d s, \frac{d Y}{d s} d s$, and $\frac{d Z}{d s} d s$ is perpendicular both to $d s$ and to this directrix, and is represented numerically by the area of the parallelogram whose sides are $d s$ and the directrix.

In the language of quaternions, the resultant force on $d s$ is the vector part of the product of the directrix multiplied by $d s$.

Since we already know that the directrix is the same thing as

 to the eireuit.

 or open.

Let p be a new function of c and thas

$$
\begin{equation*}
m=1 / \quad \| \quad \text { olin. } \tag{31}
\end{equation*}
$$

then by (17) and (29)
and equations (11) herotus
 hecomes
519.$] 1.4$

Thewe quantition have duftritas valuen for nas givers juint of
 compononts of the vertur-pentegtials of has expruitm

Lat L ber a new function of x°, Bud that

$$
\begin{equation*}
I_{t}=\int_{0}^{+} r\left(y_{0} d A_{i}\right. \tag{50}
\end{equation*}
$$

and let M be the doubhe intergent

$$
\begin{equation*}
\int_{v}^{\infty} \int_{v}^{\infty} p \cos x d x d x . \tag{31}
\end{equation*}
$$

which, when the cimentes are chasel, beromes their mutual potenthal, that (27) may lo writurn

$$
\left.\begin{array}{cccc}
W \dot{x} & d= & H / h^{\circ} & d h+b^{\prime} \tag{32}\\
d x & b^{v}
\end{array}\right\}
$$

 limits, we find
where the suhastites of l. imhente the distanere, of which the quantity l, is a function, ami the subatipte of b and $b^{\prime \prime}$ indieate the prints at which their values ase to le taken.

The expresaiona for 1 and 7 may be written down from this. Multiplymg the thro compomaty hy dis, dy, and de reapectively, we ohtain

$$
\begin{equation*}
\text { (} b^{*} d x \mid \text { 保d! | Hidilu } \tag{34}
\end{equation*}
$$

where 11 is the aymbal of a xemphor dillemating.

 closend.

$$
\begin{equation*}
x_{1} x_{x}+V_{x} l_{1}+Z l_{x}=\mid 1 M_{1} \tag{35}
\end{equation*}
$$

whow M is the tatual petorntal of two closed cirenits earrying unit currotes. 'The quantity If ixptessem the work tone by the

 pesition. Any nllemation of ita pamition, ly which M is incretered,

 of the cercuit in net parallel to itwelf the foreses neting on it aro still Aotomainel by the variation of M, the potontial of the one cirenit sn the oflurs.
 in this invetigntion in the fact ortablimhel by Ampere that the action of a olomed cirouit on may portion of anothor sirouit is promulicular to the dimetion of the later. Livery other part of

 geometrical relations the Yeaternana 1 Itamitu.

 gration given here.

 remain the mame.

 must be a numerical gunntity. Howes N itnedf, the cowtivient

 tho inverse square of a lines. lhe mare 11 matil R wre beth
 numerical multiple of it.

 called because it agrese with the mynata alrendy whathoneot for

 whose boundaries are the two chruith asempertively. Thas value of M in that come is, liy Art. 123.

direction. Adopting this as the numerical value of M, and comparing with (31), we find

$$
\begin{equation*}
\rho=\frac{1}{r}, \text { and } B-C=\frac{2}{r^{2}} . \tag{37}
\end{equation*}
$$

525.] We may now express the components of the force on $d s$ arising from the action of $d s^{\prime}$ in the most general form consistent with experimental facts.

The force on $d s$ is compounded of an attraction
$\left.R i i^{\prime} d s d s^{\prime}=\frac{1}{r^{2}}\left(\frac{d r}{d s} \frac{d r}{d s^{\prime}}-2 r \frac{d^{2} r}{d s d s^{\prime}}\right) i i^{\prime} d s d s^{\prime}+r \frac{d^{2} Q}{d s d s^{\prime}} i i^{\prime} d s d s^{\prime}\right)$
in the direction of r,
$s^{\prime} i i^{\prime} d s d s^{\prime}=-\frac{d Q}{d s^{\prime}} i i^{\prime} d s d s^{\prime}$ in the direction of $d s$,
and $S^{\prime} i i^{\prime} d s d s^{\prime}=\frac{d Q}{d s} i i^{\prime} d s d s^{\prime}$ in the direction of $d s^{\prime}$,
where $Q=\int_{r}^{\infty} C d r$, and since C is an unknown function of r, we know only that Q is some function of r.
526.] The quantity Q cannot be determined, without assumptions of some kind, from experiments in which the active current forms a closed circuit. If we suppose with Ampere that the action between the elements $d s$ and $d s^{\prime}$ is in the line joining them, then S and S^{\prime} must disappear, and Q must be constant, or zero. The force is then reduced to an attraction whose value is

$$
\begin{equation*}
R i i^{\prime} d s d s^{\prime}=\frac{1}{r^{2}}\left(\frac{d r}{d s} \frac{d r}{d s^{\prime}}-2 r \frac{d^{2} r}{d s d s^{\prime}}\right) i i^{\prime} d s d s^{\prime} \tag{39}
\end{equation*}
$$

Ampère, who made this investigation long before the magnetic system of units had been established, uses a formula having a numerical value half of this, namely

$$
\begin{equation*}
' j j^{\prime} c l d s^{\prime}=\frac{1}{r^{2}}\left(\frac{1}{2} \frac{d r}{d s} \frac{d r}{d s^{\prime}}-r \frac{d^{2} r}{d s d s^{\prime}}\right) j j^{\prime} d s d s^{\prime} \tag{40}
\end{equation*}
$$

Here the strength of a current is measured in what is called electrodynamic measure. If i, i^{\prime} are the strengths of the currents in electromagnetic measure, and j, j^{\prime} the same in electrodynamic measure, then it is plain that

$$
\begin{equation*}
j j^{\prime}=2 i i^{\prime}, \quad \text { or } j=\sqrt{2} i . \tag{41}
\end{equation*}
$$

Hence the unit current adopted in electromagnetic measure is greater than that adopted in electrodynamic measure in the ratio of $\sqrt{2}$ to 1 .

 magnetio system has the grat whather" we conswhas: Bumeri. cally with all our magnetie formula, fo it i, hationat for the student to bear in mime whether he in thembith it the divile
 as adopted by W'dher and mont other betata

 is always a closed ome, wre may, if we floser, mith ang value of Q which appears to us to simplify the formuthes.
 in the line joining them. This gives of 4 .
(Gransmann* assumes that twe whomont in tha mase straight line have no mutual urtion. 'Thin given

Wo might, if wo phomed, asmame that the attsactions latwern
 the angle betweon them. In this anse

 the line joining them, and then we whoth have

 forees on the two demente not only whand atal kigne hite hat in tho straight line which juin thern.

(!HAPTER II.

528. 1 Tas diseovery hy (hested of the marnetio action of an olvotric current lod by a direct process of roasoning to that of mugnetization by wectric curronta, and of the mechanical action lestwern whetric currente. It was not, however, till 1831 that Faralay, who had beow for mome time rmbenomring to produce olectrio eurronts by manatio or olectrio action, diseoverod the conditions of mannetochectrio indurtion. The method which Faraday omployed in his researehes consisted in a constant appod to oxperiment an menn of testing the truth of his ideas, and n comatant cultivation of idena under the direct influence of oxpriment. In him phblished romarches wo find these ideas expressed in language which is all the hetter fitted for a nascent seienee, trenuse it is momewhat alinn from the style of physicists who havo beon accuatomed to establimh mathemationl forms of thought.

The "xpremental invertigation by which Ampere wablished the lawe of the mednaical action between electric currents is one of the most brillinat achievernents in seiones.

The whole, theory and "xporimont, serms as if it had leaped, full wrown and full armed, from the brain of the 'Newton of olectricity:' It is perfoet in form, and unasmilable in accuracy, and it is summed up in a formula from which all the phenomena may be deduent, and whioh must always remain the cardinal formula of electrowdy namios.

The mothod of Ampere, howover, though cast into an inductive form, does not allow us to trace the formation of the ideas which guided it. Wr can acaredy ledievo that Ampere really discovered the law of action by means of the experiments which he
 that he diseovered the law hen sene prowt whels low han mot shewn us, and that when he hal afterwath halt ug a perteret domonstration he removed all tracem of the senthding lis wheh he had mised it.

 doveloperd ones, and the realer, howewe infan th ham in ithlu. tive power, feels sympathy ewn mote than minmatin, and is tempted to helieve that, if he had the पhentinnits. he fow would

 tion of a reientific spirit, by monns of the aetum nal wortion
 introduced to him by Faraday and themacont idone in hin wow mind.

It was perhaps for the mivantage of sedemen that faralay.
 time, and fores, was not a protessond mathemationat. It was not tempted to enter into the many int rowting ramoterom in pure mathematies which his diseoveries womblhwe supgenfol if they had been oxhibited in a mathernation form, and ho dil ant ferl
 to the mathematical tasiu of the thas, of the "\$prose then in a form which mathematicians might atturh. He what thus loft at leisure to do his preprer work, berestimate his infos
 language.

It is mainly with the hope of making thome burne the lonnis of a mathematical method that I have undertaken dow dronew,
529.] Wo are aceustomes to consider the universer man mule uf of parts, and mathematicinus unually bergin by eotmaluring a single particle, and then conoviving ithe rantion to munther par"
 natural method. To conerive of a partielne hownver, mepuirw a process of abstraction, since nll our perentions nre what to extended bodies, so that the iden of the all that an in wir cons. sciousness at a given instant is perhapm an primitive an inlea as

[^39]that of any individual thing. Honee there may be a mathematical methenl in which we proesen from the whole to the parte instead of from the parts to the whole. For axample, Euclid, in his first book, comocives a lime as traced out by a point, a surface as swept out hy a line, and a solid as gemerated by a surface. Bat he alwo dofimes a surface as the boumdary of a solid, a line as the when of a surfore, and a print an the axtremity of a line.

In like manner we may enoerive the potential of a material syatem as a function foum by a cortain proess of intergation with respere to the masese of the bodies in the field, or we may suppose those masws thomodves to have no other mathematical meaning than the volumemingrals of $\frac{1}{4 \pi} \nabla^{4} \Psi$, where Ψ is the potential.

In elfetrical inventigations we may use formulay in which the quantitios involved are the distanese of certain bedies, and the Aectritiontionsur rurrents in these, henlios, or we may use formulae which involve other fuantitiers, moh of which is continuous throught all nques.

The mathonation process employen in tho first method is intwrution along lines, wer wurfore, and throughout finite spaces, those employed in the socond mothod are partial differential "quations ami integratione throughout all space.

The methon of Fromby metme to be intimately related to the secome of these thoder of tratament. Ho never considers bodies as cximting with nothing letwern them but their distanco, and acting on whe nother aco He comovive all spare as a fiold of fores, the lines of foree being
 on all ados, their direotion loing modifiod by the presence of
 a booly to in mone mene phrt of itandf, so that in its action on distant lubles it commot low anil to act. where it is not. This, howerve, in mot a domimat inten with faralay. I think ho would rather have mail that the field of space is full of lines of forer, whone arrangenent depenta on that of the bodies in the fiold, and that the mechanital and eloctrical notion on each body is detormined by the lines which abut on it.

[^40]
phenomena of magneto-minctiric inducition *.

530.] 1. Induction by Voriation of the Primury Current.

Let there be two conducting circuits, the Primary and the Scoondary circuit. The primary circuit is connected with a voltaic battery by which the primary current may be produced, maintained, stopped, or reversed. The secondary circuit includes a galvanometer to indicate any currents which may bo formed in it. This galvanometer is placed at such a distance from all parts of the primary circuit that the primary current has no sonsible direct influence on its indications.

Let part of the primary circuit consist of a straight wire, and part of the secondary circuit of a straight wire near and parallel to the first, the other parts of the circuits being at a greater distance from each other.

It is found that at the instant of sending a current through the straight wire of the primary circuit the galvanometor of the secondary circuit indicates a current in the socondary straight wire in the opposite direction. This is called the induced current. If the primary current is maintained constant, the induced current soon disappears, and the primary current appears to produce no effect on the secondary circuit. If now the primary current is stopped, a secondary current is observed, which is in tho secme direction as tho primary current. Every variation of the primary current produces electromotive force in the secondary circuit. Whon the primary current incroases, the electromotive force is in the opposite direction to the current. When it diminishes, the olectromotive force is in the same direction as the current. Whon the primary current is constant, there is no electromotive force.

Those effects of induction aro increased by bringing the two wires nearer together. They are also increased hy forming thom into two circular or spiral coils placed close togethor, and still more by placing an iron rod or a bundle of iron wires inside the coils.

2. Induction by Motion of the Primary Circuit.

We have seen that when the primary current is maintained constant and at rest the secondary current rapidly disappears.

[^41]Now let the primary curront be maintained constant, but let the primary straight wire be made to approach the secondary straight wire. During the approach there will he a secondary curent in the orgositr direction to the primary.

If the primary circuit ho moved away from tho nocondary, there will be a meombry eurent in the setme direction as the primary.

3. Inturtion by Motion of the sermulary ('ir wit.

If the semmary eireuit be moved, the secomdary current is oppoite to the primary when the secondary wire is approaching the prinary wire, and in the same direction when it is recoding from it.

In all casen the direction of the secondary current is such that tho mechanical action betweon the two eonductors is opposite to the diroetion of motion, ksing a repulaion whon the wires are appronching, and an attraction when they are recoding. This very important fact was establishoed by Lenz*.

4. Intintion hy the Relutiow Motion of a Maymet and the Nesombtry Cirruit.

If we wulatitute for the primary circuit a magnetio shell, whuse when concides with the circuit, whose strength is numerically "qual to that of the current in the circuit, and whose austral face corresponds to the positive face of the circuit, then the phonomena produced hy the relative motion of this shell and the momdary circuit are the sume an those observed in the case of the primary oircuit.
581. The whole of these phenomena may bo summod up in one law. When the number of limes of magnetio induction which pas through the socondary circuit in the positive direction is alderel, an dencometive fores acts roum the circuit, which is menatred by the rate of decrease of the magnetic induction through the eircuit.
533. | For instanco, let the rails of a railway be insulated from the arth, but oonnected at one torminus through a galvanomoter, and lot the circuit be completed by tho wheels and axle of a railway carriago at a distanoo o from tho terminus. Neglecting the height of the axle alove the level of the rails,

[^42]the induction through the wemblary rimut is dhe the the vertical component of the "arthes nagutie fino, whirh in northern latitutes is directed downwards. Homer, if th the gauge of the railway, the horizontal area of tha ciment in ho, and tho surface-integral of the mugntio imlurtion thentsh it is $Z b x$, where Z is the vertionl empenmat of the bmpurtw fore of the earth. Since Z in downwate the hower bese if thas circuit is to be reckomed pasitiv, and the pative diremtion of the circuit itself is north, Mast, sombl, wom, that an, in the direction of the sun's apparent diurmal comow.

Now let the carriugh ine wet in mution, that e will varg, and there will be an dectronntive fires in the carenit whome blum is $-Z b^{d(t x)}$.

If x is inereasing, that is, if the carringe is masing nwny from the terminus, this electromotive forer in in the noghtive ditertion, or north, west, south, onst. Hene the diraterath ot thin forea through the axle is from right to loft. If x wom, dramalimge the absolute direction of the foree would he wermel hat sinere the direction of the motion of the carriane is abse swamel, the olectromotive foree on the axhe in shll from right 40 left, the
 forwards. In southern latitnites, whers the motuth sed of tho noedle dipe, the eleetromotive fores of a movind lasely in from loft to right.
 motive foree on a wire moving through a ford of mannotice forme.
 by the onds of a compasennesdle wheh peint mesth sull woth respectively; turn your face in the forwarl directuns of sumbion, then the olechomotive forte due to the motion will las from left to right.
533.] As these directional relations are important, Iot buko another illustration. Supposer a woend girille lail fomal tho earth at the equator, and a motal wire lail ntome tho sumilina of Greonwich from the equatur to the north pelm.

Let a great quadrantal arch of metal he conneractal, of wheh
 carried round the equator, sliding on the great gatille of the earth, and following the mun in him nhily courno. Thews will
then be an electromotive force along the moving quadrant, acting from the pole towards the equator.
The electromotive force will be the same whether we suppose the earth at rest and the quadrant moved from east to west, or whether we suppose the quadrant at rest and the earth turned from west to east. If we suppose the earth to rotate, the electromotive force will be the same whatever be the form of the part of the circuit fixed in space of which one end touches one of the poles and the other the equator. The current in this part of the circuit is from the pole to the equator.
The other part of the circuit, which is fixed with respect to the earth, may also be of any form, and either within or without the

Fig. 31. earth. In this part the current is from the equator to either pole.
534.] The intensity of the electromotive force of magnetoelectric induction is entirely independent of the nature of the substance of the conductor in which it acts, and also of the nature of the conductor which carries the inducing current.
To shew this, Faraday* made a conductor of two wires of different metals insulated from one another by a silk covering, but twisted together, and soldered together at one end. The other ends of the wires were connected with a galvanometer. In this way the wires were similarly situated with respect to the primary circuit, but if the electromotive force were stronger in the one wire than in the other it would produce a current which would be indicated by the galvanometer. He found, however, that such a combination may be exposed to the most powerful electromotive forces due to induction without the galvanometer being affected. He also found that whether the two branches of the compound conductor consisted of two metals, or of a metal and an electrolyte, the galvanometer was not affected \dagger.

 mochanical action due to that curcent, fat if wo foevent the

 motive fores will move the lomly, we wa hate dorerilnol in Electrostatics.

536.] The experimental invertigation ot the law of the jndaco tion of electric currentw in fixel pirenite may low embluctel with
 forco, and therefore the current, in the gatvanmaxay eirenit is rendered zero.

For instanco, if wo wish to dow that the indurtions of the coil A on the coil X is "qual to that of 15 upens f, we phase the first
 pair B and Y. Wo then connet A nal $l l$ with as voltaic batury, so that wo can make the same primary curnent how thangh A in the positive direction and then through If in has nugative direction. We also connect X and Y wilh a gnlvatomatar, wo that tho secondary current, if it oxints, mhall thow in the namo direction through X and Y in merien.

Then, if the induction of A on X is equal to that of B on Y, the galvanometer will indicate no induction current when the battery circuit is closed or broken.

The accuracy of this method increases with the strength of the primary current and the sensitiveness of the galvanometer to instantaneous currents, and the experiments are much more easily performed than those relating to electromagnetic attractions, where the conductor itself has to be delicately suspended.

A very instructive series of well-devised experiments of this kind is described by Professor Felici of Pisa *. .

I shall only indicate briefly some of the laws which may be proved in this way.
(1) The electromotive force of the induction of one circuit on another is independent of the area of the section of the conductors and of the material of which they are made \dagger.

For we can exchange any one of the circuits in the experiment for another of a different section and material, but of the same form, without altering the result.
(2) The induction of the circuit A on the circuit X is equal to that of X upon A.

For if we put A in the galvanometer circuit, and X in the battery circuit, the equilibrium of electromotive force is not disturbed.
(3) The induction is proportional to the inducing current.

For if we have ascertained that the induction, of A on X is equal to that of B on Y, and also to that of C on Z, we may make the battery current first flow through A, and then divide itself in any proportion between B and C. Then if we connect X reversed, Y and Z direct, all in series, with the galvanometer, the electromotive force in X will balance the sum of the electromotive forces in Y and Z.
(4) In pairs of circuits forming systems geometrically similar the induction is proportional to their linear dimensions.

For if the three pairs of circuits above mentioned are all similar, but if the linear dimension of the first pair is the sum of the corresponding linear dimensions of the second and third pairs, then, if A, B, and C are connected in series with the

[^43]battery, and if X reversed, Y^{*} and Z arw in meris with the watvanometer, there will te equilihrium.
 by a current in a coil of m wiming is fopmatinal th the product in 1 .
537.] For experimente of the kind we hav. han a connthring
 as light as possille, so as to give a swablimbatinh a a wry
 motion require the nerde to have a sum what heren fand sit
 of the conducturs while the mewn. in not far form it: famition

 the whole time, so that mo current pasend thenght the gatyane

 in succession two curronta in "ppasito ducction thrugh the galvanometor, and wo have to show that the ingulaw on the
 caser equal and opposite.
The theory of the applicution of the galvanamoter to the

 position of equilibrium the dollowting fure of the catron in
 of the current is small ermpareal with the perion if blation on
 to the total guantity of eleetricity in the marmer. Howas, if two
 olectricity in opposith, direations, the nevello wall he bot withent any final velocity.
Thus, to shew that the imhection corronts in then surabulary circuit, due to the elowing and the broaking of the fanary citcont, aro equal in total quantity but "ppowit" in ditowtion, we may arrange the primary circuit in womevion with the bathey, wo that by tonching a kny the current may be nont throunh the primary circuit; or by renoving the fingor the eontact may be

the galvanometer in the secondary circuit indicates, at the time of making contact, a transient current in the opposite direction to the primary current. If contact be maintained, the induction current simply passes and disappears. If we now break contact, another transient current passes in the opposite direction through the secondary circuit, and the galvanometer needle receives an impulse in the opposite direction.

But if we make contact only for an instant, and then break contact, the two induced currents pass through the galvanometer in such rapid succession that the needle, when acted on by the first current, has not time to move a sensible distance from its position of equilibrium before it is stopped by the second, and, on account of the exact equality between the quantities of these transient currents, the needle is stopped dead.

If the needle is watched carefully, it appears to be jerked suddenly from one position of rest to another position of rest very near the first.

In this way we prove that the quantity of electricity in the induction current, when contact is broken, is exactly equal and opposite to that in the induction current when contact is made.
538.] Another application of this method is the following, which is given by Felici in the second series of his Researches.
It is always possible to find many different positions of the secondary coil B, such that the making or the breaking of contact in the primary coil A produces no induction current in B. The positions of the two coils are in such cases said to be conjugute to each other.

Let B_{1} and B_{2} be two of these positions. If the coil B be suddenly moved from the position B_{1} to the position B_{2}, the algebraical sum of the transient currents in the coil B is exactly zero, so that the galvanometer needle is left at rest when the motion of B is completed.

This is true in whatever way the coil B is moved from B_{1} to B_{2}, and also whether the current in the primary coil A be continued constant, or made to vary during the motion.

Again, let B^{\prime} be any other position of B not conjugate to A, so that the making or breaking of contact in A produces an induction current when B is in the position B^{\prime}.
Let the contact be made when B is in the conjugate position B_{1}, there will be no induction current. Move B to B^{\prime}, there
will ho an induction current due the thotion, hat if $/ 6$ is moved rapidly to b, and the primary eontwe then la, hom, the

 the current due to broking emtant in the latter faratme.
 of breaking it, it follows that the cthet of mathors enther whon tho eoil B is in any position l is "pat to that of hamome the
 Howing through A.

If the change of the rolative paition of the ands in make by
 found to be tho same.

 and of B from B_{1} wo H_{n}, while the current in A chango. finan y_{1} to γ_{2}, deponds only on the initial metute $A_{1}, \|_{1}, \lambda_{1}$ man the timal state A_{2}, B_{2}, γ_{2}, and not at all on that matase of the intoturelinte statos through which the systom may puss.

Hence the value of the total induction comatat and la of the form

$$
\left.H^{*}\left(A_{2}, B_{2}, V_{2}\right) \quad H_{1} A_{1}, H_{1}, \lambda_{2}\right)
$$

where A^{r} is a function of A, B, nul \neq
With respect to the form of this function, we hasw, ly Art. 536, that when there in monion, and thementer $I_{1} f_{2}$ and $B_{1}=B_{2}$, the induction curront in properational tw the pimary current. Hence γ entors simply an a fachor, the other fuetor hoing a function of the form and powition of the cincuitm innal l .

Wo also know that the value of this function depernis on the rolative and not on the abodute pomitione of A man 15 , san that it
 of the different oloments of whioh the cirenits ars exatipemest, and

Let $I t$ he this function, then the then induction arrown may bo written

$$
O: M_{1} \gamma_{1} \cdots M_{2} \gamma_{2} i
$$

where O is the conductivity of the wombry sirenit, ant M_{1}, y_{1} are the original, and M_{a}, γ_{t} the fimal values of $1 /$ and γ.

These "speriments, therefore, shew that the total current of induction demende on the change which takes plamen in a eortain guantity, M_{γ}, and that this chamge may arisw either from variation of the primary curent γ, or from any motion of the primary of secondary cirevit which altere d.

Esfo. | The eomerption of such a panatity, on the chancres of which, and mot on its ahsolute magnitude, the induetion eurrent
 He whared that the mombary cirent, whenat remt in an chectromagnetie fich which remains of constant intensity, does not shew any eloctrient flect, wherens, if the samentate of the fiedr had hern mudtenly produed, there wond have been a durment. Again, if the primary circuit is removed from the fied, or the magnotic foreos abolishol, there is a curont of the oppowite kind. Ho theofore recognised in the seoomdary circuit, when in the electromagnetie findd, a 'pecthiar "hetrical combition of matior,' to which he gave the name of the khetrotonic State. Ho afterwards fomm that her combldisponse with this idea by monas of considerationa fommed on the lines of magnetic forec ψ, but, evon in his latest forsarthes \ddagger, hesays, Agnin and again the idea of an dectrotonic state $\$$ haw liwn foresl on my mind.'

The whole history of thin iden in the mind of Faraday, tas shown in his [uhlished heserches, is well worthy of study. By theourse of experimenta, guidel by intense application of thought, but without the aid of mathematical calculationa, he was led to recognine the "xistenee of nomething which we now know to be a mathemation quantity, and which may "ven be called the fumbamental quantity in the theory of electrommontime. Hut as he was led up to thin conerption hy a puroly experimental path, has asoribed to it a phymioal existoneo, and supposed it to bo a peculiar combition of matter, though he was rondy to almudon this theory an mon an he could "xplain the phenomom by any more familiar forms of thought.

Other investigators were long afterwards lod up to the same idea hy a puroly mathomatioal path, hat, so far as I know, nono of them rocognises, in the rofined mathomatical iden of the potential of two circuits, Faraday's bold hypothesis of an olectrotonic state. Those, therefore, who haves approached this subject

[^44]in the way pointed out by then eminent invertanturs who first

 has given with such womderful comphetsmon,
 state consiste in its disecting the mind the lay loh of a motain quantity, on the changes of which the anfar phatantan deo perd. Without a much gratey deyre of dowhoment than Faraday gave it, this emention dument anals lome itandt to
 suluject agrain in Art. 584.

5\%1.] A method which, in farminy lomals, wat inr more powerful is that in which he tanken use of them hams of maty netic force which were always in his mand's "Y" what cons templating his magnets or dectric cursenta, and the flinamation of which by means of iron filinge he righty ragarinol " nas mont valuable aid to the experimontalist.

Faraday looked on thewe lines un "xprosming, nat why ly their
 concentration the intensity of that foner, mal in has hat the searches \dagger he shews how to monere of unt haw of fores. I have explained in varions parta of thin thentime the motion

 forecs, and how Faralay's motion of unit linom nud of the matior
 precise. Soo Arts. $82,404,199$.

In the first sories of his Rererthe: heo mowe clondy how the direction of the curront in a combenting cormit, path of whel is moveable, depende on the moder in whirh ther musing part cuta through the lines of magnetic fores.
 loy variation of the strength of a curnot on a magne may lat ex.
 or contract towards the wire or magne an in frower rimen of falls.

I am not certain with what aghee af chaname he then hed tho doctrine afterwards so diatinety hail down lig him il. that

[^45]the moving conductor, as it cuts the lines of force, sums up the action due to an area or section of the lines of force. This, however, appears no new view of the case after the investigations of the second series $*$ have been taken into account.

The conception which Faraday had of the continuity of the lines of force precludes the possibility of their suddenly starting into existence in a place where there were none before. If, therefore, the number of lines which pass through a conducting circuit is made to vary, it can only be by the circuit moving across the lines of force, or else by the lines of force moving across the circuit. In either case a current is generated in the circuit.

The number of the lines of force which at any instant pass through the circuit is mathematically equivalent to Faraday's earlier conception of the electrotonic state of that circuit, and it is represented by the quantity $M \gamma$.

It is only since the definitions of electromotive force, Arts. 69, 274, and its measurement have been made more precise, that we can enunciate completely the true law of magneto-electric induction in the following terms:-

The total electromotive force acting round a circuit at any instant is measured by the rate of decrease of the number of lines of magnetic force which pass through it.

When integrated with respect to the time this statement becomes:-

The time-integral of the total electromotive force acting round any circuit, together with the number of lines of magnetic force which pass through the circuit, is a constant quantity.

Instead of speaking of the number of lines of magnetic force, we may speak of the magnetic induction through the circuit, or the surface-integral of magnetic induction extended over any surface bounded by the circuit.

We shall return again to this method of Faraday. In the meantime we must enumerate the theories of induction which are founded on other considerations.

Lenz's Law.

542.] In 1834, Lenz \dagger enunciated the following remarkable relation between the phenomena of the mechanical action of

[^46]dectric curronts, as detined hy Ampines formula, nul the induction of electric eurrents hy the relative motion of conductors. An earlier attompt at an statomont of such a molam tion was given by Ritehie in the rhilmondtaed Male, ine for January of the same year, hat the diretion of the imheod current was in every case statud wromply. Lames law is as follows:-
 the motion of A, or of the secomblary brent B, "thrent is andured in B, the divertion of this intured curcent will he weth thert, by its clectromatuetir athen on A, it trmens t_{n} allyme the relutive motion of the cirruits.

On this law F. F. Neumam fomben his mathomation theory of induction, in which ho estahlinhed the mathemation haw of the induced corronts due to the motion of the primary or meonelary conductor. Heshewed that the quantity M, which wo haveralled the potential of the one circuit on the other, in the mame an the electromagnotic potential of the one circuit on the othor, which we have already investigated in commetion with Amparmaturmuh. We may regard F. E. Nemmam, therefors, as having completed for tho induction of currents the mathemation trestanst which Ampere had applied to their mochanion action.
543.] A stop of still greater sesintific inpertance wan soon after mado by Molmholtz in his Ewaty on the Conamerotion of Force \dagger, and loy Sir W. Thomson !, working sonn what bur, but independently of Holmholtz. They shewed that the inheretion of olectric courronts discovered by Faraday cond twe mathonationlly deduced from the electromagnotio notion dimeovewd by Önted and Ampere by the application of the pinoiphe of the ('onsorvation of Energy.

Melmholta takes the case of a combuetimg cireuit of resimance R, in which an electromotive fore A, arising from a voltaic or thermoelectric arrangement, acta. The ourwat in the cireuit at any instant is I. He suppowes that a magnes is in mothon in the noighbourhood of the circuit, and that its pohntial with rempert to tho conductor is V, so that, during any manall interval of tine

[^47]$d t$, the energy communicated to the magnet by the electromagnetic action is $I \frac{d V}{d t} d t$.

The work done in generating heat in the circuit is, by Joule's law, Art. $242, I^{2} R d t$, and the work spent by the electromotive force A, in maintaining the current I during the time $d t$, is $A I d t$. Hence, since the total work done must be equal to the work spent,

$$
A I d t=I^{2} R d t+I \frac{d V}{d t} d t
$$

whence we find the intensity of the current

$$
I=\frac{A-\frac{d V}{d t}}{R} .
$$

Now the value of A may be what we please. Let, therefore, $A=0$, and then

$$
I=-\frac{1}{R} \frac{d V}{d t}
$$

or, there will be a current due to the motion of the magnet, equal to that due to an electromotive force $-\frac{d V}{d t}$.

The whole induced current during the motion of the magnet from a place where its potential is V_{1} to a place where its potential is V_{2}, is

$$
\int I d t=-\frac{1}{R} \int \frac{d V}{d t} d t=\frac{1}{R}\left(V_{1}-V_{2}\right)
$$

and therefore the total current is independent of the velocity or the path of the magnet, and depends only on its initial and final positions.

Helmholtz in his original investigation adopted a system of units founded on the measurement of the heat generated in the conductor by the current. Considering the unit of current as arbitrary, the unit of resistance is that of a conductor in which this unit current generates unit of heat in unit of time. The unit of electromotive force in this system is that required to produce the unit of current in the conductor of unit resistance. The adoption of this system of units necessitates the introduction into the equations of a quantity α, which is the mechanical equivalent of the unit of heat. As we invariably adopt either the electrostatic or the electromagnetic system of units, this factor does not occur in the equations here given.
544.] Helmholtz also deduces the current of induction when a
conducting cirenit amd a circuit carrimg a constant curwnt are made to move relatively to one another *.

Let R_{1}, R_{0} he the resistanees, l_{1}, l, the currents, I_{1}, A, the external electromotive foreces and V the putontial of the whe

 Finorgy.

 notation be the name an in Art. blf. Than Ant. ©"en

Since T_{0} in a homogeneona qualrath function of t_{i}, l_{3}.
hence
Sultracting (1) from (2), wo got

 T_{m} due to the motion of the syntem, heree en wives.

The work done by the baturion in a time os in

$$
A_{1} I_{1} 8 t, A_{1}, A_{2} A .
$$

The heat produced in the name time in liv Jous"e law.

$$
\left(H_{1} t_{1}{ }^{2}+R_{a} I_{n}{ }^{3}+\Delta_{l} .\right.
$$

$$
A_{1} I_{1} \delta t+A_{2} I_{4} s t-\left(H_{1} t_{1}+H_{1} t_{3}^{2 i} d_{t}+T_{0}+T_{m}\right.
$$

Substituting for $\delta\left(T_{n}+T_{m}\right)$ from (l) wo ${ }^{n+1}$

Tho equations of induction are the two grantition famion the brawhere expeatent tu

 equations of induced currents ia given in Art. 4 \& 1.
circuit on the other due to unit current in each, then we have, as before,

$$
A_{1} I_{1}+A_{2} I_{2}=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}+I_{1} I_{2} \frac{d V}{d t}
$$

If we suppose I_{1} to be the primary current, and I_{2} so much less than I_{1}, that it does not by its induction produce any sensible alteration in I_{1}, so that we may put $I_{1}=\frac{A_{1}}{R_{1}}$, then

$$
I_{2}=\frac{A_{2}-I_{1} \frac{d V}{d t}}{R_{2}}
$$

a result which may be interpreted exactly as in the case of the magnet.

If we suppose I_{2} to be the primary current, and I_{1} to be very much smaller than I_{2}, we get for I_{1},

$$
I_{1}=\frac{A_{1}-I_{2} \frac{d V}{d t}}{R_{1}}
$$

This shews that for equal currents the electromotive force of the first circuit on the second is equal to that of the second on the first, whatever be the forms of the circuits.

Helmholtz does not in this memoir discuss the case of induction due to the strengthening or weakening of the primary current, or the induction of a current on itself. Thomson* applied the same principle to the determination of the mechanical value of a current, and pointed out that when work is done by the mutual action of two constant currents, their mechanical action is $i n$ creased by the same amount, so that the battery has to supply double that amount of work, in addition to that required to maintain the currents against the resistance of the circuits \dagger.
545.] The introduction, by W. Weber, of a system of absolute units for the measurement of electrical quantities is one of the most important steps in the progress of the science. Having already, in conjunction with Gauss, placed the measurement of magnetic quantities in the first rank of methods of precision, Weber proceeded in his Electrodynamic Measurements not only to lay down sound principles for fixing the units to be employed,

[^48]but to make determinations of particular Moctrical quantios in terms of these units, with a degrew of arourncy proviotaly unattempted. Both the mectromanuetic and the eloctromatic
 tion to these researches.

Wober has also formed a gemeral theory of eloctrie artion from which he deduces both electrontatie and weetromapnetic fore". and also the induction of chetric currents. Wre whall comsider this theory, with some of its more recont developmonts, in a separato chapter. Soe Art. \$16.

(IHAPTER IV.

ON THE TNDTOTION OF A GUKRENT ON ITSBLA.
540. $]$ Famabay haf devoted the ninth series of his Researches to the investigation of a class of phonomena exhibited by the curront in a wiro which forme the coil of an olectromagnet.

Mr. Jonkin han obsurverl that, although it is impossible to produee a monible whock by the diroct, action of a voltaic system consisting of only one puir of plates, yet, if the current is made to pash through the coil of an nectromagnet, and if contact is then hroken letwern the extremitios of two wires hold one in ench hand, a mant shook will bo felt. No such shook is felt on making oontnct.

Farnlay showed that this and other phenomena, which he desoriben, are due to the name inductive notion which he had alroady observed the ourrent tes exurt on neighbouring conductors. In this case, however, the inductive action in oxarted on the same conductor which onrrite the current, and it is so much the more powerful as the wire itmif is nevrer to tho different eloments of the current than any othor wire onn be.
547. 1 He oberves, however", that 'the first thought that arises in the mind is that the dootricity circulates with something like momentum or inortia in the wire. Indew, when wo consider one particular wire only, tho phonomena are exactly analogous to thome of a pipe full of water flowing in a continued stream. If whilo tho strenm in flowing wo suddenly close the end of the pipe, the momentum of the water produces a audden pressure, which is muoh greater than that due to the houd of water, and may be sufficient to burst the pipe.

If the wator has the means of escaping through a narrow jet when the principal aperture is closed, it will be projected with a

[^49]volocity much greater than that due to the hom of water, and if it con eseape through a valve into a chamber, it will do so, even when the prossure in the chaminer is greater than that due to tho head of water.

It is on this principhe that the hydranie ram is eonstructed. by which a small quantity of water may her rateod to a groat height by means of a large quantity llowing down from a much lower level.
548.] These dfecte of the inortia of the fluid in the tuhe depend solely on the guntity of fluid rumang through the tula, on ita length, and on its section in differnt phrte of its lomgth. They do not depend on any thing outside the the ne nor on the form into which the tube may be lent, poviled ita lengh remains the same.

With a wire convering a curront this is nat the case, for if a long wire is doubled on itself the ethent is very manll, if the two parts are neparated from enelt other it ingromer, if it is coiled up intor a helix it is still groatar, and grontowt of all if, when so coiled, a piee of soft iron in phed insid. the eqil.

Again, if a seomd wire is coiled up with the firat, hat insum lated from it, then, if the werme wire dow not form a chowed cirenit, the phenomem are as hefore, lot if the nerond wire forms
 wire, and the affects of melf-induction in the firat wire are be. tarided.
549.] These results shew ehorly that, if the flacturnem are due to momentum, the momentura is cortaing bet that of the olectricity in the wire, because the whan wire, conveg iny the same, current, oxhibits cffects which dither mowoling to its form ; and
 such as a piece of iron or a chased mothllio cirrotit, minte the rosult.
550.] It is diffent, however, for the tuisul whieh has one"
 and those of the motion of material hember, to nhanhon altogether the help of this amalogy, or to almit that it in entime man ricind and misleading. The fumbumental dyamical iden of mater, as orpable by its motion of beroning the recipient of momentum and of onorgy, is so inturwown with our forme of thought that, whenovor we catch a ghimpe of it in any part of mathe, wo feel
that a path is before us leading, sooner or later, to the complete understanding of the subject.
551.] In the case of the electric current, we find that, when the electromotive force begins to act, it does not at once produce the full current, but that the current rises gradually. What is the electromotive force doing during the time that the opposing resistance is not able to balance it? It is increasing the electric current.
Now an ordinary force, acting on a body in the direction of its motion, increases its momentum, and communicates to it kinetic energy, or the power of doing work on account of its motion.

In like manner the unresisted part of the electromotive force has been employed in increasing the electric current. Has the electric current, when thus produced, either momentum or kinetic energy?

We have already shewn that it has something very like momentum, that it resists being suddenly stopped, and that it can exert, for a short time, a great electromotive force.
But a conducting circuit in which a current has been set up has the power of doing work in virtue of this current, and this power cannot be said to be something very like energy, for it is really and truly energy.
Thus, if the current be left to itself, it will continue to circulate till it is stopped by the resistance of the circuit. Before it is stopped, however, it will have generated a certain quantity of heat, and the amount of this heat in dynamical measure is equal to the energy originally existing in the current.
Again, when the current is left to itself, it may be made to do mechanical work by moving magnets, and the inductive effect of these motions will, by Lenz's law, stop the current sooner than the resistance of the circuit alone would have stopped it. In this way part of the energy of the current may be transformed into mechanical work instead of heat.
552.] It appears, therefore, that a system containing an electric current is a seat of energy of some kind; and since we can form no conception of an electric current except as a kinetic phenomenon*, its energy must be kinetic energy, that is to say, the energy which a moving body has in virtue of its motion.
We have already shewn that the electricity in the wire cannot

[^50]be considered as the moving body in which were are time this enorgy，for the energy of a moving hody dues not depmen on anything extornal to itself，whereas the presenee of other bodies near the curront alters its energy．

Wo are therefore lod to enquire whe ther there may mot be some motion going on in the space mutside the wire，which is mot oe－ cupied by the electric curront，but in which the ehe tromannetie： effects of the current are manifested．

I shall not at present onter on the rasums for lowking in one place rather than another for mouh motioms，or for regnoting these motions as of one kind rather than another．

What I propose now to do is to axamine the eonserguenees of the assumption that the phenomem of the weetris：curront are those of a moving systom，tho motion being comannicated from one part of the system to another by forees，the mana am laws of which wo do not yet even attempt to define，hreanse we ean eliminato these forces from the equations of motion by the mothod given by lagrange for any connocted system．

In the next five chapters of this treatise 1 propuse to dendece the main structure of the theory of electricity from a dymmamal hypothesis of this kind，instoad of following the phth which has led Wober and other inventigators to many remarkahbedisenveries and oxperiments，and to concoptions，somu of which are as ham－ tiful as thoy aro hold．I have chowen this mothol heranse I wish to show that there are other ways of viewing the phenomema which appoar to mo more satisfactory，and at the sman time are moro consistent with the methonds followed in the proeding parts of this book than those which procedel on the hyputhenis of direct action at a distance．

CHAPTER V.

In the fourth section of the second part of his Mécanique que, Lagrange has given a method of reducing the dynamical equations of the motion of the parts of a ed system to a number equal to that of the degrees of of the system.
equations of motion of a connected system have been a different form by Hamilton, and have led to a great n of the higher part of pure dynamics*.
e shall find it necessary, in our endeavours to bring l phenomena within the province of dynamics, to have amical ideas in a state fit for direct application to questions, we shall devote this chapter to an exposition dynamical ideas from a physical point of view.
The aim of Lagrange was to bring dynamics under the f the calculus. He began by expressing the elementary cal relations in terms of the corresponding relations of braical quantities, and from the equations thus obtained ced his final equations by a purely algebraical process. quantities (expressing the reactions between the parts of m called into play by its physical connexions) appear in ations of motion of the component parts of the system, range's investigation, as seen from a mathematical point is a method of eliminating these quantities from the ations.
lowing the steps of this elimination the mind is exercalculation, and should therefore be kept free from the

[^51]intrusion of dynamical ideas. Our aim, on the other hand, is to cultivate our dynamical ideas. We therefore avail ourselves of the labours of the mathematicians, and retranslate their results from the language of the calculus into the language of dynamics, so that our words may call up the mental image, not of some algebraical process, but of some property of moving bodies.
The language of dynamics has been considerably extended by those who have expounded in popular terms the doctrine of the Conservation of Energy, and it will be seen that much of the following statement is suggested by the investigation in Thomson and Tait's Natural Philosophy, especially the method of beginning with the theory of impulsive forces.
I have applied this method so as to avoid the explicit consideration of the motion of any part of the system except the coordinates or variables, on which the motion of the whole depends. It is doubtless important that the student should be able to trace the connexion of the motion of each part of the system with that of the variables, but it is by no means necessary to do this in the process of obtaining the final equations, which are independent of the particular form of these connexions.

The Variables.

555.] The number of degrees of freedom of a system is the number of data which must be given in order completely to determine its position. Different forms may be given to these data, but their number depends on the nature of the system itself, and cannot be altered.

To fix our ideas we may conceive the system connected by means of suitable mechanism with a number of moveable pieces, each capable of motion along a straight line, and of no other kind of motion. The imaginary mechanism which connects each of these pieces with the system must be conceived to be free from friction, destitute of inertia, and incapable of being strained by the action of the applied forces. The use of this mechanism is merely to assist the imagination in ascribing position, velocity, and momentum to what appear, in Lagrange's investigation, as pure algebraical quantities.

Let q denote the position of one of the moveable pieces as defined by its distance from a fixed point in its line of motion.

We shall distinguish the values of q corresponding to the different pieces by the suffixes ${ }_{1}, 2$, \&c. When we are dealing with a set of quantities belonging to one piece only we may omit the suffix.

When the values of all the variables (q) are given, the position of each of the moveable pieces is known, and, in virtue of the imaginary mechanism, the configuration of the entire system is determined.

The Velocities.

556.] During the motion of the system the configuration changes in some definite manner, and since the configuration at each instant is fully defined by the values of the variables (q), the velocity of every part of the system, as well as its configuration, will be completely defined if we know the values of the variables (q), together with their velocities

$$
\left(\frac{d q}{d t}, \text { or, according to Newton's notation. } \dot{q}\right) \text {. }
$$

The Forces.

557.] By a proper regulation of the motion of the variables, any motion of the system, consistent with the nature of the connexions, may be produced. In order to produce this motion by moving the variable pieces, forces must be applied to these pieces.

We shall denote the force which must be applied to any variable q_{r} by F_{r}. The system of forces (F).is mechanically equivalent (in virtue of the connexions of the system) to the system of forces, whatever it may be, which really produces the motion.

The Momenta.

558.] When a body moves in such a way that its configuration, with respect to the force which acts on it, remains always the same, (as, for instance, in the case of a force acting on a single particle in the line of its motion,) the moving force is measured by the rate of increase of the momentum. If F is the moving force, and p the momentum,
whence

$$
\begin{aligned}
& F=\frac{d p}{d t} \\
& p=\int F d t
\end{aligned}
$$

The time-integral of a force is called the Impulse of the force;
so that wo may assert that the momentum is the impmise of the foreo which would bring the body from a state of rest into the given state of motion.
In the case of a comected system in montion, the contiguration is continually changing at a rate depowime on the volurition (i). so that wo can no longer assume that the monnman in the time-integral of the foree which acts in it.
 $q^{\prime} \delta t$, where oft is the time during which the inermment tahes place, and q^{\prime} is the greatest value of the wherity during that time. In the case of a system moving from reat under the metion of forees always in the same direction, this is wibuntly the fimal velocity.
If the final velority and contiguration of the savenu are given, wo may concerive the velocity to fue commanionten to the systom in a very small time $8 t$, the origimal contiguration difising from
 than $\dot{q}_{1} \delta t, \dot{q}_{2} \delta \delta$, \&ce., resprectivily.
The smaller we suppose the inerement of time is, the grenter must be the impressed forces, hat the time-int-gral, or inupulse, of each force will remain finite. The limitime valun of the im. pulse, when the time is diminioherl and ultimately vanishes, in dofined as the instentanemes impulse, and the numathan d, corve-
 to that variahle, whon then systras io hroughe inatuathenomy from a state of ress into, the givern state of motion.
 produced by instantancosos impulane on the nystom at mest, in introducod only an a mothend of defining the nampitule of the momenta, for the momenta of the mywarn lequmb andy on the instantancous state of motion of the symone, nat but on the process by which that state was promuced.
In a commeted system the monortum corrownoming to any variable is in general a linear function of the valuetiter of all the variahlos, instend of hing, an in the dyamace of a particle, simply propertional to the wherity.
The impulses required to change the wolocition of the symam suddenly from $\dot{q}_{1}, \dot{q}_{2}, \& e$, to $\dot{q}_{1}^{\prime}, y_{i}^{\prime}, \& e$, are widmaty equal to $p_{1}^{\prime}-p_{1}, p_{2}^{\prime}-p_{2}$, the changen of momentum of the several variables.
Worl deme hy "smatl Impulse.
559.] The work done by the foree F_{1}^{\prime} during the impulse is the space-intergral of the foreo, or

$$
\begin{aligned}
W & \int H_{1}^{\prime} d y_{1} \\
& =\int H_{1}^{\prime} \dot{y}_{1} d t
\end{aligned}
$$

If \dot{y}_{1}^{\prime} is the ereatest and $\dot{q}_{1}^{\prime \prime}$ the hant value of the velocity \dot{q}_{1} during the antion of the forer, $1 I^{\circ}$ must be less than

$$
\dot{q}_{1} \int \dot{b}_{1} l t \text { or } \ddot{q}_{1}^{\prime}\left(p_{1}^{\prime} \cdots p_{t}\right)
$$

and Iroater than $\dot{q}_{1}^{\prime \prime} \mid \dot{F}^{\prime}{ }^{\prime} l l$ or $\dot{q}_{1}^{\prime \prime}\left(p_{1}^{\prime}-p_{1}\right)$.
If wo now ruppose the impulse $\dot{f} f^{\prime}$ dl to he diminished without limit, the values of $\ddot{\eta}_{1}^{\prime}$ and $\dot{q}_{1}^{\prime \prime}$ will appronch and ultimately ooinciden with that of g_{1}, and wo may write $\mu_{1}^{\prime}-\mu_{t}=\bar{\prime} \mu_{1}$, so that the work done is ultimately

$$
\Delta W_{1} \quad \dot{q}_{1}{ }^{\circ} h_{1}
$$

or, the coork done by a very smutl impulse is ultimutety the produrt of the impular and the erlority.

Incroment of the Kinetir Einergy.
560.] When work is done in sotting a oonsorvative system in motion, wergy is commanieated to $i t$, and the syatem heoomes capable of doing an oqual amount of work against romintancos before it is reduend to rest.

The enorgy which a syatorn ponmesmes in virtue of its motion is called its Kimetio Foncrgy, and is eommunionted to it. in the form of the work dome by the forees which set, it in motion.

If T ' he the kinetio cnergy of the nystom, and if it beomes $T+\delta T$, on neconnt of the action of an infinitesimal impulse whose oomponente are $\Delta p_{1}, \delta p_{2}, \& c$, the incroment $\delta \bar{l}$ must be the sum of the quantitios of work done by the components of the impulse, or in aymboln,

$$
\begin{align*}
\delta T^{\prime} & =\dot{q}_{1} \delta p_{1}+\dot{\eta}_{2} \delta \mu_{2}+8 \mathrm{cc} \\
& =\Sigma\left(q^{\prime} \eta_{1}\right) . \tag{1}
\end{align*}
$$

The instantaneous state of the myntem is completely defined if
the variables and the momenta are given．Hene the energy，which depends on the instantaneons state of the can be expressed in terms of the variables（ f ），tand the th （1）．This is the mode of expressing l＇int robluend hy Ha When I is expressed in this way we mall dintimguinh it suffix ${ }_{p}$ ，thus，T_{p} ．

The complete variation of 7_{p} is

$$
\delta T_{p}=\Sigma\left(\begin{array}{c}
\left.d T_{p} \delta_{l}\right): \Sigma\binom{\left.d T_{s^{\prime}, p_{1}}\right)}{\left(l_{p}\right.} .
\end{array}\right.
$$

Tho last term may be writton

$$
\geq\left(\begin{array}{l}
d T_{n} \\
\left.{ }_{1}, q_{1}, t\right)
\end{array}\right.
$$

which diminishes with at，and ultimately vanimes with the impulse beeomes instantanemes．

Hence，equating the corfficionte of ofo in＂unations（1） wo olitain

$$
\begin{array}{cc}
\quad 1 \quad q^{\prime} \\
& l_{1}
\end{array}
$$

or，the velority romernmading to the tameshle y is the
 momentum p ．

We have arrived at this resalt by the comaloration pulsiva foreses．By this method we has avaited the eor tion of the change of eonfiguration during the ation forees．But the instantanoons state of the syment i respects the same，whother the syenom was brenghe frone of rest to the griven state of motion ly the tramanat aly of impulsive foress，or whether it arritel at that state mamer，however gralual．

In other words，the variahlew，and the corrapmanimys and momenta，depemi on the actmal mate of motina of the at the given instant，aml not on ils proviens hintoly．

Henes，the cquation（3）in＂qually salif，wherew the motion of the systom is mupposal due to impalaive fore forcos acting in any manmer whatever．

Wo may now therefore dismins the comaderation of it forces，together with the limitations imposen on their action，and on the changes of contigurat on during their

Hemilton's Béputtions of Motion.

sol.| We have already shewn that

$$
\begin{align*}
& d T_{p}=\dot{q} . \tag{4}\\
& d_{p}
\end{align*}
$$

Lat the sestam move in any arhitrary way, wabject to the conditions imposed by its commexions, then the variations of p and q are

Hene.
and the complete variation of T_{z}, is

$$
\begin{align*}
& =\sum\left(\left(\begin{array}{l}
d / \\
d t
\end{array}+\frac{d T_{p}}{d q}\right)^{\prime \prime \prime} \eta\right) . \tag{7}
\end{align*}
$$

But the inerement of the kinetio enorgy arises from the work done hy the impressed foress, or

$$
\begin{equation*}
\therefore T_{n}^{\prime}=\Sigma\left(r^{\prime} \Delta \eta\right) . \tag{8}
\end{equation*}
$$

In these two axpressione the variations oq are all independent of each other, so that wo are antitled to ergate the corflicients of atheh of them in the two "xpromions (7) and (8). We thas obtain

$$
\begin{equation*}
f_{1}=\frac{d p_{r}}{d t}+\frac{d T_{r}}{d l_{r}} \tag{9}
\end{equation*}
$$

whore the momentum p_{r} and the foree p_{r} belong to the variable q. *.

There are as many equations of this form as thero are variables. These equations wore given by Hamiliom. They shew that the forec correspoming to any variable is the sum of two parts. The first part is the rate of incroase of the momentum of that variahle with rempert to the time. The seeond part is the rate of ineronse of the kinetic onergy per unit of inerement of the varinhls, the other variahles and all the momenta buing constant.

[^52]The Kinetia Euncty expessed in Terms of the Momenter and lelesitises.
562.] Let μ_{1}, μ_{2}, \&e. be the momenta, and $\dot{q}_{1}, \dot{q}_{, ~ W}$. the
 another system of momenta and velocities, such that.

$$
\begin{equation*}
\mu_{1}=\mu \mu_{1}, \quad \dot{q}_{1}=m \dot{q}_{1}, d r \tag{10}
\end{equation*}
$$

It is manifest that the systems p, iq will he consistunt with each other if the systems p, \dot{q} are sos.

Now lot 4 vary by 8π. The work done by the fore H_{1} is

$$
\begin{equation*}
H_{1}^{\prime} \delta q_{1}=\dot{q}_{1} \delta \mu_{1}=\dot{\eta}_{1} \mu_{1} n \delta n . \tag{11}
\end{equation*}
$$

Let m increase from 10 to 1 , then the syatem is brought from a state of rent into the state of motion (i,,\prime), num the whole work expended in producing this motion is

$$
\begin{gather*}
\left(\dot{\eta}_{1} p_{1}+\dot{q}_{2} p_{2}+d e_{0}\right) \int_{0}^{1} n d n . \tag{12}\\
\int_{0}^{l} n d n=\frac{1}{b} .
\end{gather*}
$$

But
and the work spent in producing the motion is equivalent to the kinetic enorgy. Henco

$$
\begin{equation*}
T_{p i}=\frac{1}{1}\left(\mu_{1} \dot{q}_{1}+p_{2} \dot{q}_{z}+\delta \mathrm{c}\right) \tag{13}
\end{equation*}
$$

where $T_{p i}$ denotes the kinetic enorgy exprowned in torme of the momenta and velocition. The variahlos q_{1}, q_{1}, de . do not onter into this expression.

The kinetic onergy is therefore half the sum of the proflucte of the momenta into their correnpoming volocities.

When the kinetic energy is exprossed in this way wo shall denote it by the symbel $T_{\text {pid }}$. It is a function of the momenta and velocities only, and does not involve the variables themsolves.
563.] Thore is a third mothon of exprasimg the kinotic onergy, which is generally, indeed, regardel as the fumbamental one. By solving tho equations (3) wo may express the momenta in terms of the velocities, and then, introducing thew valuew in (13), we shall have an expression for T ' involving only the velocitien and the variables. When T ' is expressed in thim form we shall indicate it by the symbol Tw. Thin is the form in which the kinotic energy is expressed in the equations of Lagrange.
564.| It is manifest that, sineo $T_{1,}, T_{4}$, and $T_{p,}$ are three different expresions for the mame thing,
or

$$
\begin{gather*}
T_{p}+T_{4}+2 T_{m}=0 \\
T_{n}+T_{4}-p_{1} \dot{q}_{1}-l_{2} q_{2} \quad d c=0 . \tag{1.4}
\end{gather*}
$$

Hence, if all the quantition ρ, q, and \dot{q} vary,

The variations by are not independent of the variations by and $\delta \dot{q}$, so that wo cannot at once ansert that the coefficient of each variation in this oquation is zero. But wo know, from equations (3), that

$$
\begin{align*}
& d T_{n}-\dot{q}_{1}=0,8<c . \tag{16}\\
& d_{l_{1}}
\end{align*}
$$

so that the terms involving tho variations $\overline{3} p$ vanish of themselves.

The remaning varintions $\bar{b} \dot{q}$ and $8 y$ aro now all indepondent, so that we find, hy equating to zoro the coofficionts of $\delta \dot{q_{1}}$, de.

$$
\begin{equation*}
\mu_{1}=\frac{d T_{4}}{d \dot{q}_{1}}, \quad p_{3}=\frac{d T_{4}}{d \dot{q}_{3}}, d \cos \tag{17}
\end{equation*}
$$

or, the compentuta of momentum are the differential coefficients of Th with respert to the correspending velonilies.

Again, by muating to zoro the eoofficiente of δq_{1}, \&c.

$$
\begin{equation*}
d T_{y}+\frac{d T_{t}^{\prime}}{d I_{1}}=0 ; \tag{18}
\end{equation*}
$$

or, the differential comficisnt of the kinetin merty with respert to any wariathe η_{1} is equat in matgitude but "phowite in sign when T 'is rexpromed an atuntion of the meloritites inatecul of as a function of the momenta.

In virtue of "quation (18) wo may write the equation of motion (9),
or

$$
\begin{align*}
& F_{1}=\frac{d p_{1}-d T_{1}}{d t}-d q_{1} \tag{19}\\
& F_{1}=d d T_{4}-d T_{q} \tag{20}\\
& d t d q_{1}-d q_{1}
\end{align*}
$$

which is the form in which the equations of motion were given by Lagrange.
565.] In the preceding investigation we have avoided the consideration of the form of the function which expresses the kinetic energy in terms either of the velocities or of the momenta. The only explicit form which we have assigned to it is

$$
\begin{equation*}
T_{p \dot{q}}=\frac{1}{2}\left(p_{1} \dot{q}_{1}+p_{2} \dot{q}_{2}+\& c .\right), \tag{21}
\end{equation*}
$$

in which it is expressed as half the sum of the products of the momenta each into its corresponding velocity.

We may express the velocities in terms of the differential coefficients of T_{p} with respect to the momenta, as in equation (3),

$$
\begin{equation*}
T_{p}=\frac{1}{2}\left(p_{1} \frac{d T_{p}}{d p_{1}}+p_{2} \frac{d T_{p}}{d p_{2}}+\& \mathrm{c} .\right) \tag{22}
\end{equation*}
$$

This shews that T_{p} is a homogeneous function of the second degree of the momenta $p_{1}, p_{2}, \& c$.

We may also express the momenta in terms of $T_{\dot{q}}$, and we find

$$
\begin{equation*}
T_{\dot{q}}=\frac{1}{2}\left(\dot{q}_{1} \frac{d T_{\dot{q}}}{d \dot{q}_{1}}+\dot{q}_{2} \frac{d T_{\dot{q}}}{d \dot{q}_{2}}+\& \mathrm{c}\right) \tag{23}
\end{equation*}
$$

which shews that $T_{\dot{q}}$ is a homogeneous function of the second degree with respect to the velocities $\dot{q}_{1}, \dot{q}_{2}, \& c$.

If we write

$$
\begin{array}{lll}
& P_{11} \text { for } \frac{d^{2} T_{\dot{q}}}{d \dot{q}_{1}^{2}}, & P_{12} \text { for } \frac{d^{2} T_{\dot{q}}}{d \dot{q}_{1} d \dot{q}_{2}}, \& c . \\
\text { and } & Q_{11} \text { for } \frac{d^{2} T_{p}}{d p_{1}^{2}}, & Q_{12} \text { for } \frac{d^{2} T_{p}}{d p_{1} d p_{2}}, \& c .
\end{array}
$$

then, since $T_{\dot{q}}$ and T_{p} are functions of the second degree of \dot{q} and p respectively, both the P 's and the Q 's will be functions of the variables q only, and independent of the velocities and the momenta. We thus obtain the expressions for T,

$$
\begin{align*}
& 2 T_{\dot{q}}=P_{11} \dot{q}_{1}^{2}+2 P_{12} \dot{q}_{1} \dot{q}_{2}+\& \mathrm{c} \cdot \tag{24}\\
& 2 T_{p}=Q_{11} p_{1}^{2}+2 Q_{12} p_{1} p_{2}+\& \mathrm{c} . \tag{25}
\end{align*}
$$

The momenta are expressed in terms of the velocities by the linear equations $p_{1}=P_{11} \dot{q}_{1}+P_{12} \dot{q}_{2}+\& c$.
and the velocities are expressed in terms of the momenta by the linear equations

$$
\begin{equation*}
\dot{q}_{1}=Q_{11} p_{1}+Q_{12} p_{2}+\& c \tag{27}
\end{equation*}
$$

In treatises on the dynamics of a rigid body, the coefficients corresponding to P_{11}, in which the suffixes are the same, are called Moments of Inertia, and those corresponding to P_{12}, in which the suffixes are different, are called Products of Inertia.

Wo may extend these mames to tho more general problem which is now before us, in which those quantities are not, as in the case of a rigid body, absolute constants, but are functions of the variablew q_{1}, q_{2}, \&e.

In like mamer wo may eall the coefficionts of the form Q_{11} Momentes of Mohility, and thown of the form ℓ_{12} Products of Mohility. It is not often, however, that we mhall have oceasion to sperak of the conefticientes of mohility.

566 .] The kinetice energy of the system is a quantity essentially pesitive or zero. Hence, whether it be expressed in terms of the velocitios, or in terms of the momenta, the eoeffieients must be such that no roal values of the variahles can make T negative.

There are thus a set of necessary conditions which the values of the eovflicienter I' must satisfly. These conditions aro as follows:

The quantitios $l_{11}^{\prime}, l_{12}^{\prime}, \$ \mathrm{c}$. must all be positive.
The $n-1$ determinante formed in succession from the doterminant
hy the omisnion of turnu with suffix 1 , then of terms with either 1 or 2 in their suflix, and no on, must all the positive.

The number of conditions for n variablen is therefore $2 n-1$.
The coetlicionts Q are subject to conditions of the same kind.
56%.] In this outline of the fumdemental principles of the dymmios of th commeted system, we have kept out of virw the mednaism by which the parte of the symem are connected. We have mot even written down a set of equations to indionte how the motion of ney part of the system depends on the variation of the variables. We have confined our attention to the variables, their velocition and momonta, and the forees which act on the pineos representing the variables. Our only asumptions are, that the connexions of the sysem are such that the time is not explicitly contained in the equations of condition, and that the principle of the conservation of onergy is applicable to the system.

Such a deseription of the methords of pure dymamies is necessary, hecanse Lagrange and most of his followern, wo aro indehtel for these mothode, have in meneral contime selves to a demonstration of them, am, in order to deve attention to the symbols before them, they have embenve banish all ideas exeopt those of pure quantity, me as mot dispense with diagrams, hut weon to get rih of the dems of momentum, and encrgy, after they have hem whew for plantod by symbols in the original equations. In orde ablo to rofer to the results of this ambsis in ordinary "ly language, wo have embavoured to retranslate the princip tions of the mothod into languase which may be intelligit out the use of symbols.

As the develomment of the ithens amb mothons of pure matics has rondered it possible, by forming amathenticn of dynamics, to bring to light many truthe which comh a beon discovered without mathematical training, sa, if wi form dynamical theories of other neimens, wr must ha minds imbued with these dynamical truths an well mathomatical methods.

In forming the ideas and words rulating to any sointow like clectricity, deals with forees and their "flecta, wo mu constantly in mind the idons nppropriate tor the fund seionce of dynamics, so that wo may, during the first d ment of tho seionce, avoid ineomsinteney with what is established, and also that when our views beome dea language wo have adopted may lo a help to un ant hindrance.

(HADTRR VI.

HNAMICAI, THEOKY OF RLBOTHOMAONETISM.

508.] We: havo shewn, in Art. 552, that, when an electric current existe in a conducting circuit, it has a capacity for doing a oortain amount of moohanical work, and this independontly of any extornal olectromotive force maintaining the curront. Now capacity for performing work is nothing olse than energy, in whatever way it arises, and all enorgy is the same in kind, however it may differ in form. The energy of an alectric curront is either of that form which consisto in the actual motion of mattor, or of that which consists in the capneity for being set in motion, arising from forow noting betweon bodies placed in cortain positions relative to onch other.

The first kind of enorgy, that of motion, in called Kinotic energy, and whon once understood it apponrs so fundamental a fact of nature that we can hardly conceive the possibility of resolving it into anything olso. The second kind of energy, that deponding on position, is called Potential onergy, and is due to the action of what wo call forces, that is to say, tumdencies townrde change of relative position. With respeet to these fores, though we may accept their existeneo as a demonmerated fact, yot wo always feel that every explanation of the mechanism by which borlies are set in motion forms a real addition to our knowledge.
569.] The electric current cannot be conceived excopt as a kinetic phenomenon. Even Faraday, whe constantly endeavoured to omancipato his mind from the influonoe of those suggestions which the words 'electric current' and 'eleotrio fluid ' are too apt to carry with them, mpeaks of the electric current as 'something progressive, and not a mere arrangement *.'

[^53]The effects of the current, such as electrolysis, and the transfer of electrification from one body to another, are all progressive actions which require time for their accomplishment, and are therefore of the nature of motions.

As to the velocity of the current, we have shewn that we know nothing about it, it may be the tenth of an inch in an hour, or a hundred thousand miles in a second*. So far are we from knowing its absolute value in any case, that we do not even know whether what we call the positive direction is the actual direction of the motion or the reverse.

But all that we assume here is that the electric current involves motion of some kind. That which is the cause of electric currents has been called Electromotive Force. This name has long been used with great advantage, and has never led to any inconsistency in the language of science. Electromotive force is always to be understood to act on electricity only, not on the bodies in which the electricity resides. It is never to be confounded with ordinary mechanical foree, which acts on bodies only, not on the electricity in them. If we ever come to know the formal relation between electricity and ordinary matter, we shall probably also know the relation between electromotive force and ordinary force.
570.] When ordinary force acts on a body, and when the body yields to the force, the work done by the force is measured by the product of the force into the amount by which the body yields. Thus, in the case of water forced through a pipe, the work done at any section is measured by the fluid pressure at the section multiplied into the quantity of water which crosses the section.

In the same way the work done by an electromotive force is measured by the product of the electromotive force into the quantity of electricity which crosses a section of the conductor under the action of the electromotive force.

The work done by an electromotive force is of exactly the same kind as the work done by an ordinary force, and both are measured by the same standards or units.

Part of the work done by an electromotive force acting on a conducting circuit is spent in overcoming the resistance of the circuit, and this part of the work is thereby converted into heat.

[^54]Another part of the work is spent in producing the electromagnetic phenomena observed by Ampère, in which conductors are made to move by electromagnetic forces. The rest of the work is spent in increasing the kinetic energy of the current, and the effects of this part of the action are shewn in the phenomena of the induction of currents observed by Faraday.
We therefore know enough about electric currents to recognise, in a system of material conductors carrying currents, a dynamical system which is the seat of energy, part of which may be kinetic and part potential.

The nature of the connexions of the parts of this system is unknown to us, but as we have dynamical methods of investigation which do not require a knowledge of the mechanism of the system, we shall apply them to this case.

We shall first examine the consequences of assuming the most general form for the function which expresses the kinetic energy of the system.
571.] Let the system consist of a number of conducting circuits, the form and position of which are determined by the values of a system of variables x_{1}, x_{2}, \&c., the number of which is equal to the number of degrees of freedom of the system.

If the whole kinetic energy of the system were that due to the motion of these conductors, it would be expressed in the form

$$
T=\frac{1}{2}\left(x_{1} x_{1}\right) \dot{x}_{1}^{2}+\& \mathrm{c} .+\left(x_{1} x_{2}\right) \dot{x}_{1} \dot{x}_{2}+\& c
$$

where the symbols $\left(x_{1} x_{1}\right)$, \&c. denote the quantities which we have called moments of inertia, and $\left(x_{1} x_{2}\right), \& c$. denote the products of inertia.

If X^{\prime} is the impressed force, tending to increase the coordinate x, which is required to produce the actual motion, then, by Lagrange's equation, $\quad \frac{d}{d t} \frac{d T}{d \dot{x}}-\frac{d T}{d x}=X^{\prime}$.

When T denotes the energy due to the visible motion only, we shall indicate it by the suffix ${ }_{n}$, thus, T_{m}.

But in a system of conductors carrying electric currents, part of the kinetic energy is due to the existence of these currents. Let the motion of the electricity, and of anything whose motion is governed by that of the electricity, be determined by another set of coordinates $y_{1}, y_{2}, \& c$., then T will be a homogeneous function of squares and products of all the velocities of the two sets
of coordinates. We may therefore divide ' 1 ' inte thre portions, in the first of which, T_{m}, the velocities of the coordimates x only occur, while in the secoud, T_{d}, the velocities of the comdinates y only occur, and in tho third, $T_{m a}$, ench term contains the product of the volocitios of two coordinates of which one is an x and the other a y.

We have therefore $T=T_{m}+T_{0}+T_{m n}$,
whore

$$
\begin{aligned}
& T_{m}^{\prime}=\frac{1}{2}\left(x_{1} x_{1}\right) \dot{x}_{1}^{2}+\& \mathrm{c}+\left(r_{1} x_{2}\right) \dot{x}_{1} \dot{x}_{2}+太 c \cdot \\
& T_{a}=\frac{1}{2}\left(y_{1} y_{1}\right) \dot{y}_{1}^{2}+\& \mathrm{c}+\left(y_{1} y_{2}\right) \dot{y}_{1} \dot{y}_{2}+太 \mathrm{C} \\
& T_{m \mathrm{~A}}=\left(x_{1} y_{1}\right) \dot{x}_{1} \dot{y}_{\mathrm{x}}+\& \mathrm{c} .
\end{aligned}
$$

572.] In the general dynamical theory, the coeffecients of overy torm may be functions of all the coordinates, bethexand y. In tho case of electric eurrents, however, it, is rasy to seo that tho coordinater of the class y do not anter into the coefficionts.

For, if all tho olectric currents aro maintained constant, and the conductors at rest, the whole state of the fied will romain constant. But in this case the coordimates y are varinhlh, though the volocitios \dot{y} are constant. Hence the coordinates a camot ontor into the expression for T, or into any other expression of what actually takos place.

Besides this, in virtue of the "quation of continuity, if the conductors are of the nature of linear circuita, only on variahle is required to express the strength of the current in each conductor. Let the velocities \dot{y}_{1}, \dot{y}_{2}, \&e. represent the strongths of the currents in the several conductors.

All this would be true, if, instead of olectric currente, wo hat currents of an incompressible tluid ruming in thesible tubes, In this caso the velocitios of these currents would snter into the expression for T, but the coofficients would dep+nd only on the variables x, which determine the form and position of the tubes.

In the case of the fluid, the motion of the fluid in on, tube does not diroctly affect that of any other tules, or of the fluid in it. Honce, in the value of $T_{\text {" }}$, only the squares of the velocities \dot{y}, and not their products, occur, and in $T_{\text {me }}$ any volucity \dot{y} is associated only with those velucities of the form \dot{x} which belong to its own tube.

In the case of electrical currents we know that this restriction does not hold, for the curronts in different circuits act on each
other. Hence we must admit the existence of terms involving products of the form $\dot{y}_{1} \dot{y}_{2}$, and this involves the existence of something in motion, whose motion depends on the strength of both electric currents \dot{y}_{1} and \dot{y}_{2}. This moving matter, whatever it is, is not confined to the interior of the conductors carrying the two currents, but probably extends throughout the whole space surrounding them.
573.] Let us next consider the form which Lagrange's equations of motion assume in this case. Let X^{\prime} be the impressed force corresponding to the coordinate x, one of those which determine the form and position of the conducting circuits. This is a force in the ordinary sense, a tendency towards change of position. It is given by the equation

$$
X^{\prime}=\frac{d}{d t} \frac{d T}{d \dot{x}}-\frac{d T}{d x}
$$

We may consider this force as the sum of three parts, corresponding to the three parts into which we divided the kinetic energy of the system, and we may distinguish them by the same suffixes. Thus $\quad X^{\prime}=X_{m}^{\prime}+X_{e}^{\prime}+X_{m e}^{\prime}$.

The part X_{m}^{\prime} is that which depends on ordinary dynamical considerations, and we need not attend to it.

Since T_{e} does not contain \dot{x}, the first term of the expression for X_{e}^{\prime} is zero, and its value is reduced to

$$
X_{e}^{\prime}=-\frac{d T_{e}}{d x} .
$$

This is the expression for the mechanical force which must be applied to a conductor to balance the electromagnetic force, and it asserts that it is measured by the rate of diminution of the purely electrokinetic energy due to the variation of the coordinate x. The electromagnetic force, X_{e}, which brings this external mechanical force into play, is equal and opposite to X^{\prime}, and is therefore measured by the rate of increase of the electrokinetic energy corresponding to an increase of the coordinate x. The value of X_{θ}, since it depends on squares and products of the currents, remains the same if we reverse the directions of all the currents.

The third part of X^{\prime} is

$$
X_{m e}^{\prime}=\frac{d}{d t} \frac{d T_{m e}}{d \dot{x}}-\frac{d T_{m e}}{d x} .
$$

 $d T_{m_{\mathrm{m}}}$ is a linear function of the entrongthe of the currents, $\%$. The die
first term, therefore, deprouls on the rate of vaintion of the strengthe of the eurrents, and indicates a mochanieal fore on the conductor, which is zure, when the currentsare comstant, and which is positive or nogative aceording the thernts are increasing or decrensing in strongth.

The second torm depmens, not on the varintion of the currmen but on their actual strengtha. An it is a limenr function with respect to these currente, it changes sign when the cursents change sign. Since every torm involven a volocity x, it is zuro when the comductors are at rest. Thare are abow hermataing from the time variations of the coedicionte of y in ${ }^{/ 1} \eta_{\text {"mos }}$: these romarks apply also to them.

We may therefore investignte these terma mparately. If the conductors are at rest, we have only the first torm tu deal with. If the currents are constant, we have only the seromb.
574.] As it is of great importance to hetomine whether any part of the kinetio cnergy is of the form Trow ennisting of prow ducts of ordinary velocitios ame strengthe of ehetrie charents, it is desirahle that exprimenteshould he mathe wh this sulyect with great care.

The determination of the forees acting on bentien in rapid motion is diffieult. Let un therefore atternl to the firat turm, which depends on the variation of the stresgeth of the curvent.

If any part of the kinetic enorgy depende on the probluet of an ordinary volocity and the strongth of a curmont, it will probably he most easily ohserved whon the velucity and the current are in the mame or in opposite directions. Wre therofore take a circular coil of a groat many windinge, had mapment it by a fino vortical wiro, so that its windingen aro burizontal, and the coil is capahlo of rotating ahout a vertien axis, cither in the same direction as tho current in the coil, or in the opposite direction.

Wo shall suppose the current to be consuyen into the coil hy momen of the suspending wire, and, after pasing round the windings, to complete its circuit by passing downwarde through a wiro in tho name line with the sumending wire and dipping into a cup of mercury.

Since the action of the horizontal component of terrestrial magnetism would tend to turn this coil round a horizontal axis when the current flows through it, we shall suppose that the horizontal component of terrestrial magnetism is exactly neutralized by means of fixed magnets, or that the experiment is made at the magnetic pole. A vertical mirror is attached to the coil to detect any motion in azimuth.

Now let a current be made to pass through the coil in the direction N.E.S.W. If electricity were a fluid like water, flowing along the wire, then, at the moment of starting the current, and as long as its velocity is increasing, a force would require to be supplied to produce the angular momentum of the fluid in passing round the coil, and as this must be supplied by the elasticity of the suspending wire, the coil would at first rotate in the apposite direction or W.S.E.N., and this would be detected by means of the mirror.

Fig. 33. On stopping the current there would be another movement of the mirror, this time in the same direction as that of the current.

No phenomenon of this kind has yet been observed. Such an action, if it existed, might be easily distinguished from the already known actions of the current by the following peculiarities.
(1) It would occur only when the strength of the current varies, as when contact is made or broken, and not when the current is constant.

All the known mechanical actions of the current depend on the strength of the currents, and not on the rate of variation. The electromotive action in the case of induced currents cannot be confounded with this electromagnetic action.
(2) The direction of this action would be reversed when that of all the currents in the field is reversed.

All the known mechanical actions of the current remain the same when all the currents are reversed, since they depend on squares and products of these currents.

If any action of this kind were discovered, we should be able to regard one of the so-called kinds of electricity, either the positive or the negative kind, as a real substance, and we should be able to describe the electric current as a true motion of this substance in a particular direction. In fact, if elcectrical motions were in any way comparable with the motions of ordinary matter, terms of the form $T_{m e}$ would exist, and their existence would be manifested by the mechanical force $X_{m e}$.

According to Fechner's hypothesis, that an electric current consists of two equal currents of positive and negative electricity, flowing in opposite directions through the same conductor, the terms of the second class $T_{m e}$ would vanish, each term belonging to the positive current being accompanied by an equal term of opposite sign belonging to the negative current, and the phenomena depending on these terms would have no existence.
It appears to me, however, that while we derive great advantage from the recognition of the many analogies between the electric current and a current of material fluid, we must carefully avoid making any assumption not warranted by experimental evidence, and that there is, as yet, no experimental evidence to shew whether the electric current is really a current of a material substance, or a double current, or whether its velocity is great or small as measured in feet per second.
A knowledge of these things would amount to at least the beginnings of a complete dynamical theory of electricity, in which we should regard electrical action, not, as in this treatise, as a phenomenon due to an unknown cause, subject only to the general laws of dynamics, but as the result of known motions of known portions of matter, in which not only the total effects and final results, but the whole intermediate mechanism and details of the motion, are taken as the objects of study.
575.] The experimental investigation of the second term of $X_{\text {me }}$, namely $\frac{d T_{m e}}{d x}$, is more difficult, as it involves the observation of the effect of forees on a body in rapid motion.

The apparatus shewn in Fig. 34, which I had constructed in 1861, is intended to test the existence of a force of this kind.
The electromagnet A is capable of rotating about the horizontal axis $B B^{\prime}$, within a ring which itself revolves about a vertical axis.

Let A, B, C bo the moments of inertia of the electromagnet about the axis of the coil, the horizontal axis $.13 B^{\prime}$, and a third axis (' C^{\prime} respectively.

Let o bo the angle which $C O^{\prime \prime}$ makes with the vertical, ϕ the azimuth of the axis $B B B^{\prime}$, and ψ a variable on which the motion of electricity in the eoil deponds.

Fig. 34.
Then the kinetio onergy T of the electromagnet may be written

$$
2 T=A \dot{\phi}^{2} \sin ^{2} \theta+B \dot{\theta}^{2}+C \dot{\phi}^{2} \cos ^{2} \theta+E(\dot{\phi} \sin \theta+\dot{\psi})^{2}
$$

where E^{\prime} is a quantity which may bo called the moment of inertia of the electricity in the coil.

If $(-)$ is the moment of the impressed force tending to increase θ, we have, by the equations of dynamies,

$$
\Theta=H \frac{d^{2} \theta}{d t^{2}}-\left\{(A-C) \dot{\phi}^{2} \sin \theta \cos \theta+E \dot{\phi} \cos \theta(\dot{\phi} \sin \theta+\dot{\psi})\right\} .
$$

By making Ψ, tho impressed forco tending to increase ψ, equal to zero, we obtain

$$
\dot{\phi} \sin \theta+\dot{\psi}=\gamma,
$$

 of the current in the coil.
 librium about the axis $1 / f^{\prime}$ will he sahhe when

$$
\sin \theta=\frac{A}{}=\frac{1}{\prime \prime} .
$$

This value of 0 depmens on that of ; the wetrie curmat, and

The current is fassed through the coil by its harimen at A and B^{\prime}, which are commeted with the hather ly benam of eprings rubhing on motal rimg phereden the wotheal asim.

To determine the value of tha divh of pary in flamed at f^{\prime}, divided by a diamoter parallel th $/ 1 / h^{\prime}$ into 1 wo phata, whe of which is painted red and the othergern.

When the instrument is in mution a mol riscle is senn at $\mathbf{C l}^{\prime}$ when θ in pesitive, the raliun of whish intiontom romghly the value of θ. When θ is nogative, agrees cirelo in sern at $($.

By means of muts working on serwos athehent the the dectromagnot, tho axis ($\%$ " is adjusted to be a prinelpal avis having its moment of incrtia just weoteling that ronnd the ation A, so as to make the instrument very sensitive for the nefon of the foree if it exists.
 turbing action of the rarth's magnetie foren, whels ranmed the
 were on this acount, very rough, hit no widenem of any change in θ could he ohtainet even when an iron cote was insertad in tho coil, so an to make it a pewerful deetromames.

If, therefore, a magnet contains nattor in mpill rotntion, the sugular monentum of this rotation nust be vary small compared with any quantitien which we can monare, mul wo have as yet no evilence of the oxintene of the terns $\sigma_{\text {mo }}$ deriven from their mechanical action.
576.$]$ Let us noxt eonsider the fores noting on the ourronte of olectricity, that is, the olectronotive forew.

Let Y he the affertive dertromotive fore due w induction, tho alectromotive foree which mant net on the dircuit from without to halance it is $5^{\prime \prime}=-1$, mal, ly lagrange"n "umation,

$$
1=-1^{\prime \prime}=-\frac{1 d T}{\text { d } 1 / l_{y}+}{ }^{1 / y}
$$

Since there are no terms in T involving the coordinate y, the second term is zero, and Y is reduced to its first term. Hence, electromotive force cannot exist in a system at rest, and with constant currents.

Again, if we divide Y into three parts, Y_{m}, Y_{e}, and $Y_{m e}$, corresponding to the three parts of T, we find that, since T_{m} does not contain $\dot{y}, Y_{m}=0$.

We also find

$$
Y_{e}=-\frac{d}{d t} \frac{d T_{e}}{d \dot{y}} .
$$

Here $\frac{d T_{e}}{d \dot{y}}$ is a linear function of the currents, and this part of the electromotive force is equal to the rate of change of this function. This is the electromotive force of induction discovered by Faraday. We shall consider it more at length afterwards.
577.] From the part of T, depending on velocities multiplied by currents, we find

$$
Y_{m e}=-\frac{\dot{d}}{d t} \frac{d T_{m e}}{d \dot{y}} .
$$

Now $\frac{d T_{m e}}{d \dot{y}}$ is a linear function of the velocities of the conductors. If, therefore, any terms of $T_{m e}$ have an actual existence, it would be possible to produce an electromotive force independently of all existing currents by simply altering the velocities of the conductors. For instance, in the case of the suspended coil at Art. 574, if, when the coil is at rest, we suddenly set it in rotation about the vertical axis, an electromotive force would be called into action proportional to the acceleration of this motion. It would vanish when the motion became uniform, and be reversed when the motion was retarded.
Now few scientific observations can be made with greater precision than that which determines the existence or non-existence of a current by means of a galvanometer. The delicacy of this method far exceeds that of most of the arrangements for measuring the mechanical force acting on a body. If, therefore, any currents could be produced in this way they would be detected, even if they were very feeble. They would be distinguished from ordinary currents of induction by the following characteristics.
(1) They would depend entirely on the motions of the conductors, and in no degree on the strength of currents or magnetic forces already in the field.
(2) They would depend not on the absolute velocities of the conductors, but on their aceclorations, and on sifuares and products of velocities, and they would change when the aceeleration becomes a retardation, though the ahsolute velocity is the same.

Now in all tho cases actually olserved, the induced currents depend altogether on the strength and the variation of currents in the fied, and cannot he exeited in a field devoid of magnetio force and of currents. In se far ats they depemd on the motion of conductors, they depend on the ahmolute veloeity, and not on the change of velocity of these motions.

We have thus three metherds of detecting the uxistence of the terms of the form $T_{\text {ma }}$, none of which have hithorto led to any positive result. I have printed them out with the greater eare hecause it appears to me important that wo should attain the groatest, amount of certitude within our rach on a point bearing so strongly on the true theory of electrieity.

Since, however, mo evidence has yot hewn olfained of such torms, I shall now proceed on the ansumption that they do not exist, or at least that they produee no sensible 'tfect, an assump) tion which will eonsiderahly simplify our dynamieal theory. We whall have oceasion, however, in discussing the relation of magnetian to light, to shew that the motion which constitutes light may onter as a factor into turms involving the motion which constitutes magnetism.

CHAPTER VII.

THEORY OF ELECTRIC CIRCUITS.

578.] We may now confine our attention to that part of the kinetic energy of the system which depends on squares and products of the strengths of the electric currents. We may call this the Electrokinetic Energy of the system. The part depending on the motion of the conductors belongs to ordinary dynamics, and we have seen that the part depending on products of velocities and currents does not exist.

Let A_{1}, A_{2}, \&c. denote the different conducting circuits. Let their form and relative position be expressed in terms of the variables x_{1}, x_{2}, \&c. the number of which is equal to the number of degrees of freedom of the mechanical system. We shall call these the Geometrical Variables.

Let y_{1} denote the quantity of electricity which has crossed a given section of the conductor A_{1} since the beginning of the time t. The strength of the current will be denoted by \dot{y}_{1}, the fluxion of this quantity.

We shall call \dot{y}_{1} the actual current, and y_{1} the integral current. There is one variable of this kind for each circuit in the system.

Let T denote the electrokinetic energy of the system. It is a homogeneous function of the second degree with respect to the strengths of the currents, and is of the form

$$
\begin{equation*}
T=\frac{1}{2} L_{1} \dot{y}_{1}^{2}+\frac{1}{2} L_{2} \dot{y}_{2}^{2}+\& \mathrm{c} .+M_{12} \dot{y}_{1} \dot{y}_{2}+\& \mathrm{c} ., \tag{1}
\end{equation*}
$$

where the coefficients L, M, \&c. are functions of the geometrical variables x_{1}, x_{2}, \&c. The electrical variables y_{1}, y_{2} do not enter into the expression.

We may call. L_{1}, L_{2}, \&c. the electric moments of inertia of the circuits $A_{1}, A_{2}, \& c$., and M_{12} the electric product of inertia of the two circuits A_{1} and A_{2}. When we wish to avoid the language of
the dynamical theory, we shall call L_{1} the eomeficiont of sulfinduction of the cirenit A_{1}, and $M_{1:}$ the ereflicient of mutual induction of the circuits A_{1} and $A_{2} . M_{1:}$ is also called the pretential of the circuit A_{1} with respeet to A. Theren quantition depmend only on the form and relative position of the circuits. We shall find that in the electromannetic systern of masurn mut they are quantities of the dimension of a lime. Sen Art, bat.

By difforentiating T with respect to \dot{y}_{1} we whtain the quantity p_{1}, which, in the dymmical theory, may hee callet the momentum corresponding to y_{1}. In the enectric theory wo shatl call p_{1} the electrokinctie momontum of the circuit A_{1}. It value is $\quad \mu_{1}=L_{1}, \dot{y}_{1}+M_{1} \dot{y}_{2}+\mathbb{K} \mathrm{C}$.

The olectrokinetic momentum of the circuit. A_{1} is threfore made up of the product of its own cument inte its comelent of self-induction, together with the sum of the productes of the currents in the other circuits, eneh into the confliciont of mutual induction of A_{1} and that other cireuit.

Electromotire Firre.

579.] Let E be the impressed clectromotive foren in the circuit A, arising from somo cause, such an a voltaie or thermonelectric hattery, which would produce a current imberndontly of mag. neto-elenetric induetion.

Let R be the resistane of the circuit, then, hy Ohme law, an electromotive fores $R \dot{y}$ is required to overeome the resintanes, loaving an olectronotive forec $b ;$ … Ry available for changing the momentum of the circuit. ('alling this force $V^{\prime \prime}$, we have, by the general equations,

$$
\gamma^{\prime}=\frac{d p}{d t} \cdot d T
$$

hat since T does not involve y, the last tirm dimpperars.
Hence, the equation of electromotive foree in
or

$$
\begin{array}{r}
L^{\prime}-R \dot{y}=\mathrm{I}^{\prime \prime}=\frac{d p}{t / t} \\
\dot{t}^{\prime}=R \dot{y}+\frac{t^{\prime}}{t^{\prime}} .
\end{array}
$$

The impressed eleetromotive foree E is therefure the sum ot two parts. Tho first, Ry, is required to maintain the eurront, against the resistance $I R$. The second part in required to
increase the electromagnetic momentum p. This is the electromotive force which must be supplied from sources independent of magneto-electric induction. The electromotive-force arising from magneto-electric induction alone is evidently $-\frac{d p}{d t}$, or, the rate of decrease of the electrokinetic momentum of the circuit.

Electromagnetic Force.

580.] Let X^{\prime} be the impressed mechanical force arising from external causes, and tending to increase the variable x. By the general equations

$$
X^{\prime}=\frac{d}{d t} \frac{d T}{d \dot{x}}-\frac{d T}{d x} .
$$

Since the expression for the electrokinetic energy does not contain the velocity (\dot{x}), the first term of the second member disappears, and we find

$$
X^{\prime}=-\frac{d T}{d x} .
$$

Here X^{\prime} is the external force required to balance the forces arising from electrical causes. It is usual to consider this force as the reaction against the electromagnetic force, which we shall call X, and which is equal and opposite to X^{\prime}.
Hence

$$
X=\frac{d T}{d x},
$$

or, the electromagnetic force tending to increase any variable is - equal to the rate of increase of the electrokinetic energy per unit increase of that variable, the currents being maintained constant.
If the currents are maintained constant by a battery during a displacement in which a quantity, W, of work is done by electromotive force, the electrokinetic energy of the system will be at the same time increased by W. Hence the battery will be drawn upon for a double quantity of energy, or $2 W$, in addition to that which is spent in generating heat in the circuit. This was first pointed out by Sir W. Thomson*. Compare this result with the electrostatic property in Art. 93.

[^55]
C'tse of Tro Circuits.

581.7 Let A_{1} be called the Primary (ireuit, and $A_{i s}$ the Secondary (ircuit. The nlectrokinetic energy of the system may bo written
whore l and N are the corfficiente of self-imduction of the primary and secondary cireuits respectively, and M is the com officient of their mutual induction.

Leet us suppose that no electromotive force aets on the secondary circuit, exenpt that due to the induction of the primary current. We have then

$$
H_{2}^{\prime}=R_{2} y_{2}+\frac{d}{d t}\left(M \dot{y}_{1}+N \dot{y}_{2}\right)=0 .
$$

Integrating this equation with respect to t, we have

$$
R_{2} y_{1}+M \dot{y}_{1}+N \dot{y}_{2}=C^{\prime}, \text { a constant },
$$

whoro y_{2} is the integral current in the secondary circuit.
The method of measuring an integral current of short duration will bo described in Art. 748, and it is easy in most cases to onsure that the duration of the secondary current shall be very short.

Let the values of the variable quantities in the equation at the end of the time t be aceented, then, if y_{t} is the integral current, or the whole quantity of electrieity which flows through a section of the secondary circuit during the time t,

$$
R_{2} y_{2}=M \dot{y}_{1}+N \dot{y}_{2}-\left(M^{\prime} \dot{y}_{2}^{\prime}+N \dot{y}_{2}^{\prime}\right)
$$

If the secondary current arisen entirely from induction, its initial value \dot{y}_{2} must bo zoro if the primary curront is constant, and the conductors are at rest before the beginning of the time t.

If the time t is sudficient to allow the seoondary current to dis away, \dot{y}_{2}^{\prime}, its final value, is also zero, so that the equation becomes

$$
R_{2} y_{2}=M_{y_{1}}-M^{\prime} \dot{y}_{1}^{\prime}
$$

Tho integral current of tho mecondary circuit depends in this case on tho initial and final values of $M \dot{y}_{1}$.

Indured C'urrents.

582.] Let us begin by supposing tho primary circuit broken, or $\dot{y}_{1}=0$, and let a current \dot{y}_{1}^{\prime} be established in it when contact is made.

The equation which determines the secondary integral current is

$$
R_{2} y_{2}=-M^{\prime} \dot{y}_{1}^{\prime} .
$$

When the circuits are placed side by side, and in the same direction, M^{\prime} is a positive quantity. Hence, when contact is made in the primary circuit, a negative current is induced in the secondary circuit.

When the contact is broken in the primary circuit, the primary current ceases, and the induced integral current is y_{2}, where

$$
R_{2} y_{2}=M \dot{y}_{1} .
$$

The secondary current is in this case positive.
If the primary current is maintained constant, and the form or relative position of the circuits altered so that M becomes M^{\prime}, the integral secondary current is y_{2}, where

$$
R_{2} y_{2}=\left(M-M^{\prime}\right) \dot{y}_{1} .
$$

In the case of two circuits placed side by side and in the same direction M diminishes as the distance between the circuits increases. Hence, the induced current is positive when this distance is increased and negative when it is diminished.
These are the elementary cases of induced currents described in Art. 530.

Mechanical Action between the Two Circuits.

583.] Let x be any one of the geometrical variables on which the form and relative position of the circuits depend, the electromagnetic force tending to increase x is

$$
X=\frac{1}{2} \dot{y}_{1}{ }^{2} \frac{d L}{d x}+\dot{y}_{1} \dot{y}_{2} \frac{d M}{d x}+\frac{1}{2} \dot{y}_{2}{ }^{2} \frac{d N}{d x} .
$$

If the motion of the system corresponding to the variation of x is such that each circuit moves as a rigid body, L and N will be independent of x, and the equation will be reduced to the form

$$
X=\dot{y}_{1} \dot{y}_{2} \frac{d M}{d x} .
$$

Hence, if the primary and secondary currents are of the same sign, the force X, which acts between the circuits, will tend to move them so as to increase M.
If the circuits are placed side by side, and the currents flow in the same direction, M will be increased by their being brought nearer together. Hence the force X is in this case an attraction.
584.] The whole of the phenomena of the mutual action of two circuits, whether the induction of currents or the mechanical force between them, depend on the quantity M, which we have called the coefficient of mutual induction. The method of calculating this quantity from the geometrical relations of the circuits is given in Art. 524, but in the investiga-

Fig. $34 a$. tions of the next chapter we shall not assume a knowledge of the mathematical form of this quantity. We shall consider it as deduced from experiments on induction, as, for instance, by observing the integral current when the secondary circuit is suddenly moved from a given position to an infinite distance, or to any position in which we know that $M=0$.

Note.- $\{$ There is a model in the Cavendish Laboratory designed by Maxwell which illustrates very clearly the laws of the induction of currents.

It is represented in Fig. $34 \alpha . \quad P$ and Q are two disks, the rotation of P represents the primary current, that of Q the secondary. These disks are connected together by a differential gearing. The intermediate wheel carries a fly-wheel the moment of inertia of which can be altered by moving weights inwards or outwards. The resistance of the secondary circuit is represented by the friction of a string passing over Q and kept tight by an elastic band. If the disk P is set in rotation (a current started in the primary) the disk Q will turn in the opposite direction (inverse current when the primary is started). When the velocity of rotation of P becomes uniform, Q is at rest (no current in the secondary when the primary current is constant); if the disk P is stopped, Q commences to rotate in the direction in which P was previously moving (direct current in the secondary on breaking the circuit). The effect of an iron core in increasing the induction can be illustrated by increasing the moment of inertia of the fly-wheel.\}

CHAPTER VIII.

EXITGHATIUN OF THO FLBLD IHY MBANS OF TIHE SEOONDAKY (1 Il ${ }^{\circ}$ UIT'.

585. Wre havo proved in Arts. $582,583,584$ that the electromagnotic action hetween the primary and the seeondary cireuit depmend on tho quantity denoted by M, which is a function of the form and relative perition of the two circuits.

Although this quantity M is in fact the same an the potential of the two cirouits, the mathematical form and proporties of which we declueed in Arts. 423, 492, 521, 539 from magnetic and dectronngetio phenomena, we shall hore make no reference to these moults, hat begin agrin from a now foundation, without any assumptions oxeopt thome of the dynamical theory as stated in ('hapter VII.

The alectrokinetice momentum of the secondary circuit consists of two parta (Art. 578), one, $M i_{1}$, depending on tho primary current, i_{1}, while the other, Ni_{2}, depende on the secondary current $i_{\text {a }}$. We, are now to investigate the first of these parts, which we shall donote by p, where

$$
\begin{equation*}
l=M i_{1} . \tag{1}
\end{equation*}
$$

We whall also suppose the primary cireuit fixed, and the primary eurront constant. The quantity p, the electrokinetic momentum of the secondary cirenit, will in this ense depend only on the form and position of the necondary circuit, so that if any elosed curvo bo taken for the seoondary circuit, and if the direction along this ourve, which is to be reokoned positive, be chosen, the valte of p for this closed curve is doterminates. If the opposito direction along the curve had boon ohosen as tho pesitive direction, the nign of the quantity μ would have been reversed.
586.] Since the quantity p depends on the form and position of the circuit, we may suppose that each portion of the circuit contributes something to the value of p, and that the part contributed by each portion of the circuit depends on the form and position of that portion only, and not on the position of other parts of the circuit.
This assumption is legitimate, because we are not now considering a current, the parts of which may, and indeed do, act on one another, but a mere circuit, that is, a closed curve along which a current may flow, and this is a purely geometrical figure, the parts of which cannot be conceived to have any physical action on each other.

We may therefore assume that the part contributed by the element $d s$ of the circuit is $J d s$, where J is a quantity depending on the position and direction of the element $d s$. Hence, the value of p may be expressed as a line-integral

$$
\begin{equation*}
p=\int J d s \tag{2}
\end{equation*}
$$

where the integration is to be extended once round the circuit.
587.] We have next to determine the form of the quantity J. In the first place, if $d s$ is reversed in direction, J is reversed in

Fig. ${ }^{35}$. sign. Hence, if two circuits $A B C E$ and $A E C D$ have the arc $A E C$ common, but reckoned in opposite directions in the two circuits, the sum of the values of p for the two circuits $A B C E$ and $A E C D$ will be equal to the value of p for the circuit $A B C D$, which is made up of the two circuits.

For the parts of the line-integral depending on the arc $A E C$ are equal but of opposite sign in the two partial circuits, so that they destroy each other when the sum is taken, leaving only those parts of the line-integral which depend on the external boundary of $A B C D$.
In the same way we may shew that if a surface bounded by a closed curve be divided into any number of parts, and if the boundary of each of these parts be considered as a circuit, the positive direction round every circuit being the same as that round the external closed curve, then the value of p for the closed curve is equal to the sum of the values of p for all the circuits. See Art. 483.
588.] Let us now consider a portion of a surface, the dimen-
sions of which areso small with resperet to the prineipal radii of curvature of the surfare that the variation of the direction of the normal within this purtion may be neghoctud. We shall also suppose that if any very small cirenit be carriod parallel to itself from ome part of this pertion to another, the value of $1 /$ for the small cimuit is not somsilly altared. This will ovidently bo the case if the dimensions of the portion of surface are small rnomeh compred with its distaner from the primary cirenit.
 the molur at If will he pmontional to its atrot.

For the arras of any two direnits may be divided into smanl Wharnts all of the same dimensions, and having the same value of p. The areas of the two eirenita are as the numbers of thene chementes which they eontain, and the values of p for the two cireuita are also in the man" propertion.

Henes, the value of p for the eireuit which bounds any Nomont ds of a surface is of the form

$$
h N
$$

 the direction of its normal. Wis have therefore a new expression for p.

$$
\begin{equation*}
y=\iint d d \tag{3}
\end{equation*}
$$

where the donhle intagral is axtemded over any surface bounded ly the cireuit.
 portion, wa monll that, it may be oomsiderem
 arean in the shme phans, then the value of p will bo the mam, for the small cirouita $A 1 / h$ mal (' Q / h. or

$$
p\left(A I^{\prime} B\right)-p^{\prime}\left(\left(^{\prime}(Q B) .\right.\right.
$$

Henes

$$
\begin{aligned}
& \mu\left(A I^{\prime} l\left(r^{\prime} l\right)=\mu\left(A H r^{\prime} D\right)+\mu\left(A l^{\prime} B\right),\right. \\
& \left.=\mu(A) \nmid C^{\prime} l\right)+\mu\left(C^{\prime}(Q B),\right. \\
& =p(A 1 \mathrm{C}: \mathrm{I}) \text {, }
\end{aligned}
$$

Tis. 86.
or the value of l in not altered by tho sulatitution of the crookod lime A/'U' for the atraight lino AC: provided the area of the circuit is not mensihly altored. This, in fact, is the principle extablimhed by Ampero's necond experiment (Art. 506), in which a crooked portion of a circuit is shewn to be equivalent to a
 sensible diataney from the moatht peaturn

If therefore we watetitute tor the elomedt do three suall

 and if $F^{\prime} d x$, (idy, and $/ 1 / d$. Wembe the whorgta of thes lineo

Jds = beler tidy Mut.
500.7 Wo are now able to doterminn the bathe which the
 by (4),
 d_{N}, of a vector, the compunents of whidh, zandome in the direo-

If this veetor be denotad by and the beoter form the origin to a point of the circuit by p. the shensat of the cravent will be d_{p}, and the quatornion expreswion for ate whll l...

$$
-\infty, s, t l_{p}
$$

We may now write equation (\%) in the furm

$$
\begin{align*}
p & =\int\left(f^{\prime} d_{N}+t_{i}^{d!} d s+H_{d s}^{H_{s}} \cdot l_{s}\right. \tag{6}\\
\text { or } p & =-\int s, d_{p} \tag{7}
\end{align*}
$$

 position of $d s$ in the field, and not on the dirertion in which it is drawn. They are thestore functinn of x, y, s, the cow

The vector \mathfrak{N} reprosents in direction and magntuhe the timeintegral of the dectromotive internity whirla a prtich phow at the point (x, y, z) would experione if the pratary cutrent were suddenly stopped. We shall therofore ensll it the bileretrokinetio Momentum at the print (x, y, z). It in inkniow with the quantity which wo investigated in Art. 10\% umher the name of the vector-potential of maynotic induction.

The clectrokinetic momentum of any finite line or cironit is the line-integral, extonded along the line or circuit, of the resolved part of the electrokinetic momentum at each peint of the same.
591.] Let us next determine the value of p for the elementary rectangle $A B C D$, of which the sides are $d y$ and $d z$, the positive direction being from the direction of the axis of y to that of z.

Let the coordinates of 0 , the centre of gravity of the element, be x_{0}, y_{0}, z_{0}, and let G_{0}, H_{0} be the values of G and of H at this point.

The coordinates of A, the middle point of the first side of the rectangle, are y_{0}

Fig. 37. and $z_{0}-\frac{1}{2} d z$. The corresponding value of G is

$$
\begin{equation*}
G=G_{0}-\frac{1}{2} \frac{d G}{d z} d z+\& c . \tag{8}
\end{equation*}
$$

and the part of the value of p which arises from the side A is approximately $\quad G_{0} d y-\frac{1}{2} \frac{d G}{d z} d y d z$.

Similarly, for $B, \quad H_{0} d z+\frac{1}{2} \frac{d H}{d y} d y d z$,

$$
\begin{array}{ll}
\text { for } C, & -G_{0} d y-\frac{1}{2} \frac{d G}{d z} d y d z, \\
\text { for } D, & -H_{0} d z+\frac{1}{2} \frac{d H}{d y} d y d z .
\end{array}
$$

Adding these four quantities, we find the value of p for the rectangle, viz.

$$
\begin{equation*}
p=\left(\frac{d H}{d y}-\frac{d G}{d z}\right) d y d z \tag{10}
\end{equation*}
$$

If we now assume three new quantities, a, b, c, such that

$$
\begin{align*}
& a=\frac{d H}{d y}-\frac{d G}{d z}, \\
& \left.b=\frac{d F}{d z}-\frac{d H}{d x},\right\} \tag{A}\\
& \left.c=\frac{d G}{d x}-\frac{d F}{d y},\right)
\end{align*}
$$

and consider these as the constituents of a new vector \mathfrak{B}, then by Theorem IV, Art. 24, we may express the line-integral of \mathfrak{A} round any circuit in the form of the surface-integral of \mathfrak{B} over a surface bounded by the circuit, thus

$$
\begin{equation*}
p=\int\left(F \frac{d x}{d s}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) d s=\iint(l a+m b+n c) d S \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
p=\int T \cdot \mathfrak{A} \cos \epsilon d s=\iint T \cdot \mathfrak{B} \cos \eta d S \tag{12}
\end{equation*}
$$

where ϵ is the angle between $\mathfrak{A l}$ and $d s$, and η that between \mathfrak{B} and the normal to $d S$, whose direction-cosines are l, m, n, and $T . \mathfrak{N}, T . \mathfrak{B}$ denete the numerical values of \mathfrak{H} and \mathfrak{B}.

Comparing this result with equation (3), it is evident that the quantity I in that equation is equal to $\mathfrak{B} \cos \eta$, or the resolved part of \mathfrak{B} normal to $d S$.
592.] We have already seen (Arts. 490, 541) that, according to Faraday's theory, the phenomena of electromagnetic force and induction in a circuit depend on the variation of the number of lines of magnetic induction which pass through the circuit. Now the number of these lines is expressed mathematically by the surface-integral of the magnetic induction through any surface bounded by the circuit. Hence, we must regard the vector \mathfrak{B} and its components a, b, c as representing what we are already acquainted with as the magnetic induction and its components.

In the present investigation we propose to deduce the properties of this vector from the dynamical principles stated in the last chapter, with as few appeals to experiment as possible.

In identifying this vector, which has appeared as the result of a mathematical investigation, with the magnetic induction, the properties of which we learned from experiments on magnets, we do not depart from this method, for we introduce no new fact into the theory, we only give a name to a mathematical quantity, and the propriety of so doing is to be judged by the agreement of the relations of the mathematical quantity with those of the physical quantity indicated by the name.

The vector \mathfrak{B}, since it occurs in a surface-integral, belongs evidently to the category of fluxes described in Art. 12. The vector $\mathfrak{\imath}$, on the other hand, belongs to the category of forces, since it appears in a line-integral.
593.] We must here recall to mind the conventions about positive and negative quantities and directions, some of which were stated in Art. 23. We adopt the right-handed system of axes, so that if a right-handed screw is placed in the direction of the axis of x, and a nut on this screw is turned in the positive direction of rotation, that is, from the direction of y to that of z, it will move along the screw in the positive direction of x.

We also consider vitreous electricity and austral magnetism as positive. The positive direction of an electric current, or of a line of electric induction, is the direction in which positive electricity moves or tends to move, and the positive direction of a line of magnetic induction is the direction in which a compass needle points with that end which turns to the north. See Fig. 24, Art. 498, and Fig. 25, Art. 501.

The student is recommended to select whatever method appears to him most effectual in order to fix these conventions securely in his memory, for it is far more difficult to remember a rule which determines in which of two previously indifferent ways a statement is to be made, than a rule which selects one way out of many.

Fig. 38.
594.] We have next to deduce from dynamical principles the expressions for the electromagnetic force acting on a conductor carrying an electric current through the magnetic field, and for the electromotive force acting on the electricity within a body moving in the magnetic field. The mathematical method which we shall adopt may be compared with the experimental method used by Faraday* in exploring the field by means of a wire, and with what we have already done in Art. 490, by a method founded on experiments. What we have now to do is to determine the effect on the value of p, the electrokinetic momentum of the secondary circuit, due to given alterations of the form of that circuit.

Let $A A^{\prime}, B B^{\prime}$ be two parallel straight conductors connected by the conducting arc C, which may be of any form, and by a straight conductor $A B$, which is capable of sliding parallel to itself along the conducting rails $A A^{\prime}$ and $B B^{\prime}$.

[^56]Lot the circuit thus formed be considered as the seomblary circuit, and let the direction $A B C$, be assumed as the pesitive diroction round it.

Lot the sliding piece move parallel to itself from the peation $A B$ to the position $A^{\prime} B^{\prime}$. We have to determine the variation of ρ, the clectrokinotic momentum of the eirenit, dun to this displacement of the sliding piese.

The secondary circuit is changed from $A B t^{\prime}$ to $A^{\prime} h^{\prime \prime} \mathbf{C}^{\prime}$, homer, by Art. $587, \quad \mu\left(A^{\prime} B^{\prime}\left(C^{\prime}\right)-p\left(A B t^{\prime}\right)=\mu\left(A A^{\prime} B^{\prime} B\right)\right.$.

Wo have therefore to determine the value of f for the prablelogram $A A^{\prime} B^{\prime} B$. If this parallelogram is so small that. wer may negleset the variations of the direction and magnitud. of the magnotic induction at different pointes of ite plane, the value
 induction, and η the angle whieh it makes with the pmative direction of the nomal to the parallelogram $A A^{\prime} H^{\prime} l l$.

Wo may represent the result geometrically by the volume of the parallelepiped, whose hase is the parallelogram . A' $\mathrm{I}^{\prime} h$, and one of whose edges is the line $A M$, which representa in direction and magnitude the magnetis induction 18 . If the parallelogram is in the phane of the parer, and if A, V in trawn upwards from the paper, or more generally, if the directions of the circuit $A B$, of the magnetie imbuction A, H, and of the dis phacement $A A^{\prime}$, form a right-hamen systern when taken in this "yclical order, the volume of the parallelepiped is to le taken poritively.
'The volume of this parallolopiped represents the ineronent of the value of p for the meondary cirenit due to the displacement of the sliding piece from $A B$ to $A^{\prime} H^{\prime}$.

Eletromative Fore arting on the Niding Piese.

595.] The Nectromotive fore produced in the ancombary circuit by the motion of the minhing piece in, by Art. 875 ,

$$
\begin{equation*}
k=-\frac{d}{d}=\frac{d t}{d t} \tag{14}
\end{equation*}
$$

If wo suppose $A A^{\prime}$ to h^{\prime} the displacement in unit of time. then $A A^{\prime}$ will represent the velocity, and the parallelepiges will represent $\frac{d}{d}$, and therefore, by equation (11), the clectromotive fore in the negative direction $B A$.

Hence, the electromotive force acting on the sliding piece $A B$, in consequence of its motion through the magnetic field, is represented by the volume of the parallelepiped, whose edges represent in direction and magnitude-the velocity, the magnetic induction, and the sliding piece itself, and is positive when these three directions are in right-handed cyclical order.

Electromagnetic Force acting on the Sliding Piece.

596.] Let i_{2} denote the current in the secondary circuit in the positive direction $A B C$, then the work done by the electromagnetic force on $A B$ while it slides from the position $A B$ to the position $A^{\prime} B^{\prime}$ is $\left(M^{\prime}-M\right) i_{1} i_{2}$, where M and M^{\prime} are the values of M_{12} in the initial and final positions of $A B$. But $\left(M^{\prime}-M\right) i_{1}$ is equal to $p^{\prime}-p$, and this is represented by the volume of the parallelepiped on $A B, A M$, and $A A^{\prime}$. Hence, if we draw a line parallel to $A B$ to represent the quantity $A B \cdot i_{2}$, the parallelepiped contained by this line, by $A M$, the magnetic induction, and by $A A^{\prime}$, the displacement, will represent the work done during this displacement.

For a given distance of displacement this will be greatest when the displacement is perpendicular to the parallelogram whose sides are $A B$ and $A M$. The electromagnetic force is therefore represented by the area of the parallelogram on $A B$ and $A M$ multiplied by i_{2}, and is in the direction of the normal to this parallelogram, drawn so that $A B, A M$, and the normal are in right-handed cyclical order.

Four Definitions of a Line of Magnetic Induction.

597.] If the direction $A A^{\prime}$, in which the motion of the sliding piece takes place, coincides with $A M$, the direction of the magnetic induction, the motion of the sliding piece will not call electromotive force into action, whatever be the direction of $A B$, and if $A B$ carries an electric current there will be no tendency to slide along $A A^{\prime}$.

Again, if $A B$, the sliding piece, coincides in direction with $A M$, the direction of magnetic induction, there will be no electromotive force called into action by any motion of $A B$, and a current through $A B$ will not cause $A B$ to be acted on by mechanical force.

We may therefore define a lino of magnetie induction in four different ways. It is a line such that
(1) If a conductor be moved along it parallel to itself it will experience no dectromotive force.
(2) If a conductor carrying a current be free to move atong a line of magnotic induction it will experione no tembency to do so.
(3) If a linoar conductor coincide in direction with a lime of magnetic induction, and be moved parallel to itself in any direstion, it will experience no electrometive foree in the direstion of its length.
(4) If a linear eonductor carrying an eloctric curront coincide in direction with a line of magnetic induction it will not experience any mechanical force.

General Equations of Electromotive Intensity.
598.] We have seen that E, the olectronotive force due to induction acting on the secondary cireuit, is equal to $-\frac{d p}{d t}$, where

$$
\begin{equation*}
p=\int\left(w_{d s}^{d x}+u_{d s}^{d l y}+H_{d s}^{d z}\right) d d_{x} \tag{1}
\end{equation*}
$$

To determine the value of E, let us differentiate the quantity under the integral sign with respect to t, remombering that if the secondary circuit is in motion, x, y, and z are functions of the time. We obtain

$$
\begin{aligned}
& E=-\int\left(\begin{array}{ll}
d F & d_{x} \\
d t & d_{N}
\end{array}+\begin{array}{l}
d(i d y \\
d t \\
d A
\end{array}+\begin{array}{l}
d \| \\
d t \\
d d_{N}
\end{array}\right) d A
\end{aligned}
$$

Now consider the second line of the integral, and substitute from equations (A), Art. 591, the values of $\frac{d G}{d x_{x}}$ and $\frac{d / I}{d x}$. This
line then beenmes.
which we may writ.

$$
\int\left(c^{d} \frac{l_{N}}{d N}-h_{d s}^{d z}, \frac{d b^{\prime}}{d N}\right)^{d l^{x}} d t d s
$$

Tronting the thime and fourth lines in the samo way, and con-

and therofor, that the inturn, when taken round the closed curve, vanimhes,

$$
\begin{aligned}
& E=\int\left(C^{d!} \frac{d t}{d t}-b^{d t_{2}^{2}} d t-\frac{d F^{2}}{d t}\right)_{d x}^{d l_{s}} d_{s}
\end{aligned}
$$

We may write this expromion in the form

$$
\begin{align*}
& B=\int\left(I^{d^{\prime} x}+Q_{d N}^{d d_{M}}+R_{d N}^{d / 2}\right) d N, \tag{5}
\end{align*}
$$

where

The turm involving the new quantity Ψ are introduced for the make of giving gonerality to the "xpressions for I, Q, R, Thay dixappear from the integral whon "xtunded round the closed circuit. The quantity Ψ in thewfors indetorminato as far as regarde the problem now before us, in which the olectromotive fores round the circuit is to be determined. We shall find, however, that when we know all the circumstancos of the problem, wo can assign a definite, value to Ψ, and that it represente, according to a cortain definition, the electrid potential at the point (x, y, y).

The quantity under the integral sign in equation (5) rem presents the dectromotive intensity acting on tho element dw of the eirenit.

If we denote by T '. $(5$, the numerieal value of the resultant of I^{\prime}, (), and R, and by e, the angle betwoen the direction of this resultant and that of the element $d s$, we may write equation (b),

$$
\begin{equation*}
E=\int T \cdot \text { (f eoseds. } \tag{i}
\end{equation*}
$$

The vector (s is the eleetromotive intensity at the moving element ds. Its direction and magnitude depend on the foxition and motion of ds, and on the variation of the magnetie field, hat not on the dirvetion of ds. Hence we may now diaregam the circomstance that $d s$ forms part of a circuit, and consider it simply an a portion of a moving horly, acted on by the "hentrom motive intunsity (5 . The dectromotive intensity has alromly lown defined in Art. 68. It is also ealled the resultant wetrimal intensity, being the foren which would be experioneed lyy a unit of positive clectricity pheed at that point. We have now oho tained the most, general value of this quantity in the case of a body moving in a magnotio fied due to a variabla, nectrie system.

If the budy is a combetor, the Hewtromotive foren will prom duer an eurrmit; if it is a dielnetrie, the dectromotive fore will produce only wectric displacement.

The dectromotive intensity, or the foree on a partield, mat be (arefully distimgumbed from the eloctromotive forer alomg an are of a curve, the latter grantity lowing the linesintorgat of the former. Sies Art. 69.
599. The chetromotive intensity, the compononte of whichare desined hy equations (B), depende on threw ciremmataness. The first of these is the motion of the particle through the, magnotio fied. The part of the fore depending on this motion in "xprensed hy the first two turms on the right of ench equation. It depende on the velority of the particle transverse to the lines of magnetic induction. If (3) is a vector representing the velocity, and thather reprementing the magnotio induction, then if f_{1} is the part of the olectromotive inturnity depending on the motion,

$$
\begin{equation*}
k_{1}=V \cdot(4 \mathcal{B}) \tag{7}
\end{equation*}
$$

or, the clectromotive intersity is the vector part of the product of the magnotic induction multiplied by the velocity, that is to
say, the magnitude of the electromotive intensity is represented by the area of the parallelogram, whose sides represent the velocity and the magnetic induction, and its direction is the normal to this parallelogram, drawn so that the velocity, the magnetic induction, and the electromotive intensity are in right-handed cyclical order.

The third term in each of the equations (B) depends on the time-variation of the magnetic field. This may be due either to the time-variation of the electric current in the primary circuit, or to motion of the primary circuit. Let \mathfrak{C}_{2} be the part of the electromotive intensity which depends on these terms. Its components are

$$
-\frac{d F}{d t}, \quad-\frac{d G}{d t}, \quad \text { and }-\frac{d H}{d t},
$$

and these are the components of the vector, $-\frac{d \mathfrak{H}}{d t}$ or $-\mathfrak{q}$. Hence,

$$
\begin{equation*}
\mathfrak{E}_{2}=-\mathfrak{\mathscr { N }} . \tag{8}
\end{equation*}
$$

The last term of each equation (B) is due to the variation of the function Ψ in different parts of the field. We may write the third part of the electromotive intensity, which is due to this cause,

$$
\begin{equation*}
\S_{3}=-\nabla \Psi . \tag{9}
\end{equation*}
$$

The electromotive intensity, as defined by equations (B), may therefore be written in the quaternion form,

$$
\begin{equation*}
\mathfrak{E}=V \cdot \mathbb{V} \mathfrak{B}-\dot{\mathfrak{A}}-\nabla \Psi . \tag{10}
\end{equation*}
$$

On the Modification of the Equations of Electromotive Intensity when the Axes to which they are referred are moving in Space.
600.] Let $x^{\prime}, y^{\prime}, z^{\prime}$ be the coordinates of a point referred to a system of rectangular axes moving in space, and let x, y, z be the coordinates of the same point referred to fixed axes.

Let the components of the velocity of the origin of the moving system be u, v, v, and those of its angular velocity $\omega_{1}, \omega_{2}, \omega_{3}$ referred to the fixed system of axes, and let us choose the fixed axes so as to coincide at the given instant with the moving ones, then the only quantities which will be different for the two systems of axes will be those differentiated with respect to the time. If $\frac{\delta x^{*}}{\delta t}$ denotes a component velocity at a point moving in rigid connexion with the moving axes, and $\frac{d x}{d t}$ and $\frac{d x^{\prime}}{d t}$ those
of any moving point, having the same instantaneous position, reforred to the fixed and the moving axes respectively, then

$$
\begin{equation*}
\frac{d x}{d t}=\frac{\delta x}{\delta t}+\frac{d x^{\prime}}{d t} \tag{1}
\end{equation*}
$$

with similar equations for the other compenents.
By the theory of the motion of a hody of invariable form,

$$
\left.\begin{array}{l}
\delta x=u+\omega_{2} z-\omega_{1} y \tag{2}\\
\partial t \\
\delta y=u+\omega_{3} r-\omega_{1} z \\
\delta t= \\
\frac{\delta t}{\delta t}=u+\omega_{1} y-\omega_{2} u^{*}
\end{array}\right\}
$$

Since F is a component of a directed quantity parallel to x, if $d F^{\prime \prime}$ bo the value of $\frac{d h^{\prime}}{d t}$ referred to the moving axes, it may ho shown that

$$
\begin{equation*}
\frac{d F^{\prime}}{d t}=\frac{d F \delta \cdot}{d x \delta}+\frac{d F \delta y}{d y \bar{\delta} t}+\frac{d F \delta_{z}}{d z}+d \omega_{3}-H \omega_{3}+\frac{d F}{d t} \tag{3}
\end{equation*}
$$

Substituting for $\frac{d F^{\prime}}{d y}$ and $\frac{d F}{d \%}$ their values as deduced from the equations (A) of magnetic induction, and remembering that, by (2),
we find

$$
\begin{align*}
& -t \frac{\partial y}{\partial t}+b \frac{\partial z}{\partial t}+\frac{d \vec{d}}{d t} . \tag{5}
\end{align*}
$$

If we now put

$$
\begin{align*}
& -\Psi^{\prime}=H^{\frac{\partial t}{\partial t}}+i_{\partial t}^{\partial \partial}+H_{\partial t}^{\partial z}, \tag{6}
\end{align*}
$$

The equation for l ', the component of the ductromotive intensity parallel to x, is, by (13),

$$
\begin{equation*}
I=r^{\prime} \frac{d y}{d t}-b_{d}^{d t}-\frac{d F}{d t}-\frac{d \Psi}{d L_{0}} \tag{8}
\end{equation*}
$$

refored to the fixed axes. Substituling the values of the quantities as reforred to the moving axes, wo have

$$
\begin{equation*}
P^{\prime}=c \frac{d y^{\prime}}{d t}-b \frac{d z^{\prime}}{d t}-\frac{d F^{\prime}}{d t}-\frac{d\left(\Psi+\Psi^{\prime}\right)}{d x} \tag{9}
\end{equation*}
$$

for the value of P referred to the moving axes.
601.] It appears from this that the electromotive intensity is expressed by a formula of the same type, whether the motions of the conductors be referred to fixed axes or to axes moving in space, the only difference between the formula being that in the case of moving axes the electric potential Ψ must be changed into $\Psi+\Psi^{\prime}$.

In all cases in which a current is produced in a conducting circuit, the electromotive force is the line-integral

$$
\begin{equation*}
E=\int\left(P \frac{d x}{d s}+Q \frac{d y}{d s}+R \frac{d z}{d s}\right) d s \tag{10}
\end{equation*}
$$

taken round the curve. The value of Ψ disappears from this integral, so that the introduction of Ψ^{\prime} has no influence on its value. In all phenomena, therefore, relating to closed circuits and the currents in them, it is indifferent whether the axes to which we refer the system be at rest or in motion. See Art. 668.

On the Electromagnetic Force acting on a Conductor which carries an Electric Current through a Magnetic Field.
602.] We have seen in the general investigation, Art. 583, that if x_{1} is one of the variables which determine the position and form of the secondary circuit, and if X_{I} is the force acting on the secondary circuit tending to increase this variable, then

$$
\begin{equation*}
X_{1}=\frac{d M}{d x_{1}} i_{1} i_{2} \tag{1}
\end{equation*}
$$

Since i_{1} is independent of x_{1}, we may write

$$
\begin{equation*}
M i_{1}=p=\int\left(F \frac{d x}{d s}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) d s \tag{2}
\end{equation*}
$$

and we have for the value of X_{1},

$$
\begin{equation*}
X_{1}=i_{2} \frac{d}{d x_{1}} \int\left(F \frac{d x}{d s}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) d s \tag{3}
\end{equation*}
$$

Now let us suppose that the displacement consists in moving every point of the circuit through a distance δx in the direction of $x, \delta x$ being any continuous function of s, so that the different parts of the circuit move independently of each other, while the circuit remains continuous and closed.

Also let X be the total force in the direction of x acting on the part of the circuit from $s=0$ to $s=s$, then the part corresponding to the element $d s$ will be $\frac{d X}{d s} d s$. We shall then have the following expression for the work done by the force during the displacement,

$$
\begin{equation*}
\int \frac{d X}{d s} \delta x d s=i_{2} \int \frac{d}{d \delta x}\left(F \frac{d x}{d s}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) \delta x d s, \tag{4}
\end{equation*}
$$

where the integration is to be extended round the closed curve, remembering that δx is an arbitrary function of s. We may therefore perform the differentiation with respect to δx in the same way that we differentiated with respect to t in Art. 598, remembering that

$$
\begin{equation*}
\frac{d x}{d \delta x}=1, \quad \frac{d y}{d \delta x}=0, \quad \text { and } \quad \frac{d z}{d \delta x}=0 . \tag{5}
\end{equation*}
$$

We thus find

$$
\begin{equation*}
\int \frac{d X}{d s} \delta x d s=i_{2} \int\left(c \frac{d y}{d s}-b \frac{d z}{d s}\right) \delta x d s+i_{2} \int \frac{d}{d s}(F \delta x) d s \tag{6}
\end{equation*}
$$

The last term vanishes when the integration is extended round the closed curve, and since the equation must hold for all forms of the function δx, we must have

$$
\begin{equation*}
\frac{d X}{d s}=i_{2}\left(c \frac{d y}{d s}-b \frac{d z}{d s}\right), \tag{7}
\end{equation*}
$$

an equation which gives the force parallel to x on any unit element of the circuit. The forces parallel to y and z are

$$
\begin{align*}
& \frac{d Y}{d s}=i_{2}\left(a \frac{d z}{d s}-c \frac{d x}{d s}\right) \tag{8}\\
& \frac{d Z}{d s}=i_{2}\left(b \frac{d x}{d s}-a \frac{d y}{d s}\right) \tag{9}
\end{align*}
$$

The resultant force on the element is given in direction and magnitude by the quaternion expression $i_{2} V . d \rho \mathfrak{B}$, where i_{2} is the numerical measure of the current, and $d \rho$ and \mathfrak{B} are vectors representing the element of the circuit and the magnetic induction, and the multiplication is to be understood in the Hamiltonian sense.
603.] If the conductor is to be treated not as a line but as a body, we must express the force on the element of length, and the current through the complete section, in terms of symbols denoting the force per unit of volume, and the current per unit of area.

Let X, Y, Z now represent the components of the force referred
to unit of volume, and u, v, w those of the current referred to unit of area. Then, if S represents the section of the conductor, which we shall suppose small, the volume of the element $d s$ will be $S d s$, and $u=\frac{i_{2}}{S} \frac{d x}{d s}$. Hence, equation (7) will become

$$
\begin{equation*}
\frac{X S d s}{d s}=S(v c-w b), \tag{10}
\end{equation*}
$$

or
Similarly and

$$
\left.\begin{array}{l}
X=v c-w b . \\
Y=w a-u c, \\
Z=u b-v a .
\end{array}\right\} \quad \begin{gathered}
\text { (Equations of } \\
\text { Electromagnetic } \tag{C}\\
\text { Force.) }
\end{gathered}
$$

Here X, Y, Z are the components of the electromagnetic force on an element of a conductor divided by the volume of that element; u, v, w are the components of the electric current through the element referred to unit of area, and a, b, c are the components of the magnetic induction at the element, which are also referred to unit of area.

If the vector \mathfrak{F} represents in magnitude and direction the force acting on unit of volume of the conductor, and if ct represents the electric current flowing through it,

$$
\begin{equation*}
\mathfrak{F}=V . \mathfrak{C} \mathfrak{B} . \tag{11}
\end{equation*}
$$

[The equations (B) of Art. 598 may be proved by the following method, derived from Professor Maxwell's Memoir on A Dynamical Theory of the Electromagnetic Field. Phil. Trans. 1865, pp. 459-512.
The time variation of $-p$ may be taken in two parts, one of which depends and the other does not depend on the motion of the circuit. The latter part is clearly

$$
-\int\left(\frac{d F}{d t} d x+\frac{d G}{d t} d y+\frac{d H}{d t} d z\right) .
$$

To find the former let us consider an arc $\delta \delta$ forming part of a circuit, and let us imagine this arc to move along rails, which may be taken as parallel, with velocity v whose components are $\dot{x}, \dot{y}, \dot{z}$, the rest of the circuit being meanwhile supposed stationary. We may then suppose that a small parallelogram is generated by the moving arc, the direction-cosines of the normal to which are

$$
\lambda, \mu, \nu=\frac{n \dot{y}-m \dot{z}}{v \sin \theta}, \frac{l \dot{\dot{z}}-n \dot{x}}{v \sin \theta}, \frac{m \dot{x}-l \dot{y}}{v \sin \theta},
$$

where l, m, n are the direction-cosines of δs, and θ is the angle between v and δs.
To verify the signs of λ, μ, ν we may put $m=-1, \dot{x}=v$; they then become $0,0,-1$ as they ought to do with a right-handed system of axes.
Now let a, b, c be the components of magnetic induction, we then have, due to the motion of δs in time δt,

$$
\delta p=(a \lambda+b \mu+c \nu) v \delta t \delta s \sin \theta
$$

If we suppose each part of the circuit to move in a similar manner the resultant effect will be the motion of the circuit as a whole, the currents in the rails forming a balance in each case of two adjacent arcs. The time variation of $-p$ due to the motion of the circuit is therefore

$$
-\int\{a(n \dot{y}-m \dot{z})+\text { two similar terms }\} d s
$$

taken round the circuit

$$
=\int(c \dot{y}-b \dot{z}) d x+\text { two similar integrals. }
$$

The results in Art. 602 for the components of electromagnetic force may be deduced
from the ahove axpresion for $8 p$; viz. lot the are 8 a be dinghaerd in the dhertion $\prime^{\prime}, m^{\prime}, n^{\prime}$ through a distatem \& s°, then

$$
\left.\delta_{1} \quad ; / 1 \prime(c m-1 m)+\text { two mimilar terms }\right\} \Delta s^{\prime} .
$$

 find by Art. B46,

$$
\begin{aligned}
& \text { - rab - lma. }
\end{aligned}
$$

Bumations of the Whetramothetio Fientlo.

 the electromagnetio fieht.

$$
i \iint l u z m+m n^{j} d N
$$

where dS in an clemont of a marface bundend hy the cturrent.
 equaln

$$
-\iint\left(l_{d t}^{w_{i t}} \cdot \frac{d l_{1}}{d t}+\frac{d d}{d t}\right) d \mathbb{N}_{;}
$$

hence if X, Y, Z are the compunonts of the weotromative intersity

$$
\begin{equation*}
\int(x d x+y d y+z d z)-\iint_{d}\left(l^{d a}+m_{d t}^{d h}+n_{d t}^{d t}\right) d x \tag{1}
\end{equation*}
$$

but by Noke 'Theoren the loth hand mide of thin equation in equal bu
 nurfaco closing up the curront in quitu arhitmary.

$$
\begin{aligned}
& d \%-\frac{d t^{\circ}}{d i}=-\frac{t h}{d t^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d 1^{*}}{4 x}-\frac{d x^{*}}{1 / y}=\frac{d t}{d t} .
\end{aligned}
$$

These with the rolation

$$
\begin{aligned}
& 4 m-\frac{d \gamma}{d y}-\frac{d y}{d y} \\
& \text { 4w } \frac{d a}{d x}-\frac{d \gamma}{d x} \text {. } \\
& 4 \pi w_{1} \cdots \frac{d A}{d a}-\frac{d a}{d y} \text {. }
\end{aligned}
$$

in a conduetor whose mperifo rewhenatw in a:

$$
\begin{aligned}
& { }^{\circ}
\end{aligned}
$$

 the magnetio induction normal to, the marfazse ahooth has continuout, med that tho

 flow in olowed cirouita.\}

(:HAPTRR 1 X゙.

GFABHAL FQUATIONS OF THW ELEOTROMAGNETIO FLGLIS.
604.] [n our theoretical diseussion of elcetrodynamies wo began by assuming that a system of circuits carrying olectric surrents is a dymmical system, in which the currents may bo regarded an velocitios, and in which the coordinates corrosponding to these velositios do not thomselves appear in the equations. It follows from thim that the kinetie energy of the system, in so far as it depends on the currents, is a homegreneous quadratic function of the currente, in which the oodficiontes depend only on the form and rolative praition of the circuits. Assuming these cosfletionts to he known, by "xpriment or otherwise, we dedueod, hy purely dymanical reasoning, the laws of the induction of eurronts, and of olectromagnetic attraction. In this investigation wo introdued the coneeptions of the olectrokinotic energy of a system of currents, of the olectromagnetic momentum of a circuit, and of the mutual potential of two circuits.

We then procederd to explore the field by mesne of various contigurations of the nocombry cirenit, and wore thas lod to the conception of a vector N, having a detorminate magnitude and diroction at any given point of the fidd. Wo oalled this vector the gloctromugnotio momentum at that point. This quantity may be considered as the time-integral of the olectromotive intunity which would bo produced at that point by the sudden removal of all the curronts from the field. It is identical with the quantity alroaly investigated in Art. 405 as the vector-potential of magnetic imfuction. Its components parallel to x, y, and $=$ aro F, G, and H. The electromagnetic momentum of a circuit in the linesintegral of 9 round the circuit.

We then, by means of Theorem IV, Art. 24, transformed the line-integral of $\mathfrak{C l}$ into the surface-integral of another vector, \mathfrak{F}, whose components are a, b, c, and we found that the phenomena of induction due to motion of a conductor, and those of electromagnetic force can be expressed in terms of \mathfrak{B}. We gave to \mathfrak{B} the name of the magnetic induction, since its properties are identical with those of the lines of magnetic induction as investigated by Faraday.

We also established three sets of equations: the first set, (A), are those of magnetic induction, expressing it in terms of the electromagnetic momentum. The second set, (B), are those of electromotive intensity, expressing it in terms of the motion of the conductor across the lines of magnetic induction, and of the rate of variation of the electromagnetic momentum. The third set, (C), are the equations of electromagnetic force, expressing it in terms of the current and the magnetic induction.

The current in all these cases is to be understood as the actual current, which includes not only the current of conduction, but the current due to variation of the electric displacement.

The magnetic induction \mathfrak{B} is the quantity which we have already considered in Art. 400. In an unmagnetized body it is identical with the force on a unit magnetic pole, but if the body is magnetized, either permanently or by induction, it is the force which would be exerted on a unit pole, if placed in a narrow crevasse in the body, the walls of which are perpendicular to the direction of magnetization. The components of \mathfrak{B} are a, b, c.

It follows from the equations (A), by which a, b, c are defined, that

$$
\frac{d a}{d x}+\frac{d b}{d y}+\frac{d c}{d z}=0 .
$$

This was shewn at Art. 403 to be a property of the magnetic induction.
605.] We have defined the magnetic force within a magnet, as distinguished from the magnetic induction, to be the force on a unit pole placed in a narrow crevasse cut parallel to the direction of magnetization. This quantity is denoted by \mathfrak{S}, and its components by a, β, γ. See Art. 398.

If \Im is the intensity of magnetization, and A, B, C its components, then, by Art. 400,

$$
\left.\begin{array}{l}
a=a+4 \pi A \tag{D}\\
b=\beta+4 \pi B \\
c=\gamma+4 \pi C .
\end{array}\right\} \quad \text { (Equations of Magnetization.) }
$$

We may call these the equations of magnetization, and they indicate that in the electromagnetic system the magnetic induction \mathfrak{B}, considered as a vector, is the sum, in the Hamiltonian sense, of two vectors, the magnetic force \mathfrak{F}, and the magnetization \Im multiplied by 4π, or

$$
\mathfrak{B}=\mathfrak{S}+4 \pi \mathfrak{I} .
$$

In certain substances, the magnetization depends on the magnetic force, and this is expressed by the system of equations of induced magnetism given at Arts. 426 and 435.
606.] Up to this point of our investigation we have deduced everything from purely dynamical considerations, without any reference to quantitative experiments in electricity or magnetism. The only use we have made of experimental knowledge is to recognise, in the abstract quantities deduced from the theory, the concrete quantities discovered by experiment, and to denote them by names which indicate their physical relations rather than their mathematical generation.

In this way we have pointed out the existence of the electromagnetic momentum $\mathfrak{A l}$ as a vector whose direction and magnitude vary from one part of space to another, and from this we have deduced, by a mathematical process, the magnetic induction, \mathfrak{B}, as a derived vector. We have not, however, obtained any data for determining either \mathfrak{N} or \mathfrak{B} from the distribution of currents in the field. For this purpose we must find the mathematical connexion between these quantities and the currents.

We begin by admitting the existence of permanent magnets, the mutual action of which satisfies the principle of the conservation of energy. We make no assumption with respect to the laws of magnetic force except that which follows from this principle, namely, that the force acting on a magnetic pole must be capable of being derived from a potential.

We then observe the action between currents and magnets, and we find that a current acts on a magnet in a manner apparently the same as another magnet would act if its strength,
form, and position were properly adjusted, and that the magnet acts on the current in the same way as another current. These observations need not be supposed to be accompanied by actual measurements of the forces. They are not therefore to be considered as furnishing numerical data, but are useful only in suggesting questions for our consideration.

The question these observations suggest is, whether the magnetic field produced by electric currents, as it is similar to that produced by permanent magnets in many respects, resembles it also in being related to a potential?

The evidence that an electric circuit produces, in the space surrounding it, magnetic effects precisely the same as those produced by a magnetic shell bounded by the circuit, has been stated in Arts. 482-485.

We know that in the case of the magnetic shell there is a potential, which has a determinate value for all points outside the substance of the shell, but that the values of the potential at two neighbouring points, on opposite sides of the shell, differ by a finite quantity.
If the magnetic field in the neighbourhood of an electric current resembles that in the neighbourhood of a magnetic shell, the magnetic potential, as found by a line-integration of the magnetic force, will be the same for any two lines of integration, provided one of these lines can be transformed into the other by continuous motion without cutting the electric current.
If, however, one line of integration cannot be transformed into the other without cutting the current, the line-integral of the magnetic force along the one line will differ from that along the other by a quantity depending on the strength of the current. The magnetic potential due to an electric current is therefore a function having an infinite series of values with a common difference, the particular value depending on the course of the line of integration. Within the substance of the conductor, there is no such thing as a magnetic potential.
607.] Assuming that the magnetic action of a current has a magnetic potential of this kind, we proceed to express this result mathematically.
In the first place, the line-integral of the magnetic force round any closed curve is zero, provided the closed curve does not surround the electric current.

In the next place, if the current passes once, and only once, through the closed curve in the positive direction, the lineintegral has a determinate value, which may be used as a measure of the strength of the current. For if the closed curve alters its form in any continuous manner without cutting the current, the line-integral will remain the same.

In electromagnetic measure, the line-integral of the magnetic force round a closed curve is numerically equal to the current through the closed curve multiplied by 4π.

If we take for the closed curve the rectangle whose sides are $d y$ and $d z$, the line-integral of the magnetic force round the parallelogram is

$$
\left(\frac{d \gamma}{d y}-\frac{d \beta}{d z}\right) d y d z,
$$

and if u, v, w are the components of the flow of electricity, the current through the parallelogram is

$$
u d y d z
$$

Multiplying this by 4π, and equating the result to the lineintegral, we obtain the equation

$$
\left.4 \pi u=\frac{d \gamma}{d y}-\frac{d \beta}{d z},\right)
$$

with the similar equations

$$
\left.\begin{array}{l}
4 \pi v=\frac{d a}{d z}-\frac{d \gamma}{d x}, \tag{E}\\
4 \pi w=\frac{d \beta}{d x}-\frac{d a}{d y},
\end{array}\right\} \quad \begin{gathered}
\text { (Equations of } \\
\text { Electric Currents.) }
\end{gathered}
$$

which determine the magnitude and direction of the electric currents when the magnetic force at every point is given.

When there is no current, these equations are equivalent to the condition that

$$
a d x+\beta d y+\gamma d z=-D \Omega
$$

or that the magnetic force is derivable from a magnetic potential in all points of the field where there are no currents.

By differentiating the equations (E) with respect to x, y, and z respectively, and adding the results, we obtain the equation

$$
\frac{d u}{d x}+\frac{d v}{d y}+\frac{d w}{d z}=0
$$

which indicates that the current whose components are u, v, w is subject to the condition of motion of an incompressible fluid, and that it must necessarily flow in closed circuits.

This equation is true only if we take u, v, and w as the components of that electric flow which is due to the variation of electric displacement as well as to true conduction.

We have very little experimental evidence relating to the direct electromagnetic action of currents due to the variation of electric displacement in dielectrics, but the extreme difficulty of reconciling the laws of electromagnetism with the existence of electric currents which are not closed is one reason among many why we must admit the existence of transient currents due to the variation of displacement. Their importance will be seen when we come to the electromagnetic theory of light.
608.] We have now determined the relations of the principal quantities concerned in the phenomena discovered by Örsted, Ampère, and Faraday. To connect these with the phenomena described in the former parts of this treatise, some additional relations are necessary.

When electromotive intensity acts on a material body, it produces in it two electrical effects, called by Faraday Induction and Conduction, the first being most conspicuous in dielectrics, and the second in conductors.

In this treatise, static electric induction is measured by what we have called the electric displacement, a directed quantity or vector which we have denoted by \mathfrak{D}, and its components by f, g, h.

In isotropic substances, the displacement is in the same direction as the electromotive intensity which produces it, and is proportional to it, at least for small values of this intensity. This may be expressed by the equation

$$
\mathfrak{D}=\frac{1}{4 \pi} K \S, \quad \begin{gather*}
\text { (Equation of Electric } \tag{F}\\
\text { Displacement.) }
\end{gather*}
$$

where K is the dielectric capacity of the substance. See Art. 68.

In substances which are not isotropic, the components f, g, h of the electric displacement \mathfrak{D} are linear functions of the components P, Q, R of the electromotive intensity ©

The form of the equations of electric displacement is similar to that of the equations of conduction as given in Art. 298.

These relations may be expressed by saying that K is, in isotropic bodies, a scalar quantity, but in other bodies it is a linear and vector function, operating on the vector ©.
609.] The other effect of electromotive intensity is conduction. The laws of conduction as the result of electromotive intensity were established by Ohm , and are explained in the second part of this treatise, Art. 241. They may be summed up in the equation

$$
\begin{equation*}
\Re=C \mathbb{E}, \quad \text { (Equation of Conductivity.) } \tag{G}
\end{equation*}
$$

where © is the electromotive intensity at the point, Ω is the density of the current of conduction, the components of which are p, q, and r, and C is the conductivity of the substance, which in the case of isotropic substances, is a simple scalar quantity, but in other substances becomes a linear and vector function operating on the vector ©. The form of this function is given in Cartesian coordinates in Art. 298.
610.] One of the chief peculiarities of this treatise is the doctrine which it asserts, that the true electric current © \mathfrak{C}, that on which the electromagnetic phenomena depend, is not the same thing as \Re, the current of conduction, but that the timevariation of \mathfrak{D}, the electric displacement, must be taken into account in estimating the total movement of electricity, so that we must write,

$$
\begin{equation*}
\mathfrak{C}=\mathfrak{\Omega}+\dot{D}, \quad \text { (Equation of True Currents.) } \tag{H}
\end{equation*}
$$

or, in terms of the components,

$$
\left.\begin{array}{rl}
u & =p+\frac{d f}{d t}, \\
v & =q+\frac{d q}{d t}, \tag{*}\\
w & =r+\frac{d h}{d t}
\end{array}\right\}
$$

611.] Since both \mathfrak{C} and \mathfrak{D} depend on the electromotive intensity §, we may express the true current \mathfrak{d} in terms of the electromotive intensit y, thus

$$
\begin{equation*}
\mathfrak{C}=\left(C+\frac{1}{4 \pi} K \frac{d,}{d \vec{d}}\right)(\mathfrak{E}, \tag{I}
\end{equation*}
$$

or, in the case in which C and K are constants,

$$
\left.\begin{array}{rl}
u & =C P+\frac{1}{4 \pi} K \frac{d P}{d t}, \\
v & =C Q+\frac{1}{4 \pi} K \frac{d Q}{d t}, \tag{*}\\
w & =C R+\frac{1}{4 \pi} K \frac{d R}{d t} \cdot
\end{array}\right\}
$$

612.7 The volumedensity of the free electricity at any point is found from the components of ehetrie displacement by the 'quation
613. The surface donsity of wetrieity is

$$
\begin{equation*}
a=l f+m g+n h+l^{\prime} f^{\prime}+m^{\prime}!l^{\prime} \mid n^{\prime} h^{\prime} \tag{K}
\end{equation*}
$$

wherel, m, n are the direction-ensines of the nomal drawn from the surface into the medium in which $t, \frac{t}{} / 2$ are the components of the displacement, and l^{\prime}, m^{\prime}, n^{\prime} are those of the normal drawn from the surface into the medium in whech they are $f^{\prime \prime}, a^{\prime}, l^{\prime}$.
614.] When the magnetization of the modinm is entirely induced by the magnetic foree anting on it, we may write the oquation of induced magnetization,

$$
\begin{equation*}
\mathfrak{B}=\mu \dot{乌}, \tag{0}
\end{equation*}
$$

where μ is the coefficiont of magnetio permeatility, which may be considered a sealar quantity, or a linar amb vector function operating on \oint, according as the modium is isotropic or not.
615.7 These may be regarded as the principal rolations among the quantities we have been considering. They may bo combined so an to eliminate some of these quantitios, hat our object at present is not to oltain eompretnoss in the mathomatical formulat, but to exprese every relation of which wo have any knowlodge. To nliminate a quantity which expressee a useful idera would he rather a loss than again in this stage of our enquiry.

There is one result, howneer, which we may ohtain by comhining equations (A) and (B), and which is of very great importaneo.

If wo suppones that no magnots exint in the fiold exerpt in the form of chectric circuits, the distinction which wo have hitherto maintained botwen tho marntio foren and the magnotio induction vaniwhes, beouse it is only in magnotized mater that these quantities differ from each other.

Aceording to Ampra's hypothesis, which will be explained in Art. 833, the properties of what wo call magnetized matter are duo to molecular deetrie cireuits, so that it is only when we regard tho substance in largo masses that our theory of magmotization is applicable, and if our mathomatical mothods are supposed capahle of taking aceount of what goes on within the
individual molecules, they will discover nothing but electric circuits, and we shall find the magnetic force and the magnetic induction everywhere identical. In order, however, to be able to make use of the electrostatic or of the electromagnetic system of measurement at pleasure we shall retain the coefficient μ, remembering that its value is unity in the electromagnetic system.
616.] The components of the magnetic induction are by equations (A), Art. 591,

$$
\left.\begin{array}{l}
a=\frac{d H}{d y}-\frac{d G}{d z} \\
b=\frac{d F}{d z}-\frac{d H}{d x} \\
c=\frac{d G}{d x}-\frac{d F}{d y}
\end{array}\right\}
$$

The components of the electric current are by equations (E), Art. 607, given by

$$
\left.\begin{array}{rl}
4 \pi u & =\frac{d \gamma}{d y}-\frac{d \beta}{d z} \\
4 \pi v & =\frac{d \alpha}{d z}-\frac{d \gamma}{d x} \\
4 \pi w & =\frac{d \beta}{d x}-\frac{d a}{d y}
\end{array}\right\}
$$

According to our hypothesis, a, b, c are identical with $\mu \alpha, \mu \beta$, $\mu \gamma$ respectively. We therefore obtain \{when μ is constant\}

$$
\begin{equation*}
4 \pi \mu u-\frac{d^{2} G}{d x d y}-\frac{d^{2} F}{d y^{2}}-\frac{d^{2} F}{d z^{2}}+\frac{d^{2} H}{d z d x} \tag{1}
\end{equation*}
$$

If we write

$$
\begin{equation*}
J=\frac{d F}{d x}+\frac{d G}{d y}+\frac{d H}{d z}, \tag{2}
\end{equation*}
$$

and*

$$
\begin{equation*}
\nabla^{2}=-\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}+\frac{d^{2}}{d z^{2}}\right) \tag{3}
\end{equation*}
$$

we 'may write equation (1),

Similarly,

$$
\left.\begin{array}{rl}
4 \pi \mu u & =\frac{d J}{d x}+\nabla^{2} F \tag{4}\\
4 \pi \mu v & =\frac{d J}{d y}+\nabla^{2} G \\
4 \pi \mu w & =\frac{d J}{d z}+\nabla^{2} H
\end{array}\right\}
$$

[^57]\[

$$
\begin{align*}
& \text { If we write } \quad b^{n}=\mu \iint_{D_{r}^{\prime \prime}}^{u} d x d y d i \text {) } \\
& \left(r^{\prime}=\mu \iiint_{r}^{r} d r d y l=,\right. \tag{5}\\
& \left.H^{\prime}=\mu \mid \iint_{r}^{u} d, d y d x\right) \\
& x=\frac{1}{4 \pi} \iint_{r}^{a}, d x d y+x \tag{6}
\end{align*}
$$
\]

where r is the distanee of the given peint from the Hement (x, y, z) and the integrations are to bextombed over all space, then

$$
\left.\begin{array}{l}
H=b^{\prime}-\frac{d x}{d x} \tag{7}\\
G=i^{\prime}-d_{x} \\
d=H^{\prime}- \\
d_{x} \\
d_{z}
\end{array}\right\}
$$

The quantity x dismppears from the equations (A), and it is not related to any physical phonomemon. If we muppos⿻ it to les zoro everywhere, of will also be arro overy where, and "unations (5), onitting the accents, will give the trus values of the compononts of $\mathfrak{l l}$.
617.] We may therfore adopt, an a definition of : 1 , that it is the vector-potential of the chetric curront, standing in the samo rolation to the electric curront that the mealar peotential stands to tho matter of which it is the pretantial, amb ohtained by a similar procoss of integration, which may lue thas de-scribed:--

From a givon point lot a vector lue drawn, repromenting in magnitude and direction a given olement of an chotrice curront, divided by the numerical value of the distane of the whent from the given point. Let this be done for uvery dement of the electric current. The resultant of all the vectors thas found is the potential of the whole curront. Sines, the current is a vector quantity, its potential is also a vector. Sew Art. 422.

When the distribution of electric eurrones is given, there is one, and only one, distribution of the values of $\%$, such that it is overywhere finito and continuous, and matisfies the equations

$$
\nabla^{2} M=4 \pi \mu(5, \quad S \nabla 9=0,
$$

and vanishes at an infinite distance from the olectric nystem.

This value is that given by equations (5), which may be written in the quaternion form

$$
\mathfrak{N}=\mu \iiint \frac{\mathfrak{C}}{r} d x d y d z .
$$

Quaternion Expressions for the Electromagnetic Equations.
618.] In this treatise we have endeavoured to avoid any process demanding from the reader a knowledge of the Calculus of Quaternions. At the same time we have not scrupled to introduce the idea of a vector when it was necessary to do so. When we have had occasion to denote a vector by a symbol, we have used a German letter, the number of different vectors being so great that Hamilton's favourite symbols would have been exhausted at once. Whenever therefore a German letter is used it denotes a Hamiltonian vector, and indicates not only its magnitude but its direction. The constituents of a vector are denoted by Roman or Greek letters.

The principal vectors which we have to consider are

	Symbol of Vector.	Constituents.
The radius vector of a point	ρ	$x y z$
The electromagnetic momentum at a point		$F G H$
The magnetic induction	\mathfrak{B}	$a b$
The (total) electric current.................	C	$u v w$
The electric displacement	D	$f g h$
"The electromotive intensity	๕	$P Q R$
The mechanical force	\mathfrak{F}	$X Y Z$
The velocity of a point	(6) or	$\dot{x} \dot{y}$
The magnetic force	\mathfrak{J}	a $\beta \gamma$
The intensity of magnetization		$A B C$
The current of conduction	$\mathscr{}$	$p q r$
We have also the following scalar functions:		
The electric potential Ψ.		
The magnetic potential (where it exists) Ω.		
The electric density e.		
The density of magnetic ' matter' \mathfrak{m}.		
Besides these we have the following quantities, indicating		
C, the conductivity for electric currents.		
K, the dielectric inductive capacity.		
μ, the magnetic inductive capacity.		
vol. II.		

 of ρ, hat in general they are linear ame veoter operatom on the vector functions to which they areaphital. Ki umb are cortainly always self-conjughte, and ('is probably so abo.
619.] The equations (A) of magnetio induction, of which the first is,

$$
\begin{aligned}
& a=\begin{array}{l}
1 / 1 \\
1 / y \quad d i \\
d i
\end{array} \\
& 8=1.5 \geqslant
\end{aligned}
$$

may now ∇ is the operator

$$
i_{d . r}^{d}+i_{d!l}^{d}+k_{d i}^{d}
$$

and I indicates that the vetor part of the remble of this oporation is to bo taken.
 vector, and the symbol V is unnecessary.

The equations (B) of dectromotive fores, of which the first is
become

$$
x=t \dot{y}-1 \cdot \dot{a}-\frac{d F}{d t} \frac{d \pm}{d c^{\prime}}
$$

The equations (C) of mechanieal foree of which the first is
become

The cquations (D) of magne tiantion, of which the tirst is

$$
\begin{aligned}
& u=4+4 \pi .1 \\
& 3=5+4 \pi .
\end{aligned}
$$

The equations (E) of wectric curronte, of which the tims is
becomo

$$
\begin{aligned}
& 4 \pi u=d y-d, 4 \\
& 4 \pi=1 y \cdot \nabla!
\end{aligned}
$$

The equation of the current of conduetion in, by ohmin law,

$$
\mathscr{S}=\mathrm{C}
$$

That of electric displacement is

$$
I)={ }_{1 \pi}^{1} K^{*}(6 .
$$

The equation of the total current, arising from the variation of the electric displacement as well as from conduction, is

$$
\mathfrak{E}=\mathfrak{N}+\mathfrak{D} .
$$

When the magnetization arises from magnetic induction,

$$
\mathfrak{B}=\mu \mathfrak{S} .
$$

We have also, to determine the electric volume-density,

$$
\mathfrak{e}=S . \nabla \mathfrak{D} .
$$

To determine the magnetic volume-density,

$$
\mathfrak{m}=S . \nabla \mathfrak{\Im} .
$$

When the magnetic force can be derived from a potential,

$$
\mathfrak{F}=-\nabla \Omega .
$$

APPENDIX TO CHAPTER IX.

The expressions (5) are not in general accurate if the electromagnetic field contains substances of different magnetic permeabilities, for in that case, at the surface of separation of two surfaces of different magnetic permeabilities, there will in general be free magnetism; this will contribute terms to the expression for the vector potential which are given by equations (22), p. 30. The boundary equations at the surface separating two media whose magnetic permeabilities are μ_{1} and μ_{2}, and where F_{1}, G_{1}, H_{1} and F_{2}, G_{2}, H_{2} denote the values of the components of the vector potential on the two sides of the surface of separation, l, m, n the direction cosines of the normal to this surface ; are (1), since the normal induction is continuous,

$$
\begin{aligned}
& l\left(\frac{d H_{1}}{d y}-\frac{d G_{1}}{d z}\right)+m\left(\frac{d F_{1}}{d z}-\frac{d H_{1}}{d x}\right)+n\left(\frac{d G_{1}}{d x}-\frac{d F_{1}}{d y}\right) \\
= & l\left(\frac{d H_{2}}{d y}-\frac{d G_{2}}{d z}\right)+m\left(\frac{d F_{2}}{d z}-\frac{d H_{2}}{d x}\right)+n\left(\frac{d G_{2}}{d x}-\frac{d F_{2}}{d y}\right),
\end{aligned}
$$

and (2), since the magnetic force along the surface is continuous,

$$
\begin{aligned}
& \frac{\frac{1}{\mu_{1}}\left(\frac{d H_{1}}{d y}-\frac{d G_{1}}{d z}\right)-\frac{1}{\mu_{2}}\left(\frac{d H_{2}}{d y}-\frac{d G_{2}}{d z}\right)}{l} \\
&= \frac{\frac{1}{\mu_{1}}\left(\frac{d F_{1}}{d z}-\frac{d H_{1}}{d x}\right)-\frac{1}{\mu_{2}}\left(\frac{d F_{2}}{d z}-\frac{d H_{2}}{d x}\right)}{m} \\
&= \frac{1}{\mu_{1}}\left(\frac{d G_{1}}{d x}-\frac{d F_{1}}{d y}\right)-\frac{1}{\mu_{2}}\left(\frac{d G_{2}}{d x}-\frac{d F_{2}}{d y}\right) \\
& n
\end{aligned}
$$

The expressions (5) do not in general satisfy both these surface conditions. It is therefore best to regard F, G, H as given by the equations

$$
\begin{aligned}
\nabla^{2} F & =4 \pi \mu u \\
\nabla^{2} G & =4 \pi \mu v \\
\nabla^{2} H & =4 \pi \mu w
\end{aligned}
$$

and the preceding boundary conditions.\}
(It does not appear legitimate to assume that Ψ in equations (B) represents the electrostatic potential when the conductors are moving, for in deducing those equations Maxwell leaves out the term

$$
-\frac{d}{d s}\left(F \frac{d x}{d t}+G \frac{d y}{d t}+H \frac{d z}{d t}\right)
$$

since it vanishes when integrated round a closed circuit. If we insert this term, then Ψ is no longer the electrostatic potential but is the sum of this potential, and

$$
F \frac{d x}{d t}+G \frac{d y}{d t}+H \frac{d z}{d t}
$$

This has an important application to a problem which has attracted much attention, that of a sphere rotating with angular velocity ω about a vertical axis in a uniform magnetic field where the magnetic force is vertical and equal to c. Equations (B) become in this case, supposing the sphere to have settled down into a steady state,

$$
\begin{aligned}
P & =c \omega x-\frac{d \Psi}{d x} \\
Q & =c \omega y-\frac{d \Psi}{d y} \\
R & =\quad-\frac{d \Psi}{d z}
\end{aligned}
$$

Since the sphere is a conductor and in a steady state, and since $\frac{P}{\sigma}, \frac{Q}{\sigma}, \frac{R}{\sigma}$ are the components of the current,
hence

$$
\begin{gathered}
\frac{d P}{d x}+\frac{d Q}{d y}+\frac{d R}{d z}=0 ; \\
2 c \omega=\frac{d^{2} \Psi}{d x^{2}}+\frac{d^{2} \Psi}{d y^{2}}+\frac{d^{2} \Psi}{d z^{2}} .
\end{gathered}
$$

This equation has usually been interpreted to mean that throughout the sphere there is a distribation of electricity whose volume density is $-c \omega / 2 \pi$, but this is only legitimate if we assume that Ψ is the electrostatic potential.

If in accordance with the investigation by which equations (B) were deduced we assume that, Φ being the electrostatic potential,

$$
\Psi=\Phi+F \frac{d x}{d t}+G \frac{d y}{d t}+H \frac{d z}{d t},
$$

or in this case

$$
\begin{gathered}
\Psi=\Phi+\omega(G x-F y), \\
\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}+\frac{d^{2}}{d z^{2}}\right)(G x-F y)=2\left(\frac{d G}{d x}-\frac{d F}{d y}\right),
\end{gathered}
$$

then, since
we see that since

$$
=2 c
$$

$$
\begin{aligned}
& \frac{d^{2} \Psi}{d x^{2}}+\frac{d^{2} \Psi}{d y^{2}}+\frac{d^{2} \Psi}{d z^{2}}=2 c \omega, \\
& \frac{d^{2} \Phi}{d x^{2}}+\frac{d^{2} \Phi}{d y^{2}}+\frac{d^{2} \Phi}{d z^{2}}=0 ;
\end{aligned}
$$

that is, there is no distribution of free electricity throughout the volume of the sphere.

There is therefore nothing in the equations of the electromagnetic field which would lead us to suppose that a rotating sphere contains free electricity.

Equations of the Electromagnetic Field expressed in Polar and Cylindrical Co-ordinates.
If F, G, H are the components of the vector potential along the radius vector, the meridian and a parallel of latitude respectively, a, b, c the components of the magnetic induction, a, β, γ the components of the magnetic force, and u, v, w the components of the current in those directions, then we can easily prove that

$$
\begin{aligned}
a & =\frac{1}{r^{2} \sin \theta}\left\{\frac{d}{d \theta}(r \sin \theta H)-\frac{d}{d \phi}(r G)\right\}, \\
b & =\frac{1}{r \sin \theta}\left\{\frac{d F}{d \phi}-\frac{d}{d r}(r \sin \theta H)\right\}, \\
c & =\frac{1}{r}\left\{\frac{d}{d r}(r G)-\frac{d F}{d \theta}\right\} ; \\
4 \pi u & =\frac{1}{r^{2} \sin \theta}\left\{\frac{d}{d \theta}(r \sin \theta \gamma)-\frac{d}{d \phi}(r \beta)\right\}, \\
4 \pi v & =\frac{1}{r \sin \theta}\left\{\frac{d a}{d \phi}-\frac{d}{d r}(r \sin \theta \gamma)\right\}, \\
4 \pi w & =\frac{1}{r}\left\{\frac{d}{d r}(r \beta)-\frac{d a}{d \theta}\right\} .
\end{aligned}
$$

If P, Q, R are the components of the electromotive intensity along the radius vector, the meridian and a parallel of latitude,

$$
\begin{aligned}
\frac{d a}{d t} & =-\frac{1}{r^{2} \sin \theta}\left\{\frac{d}{d \theta}(r \sin \theta R)-\frac{d}{d \phi}(r Q)\right\} \\
\frac{d b}{d t} & =-\frac{1}{r \sin \theta}\left\{\frac{d P}{d \phi}-\frac{d}{r}(r \sin \theta R)\right\} \\
\frac{d c}{d t} & =-\frac{1}{r}\left\{\frac{d}{d r}(r Q)-\frac{d P}{d \theta}\right\}
\end{aligned}
$$

If the cylindrical co-ordinates are ρ, θ, z, and if F, G, H are the components of the vector potential parallel to $\rho, \theta, z ; a, b, c$ the components of the magnetic induction, a, β, γ the components of the magnetic force, and u, v, w the components of the current in these directions, then

$$
\begin{aligned}
a & =\frac{1}{\rho}\left\{\frac{d H}{d \theta}-\frac{d}{d z}(\rho G)\right\} \\
b & =\frac{d F}{d z}-\frac{d H}{d \rho} \\
c & =\frac{1}{\rho}\left\{\frac{d}{d \rho}(\rho G)-\frac{d F}{d \theta}\right\} \\
4 \pi u & =\frac{1}{\rho}\left\{\frac{d \gamma}{d \theta}-\frac{d}{d z}(\rho \beta)\right\} \\
4 \pi v & =\frac{d a}{d z}-\frac{d \gamma}{d \rho}, \\
4 \pi w & =\frac{1}{\rho}\left\{\frac{d}{d \rho}(\rho \beta)-\frac{d a}{d \theta}\right\}
\end{aligned}
$$

If P, Q, R are the components of the electromotive intensity parallel to ρ, θ, z,

$$
\begin{aligned}
& \frac{d a}{d t}=-\frac{1}{\rho}\left\{\frac{d R}{d \theta}-\frac{d}{d z}(\rho Q)\right\}, \\
& \frac{d b}{d t}=-\left\{\frac{d P}{d z}-\frac{d R}{d \rho}\right\} \\
& \frac{d c}{d t}=-\frac{1}{\rho}\left\{\frac{d}{d \rho}(\rho Q)-\frac{d P}{d \theta}\right\} .
\end{aligned}
$$

CHAPTER X.

DIMENSIONS OF ELECTRIC UNITS.

620.] Every electromagnetic quantity may be defined with reference to the fundamental units of Length, Mass, and Time. If we begin with the definition of the unit of electricity, as given in Art. 65, we may obtain definitions of the units of every other electromagnetic quantity, in virtue of the equations into which they enter along with quantities of electricity. The system of units thus obtained is called the Electrostatic System.

If, on the other hand, we begin with the definition of the unit magnetic pole, as given in Art. 374, we obtain a different system of units of the same set of quantities. This system of units is not consistent with the former system, and is called the Electromagnetic System.

We shall begin by stating those relations between the different units which are common to both systems, and we shall then form a table of the dimensions of the units according to each system.
621.] We shall arrange the primary quantities which we have to consider in pairs. In the first three pairs, the product of the two quantities in each pair is a quantity of energy or work. In the second three pairs, the product of each pair is a quantity of energy referred to unit of volume.

First Three Pairs.

Electrostatic Pair.
Symbol.
(1) Quantity of electricity e
(2) Electromotive force, or electric potential . . E

> Muyurfic P'uir. Symbul.
(3) Quantity of fre magntinm, or strengh of a pole m
(1) Marnetic potential

Ehentrokintia ltair.

(5) Floetrokintic momentum of a cirenit.
(i) Electrie eurmat .

Shoun Thme: Pams.
Wilermatatir I'uir.
(7) Electric displaeoment (measured by кurface density) D
(8) Electromotive intunsity

Muynetio P'uir.
(9) Magnotic induction ©
(10) Magnetic foreo \$

Electrohinetir l'tir.
(11) Intonsity of chectrie curront at a point. . . 5
(12) Voctor potential of dectric currentas . . . M
622. The following relations vint lutwow these quantition. In the first phace, sine the dimensions of conergy are $\left[\begin{array}{c}L^{2} M \\ T^{2},\end{array}\right]$, and those of energy referrod to unit of volune $\left[\begin{array}{c}M \\ L, T^{2}\end{array}\right]$, we have the following equations of dimonsions:

$$
\begin{align*}
& {\left[e E^{\prime}\right]=[m \Omega]=[\mu]=\left[\begin{array}{c}
L^{2} M \\
T^{3}
\end{array}\right]} \tag{1}\\
& {\left[D(6]=[B 6]=[69]=\left(\begin{array}{c}
M \\
L T^{n}
\end{array}\right]\right.} \tag{2}
\end{align*}
$$

Socondly, since n, p, and ${ }^{2}$ are the time-integrals of \because, k. and (E renpectively,

$$
\left[\begin{array}{l}
0 \tag{3}\\
r
\end{array}\right]=\left[\begin{array}{c}
p \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\frac{M}{\theta}
\end{array}\right]=[T] .
$$

Thirdly, since E, Ω, and p are the line-integrals of $\mathfrak{G}, \mathfrak{F}$, and \mathfrak{N} respectively,

$$
\begin{equation*}
\left[\frac{E}{\mathfrak{E}}\right]=\left[\frac{\Omega}{\sqrt{5}}\right]=\left[\frac{p}{\mathfrak{\mathfrak { N }}}\right]=[L] * \tag{4}
\end{equation*}
$$

Finally, since e, C, and m are the surface-integrals of $\mathfrak{D}, \mathfrak{C}$, and \mathfrak{B} respectively,

$$
\left[\frac{e}{\mathfrak{D}}\right]=\left[\begin{array}{l}
C \tag{5}\\
\overline{\mathfrak{C}}
\end{array}\right]=\left[\begin{array}{l}
m \\
\mathfrak{B}
\end{array}\right]=\left[L^{2}\right] .
$$

623.] These fifteen equations are not independent, and in order to deduce the dimensions of the twelve units involved, we require one additional equation. If, however, we take either e or m as an independent unit, we can deduce the dimensions of the rest in terms of either of these.
(1) $[e] \quad=[e]=\left[\frac{L^{2} M}{m T}\right]$.
(2) $[E] \quad=\left[\frac{L^{2} M}{e T^{2}}\right]=\left[\frac{m}{T}\right]$.
(3) and (5) $[p]=[m]=\left[\frac{L^{2} M}{e T}\right]=[m]$.
(4) and (6) $[C]=[\Omega]=\left[\frac{e}{T}\right]=\left[\frac{L^{2} M}{m T^{2}}\right]$.
(7) $[\mathfrak{D}] \quad=\left[\frac{e}{L^{2}}\right]=\left[\frac{M}{m T}\right]$.
$[छ] \quad=\left[\frac{L M}{e T^{2}}\right]=\left[\frac{m}{L T}\right]$.
(9) $[\mathfrak{B}] \quad=\left[\frac{M}{e T}\right]=\left[\frac{m}{L^{2}}\right]$.
(10) $[\mathfrak{S}] \quad=\left[\frac{e}{L T}\right]=\left[\frac{L M}{m T^{2}}\right]$.
(12) $[\mathfrak{R}] \quad=\left[\frac{L M}{e T}\right]=\left[\frac{m}{L}\right]$.

* $[$ We have also $[\mathfrak{\mathfrak { Y }} \mathfrak{\mathfrak { O }}]=[L]$.
624.] The relations of the first ten of these quantities may be exhibited by means of the following arrangement:-

$$
\begin{array}{cccc|cccc}
e, & \mathfrak{D}, & \mathfrak{F}, & C \text { and } \Omega . & E, & \mathbb{E}, & \mathfrak{F}, & m \text { and } p . \\
m \text { and } p, \mathfrak{B}, & \mathfrak{E}, & E . & C \text { and } \Omega, & \mathfrak{F}, & \mathfrak{D}, & e .
\end{array}
$$

The quantities in the first line are derived from e by the same operations as the corresponding quantities in the second line are derived from m. It will be seen that the order of the quantities in the first line is exactly the reverse of the order in the-second line. The first four of each line have the first symbol in the numerator. The second four in each line have it in the denominator.

All the relations given above are true whatever system of units we adopt.
625.] The only systems of any scientific value are the electrostatic and the electromagnetic systems. The electrostatic system is founded on the definition of the unit of electricity, Arts. 41, 42, and may be deduced from the equation

$$
\mathfrak{E}=\frac{e}{L^{2}},
$$

which expresses that the resultant electric intensity © \mathfrak{E} at any point, due to the action of a quantity of electricity e at a distance L, is found by dividing e by L^{2}. Substituting in the equations of dimensions (1) and (8), we find

$$
\begin{aligned}
& {\left[\frac{L M}{e T^{2}}\right]=\left[\frac{e}{L^{2}}\right], \quad\left[\frac{m}{L T}\right]=\left[\frac{M}{m T}\right],} \\
& {[e]=\left[L^{\frac{3}{2}} M^{\frac{1}{3}} T^{-1}\right], \quad m=\left[L^{\frac{1}{3}} M^{\frac{1}{3}}\right],}
\end{aligned}
$$

whence
in the electrostatic system.
The electromagnetic system is founded on a precisely similar definition of the unit of strength of a magnetic pole, Art. 374, leading to the equation

$$
\mathfrak{J}=\frac{m}{L^{2}},
$$

whence

$$
\left[\frac{e}{L T}\right]=\left[\frac{M}{e T}\right], \quad\left[\frac{L M}{m T^{2}}\right]=\left[\frac{m}{\bar{L}^{2}}\right]
$$

and

$$
[e]=\left[L^{\frac{1}{2}} M^{\frac{1}{2}}\right], \quad[m]=\left[L^{\frac{3}{2}} M^{\frac{1}{2}} T^{-1}\right],
$$

in the electromagnetic system. From these results we find the dimensions of the other quantities.

Quantity of olvetricity \ldots. . e $\left[L^{\frac{1}{4}} M^{\frac{1}{1}} T^{1}\right]\left[L^{\frac{1}{3}} M^{\frac{1}{4}}\right]$.

Qumntity of munctism

 62\%. Wh have alrady emsidered the products of the pairs of these quantition in the order in which they stand. Their ratios aro in certain cases of seiontifie importance. Thus

Filectromation liloctromagnotio Symbol. Syatom. Byntom.

628.] If the units of lengh, mass, and time are the same in the two systems, the number of olectrostatio units of electricity con-
tained in ono electromagne tie unit is numarionlly "ymal to abertain velocity, the ahsolute value of which dews mot if.pemb on the mag-
 portant physical quantity, which we whall donote by the symbel o. Number of Electrontutir l'uits in whe Ele tromethatic l'nit.
For $<^{\prime},(?, \Omega, D, \infty,(6, \ldots \ldots \cdots$

For electrostatic capmoity, dillectric imluctive capmeity, and eonductivity, $\boldsymbol{r}^{\prime \prime}$.

For electromandic mpacity, mandio inductive capmeity, and resistance, $\frac{1}{p^{2}}$.

Soveral methode of deturmining the volocity " will be given in Arts. 768780.

In the electroxtatic systom the sumitio shaloctrie imhetive capacity of air is assumed "gun to unty. 'lhis quantity is therefore represented by ${ }_{\text {, }}^{1}$ in the olectromagnetic syatum.

In the ulectromagnetic wymon the spection mannetir imbuctive capacity of air is assumed equal komity. This yuntity is therefore represented by ${ }_{\text {en }}^{1}$ in the elvetrombtic symem.
629.] Of the two nystum of unite, the Moctronagnetice is of the groater use to those praction "toctricinas who are orepied with olectromagnotio themraphs. If, however, the nuits of length, time, and masa are those commonly umed in other seiontific work, such as the mitre or the contimetre, the meconl, and the gramme, the units of resistance and of detromotive fore will be so amall that to express the quantition ocourring in practice onormone mumbers must he used, and the units of quatity and capacity will be so large that only exeondingly manll fractions of them can over oceur in practiog. Praction deotricianm have thereforeadopted a set of electrical units hedued by then wetromugnetic system from a large unit of logeth and a manll unit of mass.

Tho unit of length used for this purpose is ton million of motres, or approximately the length of a qualrant of a meridian of the earth.

The unit of timo is, as before, ono second.
The unit of mass is 10^{-11} grammes, or one hundred millionth part of a milligramme.

The electrieal units derived from these fundamental units have heen mamed after eminent olectrical diseoverers. Thus tho practienl unit of resistance is called the Ohm, and is represented by the resistanewenil issumd by tha British Association, and deseriturd in Art. 310 . It is expressesl in the eleedromagnetic mystam hy a velority of $10,000,0000$ matres per necond.

The praction unit, of olectromotive foreo in callerl the Volt, and in mot very different from that of a Daniell's cell. Mr. Latimer (Sark has reently invented a very eonstant coll, whoso dectromotive fore is almost, exactly 1.454 Volts.

The practioal unit of capacity is called the Farad. The quantity of Aectricity which flows through ono ()hm under the deetromotive foreo of one Volt during ono seceond, is equal to the charge produced in a condenser whose capacity is one Farad by an electromotive fores of one Volt.

The use of these names is found to bo more convenient in praction than the comatant repectition of the words eolectromagnetic units, with the additional statement of tho particular fumdamental units on which they are founded.

When vory harge quatitios aro to bo measured, a large unit is formed by multiplying the origimal unit by ono million, and placing before its name the prefix actere.

In like manner by profixing mirro a small unit is formed, ono millionth of the origimal unit.

The following table gives the values of these practical units in the differnen systems which have beon at various times adopted.

funhamental. l'nita.	1'нaternat. Hystram.	1. A. Reront, 1863.	Thommon.	Whbrr.
trime	Farth's Qumbrant,	Mithe,	Centimetre,	Millimu'tre,
Til	Nueoni	crome,	STecont,	S'econt,
Mama,	10^{-11} aramme	Gramme.	Gramme.	Milligramme.
Renintame	(1hm	10^{7}	$11^{\prime \prime}$	10^{10}
Eloctromative fores	Volt	$10^{\text {a }}$	10^{n}	10^{11}
Capmeity	Farad	10^{-7}	10^{-0}	10^{-10}
Quantity	Farad (charged to a Volt.)	10^{-3}	10^{-1}	10

(MAPTER XI.

Whechostatia Binertal.

630.] The energy of the nystem may be divided into the Potential Fnergy and the Kinetic Finergy.

The potential energy due to chetrification has bean alrody considered in Art. 85. It may he written

$$
\begin{equation*}
W^{*}=1 \pm(r \Psi) \tag{1}
\end{equation*}
$$

where e is the charge of electricity at a phace where the electric potential is Ψ, and the summation in to lue "xtombed to avery place where there is Nectrifieation.

If f, a, h wre the emmenents of the wectrie displumement, the quantity of clectricity in the wement of volume axalyda is
and

$$
\begin{align*}
& e=\left(\begin{array}{l}
d f \\
d x
\end{array}+\frac{d!l}{d!}+\frac{d h}{d m}\right) d r+l_{y} l_{2} \tag{2}\\
& W=t \iiint\left(\begin{array}{l}
d f^{\prime} \\
d_{x}+
\end{array} \frac{d y}{d y}+\begin{array}{c}
d h_{2} \\
d_{x}
\end{array}\right) \Psi \cdot d_{x} \cdot l_{y} d_{x}, \tag{3}
\end{align*}
$$

where the integration is to lo extonded thronghout all spuce.
631.] Integrating this expression by parts, and romombering that when the distance, r, from a given juint of a finite dectrified system becomes infinite, the potuntind Ψ beomes an infinitoly small quantity of the order $r{ }^{2}$, and that f, , f b hecome infinitoly small quantities of the order r^{*}, the expression is reduced to

$$
\begin{equation*}
W=-\frac{1}{2} \iiint\left(f_{d x}^{d \Psi}+y^{d \Psi} d_{y}+h_{d z}^{d \Psi}\right) d x d y d z \tag{4}
\end{equation*}
$$

where the integration is to be extended throughout all apace.

If we now write P, Q, R for the components of the electromotive intensity, instead of $-\frac{d \Psi}{d x},-\frac{d \Psi}{d y}$ and $-\frac{d \Psi}{d z}$, we find

$$
\begin{equation*}
W=\frac{1}{2} \iiint(P f+Q g+R h) d x d y d z .^{*} \tag{5}
\end{equation*}
$$

Hence, the electrostatic energy of the whole field will be the same if we suppose that it resides in every part of the field where electrical force and electrical displacement occur, instead of being confined to the places where free electricity is found.

The energy in unit of volume is half the product of the electromotive force and the electric displacement, multiplied by the cosine of the angle which these vectors include.

In Quaternion language it is $-\frac{1}{2} S . \mathbb{C} D$.

Magnetic Energy.

\dagger 632.] We may treat the energy due to magnetization in a way similar to that pursued in the case of electrification, Art. 85. If A, B, C are the components of magnetization and a, β, γ the components of magnetic force, the potential energy of the system of magnets is then, by Art. 389,

$$
\begin{equation*}
-\frac{1}{2} \iiint(A a+B \beta+C \gamma) d x d y d z \tag{6}
\end{equation*}
$$

the integration being extended over the space occupied by magnetized matter. This part of the energy, however, will be included in the kinetic energy in the form in which we shall presently obtain it.
633.] We may transform this expression when there are no electric currents by the following method.

We know that

$$
\begin{equation*}
\frac{d a}{d x}+\frac{d b}{d y}+\frac{d c}{d z}=0 \tag{7}
\end{equation*}
$$

[^58]Honce, by Art. 97, if

$$
\begin{equation*}
a=-\frac{d \Omega}{d x}, \quad \beta=-\frac{d \Omega}{d y}, \quad \gamma=-\frac{d \Omega}{d z}, \tag{8}
\end{equation*}
$$

as is always the case in magnetic phenomena where there are no currouts,

$$
\begin{equation*}
\iiint(\alpha a+b \beta+c \gamma) d x d y d z=0 \tag{9}
\end{equation*}
$$

the integral being extended throughout all space, or

$$
\iiint\{(\alpha+4 \pi A) \alpha+(\beta+4 \pi B) \beta+(\gamma+4 \pi C) \gamma\} d x d y d z=0 .(10)
$$

Hence, the energy due to a magnetic system

$$
\begin{align*}
-\frac{1}{2} \iiint\left(A a+B \beta+C_{\gamma} \gamma\right) d x d y d z & =\frac{1}{8 \pi} \iiint\left(a^{2}+\beta^{2}+\gamma^{2}\right) d x d y d z \\
& =\frac{1}{8 \pi} \iiint \mathfrak{S}^{2} d x d y d z \tag{11}
\end{align*}
$$

Electrokinetic Energy.

634.] We have already, in Art. 578, expressed the kinetic energy of a system of currents in the form

$$
\begin{equation*}
T=\frac{1}{2} \Sigma(p i), \tag{12}
\end{equation*}
$$

where p is the electromagnotic momentum of a circuit, and i is the strongth of the current flowing round it, and the summation extends to all the circuits.

Nut we have proved, in Art. 590, that p may be expressed as a line-integral of the form

$$
\begin{equation*}
p=\int\left(F^{r} \frac{d x}{d_{s}}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) d s \tag{13}
\end{equation*}
$$

where $F^{\prime}, G, I I$ are the components of the electromagnetic momontum, 2 N , at the point (x, y, z), and the integration is to be extended round the closed circuit s. We therefore find

$$
\begin{equation*}
T=\frac{1}{2} \Sigma i \int\left(F \frac{d x}{d s}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) d s \tag{14}
\end{equation*}
$$

If u, v, w are the components of the density of the current at any point of tho conducting circuit, and if S is the transverse suction of the circuit, then we may write

$$
\begin{equation*}
i \frac{d x}{d s}=u S, \quad i \frac{d y}{d s}=v S, \quad i \frac{d z}{d s}=w S \tag{15}
\end{equation*}
$$

and wo may also write the volume

$$
S d s=d x d y d z
$$

and we now find

$$
\begin{equation*}
T=1 \iiint\left(F^{\prime} u+(H+H u) d l_{1} r d y d z,\right. \tag{16}
\end{equation*}
$$

where the integration is to bo oxtended to overy part of space where there aro ehactrice currents.
(i35.) Lat un now substituto for u, v, n their values as given by the equations of electrice currents (E), Art. 607, in terms of the eomponentes a, A, γ of the magnotio foree. We then have
where the integration is extended over a portion of space including all the curronts.

If we integrate this by parts, and remomber that, at a great distance r from the nystem, α, β, and γ are of the order of magnitude r^{-3}, \{and that at a surface separating two media, F, (i, H, and the tangential mannetie foree are continuous, $\}$ wo find that when the integration is extended throughout all space, the expression is reduced to

By the erpations (A), Art. 691, of magnetic induction, wo may substitute for the quantities in small brackets the components of magnetie imhuction c, b, c, so that the kinetic energy may be writern

$$
\begin{equation*}
T=\frac{1}{\beta \cdot j} \iiint(4 a+b \beta+c \gamma) d x d y d z, \tag{19}
\end{equation*}
$$

where the integration is to bo extended throughout every part of spare in which the magnetic force and magnetic induction have values difforing from zero.

The quantity within brackets in this expression is the product of the magnotio induction into the resolved part of the magnotic foren in its own direction.

In the language of quaternions this may ho writton more simply,

$$
-S \cdot \mathfrak{B j}
$$

where 'b is the magnetic induction, whose compononts are a, b, c, and \oint is the magnotic foree, whose compononts are a, β, γ.
686. The nleotrokinetic energy of the system may therefore be expressed either as an integral to bo taken where thore aro olectric currenta, or as an integral to bo taken over evory part of
the field in which magnetio firree "iots. The first integral, however, is the natural expression of the theory which supposes the currents to act upon anh other diretly at a dist anes, while the second is appropriate to the thenry which andavours to explain the action hotwewn the currate hy mang of some intermediate action in the spare hotwern them. As in this treatise we have alopted the latter mothen of invertigation, we naturally adopt the serom "mpersion as giving the most significant form to the kinetic onergy.

Aceording to our hypothesis, we assum, the kinetio "nargy to axist wherver there is magnetio fures, that in, in on moral, in every part of the field. The numut of this chargy fier unit of
 kimb of motion of the mater in every furtion of namer.

When we come to eonsider Faralay' disenvery of the effect of magnotism on polarizend light, wa whall puint ont romons for believing that wherever there are lime of mannetic fores, there is a rotatory motion of materer rom thom linw. Sow Art. sel.

637.] We foum in Art. 123 that the mutual potentind anergy
 the closed curves sama a' respertivoly, is

$$
\cdots \phi \phi^{\prime} \iint_{r}^{c o s} \cdot d x d s^{\prime},
$$

where \in is the angle letwern the direstions of do and $d x^{\prime}$, and r is the distance between them.

Wo also found in Art. 621 that the mutual anergy of two circuits s and s^{\prime}, in which currente i and i^{\prime} flow, in

$$
i i^{\prime} \iint_{r}^{\mathrm{oos}} \cdot l_{\mathrm{r}} \mathrm{~d} d \mathrm{~s}^{\prime} .
$$

If i, i^{\prime} are equal to ϕ, ϕ^{\prime} respuctivily, the mechanional action letween the magnetic sholls is equal to that hetween the corresponding electrie circuits, and in the sane direstion. In the case of the magnetie shells the fores tende to diminish their mutual potential enorgy, in the case of the circuita it tonds to inerense their mutual onorgy, bernase this energy is kinetic.
It is impossible, by any arrangement of mangotized matter, to
produee a system corresponding in all respecets t_{0} on electric cirenit, for the peotential of the marnetio system is single valued at every perint of space, wherens that of the clectric system is many-valued.

Dut, it is always posihle, hy a proper arrangement of infinitely small alectric eirenits, to produce a system corresponding in all respecte to any mannetice system, provided the lino of integration which we follow in calculating the potential is prevented from passing through noy of these small circuits. 'This will ho more fully explained in Art. 833.

The ation of marmets at a distance in perfectly identical with that of olectrie currents. We therefore adeavour to traco both to the same cause, and since we eamot explain olectric currents by mones of magnets, wo must adopt the other altornative, and explain magnote by mestas of molecolar electric currents.
638.] In our investigation of magnetie phenomena, in Part III of this trontise, wo malo no attempt to aceount for magnetice action at a distance, but troated this action as a fumdamental fact of experienee. We therefore asmumed that the anorgy of a magnotic, symem is potential energy, and that this energy is diminished when the parta of the system yield to tho magnotic forees which art, on them.

If, however, wo regarl magnota as deriving their properties from olectric curronte circulating within their molecules, their energy is kinetie, and the foren between them is such that it tends to move them in a direction wuch that if the strengths of the eurrents were maintained constant the kinetic onergy would im"reuse.

This mode of "xplaining magnotism recquires us also to ahandon the methond followed in Part ILI, in whieh wo regarded the mannet as a continuous and homongonows body, the minutest part of which has mannetic properties of the name kind as the wholo.

We must now regard a marnet as containing a finito, though very great, number of olectrice cireuits, so that it has ossentially a molecular, an distinguished from a continuous structure.

If wo suppose our mathomatical machinory to be so coarse that our line of integration cannot thrond a molecular circuit, and that an immone number of manotic molecules are contained in our element of volume, wo shall still arrivo at results similar to those of Part III, but if we suppose our machinory of a finer order, and capable of investigating all that goes on in the
interior of the molecules, we mast give uf the wh thenry of magnetism, and allopt that of Ampite, which mhits of no magnets axecpt those which consist of whetric currents.
We must also regari both magnctir amb ehectromagnetio onergy as kinoticenorgy, and we must attrilut, the it the proper sign, as given in Art. $6: 35$.
In what follows, though we may oremanomily, an in Art. 639, \&c., attempt to carry out the wh thery if mungism, we shall find that wo ohtain a prefertly consintent syatem only what we
 currents, ns in Art. 644.

The enorgy of the fioh therefore conaides of twa parta only, the electrostatic or potential mongy

$$
W=\frac{1}{2} \iiint\left(1 f+\left(\psi_{g}+h h\right) d \cdot d y d x\right.
$$

and the electromagnetic or kinetie omergy

$$
T={ }_{8 \pi}^{1} \iiint(a, a+b, p+\cdots) d, d, d y i z .
$$

*639.| The petential wompy of the moment dordyle of a bouly magnetized with an intoraity whow compomata are A, A, C, and placed in a field of magntie foree whos, compenatats are a, β, γ, is

$$
-(A a+h, s+(' y) d x a y+z .
$$

Hence, if the fore urging the ofornt the mow without rotation in the direction of x is X_{1} dextyde,

$$
\begin{equation*}
X_{1}=A_{d x}^{d a}+n_{d, x}^{d, x}+c_{d, x}^{d y} \tag{1}
\end{equation*}
$$

and if the moment of the comple tuming to turn the olonent about the axis of x from y tuwarda : in Litudyde,

$$
\begin{equation*}
L=H_{\gamma} \sim r^{\prime}, \alpha \tag{2}
\end{equation*}
$$

The fores and the momente corrompmitig to the axes of y and a may bo written down by making the proper substitutions.
640). If the magnotizad hooly carrion an alectric curront, of which tho compononts are u, v, u, then, by wigutions (e'). Art. 603,

[^59]there will be an additional electromarnetic fore whose components are X_{3}, I_{3}^{*}, Z_{3}, of which X_{3} is wiven by
\[

$$
\begin{equation*}
X_{n}=m \cdots w_{0} \tag{3}
\end{equation*}
$$

\]

Hence, the total force, X, arising from the magnetism of the molecule, as woll as the current passing through it, is

$$
\begin{equation*}
\left.X=A_{d x}^{d / a}+B_{d,}^{d \prime}+c_{d}^{d \gamma}+1 d_{x}-n^{\prime} b\right) \tag{4}
\end{equation*}
$$

The quantities a, b, c are the emmponents of magnetic induction, and are rolated to a, β, γ, the components of magnetic force, by the equations given in Art. 400,

$$
\left.\begin{array}{l}
1=a+4 \pi A \tag{5}\\
b=\beta+4 \pi B \\
c=\gamma+4 \pi \%
\end{array}\right\}
$$

The components of the current, u, v, n, can bo oxpressed in terms of a, β, γ liy the equations of Art. 607,

$$
\left.\begin{array}{l}
4 \pi u=\frac{d \gamma}{d y}-\frac{d \beta}{d /}, \\
4 \pi v=\frac{d a}{d /}-\frac{d \gamma}{d x} \tag{6}\\
4 \pi w=\frac{d \beta}{d x}-\frac{d a}{d y} \cdot
\end{array}\right\}
$$

Hence

$$
\begin{align*}
& =\frac{1}{4 \pi}\left\{{ }^{\prime \prime} d \frac{d x}{d x}+b^{d / a}+c^{d a} d z=\frac{1 d}{2 d x^{2}}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right\} . \tag{7}\\
& \text { By Art. 103, } \quad l_{2}+\frac{d b}{d l_{2}}+\frac{d c}{d l_{2}}=0 . \tag{8}
\end{align*}
$$

Multiplying this eguatiom, (8), by a, and dividing by 4π, wo may add the result to (7), and wo find

$$
\left.X=\frac{1}{4 \pi}\left\{\begin{array}{l}
d \tag{9}\\
d d
\end{array} d a-\frac{1}{2}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right]+\frac{d}{d y}[b a]+\frac{d}{d z}[c a]\right\}
$$

also, by (2),

$$
\begin{align*}
L & ={ }_{4 \pi}^{1}((b-\beta) \gamma-(c-\gamma) \beta), \tag{10}\\
& ={ }_{4 \pi}^{1}(b \gamma-c / \beta), \tag{11}
\end{align*}
$$

where X is the forco referred to unit of volume in the direction of x, and L is the moment of the forees (per unit volume) about this axis.

> On the Bxplanation of there bumes by the Mymothesis of a Medium it a stute of st ress.
641.] Let us denote a stross of any kimd refermed to unit of ares ly a symbel of the form $l_{b k}$, where the first sulfix, n, indieates that the normal to the surfae on which the stresw is supposed to act is parallel to the asis of h, and the swomb sutlix, k, indicates that the direction of the steres with which the part of the body on the positive side of the surfare auts on the part on the negativen side is parallel to the axis of k.

The directions of $/ 1$ and k may be the sans, in which conse the stress is a nomal stress. They may be ohlique to ouch othor, in which case the stress is an ohligue stress, or they may be perpum dicular to each other, in which cose the stress is a tangential stress.

The condition that the stresses shall not produed any tembency to rotation in the elementary portions of the hody is

$$
I_{h}=I_{i n}
$$

In tho case of a magnetized hody, however, there, is such a tendency to rotation, and therofore this condition, which holds in the ordinary thesery of stress, is not fultilled.

Let us consider the "ffect of the stressen on the six sides of the domontary portion of the broly doclyds, taking the orimin of coordinates at its contro of gravity.

On the positive face dydz, for which the value of or^{c} is for, the foreos are - -

The forcos acting on the oppewite side, $-X^{\prime},-Y_{\text {, }}$, and \cdots. ${ }^{-}$., may bo found from those hy changing the sign of the. Wo may express in the same way the systems of threw forose acting on oach of tho other faces of the dement, the direction of the foree being indieated by the capital letter, and the face un which it acts by the suffix.

If $X d x d y d z$ is the whole force parallel to x acting on the element,

$$
\begin{aligned}
X d x d y d z & =X_{+x}+X_{+y}+X_{+z}+X_{-x}+X_{-y}+X_{-z} \\
& =\left(\frac{d P_{x x}}{d x}+\frac{d P_{y x}}{d y}+\frac{d P_{z x}}{d z}\right) d x d y d z
\end{aligned}
$$

whence

$$
\begin{equation*}
X=\frac{d}{d x} F_{x x}+\frac{d}{d y} F_{y x}+\frac{d}{d z} F_{z x} \tag{13}
\end{equation*}
$$

If $L d x d y d z$ is the moment of the forces about the axis of x tending to turn the element from y to z,
whence

$$
\begin{align*}
L d x d y d z & =\frac{1}{2} d y\left(Z_{+y}-Z_{-y}\right)-\frac{1}{2} d z\left(Y_{+z}-Y_{-z}\right), \\
& =\left(P_{y z}-P_{z y}\right) d x d y d z, \\
L & =P_{y z}-P_{z y} . \tag{14}
\end{align*}
$$

Comparing the values of X and L given by equations (9) and (11) with those given by (13) and (14), we find that, if we make

$$
\left.\begin{array}{l}
P_{x x}=\frac{1}{4 \pi}\left\{\alpha a-\frac{1}{2}\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)\right\} \\
P_{y y}=\frac{1}{4 \pi}\left\{b \beta-\frac{1}{2}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right\} \\
P_{z z}=\frac{1}{4 \pi}\left\{c \gamma-\frac{1}{2}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right\} \tag{15}\\
P_{y z}=\frac{1}{4 \pi} b \gamma, \quad P_{z y}=\frac{1}{4 \pi} c \beta, \\
P_{z x}=\frac{1}{4 \pi} c a, \quad P_{x z}=\frac{1}{4 \pi} a \gamma, \\
P_{x y}=\frac{1}{4 \pi} a \beta, \quad P_{y x}=\frac{1}{4 \pi} b a,
\end{array}\right\}
$$

the force arising from a system of stress of which these are the components will be statically equivalent, in its effects on each element of the body, to the forces arising from the magnetization and electric currents.
642.] The nature of the stress of which these are the components may be easily found, by making the axis of x bisect the angle between the directions of the magnetic force and the magnetic induction, and taking the axis of y in the plane of these directions, and measured towards the side of the magnetic force.

If we put \mathfrak{S} for the numerical value of the magnetic force, \mathfrak{B} for that of the magnetic induction, and 2ϵ for the angle between their directions,

$$
\left.\begin{array}{c}
a=\mathfrak{H} \cos \epsilon, \quad \beta=-\mathfrak{J} \sin \epsilon, \quad \gamma=0, \\
a=\mathfrak{B} \cos \epsilon, \quad b=-\mathfrak{B} \sin \epsilon, \quad c=0 ;
\end{array}\right\}
$$

Hence, the state of stress may be considered as compounded of-
(1) A pressure equal in all directions $=\frac{1}{8 \pi} \mathfrak{S}^{2}$.
(2) A tension along the line bisecting the angle between the directions of the magnetic foree and the magnetic induction

$$
=\frac{1}{4 \pi} \mathfrak{B} \mathfrak{S} \cos ^{2} \epsilon .
$$

(3) A pressure along the line bisecting the exterior angle between these directions $=\frac{1}{4 \pi} \mathfrak{B} \mathfrak{S} \sin ^{2} \epsilon$.
(4) A couple tending to turn every element of the substance in the plane of the two directions from the direction of magnetic induction to the direction of magnetic force $=\frac{1}{4 \pi} \mathfrak{B} \mathfrak{S} \sin 2 \epsilon$.

When the magnetic induction is in the same direction as the magnetic force, as it always is in fluids and non-magnetized solids, then $\epsilon=0$, and making the axis of x coincide with the direction of the magnetic force,

$$
\begin{equation*}
P_{x x}=\frac{1}{4 \pi}\left(\mathfrak{F} \mathfrak{F}-\frac{1}{2} \mathfrak{S}^{2}\right), \quad P_{y y}=P_{z z}=-\frac{1}{8 \pi} \mathfrak{S}^{2} \tag{18}
\end{equation*}
$$

and the tangential stresses disappear.
The stress in this case is therefore a hydrostatic pressure $\frac{1}{8 \pi} \mathfrak{S}^{2}$, combined with a longitudinal tension $\frac{1}{4 \pi} \mathfrak{B} \mathfrak{F}$ along the lines of force.
643.| When thow is no magnetization, $\mathbb{B}=\sqrt{5}$, and the stress is still further simplified, heing a tension along the linos of fore "pual bo ${ }_{8 \pi}^{\prime}$, y^{\prime}, combined with a pressure in all directions at right angles to the line of foreo, numerieally equal also to $8 \pi^{1} 6{ }^{6}$. 'The components of atress in this important case are

$$
\begin{align*}
& \left.\begin{array}{l}
I_{s x}^{\prime}=\frac{1}{8 \pi}\left(a^{2}-\beta^{2}-\gamma^{2}\right), \\
I_{w \prime \prime}^{d}={ }_{8}^{1}\left(\beta^{2}-\gamma^{2}-a^{2}\right),
\end{array}\right) \\
& I_{a B}^{a}={ }_{8 \pi}^{1}\left(\gamma^{2}-\alpha^{2}-\beta^{2}\right), \\
& I_{\nu}^{\prime}=I_{\Delta \nu}^{\prime}=1_{4 \pi} \beta \gamma, \tag{19}\\
& I_{x=}=I_{x n}=\frac{1}{1 \pi}^{1} \gamma a, \\
& I_{* y}^{\prime}=I_{u, w}^{\prime}=\begin{array}{c}
1 \\
4 \pi
\end{array}{ }^{\alpha \beta} .
\end{align*}
$$

The areomponent of the foreo arising from those strossos on an element of the medium referred to unit of volume is

$$
\begin{aligned}
& X=\frac{d}{d, r} I_{x z}^{\prime}+\frac{d}{d y} I_{b=}^{\prime}+\frac{d}{d z} I_{s x}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now } \\
& \frac{d a}{d a}+\frac{d y}{d y}+\frac{d \gamma}{d z}=4 \pi m, \\
& \frac{d a}{d z}-\frac{d y}{d x}=4 \pi v, \\
& \frac{d \beta}{d x}-d a=4 \pi w,
\end{aligned}
$$

where m is the density of nustral magnetic mattor referred to unit of volume, and v and w are the intensities of electric currents perpendicular to y and z respectively. Hence,

64.t.] If we adopt the theorien of Ampere am! Wifher as to the nature of magnetice and diamanetio buthe, athl atome that
 curronts, wo get rid of ima inary manutio mather, and timl that everywhere $m=0$, and
so that the equations of deetromander fore hermme

$$
\begin{align*}
& x=r y \tag{22}\\
& y=u, y \\
& y=u y \\
& z=a,
\end{align*}
$$

These aro the componente of the mothancol fore refored to unit of volume of the subatare. Thw eompenents of the magnetic foree are a, , γ, and those of the whetrie curvent are u, v, \underline{x}. These equations are intention with those alroaly estahlished. (Equations (${ }^{\prime}$), Art. Goar.)
 a state of stress in a modinn, we ary only following out the coneeption of Faradays, that the limes of mannetie fore tend to shorten themelves, and the they repel amb other when phaced wide hy side. All that wo have done is to "xpmes the valuo of the tonsion along the lines, and the prosmere at right angles to them, in mathemation haguage, and turnove that the stato of stross thus ansumed to "xist in the mendinn will netually produce tho observed forcos on the combuthen which carry alectric currents.

Wo have assorted mothing an yot with ratanct to the more in which this state of stress is origimathe and mantained in the modium. We have morely shewn that it in prosible to cone ive the mutual netion of clectrie currats to drewne on a particular kind of stress in tho surrounding metimm, instom of being a direct and immediate atetion at a distances.

Any further explanation of the state of metess, by memes of the motion of tho modiun or otherwise, mant be regarded as
a soparate and independent part of the theory, which may stand or fall withont affecting our present position. Sor Art. 832.

In the first part, of this treatise, Art. 108, we showed that the observed electrontatios foreos may the conceivod as operating through the intorvention of at state, of strose in the surrounding medium. Wo have now done the same for the oleserromagnetio forees, and it remains to be seen whether the conception of a medium caphble of wuporting thoserstate of stress is consistent with other known phenomema, or whether wo shall have to put it aside ans unfruitful.

In a fich in which chectrontatie as well as olectromagnotio action is taking phare, wo must suppose the electrostatic strese described in lart I to be superposed on the olectromagnotio stress which wo have boom considering.
644.] If we suppose the total wresstrial magnetic foreo to be 10 British umits (grain, foot, secomd), as it is noarly in Britain, then the tension along the lines of foree is 0.128 grains weight per sefuare foot, Tho wreatest, magnetic: tomsion producod hy Joule* by means of uhetrommenets was ahout 1.10 pounds weight on the suruare inch.

[^60]
APPENHAK

where the integration is contiard to the angrave in viatue of A_{1}, H_{1}, C_{1} being zoro everywhere clas.

But the whole chorgy in of the form

 at my perint exterior to the magnet.

The whole contig than consimen of four paten:
which in constant if the magnotization of the mangot is rigil;

$$
\begin{equation*}
\frac{1}{2} f / A_{2} \times x_{1} \text { Ar, obedyel: } \tag{1}
\end{equation*}
$$

which is equal, hy (ireon's Thoorom, to

$$
\begin{equation*}
-\operatorname{lof}\left(A_{1} w_{n}+(x) \times t_{2}+l_{y} d_{n}\right. \tag{2}
\end{equation*}
$$

and
 fore to be commant.

 $a_{2}, \beta_{2}, \gamma_{9}$, but not those of t_{1}, H_{1}, C_{1}, wo finul fore the compunent of the foree on the mannet in may direthen q

If inwtend of a magnet wo lave a landy nanationsl by intuction, the
 we have

 rud the expression for the force becomav, as in Art. 4lo,

$$
\left.{ }_{d \phi}^{d}\right)^{\frac{1}{2}} \cdot \Gamma / K\left(u^{3}+\rho^{2}+\gamma^{y}\right) d x+d y s d x .
$$

Tho work done by the magnetiv forcon while a londy of mall inductive capacity, manuetized inductively, in cmoted bif to infinity in only half of that for the mane body rigilly magnetiand to the mane original strength, for as the induced magnet is curried off it lomen itw mongth.]

APPENDIX II.

[Objection has been taken to the expression contained in Art. 639 for the potential energy per unit volume of the medium arising from magnetic forces, for the reason that in finding that expression in Art. 389 we assumed the force components a, β, γ to be derivable from a potential, whereas in Arts. 639, 640 this is not the case. This objection extends to the expression for the force X, which is the space variation of the energy. The purpose of this note is to bring forward some considerations tending to confirm the accuracy of the text.]
\{The force on a piece of magnetic substance carrying a current may for convenience of calculation be divided into two parts, (r) the force on the element in consequence of the presence of the current, (2) the force due to the magnetism in the element. The first part will be the same as the force on an element of a non-magnetic substance, the components being respectively,

$$
\begin{aligned}
& \gamma v-\beta w, \\
& a w-\gamma u, \\
& \beta u-a v,
\end{aligned},\left\{\begin{array}{l}
u, v, w \text { being components } \\
\text { of current, } a, \beta, \gamma \text { those } \\
\text { of magnetic force. }
\end{array}\right.
$$

To calculate the second force imagine a long narrow cylinder cut out of the magnetic substance, the axis of the cylinder being parallel to the direction of magnetization.

If I is the intensity of magnetization the force parallel to x on the magnet per unit volume is

$$
I \frac{d a}{d s}
$$

or, if A, B, C are the components of I,
or

$$
\begin{gathered}
A \frac{d a}{d x}+B \frac{d a}{d y}+C \frac{d a}{d z} \\
A \frac{d a}{d x}+B\left(\frac{d \beta}{d x}-4 \pi w\right)+C\left(\frac{d \gamma}{d x}+4 \pi v\right)
\end{gathered}
$$

The total force on the element parallel to x is therefore
or
i. e.

$$
\begin{gathered}
\gamma v-\beta w+A \frac{d a}{d x}+B\left(\frac{d \beta}{d x}-4 \pi w\right)+C\left(\frac{d \gamma}{d x}+4 \pi v\right) \\
v(\gamma+4 \pi C)-w(\beta+4 \pi B)+A \frac{d a}{d x}+B \frac{d \beta}{d x}+C \frac{d \gamma}{d x}, \\
v c-w b+A \frac{d a}{d x}+B \frac{d \beta}{d x}+C \frac{d \gamma}{d x}
\end{gathered}
$$

the expression in the text.?

(HAPTER XH.

647.1 A crmbent-shekt is an infintely thin stratum of conducting matter, bounded on both viden by inoulating media, so that electric currente may flow in the shert, hat camot escape from it excopt, at cortain pointa called Whertrobes, where currents are made to anter or to lenve the shent.

In order to conduct a finite Anctric ebrront, a ronl show must have a finite thieknose, and ought therefore to le considered a conductor of three dimmonions. In many comes, however, it is practically comeniont to dedue the netrie prowetion of a real eonducting shoet, or of a thin layer of conded wire, from those of a current-shere as defined above.

We may thorfore remath a surfoe of any form ns a currontshent. Having selected one sible of this murfaer as the prositive nile, wo nhall always suppose may limen drawn on the surface to bo looked at from the positive side of the mathoe. In the case of a elosed nurface we shall consillor the ontsibern penitive. See Art. 294, where, however, the direction of the current is defined as seen from the negatioe side of the nhest.

The C'urrontafuntion.

648.] Let, a fixed point A on the murfare le chosen as origin, and let a line be drawn on the surface from A to another peint f. Let the quantity of electricity which in unit of time crosses this line from loft to right bo ϕ, then ϕ is called the Currentfunction at the print ${ }^{\prime}$.

The curront-function deponde only on the pomition of the point I'and is the sume for any two forms of the line $A P$,
provided this line can be transformed by continuous motion from one form to the other without passing through an electrode. For the two forms of the line will enclose an area within which there is no electrode, and therefore the same quantity of electricity which enters the area across one of the lines must issue across the other.

If s denote the length of the line $A P$, the current across $d s$ from left to right will be $\frac{d \phi}{d s} d s$.

If ϕ is constant for any curve, there is no current across it. Such a curve is called a Current-line or a Stream-line.
649.] Let ψ be the electric potential at any point of the sheet, then the electromotive force along any element $d s$ of a curve will be

$$
-\frac{d \psi}{d s} d s,
$$

provided no electromotive force exists except that which arises from differences of potential.
If ψ is constant for any curve, the curve is called an Equipotential Line.
650.] We may now suppose that the position of a point on the sheet is defined by the values of ϕ and ψ at that point. Let $d s_{1}$ be the length of the element of the equipotential line ψ intercepted between the two current lines ϕ and $\phi+d \phi$, and let $d s_{2}$ be the length of the element of the current line ϕ intercepted between the two equipotential lines ψ and $\psi+d \psi$. We may consider $d s_{1}$ and $d s_{2}$ as the sides of the element $d \phi d \psi$ of the sheet. The electromotive force $-d \psi$ in the direction of $d s_{2}$ produces the current $d \phi$ across $d s_{1}$.

Let the resistance of a portion of the sheet whose length is $d s_{2}$, and whose breadth is $d s_{1}$, be

$$
\sigma \frac{d s_{2}}{d s_{1}},
$$

where σ is the specific resistance of the sheet referred to unit of area, then
whence

$$
\begin{aligned}
& d \psi=\sigma \frac{d s_{2}}{d s_{1}} d \phi, \\
& \frac{d s_{1}}{d \phi}=\sigma \frac{d s_{2}}{d \psi} .
\end{aligned}
$$

651.] If the sheet is of a substance which conducts equally well in all directions, $d s_{1}$ is perpendieular to $d s_{2}$. In the case
of a sheet of uniform resistance σ is constant, and if we make $\psi=\sigma \psi^{\prime}$, we shall have

$$
\frac{\delta s_{1}}{\delta s_{2}}=\frac{\delta \phi}{\delta \psi^{\prime}}
$$

and the stream-lines and equipotential lines will cut the surface into little squares.
It follows from this that if ϕ_{1} and $\psi_{1}{ }^{\prime}$ are conjugate functions (Art. 183) of ϕ and ψ^{\prime}, the curves ϕ_{1} may be stream-lines in the sheet for which the curves ψ_{1}^{\prime} are the corresponding equipotential lines. One case, of course, is that in which $\phi_{1}=\psi^{\prime}$ and $\psi_{1}{ }^{\prime}=-\phi$. In this case the equipotential lines become current-lines, and the current-lines equipotential lines *.
If we have obtained the solution of the distribution of electric currents in a uniform sheet of any form for any particular case, we may deduce the distribution in any other case by a proper transformation of the conjugate functions, according to the method given in Art. 190.
652.] We have next to determine the magnetic action of a current-sheet in which the current is entirely confined to the sheet, there being no electrodes to convey the current to or from the sheet.
In this case the current-function ϕ has a determinate value at every point, and the stream-lines are closed curves which do not intersect each other, though any one stream-line may intersect itself.

Consider the annular portion of the sheet between the streamlines ϕ and $\phi+\delta \phi$. This part of the sheet is a conducting circuit in which a current of strength $\delta \phi$ circulates in the positive direction round that part of the sheet for which ϕ is greater than the given value. The magnetic effect of this circuit is the same as that of a magnetic shell of strength $\delta \phi$ at any point not included in the substance of the shell. Let us suppose that the shell coincides with that part of the current-sheet for which ϕ has a greater value than it has at the given stream-line.

By drawing all the successive stream-lines, beginning with that for which ϕ has the greatest value, and ending with that for which its value is least, we shall divide the current-sheet into a series of circuits. Substituting for each circuit its corresponding magnetic shell, we find that the magnetic effect of the

[^61]current-sheet at any point not included in the thickness of the sheet is the same as that of a complex magnetic shell, whose strength at any point is $C+\phi$, where C is a constant.
If the current-sheet is bounded, then we must make $C+\phi=0$ at the bounding curve. If the sheet forms a closed or an infinite surface, there is nothing to determine the value of the constant C.
653.] The magnetic potential at any point on either side of the current-sheet is given, as in Art. 415, by the expression
$$
\Omega=\iint \frac{1}{r^{2}} \phi \cos \theta d S,
$$
where r is the distance of the given point from the element of surface $d S$, and θ is the angle between the direction of r, and that of the normal drawn from the positive side of $d S$.
This expression gives the magnetic potential for all points not included in the thickness of the current-sheet, and we know that for points within a conductor carrying a current there is no such thing as a magnetic potential.

The value of Ω is discontinuous at the current-sheet, for if Ω_{1} is its value at a point just within the current-sheet, and Ω_{2} its value at a point close to the first but just outside the current-sheet,

$$
\Omega_{2}=\Omega_{1}+4 \pi \phi,
$$

where ϕ is the current-function at that point of the sheet.
The value of the component of magnetic force normal to the sheet is continuous, being the same on both sides of the sheet. The component of the magnetic force parallel to the currentlines is also continuous, but the tangential component perpendicular to the current-lines is discontinuous at the sheet. If s is the length of a curve drawn on the sheet, the component of magnetic force in the direction of $d s$ is, for the negative side, $-\frac{d \Omega_{1}}{d s}$, and for the positive side, $-\frac{d \Omega_{2}}{d s}=-\frac{d \Omega_{1}}{d s}-4 \pi \frac{d \phi}{d s}$.
The component of the magnetic force on the positive side therefore exceeds that on the negative side by $-4 \pi \frac{d \phi}{d s}$. At a given point this quantity will be a maximum when $d s$ is perpendicular to the current-lines.
 lubibite ("emmenalialy.
65.5.) It wam mhew in Art. 5 on that in any rimenit

$$
A: \frac{d y}{i l l}+H .
$$

 of marnotic induction retnaine constant at sury fuint of the eurrontoshlumet.

 sistance.
 actions which mat takst flamen whe wide of the shert will froluce any magratio whet on the ather mide.

Theory of a Plane Current-sheet.

656.] We have seen that the external magnetic action of a current-sheet is equivalent to that of a magnetic shell whose strength at any point is numerically equal to ϕ, the currentfunction. When the sheet is a plane one, we may express all the quantities required for the determination of electromagnetic effects in terms of a single function, P, which is the potential due to a sheet of imaginary matter spread over the plane with a surface-density ϕ. The value of P is of course

$$
\begin{equation*}
P=\iint \frac{\phi}{r} d x^{\prime} d y^{\prime} \tag{1}
\end{equation*}
$$

where r is the distance from the point (x, y, z) for which P is calculated, to the point ($x^{\prime}, y^{\prime}, 0$) in the plane of the sheet, at which the element $d x^{\prime} d y^{\prime}$ is taken.

To find the magnetic potential, we may regard the magnetic shell as consisting of two surfaces parallel to the plane of $x y$, the first, whose equation is $z=\frac{1}{2} c$, having the surface-density $\frac{\phi}{c}$, and the second, whose equation is $z=-\frac{1}{2} c$, having the surfacedensity $-\frac{\phi}{c}$.

The potentials due to these surfaces will be

$$
\frac{1}{c} P_{\left(z-\frac{c}{2}\right)} \text { and }-\frac{1}{c} P_{\left(z+\frac{c}{2}\right)}
$$

respectively, where the suffixes indicate that $z-\frac{c}{2}$ is put for z in the first expression, and $z+\frac{c}{2}$ for z in the second. Expanding these expressions by Taylor's Theorem, adding them, and then making c infinitely small, we obtain for the magnetic potential due to the sheet at any point external to it,

$$
\begin{equation*}
\Omega=-\frac{d P}{d z} . \tag{2}
\end{equation*}
$$

657.] The quantity P is symmetrical with respect to the plane of the sheet, and is therefore the same when $-z$ is substituted for z.
Ω, the magnetic potential, changes sign when $-z$ is put for z.
At the positive surface of the sheet

$$
\begin{equation*}
\Omega=-\frac{d P}{d z}=2 \pi \phi \tag{3}
\end{equation*}
$$

At the negative surfare of the shent

$$
\begin{array}{llll}
12 & d 1 & \cdots a \tag{4}\\
& 10 & \cdots
\end{array}
$$

Within the whet, if its mantio etherem mive from the mag.

 negative surfaer.
 it does not satisfy the conlition of havime a fethetint. The may-

The normal empunent,

$$
\begin{array}{lll}
& d x & d l \tag{5}\\
d: & d:=
\end{array}
$$

is the same on both sibes of the shot and throughout its substance.

If a and β be the componnta of the mane tio fore parallel to
 surface,

$$
\begin{align*}
& \text { A - afty dit } \tag{6}
\end{align*}
$$

Within the whe the commenents vary continuously from a and s to a^{\prime} and s^{\prime}.

which connect the comproneuts $F \cdot(i, l l$ of the verturnpotential duo to tho currontwhert with the moalar patertial an, aro matisfed if wo mak"

$$
\begin{equation*}
F=\frac{d l}{d y} \quad \|-\frac{d}{d y} \quad \quad l=0 \tag{9}
\end{equation*}
$$

Wo may also ohtain thene values ly direot integration, thus for \vec{F}^{\prime} \{wo havo by Art. 616 if p in every wher equal to unityh,

$$
\begin{aligned}
& F^{\prime}=\int_{0}^{+} t d x^{\prime} d y^{\circ}=\iint_{a}^{+} d y^{+} d x^{*} d y^{\prime} \\
& =\int_{r}^{\phi}+1 x^{\prime}-\iint_{d} \phi_{d}^{d} y^{\prime} r^{t} d x^{*} d y^{*} \text {. }
\end{aligned}
$$

he integration in to he estimated over the infinite phane I since the firme. term vanishes at intinity, the expression Ito the second torm ; and by substituting

$$
\frac{d \frac{1}{d} f_{0}-d \frac{1}{d y^{\prime}} r}{r}
$$

mbering that ϕ depernds on r^{\prime} and y^{\prime}, and not on $x, y, 0$,

$$
\begin{aligned}
F^{\prime} & =\begin{array}{l}
d \\
d y
\end{array} \int_{r}^{d} d x^{\prime} d y y^{\prime} \\
& \left.=\begin{array}{l}
\| l^{\prime} \\
d y
\end{array}\right) \log (1)
\end{aligned}
$$

the mannetie potential duo to any magnotic or electrie kternal to the shent, wo may write

$$
\begin{equation*}
J^{\prime}=-\int \Omega^{\prime} d s \tag{10}
\end{equation*}
$$

hall then have

$$
b^{\prime \prime}=\begin{align*}
& d l^{\prime} \tag{11}\\
& d!
\end{align*} \quad \quad\left(i^{\prime}=-\frac{d l^{\prime}}{d, r^{2}} \quad \quad H^{\prime}=0\right.
$$

mponents of the veetor-pentential due to this system.
No us now determine the olectromotive intensity at any heo shatet, supposing tho shoet fixod.
and Y he the components of the deetromotive intensity a) ard a ranuectively, thon, by Art. 598 , wo have
ψ for Ψ

$$
\begin{align*}
& x=-\frac{d}{d t}\left(F+H^{\prime}\right)-\frac{d \psi}{d x} \tag{12}\\
& \gamma=-\frac{d}{d t}\left(i+C^{\prime}\right)-\frac{d \psi}{d y} \tag{13}
\end{align*}
$$

lectric rowistance of the shoet is uniform and equal to or,

$$
\begin{equation*}
X=\| u, \quad Y=\sigma v \tag{14}
\end{equation*}
$$

and r are the components of the curront, and if ϕ is thefunction,

$$
u=\begin{align*}
& l \phi \tag{15}\\
& d y
\end{align*} \quad v=-\frac{d \phi}{d x}
$$

"quation (i), $2 \pi \phi=-\frac{d l}{d z}$
witive surface of the curront-sheet. Hence, equations (13) may le written

$$
\begin{align*}
& \begin{array}{c}
d d^{2} l^{\prime} \\
2 \pi d y d z
\end{array}=-\frac{d^{2}}{d y d t}\left(l^{\prime}+l^{\prime}\right)-d \psi, \tag{16}\\
& \underset{2 \pi d x d z}{2 \pi}=\frac{d l^{2}}{d x d t}\left(I^{\prime}+L^{\prime}\right)-\frac{d \psi}{d y}, \tag{17}
\end{align*}
$$

where the values of the expressions are those corresponding to the positive surface of the sheet.

If we differentiate the first of these equations with respect to x, and the second with respect to y, and add the results, we obtain

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+\frac{d^{2} \psi}{d y^{2}}=0 \tag{18}
\end{equation*}
$$

The only value of ψ which satisfies this equation, and is finite and continuous at every point of the plane, and vanishes at an infinite distance, is

$$
\begin{equation*}
\psi=0 \tag{19}
\end{equation*}
$$

Hence the induction of electric currents in an infinite plane sheet of uniform conductivity is not accompanied with differences of electric potential in different parts of the sheet.

Substituting this value of ψ, and integrating equations (16), (17), we obtain

$$
\begin{equation*}
\frac{\sigma}{2 \pi} \frac{d P}{d z}-\frac{d P}{d t}-\frac{d P^{\prime}}{d t}=f(z, t) \tag{20}
\end{equation*}
$$

Since the values of the currents in the sheet are found by differentiating with respect to x or y, the arbitrary function of z and t will disappear. We shall therefore leave it out of account.
If we also write for $\frac{\sigma}{2 \pi}$, the single symbol R, which represents a certain velocity, the equation between P and P^{\prime} becomes

$$
\begin{equation*}
R \frac{d P}{d z}=\frac{d P}{d t}+\frac{d P^{\prime}}{d t} \tag{21}
\end{equation*}
$$

659.] Let us first suppose that there is no external magnetic system acting on the current-sheet. We may therefore suppose $P^{\prime}=0$. The case then becomes that of a system of electric currents in the sheet left to themselves, but acting on one another by their mutual induction, and at the same time losing their energy on account of the resistance of the sheet. The result is expressed by the equation

$$
\begin{equation*}
R \frac{d P}{d z}=\frac{d P}{d t} \tag{22}
\end{equation*}
$$

the solution of which is $P=F\{x, y,(z+R t)\}$.

* Hence, the value of P at any point on the positive side

[^62]of the sheet whose coordinates are x, y, z, and at a time t, is equal to the value of P at the point $x, y,(z+R t)$ at the instant when $t=0$.

If therefore a system of currents is excited in a uniform plane sheet of infinite extent and then left to itself, its magnetic effect at any point on the positive side of the sheet will be the same as if the system of currents had been maintained constant in the sheet, and the sheet moved in the direction of a normal from its negative side with the constant velocity R. The diminution of the electromagnetic forces, which arises from a decay of the currents in the real case, is accurately represented by the diminution of the forces on account of the increasing distance in the imaginary case.
660.] Integrating equation (21) with respect to t, we obtain

$$
\begin{equation*}
P+P^{\prime}=\int R \frac{d P}{d z} d t \tag{24}
\end{equation*}
$$

If we suppose that at first P and P^{\prime} are both zero, and that a magnet or electromagnet is suddenly magnetized or brought from an infinite distance, so as to change the value of P^{\prime} suddenly from zero to P^{\prime}, then, since the time-integral in the second member of (24) vanishes with the time, we must have at the first instant $P=-P^{\prime}$ at the surface of the sheet.

Hence, the system of currents excited in the sheet by the sudden introduction of the system to which P^{\prime} is due, is such that at the surface of the sheet it exactly neutralizes the magnetic effect of this system.

At the surface of the sheet, therefore, and consequently at all points on the negative side of it, the initial system of currents produces an effect exactly equal and opposite to that of the magnetic system on the positive side. We may express this by saying that the effect of the currents is equivalent to that of an image of the magnetic system, coinciding in position with that system, but opposite as regards the direction of its magnetization and of its electric currents. Such an image is called a negative image.

The effect of the currents in the sheet at a point on the positive side of it is equivalent to that of a positive image of the magnetic system on the negative side of the sheet, the lines joining corresponding points being bisected at right angles by the sheet.

The action at a perint on vither withe of the Ahent, the to the currents in the sheot, may therefore her watert as hes to an image of the mannetic symem the the she of the ahot "tpexite to the puint, this image brimg a fusitive or a magntion image according an the peint in on the pentise "r the mantine sith of the sheet.

Gi61.] If the shaet is of intinite comberivits, h ", and the

In the case of a real shoet, the wombure h haw mone dinite

 sadden introduction of the magnotic spater. The cursente will immediately herin to dony, and the whet of thin herny will he areurately represented if wo mupuse the two inmane to move from their original powitions, in the direction of ammals drawn from the sheret, with the constant wherity l.

66:.] We are nuw preprese the imentigate the system of currents induced in the shoe by any stom, M, of angerta or olectromarnets on the pasitive sibe of the shert, the ponition and strength of which vary in my manner,

Lat I^{\prime}, as before, he the fanetmathan whind the dimet action
 d"
 presented by edt at. This quantity, whioh is the ineromont of
 magnetie systom.

If we suppose that at the time I A prestive iname of the symen dM dt
ot in formod on the negative sibhe of the sheot, the magnetic astion at any print on the praitive mifle of the shast the to this image will he rytivalent to that hue the the antata in the sheet "xeited by the chang in $/ 1 /$ luring the hat ontant ather the
 currents in tho shoot, if, as strm on it in fortued, it lemgins (6) move in the megative diection of : with the constant velocity R.

If wo muppose that in cevery sucersmive blement of the titue an
image of this kind is formed, and that as soon as it is formed it begins to move away from the sheet with velocity R, we shall obtain the conception of a trail of images, the last of which is in process of formation, while all the rest are moving like a rigid body away from the sheet with velocity R.
663.] If P^{\prime} denotes any function whatever arising from the action of the magnetic system, we may find P, the corresponding function arising from the currents in the sheet, by the following process, which is merely the symbolical expression for the theory of the trail of images.

Let P_{τ} denote the value of P (the function arising from the currents in the sheet) at the point ($x, y, z+R_{\tau}$), and at the time $t-\tau$, and let P_{τ}^{\prime} denote the value of P^{\prime} (the function arising from the magnetic system) at the point $(x, y,-(z+R \tau)$), and at the time $t-\tau$. Then

$$
\begin{equation*}
\frac{d P_{\tau}}{d \tau}=R \frac{d P_{\tau}}{d z}-\frac{d P_{\tau}}{d t} \tag{25}
\end{equation*}
$$

and equation (21) becomes

$$
\begin{equation*}
\frac{d P_{\tau}}{d \tau}=\frac{d P_{\tau}^{\prime}}{d t} \tag{26}
\end{equation*}
$$

and we obtain by integrating with respect to τ from $\tau=0$ to $\tau=\infty$,

$$
\begin{equation*}
P=-\int_{0}^{\infty} \frac{d P_{\tau}^{\prime}}{d t} d \tau \tag{27}
\end{equation*}
$$

as the value of the function P, whence we obtain all the properties of the current-sheet by differentiation, as in equations (3), (9), \&c.*
664.] As an example of the process here indicated, let us take

* \{This proof may be arranged as follows: let \mathfrak{B}_{τ} be the value of P at the time $t-\tau$ at the point $x, y,-(z+\boldsymbol{R} \tau)$, the rest of the notation being the same as in the text. Then since \mathscr{B}_{r} is a function of $x, y, z+R \tau, t-\tau$ we have

$$
\frac{d \mathfrak{S}_{\tau}}{d \tau}=R \cdot \frac{d \Re_{T}}{d z}-\frac{d \Re_{T}}{d t} ;
$$

and since by the footnote on page 294 equation (21) is satisfied at all points in the field and not merely in the plane, we have
hence

$$
\begin{gathered}
\frac{d \mathfrak{P}_{\tau}}{d \tau}=\frac{d P_{\tau}^{\prime}}{d t}, \\
\Re_{\tau}=-\int_{0}^{\infty} \frac{d P_{\tau}^{\prime}}{d t} d \tau ;
\end{gathered}
$$

but since P has the same value at any point as at the image of the point in the plane sheet,
$\mathfrak{R}_{\tau}=P_{\tau}$,
hence

$$
\left.P_{\tau}=-\int_{0}^{\infty} \frac{d P^{\prime} \tau}{d t} d \tau \cdot\right\}
$$

the case of a single magnetic pole of strength unity, moving with uniform velocity in a straight line.

Let the coordinates of the pole at the time t be

$$
\xi=\mathfrak{u t}, \quad \eta=0, \quad \zeta=c+\mathfrak{w} t .
$$

The coordinates of the image of the pole formed at the time $t-\tau$ are

$$
\xi=\mathfrak{u}(t-\tau), \quad \eta=0, \quad \zeta=-(c+\mathfrak{w}(t-\tau)+R \tau)
$$

and if r is the distance of this image from the point (x, y, z),

$$
r^{2}=(x-\mathfrak{u}(t-\tau))^{2}+y^{2}+(z+c+\mathfrak{w}(t-\tau)+R \tau)^{2} .
$$

To obtain the potential due to the trail of images we have to calculate

$$
-\frac{d}{d t} \int_{0}^{\infty} \frac{d \tau}{r}
$$

If we write

$$
Q^{2}=\mathfrak{u}^{2}+(R-\mathfrak{w})^{2},
$$

$$
\int_{0}^{\infty} \frac{d \tau}{r}=-\frac{1}{Q} \log \{Q r+\mathfrak{u}(x-\mathfrak{u} t)+(R-\mathfrak{w})(z+c+\mathfrak{w} t)\}
$$

+ a term infinitely great which however will disappear on differentiation with regard to t, the value of r in this expression being found by making $\tau=0$ in the expression for r given above.

Differentiating this expression with respect to t, and putting $t=0$, we obtain the magnetic potential due to the trail of images,

$$
\Omega=\frac{1}{Q} \frac{Q \frac{\mathfrak{w}(z+c)-\mathfrak{u x}}{r}-\mathfrak{u}^{2}-\mathfrak{w}^{2}+R \mathfrak{w}}{Q r+\mathfrak{u x}+(R-\mathfrak{w})(z+c)} .
$$

By differentiating this expression with respect to x or z, we obtain the components parallel to x or z respectively of the magnetic force at any point, and by putting $x=0, z=c$, and $r=2 c$ in these expressions, we obtain the following values of the components of the force acting on the moving pole itself,

$$
\begin{aligned}
X & =-\frac{1}{4 c^{2}} \frac{\mathfrak{u}}{Q+R-w}\left\{1+\frac{\mathfrak{w}}{Q}-\frac{\mathfrak{u}^{2}}{Q(Q+R-w)}\right\}, \\
Z & =-\frac{1}{4 c^{2}}\left\{\frac{w}{Q}-\frac{\mathfrak{n}^{2}}{Q(Q+R-w)}\right\}^{*} .
\end{aligned}
$$

665.] In these expressions we must remember that the motion is supposed to have been going on for an infinite time before the

[^63]\[

$$
\begin{aligned}
& X=-\frac{1}{4 c^{2}} \frac{R}{Q} \frac{\mathfrak{u}}{Q+R-\mathfrak{w}}, \\
& \left.Z=\frac{1}{4 c^{2}}\left(1-\frac{R}{Q}\right)\right\}
\end{aligned}
$$
\]

time considered. Hence we must not take w a positive quantity, for in that case the pole must have passed through the sheet within a finite time.

If we make $\mathfrak{u}=0$, and \mathfrak{w} negative, $X=0$, and

$$
Z=\frac{1}{4 c^{2}} \frac{\mathfrak{w}}{R+\mathfrak{w}},
$$

or the pole as it approaches the sheet is repelled from it.
If we make $\mathfrak{w}=0$, we find $Q^{2}=\mathfrak{u}^{2}+R^{2}$,

$$
X=-\frac{1}{4 c^{2}} \frac{u R}{Q(Q+R)} \text { and } Z=\frac{1}{4 c^{2}} \frac{u^{2}}{Q(Q+R)} .
$$

The component X represents a retarding force acting on the pole in the direction opposite to that of its own motion. For a given value of R, X is a maximum when $\mathfrak{l}=1.27 R$.

When the sheet is a non-conductor, $R=\infty$ and $X=0$.
When the sheet is a perfect conductor, $R=0$ and $X=0$.
The component Z represents a repulsion of the pole from the sheet. It increases as the velocity $\mathfrak{i t}$ increases, and ultimately becomes $\frac{1}{4 c^{2}}$ when the velocity is infinite. It has the same value when R is zero.
666.] When the magnetic pole moves in a curve parallel to the sheet, the calculation becomes more complicated, but it is easy to see that the effect of the nearest portion of the trail of images is to produce a force acting on the pole in the direction opposite to that of its motion. The effect of the portion of the trail immediately behind this is of the same kind as that of a magnet with its axis parallel to the direction of motion of the pole at some time before. Since the nearest pole of this magnet is of the same name with the moving pole, the force will consist partly of a repulsion, and partly of a force parallel to the former direction of motion, but backwards. This may be resolved into a retarding force, and a force towards the concave side of the path of the moving pole.
667.] Our investigation does not enable us to solve the case in which the system of currents cannot be completely formed, on account of a discontinuity or boundary of the conducting sheet.

It is easy to see, however, that if the pole is moving parallel to the edge of the sheet, the currents on the side next the edge will be enfeebled. Hence the forces due to these currents will be less, and there will not only be a smaller retarding force, but,
sinee the repulsive furer is hant an the nifu next the whlge, the pole will be attracted tuwaris the whan
 motallic diak experionees a forer tomimg to mahe it follow the motion of the diak, although when the diah is at rest there is no action betwern it and the mamer .

This action of a rotating diak was attributel th a new kind of induced magnetization, till Fumbs | "xphamed it hy mons of the dectrie curronts imberd in the dink on ateont of its motion through the fielol of magntic forer.

To determine the distribution of thom indured curronts, and their afleet on the magnet, we might mahe use of the results alrouly found for a combutine shaw at rest acted on by a moving magnot, availing oursolven of the nothot given in Art. 600 for troating the foctromagntic "yntions when rem ferrod to a moving systom of asems. As thin come, hownewr, has a special importance, we whall treat it in a dirnet mamer, he giming by assuming that the petes of the magret are so far from the colge of the disk that the eflext of the lamitation of the combueting wheot, may he noghertent.

Making use of the nam notation win the proeding articles
 the componente of the wotromotive intenaity parathel to of and ! respectively,
where γ is the rewolved part of the nughetie fore normal to the disk.

$$
\begin{equation*}
u=\frac{l d}{d y} \quad r=\frac{d y}{d y} \tag{2}
\end{equation*}
$$

and if tho diak is rotating about the axis of : with the angular volocity w,

[^64]hatituting thase values in equations (1), wo find
\[

$$
\begin{align*}
& d \phi \tag{4}\\
&{ }^{d!}=\gamma \omega . r- d \psi \tag{5}\\
& d, r \\
&{ }^{d} \| \\
& d, r=\gamma(\omega)! \\
& d \psi \\
& d!
\end{align*}
$$.
\]

ultiplying (4) by and (i) by \because, and adding, we obtain
altiplying (1) by !/ and (5) by -a, and adding, wo ohtain
we now express these equations in terms of r and θ, where

$$
\begin{align*}
& r=r \cos \theta, \quad y=r \sin \theta, \tag{8}\\
& { }^{4}{ }^{d \phi} d \theta=\gamma(\omega) r^{2}-r_{d \psi}^{d}, \tag{9}
\end{align*}
$$

berome
uation (10) is satisfied if wo assume any arlitrary function and 0 , and mak

$$
\begin{align*}
& \phi=\begin{array}{l}
d x \\
d d
\end{array} \tag{11}\\
& \psi=r r^{d} d_{X} \tag{12}\\
& d r
\end{align*}
$$

betituting these values in expation (9), it becomes
viding by or $r^{\prime \prime}$, and rostoring the coordinates x and y, this

$$
\begin{equation*}
\frac{d^{\prime \prime} x}{d x^{\prime \prime}}+\frac{d^{2} x}{d y y^{2}}=\frac{e_{6}}{4} \gamma \tag{14}
\end{equation*}
$$

is is the fumdamontal ountion of the theory, and expresses alation he weon the function, x, and the component, γ, of agnetio foree resolved normal to tho disk.

- Q bo the potintial, at any point on the positive side of the due to imaginary atiracting matter distributod over the with the surface-density x.
the positive surface of the disk

$$
\begin{equation*}
d Q=-2 \pi x \tag{15}
\end{equation*}
$$

Hence the first member of equation 11 blownow
 to the disk,

$$
\begin{array}{ll}
1 \% Q \tag{17}\\
1 x^{+}+ & 1 \% \\
1 \% & 1 \%
\end{array}
$$

and equation (11) heromes

$$
\begin{align*}
& d y \tag{18}\\
& 2 \pi=3
\end{align*}
$$

 potential due to the distrimation 4, "th, will be dy . From
 the disk,

$$
\begin{equation*}
s s_{1}=\frac{d y y}{d \theta} \tag{19}
\end{equation*}
$$

and for the component of the mangutie forse bormal to the disk due to the currents,

$$
\begin{equation*}
\gamma_{1}=-\frac{d \Omega}{d l_{x}=} \frac{d d^{2} y}{d \| d_{i^{2}}^{2}} \tag{20}
\end{equation*}
$$

If $s \Omega_{2}$ is the marntic potentiml due to atormal mannem, and if wo write.

$$
\begin{equation*}
r^{\prime}=-/ \Omega . \tag{21}
\end{equation*}
$$

the emaponent of the mangetic fome normal to the diak due to the magnets will he

$$
\begin{array}{ll}
& d=y \tag{2:}\\
d z
\end{array}
$$

We may now write cyuation (18), rammburing that

$$
\begin{align*}
& \gamma=\gamma_{1}+\gamma_{2} . \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\left(1_{d}^{d}=d_{i}^{d} d_{d}^{d}\right) Q=w l^{v} \tag{24}
\end{equation*}
$$

If the values of P and Q are experseral in hatme of r, the dis. tance from the asis of the diak, and of \& and f wo now variables sueh that

$$
\begin{equation*}
2 G=\therefore \int_{w}^{l} H_{1} \quad 2 i=i={ }_{w} H_{0} \tag{25}
\end{equation*}
$$

equation (24) becomes, by integration with respect to ζ,

$$
\begin{equation*}
Q=\int \frac{\omega}{\bar{R}} P^{\prime} d \zeta . \tag{26}
\end{equation*}
$$

669.] The form of this expression taken in conjunction with the method of Art. 662 shews that the magnetic action of the currents in the disk is equivalent to that of a trail of images of the magnetic system in the form of a helix.

If the magnetic system consists of a single magnetic pole of strength unity, the helix will lie on the cylinder whose axis is that of the disk, and which passes through the magnetic pole. The belix will begin at the position of the optical image of the pole in the disk. The distance, parallel to the axis, between consecutive coils of the helix will be $2 \pi \frac{R}{\omega}$. The magnetic effect of the trail will be the same as if this helix had been magnetized everywhere in the direction of a tangent to the cylinder perpendicular to its axis, with an intensity such that the magnetic moment of any small portion is numerically equal to the length of its projection on the disk.

The calculation of the effect on the magnetic pole would be complicated, but it is easy to see that it will consist of -
(1) A dragging force, parallel to the direction of motion of the disk.
(2) A repulsive force acting from the disk.
(3) A force towards the axis of the disk.

When the pole is near the edge of the disk, the third of these forces may be overcome by the force towards the edge of the disk, indicated in Art. 667^{*}.

All these forces were observed by Arago, and described by him in the Annales de Chimie for 1826. See also Felici, in Tortolini's Annals, iv, p. 173 (1853), and v, p. 35 ; and E. Jochmann, in Crelle's Journal, lxiii, pp. 158 and 329 ; also in Pogg. Ann. cxxii, p. 214 (1864). In the latter paper the equations necessary for determining the induction of the currents on themselves are given, but this part of the action is omitted in the subsequent calculation of results. The method of images given here was published in the Proceedings of the Royal Society for Feb. 15, 1872.

[^65]> Splerriat t'incent Not.
670.| lat ϕ be the curvent function at any pint y of a spherical currenteshert, and lit I' lue the potatial at a given
 pint, due to a shert of imaginary battor distithened wer the sphere with surfaroundaity f, it is rom quivel tw find the magntio posfontial ami the semetremential of the cursent -atert in treme of l^{\prime}.

Lat of Ahtuts the rations of the कhmoer the divanee of the given point from the rentw, and othe teriprowal of the distane of the given point from the print $\%$ on the inthere at whind the eurrent. function is ϕ.

The action of the current whe at my piont met in its subs stance is idantical with that of a magnetio shatl when strongth at any point is mamerionlly equal the the curnt fumotion.

Tho mutual potential of the magnotir shall and a unit pole placed at the point $l^{\prime} \mathrm{in}$, hy Art, Ho.

$$
s=\iint w_{d x} d x
$$

Sincer and a are constant throghout the mafner integration,

$$
\Omega=\operatorname{lalr}_{1 / f}^{1 /\| \| N}(\|)
$$

Rut if l is the petential due wa whet of inasinary mater of surfuco denmity ψ,

$$
t=\iint d n d N
$$

and \&, the mangetic potentinl of the rurrent sheret, may be exprossed in terme of I in the form

$$
s=-\frac{1}{4} d d_{r}\left(l^{\prime} r\right)
$$

671.] We may determine F, the x-component of the vectorpotential, from the expression given in Art. 416,

$$
F=\iint \phi\left(m \frac{d p}{d \zeta}-n \frac{d p}{d \eta}\right) d S
$$

where ξ, η, ζ are the coordinates of the element $d S$, and l, m, n are the direction-cosines of the normal.

Since the sheet is a sphere, the direction-cosines of the normal are

$$
l=\frac{\xi}{a}, \quad m=\frac{\eta}{a}, \quad n=\frac{\zeta}{a},
$$

But

$$
\frac{d p}{d \zeta}=(z-\zeta) p^{3}=-\frac{d p}{d z}
$$

and

$$
\frac{d p}{d \eta}=(y-\eta) p^{3}=-\frac{d p}{d y}
$$

so that

$$
\begin{aligned}
m \frac{d p}{d \zeta}-n \frac{d p}{d \eta} & =\{\eta(z-\zeta)-\zeta(y-\eta)\} \frac{p^{3}}{\alpha} \\
& =\{z(\eta-y)-y(\zeta-z)\} \frac{p^{3}}{\alpha} \\
& =\frac{z}{\alpha} \frac{d p}{d y}-\frac{y}{\alpha} \frac{d p}{d z}
\end{aligned}
$$

Multiplying by $\phi d S$, and integrating over the surface of the sphere, we find

$$
\begin{aligned}
F & =\frac{z}{a} \frac{d P}{d y}-\frac{y}{a} \frac{d P}{d z} \\
G & =\frac{x}{a} \frac{d P}{d z}-\frac{z}{a} \frac{d P}{d x} \\
H & =\frac{y}{a} \frac{d P}{d x}-\frac{x}{a} \frac{d P}{d y}
\end{aligned}
$$

The vector \mathfrak{N}, whose components are F, G, H, is evidently perpendicular to the radius vector r, and to the vector whose components are $\frac{d P}{d x}, \frac{d P}{d y}$, and $\frac{d P}{d z}$. If we determine the lines of intersection of the spherical surface whose radius is r, with the series of equipotential surfaces corresponding to values of P in arithmetical progression, these lines will indicate by their direction the direction of \mathfrak{N}, and by their proximity the magnitude of this vector.

In the language of Quaternions,

$$
\mathfrak{N}=\frac{1}{a} V \cdot \rho \nabla P
$$

vol. II.
672.] If we assume as the value of P within the sphere

$$
P=A\left(\frac{r}{a}\right)^{i} Y_{i}
$$

where Y_{i} is a spherical harmonic of degree i, then outside the sphere

$$
P^{\prime}=A\left(\frac{\alpha}{r}\right)^{i+1} F_{i}
$$

The current-function ϕ is since $\left(\frac{d P}{d r}-\frac{d P^{\prime}}{d r}\right)_{r=a}=4 \pi \phi$, given by the equation

$$
\phi=\frac{2 i+1}{4 \pi} \frac{1}{a} A Y_{i} .
$$

The magnetic potential within the sphere is
and outside

$$
\begin{aligned}
& \Omega=-(i+1) \frac{1}{a} A\left(\frac{r}{a}\right)^{i} Y_{i}, \\
& \Omega^{\prime}=i \frac{1}{a} A\left(\frac{a}{r}\right)^{i+1} Y_{i} .
\end{aligned}
$$

For example, let it be required to produce, by means of a wire coiled into the form of a spherical shell, a uniform magnetic force M within the shell, The magnetic potential within the shell is, in this case, a solid harmonic of the first degree of the form

$$
\Omega=-M_{r} \cos \theta,
$$

where M is the magnetic force. Hence $A=\frac{1}{2} a^{2} M$, and

$$
\phi=\frac{3}{8 \pi} M a \cos \theta
$$

The current-function is therefore proportional to the distance from the equatorial plane of the sphere, and therefore the number of windings of the wire between any two small circles must be proportional to the distance between the planes of these circles.

If N is the whole number of windings, and if γ is the strength of the current in each winding,

$$
\phi=\frac{1}{2} N_{\gamma} \cos \theta .
$$

Hence the magnetic force within the coil is

$$
M=\frac{4 \pi}{3} \frac{N_{\gamma}}{a}
$$

673.] Let us next find the method of coiling the wire in order to produce within the sphere a magnetic potential of the form of a solid zonal harmonic of the second degree,

$$
\Omega=-3 \frac{1}{a} A \frac{r^{2}}{a^{2}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)
$$

Here

$$
\phi={ }_{4 \pi}^{5 \pi} A\left(\frac{4}{2} \cos ^{2} \theta-\frac{1}{2}\right) .
$$

If the whole number of windings is N, tho number between the pole and the polar distance θ is $\frac{1}{2} N \sin ^{2} \theta$.

Tho windinge aro closest at latitude 45°. At the equator the direction of winding changes, and in the other homisphere the windinge are in the contrary direction.

Let γ be the strength of the eurrent in the wire, thon within the shell

$$
\Omega=-\frac{1 \pi}{\pi} N \gamma \gamma_{a^{2}}^{\eta^{2}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)
$$

Let us now consider a conductor in the form of a plane closed curve phaced anywhere within the shell with its plane perpendicular to the axis. To determino its coofficiont of induction we have to find the surface-integral of $-\frac{d \Omega}{d z}$ over the plane bounded by the curve, putting $\gamma=1$.

Now

$$
\begin{aligned}
\Omega & =-\frac{1 \pi}{5 a^{2}} N\left\{z^{2}-\frac{3}{2}\left(x^{2}+y^{2}\right)\right\}, \\
\text { and } & -\frac{d / 2}{d}=\frac{8 \pi}{6 u^{2}} N z .
\end{aligned}
$$

Hence, if S is the area of the closed curve, its coofficiont of induction is

$$
M=\frac{8 \pi}{5 a^{3}} N S z .
$$

If the current in this conductor is γ^{\prime}, there will be, by Art. 583^{\prime}, a foree Z, urging it in the direction of z, where

$$
Z=\gamma \gamma^{\prime}{ }_{d \%}^{d M}=\frac{8 \pi}{5 d^{2}} N \Lambda^{\prime} \gamma \gamma^{\prime},
$$

and, since this is independent of a, y, z, the force is the same in whatever part of the shell the circuit is placed.
674.] The mothod given by Poisson, and dosoribed in Art. 437, may he applied to current-shoets liy substituting for tho body, supposed to be uniformly magnetized in the direction of z with intensity I, a current-sheet having the form of its surface, and for which the current-function is

$$
\begin{equation*}
\phi=I z . \tag{1}
\end{equation*}
$$

The curronts in the sheet will bo in planes parallel to that of $x y$, and the strength of the curront round a slice of thickness $d z$ will be Ide.

The magnetic potential due to this current oshew at any point outside it will be

$$
\begin{equation*}
\Omega=-I^{11} d x \tag{2}
\end{equation*}
$$

\{where V is the gravitation potential hue to the sheret when tho surface-density is unity.

At any point inside the shere it will h.

$$
\begin{equation*}
\Omega=-4 \pi I z I_{d}^{d} \tag{3}
\end{equation*}
$$

The components of the vector-phtentind are

These results can be applied to several cases oecurring in practice.
675.] (1) A plane olectric circuit of any form.

Let V ho the potential due to a plame whet of any form of which the surfacedonsity is mity, then, if for this sheot we substitute either a magnotic whell of atremgth l or an electric current of strongth I round ites boundury, the valuon of $\$ 5$ and of $H,(A, H$ will be those given atrove.
(2) For a solid sphero of ralius et,

$$
\begin{align*}
& V=\begin{array}{c}
4 \pi a^{3} \\
3 \\
r
\end{array} \text { when } r \text { is greater than a, } \tag{5}\\
& \text { and } \quad r^{\prime} \quad \frac{2 \pi}{3}\left(3 a^{2} \quad r^{2}\right) \text { when } r \text { is lows than } a \text {. } \tag{6}
\end{align*}
$$

Hence, if such a nehore in magntizen parallol to: with intensity I, the magnetie pentinl will ho

$$
\begin{equation*}
\Omega=\frac{4 \pi}{3} l_{r^{4}}^{u^{3}} \text { vontaide the sumer. } \tag{7}
\end{equation*}
$$

and $\quad \Omega=\frac{4 \pi}{3} I$ inmide the sphere.
If, instead of being magnetizat, the nome is coilon with wire in equidistant circlos, the total merouth of curront betweon two small cireles whose phases are at unit listhnes lming 1 , then outside the sphere the value of st is as lefore, hat within the sphere

$$
\begin{equation*}
s=-\frac{R \pi}{3} I_{s} \tag{9}
\end{equation*}
$$

This is the case alrealy discusamel in Art. 672.
(3) The case of an mijenid miformly magnotizes parallel to a given line has bren disoumed in Art. 437.

If the ellipsod is coiled with wirw in parallel and equidistant planes, the magnetic foree within the ollipmend will be uniform.

(4) A Gylimulric Magnet or Solenoid.

(676.) If tho body is a cylinder having any form of section and bounded by planes perpondicular to its generating lines, and if V_{1} is the potential at the point (x, y, z) duo to a plane area of surface-density unity coinciding with the positive end of the solemoid, and V_{2}^{r} the potential at the same point due to a plane aror of surface-lensity unity coinciding with the negative end, then, if the eylinder is uniformly and longitudinally magnetized. with intensity unity, the potential at the point (x, y, z) will be

$$
\begin{equation*}
\Omega=V_{1}-V_{2} . \tag{10}
\end{equation*}
$$

If the cylinder, instoad of being a magnetized body, is uniformly lapped with wire, so that there are n windings of wire in unit of length, and if a current, γ, is made to flow through this wire, the magnetic potential outside the solenoid is as before,

$$
\begin{equation*}
\Omega=n \gamma\left(V_{1}-V_{2}\right), \tag{11}
\end{equation*}
$$

but within the space bounded by tho solenoid and its plane ends

$$
\begin{equation*}
\Omega=n \gamma\left(-4 \pi z+V_{2}-V_{2}\right) \tag{12}
\end{equation*}
$$

The magnetio potential is discontinuous at the plano ends of the solenoid, but the magnetic force is continuous.

If r_{1}, r_{2}, the distanees of the centros of inertia of the positive and nogative plane ends respectively from the point (x, y, z), are very great compared with the transverse dimensions of the solenoid, wo may write

$$
\begin{equation*}
V_{1}=\frac{A}{r_{1}}, \quad V_{2}=\frac{A}{r_{2}}, \tag{13}
\end{equation*}
$$

where A is the area of "ither section.
The magnetic fore outside the solemoid is therefore very small, and the force inside the solenoid approximates to a force parallel to the axis in the pesitive direction and equal to $4 \pi n \gamma$.

If the section of tho solenoid is a circle of radius a, the values of V_{1} and V_{2} may be expressed in the series of spherical harmonics given in Thomson and Tait's Natural Philosophy, Art. 546, Ex. II.,

$$
\begin{gather*}
V=2 \pi\left\{-r I_{1}^{\prime}+u+\frac{1}{2} \frac{r^{2}}{c} P_{2}^{\prime}-1.1 \frac{r^{4}}{2.4 a^{3}} I_{4}+\frac{1.1 .3}{2.4 .6} \frac{r^{6}}{a^{5}} I_{6}^{3}-\& c .\right\} \text { when } r<a, \\
V=2 \pi\left\{\frac{a^{2}}{r}-\frac{1.1 a^{4}}{2.4} r_{2}^{3}+\frac{1.1 .3}{2.1 .6} \frac{a^{6}}{r^{6}} P_{4}-\& c .\right\} \text { when } r>a . \tag{15}
\end{gather*}
$$

In these expressions r is the listaner of the pint (x, y, z) from the centre of one of the cimenar ambe the sulenomid, and the zonal harmonies, l_{1}, l_{1}, de., are these correspmoling to the angle θ which r makes with the a is of the cylimer.

The differential ereflicient with resuece to a of the tirst of these oxpressions is discontimuons when o ${ }^{3}$, lat we mast rememher that within the solonesil wo munt mhen the maphetic fore deduced from this expersmion a longitulital frome ona $\%$
677.] Let us now consider a Nollowid no longe that in the part of space which we convider, the, tran deterding on the distance from the ende may be nughetent.

Tho magnetio induction through any clomel carve drawn within the molonoid in $4 \pi a y, t^{\circ}$, whers $A^{\prime \prime}$ is the arem of the projection of tho curve on a pham nomasl th the axim of the solenoid.

If the closed curvo is outside the selment, then, if it encloses the solenoid, the mametic imbetion through it is $1 n m y A$, where A is the aren of the motion of the andemond. If the closed curvo does not surroum the monnond, the magnetiv induction through it in zaro.
 of induction hetwern it amp the sellemint in

$$
\begin{equation*}
M=1: a n d . \tag{16}
\end{equation*}
$$

By nupposing these, wimlinge an robside with a windings of
 of lomgth of the solenomil, taken at a anliejont dintanee from its extromitios, is $\quad l=1 \mathrm{~mm}^{2} \cdot \mathrm{~A}$.

Near the ende of a sulonesid wo munt take inta neennt the torme depending on the imaginary dintribution of magnotiom on tho plane onds of the wolenom. Thw eftiet of these terms in to make the cosfleiont of indurtion lutwent the solonod and a circuit which murroumd it lown than the value in $n A$, which it ham whon the circuit murrommla n vry long molonoid at a great distance from either emb.

Let us take the case of two cireular and coman molonoids of the same longth l. Lat the ruliun of the onter molenoid be c_{1}, and let it bo wound with wire son an thate n_{5} windings in unit of length. Let the radiun of the innor molenoid Do $_{2} \varepsilon_{2}$, and lot the number of wimlings in unit of length le " ${ }^{2}$, then the coefficient
of induction between the solenoids, if we neglect the effect of the ends, is

$$
\begin{align*}
M & =G g \tag{18}\\
G & =4 \pi n_{1} \tag{19}\\
g & =\pi c_{2}^{2} l n_{2} . \tag{20}
\end{align*}
$$

678.] To determine the effect of the positive end of the solenoid we must calculate the coefficient of induction on the outer solenoid due to the circular disk which forms the end of the inner solenoid. For this purpose we take the second expression for V, as given in equation (15), and differentiate it with respect to r. This gives the magnetic force in the direction of the radius. We then multiply this expression by $2 \pi r^{2} d \mu$, and integrate it with respect to μ from $\mu=1$ to $\mu=\frac{z}{\sqrt{z^{2}+c_{1}^{2}}}$. This gives the coefficient of induction with respect to a single winding of the outer solenoid at a distance z from the positive end. We then multiply this by $d z$ and integrate with respect to z from $z=l$ to $z=0$. Finally, we multiply the result by $n_{1} n_{2}$, and so find the effect of one of the ends in diminishing the coofficient of induction.

Wo thus find for M, the value of the coefficient of mutual induction between the two cylinders,

$$
\begin{equation*}
M=4 \pi^{2} n_{1} n_{2} c_{2}^{2}\left(l-2 c_{1} \alpha\right) \tag{21}
\end{equation*}
$$

where $\quad a=\frac{1}{2} \frac{c_{1}+l-r}{c_{1}}-\frac{1.3}{2.4} \cdot \frac{1}{2.3} \frac{c_{2}{ }^{2}}{c_{1}{ }^{2}}\left(1-\frac{c_{1}{ }^{3}}{r^{3}}\right)$

$$
\begin{equation*}
+\frac{1.3 .5}{2.4 .6} \cdot \frac{1}{4.5} \frac{c_{2}^{4}}{c_{1}^{4}}\left(-\frac{1}{2}-2 \frac{c_{1}^{5}}{r^{5}}+\frac{5}{2} \frac{c_{1}^{7}}{r^{7}}\right)+\& c . \tag{22}
\end{equation*}
$$

where r is put, for brevity, instead of $\sqrt{\overline{l^{2}+c_{1}^{2}}}$.
It appears from this, that in calculating the mutual induction of two coaxal solenoids, we must use in the expression (20) instead of the true length l the corrected length $l-2 c_{1} a$, in which a portion equal to $a c_{1}$ is supposed to be cut off at each end. When the solenoid is very long compared with its external radius,

$$
\begin{equation*}
a=\frac{1}{2}-\frac{1}{18} \frac{c_{2}^{2}}{c_{1}^{2}}-\frac{1}{12} \frac{1}{2} \frac{c_{2}^{4}}{c_{1}^{4}}+\& c . \tag{23}
\end{equation*}
$$

679.] When a solenoid consists of a number of layers of wire of such a diameter that there are n layers in unit of length, the number of layers in the thickness $d r$ is $n d r$, and we have

$$
\begin{equation*}
G=4 \pi \int n^{2} d r, \quad \text { and } \quad g=\pi l \int n^{2} r^{2} d r \tag{24}
\end{equation*}
$$

If the thickness of the wire is constant, and if the induction take place between an external coil whose outer and inner radii are x and y respectively, and an inner coil whose outer and inner radii are y and z, then, neglecting the effect of the ends,

$$
\begin{equation*}
G g=\frac{4}{3} \pi^{2} l n_{1}^{2} n_{2}^{2}(x-y)\left(y^{3}-z^{3}\right) . \tag{25}
\end{equation*}
$$

That this may be a maximum, x and z being given, and y variable,

$$
\begin{equation*}
x=\frac{1}{3} y-\frac{1}{3} \frac{z^{3}}{y^{2}} \tag{26}
\end{equation*}
$$

This equation gives the best relation between the depths of the primary and secondary coil for an induction-machine without an iron core.

If there is an iron core of radius z, then G remains as before, but

$$
\begin{align*}
g & =\pi l \int n^{2}\left(r^{2}+4 \pi \kappa z^{2}\right) d r \tag{27}\\
& =\pi l n^{2}\left(\frac{y^{3}-z^{3}}{3}+4 \pi \kappa z^{2}(y-z)\right) \tag{28}
\end{align*}
$$

If y is given, the value of z which gives the maximum value of g is

$$
\begin{equation*}
z=\frac{2}{3} y \frac{12 \pi \kappa}{12 \pi \kappa+1} . \tag{29}
\end{equation*}
$$

When, as in the case of iron, κ is a large number, $z=\frac{2}{3} y$, nearly.
If we now make x constant, and y and z variable, we obtain the maximum value of $G g, \kappa$ being large,

$$
\begin{equation*}
x: y: z:: 4: 3: 2 \tag{30}
\end{equation*}
$$

- The coefficient of self-induction of a long solenoid whose outer and inner radii are x and y, having a long iron core whose radius is z, is per unit length

$$
\begin{gather*}
4 \pi \int_{y}^{x}\left\{\pi \int_{\rho}^{x} n^{2}\left(\rho^{2}+4 \pi \kappa z^{2}\right) d r+\pi \int_{y}^{\rho} n^{2}\left(r^{2}+4 \pi \kappa z^{2}\right) d r\right\} n^{2} d \rho \\
=\frac{3}{3} \pi^{2} n^{4}(x-y)^{2}\left(x^{2}+2 x y+3 y^{2}+24 \pi \kappa z^{2}\right) . \tag{31}
\end{gather*}
$$

680.] We have hitherto supposed the wire to be of uniform thickness. We shall now determine the law according to which the thickness must vary in the different layers in order that, for a given value of the resistance of the primary or the secondary coil, the value of the coefficient of mutual induction may be a maximum.

Let the resistance of unit of length of a wire, such that n windings occupy unit of length of the solenoid, be ρn^{2}.
resistance of the whole molemoid is

$$
\begin{equation*}
R=2 \pi r l \int m^{4} r d r \tag{32}
\end{equation*}
$$

comdition that, with a given value of R, (r may ho a num is $\begin{aligned} & d t \\ & d r\end{aligned}={ }^{d} d r$, where $(t$ is some constant.
a gives $n^{\prime \prime}$ proportional to ${ }_{r}^{1}$, or the thickness of the wire of Eterior coil must be proportional to the square root of the of the layer.
order that, for a given value of h, y may be a maximum

$$
n^{\prime \prime}=\left(!\left(r+\begin{array}{c}
4 \pi \Sigma^{2} \tag{33}\\
r
\end{array}\right) .\right.
$$

4, if there is no iron eore, the thickness of the wire of the or eoil mondil he inversely an the square root of the radius of yor, but, if there is a core of iron having a high capacity for ctization, the thiekness of the wire should be more nearly dy proportional to the engure root of the radius.

An. Emeltesw sulemoid.

.] If a solid he grmoratel by the revolution of a plane area out, an axis in ite own plane, not cutting it, it will have the of a ring. If this ring be coiled with wirg, so that the ings of the eonil are in planes passing through the axis of ng, then, if n is the whole number of windings, the currention of the layor of wire in $\psi=\frac{1}{2 \pi} \pi^{\mu \gamma} \theta$, where θ is the of azimuth abent the axis of the ring.
Ω_{2} is the magnetio potential inside the ring and Ω^{\prime} that Le, then $\quad \Omega-\Omega^{\prime}=-4 \pi \phi+(!=-2 n \gamma \theta+l$.
de the ring, S^{\prime} must matisfy laphace's oruation, and must It at an infinite distance. From the nature of the problem est he a function of 0 only. 'Thes only value of Ω^{\prime} which these conditions is zero. Henco

$$
s x^{\prime}=0, \quad \Omega 2=-2 n \gamma \theta+0 .
$$

mannetic force at any point within the ring is perpenor to tho phane passing through the axis, and is equal to
, where r is the distance from the axis. Outside tho ring
is no magnetic furce.

If the form of a closed curve lie wiven hy the comblinates z, r, and 0 of its tracing point as functions of s, its langth from a fixed point, the mannetic induction through the closed curve may ho found hy intomration roum it of the veetor potential, the compoments of which are

$$
H^{\prime}=2 n \gamma_{i=}^{x 2}, \quad\left(i=2 n y_{i, n}^{n}, \quad H=n\right.
$$

Wo thus find

$$
2 u \gamma \int_{u}^{s} \cdot l_{d} d s
$$

taken romul the curve, prosided the eurve is wholly inside the ring. If tho curve lios wholly withont the ring, but embraces it, the magnotic induction through it is

$$
2 n \gamma \int_{n}^{s^{\prime}} v^{\prime} d r^{\prime} d N^{+1} N^{\prime} \quad 2 n \gamma^{\prime},
$$

 coordinatos rofor not to the clomel curve, hut fo a sityle wimling of the nolenoid.

Tho magnotio induction thromgh any elowed curve wmbracing
 curve dows not, embrace the ring, the angnotic intwetion through it is zaro.
lat a serond wirn he coilod in nny mannar romm the ring

 M, the coflicient of induetion of the one coil on the other, is $M=2 n n^{\prime} \pi$.

Sineo this in quite imbependent of the purtionlar form or position of the weond wire, the wires, if trawnaml by eleotric curronts, will experionce mo meshnaion forev neting letween thom. By making the suconl wire enincile with the first, wo obtain for the cooflieiont of mell imurtion of the ring-coil

$$
L_{t}=2 \operatorname{me}^{2} u_{t} .
$$

(:MADPER XIIT.

Cylindrical Comdurtors.

682. In a very important class of electrical arrangements the current is conducted through round wires of nearly uniform section, and either straight, or such that the radius of curvature of the axis of the wire is very greate eompared with the radius of the transvorse section of the wirc. In order to ho propared to deal mathematically with such arrangements, wo shall bogin with the case in which the cirenit consists of two vory long parallel conductor, with two pieces joining thoir ends, and wo shall confine our attention to a part of the circuit which is so far from the onda of the comductors that the fact of their not boing infinitely long doen not introduce any sensible change in the distribution of foree.

Wo shall take the axis of a parallel to the direction of the conductors, then, from the symmotry of the arrangoments in the part of the fleld considerod, overything will dopend on $I I$, the component of the veotor-potential parallol to z.

The components of magnetic induction become, by equations (A),

$$
\begin{align*}
& a=\frac{d I I}{d y} \tag{1}\\
& b=-\frac{d I}{d x} \tag{2}\\
& c=0 .
\end{align*}
$$

For the sake of generality we shall suppose the coefficient of magnetic induction to be μ, so that $a=\mu a, b=\mu \beta$, where a and β are the components of the magnetic force.

G83.] If the current is a function of x, the distano from the axis of 2 , and if wo writ.

$$
\begin{equation*}
r=r \cos \theta, \quad \operatorname{an} \quad \quad l=r \sin \theta \tag{4}
\end{equation*}
$$

and β for the magnetie forer, in the dimetion in which a is measured perpendicular to the phan through the axis of a, we have

$$
\begin{equation*}
4 \pi m=\frac{d .1}{d r}+\frac{1}{r}{ }_{r} \quad \frac{1 d}{r d r}(t r) . \tag{5}
\end{equation*}
$$

If (! is the whole current flowing through a suretion houmded by a circle in the phan $r y$, whone contre is the urimin amd whose radius is r,

$$
\begin{equation*}
r^{\prime}=\int_{0}^{r} 2 \pi r u d r=1, d r . \tag{6}
\end{equation*}
$$

It appears, therefore, that the magetic fore at a given point due to a curront arrangel in cylindrical ntrata, whom common exis is the axis of a depemde only on the total menngth of the current flowing through the merata which lie hetwern the given point and the axis, and not on the dimetrihtion of the current nmong the different eylimdrical mtrata.

Fer instanes, let the conduetur le a uniform wire of ralius a, and lot the total current thromgh it la. ' ', then, if the current is uniformly distributed thromp all parts of the wertion, u will be constant, and

$$
\begin{equation*}
\prime^{\prime}=\pi A^{\prime} . \tag{7}
\end{equation*}
$$

The curront flowing through a circular moction of radius r, r loing less than a, is $C^{\prime \prime}-\pi e^{2} r^{2}$. Henew at any point within the wirs,

$$
\begin{align*}
& A=26^{\prime \prime}=2 C^{r} \tag{8}\\
& r^{\prime} \tag{9}\\
& A=2^{\prime \prime}
\end{align*}
$$

Outside the wire $\beta=2^{\prime \prime}$ ".
In the sulatanen of the wire there in mo magnetic potential, for within a embluctor carrying an weetric cument the magnetic fores does not fullil the comdition of having a potential.

Outaide the wire the magretie pertont in

$$
\begin{equation*}
\Omega=: 10 . \tag{10}
\end{equation*}
$$

led us nuppose that instond of a wire the contuetor in a metal tube whose "xtormal and internal ratio are a_{1} and a_{3}, then, if C is the ourrent through the tuhalar conductor,

$$
\begin{equation*}
C^{\prime}=\pi w\left(u_{1}^{2}-t_{2}^{2}\right) . \tag{11}
\end{equation*}
$$

The magnetic force within the tube is zero. In the metal of the tube, where r is between a_{1} and α_{2},

$$
\begin{equation*}
\beta=2 C \frac{1}{a_{1}^{2}-a_{2}^{2}}\left(r-\frac{a_{2}{ }^{2}}{r}\right), \tag{12}
\end{equation*}
$$

and outside the tube,

$$
\begin{equation*}
\beta=2 \frac{C}{r} \tag{13}
\end{equation*}
$$

the same as when the current flows through a solid wire.
684.] The magnetic induction at any point is $b=\mu \beta$, and since, by equation (2),

$$
\begin{align*}
b & =-\frac{d H}{d r} \tag{14}\\
H & =-\int \mu \beta d r \tag{15}
\end{align*}
$$

The value of H outside the tube is

$$
\begin{equation*}
A-2 \mu_{0} C \log r \tag{16}
\end{equation*}
$$

where μ_{0} is the value of μ in the space outside the tube, and A is a constant, the value of which depends on the position of the return current.

In the substance of the tube,

$$
\begin{equation*}
H=A-2 \mu_{0} C \log a_{1}+\frac{\mu C}{a_{1}^{2}-a_{2}^{2}}\left(a_{1}^{2}-r^{2}+2 a_{2}^{2} \log \frac{r}{a_{1}}\right) \tag{17}
\end{equation*}
$$

In the space within the tube H is constant, and

$$
\begin{equation*}
H=A-2 \mu_{0} C \log a_{1}+\mu C\left(1+\frac{2 a_{2}^{2}}{a_{1}^{2}-a_{2}^{2}} \log \frac{a_{2}}{a_{1}}\right) \tag{18.}
\end{equation*}
$$

685.] Let the circuit be completed by a return current, flowing in a tube or wire parallel to the first, the axes of the two currents being at a distance b. To determine the kinetic energy of the system we have to calculate the integral

$$
\begin{equation*}
T=\frac{1}{2} \iiint H w d x d y d z \tag{19}
\end{equation*}
$$

If we confine our attention to that part of the system which lies between two planes perpendicular to the axes of the conductors, and distant l from each other, the expression becomes

$$
\begin{equation*}
T=\frac{1}{2} l \iint H w d x d y \tag{20}
\end{equation*}
$$

If we distinguish by an accent the quantities belonging to the return current, we may write this

$$
\begin{equation*}
\frac{2 T}{l}=\iint H w^{\prime} d x^{\prime} d y^{\prime}+\iint H^{\prime} w d x d y+\iint H w d x d y+\iint H^{\prime} w^{\prime} d x^{\prime} d y^{\prime} \tag{21}
\end{equation*}
$$

Since tho action of the current on any print outsid the tube is the same an if the same current had hern coneentrated at the axis of the tube, the mean value of H for the sertion of the return current is $A-2 \mu_{0}$ (${ }^{\prime}$ loy b, and the menn value of l^{\prime} for the section of the positive current in $A^{\prime}-2 \mu_{0}$, "loght.

Hence, in the expresmion for T, the tirat two torms may be writton $A C^{\prime \prime}-2 \mu_{0} C^{\prime \prime}\left(\log h\right.$, and $A^{\prime} C^{\prime} \quad 2 \mu_{n} C^{\prime} C^{\prime} \log h$.

Integrating the two latter terms in the orinary way, and adding the resulte, remembering that ($:^{\prime \prime} \mathbf{C}^{\prime \prime} 0$, we ohtain the value of the kinetie energy T. Writimg thim $\frac{1}{1} /{ }^{\prime}$'s, where L is the coefficient of melf-induction of the systom of two conductors, wo find as the value of h for lemgth $/$ of the system

If the conductors aro solid wire,${ }_{2}$ and a_{3}^{\prime} are zoro, and

$$
\begin{equation*}
{\underline{m_{1}}}_{l}=2 \mu_{v} \log _{a_{1} u_{1}^{\prime}}+\frac{l_{1}^{\prime}}{1}\left(\mu+\mu^{\prime}\right) \tag{23}
\end{equation*}
$$

It is only in the case of irom wires that we new take account of the magnetic induetion in coleulating their melf imduction. In other cases wo may mak" μ_{0}, μ, and μ^{\prime} all "qual to unity. The smaller the rulii of the wires, and the greater the distance botween thom, the groator is the self-imbetion.

To fime the Repulsion, x, heturen the Truo fortiona of Wire.

686. 1 By Art. 580 wo obtain for the foren tending to increase b,

$$
\begin{align*}
& X=1_{1}^{11 b^{2}} e^{(2)} \\
& =2 \mu_{0} l_{1} C_{t}, \tag{24}
\end{align*}
$$

which agrees with Amperes formuln, when μ_{0} 응 1 , an in air.
687. If tho longth of the wires in great compared with the distanee betweon them, we may use the corflicient of selfinduction to deturmine the tonsion of the wires arising from the action of tho current.

[^66]Z is this tonsion,
\[

$$
\begin{align*}
Z & =\frac{1}{2}{ }^{\prime \prime} / l^{\prime 2}, \\
& =\left({ }^{\prime \prime 2}\left\{\mu_{0} \log _{u_{1} u_{1}^{\prime}}^{l_{2}^{2}}+\frac{\mu+\mu^{\prime}}{4}\right\}\right. \tag{25}
\end{align*}
$$
\]

one of Amproses experimonts the parallel conductors conf two troughe of mereury eonnected with oach othor by a in bridge of wire. When a current is made to onter at the nity of one of the troughes, to flow along it till it reaches xtromity of the flonting wire, to pass into the other trough gh tho flonting hridge, and so to roturn along tho second h, the doating bridge moves along tho troughs so as to wen the part of the mereury traversed by the curront.

Fig. 40.
fessor Tait has simplified the electrical conditions of this iment hy substituting for the wire a floating siphon of glass with meroury, so that the current flows in mercury throughs courses.
is experimont is mometimen adduced to prove that two nts of a current in the samo straight line repel one another, hus to shew that Ampiro's formula, which indicates such ulsion of collinear oloments, is more correct than that of mann, which gives no action botwoen two elements in the straight line; Art. 826.
it is manifest that since the formulae both of Ampere and assmann give the same results for closed circuits, and since we in the experiment only a closed circuit, no result of the iment can favour one more than the other of those theories.

In fack, both formala, bed to the very same value repulsion as that alrouly given, in wheh it uphenes t the distanco lotweon the parallel conductors, is un imp dement.

When the length of the comberens in ant very great com with their distane apart, the form of the value, of 1 , he somowhat nome complicate

Gא8.] As the distane betwon the conduetnes is dimin the value of I, diminishens. The limit to thin dimatation is the wires are in contart, or when $h_{1}+H_{i}^{\circ}$. In this $\mu_{0}=\mu=\mu^{\prime}=1$,

This is a minimum whon H_{1} "and thon

$$
\begin{aligned}
1 . & 2(1 \text { 1. 1 } 11) \\
& =21(1.46631 \\
& =3.77261 .
\end{aligned}
$$

This is the smallest value of the sulfeinduction of a roun doubled on itself, the whole longth of the wirn being $3 /$.

Sine the two prarts of the wire must len inalated frot other, the sulfinduetion can nower actually worh this lis value. lly using broal that mipe of m-tal instomi of wires the selfoinduetion may he diminibled indefinituly.

689.] Whon the curront in a wire in of varying intonai electromotive forco arising from the inluetion of the curr itsadf is different in differont parte of the sertion of the being in general a function of the dintanes from the axim wire as woll as of the time. If we mupeom the oylit conductor to consist of a lumdle of wiros all forming part same eirenit, so that the curront in comperlos to low of 4 etrength in every part of the suetion of the bundle, the mot calculation which we have hitherto usend would the s applicable. If, however, we condider the cylindrion con as a solid mass in which eloctric currontas are frew to obedience to clectromotive foree the inturnity of the currer not be tho same at different distancen from the axis
cylinder, and the electromotive forces themselves will depend on the distribution of the current in the different cylindric strata of the wire.

The vector-potential H, the density of the current w, and the electromotive intensity at any point, must be considered as functions of the time and of the distance from the axis of the wire.

The total current, C, through the section of the wire, and the total electromotive force, E, acting round the circuit, are to be regarded as the variables, the relation between which we have to find.

Let us assume as the value of H,

$$
\begin{equation*}
H=S+T_{0}+T_{1} r^{2}+\& c .+T_{n} n^{2 n}+\ldots \tag{1}
\end{equation*}
$$

where S, T_{0}, T_{1}, \&c. are functions of the time.
Then, from the equation

$$
\begin{equation*}
\frac{d^{2} H}{d r^{2}}+\frac{1}{r} \frac{d H}{d r}=-4 \pi v \tag{2}
\end{equation*}
$$

we find

$$
\begin{equation*}
-\pi w=T_{1}+\& \mathrm{c} .+n^{2} T_{n} r^{2 n-2}+\ldots \tag{3}
\end{equation*}
$$

If ρ denotes the specific resistance of the substance per unit of volume, the electromotive intensity at any point is ρw, and this may be expressed in terms of the electric potential and the vector-potential H by equations (B), Art. 598,

$$
\begin{equation*}
\rho w=-\frac{d \Psi}{d z}-\frac{d H}{d t}, \tag{4}
\end{equation*}
$$

or $\quad-\rho w=\frac{d \Psi}{d z}+\frac{d S}{d t}+\frac{d T_{0}}{d t}+\frac{d T_{1}}{d t} r^{2}+\& c .+\frac{d T_{n}}{d t} r^{2 n}+\ldots$.
Comparing the coefficients of like powers of r in equations (3) and (5),

$$
\begin{align*}
& T_{1}=\frac{\pi}{\rho}\left(\frac{d \Psi}{d z}+\frac{d S}{d t}+\frac{d T_{0}}{d t}\right) \tag{6}\\
& T_{2}=\frac{\pi}{\rho} \frac{1}{2^{2}} \frac{d T_{1}}{d t} \tag{7}\\
& T_{n}=\frac{\pi}{\rho} \frac{1}{n^{2}} \frac{d T_{n-1}}{d t} . \tag{8}
\end{align*}
$$

Hence we may write $\quad \frac{d S}{d t}=-\frac{d \Psi}{d z}$,

$$
\begin{equation*}
T_{0}=T, \quad T_{1}=\frac{\pi}{\rho} \frac{d T}{d t}, \ldots \quad T_{n}=\frac{\pi^{n}}{\rho^{n}} \frac{1}{(n!)^{2}} \frac{d^{n} T}{d t^{n}} \tag{9}
\end{equation*}
$$

690.7 To fim the total current. ${ }^{\prime}$. wo mast intergrate "10 over the section of the wire whose radius is a,

$$
\begin{equation*}
r^{\prime}=2 \pi \int_{0}^{a} \text {, } r \text { r } h \tag{11}
\end{equation*}
$$

Substituting the value of $\pi \prime$. from muntion (3), wio ohtain

$$
\begin{equation*}
\left(c=-\left(T_{1} u^{2}+N c+u T_{n} u^{3 n}+\ldots\right)\right. \tag{12}
\end{equation*}
$$

Tho value of I at any peint outside the wire depends only on
 buted within the wire. Hener we may maname that the value of H at the surface of the wire in A^{\prime} ' where A is a constant, to be determinod by caleulation from the women form of the eirenit. Putting $I I=A(1$ when $r=1$, we whtain

$$
\begin{equation*}
A\left(!=s+T_{n}+T_{1} n^{\prime \prime}+8 c+T_{n}+1^{2 n}+\ldots\right. \tag{13}
\end{equation*}
$$

If we now write ${ }^{n / u^{\prime \prime}}{ }^{\prime \prime}$ a, a in the value of the comluctivity of unit of length of the wire, and we have

To climinate I' from thosi equations wh mast first reverne the series (1.1). Wr thas fime

Wo have also from (14) and (15)

From the last two equations we find

If b is the whole length of the circuit, A ita resintance, and E the electromotive foree due to other caumes than tho induction of the current on itwelf,

$$
d s=\begin{align*}
& b \tag{17}\\
& d t
\end{aligned}, \quad a=\begin{aligned}
& l \\
& k
\end{align*}
$$

first term, Re, of the right-hand member of this equation sses the ollectromotive force required to overcome the resistaceording to Ohm's law.
second term, $/\left(A+\frac{1}{2}\right)^{d!}$ (l! "xpresses the electromotivo force would be employed in increasing the alectrokinctic mo.me of the cireuit, on the hypothesis that the current is of m strongeth at every point of the seetion of the wire. , remaining terms express tho correction of this value, If from the fact that the current is not of uniform strength flerent distaneen from the axis of the wire. The actual in of currents has a greater degree of froedom than the hetical Hystem, in which the current is constrained to be iform strength throughout the section. Hence the olectro-- fore required to produce a rapid change in the strength o current is somewhat less than it would ho on this hewis.
relation between the time-integral of tho electromotive and the time-integral of the ceurent is

$$
\begin{equation*}
\int L^{\prime} d t=R \int\left(c^{\prime} d t+l\left(A+\frac{1}{2}\right)\left(\frac{1}{1}-\frac{1}{1} \frac{l^{2} d \theta}{R d t}+\& c .\right.\right. \tag{19}
\end{equation*}
$$

he current before the begriming of the time has a constant (\%, and if during the time it rises to the valuo (C_{1}, and nis constant at that valuo, then the torms involving the ntial coofficients of ($\%$ vanish at both limits, and

$$
\begin{equation*}
\int E^{\prime} d t=R \int\left(c_{1} d t+1\left(A+\frac{1}{2}\right)\left(t_{1}^{\prime}-\left(t_{1}^{\prime}\right),\right.\right. \tag{20}
\end{equation*}
$$

me value of the wectromotive impulse as if the current had uniform throughout the wire*.

If the currenta flowing through the wire are periodio and vary as $e^{\text {iph }}$, the

the byatem behaven an if the rewiatance were

$$
a+\frac{1}{12} \mu^{2} l^{4} q^{2}-\frac{1}{180} \mu^{4} l^{4} q^{4}+\ldots
$$

self-induction

$$
l A+\mu \frac{l}{2}-\frac{1}{48} \mu^{3} l^{4} p^{3}, \cdots
$$

the effective remiatance in incroased when the currents are oscillatory, and finduction in diminished. As Maxwell points out, this effeot is due to the

$$
\begin{aligned}
& \lambda \\
& J_{n}= \\
& x
\end{aligned}=\frac{1}{1}, J_{1} x-n .
$$

wr have

or

$$
\begin{aligned}
& x_{4}-\frac{1}{1}, \frac{1}{3} \\
& A=-\frac{1}{1} \quad \frac{1}{12} \\
& \text { A. }-\frac{1}{1}, \frac{1}{*}
\end{aligned}
$$

current in a parallel conductor whose section is also given, we have to find the integral

$$
\iiint \int \log r d x d y d x^{\prime} d y^{\prime}
$$

where $d x d y$ is an element of the area of the first section, $d x^{\prime} d y^{\prime}$ an element of the second section, and r the distance between these elemonts, the integration being extended first over every clement of the first section, and then over every element of the seerond.

Hence substituting in equation (1) this value for $\frac{i n a J_{0}(\text { ina })}{J_{0}^{\prime}(\text { ina })}$, we get

$$
\begin{aligned}
& \frac{R}{l}=\frac{C \rho}{\pi a^{2}}\left\{1+\frac{1}{12}\left(\frac{\pi \mu p a^{2}}{\rho}\right)^{2}-\frac{1}{180}\left(\frac{\pi \mu p a^{2}}{\rho}\right)^{4}+\ldots\right\} \\
& +i C p\left\{A+\frac{\mu}{2}-\frac{1}{48} \frac{\pi^{2} \mu^{3} p^{2} a^{4}}{\rho^{2}}+\frac{13}{8640} \frac{\pi^{4} \mu^{5} p^{4} a^{8}}{\rho^{4}}-\ldots\right\}
\end{aligned}
$$

which agrees with (18) when $\mu=1$. This series is not convenient if na is large, but in that case $J_{0}^{\prime}{ }^{\prime}$ (ina) $=-i J_{0}$ (ina) ; Heine's Kugelfunctionen, p. 248, 2nd Edition. Hence when the rate of alternation is so rapid that $\mu p a^{2} / \rho$ is a large quantity,

$$
\begin{gathered}
\frac{E}{l}=\frac{C \rho}{2 \pi a} n+A i p C \\
n^{2}=4 \frac{\pi \mu i p}{\rho} \\
\frac{E}{l}=\sqrt{\frac{\rho p \mu}{2 \pi a^{2}}} C+i p C\left(A+\sqrt{\frac{\rho \mu}{2 \pi a^{2} p}}\right) .
\end{gathered}
$$

and since

Thus the resistance per unit length is

$$
\left\{\frac{\rho p \mu}{2 \pi a^{3}}\right\}^{\frac{1}{2}}
$$

and increases indefinitely as p increases.
The self-induction per unit length is

$$
A+\sqrt{\frac{\rho \mu}{2 \pi a^{2} p}}
$$

and approaches the limit A when p is infinite.
The magnetic force at a point inside the wire may be shown to be

$$
\begin{gathered}
\frac{2 C}{a} \frac{J_{0}^{\prime}(i n r)}{J_{0}^{\prime}(i n a)} \\
J_{0}^{\prime}(i n a)=-i \frac{e^{n a}}{\sqrt{\pi 2 n a}}
\end{gathered}
$$

When $n \alpha$ is large,
so that if $r=a-x$, the magnetic force at a distance x from the surface of the wire is

$$
\frac{2 C}{\sqrt{a(a-x)}} e^{-n x}
$$

Thus if n be very large, the magnetic force, and therefore the intensity of the current, diminishes very rapidly as we recede from the surface, so that the inner portion of the wire is free from magnetic force and current. Since $\mu^{\frac{1}{2}}$ occurs in n, these effects will be much more apparent in iron wires than in those made of non-magnetic metals.\}

If we now determine a line h, sude that this int erat is to

$$
A_{1} A, \operatorname{lng} H
$$

where A_{1} and A, are the arede of the twasetions, the len R will be the same whatever tuit of lenth we sulop whatover systom of legarithas so was. If we muppes sections divided into chemento of atimb size, then the loga of l, multiplied by the numatre of ghion of "homente, equal to the mum of the longrithas of the diatanem of a pairs of eloments. Here h any low ematemed an the peom
 evident that the value of $l i$ mat lat intornadinte betwe greatest and the leant whae of i.
 A and B, from a third, f^{\prime}, mod if H_{a}, a in that of the sum two figures from (", then

$$
(A+M) \log N_{i+1} n_{3}=A \log _{\mathrm{n}} l_{i}+N \log _{\mathrm{g}} N_{s}
$$

By monns of this rolation wh cath deterning if for a com figuro when wo know h for the parte the theres.
692.]

Dixamerem*

Mig. 18
(2) For two linem (F゙ig. 12) of longthe nat h drawn p dicular to the extrmitiow of a lime of longh a and on the side of it:

$$
\begin{aligned}
& \text { wh }(2 \log R+3)=\left(r^{2}-(a-b)^{2}\right) \log \sqrt{2}^{2} \cdot+(40-b)^{2}+x^{2} \operatorname{lo} \\
& +\left(a^{2} \quad x^{2}\right) \log v^{2} a^{2}+c^{2}+\left(a^{2} x^{2}\right) \log \sqrt{2}
\end{aligned}
$$

His. 42.
(3) For two lines, $I^{\prime}(Q$ and $R S$ (Fig. 43), whose directions intersect, at ();
$P\left(Q . R N(2 \log R+3)=\log P^{\prime} R\left(2() I^{\prime} \cdot O R \sin ^{2} O-P R^{2} \cos O\right)\right.$

$$
\begin{aligned}
& +\log \left(Q S^{\prime}\left(2 O Q . O \sin ^{2} O-Q S^{2} \cos O\right)\right. \\
& -\log P^{\prime}\left(2 O I^{2} O S^{2} \sin ^{2} O-I^{2} S^{2} \cos O\right) \\
& -\log \left(Q R\left(2 O Q \cdot O R \sin ^{2} O-Q R^{2} \cos O\right)\right.
\end{aligned}
$$

$$
-\sin (1) O I^{2} \cdot N^{\prime} R-O\left(Q^{2} \cdot N Q R+O R^{2} .1 \overparen{R} Q-O S^{2} . P \widehat{S} Q\right\}
$$

Mig. 43.
(4) For a point 0 and a rectangular aroa $A B C D$ (Fig. 44). Let $\left(1 l^{\prime}, O(2, O R, O S\right.$, he perpendiculars on the sides, then $A B . A I(2 \log l+3)=2 . O I^{\prime} . O Q \log O A+2 . O Q . O R \log O B$

$$
\begin{aligned}
& +2 . O R . O S \log O C+2 . O S \cdot O P \log O D \\
& +O R^{22} \cdot I O A+O Q^{2} \cdot A \widehat{O B} \\
& +O R^{2} \cdot B O C+O S^{2} \cdot O O D .
\end{aligned}
$$

Nig. 44.
(5) It is not necessary that the two figures should be different, for we may find the geometrical mean of the distances between every pair of points in the same figure. Thus, for a straight line of length a,

$$
\begin{aligned}
\log R & =\log a-\frac{3}{2}, \\
R & =a e^{-\frac{1}{1}} \\
R & =0.22313 a .
\end{aligned}
$$

$$
\begin{aligned}
& n \text { : } 10.1170 \mathrm{tan}
\end{aligned}
$$

(7) The gometrical menn diathan of a point fon a circular

 monn dintane from the centre if it in atimely onmble the ring, but, if it is entirely within the ting
 in this cose imdermbent of the form of the thero within the ring.
(9) The feometrical mon distane of all pairnof prints in the ring is found from the "quation

For a circular aren of ration of, thin beroman

$$
\begin{aligned}
& \text { or } \quad l=u=1 \text {. } \\
& \text { It: 0.77*ms }
\end{aligned}
$$

For a circular lino it beomem

$$
n=n
$$

$$
\log n=\log g^{n}: \ln -1.1
$$

693. In calculating the contheiont of molfinduetion of a coil of uniform section, the tmilus of curvature heing great compared with the dimensions of the transverme metion, we firat determine the geometrical nom of the dimancen of every pair of points of
the section by the method already described, and then we calculate the coefficient of mutual induction between two linear conductors of the given form, placed at this distance apart.

This will be the coefficient of self-induction when the total current in the coil is unity, and the current is uniform at all points of the section.

But if there are n windings in the coil we must multiply the coefficient already obtained by n^{2}, and thus we shall obtain the coefficient of self-induction on the supposition that the windings of the conducting wire fill the whole section of the coil.

But the wire is cylindric, and is covered with insulating material, so that the current, instead of being uniformly distributed over the section, is concentrated in certain parts of it, and this increases the coefficient of self-induction. Besides this, the currents in the neighbouring wires have not the same action on the current in a given wire as a uniformly distributed current.

The corrections arising from these considerations may be determined by the method of the geometrical mean distance. They are proportional to the length of the whole wire of the coil, and may be expressed as numerical quantities, by which we must multiply the length of the wire in order to obtain the correction of the coefficient of self-induction.

Let the diameter of the wire be d. It is covered with insulating material, and wound into a coil. We shall suppose that the sections of the wires are in square order, as in Fig. 45,

Fig. 45.
and that the distance between the axis of each wire and that of the next is D, whether in the direction of the breadth or the depth of the coil. D is evidently greater than d.

We have first to determine the excess of self-induction of unit
of length of a e? limbte wire af disumer d aser that of unit of length of a square wite af wide l, or

$$
\begin{aligned}
& \text { If for the semare } \\
& 2 \text { loge } h \text { fur the ceste }
\end{aligned}
$$

The inductive action of the wight nenmen rond wires on the wire under consideration is lume than that of the corresponding
 (.01971)*.

The eorrections for the wires at a grontor dintanee may be neglected, and the total correction may lo writion

$$
\left.2\left(\log _{0} 1\right)+0.11425\right)
$$

The final value of the mifimhuction in theremen

$$
L=n^{2} \|+21\left(\log _{4} l+0 \cdot 11+3 n\right)
$$

where a is the number of wimling and / the length of the wire, M the mutual induction of two circuite of the torm of the mean wire of the coil pheed at a distane firman obeh other, where R is the menn gemetrionl thatane lowtwen paim of primts of the seotion. I is the distane betwen conserative wires, and ol the dinmeter of the wire.

Fur 8 mquare wirom

Fors round wirem
heveo
and

$$
8 \operatorname{lon} \frac{\pi_{5}}{n}-015034
$$

Thin makem the butai correction

It In pranible howevor that in coloulating thin corpootion Maxwoll may have ned
 him paper. $\}$

CIIAP'TER XIV.

(GIRCULAAK (IURRENTS.

Matinetiar l'otential due to a Circular curvent.

694.] Tus magnotic potential at a given point, duo to a circuit carrying a unit ourrent, is numerioally equal to tho solid angle subtended by the circuit at that point; seo Arts. 109, 485.

When the circuit is circular, the solid angle is that of a cone of the second degree, which, when the given point is on the axis of the circle, becomos a right cone. When tho point is not on the axis, the cone is an diptio cone, and its solid angle is numerically equal to the aroa of the wherical ellipso which it traces on a sphere whose radius is unity.

This area can be expressed in finite terms by means of olliptic integrals of the third kind. We shall find it more convenient to expand it in the form of an infinite series of spherical harmonics, for the facility with which mathematical operations may be performed on the general term of such a sories more than counterbalances the trouble of calculating a number of terms sufficient to ensure practical acouracy.

For the sake of generality wo shall assume the origin at any point on the axis of the circle, that is to say, on the line through the centre perpendicular to the plane of the circle.

Let () (Fig. 46) be the centre of the circle, $(y$ the point on the axis which we assumo as origin, $I I$ a point on

Fig. 40. the circle.

Describe a sphere with $C l$ as centre, and $C H$ as radius. The
circle will lie on this sphere, and will form a small circle of the sphere of angular radius a.

Let

$$
\begin{aligned}
C H & =c \\
O C & =b=c \cos a \\
O H & =a=c \sin a .
\end{aligned}
$$

Let A be the pole of the sphere, and Z any point on the axis, and let $C Z=z$.

Let R be any point in space, and let $C R=r$, and $A C R=\theta$.
Let P be the point where $C R$ cuts the sphere.
The magnetic potential due to the circular current is equal to that due to a magnetic shell of strength unity bounded by the current. As the form of the surface of the shell is indifferent, provided it is bounded by the circle, we may suppose it to coincide with the surface of the sphere.

We have shewn in Art. 670 that if V is the potential due to a stratum of matter of surface-density unity, spread over the surface of the sphere within the small circle, the potential ω due to a magnetic shell of strength unity and bounded by the same circle is

$$
\omega=-\frac{1}{c} \frac{d}{d r}(r V)
$$

We have in the first place, therefore, to find V.
Let the given point be on the axis of the circle at Z, then the part of the potential at Z due to an element $d S$ of the spherical surface at P is

$$
\frac{d S}{Z P}
$$

This may be expanded in one of the two series of spherical harmonics,

$$
\begin{array}{r}
\quad \frac{d S}{c}\left\{P_{0}+P_{1} \frac{z}{c}+\& \mathrm{c} .+P_{i} \frac{z^{i}}{c^{i}}+\& \mathrm{c} .\right\}, \\
\text { or } \quad \\
\quad \frac{d S}{z}\left\{P_{0}+P_{1} \frac{c}{z}+\& \mathrm{c} .+P_{i} \frac{c^{i}}{z^{i}}+\& \mathrm{c} .\right\},
\end{array}
$$

the first series being convergent when z is less than c, and the second when z is greater than c.

Writing

$$
d S=-c^{2} d \mu d \phi
$$

and integrating with respect to ϕ between the limits 0 and 2π, and with respect to μ between the limits $\cos a$ and 1 , we find

$$
\begin{align*}
V & =2 \pi c\left\{\int_{\cos \alpha}^{1} P_{0} d \mu+\& c .+\frac{z^{i}}{c^{i}} \int_{\cos \alpha}^{1} P_{i} d \mu+\& c \cdot\right\} \tag{1}\\
\text { or } V^{\prime} & =2 \pi \frac{c^{2}}{z}\left\{\int_{\cos \alpha}^{1} P_{0} d \mu+\& c .+\frac{c^{i}}{z^{i}} \int_{\cos \alpha}^{1} P_{i} d \mu+\& c \cdot\right\}
\end{align*}
$$

By the characteristie cepuation of I_{i},

$$
\begin{gather*}
i(i+1) I_{i}^{\prime}+\stackrel{d}{d \mu \mu}\left[\left(1-\mu^{2}\right)_{d \mu}^{d l_{i}^{\prime}}\right]=0 \\
\int_{\mu}^{1} I_{i}^{\prime} d \mu=\frac{1-\mu^{2} d l_{i}^{\prime}}{i(i+1) d \mu} \tag{2}
\end{gather*}
$$

Hence
This expression fails when $i=0$, hat since $I_{0}^{\prime}=1$,

$$
\begin{equation*}
\int_{\mu}^{1} I_{11}^{\prime} l_{\mu}=1-\mu \tag{3}
\end{equation*}
$$

As the function ${ }^{\text {d }} l_{i}$ oecurs in every part of this investigation wo shall demote it hy the abbreviated symbol $I_{i}^{\prime \prime}$. The values of I_{i}^{\prime} eomeremonding to soveral values of i are given in Art. 698.

We are now ahle to write down the value of V for any point R, whether on the axis or not, hy substituting r for 2 , and multiplying each term hy the zonal harmonic of 0 of the same order. For 1 'must be eaprable of expmasion in a series of zonal harmonies of 0 with proper eoctlicients. When $0=0$ each of the zomal harmonies heommes equal to unity, and the point R lies on the axis. Hence tho costlicionts are the terme of the oxpmasion of l^{\prime} for a point on tho axis. Wo thus obtain the two series

$$
\begin{align*}
& r^{r}=2 \pi r\left\{1 \cdots \cos a+d \cdot c \cdot+\begin{array}{c}
\sin ^{2} a r^{\prime} \\
i(i+1) r^{\prime \prime}
\end{array} I_{i}^{\prime \prime}(a) Y_{i}^{\prime}(\theta)+\& c \cdot\right\}, \tag{4}
\end{align*}
$$

695. 1 Wo may now find ω, the magnetic potential of the circuit, hy the method of Art. 670 , from the equation

$$
\begin{equation*}
\omega=-\frac{1 d}{d d r}(V r) \tag{5}
\end{equation*}
$$

We thus ohtain the two series

$$
\omega=-2 n\left\{1-\cos a+d \mathrm{cc}+\begin{array}{c}
\sin ^{2} a r^{2} \tag{6}\\
i
\end{array} M_{i}^{\prime}(a) I_{i}^{\prime}(\theta)+d \mathrm{c} .\right\},
$$

or $\omega^{\prime}=2 \pi \sin ^{2} a\left\{\frac{1}{2} \frac{r^{2}}{r^{2}} P_{1}^{\prime}(a) I_{1}^{\prime}(0)+d \mathrm{c}+\begin{array}{c}1 \\ i+1 r^{i+1} \\ r^{i+1}\end{array} I_{i}^{\prime}(a) I_{i}^{\prime}(\theta)+8 \mathrm{c} \cdot\right\}$.
The series (6) is convergent for all values of r less than c, and the series (6 ') is convergent for all values of r greater than c. At the surface of the sphere, where $r=c$, the two sories give the amme value for ω when θ is greater than α, that is, for points
not oceupied by the magnetie whill, but when o is luse than a, that is, at points on the magnetio shell.

$$
\begin{equation*}
\omega^{\prime}=\omega+1+\pi \tag{7}
\end{equation*}
$$

If we assume 0 , the eentre of the cirele, an the origin of coordinates, we must $I^{\text {ut }} a=\frac{\pi}{2}$, and the serias lureme

where the orders of all the harmoners are shat.

69)6.] lat us herin hy supghsing the two maphetie shells which are "quivalent to the curronte to lue pertions of two conentric spheres, their ralii being

Fis. 47.
 (Fig 4i). lat us alwo suppose that the axw of the two shells coinciale, and that a_{t} is the anglo subtumbed by the rallius of the first whell, nul at the angle substomethl hy the rulius of the second whell at the contre l^{\prime}.

Lat whe the peotentind due to the firat sholl at bry perint within it, then the work requirel to carry the werond whell to an intinite distanco is the value of the surforeseintegral

$$
M=-\iint^{d} \ln d r d s
$$

 direct way as follow :-
 tobe

 text.
axtended over the second shell. Hence

$$
M=\int_{\mu_{2}}^{1} d \omega_{1} 2 \pi r_{2}^{2} d \mu_{2},
$$

 or, substituting the valuo of the integrals from equation (2), Art. (i! ! 1 ,
697. Let us next suppose that the axis of one of the shells is turned about (' as a centre, so that it now makos an anglo 0 with the axie of the other shell (Fig. 48). We have only to introduce the zomal harmonies of 0 into this expression for M, and wo find for the more general value of M,

$$
\begin{aligned}
& M=4 \pi^{\prime \prime} \sin ^{\prime \prime} a_{1} \sin ^{\prime \prime} a_{2} \prime_{2}^{\prime 2}\left\{\frac{1}{2}{ }^{\prime}{ }^{\prime 2} I_{1}^{\prime} I_{1}^{\prime}\left(a_{1}\right) I_{1}^{\prime \prime}\left(a_{2}\right) I_{1}^{\prime}(\theta)+\right.\text { Sc. } \\
& \left.+\underset{i(i+1)}{1} r_{1}^{\prime}{ }_{1}^{i} I^{\prime}\left(a_{1}\right) I_{i}^{\prime}\left(a_{2}\right) I_{i}^{\prime}(0)\right\}{ }^{*}
\end{aligned}
$$

This is tho value of the potential enorgy due to the mutual action of two circular currents of unit strongth, placed so that the normals through the centres of the circles meet in a point ${ }^{t}$ at an angle 0 , the distancers of the ciremuferences of the circles from the point (0 being c_{2} and c_{y}, of which c_{1} is the greater.

If any displacement dox alters the value of M, then the force acting in the direction of tho disphacement is

$$
X=\frac{d M}{d x}
$$

Fig. 48.

For instance, if the axis of one of the shells is free to turn about the point C, no as to causo 0 to vary, then the moment of the foree tending to increase θ is $(-)$, whero

$$
\Theta=\frac{d M}{d \theta}
$$

[^67]Performing the differentiation, and remembering that

$$
\frac{d P_{i}(\theta)}{d \theta}=-\sin \theta P_{i}^{\prime}(\theta),
$$

where P_{i}^{\prime} has the same signification as in the former equations,

$$
\begin{aligned}
\Theta=-4 \pi^{2} \sin ^{2} a_{1} \sin ^{2} a_{2} \sin \theta c_{2}\left\{\begin{array}{l}
\frac{1}{2} \frac{c_{2}}{c_{2}} P_{1}^{\prime}\left(a_{1}\right) P_{1}^{\prime}\left(a_{2}\right) F_{1}^{\prime}(\theta)+\& \mathrm{c} . \\
\\
\end{array} \quad+\frac{1}{i(i+1)} \frac{c_{2} c_{2}^{2}}{c_{1}^{2}} F_{i}^{\prime}\left(a_{1}\right) F_{i}^{\prime}\left(a_{2}\right) P_{i}^{\prime}(\theta)\right\} .
\end{aligned}
$$

698.] As the values of P_{i}^{\prime} occur frequently in these calculations the following table of values of the first six degrees may be useful. In this table μ stands for $\cos \theta$, and ν for $\sin \theta$.

$$
\begin{aligned}
& P_{1}^{\prime}=1, \\
& P_{2}^{\prime}=3 \mu, \\
& P_{3}^{\prime}=\frac{3}{2}\left(5 \mu^{2}-1\right)=6\left(\mu^{2}-\frac{1}{4} \nu^{2}\right), \\
& P_{4}^{\prime}=\frac{5}{2} \mu\left(7 \mu^{2}-3\right)=10 \mu\left(\mu^{2}-\frac{3}{4} \nu^{2}\right), \\
& P_{5}^{\prime}=\frac{15}{8}\left(21 \mu^{4}-14 \mu^{2}+1\right)=15\left(\mu^{4}-\frac{3}{2} \mu^{2} \nu^{2}+\frac{1}{8} \nu^{4}\right), \\
& P_{0}^{\prime}=\frac{22}{8} \mu\left(33 \mu^{4}-30 \mu^{2}+5\right)=21 \mu\left(\mu^{4}-\frac{5}{2} \mu^{2} \nu^{2}+\frac{5}{8} \nu^{4}\right) .
\end{aligned}
$$

699.] It is sometimes convenient to express the series for M in terms of linear quantities as follows:-

Let a be the radius of the smaller circuit, b the distance of its plane from the origin, and $c=\sqrt{a^{2}+b^{2}}$.
Let A, B, and C be the corresponding quantities for the larger circuit.
The series for M may then be written,

$$
\begin{aligned}
M= & 1.2 \cdot \pi^{2} \frac{A^{2}}{C^{3}} a^{2} \cos \theta \\
& +2.3 \cdot \pi^{2} \frac{A^{2} B}{C^{5}} a^{2} b\left(\cos ^{2} \theta-\frac{1}{2} \sin ^{2} \theta\right) \\
& +3.4 . \pi^{2} \frac{A^{2}\left(B^{2}-\frac{1}{4} A^{2}\right)}{C^{7}} a^{2}\left(b^{2}-\frac{1}{4} a^{2}\right)\left(\cos ^{3} \theta-\frac{3}{2} \sin ^{2} \theta \cos \theta\right) \\
& +\& c .
\end{aligned}
$$

If we make $\theta=0$, the two circles become parallel and on the same axis. To determine the attraction between them we may differentiate M with respect to b. We thus find

$$
\frac{d M}{d b}=\pi^{2} \frac{A^{2} a^{2}}{C^{ \pm}}\left\{2.3 \frac{B}{C}+2.3 .4 \frac{B^{2}-\frac{1}{4} A^{2}}{C^{3}} b+\& c .\right\}
$$

700.] In calculating the effect of a coil of rectangular section we have to integrate the expressions already found with respect to A, the radius of the coil, and B, the distance of its plane from the origin, and to extend the integration over the breadth and depth of the coil.

In some cases direct integration is the most convenient, but there are others in which the following method of approximation leads to more useful results.

Let P be any function of x and y, and let it be required to find the value of \bar{P} where

$$
P x y=\int_{-\frac{1}{2} x}^{+\frac{1}{2} x} \int_{-\frac{1}{2} y}^{+\frac{1}{2} y} P d x d y
$$

In this expression \bar{P} is the mean value of P within the limits of integration.

Let P_{0} be the value of P when $x=0$ and $y=0$, then, expanding P by Taylor's Theorem,

$$
P=P_{0}+x \frac{d P_{0}}{d x}+y \frac{d P_{0}}{d y}+\frac{1}{2} x^{2} \frac{d^{2} P_{0}}{d x^{2}}+\& c .
$$

Integrating this expression between the limits, and dividing the result by $x y$, we obtain as the value of \bar{P},

$$
\begin{aligned}
\bar{P}=P_{0} & +\frac{1}{24}\left(x^{2} \frac{d^{2} P_{0}}{d x^{2}}+y^{2} \frac{d^{2} P_{0}}{d y^{2}}\right) \\
& +{ }_{\Gamma^{\frac{1}{2}} \sigma}\left(x^{4} \frac{d^{4} P_{0}}{d x^{4}}+y^{4} \cdot \frac{d^{4} P_{0}}{d y^{4}}\right)+{ }_{5}^{\frac{1}{7} \sigma} x^{2} y^{2} \frac{d^{4} P_{u}}{d x^{2} d y^{2}}+\& c .
\end{aligned}
$$

In the case of the coil, let the outer and inner radii be $A+\frac{1}{2} \xi$, and $A-\frac{1}{2} \xi$ respectively, and let the distances of the planes of the windings from the origin lie between $B+\frac{1}{2} \eta$ and $B-\frac{1}{2} \eta$, then the breadth of the coil is η, and its depth ξ, these quantities being small compared with A or C.

In order to calculate the magnetic effect of such a coil we may write the successive terms of the series (6) and (6^{\prime}) of Art. 695 as, follows :-

$$
\begin{aligned}
& G_{0}=\pi \frac{B}{C}\left(1+\frac{1}{24} \frac{2 A^{2}-B^{2}}{C^{4}} \xi^{2}-\frac{1}{8} \frac{A^{2}}{C^{4}} \eta^{2}+\ldots\right), \\
& G_{1}=2 \pi \frac{A^{2}}{C^{3}}\left\{1+\frac{1}{24}\left(\frac{2}{A^{2}}-15 \frac{B^{2}}{C^{4}}\right) \xi^{2}+\frac{1}{8} \frac{4 B^{2}-A^{2}}{C^{4}} \eta^{2}+\ldots\right\}, \\
& G_{2}=3 \pi \frac{A^{2} B}{C^{5}}\left\{1+\frac{1}{24}\left(\frac{2}{A^{2}}-\frac{25}{C^{2}}+\frac{35 A^{2}}{C^{ \pm}}\right) \xi^{2}+\frac{5}{24} \frac{4 B^{2}-3 A^{2}}{C^{4}} \eta^{2}+\ldots\right\},
\end{aligned}
$$

$$
\begin{gathered}
G_{3}=4 \pi \cdot \frac{A^{2}\left(B^{2}-\frac{1}{4} A^{2}\right)}{C^{7}}+\frac{\pi}{24} \frac{\xi^{2}}{C^{11}}\left\{C^{4}\left(8 B^{2}-12 A^{2}\right)+35 A^{2} B^{2}\left(5 A^{2}-4 B^{2}\right)\right\} \\
.+\frac{5}{8} \frac{\pi \eta^{2}}{C^{11}} A^{2}\left\{A^{4}-12 A^{2} B^{2}+8 B^{4}\right\}
\end{gathered}
$$

\&c., \&c.;

$$
\begin{array}{ll}
g_{1}=\pi a^{2} & +\frac{1}{12} \pi \xi^{2} \\
g_{2}=2 \pi a^{2} b & +\frac{1}{6} \pi b \xi^{2} \\
g_{3}=3 \pi a^{2}\left(b^{2}-\frac{1}{4} a^{2}\right)+\frac{\pi}{8} \xi^{2}\left(2 b^{2}-3 a^{2}\right)+\frac{\pi}{4} \eta^{2} a^{2} \\
\text { \&c., \&c. }
\end{array}
$$

The quantities G_{0}, G_{1}, G_{2}, \&c. belong to the large coil. The value of ω at points for which r is less than C is

$$
\omega=-2 \pi+2 G_{0}-G_{1} r P_{1}(\theta)-G_{2} r^{2} P_{2}(\theta)-\& c
$$

The quantities g_{1}, g_{2}, \&c. belong to the small coil. The value of ω^{\prime} at points for which r is greater than c is

$$
\omega^{\prime}=g_{1} \frac{1}{r^{2}} P_{1}(\theta)+g_{2} \frac{1}{r^{3}} F_{2}(\theta)+\& \mathrm{c}
$$

The potential of the one coil with respect to the other when the total current through the section of each coil is unity is

$$
M=G_{1} g_{1} P_{1}(\theta)+G_{2} g_{2} P_{2}(\theta)+\& c
$$

To find M by Elliptic Integrals.

701.] When the distance of the circumferences of the two circles is moderate as compared with the radius of the smaller, the series already given do not converge rapidly. In every case, however, we may find the value of M for two parallel circles by elliptic integrals.

For let b be the length of the line joining the centres of the circles, and let this line be perpendicular to the planes of the two circles, and let A and a be the radii of the circles, then

$$
M=\iint \frac{\cos \epsilon}{r} d s d s^{\prime}
$$

the integration being extended round both curves.
In this case,

$$
\begin{gathered}
r^{2}=A^{2}+a^{2}+b^{2}-2 A \alpha \cos \left(\phi-\phi^{\prime}\right) \\
\epsilon=\phi-\phi^{\prime}, \quad d s=a d \phi, \quad d s^{\prime}=A d \phi^{\prime},
\end{gathered}
$$

$$
\begin{gathered}
M=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{A \alpha \cos \left(\phi-\phi^{\prime}\right) d \phi d \phi^{\prime}}{\sqrt{A^{2}+a^{2}+b^{2}-2 A \alpha \cos \left(\phi-\phi^{\prime}\right)}} \\
=-4 \pi \sqrt{A \alpha}\left\{\left(c-\frac{2}{c}\right) F+\frac{2}{c} E\right\} \\
c=\frac{2 \sqrt{A a}}{\sqrt{(A+a)^{2}+b^{2}}}
\end{gathered}
$$

where
and F and E are complete elliptic integrals to modulus c.
From this, remembering that

$$
\frac{d F}{d c}=\frac{1}{c\left(1-c^{2}\right)}\left\{E-\left(1-c^{2}\right) F\right\}, \quad \frac{d E}{d c}=\frac{1}{c}(E-F),
$$

and that c is a function of b, we find

$$
\frac{d M}{d b}=\frac{\pi}{\sqrt{A \alpha}} \frac{b c}{1-c^{2}}\left\{\left(2-c^{2}\right) E-2\left(1-c^{2}\right) F_{\}}\right\}
$$

If r_{1} and r_{2} denote the greatest and least values of r,

$$
r_{1}^{2}=(A+a)^{2}+b^{2}, \quad r_{2}^{2}=(A-a)^{2}+b^{2}
$$

and if an angle γ be taken such that $\cos \gamma=\frac{r_{2}}{r_{1}}$,

$$
\frac{d M}{d b}=-\pi \frac{b \sin \gamma}{\sqrt{A \alpha}}\left\{2 F_{\gamma}-\left(1+\sec ^{2} \gamma\right) E_{\gamma}\right\}
$$

where F_{γ} and E_{γ} denote the complete elliptic integrals of the first and second kind whose modulus is $\sin \gamma$.

$$
\text { If } \begin{aligned}
A=a, \cot \gamma & =\frac{b}{2 a}, \text { and } \\
\frac{d M}{d b} & =-2 \pi \cos \gamma\left\{2 F_{\gamma}-\left(1+\sec ^{2} \gamma\right) E_{\gamma}\right\}
\end{aligned}
$$

The quantity $-\frac{d M}{d b}$ represents the attraction between two parallel circular circuits, the current in each being unity.

On account of the importance of the quantity M in electromagnetic calculations the values of $\log (M / 4 \pi \sqrt{A \alpha})$, which is a function of c and therefore of γ only, have been tabulated for intervals of 6^{\prime} in the value of the angle γ between 60 and 90 degrees. The table will be found in an appendix to this chapter.

Neromel Bramesmen for M.

An expression for M, which is nometimes more conveniont, is got hy making $c_{1}=\begin{aligned} & r_{1}-r r_{1} \\ & r_{1}+r_{2}\end{aligned}$, in whim ans.

$$
* M=8 \pi v^{\prime} A 1_{1} \frac{1}{\sqrt{r_{1}}} ; F^{\prime}\left(r_{1}\right) \quad E\left(r_{1}\right): .
$$

702. The lines of manetio fore are whdently in planes, passing through the axis of the cirche, amb in oneh of these lines the value of M is constant.

Calculate the value of $K_{0}^{\prime}=\frac{\text { sint }}{\left(k_{\text {sin }}-b_{\text {nita }}^{\prime}\right)^{\text {a }}}$ from Lagendre's tables for a sufficient number of values of θ.

Draw rectangular axes of x and * on the paper the origin boing at the centre of the circle and the axis of : the axis of the circles, and, with emire at the point $x=1$ (xin $t+$ cosese θ), draw a circle with radius $\frac{1}{2}$ (cosed 0 - sin 1$)$. For all points of this cirele the value of r_{2} will los sin 0 . Hener, for all points of this cirela,

Now A is tho value of x for which the value of M was found. Hence, if wu draw a line for which $r=A$, it will ent the circle in two prointa having the given value of M.

Giving M a sories of valuen in arithmetical progrewsion, the values of A will be as a sories of nguares, Drawing therefore a sories of lines parallel to a, for which x has the values found for A, the pointes where these lines cut the circle will the the points where the corresponding lines of foree cat the circle.

[^68]If
then

$$
\begin{aligned}
& F(0)-\left(1+c_{4}\right) F\left(r_{1}\right), \\
& \left.E^{\prime}\left(O_{0}\right)-\frac{2}{1+c_{2}} E\left(c_{1}\right)-\left(1-a_{1}\right) H_{(}^{*}\left(c_{1}\right)\right]
\end{aligned}
$$

If wo put $m=8 \pi \mu$, and $M=n m$, then

$$
\Lambda=x_{1}=n^{2} h_{\theta(\mathrm{l}}^{r} .
$$

We may call $\%$ the index of the line of force.
The forms of these lines are wiven in Fig. XVIIT at the end of this volume. They are copied from a drawing given by Sir W. Thomson in his paper on 'Vortex Motion'.*
70) 3 . If the pesition of a cirele having a given axis is rogarded as defined by b, the distance of its eemtre from a fixed point on the axis, and "the radius of the circle, then M, the cocefticient of induction of the cirele with respect to any system whatever of magnets or courents, is subject to the following equation,

$$
\begin{equation*}
\frac{d^{2} M}{d d^{2}}+\frac{d^{2} M I}{d b^{2}}-\frac{1}{\pi} d M=0 \tag{1}
\end{equation*}
$$

To prove this, let us consider tho number of lines of magnetic fore cout by the cirele when a or b is made to vary.
(1) Let a become atoba, bromaining constant. During this variation the cirelo, in expanding, wweeps over an annular surface in its own plane whose bresulth is δ a.

If V is the magnotic potential at any point, and if the axis of If be parallel to that of the circle, thon the magnetic forco perpendicular tor the phane of the ring is $-\frac{d V}{d y}$.

To find the magnotic induction through tho annular surface we have to integrate

$$
-\int_{0}^{8 \pi} a_{1} \delta a \frac{d F^{*}}{d y} d \theta
$$

where 0 is the angular position of a point on the ring.
But this quantity represents the variation of M due to the variation of a, or ${ }^{d}$ da ${ }^{\text {bot. Hene }}$

$$
\begin{equation*}
d / d I=-\int_{0}^{2 \pi} d d \frac{d V}{d y} d \theta \tag{2}
\end{equation*}
$$

(2) Let become $b+\delta b$, while a romains constant. During this variation the circle sweeps over a eylindric surface of radius a and length $8 b$, (and the lines of force which pass through this surface are those which cease to pass through the circle\}.

The magnotic force perpondioular to this surface at any point is $-\frac{d V}{d r}$, where r is the distance from the axis. Hence

$$
\begin{equation*}
\frac{d M}{d b}=\int_{0}^{2 \pi}{ }_{0}^{2} d V d r d \theta . \tag{3}
\end{equation*}
$$

- Irana. IL. S. Bílin., vol. xxv. p. 217 (1869).

Differentiating equation (2) with resuet for ", and (i) with respece to b, wo get

$$
\begin{align*}
& =\begin{array}{l}
1 / 1 / \mathrm{M} \\
\text { it th by (2). }
\end{array} \tag{6}
\end{align*}
$$

Hence

Transposing the last term we ohtain equation (1).
 Distener beturest the Ares is sumell rampariol writh the Redies of either Eiarte.
704.) Womight dedue the value of M in this rase from the oxpansion of the olliptie integrala alremy given when their modulus is nearly mity. The following thethen, howewer, is a more direct application of wectrical prineipher.

firat Alymurimetion.

 betweon their phanes, than the shortont dinanee het weon thair cireumferonees is ariven by

$$
r=\sqrt{1}+1 n^{2}
$$

Wo have to fim the magnetic: induction through the one cirele dae tor a unit current in the wher.

Wo shall berg by wupposing the two cirches tu lat in one phane. ('onsidar asmall eloment bis of the cirelo whose ralius is $a+c$. At a point, in the plane of the cirele, dintant p from the

 the phane and equal to

$$
\mu^{r^{2}} \sin \theta \Delta x
$$

To caleulate the surfae intugral of this foren over the space which lios within the circlo of radiun a wo munt tind the value of the intergral

$$
2 n s \int_{\theta_{4}}^{t w} \int_{0}^{2 \sin \theta} p d o d p
$$

where r_{1}, r_{2} are the roots of the equation

$$
r^{2}-2(\alpha+c) \sin \theta r+c^{2}+2 a c=0,
$$

viz.

$$
\begin{aligned}
& r_{1}=(a+c) \sin \theta+\sqrt{(a+c)^{2} \sin ^{2} \theta-c^{2}-2 a c}, \\
& r_{2}=(a+c) \sin \theta-\sqrt{(a+c)^{2} \sin ^{2} \theta-c^{2}-2 a c},
\end{aligned}
$$

and

$$
\sin ^{2} \theta_{1}=\frac{c^{2}+2 a c}{(c+a)^{2}} .
$$

When c is small compared to a we may put

$$
\begin{aligned}
& r_{1}=2 \alpha \sin \theta, \\
& r_{2}=c / \sin \theta .
\end{aligned}
$$

Integrating with regard to ρ we have

$$
\begin{aligned}
& 2 \delta \delta \int_{\theta_{1}}^{\frac{1 \pi}{2} \pi} \log \left(\frac{2 \alpha}{c} \sin ^{2} \theta\right) \cdot \sin \theta d \theta= \\
& 2 \delta s\left[\cos \theta\left\{2-\log \left(\frac{2 \alpha}{c} \sin ^{2} \theta\right)\right\}+2 \log \tan \frac{\theta}{2}\right]_{\theta_{1}}^{\frac{\pi}{2}} \\
& =2 \delta s\left(\log _{\mathrm{a}} \frac{8 \alpha}{c}-2\right), \text { nearly. }
\end{aligned}
$$

We thus find for the whole induction

$$
M_{a c}=4 \pi \alpha\left(\log _{e} \frac{8 \alpha}{c}-2\right) .
$$

Since the magnetic force at any point, the distance of which from a curved wire is small compared with the radius of curvature, is nearly the same as if the wire had been straight, we can (Art. 684) calculate the difference between the induction through the circle whose radius is $a-c$ and the circle A by the formula

$$
M_{a A}-M_{a c}=4 \pi a\left\{\log _{e} c-\log _{e} r\right\} .
$$

Hence we find the value of the induction between A and a to be

$$
M_{A a}=4 \pi a\left(\log _{\epsilon} 8 a-\log _{\epsilon} r-2\right)
$$

approximately, provided r the shortest distance between the circles is small compared with a.
705.] Since the mutual induction between two windings of the same coil is a very important quantity in the calculation of experimental results, I shall now describe a method by which the approximation to the value of M for this case can be carried to any required degree of accuracy.

We shall assume that the value of M is of the form

$$
M=4 \pi\left\{A \log _{e} \frac{8 a}{r}+B\right\},
$$

where $A=a+A_{1} x+A_{2} \frac{x^{2}}{a}+A_{2}{ }^{\prime} \frac{y^{2}}{a}+A_{3} \frac{x^{3}}{a^{2}}+A_{3} \frac{x y^{2}}{a^{2}}+\& c$.

$$
+\alpha^{-(n-1)}\left\{x^{n} A_{n}+x^{n-2} y^{2} A_{n}^{\prime}+x^{n-4} y^{4} A_{n}^{\prime \prime}+\ldots\right\}+\& c
$$

and

$$
B=-2 a+B_{1} x+B_{2} \frac{x_{2}}{\alpha}+B_{2}^{\prime} \frac{y^{2}}{a}+B_{3} \frac{x^{3}}{a^{2}}+B_{3}^{\prime} \frac{x y^{2}}{a^{2}}+\& c
$$

where α and $\alpha+x$ are the radii of the circles, and y the distance between their planes.

We have to determine the values of the coefficients A and B. It is manifest that only even powers of y can occur in these quantities, because, if the sign of y is reversed, the value of M must remain the same.

We get another set of conditions from the reciprocal property of the coefficient of induction, which remains the same whichever circle we take as the primary circuit. The value of M must therefore remain the same when we substitute $a+x$ for a, and $-x$ for x in the above expressions.

We thus find the following conditions of reciprocity by equating the coefficients of similar combinations of x and y,

$$
\begin{array}{cl}
A_{1}=1-A_{1}, & B_{1}=1-2-B_{1}, \\
A_{3}=-A_{2}-A_{3}, & B_{3}=\frac{1}{3}-\frac{1}{2} A_{1}+A_{2}-B_{2}-B_{3}, \\
A_{3}^{\prime}=-A_{2}^{\prime}-A_{3}^{\prime}, & B_{3}^{\prime}= \\
(-)^{n} A_{n} & =A_{2}+(n-2) A_{3}+\frac{(n-2)(n-3)}{1.2} A_{4}+\& c .+A_{n}^{\prime}-B_{3}^{\prime} \\
(-)^{n} B_{n} & =-\frac{1}{n}+\frac{1}{n-1} A_{1}-\frac{1}{n-2} A_{2}+\& c .+(-)^{n} A_{n-1} \\
& +B_{2}+(n-2) B_{3}+\frac{(n-2)(n-3)}{1.2} B_{4}+\& c .+B_{n} .
\end{array}
$$

From the general equation of M, Art. 703,

$$
\frac{d^{2} M}{d x^{2}}+\frac{d^{2} M}{d y^{2}}-\frac{1}{a+x} \frac{d M}{d x}=0
$$

we obtain another set of conditions;

$$
\begin{gathered}
2 A_{2}+2 A_{2}^{\prime}=A_{1}, \\
2 A_{2}+2 A_{2}^{\prime}+6 A_{3}+2 A_{3}^{\prime}=2 A_{2} ; \\
n(n-1) A_{n}+(n+1) n A_{n+1}+1.2 A_{n}{ }^{\prime}+1.2 A_{n+1}^{\prime}=n A_{n}, \\
*(n-1)(n-2) A_{n}^{\prime}+n(n-1) A_{n+1}^{\prime}+2.3 A^{\prime \prime}{ }_{n}+2.3 A^{\prime \prime}{ }_{n+1} \\
=(n-2) A_{n}^{\prime}, \& \mathrm{c} . ; \\
4 A_{2}+A_{1}=2 B_{2}+2 B_{2}^{\prime}-B_{1}=4 A_{2}^{\prime}, \\
6 A_{3}+3 A_{2}=2{B_{2}^{\prime}}_{2}+6 B_{3}+2 B_{3}^{\prime}=6 A_{3}^{\prime}+3 A_{2}^{\prime},
\end{gathered}
$$

[^69]\[

1) $$
\begin{aligned}
A_{n}+(2 n+2) A_{n+1}= & =(2 n-\cdots 1) A_{n}^{\prime}+(2 n+2) A_{n+1}^{\prime} \\
& =n(n \cdots 2) B_{n}+(n+1) n B_{n+1}+1.2 B_{n}^{\prime}+1.2 B_{n+1}^{\prime} .
\end{aligned}
$$
\]

lving these equations and substituting the values of the eients，the series for $M I$ hecomes

$$
\begin{aligned}
& =4 \pi u \log _{r}^{x_{0}}\left\{1+\frac{1}{2} a+r^{r}+3 y^{2}-\frac{x^{3}+3 a y^{2}}{32\left(6 u^{3}\right.}+\& c .\right\}
\end{aligned}
$$

whe the firrm of＇＂roil for which the cocefferient of self－ whutione is a muximum，the total lenglh．and thieliness of cavire bein！！tiene．
；．］Omitting the corrections of Art．705，wo find by Art． 693

$$
L=1 \pi n^{2}{ }^{\prime}\left(\log _{R}^{8}-2\right)
$$

o n is the number of windings of the wire，＂is the monn s of the coil，and R is the gromotrical moan distance of thes） verse section of the coil from itsolf．Soo Art．691．If this n is always similar to itself，l is proportional to its linear asions，and n varies as R^{2} ．
ece the total length of tho wire is $2 \pi ⿰ 丿 ⿱ 丄 𠃍 反 口, ~ a$ varios inversely Hence

$$
{ }_{n}^{d n}=2_{R}^{d R}, \text { and } \frac{d, t}{d}=-2 \frac{d R}{R},
$$

Ve find the condition that L may bo a maximum

$$
\log ^{8 / 1}=7
$$

he transverse section of the channel of the coil is eirculer， lius c＇，then，by Art．692，

$$
\begin{array}{r}
\log { }_{r}^{R}=-\frac{1}{4} \\
\text { and } \quad \log _{a}^{8}{ }_{6}={ }_{4}^{18} \\
u=3 \cdot 22 c ;
\end{array}
$$

hin remult may he obtained directly hy the method suggented in＂Art．704， the mxpanions of the elliptic integrals in the exprestion for M found in 1．Sw Cnyley＇n ELliqutio F＇wnetions，Art．75．］
 the transwerse sertion of the chamel of the coil in order that such a coil may have the groatout vonfficint of self induction This result, was found by (ianss*.

If the chanel in which the coil in womm has a sumare trans. verse seretion, the mann diameter of the coit whom he 3.7 time the side of the square seretion of the chamet.

APPENDIX I.

Table of the values of $\log \frac{M}{4 \pi \sqrt{A \alpha}}$ (Art. 701).
The Lotyarithms are to base 10.

	$\log \frac{M}{4 \pi \sqrt{ } A \\|}$.		$\log \frac{M}{4 \pi \sqrt{\text { A }} \cdot}$.		$\log \frac{M}{4 \pi \sqrt{A a}}$.
$60^{\circ} \quad 0^{\prime}$	I-4994783	$63^{\circ} 30^{\prime}$	T. 5963782	$67^{\circ} 0^{\prime}$	1. 6927081
	1.5022651	36^{\prime}	I-5991329	6^{\prime}	I-6954642
12^{\prime}	I.5050505	12^{\prime}	T-6018871	12^{\prime}	I. 6982209
18^{\prime}	I. 5078345	48^{\prime}	T.6046408	18^{\prime}	I. 7009782
24^{\prime}	İ.5106173	54^{\prime}	T-6073942	24^{\prime}	1.7037362
30^{\prime}	1.5133989	$64^{\circ} 0^{\prime}$	I. 6101472	30^{\prime}	I. 7064949
$36{ }^{\prime}$	T-5161791	6^{\prime}	T-6128998	36^{\prime}	1.7092544
42^{\prime}	I. 5189582	12^{\prime}	I.6156522	42^{\prime}	I.7120146
48^{\prime}	1.5217361	18^{\prime}	1.6184042	48^{\prime}	I. 7147756
54^{\prime}	T.52.15128	24^{\prime}	I-6211560	54^{\prime}	I. 7175375
$61^{\circ} 0^{\prime}$	I.5272883	30^{\prime}	I-6239076	$68^{\circ} 0^{\prime}$	I. 7203003
	T-5300628	36^{\prime}	İ.6266589	$6{ }^{\prime}$	İ7230640
12^{\prime}	1.5328361	42^{\prime}	I. 6294101	12^{\prime}	1. 7258286
18^{\prime}	T.5356008.1	48^{\prime}	T-6321612	18^{\prime}	I. 7285942
$2 \cdot 1{ }^{\prime}$	I.5383796	54^{\prime}	I. T -649121	24^{\prime}	1.7313609
30^{\prime}	I.5.11.198	$65^{\circ} \quad 0^{\prime}$	T. 6376629	30^{\prime}	I. 7341287
36^{\prime}	T-5.139190	6^{\prime}	T. 6404137	36^{\prime}	1. 7368975
12^{\prime}	T.5466872	12^{\prime}	I. 6431645	42^{\prime}	I. 7396675
48^{\prime}	T. 5194545	18^{\prime}	I. 6459153	48^{\prime}	1. 7424387
54^{\prime}	I. 5522209	24^{\prime}	I. 6486660	54^{\prime}	1.7452111
$62^{\circ} 0^{\prime}$	$\overline{1} .5549864$	30^{\prime}	T. 6514169	$69^{\circ} 0^{\prime}$	I.7479848
6^{\prime}	T.5577510	36^{\prime}	1. 6541678	6^{\prime}	I. 7507597
12^{\prime}	1.5605147	12^{\prime}	T.6569189	12^{\prime}	1.7535361
18^{\prime}	1.5632776	48^{\prime}	T. 6596701	18^{\prime}	I. 7563138
24^{\prime}	1.5660398	54^{\prime}	T.6624215	24^{\prime}	I. 7590929
30^{\prime}	T.5688011	$66^{\circ} 0^{\prime}$	T. 6651732	30^{\prime}	I. 7618735
36^{\prime}	T-5715618	6^{\prime}	I. 6679250	36^{\prime}	İ7646556
42^{\prime}	1.5743217	12^{\prime}	I.6706772	42^{\prime}	İ7674392
48^{\prime}	T.5770809	18^{\prime}	I.6734296	48^{\prime}	I. 7702245
54^{\prime}	T. 5798394	24^{\prime}	T. 6761824	54^{\prime}	1.7730114
$63^{\circ} 0^{\prime}$	T.5825973	30^{\prime}	I-6789356	$70^{\circ} 0^{\prime}$	1.7758000
$6{ }^{\prime}$	1.5853546	36^{\prime}	T.6816891	6^{\prime}	1.7785903
12^{\prime}	1.5881113	42^{\prime}	İ.6844431	12^{\prime}	T.7813823
18^{\prime}	1.5908675	48^{\prime}	T. 6871976	18^{\prime}	I.7841762
24^{\prime}	$\overline{\mathrm{I}} .5936231$	54^{\prime}	I.6899526	24^{\prime}	I. 7869720

	$\log _{4 \pi \sqrt{ } A i}^{M} .$		$\log _{4 \pi \sqrt{ } A}{ }^{M}$		$\log \frac{M}{4 \pi \sqrt{A a}}$.
$)^{\prime}$	-2217823	$86^{\circ} 0{ }^{\prime}$	$\cdot 3139097$	$88^{\circ} 0^{\prime}$	- 4385420
6^{\prime}	-2959728	6^{\prime}	-3191092	6^{\prime}	. 4465341
12^{\prime}	-2301983	12^{\prime}	. 324.3813	12^{\prime}	. 4548064
18	-23.14600	18^{\prime}	-3297387	18^{\prime}	. 1633888
21	-2387591	21^{\prime}	-3351762	24^{\prime}	. 4723127
30^{\prime}	-2130970	$3)^{\prime}$	$\cdot 3 \cdot 107012$	30^{\prime}	. 4816206
36^{\prime}	$\therefore 2 \cdot 17 \cdot 178$	$36{ }^{\prime}$	- $3 \cdot 163184$	36^{\prime}	.4913595
	. 25180.10	-12 ${ }^{\prime}$	- 3520327	12'	-5015870
M^{\prime}	-2563561	48^{\prime}	. 3578495	48^{\prime}	. 5123738
$5 \cdot 1^{\prime}$	-2608020	$5 \cdot 1^{\prime}$. 3637749	54^{\prime}	. 5238079
,	- 2654152	$87^{\prime \prime} 0^{\prime}$. 3698153	$89^{\circ} \quad 0^{\prime}$. 5360007
0^{\prime}	. 2700156	6^{\prime}	. 3759777	6^{\prime}	-5490969
12^{\prime}	-27.16655	12^{\prime}	.3822700	12^{\prime}	-5632886
18^{\prime}	. 2793670	18^{\prime}	-3887006	18^{\prime}	-5788406
24	-2841221	24^{\prime}	-3952792	$2 \cdot{ }^{\prime}$	-5961320
30^{\prime}	-2889329	30^{\prime}	- 1020162	30^{\prime}	-(157370
	-2938014	366^{\prime}	. 1089234	36^{\prime}	-6385907
	-2987312	42^{\prime}	. 1160138	42^{\prime}	-66(6)883
	-3037238	188^{\prime}	- 12333022	48^{\prime}	. 7027765
t^{\prime}	. 3087823	6.18	-4308053	54^{\prime}	. 7586941

TAPMENHX 11.

 four.

b the distume lactwer theire entros.
$2 h, 2 h^{\prime}$ the rathal harathes of the conte.

$$
\begin{aligned}
& \frac{1}{6} n n^{\circ}+f\left(a, a^{\prime}, b+k\right)+f\left(n, a^{\prime}, b,-\quad A\right) \\
& +f\left(a, a^{\prime}, b+k^{*}\right)+f\left(n, n^{n}, b-h^{n}\right) \\
& -2 f\left(a, a^{\prime}, b\right) \text {. }
\end{aligned}
$$

$\{$ APPENHM 111.

Stlimindurtion of a rivelter cuil uf "romatular metion.
If at denote the maran radian of as coil of n witulitane whome axial

 Aun. xxi. bag to low

$$
\text { L. }=1 \pi n^{3}(n A+n)
$$

where, writing of for b / d,

$$
\begin{aligned}
& \lambda=\log _{0}^{4} \frac{1}{0}+\frac{1}{12}-\frac{\pi}{3}-\frac{1}{2} \log \left(1+x^{3}\right)+\frac{1}{12 x^{4}} \log \left(1+x^{2}\right) \\
& +\frac{1}{12} 2^{2} \operatorname{lng}\left(1+\frac{1}{x^{2}}\right)+\frac{8}{3^{2}}\left(x-\frac{1}{x}\right) \operatorname{lan}^{-3} x
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\frac{1}{10 x^{2}} \log \left(1+x^{2}\right)+\frac{1}{2} m^{4} \log \left(1+\frac{1}{x^{2}}\right)\right] \cdot\right\}
\end{aligned}
$$

CIIAPTER XV.

ELHOTROMAGNHTIO INSTRUMENTS.

Grelvanometers.

707.] A Galvanometrir is an instrument by means of which an olectric curront is indicatod or moasured by its magnetic action.

When the instrument is intended to indicate the existence of a foeble curront, it is called a Sonsitive Galvanometer.

When it is intended to measure a current with the greatest accuracy in terms of standard units, it is callod a Standard Galvanometer.

All galvanometers are founded on the principle of Schweigger's Multiplior, in which the curront is made to pass through a wire, which is coiloch so as to pass many times round an open space, within which a magnot is suspended, so as to produce within this space an electromagnetic force, the intensity of which is indicated by the magnet.

In sensitive galvanometers the coil is so arranged that its windings occupy the positions in which their influence on the magnet is groatest. They aro therofore packed closely together in order to be near the magnet.

Standard galvanometers are constructed so that the dimensions and relative positions of all thoir fixed parts may be accurately known, and that any small uncortainty about the position of the moveable parts may introduco the smallest possible error into the calculations.

In constructing a sensitive galvanometer we aim at making the fiold of electromagnotic forco in which the magnet is suspended as intense as possible. In designing a standard galvanometer we wish to make the ficld of eloctromagnetic force near the magnet as uniform as possible, and to know its exact intensity in terms of the strength of the current.

 pented magnet. Ninw the hiseributsen of the mangot.ism within

 barger than these of tho nombert.

is uned, and the dimenmion of the inmtrmant may loo tham reduced.

 of tho Noctricul conmtante for mmall inmtrumant than for large
 of small inmtrumenta, not ly diract monnuremment of their dimenmions lut hy an elowtrion conamerivon with a large standurd instrument, of which tho slimondone aro more accuratoly known; mon Art. Fos.

In all mandurd falvanometarw the conde not ciroular. The channel in which the coil in to lo wouns in onrofully turned.

Its breadth is made equal to some multiple, n, of the diameter of the covered wire. A hole is bored in the side of the channel where the wire is to enter, and one end of the covered wire is pushed out through this hoie to form the inner comexion of the coil. The chammel is phaced on a lathe, and a woolen axis is fastened to it; ;ee, Fig. 49. The end of a long string is nailed to the wooden axis at the same part of the circumforonce as the entrance of the wire. The whele is then turned round, and the wire is smoothly and regularly laid on the hotton of the channel till it is completely covered hy $\%$ windings. During this process the string has been wound n times round the wooden axis, and an mail is driven into the string at the oth turn. The windings of the string whould be kept exposed so that they can easily be counted. The extermal cireumference of the first layer of windings is them meanured and a new layer is hegun, and so on till the proper number of layers hass been wound on. The use of the string is to count the number of windings. If for any reason we have to unwind purt of the cosil, the string is also unwound, so that we do not lose our reekoning of the actual number of windings of the exil. The mails serve to distinguish the number of windings in each layer.

The meanure of the circumference of each layer furnishes a test of the regularity of tho winding, and enables us to calculate the eleetrical eenstantes of the ecoil. For if we take the arithonotie mean of the circumferences of the chamel and of the outer layer, and then auld to this the circumferences of all the intermediate layers, and divide the sum by the number of layors, we shall ohtain the mome circumference, and from this wo can deduce the menn radius of the eovil. The circumference of aeheh layer may be moasured hy moans of a steel tape, or better by means of a graduated wheel which rolls on the eoil as the coil revolves in the process of winding. The value of the divisions of the tape or wheel must be ascertained by comparison wilh a straight seale.

7(0). The moment of the force with which a unit current in the coil acts upon the suspended apparatus may bo expressed by the series

$$
\left(r_{1} y_{1} \sin \theta+G_{2} g_{2} \sin \theta I_{2}^{\prime}(\theta)+\& c .,\right.
$$

where the corfficients (f refer to the coil, and the coofficients g to the suspended apparatus, 0 leeing the angle between the axis of the coil and that of the suspended apparatus; see Art. 700.

When the sampmben apparatus is a thin unifirmaly and longi-
 susperded hy its middte.

The values of the contlivinte fors a bar magnt of hugth 26 mangotized in any other way ary shather than when it is mangutized mifurmly.

 the magnet is in this case

 atrongth of the currat in the coil. Whan the lingth of the magnet is mall compared with the ratina of the coil the terms after the first in (i and on way lue neghend, und we timi

$$
\gamma={ }_{i_{1}}^{n} \text { mon }
$$

Thu angle usually manarod in the diflo som, on, of the magnet which is the complame of th s. that ent that
The currat in thas prowetina tw the tangon of the dellexion,

Another mothol is tw mahe the whal atparathe moverble
 "quilibrium with its asis parallot th the phan of the wil. If
 is $\begin{gathered}\text { o the equation of equilitrima in }\end{gathered}$
whenes

Sine the current is manamel hy the whe of the deflexion, the

The method of wine can bu aphed baty whon the enrent is so
 justing the indranmand haging the manget to "puilihrium.
711.| Wh have next to consider the neramergent of the ceils of a stambard galanomerer.
The simptest form is that in which therw is a minghe eril, and the magnet is sunpouded at its centre.

Let, A be the mean radius of the coil, ξ its depth, η its breadth, and $"$ the number of windings, the values of the coefficients aro

$$
\begin{aligned}
& \left(_{1}=\begin{array}{c}
2 \pi n \\
A
\end{array}\left\{1+1_{1}^{2} \xi^{\xi^{2}} A^{2}-\frac{\eta^{2}}{A^{2}}\right\},\right. \\
& g_{2}=0 \text {), } \\
& \left(r_{3}=-A^{3} A^{3}\left\{1+\frac{1}{2} \xi^{2} A^{2}-\frac{\eta_{4}^{2}}{A^{2}}\right\},\right. \\
& \left(r_{4}=0\right. \text {, Ne. }
\end{aligned}
$$

The principal correction is that arising from (y_{3}. The series

$$
\left(i_{1} I_{1}+\left(y_{3}!!_{3} I_{3}\right)_{3}^{\prime}(\theta)\right.
$$

becomes approximately

$$
\left(y_{1} /_{1}\left(1-3{ }^{1} A^{2}!/ 3 / 3\left(\cos ^{2} \theta-1 \sin ^{2} \theta\right)\right) .\right.
$$

The factor of correction will differ most from unity whon the magnet is uniformly magnetized and when $\theta=0$. In this caso it lecomes $1-3{ }^{L^{2}} A^{2}$. It vanishes when $\tan \theta=2$, or when the deflexion is tan ${ }^{1} \frac{1}{2}$, or $26^{\prime \prime} 34^{\prime}$. Some ohservers, thorefore, arrange their experiments so as to make the ohserved deflexion as near this angle as possible. Tho best method, however, is to use a magnet so short eompared with the ralius of the eoil that the correction may be altogether neglectorl.

The susponded marnot is carefully aljusted so that its contro shall coincide an noarly as possiblo with the contre ol the coil. If, however, this adjustment is not porfect, and if tho coordinates of the centre of the magnot relative to the centre of the coil aro x, y, \approx, z loing measured parallel to the axis of the coil, the factor of eorroction is

$$
\left(1+3^{x^{2}+y^{2}-2 z^{\prime \prime}} A^{2}\right) \cdot *
$$

When the radius of the eoil in large, and the adjustment of the magnet carefully made, we may assume that this correction is insensible.

* \{The eouphe on the har magnet when its axis makers an angle θ with thatt of the conl in

$$
m \prime \mid \sin \theta\left\{\left(i_{1}+\left(i_{3}\left\{\left(2 z^{2}-\left(x^{2}+y^{2}\right)\right)\right\}+3 \cos \theta\left(x_{3} z \sqrt{x^{2}+y^{2}}\right] .\right.\right.\right.
$$

Since $\left(i_{1}+\left(i_{1}{ }^{9}\left(2 z^{2}-\left(x^{2}+y^{2}\right)\right)\right.\right.$ is the force at x^{t}, y, z parallel to the axis of the cril and

$$
8\left(i_{1} z \sqrt{ } x^{2}+!!^{2}\right.
$$

is the foroe at right angles to the axis. Thus when the arrangement is used as a sine galvanometer the fastor of corroction is

$$
\left.\left.1+\frac{(i,}{\left(i i_{2}\right.}\right\}\left(2 z^{2}-\left(x^{2}+y^{2}\right)\right) \text { which is equal to } 1-\frac{3}{4} \frac{1}{A^{2}}\left\{2 z^{2}-\left(x^{2}+y^{2}\right)\right\}\right\} \text {. }
$$

 Gaugain ronmerueted a matvanomoter in which this term was
 coil, lat at, a point on the asio at a dimane from the erntre equal to half the ralius of the coil. 'The form of tis $_{4}$ is

 exactly at the peint than defimel. The pasition of the erntre of the marnet. however, is nlwase morotain, und this mestainty

 of distane of the erntre of the magne from the fane of the coil. This correction depude on the first powe of ${ }^{2}$. Hence (iaugain's coil with "econtrically mapmobed magnet is suhyect to far groater mererainty than the ohl form.
Helmhehtiso Aratuquent.
$713 . \mid$ Holmholtz convertal (iammaing galvanomater into a trustworthy instrumat hy pharing a monal mal, "pal to the first, at an "qual distanese on the wher mide of the mamet.
liy fhering the coils mimuthionlly oh hath sides of the magnot wo get rid at one of all terms of even order.

Let A be the mean ration of wher woble the dimance luetween
 at the middle point of their common axin. I'he ootlicients are

$$
\begin{aligned}
& \text { (in }=1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& (i=0 \text {, }
\end{aligned}
$$

where n denotes the number of windings in both coils tngether.

It appears from these results that if the soction of the channel of the ψ coils be rectangular, the depth being ξ and tho breadth η, the value of $\left(y_{3}\right.$, as corroctod for the linite sizo of the section, will bo mmall, and will vanish, if ξ^{2} is to η^{2} as 36 to 31 .

It is therefore quite umecessary to attempt to wind the coils upon a eomical surface, as has been done by some instrument makern, for the comditions may be satistied by coils of rectangular section, which ean he constructed with far groater accuracy than eoils wound upon an ohtuse cono.

The arrangement of the eoils in Melmholta's doublo galvanomoter is represented in Fig. 53, Art. 725 .

The field of foree due to the double coil is represented in section in Fig. XIX at the and of this volume.

Crallextomedrar af Four Coils.

714.] By combining four eoils we may get rid of the coefficients ($i_{2},\left(i_{3}^{\prime}\right.$, $\left(i_{4},\left(i_{5}\right.\right.$, mal (i_{n}. lor by any symmotrical combination wo grot rif of the coefficionts of even orders. Lat the four coils be parallel circles belonging to the same sphere, corresponding to angles $0,4, \pi-4$, and $\pi-0$.

Latt the number of windings on the first and fourth coils be u, and the number on the second and third $p m$. Then the condition that $\left(i_{3}=0\right.$ for the combination gives

$$
\begin{equation*}
n \sin ^{2} 0 I_{a^{\prime}}^{\prime}(\theta)+p^{\prime} \sin ^{\prime \prime} \phi I_{3}^{\prime}(\phi)=0, \tag{1}
\end{equation*}
$$

and the condition that $\left(y_{n}=0\right.$ given

$$
\begin{equation*}
u \sin ^{2} \theta I_{b}^{\prime \prime}(\theta)+p^{\prime \prime} \sin ^{\prime \prime} \phi I_{b}^{z^{\prime}}(\phi)=0 . \tag{2}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\sin ^{2} \theta=x \text { and } \sin ^{2} \phi=y \tag{3}
\end{equation*}
$$

and expressing $I_{3}^{\prime \prime}$ and $I_{5}^{\prime \prime}$ (Art. G98) in terms of these (quantities, the equations (1) and (2) become

$$
\begin{gather*}
4 x-5 x^{2}+4 y y-5 p y^{2}=0 \tag{1}\\
8 x-28 x^{2}+21 x^{3}+8 p y-28 p y^{3}+21 m y^{3}=0 . \tag{5}
\end{gather*}
$$

Taking twien (1) from (5), and dividing liy 3, wo get

$$
6 x^{2}-7 x^{3}+6 p y^{2}-7 p g^{3}=0
$$

Hence, from (4) and (6),

$$
y=\frac{x 5 x-4}{y-5 y}=\frac{x^{2} 7 x-6}{y^{2} 6-7 y}
$$

and wo obtain

$$
y=\frac{7 x-6}{5 x-4}, \quad \frac{1}{2}=\frac{32}{49 x(5 x-4)^{3}}
$$

liubinmmerer of Then (mils.
 Two of the coils then comerile and form a krat circle of the sphere whose radius is ('. 'The momber wimhins in this compound coil is bit. The wher two coile fitm small citeles of
 of either of then from the phase of the first in $\sqrt{ }$ 保'. The number of windings on each of these corils in $1: 1$.

The value of $\left(i_{1}\right.$ is $\begin{array}{c}\text { ef } \\ 6\end{array}$,
This arrangement of coils is mpresentell in Fig. 00.
Since in this threemeoled galvanometer the firnt torm after

FH, 50 . (it which lata a finite value is lif, a large portion of the sphere on whose surfore the eoils lie formam a fieh of foree senmilly uniform.

If we renhl wind the wire over the whole of 14 mhurical surface, an demerthel in Art. 672, we Mondul whtain a field of perfertly uniform fares. It is practically imposaible, huwever, to distribute the windings on a splutical surface with sufficiont necurary, even if much a coil were not liable to the objection that it forms a chowed surface, sos that its interior is intecesmible.

By putting the mithle coil out of the circuit, and making the current flow in opponite dirations through the two mide coile, we oltain a field of fored which exerts a nearly unform action in
direetion of the axis on a magnet or coil suspended within it, its axis cerinciding with that of the eorils; see Art. 673 . For is case all the coerfficients of odd orders disappear, and since

$$
\mu=\sqrt{\frac{3}{7}}, \quad I_{1}^{\prime}={ }_{5}^{5} \mu\left(7 \mu^{2}-3\right)=0 .
$$

anes the expression (i), Art. 695, for the magnetic potential the centre of the coil becomes, there beeing π windings in of the exils,
h, the Proper I'hickiness of the Wire of a cialtuanometer, the Exfernat Resistume beimy given.
6.] Let the form of the chamel in which the galvanometer es to be wound be given, and let it be requires to determine her it ought to bo filled with a long thin wire or with a rer thick wire.
t l, bee the length of the wire, y ite radius, $y+b$ the radius o wire when covered, ρ its specific resistance, ,y the value of unit of length of the wire, and r the part of the resistance h is independent of the galvanometer.
re resistance of the galvanometer wire is

$$
R=\frac{p l}{\pi y^{2}} .
$$

(e) volume of the coil is

$$
V=\pi l(y+l)^{2} .
$$

o eldectromagnetio fore is $\gamma(\gamma$, where γ is the strength of the nt and

$$
d=y l .
$$

L^{\prime} is the electromotive fores acting in the circuit whose anco is $R+r, \quad k=\gamma(R+r)$. o cloctromagnetic force due to this electromotive foreo is

$$
E_{R+r}^{\prime}{ }^{(i}
$$

h we have to make a maximum by the variation of y and l. verting the fraction, we find that

$$
\underset{\pi!y y^{2}}{p}+\underset{y}{r}
$$

be made a minimum. Hence

If the volume of the coil remains convant.

Eliminating all aml dy, we ditain
or

Hone the thieknosi of the wise wi the envanmetor whould
 ghlvanometre coil as the dianatiog of the enverel wite to the diameter of the wire itself.

On Srumitive (iulemanatros.

717.| In the conmeruction of a swaitive gatranomwor the aim of overy part, of tho arrangennont is to problese the greatest possible deflexion of the matnot by mome of a given small whetronotive fore aeting betworn the shettmber of the wil.

The current throtgh the wire protues the gonate athet when
 marnet, however, mum he lof fore the willats, mat therefre there in a cortain spare whid mun be lot suply within the wil. This defims the internal benndays of the omit.
 have the graturt powithe entere of the manant. An the number
 filled up, so that at last the inerwasel fomintanes of a now winding diminisher the effect of the curwot in the former windings more than the now winding itnelf mhat it. By making the outer windings of thioker wise than the inner ones we ohtain the groutest magnotio oflice from a given elsetronotive fores.
718.] We shall supyene that the winding of the galvanometer are circles, the axie of the galvanometor fasaing through the contren of these circles at right anglew he their phanes.

Let r sin 0 l $l_{\text {se }}$ the suliun of one of thene circles, and r cos θ the distane of its contre from the centre of the galvanometer, then, if l in the length of a portion of wire coinciling with thil cirele,
y the current whieh flows in it, the magnotic foreo at the of of the galvanometer resolved a direction of the axis is

$$
\begin{equation*}
\gamma l_{\gamma=2}^{\sin \theta} . \tag{1}
\end{equation*}
$$

we write $\quad r^{\prime 2}=r^{2} \sin \theta$,
xpression becomes $\gamma{ }_{\gamma}{ }^{\prime}$, .
ner, if a surfare be constructed, or to these represented in section g. 5h, whose polar erpation is

$$
\begin{equation*}
r^{\prime \prime}=x_{1}^{2} \sin \theta, \tag{2}
\end{equation*}
$$

: x_{1} is any constant, a given length ro bent into the form of a cireular fill problues a groater magnetic

Fig. 61. when it, lies within this surface when it lies outside it. It follows from this that the outer of any lajer of wire ought to havo a constant value of x, . x is greater at one phace than mother a portion of wiro the trandered from the first place to tho second, so as to ase the forem at the centro of the galvanometer.
whole force due to the coil is $\gamma(r$, where

$$
\begin{equation*}
G=\sqrt{\cdot \prime \prime} \frac{\prime}{x}, \tag{3}
\end{equation*}
$$

ntegration loing axtended over the whole length of the a being considered as a function of 1 .
). Let ! be the radius of the wire, its transverse section the πy^{3}. Lat p be the speceific rovistance of the material ieh the wire is malo reffored to unit of volume, then the ance of a length $/$ is $l^{\prime \prime} y^{3}$, and the whole rosistance of the

$$
\begin{equation*}
R=\frac{p}{\pi} \int_{y^{4}}^{d l} \tag{4}
\end{equation*}
$$

3 is considered a function of l.
It be the area of the qualrilateral whose angles are the ns of the axes of four moighbouring wires of the coil by a through the axis, then $Y^{2} l$, is the volume occupied in the y a length l of wire together with its insulating covoring,
and including any vacant spare berosarily beft betwen the windinge of the coil. Hence the whole solume of the eoil is

$$
\begin{equation*}
r=j \dot{r} d l \tag{5}
\end{equation*}
$$

where Y^{\prime} is considered a function of $/$.
But since the coil is a figure of towhtion

$$
\begin{equation*}
V=2 a j \dot{\int} \dot{\sin } d \boldsymbol{d} \cdot \mathrm{~d} \theta \tag{i}
\end{equation*}
$$

or, exprosing \cdot in turms of x, by "pantion (1),

$$
\begin{equation*}
1=2 \pi \int \mid=(\sin t)^{i} d x d t \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
V_{=}=V_{r}^{4} \quad I_{n} \tag{8}
\end{equation*}
$$

whore V_{0} is the volume of the interiar mpere left for the magnet.

Let us now consider a lay or of the coil contained but weon the surfaces x and $x+d x$.

The volume of this layor is

$$
\begin{equation*}
d H^{*}=N r^{2} d r=r \cdot l \tag{9}
\end{equation*}
$$

where all is the length of wire in thim layer.
This gives us all in troms of des. Sulstituting this in equations (3) and (1), we find

$$
\begin{align*}
& \text { lli... } \mathrm{s}^{\mathrm{el}} \mathrm{k} \text {, } \tag{10}\\
& H W=\frac{v^{+}+x^{2} d r^{2}}{n+y^{2}} \tag{11}
\end{align*}
$$

whoro elf and ith represent the portions of the values of i and of R due to thin layer of the coil.

Now if k he the given dectronotive foree,

$$
\dot{F}=\gamma(\mu+r)
$$

where r is the remintanee of the exturnal part of the circuit, indopendent of the galvanometar, and the fore at the contre is

$$
\gamma_{i} \quad i_{n+r}^{i}
$$

Wo have therefore to mak" $\quad 1 i+r$ a maximum, by proporly adjusting the section of the wire in ench layer. This also necessarily involves a variation of l ' hecause I depende on g.

Let l_{0} and R_{0} be the values of ${ }^{\prime} x^{\prime}$ and of $R+r$ when the given layer is excluded from the calculation. We have then

$$
\frac{G}{R+r}=\begin{align*}
& Q_{0}+c l(t \tag{12}\\
& R_{0}+c l R
\end{align*}
$$

and to make this a maximum by the variation of the value of y for the given layer wo must have

$$
\begin{equation*}
\frac{\frac{d}{d y} \cdot d(r}{\frac{d}{d y} \cdot d R}=\frac{x_{0}+d(\gamma}{R_{0}+d R}=\frac{G}{R+r} . \tag{13}
\end{equation*}
$$

Sinco $d x$ is very small and ultimately vanishes, $\frac{G_{0}}{R_{0}}$ will be sensibly, and ultimately exactly, tho samo whichever layer is oxcluded, and wo may therefore regard it as constant. Wo have therefore, by (10) and (11),

$$
\begin{equation*}
\frac{p x^{2}}{\pi}\left(1+\frac{y^{r}}{y} d y\right)=\frac{R+r}{y} d y=\text { constant } \tag{14}
\end{equation*}
$$

If the mothod of covering the wire and of winding it is such that the spaco occupiod by the metal of the wiro bears the same proportion to tho space between the wires whether the wire is thick or thin, then

$$
\frac{Y}{y} \frac{d y}{d Y}=1
$$

and wo must make both y and Y proportional to x, that is to say, the diameter of the wire in any layer must le proportional to the linear dimension of that layer.

If the thickness of the insulating covering is constant and equal to l, and if the wires are arranged in square order,

$$
\begin{equation*}
Y=2(y+b), \tag{15}
\end{equation*}
$$

and the condition is

$$
\begin{equation*}
\frac{x^{2}(2 y+b)}{y^{3}}=\text { constant. } \tag{16}
\end{equation*}
$$

In this case tho diameter of the wire incroases with tho diameter of tho layer of which it forms part, but not at so great a rate.

If we adopt the first of these two hypothoses, which will be nearly true if the wire itself nearly fills up the whole space, then wo may put

$$
y=\alpha x, \quad Y=\beta y
$$

 and (11):

$$
\begin{aligned}
& \text { ti= } V_{n, z^{2}}^{1} l_{11}^{1} \quad 1,
\end{aligned}
$$

where " is a constant depmbing une the sise and form of the free spare left insuld the exil.

Hener, if we make the thieknem of the wire vary in the same

 a larer multiphe of the intormal dimestions.
 when the extermal resistance in far gratur than that of the galvanometor, or when our only objere in to prothem a bible of intonse forer, we may mak" and fometant. Wis have then

$$
\begin{aligned}
& \left(i=\frac{N}{k} \begin{array}{ll}
n & n
\end{array}\right.
\end{aligned}
$$

 dimensions of the coil are ineroned, sum thate in mo limit to the value of ti "eept the latmar and experase of baking the coil.
On N'umpernlelel V"siln.
721.| In the orlimary gulvanometer a mapmokel magnet is acted on hy a fixed coil. Hat if the coil can bermanembed with sufficient delicacy, we may determine the netion of the magnet, or of another coil on the sumpended evil, by itw dhension from the prosition of equilibrium.

Wo cannot, however, introfues the alectre carront into the coil unless there is metallie connexinn Inetwent the whetrodes of the battury and those of the wire of the eool. Thim connexion may be made in two different waye hy the Hithar Suspeosion, and by wiren in oppowite dimetions.

The bitilar suspension has alrondy lewn dowestibed in Art. 459 as applied to magnots. The arrangement of the upper part of the susponsion is whewn in Fig. 84. When applied to conls, the two fibres are no longer of silk but of motal, and since the
torsion of a metal wire capable of supporting the coil and. transmitting the current is much greator than that of a silk fibre, it must bo taken specially into account. This suspension has been brought to great porfection in the instruments constructed by M. Wober.

The other method of suspension is by means of a single wire which is connected to one extremity of the coil. The other extremity of the coil is connected to anothor wire which is mado to hang down, in tho same vertical straight line with tho first wire, into a cup of morcury, as is shewn in Tig. 56, Art. 726. In cortain cases it is convenient to fasten the oxtremities of the two wires to pieces by which they may bo tightly strotched, care loeing taken that the line of those wires passos through the centre of gravity of the coil. The apparatus in this form may be userl whon the

Fir. 52. axis is not vertical ; see Fig. 52.
722.] Tho suspended coil may be used as an exceedingly nonsitivo galvanomoter, for, by incroasing the intensity of the magnetic force in the field in which it hangs, the forco due to a feeble current in the coil may be greatly increased without adding to the mass of the coil. The magnetic foree for this purpose may be produced by moans of permanent magnets, or by eloctromagnets excited by an auxiliary curront, and it may bo powerfully concentrated on the suspended coil by moans of soft iron armatures. Thus, in Sir W. Thomson's recording apparatus, Fig. 52, the coil is suspended between tho opposite poles of the electromagnets N and S, and in order to concentrate the lines of magnetic force on the vertical sides of the coil, a piece of soft iron, D, is fixed between the poles of the magnets. This iron becoming magnotized by induction, produces a very powerful field of forco, in the intervals between it and the two magnets, through which the vertical sidos of the coil are free to move, so that the coil, even when the current through it is very feeble, is acted on by a considerable force tending to turn it about its vertical axis.
7203.] Amother application of the watmind coil is to dutamine, by comparison with a tament walvamotur, the harizatal compoment of torrestrial magnetism.

The eobil is suspembed so that it in in stahbe equilihrium when its phane is parallet to the mapotio motishan. A eurront y is passed through the coil amb entwe it the heflecterl into a new position of equilibrinm, mahimg an anglo. \# with the magnetic meridian. If the sumprasion in hifilar, the manment of the comple which produter this doflesion is frant, amd this mast he "fual
 marnetism, γ is the curront in the coil, ant f in the sum of the arest of all the windimgo of the wil. Hothe

$$
H_{\gamma} \quad \frac{F}{!} \text { tant }
$$

If A is the moment of inertin of the mit alumt its axis of sus. pronion, and The than of a hall vihration, when tom courrent is passing,
and we oltain

$$
\begin{aligned}
& r^{\prime a}=\pi^{3} A \\
& H_{\gamma}=\frac{m^{2}}{} l^{2}!t
\end{aligned}
$$

$$
\begin{array}{ll}
\gamma & 1_{i} t u n
\end{array}
$$

where f_{i} in the primeipal commant of the tangent galvanometer, Art. 710.

From these two ofuations we ohthin

$$
U=\frac{\pi}{\eta} \sqrt{A \operatorname{tin} n} \begin{gathered}
\theta \tan \psi
\end{gathered} \quad \gamma=\frac{\pi}{p} \sqrt{A \tan \theta \tan \psi} .
$$

This method was given ly F. Kohlrmandi*.
724.| Nir Willian Thomson has conntruetwin singlu instrument by mothe of wheh the ohmervations tequiten todetermine $l l$ and γ may be made mimultanomaly by the matue observer.

The coil in sumponded sor as to be in ondilibrina with its plane in the magnotio meridian, and is deflected from this powition when the curvent flows through it. A very mall magnet is suspended at the eentre of the coil, and in inflected by the current in the direction oprosite to that of the detlexion of the coil. Let

[^70]aflexion of the eoil bo 0 , and that of the magnot ϕ, then the hle phrt of the energy of the system is
$$
-I I \gamma!\sin \theta-m \cdot \gamma\left(\gamma \sin (\theta-\phi)-I m \cdot \cos \phi-H^{r} \cos \theta .\right.
$$
ferontiating with respect to 0 and ϕ, wo obtain the equaof equilibrium of the coil and of the magnot respectively,
\[

$$
\begin{gathered}
-H \gamma!\cos \theta-m \cdot \gamma\left(\gamma \cos (0-\phi)+H^{\prime} \sin \theta=0,\right. \\
m \gamma(i \cos (0-\phi)+H m \sin \phi=0 .
\end{gathered}
$$
\]

on these equations we find, liy eliminating $I /$ or γ, a quadequation from which γ or $I /$ may be found. If m, the etic: moment of the sumponded magnet, is vory small, we a the following approximate values,

$$
\begin{aligned}
& H=\frac{\pi}{\eta^{\prime}} \downarrow \begin{array}{c}
-A\left(r^{\prime} \sin \theta \cos (\theta-\phi)\right. \\
!\cos \theta \sin \phi
\end{array} \begin{array}{c}
m\left(\frac{1}{2} \cos (\theta-\phi)\right. \\
! \\
\cos \theta
\end{array}, \\
& \gamma=-\frac{\pi}{T} \sqrt{-A \sin \theta \sin \phi}+\frac{1}{2} \frac{m \cos \theta \sin \phi}{(g \cos \theta} \theta .
\end{aligned}
$$

these expressions (it and af are the principal olectric con4 of the cosil, A its moment of inertia, 'T' its hall-time of vibram the mannetic moment of the magnot, $I I$ the intensity of orizontal magnotic: fores, γ the strongth of tho current, θ eflexion of the eeoil, and ψ that of the magnet.
er the dellexion of the eoil is in the opposito direction to cflexion of the magnet, these values of $I I$ and g will always al.

Webrers Eldedrodynamometer.

万.] In this instrument a small coil is suspended by two within a larger coil which is fixed. When a current is to flow through both eoils, the suspended coil tends to place parallel to the fixed eoil. This tendency is counteracted moment of the forces arising from tho hifilar suspension, it is also affected by the action of terrestrial magrotism on uspemded ooil.
the ordinary use of the instrument the planes of the two are nosarly at right angles to each othor, so that the mutual n of the curronts in tho coils may bo as great as possible, he plane of the suspended coil is nearly at right angles to agnetic moridian, so that the action of terrestrial magnotism ho as small as possible.

Let the magnetic azimuth of the phan of the fixed coil he a, and lat the angle which the axis of the maproded coil makes with the phane of the tiver coil her 18 b, where os is the value of this angle when the coil is in "guilibrium and mo current is flowing, and 0 is the dethesion due to the curtent. The equation of equilibrimm is. y_{1} being the cument in the tiven, γ_{i} that, in the moverahle coil.

$$
\left(i!1 \gamma_{1} \gamma_{n}, \cos (\theta+1,1) \cdots \gamma_{n} \sin (\theta, y+a) \quad f \sin \theta: 0 .\right.
$$

lat us suppose that the instrun+mt in mijesed so that and β aro hoth very small, and that holy, is small compared with F. Wre have in this rase, "fperimuty,

If the deflesions when the migne of γ_{1} and γ_{x} are changed are as follows,

$$
\theta_{1} \text { when } \gamma_{1} \text { in }+ \text { nnen } \gamma_{2} \text { i. }
$$

θ_{1}	\cdots		\cdots	.
θ_{1}	\cdots	\ddots	\cdots	\vdots
θ_{4}	\cdots	\cdots	\cdots	\vdots

then wo fime

If it is the sume current wheh thowe through both coils we may put $\gamma_{1} \gamma_{2} \quad \gamma^{2}$, and than ohtnin the value of γ.

When the currate are mot very ennomat it is howt to alopt

 of the torsion-houl of the instrmant, we may get bill of the correction for Urrextrinl magnotiath at ones ly the mothod of мinos.

$$
\theta=-\cdots
$$

If the wigns of γ_{1} nul γ_{a} are indicated by tho sullixes of β as lufore,
and

$$
\begin{aligned}
& F^{\prime} \\
& \gamma_{1} \gamma_{2}=-\underset{4}{ }=\frac{i_{9}}{}\left(\sin H_{1}+\sin \beta_{2}-\sin \theta_{2}-\sin \beta_{2}\right) .
\end{aligned}
$$

This is the methon mopted by Mr. Latimer Clark in his use of the instrument conmtructed by the bilectrical Comm

Fig. 58.
VOL. II.
B b
the British Association. Wr are indobed war. (Hark for the drawing of the olectrolymanometer in biy. 53, in which Helmholtz's arrangement of two conils is smpentel hoth for the fixed and for the susponded eoil * The torsion-homi of the instrument, by which the bifilar suspension is mlusten, is represented in Fig. 64. The equality of the tensions of the suan-usion wires is ensured by their being attuched to the extromities of a silk

Fis. 4.
thread which passes over a wheel, and their distanco is regulated by two guiden wheels, which can he met at the proper distance. The susponded ooil cun be moved vertionlly by mean of a serew acting on the suspension- whesl, ant horizontally in two directions by the sliding piecos Nhewn at the bottom of Fig. 5t. It is adjustod in azimuth by menn of the torwionserow, which turns the torsion-hend round a vortical axis (nee Art. 159). The azimuth of the suspoded coil is ancortained by observing the

[^71]sion of a seale in the mirror, shewn just beneath the axis of uspendod coil.
o instrument origimally constructed by Weber is described s Etlektrodynamische Macasbestimmungen. It was intended he measurement of small currents, and therefore both the and the suspended coils consisted of many windings, and uspended coil occupied a larger part of the space within ixed eoil than in the instrument of the British Association, h was primarily intemded as a standard instrument, with h moro semsitive instruments might bo compared. The riments which ho made with it furnish the most complete rimental proof of the accuracy of Ampere's formula as ed to closed currents, and form an important part of the rehos by which Weker has raised tho numorical dotertion of clectrical quantitios to a very high rank as regards sion.
oher's form of the olectrodynamometor, in which one coil is anded within another, and is acted on by a couple tonding irn it about a vertical axis, is probably the best fittod for ute measuremonts. A mothod of calculating tho constants ch an arrangement is given in Art. 700.
6.] If, however, we wish, by means of a fooble current, to ace a considerablo electromagnetic forco, it is better to place inspended coil parallel to the coil, and to make it capable of on to or from it.
o suspended coil in Dr. Joule's nt-weigher, Fig. 55, is horizontal, apable of vertical motion, and the between it and the fixed coil is ated by the weight which must ded to or removed from the coil ler to bring it to the samo rolative ion with respect to the fixed coil it has when no curront passes.

Fig. 55. o suspended coil may also bo fastoned to the extremity of corizontal arm of a torsion-balance, and may bo placed oon two fixed coils, one of which attracts it, while the other it, as in Fig. 56.
arranging the coils as described in Art. 729, the force Bb 2
acting on the suspended coil may lu' mbin marly miform within a small distanere of the position of equilibrima.

Another coil may be fixeel to the wher wetremity of the arm of the torsion-bulanew and phered hotwen two livel coils. If the two susperded coils are mailar, hat with the current tlowing

in opposite directions, the afted of twrestrial mannotism on the position of the arm of the monionmblaner will le completoly "liminated.
797.1 If tho sumpended roil in in the mhate of a long solonoid, and is caphblo of moving parallel to its asim, mato pas into the interior of a larger fixem soldonill having the sums axis, then, if tho current is in the same direction in hoth monooids, the suspended solenoil will la sucked into the fixad une hy a foreo which will he nearly uniform na long an nowe of the oxtromitits of the wolonoids are notr one another.

7ak.] To produce a uniform longitudinal forew on a mall coil placed betwoen two equal miln of much harger dimensions, we should makn the ratio of the dinmeter of the large coils to the distance betweon their phanes that of 2 tor $\sqrt{ } 3$. If wo send the same ourront through these coilm in oppemite directions, then, in the exprossion for w. the hrm involving ond powers of r dis
 disappears also, and wo have, hy Art, 71%, as the variable part of ω,
which indicates a nearly uniform fore on a small suspendod coil. The arrangement of the eorils in this case is that of the two outer coils in the gralvanometer with three eoils, described at Art. 715. Seo Fig. 50 .

7\%9.] If wo wish to sumpend a coil botween two coils placed so near it that the distanco betweon the mutually acting wires is small compared with tho radii of tho coils, tho most uniform fores is oltained hy making the radius of either of the outer coils exceed that of the middle one by $\frac{1}{\sqrt{3}}$ of the distance betweon the planes of the middle and outer coils. This follows from the expression Iroved in Art. 705 for the mutual induction botween two circular eurrents*.

* In this couse, if M in tho mutual potential energy of the inside and one of the outaide coiln, then, using the notation of Art. 705, the variation in the force for a disphoement, y will, ninee tho coils are symmetrically placed, be proportional to $d^{3} M / d y^{3}$. The mont important term in thin exprension is $d^{3} \mathrm{log} r / d y^{3}$, which vaniehes when $3 x^{2}=y^{2}$. $\}$

CHAPTER XVI.

ELECTROMAGNETIC OBSERVATIONS.

730.] So many of the measurements of electrical quantities depend on observations of the motion of a vibrating body that we shall devote some attention to the nature of this motion, and the best methods of observing it.
The small oscillations of a body about a position of stable equilibrium are, in general, similar to those of a point acted on by a force varying directly as the distance from a fixed point. In the case of the vibrating bodies in our experiments there is also a resistance to the motion, depending on a variety of causes, such as the viscosity of the air, and that of the suspension fibre. In many electrical instruments there is another cause of resistance, namely, the reflex action of currents induced in conducting circuits placed near vibrating magnets. These currents are induced by the motion of the magnet, and their action on the magnet is, by the law of Lenz, invariably opposed to its motion. This is in many cases the principal part of the resistance.

A metallic circuit, called a Damper, is sometimes placed near a magnet for the express purpose of damping or deadening its vibrations. We shall therefore speak of this kind of resistance as Damping.

In the case of slow vibrations, such as can be easily observed, the whole resistance, from whatever causes it may arise, appears to be proportional to the velocity. It is only when the velocity is much greater than in the ordinary vibrations of electromagnetic instruments that we have evidence of a resistance proportional to the square of the velocity.

We have therefore to investigate the motion of a body subject to an attraction varying as the distance, and to a resistance varying as the velocity.
731.] The following application, by Professor Tait*, of the principlo of the Hodograph, enables us to investigate this kind of motion in a very simple manner by means of the equiangular spiral.

Let it be required to find the acceloration of a particle which describes a logarithmic or equiangular spiral with uniform angular velocity ω about the pole.

The proporty of this spiral is, that the tangent $P T T$ makes with the radius vector I 'S' a constant angle a.

If v is the volocity at the point l^{\prime}, then

$$
v \cdot \sin \alpha=\omega \cdot \mathbb{S} P .
$$

Hence, if we draw $N P^{\prime \prime}$ parallel to $P T$ and equal to $S P$, the velocity at l^{\prime} will bo given both in magnitude and direction by

$$
v=\frac{\omega}{\sin a} S P^{\prime} .
$$

Jig. 57.
Hence P^{\prime} will be a point in the hodograph. But $S P^{\prime}$ is $S P^{P}$ turned through a constant angle $\pi-\alpha$, so that the hodograph described by P^{\prime} is the same as the original spiral turned about its pole through an angle $\pi-a$.

The acceleration of l^{\prime} is represented in magnitude and direction by the velocity of P^{\prime} multiplied by the same factor, $\frac{\omega}{\sin a}$.

* Proc. R.S. Edin., Dec. 16, 1867.

Hence, if we proform on sty the matue "pration of turning it
 f^{\prime} will he equal in magnitule and direction to

$$
\sin ^{\prime \prime \prime}
$$

If we draw l'F'man aml parall bo N", the acoleration

 spropertiomal to the distance.

Tho secomel is in a dimetion opponite th the whenty, and sine
this aceoleration may le writton

$$
-2 \operatorname{cin}_{\sin a}
$$

The acederation of the partiche in therefore compouthol of two parts, the first of which is due to an attrative foreo gr r, directed
 - 2kr, a rexistaner the the motion prometional to the volocity, where

$$
H=\sin ^{\sin }, \sin h \quad \cos \sin \pi .
$$

If in these oxpremsion we make of "8, the uthit lecomes a cirele, and wo have $\mu_{0}=w_{n}{ }^{2}$, and $k=0$.
 a
or the angular volocity in diflewent miande with the mans law of attraction is propertional to the sine of the angle of the niral.
782.1 If wo now conmiter the unotion of a pront whioh is the projection of the moving point I 'on the horizontal line XY, we shall find that its dietance from stand it volucty ars the horizontal componconts of thene of l. Hence the accoloration of this point is almo nn attraction towards s. equal to μ timon its distance from S, tegother with a retarlation expun to $2 k$ times its velucity.

Wo have therefore a completo constructiou for the rectilinear motion of a point, sulject to an attraction proportional to the distance: from a fixed point, and to a rosistance proportional to the velocity. The motion of such a point is simply the horizontal part of the motion of another point which moves with uniform angular velocity in a logarithmic spiral.
333.] The equation of the spiral is

$$
r=i_{e} \cdot \phi_{\text {dent }} .
$$

To determine the herizontal motion, wo put

$$
\phi=\omega t, \quad: \quad:=a+r \sin \phi,
$$

wher" " is the value of x for the point of equilibrium.
If wo draw $B S I$) making an angle a with the vertical, then the tangents $B X, I, Y$, (iZ, \&e. will be vertical, and X, Y, Z, , \&e. will be the extromities of successive oscillations.
734.] The ohservations which are made on vibrating bodies aro-
(1) The scale-roading at the stationary points. These are callod Elongations.
(2) The time of passing a definite division of the scale in the positive or negative direction.
(3) The scale-reading at cortain definite timos. Observations of this kind are not often made except in the case of vibrations of long poriod *.
The quantities which we have to determine aro-
(1) The scale-reading at the position of equilibrium.
(2) The logarithmic decrement of the vibrations.
(3) The time of vibration.

- To determine the Realing at the I'osition of Eiquilibrium from Three Consecutive Ellongations.
735.] Let x_{1}, x_{4}, x_{3} be the obsorved scalo-roadings, corresponding to the elongations X, Y, Z, and lot is be the reading at the position of equilibrium, S, and let r_{1} be the value of $S B$,

$$
\begin{aligned}
& x_{1}-a=r_{1} \sin a, \\
& x_{12}-a=-r_{1} \sin a e^{-\pi \cos \alpha}, \\
& x_{3}-a=r_{1} \sin a e^{-2 \pi \cot \alpha} .
\end{aligned}
$$

[^72]From these values we find

$$
\begin{aligned}
& \left(x_{1}-u\right)\left(x_{3} \cdots\right)=\left(x_{1} \quad a\right)^{2} \\
& \text { whenee } \quad \text { ot } \quad x_{1}+x_{4}-2 x_{4}
\end{aligned}
$$

When x_{3} does not differ much from r_{1} wh may use as an approximate formula

$$
u=\mid\left(x_{1}+2 x_{2}+x_{3}\right) .
$$

To determine the Iongurithmic Derrement.

736.] The logarithm of the ratio of the amplitude of a vilration to that of the next following is called the hogarithmie herement. If we write ρ for this ratio,
r is called the common logarithmic demoment, and A the Napierian logarithmie decroment. It is manifent that

$$
\begin{aligned}
\lambda & =L \log _{n} 10=\pi \cot a \\
a & =\cot ^{2} \lambda
\end{aligned}
$$

Hence
which determines the angle of the lognrithmic mpiral.
In making a special dotermination of a wo allow the boty to perform a considerable numiner of vibrationa. If i_{1} in the tuphitude of the first, and ' " that of the $^{\text {nim }}$ vilations.

$$
\lambda=\frac{1}{16=1} \log \binom{1}{e_{0}}
$$

If wo suppose the necursey of ofmorvation to be the same for small vibrations as for large onew, then, to ohthin the Inst value of λ, wo should allow the vibrations to sulsmate till the ratio of it to c^{\prime} becomes most nearly equal tor the bans of the Nimpierina logarithms. This gives for n the nament whole nutuler to $\frac{1}{\lambda}+1$.

Since, howover, in most canes time in valunhlo, it in lest to take the second sot of ohservations befors thothminution of amplitude has proceoded so far.
737.] In cortain cases wo may have to incormine tho position of equilibriun from two consevative elongationa, the logarithmic decrement being known fromanmeinl experimont. We have then

$$
t=\frac{x_{1}+x^{B}}{1+x^{A}}
$$

Time of Vilbration.
] Maving determined the seale-reading of the point of hrium, a conspicuous mark is placed at that point of the or as near it as possible, and the times of the passage of mark are noted for several suceessive vibrations.
us suppesse that the mark is at an unknown but very distance x : on the positive side of the point of equilibrium, hat t_{1} is the ohsorved time of the first transit of the mark powitive direction, and t_{2}, t_{3}, \&e. the times of the following th.
I' be the time of vibration \{i.e. the time between two sutive passages through the position of equilibrium \}, and I_{3}, *e. the times of transit of the true point of equilibrium,
$=I_{1}^{\prime}+\frac{i_{1}^{\prime}}{i_{1}}, \quad t_{2}=I_{2}^{\prime}+\frac{i_{2}^{\prime}}{i_{2}^{\prime}} \quad I_{2}^{\prime}-I_{1}^{\prime}=I_{3}-I_{2}^{\prime}=T_{1}$,
$r_{1}, \%_{2}$, \&e. are the sucecssive velocities of transit, which we uppose uniform for the very mmall distanco x.
is the ratio of the amplitule of a vibration to that of the n succession,

$$
v_{u}=-\frac{1}{\rho} n_{1}, \text { and } \frac{x}{n_{2}}=-\rho \frac{x}{u_{1}} .
$$

hree transita are ohserved at times t_{1}, t_{2}, t_{3}, we find

$$
\frac{x}{v_{1}}=\frac{t_{1}-2 t_{2}+t_{3}}{(\rho+1)^{2}}
$$

time of vibration is therefore

$$
T=\frac{1}{3}\left(t_{3}-t_{1}\right)-\frac{1}{2}{ }_{p+1}^{\mu-1}\left(t_{1}-2 t_{2}+t_{3}\right) .
$$

time of the second passage of the true point of equili-
is

$$
P_{3}^{2}=1_{1}^{1}\left(t_{1}+2 t_{3}+t_{3}\right)-\frac{1}{1}(\rho-1)^{2}\left(t_{1}-2 t_{3}+t_{3}\right) .
$$

ee transits aro sufficient to determino these three quantities, ny greater number may bo combined by the method of "quares. Thus, for five transits,
$\left.2 t_{5}+t_{4}-t_{3}-2 t_{1}\right)-I_{1}^{\prime}\left(t_{1}-2 t_{2}+2 t_{3}-2 t_{4}+t_{6}\right)^{\rho-1}\left(2-\frac{\rho}{1+\rho^{2}}\right)$.
time of the third transit is,
$\left(t_{1}+2 t_{2}+2 t_{3}+2 t_{4}+t_{6}\right)-\frac{1}{4}\left(t_{1}-2 t_{2}+2 t_{3}-2 t_{4}+t_{6}\right) \frac{(\rho-1)^{2}}{(\rho+1)^{2}}$.
.] The same method may be extended to a series of any er of vibrations. If the vibrations are so rapid that the
time of every transit eamot be remand, we may reome the time of every thind or cvery fith transit, tahing care that the directions of nuce espe tramite are opposite. If the vihations continue regular for a long time, we neod not ohserve during the whole time. We may begin by ohsurving a sutheient number of trmaits to determine appocimately the time of vibration, T, and the time of the midhle transit, l^{\prime}, noting whether this transit is in the positive or the nemativedimetion. Win my then either go on counting the vibrations withont reomeling the times of transit, or we may lenw the apparatus unwatehed. We then wherve a serom series of transta, and doluce the time of vibration $l^{\prime \prime}$ and the time of mithly transit $l^{\prime \prime}$, noting the direction of this transit.

If T and $T^{\prime \prime}$, the times of vibration as dedued from the two sets of ohsorvations, ar, noarly equal, we may proceed to a more aceurate determination of the primi by combining the two series of observations.

Dividing $l^{\prime \prime}-l^{\prime}$ by 7 ', the quotiont ought to be very nearly an integer, oven or odd acoording us the tramita $/ '$ nud $I^{\prime \prime}$ are in the same or in opposite directions. If this is not tho case, the series of ohservations is worthless, hat if the result is very noarly a whole number n, we livide $l^{\prime \prime} I^{\prime}$ by n, and thus find the monn value of T for the whole time of awinging.
740.] Tho time of vibration 7 thus found is the metual mean time of vibration, and is subject to correwtions if we wish to deduce from th the time of vibration in intinitely small ares and without damping.

To reduce the obsorved time to the tixn in infinitely small ares, we observe that the time of a vibration from reat to rest of amplitude e is in groneral of the form

$$
T=T_{1}\left(1+k t^{2}\right)
$$

where κ is a cosficient, which, in the cone of the ordinary pendulum, is a ${ }^{1}$. Now the amplitules of the mucemsive vibrations are $c, c^{4}, c p^{-2} \ldots \ldots p^{4}$, no that the whak time of a vibrations is

$$
n{ }^{\prime}=T_{1}\left(u+\kappa^{r_{1}^{2} \mu^{2}-r_{n}^{d}} \underset{p^{2}+\infty=1}{ }\right)
$$

whe o I' is the time derineed from the obsurvations.
Hence, to find the timo F_{t} in intinitely small arcs, wo have approximately,

To find the time T_{11}^{\prime} when there is no damping, we have Art. 731

$$
\begin{aligned}
T_{11} & =T_{1} \sin a \\
& =T_{1} \sqrt{ } \pi^{2}+\lambda^{2}
\end{aligned}
$$

741. The equation of the rectilinear motion of a body, attracted to a fixed point iby a foreo proportional to the distance? and resisted by a forer varying as the velocity, is

$$
\begin{equation*}
\frac{11}{} 1 t=2 k^{d} d t+d^{2}(x-(t)=0 \tag{1}
\end{equation*}
$$

where r is the cowrdinate of the body at the time l, and is is the coordinate of the point of "quilibrium.

To solve this equation, let
then

$$
\begin{align*}
& x+c=r \cdot k^{t} y ; \tag{2}\\
& \left(l^{\prime \prime \prime} y+\left(\omega^{2}-k^{\prime \prime}\right)!=0 ;\right. \tag{3}
\end{align*}
$$

the solution of which is

$$
\begin{align*}
& y=\left(\cos \left(v^{\prime} n^{\prime}-h^{3} t+a\right), \text { when } k \text { is loss than } \omega ;\right. \tag{4}\\
& y=A+B t, \text { whin } k \text { is cqual to } \omega ; \tag{5}
\end{align*}
$$

and $y=\left({ }^{\prime \prime} \cosh \left(\sqrt{ } k^{\prime \prime}-\omega^{2} t+a^{\prime}\right)\right.$, when k is greater than ω. (6)
The value of x may be obtained from that of y loy equation (2). When k is less than ω, the motion consists of an infinito series of oseillations, of constant periodie time, but of eontinually doereasing amplitude. As k incroases, tho periorlic timo becomes longrer, and the diminution of amplitude becomes more rapid.

Whon k (half the coefficient of resistance) becomes equal to or erreater than ω, (the espuare root of tho accoleration at unit distance from the point of equilibrium,) the motion ceases to be oscillatory, and during the whole motion the body can only oneo pass through the point of equilibrium, after which it reaches a position of greatest alongation, and then returns towards the point of "quilibrime, continually approaching, but never rathehing it.

Galvanomoters in which the resistance is so groat that the motion is of this kind are called deal beat galvanometers. They are usoful in many oxporimonts, but especially in telegraphie signalling, in which tho existence of free vibrations would quite disguise the movements which are meant to be observed.

Whatever be the values of k and ω, the value of a, the scalereading at the point of equilibrium, may be deduced from five
seale-rendings, $p, \eta, \therefore, s, t$, taken at equal intervals of time, by the formula

Oll the (haseration of the (iullemmarter.
742.] To measure a constant current with the tament galvanomoter, the instrument is aljusted with the phane of its coils parallel to the mageticemeridinn, and the hero roming is taken. The current is then mate to pass through the coils, and the deflexion of the manat componding to ita now position of rquilihrium is ohsorved. Leet this he donoted hy ϕ.

Then, if $I I$ is the horizontal magnetie fores, if $^{\prime}$ the coufficient of the galvanometer, ami γ the strength of the current,

$$
\begin{equation*}
\gamma=\int_{i r}^{l \mid} \tan d . \tag{1}
\end{equation*}
$$

If the cocflicient of torsion of the sumpunion fihre is $\boldsymbol{r} M / I$ (set Art. 152), wo mast une the correctod formula

$$
\begin{equation*}
\gamma={ }_{G}^{H}(\tan \phi+\tau \phi \sec \phi) . \tag{2}
\end{equation*}
$$

Heat malue of the letterion.
743.| In some galvanometure the number of windinge of the eoil through which the currant fowe can lat altered at plearure. In othere a known fraction of the cursent can be divarted from the galvanometer by a combuctor called a Shunt. In wither case the value of $(i$, the offect of a unit current on the magnot, is made to vary.

Let us determine the value of 1 , for which a given orror in the ohservation of the deflexion corrempends the the smalleat error of the deduced value of the strength of the current.

Differentiating equation (1), wo find

Fliminating $(G$,

$$
\begin{align*}
& \begin{array}{l}
d y=\frac{1}{2} \sin 2 \phi .
\end{array} \tag{3}
\end{align*}
$$

This is a maximum for a given value of γ when the deflexion is 45°. The value of G mould therofore be adjusted till $G \gamma$ is
as nearly cqual to $I I$ as is possible ; so that for strong currents it is bettier not to use, too sensitive a galvanometer:

> (1) the Beod Methexd of applying the Current.
744.7 When the olserver is able, by means of a key, to make or break the comnexions of the circuit at any instant, it is advisable to operato with the koy in such a way as to make the magnet arrive at its position of equilibrium with the least posssilde vulocity. The following method was devised by Gauss for this purpose.
Suppose that the magnet is in its position of equilibrium, and that there is no current. The observer now makes contact for a short time, so that the magnet is set in motion towards its new position of "quilibrium. He then breaks contact. The force is now towards the original position of equilibrium, and the motion is retarded. If this is so managed that the magnet comes to rest exactly at the now position of equilibrium, and if the observer again makes contact at that instant and maintains the contact, the magnet will remain at rest in its new position.
If we neglect the effect of the resistances and also the inequality of the total force acting in the new and the old positions, then, since wo wish the new foree to generate as much kinetic energy during the time of its first action as the original foree destroys while the circuit is broken, we must prolong the first action of the curront till the magnet has moved over half the distance from the first position to the second. Then if the original forco acts while the magnet moves over the other half of its course, it will exactly stop it. Now the time required to pass from a point of greatost elongation to a point half way to the position of equilibrium is one-third of the period, from rest to rest.

The operator, therefore, having previously ascertained the time of a vilration from rost to rest, makes contact for one-third of that time, breaks contact for another third of the same time, and then makes contact again during the continuance of the experiment. The magnet is then either at rest, or its vibrations are so small that observations may be takon at once, without waiting for the motion to die away. For this purpose a metronome may be adjusted so as to beat three times for each vibration of the magnet.

The rule is semewhat more complientend when the rexintune is of sufficient mannitude to twe tahen into aremme, hat in this crene the vibrations dir away so fanst that it is umatersary to apply any corrections to the rule.

When the maner is to la. remened to its origimal pexition, the arouit is broken for one fhime of a vhration, mato arain for an cgual time, and limally hohen. Thin lomwe the magnet at rest in its formor position.

If the revorsed rowding is to lo tahen inamediately after the direct one the cirenit is hrokn for the time of a single vibration and then roverad. This hrime the matom tor most in the reversed position.

Matarement lay the firme suring.

745.) When there is no time to mahe more than whe ohservation, the current may he menares by the wiveme clongation oherered in the first swing of the mannes. If there is no resistance, the promanent deflexion 中 in half the witrene elongation. If the resistanes is such that the ration of ene vilontion to the next is p and if f_{0} in the, sore remding, nmi v_{1} the extrome Momgation in the first swing, the Ahflotom. W, corromponing to the print of "puilitionam in

$$
\Rightarrow=\begin{gathered}
n, m_{1} \\
1 q^{\prime}
\end{gathered}
$$

In this way the doflexion baty lo caloulatel wothot wating

746. Tho hert way of making at consulorable number of mensures of a constant currat is by oberving thres elongationk while the current is in the prositive diretion, then broaking contact for about the time of a single vibration, so as to let, the magnet swing int, the pesition of nagative dothexion, then revorsing the corrent and bharving theq mecossive alongations on the negative site, then breaking eontate for the time of a single vibration and requating the olsurvations on the positive side, and so on till a sufficiont number of chaservations have been obtained. In this way the errow which tamy arime from a change in the direction of the enrthis magnetie foree during the time of
ohservation are eliminated. The operator, by carefully timing tho making and broaking of contact, can oasily regulato tho extent of tho vibrations, so as to make them sufficiently small without being indistinct. The motion of the magnet is graphieally represented in Fig. 58 , where the abscissa represents the time, and the ordinate the deflexion of the magnet. If $\theta_{1} \ldots \theta_{G}$ be the ohserved atgelmaieal values of the elongations, the deHexion is given by the equation

$$
\dot{x} \phi=0_{1}+20_{2}+0_{3}-\theta_{4}-20_{5}-0_{0} .
$$

Hig. 88.

Method of Multipliection.

747.] In eertatin canes, in which the deflexion of the gralvanometer marnet is very small, it may bo advisable to incroaso the visible offect by reversing the eurent at proper intervals, so, an to set, up a swinging motion of the magnot. For thispurpose after aseortaining the time, T, of a single vibration $\{i$. c. one from rest to rest, of the magnet, the current is sont in the positive direction for a time T, then in the reverse direction for an "gual time, and wo on. When the motion of the magnet has boemme visihle, wo may make the reversal of the current at the ohserved times of greatest olongation.

Let the magnet be at the positive elongation θ_{0}, and lot the current be sent through the coil in the negative direction. The point of equilibrium is then $-\phi$, and tho magnet will swing to a negative clongation θ_{1}, such that

$$
\begin{array}{ll}
& -p\left(\phi+\theta_{1}\right)=\left(\theta_{0}+\phi\right), \\
& -p \theta_{1}=\theta_{0}+(p+1) \phi .
\end{array}
$$

Similarly, if the current is now made positive while the magnet awings to 0_{2},

$$
\begin{aligned}
& \rho \theta_{2}=-\theta_{1}+(\rho+1) \phi, \\
& \text { or } \quad \rho^{2} \theta_{2}=\theta_{0}+(\rho+1)^{2} \phi \text {; }
\end{aligned}
$$

and if the eurront is reversed n times in succession, wo find

$$
(-1)^{n} \theta_{n}=\rho^{-n} 0_{0}+\frac{\rho+1}{\rho-1}\left(1-\rho^{-n}\right) \phi
$$

VOL. II.
whenee we may fimb of in the form

$$
\phi=\left(\theta_{n}-p^{n} \theta_{n}\right)_{n}^{\prime \prime} 1111
$$

 pression beeomes

$$
\phi=\theta_{\theta_{n}+1}^{\prime \prime-1} 1
$$

 an aceurate knowloder of phe thatio of one viloration of the magnet, the nest umber the inthene of the segivtaners which

 advantages of the harge angular elongation. It in only where wo wish to mahlish the wimenere of a wey amall current by raming it to proluce a visible movernat of the now the that this mothod is rally valualle.

718.] When a current lasta only durimg a very monll fraction of the time of vibration of the gatvanomeror-magnet, the whole quantity of ehocricity tranmittod by the curvont may be monsured by the angular wheity commanichted to the magnet during the pasang of the cursert, and thin may the deturmined from the elongation of the tirat vihation of the magnet.

If we mothet the resistane which dampe the vibrations of the magnot, the inverstigation bocomen wery mingle.

Lat γ be the intonity of the curvent at nuy inmat, and Q the quantity of eloctricity which it tramanita, the

$$
\begin{equation*}
U=\int \gamma u t \tag{1}
\end{equation*}
$$

Let M be the magnotic moment, A the moment of inertia of the magnet and sumpeodori apparatua, and the angle the magnet makes with the phane of the coil,

$$
\begin{equation*}
A_{d t^{2}}^{d d^{2} \theta}+M \| \sin \theta=M \operatorname{civ} \operatorname{con} \theta \tag{2}
\end{equation*}
$$

If the time of the passuge of the current in very small, we may integrate, with respect to t during thin mort time without regarding the change of 0 , and wo find

$$
\begin{equation*}
A_{d t}^{d \theta}=M G \cos \theta_{0} \int \gamma d t+C^{\prime}=M i\left(Q \cos \theta_{0}+C^{\prime} .\right. \tag{3}
\end{equation*}
$$

This shews that, the passage of the quantity Q produces an angular momentum $M\left(i Q_{0}\right.$ cos θ_{0} in the magnet, where θ_{0} is the value of θ at the instant of passage of the current. If the magnet is initially in "quilihrimm, we may put $0_{0}=0, C=0$.

The marnet then swinge freoly and roaches an clongation θ_{1}. If there is no resistance, the work done against the magnetic fores during this swing is $M I I\left(1-\cos \theta_{1}\right)$.

The conergy eommunicated to the magnet by the current is

$$
\frac{1}{2} A^{c} \stackrel{(l \theta}{c}(l)^{2} .
$$

Equating these quantitios, we find

$$
\begin{align*}
& \overrightarrow{d t})^{2}=2{ }_{A}^{M I L}\left(1-\cos \theta_{1}\right), \tag{4}\\
& { }_{d t}^{d \theta}=2 \sqrt{M I I} \sin \frac{1}{2} \theta_{1} \\
& ={ }_{A}^{M(X} Q \text { by (3). } \tag{5}
\end{align*}
$$

But if T he the time of a single viloration of the magnet from rest to rest,

$$
\begin{equation*}
T=\pi \sqrt{M H} A^{\prime}, \tag{6}
\end{equation*}
$$

and wo find

$$
\begin{equation*}
Q=\frac{H T}{G \pi} 2 \sin \frac{1}{2} \theta_{1} \tag{7}
\end{equation*}
$$

where $I I$ is the horizontal magnetic force, G the coefficient of the gralvanometer, T the time of a single vibration, and θ_{1} the first elongation of the magnot.
749.] In many actual oxperiments the olongation is a small angle, and it is then oasy to take into account the effect of resistance, for wo may troat the oquation of motion as a linear equation.

Let the magnot be at rest at its position of equilibrium, let an angular velocity m be communicated to it instantaneously, and let its first alongation bo θ_{1}.

The equation of motion is

$$
\begin{align*}
\theta & =C e^{-\omega_{1} t \tan \beta} \sin \omega_{1} t \tag{8}\\
d \theta & =C \omega_{1} \sec \beta e^{-\omega_{1} t \tan \beta} \cos \left(\omega_{1} t+\beta\right) . \tag{9}
\end{align*}
$$

When $t=0,0=0$, and $\frac{d \theta}{d t}=C \omega_{1}=v$.

When $\omega_{1} t+\beta=\frac{\pi}{2}$,

$$
\begin{equation*}
\left.\theta=c^{c} e^{(\pi}-\beta\right) \tan \beta \cos \beta=\theta_{1} . \tag{1ii}
\end{equation*}
$$

Henco

Now hy Art. (7.11) $\begin{gathered}M H \\ A\end{gathered}=\omega^{2}=\omega_{1}{ }^{2} \operatorname{secec}^{3} \beta^{3}$,

and by equation (π) $\quad \therefore=A^{M / i} Q$.
Hence

$$
\begin{align*}
& \theta_{1}=\begin{array}{cc}
Q\left(i \sqrt{ } \pi^{2}+\lambda^{2}\right. \\
H & T_{1}
\end{array}{ }^{2}{ }^{2} \ln A^{\pi}, \tag{14}
\end{align*}
$$

and
which gives tho first olongation in terms of the quantity of dectricity in the transiont current, and conversely, whore T_{1} is the ohserved time of a single vibration as affectond by the aetual resistance of damping. When λ is small we may use the approximate formula

$$
\begin{align*}
& Q=\prod_{i \pi}^{M}\left(1+\frac{1}{2} \lambda\right) \theta_{1} . \tag{17}\\
& \text { Methend of Recoil. }
\end{align*}
$$

750.] Tho method given above saptowes the magnet to In at rost in its position of equilitrium when the transiont current is passed through the coil. If we wish to repeat the oxperiment wo must wait till the magred, is again at rest. In cortain cosses, however, in which wo are ahlo to prohluce transiont curwnts of equal intensity, and to do no at any desired inmtant, the follow. ing method, deseribed by Weber*, is the most convoniont for making a continued series of observations.

Suppose that we net the magnet swinging by monne of a transient current whome value in Q_{u}. If, for brevity, we write
then the first elongation

$$
\begin{equation*}
0_{1}=K Q_{0}=u_{1} \text { (nay) } \tag{19}
\end{equation*}
$$

[^73]The velocity instantaneonsly commumiented to the magnet at starting is

$$
\begin{equation*}
r_{11} \cdots{ }_{A}^{M / i^{\prime}}\left(_{11} .\right. \tag{20}
\end{equation*}
$$

When it refurns throurh the perint of apmiliminm in a negative direction its verocity will he

$$
\begin{equation*}
r_{1} \quad m^{\prime} \quad . \tag{21}
\end{equation*}
$$

The next mergtive elompation will he

$$
\begin{equation*}
\text { !. } \quad n_{1}+\cdots l_{1} \text {. } \tag{22}
\end{equation*}
$$

 will be

$$
\begin{equation*}
\because \quad r_{i, 1} \quad \ddots \tag{23}
\end{equation*}
$$

Now lat an instantamont: "umpont, whe" total quantity is - (). be tranmaithel thement the eril at lhe instant when the magnot is at the gro peint. It will rhamer the wheity re into ra-r, where

$$
\begin{gather*}
. M i i \tag{21}\\
.1
\end{gather*}
$$

 and "qual to

$$
\begin{array}{ccc}
M 1 \\
.1 & U_{1}, \cdot & 1 .
\end{array}
$$

 dongation will be mgative,

"K. Kita."

$$
\begin{equation*}
\text { " } k y H_{1} \tag{2~K}
\end{equation*}
$$

$$
\begin{align*}
& \text {. } 1 . \\
& \text { "' " } \\
& \text { be Ply } \tag{1}
\end{align*}
$$

If n series of clongations have haten almented, thent we lomarithmie derrement from the equation

$$
\begin{aligned}
& \pm(1) \\
& \pm(1) \\
& \pm(1) \\
& \pm(1)
\end{aligned}
$$

and (Q from the oymation
$K\left(2\left(1+r^{-\lambda}\right)(2 n \cdots 1)\right.$
$=\Xi_{n}(4-b-1+d)\left(1+e^{-2}\right) \quad\left(1,1 b_{1}\right) \quad\left(1 / n \quad i_{n}\right)$

Nin.
The motion of the manget in the besthon of remenil cally represented in Fiyg an, where the ulacisen repter time, and the ordinate the dethesion of the magnet at th Soo Art. 76%.
Metherl of Mulliplication.
 the magnet paswa thomgh the gote frint, and alwa to increase the whoty of the maport, then, if $0_{2}, 0^{2}$ the sucerssive vlomgtions,

$$
\begin{aligned}
& \theta_{2}+k U_{2} A_{3}, \\
& \theta_{a}=+k U-\theta_{2} .
\end{aligned}
$$

The ultimate value to which the elongation totala nfte many vibrations in fomul by patting $\theta_{n}=-\theta_{m=1}$, whone

$$
0=+1 \frac{1}{1} h(2
$$

If λ is small, the value of the ultimate olotigation large, hut since this involves a lomg continued axprime caroful determination of A, and sine n a manll wror in duces a latge error in the dotormination of ℓ, this a rarely usoful for numerical detormimation, and Nhot served for ohtaining evilune of the exinhence or nonof curronts too manall to be ohserved dirvetly.

In all experiments in which tranaient curronts
to act on tho moving magnet of the gal vanometer, it is essential that the whole current should Pass while the distance of the magnett from the erro point remains a small fraction of the total dlongation. The time of vibration should therefore be large eompured with the time required to produce the current, and the operator should have his rye on the motion of the magnet, so as to regulates the instant of passage of the current by the instant of passage of the magnet through its point of rquilibrium.
To estimate the error introduced by a failure of the operator th produce the eurrent at the proper instant, we observe that the effect of an impulse in increasing tho elongation varios as

$$
e^{\phi \tan \beta} \cos (\phi+\beta), *
$$

and that this is a maximum when $\phi=0$. Mence the error arising from a mistiming of the current will always lead to an underestimation of its value, and the anount of the error may he estimated by comparing the cosine of the phase of the vibration at the time of tho passage of the current with unity.

* \{ L have not nucoterled in verifying thin expression; uniug tho motation of Art. 748. I find that the whangtion when the impulse is applied at ϕ hears to the olongation produces by the ame inpulse when $\phi-10$ the ratio

$$
e^{A \omega_{1} \phi Q^{\phi \tan \beta}}\left\{1+\frac{A \omega_{1} \phi \tan \beta}{M(\gamma Q}\right\},
$$

where ϕ han been assumed to be so small that itm sequares and higher powers may be neglected. $\}$

('HAPTFR XIII.

> romplulsus uF roll.s.
 ufarint.
 moter the coils shomld loe of whall ralion, nul shonlal many winlinge of the wire it woulh he extremoly to determine the "extrionl constante of such a coil by mensuremont of its form and dimernsions, ven if wo obtain aceens to every winling of the wire in order fot it. Hut in fuct tho gronter number of the wimlinge nere n completoly hidhen ly the ontur wimlinge, hat we are ut whother the prowure of the onter windinges nay we altered the form of the inner onew ather the coilimg of the

It is luther therefore to deturnitu the electrime cons the coil by dired foctrion compremen with a mant whose commanta aro hatow.

Sinco the dimendions of the monulure reit mant he dete by actual mensurement, it must two ante of consibloral so that the unaviduble orror of monatranome of ita il
 quantity motsured. "Phe channel it which the coil in should la of reolangular moction, and the vimettwions section should twe suall conanres with the maliun of t This is necosmary, not wo much in order to diminish rection for the sizo of the werefion, as to proveth any une about the pomition of thons winding of the ooil wh hidden hy the extermi windinge*.

[^74]The principal constants which we wish to determine are-
(1) The magnetic force at the centre of the coil due to a unit-current. This is the quantity denoted by G_{1} in Art. 700 .
(2) The magnetic moment of the coil due to a unit-current. This is the quantity g_{1}.
753.] To determine G_{1}. Since the coils of the working galvanometer are much smaller than the standard coil, we place the galvanometer within the standard coil, so that their centres coincide, the planes of both coils being vertical and parallel to the earth's magnetic force. We have thus obtained a differential galvanometer one of whose coils is the standard coil, for which the value of G_{1} is known, while the constant of the other coil is $G_{1}{ }^{\prime}$, the value of which we have to determine.

The magnet suspended in the centre of the galvanometer coil is acted on by the currents in both coils. If the strength of the current in the standard coil is γ, and that in the galvanometer coil γ^{\prime}, then, if these currents flowing in opposite directions produce a deflexion δ of the magnet,

$$
\begin{equation*}
H \tan \delta=G_{1}^{\prime} \gamma^{\prime}-G_{1} \gamma \tag{1}
\end{equation*}
$$

where H is the horizontal magnetic force of the earth.
If the currents are so arranged as to produce no deflexion, we may find G_{1}^{\prime} by the equation

$$
\begin{equation*}
G_{1}^{\prime}=\frac{\gamma}{\gamma^{\prime}} G_{1} \tag{2}
\end{equation*}
$$

We may determine the ratio of γ to γ^{\prime} in several ways. Since the value of G_{1} is in general greater for the galvanometer than for the standard coil, we may arrange the circuit so that the whole current γ flows through the standard coil, and is then divided so that γ^{\prime} flows through the galvanometer and resistance coils, the combined resistance of which is R_{1}, while the remainder $\gamma-\gamma^{\prime}$ flows through another set of resistance coils whose combined resistance is R_{2}.
of its various parts. Hence any concealed flaw in the continuity of the metal may cause the main stream of electricity to flow either close to the outside or close to the inside of the circular ring. Thus the true path of the current becomes uncertain. Besides this, when the current flows only once round the circle, especial care is necessary to avoid any action on the suspended magnet due to the current on its way to or from the circle, because the current in the electrodes is equal to that in the circle. In the construction of many instruments the action of this part of the current seems to have been altogether lost sight of.

The most perfect method is to make one of the electrodes in the form of a metal tube, and the other a wire covered with insulating material, and placed inside the tube and concentric with it. The external action of the electrodes when thus arranged is zero, by Art. 683.

We have then, hy Art. :ati,

$$
\begin{aligned}
& \gamma^{\prime} h_{1}=(\gamma-j) h_{2} \\
& \begin{array}{r}
\gamma \\
\gamma
\end{array} h_{1}+h_{n}, \\
& \text { aml } \quad i_{i} \quad \begin{array}{l}
i, l i l_{1} \\
l i
\end{array}
\end{aligned}
$$

If there is any umertainty ahout the antwal rewintane

 due to a mait current thowing through it, the magnet is pended at, the ernter of the mandarl coit, hat the st

 coilx, no longer dethertis the mastat. If the dimanoes the centres of the coilis in a, have now (Att. 700)

By repatimy the esperiment with the sunll atil on th
 the pemitions of the small erol, we rliminate the unerert in the determination of the pmation of the evotres of the and of the manll coil, and we get rinl of the totas in : t_{2}

If the standard coil in wo arrangent that we can 8 curront, through half the number of witaliame mo as a different value to (i, we may dotornine an an when a thus, as in Art. 154, wo may shminate the torn involvit
 mont of tho mand soil with nulliciont acemary to make ahle in caleulating the value of the cormotion to be ap y_{1} in the rumation

$$
y_{3}=\frac{1}{2} n_{1} r^{-x}-a_{r^{3}}^{t_{5}},
$$

where

$$
y_{3}=-\frac{1}{8} x^{2}\left(13 e^{3}+3 G^{3}-2 \eta^{2}\right) \text { by Art. } 700 .
$$

Compurison of Coefficients of Imdution.

755.] It is only in a small number of cases that the direct calculation of the coofficients of induction from the form and position of the circuits can be easily performed. In ordor to attain a sufficient degree of accuracy, it is necessary that the distance between the cireuitsshould be capable of exact measurement. But whon the distance between the circuits is sufficient to prevent crrors of mosusuroment from introducing largo errors into the result, the corfficient of induction itself is necessarily very much redued in magnitude. Now for many oxporimonts it is necessary to make the cosfficient of induction largo, and we can only do so by bringing tho circuits close togethor, so that the method of direct measurement becomes impossiblo, and, in order to determine the coefficient of induction, wo must compare it with that of a pair of coils arrangol so that thoir coefficient may be obtained by direct measurement and calculation.

This may be done as follows:
Let A and a be the standard pair of eoils, B and b the coils to be comparod with them. Cunnect A and B in one circuit, and place the electrodes of the galvanometer, G, at P and Q, so that the resistanco of $I^{\prime} A Q$ is R, and that of $Q B P$ is S, K

Fig. 60. leeing the rosistance of the galvanometor. Connect a and b in one circuit with the lattery.

Let tho current in A bo \dot{x}, that in B, \dot{y}, and that in the galvanometor, $\dot{x}-\dot{y}$, that in the battery circuit boing γ.
Then, if M_{1} is the coefficient of induction between A and α, and M_{2} that between B and b, the integral induction current through the gralvanometer at breaking the battory circuit is

$$
\begin{equation*}
x-y=\gamma \frac{\frac{M_{2}}{N}-\frac{M_{1}}{R}}{1+\frac{K}{R}+\frac{K}{S}} \tag{8}
\end{equation*}
$$

By adjusting the resistancos R and S till there is no current
through the eralvanomere at makine or heraking the circuit, the ratio of $M_{: 3}$ to M_{1} may for thermined ly m that of sto h.

* |The expression (x) may be proved as fulluws: lat
 and the galvanmeter reportively. The hinetie omergy нystem is then appoximately,

The diswipation function β, i. \cdot, half the rate at wh energy of the currents is wated in heratige the colle, is (o

where (! is the rewistane of the hattry and hathery coil:
The cquation of currente comewnowing to any varia then of the form
where ξ is the correnonding hemembetive fores.
Hence we have

$$
\begin{aligned}
& I_{1}, \dot{r}|1(\dot{x}-i)|, M_{1} \dot{\gamma}+\mu_{x} \mid k(\dot{x}-\dot{y})=0 .
\end{aligned}
$$

'Ihese equations cha he at one interemted in rexat to serving that $, x, y, \dot{y}, y$ are zoro initially, if we, write we fiml, an ohmimating an antation of the form

$$
A+H+(\because \quad H \gamma+b \gamma
$$

A short time after hatery contart the curvent y w berome ntem! and the currot: will how dien away.

$$
\therefore: B_{\gamma}
$$

This gives the "xprenaion (H) nlowe, not it shews th the total quantity of eloctricity pmaing through the f
 equation (k^{\prime}) further shewe that if theres if 10 current wha

[^75](ismparismo of "Corfficient of Nelf-Tnduction anith a Coefficient of Mutruch Induction.
756.7 In the lranch $A F^{\prime}$ of Wheatstone's Bridge let a coil be insertesl, the cosefficient of self-induction of which we wish to find. Let us call it L.

In the eomnecting wire between A and tho battery another eooil is insertend. The eosefficient of mutual induction between this eoril and the coil in $A H^{\prime}$ is M. It may be moasured ly the mothod deseribeed in Art. 755.

If the current from A to H^{\prime} is x, and that from A to I is y, that from Z to A, through B, will be $x+y$. The external electromotive force from A to k^{\prime} is

$$
\begin{equation*}
A-F^{\prime}=P^{\prime} x+I_{c}^{d x}(l t)+M\left(\frac{d x}{d t}+\frac{d y}{d t}\right) . \tag{9}
\end{equation*}
$$

Tho external electromotive foreo along $A I I$ is

$$
A-\dot{I}=(Q!y .
$$

Jig. 61.

If the galvanometer placed betwoen F^{\prime} and $I I$ indicates no current, eithor transient or permanont, thon by (9) and (10), since $H-H^{\prime}=0$,
and

$$
L_{d}^{d x}+M\left(\begin{array}{l}
d x \tag{11}\\
d t
\end{array}+\frac{d y}{d t}\right)=0,
$$

$$
\begin{equation*}
L=-\left(1+\frac{I^{\prime}}{(}\right) M . \tag{12}
\end{equation*}
$$

Sinco l, is always positivo, M must bo negative, and thereforo the current must flow in opposite directions through the coils placed in l^{\prime} and in B. In making the exporiment wo may either hegin by adjusting the remistances so that

$$
\begin{equation*}
l^{\prime} S^{\prime}=(Q R, \tag{14}
\end{equation*}
$$

which is the condition that there may be no permanent current, and thon adjust the distanco botweon the coils till the galvanometer ceases to indicate a transiont current on making and broaking the battory connoxion; or, if this distance is not capable of adjustment, wo may get rid of the transient current hy altering the resistancos Q and S in such a way that the ratio of Q to S remains constant.

[^0]: OXFORD
 PRINTED AT THE CLAIRENDON PRESS
 by horace hart, m.a.
 PRINTER TO THE UNIVERSITY

[^1]:

[^2]: * The word Polarization has been used in a sense not consistent with this in Optics, where a ray of light is said to be polarized when it has properties relating to its sides, which are identical on opposite sides of the ray. This kind of polarization refers to another kind of Directed Quantity, which may be called a Dipolar Quantity, in opposition to the former kind, which may be called δ Unipolar.

 When a dipolar quantity is turned end for end it remains the same as before. Tensions and Pressures in solid bodies, Extensions, Compressions, and Distortions and most of the optical, electrical, and magnetic properties of crystallized bodies are dipolar quantities.

 The property produced by magnetism in transparent bodies of twisting the plane of polarization of the incident light, is, like magnetism itself, a unipolar property. The rotatory property referred to in Art. 303 is also unipolar.

[^3]: * \{The positive direction of the axis is from the negative to the positive pole.\}

[^4]: * \{If θ_{1}, θ_{2} are the angles which the axes of the magnets make with r, ψ the angle between the planes containing r and the axes of the first and second magnet respectively, then

 $$
 \mu_{12}-3 \lambda_{1} \lambda_{2}=-2 \cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2} \cos \psi .
 $$

 Thus the couple acting on the second magnet is equivalent to a couple whose axis is r and whose moment $-d W / d \psi$ tending to increase ψ is

 $$
 \frac{m_{1} m_{2}}{r^{3}} \sin \theta_{1} \sin \theta_{2} \sin \psi
 $$

 together with a couple in the plane of r and the axis of the second magnet whose moment $-d W / d \theta_{2}$ tending to increase θ_{2} is

 $$
 -\frac{m_{1} m_{2}}{r^{3}}\left\{2 \cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2} \cos \psi\right\}
 $$

 These couples are equivalent to those given by (6) and (7).\}

[^5]: * See Sir W. Thomson's 'Mathematical Theory of Magnetism,' Phil. Trans., June .849 and June 1850, or Reprint of Papers on Electrostatics and Magnetism, p. 340.

 VOL. II.

[^6]:

[^7]:

[^8]:

[^9]: * \{ Ewing (Phil. Trans., Part ii. 1885) has shewn that soft iron free from vibrations and demagnetizing forces can retain a larger proportion of its magnetism than the hardest steel. \}

[^10]:

[^11]:

 Hreaters:

[^12]: * Mémoires de l'Institut, 18:24, p. 247.

[^13]:

[^14]: * [The equality of the coefficients p and q may be shewn as follows: Let the forces acting on the sphere turn it about a diameter whose direction-cosines are λ, μ, ν through an angle $\delta \theta$; then, if W denote the energy of the sphere, we have, by Art. 436,

 $$
 -\delta W=\frac{4}{3} \pi a^{3}\{(Z B-Y C) \lambda+(X C-Z A) \mu+(Y A-X B) \nu\} \delta \theta
 $$

 But if the axes of coordinates be fixed in the sphere we have in consequence of the rotation

 Hence we may put

 $$
 \delta X=(Y \nu-Z \mu) \delta \theta, \text { etc. }
 $$

 $$
 -\delta W=\frac{4}{3} \pi a^{3}(A \delta X+B \delta Y+C \delta Z)
 $$

 That the revolving sphere may not become a source of energy, the expression on the right-hand of the last equation must be a perfect differential. Hence, since A, B, C are linear functions of X, Y, Z, it follows that W is a quadratic function of X, Y, Z, and the required result is at once deduced.

 See also Sir W. Thomson's Reprint of Papers on Electrostatics and Magnetism, pp. 480-481.]

[^15]:

[^16]: ${ }_{28}$ are used their length should be at least 300 times their diameter. $\}$

[^17]: * \{This effect depends on the square of κ, the forces investigated in $\S 440$ depend upon the first power of κ, thus since κ is very small for diamagnetic bodies the latter forces will, except in exceptional cases, over-power the tendency investigated in this Art. $\}$ \ddagger Crelle, bd. xlviii (1854).

[^18]: * \{The force acting on a magnetio pole inside a magnet is indefinite, depending on the shape of the cavity in which the pole is placed. The force X is thus indefinite, for since we know nothing about the shape or disposition of these molecular magnets there does not seem any reason for assuming that the force is that in a cavity of one shape rather than another. Thus it would seem that unless further assumptions are made we ought to put $X=X_{0}+p Y$, where X_{0} is the external magnetic force and p a constant, of which all we can say is that it must lie between 0 and 4π. This uncertainty alout the value of X is the more embarrassing from the fact that in iron I is very much greater than X_{0}, so that the term about which there is the uncertainty may be much the more important of the two. $\}$

[^19]: * There is some mistake in the formula given by Weber, Abhandlungen der Kg. Sächs-Gesellschaft der Wissens. i. p. 572 (1852), or Pogg., Ann., lxxxvii. p. 167 (1852), as the result of this integration, the steps of which are not given by him. His formula is

 $$
 I=m n \frac{X}{\sqrt{X^{2}+D^{2}}} \frac{X^{4}+\frac{7}{8} X^{2} D^{2}+\frac{2}{3} D^{4}}{X^{4}+X^{2} D^{2}+D^{4}}
 $$

[^20]:

[^21]:

 w解

[^22]: *: \{Consider the case of a piece of iron subjected to a magnetic force in the positive direction which increases from zero to a value X_{0} sufficient to produce permanent magnetization, then let the magnetic force diminish again to zero, it is evident that on the preceding theory the intensity of magnetization will in consequence of the lermanent set given to some of the molecular magnets be greater for a given value of the magnetizing force when this force is decreasing than when it was incransing. Thus the behaviour of the iron in the magnetic field will depend upon its previous treatment. This effect has been called hysteresis by Ewing and has been very fully investigated by him (see Phil. Trans. Part II, 1885). The theory given in Art. 445 will not however explain all the phenomena discovered by Ewing, for if in the above case after decreasing the magnetic force we increase it again, the value of the intensity of magnetization for a value $X_{1}<X_{0}$ of the magnetio force ought to be the same as when the force was first decreased to X_{1}. Ewing's researches shew however that it is not so. A short account of these and similar researches will be given in the Supplementary Volume.\}

[^23]: * \{This assumes that in figs. 8 and $9 P$ is to the right of C.\}

[^24]: * Phil. May. 3, 1833.
 + Pogg., Ann., 31, 367, 1834.
 \ddagger Ann. de Uhimie et de Physique, 16, pp. 436 and $448,1846$.
 § Phil. Trans., 1856, p. 287. || Ann. de Chimie et de Physique, 53, p. 385, 1858. © \{Villari showod that this is only true when the magnetizing force is less than a certain critical value, but when it exceeds this value an extension produoes a diminution on the intensity of magnetization; Poge., Ann. 126, p. 87, 1865.

 The statement in the text as to the behaviour of soft iron bars does not hold for small strains and low magnetic fields. $\}$

[^25]: * Sturgeon's Annals of Electricity, vol. viii. p. 219.
 \dagger Phil. Mag., xxx. 1847.

[^26]: .* \{Shelford Bidwell has shewn that when the magnetizing force is very great, the length of the magnet diminishes as the magnetizing force increases. Proc. Roy. Soc. xl. p. 109.\}

[^27]:

[^28]: vol. xxi (1855), p. 849.

[^29]: * Proc. Phil. S., Manchester, March 19, 1867.

[^30]: * Professor Hornstein of Prague has discovered a periodic change in the magnetic elements, the period of which is 26.33 days, almost exactly equal to that of the synodic revolution of the sun, as deduced from the observation of sun-spots near his equator. This method of discovering the time of rotation of the unseen solid body of the sun by its effects on the magnetic needle is the first instalment of the repayment by Magnetism of its debt to Astronomy. Anzeiger der K. Akad., Wien, June 15, 1871. See Proc. R. S., Nov. 16, 1871.

[^31]: * See another account of Örsted's discovery in a letter from Professor Hansteen in the Life of Faraday by Dr. Bence Jones, vol. ii. p. 395.

[^32]: * \{Ampère, Théorie des phénomènes électrodynamiques, 1826; Weber, Elektrodynamische Maasbestimmungen (Abhandlungen der königlich Sächs. Gesellschuft zu Leipzig, 1850-1852.) \}

[^33]:

[^34]: * $\{$ In this rule $d s$ is drawn in the direction of i and the observer is supposed to be at that corner of the parallelopiped from which $d x, d s$ and \mathfrak{B} are drawn. $\}$

[^35]: * \{The right side of the current is the right of an observer with his back against the paper placed so that the current enters at his head and leaves at his feet. $\}$

[^36]: * \{ Mr. Hall has discovered (Phil. Mag. ix. p. 225, x. p. 301, 1880) that a steady magnetic field does slightly alter the distribution of currents in most conductors, so that the statement in brackets must be regarded as only approximately true. $\}$

[^37]: * A

[^38]:

 if in Fig. $80 I^{\prime \prime}$ were to the loft inatend of the righe of I ! !

[^39]:

[^40]:

[^41]: * Read Faraday's Experimental Researches, Series i and ii.

[^42]:

[^43]: * Annales de Chimie, xxxiv. p. 64 (1852), and Nuovo Cimento, ix. p. 345 (1859).
 $+\{$ This statement is not necessarily strictly true if one or more of the materials is magnetic, for in this case the distribution of the lines of magnetic force are disturbed by the magnetism induced in the wires. $\}$

[^44]: * Srp. Hran werten 1. 60.
 * 14., 820 D .
 + 16., werles H. *42
 $\$ 14,60,1114,1661,1729,1739$.

[^45]:
 1 Ha, 2 :

 + 11., 218.
 * 11., 114.

[^46]: * Exp. Res., 217, \&c.
 + Pogg., Ann. xxxi. p. 483 (1834).

[^47]: * Merlin Ahitul., 1846 and 1847.
 Tayler'н 'Seientifio Mesuoirs,' part il. p. 114,
 "Transient Eloctric Currenta,' Whil. Mag., June Io 03.

[^48]: * Mechanical Theory of Electrolysis, Phil. Mag., Dec. 1851.
 + Nichol's Cyclopaedia of Physical Science, ed. 1860, Article 'Magnetism, Dynamical Relations of,' and Reprint, § 571.

 VOL. II.

[^49]: * Nep. Nex., 107%

[^50]: * Faraday, Exp. Res. 283.

[^51]: :ofessor Cayley's ‘ Report on Theoretical Dynamics,' British Association, Thomson and Tait's Natural Philosophy.

[^52]:

[^53]: - Hap. Hex 288.

[^54]: * Exp. Res., 1648.

[^55]: * Nichol's Cyclopaedia of the Physical Sciences, ed. 1860; article 'Magnetism, Dynamical Relations of.'

[^56]: * Exp. Res., 3082, 3087, 3113.

[^57]: * The negative sign is employed here in order to make our expressions consistent with those in which Quaternions are employed.

[^58]: * \{This expression for the electrostatic energy was deduced in the first volume on the assumption that the electrostatic force could be derived from a potential function. This proof will not hold when part of the electromotive intensity is due to electromagnetic induction. If however we take the view that this part of the energy arises from the polarized state of the dielectric and is per unit volume $\frac{1}{8 \pi K}\left(f^{2}+g^{2}+h^{2}\right)$, the potential energy will then only depend on the polarization of the dielectric no matter how it is produced. Thus the energy will, since

 $$
 \frac{f}{4 \pi K}=P, \frac{g}{4 \pi K}=Q, \frac{h}{4 \pi K}=R,
 $$

 be equal to $\frac{1}{2}(P f+Q g+R h)$ per unit volume. $\}$

 + See Appendix I at the end of this Chapter.

[^59]: * Noo Appondir ll at the ord of thin "hapher.

[^60]: * Nhurgen's Anmata of Eleotricity, bol, v. p. 187 (1810); or P'hilosephical Maguzine, Deo. 18 s 1.

[^61]: * See Thomson, Camb. Math. Journ., vol. iii. p. 286.

[^62]: * [The equations (20) and (22) are proved to be true only at the surface of the sheet for which $z=0$. The expression (23) satisfies (22) generally, and therefore also at the surface of the sheet. It also satisfies the other conditions of the problem, and is therefore a solution. 'Any other solution must differ from this by a system of closed currents, depending on the initial state of the sheet, not due to any external cause, and which therefore must decay rapidly. Hence, since we assume an eternity of past time, this is the only solution of the problem.' See Professor Clerk Maxwell's Paper, Royal Soc. Proc., xx. pp. 160-168.]

[^63]: * \{These expressions may be written in the simpler forms

[^64]: + Bryp. Itra, A1.

[^65]: * \{If a is the distance of a pole from the axis of the disk, c its height above the disk, we can prove that for small values of ω, the dragging force on the pole is $m^{2} a \omega / 8 c^{2} R$, the repulsive force $m^{2} a^{2} \omega^{2} / 8 c^{2} R^{2}$, the force towards the axis $m^{2} a \omega^{2} / 4 c R^{2}$. $\}$

[^66]:
 and (2b) are anly atriutly crue whon $\mu-\mu+\mu$, ,

[^67]: (This in easily proved by expressing the zonal harmonio $I_{i}(\theta)$, which ocours in the exprosslon for ω_{1} in equation (0) as the sum of a series of zonal and tesseral harmonics, with C 'a for axib, and then using the formula

 $$
 \left.M=\int_{\mu_{1}}^{1} d r^{d \omega_{1}} 2 \pi c_{2}^{2} d \mu_{2}\right\}
 $$

[^68]: * The nocond exprowion for M may be dethend from the firat by nown of the following trankformationa in Eliftio Intograla:

[^69]: * $\{$ Mr. Chree finds that this equation should be $\left.(n-2)(n-3) A_{n}^{\prime}+(n-1)(n-2) A_{n+1}^{\prime}+3 \cdot 4 A^{\prime \prime}{ }_{n}+3 \cdot 4 A^{\prime \prime}{ }_{n+1}=(n-2) A_{n}^{\prime}\right\}$.

[^70]:

[^71]:

[^72]: * see Gauss and W. Weber, Resultate des magnetischer Vereins, 1886. Chap. II. pp. 84: 50 .

[^73]:

[^74]:

 tribution of the curront withim the oxadurto degnemde on the rwlative oog

[^75]:

 intorchanget. 1

 chalrug the battery drowh.

