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PREFACE. 

The efforts of Cantor and his collaborators show that a chronological 
history of mathematics down to the nineteenth century can be written in 
four large volumes. To cover the last century with the same elaborateness, 
it has been estimated that about fifteen volumes would be required, so 
extensive is the mathematical literature of that period. But to retain the 
chronological order and hence devote a large volume to a period of at most 
seven years would defeat some of the chief purposes of a history, besides 
making it very inconvenient to find all of the material on a particular topic. 
In any event there is certainly need of histories which treat of particular 
branches of mathematics up to the present time. 

The theory of numbers is especially entitled to a separate history on 
account of the great interest which has been taken in it continuously through 
the centuries from the time of Pythagoras, an interest shared on the one 
extreme by nearly every noted mathematician and on the other extreme 
by numerous amateurs attracted by no other part of mathematics. This 
history aims to give an adequate account of the entire literature of the 
theory of numbers. The first volume presents in twenty chapters the 
material relating to divisibility and primality. The concepts, results, and 
authors cited are so numerous that it seems appropriate to present here an 
introduction which gives for certain chapters an account in untechnical 
language of the main results in their historical setting, and for the remaining 
chapters the few remarks sufficient to clearly characterize the nature of their 
contents. 

Perfect numbers have engaged the attention of arithmeticians of every 
century of the Christian era. It was while investigating them that Fermat 
discovered the theorem which bears his name and which forms the basis 
of a large part of the theory of numbers. A perfect number is one, like 
6 = 1+2+3, which equals the sum ol its divisors other than itself. Euclid 
proved that 1) is a perfect number if 2^—1 is a prime. For p = 2, 
3, 5, 7, the values 3, 7, 31, 127 of 2^ — 1 are primes, so that 6, 28, 496, 8128 
are perfect numbers, as noted by Nicomachus (about A. D. 100). A manu¬ 
script dated 1456 correctly gave 33550336 as the fifth perfect number; it cor¬ 
responds to the value 13 of p. Very many early writers believed that 2^ — 1 
is a prime for every odd value of p. But in 1536 Regius noted that 

2»-l = 511 =7*73, 2“-1 = 2047 = 23*89 
v\ 
Nsiare not primes and gave the above fifth perfect number. Cataldi, who 
founded at Bologna the most ancient known academy of mathematics, 
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noted in 1603 that 2^ — 1 is composite if p is composite and verified that it is 
a prime for p = 13, 17, and 19; but he erred in stating that it is also a prime 
for p=23, 29, and 37. In fact, Fermat noted in 1640 that 2**—1 has the 
factor 47, and 2®^~1 the factor 223, while Euler observed in 1732 that 
2*® ~ 1 has the factor 1103. Of historical importance is the statement made 
by Mersenne in 1644 that the first eleven perfect numbers are given by 
2p-i(2^-.1) for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 267; but he erred at 
least in including 67 and excluding 61, 89, and 107. That 2®^ — ! is com¬ 
posite was proved by Lucas in 1876, while its actual factors were found by 
Cole in 1903. The primality of 2®^—1, a number of 19 digits, was estab¬ 
lished by PervuSin in 1883, Seelhoff in 1886, and Hudelot in 1887. Both 
Powers and Fauquembergue proved in 1911“14 that 2®® —1 and 2^®^—1 are 
primes. The primality of 2®^ — 1 and 2^^^"—1 had been established by Euler 
and Lucas respectively. Thus 2^—1 is known to be a prime, and hence lead 
to a perfect number, for the twelve values 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 
107 and 127 of p. Since 2^—1 is known (pp. 15-31) to be composite for 32 
primes p ^257, only the eleven values p = 137, 139, 149, 157,167,193, 199, 
227, 229, 241, 257 now remain in doubt. 

Descartes stated in 1638 that he could prove that every even perfect 
number is of Euclid^s type and that every odd perfect number must be of the 
form ps^, where p is a prime. Euler^s proofs (p. 19) were published after his 
death. An immediate proof of the former fact was given by Dickson (p. 30). 
According to Sylvester (pp. 26-27), there exists no odd perfect number with 
fewer than six distinct prime factors, and none with fewer than eight if not 
divisible by 3. But the question of the existence of odd perfect numbers 
remains unanswered. 

A multiply perfect number, like 120 and 672, is one the sum of whose 
divisors equals a multiple of the number. They were actively investigated 
during the years 1631-1647 by Mersenne, Fermat, St. Croix, Frenicle, and 
Descartes. Many new examples have been found recently by American 
writers. 

Two numbers are called amicable if each equals the sum of the aliquot 
divisors of the other, where an aliquot divisor of a number means a divisor 
other than the number itself. The pair 220 and 284 was known to the 
Pythagoreans. In the ninth century, the Arab Thibit ben Korrah noted 
that 2''ht and 2"s are amicable numbers if /i = 3-2" —1, ^ = 3-2’‘"^--l and 8 = 

1 are all primes, and n> 1. This result leads to amicable numbers 
for n=2 (giving the above pair), n = 4 and n = 7, but for no further value 
^ 200 of n. The chief investigation of amicable numbers is that by Euler 
who listed (pp, 45, 46) 62 pairs. At the age of 16, Paganini announced in 
1866 the remarkable new pair 1184 and 1210, A few new pairs of very 
large numbers have been found by Legendre, Seelhoff, and Dickson. 
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Interesting amicable triples and amicable numbers of bigber order bave 
been recently found by Dickson and Poulet (p. 50). 

Altbougb it bad been employed in tbe study of perfect and amicable 
numbers, tbe expbcit expression for tbe sum (r(n) of all tbe divisors of n is 
reserved for Chapter II, in wbicb is presented tbe bistory of Fermat^s two 
problems to solve <r(jx^) and (t(x^) =y^ and John Wallis’s problem to find 
solutions other than a:=4 and y=5 of <r(x^)—(T(y^). 

Fermat stated in 1640 that be had a proof of the fact, now known as 
Fermat’s theorem, that, if p is any prime and x is any integer not divisible 
by p, then — 1 is divisible by p. This is one of tbe fundamental theo¬ 
rems of tbe theory of numbers. The case x=2 was known to tbe Chinese as 
early as 500 B. C. Tbe first pubbsbed proof was given by Euler in 1736. 
Of first importance is tbe generalization from the case of a prime p to any 
integer n, pubbsbed by Euler in 1760: if <t>{n) denotes tbe number of positive 
integers not exceeding n and relatively prime to n, then is divisible 
by n for every integer x relatively prime to n. Another elegant theorem 
states that, if p is a prime, H-| 1*2*3-(p—1)1 is divisible by p; it was 
first published by Waring in 1770, who ascribed it to Sir John Wilson. This 
theorem was stated at an earber date in a manuscript by Leibniz, who with 
Newton discovered the calculus. But Lagrange was the first one to pubbsh 
(in 1773) a proof of Wilson’s theorem and to observe that its converse is 
true. In 1801 Gauss stated and suggested methods to prove the generab- 
zation of Wbson’s theorem: if P denotes the product of the positive integers 
less than A and prime to A, then P+1 is divisible by A if A =4, p"" or 2p”*, 
where p is an odd prime, while P—1 is divisible by A if A is not of one of 
these three forms. A very large number of proofs of the preceding theorems 
are given in the first part of Chapter III. Various generalizations are then 
presented (pp. 84-91). For instance, if iV=Pi*».. .p,% where Pi,..., p. 
are distinct primes, 

is divisible by iVT, a fact due to Gauss for the case in which a is a prime. 
Many cases have been found in which —1 is divisible by n for a 

composite number n. But Lucas proved the following converse of Fermat’s 
theorem: if a®—1 is divisible by n when x==n — l, but not when a; is a divisor 
<71 — 1 ofn—1, then ti is a prime. 

Any integral symmetric function of degree d of 1, 2,..., p —1 with 
integral coefficients is divisible by the prime p if d is not a multiple of p — 1. 
A generalization to the case of a divisor p” is due to Meyer (p. 101). Nielsen 
proved in 1893 that, if p is an odd prime and if k is odd and 1 < A:<p — 1, the 
sum of the products of 1, 2,..., p — 1 taken /c at a time is divisible by p*. 
Taking fc=p—2, we see that if p is a prime > 3 the numerator of the fraction 
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equal to 1+1/2+1/34-... + !/(?)—1) is divisible by a result first proved 
by Wolstenbolme in 1862. Sylvester stated in 1866 that the sum of all 
products of n distinct numbers chosen from 1, 2,..m is divisible by each 
prime >n+l which is contained in any term of the set m—n+l,..., m, m+1. 
There are various theorems analogous to these. 

In Chapter IV are given properties of the quotient — which 
plays an important r61e in recent investigations on Fermat^s last theorem 
(the impossibility of if p>2), the history of which will be treated 
in the final chapter of Volume 11. Some of the present papers relate to 

l)/n, where n is not necessarily a prime. 
While Euler’s ^-function was defined above in order to state his general¬ 

ization of Fermat’s theorem, its numerous properties and generalizations 
are reserved for the long Chapter V. In 1801 Gauss gave the result that 
0(di) +... +<^(djfc) if di,..., dk are the divisors of n; this was generalized 
by Laguerre in 1872, H. G. Cantor in 1880, Busche in 1888, Zsigmondy in 
1893, Vahlen in 1895, Elliott in 1901, and Hammond in 1916. In 1808 
Legendre proved a simple formula for the number of integers ^ n which are 
divisible by no one of any given set of primes. The asymptotic value of 
</>(!) +... ^<I>{G) for G large was discussed by Dirichlet in 1849, Mertens in 
1874, Perott in 1881, Sylvester in 1883 and 1897, Ces4ro in 1883 and 1886-8, 
Berger in 1891, and Kronecker in 1901. The solution of <f>{x)=fg was treated 
by Cayley in 1857, Minin in 1897, Pichler in 1900, Carmichael in 1907-9, 
Ranum in 1908, and Cunningham in 1915. H. J. S. Smith proved in 1875 
that the m-rowed determinant, having as the element in the ith row and 
jth colunrn any function/(5) of the greatest common divisor 8 of i and j, 
equals the product of F(l), F(2),..., F(m), where 

F(m)=f(m)-2f^^^+2f^^ - m=-pY. 

In particular, F{m) =(l)(m) if f{8)=8. In several papers (pp. 128-130) 
Ces^ro considered analogous determinants. The fact that 30 is the largest 
number such that all smaller numbers relatively prime to it are primes was 
first proved by Schatunowsky in 1893. 

A. Thacker in 1850 evaluated the sum <l>k(n) of the kth powers of the 
integers which are prime to n. His formula has been expressed in 
various symbolic forms by Ces4ro and generalized by Glaisher and Nielsen. 
Crelle had noted in 1845 that <^>i(n) = (n). Ini 869 Schemmel considered 
the number of sets of n consecutive integers each < m and prime to m. In 
connection with linear congruence groups, Jordan evaluated the number of 
different sets of k positive integers whose greatest common divisor is 
prime to n. This generalization of Euler’s </)-function has properties as 
simple as the latter function and occurs in many papers under a variety of 
notations. It in turn has been generalized (pp. 151-4). 
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The properties of the set of all irreducible fractions, arranged in order of 
magnitude, whose numerators are and denominators are (called a 
Farey series if m=n), have been discussed by many writers and applied to 
the approximation of numbers, to binary quadratic forms, to the composi¬ 
tion of linear fractional substitutions, and to geometry (pp. 155-8). 

Some of the properties of periodic decimal fractions are already familiar 
to the reader in view of his study of arithmetic and the chapter of alge¬ 
bra dealing with the sum to infinity of a geometric progression. For the 
generalization to periodic fractions to any base 6, not necessarily 10, the 
length of the period of the periodic fraction for 1/d, where d is prime to 6, 
is the least positive exponent e such that 6'’ — 1 is divisible by d. Hence this 
Chapter VI, which reports upon more than 160 papers, is closely related to 
the following chapter and furnishes a concrete introduction to it. 

The subject of exponents and primitive roots is one of the important 
topics of the theory of numbers. To present the definitions in the customary, 
compact language, we shall need the notion of congruence. If the differ¬ 
ence of two integers a and h is divisible by m, they are called congruent 
modulo m and we write a=h (mod m). For example, 8=2 (mod 6). If 
n'= 1 (mod m)j but 1 (mod m) for 0<s<e, we say that n belongs to the 
exponent e modulo m. For example, 2 and 3 belong to the exponent 4 
modulo 5, while 4 belongs to the exponent 2. In view of Euler^s generaliza¬ 
tion of Fermat’s theorem, stated above, e never exceeds <!)(m). If n belongs 
to this maximum exponent <l>{n) modulo w, n is called a primitive root of m. 
For example, 2 and 3 are primitive roots of 5, while 1 and 4 are not. Lam¬ 
bert stated in 1769 that there exists a primitive root of any prime p, and 
Euler gave a defective proof in 1773. In 1785 Legendre proved that there 
are exactly <^>(e) numbers belonging modulo p to any exponent e which 
divides p —1. In 1801 Gauss proved that there exist primitive roots of m 
if and only if m = 2, 4, p* or 2p*, where p is an odd prime. In particular, for 
a primitive root a of a prime modulus p and any integer N not divisible 
by p, there is an exponent ind V, called the index of N by Gauss, such that 

(mod p). Indices play a r61e similar to logarithms, but we re¬ 
quire two companion tables for each modulus p. The extension to a power 
of prime modulus is immediate. For a general modulus, systems of indices 
were employed by Duichlet in 1837 and 1863 and by Kronecker in 1870. 
Jacobi’s Canon Arithmeticus of 1839 gives companion tables of indices for 
each prime and power of a prime < 1000. Cunningham’s Binary Canon of 
1900 gives the residues of the successive powers of 2 when divided by each 
prime or power of a prime < 1000 and companion tables showing the powers 
of 2 whose residues are 1, 2, 3,.... In 1846 Arndt proved that, if ^ is a 
primitive root of the odd prime p, g belongs to the exponent p"'”^(p —1) 
modulo p” if and only if (j=~ 1 is divisible by p^j but not by where 
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X<n; taking X*l, we see that, if is not divisible by is a primitive 
root of p* and of all higher powers of p. This Chapter VII presents many 
more theorems on exponents, primitive roots, and binonadal congruences, and 
cites various lists of primitive roots of primes < 10000. 

Lagrange proved easily that a congruence of degree n has at most n roots 
if the modulus is a prime. Lebesgue found the number of sets of solutions of 
ajXi'“+... +ojfeaJib"*sa (mod p), when p is a prime such that p—1 is divisible 
by w. Konig (p. 226) employed a cyclic determinant and its minors to find 
the exact number of real roots of any congruence in one unknown; Gegen- 
bauer (p. 228) and Rados (p. 233) gave generalizations to congruences in 
several unknowns. 

Galoises introduction of imaginary roots of congruences has not only 
led to an important extension of the theory of numbers, but has given rise 
to wide generalizations of theorems which had been obtained in subjects 
like linear congruence groups by applying the ordinary theory of numbers. 
Instead of the residues of integers modulo p, let us consider the residues of 
polynomials in a variable x with integral coefficients with respect to two 
moduli, one being a prime p and the other a polynomial f{z) of degree n 
which is irreducible modulo p. The residues are the p” polynomials in « of 
degree n—1 whose coefficients are chosen from the set 0,1,..., p — 1. These 
residues form a Galois field within which can be performed addition, sub¬ 
traction, multiplication, and division (except by zero). As a generalization 
of Fermat^s theorem, Galois proved that the power p” — 1 of any residue 
except zero is congruent to unity with respect to our pair of moduli p and 
/(x). He avoided our second modulus f (x) by introducing an undefined 
imagmary root i of /(x)=0 (mod p) and considering the residues modulo p 
of polynomials in but the above use of the two moduli affords the only 
logical basis of the theory. In view of the fullness of the reports in the text 
(pp. 233-252) of the papers on this subject, further comments here are 
unnecessary. The final topics of this long Chapter VIII are cubic congru¬ 
ences and miscellaneous results on congruences and possess little general 
interest. 

In Chapter IX are given Legendre^s expression for the exponent of the 
highest power of a prime p which divides the factorial 1*2.. .m, and the 
generalization to the product of any integers in arithmetical progression; 
many theorems on the divisibility of one product of factorials by another 
product and on the residues of multinomial coefficients; various determina¬ 
tions of the sign in 1*2... (p —1)/2se =fc 1 (mod p); and miscellaneous 
congruences involving factorials. 

In the extensive Chapter X are given many theorems and formulas 
concerning the sum of the kth powers of all the divisors of n, or of Its even or 
odd divisors, or of its divisors which are exact sth powers, or of those divisors 
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whose complementary divisors are even or odd or are exact sth powers, and 
the excess of the sum of the A;th powers of the divisors of the form 4m+l of 
a number over the sum of the /:th powers of the divisors of the form 4m+3, 
as well as more technical sums of divisors defined on pages 297, 301-2, 305, 
307-8, 314r-5 and 318. For the important case fc=0, such a sum becomes 
the number of the divisors in question. There are theorems on the number 
of sets of positive integral solutions of UiU^.. .Uk-n or of Also 
Glaisher^s cancellation theorems on the actual divisors of numbers (pp. 
310-11, 320-21). Scattered through the chapter are approximation and 
asymptotic formulas involving some of the above functions. 

In Chapter XI occur Dirichlet^s theorem on the number of cases in the 
division of n by 1, 2,..., p in turn in which the ratio of the remainder to the 
divisor is less than a given proper fraction, and the generalizations on pp. 
330-1; theorems on the number of integers which are divisible by no 
exact sth power > 1; theorems on the greatest divisor which is odd or has 
specified properties; many theorems on greatest common divisor and least 
common multiple; and various theorems on mean values and probability. 

The casting out of nines or of multiples of 11 or 7 to check arithmetical 
computations is of early origin. This topic and the related one of testing 
the divisibility of one number by another have given rise to the numerous 
elementary papers cited in Chapter XII. 

The frequent need of the factors of numbers and the excessive labor 
required for their direct determination have combined to inspire the 
construction of factor tables of continually increasing limit. The usual 
method is essentially that given by Eratosthenes in the third century B. C. 
A special method is used by Lebon (pp. 355-6). Attention is called to 
Lehmer^s Factor Table for the First Ten Millions and his List of Prime 
Numbers from 1 to 10,006,721, published in 1909 and 1914 by the Carnegie 
Institution of Washington. Since these tables were constructed anew with 
the greatest care and all variations from the chief former tables were taken 
account of, they are certainly the most accurate tables extant. Absolute 
accuracy is here more essential than in ordinary tables of continuous func¬ 
tions. Besides giving the history of factor tables and lists of primes, this 
Chapter XIII cites papers which enumerate the primes in various intervals, 
prime pairs (as 11, 13), primes of the form 4n+l, and papers listing primes 
written to be base 2 or large primes. 

Chapter XIV cites the papers on factoring a number by expressing it as 
a difference of two squares, or as a sum of two squares in two ways, or by use 
of binary quadratic forms, the final digits, continued fractions. Pell equa¬ 
tions, various small moduli, or miscellaneous methods. 

Fermat expressed his belief that Fn = 2^”+1 is a prime for every value of n. 
While this is true if n = 1, 2, 3, 4, it fails forn = 5 as noted by Euler. Later, 
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Gauss proved that a regular polygon of m sides can be constructed by ruler 
and compasses if m is a product of a power of 2 and distinct odd primes each 
of the form Fny and stated correctly that the construction is impossible if m 
is not such a product. In view of the papers cited in Chapter XV, is 
composite if n=5, 6, 7, 8, 9, 11, 12, 18, 23, 36, 38 and 73, while nothing is 
known for other values >4 of n. No comment will be made on the next 
chapter which treats of the factors of numbers of the form o”=±=6” and of 
certain trinomials. 

In Chapter XVII are treated questions on the divisors of terms of a 
recurring series and in particular of Lucas^ functions 

Wn = 

where a and h are roots of x*—Px+0==0, P and Q being relatively prime 
integers. By use of these functions, Lucas obtained an extension of Euler^s 
generalization of Fermat^s theorem, which requires the correction noted by 
Carmichael (p. 406), as well as various tests for primality, some of which 
have been employed in investigations on perfect numbers. Many papers on 
the algebraic theory of recurring series are cited at the end of the chapter. 

Euclid gave a simple and elegant proof that the number of primes is infi¬ 
nite. For the generalization that every arithmetical progression n, n+m, 
n+2m,..., in which n and m are relatively prime, contains an infinitude 
of primes, Legendre offered an insuflSicient proof, while Dirichlet gave his 
classic proof by means of infinite series and the classes of binary quadratic 
forms, and extended the theorem to complex integers. Mertens and others 
obtained simpler proofs. For various special arithmetical progressions, the 
theorem has been proved in elementary ways by many writers. Dirichlet 
also obtained the theorems that, if a, 26, and c have no common factor, 
ax^’^2hxy+cy^ represents an infinitude of primes, while an infinitude of these 
primes are representable by any given linear form Mx+N with M and N 
relatively prime, provided a, 6, c, M, N are such that the quadratic and linear 
forms can represent the same number. 

No complete proof has been found for Goldbach^s conjecture in 1742 that 
every even integer is a sum of two primes. One of various analogous un¬ 
proved conjectures is that every even integer is the difference of two consec¬ 
utive primes in an infinitude of ways (in particular, there exists an infinitude 
of pairs of primes differing by 2). No comment will be made on the further 
topics of this Chapter XVIII: polynomials representing numerous primes, 
primes in arithmetical progression, tests for primality, number of primes 
between assigned limits, Bertrand^s postulate of the existence of at least one 
prime between x and 2x-~2 for x>3, miscellaneous results on primes, 
diatomic series, and asymptotic distribution of primes. 
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If F{m)—^f(d)j summed for all the divisors d of m, we can express 
/(m) in terms of F by an inversion formula given in Chapter XIX along with 
generalizations and related formulas. Bougaief called i^(m) the numerical 
integral of/(m). 

The final Chapter XX gives many elementary results involving the digits 
of numbers mainly when written to the base 10. 

Since the history of each main topic is given separately, it has been 
possible without causing confusion to include reports on minor papers and 
isolated problems for the sake of completeness. In the cases of books and 
journals not usually accessible, the reports are quite full with some indication 
of the proofs. In other cases, proofs are given only when necessary to 
differentiate the paper from others deriving the same result. 

The references were selected mainly from the Subject Index of the Royal 
Society of London Catalogue of Scientific Papers, volume 1,1908 (with which 
also the proof-sheets were checked), and the supplementary annual volumes 
forming the International Catalogue of Scientific Literature, Jahrbuch 
fiber die Fortschritte der Mathematik, Revue semestrielle des publications 
math6matiques, Poggendorff^s Handworterbuch, KlfigeFs Mathematische 
Worterbuch, Wolffing’s Mathematischer Bficherschatz (a list of mathemat¬ 
ical books and pamphlets of the nineteenth century), historical journals, such 
as Bulletino di bibliografia e di storia delle scienze matematiche e fisiche, 
Bolletino...., Bibliotheca Mathematica, Abhandlungen zur Geschichte 
der mathematischen Wissenschaften, various histories and encyclopedias, 
including the Enclyclop^die des sciences math6matiques. Further, the 
author made a direct examination at the stacks of books and old journals 
in the libraries of Chicago, California, and Cambridge Universities, and 
Trinity College, Cambridge, and the excellent John Crerar Library at Chi¬ 
cago. He made use of G. A. Plimpton^s remarkable collection, in New 
York, of rare books and manuscripts. In 1912 the author made an 
extended investigation in the libraries of the British Museum, Kensington 
Museum, Royal Society, Cambridge Philosophical Society, Biblioth^que 
Nationals, University de Paris, St. Genevieve, ITnstitut de France, Uni¬ 
versity of Gottingen, and the Konigliche Bibliothek of Berlin (where there 
is a separate index of the material on the theory of numbers). Many 
books have since been borrowed from various libraries; the Ladies’ and 
other Diaries were loaned by R. C. Archibald. 

At the end of the volume is a separate index of authors for each of the 
twenty chapters, which will facilitate the tracing of the relation of a paper 
to kindred papers and hence will be of special service in the case of papers 
inaccessible to the reader. The concluding volume will have a combined 
index of authors from which will be omitted minor citations found in the 

chapter indices. 
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The subject index containB a list of symbols; while [a;] usually denotes 
the greatest integer occasionally such square brackets are used to 
inclose an addition to a quotation. The symbol * before an author’s 
name signifies that his paper was not available for report. The symbol t 
before a date signifies date of death. Initials are given only in the first of 
several immediately successive citations of an author. 

Although those volumes of Euler’s Opera Omnia which contain his Com- 
mentationes Arithmetic© Collect® have been printed, they are not yet 
available; a table showing the pages of the Opera and the corresponding 
pages in the present volume of this history will be given in the concluding 

volume. 
The author is under great obligations to the following experts in the 

theory of numbers for numerous improvements resulting from their reading 
the initial page proofs of this volume: R. D. Carmichael, L. Chanzy, A. 
Cunningham, E. B. Escott, A. G4rardin, A. J. Kempner, D. N. Lehmer, E. 
Maillet, L. S. Shively, and H. J. Woodall; also the benefit of D. E. Smith’s 
accurate and extensive acquaintance with early books and writers was for¬ 
tunately secured; and the author’s special thanks are due to Carmichael and 
Kempner, who read the final page proofs with the same critical attention 
as the initial page proofs and pointed out various errors and obscurities. 
To these eleven men who gave so generously of their time to perfect this 
volume, and especially to the last two, is due the gratitude of every devotee 
of number theory who may derive benefit or pleasure from this history. In 
return, such readers are requested to further increase the usefulness of this 
work by sending corrections, notices of omissions, and abstracts of papers 
marked not available for report, for insertion in the concluding volume. 

Finally, this laborious project would doubtless have been abandoned soon 
after its inception seven years ago had not President Woodward approved 
it so spontaneously, urged its completion with the greatest thoroughness, 
and given continued encouragement. 

November, 1918. 
L. E. Dickson. 
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CHAPTER I. 

PERFECT, MULTIPLY PERFECT. AND AMICABLE NUMBERS. 

Perfect, Abundant, and Deficient Numbers. 

By the aliquot parts or divisors of a number are meant the divisors, 
including unity, which are less than the number. A number, like 6 = 1 + 
2+3, which equals the sum of its aliquot divisors is called perfect (voll- 
kommen, vollstandig). If the sum of the aliquot divisors is less than the 
number, as is the case with 8, the number is called deficient (diminute, 
defective, unvollkommen, unvollstandig, mangelhaft). If the sum of the 
aliquot divisors exceeds the number, as is the case with 12, the number is 
called abundant (superfluos, plus quam-perfectus, redundantem, exc^dant, 
iibervollstandig, uberflussig, uberschiessende). 

Euclid^ proved that, if p = 1+2+2^+ ... +2” is a prime, 2”p is a perfect 
number. He showed that 2”p is divisible by 1, 2,..2", p, 2p,..., 2^-^p, 
but by no further number less than itself. By the usual theorem on 
geometrical progressions, he showed that the sum of these divisors is 2”p. 

The early Hebrews^® considered 6 to be a perfect number. 
Philo Judeus^^ (first century A. D.) regarded 6 as the most productive 

of all numbers, being the first perfect number. 
Nicomachus^ (about A. D. 100) separated the even numbers (book I, 

chaps. 14, 15) into abundant (citing 12, 24), deficient (citing 8, 14), and 
perfect, and dwelled on the ethical import of the three types. The perfect 
(I, 16) are between excess and deficiency, as consonant sound between 
acuter and graver sounds. Perfect numbers will be found few and arranged 
with fitting order; 6, 28, 496, 8128 are the only perfect numbers in the 
respective intervals between 1, 10, 100, 1000, 10000, and they have the 
property of ending alternately in 6 and 8. He stated that Euclid’s rule 
gives all the perfect numbers without exception. 

Theon of Smyrna^ (about A. D. 130) distinguished between perfect 
(citing 6, 28), abundant (citing 12) and deficient (citing 8) numbers. 

^Elementa, liber IX, prop. 36. Opera, 2, Leipzig, 1884, 408. 
^®S. Rubin, “Sod Hasfiroth” (secrets of numbers), Wien, 1873, 59; citation of the Bible, 

Kings, II, 13, 19. 
‘^Treatise on the account of the creation of the world as given by Moses, C. D. Young’s 

transl. of Philo’s works, London, 1854, vol. 1, p. 3. 
='Nicomachi Gera.siiii arithrncticae libri duo. Nunc primhm typis excusi, in lucem eduntur. 

Pariniis, 1538. In oflioina Christiani Wccheli. (Greek.) 
Thoologuniona arithnieticaj. Accedit Nicomachi Gerasini institutio arithmctica ad fidem 

codicurn Monacensium emendata. Ed., Fridericus Astius. Lipsiae, 1817. (Greek.) 
Nicomachi Geraseni Pythagorei introductionis arithmeticie libri ii. llecenavit Ricardus 

Hoche. Lipsiae, 1866. (Greek.) 
^Theonia Smyrriacu philoaophi Platonic! expositio rcrurn mathematicarum ad legendum 

Platoncm utilium. Ed., Ed. Hiller, Leipzig, 1878, p. 45. 
Theonis Smyrnaei PJatonici, Latin by Ismaele Bullialdo. Paris, 1644, chap. 32, pp. 70-72. 
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lamblichus^ (about 283-330) repeated in effect the remarks by Nico- 
machus on perfect, abundant, and deficient numbers, but made erroneous 
additions. He stated that there is one and but one perfect number in the 
successive intervals between 1; 10, 100,..., 100000, etc., to infinity. 

Examples of a perfect number are 6, and 28, and 496, and 8128, and the like 
numbers, alternately ending in 6 and 8.^^ He remarked that the Pythag¬ 
oreans called the perfect number 6 marriage, and also health and beauty 
(on account of the integrity of its parts and the agreement existing in it). 

Aurelius Augustinus® (354r430) remarked that, 6 being the first perfect 
number, God effected the creation in 6 days rather than at once, since the 
perfection of the work is signified by the number 6. The sum of the aliquot 
parts of 9 falls short of it; likewise for 10. But the sum of the aliquot 
parts of 12 exceeds it. 

Anicius Manhus Severinus Boethius® (about 481-524), in a Latin exposi¬ 
tion of the arithmetic of Nicomachus, stated that perfect numbers are rare, 
easily counted, and generated in a very regular order, while abundant 
(superfluos) and deficient (diminutos) numbers are found to an unlimited 
extent and not in regular order. The perfect numbers below 10000 are 
6, 28, 496, 8128. And these numbers always end alternately in 6 and 8. 

Munyos’' stated that Boethius added to Euclid’s idea of perfect number 
that of deficient (diminute) and abundant (redundantem) numbers. 

Isidorus of Seville® (570-636) distinguished even and odd numbers, 
perfect and abundant numbers, linear, flachen and Korper Zahlen (primes, 
products of two, products of three factors). 

Alcuin® (735-804), of York and Tours, explained the occurrence of the 
number 6 in the creation of the universe on the ground that 6 is a perfect 
numbef. The second origin of the human race arose from the deficient 
number 8; indeed, in Noah’s ark there were 8 souls from which sprung the 
entire human race, showing that the second origin was more imperfect than 
the first, which was made' according to the number 6. 

Uamblichus Chalcidensis ex Coele-Syrla in Nicomachi Geraseni arithmeticam introduc- 
tionem, et de Fato. Accedit Joachimi Camerarii explicatio in duos libros Nicomachi. 
Ed., Samuel Tennulius. Amhemiae, 1668, pp. 43-47. (Greek text and Latin translation 
in parallel columns.) 

lamblichi in Nicomachi arithmeticam introductionem liber ad fidem codicia Florentini. 
Ed., H. Pistelli. Lipsiae, 1894. (Greek.) 

*De Civitate Dei, liber XI, cap. XXX, ed., B. Dombart, Lipsiae, 1877,1, p. 504. The reference 
by Frizzo** i"i to lib. II, cap. 39. 

“Arithmetica boetij, Augsburg, 1488; Cologne, 1489; Leipzig, 1490; Venice, 1491-2, 1499; 
Paris, [1496, 1501], 1503, etc.; lib. 1, cap. 20, “De generatione numeri perfect!.” 

Opera Boetii, Venice, 1491-2, etc.; ed., Friedlein, Leipzig, 1867. 
Unstitvtiones arithmeticae ad percipiendam astrologiam et mathematicas facultatea neces- 

sariae. Auctore Hieronymo Munyos, Valentiae, 1566, f. 5, verso. 
Uncipit epistola Isidori iunioris hispalensis . . . Finit liber etymologiarum . . . [Augsburg, 

1472]; Venice, 1483, etc. In this book of etymologies, arithmetic is treated very briefly 
in Book 3, beginning f. 15. 

•BibUotheca Rerum Germanicarum, tomus eextus; Monumenta Alcuiniana, Beriin, 1873, 
epistolae 259, pp. 818-821. Cf. Migne, Patrologiae, vol. 100, 1851, p. 665; Hankel, 
Geschichte Math., p. 311. 
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rk TMbit ben Korrah,^® in a manuscript composed the last haM of the 
5' ninth century, attributed to Pythagoras and his school the employment of 

perfect and amicable numbers in illustration of their philosophy. Let 
^ s = l+2+...+2”. Then (prop. 5), 2 Vis a perfect number if s is a prime; 
^ 2”p is abundant if p is a prime <s, deficient if p is a prime >s, and the 
"" excess or deficiency of the sum of all the divisors over the number equals 
rsj the difference of s and p. Let (prop. 6) p' and p" be distinct primes >2; 
^ the sum of the divisors <N oi N=p'p"2” is 

a = (2”+^ -1) (1 +p'+p") + (2^- l)p'p". 

Hence N is abundant or deficient according as 

a-i\r==(2”+'--l)(l+p'+p")-pV'>0 or <0. 

Hrotsvitha,^^ a nun in Saxony, in the second half of the tenth century, 
mentioned the perfect numbers 6, 28, 496, 8128. 

Abraham Ibn Ezra^^“ (tll67), in his commentary to the Pentateuch, 
Ex. 3, 15, stated that there is only one perfect number between any two 
successive powers of 10. 

Rabbi'Josef b. Jehuda Ankin^^^ at the end of the twelfth century, recom¬ 
mended the study of perfect numbers in the program of education laid out 
in his book ^'Healing of Souls.'' 

Jordanus Nemorarius^^ (tl236) stated (in Book VII, props. 55, 56) that 
every multiple of a perfect or abundant number is abundant, and every 
divisor of a perfect number is deficient. He attempted to prove (VII, 57) 
the erroneous statement that all abundant numbers are even. 

Leonardo Pisano, or Fibonacci, cited in his Liber Abbacfi^ of 1202, 
revised about 1228, the perfect numbers 

I 22(22-1) ==6, i 22(22-1) =28, ^ 2^(2^-1) =496, 

excluding the exponent 4 since 2"^ —1 is not prime. He stated that by pro¬ 
ceeding so, you can find an infinitude of perfect numbers. 

^“Manuscript 952, 2, Suppl. Arabe, Biblioth6que imp6riale, Paris. Textual transl., except 
of the proofs which are given in modern algebraic notation as foot-notes [as numbers 
were represented by line, in the manuscript], by Franz Woepeke, Journal Asiatique, 
(4), 20, 1852, 420-9. 

^^See Ch. Magnin, Thdatre de Hrotsvitha, Paris, 1845. 
^^“Mikrooth Gedoloth, Warsaw, 1874 (“Large Bible’’ in Hebrew). Samuel Ben Stadias Ibn 

Motot, a Spaniard, wrote in 1370 a commentary on Ibn Ezra's commentary, Perush ai 
Perush Ibn Ezra, Venice, 1554, p. 19, noting the perfect numbers 6, 28, 496, 8128, and 
citing Euclid’s rule. Steinschneidcr, in his book on Ibn Ezra, Abh. Geschichte Math. 

• Wiss., 1880, p. 92, stated that Ibn Ezra gave a rule for finding all perfect numbers. 
As this rule is not given in the Mikrooth Gedoloth of 1874, Mr. Giusburg of Columbia 
University infers the existence of a fuller version of Ibn Ezra’s commentary. 

^^^Quoted by Giideman, Das Jiidische Untcrrichtswesen wahrend der Spanish Arabischen 
Periode, Wien, 1873. 

^Un hoc opere contonta. Arithmetica decern libris demonstrata .... Epitome i libros 
arithrneticos diui Seucrini Boetij . . . , Paris, 1496, 1503, etc. It contains Jordanus’ 
“Elementa arithmetica decern libris, demonstrationibus Jacobi Fabri Stapulensis,” and 
“Jacobi Fabri Stapulensis epitome in duos libros arithrneticos diui Seuerini Boetij.” 

‘U1 Liber Abbaci di Leonardo Pisano. Roma, 1857, p. 283 (Scritti, vol. 1). 
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In the manuscripts^ Codex lat. Monac. 14908, a part dated 1456 and a 
part 1461, the first four perfect numbers are given (/. 33') as usual and the 
fifth perfect number is stated correctly to be 33550336. 

Nicolas Chuquets® defined perfect, deficient, and abundant numbers, 
indicated a proof of Euclid^s rule and stated incorrectly that perfect num¬ 
bers end alternately in 6 and 8. 

Luca Paciuolo, de Borgo San Sepolcro,s® gave (f, 6) Euclid's rule, saying 
one must find by experiment whether or not the factor 1+2+4+... is 
prime, stated (f. 7) that the perfect numbers end alternately in 6 and 8, as 
6, 28, 496, etc., to infinity. In the fifth article (ff. 7, 8), he illustrated the 
finding of the aliquot divisors of a perfect number by taking the case of the 
fourteenth perfect number 9007199187632128. He gave its half, then the 
half of the quotient, etc., until after 26 divisions by 2, the odd number 
134217727, marked ^^Indivisibilis" [prime]. Dividing the initial number 
by these quotients, he obtained further factors [1,2,..., 2^®, but written at 
length]. The proposed number is said to be evidently perfect, since it is the 
sum of these factors [but he has not employed all the factors, since the above 
odd number equals 2^"^ --1 and has the factor 2^—1 = 7]. Although Paciuolo 
did not list the perfect numbers between 8128 and 90.. .8, the fact that he 
called the latter the fourteenth perfect number implies the error expressly 
committed by Bovillus.^® 

Thomas Bradwardin^^ (1290-1349) stated that there is only one perfect 
number (6) between 1 and 10, one (28) up to 100, 496 up to 1000, 8128 up 
to 10000, from which these numbers, taken in order, end alternately in 6 
and 8. He then gave Euclid's rule. 

Faber Stapulensis^^ or Jacques Lef^vre (born at Staples 1455, tl537) 
stated that all perfect numbers end alternately in 6 and 8, and that Euclid's 
rule gives all perfect numbers. 

Georgius Valla^^ gave the first four perfect numbers and observed that 

“The manuscript is briefly described by Gerhardt, Monatsber. Berlin Ak., 1870, 141-2. 
See Catalogus codicum latinorum bibliothecae regiae Monaccnsis, Tomi II, pars II, 
codices num. 11001-15028 complectus, Munich, 1876, p. 250. An extract of ff. 32'-34 
on perfect numbers was published by Maximilian Curtze, Bibliotheca Mathematica, 
(2), 9, 1895, 39-42. 

“Triparty en la science des nombres, manuscript No. 1436, Fonds Frangais, BibliothSque 
Nationale de Paris, written at Lyons, 1484. Published by Aristide Marre, Bull. Bibl. 
Storia Sc. Mat. et Fis.. 13 (1880), 593-659, 693-814; 14 (1881), 417-460. See Part 1, 
Ch. Ill, 3, 619-621, manuscript, ff, 20-21. 

“SummadeArithmetica geometria proportionietproportionalita. [Suina . . . .Venice, 1494.] 
Toscolano, 1523 (two editions substantially the same). 

^^Arithmetica thome brauardini. Tractatus perutilis. In arithinetica spcculativa a magistro 
thoma Brauardini ex libris euclidis boecij <fe aliorum qua optirnne excerptus. PariKsiis, 
1495, 7th unnumbered page. 

Arithinetica Spcculativa Thome Brauardini nuper mendis Plusculis tersa et diligentcr Impressa, 
Parishs [1502], 6th and 7th unnumbered pages. Also undated edition [1510], 3d page. 

“Epitome (iii) of the arithmetic of Boethius in Faber’s edition of Jordan us,“ 1496, etc. 
Also in Introductio Jacobi fabri Stapulesis in Arithmecam diui Seuerini Boetij pariter 
Jordani, Paris, 1503, 1507. Also in Stapulensis, Jacobi Fabri, Arithmetica Boethi 
epitome, Basileae, 1553, 40. 

“De expetendis et fvgiendis rebvs opvs, Aldus, 1501. Liber I (=Arithmeticae I), Cap. 12. 
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‘Hhese happen to end in 6 or 8.. .and these terminal numbers will always 
be found alternately.” 

Carolus Bovillus^® or Charles de Bouvelles (1470-1553) stated that every 
perfect number is even, but his proof applies only to those of Euclid’s type. 
He corrected the statement of Jordanus^^ that every abundant number is 
even, by citing 45045 [ = 5-9-7-ll*13] and its multiples. He stated that 
2”--i is a prime if n is odd, explicitly citing 511 [ = 7*73] as a prime. He 
listed as perfect numbers 1), n ranging over all the odd numbers 
^ 39 [Cataldi^^ later indicated that 8 of these are not perfect]. He repeated 
the error that all perfect numbers end alternately in 6 and 8. He stated 
(f. 175, No. 25) that if the sum of the digits of a perfect number >6 be 
divided by 9, the remainder is unity [proved for perfect numbers of Euclid’s 
type by Cataldi,^ p. 43]. He noted (f. 178) that any divisor of a perfect 
number is deficient, any multiple abundant. He stated (No. 29) that one or 
both of 6n=i=l are primes and (No. 30) conversely any prime is of the form 
6n =*= 1 [Cataldi,^ p. 45, corrects the first statement and proves the second]. 
He stated (f. 174) that every perfect number is triangular, being 2”(2"--1)/2. 

Martinus^^ gave the first four perfect numbers and remarked that they 
end alternately in 6 and 8. 

Gasper Lax^^ stated that the perfect numbers end alternately in 6 and 8. 
V. Rodulphus Spoletanus^^ was cited by Cataldi,^ with the implication 

of errors on perfect numbers. [Copy not seen.] 
Girardus Ruffus^^ stated that every perfect number is even, that most 

odd numbers are deficient, that, contrary to Jordanus,^^ the odd number 
45045 is abundant, and that for n odd 2” — 1 always leads to a perfect num¬ 
ber, citing 7, 31, 127, 511, 2047, 8191 as primes [the fourth and fifth are 
composite]. 

Feliciano^® stated that all perfect numbers end alternately in 6 and 8. 
Regius^® defined a perfect number to be an even number equal to the 

sum of its aliquot divisors, indicated that 511 and 2047 are composite, gave 
correctly 33550336 as the fifth perfect number, but said the perfect numbers 

*°Caroli Bouilli Samarobrini Liber De Perfectis Numeria (dated 1509 at end), one (ff. 172-180) 
of 13 tracts in his work, Quc hoc voluminc continetur: Liber de intellectu, . . . De 
Numeris Perfectis, . . . , dated on last page, 1510, Paris, ex officina Henrici Stephani. 
Biography in G. Maupin, Opinions et Curiositds touchant la Math., Paris, 1,1901,186-94. 

“Are Arithnaetica loannis Martini, Silicei: in theoricen & praxim. 1513, 1514. Arithmetica 
loannis Martini, Scilicei, Paris, 1519. 

^Arithmetica speculatiua magistri Gasparis Lax. Paris, 1515, Liber VII, No. 87 (end). 
*3De proportione proportionvm dispvtatio, Rome, 1515. 
*^Divi Severini Boetii Arithmetica, dvobvs discreta libria, Paris, 1521; ff. 40-44 of the commen¬ 

tary by G. RufTua. 
“Libro di Arithmetica & Geometria speculatiua & praticale: Composto per maestro Fran¬ 

cesco Feliciano da Lazisio Veronese Intitulato Scala Grimaldelli: Nouamente stampato. 
Venice, 1526 (p. 3), 1527, 1536 (p. 4), 1545,1550, 1560, 1570, 1669, Padoua, 1629, Verona, 
1563, 1602. 

“Vtrivaqve Arithrneticea, epitome ex uariis authoribus concinnata per Hvdalrichum Regium. 
Strasburg, 1536. Lib. I, Cap. VI: De Perfecto. Hvdalrichvs Regius, Vtrivsque. . . 
ex variis . . . , Friburgi, 1550 [and 1543], Cap. VI, fol. 17-18. 
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end alternately in 6 and 8. A multiple of an abundant or perfect number 
is abundant, a divisor of a perfect number is deficient. 

Cardan^^ (1501-1576) stated that perfect numbers were to be formed 
by Euclid’s rule and always end with 6 or 8; and that there is one between 
any two successive powers of ten. 

De la Roche^^ stated in effect that — 1) is perfect for every odd n, 
citing in particular 130816 and 2096128, given by n = 9, n = ll. This 
erroneous law led him to believe that the successive perfect numbers end 
alternately in 6 and 8. 

Noviomagus^® or Neomagus or Jan Bronckhorst (1494-1570) gave 
Euclid’s rule correctly and stated that among the first 10 numbers, 6 alone is 
perfect,..., among the first 10000 numbers, 6,28,496,8128 alone are perfect, 
etc., etc. [implying falsely that there is one and but one perfect number 
with any prescribed number of digits]. In Lib. II, Cap. IV, is given the 
sieve (or crib) of Eratosthenes, with a separate column for the multiples 
of 3, a separate one for the multiples of 5, etc. 

Willichius^® (tl552) listed the first four perfect numbers and stated that 
to these are to be added a very few others, whose nature is that they end 
either in 6 or 8. . 

Michael StifeP^ (1487-1567) stated that all perfect numbers except 6 
are multiples of 4, while 4(8—1), 16(32 — 1), 64(128 — 1), 256(512 — 1), etc., 
to infinity, are perfect [error, Kraft®^]. He latei^^ repeated the latter error, 
listing as perfect 

2X3, 4X7, 16X31, 64X127, 256X511, 1024X2047, 

so fort an ohn end.” Every perfect number is triangular. 
Peletier^® (1517-1582) stated (1549, V left; 1554, p. 20) that the perfect 

numbers end in 6 or 8, that there is a single perfect number between any 
two successive powers of 10, and (1549, C III left; 1554, pp. 270-1) that 
4(8-1), ^6(32-1), 64(128-1), 256(511),.. .are perfect. The first two 
statements were also given later by Peletier.^ 

^^Hieronimi C. Cardani Medici Mediolanensis, Practica Arithmetice, & Menaurandi singu- 
laris. Milan, 1537, 1539; Niimberg, 1541, 1542, Cap. 42, de proprietatibus numerorum 
mirificis. Opera IV, Lyon, 1663. 

**Larismetique & Geometrie de maistre Eatienne de la Roche diet Ville Franche, Nouuelle- 
ment Imprimee & des fautes corrigee, Lyon, 1538, fol. 2, verso. Ed. 1, 1520. 

^*De Nvmeris libri dvo .... authore loanne Nouiomago, Paris, 1539, Lib, II, Cap. III. 
Reprinted, Cologne, 1544; Deventer, 1551. Edition by G. Frizzo, Verona, 1901, p. 132. 

>®Iodoci Vvilhchii Reselliani, Arithmeticae libri tres, Argentorati, 1540, p. 37. 
“Arithmetica Integra, Norimbergae, 1544, ff. 10, 11. 
**Die Cobs Christoffs Rndolffs Die schonen Exempeln der Coss Durch Michael Stifel Gebessert 

vnd sehr gemehrt, Kbnigsperg in Preussen, 1553, Anhang Cap, I, f. 10 verso, f. 11 (f. 
27 V.), and 1571. 

®*L'Arithnietiqve de lacqvea Peletier dv Mans, departie en quatre Liures, Poitiers, 1549, 
1550, 1553. . . . , ff. 77 v, 78 r. Reviie e augmentee par V Auteur, Lion, 1554. 
Troisieme edition, reucue et augmentee, par lean de Tovruea, 1607. 

“Arithmeticae Practicae methodvs facilis, per Gemmam Frisivm, Medievm, ac Mathematicum 
conscripta .... In eandem loannis Steinii & lacobi Peietarii Annotationes. Antver- 
piae, 1581, p. 10. 
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Postello®® stated erroneously that 130816 [ = 256-511] is perfect. 
Lodoico Baeza^® stated that Euclid's rule gives all perfect numbers. 
Pierre ForcadeP^ (tl574) gave 130816 as the fifth perfect number, 

implying incorrectly that 511 is a prime. 
Tartaglia^® (1506-1559) gave an erroneous [Kraft®^] list of the first 

twenty perfect numbers, viz., the expanded forms of 1), forn = 2 
and the successive odd numbers as far as n = 39. He stated that the sums 
1+2+4, 1+2+4+8,.. .are alternately prime and composite; and that 
the perfect numbers end alternately in 6 and 8. The third ‘^notable prop¬ 
erty" mentioned is that any perfect number except 6 yields the remainder 1 
when divided by 9. 

Robert Recorded® (about 1510-1558) stated that all the perfect numbers 
under 6-10® are 6, 28, 496, 8128,130816, 2096128, 33550336, 536854528 [the 
fifth, sixth, eighth of these are not perfect]. 

Petrus Ramus^® (1515-1572) stated that in no interval between succes¬ 
sive powers of 10 can you find more than one perfect number, while in many 
intervals you will find none. At the end of Book I (p. 29) of his Arith- 
meticae libri tres, Paris, 1555, Ramus had stated that 6, 28, 496, 8128 are 
the only perfect numbers less than 100000. 

Franciscus Maurolycus^^ (1494-1575) gave an argument to show that 
every perfect number is hexagonal ^d hence triangular. 

Peter Bungus^^ (tl601) gave (1584, pars altera, p. 68) a table of 20 
numbers stated erroneously to be the perfect numbers with 24 or fewer 
digits [the same numbers had been given by Tartaglia^®]. In the editions 
of 1591, etc., p. 468, the table is extended to include a perfect number of 
25 digits, one of 26, one of 27, and one of 28. He stated (1584, pp. 70-71; 
1591, pp. 471-2) that all perfect numbers end alternately in 6 and 28; 
employing Euclid’s formula, he observed that the product of a power of 2 
ending in 4 by a number ending in 7 itself ends in 28, while the product of 
one ending in 6 by one ending in 1 ends in 6. He verified (1585, pars 

*®Theoricae Arithmeticea Compendium ^ Guilielmo Postello, Lutetiae, 1552, a syllabus on one 
large sheet of arithmetic definitions. 

®®Nvmerandi Doctrina, Lvtetiae, 1555, fol. 27-28. 
’^L’Arithmeticqve de P. Forcadel de Beziers, Paris, 1556-7. Livre I (1556), fol. 12 verso. 
®®La seconda Parte del General Trattato di Nvmeri, et Misvre di Nicolo Tartaglia, Vinegia, 

1556, f. 146 verso. 
U Arithmetiqve de Nicolas Tartaglia Brescian .... Recueillie, & traduite dTtalien en 

Francois, par Gvillavme Gosselin de Caen, .... Paris, 1578, f. 98 verso, f. 99. 
®®The Whetstone of witte, whiche is the seconds parte of Arithmetike, London, 1557, eighth 

unnumbered page. 
^°Petri Rami Scholarum Mathematicarum, Libri unus et triginta, k Lazaro Schonero recog- 

niti & emendati, Francofvrti, 1599, Libr. IV (Arith.), p. 127, and Basel, 1578. 
‘^Arithmeticorvm libri dvo, Venetiis, 1575, p. 10; 1580. Published with separate paging, at 

end of Opuscula mathematica. 
^^Mysticae nvmerorvm significationis liber in dvas divisvs partes, R. D. Petro Bongo Canonico 

Bergomate avctore. Bergomi. Pars prior, 1583, 1585. Pars altera, 1584. 
Petri Bungi Bergomatis Numerorum mysteria, Bergomi, 1591, 1599, 1614, Lutetiae Parisio- 

rum, 1618, all four with the same text and paging. Classical and biblical citations on 
numbers (400 pages on 1, 2, . . , 12). On the 1618 edition, see Font6a, M6m. Acad. Sc. 
Toulouse, (9), 5, 1893, 371-380. 
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ftrst seven numbers of his table [two 
im of the digits of a perfect number 
Every perfect number is triangular 

i. a perfect number is abundant, every 

Bungus and repeated his error that 
odd and that all perfect numbers end 

Cataldi^ (1548-1626) noted in his Preface that Paciuolo’s^® fourteenth per¬ 
fect number 90.. .8 is in fact abundant since it arose from 1+2+4+... 
+2^® = 134217727,which is divisible by 7,whereas Paciuolo said it was prime. 
Citing the error of the latter, Bovillus,^® and others, that all perfect num¬ 
bers end alternately in 6 and 8, Cataldi observed (p. 42) that the fifth per¬ 
fect number is 33550336 and the sixth is 8589869056, from 8191 =2^^ — 1 and 
131071 = 2^^—1, respectively, proved to be primes (pp. 12-17) by actually 
trying as possible divisor every prime less than their respective square roots. 
He gave (pp. 17-22) the corresponding work showing 2^® — 1 to be prime. He 
stated (p. 11) that 2^-1 is a prime for n - 2, 3, 5, 7,13,17,19, 23,29,31, 37, 
remarking that the prime n — 11 does not yield a perfect number since 
(p. 5) 2^^—1 = 2047=23*89, while it is composite if n is composite. He 
proved (p. 8) that the perfect number^iven by Euclid^s rule end in 6 or 8. 
He gave (pp. 28-40, 48) a table of all divisors of all even and odd numbers 
^800, and a table of primes <750. 

Georgius Henischiib^^ (1549-1618) stated that the perfect numbers end 
alternately in 6 and 8, and that one occurs between any two successive 
powers of 10. He applied Euclid^s formula without restricting the factor 
2’' —1 to primes. 

Johan Rudolff von Graffenried'^® stated that all perfect numbers are 
given by Euclid’s rule, which he applied without restricting 2^^ — 1 to primes, 
expressly citing 256X511 as the fifth perfect number. Every perfect 
number is triangular. 

Bachet de Mdzirac^'^' (1581-1638) gave (f. 102) a lengthy proof of 
Euclid’s theorem that 2”p is perfect if p = l-+2+.. .+2’^ is a prime, but 

«De Tarithmetica vniversale del Sig. loseppo Vnicorno, Venetia, 1598, f. 57. 
<^Trattato de nvmeri perfetti di Pierto Antonio Cataido, Bologna, 1603. According to the 

Preface, this work was composed in 1588. Cataldi founded at Bologna the Academia 
Erigende, the most ancient known academy of mathematics; his interest in perfect 
numbers from early youth is shown by the end of the first of his "‘due lettioni fatte nell' 
Academia di Perugia” (G. Libri, Hist. Sc. Math, en Italie, 2d ed., vol. 4, Halle, 1865, p. 
91). G. Wertheim, Bibliotheca Math., (3), 3,1902,76-83, gave a summary of the Trattato. 

^®Arithmetica Perfecta et Demonstrata, Georgii Henischiib, Augsburg [1605], 1609, pp. 63-64. 
^®Arithmeticae LogisticaPopularis Librii IIII. In welchen der Algorithmus in gantzen Zahlen 

u. Fracturen . . . . , Bern, 1618, 1619, pp. 236-7. 
^’Elementorum arithmeticorum libri XIII auctori D . . . , a Latin manuscript in the Biblio- 

th^ue de I’Institut de France. On the inside of the front cover is a comment on the 
sale of the manuscript by the son of Bachet to DaUbert, treasurer of France. A general 
account of the contents of the manuscript was given by Henry, Bull. Bibl. Storia Sc. Mat. 
e Fis., 12,1879, pp. 619-641. The present detailed account of Book 4, on perfect numbers, 
was taken from the manuscript. 
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(f. 103, verso) is abundant if p is composite. Every multiple of a perfect 
or abundant number is abundant, every divisor of a perfect number is 
deficient (ff. 104 verso, 105). The product of two primes, other than 2X3, 

is deficient (f. 105 verso). The odd number 945 is abundant, the sum of its 
aliquot divisors being 975 (f. 107). Commenting (f. Ill verso, f. 112) on 
the statement of Boethius® and Cardan^^ that the perfect numbers end 
alternately in 6 and 8, he stated that the fourth is 8128 and the fifth is 
2096128 [an error], the fifth not being 130816 = 256X511, since 511 =7X73. 

Jean Leurechon^® (about 1591-1670) stated that there are only ten 
perfect numbers between 1 and 10^^, listed them (noting the admirable 
property that they end alternately in 6 and 8) and gave the twentieth per¬ 
fect number. [They are the same as in Tartaglia’s®® list.] 

Lantz^® stated that the perfect numbers are 2(4—1), 4(8 — 1), 16(32 — 1), 
64(128-1), 256(512-1), 1024(2048-1), etc. 

Hugo Sempilius®® or Semple (Scotland, 1594-Madrid, 1654) stated that 
there are only seven perfect numbers up to 40,000,000; they end alternately 
in 6 and 8. 

Casper Ens®^ stated ihat there are only seven perfect numbers <4*10^, 
viz., 6, 28,496,8128,130816,1996128 [for 2096128], 33550336, and that they 
end alternately in 6 and 8. 

Daniel Schwenter®^ (1585-1636) made the same error as Casper Ens.®^ 
Erycius Puteanus®® quoted from Martiano Capella, lib. VII, De Nupliis 

Philologiae, to the effect that the perfect number 6 is attributed to Venus; 
for it is made by the union of the two sexes, that is, from triad, which is 
male since it is odd, and from diad, which is feminine since it is even. 
Puteanus said that the perfect numbers in order are 6, 28, 496, 8128, 
130816, 2096128, 33550336, and gave all their divisors [implying that 511, 
2047, 8191 are primes], and stated that these seven and all the remaining 
end alternately in 6 and 8. Between any two successive powers of 10 is one 
perfect number. That they are all triangular adds perfection to the perfect. 

Joannes Broscius®^ or Brocki remarked that there is no perfect number 
between 10000 and 10000000, contrary to Stifel,®^ Bungus,^^ Sempilius,®° 
Puteanus,®® and the author of Selectarum Propositionum Mathematicarum, 
quas propugnavit, Mussiponti, Anno 1622, Maximilianus Willibaldus, Baro 

^®R6cr(5ations math(5matiques, Pont-ii-Mousson, 1624; London, 1633, 1653, 1674 (these three 
English editions by Wm. Oughtred), p. 92. The authorship is often attributed to 
Leurechon’.s pupil Henry Van Etten, whose name is signed to the dedicatory epistle. 
Cf. Poggeiidorff, Handworterbuch, 1863, 2, p. 250 (under C. Mydorge); Bibliotheque 
des <5crivains de la compagnie de Jdsus, par A. de Backer, 2, 1872, 731; Biographie 
G6n6rale, 31, 1872, 10. 

*®Institutionum Arithmeticarum libri quatuor ^ loanne Lantz, Coloiiiae Agrippinae, 1630, p. 54. 
®°De Mathematicis Disciplinis libri Duodecim, Antverpiae, 1635, Lib. 2, Cap. 3, N. 10, p. 46. 

There is (pp. 203-5) -an index of writers on geometry and one for arithmetic. 
^^Thaumaturgus Math., Munich, 1636, p. 101; Coloniae, 1636, 1651; Venice, 1706. 
“Deliciae Physico-Mathematicae oder Mathemat: vnd Philosophische Erquickstunden, 

part I (574 pp.), Niirnberg, 1636, p. 108, 
®®De Bissexto Liber: nova temporis facula qua intercalandi arcana .... Lovanii, 1637; 

1640, pp. 103-7. Reproduced by J. G. Graevius, Thesaurus Antiquitatum Romanarum 
(12 vols., 1694-9), Lugduni Batavorum, vol. 8. 
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in Waldpurg. While they considered 511X256 and 2047 X1024 as perfect, 
511 has the factor 7, and (as pointed out to him by Stanislaus Pudlowski) 
2047 has the factor 23. Broscius stated that 

2”-1 has the factor 3 5 7 11 13 17 19 23 29 31 
if n is a multiple of 2 4 3 10 12 8 18 11 28 5. 

The contents of the second dissertation are given below under the date 1652. 
Ren4 Descartes/® in a letter to Mersenne, November 15, 1638, thought 

he could prove that every even perfect number is of Euclid’s type, and that 
every odd perfect number must have the form where p is a prime. He 
saw no reason why an odd perfect number may not exist. For p = 22021, 
s = 3-7-ll-13, ps^ would be perfect if p were prime [but p = 61*19^]. In a 
letter to Frenicle, January 9,1639, Oeuvres, 2, p. 476, he expressed his belief 
that an odd perfect number could be found by replacing 7, 11, 13 in s by 
other values. 

Fermat®® stated that he possessed a method of solving all questions 
relating to aliquot parts. Citing this remark, Frenicle®^ challenged Fermat 
to find a perfect number of 20 or 21 digits. Fermat®® replied that there is 
none with 20 or 21 digits, contrary to the opinSn of those who believe 
that there is a perfect number between any two consecutive powers of 10. 

Fermat,®^ in a letter to Mersenne, June (?), 1640, stated three proposi¬ 
tions which he had proved not without considerable trouble and which he 
called the basis of the discovery of perfect numbers: if n is composite, 2''—1 
is composite; if is a prime, 2^—2 is divisible by 2n, and 2'' —1 is divisible 
by no prime other than those of the form 2/cn+l [cf. Euler®^. For example, 
211 —1=23-89, 237—1 has the factor 223. Also 2^® — l has the factor 47, 
Oeuvres, 2, p. 210, letter to Frenicle, October 18, 1640. 

Mersenne®® (1588-1648) stated that, of the 28 numbers* exhibited by 

“De numeris perfectis disceptatio qua osteuditur a decern miUibua ad centies centena millia, 
nullum esse perfectum numerum atque ideo ab unitate usque ad centies centena millia 
quatuor tantum perfectos numerari, Amsterdam, 1638. Reproduced as the first (pp. 
115-120) of two dissertations on perfect numbers, they forming pp. 111-174 of Apologia 
pro Aristotele & Evclide, contra Petrvm Ramvm, & alios. Addititiae sunt Dvae Discep- 
tationes de Nvmeris Perfectis. Authore loanne Broscio, Dantisci, 1652 (with a some¬ 
what different title, Amsterdam, 1699). 

'^^Oeuvres de Descartes, II, Paris, 1898, p. 429. 
“Oeuvres de Fermat, 2, Paris, 1894, p. 176; letter to Mersenne, Dec. 26, 1638. 
”Oeuvres de Fermat, 2, p. 185; letter to Mersenne, March, 1640. 
“Oeuvres, 2, p. 194; letter to Mersenne, May (?), 1640. 
“Oeuvres de Fermat, 2, pp. 198-9; Varia Opera Math. d. Petri de Fermat, Tolosae, 1679, p, 

177; Precis des Oeuvres math, de P. Fermat et de T Arithm^tique de Diophante, par E. 
Brassinne, M4m. Ac. Imp. Sc. Toulouse, (4), 3, 1853,149-150. 

“F. Marini Mersenni minimi Cogitata Physico Mathematica, Parisiis, 1644. Praefatio 
Generahs, No. 19. C. Henry (Bull. Bibl. Storia Sc. Mat. e Fis., 12,1879, 524-6) believed 
that these remarks were taken from letters from Fermat and Frenicle, and that Mersenne 
had no proof. A similar opinion was expressed by W. W. Rouse Ball, Messenger 
Math., 21, 1892, 39 (121). On documents relating to Mersenne see I’interm^diaire des 
math., 2, 1895, 6; 8, 1901, 105; 9, 1902, 101, 297; 10, 1903,184. Cf. Lucas.i“ 

"■Only 24 were given by Bungus. While his table has 28 lines, one for each number of digits, 
there are no entry of numbers of 5, 11, 17, 23 digits. 
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Bungus,^^ chap, 28, as perfect numbers, 20 are imperfect and only 8 are 
perfect: 

6, 28, 496, 8128, 23550336 [for 33...], 8589869056, 
137438691328, 2305843008139952128, 

which occur at the lines marked 1, 2, 3, 4, 8, 10, 12 and 29 [for 19] of 
Bungus’ table [indicating the number of digits]. Perfect numbers are so 
rare that only eleven are known, that is, three different from those of 
Bungus; norf is there any perfect number other than those eight, unless 
you should surpass the exponent 62 in 1+2+2^+. •. The ninth perfect 
number is the power with the exponent 68 less 1; the tenth, the power 128 
less 1; the eleventh, the power 258 less 1, i. e., the power 257, decreased by 
unity, multiplied by the power 256. [The first 11 perfect numbers are 
thus said to be 2^-H2”-.l) forn-2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257, in 
error as to n = 61, 67, 89, 107 at least.] He who would find 11 others will 
know that all analysis up to the present will have been exceeded, and will 
remember in the meantime that there is no perfect number from the power 
17000 to 32000, and no interval of powers can be assigned so great but 
that it can be given without perfect numbers. For example, if the exponent 
be 1050000, there is no larger exponent n up to 2090000 for which 2”—1 
is a prime. One of the greatest difficulties in mathematics is to exhibit a 
prescribed number of perfect numbers; and to tell if a given number of 
15 or 20 digits is prime or not, all time would not suffice for the test, what¬ 
ever use is made of what is already known. 

Mersenne®^ stated that 2^ — 1 is a prime if p is a prime which exceeds 
by 3, or by a smaller number, a power of 2 with an even exponent. Thus 
2’'—! is a prime since 7 = 2^4-3; again, since 67 = 3+2®, 2®^+l = 1...7 
[for 2®^ — l] is a prime and leads to a perfect number [error corrected by 
Cole^^^]. Understand this only of primes 2^—1. Wherefore this property 
does not belong to the prime 5, but to 3, 7, 31, 127, 8191, 131071, 524287, 
2147483647, and all such. Numbers expressible as the sum or difference 
of two squares in several ways are composite, as 65 = 1+64= 16+49. As 
he speaks of Frenicle’s knowledge of numbers, at least part of his results 
are doubtless due to the latter. 

In 1652, J. Broscius (Apologia,®^ p. 121) observed that while perfect 
numbers were deduced by Euclid from geometrical progressions, they may 
be derived from arithmetical progressions: 

6 = l+2+3, 28 = 1+2+3+4+5+6+7, 496 = 1+2+3+...+31. 

fNeque enim vllus est alius perfectus ab illis octo, nisi superes exponentem numemm 62, 
progressionis duplae ab 1 incipientis. Nonus enim perfectus est potestas exponentis 68, 
minus 1. Decimus, potestas exponentis 128, minus 1. Vndecimus denique, potestas 
258, minus 1, hoc est potestas 257, unitate decurtata, multiplicata per potestatem 256. 

®^F. Marini Mersenni Novarvm Observationvm Physico-Mathematicarum, Tomvs III, Parisiis, 
1647, Cap. 21, p. 182. The Reflectiones Physico-Math. begin with p. 63; Cap. 21 is 
quoted in Oeuvres de Fermat, 4, 1912, pp. 67-8. 
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He stated that while perfect numbers end with 6 or 28, the proof by Bungus^* 
does not show that they end alternately with 6 and 28, since Bungus 
included imperfect as well as perfect numbers. The numbers 130816 and 
2096128, cited as perfect by Puteanus,®^ are abundant. After giving a 
table of the expanded form of 2” forn=0, 1,..., 100, Broscius (p. 130, seq.) 
gave a table of the prime divisors of 2^—1 (n = l,. .100), but showing no 
prime factor when n is any one of the primes, other than 11 and 23, less 
than 100. For n=ll, the factors are 23, 89; for n=23, the factor 47 is 
given. Thus omitting unity, there remain only 23 numbers out of the first 
hundred which can possibly generate perfect numbers. Contrary to Car¬ 
dan,but in accord with Bungus,there is (p. 135) no perfect number 
between 10^ and 10^. Of Bungus’ 24 numbers, only 10 are perfect (pp. 
135-140): those with 1, 2, 3, 4, 8, 10, 12, 18, 19, 22 digits, and given by 

foj. ^ = 2, 3, 5, 7, 13, 17, 19, 29, 31, 37, respectively. The pri- 
mality of the last three was taken on the authority of unnamed predecessors. 

There are only 21 abundant numbers between 10 and 100, and all of 
them are even; the only odd abundant number <1000 is 945, the sum of 
whose aliquot divisors is 975 (p. 146). The statement by Lucas, Th4orie 
des nombres, 1, Paris, 1891, p. 380, Ex. 5, that 3^-5*79 [deficient] is the 
smallest abundant number is probably a misprint for 945 = 3^-5*7. This 
error is repeated in EncyclopMie Sc. Math., I, 3, Fas. 1, p. 56. 

Johann Jacob Heinlin®^ (1588-1660) stated that the only perfect num¬ 
bers <4-10^ are 6, 28, 496, 8128, 130816, 2096128, 33550336, and that all 
perfect numbers end alternately in 6 and 8. 

Andrea Tacquet®^ (Antwerp, 1612-1660) stated (p. 86) that Euclid’s 
rule gives all perfect numbers. Referring to the 11 numbers given as 
perfect by Mersenne,®'^ Tacquet said that the reason why not more have 
been found so far is the greatness of the numbers 2"^ — 1 and the vast labor 
of testing their primality. 

Frenicle®^ stated in 1657 that Euclid’s formula gives all the even perfect 
numbers, and that the odd perfect numbers, if such exist, are of the form 
pk^, where p is a prime of the form 4n+l [cf. Euler®®]. 

Frans van Schooten®® (the younger, 1615-1660) proposed to Fermat 
that he prove or disprove the existence of perfect numbers not of Euclid’s 
type. 

Joh. A. Leuneschlos®® remarked that the infinite multitude of numbers 
contains only ten perfect numbers; he who will find ten others will know 

®“Jo]i. Jacobi Heinlini, Synopsis Math, praecipuas totius math.... Tubingae, 1653. Synopsis 
Math. Universalis, ed. Ill, Tubingae, 1679, p. 6. English translation of last by Venterus 
Mandey, London, 1709, p. 5. 

«Arithmeticae Theoria et Praxis, Lovanii, 1656 and 1682 (same paging), [1664, 1704]. His 
opera math., Antwerpiae, 1669, does not contain the Arithmetic. 

“Correspondence of Chr. Huygens, No. 389; Oeuvres de Fermat, 3, Paris, 1896, p. 567. 
«®Oeuvres de Huygens, II, Correspondence, No. 378, letter from Schooten to J. Wallis, Mar. 18, 

1658. Oeuvres de Fermat, 3, Paris, 1896, p. 558. 
“Mille de Quantitate Paradoxa Sive Admiranda, Heildelbergae, 1658, p. 11, XLVI, XLVII. 
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that he has surpassed all analysis up to the present. Goldbach®^ called 
Euler’s attention to these remarks and stated that they were probably 
taken from Merseime, the true sense not being followed. 

Wm. Leybourn®® listed as the first ten perfect numbers and the twentieth 
those which occur in the table of Bungus."^^ ^^The number 6 hath an emi¬ 
nent Property, for his parts are equal to himself.” 

Samuel Tennulius, in his notes (pp. 130-1) on lamblicus,^ 1668, stated 
that the perfect numbers end alternately in 6 and 8, and included 130816 == 
256-511 and 2096128 = 1024-2047 among the perfect numbers. 

Tassius®® stated that all perfect numbers end in 6 or 8. Any multiple 
of a perfect or abundant number is abundant, any divisor of a perfect 
number is deficient. He gave as the first eight known perfect numbers the 
first eight listed by Mersenne.®® 

Job. Wilh. Pauli^® (Philiatrus) noted that if 2”—1 is a prime, n is, but 
not conversely. For n = 2, 3, 5, 7, 13, 17, 19, 2”—l is a prime; but 2^^ —1 
is divisible by 23, 2^^ —1 by 47, and 2^^ —1 by 83, the three divisors being 
2?i-|-l. 

G. W. Leibniz^^ quoted in 1679 the facts stated by Pauli and set himself 
the problem to find the basis of these facts. Returning about five years 
later to the subject of perfect numbers, Leibniz implied incorrectly that 
2^ — 1 is a prime if and only if p is. 

Jean Prestet^^ (tl690) stated that the fifth,.. ., ninth perfect numbers are 

23550336 [for 33..8589869056, 137438691328, 238584300813952128 [for 
2305... 39952128], 2^^^-2^^. 

[Hence 2'''"^(2"—l) for n = 13, 17, 19, 31, 257. The numerical errors were 
noted by E. Lucas,^^^ p. 784.] 

Jacques Ozanam^® (1640-1717) stated that there is an infinitude of perfect 
numbers and that all are given by Euclid’s rule, which is to be applied only 
when the odd factor is a prime. 

Charles de Neuveglise^^ proved that the products 3-4,..., 8-9 of two 
consecutive numbers are abundant. All multiples of 6 or an abundant 
number are abundant. 

«7Corre8pondenceMath. Phys., ed., Fuss, 1,1843; letters to Euler, Oct. 7,1752 (p. 584), Nov. 18 
(p. 593). 

““Arithmetical Recreations; or Enchriridion of Arithmetical Questions both Delightful and 
Profitable, London, 1667, p. 143. 

®®Arithmeticae Empiricae Compendium, Johannis Adolfi Tassii. Ex recensione Henrici Siveri, 
Hamburgi, 1673, pp. 13, 14. 

^°De numero perfecto, Leipzig, 1678, Magister-disputation. 
^^Manuscript in the Hannover Library. Cf. D. Mahnke, Bibliotheca Math., (3), 13,1912-3, 

53-4, 260. 
^“Nouveaux elemens des Mathematiques, ou Principes generaux de toutes les sciences, Paris, 

1689, I, 154-5. 
’’“Recreations mathematiques et physiques, Paris and Amsterdam, 2 vols., 1696, I, 14, 15. 
’’“Traits methodique et abreg6 de toutes les mathematiques, Trevoux, 1700, tome 2 (L’arith- 

metique ou Science des nombres), 241-8. 
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Leonard Euler^ (1707-1783) noted that 2”—1 may be composite for n 
a prime; for instance, 2”—1=23-89, contrary to Wolf.’'^ If n = 4m—1 
and 8?n—1 are primes, 2^—1 has the factor 8m—1, so that 2'" —1 is com¬ 
posite for n = ll, 23, 83, 131, 179, 191, 239, etc. [Proof by Lucas. 
Furthermore, 2^^—1 has the factor 223, 2^^ —1 the factor 431, 2^^ —1 the 
factor 1103, 2^^ —1 the factor 439, etc. ‘‘However, I venture to assert 
that aside from the cases noted, every prime less than 50, and indeed than 
100, makes 2’‘”^(2"—1) a perfect number, whence the eleven values 1, 2, 3, 
5, 7, 13, 17, 19, 31, 41, 47 of n yield perfect numbers. I derived these 
results from the elegant theorem, of whose truth I am certain, although I 
have no proof: 5” is divisible by the prime n+1, if neither a nor h is.^^ 
[For later proofs by Euler, see Chapter III on Fermat’s theorem.] Euler’s 
errors as to n=41 and 47 were corrected by Winsheim,®*^ Euler®^ himself, 
and Plana.^^*^ 

Michael Gottlieb Hansch®^ stated that 2”—1 is a prime if n is any of 
the twenty-two primes ^79 [error, Winsheim,®® Kraft®®]. 

George Wolfgang Kraft®® corrected Stifel’s®^ error that 511-256 is per¬ 
fect and the error of Ozanam (Elementis algebrae, p. 290) that the sum of 
all the divisors of 2^” is a prime, by noting that the sum for n = 2 is 511 = 7-73; 
and noted that false perfect numbers were listed by Ozanam.^® Kraft 
presented (pp. 9-11) an incomplete proof, communicated to him by Tobias 
Maier [cf. Fontana^®^], that every perfect number is of Euclid’s type. 
Let 1, m, . .,p, A,.. .be the aliquot parts of any perfect number pA, 
where p and A are the middle factors [as 4 and 7 in 28]. Then 

l-bw4-ri+r+(2f-|-p+A-f—pA. 
q r n m 

Solving for A, he stated that the denominator must be unity, whence 
p = 2qlDj D = g—1—g/r—g/n—g/m. Agaiin, D = l, whence q = 2rlD\ 
U^r — \—rln'-rlm. From D' = l, r — 2nJD'\ W — n — \—nlm. From 
D" = l, n = 2m/(w—1), m—1 = 1, m = 2,91=4, r = 8, etc. Thus the aliquot 
parts up to the middle must be the successive powers of 2, and A must be 
a prime, since otherwise there would be new divisors. For p = 2’*""^, we 
get A =2”—1. Kraft observed that if we drop from Tartaglia’s®® list of 20 
numbers those shown to be imperfect by Euler’s®® results, we have left only 
eight perfect numbers 2’‘'“^(2’‘ —1) for n^39, viz., those for n = 2,3, 5, 7, 13, 
17, 19, 31. For these, other than the first, as well as for the false ones of 
Tartaglia, if we add the digits, then add the digits of that sum, etc., we 
finally get unity (p. 14) [proof by WantzeP®®]. All perfect numbers end 
in 6 or 28. 

®®Comm. Acad. Petropol., 6, 1738, ad annos 1732--3, p. 103. Commentationea Arithmeticae 
CoUectae, I, Petropoli, 1849, p. 2. 

^^Epistola ad mathematicos de theoria arithmetices nouis a se inuentis aucta, Vindobonae 
[Vienna], JL739. 

®‘De numeris ner is. Comm. Acad. Pet on.. 7. 40. ad annos 17.34-.'i. 7-14 
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Johann Christoph Heilbronner*® stated that the perfect numbers up to 
.4-10^ are 6,28,496,8128,130816,2096128. ''The fathers of the early church 
and many writers always held this number 6 in high esteem. God com¬ 
pleted the creation in 6 days and since all things created by Him came out 
perfect, he wished the work of creation completed according to the number 6 
as being a perfect number.'^ 

L. Euler®^ deduced from Fermat^s theorem, which he here proved by 
use of the binomial theorem, the result* that, if ?n is a prime, 2'” —1, when 
composite, has no prime factors other than those of the form mn-j-l. 

J. Landen®® noted that 196 is the least number 4a;", where x is prime, the 
sum of whose aliquot parts exceeds the number by 7. 

L. Euleri^ gave a table of the prime factors of 2"—1 for 37. 
C. N. de Winsheim^® noted that 2^’'—1 has the factor 2351, and stated 

that 2"—1 is a prime for n=2, 3, 5, 7, 13, 17, 19, 31, composite for the 
remaining n<48, but was doubtful as to n=41, thus reducing the list of 
perfect numbers given by Euler®^ by one or perhaps two. He suspected 
that n=41 leads to an imperfect number since it was excluded by the acute 
Mersenne,®° who gave instead 2^^(2?.~ 1} as the ninth perfect number. He 
remarked that the basis of Mersenne^s asserrioiTiFdoubtless to be found in 
the stupendous genius of Mersenne which perhaps recognized more truths 
than he could demonstrate. He discussed the error of Hansch®^ that 2"—1 
is a prime if n is a prime ^ 79. 

G. W. Kraft®^ considered perfect numbers AP, where P is a prime [not 
dividing A]. Thus a(P+l)=2AP, where a is the sum of all the divisors 
of A. Hence a/(2A—a) equals the prime P. Let 2A—a = l, a property 
holding for A=2”*. Then P=2”*'^^ —1 and the resulting numbers are of 
Euclid^s type. 

L. Euler,^ Goldbach, October 28, 1752, stated that he 
knew only seven perfect numbers, viz., for p = 2, 3, 5, 7, 13, 17, 
19, and was uncertain whether 2^^—1 is prime or not (a factor is necessarily 
of the form 64n+l and none are <2000). 

®*Historia matheseos universae. Accedit recensio elementorum compendiomm et operum math, 
atque historia arithmeticea ad nostra tempora, Lipsiae, 1742, 755-6. There is a 63-page 
list of arithmetics of the 16th century. 

«’Novi Comm. Ac. Petrop., 1, 1747-8, 20; Comm. Arith., I, 56, §39. 
*We may simplify the proof by using the fact that 2 belongs to an exponent e modulo p {p & 

prime) such that e divides p — 1. For, if p is a factor of 2'”— 1, m is a multiple of e, whence 
€ equals the prime m. Thus p—l=nm. If we take 7?2>2, we see that n is even since 
p w odd and conclude with Fermat®® that, if m is an odd prime, 2”»-l is divisible by no 
primes other than those of the form 2km-{-I. 

*Ladie8 Diary, 1748, Question 305. The Diarian Repository, Collection of all the mathe¬ 
matical quMtions from the Ladies’ Diary, 1704-1760, by a society of mathematicians, 
London, 1774, 509. Hutton's The Diarian Miscellany (from Ladies’ Diary, 1704-1773), 
^ndon, 1775, vol. 2, 271. Leybourn’s Math. Quest, proposed in Ladie.s’ D., 2, 1817, 

••0pu8(^ varii argmenti, Berlin, 2, 1750, 25; Comm. Arith,, 1, 1849, 104, 
»Novi Comm. Ac. Petrop., 2, 1751, ad annum 1749, mem., 68-99. 

•ubid., mem., 112-3. 

"Correap. Math. Phys. (ed., Fuan), I, 1843, 590, 597-8. 
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G. W. Kraft®® stated (p. 114) that Euler had communicated to him pri¬ 
vately in 1741 the fact that is divisible by 2351. He stated -(p. 121) 
that if 2^ — 1 is composite (p being prime), it has a factor of the form 
2g”‘p+l, where g is a prime [includmg unity], using as illustrations the 
factorizations noted by Euler.®® Of the numbers 2”—1, n a prime ^71, 
stated to be prime by Hansch,®^ six are composite, while the cases 53,..., 71 
are in doubt (p. 115). 

A. Saverien®^ repeated the remarks by Ens®^ without reference. 
L. Euler®® stated in a letter to Bernoulli that he had verified that 2®^ — 1 

is a prime by examinmg the primes up to 46339 which are contained in the 
possible forms 248n+l and 248n+63 of divisors. 

L. Euler®® gave a-prime factor of 2”=*=! for various values of n, but no 
new cases 2”—1 with n a prime. 

L. Euler,®^ in a posthumous paper, proved that every even perfect number 
is of Euclid’s type. Let a=2% be perfect, where h is odd. Let B denote 
the sum of the divisors of h. The sum — l)j5 of the divisors of a must 
equal 2a. Thus b/J?—-(2”'*'^ —1)/2”'^\ a fraction in its lowest terms. 
Hence 5 = (2”'*’^ —l)c. If c = l, h-2^'^^ — 1 must be a prime since the sum 
of its divisors is whence Euclid’s formula. If c> 1, the sum B of 
the divisors of h is not less than —1+c+l; hence 

J5.^2’^+^(c+l) 2^-^^ 

6= b ^2"+^-l' 

contrary to the earlier equation. The proof given in another posthumous 
paper by Euler®® is not complete. 

L. Euler®® proved that any odd perfect number must be of the form 
y.4x+ip2^ where r is a prime of the form 4n+l [Frenicle®^]. Express it as a 
product ABC... of powers of distinct primes. Denote by c,... the 
sums of the divisors of A, J?, C,..., respectively. Then abc... = 2ABC.... 
Thus one of the numbers a, b, ..., say a, is the double of an odd number, 
and the remaining ones are odd. Thus J5, C,. .. are even powers of primes, 
while A In particular, no odd perfect number has the form 4n4'3. 
Amplifications of this proof have been given by Lionnet,^^® Stern,Syl¬ 
vester,^^® Lucas. See also Liouville®® in Chapter X. 

Montucla®® remarked that Euclid’s rule does not give as many perfect 
numbers as believed by various writers; the one often cited [Paciuolo^®] as 
the fourteenth perfect number is imperfect; the rule by Ozanam*^® is false 
since 511 and 2047 are not primes. 

®’Novi Comm. Ac. Pctrop., 3, 1753, ad annos 1750-1. 
®^Dictionnaire universel de math, et physique, two vols., Paris, 1753, vol. 2, p. 216. 
®®Nouv. M6m. Acad. Berlin, annde 1772, hist., 1774, p. 35; Euler, Coram. Arith., 1, 1849, 584. 
"®Opu8c. anal., 1, 1773, 242; Comm. Arith., 2, p. 8. 
®^De numeris amicabilibus, Comm. Arith., 2, 1849, 630; Opera postuma, 1, 1862, 88. 
®®Tractatus de numerorum doctrina. Comm. Arith., 2, 514; Opera postuma, 1, 14-15. 
*®R4cr6ation8 math, et physiques par Ozanam, nouvelle 6d. par M., Paris, 1, 1778, 1790, p. 33. 

Engl, transl. by C. Hutton, London, 1803, p. 35. 
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Johann Philipp Griison^^® made the same criticism of Ozanam^® and 
noted that, if 2”x is perfect and x is an odd prime, 

1+2+.. .+2”=2”x—a:—2a;~ . . . —2'‘''^a;=a;. 

M. Fontana^®^ noted that the theorem that all perfect numbers are 
triangular is due to Maurolycus^^ and not to T. Maier (cf. Kraft®®). 

Thomas Taylor^®^ stated that only eight perfect numbers have been 
found so far [the 8 listed are those of Mersenne®®]. 

J. Struve^®® considered abundant numbers which are products abc of 
three distinct primes in ascending order; thus 

a6+ct+6+l 

a6-a-6-r 1_1 

a b 

—>0+1. 

ab 

The case afe3 is easily excluded, also a=2, 6^5 [except 2-5*7]. For 
a=2, 6=3, c any prime >3, 6c is abundant. Next, abed is abundant if 

_2obc_ 

abc— (a6+(ic+6c+a+6+c+l) 

For a=2, 6 = 3, c=5 or 7, and for a=2, 6 = 5, c = 7, abed is abundant for 
any prime d [>c]. Of the numbers ^ 1000, 52 are abundant. 

J. Westerberg^®^ gave the factors of 2”=*=1 for n = l,..., 32, and of 
10"=fci, n = l,..., 15. 

0. Terquem^®® listed 2^^-1 and 2^^~ 1 as primes. 
L. WantzeP*^® proved the remark of Kraft®® that if Ni be the sum of the 

digits of a perfect number N>6 [of Euclid^s type], and N2 the sum of the 
digits of Ni, etc., a certain Ni is unity. Since iV=l(mod 9), each ^*=1 
(mod 9), while the NiS decrease. 

V. A. Lebesgue^®^ stated that he had a proof that there is no odd perfect 
number with fewer than four distinct prime factors. For an even perfect 
number 2“i/V..., 

2/V■ ■. +!++ = (! +2/4-... +2/'’) (1+Z+ • • • +Z'") •.., 

^““Enthtillte Zaubereyen und Geheimnisse der Arithmetik, erster Theil, Berlin, 1796, p. 85, and 
Zueatz (end of Tbeil I). 

^"^Memorie delP Istituto Nazionale Ital., mat., 2, pt. 1, 1808, 285-^. 
^"The elements of a new arithmetical notation and of a new arithmetic of infinites, with an 

appendix... .of perfect, amicable and other numbers no less remarkable than novel, 
London, 1823, 131. 

i^^Ueber die so gennannten numeri abundantes oder die Ueberfluss mit sich fiihrenden Zahlen, 
besonders im ersten Tausend unsrer Zahlen, Altona, 1827, 20 pp. 

^°<De factoribus numeronim compositorum dignoscendis, Disquisitio Acad. Carolina, Lundae, 
1838. In the volume, Meditationum Math.publice defendent C. J. D. Hill, Pt. II, 
1831. 

^“Nouv. Ann. Math., 3, 1844, 219 (cf. 553). 
p. 337. 

^hid,, 552-3. 
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the impossibility of which is evident when the exponents /d, 7,... are other 
than 1, 0, 0,..., a case giving Euclid’s solution [cf. Desboves^^^]. 

C. G. Reuschle^°® gave in his table C the exponent to which 2 belongs 
modulo p, for each prime p<5000. Thus 2^ — 1 has the factor 1399 for 
n = 233, the factor 2687 forn = 79, and 3391 forn = 113 [as stated explicitly 
by Le Lasseur^^^'^^^]; also 2351-4513 for n=47, 1433 for n = 179, and 1913 
for n = 239. In the addition (p. 22) to Table A, he gave the prime factors of 
2’"—1 for various n’s to 156, 37 being the least n for which the decomposition 
is not given completely, while 41 is the least n for which no factor is known. 
For 34 errata in Table C, see Cunningham^^® of Ch. VII. 

F. Landry^®^ gave a new proof that 2^^ — 1 is a prime. 
Jean Plana^^° gave (p. 130) the factorization into two primes: 

2^^-1 = 13367X164511353. 

His statement (p. 141) that 2®^ —1 has no factor <50033 was corrected by 
Landry^^^ (quoted by Lucas,^^^ p. 280) and G4rardin.^^^ 

Giov. Nocco^^^ showed that an odd perfect number has at least three 
distinct prime factors. For, if is perfect. 

whence 

2a”^ = 
5"+'-l 

6-1 ' 

6^ = 

a™+^-l -, 
a —1 

a _ a’”+' _(a-l)6’‘+l 

2(b-l) 2(6-l)o”‘ b-'+'-l ’ 

o+b(o6”+2b’‘-‘+2)=2+6(26’‘+2a/)"-‘). 

But the minimum values of a, b are 3, 5. Thus b(a—2)>2a —2, 

a!)”-2b” = b"-’--b(a-2)>b”-H2a-2), ob’*+2b'*-‘>2b"+2o6"-', 

contrary to the earlier equation. In attempting to prove that every even 
perfect number 2%’'c’'d“... is of Euclid’s type, he stated without proof that 

2’"-^-w... = (2’"+'-i)PC..., c= — p... 

require that 2”*'*‘^ = B, 6'‘ = 2'”'^^ — (the first two of which results 
yield Euclid’s formula). 

F. Landry^^^ stated (p. 8) that he possessed the complete decomposi¬ 
tion of 2^=‘=l(n^64) except for 2®^=*=1, 2®^-j-l, and gave (pp. lO-ll) the 
factors of 2^^ —1 and of 2”+l for n = 65, 66, 69, 75, 90, 105. 

^°®Mathematische Abhandlung, enthaltend neue Zahlentheoretischc Tabellen sammt einer 
dieselben betreffenden Correspondenz mit dem verewigten C. G. J. Jacobi. Prog., Stutt¬ 
gart, 1856, 61 pp. Described by Kummer, Jour, fttr Math., 53, 1857, 379. 

‘°®Proc6d63 nouveaux pour demontrer que le nombre 2147483647 est premier. Paris, 1850. 
Reprinted in Sphinx-Oedipe, Nancy, 1909, 6-9. 

'i°Mem. Reale Ac. Sc. Torino, (2), 20, 1863, dated Nov. 20, 1859. 
‘“Alcune teorie au’numeri pari, impari, e perfetti, Lecce, 1863. 
‘^*Aux math^maticiens de toutea les parties du monde; communication sur la decomposition dea 

nombres en leurs facteurs simples, Paris, 1867,12 pp. 
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F. Landry^^^ soon published his table. It includes the entries (quoted 

by Lucas^^®’^^^): 
2^3-1=431 •9719*2099863, 2^’'-1 -2351•4513-13264529, 

253».i = 6361*69431-20394401, -179951-3203431780337, 

the least factors of the first two of which had been given by Euler.®^’ 
This table was republished by Lucas^^ (p. 239), who stated that only three 
entries remain in.doubt: 2®^-!, (2®^4-l)/3, 2®Hl, each being conjectured 
a prime by Landry. The second was believed to be prime by Kraitchik.^^^® 
Landry's factors of 2”4’1, for 28^71^64 were quoted elsewhere.^^^^ 

Jules Carvallo^^^ announced that he had a proof that there exists no odd 
perfect number. Without indication of proof, he stated that an odd per¬ 
fect number must be a square and that the ratio of the sum of the divisors 
of an odd square to itself cannot be 2. The first statement was abandoned 
in his published erroneous proof, while the second follows at once from 
the fact that, when p is an odd prime, the sum of the 2ri.+l divisors, each 
odd, of is odd. 

E. Lucas^^^ stated that long calculations of his indicated that 2®'^—! 
and 2®^“1 are composite [cf. Cole,^^^ Powers^®^], See Lucas^*^ of Ch. XVII. 

E. Lucas“® stated that 2^^-"l and 2^^^ —1 are primes. 
E. Catalan^^® remarked that, if we admit the last statement, and note 

that 2^“1, 2^-1, 2’^“1 are primes, we may state empirically that, up to a 
certain limit, if 2”-1 is a prime p, then 2^ — 1 is a prime g, 2<^~-l is a prime, 
etc. [cf. Catalan^^^]. 

G. de Longchamps^^^ suggested that the composition of 2”=i= 1 might be 
obtained by continued multiplications, made by simple displacements from 
right to left, of the primes written to the base 2. 

E. Lucas^^^ verified once only that 2^^^ —1, a number of 39 digits, is a 
prime. The method will be given in Ch. XVII, where are given various 
results relating indirectly to perfect numbers. He stated (p. 162) that he 
had the plan of a mechanism which will permit one to decide almost instan¬ 
taneously whether the assertions of Mersenne and Plana that 2''--l is a 
prime for n = 53, 67, 127, 257 are correct. The inclusion of 7i==53 is an 
error of citation. He tabulated prime factors of 2''~-l for n^40. 

E. Lucas^^® gave a table of primes with 12 to 16 digits occurring as a 
factor in 2'"“1 forn=49, 59, 65, 69, 87, and in 2”+! forn==43, 47, 49, 53, 
69, 72, 75, 86, 94, 98, 99, 135, and several even values of n>100. The 

^“Decomposition des nombres 2”± 1 en leura facteurs premiers de n = 1 ^ n = 64, moins quatre, 
Paris, 1869, 8 pp. 

“3<*Sphinx-Oedipe, 1911, 70, 95. 
^“^L’mtermediaire des math., 9, 1902, 186. 
^“Comptes Rendus Paris, 81,1875, 73-75. 
“®Sur la theorie des nombres premiers, Turin, 1876, p. 11; Th4orie des nombres, 1891, 376. 
“®Nouv. Corresp. Math., 2, 1876, 96. 
“’'Comptes Rendus Paris, 85, 1877, 950-2. 
“sBull. Bibl. Storia Sc. Mat. e Fis., 10, 1877, 152 (278-287). Lucas^®- *« of Ch. XVII. 
“’Atti R. Ac. Sc. Torino, 13, 1877-8, 279. 
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verification of the primality was made by H. Le Lasseur. To the latter 
is attributed (p. 283) the factorization of 2”—1 for n = 73, 79, 113. These 
had been given without reference by Lucas.^^® 

E. Lucas^^^ proposed as a problem the proof that if 8g+7 is a prime, 

E. Lucas^^^ stated as new the assertion of Euler®^ that if 4m—1 and 
8m —1 are primes, the latter divides A = 2^’""'^ —1. 

E. Lucas^^® proved the related fact that if 8m—1 is a prime, it divides A. 
For, by Fermat’s theorem, it divides 2®”*"^—1 and hence divides A or 

H-1. That the prime 8m—1 divides A and not the latter, follows from 
Euler’s criterion that 2^^“^^^^ — ! is divisible by the prime p if 2 is a quad¬ 
ratic residue of p, which is the case if p=8m=*=l. No reference was made 
to Euler, who gave the first seven primes 4m—1 for which 8m — 1 is a prime. 
Lucas gave the new cases 251, 359, 419, 431, 443, 491. Lucas^^^ elsewhere 
stated that the theorem results from the law of reciprocity for quadratic 
residues, again without citing Euler. Later, Lucas^^® again expressly 
claimed the theorem as his own discovery. 

T. Pepin^^® noted that if p is a prime and g = 2^ — 1 is a quadratic non¬ 
residue of a prime 4n+l = a^-\-h^, then g is a prime if and only if (a—hi) / (a+hi) 
is a quadratic non-residue of q. 

A. Desboves^^^ amplified the proof by Lebesgue^®^ that every even per¬ 
fect number is of Euclid’s type by noting that the fractional expression in 
Lebesgue’s equation must be an integer which divides ... and hence is 
a term of the expansion of the second member. Hence this expansion 
produces only the two terms in the left member, so that (/S+1) (7+1)... = 2. 
Thus one of the exponents, say j(3, is unity and the others are zero. The 
same proof has been given by Lucas^^^ (pp. 234-5) and Th^orie des Nombres, 
1891, p. 375. Desboves (p. 490, exs. 31-33) stated that no odd perfect 
number is divisible by only 2 or 3 distinct primes, and that in an odd perfect 
number which is divisible by just n distinct primes the least prime is less 
than 2^. 

F. J. E. Lionnet^^® amplified Euler’s®® proof about odd perfect numbers. 
F. Landrystated that 2®^=t: 1 are the only cases in doubt in his table. 
Moret-Blanc^®° gave another proof that 2®^ —1 is a prime. 

““Assoc, frang. avanc. sc., 6, 1877, 165. 
“iNouv. Corresp. Math., 3, 1877, 433. 
“^Mess. Math., 7, 1877-8, 186. Also, Lucas.“» 
“»Amer. Jour. Math., 1, 1878, 236. 

Bibl. Storia Sc. Mat. e Fie., 11,1878, 792. The results of this paper will be cited in Ch. 
XVI. 

““Recreations math., ed. 2, 1891, 1, p. 236. 
““Comptes Rendus Paris, 86, 1878, 307-310. 
“^Questions d'algebre eiementaire, ed. 2, Paris, 1878, 487-8. 
““Nouv. Ann. Math., (2), 18, 1879, 306. 
““Bull. Bibl. Storia Sc. Mat., 13, 1880, 470, letter to C. Henry. 
“°Nouv. Ann. Math., (2), 20, 1881, 263. Quoted, with Lucas’ proof, Sphinx-Oedipe, 4, 

1909, 9-12. 
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H. LeLasseur found after^^^ 1878 and apparently just before^®^ 1882 
that 2”—1 has the prime factor 11447 if n = 97, 15193 if n = 211, 18121 if 
n = 151, 18287 if n = 223, and that there is no divisor <30000 of 2”-“l for 
the 24 prime values of n, ng257, which remain in doubt, viz. [cf. Lucas^^®], 

61, 67, 71, 89,101,103,107, 109, 127, 137,139, 149, 
157, 163, 167,173,181,193,197, 199, 227, 229, 241, 257. 

J. Carvallo^®® attempted again^^^ to prove the non-existence of odd 
perfect numbers i/V... w’’, where 2/,.. • w are distinct odd primes. He began 
by noting that one and only one of the exponents , r is odd [Euler®®]. 
Let y<z< .. .<u, and call their number fx. From the definition of a 
perfect number, 

y u 
y — \ *■' —1 ^ 2/“”l 'W —1 

The fractions in this inequality form a decreasing series. Hence 

\y-\J 
>2, y< 2^’ 

h 
■w —1 

>2, -(A)'"' 
Thus u{2—k)<2. By a petitio principii (the division by 2 —fc, not known 
to be positive), it was concluded (p. 10) that 

u< 
2 

2-k' 
A;<2, y'> 21/0*-1) 

[This error, repeated on p. 15, was noted by P. Mansion.^®®] For a 
given /X, there is at most one prime between the two limits (of difference <2) 
for 2/- A superior limit is found for z as a function of y. An incomplete 
computation is made to show that, if /x>8, z <y+l. 

It is shown (p. 7) that an odd perfect number has a prime factor greater 
than the prime factor w entering to an odd power, since w+1 divides the 
sum of the divisors. In a table (p. 30) of the first ten perfect numbers, 
2^® —1 and 2^^ —1 are entered as primes [contrary to Euler®® and Plana^^®]. 

E. Catalan^®® stated that 2^ — 1 is a prime if p is a prime of the form 
2^ — 1. If correct this would imply that — 1 is a prime [cf. Catalan^^®]. 

E. Lucas^®® repeated the remark of LeLasseur^®® on the 24 prime values 
of n<257 for which the composition of 2^—1 is in doubt. According to a 

'’'Since these four values of n are included in the list by Lucas'** of the 28 values of n^257 for 
which the composition of 2"—1 is unknown. Cf. Lucas'*’, p. 236. 

'’’Lucas, Recreations math., 1, 1882, 241; 2, 1883, 230. Later, Lucas'" credited LeLasseur 
with these four cases as well as n = 73 [Euler®’] and n = 79, 113, 233 [cf. Reuschle'®*]. 
The last four cases were given by Lucas'**, while the last three do not occur in the table 
(Lucas'**, pp. 788-9) by LeLasseur of the proper divisors of for each odd n, n<79, 
and for a few larger composite n’s. The last three were given also by Lucas'" (p. 236) 
without reference. 

'"Th4orie des nombres parfaits, par M. Jules CarvaUo, Paris, 1883, 32 pp. 
'"Mathesis, 6, 1886, 147. 
'"Melanges Math., Bruxelles, 1, 1885, 376. 
'“Mathesis, 6, 1886, 146. 
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communication from Pellet, 2”—1 is divisible by Sn+l if n and 6n+l are 
primes such that 6n+l = 4Z/^+27ilf^ [provided* (mod4),f. e., Lis odd]. 

M. A. Stern^^^ amplified Euler’s®® proof concerning odd perfect numbers. 
E. Lucas^®® repeated the statement [Desboves^^^j that an odd perfect 

number must contain at least four distinct primes. 
G. Valentin^®® gave a table, computed in 1872, showing factors of 

2”—1 for n = 79, 113, 233, etc., but not the new cases of LeLasseur.^®^ 
The primality of AT=2®^ —1, a number of 19 digits, considered composite 

by Mersenne and prime by Landry, was established by J. Pervusin^^® and 
P. Seelhoff^^^ independently. The latter claimed to verify that there is no 
factor of the form 8n+7, abbreviating the work by use of various 
numbers of which N is a quadratic residue; thus AT is a prime or the product 
of two primes. Since N=2(2®®)^—!, 2 is a quadratic residue of any prime 
factor of N, so that the factor is 1. It was verified that 3^=l(mod N), 
where j3 = (Ar—1)/9. If N=fF, where F is the prime factor 8n+l, then 
3'’=l(mod F) and, by Fermat’s theorem, 3^“^=l(mod F), It is stated 
without proof that one of the exponents and F — 1 divides the other. 
Cole^^® regarded the proof as unsatisfactory. 

Seelhoff proved that a perfect number of the form is of Euclid’s 
type if p and r are primes and p<r. The condition is 

_r^+^-l_ 

^ r'’"*'^(2—p)—2r'’(l--p)—p 

If p>2, the denominator is negative. * Hence p==2 and 

^P+i^l 

2r'’-2’ 
2--+i=r-l- 

r —1 

r^’ 
p = l, r = 2"+'-l. 

His statements (p. 177) about the factors of 2” —1, n = 37, 47, 53, 59, 
were corrected by him {ibid., p. 320) to accord with Landry.^^® 

P. Seelhoffobtained the known factors of these 2” —1 and proved that 
2®^“1 is a prime, by use of his method of quadratic residues. 

H. Novarese^^® proved that every perfect number of Euclid’s type ends 
in 6 or 28, and that each one >6 is of the form 9A;+1. 

Jules Hudelot^^'^ verified in 54 hours that 2®^ — 1 is a prime by use of the 
test by Lucas, Recreations math., 2, 1883, 233. 

*Correction by Kraitchik, Sphinx-Ocdipe, 6, 1911, 73; Pellet, 7, 1912, 15. 
^’’Mathesis, 6, 1886, p. 248. 

p. 250. 
'”Archiv Math. Phys., (2), 4, 1886, 100-3. 

Acad. Sc. St. P^tersb., (3), 31, 1887, p. 532; Melanges math. astr. ac. St. P^tersb., 6, 
1881-8, 553; communicated Nov. 1883. 

^«Zeitschr. Math. Phys., 31, 1886, 174-8. 
*«Archiv Math. Phys., (2), 2, 1885, 327; 5, 1887, 221-3 (misprint forn=41). 
^‘Uornal de sciencias math, e astr., 8, 1887, 11-14. [Servais^^®.] 
^^Mathesia, 7, 1887, 46. Sphinx-Oedipe, 1909, 16. 
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Cl. Servais”® republished the proofs by Novarese^® and proved that 
a"'b’‘ is not perfect if a and b are odd primes. For, by the equations [Nocco“‘] 

-1 = 6"(a-1), 6’’+* -1 =2a’"(b -1), 

we obtain, by subtraction, 

(2o'”-5’‘)(a+b-l) = o’"+‘. 

Thus2a'”>b”. Since a^3, a’"+*S3a’”>a”‘+b"><i+b-l. He next proved 
that, if an odd perfect number is divisible by only three distinct primes a, 
b, c, two of them are 3 and 5, since [as by Carvallo^’] 

Taking a=3, 6 = 5, we have c<16, whence c = 7, 11, or 13. He quoted 
from a letter from Catalan that the sum of the reciprocals of the divisors 
of a perfect number equals 2. 

E. Ces^ro^^® proved that in an odd perfect number containing n distinct 
prime factors, the least prime factor is ^n\/Z 

Cl. Servais^^^ showed that it does not exceed n since, if a<6<c< ..., 

6 ^(z-bl c ci“j-2 

^ g b a g-l-l g+2 

o—1'6 —1“ g—1* a ‘g+l 

g+n — l 

g+n—2^ 

whence 2(g--l)<g+^—1, g<n+l. If I is the (m—l)th prime factor and 
5 is the Twth, and if 

then 

g 6 

g—1‘6 —1 1-1 
^L<2, 

s s+1 
s—l' s s+n—m+1 ^ 

^L{n—m)+2 

2=1 

J. J. Sylvester^^® reproduced Euler^s®^ proof that every even perfect 
number is of Euclid's type. From the fact that •|.•|< 2, he concluded that 
there is no odd perfect number For the case of three prime factors 
he obtained the result of Servais^^® in the same manner. He proved that 
no odd perfect number is divisible by 105 and stated that there is none with 
fewer than six distinct prime factors. 

Sylvester^^^ and Servais^®^ gave complete proofs that there exists no odd 
perfect number with only three distinct prime factors. 

w'Mathesis, 7, 1887, 228-230. 
245-6. 

M’Mathesis, 8, 1888, 92-3. 
‘^“Nature, 37, Dec. 15, 1887, 152 (minor correction, p. 179); CoU. Math. Papers, 4, 1912, 588. 
^^“Comptes Rendus Paris, 106, 1888, 403-5 (correction, p. 641); reproduced with notes by P. 

Mansion, Matheais, 8, 1888, 57-61. Sylvester’s CoU. Math. Papers, 4, 1912, 604, 616. 
“OMathesis, 8, 1888, 135. 
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Sylvester^^^ proved there is no odd perfect number not divisible by 3 
with fewer than eight distinct prime factors. 

Sylvester^^^ proved there is no odd perfect number with four distinct 
prime factors. 

Sylvester^^^ spoke of the question of the non-existence of odd perfect 
numbers as a '^problem of the ages comparable in difficulty to that which 
previously to the labors of Hermite and Lindemann environed the subject 
of the quadrature of the circle.^’ He gave a theorem useful, for the investi¬ 
gation of this question: For r an integer other than 1 or —1, the sum 
l+r+r^-f-... contains at least as many distinct prime factors as p 
contains divisors > 1, with a possible reduction by one in the number of 
prime factors when r = — 2, p even, and when r=2, p divisible by 6. 

E. Catalan^^ proved that if an odd perfect number is not divisible by 
3, 5, or 7, it has at least 26 distinct prime factors and thus has at least 45 
digits. In fact, the usual inequality gives 

10 12 

11*13“' I ^2' P{1) 
2 4 6 ^ l-l 

3*5*7*11“ I ^ 

12 4 6 

2*3*5*7 
<0.2285. 

By Legendre^s table IX, Th4orie des nombres, ed. 2, 1808; ed. 3, 1830, of 
the values of P{w) up to w = 1229, we see that I ^ 127. But 127 is the 27th 
prime >7. 

R. W. D. Christie^^^ erroneously considered 2^^ —1 and 2^^ —1 as prunes. 
E. Lucas^^® proved that every even perfect number, aside from 6 and 

496, ends with 16,28, 36, 56, or 76; any one except 28 is of the form 7/c± 1; 
any one except 6 has the remainder 1, 2, 3, or 8 when divided by 13, etc. 

E. Lucas^®^ reproduced his^®® proofs and the proof by Euler,and gave 
(p. 375) a list of known factorizations of 2"'-l. 

Genaille^®® stated that his machine ‘'piano arithm^tique’^ gives a prac¬ 
tical means of applying in a few hours the test by Lucas {ihid., 5, 1876, 61) 
for the primality of 2’^ — 1. 

J. Fitz-Patrick and G. ChevreP®® stated that 2^®(2^® — l) is perfect. 
E. Fauquembergue^®° found that 2®^--l is composite by a process not 

yielding its factors [cf. Mersenne,®® Lucas,Cole^^^]. 
A. Cunningham^®^ called 2^ — 1 a Lucassian if p is a prime of the form 

4A;4-3 such that also 2p-1-1 is a prime, stating that Lucas^^^ had proved that 
2^ — 1 has the factor 2p-l-l. Cunningham listed all such primes p<2500 

^“Comptes Rendus Paris, 106, 1888, 448-450; Coll. M. Papers, IV, 609-610. 
522-6; Coll. M. Papers, IV, 611-4. 

»3Nature, 37, 1888, 417-8; Coll. M. Papers, IV, 625-9. 
^“Mathesis, 8, 1888, 112-3. M6m. soc. sc. Lidge, (2), 15, 1888, 205-7 (Melanges math.. III). 
3“Math. Quest. Educat. Times, 48, 1888, p. xxxvi, 183; 49, p. 85. 
»»Mathesi8, 10, 1890, 74-76. 
“^Th^orie des nombres, 1891, 424-5. 
“®A8soc. frang. avanc. sc., 20, I, 1891, 159. 
i^Exercices d’Arith., Paris, 1893, 363. 
3«‘>L’interm6diaire des math., 1, 1894, 148; 1915, 105, for representations by u*+67tJ®. 
^“^British Assoc. Reports, 1894, 563. 
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and considered it probable that primes of the forms 2*=*=!, 2®=*= 3 (if not 
yielding Lucassians) generally yield prime values of 2^—1, and that no 
other prunes will. All known and conjectured primes 2^ — 1, with p prime, 
fall under this rule. 

In a letter to Tannery,Lucas stated that Mersenne®®’®^ implied that 
a necessary and sufficient condition that 2*’~1 be a prime is that p be a 
prime of one of the forms 2^”=i=3, Tannery expressed his 
belief that the theorem was empirical and due to Frenicle, rather than to 
Fermat, and noted that the sufficient condition would be false if 2®^—1 is 
composite [as is the case, Fauquembergue^®®]. 

Goulard and Tannery^®® made minor remarks on the subject of the last 
two papers. 

A. Cunningham^®^ found that 2^^^--l has the factor 7487. This contra¬ 
dicts LeLasseur's^®^ statement on divisors<30000 of Mersenne^s numbers. 

A. Cunningham^®® found 13 new cases (317, 337, 547, 937,...) in which 
2®—1 is composite, and stated that for the 22 outstanding prunes g^257 
[above list^®^ except 61, 197] 2‘*--l has no divisor <50,000 (error as to 
g = 181, see Woodaffi®^). The factors obtained in the mentioned 13 cases 
were found after much labor by the indirect method of Bickmore,^®® who 
gave the factors 1913 and 5737 of 2^®® —1. 

A. Cunningham^®’ gave a factor of 2^-1 for 5 = 397, 1801, 1367, 5011 
and for five larger primes g. 

C. Bourlet^®® proved that the sum of the reciprocals of all the divisors 
di of a perfect number n equals 2 [Catalan^^®], by noting that n/di ranges 
with di over the divisors of n, so that 2n-'Zn/di. The same proof occurs 
in II Pitagora, Palermo, 16, 1909-10, 6-7. 

M. Stuyvaert^®® remarked that an odd perfect number, if it exists, is a 
sum of two squares since it is of the form p^^, where p is a prime 4n-f-l 
[Frenicle,®^ Euler'®]. 

T. Pepin^’® proved that an odd perfect number relatively prime to 3*7, 
3*5 or 3*5*7 contains at least 11, 14 or 19 distinct prime factors, respectively, 
and can not have the form 6A:+5. 

F. J. Studnicka^’^ called.= 2^"*^2^ — 1) an Euclidean number if 2^-1 
is a prime. The product of all the divisors <jE'p of Ep is When 
Ep is written in the diadic system (base 2), it has 2p — 1 digits, the first p of 
which are unity and the last p — 1 are zero. 

i“L’intenn4diaire des math., 2, 1895, 317. 
3, 1896,115, 188, 281. 

i«Nature, 51,1894-5, 533; Proc. Lond. Math. Soc., 26,1895, 261; Math. Quest. Educat. Times, 
5,1904,108, last footnote. 

^“British Assoc. Reports, 1895, 614. 

the numerical factors of a”-l, Messenger Math., 25, 1895-6, 1-44; 26, 1896-7, 1-38. 
French transl. by Fitz-Patrick, Sphinx-Oedipe, 1912, 129-144, 155-160. 

“Troc. London Math. Soc., 27,1895-6, 111. 
i«®Nouv. Ann. Math., (3), 15, 1896, 299. 
^“Mathesis, (2), 6, 1896, 132. 
^^“Memoire Accad. Pont. Nuovi Lincei, 13, 1897, 345-420. 
I'^^Sitzungsber. Bohm. Gesell., Prag, 1899, math, nat., No. 30. 
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Mario Lazzarini^"^^ attempted to prove that there is no odd perfect num¬ 
ber a“5V, but made the error of thinking that a is relatively prime to 

. .+6+1. He attempted to show that 1 is a prime if and 
only if p divides iV = 3*+l, where = —1 [false for a=2, since p = 3, 
JVT=4]. He restricted his argument to the case a odd, whence p=l (mod 3). 
Then, if p is a prime, —3 is a quadratic residue of p, so that (— 
(mod p), whence p divides N. Conversely, when this congruence holds, he 
concluded falsely that 2^= —3 (mod p) has two and only two roots, so that 
p is expressible in a single way as a sum of a square and the triple of a square 
and hence is prime. To show the error, let p=a6, where a = 23, 6 = 3851 are 
primes; then 

g-l b~l 

(-3)''+l=~2a6,(-3) ^ =~l(mod6),(-3) ^ =(-3)'^-''^^--1 (moda), 

whence (—(mod p). Cipolla remarked (p. 288) that we may 
deduce from a result of Lucas^^® that p is a prime if it divides N without 
dividing 3^+1 for any divisor 5 of p=2“'"^ —1. 

F. N. Cole^^^ found that 2®^—1 is the product of the two primes 193707721, 
761838257287. In the footnote to p. 136, he criticized the proof by Seel- 
hoffof the primality of iNT=2®^ ~ 1 and stated he had verified that N is 
prime by an actual computation of a series of primes of which N is a 
quadratic residue. 

R. D. CarmichaeP^^ proved that any even perfect number 2°p2“*.. .pn"" 
is of Euclid's type. Write d for 2“"^^ — 1. Then, as usual, 

+?,+», i+lan(i+i). 
d pt d \ p/ 

If n>2. Pi is less than d, being an aliquot divisor of it, so that l + l/p,- 
exceeds the left member of the inequality. Hence n=2, P2 = d. 

A. Cunningham^^® gave the residues of 2*, etc., modulo 2®—1 for 
primes $^101. 

A. Tur5aninov^^® (Turtschaninov) proved that an odd perfect number 
has at least four distinct prime factors and exceeds 2000000. 

A. G6rardin^^^ noted the error by Plana.^^® 
A. G^rardin^^® stated the empirical laws: If n is a prime of the form 

24a:+11 and if 2" — l is composite, the least factor is of the form 24t/+23 

^^“Periodico di mat. insegn. sec., 18, 1903, 203; criticized by C. Ciamberlini, p. 283, and by M. 
Cipolla, p. 285. 

^^®Bull. Amer. Math. Soc., 10, 1903-4, 134-7. French transl., Sphinx-Oedipe, 1910, 122-4. 
Cf. Fauquembergue.^®° 

Annals of Math., (2), 8, 1906-7, 149. 
>7»Proc. London Math. Soc., (2), 5, 1907, 259 [250]. 

Vest, opytn. fiziki (Spaczinakis Bote), Odessa, 1908, No. 461 (pp. 106-113), No. 463 (162-3), 
No. 465-6 (213-9), No. 470 (314-8). In Russian. Cf. Bourlet.”® 

^■^L’interm6diaire des math., 15, 1908, 230-1. 
’^“Sphinx-Oedipe, Nancy, 3,1908-9, li3-123; Assoc, fran^. avanc. sc., 1909,145-156. In Wis- 

kundig Tijdschrift, 10,1913,61, he added that in the remaining three cases <257, n=107, 
167, 227, the least divisor (necessarily >1 million) is respectively 5136 J/-1-2783, 
8016 y-f335, 10896 y+5903. 
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(e. n = ll, 59, 83, 131, 179, 251). If n is a prime 24x+23 and 2”—1 is 
composite, the least factor is of the form 482/+47 (e. ^., n=47,2/=48, factor 
2351; n=23, 71, 191, 239). G^rardin^^® gave tables of the possible, but 
(unverified, factors of 2’*—1, n<257. 

A. Cuimingham^^^^ gave the factor 150287 of 2^®^—1. 
A. Cunningham^®^ found the factor 228479 of 2^^ —1. 
T. M. Putnam^^^ proved that not all of the r distinct prime factors of a 

perfect number exceed 1+r /log,2 and hence do not all equal or exceed 1 + 3r/2. 
L. E. Dickson^®^ gave an immediate proof that every even perfect num¬ 

ber is of Euclid’s type. Let 2"g be perfect, where q is odd and n > 0. Then 
(2^+^ —1)5 = 2^'^% where 5 is the sum of all the divisors oVq, Thus s=q+d, 
where d = g/(2"^^ —1). Hence d is an integral divisor of q, so that q and d 
are the only divisors of q. Hence d = 1 and g is a prime. 

H. J. WoodalP®^ obtained the factor 43441 of 2^®^—1. 
R. E. Powers^^® verified that 2^®~1 is a prime by use of Lucas’ test on 

the series 4, 14, 194,_ H, Tarry^^® made an incomplete examination. 
E. Fauquembergue^®^ proved that 2^® — ! is a prime by writing the residues 
of that series to base 2. 

A. Cunningham^®® noted that 2®—1 is composite for three primes of 8 digits. 
On the proof-sheets of this history, he noted that the first two should be 

g = 67108493, p-134216987; g = 67108913, p = 134217827. 

A G^rardin^®®® observed that 2^”'^^ —1=2^—2G^, F=2”'^^=*=l = 2m-+-l, 
GJ=2’‘±1, 

H. Tarry^®®^ verified for the known composite numbers 2^—1, where p 
is a prime, that, if a is the least factor, 2®—! is composite. 

A. Gerardin added empirically that, if p is any number and a any di¬ 
visor of 2^ — 1, a = 8w 1 not being of the form 2“ — 1 then 2“—1 is composite. 

A. Cunningham^®® noted that, if g is a prime, 

M 3 = 2«-1 = T^-2{qu)^ = (qty-2U^ 

If Mg is a prime it can be expressed in the forms = and 
in one or the other of the pairs of forms (ct = 7, 14, 21, 42). He 
discussed Mg to the base 2. 

i’*Sphinx-Oedipe, 3, 1908-9, 118-120, 161-5, 177-182; 4, 1909, 1-5, 158, 168; 1910, 149, 166. 
i«°Proc. London Math. Soc., (2), 6, 1908, p. xxii. 
^«^L'intenn6diaire des math., 16, 1909, 252; Sphinx-Oedipe, 4, 1909, 4e Trimestre, 36-7. 
«*Amer. Math. Monthly, 17, 1910, 167. 18, 1911, 109. 
iwBuU. Amer. Math. Soc., 16, 1910-11, 540 (July, 1911). Proc. London Math. Soc., (2), 9, 

1911, p. xvi. Mem. and Proc. Manchester Literary and Phil. Soc., 56,1911-12, No. 1,5 pp. 
Sphinx-Oedipe, 1911, 92. Verification by J. Hammond, Math. Quest. Solutions, 2, 
1916, 30-2. 

^“BuU. Amer. Math. Soc., 18, 1911-12, 162 (repprt of meeting Oct., 1911). Amer. Math. 
Monthly, 18, 1911, 195. Sphinx-Oedipe, Feb., 1912, 17-20. 

i*®Sphinx-Oedipe, Dec., 1911, p. 192; 1912, 15. (Proc. London Math. Soc., (2), 10, 1912, 
Records of Meetings, 1911-12, p. ii.) 

“’/bid., 1912, 20-22. ^®*Messenger Math., 41, 1911, 4. 
i8®®Bull. Soc. Philomatiquesde Paris, (10), 3,1911,221. i^agp^x-Oedipe, 6,1911,174 186,192. 
«»Math. Quest. Educ. Times, (2), 19, 1911, 81-2; 20, 1911, 90-1,105-6; 21, 1912, 58-9, 73. 
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A. Cunningham^^^^ found the factor 730753 of 1. 
V. Ramesam^®^ verified that the quotient of by the factor 228479 

[Cunningham^^T is the product of the primes 48544121 and 212885833. 
A. Aubry^®^ stated erroneously that ‘^Mersenne aflfirined that 2”““1 is 

a prime, for n^257, only for n = l, 2, 3, 4, 8, 10, 12, 29, 61, 67, 127, 257 
(which lias now been almost proved); this proposition seems to be due to 
Frenicle.®^^^ What Mersenne®® actually stated was that the first 8 perfect 
numbers occur at the lines marked 1, 2, 3, 4, 8, etc., in the table by Bimgus. 

A. Cunningham^^^® noted that Muz, ^251 have the further factors 
23279-65993, 55871, 54217, respectively. Cf. Reuschlel®^ Lucas'^l 

A. G^rardin^®^^ noted that there is no divisor < 1000000 of the composite 
Mersenne numbers not already factored. Let d denote the least divisor 
of 2®—!, g a prime ^257. If g = 60w-}“43, then d=47 (mod 96), except for 
the cases given by Euler’s®^ theorem (verified for 43, 163, 223). If 
g=40w+33, fe7 (mod 24), verified for 73,113, 233. If q = 30m+l, fel 
(mod 24), verified for 31, 61, 151, 181, 211. 

E. Fauquembergue^®^® proved that 2^®^ —1 is composite by means of 
Lucas^ test with 4, 14, 194,..., written to base 2 (Ch. XVII). 

L. E. Dickson^^^ called a non-deficient number primitive if it is not a 
multiple of a smaller non-deficient number, and proved that there is only 
a finite number of primitive non-deficient numbers having a given number 
of distinct odd prime factors and a given number of factors 2. As a 
corollary, there is not an infinitude of odd perfect numbers with any given 
number of distinct prime factors. There is no odd abundant number with 
fewer than three distinct prime factors; the primitive ones with three are 

3^5.7, 3^7, 3"5*72, 335211^ 355213^ 345313^ 3^52132, 3^5^31 

There is given a list of the numerous primitive odd abundant numbers with 
four distinct prime factors and lists of even non-deficient numbers of certain 
types. In particular, all primitive non-deficient numbers <15000 are 
determined (23 odd and 78 even). In view of these lists, there is no odd 
perfect number with four or fewer distinct prime factors (cf. Sylvester^^®"^^^). 

A. Cunningham^®^ gave a summary of the known results on the composi¬ 
tion of the 56 Mersenne numbers Mq-2'^—1, q a, prime ^257. Of these, 
12 have been proved prime: Mg, q = l,2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 127; 
while 29 of them have been proved composite. Thus only 15 remain in 

“^British Assoc. Reports, 1912, 406-7. Sphinx-Oedipe, 7, 1912, 38 (1910, 170, that 730753 
is a possible factor). Cf. Cunningham"^. 

^“^Nature, 89, 1912, p. 87; Sphinx-Oedipe, 1912, 38. Jour, of Indian Math. Soc., Madras, 4 
1912, 56. 

^“^Oeuvres de Fermat, 4, 1912, 250, note to p. 67. 
1920 Mem. and Proc. Manchester Lit. and Phil. Soc., 56, 1911-2, No. 1. 

Sphinx-Oedipe, 7, 1912, numdro special, 15-16. 
Nov., 1913, 176. 

»3Amer. Jour. Math., 35, 1913, 413-26. 
"’^Proc. Fifth International Congress, I, Cambridge, 1913, 384-6. Proc. London Math. Soc., 

(2), 11, 1913, Record of Meeting, Apr. 11, 1912, xxiv. British Assoc. Reports, 1911, 
321. Math. Quest. Educat. Times, (2), 23, 1913, 76. 
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doubt: M,, g==101, 103, 107, 109, 137, 139, 149, 157, 167, 193, 199, 227, 
229 241, 257. The last has no factor under one million, as verified by 
R. E. Powers.^®^® No one of the other 14 has a factor under one million, as 
verified twice with the collaboration of A. G^rardin. Up to the present 
three errors have been found in Mersenne^s assertion; has been proved 
composite (Lucas, Cole^"^^), while Mqi and Msg have been proved prime 
(PervuSin,^^® Seelhoff,^^^ Cole,^^^ Powers^^^). It is here announced that Mn^ 
has the factor 730753, found with the collaboration of A. G^rardin. 

J. McDonnell^®® commented on a test by Lucas in 1878 for the primality 

of 2”-L 
L. E. Dickson^®® gave a table of the even abundant numbers <6232. 
R. Niewiadomski^^^ noted that 2^®^ — l has the factor 4567 and gave 

known factors of 2"—1. He gave the formula 
26m+l _ J ^ ^2”* - l)^ + (2^”^ - 2"* -1)^ +1. 

G. Ricalde^^® gave relations between the primes p, q and least solutions of 
22-+1-1 =p^, a^-2b^=p, c^-^2d^=q. 

R. E. Powers^®^ proved that 2^°^ —1 is a prime by means of Lucas^^^ test 
in Ch. XVII. 

E. Fauquembergue^®® proved that 2*’~1 is prime for p = 107 and 127, 
composite for p —101, 103, 109. 

T. E. Mason^®^ described a mechanical device for applying Lucas’^^® 
method for testing the primality of 2^®+^-~l. 

R. E. Powers^®^ proved that 2^®^ —1 and 2^®^~1 are composite by means 
of Lucas’ tests with 3, 7, 47,.. .and 4, 14, 194... (Ch. XVII), respectively. 

A. G4rardin^®^ gave a history of perfect numbers and noted that 2^-1 
can be factored if we find t such that m=2p^+l is a prime not dividing 
s=l+2^+2^^+. . .since 2^^^-'l=(2^—l)s (modm). Or we may 
seek to express 2^—1 in two ways in the form x^-2y^. 

On tables of exponents to which 2 belongs, see Ch. VII, Cunningham 
and WoodalF®, Kraitchik.^^® 

Additional Papers of a Merely Expository Character. 

E. Catalan, Mathesis, (1), 6, 1886, 100--1, 178. 
W. W. Rouse Ball, Messenger Math., 21, 1891-2, 34-40, 121. 
Font4s (on Bovillus^®), M4m. Ac. Sc. Toulouse, (9), 6, 1894, 155-67. 
J. Bezdicek, Casopis Mat. a Fys., Prag, 25, 1896, 221-9. 
Hultsch (on lamblichus), Nachr. Kgl. Sachs. Gesell, 1895-6. 
H. Schubert, Math. Mussestunden, I, Leipzig, 1900, 100-5. 
M. Nass6, Revue de math. (Peano), 7, 1900-1, 52-53. 

^“"Sphinx-Oedipe, 1913, 49-50. 
^“London Math. Soc., Records of Meeting, Dec., 1912, v-vi. 
^»^uart. Jour. Math., 44, 1913, 274-7. 
^®T’intenn6diaire des math., 20, 1913, 78, 167. 
i««76id., 7-8, 149-150; cf. 140-1. 

^®*Proc. London Math. Soc., (2), 13, 1914, Records of meetings, xxxix. Bull. Amer. Math. 
Soc., 20, 1913-4, 531. Sphinx-Oedipe, 1914, 103-8. 

®“®Sphinx-Oedipe, June, 1914, 85,* Tinterm^diaire des math., 24,1917, 33 
^“Proc. Indiana Acad. Science, 1914, 429-431. 

riT' (2). 15, 1916, Records of meetings, Feb. 10. 1916, xxii. 
*“Sphinx-Oedipe, 1909, 1-26. 
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G. Wertheim, Anfangsgrunde der Zahlentheorie, 1902. 
G. Giraud, Periodico di Mat., 21,1906, 124-9. 
F. Ferrari, Suppl. al Periodico di Mat., 11, 1908, 36-8, 53, 75-6 (Cipolla). 
P. Bachmann, Niedere Zahlentheorie, II, 1910, 97-101. 
A. Aubry, Assoc, frang. avanc. sc., 40, 1911, 53-4; 42, 1913; I’enseignement 

math., 1911, 399; 1913, 215-6, 223. 
*M. Kiseljak, Beitrage zur Theorie der vollkommenen Zahlen, Progr. Agram, 

1911. 
*J. Vaes, Wiskundig Tijdschrift, 8, 1911, 31, 173; 9, 1912, 120, 187. 
J. Fitz-Patrick, Exercices Math., ed. 3, 1914, 55-7. 

Multiply Perfect Numbers. 

A multiply perfect or pluperfect number n is one the sum of whose 
divisors, including n and 1, is a multiple of n. If the sum is mn, m is called 
the multiplicity of n. For brevity, a multiply perfect number of multi¬ 
plicity m shall be designated by Thus an ordinary perfect number is 
a P2. Although Robert Records^® in 1557 cited 120 as an abundant number, 
since the sum of its parts is 240, such numbers were first given names and 
investigated by French writers in the seventeenth century. As a P3 equals 
one-half of the sum of its aliquot divisors or parts (divisors <P3), it was 
called a sous-double; a P4 equals one-third of the sum of its aliquot parts 
and was called a sous-triple; a Ps a sous-quadruple; etc. 

F. Marin Mersenne proposed to R. Descartes^®® the problem to find a 
sous-double other than Pa^^^ = 120 = 2^3-5. The latter did not react on the 
question until seven years later. 

Mersenne®®^ mentioned (in the Epistre) the problem to find a P4, a 
P5 or a a P3 besides 120, and a rule to find as many as one pleases. He 
remarked (p. 211) that the P3 120, the P4 240 [for 30240?] and all other 
abundant numbers can signify the most fruitful natures. 

Pierre de Fermat^®^ referred in 1636 to his former [lost] letter in which he 
gave '‘the proposition concerning aliquot parts and the construction to 
find an infinitude of numbers of the same nature.^^ found the second 
P3, viz., P3<2) =672 = 2^3-7. 

Mersenne^®^ stated that Fermat found the 1 3 7 15... 
P3 672 and knew infallible rules and analysis 2 4 8 16... 
to find an infinitude of such numbers. He^°® 3 5 9 17... 
later gave [Fermat^s] method of finding such P3: Begin with the geometric 

^““Oeuvres de Descartes, 1, Paris, 1897, p. 229, line 28, letter from Descartes to Mersenne, Oct 
or Nov., 1631. 

*°^Les Preludes de VHarmonie Universelle ou Questions Curiouses, Utiles aux Predicateurs, aux 
Theologiens, Astrologues, Medecins, & Philosophes, Paris, 1634, 

*®*Oeuvres de Fermat, 2, Paris, 1894, p. 20, No. 3, letter to Mersenne, June 24, 1636. 
**'*Oeuvres de Fermat, 2, p. 66 (French transl. 3, p. 288), 2, p. 72, letters to Mersenne and 

Roberval, Sept., 1636. 
*®‘Harmonie Universelle, Paris, 1636, Premiere Preface Generale (preceded by a preface of two 

pages), unnumbered page 9, remark 10. Extract in Oeuvres de Fermat, 2, 1894, 20-21. 
*®®Mer8enne, Seconde Partie de THarmonie Universelle, Paris, 1637. Final subdivision: Nou- 

velles Observations Physiques et Math^matiques, p. 26, Observation 13. Extract in 
Oeuvres de Fermat, 2, 1894, p. 21. 
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progression 2,4, 8,.... Subtract unity and place the remainders above the 
former. Add unity and place the sums below. Then if the quotient of 
the (n+3)th number of the top line by the nth number of the bottom 
line is a prime, its triple multiplied by the (n+2)th number of the middle 
line is a P3. Thus if n-1, 15/3 is a prime and 3*5*8 = 120 is a P3. For 
n=3, 63/9 is a prime and 3-7*32 = 672 is a P3. [This rule thus states in 
ejffect that 3*2”+2p is a P3 if (2^'‘'^~l)/(2”+l) is a prime.] 

The third P3, discovered by Andr4 Jumeau, Prior of Sainte-Croix, is 

P3C3) = 523776 = 2^341*31. 

In April, 1638, he communicated it to Descartes®^® and asked for the fourth 
P3 (the fifth and last of St. Croix’s challenge problems). 

Descartes®®^ stated that the rule of Fermat furnishes no P3 other than 
120 and 672 and judged that Fermat did not find these numbers by the 
formula, but accommodated the formula to them, after finding them by trial. 

Descartes®®® answered the challenge of St. Croix with the fourth P3, 

P3(^^ = 1476304896 = 2'®341-43*127. 

Soon afterwards Descartes®®® announced the following six P4: 

P4^'^ = 30240 = 2®3®5*7, 
P4<^^ = 32760 = 2^325*7*13, 
P4^2) = 23569920=2®3®5* 11-31, 
P4^^^ = 142990848 = 2®327*1M3-31, 
P4^"^ = 66433720320=2'®325*11*43127, 

=403031236608 = 2'®327*1M3*43*127, 

and the sous-quadruple 

Ps^'^ = 14182439040 = 2^3^5*7*11®17.19. 

He stated that his analysis had led him to a method which would require 
time to explain in the form of a rule, but that he could find, for example, 
a sous-centuple, necessarily very large. 

Fermat apparently responded to the fifth challenge problem of St. Croix 
on the fourth P3. Without warrant, Descartes®^® suspected that Fermat 
had not found independently the fourth P3, but had learned from some one 
in Paris of its earlier discovery by Descartes. Fermat®^ indicated that he 
possessed an analytic method by which he could solve all questions con- 

^^Oeuvres de Descartes, 2, Paris, 1898, p. 428, p. 167 (latter without name of St. Croix); cf. 
Oeuvres de Fermat, 2,1894, pp. 63-64. 

*°^Oeuvres de Descartes, 2, 1898, p. 148, letter to Mersenne, May 27, 1638. 
*o®Oeuvre8 de Descartes, 2, 1898, 167, letter to Mersenne, June 3, 1638. 
^“Oeuvres de Descartes, 2, 1898, 250-1, letter to Mersenne, July 13, 1638. In June, 1645, 

Descartes, 4, 190i, p. 229, again mentioned the first two of these P4. 
»^®Oeuvres de Descartes, 2, 1898, 273, letter to Mersenne, July 27, 1638. 
^“Oeuvres de Fermat, 2, 1894, p. 165, No. 4; p, 176, No. 1; letters to Mersenne, Aug. 10 and 

Dec. 26, 1638. 
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cerning aliquot parts, apart from the testing of the primality of a number w, 
knowing no method except the trial of each number < Vw as a divisor. 

Descartes^gave the following rules for multiply perfect numbers: 

I. If n is a P3 not divisible by 3, then 3n is a P4. 
II. If a P3 is divisible by 3, but by neither 5 nor 9, then 45P3 is a P4. 

III. If a P3 is divisible by 3, but not by 7, 9 or 13, then 3-7-13 P3 is a P4. 
IV. If n is divisible by 2®, but by no one of the numbers 31, 43, 127, 

then 31n and 16*43-127n are proportional to the sums of their 
aliquot parts. 

V. If n is not divisible by 3 and if 3n is a P4jfc, then n is a P^k- 

By applying rule II to Pz^^\ Pz^^\ Descartes obtained his P4^^\ 
Pa^\ P4^^^* By applying rule III to P3^^^, Pz^^\ Pz^^\ he obtained his 
P^^^\ P4^'^ P4^®^ 

In the same letter, Descartes expressed to Mersenne a desire to know 
what Frenicle de Bessy had found on this subject. Frenicle wrote direct 
to Descartes, who in his reply^^® expressed his astonishment that Frenicle 
should regard as sterile the above rules for finding P4, since Descartes had 
deduced by them six P4 from four P3, at a time when Mersenne had stated 
to Descartes that it was thought to be impossible to find any at all. Des¬ 
cartes stated that, since one can find an infinity of such rules, one has the 
means of finding an infinitude of Pm- From one of Frenicle’s Ps (com¬ 
municated to Descartes by Mersenne), 

Ps^^^ = 30823866178560=2'°3^5-72l3-19-23-89, 

Descartes (p. 475) derived the smaller P5: 

P5^^^= 31998395520 = 2^3^5*72.13-17-19. 

Mersenne^ listed various Pm due to his correspondents, without cita¬ 
tion of names. He listed the above P^^'^ (^ = 1, 2, 3, 4) and remarked that 
^'un excellent esprit found that when 

P3^'^ =459818240=2®5-7*19-37‘73 

is multiplied by 3, the product is a P4: 

P4^^> = 2^3-5-7-19-37-73, 

attributed to Lucas^^^ by Carmichael.®®'* 

‘^^Oeuvres, 2, 1898, 427-9, letter to Mersenne, Nov. 15, 1638. 
*^®Oeuvre8 de Descartes, 2, 1898, 471, letter to Frenicle, Jan. 9, 1639. 
•^^Les Nouvelles Pensees de Galilei, traduit d’ltalien en Francois, Paris, 1639, Preface, pp. 6-7. 

Quoted in Oeuvres de Descartes, 10, Paris, 1908, pp. 564-6, and in Oeuvres de Fermat, 4, 
1912, pp. 65-66. 

*^®Freriicle de Bessy, according: to the editors of the Oeuvres de Fermat, 2, 1894, p. 255, note 2; 
4, 1912, p. 65, note 2 (citing; Oeuvres de Descartes, 2, letter Descartes to Mersenne, Nov. 
15, 1638, pp. 419-448 [p. 429]). It is clear that the discoverers Fermat, St. Croix, and 
Descartes of the (i=2, 3,4) are not meant. It is attributed to Legendre*^* by 
Carmichael.**^ 
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There are listed Descartes^ six P4 and P5^^\ Frenicle’s and also 

P4^®^ =45532800 -2^3^5217‘31, 
P4<"^ = 43861478400=2'‘^3^5"23-31-89, 

and the erroneous P5 508666803200 (not divisible by 5^+5+l), probably 
a misprint for the correct Ps (in the list by Lehmer^^®): 

Ps^^^ == 518666803200 = 2“3 W1349-31. 

A part of these P^, but no new ones, were mentioned by Mersenne®^ in 
1644; the least P3 is stated to be 120. (Oeuvres de Fermat, 4, 66-7.) 

In 1643 Fermat^^® cited a few of the P^ he had found: 

P3^®^ = 51001180160=2^%7-19-31*151, 
P,(10)^3P3^®^ 
P4^'^> = 14942123276641920 = 2^3®5-17-23-137-547-1093, 
Ps^^^ = 1802582780370364661760=220335-72l3"19-31-6M27-337, 
p/) = 87934476737668055040 = 2^^3®5*7^13-19237-73-127, 
Pga) = 2233^5'7ni^l3^1723141*61*241-307467*2801, 
Pg(2)^22^3W-lM32l9-29*3143-6M13-127. 

He stated that he possessed a general method of finding all P^. 
Replying to Mersenne^s query as to the ratio of 

p^(3)^23®3^5®lM3^19-3l243*61-83-223‘331-379-601*757 
X 1201«7019*823543*616318177400895598169 

to the sum of its aliquot parts, Fermat^^’ stated that it is a Pe, the prime 
factors of the final factor being 112303 and 898423 [on the finding of these 
factors, see Ch. XIV, references 23, 92, 94, 103]. Note that 823543=7^. 

Descartes®^® constructed P3^^^=672=21.32 by starting with 21 and 
noting that <7(21) =32, <7(32) = 63=3*21, for or defined as on p. 53. 

Mersenne®^ noted that if a P3 is not divisible by 3, then 3P3 is a P4 

[rule I of Descartes^^^]; if a P5 is not divisible by 5, then 5P5 is a Pe, etc. 
He stated that there had been found 34 P4,18 P5,10 Pq, 7 P7,but no Pgso far. 

In 1652, J. Broscius (Apologia,®^ p. 162) cited the P4^^^ [of Descartes^®®]. 
The P3 120 and 672 are mentioned in the 1770 edition of Ozanam's^® 
Recreations, I, p. 35, and in Hutton’s translation of Montucla’s®® edition, 
I, p. 39. 

A. M. Legendre^^® determined the P^ of the form 2^aPy..., where a, 
/3, 7,.. .are distinct odd primes, for ?w = 3, n^8; ?n = 4, n=3, 5; 7n = 5, n = 7. 
No new P„ were found. 

®^®Oeuvres, 2,1894, p. 247 (261), letter to Carcavi; Varia opera, p. 178; Precis des oeuvres math, 
de Fermat, par E. Brassinne, Toulouse, 1853, p. 150. 

^^Oeuvers de Fermat,-2,1894,255, letter to Mersenue, April 7,1643. The editors (p. 256, note) 
explained the method of factoring probably used by Fermat. The sum of the aliquot 
parts of 23®is 223iV', where 2^ = 616318177, and the sum of the aliquot parts of N is 2*7? M 
iU=898423. As M does not occur elsewhere in Pa, it is to be expected as a factor of 
the final factor of Pa. 

3^«Manuscript published by C. Henry, Bull. Bibl. Storia Sc. Mat. e Fis., 12, 1879. 714. 
•^‘Thor^ie desnombres, 3d ed., vol. 2, Paris, 1830, 146-7; German transl. by H. Maser, Leipzig, 

2, 1893, 141-3. The work for 7n=3 was reproduced by Lucas^^o without reference. 
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E. Lucas^^° gave a table of of the form which includes 
only 15 of the 26 Pm given above and no additional Pm, m>2, except 
two erroneous P^: 

2^°3^5*72.112.19-23-89, 2^'5-7213-19237-73-127, 

attributed elsewhere^^^ by him to Fermat. If we replace 7^ by 7 in the 
former, we obtain a correct P5 listed by Carmichael 

p.(7)^2'°3"5-7.1l2l9-23-89. 

If in the second, we replace 5-7^ by 3®*5*7^ we obtain Fermat^s P^^^K 
A. Desboves^^^ noted that 120 and 672 are the only P3 of the form 

2"-3-p, where p is a prime. 
D. N. LehmeP^^ gave the additional Pm - 

P^(i2)^22325-72l3-19, 
p^as) ^2®327213-19237-73-127, 
PgCs; =22W7-19-23231-79-89-137-547-683-1093, 
Pg(4) =2^93W11.13-19-23-314M37-547.1093, 
Pe^^^ =22^3^5.7"11-13-17.19"3143‘53-127-379-601-757-1801. 

He readily proved that a P3 contains at least 3 distinct prime factors, a 
P4 at least 4, a P5 at least 6, a Pe at least 9, a P7 at least 14. 

J. Westlund^^^ proved that 2^3-5 and 2®3*7 are the only P3 of the form 
PiV2Vz, where the p's are primes and Pi<P2<P3- He^^® proved that the 
only P3 = Pi“P2P3P4, Pi<P2<P3<P4, is P3^^^ = 2^3.11.31. 

A. Cunningham^considered Pm of the form 2'^“^(2®~-l)P, where F is 
to be suitably determined. There exists at least one such Pm for every q 
up to 39, except 33, 35, 36, and one for 5 = 45, 51, 62. Of the 85 Pm found, 
the only one published is the largest one, viz., for g = 62, giving Pe^®^ with 

P = 3WlM3-19223-59-71-79-127-157-379-75743331-3033169; 

while none have m>6, and for ?n = 3 at most one has a given q. He found 
in 1902 (but did not publish) the two Pt — 2^^{2'^'^ — 1)F, where 

P = C*19n27 or C-19n51-911, 
C = 3^^-53*7®-lM3-17-23-31-3741 43-61*89-97*193442151. 

R. D. CarmichaeP^® has shown that there exists no odd Pm with only 
three distinct prime factors; that 2^3*5 and 2^3-7 are the only Pm with only 

320Bull. Bibl. e Storia Mat. e Fis., 10, 1877, 286. In 2'^3-5-7, listed as a P4, 3 is a misprint for 3*. 
«iLucas, Th6orie des Nombres, 1, Paris, 1891, 380. Here the factor 11’ 13’ of Fermat’s 

is given erroneously as 11*13^, while the P6^0 of Descartes is attributed to Fermat. 
’22Questions d’Alg^bre, 2d ed., 1878, p. 490, Ex. 24. 
’’’Annals of Math., (2), 2, 1900-1, 103-4. 
”*Aiinals of Math., (2), 2, 1900-1, 172-4. 
’’’Annals of Math., (2), 3, 1901-2, 161-3. 
’’•British Association Reports, 1902, 528-9. 
’’•American Math. Monthly, 13, Feb., 1906, 35-36. 
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three distinct prime factors that those with only four distinct prime fac¬ 
tors are^° the of St. Croix®°® and the of Descartes and that the 
even Pm with distinct prime factors are Pz^^K of Des¬ 
cartes^®®' and of Mersenne.®^^ 

CarmichaeP®^® stated and J. Westlund proved that if n>4, no P^ has 
only n distinct prime factors. 

Carmichaers®®^ table of multiply perfect numbers contains the misprint 
1 for the final digit 0 of Descartes' P^^^\ and the erroneous entry 919636480 
in place of its half, viz., P^^^^ of Merseime.®^^ The only new Pm is 

=2^W72lM3-17-19-31*43-257. 

All P„i<10® were determined; only known ones were found. 
Carmichael®®® gave an erroneous P5 and the new P4: 

p^(i4) ^2'"327213*1923M27451, 
P^(i6)^2253®5219*31-683-2731-8191, 
p^m ^ 2253^5-19*23* 137-547*683*1093‘2731 -8191. 

Carmichael and T. E. Mason®®^ gave a table which includes the above 
listed 10 P2, 6 P3,16 P4, 8 P5, 7 Pq, together with 204 new multiply perfect 
numbers P* (i=3,..7). Of the latter, 29 are of multiplicity 7, each 
*having a very large number of prime factors. No P7 had been previously 
published. 

[As a generalization, consider numbers n the sum of the ^th powers of 
whose divisors <n is a multiple of n. For example, n = 2p, where p is a 
prime 8/i±3 and k is such that 2*-M is divisible by p; cases are p=3, 
jt = l; p = 5, fc=2; p = ll, /b = 5; p = 13, A; = 6.] 

Amicable Numbers. 

Two numbers are called amicable* if each equals the sum of the aliquot 
divisors of the other. 

According to lamblichus^ (pp. 47-48), ^‘certain men steeped in mistaken 
opinion thought that the perfect number was called love by the Pythago¬ 
reans on account of the union of different elements and affinity which exists 
in it; for they call certain other numbers, on the contrary, amicable num¬ 
bers, adopting virtues and social qualities to numbers, as 284 and 220, for 
the parts of each have the power to generate the other, according to the rule 
of friendship, as Pythagoras affirmed. When asked what is a friend, he 
replied, ‘another I,' which is shown in these numbers. Aristotle so defined 
a friend in his Ethics." 

»”Annalsof Math,, (2), 7, 1905-6, 153; 8,1906-7, 49-56; 9,1907-8, 180, for a simpler proof that 
there is no Pz = c> 1. 

**®Annal8 of Math., (2), 8, 1906-7, 149-158. 
Amer. Math. Soc., 15,1908-9, pp. 7-8. Fr. transl., Sphinx-Oedipe, Nancy, 5,1910,164-5. 

“i®Amer. Math. Monthly, 13, 1906, 165. 
w^BuU. Amer. Math. Soc., 13,1906-7, 383-6. Fr. transl., Sphinx-Oedipe, Nancy, 5, 1910,161-4. 
”®Sphinx-Oedipe, Nancy, 5, 1910, 166. 
*wProc. Indiana Acad. Sc., 1911, 257-270. 
‘Amiable, agreeable, befreundete, verwandte. 
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In the ninth century the Arab Th4bit ben Korrah^® (prop. 10) noted that 
and 2"s are amicable numbers if 

(1) /i=3-2^~l, < = 3-2”“i~l, s=9-22^-'-l 

are primes > 2, literally, if 

/i = 2!+2”, t = z-2^-\ 2 = 1+2+.. .+2”, s = (2^+^+2"-'2)2^+^-L 

The term used for amicable numbers was se invicem amantes. In the article 
in which F. Woepcke^® translated this Arabic manuscript into French, he 
noted that a definition of these numbers, called congeneres, occurs in the 
51st treatise (on arithmetic) of Ikhovan Algaf^, manuscript 1105, anciens 
fonds arabes, p. 15, of the National Library of Paris. 

Among Jacob’s presents to Esau were 200 she-goats and 20 he-goats, 
200 ewes and 20 rams (Genesis, XXXII, 14). Abraham AzulaP^ (1570- 
1643), in commenting on this passage from the Bible, remarked that he had 
found written in the name of Rau Nachshon (ninth century A. D.): Our 
ancestor Jacob prepared his present in a wise way. This number 220 (of 
goats) is a hidden secret, being one of a pair of numbers such that the parts 
of it are equal to the other one 284, and conversely. And Jacob had this in 
mind; this has been tried by the ancients in securing the love of kings and 
dignatories. 

Ibn Khaldoun^®*^ related '+hat persons who have concerned themselves 
with talismans affirm that the amicable numbers 220 and 284 have an 
influence to establish a union or close friendship between two individuals. 
To this end a theme is prepared for each individual, one during the ascend¬ 
ency of Venus, when that planet is in its exaltation and presents to the 
moon an aspect of love or benevolence; for the second theme the ascendency 
should be in the seventh. On each of these themes is written one of the 
specified numbers, the greater (or that with the greater sum of its aliquot 
parts?) being attributed to the person whose friendship is sought.” 

The Arab El Madschriti,^®^ or el-Magriti, (tl007) of Madrid related that 
he had himself put to the test the erotic effect of '‘giving any one the 
smaller number 220 to eat, and himself eating the larger number 284.” 

Ibn el-Hasan^^^'" (11320) wrote several works, including the “Memory 
of Friends,” on the explanation of amicable numbers. 

Ben Kalonymos^^^^ discussed amicable numbers in 1320 in a work 
written for Robert of Anjou, a fragment of which is in Munich (Hebr. MS. 
290, f. 60). A knowledge of amicable numbers was considered necessary 
by Jochanan Allemanno (fifteenth century) to determine whether an 
aspect of the planets was friendly or not. 

s-iaBaale Brith Abraham [Commentary on the Bible], Wilna, 1873, 22. Quotation supplied by 
Mr. Ginsburg. 

3®®Prol6gom6nc8 hist. d’Ibn Khaldoun, French transl. by De Slane, Notices et Extraits des 
Manuscrits de la Bibl. Imp6riale, Paris, 21,1, 1868, 178-9. 

“^Manuscript Ma^iti; Steinechneider, Zur pseudoepigraphischen Literatur inbesondere der 
geheimcn Wissenschaften des Mittelalters, Berlin, 1862, p. 37 (cf. p. 41). 
Suter, Abh. Gesch. Math. Wiss., 10, 1900, 159, §389. 

“i^Hebr. Bibl., VII, 91. Steinschneider, Zeitschrift der Morgenlandiechen Ges., 24, 1870, 369. 
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Alkalacadi,®®^ a Spanish Arab (tl486), showed the method of finding the 
least amicable numbers 220, 284. 

Nicolas Chuquet^® in 14^ and de la Roche^® in 1538 cited the amicable 
numbers 220,284, de merueilleuse familiarite lung auec laultre.’^ In 1553, 
Michael StifeP^ (folios 26v-27v) mentioned only this pair of amicable num¬ 
bers. The same is true of Cardan,of Peter Bungus^^ (Mysticae numeronim 
signif., 1585, 105), and of Tartaglia.^®^ Reference may be made also to 
Schwenter.®^ 

In 1634 Mersenne^'’^ (p. 212) remarked that “220 and 284 can signify 
the perfect friendship of two persons since the sum of the aliquot parts of 
220 is 284 and conversely, as if these two numbers were only the same thing.’' 

According to Mersenne's^®^ statement in 1636, Fermat^®^ found the 
second pair of amicable numbers 

17296 - 2^-23-47, 18416=2^-1151, 

and communicated to Mersenne^^^® the general rule: Begin with the geo¬ 
metric progression 2, 4, 8,..., write the prod- 
nets by 3 in the line below; subtract 1 from 5 11 23 47 
the products and enter in the top row. The 2 4 8 16 
bottom row is 6-12—1, 12-24—1,.. .When a 6 12 24 48 
number of the last row is a prime (as 71) and 71 287 1151 
the one (11) above it in the top row is a prime, 
and the one (5) preceding that is also a prime, then 71.4=284, 5-11-4 = 220 
are amicable. Similarly for 

1151-16 = 18416, 2347-16 = 17296, 

and so to infinity. [The rule leads to the pair 2”/ii5, 2”s, where h, t, $ are 
given by (1).] 

Descartes^®® gave the rule: Take (2 or) any power of 2 such that its 
triple less 1, its sextuple less 1, and the 18-fold of its square less 1 are all 
primes;* the product of the last prime by the double of the assumed power 
of 2 is one of a pair of amicable numbers. Starting with the powers 2, 8, 64, 
we get 284, 18416, 9437056, whose aliquot parts make 220, etc. Thus the 
third pair is 

9363584=2^-191-383, 9437056 = 2^-73727. 

Descartes^®® stated that Fermat's rule agrees exactly with his own. 
Although we saw that Mersenne quoted in 1637 the rule in Fermat's 

form and expressly attributed it to Fermat, curiously enough Mersenne^ 
gave in 1639 the rule in Descartes' form, attributing it to “un excellent 
G^ometre" (meaning without doubt Descartes, according to C. Henryk®’), 

“’Manuscript in Bibliothfeque Nationale Paris, a commentary on the arithmetic Talkhys of 
Ibn Albanna (13th cent.). Cf. E. Lucas, L’arithm4tique amusante, Paris, 1895, p. 64. 

“*Quesiti et Inventione, 1554, fol. 98 v. 
»“Oeuvres de Fermat, 2,1894, p. 72, letter to Roberval, Sept. 22,1636: p. 208, letter to Frenicle, 

Oct. 18, 1640. 
•“Oeuvres de Descartes, 2,1898, 93-94, letter to Mersenne, Mar. 31,1638. 
•Evidently the numbers (1) if the initial power of 2 be 2’*“^ 

“•Oeuvres de Descartes, 2, 1898, 148, letter to Mersenne, May 27, 1638. 
“’Bull. Bibl. Storia Sc. Mat. e Fis., 12, 1879, 523. 
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and derived as did Descartes the first three pairs of amicable numbers from 
2, 8, 64. We shall see that various later writers attributed the rule to 
Descartes. 

Mersenne®° again in 1644 gave the above three pairs of amicable num¬ 
bers, the misprints in boty^® of the numbers of the third pair being noticed 
at the end of his book, and stated there are others innumerable. 

Mersenne®^ in 1647 gave without citation of his source the rule in the 
form 2-2”^ where / = 3-2”—1, s-ht+h+t are primes 
[as in (1)]. 

Frans van Schooten,^®^ the younger, showed how to find amicable 
numbers by indeterminate analysis. Consider the pair 4x, 4i/z [x, y, z odd 
primes]; then 

7 -h 3x=4yz, 7+7y+7z+3yz=4:X. 

Eliminating x, we get 2=3+16/(2/—3). The case 2/ = 5 gives 2= 11, x-71, 
yielding 284, 220. He proved that there are none of the type 2x, 2yZj or 
8x, 82/2, and argued that no pair is smaller than 284, 220. For 16x, 16^2, 
he found 2= 15+256/(2/ —15), which for 2/=47 yields the second known 
pair. There are none of the type 32x, 32yz, or type 64x, 642/2. For 128x, 
1282/2, he got 2= 127+16384/(2/ —127), which for 2/= 191 yields the third 
known pair. Finally, he quoted the rule of Descartes. 

W. Leyboum®® stated in 1667 that ^+here is a fine harmony between 
these two numbers 220 and 284, that the aliquot parts of the one do make 
up the other... and this harmony is not to be found in many other numbers.” 

In 1696, Ozanam^^ gave in great detail the derivation of the three known 
pairs of amiable” numbers by the rule as stated by Descartes, whose name 
was not cited. Nothing was added in the later editions."^^’ 

Paul Halcke^®® gave Stifers^^ rule, as expressed by Descartes.^®® 
E. Stone®®^ quoted Descartes^ rule in the incorrect form that 2^"pg and 

3*2^p are amicable if p = 3*2'*—1 and = 6-2”—I are primes. 
Leonard Euleri®^ remarked that Descartes and van Schooten found only 

three pairs of amicable numbers, and gave, without details, a list of 30 pairs, 
all included in the later paper by Euler 

G. W. Kraft®®® considered amicable numbers of the type APQ, AR, 
where P, Q, E are primes not dividing A, Let a be the sum of all the divi¬ 
sors of +. Then 

j P+1 = (P+1)(Q+1), {R+l)a = APQ-\-AR. 
I Assuming prime values of P and Q such that the resulting R is prime, he 
sought a number A for which A /a has the derived value. For P = 3, Q = 11, 

*“Not noticed in the correction (left in doubt) in Oeuvres de Fermat, 4, 1912, p. 250 (on pp. 
66-7). One error is noted in Broscius'^, Apologia, 1652, p. 154. 

^•Exercitationum mathematicarum libri quinque, Ludg. Batav., 1657, liber V: sectiones triginta 
miscellaneas, sect. 9, 419-425. Quoted by J. Landen.®® 

**®Deliciae Mathematicae, oder Math. Sinnen-Confect, Hamburg, 1719, 197-9. 
••^New Mathematical Dictionary, 1743 (under amicable). 
*“De numeris amicabiMbus, Nova Acta Eniditonim, Lipsiae, 1747, 267-9; Comm. Arith. Coll., 

II, 1849, 637-8. 
•“Novi Comm. Ac. Petrop., 2, 1751, ad annum 1749, Mem., 100-18. 
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then A:a = 3:5; he took A=3J5, 3^J5, but found no solution. For 
p = 5, Q = 41, we have JR = 251, 38A = 21a; set A = 49J5, whence 3-576 = 
38-7j5, where 6 is the sum of the divisors of B; set J5 = 9C, whence C:c = 
13:14, C = 13, yielding the amicable numbers 5-4124, 251A, where 
A = 3^-7^13 = 5733 [the pair VII in Euler’s^®^ hst and (7) in the table below]. 
Again, to make A/a = 3/8, set A-ZB, whence a = 46 and the condition is 
6 = 2J5, whence B is a perfect number prime to 3. Using B = 28, we get 
A = 84. For use in such questions, Kraft gave a table of the sum of the 
divisors of each number^ 150. He quoted the rule of Descartes. 

L. Euler^^^ obtained, in addition to two special pairs, 62 pairs [including 
two false pairs] of amicable numbers of the type am, an, in which the 

common factor a is relatively prime to both m and n. He wrote ^m for 

the sum of all the divisors of m. The conditions are therefore 

J'a*J'm = a(m+n). 

If m and n are both primes, then m—n and we have a repeated perfect 
number. Euler treated five problems. 

(1) Euler’s problem 1 is to find amicable numbers apg, ar, where p, q, r, 
are distinct primes not dividing the given number a. From the first con¬ 
dition we have r — xy — 1, where x — p+l,y=q+l. From the second, 

xyj'a = a{2xy—x-’y). 

Let a/(2a—j'a) equal 6/c, a fraction in its lowest terms. Then 

y = hx/{cx — h), (ca;~6)(c2/—6) = 6^ 

Thus X and y are to be found by expressing 6^ as a product of two factors, 
increasing each by 6, and dividing the results by c. 

(11) First, take a = 2”. Then 6 = 2"^, c = l, x, 2/ = 2”**+2”. Let n—A: = m. 
Then 

P = 2’”(22*+2*) -1, g = 2”‘(l+2*) ~ 1, r = 2^^{2^^+^+2^^+2^) -1. 

When these three are primes, 2”^'^^pq and are amicable. Euler noted 
that the rule communicated by Descartes to van Schooten is obtained by 
taking /:= 1, and stated that 1, 3, 6 are the only values ^8 of m which yield 
amicable numbers (above^®^). For k-2 or 4, Euler remarked that r is 
divisible by 3; for A: = 3, m<6, and for k = 5, m^2, p, q, ot r is composite. 

(12) Take a = 27‘, where/=2”+^+e is a prime. Then 2a-j^a = e-|-L 

If eA-1 divides a, we have c = l. Set e+l = 2^ n = mA-k. Then 

/=2^(2"‘+'+1)~1, a = 2”^+Y, h = 6^= (a:-6)(y-6). 

For fc=l, /=2”*+^+l is to be a prime, whence m*f2 is a power of 2. 
If m = 0, 6=/=5, and either x = 2/, p = q; or x,y — 6,Z0; p,q = 5, 29, whereas 
p and q are to be distinct and prime to 10. If m = 2, /=17, 68^ is to be 
resolved into distinct even factors; in the four resulting cases, p, q, r are 

numoris amicabilibus, Opuscula varii argumenti, 2, 1750, 23-107, Berlin; Comm. Arith., 1, 
1849, 102-145. French transl. in Sphinx-Oedipe, Nancy, 1, 1906-7, Supplement 
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not all prime. In the next case m=6, /=257, Euler examined only the 
case* ac—6 = 2^*257, finding q composite. 

For A: = 2, Euler excluded m==l, 3 [w=4 is easily excluded]. 
(13) For k'^n in (I2), 0 = 2"*, where m = k—n. Then 

b = 2"+^+2”**^” — 1 =/ 

must be a prime. Thus we must take as the factors of 

2^y-h = h^, 

whence x=2^4-2”'^^'"”’, y = hx. If m = 1, one of 

P = 2”+^-1 

has the factor 3 and yet must be a prime; hence n = l, g = 27. If w = 2, 
Euler treated the cases ng5 and found (for n = 2) the pair (4) of the table. 
[For 6^n^l7, / or p is composite.] For m odd and >1, / or p has the 
factor 3. For m=4, 17, no solution results. 

(14) For a = 2”(^—where the last two factors are prime, set 

d=2a-Ja. Then 

Euler treated the cases n^3, d=4, 8, 16, finding only the pair (9). 
(15) Special odd values of a led (§§56“65) to seven pairs (5)-(8), 

(11)-(13). The cases a = 3^-5, 3^‘7^-13*19 were unfruitful. 
(2) Euler’s problem 2 is to find amicable numbers apq, ars, where p, g, 

r, s are distinct primes not dividing the given number a. Since fp’fq 

=Jr-Js, we may set 

p = ax~l, q=l3y-l, r=0x-l, s = ay — l. 

We set Ja:a = 26—c:6, where h and c are relatively prime. The second 

condition Ja-Jpg = a(pg+r5) gives 

cajSxy = 6 (a+^3) (x+2/) 26. 

Multiply it by ca/3. Then 

[capx — 6 (a+/3) ] [ca^y —■ 6 (a+/3) ] = 6^ (a+—26ca/3. 

Given a, a and hence 6, c, we are to express the second member as a prod¬ 
uct of two factors and then find x, y. 

For a=l, i9 = 3, a = 2”, Euler obtained the pairs (a), (28). For a = 2, 
/3==3, a = 3=^-5-13, he got (32); for a^l, /3==4, a = 3^-5, (30). The ratio 
may be more complex, as 5 ;21 or 1:102, in (7). As noted by K. Hunrath,^*^^ 
the numbers (7) are not amicable. Nor are the ratios as given, although 
these ratios result if we replace 8563 by 8567 = 13*659. This false pair 
occurs as XIII in Euler’s^*^^ list. 

(3) Problem 3 is derived from problem 2 by replacing s by a number / 

not necessarily prime. Let h be the greatest common divisor of j7=hg 

and p + l = hx. Then r-f 1 = 0:2/, g-f 1 = gg. Also 

ghxyfa=jiafr) =a{pq+fr)=a\{hx-l){gy-l) +/(xj/ -1)}. 

*A11 the regaining cases are readily excluded. 
“^Bibliotheca Math., t3), 10, 1909-10, 80-81. 
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Multiply by h/a and replace hj^a by 2ab—ac [see case (1)]. Thus 

exy—hhx—hgy = h(f-‘l), e^hf—hgh+cgh. 

Thus be(/—1) is to be expressed as the product PQ of two factors 
and they are to be equated to ex—hg, ey'-hh. The case a = 2 is unfruitful. 

(31) Let a = 4. Then b=4, c=l, e=4f--3^/i. The case/= 3 is excluded 
since it gives e = 0. For/=5, ^ = 2, /i==3, we again get (a) and also (j3). 
For /=5, g = l, h = 6, we get only the same two pairs. For a prime 7, 
no new solutions are found. For/=5*13, (51) results. 

(32) Let a = 8, whence b = 8, c=l. The cases/= 11, 13 are fruitless, 
while/= 17 yields (16). The least composite / yielding solutions is 11-23, 
giving (44), (45), (46). This fruitful case led Euler to the more convenient 
notations (§88) M = N=gQ, L — PQ. The problem is now to resolve 

L J/ into two factors. My N, such that 

M+bff ^ 
3 = 

N+hff ^ 

e 

are integers and primes, while in r-fl = (p+l)(?+l)///? r is a prime. 

(83) Let a = 16. For /=17, we obtain the pairs (21), (22); for/=19, 
(23); for/=23, (17), (19), (20); for/=47, (18); for/= 17-167, (49). Cases 
/=31, 17-151 are fruitless [the last since 129503 has the factor 11, not 
noticed by Euler]. 

(84) For a = 3^-5 or 3^-7-13, b = 9, c = 2; the first a with/=7 yields (30). 
(4) Problem 4 relates to amicable numbers agpq, ahr, where p, g, r are 

primes. Eventually he took also g and h as primes. We may then set 
h+l^kn. For m = l, n = 3, a = 4 or 8, no amicables are found. 

For m=3, n = l, the cases a = 10, A; = 8 and a = 3^-5, k = S, yield (38), (55). 
(5) Euler’s final problem 5 is of a new type. He discussed amicable 

numbers zap, zhq, where a and h are given numbers, p and q are unknown 
primes, while z is unknown but relatively prime to a, b, p, q. Set 

fa-.fb =m:n,wheremandnare relatively prime. Since (p-f l)Ja= (g+1)^5, 

we may set p+1 =nx, q+l—mx. The usual second condition gives 

nxfa'fz = za{nx—l)+zh(mx'-l), 7^ =-- 
(na-^mh)x — a — h 

Let the latter fraction in its lowest terms be r/s. Then z=kr, jz = ks. 

Since f{kr)'^kj'r, we have Hence we have the useful theorem: 

if z:Jz=r':s', then r' and s' have a common factor >1. 

(51) The unfruitful case a = 3, b = l, was treated like the next. 

(52) Let a = 5, 5=1, whence w = 6, n = l, z:jz-Qx:llx—6. By the 

theorem in (5), x must be divisible by 2 or 3. Euler treated the cases 
a; = 3(3^+l), x=2(2^4* 1). But this classification is both incomplete and 
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overlapping. Since p-x — l is to be prime, x is even (since a:=3 makes z 

divisible by p = 2). Hencea;=2P,2:J^2=6P:llP—3. By tbe theorem in (5), 

6P and 1 IP—3 have a common factor 2 or 3, so that P is either odd or divis¬ 
ible by 6. For P = 6?, the ratio is that of 126 to 221—1, which as before must 

have the common factor 3, whence l=St+l. Then z:jz=^4{3t+l):22t+7, 

a ratio of relatively prime numbers, whence 22i-|-7^ J4(3f+1), and 

hence t=2k, /c=0 or A;>3. For A;=0, we obtain the pair 220, 284. 
The next value >3 of k for which p=x—l and g=6x—1 are primes is 
k=Q, giving p=443, g=2663, numbers much larger than those in the 

(unnecessary) cases treated by Euler. Then 2:J^2=:4*37:271; set 2=37*d, 

d not divisible by 37; the cases e = 1,2, 3 are excluded by the theorem in (5). 
For the remaining case P odd, P=2Q+1, Euler treated those values ^ 100 
of Q, and also Q=244, for which p and q are primes and obtained the pair 
in (I3), two pairs in (I5), and (14), (15). 

(53) Euler treated in §§ 112-7 various sets a, 6, and obtained (a) and nine 
new pairs given in the table. 

In the following table of the 64 pairs of amicable numbers obtained by 
Euler, the numbering of any pair is the same as in Euler^s list, but the pairs 
have been rearranged so that it becomes easy to decide if any proposed 
pair is one of Euler^s. As noted by F. Eudio,^®^*' (37) contained the mis¬ 
print 3^ for 3^, while (7) and (34) are erroneous, 220499 being composite 
(311*709); he checked that all other entries are correct. 

(39)2.5{y.|lf 
/OQN 0 e/7*60659 
(38) 2-5|23.29.673 (1) (®7) 

(4) (a) 
^ 117-43 

(29) 2..u{17:2^ 

(9) 2»-13.17{3|9|» (46) 2 1647-719 
(44) 24^1*23-2543 

^ 1383-1907 

^ 1191*449 
93/n-59-173 

{46) z 147.2609 ^ 131-11807 (18) 2’{i:59 

™ r2’.l9-41 
(60) 126.199 

(f,.. /2M1-467 
\2»-19-233 (^2)«j[i/7r 

(21) 2‘{^g®3g3 
O4/17-10303 

{ZZ) z |i67.iio3 ^ 1149-191 

(false) (2) 2‘{??5f (50) 2 11563.7103 

(20) 2‘{»% (19) 2*{23;^79 (’17) 
^153-607 

(36) 2*-67{|72y2411 

(18) 2‘{S79 ^ \227-2Ul 
os/^3* 10569 

(26) 2 I79.7127 (24) 

(27) 
... 27/191-383 mo-v 9g/383-9203 

{ZH) z 11151.3067 

(37) 
(5) 3»-7-13{3;J7 (7) 3>-7M3{|5Y 

(52)3«.7.13{®3\7gl^\87 

(15) 3“-7-13-4M63|||g; (14) 3»-7»43-97|^j7^3 (10)3>-519-37{^j^ 

(35) 3=-5-19{^7227 fQ\ OJ C 7/53*1889 
(8) 3»-5-7|j62059 (6) 3>-513(^g'8 

’“''Bibliotheca Math., (3), 14, 1915, 351-4. 
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o* Cl0/11*199 
(31) 3**5*13|29.79 

(33) 3>-5-13-19J|g^.^ 

(41)3*-7-13-23()J;lf^®’’ 

(30) 

(11) 3<-5-ll{^^« 

(53)3>-7’-13-53{^“ 

/{»4\ 01 cj/11'59‘179 (54) 3*-5>|j7,i9.359 

(32)3>S.13{g;|[ 

/'OA^ QS *78 IQ 1 n/11’220499 (34)3 7 •13-19|g9.29399 

(55) 

(56) 3<.7.11».19{gg7^| 

(58)3*-7>-13-19(|™ 

(13) 3‘-5-13.19{f^;®9®9® 

(12)3*-7>.11.13K1 

(42)3^-5-23(ll:i99367 

(57)3‘-7-11M9(“9®^®|7 

(59)3‘-7>-13.19{ff9®|59y 

Euler^s final list of 61 pairs did not include the pairs a, jS, 7, although he 
had obtained a four times in the body of his paper, viz., in (2), (3i), (53); 
P twice in (3i); 7 in (2). Moreover, these three unlisted pairs occur as 
VIII, IX, and XIII among the 30 pairs in Euler’s^earlier list, a fact noted 
on p. XXVI and p. LVIII of the Preface by P. H. Fuss and N. Fuss to 
Euler’s Comm. Arith. Coll., who failed to observe that these three pairs 
occur in the text of Euler’s present paper. Nor did these editors note 
that the fourth mentioned case of divergence between the two lists is due 
merely to the misprint^®^® of 57 for 47 in (43) of the present list, so that 
the correctly printed pair XXVIII of the list of 30 is really this (43) and 
not a new pair, as supposed by them. 

From the fact that Euler obtained in his posthumous tract®*^ on amicable 
numbers the pairs a, jS (once on p. 631 and again on p. 633 and finally on 
p. 635), the editors inferred, p. LXXIXI of the Preface, that the tract differs 
in analysis from the long paper just discussed. But no new pairs are found, 
while the cases treated on pp. 631-2 are merely problems 1 and 2 of Euler’s 
precediQg paper. It is different with p. 634, where Euler started with two 
numbers like 71 and 5*11 which, by his table, have the same sum, 72, of 
divisors, and required a number a relatively prime to them such that 71a 

and 55a are amicable. The single condition is 72ja = (71+55)a, whence 

Ja:a=7:4. Thus a has the factor 4. If a = 46, where 6 is odd, then 

j"6=b = 1, and the pair 284, 220 results. The case a = 86 is impossible. This 

method was used in a special way by Kraft^®^ who limited the numbers 
from which one starts to a prime and a product of two primes. 

In the Encyclopedic Sc. Math., I, 3i, p. 59, note 320, it is stated that this 
posthumous tract contains four pairs not in Euler’s list of 61, two pairs being 
those of Fermat^^^ and Descartes.^®^ But these were listed as (2) and (3) 
by Euler and were obtained by him in case (li) and attributed to Descartes. 

E, Waring^®^ noted that 2"x, 2"'yz are amicable if 

2 = 2^-1 + 
2/-2”+1 

where x, y, z are primes and ^-2^+1 divides 2^”. He cited the first two 
such pairs of amicable numbers. 

Enestrom, Bibliotheca Math., (3), 9, 1909, 263. 
»«®Meditationes algebraicae, 1770, 201; ed. 3, 1782, 342-3. 
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The first three pairs were given in an anonymous work.^®® 
In 1796, J. P. Griison^^o (p. 87) gave the usual rule (1) leading to the 

three first known amicable pairs (verwandte Zahlen). 
A. M. Legendre^®^ attributed the rule (1) to Descartes. 
G. S. KliigeP®® gave a process leading to the choice of P and Q, left 

arbitrary by Kraft.^®^ We have A:a-R-{-l:PQ-{-R—2R—P—Q. Thus 
P+Q= \R{2A-a)~-a\/Ay while PQ is given by Kraft’s second equation. 
Hence P and Q are the roots of a quadratic equation. For example, if 
A=4, then __ 

8P, 8Q=P~7=»= VP^-62P-63. 
The positive root of 62a;—63 = 0 lies between 60 and 61. Thus we 
try primes ^ 61 for P, such that P—7 is divisible by 8. The first available 
P is 71, giving P = ll, Q = 5 and the amicable pair 220, 284. In general, 
the quantity a^P^+2/3P+7 under the radical sign can be made equal to the 
square of aP+p (p arbitrary) by choice of P. 

John Gough^®® considered amicable numbers ax, ayz, where x, y, z are 
distinct primes not dividing a. Let q be the sum of the aliquot divisors 
of a. Then 

a-\-q~^qx=^ayZy x+1 = (y+l) (2+1). 

If g^a/4, the first gives ayz< (l+x)a/4, while 2y‘2z>x+l by the second, 
Thus q>a/4:. Let a = r”, where r is a prime > 1. Then g = (a — 1)/(r — 1), 
which with q>a/4: implies a(5—r)>4, r = 2 or 3. He proved that r^Z. 
whence r = 2, the case treated by van Schooten.^®^ 

J. Struve^®® cited his Osterprogramm, 1815, on amicable numbers. 
A. M. Legendre^"^® discussed the amicable numbers of the type (D of 

EuleP®^ (with Euler’s w, replaced by p, ju). Legendre noted that 
r = 2^’”‘^*(2*+1)^ — 1 is of the form 5^ — 1 and hence composite, if k is even; 
also that, if ^ = 3, p = 9-2’’'‘^^ —1, ^ = 9-2”*—1, one of which is of the form 

— 1. He considered the new case k = 7 and found for m = 1 that p = 33023, 
g = 257, r = 8520191, stating that if r be a prime we have the amicable num¬ 
bers 2®pg, 2®r. This is in fact the case.®"^^ For /c = l, we have the ancient 
rule (1); he proved that for n^l5 it gives only the known three pairs of 
amicable numbers. 

PaganinP"^^, at age 16, announced the amicable numbers 1184 = 2®.37, 
1210 = 2.5.11^ not in the list by EuleP®^ but gave no indication of the 
method of discovery. 

®®®Encyclop6die nnSihodique.. .Amusemens des Sciences Math, et Phys., nouv. 6d., Padoue, 
1793, I, 116. Cf. Les amusemens math., Lille, 1749, 315. 

*®^Th6orie des nombpcs, 1798, 463. 
»«8Math. Worterbuch, 1, 1803, 246-252 [5, 1831, 55]. 
*®“New Scries of the Math. Repository (ed., Th. Leyboum), vol. 2, pt. 2, 1807, 34-39. He cited 

Hutton’s Math. Diet., article Amicable Numbers, taken from van Schooten^®®. 
»70Th6oric des nombres, ed. 3, 1830, II, §472, p. 150. German transl. by H. Maser, Leipzig, 

1893, II, p. 145. 
®^iTchebychef, Jour, de Math., 16, 1851, 275; Werke, 1, 90. T. Pepin, Atti Acc. Pont. Nuovi 

Lincei, 48, 1889, 152-6. Kraitchik, Sphinx-Oedipe, 6, 1911, 92. Also by Lehmer’s Fac¬ 
tor Table or Table of Primes. 

Nicold 1. Paganini, Atti della R. Accad. Sc. Torino, 2,1866-7, 362. Cf. Cremona’s Ital. 
transl. of Baltzer’s Mathematik. pt. III. 
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P. Seelhoff^^^ treated Euler's^®^ problems 1 and 2 by Euler’s methods 
(though the contrary is implied), and gave about 20 pairs of amicable 
numbers due to Euler, with due credit for only three pairs. The only new 
pairs (pp. 79, 84, 89) are 

0272-1 <> IQ 90/83*1931 96/139*863 
6 7 ld*19*23|^g2287 ^ 1167*719. 

E. Catalan^^^ stated empiiic^Uy that if Ui is the sum of the divisors 
<n of n, and 712 is the sum of the divisors <ni of rii, etc., then n, rii, 712,... 
have a limit X, where X is unity or a perfect number. 

J. Perrott®’^® [Perott] noted that there is no limit forn = 220, since 

ni = n3= ... =284, 712=%= ... =220. 

H. LeLasseur^^® found that for n< 35 the numbers (1) are all odd primes, 
and hence give amicable numbers, only when n=2, 4, 7. 

Josef Bezdicek^^'^' gave a translation into Bohemian of Euler,^®^ without 
credit to Euler, and a table of 65 pairs of amicable numbers. 

Aug. Haas^^® proved that, if M and N are amicable numbers, 

l/si+l/si=l, 
771 71 

where m and n range over all divisors of M and iV, respectively. For, 
2m=2)n=Af4-iV', so that 

771 M M ' n N N ' 

If M=i\r, AT is perfect and the result becomes that of Catalan. 
A. Cunningham®^® considered the sum s(n) of the divisors <71 of ti and 

wrote s®(n) for s-{s(n)i-, For most numbers, s*(n) = l when k is suffi¬ 
ciently large. There is a small class of perfect and amicable numbers, and 
a small class of numbers n (even when n<1000) for which s*(n) increases 
beyond the practical power of calculation [cf. Catalan®^^]. 

A. G6rardin®®° proved that the only pairs 2^*5x, 2^yz of amicable num¬ 
bers, where x, y, z are odd primes, are Euler’s (a), (/3); the only pairs 2^*23a:, 
2V2 are Euler’s (17), (19), (20). He cited the Exercices d’arithm6tique of 
Fitz-Patrick and Chevrel; also Dupuis’ Table de logarithmes, which gives 
24 pairs of amicable numbers. 

G^rardin®®^ proved that the only pair Sxy, Z2z is Euler’s (60). He made 
an incomplete examination of 16*53a;, 16yZj but found no new pairs. 

•’•Archiv Math. Phya., 70, 1884, 75-89. 
Soc. Math. France, 16, 1887-8, 129. Mathesis, 8, 1888, 130 
17, 1888-9, 165-6. 

>’‘Lncas, Th^orie des nombres, 1, 1891, 381. 
’"Casopis mat. a fys., Praze (Prag), 25, 1896, 129-142, 209-221. 

349-350. 
’’•Proc. London Math. Soc., 35, 1902-3, 40. 
’•“Mathesis, 6, 1906, 41-44. 
•“Sphinx-Oedipe, Nancy, 1906-7, 14-15, 53. 
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G6rardin^®^ proved that the three numbers (1) with n==m+2 are not all 
primes if 34< m S 60, the cases m = 38 and 53 not being decided. Replacing 
m by m+l and k by 2g+l in case (li) of Euler^®^, we get the pair 2”pg, 
2'‘r, where n=m+2gr+2, 

1, g = 2”*‘*’^P—l, 7- = 2^’”'^^‘^'^^P^—1, 

with P=2^^‘^^+1. For ^=0, we have the case (1) just mentioned; all 
values m^200 are excluded except m=38, 74, 98, 146, 149, 182, 185, 197. 
The case 9^=1 is excluded since y or 2 is a difference of two squares. For 
g-2j all values w^60 are excluded except m='29,34, 37,49. For ^ = 3, all 
values <100 are excluded except m=8, 15, 23, 92. 

0. Meissner,®^ using the notation of Cunningham,^^® noted that n and 
s(n) are amicable if s^(n)=n and raised the question of the existence of 
numbers n for which s\n)==n for A:^3, so that n, s(n),.. .,s*“^(n) would 
give amicable numbers of higher order. He asked if the repetition of the 
operation 5, a finite number (k) of times always leads to a prime, a perfect 
or amicable number; also if k increases with n to infinity. On these ques¬ 
tions, see Dickson^®® and Poulet.®®^ 

A. G6rardin®®^ stated that the only values n<200 for which the 
numbers (1) are all primes are the three known to Descartes. 

L. E. Dickson®®® obtained the two new pairs of amicable numbers 

2^.12959-50231, 2^.17.137.262079; 2^.10103.735263, 2^.17-137.2990783, 

by treating the type 16pg, 16-17.137r, where p, q, r are distinct odd primes. 
These are amicable if and only if 

p=m+9935, g=n+9935, r = 4(m+n) +88799, mn = 2^3^7.23*73. 

Although Euler®®^ mentioned this type (33) in §95, he made no discussion 
of it since r always exceeds the limit 100000 of the table of primes accessible 
to him. An examination of the 120 distinct cases led only to the above 
two amicable pairs. 

Dickson®®® proved that there exist only five pairs of amicable numbers 
in which the smaller number is <6233, viz., (1), (a), (^), (60) in Euler’s®®^ 
table, and Paganini^s®’^^ pair. In the notation of Cunningham,®^® the chain 
n, 5(n), s^(n),.. .is said to be of period k if s*(n) =n. The empirical theorem 
of Catalan®"^^ is stated in the corrected form that every non-periodic 
chain contains a prime and verified for a wide range of values of n. In 
particular, if n<6233, there is no chain of period 3, 4, 5, or 6. For k odd 
and >1, there is no chain arij, an2,..., anj^ of period k in which nj,. .Uk 
have no common factor and each % is prime to a> 1. 

382Sphinx-Oedipe, 1907-8, 49-56, 65-71; some details are inaccurate, but the results correct. 
•“Archiv Math. Phya., (3), 12, 1907, 199; Math.-Naturw. Blatter, 4, 1907, 86 (for fc*3). 
®*^A8Soc. frang. avanc. sc., 37, 1908, 36-48; I’interm^diaire des math., 1909, 104. 
®wAmer. Math. Monthly, 18, 1911, 109. 
®**Quart. Jour. Math., 44, 1913, 264-296. 
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P. Poulet®®^ discovered the chain of period five, 

n=12496=:2^*ll-71, s(n) =2^-19-47, s^Cn) = 2^-967, 
s^Cn) =23*1783, 

with 5®(n) =n; and noted that 14316 leads a chain of 28 terms. 

Generalizations op Amicable Numbers. 

Daniel Schwenter®^ noted in 1636 that 27 and 35 have the same sum of 
aliquot parts. Kraft^®^ noted in 1749 that this is true of the pairs 45, 3*29; 
39, 55; 93,145; and 45,13*19. In 1823, Thomas Taylor^®^ called two such 
numbers imperfectly amicable, citing the pairs 27, 35; 39, 55; 65, 77; 51, 
91; 95, 119; 69, 133; 115, 187; 87, 247. George Peacock^®® used the same 
term. 

E. B. Escott^®^ asked if there exist three or more numbers such that each 
equals the sum of the [aliquot] divisors of the others. 

A. G4rardin^°^ called numbers with the same sum of aliquot parts 
nombres associ^s, citing 6 and 25; 5*19, 7*17, and 11*13, and many more sets. 
An equivalent definition is that the n numbers be such that the product of 
n—1 by the sum of the aliquot divisors of any one of them shall equal the 
sum of the aliquot divisors of the remaining n—1 numbers. 

L. E. Dickson^®® defined an amicable triple to be three numbers such 
that the sum of the aliquot divisors of each equals the sum of the remaining 
two numbers. After developing a theory analogous to that by Euler®®^ for 
amicable numbers, Dickson obtained eight sets of amicable triples in which 
two of the numbers are equal, and two triples of distinct numbers: 

293*337a, 5*16561a, 99371a (a=2^.3*13), 
3*895, 11*295, 3595 (5=2^^*5*19*3M51). 

*”L’interm6<iiaire des math., 25, 1918, 100-1. 
^••Encyclopaedia Metropolitana, London, I, 1845, 422. 
••^L’interm6diaire des math., 6, 1899, 152. 
••»Sphinx-Oedipe, 1907-8, 81-83. 
•••Amer. Math. Monthly, 20, 1913, 84-92. 



CHAPTER 11. 

FORMULAS FOR THE NUMBER AND SUM OF DIVISORS. PROBLEMS OF 
FERMAT AND WALLIS. 

Formula for the Number of the Divisors of a Number. 

Cardan^ stated that a product P of k distinct primes has 1+2+2^+ • • 
+2*”^ aliquot parts (divisors <P). 

Michael StifeP proved this rule and found^ the number of divisors of 
2^3^5^P, where P=7*ll*13*17*19‘23‘29, by first noting that there are 
1+2+.. .+64 divisors <P of P according to Cardan’s rule and hence 
128 divisors of P. The factor 5^ gives rise to 128+128 more divisors, so 
that we now have 384 divisors. The factor 3^ gives 3.384 more, so that we 
have 1536. Then the factor 2^ gives 4.1536 more. 

Mersenne^ asked what number has 60 divisors; since 60 = 2*2-3*5, sub¬ 
tract unity from eaqh prime factor and use the remainders 1, 1, 2, 4 as 
exponents; thus 3^«2^‘7*5=5040 (so much lauded by Plato) has 60 divisors. 
It is no more difficult if a large number of aliquot parts is desired. 

I. Newton® found all the divisors of 60 by dividing it by 2, the quotient 
30 by 2, and the new quotient 15 by 3. Thus the prime divisors are 1, 2, 2, 
3, 5. Their products by twos give 4, 6, 10, 15. The products by threes 
give 12, 20, 30. The product of all is 60. The commentator J. Castillionei, 
of the 1761 edition, noted that the process proves that the number of all 
divisors of . .is (m+l)(n+l).. .if a, b,.. .are distinct primes. 

Frans van Schooten® devoted pp. 373-6 to proving that a product of k 
distinct primes has 2*--l aliquot parts and made a long problem (p. 379) 
of that to find the number of divisors of a given number. To find (pp. 
380-4) the numbers having 15 aliquot parts, he factored 15+1 in all ways 
and subtracted unity from each factor, obtaining ahcd, a^bc, a^b^, a^b, 
By comparing the arithmetically least numbers of these various types, he 
found (pp. 387-9) the least number having 15 aliquot parts. 

John Kersey^ cited the long rule of van Schooten to find the number of 
aliquot parts of a number and then gave the simple rule that ai^.. .a/" has 
(ci+l)... (6„+l) divisors in all if ai,,.., a„ are distinct primes. 

John Wallis® gave the last rule. To find a number with a prescribed 
number of divisors, factor the latter number in all possible ways; if the 

^Practica Arith. & Menaurandi, Milan, 1537; Opera, IV, 1663. 
>Arithmetica Integra, Norimbergae, 1544, lib. 1, fol. 101. 
“Stifel’a posthumous manuscript, fol. 12, preceding the printed text of Arith. Integra; cf. E. 

Hoppe, Mitt. Math. Gesell. Hamburg, 3, 1900, 413. 
^Cogitata Physico Math., II, Hydravlica Pnevmatica, Preface, No. 14, Paris, 1644. (Quoted 

by Winsheim, Novi Comm. Ac. Petrop., II, ad annum 1749, Mem., 68-99). Also letter 
from Mersenne to Torricello, June 24, 1644, Bull. Bibl. Storia Sc. Mat., 8, 1875, 414-5. 

•Arithmetica Universalis, ed. 1732, p. 37; ed. 1761,1, p. 61. De Inventione Divisorum. 
•Exercitationum Math., Lugd. Batav., 1657. 
’^The Elements of Algebra, London, vol. 1, 1673, p. 199. 
*A Treatise of Algebra, London, 1685, additional treatise, Ch. III. 
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factors are r, 5,..the required number is • •> where p, g,.. .are 
any distinct primes. When the number of divisors is odd, the number 
itself is a square, and conversely. The number of ways N=... can be 
expressed as a product of two factors is A;—J(a+l)(/3+l).. .or i+k, 
according as N is not or is a square. 

Jean Prestet^ noted that a product of k distinct primes has 2* divisors, 
while the nth power of a prime has n-fl divisors. The divisors of 
are the 12 divisors of their products by c and by c^, the general rule 
not being stated explicitly. 

Pierre R^mond de Montmort^® stated in words that the number of 
divisors of ai\ . .a/” is (ci+l).. .(e^+l) if the a’s are distinct primes. 

Abb6 Deidier^^ noted that a product of k distinct primes has 

divisors, treating the problem as one on combinations (but did not sum the 
series and find 2*). To find the number of divisors of 2^3^5^ he noted that 
five are powers of 2 (including unity). Since there are three divisors of 3®, 
multiply 5 by 3 and add 5, obtaining 20. In view of the two divisors of 
5^, multiply 20 by 2 and add 20. The answer is 60. 

E. Waring^^ proved that the number of divisors of a^h^.. .is (m+1) 
(n+1).. if a, . are distinct primes, and that the number is a square if 
the number of its divisors is odd. 

E, Lionnet^^ proved that if a, 6, c,.. .are relatively prime in pairs, the 
number of divisors of ahc.. .equals the product of the number of diyisors 
of a by the number for 6, etc. According as a number is a square o]| not, 
the number of its divisors is odd or even. 

T. L. Pujo^^ noted the property last mentioned. 
Emil Hain^® derived the last theorem from a"” = (<i... where ti,., 

denote the divisors of a. 
A. P. Minin^® determined the smallest integer with a given number of 

divisors. 
G. Fonten^^^ noted that, if 2*^3^.. (a^/3^ ... is the least 

number with a given number of divisors, then y+1 is a prime, and ju+l is 
a prime except for the least number 2^3 having eight divisors. 

Formula for the Sum of the Divisors of a Number. 

R. Descartes,^^ in a manuscript, doubtless of date 1638, noted that, if p 
is a prime, the sum of the aliquot parts of is (p” — l)/(p — 1). If 6 is the 

»Nouv. Elemens des Math., Paris, 1689, vol. 1, p. 149. 
^“Essay d’analyse sur les jeux de hazard, ed. 2, Paris, 1713, p. 55. Not in ed. 1, 1708. 
i^Suite de I’arithm^tique des g^om^tres, Paris, 1739, p. 311. 
“Medit. Algebr., 1770, 200; ed. 3, 1782, 341. 
”Nouv. Ann. Math., (2), 7, 1868, 68-72. 
i^Les Mondes, 27, 1872, 653-4. 
“Ajchiv Math. Phys., 55, 1873, 290-3. 
“Math. Soc. Moscow (in Russian), 11, 1883-4, 632. 
“Nouv. Ann. Math., (4), 2, 1902, 288; proof by Chalde, 3, 1903, 471-3. 

partibus aliquotis numerorum,” Opuscula Posthuma Phys. et Math., Amstelodami, 
1701, p. 5; Oeuvres de Descartes (ed. Tannery and Adams, 1897-1909), vol. 10, pp. 300-2. 



Chap. II] FORMULAS FOR NUMBER AND SUM OF DiVISORS. 53 

sum of the aliquot parts of a, the sum of the aliquot parts of ap is hp+a+h. 
If h is the sum of the aliquot parts of a and if x is prime to a, the sum of the 
aliquot parts of ax^ is 

a—6 

x—1 
[ = (6+a)(5:^)-ax»]. 

Here he 

B 

2-^ 

3 
13 

Descartes^^ stated a result which may be expressed by the formula 

(1) cr{nm) = <r{n)<j{m) (n, m relatively prime), 

where (r(n) is the sum of the divisors (including 1 and n) of n. 
solved n: <r(n) = 5:13. Thus n must be divisible by 5. Enter 5 
in column A and or (5) = 6 in column B. Then enter the factor 
2 in column A and (r(2) = 3 in column B. Having two threes 
in column B, we enter 9 in column A and (r(9) = 13 in B. Every 
number except 13 in column JB is in column A. Hence the 
product 5-2-9 = 90 is a solution n. Next, to solve n: cr{n) = 5:14, 
we enter also 13 in column A and 14 in B, and obtain the solu¬ 
tion 90-13. If n is a perfect number, 5n: (r(5n) = 5:12 and, if n5»^6, 15n: 
<T(15n) = 5:16. 

Descartes^ stated that he possessed a general rule [illustrated above] 
for finding numbers having any given ratio to the sum of their aliquot parts. 

Fermat^^ had treated the same problem. Replying to Mersenne^s 
remark that the sum of the aliquot parts of 360 bears to 360 the ratio 9 to 4, 
Fermat^® noted that 2016 has the same property. 

John Wallis^® noted that Frenicle knew formula (1). 
Wallis^’^ knew the formula 

(2) 
a—1 0—1 

Thus these formulae were known before 1685, the date set by Peano,^® who 
attributed them to Wallis.®^ 

G. W. Kraft^® noted that the method of Newton® shows that the sum of 
the divisors of a product of distinct primes P,..., S is (P-hl).. .(^+1). 
He gave formula (1) and also (2), a formula which Cantor®*^ stated had 
probably not earlier been in print. To find a number the sum of whose 
divisors is a square, Kraft took PA, where P is a prime not dividing A. 
If (r(A)=a, then (r(PA) = (P+l)a will be the square of (P+1)P if P = 

®2“De la fagon de trouver le nombree de parties aliquotes in ratione data/’ manuscript Fonds- 
frangais, nouv. acquisitions, No. 3280, ff. 156-7, Biblioth^que Nationale, Paris. Pub¬ 
lished by C. Henry, Bull. Bibl. Storia Sc. Mat. e Fis., 12, 1879, 713-5. 

“Oeuvres, 2, p. 149, letter to Mersenne, May 27, 1638. 
“Oeuvres de Fermat, 2, top of p. 73, letter to Roberval, Sept. 22, 1636. 
“Oeuvres, 2, 179, letter to Mersenne, Feb. 20, 1639. 
“Commercium Epistolicum, letter 32, April 13, 1658; French transl. in Oeuvres de Fermat, 3, 

653. 
“Commercium Epist., letter 23, March, 1658; Oeuvres de Fermat, 3, 615-7. 
“Formulaire Math., 3, Turin, 1901, 100-1. 
“Novi Comm. Ac. Petrop., 2, 1751, ad annum 1749, 100-109. 
»»Ge8chichte Math., 3, 695; ed. 2, 616. 
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a/B^—1) for A = 14, take 5 = 2, whence P=5. Again, the sum of the 
aliquot parts of 3P^ is (2+P)^. The numbers AP and BPQ have the same 
sum of divisors if a(P+l) = b(P+l)(Q4-l), e,, if Q = a/6—1; taking 
a = 24, b=6, we have Q = 3, a prime, A = 14, 5=5 (by his table of the sum 
of the divisors of 1,..., 150); this problem had been solved otherwise by 
Wolff.3' 

L. Euler^^ gave a table of the prime factors of (r(p), and cr(p^) for 
each prime p<1000; also those of (r(p“) for various a’s for p^23 (for 
instance, a^36 when p=2). He proved formulas (1) and (2) here and in 
his^ posthumous tract, where he noted (p. 514) all the cases in which 
<T(n)=a-(m)^60. 

E. Waring^^ proved formula (2). He^ noted that if P=a”*&".. .and 
Q=a‘‘6^..where m—a, n—jS,.. .are large, then <r(PQ)/(r(P) is just greater 
than Q, If A = (Z-1)!, cr(ZA)/cr(A)^Z+l. If a*6^..=A and (x+1) 
(2/+I).. .is a maximum, then =5*'”^^ = ... For a^h,... distinct primes, 
O'(A) is not a maximum. He cited numbers with equal sums of divisors: 
6 and 11,10 and 17, 14 and 15 and 23. 

L. Kronecker^® derived the formulas for the number and sum of the 
divisors of an integer by use of infinite series and products. 

E. B. Escott^® listed integers whose sum of divisors is a square. 

Problems of Fermat and Wallis on Sums of Divisors. 

Fermat^® proposed January 3, 1657, the two problems: (i) Find a cube 
which when iacreased by the sum of its aliquot parts becomes a square;* 
for example, 7^+ (1+7+7^) = 20^. (w) Find a square which when increased 
by the sum of its aliquot parts becomes a cube. 

John Wallis^^ replied that unity is a solution of both problems and pro¬ 
posed the new problem: (iii) Find two squares, other than 16 and 25, such 
that if each is increased by the sum of its aliquot parts the resulting sums 
are equal. 

Brouncker^^ gave 1/n® and 343/n® as solutions (!) of problem (i). 

•^Elementa Analyseos, Cap. 2, prob. 87. 
»^pu8culavariiargumenti, 2, Berlin, 1750, p. 23; Comm. Arith., 1,102 (p. 147 for table to 100). 

Opera postuma, I, 1862, 95-100. F. Rudio, Bibl. Math., (3), 14, 1915, 351, stated that 
there are fully 15 errors. 

“Comm. Arith., 2, 512, 629. Opera postuma, I, 12-13. 
“Meditatioues Algebr., ed. 3, 1782, 343. (Not in ed. of 1770.) 
“Vorlesungen iiber Zahlentheorie, I, 1901, 265-6. 
“Amer. Math. Monthly, 23, 1916, 394. 
♦Erroneously given as “cube” in the French tr.. Oeuvres de Fermat, 3, 311. 
‘®Oeuvre8, 2,332, “premier d^fi aux math^maticiens;” also, pp. 341-2, Fermat to Digby, June 

6, 1657, where 7® is said to be not the only solution. These two problems by Fermat 
were quoted in a letter by the Astronomer Jean H6v61iua, Nov. 1, 1657, published by C. 
Henry, Bull. Bibl. Storia Sc. Mat. e Fis., 12,1879, 683-5, along with extracts from the 
Commercium EpistoUcum. Cf. G. Wertheim, Abh. Geschichte Math., 9, 1899, 558-561, 
570-2 (=Zeitschr. Math. Phys., 44, Suppl. 14). 

"Commercium EpistoUcum de Wallis, Oxford, 1658; Wallis, Opera, 2, 1693. Letter II, from 
Wallis to Brouncker, Mar. 17,1657; letter XVI, Wallis to Digby, Dec. 1, 1657. Oeuvres 
de Fermat, 3, 404, 414, 427, 482-3, 503-4, 513-5. 

"Commercium, letter IX, Wallis to Digby; Fermat’s Oeuvres, 3, 419 
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Frenicle^® expressed his astonishment that experienced mathematicians 
should not hesitate to present, for the third time, unity as a solution. 

Wallis^^ tabulated (T(a?) for each prime 25 <100 and for low powers of 
2,3,5, and then excluded those primes x for which cr(x^)has a prime factor 
not occurring elsewhere in the table. By similar eliminations and successive 
trials, he was led to the solutions^® of (i) : 

a=3^54M3-4147, 6=2-3*5-13-41-47; 7a, 75, 

adding that they are identical with the four numbers given by Frenicle.'** 
Note that a(a) is the square of 2^3^5*7-ll«13-17-29*61, while (r(5) is the square 
of 2^3^5^7*13*i7*29. Wallis^^ gave the further solutions of 

x= 17-31-4M91, 2/=2^°3"5-13-17*29*37, 
2-3*5*13*l7-31*4M91, 2'W7-13 •17-29237, 
3"5-lM3-17-31-41-191, 2^3335.7.11.13.17.29237.51^ 

and the products of each x by 7. 
Wallis^3 gave solutions of his problem (in): 

233-37, 2-19-29; 223-11-19-37, 237-29-67; 
29-67, 2-3-5.37; 237-29-67, 3-5-11-19-37. 

Frenicle^^ gave 48 solutions of Wallis^ problem (in), including 2-163 
11-37; 3-11-19, 7-107; 2-5-151, 33-67; also 83 sets of three squares having the 
same sum of divisors, for example, the squares of 

2211.37-151, 3367-163, 5-11-37-151, (r=327319-31-67-1093; 

also various such sets of n squares (with prime factors <500) for n^l9, 
for example, the squares of ac, ad, 45d, 45c, 5hd, and 55c, where 

a = 2.5.29-47.67-139, 5 = 13-37-191-359, c=7-107, d=3-lM9. 
Frans van Schooten^® made ineffective attempts to solve problems 

(i), (ii). 
Frenicle®^ gave the solution 

a: = 225-7-11 •37-67-163-191-263-439-499, y = 327313-19-31267-109 

of problem (ii), (r(x^) =y^; also a new solution of <r(x^)=y^: 

x = 235-7-31-73-241 -243-467, y = 2^2325311.13217.37.41.113.193-257. 

"Letter XXII, to Digby, Feb. 3, 1658. Cf. Leibnitii et Bemoullii Commercium philos. et 
math., I, 1795, 263, letter from Johann Bernoulli to Leibniz, Apr. 3, 1697. 

"Letter XXIII, to Digby, Mar. 14, 1658. 
"The same tentative process for finding this solution a was given by E.Waring, Meditationes 

Algebraicae, 1770, pp. 216-7; ed. 3, 1782, 377-8. The solution 5 = 751530 was quoted 
by Lucas, Th^orie des nombres, 1891, 380, ex. 3. 

"Solutio duorum problematum circa numeros cubos.. .1657, dedicated to Digby [lost work]. 
See Oeuvres de Fermat, p. 2. 434, Note; Wallis.®* 

"Letter XXVIII, March 25, 1658; Wallis, Opera, 2, 814; WaUis**. 
"Letter XXIX, Mar. 29, 1658; Wallis". 
"Letter XXXI, Apr. 11, 1658. 
‘^Letter XXXIII, Feb. 17, 1657 and Mar. 18, 1658. 
•^Letter XLIII, May 2, 1658. 
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Wallis^* for use in problem (ii) gave a table showing the sum of the 
divisors of the square of each number < 500. Excluding numbers in whose 
divisor sum occurs a prime entering the table only once or twice, there are 
left the squares of 2,4,8,3,5, 7,11,19,29,37,67,107,163,191,263,439,499. 
By a very long process of exclusion he found only two solutions within the 
limits of the table, viz., Frenicle’s®^ and 

(r](7*ll*29-163*191.439)2} = ]3-7-13-19-31*67p. 

Jacques Ozanam®^ stated that Fermat had proposed the problem to find 
a square which with its aliquot parts makes a square (giving 81 as the answer) 
and the problem to find a square whose aliquot parts make a square. For 
the latter, Ozanam found 9 and 2401, whose aliquot parts make 4 and 
400, and remarked that he did not believe that Fermat ever solved these 
questions, although he proposed them as if he knew how. 

Ozanam^ noted that the sum of 961 = 31^ and its aliquot parts 1 and 31 
is 993, which equals the sum of the aliquot parts of 1156 = 34^. As examples 
of two squares with equal total sums of divisors [Wallis^ problem (m)], he 
cited 16 and 25, 326^ and 407^, while others may be derived by multiplying 
these by an odd square not divisible by 5. The sum of all the divisors of 
9^ is 11^, that of is 31^ The numbers 99 and 63 have the property that 
the sum 57 of the aliquot parts of 99 exceeds the sum 41 of the aliquot 
parts of 63 by the square 16; similarly for 325 and 175. 

E. Lucas“ noted that the problem to find all integral solutions of 

(1) l+x+x^+o^=y^ 

is equivalent to the solution of the system 

(2) 14-a;=2w^, l+x^ = 2y^, y = 2uVy 

and stated that the complete solution is given by that of 2y^—a^=1. 
E. Gerono®® proved that the only solutions of (1) are 

(iC; y) = (—I, 0), (0, =*=1), (1, =*=2), (7, =±=20). 

E. Lucas®^ stated that there is an infinitude of solutions of Fermat^s 
problem (i); the least composite solution is the cube of 2-3*5*13-41-47, the 
sum of whose divisors is the square of 2^3^5^7-13-17*29. [This solution was 
given by Frenicle.^®] For the case of a prime, the problem becomes (1). 

A. S. Bang®® gave for problem (i) the first of the three answers by Wallis 
for (n), (r(430982) = 1729®; for (m), 29*67, 2*3*5*37 of WalUs^® and the first 
two by Frenicle;^® all without references. 

“A Treatise of Algebra, 1685, additional treatises, Ch. IV. 
“Letter to De Billy, Nov. 1,1677, published by C. Henry, Bull. Bibl. Storia Sc. Mat. e Fis., 12, 

1879, 519. Reprinted in Oeuvres de Femaat, 4, 1912, p. 140. 
“Recreations Mathematiques et Phys., new ed., 1723,1724, 1735, etc., Paris, I, 41-43. 
“Nouv. Corresp. Math., 2,1876, 87-8. 
“Nouv. Ann. Math., (2), 16,1877, 230-4. 
»mull. Bihl. Storia Sc. Mat. e Fis., 10, 1877, 287. 
**Nyt Tidsdcrift for Mat., 1878, 107-8; on problems in 1877, 180. 
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E. Fauquembergue,®^ after remarking that (1) is equivalent to the sys¬ 
tem (2), cited Fennat^s®° assertion that the first two equations (2) hold 
only ioT X=7 [aside from the evident solutions x = =fcl, 0], which has been 
proved by Genocchi.®^ 

H. Brocard®^ thought that Fermat^s assertion that 7® is not the only 
solution of problem (i) implied a contradiction with Genocchi.®^ G. Vacca 
{ihid.y p. 384) noted the absence of contradiction as (i) leads to equation (1) 
only if a: be a prime. 

C. Moreau®® treated the equation, of type (1), 

While he used the language of extracting the square root of +... 
written to the base x, he in effect put X-{x^+aY, 0<a<x. Then a^ = 

ic-i-l, 2ax^=x®-i-a^, whence 2a=^a^, a=2, a: = 3, ^ = 11. 
E. Lucas®^ stated that (x^+y^)/(x+y) has the solutions 

(3,-1, 11), (8, 11, 101), (123, 35, 13361),. .. 

Moret-Blanc®® gave also the solutions (0, 1, 1), (1, 1, 1). 
E. Landau®® proved that the equation 

is impossible in integers (aside from x=0,2/ = 1) for an infinitude of values 
of n, viz., for all n^s divisible by 3 such that the odd prime factors of n/3, if 
any, are all of the form 6t;—1 (the least such n being 6). For, setting 
n = 3m, we see that y^ is the product of x^+x-\-l and F = .. . -f 
These two factors are relatively prime since x®^l gives F=m (mod x^+ 
x+1). Hence x^+x-fl is a square, which is impossible for since it lies 
between x^ and (x+1)^- 

Brocard®^ had noted the solution x = l, y=m. if n = m^. 
A. G6rardin®’’ obtained six new solutions of problem (i): 

X-2.47.193.239.701, 
a; = 2.5.23.41.83.239, 
a;-3.13.23.47.83.239, 
a;-2.3.13.23.83.193.701, 
a;-3.5.13.41.193.239.701, 
a:-2.5.13.43.191.239.307, 

2/-2L3®.5®.13®.l7.97.149. 
2/ = 2®.3®.52.7.13®.29.53. 
2/-2“.3^5®.7.13ll7.53. 
i/-2®.3®.5^7.13.17.53.97.149. 
i/-2®.3®.5®.7.13®.17.29.97.149. 
y-2'®.32.5®.llM7.29.37.53.113.197.241.257. 

Also (r(A2)-^2 for A-3-7-11-29-37, 8-3-7-13-19-67. 

“*Nouv. Ann. Math., (3), 3, 1884, 538-9. 
"“Oeuvres, 2, 434, letter to Carcavi, Aug., 1659. 
BiNouv. Ann. Math., (3), 2,1883, 306-10. Cf. Chapter on Diophantine Equations of order 2. 
®’L’interm6diaire des math., 7, 1900, 31, 84. 
®*Nouv. Ann. Math., (2), 14, 1875, 335. 
mid., 509. 
mid., (2), 20, 1881, 150. 
“L’intermMiaire des math., 8, 1901, 149-150. 

99 iqi.k; ni-4 197 
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G^rardin®® gave five new solutions of {i): 
a; = 3.11.31.443.499, y = 2^3.5M3.37.61.157. 

2.3331.443.449, y = 2'3.5^11.13.37.61.157. 
11.17.41.43.239.307.443.499, 

y=2^133.5^7.11.133.29^37.61.157. 
a;=2.11.l7.23.41.211.467.577.853, 

2/ = 2i^3^53.7.132.17.292.53.6L113.193.197. 
3311.13.23.83.193.701, 

i/=:2®33537.11.13.17.53.61.97.149, 
the last following from his®^ fourth pair in view of 

cr(3®ll3): (r(2333)=233.1l26P; 233.52 = 22112612: 52. 

A. Cunningham and J. Blaikie®® found solutions of the form x—2’'p of 
s(x) where s(n) is the sum of the divisors <n of n. 

PRODXJCT OP ALIQUOT PARTS. 

Paul Halcke'^'^ noted that the product of the aliquot parts of 12, 20, or 
45 is the square of the number; the product for 24 or 40 is the cube; the 
product for 48, 80 or 405 is the biquadrate. 

E. Lionnet^® defined a perfect number of the second kind to be a number 
equal to the product of its aliquot parts. The only ones are and pg, 
where p and q are distinct primes. 

“•L’interm^diaire des math., 24, 1917, 132-3. 
«*Math. Quest. Educ. Times, (2), 7,1905, 68-9. 
“Deliciae Math, oder Math. Sinnen-CoBfect, Hamburg, 1719, 197, Exa. 150-2. 
^«Nouv. Ann. Math., (2), 18,1879, 300-8. Lucas, Th4orie des nombres, 1891, 373, Ex. 6 



CHAPTER III 
FERMAT’S AND WILSON’S THEOREMS. GENERALIZATIONS AND 

CONVERSES; SYMMETRIC FXJNCTIONS OF 
1.2. MODULO?. 

Fermat^b and Wilson's Theorems; Immediate Generalizations. 

The Chinese^ seem to have known as early as 500 B. C. that 2*'—2 is 
divisible by the prime p. This fact was rediscovered by P. de Fermat* 
while investigating perfect numbers. Shortly afterwards, Fermat® stated 
that he had a proof of the more general fact now known as FermaPs theorem: 
If p is any prime and x is any integer not divisible by p, then — 1 is 
divisible by p. 

G. W. Leibniz^ (1640-1716) left a manuscript giving a proof of Fermat's 
theorem. Let p be a prime and set x=a-f6+c+_Then each multi- 
nominal coefficient appearing in the expansion of is divisible by p. 
Take a=6=c=...=l. Thus x*’—x is divisible by p for every integer x. 

G. Vacca® called attention to this proof by Leibniz. 
Vacca® cited manuscripts of Leibniz in the Hannover Library showing 

that he proved Fermat's theorem before 1683 and that he knew the theorem 
now known as Wilson's^’^ theorem: If p is a prime, l + (p—l)! is divisible 
by p. But Vacca did not explain an apparent obscurity in Leibniz's state¬ 
ment [cf. Mahnke^]. 

D. Mahnke’^ gave an extensive account of those results in the manuscripts 
of Leibniz in the Hannover Library which relate to Fermat's and Wilson's 
theorems. As early as January 1676 (p. 41) Leibniz concluded, from the 
expressions for the yth triangular and yth. pyramidal numbers, that 

{y-^l)y=y^-y^0 (mod 2), {y+2)(y+l)y^y^-y^0 (mod 3), 

and similarly for moduli 5 and 7, whereas the corresponding formula for 
modulus 9 fails for y=2,—^thusforestalling the general formula by Lagrange.^* 
On September 12, 1680 (p. 49), Leibniz gave the formula now known as 
Newton's formula for the sum of like powers and noted (by incomplete 
induction) that all the coefficients except the first are divisible by the 
exponent p, when p is a prime, so that 

aF+lf+(f+.. . = (a-|-5-|-c+ ...y (mod p). 

Taking a=5== ... =1, we obtain Fermat's theorem as above.^ That the 
binomial coefficients in (1+1)*' —1 — 1 are divisible by the prime p was 

^G. Peano, Formulaire math., 3, Turin, 1901, p. 96. Jeana.**® 
*Oeuvre8 de Fermat, Paris, 2, 1894, p. 198, 2®, letter to Mersenne, June (?), 1640; also p. 203, 

2; p. 209. 
■Oeuvres, 2, 209, letter to Frenicle de Bessy, Oct. 18, 1640; Opera Math., Tolosae, 1679, 163. 
■Leibnizens Math. Schriften, herausgegeben von G. J. Gerhardt, VII, 1863, 180-1, ^‘nova 

algebrae promotio.’^ 
■Bibliotheca math., (2), 8, 1894, 46-8. 
•BoUetino di Bibliografia Storia Sc. Mat., 2, 1899, 113-6. 
■BibUotheca math., (3), 13, 1912-3, 29-61. 
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proved in 1681 (p. 50). Mahnke gave reasons (pp. 54-7) for believing 
that Leibniz rediscovered independently Fermat’s theorem before he 
became acquainted, about 1681-2, with Fermat’s Varia opera math, of 
1679. In 1682 (p. 42), Leibniz stated that (p—2)1=1 (mod p) if p is a 
prime [equivalent to Wilson’s theorem], but that (p—2)!=m (mod p), if 
p is composite, m having a factor > 1 in common with p. 

De la Hire^ stated that if is divided by 2(2r+l) we get A: as a 
remainder, perhaps after adding a multiple of the divisor. For example, 
if is divided by 10 we get the remainder fc. He remarked that Carr6 
had observed that the cube of any number /c<6 has the remainder k when 
divided by 6. 

L. Euler^ stated Fermat’s theorem in the form: If n+1 is a prime divid¬ 
ing neither a nor h, then a’*—6” is divisible by n+1. He was not able to 
give a proof at that time. He stated the generalization: If e=p^~^{p — l) 
and if p is a prime, the remainder obtained on dividing a* by p”* is 0 or 1 
[a special case of EuleF^], He stated also that if m, n, p,... are distinct 
primes not dividing a and if A is the 1. c. m. of m —1, n —1, p^l,..then 

1 is divisible by mnp... [and a* — 1 by m’’ n*.. .if A; = A ...]. 
EuleF® first published a proof of Fermat’s theorem. For a prime p, 

2’' = (l+l)’’ = l+p+(|) + ...4-p+l = 2+mp, 

3”= (1+2)” = 1 +fcp+2”, 3”-3 - (2”-2) = k-p, 

(l+a)”= 1+np+a”, (l+o)”-(l+o)-(o’'-o) =np. 

Hence if dF-a is divisible by p, also (1+a)^ —(1+a) is, and hence also 
(a+2)^--(a+2),..., (a+b)^ —(a+5). For a=2, 2^—2 was proved divisible 
by p. Hence, writing x for 2+b, we conclude that a; is divisible by p 
for any integer x. 

G. W. Kraft^^ proved similarly that 2^—2=?np. 
L. Euler’s^^ second proof is based, like his first, on the binomial theorem. 

If a, h are integers and p is a prime, (a+b)^—is divisible by p. Then, 
if a and b^—b are divisible by p, also (a+b)^ —a —b is divisible by p. 
Take b = l. Thus (a+1)^—a—1 is divisible by p if — a is. Taking 
a=l,2,3,... in turn, we conclude that 2^—2, 3^—3,..., c^—c are divisible 
byp. • 

L. EuleF^ preferred his third proof to his earlier proofs since it avoids 
the use of the binomial theorem. If p is a prime and a is any integer not 

*Hist. Acad. Sc. Paris, ann4e 1704, pp. 42-4; m^m., 358-362. 
^Cornm. Ac. Petrop., 6, 1732-3, 106; Comm. Arith., 1, 1849, p. 2. [Opera postuma, I, 1862, 

167-8 (about 1778)]. 
^°Comm. Ac. Petrop., 8, ad annum 1736, p. 141; Comm. Arith., 1, p. 21. 
i^Novi Comm. Ac. Petrop., 3, ad annos 1750-1, 121-2. 
'=Novi Comm. Ac. Petrop., 1, 1747-8, 20; Comm. Arith., 1, 50. Also, letter to Goldbach, 

Mar. 6,1742, Corresp. Math. Phys. (ed. Fuss), I, 1843, 117. An extract of the letter is 
given in Nouv. Ann. Math., 12, 1853, 47. 

wNovi Comm. Ac. Petrop., 7,1758-9, p. 70 (ed. 1761, p. 49); 18,1773, p. 85; Comm. Arith., 1, 
260-9,518-9. Reproduced by Gauss, Disq. Arith., art. 49; Werke, 1, 1863, p. 40. 
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divisible by p, at most p — 1 of the positive residues < p, obtained by dividing 
1, a, a*,... by p, are distinct. Let, therefore, of" and a®, where p > v, have the 
same residue. Then is divisible by p. Let X be the least positive 
integer for which 1 is divisible by p. Then 1, a, .. ., have dis¬ 
tinct residues when divided by p, so that X^p —1. IfX = p —1, Fermat’s 
theorem is proved. If X<p—1, there exists a positive integer k (A:<p) 
which is not the residue of a power of a. Then k, ak, d^k,. .., a^~^k have 
distinct residues, no one the residue of a power of a. Since the two sets 
give 2X distinct residues, we have 2X^p—1. If X< (p —1)/2, we start with 
a new residue s and see that s, as, a^s,.. ., have distinct residues, no one 
the residue of a power of a or of d'k. Hence X^ (p —1)/3. Proceeding in 
this manner, we see that X divides p — 1. Thus — 1 is divisible by a^—1 
and hence by p. 

L. EuleP^ soon gave his fundamental generalization of Fermat’s theorem 
from the case of a prime to any integer N: 

Euler’s theorem: If n=(j>{N) is the number of positive integers not 
exceeding N and relatively prime to then is divisible by N for 
every integer x relatively prime to N, 

Let V be the least positive integer for which x® has the residue 1 when 
divided by N, Then the residues of 1, x, ..., are distinct and prime 
to N. Thus v^n. If v<n, there is an additional positive integer a less 
than N and prime to N. Then, when a, aa;, aa;^.. ., aa;®“^ are divided by i\r, 
the residues are distinct from each other and from those of the powers of x. 
Thus, 2v^n, Similarly, if 2v<n, then 3vgn. It follows in this manner 
that V divides n. 

J. H. Lambert^® gave a proof of Fermat’s theorem differing slightly from 
the first proof by Euler.^® If h is not divisible by the prime p, is 
divisible by p. For, set & = c+L Then 

-l+cP“^-|-(p-l)c^“^-|-.. .-1-1 
= ,+l+Ap, 

where A is an integer. 

Hence 

The intermediate terms equal 

c-fl c+1 

5p-i_l 

V P 
+A^f, 

^ p(c+l) 

The theorem will thus follow by induction if / is shown to be integral. 
[Take p>2, so that p —1 is even.] Then —1 is divisible by c+l, and 
by the hypothesis for the induction, by p. Since c-j“l = 6 is relatively 
prime to p, / is an integer. 

'^Novi Comm. Ac. Petrop., 8, 1760-1, p. 74; Comm. Arith., 1, 274-286; 2, 524-6. 
>®Nova Acta Eruditorum, Lipsiae, 1769, 109. 
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E. Waring^® first published the theorem that [Leibniz®] l+(2)—1)1 is 
divisible by the prime p, ascribing it to Sir John Wilson^^ (1741-1793). 
Waring (p. 207; ed. 3, p. 356) proved that if a**—a is divisible by p, then 
(a+l)^--a~l is, since (a+l)^=o^+pA+l, “a property first invented by 
Dom. Beaufort and first proved by Euler.^’ 

J. L. Lagrange^® was the first to publish a proof of Wilson’s theorem. Let 

(a;+l)(a;+2).. .(x+p-l)=x^'^+AiX^~H.. .+Ap«i. 

Replacexhyx+1 and multiply the resulting equation by x+1. Comparing 
with the original equation multiplied by x+p, we get 

(x+p)(x^-^+... +Ap-i) = (a;+l)p+Ai(a;+l)^“^+... +Ap„i(x+1). 

Apply the binomial theorem and equate coefficients of like powers of x. 
Thus 

©• 2'*- ©+Cj • 
Let p be a prime. Then, for 0<k<pj is an integer divisible by p. 

Hence Ai, 2^2,..., (p—2)Ap.2 are divisible by p. Also, 

(p—l)Ap«i~ (p) + (p —. .+Ap_2* 

Thus 1+Ap_i is divisible by p. By the original equation, Ap_i = (p —1)!, 
so that Wilson’s theorem follows. 

Moreover, if x is any integer, the proof shows that 

1« (a:+1) (a;+2)... (x+p -1) 

is divisible by the prime p. If x is not divisible by p, some one of the 
integers x+1,..., x+p — 1 is divisible by p. Hence x^”^ — 1 is divisible by 
p, giving Fermat’s theorem. 

Lagrange deduced Wilson’s theorem from Fermat’s. By the formula^’ 
for the differences of order p—1 of 1^“^,..., 

(1) (p-l) !=p»-1-(p-1)(p_1)^-i+(P-1)(P_2)^-i 

Dividing the second member by p, and applying Fermat’s theorem, we 
obtain the residue 

- (P-1) + (^ 2 0 ~ 10 ^~^ 

^“Meditationes algebraicae, Cambridge, 1770, 218; ed. 3, 1782, 380. 
ii^Onhis biography see Nouv. Corresp. Math., 2,1876,110-114; M. Cantor, Bibliotheca math., 

(3), 3, 1902, 412; 4, 1903, 91. 
1‘Nouv. M6m. Acad. Roy. BerUn, 2, 1773, ann^e 1771, p. 125; Oeuvres, 3, 1869, 425. Cf. N. 

Nielsen, Danske Vidensk. Selsk. Forh., 1915, 520. 
i»Euler, Novi Comm. Ac. Petrop., 5, 1754r-5, p. 6; Comm. Arith., 1, p. 213; 2, p. 532; Opera 

postuma, Petropoli, 1, 1862, p. 32. 
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Finally, Lagrange proved the converse of Wilson’s theorem: If n divides 
l + (n—1)!, then n is a prime. For n=4m+l, n is a prime if (2-3.. .2m)* 
has the remainder —1 when divided by n. For n=4m--l, if (2m —1)! has 
the remainder ±1. 

L. Euler*® also proved by induction from a:=n to n+l that 

(2) a:! = a*-a;(o-ir+(^)(a-2r-(^)(o-3r+.. 

which reduces to (1) for a:=p—1, a=p; and more generally, 

(3) a*-n(a-l)*+ ©(a-2)^- •. .+(-l)‘(j)(a-fc)^+. - • ={®, 

D’Alembert*^ stated that the theorem that the difference of order m of a*" 
is m! had been long known and gave a proof. 

L. Euler** made use of a primitive root a of the prime p to prove Wilson’s 
theorem (though his proof of the existence of a was defective). When 
1, a, a*, are divided by p, the remainders are 1,2, 3,. .., p — 1 in some 
order. Hence o>“2)/2 remainder as (p—1)!. Taking p> 2, 
we may set p=2n+l. Since a” has the remainder —1, then and 
hence also (p —1)!, has the remainder —1. 

P. S. Laplace*® proved Fermat’s theorem essentially by the first method 
of EuleP® without citing him: If a is an integer <p not divisible by the 
prime p, 

- = -(o-H-lF=iU«-l)"+P(«-l)'’"'+ ■ • • +1[, 
CL CL CL 

o”-! -1 = i ] (o -1)”+1-a+Ap(o-1) f Ka--1+ftp [. 

Hence by induction —1 is divisible by p. For a>p, set a=np+g and 
use the theorem for q. 

He gave a proof of Euler’s^^ generalization by the method of powering: 
if n=p^p^\ .., where p, Pi,... are distinct primes, and if a is prime to n, 
then a* — l is divisible by n, where 

g=p«-i(p-l), r = pi’"-'(pi-l)p2"~‘(P2-l) • • •• 

Set a® = a:. Then a* —l=x’’ —1 is divisible by x—1. Using the binomial 
theorem and — l = hp, we find that a; — 1 is divisible by p'". 

*oNovi Comm. Ac. Petrop., 13, 1768, 28-30. 
^^Letter to Turgot, Nov. 11, 1772, in unedited papers in the Biblioth^que de ITnstitut de 

France. Cf. Bull. Bibl. Storia Sc. Mat. e Fis., 18, 1885, 531. 
^*Opuscula analytica, St. Petersburg, 1, 1783 [Nov. 15, 1773], p. 329; Comm, Arith., 2, p. 44; 

letter to Lagrange (Oeuvres, i4, p. 235), Sept. 24, 1773; Euler’s Opera postuma, I, 583. 
2>De la Place, Th6orie abr6g4e des nombres premiers, 1776, 16-23. His proofs of Fermat’s 

and Wilson’s theorems were inserted at the end of Bossut's Algdbre, ed. 1776, and 
reproduced by S. F. Lacroix, Traits du Calcul Diff. Int., Paris, ed. 2, vol. 3, 1818, 722-4, 
on p. 10 of which is a proof of (2) for a=x by the calculus of differences. 
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From the (p—l)th order of differences for —1, 

Set x=l and use Fermat^s theorem. Hence H-(p —1)! is divisible by p. 
E, Waring/® 1782, 380-2, made use of 

x’‘=x(x--l).. .(x-r-f 1)+Px(x—1)... (x—r+2) 
4-Qa;(X“l).. .(x~r+3)+. •.+Hx(x—1)+Jx, 

where P=l+2+... +(^-1), Q=PA^—P, etc., B denoting the sum of the 
products of 1, 2,..., r—1 two at a time, and A^ = H-2+...+(r—2). 
Then 

r+2’'+.. .+af = —(x+l)x(a:-l).. .(x-r+l)+-(x+l)x.. .(x-r+2) 
r+1 T 

+-—(x+l)x.. .(x-r+3)+.. .+^(x+l)a:(®-l)+|(*+l)*- 
r—1 o A 

Take r=x and let x+1 be a prime. By Fermat's theorem, F, 2*,..x* 
each has the remainder unity when divided by x+1, so that their sum has 
the remainder x. Thus 1+x! is divisible by x+1. 

Genty^^ proved the converse of Wilson's theorem and noted that an 
equivalent test for the primality of p is that p divide (p*-n)!(n—1)1 — 
(—1)'‘. For n = (p+1)/2, the latter expression is \ 1 [Lagrange^®]. 

Franz von Schaffgotsch^® was led by induction to the fact (of which he 
gave no proof) that, if n is a prime, the numbers 2, 3,..., n—2 can be paired 
so that the product of the two in any pair is of the form xn+1 and the two 
of a pair are distinct. Hence, by multiplication, 2*3...(n—2) has the 
remainder unity when divided by n, so that (n —1)! has the remainder 
n—1. For example, if n=19, the pairs are 2-10, 4-5, 3*13, 7-11, 6*16, 
8*12, 9*17, 14*15. Similarly, for n any power of a prime p, we can so 
pair the integers <7i—1 which are not divisible by p. But for n=15, 4 
and 4 are paired, also 11 and 11. Euler^® had already used these associated 
residues (residua sociata). 

F. T. Schubert^®" proved by induction that the nth order of differences 
of 1”, 2",.... is n!. 

A. M. Legendre^^ reproduced the second proof by Euler^^ of Fermat's 
theorem and used the theory of differences to prove (2) for a = x. Taking 
x=p—l and using Fermat's theorem, we get (p—1)1=(1— 1)^ — 1 (mod p). 

**Histoire et m4m. de I’acad. roy. sc. iasc. de Toulouse, 3,1788 (read Dec. 4, 1783), p. 91. 
“Abhandlungen d. Bohmischen Gesell. Wise., Prag, 2,1786, 134. 
»Opusc. anal., 1, 1783 (1772), 64, 121; Novi Comm. Ac. Petrop., 18, 1773, 85, §26; Comm. 

Arith. 1, 480, 494, 519. 
**"Nova Acta Acad. Petrop., 11, ad annum 1793, 1798, mem., 174-7. 
*^Th6orie des nombres, 1798, 181-2; ed. 2,1808, 166-7. 
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C. F. Gauss^® proved that> if n is a prime, 2,3,..., n—2 can be associated 
in pairs such that the product of the two of a pair is of the form xn+1. 
This step completes Schaffgotsch’s^® proof of Wilson’s theorem. 

Gauss^^ proved Fermat’s theorem by the method now known to be 
that used by Leibniz^ and mentioned the fact that the reputed proof by 
Leibniz had not then been pubhshed. 

Gauss^^^ proved that if a belongs to the exponent i modulo p, a prime, 
then — (mod p). In fact, a primitive root p of p 
may be chosen so that Thus the above product is congruent 
to where 

Thus p*'=(pV’)*+^s(—1)^+1 (mod p). When a is a primitive root, o, 

a^,..., are congruent to 1,2,..., p—1 in some order. Hence (p ~ 1)! ^ 
(—1)^. This method of proving Wilson’s theorem is essentially that of 
Euler.22 

Gauss^^ stated the generalization of Wilson’s theorem: The product of 
the positive integers <A and prime to A is congruent modulo A to —1 if 
.4 =4, p”* or 2p’’', where p is an odd prime, but to +1 if A is not of one of 
these three forms. He remarked that a proof could be made by use of 
associated numbers^® with the difference that 7?=1 (mod A) may now 
have roots other than =*= 1; also by use of indices and primitive roots^® of a 
composite modulus. 

S. F. Lacroix®^ reproduced Euler’s^® third proof of Fermat’s theorem 
without giving a reference. 

James Ivory®® obtained Fermat’s theorem by a proof later rediscovered 
by Dirichlet.'^® Let N be any integer not divisible by the prime p. When 
the multiples N, 2N, SiV,..., {p—l)N are divided by p, there result p dis¬ 
tinct positive remainders <p, so that these remainders are 1, 2,..., p — l 
in some order.®^ By multiplication, N^^^Q = Q-{-mpy where Q = (p-“1)!. 
Hence p divides — 1 since it does not divide Q, 

Gauss®® used the last method in his proof of the lemma (employed in his 
third proof of the quadratic reciprocity law): If A; is not divisible by the 
odd prime p, and if exactly /x of the least positive residues of 2kj.. 
|(p — 1) A; modulo p exceed p/2, then (mod p). [Cf. Grunert.'*®] 

*8Disquisitione8 Arith., 1801, arts. 24, 77; Werke, 1, 1863,19,61. 
2»Disq. Arith., art. 51, footnote to art. 60. 
®°Di8q. Arith., art. 75. 
®iDisq. Arith., art. 78. 
®2Compl6ment des (Siemens d’algSbre, Paris, ed. 3, 1804, 298-303; ed. 4, 1817, 313-7. 
®3New Series of the Math. Repository (ed. Th. Leyboum), vol. 1, pt. 2, 1806, 6-8. 

fact known to Euler, Novi Comm. Acad. Petrop., 8, 1760-1, 75; Comm. Arith., 1, 275; 
and to Gauss, Disq. Arith., art. 23. Cf. G. Tarry, Nouv. Ann. Math., 18, 1899, 
149, 292. 

8®Comm. soc. reg. sc. Gottingensis, 16, 1808; Werke, 2, 1-8. Gauss’ Hohere Arith., German 
transl. by H. Maser, Berlin, 1889, p. 458. 
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J. A. Grunert^® considered the series 

K «] = «”■- (")(n-ir+(”)(n-2r- .. 

to which Euler's (3) reduces for a==n, x-m, and proved that 

[w, n]=n|[m--l, n —IJ+N—l, n]\. 

This recursion formula gives 

[m, n] = 0 (m = 0, 1,..n—1); [n, n]=n! [cf. (2)], 

[n+l, [n+2, 

[n+3,n]=n!(”+l)(«+3). 

Any [m, n] is divisible by n!. As by the proof of Lagrange/® [m, n] + (— 1)” 
is divisible by ?w+l if the latter is a prime >n. Again, 

mlhr=(x+mh)^-m\x+{m-l)h\’^-h(^) {x+im-2)h\’"+.. .+{-l)V, 

which for x=0, h= 1, gives [m, w] =m!. 
W. G. Horner®*^ proved Euler's theorem by generalizing Ivory's®^ method. 

If fi,,.., are the integers < m and prime to m, then riN,..., r^N have the 
r's as their residues modulo m, 

P. F. Verhulst^® gave Euler's proof^^ in a slightly different form. 
F. T. Poselger®^ gave essentially Euler's^® first proof. 
G. L. Dirichlet^® derived Fermat’s and Wilson’s theorems from a com¬ 

mon source. Call m and n corresponding numbers if each is less than the 
prime p and if mn^a (mod p), where a is a fixed integer not divisible by p 
(thus generalizing Euler’s^® associated numbers). Each number 1, 2,.. 
p —1 has one and but one corresponding number. If (mod p) has no 
integral solution, corresponding numbers are distinct and 

(p —1) (mod p). 

But if A; is a positive integer <p such that (mod p), the second root 
is p-kj and the product of the numbers 1,..., p — l, other than k and p—k, 
has the same residue as whence 

(p—1) != — 

The case a=l leads to Wilson’s theorem. By the latter, we have 

^(p-i)/2= ^ (mod p), 

«Matli. Abhandlungen, Erste Sammlung, Altona, 1822, 67-93. Some of the results were 
quoted by Grunert, Archiv Math, Phys., 32, 1859, 115-8. For an interpretation in 
factoring of [w, n], see Minetola^sc of Ch. X. 

”Annals of Phil. (Mag. Chem. . . .), new series, 11, 1826, 81. 
’«Corresp. Math. Phys. (ed. Qu^telet), 3, 1827, 71. 
«Abhand. Ak. Wiss. Berlin (Math.), 1827, 21. 
«Jour. fiir Math., 3, 1828,.390; Werke, 1, 1889, 105. Dirichlet,®* §34. 
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the sign being + or — according as (mod p) has or has not integral 
solutions (Euler’s criterion). Squaring, we obtain Fermat’s theorem. 
Finally^ Dirichlet rediscovered the proof by Ivory[Cf. Moreau.^^^] 

J. Binet^^ also rediscovered the proof by Ivory 
A. Cauchy^^ gave a proof analogous to that by Euler.^® 
An anonymous writer^^ proved that if n is a prime the binomial coeffi¬ 

cient (n—l)fc has the residue ( — 1)* modulo n, so that 

(1 +«)”“' (1 +x) I (1 -1} ^x(x^^ -1), 

modulo n. Thus Fermat’s theorem follows by induction on a; as in the 
proof by Euler. 

V. Bouniakowsky^ gave a proof of Euler’s theorem similar to that by 
Laplace.^® If a=*=2> is divisible by a prime p, is divisible by p”, 
provided p>2 when the sign is plus. Hence if p, p',. • • are distinct primes, 

is divisible by iV'=p’'p'”'..where i=p’‘"V^”'"^- • if «=*=& is divisible 
by VV' ’ • provided the p’s are >2 if the sign is plus. Replace a by its 
(p~l)th power and &by 1 and use Fermat’s theorem; we see that a"—1 is 
divisible by A if e=(j>(N). The same result gives a generalization of 
Wilson’s theorem‘s 

](p-l)![^’‘"^+l=0 (modp”). 

He gave {ibid., 563-4) Gauss’^® proof of Wilson’s theorem. 
J. A. Grunert^® used the known fact that, if 0<k<p, then k, 2A;,.. 

(p—l)k are congruent to 1, 2,..p—1 in some order modulo p, a prime, 
to show that kx^l (mod p) has a unique root x. Wilson’s theorem then 
follows as by Gauss. If (ibid., p. 1095) we square Gauss’ formula,we get 
Fermat’s theorem. 

Giovanni de Paoli^^^ proved Fermat’s and Euler’s theorems. In 

{x+iy=x^+l+pS,, 

where p is a prime, is an integer. Change a; to x—1,..., 2,1 and add the 
resulting equations. Thus 

x^—x=p 2 St. 

Replace x by divide by x”* and set Thus 

y^-l= pX^y Xrry=XSz^/x”^ = integer. 

Replace m by 2m,..., (p — l)m, add the resulting equations, and set 

Ym'=^^~hXm-i-X2m~^ • • • 4"A(p_i),n- ThuS 

2/-p_l=p(p--l)F^ = p2z^y^. 

^^Jour. de I’dcole poly technique, 20, 1831, 291 (read 1827). Cauchy, Comptes Rendua Paris, 
12, 1841, 813, ascribed the proof to Binet. 

^Exer. de math., 4, 1829, 221; Oeuvres, (2), 9, 263. R68um6 analyt., Turin, 1, 1833, 10. 
«Jour. ftir Math., 6, 1830, 100-6. 
^M6m, Ac. Sc. St. P4tersbourg, Sc. Math. Phys. et Nat., (6), 1,1831,139 (read Apr. 1,1829). 
^“KlUgel’s Math. Worterbuch, 5, 1831, 1076-9. 
^•Opuscoh Matematici e Fisici di Diversi Autori, Milano, 1, 1832, 262-272. 
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Change m to mp,..., Thus 

r^’~l=p^X^F^F^pF^,„..). 

Hence —1 is divisible by N for N=p^ and so for any N, 
For X odd, is divisible by 8, and x^—1 by As above, 

he found that x^—1 is divisible by 2‘ for i=m-2'”^ i>2. Thus, if N-2% 
n odd, rr^—l is divisible by N for k = 2'~%(n), 

A. L. Crelle^^ employed a fixed quadratic non-residue v of the prime p, 
and set vf^vj (mod p). By multiplication of 

(p-j)2=r,., tif(mod p) (j=l,.. >2^) 

and use of —1, we get 

— -j (p — 1)!} (p—1) I (mod p), 

r. Minding^® proved the generalized Wilson theorem. Let P be the 
product of the tt integers a, jS,..<A and relatively prime to A. Let 
A - 2^p'^(fr^..., where p, g, r,... are distinct odd primes, and m> 0. Take 
a quadratic non-residue t of p and determine a so that a^t (mod p), a=l 
(mod 2qr...), Then a is an odd quadratic non-residue of A. Let ax^a 
(mod A). For a, let (mod A). Then ^5^a, x, jS. In this way 
the T numbers a, ... can be paired so that the product of the two in any 
pair is =a (mod A), whence P=a^^^ (mod A). 

First, let A = 2^p”'. Then of^ — 1 (mod p"”), s = p”'"HP‘“l)/2, whence 
P= — 1 (mod A) if p = 0 or 1. But, ifp>l, 

a2=(_i)2 =i(niodp”'), =l(mod2'*), P^-fl (mod A). 

Next, let m>l, n>l, in A. Eaising the above to the power 
• • •? we get (mod p”). A like congruence holds 

moduli <t, ..., and 2^, whence P^ + l (mod A). 
Finally, let A =2^, p>l. Then a=—1 is a quadratic non-residue of 

2" and, as above, P= (—1)^ (mod A), ^ = 2^“^. The proof of Fermat’s theorem 
due to Ivory®® is given by Minding on p. 32. 

J. A. Grunert^® gave Horner’s®^ proof of Euler’s theorem, attributing 
the case of a prime to Dirichlet instead of Ivory.®® A part of the generalized 
Wilson theorem was proved as follows: Let ri,..., denote the positive 
integers <p and prime to p. Let a be prime to p. In the table 

ria\x, rgo^ri,..Tfi\ 

r2a\,..r^a\ 

^’Abh. Ak. Wisa. Berlin (Math.), 1832, 66. Reprinted.®* 
^^Anfangsgriinde der Hoheren Aritb., 1832, 75-78. 
«Matli. Worterbuch, 1831, pp. 1072-3; Jour, fiir Math. 8, 1832, 187. 
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a single term of a row is =1 (mod p). If this term be VkO^rki replace it 
by —1. Next, if r„aVA==Fl, then and 
one of the r„ is replaced by p—r^. Hence we may separate rio,.. r^a 
into q/2 pairs such that the product of the two of a pair is ==±= 1 (mod p). 
Taking a = l, we get Vi.. .^^==±=1 (mod p). The sign was determined only 
for the case p a prime (by Gauss’ method). 

A. Cauchj^® derived Wilson’s theorem from (1), page 62 above. 
♦Caraffa*^^ gave a proof of Fermat’s theorem. 
E. Midy®^ gave Ivory’s^^ proof of Fermat’s theorem. 
W. G. Horner®^ gave Euler’s^^ proof of his theorem. 
G. LibrP reproduced Euler’s proof^^ without a reference. 
Sylvester^® gave the generalized Wilson theorem in the incomplete form 

that the residue is =*= 1. 
Th. Schonemann*^^ proved by use of symmetric functions of the roots 

that if z"'+hiz^~'^+... = 0 is the equation for the pth powers of the roots 
of x”+aia;”"^+... = 0, where the a’s are integers and p is a prime, then 

(mod p). If the latter equation is (a;—l)”=0, the former is 
z’‘--(n^+pQ)2;”"^+... =0, and yet is evidently (2—1)” = 0. Hence 

(mod p). 
W. Brennecke®^ elaborated one of Gauss’^^ suggestions for a proof of the 

generalized Wilson theorem. For a>2, (mod 2“) has exactly four 
incongruent roots, =*=1, =*=(l+2*"^), since one of the factors x=t=l, of differ¬ 
ence 2, must be divisible by 2 and the other by 2“"^. For p an odd prime, 
let ri,..., be the positive integers <p® and prime to p“, taking /•i = l, 
r„ = p“—1. For 2^sgp--l, the root x of (mod p*") is distinct from 
ri, r„, r,. Thus ^2,..., may be paired so that the product of the two 
of a pair is (mod p*"). Hence ri.. .r,,= — 1 (mod p*"). This holds also 
for modulus 2p“. For a>2, 

(2-i^l)(2“-i+l)=-l, ri...r,= + l (mod 2“). 

Finally, let N=p“ilf, where M is divisible by an odd prime, but not by p. 
Then m=(t>{M) is even. The integers <N and prime to p are 

^>+2p",..ry+(M-l)p“ (i=l,- . m). 

For a fixed j, we obtain m integers <N and prime to N. Hence if \N\ 
denotes the product of all the integers < N and prime to N, 

|iV[ =(ri.. (modp“). 

For iV=pV• • •; iAj =1 (mod whence =1 (mod N). 

‘oRdsum^ analyt., Turin, 1, 1833, 35. 
‘^Elem. di mat. commentati da Volpicelli, Rome, 1836,1, 89. 
®^De quelques propri6t6s dea nombres, Nantea, 1836. 
**London and Edinb. Phil. Mag., 11, 1837, 456. 
*^M6m. divers savants ac. sc. Institut de France (math.), 5, 1838, 19. 
“Phil. Mag., 13, 1838, 454 (14, 1839, 47); Coll. Math. Papers, 1, 1904, 39. 
“Jour, fiir Math., 19,1839, 290; 31,1846, 288. Cf. J. J. Sylvester, Phil. Mag., (4), 18, 1859, 281. 
“Jour, fiir Math., 19, 1839, 319. 
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A. L. Crelle^® proved the generalized Wilson theorem. By pairing each 
root cr of x^=l (mod s) with the root s—cr, and each integer a<s, prime to 
s and not a root, with its associated number a', where aa'=l (mod s), we 
see that the product of all the integers < s and prime to s is = +1 or — 1 
(mod s) according as the number n of pairs of roots cr, s—(t is even or odd. 
To find n, express s in every way as a product of two factors u, v, whose 
g. c. d. is 1 or 2; in the respective cases, each factor pair gives a single root 
cr or two roots. Treating four subcases at length it is shown that the num¬ 
ber of factor pairs is 2* in each case, where h is the number of distinct odd 
primes dividing s; and then that n is odd if s=4, p”" or 2p", but even if n 
is not of one of these three forms. 

A. Cauchy^®® proved Fermat’s theorem as had Leibniz.^ 
(S. Earnshaw?) proved Wilson’s theorem by Lagrange’s method and 

noted that, if Br is the sum of the products of the roots of ... 
^0 (mod p) taken r at a time, then AoSi—^ — lYAi is divisible by p. 

Paolo Gorini®*^ proved Euler’s theorem 5^=1 (mod A), where i=0(A), 
by arranging in order of magnitude the integers (A) p', p",. .., p^^^ which 
are less than A and prime to A. After omitting the numbers in (A) which 
are divisible by h, we obtain a set (B) q',..g®. Let be the least of 
the latter which when increased by A gives a multiple of h: 

(C) 5^“)-bA=pW6. 

The numbers* (A) coincide with those iri sets (B) and (D): 

(D) p'b,p”5,...,p^®-^>?). 

Hence by multiplication and cancellation of p',. • 

(F) c?'...g^'V-i=pW...pW. 

To each number (B) add the least multiple of A which gives a sum divisible 
by h, say (G) q'+g'A,..The least of these is 

by(C). Each number (G) is <M and all are distinct. The quo¬ 
tients obtained by dividing the numbers (G) by 6 are prime to A and hence 
included among the p^“V • whose number is t—aA'^=l, so that 
each arises as a quotient. Hence 

(H) ri(g^'^+^«A) =PA+5'. . .gW=p(«)p(«+i).. 
1=1 

Combine this with (F) to eliminate the p’s. We get 

g'...g®i“-W-+i=PA+9'...5®, g'.. .g®(b‘-l) =PA, h‘-l = QA. 

®®Jour. fiir Math., 20, 1840, 29-56. Abstract in Bericht Akad. Wiss. Berlin, 1839, 133-5. 
Ac. Sc. Paris, 17, 1840, 436; Oeuvres, (1), 3, 163-4. 

“Cambr. Math. Jour., 2, 1841, 79-81. 
®®Annali di Fisica, Chimica e Mat. (ed., G. A. Majocchi), Milano, 1, 1841, 255-7. 
*To follow the author’s steps, take A = 15, 6=2, whence f=8, Z = 4, (A) 1, 2, 4, 7, 8, 11, 13, 14; 

(B) 1,7,11,13; (C) 1+15 = 8-2, p(“) =8, a = 5; (D) 2, 4, 8,14; (F) l-7-1113-2< = 81M314; 
(G) 1+15, 7 +15,11+15; 13+15, each ^f = l; the quotients of the latter by 2 are 8, 11, 13, 
14, viz., last four in (A); (H) P.15+1.7.il.13=8.11.13.14.2^; the second member is 
l'71M3-2® by (F). Hence 1-71113 (2®-l)=15P. 
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E. Lionnet®^ proved that, if p is an odd prime, the sum of the mth powers 
of 1,..p-1 is divisible by p forO<m<p--l. Hence the sum of 
the products of 1,... ,p — 1 taken w at a time is divisible by p [Lagrange^®]. 
Since 

(1+1)(1+2)...(1+d-1) = 1+Pi+P2+...+P^2+(p-1)!, 
1 + (p — 1)! is divisible by p. 

E. Catalan®^ gave the proofs by Ivory^ and Horner.®’ C. F. Arndt®® gave 
Horner's proof; and proved the generalized Wilson theorem by associated 
numbers. 0. Terquem®^ gave the proofs by Gauss^® and Dirichlet.^® 

A. L. Crelle®® republished his proofs’ of Wilson's theorem, as well as 
that by Gauss®® and Dirichlet.^® Crelle®® gave two proofs of the generalized 
Wilson theorem, essentially that by Minding^® and that given by himself.®® 
If p is the number of distinct odd prime factors of 2,,and 2^ is the highest 
power of 2 dividing 2, and r is a quadratic residue of 2, then (p. 150) the 
number n of pairs of roots =*=a; of (mod 2) is 2^*”^ if m=0 or 1, 2^* if 
7n=2, 2'*'^^ if m>2. Using the fact (p. 122) that the quadratic residues of 
2 are the e=<l)(z)f(2n) roots of r*=l (mod 2), it is shown (p. 173) that, if v 
is any integer prime to 2, (mod 2), ‘^a perfection of the Euler- 
Fermat theorem." 

L. Poinsot®’ failed in his attempt to prove the generalized Wilson 
theorem. He began as had Crelle.®® But he stated incorrectly that the 
number n of pairs of roots of x^=l (mod s) equals the number v of 
ways of expressing s as a product of two factors P, Q whose g. c. d. is 1 or 2. 
For each pair =*= a;, it is implied that x-rl and x+1 uniquely determine P, Q. 
For s = 24, n = t; = 4; but for the root a? = 7 (or for x == 17), a; =*= 1 yield 

8, and 6,4. To correct another error by Poinsot, let p be the number 
of distinct odd prime factors of s and let 2"" be the highest power of 2 dividing 
s; then 2^ 3-2'*"^ or 2'^+^ according as m = 0, 1, 2, or ^3, whereas 
[Crelle®®] n = 2^~'^, 2^“\ 2"*, 2"*+^ No difficulty is met (pp. 53-5) in case the 
modulus is a power of a prime. He noted (p. 33) that if ri, r2,... are the 
integers <N and prime to iV, and tt is their product, they are congruent 
modulo N to tt/ti, 7r/r2,.. ., whence (mod N), where v — <l>{N). 
Thus, by Euler's theorem, 7r^ = 1. This does not imply that 7r= =*= 1 as cited 
by Aubry,^®’ pp. 300-1. 

Poinsot (p. 51) proved Euler's theorem by considering a regular polygon 
of N sides. Let x be prime to N and < N. Join any vertex with the a;th ver¬ 
tex following it, the new vertex with the a;th vertex following it, etc., thus 
defining a regular (star) polygon of N sides. With the same Xj derb^e 

«^Nouv. Ann. Math., 1, 1842, 175-6. 
462-4. 

“Archiv Math. Phys., 2, 1842, 7, 22, 23. 
•^Nouv. Ann. Math., 2, 1843, 193; 4, 1845, 379. 
“Jour, fiir Math., 28, 1844, 176-8. 
w/ftzd., 29, 1845, 103-176. 
•Uour. de Math., 10,1845, 25-30. German exposition by J. A. Grunert, Archiv Math. Phys., 

7, 1846, 168, 367. 
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similarly a new N-gon, etc., until the initial polygon is reached.®® The 
number ju of distinct polygons thus obtained is seen to be a divisor of (t>(N), 
the number of polygons corresponding to the various a;’s. If in the initial 
polygon we take the afth vertex following any one, etc., we obtain the 
initial polygon. Hence and thus also has the remainder unity when 
divided by N. [When completed this proof differs only slightly from that 
by Euler.^"^] 

E. Prouhet®® modified Poinsot’s method and obtained a correct proof 
of the generalized Wilson theorem. Let r be the number of roots of a:^=l 
(mod N), and w the number of ways of expressing W as a product of two 
relatively prime factors. If N=2'^pi\ . .p/#*, where the p’s are distinct 
odd primes, evidently w — 2*" if m>0, w — 2'"~^ if m = 0. By considering 
divisors of x=^l, it is proved that r = 2w if m = 0 or 2, r = w if m = l, r = 4:W if 
m>2. Hence r = 2^ if m = 0 or 1, 2^*^^ if m-2, 2*''^^ if m>2. By Crelle,®® 
the product P of the integers <N and prime to N is =( — 1)''/^ (mod N), 
Thus for /x>0, +1 unless m = 0 or 1, m = 1, viz., N = p' or 2p^] while, for 
jLt = 0, N = m>2, we have r = 4, P^ + 1. 

Friderico Arndt’'® elaborated Gauss’®^ second suggestion for a proof of 
the generalized Wilson theorem. Let ^ be a primitive root of the modulus 
p"" or 2p"', where p is an odd prime. Set i;=<^)(p"). Then gj g'^ are 
congruent to the numbers less than the modulus and prime to it. If P is 
the product of the latter, But — Hence P= —1. 
Next, if n>2, the product of the incongruent numbers belonging to an 
exponent 2”"'” is =1 (mod 2”). Next, consider the modulus M = AB, 
where A and B are relatively prime. The positive integers < M and prime 
to M are congruent modulo M to Ayi+Bxj^ where the Xi are <A and prime 
to A, the Pi are <B and prime to B, But, if a=<!>(A), 

a 

Ti = ll{AyiA-Bxj)^B''xi.. .Xa=Xi.. .Xa (mod A), 

P=7ri7r2. . - ^(xi.. .a;a)'^^^Hmod A). 

By resolving M into a product of powers of primes and applying the above 
results, we determine the sign in P==t:l (mod M). 

J. A. Grunert’^ proved that if a prime n+l>2 divides no one of the 
integers ai,..a,,, nor any of their differences, it divides aia2.. and 
stated that tMs result is much more general than Wilson^s theorem (the 
case ay=j). But the generalization is only superficial since ai,..., a„ are 
congruent modulo n+1 to 1,..., n in some order. His proof employed 
Fermat's theorem and certain complex equations involving products of 
differences of n numbers and sums of products of n numbers taken m at 
a time. 

J. F. Heather’^ gave without reference the first results of Grunert.®® 

*®Cf. P. Badimann, Die Elemente der Zahlentheorie, 1892,19-23. 
®®Nouv. Ann, Math., 4, 1845, 273-8. 
’“Jour, fiir Math., 31, 1846, 329-332. 
’lArchiv Math. Phya., 10, 1847, 312, 
“^^The Mathematician, London, 2, 1847, 296. 
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A. Lista*^^ gave Lagrange’s proof of Wilson’s theorem. 
V. Bouniakowsky^^ gave Euler’s^^ proof. 
P. L. Tchebychef’'® concluded from Fermat’s theorem that 

(x — l){x—2).. .(rc—p+1)—rc^"^+l=0 (mod p) 

is an identity if p is a prime. Hence if Sj is the sum of the products of 1,, 
p—1 taken j at a time, a,=0 (i<p —1), Sp-i= —1 (mod p), the last being 
Wilson’s theorem. 

Sir F. Pollock^® gave an incomplete statement and proof of the general¬ 
ized Wilson theorem by use of associated numbers. Likewise futile was 
his attempt to extend Dirichlet’s^® method [not cited] of association into 
pairs with the product=a (mod m) to the case of a composite m. 

E. Desmarest’"^ gave Euler’s^^ proof of Fermat’s theorem. 
0. Schlomilch’’^® considered the quotient 

{n^- (i) (n-ir+ (2) (n-2)^- ... l/m. 

J. J. Sylvester‘S® took a; = 1, 2,..., p -1 in turn in 

(x--l)(x-2).. .(x--p+l)=x^-^+A,x^-^+.. 

where p is a prime. Since (mod p), there result p —1 congruences 
linear and homogeneous in Aj,..., Ap_2, Ap_i+1, the determinant of whose 
coefficients is the product of the differences of 1, 2,..p — l and hence not 
divisible by p. Thus Ai=0,Ap_i+1=0, the last giving Wilson’s 
theorem. 

W. Brennecke^® proved Euler’s theorem by the methods of Horner®’ 
and Laplace,^® noting that 

(aP-i)p=l (modp^), (modp®),_ 

He gave the proof by Tchebychefs® and his own proof.®’ 
J. T. Graves®® employed nx=n-hl (mod p), where p is a prime, and 

stated that, for n = l,..., p —1, then a:=2,..., p in some order. Also 
a:=pforn = p —1. Hence 2*3... (p — l)^p--l (modp). 

H. Dur^ge®^ obtained (2) for a = x and Grunert’s®® results on the series 
[m, n] by use of partial fractions for the reciprocal of a;(a;--l).. .{x—n). 

E. Lottner®^ employed for the same purpose infinite trigonometric and 
algebraic series, obtaining recursion formulae for the coefficients. 

”Periodico Mensual Ciencias Mat. y Fis., Cadiz, 1, 1848, 63. 
»*BuU. Ac. Sc. St. P6tersbourg, 6, 1848, 205. 
’‘Theorie der Congruenzcn, 1849 (Russian); in German, 1889, §19. Same proof by J. A. 

Serret, Cours d'alg^bre sup^rieure, ed. 2, 1854, 324. 
’«Proc. Roy. Soc. London, 5, 1851, 664. 
’^TMorie des nombres, Paris, 1852, 223-5. 
’’ojour. far Math., 44, 1852, 348. 
’^Cambridge and Dublin Math. Jour., 9, 1854, 84; Coll. Math. Papers, 2, 1908, 10. 
■'®Einigc Satze aus den Anfangsgrunden der Zahlenlehrc, Progr. Realachule Posen, 1855. 
“oBritish Assoc. Report, 1856, 1-3. 
“^Archiv Math. Phya., 30, 1858, 163-6. 
M/6id., 32, 1859, 111-5. 



74 Histobt of the Theoky op Nxjmbees. [Chap. Ill 

J. Toeplitz^ gave Lagrange’s proof of Wilson’s theorem. 
M. A. Stern®^ made use of the series for log (l—a;) to show that 

l+X+3?+ . . . =^ = «-+*-/2+^/3+-. 
1—0? 

Multiply together the series for e*, etc. By the coefficient of 

e=-^+ 
p\^ ^p’ (p-2)!^ 

Take p a prime. No term of s has a factor p in the denominator. Hence 

(l—s) • (p —1)!=—-—integer. 
P 

V. A. Lebesgue®^ obtained Wilson’s theorem by taking a;=p —1 in 

p 2 A;(A;+1).. .{k+p—2)=x(x+l).. .(a;+p —!)• 

If P is a composite number (P—1)! is divisible by P. He (p. 74) 
attributed Ivory’s^^ proof of Fermat’s theorem to Gauss, without reference. 

G. L. Dirichlet®® gave Horner’s^^ and Euler’s^^ proof of Euler’s theorem 
and derived it from Fermat’s by the method of powering. His proof (§38) 
of the generalized Wilson theorem is by associated numbers, but is some¬ 
what simpler than the analogous proofs. 

Jean Plana^"^ used the method of powering. Let N—p^pi^_ For M 
prime to i\r, = Hence 

JJfV>(P*) = (1 = 1 +Pi^‘C/i, . . . 

Thus for e=^j(p*’p/‘)) 1 is divisible by p‘ and pi' and hence by their 
product, etc. Plana gave also a modification of Lagrange’s proof of Wilson’s 
theorem by use of (2); take x= a= p — 1, subtract the expansion of (1 — 1)^"^ 
and write the resulting series in reverse order: 

(p -1)!+1 = (^2') (2^~' ~ 1) - (^i^) (3^'^ -1) + ... 

H. F. Talbot^^ gave Euler’s^^ proof of Fermat’s theorem. 
J. Blissard®®“ proved the last statement of Euler.^ 
C. Sardi^® gave Lagrange’s proof of Wilson’s theorem. 
P. A. Fontebasso^® proved (2) for a: = a by finding the first term of the 

ath order of differences of y", {y^hy, (2/+2/i)“,... and then setting?/ = 0, = 1. 

®®Arcliiv Math. Phys., 32, 1859, 104. 
®<Lehrbuch der Algebraischen Analysis, Leipzig, 1860, 391. 
“Introd. th^orie des nombres, Paris, 1862, 80, 17. 
®«Zahlentheorie (ed. Dedekind), §§19, 20, 127,1863; ed. 2,1871; ed. 3, 1879, ed. 4, 1894. 
*’Mem. Acad. Turin, (2), 20, 1863, 148-150. 
**Trans. Roy. Soc. Edinburgh, 23, 1864, 45-52. 
®“Math. Quest. Educ. Times, 6, 1866, 26-7. 
®*Giomale di Mat., 5, 1867, 371-6. 
®°Saggio di una introd. arit. trascendente, Treviso, 1867, 77-81. 
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C. A. Laisant and E. Beaujeux^^ used the period ai.. .an of the periodic 
fraction to base B for the irreducible fraction pi/q, where q is prime to B. 
li p2)- - > Vn are the successive remainders, 

Bpi = aiq+P2, B'P2 = a2g+p3,..., Bpri = dnq+Pi- 

Starting with the second equation, we obtain the period a2.. .anai for p2/q. 
Similarly for Ps/q,- • •, pjq- Thus the f=<p{q) irreducible, fractions with 
denominator q separate into sets of n each. Hence/=A;n. Since J5"=l, 
B^=l (mod q). 

L. Ottinger®^ employed differential calculus to show that, in 

P=(a+d){a+2d)... {a+(p-l)d[ 

,cr'=s 
a-i q + l 

■q-2 (r^p-2). 

d being the sum of the products of 1, 2,..., A; taken r at a time. Hence, if 
p is a prime, (r = 1,..., p—2) is divisible by p, and 

P=a^~^+d-2d.. .(p — l)d (mod p). 

For a = d = l, this gives 0=l + (p-“l)! (mod p). 
H. Anton®^ gave Gauss’^® proof of Wilson’s theorem. 
J. Petersen®^ proved Wilson’s theorem by dividing the circumference of 

a circle into p equal parts, where p is a prime, and marking the points 
1,..., p. Designate by 12.. .p the polygon obtained by joining 1 with 2, 
2 with 3,..., p with 1. Rearranging these numbers we obtain new poly¬ 
gons, not all convex. While there are p! rearrangements, each polygon can 
be designated in 2p ways [beginning with any one of the p numbers as first 
and reading forward or backward], so that we get (p-l)!/2 figures. Of 
these i(p —1) are regular. The others are congruent in sets of p, since by 
rotation any one of them assumes p positions. Hence p divides (p —1)!/2 
— (p —1)/2 and hence (p--2)!~l. Cf. Cayley^^h 

To prove Fermat’s theorem, take p elements from q with repetitions in 
all ways, that is, in q^' ways. The q sets with elements all alike are not 
changed by a cyclic pennutation of the elements, while the remaining q^—q 
sets are permuted in sets of p. Hence p divides q^ — q. [Cf. Perott,^^® 
Bricard.^^^] 

F. Unferdinger®^ proved by use of series of exponentials that 

(7) (.-!)■+ .. +<-i)-(“)(.-») 

»iNouv. Ann. Math., (2), 7, 1868, 292-3. 
MArchiv Math. Phys., 48, 1868, 159-185. 

49, 1869, 297-8. 
•^Tidaskrift for Mathematik, (3), 2, 1872, 64-65 (Danish). 
M.CJif'/.iinorBhprir'ht.p Ak Wifls Winn. 67 187.3 TT 36.3 
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is zero if nKrrij but, if equals 

where 

E,=k’^-Q) {k-ir+ g) ik-2r-...r. 
For n=m, the initial sum equals 

P. Mansion^® noted that Euler^s theorem may be identified with a 
property of periodic fractions [cf. Laisant®^]. Let N be prime to R. Taking 
R as the base of a scale of notation, divide 100.. .by N and let gi.. .$« be 
the repetend. Then {R‘^-~1)/N=qi.. .Qn- Unless the n remainders r,* 
exhaust the integers <N and prime to iV, we divide ri 00.. .by N, where 
Ti is one of the integers distinct from the u, and obtain n new remainders r/. 
In this way it is seen that n divides (p(N)y so that N divides ~1. [At 
bottom this is Euler’s^^ proof.] 

P. Mansion^^ reproduced this proof, made historical remarks on the 
theorem and indicated an error by Poinsot.®^ 

Franz Jorcke®® reproduced Euler’s^^ proof of Wilson’s theorem. 
G. L. P. V. Schaewen®^ proved (2) with a changed to — p, by expanding 

the binomials. 
Chr. Zeller^®® proved that, for 715*^4, 

n'-(n-l)(n-ir+ (”“^) (n-2r-('‘3 (n-3r+... 

is divisible by n unless n is a prime such that n—1 divides x, in which case 
the expression is = — 1 (mod n). 

A. Cayleyproved Wilson’s theorem as had Petersen.®^ 
E. Schering^®^ took a prime to m — 2^pi^.. .p/'*, where the p’s are dis¬ 

tinct odd primes and proved that x^=a (mod m) has roots if and only if 
a is a quadratic residue of each Pi and if a=l (mod 4) when 7r = 2, a=l 
(mod 8) when 7r>2, and then has xj/im) roots, where i//(m)==2^, 2^*^^ or 

according as 7r<2,7r = 2, or 7r>2. Let a be a fixed quadratic residue 
of m and denote the roots by ^aj (j = l,..., \l//2). Set a/= m—aj. The 
(l>{7n)—\p{m) integers <m and prime to m, other than the a,, a,', may be 
denoted by a,-, a/ (j=|!/'+l,..., where aja',=a (mod m). From the 
latter and --aya/=a (j = 1,..., i^/2), we obtain, by multiplication, 

^ .r^ (mod m), 

•^Messenger Math., 5,1876, 33 (140); Nouv. Corresp, Math., 4, 1878, 72-6. 
®^Th6orie des nombres, 1878, Gand (tract). 
®*tJber Zahlenkongruenzen, Progr. Fraustadt, 1878, p. 31. 
®*Die Binomial Coeffilcientea, Progr. Saarbriicken, 1881, p. 20. 

io°Bull. des sc. math, astr., (2), 5, 1881, 211-4. 
“^Messenger of Math., 12, 1882-3, 41; Coll. Math. Papers, 12, p. 45. 
i“Acta Math., 1, 1882, 153-170; Werke, 2, 1909, 69-86. 
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where the ry are the integers <m and prime to m. Taking a = 1, we have 
the generalized Wilson theorem. Applying a like argument when a is a 
quadratic non-residue of m [Minding^®], we get 

(mod m). 

This investigation is a generalization of that by Dirichlet.**® 
E. Lucas^®^ wrote for a;(a;+l).. .{x+p — 1), and TJ for the sum of 

the products of 1,..., p taken g at a time. Thus 

x^+Tl,^x^-^+.. .+Tlz\x^X^. 

Replacing p by 1,..., n in turn and solving, we get 

where 
a:"=X„+AiX,.i+...+A,. -x-* u 

pi p2 pn-p+l 

1 

6o’..ir^’ 
the subscript p — 1 on the F^s being dropped. After repeating the argument 
by TchebychefLucas noted that, if p is an odd prime, «1 or 0 
(mod p), according as p —1 is or is not a divisor of n. 

G. Wertheim^®"^ gave Dirichlet’s^® proof of the generalized Wilson 
theorem; also the first step in the proof by Arndt. 

W. E. HeaP°^ gave without reference Euler’s^'^ proof. 
E. Catalan^®® noted that if 2n+l is composite, but not the sejuare of a 

prime, n! is divisible by 2n+l; if 2n-|-l is the square of a prime, (n!)** is 
divisible by 2n-l-l. 

C. Garibaldi^®^ proved Fermat^s theorem by considering the number N 
of combinations of ap elements p at a time, a single element bcung wdcndcnl 
from each row of the table 

^11 ^12- • -Cia 

.e,. 

From all possible combinations are to be omitted those containing (‘hunentH 
from exactly n rows, for n=l, . . p-1. Let A, (hmote the numlxT of 
combinations p at a time of an elements forming n rows, sindi tiiat in (*a(‘h 
combination occur elements from each row. Then 

N-- (T) 
Soc. Math. France, 11, 1882-:i, ()0-71; MutheniH, 8, 1888, 'if) 8. 

lo^Elemente der Zahlenthcorie, 1887, 180-7; AnfunKHKrOiuh* dcr Zalilcnlchr*'. 1002 818 8 
(331-2). 

Annals of Math., 3, 1887, 97-98. 

soc. roy. sc. Li6gc, (2), 15, 1888 (M61anKC8 Math., Ill, 1887, 189). 
^°’Giornale di Mat., 26, 1888, i97. 
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Take each 6^ = 1; then N=aF since the number of the specified combina¬ 
tions becomes the sum of all products of p factors unity, on^ from each row 
of the table. Thus 

(^) 
R. W. Genese^®® proved Euler’s theorem essentially as did Laisant.®^ 
M. F. Daniels^®^ proved the generalized Wilson theorem. If \f/(n) 

denotes the product of the integers <n and prime to n, he proved by induc¬ 
tion that = (mod p') for p an"bdd prime. For, if pi,..p„ are 
the integers < p' and prime to it, then pi +yp', ..., p„ +ip' =0,1,..., p—1) 
are the integers and prime to it. He proved similarly by induction 
that 1^(20 —+! (i»od 2') if 7r>2. Evidently i^(2)^l (mod 2), \/'(4)^ ~1 
(mod 4). If 7n=a“5^... and w = Z\ where Z is a new prime, then ^(m)=6 
(mod m), \l/{n)=7} (mod n) lead by the preceding method to ^(??zn)=€’’^"^ 
(mod m), viz., 1, unless n=2. The theorem now follows easily. 

E. Lucas^^° noted that, if a; is prime to n=AB..., where A, Bj... are 
powers of distinct primes, and if <?!) is the 1. c. m. of <^(A), <A(J5),..., then 

1 (mod n). In case A = 2*, k> 2, we may replace <I>{A) by its half. To 
get a congruence holding whether or not x is prime to n, multiply the former 
congruence by a;*", where a is the greatest exponent of the prime factors of n. 
Note that [Bachmann^^®’ CarmichaeP^^ wrote X(?i) for <j). 

E. Lucas^^^ found in two ways by the theory of differences. 
Equatiug the two results, we have 

(p-i)!=(p-i)’’-»-(p-2r-'+... 

Each power on the right is =1 (mod p). Thus 

(p —1)!=(1 —(modp). 

P. A. MacMahon^^^ proved Fermat’s theorem by showing that the 
number of circular permutations of p distinct things n at a time, repetitions 
allowed, is 

where d ranges over the divisors of n. For n a prime, this gives 

p"-h(n~l)p=0, p”=p (mod n). 

Another specialization led to Euler’s generahzation. 
E. Maillet^^^ applied Sylow’s theorem on subgroups whose order is 

the highest power of a prime p dividing the order m of a group, viz., 

io®British Association Report, 1888, 580-1. 
^““Lineaire Congruenties, Diss. Amsterdam, 1890, 104-114. 
^^oBuU. Ac. Sc. St. P6tersbourg, 33, 1890, 496. 
“^Mathesia, (2), 1,1891,11; Th^orie dea nombres, 1891, 432 
^^2Proc. London Math. Soc., 23,1891-2, 305-313. 
^'Recherclies sur les substitutions, Th6se, Paris, 1892, 115. 
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m=pN(1 +np), when /i = 1. For the symmetric group on p letters, m=pl 
and iV’=p —1, so that (p —1) != — 1 (mod p). There is exhibited a special 
group for which m = pa^, N = a, whence a^=a (mod p). 

G. Levi^^^*failed in bis attempt to prove Wilson’s theorem. Let h and 
a = {p — l)h have the least positive residues Vi and r when divided by p. 
Then Multiply h/p = q+ri/p by p — l. Thus ri(p —1) has the 
same residue as a, so that 

CL T 
flip -1) = r+wp, - = 9(P -1) +'m+“ 

p p. 

He concluded that ri(p —l)=r, falsely, as the example p = 5, h = 7, shows. 
He added the last equation to r+ri = p and concluded that ri = l, r = p —1, 
so that (a4*l)/p is an integer. The fact that this argument is independent 
of Levi’s initial choice that 6 = (p —2)! and his assumption that p is a prime 
shows that the proof is fallacious. 

Axel Thue^^^ obtained Fermat’s theorem by adding 

a^-(a-iy=l+kp, (a-l)^-(a-2)^=:l+/ip, ..., F-0^=1 

[Paoli^®]. Then the differences A^F(j) of the first order of F(x)=x^~'^ are 
divisible by p for j=l,..., p —2; likewise A^F(l),..., A^“^F(1). By adding 

A>+iiP(0)=A^‘F(l)-A^F(0) (i = l,..., p-2), 

we get 

-A^-'F(0)=^1+A'F(1)--A2F(1)+. . .+A^"^F(1^ (p-l)!+l=0 (modp). 

N. M. Ferrers^^® repeated Sylvester’s^'® proof of Wilson’s theorem. 
M. d’Ocagne^^^ proved the identity in r: 

qi »-i 

where q=[{k-^l)/2] and is the product of n consecutive integers of 
which m is the largest, while Pn=l- Hence if /c+1 is a prime, it divides 

and Fermat’s theorem follows. The case /c = p —1 

shows that if p is a prime, q={p —1)/2, and r is any integer, 

S P^^;'^(r + l)"-2^(-r)'-0 (mod g!). 
t»i 

T. del Beccaro^^® used products of linear functions to obtain a very com¬ 
plicated proof of the generalized Wilson theorem. 

A. Schmidt^® regarded two permutations of 1, 2,. .., p as identical if 
one is derived from the other by a cyclic substitution of its elements. From 
one of the (p —1)! distinct permutations he derived a second by adding 

del R. Istituto Vencto di Sc., (7), 4, 1802-3, pp. 1816-42. 
“®Archiv Math, og Natur., Kriatiaiiia, 16, 1893, 255-265. 
“^Messenger Math., 23, 1893-4, 56. 
ii’Jour. de I’dcole-polyt., 64, 1894, 200-1. 
“SAtti R. Ac. Lined (Fis. Mat.), 1, 1894, 344-371. 



80 Histoky of the Theoky of Numbeks. [Chap. Ill 

unity to each element and replacing p+1 by 1. Let m be the least number 
of repetitions of this process which will yield the initial permutation. For 
p a prime, m=l or p. There are p—1 cases in which m = l. Hence 
(p -1)! ~ (p — 1) is divisible by p. Cf. Petersen.^^ 

Many proofs of (3), p. 63, have been given.^^° 
D. von Sterneck^^^ gave Legendre’s proof of Wilson’s theorem. 
L. E. Dickson^^^ noted that, if p is a prime, p(p-“l) of the p! substitu¬ 

tions on p letters have a linear representation x'=ax+hy af^O (mod p), 
while the remaining ones are represented analytically by functions of degree 
>1 which fall into sets of p^(p —1) each, viz., af{x+h)+Cy where a is prime 
top. Hencep!—p(p — l) is a multiple of p^(p — l), and therefore (p—1)!+1 
is a multiple of p. 

C. Moreau^^^ gave without references Schering’s^®^ extension to any 
modulus of Dhichlet’s^® proof of the theorems of Fermat and Wilson. 

H. Weber^^^ deduced Euler’s theorem from the fact that the integers 
<m and prime to m form a group under multiplication, whence every 
integer belongs to an exponent dividing the order (l>{m) of the group. 

E. Cahen^^^ proved that the elementary symmetric functions of 1,.. 
P“1 of order <p —1 are divisible by the prime p. Hence 

(x—l)(rc—2).. .{x’-p+l)=x‘^ ^+(p —1)! (mod p), 

identically in x. The case a; = 1 gives Wilson’s theorem, so that also Fer¬ 
mat’s theorem follows. 

J. Perott^^® gave Petersen’s®^ proof of Fermat’s theorem, using ^'con¬ 
figurations” obtained by placing the numbers 1, 2,..., q into p cases, 
arranged in a line. It is noted that the proof is not valid for p composite; 
for example, if p = 4, g = 2, the set of configurations derived from 1212 by 
cyclic permutations contains but one additional configuration 2121. 

L. Kronecker^^^ proved the generalized Wilson theorem essentially as 
had Brennecke.^’^ 

G. Candido^^® made use of the identity 

a^+l)^={a+hy-paXa+hy-^+.,. 

[ ( 2yP(p-2^+l).. .(p-r~l) 
arb^ia+hy'-^^+ .... 

Take pa prime and&=~1. Thus aP-a=(a~l)*’-(a~-l) (mod p). 

““L’intermSdiaire des matli., 3, 1896, 26-28, 229-231; 7, 1900, 22-30; 8,1901,164. 
Giomale di Mat., 31, 1893, 310. S. Pmcherle, ibid., 40, 1902, 180-3. 

“^Monatshefte Math. Phys., 7, 1896, 145. 
“*Aiiiiak of Math., (1), 11, 1896-7, 120. 
^“Nouv. Ann. Math., (3), 17, 1898, 296-302. 
^“Lehrbuch der Algebra, II, 1896, 55; ed. 2, 1899, 61. 
“®El6nients de la th^orie des nombres, 1900, 111-2. 
“«Biai. des Sc. Math., 24, I, 1900, 175. 
“Worlesungen iiber Zahlentheorie, 1901, I, 127-130. 
“‘Giomale di Mat., 40, 1902, 223. 

A. Capelli 
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P. Bachmann^^® proved the first statement of Lucas. He gave as a 
'‘new” proof of EuleFs theorem (p. 320) the proof by Eulerand of the 
generalized Wilson theorem (p. 336) essentially the proof by Arndt. 

J. W. Nicholson^^® proved the last formula of Grunert.^® 
Bricard^^^ changed the wording of Petersen’s®^ proof of Fermat’s theorem. 

Of the numbers with p digits written to the base g, omit the q numbers 
with a single repeated digit. The remaining q^—q numbers fall into sets 
each of p distinct numbers which are derived from one another by cyclic 
permutations of the digits. 

G. A. Millerproved the generalized Wilson theorem by group theory. 
The integers relatively prime to g taken modulo g form under multiplica¬ 
tion an abelian group of order (f>{g) which is the group of isomorphisms of a 
cyclic group of order g. But in an abelian group the product of all the ele¬ 
ments is the identity if and only if there is a single element of period 2. 
It is shown that a cyclic group is of order p®, 2p“ or 4 if its group of isomor¬ 
phisms contains a single element of period 2. 

V. d’Escamard^^^ reproduced Sylvester’s^® proof of Wilson’s theorem. 
K. Petr^®^ gave Petersen’s®^ proof of Wilson’s theorem. 
Prompt^®^ gave an obscure proof that 2^“^ — 1 is divisible by the prime p. 
G. Arnoux^®® proved Euler’s theorem. Let X be any one of the 

v=ij>{m) integers a, 7,..prime to m and <m. We can solve the con¬ 
gruences 

aa'=i3/5'=77'= . . .=X (mod m). 

Here a', /5',.. .form a permutation of a, /5,.... Thus 

aa'/5/5'... = (ai(3...)2=V. 

In particular, for X = l, we get (a/5.. .)^=1. Hence for any X prime to m, 
(mod m). [Cf. Dirichlet,^® Schering,^®^ C. Moreau. 

R. A. Harris^^®^^ proved that (a/3. . .)^ = 1 as did Arnoux^®®, but inferred 
falsely that a,l3... = =t= 1. 

A. Aubry^®^ started, as had Waring in 1782, with 

x’‘=7„+A7„_i+...H-MF2H-Fi, 

where Fj, = a;(a;“-1)... (a;-'pH-l). Then 

Summing for x ■ 

^n+l_^n^F,,+lH-AF«+...+MF3+F2. 

= 1,..., p —1 and setting Sa:=1*+2*4* ... +(p —1)*, we get 

Sfi+l “ n-}-2 n+l 

M\3\ 
+- 

i2»Niedere Zahlentheorie, I, 1902, 157-8. i’°Amer. Math. Monthly, 9, 1902, 187, 211. 
“^Nouv. Ann. Math., (4), .3, 1903, 340-2. 
i^^Annals of Math., (2), 4, 1903, 188-190. Cf. V. d’Escamard, Giornale di Mat., 41, 1903, 

203-4; U. Scarpis, ihid.y 4.3, 1905, 323-8. 
i33Giornale di Mat., 43, 1905, 379-380. i^^Casopis, Prag, 34, 1905, 164. 
^^“Remarques but le th^or^rae de Fermat, Grenoble, 1905, 32 pp. 
^**Arithmkique Graphique; Fonctions Arith., 1906, 24. 
lanflMath. Magazine, 2, 1904, 272. “’L’enseignement math., 9, 1907, 434-5, 440. 
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where \k\ Hence, if p is a prime and n<p—1, 
5n+i—Sn=0. But Si=0. Hence Sn=0(n<p —1), Sp-.i= — (p—1)!. Thus 
Wilsonjs theorem follows from Fermat’s. 

Without giving references, Aubry (p. 298) attributed Horner’s^^ proof 
of Euler’s theorem to Gauss; the proof (pp. 439-440) by Paoli^® (and, 
Thue^^®) of Fermat’s theorem to Euler^^; the proof (p. 458) by Laplace^ of 
Euler’s theorem by powering to Euler. 

R. D. CannichaeF^® noted that, if L is the 1. c. m. of all the roots z of 
<l>(z)=aj and if a; is prime to L, then a;®=l (mod L). Hence except when n 
and n/2 are the only numbers whose <3{>-function is the same as that of n, 

holds for a modulus M which is some multiple of n. A practical 
method of finding M is given. 

R. D. CarmichaeF^® proved the first result by Lucas. 
J. A. Donaldson^^® deduced Fermat’s theorem from the theory of 

periodic fractions. 
W. A. Lindsay^^^ proved Fermat’s theorem by use of the binomial 

theorem. 
J. I. Tschistjakov^^^ extended Euler’s theorem as had Lucas.^^® 
P. Bachmann^^^ proved the remarks by Lucas,^^® but replaced 0H-(r<w 

by n^</>+cr, stating that the sign is > if n is divisible by at least two distinct 
primes. 

A. Thue^^ noted that a different kinds of objects can be placed into n 
given places in ways. Of these let Ul be the number of placings such 
that each is converted into itself by not fewer than n applications of the 
operation which replaces each by the next and the last by the first. Then 

is divisible by n. If n is a prime, Ul-a^—a and we have Fermat’s 
theorem. Next, a"* =1^11% where d ranges over the divisors of n. Finally, 
if p, , r are the distinct prime factors of n, 

C72=S(~l)V/'^=0 (modn), 

where D ranges over the distinct divisors oi pq.. .r, while 6 is the number 
of prime factors of D. Euler’s theorem is deduced from this. 

H. C. Pocklington^^® repeated Bricard’s^^^ proof. 
U. Scarpis^^® proved the generalized Wilson theorem by a method similar 

to Arndt’s.'^® The case of modulus 2^ (X>2) is treated by induction. 
Assume that Ilr^l (mod 2^"), where ri,..., r„ are the v=4>{2'^) odd integers 
<2^". Then ri,..., r„, ri-h2^..., r„-h2’' are the residues modulo 2’"'^^ and 
their product is seen to be =1 (mod 2’^'*"^). Next, let the modulus be 

Amer. Math. Soc., 15, 1908-9, 221-2. 
16, 1909-10, 232-3. 

““Edinburgh Math. Soc. Notes, 1909-11, 79-84. 
“iJbid., 78-79. 
i«Tagbl. XII Vers. Russ. Nat., 124, 1910 (Russian), 
i^Niedere Zahlentheorie, II, 1910, 43-44. 
“^Skrifter Videnskabs-Selskabet, Christiania, 1910, No. 3, 7 pp. 
i«Nature, 84, 1910, 531. 
^“•Periodico di Mat., 27, 1912, 231-3. 
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n=pf‘ .. -pj* (^>2), n?^2p\ Then a system of residues modulo n, each 
h 

prime to n, is given by S AiU, with 

A fn 
vpiV ’ 

where n ranges over a system of residues modulo pi", each prime to p.-. 
Let P be the product of these Since AAj is divisible by n if iVj, 

^ (modn). 

Thus P — 1 is divisible by each pp and hence by n. 
*Illgner^^^ proved Fermat^s theorem. 
A. Bottari^^^ proved Wilson’s theorem by use of a primitive root [Gauss^®]. 
J. Schumacher^^^ reproduced Cayley’s^®^ proof of Wilson’s theorem. 
A. Ar^valo^®® employed the sum of the products taken n at a time of 

1, 2,..., p~l. By the known formula 

it follows by induction that is divisible by the prime p if n<p —1. In 
the notation of Wronski, write a^^’’ for 

aia+r)... ■|a+(p-l)r[ =a’’+>Sia'’~V+ ... +/Sp-.iar^-\ 

For a = r=l, we have p! = l+>Si+.. .+/Sp_i, whence (mod p), 
giving Wilson’s theorem. Also, Dividing by a and taking 
r=l, we have 

(mod p). 

The left member is divisible by p if a is not. Hence we have Fermat’s 
theorem. Another proof follows from Vandermonde’s formula 

{x+ay"-= I (modp), 

(ti +... ■ ■ ■ +V^ 

Remove the factor a and set r = 0; we obtain Fermat’s theorem. 
Prompt^^^ gave Euler’proof of his theorem and two proofs of the type 

sketched by Gauss of his generalization of Wilson’s theorem; but obscured 
the proofs by lengthy numerical computations and the use of unconven¬ 
tional notations. 

F. Schuh^®^ proved Euler’s theorem, the generalized Wilson theorem, 
and discussed the symmetric functions of the roots of a congruence for a 
prime modulus. 

^^^Lehrsatz iiber x'^—x, Untcrrichts Blatter fiir Math. u. Naturwias., Berlin, 18, 1912, 15. 
Boll. Matematica Gior. Sc.-Didat., 11, 1912, 289. 

^^®Zeitschrift Math.-naturwia.s. Untc'rricht, 44, 1913, 263-4. 
^‘‘‘’Revista de la Sociedad Mat. E.si)afi()la, 2, 1913, 123-131. 
“^Demonstrations nouvelles cles theor(imes de Fermat et de Wilson, Paris, Gauthicr-Villars, 

1913, 18 pp. Reprinted in l’interm6diaire des math., 20, 1913, end. 
‘“Suppl. de Vriend der Wiskundc, 25, 1913, 33-59, 143-159, 228-259. 
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G. Frattini^®® noted that, if F(a, /S,...) is a homogeneous symmetric 
polynomial, of degree g with integral coeifficients, in the integers a, jS,... 
less than m and prime to m, and if F is prime to m, then 1 (mod m) for 
every integer k prime to m. In fact, 

F(a, jS,.. .)=F(A;a, k^,,. .)=W(a, jS,...) (mod m). 

Taking F to be the product ajS..., we have Euler’s theorem. Another 
corollary is 

n (l+j) = l+(p~l)! (mod p), 
3^1 

for p a prime, which implies Wilson’s theorem. 
*J. L. Wildschiitz-Jessen^®^ gave an historical account of Fermat’s and 

Wilson’s theorems. 
E. PiccioU^®® repeated the work of Dirichlet.^® 

The Generalization F(a, iV’)=0 (mod N) of Fermat’s Theorem. 

C. F. Gauss^®® noted that, if iV=pi*‘.. .p/' (p’s distinct primes), 

F(a, N) = a^-i S ^..+(-l)*a^/p^--'p‘ 
t<i i<Kk 

is divisible by N when a is a prime, the quotient being the number of irre¬ 
ducible congruences modulo a of degree N and highest coefficient unity. 
He proved that 

(1) a'^=SF(a,d), F(a,l)=a, 

where d ranges over all the divisors of N, and stated that this relation read¬ 
ily leads to the above expression for F (a, AT). [See Ch. XIX on inversion.] 

Th. Schonemann^®^ gave the generalization that if a is a power p’' of a 
prime, the number of congruences of degree N irreducible in the Galois field 
of order a is N~'^F(a, N), 

An account of the last two papers and later ones on irreducible con¬ 
gruences will be given in Ch. VIII, 

J. A. Serret^®^ stated that, for any integers a and N, F(a, N) is divisible 
by N. For N=p% p sl prime, this implies that 

a<f>W = l (mod pO, 

when a is prime to p, a case of Euler’s theorem. 
S. Kantor^®^ showed that the number of cyclic groups of order N in any 

birational transformation of order a in the plane is N~^F (a, N). He obtained 
(1) and then the expression for F(a, N) by a lengthy method completed for 
special cases. 

i^Periodico di Mat., 29, 1913, 49-53. 
i^Nyt Tidsskrift for Mat., 25, A, 1914, 1-24, 49-68 (Danish). 
“^Periodico di Mat., 32, 1917, 132-4. 
““Posthumous paper, Werke, 2, 1863, 222; Gauss-Maser, 611. 
“^Jour. fiir Math., 31, 1846, 269-325. Progr. Brandenburg, 1844. 
“*Nouv, Ann. Math., 14,1855, 261-2. 
“>Annali di Mat., (2), 10,1880, 64-73. Comptes Rendua Paris, 96, 1883, 1423. 



Chap. Ill] GENERALIZATIONS OF FeRMAT’® - 

Ed. Weyr^^, E. Lucas'®^^ and Pellet''^ r 
divisible by N for any integers a, N, 

H. Picquet^®® noted the divisibility c 
tion of certain curvilinear polygons of _ 
and circumscribed in a given cubic curVv 
bility of F{a, N) by iV, requiring variou} 
function F{a, N) is characterized by the t 

(2) F{a, np‘) = F(a=’”, n) -F{a^~\ 

where a is any integer, n an integer no'^ 
A. Grandi^®’’ proved that F{a, N) h 

-f 

+ ] + • • •, 
Each of these binomials is divisible by pi^ since 

G. Koenigs^®® considered a uniform sr 
power / =<^>n(2)- Those roots of z—0„(z) - ^ 
of lower index are said to belong to the index xi uciuu^s lu me maex 
n, so do also 0i(x) for i=l,..n —1. Thus the roots belonging to the 
index n are distributed into sets of n. If a is the degree of the polynomials 
in the numerator and denominator of 0(3), the number of roots belonging 
to the index n is F{a, n), which is therefore divisible by n. 

MacMahon’s“^ paper contains in a disguised form the fact that F(a, N) 
is divisible by N. Proofs were given by E. Maillet^^^ by substitution 
groups, and by G. Cordone.^®® 

Borel and Drach^^^^ made use of Gauss’ result that F{p, N) is divisible 
by N for every prime p and integer N, and Dirichlet’s theorem that there 
exist an infinitude of primes p congruent modulo N to any given integer a 
prime to N, to conclude that F{a, N) is divisible by N. 

L. E. Dickson^^^ proved by induction (from k to /c+1 primes) that 
F(a, N) is characterized by properties (2) and concluded by induction that 
F(a, N) is divisible by N. A like conclusion was drawn from 

\F(a, N)\^-F{a, N)^F(a, qN) (mod q), 

where 2 is a prime. He gave the relations 

F(a, nN) =F{a^, n) - i n) + 2 n) - . . . 
i*l i<j 

+ (-l)'F(a"’/'’'" n), 
Fia,N)=:24>id), 

^•^Casopis, Prag, 11, 1882, 39. 
^’“Comptes Rendus Paris, 96, 1883, 1300-2. 
iwjbid., p. 1136, 1424. Jour, de I'^cole polyt., cah. 54, 1884, 61, 85-91. 
”^Atti R. Istituto Vcneto di Sc., (6), 1, 1882-3, 809. 

des sciences math., (2), 8, 1884, 286. 
^®*Rivista di Mat., Torino, 5, i895, 25. 
^’°Introd. th6orie des nombres, 1895, 50. 
’^’^Annals of Math., (2), 1, 1899, 35. Abstr. in Comptea Rendua Paris, 128,1899,1083-6. 
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where d ranges over those divisors of a^~l which do not divide a’’ — ! for 
0<i;<iV; while, in the former, pi,..p* are the distinct prime factors of 
N, and n is prime to N. 

L. Gegenbauer^^^ wrote F(a, n) in the form where d ranges 
over the divisors of n, and fx^d) is the function discussed in Chapter XIX 
on Inversion. As there shown, SpCd) =0 if n>l. This case f(x) =ijl{x) is 
used to prove the generalization: If the function/(re) has the property that 
2/(d) is divisible by n, then for every integer a the function is 
divisible by n, where in each sum d ranges over the divisors of n. Another 
special case, f{x) =4>(x)y was noted by MacMahon.^^^ 

J. Westlund^^^ considered any ideal A in a given algebraic number field, 
the distinct prime factors Pi,.. ., P^ of A, the norm n{A) of A, and proved 
that if a is any algebraic integer, 

__^^n(,A)/n(Pi) _^'2^^niA)fn(PiPi)_ + ( — V^CPi.. .Pi) 

is always divisible by A. 
J. Vdlyi^^^ noted that the number of triangles similar to their nth pedal 

but not to the dth pedal (d< n) is 

X{n) =i{n) +2l^ (~) 

^ Ph P2, - • • are the distinct prime factors of n, and \l/(k) =2^ — He 
proved that x W is divisible by n, since if the nth pedal to ABC is the first 
one similar to APC, a like property is true of the first pedal,. .., (n~l)th 
pedal, so that the x(^) triangles fall into sets of n each of period n. [Note 
that xW=P(4, n)-P(2, n).] 

A. Axer^^® proved the following generalization of Gegenbauer^s^^^ theorem: 
If G(ri,..., r^) is any polynomial with integral coefficients, and if, when d 
ranges over all the divisors of n, 

for a particular function G = Go and a particular set of values rio,..., noj 
not a set of solutions of Go, and for which Go is prime to n, then it holds for 
every G and every set ri,..., r^. 

Fuhther Generalizations of Fermat’s Theorem. 

For the generalization to Galois imaginaries, see Ch. VIII. 
For the generalization by Lucas, see Ch. XVII, Lucas,^^ Carmichael.®® 
On 0:^=1 (mod n) for x prime to n, see Cauchy,^® Moreau,®® Epstein, 

of Ch. VII. 

0. H. Mitchell^^® considered the 2* products s of distinct primes dividing 
and denoted by Ts{k) the number of positive integers 

X^<k which are divisible by s but by no prime factor of k not dividing s. 

iT*Monatshefte Math. Phya,, 11, 1900, 287-8. 
^’’Proc. Indiana Ac. Sc., 1902, 78-79. 
i^^Monatahefte.Math. Phya., 14, 1903, 243-253. 
i^^Monatshefte Math. Phya., 22, 1911, 187-194. 
I’^Amer. Jour. Math., 3, 1880, 300; Johns Hopkins Univ. Circular, 1, 1880-1, 67, 97. 
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The products of the various by any one of them are congruent modulo k 
to the in some order. Hence 

(mod^), 

where is the corresponding one of the 2' roots of (mod k). The 
analogous extension of Wilson’s theorem is nZ,= =t=i^a (mod k)^ the sign 
being minus only when A:/(r = p', 2^*" or 4 and at the same time cr/s is odd. 
Here if s = npy. Cf. Mitchell,Ch. V. 

F. RogeP^® proved that, if p is a prime not dividing n, 

n»-> = l+ (f) (n-l) + (P) (n-l)=+ • • • + (f) {n-\?+p, k = 

where p is divisible by every prime lying between k and p+1. 
Borel and Drach^®® investigated the most general polynominal in x divis¬ 

ible by m for all integral values of x, but not having all its coefficients 
divisible by m. If m = p'^q^,. . ., where p, q,.. .are distinct primes, and if 
P{x)j Q{x),... are the most general polynomials divisible by p“, q^,. . 
respectively, that for m is evidently 

{P{x)+p%x)\|Q(x)+5'’(7(a:)^- 

For a<p+l, the most general P{x) is proved to be 

2 fk{x)(t>t{x), <l>k{x) = - x^, 
k~l 

where the/’s are arbitrary polynomials. For a<2(p+l), the most general 
P{x) is 

A-l A-l 

where <^(x) = (x^--x)^—and the/’s, p’s are arbitrary poly¬ 
nomials. Note that 0^(x) — is divisible by Cf. Nielsen.^^^ 

E. H. Moore^®^ proved the generalization of Fermat’s theorem: 

...xZ 

F. Grubershowed that, if n is composite and Ui,.. ., a< arc the i5==0(n) 
integers <n and prime to n, the congruence 

(1) —l = (x—Ui).. . (x —(mod n) 

is an identity in x if and only if n = 4 or 2p, where p is a prime 2"4-1. 

^•Archiv Math. Phys., (2), 10, 1891, 84-94 (210). 
^••Introduction th6orie dee nombrea, 1895, 339-342. 
»mull. Amer. Math. Soc., 2, 1896, 189; cf. 13, 1906-7, 280. 
•••Math. Nat. Berichte aua Ungara, 13, 1896, 413-7; Math, term^s ertcsito, 14, 1896, 22-25. 

m p—1 p—l 

= n n ... n iXk+Ck+iXk^i+... +c^x„) (mod p). 
«m"0 
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E. employed integers A/ and set u-x% 

z=^Ai'x\ 6=7-^ 

Since £* d=I>u^/k {k-n, m+riy 2m+n,...), 

2^a;^’=S- —yI/IW , 

where k takes the values n, m+n,.. .which are ^p/ai. If no prime factor 
of such a k occurs in the denominator of the expansion of ojp/p, the latter 
is an integer; this is the case if p is a prime and 2. For m = n = l, m = 2, 

2(l-a;)“= ^2) - (3)®+ • • • 

we get Wp=a^—a and hence Fermat’s theorem. 
L. Kronecker^^ generalized Fermat’s and Wilson’s theorems to modular 

systems, 
R. Le Vavasseur^®® obtained a result evidently equivalent to that by 

Moore^®^ for the non-homogeneous case 
M. Bauer^®® proved that if n=p*'m, where m is not divisible by the odd 

prime p, and Ui,..are the t=<i>{n) integers <n and prime to n, 

(x—ai)... (x—= —l)‘/^^"^^(mod p*"), 

identically in a;. If p = 2 and x> 1, the product is identically congruent to 
(x^ —Hence he found the values of d, n for which (1) holds niodulo d, 
when d is a divisor of n. If p denotes an odd prime and q a prime 2*+1, the 
values are 

d 2q 4 p 2 

n 2q 4 p% 2p" 2", 2"M2... 

M. Bauer^®^ determined how n and N must be chosen so that x”—1 
shall be congruent modulo W to a product of linear functions. We may 
restrict N to the case of a power of a prime. If p is an odd prime, x""—1 

is congruent modulo p“ to a product of linear functions only when p^l 
(mod n), a arbitrary, or when n = p^m, a = l, p=l (mod m). For p = 2, 
only when n=2^j a = l, or n = 2, a arbitrary. For the case n a prime, the 
problem was treated otherwise by Perott.^®® 

M. Bauer^®® noted that, if n=p’^?7z, where m is not divisible by the odd 
prime p, 

n (x—-i) = (x^—(mod p'). 
__ ___ 

^“’L'interm^diaire des math., 7, 1900, 281, 312. 
iMVorlesungen uber Zahlentheorie, I, 1901, 167,192, 220-2. 
i^Comptes Eendus Paris, 135, 1902, 949; M4m. Ac. Sc. Toulouse, (10), 3, 1903, 39-48. 
mjfouv. Ann. Math., (4), 2, 1902, 256-264. 
«^Math. Nat. Berichte aus Ungam, 20, 1902, 34-38; Math. 6b Phys. Lapok, 10, 1901, 274-8 

(pp. 145-152 relate to the “theory of FermaPs congruence”; no report is available). 
^8»Amer. Jour. Math., 11, 1888; 13, 1891. 
^**Math. 6b Phys. Lapok, 12,1903,159-160. 
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Eichard Sauer^®® proved that, if a, 6, a—6 are prune to h, 

... +5^=1 (mod h), <p=^(p(k), 

since 5. Changing alternate signs to minus, we have a 
congruence valid if a, 6 are prime to k, and if a+h is not divisible by k. 
If p is an odd prime dividing a=Ffe, 

is divisible by p, but not by p^, 
A. Capelli^^^ showed that, if a, 6 are relatively prime, 

ah +1, 
where [a;] is the greatest integer Sx, 

M. Bauer^^2 proved that, if p is an odd prime and or 2p®, every 
integer x relatively prime to m satisfies the congruence 

= . .(a;+A;,) (mod m), 

where A;i,..ki denote the l=4>(rn) integers <m and prime to m>2. If 
m is not 4, p“ or 2p“, every integer x prime to m satisfies the congruence 

L. E. Dickson^®^ proved Moore’s^®^ theorem by invariantive theory. 
N. Nielsen^®^ proved that, if ^>(a;) is a polynomial with integral coeffi- 

cients not having a common factor > 1, and if for every integral value of x 
the value of ^>(a;) is divisible by the positive integer m, then 

2J~1 

${x) = <l>(x) Wp(x)+ Z rrip^. A, , oinix)=x{x+l). .(x+n-1), 
«=» 1 

where (l>(x) is a polynomial with integral coefficients, the A, are integers, 
p is the least positive integer for which p! is divisible by m, and is 
the least positive integer I for which slZis divisible by m. Cf. Borel and 
Drach.^®® 

H. S. Vandiver^^® proved that, if V ranges over a complete set of incon- 
gruent residues modulo m = pi . . .pl^^ while XJ ranges over those F's 
which are prime to m, 

atm\ 

modulo w, where t, = [m/p^^^Y, e =(j>{pY")> For m = p“, the second congruence 
is due to Bauer. 

i*°Eme polynomische Verallgemeincrung des Fcnnatachen Satzes, Disa., Gieasen, 1905. 
^•^Dritter Internat. Math. Kongress, Leipzig, 1905, 148-150. 
^®*Archiv Math. Phys., (3), 17, 1910, 252-3. Cf. Bouniakowsky®® of Ch. XI. 
^“Trane. Amer. Math. Soc., 12, 1911, 76; Madison Colloquium of the Amer. Math. Soc., 1914, 

39-40. 
i*®Nieuw Archief voor Wiskunde, (2), 10, 1913, 100-6. 
iwAnnalfl of Math., (2), 18, 1917, 119. 
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Further Generalizations of Wilson’s Theorem; Related Problems. 

J. Steiner^^® proved that, if Aj, is the sum of all products of powers of 
ai, a2,..of degree k, and the a’s have incongruent residues 5*^0 
modulo p, a prime, then Ai,..., J.p_2 are divisible by p. 

He first showed by induction that 

a;P”l=Xp_i + -diXp„2+ ■ • • +-dp-.2Xi+Ap_i, 

Xk^(x-ai).. .(x-aj,), J.i = ai+.. .+ap-i, 

A2 — Cli • • • +<2i<2p_2+02^ + a2<3^3"l" • • • ~l~^p-2/ • • • • 

For example, to obtain x^ he multiplied the respective terms of 

x^-(x—ai) (x—a2) + (ai+02) (x—aO + ai^ 

by X, (x—a3)+a3, (x — a2)'ha2, (x—ai)+cti. Let ap_i have the 
residues 1,..p—1 in some order, modulo p. For x — a2 divisible by p, 
a;^~^=.dp_i=af"^ (mod p), so that Ap„2Xi and hence also Ap„2 is divisible 
by p. Then for x^Gz, j.p_3X2 and A^^z are divisible by p. For x=0j 
ai = l, the initial equation yields Wilson^s theorem. 

C. G. J. Jacobi^®^ proved the generalization: If ai,..an have distinct 
residues 9^0, modulo p, a prime, and Pnm is the sum of their multiplicative 
combinations with repetitions m at a time, Pnm is divisible by p for m=p — n, 
p-n+l,...,p-2. 

Note that Steiner^s Ak is Pp^k,k» We have 

(1) 
1_ 

(x—ai)... {x—an) 
_ 1 Pnl J Fn2 . 

X^'^ 1 ** ^n+2 > P„„=Sa,'‘+'"-VA, 

n 

Dj= (aj-ai).. .(aj-aj^i)(aj-aj+i)..o„), 0= S a^/Dj (k<n-l). 
i-1 

Let n+m~l==A:+/3(p —1). Then (mod p). Hence if 
k Th I 

A. . .DnPnm = D,. . . A2a?/A, Pnm^O (mod p). 

The theorem follows by taking /3 = 1 and = 1,..., n — 2 in turn. 
H. F. Scherk^^^ gave two generalizations of Wilson’s theorem. Let p be 

a prime. By use of Wilson’s theorem it is easily proved that 

(P“-n~l)!=(-l)”2^-|-i (mod p), 
71. 

where x is an integer such that px^l (mod n!). Next, let C/ denote the 
sum of the products of 1, 2,A: taken r at a time with repetitions. By use 
of partial fractions it is proved that 

(P'“^-l)^C;-r-i +(““iy=0 (modp) (r<p-l). 

It is stated that 

»oojour. ftir Math., 13, 1834, 356; Werke 2, p. 9. 
14, 1835, 64-5; Werke 6, 252-3. 

2°2Bericht uber die 24. Versammlung Deutscher Naturforscher und Aerzte in 1846, Kiel, 
1847, 204-208. 
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0, C“-m!=0 (mod p), 

H. F. Scherk^°® proved Jacobi’s theorem and the following: Form the 
sum Pnh of the multiplicative combinations with repetitions of the /ith class 
of any n numbers less than the prime p, and the sum of the combinations 
without repetitions out of the remaining p—n—1 numbers <p; then the 
sum or the difference of the two is divisible by p according as^ is*odd or even. 

Let Cjfc denote the sum of the combinations with repetitions of the hth. 
class of 1, 2,..fc; Al the sum without repetitions. If 0</i<p—1, 

d^O (mod p), J=p-^,..P“2; Ctp-^k=Cl 

For /i=p-l, for = p. For h = m(p-l)+t, 
when A:<p+1. For KhKk, the sum of Cl and Al is divisible by 

likewise,eachCand AUhisodd. For h<2k, Cl—Al is divisible 
by 2/c+l. The sum of the 2nth powers of 1,..A: is divisible by 2A:+1. 

K. HenseP^ has given the further generalization: If ai,.. ., a^, 5i,..., 6, 
are n+v- p — 1 integers congruent modulo p to 1, 2,..., p — 1 in some order, 
and 

then, for any j, (mod p), where jo is the least residue of j 
mod p—1 and Bk = 0 {k'>v). 

For Steiner’s Xn, X„i/'(a:)^a:^”^ —1 (mod p). Multiply (1) by 
Thus 

... +P„,_2a:+P„,_i -1 + 
jC 

+ ■ • (mod p). 

Replace yp{x) by its initial expression and compare coefficients. Hence 

Pni+P””! Bni) Pnt-\-2 • • . ■ Pnp—2'‘”9? Pnp’^l 1> 
P,y=(-iyRy(i=l,...,!;). 

Taking t;=i==p-2 and choosing 2,.,., p-l for 6i,..., we get 
l=-(p-l)! (mod p). 

Converse of Fermat’s Theorem. 

In a Chinese manuscript dating from the time of Confucius it is stated 
erroneously that 2”“^ — 1 is not divisible by n if n is not prime (Jeans''^‘'^“). 

Leibniz in September 1680 and December 1681 (Mahnke,^ 49-51) stated 
incorrectly that 2”— 2 is not divisible by n if n is not a prime. If n — rs, 
where r is the least prime factor of n, the binomial coefficient (’') was showii 
to be not divisible by n, since n—1,..n—r-fl arc not divisible by r, 
whence not all the separate terms in the expansion of (1 + 1)’* —2 are 

’o^Ueber die Theilbarkeit der Combinationssummen aus den natUrlichen Zahlen durck Priiu- 
zahlcn, Progr., Bremen, 1804, 20 pp. 

’WArchiv Math. Phye,, (3), 1, 1901, 319; Kronecker’a Zahlentheorie 1, 1901, 503. 
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divisible by n. From this fact Leibniz concluded erroneously that the 
expression |tself is not divisible by n. 

Chr. Goldkach^^® stated that {a-\-hy--aF’-If is divisible by p also when 
p is any composite number. Euler (p. 124) points out the error by noting 
that 2^®—2 is divisible by neither 5 nor 7. 

In 1769 J. H. Lambert^® (p. 112) proved that, if d”* —1 is divisible by a, 
and d” —1 by 6, where a, h are relatively prime, then d*" —1 is divisible by 
ah if c is the 1. c. m. of m, n (since divisible by d"” — 1 and hence by a). This 
was used to prove that if g is odd [and prime to 5] and if the decimal fraction 
for 1/g has a period of ^—1 terms, then ^ is a prime. For, g = ah [where 
a, h are relatively prime integers > 1], 1/a has a period of m terms, a — 1, 
and 1/6 a period of n terms, n^6—1, so that the number of terms in the 
period for 1/g is ^{a — l)Q) — l)/2<g—l. Thus Lambert knew at least 
the case A: = 10 of the converse of Fermat’s theorem (Lucas^^^’ ^^^). 

An anonymous writer stated that 2n-hl is or is not a prime according 
as one of the numbers 2''=‘= 1 is or is not divisible by n. F. Sarrus^^^ noted 
the falsity of this assertion since 2^^°—1 is divisible by the composite num¬ 
ber 341. ‘ 

In 1830 an anonymous writer^^ noted that — 1 may be divisible by n 
when n is composite. In =kp+l, where p is a prime, set k = \q. Then 

(mod pq). Thus if a^“^=l (mod pg), and the last will 
hold if g—1 is a multiple of p — 1; for example, ifp = ll, g=31,a=2, whence 
2340=1 341)^ 

V. Bouniakowsky^^^ proved that if A is a product of two primes and if 
N—1 is divisible by the least positive integer a for which 2“=1, whence 
2^“^=1 (mod N), then each of the two primes decreased by unity is divisible 
by a. He noted that 3^=1 (mod 91 = 7*13). 

E. Lucas^^^.noted that 2""’^=! (modn) forn=37*73 and stated the true 
converse to Fermat's theorem: If a* —1 is divisible byp fora: = p —1, but 
not for a;<p—1, then p is a prime. 

F. Proth^^^ stated that, when a is prime to n, n is a prime if 1 (mod n) 
for a: = (7i-l)/2, but for no other divisor of (n~-l)/2; also,ifa®=l (modn) 
for x^n-l, but for no divisor <Vn of n-1. If n = w2*+l, where m 
is odd and <2*, and if a is a quadratic non-residue of n, then n is a prime 
if and only if — 1 (mod n). If p is a prime > n = mp -f 1 is a 
prime if —1 is divisible by n, but d^=^l is not. 

*F. Thaarup^^® showed how to use a""^=l (mod n) to tell if n is prime. 
E. Lucas^^^ proved the converse of Fermat’s theorem: If a*=l (mod n) 

for a: = 71 — 1, but not for x a proper divisor of n — l, then n is a prime. 

“oCorresp. Math. Phys. (ed. Fuss), I, 1843,122, letter to Euler, Apr. 12, 1742. 
“^^Annales de Math. (ed. Gergonne), 9, 1818-9, 320. 
2W76id., 10, 1819-20, 184-7. 

2«M4m. Ac. Sc, St. P^tersbourg (math.), (6), 2,1841 (1839), 447-69; extract in Bulletin, 6, 97-8. 
2i^Assoc. fran^. avanc. sc., 5,1876, 61; 6, 1877,161-2; Amer. Jour. Math., 1, 1878, 302. 
^'^'^Comptes Rendus Paris, 87, 1878, 926. 
"®Nyt Tidsakr. for Mat., 2A, 1891, 49-52. 
*^’Th6orie des nombres, 1891, 423, 441. 
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G. Levi^^^ was of the erroneous opinion that P is prime or composite 
according as it is or is not a divisor of 10^”^—1 [criticized by Cipolla,^^® 
p.142]. 

K. Zsigmondy^^® noted that, if g is a prime =1 or 3 (mod 4), then 2g+l 
is a prime if and only if it divides (2®+l)/3 or 2®—1, respectively; 4g+l is 
a prime if and only if it divides (2^®+l)/5. 

E. B. Escott^^^ noted that Lucas’^^^ condition is sufficient but not 
necessary. 

J. H. Jeans^^® noted that if p, g are distinct primes such that 2^=2 
(mod g), 2®=2 (mod p), then 2^®=2 (mod pg), and found this to be the case 
for pg=11*31, 19*73, 17*257, 31*151, 31*331. He ascribed to Kossett the 
residt 2”"^=1 (mod n) for «=645. 

A. Korselt^^^ noted this case 645 and stated that a^=a (mod p) if and 
onlyifphasno squarefactorand p—lis divisible by the L c. m. ofpi—1,..., 
p„—1, where pi,..p,^ are the prime factors of p. 

J. FraneP^^ noted that 2^®=2 (mod pg), where p, g are distinct primes, 
requires that p —1 and g—1 be divisible by the least integer a for which 
2®=1 (mod pg). [Cf. Bouniakowsky.^^®] 

L. Gegenbauer^^^® noted that 2*’®“^=! (mod pg) if p = 2’’—l = /cpT+l 
and g=/cT+l are primes, as for p=31, g=ll. 

T. Hayashi^^ noted that 2”—2 is divisible by n= 11*31. If odd primes 
p and g can be found such that 2^=2,2®=2 (mod pg), then 2*’®—2 is divisible 
by p?* This is the case if p — 1 and g—1 have a common factor p' for which 
2*^=1 (mod pg), as for p=23, g=89, p' = ll. 

Ph. Jolivald^^ asked whether 2^"^=1 (mod N) if 2^=2*"—1 and p is a 
prime, noting that this is true if p = ll, whence A^=2047, not a prime. 
E. Malo^^® proved this as follows: 

i\r-l=2(2P-^-l)=2pm, 2^"^ = (2^)2”^ = (iV+l)^”‘=l (modiV). 

G. Ricalde^^® noted that a similar proof gives (mod N) if 
]V' = a^—1, and a is not divisible by the prime p. 

H. S. Vandiver^^^ proved the conditions of J. FraneP^^ and noted that 
they are not satisfied if a< 10. Solutions for a = 10 and a = 11 are pg = 11 *31 
and 23*89, respectively. 

H. Schapira^^® noted that the test for the primality of N that a®=l 

»i»Monat8hefte Math. Phys., 4, 1893, 79. 
*^*L’mterm6diaire des math., 4, 1897, 270. 
“oMessenger Math., 27, 1897-8, 174. 
*“L’mterm6diaire des math., 6, 1899,143. 

p. 142. 
*M“Monat8hefte Math. Phys., 10 1899, 373. 
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(mod N) ior q=N—l, but for no smaller q, is practical only if it be known 
that a smaU number o is a primitive root of N. 

G. Arnoux^^®® gave numerical instances of the converse of Fermat^s 
theorem. 

M. Cipolla^^® stated that the theorem of Lucas^^^ implies that, if p is 
a prime and ^ = 2, 4, 6, or 10, then kp+l is a prime if and only if 2*^=1 
(mod kp+l)^ He treated at length the problem to find a for which =1 
(mod jP), given a composite P; and the problem to find P, given o. In 
particular, we may take P to be any odd factor of (a^^ — l)/(a^ —1) if p 
is an odd prime not dividing — 1. Again, 2^~^= 1 (mod P) for P=FmFn • •. 

F„ m>n> .. .>s, if and only if 2*>m, where P, = 2^’'+l is a prime. If 
p and g=2p—1 are primes and o is any quadratic residue of then 
(mod pq)] we may take a = 3 if p = 4n+3; a = 2 if p = 4n+l; both a=2 and 
a = 3 if p = 12^+1; etc. 

E. B. Escott^^° noted that (mod n) if e®—1 contains two or more 
primes whose product n is =1 (mod a), and gave a list of 54 such n^s. 

A. Cunningham^^^ noted the solutions n=FzF4,F5FQF7, n=F^.. .Pjs, etc. 
[cf. Cipolla], and stated that there exist solutions in which n has more than 
12 prime factors. One with 12 factors is here given by Escott. 

T. Banachiewicz^^^ verified that 2^—2 is divisible by N for N composite 
and <2000 only when N is 

341 = 11-31, 561 = 3-1M7, 1387 = 19*73, 1729 = 7*13*19, 1905 = 3*5*127.^ 

Since 2^—2 is evidently divisible by N for every N=Fk-2^^+l, perhaps 
Fermat was thus led to his false conjecture that every P* is a prime. 

R. D. CarmichaeP^^ proved that there are composite values of n (a 
product of three or more distinct odd primes) for which c"“^=l (mod n) 
holds for every e prime to n. 

J. C. Morehead-^ and A. E. Western proved the converse of Fermat^s 
theorem. 

D. Mahnke^ (pp. 51-2) discussed Leibniz’ converse of Fermat’s theorem 
in the form that n is a prime if (mod n) for all integers x prime to n 
and noted that this is false when n is the square or higher power of a prime 
or the product of two distinct primes, but is true for certain products of 
three or more primes, as 3*11*17, 5*13-17, 5-17*29, 5*29-73, 7-13-19. 

R. D. Carmichael^^® used the result of Lucas^^° to prove that a^"i = l 
(mod P) holds for every a prime to P if and only if P — 1 is divisible by 
X(P). The latter condition requires that, if P is composite, it be a product 
of three or more distinct odd primes. There are found 14 products P of 

228flAssoc. frang., 32, 1903, II, 113-4. 
»«Annali di Mat., (3), 9, 1903-4, 138-160. 
^^oMessenger Math., 36, 1907, 175-6; French transl., Sphinx-Ocdipe, 1907-8, 146-8. 
«iMath. Quest. Educat. Times, (2), 14, 1908, 22-23; 6, 1904, 26-7, 55-6. 
*^2Spraw. Tow. Nauk, Warsaw, 2, 1909, 7-10. 
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three primes, as well as P = 13*37-73*457, for each of which the congruence 
holds for every a prime to P. 

Welsch^® stated that if ifc=4n+l is composite and <1000, (mod 
k) only for /: = 561 and 645; hence n”=l (mod k) for these two it’s. 

P. Bachmann^^^ proved that 1 (mod pq) is never satisfied by all 
integers prime to pg if p and q are distinct odd primes [CarmichaeP^®]. 

Symmetric Functions of 1, 2,.. .p —1 Modulo p. 

Report has been made above of the work on this topic by Lagrange,^® 
Lionnet,®^ Tchebychef,^® Sylvester,^® Ottinger,®^ Lucas,^°® Cahen,^^ Aubry,^®^ 
Ar4valo,^®° Schuh,^®^ Frattini,^®® Steiner,Jacobi,^®^ Hensel.^^ 

We shall denote l’'+2”+... 4-(p —1)’' by and take p to be a prime. 
E. Waring^®® wrote a, jS,.. .for 1, 2,..., x, and considered 

5 = ... +a^^V... +a‘‘i3V • * • • 

l{t=a+h+c+.. .is oddand<a;, and a:+1 is prime, sis divisible by (a:+l)^ 
If i^<2a; and a, 6,.. .are all even and prime to 2a:+l, s is divisible by 2a;+l. 

V. Bouniakowsky^®^ noted that s„» is divisible by p^, if p> 2 and m is odd 
and not =1 (mod p —1); also if both 7w=l (mod p —1) and m^O (mod p). 

C. von Staudt^®^ proved that, if S^ix) = 14-2”-!- ... 

SM)=hSM-\-naSn-i(a)Si{h--l) (mod a^), 
2AS2n+i(a) = (2n+l)o>S2„(a) (mod a^). 

If a, b,...,Z are relatively prime in pairs. 

Sn(ah...l) SM 
ah.. .1 a 

^ = integer. 

A. Cauchy^®® proved that 1+1/24-.. - +l/(p —1)=0 (mod p). 
G. Eisenstein^®^ noted that —1 or 0 (mod p) according as m is or 

is not divisible by p —1. If m, n are positive integers <p —1, 

2V(<r+l)"s0 or - (p _ J (mod p), 

according as m+n<or^p —1. 
L. Poinsot^®® noted that, when a takes the values 1,..., p —1, then {axY 

has the same residues modulo p as a”, order apart. By addition, 
(mod p). Take x to be one of the numbers not a root of a;’'=l. Hence 
s^=0 (mod p) if n is not divisible by p —1. 

*“L’interm4diaire des math., 20, 1913, 94. 
**’Archiv Math. Phys., (3), 21,1913, 185-7‘. 
“°Meditationes algebraicae, ed. 3, 1782, 382. 
“^BuU. Ac. Sc. St. P^tersbourg, 4, 1838, 65-9. 
“«Jour. ftir Math., 21, 1840, 372-4. 
*“M4m. Ac. Sc. de lUnstitut de France, 17, 1840, 340-1, footnote; Oeuvres, (1), 3, 81-2. 
»“Jour. fiir Math., 27, 1844, 292-3; 28, 1844, 232. 
“*Jour. de Math., 10, 1845, 33-4. 
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J. A. Serret^®® concluded by applying Newton’s identities to (a;—1)... 
(x--p+l)=0 that (mod p) unless n is divisible by p—l. 

J. Wolstenholme^^ proved that the numerators of 

1+1+I+...4 
1 

2>-l’ l+^+ 
1 

(P-1)" 

are divisible by and p respectively, if p is a prime > 3. Proofs have also 
been given by C. Leudesdorf^®®, A. Rieke,^®^ E. Allardice,^®® G. Osborn, 
L. Birkenmajer,^®^ P. Niewenglowski,^®^ N. Nielsen,H. Valentiner,*®® 
and others.^®® 

V. A. Lebesgue*®^ proved that is divisible by p if w is not divisible 
by p~l by use of the identities 

(n+l)S A:(jfc+1).. .(^+n-l) = x(x4-l).. .(a;+n) (^=1,- • p — 1). 
*-1 

P. Frost^®® proved that, if p is a prime not dividing the numera¬ 
tors of cr2rf cr2r-u p(2r—I)a2r+2(r2r-i are divisible by p, p^, p®, respectively, 
where 

The numerator of the sum of the first half of the terms of <r2r is divisible by 
p; likewise that of the sum of the odd terms. 

J. J. Sylvester^®® stated that the sum Sn, m of all products of n distinct 
nunabers chosen from 1,. .m is the coefiicient of T in the expansion of 
(1+0(1+20 • • • (1+^0 is divisible by each prime >n+l contained in 
any term of the set m —ri+l,..., m, m+1, 

E. Fergola^’'® stated that, if (a, 0” represents the expression 
obtained from the expansion of (a+6+... +0” by replacing each numerical 
coefiicient by unity, then 

(x, x+1,x-{-rr=i (’’t”) (1, 2,..7-)'-V. 
jmQ \ jr / 

“•Coura d’alg^bre sup^rieure, ed. 2, 1854, 324. 
“TQuar. Jour. Math., 5, 1862, 35-39. 
“8Proc. London Math. Soc., 20, 1889, 207. 
“•Zeitechrift Math. Phys., 34, 1889, 190—1. 
“oProc. Edinburgh Math. Soc., 8,1890, 16-19. 
wiMeasenger Math., 22, 1892-3, 51-2; 23,1893-4, 58. 
”’Prace Mat. Fiz., Warsaw, 7, 1896, i2—14 (Polish). 
“*Nouv. Ann. Math., (4), 5, 1905,103. 
“♦Nyt Tidsskrift for Mat., 21, B, 1909-10,8-10. 
^Ihid., p. 36-7. 
»“Math. Quest, Educat. Times, 48, 1888, 115; (2), 22,1912, 99; Amer. Math. Monthly, 22,1915, 

103, 138, 170. 
“‘’'Introd. k la th^orie des nombres, 1862, 79-80, 17. 
»««Quar. Jour. Math., 7, 1866, 370-2. 
“•Giomale di MaHi., 4, 1866, 344. Proof by Sharp, Math. Ques. Educ. Times, 47,1887,145-6; 

63, 1895, 38. 
318-9. Cf. Wronski^tt of Ch. VIII. 



Chap. Ill] Symmetric Functions Modulo p. 97 

The number (1, 2,..r)^ is divisible by every prime >r which occurs in 
the series n+2, n+3,..n+r. 

G. Torelli^^^ proved that 

(o-l, . . ., CI») = (cti, • • * J O-n—l) “bCtnC®!; • • • > ®n) > 

(ttl, . • ., Ctnj b) (tti, • • . ^ c) = (6 c) (Oi, • . . j dnf > 

(x+Oo, x+ai,..X+O„)’'=s(”i‘^)(eio,..a„y-’x’, 

which becomes Fergola’s for ai=i ({=0,..., n). Proof is given of Syl- 
vester^s^®® theorem and the generalization that Sj,i is divisible by (yji). 

Torelli^^^ proved that the sum of all products of n equal or distinct 
numbers chosen from 1, 2,..m is divisible by (n+D; and gave recursion 
formulas for 

C. Sardi^’'® deduced Sylvester’s theorem from the equations Ai = (?),... 
used by Lagrange. Solving them for Ap=Sp,ni we get 

-1 0 0 .. 0 cr)i 
© 
© 

-2 0 

C^') ■■ 

0 

0 

1 +
 C

O
 
+

 

© C:l) C© ■' ■ (”-?+") 
/n+l\ 

vp+iy 

If n+1 is a prime we see by the last column that Sn-i,n is divisible by n+1. 
When p=n—1, denote the determinant by D, Then if n+1 is a prime, 
D is evidently divisible by n+1. Conversely, if Z) is divisible by n+1 and 
the quotient by (n—1)!, then n+1 is a prime. It is shown that 

mS m, n S (_!)!>+T p = P+...+n'. 
p-i 

Using this for m = l,..n, we see that is divisible by any integer prime 
to 2, 3,..p+1 which occurs in n+1 orn. Hence if n+1 is a prime, it 
divides ri,..fn-i, while rn=n (mod n+1). If n+1 divides r„_i it is a 
prime. 

Sardi^^^ proved Sylvester’s theorem and the formula 

S ( — lySr, n+r-lO"fc-r, n+r = 0, 
r-0 

stated by Fergola.^^® 

>’iGiornale di Mat., 5, 1867, 110-120. 
250-3. 
371-6. 
169-174. 
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Sylvester”® stated that, if pi, pz,.. .are the successive primes 2,3,5,.. 

„ (n+l)n(n-l)...(n-i+l) 

where Fu{n) is a polynomial of degree h with integral coejfficients, and the 
exponent e of the prime p is given by 

E. Ces^tro^^^ stated Sylvester’s^®® theorem and remarked that n! 
is divisible by ?7i—n if m—n is a prime. 

E. Ces^ro®^® stated that the prime p divides /Sfp-i,p+l, and, 
except when 7n=p—1, Also (p. 401), each prime p>(n-l-l)/2 
divides ;Sp«i,n+l, while a prime p = (n+l)/2 or n/2 divides iSp_i,„-f-2. 

0. H. MitchelP’'® discussed the residues modulo k (any integer) of the 
symmetric functions of 0,1,1. To this end he evaluated the residue 
of {x—a) (x—jd)..., where a, /3,... are the s-totitives of k (numbers< k which 
contain s but no prime factor of k not found in s). The results are extended 
to the case of moduli p, /(a:), where p is a prime [see Ch. VIII]. 

F. J. E. Lionnet^®® stated and Moret-BIanc proved that, if p = 2n+l is 
a ppmie>3, the sum of the powers with exponent 2a (between zero and 2n) 
of 1, 2,..., n, and the like sum for n+1, n+2,..., 2n, are divisible by p. 

M. d’Ocagne®®^ proved the first relation of Torelli.^^^ 
E. Catalan®®® stated and later proved®®® that is divisible by the prime 

p>k+l. If p is an odd prime and p — 1 does not divide k, is divisible 
by p; while if p — 1 divides kj — 1 (mod p). Let ; if no one 
of a—1, 6—1,... divides k, Sk is divisible by p; in the contrary case, not 
divisible. If p is a prime >2, and p —1 is not a divisor of k+lj then 

>S = l'’(p-l)'+2^(p-2)'+.. .+(P“1)^P 

is divisible by p; but, if p — 1 divides A;+Z, — ( — 1)^ (mod p). If A; and I 
are of contrary parity, p divides S. 

M. d’Ocagne®®^ proved for Fergola’s®’'® symbol the relation 

(a.. .fg.. J.. .V. . .z)”=S(a.. .f)\g. . .^)^ ..(v.. .zY, 

summed for all combinations such that X+p+... >l-p==n. Denoting by 
the letter a taken p times, we have 

. .Z)"= S (Y{Y^^y(ah.. .lY-\ 

’’®Nouv. Ann. Math., (2), 6, 1867, 48. 
*’’'Nouv. Corresp. Math., 4, 1878, 401; Nouv. Ann. Math., (3), 2, 1883, 240. 
2'^®Nouv. Corresp. Math., 4, 1878, 368. 
*'^®Amer. Jour. Math., 4, 1881, 25-38. 
28“Nouv. Ann. Math., (3), 2, 1883, 384; 3, 1884, 395-6. 

(3), 2, 1883, 220-6. Cf. Ces^ro, (3), 4, 1885, 67-9. 
Ac. Sc. Belgique, (3), 7, 1884, 448-9. 

2®*M6ni. Ac. R. Sc. Belgique, 46, 1886, No. 1, 16 pp. 
*MNouv. Ann. Math., (3), 5, 1886, 257-272. 
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It is shown that equals the number of combinations of n+p--! 
things p — l at a time. Various algebraic relations between binomial 
coefficients are derived. 

L. Gegenbauer^^® considered the polynomial 

P_2-{-A; 

/(a;)= S biX" —1) 
»»o 

and proved that 

sV(X)A"-^=-6,-2 (mod p), k<p — l, 
X»1 

sV(X)A’’-^=-6,-2-62,-3 (modp), 
Xa«l 

k=p — l 

and deduced the theorem on the divisibility of Sn by p. 
E. Lucas^®® proved the theorem on the divisibility of by p by use of the 

symbolic expression (s+1)”—s" for x" —1. 
N. Nielsen^®®“ proved that if p is an odd prime and if ^ is odd and 

l<A;<p —1, the sum of the products of 1,..p —1 taken ^ at a time is 
divisible by p^. For k=p—2 this result is due to Wolstenholme.^®^ 

N. M. Ferrers^®^ proved that, if 2n+l is a prime, the sum of the products 
of 1, 2,..2n taken r at a time is divisible by 2n-i-l if r<2n [Lagrange^®], 
while the sum of the products of the squares of 1,..., n taken r at a time is 
divisible by 2n+l if r<n. [Other proofs by Glaisher.^^^] 

J. Perott^^® gave a new proof that is divisible by p if n<p —1. 
R. Rawson^^® proved the second theorem of Ferrers. 
G. Osborn^^^ proved for r<p —1 that Sr is divisible by p if r is even, by 

p^ if r is odd; while the sum of the products of 1,..p — 1 taken r at a 
time is divisible by p^ if r is odd and 1 <r<p. 

J. W. L. Glaisher^®^ stated theorems on the sum /Sr(oi,..., a^) of the 
products of ai,..., ai taken r at a time. If r is odd, Sr{l,.. .,n) is divisible 
by n+1 (special case n+1 a prime proved by Lagrange and Ferrers). If r 
is odd and > 1, and if n+1 is a prime> 3, >3^1,. .., n) is divisible by (n+l)^ 
[Nielsen^^®'"]. If r is odd and >1, and if n is a prime >2, is 
divisible by If n+1 is a prime, is divisible by n+l for 
r = l,...,n —1, except for r=n/2, when it is congruent to ( —modulo 
n+1. If p is a prime and k is the quotient obtained on dividing n+l 
by p, then aSp_i(1,..., n)^—k (mod p); the case n = p —1 is Wilson’s 
theorem. 

28®Sitzungsber. Ak. Wiss. Wien (Math.), 95 II, 1887, 616-7. 
*®®Th6orie des nombres, 1891, 437. 
286aNyt Tidsskrift for Mat., 4, B, 1893, 1-10. 
**'^Messenger Math., 23, 1893-4, 56-58. 
288Bull. des sc. math., 18, I, 1894, 64. Other proofs, Math. Quest. Educ. Times, 58, 1893, 109; 

4, 1903, 42. 
“•Messenger Math., 24, 1894-5, 68-69. 
*»o/5id., 25, 1895-6, 68-69. 

28, 1898-9, 184-6. Proofs“V 
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S. Monteiro*®** noted that 2n+l divides (2n)!Si"l/r. 
J. Westlund’’’® reproduced the discussion by Serret“® and Tchebychef.™ 
Glaisher^®^ proved his*®^ earlier theorems. Also, if p=2ot+1 is prime, 

(w-0p>Sa(l,..2m)=;S2f+i(l,..2m) (mod p^) 

and, if t> 1, modulo According as n is odd or even, 

n)=/S2<(l,..n~l) (mod or 

For m odd and >3, /Szm-aCl,•.2m-l) is divisible by and 

>-!}"), 2m-l) 

are divisible by m. He gave the values of >Sr(l,..w,) and A^=/Sr(l,.. 
n—1) in terms of n for r=l,..7; the numerical values of Sr{l,..., n) 
for w^22, and a list of known theorems on the divisors of and Sr. For 
r odd, 3^r^?n—2, Sr{l,..2m—1) is divisible by m and, if m is a prime 
> 3, by m.^ He proved (ibid,, p. 321) that, if (p—3)/2, and Br is a 
Bernoulli number, 

2;S2f+i(1,. .p-l)_-(2r+l)>S2r(l,..P-1) 
p2 p 

p 2r ^ 

Glaisher^^® gave the residues of ct], [Frost^®®] modulo p^ and p® and proved 
that cTg, 0*4,.. (Tp^a are divisible by p, and (73, (75,..., (7p_2 by p^, if p is 
a prime. 

Glaisher^^® proved that, if p is an odd prime, 

1+^+^+ • • • + (p-j-2)2„=0 or (mod p), 

according as 2n is not or is a multiple of p—1. He obtained (pp. 154-162) 
the residue of the sum of the inverses of hke powers of numbers in arith¬ 
metical progression. 

F. Sibirani^^®® proved for the Sn,m of Sylvester^®® (designated Sn,m-\-i) ^bat 

^i,j “f" 

Sn.n 

/Sn+fc-l.n+fc—1 

—l,n* • • ^n—k+l,n 

(n!)*. 

*”Jornal Sc. Mat. Phys. e Nat., Lisbon, 5, 1898, 224. 
*”Proc. Indiana Ac. Sc., 1900, 103-4. 
«<Quar. Jour. Math., 31, 1900, 1-35. 

329-39; 32, 1901, 271-305. 
Vfp+.li SO lOOfUl 
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K. HenseP^^ proved by the method of Poinsot^®® that any integral sym¬ 
metric function of degree v of 1,..., p~l with integral coefficients is 
divisible by the prime p if is not a multiple of p —1. 

W. F. Meyer^®® gave the generalization that, if ai,..., are incongru- 
ent modulo p'^, and each —1 is divisible by p”, any integral symmetric 
function of degree of ai,..., ap_i is divisible by p"^ if is not a multiple of 
p —1. Of the (^(p"") residues modulo p”, prime to p, there are p*(p —1)^ for 
which — l is divisible by but by no higher power of p, where 

= 1; the remaining p—1 residues give the above ai,.. 
J. W. Nicholson^^^ noted that, if p is a prime, the sum of the nth powers 

of p numbers in arithmetical progression is divisible by p if n<p—1, and 
= —1 (mod p) if n=p-'l. 

G. Wertheim^°° proved the same result by use of a primitive root. 
A. Aubry^°^ took a; = l, 2,..p—1 in 

{x+iy—x^=nx^^'^+Ax^''^+... +Lx+1 

and add^d the results. Thus 

p”=nSn~i+As„_2+ ... +Lsi+p^ 
Hence by induction s„_i is divisible by the prime p if n<p. He attributed 
this theorem to Gauss and Libri without references. 

U. Concina®*’^ proved that is divisible by the prime p>2 if n is not 
divisible by p — 1. Let 5 be the g. c. d. of n, p — 1, and set /x5 = p — 1. The 
p distinct residues of nth powers modulo p are the roots of x^=l (mod p), 
whence (mod p) for n not divisible by p —1. For each r^, x^^ri has 
6 incongruent roots. Hence s„=3Sr<=0. He proved also that, if p+1 is 
a prime >3, and n is even and not divisible by p, l”+2^+... +(p/2)'" is 
divisible by p+1- 

W. H. L. Janssen van Raay®°^ considered, for a prime p> 3, 

(y-i)i 
h{p-h) 

and proved that B1+B2+... +J?(p-i)/2 is divisible by p, and 

are divisible by p^. 
U. Concina^^ proved that ^ = 1+2”+...+/c” is divisible by the odd 

number k if n is not divisible by p --1 for any prime divisor of p of k. Next, 
let k be even. For n odd > 1, ^ is divisible by k or only by k/2 according 

*«’Axchiv Math. Phys., (3), 1, 1901, 319. Inserted by Heasel in Kronecker's Vorlesungen tlber 
Zahlentheorie I. 1901, 104-5, 504. 

**®Axchiv Math. Phys., (3), 2, 1902, 141. Cf. Meissner*® of Ch. IV. 
®«»Amer. Math. Monthly, 9, 1902, 212-3. Stated, 1, 1894, 188. 
®®oAnfangsgriinde der Zahlentheorie, 1902, 265-6. 
®®*L^en8eignement math., 9, 1907, 296. 
•wPeriodico di Mat., 27, 1912, 79-83. 
*®*Nieuw Archief voor Wiskunde, (2), 10, 1912, 172-7. 
’MPeriodico di Mat., 28, 1913, 164-177, 267-270. 
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as k is or is not divisible by 4. For n even, S is divisible only by k/2 pro¬ 
vided n is not divisible by any prime factor, diminished by unity, of k. 

N. Nielsen®^® wrote Cl for the sum of the products r at a time of 1,, 
p —1, and 

If p is a prime >2n+l, 

o'2n(jP-l)=S2n(p-l)=0(mod p), Sgn+i(p-1)=0(mod p2). 

If p = 2n+l is a prime >3, and 1, Cp''+^ is divisible by p^ 
Nielsen®®® proved that is divisible by 2n for 2p+l^n, where Di 

is the sum of the products of 1, 3, 5,..., 2n—1 taken s at a time; also, 

-1)=2^%fl(2n—1) (mod 4n^), 

and analogous congruences between sums of powers of successive even or 
successive odd integers, also when alternate terms are negative. He proved 
(pp. 258-260) relations between the C^s, including the final formulas by 
Glaisher.^®^ 

Nielsen®®^ proved the results last cited. Let p be an odd prime. If 
2n is not divisible by p —1, S2n(p--1)=0 (mod p), S2n+i(p~l)=0 (modp^). 
But if 2n is divisible by p—l, 

S2r»(p-1)=-1, S2n+i(?>--l)=0 (modp), Sp(p-1)=0 (modp2). 

T. E. Mason®®® proved that, if p is an odd prime and i an odd integer > 1, 
the sum Ai of the products t at a time of 1,..., p~ 1 is divisible by p^. If 
p is a prime > 3, s* is divisible by p^ when k is odd and not of the form 
m(p—l)+l, by p when k is even and not of the form m(p--'l), and not 
by p if fc is of the latter form. If /: = m(p~l) + l, is divisible by p^ or 
p according as k is or is not divisible by p. Let p be composite and r its 
least prime factor; then r — 1 is the least integer t for which At is not divisible 
by p and conversely. Hence p is a prime if and only if p — 1 is the least t for 
which At is not divisible by p. The last two theorems hold also if we 
replace A^s by s^s. 

T. M. Putnam®®® proved Glaisher^s^®® theorem that s^n is divisible by 
p if n is not a multiple of p — 1, and 

(p-l)/2 

S 
y-l 

.,_o 2~2^ ^ , 
/ —-(modp). 

V 

W. Meissner®^® arranged the residues modulo p, a prime, of the successive 

•“K. Danske Vidensk. Selsk. Skrifter, (7), 10, 1913, 353. 
•wAmiali di Mat., (3), 22, 1914, 81-94. 

8C. l'6cole norm, sup., (3), 31, 1914, 165, 196-7. 
*«T6hoku Math. Jour., 5, 1914, 136-141. 
*®®Ainer. Math. Monthly, 21, 1914, 220-2. 
*^“Mitt. Math. Gesell. Hamburg, 5, 1915, 159-182. 
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powers of a primitive root A of p in a rectangular table of t rows and r col¬ 
umns, where tr=p—l. For p = 13, /i=2, <=4, the table 
is shown here. Let R range over the numbers in any 1 2 4 
column. Then SJK and 'Zl/R are divisible by p. If < is 8 3 6 
even, Zl/E is divisible by p\ as 1/1+1/8+1/12+1/5- 12 11 9 
13V120. For ^-p —1, the theorem becomes the first one 5 10 7 
due to Wolstenholme.^®*^ Generalizations are given at the end of the 
paper. 

N. Nielsen^^^ proved his^®®“ theorem and the final results of Glaisher.^^^ 
Nielsen^^^ proceeded as had Aubr3r3oi and then proved 

S2n+i=0 (mod p^), S /"sO (mod p), Ign^ ' 
i=l Ji 

Then by Newton^s identities we get Wilson^s theorem and Nielsen^s^^® last 
result. 

E. Cahen^^® stated Nielsen^s^®®'" theorem. 
F. Irwin stated and E. B. Escott®^^ proved that if S,- is the sum of the 

products j at a time of 1,1/2,1/3,.1/i, where t— (p —1)/2, then 2S2—Siy 
etc., are divisible by the odd prime p. 

siiQversigt Danske Vidensk. Selsk. Forhandlinger, 1915, 171-180, 521. 
1916, 194-5. 

«i3Comptes Rendus Stances Soc. Math. France, 1916, 29. 
»“Amer. Math. Monthly, 24, 1917, 471-2. 



CHAPTER IV. 
RESIDUE OF -!)//> MODULO P. 

N. H. Abel^ asked if there are primes p and integers a for which 

(1) (modp^, l<a<p. 

C. G. J. Jacobi'* noted that, for p^37, (1) holds only when p = ll, 
a=3 or 9; p=29, a = 14; p=37, a = 18. Cf. Thibault^* of Ch. VI. 

G. Eisenstein® noted t^t, for p a prime, the function 

l)/p 
has the properties 

(2) Suv~Su~i~Svf 3tt+p»“3tt ~ (mod p), 
u 

252—l-i+J-T+-■ •-^■sS- (modp), 
p—l s 

where s=(p+l)/2,..p —1. All solutions of (1) are included in as 
u+'imqui 0<w<p. 

E. Desmarest^ noted that (1) holds for p=487, a = 10, and stated that 
p=3 and p=487 are the only primes < 1000 for which 10 is a solution. 

J. J. Sylvester® stated that, if p, r are distinct primes, p>2, then qr 
is congruent modulo p to a sum of fractions with the successive denominators 
p—1,..., 2,1 and (as corrected) with numerators the repeated cycle of the 
positive integers Sr congruent modulo r to 1/p, 2/p,..., r/p. Thus, for 
r = 5, 

1,2, 3, 4, 5,1, 

5«-p_l+p_2+p_3+p-4+p-5+p-6+ • • • 
(p = 10Jb+l), 

3,1,4,2,5,3, 

p—1 p—2 p—3 p—4 p—5 p—G 
(p = 10A+7). 

According as p=4A;+l or 4A;-“1, q2 is congruent to 

p_3+p_4+p_7+p_8+p-ii+'-' 

_2_2_2_2 2 
p—2 p—3 p—6 p~7 p-10 , ‘ * 

[the signs were given + erroneously]. For any p. 

»Jour. ftir Math., 3, 1828, 212; Oeuvres, 1, 1881, 619. 
*lhid., 301-2; Werke, 6, 238-9; Canon. Arithmeticus, Berlin, 1839, Introd., xxxiv. 
•Berlin Berichte, 1850, 41. 
•Th^orie des nombres, 1852, 295. 
•Comptes Rendus Paris, 52, 1861, 161, 212, 307, 817; Phil. Mag., 21, 1861,136; CoU. Math. 

Papers, II, 229-235, 241, 262-3. 
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Jean Plana' developed ] (ikf—1) +1 [ ” and obtained 

fiM) ... +(M-1)'-'. 

Take ikf=m, m -1,..., 1 in the first equation and add. Thus 

■. • +/M =Si4-^^S2+ • • • +Sp-i, 
P ^ 

where s, = r-f-2*+... + (w -1)’. For 1, we may replace p by j and get 

W^’-W=;Vi+ Sy_2+ (3)«i-3+ . . • +jSu 

a result obtained by Plana by a long discussion [Euler^^]. He concluded 
erroneously that each s,- is divisible by m (for w = 3, §2 = 5). 

F. Proth^ stated that, if p is a prime, 2^—2 is not divisible by p^ [error, 
see Meissner®^]. 

M. A. Stern® proved that, if p is an odd prime, 

m^—m 1,1 1 ,1 , ,1 
—;;;—=Si-^S2+iss— ... —-—7Sp-i=^^p-i+2^^p-2+ • • • + -—70^1 

(^+^+ • • • ... +sp-i (mod p), 

for Si as by Plana and <7-^= l'+2'+ . .. +m^. Proof is given of the formula 
below (2) of Eisenstein® and Sylvester’s formulae for q2 (corrected), as well 
as several related formulae. 

L. Gegenbauer® used Stern’s congruences to prove that the coefficient of 
the highest power of a: in a polynomial/(a?) of degree p--2 is congruent to 
{m^—m)fp modulo p ii f{x) satisfies one of the systems of equations 

/(X) = (-l)^+V-®Sx(7n-l), /(X)=X"~VxW (X = l,..P-1). 

E. Lucas^® proved that 52 is a square only for p = 2, 3, 7, and stated the 
result by Desmarest.^ 

F. Panizza^^ enumerated the combinations p at a time of ap distinct 
things separated into p sets of a each, by counting for each r the combina¬ 
tions of the things belonging to r of the p sets: 

O-i(^M0O ■O' 
•Mem. Acad. Turin, (2), 20, 1863, 120. 
^Comptes Rendus Paris, 83, 1876, 1288. 
•Jour, fiir Math., 100, 1887, 182-8. 
•Sitzungsber. Ak. Wiss. Wien (Math.), 95, 1887, II, 616-7. 

^•Th^orie des nombres, 1891, 423. 
i^eriodico di Mat., 10, 1895, 14-16, 54-58. 
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where ^l+...+tr==P, ij>0. The term given by r = p is a^. For p a 
prime, the left member is (mod p) and we have Fermat^ s theorem. By 
induction on r, 

Taking r=pj'we have 

D. Mirimanoff^^ wrote gq for the least positive integer making aop+l 
divisible by the prime r<p, and denoted the quotient by where hi is 
prime to r. Similarly, let be the least positive integer such that a,p+6i = 

We ultimately find an n for which 6n = l* Then By (2), 
Q ‘ ^*“1 Q . 

ff6,-^=e<5r+gn.., -(modp). 

Let r belong to the exponent co modulo p and set 6£o=p — l. Then Se, =a), 
while 1, 6i,..., are the distinct residues of the eth powers of the integers 
<r and prime to r. Thus 

^ (mod p). 
i»0 Oi 

The formula obtained by taking r a primitive root of p is included in the 
following, which holds also for any prime r: 

gr= 2 ^ (mod p), 

tti being the least positive integer for which aip4-i3i=0 (mod r). Set 
Pi=p — 8, p'p=l (mod r), 0<p'<r. Then ai=p'5-~l (mod r), 

5r=2 (mod p), 
4-1 p — d 

\k\ being the least positive residue modulo r of k. Whence Sylvester^s'" 
statement. 

J. S. Aladow^^ proved that (1) has at most (p=f1)/4 roots if p = 4m=±=l. 
A. Cunningham^^® listed 27 cases in which or (mod p')? 

r<p^~\ where I is a divisor of p —1. For the 11 cases of the first kind, 
p = 5, 7, 17, 19,29,37,43,71,487. 

W. Fr. Meyerproved by induction that, if p is a prime, — ! is 
divisible by p* (l^/c<n), but not by p*’^^ for exactly (p-1)^ posi¬ 
tive integers a;<p” and prime to p, and is divisible by p” for the remaining 
p — l such integers. Set 

A = a+AtiP+.. (l^a<p, 0^Pi<p), 

Wjour. far Math., 115, 1895, 295-300. 
^®St. Petersburg Math. Soc. (Russian), 1899, 40-44. 
i»“Messenger Math., 29, 1899-1900, 158. See Cunningham^*®, Ch. VI. 
^^Archiv Math. Phys., (3), 2, 1901, 141-6. 
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If k is the least index for which (mod p) for h<k, then 
—1 is divisible by p*, but not by 

A. Palmstrom and A. Poliak^® proved that, if p is a prime and n, m are 
the exponents to which a belongs modulo p, p^, respectively, then 
is divisible by p^, so that m is a multiple of n and a divisor of np, whence 
m=w or pn. Thus according as is or is not =1 (mod p^), m=n or 
m=np. 

Worms de Romilly^®“ noted that, if w is a primitive root of p^, the incon- 
gruent roots of (mod p^) are co^^(j = l,..p —1). 

J. W. L. Glaisher^® proved that if r is a positive integer <p, p a prime, 

r^~^ = '^+9iP+h(ffi‘-g2)P^+i(j9i-3gig2+2g3)p^+.. 

where is the sum of the nth powers of 

1 2 r-1 , 1 2 r-1 , 1 

or* [2<r]^‘' [(r—r+o’’ r+[2a-]’' ‘ r+[(r —l)or]^ 2r+<T'’ ’ 

a being the least positive residue modulo r of — p. If pi is the least positive 
solution of (mod r), viz., ppi+i=0, then 

?i=Y+2 + --- 
I ■ /Xi P2 ■ , Pr-1 . Ml 

r-l‘^r+1 r+2‘^’ "“^2r-l72r+l 

Set Pr=0, Pi+jr —jJ'i- Then 

^„=sYQ”, S* ^-^Odnodp). 
i-tl \ I / ,’s»l 1 

Sylvester^s corrected results are proved. From (1+1)^, 

... _^^2(l+i4-... +^) (mod p). 

For r'=r+kp, let p/ be the positive root of pp/+i=0 (mod r'). Then 

r'^-^ = l+h^p+i{h^-h,)p^+^»= 

It is shown that, for some integer t, 

h-gi+^^tp, h-g2=-2~^+2t=ygi-^ (mod p), 

^’ = l+grip’+l-^p2p’+2 (modp’+^). 

Glaisher,^^ using the same notations, gave 

r--^=l+p(^+|+... (mod p^). 

«L’mterin4diaire des math., 8, 1901, 122, 205-6 (7,1900, 357). 
214^5. 

i*Quar. Jour. Math., 32, 1901, 1-27, 240-251. 
^’Messenger Math., 30, 1900-1, 78. 
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Glaisher^® considered in connection with BernouUian numbers and 
gave 

^=-1(1+1+...+1) (modp=3fc+l). 

A. Pleskot^^ duplicated the work of Plana.® 
P. Bachmann^® gave an exposition of the work by Sylvester,® Stem,® 

Mirimanoff.^^ 
M. Lerch^^ set, for any odd integer p and for u prime to p, 

Then,* as a generalization of (2), 

?ii+pt“3ud (mod p), 

2fe-sJ—zl(modf), 

where v ranges over the positive integers <p and prime to p; X over those 
>p/2; p over those <p/2. Henceforth, let p be an odd prime and set 
N^\{V-1) !+lf/p. Then N=q^+... 

[p/4]l (p/31i 

3j3=-2 2i, Vta\y 
[p/53-| [2p/5h 

5g5^-2si~2 2 J, 

modulo p. If yp(ri) is the number of sets of positive solutions <p oi pv—n 
and hence the number of divisors between n/p and p of n, 

Employing Legendre^s symbol and BernouUian numbers, we have 

A=^2^(0g.=O or (-l)"-i2B„ (mod p), 

according as p = 4n+3 or 4n+l. In the respective cases, 

(0pg,= CT(-p) or 0 (mod p), 

where Cl{—A) is the number of classes of positive primitive forms 
ax^-\-hxy+cy^ of negative discriminant 6^—4ac= — A. Also, modulo p, 

j’-i 1 r7.2i 
g.=2S^ ~ 

"aaLi "aaL^J^ -ij/^'LpJ «aaLp 

where a, a are quadratic residues of p, and 6, /9 non-residues. 

i«Proc. London Math. Soc., 33, 1900-1, 49-50. 
i»Zeitschrift fiir das Realschulwesen, Wien, 27, 1902, 471-2. 
*oNiedere Zahlentheorie, 1, 1902, 159-169. *The greatest integer is denoted by [xj. 
*^Math. Annalen, 60, 1905, 471-^90. 
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H. F. Baker^^ extended Sylvester^s theorem to any modulus N: 

N »-l N — TTli 
(mod N)f 

where the m» denote the integers <N and prime to iV, N'N=1 (mod r), 
and ]A;[ is the least positive residue modulo r of k, 

Lerch^^ extended Mirimanoff^s^^ formula to the case of a composite 
modulus m. Set 

q(a, TO)=i(o'’'’">-l). 
m 

Let a belong to the exponent <^)(m)/e. Then ^(a, m)=e2)a/i3 (mod m), 
where ^ ranges over the residues of the incongruent powers of a, and 
ma+^^0 (mod a), 0^a<a. As an extension of Sylvester^s theorem, 

T T 
q{ay m) (mod m), 

where v ranges over the integers < m and prime to m, while 

mrj-—v^0 {mod a)y 0^r,<a, 0^r/<a. 

For m=7ni.. .Wjt, where the m, are relatively prime, 
k 

q{a, w) = 2 njn/(l>(nj)q{a, m,) (mod m), 
j-i 

where m = myriy, n/ny'=1 (mod m,). 
H. Hertzer^^ verified that, for a<p<307, —1 is divisible by p® only 

for a = 68, p = 113; a = 3, 9, p = ll. He examined all the primes between 
307 and 751, but only for a and p—a when a< finding only p = 113, 
a = 68. Removing the restriction a< he found only the solutions 

p = ll,a = 3; p = 331,a = 18,71; p = 353,a = 14; 
487, a = 10,175; p = 673, a = 22, 

together with the square of each a. 
A. Friedmann and J. Tamarkine^® gave formulas connecting q^ with 

Bernoullian numbers and [u/p], 
A. Wieferich^® proved that if is satisfied by integers 

p, z prime to p, where p is an odd prime, then 2^“^=1 (mod p^). Shorter 
proofs were given by D. Mirimanoff^^ and G. Frobenius.^® 

D. A. Grave^^ gave the residue of q2 for each prime p< 1000 and thought 
he could prove that 2^—2 is never divisible by p^ (error, Meissner^^). 

A. Cunningham^^ verified that 2^ — 2 is not divisible by p^ for any prime 
p< 1000, and^^ that 3^ — 3 is not divisible by p^ for a prime p = 2“3^-f 1 < 100. 

W. H. L. Janssen van Raay^^ noted that 2^—2 is not divisible by p^ in 
general. 

’“Proc. London Math. Soc., (2), 4, 1906, 131-5. ^®Comptes Rendus Paris, 142,1906, 35-38. 
’^Archiv Math. Phys., (3), 13, 1908, 107. “Jour, fiir Math., 135, 1909, 146-156. 
2«Jour. fur Math., 136, 1909, 293-302. 27L»enseignement math., 11, 1909, 455-9. 
®*Sitziingsber. Ak. Wiss. Berlin, 1909, 1222-4; reprinted in Jour, fiir Math., 137, 1910, 314. 
’•An elementary text on the theory of numbers (in Russian), Kiev, 1909, p. 315; Kiev Izv. Univ., 

1909, Nos. 2-10. 
•“Report British Assoc, for 1910, 530. L’interm^diaire des math., 18, 1911, 47; 19, 1912, 159. 

Proc. London Math. Soc., (2), 8, 1910, xiii. 
mo+V, IQ 10il /IV nt on inio 
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L. Bastien^^" verified that (1) holds for p<50 only for p== 43, a= 19, and 
for Jacobi’s^ cases. He stated that, if p= 4p± 1 is a prime, 

.~ig2=l+l/3+l/5+...4-l/(2/i~l) (mod p). 

W. Meissner^^ gave a table showing the least positive residue of (2' — 1) /p 
modulo p for each prime p< 2000, where t is the exponent to which 2 belongs 
modulo p. In particular, 2^—2 is divisible by the square of the prime 
p = 1093, contrary to Proth^ and Grave,but for no other p<2000. 

In the chapter on Fermat’s last theorem will be given not only the con¬ 
dition (mod p) of Wieferich^® but also ^3=0 (mod p), etc., with cita¬ 
tions to D. Mirimanoff, Comptes Rendus Paris, 150,1910, 204-6, and Jour, 
fiir Math., 139, 1911, 309-324; H. S. Vandiver, 144, 1914, 314-8; 
G. Frobenius, Sitzungsber. Ak. Wiss. Berlin, 1910, 200-8; 1914, 653-81. 
These papers give further properties of 

P. Bachmann^ employed the identity 

(a6+c) ^ — (a+6—c) ^-f“ (u *-&—c) ^ — (a—&4-c) ^ 

for a = & = l, c=2 or 1 to get expressions for q2 or qz, whence 

for an odd prime p. Comparing this with the value of (3^—3)/p obtained 
by expanding (24-1)^, we see that 

?^=2’’-‘+f2'’-^+i-2’’-3+ ... +-^-2 (mod p). 
p p-l 

Again, 

92=2-(2yi^ +Ssffn.(s-t) (-l)*+'+'s (mod p), 

summed for all sets of solutions of s^=^^4-l (mod p). Finally, 

where r is a primitive pth root of unity. 
*H. Brocard^® commented on a^^=l (mod p”). *H. G. A. Verkaart^® 

treated the divisibility of oF—a by p. E. Fauquembergue^^ checked that 
2^^2 (mod p^) for p==1093. 

N. G. W. H. Beeger^^ tabulated all roots of x^~^=l (mod p^) for each 
prime p<200. If co is a primitive root of p^, the absolutely least residue 

®®®Sph.mx-Oedipe, 7, 1912, 4-6. It is stated that G. Tarry had verified in 1911 that 2^—2 is 
not divisible by a prime p<1013. 

“Sitzungsber. Ak. Wiss. Berlin, 1913, 663-7. 
“Jour, fiir Math., 142, 1913, 41-50. 
“Revista de la Sociedad Mat. Espafiola, 3, 1913-4, 113-4. 
“Wiskundig Tijdschrift, vol. 2, 1906, 23S-240. 
®^L'interm6diaire des math., 1914, 33. 
“Messenger Math., 48, 1913-4, 72-84. 
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=^Xi modulo p of to” is a root, that i^x^) of x^ is a second root, that (=fcX3) 
of X1X2 IS a tlurd root, etc., xmtil the root *x. is reached, where s = (p-i)/2 
The remaining roots are p"-Xi(f = l,..s). He proved that 

p+i 

(xi...x,)*s(-l) 2 (modp*). 
Hence Xj.. .x.= =fcl if p=4n+l. 

W. Meissner®® wrote h„ for the residue <p’" of hT-' modulop”. When 
h vsmes from 1 to p-1, we get p-1 roots of x’^®=l (mod p”*). The 
product of the roots given by h = l,..., (p-l)/2, is s(-l)* or (-l)V 
(mod p ), according as p=4n—1 or in-j-l, where z is the number of pairs 
of mtogers <p/2 whose product is = (mod p), ando- is the smaller of 
the two roots of ar= — 1 (mod p). No number <p which belongs to one 
of the exponents 2, 3, 4, 6, modulo p, can be a root of x>^®=l (mod p®). 
A root of the latter is given for each prime p<300, and a root modulo p® for 
each p<200; also the exponent to which each root belongs. 

N. Nielsen^® noted that, if we select 2r- distinct integers o„ &, (s=1,... ,r) 
from 1,..., p —1, such that a,-l-5,=p, then 

g^=(-l)Tl-pA), (modp). 

Proof is given of various results by Lerch,^^ also of simple relations between 
and Bernoullian numbers, and of the final formula by Plana,® here attrib¬ 

uted to Euler,^^ 
H. S. Vandiver^^ proved that there are not fewer than [Vp] and not 

more than P“-(l + '\/2p—5)/2 incongruent least positive residues of 
1, (P“-l)^\ modulo p^. 

N. Nielsen^^ noted that, if a is not divisible by the odd prime p, 

Cp-"3)/2i 

2 (modp), 
za Zs 

<7i+ga+.. .+gp_i=(-l)'^'J5„+--l (modp®), n=(p-l)/2. 
P 

W. McuBsner^^ gave various expressions for g2 and gs- 
A. (J^*rardin^® found all primes p<2000, including those of the form 

2''*-l, for which go is symmetrical when written to the base 2. 
n. S. Vandiver^® proved that g2=0 (mod p^) if and only if 

l+~+5+...+^-0 (modp®). 

He gave various expressions for (n*~l)/m. 

®®Sit55unc;Kbr‘r. Borlin Math. Oesoll., 13, 1014, OO-IOT. 
*®Ann. Be, IY*e.ol(!! norm. Kup., (3), 31, 1914, 171--9. 
*U0uler, In.stitutionea Calculi DifT,, 1755, 406. Proof, Math. Quest. Educ. Times, 48,1888, 48. 
miiW. Amer. IVlath. Soc., 22, 1915, 01-7. 
^^Oversigt Danske Vidensk. Selsk. Forhandlinger, 1915, 518-9, 177-180; cf. Lerch’s*^ N. 

Math. Gescll. Hamburg, 5, 1915, 172-6, 180. 
«aNouv. Ann. Math., (4), 17, 1917, 102-8. 
*«AnnalB of Math., 18, 1917, 112. 



CHAPTER V. 
EULER'S (^.-FUNCTION, GENERALIZATIONS, FAREY SERIES. 

Number ^(n) of Integers <n and Prime to n. 

L. Euler,^ in connection with his generalization of Fermat^s theorem, 
investigated the number <i>{n) of positive integers not exceeding n which are 
relatively prime to n, without then using a functional notation for 
He began with the theorem that, if the n terms a, a+d,..a+{n—l)d 
in arithmetical progression are divided by n, the remainders are 0, 1,..., 
n—1 in some order, provided d is prime to n; in fact, no two of the terms 
have the same remainder. 

If p is a prime, since p, 2p,..., p'^'^-p are the only 
ones of the p"” positive integers gp”* not prime to p*". To prove that 

(1) 4>{AB) =<I>{A)<I>{B) (A, B relatively prime), 

let 1, a,..., CO be the integers <A and prime to A. Then the integers 
<AB and prime to A are 

1 
A+1 

2A+1 

(B-1)A+1 

a 
A+ol 

CO 

Ad” CO 

2j4.-1“W 

(jB~l)A+a (J5— 
The terms in any column form an arithmetical progression whose difference 
A is prime to B, and hence include <I){B) integers prime to B. The number 
of columns is Hence there are <I)(A)<I>{B) positive integers <AB, 
prime to both A and B, and hence prime to AB. If p,..., s are distinct 
primes, the two theorems give 

(2) <t>(.p^.. = 

Euler^ later used ttN to denote <^(J!V) and gave a different proof of (2). 
First, let N=p% where p, q are distinct primes. Among the AT—1 integers 
<N there are p"—1 multiples of g, and p^"^g-l multiples of p, these sets 
having in common the p"“^ —1 multiples of pq. Hence 

<#)(iV')=A^-l-(p"*-l)-(p”-'g-l)+p”“'-l=p”’'(p-“l)(g--l). 
A simpler proof is then given for the modified form of (2): 

(3) 

where P, g, r,..., s are the distinct primes dividing N. There are N/p 
multiples <N of p and hence N'=N{p-l)/p integers <N and prime to p. 
Of these, N'/q are divisible by g; excluding them, wehave = 
numbers <N and prime to both p and g. Therthpart of these are said 

»Novi Comm. Ac. Petrop., 8, 1760-1, 74; Comm. Arith., 1, 274. Opera postuma, I, 492-3. 
•Acta Ac. Petrop., 4 II (or 8), 1780 (1756), 18; Comm. Arith., 2,127-133. He took (f>{l)=0. 
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[cf. Poinsot^®] to be divisible by r; after excluding them we get N'\T—l)/r 
numbers; etc. 

Euler^ noted in a posthumous paper that, if p, r are distinct primes, 
there are r multiples ^ 'pqr of p^, and qr multiples of p, and a single multiple 
of pqr, whence 

<^(pgr) = pgr—gr—pr—pg+r+p+g—1 = (p — 1) (g — 1) (r—1). 

In general, if M is any number not divisible by the prime p, and if p 
denotes the number of integers and prime to M, there are M-p 
integers and not prime to M and hence integers ^Mp^ and 
not prime to M and therefore not prime to Mp"^, Of the Mp^~'^ multiples 
^Mp^ of p, exclude the p'^~^{M-‘ii) which are not prime to ikf; we obtain 
p””V multiples of p which are prime to M, Hence 

(l^{p^M) = p^M-p^(M -p) -p"-V=- 1)m- 

A. M. Legendre^ noted that, if 0,..., co are any odd primes not dividing 
A, the number of terms of the progression A+^, 2A+B,..nA+H which 
are divisible by no one of the primes 0,..., co is approximately n(l —1/0)... 
(1 — 1/w), and exactly that number if n is divisible by 0,..., co. 

C. F. Gauss® introduced the symbol He expressed EuleFs^ proof 
of (1) in a different form. Let a be any one of the <#)(A) integers <A and 
prime to A, while 0 is any one of the <i>{B) integers <B and prime to J?. 
There is one and but one positive integer x<AB such that (mod A), 
x=^ (mod B). Since this x is prime to A and to B, it is prime to AB, 

Making the agreement that 0(1) = 1, Gauss proved 

(4) S0(d) =iV’ (d ranging over the divisors of N). 

For each d, multiply the integers ^d and prime to d by A/d; we obtain 
S0(d) integers proved to be distinct and to include 1, 2,..., iV". 

A. M. Legendre® proved (3) as follows: First, let N = pM, where p is a 
prime which may or may not divide M] then Mp—M of the numbers 
1,..., iNT are not divisible by p. Second, let N=pqM, where p and q are 
distinct primes. Then 1,..N include M numbers divisible by both p 
and q; Mp—M numbers divisible by q and not by p; Mq — M numbers 
divisible by p and not by q. Hence there remain N{l — l/p){l — l/q) num¬ 
bers divisible by neither p nor q. Third, a like argument is said to apply 
to N—pqrM, etc. 

Legendre (p. 412) proved that if A, C are relatively prime and if 0, X,/x,..., 
CO are odd primes not dividing A, the number of terms kA — C{k = l,...,n), 
which are divisible by no one of 0,..., co, is 

®Tractatus de numerorum, Comm. Arith., 2, 515-8. Opera postuma, I, 1862, 16-17. 
‘Essai BUT la th^orie des nombrea, 1798, p. 14. 
*Diaqiiisitiones Arithmeticae, 1801, Arts. 38, 39, 
•Th^orie des nombrea, ed. 2, 1808, 7-8; German trana. of ed. 3 by Maser, 8-10. 
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where the summations extend over the combinations of , o) taken 
1, 2,..at a time, while Aq is a positive integer <A for which AAq+C is 
divisible by A, and. [a;] is the greatest integer We thus derive the 
approximation stated by Legendre."^ Taking A = l, C—0 (p. 420), we see 
that the number of integers ^n, which are divisible by no one of the dis¬ 
tinct primes 0, X,..., co is 

A. von Ettingshausen^ reproduced without reference Euler’s^ proof of 
(3) and gave an obscurely expressed proof of (4). Let iV'=pV* • where 
p, q,. . .are distinct primes. Consider first only the divisors d = p^^f where 
IJL> 0, ?/> 0, so that d involves the primes p and q, but no others. By (3), 

m =d(l-1) (l-i), S = (P+P^+ •.. +P‘)(5+... +2*), 
20(pY) = (P“-1)(5^-1)- 

Similarly, 1. In this way we treat together the divisors of N 
which involve the same prime factors. Hence when d ranges over all the 
divisors of JV, 

P P.Q P,Q,r 

=nji+(Y-i)f=np“=2v, 
p 

where the summation indices range over the combinations of all the prime 
factors of N taken 1, 2,.. .at a time. [Cf. Sylvester 

A. L. Crelle® considered the number Zj of integers, chosen from ni,... ,no, 
which are divisible by exactly j of the distinct primes Pi,..Pm; and the 
number Sj of the integers, chosen from ni,..., n^, which are divisible by at 
least j of the primes Pi. Then 

+ • • • +2?„» = Si—52 + 53— . . . =^5^. 

Let V be the number of the integers rii,..., which are divisible by no one 
of the primes p^. Then 

a='EZi+p, i/ = a—5i+52—... =F5, 

In particular, take .. ., na to be 1, 2,..N, where N = p'^q^r'^..., and 
take pi,. .., Pm to be p, g, r, — Then 

<I,{N)=N-S,+S,- ... =A^(l-J) (l-J) ■ • •• 

He proved (1) for jB = a“, where a is a prime not dividing A (p. 40). By 
Euler's^ table there are B4>{A) integers <AB and prime to A. In Euler’s 

’Zeitschrift fiir Physik u. Math, (eds,, Baumgartner and EttingshauBen),Wien, 5,1829,287-292. 
®Abh. Akad. Wiss. Berlin (Math.), 1832, 37-50. 
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notation, a(jfcA+a),..a{kA+o)) give all the numbers between 
kaA and {k+'^)aA which are divisible by a and are prime to A, Taking 
k=^0, 1,• •we see that there are exactly multiples of a 
which are <AB and prime to A, Hence 

</)(a“A) =a“</)(^)-a^-^cl>{A) =</)(a")0(i4). 

F. Minding® proved Legendre’s formula (5). The number of integers 
^n, not divisible by the prime 6, is n — [n/6]. To make the general step 
by induction, let pi,,.., be distinct primes, and denote by (J5; pi,. .., pj,) 
the number of integers ^ B which are divisible by no one of the primes pi,..., 
p*. Then, if p is a new prime, 

(B; pi,..., Pk, v) = (H; pi,..., p^)-{[B/p]] Pi,..., p*). 

The truth of (4) for the special case iV = p--l, where p is a prime, follows 
(p. 41) from the fact that <^(d) numbers belong to the exponent d modulo p 
if d is any divisor of p —1. 

N. Druckenmiiller^® evaluated <#>(b), first for the case in which 6 is a 
product cd.. Moi distinct primes. Set h =/3Z and denote by the num¬ 
ber of integers <h having a factor in common with 6. There are 
numbers < h which are divisible by one of the primes c,..., A;, since there 
are ^(/?) in each of the sets 

l,2,...,/3; /3+l,...,2^; (Z^ 1)^+1,. 

Again, Z, 2Z,..., are the integers <h with the factor Z. Of these, 
are prime to while the others have one of the factors Cj.. k and occur 
among the above Zi/'(/3). Hence \p(b) But i/'(/3)+</)(j3) =jS. 
Hence 

c^>(b) = (Z--l)0O) = (c~-l)...(Z-l). 

Next, let 5 be a product of powers of c, d,..., Z, and set 5=L/3, P = cd.. .1, 
By considering L sets as before, we get 

E. Catalan^ ^ proved (4) loy noting that 

2<#)(py* • .)=n]i+0(p)-i-.. =np“=iV', 

where there are as many factors in each product as there are distinct prime 
factors of N. 

A. Cauchy^^ gave without reference Gauss’® proof of (1). 
E. Catalanevaluated (t>iN) by Euler’s^ second method. 
C. F. Arndtgave an obscure proof of (4), apparently intended for 

Catalan’s.It was reproduced by Desmarest, Th6orie des nombres, 1852, 
p. 230.__ 

•Anfangsgriinde der Hoheren Arith., 1832, 13-15. 
^“Theorie der Kettenreihen.. .Trier, 1837, 21. 
^^Jour. de Math^matiques, 4, 1839, 7-8. 
“Comptes Rendus Paris, 12, 1841, 819-821; Exercices d'analyse et de phys. math., Paris, 2, 

1841, 9; Oeuvres, (2), 12. 
“Nouv. Ann. Math., 1, 1842, 466-7. 
i^Axchiv Math. Phys., 2, 1842, 6-7. 
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J. A. Grunert^^ examined in a very elementary way the sets 

jh+l, jh+h-l, {j+l)k 0*=0, 1,..p-1) 

and proved that <j){'pk)—'p(t>{h) if the prime p divides kj while <j>{pk)=^ 
{p — l)(l>(k) if the prime p does not divide k. From these results, (2) is 
easily deduced [cf. Crelle^^ on <I){Z)], 

L. Poinsot^® gave Catalan’s^^ proof of (4) and proved the statements 
made by Euler^ in his proof of (3). Thus to show that, of the N'=^N{1 — 1 /p) 
integers <N and prime to p, exactly N'/q are divisible by g, note that the 
set 1,..N contains N/q multiples of q and the set p, 2p,... contains 
{N/p)/q multiples of q, while the difference is N'/q, 

If P, Qf P,... are relatively prime in pairs, any number prime to 
N=PQR... can be expressed in the form 

pQR. ..+qPR. ..+rPQ. 
where p is prime to P, q to Q, etc. If also p< P, q< Q, etc., no two of these 
sums are equal. Thus there are 0(P)<^(Q)... such sums [certain of which 
may exceed N], 

To prove (4), take (pp. 70-71) a prime p of the form fciV+l and any one 
of the N roots p of 1 (mod p). Then there is a least integer d, a divisor 
of Nj such that p^^l (mod p). The latter has <^(d) such roots. Also p is a 
primitive root of the last congruence and of no other such congruence whose 
degree is a divisor of N, 

A. L. Crelle^* considered the product E=eie2.. .Cn of integers relatively 
prime in pairs, and set Ej=^E/ej. When x ranges over the values 1,..., 
the least positive residue modulo E of EiXi+... +EnXn takes each of the 
values If.E once and but once. In case Xi is prime to 6i for i = 1,..., n, 
the residue of I^EiXi is prime to E and conversely. Let dn, di2,... be any 
chosen divisors >1 of which are relatively prime in pairs. Let \p{ei) 
denote the number of integers which are divisible by no one of the 
dii, di2,.... Let \p{E) be the number of integers SE which are divisible 
by no one of the dn, di2, ..., including now all the d's. Then ^(P) = 
^(«i) • • • ^(«n)* In case d^, di2,... include all the prime divisors > 1 of 
\p{e^) becomes </)(Ci). Of the two proofs (pp. 69-73)i one is based on the 
first result quoted, while the other is like that by Gauss.^ 

As before, let ^(y) be the number of integers which are divisible by 
no one of certain chosen relatively prime divisors dj,. .., d„i of y. By con¬ 
sidering the xy numbers ny+r (0^n<a;, it is proved (p. 74) that, 
when X and y are relatively prime, 

\l/{xy) = xxPiy), \l/2{xy) = {x- l)\l/{y), 

where ^2(^2/) is the number of .integers ^xy which are divisible neither by 
X nor by any one of the d’s. These formulas lead (pp. 79-83) to the value 
oi<l>{Z). Set 
_Z^p/K,.p;^, z = p^...p^^ n^ZIz,_ 

“ArcMv. Math. Phys., 3, 1843, 196-203. 
^•Jour. de Math^matiques, 10, 1845, 37-43. 
i^Encyklopadie der Zahlentheorie, Jour, fiir Math., 29, 1845, 58-95. 
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notation, a(M+l), a(kA+a),..a(kA+o)) give all the numbers between 
kaA and {k+l)aA which are divisible by a and are prime to A, Taking 
k=0y 1,..—1, we see that there are exactly multiples of a 
which are <AB and prime to A, Hence 

=a“<^(A) — 

F. Minding^ proved Legendre’s formula (5). The number of integers 
^71, not divisible by the prime 6, is n—[n/d]. To make the general step 
by induction, let Pi,..., p* be distinct primes, and denote by {B ; Pi,..., p*) 
the number of integers ^ B which are divisible by no one of the primes pi,..., 
Pk. Then, if p is a new prime, 

{B; Ply..., Pk, p) = (-S; Pi,..., Pk) - (IB/p]; Pi,..., p*). 

The truth of (4) for the special case iV'=p—1, where p is a prime, follows 
(p. 41) from the fact that <^(d) numbers belong to the exponent d modulo p 
if d is any divisor of p — 1. 

N. Druckenmuller^® evaluated 0(6), first for the case in which 6 is a 
product cd...kloi distinct primes. Set h=pi and denote by 0(6) the num¬ 
ber of integers <6 having a factor in common with 6. There are i0(/3) 
numbers <6 which are divisible by one of the primes c,..., k, since there 
are 003) in each of the sets 

1,2,10. 

Again, I, 21,.01 are the integers <6 with the factor 1. Of these, 0(/3) 
are prime to 0, while the others have one of the factors c,..k and occur 
among the above Z0(i3). Hence 0(6) =l!0(/3)-f0(i3). But 0O3)+0(/3) =j3. 
H!ence 

0(6) = (^~l)0(/3) = (c-l)...(Z-l). 

Next, let 6 be a product of powers of c, d,..., Z, and set h=L0, 0 = cd.. .h 
By considering L sets as before, we get 

0(6)=L0(^), 0(6)=L0(/3). 

E. Catalan^^ proved (4) t)y noting that 

2<^(pY- • .)=n|i+0(p)+.. .+0(p“)[ =np*=iv, 

where there are as many factors in each product as there are distinct prime 
factors of N. 

A. Cauchy^^ gave without reference Gauss’® proof of (1). 
E. Catalan^^ evaluated 0(iV’) by Euler’s^ second method. 
C. F. Arndtgave an obscure proof of (4), apparently intended for 

Catalan’s.^^ It was reproduced by Desmarest, Th^orie des nombres, 1852, 
p. 230. 

•Anfangsgriinde der Hoheren Arith., 1832, 13-15. 
^“Theorie der Kettenreihen.. .Trier, 1837, 21. 
“Jour, de Math^matiques, 4, 1839, 7-8. 

i^Comptes Rendus Paris, 12, 1841, 819-821; Exercices d’analyse et de phys. math., Paris, 2, 
1841, 9; Oeuvres, (2), 12. 

i*Nouv. Ann. Math., 1, 1842, 466-7. 
^^Axchiv Math. Phys., 2, 1842, 6-7. 
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J. A. Grunert^® examined in a very elementary way the sets 

jk+1, jk+2,.,., jk+k-1, {j+l)k (j = 0, 1,.. p~l) 

and proved that ct){pk)=p(l>{k) if the prime p divides k^ while 0(pA;) = 
{p — l)(l)(k) if the prime p does not divide k. From these results, (2) is 
easily deduced [cf. Crelle^^ on (l){Z)], 

L. Poinsot^® gave Catalan^s^^ proof of (4) and proved the statements 
made by Euler^ in his proof of (3). Thus to show that, of the N'=^N{l — l/p) 
integers <N and prime to p, exactly N'/q are divisible by q, note that the 
set 1,. .N contains N/q multiples of q and the set p, 2p,... contains 
{N/p)/q multiples of g, while the difference is N'/q, 

If P, Q, P,... are relatively prime in pairs, any number prime to 
N=PQR... can be expressed in the form 

pQR... +qPR... +rPQ 
where p is prime to P, q to Q, etc. If also p<Pjq<Q, etc., no two of these 
sums are equal. Thus there are 0(P)0(Q)... such sums [certain of which 
may exceed N], 

To prove (4), take (pp. 70-71) a prime p of the form kN+1 and any one 
of the N roots p of a;^=l (mod p). Then there is a least integer d, a divisor 
of N, such that (mod p). The latter has 0(d) such roots. Also p is a 
primitive root of the last congruence and of no other such congruence whose 
degree is a divisor of N. 

A. L. Crelle^" considered the product E=Cie2.. .e„ of integers relatively 
prime in pairs, and set Ej=E/ej, When x ranges over the values 1,..., e,-, 
the least positive residue modulo E of EiXi-i-... +EnXn, takes each of the 
values 1,..., P once and but once. In case Xi is prime to Ci for i = 1,..., n, 
the residue of ZEiXi is prime to E and conversely. Let d^, di2,... be any 
chosen divisors >1 of c,- which are relatively prime in pairs. Let 0(ei) 
denote the number of integers which are divisible by no one of the 
diu di2,.... Let 0(P) be the number of integers ^E which are divisible 
by no one of the dn, di2, d2i,..., including now all the d’s. Then 0(P) = 
0(ei)... 0(Cn). In case d^i, di2, • • • include all the prime divisors > 1 of e,-, 
0(e,) becomes ^(ci). Of the two proofs (pp. 69-73),- one is based on the 
first result quoted, while the other is like that by Gauss.® 

As before, let 0(?/) be the number of integers ^ y which are divisible by 
no one of certain chosen relatively prime divisors di,..., d„i of y. By con¬ 
sidering the xy numbers ny-fr (0^n<a:, l^r^y), it is proved (p. 74) that, 
when X and y are relatively prime, 

4/{xy)=x<i/{y), i2{xy) = {x-l)\p{y), 
where ^2{xy) is the number of .integers ^ xy which are divisible neither by 
X nor by any one of the d’s. These formulas lead (pp. 79-83) to the value 
of 0 {Z). Set 
_^ = g = - n = Z/z,_ 

“Archiv. Math. Phys., 3, 1843, 196-203. 
“Jour, de Math4matiques, 10, 1845, 37-43. 
‘^Encyklopadie der Zahlentheorie, Jour, fiir Math., 29, 1845, 58-95. 
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where Pi,.. •, Vn are distinct primes. For a prime p, not dividing p, we 
have <t>lvy) = (P'-'l)<^(2/)* Take p = pi, V = V2] then 

0(PiP2) = (pi-”l)(P2~l)* 

Next, take P-P1P2, P=P3^ and use also the last result; thus 

<l> (P1P2P3) = (Pl “ 1) (P2 “ 1) (P3 “ 1), 

and similarly for <^(2). When f ranges over the integers < z and prime to Zj 
the numbers vz+t (?/ = 0,1,..n —1) give without repetition all the integers 
<Z and prime to Z. Hence (t>{Z) =n<^)(0), which leads to (2). [Cf. Guil- 
min/® Steggall.^®] 

The proofs of (4) by Gauss^ and Catalan^^ are reproduced without refer¬ 
ences (pp. 87-90). A third proof is given. Set A = where a, 5, 
c,... are distinct prunes. Consider any divisor e = ... of iV such that e 
is not divisible by a. Then 

=a^-i(a—1)0(€). 

Sum for fc = 0, 1,..., a; we get a“0(€). When k ranges over its values and 
/3i over the values 0, 1,..jS, and 71 over the values 0, 1,..7; etc., €a* 
ranges over all the divisors d of A. Hence S<^)(d) =a“2</)(€). Similarly, if 
€1 range over the divisors not divisible by a or 6, 

-b^<#>(ei),..., S<#>(d) = ... =N. 

E. Prouhet^® proposed the name indicator and symbol i{N) for 
He gave Gauss’ proof of (1) and Catalan’s proof of (4). If d is the product 
of the distinct prime factors common to a and 6, 

cj){db) =(l>{a)(}){h)d/(j){d). 

As a generalization, let di be the product of the distinct primes common to 
i of the numbers then 

. .an)=4>{ai).. 
h 

Friderico Arndt^^. proved (1) by showing that, if x ranges over the 
integers <A and prime to A, while y ranges over the integers <B and prime 
to Bj then Ay+Bx gives only incongruent residues modulo ABy each prime 
to ABy and they include every integer <AB and prime to AB. [Crelle’s^^ 
first theorem for n — 2.] 

V. A. Lebesgue^® used Euler’s^ argument to show that there are 

N(p-l)(g-l)...(^-l) 

p-q.. .k 

integers <N and prime to p, g,. .., /c, the latter being certain prime divisors 
of N [Legendre,^ Minding®]. 

^®Nouv. Ann. Math., 4, 1845, 75-80. 
i«Jour. fur Math., 31, 1846, 246-8. 
*®Nouv. Ann. Math., 8, 1849, 347. 
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G. L. Dirichlet^^ added equations (4) for iV’=n,..2, 1, noting that, 
if 0(s) occurs in the new left member as often as there are mul¬ 
tiples of s. Hence 

2r-b(s)=i(n'+«)- 
s=lLsJ 

The left member is proved equal to 2)0[n/s], where 

0(x)=0(l)-f...-f0(x). 

It is then shown that 0(n) — is of an order of magnitude not exceed¬ 
ing that of n\ where 2>5>7>1,7 being such that 

P. L. Tchebychef^^ evaluated 0(n) by showing that, if p is a prime not 
dividing A, the ratio of the number of integers ^pAN which are prime to A 
to the number which are prime to both A and p is p:p — 1. 

A. Guilmin^^ gave Crelle's^^ argument leading to 4>{Z). 
F. Landry^^ proved (3). First, reject from 1,..iV the N/p multiples 

of p; there remain i\r(l — 1/p) numbers prime to p. Next, to find how many 
of the multiples q, 2q,..., N of q are prime to p, note that the coefficients 
1, 2,..., N/q contain (1 — 1/p) integers prime to p by the first result, 
applied to the multiple N/q of p in place of N. 

Daniel Augusto da Silva^® considered any set S of numbers and denoted 
by S(a) the subset possessing the property a, by S{ab) the subset with the 
properties a and h simultaneously, by {a)S the subset of numbers in S 
not having property a; etc. Then 

(a)S = S-S{a)==^S\l-{a)\, 

symbolically. Hence 

{ha)S=ih)\{a)S\=S\l^(a)\\l-{h)\, 
. .cha)S = S\l-{a)\\l-{b)\\l--{c)\ . . 

A proof of the latter symbolic formula was given by F. Horta.^^® 
With Silva, let S be the set 1, 2,..., n, and let A, 5,... be the distinct 

prime factors of n. Let properties a, 6,... be divisibility by A, 5,.... Then 
there are n/A terms in S{a), n/{AB) terms in S{ah),. .., and 0(n) terms in 
(.. .cha)S. Hence our symbolic formula gives 

^^Abhand. Ak. Wiss. Berlin (Math.), 1849, 78-81; Werke, 2, 60-64. 
22Theorie der Congrucnzen, 1889, §7; in Russian, 1849. 
«Nouv. Ann. Math., 10, 1851, 23. 
*^Troisi6me m6moire sur la th6orie des nombrcs, 1854, 23-24. 
*®Proprietadcs geraes et resoluQao directa das Congruencias binomias, Lisbon, 1854. Report 

on same by C. Alasia, Rivista di Fisica, Mat. e Sc. Nat., Pavia, 4, 1903, 13-17; reprinted 
in Annaes Scientificos Acad. Polyt. do Porto, Coimbra, 4, 1909, 166-192. 

““Annaes de Sciencias e Lettras, Lisbon, 1, 1857, 705. 
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E. evaluated where m is a product of powers of the distinct 
primes Ui, a2,. ■ Consider the set Ciof the products of the a^s taken i at 
a time and their multiples Thus Co is 1,.. ., w, while C2 is 

^ m m 
aia2, 2aia2,..-0,1^2] • • •> • •• 

CI\CL2 

Let X be an integer <m divisible by ai,..a.. Then x occurs 

tiinPR in the sets Co, C2, C4,...; and 2“ ^ times in Ci, C3,.... Summing 

l-(l) + (2)~(3)+ -=® 
for each of the m-4>{m) integers having factors in common with m, 
we get 

m-<#.(w)-s(“)+sQ-...=0. 

But is the number of integers having in common with m one of the 

factors ai, a2,..., and hence equals S—. Next, S is the number of 

integers having in common with m one of the factors aia2, aia^,.. ., and hence 
equals 2 {m/ {aia^}. Thus 

CL\ ^1^2 

R. Dedekind^^ gave a general theorem on the inversion of functions (to 
be explained in the chapter on that subject), which for the special case of 
<ji{n) becomes a proof like Betties. Cf. ChrystaFs Algebra, II, 1889, 511; 
Mathews^ Theory of Numbers, 1892, 5; Borel and Drach,®^ p. 27. 

J. B. Sturm^® evaluated 0(A) by a method which will be illustrated for 
the case A = 15. From 1,-.15 delete the five multiples of 3. Among 
the remaining ten numbers there are as many multiples of 5 as there are 
multiples of 5 among the first ten numbers. Hence 0(15) = 10 — 2 = 8. 
The theorem involved is the following. From the three sets 

1, 2, 3,* 4, 5; 6,* 7, 8, 9,* 10; 11, 12,* 13, 14, 15* 

delete (by marking with an asterisk) the multiples of 3. The numbers 
11,13,14 which remain in the final set are congruent modulo 5 to the num¬ 
bers 6, 3, 9 deleted from the earlier sets. 

J. LiouviUe^® proved by use of (4) that, for |xl<l, 

X « 0(m)x'” a:(l+x^) 

^ {l~xy ’ 

“Bertrand’s Alg^bre, Ital. transl, with notes by Betti, Firenze, 1856, note 5. Proof reproduced 
by Fontebasso^t pp. 74-77. 

*’Jour. fiir Math., 54, 1857, 21. Dirichlet-Dedekind, Zahlentheorie, §138. 
“Archiv Math. Phys., 29, 1857, 448-452. 
’*Jour. de mathSmatiques, (2), 2, 1857, 433-440. 
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where m in S' ranges only over the positive odd integers. The final fraction 
equals x+Sx^+5x^-\-.... From the coefficient of x"" in the expansion of 
the third sum, we conclude that, if n is even, 

S(-l)*-'0(d)=O (5=n/d), 

where d ranges over all the divisors of n. Let 8i range over the odd values 
of d, and §2 over the even values of 5; then 

the value n/2 following from (4). Another, purely arithmetical, proof is 
given. Finally, by use of (4), it is proved that, if s>2. 

”d>(n) 
S.-x/S., S —• 

177^ n»lA{> 

A. Cayley^® discussed the solution for N of cl)(N) = N\ Set N=a""!/..., 
where a, 6,... are distinct primes. Multiply 

1 -|-(u — 1) \cL\-^a{cL — 1) \(i^\ “f* • • • — 1) Hh ■ • • 

by the analogous series in b, etc.; the bracketed terms are to be multiplied 
together by enclosing their product in a bracket. The general term of the 
product is evidently 

} ==(I>{N)\N\. 

Hence in the product first mentioned each of the bracketed numbers which 
are multiplied by the coefficient N' will be a solution N of 0(iV') =N'. We 
need use only the primes a for which a—1 divides N'j and continue each 
series only so far as it gives a divisor of N' for the coefficient of 

V. A. Lebesgue^^ proved (t>{Z)=n<j){z) as had Crelle^^ and then <j>{z) 
=n(p£ —1) by the usual method of excluding multiples of pi,..., in turn. 
By the last method he proved (pp. 125-8) Legendre’s (5), and the more 
general formula preceding (5). 

J. J. Sylvester^^ proved (4) by the method of Ettingshausen,^ using (2) 
instead of (3). By means of (4) he gave a simple proof of the first formula 
of Dirichlet;^^ call the left member since [n/r] — [(n —l)/r]== 1 or 0, 
according as n is or is not divisible by r, 

n(n-l-l) , 
^^n-'i^n-i=S</>(d)=n, = —2- 

The constant c is zero since = 1. He stated the generalization 

2 |</>(i") ... + [7]' ')}= l’’+2’'+ • ■ ■ +n'- 

He remarked that the theorem in its simplest form is 

‘“London Ed. and Dublin Phil. Mag., (4), 14, 1857, 539-540. 
“Exercices d'analyse numdrique, 1859, 43-45. 
«Quar. Jour. Math., 3, 1860, 186-190; Coll. Math. Papers, 2, 225-8. 
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the example given being r = 2, n = 4, whence the divisors of n are M, 2*1,4*1, 
1-2, 2*2, 1-4 and the above terms are 

M*!, 1-M, M.2, 2-1-1, 2.1-1, 4.2-1, 

with the sum 4^. [With this obscure result contrast that by Cantor.'*^] 
G. L. Dirichlet^^ completed by induction Euler’s^ method of proving (3), 

obtaining at the same time the generalization that, if p, g,..., s are divisors, 
relatively prime in pairs, of N, the number of integers S N which are divi¬ 
sible by no one of p,..., 5 is 

o-j)- 
A proof (§13) of (4) follows from the fact that, if d is a divisor of N, there 
are exactly <i>{d) integers SN having with N the g. c. d. iV/d. 

P. A. Fontebasso^^ repeated the last remark and gave Gauss' proof of (1). 
E. Laguerre^® employed any real number k and integer m and wrote 

(m, m/h) for the number of integers '^mfk which are prime to m. By 
continuous variation of h he proved that 

S(d, d/k)^[m/kl 

where d ranges over the divisors of m. For ^ = 1, this reduces to (4). 
F. Mertens^® obtained an asymptotic value for </>(!)+ .. .+<I>(G) for G 

large. He employed the function ju(n) [see Ch. XIX] and proved that 

|A|<G(J log,G+|C+f)+l, 

where C is Euler's constant 0.57721_ This upper limit for A is more 
exact than that by Dirichlet.^^ 

T. Pepin^"^ stated that, if n = .. (a, 6,.. .distinct primes), 

n=<^(n)+Sa'‘“V(^) (^) + • • • • •• 

Moret-Blanc^® proved the latter by noting that the first sum is the num¬ 
ber of integers <n which are divisible by a single one of the primes a,b,.. 
the second sum is the number of integers <m divisible by two of the primes, 
..., while ... is the number of integers < n divisible by all those 
primes. 

H. J. S. Smith^^ considered the w-rowed determinant having as the 
element in the 2th row and jth column the g. c. d. {i, j) of i, j. Let li = m, 

^Zahlentheorie, §11, 1863; ed. 2, 1871; ed. 3,1879; ed. 4, 1894. 
*^Saggio di una introd. aU’arit. trascendente, Treviso, 1867, 23-26. 

Soc. Math. France, 1, 1872-3, 77. 
«Jour. fiir Math., 77, 1874, 289-91. 
*^Nouv. Ann. Math., (2), 14, 1875, 276. 
^Uhid., p. 374. L. Gegenbauer, Monatsh. Math. Phys., 4, 1893, 184, gave a generalization to 

primary complex numbers. 
”Proc. London Math. Soc., 7, 1875-6, 208-212; CoU. Papers, 2, 161. 
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Zs, ^3,... be those divisors of m=p'^g^,. .f which are given by the expansion 
of the product 

0(m) = (p“-p“"^).. .(r-r~^)=Zi-Z2+i!3~-. 

It is proved that 

<^(m, k) = (^1, k) - (^2, /c) + . . . - /c) 

[called Smith’s function by Lucas/^ p. 407] is zero if /c<m, but equals 
4>{m) if k = m. Hence if to the mth column of we add the columns with 
indices k, Z5,... and subtract the columns with indices I2, ^4,..., we obtain 
an equal determinant in which the elements of the mth column are zero 
with the exception of the element 4>(jn). Hence A^=A„_i0(m), so that 

(6) A^=0(l)(/)(2).. .0(m). 

If we replace the element 5 = ('^, j) by any function/(5) of d, we obtain a 
determinant equal to F(l).. .F(m), where 

Particular cases are noted. For/(5)=5*, F(m) becomes Jordan’s^*^® func¬ 
tion JkM‘ Next, if f{5) is the sum of the A;th powers of the divisors of 5, 
then F(m) =m^'. Finally, if /(5) = l*+2^-f-.. . +5^', it is stated erroneous¬ 
ly that F{m) is the sum </)A:(m) of the kth. powers of the integers and 
prime to m. [Smith overlooked the factors a*, aV,... in Thacker’s^^° first 
expression for (j)k{n), which is otherwise of the desired form F{n). The 
determinant is not equal to . • .0ib(m), as the simple case 1, m = 2, 
shows.] 

In the main theorem we may replace 1,..m by any set of distinct 
numbers mi? • • • > Mm such that every divisor of each Mi is a number of the 
set; the determinant whose element in the ith row and jth column is /(5), 
where 5==(Mi, Mi)j equals F(mi) • • •F(Mm)- Examples of sets of m’s are the 
numbers in their natural order with the multiples of given primes rejected; 
the numbers composed of given primes; and the numbers without square 
factors. 

R. Dedekind"^*^ proved that, if n be decomposed in every way into a 
product ad, and if e is the g. c. d. of a, d, then 

S|<^(6)=nn(l+i), 

where a ranges over all divisors of n, and p over the prime divisors of n. 
P. Mansion^^ stated that Smith’s relation (G) yields a true relation if we 

replace the clcnlcnts 1,2,. . .of the determinant A,„ by any symbols 0*1, Xo,..., 
and replace by —.... [But the latter is only another 
form of Smith’s F{7n) when we write X5 for Smith’s/(6), so that the generali¬ 
zation is the same as Smith’s.] 

*“Jour. fiir Math., 83, 1877, 288. Cf. H. Weber, Elliptische Fuactioneii, 1891, 244-5; ed. 2, 
1908 (Algebra 111), 234-5. 

^^Messenger Math., 7, 1877-8, 81-2. 
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P. Mansion^^ proved (6), showing that <^(m, k) equals or 0, accord¬ 
ing as m is or is not a divisor of k, [Cf. Bachmann, Niedere Zahlentheorie, 
I, 1902, 97-8.] He repeated his^^ generalization.^^ He stated that if a 
and h are relatively prime, the products of the (t>(d) numbers <a and prime 
to a by the numbers < b and prime to h give the numbers < ah and prime 
to ah [false for a = 4, 5=3; cf. Mansion"^]. His proof of (4) should have 
been credited to Catalan. 

E. Catalan^^ gave a condensation and slight modification of Mansion’s** 
paper. C. Le Paige (ibid,, pp. 176-8) proved Mansion’s** theorem that 
every product equals a determinant formed from the factors. 

P. Mansion** proved that the determinant |cfjl of order n equals X1X2.. .x^ 
if Cij='Z>Xj,j where p ranges over the divisors of the g. c. d. of i, j. To obtain 
a “generalization” of Smith’s theorem, set Zi=Xi^ Z2=Xi-hx2,..Z{='Exi, 
where d ranges over all the divisors of i. Solving, we get 

where the Vs are defined above.^^ Thus each Cij is a z. For example, if n=4, 

Zi Zi Zi Zi 

^ 1_ ^2 % ^2 . 

«1 2l 23 2i 

^2 ^4 

For Zi=i, Xi becomes 4>(i) and we get (6). [As explained in connection with 
Mansion’s*^ first paper, the generalization is due to Smith.] 

J. J. Sylvester*® called </)(n) the totient T(n) of n, and defined the totitives 
of n to be the integers <n and prime to n. 

F. de Rocquigny*® stated that, if (1>^(N) denotes etc., 

] (A -1)2 f, 

if A is a prime and m>2, p>2. He stated incorrectly (ibid., 50,1879, 604) 
that the number of integers ^ P which are prime to iV = ... is P(1 — 1/a) 
(1-1/5).... 

A. Minine*’^ noted that the last result is correct for the case in which 
P is divisible by each prime factor a, 5,... of N. He wrote symbolically 

nE^ for [n/x], the greatest integer ^n/x. By deleting from 1,..., P the 

[P/a] numbers divisible by a, then the multiples of 5, etc., we obtain for 
the number of integers ^ P which are prime to N the expression 

[equivalent to (5)]. If N, N', N",... are relatively prime by twos, 

"Annales de la Soc. Sc., Bruxelles, 2, II, 1877-8, 211-224. Reprinted in Mansion’s Sur la 
th^orie des nombres, Gand, 1878, §3, pp. 3-16. 

‘*Nouv. Corresp. Math., 4, 1878,103-112. 
♦‘BuU. Acad. R. Sc. de Belgique, (2), 46, 1878, 892-9. 
"Amer. Jour. Math., 2, 1879, 361, 378; Coll. Papers, 3, 321, 337. Nature, 37, 1888, 152-3. 
"Les Mondes, Revue Hebdom. des Sciences, 48, 1879, 327. 

51, 1880, 333. Math. Soc. of Moscow, 1880. Jour, de math. 616m. et sp6c., 1880, 278. 
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<l>{N)p^<l>{N')p.-(t>{N")p.... ^<t>(NN'Nr . .)p-P'P".... 

E. Lucas^® stated and Radicke proved that 

S ^(a, n) = 2 (l>{k), 2 a\l/{a, n) = J 2 k<t){k), 
a»l fc-2 o»l Jfc»2 

if yp{aj n) is the number of integers > a, prime to a and ^ n. 
H. G. Cantor^® proved by use of f-functions that 

summed for all distinct sets of positive integral solutions Vp^i of 
Vq. . .Vp=n, and noted that this result can be derived from the special case (4). 

0. H. MitchelP® defined the a-totient Ta{k) of k = a*h^.,. (where , 
are distinct primes) to be the number of integers <k which are divisible 
by a, but by no one of the remaining prime factors 6, c,... of k. Similarly, 
the a6-totient T^hik) of k is the number of integers < k which are divisible 
by a and 6, but not by c,...; etc. If A;==a%V, 

U{k) = a*-V{&V), T^{k) = V'S 
m +lju{k) +2r,,(^) =k. 

3 3 

If (T contains the same primes as s, but with the same exponents as in k, so 
that <r=a* if s = a, it is stated (p. 302) that 

C. Crone®^ evaluated <^(n) by an argument valid only when n is a product 
of distinct primes Pi,..Pq. The number of integers <n having a factor 
in common with n is then 

A=2(^^l)-2(^~l) + ...+(-l)^(~^^--1). 
Vpl / ^PlP2 / kPl..-Pa~l >' 

The sum of the second terms of each sum is 

Hence the number of integers < n and prime to n is 

-+(-l)^ 
n 

n-l-A=n-li-+'E—— ... -(-1)«S- 
Pi P1P2 Pi-.Pj-i 

=•(■-1.) G-i). 
provided n = pi... p^. [To modify the proof to make it valid for any n, 
we need only add to A the term 

^Vpi...p, J 

and hence replace ( — 1)^ by ( —l)®n/(pi.. .p^) in n — l—A.] 

^®Nouv. Corresp. Math., 6, 1880, 267-9. Also Lucas,^^ p. 403. 
^®G6ttingen Nachrichten, 1880, 161; Math. Ann., 16, 1880, 583-8. 
®“Amer. Jour. Math., 3, 1880, 294. 
‘‘^Tidsskrift for Mathematik, (4), 4, 1880, 158-9. 



126 Histoey of the Theory of Numbers. [Chap. V 

Franz Walla®^ considered the product P of the first n primes > 1. Let 
Xi,...yX, be the integers <P/2 and prime to P, so that v=<j>{P)/2. Then, 
if n>2, half of the x's are =1 (mod 4) and the others are =3 (mod 4). 
Also, the absolute values of ^P—2Xj (j=l,..x') are the Ps in some order. 
Half of the x^s are <PI^. 

J. Perott®^ proved that 

*(A0.|*W.i+41J»>-2[|]+2[£|’-. . .1, 
the context showing that the summations extend over all the primes p,- for 
which [Lucas^^]. He proved that 

lim $(Ar)_3 
iV == <» 

and gave a table showing the approximation of to ^(N) for AT^ 100. 
The last formula, proved earlier by Dirichlet^^ and Mertens,^® was proved 
by G. H. Halphen®^ by the use of integrals and f-functions. 

Sylvester®^® defined the frequency 5 of a divisor d of one or more given 
integers a, 6,.. ., i to be the number of the latter which are divisible by 
d. By use of (4) he proved the generalization 

<t>{d) ... -j-L 

D-.K—4..,^66 -tated that the number of [irreducible proper] fractions 

^d denominator are is P(i) = <i>(l)+ • • •+<3i>(i), and 
} r<,*-| y b'/k] 

jfe»i L/cj ^ 

j)/f approximates 3/7r^ as j increases indefinitely. 
.) denotes the sum of all the integers <x and prime to x, and if 

>{!)+.. .+u{j)j then U(j) is the sum of the numerators in the 
^ oet of fractions, and* 

iku\Q =ij(j+l){j+2). 

When; increases indefinitely, U(j)/f approximates I/ttI For each integer 
n^lOOO the values of <^>(71), T(n), are tabulated. 

Sylvester^® stated the preceding results and noted that the first formula 
is equivalent to 

s p:1<^(r) = |(j»+i). 
ro.iLrJ 

MAxchiv Math. Phys., 66, 1881, 353-7. 
“BuU. des Sc. Math, et Astr., (2), 5, I, 1881, 37-40. 
‘^Comptes Rendufl Paris, 96, 1883, 634-7. 
^“Amer. Jour. Math., 5, 1882, 124; Coll. Math. Papers, 3, 611. 
wPhil. Mag., 15, 1883, 251-7; 16, 1883, 230-3; Coll. Math. Papers, 4, 101-9. Cf. Sylvester. 
“Comptes Rendus Paris, 96, 1883, 409-13, 463-5; Coll. Math. Papers, 4, 84-90. Proofs by 

F. Rogel and H. W. Curjel, Math. Quest. Educ. Times, 66, 1897, 62-4; 70, 1899, 56. 
*With denominator 3, but corrected to 6 by Sylveater,'^® which accords with Ces^ro.®* The 

editor of Sylvester's Papers stated in both places that the second member should be 
i0+l)(2i4-l)/12, evidently wroagiori=2. 
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E. Ces^ro®^ proved that, if / is any function, 

2 S F(n)s2/(d), 
n=aix nasi 

where d ranges over the divisors of n. For/=<^, we have F{x)=-x and obtain 
Liouville^s^^ first formula. By the same specialization (p. 64) of another 
formula (given in Chapter X on sums of divisors®^), Ces^ro derived the 
final formula of Liouville.^- If (n, j) is the g. c. d. of n and /, then (p. 77, 
p. 80) 

i{n, j) =:Sd<t>Q), 2-^ = hcl4>id), j) =2<^(d)<^ (-). 

If (p. 94) p is one of the integers a, |3,... gn and prime to n, 

2^(a)F(a)=2(?(a)/(a), /’(*) =2/(d), G(p)=2i7(pa), 
a 

where d ranges over the divisors of x. For g(x) = 1, this gives 

2/(a)<^>(n, ri/a)=SF(a), 
a 

where (p. 96) (^(n, x) is the number of integers ^x and prime to n. Ces^ro 
(pp. 144-151, 302-3) discussed and modified Perott's^^ proof of his first 
formula, criticizing his replacement of [n/k] by n/k for n large. He gave 
(pp. 153-6) a simple proof that the mean®^ of <t>{n) is 6n/7r^ and reproduced 
the proofs by Dirichlet^^ and Mertens,^® the last essentially the same as 
Perott's. For f(m) = l+l/2”*+l/3"‘+ .. 

equal asymptotically (pp. 167-9) 

f(m)/f(m+l), (6 1ogn)/7r2, f(m+l), log n. 

As a corollary (p. 251) to Mansion’generalization of Smith’s theorem we 
have the result that the determinant of order each element being 1 or 0 
according as the g. c. d. of its two indices is or is not a perfect square, equals 
(_l)“+i'+- -^ where pV- • • is the value of n! expressed in terms of its prime 
factors. 

Ces^ro^^ considered any function F{x, y) of the g. c. d. of x, p, and the 
determinant of order n having the element F{ui, Uj) in the ?^th row and 
jth column, where Wi,..., Wn are integers in ascending order such that each 
divisor of every is a w. Employing the function y(n) [see Ch. XIX], he 
noted that 

2m(-)^’K, =/(«„) or 0, 
1»1 

Soc. R. Sc. de Li6ge, (2), 10, 1883, No. 6, 74. 
“Atti Reale Accad. Lincei, (4), 1, 1884-5, 709-711. 
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P. S. Poretzky®® gave a formula for the function \l/(m) whose values are 
the <p{m) integers <m and prime to m, Por the case m = 2*3-5.. .p, where 
p is a prime, 

where K is an integer. Application is made to the finding of a prime 
exceeding a given number, and to a generalization of the sieve of Eras- 
tosthenes. 

E. Ces^ro®^ gave a very simple proof of the known fact that 

lim ^ j 
n-oo TT^ 

which he expressed in words by saying that 4i{n) is asymptotic to 6n/7r^ 
(not meaning that the limit of (t>(n)/n is G/tt^). On the distinction between 
asymptotic mean and median value, see Encyclop^die des sc. math., I, 
17 (vol. 3), p. 347. 

Ces^ro®® noted that if F(i, j) is a function of the g. c. d. of -i, then 
Q=l^F(i,j) XiXj (t, i=l,..., n) becomes q=I>f(i)yf by the substitution 
yk=^k+^2k+^3k+ •.., provided F(n) ='2f(d), d ranging over the divisors of 
n. Since the determinant of the substitution is unity, the discriminants 
of Q and q are equal. Hence we have the theorem of Smith.^^ A gen¬ 
eralization is obtained by use of SF(€i, €j)XiXj, where the numbers €i, €2,... 
include the divisors of each e. 

E. Catalan®^ proved that, if d ranges over the divisors of A = 0^6^.,., 

s*|).n{i+!<2^}, s^.n(i+^). 

E. Busche^° derived at once from Dirichlet^s^^ formula the result 

j«W)pg)+pg) + ..4-Sn»', 

where p(a) =a —[a]. The case n = =n" = .. . leads to 

S0(a;) = (p-l)n^ 

where x takes all values for which p{n/x)>p{vn/x). If we take n==l and 
add <^>(1) = 1, we get (4) for N = v. Next, S<^(x) =rr'5^, where x takes all 
values for which 

r+r' r r 
(«/ = !,..T] = r'). 

®®Math. phys. soc. Kasan, 6, 1888, 52-142 (in Russian). 
”Comptes Rendus Paris, 106, 1888, 1651; 107, 1888, 81, 426; Annali di Mat., (2), 16, 1888-9, 

178 (discussion with Jensen on terminology). 
®®Atti Reale Accad. Lincei, Rendiconti, 2, 1888, II, 56-61. 

Soc. Sc. Li^ge, (2), 15, 1888, No. 1, pp. 21-22; Melanges Math., Ill, No. 222,dated 1882. 
^“Math. Annalen, 31, 1888, 70-74. 
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For 5=n, r' = l,r = j/ — 1, this becomes the former result; for r=r' = 1, 5 =n, 
it becomes S<;>(x) =n^, where x takes the values for which p{n/x)^l/2. 

H. W. Lloyd Tanner^^ studied the group G of the totitives of n (the 
integers <n and prime to n), finding all its subgroups and the simple groups 
whose direct product is G. 

E. Lucas^^ proved that, in an arithmetical progression of n terms whose 
common difference is prime to n, there are cj){d) terms having with n the g. c. d. 
n/d. If, when d ranges over the divisors of n, Si^(d) = n for every integer n, 
then (p. 401) i/'Cn) =<#>(n), as proved by using n = l, a, a^,..and n = ah, 
a^h,..., where a, b,... are distinct primes. He gave (pp. 600-1) a proof of 
Perott’s®^ first formula by induction from N—lioN, communicated to him 
by J. Hammond. The name indicateur of n is given (preface, xv) to 
<t>{n) [Prouhet^®]. 

C. Moreau (cf.Lucas,’^^ 501-3) considered the C(?i) circular permutations of 
n objects of which a are alike, 13 alike,..., X alike. Thus, if a = 2, jS = 4, the 
C(6) = 3 distinct circular permutations are adbbhb, ababbb, ahbabb. In general,. 

C{n)=h^{d) 
(n/d)l 

(a/d)!...(X/d)!’ 

where d ranges over the divisors of the g. c. d. of a, jS,..., X. In the 
example, d = 1 or 2, and the terms of the sum are 15 and 3. 

P. A. MacMahon'^® noted that C(n) = 1 if n = a, so that we have formula 
(4). His expression for the number of circular permutations of p things n 
at a time is quoted in Chapter III on Fermat^s theorem. 

A. Berger^®“ evaluated XlZi /c“”^0(fc). For a = 2 the result is 
\n log n, where X is finite for all values of n. 

E. Jablonski^^ considered rectilinear permutations of indices a,..X, 
with the g. c. d. D. Set a = a'D,..., X==X'D, a+...-l-X = m = m'Z>. Then 
the number of complete rectilinear permutations of indices a'n,. .., X'n is 

P(n) = 
(m'n) I 

(a'7i)!...(X'n)!’ 

The number of complete circular permutations is 

where d ranges over the divisors of D. If Q (D/d) is the number of rectilinear 
permutations of indices a,. .., X which can be decomposed into d identical 
portions, liQ{D/d) — P(D). Also 

’^'^Proc. London Math. Soc., 20, 1888-0, 63-83. 
”Th6orie des nombrcs, 1801, 396-7. The first theorem was proved also by U. Concina, II 

Boll, di Matematiea, 1913, 9. 
«Proc. London Math. Boc., 23, 1891-2, 305-313. 
7iaNova Acta Regiae Soc. Sc. Upsaliensis, (3), 14, 1891, No. 2, 113. 

% ’^Comptes Rendus Paris, 114, 1892, 904-7; Jour, de Math., (4), 8, 1892, 331-349. He proved 
Moreau’s^* formula for C(n). 
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where Jtid) is Jordan's^®® function. 
S. Schatunowsky^® proved that 30 is the largest number such that all 

I smaller numbers relatively prime to it are primes. He employed Tcheby- 
I chef's^®^ theorem of Ch. XVIII that, if a> 1, there exists at least one prime 
I between a and 2a. Cf. Wolfskehl,^^ Landau,Maillet,®® Bonse,^°® 
I Remak.^^^ 
^ E. W. Davis^® used points with integral coordinates ^0 to visualize 

and prove (1) and (4). 
K. Zsigmondy^^ wrote r, for the greatest integer ^r/s and proved that, 

if a takes those positive integral values Sr which are divisible by no one 
of the given positive integers rii,..., rip which are relatively prime in pairs, 

r r» run' 

S/Ca) = S m -S S J{hn) + S S /(/bnn') - ..., 
jb»l n n,n'fc»l 

rif n',. •. ranging over the combinations of Wi,..., Wp taken 1, 2,... at a 
time. Taking/(fc) = 1, we obtain for the number 4>(r;ni,...y of integers 
Sr, which are divisible by no one of rii,..., rip, the expression (5) obtained 
by Legendre for the case in which the n^s are all primes. By induction 
from p to p+1, we get 

<#>(r; rii,..., rip, v^,..v,) =<l>(r; rii,. .., n,) rii,. .., n,) 
p 

+ 'Z<j>{r„,;ni,. 

P 

r ^<f>{r] rii,..., rip) 4" S <f>(Tn^, rii,..., ri^^i, rij+i,..., rip) 
t-i 

+ S<;>(rw; rii'sr^n, n') + • . 
n, n' 

r = 2<;>(r.; rii,..., n,), 
c 

where c ranges over all combinations of powers Sr of the n^s. The last 
becomes (4) when rii,..., rip are the different primes dividing r. These 
formulas for r were deduced by him in 1896 as special cases of his inversion 
formub (see Ch. XIX). 

J. E. SteggalF® evaluated <t>(n) by the second method of Crelle.^^ 
P. Bachmann^^ gave an exposition of the work of Dirichlet,^^ Mertens ” 

Halphen®^ and Sylvester®® on the mean of <#>(n), and (p. 319) a proof of (5). 
L. Goldschmidt®® gave an evaluation of <^>(n) by successive steps which 

may be combined as follows. Let p be a prime not dividing k. Each of 

7»Spaczinskia Bote (phys. math.), 14, 1893, No. 159, p. 65; 15, 1893, No. 180, pp. 276-8 
(Russian). 

^'Amer. Jour. Math., 15, 1893, 84. 
7Uour. fiir Math., Ill, 1893, 344-6. 
’•Proc. Edinburgh Math. Soc., 12, 1893-4, 23-24. 
’*Die Analytische Zahlentheorie, i894, 422-430, 481-4. 
•oZeitfiohrift Math Phva . S9. 1894. 20.8—4. 
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the cl)(k) integers S k and prime to k occurs just once among the residues 
modulo k of the integers from Ik to {l+l)k; taking Z = 1,..p —1, we 
obtain this residue p times. Hence there are p(j>(k) numbers ^pk and 
prime to k. These include 0(/b) multiples of p, whence 0(p/b) = (p -1)0 (/c). 
For, if r is one of the above residues, then r, r+k,,.T-\-{p-l)k form a 
complete set of residues modulo p and hence include a single multiple of p. 
Hence 

0(a6c.. .) = (a-l)(6-l)(c-l).. 

if a, 6, c,... are distinct primes. Next, for n = we use the sets of 
numbers from lab.. .to (l+l)ab.. .,for 2 = 0, 1,.. — 1. 

Borel and Drach®^ noted that the period of the least residues of 0, a, 
2a,... modulo N, contains N/8 terms, if 8 is the g. c. d. of a, N', conversely, 
if d is any divisor of iV, there exist integers such that the period has d terms. 
Taking a=0, 1,..., N—1, we get (4). 

H. Weberdefined 0(n) to be the number of primitive nth roots of 
unity. If a is a primitive ath root of unity and jS a primitive 6th root, and 
if a, 6 are relatively prime, afi is a primitive a6th root of unity and all of 
the latter are found in this way. Hence 0(a6) = 0(a) 0(6). This is also 
proved for relatively prime divisors a, 6 of n—1, where n is a prime, by use 
of integers a and ^ belonging to the exponents a and 6 respectively, modulo 
n, whence a/3 belongs to the exponent ah. 

K. Th. Vahlen^ proved that, if is the number of irreducible frac¬ 
tions between the limits a and a>p^0, with the denominator n, 

2/..,((i) = [(a-/3)n]. S = S [(a-^)A], 
k^lLfCJ ;fc«l 

where d ranges over the divisors of n. For /3 = 0, the first was given by 
Laguerre.^® Since Ii.oin)these formulas include (4) of Gauss and 
that by Dirichlet.^^ 

J. J. Sylvester®^ corrected Ms®® first formula to read 

J rg] =i\[jf+[j]\r[n]=0(l)+ ... +<^([n]), 

and proved it. By the usual formula for reversion, 

... 
A. P. Minin^® solved §0(m) =jR for m when R has certain values. The 

equation determines the number of regular star polygons of m sides. 
Fr. RogeP® gave the formula of Dirichlet.^^ 

•Untrod, th^orie des nombres, 1895, 23. 
••Lehrbuch der Algebra, I, 1895, 412, 429; ed. 2, 1898, 456, 470. 
••Zeitschrift Math. Phys., 40, 1895, 126-7. 
••Messenger Math., 27, 1897-8, 1-5; Coll. Math. Papers, 4, 738-742. 
••Report of Phya. Sec. Roy. Soc. of Friends of Nat. Sc., Anthropology, etc. (in Russian), Mos¬ 

cow, 9, 1897, 30-33. Cf. Hammond.“• 
••Educat. Times, 66, 1897, 62. 
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RogeP^ considered the number of integers v<n such that v and n are 
not both divisible by the rth power of a prime. Also the number when 
each prime factor common to v and n occurs in them exactly to the rth power. 

I. T. Kaplan published at Odessa in 1897 a pamphlet in Russian on the 
distribution of the numbers relatively prime to a given number. 

M. Bauer®® proved that, for x prime to m, kx+l represents 

integers relatively prime to m and incongruent modulo m, where di is the 
g. c. d. Qcy m) of h, m, and ^2 = w), (di, ^2) = 1, while 

is the number of incongruent integers prime to m = pi^... which are 
represented by kx-{-l when k, ly x are prime to m. Of those integers, 
\(/{m)/\l/{pi.. .pr) are divisible only by the special prime factors Pi,..pr 
of m, 

J. de Vries®®“ proved the first formula of Dirichlet’s.^^ 
C. Moreau®^ evaluated (i>{n) by the method of Grunert.^® 
E. Landau^® proved that 

I 1 ^315r(3) 

«=i 0 W 
^log x+C- S 

V 

log V 
p^-p-\-l 

where e is of the order of magnitude of log x, C is Euler^s constant, and 
f is Riemann^s f-function. 

P. WolfskehP^ proved by Tchebychef’s theorem that the (l>{n) integers 
<n and prime to n are all primes only when n = 1, 2, 3, 4, 6, 8, 12, 18, 24, 30. 
[Schatunowsky."^^] 

E. Landau^^ gave a proof, without the use of Tchebychef’s theorem, by 
finding a lower limit to the number of integers k having no square factor 
>1, where t^k>5t/S. 

E. Maillet,®® by use of Tchebychef^s theorem, proved the same result 
and the generalization: Given any integer r, there exist only a finite number 
of integers N such that the (l)(N) integers <N and relatively prime to N 
contain at most r equal or distinct prime factors. 

Alois Pichler^^ noted that has no solution if n is odd and >1; 
while <t>{x) —T has the solutions x = 2“6c... (a = 0, 1,.. ., n+1) if 

®^Sitzungsber. Bohm. Gesell., Prag, 1897; 1900, No. 30. 
®®Math. Natur. Berichte aus Ungarn, 15, 1897, 41-6. 

Akad. Wetenschappen te Amsterdam, Verslagen, 5, 1897, 222. 
88NOUV. Ann. Math., (3), 17, 1898, 293-5. 
®°Gottingen Nachrichten, 1900, 184. 
»^L’interm(5diaire des math., 7, 1900, 253-4; Math. Ann., 54, 1901, 503-4. 
o^Archiv Math. Phys., (3), 1, 1901, 138-142. 
®®L’interm5diaire des math., 7, 1900, 254. 
«^Ueberdie Auflosung der Gl. ip{x) =n..., Jahrea-Bericht Maximilians-Gymn. in Wien, 1900-1, 

3-17. 
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6 = 2^+l, c=2^'’+l,... 

are distinct primes and 2^+2'^+... - n or n—a+1 according as a = 0 or 
a>0. When ^ is a prime >3, (l)(x)—2q^ is impossible if 29=2g"+l is not 
prime; while if p is prime it has the two solutions p, 2p. If g = 3 and p is 
prime, it has the additional solutions 2-3”‘^b Next, 4>{x)—2''q is 
impossible if no one of p;. = 2''"'''g+l(j^ = 0, 1,..n —1) is prime and q is 
not a prime of the form 2®-l-l, s-2^Sn] but if q is such a prime or if at 
least one p„ is prime, the equation has solutions of the respective forms hq^j 
where 0(6) =2"“®; ap^, where 0(a) =2^ Finally, 0(x) =2qr has no solution 
if p~2qr-\-l is not prime and r9^2q-\-l. If p is a prime, but rp^2g + l, the 
two solutions are p, 2p. If p is not prime, but 7’ = 2g+l, the two solutions 
are 2r^. If p is prime and r = 2g+l, all four solutions occur. There is 
a table of the values n<200 for which 0(a;) ~n has solutions. 

L. Kronecker^® considered two fractions with the denominator m as 
equivalent if their numerators are congruent modulo m. The number of 
non-equivalent reduced fractions with the denominator m is therefore 0(m). 
If m = where m', m" are relatively prime, each reduced fraction r/m 
can be expressed in a single way as a sum of two reduced partial fractions 
r'/w', r"/m". Conversely, if the latter are reduced fractions, their sum 
r/m is reduced. Hence 0(m) =0(m')0(m")- The latter is also derived 
(pp. 245-6, added by Hensel) from (4), which is proved (pp. 243-4) by 
considering the g. c. d. of n with any integer gn, and also (pp. 266-7) by 
use of infinite series and products. Proof is given (pp. 300-1) of (5). The 
Gaussian median value (p. 334) of (j){n)/n is O/tt^ with an error whose order 
of magnitude is lj\/n, provided we take as the__auxiliary number of values 
of 0(n)/n a value of the order of magnitude -y/n log,, n. 

E. B. Elliott^® considered monomials n-p'^q^... in the independent 
variables p,q,.. .. In the expansion of n(l — 1 /p)”‘(l — l/q)'^..., the aggre¬ 
gate of those monomial terms whose exponents are all ^0 is denoted by 
Fm{n). Define id{p'‘q\ ..) to be zero if any one of r, s,. .. exceeds 1, but to 
be ( — 1)^ if no one of them exceeds 1, and t of them equal 1. Then 

(7) =SE„(d), =2/. (^) 

where d ranges over the monomials p“g^. .. with O^a^a, OSPSh,. . .. 
Henceforth, let p, q,... be distinct primes. Then Fi{n) =(j>{n), while 
F_i(n) is the sum (r(n) of the divisors of n. In (7), d now ranges over all 
the divisors of n, and p(A;) is Merten’s function [Inversion]. For m = 0, (72) 
gives the usual expression for 0(?i), while (7i) defines cr(n). For m = 1, (7i) 
becomes (4). 

If T^^^(n) =T{n) is the number of divisors d of n, write 

r^2^(n)=Sr(d),. . ., =XT^^-'^\d). 

®^Vorlesungen iiber Zahlenthoorie, I, 1901, 125-6. 
»8Proc. London Math. Soc., 34, 1901, 3-15. 
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Then 

Generalizing m(s), let be zero if the expansion of the product 
n(l—p)*, extended over all primes p, does not contain a term equal to s, 
but let it equal the coefficient of s if s occurs in the expansion. Then 

The n-rowed determinant in which the element in the rth row and sth 
column is Fm-i{8), where 8 is the g. c. d. of r, s, is proved equal to Fm(l) 
Fm(2).. .Fynln), a generalization of Smith^s^® theorem. Finally, 

the right member being r(n), 2)</)(d)/d, X(r{d)/d for r = 0, 1, —1. 
G. Landsberg®®" gave a simple proof of Moreau’s^^ formula for the 

number of circular permutations. 
L. Carlini®^ proved Dirichlet^s^^ formula by noting that 

(8) ^ n(a;^-l)=:0 
hml 

has unity as an n-fold root, while a root 1 of 1 is a root of [n/h] factors 
— Hence the primitive roots of x* = l furnish (t>{h)[n/h] roots 

of (8). 
M. Lerch^^ found the number N of positive integers which have no 

one of the divisors a, b,..., fc, the latter being relatively prime in pairs 
and having m as their product. Let F(x) = 1 or 0, according as x is frac¬ 
tional or integral. Let L = ah.. .k. Then [Dirichlet^^] 

E. Landau^® proved that the inferior limit for x= oo of 

^</>(x) loge loge X 

is where C is Euler^s constant. Hence <3f)(x) is comprised between this 
inferior limit and the maximum x — l. 

R. Occhipinti^'^'^ proved that, if aj is an nth root of unity, and if d^,. . 
diti are the divisors of i, 

U\^cl>(du)+aj^(l>{d2i)+ . . .+ar^Xct>{dj]:=K-ir~^n^^ 1-1 t-l J 

•«®Archiv Math. Phys., (3), 3, 1902, 152-4. ‘Tperiodico di Mat., 17, 1902, 329. 
•»Prag Sitzungsber., 1903, II. ‘’Archiv Math. Phys., (3), 5, 1903, 86-91. 

looperiodico di Mat., 19, 1904, 93. Handbuch,“* I, 217-9. 
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G. A. proved (4) by noting that in a cyclic group G of order N 
there is a single cyclic subgroup of order d, a divisor of Nj and it contains 
<i>{d) operators of order d, while the order of any operator of (r is a divisor 
of N. Thus (4) states'merely that the order of G equals the sum of the 
numbers of the operators of the various possible orders. Next, (1) follows 
from an enumeration of the operators of highest period AB in a, cyclic group 
of order AB, which is the direct product of its cyclic subgroups of orders 
A and B. Finally, if p is a prime, all the subgroups of a cychc group of 
order p"" are contained in its subgroup of order whence 0(p”) =p”—p”’‘^. 

G. A. Millerproved the last three theorems and the fact that </>(Z) is 
even if ]!>2 by means of the properties of the abelian group whose elements 
are the integers <m which have with w a g. c. d. equal to k. 

K. P. Nordlund^®^ proved ..) = (m —l)(n —1)..., where m, n,... 
are distinct primes, by writing down the multiples <mnp of m, the multi¬ 
ples of mn, etc., whence the number of integers <mnp and not prime to it 
is mnp —1 —(m —l)(n—l)(p —1). 

E. Busche^^ treated geometrically systems of four integers such 

that ad—6c>0, evaluated the number <i>(>S) of systems incongruent modulo 
S and prime to Sj and generalized (4) to 2$(>S). 

L. Orlando^®^ showed that <i>{m) is determined by (4) [Lucas’^]. 
H. Bonse^°® proved Maillet’s^^ theorem for r = l, 2, 3 without using 

Tchebychef’s theorem. His lemma was generalized by T. Suzuki.^®®® 
J. Sommer^®^ gave without reference Crelle^s® final evaluation of 
R. D. CarmichaeP°® proved that if n is such that <t>{x)^n is solvable 

there are at least two solutions x. He found solutions of <^> (x) = 2" [in accord 
with Pichler^^] and proved that there are just ti+2 solutions (a single one 
being odd) when and just 33 solutions when 32^ 255. All the 
solutions of <;6(a;) =4n —2> 2 are of the form p“, 2p“, where p is a prime of the 
form 4s —1; for example, if n = 5, the solutions are 19, 27 and their doubles. 

CarmichaeP®^ gave a table showing every value of m for which (t)(m) 
has any given value S 1000. 

A. Ranum^°^® would solve <l){x) = n by resolving n in every possible way 
into factors no,., n,., capable of being taken as the values of <^(2®*), <t>{pi°% 
. .., </)(Pr“0> where 2, pi,. .., p, are distinct primes. Then 2"®pi''\ . .pA is 
a value of x. 

Carmichael^^® gave a method of solving (/>(a;)=a, based on the testing 
of the equation for each factor x of a definite function of a. 

M. Fekete^^^ considered the determinant pkn obtained by deleting the 
last row and last column of Sylvester^s eliminant for x* — 1 = 0 and x"" — 1 = 0 

^“^Amer. Math. Monthly, 12, 1905, 41-43. 
^°*Amer. Jour. Math., 27, 1905, 315. 
lO’Nyt Tidsskrift for Mat., 16A, 1905, 15-29. 
lo^Jour. fiir Math., 131, 1906, 113-135. 
^“Periodico di Mat., 22, 1907, 134-6. 
I'X'Archiv Math. Phys., (3), 12, 1907, 292-5. 
i«>“T6hoku Math. Jour., 3, 1913, 83-6. 
^“’'Vorlcsungeii iiber Zahlcnthcorie, 1907, 5. 

lOfBuU. Amer. Math. Soc., 13, 1907, 241-3. 
^®®Amer. Jour. Math., 30, 1908, 394-400. 
looaTrans. Amer. Math. Soc., 9, 1908, 193-4. 

Amer. Math. Soc., 15, 1909, 223. 
^^^Math. 48 Phys. Lapok (Math. Phys. Soc.), 

Budapest, 18, 1909, 349-370. German 
transl.. Math. Naturwiss. Berichte aus 
Ungarn, 26, 1913 (1908), 196. 
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{k<n). Thus \pkn\ = 1 or 0 according as k and n are relatively prime or not. 
Hence 

n n 

<t>(n) = S \pkn\, <#>i(«) = 2 A:|p4„|, 

where ^i{n) is the sum of the integers and prime to n. 
R. Remak^^^ proved Maillet’s®^ theorem without using Tchebychef’s. 
E. Landau^^^ proved (5), Wolfskehl’s^^ theorem and Maillet’s^^ generali¬ 

zation. 
C. Orlandi^^^ proved that, if x ranges over all the positive integers for 

which [m/x] is odd, then 2<j!)(a;) = (m/2)^ for m even (Ces^ro, p. 144 of this 
History), while 2ct){x) =k^ iov m-2k — l. 

A. Axer^^^ considered the system (P) of all integers relatively prime to 
the product P of a finite number of given primes and obtained formulas 
and asymptotic theorems concerning the number of integers of (P) 
which are prime to x. Application is made to the probability that two 
numbers of (P) are relatively prime and to the asymptotic values of the 
number (f) of positive irreducible fractions with numerator and denominator 
in (P) and and (n‘) of regular continued fractions representing positive 
fractions in (P) with numerator and denominator ^ n. 

G. A. Miller^^® defined the order of a modulo m to be the least positive 
integer h such that ah^O (mod m). If is the highest power of a prime 
p dividing m, the numbers whose orders are powers of p are /cm/p“ 
(/c = l, 2,..p*"). Hence Zkim/pi'^i (jki—l,..., form a complete set of 
residues modulo m=npi^'. If the orders of two integers are relatively 
prime, the order of their sum is congruent modulo m to the product of 
their orders. But the number of integers whose orders equal m is 
<#)(m). Hence (l)(Ilp'")—llct>(p‘"). Since all numbers whose orders 
divide d, a divisor of m, are multiples of m/d, there are exactly d numbers 

whose orders divide d, and (j){d) of them are of order d. Hence 
w=S<^)(d). 

S. Composto^^^ employed distinct primes m, n, r, and the v—4){mn) 
integers Pi,..., P;' prime to mn and S wn, and proved that 

Pi, Pi-\-mn, pi-\-2mn,. . ., pi+ (r- l)mn (f = 1,. . ., j/) 

include all and only the numbers rpi,. . .,rp„and the numbers not exceeding 
and prime to mnr. Hence 4>{mnr) =(t>(mn)-(r — l). A like theorem is 
proved for two primes and stated for any number of primes. [The proof is 
essentially Euler’s^ proof of (1) for the case in which P is a prime not divid¬ 
ing a product A of distinct primes.] Next, if d is a prime factor of n, the 
integers not exceeding and prime to dn are the numbers ^ n and prime to n, 
together with the integers obtained by adding to each of them n, 2n,. .., 

“^Archiv Math. Phys., (3), 15, 1909, 186-193. 
ii^Handbuch.. .Verteilaag der Primzahlen, I, 1909, 67-9, 229-234. 
“'Periodico di Mat., 24, 1909, 176-8. 
i^Monatshefte Math. Phys., 22, 1911, 3-25. 
“®Amer. Math. Monthly, 18, 1911, 204-9. 
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(d —l)n; whence (l>{dn) =d(l>{n). Finally, let pi,be the p = <^(n) 
integers <n and prime to n. Then Pi+kn (t = l,.. .,p; A: = 0, 1,...) give 
all integers prime to n; let Phin) denote the hth one of them arranged in 
order of magnitude. Then 

Pky(n)=kn-1 (k^l), Pky+r{n) ==kn+Pr k^O). 

If h-kv+r, r<v, the sum of the first h numbers prime to n is 

kn\^+r\+j)i-\-hPr, 

where pi, s. .^Pr are the first r integers <n and prime to n. 
K. HenseP^® evaluated ^{n) by the first remark of Crelle.^’^ 
J. G. van der Corput and J. C. Kuyver^^® proved that the number 

7(a/4) of integers ^a/4 and prime to a is A^ = |an(l — 1/p) if a has a prime 
factor 4m+l, where p ranges over the distinct prime factors of a; but is 

if a is a product of powers of k prime factors all of the form 4m —1. 
Also /(a/6) is evaluated. 

U. Scarpis^^® noted that </)(p”—1) is divisible by n if p is a prime. 
Several writers^^^ discussed the solution of (l){x) =^cj){y), where x, y are 

powers of primes. SeveraP^^ proved that <t>{xy)>(f>{x)<t>{y) if x, y have a 
common factor. 

J. Hammond^^® proved that there are f<;>(n) — 1 regular star n-gons. 
H. Hancock^^^ denoted by k) the number of triples (i, k, 1), (i, A:, 2), 

..(^, k, i) whose g. c. d. is unity. Let ^ = k-kid, where ki are 
relatively prime. Then A)=ii(/)(d), <I>(A, i)=ki(j){d), 

A. Fleck^^® considered the function, of m=np“, 

<^>*(7n) = n{<^(p“) - (J)<#.(p“-‘) +...+(- i)/^).#.(p“-“) j. 
Thus <^>o(wi) = 0(jm) , = m, is the sum of the divisors of m. Also 

d:m 

if m, n are relatively prime. For f (s) =Sm 

I I 
m = l ^ m==>l m‘ ’ 

4>kip'‘*'^‘‘)=p‘‘{p-l)’‘^"- 

“*Zahlentheorie, 1913, 97, 
^’^'’Wiskundige Opgaven, 11, 1912-14, 483-8. 
^^“Periodico di Mat., 29, 1913, 138. 
^*^Amer. Math. Monthly, 20, 1913, 227-8 (incomplete); 309-10. 
i22Math. Quest. Educat. Times, 24, 1913, 72, 106. 
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E. Cahen^^® gave F. Arndt^s^® proof without reference. 
A. Cunningham^^^ tabulated all solutions N of 0(iV')=2'' for r = 4, 6, 8, 

9, 10, 11, 12, 16, each solution being a product of a power of 2 by distinct 
primes 22''+l. 

J. Hammond^^® noted that, if 2/(/c/n) =F(n) or 4>(?i),^according as the 
summation extends over all positive integers k from 1 to n or only over 
such of them as are prime to n, then S4>(d)=F(n). This becomes (4) 
when/is constant. 

R. Ratat^^® noted that 0(n) = 0(n+l) for n= 1, 3, 15, 104. For n< 125, 
2w5^2, 4, 16, 104, he verified that <j){2n=^l)>(j){2n). 

R. Goormaghtigh^^® noted that 0(n) = <;6(n+l) also for n—164, 194, 255 
and 495. He gave very special results on the solution of (j>(x) = 2a. 

Formulas involving 0 are cited under Lipschitz,*^®’Ces^ro,®^ Ham¬ 
mond,and Knopp^®^^ of Ch. X, Hammond^^ of Ch. XI, and RogeP^^ of 
Ch. XVIII. Cunningham®® of Ch. VII gave the factors of 0(p*). Dede- 
kind^^ of Ch. VIII generalized 0 to a double modulus. Minin^^® of Ch. 
X solved 0(V) =t{N). 

Sum (f>k(n) of the A;th Powers op the Integers and Prime to n. 

A. Cauchy^^® noted that 0i(n) is divisible by n if n>2, since the integers 
< n and prime to n may be paired so that the sum of the two of any pair is n. 

A. L. Crelle^^ (p. 80, p. 84) noted that 0i(n) = Jn0(n). The proof 
follows from the remark by Cauchy. 

A. Thacker^®® defined (l>k(n) and noted that it reduces for /b = 0 to Euler’s 
0(n). Set Sk{z) = l*+2*-|-.. . +2:*, n = ..., where a, b,. .. are distinct 
primes. By deleting the multiples of a, then the remaining multiples of 
5, etc,, he proved that 

Un) =sM+ ■■■’ 

where the summation indices range over the combinations of a, 6, c,.., one, 
two,... at a time. In the second paper, he proved Bernoulli’s^®®® formula 

where Bi, R3,... are the Bernoullian numbers. Then, by substitution, 

<>*(«) = (1 -i) + J (f) - a) - i (3) B3n‘-^n(l-a^) 

^Th.6orie des nombres, I, 1914, 393. 
i27Math. Quest. Educ. Times, 27, 1915, 103-6. 

29, 1916, 53. 
i29L’iiiterm6diaire des math., 24, 1917, 101-2. 

25, 1918, 42-4. 
^^®M6m. Ac. Sc. de ITnstitut de France, 17, 1840, 565; Oeuvres, (1), 3, 272. 
^oJour. fiir Math., 40, 1850, 89-92; Cambridge and Dublin Math. Jour., 5, 1850, 243. Repro¬ 

duced, with errors as to signs, by Zerr, Amer. Math. Monthly, 5, 1898, 93-5. Cf. E. 
Prouhet, Nouv. Ann. Math., 10, ISSI, 324-330. 

“““Jacques Bernoulli, Ars conjectandi, 1713, 95-7. 
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wheren(l-o’) denotes (l-o‘)(l-b‘).... 
J. Binet“^ wrote iji,..., for the integers < N and prime to N=.... 

Then, if Bi, —B3, B^,... are the Bemoullian numbers 1/6,1/30,1/42,..., 

andP,= (l-p")(l-50-., 

S C x+n)^ 

for X sufficiently small to insme convergence. Expanding each member into 
negative powers of x and comparing coefficients, we get 

4ST7i^=P_iA^^-l-6PiPii^^... 

the first being equivalent to the usual formula for ^{N). The general law 
can be represented symbolically by 

=^\{N^BPy+{N-Bpy\, 

where, after expanding the binomials, we are to replace N°/{BP) by P^JSf^ 
and any other term (PP)^^”^ by P2a-iP2a-i* It is easily shown that, if k is 
odd, St]* is divisible by N. 

Silva^® used his symbolic formula, taking S to be the sum of 1,..., n, 
whence )S(a) is the sum in(l+n/A) of the multiples of A, Thus 
<^i(n) = ^n<j){n). This proof of Crelle^s result is thus like that by Brennecke.^®* 

W. Brennecke^®^ proved Crelle^s result by means of 

1+ •. • +ti— I a ^1+2+ ... +&^1+... + • • • f 

+ |al.(l + , 

Set jLt=</)(n), a = ahc.... He proved that 

<^>2W =iM(^^=^a/2), cj)^{n)=ifin{n^=tza), 

</)4(n) = ^/An^±-|a/xn^---g^n(l — a^)(l — 6^). . ., 

the signs being + or — according as the number of the distinct prime 
factors a, b,.. . of n is even or odd. 

“^Comptes Rendus Paris, 32, 1851, 918-921. 
»*Programm Realschule, Posen, 1855, §§5-6. 
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G. Oltramare^^^ obtained for the sum, sum of squares, sum of cubes, and 
sum of biquadrates, of the integers <ma and relatively prime to a the 
respective values 

Tfl 

>®aV(a) + (- - (_ l)«^a^(ai), 

where a is the number and ai the product of the distinct prime factors 
ju, V,... of a, while ?(ai) = (/x^ ——1).... The number of integers <n 
which are prime to a is <^(a)n/a. 

J. Liouville^^^ stated that Gauss’ proof of S0(d) =^N may be extended to 
the generalization 

S 0,(d) = 1H2‘+... +N\ 

where d ranges over the divisors of N. He remarked that Binet’s^^^ results 
are readily proved in various ways. Also, 

N. V. Bougaief^^® stated that, if ^(n) is the number of distinct prime 
factors of n>l, and ^i(n) is their product, 

6<^2W =2<i>(n)n2+(-l)«">?i(n)<|>(n); 

also a result quoted below with Gegenbauer’s^^^ generalization. 
August Blind^^® reproduced without reference the formulas and proofs 

by Thacker,and gave 

E. Lucas^^’’' indicated a proof that nct)n-i{x) is given symbolically by 
(a;+Q)” —Q”, where, if n = = — . .. Thus, if 
TT is the product of the negatives of the primes a, 6,, 

24>iix)=x<j>{x), 3<j>2(x) ^(I){x)(^x-+It!^, 4<j>3ix)=x<j)ix)ix^+Tr). 

^®3M6moires de I’Institut Nat. G(5nevoi3, 4, 1856, 1-10. 
is^Comptes Rendus Paris, 44, 1857, 753-4; Jour, de Math., (2), 2, 1857, 393-G. 
issNouv. Ann. Math., (2), 13, 1874, 381-3; Bull. Sc. Matli. Astr., 10, I, 1876, 18. 
^^®Ueber die Potenzsummen der unter einer Zahl m liegendcn und zu ihr relativ primen Zahlen, 
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SeveraP®^" found expressions for and proved that 

1) 02a:”~^+.. . +0n= 0 (n odd) 

has the root — <^i/<^o, while the remaining roots can be paired so that the 
sum of the two of any pair is — 20i/<;i)o. If n=3 the roots are in arith¬ 
metical progression. 

H. Postula^®® proved Crelle's result by the long method of deleting 
multiples, used by Brennecke.^®^ Catalan {ibid., pp. 208-9) gave Crelle's 
short proof. 

Mennesson^®® stated that, if q is any odd number, 

(modg), 

and (Ex. 366) that the sum of the products <^(n) — 1 at a time of the integers 
^ n and prime to n is a multiple of n. 

E. Ces^ro^®® proved the generalization: The sum of the products m 
at a time of the integers a, . .-^N and prime to N is divisible by AT if m 
is odd. For by replacing a by AT—a, |3 by AT—jS,... and expanding, 

•t.-Hy-- 
where </>==<;i)(AT). Also </>m(A0 is divisible by iV if m is odd. 

F. de Rocquigny^®^ proved Crelle's result. Later, he^®^ employed con¬ 
centric circles of radii 1, 2, 3,... and marked the numbers (m —1)^+1, 
(m —1)^+2,..., mN at points dividing the circle of radius m into N equal 
parts. The lines joining the center to the (t>{N) points on the unit circle, 
marked by the numbers <N and prime to N, meet the various circles in 
points marked by all the numbers prime to N. He stated that the sum 
of the (l){N) numbers prime to N appearing on the circle of radius m is 
|(2m —l)<ji)(A^), and [the equivalent result] that the sum of the numbers 
prime to N from 0 to mN is \m%{N‘^). He later recurred to the subject 
{HUd., 54, 1881, 160). 

A. Minine^®^ noted that, if P>N> 1 and k is the remainder obtained by 
dividing P by N, the sum s{N, P) of the integers <P and prime to N may 
be computed by use of 

s{N, mN+k)=s{N, k)+^<l>{N^)+mN<l>{N)„ 

where (Minine^'^) 0(A)a is the number of integers ^k prime to N. 
*A. Minine^^^ considered the number and sum of all the integers <P 

which are prime to N [Legendre's (5) and Minine^®^]. 

isvaMath. Quest. Educ. Times, 28, 1878, 45-7, 103-5. 
I'^sNouv. Corresp. Math., 4, 1878, 204-7. Likewise, R. A. Harris, Math. Mag., 2, 1904, 272. 

p. 302. 
5, 1879, 56-59. 

^®*Les Moridcs, Revue Hebdorn. des Sciences, 51, 1880, 335-6. 
52, 1880, 516-9. 

^’^^Ihid., 53, 1880, 526-9. 
*®''Nouveaux thdor^mes de la th6orie des nombres, Moscow, 1881. 
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A. Minine^^® investigated the numbers N which divide the sum of all 
the integers < N and prime to N, 

E. Ces^ro^®® proposed his theorems^®® as exercises. Proofs, by associa¬ 
ting a with N—a, etc., were given by Moret-Blanc (3, 1884, 483-4). 

Ceskro^^ (p. 82) proved the formula of Liouville.^®^ Writing (pp. 158-9) 
(f)^ for (l>m{N) and expanding where a, ... are the integers 

and prime to iV, we get 

whence is divisible by N if m is odd, but not if m is even. This is evident 
(p. 257) since a”*-{-(A*—a)”* is divisible by a+N—a if m is odd. The above 
formula gives = (1 — A)*”, symbolically, where 

is the arithmetic mean of the wth powers of a/Nj P/Ny,... The mean 
value of 4>rf,{N) is He reproduced (pp. 161-2) an earlier for¬ 
mula,^®® which shows that = (1—H)”", symbolically, if is the arith¬ 
metic mean of the products of a/N, /3/A,... taken m at a time. We have 
(p. 165) the approximation 

X 6 

24>„U) = (TO-fi)(m+2)'^^’ 

whence (p. 261) the mean of is 6A"‘'*'V(w+l)^^- 
Proof is given (pp. 255-6) of Thacker^s^®® formula 

where 
m-f 1 

^P^(N) ^'LdP-^tx^d) =n(l -u"-^). 
d ranging over the divisors of A, and u over the prime divisors of A. Here 
tx{x) is Merten^s function (Ch. XIX). It is proved (pp. 258-9) that 

S(J^-Vp(^ = 1, 2dV.(^ =2dV.-.(d), 

the first characterizing the function tAp(A), and reducing to (4) for p = 0. 
If a ranges over the integers for which [2n/a] is odd, then (p. 293) 

2 (a) /a”* = — J2 

exactly if ?n = 0, 1, 2, 3, approximately if m> 3, where is the excess of the 
sum of the inverses of 1,..., n over that of n+1,.. ., 2n. In particular, 
S<j5)(a) 

Soc, Moscow (in Russian), 10, 1882-3, 87-101. 
»«Nouv. Ann. Math., (3), 2, 1883, 288. 
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P. Nazimov^®’' (Nasimof) noted that, when z ranges over the integers 
and prime to n, the sum of the values taken by any function/(x) equals 

Im/d] 

SM(d)S/(dx), 
d xubI 

where d ranges over all divisors of n. The case f(x) = 1 yields Legendre^s 
formula (5). The casef(x) = x yields a result equivalent to that of Minine. 
A generalization was given by Zsigmondy’'^ and Gegenbauer.^^® 

E. Ces^ro^®^ noted that, if is the arithmetic mean of the mth powers 
of the integers ^ N and prime to A, and that of their products m at a 
time, we have the symbolic relations 

Ces^ro^®® proved Thacker^s^®® formula expressed as 

the last being symbolic, where is a function such that Sfjfc(d) d 
ranging over the divisors of n. By inversion 

where u ranges over the distinct prime factors of n. 

L. Gegenbauer^’'® proved that, if p = L\ > 

*■•1 n=»lLX J taal 

For the case /b = 0, p = 2, this becomes Bougaiefs^®® formula 

ig,{x)=i\^^4,(x), v = [Vn]. 

C. Leudesdorf^’^^ considered for p odd the sum 0,^(iV') of the inverses of 
the pth powers of the integers <N and prime to N. Then 

where k is an integer. Thus, if N— p^q, where q is not divisible by the 
prime p>3, is divisible by unless /x is prime to p, and p+1 is 
divisible by p — l; for example, yp^p) is divisible by p^. If p = 3, PJJSf) 
is divisible by p^^ if p is an odd multiple of 3. If p = 2, it is divisible by 
2^^"^ except when q—l. 

Ces^ro^^^ inverted his®’^ symbolic form of Thacker’s formula for 
in terms of 0’s and obtained 

nBp\pp{n) = {(j)-nBy. 

“^Matem. Sbornik (Math. Soc. Moscow), 11,1883-4, 603-10 (Russian). 
“sMathesis, 5, 1885, 81. 
«»Giornale di Mat., 23, 1885, 172-4. 
I’oSitzungsber. Ak. Wiss. Wien (Math.), 95, II, 1887, 219-224. 
i^^Proc. London Math. Soc., 20, 1889, 199-212. 
i^Periodico di Mat., 7, 1892, 3-6. See p. 144 of this history. 
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Hence if a ranges over the integers and prime to n, 

'Z{a—nBy=0 or a multiple of n\l/^ 

according as p is odd or even. By this recursion formula, 

<^>i = (t>3= ^n(t>2 - in%,.... 

L. Gegenbauer^^^ gave a formula including those of Nazimov^®^ and 
Zsigmondy.For any functions x(d), Xi(d), f{xi, ..., xj, 

X fiKXu.. ., /cx,)Dx(^)Xi(t) ^SxWxif^) s f(dKXi,.. ., dKX,), 

where d ranges over all divisors of n which have some definite property P, 
while 5 ranges over those common divisors of n, rci,..., x^ which have 
property P. Various special choices are made for x, Xu f and P. For 
instance, property P may be that d is an exact pth power, whence, if p = 1, 
d is any divisor of n. The special results obtained relate mainly to new 
number-theoretic functions without great interest and suggested apparently 
by the topic in hand. 

T. del Beccaro^^^ noted that cj>k(n) is divisible by n if ^ is odd [Binet^®^]. 
When n is a power of 2, 

l*+2^4-•..+(n~l)^^0 or <^(n) (mod n), 

according as k is odd or even. His proof of (1) is due to Euler. 
J. W. L. Glaisher^’’'® proved that, if a, 5,... are any divisors of x such 

that their product is also a divisor, the sum of the nth powers of the integers 
<x and not divisible by a or b,..., is 

where s is the number of the divisors a, and 

If a, 5,... are all the prime factors of x, this result becomes Thacker's.^®® 
N. Nielsen^^® proved by induction on y that the sum of the nth powers 

of the positive integers <mM and prime to M~p{^.. .p^y is 

n+1 ^ ^ s=.in+l 

The case m= 1 gives Thacker’s^®^^ result. That result shows {ibid,, p. 179) 
that (l>2nM and 02«+i(nz) are divisible by m and respectively, for l^n 
g (pi —3)/2, where pi is the least prime factor of m, and also gives the resi¬ 
dues of the quotients modulo m. Corresponding theorems therefore hold 
for the sum of the products of the integers <m and prime to m, taken t at a 
time. 

i^^Sitzungsberichte Ak. Wiss. Wien (Math.), 102, 1893, Ila, 1265-94. 
R. Accad. Lincei, Mem. Cl. Fis. Mat., 1, 1894, 344-371. 

i”^Messenger Math., 28, 1898-9, 39-41. 
i7°Oversig1; Danske Vidensk. Selsk. Forhandlinger, 1915, 509-12; cf. 178-9. 
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Schemmel’s Generalization of Euler’s <^>-Function. 

V. SchemmeF^® considered the W sets of n consecutive numbers each 
<m and relatively prime to m. If 7n = a“6^..where o, . are distinct 
primes, and m, 7n' are relatively prime, he stated that 

=m, 6 = a“V'..., a'^a, 
s 

the third formula being a generalization of Gauss’ (4). If ^ is a fixed integer 
prime to m, 4>n(^) is the number of sets of n integers <m and prime to m 
such that each term of a set exceeds by k the preceding term modulo m. 
Consider the productPof the Xth terms of the sets. If n = 1, P= =«= 1 
(mod m) by Wilson’s theorem. If n> 1, 

p«-i= l)!(u-~X)! (mod w). 

For the case fc=X= 1, n = 2, we see that the product of those integers <m 
and prime to m, which if increased by unity give integers prime to m, is 
= 1 (mod m). 

E. Lucas^^^ gave a generalization of Schemmel’s function, without men¬ 
tion of the latter. Let 6i,..e* be any integers. Let 4^(n) denote the 
number of those integers X, chosen from 0, 1,..n —1, such that 

h 

are prime to n. For /c<n, ei = 0, 62= — 1,..e*= — (/c —1), we have k con¬ 
secutive integers h, X+1,..., —1 each prime to n, and the number of 
such sets is 4>ifc(n). Lucas noted that =4^(pg) if p and q are rela¬ 
tively prime. Let where a, 5,... are distinct primes. Let X 
be the number of distinct residues of ei,..e* modulo a; ju the number of 
their distinct residues modulo 6; etc. Then 

.... 
L. Goldschmidt^^^ proved the theorems stated by Schemmel, and himself 

stated the further generalization: Select any a—A positive integers <a, 
any h—B positive integers <2), etc.; there are exactly 

a^-\a-A)¥-\h-B)... 

integers <m which are congruent modulo a to one of the a—A numbers 
selected and congruent modulo h to one of the h—B numbers selected, etc. 

P. Bachmann^®^ proved the theorems due to Schemmel and Lucas. 

Jordan’s Generalization of Euler’s ^-Function. 

C. Jordan,in connection with his study of linear congruence groups, 
proved that the number of different sets of k (equal or distinct) positive 
integers Sn, whose g. c. d. is prime to n, is* 

(10) (i-i) 

i®°Jour. fiir Math., 70, 1869, 191-2. i®iTMorie des nombrea, 1891, p. 402. 
i®2Zeit8chrift Math. Phys., 39, 1894, 205-212. ^^Niedere Zahlentheorie, 1,1902, 91-94,174-5. 
*°°Trait6 des substitutions, Paris, 1870, 95-97. 

*He used the symbol [n, k]. Several of the writers mentioned later used the symbol <tik{n), 
tiirViir'K Krkwpvpr PAnflii'f.Q wifli flinf. hv HniflAlfPr 
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if pi,..p, are the distinct prime factors of n. In fact, there are sets 
of k integers gn, while (n/pi)* of these sets have the common divisor pi, 
etc., whence 

Jordan noted the corollary: if n and 'nf are relatively prime, 

(11) Jk{nn') = J k(n)J kin'). 

A. Blind^^® defined the function (10) also for negative values of k, proved 
(11) , and the following generalization of (4): 

(12) ^Jkid) =n* (d ranging over the divisors of n), 

W. E. Story^®^ employed the symbol T*(n) for J^(n) and called it one 
of the two kinds of ^th totients. The second kind is the number </>*(n) of 
sets of k integers ^ n and not all divisible by any factor of n, such that we 
do not distinguish between two sets differing only by a permutation of 
their numbers. He stated that 

<#>*(«) =^j ]T‘(n) +fiV"‘(n) +i2V-^(n) +... +iJ_iT(n) \, 

where 1, . are the coefiSicients of the successive descending powers 
of z in the expansion of (x+l)(a;+2).. .(x+fc—1). 

Storydefined 'The kth totient of n to the condition k to be the num¬ 
ber of sets of k numbers which satisfy condition k. The number of sets 
of k numbers all containing some common divisor of n satisfying the 
condition /c, but not all containing any one divisor of n satisfying the con¬ 
dition X is (i^ different permutations of k numbers count as different sets) 

where 5, 6',. • • are the least divisors of n satisfying condition k, while 
dij 5i'j. .. are the least divisors of n satisfying condition %• Here a set of 
least divisors is a set of divisors no one of which is a multiple of any other.’^ 

E. Ces^ro®^ (p. 345) stated that, if 4>/fc(a;) is the number of sets of k integers 
^z whose g. c. d. is prime to z, then 

».(<!) 
where J" is to be replaced by /«(^), and d ranges over the divisors of n. 

J. W. L. Glaisher^®^ proved (12) by means of a symbolic expression for 
the infinite series S/;t(n)/(x"). If is Merten’s function, 

Un) -SpiV,(^) +2p: ■ =M(n), 

where the summations relate to the distinct prime factors Pi of n. Using 

“Mohns Hopkins University Circulars, 1, 1881, 132. 
p. 151. Cf. Amer. Jour. Math.. 3, 1880, 382-7. 

’o»London, Ed. Dublin Phil. Mag., (5), 18, 1884, 531, 537-8. 
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these formulas for n = l, 2,..n, we obtain two determinants of order n, 
each equal to ( — 

2* 3"^ 4* 1 -1 -1 0 -1 1 
1 1 1 1 1 -2^ 0 -5^ 6^ ... 
0 1 0 1 0 0 -2* 0 -3* ... 
0 0 1 0 0 0 1* 0 0 -2^ ... 

L. Gegenbauer^®^ proved (12). For II • ■Pg", set 

TT (n) = (-1)^1. • .Pg, X(«) = ( -ir+ ... +ya 
j 

F{d) = 

where w(n) denotes the number of distinct prime factors of n. By means 
of the series f (s) =Sn“*, he proved that, when d ranges over the divisors of r, 

SF((i)J*(d)d‘=0, =0, 

the last holding if r has no square factor and following from the third in 
view of (11), 

J,{r) =SdM(0, SF(d)dV(d) 2X(d)/*(d)/,(^) =0 or J2,(V~r), 

according as r is or. is not a square, 

S (-l)»+«“'”V(m)/;i(m)/2j(n)n=‘=r‘X(r)/,(r), (mn^=^r), 
m, Ti 

S/;’(d)/,+,(d)d*=r‘+‘J,(r), 2d‘J,(d)/,(0 =/,+,(7-) (t>0), 

2Ji(ni)... • -nf-i =r‘*, 

where ni,. .., range over all sets of solutions of nin2. . .n^+i = n, the case 
k = l being due to H. G. Cantor 

E. Ces^ro^®® derived (10) from (12), writing for /*. 
E. Ces^ro^®® denoted /*(n) by xl^^in) and gave (12). 
L. Gegenbauer^^® gave the further generalization 

2^(?,(x))‘=2£j]j*(a;), v = [^]. 

J. Hammond^®® wrote i/'(n, d) for S/(5), where / is an arbitrary function 
and 8 ranges over all multiples of the fixed divisor d of n. Then 

(13)_Pi)+S^(n, P1P2)-...,_ 

*°*Sitzungsber. Ak. Wiss. Wien (Math.), 89 II, 1884, 37-46. Cf. p. 841. See Gegenbauer’* 
of Ch. X. 

»°*Aimali di Mat., (2), 14, 1886-7, 142-6. 
‘“"Messenger Math., 20, 1890-1, 182-190. 
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where t ranges over the integers which are prime to n, while pi, P2j • • • 
denote the distinct prime factors of n. If then T^(n, d)=n/d 
and (13) becomes 

— ... =n(l--) (l-—) . .. 
Pi P1P2 \ Pi/\ V2J 

Next, take f{t) =ao-hait- Using hyperbolic functions, 

provided / be replaced by where 

fi(n) =/'(n) -oi, /2(») =/"(n) -2a2,.. ., f-i{n) =ff{n)dn. 

Hence, since Ji{n) =0(n), 

S/(0=~/-i(«)+§-^-i(n)/i(n)-^V_3(n)/3(n) + .... 

In particular, iov we get <l>k(n). In Prouhet^s^® first formula, 5 
may be replaced by the g. c. d. Aa, 5 of a and h. The generalization 

J,(ab)=J,{a)Uh)j^^ 

is proved. From (12) we get by addition* 

(14) i r”14(;) = l‘+2‘+... +n\ 

Taking n = l, 2,..., n, we obtain equations whose solution gives Jk{n) 
expressed as a determinant of order n in which the elements of the last 
column are 1, 1+2*, l+2*+3*,..., while for s<n the 5th column consists 
of 5 — 1 zeros followed by 5 units, then s twos, etc. For 5>0, the element 
in the (5+l)th row and rth column in Glaisher’s^®^ first determinant is 
1 or 0 according as r/s is integral or fractional. 

J. Vdlyi^^^ used J2(n) -^(j>(n) in his enumeration of the n-fold perspective 
polygons of n sides inscribed in a cubic curve. 

H. Weber^*^® proved (10) for ^ = 2. 
L. Carhni^°® gave without references (10), (11), (12), with for J„(^). 

E. Ces^ro^^° noted that (12) implies (10). For, if S/(d) =F(n), we have 
by inversion (Ch. XIX), f{n) ='Zii{d)F{n/d). The case / = J/ gives 

^ d! ' 
The latter is a case of G{n) ='Lg{d) and hence, with (12) and 

*This work. Mess. Math., 20, 1890-1, p. 161, for A: = l, is really due to Dirichlet.^^ Formula 
(14) is the case p = 1 of Gegenbauer’s, p. 217. 

*°''Math. Nat. Berichte aus Ungarn, 9, 1890, 14k, 10, 1891, 171. 
*“8Elliptische Functionen, 1891, 225; ed. 2, 1908 (Algebra III), 215. 
*°8Periodico di Mat., 6, 1891,119-122. 

7, 1892, 1-6. 
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yields 

or 

'I 
sTlj 

=S 
df \d/ 

hJi+k{n) 

which is next to the last formula of Gegenbauer^s.^®^ Similarly, 

which is the case ^ = 1 of Gegenbauer’s^^ fifth formula in Ch. X, (Xk{n) being 
the sum of the /cth powers of the divisors of n. 

E. Weyr^^^ interpreted J2{n) in connection with involutions on loci of 
genus 1. From the same standpoint, L. Gegenbauer^^^ proved (12) for 
A; = 2 and noted that the value (10) of J2{n) then follows by the usual method 
of number-theoretic derivatives. 

L. Gegenbauer^^^" wrote <#)A:(m, n) for the number of sets of k positive 
integers whose g. c. d. is prime to n = pi‘‘i.. .pr"^ and proved a formula 
including 

[7nf=(j}k{m, n) +2 2 (Xi,... (j>^ 
<7 = 1 Xi,..,X^=l 

(m 

Pxi-. . .Px; ), 
where (Xi,..., X^) is the determinant derived from that with unity through¬ 
out the main diagonal and zeros elsewhere by replacing the 7th row by 
the X.yth row for 7 = !,.. cr. The case m — n, ^ = 1, is due to Pepin.^^ 
There is an analogous formula involving the sum of the kth powers of the 
positive integers and prime to n. 

E. Jablonski”^^ used Jk{n) in connection with permutations. 
G. Arnoux^^^ proved (10) in connection with modular space. 
*J. J. Tschistiakow'^^^ (or Cistiakov) treated the function Jk(n). 

R. D. von Sterneck^^^ proved that 

JkM —2/r(Xi)J;fe_r(X2) --S0(Xi) . . .(I>(kk)} 

the X’s ranging over all sets of integers S ^ whose 1. c. m. is n. To generalize 
this, let Jkin] mj,. .., m/.) be the number of sets of integers ii,. . ., f*, whose 
g. c. d. is prime to n, while for j = 1,. .., /c. Then 

Ju{n\ mi,. . . ., m'r)Jk-r0^2] '^'k) 
=2Ji(Xi; mi). . 'rrik), 

the X’s ranging over all sets of integers whose 1. c. m. is n, while m\,..., 
7n\ form any fixed permutation of mi,.. ., m^., and /i(n; m), designated 
(^)^”‘^(n) by the author, is the number of integers ^?^/m which are prime 
to n. Also, 

^^^Sitzungsberichte Ak. Wiss. Wien (Math.), 101, Ila, 1892, 1729-1741. 
2i2Monatshcfte Math. Phys., 4, 1893, 330. 
2i2aDenkschr. Ak. Wiss. Wien (Math.), 60, 1893, 25-47. 
2i2Arithm6tiquo graphique; espaccs arith. hypcrmagiqucs, 1894, 93. 
2^^Math. Soc. Moscow, i7, 1894, 530-7 (in Russian). 
2^^Monat8hcfte Math. Phys., 5, 1894, 255-266. 
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. 
where d ranges over the divisors of n, the case k = l being due to Laguerre.^* 
In the latter case, take n = 1,..,, n and add. Thus 

2 Aik; m) m = i [i] =i{^+^-n+ (n, ”)}, 
jt«i LfcJ y^iLw-l Lm m \ m/J' 

the last equality, in which (n, h) is the g. c. d. of n, 5, following from expres¬ 
sions for (n, 5) given by Hacks^^ of Ch. XI. In the present paper the above 
double equation was proved geometrically. For m = 1, we get Dirichlet^s^^ 
formula. The g. c. d. of three numbers is expressed in terms of them and [x]. 

The initial formulas were proved geometrically, but were recognized to 
be special cases of a more general theorem. Let 

md)=F,{n) (^ = 1,...,A:), 
where d ranges over all divisors of n. Then the function 

4/(ri) =SA(Xi).. .fkO^k) (1* C. m. of Xi,..., X* is n) 

has the property 

Hence in the terminology of Bougaief (Ch. XIX) the number-theoretic 
derivative \l/in) of Fi(n).. .F*(n) equals the sum of the products of the 
derivatives A of the factors F^, the arguments ranging over all sets of k 
numbers having n as their g. c. d. 

L. Gegenbauer^^®" proved easily that, if [w,.., t] is the g. c. d. of n,..., ^ 

S Fi[n,x^,...,x.])==:s F{d) J,(^- 
\a> 

where d ranges over all divisors of n, and F is any function. 
K. Zsigmondy^^® considered any abelian (commutative) group G with 

the independent generators ^i,. .., Qa of periods ni, . .., respectively. 
Any element of G is of period 8 if and only if 8 is the least positive 
value of X for which xhi,..xh^ are multiples of ni,..., rig, respectively. 
The number of elements of period 5 of G is thus the number of sets of posi¬ 
tive integers /ii,..K • • - , such that 8 is the least value of 
X for which xhi,.. .,xhg are divisible by , n^, respectively. The num¬ 
ber of sets is shown to be 

\l> (5; Wi,..w,)= n Syll 

where 8j is the g. c. d. of 8 and n,; 5^1,..., gr are the distinct prime factors 
of 5; while li is the number of those integers tii, ..which contain g,- 
at least as often as 8 contains it. If 8 and 5' are relatively prime, 

\k(8; ni,..n,)\p(8'; nj,. .n„) =^\p(88'; Wj..n„). 

^I'^'^Sitzungsber. Akad. Wiss. Wien (Math.), 103, Ila, 1894, 115. 
^’’’Monatshefte Math. Phys., 7, 1896, 227-233. For hia </> we write xj/, as did Carmichael.** 
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If d ranges over all divisors of the product rii... n,, 

(5; ni,..., n,) =nin2.. .n,. 
d 

In case b divides each = s), xj/ becomes Jordan’s Ja(5). 
As a generalization (pp. 237-9) consider sets of positive integers ai,..., a,, 

where = 1, 2,..., 7^ for j = 1, 2,..., 5. Counting the sets not of the form 

n^fa, r), 

we get the number 

nT,-2nr^l+s 
Jasl t jssiLTI i J », i'y=.lL(W i , 72' ) J 

where (ni, n2,...) is the 1. c. m. of Ui, _ In particular, take 

«'i'= ... =n'i>=n,- (i = l,...,r), 

where ni,..are relatively prime in pairs, and let iV be a positive mul¬ 
tiple of til,..., such that 

iV<TO,-, (i=i,- • •, «)• 

Then the above expression equals 

//(JV; mi,..m.) = n [-1-2 H [—1 + 2 H [-^1 - • - 

which determines the number of sets 

r 
Oi,..a. (a, = l, 2,.. J;y = l,..s) 

whose g. c. d. is divisible by no one of tii, n2,..., ti,. By inversion, 

.A-slB' 
where d ranges over the divisors of N which are products of powers of 
til,..., Ur. When tii,..., ti, are the distinct prime factors of iV, J,’{N; mi,.. ., 
tn.) becomes the function J^(N; mi,..tn«) of von Sterneck.^^® As in the 
case of the latter function, we have 

//(W; mi,..., m,) =SJi'(Xi; tni).. m,), 

the X’s ranging over all sets whose 1. c. m. is N. 
L. Carlini^^^ proved that if a ranges over the integers for which [2ti/a] 

= 2/c+l, then 
SJ,(a) =4"„>-2s?, = . +m\ 

For k-l, this becomesS<f>(a) =ti^ [E. Ces^ro, p. 144 of this History]. 
D. N. Lehmer^’^® called /^(n) the m-fold totient of n or multiple totient 

of ti of multiplicity m. He proved that, if k = 'Pi'"K . 

j„ik") juky)=J.n{y) n ^, 
t-i 

where X(7/, pi)=0 or 1 according as pi is or is not a divisor of y. In the 

>i7Periodico di Mat., 12, 1897, 137-9. 
«»Amer. Jour. Math., 22, 1900, 293-335. 
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second formula the product equals the similar function of y' if y and y' are 
congruent modulo piP2-. Pr- Consider the function 

[x/k] 

1=1 

where m, n, k are positive integers and a; is a positive number. Then if 
S(x, k) denotes l*+2*+... it is proved that 

2 n, l) =S{x, mn), 

which for m=n = 1 becomes Sylvester’s^® formula. By inversion, 

«, 1)= wn), 

where mW is Merten’s function. For k as above and k' — k/pr% 

n, fc) n, &') } 

. n, k), 
3=0 ^ 

where I is the least value of j for which = 0. Hence n, k) 
can be expressed in terms of functions ^m{y, n, 1). True relations are 
derived from the last four equations by replacing n by 1 — n and ^^{Xy 1 -n, 
k) by 

Wk] 
Uj k)= 2 Jm{ik)'(ik) 

Proof is given of the asymptotic formula 

n,k)=- 
.j.7nn4-l 

~ + 6, 
mn+1 

where A is finite and independent of x, m, n, while 

1 ^ 4 Pi-l 

log X, 

2 -m+l^ 
j.U 

Pm, k— n 

For w = ?2 = /:=!, this result becomes that of Mertens*'^® (and Dirichlet^^). 
The asymptotic expressions found for n, k) are different for the cases 
n==l, n~2j n>2. 

A set of m integers (not necessarily positive) having no common divisor 
> 1 is said to define a totient point. Let one coordinate, as x,ny have a 
fixed integral value 5^0, while x,,. . Xm-\ take integral values such that 

• •) [Xm-i/Xm] have prescribed values; we obtain a compartment in 
space of m dimensions which contains totient points. For 
example, if r?2 = 3, ^3 = 6, and the two prescribed values are zero, there are 
24 totient points (xi, X2, 6) for which 0gXi<6, 0^X2<6, while Xj and X2 

have no common divisor dividing G, For Xi = 1 or 5, Xo has 6 values; for 
Xi = 2 or 4, X2 = l, 3 or 5; for Xi = 3, X2 = l, 2, 5; for Xi =0, X2 = 0, 1, 5. 

Given a closed curve r=/(0), decomposable into a finite number of seg¬ 
ments for each of which f{d) is a single-valued, continuous function. Let 
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K be the area of the region bounded by this curve, and N the number of 
points {x, y) within it or on its boundary such that x is a multiple of k and 
is prime to y. Then 

iV 6 p 

where K increases by uniform stretching of the figure from the origin. 
In particular, consider the number N of irreducible fractions x/y^l 

whose denominators are Sn. Since xSy, the area K of the triangular re¬ 
gion is n^/2. Hence N = (nV2) (G/tt^) , approximately (Sylvester^®). Again, 
the number of irreducible fractions whose numerators lie between I and 
Z+m, and denominators between V and Z'+m', is 6mm'/t^, approximately. 

There is a similar theorem in which the points are such that y is divisible 
by k'j while three new constants obey conditions of relative primality to 
each other or to x, y, k, k'. 

Extensions are stated for m-dimensional space. 
E. Cahen^^® called Jk(n) the indicateur of kth. order of n. 
G. A. Miller^^*’ evaluated Jk{'^) by noting that it is the number of 

operators of period m in the abelian group with k independent generators 
of period m. 

G. A. Miller^^^ proved (10) and (11) by using the same abelian group. 
E. Busche^^^ indicated a proof of (10) and (12) by an extension to space 

of k-\-l dimensions of Kronecker’s^^^ plane, in which every point whose 
rectangular coordinates x, y are integers is associated with the g. c. d. of x, y, 

A. P. Minin^^^ proved (14) and some results due to Gegenbauer.^®"^ 
R. D. CarmichaeP^^ gave a simple proof of Zsigmondy’s^^® formula for \}/. 
G. M4trod^^® stated that the number of incongruent sets of solutions 

of xy'—x'y^a (mod m) is XdmJ2(m/d), where d ranges over the common 
divisors of m and a. When a takes its m values, the total number of sets 
of solutions is 

rn^= -LdmJ^ 
Dim \LJ/d.D 

It is asked if like relations hold for /c>2. 
Cordone^^ and Sanderson^® (of Ch. VIII) used Jordan’s function in 

giving a generalization of Fermat’s theorem to a double modulus. 

Farey Series. 

Flitcon^^® gave the number of irreducible fractions <1 with each 
denominator <100, stating in effect the value of Euler’s </)(n) when 
n is a product of four or fewer primes. 

*’^®Th6orie des nombres, 1900, p, 36; I, 1914, 390-400. 
220Amcr. Math. Monthly, 11, 1904, 129-130. 
22iAmer. Jour. Math., 27, 1905, 321-2. 
222Math. Annalen, 60, 1905, 292. 
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C. Haros^^^ proved the results rediscovered by Farey^®° and Cauchy. 
J. Farey^®° stated that if all the proper vulgar fractions in their lowest 

terms, having both numerator and denominator not exceeding a given 
number n, be arranged in order of magnitude, each fraction equals a frac¬ 
tion whose numerator and denominator equal respectively the sum of the 
numerators and sum of the denominators of the two fractions adjacent to it 
in the series. Thus, for n=5, the series is 

and 

1 1 1 2, 1. 3. 2 3. 4. 
15-^ T’ T’ 

1_1+1 2_1+1. 
4 5+3^ 5 3+2* 

Henry Goodwyn mentioned this property on page 5 of the introduction 
to his ^'tabular series of decimal quotients” of 1818, published in 1816 for 
private circulation (see Goodwyn,Ch. VI), and is apparently to be 
credited with the theorem. It was ascribed to Goodwyn by C. W. Merri- 
field.2^1 

A. L. Cauchy^®^ proved that, if a/5, a'/5', a"/5" are any three consecu¬ 
tive fractions of a Farey series, 5 and 5' are relatively prime and a'h—aV = 1 
(so that a'/h'—a/h^l/bh'). Similarly, a"5'—a'5'' = l, so that a-f-^": 5+5" 
= a': 5', as stated by Farey. 

StouveneP^^ proved that, in a Farey series of order n, if two fractions 
a/5 and c/5 are complementary (i. e., have the sum unity), the same is true 
of the fraction preceding a/5 and that following c/5. The two fractions 
adjacent to 1/2 are complementary and their common denominator is the 
greatest odd integer Hence 1/2 is the middle term of the series and 
two fractions equidistant from 1/2 are complementary. To find the third 
of three consecutive fractions a/5, a'/5', x/y, we have a-\-x = a'z, h+y = h'z 
(Farey), and we easily see that z is the greatest integer ^ (n+5)/5'. 

M. A. Stern^®^ studied the sets rrij n, and m, m+n, n, and m, 2m+n, 
m+n, m+2n, n, etc., obtained by interpolating the sum of consecutive 
terms. G. Eisenstein^®^® briefly considered such sets. 

*A. Brocot^®^ considered the sets obtained by mediation [Farey] from 
0/1, 1/0: 0. 1 1 . 

V v v? 0. 1 1, 2. 1 . 
T’ T’ Vj- 

Herzer^^® and Hrabak^®^ gave tables with the limits 57 and 50. 
G. H. Halphen^®® considered a series of irreducible fractions, arranged 

in order of magnitude, chosen according to a law such that if any fraction / 
is excluded then also every fraction is excluded if its two terms are at least 

de Tdcole polyt., cah. 11, t. 4, 1802, 364-8. 
“®Philos. Mag. and Journal, London, 47,1816,385-6; [48,1816,204]; Bull. Sc. Soc. Philomatique 

de Paris, (3), 3,1816,112. 
“^Matli. Quest. Educat. Times, 9, 1868, 92-5. 
”*Bull. Sc. Soc. Philomatique de Paris, (3), 3,1816,133-5. Reproduced in Exercices de Math., 

1, 1826, 114-6; Oeuvres, (2), 6, 1887, 146-8. 
“*Jour. de math^matiques, 5, 1840, 265-275. 
*“Joiir. fiir Math., 55, 1858, 193-220. «*“Bericht Ak. Wiss. Berlin, 1850, 41-42. 
*“Calcul des rouages par approximation, Paris, 1862. Lucas.*^* 
«®TabeUen, Basle, 1864. w^Xabellen-Werk, Leipzig, 1876. 
«*Bull. Soc. Math. France, 5, 1876-7, 170-5. 
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equal to the corresponding terms of /. Such a series has the properties 
noted by Farey and Cauchy for Farey series. 

E. Lucas^®® considered series 1, 1 and 1, 2, 1, etc., formed as by Stern. 
For the nth series it is stated that the number of terms is their 
sum is the greatest two terms (of rank 2'‘”^+l=fc2"'"^) are 

2"+V5 

Changing n to p, we obtain the value of certain other terms. 
J. W. L. Glaisher^®° gave some of the above facts on the history of Farey 

series. Glaisher^®^ treated the history more fully and proved (p. 328) that 
the properties noted by Farey and Cauchy hold also for the series of irre¬ 
ducible fractions of numerators ^ m and denominators ^ n. 

Edward Sang^®^ proved that any fraction between A/a and C/y is of 
the form {'pA~\-qC)/(pa+^7), where p and q are integers, and is irreducibl^ 
if p, q are relatively prime. 

A. Minine^®^ considered the number 8(a, N) of irreducible fractions a/h 
such that Let 0(6)p denote the number of integers Sv which 
are prime to Z>. Then, fora >0, 

S{a, N) = p = [^]. 

since for each denominator h there are </>(6)p integers prime to b for which 
b+aa^N and hence that number of fractions. 

A. F. Pullich^®^ proved Farey’s theorem by induction, using continued 
fractions. 

G. Airy^®® gave the 3043 irreducible fractions with numerator and denom¬ 
inator g 100. 

J. J. Sylvester^®® showed how to deduce the number of fractions in a 
Farey series by means of a functional equation. 

Sylvester,®®’Ces^ro,®® Vahlen,^® Axer,^^® and Lehmer^’^® investigated the 
number of fractions in a Farey series. 

Sylvester^®®" discussed the fractions x/y for which x<n, y<n, x-\-ySn, 
M. d’Ocagne^®^ prolonged Farey^s series by adding 1/1 in the pth place, 

where p=</>(!)+.. .H-</)(n). From the first p terms we obtain the next p 
by adding unity, then the next p by adding unity, etc. Consider a series 
;S(a, N) of irreducible fractions ai/hi in order of magnitude such that 
hi-^-aai^N, where a is any fixed integer called the characteristic. All 
the series /S(a, N) with a given base N may be derived from Farey’s series 

Soc. Math, France, 6, 1877-8, 118-9. «“Proc. Cambr. Phil. Soc., 3, 1878, 194. 
"^London Ed. Dub. Phil. Mag., (5), 7, 1879, 321-336. 
*®*Tran3. Roy, Soc. Edinburgh, 28, 1879, 287. 
’•®Jour. de math. 6l4m. et sp6c., 1880, 278. Math. Soc. Moscow, 1880. 
“®®Mathesis, 1, 1881, 161-3. *«®TranB. Inst. Civil Engineers; cf. Phil. Mag., 1881, 175. 

O 1QQ0 AA .K. TVyTo + U Q 
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S{0j N) by use of 

a,(a, N)=ai{0, N), b,(a, N) =6,(0, N) -aa,-(0, N), 

Thus a,_i6i= 1, so that the area of is 1/2 if the point 
Ai has the coordinates ai, hi. All points representing terms of the same 
rank in all the series of the same base lie at equally spaced intervals on a 
parallel to the x-axis, and the distance between adjacent points is the num¬ 
ber of units between this parallel and the rr-axis. 

A. Hurwitz-®^ applied Farey series to the approximation of numbers 
by rational fractions and to the reduction of binary quadratic forms. 

J. Hermes^®® designated as numbers of Farey the numbers ti = 1, t2 = 2, 
t3=T4 = 3, Ts = 4, Te=Ty = 5, Ts = 4,.. . with the recursion formula 

t„=t„_2^+T2.+i_„+i, 2-<n^2^+\ 

and connected with the representation of numbers to base 2. The ratios 
of the r’s give the Farey fractions. 

K. Th. Vahlen^®^“ noted that the formation of the convergents to a 
fraction w by Farey’s series coincides with the development of w into a con¬ 
tinued fraction whose numerators are =±=l, and made an application to the 
composition of linear fractional substitutions. 

H. Made^^° applied Hurwitz’s method to numbers a+6^. 
E. Busche-"^^ applied geometrically the series of irreducible fractions of 

denominators and numerators ^6, and noted that the properties of 
Farey series (a = 6) hold [Glaisher-®^]. 
, W. Sierpinski^^^ used consecutive fractions of Farey series of order m 

■f/^ oV*+ t-P /V. 4n -.-•.•wn+•?n 1 

xn(n+l) 

2 '^2] 

jL^A.pOsitions of the theory of Farey series were given by E. Lucas, 
E. Cahen/*^^ Bachmann.^"^ 

An anonymous writer/*^® starting with the irreducible fractions <1, 
arranged in order of magnitude, with the denominators ^ 10, inserted the 
fractions with denominator 11 by listing the pairs of fractions 0/1, 1/10; 
1/6, 1/5; 1/4, 2/7;..the sum of whose denominators is 11, and noting 
that between the two of each pair lies a fraction with denominator 11 and 
numerator equal the sum of their numerators. 

«8Math. Annalen, 44, 1894, 4-17-436; 39, 1891, 279; 45, 1894, 85; Math. Papers of the Chicago 
Congress, 1896, 125. Cf. F. Klein, Ausgewahlte Kapitel der Zahlentheorie, I, 1896, 
196-210. Cf. G. Humbert, Jour, de Math., (7), 2, 1916, 116-7. 

269Math. Annalen, 45, 1894, 371. Cf. L. von Schrutka, 71, 1912, 574, 583. 
*69“Jour. fiir Math., 115, 1895, 221-233. 
2’°Ueber Fareysche Doppelreihen, Diss. Giessen, Darmstadt, 1903. 
27iMath. Annalen, 60, 1905, 288. 
2’2Bull. Inter. Acad. Sc. Cracovie, 1909, II, 725-7. 



CHAPTER VI. 
PERIODIC DECIMAL FRACTIONS; PERIODIC FRACTIONS; FACTORS 

OF !0^=bl. 

Ibn-el-Banna^ (Albanna) in the thirteenth century factored lO"" —1 for 
small values of n. The Arab Sibt el-M4ridini^“ in the fifteenth century 
noted that in the sexagesimal division of 47° 50' by 1° 25' the quotient 
has a period of eight terms. 

G. W. Leibniz^ in 1677 noted that 1/n gives rise to a purely periodic 
fraction to any base h, later adding the correction that n and b must be 
relatively prime. The length of the period of the decimal fraction for 1/n, 
where n is prime to 10, is a divisor of n — 1 [erroneous for n = 21; cf. Wallis^]. 

John Wallis^ noted that, if N has a prime factor other than 2 and 5, the 
reduced fraction M/N equals an unending decimal fraction with a repetend 
of at most N—l digits. If N is not divisible by 2 or 5, the period has two 
digits if N divides 99, but not 9; three digits if N divides 999, but not 99. 
The period of 1/21 has six digits and 6 is not a divisor of 21 — 1. The 
length of the period for the reciprocal of a product equals the 1. c. m. of 
the lengths of the periods of the reciprocals of the factors [cf. Bernoulli®]. 
Similar results hold for base 60 in place of 10. 

J. H. Lambert^ noted that all periodic decimal fractions arise from 
rational fractions; if the period p has n digits and is preceded by a decimal 
with m digits, we have 

a+ 
h 

10^ +ry 
p p p 

= 10™io«+io”io2"+ • ■ • 

John Bobertson® noted that a pure periodic decimal with a period P of 
k digits equals P/9.. .9, where there are k digits 9. 

J. H. Lambert® concluded from Fermat’s theorem that, if a is a prime 
other than 2 and 5, the number of terms in the period of 1/a is a divisor 
of a —1. If g is odd and 1/g has a period of ^—1 terms, then ^ is a prime. 
If 1/g has a period of mtoms, but g — lis not divisible by m, g is composite. 
Let 1/a have a period of 2m terms; if a is prime, /c= lO^'+l is divisible by 
a; if a is composite, Jc and a have a common factor; if k is divisible by a 
and if m is prime, each factor other than 2^5*^ of a is of period 2m. 

Let a be a composite number not divisible by 2, 3 or 5. If 1/a has a 
period of m terms, where m is a prime, each factor of a produces a period 

^Cf. E. Lucas, Arithm<Stique amusante, 1895, 63-9; Brocard.^®^ 
^«Carra de Vaux, Bibliotheca Math., (2), 13, 1899, 33-4. 
^Manuscript in Bibliothek Hannover, vol. Ill, 24; XII, 2, Blatt 4; also, III, 25, Blatt 1, seq., 

10, Jan., 1687. Cf. D. Mahnke, Bibhotheca Math., (3), 13, 1912-3, 45-48. 
^Treatise of Algebra both historical & practical, London, 1685, ch. 89, 326-S (in manuscript, 

1676). 
<Acta Helvetica, 3, 1758, 128-132. 
®Phil. Trans., London, 58,1768, 207-213. 
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of m terms. If 1/a lias a period of mn terms, where m and n are primes, 
while no factor has such a period, one factor of a divides 10”*—1 and another 
divides 10"—1. If 1/a has a period of mnp terms, where m, n, p are primes, 
but no factor has such a period, any factor of a divides 10”*—!,..or 
10«p—1^ These theorems aid in factoring a. 

L. Euler^ gave numerical examples of the conversion of ordinary frac¬ 
tions into decimal fractions and the converse problem. 

Euler’® noted that if 2p+l is a prime 40n=«=l, ±3, =*=9, =*=13, it divides 
10**—1; if 2p+l is a prime 40n=*=7, =*=11, =±=17, =*=19, it divides 10*’4-1. 

Jean Bernoulli® gave a r4sum4 of the work by Wallis,^ Robertson,® 
Lambert® and Euler,’ and gave a table showing the full period for 1/D for 
each odd prime D<200, and a like table when D is a product of two equal 
or distinct primes <25. When the two primes are distinct, the table con¬ 
firms Wallis^ assertion that the length of the period for 1/D is the 1. c. m. 
of the lengths of the periods for the reciprocals of the factors. But for 
1/D^, where D is a prime >3, the length of the period equals D times that 
for 1/D. If the period for i/D, where D is a prime, has D —1 digits, the 
period for m/D has the same digits permuted cyclically to begin with m. 
He gave (p. 310) a device communicated to him by Lambert: to find the 
period, for 1/D, where D = 181, we find the remainder 7 after obtaining the 
part p composed of the first 15 digits of the period; multiply l/D = p-|-7/D 
by 7; thus'the next 15 digits of the period are given by 7p; since 7^=D4‘162, 
the third set of 15 digits is found by adding unity to 7^, etc.; since 7 
belongs to the exponent 12 modulo D, the period for 1/D contains 15*12 
digits. 

Jean Bernoulli® made use of various theorems due to Euler which give 
the possible linear forms of the divisors of 10^=*= 1, and obtained factors of 
(10*—1)/9 when A;^30, except for A: = ll, 17, 19, 23, 29, with doubt as to 
the primality of the largest factor when A; = 13, 15 or ^19. He stated 
(p. 325) erroneously^® that (10^^-bl)/ll*23 has no factor <3000. Also, 

10^®-h 1 = 7* 1 M3*211 *9091 *52081. 

He gave part of the periods for the reciprocals of various primes <601. 
L. Euler^^ wrote to Bernoulli concerning the latter’s® paper and stated 

criteria for the divisibility of 10*’=*=! by a prime 2p+l=4n=‘=l. If both 
2 and 5 or neither occur among the divisors of n, n=F2, n=F6, then 10**—1 
is divisible by 2p-M. But if only one of 2 and 5 occurs, then lO**-!-! is 
divisible by 2p+l [cf. Genocchi®®]. 

Henry Clarke^^ discussed the conversion of ordinary fractions into 
decimals without dealing with theoretical principles. 

^Algebra, I, Ch. 12, 1770; French transl., 1774. 
^“Opusc. anal., 1, 1773, 242; Comm. Arith. Coll., 2, p, 10, p. 25. 
*Nouv. m4m. acad. roy. Berlin, ann^e 1771 (1773), 273-317. 
*lhid., 318-337. 

*“P. Seelhoff, Zeitschrift Math. Phys., 31, 1886, 63. Reprinted, Sphinx-Oedipe, 5, 1910, 77-8. 
i^Nouv. m6m. acad. roy. Berlin, anntSe 1772 (1774), Hiatoire, pp. 35-36; Comm. Arith., 1, 584. 
“The rationale of circulating numbers, London, 1777, 1794. 
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Anton FelkeP^ showed how to convert directly a periodic fraction 
written to one base into one to another base. He gave all primes < 1000 
which can-divide a period with a prime number of digits <30, as 29m+1 
= 59, 233,..., 

Oberreit^^ extended Bernoulli's* table of factors of 10*=*=!. 
C. F. Gauss^^ gave a table showing the period of the decimal fraction for 

p''<467, p a prime, and the period for l/p’', 467^ p’'<997. 
W. F. Wucherer^® gave five places of the decimal fraction for n/d, 

d<1000, n<d for d<50, nglO for d^50. 
Schroter published at Hehnstadt in 1799 a table for converting ordinary 

fractions into decimal fractions. 
C. F. Gauss^^ proved that, if a is not divisible by the prime p (p5*^2, 5), 

the length of the period for a/p^ is the exponent e to which 10 belongs 
modulo p”. If we set <^(p”) =ef and choose a primitive root r of p” such 
that the mdex of 10 is /, we can easily deduce from the periods for k/p^, 
where A: = l, r,..the period for m/p”, where m is any integer not 
divisible by p. For, if ^ be the index of m to the base r, and if ^=a/+/3, 
where 0<i3</, we obtain the period for m/p” from that for rVp” by carrying 
the first a digits to the end. He computed^® the necessary periods for each 
p”<1000, but published here the table only to 100. By using partial 
fractions, we may employ the table to obtain the period for o/6, where h 
is a product of powers of primes within the limits of the table. 

H. Goodwyn^® noted that, if a< 17, the period for o/17 is derived from 
the period for 1/17 by a cyclic permutation of the digits. Thus we may 
print in a double line the periods for 1/17,..., 16/17 by showing the period 
for 1/17 and, above each digit d of the latter, showing the value of a such 
that the period for o/17 begins with the digit d, while the rest of the 
period is to be read cyclically from that for 1/17. 

Goodwyn^* noted that when 1/p is converted into a decimal fraction, 
p being prime, the sum of corresponding quotients in the two half periods 
is 9, and that for remainders is p, if p^7. 

J. C. Burckhardt*® gave the length of the period for 1/p for each prime 
p<2543 and for 22 higher primes. It follows that 10 is a primitive root 
of 148 of the 365 primes p, 5< p< 2500. 

“Abhand. Bdhmiachen Gesell. Wise., Prag, 1, 1785, 135-174. 
H. Lambert’s Deutscher Gelehrter Briefwechsel, pub. by J. Bernoulli, Leipzig, vol. 5, 

1787, 480-1. The part (464-479) relating to periodic decimals is mainly from Ber¬ 
noulli’s® paper. 

“Posthumous manuscript, dated Oct., 1795; Werke, 2, 1863, 412-434. 
“Beytrage zum allgemeinem Gebrauch der Decimal Briiche_, Carlsruhe, 1796. 
^^Disq. Arith., 1801, Arts. 312-8. A part was reproduced by Wertheim, Elemente der Zahlen- 

theorie, 1887, 153-6. 
^*Jour. Nat. Phil. Chera. Arts (ed., Nicholson), London, 4, 1801, 402-3. 

new series, 1, 1802, 314^. Cf. R. Law, Ladies’ Diary, 1824, 44-45, Quest. 1418. 
^Tables des di-viseurs pour tous les nombres du premier million, Paris, 1817, p. 114. For errata 

see Shanks,®^ Kessler,"® Cunningham,^*® and G^rardm.”^ 
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H. Goodwyn^^ gave for eacli integer 100 a table of the periods for 
n/d, for the various integers n<d and prime to d. Also, a table giving 
the first eight digits of the decimal equivalent to every irreducible vulgar 
fraction < 1/2, whose numerator and denominator are both ^ 100, arranged 
in order of magnitude, up to 1/2. 

Goodwyn^^’ was without doubt the author of two tables, which refer 
to the preceding ^^short specimen^^ by the same author. The first gives 
the first eight digits of the decimal equivalent to every irreducible vulgar 
fraction, whose numerator and denominator are both ^ 1000, from 1/1000 
to 99/991 arranged in order of magnitude. In the second volume, the 
^Table of circles’^ occupies 107 pages and contains all the periods (circles) 
of every denominator prime to 10 up to 1024; there is added a two-page 
table showing the quotient of each number g 1024 by its largest factor 2®5^ 

For example, the entry in the ^^tabular series^^ under -g^g- is .08689024. 
The entry in the two-page table under 656 is 41. Of the various entries 
under 41 in the table of circles,’^ the one containing the digits 9024 gives 

the complete period 90243. Hence 086890243. 
Glaisher’® gave a detailed accoimt of Goodwyn^s tables and checks on 

them. They are described in the British Assoc. Report, 1873, pp. 31-34, 
along with tables showing seven figures of the reciprocals of numbers 
<100000. 

F. T. Poselger^^ considered the quotients 0, a, 6,... and the remainders 
1, a, jS,... obtained by dividing 1, A, A^,... by the prime p; thus 

A , a 
—=a“|—, 
p p 

— = aA+h+^,.... 
V V 

Adding, we see that the sum l+a+i9+... of the remainders of the period 
is a multiple mp of p; also, m(A — 1) =a+6+.... Set 

M==k+,..+hA^-'^+aA^-\ 

where A belongs to the exponent t modulo p. Then 
Ant 1 

5=l+A‘+...+A 

^^The first centenary of a series of concise and useful tables of all the complete decimal quotients 
which can arise from dividing a unit, or any whole number less than each divisor, by all 
integers from 1 to 1024. To which is now added a tabular series of complete decimal 
quotients for all the proper vulgar fractions of which, when in their lowest terms, neither 
the numerator nor the denominator is greater than 100; with the equivalent vulgar 
fractions prefixed. By Henry Goodwyn, London, 1818, pp. xiv+18; vii+30. The first 
part was printed in 1816 for private circulation and cited by J. Farey in Philos. Mag. and 
Journal, London, 47, 1816, 385. 

tabular series of decimal quotients for all the proper vulgar fractions of which, when in their 
lowest terms, neither the numerator nor the denominator is greater than 1000, London, 
1823, pp. V-H153. 

*®A table of the circles arising from the division of a unit, or any other whole number, by all the 
integers from 1 to 1024; being all the pure decimal quotients that can arise from this 
source, London, 1823, pp. v-}-118. 

®®Abhand. Ak. Wiss. Berlin (Math.), 1827, 21-36. 
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If M is divisible by p, we may take ?i = l and conclude that differs 
from by an integer. If M is not divisible by p, S must be, so that n 
is divisible by p and the length of the period is pt. In general, for the denom¬ 
inator p^j we have ?i=l if ikf is divisible by p^"^, but in the contrary case 
?i is a multiple of p^~^. If the period for a prime p has an even number of 
digits, the sum of corresponding quotients in the two half periods is p. 

An anonymous writer^^ noted that, if we add the digits of the period of 
a circulating decimal, then add the digits of the new sum, etc., we finally 
get 9. From a number subtract that obtained by reversing its digits; add 
the digits of the difference; repeat for the sum, etc.; we get 9. 

Bredow^® gave the periods for a/p, where p is a prime or power of a 
prime between 100 and 200. He gave certain factors of 10'‘—1 for n = 6-10, 
12-16, 18, 21, 22, 28, 33, 35, 41, 44, 46, 58, 60, 96. 

E. Midy^*^ noted that, if a'‘, a”',... are the least powers of a which, 
diminished by unity, give remainders divisible by ..., respectively 
{q, $1,... being distinct primes), and if the quotients are not divisible by 
q, qij..., respectively, and if t is the 1. c. m. of ?i, ?ii,..., then a belongs to 
the exponent t modulo p..., and a^—1 is divisible by q only h times. 

Let the period of the pure decimal fraction for a/h have 2n digits. If 
h is prime to 10” —1, the sum of corresponding digits in the half periods is 
always 9, and the sum of corresponding remainders is 6. Next, let h and 
10” —1 have d>l as their g. c. d. and set h' = h/d. Let an be the nth re¬ 
mainder in finding the decimal fraction. Then a-(-a„ = 6'/b, ai+an+i = h'ki, 
etc. The sums q+qn, ?i+?n+b-.- of corresponding digits m the half 
periods equal 

{lQk — ki)/d, (10ki — k2)/dy. .., (10/c„^i —A:)/d. 

Similar results hold when the period of mn digits is divided into n parts of 
m digits each. For example, in the period 

002481389578163771712158808933 
for 1/403, the two halves are not complementary (10^^ —1 being divisible 
by 31); for i = l, 2, 3, the sum of the digits of rank i, ^-^-3, ^-+-6,..., t+27 
is always 45, while the corresponding sums of the remainders are 2015. 

N. Druckenmuller^"^” noted that any fraction can be expressed as a/a:+ 

ai/a:^+. • •• 
J. Westerberg^® gave in 1838 factors of 10”=t=l for 15. 
G. R. Perkins^® considered the remainder when A* is divided by P, 

and the quotient q in Nry,_i=PqxA'Tx- If Tk — P—ly there are 2k terms in 
the period of remainders, and 

^*+xH-^x=F, qk^-z-\-qx=^N-i. 

[These results relate to 1/P written to the base N] 

^^Polytechnisches Journal (ed., J. G. Dingier), Stuttgart, 34,1829, 68; extract from Mechanics’ 
Magazine, N. 313, p. 411. 

Won den Perioden der Decirnalbriiche, Progr., Oels, 1834. 
’“^De quelques propri6t63 des nombres et des fractions d^cimales p^riodiques, Nantes, 1836,21 pp. 
^^“Theorie der Kettenreihen..., Trier, 1837. 
*®See Chapter on Perfect Numbers.^°^ 
2®Amer. Jour. Sc. Arts, 40, 1841, 112-7. 
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E. Catalan^° converted periodic decimals into ordinary fractions without 
using infinite progressions. When 1/13 is converted into a decimal, the 
period of remainders is 1, 10, 9, 12, 3, 4; repeat the period; starting in 
the series of 12 terms with any term (as 10), take the fourth term (4) after 
it, the fourth term (12) after that, etc.; then the sum 26 of the three is a 
multiple of 13. In general, if D is a prime and D — l^mn, the sum of n 
terms taken m by m in the period for N/D is a multiple of D [cf. Thibault^^]. 

If the sum of two terms of the period of remainders iox N/D is D, the 
same is true of the terms following them. Hence the sum of corresponding 
terms of the two half periods is D. This happens if the number of terms 
of the period is 0(D). 

Thibault^^ denoted the numbers of digits in the periods for 1/d and 
1/d' by m and w'. If d' is divisible by d, m' is divisible by m. If d and d' 
have no common prime factor other than 2 or 5, the number of digits in 
the period for 1/dd' is the 1. c. m. of m, m'. Hence it suffices to know the 
length of the period for l/p“, where p is a prime. If 1/p has a period of m 
digits and if 1/jf" is the last one of the series 1/p, 1/p^,... which has a 
period of m digits, then the period for l/p“ for a>n has digits. For 
p = 3, we have n=2; hence 1/3’’ for r^2 has a period of 3'’’“^ digits. For 
any prime p for which 7^p^l01, we have n = l, so that l/p* has a period 
of digits. Note that 1/p and 1/p^ have periods of the same length 
to base h if and only if 6^“^ = 1 (mod p^). Proof is given of Catalan^s®° first 
theorem, which holds only when 10"” ^1 (mod D), i. e., when m is not a 
multiple of the number of digits in the period. For example, the sum of 
the Mh and (6+A;)th remainders for 1/13 is not a multiple of 13. 

E. Prouhet^^ proved Thibault^s^^ theorem on the period for 1/p”. He®^“ 
noted that multiples of 142857 have the same digits permuted. 

P. Lafitte^^ proved Midy^s^"^ theorem that, if p is a prime not dividing 
m and if the period for m/p has an even number of digits, the sum of the 
two halves of the period is 9... 9. 

J. Sornin^ investigated the number m of digits in the period for 1/D, 
where D is prime to 10. The period is a;= (10'”~1)/D. First, let D = 10^+1. 
Then x = lOy—1, where 

= 102;+^, 
D 

Finally, we reach v= \ l-{—k)^\/D, and x is an integer if and only if v 
is. Hence if we form the powers of the number k of tens in D, add 1 to 
the odd powers, but subtract 1 from the even powers of kj the first exponent 
giving a result divisible by D is the number m of digits in the period. 

»0Nouv. Ann. Math., 1,1842, 464-5, 467-9. 
2, 1843, 80-89. 
5, 1846, 661. 

^°Ibid., 3, 1844, 376; 1851, 147-152. 
_ .3Q7-Q rif Ampr A/TAnfJhlv 10 1010 
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Next, if D = lOA;—1, we have a like rule to be applied only to the —1. If 
2) = lOA;=t3, 1/(3D) has a denominator 10Z=t 1, and the length of its period, 
found as above, is shown to be not less than that for 1/D. 

Th. Bertram^® gave certain numbers p for which 1/p has a given 
length k of period for 100. . Cf. Shanks.®^ 

J. R. Young®® took a part of a periodic decimal, as .1428571 428 for 1/7, 
and marked off from the end a certain number (three) of digits. We can 
find a multiplier (as 6) such that the product, with the proper carrying 
(here 2) from the part marked off, has all the digits of the abridged number 
in the same cyclic order, except certain of the leading digits. In the special 
case the product is .8571428. 

W. Loof®"^ gave the primes p for which the period for 1/p has a given 
number n of digits, 60, with no entry for n = 17,19, 37-40, 47, 49, 57, 59, 
and with doubt as to the primality of large numbers entered for various 
other ?i^s. 

E. Desmarest®® gave the primes P< 10000 for which 10 belongs to the 
exponent for successive values of t The table thus gives the 
length of the period for 1/P. He stated (pp. 294-5) that if P is a prime 
< 1000, and if p is the length of the period for A/P, then except for P=3 
and P = 487 the length of the period for A/P^ is pP. 

A. Genocchi®® proved Euler’s^^ rule by use of the quadratic reciprocity 
law. Thus 5 is a quadratic residue or non-residue of N according as 
Ar=5m=»=l or 5m=t=3; for 471-1-1 = 5m=fcl, n or n—2 is divisible by 5; for 
4n—1 = 57n=‘=l, n or n+2 is divisible by 5. Also, 2 is a residue of 471=^1 

for 71 even, a non-residue for n odd. Hence 10 is a residue of AT=47i=t 1 for 
n even if ti orn =f2 is divisible-by 5, and for n odd if neither is. Thus Euler^s 
inclusion of 7i=f6 is superfluous. By a similar proof, 10 is quadratic non¬ 
residue of if both 2 and 5 occur among the divisors of n=^2, 
n=t6, or if neither occurs; a residue if a single one of them occurs. 

A. P. Reyer®®“ noted that the period for a/3^ has 3^"^ digits and gave the 
length of the period for a/p for each prime p< 150. 

*F. van Henekeler®®^ treated decimal fractions. 
C. G. Reuschle^® gave for each prime p< 15000 the exponent e to which 

10 belongs modulo p. Thus e is the length of the period for 1/p. He gave 
all the prime factors of 10” —1 for 71^16,7i = 18, 20, 21, 22, 24, 26, 28, 30, 
32, 36, 42; those of 10”-|-1 for 71^18, n = 21; also cases up to 7i = 243 of 
the factors of the quotient obtained by excluding analytic factors. 

“Einige Satze aus der Zahlenlehre, Progr. Coin, Berlin, 1849, 14-15. 
••London, Ed. DubUn Phil. Mag., 36,1850,15-20. 
•’Archiv Math. Phys., 16, 1851, 54-57, French transl. in Nouv. Ann. Math., 14, 1855, 115-7. 

Quoted by Brocard, Mathesis, 4, 1884, 38. 
®®Th4orIe des nombres, Paris, 1852, 308. For errata, see Shanks®^ and G6rardin.^®^ 
•®BulL Acad. Roy. Sc. Belgique, 20, II, 1853, 397-400. 
®**®Archiv Math. Phys., 25, 1855, 190-6. 
••^Ueber die primitiven Wurzeln der Zahlen und ihre Anwendung auf Dezimalbrttcbe, Leyden, 

1855 (Dutch). 
•“Math. Abhandlung.. .Tabellen, Progr. Stuttgart, 1856. Full title in Ch. Errata, 

Bork,^®® Hertzer,!^^® Cunningham. 



166 History of the Theory of Numbers. [Chap. VI 

W. Stainiiier*^ noted that n/p = 0.di... implies 

V 

J. B. Sturm^^ used this result to explain the conversion of decimal into 
ordinary fractions without the use of series. 

M. CoUins^^ stated that, if we multiply any decimal fraction having m 
digits in its period by one with n digits, we obtain a product with 97wn 
digits in its period if m is prime to ?i, but with n(10'"--l) digits if n is 
divisible by m. 

J. E. Ohver^ proved the last theorem. If x'/x gives a periodic fraction 
to the base a with a period of J figures, then (mod x) and conversely. 
The product of the periodic fractions for x^/x,..., 2'/^ with period lengths 
J,..., f has the period length 

X.. .z 

Mix,..., z) 

where Mix,..., z) is the 1. c. m. of x,..., 2. He examined the cases in 
which the first ifactor in the formula is expressible in terms of , f. 

Fr. Heime^® and M. Pokorny^® gave expositions without novelty. 
Suffield^"^ gave the more important rules for periodic decimals and indi¬ 

cated the close connection with the method of synthetic division. 
W. H. H. Hudson^® called d a proper prime if the period for n/d has d—l 

digits. If the period for r/p has n = (p — 1)/X digits, there are X periods 
for p. The sum of the digits in the period for a proper prime p is 9(p — 1)/2. 
If 1/p has a period of 2n digits, the sum of corresponding digits in the two 
half periods is 9, and this holds also if p is composite but has no factor 
dividing 10'' —1 [Midy^T- If lOp+1 is a proper prime, each digit 0, 1,..., 9 
occurs p times in its period. If a, b are distinct primes with periods of 
a, jS digits, the number of digits in the period for ah is the 1. c. m. of a, ^ 
[Bernoulli®]. Let p have a period of n digits and 1/p = V(10”—1). Let m 
be the least integer for which 

is an integer; then 1/p® has a period of mn digits. 

‘^Archiv Math. Phys., 27, 1856, 124. 
^Hhid., 33, 1859, 94-95. 
«Math. Monthly (ed., Runkle), Cambridge, Mass., 1, 1859, 295. 
^Ihid., 345-9. 
"Ueber relative Prim- und correspondirende Zahlen, primitive und sekundare Wurzeln und 

periodische Decimalbriiche, Progr., Berlin, 1860, 18 pp. 
^®Ueber einige Eigenschaften periodischer Dezimalbriiche, Prag, 1864. 
^’Synthetic division in arithmetic, with some introductory remarks on the period of circulating 

decimals, 1863, pp. iv-flO. 
^®Oxford, Cambridge and Dublin Messenger of Math., 2, 1864, 1-6. Glaisher’® atrributed this 

useful anonymous paper to Hudson. 
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V. A. Lebesgue^^ gave for iV‘^347 the periods for 1/N, r/N,. ..[cf. 
Gauss^T. 

Sanio®*^ stated that, if m, n,... are distinct primes and 1/m, 1/n,... 
have periods of length q, g',..., then 1/ ...) has the period length 
^a-1^6-1 qq' ^ gaye length of the period for 1/p for each 
prime p^700, and the factors of 10”— 1, n^l8. 

F. J. E. Lionnet®^ stated that, if the period for a/b has n digits, that for 
any irreducible fraction whose denominator is a multiple of h has a multiple 
of n digits. If the periods for the irreducible fractions a/b, a'/h\... have 
n, n',... digits, every irreducible fraction whose denominator is the 1. c. m. 
of h, b',... has a period whose length is the 1. c. m. of n,n',_ If the period 
for 1/p has n digits and if is the highest power of the prime p which divides 
10”—1, any irreducible fraction with the denominator has a period 
of np^ digits. 

C. A. Laisant and E. Beaujeux®^ proved that if g is a prime and the 
period for 1/g to the base B is P = ah.. .h, with q—1 digits, then 

P—(a+6+.. .+/i) = (P —l)<r, ' 

and stated that a like result holds for a composite number q if we replace 
g —1 by/=<if>(g). Their proof of the generalized Fermat theorem P^=l 
(mod q) is quoted under that topic. 

C. SardP noted that if 10 is a primitive root of a prime p = lOn+l, the 
period for 1/p contains each digit 0,..., 9 exactly n times [Hudson^®]. 
For p = 10n+3, this is true of the digits other than 3 and 6, which occur 
n-fl times. Analogous results are given for lOn+7, lOn+9. 

Ferdinand Meyer®^ proved an immediate generalization from 10 to 
any base k prime to b, &',.•• of the statements by Lionnet.®^ 

Lehmann®^” gave a clear exposition of the theory. 
C. A. Laisant and E. Beaujeux^® considered the residues ro, ri,... when 

A, AB, AB^,... are divided by Di. Let r»_iP = QiDi-l-r,. A^en written 
to the base B, let Di = ap...a2ai, and set Di = ap...Qi. Then 

airi+ ... +aprp = Di(7'i-Q2l>2~ • ■ • -QpB>p)- 

The further results are either evident or not novel. 
For G. Barillari®'^” on the length of the period, see Ch. VII. 

soc. sc. phys. et nat. de Bordeaux, 3, 1864, 245. 
®°Ueber die periodischen Decimalbriiche, Progr., Memel, 1866. 
®^Alg6bre 616m,, ed. 3,1868. Nouv. Ann. Math., (2), 7, 1868, 239. Proofs by Morel and Pellet, 

(2), 10, 1871, 39-42, 92-96. 
wNouv. Ann. Math., (2), 7, 1868, 289-304. 
“Giornale di Mat., 7, 1869, 24-27. 
(i^Archiv Math. Phys., 49, 1869, 168-178. 
®<®Ueber Dezimalbriiche, welche aus gewohnlichen Brilchen abgeleitet sind, Progr., Leipzig, 1869. 
^^Nouv. Ann. Math., (2),.9, 1870, 221-9, 271-281, 302-7, 354-360. 
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*Th. Schroder^® and J. Hartmann®^ treated periodic decimals. 
W. Shanks®® gave Lambert's method (Bernoulli,® end) for shortening 

the work of finding the length of the period for l/N. 
G. Salmon®® remarked that the number n of digits in the period is known 

if we find two remainders which are powers of 2, since 10“ ^ 2^ and 10®s‘2® 
imply 10“®“®*'^!; also if we find three remainders which are products of 
powers of 2 and 3. Muir^^ noted that it is here implied that aq-bp equals 
n, whereas it is merely a multiple of n. 

J. W. L. Glaisher®® proved that, for any base r, 

^=•012... 

a generalization of 1/81 = .012345679. 
W. Shanks®^ gave the length of the period for 1/p, when p is a prime 

<30000, and a list of 69 errors or misprints in the table by Desmarest,®® 
and 11 in that by Burckhardt.^® 

Shanks®^ gave primes p for which the length n of the period for 1/p is a 
given number ^100, naturally incomplete. Shanks®® gave additional 
entries p for n=26, n = 99; noted corrections to his former table and stated 
that he had extended the table to 40000. Shanks®^ mentioned an extension 
in manuscript from 40000 to 60000. An extension to 120000 in manu¬ 
script was made by Shanks, 1875-1880. The manuscript, described by 
Cunningham, who gave a list of errata, is in the Archives of the Royal 
Society of London. 

Shanks®® stated that if a is the length of the period for 1/p, where p is a 
prime >5, that for 1/p” is ap”~^ {without the restriction by Thibault,®^ 
Muir’'^]. 

G- de Coninck®® stated that, if the last digit (at the right) of A is 1 or 9, 
the last digit of the period for 1/A is 9 or 1; while, if A is a prime not ending 
in 1 or 9, its last digit is the same as the last m the period. 

Moret-Blanc®’^ noted that the last property holds for any A not divisible 
by 2 or 5. For, if a is the integer defined by the period for 1/A, that for 
(A —1)/A is (A —l)a, whence a-h(A —l)a = 10”--l, if n is the length of the 
periods. He noted corrections to the remaining nine laws stated by Coninck 
and implied that when corrected they become trivial or else known facts. 

“Progr. Ansbach, 1872. 
”Progr. Rinteln, 1872. 
^Messenger Math., 2, 1873, 41-43. 

pp. 49-51, 80. 
p. 188. 

»^Proc. Roy. Soc. London, 22, 1873-4, 200-10, 384-8. Corrections by Workman.^’ 
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Karl Broda®® considered a periodic decimal fraction F having an even 
number r of digits in the period and a number m of p digits preceding the 
period. Let x be the first half of the period, y the second half. Then 

p_ P ._^ \ y \ ^ \ ^ V 1 

9(p4Cr+a?4-p)+q 
9-10^(l(r+l) 

if x+y=a(l(r—1)/9 = a.. .0 (to r terms). The first paper treated the case 
= and gave the generalization to base a in place of 10: 

£,X4_-£.4. _ a+{a-l)x if x+y^a 
a'-l 

a-l* 

The case a = a — 1 shows that a purely periodic fraction to the base a equals 
(a;+l)/(a’'+l) if the sum of the half periods has all its digits (to base a) 
equal to a —1. Returning to the base 10, and taking iV= 9(10*‘+1), 
2^ = 9x+u, where each digit of a: is ^a, we see that Z/N equals a decimal 
fraction in which x is the first half of the period of r digits, while the second 
half is such that the sum of corresponding digits in it and x is a. If R is the 
remainder after r digits of the period have been obtained, R+Z == a (10’'+!) • 

C. G. Reuschle®® gave tables which serve to find numbers belonging to 
a given exponent < 100 with respect to a given prime modulus < 1000. 

P. Mansion^® gave a detailed proof that, if n is prime to 2, 3, 5, and if 
the period for 1/n has ?i—1 digits, the sum of corresponding digits in the 
half periods is 9. 

T. Muir^^ proved that, if p is a prime, either of 

1 (mod pO, (mod 

follows from the other. If Xi is the least positive integer x for which the 
first holds and if p* is the highest power of p dividing iV** —1, then Xjp" is 
the least positive integer y for which 1 (mod p**^”). Hence the known 
theorem: If N=npi"^, where pi, p2,... are distinct prunes, and if the period 
for 1/pt has w* digits, and if p^ is the highest power of p* dividing 10”*^— 1, 
the number of digits in the period for 1/N is the 1. c. m. of the rriiPi'*'^^*. He 
asked if 6 = 1 when p>3, as affirmed by Shanks.®® 

Mansion's proof (ihid.j 5, 1876, 33) by use of periodic decimals of the 
generalized Fermat theorem is quoted under that topic. 

D. M. Sensenig^^ noted that a prime p 7*^2, 5, divides iV’ if it divides the 
sum of the digits of N taken in sets of as many figures each as there are 
digits in the period for 1/p. 

••Arcluv Math. Phys., 56, 1874, 85-08; 57, 1875, 297-301. 
••Tafeln complexer Primzahlen, Berlhi, 1875. Errata by Cunningham, Mess. Math., 46, 

1916, 60-1. 
’®Nouv. Corresp. Math., 1, 1874-5, 8-12. 
’^Messenger Math., 4, 1875, 1-5. 
”The Analyst, Des Moines, Iowa, 3, 1876, 25. 
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*A. J. M. Brogtrop^® treated periodic decimals. 
G. Bellavitis^^ noted that the use of base 2 renders much more com¬ 

pact and convenient Gauss^^® table and hence constructed such a table. 
W. Shanks^® found that the period for 1/p, where p = 487, is divisible 

by p, so that the period for 1/p^ has p — 1 digits. 
J. W. L. Glaisher'^® formed the period 05263... for 1/19 as follows: 

List 5; divide it by 2 and list the quotient 2; since the remainder is 1, 
divide 12 by 2 and list the quotient 6; divide it by 2 and list the quotient, 
etc. To get the period for 1/199, start with 50. To get the period, apart 
from the prefixed zero, for l/49, start with 20 and divide always by 5; for 
1/499, start with 200. 

Glaisher’^’^ noted that, if we regard as the same periods those in which 
the digits and their cyclic order are the same, even if commencing at differ¬ 
ent places, a number q prime to 10 will have/periods each of a digits, where 
af=(j>{q). This was used to check Goodwyn^s table.^ If $ = 39, there are 
four periods each of six digits. If $ — 1 belongs to the period for l/$, the 
two halves of every period are complementary; if not, the periods form 
pairs and the periods in each pair are complementary. For each prime 
JV<1000, except 3 and 487, the period for 1/N^ has digits if that 
for 1/N has n digits. 

Glaisher^^ collected various known results on periodic decimals and 
gave an account of the tables relating thereto. If q is prime to 10 and if 
the period for 1/q has 0($) digits, the products of the period by the <^>($) 
integers <q and prime to q have the same digits in the same cyclic order; 
for example, if $=49. He gave (pp. 204-6) for each $<1024 and prime 
to 10 the number a of digits in the period for l/$, the number n of periods 
of irreducible fractions p/q, not regarding as distinct two periods having 
the same digits in the same cyclic order, and, finally Euler's 0($). The 
values of a and n were obtained by mere counting from the entries in Good- 
wyn's^^ ''table of circles"; in every c^ase, an—(t>{q). For the prime p = 487, 
he gave the full periods for 1/p and 1/p^, each of 486 digits, thus verifying 
Desmarest's^® statement of the exceptional character of this p [cf. Shanks’^®]. 

Glaisher*^^ again stated the chief rules for the lengths of periods. 
The problem was proposed^® to find a number whose products by 2,..., 6 

have the same digits, but in a new order. 
Birger Hausted®^ solved this problem. Start with any number a of 

one digit, multiply it by any number p and let h be the digit in the units 

”Nieuw Archief voor Wiskunde, Amsterdam, 3,1877, 58-9. 
^<Atti Accad. Lincei, Mem. Sc. Fis. Mat., (3), 1, 1877, 778-800. Transunti, 206. See 62a 

of Ch. VII. 
^^Proc. Roy. Soc. London, 25, 1877, 551-3. 
^®Messenger Math., 7, 1878, 190-1. Cf. Desmarest.®* 
"Report British Assoc., 1878, 471-3. 
^sProc. Cambridge Phil. Soc., 3, 1878, 185-206. 
"Solutions of the Cambridge Senate-House Problems and Riders for 1878, pp. 8-9. 
‘“Tidsskrift for Math., Kjobenhavn, 2, 1878, 28. 
“/bid., pp. 180-3. Jornal de Sc. Math, e Ast., 2, 1878, 154-6. 
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place of the product ap, jS the digit in the tens place. Write the digit b 
to the left of digit a to form the last two digits of the required number P. 
The number c in the units place in hp+^ is written to the left of digit h in 
P. To cp add the digit in the tens place of hp and place the unit digit of 
the sum to the left of c in P. The process stops with the kth digit t if the 
next digit would give a. Then P=t...cha and its products by k integers or 
fractions has the same k digits in the same cyclic order. For a = 2, p = 3, 
we get /c = 28 and see that P is the period of 2/27, and the k multipliers 
are 7n/2, m = l,..28. [To have an example simpler than the author's, 
take 0=7, p = 5; then P=142857, the period of 1/7; the multipliers are 
1,..6.] For proof, we have 

P=10"-'^+... +10^0+106+0, 

pF=10^-'a+^, 
pP = 10*-ia+10*”2^+ ... +10c+b, 
a _ P 

10p~l 10*-l’ 

so that P is the period with k digits for o/(10p —1). 
E. Lucas®^ gave the prime factors of 10^^=*=!, 10^^=*=!, 10^^=*=!, 10^®+!, 

10^®+!, communicated to him by W. Loof, with the remark that (10^®~l)/9 
has no prime factor <3035479. Lucas gave the factors of 10^®+!. 

J. W. L. Glaisher®^ proved his^® earlier statements, repeated his"^^ earlier 
remarks, and noted that, if g is a prime such that the period for 1/g has 1 
digits, the products of the period for 1/g by 1, 2,..., g —1 have the same 
digits in the same cyclic order. This property, well known for q = 7, holds 
also for q = 17j 19, 23, 29, 47, 59, 61, 97 and for g = 7^. 

0. Schlomilch®^ stated that, to find every N for which the period for 
1/N has 2k digits such that the sum of the sth and {k-{-s)th. digits is 9 for 
s = 1,..., A;, we must take an integer N = (10*+l)/!r; then the first k digits 
of the period are the k digits of T—1. 

C. A. Laisant®® extended his investigations with Beaujeux®^’®® and gave a 
summary of known properties of periodic fractions; also his®® process to 
find the period of simple periodic fractions without making divisions. 

V. Bouniakowsky®’^ noted that the property of the period of 1 A’, 
observed by Schlomilch®^ for N = 7j 11,13, 77, 91,143, holds also for the pe¬ 
riods of k/N,ioTk = N—l and (N—l)/2,with the same values of N. Consider 
the decimal fraction O.2/12/2.. • with 2/m=2/m-i+2/m-2 (mod 9), replacing any 
residue zero by 9, and taking 2/1 > 0, 2/2 > 0. The fraction is purely periodic 

and is either 0.9 or 0.33696639 or has the same digits permuted cyclically, 
or else has a period of 24 digits and begins with 1,1 or 2, 2 or 4, 4, or has the 
same 24 digits permuted cyclically or by the interchange of the two hahTs 

s^Nouv. Corresp. Math., 6, 1879, 138-9. 
83Nature, 19, 1879, 208-9. 
MZeitschrift Math. Phys., 25, 1880, 416. 
“M6m. Soc. Sc. Phys. et Nat. de Bordeaux, (2), 3, 1880, 213-34. 
MLes Mondes, 19, 1869, 331. 
8’Bull. Acad. Sc. St^rP^tersbourg, 27, 1881, 362-9. 
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of the period. The property of Schlomilch holds for these and the generali¬ 
zation to any base, as well as for those with the law 2/m=22/m-i"i“2/tn-2* But if 

yrn^dym-i-2ym-2 (mod 9), 2/^-(2"‘-'-l)(2/2-2/i)+2/i (mod 9), 

the fact that (mod 9) shows that the period has at most six digits. 
Those with six reduce by cyclic permutation to nine periods: 

167943, 235986, 278154, 197346, 
265389, 218457, 764913, 329568, 751248. 

In the kth of these the sum of corresponding digits in the two half periods 

is always (mod 9). 
Karl Broda®^ examined for small values of r and certain primes p the 

solutions X of x^'^l (mod p) to obtain a base x for which the periodic frac¬ 
tion for 1/p has a period of r digits, and similarly the condition x^^-1 
(mod p) for an even number of digits in the period (Broda®^). 

F. Kessler^® factored 10"—1 forn = ll, 20, 22, 30. 
W. W. Johnson®® formed the period for 1/19 by placing 1 at the extreme 

right, next its double, etc., marking with a star a digit when there is 1 to carry: 

05263157894736842 1. 

To deduce the value of 1/19 written to the base 2^ use 1 for each digit 
starred and 0 for the others, reversing the order: 

.6 0001101011110010 i. 

If we apply the first process with the multiplier m, we get the period for the 
reciprocal of lOw—1. 

E. Lucas®^ gave the prime factors of 10"—! for n odd, n^l7, n = 21, 
and certain factors forn = 19,..41; those of 10"+1 for 18 and n = 21. 
He stated that the majority of the results were given by Loof and published 
by Reuschle. In 1886, Le Lasseur gave 

1017-1 = 3"*2071723*5363222[3]57, 

said by Loof to have no divisor <400,000 other than 3,9. On the omission 
of the digit 3, see Cunningham. 

F. Kessler®^ listed nine errors in Burckhardt^s^® table and described his 
own manuscript of a table to p = 12553, i. e., for the first 1500 primes. 

Van den Broeck®^ stated that 10^”— 1 is divisible by 3"'’'^. 
A. Lugli®^ proved that, if p is a prime 5*^2, 5, the length of the period 

of 1/p is a divisor of p —1. If the number of digits in the period of a/p is 
an even number 2t, the ^th remainder on dividing a by p is p —1, and con¬ 
versely. Hence, if n is the /ith remainder, rh+rh+t=P (/i = l,..t)j and 
the sum of all the r^s is ip. If the period of 1/p has s digits, s<p — 1, then 

•*Archiv Math. Phys., 68,1882, 85-99. 
••Zeitschrift Math. Naturw. Unterricht, 15, 1884, 29. 
•“Messenger of Math., 14,1884-5, 14-18. 
•^Jour. demath. 616m., (2), 10,1886,160. Cf. I’intenn6diaire des math., 10,1903,183. Quoted 

by Brocard, Mathesis, 6, 1886,153; 7,1887, 73 (correction, 1889, 110). 
•*Archiv Math. Phys., (2), 3, 1886, 99-102. 
““Mathesis, 6, 1886, 70. Proofs, 235-6, and Math. Quest. Educ. Times, 54, 1891, 117. 
•*Periodico di Mat. 2 1887,161-174. 
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p—1 =5/1 and we have h sets of s fractions whose periods differ only by the 
cyclic permu <3ation of the digits. If p is a product of distinct primes pi, p2... 
and if the lengths of the periods of 1/p, 1/pi, l/p2,... are s, Si, S2,..., then 
5 is the 1. c. m. of Si, S2, — If V^ViV^• • •> and s, Si, s' are the lengths of 
the periods of 1/p, 1/pi, l/pi% then s' is one of the numbers Si, Sip,.. 
SiPi“”^ and hence divides (Pi-~l)Pi‘'“^; and s is a divisor of <^(p). Thus p 
divides 10^^^^ —1. 

C. A. Laisant®® used a lattice of points, whose abscissas are a+r, a+2r,..., 
a+pr and ordinates are their residues < p modulo p, to represent graphically 
periodic decimal fractions and to expand fractions into a difference of two 
series of ascending powers of fixed fractions. 

*A. Rieke®® noted that a periodic decimal with a period of 2m digits equals 
(A+1)/(lO^'+l), where A is the first half of the period. He discussed the 
period length for any base. 

W. E. HeaP^ noted that, if B contains all the prime factors of iV, the 
number of digits in the fraction to the base B for M/N is the greatest integer 
in (n+n' —l)/n', where n—n' is the greatest difference found by subtracting 
the exponent of each prime factor of N from the exponent of the same prime 
factor of B, If B contains no prime factor of N, the fraction for M/N is 
purely periodic, with a period of (l>(N) digits. If B contains some, but not 
all, of the prime factors of A, the number of digits preceding the period is 
the same as in the first theorem. The proofs are obscure. There is given 
the period for 1/p when p<100 and has 10 as a primitive root [the same 
p’s as by Glaisher®^]. Likewise for base 12, with p<50. 

R. W. Genese^® noted that, if we multiply the period for 1/81 [Glaisher®°] 
by m, where m<Sl and prime to it, we get a period containing the digits 
0, 1,..., 9 except 9n~m, where 9n is the multiple of 9 just exceeding m, 

Jos. Mayer®® investigated the moduli with respect to which 10 belongs 
to a given exponent, and gave the factors of lO’^—l, n< 12. He discussed 
the determination of the exponent to which 10 belongs for a given modulus 
by use of the theory of indices and by the methods of quadratic, cubic, 
biquadratic,... residues. He used also the fact that there are (a—a') 
(/3—/3')... divisors of ViV2^Vz*• • • which divide no one of the fixed factors 
ViV2^V^ • • • j Vi^V2Vz^j • • •) where a<a, 6<i3,.. ., and Pi, P2, • . • are distinct 
primes. He gave the length of the period for 1/p, for each prime p^2543 
and 22 higher primes [Burckhardt^®]. 

L. Contejean^®® proved that, in the conversion of an irreducible fraction 
a/h into a decimal fraction, if the remainders and a,n are congruent 
modulo 6, so that Kfa^KTa, then 10”‘~’'—1 is divisible by the quotient 
h' of h by the highest factor 2‘5* of 6. Thus the length of the period is 

Assoc, fran^. avanc. sc., 16, 1887, II, 228-235. 
“Versuch iiber die periodischen Briiche, Progr., Riga, 1887. 
•’Annals of Math., 3, 1887, 97-103. 
••Report British Assoc., 1888, 580-1. 
••XJeber die Grosse der Periode eines imendlichen Dezimalbruches, oder die Congruence 

10®=1 (mod P). Progr. K. Studienanstalt Burghausen, Milnchen, 1888, 52 pp. 
“•Bull. Boc. philomathique de Paris, (8), 4, 1891-2, 64-70. 
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m—r, while r digits precede the period. The condition that the length of 
the period be the maximum 0(6') is that 10 be a primitive root of 6', whence 
6'=p”, since 6'5*^ 4 or p being an odd prime. 

P. Bachmann^®^ used a primitive root g of the prime p and set 

“I-= Q = C . .+Cigr+Co, 
V 

to the base g. We get the multiples Q, 2Q,..., (p—1)Q by cyclic permuta¬ 
tion of the digits of Q. For p==7, ^' = 10, Q -142857. 

J. Kraus^®^ generalized the last result. When ri/n is converted into a 
periodic fraction to base prime to- n, let ai,..., ak be the quotients 
and ri,..., the remainders. Then 

“— T\=ctxg^~^-{-a:^+ig^'^^+ ... +ax_i (X = l,..k), 

whence 
7*x(ai^“^+ .. . +a;fe) =ri(ax^*''^+ ... d-Ux^i). 

In particular, let n be such that it has a primitive root gj and take ri = l. 
Then 

_ 1 
y-= Q = . .+a,(n), 

n 

and if is prime to n, the product rxQ has the same digits as Q permuted 
cyclically and beginning with 

H. Brocard^^^ gave a tentative method of factoring 10”—1. 
J. Mayer^®^ gave conditions under which the period of z/P to base a, 

where z and a are relatively prime to P, shall be complete, i. e., corresponding 
digits of the two halves of the period have the sum a —1. 

Heinrich Bork^°® gave an exposition, without use of the theory of num¬ 
bers, of known results on decimal fractions. There is here first published 
(pp. 36-41) a table, computed by Friedrich Kessler, showing for each prime 
p< 100000 the value of g = (p —l)/e, where e is the length of the period 
for 1/p. The cases in which g = l or 2 were omitted for brevity. He 
stated that there are many errors in the table to 15000 by Reuschle.^° 
Cunningham^^^ listed errata in Kessler’s table. 

L. E. Dickson^'^® proved, without the use of the concept of periodic 
fractions, that every integer of D digits written to the base N, which is 
such that its products by D distinct integers have the same D digits in 
the same cyclic order, is of the form A(N^ — 1)/P, where A and P are 
relatively prime. A number of this form is an integer only when P is prime 

^o^Zeitschrift Math. Phys., 36, 1891, 381-3; Die Elemente der Zahlentheorie, 1892, 95-97. 
Alike discussion occurs in Tinterm^diaire des math., 5, 1898, 57-8; 10, 1903, 91-3. 

lo^Zeitschrift Math. Phys., 37, 1892, 190-1. 
Progreso Matematico, 1892, 25-27, 89-93, 114-9. Cf. I'interm^diaire des math., 2, 1895, 

323-4. 
“'Zeitschrift Math. Phys., 39,1894, 376-382. 
i^Periodische Dezimalbriiche, Progr. 67, Prinz Heinrichs-Gymu., Berlin, 1895, 41 pp. 
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to Nj and D is a multiple of the exponent d to which N belongs modulo P, 
The further discussion is limited to the case D = d, to exclude repetitions 
of the period of digits. Then the multipliers which cause a cyclic permuta¬ 
tion of the digits are the least residues of AT, N^,..., modulo P. For 
A = ljWe have a solution for any N and any P prime to N. There are listed 
the 19 possible solutions with i[>l, and having the first digit >0. 
The only one with i\r= 10 is 142857. General properties are noted. 

A like form is obtained (pp. 375-7) for an integer of D digits written to 
the base N, such that its quotients by D distinct integers have the same 
D digits in the same cyclic order. The divisors are the least residues of 
N^, iV modulo P. For example, if ^^=11, P=7, A = 4, we get 
4(11^ —1)/7, or 631 to base 11, whose quotients by 2 and 4 are 316 and 163, 
to base 11. Another example is 512 to base 9. 

E. Lucas^ gave all the prime factors of 10”—1 for 18. 
F. W, Lawrence^®^ proved that the large factors of 10^® — 1 and 10^^ — 1 

are primes. 
C. E. Bickmore^®® gave the factors of 10”—1, 100. Here (10^^ —1)/9 

is marked prime on the authority of Loof, whereas the latter regarded its 
composition as unknown [Cunningham^^^]. There is a misprint for 43037 
in lO^Q-l. 

B. Bettini^®^ considered the number n of digits in the period of the deci¬ 
mal fraction for a/6, i. e., the exponent to which 10 belongs modulo 6. If 
10 is a quadratic non-residue of a prime 6, n is even, but not conversely 
(p. 48). There is a table of values of n for each prime 6^277. 

V. Murer^^° considered the n = mq remainders obtained when a/6 is 
converted into a decimal fraction with a period of length n, separated them 
into sets of w, starting with a given remainder, and proved that the sum 
of the sets is a multiple of 9.. .9 (to w digits). Further theorems are found 
when g = l, 2 or 3. 

J. Sachs^^°® tabulated all proper fractions with denominators < 250 and 
their decimal equivalents. 

B. Reynolds^^^ repeated the rules given by Glaisher’^®’for the length 
of periods. He extended the rules by SardP and gave the number of times 
a given digit occurs in the various periods belonging to a denominator iV, 
both for base 10 and other bases. 

Reynolds^^^ gave numerical results on periodic fractions for various 
bases the lengths of whose period is 3 or 6, and on the length of the period for 
1/N for every base <iV — 1, when A is a prime. 

A. Cunningham^applied to the question of the length of the period 
of a periodic fraction to any base the theory of binomial congruences [see 

“’■Proc. London Math. Soc., 28, 1896-7, 465. CC. Bickmore^® of Ch. XVI. 
i®8Nouv. Ann. Math., (3), 15, 1896, 222-7. 
losPeriodico di Mat., 12, 1897, 43-50. 142-150 
uoaprogr. 632, Baden-Baden, Leipzig, 1898. 
ii^Messenger Math., 27, 1897-8, 177-87. 

28, 1898-9, 33-36, 88-91. 
^mid., 29, 1899-1900, 145-179. Errata.^” 
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201 of Ch. VII]. He gave extensive tables, and references to papers on 
higher residues and to tables relating to period lengths. 

O. Fujimaki^^^ noted that if 10”*—1 is exactly divisible by n, and the 
quotient is Ui.. .a^ of m digits, the numbers obtained from the latter by 
cyclic permutations of the digits are all multiples of Oi.. .a„,. 

J. Cullen, D. Biddle, and A. Cuimingham^^® proved that the large factor 
of 14 digits of (10^®+1)/(10®+1) is a prime. 

L. Kronecker^^® treated periodic fractions to any base. 
W. P. Workman^^^ corrected three errors in Shanks^table. 
D. Biddle^^® concluded erroneously that (10^^—1)/9 is a prime. 
H. Hertzer^^^ extended Kessler's^°^ table from 100000 to 112400, noted 

Reuschle^s^® error on the conditions that 10 be a biquadratic residue of a 
prime p and gave the conditions that 10 be a residue of an 8th power 
modulo p. For errata in the table, see Cunningham.^^ 

P. Bachmann^^® proved the chief results on periodic fractions and cyclic 
numbers to any base g. 

A. Tagiuri^^^ proved theorems [F. Meyer,Perkins^®] on purely periodic 
fractions to any base and on mixed fractions. 

E. B. Escott^^^ noted a misprint in Bickmore^s^^® table and two omissions 
in Lucas^^^ table, but described inaccurately the latter table, as noted by 
A. Cunningham. 

A. Cunningham^^ described various tables (cited above) which give 
the exponent to which 10 belongs, and listed many errata. 

J. R. Akerlund^^^ gave the prime factors of 11... 1 (to n digits) for nS 16, 
n==18. 

K. P. Nordlund^^® applied to periodic fractions the theorem that, if 
ni,..., n,. are distinct odd primes, no one dividing a, then N = ... n,.’”’’ 
divides where ^=0(iV)/2’'“\ He gave the period of 1/p for p a 
prime <100 and of certain a/p. 

T. H. Miller,generalizing the fact that the successive pairs of digits 
in the period for 1/7 are 14, 28,..., investigated numbers n to the base r 
for which 

1 

n 

2n 4n 8n 
%2 + ^4+^6 + - 

”<Joiir. of the Physics School in Toldo, 7, 1897, 16-21; Abh. Geach. Math. Wiss., 28, 1910, 22. 
*“Math. Quest. Educat. Times, 72, 1900, 99-101. 
1^‘Vorlesungen uber Zahlentheorie, I, 1901, 428-437. 
i^^Messenger Math., 31, 1901-2, 115. 

p. 34; corrected, ibid., 33, 1903-4, 126 (p. 95). 
'^»Archiv Math. Phys., (3), 2, 1902, 249-252. 
““Niedere Zahlentheorie, I, 1902, 351-363. 
“^Periodico di Mat., 18, 1903, 43-58. 
“*Nouv. Ann. Math., (4), 3,1903, 136; Messenger Math., 33, 1903-4, 49. 
^“Messenger Math., 33, 1903-4, 95-96. 
mhU., 145-155. 
i“Nyt Tidsskrift for Mat., Kjobenhavn, 16 A, 1905, 97-103. 
^oteborgs Kungl. Vetenskaps-Handlingar, (4), VII-VIII, 1905. 
^Troc. Edinburgh Math. Soc., 26, 1907-8, 95-6. 
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whence 2n^ = 2. Besides the case r = 10, n = 7, he found r = 58, n=41, 
etc. 

A. Cunningham^^® noted two errors in his paper^^^ and added 

252i2^1(mod 997^), 390112^=1 (mod 17®) 

and cases modulo where p = 103, 487, attributed to Th. Gosset. 
A. Cunningham^^® gave tables of the periods of 1/N to the bases 2, 3, 5 

for 100. 
H. Hertzer^^® noted three errors in Bickmore^s^®® table. 
A. G4rardin^^^ gave factors of 10”—1, n<100, and a table of the expo¬ 

nents to which 10 belongs modulo p, a prime < 10000, with a list of errors 
in the tables by Burckhardt and Desmarest. 

A. Filippov^®^ gave two methods of determining the generating factor 
for the periodic fraction for 1/h (cf. Lucas, Th^orie des nombres, p. 178). 

G. C. Cicioni^^^ treated the subject. 
E. R. Bennettproved the standard theorems by means of group 

theory. 
W. H. Jackson^^® noted that, if a is prime to 10 and if 6 is chosen so that 

6 <10, a6 = 10m—1, the period for 1/a may be written as 

h ] 1-j-lOw-i-(lOw)^-]-... '-l-(10?7i)*'”^|‘ —A;*10*, 

where s is the exponent to which 10 belongs modulo a, and fc is a positive 
integer. Thus for a = 39, 6 = 1, we have m=4, s = 6, and the period is 

l-f40+.. . + (40)®-A;-10®, ^ = .025641. 

G. Mignosi^®® discussed the logic underlying the identification of an 
unending decimal with its generator p/q. 

A. Cunningham^®^ treated periodic decimals with multiples having the 
same digits permuted cyclically. 

F. Schuh^®® considered the length of the period for 1/p® for the base g, 
where p is a prime. He proved that g^ is of the form gip®, where 0^ a—2 
when p = 2, a>2, while O^c^o — 1 in all other cases. For a>2, 

3a-l = 9lP‘’~\. ■ qa-c+l = qiP, qa-c= ■ ■ ■=l2 = q, 

where g = gi except when p = 2, g = 4m —1, and then g = 2. Equality of 
periods for moduli p® and p^ can occur for an odd prime p only when this 
period is gi, and for p = 2 only when it is 1 or 2. It is shown how to find 
the numbers g which give equal periods for p® and p, and the odd numbers 
g which give the period 2 for 2®. 

i«Math. Gazette, 4, 1907-8, 209-210. Sphinx-Oedipe, 8, 1913, 131. 
i^oMath. Gazette, 4, 1907-8, 259-267; 6, 1911-12, 63-7, 108-116. 
““Archiv Math. Phys., (3), 13, 1908, 107. 
“^Sphinx-Oedipe, Nancy, 1908-9, 101-112. 
“^Spaczinskis Bote, 1908, pp. 252-263, 321-2 (Russian). 
“*La divisibilit^i dei numeri e la teoria deUe decimah periodiche, Perugia, 1908, 150 pp. 
is^Amer. Math. Monthly, 16, 1909, 79-82. 
“»Annals of Math., (2), 11, 1909-10, 166-8. 
“®I1 BoU. Matematica Gior. Sc.-Didat., 9, 1910, 128-138. 
“’Math. Quest. Educat. Times, (2), 18, 1910, 25-26. 
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T. Ghezzi^^® considered a proper irreducible fraction m/p with p prime 
to the base h of numeration. Let h belong to the exponent n modulo p. In 

mfe=pgi+ri, ri6 = pg2+r2,. • - , 0<ri<p, 0<r2<p,.. 

ri,..Tn are distinct and rn==m. Multiply the respective equations by 
^n-2^ ggg 

m^gib^-^+.-.+gn 
p 

A similar proof shows that m/p equals a fraction with the denominator 
b*(5”—1) when b = aia2a3, p==Pia/a2Wj the a’s being primes and pi rela¬ 
tively prime to h, while is the least power of h having the divisor ai'’a2''a3, 
and n is the exponent to which h belongs modulo pi. 

F. Stasi^^*^ gave a long proof showing that the length of the period for 
h/a does not exceed that for 1/a. If the period A for 1/p has m digits and 
n = pqia prime to 10, the length of the period for l/n is m if A is divisible 
by O'; is mi if A is prime to q and if the least ^(10"”^*“^^+ • - -f-1) divisible 
by q has m=^; and is mj if A=A'a, q=^aq', with A', q' relatively prime, 
while the least A' ... +1) divisible by g' has k=j. For a prime 
p5^2, 5, let 

1 _ Ah 

and let A^ be the first of the periods of successive powers of 1/p not divisible 
by p; then the period for l/p^‘"^^ has mp^ digits. If Pi is a prime 5, 
and Ti is the length of the period for 1/pi, and if l/p/< is the highest power 
of 1/pi with a period of digits, the length of the period for l/pf^ is 
r/ — Tipand that for l/npi“< is a multiple of the 1. c. m. of the r/. 

If n is prime to 10 and if ri,.. ., 1 are the successive remainders on 
reducing 1/n to a decimal, then (mod n). Hence if 1/n has a period 
of 2i digits, r/ = l (mod n) and conversely. But if it has a period of 
2^+1 digits, rf+i = 10 and conversely. 

*K. W. Lichtenecker^^^ gave the length of the period for 1/p, when p is 
a prime ^307, and the factors of 10'' —1, 10. 

L. Pasternak^^^ noted that, after multiplying the terms of a fraction by 
9, 3 or 7, we may assume the denominator N = 10m — 1. To convert Rq/N 
into a decimal, we have 10Rk-i = Nyk-{-Rk (k-1, 2,. . Set Rk=10ZkA-eki 
ejc^ 9. Since 9, = Vk and Rk-i — mCkA-Zk- Hence the successive digits 
of the period are the unit digits of the successive remainders. 

E. Maillet^^^ defined a unique developitient aoH-ai/n+a2/?2^+ ... of an 
arbitrary number, where the a,- are integers satisfying certain conditions. 
He studied the conditions that the development be limited or periodic. 

Boll. Matematica Gior. Sc.-Didat., 9, 1910, 263-9. 
11, 1912, 226-246. 

^^^Zeitschr. fiir das Realschulwesen, 37, 1912, 338-349. 
^^^L’enseignement math., 14, 1912, 285-9. 
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Welsch^^ discussed briefly the length of the period of a decimal fraction. 
B. Howarth^^^ noted that is not a factor of (10^”—1)/(10'‘ —1) if D is 

a prime and n is not a multiple of the length of the period for 1 /D. Again/^® 
_l)/9 jg divisible by (10”^-1)/81. 

A. Cunningham^^’^ factored 10®^ 1. Known factors of 10’'=*= 1 are given. 
Cunningham^^® gave factors of 10’”^” —1. 
A. Leman^^^ gave an elementary exposition and inserted proofs of Fer¬ 

mat’s theorem and related facts, with the aim to afford a concrete introduc¬ 
tion to the more elementary facts of the theory of numbers. 

S. Weixer^®^ would compute the period P for 1/p by multiplication, 
beginning at the right. Let c be the final digit of P, whence pc = 10s —1. 
Then c is the first digit of the period P^ for z/p. The units digit Ci of 
cz = 10zi-{-Ci is the tens digit of P and the units digit of Ph In CiZ+Zi~ 
10^2+^2, C2 is the hundreds digit of P and the tens digit of P\ etc. 

A. Leman^^^ discussed the preceding paper. 
Problemson decimal fractions may be cited here. 
0. Hoppe^^^ proved that (10^^~-l)/9 is a prime. 
M. Jenkins^^^ noted that ii N= .., where a, . .are distinct primes 

9^2j 5, the period for 1/N is complementary (sum of corresponding digits of 
the half periods is 9) if and only if the lengths of the periods for 1 /a, 1/b,... 
contain the same power of 2. 

Kraitchik^^^ of Ch. VII and Levanen^"^ of Ch. XII gave tables of ex¬ 
ponents to which 10 belongs. Bickmore and Cullen^^^ of Ch. XIV factored 
lO^^+l. 

Further Papers Involving No Theory of Numbers. 

J. L. Lagrange, Legons 414m. k r4cole normale en 1795, Oeuvres 7, 200. 
James Adams, Annals Phil., Mag. Chem. (Thompson), (2), 2, 1821, 16-18. 
C. R. Telosius and S. Morck, Disquisitio. . . . Acad. Carolina, Lundae, 

1838 (in Meditationum Math. . . . Publice Defendent C. J. D. Hill, 1831, 
Pt. II). 

J. A. Arndt, Archiv Math. Phys., 1, 1841, 101-4. 
J. Dienger, ibid., 11, 1848, 232; Jour, fiir Math., 39, 1850, 67. 
Wm. Wiley, Math. Magazine, 1, 1882, 7-8. 
A. V. Filippov, Kagans Bote, 1910, 214-221 (pedagogic). 

^^^L’interm6diaire des math., 21, 1914, 10. 
^*®Math. Quest. Educat. Times, 28, 1915, 101-4. 

27, 1915, 33-4. 
29, 1916, 76, 88-9. 

^^^Math. Quest, and Solutions, 3, 1917, 59. 
^*®Vom Periodischen Dczimalbruch zur Zahlentheorie, Leipzig, 1916, 59 pp. 
i®°Zeitschrift Math. Naturw. Untcrricht, 47, 1916, 228-230. 

230-1. 
i®®Zeitschrift Math. Naturw. Untcrricht, 12, 1881, 431; 20, 188; 23, 584. 
i53proc. London Math. Soc., Records of Meeting, Dec. 6,1917, and Feb. 14, 1918, for a revised 

proof. 
i^^Math. Quest. Educ. Times, 7, 1867, 31-2. Minor results, 32, 1880, 69; 34, 1881, 97-8; 37, 

1882, 44; 41, 1884, 113-4; 58, 1893, 108-9; 60, 1894, 128; 63, 1895, 34; 72, 1900, 75-6; 
74, 1901, 35; (2), 2, 1902, 65-6, 84-5; 4, 1903, 29, 65-7, 95; 7, 1905, 97, 106, 109-10; 8, 
1905, 57; 9, 1906, 73. Math. Quest, and Solutions, 3, 1917, 72 (table); 4, 1917, 22. 



CHAPTER VII. 
PRIMITIVE ROOTS, BINOMIAL CONGRUENCES. 

Primitive Roots, Exponents, Indices. 

J. H. Lambert^ stated without proof that there exists a primitive root 
g of any given prime p, so that p® —1 is divisible by p for e=p—1, but not 
for 0<e<p —1. 

L. Euler^ gave a proof which is defective. He introduced the term 
primitive root and proved (art. 28) that at most n integers x<p make 

divisible by p, the proof applying equally well to any polynomial 
of degree n with integral coefficients. He stated (art. 29) that, for n<p, 
a;” —1 has all n solutions ^^real” if and only if n is a divisor of p —1; in par¬ 
ticular, —1 has p —1 solutions (referring to arts. 22, 23, where he 
repeated his earher proof of Fermat’s theorem). Very likely Euler had 
in mind the algebraic identity —1 = (a;”—l)Q, from which he was in a 
position to conclude that Q has at most n—p+1 solutions, and hence x” —1 
exactly n. By an incomplete induction (arts. 32-34), he inferred that there 
are exactly (l>(n) integers x<p for which x”—1 is divisible by p, but x^ — 1 
not divisible by p for 0<Z<n, n being a divisor of p —1 (as the context 
indicates). In particular, there exist <^>(p —1) primitive roots of p (art. 46). 
He listed all the primitive roots of each prime ^ 37. 

J. L. Lagrange^ proved that, if p is an odd prime and 

x^-'-l=Zf+pi^, 
where X, ?, F are polynomials in x with integral coefficients, and if x’™ and x’* 
are the highest powers of x in Z and ? with coefficients not divisible by p, 
there are m integral values, numerically <p/2, of x which make Z a mul¬ 
tiple of p, and M values making ^ a multiple of p. For, by Fermat’s theorem, 
the left member is a multiple of p for x = 1, =t: 2,..., =^(p —1)/2, while at 
most m of these values make Z a multiple of p and at most p make | a 
multiple of p. 

L. Euler'^ stated that he knew no rule for finding a primitive root and 
gave a table of all the primitive roots of each prime ^41. 

Euler® investigated the least exponent x (when it exists) for which 
fa'^-hg is divisible by N. Find X such that —g^pXN is a multiple, say a“r, 
of a. Then — r is divisible by N. Set r^\'N = a^s, Then 

is divisible by N; etc. If the problem is possible, we finally get 
/ as the residue of whence x = aH-... +f. For example, to find 
the least x for which 2'' —1 is divisible by N = 23, we have 

1+23 = 2^3, 3-23=-225, -5-23=-2^7, -7+23 = 2^, 

whence x = 3+2+2+4 = ll. 

^Nova Acta Emditorum, Leipzig, 1769, p. 127. 
*Novi Comm. Acad. Petrop., 18,1773, 85; Comm. Arith., 1, 516-537. 
*Nouv. M6m. Ac. Roy. Berlin, ann6e 1775 (1777), p. 339; Oeuvrea 3, 777. 
‘Opusc. Anal., 1, 1783 (1772), 121; Comm. Arith., 1, 506. 
“Opusc. Anal., 1, 1783 (1773), 242; Comm. Arith., 2, p. 1; Opera poatuma, I, 172-4. 
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A. M. Legendre^ started with Lagrange’s^ result that, if p is a prime 
and n is a divisor of p — 1, 

(1) ic” = l(modp) 

has n incongruent integral roots. Let = where v, v',. .. are dis¬ 
tinct primes. A root a of (1) belongs* to the exponent n if no one of 

congruent to unity modulo p. For, if a^ = l, O<0<n, let 
or be the g. c. d. of dj n, so that a — ny—Oz for integers y, z; then 

contrary to hypothesis. Next, of the n roots of (1), n/v satisfy = l 
(mod p), and n(l —1/p) do not. Likewise, n(l —1/p') do not satisfy 

= 1; gtc. It is said to follow that there are 

numbers belonging to the exponent n modulo p. If 

p belongs to the exponent p". If belongs to the exponent p'\ etc., the 
product /3/3'... is stated to belong to the exponent n. 

C. F. Gauss^ gave two proofs of the existence of primitive roots of a 
prime p. If d is a divisor of p — 1, and is the lowest power of a congruent 
to unity modulo p, a is said to belong to the exponent d modulo p. Let 
^(d) of the integers 1, 2,. .., p — 1 belong to the exponent d, a given divisor 
of p 1. Gauss showed that ?/'(d) = 0 or (d), 21/' (d) = p — 1 = 2 (d), whence 
i^(d) =(j>{d). In his second proof. Gauss set p — 1 ==a“5'^. . where a, 6,... 
are distinct primes, proved the existence of numbers A, B,. .. belonging 
to the respective exponents a“, and showed that AB... belongs to 
the exponent p — 1 and hence is a primitive root of p. 

Let a be a primitive root of p, h any integer not divisible by p, and e 
the integer, uniquely determined modulo p —1, for which (mod p). 
Gauss (arts. 57-59) called e the index of h for the modulus p relative to the 
base a, and wrote e ~ ind b. Thus 

(mod p), ind 65' = ind 6+ ind h' (mod p —1). 

Gauss (arts. 69-72) discussed the relations between indices for different 
bases and the choice of the most convenient base. 

In articles 73-74, he gave a convenient tentative method for finding a 
primitive root of p. Form the period of 2 (the distinct least positive resi¬ 
dues of the successive powers of 2); if 2 belongs to an exponent Kp—l, 
select a number 6<p not in the period of 2, and form the period of 6; etc. 

If a belongs to the exponent t modulo p, the product of the terms in the 
period of a is =( — 1)'+^ (mod p), while the sum of the terms is =0 unless 
a = l (arts. 75, 79). 

8M<5m. Ac. R. Sc., Paris, 178.'5, 471-3. Theorie des nombres, 1798, 413-4; ed. 3, 1830, 
Nos. 341-2; German transl. by Maser, 2, pp. 17-18. 

^This term was introduced later by Gauss. 
^Disquisitiones Arith., 1801, arts. 52-55. 
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The product of all the primitive roots of a prime p 5*^ 3 is =1 (mod p); 
the sum of the primitive roots of p is =0 if p — 1 is divisible by a square, 
but is =( —1)"" if p —1 is the product of n distinct primes (arts. 80, 81). 

If p is an odd prime and e is the g, c. d. of <^>(p'') =p”~^(p —1) and 
then x' = 1 (mod p”) has exactly e incongruent roots. It follows that there 
exist primitive roots of i. e., numbers belonging to the exponent </)(p'') 
(arts. 85-89). 

For n>2, every odd number belongs modulo 2"^ to an exponent which 
divides so that primitive roots of 2"" are lacking; however, a modified 
method of employing indices to the base 5 may be used (arts. 90, 91). 

If m = where A, E,... are distinct primes, and a=0(A“), 
jS=0(E^),,.and if p is the 1. c. m. of a, jS,..., then z’^^1 (mod m) for z 
prime to m. Now p<a-/3... =4>{m) except when m = 2% p” or 2p”, where 
p is an odd prime. Thus there exist primitive roots of m only when 7n = 2, 
4, p” or 2p^ (art. 92). 

Table I, at the end of Disq. Arith., gives on one page the indices of each 
prime <p for each prime and power of prime modulus < 100. Gauss gave 
no direct table to determine the number corresponding to a given index, 
but indicated (end of art. 316) how his Table III for the conversion of ordi¬ 
nary into decimal fractions leads to the number having a given index (cf. 
Gauss,''-'' Ch. VI). 

S. F. Lacroix^ reproduced Gauss^ second proof of the existence of primi¬ 
tive roots of a prime, without a reference. 

L. Poinsot^ argued that the primitive roots of a prime p may be obtained 
from the algebraic expressions for the imaginary (p —l)th roots of unity 
by increasing the numbers under the radical signs by such multiples of p 
that the radicals become integral. The </>(p —1) primitive roots of p may 
be obtained by excluding from 1,. . ., p — 1 the residues of the powers whose 
exponents are the distinct prime factors of p —1; while symmetrical, this 
method is unpractical for large p. 

Fregier'® proved that the 2''th powerof any odd number has the remainder 
unity when divided by if n>0. 

Poinsot" developed the first point of his preceding paper. The equa¬ 
tion for the primitive 18th roots of unity is ic®—a^^+l =0. The roots are 

x = — (a^ = l). 

But V^ = =fc4, — 11 = 2 (mod 19). Thus the six primitive 
roots of 19 are a:= —4, 2, —9, —5, —6, 3. In general, the algebraic expres¬ 
sions for the nth roots of unity represent the different integral roots of 

(mod p), where p is a prime /cn-j-1, after suitable integers are added 
to the numbers under the radical signs. Since unity is the only (integral) 

®Compl6ment des 616men8 d’algdbrc, Paris, ed. 3, 1804, 303-7; ed. 4, 1817, 317-321. 
®M6m. Sc. Math, et Phys. de Tlnstitut de France, 14, 1813-5, 381-392. 

^°Annale8 de Math, (ed., Gergonne), 9, 1818-9, 285-8. 
“M6m. Ac. Sc. de I’lnstitut de France, 4, 1819-20, 99-183. 
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1 'nifMi pj^ if p is a prime >2, he concluded (p. 165) that p is 
& fv!4>r il Ih' niinil>€rs under the radical signs in the formula for a primitive 
!*hT u^f imlty. VL of Ch. VIII. 

1^. treated the same subject. 
i h ** stated fimt a primitive root of a prime p satisfies = — 1, 

l^it n> ef the eonptienees —1 (mod p), i=(p — l)/(2a)j where a 
Ti4hz* f t!*t^ will prime factora of p —1; while a number not a primitive 

at least one of the x*= —1. Hence if each a^f^—1 and 
" * — !. tiieB a k a primitive root. 

V. \ stated that prior to 1829 he had given in the Bulletin 
fhi Xi?rfi *\htj*eow, the congruence X=0 of Cauchy^"* for the integers 
III h til file exponent n modulo p. 

I t pmved the existence of primitive roots of a prime p, essen¬ 
tial^/ aA ill I anils' second proof. If p ~ 1 is divisible by n = . . ., where 
: f, uw distinct primes, he proved that the integers belonging to the 

nmduh p coincide mth the roots of 

... ^0 (mod p). 

Tf^r‘ rwifs the equation Z = 0 are the primitive nth roots of unity. For 
iilniif divisor n of p—l, the sum of the hh powers of the primitive 

i»f x' = | ‘iiiod p) is divisible by p if Z is divisible by no one of the 

n, n/a, n/h,..., n/abj.. ., n/abCj_ 

B.! :f .'fveral of them are divisors of I, and if we replace n, a, h,. . . by 
^ .. in the largest of these divisors in fractional form, we 
a fongraent to the sum of the Ith powders. In case 

P- distinct integral roots, the sum of the Zth powers of all the 
modulo p to w or 0, according as I is or is not a multiple 

... proved that the product of all the numbers belonging to 
t‘" . /' K ^ ’vhile their sum is divisible by p if d is divisible 
' -irrT's''^D^/ ^ product of n distinct primes (generaliza- 
•'. I - Bn = and a belongs to the expo- 

, ^ two numbers, which do not occur in the period of a 
. ..-m...cpenodofa. To find a primitive root of p when p -1 = 2a6. . ’ 

- 3 B -f number as 2 to the powers 
r *i ’ / B) p,..., if no one of the residues modulo p is 1 the nee-atiw 

s r ■ j ^ H place of 2. If p_2g-j-l and q are odd primes 2 
P according as p=:8n4-3 or 8n+7, If p = 4^4-1 

/ “h. 18, t. 11, 1820, 345-410. - 
< 'ie mI4,2 Bntanmca, 4, 1824, 698. 
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and q are primes, 2 and —2 are primitive roots of p. If p=4g+l and 
5 = 3n4-l are primes, 3 and —3 are primitive roots of p. 

F. Minding^® gave without reference Gauss' second proof of the exist¬ 
ence of primitive roots of a prime. 

F. J. Richelot^^ proved that, if p = 2'"4-l is a prime, every quadratic 
non-residue (in particular, 3) is a primitive root of p. 

A. L. Crelle^® gave a table showing all prime numbers g 101 having a 
given primitive root; also a table of the residues of the powers of the 
natural numbers when divided by the primes 3,101. His device^* 
for finding the residues modulo p of the powers of a will be clear from the 
example p = 7, a = 3. Write under the natural numbers <7 the residues 
of the successive multiples of 3 formed by successive additions of 3; we get 

1 2 3 4 5 6 
3 6 2 5 1 4. 

Then the residues 3, 2, 6,... of 3, 3^, 3^,. .. modulo 7 are found as follows: 
after 3 comes the number 2 below 3 in the above table; after 2 comes the 
number 6 below 2 in the table; etc. 

Crelle^® proved that, if p is a prime and X is prime to p —1 and <p —1, 
the residues modulo p of range with z over the integers 1, 2,..p —1. 
His proof that there exist cl)(n) numbers belonging to the exponent n 
modulo p, if n divides p — l, is like that by Legendre.® 

G. L. Dirichlet^^ employed (t>{k) systems of indices for a modulus 
A; = 2^p'p"'..where p, p',. - . are distinct primes, and X^3. Given any 
integer n prime to k, and primitive roots c, c',. • • of p’^, p''',., ., we can 
determine indices a, /3, 7, 7',. .. such that 

n = (-1)“5^^ (mod 2^), (mod p'), n = c"^' (mod p'*"'),_ 

Michel Ostrogradsky^^ gave for each prime p<200 all the primitive 
roots of p and companion tables of the indices and corresponding numbers. 
(See Jacobi^^ and Tchebychef.^) 

C. G. J. Jacobi^^ gave for each prime and power of a prime < 1000 two 
companion tables showing the numbers with given indices and the index 
of each given number. In the introduction, he reproduced the table by 
Burckhardt, 1817, of the length of the period of the decimal fraction for 
1/p, for each prime p^2543, and 22 higher primes. Of the 365 primes 
<2500, we therefore have 148 having 10 as a primitive root, and 73 of the 
form 4m+3 having —10 as a primitive root. Use is made also of the 
primes for which 10 or —10 is the square or cube of a primitive root. 

^“Anfangsgrunde der hoheren Arith., 1832, 36-37. 
”Jour. fiir Math., 9, 1832, p. 5. 

27-53. 
i»Al8o, ibid., 28, 1844, 166. 
»°Abh. Ak. Wise. Berlin, 1832, Math., p. 57, p. 65. 

1837, Math., 45; Werke, 1, 1889, 333. 
“Lectures on alg. and transc. analysis, I~II, St. P^tersbourg, 1837; M6m. Ac. Sc. St. P^tera- 

bourg, a6r. 6, sc. math, et phys., 1, 1838, 359-85. 
“Canon Arithmeticus, Berlin, 1839, xl-1-248 pp. Errata, Cunningham. 
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To find a primitive root g of p, select any convenient integer a and form 
the residues of a, . .. [as by Crelle^^]. Let n be the exponent to 
which a belongs. Set nn'=p —1. If n<'p — \y select an integer h not in 
the period a,.,., a”. The residue of h^' is in this period of a. If ¥ is the 
least power of h whose residue is in the period of a, then / divides n', say 

(p. xxiii). Since ¥^a\ we have 

(mod p), 

for some value 0, 1,../—I of k. But k must be chosen so that i-\-nk is 
prime to /. For, if i-\-nk = du, where d is a divisor of /, we would have 

The n/residues of (r = 0,..n — l; s = 0,../—I) are dis¬ 
tinct ; their indices to base g are/', 2/',. . ., nff' in some order and are known. 
If n/'<p — 1, we employ an integer not in the set and proceed similarly. 
Ultimately we obtain a primitive root and at the same time the index of 
every number. This method was used for the primes between 200 and 1000. 

For primes < 200, the tables by Ostrogradsky^^ were reprinted with the 
same errors (noted at the end of the Canon). 

Jacobi proved that, if n is an odd prime, any primitive root of is a 
primitive root of any higher power of n (p. xxxv). 

For the modulus 2^, 4^/x^9, the final tables give the index I of any 
positive odd number to base 3, where 

(_l)(V~l)(Ar-3)/8j^_3l 20. 

Robert Murphy^^ stated the empirical theorem that every prime 
an^-i-p has a as a primitive root if p> a/2, p is a prime <a, and if a is a 
primitive root of p. For example, a prime 10?2^+7 has 10 as a primitive 
root. 

H. G. Erlerus^® considered two odd primes p and p' and a number m 
such that m^a (mod p), m = a' (mod p'). Let a belong to the exponent 
e modulo p, and a' to the exponent e' modulo p'. If 5 is the g. c. d. of 
e and e', then m belongs to the exponent ee'/S modulo pp'. He discussed 
at length the number of integers belonging to the exponent n for a com¬ 
posite modulus. 

A. Cauchy^® called the least positive integer i for which m" = l (mod n) 
the indicator relative (or corresponding) to the base m and modulus n, 
which are assumed relatively prime. If the base m is constant, and fi, ^2 

are the indicators corresponding to moduli nj, n2, and if n — nin^ is prime 
to rrij then the 1. c. m. of ii and 12 is the indicator corresponding to modulus 
n. If the modulus n is constant, and f j, 12 are the indicators corresponding 
to bases mj, m2, and if 4 are relatively prime, then 44 is the indicator 
corresponding to the base mim2. 

Let 2*1, 4 be the indicators corresponding to the bases Wi, m2 and same 
modulus n. The g. c. d. co of 4, 4 can be expressed (often in several ways) 
as a product uv such that ii/u, 12/v are relatively prime. For, M oi — afi..., 

MPhil. Mag.” (3), 19, 1841, 369. 
“Elementa Doctrinae Numerorum, Diss., Halis, 1841, 18-43. 
“Comptes Rendus Paris, 12, 1841, 824-845; Oeuvres, (1), 6, 124-146. 
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where a, /3,... are powers of distinct primes, use a as a factor in forming u 
in case a is prime to fi/a, but as a factor of v in case a is prime to tVa, and 
as a factor of either u ov v indifferently in case a is prime to both ii/a and 
12/a. Since ii/u and 12/v are relatively prime indicators corresponding to 
bases and ?n2^ it follows from the preceding theorem that the indicator 
corresponding to base mi-m2 and modulus n is 

'll 2-2 

U V 
^1^ = 1 

CO 
c. m. of ii, 12. 

Hence, given several bases mi, m2,... and a single modulus n, we can 
find a new base relative to which the indicator is the 1. c. m. of the indicators 
corresponding to mi, m2,.... If the latter bases include all the integers <n 
and prime to n, the corresponding indicators give all indicators which can 
correspond to modulus n, so that all of them divide a certain maximum 
indicator I. Then for every integer m relatively prime to = l (mod n). 
If = where v is an odd prime, or if n = 2 or 4, 7 = 0(n). If n — 2^, fc>2, 
7=<^(n)/2. If Ij is the maximum indicator corresponding to a power rij 
of a prime, and if n—Unj, then I is the 1. c. m. of 7i, 72,.... The equation 
mx—ny = l has the solution (mod n). 

Cauchy-^ republished the preceding paper, but with an extension from the 
limit n = 100 to the limit n = 1000 for his table of the maximum indicator 7. 

C. F. Arndt-^ gave (without reference) Gauss’ second proof of the exist¬ 
ence of a primitive root of an odd prime p, and proved the existence of the 
<^(p”) primitive roots of p” or and that there are no primitive roots for 
moduli other than these and 4. If ^ is a divisor of n>2, exactly t 
numbers belong to the exponent t modulo X (p. 18). If, for a modulus 

2p", a belongs to the exponent t, then a-a^. . .aGs congruent to ( —l)'"^^ 
(pp. 26-27), while the product of the numbers belonging to the exponent t 
is congruent to +1 if t9^2 (pp. 37-38). He proved also Stern’s^^ theorem 
on the sum of these numbers. He gave the same two theorems also in a 
later paper.^^ 

L. Poinsot^® used the method of Legendre® to prove the existence of 
cj)(n) integers belonging to the exponent n, a divisor of p —1, where p is a 
prime. He gave (pp. 71-75) essentially Gauss’ first proof, and gave his 
own® method of finding primitive roots of a prime. The existence of 
primitive roots of p'\ 2p'\ 4, but of no further moduli, is established by use 
of the number of roots of binomial congruences (pp. 87-101). 

C. F. ArndP^ noted that if a belongs to an even exponent t modulo 2^", 
then =ta, ±a’V- -5 give the t incongruent numbers belonging to 
the exponent t, and are congruent to =f 1 (/c = 1,3,5,. . .). The product 
of the numbers belonging to the exponent t modulo 2“, n>2, is = +1. 

2^Exerciccs d’Analyse et de Phya. Math., 2, 1841, 1-40; Oeuvres, (2), 12. 
28Archiv Math. Phys., 2, 1842, 9, 15-16. 
^'’Jour. fiir Math., 31, 1846, 326-8. 
30Jour. de Math^matiquea, (1), 10, 1845, 65-70, 72. 
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E. Prouhet^^ gave, without reference, Crelle’s^® method of forming the 
residues of the powers of a number. The object of the paper is to give a 
uniform method of proof of theorems, given in various places in Legendre’s 
text, relating to the residues of the first n powers of an integer belonging 
to the exponent n modulo P, especially when P is a prime or a power of a 
prime, and the existence of primitive roots. He gave (p. 658) the usual 
proof that =*=2 is a primitive root of a prime 25^+1 if g is a prime 4/c=t: 1 (with 
a misprint). 

C. F. Arndt®® proved that if g is a primitive root of the odd prime p and 
if (X<n) is the highest power of p dividing — then g belongs 
to the exponent 1) modulo p"^. Conversely, if the last is true of a 
primitive root g of p, then G is divisible by p^ and not by p^'^^ The first 
result with X = 1 shows that any primitive root of p^ is a primitive root of 
p’^, n>2. Let g be a primitive root of p; if G is not divisible by p^, g is a 
primitive root of p^; but if G is divisible by p^, and h is not divisible by p, 
then g-hhp is a primitive root of p^. Any odd primitive root of p" is a 
primitive root of 2p". If g is a primitive root of p” or 2p”, and t is a divisor 
of p’^'^Cp-l), then if a ranges over the integers <t and prime to t, the 
0(0 integers belonging to the exponent t modulo p"" or 2p"' are g", where 
e = p”~^(p —l)a/t The numbers belonging to the exponent modulo 
2” are found more simply than by Gauss’^ and Jacobi^® (p. 37). 

P. L. Tchebychef®^ proved that if a, /3,... are the distinct prime factors 
of p — 1, where p is a prime, then a is a primitive root of p if and only if no 
one of the congruences ccP^a,... (mod p) has an integral root. 
This furnishes a method (usually impracticable) of finding all primitive 
roots of p. A second method uses a number a belonging to the exponent n, 
and a number 6 not congruent to a power of a, and deduces a number 
belonging to an exponent >n. In the second supplement, he proved that 
3 is a primitive root of any prime 2^"'4-l; that =*= 2 is a primitive root of any 
prime 2a 4-1 such that a is a prime 4ic=fc 1; 3 is a primitive root of 4A'2'”4-1 

if m>0 and iV is a prime >9^ /(4*2”*); 2 is a primitive root of any prime 
4iV'4-l such that N is an odd prime. The last result was later proposed®® 
as a question for solution (with reference to this text). There is given the 
table of primitive roots and indices for prunes <200, due to Ostrogradsky^^ 
Schapira (p. 314) noted that in the list of errata in Jacobi’s^® Canon (p. 222) 
there is omitted the error 8 for 6 in ind 14 for p = 25. 

V. A. Lebesgue®® remarked that Cauchy’s^^ congruence Z=0 shows 
the existence of 0(n) integers belonging to the exponent n modulo p, a 
prime. 

“Nouv. Ann. Math., 5,1846,175-87, 659-62, 675-83. 
«Jour. fiir Math., 31,1846, 259-68. 
»*Theory of Congruences (in Russian), 1849. German translation by Schapira, Berlin, 1889, 

p. 192. Itahan translation by Mile. Massarini, Rome, 1895, with an e:3rtension of the 
tables of indices to 353. 

*‘Nouv. Ann. Math., 15, 1856, 353. Solved by use of Euler’s criterion by P, H. Rochette, 
ibid., 16, 1857, 159, Also proved by Desmarest,*"' p. 278. 

•‘Nouv, Ann. Math., 8, 1849, 352; 11, 1852, 420. 
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E. Desmaxest^^ devoted the last 86 pages of his book to primitive roots; 
the 70 pages claimed to be new might well have been reduced to five by 
the omission of trivial matters and the use of standard notations. To find 
(pp. 267-8) a primitive root of the prime P = 65+1, where q is an odd prime, 
seek an odd solution of w^+3=0 (mod P) and set u = 2P —1; then —1 
and R belongs to the exponent 6; thus we know the solutions of 
let a be any integer prime to P and not such a solution; if then 
=fca belongs to the exponent q, and =fcaP is a primitive root of P; but, if 

1, then =f 1 (mod P), and ± a is a primitive root of P. If P = 8Q+1 
and Q are primes, then P=5 (mod 12) and 3 is a quadratic non-residue and 
hence a primitive root of P. 

Let P be a prime of the form 5q=^2. Then 5 (mod P) is not solvable. 
Thus, if a is a primitive root of P, 5=a% where e is odd. Thus if e is prime 
to P—1, 5 is a primitive root of P. It is recommended that 5 be the first 
number used in seeking by trial a primitive root. And yet he announced 
the theorem (p. 283) that 5 is in general a primitive root. If P is a prime 
5^ ±2 also of the form 2"Q4-1, where Q is an odd prime including 1, then 

(pp. 284^6) 5 is a primitive root of P provided P is not a factor of 5^""—1. 
He gave the factors of the latter and of 10^”—1 for 7i = l,..5. 

Results, corresponding to those just quoted for 5, are stated for p = 7, — 7, 
10, 17. What is really given is a list of the linear forms of the primes P 
for which p is a quadratic non-residue. If, in addition, P = 2"Q+1, where 
Q is an odd prime, then p is a primitive root, provided (mod P). 
The last condition is ignored in his statement of his results and again in his 
collection (pp. 297-8) of “principles which give primitive roots’^ entered in 
his table (pp. 298-300) giving a primitive root of each prime < 10000. 

V. A. Lebesgue^® proved that, if a and p==2'a+l are primes, any quad¬ 
ratic non-residue x of p is a primitive root of p if 

a;2*-i-^1^0 (mod p). 

J. P. Kulik^® gave for each prime p between 103 and 353 the indices and 
all the primitive roots of p. His manuscript extended to 1000. There is 
an initial table giving the least primitive root of the primes from 103 to 1009. 

G. Oltramare'^® called x a root of order or index m of a prime p if x belongs 
to the exponent {p — l)/m modulo p. Let X,„(x) = 0 (mod p) be the con¬ 
gruence whose roots are exclusively the roots of order m of p. By changing 
X to we obtain Xmn =<t>ix)=0. If ni, n2,.. ., n are the divisors > 1 of n, 

Y 
Trt y V * 

*^Th4orie des nombres. Traits de 1’analyse ind<Stermin6e du second degr<5 5, deux inconnues 
suivi de I'application de cette analyse k la recherche des racines primitives avcc unc tabic 
de ces racines pour tous les nombres premiers compris entre 1 et 10000, Paris, 1852, 
308 pp. For errata, see Cunningham, Mess. Math., 33, 1903, 145. 

38Nouv. Ann. Math., 11, 1852, 422-4. 
3»Jour. fur Math., 45, 1853, 55-81. 

303-9. 



190 Histoey of the Theoey of Numbees. [Chap. VII 

V. A- Lebesgue'^^ noted that, given a primitive root g (^<p) of the 
prime p, we can find at once the primitive roots of p”. Let g' be the positive 
residue <p“ when is divided by and set h-(g' — g)/p. Then 

g+px+p-y {y=0,..x = 0,..p-1; Xr^h) 

give —1) primitive roots. Replacing g by g\ where i is less than 
and prime to p ~ 1, we obtain (t> j<#>(p”)} primitive roots of p". In particular, 
a primitive root of p^ is a primitive root of p"" (Jacobi^^). But, if h = 0, g 
is not a primitive root of p^. Since 

gmda+e^^_^ (mod p’"), ^ — 1) , 

we can reduce by half the size of Jacobies Canon. 
D. A. da Silva^^ gave two proofs that (mod p) has (p(d) primitive 

roots, if d divides p —1, and perfected the method of Poinsot^’^® for finding 
the primitive roots of a prime. 

F. Landry^-"" was led to the same conclusion as Ivory.In particular, 
if p = 2*4-1, or if p = 2?i4-l (n an odd prime) and ay^p — l, any quadratic 
non-residue a of p is a primitive root. For each prime p< 10000, at least 
one prime ^19 is a quadratic non-residue of p. Cauchy’s^^ congruence for 
the primitive roots is derived and proved. 

G. Oltramare"^^ proved that — is a primitive root of the prime 
p = 2a|34-l, if a7^3, i8?^3, 3^“^1, 2^^^1 (mod p); that, if 

p = 3•2’"4-l = ^^4-3r^ qx-}-ry==l, 

{ — l-{-qy—3rx)5^/2 is a primitive root of p; and analogous theorems. If 
a and 2a4-l are primes, 2 or a is a primitive root of 2a-|-l, according as a 
is of the form 4n4“l or 4n4-3. If a is a prime 9^3 and if p = 2a4'l is a 
prime and w> 1, then 3 is a primitive root of p unless 3“'""^4-1^0 (mod p). 
[Cf. Smith.^T 

P. Butteh^ attributed to Scheffler (Die unbestimmte Analytik, 1854, 
§142) the method of Crelle^^ for finding the residues of powers. 

C. G. Reiischle’s^^ table C gives the Haupt-exponent (L e., exponent to 
which the number belongs) (a) of 10, 2, 3, 5, 6, 7 with respect to all primes 
p< 1000, and the least primitive root of p; (h) of 10 and 2 for 1000<p<5000 
and a convenient primitive root; (c) of 10 for 5000<p< 15000 (no primitive 
root given). Numerous errata have been listed by Cunningham. 

Allegret^® stated that if n is odd, n is not a primitive root of a prime 
2^V4-1, X>0; proof can be made as in Lebesgue.^^ 

^^Comptes Rendus Paris, 39, 1854, 1069-71; same in Jour, de Math., 19, 1854, 334-6. 
^^Proprietades geraes et resolu^ao directa das Congruencias binomias, Lisbon, 1854. Report 

by C. Alasia, Rivista di Fisica, Mat. e Sc. Nat,, Pavia, 4, 1903, 25, 27-28; and Annaes 
Scientificos Acad. Polyt. do Porto, Coimbra, 4, 1909, 166-192. 

"“Troisi^me m^moire sur la th^orie des nombres, Paris, 1854, 24 pp. 
«Jour. fur Math., 49, 1855, 161-86. 
"Archiv Math. Phys., 26, 1856, 247. 
«Math. Abhandlung.. .Tabellen, Prog. Stuttgart, 1856; full title in the chapter on perfect 

numbers.i°® 
«Nouv. Ann. Math., 16, 1857, 309-310. 
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H. J. S. Smith*^^ stated that some of Oltramare^s'^^ general results are 
erroneous at le.ast in expression, and gave a simple proof that (mod p"") 
has exactly d roots if d divides </>(p”). 

V. A. Lebesgue^® proved that, if p is an odd prime and a, h belong to 
exponents a, /?, there exist numbers belonging to the 1. c. m. w of a, /3, as 
exponent. Hence if neither a nor is a multiple of the other, m exceeds 
a and li d<p — l is the greatest of the exponents to which 1,..., p~l 
belong, the latter do not all belong to exponents dividing d, since otherwise 
they would give more than d roots of a:‘^=l (mod p). Hence there exist 
primitive roots of p. If a is odd, belongs to the exponent 2”*"“ 
modulo 2”" (p. 87). If h belongs to the exponent k modulo p, a prime, then 
h+Pz belongs modulo p’^ to an exponent which divides kp^~^ (p. 101). If 
/ is a primitive root of p, and/^“^ —l=p2;, then/ is a primitive root of p'" 
if and only if 2 is not divisible by p (p. 102). 

G. L. Dirichlet^® proved the last theorem and explained his^^ system of 
indices for a composite modulus. 

V. A. Lebesgue®° published tables, constructed by J. Hoiiel,®^ of indices 
and corresponding numbers for each prime and power of prime modulus 
<200, which differ from Jacobi's^^ only in the choice of the least primitive 
root. There is an auxiliary table of the indices of x! for prime moduli 
<200. 

V. A. Lebesgue^^ stated that, if ^< p is a primitive root of the prime p 
and if (mod p), then g' is a primitive root of p; at least one of g and 
g' is a primitive root of p” for n arbitrary. 

V. Bouniakowsky^^ proved in a new way the theorems of TchebycheP 
that 2 is a primitive root of p = 8n+3 if p and 4n+l are primes, and of 
2} = 4-n+l if p and n are primes. He gave a method to find the exponent 
to which 2 or 10 belongs modulo p. 

A. Cayley®^ gave a specimen table showing the indices a, /3,... for every 
number M = . . . (mod A), where M<N and prime to A, for A = 1,..., 50. 
There is no apparent way of forming another single table for all A’s analo¬ 
gous to Jacobi’s tables (one for each A) of numbers corresponding to given 
indices. 

F. W. A. Heime®® gave the least primitive root of each prime <1000. 
His other results are not new. A secondary root of a prime p is one belong¬ 
ing to an exponent <p--l modulo p. 

^^British Assoc. Report, 1859, 228; 1860, 120, §73; Coll.* Math. Papers, 1, 50, 158 (Report on 
theory of numbers). 

<®Introd. th6orie dea nornbres, 1862, 94-96. 
«9Zahlcntheorie, §§128-131,1863; ed. 2,1871; ed. 3,1879; ed. 4, 1894. 
®oM6m. 80C. sc. phys. et nat. do Bordeaux, 3, cah. 2, 1864-5, 231-274. 
^^Formulcs ct tables num6r., Paris, 1866. For moduli ^ 347. 
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C. J. D. Hill®® noted tliat his tables of indices for the moduli 2"" and 6” 
(n^5) give the residues of numbers modulo 10”, i. e., the last n digits. 
Using also tables for the moduli 9091 and 9901, as well as a table of loga¬ 
rithms, we are able to determine the last 22 digits. 

B. M. Goldberg®^ gave the least primitive root of each prime < 10160. 
V. Bouniakowsky®® proved that 3 is a primitive root of p if p = 24n+5 

and (p—1)/4 are primes; —3 is a primitive root of p if p = 12n+ll and 
(p—1)/2 are primes; if p is a primitive root of the prime p==4n+l, one 
(or both) of p, p—p is a primitive root of p*” and of 2p”*; 5 is a primitive 
root of p=20n+3 or 20u+7 if p and (p—1)/2 are primes, and of p=40n+13 
or 40n+37 if p and (p—1)/4 are primes; 6 is a primitive root of a prime 
24n+ll and —6 of 24n+23 if (p—1)/2 is a prime; 10 is a primitive root 
of p=40n+7,19, 23, and —10 of p=40n+3, 27, 39, if (p—1)/2 is a prime; 
10 is a primitive root of a prime 80n+73, n>0, or 80n-f57, n>l, if 
(p—1)/8 is a prime. If p = 8an-f-2o—1 or 8on+o—2 and (p —1)/4 are 
primes, and if a?+\ is not divisible by p, a is a primitive root of p. 

V. A. Lebesgue®® proved certain theorems due to Jacobi^® and the 
following theorem which gives a method different from Jacobi’s for forming 
a table of indices for a prime modulus p: If a belongs to the exponent n, 
and if 5 is not in the period of a, and if / is the least positive exponent for 
which then has the root oV, where ft+iu — l=nv; the root 
belongs to the exponent nf if and only if w is prime to /. 

Consider the congruence (mod p), where a belongs to the exponent 
n=(p—l)/n', and m is a divisor of n'. Every root r has a period of mn 
terms if no one of the residues of r, r^,..., is in the period of a. If all 
the prime divisors of m divide n, the m roots have a period of mn terms; 
but if m has prime divisors q,r,,..y not dividing n, there are only 

roots having a period of mn terms. The existence of primitive roots follows; 
this is already the case if m=n'. 

Mention is made of companion tables in manuscript giving indices of 
numbers, and numbers corresponding to indices, constructed by J. Ch. 
Dupain in full for p<200, but from 200 to 1500 with reduction to one-half 
in view of ind p — ind a=±= (p —1)/2 modulo p — 1. 

L. Kronecker®® proved the existence of two series of positive integers 
Qjy my (j=l,..., p) such that the least positive residues modulo A;>2 of 

give all the <t>{k) positive integers <k and prime to ky if 
^l=0, 1,..mi —1; t2=0, 1,..m2—1; etc. [cf. Mertens®^]. 

G. Barillari®°“ proved that, if a is prime to h and belongs to the exponent 

“Jour, ftir Math., 70,1869, 282-8; Acta Univ. Lundensis, Lund, 1, 1864 (Math.), No. 6, 18 pp. 
‘’Rest- und Quotient-Rechnung, Hamburg, 1869, 97-138. 
“Bull. Ac. Sc. St. P4tersbourg, 14, 1869, 375-81. 
“Comptes Rendus Paris, 70,1870, 1243-1251. 
•“Monatsber. Ak. Berlin, 1870, 881. Cf. Traub, Archiv Math. Phys., 37, 1861, 278-94. 
•»«Giomale di Mat., 9,1871, 125-135. 
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m modulo 6, and if V" is the highest pewer of h which divides a”*—!, and if 
n^hy then 6" divides a*--l where Further, if 6 is a primd, a 
belongs to the exponent e modulo For a new prime h\ let w', n', h' 
have the corresponding properties. Then the exponent to which a belongs 
modulo B=... is the 1. c. m. L of _ For a = 10, we 
see that L is the length of the period for the irreducible fraction N/B. 

L. Sancery®^ proved that if p is a prime and a<p belongs to the exponent 
d modulo p, there exists an infinitude of numbers a+px^ A such that A^—1 
is divisible by p*, but not by p*'^^ where k is any assigned positive integer. 
If A belongs to the exponent 6 modulo p>2, il will belong to the exponent 
B modulo p" if the highest power of p which divides A^—1 is ^p"; but if it 
be p"”*, A belongs to the exponent 0p® modulo p" [Barillari®®'"]. Hence A 
is a primitive root of p" if a primitive root of p and if — 1 is not divisible 
by p^, and there are ^ ]0(p'') f primitive roots of p" or 2p*'. [Generalization 
of Amdt.^] 

C. A. Laisant®^ noted that if a belongs to the exponent 3 modulo p, a 
prime, then a+1 belongs to the exponent 6, and conversely. If a belongs to 
the exponent 6, a+1 will not belong to the exponent 3 unless p==7, a = 3. 
Hence if p is a prime 6w+l, there are two numbers a, 6 belonging to the 
exponent 3, and two numbers a+1, &+1 belonging to the exponent 6; also, 
a+5=p—1. If (p. 399) p+g is an odd prime and p is even, then p^g^^g, 

(mod p+g). 
G. Bellavitis®^® gave, for each power p’^ 383 of a prime p, the periodic 

fraction for 1/p* to the base 2 and showed how to deduce the indices of 
numbers for the modulus p*. Let g = p*“^(p —1) and let 2 belong to the 
exponent g/r modulo p\ A root b of b'"^^ (mod pO is the base of the 
system of indices. 

G. Frattini®® proved by the theory of roots of unity that, if p is a prime, 
the number of interchanges necessary to pass from 1, 2,..., p—2 to ind 2, 
ind 3,..., ind (p~l) and to 

ind l~ind 2, ind 2—ind 3,..., ind (p — 2)“-ind (p —1) 

are both even or both odd. 
Fritz Hofmann®^ used rotations of regular polygons to prove theorems 

on the sum of the primitive roots of a prime (Gauss^). 
A. R. Forsyth®® found the sum of the cth powers of the primitive roots 

of a prime p. The sum is divisible by p if p — 1 contains the square of a 
prime not dividing c or if it con tarns a prime dividing c but with an exponent 
exceeding by at least 2 its exponent in c. If neither of these conditions is 
satisfied, the result is not so simple. 

«Bull. Soc. Math, de France, 4, 1875-6, 23-29. 
®2M6m. Soc. Sc. Phys. et Nat. de Bordeaux, (2), 1, 1876, 400-2. 
®*®Atti Accad. Lincei, Mem. Sc. Fis. Mat., (3), 1, 1876-7, 778-800. 
MGiornale di Mat., 18, 1880, 369-76. 
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J. Perott®® gave a simple proof that 1 (mod has roots. Thus 
there exists an integer h belonging to the exponent modulo p^. Assum¬ 
ing the existence of a primitive root, of p, we employ a power of it and obtain 
a number a belonging to the exponent p —1 modulo p”. Hence ah is a 
primitive root of p"". 

Schwartz®^ stated, and Hacken proved, the final theorem of Cauchy. 
L. Gegenbauer®® stated 19 theorems of which a specimen is the follow¬ 

ing: If p = 8a(8i5+l)+24/3+5 and (p —1)/4 are primes and if 64a^+48a 
-j-10 is relatively prime to p, then 8a+3 is a primitive root of p. 

G. Wertheim®^ gave the least primitive root of each prime < 1000 and 
companion tables of indices and numbers for primes < 100. He reproduced 
(pp. 125“130) arts. 80-81 of Gauss^ and stated the generalization by 
Stern.^® 

H. Keferstein^® would obtain all primitive roots of a prime p by excluding 
all residues of powers with exponents dividing p — 1 [Poinsot®]. 

M. F. Daniels^^ gave a proof like Legendre’s® that there are <t>{n) num¬ 
bers belonging to the exponent n modulo p, a prime, if n divides p —1. 

*K. Szily^^ discussed the ''comparative number” of primitive roots. 
E. Lucas^® gave the name reduced indicator of n to Cauchy’s^® maximum 

indicator of n, and noted that it is a divisor <cl>{n) of (pin) except when 
n=2, 4, p* or.2p*, where p is an odd prime, and then equals p(n). The 
exponent to which a belongs modulo m is called the "gaussien” of a modulo 
m (preface, xv, and p. 440). 

H. Scheffler^^ gave, without reference, the theorem due to Richelot^^ and 
the final one by Prouhet.^^ To test if a proposed number a is a primitive 
root of a prime p, note whether p is of one of the linear forms of primes for 
which a is a quadratic non-residue, and, if so, raise a to the powers whose 
exponents divide (p —1)/2, 

L. Contejean^® noted that the argument in Serret’s Algebre, 2, No. 318, 
leads to the following result [for the case a = 10]: If p is an odd prime and 
a belongs to the exponent e = (p — l)/g modulo p, it belongs to the exponent 
p‘'~^c modulo p" when (a®—l)/p is not divisible by p, but to a smaller 
exponent if it is divisible by p [Sancery®^]. 

P. Bachmann^® proved the existence of a primitive root of a prime p 
by use of the group of the residues 1,. .., p —1 under multiplication. 

®®BuU. des Sc. Math., 9, I, 1885, 21-24. For k = n — l the theorem is contained implicitly in a 
posthumous fragment by Gauss, Werke, 2, 266. 

s^Mathesis, 6,1886, 280; 7,1887, 124-5. 
s®Sitzungsber. Ak. Wiss. Wien (Math.), 95, II, 1887, 843-5. 
®®Elemcnte der Zahlentheorie, 1887, 116, 375-381. 
'^°Mitt. Math. Gesell. Hamburg, 1, 1889, 256. 
■^^Lineaire Congruenties, Diss., Amsterdam, 1890, 92-99. 
^^Math. 6s termes 6rtcsito (Memoirs Hungarian Ac. Sc.), 9, 1891, 264; 10, 1892, 19. Magyar 

Tudom. Ak. Ertesitoje (Report of Hungarian Ac. Sc.), 2, 1891, 478. 
’'*Th6orie des nombres, 1891, 429. 
^^Beitrage zur Zahlentheorie, 1891, 135-143. 
^«Bull. Soc. Philomathique de Paris, (8), 4, 1891-2, 66-70. 
7*Die Elemente der Zahlentheorie, 1892, 89. 
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G. B. Mathews^^ reproduced art. 81 of Gauss^ and gave a second proof 
by use of Cauchy’s^^ congruence X=0for7i==p —1. 

K. Zsigmondy^® treated the problem to find all integers K, relatively 
prime to given integers a and 6, such that (mod K) holds for the 
given integral value o’=7, but for no smaller value. For 6 = 1, it is a 
question of the moduli K with respect to which a belongs to the exponent 7. 
Set 7=n$t-*, where the are distinct primes and qi the greatest. Then 
^11 the primes K for which a'=6‘' (mod K) holds for tr =7, but for no smaller 
flr, coincide with the prime factors of 

in which the products extend over the combinations of qi, g2; • • • one, two,... 
at a time, provided that, if (mod gO for o’=7/gi'‘', but for no smaller 
O', we do not include among the X’s the prime gi, which then occurs in A 
to the first power only. If the prime p is a X and if is the highest power 
of p dividing A, then p* is the highest power of p giving a K. The com¬ 
posite K’s are now easily found. If a and 6 are not both numerically equal 
to unity, it is shown that there is at least one prime K except in the following 
cases: 7 = 1, a — h = l; 7 = 2, a+6==‘=2^ (m^I); 7 = 3, a = ^2, 6==f1; 
7 = 6, a = =t:2, 6 = ±1. The case 6 = 1 shows that, apart from the corre¬ 
sponding exceptions, there exists a prime with respect to which the given 
integer a 7^=^ I belongs to the given exponent 7. As a corollary, every 
arithmetical progression of the type m7+1 (m = 1? 2,...) contains an infini¬ 
tude of primes. 

Zsigmondy^® considered the function A.y(a) obtained from the above A 
by setting 6 = 1. If a is a primitive root of the prime p = l+7, the main 
theorem of the last paper shows that p divides A^(a). Conversely, 1+7 is 
a prime if it divides A. Thus, if all the primes of a set of integers possess 
the same primitive root a, any integer p of the set is a prime if and only if 
Ap-i(a) is divisible by p. Hence theorems due to TchebycheP imply 
criteria for primes. For example, a prime 2^”+l has the primitive root 3 
implies that 2^"+l is a prime if and only if it divides 3^+1, where /c = 2^". 
Since ±2 is a primitive root of any prime 2g+l such that g is a prime 
4:k=^l, we infer that, if g is a prime 4/c=±= 1, then 2g+l is a prime if and only 
if it divides (2^=1= l)/(2=t: 1). Since 2 is a primitive root of a prime 4A7’+1 
such that N is an odd prime, we infer that, if N is an odd prime, 4^ +1 is a 
prime if and only if it divides (2“^+l)/5. 

G. F. Bennett^® proved (pp. 196-7) the first theorem of Cauchy,^® and 
(pp. 199-201) the results of Sancery.^^^ If a and a' belong to exponents 
t and t' which contain no prime factor raised to the same power in each, 
then the exponent to which aa' belongs is the 1. c. m. of t and i' (p. 194). 

^’Theory of Numbers, 1892, 23-25. 
^sMonatshcfte Math. Phys., 3, 1892, 265-284. 

4, 1893, 79-80. 
8°Phil. Trans. R. Soc. London, 184 A, 1893, 189-245. 
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If 2’*^^ is the highest power of 2 dividing 1, where a is odd, the exponent 
to which a belongs modulo 2^ is if X>s, but, if X^s, is 1 if a^l, 2 if 
a^~l, a^l (mod 2^); the result of Lebesgue^® (p. 87) now follows (pp. 
202-6). In case a is not prime to the modulus, there is an evident theorem 
on the earliest power of a congruent to a higher power (p. 209). If e is a 
given divisor of 0(w), there is determined the number of integers belonging 
to exponent e modulo m [cf. Erlerus^®]. If a, a',... belong to the exponents 
i, • and if no two of the it'... numbers ... (0^r<t, 0Sr'<t',...) 
are congruent modulo m, then a, a',. • • are called independent generators 
of the 0(m) integers <m and prime to m (p. 195); a particular set of 
generators is given and the most general set is investigated (pp. 220-241) 
[a special problem on abelian groups]. 

J. Perott^^ found a number belonging to an exponent which is the 1. c. m. 
of the exponents to which given numbers belong. If, for a prime modulus p, 
a belongs to an exponent ^>1, and h to an exponent which divides t, then h 
is congruent to a power of a (proof by use of Newton^s relations between 
the sums of like powers of a,..., and their elementary symmetric func¬ 
tions). Hence there exists a primitive root of p. 

M. Frolov^^ noted that all the quadratic non-residues of a prime modulus 
m are primitive roots of m if m = 2^®-f 1, m=2n-f-l or 4n-t-l with n an odd 
prime [Tchebychef^j. To find primitive roots of m “without any trial,” 
separate the m—1 integers <m into sets of fours a, 5, —a, where 
db^l (mod m). Begin with one such set, say 1, 1, —1, —1. Either a or 
m—a is even; divide the even one by 2 and multiply the corresponding 
=t=?) by 2; we get another set of four. Repeat the process. If the resulting 
series of sets contains all m—1 integers <m, 2 and —2 are primitive roots 
if m = 4/i+l, and one of them is a primitive root if m = 4/i —1. If the sets 
just obtained do not include all w —1 integers <m, further theorems are 
proved. 

G. Wertheun®^ gave the least primitive root of each prime p < 3000. 
L. Gegenbauer^^® gave two expressions for the sum s* of those terms of a 

complete set of residues modulo p which belong to the exponent t, and 
evaluated 2skftf{t) with t ranging over the divisors of k. 

G. Wertheim®^ proved that any prime 2^''-f-l has the primitive root 7. 
If P = 2''5'-1-1 is a prime and is a prime >2, any quadratic non-residue m 
of p is a primitive root of p if —1 is not divisible by p. As corollaries, 
we get primes q of certain linear forms for which 2, 5, 7 are primitive roots 
of a prime 2^-l-l or 4g-l-l; also, 3 is a primitive root of all primes Sg + l 
or 16^+1 except 41; and cases when 5 or 7 is a primitive root of primes 
8^+1} 165+1. There is given a table showing the least primitive root of 
each prime between 3000 and 3500. 

«mull. des Sc. Math., (2), 17,1, 1893, 66-83. 
Soc. Math, de France, 21, 1893, 113-128; 22, 1894, 241-5. 

8»Acta Mathematica, 17, 1893, 315-20; correction, 22, 1899, 200 (10 for p = 1021). 
8=>''Denkschr. Ak. Wiss. Wien (Math.), 60, 1893, 48-60. 
“Zeitschrift Math. Naturw. Unterricht, 25, 1894, 81-97. 
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J. Perott^® employed the sum s* of the kth powers of 1, 2,..p —1, and 
gave a new proof that Si^O,..., Sp^2=0, ~1 (mod p). If m is the 
1. c. m. of the exponents to which 1, 2,..p — 1 belong, evidently Sm^p — ly 
whence m>p—2. If A belongs to the exponent m, then A, A^,.. ., are 
incongruent, whence wgp —1. Thus A is a primitive root. 

N. Amici®® proved that, if j^>2, a number belongs to the exponent 2’''“^ 
modulo 2" if and only if it is of the form 8/i=t 3, and called such numbers 
quasi primitive roots of 2\ For a base 3, numbers of the two forms 
8A;+1 or 8A:=i=3, and no others, have indices. The product of two numbers 
having indices has an index which is congruent modulo 2''“^ to the sum of 
the indices of the factors. The product of two numbers &i and 62, neither 
with an index, has an index congruent modulo 2’'”^ to the sum of the indices 
of —hi and —62. The product of a number with an index by one without 
an index has no index. 

K. Zsigmondy®^ proved by use of abelian groups that, if d = qi^\ . 
. .p/*, where gi,..3r are distinct primes, and Pi,..., p« are dis¬ 

tinct primes, the number of incongruent integers belonging to the exponent 
5 modulo m is 

where 5y is the g. c. d. of 5 and tj=(l>{pfj), while li is the number of the 
integers which contain the factor g 

E. de Jonqui^res®® proved that the product of an even number of primi¬ 
tive roots of a prime p is never a primitive root, while the product of an 
odd number of them is either a primitive root or belongs to an exponent not 
dividing (p —1)/2. Similar results hold for products of numbers belonging 
to like exponents. Certain of the n integers r, for which r” is a given num¬ 
ber belonging to the exponent e = (p —l)/n, belong to the exponent ne, 
while the others (if any are left) belong to an exponent fee, where k divides n. 
He conjectured that 2 is not a primitive root of a prime p^ 1, 7, 17 or 23 
(mod 24); 3 not of p^l, 11, 13 or 23 (mod 24); 5 not of p=l, 11, 19, or 
29 (mod 30). These results and analogous ones for 7 and 11 were shown 
by him and T. Pepin®® to follow from the quadratic reciprocity law and 
Gauss^ theorems on the divisors of a;^=*=A. 

G. Wertheim®® added to his®^ corollaries cases when 6, 10, 11, 13 are 
primitive roots of primes 2g+l, 4g+l; also, 10 is a primitive root of all 
primes 8g+15^137 for which g is a prime 10A:+7 or 10A:-1~9, and of primes 
16g+l for which g is a prime 10A:+1 or 10A:-l-7. 

Wertheim®^ gave the least primitive root of each prime between 3000 and 
5000 and of certain higher primes. He noted errata in his®® table to 3000. 

des Sc, Math<Smatiques, 18, I, 1894, 64-66. 
®®Rendicoiiti Circolo Mat. di Palermo, 8, 1894, 187-201. 
s^Monatshefte Math. Phys., 7, 1896, 271-2. 
®«Comptes Rendus Paris, 122, 1896, p. 1451, p. 1513; 124, 1897, p. 334, p, 428. 
®®Compte8 Rendus Paris, 123, 1896, pp. 374, 405, 683, 737. 
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% the system of indices of n modulo k if 
/s of Kronecker.®^ Such systems of indices 

y ..., v = , where p, q,... are distinct 
'' is not divisible by 4 or if iV = 4, but € = 2 if N is 

^jet\p(N) denote the 1. c. m. of j'A, p —1, 2 —1,. • • 
maximum indicator for modulus N]. For A 

N), UN=p*, 2p*or 4 (so that N has primitive 
There is a table of values of ^<1000 and 

> lur which \I/(N) has a given value < 100. 
^ noted that we may often abbreviate Gauss’ method 

root of a prime p by testing whether or not the trial 
root before computing the residues of all powers of a. 
pie rules to decide whether or not a is a quadratic or 

a is both a quadratic non-residue and a cubic non- 
d if a^f^l for every/ dividing p —1 except/=p-l, 
t. 

3«,ve tables showing the residues of the successive 
_ divided by each prime or power of prime < 1000, also 
; showing the indices x of 2"" whose residues modulo are 
tables are more convenient than Jacobi’s Canon^^ (errata 

.he problem to find the residue of a given number with 
given power of a prime, but less convenient for finding all roots 

jrder of a given prime. There are given (p. 172) for each power 
000 of a prime p the factors of 0(p*), the exponent ^ to which 2 belongs 

ulo p^, and the quotient (j>/^. 
E. Cahen®® proved that if p is a prime —1)/2"‘^^ and if 2= 

2’”'^^p+l (m>0) is a prime, then 3 is a primitive root of g, whereas 

TchebycheP had the less advantageous condition p>3^'”^V2"‘^^. Other 
related theorems by Tchebychef are proved. There are companion tables 
of indices for primes < 200. 

G. A. Miller^^ applied the theory of groups to prove the existence of 
primitive roots of p”, to show that the primitive roots of p^ are primitive 
roots of p"", and to determine primitive roots of the prime p. 

L. Kronecker®® discussed the existence of primitive roots, defined sys¬ 
tems of indices and applied them to the decomposition of fractions into 
partial fractions. He developed (pp. 375-388) the theory of exponents to 
which numbers belong modulo p, a prime, by use of the primitive factor 

“Sitzungsber. Ak. Wien (Math.), 106, II a, 1897, 259, 
MNouv. Ann. Math., (3), 17,1898, 303. 
**Math. Quest. Educat. Times, 73, 1900, 45, 47. 
®^A Binary Canon, showing residues of powers of 2 for divisors under 1000, and indices to 

residues, London,-1900, 172 pp. Manuscript was described by author, Report British 
Assoc., i895, 613. Errata, Cunningham.^*® 

•‘Elements de la th^orie des nombres, 1900, 335-9, 375-390. 
®^Bull. Amer. Math. Soc., 7, 1901, 350. 
”Vorlesungen liber Zahlentheorie, 1,1901, 416-428. 
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Fd(x) of x^—i (dividing the last but not x^—1 for t<d). To every divisor 
d of p —1 belong exactly 0(d) numbers which are the roots of Fd(x)^0 

(mod p). 
P. G. Foglini®^ gave an exposition of known results on primitive roots, 

indices, linear congruences, etc. In applying (p. 322) Poinsot’s® method of 
finding the primitive roots of a prime p to the case p == 13, it suffices to exclude 
the residues of the cubes of the numbers which remain after excluding the 
residues of squares; for, if a: is a residue of a square, (x^)®=l and x^ is the 
residue of a square. 

R. W. D. Christie^®*^ noted that, if 7 is a primitive root of a prime 

p — Ak -- l,the remaining primitive roots are congruent to p —7^” (n = 1,2,...) 
A. Cunningham^^^^ noted that 3, 5, 6, 7, 10 and 12 are primitive roots of 

any prime Pn = 2^”+1>5. Also (mod F^+i >5). 
E. I. Grigoriev^*^^ noted that a primitive root of a prime p can not equal 

a product of an even number of primitive roots [evident]. 
G. Wertheim^®^ treated the problem to find the numbers belonging to 

the exponent equal to the 1. c. m. of m, n, given the numbers belonging to 
the exponents m and n, and proved the first theorem of Stern. He dis¬ 
cussed (pp. 251-3) the relation between indices to two bases and proved 
(pp. 258, 402-3) that the sum of the indices of a number for the various 
primitive roots oi m = p"' or 2p'^ equals §0(m)0]0(m) [. If a belongs to the 
exponent 45 modulo p, the same is true of p —a (p. 266). He gave a table 
showing the least primitive root of each prime < 6200 and for certain larger 
primes; also tables of indices for primes <100. 

P. Bachmann^®^ gave a generalization (corrected on p. 402) of Stem^s^® 
first theorem. 

G. Arnoux^^® constructed tables of residues of powers and tables of 
indices for low composite moduli. 

A. Bindoni^^® noted that a table showing the exponent to which a belongs 
modulo p, a prime, can be extended to a table modulo N by means of the 
following theorems. Let a, 61,..., b,, be relatively prime by twos. A 
number belonging to the exponent ti modulo hi belongs modulo bih2. .. 
to the 1. c. m. of i5i,. . ., as exponent. If U is the least exponent for which 
a^+l=0 (mod bi) and if the U are all odd, the least t for which a'+l is 
divisible by 6],. .is the 1. c. m. of ^i,.. ., If p is an odd prime not 
dividing a and if a belongs to the exponent t modulo p, and a^ — pq-\-lj and 
if p'' is the highest power of p dividing q, then a belongs to the exponent 

i^odulo p”. Hence if a is a primitive root of p, it is one of p” if 

®®Memorie Pont. Ac. Nuovi Lincci, 18, 1901, 261-348. 
i°®Math. Quest. Educat. Times, 1, 1902, 90. 

108, 116. 
lo^Kazani Izv. fiz. mat. obsc., Bull. Phys. Math. Soc. Kasan, (2), 12,.1902, No. 1, 7-10. 
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and only if — 1 is not divisible by If t is even, the least x for which 
a®+l=0 (mod f") 

M. Cipolla^'^^gave a historical report on congruences (especially binomial), 
primitive roots, exponents, indices (in Peano’s symbolism). 

K. P. Nordlund^°® proved by use of Fermat's theorem that, if ni,..ti,. 
are distinct odd primes, no one dividing a, then N == divides 

—1, where 
R. D. CarmichaeP^® proved that the maximum indicator of any odd 

number is even; that of a number, whose least prime factor is of the form 
4^+1, is a multiple of 4; that of p(2p — l) is a multiple of 4 if p and 2p —1 
are odd prunes. 

A. Cunningham^^® gave a table of the values of p, where (p —l)/v is the 
exponent to which 2 belongs modulo p”< 10000, the omitted values of p 
being those for which v = l or 2 and hence are immediately distinguished 
by the quadratic character of 2 (extension of his Binary Canon®®). A list 
is given of errata in the table by Reuschle.'^® An announcement is made of 
the manuscript of tables of the exponents to which 3, 5, 6, 7, 10, 11, 12 
belong modulo p'‘< 10000, and the least positive and negative primitive 
roots of each prime < 10000 [now in type and extended in manuscript to 
p'^< 22000]. 

A. Cunningham^^^ defined the sub-Haupt-exponent of a base q to 
modulus m = q^^r}Q (where 7}q is prime to and ao^O) to be the exponent to 
which q belongs modulo ^o- Similarly, let ^2 be the exponent to which q 
belongs modulo 7/1, where etc. Then the |'s are the successive 
sub-Haupt-exponents, and the train ends with ^r+i = l, corresponding to 

= 1* His table I gives these for bases q — 2,S, 5 and for various moduli 
including the primes < 100. 

Paul Epstein^^^ desired a function ^(w), called the Haupt-exponent for 
modulus m, such that = 1 (mod m) for every integer a prime to m and 
such that this will not hold for an exponent <\p{m). Thus \p{m) is merely 
Cauchy’s^® maximum indicator. Although reference is made to Lucas, 
who gave the correct value of i/'(?n), Epstein's formula requires modification 
when m=4 or 8 since it then gives ^ = 1, whereas ^ = 2. The number 
xirrij fji) of roots of x'^^l (mod m) is 2dodi.. if w is divisible by 4 and if 

IX is odd, but is di.. in the remaining cases, where, for m = 2“°pi“i.. .pn“”, 

di is the g. c. d. of At and </>(Pi“‘), and do the g. c. d. of ^ and 2“°“^, when 
ao>l. The number of integers belonging to the exponent p = pV- - 
modulo m is 

_\x(.m, p‘)-x('>n, \x{m, ...._ 
‘o^Revue de Math. (Peano), Turin, 8, 1905, 89-117. 
i°®G6teborgs Kungl. Vetenskapa-Handlingar, (4), 7-8, 1905, 12-14. 
io®Amer. Math. Monthly, 13, 1906, 110. 
^^oQuar. Jour. Math., 3Z, 1906, 122-145. Manuscript announced in Mess. Math., 33, 1903-4, 

145-155 (with list of errata in earlier tables); British Assoc. Report, 1904, 443; I’inter- 
m^diaire des math., 16, 1909, 240; 17, 1910, 71. Cf. Cunningham. 

“iProc. London Math. Soc., 5, 1907, 237-274. 
^i^Archiv Math. Phys., (3), 12, 1907, 134-150. 
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This formula is simplified in the case /x = ^(7w) and the numbers belonging 
to this Haupt-exponent are called primitive roots of m. The primitive 
roots of m divide into families of each, such that any two of one 
family are powers of each other modulo m, while no two of different families 
are powers of each other. Each family is subdivided. In general, not 
every integer prime to m occurs among the residues modulo m of the powers 
of the various primitive roots of m. 

A. Cunningham^considered the exponent J to which an odd number q 
belongs modulo 2"”; and gave the values of i when 3, and when q = 2'*'f2=*= 1 

(0 odd), m>3. When g=2'®=F=l and m>x+l, the residue of q^^^^ can 
usually be expressed in one of the forms 1 =^=2*^, 1 =f2“=f2^. 

G. Fonten^“^ determined the numbers N which belong to a given 
exponent modulo p”*, where 5 is a given divisor of p —1, and h'^l, 
without employing a primitive root of If p>2, the conditions are that 
N shall belong to the exponent 5 modulo p and that the highest power of 
p dividing shall be p\ 

*M. Demeczky^^® discussed primitive roots. 
E. Landau^^® proved the existence of primitive roots of powers of odd 

primes, discussed systems of indices for any modulus n, and treated the 
characters of n. 

G. A. Miller^^^ noted that the determination of primitive roots of g 
corresponds to the problem of finding operators of highest order in the 
cyclic group G of order g. By use of the group of isomorphisms of G it is 
shown that the primitive roots of g which belong to an exponent 2^, where 
q is an odd prime, are given by — a^, when a ranges over those integers 
between 1 and g/2 which are prime to g. As a corollary, the primitive 
roots of a prime 2q+l, where q is an odd prime, are — a^, l<a<g+l. 

A. N. Korkine^^® gave a table showing for each prime p< 4000 a primitive 
root g and certain characters which serve to solve any solvable congruence 

(mod p), where is a prime dividing p — 1. Let be the highest 
power of q dividing p — 1. The characters of degree q are the solutions of 

(mod p) 

and hence are the residues of the powers of for = 1,. .., a. There 
are noted some errors in the Canon of Jacobi^® and the table of Burckhardt. 
Korkine stated that if p is a prime and a belongs to the exponent e = (p —1)/6, 
exactly <#)(p~ !)/</>(e) of the roots of (mod p) are primitive roots of p. 

K. A. Posse“^ remarked that Korkine constructed his table without 
knowing of the table by Wertheim,^^and extended Korkine^s tables to 10000. 

i^Messenger of Math., 37, 1907-8, 162-4. 
»<Nouv. Ann. Math., (4), 8, 1908, 193-216. 
i“Math 68 Phys. Lapok, Budapest, 17, 1908, 79-86. 
““Handbuch,. .Verteilung der Primzahlen, I, 1909, 391-414, 47&-486. 
“^Amer. Jour. Math., 31, 1909, 42-4. 
i^*Matem. Shorn. Moskva (Math. Soc. Moscow), 27, 1909, 28-115, 120-137 (in Eussian). Cf. 

D. A. Grave, 29, 1913, 7-11. The table was reprinted by Posse. 
116-120, 175-9, 238-257. Reprinted by Posse.'®® 
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R. D. CarmichaeP^^ called a number a primitive X-root modulo n if it 
belongs to the exponent \(n), defined in Ch. Ill, Lucas.^^® The existence 
of primitive X-roots g is proved. The product of those powers of g which 
are primitive X-roots is (mod n) if \(n)>2. A method is given to solve 
\(x) =a, and the solutions tabulated for a^24. 

C. Posse^^^ noted that in Wertheim’s^^’table, the primitive root 14 
of 2161 should be replaced by 23, while 10 is not a primitive root of 3851. 

E. Maillet^^^ described the manuscript table by Chabanel, deposited in 
the library of the University of Paris, giving the indices for primes under 
10000 and data to determine the number having a given index. 

F. Schuh^^^ showed how to form the congruence for the primitive roots 
of a prime and gave two further proofs of the existence of primitive roots. 
He treated binomial congruences, quadratic residues and made applica¬ 
tions to periodic fractions to any base. For any modulus n, he found the 
least m for which (mod n) holds for every x prime to n, and derived 
the solutions n of (^(n) =m, i. e., n’s having primitive roots. 

F. Schuh^^^ discussed the solution of 1 (mod 'p°) with the least com¬ 
putation. If X belongs to the exponent q modulo n, the powers of x give 
a cycle of 0(g) numbers each with the ''period'' g. The numbers prime to 
n and having the period g may form several such cycles—more than one if 
n has no primitive root and g is the maximum period. If n = 2“ (a>2), then 
g = 2'* (s^a —2) and the number of cycles is 1, 3 or 2 according as s = 0, s = l 
or s>l. In the last case, the cycles are formed by 2''~"(2A:+1) =f1. 

When g is even, x is said to be of the first or second kind according as 
^3/2^ _ I (mod fi) or not. If the numbers of a cycle are of the second kind, 
we get a new cycle of the second kind by changing the signs of the numbers 
of the first cycle. While for moduli n having primitive roots there exist no 
numbers of the second kind, when n has no primitive roots and g is a possible 
even period, there exist at least two cycles of the second kind and of period 
g. Finally, there is given a table showing the number of cycles of each 
kind for moduli ^150. 

M. Kraitchik^-^ gave a table showing for each prime p< 10000 a primi¬ 
tive root of p and the least solutions of 2-"=l, (mod p). 

*J. Schumacher^^® discussed indices. 
L. von Schrutka^^”^ noted that, if g, r,. . . are the distinct primes dividing 

p —1, where p is a prime, all non-primitive roots of p satisfy 

—0 (mod p). 

Amer. Math. Soc., IG, 1909-10, 232-7. Also, Theory of Numbers, pp. 71-4. 
i2»Acta Math., 33, 1910, 405-6. 
^^^L’intermGdiaire dcs math., 17, 1910, 19-20. 
i23Supplcmcnt de Vricnd dorWiskunde, Culemborg, 22, 1910, 34-114, 166-199, 252-9; 25,1913, 

33-59, 143-159, 228-259. 
23, 1911, 39-70, 130-159, 230-247. 

323Sphinx-Oedipe, May, 1911, Num(5ro Special, pp. 1-10; errata listed p. 122 by Cunningham and 
Woodall. Extension to 25000, 1912, 25-9, 39-42, 52-5; errata, 93-4, by Cunningham. 

326Blatter Gyrnnasial-Sehulwofion, Miinchen, 47, 1911, 217-9. 
w’Monatshefte Math. Phys., 22, 1911, 177-186. 
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To this congruence he applied Hurwitz's^^ method (Ch. VIII) of finding the 
number of roots and concluded that there are p —1—0(p~l) roots. 
Hence there exist <j!)(p —1) primitive roots of p. 

A. Cunningham and H. J. WoodalP^^ continued to p< 100000 the table 
of Cunningham^^*^ of the maximum residue indices v of 2 modulo p. 

C. Posse^^® reproduced Korkine^s^^ and his own^^® tables and explained 
their use in the solution of binomial congruences. 

C. Krediet'30 treated (mod n) of Lucas,Ch. Ill, and called x 
a primitive root if it belongs to the exponent (p. The powers of such a 
root are placed at equal intervals on a circle for various n’s. 

G. A. Miller^^^ proved by use of group theory that, if m is arbitrary, 
the sum of those integers <m and prime to m w'hich belong to an exponent 
divisible by 4 is =0 (mod m), and the sum of those belonging to the expo¬ 
nent 2 is = — 1 (mod m), and proved the corresponding theorem by Stern^® 
for a prime modulus. 

A, Cunningham^^^ tabulated the number of primes p<10^ for which 
y belongs to the same exponent modulo p, for t/ = 2, 3, 5, 6, 7, 10, 11, 12; 
and the number of primes p in each 10000 to 10^ for which y (y~2 oi 10) 
belongs to the same exponent modulo p. Also, for the same ranges on 
p and y, the number of primes p for which y^^ 1 (mod p) is solvable, where 

is a given divisor of p — 1. 
A. Cunningham^^^ stated that he had finished the manuscript of a table 

of Haupt-exponents to bases 3, 5, 6, 7, 11, 12 for all prime powers <15000; 
also canons giving at sight the residues of / modulo p*< 10000 for 2 = 2, 
r< 100; 2 = 3, 5, 7, 10, ll,r<30. 

J. Barinaga^^^ considered a number a belonging to the exponent g 
modulo p, a prime. If a is not divisible by g, the sum of the ath powers 
of the numbers forming the period of a modulo p is divisible by p. The 
sum of their products n at a time is congruent to zero modulo p if n<^, 
but to =f1 if n = ^, according as g is even or odd. 

A. Cunningham^^® listed errata in his Binary Canon®^ and Jacobi’s Canon. 
G. A. Miller^^*^ employed the group formed by the integers <m and 

prime to m, combined by multiplication modulo m, to show that, if a 
number is = =±=l (mod 2^), but not modulo 2'^'^^, where l<7</3, it belongs 
to the exponent 2^”'^ modulo 2^. Also, if p is an odd prime, and N^l 
(mod p), N belongs to the exponent p'^“^ modulo if and only if V — 1 is 
divisible by p^, but not by p^''’^ where /3>7^ 1. 

«8Quar. Jour. Math., 42, 1911, 241-250; 44, 1913, 41-48, 237-242; 45, 1914, 114-125. 
i29Acta Math., 35, 1912, 193-231, 233-252. 
laoWiskundiK Tijdskrift, Haarlem, 8, 1912, 177-188; 9, 1912, 14-38; 10, 1913, 40-46, 87-97. 

(Dutch.) 
^^^Amcr. Math. Monthly, 19, 1912, 41-6. 
i^Uhoc. London Math. Soc., (2), 13, 1914, 258-272. 
‘“Messenger Math., 45, 1915, 69. Cf. Cunningham. 
“h4nnacs Sc. Acad. Polyt. do Porto, 10, 1915, 74-6. 
‘“Messenger Math., 46, 1916, 57-9, 67-8. 
‘“//m/., 101-3. 
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A, Cunningliam^®^ gave five primes p for which there is a maxiruxim 
number of exponents to which the various numbers belong modulo p. 

On exponents and indices, see Lebesgue^^^"® and Bouniakowsky^^^; gtlso 
Reuschle®^ of Ch. VI, Bouniakowsky^^^ of Ch. XIV, and Calvitti^® of Ch. 

Binomial Congruences. 

Bhdscara Achdrya^^® (1150 A. D.) found y such that 2/^—30 is divisiWe 
by 7 by solving ?/^=7c+30. Changing 30 by multiples of 7, we reacla a 
perfect square 16 with the root 4. Hence set 

7c+30=(7n+4)", c = 7n^+8n-2, t/ = 7n+4. 

Taking n=1, we get 2/ = 11. Such a problem is impossible if, after abrading 
the absolute term (30 above) by the divisor (7 above) and the addition, of 
multiples of the divisor, we do not reach a square. 

Similarly for the case of a cube, with corresponding conditions for im.i>os- 
sibility (§206, p. 265). For 2/^ = 5c+6, abrade 6 by the divisor 5 to got 
the cube 1; adding 43*5, we get 216 = 6^. Hence set 2/ = 5n+6. 

An anonymous Japanese manuscript^®® of the first part of the eighteeni^li 
century gave a solution of x^—ky=a by trial. The residues ai,..., 1 of 
1%..(A:—1)"^ modulo k are formed; if ar = a, then x=r. It was noted 
that ak^r=o.r OT k—ar according as k is even or odd, and that the residxxe 
of r'* is r times that of 

Matsunaga,^®®“ in the first half of the eighteenth century, solved 
by expressing 5 as a product mn and finding p, q and A so that 

mp-nq=lj 2pa=A (mod n). Then x=(Am—2a)A/n [and y=a — mh]. 
But if Aw=2a, write A+n in place of A and proceed as before. Or write 
2a+6 in the form hQ+R, whence x=2a+6 —(Q+l)i^. To solve 60-f- 
lla;=2/^ consider the successive squares until we reach 5^^3 (mod 11). 
Write 2-5+11 in the form Ml+10. Then for a=5, 5=11, Q=l, R== lO, 
the preceding expression for x becomes 1, whence 52+11-1 = 61 Thoa 
write 2-6+11 in the form 2-11+1. Then 23 —(2+l)-l = 20 gives 6^-+- 
20-11=162, and a;= (256-69)/!! = 17. 

L. Euler^®^ proved that, if n divides p —1, where p is a prime, and if 
a = c”+A:p, then (by powermg and using Fermat's theorem), is 
divisible by p. Conversely, if a"” —1 is divisible by the prime p — mn-{— 1, 
we can find an integer y such that a - is divisible by p. For, 

a-~2/- = (a-2/'^)Q(2/), 

and the differences of order mn—n of Q(l), Q(2),..., Q(mn) are the saxrxe 

“7Math. Quest, and Solutions (Ed. Times), 3, 1917, 61-2; corrections, p. 65. 

i«Vfja-ganita §§ 204-5; Algebra, with arith. and mensuration, from the Sanscrit of Brahmeg\ip»-t a 
Bhdscara, transl. by H. T. Colebrooke, London, 1817, pp. 263-4. 

““Abhand. GescWchte Math. Wise., 30,1912, 237 
^^Ibid., 234-5. 

“^Novi Acad. Petro^, 7, 1758-9 (1755), p. 49, seq., §64, §72, §77; Comm. Arith., 1, 
27(^1, 273. In Novi Comm., 1,1747-8, p. 20; Comm. Arith., 1, p. 60, he proved the fire* 
statement and stated the converse 
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as those of the term for 2/=l,..mUj and hence equal (wn—n)!, 
so that Q{y) is not divisible by p for some values 1,..mn of y, 

Euler^®^ recurred to the subject. The main conclusion here and from 
his former paper is the criterion that, if p=mn+1 is a prime, (mod p) 
has exactly n roots or no root, according as a”*=l (mod p) or not. In 
particular, there are just m roots of and each root a is a residue of 
an nth power. 

Euler^^^® stated that, if all the values of x making ax+5 a 
square are given by x= ay^^2py+q, 

J. L. Lagrange^®^ gave the criterion of Euler, and noted that if p is a 
prime 4n+3, 1 is divisible by p, so that is a root of 
x^=B (mod p). Given a root $ of the latter, where now p is any odd prime 
not dividing B, we can find a root of (mod p^) by setting x = ^+Xp, 

Then x^—B =(}?-{-p)p^ if 2^X+co=pp. The latter can be 
satisfied by integers X, p since 2^ and p are relatively prime. We can pro¬ 
ceed similarly and solve (mod p”). 

Next, consider ^^^B (mod 2”), for n>2 and B odd (since the case B 
even reduces to the former). Then ^ = 2z+lf ^—B—Z-{-l—B, where 
Z=42(2+1) is a multiple of 8. Thus 1—B must be a multiple of 8. Let 
n>3 and 1—J? = 2'j3, r>3. If it sufiSces to take 2 = 2”“^f, where f is 
arbitrary. If r<n, Z must be divisible by 2’’, whence 2 = 2^”Y or 2’'"^f-“l. 
Hence 1)+^ must be divisible by 2'‘~^ If n—r^r — 2, it 
suffices to take divisible by 2”'“^ The latter is a necessary condition 
if n—r>T—2. Thus f=2''“^/) =Fi3, t(; = 2’’~^(f^=t:p). Hence f^=*=p must be 
divisible by We have two sub-cases according as the exponent of 
2 is ^ or >r —1; etc. 

Finally, the solution of (mod m) reduces to the case of the powers of 
primes dividing m. For, if / and g are relatively prime and — J5 is divisible 
by /, and B by p, then —H is divisible by /p if x=p/=i= $ = v(7=±= 1^. But 
the final equality can be satisfied by integers p, v since / is prime to g. 

A. M. Legendre^^ proved that if p is a prime and w is the g. c. d. of n 
and p — l =cop', there is no integral root of 

(1) x”=H (mod p) 

unless 1 (mod p); if the last condition is satisfied, there are co roots 
of (1) and they satisfy 

(2) x“=B^ (mod p), 

where I is the least positive integer for which 

(3) Zn —p(p —1) =cj. 

For, from (1) and x^“^=l, we get x®^^“^^=l, and hence (2), by use 
of (3). Set n = con'. Then, by (2) and (1), 

(mod p). 

iwNovi Comm..Petrop., 8, 1760-1, 74; Opusc. Anal. 1, 1772, 121; Comm. Arith., 1, 274, 487. 
^®““Opera postuma, 1, 1862, 213-4 (about 1771). 

Acad. R. Sc. Berlin, 23, ann6e 1767, 1769; Oeuvres, 2, 497-504. 
Ac. R. Sc. Paris, 1785, 468, 476-481. (Cf. Legendre. 
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Since = the first gives Hence 

== 1 (jnod p). 

Conversely, if 

has the factor so that (Lagrange^) congruence (2) has co roots. 
If 4n divides p —1, the roots of —1 (mod p) are the odd powers of 

an integer belonging to the exponent 4n modulo p. 
Let n divide p —1, and m divide (p-~l)/n. Let co be the g. c. d. of 

m, n and set n^oiv. Determine positive integers I and q such that Iv — qm—l, 
If 5'”==*=! (mod p), (1) is satisfied by the roots of x'^^Bhj (mod p), where 
y ranges over the roots of (=t= 1)« (mod p). For, the last two congruences 
give 

= (mod p). 

Hence by means of the roots of we reduce the solution of (1) to 
binomial congruences of lower degrees. In particular, let n = 2, m = (p — 1)/2, 
and let 2 be prime to m, so that p = 4a —1, l = a, g = l. Then x^^B (mod p) 
requires that so that we have the solutions = without trial 
(Lagrange^®^). Next, if n=2 and -1, the theorem gives x=B^'^'^y, 
where y- = -1. But we may generalize the last result. Consider 
(mod p). Since p must have the form 4a+l, we have p=f-{-g^. Deter¬ 
mine u and z so that c = gu—pz. Then x^fu (mod p). 

Let a belong to the exponent nw modulo p, where w divides (p —l)/n. 
Then the roots of = l (mod p) are B = oC"^ (m = 1, • • w — l), and, for a 
fixed B, the roots of (1) are = (m = 0, 1,..n —1). For, a"" belongs 
to the exponent w, whence 

Legendre^®^ gave the same theorems in his text. He added that, know¬ 
ing a root 0 of (1), it is easy to find a root of (mod p“), with the 
possible exception of the case in which n is divisible by p. Let 6""—B — Mp 
and set x=^6-\~Ap. Then a;”~5 is divisible by p^ if 

MA-ne^-^A=pM', 

which can be satisfied by integers A, M' if n is not divisible by p. To solve 
(1) when p is composite, p = a°h^. .., where a,b^.. . are distinct primes, deter¬ 
mine all the roots X of (mod a"), all the roots p of (mod 6^),.... 
Then if a:=X (mod a“), x=y (mod x will range over all the roots 
of (1). 

Legendre|^^® noted that if p is a prime 87^-l-5 we can give explicitly the 
solutions of x^"}-a=0 (mod p) when it is solvable, viz., when a = 1. For, 
either a^"'+^-j-l = 0 and x = a^'^'^ is a solution, or —1 — 0 and ^ = 
satisfies 6^~a^0 (mod p), so that it remains only to solve which 
was done at the end of his^^^ memoir. For p = 8^H-l, let n = a^, where a 
is a power of 2 and /5 is odd; if x“-|-a = 0 can be solved as in the 

^^TUorie des nombres, 1798, 411-8; ed. 2, 1808, 349-357; ed. 3, 1830, Noa. 339-351; German 
transl. by Maser, 1893, 2, pp. 15-22. 
231-8; ed. 2, 1808, pp. 211-219; Maser, I, pp. 246-7. 
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case p = 8n-l-5; but in general no such direct solution is known, and it is 
best to represent some multiple of p by the form 

If we have found 6 such that is divisible by the prime p, not dividing 
a, we readily solve x^-\-a=0 (mod p^). For, from 

(6=^'\/ — ay=r=^s\/ — a, (d^+ay=r^+as^, 

r^+as^ is divisible by p"*. Now s is not divisible by p. Thus we may take 
r = 5a;+p"2/, whence x^+a is divisible by p”. [Cf. Tchebychef, Theorie der 
Congruenzen, §30.] 

The case of any composite modulus N is easily reduced to the preceding 
(end of Lagrange’s^^^ paper). Legendre proved that, if N is odd and prime 
to a, the number of solutions of = 0 (mod N) is 2'”^ where ^ is the 
number of distinct prime factors of N; the. same is true for modulus 2N. 
Henceforth let N be odd or the double of an odd number and let d be the 
g. c. d. of N and a. If d has no square factor, the congruence has 2'’"^ roots, 
where i is the number of distinct odd prime factors of N not dividing a. 
But if d—o)\l/^, where o) has no square factor, the congruence has 
roots where i is the number of distinct odd prime factors of N/d, 

C. F. Gauss^^*^ treated congruence (1) by the use of indices. However, 
we can give a direct solution (arts. 66-68) when a root is known to be con¬ 
gruent to a power of B, For, by (1) and If therefore a 
relation of the last type is known, a root of (1) is B*. The condition for 
the relation is l^kn (mod t), where t is the exponent to which B belongs 
modulo p. It is shown that t must divide m = (p — l)/n. We may discard 
from m any factor of n; if the resulting number is m/g, the unique solution 
h oil^kn (mod m/q) is the desired k. [Cf. Poinsot^^^j 

Gauss (arts. 101-5) gave the usual method of reducing the solution of 
(mod m) for any composite modulus to the case of a prime modulus 

and gave the number of roots modulo p^ in the various possible subcases. 
His well-known and practical ^^method of exclusion” (arts. 319-322) employs 
successive small powers of primes as moduli. Another method (arts. 
327-8) is based on the theory of binary quadratic forms [cf. Smith^^°]. 

The congruence c=0 (mod m) is reduced (art. 152) to — 
4ac (mod 4ca7n). For each root y, it remains to solve 2ax+6=^ (mod 4am). 

Gauss^®^ showed in a somewhat incomplete posthumous paper that, if 
t is a prime and — .., where a, h,, . . are distinct primes, the 
solution of 1 (mod r) may be made to depend upon the solution of a 
congruences of degree a, /3 congruences of degree 6, etc. Use is made of the 
periods formed of the primitive roots of the congruence, as in Gauss’ theory 
of roots of unity. 

Legendre^^^ solved x“-|-a^0 (mod 2"') when a is of the form —1 =F8a by 

^^U^isquis. Aritli., 1801, Arts. 60-65. 
io8\\Y»rkc, 2, 1863, 199-211. Maser's German transl. of Gauss’ Disq. Aritli., etc., 1889, 589-601 

(comments, p. 683). 
leoxii/^nrip rlpH nonihres. pH. 2. 1808. nn. .358—60 TNos. .3.50—2'). Maser. 2. 1893. 25—7. 



[Chap. VII 208 Histoey of the Theory of Numbers. 

use of the expansion of 

Vl^ = l=t§2*a-||2®a"=fci^2V- .. .^N2^V+.. 

l-l-3-5...(2n-3) 

2-4-6-8...2n 

The coefficient of a” is an integer divisible by 2”"^^ Retain only the terms 
whose coefficients are not divisible by 2"*”^ and call their sum 0. Hence 
every term of 6^+a is divisible by 2^”. Thus the general solution of the 
proposed congruence is 

P. S. Laplace^®® attempted to prove that, if p is a prime and p — 1 = ae, 
there exists an integer x<e such that a;*—1 is not divisible by p. For, if 
x = e and all earlier values of x make x®—1 divisible by p, 

](e-2r-l} - ... 

would be divisible by p. The sum of the second terms of the binomials is 

while the sum of the first terms of the binomials is e! by the theory of differ¬ 
ences, and is not divisible by p since e< p. [But the former equality implies 
that the last term of / is ( —1)*(0 —1), whereas the theorem is trivial if x 
is allowed to take the value 0. Again, nothing in the proof given prevents 
a from being unity; then the statement that there is a positive integer 
x< p — 1 such that x^~^ — 1 is not divisible byp contradicts Fermat^s theorem.] 

L. Poinsot^^ deduced roots of x”= 1 (mod p) from roots of unity. 
M. A. Stern^® (p. 152) proved that if n is odd and p is a prime, x”= — 1 

(mod p) is solvable and the number of roots is the g. c. d. of n and p — 1; 
while, if n is even, it is solvable if and only if the factor 2 occurs in p — 1 to a 
higher power than in n. 

G. Libri^®^ gave a long formula, involving sums of trigonometric func¬ 
tions, for the number of roots of x^+c=0 (mod p). 

V. A. Lebesgue^® applied a theorem on/(xi,..Xjfc) = 0 to derive Legen- 
dre^s^®^ condition = l for the existence of roots of (1), and the number 
of roots. Cf. Lebesgue^^ of Ch. VIII. 

Erlerus^® (pp. 9-13) proved that, if Pi,. .., are distinct odd primes, 

x^= 1 (mod 2‘'pi"‘.. .p/ ) 

has 2^, 2'", 2^"^^ or 2^*^^ roots according as j^ = 0, 1, 2 or >2. 
For the last result and the like number of roots of x^=a, see the reports, 

in Ch. Ill on Fermat^s theorem, of the papers by Brennecke®^ and Crelle®® 
of 1839, Crelle,®® Poinsot®"^ (erroneous) and Prouhet®® of 1845, and Schering^®^ 
of 1882. 

C. F. Arndt^®^ proved that the number of roots of x^^ 1 (mod p”) for 

^•"Communication to Lacroix, Traits Calcul Diff. Int., ed. 2, vol. in, 1818, 723. 
wiJour. ftlr Math., 9, 1832, 175-7. See Libri,i« Ch. VIII. 
«»Axchiv Math. Phys., 2, 1842, 10-14, 21-22. 
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p an odd prime is the g. c. d, of t and ct>{p”’); the same holds for modulus 
He found the number of roots of (mod m), m arbitrary. By using 

=6, if i ranges over the divisors of 6, he proved (pp. 25-26) the known 
result that the number of roots of 1 (mod p) is the g. c. d. 5 of n andp— 1. 
The product of the roots of the latter is congruent to (—1)*'*'\* the sum of 
the roots is divisible by p; the sum of the squares of the roots is divisible 
by p if 6>2. 

P. F. Arndt^®^ used indices to find the number of roots of x^=a, 
A.L. Crelle^^^gave an exposition of known results on binomial congruences. 
L. Poinsot^®® considered the direct solution of (mod p), where p 

is a prime and n is a divisor of p--l=nm (to which the contrary case 
reduces). Let the necessary condition 1 be satisfied. Hence we may 
replace A by and obtain the root x^A^ if l-\-mk = ne is solvable for 
integers k, e, which is the case if m and n are relatively prime [cf. Gauss^®^. 
The fact that we obtain a single root x=A® is explained by the remark that 
it is a root common to a;”=A and which have a single common root 
when n is prime to m. Next, let n and m be not relatively prime. Then 
there is no root A* if A belongs to the exponent m modulo p. But if A 
belongs to a smaller exponent m' and if m' is prime to n, there exists as 
before a root A®', where l+m'A;=ne'. The number of roots of 
(mod N) is found (pp. 87-101). 

C. F. Arndt^®® proved that x^^l (mod 2”), n>2, has the single root 1 if 
t is odd; while for t even the number of roots is double the g. c. d. of ^ and 
2"“^. The sum of the A:th powers of the roots of a; = 1 (mod p) is divisible 
by the prime p if A; is not a multiple of t. By means of Newton’s identities 
it is shown that the sum, sum of products by twos, threes, etc., of the roots 
of a;^=l (mod p) is divisible by the prime p, while their product is ^ +1 or 
— 1 according as the number of roots is odd or even. If the sum, sum of 
products by twos, threes, etc., of m integers is divisible by the prime p, 
while their product is ^ — ( — 1)^, the m integers are the roots of a;"*=l 
(mod p). 

A. Cauchy^®^ stated that if I=p\^. .., where p, g,... are m distinct 
primes, and if n is an odd prime, x""^ 1 (mod 1) has n’" distinct roots, includ¬ 
ing primitive roots, i. e., numbers belonging to the exponent n. [But 
a:^= 1 (mod 5) has a single root.] 

Cauchy^®® later restricted p, g,.., to be primes (mod n). Then 
a:’'=l (mod p^) has a primitive root ri, and a;”=l (mod gO has a primitive 
root r2, so that a;”= 1 (mod I) has a primitive root, viz., an integer (mod 
p^) and =r2 (mod g'"), etc.; but no primitive root if p, g,.. . are not all ^ 1 
(mod n). 

i«3Von den Kubischen Resten, Torgau, 1842, 12 pp. 
^•*Jour. fiir Math., 28, 1844, 111-154. 
“‘Jour, de Math6matiquea, (1), 10, 1845, 77-87. 
“‘Archiv Math. Phya., 6, 1845, 380, 396-9. 
“’'Comptes Rendus Paris, 24, 1847, 996; Oeuvrea, (1), 10, 299. 
“‘Comptes Rendus Paris, 25, 1847, 37; Oeuvres, (1), 10, 331. 
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Hoen6 Wronski^®^ stated without proof that, if (mod M), 

a = (-1)“+^ ](-1)'+' f [M/K, co]“"2+ikri, 

and that M must be a factor of aK^— — f’”. Here the ^^alephs’^ 
A[M/K, cof, for r = 0, 1,..are the numerators of the reduced fractions 
obtained in the development of M/K as a continued fraction. In place of 
K, Wronski wrote the square of = Concerning these formulas, see 
Hanegraeff/^^ Bukaty/^® Dickstein.^®^ Cf. Wronski^^^ of Ch. VIII. 

E, Desmarest^^ noted that, if x^+D^ 0 (mod p) is solvable, x^+Dy^^ == mp 
can be satisfied by a value of m<3+p/16 and a value of pg3. His proof 
is not satisfactory. 

D. A. da Silva^^ (Alasia, p. 31) noted that (mod m), where 
m=pi^^P2®=..has the roots 'Zxiqi'm/py where Xi is a root of 
(mod p/0> A being the g. c. d. of D and <l>{pf"), while the q’s are integers 
such that S5im/p/*= 1 (mod m). 

Da Silva^^®“ proved that a solvable congruence x'^^r (mod m) can be 
reduced to the case r prime to m and then to the case m~p'",p a prime > 2. 
Then, if 5 is the g. c. d. of n and </)(p“) =55i, there is a root if and only if 
r*'=l (mod p'^) and hence if and only if (mod p'^ '^^), where p""' is the 
g. c. d. of n and p““\ while d is the quotient of p —1 by its g. c. d. with n. 

H. J. S. Smith^"^® indicated a simplification in Gauss’second method 
of solving x^^A. If +D^O (mod P) is solvable, mP — x^-\-Dy^ is solvable 
for some value of 2\/D/Z. Employing all values of m under that limit 
for which also 

(e) = ©- 
and finding with Gauss all prime representations of the resulting products 
by the form x^-pDy^, we get ^r=x'/y', x'^/y",.. . (mod P), where x', ij'; 

• denote the sets of solutions of mP = x^H-i)p“. 
Eg. Hanegraeff^^^ reduced to B^r^l (mod p) by use of ^a:^l. 

When p/6 is developed into a continued fraction, let /x and P^^i be the 
number of quotients and number of convergents preceding the last. Let v, 
P,_i be the corresponding numbers for p/0”'. Then 

x~{ — lY r={ — \y ^P^-i (modp). 

For p a prime, we get all roots by taking 0 = 1,..., (p _ i)/2. By starting 
with 6(x—h)^l in place of 0:i;=l, we get 

^®®R4forme des Mathematiques, being Vol. i of R(5fornie du savoir humain, 1847. Wronski’s 

discussed by S. Dickstein, Bibliotheca Math., (2), 
6, 52, 85-90; 7, 1893, 9-14 [on analysis, (2), 8, 1894, 49, 85; (2), 10, 1890, 5]. 
Bull. Int. Ac. Sc. Cracovie, 1896; Rozprawy, Krakow, 4, 1913, 73, 396. Cf. Tintc'rnid- 

i6.«P 181-3, 199, 231-4; 25, 1918, 5,5-7. 
C. Alasia,_ Annaes Sc. Acad. Polyt. do Porto, 9, 1914, 65-95. There are many confusing 

misprints; for example, five at the top of p. 76 
""British A^oc. Report, 1860,120-, §68; Coll. M. Papers, 1, 148-9. 

Aote BUT 1 Equation de congruence x^=r (mod p), Paris, 1860. 
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r^{--iy-\6h+irp^_, (mod p). 

By taking and replacing 1 by ( —in 6{x — h)^l, the last 
results become the fundamental formula given without proof by Wronski^®^ 
in his R^forme des Math^matiques. 

G. L. Dirichlet^’^^ discussed the solution of for any modulus. 
G. F. Meyer^"^^ gave an elementary discussion of the solution of 

(mod k)f for k a prime, power of prime, or any integer. 
V. A. Lebesgue^^^ employed a prime p, a divisor n of p —1 =n?i', and a 

number a belonging to the exponent n' modulo p. Then the roots of 
(mod p) are where h is not in the period of a, and 6 is a quadratic 

non-residue of p if a is a quadratic residue, and fc” is the least power of b 
congruent to a term of the period of a. If we set (mod p), then 
must na-\-pl3=l (mod n'). The roots x are primitive roots of p. In the 
construction of a table of indices, his method is to seek a primitive root 
giving to =t=2 the minimum index (rather than to =t=10, used by Jacobi); 
thus we use the theorem for a = =i= 2. 

Lebesgue^’® gave reasons why the conditions imposed on b in his pre¬ 
ceding paper are necessary. He added that when we have found that 

= a (mod p) leads to a primitive root x — g of p, it is easy to solve 
(mod p) when m divides p — 1, by expressing r as a power of g by the equiva¬ 
lent of an abridged table of indices. 

Lebesgue^^® noted that the usual method of solution by indices leads 
to the theorem: If a belongs to the exponent e modulo p, and if n divides 
p —1, and we set n = e'm, where e' has only prime factors which divide e, 
while m is prime to e, then, for every divisor M of m, x^ = a (mod p) has 
e'(l)(M) roots belonging to the exponent M. 

If a belongs to the exponent e modulo p, there are e(j)(n) numbers b, not 
in the period of a, for which a" (mod p), with n a minimum. A common 
divisor of n and i does not divide e. Then the n roots of a (mod p) are 

where nt—iu — l^evj t<e, u<n. This generalization of his^^^ earlier 
theorem is used to find the period of a primitive root of p from the period of 2. 

R. Gorgas^^^ stated that, if p is the residue modulo M of the pth term of 
■j(Af —1)/2[^,..2^, 1^, then p(p — 1) =p=‘=m+Afa, according as M = 4?n=*=l. 
Take the lower signs and solve for p; we get 

2p = l=fc:?,, 62 = M(4a~l)-l-4p. 

Set 4p = Arc4”p'. Hence the initial equation x^ — My-\-p has been replaced 
by 6^ = lf(4a-hc —l)H-p' of like form. Let p' be the p'th place from the 
end. The process may be repeated until we reach an equation P(P—1) 
= MA-fp„,—m solvable by inspection. 

i72Zahlentheorie, 1863, §§32-7; ed. 2, 1871; ed. 3, 1879; ed. 4, 1894. 
^’^Archiv Math. Phys., 43, 1865, 413-36. 
^^^Comptes Rendus Paris, 61, 1865, 1041-4. 

62, 1866, 20-23. 
63, 1866, 1100-3. 

^’’Ueber Losiing dioph. Gl. 2. Gr., Progr., Magdeburg, 1867. 
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Ladrasch^'^® obtained known results on for any modulus. 
V. Bouniakowsky^^® gave a method of solving =‘=r (mod P), where 

P is odd. His first illustration is 3*==*=! (mod 25). Write the integers 
^(25-“l)/2 in a line. Under the first four write in order the integers 
=0 (mod 3); under the next four write in reverse order those =1; under 
the last four write in order those =2. 

1* 2* 3* 4* 5 6* 7* 8* 9* 10 11* 12* 
369 12 10 741 2 5 8 11 

Mark with an asterisk 1 in the first line; below it lies 3; mark with an 
asterisk 3 in the first line; etc. The number 10 of the integers marked 
with an asterisk is the least solution x of 3*^—1 (mod 25). The sign is 
determined by the number of integers in the second set marked by an 
asterisk. The method applies to any P = 6n+1* But for P = 6n+5, we 
use for the second set of numbers in the second line those =2 (mod 3) in 
reverse order, and for the third set those =1 in order. If P = 23, we see 
that each of the 11 numbers in the first line are marked with an asterisk, 
whence 3^^^—l (mod 23). A like marking occurs for P = 5, 11, 17, 29. 
For P = 35, 12 numbers are marked, whence 12 is the least x for which 
3*^1 (mod 35). Starting with the unmarked number 5, we get the cycle 
5,15, 10, whence 3^= — I (mod 7); similarly, the cycle 7,14 gives 3^^ —1 
(mod 5). 

For g-3®==t4 (mod 25), we begin with 4 in the second row. Since it 
lies below 7, we mark 7 with an asterisk in the second row; etc. We use an 
affix n on the number which is the nth marked by an asterisk. 

1 2 3 4 5 6 7 8 9 10 11 12 
g*6 ^*3 g*6 IQ 7*2 ^*1 2*7 2*^ 5 8*® 11*^ 

For g = ll, we have the entry 8*® below 11; hence 11*3®=—4, the sign 
following from the number of entries ^ 8 in the second set which are marked 
with an asterisk. Similarly for any 12, except g = 5, 10. 

Bukaty^®° discussed the formula of Wronski.^®® 
T. N. Thiele^^^ used a mosaic (empty and filled squares on cross-section 

paper) to test y^^d(mod c), where c is an integer or Gauss complex integer 

a-fbV^, employing the graph of y^—cx = d. 
Dittmar^^^ discussed (mod p). Using Cauchy^s^^ explicit con¬ 

gruence for the numbers belonging to a given exponent, he gave the expanded 
form of the congruence with the roots belonging to the successive exponents 
1,...,21. 

^’®Von den Kubischen Resten u. Nichtresten, Progr., Dortmund, 1870. 
Ac. Sc. St. P^tersbourg, 14, 1870, 356-375. 

^s^Ddduction et demonstration de trois lois primordiales de la congruence des nombres, Paris, 
1873. 

^*i“Om Talmonstre,” Forhandl. Skandinaviske Naturforskeres, Kjobenhavn, 11, 1873, 192-5. 
^®2Die Theorie der Reste, insbesondere derer vom 3. Grade, nebst einer Tafel der Kubischen 

Reste aller Primzahlen der Form Gn-f-l zwischen den Grenzen 1 und 100. Progr. K6ln 
Gym., Berlin, 1873. 
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L. Sancery®^ (pp. 17-23) employed the modulus M=p* ov 2p*', where p 
is an odd prime. Let a belong to the exponent n modulo M, Let A be the 
g. c. d. of m and 0(M)/n. Set A=AiA2 where .. .j and p» 
is a prime dividing both A and n, and is the power of Pi dividing A. 
Let b be any divisor of A2. Then (mod M) has <l){nAi8)/(l>{n) roots 
belonging to the exponent nAi8; the power aAi5 of such a root is congruent 
to a, where a can be found by means of a linear congruence. Given a 
number belonging to the exponent nAi8, we can find A18 roots of the con¬ 
gruence. 

C. G. Reuschle^®^" tabulated the roots of/=0 (mod p), where p=mX+l 
and X are primes and / is the maximum irreducible algebraic prime factor 
of o’" — !; also the roots of 

7y^-l-C=0, 

for c<13, d=—1 to —26, d=+2 to +21, and for various cubic and 
quartic congruences. 

A. Kunerth^s method for (mod h) will be given in Vol. 2^ Ch. XII. 
E. Lucas^®^^ treated a;^+l=0 (mod p’”), where p is a prime >2, for use 

in the question of the number of satins. Given o^+l=0 (mod p), set 

{a+i)^=A +Bt, (mod p^). 

Then Afi is a root x of the proposed congruence. 
B. Stankewitsch^®® proved that if (mod p) is solvable, p being an 

odd prime, the positive root <p/2 is ^BfA (mod p), where 

t—2 i 

A =Si^i+qSi^3+q^Si-5 + .. .-hq^ Si, B^SiA’qSi^2+ •. • +5^ 

where i = {p — l)/2 and Sk denotes the sum of the products of 1, 2,..i 
taken at a time. Let n be a divisor of p —1. Let F(x) be the g. c. d. 
modulo p of x”—1 and n(a;”/‘*—1), where a ranges over the distinct 
prime factors of n. Call f(x) the quotient of x^^—l by F(x). Then the 
roots of f{x)^0 (mod p) are the primitive roots of a;”=l (mod p). [Cf. 
Cauchy.^^] 

N. V. Bougaief^®^ noted that if p = 8n+5 is a prime and if x^=q 
(mod p) is solvable, it has the root or (^)! according as 

or —1. If p = 2^Z+l, I odd, and ^^^1, it has the root 
[Legendre.^®®] 

T. Pepin^®® treated by tables of indices. 
P. Gazzaniga^®® gave a generalization of Gauss’ lemma (the case n=5 = 2, 

1820 Xafeln Complexer Primzahlen..Berlin, 1875. Errata, Cunningham.^’* 
G6om6trie des tissue, Assoc. franQ., 40, 1911, 83-6; French transl. of his Italian paper in 

ringegnere Civile, 1880, Turin. 
^“Moscow Math. Soc., 10, 1882-3, I, 112 (in Russian). 
iM/bid., p. 103. 
^“Atti Accad. Pont. Nuovi Lincei, 38, 1884-5, 201. 
i*®Atti Reale Istituto Veneto, (6), 4, 1885-6, 1271-9. 
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v=0). Separate the residues modulo p of kq^ for k-ly 2,..(p —1)/5, 
into three sets: g_ 

0<ri,..rp<|<5i,..s,< —p<^i,. 

and form the differences From the set 1,..(p —1)/5, delete 
the Ti and there remain v numbers Vi, If yi is a root of Siyi=Vi (mod p), 
then (mod p) is solvable if and only if ( —. .y^^l (mod p), 
where h is the g. c. d. of n and p —1. 

P. Seelhoff^^*^ gave the known cases in which (mod p) can be 
solved explicitly [Lagrange/^^ Legendre^^®]. In the remaining cases, one 
uses Gauss’ method of exclusion, the process of Desmarest,^"^ or, with 
Seelhoff, use various quadratic residues of p {ihid.y p. 306). Here a;^=41 
(mod 120097) is treated. 

A. Berger^^® considered a quadratic congruence reducible to D (mod 
4n), where D=0 or 1 (mod 4). If D is prime to n, the number of roots is 

where p ranges over the distinct prime factors of n, while d and di range 
over the pairs of complementary divisors of n, and f^ = 0 or 1 according as 
d has a square factor or not. If g{nm)=g{n)g{m) for all integers n, m, 
and ^(1) = 1, 

s(^)^(A 4ri)ff(n)=2s(^')ff(n)-s(^)?(n) ^s(^)?(n)^ 

where n ranges over all positive integers. Mean values are found: 

where A is a fundamental discriminant according to Kronecker, X, Xi are 
finite for all n’s, and p ranges over all primes. 

G. Wertheim^^® presented the theory of x^^a (mod w). 
R. Marcolongo^®*^ treated x^-fP=0 (mod p) in the usual manner when 

explicit solutions are known. Next, from a particular set of solutions 
X, y of x^-{-p^y-\-P = 0y where p is a prime >2, we get the solution 

=^xi=x—p^y[ai.. .a„_i] (mpd p’"'*'^) 

of Xi^+p'^^'^yi+P = 0, where [<2i.. .a^-i] is the numerator of next to the 
last convergent to the continued fraction for p^/(2x). The method is 
Serret’s, Alg. Sup4r., II. For p = 2 the results obtained are the same as in 
Dirichlet’s Zahlentheorie, §36. 

is’Zeitschrift Math. Phya., 31, 1886, 378-80. 

i8*Ofver8igt K. Vetenskaps-Ak. Forhandlingar, Stockholm, 44, 1887, 127-153. Nova Acta 
regiffi 80C. sc. Upsalensis, (3), 12, 1884. 

i«»Elemente der Zahlentheorie, 1887, 182-3, 207-217. ^"“Giornale di Mat., 25, 1887, 161-173. 
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F. J. Studnicka^^^ treated at length the solution in integers Xy y (y<h) 
of hx+l=y^, discussed by Leibniz in 1716. 

L. Gegenbauer^®^ gave a new derivation of the equations of Berger^®® 
leading to asymptotic expressions for the number of solutions of x^^D, 

A. Tonelli^®^ gave a method of solving x^=c (mod p), when p is a prime 
4ih-{-l and some quadratic non-residue ^ of p is known. Set p = 2''7-l-l, 
where y is odd. By Euler’s criterion, the power 72"“^ of c and g are con¬ 
gruent to +1, —1. Set €0 = 0 or 1, according as the power 72*“^ of c is 
congruent to -fl or — 1. Then 

-l-l(mod p). 

For s^3, set €i = 0 or 1 according as the square root of the left member is 
= +lor-l. Then 

(modp). 

Proceeding similarly, we ultimately get 

+1 (mod p), e == €o+2€i + ... +2*“2€,_2* 

Thus a;= =t (mod p). Then (mod has the root 

G. B. Mathews"^^ (p. 53) treated the cases in which x^^a (mod p) is 
solvable by formulas. Cf. Legendre.^®® 

S. Dickstein^®^ noted that H. Wronski^®® gave the solution 
[l\/f -1 Ctt—1) 

TtJ +Mj 

of z^—ay'^^O (mod M) with (1*/^)^ in place of K, and gave, as the condition 
for solvability, 

^(iyi)2n_i=o (mod Af). 

But there may be solutions when the last condition is satisfied by no 
integer k. This is due to the fact that the value assigned to y imposes a 
limitation, which may be avoided by using the same expressions for ?/, ^ 
in a parameter K, subject to the condition aX”"—1=0 (mod M). 

M. F. J. Mann^®^“ proved that, if n=2*X®p\ .., where X, p, ... are dis¬ 
tinct odd primes, the number of solutions of a:^=l(mod n) is GGiG^... 
gig2..., where (r= 1 if ti or p is odd, otherwise G is the g. c. d. of 2p and 2*“^, 
and where Gi, G2,.., pi, p2, • • are the g. c. d.’s of p with X““^ ..., 
X — l,p — 1,..., respectively. 

A. Tonelli^^^ gave an explicit formula for the roots of x^=c (mod p^), 

^®^Ca8opis, Prag, 18, 1889, 97; cf. Fortschritte Math., 1889, 30. 
^®®Denk8chriften Ak. Wi88. Wien (Math.), 57, 1890, 520. 
^®*G6ttingen Nachrichten, 1891, 344-6. 
i®^Bull. Internat. de VAcad. Sc. de Cracovie, 1892, 372 (64-65); Berichte ICrakauer Ak. Wiss., 

26, 1893, 155-9. 
i®^‘»Math. Quest. Educ. Times, 56, 1892, 24r-7. 
i®®Atti R. Accad. Lincei, Rendiconti, (5), 1, 1892, 116-120. 
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when v is an odd prime, and a quadratic non-residue gr of p is known. 
Set p = 2"a4-l, where s^l and a is odd. Then 7 = ap^“^ is odd, and 

= 2'y. Tonelli^s earlier work for modulus p now holds for modulus 
and we get =t= If s = 1, then e = 0 and the root is that given 

by Lagrange if X==l. If s=2, whence p=4a+l = 8Z+5, the expression 
for X is given a form free of 6 = 6o: 

' ^ (c“+3) y = ap^”^ 

A. Tonelli^^® expressed the root a; in a form free of e for every s: 

rhi 

where the v's are given by the recursion formula 

= . .rr4“+* (A=2, 3,.. .)• 

Here k is an existing integer such that ^+1 is a quadratic residue of p, 
and ^ — 1 a non-residue. Thus, if s = 3, 

' rhi 

where we may take A; = — 2 if a is not divisible by 3, but = —4 if a is divi¬ 
sible by 3, while neither a nor 4a+1 are divisible by 5. 

N. Amici®® proved that x^^=h (mod 2"), h odd, k^p-'2,is solvable only 
when b is of the form 2*'*‘^/i4-l and then has 2*'''^ roots, as shown by use of 

indices. For b, the same condition on b is necessary; thus it remains 
to solve (mod 2") when m is odd. If ^-Sk + 1 or Sk+Z, it has an 
index to the base 8/1+3 and we get an unique root. If jS = 8A;—3 or Sk — 1, 
then has a root a by the preceding case, and —a is a root of the 
proposed congruence. 

Jos. Mayer^^^ found the number of roots of x^=a (mod p”), for the 
primes 2, 3, p = 6m=*= 1. If ai, a2,... are residues of nth powers modulo p, 
and if g is the g. c. d. of n and p —1, then aia2.. . = +1 or —1 (mod p), 
according as p' = (P”-l)/3 is odd or even. If p' is even, we can pair the 
numbers belonging to the exponent p' so that the sum of a pair is 0 or p; 
hence there exists a residue of an nth power = — 1 (mod p); but none if 
p' is odd. 

K. Zsigmondy®*^ obtained by the use of abelian groups known theorems 
on the number, product and sum of the roots of x^=l (mod m). 

G. Speckmann^^® considered x^=a (mod p), where p is an odd prime. 
Set P = (p —1)/2. When they exist, the roots may be designated P—ky 
P+l-fA:, whose sum is p. The successive differences of P^, (P+1)^, 
(P-f-2)V • • arep, p+2, p-f4,.... Thesumof z = s-}-l terms of 2, 4, 6,... is 
s^+3s+2 = 2^-}-2. Adding to the latter the remainder r obtained by dividing 
P^ by p, we must get pn+a. Hence in pn+a—r we give to n the values 

^®*Atti R. Accad. Lincei, Rendiconti, (5), 2, 1893, 259-265. 
^*^Ueber nte Potenzreste und binomische Congruenzen dritten Grades, Progr., Freising, 1895. 
i*«Archiv Math. Phys., (2), 14,1896, 445-8; 15,1897, 335-6. 
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0, 1, 2,... until we reach a number of the form 2^+2 (found by extracting 
the square root). Then fc==2, so that the roots P—k, P+l+k are found. 

N. Amici^^® proved that if neither m nor h is divisible by the prime p, 
and if a is a given root of (mod p), and if /S, g are (existing) integers 
such that 

/3<^(p^)-p^-^+l = wg, 

then is a root of (mod p^). Hence we limit attention to the 
case \ = 1. Consider henceforth x^^=h (mod p), where p=2*/i+l is an 
odd prime, h being odd, and h not divisible by p. First, let k'^s. Then 
6^=1 (mod p) is a necessary and sufficient condition for solvability and 

are roots, where q is such that 2*^^—1 is divisible by h. If gr is a 
quadratic non-residue of p, all 2* roots are given by =*= b'^g^% where e = €iH-2€2 

the €i taking the values 0 and 1 independently. Finally, 
let k<s. Then two roots =*=/? are determined by the method of Tonelli, 
while all the roots are given by 

^ = €i+2€2+ ... €^=0or 1. 

R. Alagna^°° considered a prime p=4^+1 for which A; is a prime. Since 
2 is known to be a primitive root of p, it is easy to write down those powers 
of 2 which give all the roots of x^^l (mod p), where d is one of the six 
divisors 2" or 2'A; of p — l, hkewise of x^=N, since N must be congruent to 
an even power of 2. For the modulus p^, we may apply the first theorem 
of Amici or proceed directly. The same questions are treated for a prime 
4fc-f 3 for which 2k+l is a prime. 

A. Cunningham^®^ treated at length the solution of (mod iVO, 
where AT is a prime, and gave tables showing all incongruent roots when 
t = 2, 101,1 any admissible divisor of A"—I; also for a few additional 
fs when N is small. 

Cunningham^°^“ treated a^=l (mod q^) and 3.2®==*=! (mod p). 
treated the problem to find 2)’'=+! or =*=a, given a^=l, a®==*=2> (mod p), 
where ^ is odd and x, rj are the least values of their kind; also given 
a^=l, a®==*=2), a^==*=c, to find the least 0 and 7 such that 2)^=c, c^=b 
(mod p). 

W. H. Besant^®^ would solve y^ = ax-\-h by finding the roots s of 
(mod a). Then p = a7'+s, x = ar^+2rs-h(s^ — b)/a. 

G. Speckmann^®^ replaced (mod p) by the pair of congruences 
x^~'^=r, xr=k (mod p). In np+k give to n the values 0, 1, 2,. .. until we 
find one for which np+k^rx such that, by trial, The method is, of 
course, impractical. 

^•'Rendiconti Circolo Mat. di Palermo, 11, 1897, 43-57. 
*“''Rendicoiiti Circolo Mat. di Palermo, 13, 1899, 99-129. 
*°^Messenger of Math., 29, 1899-1900, 145-179. Errata, Cuniiingham*^®, p. 155. See 13a of 

Ch. IV. 
«i“Math. Quest. Educ. Times, 71, 1899, 43-4; 75, 1901, 52-4. 

(2), 1, 1902, 70-2. 
»MMath. Gazette, 1, 1900, 130. 
*MArchiv Math. Phys., (2), 17, 1900, 110-2, 120-1. 
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G. Picou^®^ applied to the case n=2 Wronski’s^®® formula for the resi¬ 
dues of nth powers modulo M, M arbitrary. For example, if ilf=16a=fcl, 

(/i=t8a)^^=Fa(4/i —1)^ (mod ikf). 

[If 8a were replaced by 4a, we would have an identity in h.] 
P. Bachmann^*^ (pp, 344-351) discussed x"^=a (mod p“), p>2, p = 2. 
G. Arnoux^°® solved (mod 3*5*7) by getting the residue 2 of 79 

modulo 7 and that of 14 modulo <^(7) = 6 and solving a:^=2 (mod 7) by use 
of a table of residues of powers modulo 7. Similarly for moduli 3, 5. Take 
the product of the roots as usual. 

M. Cipolla^^® generalized the results of Alagna^°° to the case of a prime 
p = 2'”g+l, 7n>0, q an odd prime, including unity. For any divisor d of 
p—1, the roots of (mod p) are expressed as given powers of a primi¬ 
tive root a of p. If 2 belongs to the exponent 2^0? modulo p, where co is 
odd, then5^= 1 (mod p) if and only if 2'’“^ is the highest power of 2 dividing m. 

Cunningham^®®" found the sum of the roots of (i/"=*=l)/(2/=±:l)=0 
(mod p). 

M. Cipolla^®"^ proved the existence of an integer k such that g is a 
quadratic non-residue of the prime p not dividing the given integer q. Let 

«»= 2^ (^-V5)“f, 

By expansion of the binomials it is shown that the roots of x^=q (mod p) 
are given by =±='M(p-i)/2 and by These may be computed by use of 

2kWn^i — qwn^2 (mod p) {w=u or v), 

with the initial values Wo = l, % = t^o = l, v^^k. Although Vr, are the 
functions of Lucas, the exposition is here simple and independent of the 
theory of Lucas (Ch. XVII). 

M. Cipolla^®^ proved that if g is a quadratic residue and k^—q is a 
quadratic non-residue of an odd prime p, 2^=g (mod p^) has the roots 

=t § Vg ] (ft+Vg)’-- (/5 - V^)’-[, 
where r='p^~^{p — \)/2. Other expressions for the roots are 

=*= {{k+Vk^-qy+{k-V}i^—qy\, 

< = (p^-2p^-i+l)/2, s=p^-Hp+1)/2. 

Thus if zy^q (mod p), the roots modulo p’" are =^q*zy’'~^ (Tonelli'’®). 
Finally, let n=IIpi’'‘, where the p’s are primes >3; take €i = ±l when 
Pi= =f1 (mod 4). There exists a number A of the form k^-q such that 

*°^L’iiiterm6diaire des math., 8, 1901, 162. 
20®Assoc. franQ. av. sc., 31, 1902, II, 185-201. 
^“Periodico di Mat., 18, 1903, 330-5. 
*o®“Math. Quest. Educ. Times, (2), 4, 1903, 115-6; 5, 1904, 80-1. 
^o^Rendiconto Accad. Sc. Fis. e Mat. Napoli, (3), 9, 1903, 154-163. 
«8/6id., (3), 10, 1904, 144-150. 
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(A/pi) = €i, .,(A/pJ=€^, where the symbols are Legendre^s. Call M 
the 1. c. m. of ei)/2 for v. Then (mod n) has 
the root 

Va)^[ . 

A. Cunningham^®® indicated how his tables may be used to solve 
directly —1 (mod p) for n — 2, 3, 4, 6, 12. From p = a^+6^, we get the 
roots x^^ajh of — 1 (mod p). Also p = = gives the roots 
=t:d(a+6)/(ce) and ^c{a=^h)j{2de) of 1 (mod p), where e = a or h. 
Again, p=A^+ZB^ gives the roots {A—B)/(2B), (B+A)/(B — A)j and 
their reciprocals, of a:^=l (mod p). 

M. Cipolla^®^ gave a report (in Peano’s symbolism) on binomial con¬ 
gruences. 

M. Cipolla^^® proved that if p is an odd prime not dividing q and if 
z^=q (mod p) is solvable, the roots are 

2= =*=2(gsi+g%+g^S5+ ... 
where 

s,=r+2^+...+(^)"- 

Then x^^q (mod p’^) has the root e= (p^“2p^“^-f-l)/2. For p=l 
(mod 4), x^=q (mod p) has the root 

4S 5*S2.-,-2 r^%-3+2S 5W-1 6=^) • 
i=l ;=1 1=1 \ ^ / 

M. Cipolla^^^ extended the method of Legendre^®® and proved that 

x2"=l+2^A (mod 2^), 

for A odd and s^m+2, has a root 

x = l+2*Aci-2^A%+.. n = 

where ^ ^ _(2’"-l)(2-2”*-l).. .(^l-2’"-l) 

' 2”’ ” 2”‘'‘n! 
are the coefficients in 

(1+2)'/'’"=1+Ci«-C22"+C32^- . . . .... 

0. Meissner^^^ gave for a prime p = 8n+5 the known root 
p-t~3 P—1 

^ = D ^ of D (mod p), D ^ = 1 (mod p). 

But if a root is ^](p-l)/2}!, since the square of the 
last factor is congruent to ( —|^y vVilson’s theorem. 

Tamarkine and Friedmann^^^ expressed the roots of ^^q (mod p) by a 
formula, equivalent to Cipolla’s,^^® 

^°®Quadratic Partitions, 1904, Introd., xvi-xvii. Math. Quest. Educ. Times, 6, 1904, 84-5; 7, 
1905, 38-9; 8, 1905, 18-9. 

^^“Rendiconto Accad. Sc. Fia. e Mat. Napoli, (3), 11, 1905, 13-19. 
304-9. 

2i*Archiv Math. Phys. (3), 9, 1905, 96. 
^‘^Math. Annalen, 62, 1906, 409. 
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(p-3)/2 

2= ±2 S 
m=0 

For, according as is or is not (mod p), we have 

y\l-(y^-qy-^\^y orO (mod p). 

We can express S2;„4.i in terms of Bernoullian numbers. 
A. Cunningham^^^ gave a tentative method of solving (mod p). 

He2i4a noted that a root Y—2r}^ of — 1 leads to the roots of 
(mod p). 

M. Cipolla^^® employed an odd prime p and a divisor n of p —l=nj'. 
If ri,..r„ form a set of residues of p whose nth powers are incongruent, 
and if l (mod p), then x'^^q (mod p) has the root 

x^*2Akq\ A,= --nf 
k^O i«i 

For n=2, this becomes his^^° earlier formula by taking 1,2,..., (p — 1)/2 as 
the r’s. Next, let p~l=mp, where m and p are relatively prime and m 
is a multiple of n. If y and 3 belong to the exponents m and p modulo p, 
the products 7’'5* {r<m/n, s<p) may be taken as ri,..., According as 
nk^ 1 or not (mod p), we have 

yink-l)m/n_ 

Aa= -nix^izr ■ or Afc=0 (mod p). 
7 —1 

If n is a prime and rf is its highest power dividing p — l, there exists a 
number co not an nth power modulo p and we may set m = n"", 7=co^ (mod p) - 
In particular, if n = 2, ct^^q has the root 

_1 P+2^--l 2^~^—1 

^ s=0 

where to is a quadratic non-residue of p. If p=5 (mod 8), we may take 
CO = 2 and get 

P+3 - 

i3M2‘+l-(2‘-l)2‘[, 

M. Cipolla^^® considered the congruence, with p an odd prime, 

x^^^ a (mod p”"), r< m, 

a necessary condition for which is that /i = (aP^-a)/p^+^ be an integer. 

Determine A by afA^h (mod p”"). Then the given congruence has the 
root axo if Xq is a root of 

1 ~ Ap’”^^ (mod p^). 

This is proved to have the root 

»*Math. Quest. Educ. Times, (2), 13,1908,19-20. 
10, 1906, 52-3. 

»«Math. Anualen, 63, 1907, 64-61. 
»“Atti R. Accad. Lincei, Rendiconti, (5), 16,1, 1907, 603-8. 
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a:o=l-Sc.iy<'+‘’, i)=»n+l+r^-|1, 
»=i Lp— 

where Ci = l/p"",... are given by the expansion 

=1-Ci2-C22"-.... 

M. Cipolla^^^ treated a;”=o (mod p*") where n divides ^Cp""). We may 
set n=pV, where v divides p—1. Determine integers a, such that 

ap'‘+j'i3= 1 {mod p"‘-'‘“^(p-“ 1) [. 

Then the initial congruence has the root yxi^ if (mod p’"), solved as 
in his preceding paper, and if a^i is a root of (mod p”"). The latter 
has the root 

1 . t-i . t 

t Jfc=0 »»i * * 

where t={p — l)/v, pi=rf'”~'^ (mod p""), ri,..being integers prime to p 
such that their j'th powers are incongruent and form a group modulo p*". 

K. A. Posse^^® gave a simplified exposition of Korkine’s^^® method of 
solving binomial congruences. Cf. Posse,Schuh.^^®"^ 

F. Stasi^^® proved that we obtain all solutions of x^^a? (mod n), where 
n is odd and prime to a, by expressing n as a product of two relatively 
prime factors P and Q in all ways, setting x—a = Pz and finding z from 
P2+2a=0 (mod Q). [Instead of his very long proof, it may be shown at 
once that we may take x — a,x+a divisible by P, Q, respectively.] 

L. Grosschmid^^® gave for the incongruent roots of (mod M) an 
explicit formula obtained by means of the ideal factors of Af in a quadratic 
number-field. 

L. Grosschmid^^^ treated the roots of quadratic binomial congruences. 
A. Cunningham^^^ solved — 1 (mod p), where p = 616318177 is a prime 

factor of 2^^—1; by using various small moduli, he obtained p = 24561^-1- 
36162. 

L. von Schrutka^^^® used a correspondence between the integers and 
certain rational numbers to treat quadratic congruences without novelty as 
to results. The method will be given under the topic Fields in a later 
volume of this History. 

Grosschmid^23 employed the products R and N of all the quadratic 
residues and non-residues, respectively, ^2n of a prime p=47i+l. Then 

p2=(_.i)n+i^ (mod p). 

«’Atti R. Accad. Lincei, Rendiconti, (5), 16, I, 1907, 732-741. 
*^"CharIkov Soob§6. Mat. Ob§6 (Report Math. Soc. Charkov), (2), 11,1910, 249-268 (Russian). 
*^®I1 Boll. Matematica Gior. Sc.-Didat., 9, 1910, 296-300. 
«ojour. fur Math., 139, 1911, 101-5. 
^’^Math. 68 Phys. Lapok, Budapest, 20, 1911, 47-72 (Hungarian). 
2*^Math. Questions Educat. Times, (2), 20, 1911, 33-4 (76). 
2*2aMonatshefte Math. Phys., 23, 1912, 92-105. 
i“3Archiv Math. Phys., (3), 21, 1913, 363; 23, 1914-5, 187-8. 
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Hence =^R and are the roots of ^^=—1 (mod p) according as 
p = 8m+l or 8m+5. 

U. Concina^^^ proved the first result by Legendre.^®^ 
A. Cunningham^^^ tabulated the roots of i/^^=±=2, 2y^^=^l (mod p), 

for each prime p< 1000. 
Cunningham^^® listed the roots of (mod p*)? where l^qp"", 

p being an odd prime ^19, p''<10^ a=l and often also a==2, g a factor 
of p —1. 

A. Gerardin and L. Valroff^^^ solved 2y^=l (mod p), 1000<p<5300. 
Cunningham^announced the completion of tables giving all proper 

roots of y'^^1 (mod p*) for m odd ^ 15, and of y"^^ — 1 (mod p*) for m even 
^ 14. These tables have since been completed up to p* < 100000 and are 
now nearly all in type. 

T. G. Creak^^^ announced the completion of like tables for m = 16 to 
50; 52, 54, 56, 63, 64, 72, 75, and 103<p'=<10^ 

H. C. Pocklington^^^ noted that if p is a prime 8m+5 and ~1, 
x^=a (mod p) has the roots =t=|(4a)'”'^h He showed how to use (^+ 

u\/DY to solve —D (mod p= 4A;+1), and treated x^^a. 
*J. Maximoff^^® treated binomial congruences and primitive roots. 
*G. Rados^^^ gave a new proof of known criteria for the solvability of 

(mod p). He^^^ gave a new exposition of the theory of binomial 
congruences without using indices. 

Congruences x^“^=l (mod p"") are treated in Chapter IV. Euler^’*^ 
of Ch. XVI solved x^=—l (mod p). Lazzarini^'^^ of Ch. I erred on the 
number of roots of —3 (mod n). Many papers in Ch. XX treat 
(mod 10”). The following papers from the first part of Ch. VII treat also 
binomial congruences: Euler,^ Lagrange,^ Poinsot,“ Cauchy,Lebesgue,®^ 
Epstein,^^^ Korkine.^^^ 

224Periodico di Mat., 28, 1913, 212-6. 
22sMessenger Math., 43, 1913-4, 52-3. 

148-163. Cf. Cunningham.201 

22^Sphinx-Oedipe, 1913, 34; 1914, 18-37, 73. 
228Messenger Math., 45, 1915-6, 69. 
=^Proc. Cambridge Phil. Soc., 19, 1917, 57-9. 
23»Bull. Soc. Phys.-Math. Kasan, (2), XXL 
“'Math. <Js Term6s firtesito, 33, 1915, 758-62. 

34, 1916, 641-55. 



CHAPTER VIIL 
HIGHER CONGRUENCES. 

A Congruence op Degree n has at most n Roots ip the 
Modulus p is a Prime. 

J. L. Lagrange^ proved that, if a is not divisible by the prime p, 
+... is divisible by p for at most n integers x between p/2 and —p/2. 
For, let a, /S,..p, or be n+l such distinct integers. Then the quotient of 

.. . 

by a: —a is a polynomial . .. which is divisible by p when x=^,..a. 
Proceeding as before, we finally have a(p—a) divisible by p, which is 
impossible. 

L. Euler^ noted that a;”—1 is divisible by a prime p for not more than n 
integers x^ 0<x<p. For, if x = a, is such an integer, then x — a divides 
x^' — l—mp, where m is a suitable integer; the quotient / is of degree n — 1. 
If x = h is a second such integer, x — h divides f—m'p. Proceeding as in alge¬ 
bra, we obtain the theorem stated. [The argument is applicable to any 
polynomial of degree n in x.] 

A. M. Legendre^ noted that P=(x—a)Qd-pA has only one more root 
than Q. 

C. F. Gauss^ proved the theorem by assuming that there is a congruence 
.. .^0 (mod p) with more than n roots a,.. and that every con¬ 

gruence of degree I, l<n, has at most I roots. Substituting y-\-a for x, we 
obtain a congruence ... =0 with more than n roots, one of which is 
zero. Removing the factor y, we obtain . . . = 0 with more than 
n — 1 roots, contrary to hypothesis. 

Gauss® noted that if a is a root of (mod p), then ^ is divisible by 
x—a modulo p. If a, 6,.. . arc incongruent roots, $ is divisible modulo p 
by the product {x — a)(x—h).... Hence the number of roots does not 
exceed the degree of J. 

A. Cauchy® made the proof by use of (a; —a)Xi (mod p), identically 
in X, where the degree of Xi is one less than the degree of X. 

A. L. Crelle^ and S. Earnshaw^ gave Lagrange’s proof. 
Crelle^ proved that if Ci,..., Cn are n distinct roots, 

ax''-\-. . . = a(x — ei). .. (x —eJ+pX. 

^M6m. Ac. Berlin, 24, ann6e 1768 (1770), p. 192; Oeuvres, 2, 1868, 667-9. 
*Novi Comm. Ac. Pctrop., 18, 1773, p. 93; Comm. Arith., 1, 519-20. 
*M6m. Ac. Roy. Sc., Paris, 1785, 466; Th<5oric des nombres, 1798, 184. 
*Disq. Arith., 1801, Art. 43. 
^Posthumous paper, Wcrke, 2, p. 217, Art. 338 (p. 214, Art. 333). Maser’s Gorman translation 

of Gauss’ Disq. Arith., etc., 1889, p. 607 (p. 604). 
*Excrcices dc Math., 4, 1829, 219; Oeuvres, (2), 9, 261; Comptes Rendus Pari.s, 12, 1841, 

831-2; Exerciees d’Aiialyse et de Phys. Math., 2, 1841, 1-40, Oeuvres, (.2), 12. 
merlin Abhand., Math., 1832, p. 34. 
^Cambridge Math. Jour., 2, 1841, 79. 
“Berlin Abhand., Math., 1843, 50-54. 
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L. Poinsot^® gave the proof due to Crelle.® 
J. A. Grunert^^ proceeded by induction from n — 1 to n, making use of 

the first part of Lagrange’s proof. 
D. A. da Silva^^ gave a proof. 

Number of Roots op Higher Congruences. 

G. LibrP® found that/(a;, i/,.. .)=0 (mod m) has 

, { is 
'‘-1 2W, . . 2W1 
S cos—- +i sm —-} 

m m ] 

sets of solutions such that c^y^d,.. 
sets of solutions is 

The total number of 

m 
S S .. 

x-«0 i/s=0 
jl+eos?^+cos^+... +COS ymm m I 

V. A. Lebesgue^"^ proved that if p is a prime we obtain as follows the 
residue modulo p of the number of sets of solutions of F(xi,.. 
(mod p), in which each Xi is chosen from 0, 1,..p — l, and F is a poly¬ 
nomial with integral coefficients. Let SA be the sum of the coefficients of 
the terms Axi .. .a;/ of the expansion of F^~'^ in which each of the exponents 
a,..^ is a multiple >0 of p — l. Then AS^jfc= ( —1) 2A (mod p). 

Henceforth, let p = /im -j-1. First, let F=x”*—a. In ^ the coefficient 
of is (*’«^)(—a)”=a” (mod p). The exponent of x will be a multiple 
>0 of p — l only when n = A;(p —l)/d, for A; = 0, 1,..d—1, where dis the 
g. c. d. of m and p — l. Thus (mod p), while evidently /Si<p. 
According as 1 or not, we get /S»i = d or 0. 

Next, let F-x^—ay^—h. Set c=ay^-\-h. In (x’”—we omit the 
terms in which the exponent of x is not a multiple >0 of p — 1 and also the 

containing y. Since the arithmetical coefficient is =1 as in the 
first case, we get 

In this, we replace by those terms of in which the exponents 
are multiples >0 of p — l, viz.. 

Set ^ = 1, and sum for A; = l,.. m —1; we get —/S2 (mod p). It is shown 
otherwise that S2 is a multiple < mp of m. 

To these two cases is reduced the solution of 

(1) F = aia:i’”+ • • • (mod p = /im+l). 

*°Jour. de Math4matiques, 10, 1845, 12-15. 
^^KliigeVs Math. Worterbuch, 5, 1831, 1069-71. 
“Proprietades... Congruencias binomias, Lisbon, 1854. Cf. C. Alasia, Rivista di fisica, mat. 

e sc. nat., 4, 1903, p. 9. 
“M4m. divers Savants Ac. Sc. de Tlnstitut de France (Math.), 5, 1838, 32 (read 1825). Jour. 
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Denote by P the sum of the first / terms of F and by Q the sum of the last 
A;—/ terms. -Let ^ be a primitive root of p. Let P® be the number of sets 
of solutions of P=0 (mod p); P^’^ the number for P^g' (mod p); and 

the corresponding numbers for Q=0, Then the number of 
sets of solution of P=Q (mod p) is P^Q^. Hence we may 
deduce the number of sets of solutions of P=0 from the numbers for 
P=A and Q= —A. For P= a, we employ P=P, Q = g^x^ and get P°=P® 
■j-{p — l)P^^\ which determines the desired P^^K 

The theory is applied in detail to (1) for ?n = 2, A; arbitrary, and for 
m = 3, 4, A; = 2. Finally, the method of Libri^® is amplified. 

Th. Schonemann^® noted that, if is the sum of the A;th powers of the 
roots of an equation ... = 0 with integral coeflicients, that of x’" being 
unity, and if 5(p-i)f=n (mod p) for ^=1, 2,,.n, where p is a prime >n, 
the corresponding congruence . .=0 (mod p) has n real roots. 

A. L. Cauchy^® considered P(x)=0 (mod ilf), with M=AB..., where 
A, P,... are powers of distinct primes. If P(x)=0 (mod A) has a roots, 
F(x)=0 (mod B) has /3 roots, etc., the proposed congruence has a0... roots 
in all. For, if a, b,... are roots for the moduli A, P,... and X= a (mod A), 

(mod P),..., then JT is a root for modulus M. 
P. L. Tchebychef^® proved that, if p is a prime, a congruence /(x) = 0 

(mod p) of degree m<p has m roots if and only if the coefficients of the 
remainder obtained by dividing x^—x by/(x) are all divisible by p. 

Ch. Hermite^^ proved the theorem: If /x and p' are the numbers of 
sets of solutions of (t){x, y)=0 for the respective moduli M and which 
are relatively prime, the number of sets of solutions modulo MM' is pp'. 
If 0=0 is solvable for a prime modulus p, it will be solvable modulo p"^ if 

<^-0. ^=0, ^=0 (mod p) 

have no common sets of solutions. In this case, the number of sets of 
solutions modulo p” is p""V if tt is the number for modulus p. Similar 
results are said to hold for any number k of unknowns. If Af is a product 
of powers of the distinct primes Pi,•.p», and if tt,- is the number of sets 
of solutions of the congruence modulo Pi, then the number of sets for 
modulus M is 

TTi . . .TT,! 

iPi.. 
For x^+Aj/^=A (mod Af), we have 7ri==pi—(—A/pi), where (a/p) is 

1 according as a is a quadratic residue or non-residue of p. 
Julius Konig gave a theorem in a seminar at the Technische Hochschule 

in Budapest during the winter, 1881--2, which was published in the following 
paper and that by Rados.^^ 

i^jour. for Math., 19, 1839, 293. 
^•Comptes Rendua Paris, 25, 1847, 36; Oeuvres, (1), 10, 324. 
’“Theorie der Congruenzen, in Russian, 1849; in German, 1889, §21. 
«Joiir. ftir Math., 47, 1854, 351-7; Oeuvres, 1, 243-250. 
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G. Raussmtz^^ proved the theorem, due to Konig: Let 

(2) f(x) 

where the a’s are integers and ap^2 is not divisible by the prime p. Then 
/(x)=0 (mod p) has real roots if and only if the cyclic determinant 

Q/q di 0/2 • • • ^p—3 ^p—2 

Oi 0/2 0/3 • • • ®p—2 

Op^2(^0 • • • ®p-4 ®p-3 

is divisible by p. In order that it have at least k distinct real roots it is 
necessary that all p—A; rowed minors of D be divisible by p. If also not 
all p—A; —1 rowed minors are divisible by p, the congruence has exactly 
k distinct real roots. 

The theorem is applicable to any congruence not having the root zero, 
since we may then reduce the degree to p—2 by Fermat^s theorem. 

Gustav Rados^^ proved Konig’s theorem, using the fact that a system of 
p—1 linear homogeneous congruences modulo p in p—1 unknowns has at 
least k sets of solutions linearly independent modulo p if and only if the 
p — k rowed minors are divisible by p. 

L. Kronecker^® noted that, if p is a prime, the condition for the existence 
of exactly p—m —1 roots of (2), distinct from one another and from zero, 
is that the rank of the system 

(3') {Oi^k) (h A; = 0, 1,..., p~2) 

modulo p is exactly m, where Os+p-i^Os. The same is the condition for 
the existence of a (p—m—l)-fold manifold of sets of solutions of the system 
of linear congruences 

2 aH+f^k=0 (mod p) (/i = 0, 1,. .., p-2). 
k=0 

L. Kronecker^® gave a detailed proof of his preceding results, noted that 
the rank is m if not all principal m-rowed minors are divisible by p while 
all m+l rowed minors are, and added that Co+Cia:4-.. . 
(mod p) has exactly s roots if one and the same linear homogeneous 
congruence holds between every set of p—s (but not fewer) successive 
terms of the periodic series Cq, Ci,..., Cp_2, Cq, Ci,.... 

L. Gegenbauer^^ proved Kronecker^s version of Konig’s theorem. 
Gegenbauer^® noted that Kronecker’s theorems imply the corollary: 

23Math.. und Naturw. Berichte aus Ungam, 1, 1882-3, 266-75. 
2^Jour. fiir Math., 99, 1886, 258-60; Math. Termes Ertesito, Magyar Tudon Ak., Budapest, 1, 

1883, 296; 3, 1885, 178. 
“Jour, fiir Math., 99, 1886, 363, 366. 
“Vorlesungen iiber Zahlentheorie, 1, 1901, 389-415, including several additions by Hensel 

(pp. 393, 399, 402-3). 
^’Sitzungsber. Ak. Wiss. Wien (Math.), 95, II, 1887, 165-9, 610-2. 
’®/6wi., 98, Ila, 1889, p. 32, foot-note. Cf. Gegenbauer.“ 
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There exist exactly p — m—2 roots of (2), distinct from one another and 
from zero, if and only if there exist exactly p—m — 2 distinct linear homo¬ 
geneous functions 

p~2 

2 afchah ik = l,. . p—m—2) 
h=0 

which remain divisible by p after applying all cyclic permutations of the 
ah, so that 

A simple proof of this corollary is given. 
L. Gegenbauer^^ noted that the number of roots of f(x)^0 (mod k) is 

m, k\=Dik)=[1^] - . 
since D{k)=l or 0 according as/(x) is divisible by k or not. Let ki,...,ks 
be a series of increasing positive integers and glx) any function. In the 
first equation take k = ki, multiply by g(ki) and sum for Z = 1,.. .,8. Revers¬ 
ing the order of the summation indices Z, x in the new right-hand member, 
we get 

2 \f{x), k,\g{k) =*2 e, (?=2I»M?(m), 

where in G the summation index p takes those of the values /ci,.. .,ks which 
exceed x. Thus (r represents the sum G(f(x); ki,..x) of the values 
of when p ranges over those of the numbers ki,..., k^ which exceed x 
and are divisors of f{x). In particular, if g{x) = 1,6^ becomes the number xf/ 
of the k’s which exceed x and divide/(a;). 

Let f(x) =m=^nx. Then/(a;) = 0 (mod k) has (k,n) roots or no root 
according as m is or is not divisible by the g. c. d. (Zc, n) of k and n; let 
Ck, n; m) denote {k, n) or 0 in the respective cases. Then 

2 (/w, n; m) g(ki) = 2 G(m^nx; ki,.. ., k^; x), 
x-O 

Let G{a, h) denote the sum of the values of g(p) when p ranges over all 
the divisors >h of a; i^(a, h) the number of divisors >h of a. Taking 
ki=^l for Z = 1,. . -, 5, we deduce 

2 (Z, n] m)g(J) = 2 \G{m^nx, x) —G{m^nx, 8) [. 
/-I x-O 

For g{l) = 1, this reduces to Lerch’s^^° relation (16) in Ch. X. Again, 
a b 

]2 \G(m+nx, x~l) — G{m-\-nx, 64-a:)|- = 2 \G(m — np,p) — G(rn—np,p-\-a)\, 
a: —1 

^“Sitzungsberichte Ak. Wiss. Wien (Math.), 98, Ila, 1889, 28-36. 
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which for g{x) — 1 yields the first formula of Lerch. Next, if the are 
primes and g is a prime distinct from them, 

h-l 8 

X G{x^-q] Aji, ..kii x) = S n; q)g{ki). 
x-O i-1 

Finally, he treated fix) of de^ee d=A;,—2, whose constant term is prime to 
each ki and coefiicient of is divisible by the prime k^ if i<ks—k^. 

Gegenbauer^® noted that, if p—l—ju is the rank of the system (3) 
modulo p, the congruence, satisfied by the distinct roots 5*^0 of (2) and by 
these only, is given symbolically by 

I “•+* I - ■ •> p-2)- \oOi OCLq/ 

He obtained easily Kronecker^s^® form of the last congruence. He gave 
necessary and sufl&cient conditions, expressed in terms of a complicated 
determinant and its p—1 successive derivatives with respect to ap^2t in 
order that (2) and a second congruence of degree p—2 shall have p common 
roots 7^0, and found the congruence satisfied by these p common roots. 
He deduced determinantal expressions for the sum cTr of the rth powers of 
the roots of (2), and for the coefficients in terms of the <r^s. 

Michael Demeczky^^ would employ Euclid^s process to find the g. c. d. 
Gix) modulo p of (2) and x'^—x. If Gix)=0 (mod p) is of degree v it has 
V real roots and these give all the real roots of (2). Multiple roots are then 
treated. The case of any composite modulus is known to reduce to the 
case of p', p a prime. If (2) has X distinct real roots, not multiple roots, we 
can deriveX real roots of/(a;)=0 (mod p^). If pi,..., p„ are distinct primes 
and if /(x)^0 (mod p^) has X^ real roots, then/(a;) = 0 (mod pi.. .pj has 
Xi.. .Xn real roots, and is satisfied by every integer x if the former are. 
Various sets of necessary and sufficient conditions are found that /(a;)=0 
(mod m==Ilp^i) shall have m distinct real roots; one set is that/(a;)=0 
(mod Pi^O identically for each i, 

L. Gegenbauer^^ proved that a congruence modulo p, a prime, of degree 
p—2 in each of n variables has a set of solutions each ^0 if and only if p 
divides the determinant of a cyclic matrix 

’ ... 
A^^^ A^ ... 

A^ ’ A^ *'A® * 

where A^ is itself a cyclic matrix in -B®,. •etc., until we reach 
matrices in the coefficients of the congruence. An upper limit is found for 

2°Sitzungsber. Ak. Wiss. Wien (Math.), 98, Ila, 1889, 652-72. 
»iMath. u. Naturw. Berichte aus Ungarn, 8, 1889-90, 50-59. Math, Term6a ErtesitS, 7, 

1889, 131-8. 
®2Sitzungsber. Ak. Wiss. Wien (Math.), 99, Ila, 1890, 799-813. 
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the number of sets of solutions each not divisible by p. He proved that 

t n 

S ajXj ^ + S a,+jX,+y+6=0 (mod p) 

has sets of solutions. Of these, 

have each where r is the number of the 2* integers 

b ^ (l\ ^ (I2 ^ Uj 

which are divisible by p. The number of sets of solutions of 

a n 

2 ajXj ^ + 2 a,^jX,+j+h^0 (mod p) 
y-i i-i 

is expressed in terms of the functions used for quadratic congruences. 
*E. Snopek®^ gave a generalization of Konig’s criterion for the solva¬ 

bility of a congruence modulo p. 
L. Gegenbauer^ proved that if the p congruences 

z„yX^~^-^=0 (mod p) (X=0, 1,..p-1) 
Jb-O 

have in common at least p —p distinct roots not divisible by p then all 
p-rowed determinants in the matrix (Zkx) are divisible by p. The converse 
is proved when a certain condition holds. By specialization, Konig's 
theorem is obtained. 

Gegenbauer^® proved that, if r is less than the prime p and if Zq, ..., Zr-i 
are incongruent and not divisible by p, the system of linear congruences 

(4) ''2 (mod p) (p = 0, 1,.. ., p-2) 
Jfc»0 

has all its sets of solutions of the form 

(5) yk= 2 OrZx* (fc = 0,1,..p-2) 
X-0 

or not, according as the matrix (6it+p), k=rj r+l,..., p — 2; p = 0,..., p—2, 
has a p—r—1 rowed determinant prime to p or not. Next, if 

p-2 

(6) 2 hkX^^O (mod p) 
Jfc«0 

has exactly r distinct roots Zq,. .Zr^i each not divisible by p, every sys¬ 
tem of solutions of (4) is given by (5), and conversely. By combining this 
theorem of Kronecker's with the former, we obtain Kronecker's form of 
Konig’s theorem. 

“Prace Mat. Fiz., Warsaw, 4, 1893, 63-70 (in Polish). 
MSitzungsber. Ak. Wise. Wien (Math.), 102, Ila, 1893, 549-64. 
“Monatshefte Math. Phys., 5, 1894, 230-2. Cf. Gegenbauer.** 
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"oved that, if p is a prime, there are exactly 

. + (-!)■(*) 

0 (mod p) not having as roots h given distinct num- 

Hn, k+l)=^in, k). 

-1)*’, For n = k, k) is the number \l/{n) of 
*th no root. The number with exactly i roots is 

distinct matrices (3) of rank i such 
di,... not divisible by p. 

}d a function of a polynomial f(x) such 
e coefficients of j{x) are increased by integral 

i= 1,..p*, denote the polynomials 
act modulo p and have unity as the coefficient 

y-1 i y-i 

+ s’’2 $](a:-o,)(a;-ai-)/„-'2(»)} - • • •, 
t, t' 

. takes those values 1, 2,..p" for which(mod p) does 
v'e as a root one of the given incongruent numbers ai,..a,; while, 

.xxe outer sums on the right, i, i',... range over the combinations of 
1,..., s without repetitions. 

Zsigmondy^^ had earlier given the preceding formula for the case in 
which tti,..a, denote 0, 1,. . p —1. Then taking <!>(/) = 1, we get the 
number of congruences of degree n with no root (Zsigmondy^®). Taking 
^(j) we see that the sum of the congruences of degree n with no root is 
=0 (mod p), aside from specified exceptions. Taking <J>(/)=a)^, where co 
is a pth root of unity, and n'^p, we see that the system fn\^) takes each 
of the values 1,..., p — 1 (mod p) equally often. 

Zsigmondy^^ proved his^®'^*^ earlier formulas, obtained for an integral 
value of X the number of complete sets of residues modulo p into which 
fall the values of the/^(x) not having prescribed roots, and investigated 
the system of the least positive residues modulo p of the left members 
of all congruences of degree n having no root. In particular, he found how 
often the system contains each residue, or non-residue, of a qth power. 
He investigated (pp. 19-36) the number of polynomials in x which take k 
prescribed residues modulo p for k given values of x. 

sBSitzungsber. Ak. Wiss, Wien (Math.), 103, Ila, 1894, 135-144. 
“’Monatshefte Math. Phys., 7, 1890, 192-3. 
>*Jahresbericht d. Deutschen Math. Verein., 4, 1894-5, 109-111. 
®®Monat8hefte Math. Phys., 8, 1897, 1-42. 
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L. Gegenbauei^® proved that (2) has as a root a quadratic residue or 
non-residue of the prime p if and only if the respective determinant 

P=| I, iV=l a^+i-o^+,-+, I (i, ^t = 0,..tt-I) 

be divisible by p, where 7r= (p —1)/2. From this it is proved that (2) has 
exactly tt—r distinct quadratic residues (or non-residues) of p as roots if 
and only if P (or N) and its tt—1—r successive derivatives with respect to 
a,_i+np-2 have the factor p, while the derivative of order tt—r is prime 
to p. These residues satisfy the congruence 

{"'a(ai+a,+0“a(ao+a,)} 

where K = P or N, while the vth power of the sign of differentiation repre¬ 
sents the vth derivative. A second set of conditions is obtained. Con¬ 
gruence (2) has exactly tt —1—x distinct quadratic residues as roots if and 
only if the determinants of type P with now i = 0,. .., x, x-fl and p = 0,..., 
K, T, are divisible by p for r = x+l, ■ • tt—I; while p is not a factor of the 
determinant of type P with now i, /x = 0,..x. These residues are the 
roots of 

•w 

S 1 a„+i+a;,+i+, 1 (mod p), 
T<B»K 

where i = 0,. .x, and p = 0,. . x —1, r in the determinants. For non¬ 
residues We have only to use the differences of a’s in place of sums. 

S. O. Satunovskij^^ noted that, for a prime modulus p, a congruence of 
degree n (n<p) has n distinct roots if and only if its discriminant is not 
divisible by p and (mod p) for g = n-1, where Sk is the 
sum of the kth. powers of the n roots. 

A. Hurwitz^^ gave an expression for the number N of real roots of 

/(x) = ao+aiX-f . . .+arX''=0 (mod p), 

where p is a prime. By Fermat’s theorem, 

S (modp). 

Letf{xy~'^ = Co+CiX+ .... Then N is determined by 

A’+l=Co+Cp-i+C2(p-i)+. •. (modp). 

Let/(a;i, X2) be the homogeneous form of f(x). Let A be the number of 
sets of solutions of/(a;i, X2) = 0 (mod p), regarding (xi, X2) and (x/, X2') as 
the same solution if Xi'=pxi, X2^px2 (mod p) for an integer p. Then 

= (mod p), 
ao*. . .a,.! 

*°Sitzungsber. Ak. Wiss. Wien (Math.), 110, Ila, 1901, 140-7. 
^^Kazanl Izv. fiz. mat. Obsc. (Math. Soc. Kaaan), (2), 12, 1902, No. 3, 33-49. Zap. mat. otd. 

Obsc., 20, 1902, I-II. 
*2Archiv Math. Phys., (3), 5, 1903, 17-27. 
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where the summation extends over the sets of solutions S 0 of 

ao+cii+... —1, ai+2a2+ ... +ray=0 (mod p —1). 

The right member is an invariant modulo p of f(xi, with respect to all 
linear homogeneous transformations on Xi, x^ with integral coefficients 
whose determinant is not divisible by p. The final sum in the expression 
for A — 1 is congruent to iV+l. If r=2, p>2, the invariant is congruent 
to the power (p--l)/2 of the discriminant 4aoa2 of/. 

*E. Stephan^* investigated the number of roots of linear congruences 
and systems of congruences. 

H. Kiihne^ considered /(a;) ... +a« with no multiple irreducible 
factor and with a„ not a multiple of the prime p. For n< m, let ^... 
+&„ have arbitrary coefficients. The resultant jK(/, g) is zero modulo p 
if and only if / and g have a common factor modulo p. Thus the number 
of all g^’s of degree n which have no common factor with/modulo“p is p„, 
where 

(/)}" (mod p”), w=p“-*(p-l), 

the summation extending over the p’^ possible p^s. He expressed p„ as 
a sum of binomial coefficients. For any two binary forms <l), ^ of degrees 
m, n, it is shown that 

* 

is invariant modulo p” under linear transformations with integral coeffi¬ 
cients of determinant prime to p; Ji is Hurwitz’s^^ invariant. » 

M. Cipolla^^ used the method of Hurwitz^^ to find the sum of the Aith 
powers of the roots of a congruence, and extended the method to show that 
the number of common roots of /(a:)=0, g{x)^0 (mod p), of degrees r, s, is 
congruent to —'ZCjKi, where j take the values for which 

0<'i^s(p —1), 0<i^r(p —1), i+j=0 (mod p), 

the Cq being as with Hurwitz, and similarly 

g{xy^^ = KQ+KiX+- 

The number of roots common to n congruences is given by a sum. 
L. E. Dickson"^® gave a two-fold generalization of Hurwitz formula for 

the number of integral roots of /(x) = 0 (mod p). The first generalization 
is to the residue modulo p of the number of roots which are rational in a 
root of an irreducible congruence of a given degree. A further generaliza¬ 
tion is obtained by taking the coefficients a* of f{x) to be elements in the 
(Jalois field of order p'^ (cf. Galois®^ etc.). Then let N be the number of 
roofs of f{x) =0 which belong to the Galois field of order P = p"’”. Then 

^^Jahresber. Staatsoberrealach. Steyer, 34, 1903-4, 3-40. 
♦^Archiv Math. Phys., (3), 6, 1904, 174-6. 
*®Periodico di Mat., 22, 1^7, 36-4i. 

Amer. Math. Soc., 14, 1907-8, 313. 
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N=N* (mod p), where iV’*+l is derived from either of Hurwitz’s two sums 
for iV+1 by replacing p by P. The same replacement in Hurwitz^s expres¬ 
sion for A — 1 leads to the invariant A*—1, where A* is congruent modulo p 
to the number of distinct sets of solutions in the Galois field of order p^”* 
of the equationX2) =0. 

G. Rados^’^ considered the sets of solutions of 

f(x, p) = S (mod p) 
/k«s0 

for a prime p. Let Aj, denote the matrix of JD, in (3), with a,- replaced 
by Let C denote the determinant of order (p—l)^ obtained from D 
by replacing by matrix A*. Then/=0 has a solution other than x=y=0 
if and only if (7 is divisible by p; it has exactly r sets of solutions other than 

if and only if C is of rank (p—1)^—r. 
To obtain theorems including the possible solution a;=2/=0, use 

<^(x, p) = S (4*^ (mod p), 
kmO 

/ Oo ax . . . Gp_2 Op- -A 
ax 02 Gp~2 Gp_i+ao 0 

a = CL2 03 . . . Gp-.i-f-Go ^X 0 

\ Qp-l+Go Gl . .. a<p^2 Gp-_2 0 ' / 
and a* derived from a by replacing by Let y be the determinant 
derived from |a| by replacing a* by matrix and 0 by a matrix whose p^ 
elements are zeros. Then 0=0 has a set of real solutions if and only if 
7=0 (mod p); it has r sets of solutions if and only if 7 is of rank p^—r. 

*P. B. Schwacha^® discussed the number of roots of congruences. 
*G. Rados*® treated higher congruences. 

Theoey of Highee Congeuences, Galois Imaginaribs. 

C. F. Gauss,®® in a posthumous paper, remarked that '^the solution of 
congruences is only a part of a much higher investigation, viz., that of the 
factorization of functions modulo p. Even when J(a;)=0 has no real root, 
^ may be a product of factors of degrees ^2, each of which could be said 
to have imaginary roots. If use had been made of a similar freedom which 
younger mathematicians have permitted themselves, and such imaginary 
roots had been introduced, the following investigation could be greatly 
condensed. As the later work of Serret^^ shows, such imaginaries can be 

*^Ami. Sc. ficole Normale Sup., (3), 27,1910, 217-231. Math. 68 Termds firtesitd (Report of 
Hungarian Ac.), Budapest, 27, 1909, 265-272. 

**Ueber die Existenz und Anzahl der Wurzeln der Kongnienz Xc^*=0 (mod m), Progr. Wilher- 
ing, 1911, 30 pp. 

‘•Math. 6s. Term6s Ertesitd, Budapest, 29, 1911, 810-826. 
••Werke, 2, 1863, 212-240. Masers Gernuin translAtion of Gauss’ Disq. Arith., etc., 1889, 

604-629. 
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introduced in a way free from any logical objections. Avoiding their use, 
Gauss began his investigation by showing that two polynomials in xwith 
integral coefficients have a greatest common divisor modulo p, which can 
be found by Euclid’s process. It is understood throughout that p is a 
prime (cf. Maser, p. 627). Hence if A and B are relatively prime poly¬ 
nomials modulo p, there exist two polynomials P and Q such that 

PA+QB^1 (mod p). 

Thus if A has no factor in common with P or C modulo p, we find by mul¬ 
tiplying the preceding congruence by C that A has no factor in common 
with the product BC modulo p. If a polynomial is divisible by A, B, C,.. 
no two of which have a common factor modulo p, it is divisible by their 
product. 

A polynomial is called prime modulo p if it has no factor of lower degree 
modulo p. Any polynomial is either prime or is expressible in a single 
way as a product of prime polynomials modulo p. The number of distinct 
polynomials ... modulo p is evidently p^. Let (n) of these be 
prime functions. Then p’'=Sd(d), where d ranges over all the divisors of 
n (only a fragment of the proof is preserved). It is said to follow easily 
from this relation that, if n is a product of powers of the distinct primes 
0, 6,, then 

n(r2,)=p"-2p”/“+2p”''“'- .... 

The rth powers of the roots of an equation P = 0 with integral coefficients 
are the roots of an equation of the same degree with integral coeffi¬ 
cients. If r is a prime, P^=P (mod r). 

A prime function P of degree m, other than x itself, divides a;"—1 for 
some value of v<p'^. If v is the least such integer, u is a. divisor of p”*-l. 
Hence P divides 

(1) 

The latter is congruent modulo p to the product of the prime functions, 
other than x, whose degrees are the various divisors of m. 

If P = ... is a prime function modulo p, the re¬ 
mainders by dividing the sum, the sum of the products by twos, etc., of 

•A/^ *1/ y *1/ y * % n ^ 

by P are congruent to A, B, etc., respectively. 
If V is not divisible by p and if m is the least positive integer for which 

p"”^! (mod v), each prime function dividing x'’ — l modulo p is a divisor of 
(l3 and its degree is therefore a divisor of m. Let 5 be a divisor of m, and 
6', h"}... the divisors <5 of 6; let p be the g. c. d. of v and p^—1, p' the 
g. c. d. of V and p*' —1,. . . and set X'=p/p', X"=p/p",.... Then the num¬ 
ber of prime divisors modulo p of degree 5 of a:" — 1 is N/b, if N is the num¬ 
ber of integers <p which are divisible by no one of X', X",.... A method 
of finding all prime functions dividing a:" — 1 is based on periods of powers 
of X with exponents < v and prime to v (pp. 620-2). 
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If X has been expressed as a product of relatively prime factors modulo 
p, we can express X as a product of a like number of factors mod p” con¬ 
gruent to the former factors modulo p. There is a fragment on the case 
of multiple factors. 

C. G. J. Jacobi®^ noted that, if g is a prime 6n—1, (mod q) has 

q—l imaginary roots a4-6V—3, wherea -1-36^=1 (modg), besides the roots 
1. 
E. Galois®^ employed imaginary roots of any irreducible congruence 

F{x)=Q (mod p), where p is a prime. Let i be one imaginary root of this 
congruence of degree p. Let a be one of the p"—! expressions 

a-fait+a2^^+. • 

in which the a’s are integers < p, not all zero. Since each power of a can 
be expressed as such a polynomial, we have a” = 1 for some positive integer 
n. Let n be a minimum. Then 1, a,..., are distinct. Multiply them 
by a new polynomial 13 in we get n products distinct from each other and 
from the preceding powers of a. If 2n<p’' —1, we use a new multipher, 
etc. Hence n divides p"—!, and 

(2) = 

[This is known as Galoises generalization of Fermat’s theorem.] It follows 
that there exist primitive roots a such that a® 7^1 if e<p’'—1. Any primi¬ 
tive root satisfies a congruence of degree v irreducible modulo p. 

Every irreducible function F{x) of degree v divides a;*’*'—a; modulo p. 

Since ]F(x)f ^''=F(a;P”) modulo p, the roots of F{x)^0 are 

All the roots of a;^*'=x are polynomials in a certain root if which satisfies 
an irreducible congruence of degree v. To find all irreducible congruences 

of degree v modulo p, delete from a;*’’'—a; all factors which it has in common 

with a;, p<v. The resulting congruence is the product of the desired 
ones; the factors may be obtained by the method of Gauss, since each of 
their roots is expressible in terms of a single root. In practice, we find by 
trial one irreducible congruence of degree Vf and then a primitive root of 
(2); this is done for p = 7, v = S. 

Any congruence of degree n has n real or imaginary roots. To find 
them, we may assume that there is no multiple root. The integral roots 
are found from the g. c. d. of F{x) and —1. The imaginary roots of 
the second degree are found from the g. c. d. of F(a;) and —1; etc. 

V. A. Lebesgue®^ noted that, if p is a prime, the roots of all quadratic 

«Jour. fur Math., 2, 1827, 67; Werke, 6, 235. 
“^Sur la th^orie des nombree. Bulletin des Sciences Math^matiques de M. F^russac, 13,1830,428. 

Reprinted in Jour, de Math^matiques, 11, 1846, 381; Oeuvres Math. d'Evariste Galois, 
Paris, 1897, 15-23; Abhand. Alg. Gleich. Abel u. Galois, Maser, 1889, 100. 

“Jour, de Math^matiques, 4, 1839, 9-12, 
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congruences modulo p are of the form a+hy/n^ where n is a fixed quadratic 
non-residue of p, while a, h are integers. But the cube root of a non-cubic 
residue is not reducible to this form a+hy/n. The p+1 sets of integral 
solutions of y^—n^=a (mod p) yield the p+1 real or imaginary roots 

x=y+zVn of (mod p). The latter congruence has primitive roots 
if a = l. 

Th. Schonemann®^ built a theory of congruences without the use of 
Euclid’s g. c. d. process. He began with a proof by induction that if a 
function is irreducible modulo p and divides a product AB modulo p, it 
divides A or J5. Much use is made of the concept norm Nf^ of f{x) with 
respect to i. e., the product fi^i).. .fWm), where are the 
roots of <l>(x) = 0; the norm is thus essentially the resultant of / and <j>» 
The norm of an irreducible function with respect to a function of lower 
degree is shown by induction to be not divisible by p. Hence if / is irre¬ 
ducible and Nf^=0 (mod p), then / is a divisor of 0 modulo p. A long dis¬ 
cussion shows that if ai,..., a„ are the roots of an algebraic equation 
f{x) =x^+... =0 and if/(a;) is irreducible modulo p, then 
is a power of an irreducible function modulo p. 

If a is a root of fix) and fix) is irreducible modulo p, and if <l>ia) 
=\l/ia)+pRia)f we write (mod p, a); then <t>ix)—ypix) is divisible 
hy fix) modulo p. If the product of two functions of a is =0 (mod p, a), 
one of the functions is =0. 

If fix) =x"'+ ... is irreducible modulo p and if /(a) =0, then 

fix)^ix-a)ix-a^)...(x—1 (mod p, a), 

—1 = 11 \x—<l>iia) \ (mod p, a), 

where cpi is a polynomial of degree n—1 in a with coefficients chosen from 
0, 1,..., p — 1, such that not all are zero. There exist (t>ip^—l) primitive 
roots moduhs p, a, i. e., functions of a belonging to the exponent p”—1. 

Let Fix) be irreducible modulis p, a, i. e., have no divisor of degree ^1 
modulis p, a. Let F(j8) =0, algebraically. T’wo functions of ^ with coeffi¬ 
cients involving a are called congruent modulis p, a, ^3 if their difference is 
the product of p by a polynomial in a, /3. It is proved that 

(mod p, a,P). 

If v<ny n being the degree of fix), and if the function whose roots are 
the (p”—l)th powers of the roots of fix) is ^0 (mod p) for a; = l, then/(x) 
is irreducible modulo p. Hence if m is a divisor of p — 1 and if ^ is a primitive 
root of p, and if k is prime to m, then a;’”—is irreducible modulo p. 

If v<m, m being the degree of Fix), and if the function whose roots are 
the (p*^—l)th powers of the roots of Fix) is ^0 (mod p, a) for a; = l, then 

“^Gmndzlige einer allgemeinen Theorie der hdhem Congnienzen, deren Modul eine reelle 
Primzahl iat, Progr., Brandenburg, 1844. Same in Jour, ftir Math., 31, 1846, 269-325. 
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F{x) is irreducible modulis p, a. Hence if m is a divisor of p”—1, and if 
g{a) is a primitive root of 

(mod p, a), 

and if is prime to m, then is irreducible modulis p, a. 
If F{x^ a) is irreducible modulis p, a, and if at least one coefficient satisfies 

1 (mod p, a) 

if and only if is a multiple of n, then 
n-l 

yp{x)= n F{x^ a^) (mod p, a) 
i-O 

has integral coefficients and is irreducible modulo p. 
If G{x) is of degree mn and is irreducible modulo p, and G{a) =0, alge¬ 

braically, and if r(a) is a primitive root of (mod p, a), then 

x(a:)=n (a;-P), t=T% 
y-0 p*« —1 

has integral coefficients and is irreducible modulo p. 
The last two theorems enable us to prove the existence of irreducible 

congruences modulo p of any degree. First, 

is the product of the irreducible functions of degree p” modulo p. To prove 
the existence of an irreducible function of degree Zp^, where I is any integer 
prime to p, assume that there exists an irreducible function of each degree 
<Zp”, and hence for the degree a = .dp”, where A=^{1)<1. Let a be a 
root of the latter, and r a primitive root of 1 (mod p, a), where P=p®. 
Since Z divides P—1 by EuleFs generalization of Fermat^s theorem, x^—r 
is irreducible modulis p, a. Hence by the theorem preceding the last, 

is irreducible modulo p. Since its degree is ZpM, the last 
theorem gives an irreducible congruence of degree Zp^ 

Every irreducible factor modulo p of 1 is of degree a divisor of n. 
Conversely, every irreducible function of degree a divisor of n is a factor 
of that binomial. If n is a prime, the number of irreducible functions 

modulo p of degree n*' is (p”"—p”’''’^)/7^^ If n is a product of powers of 
distinct primes A, P,..., say four, the number of irreducible congruences 
of degree n modulo p is 

_ _pBCD I I I _p^_ _P^j- 

where p = Replacing p by p”, we get the number of irreducible 
congruences of degree n modulis p, a, where a is a root of an irreducible 
congruence of degree m. 

If n is a prime and p belongs to the exponent e modulo n, / = (x” — 1) / (a: — 1) 
is congruent modulo p to the product of (n—l)/e irreducible functions of 
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degree e modulo p. Hence if p is a primitive root of n, / is irreducible 
modulo p, and therefore with respect to each of the infinitude of prunes 
p+7n. Thus / is algebraically irreducible. 

Schonemann®® considered congruences modulo If g{x) is not divis¬ 
ible by p, and/=a:”+ ... is irreducible modulo p"” and if A(x) is not divisible 
by / modulo p, then fg=AB (mod implies that B{x) is divisible by/ 
modulo p"”. If/=/i, g—9i (mod p) and the leading coefficients of the four 
functions are unity, while / and g have no common factor modulo p, then 
/^=/i9'i(niod p^) implies /=/i, g=gi (mod p"^). He proved the final 
theorem of Gauss.Next, {x-ayA-pF{x) is irreducible modulo p^ if 
and only if F{a)f^0 (mod p); an example is 

^ = (x-iy-^+pF(x), F(l) = l. 
x—1 

Henceforth, let/(a;) be irreducible modulo p and of degree n. If /(a;)”+pF(x) 
is reducible modulo p^, then (p. 101) f{x) is a factor of F(x) modulo p. If 
/(a) = 0 and ^ (a) 0 (mod p, a), then ^^=1 (mod p”*, a), where e = p^~ ^ (p” -1). 
If the roots of G{z) are the (p’”“^)th powers of the roots of f{x), then 

(mod p^ a). 

has the leading coefficient unity, we can 
divisible by F{x) modulo M, 
ess of the factorization of a function/(x) 
cible factors modulo p, a prime. An irre- 

_. only when it divides one factor modulo p. 
.. - - .unctions divides their g. c. d. modulo p. 

Cauchy®^ employed an indeterminate quantity or symbol i and defined 
f(i) to be not the value of the polynomial f(x) for x = i, but to be a-\-hi if 
a-i-hx is the remainder obtained by dividing/(x) by x^+l. In particular, 
if/(x) is x^+1 itself, we have f^+l = 0. 

Similarly, if co(x) = 0 is an irreducible congruence modulo p, a prime, 
let i denote a symbolic root. Then </)(f)i/'({)=0 implies either </)(f) = 0 or 

~ 0 (mod p). At most n integral functions of i satisfy/(x, f) = 0 (mod p), 
if the degree of / in x is n<p. If our co(x) divides x'‘ —1, but not x’”—1, 
m<n, modulo p, where n is not a divisor of p —1, call i a symbolic primi¬ 
tive root of x"=l (mod p). Then x'‘ —l=(x —l)(x —f). . .(x—If 
s is a primitive root of n and if n—l= gh, and p°^ 1 (mod n), 

;=0 

equals a function of x with integral coefficients, while every factor of x” —1 
modulo p with integral coefficients equals such a product. 

“Jour, fur Math., 32, 1846, 93-105. 
“Comptes Rendus Paris, 24, 1847, 1117; Oeuvres, (1). 10, 308-12. 
“^Comptes Rendus Paris, 24, 1847, 1120; Oeuvres, (1), 10, 312-23. 
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G. Eisenstein®® stated that if/(a;)=0 is irreducible modulo p, and a is a 
root of the equation/(x) = 0 of degree n, and if Gq, ai,... are any integers, 

K=Oo+aia+ . .. 

is congruent modulis p, a to one and but one expression 

B = boP+l:^+h2^+ . . . 

where the are integers and jS is a suitably chosen function of a. Hence 
the p" numbers B form a complete set of residues modulis p, a. If co is a 
primitive nth root of unity, and if 

<^(X) = 

the product 0(X)0(X')... is independent of a if X+X'+ ... is divisible by n. 
Th. Schonemann®® proved the last statement in case n is not divisible 

by p. To make K=B, raise it to the powers p, p^,.. ., p”“^ and reduce 

by (mod p, a). This system of n congruences determines P uniquely 
if the cyclic determinant of order n with the elements bi is not divisible by 
p; in the contrary case there may not exist a The statement that the 
expressions B form p"" distinct residues is false if ^3 is a root of a congruence 
of degree <n irreducible modulo p; it is true if ^3 is a root of such a con¬ 
gruence of degree n and if 

(mod p, a). 

J. A. Serret^® made use of the g. c. d. process to prove that if an irre¬ 
ducible function F(x) divides a product modulo p, a prime, it divides one 
factor modulo p. Then, following Galois, he introduced an imaginary 
quantity i verifying the congruence E(t) = 0 (mod p) of degree i'>l, but 
gave no formal justification of their use, such as he gave in his later writings. 
However, he recognized the interpretation that may be given to results 
obtained from their use. For example, after proving that any polynomial 

a(i) with integral coefficients is a root of (mod p), he noted that this 
result, for the case a = i, may be translated into the following theorem, free 
from the consideration of imaginaries: If F(x) is of degree p, has integral 
coefficients, and is irreducible modulo p, there exist polynomials f{x) and 
x{x) with integral coefficients such that 

—X =/(x) F (x) + px (^) • 

The existence of an irreducible congruence of any given degree and any 
prime modulus is called the chief theorem of the subject. After remarking 
that Galois had given no satisfactory proof, Serret gave a simple and ingeni¬ 
ous argument; but as he made use of imaginary roots of congruences without 
giving an adequate basis to their theory, the proof is not conclusive. 

«8Jour. fiir Math., 39, 1850, 182. 
*®Joiir. fiir Math., 40, 1850, 185-7. 

Gouts d’alg^bre 8up6rieure, ed. 2, Paris, 1854, 343-37U. 
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R. Dedekind’^^ developed the subject of higher congruences by the 
methods of elementary number theory without the use of algebraic prin¬ 
ciples. As by Gauss®® he developed the theory of the g. c. d. of functions 
modulo p, a prime, and their unique factorization into prime (or irreducible) 
functions, apart from integral factors. Two functions A and B are called 
congruent modulis p, ikf, if A—jB is divisible by the function M modulo p. 
We may add or multiply such congruences. If the g. c. d. of A and B is 
of degree d, Ay^B (mod p, M) has p*^ incongruent roots y(x) modulis p, M. 

Let (l>(M) denote the number of functions which are prime to M modulo 
p and are incongruent modulis p, ilf. Let p be the degree of M. A pri¬ 
mary function of degree a is one in which the coefficient of is = 1 (mod p). 
If D ranges over the incongruent primary divisors of M, then X(l>{D)=p*', 
If M and N are relatively prime modulo p, then (l>{MN) =</)(ikr)0(iV’). If 
A is a prime function of degree a, <^(A“) =p“°(l — l/p“). If M is a product 
qf powers of incongruent primary prime functions a,..., p, 

♦ (Jfl-I.'(l-i).. (l-i> 

If F is prime to M modulo p, 1 (mod p, M), which is the generaliza¬ 
tion of Fermat^s theorem. Hence if A is prime to M, the above linear con¬ 
gruence has the solution p=jBA’’~h 

If P is a prime function of degree x, a congruence of degree n modulis p, 
P has at most n incongruent roots. Also 

(3) y^'"-^-l=Tl{y-F) (mod p, P), 

identically in p, where F ranges over a complete set of functions incongruent 
modulis p, P and not divisible by P. In particular, l+nP=0 (mod p, P), 
the generalization of Wilson's theorem. 

There are <^(p’’~“l) primitive roots modulis p, P. Hence we may em¬ 
ploy indices in the usual manner, and obtain the condition for solutions 
of |/^=A (mod p, P), where A is not divisible by P. In particular, A 
is a quadratic residue or non-residue of P according as 

1 or —1 (mod p, P). 

His extension of the quadratic reciprocity law will be cited under that topic. 
A function A belongs to the exponent p with respect to the prime func¬ 

tion P of degree x if p is the least positive integer for which A A (mod 
p, P). Evidently p is a divisor of x. Let N{p) be the number of incon- 
griient functions which belong to an exponent p which divides x. Then 
jf = XN(d), where d ranges over the divisors of p. By the principle of 

inversion (Ch. XIX), 

iV(p) =p"-Sp^/"+Sp^/“^-2p^/“'^+ .. ., 

where a, h,. . . are the distinct primes dividing p. Since the quotient of 
this suni by its last term is not divisible by p, we have A(p)>0. 

^Uour. far Math., 54, 1857, 1-26. 
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The product of the incongruent primary prime functions modulo p 
whose degree divides w is congruent modulo p to 

Then, if ^(p) is the number of primary prime functions of any degree p, 
S#(d) =p*’, where the summation extends over all divisors d of tt. A com¬ 
parison of this with XN(d)==p^ above shows that N(j>)=p\l/(p). Another 
proof is based on the fact that 

is congruent modulis p, P to a polynomial in y with integral coefficients 
which is a prime function. Moreover, if in (3) we associate the linear 
factors in which the P’s belong to the same exponent, we obtain a factor 
of the left member which is irreducible modulo p. 

The product of the incongruent primary prime functions of degree m 
(m being divisible by no primes other than a, 6,...) is congruent modulo p 
to 

\m\-Il\m/ah\... 

Jl\m/a\‘Il\m/ahc\... 

H. J. S. Smith^^ gave an exposition of the theory. 
E. Mathieu,^® in his famous paper on multiply transitive groups, gave 

without proof the factorization (p. 301; for m = l, p. 275) 

• • . + (hzy”+hz+a}, 
a 

where a ranges over the roots of a^*"=a, while and (p. 302; for 
?n = l, p. 280) 

h(z^""-z) -/3), 
0 

where ranges over the roots of 

If 12 is a root of a congruence of degree n whose coefficients are roots of 

7?^ =z and whose first member is prime to z, then (p. 303) all the roots 

of are given by Ao+4iS2+.. .+A„_il2”"\ where the A’s satisfy 

J. A. Serret,^^ in contrast to his^® earlier exposition, here avoided at 
the outset the use of Galois imaginaries. An irreducible function of degree 

V modulo p divides x^—x modulo p if and only if v divides /x. A simple 

^British Aasoc. Reports, 1860, 120, §§69-71; Coll. M. Papers, 1, 149-165. 
’•Jour, de Math^matiques, (2), 6, 1861, 241-323. 

Ac. Sc. de Tlnstitut de France, 35, 1866, 617-688. Same in Cours d’algSbre sup6- 
rieure, ed. 4, vol. 2, 1879, 122-189; ed. 5, 1885. 
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proof is given for Dedekind^s’^ final theorem on the product of all irreducible 
functions of degree w modulo p. 

A function Fix) of degree v, irreducible modulo p, is said to belong to the 
exponent ti if n is the least positive integer such that is divisible by 
F{x) modulo p. Then n is a divisor of p--1, and a proper divisor of it, 
since it does not divide p^— 1 for p< v. Let n be a product of powers of the 
distinct prunes a, 6,.... Then the product of all functions of degree 
irreducible modulo p, which belong to an exponent n which is a proper 
divisor of p*'—1, is congruent modulo p to 

and their number is therefore 4>in)/v, 
By a skillful analysis, Serret obtained theorems of practical importance 

for the determination of irreducible congruences of given degrees. If we 
know the N irreducible functions of degree p modulo p, which belong to 
the exponent ^ = (p"*- l)/d, then if we replace x by where X is prime to d 
and has no prime factor different from those which divide p^—1, we obtain 
the N irreducible functions of degree Xp which belong to the exponent X^, 
exception being made of the case when p is of the form 4/i — 1, p is odd, and 
X is divisible by 4. In this exceptional case, we may set p = 2"^—1, ^^2, 
t odd; X=2^'s, i^2, s odd. Let k be the least of i, Then if we know 
the i\r/2*’'"^ irreducible functions of odd degree p modulo p which belong to 
the exponent I and if we replace x by x^, where X is of the form indicated, 
is prime to d and contains only primes dividing p'^—1, we obtain A/2*'"^ 
functions of degree Xp each decomposable into 2*""^ irreducible factors, 
thus giving N irreducible functions of degree Xp/2*""^ which belong to the 
exponent \l. Apply these theorems to x—g% which belongs to the exponent 
(p —l)/d if ^ is a primitive root of p and if d is the g. c. d. of e and p~l; we 
see that x^—g"" is irreducible unless the exceptional case arises, and is then 
a product of 2^"^ irreducible functions. In that case, irreducible trinomials 
of degree X are found by decomposing x''—g% where v = 

If a is not divisible by p, x —a is irreducible modulo p. 
There is a development of Dedekind’s theory of functions modulis p and 

Fix), where Fix) is irreducible modulo p. Finally, that theory is considered 
from the point of view of Galois. Just as in the theory of congruences of 
integers modulo p we treat all multiples of p as if they were zero, so in 
congruences in the unknown X, 

GiX, x)=0 (mod p. Fix)), 

we operate as if all multiples of Fix) vanish. There is here an indeter¬ 
minate X which we can make use of to cause the multiples of F{x) to vanish 
if we agree that this indeterminate x is an imaginary root i of the irreducible 
congruence F(x) = 0 (mod p). From the theorems of the theory of func¬ 
tions modulis p. Fix), we may read off briefer theorems involving i (cf. 
Galois®2). 
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Harald Schiitz^® considered a congruence 

Z”+aiX"“^+ ... +a„=0 (mod M{x)) 

in which the a^s and the coefficients of M are any complex integers 
(cf. Cauchy,®^ for real coefficients). Let ai,..be the roots of the 
corresponding algebraic equation. Let M=0 have the distinct roots 
jLti,..fJLm- Then the congruence has distinct roots. For, let X—ap 
=fi{x) have the factor x—jHij for i=1,..., w. Taking ^>1, we have 

f i (^) 1 (^) "f" 

Set X=fjLi. Then the right member must vanish. Using these and fi(jii) = 0, 
we have m independent linear relations for the coefficients of fi(x). 

C. Jordan^® followed Galois in employing from the outset a symbol for 
an imaginary root of an irreducible congruence, proved the theorems of 
Galois, and that, if j, ii,... are roots of irreducible congruences of degrees 

.. where p, g,... are distinct primes, their product jji... is a root 
of an irreducible congruence of degree p V * • • • 

A. E. Pellef^^ stated that, if i is a root of an irreducible congruence of 
degree v modulo p, a prime, the number of irreducible congruences of degree 
vi whose coefficients are polynomials in i is 

— I l)’"p*'Vfli •••«»,} 

if qi,- • Qm are the distinct primes dividing vi. Of these congruences, 
<l){n)/vi belong to the exponent n if n is a proper divisor of (p’')"*—1* 

Any irreducible function of degree /x modulo p with integral coefficients 
is a product of 6 irreducible factors of degree /x/5 with coefficients rational 
in ij where 5 is the g. c. d. of p, v. 

In an irreducible function of degree vi and belonging to the exponent n 
and having as coefficients rational functions of ^, replace x by where X 
contains only prime factors dividing n; the resulting function is a product of 
2^~^D/n irreducible functions of degree \nvi/belonging to the 
exponent Xn, where D is the g. c. d. of \n and p’'*'* — 1, and is the highest 
power of 2 dividing the numerators of each of the fractions (p’'’'‘+l)/2 and 
Xn/ {2D) when reduced to their lowest terms. 

Let ^ be a rational function of f, and m the number of distinct values 

among g, .... If neither g+g^+ ... nor v/m is divisible by 
p, then x^ — x — g is irreducible; in the contrary case it is a product of 
linear functions. 

Hence if we replace x by a; in an irreducible function of degree p 
having as coefficients rational functions of f, we get a new irreducible 
function provided the coefficient of ia the given function is not zero. 

’^Untersuchungen tiber Functionale Congruenzen, Dies. Gottingen, Frankfurt, 1867. 
^“Trait6 des substitutions, 1870, 14-18. 
’^Comptes Rendus Paris, 70, 1870, 328-330. 
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[Proof in Pellet.®*] In particular, if p is a primitive root of a prime n, 
we have the irreducible function, modulo p, 

C. Jordan’® listed irreducible functions [errata, Dickson,^®^ p. 44]. 
J. A. Serret’* determined the product Vn of all functions of degree 

irreducible modulo p, a prime. In the expansion of replace each 

power by x^; denote the resulting polynomial in x by Then 

](|-1)'”K= (P”-!)', X,m=x^-x (mod p). 

Hence y„=Xp«/Zyn-i. Moreover, 

= (^-1)“+' = f(S-l)"- («-ir=X/-X, (mod p). 

Multiply this by the relations obtained by replacing ju by m+1,- • .,n+v—l. 
Thus 

-1)... m+U-l) (mod p). 

TakeM=p’*~SM+»'=p". Hence 

ii /x (mod p), /x=Xp»ii+x-i-l. 

Each /x decomposes into p—1 factors X—g where e'=l,p—1. The 
irreducible functions of degree p” whose product is/x are said to belong to 
the Xth class. When x is replaced by x^—x, is replaced by X„+i since J* 
i.s replaced by ?({-!) and hence (^-1)“ by (?-l)'“''^; thus/x is replaced 

by /x+i, while the last factor in F„=H/x is replaced by 1, which is 
the first factor in F„+i. Hence if Fix) is of degree p" and is irreducible 
modulo p and belongs to the Xth class, Fix^-x) is irreducible or the product 
of p irreducible functions of degree p” according as X= or <p'*-p’‘ ^ 

For n = 1, the irreducible functions of the Xth class have as roots poly¬ 
nomials of degree X in a root of F-isl, which is irreducible modulo p. 
Hence if we eliminate i between the latter and/(f) =a:, where/(f) is the 
general polynomial of degree X in f, we ob^ ain the general irreducible 

function of degree p of the Xth class. . , . t 
For any n, the determination of the irreducible functions of degree p of 

the first class is made to depend upon a problem of elimination (Alg^bre, 
p. 205) and the relation to these of the functions of the Xth class, X>1, is 

investigated. . . . , , „ 
(i. Bcllavitis”” tabulated the indices of Galois imagmaries of order 2 

for each prime modulus p = 4n-t-3 ^63. 
Th. Pepin“' proved that np^=l (mod p) has p-fl sets of solutions 

>"C;<n.ipt<>H Rendufl Paris, 72, 1871, 283-290. 
<Ic Math^rnatiquea, (2), 18,1873,301-4,437-451. Same as in Cours d’alg^bre 8up6rieure, 

Pci. 4, vol. 2, 1879, 190-211. 
Accad. Lincci, Mem. Sc. Fis. Mat., (3), 1, 1876-7, 778-800. 

Accad. Pont. Nuovi Lincci, 31, 1877-8, 43-52. 
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y selected from 0,1,..., p—1, provided n is a quadratic non-residue of the 
prime p. Then x^y^Tn is a root of (mod p), which therefore has 

complex roots, all a power of one root. There is a table of indices for 
these roots when p = 29 and p = 41. [Lebesgue.®^] 

A. E. Pellet®^ considered the product A of the squares of the differences 
of the roots of a congruence/(a;)=0 (mod p) having no equal roots. Then 
A is a quadratic non-residue of p if j{x) has an odd number of irreducible 
factors of even degree, a quadratic residue if /(a;) has no irreducible factor 
of even degree or has an even number of them. For, if 5i,..are the 
values of A for the various irreducible factors of /(x), then . .6* 
(mod p), where a is an integer. Hence it suffices to consider an irreducible 
congruence/(x) = 0 (mod p). Let v be its degree and i a root. In 

2/= n n {x^-x^ 
Z=1 *=0 

replace x by the v roots; we get two distinct values if p is even, one if v is 
odd. In the respective cases, p^^A (mod p) is irreducible or reducible. 

H. Dedekind*^ noted that, if P(x) is a prime function of degree / modulo 
p, a prime, a congruence F(x)=0 (mod p, P) is equivalent to the congruence 
jP(a) = 0 (mod tt), where tt is a prime ideal factor of p of norm p-^', and a is 
a root of P(a) = 0 (mod tt). 

A. E. Pellet^ denoted by/(x)=0 the equation of degree 0(A;) having 
as its roots the primitive ^th roots of unity, and by/i(p) = 0 the equation 
derived by setting 2/ = a;+l/x. If p is a prime not dividing h, f(x) is con¬ 
gruent modulo p to a product of (t>{k)/v irreducible factors whose degree v 
is the least integer for which p"—1 is divisible by h. If (mod p) 
has an integral root a,/(x) is divisible modulo p by x^—2ax-^l. Either the 
latter has two real roots and f{x) and fi{y) have all their’roots real and 
p —1 is divisible by fc, or it is irreducible and/(x) is a product of quadratic 
factors modulo p and the roots oi}i{y) are all real and p-f 1 is divisible by k. 
If k divides neither p-fl nor p —1, fi{y) is a product of factors of equal 
degree modulo p. [Cf. Sylvester,etc., Ch. XVI.] 

Let A; be a divisor 5=^2 of p+1. Let X be an odd number divisible by no 
prime not a factor of k, and relatively prime to (p+1) /k. Then x^^--2ax^-f-l 
is irreducible modulo p [Serret,^^ No. 355]. Also, if h is not divisible by p 

p=(x+5)2^~2a(x2-62)x+(3._5)2x 

is irreducible modulo p; replacing x^ by y, we obtain a function of degree X 
irreducible modulo p. If /c is a divisor ?*^2 of p — 1 and if X is odd, prime to 
(p — 1)/A: and divisible by no prime not a factor of k, F decomposes modulo 
p into two irreducible functions of degree X. 

The function f(x^) is either irreducible or the product of two irreducible 
factors of degree v. In the respective cases, the product A of the squares of 

®^Comptes Rendus Paris, 86, 1878, 1071-2. 
®*Abhand. K. Gesell. Wiaa. Gottingen, 23, 1878, p. 25. Dirichlet-Dedekind, Zahlentheorie, ed. 

4, 1894, 571-2. 
•’Comptes Rendus Paris, 90, 1880, 1339-41. 
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the differences of the roots ofis a quadratic non-residue or residue 
of p [Pellet®^]. Let Ai be the like product for f{x). Then A = 
/(O)Ai^. Hence is irreducible if ( —l)7‘(6)/a'' is a quadratic non- 

residue and then/(ax*+&) is irreducible modulo p for every i and even v, 
O. H, MitchelP gave analogues of Fermat's and Wilson's theorems 

modulis p (a prime) and a function of x. 
A. E. Pellet®® considered the exponent n to which belongs the product P 

of the roots of a congruence F(x)^0 of degree v irreducible modulo p. 
If g is a prime factor of n, P(a;®) is irreducible or the product of q irreducible 
factors of degree v modulo p according as q is not or is a divisor of (p —l)/n. 
In particular, F{x^) is irreducible modulo p if, for v even, X contains only 
prime factors of n not dividing (p —l)/n; for odd, we can use the factor 2 
in X only once if p = 4m+l. Let t be a root of P(a:)=0, % a root of an 
irreducible congruence Pi(a:)=0 (mod p) of degree Vi prime to v. Then 
n'l is a root of an irreducible congruence G{x)=0 (mod p) of degree vvi, 
F(x) belongs to the exponent Nn modulo p, where n is prime to (p’'—1) 

\ (p—l)N \. Let Qi be a prime factor of N not dividing p —1. Then 
(t(x®0 is irreducible or decomposes into qi irreducible factors of degree vvi 
according as qi is not or is a divisor of (p" —1)/^. Thus G{x^) is irreducible 
if X contains only prime factors of N dividing neither p —1 nor (p"—1)/]^. 

O. H. Mitchell®® defined the prime totient of f{x) to mean the number 
of polynomials in x, incongruent modulo p, of degree less than the degree of 
(x) and having no factor in common with f modulo p. Those which 
contain iS, but no prime factor of f not contained in S, are called /S-totitives 
off, 

C. Dina®^ proved known results on congruences modulis p and F(x). 
A. E. Pellet®® proved that, if p distinct values are obtained from a 

rational function of x with integral coefficients by replacing x successively 
by the m roots of an irreducible congruence modulo p, then p is a divisor 
of m and these p values are the roots of an irreducible congruence. Thus 
if A is a rational function of any number of roots of congruences irreducible 
modulo p, and v is the number of distinct values among A, A^, A^\.. 
these values satisfy an irreducible congruence modulo p. If A belongs to 
the exponent n modulo p, then v is the least positive integer for which p"^ 1 
(mod n). He proved a result of Serret's^^ stated in the following form: If, 
in an irreducible function F{x) modulo p of degree v and exponent n, x is 
replaced by where X contains only primes dividing n, then F{x^) is a 
product of irreducible factors of degree vq and exponent n\, where q is the 
least integer for which p’'^=l (mod n\). He proved the first theorem of 
Pellet®® and the last one of Pellet."^^ 

**John8 Hopkins University Circulars, 1, 1880-1, 132. 
“Comptes Rendus Paris, 93, 1881,1065-e. Cf. Pellet.®* 
*®Amer. Jour. Math., 4, 1881, 25-38. 
•^Giornale di Mat., 21, 1883, 234-263. For comments on 263-9, see the chapter on quadratic 
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E. H. Moore®^ stated that every finite field (Korper) is, apart from nota¬ 
tions, a Galois field composed of the p"" polynomials in a root of an irreducible 
congruence of degree n modulo p, a prime. 

E. H. Moore®® proved the last theorem and others on finite fields. 
K. Zsigmondy®® noted that the number of congruences of degree n 

modulo p, having no irreducible factor of degree f, is 

where I is the number of functions of degree i irreducible modulo p. 
G. Cordone®^ noted that if a function is prime to each of its derivatives 

with respect to each prime modulus Pi,..., Pn and is irreducible modulo 
M = pi^... p„*«, it is irreducible with respect to at least one of Pi,..., Pn. 

If fIx) is not identically =0 modulo pi, nor modulo p2, etc., and if it 
divides a product modulo M and is prime to one factor according to each 
modulus Pi,..Pny then F(x) divides the other factor modulo ikf. 

Let F{x) be a function of degree r irreducible with respect to each prime 
Pi,..Pn, while/(x) is not divisible by F{x) with respect to any one of the 
p^s, then (pp. 281-8) 

\f(x)}1 (niod M, F{x)), = M'(l -i) ■ • • (l 

(t)r(M) being the number of functions ... +Cr, in which the c^s take 
such values 0, 1,..ilf—l whose g. c. d. is prime to M. Let A be the 
product of these reduced functions modulis M, F{x). Then (pp. 316-8), 

1 (mod M, F) if ikf = p*, 2p* or 4, where p is an odd prime, while 
A=+l in all other cases. 

Borel and Drach®^ gave an exposition of the theory of Galois imaginaries 
from the standpoint of Galois himself. 

H. Weber®® considered the finite field (Congruenz Korper) formed of the 
p” classes of residues modulo p of the polynomials, with integral coefficients, 
in a root of an irreducible equation of degree n. He proved the generaliza¬ 
tion of Fermat^s theorem, the existence of primitive roots, and the fact that 
every element is a square or a sum of the squares of two elements. 

Ivar Damm®^ gave known facts about the roots of congruences modulis 
p, f(x), where f(x) is irreducible modulo p, without exhibiting the second 
modulus and without making it clear that it is not a question of ordinary 
congruences modulo p. Let c be a fixed primitive root of the prime p. 
Then the roots of every irreducible quadratic congruence are of the form 
a=*= 6aj, where = e. Let = e, /bi = k^. 

«®BulL New York Math. Soc., 3, 1893-4, 73-8. 
•oMath. Papers Chicago Congress of 1893, 1896, 208-226; University of Chicago Decennial 

Publications, (1), 9, 1904, 7-19. 
•^El Progreso Matemdtico, 4, 1894, 265-9. 
•’Introd. th^orie des nombres, 1895, 42-50, 58-62, 343-350. 
®»Lehrbuch der Algebra, II, 1896, 242-50, 259-261; ed. 2, 1899, 302-10, 320-2. 
•‘Bidrag till LS,ran om Kongruenser med Primtalsmodyl, Diss., Upsala, 1896, 86 pp. 
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Analogous to the definition of trigonometric functions in terms of expo¬ 
nentials, he defined quasi cosines and sines by 

C'gx=2(**+*i0. Sqx=-^(k‘-ki=‘), 

and Tqx as their quotient. Their relations are discussed. He defined 
pseudo cosines and sines by 

Cpx = Cq[(p — l)rr] = e”*Cg2a:, Spx = — e~'^Sq2x, 

For each prime p<100, he gave (pp. 65-86) the (integral) values of 

e®, ind x, Cqx^ Sqx^ Tqx, Cpx, Spx 

for x-1, 2,..p+1. 
L. E. Dickson^^ extended the results of Serret^^ to the more general case 

in which the coefficients of the functions are polynomials in a given Galois 
imaginary (i. e., are in a Galois field of order p"). For the corresponding 
generalization of the results of Serret^® on irreducible congruences modulo 
p of degree a power of p, additional developments were necessary. To 
obtain the irreducible functions of degree p in the (rF[p”] which are of the 
first class, we need the complete factorization, in the field, 

h{z^"-z-v) =U{h^z^-hz-ff) 

where hv is an integer and ranges over the roots of 

B = V.. - +<3”+^ = hv, 

all of whose roots are in the field. For the case v = 0 this factorization is 
due to Mathieu."^^ Thus hV — hz—^ is irreducible in the field if and only 
if In particular, if ^ is an integer not divisible by p, z^—z—^ is 
irreducible in the GF[p'^] if and only if n is not divisible by p. 

R. Le Vavasseur®® employed Galois imaginaries to express in brief no¬ 
tation the groups of isomorphisms of certain types of groups, for example, 
that of the abelian group G generated by n independent operators ai,.. 
a„, each of period a prime p. If i is a root of an irreducible congruence 
of degree n modulo p, and if j = be defined to be 
ai“‘.. . a„“«. Then the operators of G are represented by the real and 
imaginary powers of a. 

A. Guldberg®^ considered linear differential forms 

. d^y dy 

with integral coefficients. The product of two such forms is defined by 
Boole’s symbolic method to be 

d^ d} d 

Amer. Math. Soc.,3 , 1896-7, 381-9. 
»6M6m. Ac. Sc. Toulouse, (9), 9, 1897, 247-256. 
°’Comptes Rendus Paris, 125, 1897, 489. 
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If the product is ^Cy (mod p), Ay and By are called divisors modulo p 
of Cy. Let Ay be of order n and irreducible modulo p. Then Ay is con¬ 
gruent modulis p, Ay to one and but one of the forms 

(4) fe=0,l,...,p-l). 

If u is any one of these forms (4) and if 6=p"—1, Guldberg stated the 
analogue of Fermat^s theorem 

(mod p, Ay), 

but incorrectly gave the right member to be unity [cf. Epsteen,^®®, Dickson^®’]. 
L. Stickelberger®® considered F(x) •. • with integral coeffi¬ 

cients, such that the product D of the squares of the differences of the roots 
is not zero. Let p be any prime not dividing D. Let v be the number of 
factors of F{x) which are irreducible modulo p. He proved by the use of 
prime ideals that 

where the symbol in the left member is that of Legendre [see quadratic 
residues], 

L. E. Dickson®^ proved the existence of the Galois field GF[p’’] of order 
p"" by induction from r = n to r=g?i, by showing that 

{x'^"''^—x)/(x^'^—x) 

is a product of factors of degree q belonging to and irreducible in the 
GF[p^]. Any such factor defines the (rF[p”®]. 

L. Kronecker^®® treated congruences modulis p, P{x) from the stand¬ 
point of modular systems. 

F. S. Careygave for each prime p< 100 a table of the residues of the 

first p+l powers of a primitive root a+hj of (mod p) where 
(mod p), V being an integral quadratic non-residue of p. The higher powers 
are readily derived. While only the single modulus p is exhibited, it is 
really a question of a double modulus p and x'^—p. Methods of ‘‘solving’^ 

are discussed. In particular, for n = 3, there is given a primitive 
root for each prime p< 100. 

L. E. Dickson^®^ gave a systematic introductory exposition of the theory, 
with generalizations and extensions. 

M. Bauer^®^ proved that, if/(a;) =0 is an irreducible equation with inte¬ 
gral coefficients and leading coefficient unity, w a root, D its discriminant, 
d = Dlk^ that of the domain defined by w, p a. prime not dividing k, x>lj 

®®Verhand. 1. Internat. Math. Kongress, 1897, 186. 
«Bull. Amer. Math. Soc., 6, 1900, 203-4. 

loovorlesungen iiber Zahlcntheorie, I, 1901, 212-225 (expanded by Hensel, p. 506). 
loiProc. London Math. Soc., 33, 1900-1, 294-310. 
^o^Linear groups with an exposition of the Galois field theory, Leipzig, 1901, pp. 1-71. 
^o’Math. Naturw. Berichte aus Ungarn, 20,1902, 39-42; Math. ^8 Phys. Lapok, 10,1902, 28-33. 
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then f(x) is congruent modulo to a product of Fi{x),, .F^,(x), each 
irreducible modulo such that Fi(x)=fi(xyi (mod p), where 
(mod p), and /»(x) is irreducible modulo p. There is an example of an 
irreducible cyclotomic function reducible with respect to every prime power 
modulus. 

P. Bachmann^*^ gave an exposition of the general theory. 
G. Arnoux^®^ exhibited in the form of tables the work of finding a primi¬ 

tive root of the GF[7^] and of the GF[5% and tabulated the reducible and 
irreducible congruences of degrees 1, 2, 3, modulo 5. 

S. Epsteen^°® proved the result of Guldberg,®"^ and developed the theory 
of residues of linear differential forms parallel to the theory of finite fields, 
as presented by Dickson.^®^ 

L. E. Dickson^^^ noted that the last mentioned subjects are identical 
abstractly. Let the irreducible form Ay be 

To the element (4) we make correspond the element of the Galois 
field of order p"^, where 2 is a root of the irreducible congruence 

. .+5i2;+5o=0 (mod p). 

Since product relations are preserved by this correspondence, the p” resi¬ 
dues (4) define a field abstractly identical with our Galois field. 

Dickson^°^® proved that x^'^x (mod m=p^) has p and only p roots if p is 
a prime and hence does not define the Galois field of order m as occasionally 
stated. 

A. Guldberg^*^^^ employed the notation of finite differences and wrote 
n m n m 

Fy^ = S afi%, Gy:, = 2 PVx-Gy^ = S a/. 2 hfi*y„ 
tscsO 1 = 0 t«»0 t»s0 

where ^%x=yx+2,- • •, symbolically. To these linear forms with 
integral coefficients taken modulo p, a prime, we may apply Euclid’s g. c. d. 
process and prove that factorization is unique. Next, let be not divisible 
by p, so that Gyx is of order m. With respect to the two moduli p, Gy^, a 
complete set of p”* residues of linear forms is • ■ • +O'oyx (ai = 0, 
1,..., p — 1). Amongst these occur </)((r2/x) =p"’(l — l/p”"*) • • • (l — l/p'"®) 
forms Fyx prime to Gy^ if rrii,. .., are the orders of the irreducible factors 
of Gyx modulo p, and 

FyJ‘^°“x:'>=y^ (mod p, Gy^) 

In particular, if Gyx is irreducible and of order w, 

FyJ‘”'~^=yx (mod p, Gy,,). 

^“^Niedere ZahJentheorie, 1, 1902, 363-399. 
^“Assoc. fran?. av. sc., 31, 1902, II, 202-227. 
looBull. Amer. Math. Soc., 10, 1903-4, 23-30. 
loUWd., pp. 30-1. 
^•’^“Amer. Math. Monthlv. 11. 1904. 39-40. 
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W. H. Bussey^°® gave for each Galois field of order < 1000 companion 
tables showing the residues of the successive powers of a primitive root, 
and the powers corresponding to the residues arranged in a natural order. 
These tables serve the same purposes in computations with Galois fields 
that tables of indices serve in computations with integers modulo where 
p is a prime. 

G. Voronoi^°® proved the theorem of Stickelberger.®® Thus, for n = 3, 
(D/p) = —1 only when v = 2. Hence a cubic congruence has a single root 
if (D/p) = — 1, and three real roots or none if (D/p) = +1. 

P. Bachmann^^° developed the general theory from the standpoint of 
Kronecker’s modular systems and considered its relation to ideals (p. 241). 

M. Bauer^^^ employed a polynomial/(2) of degree n irreducible modulo 
p, and another one M(z) of degree less than that of f{z) and not divisible 
by/(2) modulo p. Then if (if, a) = 1, the equation 

f{z)+p^M{z)=^0 

is irreducible. The case a = 1 is due to Schonemann®® (p. 101). 
G. Arnoux,^^^ starting with any prime m and integer n, introduced a 

symbol i such that 1 (mod m) and such that i, . .., are distinct, 
where s = without attempting a logical foundation. If f{x) is irre¬ 
ducible modulo m and of degree n, there is only a finite number of distinct 
residues of powers of x modulis/(a;), m; let x^ andx^'^^have the same residue. 
Thus 1 is divisible hyf{x) modulo m. It is stated (p. 95) without proof 
that p divides s. “Call a a root of/(a;)=0. To make a coincide with the 
primitive root -i of x®=l, we must take p = s, whence every such primitive 
root is a root of an irreducible congruence of degree n modulo Follow¬ 
ing this inadequate basis is an exposition (pp. 117-136) of known properties 
of Galois imaginaries. 

L. I. Neikirk^^ represented geometrically the elements of the Galois 
field of order p" defined by an irreducible congruence 

f(x)—x'^+aix^~'^+ .. .+On—0 (mod p). 

Let j be a root of the equation/(x) =0 and represent 

. .. +Cn-ii+Cn (c's integers) 

by a point in the complex plane. The p"" points for which the c’s are chosen 
from 0, 1,..., p —1 represent the elements of the Galois field. 

G. A. Miller^^^ listed all possible modular systems p, <#)(x), where p is a 
prime and the coefficient of the highest power of x is unity, in regard to 
which a complete set of prime residues forms a group of order g 12. If 
<l>{x) is the product of k distinct irreducible functions cj>i,.. ., 4>j, modulo p, 

“OBuU. Amer. Math. Soc., 12, 1905, 21-38; 16, 1909-10, 188-206. 
‘o*Verhand. III. Internal. Math. Kongress, 1905, 186-9. 
‘^oAllgemeine Arith. d. Zahlenkorper, 1905, 81-1 il. 
“Uour. fiir Math., 128, 1905, 87-9. 
^^*Arithm4tique Graphique, Fonctions Arith., 1906, 91-5. 

Amer. Math. Soc., 14, 1907-8, 323-5. 
^I'Archiv Math. Phys., (3), 15, 1909-10, 115-121. 
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the residues prime to p, (l)(x) constitute the direct product of the groups 
with respect to the various p, (l>i{x). Not every abelian group can be repre¬ 
sented as a congruence group composed of a complete set of prime residues 
with respect to , Fx, where the F's are functions of a single variable. 

Mildred Sanderson^^® employed two moduh m and P(y), the first being 
any integer and the second any polynomial in y with integral coefficients. 
Such a polynomial/(p) is said to have an inverse /i (p) if ffi= 1 (mod m, P). 
If P{y) is of degree r and is irreducible with respect to each prime factor of 
m, a function /(p), whose degree is <r, has an inverse modulis m, P{y), if 
and only if the g. c. d. of the coefficients of f{y) is prime to m. For such 
an /, /”=! (mod m, P), where n is Jordan's function Jr{m) [Jordan, 
Ch. V]. In case w is a prime, this result becomes Galois'®^ generalization 
of Fermat's theorem. The product of the n distinct residues having 
inverses modulis m, P{y)t is congruent to —1 when w is a power of an odd 
prime or the double of such a power or when r = l, 7?i = 4; but congruent to 
+1 in all other cases— a two-fold generalization of Wilson's theorem. 
There exists a polynomial P{y) of degree r which is irreducible with respect 
to each prime factor of m. Then ii A(y), B{y) are of degrees <r and their 
coefficients are not all divisible by a factor of w, there exist polynomials 
a(2/), /3(v), such that aA+i3P=l (mod m, P). 

Several writers^^® discussed the irreducible quadratic factors modulo p 
of (a?** —l)/(x* —1), where k — 1 or 2, p is a prime, a a divisor of p-)-l. 

G. Tarry^^^ noted that, if f^q (mod m), where g is a quadratic non¬ 
residue of the prime m, the Galois imaginary is a primitive root if 
its norm {aA-hj)ia — hj) is a primitive root of m and if the ratio a:h and the 
analogous ratios of the coordinates of the first m powers of a-\-hj are incon- 
gruent. 

L. E. Dickson^^® proved that two polynomials in two variables with 
integral coefficients have a unique g. c. d. modulo p, a prime. Thus the 
unique factorization theorem holds. 

G. Tarry^^® stated that Ap is a primitive root of the GF[p^] if the norm 
of A = is a primitive root of p and if the imaginary p belongs to the 
exponent p+1. The 0(p + l) numbers p are found by the usual process 
to obtain the primitive roots of a prime. 

U. Scarpis^^° proved that an equation of degree v irreducible in the 
Galois field of order p"" has in the field of order p”*” either v roots or no 
root according as v is or is not a divisor of m [Dickson^®^, p. 19, lines 7-9]. 

Cubic Congruences. 

A. Cauchysolved y^-\-By-\-C^0 (mod p) when it has three distinct 

115Annals of Math., (2), 13, 1911, 36-9. 
ii8L'interm6diaire dea math., 18, 1911, 195, 246; 19, 1912, 61-69, 95-6; 21, 1914, 158-161; 22, 

1915, 77-8. Sphinx-Oedipe, 7, 1912, 2-3. 
i^^Assoc. frang. av. sc., 40, 1911, 12-24. Amer. Math. Soc., (2), 17, 1911, 293-4. 
ii«Sphinx-Oedipe, 7, 1912, 43-4, 49-50. “^Annali di Mat., (3), 23, 1914, 45. 
laoExercices de Math., 4, 1829, 279-292; Oeuvres, (2), 9, 326-333. 
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integral roots 2/1,2/2> Vzi and p is a prime ^ 1 (mod 3), and (mod p). Set 

Zvi=yi-\rry2+r^yzr ^V2=yi+r^y2+ryz, r^+r+l=0 (modp). 

The roots of vJ^+Cu —5V27=0 (mod p) are Ui = U2 = V2®. After finding 
Vi from Vi=Ui (mod p), we get V2=—B/(3vi)f and determine the y^s from 
St/i^O and the expressions for 3^1, dv2. Thus 

yi^Vi+V2, y2^r\+rv2y yz=rvi+r\ (modp). 

Since by hypothesis the cubic congruence has three distinct integral roots, 
the quadratic has two distinct integral roots, whence 

Ezl B^ 
Ui^ =ly D 2 =1 (mod p), 

(-~Di)'^+ (-§+Di)^=2, D^=l (mod p). 

Conversely, if the last two conditions are satisfied, the cubic congruence 
has three distinct real roots provided p=l (mod 3), B^O (mod p). 

G. Oltramare^^^ found the conditions that one or all of the roots of 
x^+3pa;+2g=0 (mod p) given by Cardanos formula become integral modulo 
p, a prime. Set 

D = g^+p^ (r=“g+VD, t=—g —VTd, 

First, let p be a prime 6n — l. If D is a quadratic residue of p, there 
is a single rational root — 2g/ (p+<r^”+T^'‘). If D is a quadratic non-residue 
of p, there are three rational roots or no root according as the rational part 
M of the development of by the binomial theorem-satisfies or does not 
satisfy Mp^+q^O (mod p); if also p = 18m+ll and there are three rational 
roots, they are 

2M-^, 
if -D; with a like result when n = 18m+5. 

Next, let p = 6n-l-l. If D is a quadratic non-residue of p, there is one 
rational root or none according as the rational part M of the development 
of 0-^” is or is not such that 

(2M--l)"(M+l)=-2gVp^ (modp), 

and if a rational root exists it is 2q/1 p(2M — 1)1. If D is a quadratic residue 
of p, there are three rational roots or none according as 1 (mod p) 
or not. When there are three, they are given explicitly if p=18m+7 or 
187n+13, while if p = 18m+l there are sub-cases treated only partially. 

G. T. Woronoj^^^ (or Voronoi) employed Galois imaginaries a-\-hi, where 
1^—iV—O (mod p) is irreducible, p being an odd prime, to treat the solution of 

rx—s=0 (mod p). 

i^Jour. fiir Math., 45, 1853, 314-339. 
^“Integral algebraic numbers depending on a root of a cubic equation (in Russian), St. Peters¬ 

burg, 1894, Ch. I. Cf. Fortschritte Math., 25, 1893-4, 302-3. Cf. Voronoi. 
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If 4r^—27s^ is a quadratic non-residue of p, the congruence has one and 
only one root; but if it is a residue, there are three roots or no root. 

G. Cordone^^ gave simpler proofs of Oltramare’s^®^ theorem II on the 
cei,se fji = 6n—l, gave theorems to replace VII and VIII, and proved that the 
condition in IX is sufficient as well as necessary. 

Ivar Damm^* found when Cardan’s formula gives three real roots, one 
or no real root of a cubic congruence, and expressed the roots by use of 
his quasi sine and cosine functions. For the prime modulus p = 3n-|-l, 
f—x^+ax+h is irreducible if 

is real, 

1 

= ±1. 

If p=3n—1, it is irreducible if c and (—b/2+c)” are both imaginary. 
There are given (p. 52) explicit expressions for b such that / is irreducible. 

J. Iwanow^^ gave another proof of the theorem of Woronoj.^^^ 
Woronoj^^ gave another proof of the same theorem and stated that the 

congruence has the same number of roots for all primes representable by 
a binary quadratic form whose determinant equals -'4r^+27s^. 

G. Arnoux^^® gave double-entry tables of the roots of the congruences 
(mod m), and solved numerical cubic congruences by in¬ 

terpreting Cardan’s formulas. 
G. Arnoux^^^ treated x^-\-bx+a=0 (mod m) by use of Cardan’s formula. 

For = 11, he gave a table of the real roots for 10, 6^ 10, and the residues 
of 

R = 
4 ■^27 

When R is & quadratic residue, the cube roots of —a/2=^^/R are found by 
use of a table for the Galois field of order 11^ defined by t^=2 (mod 11), 
and the cubic is seen to have a real and two imaginary roots involving i. 
If jK is a quadratic non-residue, there are three real roots or none. Like 
results are said to hold when m —1 is not divisible by 3. If m=l (mod 3), 
there is a single real root if jK is a quadratic non-residue; three real or three 
imaginary roots of the third order if JS is a residue. 

L. E. Dickson^^® proved that, if p is a prime >3, (mod p) 
has no integral root if and only if —4)3^—275^ is a quadratic residue of p, 

say =81p^, and if |(—6-1-pV—3) is not congruent to the cube of any 

3, where y and z are integers. The reducible and irreducible 
cubic congruences are given explicitly. Necessary and sufficient conditions 
for the irreducibility of a quartic congruence are proved. 

^^Rendiconti Circolo Mat. di Palermo, 9, 1895, 221-36. 
Ac. Sc. St. Petersburg, 5, 1896, 137-142 (in Russian). 

i“NaturalSc, (Russian), 10, 1898, 329; cf. Fortschritte Math., 29, 1898, 156. 
i3«Assoc. frang. av. sc., 30, 1901, II, 31-50, 51-73; corrections, 31, 1902, II, 202. 
«7Assoc. franc, av. sc.. 33. 1904. 190-230 [182-1991. and Amouxi^^ 166-202. 
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D. noted that the results by Arnoxix^^^’may be com¬ 
bined by use of the discriminant D = —46^~27a^= in place of Ry 
since — 3 is a quadratic residue of a prime p=3^+1, non-residue of p = 3fc—1, 
and we obtain the result as stated by Voronoi.^^^ 

To find which of the values 1 or 3 is taken by v when D is a quadratic 
residue, apply the theorem that if f{x)^0 (mod p) is an irreducible con¬ 
gruence of degree n and if Xq is one of its imaginary roots (say one of the 
roots of the equation/(a;) =0), the roots are 

Xo, Xi = Xo^y.,,y Xn^i = 

Hence a function unaltered by the cyclic substitution (a^o^i.. has 
an integral value modulo p. Take n=3, D^dP, a a root of 
(mod p), and let 

M = (xo+aa;i-|-a^a;2)^ 

If p=l (mod 3), a is an integer, and M is an integer if v = l, while M is 
the cube of an integer if i/ = 3. Thus we have Amoux^s criterion j/=3 

if M or 4 (—9a-|-V—3d) is a cubic residue modulo p. If p= —1 (mod 3) 
r = 3 if and only if (mod p), where (p^“-l)/3. 

For quartic congruences, we can use (xo'-Xi+X2—Xz)^. 
R. D. von Stemeck^'^® noted that if p is a prime >3 not dividing A, 

and if k = 3AC—B^^0 (mod p), then the number of incongruent values 
taken by Ax^+Bx^+Cx+D is 4{2p+(—3/p)}; but, if k=0y the number 
is p if p = 3n—1, (p+2)/3 if p=3n+1. Generalization by Kantor 

C. Cailler^^^ treated x^+px+Q^O (mod Z), where I is a prime >3. By 
the algebraic method leading to Cardan’s formula, we write the congruence 
in the form 
(1) x^—Sdbx+db(a+h)^0 (mod Z), 

where a, h are the roots of sj^+Sgz/p—p/3=0 (mod Z), whence 

2= (xo+axi a^X2) V (9p), +a+1=0 (mod Z). 

Let A=4p^-|-27g^. If 3A is a quadratic residue of Z, a and h are distinct 

and real. If 3A is a non-residue, a and h are Galois imaginaries r=^sVWj 
where N is any non-residue. For a root x of (1), 

2/^-f(modZ), 

Use is made of a recurring series S with the scale of relation —ah] 
to get yof 2/i,.... Write Q == (3A/Z). If Z = 3m—1, Q = 1, then 

y^{h/ar-\ 
2/m-l 

If Z = 3m-1-1, Q = l, the congruence is possible only when the real number 
a/h is a cubic residue, i. e., if 2/m=0 in let a/h belong to the exponent 
3ju =F 1 modulo ly whence 

^^•L’enseignement math., 9, 1907, 381-4. 
i<°Sitzung8ber. Ak. Wise. Wien (Math.), 116, 1907, Ha, 895-904. 
^^^L’enseignement math., 10, 1908, 474^87, 
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3/a.-i 
or y^+i 

according as the upper or lower sign holds. 
^ 3th+3 

2/3>»+2 

If i=3m+l, Q= —1, then 

real 
y2m+l 

IfZ==3m—1,0=—1, there are three real roots if and only if a/h is a cubic 
residue of I, viz., 2/m=0; when real, the roots may be found as in the second 

a 

case. 
Cailler^^^ noted that a cubic^quation Z = 0 has its roots expressible 

rationally in one root and Va, where A is the discriminant (Serret’s 
Alg^bre, ed. 5, vol. 2, 466-8). Hence, if p is a prime, X=0 (mod p) has 
three real roots if one, when and only when A is a quadratic residue of p. 
If p=9m±l, his^^^ test shows that a;^—3a;+l=0 (mod p) has three real 
roots, but no real root for other prime moduli ?^3. The function 
F{x) =x®4-ic^“2a;—1 for the three periods of the seventh roots of unity is 
divisible by the primes 7m=t 1 (then 3 real roots. Gauss®®, p. 624) and 7, 
but by no other primes. 

E. B. Escott^^ noted that the equation F{x) = 0 last mentioned has the 
roots a, j3=a^—2, 7=jS^—2, so that F(a;)=0 (mod p) has three real roots 
if one real root. To tod the most general irreducible cubic equation with 
roots a, 13, y such that 

^=/(a), 7=/(/5), a=/(7), 

we may assume that f(x) is of degree 2. For /(a) = a^—n, we get 

(2) —(a^—2a+3)a;—(a^—2a^+3a -1) = 0, 

with j3=a^--c, a=7^—c, c=a^—a+2. The corresponding con¬ 
gruence has three real roots if one. To treat/(a) =a^-|-A;a+^, add k/2 to 
each root. For the new roots, /3' = as in the former case. To treat 
/(a) = ta^'i-ga+h, the products of the roots by t satisfy the preceding relation. 

L. E. Dickson^^ determined the values of a for which the congruence 
corresponding to (2) has three integral roots. Replace xhy z—a; we get 

2az^4-(2a—3)z+l=0 (mod p). 

If one root is z, the others are l — llz and 1/ (1 — z). Evidently a is rational 
in z. If —3 is a quadratic non-residue of p, there are exactly (p—2)/3 
values of a for which the congruence has three distinct integral roots. If 
—3 is a residue, the number is (pH-2)/3. A second method, yielding an 
explicit congruence for these values of a, is a direct application of his^^® 
general criteria for the nature of the roots of a cubic congruence. 

T. Hayashi^^® treated cyclotomic cubic equations with three real roots 
by use of Escott’s^^^ results. 

‘«L’intenn4diaire des math., 16, 1909, 185-7. 
i^Annals of Math., (2), 11,1909-10, 80-92. 

(2), 12, 1910-11, 149-152. 
189-192. 
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Miscellaneous Results on Congeuences. 

Linear congruences will be treated in Vol. 2 under linear diophantine 
equations, quadratic congruences in two or more variables, under sums of 
four squares; ax'^-{-hy^+cz'^^Q, under Fermat’s last theorem. 

Fermat^^® stated that not every prime p divides one of the numbers 
a+1, a^+1,- For, if A; is the least value for which 1 is divis¬ 
ible by p and if A; is odd, no term oJ^+l is divisible by p. But if*A; is even, 

is divisible by p. 
Fermatstated that no prime 12n=tl divides S'^+l, every prime 

1271=1=5 divides certain 3"^+!, no prime 10n=i=l divides 5®+l, every prime 
10n=i=3 divides certain 5®+l, and intimated that he possessed a rule relating 
to all primes. See Lipschitz.^®® 

A. M. Legendre^®® obtained from a given congruence • • - 
(mod p), p an odd prime, one having the same roots, but with no double 
roots. Express in terms of the powers of a; with exponents <n, and 
equate the result to +1 and to —1 in turn. The g. c. d. of each and the 
given congruence is the required congruence. An exception arises if the 
proposed congruence is satisfied by 0, 1,..., p —1. 

Hoen4 de Wronski^®^ developed (ni+... replaced each multi¬ 
nomial coefficient by unity, and denoted the result by A[ni-^.. 
Thus A[ni+n2]^=ni^4-nin2+n2^. SetiV'„=ni+... Then (pp.65-9), 

(1) A[iV«“npr“-A[A'^--nJ”‘== (mod n^-rip). 

Let (rii.. be the sum of the products of rii,..., taken m B.t b, 
time. Then (p. 143), if A[iVJ® = l, 

+ (^i.. .nj3A[Ar.r^- . . .+(-l)>‘+i(n,.. .nJ,A[Arj. 

He discussed (pp. 146-151) in an obscure manner the solution of Xi=X2 

(mod X), where the X’s are polynomials in ^ of degree v. Set = + . .. 
+^a,-2+^p+^fl* Let the negatives of ni,..., n^_2, be the roots of 
P = Po+PixH“...+P«_2x"~^+^"“^==0; the negatives of rii,..., n„_2, 
the roots of Q = Qo+• - •+^“”^ = 0. We may add fiX and J'2X to the 
members of our congruence. It is stated that the Hew first member may 
be taken to be A[X^--nJ”‘, whence by (2) 

XiH-riX = P..2A[X.~nJ--^~P..3A[X.~nJ’”-H -. 

and the A’s may be expressed in terms of the P’s by (2). Similarly, 
X2+f2X may be expressed in terms of the Q’s, B.y (1), X = nq—np = Q^„2 

—P„_2. Since P = 0, Q = 0 have co —2 roots in common, we have further 
conditions on the coefficients Pi, Qi. It is argued that co—3 of the latter 

^^®Oeuvres, 2, 209, letter to Frenicle, Oct. 18, 1640, 
’^^^Oeuvres, 2, 220, letter to Mersenne, June 15, 1641. 

Ac. Sc. Paris, 1785, 483. 
“introduction k la Philosophie des Math^matiquea et Technie de rArgorithmie, Paris, 1811. 

TTa fhfk UpLrfi'ar n.lpnh frvr f.Kp A c\i tTiis rpnnrt P,f. WTrtnfiHi®® fvf Clh. VTT. 
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remain arbitrary, and that ^ is a function of them and one of the n^s, which 
has an arbitrary rational value. 

A. Cauchy^®^ noted that if / and F are polynomials in x, Lagrange’s 
interpolation formula leads to polynomials u and v such that uf+vF=Rj 
where is a constant [provided / and F have no common factor]. If the 
coefficients are all integers, R is an integer. Hence R is the greatest of the 
integers dividing both / and F. For /= x^-Xy we may express JK as a prod¬ 
uct of trigonometric functions. If also F{x)= (aj'^H-lVCx+l), where n and 
p are primes, i2=0 or ±2 according as p is or is not of the form nx+1. 
Hence the latter primes are the only ones dividing x”+l, but not x+1. 

Cauchyproved that a congruence/(x)=0 (mod p) of degree m<p is 
equivalent to (x-"r)^<j!)(x)=0, where <j> is of degree m—i, if and only if 

/(r)sO, /'W=0,../‘-»(r-)sO (mod p), 

where p is a prime. The theorem fails if m^p. He gave the method of 
Libri (M^moires, I) for solving the problem: Given /(x) = 0 (mod p) of 
degree m^p and with exactly m roots, and/i(x) of degree l^my to find a 
pol3moinial also with integral coefficients, whose roots are the roots 
common to f and/i. He gave the usual theorem on the number of roots of 
a binomial congruence and noted conditions that a quartic congruence have 
four roots. 

Cauchy^®^ stated that if 7 is an arbitrary modulus and if rj,..., are 
roots of/(x)=0 (mod 7) such that each difference r^—r, is prime to 7, then 

f(x)^(x-ri).. .(x-rJQ(x) (mod 7). 

If in addition, m exceeds the degree of/(x), then/(x)=0 (mod 7) for every x. 
A congruence of degree n modulo p^, where p is a prime, has at most n 
roots unless every integer is a root. If /(r)=0 (mod 7) and if in the irre¬ 
ducible fraction equal to 

If{r) 
the denominator is prime to 7, then r—t7 is a root of /(x) = 0 (mod P). 

V. A. Lebesgue^®^ wrote a/h=c (mod p) if h is prime to p and 
(mod p), and a/h^cld (mod p) if 6, d are prime to p and ad^bc (mod p). 

J. A. Serret^^® stated and A. Genocchi proved that, if p is a prime, the 
sum of the mth powers of the p” polynomials in x, of degree n — l and with 
integral coefficients <p, is a multiple of p if 7w<p”—1, but not if m = p” —1. 

J. A. Serret^®^ noted that all the real roots of a congruence /(x) = 0 
(mod p), where p is a prime, satisfy \l/{x)^0, where \l/ is the g. c. d. of /(x) 
and x^“^ — l. 

“^Exercices de Math., 1, 1826, 160-6; Bull. Soc. Philomatique; Oeuvres, (2), 6, 202-8. 
“^Exercices de Math., 4, 1829, 253-279; Oeuvres, (2), 9, 298-326. 
“CJomptes Rendus Paris, 25, 1847, 37; Oeuvres, (1), 10, 324-30. 
i«Nouv. Ann. Math., 9, 1850, 436. 
^«Nouv. Ann. Math., 13, 1854, 314; 14, 1855, 241-5 
i67Coura d’alg^bre sup4rieure, ed. 2, 1854, 321-3. 
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N. H. AbeP^® proved that we can solve by radicals any abelian equation, 
i. e., one whose roots are r, <^(r), =</>[</>(r)],.:where </> is a rational 
function. H. J. S. Smith^^® concluded that when the roots of a congru¬ 
ence can be similarly expressed modulo p, its solution can evidently be 
reduced to the solution of binomial congruaices, and the expressions for 
the roots of the corresponding equation may be interpreted as the roots 
of the congruence. For the special case this was done by Poinsot 
in 1813-20 in papers discussed in the chapter on primitive roots. 

M. Jenkins^^®“ noted that all solutions of a®=l(mod x) are x= Un=UiU2 

.. .Unf where ui is any divisor of any power of a—1; U2 any divisor prime 
to a—l, of any power of a"'—1;..any divisor, prime to 
of any power of a^^-i — l. For a®+l=0 (mod x), modify the preceding 
by taking odd, factors of a+1 instead of factors of a —1. 

J. J. Sylvester^®® proved that if p is a prime and the congruence/(x)=0 
(mod p) of degree n has n real roots and if the resultant of f(x) and g{x) 
is divisible by p, then ^(x)=0 has at least one root in common with/(x)=0. 
There are exactly p —1 real roots of (mod pO- 

A. S. Hathaway^®^ noted the known similarity between equations and 
congruences for a prime modulus. He^®^ made abstruse remarks on higher 
congruences. 

G. Frattini^®® proved that — and x^—jDt/^=X are each solvable 
when the modulus is a prime p>5 and D^O. If AC^O, then 
Ax'^-\-2Bx^y-\-Cy^^\ (mod p) is solvable since dx'^+XC can be made con¬ 
gruent to a square and hence to Likewise for ax^+2hx A-c=y^, 

A. Hurwitz^®^ discussed the congruence of fractions and the theory of 
the congruence of infinite series. If </)(x) =ro-l-r’iX+ ■ ■ • +r„xV^^+ •. • and 
if \l/{x) is a similar series with the coeflScients then 0 and ^ are called 
congruent modulo m if and only if (mod tw) forn= 1, 2,.. .. 

G. Cordone^®® treated the general quartic congruence for a prime 
modulus /i by means of a cubic resolvent. The method is similar to Euler^s 
solution of a quartic equation as presented by Giudice in Peano^s Rivista 
di Matematica, vol. 2. For the special case x^-j-QB'x^-hK^O (mod ju), 

set t = (ju — l)/2, r^ = 9ff^—K; then if K is a quadratic residue of ju, there 
are four rational roots or none according as ( —3H-l-r)^=+•! or not; but 
if X is a non-residue, there are two rational roots or none according as one 
of the congruences 

(■-3R+ry-+l, (-3ff-ry=-l 

is satisfied or not. 

^®®Jour. fiir Math., 4, 1829, 131; Oeuvres, 1, 114. 
i‘^®Report British Assoc. 1860, 120 seq., §66: Coll. M. Papers, 1, 141-5. 
i69aMath. Quest. Educ. Times, 6, 1866, 91-3, 
i«®Amer. Jour. Math., 2, 1879, 360-1; Johns Hopkins University Circulars, 1, 1881, 131. Coll. 

Papers, 3, 320-1. 
i®Uohns Hopkins Univ. Circulars, 1, 1881, 97. ^“^Amer. Jour. Math., 6, 1884, 316-330. 
i®3Rendiconti Reale Accad. Lincei, Rome, (4), 1, 1885, 140-2. 
i®^Acta Mathematica, 19, 1895, 356. 
^®®Rendiconti Circolo Mat. di Palermo 9, 1895, 209-243. 
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R. Lipschitz^®® examined Fermat’s^^® statement and proved that the 
primes p for which a'*'+l=0 (mod p) is.impossible are those and only those 

for which a solution u of (mod p) is a quadratic non-residue of p 
and for which where 2^ is the highest power of 2 dividing p —1. 
Cases when a®+1^0 is impossible and not embraced by Fermat’s rule are 
a=2, p = 89, 337; a=3, p = 13; a= --2, p = 281; etc. 

L. Kronecker^®’’ called/(x) an invariant of the congruence (mod m), 
if the latter congruence implies the equality/(fc) =f0z). If also, conversely, 
the equality implies the congruence,/(x) is called a proper (or characteristic) 
invariant, an example being the least positive residue of an integer modulo 
m. It is shown that every invariant of k' (mod m) can be represented 
as a symmetric function of all the integers congruent to k modulo m. 

G. Wertheim^®® proved that (mod p) is impossible if a belongs 
to an odd exponent modulo p [Fermat 

E. L. Bunitzky’^®® (Bunickij) noted that, for any integer ikf, the con¬ 
gruences 

f{a+k}i)^rk (mod M) (fc = 0, 1,..., n) 

hold if and only if the coefficients Aj, of/(<r) satisfy the conditions 

k! (mod M) (A; = 1,..., n). 

If k is the least value of x for which ajIX® is divisible by M, and if the 
g. c. d. of M and h is k<mj where m is a divisor of M, then if/(x)=0 (mod 
M) has the roots a, a+X,..., a+(k‘-l)h, it has also the roots a-\-jh 
(i=A;, A;+l,..w-1).^ 

G. Biase^"^® called a similar to h in the ratio m:n modulo k if the remainders 
on dividing a and hhy k are in the ratio m:n. Two numbers similar to a 
third in two given ratios modulo k are similar to each other modulo k in 
a ratio equal to the quotient of the given ratios. 

The problem^*^^ to find n numbers whose differences are incon- 
gruent modulo n-f-l is possible for n = 6, but not for n = 7. 

R. D. von Stemeck^^® proved that, if A is not divisible by the odd 
prime p, Ax^+Bx^+C takes \I/(2AB, p) incongruent values (when x ranges 
over the set 0, 1,..., p—1) if B is not divisible by p, while if B is divisible 
byp, it takes (p+3)/4 or (p-}-l)/2 values according as p=4n-}-l or p = 
4n—1. In terms of Legendre’s symbol, 

p).|[3p+4-2(2|!)+(:^)+2(^)]. 

dee Sc. Math., (2), 22,1, 1898, 123-8. Extract in Oeuvres de Fermat, 4, 196-7. 
“’Vorlesungen iiber Zahlentheorie, I, 1901, 131-142. 
i®®Anfangsgrunde der ZahlenJebre, 1902, 265. 
i®®Zap. mat. otd. Obsc. (Soc. of natur.), Odessa, 20, 1902, III-VIII (in Russian); cf. Fortschr. 

Math., 33, 1902, p. 205. 
Boll. Matematica Gior. Sc. Didat., Bologna, 4, 1905, 96. 

i^^L’interm^diaire des math., 1906, 141; 1908, 64; 19, 1912, 130-1. Amer. Math. Monthly, 13, 
1906, 215; 14, 1907, 107-8. 
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E. Landau^^^ proved that, if /(x) = 0 is an equation with integral coeffi¬ 
cients and at least one root of odd multiplicity, there exist an infinitude of 
primes p = 4n —1 such that /(x) = 0 (mod p) has a root. 

R. D. von Sterneck^^^ found the number of combinations of the ith class 
(with or without repetition) of the numbers prime to p of a complete set of 
residues modulo whose sum is congruent to a given integer modulo p®, 
p being a prime. 

E. Piccioffi’^^ gave known theorems on adding and multiplying con¬ 
gruences. 

C. Jordan^^® found the number of sets of integers aik for which the 
determinant jaiytl of order n is congruent to a given integer modulo M. 

C. Krediet^^® gave theorems on congruences of degree n for a prime 
modulus analogous to those for an algebraic equation of degree n, including 
the question of multiple roots. The determination of roots is often sim¬ 
plified by seeking first the roots which are quadratic residues and then 
those which are non-residues. The exposition is not clear or simple. 

G. Rados^"^^ proved that, if p is a prime, 

f{x) =aoa;^“^+. .. -|-ap_2=0, ^(x) ... •4-&p_2=0 (modp) 

have a common root if and only if each (mod p), where 

^{u) ... +Ep_i 

aoW+^o ... ap_2'^'4"^p—2 
_ aiU-\-hi a2U+'b2 .. . aoU+ho 

<lp_2'W-|-?>p_2 aot^ + ^O • • • 3 

For g=f', let ^{u) become DqU^^+ ... -l-Z)p-_2; thus f(x)^0 (mod p) has a 
multiple root if and only if each Di=0 (mod p). Each of these theorems 
is extended to three congruences. Finally, if f{x) and /'(x) are relatively 
prime algebraically, there is only a finite number of primes p for which the 
number of roots of /=0 (mod p*) exceeds the degree of /. 

G. FrattinP’^^ proved that if p and q are primes, q a divisor of p —1, 
every homogeneous symmetric congruence in q variables is solvable modulo 
p by values of the variables distinct from each other and from zero except 
when the degree of the congruence is divisible by q. 

C. Grotzsch^^® noted that if a is a root of x^'^a (mod p), where a is prime 
to p, then x=a (mod p^ — p) is a root, and proved that if 6 is the g. c. d. of 
ind a and p —1 and if ind a>0, it has exactly 

^^Handbuch.. .Verteilung der Primzahlen, 1, 1909, 440. 
^'^Sitzungsber. Ak. Wiss Wien (Math.), 118, 1909, Ila, 119-132. 

Pitagora, Palermo, 16, 1909-10, 125-7. 
'^6Jour. de Math., (6), 7, 1911, 409-416. 
^^“Wiskundig Tijdschrift, Haarlem, 7, 1911, 193-202 (Dutch). 
^^^Ann. sc. 6cole norm, sup., (3), 30, 1913, 395-412. 
i^speriodico di Mat., 29, 1913, 49-53. 
I’oArchiv Math. Phys., (3), 22, 1914, 49-53. 



262 History of the Theory of Numbers. [Chap. VIII 

Ar=^(p-i)+ss<^(£^) 

roots incongruent modulo p(p-l), where 8 ranges over all divisors >1 of 
If ind a = 0, the number of such roots is p —l-f iNT, where now 8 ranges over 
the divisors >1 of p —1. 

A. Ch^telet^®° noted that divergences between congruences and equa¬ 
tions are removed by not limiting attention to the given congruence/(a;)=0 
of degree n, but considering simultaneously all the polynomials g(x) derived 
from f(x) by a Tschirnhausen transformation ky = <j>{x)j where k is an 
integer and has integral coefficients and is of degree n-1. 

*M. Tihanyi^®*^® proved a simple congruence. 
R. Kantor^®^ discussed the number of incongruent values modulo m 

taken by a polynomial in n variables, and especially for aa;^+...+d 
modulo p’^, generalizing von Sterneck.^^® 

The solvability of a;^+9a;+6=0 and x^+y(y+l)=0 (mod p) has been 

treated.^®^ 
A. Cunningham^^ announced the completion, in conjunction with 

Woodall and Creak, of tables of least solutions (x, a) of the congruences 

r*==±:p“, (modp*< 10000), r=2,10; p = 3, 5, 7,11. 

T. A. Pierce^®^ gave two proofs that/(a;)^0 (mod p) has a real root if 
and only if the odd prime p divides 11(1 —where ai ranges over the 
roots of the equation/(x) =0. 

Christie^®^ stated that ^^(^*’+1)=! (mod p) if t=2 sin 18° and p is any 
odd prime. Cunningham gave a proof and a generalization. 

*G. Rados^®® found the congruence of degree r having as its roots the 
r distinct roots ?^0 of a given congruence of degree p —2 modulo p, a 

prime. 

^®°Comptes Rendus Paris, 158, 1914, 250-3. 
isooMatb. 6s Phys. Lapok, Budapest, 23, 1914, 57-60. 
is^Monatshefte Math. Phys., 26, 1915, 24-39. 
i82Wiakundige Opgaven, 12, 1915, 211-2, 215-7. 
issMessenger Math., 45, 1915-6, 69. 
iMAnnals of Math., (2), 18, 1916, 53-64. 
i8®Math. Quest. Educ. Times, 71, 1899, 82-3. 
^“Math. 6s Term6s firtesito, 33, 1915, 702-10. 



CHAPTER IX. 
DIVISIBILITY OF FACTORIALS AND MULTINOMIAL COEFFICIENTS. 

Highest Power of a Prime Dividing ml 

Genty^ noted that the highest power of 2 dividing (2”)! is 2^”*“^ and the 
quotient is 3”“X5*7)"-2(9*1M3-15)"-’3(17.. .31)"*’^ . .(2"-l). In general 
if P = 2”'+2"*+.. .+2% where the n’s decrease, the highest power of 2 
dividing P! is 2^“’’. 

A. M. Legendre^ proved that if is the highest power of the prime p 
which divides 7n!, and if [x] denotes the greatest integer 

where s = ao+ ... +o^n is the sum of the digits of m to the base p: 

7n = aop'‘+Oip"“^+ ... +an (0^ai<p). 

Th. Bertram^ stated Legendre’s result in an equivalent form. 
H. Anton'* proved that, ifn=z;p+a, a<p, t;<p, and p is a prime, 

“!=(P-I)'a!»! (mod jj), 

while, if v = v'p+a', a <p, v<p, 

^p=(p —l)’’+*'a!a ! (mod p). 

D. Andr6® stated that the highest power p^ of the prime p dividing n! 
is given explicitly by and claimed that merely the method of 
finding p had been given earlier. He applied this result to prove that the 
product of n consecutive integers is divisible by nl. 

J. Neuberg® determined the least integer m such that ml is divisible by 
a given power of a prime, but overlooked exceptional cases. 

L. Stickelberger^ and K. Hensel^ gave the formula [cf. Anton'*]. 
w! 

(2) ^=(-l)%!aa!. . .aj (mod p). 

F. de Brun® wrote g[u] for the exponent of the highest power of the 
prime p dividing u. He gave expressions for 

^(n;fc)=n/, g[i{n-,k)] 

in terms of the functions h{a] k) = l*+2*+ • • • +ct^ A special case gives (1). 

^Hist. et M<5m. Ac. R. Sc. Inscript, et Belles Lettres de Toulouse, 3, 1788, 97-101 (read Dec. 4, 
1783). 

2Th<§orie des nombres, ed. 2, 1808, p. 8; ed. 3, 1830, I, p. 10. 
^Einige Satze aus der Zahlenlehre, Progr. Coin, Berlin, 1849, 18 pp. 
^Archiv Math. Phys., 49, 1869, 298-9. 
^Nouv. Ann. Math., (2), 13, 1874, 185. 
®Mathesis, 7, 1887, 68-69. Cf. A. J. Kerapner, Amer. Math. Monthly, 25, 1918, 204-10. 
’Math. Annalen, 37, 1890, 321. 
sArchiv Math. Phys., (3), 2, 1902, 294. 
"Arkiv for Matematik, Astr., Fysik, 5, 1904, No. 25 (French). 
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B-. D. CarmichaeP® treated the problem to find m, given the prime p 
and s^'Eai, in Legendre’s formula; a given solution m2 leads to an infinitude 
of solutions m2P^j k arbitrary. Again, to find m such that p”""* is the highest 
power of p>2 dividing m\, we have w—^ = (m—s)/(p —1), and see that m 
has a limited number of values; there is always at least one solution m. 

CarmichaeP^ used the notation H\y\ for the index of the highest power 
of the prime p dividing y, and evaluated 

h—H^ll{xa+c)^, 

where a, c are relatively prime positive integers. Set Co=c and let \ be 
the least integer such that ia+Vi is divisible by p, the quotient being c^. 
Let 

€1 r>l. 

Then /i=2(er+l), where t is the least subscript for which 
r = l 

Ct (a+Ct) (2a+c<)... (e<a+c<) 

is not divisible by p. It follows that 

where R is the index of the highest power of p not exceeding n—1. If n is a 
power of p, h={n-l)/{p — l). But if n = 5ifcp*+. • •+5ip+5o, and 
at least one further d is not zero, 

--^h^k'\--f o’ = 5^.+...+5o. 
p —1 p —1 

In case the first x for which xa+c is divisible by p gives c as the quotient, 
all the Cr are equal and hence all the tV; then 

h = —1—^ — ^p+P^J _j_ j^n —1 —f—^p—fp^+p^J 

The case a = c = 1 yields Legendre’s^ result. The case a = 2, c = 1, gives 

g ] 1-3-5 ■ ■. (2n-1) H + ■. • • 

E. Stridsberg^^ wrote Hm for (1) and considered 

7rf = a(a+w). . 

where a is any integer not divisible by the positive integer m. Let p be a 
prime not dividing m. Write a, for the residue of aj modulo m. He noted 
that, if pj=l (mod m). 

Amer. Math. Soc., 14, 1907-8, 74-77; Arner. Math. Monthly, 15, 1908, 15-17. 
15, 1908-9, 217. 

^*Arkiv for Matematik, Astr., Fyaik, 6, 1911, No. 34. 
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(p‘+‘a/+‘-a)/TO 

is an integer, and wrote L* for its residue modulo 

v=0 

Set 

^ L J 
He proved that 7r< is divisible by p% where s — If is the 
first one of the numbers tq, ti,. .. which is <p —1, is divisible by p®, 

/i = <r 

A- Cunningham^^ proved that if is the highest power of the prime z 
dividing p, the number of times p is a factor of p"! is the least of the 
numbers 

z-1 ’ 

for the various primes z dividing p. 
W. Janichen^^ stated and G. Szego proved that 

2p{n/d)v{d) =<^)(n)/(p~l), 

summed for the divisors d of n, where v(d) is the exponent of the highest 
power of p (a prime factor of n) which divides dl, for p as in Ch. XIX. 

Integral Quotients Involving Factorials. 

Th. Scbonemann^® proved, by use of symmetric functions of pth roots 
of unity, that if 5 is the g. c. d. of p, , 

^'^r,~l)!=iateger, (m=M+>'+ • ■ •). 
JJLIVI. . . 

He gave (p. 289) an arithmetical proof by showing that the fractions 
obtained by replacing 3 by p, j/,... are integers. 

A. Cauchy^® proved the last theorem and that 

(0+26+• • • —-1)! . . , 
-^=mteger, (m=a+.. .+/c). 

D. Andr6^° noted that, except when n = l, a = 4, n(n+l).. .(na — 1) is 
not or is divisible by a” according as a is a prime or not. 

E. Catalan^^ found by use of elliptic functions that 

! (2m)! (2n)! 

mini ’ m!n!(m+n)! 

are integers, provided m, n are relatively prime in the first fraction. 

i^L'interm^diaire des math., 19, 1912, 283-5. Text modified at suggestion of E. Maillet. 
i^Archiv Math. Phys., (3), 13,1908, 361; 24, 1916, 86-7. 
^8Jour. far Math., 19, 1839, 231-243. 
^’Comptes Rendus Paris, 12, 1841, 705-7; Oeuvres, (1), 6, 109. 
=*°Nouv. Ann. Math., (2), 11, 1872, 314. 

(2), 13, 1874, 207, 253. Arith. proofs, Amer. Math. Monthly, 18, 1911, 41-3. 
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P. Bachmann^^ gave arithmetical proofs of Catalan’s results. 
D. Andr^^® proved that, if ai,..have the sum N and if k of the a’s 

are not divisible by the integer > 1 which divides the greatest number of 
the a’s, then (N—k)\ is divisible by ai!.. .a„!. 

J. Bourguet^^ proved that, if A; ^2, 

(knii)! (k7n2)!... (knik)! . , 

mil.. .mkl (mi+.. .d-m*)! ^ 

M. Weill^^ proved that the multinomial coefficient (tq)! -j- (g!)^ is divisible 
by tl 

WeilP® stated that the following expression is an integer: 

(a-+-/3+ •.. +pgd-Pigi+ • . • +rst)! 

WeilP^ stated the special case that {a+fi+pq+rs)l is divisible by 
al^\(qiypl(sy)^rl 

D. Andr6^® proved that (tq)! is divisible by (^1)^ if for every prime 
p the sum of the digits of q to base p is ^ A;. 

Ch. Hermite^® proved that n\ divides 

m(m+A:)(m’|-2A:)... {m+(^-“l)A:}A:’‘'~^ 

C. de Polignac^® gave a simple proof of the theorem by WeilP® and 
expressed the generalization by Andr^^^ in another and more general form. 

E. Catalan®^ noted that, if s is the number of powers of 2 having the sum 

(2o)!(26)! 
a!6!(a+6)! 

is an even integer and the product of 2* by an odd number. 
E. Catalan^^ noted that, ii n = a-{-h+.. .+tj 

n\(n+t) 

a\h\...t\ 

is divisible by fl-f-i, ..., ..., a4-64"<^4"^, • • • • 
E. Ces^ro^^ stated and Neuberg proved that (”) is divisible by n(n—1) 

if p is prime to n(n —1), and p —1 prime to n —1; and divisible by (p+1) 
X (p+2) if p4-l i& prime to n+1, and p+2 is prime to (n-f-l)(n+2). 

22Zeitachrift Math. Phys., 20, 1875, 161-3. Die Elemente der Zahlentheorie, 1892, 37-39. 
“Bull. Soc. Math. France, 1, 1875, 84. 
“Nouv. Ann. Math., (2), 14, 1875, 89; be wrote r(n) incorrectly for nl; see p. 179. 
^KUomptes Rendus Paris, 93, 1881, 1066; Mathesis, 2, 1882, 48; 4, 1884, 20; Lucas, Th^orie 

des nombres, 1891, 365, ex. 3. Proof by induction, Amer. M. Monthly, 17, 1910, 147. 
“Bull. Soc. Math. France, 9, 1880-1, 172. Special case, Amer. M. Monthly, 23, 1916, 352-3. 
^^Mathesis, 2, 1882, 48; proof by Li^nard, 4, 1884, 20-23. 
2<3omptes Rendus Paris, 94, 1882, 426. 
2®Facult6 des Sc. de Paris, Coure de Hermite, 1882, 138; ed. 3, 1887, 175; ed. 4, 1891, 196. 

Cf. Catalan, M4m. Soc. Sc. de Li^ge, (2), 13, 1886, 262-4 ( = Melanges Math.); Heine.*®" 
'“Comptes Rendus Paris, 96,1883,485-7. Cf. Bachmann, Niedere Zahlentheorie, 1,1902,59-62, 
»Atti Accad, Pont. Nouvi Lincei, 37, 1883-4, 110-3. 
“Mathesis, 3, 1883, 48; proof by CeslLro, p. 118. 
“/bid., 5, 1885, 84. 
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E. Catalan^ noted that 

F. Gomes Teixeira^® discussed the result due to Weill.^® 
De Presle®® proved that 

(A;+l)(/b+2)...(A:+M) 

IKihiy 
- = integer, 

- = integer. 

being the product of an evident integer by (hl)l/{ll(hiy}, 
E. Catalan®^ noted that, if n is prime to 6, 

(2n~4)! 

7i!(n—2)! 

H. W. Lloyd Tanner^® proved that 

L. Gegenbauer stated and J. A. Gmeiner®® proved arithmetically that, 
if ri.=SjIiajia,2. • djHf the product 

m(m+k)(m+2k)... {m+(n—l)k]k"' ’’ 
is divisible by 

where w, /c, n, an,..., are positive integers. This gives Hermite’s^® 
result by taking r = s = 1. The case m = A; = l,s = 2, is included in the result 
by Weill.2® 

Heine®®" and A. Thue^® proved that a fraction, whose denominator is k\ 
and whose numerator is a product of k consecutive terms of an arithmetical 
progression, can always be reduced until the new denominator contains only 
such primes as divide the difference of the progression [a part of Her- 
mite^s^® result]. 

F. RogeP^ noted that, if P be the product of the primes between (p —1)/2 
and p+1, while n is any integer not divisible by the prime p, 

(n — l)(n —2). . .(n —p + l)P/p=0 (mod P). 

S. Pincherle^^ noted that, if n is a prime, 

P= (a:4-l)(a;-f 2). . .(rr-fn — l) 

is divisible by n and, if x is not divisible by n, by n!. If n = lip®, P is divisible 

^^Nouv. Ann. Math., (3), 4, 1885, 487. Proof by Landau, (4), 1, 1901, 282. 
«Archiv Math. Phys., (2), 2 1885, 265-8. Soc. Math. France, 16, 1887-8, 159. 
®’M6m. Soc. Roy. Sc. Lifege, (2), 15, 1888, 111 (M61anges Math. III). Mathesis, 9,1889, 170. 
»®Proc. London Math. Soc., 20, 1888-9, 287. =*®Monat8hefte Math. Phys., 1, 1890, 159-162. 
»9«Jour. fiir Math., 45, 1853, 287-8. Cf. Math. Quest. Educ. Times, 56, 1892, 62-63. 
*°Archiv for Math, og Natur., Kristiania, 14, 1890, 247-250. 
^^Archiv Math. Phys., (2), 10, 1891, 93. 
^^Rendiconto Sess. Accad. Sc. Istituto di Bologna, 1892-3, 17. 
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by n! if and only if divisible by where jS is the exponent of the power 
of p dividing (n —1)!. 

G. Bauer^® proved that the multinomial coefficient (n+^i+^2+• • 
'^[n\ni\..is an integer, and is even if two or more n’s are equal. 

E. Landau^^ generalized most of the preceding results. For integers 
O'iv hv each ^ 0, and positive integers Xj, set 

Then / is an integer if and only if 
m n 

2 2 Vi 
isxl <aal 

for all real values of the Xj for which 0^ X/^ 1. A new example is 

(4TO)!(4n)! ^ jT,tp<,pr 
m\n\ {2m+n)! (m+2n)! “•’^Ser. 

P. A. MacMahon^® treated the problem to find all a’s for which 

is an integer for all values of n; in particular, to find those ‘Aground forms’^ 
from which %11 the forms may be generated by multiplication. For m = 2, 
the ground forms have (ai, = (1, 0) or (1, 1). For m = 3, the additional 
ground forms are (1, 1, 1), (1, 2, 1), (1, 3, 1). For m=4, there are 3 new 
ground forms; for m = 5, 13 new. 

J. W. L. Glaisher^® noted that, if B^{x) is Bernoulli’s function, i. e., the 
polynomial expression in x for ...+ (a^—[Bernoulli^^®* 
of Ch. V], 

x{x-{-l).. .{x+p—l)/p=Bj,{x)—x (mod p). 

He gave (ibid,, 33, 1901, 29) related congruences involving the left member 
and jBp„i(a;). 

Glaisher^"^ noted that, if r is not divisible by the odd prime p, and 
l=kp+t, 0^t<p, 

l(7-+l)(2r+Z)...{(p-l)r+Z}/p=-||^^J +A:| (mod p), 

where [t/p]r denotes the least positive root of px^ t (mod r). The residues 
mod p^ of the same product l(r’^l)... are found to be complicated. 

E. Maillet^® gave a group of order ^1(5!)^ contained in the symmetric 
group on tq letters, whence follows Weill’s^® result. 

^^Sitzungsber. Ak. Wiss. Miincheii (Math.), 24, 1894, 346-8. 
«Nouv. Ann. Math., (3), 19, 1900, 344-362, 576; (4), 1,1901, 282; Archiv Math. Phys., (3), 1, 

1901, 138. Correction, Landau.®* 
«Trans. Cambr. PhU. Soc., 18, 1900, 12-34. 
®®Proc. London Math. Soc., 32, 1900, 172. 
47A/raac*oirfc nroT» QA *1 OAA_1 '71—00 
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M. Jenkins^®® counted in two ways the arrangements of n=(l>f-i-yg+... 
elements in cycles of / letters each, y cycles of g letters, ..., where/, g, ... 
are distinct integers > 1, and obtained the result 

\2l 3^4! nl)- 

C. de Polignac^® investigated at length the highest power of nl dividing 
(nx)!/(a;!)”. Let be the sum of the digits of n to base p. Then 

^(p 1); (xTl^p=^ Xp*7lp Jc (p 1), 

where k is the number of units ^'carried” in making the addition x+n, and ¥ 
the corresponding number for the multiphcation x-n. 

E. Schonbaum®^^ gave a simplified exposition of Landau^s first paper.*^^ 
S. K. Maitra®^ proved that (n—1) (2n — 1). .. {(n—2)n—1} is divisible by 

(n~ 1)! if and only if ti is a prime. 
E. Stridsberg^^ gave a very elementary proof of Hermite^s^® result. 
E. Landau®^ corrected an error in his^^ proof of the result in No. Ill of his 

paper, no use of which had been made elsewhere. 
Birkeland^® of Ch. XI noted that a product of 2^k consecutive odd in¬ 

tegers is^l (mod 2^). 
Among the proofs that binomial coefficients are integers may be cited 

those by: 

G. W. Leibniz, Math. Schriften, pub. by C. I. Gerhardt, 7, 1863, 10? 
B. Pascal, Oeuvres, 3, 1908, 278-282. 
Gioachino Pessuti, Memorie di Mat. Soc. Italiana, 11, 1804, 446. 
W. H. Miller, Jour, ftir Math., 13, 1835, 257. 
S. S. Greatheed, Cambr. Math. Jour., 1, 1839, 102, 112. 

Proofs that multinomial coefficients are integers were giveu 

C. F. Gauss, Disq. Arith., 1801, art. 41. 
Lionnet, Complement des elements d’arith., Paris, 1857, 52. 
V. A. Lebesgue, Nouv. Ann. Math., (2), 1, 1862, 219, 254. 

Factorials Dividing the Product op Differences 

H. W. Segar®° noted that the product of the differ' 
integers is divisible by (r —l)!(r—2)!.. .2!. For t 
integers 1, 2,..., n, r+1, the theorem shows that 
consecutive integers is divisible by n!. 

A. Cayley®^ used Segar’s theorem to prove that 

m{m—-n)... (w—r — ln)'^’' 

is divisible by r! if m, n are relatively prime [a part of L. 
Segar®^ gave another proof of his theorem. Applying 

««Quar. Jour. Math., 33,1902,17^9. Soc. Math. France, 32, 1904, 
®°Casopis, Prag, 34, 1905, 265-300 (Bohemian). 
“Math. Quest. Educat. Times, (2), 12, 1907, 84-5. 
“Acta Math., 33, 1910, 243. “Nouv. Ann. Math., (4), 13, 1913, 353-5. 
«°Messenger Math., 22, 1892-3, 59. “Messenger Math. 22, 1892-3, p. 186. Cf. j 

23,1893-4, 31. Results cited in l’interm6diaire des math., 2, 1895,132-3, 20Q; 
197; 8, 1901, 145. 
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a, a+iV',..we conclude that the product of their differences is 
divisible by n! (n—1)!... 2!=j/. But the product equals 

multiplied by a power of N, Hence, if N is prime to n!, P is divisible by v; 
in any case a least number X is found such that N'^P is divisible by v. It is 
shown that the product of the differences of mj,..is divisible by 
A;!(A; —1)!.. .2! if there be any integer p such that rrii+p,..nik+p are 
relatively prime to each of 1, 2,..., A;. It is proved that the product of any 
n distinct integers multiplied by the product of all their differences is a 
multiple of n!(n—1)!.. .2!. 

E. de Jonquieres®^ and E. J. Studnicka®^ proved the last theorem. 
E. B. Elhott®® proved Segar’s theorem in the form: The product of the 

differences of n distinct numbers is divisible by the product of the differences 
of 0, 1,..., n—1. He added the new theorems: The product of the 
differences of n distinct squares is divisible by the product of the differences 
of 0^ 1^..., (n—1)^; that for the squares of n distinct odd numbers, 
multiplied by the product of the n numbers, is divisible by the product of 
the differences of the squares of the first n odd numbers, multiplied by their 
product. 

Residues of Multinomial Coefficients. 

Leibniz^’ ^ of Ch. Ill noted that the coefficients in (Sa)^—are 
divisible by p, 

Ch. Babbage®^ proved that, if n is a prime, 1 is divisible by 
while -1 is divisible by p if and only if p is a prime. 
G. Libri^® noted that, if ?7i = 6p4“l is a prime, 

2e^-2+6p-l- ...=0 (mod m). 

E. Kummer^^ determined the highest power p^ of a prime p dividing 

A=ao+aip+. .. ~^aip\ B^ho+hip+ . .. -{‘hip\ 

where the and bi belong to the set 0, 1,.. p —1. We may determine 
Ci in this set and = 0 or 1 such that 

(3) ao+feo = €op4“Co, €oH-ai+&i = €ip4-Ci, €1+^24-62 = €2P+C2, 

Multiply the first equation by 1, the second by p, the third by p^, etc., and 
add. Thus 

__A+P = Co+CiP+. ■ •+CiP^+€fP^+h_ 

®3Comptes Rendus Paris, 120, 1895, 408-10, 534-7. 
MVestnik Ceske Ak., 7, 1898, No. 3, 165 (Bohemian). 
“Mesainger Math., 27, 1897-8, 12-15. 
'^Edinburgh Phil. Jour., 1, 1819, 46. 
^ojour. ftir Math., 9,1832,73. Proofs by Stern, 12,1834, 288. 

44, 1852, 115-6. Cayley, Math. Quest. Educ. Times, 10, 1868, 88-9. 
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Hence, by Legendre’s formula (1), 

— a=Sa<, y=I>Ci. 

Insert the value of a+P obtained by adding equations (3). Thus 

iV’=€o+€i+ . . . +Ci. 

A. Genocchi^^ proved that, if m is the sum of n integers a, 6,,.., each 
divisible by p —1, and if then m!-r [alhl.. .kl] is divisible by the 
prime p. 

J. Wolstenholme^® proved that (^"l}) = l(mod n^) if n is a prime >3. 
H. Anton^ (303-6) proved that if n = yp+a, r = 'Wjp+6, where a, h, v, w 

are all less than the prime p, 

p\rj p\ h J\ w J 
V (mod p), 

according as a^h or a<h, 
M. Jenkins^^® considered for an odd prime p the sum 

(r,= S 
Xm+n)r \ 
,mr+A;(p — 1)/’ 

extended over all the integers k between nr/(p—1) and —mrJ(p — l)j in¬ 
clusive, and proved that (mod p) if the g. c. d. of r, p — 1 equals that 
of p, p-1. 

E. Catalan"^^ noted that (”?_i)= l(mod p), if p is a prime. 
Ch.Hermite'^® proved by use of roots of unity that the odd prime p divides 

/2n+l\ I /2n+l\ , /2n-hl\ , 
yp-ir[2p-2r[sp-3)+- 

E. Lucas’^® noted that, if w=pmi+p, n=pni+Vj p<p, J'<p, and p is 
a prime. 

In general, if jui, M2> • •• denote the residues of m and the integers contained 
in the fractions m/p, m/p^,..., while the i^’s are the residues of n, [n/p],..., 

E. Lucas^^ proved the preceding results and 

C)-"' (”:')=<-«• 
according as n is between O and p, 0 and p —1, or 1 and p. 

72NOUV. Ann. Math., 14, 1855, 241-3. 
^3Quar. Jour. Math., 5, 1862, 35-9. For mod. n^ Math. Quest. Educ. Times, (2), 3, 1903, 33. 
^3«Math. Quest. Educ. Times, 12, 1869, 29. ^<Nouv. Corresp. Math., 1, 1874-5, 76. 
^®Jour. fiir Math., 81, 1876, 94. Soc. Math. France, 6, 1877-8, 52. 
77Amer. Jour. Math., 1, 1878, 229, 230. For the second, anon.« of Ch. Ill (in 1830). 
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J. Wolstenholme’^® noted that the highest power of 2 dividing 
is g—p —1, where q is the sum of the digits of 2m — l to base 2, and 2^ is the 
Mghest power of 2 dividing m. 

J. Petersen"^^ proved by Legendre^s formula that equals the 
product of the powers of all primes p, the exponent of p being (ta+tb—ta^b) 
‘v-(p--l), where ta is the sum of the digits of a to base p. 

E. Ces^o®*^ treated Kummer’s'^^ problem. He stated (Ex. 295) and 
Van den Broeck®^ proved that the exponent of the highest power of the 
prime p dividing („”) is the number of odd integers among [2n/p], [2n/p^], 
[2n/p%.... 

O. Schlomilch®^® stated in effect that (n+i) is divisible by n. 
E. Catalan®^ proved that if n is odd, 

Cn ) +10Cn-0^0 (mod n+2). 

W. J. C. Sharp®^® noted that {p-\-n)\—p\n\ is divisible by p^, if p is a 
prime >n. This follows also from ) = 1 (mod p) [Dickson®^]. 

L. Gegenbauer^ noted that, if <r is any integer, r one of the form 6s or 
3s according as n is odd or even, 

(^n) n+2). 

The case n odd, (r=2, t = 3, gives Catalan's result. 
E. Catalan^ proved Hermite's^^ theorem. 
Ch. Hermite®® stated that (n) is divisible by m—n+1 if w is divisible 

by n; by (m—n+lj/e if € is the g. c. d. of m+1 and n; by m/5, if 5 is 
the g. c. d. of m, n. 

E. Lucas®® noted that, if n^p —1, p—2, p—3, respectively, 

if p is a prime, and proved Hermite's^® result (p. 506). 
F. Rogel®^ proved Hermite’s^® theorem by use of Fermat's. 

^®Jour. de math. 416m. et sp4c., 1877-81, ex. 360. 
79Tidsskrift for Math., (4), 6, 1882, 138-143. 
80Mathesis, 4, 1884, 109-110. 

6, 1886, 179. 
®i“Zeitschrift Math. Naturw. XJnterricht, 17, 1886, 281. 
®2M4m. Soc. Roy. Sc. de Li4ge, (2), 13, 1886,237-241 (= M41anges Math.). Mathesis, 10, 1890, 

257-8. 
®2«Math. Quest. Educ. Times, 49, 1888, 74. 
®=^Sitzungsber. Ak. Wiss, Wien (Math.), 98,1889, Ha, 672. 
84M4m. Soc. Sc. Li4ge, (2), 15, 1888, 253-4 (M41anges Math. III). 
®®Jour. de math. sp4ciales, problems 257-8. Proofs by Catalan, ibid., 1889, 19-22; 1891, 70; 

by G. B. Mathews, Math. Quest. Educ. Times, 52, 1890, 63; by H. J. Woodall, 57, 
1892, 91. 

®®Th4orie des nombres, 1891, 420. s^Archiv Math. Phys., (2), 11, 1892, 81-3. 
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C. Szily®® noted that no prime >2a divides 

and specified the intervals in which its prime factors occur. 
F. Morley®® proved that, if p = 2n+l is a prime, ® —is 

divisible by if p>3. That it is divisible by was stated as an exercise 
in Mathews' Theory of Numbers, 1892, p. 318, Ex. 16. 

L. E. Dickson®^ extended Kummer's^^ results to a multinomial coefficient 
M and noted the useful corollary that it is not divisible by a given prime p 
if and only if the partition of m into Wi,..nit arises by the separate 
partition of each digit of m written to the base p into the corresponding 

. digits of Wi,..., mt. In this case he proved that 

^ n (“lOd P)’ OTfc = Oo'*y+ . . . 
t=0 di I • . . Oi I 

This also follows from (2) and from 

(a;i+... +xtr^ +xt)^{xi^+... ... +x/r. 
(mod p). 

F. Mertens®^ considered a prime p^n, the highest powers p' and 2" of 
p and 2 which are and set Then nl-^ {ni\n2l.. .nj} is 
divisible by lip’’, where p ranges over all the primes p. 

J. W. L. Glaisher®^ gave Dickson's®^ result for the case of binomial 
coefficients. He considered (349-60) their residues modulo p", and proved 
(pp. 361-6) that if (n)r denotes the number of combinations of n things r 
at a time, (mod p), where p is any prime, n any integer 
(mod p—1), while the summation extends over all positive integers r, 
r^n, r=k (mod p — 1), and j, k are any of the integers 1,..p —1. He 
evaluated l^[(n)r-^p] when r is any number divisible by p — 1, and {n)r is 
divisible by p, distinguishing three cases to obtain simple results. 

Dickson^® generalized Glaisher's®^ theorem to multinomial coefficients: 
Let k be that one of the numbers 1, 2,..., p — 1 to which m is congruent 
modulo p — 1, and let ki,..., kt be fixed numbers of that set such that 
ki+... +kt=k (mod p^ 1). Then if p is a prime. 

2 (mi, m2,.. 
mi,... ,mt 

, .,kt) if ki+ 
if ki+ 

+kt^k 
-{-kt>k 

(mod p), 

where 
(mi,.. mt) = 

(mi4' • • • +m^)! 
mi!.. .m^l 

The second of the two proofs given is much the simpler. 

®®Nouv. Ann. Math., (3), 12, 1S93, Exercices, p. 52* Proof, (4), 16, 1916, 39-42. 
8»Annals of Math., 9, 1895, 168-170. 
oo/bid., (1), 11, 1896-7. 75-6: Quart. Jour. Math., 33, 1902, 378-384. 
®^Sitzungsber. Ak. Wiss. Wien (Math.), 106, lla, 1897, 25^6. 
«2Quar. Jour. Math., 30, 1899, 150-6, 349-366. 
«3/6id., 33, 1902, 381-4. 
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Glaisher^ discussed the residues modulo of binomial coefficients. 
T. Hayashi®® proved that if p is a prime and iu+j'=p, 

according as 0<s^p, i'<s<p, or s=0. 
T. Hayashi®® proved that, if Zq is the least positive residue of I modulo p, 

and if v=p—ti) 

modulo p. Special cases of the first result had been given by Lucas.®® 
A. Cunningham®^ proved that, if p is a prime, 

(^“^^ = (-1)* (mod p), (mod p^, p>3). 

B. Earn®® noted that, if Q, m=l,..., n—l, have a common factor 
a>l, then a is a prime and n=a^ There is at most one prime <n which 
does not divide HO for m = l,..n—2, and then only when n+l = ga*‘, 
where a is a prime and g<o. For m = 0, 1,..n, the number of odd Q 
is always a power of 2. 

P. Bachmann®® proved that, if h{p—l) is the greatest multiple <Aj of 

C^)'*‘(2(p-i))+- • •+G(p-i))"® p)’ 

the case k odd being due to Hermite.^® 
G. Fonten6 stated and L. Grosschmid^®® proved that 

= P=p“, aSO. 

A. Fleck^®^ proved that, if 0^p<p, (mod p), 

iC+<““■ "•>- 
N. Nielsen^®^ proved Bachmann^s®® result by use of Bernoulli numbers. 

wQuar. Jour. Math., 31,1900, 110-124. 
“Jour, of the Physics School in Tokio, 10,1901,391-2; Abh. Geschichte Math. Wiss., 28,1910 

20-28. 
“Archiv Math. Phys., (3), 5,1903, 67-9. 
®^Math. Quest. Educat. Times, (2), 12, 1907, 94r-5. 
“Jour, of the Indian Math. Club, Madraa, 1, 1909, 39-43. 
®®Niedere Zahlentheorie, II, 1910, 46. 

^“Nouv. Ann. Math., (4), 13, 1913, 521-4. 
lo^Sitzungs. Berlin Math. Gesell., 13, 1913-4, 2-6. Cf. H. Kapferer, Archiv Math. Phys 

(3), 23, 1915, 122. 
^“Annali di mat., (3), 22, 1914, 253. 
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A. Fleck^°® proved that 

(:) (“t‘) (“t^) (5).. („i,)(mod 

if and only if p is a prime. The case a=1 is Wilson’s theorem. 
Gu^rin^®^ asked if Wolstenholme’s^^ result is new and added that 

(modp^), p prime >3. 

The Congruence 1-2-3.. .(p-l)/2= ±1 (mod p). 

J. L. Lagrange^^® noted that p—1, p—2,..., (p4’l)/2 are congruent 
modulo p to —1, ^2,..., — (p—1)/2, respectively, so that Wilson’s 
theorem gives 

(4) (l-2-3.. (mod p). 

For p a prime of the form 4n+3, he noted that 

(5) l-2-3...^sd=i (modp). 

E. Waring^^^ and an anonymous writer^^^ derived (4) in the same manner. 
G. L. Dirichlet^^^ noted that, since —1 is a non-residue of p=4n-}-3, the 

sign in (5) is + or —, according as the left member is a quadratic residue or 
non-residue of p. Hence if m is the number of quadratic non-residues 
<p/2 of p, 

l-2-3...^=(-l)’” (modp). 

C. G. J. Jacobi^^^ observed that, for p>3, m is of the same parity as iV, 
where 2i\r—1 = (Q—F)/p, P being the sum of the least positive quadratic 
residues of p, and Q that of the non-residues. Writing the quadratic 
residues in the form ^kj —1), let m be the number of negative 
terms — and —T their sum. Since —1 is a non-residue, m is the number 
of non-residues < ip and 

S(=i=/c)=^p, F=:S(+A:)+S(p-A:)=wp-l-^p, 

P+Q = H- .. .+p-l = ^^^, 22V-l = ^-y=^-2(m+S). 

Since p==4n-|-3, N = n-{-l—m — S. But n+1 and S are of the same parity 
since 

pS+2T:=l+2+ ... 4-i(p-1) 1) = (2n+l)(n+l). 

i“Sitzun.g8. Berlin Math. GeselL, 15, 1915, 7-8. 
I'^L’interm^diaire des math., 23, 19i6, 174. 
i^oNouv. M6m. Ac. Berlin, 2, 1773, ann^e 1771, 125; Oeuvres, 3, 432. 
“^Meditat. Algebr., 1770, 218; ed. 3, 1782, 380. 
“*Jour, fiir Math., 6, 1830, 105. 

3, 1828, 407-8; Werke, 1, 107. Cf. Lucas, Th^orie des nombres, 438; rinterm^diaire 
des math., 7, 1900, 347. 

iw/bid., 9,1832,189-92; Werke, 6, 240-4. 
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He stated empirically that N is the number of reduced forms ay'^+hyz+cz^j 
4ac—6^=2? for h odd, for h even, where 6<a, 6<c. 

C. F. Arndt^^® proved in two ways that the product of all integers 
relatively prime to or 2p", and not exceeding (M—1)/2, is ==«=1 
(mod M), when p is a prime 4^+3, the sign being + or — according as the 
number of residues >ilf/2 of M is even or odd. Again, 

(1-3-5-7.. .(p—2)}^^=*=! (modp), 

the sign being + or — according as the prime p is of the form 4n+3 or 
4n+l. In the first case, 1-3... (p —2)= =*= 1 (mod p). 

L. Kronecker^^® obtained, for Dixichlet's^^^ exponent w, the result m=v 
(mod 2), where v is the number of positive integers of the form in 
the set p-'2^, p—4^, p—6^ • and g is a prime not dividing r. Liou- 
ville (p. 267) gave (mod 2), when p = 8^+3 and y" is the number 
of positive integers of the form in the set p—4^, p—8^, p —12^,— 

J. Liouville^^"^ gave the result m=(r+T (mod 2), for the case p = 8^+3, 
where r is the number of positive integers of the form (q a prime not 
dividing r) in the set p-~l^ p—3^, p~-5^,..., and cr is the number of equal 
or distinct primes 4^+1 dividing 6, where p = a^+26^ (uniquely). 

A. Korkine^^® stated that, if [x] is the greatest integer 

(mod p). 

J. FraneP^® proved the last result by use of Legendre's symbol and 

©=<-)■■ -T[f] 
M. Lerch^^® obtained Jacobi’result. 
H. S. Vandiver^^°“ proved Dirichlet’s^^® result and that 

(P-1)/2| 

m= S I 
LPJ 

(mod 2). 

R. D. CarmichaeF^^ noted that (4) holds if and only if p is a prime. 
E. Malo^^^ considered the residue =J=r of 1*2...(p —1)/2 modulo p, 

where p is a prime 4m+l, and 0<r<p/2. Thus —1. The numbers 
2, 3,..., (p —1)/2, with r excluded, may be paired so that the product 
of the two of a pair is ^=*=1 (mod p). If this sign is minus for k pairs, 
1*2,..(p~l)/2=(—1)V (mod p). 

*J. Ouspensky gave a rule to find the sign in (5). 

Other Congruences Involving Factorials. 

V. Bouniakowsky^^® noted that (p —1) !=PP', P±P'=0 (mod p) accord¬ 
ing as p=4A;=f1. For, if p is a primitive root of p, we may set P = pp^ 

ii®Archiv Math. Phys., 2, 1842, 32, 34-35. ^^o^Amer. Math. Monthly, 11, 1904, 51-6. 
iiejour. de Math., (2), 5, 1860, 127. ^^Ubid., 12, 1905, 106-8. 
^Uhid., 128. ^^I/interin6diaire des math., 13, 1906, 131-2 
ii8L’mterm6diaire des math., 1, 1894, 95. Soc. Phys. Math. Kasan, (2), 21. 

2, 1895, 35-37. Ac. Sc. St. P5tersbourg, (6), 1, 1831, 564. 
i2°Prag Sitzungsber. (Math.), 1898, No. 2, 
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P'=p'+i...pp-^ with i = (p~l)/2, when p=4A;-l; but P=pp^~i 
pV“^- • •; P' = pV ^ pV"^- • •, when p=4A;+l. 

G. Oltramare^^® gave several algebraic series for the reciprocal of the 
binomial coejfficient and concluded that, if the moduli are primes, 

I+(m!)*.-2{(l) +(1|) + .. j („„d 4„+i), 

2.+(„!).. ...} („.d4»+3). 

V. Bouniakowsky^®^ considered the integers ^i,.q^, each <N and 
prime to N, arranged in ascending order of magnitude. If X is any chosen 
integer multiply 

Qs^N-Qu qs^i = N-q2,.,.y g,_x+i=iV-gx 

together and multiply the resulting equation by . .g,_x. Apply the 
generalized Wilson theorem ?i-. .g«+(—1)^=0 (mod N). Hence 

Q1Q2 - • .g8-x+(-“l)^''’^=0 (mod N). 

For N a prime, we have s=N—l and 

X!(W-l-X)!+(-l)^=0 (mod A) (l^XgW-l). 

C. A. Laisant and E. Beaujeux^^^ gave the last result and 

F. G. Teixeira^^® proved that if a=2^P“V"’Cij a<2p —1, 

a(a+l).. .(a+2p~l)=32-5".. .(2p-l)2p 
(mod a+a+l+a+2+ ... +a+2p —1). 

Thus, for p = 3, a = l, a = 95, 

95-96*97-98-99-100-3'-52-3 (mod 585 = 95+...+100). 

M. Vecchi^^^ noted that the final formula by Bouniakowsky^^^ follows 
by induction. Taking X = (iV—1)/2, we get Lagrange’s formula (4). 
From the latter, we get 

{3-5-7... (22/-1)}^{(Ez|^) !j/22.= (_l)^ (mod p). 

The case y={p — l)/2 gives Arndt’s^^® result 
p+i 

(6) {3-5-7...(p-2)}2^(^l)— (modp). 

Vecchi^^^ proved that, if v is the number of odd quadratic non-residues 
of a prime p = 4n+3, then 1-3-5...(p—2)=( —1)" (mod p). If p is the 
number of non-residues <p/2, 1-3-5. , . (p~2)= ( —(modp). 

de Tlnstitut Nat. Genevois, 4, 1856, ^^sjomal de Sciencias Math, e Astr., 3, 1881, 
33-6. 105-115. 

w^Bull. Ac. Sc. St. Ptosbourp, 15, 1857,202-5. “^Periodico di Mat., 16, 1901, 22-4. 
^«Nouv. Corresp. Math., 5, 1879, 156 (177). 22, 1907, 285-8. 
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R. D. Carmichael^^^ proved that, if a+1 and 2a+l are both primes, 
(a!)^—1 is divisible by (a+l)(2a+l), and conversely. 

A. Ar4valo^^® proved (6) and Lucas*^^ residues of binomial coefficients. 
N. G. W. H, Beeger^^^ proved that [if p is a prime] 

(p~l)!+l^s~-p+l (modp^), 5 = 1+2*'“^+.. = 

where /i is a Bernoulli number defined by the symbolical equation (h+iy 
hi-1/2. By use of Adams’^^^'^ table of hi, i<114, it was verified 

that p = 5, p = 13 are the only p<114 for which (p — l)!+l=0 (mod p^). 
T. E. Mason^^® and J. M. CMld^®® noted that, if p is a prime >3, 

(np)!=n!(p!)” (mod 

N. Nielsen^^® proved that, if p = 2n+l, P=l-3*5... (2n--l), 

P2s(-l)«22"(2n)! (modp2), 
(-.1)^2« p2^22".3*5... (4n-l) (mod 16n^). 

If p is a prime >3, P=( —l)"'2®^n! (mod p®). He gave the last result 
also elsewhere. 

C. I. Marks^^^ found the smallest integer x such that 2*4... (2n)a; is di¬ 
visible by 3*5... (2n—1). 

^“Revista de la Sociedad Mat. Espafiola, 2, 
1913,130-1. 

“^Messenger Math., 43, 1913-4, 83-4. 
i”<»Jour. fiir Math., 85, 1878, 269-72. 
w8T6hoku Math. Jour., 5,1914, 137. 

^*®Math. Quest. Educat. Times, 26, 1914, 19. 
i<®AimaIi di mat., (3), 22, 1914, 81-2. 

Danske Vidensk. Selsk. Skrifter, (7), 10 
1913, 353. 

w*Math. Quest. Educ. Times, 21, 1912, 84-6. 



CHAPTER X. 
SUM AND NUMBER OF DIVISORS. 

The sum of the kth powers of the divisors of n will be designated <Tu{n) 
Ofteno-(n) will be used for <ri(n),and rin) for the number oro(n)of the divisors 
of n; also, 

T(n)-r(l)+r(2) + ...+r(n). 

The early papers in which occur the formulas for r (n) and o'(n) were cited 
in Chapter 11. 

L. Euler^’2'^ applied to the theory of partitions the formula 

(1) p(x)=n(l—x*)=s=l—a;—.... 
jfc=i 

Euler^ verified for n<300 that 

(2) o-(n)=o'(n—l)+or(n—2)“-(r(n—5)—<r(n —7)+o'(n —12)+.. 

in which two successive plus signs alternate with two successive minus 
signs, while the differences of 1, 2, 5, 7, 12,... are 1, 3, 2, 5, 3, 7,..the 
alternate ones being 1, 2, 3, 4,... and the others being the successive odd 
numbers. He stated that (2) can be derived from (1). 

Euler^ noted that the numbers subtracted from n in (2) are pentagonal 
numbers {Zx^—x)/2 for positive and negative integers a;, and that if o-(n--n) 
occurs it is to be replaced by n. He was led to the law of the series 5 by 
multiplying together the earlier factors of p(a;), but had no proof at that 
time that p=s. Comparing the derivatives of the logarithms of p and s, 
he found for —xdp/{pdx) the two expressions equated in 

^ nx^ x+2x^-5x^-7x’^+12x^^+. . . 
Co; ^ =-- 

n-i 1—a: s 

He verified for a few terms that the expansion of the left member is 

(4) S xV(w). 
n»l 

Multiplying the latter by the series s and equating the product to the numer¬ 
ator of the right member of (3), he obtained (2) from the coefficients of x”. 

Euler® proved (1) by induction. To prove (2), multiply the left member 
of (3) by —dxfx and integrate. He obtained log p(x) and hence log s, 
and then (3) by differentiation. 

^Letter to D. Bernoulli, Jan. 28, 1741, Corresp. Math. Phys. (ed. Fuss), II, 1843, 467. 
^Euler, Introductio in Analysin Infinitorum, 1748, I, ch. 16. 
®Novi Comm. Ac. Petrop,, 3, 1750-1, 125; Comm. Arith., 1, 91. 
^Letter to Goldbach, Apr. 1, 1747, Corresp. Math. Phys. (ed. Fuss), I, 1843, 407. 
‘Posth. paper of 1747, Comm. Arith., 2, 639; Opera postuma, 1,1862,70-84. Novi Comm. Ac. 

Petrop., 5, ad aonos 1754-5, 59-74; Comm. Arith., 1, 146-154. 
'Letter to Goldbach, June 9, 1750, Corresp. Math. Phys. (ed. Fuss), I, 1843, 521-4. Novi 

Comm. Ac. Petrop., 5, 1754-5, 75-83; Acta Ac. Petrop., 41, 1780, 47, 56; Comm. Arith., 
1, 234-8; 2, 105. Cf. Bachmann, Die Analytische Zahlentheorie, 1894, 13-29. 
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Material on (1) will be given in the chapter on partitions in Vol. II. 
J. H. Lambert/ by expanding the terms by simple division, obtained 

s j^=x+23i?+2x^+^x^+ .. 
na=l Jl — X 

in which the coefficient of is t(7i) . Similarly, he obtained (4) from the left 
member of (3). 

E. Waring® reproduced Euler's® proof of (2). 
E. Waring® employed the identity 

the coefficient of for ?;^n, being ( — 1)* if v — (Si^=tzz)/2 and zero if v is 
not of that form. If m^n, the sum of the mth powers of the roots of 
il==0 is (r(?n). Thus (2) follows from Newton's identities between the 
coefficients and sums of powers of the roots. He deduced 

(5) 1 ^(2) I ‘ni(.m-l){m-2) m(m-l)(m-2)im-3) 
2 3 4: 

OT(m —1)(ot—2)(m—3), 
2-2^ ' 

rmv c-mlj 

where c= =±= 1 or 0 is the coefficient of in series A, Let 

n(x"-l) ... =A', 

where p ranges over the primes 1, 2, 3, 5,..., n. If mgn, the sum of the 
mth powers of the roots of A' = 0 equals the sum a\m) of the prime divisors 
of m. Thus 

(7'(m) =(r'(m -1)+(7'(m - 2) - o-'(m-4)~ 8)+a'(m -10)+fr'(m — 11) 
—a'{m — 12) —or'(m —16)+ .... 

We obtain (5) with <r replaced by (t', and c by the coefficient of in series 
A'. Consider 

y=i 

with coefficients as in series A. The sum of the (Im)th. powers of the roots 
of 5 = 0 equals the sum (m) of those divisors of m which are multiples of 1. 
Thus 

(T® (m) = 0-^^^ (m — 1) +0-^^^ (m — 21) — (m — 5Z) — . .., 

with the same laws as (2). The sum of those divisors of m which are divisible 

^Anlage zur Architectonic, oder Theorie des Ersten und des Einfachen in der phil. und math. 
Erkenntmss, Riga, 1771, 507. Quoted by Glaisher.^s 

*Meditationes Algebraic®, ed. 3, 1782, 345. 
»Phil. Trans. Roy. Soc. London, 78, 1788, 388-394. 
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by the relatively prime numbers a, b, c,... is 

(w) (m) (w) - . . .. 

Waring noted that cr{a0) —acrOS) + (sum of those divisors of jS which are not 
divisible by a). Similarly, 

<r(afiy.. .)=a(T(fiy,..) 4-(sum of divisors of .. not divisible by a) 
= aPar{yd. ..) + (sum of divisors oi py... not divisible by a) 

+a(sum of divisors of 76. .. not divisible by /§), 

etc. Again, = a(T^^\P) + (sum of divisors of 0 divisible by I but not 
by a). The generalization is similar to that just given for a. 

C. G. J. Jacobi^® proved for the series s in (1) that 

s" = l-3x+5x"-7x®+...= I 
n-O 

Jacobi^ ^ considered the excess E(n) of the number of divisors of the 
form 4m+1 of n over the number of divisors of the form 4m+3 of n. If 
n—2^uv, where each prime factor of u is of the form 4m+1 and each prime 
factor of V is of the form 4m+3, he stated that E(n)—{) unless y is a square, 
and then E(n) =t(u). 

Jacobi^^ proved the identity 

(6) (l+x+x^+... +a;^tw)/2_|_ .)4 = i+^(3)3;+ ^, +o.(2n+i)a;'^+.... 

A. M. Legendre^® proved (1). 
G. L. Dirichlet^'^ noted that the mean (mittlerer Werth) of a(n) is ir^n/Q 

— 1/2, that of r(n) is log ?z+2C, where C is Euler’s constant 0.57721. . . . 
He stated the approximations to T(n) and ^(n), proved later^’’, without ob¬ 
taining the order of magnitude of the error. 

Dirichlet^® expressed m in all ways as a product of a square by a com¬ 
plementary factor e, denoted by v the number of distinct primes dividing €, 
and proved that S 2" = r (m). 

Stern^®® proved (2) by expanding the logarithm of (1). If C'n is the 
number of all combinations with repetitions with the sum n, 

(T(n) = nC'n — C'ia(n — 1) — —2) — .... 

Let S(n) be the sum of the even divisors of n. Then, by (1), 

S(2n) = 8(2n -2) +S(2n -4) -S(2n -10) -8(2n -14) + . .., S(0)= 2n. 

i°Fundainenta Nova, 1829, § 66, (7); W'erke, 1, 237. Jour, fiir Math., 21, 1840, 13; French 
transl.. Jour, de Math, 7, 1842, 85; Werke, 6, 281. Cf. Bachmann,® pp. 31-7. 

mid., §40; Werke, 1, 1881, 163. 
i^Attributed to Jacobi by Bouniakowskyi® without reference. See Legendre (1828) and 

Plana (1863) in the chapter on polygonal numbers, vol. 2. 
“Th^orie dee nombres, ed. 3, 1830, vol. 2, 128. 
MJour. fur Math., 18, 1838, 273; Bericht Berlin Ak., 1838, 13-15; Werke, 1, 373, 351-6. 
^Uhid., 21, 1840, 4. Zahlentheorie, § 124. 

177-192. 
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Let S'(n) be the sum of the odd divisors of n, and C„ be the number of all 
combinations without repetitions with the sum n, so that €7 = 5. Then 

S’(n) =nC„-S'{n-l)Ci-S'(n-2)C2+.. 

D{n) = -D(n-1)-D(n-3)-Din-6)D(n) =S'(n)-S{n). 

A complicated recursion formula for T(n)is derived from 

log{(l-a:)(l-a:')*(l-a:3)‘..- f 

Complicated recursion formulas are foxmd for the number of integers 
<m not factors of m, and for the sum of these integers. A recursion 
formula for the sum Sr(n) of the divisors of n is obtained by expanding 

log {l-a:)(l-a:2). ..(l-af)) = - S 
n*in 

Jacobi^® proved (1). 
Dirichlet^^ obtained approximations to T(n). An integer occurs 

in as many terms of this sum as there are multiples of s among 1, 2,..., n. 
The number of these multiples is [n/s\ the greatest integer ^n/s. Hence 

This sum is approximately the product of n by 

■ f i=log«+C+A+.... 

Hence Tin) is of the same order of magnitude as n log n. 
Let fji be the least integer and set j' = [n/yLt]. Then if gix) is any 

fimction and Gix) =gil)+gi2)+... +gix), 

In particular, if ^(a;) = 1, 

««iLsJ #=iLsJ 

Giving to [n/s] the approximation n/s, we see that 

(J) T{n)=n logen+(2C-l)n+c, 

where c is of the same order of magnitude as Vn. 
Let p{n) be the number of distinct prime factors >1 of n. Then 2"^”^ is 

the number of ways of factoring n into two relatively prime factors, taking 

“Jour, fur Math., 32, 1846, 164; 37, 1848, 67, 73. 
^’Abhand Ak Wiss. Berlin, 1849, Math., 69-83; Werke, 2, 4M6. French transl.. Jour, de 

Math., (2), 1, 1856, 353-370. 
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account of the order of the factors. The number of pairs of relatively prime 
integers rj for which is therefore 

i-i 

For the preceding C and Tin), it is proved that 

T{n) = t={\'n], 

f(n)=§(log.fi+^^+2C-l)+m, 
TT TT ,«2 S 

where m is of the order of magnitude of n*, 6 >7/2, while 7 is determined by 
Ss'^=l (s = 2 to 00). Moreover, Tin) is the number of pairs of integers 
X, y for which xySn, He noted that 

<r(l) +<r(2) +... +<r(n) =2)8^1 
«-i LsJ 

and that the difference between this sum and 7rW/12 is of an order of magni¬ 
tude not exceeding n loge n. 

G. H. Burhenne^® proved by use of infinite series that 

and then expressed the result as a trigonometric series. 
V. Bouniakowsky^® changed x into x® in (6), multiplied the result by x^ 

and obtained 

(x^+x^’+x® +.. .)^==a?H<r(3)x'2^... +(r(2m+l):r®”‘'^^+ .... 

Thus every number 8m+4 is a sum of four odd squares in (7(2m+l) ways. 
By comparing coefficients in the logarithmic derivative, we get 

(8) (1^—2m+l)(r(2m+l) + (3^—2m —l)(r(2w —1) + (5^—2m--5)(r(2m—5) 
+ .. .=0, 

in which the successive differences of the arguments of <t are 2, 4, 6, 8,.... 
For any integer N, 

(9) (l2--N)(r(N) + (3"--iV^=T2)(r(N-^ 
+... =0, 

where (r(0), if it occurs, means N/6. It is proved (p. 269) by use of Jacobi^s^® 
result for that 

l+x+x^+3^+... (i+a;')(l+x^)(l+a:^)... 
p(x) 

_(l-x^)(l-x^)(l-x^)..., 

“Archiv Math. Phys., 19, 1852, 442-9, 
Ac. Sc, St. P^tersbourg (Sc. Math. Phys.), (Q), 4, 1850, 259-295 (presented, 1848). 

Extract in Bulletin, 7, 170 and 15, 1857, 267-9. 



284 History of the Theory of Numbers. [Chap. X 

where the exponents in the series are triangular numbers. Hence if we 
count the number of ways in which n can be formed as a sum of different 
terms from 1, 2, 3,... together with different terms from 2, 4, 6,..first 
taking an even number of the latter and second an odd number, the differ¬ 
ence of the counts is 1 or 0 according as n is a triangular number or not. 
It is proved that 

(10) o'(n) + {(r(2) —4(r(l)} —2) +o’(3)(r(n—4) -f {cr (4) —4(7(2) }<r(n—6) 

+<r(5)(r(n-8) + {<r(6)-4o-(3))(r(n-10) + ... =^^^(n+2). 
O 

The fact that the second member must be an integer is generalized as 
follows: for n odd, <r{n) is even or odd according as n is not or is a square; 
for n even, (r(n) is even if n is not a square or the double of a square, odd in the 
contrary case. Hence squares and their doubles are the only integers whose 
sums of divisors are odd. 

V. Bouniakowsky^® proved that (x{N)^2 (mod 4) only when N=kc^ or 
2kc^, where ^ is a prime 4^+1 [corrected by Liouville^®]. 

V. A. Lebesgue^^ denoted by l+AiX-{-A2X^-h... the expansion of the 
mth power of p(x), given by (1), and proved, by the method used by Euler 
for the case m = 1, that 

(r(n)+Ai(r(n—1)+A2(r(n—2)+... +An-ic{l)+nAJm = Q, 

This recursion formula gives 

Ai= —m. ^ _m(w-“3) ^ —w(m—l)(m—8) 

The expression for A* was not found. 
E. MeisseP^ proved that (c/. Dirichlet^^) 

(11) ("“[Vi]). 

J. Liouville^^ noted that by taking the derivative of the logarithm of 
each member of (6) we get the formula, equivalent to (8): 

s|n-^y^^+^^j<r(2n+l-w^—w) =0, 

summed for m = 0, 1,..., the argument of a remaining ^ 0. 
J. Liouville^^ stated that it is easily shown that 

S(i<r(d) =s(^)V(d), 

2°M6m. Ac. Sc. St. P^tersbourg, (6), 5, 1853, 303-322. 
^iNouv. Ann. Math., 12,1853, 232-4. 
“Jour, fiir Math., 48, 1854, 306. 
“Jour, de Math., (2), 1, 1856, 349-350 (2, 1857, 412). 
^Ihid., (2), 2, 1857, 56j Nouv. Ann. Math., 16,1857,181: proof by J. J. Hemmizig, ibid., (2), 4, 

1865, 547. 
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where d ranges over the divisors of m. He proved (p. 411) that 

S(-l)”*/‘'d=2<r(w/2) -<r(7»). 

J. Liouville“ stated without proof the following formulas, in which d 
ranges over all the divisors of m, while 5=m/d: 

S(r((i)=S5r(d), Sd>(d)r(5) =<r(m), Sfl(d)r(5) = {r(m)}^ 

S(r(d)<r(3) =Sdr(d)r(3), Sr(d)T(5) 

where <t)(d) is the number of integers < d and prime to d, 6{d) is the number of 
decompositions of d into two relatively prime factors, and the accent on 2 
denotes that the summation extends only over the square divisors of m. 
He gave (p. 184) 

Sfl(d)=r(m^), S'e(p)=T(m), 

the latter being implied in a result due to Dirichlet.^^ 
Liouville^® gave the formulas, numbered (a),..(k) by him, in which 

X(77^) = +1 or —1, according as the total number of equal or distinct prime 
factors of m is even or odd: 

hrid^^) =T(m)r(w^), =2r(d)T(dO, 2<j!>(5)(r(d) =mT(m), 

S5(r(d) =2dr(d), 2X(d) = 1 or 0, SX(d)(9(d)T(5) = 1 or 0, 

according as m is or is not a square; 

2X(d)(?(d)r(52) ^ 2X(d)l?(d) =X(m), SX(d)(?(5) = 1, 

SX(d)e(d)(?(S) = 0, SX(3)(r((i) = mS'^- 

The number of square divisors of m is SX((i)T(3). 
Liouville” gave the formulas, numbered I-XVIII by him: 

ST(5^)<;)(d)=S50(d), 

ST(8^X((i) =T(m), 

2(^.(d)T(3)T(5'‘) =2dr(52'‘), 

2T(8='‘)<^(<i) =S5T(d)T((i‘‘), 

S'e(D)r(5) =S'r(D=)3(g) 

2X(8)r(d)T(d'‘)=2'r(gJ-;). 

2dr(8'') =28(8)(r(d), 

2{T(8)pX(d)8(d)=T(m), 

2fl(8)T(d)r((i'‘) =2T(82)r((i='‘), 

S'.#.(D)r(§)=2'D8(5), 

2V(D)rW(§)sV(D^'')r= (§), 

2X(d)cr((i)=mX(m)2'i> 

“Jour. deMath^matiquea, (2), 2,1857,141-4. “Sur quelques fonctions num^riques,” 1st article. 
Here Sabc denotes S(o6c). 

“Jbid., 244-8, second article of his series. 
^Uhid., 377-384, third article of his seriea 
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r\(D)r(0) =S‘'o(p)' S{(?(d)}'‘=T(OTn, 

S(/>(3)T(d'^) =S8 {e(d)}", 2 {0(d) }"t(5) =2T(d=^) = r(m)T(m^~^), 

2T(<r)e(S) =2{0(d)}'‘T(«^), 2T(<nMS) =s'{<?(5)}> 

where, in S", e ranges over the biquadrate divisors of m. 
Liouville^® gave the formula 

2(T(d)}^={2T(d)}^ 

which implies that if 2m (m odd) has no factor of the form 4jLt+3 and if we 
find the number of decompositions of each of its even factors as a sum of 
two odd squares, the sum of the cubes of the numbers of decompositions 
found will equal thesquare of their sum. Thus, for m=25, 

50 = 1^+72=: 72+12 = 52+52, 10 = 32+12 = 12+32, 2 = 1+1, 

whence 32+2^+l^ = 62. 
Liouville22 stated that, if a, 6,... are relatively prime in pairs, 

(rn(cib...)=o-„(a)(r„(b)..., 

while if p, g,... are distinct primes. 

P”~l 

He stated the formulas 

g»»0J+l) 1 

g’‘~l * * ** 

l^<r^{d)ct>{8) =m(T^^i(m)y SdX(5) =Sd*'<T,,(5), 

l\{d)r((P)<x,(8) =Sd^T(5)X(3), 'Ld^<r,(8) =Sd'^r(d), 

SdV,(d) =252x(d), SdVs.CS) 

2d“(r^,(d)<r.(S) =2d'<r,+,(d)<r,(5), 2X(d)o-,(5) =2'(j)" 

2T(d"'‘)(rX5) =2d‘'T(5)T(0'‘), 2 {0(d)} V,.(5) =2d'‘T(0, 

and various special cases of them. To the seventh of these Liouville^® later 
gave several forms, one being the case p = 0 of 

and proved (p. 84) the known theorem that a(m) is odd if and only if m is a 
square or the double of a square [c/. Bouniakowsky,^^ end]. He proved that 
a(iV’)=2 (mod 4) if and only if N is the product of a prime 4X+1, raised to 
the power 42+1 (2^0), by a square or by the double of a square not divis- 

’*Joiir. de Math4matiques, (2), 2, 1857, 393-6; Comptes Rendus Paris, 44, 1857, 753. 
“/bid., 425-432, fourth article of his series, 
mid., (2), 3, 1858, 63. 
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ible by the prime 4X+1. The condition given by Bouniakowsky^’^ is neces¬ 
sary, but not sufficient. Also, 

(Tzim) = S (7(2^—lV(2w—2j+l) (m odd). 

J. Liouville’s series of 18 articles, “Sur quelques formules.. .utiles dans la 
th4orie des nombres,’’ in Jour, de Math., 1858-1865, involve the function 
(Tn, but will be reported on in volume II of this History in connection with 
sums of squares. A paper of 1860 by ICronecker will be considered in 
connection with one by Hermite.’^® 

C. Traub^^ investigated the number {N; M, t) of divisors T of N which 
are = t (mod M), where M is prime to t and N, Let a, 6,..., Z be the integers 
< M and prime to M; let them belong modulo M to the respective exponents 
a', 5',..V; let m be a common multiple of the latter. Since any prime 
factor of N is of the form Mx-f-ky where k=ay.Ij any T is congruent to 

a^h^.. (mod AT), 0gA<a',..0^L<1\ 

Let A',.. .,L' be one of the n sets of exponents satisfying these conditions. 
If P is a primitive mth root of unity, the function 

4^ =-r^SP”, « = (A -A')am/a'+... -\-{L-L')\m/V, 

summed for all sets 0ga<a',..., 0^\<V, has the property that ^ = 1 if 
A=A'(mod a').y,.I/^L'(mod 1') simultaneously, while ;/' = 0 in all other 
cases. Thus (N; M, where one summation refers to the n sets 
mentioned, while the other refers to the various divisors T of N, This 
double sum is simplified. 

[The properties found (pp. 278-294) for the set of residues modulo M 
of the products of powers of a,..., i may be deduced more simply from the 
modern theory of commutative groups.] 

V. Bouniakowsky^^ considered the series 

{lA(x)r=2^- 

By forming the product of by ^(x), he proved that 2„.2 is the number 
No{n) -rin) of the divisors of n, and Zn,Tn equals 

A,„_2(n)=SA_3(d), 

where (and below) d ranges over the divisors of n. Also, 

n>»l 

From \p{xy\l/{x — iy for (i, j) = .(2, 1), (2, 2), (1, 2), he derived the first and 
fourth formulas of Liouville’s^® first article and the fourth of his^® second 
article. He extended these three formulas to sums of powers of the divisors 

siArchiv Math. Phys., 37, 1861, 277-345. 
Ac. Sc. St. P^tersbourg, (7), 4, 1862, No. 2, 35 pp. 
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and proved the second formula in Liouville’s first article and the first two 
summation formulas of Liouville.^® He proved 

ScrW=SiVi(d).^,0), 

Sr(2a;-l)=2<r-H- 
*=1 

t(2(t—l) = 2+i]+ 

cr—l—rc' 

*=iL 2r+l 

(T—l—r 
2r4-l 

]■ 
1 = -1, 

where 17 = 1 or 0 according as 2(r — 1 is divisible by 3 or not. The last two 
were later generalized by Gegenbauer.®° 

E. Lionnet^^ proved the first two formulas of Liouville.^® 
J. Liouville^ noted that, if ^7 is divisible by the prime a, 

cr^iaq) +a>^<r^ { ^ ) = (a^+l)(r^(g). 

C. Sardi^® denoted by An the coefficient of x” in Jacobi's^^ series for 
so that An==0 unless n is a triangular number. From that series he got 

S(--l)n2p+l)(r{n-p(p-fl)/2} = or 0 (« = \/iT^), 
p 

according as n is or is not a triangular number, and 

gi4„+An_i(r(l)4"... +Ai(r(n—l)+Ao<r(n) =0. 

This recursion formula determines m terms of the <r's, or <r(n) in terms of 
the Jl’s. In each case the values are expressed by means of determinants of 
order n. 

M. A. Andreievsky^® wrote for the number of the divisors of the 
form 4/i=fc=l of n = a*5^..where a, 6,... are distinct primes. We have 

where d ranges over all the divisors of n and the symbols are Legendre’s. 
Evidently . /_i\«' 

= 0 or 1 if a=4Z—l, 

according as a is odd or even. Hence, if any prime factor 4Z ~ 1 of n occurs 
to an odd power, we have Next, let 

n = pi>2“’.. .., 

where each p,- is a prime of the form 4Z+1, each g,- of the form 4Z -1. Then 

iV’4;,+i — iV4fc_i = (ai + l)(a2+l).. . ^ = _ 

23Nouv. Ann. Math., (2), 7, 1868, 6S-72. 
Jour, de math., (2), 14, 1869, 263-4. 

3fiGiomale di Mat., 7, 1869, 112-5. 
®fiMat. Sbomik (Math. Soc. Moscow), 6, 1872-3, 97-106 (Russian). 
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The sum of the N's is T(n) =r(D^)r(n/D^). Hence 

which is never an integer other than 1 or 2 when n is odd. If it be 2, r (Z)^) = 3 
requires that D be a prime. Similarly, for Legendre’s symbol (2/a), 

is zero if any prime factor 82=^ 3 of n occurs to an odd power, but is 11 (a^-l-1) 
if in n each Pi is a prime 8Z=tl and each qt a prime 8Z=t3. For n odd, 
Nsh^i/^8h^3 can not be an integer other than 1 or 2; if 2, D is a prime. 

F. Mertens^’' proved (11). He considered the number v(n) of divisors 
of n which are not divisible by a square >1. Evidently v{n) =2% where p 
is the number of distinct prime factors of n. If p(n) is zero when n has a 
square factor > 1 and is +1 or — 1 according as n is a product of an even or 
odd number of distinct primes, v(n) , where d ranges over the divisors 
of n. Also, 

IvQc) = S ^^^(J), < = [\4]. 

He obtained Dirichlet’s^^ expression ^(n) for this sum, finding for m a limit 
depending on C and n, of the order of magnitude of Vn loge n. 

E. Catalanf’'® noted that S<r(t)cr(j) =80*3(71) where i+j — An. Also, if i is 
odd, a(i) equals the sum of the products two at a time of the E's of the odd 
numbers whose sum is 27, where E denotes the excess of the number of 
divisors 4p+l over the number of divisors 4/7 — 1. 

H. J. S. Smith^® proved that, if w = 

For, if P = l+p*+. 

<r,{m)=PiP2. . 

.. +p“, P'= l+p'+... then 

fm 
=Pi'P 2- • 

and the initial sum equals (Pi —Pi 0(^2 “"^20 • • • =w*. 
J. W. L. Glaisher^^ stated that the excess of the sum of the reciprocals of 

the odd divisors of a number over that for the even divisors is equal to the 
sum of the reciprocals of the divisors whose complementary divisors are 
odd. The excess of the sum of the divisors whose complementary divisors 
are odd over that when they are even equals the sum of the odd divisors. 

G. Halphen'^^^ obtained the recursion formula 

<r(n)=3<r(n-l)-5£r(n-3)+. . . -(-l)°’(2a:+l)<7-|n-^^-^--^|+ ■ ■ 

^Uour. fur Math., 77, 1874, 291-4. 
3^“Recherches sur quelques produits ind^finis, M(Sm. Ac. Roy. Belgique, 40, 1873, 61-191. 

Extract in Nouv. Ann. Math., (2), 13, 1874, 518-523. 
38Proc. London Math. Soc., 7, 1875-6, 211. 
3®Messenger Math., 5, 1876, 52. 
«Bull. Soc. Math. France, 5, 1877, 158. 
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where, if n is of the form x(a;+l)/2, cr(0) is to be taken to be n/Z [Glai- 
sber®^’®"^]. The proof follows from the logaritlumc derivative of Jacobi’s^® 
expression for as in Enler^s® proof of (2). 

Halpben^^ formed for an odd function/(«) the sum of 

X taking all integral values between the two square roots of a, and y ranging 
over all positive odd divisors of This sum is 

if a is a square, zero if a is not a square. Taking/(z) =z, we get a recursion 
formula for the sum of those divisors d of x for which x/d is odd [see the 
topic Sums of Squares in Vol. II of this History]. Taking /(z) =a* —a'"*, 
we get a recursion formula for the number of odd divisors <a/m of a. 
A generalization of (2) gives a recursion formula for the sum of the divisors 
of the forms 2nk^ with fixed n, m. 

E. Catalan'*^ denoted the square of (1) by l+I/iX+...+Z/„x’*+.... 
Thus 

(r(n)+Li(r(n-“l)4-I/2cr(n-2)+. ..-|L„, 

-bn — Ln^l—L„_2+i^n-6+-f/n-7'^ . . . = 0 Or (2X + 1)(“-1)\ 

according as n is not or is of the form X(X+l)/2. In view of the equality 
of (3) and (4) and the fact that l/p=Si/'(n)a;^, where yj/{n) is the number of 
partitions of n into equal or distinct positive integers, he concluded that 

(r(n)=;//(7i~-l)+2i/'(n--2)~5T/'(7i-5)~7i/^(n---7) + 12;//(n--12) + . . .. 

J. W. L. Glaisher^^ noted that, if 6{n) is the excess of the sum of the odd 
divisors of n over the sum of the even divisors, 

d(7i)-\^6{7i—1) -{-6(71—3)'-\-d(u — 6)-}“. . . = 0, 

where 1, 3, 6,. . . are the triangular numbers, and 6{n—n) = —n. 
E. Ces^ro^ denoted by the sum of the residues obtained by dividing n 

by each integer <n, and stated that 

Sn+or(l)+(r(2)+. . .+cr{n)=n^, 

E. Catalan'^® proved the equivalent result that the sum of the divisors of 
1,..., n equals the sum of the greatest multiples, not >n, of these numbers. 

Catalan^® stated that, if <^(a, n) is the greatest multiple of a, 
n 

cr(n)== S {<t>{a, n)—<i){a, n —1)}. 
a==l 

*'BulL Soc. Math. France, 6, 1877-8, 119-120, 173-188. 
^^Assoc. frang. avanc. sc., 6, 1877, 127-8. Cf. Catalan.^’'* 
“Messenger Math., 7, 1877-8, 66-7. 
“Nouv. Corresp. Math., 4, 1878, 329; 5, 1879, 22; Nouv. Ann. Math., (3), 2, 1883, 289; 4, 1885, 

473. 
“/bid., 5, 1879, 296-8; stated, 4, 1879, ex. 447. 
“/bid., 6, 1880, 192. 
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Radicke (p. 280) gave an easy proof and noted that if we take n = 1,..., w 
and add, we get the result by E. Lucas^"^ 

<r(l)+ . .. +<r(m) =</>(!, w) + ... +0(w, m). 

J. W. L. Glaisher^® stated that if f(n) is the sum of the odd divisors of n 
and if g(n) is the sum of the even divisors of n, and /(O) =0, ^(0) =n, then 

/(n)+/(n^l)+/(n--3)+/(n-6)+/(n-10) + . .. 
= S^W+S^(^~l)+S^(n~3)+.... 

Chr. Zeller^® proved (11). 
R. Lipschitz®° wrote G(t) for (r(l)+...+(7(0, D(t) for {f+t)/2, and 

$(0 for <^(1) +... +<#>(0; using Euler's 0(0- Then if 2, 3, 5, 6,... are the 
integers not divisible by a square > 1, 

T{n)-T 
'rr 

-2_ a “n" 

G{n)-2G 
~rr 

-3(? 
“TT 

J- 
-56^ 

~rr 

.6. 

D{n) -D 
"n“ 

>2. 

1 
-D 

“n- 

J- 

"rf 

-5. 

+ -.. =n, 

+ .. .=n, 

+ .. .=$(n), 

the sign depending on the number of prime factors of the denominator. He 
discussed (pp. 985-7) Diiichlet's^^ results on the mean of T(n), (r(n), (^)(n). 

A. Berger®^ proved by use of gamma functions that the mean of the sum 
of the divisors d of n is 7r^n/6, that of S ^72^^ is 1, that of S 1/d is ttVG. 

G. Cantor®^“ gave the second formula of Liouville^^ and his^® third. 
A. Piltz^^ considered the number Tk(ri) of sets of positive integral solu¬ 

tions of Ui...Uk = n, where differently arranged u’s give different sets. 
Thus Ti{n) = 1, ^2(71)== r(n). If cr is the real part of the complex number s, 
and n‘ denotes for the real value of the logarithm, he proved that 

kix] s) = I ^ = I &„log”x+6+0(x‘)+0(x'log‘-=x), 
nal ^ m=0 

where l=l—(r — l/k, and the 5’s are constants, = 0for1; while0(f) is^° 
of the order of magnitude of /. Taking s = 0, we obtain the number '2Tk(n) 
of sets of positive integral solutions oi Ui. . .Uk^x. 

H. Ahlborn^^ treated (11). 
E. Ces^ro^ noted that the mean of the difference between the number 

of odd and number of even divisors of any integer is log 2; the limit for 

<^Nouv. Corrcsp. Math., 5, 1879, 296. 
«Nouv. Corresp. Math., 5, 1879, 176. 
^'Gottingen Nachrichten, 1879, 265. 
®°Compte8 Rendus Paris, 89, 1879, 948-50. Cf. Bachmann^o of Ch. XIX. 
“’•Nova Acta Soc. Sc. Upsal., (3), 11, 1883, No. 1 (1880). Extract by Catalan in Nouv. Corresp. 

Math., 6, 1880, 551-2. Cf. Gram.®^** 
“’“Gottingen Nachr., 1880, 161; Math. Ann., 16, 1880, 586. 
“^Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natiirlichen Zahlen als 

Produkte einer gegebenen Anzahl Faktoren mit der Grosse der Zahlen wachst. Diss., 
Berlin, 1881. 

““Progr., Hamburg, 1881. 
“^Mathesis, 1, 1881, 99-102. Nouv. Ann. Math., (3), 1, 1882, 240; 2, 1883, 239, 240. Also 

Ces^ro,®’ 113-123, 133. 



292 Histohy of the Theoky of Numbers. [Chap. X 

71= 05 of T(n)/(n log n) is 1; cf. (7); the mean of S(d+p)"“^ is (1+1/2+... 
+l/p)/p. As generalizations of Berger’s®^ results, the mean of Xd/p^ is 
l/(p-~l); the mean of the sum of the rth powers of the divisors of n is 

f (7-4-1) and that of the inverses of their rth powers is f(r+l), where 

(12) Ks)=2 1/rl^ 
n=l 

J. W. L. Glaisher®® proved the last formula of Catalan^^ and 

cr(n)—o'(n—4)—or(?i~-8)+(r(?i —20)+(r(n--28) — . .. 
= Q(n-l)+3Q(n-3)~6Q(n-6)-10Q(n-10)+.. 

where Q{n) is the number of partitions of n without repetitions, and 4, 8, 
20,. .. are the quadruples of the pentagonal numbers. He gave another 
formula of the latter type. 

R. Lipschitz,®® using his notations,®® proved that 

T(»)-JTg]+ST B]-^ 

GW -S«;[g +Sai.Gg] -... -n+Sp[|]. 

CW-SD[g+2D B]- . .-fW+»[!]. 

where P ranges over those numbers g n which are composed exclusively of 
primes other than given primes a, 6,..., each ^ n, 

Ch. Hermite®’’' proved (11) very simply. 
R. Lipschitz®^ considered the number Ts(t) of those divisors of t which are 

exact sth powers of integers and proved that 

where p® is the largest sth power and j/ = [n/p+ The last expression, 

found by taking /z = gives a generalization of (11). 
T. J. Stieltjes®® proved (7) by use of definite integrals. 
E. Cesaro®® proved (7) arithmetically and (11). 
E. Cesaro®^ proved that, if d ranges over the divisors of n, and d over 

those of X, 

(13) S(?(d)/(^)=S^(d)F(2), F(x)^m)’ G(x)^-2g(5). 

Takinggix) =x, <j>{x), 1/x, we get the first two formulas of Liouville^® 

“Messenger Math., 12, 1882-3, 169-170. 
“Comptes Rendus Paris, 96, 1883, 327-9. 
e^Acta Math., 2, 1883, 29^300. 

301-4. 
®®Comptes Rendus Paris, 96, 1883, 764-6. 
‘ojhid., 1029. 
«M6m. Soc, Sc. Li^ge, (2), 10, 1883, M4m. 6, pp. 26-34. 
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and the fourth of Liouville.^® Taking g-x, f=<t>, we get the third for¬ 
mula of Liouville.^® For g-l/x, /=<^, we get 

S#(d)(T0) =Sd«. 

For ^=0 or a;’', /=x\ we get the first two of Liouville’s^® summation formulas. 
If 7r(x) is the product of the negatives of the prime factors 3?^1 of x, 

Further specializations of (13) and of the generalization (p. 47) 

^Gid)f(^=i:Fid)g(^, F(x)=S\^(5)/(0, G(x)^2mff(l'). 

led Ces&ro (pp. 36-59) to various formulas of Liouville^®"^’ and many 
similar ones. It is shown (p. 64) that 

£F(n) 

n«I 

=f(m) S 
f(n) 

for f and F as in (12), (13). For f(n)==<j>{n), we have the result quoted 
under Ces^ro®” in Ch. V. For/(n) = 1 and n'‘, m—k>l, 

= f^(m), 
» rr 

=f(m)f(OT-&). 

If («> i) is the g. c. d. of n, j, then (pp. 77-86) 

ij^^ = 21,(T(,d)-l, nr{n)='La{n,3), (r(n) =ST(n, j), 

S <rjt(M, 3) =n(]r*_i(n), Sy<r(n, j) =-^{nT{n) +(r(n)}. 

If in the second formula of Liouville^® we take m = 1,..., n and add, we get 

j-i LJJ j-i 

Similarly (pp. 97-112) we may derive a relation in [x] from any given relation 
involving all the divisors of x, or any set of numbers defined by x, such as 
the numbers a, h,. . . for which x — o?, x — h^,... are all squares. Formula 
(7) is proved (pp. 124-8). It is shown (pp. 135-143) that the mean of the 
sum of the inverses of divisors of n which are multiples of k is tt^/ (6A:“) ; the 
excess of the number of divisors 4/x-|-l over the number of divisors 4iu+3 
is in mean 7r/4, and that for 4/4+2 and 4/t is J log 2; the mean of the sum of 
the inverses of the odd divisors of any integer is r^/S; the mean is found of 
various functions of the divisors. The mean (p. 172) of the number of 
divisors of an integer which are mth powers is f(m), and hence is w^/G if 



294 Histoby of the Theoby of Numbebs. [Chap.X 

?n = 2. The mean (pp. 216-9) of the number of divisors of the form a/x+r 
of nis, forr>0, 

F+i { Va+2C-/;i^‘dx I 

(cf. pp. 341-2 and, for a=4, 6, pp. 136-8), while several proofs (also, p. 134) 
are given of the known result that the number of divisors of n which are 
multiples of a is in mean 

- (log n/a+2C). 
a 

If (pp. 291-2) a ranges over the integers for which [2n/d] is odd, the 
number (sum) of the a’s is the excess of the number (sum) of the divisors of 
n+lj n+2,..., 2n over that of 1,..., n; the means are nlog 4 and ttV/G. 
If (pp. 294-9) k ranges over the integers for which [n/k] is odd, the number 
of the k^s is the excess of the number of odd divisors of 1,..., n over the 
number of their even divisors, and the sum of the fc^s is the sum of the odd 
divisors of 1,..., n; also 

Several asymptotic evaluations by Ces^ro are erroneous. For instance, 
for the functions \(n) and ^(n), defined by Liouville^® and Mertens,^^ 
Ces^ro (p. 307, p. 157) gave as the* mean values G/tt^ and SG/tt^, whereas 
each is zero.®^ 

J. W. L. Glaisher®^ considered the sum A(?i) of the odd divisors of n. 
If n — 2^m {m odd), A(?i) —a(m). The following theorems were proved by 
use of series for elliptic functions: 

A(l)A(2n-l)-fA(3)A(2n-3)+A(5)A(2w~5) + .. .-fA(2n~l)A(l) 

equals the sum of the cubes of those divisors of n whose complementary 
divisors are odd. The sum of the cubes of all divisors of 2n+l is 

A(2n+l) + 12{A(l)A(2n)+A(2)A(2n~l)+.. .+A(2n)A(l)}. 

li Aj B,C are the sums of the cubes of those divisors of 2n which are respec¬ 
tively even, odd, with odd complementary divisor, 

2A(2w)+24{A(2)A(2n~2)+A(4)A(2n-4)+.. .-|-A(2n-2)A(2)} 

= |(2^ - 2jB - C) = -10)5 

if 2n = 2’'m (m odd). Halphen’s formula^® is stated on p. 220. Next, 

n(r(2n-}-l) + (n—5)cr(2n — 1) + (n — 15)(r(2n — 5) 
_+(n-30)(r(2n-ll)-{-.. ■ =0, 

®*H. V. Mangoldt, Sitzungsber. Ak. Wiss. Berlin, 1897, 849, 852; E. Landau, Sitzungsber. Ak. 
Wiss. Wien, 112, Ila, 1903, 537. 

“Quar. Jour. Math., 19, 1883, 216-223. 
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in which the differences between the arguments of <r in the successive terms 
are 2, 4, 6, 8,, and those between the coefficients are 5, 10, 15,..., while 
(r(0) = 0. Finally, there is a similar recursion formula for A(n). 

Glaisher®^ proved his^^ recursion formula for d{n)j gave a more compli¬ 
cated one and the following for cr{n): 

(r(n)—2{(r(n —l)+<7-(n—2)} +3{<7(n--3)-}-o'(n--4)4-(r(n—5)} — ... 

+ (-1)-V {. .. +,,(1)} = (- l)-(s3 -5)/6, 

where s=r unless r(r(l) is the last term of a group, in which case, s=r+l. 
He proved Jacobi’s^^ statement and concluded from the same proof that 
E(n) if n-Uni, the n’s being relatively prime. It is evident that 

=r-}-l if p is a prime 4m+l, while E(p0 = l or 0 if p is a prime 
4m-|-3, according as r is even or odd. Also ^(20 = 1. Hence we can at 
once evaluate E{n). He gave a table of the values of F(7i), n = 1,..., 1000. 
By use of elliptic functions he found the recursion formulae 

£;(n)-2jB;(n-4)-f2E(n~16)-2^(n-36)+... =0 or 

for n odd, according as n is not or is a square; for any n. 

E{n)-E{n--l)-E(n-3)+Ein-6)-^E(n-10)-... 

= 0 or (-ir{(-l)^‘"^^/2i-l}/4, VS^^+T, 

according as n is not or is a triangular number 1, 3, 6, 10,- He gave 
recursion formulae for 

S{2n) = E(2) +E{4) + . •. +E{2n), 

S{2n-l)=Eil) +E(3) + ... +jS7(2n-1). 

The functions E, Sj $j a are expressed as determinants. 
J. P. Gram®^“ deduced results of Berger®^ and CeslLro.®^ 
Ch. Hermite®®expressedo'(l)+or(3)-I-.. .+<r(2n-l), (r(3)+(r(7)+... 

-|-(r(4n —1) and or(l)+(r(5)+ ... +(r(4n-|-l) as sums of functions 

E2{x) = {lxr^[x]}/2. 

Chr. Zeller®® gave the final formula of Catalan.'^^ 
J. W. L. Glaisher®^ noted that, if in Halphen’s^® formula, n is a triangular 

number, cr^n—n) is to be given the value n/3; if, however, we suppress the 
undefined term (r(0), the formula is 

cr(n) —3(r(n —1) -|-5(r(n —3) — ... = 0 or ( —l)''“^(l^+2^-f • • • +r^), 

according as n is not a triangular number or is the triangular number 
He reproduced two of his®®’®^’^® own recursion formulas for 

a(n) (with \l/ for cr in two) and added 

(r(n)-- {or(?i - 2)-|-(r(n - 3)-l-(r(n-4)} +{(r(n -7)+or(n -8)+<7(71 -9) 
+(r(n—10)—11)1 — {cr(n —15)-f . ..} + ••. 

®*Proc. London Math. Soc,, 15, 1883-4, 104-122. 
“^Det K. Danske Vidensk. Selekabs Skrifter, (6), 2 1881-6 (1884), 215-220 296. 
®®Amer. Jour. Math., 6, 1884, 173-4. 
e«Acta Math., 4, 1884, 415-6. 
»Troc. Cambr. Phil. Soc., 5, 1884, 108-120. 
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where A and B denote the number of positive and negative terms respec¬ 
tively, not counting o’(O) =7i as a term; 

71(7 (n) + 2 {(n—2) O'(n—2) + (n—4) <r (n—4)} 
+3{(n—6)o'(?i—6) + (n—8)o'(n—8) + (n—10)o'(n—'10)} + . .. 

= cr(7z)-f-(t{ti—2)-j-o'(7i—4)} 
+ (l^+3^+5^){o'(n—6)+o'(n — 8)+<r(w—10)}+ •• • • (n odd). 

He reproduced his*^ formulas for $(n) and E(n). He announced (ibid., p. 86) 
the completion of tables of the values of ct>{n), T(n), cr{n) up to n = 3000, and 
inverse tables. 

Mdbius®® obtained certain results on the reversion of series which were 
combined by J. W. L. Glaisher®^ into the general theorem: Let a, h, ... 
be distinct primes; in terms of the undefined quantities e^, ..., let e„ 
= eo“e/... if n = a®!/-..., and let ei = 1. Then, if 

F(x)=2eJ(a:"), 

where n ranges over all products of powers of a, 6,..., we have 

where v ranges over the numbers without square factors and divisible by 
no prime other than a, 6,..., while r is the number of the prime factors of v. 
Taking 

Glaisher obtained the formula of H. J. S. Smith®® and 

Using the same/, but taking 62 = 0, Cp—f, when p is an odd prime, he proved 
that, if A,.(n) is the sum of the rth powers of the odd divisors of n, 

A(n)-SA,(J) +2a(^) - ... =0 or 

according as n is even or odd. In the latter case, it reduces to Smithes. 
If A'r{n) is the sum of the rth powers of those divisors of n whose com¬ 

plementary divisors are odd, while Er(n) [or E^r(n)] is the excess of the sum 
of the rth powers of those divisors of n which [whose complementary divisors] 
are of the form 4m-f 1 over the sum of the rth powers of those divisors which 
[whose complementary divisors] are of the form 4m+3, 

A'. W-2A'.(j)+2A'.(i) 

6«Jour. fur Math., 9, 1832, 105-123; Werke, 4, 591. 
•^^London, Ed. Dublin Phil. Mag., (5), 18, 1884, 518-540. 
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EXn-)+i:(-iy^^-^>^U'JB^Er(~) -... = 1, 

E.(n)-S^.(^)+S£.(£) - ... = (-l)™nV, 

E'Xn) -2a'E',Q) +IaVE'r(^) -... = (- 

E'Xn) -2(-iy^-^>'^E'r(^2) - ... =n^ 

where ^4,5,... are the odd prime factors of n. Note that = 0 or 1 according 
as n is even or odd. By means of these equations, each of the five functions 
(Trin),..E'r(n) is expressed in two or more ways as a determinant of 
order n. 

Ch. Hermite^® quoted five formulas obtained by L. Kronecker^^ from the 
expansions of elliptic functions and involving as coefficients the functions 
^{n)=(T(n), the sum X(n)_of the odd divisors of n, the excess ^(n) of the 
sum of the divisors >\^n of n over the sum of those <\/n, the excess 
#'(n) of the sum of the divisors of the form Sk^l of n over the sum of the 
divisors of the forin Sk=^S, and the excess ^'(n) of the sum of the divisors 
8A;=*= 1 exceeding Vn and the divisors 8A;=t 3 less than \/n over the sum of the 
divisors Sk=^l less than -x/n and the divisors 8/:=^ 3 exceeding x/n, Hermite 
found the expansions into series of the right-hand members of the five 
formulas, employing the notations 

Ei{x) = [x+i] - M, E2{x) = [x][x+iy2, 
a = l,3,5,...; 6 = 2,4,6,...; c=l,2,3,..., 

and A for a number of type a, etc. He obtained 

X(l) +Z(3) +... +X(A) =2^?2 , 

cr(l) ~l-(r(2) -f-. . . 4" <?” (C) =SjB?2(^/^7 

^(i)+^(2)+...+’^(0=^E,(^y 

X(2)+Z(4)+... +Z(B) =|2{a[g]+6Xi[|]|, 

#'(l)+$'(3) + ,, .+#'(A)=2(-l)<“’-«/«a[^], 

'J''(1)+'J''(3)+... +^'(A) =2(-l)<“’+")/®aj[^^-t|^'] 

70Bull. Ac. Sc. St. P^tersbourg, 29, 1884, 340-3; Acta Math., 5, 1884-5, 315-9. 
7iJour. fiir Math., 57, 1860, bottom p. 252 and top p. 253. 
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The first three had been found and proved purely arithmetically by Lipschitz 
and communicated to Hermite. 

Hermite proved (11) by use of series. Also, 

S F(a)=S r^l/(a), F(n)=S/(d), 
0=1 a=»l LOJ 

where d ranges over the divisors of n. When f{d) = 1, F(n) becomes r(n) 
and the formula becomes the first one by Dirichlet.^’^ 

L. Gegenbauer^^ considered the sum p*, t in) of the kth powers of those 
divisors dt of n whose complementary divisors are exact ^th powers, as well 
as Jordan’s function /*(n) [see Ch. V]. By means of the f-function, (12), he 
proved that 

S^(Tj(»i)po, 2(n-) =Spo, 2,id)pn, I (0) 

where d ranges over the divisors of r, and m, n over all pairs of integers for 
which mn^-r] 

S/(*(n)p,.<(m) =r*p,-.jfc.<(r), 2)(r,_A(7n)T(n)m*=Spii.,i(d)p,,f ^0? 

the latter for ^=1 being Liouville’s^® seventh formula for v = 0; 

Sdv,. ,(^) =2d*p„ <(0, S4(d)rfVM(0 

the latter for ^= 1, A; = 0, being the second formula of Liouville^®, while fojr 
t-1 it is the final formula by Ces^ro^^® of Ch. V; 

2X(d)d^Pi,2<^^^ =SX(d)p;t, <(d)pjfc, =0 or p2k,t{.'s/^)y 

according as r is not or is a square; 

SX(n)p,, ,(m) =p,.2,(r), ^\{d)r{d^) =X(r)r(r), 

2r^(d)/*(0 =’■*2^. Sd‘r(d^<r,(0 =2dV(d), 

2 r^lrCx^) =2 r^(r), S r^1x(x),r»(x) =2 p^r)- 

By changing the sign of the first subscript of p, we obtain formulas for the 
sum of the kth. powers of those divisors of n which are 
tth. powers. By taking the second subscript of p to be unity, we get formulas 
for cr*(n). There are given many formulas involving also the number 
fa{n) of solutions of nin2. . .Tia—n, and the number co(n) of ways n can be 
expressed as a product of two relatively prime factors. Two special cases 
[(107),(128)] of these are the first formula of Liouville^® and the ninth 
summation formula of Liouville,^® a fact not observed by Gegenbauer. He 
proved that, if pgw, 

2 B(x)=- I C(x)4-Bn-~Ap, 
x=p+l x«=A+l 

^Sitzungsber. Ak. Wiss. Wien (Math.), 89, II, 1884, 47-73, 76-79. 
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where _ 

B{x) = , C{x) = , 

and B-B(n), A=B(p+l); also that 

S D(x)= I F{x)+Dn-Ev, 
x-p+l x-D+1 

where _ _ 

and D—D(n), E=D(p+l). It is stated that special cases of these two 
formulas (here reported with greater compactness) were given by Dirichlet, 
Zeller, Berger and Ces^ro. In the second, take t = 1, p = 0, and choose the 
integers a, /S, 6, n so that 

bn^+fi>a>h(n-iy+^, 

whence D = 0. If Xr is the number of divisors of r which are of the form 
we get 

Change n to n-\-l and set 13 = 0, h=cr = l, whence a=n [also set p = [Vn]]; 
we get MeissePs^^ formula (11). Other specializations give the last one 
of the formulas by Lipschitz,^® and 

S k{r) 
rsol 

where p=^[Vn], k{r) is the number of odd divisors of r, while i = 0 or 1 
according [n/v — ^]>v — l or =v — l. 

L. Gegenbauer^^ proved by use of f-functions many formulas involving 
his^2 functions p, / and divisors Among the simplest formulas, special 
cases of the more general ones, are 

S(r,(d)d^=2;(r,+x(y VCdJ =SX(/i), 

'ZB{h)^\d^)='Ly?{h), i:TW{d,)=2e{h), SM"(d)r(0 =r(r2), 

Md^Uh) =0{r), SM=(d)/*(0 =Sd2VW, 

summed for d, ds, di, where h = Vr/dg. Other special cases are the fourth 
and sixth formulas of Liouville,^^ the first, third and last of Liouville.^^ 
Beginning with p. 414, the formulas involve also 

Wfc(n) =n*n (1 + 1/pi*), n= 

"Sitzungsber. Ak. Wien (Math.), 90, II, 1884, 395-459. The functions used are not defined 
in the paper. For his \f/, <v, we write a*, r 6, where 6 is the notation of Liouville.^® 
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Beginning with p. 425 and p. 430 there enter the two functions 

in which (A/p) is Legendre’s symbol, with the value 1 or —1. 
J. W. L. Glaisher^^ investigated the excess f,.(n) of the sum of the rth 

powers of the odd divisors of n over the sum of the rth powers of the even 
divisors, the sum A/(n) of the rth powers of those divisors of n whose 
complementary divisors are odd, wrote f for fi, and A' for A'l, and proved 

A'aCn) =nA'(n)+4A'(l)A'(n-l)+4A'(2)A'(n-2)-f .. . +4A'(n~l)A'(l), 

f3(r^) = (2n-l)r(7^)-4r(l)f(n-l)~4f(2)f(n-2)-. . .~4r(n-l)f(l), 

nA'(n) =A'(l)A'(2n-l)-A'(2)A'(2n-2) +... +A'(2n-1)A'(1), 

=A'(n)+8r(l)A'(n-2)+8f(2)A'(n-4) + .. ., 

A'sCn) =:nA'(n)+A'(2)A'(2n-2)+A'(4)A'(2n-4) + ... +A'(2n-2)A'(2), 

-f3(n) = 3A(n) +4{A(l)A(n-1) +9A(2)A(n -2) +A(3)A(n - 3) 

-|“9A(4)A(n--4) +... +A(n —l)A(l)} {n even), 
2^-^AWi(n)_[l,2r-l] [3,2r-3] , [2r^l, 1] 

(2r)! l!(2r~l)!'^3!(2r-3)!‘^“ '"*"(2r-l)Ilf 
where 

5]=<rp(l)<ra(2n~l)+(rp(3)<r3(27i-3) + .. .+crp{2n-1)0-^(1), 

For n odd, J*(n) =A'(n) =<r(n) and the fourth formula gives 

(n—l)<r(n)=8{(r(l)a'(n--2)+f(2)<r(n-4)+<r(3)(r(n—6)+f(4)(r(n—8)+. . .}. 

Glaisher^® proved that 

^Cain) —6n<r(n) +cr(n) 
= 12{<r(l)cr(n — 1) +(r(2)<7(n-2) +. . . +o'(n — l)o-(l)}, 

cr(l)(r(2n —l)-f<7(3)or(2n—3) +. •.+<r(2n—l)(r(l) 
=A'3(n) = i{<r3(2n) “(r3(n)}. 

The latter includes the first theorem in his®^ earlier paper. 
Glaisher^® proved for Jacobi’s^ £J(n) that 

(r(2m+l)^£!(l)E(4m+l)+E(5)E(4m-3)+U(9)B(4m-7) +,. . 
+E(4m+1)E(1), 

E(t)-2E(t-4)-h2E(t-16)-2E(t-36)-j-- . • = 0 (^ = 8n+5), 
a(v) —2a(v—4)+2(r(v — 16) -2(r(v—36)+ ... =0 (v = 8n-h7), 

cr('i4)+cr(tt—8)24)+cr(w—48) +. .. =4{cr(m) +2(r(m — 4) 
+2(r(w-16)+2<r(w-36) + ...) (m = 2n+l, u = 8n-^3), 

and three formulas analogous to the last (pp. 125, 129). He repeated 
(p. 158) his^^ expressions for A'a(n). 

^^Messenger Math., 14, 1884-5, 102-8. 
156-163. 

wQuar. Jour. Math., 20, 1885, 109, 116, 121, 118. 
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L. Gegenbauer^’^ considered the number Ti(fc) of the divisors ^ [^/n] of k 
and the number T2(k) of the remaining divisors and proved that 

s nik) =|(log,n+2C)+0(V^, 

SrsW =g(log.n+2C-2)+0(V«i), 

0(s) being of the order of magnitude of s. He proved (p. 55) that the mean 
of the sum of the reciprocals of the square divisors of any integer is ttYOO; 
that (p. 64) of the reciprocals of the odd divisors is the mean (p. 65) 
of the cubes of the reciprocals of the odd divisors of any integer is ';r'^/96, 
that of their fifth powers is 7r®/960. The mean (p. 68) of Jacobi’s^^ E(n) is 
7r/4. 

G. L. Dirichlet^^ noted that in (7), p. 282 above, we may take e to be of 
lower [unstated] order of magnitude than his former \/n* 

L. Gegenbauer^^ considered the sum k,a M of the kth. powers of those 
divisors of n which are rth powers and ’are divisible by no (sr)th power 
except 1; also the number Qa(l>) of integers Sh which are divisible by no ath 
power except 1. It follows at once that, if /x«(m) =0 if m is divisible by an 
sth power >1, bqt =1 otherwise. 

where the summation extends over all the divisors dr of n whose com¬ 
plementary divisors are rth powers, and that 

(14) S Tr,k.Xx) = S r^lX%,{x), V = [Vn]. 

From the known formula Qr(n) =X[n/x'‘]/jL{x), x— 1,..., is deduced 

the right member reducing to n for k = 0 and thus giving a result due to 
Bougaief. From this special result and (14) is derived 

From these results he derived various expressions for the mean value of 
Tr,^k,s{^) and of the sum Tr.k.sW of the A;th powers of those divisors of n 
which are rth powers and are divisible by at least one (sr)th power other 
than 1. He obtained theorems of the type: The mean value of the number 
of square divisors not divisible by a biquadrate is IS/tt"; the mean value of 
the excess of the number of divisors of one of the forms 4r/z+j‘(i= 1, 3,.. 
2r —1) over the number of the remaining odd divisors is 

- S cot 
4r,_i 

(2Z-l)x 

4r 

^^Denkschr. Akad. Wien (Math.), 49, I, 1885, 24. 
^®GottinKen Nachrichtcn, 1885, 379; Werke, 2, 407; letter to Kronecker, July 23, 1858. 
^®Sitzungsbcrichte Ak. Wiss. Wien (Math.), 91, II, 1885, 600-621. 
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L. Gegenbauer^*^ considered the number Ao(a) of those divisors of a 
which are congruent modulo k and have a complementary divisor si 
(mod k). He proved that, if p<fc, 

If we replace cr by <r—1 and subtract, we obtain expressions for Ao(ka—p), 
The above formulas give, for /; = 2, p = l, 

Jr(2*-l)-,+ ;j;[|g;], ,(2.-l).2+2;{[|±^] 

iniakowsky.^^ The same develop: 
ime if 

r ..+ii = r ^_z2.,n 
12(2x4-1) 2j 12(2x4-1) ^2j 

and formulas of Bouniakowsky.^^ The same developments show that an 
odd number a is a prime if 

for a;^[(a —3)/2]; likewise for a = 6A;=±=l if the same equality holds when 
[(a — 5)/6], with similar tests for a = 3n — 1, or 4n — 1. 
C. Runge®^ proved that r(n)/n‘ has the limit zero as n increases indefi¬ 

nitely, for every €> 0. 
E. Catalan^^ noted that, if x^p is the number of ways of decomposing a 

product of n distinct primes into p factors >1, order being immaterial, 

Xnp = PXn-1 p-l-X„-lp-l = {p’‘~^-(’’r‘) (P - 1)”"^-(-(’’J^) (p-2)"-l- . . . =bl} 
4-{(p-l!}. 

E. Ces^ro^ considered the number F„^ (x) of integers ^x which are not 
divisible by mth powers, and the number (x) of those divisors of x which 
are mth powers, evaluated sums involving these and other functions, and 
determined mean values and probabilities relating to the greatest square 
divisor of an arbitrary integer. 

R. Lipschitz®^ considered the sum k(m) of the odd divisors of m increased 
by half the sum of the even divisors, and the function l(m) obtained by 
interchanging the words “even,’^ “odd.’^ He proved that 

/c(m)—2/c(m~-l)+2A;(m-9) — . . . =( —or 0, 

according as m is a square or is not; 

Z(m) H-Z(m—1)+Km—3)+Z(m —6) + .. . = —m or 0, 

according as m is a triangular number or is not; 

K(m) = /c(l) 4-^(2) ... 4-fc(m) = [m] + [|] 4- 3 [|] 4- 2 g] 4-... -fpg], 

L{m)=l{l)+l{2)+... +lim) = _H4-2g] -3g]-H4g] - ... , 

8®Sitzungsberichte Ak. Wien. (Math.), 91, II, 1885, 1194-1201. 8‘Acta Math., 7, 1885,181-3. 
«M6m. soc. roy. sc. Li^ge, (2), 12, 1885, 18-20; Melanges Math., 1868, 18. 
®3Annali di Mat., (2), 13, 1885, 251-268. Reprint “Excursions arith. i Ihnfini,” 17-34. 
“Comptes Rendus Paris, 100, 1885, 845. Cf. GlaisheP^®, also Fergola^^ of Ch. XI, Vol. II. 
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where or m/2 according as m is odd or even. Cf. Hacks.®® 
M. A. Stern®® noted that Zeller’s®® formula follows from B=pAj where 

^yA=%J{n)x'', ^ = J5= S a(n)a:’-\ p = l+2x-5x^-7x'>+ .. 

where p{x) is defined by (1), yp{n) is the number of partitions of n, and 
the second equation follows from the equality of (3) and (4) after remov¬ 
ing the factor x. Next, if N{n) denotes the number of combinations of 
1, 2,..n without repetitions producing the sum n, 

then by the second equation above, 

5(1—...) — phN{n)x^, 

ain) —(r(n —2) — (r(n—4)+<r(n —10)+(7(n —14) — . .. 
=iV^(n-l)+2iV(n-2)-5iV'(n-5)-7JV(n-7)+.. 

where (T{n—n) = 0, N{n —n) = 1. 
S. Roberts®® noted that Euler’s^ formula (2) is identical with Newton’s 

relation S„n=^^-n+iA-S^n-^2— ... for obtaining the sum of the (—n)th 
powers of the roots of 5 = 0, where s and p are defined by (2). In p, the sum 
of the (—n)th powers of the roots of 1 — x^ = 0 is A; or 0 according as k is or is 
not a divisor of n. Hence the like sum for p is <r(7i). [Cf. Waring®.] The 
process can be applied to products of factors 1 —f{k)x^. His further results 
may be given the following simpler form. Let be the sum of the even 
divisors of n, and the sum of the odd divisors, and set s„=(^,»+2iA'n if n 
is even, Sn== — 2x1/^ if n is odd. By elliptic function expansions, 

«2n + 8{52n_il/'lH-352n-2V'2 + S2n-3^3 + 3S2n-4^4+ ■ • • +«1^2n-l } +12ni/'2n = 0, 

S2n+1+8 {S2n^l+35271-1^2+ • • • +35ilA2n} + (4^ + 2) l/'2„+i = 0, 

the coefficients being 1 and 3 alternately. He indicated a process for finding 
a recursion formula involving the sums of the cubes of the even divisors and 
the sums of the cubes of the odd divisors, but did not give the formula. 

N. V. Bougaief®®“ obtained, as special cases of a summation formula, 

X{Sx+5-5{2u-iy](T(2x-\-l-u^ + u) =0, Mn-3(r(:u)]Pln-aiu)} == 0, 

where P(n) is the number of solutions Uj v of a(u)+(r(v) =n. 
L. Gegenbauer®®^ proved that the number of odd divisors of 1, 2,.. ., n 

equals the sum of the greatest integers in (7i + l)/2, (n+2)/4, (n+3)/6,. . ., 
(2n)/(2n). The number of divisors of the form Bx—y of 1,. . ., n is ex¬ 
pressed as a sum of greatest integers; etc. 

J. W, L. Glaisher®^ considered the sum A^in) of the sth powers of the odd 
divisors of n, the like sum D,{n) for the even divisors, the sum D\(n) of the 

*^Acta Mathematica, 6, 1885, 327-8. 
soQuar. Jour. Math., 20, 1885, 370-8. 
8®«Comptcs Rendus-Paris, 100, 1885, 1125, 1160. 
sfi^Denkschr. Akad. Wiss Wien (Math.), 49, II, 1885, 111. 
^’Messencer Math., 15. 1885-6. 1-20. 
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sth powers of the divisors of n whose complementary divisors are even, 
the excess f'«(n) of the sum of the sth powers of the divisors whose com¬ 
plementary divisors are odd over that when they are even, and the similar 
fuhctions^^ A'a, fa, a,. The seven functions can be expressed in terms of any 
two: 

Aa =(ra ^2*D'a, D,=2*D'a, 

f3=(ra-2-+lD'a, ra=(^«~2D'a, 

where the arguments are all n. Since D'X2k) = (r^ik), we may express all the 
functions in terms of (r^in) and <7a(n/2), provided the latter be defined to be 
zero when n is odd. Employ the abbreviation S/F=SF/ for 

/(l)F(7i-l)+/(2)F(n~2)+/(3)F(n-3) + .. 

This sum is evaluated when / and F are any two of the above seven functions 
with s = 1 (the subscript 1 is dropped). If 

fin) =a(r(n)+idi)'(n), F(n) =aV(n)+/3'D'(n), 

then 

By using the first formula in each of two earlier papers, we get 

122(7(7 = 5(73(71) — 6n(7(n)+(7(7l), 

122Z)'D'= 5D3'(n)-3nD'(7i)-l-D'(n), 

242(7/)' = 2(73(71) + (1 -37i)(7(7i) + (1 - Gti) D' (ti) H-SDs'Cti). 

Hence all 21 functions can now be expressed at once linearly in terms of 
(73, Ds', a and D'. The resulting expressions are tabulated; they give the 
coefficients in the products of any two of the series 2*/(7i)a:’", where/is any 
one of our seven functions without subscript. 

Glaisher^® gave the values of 2(73(7i for i = 3, 5, 9 and 2(75(77, where the 
notation is that of the preceding paper.. Also, if p =n—r, 

12 2 rpa(r)a(p) = wVaW -nV(n), 2 r/(r)F(p) =^/F. 
r=l r=l Z 

L. Gegenbauer®^ gave purely arithmetical proofs of generalizations of 
theorems obtained by Hermite'^® by use of elliptic function expansions. Let 

-S,(r)=2/, 2^S,(g])v^Wn]. 

Then (p. 1059), 

The left member is known to equal the sum of the A:th powers of all the 
divisors of 1, 2,. . n. The first sum on the right is the sum of the kth 
powers of the divisors ^ \/n of 1,. . .,n. Hence if Ak{x) is the excess of the 

®8Messenger Math., 15, 1885-6, p. 36. 
®*Sitzungsberichte Ak. Wien (Math.), 92, II, 1886, 1055-78. 
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sum of the A;th powers of the divisors > y/x of x over the sum of the 
^th powers of the remaining divisors, it follows at once that 

*■-1 x«i L^Jj 

Also 

pj,'ix) = 2 s*(g]) +5t+iW - {p+l)S,{v), 

with a similar formula for S^;fc(x), where ^k(^) is the excess of \l/k(x) over the 
sum of the A;th powers of the divisors < \/x of x. For k = ly the last formula 
reduces to the third one of Hermite’s. 

Let Xk{^) be the sum of the kth. powers of the odd divisors of x; Xk'{x) 
that for the odd divisors > \/x] Xk'ix) the excess of the latter sum over the 
sum of the A;th powers of the odd divisors < y/x of x; Xk'\x) the excess of the 
sum of the kth powers of the divisors 85 =*=l>\/x of x over the sum of the 
fcth powers of the divisors 8s=i=3< Vx of x. For y = 2x and i/ = 2x —1, the 
sum from x = l to x = n of Xk(y)7 Xk{y)j Xk {y) and Xk”{y) are expressed as 
complicated sums involving the functions 8* and [x]. 

E. Pfeiffer®^ attempted to prove a formula like (7) of Dirichlet,^^ where 
now eis for every /b>0. Here Og{T) means a function whose 
quotient by g{T) remains numerically less than a fixed finite value for all 
suflBiciently large values of T. E. Landau®^ noted that the final step in 
the proof fails from lack of uniform convergence and reconstructed the 
proof to secure this convergence. 

L. Gegenbauer,®^ in continuation of his^® paper, gave similar but longer 
expressions for 

S t(2/), S (Tk{y) (2/=4x+1, 6x+1, 8x+3, 8x+5, 8x+7) 
x—O x«»0 

and deduced similar tests for the primahty of y. 
Gegenbauer®^" found the mean of the number of divisors Xx+a of a 

number of s digits with a complementary divisor also for divisors 
ax^+6y^. 

Gegenbauer®^*’ evaluated A(l) -f-... + A(n) where A(x) is the sum of the 
pth powers of the ath roots of those divisors d of x which are exact crth 
powers and whose complementary divisors exceed kdJ^^, A special case 
gives (11), p. 284 above. 

Gegenbauer®^'" gave a formula involving the sum of the Mh powers of 
those divisors of 1,..., w whose complementary divisors are divisible by no 
rth power >1. 

•°Ueber die Periodicitat in der Teilbarkeit..Jahresbericht derPfeiffer'achenLehr-undErzieh- 
ungs-Anstalt zu Jena, 1885-6, 1-21. 

”Sitzung3ber. Ak. Wiss. Wien (Math.), 121, Ila, 1912, 2195-2332; 124, Ila, 1915, 469-550. 
Landau. 

93, II, 1886, 447-454. 
®*®Sitzung8ber. Ak. Wiss. Wien (Math.), 93, 1886, II, 90-105. 
mUd,, 94, 1886, II, 35-40. 

757-762. 
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Ch. Hermite®^ proved that if F(N) is the number of odd divisors of JNT, 

S g(n*+n)/2/(l -5-) :=:2F(N)q^, 
na=l 

and then that 

F(l)+J’(2) +... +FiN) =|iV log N+(c-^N, 

#(1) +#(2) +... +m) =1^ log N/k+ (c'-|)iV, 

asymptotically, where ^(N) is the number of decompositions of N into two 
factors d, d', such that d'>kd, 

E. Catalan^^“ noted that, if n=i+i' = 2i"d, 

X<x(i)a{i') =Sd^ 2 {(T{i)a(2n-i)} = 8S {a{i)(T(n-i)}. 

E. Ces^ro®^ proved Lambert’s*^ result that T(n) is the coefficient of x" in 
2x^/(I —x^). Let r^n) be the number of sets of positive integral solutions of 

^i+2fe+- • 

and sXn) the sum of the values taken by Then 

sXn) = TXn)+TXri--i') + TXn-2i/) +. 

T(n) =Si(n) —S2(n) +83(11) ~- 

Let 

summed for the divisors d of n. Then 

r(n) = ti(n) +t2(n) + .. .+Ti(n)-Tzin) + TgCn)-- 

E. Busche®® employed two complementary divisors and bj of m, 
an arbitrary function /, and a function y—^(x) increasing with x whose 
inverse function is x = y\l/ (y). Then 

i {f(l^(x)l X) -/(O, :r)} =S{/(3'., ~/(6',„-l, 5J}, 
X=1 

where in the second member the summation extends over all divisors of all 
positive integers, and In particular, 

i: f(x)[^(x)] =2/(5J, S [^P(x)] = number of 5,„, 
*=1 x==l 

subject to the same inequalities. In the last equation take \l/(x)=x, 
a = [\/^]; we get (11). 

J. Hacks®® proved that, if m is odd, 

?5(m)=r(l)+r(3)+r(5) +. ..+r(m) =S [^], 

”Jour. fiir Math., 99, 1886, 324-8. 
Soc. R. Sc. Li^ge, (2), 13, 1886, 318 (Melanges Math., II). 

•Uornal de sciencias math, e astr., 7, 1886, 3-6. 
»6Jour. fiir Math., 100, 1887, 459-464. Cf. Busche.^^ 
»«Acta Math., 9, 1887, 177-181. Corrections, Hacks,p. 6, footnote. 
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@(OT)s<r(l) +<r(3) +<r(5) + ... +cr{m) 

where t ranges over the odd integers For the K and L of Lipschitz®^ 
and G{m) =(r(l)4-<r(2) +. .. it is shown that 

(mod 2), 

L{m)=G{m) = [Vm] + > 7’(™) = [Vw] (mod 2). 

J. Hacks^"^ gave a geometrical proof of (11) and of Dirichlet^s^^ expression 
for T(n)j just preceding (7). He proved that the sum of all the ^visors, 
which are exact ath powers, of 1, 2,..., m is 

i{i‘+2“+...+[^^“}. 

He gave (pp. 13-15) several expressions for his®® |f(m), (S(m), K(m), 
L. Gegenbauer®’^® gave simple proofs of the congruences of Hacks.®® 
M. Lerch®® considered the number \p(a, h) of divisors >6 of a and proved 

that 
In/2] n 

(15) S ^(n~p, p)=n, S^(n+p, p)=2n. 
p=»0 fi=»0 

A. Stmad®® considered the same formulas (15). 
M. Lerch^®® considered the number x(a, h) of the divisors of a and 

proved that 

S {\f/(m —aa, k+0*) —x(^ —aa, a)} 
ffomQ 

k 
+ S {xpim+'Kaj X--l)—x(w+^<*» a)}=0. 

x=i 

This reduces to his (15) for a = l, k = l orm+l. Let {k, n; m) denote the 
g. c. d. (A;, n) of k, n or zero, according as (A;, n) is or is not a divisor of m. 
Then 

a—1 a 

(16) 2 {\/'(m+an, a) — i/'(mH-an, a)} = 2 {k, n; m). 
a=0 fc-1 

In case m and n are relatively prime, the right member equals the number 
0(a, n) of integers^ a which are prime to n. Finally, it is stated that 

(17) 2 a) == 2 x(^‘~oi^> ^)i 
a-o a-0 L n J 

Gegenbauer,^® Ch. VIII, proved (16) and the formula preceding it. 

»7Acta Math., 10, 1887, 9-11. 
'^“Sitzungsber. Ak. Wiss. Wien (Math.), 95, 1887, II, 297-8. 
®®Prag Sitzungsberichte (Math.), 1887, 683-8. 
*®Ca8opi8 mat. fys., 18, 1888, 204. 

^o°Compt. Rend. Paris, 106,1888,186. Bull, des sc. math, et astr., (2), 12,1,1888,100-108,121-6. 
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C. A. Laisant^®^ considered the number %(A0 ways N can be expressed 
as a product of k factors (including factors unity), counting PQ... and QP... 
as distinct decompositions. Then 

n,(JV)=n*-iWn(l+^), N=Ilp‘‘. 

E. Ces^ro^®^ proved Gauss^ result that the number of divisors, not 
squares, of n is asymptotic to Ott”^ logn. Hence T(n^) is asymptotic to 

log^n. The number of decompositions of n into two factors whose 
g. c. d. has a certain property is asymptotic to the product of log n by the 
probability that the g. c. d. of two numbers taken at random has the same 
property. 

E. Busche^®^ gave a geometric proof of his®® formula. But if we take 
to be a continuous function decreasing as x increases, with i>(0)>0, 

then the number of positive divisors of y which are is S[i>(x)/x], 
summed for x=1, 2,.,., with $(x) ^ 0. This result is extended to give the 
number of non-associated divisors of y+zi whose absolute value is z). 

J. W. L. Glaisher^®^ considered the excess H(n) of the number of divisors 
= 1 (mod 3) of n over the number of divisors =2 (mod 3), proved that 
H(pq) if p, g: are relatively prime, and discussed the relation of 
il(n) to Jacobfs^^ P(n). 

Glaisher^®® gave recursion formulae for H(n) and a table of its values for 
n = l,..100. 

L. Gegenbauer^®® found the mean value of the number of divisors of an 
integer which are relatively prime to given primes Pi,.. ., and are 
also (pr) th powers and have a complementary divisor which is divisible 
by no rth powers. Also the mean of the sum of the reciprocals of the A:th 
powers of those divisors of an integer which are prime to pi,..., p<^ and are 
rth powers. Also many similar theorems. 

Gegenbauer^®®“ expressed ^iZo F(4x+1) and 2JF(4x+3) in terms of 
Jacobi’s symbols (A/p) and greatest integers [p] when F(x) is the sum of the 
^th powers of those divisors ^\/xoix which are prime to D, or are divisible 
by no rth power > 1, etc.; and gave asymptotic evaluations of these sums. 

J. P. Gram^®^ considered the number D„(m) of divisors of n, the 
number N2,z,..(n) of integers which are products of powers of the 
primes 2, 3,. ., and the sum I/2,3... (n) of the values of \(k) whose arguments 
k are the preceding N numbers, where X(2“3'^ ...)==( — 1)*'+^+' • • 

If p = Pi‘''P2“*..., where the Pi are distinct primes, 

Z),(n) =iV(n) -~SiV'(n/pi‘^‘+') +SA(n/pi‘^^+ip2“^+') - .... 

^®^Bull. Soc. Math. France, 16, 1888, 150. 
^“Atti R. Accad. Lincei, Rendiconti, 4, 1888, I, 452-7. 
loUour. ftir Math., 104, 1889, 32-37. 
iwProc. London Math. Soc., 21, 1889-90, 198-201, 209. ^hid., 395-402. See Glaisher.«i 
i°6Denkschriften Ak. Wise. Wien (Math.), 57, 1890, 497-530. 
i®«°Sitzungsber. Ak. Wisa. Wien (Math.), 99, 1890, Ila 390-9. 
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In particular, if the pi include all the primes in order, we may replace 
N{x) by [a;], the greatest integer Since there are as many divisors 
>a of n as there are divisors <nfa, 

Dp(n)+D,(2^=e+n(a..+l), 

where € = 1 or 0 according as n is or is not a divisor of p. These two formulas 
serve as recursion formulas for the computation of N{n). For the case of 
two primes pi=2, P2=3, 

The functions L satisfy similar formulas and are computed similarly. 
J. W. L. Glaisher“® stated a theorem, which reduces for m = l to 

Halphen’s,'‘“ 

S=(T„(ri) —3a-„(n —l)+5<r„(n-3)—7<r„,(n—6)+9(r„(n —10) — ... 

= [<r„-s(n-l)-(l‘+2*)<r„_,(n-3)+(l‘+2‘+3'‘)<r„_,(n-6)-...} 

+5(-l)‘'-'(l+2”+^+3”’+'+... +9’“+'), 

provided m is odd, where k ranges over the even numbers 2, 4,..., m-1, 
while 5 = 0 or 5 = 1 according as n is not or is of the form + l)/2. As in 
Glaisher^^ for m = l, the series are stopped before any term cri{n-’n) is 
reached; but, if we retain such terms, we must set 5 = 0 for every n and 
define <ri(0) by 

where J5i, ^2, - • • are the Bernoullian numbers. 
Glaisher^°® stated the simpler generalization of Halphen^®: 

2*(FFi)(T) 

where the summation index k ranges over the even numbers 2, 4,..., m —1, 
and m is odd. If we include the terms a’2r_i(0) = { — lyBr/(4ir) in the left 
member, the right member is to be replaced by 

(2^+1)-+^ 
2”‘+"(m+2)* 

5(-ir 

io»Messenger Math., 20, 1890-1, 129-135. 
177-181. 
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Glaisher^^® considered the set Gn{\l/(d), xWj • • •} of the values of \l/{d), 
x(d),... when d ranges over all the divisors of n, and wrote x> * • •) 
for G{-^j — • *)• ^se of the f-function (12), he proved (p. 377) that 
the numbers given by 

Gn(d) —Gn-i(d, d=±= l)+^n-3(d, d^l, d=t=2) — (j„_e(d, d^^l, d=^2, d±3)4-... 

all cancel if n is not a triangular number, but reduce to one 1, two 2^s, 
three 3's,..g g^s, each taken with the sign ( —)®“\ if n is the ^th tri¬ 
angular number g{g+l)/2. For example, if n = 6, whence ^ = 3, 

{1, 2, 3, 6) - {1, 5; 2, 6; 0, 4} + {l, 3; 2,4; 0, 2; 3, 5; -1, 1} 

= {1, 2, 2, 3, 3, 3}. 

Let \p(d) be an odd function, so that ^(—d)=—^(d), and let ^/(d) 
denote the sum of the values of /(d) when d ranges over the divisors of r. 
Then the above theorem implies that 

2n^(d) -2n-i {^(.d) +\l/(d=^ 1)} +2n_i_2 {'Pid) +^(d=t 1) +\p(d=^ 2)} 

—I>n-i~^2-3{^id)-^\l/(d=^l)-\r\p{d^2)+\p(d^3)} + . .. 

=5(-l)^-M^(l)+2V^(2)+3^(3)+.. .+sr^([7)}. 

where 5 = 0 or 1 according as n is not or is of the form ^(^+l)/2, and where 
\l/(d^i) is to be replaced by \l/{d+i) +\l/(d—i). Taking ^(d) = d”*, where m 
is odd, we obtain Glaisher’s^°® recursion formula for arm(n), other forms of 
which are derived. For the function^^ fa, we derive 

f3(n)+f3(n-l)+f3(n~3) + . . .+6{f(n-l)-(l2-22)f(n-3) 

+ (P^22+32)f(n-6)-...} 

= (-l)"“-\l^-2^-l-3^- ... + (“!)"“V) or 0, 

according as n is of the form ^(^+l)/2 or not. 
Next he proved a companion theorem to the first: 

all cancel if n is not a triangular number, but reduce to 1, 3, 5,. 2^ — 1, 
each taken with the sign (-)^ together with ( —1)*^*^^(20^-1-1) taken g 
times, if is the ^th triangular number g{g-{-l)/2. For example, if n==6. 

Hence if x(.d) be any even function, so that x(““^) = x(^)» 

S„lx(2(i+l)-x(2d-l)| -S„_i{x(2d+3)-x(2d-3))+S„_3-.... 

=5(-l)"-MffX(2i7+l)-x(l)-x(3)- . .. -X(2g-l)|. 

Taking x(^) = where k and m are odd, we get Glaisher’s^®® formula. 

iioproc. London Math. Soc., 22, 1890-1, 359-410. Results stated in London, Edinb., Dublin 
Phil. Mag., (5), 33, 1892, 54-61. 
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He proved two theorems relating to the divisors of 1, 2,..., n: 

^”(-1^- 1]) ~ (_y ^1) 
+ ((rn-3 + ^n-4 + f5^n-5) . 

all cancel with the exception of —2, —4,..—,(p—2), each taken twice, 
p taken p — 1 times and — 0, if p be even; but with the exception of 1, 3,, 
p—2, each taken twice, and ~p taken p—1 times, if p be odd, where 
p(p+l)/2 is the triangular number next >n; 

G„(d) ~((?n-l+G„^2)(d=^l) + (G^n-3+f^n-4^ d^2) 
. . . +Gn-9)(d^ 1, d^d)+(Gn-lO+ • • • +G^n-14) W, d^2, d^4:) - . . . 

all cancel with the exception of k taken k times, for A; = 1, 3, 5,..., p—1, if p 
be even; and of —k taken k times, for A;=2, 4, 6,..., p — l, if p be odd; here 
zeros are ignored. 

The last two theorems yield (as before) corresponding relations for any 
even function x SiUy odd function \p. Applying them to x(d+l) 
= (d4-l)”* and \j/{d)=d^y where m is odd, and in the first case dividing 
by 2(m+l), and modifying the right members, we get for 

~2 {<r,,,(n~l)+or,,,(n---2)}+3 {(r,,,(n--3) 
+(rm{n-4)+(r^(n-5)} - ... 

the respective relations 

-2*+'(<r„-*(n-l) +a„.,in-2)) 

+3*'’"^ (next three) — ...} 

where s= (m+l)/2 and cri(O) terms are suppressed; 

r=S2(^){<r„_;t(n-l)+<r.n_j,(n-2)-2‘ (next three)+(1*+3*)(next four) 

—(2^+4*) (next five) + (l*+3*+5*) (next six) —(2*+4*+6*) (next seven) + • • •} 

r ... +(p--l)’"+\ if p be even, 
... -(p-l)”‘+S if p be odd. 

where, in each, k takes the values 2, 4,.. ., m — 1, These sums of like powers 
of odd or even numbers are expressed by the same function of Bernoullian 
numbers. For m = l, the first formula becomes that by Glaisher,^^ repub¬ 
lished.*^^ Three further Gn formulas are given, but not applied to (Xn- 

J. Hammond^ wrote (n; m) = l or 0 according as n/m is integral or 
fractional, also t(x) =<r{x) =0 if x is fractional, and stated that 

r(n/m) = 2 (n; jm), a{n/m)= 'Lj{n]jm), 
j»i 

“^Messenger Math., 20, 1890-1, 158-163. 
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From the sum of Euler’s 0(d) for the divisors d of n, he obtained 

o-(n) = £^t(j)i^)0'), nrin) = S <r(y)<^>0‘). 

E. Lucas“^ proved the last formulas, the result of Cesllro,^^ and the 
related one <j{n) + Sn == Sn~i+2n—1. 

A. Berger^^^ considered the mean of the number of decompositions of 
1, 2,..., a; into three or more factors, and gave long expressions for 0(1) + 
...+0(e), where 0(/c) =Sd^di*\ summed for the solutions of ddi = k He 
gave (pp. 116-125) complicated results on the mean value of o’A;(n). 

D. N. Sokolov and D. T. Egorov^^^® proved, by use of Bougaief’s formu¬ 
las for sums extending over all the divisors of a number, the formulas in 
Liouville’s^®"^® series of four articles. 

J. W. L. Glaisher^^^ gave Zeller’s®® formula and 

P(n-l)+22p(n-2)-52p(n-5)-72p(n-7) + ... 

=^ {5(r3(n) - (18n - l)a(n)}. 

where 1, 2, 5,... are pentagonal numbers (3r^=±=r)/2 and P(0) =1. 
Glaisher^^® proved formulae which are greatly shortened by setting 

aij{n) =nVj(n)—3(n—l)Vj(n —l)+5(?i—3)Vj(n—3) —7(n —6)Vj(n —6)+- 

Write aij for aijin). Besides the formula [of Halphen^°] aoi = 0, he gave 

40 
Zuii = 0, ao5 — 10ai3 ~ 0, 

126 j^756 
^07 ——^a23—168a3i=0, 

^09 — 50(Ii7 ‘i-720u25—3360(i33 “f-3360(i4i = 0, 

with the agreement that (r(0) =n/3 and 

240 ’ °’®^®^~ 504’ <^7(0)- ) 0-9(0)- 204 > 

where t—Sn+lj but did not find the general formula of this type. Next, 
he gave five formulas of another set, the first one being that of his earlier 
paper, the second involving the same function of 0-3 with added terms in 
r<T{r), Finally, denoting Euler’s formula (2) by P(r(n) =0, it is shown that 

5E(rs(n) — 18P [na{n)} = 0. 

Glaisher^^® showed that his^® third formula holds for all odd numbers v 
not expressible as a sum of three squares and hence in particular for the 

^m^orie des nombres, 1891, 403-6, 374, 388. 
i«Nova Acta Soc. UpsaL, (3), 14,1891 (1886), No. 2, p. 63. 
iw«Matli. Soc. Moscow, 16, 1891, 89-112, 236-255. 
ii^Messenger Math., 21, 1891-92, 47-8. 

49-69. 
^^Jbid.f 122, 126. The further results are quoted in the chapter on sums of three squares. 
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former case (mod 8). Also the left member of the third formula 
equals 

4:{E(v-l)-SE(v-9)+5E(v-25)- ...} 

when V is odd, provided E{0) = 1/4. If A'(n) denotes the sum of those divi¬ 
sors of n whose complementary divisors are odd, 

A/7i)-~2A'(7i-l)+2A'(ri-4)-~2A'(n-9)+... =0 or (~ir“'n, 

according as n is not or is a square. [Cf. Lipschitz.®^] Since A'(n) =<T(n) 
for n odd, we deduce a formula involving <r^s and A'^s. 

M. Lerch^^^ proved (11) and 

g], 'LFik) =2/(fc) g], 

if F(n) =Xf{d), d ranging over the divisors of n, 
K. Th. Vahlen^^® proved Liouville’s^® formula and Jacobi’s^® result. 
A. P. Minin^^^ proved that 2, 8, 9, 12, 18, 8q and 12p (where q is a prime 

>2, p a prime >3) are the only numbers such that each is divisible by the 
number of its divisors and the quotient is a prime. Minin^^® found that 
1, 3, 8, 10, 18, 24 and 30 are the only numbers N for which the number of 
divisors equals the number of integers <N and prime to N. 

M. Lerch^^^ considered the number x(a, h) and sum X(a, h) of the divisors 
of a, proved his^®'^ final formula (17) and 

c c 

S Z(m—an, a) = Sa{x(w—an, n)--^(w —an, a)}, 
0=1 a*®! 

(18) ii(m-an,^ = Z^x(m-an,rn), 

If 8 ranges over the divisors of n, 

- S T{(a—am, n)} =2-—"—~ 2 <r{(a--am, n)} =2(5, m; a), 
71 a^Q 0 71 a=>0 

i (am, n)=r!2^-(5, (m, n)). 
a»l 0 

m—l 

He quoted (p. 8) from a letter to him from Chr. Zeller that 2 a\l/(m—a, a) 
a-l 

equals the sum of the remainders obtained on dividing 7n by the integers 
<m. 

M. Lerch^^^ proved that 

2^(md-p—crn, <r) =2x(nt+p-“crn, n) —2 
L n j 

S;/'(OT-p-pn, (t) ='Zx(m-p-<m, n)-| 

^I’Casopis, Prag, 21, 1892, 90-95, 185-190 (in Bohemian). Cf. Jahrbuch Fortschritte Math., 
24, 1892,- 186-7. 

“sjour. fiir Math., 112, 1893, 29. 
ii^Math. Soc. Moscow, 17, 1893, 240-253. 
mUd., 17, 1894, 537-544. 
^2iPrag Sitzungsberichte (Math.), 1894, No. 11. 
mUd,, No. 32. 
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summed for p, <r=0, 1,..with pS<r. Also, 

”*2 \ -1) V(w -a, o) = 2’s \ - l)“e'(m -a) + (- l)’"7n, 
a*=0 a»0 

wi—1 m T'wT 

VUm-a, 2a) =m+ +2^2 (-1)’'[^^]> 

where Q'(k) is the number of odd divisors of k; a) is the number of 
divisors >a of n whose complementary divisors are odd; while ^Poik, ju) is the 
number of even divisors >ix of k^ 

In No. 33, he expressed in terms of greatest integer functions 

tm, A:+<r)~x(m—p—(rn,n)}j 

a,/:+a) —(A:+a)^(m—a, A:+a)}* 

E. Busche^^^ gave a geometrical proof of MeisseFs^^ (11). 
J. Schroder^^ obtained (11) and the first relation (15) of Lerch®® as 

special cases of the theorem that 
0, 1,2,... tn m 

2 i^'rH-.(n-r2 ip.-, 2p,) 
Pi.....Pin- *=1 i-l 

equals the coeJSicient of a;” in the expansion of 
m—l 

1- n (l-a:"+*) 

(l-On(l-a;”+') 

where i/'rp+«(a, is the number of divisors of a which are and have a 
complementary divisor of the form rj^+s(i^ = 0, 1,...). He obtained 

S \pr,+i (n - rp, p) = • 

Schroder^^^ determined the mentioned coefficient of x"", 
Schroder^^® proved the generalization of (11): 

For (r(l) +... +<j{n)j Dirichlet/^ end, he gave the value 

25 - - +(2p+l) - 
s»i L5J p=iLLpJ LpJJ 

-M^+i). 

E. Busche^^^ proved that if X=<i>(m) is an increasing (or decreasing) 
function whose inverse function is m=4>(Z), the divisors of the natural 

^“Mittheilungen Math. Gesell. Hamburg, 3, 1894, 167-172. 
177-188. 
3, 1897, 302-8. 
3, 1895, 219-223. 

«’76i(i., 3, 1896, 239-40. 
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numbers between <^(m) and a, including the limits, are the numbers x from 
1 to a (or those ^a) each taken ]^{x)/x] times, and the numbers within 
the limits which are multiples of x are a;, 2r,..., ^x. For example, if a = 3, 

<3f>(m) =900/m^, then ^(a;)=30/Vr and it is a question of the divisors of 
3..17; for a; = 3, ^ = 5 and 3 is a divisor of 3, 6, 9, 12, 15. For^>(a:)=n, 
a = l, the theorem states that among the divisors of 1,..n any one x 
occurs [n/x] times and that these divisors are 1,..., n; 1,..., [n/2]; 1,.. 
[n/3]; etc. Hence the sum of the divisors of 1,..n is 

and their product is 

X=sl X=»l 

He proved (pp. 244-6) that the number of divisors =r (mod s) of 1, 2,..., n 
equals A+-S, where A is the number of integers [n/x] for x = l,..., n 
which have one of the residues r, r+l,...,5 — 1 (mod s), and B is the number 
of all divisors of 1,2,..., [n/s]. The number of the divisors 5 of m, such that 

^ n 

and such that 5*' divides 7w/5, equals the number of divisors of 1, 2,. .., n. 
The number of primes among n, [n/2],..., [n/n] equals the number of those 
divisors of 1,..n which are primes decreased by the number of divisors 
which exceed by unity a prime. 

P. Bachmann^^® gave an exposition of the work of Dirichlet,^^' Mer- 
tens,^^ Hermite,®^ Lipschitz,®® Ces^ro,®^^ Gegenbauer,^^ Busche,^^^' 
Schroder. 

N. V. Bougaief^^® stated that 

■+G])' ''+^te]'+ 
where d ranges over the divisors >1 of n, and v = [Vn]; 

where d ranges over the divisors of n for which dP<n. If ^ is any function. 

nE^d{d)= S 20(d), 
ct i«l d 

where, on the left, d ranges over all the divisors of n; on the right, only over 
those ^ [nVij. For 0(d) = 1, this gives 

Mn)=ix{n, [f]). 
^”Die Analytische Zahlentheorie, 1894, 401-422, 431-6, 490-3. 
**®Compte8 Rendus Paris, 120, 1895, 432-4. He used i (a, 6), ^(a, b) with the same meaning 

as xib, a), Xib, a) of Lerch,‘*^ and fi(n) for <r(n). 
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M. Lerch^^° proved relations of the type 

The number of solutions of [V^] = [n/(a;+l)], a:<n, is 

Zi/'Cri-r, r)+2 x(^-PjP) 
r>k P<k 

(fe-J+Vn+1/4 ). 

F. NachtikaF^^ gave an elementary proof of (15). 
M. Lerch^^^ proved that 

S (rn—cra, ^ (m —(ra, ra) | 

remains imaltered if we interchange r and s. He proved (18) and showed 
that it also follows from the special case (17). From (17) for n=2 he derived 

^ / O ^ StTI "f” 1 I / *1 \rn^ 1 2 i/^(m-2a, a)=——+(-l) 
a=rO 4: 4 

fm-n 

L. Gegenbauer^^^“ proved a formula which includes as special cases four 
of thefivegeneralformulasby Bougaief.^^^ When x ranges over a given set S 
of n positive integers, the sum hf{x) [x(x)] is expressed as sums of expressions 
<i>(p) and <i>i(p), where p takes values depending upon x, while ^{z) is the sum 
of the values oif{x) ior x in. S and x'^z, and4>i(2:) is the analogous sum with 
x^z. 

F. RogeF^^ differentiated repeatedly the relation 

n (1 T= S |x| < 1, 
« = ! a.= l O) 

then set a; = 0 and found that 

■ cy 
the summations extending over all sets of a^s for which 

^1+^2+ • • • +a,.=‘i, ai-\-2a2-\- ... +rar=r. 

Starting with the reciprocals of the members of the initial relation, he 
obtained similarly a second formula; subtracting it from the former result, 
he obtained 

__ 'n 
ai!...a,_3!y=2L j 

i^oCasopis, Prag, 24, 1895, 25-34, 118-124; 25, 1896, 228-30. 
25, 1896, 344-6. 

i32Jomal de Sciencias Math, e Astr. (Teixeira), 12,1896,129-136. 
issa^onatshefte Math. Phya., 7, 1896, 26. 
“sSitzungsber. GeseU. Wiss. (Math.), Prag, 1897, No. 7, 9 pp. 
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where t=3, 5, 7,... in S', while the a's range over the solutions of 

ai+.. .+ctr.-3 = ^*> ai4-2a2+. • .+(?*—3)ar_3=r. 

The case n = 0 leads to relations for T(r). 
J. de Vries^^^“ proved the first formula of Lerch’s.^^^ 
A. Berger^^^ considered the excess yl/{k) of the sum of the odd divisors of k 

over the sum of the even divisors and proved that 

—l)+^(n—3)+i/'(n —6)+i/'(ri—10) + ... =0 or n, 

according as n is not or is a triangular number; also Euler's (2). 
J. FraneP^® employed two arbitrary functions /, g and set 

e(.n) =S/(d)ff - F{n) = S/C/), G(n) = S gU), 
\a/ .i=.i 

where d ranges over the divisors of n. Then 

where p = [Vn]. The ceise f(x) —g(x) —1 gives Meissel's^^ (11). Next, he 
evaluated j), where d-(n) =l^f{x)g{y)h(z)f summed for the sets of positive 
integral solutions of xyz=n. In particular, i?(n) is the number of such sets 

= = Using Dirichlet's series, it is shown (p. 386) that 

s =1{ aog n+3C'-l)'-3C^+6C'x+l} +«, 

where e is of the order of magnitude of log n, C is Euler's constant and 
Cl ==0.0728... [Piltz,®^ Landau^^^. 

FraneP^® proved that 

X lW^|lQg2p_j.2(71ogp+6+Ao, 
r«i r 

where Aq is a coefficient in a certain expansion, and remains in absolute 
value inferior to a fixed number for every p. 

E. Landau^^^ gave an immediate proof of (11) and of 

2T3(z^)=:Sr(.)g], 

where Ts{u) is the number of decompositions of v into three factors. He 
obtained by elementary methods a formula yielding the final result of 
FraneP^^ on hT^iv). 

R. D. von Sterneck^^^® proved Jacobi's^^ formula for s^. 

Akad. Wetenschappen te Amsterdam, Verslagen, 5, 1897, 223. 
i3<Nova Acta Soc. Sc. Upsaliensis, (3), 17, 1898, No. 3, p. 26. 
i33Math. Aimalen, 51, 1899, 369-387. 
136/Wd., 52, 1899, 536-8. 

54. 1901, 592-601. 
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J. FraneP®® stated that, if f{n) is the number of positive integral solutions 
of where a, b are distinct positive integers, 

2/(r) = f ^ n^+O , 

where®® 0{s) is of the order of magnitude of s. Taking a = 1, 6 = 2, we see 
that /(n) is the number of divisors of q, where is the greatest square divid¬ 
ing n, and that the mean of /(n) is ttV^. 

E. Landau^^® proved the preceding formula of Franers. 
Elliott®® of Ch. V gave formulas involving cr(n) and r(n). 
L. Kronecker^^® proved that the sum of the odd divisors of a number equals 

the algebraic sum of all its divisors taken positive or negative according as 
the complementary divisor is odd or even (attributed to Euler^); proved 
(pp. 267-8) the result of Dirichlet^® and (p. 345) proved (7) and found the 
median value (Mittelwert) of rin) to be loge n+2C with an error of the order 
of magnitude of n”^''^when the number of values employed is of the order of 

Calhng a divisor of n a smaller or greater divisor according as it is less 
than or greater than\/n, he found (pp. 343-369) the mean and median value 
of the sum of all smaller (or greater) divisors of 1, 2,..., N [cf. Gegenbauer^^], 
the sum of their reciprocals, and the sum of their logarithms. The mean of 
Jacobi’s^^ E(n) is 7r/4 (p. 374). 

J. W. L. Glaisher^^^ tabulated for n = l,..., 1000 the values of the 
function^®^ H(n) and of the excess J(n) of the number of divisors of n which 
are of the form Sk+1 or 8A;+3 over the number of divisors of the form 
8A;-f5 or 8A;-h7. When n is odd, 2J(n) is the number of representations of n 
by 

J. W'. L. Glaisher^^^ derived from Dirichlet’s^^ formula, and also ind^ 
pendently, the simpler formula 

=iLs. 
= -p(^(p)+S^[^J^(s)+SO 

where p=[\/^]* The case ^^(s) = 1 gives MeissePs^^ formula (11), which is 
applied to find asymptotic formulae involving n/s — [n/s]. The error of the 
approximation (7) is discussed at length (pp. 38-75, 180-2). The first 
formula above is applied (pp. 183-229) to find exact and asymptotic formu¬ 
las for 2/(s), when/(n) is Jacobi’s^^ E{n), Glaisher’s^^^ H{n) or J{n), or the 
excess D{n) of the number of odd divisors of n over the number of even 
divisors, or more general functions (p. 215, p. 223) involving the number of 
divisors with specified residues modulo r. 

G. Voronoi^^^ proved a formula like Dirichlet’s^^ (7), but with e now of the 
same order of magnitude as -s/n log« n. 

“®L’interm4diaire des math., 6, 1899, 53; 18, 1911, 52-3. 
20, 1913, 155. 

Movorlesungen liber Zahlentheorie, I, 1901, 54-55. 
^^^Messenger Math., 31, 1901-2, 64r-72, 82-91. 
i«Quar. Jour. Math., 33,1902,1-75,180-229. 
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H. obtained as3anptotic expressions for ST(n), Xa(n). 
I. Giulini^^® noted that, if m and h are given integers, and fi(r) is the sum 

of the divisors d=mk+h of r, then 

/3(l) + ...+/3(n)=Sd[Vd], k = 0y 1,..[(n — h)/m]. 

The number and sum of the divisors d=mk+h of 1,..., n are 
[(n-h)/m] jr^- 

“i t 
jfc=o LdJ r-i \ mr / «»iL ms J 

:+l]/2. 
the precise analytic expression 

x(\ogx+2C—l)+i+iTix) —2^"git)dt+J {g(—x+ti)—g{—x—t{)}idt, 

ad (p. 515) approximations to these integrals, where 

,(.)—} log 

respectively, where E2{x) =^[x][x+l]/2. 
G. Voronoi^^^® gave for T(x) the precise analytic expression 

He discussed at length the function g(x) and (pp. 467, 480-514) the asymp¬ 
totic value of I/r(n)(x'-n)^/kl 

J. Schroder^^® proved that the sum of the I'th powers of 1,..., n is 
n 

Sp- 
P«1 

n-1 

nor,_i(n)+ S P'd- 2' p 
p»=l 

where t=[n/2]j and the accent on the last S denotes that the summation 
extends only over the values of p which are not divisors of n. 

E. Busche^^^ proved that, if we multiply each divisor of m by each divisor 
of n, the number of times we obtain a given divisor a of mn is rifxv/a), where 
p is the g. c. d. of m,a, and v is that of n, a. A like theorem is proved for 
the divisors of mnp.... He stated (p. 233; cf. Bachmann^®®) that 

where d ranges over the common divisors of w, n. 
C. Hansendenoted by Ti(n) and Ts(n) the number of divisors of n 

of the respective forms 4/c —1 and 4/:—3, and set 

A„=!r3(4n~3)-ri(4n~3). 

By use of Jacobi’s Bsiy^ s) for v = l/4:, he proved that 

n=l n=»l I ' l-2s^+2s^^+. 

i«Acta Math., 28, 1904, 49. 
‘^“Giornale di mat., 42, 1904, 103-8. 
i«“Annale8 sc. I’^cole norm, sup., (3), 21, 1904, 213-6, 245-9, 258-267, 472-480. Cf. Hardy.'so 
^“^Mitt. Math. Gesell. Hamburg, 4, 1906, 256-8. 

4, 1906, 229. 
“®Oversigt K. Danske Videnskabemes Selskabs Forhandlinger, 1906, 19-30 (in French). 
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and hence deduced the law of a recursion formula for The law of a 
recursion formula for Bn^4i[Tz{'n) — Ti{n)} is obtained from 

SBy”! s'2’‘+i^’cos(2n+l)^= I (2w+l)s®’‘+‘)’sin(2re+l)^, 
n«0 n=0 4 n=»0 4 

with Bq- 1, which was found by use of Jacobies s). Next, 
00 on 1 00 

is shown to satisfy the functional equation 

$(ts) = i{$(s) -$(-s)} -$(*2) +2#(s*). 

If a convergent series ScnS” is a solution <i>(s) of the latter, the coefficients are 
uniquely determined by the c^ic-z(h = 1? 2,...)^ which are arbitrary. Hence 
the function is determined for all values of n by its values forn = 4A; —3 
(A: = l, 2,...). 

S. Wigert^^® proved that, for sufficiently large values of n, T(n)<2‘, 
where <=(!+€) log n-f-log log n, for every e >0; while there exist certain 
values of n above any limit for which r(n) > 2*, 5 = (1 — €) log n -r-log log n. 

J. V. Pexider^®® proved that, if a, n are positive, a an integer, 
M rn tn/a] 

+ 2 
*=1 

n' 

,k 

by the method used, for the case in which n is an integral multiple of a, 
by E. Ces^ro.^® Taking a = [Vn], we have the second equation (11). Proof 
is given of the first equation (11) and 

where d ranges over the divisors of [n]. 
0. Meissner^®^ noted that, if m —pi \ . where pi is the least of the 

distinct primes Pi,..., Pn, then 

— m i=2Pi-l' 
n i< 

(r{m) <(j, 
" m log m 

where G is finite and independent of m. If 1, ak{m)/m* is bounded. 
W. Sierpinski^^^ proved that the mean of the number of integers whose 

squares divide n, of their sum, and of the greatest of them, are 

11 ,3^ 3 , , 9C , 36 « log 5 
-g, S —, 

respectively, where C is Euler’s constant. 
J. W. L. Glaisher^^^ derived formulas differing from his“° earlier ones 

only in the replacement of d by { — i. e., by changing the sign of each 

i<®Arkiv for mat., ast., fys., 3, 1906-7, No. 18, 9 pp. 
^^“Rendiconti Circolo Mat. Palermo, 24, 1907, 58-63. 
“^Archiv Math. Phys., (3), 12, 1907, 199. 
“^Sprawozdania Tow. Nank. (Proc. Sc. Soc. Warsaw), 1, 1908, 215-226 (Polish). 
i^Proc. London Math. Soc., (2), 6, 1908, 424-467. 
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even divisor d. In the case of the theorems on the cancellation of actual 
divisors, the results follow at once from the earlier ones. But the recursion 
formulae for trn and fn are new and too numerous to quote. Cancellation 
formulas (pp. 449-467) are proved for the divisors whose complementary 
divisors are odd, and applied to obtain recursion formulae for the related 
function A/(n) of Glaisher.^^* 

E. Landau^®® proved that log 2 is the superior limit for x= oo of 
log T(x)-log log x-i-log x. 

M. Fekete^^® employed the determinant obtained by deleting the 
last t rows and last t columns of Sylvester’s ehminant of a;*'—1 = 0 and 
x”—1=0. Set, for k^n, 

bM = 1 - \Rtn% C„(i, k) = IR^l (1 - I) (1 - (1 - IfiSf n« I). 

Then hn(k) = 1 or 0 according as k is or is not a divisor of n; while Cn(i, k) = l 
if ik=n and i is relatively prime to k, but =0 in the contrary cases. Thus 

r(n)=ihM, <T(n)==ikhM> 
jfc-i jfc-i 

while the number and sum of those divisors d of n, which are relatively prime 
to the complementary divisors n/d, equal, respectively, 

S c„(i, k), I S (t+A;) c„{i, k). 

J. Schroder^®^ deduced from his^^ final equation the results 

The final sum equals UJ-i ^(s, [s/(^+l)]). 
P. Bachmann^®® gave an exposition of the work of Euler,®'® Glaisher,®®’®^ 

Zeller,®® Stern,®® Glaisher,^^® Liouville.®® 
E. Landau^®® proved that the number of positive integers^ x which have 

exactly n positive integral divisors is asymptotic to 

^^l/(p-l)(log jQg a;)"’“•7log 

where p is the least prime factor of n, and p occurs exactly w times in n, 
while A depends only on n. 

K. Knopp^®® obtained, by enumerations of lattice points, 

2/i(g,A;)= if2{k,q)-= 2/i(g,A;)+ Z f2{k,q)-F(w,w), 
A»1 fc-1 

where q = [n/k] and 

/i(r, k)=i; f{j, k), hih s) = i/(fc, i), F(r, s) = i A(r, j). 
__j-i_ 

“®Handbuch.. .Verteilung der Primzahlen, I, 1909, 219-222. 
68 Phys. Lapok (Math. phys. soc.), Budapest, 18, 1909, 349-370. German transl.. 

Math. Naturwiss. Berichte aua Ungarn, 26, 1913 (1908), 196-211. , 
Math. GeseU. Hamburg, 4, 1910, 467-470. * 

«8Niedere Zahlentheorie, II, 1910, 268-273, 284-304, 375. 
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Taking fQi, we obtain MeisseFs^^ (11), a direct proof of which 
is also given. Taking/(/i, k)-f(h)gQik), we get 

s S f(j)gUk) = i m S gW, g= [fl> 
j»i jfc«l j»i L/CJ 

special cases of which yield many known formulas involving Mobius^s func¬ 
tion fi(n) or Euler’s function 0(n). 

E. Landau^®^ proved the result due to Pfeiffer®®, and a theorem more 
effective than that by Piltz®^, having the 0 terms replaced by 0(x^)j where, 
for every €>0, 

fe-1 , a=__<r+*. 

E. Landau^®^ extended the theorem of Piltz®^ to an arbitrary algebraic 
domain, defining Tk{n) to be the number of representations of n as the norm 
of a product of k ideals of the domain. 

J. W. L. Glaisher^®®, generalizing his^^^ formula, proved that 

.?/[!]'<•>-'■wow, 
whereF(s) =/(l)+...+/(«), 6r(s) =fir(l)+•. .+fir(s), p = [Vn]* A similar 
generalization of another formula by Dirichlet^'^ is proved, also analogous 
theorems involving only odd arguments. 

Glaisher^®^ applied the formulas just mentioned to obtain theorems on 
the number and sum of powers of divisors, which include all or only the 
even or only the odd divisors. Among the results are (11) and those of 
Hacks.®®’The larger part of the paper relates to asymptotic formulas 
for the functions mentioned, and the theorems are too numerous to be 
cited here. 

E. Landau®^ gave another proof of the result by Vorono'i^^®. He proved 
(p. 2223) that T(7i)<4n^^®. 

J. W. L. Glaisher^®® stated again many of his^®^ results, but without 
determining the limits of the errors of the asymptotic formulas. 

S. Minetola^®® proved that the number of ways a product of m distinct 
primes can be expressed as a product of n factors is 

T. H. GronwalF®^ noted that the superior limits for x = oo of 

<^a{x)/x^ (a>l), <r(x)/(a;loglogx) 

are the zeta function f(a) and e^, respectively, C being Euler’s constant. 

wiGottingen Nachrichten, 1912, 687-690, 716-731. 
i8*Trans. Amer. Math. Soc., 13, 1912, 1-21. 
i«Quar. Jour. Math., 43, 1912, 123-132. 

315-377. Summary in Glaisher.^^ 
^^“Messenger hl^th., 42, 1912-13, 1-12. 
“»I1 Boll. diMatematica Gior. Sc.-Didat., Roma, 11,1912,43-16; cf. Giomale di Mat., 45,1907, 

344-5; 47, 1909, 173, §1, No. 7. 
“n'rans. Amer. Math. Soc., 14, 1913, 113-122. 
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P. Bachmann^®® proved the final formula of Busche.^^’^ 
K. Knopp^®® studied the convergence of including the 

series of Lambert^, and proved that the function defined in the unit circle 
by Euler^s^ product (1) can not be continued beyond that circle. 

E. T. Bell^’^^^ proved that, if P is the product of all the distinct prime 
factors of w, and X is their number, and d ranges over all divisors of m, 

6^2 ^ = T‘{m) r{Pm) r{P^in). 

J. F. Steffensen^^^ proved that,®® if lx denotes log x, 

i^=iPp+0{h), s£gi=^Z,+0(l). 

S. Wigert^’* proved, for the sum n-s{n) of the divisors of n, 

(1—£)e°log log n<s(n)<(l+«)c® log log n, 

S a{n) = ~z- 
n&x O 

■Hx), 

for €>0 and p{x)==x--[x]. For x sufficiently large, 

(i-€) log a;<^(x)<(f+€) log x. 

Besides results on Xs{x){x—ny, Ss(n) log x/n, he proved that 

S ns(n)=-Y^+x{Jloga;—^(*)}+0(x). 
n^x 

E. Landau^’'® gave corrections and simplifications in the proofs by 
Wigert.i'® 

E. T. BelF^^ introduced a function including as special cases the functions 
treated by Liouville,®®"^® restated his theorems and gave others. 

J. G. van der Corput^^® proved, for fx{d) as in Chapter XIX, 
X x/d 

2 dXd) 2 = X. 
d-i ifc-i 

S. Ramanujan^^® proved that t(N) is always less than 2^ and 2\ where®® 

for Li{x) as in Ch. XVIII, and for a a constant. Also, t(N) exceeds 2*’and 
2* for an infinitude of values of N. A highly composite number N is one 
for which T(N)>T(n) when N>n; if A = then 

i®®Archiv Math. Phys., (3), 21,1913, 91. 
“®Joiir. ftir Math., 142, 1913, 283-315; minor errata, 143, 1913, 50. 
'’°Amer. Math. Monthly, 21, 1914, 130-1. 
i^'^Acta Math., 37,1914,107. Extract from his Danish Dias., “ Analytiske Studier med Anven- 

delser paa Taltheorien,” Kopenhagen, 1912. 
113-140. 

^’KSottingsche gelehrte Anzeigen, 177, 1915, 377-414. 
^’^Univ. of Washington Publications Math. Phys., 1, 1915, 6-8, 38-44. 
^’“Wiskundige Opgaven, 12, 1915, 182-4. 
i^»Proc. London Math. Soc., (2), 14, 1915, 347-409. 
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.. while ap=l except when iV=4 or 36. The value of X for which 
ct2> 03> ... > flx is investigated at length. The ratio of two consecutive 
highly composite numbers N tends to unity. There is a table of N*s up 
to t(N) = 10080. An iV is called a superior highly composite number if 
there exists a positive number e such that 

r(N2)^r(N)^r(N{) 
N2* ^ at* - Ni* 

for all values of Ni and N2 such that N2>N>Ni. Properties of t{N) are 
found for (superior) highly composite .numbers. 

Ramanujan^’'’' gave for the zeta function (12) the formula 

f(2s-a-6) 

and found asymptotic formulse for 

Sr*(i), ir(jv+c), na.U), 
-1 y»l ;»1 J»1 

for a=0 or 1, where 

D,in) = I rO) =SM(d)r(0Z)i(|), 

DXn), 

summed.for the divisors d of v. If 5 is a common divisor of u, v, 

tM =S/x(«)T(^)r(^) =S;,(5)r(|)r(|). 

E. Landau^^^® gave another asymptotic formula for the number of de¬ 
compositions of the numbers Sx into k factors, k^2, 

Ramanujan^’'® wrote fr,(0) =^^(“-5) and proved that 

l^<TrU)(TXn-j) 
J-O 

r(r+i)r(^+i) r(^+i)r(^+i) ,. 
r(r+s+2) ‘ j'(r+s+2) 

for positive odd integers r, s. Also that there is no error term in the right 
member if r=l, s = l, 3, 5, 7, H; r = 3, s=3, 5, 9; r = 5, s = 7. 

J. G. van der Corput'” wrote s for the g. c. d. of the exponents ai, a2,... 
in m=npj“*and expressed in terms of zeta function f(t), i=2,..ib+1, 

m=2 

if k>l-, the sum being 1-C if /c= -1, where C is Euler’s constant. 

^’’Messenger Math., 45, 1915-6, 81-84.. 
i^^^Sitzungsber. Ak. Wiss. Mtinchen, 1915, 317-28. 
i^sTrans. Cambr. Phil. Soc., 22, 1916, 159-173. 
i7«Wi8kmidige Opgaven, 12, 1916, 116-7. 
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G. H. Hardy^®*^ proved that for Dirichlet’s^^ formula (7) there exists 
constant K such that €>Kv}^^f 6< for an infinitude of values of n 
surpassing all limit. In Piltz^s®^ formula 

s Tt(n) = x{anilog x)*-*+.. .+aM}+e*, 
n—1 

€jc>K3ff €k<’—Kx\ where <= (A;--1)/(2A;). He gave two proofs of an 
equivalent to Voronofs^^®“ explicit expression for T{x). 

Hardy^®^ wrote A(n) for DirichlePs e in (7) and proved that,®® for every 
positive e, A(n) = 0(n*'*’^''^) on the average, i. e., 

^|A(0|<i<=O(n«+V4). 

G. H. Hardy and S. Ramanujan^®® employed the phrase ^^almost all 
numbers have a specified property^' to mean that the number of the num¬ 
bers having this property is asymptotic to x as a; increases indefinitely, 
and proved that if / is a function of n which tends steadily to infinity with n, 
then almost all numbers have between a—6 and a+h different prime factors, 
where a=log log n, fe=/Vo* The same result holds also for the total 
number of prime factors, not necessarily distinct. Also a is the normal 
order of the number of distinct prime factors of n or of the total number 
of its prime factors, where the normal order of g(n) is defined to mean f(n) 
if, for every positive e, (l—e)f{n)<g{n)<{l+€)f{n) for almost all values 
of n. 

S. Wigert^®® gave an asymptotic representation for 2„3g*T(n)(x—n)*. 
E. T. BelP®^ gave results bearing on this chapter. 
F. RogeP®® expressed the sum of the rth powers of the divisors of 

m as an infinite series involving Bernoullian functions. 
A. Cunningham^®® found the primes (or 10®) for which the number 

of divisors of p —1 is a maximum 64 (or 120). 
Hanunond^® of Ch. XI and RogeP^® of Ch. XVIII gave formulas involv¬ 

ing (T and T. Bougaief®®’of Ch. XIX treated the number of divisors 
of n. Gegenbauer®® of Ch. XIX treated the sum of the pth powers of 

the divisors of n. 

i®°Proc. London Math. Soc., (2), 15, 1916, 1-25. 
“i/bid., 192-213. 
i«2Quar. Jour. Math., 48, 1917, 76-92. 
i83Acta Math., 41, 1917, 197-218. 
la^Annals of Math., 19, 1918, 210-6. 
“^Math. Quest. Educ. Times, 72, 1900, 125-6. 
^®®Math. Quest, and Solutions, 3, 1917, 65. 



CHAPTER XL 
MISCELLANEOUS THEOREMS ON DIVISIBILITY. GREATEST 

COMMON DIVISOR. LEAST COMMON MULTIPLE. 

Theobbms on Divisibility. 

An anonymous author^ noted that for n a prime the sum of 1, 2,..., —1 
taken by twos (as 1+2, 1+3,...), by fours, by sixes, etc., when divided 
by n give equally often the residues 1, 2,..n—1, and once oftener the 
residue 0. The sum by threes, fives,..., give equally often the residues 
1,..n—1 and once fewer the residue 0. 

J. Dienger^ noted that if and l)/(?n^ —1) are divisible 
by the prime p, then the sum of any 2r+l consecutive terms of the set 
1, .. is divisible by p. The case w=2, r = l, p = 3 or 7 
was noted by Stifel (Arith. Integra). 

G. L. Dirichlet® proved that when n is divided by 1, 2,..in turn 
the number of cases in which the remainder is less than half the divisor 
bears to n a ratio which, as n increases, has the limit 2—log 4 = 0.6137 
.,.; the sum of the quotients of the n remainders by the corresponding 
divisors bears to n a ratio with the limit 0.423.... 

Dirichlet^ generalized his preceding result. The number h of those 
divisors 1, 2,..., p (p ^ n), which yield a remainder whose ratio to the divisor 
is less than a given proper fraction a, is 

Assuming that p^/n increases indefinitely with n, the limit of h/p is a 

if n/p increases indefinitely with n, but if n/p remains finite is 

-[?]■ 
J. J. Sylvester® noted that 2”*'*’^ is a factor of the ii^egral part of 

and of the integer just exceeding P”*, where = 1 + VS. 
N. V. Bougaief® called a number primitive if divisible by no square >1, 

secondary if divisible by no cube. The number of primitive numbers ^ n is 

Hi{n)='Eq{u)+I>q{u)+ . .., = 
1 1 ' 

where q{u) is zero if u is not primitive, but is +1 or —1 for a primitive w, 
according as is a product of an even or odd number of prime factors. 

iJour. fiir Math., 6, 1830, 100-4. *Ajchiv Math. Phys., 12, 1849, 425-9. 
^Abh. Ak. Wiss. Berlin, 1849, 75-6; Werke, 2, 57-58. Cf. Sylvester, Amer. Jour. Math., 6, 

1882, 298-303; CoU. Math. Papers, IV, 49-54. 
qour. fiir. Math., 47, 1854, 151-4. Berlin Berichte, 1851, 20-25; Werke, 2, 97-104; French 

transl. by O. Terquem, Nouv. Ann. Math., 13, 1854, 396. 
“Quar. Journ. Math,, 1, 1857, 185. Lady’s and Gentleman’s Diary, London, 1857, 60-1. 
'Comptes Rendus Paris, 74, 1872, 449-450. Bull. Sc. Math. Astr., 10, I, 1876, 24. Math. 

Sbornik (Math. Soc. Moscow), 6, 1872-3, I, 317-9, 323-331. 
^107 
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To obtain the number H2{n) of secondary numbers ^n, replace square roots 
by cube roots in the U. We have 

H,{n) ([!]) +H,([!]) +... =n, HM +H2([|]) + • • • =n, 
and similarly for given by (2) below. 

J. Grolous^ considered the probability that a number be divisible 
by at least one of the integers Qi,..., Qkj relatively prime by twos, and 
showed that 

Chr. Zeller"^" modified Dirichlet^s^ expression for h. The sums 

are equal. The sum of the terms of the second with s>M = [Vp] equals 
the excess of the sum of the first m terms of the first over or —1, the 
latter in the case of numbers between y? and Hence we may abbre¬ 
viate the computation of h. 

E, Ces^ro^ obtained Dirichlet^s^’^ results and similar ones. The mean 
(p. 174) of the number of decompositions of N into two factors having p as 
their g. c. d. is 6(log iV)/(pV). The mean (p. 230) of the number of 
divisors common to two positive integers n, n' is tt^/6, that of the sum of 
their common divisors is 

flog, nn'+2C-^+i 

where C — 0.57721.... The sum of the inverses of the nth powers of two posi¬ 
tive integers is in mean f (n+2) where ^ is defined by (12) of Ch. X. 

E. Cesaro® proved the preceding results on mean values; showed that 
the number of couples of integers whose 1. c. m. is n is the number of divisors 
of n^, if (a, 6) and (b, a) are both counted when a9^b; found the mean of 
the 1. c. m. of two numbers; found the probability that in a random division 
the quotient is odd, and the mean of the first or last digit of the quotient; 
the probability that the g.c.d. of several numbers shall have specified 
properties. 

Ces^ro^“ noted that the probability that an integer has no divisor > 1 
which is an exact rth power is l/r(0- 

L. Gegenbauer^® proved that the number of integers ^ x and divisible 
by no square is asymptotic to with an error of order inferior to 
Vi. He proved the final formulas of Bougaief.® 

’Bull. Sc. Soc. Philomatique de Paris, 1872, 119-128. 
’"Nachrichten Gesell. Wiss. Gottingen, 1879, 265-8. 
8Mdm. Soc. R. Sc. de Li&ge, (2), 10, 1883, No. 6, 175-191, 219-220 (corrections, p. 343). 
®Annali di mat., (2), 13, 1885, 235-351, “Excursions arith. ^Ll’infini.” 
®“Nouv. Ann. Math., (3), 4, 1885, 421. 
’“Denkschr. Akad. Wien (Math.), 49,1, 1885, 47-8. Sitzungsber. Akad. Wien, 112, II a, 1903, 

562; 115, II a, 1906, 589. Cf. A. Berger, Nova Acta Soc. Upsal., (3), 14, 1891, M6m. 2, 
p. 110; E. Landau, Bull. Soc. Math. France, 33, 1905,241. See Gegenbauer,’*.Ch. X. 
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Gegenbauer^°“ proved that the arithmetical mean of the greatest integers 
contained in k times the remainders on the division of n by 1, 2,..n 
approaches 

Jb—l 
Mog /c+A;—1—1/x 

as n increases. The case fc=2 is due to Dirichlet. 
Gegenbauer^^ gave formulas involving the greatest divisor not 

divisible by a, of the integer n. In particular, he gave the mean value of 
the greatest divisor not divisible by an ath power. 

L. Gegenbauer,^^ employing Merten’s function fx (Ch. XIX) and 
R{a) = a — \al gave the three general formulas 

s s m(^)/(2/) = s m - s m - s m, 
Xi i/s=l \y/ A;»l k=l 

rn /yyi \ rn n 

ssm(^)/(2/)= s m-sm, 
X, 1/=1 \y / l)n+l k^l 

where X2 ranges over the divisors >n of (r —l)n+l, (r —l)n+2,..rn, 
while Xi ranges over all positive integers for which 

a-hP-l^R(.9/xi)^a P ( ^ ri\ 

where g is the g. c. d. of r, n. Take/(rr) =1 or 0 according as x is an sth 
power or not. Then the functions 

(1) S/W, 

become {^/m] and \{x), with the value 0 if the exponent of any prime 
factor of a; is ^0, 1 (mod s), otherwise the value ( —I)*", where a is the 
number of primes occurring in x to the power ks+1. Thus 

SX/xi) = r+nj - - [^] ’ 

• 

If /(x) = 0 or 1 according as x is divisible by an sth power or not, the func¬ 
tions (1) become ^^(m) and iu(^x), the former being the number of integers 
^ m divisible by no sth power. If /(x) = 1 or 0 according as x is prime or 
not, the functions (1) become the number of primes and a simple func¬ 
tion a(x); then the third formula shows that the mean density of the primes 

is 
ia{y) 

^““Denkschr. Akad. Wien (Math.), 49, II, 1885, 108. 
i^Sitzungsber. Akad. Wiss. Wien (Math.), 94, 1886, II, 714. 
iWd., 97, 1888, Ila, 420-6. 
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If /(x)=log X, the second function (1) becomes p(x), having the value* 
log p when a: is a power of the prime p, otherwise the value 0. Besides the 
resulting formulas, others are found by taking f{x) =v(x)j Jacobi’s symbol 
(A/a;) in the theory of quadratic residues, and finally the number of repre¬ 
sentations of X by the system of quadratic forms of discriminant A. 

L. Saint-Loup^® represented graphically the divisors of a number. 
Write the first 300 odd numbers in a horizontal line; the 300 following 
numbers are represented by points above the first, etc. Take any prime as 
17 and mark all its multiples; we get a rectilinear distribution of these mul¬ 
tiples, which are at the points of intersection of two sets of parallel lines. 

J. Hacks^^ proved that the number of integers which are divisible 
by an nth power >1 is 

where the Fs range over the primes >1 [Bougaief®]. Then t/'2(w) = 
m—p2(w) is the number of integers not divisible by a square >1, and 

Mm) 2 (f) +'p2 (f) + • • • +'p2 =m. 

A like formula holds for = m — using quotients of m by cubes. 
L. Gegenbauer^^® found the mean of the sum of the reciprocals of the 

kth powers of those divisors of a term of an unlimited arithmetical progres¬ 
sion which are rth powers; also the probability that a term be divisible by no 
rth power; and many such results. 

L. Gegenbauer^® noted that the number of integers 1,.. ., n not divisible 
by a Xth power is 

(2) Qx(^)= 

Ch. de la Vall4e Poussin^® proved that, if x is divided by each positive 
number ky+h^x, the mean of the fractional parts of the quotients has for 

00 the limit 1 —C; if r is divided by the primes the mean of the 
fractional parts of the quotients has for r = oo the limit 1 — C. Here C is 
Euler’s constant.® 

L. Gegenbauer^*^ proved, concerning Dirichlet’s® quotients Q of the 
remainders (found on dividing n by 1, 2,..., n in turn) by the corresponding 
divisors, that the number of Q’s between 0 and 1/3 exceeds the number of 
Q’s between 2/3 and 1 by approximately 0.179n, and similar theorems. 

*Cf. Bougaiefw of Ch. XIX. 
^Kbmptes Rendus Paris, 107, 1888, 24; ficole Norm. Sup., 7, 1890, 89. 
“Acta Math., 14, 1890-1, 329-336. 
^*®Sitzungsber. Ak. Wien (Math.), 100, Ila, 1891, 1018-1053. 
“/hid., 100, 1891, Ila, 1054. Denkschr. Akad. Wien (Math.), 49 I, II, 1885; 50 1,1885. Cf. 

Gegenbauer’9 of Ch. X. 
“Annales de la soc. sc. Bruxelles, 22, 1898, 84-90. 
^^Sitzungsberichte Ak. Wise. Wien (Math.), 110, 1901, Ila, 148-161. 
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He investigated the related problem of Dirichlet.'* Finally, he used as 
divisors all the 5th powers ^ n and found the ratio of the number of remain¬ 
ders less than half of the corresponding divisors to the number of the others. 

L. E. Dickson^"^® and H. S. Vandiver proved that 2”>2(n+l)(n'+l).. 
if 1, n, n',. • • are the divisors of an odd number n>S, 

R. Birkeland^® considered the sum of the gth powers of the roots 
ai,.am of z^-hAiZ^'~^+ .,. +Am = 0. If Si,..., Sm are divisible by the 
power of a prime a, then .Ag is divisible by unless q is divisible by 
a. If q is divisible by a, and is the highest power of a dividing q, then 
Ag is divisible by Then (n+aai)... (n+aO is divisible by a^. 
In particular, the product of m consecutive odd integers is of the form 
1+2^^ if m is divisible by 2^, 

E. Landau^® reproduced Poussin's^® proof of the final theorem and added 
a simplification. He then proved a theorem which includes as special cases 
the two of Poussin and the final one by Dirichlet^ Given an infinite class 
of positive numbers q without a finite limit point and such that the number 
of q’s is asymptotic to x/w{x), where it5(x) is a non-decreasing posi¬ 
tive function having 

X-OO w{x) 

then if x is divided by all the q^s ^ x, the mean of the fractional parts of the 
quotients has for x = the limit 1 — C. 

St. GuzeP® wrote 6(n) for the greatest odd divisor of n and proved in 
an elementary way the asymptotic formulas 

S5(n)=f+0(a:), S^^=fx+0(1), 
n-1 ^ »»1 n 

for 0 as in Pfeiffer9^ Ch. X. 
A. Axer^^ considered the x^’"W decompositions of n into such a pair 

of factors that always the first factor is not divisible by a Xth power and 
the second factor not by a j'th power, X^2, j/^2. Then (n) is 
given asymptotically by a complicated formula involving the zeta function. 

F. RogeP^ wrote i?x,n for the algebraic sum of the partial remainders 
i—[t]m (2), with n replaced by z, and obtained 

Q,(0)=2P,,„+iJx.», Px,n= n 
V Pp / 

where is the nth prime and Pn^Sz<Vn\i^ He gave relations between the 
values of Qx{z) for various z’s and treated sums of such values, and tabu¬ 
lated the values of ^2(2?) and J?2.n for z^288. He^^® gave many relations 

i7«Amer. Math. Monthly, 10, 1903, 272; 11, 1904, 38-9. 
^®Archiv Math, og Natur., Kristiania, 26, 1904, No. 10. 

Acad. Roy. Belgique, 1911, 443-472. 
*“Wiadomosci mat., Warsaw, 14, 1910, 171-180. 
®^Prace mat. fiz., 22, 1911, 73-99 (Polish), 99-102 (German). Review in Bull, dea sc. math., 

(2), 38, II, 1914, 11-13. 
«Sitzungsber. Ak. Wiss. Wien (Math.), 121, Ila, 1912, 2419-52. 

122, Ila, 1913, 669-700. See Rogel>« of Ch. XVIII. 
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between the Qx(z), relations involving the number A{z) of primes and 
relations involving both Q's and A’s, 

^ A. Rothe^^ called h a maximal divisor of a if no larger divisor of a con¬ 
tains h as a factor. Then a/h is called the index of h with respect to a. 
If also c is a maximal divisor of 6, etc., a, 6, c,..., 1 are said to form a series 
of composition of a. In all series of composition of a, the sets of indices 
are the same apart from order [a corollary of Jordan's theorem on finite 
groups applied to the case of a cyclic group of order a]. 

*Weitbrecht^^ noted tricks on the divisibility of numbers. 
*E. Moschietti^^ discussed the product of the divisors of a number. 
Each^® of the consecutive numbers 242, 243, 244,245 has a square factor 

> 1; likewise for the sets of three consecutive numbers beginning with 48 
or 98 or 124. 

C. Avery and N. Verson^"^ noted that the consecutive numbers 1375, 
1376, 1377 are divisible by 5^ 2^, 3^, respectively. 

J. G. van derCorput^® evaluated the sum of the nth powers of all integers, 
not divisible by a square >1, which are and are formed of r prime 
factors of w. 

Greatest Common Divisor, Least Common Multiple. 

On the number of divisions in finding the g. c. d. of two integers, see 
Lam4^^ et seq. in Ch. XVII; also Binet^^ and Dupr4®^. 

V.A.Lebesgue^^notedthatthel.c.m.of a,..., A; is (piPsPs • • •)/(P2P4p6-• •) 
if Pi is the product of a,.. ., it, while p2 is the product of their g. c. d.'s two 
at a time, and ps the product of their g. c. d.'s three at a time, etc. If a, h, c 
have no common divisor, there exist an infinitude of numbers ax+h rela¬ 
tively prime to c. 

V. Bouniakowsky^® determined the g. c. d. N of all integers represented 
by a polynomial/(a;) with integral coefficients without a common factor. 
Since N divides the constant term of /(x), it remains to find the highest 
power of a prime p which divides / (x) identically, e., for a: = 1, 2,..., p'". 
Divide f(x) by (x — l)... (a;—p) and call the quotient Q and remain¬ 
der R. Then must R^O (mod pO for a:= 1,..., p, so that each coefficient 
of R is divisible by p'", and p^pi, where p^^ is the highest power of p divid¬ 
ing the coefficients of R. If pi = 1, we have p = 1. Next, let pi > 1. Divide 

2®Zeitschrift Math.-Naturw. Unterricht, 44, 1913, 317-320. 
2<Vom Zahlenltunststtick zur Zahlentheorie, Korrespondenz-Blatt d. Schulen Wtirttembergs, 

Stuttgart, 20, 1913, 200-6. 
“Suppl. al Periodico di Mat., 17, 1914, 115-6. 
^®Math. Quest. Educ. Times, 36, 1881, 48. 
2^Math. Miscellany, Flushing, N. Y., 1, 1836, 370-1. 
^®Nieuw Archief voor Wiskunde, (2), 12, 1918, 213-27. 
3®Jour. de Math., (1), 6, 1841, 453. 
^Ibid., (1), 11, 1846, 41. 
3®Nouv. Ann. Math., 8, 1849, 350; Introduction k la th^orie des nombres, 1862, 61-53; Exercises 

d’analyse numdrique, 1859, 31-32, 118-9. 
3®M5m. acad. sc. St. P^tersbourg, (6), sc. math, et phys. 6 (sc. math. phys. et nat. 8), 1857 

305-329 (read 1854); extract in Bulletin, 13, 149. 
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Q by (x—p —1).. . (x—2'p) and call the quotient Q' and remainder R', 
Then must Xpi2'-f-X2pQ'=0 and hence X^R'^O (mod p^). Thus if p2 is 
the exponent of the highest power of p dividing the coefficients of R'j we 
have In general, if ju* and X*__i are the exponents of the highest 
powers of p dividing the coefficients of the remainder and 
identically, then Finally, if l = [m/p], p^\i. The extension 
to several variables is said to present difficulties. [For simpler methods, 
see HenseP^ and Borel.^^] It is noted (p. 323) that 

are identically divisible by It is conjectured (p. 328) that/(rr)/i\r repre¬ 
sents an infinitude of primes when f{x) is irreducible. 

E. Ces^ro^"^ and J. J. Sylvester^® proved that the probability that two 
numbers taken at random from 1,.. nbe relatively prime is G/tt^asymp¬ 
totically. 

L. Gegenbauer^® gave 16 sums involving the g. c. d. of several integers 
and deduced 37 asymptotic theorems such as the fact that the square of 
the g. c. d. of four integers has the mean value IS/tt^. He gave the mean 
of the kth. power of the g. c. d. of r integers. 

J. Neuberg^^® noted that, if two numbers be selected at random from 
1,..., iV, the probability that their sum is prime to iV is A;= 4>{N) or k/(N—I) 
according as N is odd or even. 

T. J. Stieltjes,^® starting with a set of n integers, replaced two of them 
by their g. c. d. and 1. c. m., repeated the same operation on the new set, 
etc. Finally, we get a set such that one number of every pair divides the 
other. Such a reduced set is unique. The 1. c. m. of a,..., i can be 
expressed (pp. 14-16) as a product a\ . A' oi relatively prime factors divi¬ 
ding respectively. The 1. c. m. (or g. c. d.) of a, 5,..., Z equals the 
quotient of P = a5.. . Z by the g. c. d. (or 1. c. m.) of P/a, P/h,..., P/I 

E. Lucas'^^ gave theorems on g. c. d. and 1. c. m. 
L. Gegenbauer^^'' considered in connection with the theory of primes, 

the g. c. d. of r numbers with specified properties. 
J. Hacks^^ expressed the g. c. d. of m and n in the forms 

2sT^1- «-iL n J 

[n/2] I 
2 2 +c, 

whfere € = 0 or 1 according as m, n are both or not both even. 
J. Hammond^^ considered arbitrary functions / and P of p and a, such 

1, 1881, 184; Johns Hopkins Univ. Circ., 2, 1882-3, 85. 
^^Johns Hopkins Univ. Circ., 2, 1883, 45; Comptes Rendus Paris, 96, 1883, 409; Coll. Papers, 3, 

675; 4, 86. 
®®Sitzun}i;sbcrichte Ak. Wiss. Wien (Math.) 92, 1885, II, 1290-1306. 
39«Math. Quest. K<luc. Times, 50, 1889, 113-4. 

la th^orie dc's nornbn'S, Annalcs de la fac. dcs sciences do Toulouse, 4, 1890, final paper. 
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that/(p,0) = l, F(p, 0)=0, and any two integers m=np“, where 
the p's are distinct primes and, for any p, a^O, ^^0, Set 

=Uf(p, a), 4>-=2F(p, a). 

By the usual proof that mn equals the product of the g. c. d. ilf of m and n 
by their 1. c. m. p, we get 

In particular, if m and n are relatively prime, 

\l/{n) —\[/{mn), ^(m) +<^(71) ==^(wn). 

These hold if ^ is Euler’s <#>-function, the sum (x(m) of the divisors of 
m or the number r(m) of divisors of m; also, if ^(m) is the number of prime 
factors of m or the sum of the exponents a in 7n=np“. 

K. Hensel^ proved that the g. c. d. of all numbers represented by a 
polynomial F(u) of degreen with integral coefficients equals'the g. c. d. of 
the values of F(u) for any n+1 consecutive arguments. For a polynomial 
of degree Til in iti, ^2 in W2> • • • we have only to use %+! consecutive 
values of ni, n2+l consecutive values of W2, etc. 

F. KleW® discussed geometrically Euclid's g. c. d. process. 
F. Mertens^® calls a set of numbers primitive if their g. c. d. is unity. 

If m^Q, fc>l, and ai,..a^, m is a primitive set, we can find integers 
Xi,..., Xk so that ai+Tnxi,..ak’\-mxk is a primitive set. Let d be the 
g. c. d. of Ui,.,ttfe and find 5, p so that dSi-rrifjL — l. Take integral solu¬ 
tions a of Oiai-f.. .+0*% = ^ and primitive solutions ft not all zero of 
«ii3i+. . .+Ofcft = 0. Then 7i=ft+5ai(i = l,..., k) is a primitive set. 
Determine integers ^ so that Tijx+. • .+7*?*=! and set Then 
ai+mxi form a primitive set. 

H. Dedekind^’' employed the g. c. d. d of a, 6, c; the g. c. d. (6, c) = ai, 
(c, a) = hi, (a, 5) = Ci. Then a' = ai/d, V = hjd, d = cjd are relatively prime 
in pairs. Then dh'c' is the 1. c. m. of 61, Ci, and hence is a divisor of a. Thus 
a — db'c'a^j h = ddaV', c — da'Vd', The 7 numbers a',. a",.. .fd are called 
the Kerne” of a, 6, c. The generalization from3 to71 numbers is given. 

E. Borel^® considered the highest power of a prime p which divides a 
polynomial P(x, p,. ..) with integral coefficients for all integral values of 
X, 2/,.... If each exponent is less than p, we have only to find the highest 
power of p dividing all the coefficients. In the contrary case, reduce all 
exponents below p by use of = -\-px2,. . . and proceed as 
above with the new polynomial in x, Xi, X2,..., ?/, 7/1,.... Then to find all 
arithmetical divisors of a polynomial P, take as p in turn each prime less 
than the highest exponent appearing in P. 

L. KroneckeP® found the number of pairs of integers i, k having t as 
their g. c. d., where The quotient of this number by 

*^Jour. fiir Math., 116, 1896, 350-6. 
♦'^Ausgewahlte Kapitel der Zahlentheorie, I, 1896. 
^Sitzungsberichte Ak. Wiss. Wien (Math.), 106, 1897, II a, 132-3. 
*’Ueber Zerlegungen von Zahlen durch d. grosaten gemeinsamen Teller, Braunschweig, 1897. 
«Bull. Sc. Math. Astr., (2), 24 I, 1900, 75-80. Cf. Borel and Drach*®'* of Ch. III. 
♦Worlesungen iiber Zahlentheorie, I, 1901, 306-312. 
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mn is the mean. When m and n increase indefinitely, the mean becomes 
The case t = l gives the probabihty that two arbitrarily chosen 

integers are relatively prime; the proof in Dirichlet's Zahlentheorie fails to 
establish the existence of the probability. 

E. DintzP® proved that the g. c. d. A(a,..e) is a linear function of 
a,,.., e, and reproduced the proof of Lebesgue’s^^ formula as given in 
Merten^s Vorlesungen liber Zahlentheorie and by de Jough.^^ 

A*. Pichler,®^® given the 1. c. m. or g. c. d. of two numbers and one of them, 
found values of the other number. 

J. C. Kluyver®^ constructed several functions z (involving infinite series 
or definite integrals) which for positive integral values of the two real 
variables equals their g. c. d. He gave to Stern^s®^ function the somewhat 
different form [a;] / 

W. Sierpinski®^ stated that the probability that two integers are 
relatively prime is 

contrary to Bachmann, Analyt. Zahlentheorie, 1894, 430. 
G. Darbi®® noted that if a = (a, N) is the g. c. d. of a, Ny 

(N, abe.. .)=a(h, (c, ■ ■ ■ 

and gave a method of finding the g. c. d. and 1. c. m. of rational fractions 
without bringing them to a common denominator. 

E. Gelin®® noted that the product of n numbers equals db, where a is 
the 1. c. m. of their products r at a time, and h is the g. c. d of their products 
n—r at a time. 

B. F. Yanney®*^ considered the greatest common divisors Di, D2, • • • of 
ai,..., in sets of k, and their 1. c. m.’s Lx, L2,.... Then 

HA-^ (ai...a„y^b = (j), c = (”“})• 

The limits coincide iik~2. The products have a single term if A; = n. 
P. Bachmann®^ showed how to find the number N obtained by ridding 

a given number n of its multiple prime factors. Let d be the g. c. d. of n 
and <^(n). If 5 = n/d occurs to the rth power, but not to the (M-l)th power 
in n, set ni From rii build 81 as before, etc. Then N=88182.... 

®°Zeitschrift fiir das Realschulwesen, Wien, 27. 1902, 654-9, 722. 
26, 1901, 331-8. 

^^Nieuw Archief voor Wiskunde, (2), 5, 1901, 262-7. 
®2K. Ak. Wetenschappen Amsterdam, Proceedings of the Section of Sciences, 5, II 1903, 658- 

662. (Versl. Ak. Wet., 11, 1903, 782-6.) 
*3Jour. fiir Math., 102, 1888, 9-19. 
‘^Wiadomosci Mat., Warsaw, 11, 1907, 77-80. 
«Giornale di Mat.', 46, 1908, 20-30. 

Pitagora, Palermo, 16, 1909-10, 26-27. 
®’'Amer. Math. Monthly, io, 1912, 4-6. 
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Erroneous remarks®® have been made on the g. c. d. of 2® —1, 3®—1. 
M. Lecat®® noted that, if a^y is the 1. c. m. of i and j, the determinant 

|aiy| was evaluated by L. Gegenbauer,®^ who, however, used a law of multi¬ 
plication of determinants valid only when the factors are both of odd class. 

J. Barinaga®^"* proved that, if d is prime to N ~nk, the sum of those terms 
of the progression N, N+bjN+2bj ..., which are between nk and n{k+hd) 
and which have with n = the g. c. d. p, is 

R. P. Willaert®® noted that, if P{n) is a polynomial in n of degree p with 
integral coefficients, /(n)=aA“”+PW is (hvisible by D for every integral 
value of n if and only if the difference A*/(0) of the kth order is divisible 
by D for k~0, 1,..p+1. Thus, if p = l, the conditions are that /(O), 
/(I), /(2) be divisible by D. 

*H. Verhagen®® gave theorems on the g. c. d. and 1. c. m. 
H. H. Mitchell®^ determined the number of pairs of residues a, h modulo X 

whose g, c. d. is prime to X, such that ka, kh is regarded as the same pair as 
a, h when k is prime to X, and such that X and ax-\~'by have a given g. c. d. 

W. A. Wijthoff®® compared the values of the sums 
ab Cab-l)/2 

S ( —a)}, 5) m'F{(m, a)}, s==l, 2, 
m»l m=l 

where (m, a) is the g. c. d. of m, a, while F is any arithmetical function. 
F. G. W. Brown and C. M. Ross®® wrote ^i, k, . ^ .,ln for the 1. c. m. of 

the pairs Ai, A2] A2, A3; ...; A^, Ai, and ^1, grg, .. Qn for the g. c. d. of 
these pairs, respectively. If L, G are the 1. c. m. and g. c. d. of Ai, Aa, ..., 
An, then 

9192- . >9n=G^, 
9192--On 

C. de Polignac®^ obtained for the g. c. d. (a, h) of a, h results like 

(aX, hp) = (a, 
(X^/x))' ( 

_h_ 
(a, h)’ (X, m)/ 

Sylvester®® and others considered the g. c. d. of i)„ and where 
is the n-rowed determinant whose diagonal elements are 1, 3, 5, 7, ..., 
and having 1, 2, 3, 4, ... in the line parallel to that diagonal and just above 
it, and units in the parallel just below it, and zeros elsewhere. 

On the g. c. d., see papers 33-88, 215-6, 223 of Ch. V, Ceskro®^ of Ch. 
X, Cesaro®' ® of Ch. XI, and Kronecker®® of Ch. XIX, 

^*L’interm6diaire des math., 20, 1913, 112, 183-4, 228; 21, 1914, 30-7. 
21, 1914, 91-2. 

®^Sitzungs. Ak. Wiss. Wien (Math.), 101, 1892, II a, 425-494. 
®i«Annaes Sc. Acad. Polyt. do Porto, 8, 1913, 248-253. 
e^Mathesis, (4), 4, 1914, 57. 
®3Nieuw Tijdschrift voor Wiskunde, 2, 1915, 143-9. 
e^Annals of Math., (2), 18, 1917, 121-5. 
®^Wiskundige Opgaven, 12, 1917, 249-251. 



CHAPTER XIL 
CRITERIA FOR DIVISIBILITY BY A GIVEN NUMBER. 

In the Talmud^, lOOa+b is stated to be divisible by 7 if 2a+h is divis¬ 
ible by 7. 

Hippolytos^", in the third century, examined the remainder on the 
division of certain sums of digits by 7 or 9, but made no application to 
checking numerical computation. 

Avicenna or Ibn Sin4 (980-1037) is said to have been the discoverer 
of the familiar rule for casting out of nines (cf. Fontes^^); but it seems to 
have been of Indian origin.^^ 

Alkarkhi^*" (about 1015) tested by 9 and 11. 
Ibn Mus4 Alchwarizml^'^ (first quarter of the ninth century) tested by 9. 
Leonardo Pisano^® gave in his Liber Abbaci, 1202, a proof of the test 

for 9, and indicated tests for 7, 11. 
Ibn Albanna^^ (born about 1252), an Arab, gave tests for 7, 8, 9. 
In the fifteenth century, the Arab Sibt el-M4ridini^'' tested addition by 

casting out multiples of 7 or 8. 
Nicolas Chuquet^^' in 1484 checked the four operations by casting out 9’s. 
J. Widmann^^ tested by 7 and 9. 
Luca Pacitiolo^ tested by 7, as well as by 9, the fundamental operations, 

but gave no rule to calculate rapidly the remainder on division by 7. 
Petrus Apianus^" tested by 6, 7, 8, 9. 
Robert Recorde^^ tested by 9. 
Pierre ForcadeP noted that to test by 7 = 10—3 we multiply the first 

digit by 3, subtract multiples of 7, add the residue to the next digit, then 
multiply the sum by 3, etc. 

Blaise PascaP stated and proved a criterion for the divisibility of any 
number N by any number A. Let ri, r2, ra,..., be the remainders obtained 
when 10, lOri, 10r2,. . . are divided by A. Then i\r = a+105+100c+ ... is 
divisible by A if and only if a-fri6+r2C+... is divisible by A. 

^Babylonian Talmud, Wilna edition by Romm, Book Aboda Sara, p. 96. 
Cantor, Geschichte der Math., ed. 3, I, 1907, 461. 

511, 611, 756-7, 763-6. 
i®Cf. Carra de Vaux, Bibliotheca Math., (2), 13, 1899, 33-4. 

Cantor, Geschichte der Math., ed. 3, I, 1907, 717. 
’“^Scritti, 1, 1857, 8, 20, 39, 45; Cantor, Geschichte, 2, 1892, 8-10. 
i/Le Talkhys dTbn Albannd public et traduit par A. Marre, Atti Accad. Pont. Nuovi Lincei, 

17, 1863-4, 297. Cf. M. Cantor, Geschichte Math., I, ed. 2, 757, 759; ed. 3, 805-8. 
^t'Le Triparty en la science de nombres. Bull. Bibl. St. Sc. Math., 13, isSO, 602-3. 
^^Behede vnd hubsche Rechnung.'.., Leipzig, 1489. 
^Summa de arithmctica geomctria proportioni et proportionalita, Venice, 1494, f. 22, r. 
2“Ein newe. . .Kauffmans Rechnung, Ingolstadt, 1527, etc. 
^^The Grovnd of Artes, London, c. 1542, etc. 
’L’Arithmeticqve de P. Forcadel de Beziers, Paris, 1556, 59-60. 
^De numeris multipUcibus, presented to the Acad^mie Parisienne, in 1654, first published in 

1665; Oeuvres de Pascal, 3, Paris, 1908, 311-339; 5, 1779, 123-134. 
337 
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D'Alembert^ noted that if N.. .-\-E is divisible by 
10—then •. •+B is divisible by 10 — &; if N is divisible by 
10+?>, then A(—6)”+.. .+E is divisible by 10+6. The case 
6 = 1 gives the test for divisibility by 9 or 11. By separating N into parts 
each with an even number of digits, iV = A-10”*+... +Ej where m,.. .are 
even; then if iV is divisible by 100—6, .. .+E is divisible by 
100-6. 

De Fontenelle® gave a test for divisibility by 7 which is equivalent to 
the case 6 = 3 of D'Alembert; to test 3976 multiply the first digit by 3 and 
add to the second digit; it remains to test 1876. For proof see F. Sanvitali, 
Hist. Literariae Italiae, vol, 6, and Castelvetri.® 

G. W. Kraft^ gave the same test as Pascal for the factor 7. 
J. A. A. Castelvetri® gave the test for 99: Separate the digits in pairs, 

add the two-digit components, and see if the sum is a multiple of 99. For 
999 use triples of digits. 

CastelvetrP tested 1375, for example, for the factor 11 by noting that 
13+75 = 88 is divisible by 11. If the resulting sum be composed of more 
than two digits, pair them, add and repeat. To test for the factor 111, 
separate the digits into triples and add. The proof follows from the fact 
that lO^*’ has the remainder 1 when divided by 11. 

J. L. Lagrange^® modified the method of Pascal by using the least 
residue modulo A (between—A/2 and A/2) in place of the positive residue. 
He noted that if a number is written to any base a its remainder on division 
by a—1 is the same as for the sum of its digits. 

J. D. Gergonne^^ noted that on dividing A’ = Ao+Ai6'"+A26^'”+.. ., 
written to base 6, by a divisor of 6”‘—1, the remainder is the same as on 
dividing the sum A0+A1+A2+... of its sets of m digits. Similarly for 
b'^+l and Aq—A1+A2—A3+ .... 

C. J. D. HilP^ gave rules for abbreviating the testing for a prime factor 
p, for p<300 and certain larger primes. 

C. F. Liljevalch^^® noted that if lO'^a—/3 is divisible by p then a —10”6 
will be a multiple of p if and only if aa—pb is a multiple of p. 

J. M. Argardh^^ used Hill’s symbols, treating divisors 7, 17, 27, 1429. 
F. D. Herter^^ noted that a+106+100c+... is divisible by lOn^l if 

^Manuscript R. 240* 6 (8®), Bibl. Inst. France, 21, ff. 316-330, Sur une propri4t6 des nombres. 
“Histoire Acad. Paris, annie 1728, 51-3. ’Comm. Ac. Sc. Petrop, 7, ad annos 1734-5, p. 41. 
*De Bononiensi Scientiarum et Artium Institute atque Academia Comm., 4, 1757; commen- 

tarii, 113-139; opuscula, 242-260. 
®De Bononiensi Scientiarum et Artium Institute atque Academia Comm., vol. 5, 1767, part 1, 

pp. 134-144; part 2, 108-119. 
’“Lemons 414m. sur lea math. donn4es 4 r4cole normale en 1795, Jour, de r4cole polytechnique, 

vols. 7, 8, 1812, 194-9; Oeuvres, 7, pp. 203-8. 
’’Annales de math, (ed., Gergonne), 5, 1814-5, 170-2. 
^Jour. fiir Math., li, 1834, 251-261; 12, 1834, 355. Also, De factoribua numerorum com- 

positorum dignoscendis, Lund, 1838. 
factoribus numerorum compositorum dignoscendis, Lund, 1838. 

^*Deresiduis ex divisions..., Diss. Lund, 1839. 
^^Ueber die Kenruzeichen r Theile eine Zah . oicr. Berl’n. 844. 
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a=ph/n+c/n^=F ... is divisible by 10n=±= 1, with a like test for 10n=t3 
(replacing l/n by 3/n), and deduced the usual tests for 9, 11, 7, 13, etc. 

A. L. Crelle^® noted that to test XmA'^+... +XiA-\-Xq for the divisor s 
we may select any integer n prime to s, take r^nA (mod s), and test 

... +n”'xo 

for the divisor s. For example, if A = 10, s=7, 10^= —1 (mod 7), so that 
iri4-aJ2 — • • • is to be tested for the divisor 7, where Xq, .. .are the 

three-digit components of the proposed number from right to left. Simi¬ 
larly for s = 9, 11, 13, 17, 19. 

A. Transon^® gave a test for the divisibility of a number by any divisor 
ofl0®*n=t:l. ^ 

A. Niegemann^^ noted that 354578385 is divisible by 7 since 35457+ 
2X8385 is divisible by 7. In general if the number formed by the last m 
digits of N is multiplied by h, and the product is added to the number de¬ 
rived from N by suppressing those digits, then N is divisible by d if the 
resulting sum is divisible by d. Here k(Q<k<d) is chosen so that 10”*^ — 1 
is divisible by d. Thus A; = 2ifm=4, d=7. 

Many of the subsequent papers are listed at the end of the chapter. 
H. Wilbraham^® considered the exponent p to which 10 belongs modulo 

m, where m is not divisible by 2 or 5. Then the decimal for 1/m has 
a period of p digits. If any number N be marked off into periods of p 
digits each, beginning with units, so that i\r = ai+10^a2+10^^a3+. . ., 
then ai+a2+... = iV (mod m), and N is divisible by m if and only if 
cti+«2+ • • • is divisible by m. 

E. B. Elliott'^ let 10^=Mi)+v Thus Ar = l0X+...+10ni+no is 
divisible by D if JV=]SnjMD+Sn/y is divisible by D. The values of the r’s 
are tabulated for D = 3, 7, 8, 9, 11, 13, 17. 

A. ZbikowskP° noted that A=a+10A: is divisible by 7 if k—2a is divis¬ 
ible by 7. If 5 is of the form 10n+1, N=a+ lOfc is divisible by 8 if k—na is 
divisible by 5; this holds also if 5 is replaced by a divisor of a number 10n +1. 

V. ZeipeP^ tests for a divisor 5 by use of rib — lOd+1. Then 10a2+ai is 
divisible by b if a2 — aid is divisible by 6. 

J. C. Dupain^^ noted, for use when division by p —1 is easy, that 
A'=(p~l)Q+J^is divisible by p if 72 —Q is divisible by p. 

F. Folie^^ proved that if a, c are such that ak'^ck = mp then AJ5+C is 
divisible by the prime p = aJ5+c if Afc'=‘=CA; = m'p, provided a, c, /c, ¥ are 

i6Jour. fur Math., 27, 1844, 12r)-136. 
16N0UV. Ann. Math., 4, 1845, 173-4 (cf. 81-82 by 0. R.). 
^^Entwickclung u. Begriindung neuer Gesetze liber die Theilbarkeit der Zahlen. Jahresber. 

Kath. Gym. Koln, 1847-8. 
^®Cambridge and Dublin Math. Jour., 6, 1851, 32. 
i»Thc Math. Monthly (ed. Runkle), 1, 1859, 45-49. 
2”Bull. ac. ec. St. P6tcrsbourg, (3), 3, 1861, 151-3; Melanges math. astr. ac. St. P^tersbourg, 

3, 1859-66, 312. 
®*Ofversigt finska vetcnak. forhandl., Stockholm, 18, 1861, 425-432. 
^^Nouv. Ann. Math., (2), 6, 1867, 368-9. 
23M4m. Soc. Sc. Lidge, (2), 3, 1873, 85-96. 

V
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not multiples of p. Application is made to the primes p^37. Again, if 
p is a prime and 

+cJ5+d = a/c"+c¥+dk=Ak"+Ck'+Dk = mp, 

where ky k', k" are prime to p, then AS^+C5+Z) is divisible by p provided 
k''^ — kk'' is a multiple of p. 

C. F. Moller and C. Holten^^ would test the divisibility of n by a given 
prime p by seeking a such that (mod 10) and subtracting from n 
such a multiple of ap that the difference ends with zero. 

L. L. HommeP^ made remarks on the preceding method. 
V. SchlegeP® noted that if the divisor to be tested ends with 1, 3, 7 or 9, 

its product by 1, 7, 3 or 9 is of the form d= lOX+1. Then a, with the final 
digit u, is divisible by d if ai = (a—ud)/10 is. Then treat ai as we did a, etc. 

P. Otto^"^ would test Z for a given prime factor p by seeking a number n 
such that if the product by n of the number formed by the last s digits of Z 
be subtracted from the number represented by the remaining digits, the 
remainder is divisible by p if and only if Z is. Material is tabulated for the 
application of the method when p<100. 

N. V. Bougaief^^® noted that ... ai to base B is divisible by D if 
ai... a,, to base d is divisible by Dy where d5= 1 (mod D). For J? = 10 and 
D = 10n+9, 1, 3, 7, we may take d==n+l, 9n+l, 3n + l, 7n+5, respec¬ 
tively. Again, kB^-]-aB-{-h is divisible by D if kB+a-\-hd is divisible. 

W. Mantel and G. A. Oskamp^® proved that, to test the divisibility of a 
number to any base by a prime, the value of the coefficient required to 
eliminate one, two,.. . digits on subtraction is periodic. Also the number of 
terms of the period equals the length of the period of the periodic fraction 
arising on division by the same prime. 

G. Dostor^®“ noted that 10^+w is divisible by any divisor a of 10^=*= 1 if 
t^Au is divisible by a. [A case of Liljevalch^^®.] 

Hocevar^^ noted that if N, written to base a, is separated into groups 
Gi, ^2,. .. each of q digits, N is divisible by a factor of a®+l if Gi —G24-G3 

~ ... is divisible. Thus, for a = 2, 5 = 4, iV'= 104533, or 11001100001010101 
to base 2 is divisible by 17 since 0101 — 01014-1000 — 1001 + 1 = 0. 

J. Delboeuff^ stated that if p, q are such that pa-{-qh is a multiple of D and 
if A = Aa+B/3 is a multiple of i) = aa+6/5, then pA-\-qB is a multiple of D, 

E. Catalan (ibid., p. 508) stated and proved the preceding test in the 
following form: If a, h and also a', h' are relatively prime, and 

N = aa'+65', Nx = Aa+B6, Nx' = A V+B'6', 

then AA'-j-BB' is a multiple of N (and a sum of 2 squares if N is). 

^mdsskrift for Math., (3^, 5, 1875, 177-180. ssxidsskrift for Math., (3), 6,1876, 15-19. 
zfiZeitschrift Math. Phys., 21, 1876, 365-6. ^yzeitschrift Math. Phys., 21,1876, 366-370. 
2"“Mat. Sbornik CMath. Soc. Moscow), 8, 1876, I, 501-5. 
28Nieuw Archief voor Wiskuade. Amsterdam, 4, 1878, 57-9, 83-94. 
28aArchiv Math. Phys., 63, 1879, 221-4. 
®®Zur Lehre von der Teilbarkeit..,, Prog. Innsbruck, 1881. 

Revue Scientifiaue de France. fS). 38. 18 6. 377-8. 
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Noel {ibid., 378-9) gave tests for divisors 11, 13, 17,..., 43. 
Bougon (ibid.j 508) gave several tests for the divisor 7. For example, 

a number is divisible by 7 if the quadruple of the number of its tens dimin¬ 
ished by the units digit is divisible by 7, as 1883 since 188*4—3 = 749 is 
divisible by 7. J. Heilmann {ibid,, 187) gave a test for the divisor 7. 

P. Breton and Schobbens {ibid,, 444-5) gave tests for the divisor 13. 
S. Dickstein^^ gave a rule to reduce the question of the divisibility of a 

number to any base by another to that for a smaller number. 
A. Loir^^ gave a rule to test the divisibility of N, having the units digit a, 

by a prime P. From (N—a)/lO, subtract the product of a by the number, 
say (wP—1)/10, of tens in such a multiple mP of P that the units digit is 1. 
To the difference obtained apply the same operation, etc., until we exhaust 
N, If the final difference be P or 0, A' is divisible by P. 

R. TuckeP^ started with a number N, say 5443, cut off the last digit 3 
and defined '^2 = 544—2*3 = 538, '^3 = 53 —2*8, etc. If any one of the u’s is 
divisible by 7, N is divisible by 7. R. W. D. Christie (p. 247) extended the 
test to the divisors 11,13,17, 37, the respective multipliers being 1, 9, 5, 11, 
provided always the number tested ends with 1, 3, 7 or 9. 

R. Perrin^^ would find the minimum residue of N modulo p as follows. 
Decompose A, written to base x, into any series of digits, each with any 
number of digits, say A, Bi, Cy,..., where Bi has i digits. Let p be any 
integer prime to x and find qi so that g'lX^l (mod p). Let a be any one of 
the integers prime to p and numerically <p/2. Let ^ be the tth integer 
following a in that one of the series containing a which are defined thus: 
as the first series take the residues modulo p of 1, g, ; as the second 
series take the products of the preceding residues by any new integer prime 
to p; etc. Let y b© fk© i^h integer following /3 in the same series, etc. 
Then A' = Aa+Pi/S+CyY-f-... is or is not divisible by p according as 
A is or not. By repetitions of the process, we get the minimum residue 
of A modulo p. The special case A+Pi^i, with p a prime, is due to Loir.^^ 

Dietrichkeit^^ would test Z = 10A;-l-a for the divisor n by testing k—xa, 
where 10a:+l is some multiple of n. To test Z (pp. 316-7) for the divisor 
7, test the sum of the products of the units digit, tens digit,... by 1, 3, 2, 6, 
4, 5, taken in cyclic order beginning with any term (the remainders on con¬ 
verting 1 /7 into a decimal fraction). Similarly f or 1/n, when n is prime to 10. 

J. Font^s^° would test A for a divisor M by using a number<A and 
= A (mod M), found as follows. For the base B, let q be the absolutely 
least residue of R’" modulo M, Commencing at the right, .decompose A 
into sets of m digits, as X„i,..a,„, and set/(cc) =a„jX''-b/3,„x”~^-|- . . . 
whence A=/(jB’”). By expanding N —f{q+MQ), we see that f{q) is the 
desired number <A and = A (mod M), 

S. Levanen^^ gave a table showing the exponent to which 10 belongs for 

^^Lemberg Museum (Polish), 1886. ^^Comptes Rendus Paris, 106,1888, 1070-1; errata, 1194. 
»*Nature, 40, 1889, 115-6. ^Assoc. franc, avanc. sc., 18, 1889, II, 24-38. 
3*Zeitschr. Math. Phys., 36,1891,64. ®®Compte8 Rendus Paris, 115, 1892, 1259-61. 
’^Ofversigt af finska vetenskaps-soc. forhandlingar, 34, 1892,109-162. Cf. Jahrbuch Fortachr. 

Math., 24, 1892, 164-5. 
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primes 6 <200 and certain larger primes, from which are easily deduced 
tests for the divisor 6. 

SeveraP^'" noted that if 10 belongs to the exponent n modulo d, and if 
Si, S2,.. .denote the sums of every nth digit of N beginning with the first, 
second,.. .at the right, the remainder on the division of iV by d is that of 

10iS>2“hl0^>S3-f-... 
J. Fontes^® would find the least residue of N modulo M. If 10" has the 

residue q modulo M, we do not change the least residue of N if we multiply 
a set of n digits of N by the same power of q as of 10". Thus for M = 19, 
Ar= 10433 = 10'^+4-10^-f33, 10^ has the residue 5 modulo 19 and we may 
replace N by 5^+4-_5+33. The method is applied to each prime M^ 149, 

Font^s^® gave a history of the tests for divisibility, and an ^'extension 
of the method of Pascal,similar to that in his preceding paper. 

P. Valerio^® would test the divisibility of N by 39, for example, by sub¬ 
tracting from N a multiple of 39 with the same ending as N. 

F. BMohldvek^^ noted that 10A-}-J5 is divisible by 10p=tl if A^pB is. 
C. Borgen^^ noted that Z == a,i*10"“f ... d-ai-lO+ao is divisible by N if 

ii—0+1 

Z (a,_a+i-10^-''+ .. . +aJ(10‘^-iV)^/‘^ 
v=0 

is divisible by N. For i\r=7, take a = 1; then lO'" —i\r = 3 and Z is divisible 
by 7 if ao4-3ai4-2a2 —03 —3a4“2a5-b. .. is divisible by 7. 

J. J. Sylvester^^® noted that, if the r digits of iV, read from left to right, 
be multiplied by the first r terms of the recurring series 1, 4, 3, — 1, —4, —3; 
1, 4,.. . [the residues, in reverse order, of 10, 10^,.. ., modulo 13], the sum 
of the products is divisible by 13 if and only if ISJ is divisible by 13. 

C. L. Dodgson^^^ discussed the quotient and remainder on division by 
9 or 11. 

L. T. Riess^^ noted that, if p is not divisible by 2 or 5, 106+a(a<10) 
is divisible by p if h—xa is divisible by p, where mp — lOx+a (a< 10) and 
m = l, 7, 3, 9 according as p=l, 3, 7, 9 (mod 10), respectively. 

A. Loir^^ gave tests for prime divisors <100 by uniting them by twos 
or threes so that the product F ends in 01, as 7*43 = 301. To test A, multiply 
the number formed of the last two digits of A by the number preceding 01 in 
P, subtract the product from A, and proceed in the same manner with the 
difference. Then P is a factor if we finally get a difference which is zero. 
If a difference is a multiple of a prime factor p of P, then A is divisible by p. 

Plakhowo^^ gave the test by Bougaief, but without using congruences. 

^“Math. Quest. Educ. Times, 57, 1892, 111. 
3*Assoc. frang. avanc. sc., 22, 1893, II, 240-254. 

ac. sc. Toulouse, (9), 5, 1893, 459-475. 
^°La Revue Scientifique de France, (3), 52, 1893, 765 
«Casopis, Prag, 23, 1894, 59. '‘^Nature, 57, 1897-8, 54. 
^^"Educat. Times, March, 1897. Proofs. Math. Quest. Educ. Times, 66, 1897, 108. Cf. W. E. 
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To testiST=ao+ai^+... -fan5”for the divisor!) prime to J?, determine d and 
X so that = Dx-M. Multiply this equation by Oq and subtract from N, 
Thus 

N=-BN'-Da^, iV'' = aod+(ai+a25+. • - 

Hence N is divisible by D if and only if i\r' is divisible by D. Now, N' is 
derived from N by supressing the units digit Oq and adding to the result the 
product aod. Next operate with N' as we did with N. 

J. Malengreau^® would test N for a factor q prime to 10 by seeking a 
multiple 11... 1 (to m digits) of g, then an exponent t such that the number 
of digits of 10‘*N is a multiple of m. From each set of m digits of 10^-N 
subtract the nearest multiple of 1... 1 (to m digits). The sum of the resi¬ 
dues is divisible by q if and only if N is divisible by g. 

G. Loria^^ proved that N = ao+gai +.. .-^g^ak is divisible by a if and 
only if a divides the sum ao+ ... +% of the digits of N written to a base g of 
the form ka+l;oTii a divides Oo—ai+a2 — ... when the base g is of the form 
ka—1. Taking g = 10”", we have the test, in Gelin’s Arithm6tique, in terms 
of groups of m digits. We may select m to be i<l>{a) or a number such that 
10”^=^ 1 has the factor a. Inplace of ao+ai4- - • • wheng = 10"", we may employ 

• • • *4" 10”^ 

10^”‘"-^X(a„„+10a,^+i+.. 
k=l 

where X = l, 2 or 5, and p is determined by 10p/X=l (mod a). Taking 
a = 7, 13, 17, 19, 23, special tests for divisors are obtained. 

G. Loria^® proved that, if Oq, a^,... are successive sets of t digits of N, 
counted from the right, and cr = ao=‘=ai-l-a2=‘=a3+ ..., then 

iV-a = ai(10'Tl)+a2(10'‘-l)+^3t3(10^'=Fl)+.. 

so that a factor of 10^=f=1 divides N if and only if it divides cr, 
A. Tagiuri^^ extended the last result to any base g. We have 

N = ao-\-gai-{-... =i\row+g'”«^im4-g^”‘N2,n+ • • • 

if N,„,=-a,m+a,m+ig-h. • • Hence, if =t= 1 (mod a), 

N=Nom=^Nim+^2m^ • • • (mod a). 

L. Ripert^® noted that lOD+u is divisible by 105+^ if Di—bu is divisible, 
and gave many tests for small divisors. 

G. Biase®^ derived tests that 10d~\-u has the factor 7 or 19 from 

2(10d4-w) = 22^ —d (mod 7), 2(10d4-^^) = 22^4-d (mod 19). 

O. Meissner®^ reported on certain tests cited above. 

«Mathe8i0, (3), 1, 1901, 197-8. 
^’Rendiconti Accad. Lincei (Math.), (5), 10, 1901, sem. 2,150-8. Mathesis, (3), 2, 1902, 33-39. 
<811 Boll. Matematica Gior. Sc.-Didat., Bologna, 1, 1902. Cf. A. Bindoni, ibid., 4, 1905, 87. 
<8Periodico di Mat., 18, 1903, 43-45. 8®L’enseignement math., 6, 1904, 40-46. 
“Ul Boll. Matematica Gior. Sc.-Didat., Bologna, 4, 1905, 92-6. 
“Math. Naturw. Blatter, 3, 1906, 97-99. 
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E. NanneP employed ri-o.i — aoXj T2 = a2—riX,... (a;<10). Then, if 
r,i=0, iV' = 10”a„4- • •. -flOai+c^o is divisible by 10x4-1 and the quotient has 
the digits r^-i, r,i_2; • • • ? ^*1? <^o- The cases x= 1, 2 are discussed and several 
tests for 7 deduced. For x = l/3, we conclude that, if 7*^=0, N is divisible 
by 13 and the digits of the quotient are r„_i/3,. . ., ri/3, ao/3. 

A. ChiarP^ employed D^Alembert’s® method for 104-2>j ^ = 3, 7, 9. 
G. Bruzzone^^ noted that, to find the remainder R when N is divided by 

an integer x of r digits, we may choose y such that X'^y—W, form the 
groups of r digits counting from the right of N, and multiply the successive 
groups (from the right) by 1, y, ... or by their residues modulo x; then R 
equals the remainder on dividing the sum of the products by x. If we choose 
X — 2/ = 10’’, we must change alternate signs before adding. For practical use, 
take ^ = 1. 

Fr. Schuh^® gave three methods to determine the residue of large numbers 
for a given modulus. 

Stuyvaert^^ let a, 6,... be the successive sets of n digits of N to the base J?, 
so that N = .... Then N is divisible by a factor D of 
if and only if . is divisible by D. For E = l, 5 = 10, 
n = l, 2,..we obtain tests for divisors of 9, 99, 11, 101, etc. A divisor, 
prime to 5, of divides N = a-\-hB if and only if it divides h—ma. 

Further Papers Giving Tests for a Given Divisor d. 

J. R. Young and Mason for d = 7, 13 [PascaP], Ladies^ Diary, 1831, 34-5, Quest. 
1512. 

P. Gorini [PascaP], Annali di Fis., Chim. Mat., (ed., Majocchi), 1,1841, 237. 
A. Pinaud for d = 7, 13, M4m. Acad. Sc. Toulouse, 1, 1844, 341, 347. 
*Dietz and Vincenot, M4m. Acad. Metz, 33, 1851-2, 37. 
Anonymous writer for d = 9, 11, Jour, fur Math., 50, 1855, 187-8. 
*H. Wronski, Principes de la phil. des math. Cf. de Montferrier, Encyclop4die 

math., 2, 1856, p. 95. 
O. Terquem for <i^l9, 23, 37, 101, Nouv. Ann. Math., 14, 1855, 118-120. 
A. P. Reyer for d = 7, Archiv Math. Phys., 25, 1855, 176-196. 
C. F. Lindman for d = 7, 13, ibid., 26, 1856, 467-470. 
P, Buttel for d = 7, 9, 11, 17, 19, ibid., 241-266. 
De Lapparent [Herter^'^], Mem. soc. imp. sc. nat. Cherbourg, 4, 1856, 235-258. 
Karwowski [PascaP], Ueber die Theilbarkeit..II, Progr., Lissa, 1856. 
*D. van Dangeraad, Kenmerken van deelbarheid der geheele getallen, Schoonho- 

ven, 1857. 
Flohr, Ueber Theilbarkeit und Reste der Zahlen, Progr., Berlin, 1858. 
V. Bouniakowsky for d~Z7, 989, Nouv. Ann. Math., 18, 1859, 168. 
Elefanti for d = 7-13, Proc. Roy. Soc. London, 10, 1859-60, 208. 
A. Niegemann for d = 10”'-n+a, Archiv Math. Phys., 38, 1862, 384-8. 
J. A. Grunert for d = 7, 11, 13, ibid., 42,1864, 478-482. 
V. A. Lebesgue, Tables diverses pour la decomposition des nombres, Paris, 1864, 

p. 13._ 

“II Pitagora, Palermo, 13, 1906-7, 54-9. 
mid., 14, 1907-8, 35-7. 
mid., 15, 1908-9, 119-123. 
“Supplem. De Vriend der Wiskunde, 24, 1912, 89-103. 
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C. M. Ingleby for d — 9t 11, British Assoc. Report, 35, 1865, 7 (trans.). 
M. Jenkins for any prime d, Math. Quest. Educ. Times, 8, 1868, 69, 111. 
F. Unferdinger [Gergonne^^], Sitzungsber. Ak. Wiss. Wien (Math.), 59, 1869, II, 

465-6. 
H. Anton for d=9, 11, 13, 101, Archiv Math. Phys., 49, 1869, 241-308. 
W. H. Walenn, British Assoc. Report, 40, 1870, 16-17 (trans.),* Phil. Mag., (4), 

36, 1868, 346-8; (4), 46, 1873, 36-41; (4), 49,.1875, 346-351; (5), 2, 1876, 
345; 4, 1877, 378; 9, 188v0, 56, 121, 271. 

M. A. X. Stouff for d< 100, Nouv. Ann. Math., (2), 10,1871,104. 
J. Lubin, ibid., (2), 12, 1874, 528-30 (trivial). 
Szenic for d — 7, 9, 37, Von der Kongruenz der Z., Progr. Schrimm, 1873. 
E. Brooks for d=7, Des Moines Analyst, 2, 1875, 129. 
W. J. Greenfield and M. Collins for d=47, 73, Math. Quest. Educ. Times, 22, 

1875, 87. 
F. da Ponte Horta for 7, 9,11,13, Jornal de Sciencias Mat. Ast., 1,1877, 57-62. 
Mennesson for d = 7, Nouv. Corresp. Math., 4, 1878, 151; generalization by Ces^ro, 

p. 156. 
C. Lange, for d=7,13,17,19, Ueber die Teilbarkeit der Zahlen, Progr., Berlin, 1879. 
F. Jorcke for d = 7, 9, 11, Ueber Zahlenkongruenzen.Progr. Fraustadt, 1878. 
K. Broda for any base, Archiv Math. Phys., 63, 1879, 413-428. 
A. Badoureau for d==19, Nouv. Ann. Math., (2), 18, 1879, 35-6. 
S. M. Drach for d = 7, Math. Quest. Educ. Times, 35, 1881, 71-2. 
W. A. Pick for d = 7, ibid., 38, 1883, 64- 
A. Evans for d=7, Des Moines Analyst, 10, 1883,134. 
K. Haas, Theilbarkeitsregeln.. Progr., Wien, 1883. 
G. Wertheim, Elements der Zahlentheorie, 1887, 31-33. 
B. Adam for d<100, Ueber die Teilbarkeit. .., Progr. Gym. Clausthal, 1889. 
A. Loir for d<138. Jour, de math. ^16m., 1889, 66, 107-10,121-3. 
A. G. Fazio [SchlegeP®], Sui caratteri..., Palermo, 1889. 
E. Gelin, Mathesis, (2), 2, 1892, 65, 93; (2), 12, 1902, 65-74, 93-99 (extract in 

Mathesis, (3), 10, 1910, Suppl. I); Ann. Soc. Sc. Bruxelles, 34, 1909-10, 66; 
Recueil de probltoes d'arith., 1896. Extracts by M. Nassd, Revue de Math, 
(ed., Peano), 7, 1900-1, 42-52. 

Speckmann, Dorsten, Haas, Dorr, Zeitschrift Math. Phys., 37, 1892, 58, 63, 
128, 192, 383. 

Lalbaletrier. Jour, de Math, (ed., de Longchamps), 1894, 54. 
H. T. Burgess [PascaP], Nature, 57, 1897-8, 8-9, 30, 55. 
A. Conti [PascaP], Periodico di Mat., 13, 1898, 180-6, 207-9. 
F. Mariantoni, ibid., 149-151, 191-2, 217-8. 
T. Lange for d<30, Archiv. Math. Phys., (2), 16, 1898, 220-3. 
W. J. Greenstreet, Math. Gazette, 1, 1900, 186-7. 
Christie for d = 2”p,5”p (p prime). Math. Quest. Educ. Times, 73, 1900, 119. 
A. Cunningham and D. Biddle for d==rp=tl, ibid., 75, 1901, 49-50. 
M. Zuccagni for d = 7, Suppl. al Periodico di Mat., 6, fasc. V. 
Calvitti for d — 7, ibid., 8, fasc. IV. 
S. Dickstein, Wiad. Mat., Warsaw, 6, 1902, 253-7 (Polish). 
B. Niewenglowski, ibid., 252-3. 
Pietzker for d = 7, 11, 13, 27, 37, Unterrichtsblatter Math. Naturwiss., 9, 1903, 

85-110. 
A. Church for d = 7, 13, 17, Amer. Math. Monthly, 12, 1905, 102-3. 
E. A. Cazes, Assoc, fran^., 36, 1907, 55-63. 
A. G4rardin for d — 7,13,17, 37,43, Sphinx-Oedipe, 1907-8,2. 
M. Morale for d=7, Suppl. al Periodico di Mat., 11, 1908, 103. 
*T. Ghezzi, ibid., 12, 1908-9, 129-130. 
Lenzi, II Boll. Matematica Gior. Sc.-Didat., 7, 1908. 
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R. Polpi, ibid.j 8, 1909, 281-5. 
M. Morale for <Z==7, 13, Suppl. al Periodico di Mat., 13, 1909-10, 38-9. 
A. L. Csada, ibid., 56-8. 
*A. La Paglia, ibid.j 14, 1910-11, 136-7, extension of Morale to any d. 
A. V. Filippov, 8 methods for d=9, Kagans Bote, 1910, 88-92, No. 520. 
P. Cattaneofor d = ll, II Boll. Matematica Gior. Sc.-Didat., 9, 1910, 305-6. 
*L, Miceli, Condizioni di divisibility di un numero N per un numero a..., Matera, 

1911, 8 pp. 
R. Ayza for d=a*10”=±=l. Revista sociedad mat. espahola, Madrid, 1, 1911, 162-6. 
*Paoletti, II Pitagora, Palermo, 18, 1911-12, 128-132. 
*R. La Marca, Criterl di congruenza e criterl di divisibility, Torre del Greco, 1912, 

30 pp. 
K. W. Lichtenecker, Zeitschr. fiir Realschulwesen, 37, 1912, 338-49. 
R. E. Cicero, Sociedad Cientifica Antonio Alzate, 32, 1912-3, 317-331. 
J. G. Gal4 for d=7. Revista sociedad mat. espanola, 3, 1913-4, 46-7. 
C. F. lodi for d~7, 13, 17, 19, Suppl. al Periodico di Mat., 18, 1914, 20-3. 
E. Kylla for d=ll, Unterrichtsblatter Math. Naturwiss., 20, 1914, 156. 
R. Krahl for d=7, Zeitschrift Math. Naturw. Unterricht, 45, 1914, 562. 
P. A. Fontebasso, II Boll. Matematica, 13, 1914-5. 
G. M. Persico, Periodico di Mat., 32, 1917, 105-124. 
Sammlung der Aufgaben in Zeitschrift Math. Naturw. Unterricht, 1898: for d==7, 

II, 337; IV, 404, 407; for d=9, 11, XXIV, 606; XXV, 587-8; for d = 37, 
etc., XXVI, 18, 25-27. 

Criteria for divisibility in connection with tables were given by Barlow,^® 
Tarryss and Lebon^^ of Ch. XIII, and Harmuth^' of Ch. XIV. 

Papebs on Divisibility not Available for report. 

Joubin, Jour. Acad. Soc. Sc. France et de FEtranger, Paris, 2, 1834, 230. 
J. Lenth^ric, Th4orie de la divisibility des nombres, Paris, 1838. 
R. Volterrani, Saggio sulla divisione ragionata dei n. interi, Pisa, 1871. 
F. Tirelli, Teoria della divisibility de^ numeri, Napoli, 1875. 
E. Tiberi, Teoria generale sulle condizioni di divisibility..., Arezzo, 1890. 
J. Kroupa, Casopis, Prag, 43, 1914, 117-120. 
G. Schroder, Unterrichtsblatter ftir Math- Naturwiss., 21, 1915, 152-5. 



CHAPTER XIIL 
FACTOR TABLES, LISTS OF PRIMES. 

Eratosthenes (third century B.C.) gave a method, called the sieve or 
crib of Eratosthenes, of determining all the primes under a given limit I, 
which serves also to construct the prime factors of number^ <1. From 
the series of odd numbers 3, 5, 7,..., strike out the square of 3 and every 
third number after 9, then the square of 5 and every fifth number after 25, 
etc. Proceed until the first remaining number, directly following that one 
whose multiples were last cancelled, has its square >1. The remaining 
numbers are primes. 

Nicomachus and Boethius^ began with 5 instead of with 5^, 7 instead of 
with 7^, etc., and so obtained the prime factors of the numbers <L 

A table containing all the divisors of each odd number g 113 was printed 
at the end of an edition of Aratus, Oxford, 1672, and ascribed to Eratos¬ 
thenes by the editor, who incorrectly considered the table to be the sieve of 
Eratosthenes. Samuel Horsley^ believed that the table was copied by 
some monk in a barbarous age either from a Greek commentary on the 
Arithmetic of Nicomachus or else from a Latin translation of a Greek 
manuscript, published by Camerarius, in which occurs such a table to 109. 

Leonardo Pisano^ gave a table of the 21 primes from 11 to 97 and a 
table giving the factors of composite numbers from 12 to 100; to determine 
whether n is prime or not, one can restrict attention to divisors ^ V^- 

Ibn Albann4 in his Talkhys^ (end of 13th century) noted that in using 
the crib of Eratosthenes we may restrict ourselves to numbers g v7. 

CataldP gave a table of all the factors of all numbers up to 750, with a 
separate list of primes to 750, and a supplement extending the factor table 
from 751 to 800. 

Frans van Schooten® gave a table of primes to 9979. 
J. H. Rahn^ (Rhonius) gave a table of the least factors of numbers, not 

divisible by 2 or 5, up to 24000. 
T. Brancher® constructed a table of the least divisors of numbers, not 

divisible by 2 or 5, up to 100 000. [Reprinted by Hinkley.^^] 

Untrod. in Arith. Nicomachi; Arith. Boethii, lib. 1, cap. 17 (full titles in the chapter on perfect 
numbers). Extracts of the parts on the crib, with numerous annotations, were given by 
Horsley.2 Cf. G. Bernhardy, Eratosthenica, Berlin, 1822, 173-4. 

2PhiL Trans. London, 62, 1772, 327-347. 
U1 Liber Abbaci di L. Pisano (1202, revised 1228), Roma, 1852, ch. 5; Scritti, 1, 1857, 38. 
^Transl. by A. Marre, Atti Accad. Pont. Nuovi Lincei, 17, 1863-4, 307. 
®Trattato de’ numeri perfctti, Bologna, 1603. Libri, Histoire des Sciences Math, en Italie, 

ed. 2, vol. 4, 1865, 91, stated erroneously that the table extended to 1000. 
“Exercitat. Math., libri 5, cap. 5, p. 394, Leiden, 1657. 
’^Algebra, Zurich, 1659. Wallis,p. 214, attributed this book to John Pell. 
®An Introduction to Algebra, translated out of the High-Dutch [of Rahn’s^ Algebra] into 

English by Thomas Brancker, augmented by D. P. [=Dr. Pell], London, 1668. It is 
cited in Phil. Trans. London, 3, 1668, 688. The Algebra and the translation were de¬ 
scribed by G. Wertheim, Bibliotheca Math., (3), 3, 1902, 113-126. 

347 
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D. Schwenter® gave all the factors of the odd numbers < 1000. 
John Wallis^® gave a list of errata in Brancker's® table. 
John Harris/^ D. D., F. R. S., reprinted Brancker^s^ table. 
De Traytorens^^ emphasized the utility of a factor table. To form a 

table showing all prime factors of numbers to 1000, begin by multiplying 
2, 3,... by all other primes <1000, then multiply 2X3 by all the primes, 
then 2X3X5, etc. 

Joh. Mich. Poetius^^ gave a table (anatomiae numerorum) of all the 
prime factors of numbers, not divisible by 2, 3, 5, up to 10200. It was 
reprinted by Christian Wolf,^^ Willigs,^® and Lambert. 

Johann Gottlob Krugergave a table of primes to 100 999 (not to 1 
million, as in the title), stating that the table was computed by Peter 
Jager of Ntirnberg. 

James Dodson^® gave the least divisors of numbers to 10000 not divisible 
2 or 5 and the primes from 10000 to 15000. 
Etienne Francois du Tour^^ described the construction of a table of all 

composite odd numbers to 10000 by multiplying 3,5,..., 3333 by 3,..., 99. 
Giuseppe Pigri^^ gave all prime factors of numbers to 10000. 
Michel Lorenz Willigs^® (Willich) gave all divisors of numbers to 10000. 
Henri Anjema^® gave all divisors of numbers to 10000. 
Rallier des Ourmes^^ gave as if new the sieve of Eratosthenes, placing 

3 above 9 and every third odd number after it, a 7 above 49, etc. He 
expressed each number up to 500 as a product of powers of primes. 

J. H. Lambert^^ described a method of making a factor table and gave 
Poetius’^^ table and expressed a desire for a table to 102 000. Lagrange 
called his attention to Brancker^s® table. 

Lambert^^ gave [Kriiger’s^®] table showing the least factor of numbers 
not divisible by 2,3, 5 up to 102000, and a table of primes to 102 000, errata 
in which were noted by KliigeP^. 

®Geometria Practica, Numb,, 1667,1, 312. 
i®Treatise of Algebra, additional treatise, Ch. Ill, §22, London, 1685. 
^^Lexicon Technicum, or an Universal English Dictionary of Arts and Sciences, London, vol. 2, 

1710 (under Incomposite Numbers). In ed. 5, London, 2, 1736, the table was omitted, 
but the text describing it kept. Wallis, Opera, 2, 511, listed 30 errors. 

i^Histoire de I'Acad. Roy. Science, ann4e 1717, Paris, 1741, Hist., 42-47. 
i^Anleitung zu der Arith. Wissenschaft vermittelst einer parallel Algebra, Frkf. u. Leipzig, 1728, 
^Wollst. Math. Lexicon, 2, Leipzig, 1742, 530. 
“Gedancken von der Algebra, nebst den Primzahlen von 1 bis 1 000 000,’Halle im Magd., 1746. 

Cf. Lambert.23 
“The Calculator.. .Tables for Computation, London, 1747. 
^^Histoire de PAcad. Roy. Sc., Paris, ann4e 1754, Hist., 88-90. 
“Nuove tavole degli element! dei numeri dair 1 al 10 000, Pisa, 1758. 
“Griindliche Vorstellung der Reesischen allgemeinen Regel.. .Rechnungsarten, Bremen u. 

Gottingen, 2, 1760, 831-976. 
^‘T’able des diviseurs de tous les nombres naturels, depuis 1 jusqu’ll, 10 000, Leyden, 1767,302 pp. 

de math, et de physique, Paris, 5, 1768, 485-499. 
“Beytrage zum Gebrauche der Math. u. deren Anwendung, Berlin, 1770, II, 42. 
®^Zusatze zu den logarithmischen und trig. Tabellen, Berlin, 1770. 
2<Math. Worterbuch, 3, 1808, 89:^-900. 
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J. Ozanam^® gave a table of primes to 10000. 
A. F. Marci^® gave in 1772 a list of primes to 400 000. 
Jean Bernoulli^®® tabulated the primes 16n+l up to 21601. 
L. Euler^^ discussed the construction of a factor table to one million. 

Given a prime p = 30a±i (^ = 1, 7, 11, 13), he determined for each r=l, 7, 
11, 13, 17, 19, 23, 29, the least q for which SOg-fr is divisible by p, and 
arranged the results in a single table with p ranging over the primes from 
7 to 1000. He showed how to use this auxiliary table to construct a factor 
table between given limits. 

C. F. Hindenburg^® employed in the construction of factor tables a 
'^patrone’^ or strip of thick paper with holes at proper intervals to show 
the multiples of p, for the successive primes p. 

A. FelkeP® gave in 1776 a table of all the prime factors (designated by 
letters or pairs of letters) of numbers, not divisible by 2, 3, or 5, up to 
408 000, requiring for entry two auxiliary tables. In manuscript^®, the 
table extended to 2 million; but as there were no purchasers of the part 
printed, the entire edition, except for a few copies, was used for cartridges 
in the I\irkish war. The imperial treasury at Vienna, at the cost of which 
the table was printed, retained the further manuscript. [See Felkel.^®] 

L. Bertrand^^ discussed the construction of factor tables. 
The Encyclop^die of d^Alembert, ed. 1780, end of vol. 2, contains a 

factor table to 100 000. 
Franz Schaffgotsch^^ gave a method, equivalent to that of a stencil for 

each prime p, for entering the factor p in a factor table with eight headings 
30m-f/c. A; = 1, 7, 11, 13, 17,19, 23, 29, and hence of numbers not divisible by 
2, 3, or 5. Proofs were given by Beguelin and Tessanek, ibid., 362, 379. 

The strong appeals by Lambert^® that some one should construct a fac¬ 
tor table to one million led L. Oberreit, von Stamford, Rosenthal, Felkel, 
and Hindenburg to consider methods of constructing factor tables and to 
prepare such tables to one million, with plans for extension to 5 or 10 

^^Recreations Math., new ed., Paris, 1723, 1724, 1735, etc., I, p. 47. 
2®Prime8 “in quater centenis millibus,” Amstelodami, 1772. 
2«a]s;[ouv. M6m. Ac. Berlin, ann6e 1771, 1773, 323. 
27Novi Comm. Acad. Pctrop., 19, 1774, 132; Comm. Arith., 2, 64. 
2®Beschreibunp; einer ganz neuen Art nach einem bekannten Gesetze fortgehende Zahlen durch 

Abzahlen odor Abmessen bequem u. sicher zu finden. Nebst Anwendung der Methods 
auf verschiedcnc Zahlen, besonders auf eine damach zu fertigende Factorentafel..., 
Ijcipzig, 1776, 120 pp. 

2®Tabula omnium factorum simplicium, numerorum per 2, 3, 5 non divisibilium ab 1 usque 
10 000 000 [!]. Elaborata ab Antonio Felkel. Pars I. Exhibens factorcs ab 1 usque 
144 000, Vindobonac, 1776. Then there is a table to 408 000, given in three sections. 
There is a copy of this complete table in the Graves Library, University College, London. 
Tafel aller einfachen Factoren der durch 2, 3, 5 nicht theilbaren Zahlen von 1 bis 10 000 000. 
Entworfen von Anton Felkel. I. Theil. Enthaltend die Factoren von 1 bis 144 000, 
Wien, 1776. There is a copy of this incomplete table in the libraries of the Royal Society 
of London and Gottingen University. 

. Zach’s Monatliche Correspondenz, 2,1800,223; Allgemeine deutsche Bibliothek, 33, II, 495. 
3^D6velop. nouveau de la partie 61. math., Geneve, 1774. 
^^Gesetz, welches zur Fortsetzung der bekannten Pellischen Tafeln dient, Abhand. Privatgesell- 

schaft in Bohmen, Prag, 5, 1782, 354-382. 
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million. Their extended correspondence with Lambert^ was published. 
Of the tables constructed by these computers, the only one published is that 
by Felkel.^® The history of their connection with factor tables has been 
treated by J. W. L. Glaisher,®^ 

Johann Neumann^^ gave all the prime factors of numbers to 100 100. 
Desfaviaae gave a like table in the same year. 
F. Maseres*® reprinted the table of Brancker.® 
G. Vega®^ gave all the prime factors of numbers not divisible by 2, 3, or 5 

to 102 000 and a list of primes from 102 000 to 400 031. Chernac listed errors 
in both tables. In Hiilsse’s edition, 1840, of Vega, the list of primes extends 
to 400 313. 

A. Felkel,®® in his Latin translation of Lambert’s^^ Zusatze, gave all the 
prime factors except the greatest of numbers not divisible by 2, 3, 5 up to 
102 000, large primes being denoted by letters. In the preface he stated 
that, being unable to obtain his extensive manuscript^® in 1785, he calculated 
again a factor table from 408 000 to 2 856 000. 

J. P. Griison®® gave all prime factors of numbers not divisible by 2, 3, 5 
to 10500. He^®® gave a table of primes to 10000. 

F. W. D. Snell'*® gave the prime factors of numbers to 30000. 
A. G. Kastner*^ gave a report on factor tables. 
K. C. F. Krause*^ gave a table of 22 pages showing all products < 100 000 

of two primes, a table of primes <100 000 with letters for 01, 03,..., 99, 
and (pp. 25-28) a factor table to 10000 by use of letters for numbers < 100. 

N. J. Lidonne*^ gave all prime factors of numbers to 102 000. 
Jacob Struve*®® made a factor table to 100 by de Traytorens^^^ method. 
L. Chernac** gave all the prime factors of numbers, not divisible by 

2, 3 or 5, up to 1 020 000. 
J. C. Burckhardt*® gave the least factor of numbers to 3 million. He did 

not compute the first million, but compared Chernac’s table with a manu¬ 
script (mentioned in Briefwechsel,®® p. 140) by Schenmarck which extended 
to 1 008 000. Cf. Meissel.®® 

Joh. Heinrich Lamberts deutscher gelehrter Briefwechsel, herausgegeben von Joh. Bernoulli, 
Berlin, 1785, Leipzig, 1787, vol. 5. «Proc. Cambridge Phil. Soc., 3, 1878, 99-138. 

’®Tabellen der Primzahlen und der Faktoren der Zahlen, welche unter 100 100, und durch 2, 3 
Oder 5 nicht theilbar sind, Dessau, 1785, 200 pp. 

’“The Doctrine of Permutations and Combinations..., London, 1795. 
’’Tabulae logarithmico-trigonometricae, 1797, vol. 2. 
*®J. H. Lambert, Supplementa tab. log. trig., Lisbon, 1798. 
*®Pmacoth4que, ou collection de Tables. .., Berlin, 1798. 
’®®Enthullte Zaubereyen u. Geheimnisse d. Arith., Berlin, 1796, I, 82-4. 
^“Ueber eine neue und bequeme Art, die Factorentafeln einzurichten, nebst einer Kupfertafel 

der einfachen Factoren von 1 bis 30000, Giessen and Darmstadt, 1800. 
“^Fortsetzung der Rechenkunst, ed. 2, Gottingen, 1801, 566-582. 
“’Factoren- und Primzahlentafel von 1 bis 100 000 neu berechnet, Jena u. Leipzig, 1804. 
“’Tables de tous les diviseurs des nombres < 102 000, Paris, 1808. 
““"Handbuch der Math., Altona, II, 1809, 108. 
““Cribrum Arithmeticum... Daventriae, 1811, 1020 pp. Reviewed by Gauss, Gottingische 

gelehrte Anzeigen, 1812; Werke 2, 181-2. Errata, Cunningham.®® 
““Tables des diviseurs. ..1^3 036 000, Paris, 1817,1814, 1816 (for the respective three millions), 

and 1817 (in one volume). 
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P. Barlow^® gave the prime and power of prime factors of numbers to 
10000 and a list of primes to 100 103. 

C. Hutton^^ gave the least factor of numbers to 10000. 
Rees^ Cyclopaedia, 1819, vol. 28, lists the primes to 217 219. 
Peter Barlow^^ gave a two-page table for finding factors of a number 

N<100 000. The primes p = 7 to p==313 are at the head of the columns, 
while the 18 numbers 1000,..., 9000,10000, 20000,..., 90000 are in the left- 
hand column. In the body of the table is the remainder of each of the 
latter when divided by the primes p. To test if p is a factor of iV, add its 
last two digits to the remainders in the line of hundreds and thousands in 
the column headed p and test whether the sum is divisible by p. 

J. P. Kulik^® gave a factor table to 1 milhon. 
J. HantschP° gave a factor table to 18277; J. M. Salomon,®^ to 102 Oil. 
A. L. Crelle®^ gave the number of primes 4n-f 1 and the number of primes 

4n+3 in each thousand up to the fiftieth. 
A. Guyot^^ listed the primes to 100 000. 
A. F. Mobius,^®‘* using square ruled paper, inserted from right to left 

0, 1, 2,... in the top row of cells, and inserted n in each cell of the nth row 
below the top row whenever the corresponding number in the top row is 
divisible by n. We thus have a factor table. Certain numbers of the table 
lie in straight lines, others in parabolas, etc. 

P. A. G. Colombier®^^ discussed the determination of the primes <i', 
given those < L 

H. G. Kohler^ gave a factor table to 21524. 
E. Hinkley®^ gave a factor table to 100 000, listing all factors of odd 

numbers to 20000 and of even numbers to 12500. 
F. Schallen^^“gave the prime and prime-power factors of numbers < 10000. 
F. Landry^® gave factor and prime tables to 10000. 
A. L. Crelle^^ discussed the expeditious construction of a factor table, and 

in particular a method of extending Chernac’s"^^ table to 7 million. 
J. HoiieP® gave a factor table to 10841. 
Jacob Philip Kulik (1773-1863) spent 20 years constructing a factor 

^®New Mathematical Tables, London, 1814. Errata, Cunningham.®® 
®T*hil. and Math. Dictionary, 1815, vol. 2, 236-8. 
®®New Series of Math. Repository (ed., Th. Leybourn), London, 4, 1819, II, 30-39, 
®®Tafeln der einfachen Faktoren aller Zahlen unter 1 million, Graz, 1825. 
®°Log.-trig. Handbuch, Wien, 1827. ®^Log. Tafeln, Wien, 1827. 
®2Jour. fiir Math., 10, 1833, 208. 
®3Th<Sorie gdn^rale de la divisibihtd des nombres, suivie d’applications varices et d’une table de 

nombrea premiere compris entre 0 et 100 000, Paris, 1835. 
®®«Jour. fiir Math., 22, 1841, 276-284. ®®^Nouv. Ann. Math., 2, 1843, 408-410. 
^Log.-trig. Handbuch, Leipzig, 1848. Errata, Cunningham.®® 
wTablea of the prime numbers and prime factors of the composite numbers from 1 to 100 000, 

Baltimore, 1853. Reproduction of Brancker's® table. 
6saprimzahlen-Tafel von 1 bis 10000..., Weimar, 1855. For 99 errata, see Cunningham.®® 
“Tables des nombres entiers non divisibles par 2, 3, 5, et 7, jusqu’ ^ 10201, avec leurs diviaeurs 

simples en regard, et des carr6s dea 1000 premiers nombres, Paris, 1855. Tables des 
nombres premiers, de 1 4 10000, Paris, 1855. 

®^Jour. fiir Math., 51, 1856, 61-99. ®*Tables de log., Paris,* 3858. 
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table to 100 million; the manuscript®^ has been in the library of the Vienna 
Royal Academy since 1867. Lehmer®^ gave an account of the first of the 
eight volumes of the manuscript, listed 226 errors in the tenth million, and 
concluded that Kulik^s manuscript is certainly not accurate enough to 
warrant publication, though of inestimable value in checking a newly 
constructed table. Lehmer®® gave a further account of this manuscript 
which he examined in Vienna. Volume 2, running from 12 642 600 to 
22 852 800 is missing. The eight volumes contained 4,212 pages. 

B. Goldberg®^ gave all factors of numbers prime to 2, 3, 5, to 251 647. 
Zacharias Dase,®^ in the introduction to the table for the seventh million, 

printed a letter from Gauss, dated 1850, giving a brief history of previous 
tables and referring to the manuscript factor table for the fourth, fifth and 
sixth millions presented to the Berlin Academy by A. L. Crelle. Although 
Gauss was confident this manuscript would be published, and hence urged 
Dase to undertake the seventh million, etc., the Academy found the manu¬ 
script to be so inaccurate that its publication was not advisable. Dase died 
in 1861 leaving the seventh million complete and remarkably accurate, 
the eighth nearly complete, and a large part of the factors for the ninth and 
tenth millions. The work was completed by Rosenberg, but with numerous 
errors. The table for the tenth million has not been printed; the manuscript 
was presented to the Berlin Academy in 1878, but no trace of it was found 
when Lehmer®^ desired to compare it with his table of 1909. 

C. F. Gauss®^ gave a table showing the number of primes in each thousand 
up to one million and in each ten thousand from one to three million, with a 

comparison with the approximate formula jdx/\og x. 

V. A. Lebesgue®^ discussed the formation of factor tables and gave that 
to 115500 constructed by Hoiiel. 

W. H. Oakes®^ used a comphcated apparatus consisting of three tables on 
six sheets of various sizes and nine perforated cards (cf. Committee,®® p. 39). 

W. B. Davis®® considered numbers in the vicinity of 10®, and of 10^^. 
E. MeisseP® computed the number of primes in the successive sets of 

100 000 numbers to one million and concluded that Burckhardt's^® table 
gives correctly the primes to one million. 

“•Cited by Kulik, Abh. Bohm. Gesell. Wise., Frag, (5), 11, 1860, 24, footnote. A report on the 
manuscript was made by J. Petzval, Sitzungsberichte Ak. Wiss. Wien (Math.), 53, 1866, 
II, 460. Cited by J. Perott, I'interm^diaire des math., 2, 1895, 40; 11, 1904, 103. 

®°Primzahlen- u. Faktortafeln von 1 bis 251 647, Leipzig, 1862. Errata, Cunninghani.®'^ 
®^Factoren-Tafelnfur alle Zahlen dersiebenten Million..., Hamburg, 1862;.. .der achten Mil¬ 

lion, 1863;.. ,der neunten Million (erganzt von H. Rosenberg), 1865. 
®^Posthumous manuscript, Werke, 2, 1863, 435-447. 
““Tables diverses pour la d6composition des nombres en leurs facteura premiers, Mdm. soc. sc. 

phys. et nat. de Bordeaux, 3, cah. 1, 1864, 1-37. 
““Machine table for determining primes and the least factors of composite numbers up to 

100 000, London, 1865. 
wjour.de Math., (2), 11, 1866, 188-190; Proc. London Math. Soc., 4, 1873, 416-7. Math. 

Quest. Educ. Times, 7, 1867, 77; 8, 1868, 30-1. 
«®Math. Annalen, 2, 1870, 636-642. Cf. 3, p. 523; 21, 1883, p. 304; 25, 1885, p. 251. 
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J. W. L. Glaisher^^ gave for the second and ninth millions the number of 
primes in each interval of 50000 and a comparison with lix' — fe, where 

Ux=Jdx/log X [more precise definition at the end of Ch. XVIII]. 

A committee®^ consisting of Cayley, Stokes, Thompson, Smith, and 
Glaisheri prepared the Report on Mathematical Tables, which includes 
(pp. 34-9) a list of factor and prime tables. 

J. W. L. Glaisher^® described in detail the method used by his father’^ 
and gave an account of the history of factor tables. 

Glaisher®^® enumerated the primes in the tables of Burckhardt and Dase. 
Glaisher®^^ tabulated long sets of consecutive composite numbers. He®^® 

enumerated the prime pairs (as 11, 13) in each successive thousand to 3 
million and in the seventh, eighth, and ninth millions. 

E. Lucas®®"^ wrote P(q) for the product of all the primes g q, where q 
is the largest prime < n. If xP(g)=*=l are both composite, xP(q)—n,,.., 
xP{q)y. . .y xP(q)-{-n give 2n-|-l composite numbers. 

Glaisher®®® enumerated the primes 4n-fl and the primes 4n+3 for inter¬ 
vals of 10000 in the Hh noillion for A; = l, 2, 3, 7, 8, 9. 

James Glaisher"^® filled the gap between the tables by Burckhardt^® and 
Dase®^ The introduction to the table for the fourth million gives a history 
of factor tables and their construction. Lehmer®^ praised the accuracy of 
Glaisher^s table, finding in the sixth million a single error besides two mis¬ 
prints. 

Tuxen"^^ gave a process to construct tables of primes. 
Groscurth and Gudila-Godlewksi, Moscow, 1881, gave factor tables. 
*V. Bouniakowsky^^“ gave an extension of the sieve of Eratosthenes. 
W. W. Johnson*^^^ repeated Glaisher^s^® remarks on the history of tables. 
P. Seelhoff^^ gave large primes /b*2”H-l (/c<100) and composite cases. 
Simony^^ gave the digits to base 2 of primes to 2^^ = 16384. 
L. Saint-Loup^^ gave a graphical exposition of Eratosthenes’ sieve. 
H. Vollprecht*^® discussed the construction of factor tables. 

“’Report British Association for 1872, 1873, trails., 19-21. Of. W. W. Johnson, Des Moines 
Analyst, 2, 1875, 9-11. 

““Report British Association for 1873, 1874, pp. 1-175. Continued in 1875, 305-336; French 
transl., Sphinx-Oedipe, 8, 1913, 50-60, 72-79; 9, 1914, 8-14. 

“«Proc. Cambridge Phil. Soc., 3, 1878, 99-138, 228-9. 
17-23, 47-56; Report British Assoc., 1877, 20 (sect.). Extracts by W. W. Johnson, 

Des Moines Analyst, 5, 1878, 7. 
““^Messenger Math., 7, 1877-8, 102-6, 171-6; French transl., Sphinx-Oedipe, 7, 1912, 161-8. 

8, 1879, 28-33. 
p. 81. C. Gill, Ladies’ Diary, 1825, 36-7, had noted that xP(q)-^j is composite for 

j = 2,...,9-l. 
“““Report British Assoc., 1878, 470-1; Proc. Roy. Soc. London, 29, 1879, 192-7. 
’“Factor tables for the fourth, fifth and sixth millions, London, 1879, 1880, 1883. 
’iTidsskrift for Mat., (4), 5, 1881, 16-25. 
’^“Memoirs Imperial Acad. Science, St. Petersburg, 41, 1882, Suppl., No. 3, 32 pp. 
’i^Annals of Math., 1, 1884-5, 15-23. 
’“Zeitschrift Math. Phys., 31, 1886, 380. Reprinted, Sphinx-Oedipe, 4, 1909, 95-6. 
’“Sitzungsber. Ak. Wiss. Wien (Math.), 96, II, 1887, 191-286. 
’^Comptes Rendus Paris, 107, 1888, 24; Ann. de l’6cole norm., (3), 7, 1890, 89-100. 
’“Ueber die Herstellung von Faktorent^eln, Dies. Leipzig, 1891. 
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C. A. Laisant^®“ would exhibit a factor table by use of shaded and un¬ 
shaded squares on square-ruled paper without using numbers for entries. 

. G. Speckmann’®^ made trivial remarks on the construction of a list of 
primes. 

P. Valerio^® arranged the odd numbers prime to 5 in four columns 
according to the endings 1, 3, 7,9. From the first column cross out the first 
multiple 21 of 3, then the third following number 51, etc. Similarly for the 
other columns. Then use the primes 7, 11, etc., instead of 3, 

J. P. Gram^^ published the computation by N. P. Bertelsen of the 
number of primes to ten million in intervals of 50000 or less, which led to 
the detection of numerous errors in the tables of Burckhardt^® and Dase.®^ 

G. L. BourgereF® gave a table with 0,1,..., 9 in the first row, 10,..., 19 
in the second row (with 10 under 0), etc. Then all multiples of a chosen 
number lie in straight lines forming a paralellogram lattice, with one branch 
through 0. For example, the multiples of 3 appear in the line through 0,12, 
24, 36,..., the parallel through 3,15, 27,..., the parallel 21, 33,45,...; also 
in a second set of parallels 3, 12, 21, 30; 6, 15, 24, 33, 42, 51, 60; etc. 

E. Suchanek*^® continued to 100 000 Simony^s^® table of primes to base 2. 
D. von Stemeck®® counted the number of primes 100 n+1 in each tenth of 

a million up to 9 million and noted the relatively small variation from one- 
fortieth of the total number of primes in the interval. 

H. Vollprecht®^ discussed the determination of the number of primes <N 
by use of the primes < \/?7. 

A. Cunningham and H. J. Woodall®^ discussed the problem to find all 
the primes in a given range and gave many successive primes >9 million. 

They®^“ listed 117 primes between 2^=tl020. 
H. Schapira®^® discussed algebraic operations equivalent to the sieve of 

Eratosthenes. 
*V. Di Girio, Alba, 1901, applied indeterminate analysis of the first 

degree to define a new sieve of Eratosthenes and to factoring. 
John Tennant®® wrote numbers to the base 900 and used auxiliary tables. 
A. Cunningham®®" gave long lists of primes between 9-10® and 10^\ 
Ph. Jolivald®^ noted that a table of all factors of the first 2n numbers 

serves to tell readily whether a number <4n-f2 is prime or not. 

’®“Aasoc. fran?., 1891,11, 165-8. ’^^Archiv Math. Phys., (2), 11, 1892, 439-441. 
”La revue scientifique de France, (3), 52, 1893, 764-5. 
^■’"Acta Math,, 17, 1893, 301-314. List of errors reproduced in Sphinx-Oedipe, 5, 1910,49-51. 
■’"•La revue scientifique de France, (4), 1, 1894, 411-2. 
^•Sitzungsber. Ak. Wiss. Wien (Math.), 103, II a, 1894, 443-610. 
®°Anzeiger K. Akad. Wise. Wien (Math.), 31, 1894, 2-4. Cf. Kronecker, p. 416 below. 
“^Zeitschrift Math. Phys., 40, 1895, 118-123. 
»*Report British Assoc., 1901, 553; 1903, 561; Messenger Math., 31, 1901-2, 165; 34, 1904-5, 

72, 184; 37, 1907-8, 65-83; 41, 1911, 1-16. »i«Report British Assoc., 1900, 646. 
®*^Jahresber. d. Deutschen Math. Verein., 5, 1901, I, 69-72. 
«Quar. Jour. Math., 32, 1901, 322-342. 

35, 1903, 10-21; Mess. Math., 36, 1907, 145-174; 38, 1908, 81-104; 38, 1909, 145-175; 
39, 1909, 33-63, 97-128; 40, 1910, 1-36; 45, 1915, 49-75; Proc. London Math. Soc., 27, 
1896, 327; 28, 1897, 377-9; 29, 1898, 381-438, 518; 34, 1902, 49. 

»*L’intenn4diaire des math., 11, 1904, 97-98. 



Chap. XIII] Factob Tables, Lists of Primes. 355 

A. Cunningham ® noted errata in various factor tables. 
*J. R. Akerlund®®" discussed the determination of primes by a machine. 
Gaston Tarry®® would use an auxiliary table (as did Barlow in 1819) 

to tell by the addition of two entries (< ip) if a given number <iV’ is divisible 
by a chosen prime p. For N = 10000, he used the base h = 100, and gave a 
table showing the numerically least residues of the numbers r<h and the 
multiples of h for each prime p<6. Then nh+r is divisible by p if the 
residues of rib and r are equal and of opposite sign. For N — lOO 000, he 
used 5 = 60060 =2*91*330 and wrote numbers in the form m2)+330g-|-r, 
g<90, r<330; or, again, 5 = 20580. Ernest Lebon®^ used such tables with 
the base 30030 = 2*3*5*7*11*13, or its product by 17. 

Ernest Lebon,®® J. Deschamps,®® and C. A. Laisant®®“ discussed the con¬ 
struction of factor tables. 

J. C. Morehead®® extended the sieve of Eratosthenes to numbers 
ma^+h (m = l, 2, 3,...) in any arithmetical progression. The case a = 2, 
5 = =*= 1, is discussed in detail, with remarks on the construction of a table 
to serve as a factor table for numbers m*2*=±: 1. 

L. L. Dines®^ treated the case a = 6, 6 = =±=1, and the factorization of 
numbers m*6*=±= 1. 

D. N. Lehmer®^ gave a factor table to 10 million and listed the errata in 
the tables by Burckhardt, Glaisher, Dase, Base and Rosenberg, and 
Kulik^s tenth million, and gave references to other (shorter) lists of errata. 

E. B. Escott®^" listed 94 pairs of consecutive large numbers all of whose 
prime factors are small. 

L. Aubry®^^ proved that a group of 30 consecutive odd numbers does not 
contain more than 15 primes or numbers all of whose prime factors exceed 7. 

Cunningham®^® listed the numbers of 5 digits with prime factors ^ 11. 

^“Messenger Math., 34, 1904-5, 24-31; 35, 1905-6, 24. 
“®Nyt Tidsskrift for Mat., Kjobenhavn, 16A, 1905, 97-103. 
*®Bul].Soc. Philomathique de Paris, (9), 8, 1906, 174-6, 194-6; 9, 1907,56-9. Sphinx-Oedipe, 

Nancy, 1906-7, 39-41. Tablettes des Cotes, Gauthier-Villars, Paris, 1906. Assoc, 
frang. avanc. sc., 36, 1907, II, 32-42; 41, 1912, 38-43. 

®^Comptes Rendus Paris, 151,1905, 78. Bull. Amer. Math. Soc., 13,1906-7, 74. L’enseignement 
math., 9, 1907, 185. Bull. Soc. Philomathique de Paris, (9), 8, 1906,168, 270; (9), 10, 
1908, 4-9, 66-83; (10), 2, 1910, 171-7. Assoc. Iran?, avanc. sc., 36, 1907, II, 11-20, 
49-55; 37, 1909, 33-6; 41, 1912,44-53; 43,1914, 29-35. Rend. Accad. Lincei, Rome, (5), 
15, 1906, I, 439; 26, 1917, I, 401-5. Sphinx-Oedipe, 1908-9, 81, 97. Bull. Sc. Math. 
il6m., 12, 1907, 292-3. II Pitagora, Palermo, 13, 1906-7, 81-91 (table serving to factor 
numbers from 30030 to 510 510). Table de caractdristiques relatives ^ le base 2310 des 
facteurs premiers d'un nombre infdrieur k 30030, Paris, i906, 32 pp. Comptes Rendus 
Paris, 159, 1914, 597-9; 160, 1915, 758-760; 162, 1916, 346-8; 163,1916, 259-261; 164, 
1917, 482-4. 

®®Jomal de sciencias math., phys. e nat., acad. sc. Lisbona, (2), 7, 1906, 209-218. 
8»Bull. Soc. Philomathique de Paris, (9), 9, 1907, 112-128; 10, 1908, 10-41. 
8»®Assoc. frang., 41, 1912, 32-7. 
s^Annals of Math., (2), 10, 1908-9, 88-104. w/Wd., pp. 105-115. 
82Factor table for the first ten millions, Carnegie Inst. Wash. Pub. No. 105, i909. 
®2“Quar. Jour. Math., 41, 1910, 160-7; I’intermMiaire des math., 11, 1904, 65; Math. Quest. 

Educ. Times, (2), 7, 1905, 81-5. 
“^^Sphinx-Oedipe, 6, 1911, 187-8; Problem of Lionnet, Nouv. Ann. Math., (3), 2, 1883, 310. 
“‘^Math. Quest. Educ. Times, (2), 21, 1912, 82-3. 
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E. Lebon®^ stated that he constructed in 1911 a table of residues p, p' 
permitting the rapid factorization of numbers to 100 million, the manuscript 
being in the Biblioth^que de ITnstitut. 

H. W. Stager®^ gave theorems on numbers which contain no factors of 
the form p(fcp+l), where k>0 and p is a prime, and listed all such numbers 
<12230. 

Lehmer®® listed the primes to ten million. 
A. G4rardin®® discussed the finding of all primes between assigned limits 

by use of stencils for 3, 5, 7, 11,.... He®^ described his manuscript of 
an auxiliary table permitting the factoring of numbers to 200 million. He®®® 
gave a five-page table serving to factor numbers of the second million. Cor¬ 
responding to each prime M^ 14867 is an entry P such that iNT=1000 000+P 
is divisible by M. If a value of P is not in the table, N is prune (the P’s 
range up to 28719 and are not in their natural order). By a simple division 
one obtains the least odd number in any million which is divisible by the 
given prime 14867. 

C. Boulogne®® made use of lists of residues modulis 30 and 300. 
H. E. Hansen®® gave an impracticable method of forming a table of 

primes based on the fact that all composite munbers prime to 6 are products 
of two numbers 6a:=t 1, while such a product is 6^=*= 1, where N = 6xy=^x+y 
or Qxy—x—y. A table of values of these N’s up to k serves to find the com¬ 
posite numbers up to Qk, To apply this method to factor 1, seek an 
expression for N in one of the above three forms. 

N. AUiston^®® described a sieve (a modification of that by Eratosthenes) 
to determine the primes 4n+l and the primes 4n—1. 

H. W. Stageri®^ expressed each number < 12000 as a product of powers 
of primes, and for each odd prime factor gave the values >0 oi k for all 
divisors of the form p(kp-{-l). The table thus gives a list of numbers which 
include the numbers of Sylow subgroups of a group of order ^ 12000. 

In Ch. XVI are cited the tables of factors of a®+l by Euler,^ Escott,®® 
Cunningham®® and WoodalP; those of a^-|-A;® (A; = 1,..., 9) of Gauss^®; those 
of t/’^+l, 2/^=*= 2, 2^=*=^, etc., of Cunningham.®®' ®^‘®. Concern¬ 
ing the sieve of Eratosthenes, see Noviomagus®® of Ch. I, Poretzky®® of Ch. 
V, Merlin'®® and de Polignac®®®"'' of Ch. XVIII. Saint-Loup'® of Ch. XI, 
Reymond'®' and Kempner'®^ of Ch. XIV, represented graphically the divi¬ 
sors of numbers, while Kulik'®^ gave a graphical determination of primes. 

®3L’mterm4diaire des math., 19, 1912, 237. 
^University of California Public, in Math., 1, 1912, No. 1, 1-26. 
»5List of prime numbers from 1 to 10,006,721. Carne^e Inst. Wash. Pub. No. 165,1914. The 

introduction gives data on the distribution of primes. 
“Math. Gazette, 7, 1913-4, 192-3. 

Assoc, frang. avanc. sc., 42, 1913, 2-8; 43, 1914, 26-8. 
43, 1914, 17-26. 

8®"Sphinx-Oedipe, s4rie sp6ciale. No. 1, Dec., 1913. 
9»L’enseignement math., 17, 1915, 93-9. Cf. pp. 244-5 for remarks by G4rardin. 

looMath. Quest. Educat. Times, 28, 1915, 53. 
Sylow factor table of the first twelve thousand numbers, Carnegie Inst. Wash. Pub. No. 

151, 1916. 



CHAPTER XIV. 
METHODS OF FACTORING. 

Factoring by Method of Difference of Two Squares. 

Fermat^ described his method as follows: ‘‘An odd number not a square 
can be expressed as the difference of two squares in as many ways as it 
is the product of two factors, and if the squares are relatively prime the 
factors are. But if the squares have a common divisor d, the given number 
is divisible by d and the factors by \/3‘ Given a number n, for example 
2027651281, to find if it be prime or composite and the factors in the latter 
case. Extract the square root of n. I get r=45029, with the remainder 
40440. Subtracting the latter from 2r+l, I get 49619, which is not a 
square in view of the ending 19. Hence I add 90061 = 2+2r+l to it. 
Since the sum 139680 is not a square, as seen by the final digits, I again 
add to it the same number increased by 2, L 6., 90063, and I continue imtil 
the sum becomes a square. This does not happen until we reach 1040400, 
the square of 1020. For by an inspection of the sums mentioned it is easy 
to see that the final one is the only square (by their endings except for 
499944). To find the factors of n, I subtract the first number added, 
90061, from the last, 90081. To half the difference add 2. There results 
12. The sum of 12 and the root r is 45041. Adding and subtracting the 
root 1020 of the final sum 1040400, we get 46061 and 44021, which are the 
two numbers nearest to r whose product is n. They are the only factors 
since they are primes. Instead of 11 additions, the ordinary method of 
factoring would require the division by all the numbers from 7 to 44021.” 

Under Fermat,Ch. I, was cited Fermat^s factorization of the number 
100895508169 proposed to him by Mersenne in 1643. 

C. F. Kausler^ would add 1^, 2^,... to iV to make the sum a square. 
C. F. Kausleri proceeded as follows to express 4m+l in the form 

Then q is even, q = 2Q. Set p-g = 2i3+l. Then m = 
Subtract from m in turn the pronic nunibers a table of which he 
gave on pp. 232-267, until we reach a difference divisible by 2/3H-1. 

Ed. Collins,'* in factoring N by expressing it as a difference of two squares, 
let be the least odd or even square >iV’, according as 1 or 3 (mod 4), 
and set N = g^—r. If r is not a square, set r = h^—Cy where is the even 
or odd square just >r, according as r is even or odd, whence c = 4d, = — 
h^+M. By trial find integers Xj y such that both g^+x and are 
squares, while x — y = 4:d. Then N will be a difference of two squares. 

^Fragment of a letter of about 1643, Bull. Bibl. Storia Sc. Mat., 12,1879, 715; Oeuvres de Fer¬ 
mat, 2, 1894, 256. At the time of his letter to Mersenne, Dec. 26,1638, Oeuvres, 2, p. 177, 
he had no such method. 

^Euler’s Algebra, Frankfort, 1796, III, 2. Anhang, 269-283. Cf. Kausler, De Cribro Eratos- 
thenis, 1812. 

*Nova Acta Acad. Petrop., 14, ad annos 1797-8 (1805), 268-289. 
Ac. Sc. St. P4tersbourg, 6, 1840, 84-88. 
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F. Landry® used the method of Fermat, eliminating certain squares by 
their endings and others by the use of moduli. 

C. Henry® stated that Landry^s method is merely a perfection of the 
method given in the article ^^nombre premier^' in the Dictionnaire des 
Math6matiques of de Montferrier. It is improbable that the latter in¬ 
vented the method (based on the fact that an odd prime is a difference 
of two squares in a single way), since it was given by Fermat. 

F. Thaarup’^ gave methods to limit the trials for x in We 
may multiply n by /=a^—6^ and investigate nf-X^ — Y^y X—ax—hy, 
Y=^hx—ay. We may test small values of y, or apply a mechanical test 
based on the last digit of n. 

C. J. Busk® gave a method essentially that by Fermat. It was put 
into general algebraic form by W. H. H. Hudson.® Let N be the given 
number, the next higher square. Then 

iV=n^-ro=(n+l)2~ri= .. 

where ri, r2,.. • are formed from Tq by successive additions of 2n+l, 2n+3, 
2n+5,.... Thusr„t=ro+2?72n+m^. If is a square, N is sl difference 
of two squares. A. Cuimingham {ibid., p. 559) discussed the conditions 
under which the method is practical, noting that the labor is prohibitive 
except in favorable cases such as the examples chosen by Busk. 

J. D. Warner®® would make iV=by use of the final two digits. 
A. Cunningham^® gave the 22 sets of last two digits of perfect squares, as 

an aid to expressing a number as a difference of two squares, and described 
the method of Busk, which is facilitated by a table of squares. 

F. W. Lawrence^^ extended the method of Busk (practical only when 
the given odd number W is a product of two nearly equal factors) to the 
case in which the ratio of the factors is approximately l/m, where I and m 
are small integers. If I and m are both odd, subtract from ImN in turn the 
squares of o, o+l,..where just exceeds ImNy and see if any remainder 
is a perfect square (h^). If so, ImN = (a+ T)^— 

G. Wertheim^® expressed in general form Fermat^ s method to factor 
an odd number w. Let be the largest square <m and set m = a^+r. 
If p=2a+l—r is a square (n^), we eliminate r and get m = (a+l-fn) 
X (a+l — n). If p is not a square, add to p enough terms of the arithmetic 
progression 2a-f 3, 2a+5,.., to give a square: 

p+(2a+3)H“... + (2a+272 —1) 

®Aux math^maticiens de toutes les parties du monde: communication sur la decomposition des 
nombres en leura facteurs simples, Paris, 1867. Letter from Landry to C. Henry, Bull. 
Bibl. Storia Sc. Mat., 13, 1880, 469-70. 

®Assoc. fran^. av. sc., 1880, 201; Oeuvres de Fermat, 4, 1912, 208; Sphinx-Oedipe, 4, 1909, 3« 
Trimestre, 17-22. TOsskrift for Mat., (4), 5, 1881, 77-85. 

“Nature, 39, 1889, 413-6. “Nature, 39, 1889, p. 510. 
““Proc. Amer. Assoc. Adv. Sc., 39, 1890, 54-7. 
“Mess. Math., 20, 1890-1, 37-45. Cf. Meissner,^” 137-8. 

24, 1894-5, 100. 
^“Zeitschrift Math. Naturw. Unterricht, 27, 1896, 256-7. 
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Then 2an+n^—r = 8^ and m = (a+w)^—s^. The method is the more rapid 
the smaller the difference of the two factors. 

M. Neumann^^ proved that this process of adding terms leads finally 
to a square and hence to factors, one of which may be 1. 

F. W. Lawrence^^ denoted the sum of the two factors of n by 2a and the 
difference by 25, whence n = a^—5^. Let q be the remainder obtained by 
dividing n by a chosen prime p, and write down the pairs of numbers <p 
such that the product of two of a pair is congruent to q modulo p. If 
P = 7, g = 3, the pairs are 1 and 3, 2 and 5, 4 and 6, whence 2a=4, 0 or 3 
(mod 7). Using various primes p and their powers, we get limitations on 
a which together determine o. The work may be done with stencils. The 
method was used by Lawrence^® to show that five large numbers are primes, 
including 10,11 and 12 place factors of 3^^ —1,10^^ —1, lO^^ — l, respectively. 
The same examples were treated by other methods by D. Biddle.^® 

A. Cunningham^^ remarked that in computing by Buskos method a 
k for which (s+A;)^—iV is a square, we may use the method of Lawrence, 
just described, to limit greatly the number of possible forms of k, 

F. J. Vaes^® expressed N in the form a^—h^ by use of the square just 
>N and then increasing a by 1, 2,..., and gave (pp. 601“8) an abbreviation 
of the method. He strongly recommended the method of remainders 
(p. 425): If p is a factor oiG=h^—and g = {G—l)/2 has the remainder 
r when divided by p, then h — {G^l)/2 must have the remainder r+1, 
so that p is a factor of 2r+l^G, For example, let (7 = 80047, whence 

^ = 200^+23 = 201*199+24 = 202*198+27,.... 

For r = 24, 27, *32,... we see that 2r+l is not a multiple of 201, 202,... 
until we reach e' = 209*191+p, p=104, 2p+l=209. Thus 209 divides G, 

P. F. Teilhet^^ wrote N = in the form (o+A;)^—P, where P = k^ 
+2aA:+5. Give to k successive values 1, 2,... (by additions to P), until 
P becomes a square To abbreviate consider the residues of P for small 
prime moduli. 

E. Lebon^® proceeded as had Teilhet^® and then set f=a+k'-v. Then 

2kf={a-f)^-h, 

and we examine primes/< a to see if k is an integer. 
M. Kraitchik^^ would express a given odd number A in the form 

by use of various moduli p. Let A^r (mod p) and let Ui,..., On be the 

i^Zeitschrift Math. Naturw. Unterricht, 27, 1896, 493-5; 28, 1897, 248-251. 
“Quar. Jour. Math., 28, 1896, 285-311. French transl., Sphinx-Oedipe, 5, 1910, 98-121, with 

an addition by Lawrence on 
“Proc. Lond. Math. Soc., 28, 1897, 465-476. French transl., Sphinx-Oedipe, 5, 1910, 130-6. 
^®Math. Quest. Educat. Times, 71, 1899, 113-4; cf. 93—99. 

69, 1898, 111. 
^®Proc. Sect. Sciences Akad. Wetenschappen Amsterdam, 4, 1902, 326-336, 425-436, 601—8 

(English); Verslagen Ak. Wet., 10, 1901-2, 374-384, 474-486, 623-631 (Dutch). 
i»L'interm6diaire des math., 12, 1905, 201-2. Cf. Sphinx-Oedipe, 1906-7, 49-50, 55. 
*°As80C. frang. av. sc., 40, 1911, 8-9. 
2iSphinx-Oedipe, Nancy, Mai, 1911, num4ro special, pp. 10-16. 
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quadratic residues of p. Then r+a;^=ai (mod p). Thus Ci—r must be 
a quadratic residue. Reject from Ci,..the terms for which ai—r is not 
in the set. We get the possible residues of x modulo p. His method to fac¬ 
tor a”=*= 1 is the same as Dickson^s^^* and is applied to show that the factor 
(2^®+2®^-fl)/(5*239*9929) of 2^^®+l is a prime in case it has no factor 
between 10500 and 108000. 

Kxaitchik^^ extended the method of Lawrence. 
F. J. Vaes^ applied his^^ method to factor Mersenne’s^ number. The 

same was factored by various methods in LTnterm^diaire des Math^mat- 
iciens, 19,1912,32-5. J. Petersen, ibid,, 5,1898, 214, noted that its product 
by 8 equals where A;=898423. 

Method of Factoring by Sum op Two Squares. 

Frenicle de Bessy^ proposed to Fermat that he factor h given that 

h=a^W = (^+(P, as 221 = 100+121 = 196+25. 

In 1647, Mersenne®^ (of Ch. I) noted that a number is composite if it be 
a sum of two squares in two ways. 

L. Euler^® noted that N is a prime if it is expressible as a sum of two 
squares in a single way, while if N=a^+b^ = c^+d^, N is composite: 

{(fl-~c)H(5-d)^} {(a+c)^+(b^d)^} 

4(5-d)2 

Euler^"^ proved, that, if a number N=4n+1 is expressible as the sum of 
two relatively prime squares in a single way, it is a prime. For, if N were 
composite, then N = (a^+5^)(c^+d^) is the sum of the squares of ac=±=5d and 
ad^hc, contrary to hypothesis. If iV' = a^+5^ = c^+d^, N is composite; 
for if we set a = c+a:, d — b-\-y, and assume* that the common value of 
2cx+a? and 2hy+y^ is of the form xyz, we get 

2c=2/2—x, 2h = xz—y, N=i^+c^-^-xyz = i{x^+y^) (1 +z^), 

whence x^+i/^ or (a;^+2/^)/4 is a factor of N. To express iV as a sum of two 
squares in all possible ways, use is made of the final digit of N to limit the 
squares to be subtracted in seeking differences N—which are squares. 
Several numerical examples of factoring are treated in full. 

Euler^® gave abbreviations of the work of applying the preceding test. 
For example, if 4n+l =5m+2=x^+2/^, then x and y are of the form 

“Sphinx-Oedipe, 1912, 61-4. 
^^L'enseignement math., 15, 1913, 333-4, 
Oeuvres de Fermat, 2, 1894, 232, Aug. 2, 1641. 
“Letters to Goldbach, Feb. 16, 1745, May 6, 1747; Corresp. Math. Phys. (ed,, Fuss), I, 1843, 

313, 4ie-9. 
*7Novi Ck)mm. Ac. Petrpp,, 4, 1762-3, p. 3; Comm. Arith., 1, 1849, 165-173. 
*Euler gave a faultless proof in the margin of his posthumous paper, Tractatus, §570, Comm. 

Arith., 2, 573; Opera postuma, I, 1862, 73. We have (a4-c)(a—c) =* {b-\-d){d—b) =vgr8, 
a-\-c=‘pq,a---c=r8,b +d ^pr/d—b^^qs [since, if p be the g. c. d. of a-fc, 6 then q{a—c) 
is divisible by r, whence a—c^rs]. Hence a2+b3=x(p2+s»)(gS-f-r*)/4. 

**Novi Comm. Ac. Petrop., 13, 1768, 67; Comm. Arith., 1, 379. 
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5p=±= 1. To express a number as subtract squares in turn and seek a 
remainder which is a square. 

N. Beguelin^® proposed to find x such that is a prime by exclud¬ 
ing the values x making the sum composite. The latter is the case if 

4pV+l=46=*+(2c+l)S 

Set x^q+h/p. Then h is expressed rationally in terms of c and the known 
p. Taking p = 1, he derived a tentative process for finding a prime, of the 
form 4x^+1, which exceeds a given number a. 

L. Euleri® proved that 1000^+3^ is prime since not expressible as a sum of 
two squares another way. 

A. M. Legendre^°“ factored numbers represented as a sum of two squares 
in two ways. 

J. P. Kulik's^®^ tables VIII and IX, relating to the ending of squares, 
serve to test if 4n+1 is a sum of two squares and hence to test if it be prime 
or composite. 

Th. Harmuth^^ suggested testing for factors, where a and h are 
relatively prime, by noting that it is divisible by 5 if as 1, 2 (mod 6), 
and similar facts for p = 13,17, 29, 37, there being p—1 sets of values of a, b 
for each prime p=4n+l. 

G. Wertheim^^ explained in full Euleris^^ method of factoring. 
R. W. D. Christie and A. Cunningham^ granted iV = A^+J5^ = C^-|-2>^ 

and showed how to find a,..., d so that iV'=(a^-l-b^)(c^+d^). Similarly, if 
= in two ways. 

Factoring by Use op Binary Quadratic Forms. 

L. Euleri^ noted that a number is composite if it be expressible in two 
ways in the form/=ax^+i^y^. The product of two numbers of the form/ 
is of the form g = 111® product of a number of the form / by one of 
the form g is of the form/. If for w>2 a composite number mp is express¬ 
ible in a single way in the form /, there exist an infinitude of composite 
numbers mq expressible in a single way by /. He called (§34) a number 
N idoneal (numerus idoneus) if, for aj3=V, every number representable 
by /= (with ax relatively prime to ^y) is a prime, the square of a 
prime, the double of a prime or a power of 2, so that a number representable 
by / in a single way is a prime. It sufl&ces to test N4-2/^< 4i\r, y prime to N. 
He gave (§39, p. 208) the 66 idoneal numbers 1,2,..., 1848 less than 10000. 

2*Nouv. M^m. Acad. Sc. Berlin, 1777, ann6e 1776, 300. 
*oNova Acta Petrop., 10, 1792 (1778), 63; Comm. Arith., 2, 243-8. 
*®°Th6orie des nombres, ed. 3, 1830,1, 310. Simplification by Vuibert, Jour, de math. 616m., 

10, p.'42. Cf. rinterm6diaire des math., 1, 1894, 167, 245; 18, 1911, 256. 
*o^Tafeln der Quadrat und Kubik Zahlen ... bis hundert Tausend, Leipzig, 1848. 
»iArchiv Math. Phys., 67, 1882, 2lfi-9. 
»*Elemente der Zahlentheorie, 1887, 296-9. 
“Math. Quest. Fducat. Times, (2), 11, 1907, 62-3, 65-7, 89-90. 
*7Nova Acta Petrop., 13, 1795-6 (1778), 14; Comm. Arith., 2, 198-214. 
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Euler^® used the idoneal number 232 to find all values of a <300 for 
which 232a^+l is a prime, by excluding the values of a for which 232a^+l 
= 232a:^-i-2/^, y'>l- • 

Euler^® noted that iV’=a^+X?)^=a;^+Xt/^ imply 

iV=J(Xw^+n^)(Xp^+e^), a^x=\m'p, nq; y±:h=mq, np, 

so that Xp^+g^, or its half or quarter, is a factor of N, He gave (p. 227) 
his®^ former table of 65 idoneal numbers. Given one representation by 

where afi is idoneal, he sought a second representation. If 
N=4n+2 is idoneal, 4iV is idoneal. 

Euler^® called a congruent form if every number representable 
by it in a single way (with a?, y relatively prime) is a prime, the square of a 
prime, the double of a prime, a power of 2, or the product of a prime by a 
factor of mn. Then also mnoi^-\-y^ is a congruent form and conversely. 
The product mn is called an idoneal or congruent number. His table of 65 
idoneal numbers is reproduced (§18, p. 253). He stated rules for deducing 
idoneal numbers from given idoneal numbers. He factored numbers 
expressed in two ways by ax^+ISy^, where a/3 is idoneal, and noted that a 
composite number may be expressible in a single way in that form if a/3 is 
not idoneal. 

Euler^^ proved that the first five squares are the only square idoneal 
numbers. 

C. F. Kausler^^ proved Euler^s theorem that a prime can be expressed in 
a single way in the form mx^+ny^ if ?n, n are relatively prime. To find a 
prime v exceeding a given number, see whether 38x^4-51/^ = v has a single set 
of positive solutions x, y; or use 1848x^+y^. As the labor is smaller the 
larger the idoneal number 38*5 or 1848, it is an interesting question if there 
be idoneal numbers not in Euler's list of 65. Cf. Cunningham.®^ 

Euler^® gave the 65 idoneal numbers n (with 44 a misprint for 45) such 
that a number representable in a single way by nx^+y^ (x, y relatively 
prime) is a prime. By using n = 1848, he found primes exceeding 10 million. 

N. Fuss^ stated the principles due to Euler.^^ 
E. Waring^® stated that a number is a prime if it be expressible in a single 

way in the form a^+mh^ and conversely. 
A. M. Legendre^® would express the number A to be factored, or one of 

its multiples kA, in the form where a is as small as possible and within 
the limits of his Tables III-VII of the linear forms of divisors of 

»»Nova Acta Petrop., 14, 1797-8 (1778), 3; Comm. Arith., 2, 215-9. 
p. 11; Comm. Arith., 2, 220-242. For X=2, Opera postuma, I, 1862, 159. 
12, 1794 (1778), 22; Comm. Arith., 2, 249-260. 

mid., 15, ad annos 1799-1802 (1778), 29; Comm. Arith., 2, 261-2. 
mid., 156-180. 
"Nouv. M6m. Berlin, ann6e 1776,1779, 337; letter to Beguelin, May, 1778; Comm. Arith., 2, 

270-1. 
^lUd., 340-6 
<‘Medit. Algebr., ed. 3, 1782, 352. 
**Th4orie des nombres, 1798, pp. 313-320; ed. 2,1808, pp. 287-292. German tranal. by Maaer, 

1, 329-336. Cf. Sphinx-Oedipe, 1906-7, 61. 
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Then the divisors of A are included among these linear forms. When 

VM is converted into a continued fraction, let (VXA + J)/D be a complete 
quotient, and p/q the corresponding convergent. Then 
so that the divisors of A are divisors of p^^D. 

C. F. Gauss^^ stated that the 65 idoneal numbers n of Euler and no 
other numbers have the two properties that all classes of quadratic forms 
of determinant —n are ambiguous and that any two forms in the same 
genus (Geschlecht) are both properly and improperly equivalent. 

Gauss^® gave a method of factoring a number M based on the deter¬ 
mination of various small quadratic residues of M. 

Gauss^® gave a second method of factoring M based on the finding of 
representations of M by forms x^+D, where D is idoneal. 

F. Minding®® gave an exposition of the method of Legendre.^® 
P. L. Tchebychef®^ gave a rapid process to find many forms 

which represent a given number A or a multiple of A. Then a table of 
the linear forms of the divisors of serves to limit the possible factors 
of A. 

Tchebychef®^ gave theorems on the limits between which lie at least 
one set of integral solutions of x^—Dy^ = If there are two sets of solu¬ 
tions within the limits, N is composite. There are given various tests for 
primality by use of quadratic forms. 

C. F. Gauss®® left posthumous tables to facilitate factoring by use of 
his^® second method. 

F. Grube®^ criticized and completed certain of Euler^s proofs relating to 
idoneal numbers, here called Euler numbers. While Gauss^’' said it is easy 
to prove Euler’s^^ criterion for idoneal numbers, Grube could prove only 
the following modification: Let 0 be the set of numbers D+n^^^D in 
which n is prime to D. According as all or not all numbers of 12 are of the 
form q, 2q, 2^ {q a prime), D is or is not an idoneal number. 

E. Lucas®® proved that if p is a prime and /b is a positive integer, and 
p = x^+ky^j then for values Xi, y^ distinct from =*=rc, ^y, 

P. Seelhoff®® made use of 170 determinants (including the 65 idoneal 
numbers of Euler and certain others of Legendre), such that every reduced 
form in the principal genus is of the type ax^+hy^. To factor N seek 
among the numbers m of which iV is a quadratic residue several values 

<^Dieq. Arith., 1801, Art. 303. 
Arts. 329-332. 

*^Jhid., Art8. 333-4. 
““AnfangsgrOnde der Hdheren Arith., 1832, 185-7. 
^^Theorie der Congruenzen (in Russian), 1849; German transl. by H. Schapira, 1889, Ch. 8, 

pp. 281-292. 



364 History of the Theory of Numbers. [Chap, XIV 

for which N is representable by a?+my^. For example, if iV'=31-2^^+l, 

iV=x2+749-83/b2=2/Hl9*83P=22~7r2. 

Eliminating 19*83 between t^ie first two, we get /jLN=w^—7f. This with 
the third leads to factors of N. In general, when elimination of common 
factors of the m’s has led to representations of two multiples of N by the 
same form x^+ny^, we may factor N unless it be prime. 

H. Weber®^ computed the class invariants for the 65 determinants of 
Euler and remarked that there is no known proof of the fact found by 
induction by Euler and Gauss that there are only 65 determinants such that 
all classes belonging to the determinant are ambiguous and hence each 
genus has only one class. 

T. Pepin®® developed the theory of Gauss’®® posthumous tables and the 
means of deducing complete tables from the given abridged tables. Pepin®® 
showed how to abridge the calculations in using the auxiliary tables of Gauss 
in factoring a”—1, where a and n are primes. 

D. F. Seliwanofif®° noted that the factoring of numbers of the form 
reduces to the solution of (D/x) = l, all solutions of which are 

easily found by use of six relations by Euler on these Jacobi symbols 0/x). 
E. Lucas®^ gave a clear proof of Euler’s remark that a prime can not be 

expressed in two ways in the form Ax^+By^, A, B are positive integers. 
S. Levanen®^ showed and illustrated by examples and tables how binary 

quadratic forms may be applied to factoring. 
G. B. Mathews®® gave an exposition of the subject. 
T. Pepin®^ applied determinants — 8n—3 for wMch each genus has three 

classes of quadratic forms. The paper is devoted mainly to the solution 
of a:^+(8n+3)2/^=4A, where A is the number to be factored. 

T. Pepin®® assumed that the given number N had been tested and found 
to have no prime factor Let Xa:+1, Xy+l be the two factors of iV", 

each between p and N/p. The sum of the factors lies between 2Vn and 
p-\-N/p. Let x—y = Uj x+y-pz. Then iN—l)/\=\xy+x+y gives 

4(iV—1) 2J2,4p 2 

in which special values are assigned to p. This equation yields a quadratic 
congruence for with respect to an arbitrary prime modulus, used as an 
excludant. The method applies mainly to numbers 1. 

E. Cahen®® used the linear divisors of 

Annalen, 33, 1889, 390-410. 
Accad. Pont. Nuovi Lincei, 48, 1889,135-156. 

49, 1890, 163-191. 
•"Moscow Math. Soc,, 15, 1891, 789; St. Petersburg Math. Soc., 12, 1899. 
®^Th6orie des nombres, 1891, 356-7. 
“Ofversigt af finska Vetenskaps-Soc. forhandlingar, 34, 1892, 334-376. 
“Theory of Numbers, 1892, 261-271. French transl., Sphinx-Oedipe, 1907-8, 155-8, 161-70. 
“Memorie Accad. Pontif. Nuovi Lincei, 9,1, 1893, 46-76. Cf. Pepin,®® 332. 
mid., 17, 1900-1, 321-344; Atti, 54, 1901, 89-93. Cf. Meissner”*, 121-2. 
«®Sl6ments de la th^orie des nombres, 1900, 324-7. Sphinx-Oedipe, 1907-8,149-155. 
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A. Cunningham®^ and J. Cullen listed the 188 prime numbers x^+lS48y^ 
between 10*^ and 101*10®, with x prime to 18482/. 

A. Cunningham®® noted that two representations of N by 
lead to factors of N under certain conditions. 

A. Cunningham®® recalled that an idoneal number I has the property 
that, if an odd number N is expressible in only one way in the form 
N=nix^+ny^j where mn^I, and mx^ is prime to ny^, then A is a prime or 
the square of a prime. Euler^s largest I is 1848. There is no larger I under 
50000, a computation checked by J. Cullen. Cunningham noted on the 
proof-sheets of this history that this limit has been extended to 100 000. 

A. Cunningham^® noted conditions that an odd prime be expressible by 
when q or —g' is idoneal. 

F. N. Cole"^^ discussed Seelhoff^s®® method of factoring. 
Al. Laparewicz^® described and applied Gauss^ two methods. 
P. Meyer^® discussed Euler^s theorem that, if n is idoneal, a number 

representable only once by a^+ny^ is a prime. 
R. BurgwedeP gave an exposition and completion of the method of 

Euler®"^"^® and an exposition of the methods of Gauss.^®*^® 
L. Valroff stated and A. Cunningham’^^“ proved that (Dx^ — a^)(Dy^ — a^) 

= Dz^ — a^ implies that one factor is composite unless a;® = 2/® = 4 when 
a = 1, D = 2, and in the remaining cases if the two factors are distinct and > 1. 

A. G^rardin^® gave a method illustrated for N = o? — 5*29^, where a = 6326. 
We shall have a second such representation N = —62/^ if 

^7=5x®+2ax+841=2/®. 

Use is made of various moduli m = 4, 3, 7, 25,.... On square-ruled paper, 
mark x = 0, 1,2,.. . at the head of the columns. On the line for modulus m, 
shade the square under the heading x when x makes E a quadratic non¬ 
residue of m. Then examine the column in which occurs no shaded square. 
Up to x^l5, these are a; = 0 (excluded), and a; = 4, which gives A = 6346® 
— 5-227® and the factor 99® —5-2®. The same diagram serves for all num¬ 
bers 1050 If 4-671, our N being given by If=38108. To apply the method 
to A’=(2a;)^-1-I = (4a;®-1-1)^ —2(2a;)®, seek a second representation ^=(40;® 
-}-2p-l-l)^ —2(2u)®. The condition is (2p-l-l)a;®+|p(p4-l) ='W^ solutions 
of which are found for p = 1, 8, 9,..., 6®, 35®,... Or we may choose x, say 
a; = 48, and find p = 8, w = 198. 

6^Brit. Assoc. Reports, 1901, 552. The entry 10098201 is erroneous. 
®®Proc. London Math. Soc., 33, 1900-1, 361. 

34, 1901-2, 54. 
7o/bi(2., (2), 1, 1903, 134. 

Amer. Math. Soc., 10, 1903-4, 134r-7. 
”Prace mat. fiz., Warsaw, 16, 1905, 45-70 (Polish). 
^^Beweis eines von Euler entdeckten Satzes, betreffend die Bestimmung von Primzahlen, Diss., 

Strassburg, 1906. 
’^Ueber die Eulerschen und Gausschen Methoden der Primzahlbestimmung, Diss., Strassburg, 

1910, 101 pp. 
^^“Sphinx-Oedipe, 7, 1912, 60, 77-9. 
’■‘Wiskundig Tijdschrift, 10, 1913, 52-62. 
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G^rardin^® gave a note on his machine to factor large numbers, espe¬ 
cially those of the form 

Factoring by Method of Final Digits. 

Johann Tessanek®® gave a tedious method of factoring N, not divisible 
by 2, 3, or 5, when N/lO is within the limits of a factor table. For example, 
let iV=10a+l; its factors end in 1,1 or 3,7 or 9,9. To treat one of the 
four cases, consider a factor lOrr+S, the quotient being 10^+7. Then z is 
the quotient of a—2 — 7a: by lOx+3. Give to x the values 1,2,..., and test 
a—9 for the factor 13, a—16 for 23, etc., by the factor table. He gave a 
lengthy extension®^ to divisors lOOx-f 10/+^. Again, to factor N=2a+l, 
given a table extending to N/2j note that if 2x+l is a divisor of Ny it 
divides a—a:, which falls in the table. F. J. Studnicka®^ quoted the last 
result. 

N. Beguelin®® would factor ^=4^+3 by considering the final digit of 
x=(i\r—ll)/4 and hence find the proper line in an auxiliary table (pp. 291-2), 
each line containing four fractional expressions. Proceed with each until 
we reach a fraction whose numerator is zero. Then its denominator is a 
factor of N, 

Georg Simon KlligeP noted that a number, not divisible by 2, 3 or 5, 
is of the form 30a:+m (m = l, 7, 11, 13, 17, 19, 23, 29). Suppose 10007 = 
(30x+m)(30z/4‘n), Then (m, n) = (l, 17), (7, 11), (13, 29) or (19, 23). 
For m=l, 71=17, we get 

333^ 
302/+17 ^ 

But X is not integral for t/ = 0, 1, 2, 3. 
Johann Andreas von Segner (^6^d^., 217-225) took two pages to prove 

that any number not divisible by 2 or 3 is of the form 6n=±= 1 and noted that, 
given a table of the least prime factor of each 67i=±=l, he could factor any 
number within the limits of the table! 

Sebastiano Canterzani®^ would factor 10A: + 1, by noting the last digits 
1, 1 or 3, 7 or 9, 9 of its factors. If one factor ends in 7, there are 10 
possibilities for the digit preceding 7; if one ends in 1 or 9, there are five 
cases; hence 20 cases in all. A. Niegemann®®" used the same method. 

Anton Niegemann®® gave a method of computing a table of squares 
arranged according to the last two digits. Thus, if A76 = (lOx —6)^ then 

7®Assoc. frang. avanc. sc., 43, 1914, 26-8. Proc. Fifth Intemat. Congress, II, 1913, 572-3; 
Brit. Assoc, Reports, 1912-3, 405. 

®°Abhandl. einer Privatgesellschaft inBohmen, zur Aufnahme der Math., Geschichte,..., Prag, I, 
1775, 1-64. 

Cantor, Geschichte Math., 4, 1908, 179. 
“Casopis, 14, 1885, 120 (Fortachr. der Math., 17, 1885, 125). 
“Nouv. M6m. Ac, Berlin, ann4e 1777 (1779), 265-310. 
wLeipzigerMagazinfurreineu.angewandte Math, (eds,, J. Bernoulli und Hindenburg), 1,1787, 

199-216. 
“Memorie dell’ Istituto Nazionale ItaHano, Classe di Fis. e Mat., Bologna, 2, 1810, II, 445-476. 
“®Entwickelung... Theilbarkeit, Jahresber. Kath. Gymn. Koln., 1847-8, 23. 
“Archiv Math. Phys., 45, 1866, 203-216. 
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j40 = 10x^“-12x—4, whence 12a;+4 is divisible by 10, so that x = 2. 
Then A ~ 25(P ~26d+6. Thus if we delete the last two digits 7,6 of squares 
-476, we obtain numbers A whose values for d=l' 2,... can be derived 
from the initial one 5 by successive additions of 49, 49+50, 49+2*50,.... 
He gave such results for every pair of possible endings of squares. 

A similar method is applied to any composite number. One case is 
when the last two digits are w, 1 and Ami = (10a; — 1) (lOy — 1). Then 

A0=10xy—y—x~'m, yA-x+m^lOa, A = 10ax---a;^'-ma; —a. 

The discriminant of the last equation must be a square. A table of values 
of A for each a may be formed by successive additions. 

G. Speckmann®’’ noted that the two factors of N=2047 end in 1 and 7 
or 3 and 9. Treating the first case, we see that, if a and b are the digits in 
tens place, 2)+7a=4 (mod 10), so that the factors end in 01 and 47, or Hand 
77, etc. 

G. Speckmann^^ wrote the given number prime to 3 in the form 9a+6 
(fc<9), so that the sum of its digits is =6 (mod 9). By use of a small 
auxiliary table we have the residues modulo 9 of the sums of the digits of 
every possible pair of factors. 

R. W. D. Christie®® and D. Biddle®® made an extensive use of terminal 
digits. 

E. Barbette®^ noted that lOd+24 has a divisor 10m —1 if and only if 
d+mu has that divisor. Set d+mt4 = n(10m—1), d=10d'+w'. Then 

mn = d'+x, 10x=7nu+n+u\ 

Eliminating n, we get a quadratic for m. Its discriminant is a quadratic 
function of x which is to be made a square. Similarly for lOm+1, 10m=*=3. 

A. G^rardin®^® developed Barbette^s®^ method. 
R. Rawson®® found Fermat^s^ factors of a number proposed by Mersenne 

by writing it to the base 100 and expressing it as (a*10^+23)(5*10^+3). 
J. Deschamps®® would use the final digits and auxiliary tables. 
A. G^rardin®^ would factor N (prime to 2, 3, 5) by use of 

iV=120n+K=(120x+a)(1202/+5), 

and a table showing, for each of the 32 values oi K< 120, the 16 pairs a, h 
(each< 120) such that ah^K (mod 120). He factored Mersenne's number.^ 

Factoring by Continued Fractions or Pell Equations. 

Franz von Schaffgotsch^®® would factor a by solving a2:^+l = a;^ (having 

87Archiv Math. Phys., (2), 12, 1894, 435. s^Archiv. Math. Phys., 14, 1896, 441-3. 
8*Math. Quest. Educat. Times, 69, 1898, 99-104. Cf. Meissner,^*® 138-9. 
®TOd., 87-88, 112-4; 71, 1899, 93-9; Mess. Math., 28, 1898-9,120-149,192 (correction). Cf. 

Meissner,138137-8. “iMathesis, (2), 9, 1899, 241. 
®i“Sphinx-Oedipe, 1906-7, [1-2, 17, 33], 49-50, 54, 65-7, 77-8, 81-^; 1907-8, 33-5; 5, 1910, 

145-7; 6, 1911, 157-8. ^^^ath. Quest. Educat. Times, 71,1899,123-4. 
®3Bull. Soc. Philoraathique de Paris, (9), 10, 1908, 10-26. 

Assoc, frang., 38, 1909, 145-156; Sphinx-Oedipe, Nancy, 1908-9, 129-134, 145-9; 4, 1909, 
3<^ Trimestre, 17-25. 

'®®Abh. Bohmischen Gesell. Wise., Prag, 2, 1786, 140-7. 
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solutions if a is not a square) and testing x^ — 1 for a factor in common with a. 
Further, if ay+l = x^ does not hold for l<a;<a — l, then a is a power of a 
prime and conversely [false if a =10]. 

Marcker^®^ noted that if there are 2n terms in the period of 

and Q = 0, Q' = a, Q"=a'P'-Q',. 
-• r>/ _ ^ 

r — i, X p ^ P" = 

then the nth P or its half is a factor of A, If A is a prime, then the nth 
Pis 2. 

J. G. Birch^®^ derived a factor of N from a solution a; of =Ny+1. The 
continued fraction for x/ {N—x) is of the form 

1 1 I ill 
ttfl—H~fli+a2+ • •. +a2+cti4-no 

and N'is the continuant defined as the determinant with Uq, cti,..., a„_i, 
O'ni CLi} ^0 in the main diagonal, elements +1 just above this 
diagonal, elements ~1 just below, and zeros elsewhere. Then the continu¬ 
ant with the diagonal Uq, ..., a„_i is a factor of N, 

W. W. R. BalB^^ applied this method to a number of Mersenne.^ 
A. Cunningham^^ noted that a set of solutions of y^—Dx^=—l gives at 

sight factors of 
M. V. Thielmann^®® illustrated his method by factoring /b=36343817. 

The partial denominators in the continued fraction for \/k are 1, 1, 2, 1, 1, 
12056. Drop the last term and pass to the ordinary fraction 7/12. Hence 
set (12a;+7)^ = 12^?/4-l. The least solution is rr = 4, ?/ = 21. Using the part 
of the period preceding the middle term ty = 2, we get 

Q=wM+2P=6, m = MQ = 12. 

Hence — l has the solution ^ = 55. For a suitably chosen n, 

k = uV+2tn+21=(2^n+~^ ^2M"n+^), 

where q is the largest integer ^ Q/2. Here 7i = 502 and the factors of k are 
2-3"ri-h7and 2-22n+3. 

D. N. Lehmer^^® noted that if P = pg is a product of two odd factors 
whose difference is <2iJ/p, so that \{p—qY<y/R, then 

x^-Ry^=^Kv-qr 
has the integral solutions x==(p-\-q)/2, y = l. Hence i{p — qyis& denomi¬ 
nator of a complete quotient in the expansion of VS as a continued fraction, 

i°^Jour. fiir Math., 20, 1840, 355-9. Cf. rinterm^diaire dea math., 20, 1913, 27-8. 
lo^Mess. Math., 22, 1892-3, 52-5. 

p. 82-3. French transl., with Birch^®^ Sphinx-Oedipe, 1913, 86-9. 
^^Ibid., 35, 1905-6, 166-185; abst. in Proc. London Math. Soc., 3, 1905, xxii. 
^0‘Math. Annalen, 62, 1906, 401. 

Amer. Math. Soc., 13, 1906-7, 501-2. French transl., Sphinx-Oedipe, 6, 1911,138-9. 
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in view of the theorem of Lagrange: If ^t> has relatively prime 
integral solutions rc, y, where D< VS, then Z) is a denominator of a com¬ 
plete quotient in the expansion of VS as a continued fraction. 

Factoring by use of Various Moduli. 

C. F. Gauss^^° gave a ^'method of exclusion/’ based on the use of various 
small moduli, to express a given number in a given form 

V. Bouniakowsky^^^ noted that information as to the prime factors of a 
number N may be obtained by comparing the solution x=(j>{N) of 2®=1 
(mod N) with the least positive solution x = a found by a direct process such 
as the following: Since multiply the given N by the unknown 
Ky each expressed in the binary scale (base 2), add 1 and equate the result to 
10... 0. The digits of K are found seriatim and very simply. 

H. J. WoodalP^^ expressed the number N to be factored in the form 
a‘*+/3*’+... +r, where r< 1000, while a, /3,... are small, but not necessarily 
distinct. Hence the residues of N with respect to various moduli are 
readily found by tables of residues. 

F. Landry“® employed the method of exclusion by small moduli. 
D. Biddle^^^ investigated factors 2Ap+l by using moduli A^, 4A^. 
C. E. Bickmore, A. Cunningham and J. Cullen^^^ each treated the large 

factor of 10^^+1 by use of various moduli, and proved it is prime. 
J. Cullen^^®" gave an effective graphical process to factor numbers by 

the use of various moduli; the numbers to be searched for in a diagram 
are all small. 

Alfred Johnsen“® used Rtiv) denote the numerically least residue of 
p modulo L Then, for every p, A;, 

mk)f+Uv-^)^Uv) (mod«). 

If i is a factor of the given number p, the left member will be divisible by L 
In practice take to be the nearest square to p, larger or smaller. For 
example, let p = 4699, A;^ = 4624 = 68^ p —A;^ = 75. Then 

t [Rmr Ri(75) Sum 

7 4 -2 2 
13 9 -3 6 

37 36 i *37 

Thus 37 is the least factor of p. 

““Disq. Arith., 1801, Arts. 323-6. 
Ac. Sc. St. P^tersbourg, Math.-Phys., (6), 2, 1841, 447-69. Extract in BuU. Ac. Sc., 6, 

p. 97. Cf. Nordlund.'^^ 
i»Math. Quest. Educat. Times, 70, 1899, 68-71; 71, 1899, 124. 
u3Proc6d6s nouveaux..., Paris, 1859. Cf. A. Aubry,i^^ pp. 214-7. 
“^Mess. Math., 30, 1900-1, 98, 190. Math. Quest. Educat. Times, 74, 1901, 147-152. 
»“Math. Quest. Educat. Times, 72. 1900, 99-103. 

73, 1900, 133-5; 75, 1901, 102-4. Proc. London Math. Soc., 34, 1901-2, 323-334; 
(2), 2, 1905, 138-141. “'Nyt Tidsskrift for Mat., 15 A, 1904, 109-110. 
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K. P. Nordlund^^^ would use the exponent e to which 2 belongs modulo 
N [Bouniakowsky^^^].. For iV=91, e = 12 is not a divisor of iV—1, so that 
N composite, and we expect the factor 13. 

L. E. Dickson^^® found the factors of 56’^=‘=1, 26^^+l, 34^^+l, 52^^+l 
by an expeditious method. For example, each factor of 

is si (mod 14). Let 5 = (l+14A;)(l+14A;i). Then 

k+ki+likki=4Nj k+ki~4+14h. 
Thus k and ki are the roots of a quadratic whose discriminant Q is of the 
second degree in h. By use of various moduli which are powers of small 
primes, the form of h is limited step by step, until finally at most a half 
dozen values of h remain to be tested directly. 

L. E. Dickson^^® gave further illustrations of the last method. 
J. Schatunovsky^^^ reduced to a minimum .the number of trials in 

Gauss^^^'^ method of exclusion, taking the simplest case m = l. He gave 
theorems on the linear forms of the factors of which lead easily to 
all its odd factors when D is an odd prime. 

H. C. Pocklington^^^ would use Fermat^s theorem to tell whether N is 
prime or composite. Choose an integer z and find the least positive residue 
of modulo N; if 5*^1, N is composite. But if it be unity, let p be a 
prime factor (preferably the largest) of iV — 1 and contained a times in it. 
Find the remainder r when is divided by iV, where m=(N—l)/p. If 

let 5 be the g. c. d. of r—l and N. If 5>1, we have a factor of N. 
If 5 = 1, all prime factors of N are of the form A;p®+1. But if r = 1, replace 
m by m/qj where q is any prime factor of m and proceed as before. 

D. Biddle^^^'* made use of various small moduli. 
A. G4rardin^^^^ used various moduli to factor 77073877. 
See papers 14, 15, 21, 22, 48, 65. 

Factoring Into Two Numbers 6n±l. 

G. W. Kraft^^^ noted that 6a+l = (6m+l)(6n-|-l) implies 
a—m 

Find which m = 1, 2, 3,... makes n an integer. 
Ed. BartP^^ tested 6T86+5 for a prime factor less than 31, just less 

than its square root, by noting that 186, 185, 184,183, 182 are not divisible 
by 5, 11, 17, 23, 29, respectively; while the last of 7, 13, 19 is a factor. 

ii^Goteborgs Kungl. Vetenskaps. Handl., (4), 1905, VII-VIII, pp. 21-4. 
I'^Amer. Math. Monthly, 15, 1908, 217-222. “®Quar. Jour. Math., 40, 1909, 40-43. 
“°Der Grosste Geraeinschaftliche Teller von Algebr. Zahlen zwelter Ordnung, Diss. Strassburg, 

Leipzig, 1912. ^^Troc. Cambridge Phil. Soc,, 18, 1914-5, 29-30. 
i2i®Math. Quest. Educat. Times, (2), 25, 1914, 43-6. 
“i^L’enseignement math., 17, 1916, 244-5. 
“*Novi Comm. Ac. Petrop., 3, ad annoe 1750-1, 117-8. 
i^'Zur Theorie der Primzahlen, Progr. Mies, Pilsen, 1871. 
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F. Landry^^^ treated the possible pairs 6n=fc 1 and 6n'=t 1 of factors of N. 
Taking for example the case of the upper signs, we have 

6nn'+n+?i'== 6g+r. 
o 

Set n+^' = 6/i+r. Then nn^ = q—h, whence 

^ q—n^r—n') 

6n'+l 

Give to n' values such that 6?i'+l is a prime < Vn. 
K. P. Nordlund^^® treated 6p —1 = (6m+l)(6n —1) solved for m, 
D. Biddle^^® applied the method to 6n=fc=L 
Hansen,®^ of Ch. XIII, used this method. 

Miscellaneous Methods of Factoring. 

Matsunaga^^® wrote the number to be factored in the form r^+22. For 
r odd, set r=jBi, Bi—2 = i?2, jB2—2=jB3, . .. and perform the following 
calculations: 

Ki = 2Qij K2'^ K\~{"4:y 
Ai4"X2^ == X2 =2Q2”i"-X2^, = JlL2-i"8, 
A2+X3' = Q3i53+A3, X3 = 2Q3+X3', X4'=X3+8, 

etc., until we reach A„=0; then is a factor. If r is even, set r — l =J5i 
and replace jR by J?+l in what precedes. 

J. H. Lambert^^° used periodic decimals [see Lambert,® Ch. VI]. 
Jean Bernoulli^^^ gave a method based on that of Lambert (M4m. de 

Math. Allemands, vol. 2). Let have the factors a—x and 
a+z+y- Then x^ = ay—xy — h. Solve for x. Thus 2/*+4o2/ —46 must be 
a square. Take y = l, 2,. .. and use a table of squares. 

J. Goughgave a method to find the factors r, s of each number jf^—c 
between (/—1)^ and/^. For example, let«/=3 and make a double row for 
each r = 1,. .., In the upper row for r = 1, insert 2/— 1,..., 1, 0; in the 
lower, (/—1)^,..In the upper row for r—2, insert 1 (the remainder 

r = l c=5 4 3 2 1 0 
s = 4 5 6 7 8 9 

r = 2 c = 5 3 1 
s = 2 3 4 

r = 3 c= 0 
s= 3 

^^Assoc. frang. avanc. sc., 9, 1880, 185-9. 
i26Nyt Tidsskrift for Mat., Kjobenhavn, 15 A, 1904, 36-40. 
i20Math. Quest. Educ. Times, 69, 1898, 87-8; (2), 22, 1912, 38-9, 84-6. 
^29Japanese manuscript, first half eighteenth century, Abhandl. Geschichte Math. Wiss., 30, 

1912, 236-7. w°Nova Acta Eniditorum, 1769, 107-128. 
wiNouv. M6m. Ac. Berlin, ann6e 1771, 1773, 323. 
i^Jour. Nat. Phil. Chem. Arts (ed., Nicholson), 1, 1809, 1-4. 
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on dividing by 2), 1+2,1+2+2 under 1,3, 5 of the first row for r = 1; in 
the lower row, insert 4 (the quotient), 4—1, 4—2. To factor/^—c, locate 
the column headed by the given c; thus, for c = 3, the factors are s = 6, 
r = 1 and s = 3, r=2. Since c=2 occurs only in the fost row, 9—2 is prime. 

Joubin,^^® J. P. Kulik,^^ 0. V. Kielsen,^^® and G. K. Winter^^® published 
papers not accessible to the author. 

E. Lucas gave methods of factoring and tests for primes (Ch. XVII). 
D. Biddle^^"^ wrote the proposed number N in the form iS^++, where 

is the largest square <iV'. Write three rows of numbers, the first begin¬ 
ning with Ay or A —S if + >S; the second beginning with S (or aS+1) and 
increasing by 1; the third beginning with S and decreasing by 1. Let 
Bn, Cn be the nth elements in the respective rows. Then 

Cn^Cn^l — 1, = Art = +n~l+-5n-l 

except that, when An>Cn, we subtract Cn from An as often (say k times) 
as will leave a positive remainder, and then JB„ = B„_i+l+fc. When we 
reach a value of n for which we have N — BnCn- For example, if 
iVT=589 = 24^+13, the rows are 

13 14 17 1 9 0 
24 25 26 28 29 31 (factors 31, 19). 
24 23 22 21 20 19 

It may prove best to start with 2N instead of with N. 
O. Meissner^®® reviewed many methods of factoring. 
R. W. D. Christie^^® gave an obscure rnethod by use of ^^roots.^’ 
Christie^^® noted that, if N=AB, 
A = (4:hN+(f-d)/(2h), B-=iAbN+d^+d)/2, d^a-hc, 

whence d^ = {B—5A)^. 
D. Biddle^^^ gave a method of finding the factors of N given those of 

W+1. Set L=iV'—1. Try to choose K and M so that XM=iV’+l and 
so that 1+ X is a factor of N. Since 2N = (1+ X) ikf+L — ikf, we will have 
L—M’=(l+X)m, whence 2^= (l+X)(i!f+m). For W=1829, iV+1 
= 2-3-5*61. Take X=30, ikf = 61. Then m = 57, M+w-2-59, ^ = 31-59. 
He gave (ibid., p. 43) the theoretical test that N = S^+A is composite if 
the sum of r terms of 

i+—jy—+_K_, 

is an integer for some value of r, 

^®®Sur les facteurs num^riques, Havre, 1831. 
^3^Abh. K. Bohm. Gesell. Wiss., 1, 1841 (2, 1842-3, 47, graphical determination of primes), 

et heel tals upplosning i factorer, Kjobenhavn, 1841. 
“®Madras Jour. Lit. Sc., 1886-7, 13. 
“^Mess. Math., 28, 1898-9, 116-20; Math. Quest. Educat. Times, 70, 1899, 100, 122; 75, 1901, 

48; extension, (2), 29, 1916, 43-6. 
»®Math. Naturw, Blatter, 3, 1906, 97, 117, 137. 
»»Math. Quest. Educat. Times, (2), 12, 1907, 90-1, 107-8. 
“o/Wd., (2), 13, 1908, 42-3, 62-3. 

(2), 14, 1908, 34. The process is well adapted to factoring 2^—I, (2), 23,1913,27-8. 
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E. Lebon^^^® would first test N for prime factors P just < VjV'. Let 
Q be the quotient and R the remainder on dividing N by P. If Q and R 
have a common factor, it divides N; if not, N is not divisible by any factor 
of Q or of R. 

D. Biddle^^^ considered N=^S^+A = (S+u){S—v), wrote uv=Ni and 
obtained like equations in letters with subscripts unity. Then treat 
UiVi=N2 similarly, etc. 

A. Cunningham^^^ noted that the number of steps in Biddle^s^^^ process 
is approximately the value of A; in 2*=]^, and developed the process. 

E. Lebon^^ treated the decomposition of forms 
.. . ±1 

of degrees ^ 9 into two such forms, using a table of those forms of degrees 
S 4 with all coefficients positive which are not factorable. The base most 
used in the examples is x = 10. But bases 2 and 3 axe considered. 

E. Barbette^^® quoted from his^^® text the theorem that any integer N 
can be expressed in each of the four forms 

SN=x^-y\ SNz+l=y^, 

where Aa.=x(x+l)/2. The resulting new methods of factoring are now 
simplified by use of triangular and quadratic residues. The first formula 
implies N=(x—y)(x+y+l)/2. In his text, he considered the sum 

A' = (2/+1) + (2/+2)+ .. .+(x-l)+x=A*-Aj, 

of consecutive integers. Treating four types of numbers N, he proved that 
this equation has 1, 2 or more than 2 sets of integral solutions x, y, according 
as iV is a power of 2, an odd prime, or a composite number not a power of 2. 
He proved independently, but again by use of sums of consecutive integers, 
that every composite number not a power of 2 can be given the form* N=v 
(2v—n+i)/2, where u and v are integers and v'^u'^S. Solving for ti, and 
setting r = 2i;+l, we get 2u=x+(x^-’SNy^^. Hence x^SN = y" is solva¬ 
ble in integers [evidently by x=2N-{-l, y — 2N—l]. Finally, Nz—A,. is 
equivalent to (2r+l)^ = 8iV'2:+l. For four types of numbers N, the solu¬ 
tions of y^ = SNz-{-l are found and seen to involve at least two arbitrary 
constants. 

A. Aubry^^^ reviewed various methods of factoring. 

Miaii pitagora, Palermo, 14, 1907-8, 96-7. 
i«Math. Quest. Educat. Times, (2), 19,1911, 99-100; 22, 1912, 38-9; Educat. Times, 63, 1910, 

500; Math. Quest, and Solutions, 2, 1916, 36-42. 
i«/52d., (2), 20, 1911, 59-64; Educat. Times, 64, 1911, 135. 
>^4^Bull. soc. philomathique de Paris, (10), 2,1910, 45-53; Sphinx-Oedipe, 1908-9, $1-3, 97-101 
^^^L’enseignement math., 13, 1911, 261-277. 
^^®Les sommes de p-ifemes puissances distinctes 4gale8 une p-i^me puissance, Paris, 1910, 20-76. 
♦This follows from the former result N^(x—y)(x-\-y-\-\)/2 by setting y=v—u. To 

give a direct proof, take u to be the least odd factor >1 of the composite number N not 
a power of 2; then q^N/u can be given the form w— (tt—1)/2 by choice of v. If v<n, 
then g<(u-f l)/2<u, so that q has no odd factor and g-2^. But Nis of the 
desired form if we take v -»u/2 -iV. 

“^Sphinx-Oedipe, num^ro 8p4c., June, 1911, 1-27. Errata and addenda, ntim^ro 8p4c., Jan., 
1912, 7-9, 14- L'enseignement math., 15, 1913, 202-231. 
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S. Bisman^'*® noted that N is composite if and only if there exist two 
integers Ay B such that A+2B and A-{-2BN divide 2(iV'—1) and (iV'—1)J[, 
respectively. But there is no convenient maximum for the smaller integer 
B. To find the factor 641 of 2^^+l there are 16 cases. 

A. G^rardin^^^ gave a report on methods of factoring. 
J. A. Gmeiner,^®^ to factor a, prime to 6, determined h and € so that 

9a=166+€, 0^e<16. Let be the largest square <b and set 
0*=^—CO. Hence 9a =16(co—a;)(co+a;+l)+T(r), where 

t{x) = 16(r+€+16a;(a;+l). 

Since T(a;)=T(a; —l)+32r, we may rapidly tabulate the values of r{x) for 
r = 0, 1, 2,_ If we reach the value zero, we have two factors of a. To 
prove that a is a prime, we need extend the table until co+x+1 is the 
largest square <a. To modify the process, use 4a = 76+c. 

A. Reymond^®^ used the graphs of y=x/n (n = l, 2, 3, 5,...), marking 
on each the points with integral coordinates. He omitted ^ = r/4 since 
its integral points are on y=xl2. Since 17 isnot the abscissa of an integral 
point on y^xfn for l<7i< 17, 17 is a prime. [M6bius®^“ of Ch. XIII.] 

A. J. Kempner^®^ found, by use of a figure perspective to Reymond’s^®^, 
how to test the primality of numbers by means of the straight edge. 

D. Biddle and A. Cunningham^®^ factor a product N of two primes by 
finding Ni<N and N2>N such that ^2—iV'=A—Ai+2, while each of Ni 
and A2 is a. product of two even factors, the two smaller factors differing 
by 2 and the two larger factors differing by 2. 

M^Mathesis, (4), 2, 1912, 58-60. 
i<®A880c. frang. avanc. sc., 41, 1912, 54-7. 
““Monatsliefte Math. Phys., 24, 1913, 3-26. 
“^L’enseignement math., 18, 19i6, 332-5. 
“^Amer. Math. Monthly, 24, 1917, 317-321. 
“®Math. Quest, and Solutions, 3, 1917, 21-23. 



CHAPTER XV. 
FERMAT NUMBERS Fn=2'”+1. 

Fermat^ expressed his belief that every is a prime, but admitted 
that he had no proof. Elsewhere^ he said that he regarded the theorem 
as certain. Later^ he implied that it may be proved by ‘^descent.” It 
appears that Frenicle de Bessy confirmed this conjectured theorem of Fer¬ 
mat’s. On several occasions Fermat^ requested Frenicle to divulge his proof, 
promising important applications. In the last letter cited, Fermat raised 
the question if (2^^)^”*+! is always a prime except when divisible by an F„. 

C. F. Gauss® stated that Fermat affirmed (incorrectly) that the theorem 
is true. The opposite view was expressed by P. Mansion® and R. Baltzer.^ 

F. M. Mersenne® stated that every is a prime. Chr. Goldbach® 
called Euler’s attention to Fermat’s conjecture that is always prime, and 
remarked that no F„ has a factor < 100; no two have a common factor. 

L. Euler^° found that 
^5 = 2^2+1=641*6700417. 

Eulerproved that if a and 6 are relatively prime, every factor of 
^2 -g 2 or of the form and noted that consequently any 
factor of Fs has the form —10 giving the factor 641. 

Euler^^“ and N. Beguelin^^'^used the binary scale to find the factor 
641 = 1-f-2^-1-2^ of F5. 

C. F. Gauss^^ proved that a regular polygon of m sides can be constructed 
by ruler and compasses if m is a product of a power of 2 and distinct odd 
primes each of the form Fn, and stated that the construction is impossible 
if m is not such a product. This subject will be treated under Roots of Unity. 

Sebastiano Canterzani^^ treated twenty cases, each with subdivisions 
depending on the final digits of possible factors, to find the factor 641 of F5, 

^Oeuvres, 2,1894, p. 206, letter to Frenicle, Aug. (?) 1640; 2, 1894, p. 309, letter to Pascal, 
Aug. 29, 1654 (Fermat asked Pascal to undertake a proof of the proposition, Pascal, 
III, 232; IV, 1819, 384); proposed to Brouncker and Wallis, June 1658, Oeuvres, 2, 
p. 404 (French transl., 3, p. 316). Cf. C. Henry, Bull. Bibl. Storia Sc. Mat. e Fis., 12,1879, 
500-1,716-7; on p. 7i7, 42.. .1 should end with 7, ibid., 13, 1880, 470; A. Genocchi, Atti 
Ac. Sc. Torino, 15,1879-80, 803. 

^Oeuvres, 1, 1891, p. 131 (French transl., 3, 1896, p. 120). 
®Oeuvres, 2, 433-4, letter to Carcavi, Aug., 1659. 
^Oeuvres, 2, 208, 212, letters from Fermat to Frenicle and Mersenne, Oct. 18 and Dec. 25, 1640. 
®Disq. Arith., Art. 365. Cf. Werke, 2, 151, 159. Same view by Kltigel, Math. Worterbuch, 

2, 1805, 211; 3, 1808, 896. 
®Nouv. Corresp. Math., 5, 1879, 88, 122. 
Hour, far Math., 87, 1879, 172. 
®Novarum Physico-Mathematicarum, Paris, 1647, 181. 
®Corresp. Math. Phys. (ed., Fuss), 1,1843, p. 10, letter of Dec. 1729; p. 20, May 22,1730; p. 32, 

July 1730. 
i°Comm. Ac. Petrop., 6, ad annos 1732-3 (1739), 103-7; Comm. Arith. Coll., 1, p. 2. 
“Novi Comm. Petrop., 1, 1747-8, p. 20 [9, 1762, p. 99]; Comm. Arith. Coll., 1, p. 55 [p. 357]. 
“«Opera postuma, I, 1862, 169-171 (about 1770). 
“Nouv. M6m. Ac. Berlin, ann6e 1777, 1779, 239. 
“Disq. Arith., 1801, 4rts. 335-366; German transl. by Maser, 1889, pp. 397-448, 630-652. 
“Mem. 1st. Naz. Italiano, Bologna, Mat., 2, II, 1810, 459-469. 
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and proved in the same lengthy dull manner that the quotient is a prime. 
An anonymous writer^® stated that 

(1) 2+1, 2^+1, 2^^+l, 2"""+l,... 

are all primes and are the only primes 2*+l. See Malvy.^® 
Joubin^® suggested that these numbers (1) are possibly the ones really 

meant by Fermat/ evidently without having consulted all of Fermat’s 
statements. 

G. Eisenstein^^ set the problem to prove that there is an infinitude of 
primes Fn. 

E. Lucas^® stated that one could test the primality of Fq in 30 hours by 
means of the series 3,17, 577,..., each term being one less than the double of 
the square of the preceding. Then Fn is a prime if 2”“^ is the rank of the first 
term divisible by F^ composite if no term is divisible by F„. Finally, if a is 
the rank of the first term divisible by F^, the prime divisors of F„ are of the 
form 2^q+l, where A; = a+1 [not /;=2‘‘'*‘^]. See Lucas.^^ 

T. Pepin^® stated that the method of Lucas^® is not decisive when F„ 
divides a term of rank a<2”“^; for, if it does, we can conclude only that the 
prime divisors of F„ are of the form so that we can not say whether 
or not Fn is prime if a+2 ^2”“’^. We may answer the question unambigu¬ 
ously by use of the new theorem: For n>l, F„ is a prime if and only if it 
divides 

where k is any quadratic non-residue of F„, as 5 or 10. To apply this test, 
take the minimum residues modulo Fn of 

T.2 r.4 J.S T.2^ 
fv y fv y fv ^ ^ tv • 

Proof was indicated by Lucas^® of Ch. XVII, and by Morehead.®® 
J. Pervouchine^® (or Pervusln) announced, November 1877, that 

Fi2=0 (mod 114689 = 7*2'"+1). 

E. Lucas^^ announced the same result two months later and proved that 
every prime factor of F„ is =1 (mod 

Lucas^^ employed the series 6, 34, 1154,..., each term of which is 2 less 
than the square of the preceeding. Then Fn is a prime if the rank of the first 
term divisible by Fn is between 2’*“^ and 2^—1, but composite if no term is 
divisible by Fn- Finally, if a is the rank of the first term divisible by 

“Annalea de Math. (ed. Gergonne), 19, 1828-9, 256. 
^®M6moire sur lea facteurs num^riquea, Havre, 1831, note at end. 
I’Jour. fur Math., 27, 1844, 87, Prob. 6. 
^*Comptes Rendus Paris, 85, 1877, 136-9. 
^•Comptea Rendua, 85, 1877, 329-331. Reprinted, with Lucas^® and Landry,®® Sphinx-Oedipe, 

5, 1910, 33-42. 
*<^31111. Ac. St. P^tersbourg, (3), 24, 1878, 559 (presented by V. Bouniakowsky). Melanges 

math. ast. sc. St. P4tersbourg, 5, 1874-81, 505. 
"Atti R. Accad. Sc. Torino, 13, 1877-8, 271 (Jan. 27, 1878). Cf. Nouv. Corresp. Math., 4, 

1878, 284; 5, 1879, 88. See Lucas^® of Ch. XVII. 
®2Amer. Jour. Math., 1, 1878, 313. 
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and if a<2”“S the prime divisors of are of the form* 2*g+l, wher 
A; = a+1 [cf. Lucas^®]. He noted (p. 238) that a necessary condition that F 
be a prime is that the residue modulo of the term of rank 2"~1 in this 
series is zero. He verified (p. 292) that Fg has the factor 641 and again 
stated that 30 hours would sufllce to test Fg. 

F. Proth^^ stated that, if A; = 2”, 2*+l is a prime if and only if it divides 

m = 3^ 1. He^^ indicated a proof by use of the series of Lucas defined by 
i^o = 0, 2^1 = 1, . . . , ii„=3Wn-i+l and the facts that is divisible by 
the prime p, while Cf. Lucas.^® 

E. Gelin^® asked if the numbers (1) are all primes. Catalan^® noted 
that the first four are. 

E. Lucas^® noted that Proth^s^® theorem is the case k—Z of Pepin’s.^® 
Pervouchine^^ announced, February 1878, that F23 has the prime factor 

5-2"^+l =^1677^1. +1 

W. Simerka^® gave a simple verification of the last result and the fact 
(Pervouchine^®) that 7-2^^+l divides F12. 

F. Landry,^® when of age 82 and after several months’ labor, found that 

Fa = 274177*67280421310721, 

the first factor being a prime. He and Le Lasseur and G6rardin^®“ each 
proved that the last factor is a prime (cf. Lucas®^). 

K. Broda®® sought a prime factor p of a®^+l by considering 

n = (a®2 _ 1) (a®H D . 

Multiply by 2^ = (a®^+l)/p. Thus 212^ = (a®^—l)/p. Buta®^=l (mod 641). 
Since each factor of n is prime to p, we take a=2 and see that 2®^+1 is divis¬ 
ible by 641. 

E. Lucas®^ stated that he had verified that Fq is composite by his^^ test, 
before Landry found the factors. 

P. Seelhoff®^ gave the factor 5*2®®+1 of F^q and commented on Beguelin.^® 

*Lucas wrote in error, as noted by R. D. Carmichael on the proof-sheets of this 
History. 

"Comptes Rendus Paris, 87, 1878, 374. 
*«Nouv. Corresp. Math., 4, 1878, 210-1; 5, 1879, 31. 
^Ihid., 4, 1878, 160. 

5, 1879, 137. 
Ac. St. P^tersbourg, (3), 25, 1879, 63 (presented by V. Bouniakowdcy); Melanges math, 

astr. ac. St. P6tersbourg, 5,1874-81, 619. Cf. Nouv. Corresp. Math., 4, 1878, 284-5 ; 5, 
1879 22 

«Casopis, Prag, 8,1879, 36,187-8. F. J. Studnicka, ibid., 11,1881,137. 
*®Comptes Rendus Paris, 91, 1880, 138; Bull. Bibl. Storia Sc. Mat., 13, 1880, 470; Nouv. Cor¬ 

resp. Math., 6, 1880, 417; Lea Mondes, (2), 52,1880. d. Seelhoff, Archiv Math. Phya., 
(2), 2,. 1885, 329; Lucas, Amer. Jour. Math. 1, 1878, 292; R4cr5at. Math., 2, 1883, 
235; rinterm4diaire des math., 16, 1909, 200. 

*®“Sphinx-Oedipe, 6, 1910, 37-42. 
•oArchiv Math. Phys., 68, 1882, 97. 
"Recreations Math., 2, 1883, 233-6. Lucas,•• 354-5. 
»»Zeit8chr. Math. Phys., 31, 1886,172-4, 380. For F*, p. 329. French transl., Sphinx-Oedipe, 

1912, 84r-90. 
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J. Hermes^^ indicated a test for composite by Fermat’s theorem. 
R. Lipschitz^ separated all integers into classes, the primes of one class 

being Fermat numbers and placed in a new light the question of the 
infinitude of primes 

E, Lucas^® stated the result of Froth,but with a misprint [Cipolla^®]. 
H. Scheffier^® stated that Legendre believed that every Fn is a prime(!), 

and obtained artificially the factor 641 of F5. He noted (p. 167) that 

He repeated (pp. 173-8) the test by Pepin,with A; = 3, and (p. 178) expressed 
his belief that the numbers (1) are all primes, but had no proof for Fie. 

W. W. R. BalP^ gave references and quoted known results. 
T. M. Pervouchine^^ checked his verification that F12 and F23 are com¬ 

posite by comparing the residues on division by 10^—2. 
Malvy^® noted that the prime 2^+1 is not in the series (1). 
F. Klein^° stated that F^ is composite. 
A. Hurwitz^^ gave a generalization of Proth’s^^ theorem. Let Fr^{x) 

denote an irreducible factor of degree <^(n) of a;” — l. Then if there exists 
an integer q such that Fp„i(^) is divisible by p, p is a prime. When 

p=2*+l,i;’,_i(:c)=/ '+1. 
J. Hadamard^^ gave a very simple proof of the second remark by Lucas. 
A. Cunningham^^ found that Fn has the factor 319489-974849. 
A. E. Western'^ found that Fg has the factor 2^®-37+l, Fig the factor 

220.13-1-1^ the quotient of F12 by the known factor 2^^-7-|-l has the factors 
2^®-3974-1 and 2^®-7-139-|~l. He verified the primality of the factor 2‘^^-3+l 
of F38, found by J. Cullen and A. Cunningham. He and A. Cunningham 
found that no more F„ have factors <10® and similar results. 

M. Cipolla^® noted that, if g is a prime >(9^"” ^ —1)/2’”^^ and m>l, 
2”*g+1 is a prime if and only if it divides 3*+1 for A; = He^® pointed 
out the misprint in Lucas’®® statement. 

Nazarevsky^^ proved Froth’s^® result by using the fact that 3 is a primi¬ 
tive root of a prime 2*+l* 

33Arehiv Math. Phys., (2), 4, 1886, 214-5, footnote. 
3qour. fur Math., 105, 1889, 152-6; 106, 1890, 27-29. 
^Th^orie des nombres, 1891, preface, xii. 
36Beitrage zur Zahlentheorie, 1891, 147, 151-2, 155 (bottom), 168. 
37Math. Recreations and Problems, ed. 2, 1892, 26; ed. 4, 1905, 36-7; ed. 5, 1911, 39-40. 
3*Math. Papers Chicago Congress of 1893, I, 1896, 277. 
3®L’interm6diaire des math., 2, 1895, 41 (219). 
^“Vortrage iiber ausgewahlte FragenderElementar Geometric, 1895,13; French transl., 1896, 26; 

English transl., “Famous Problems of Elementary Geometry,” by Beman and Smith, 
1897, 16. 

^^L’interm^diaire des math., 3, 1896, 214. 
p. 114. 

^^Report British Assoc., 1899, 653-4. The misprint in the second factor has been corrected 
to agree with the true ^ value 2^3,7.17+1. 

^Cunningham and Western, Proc. Lond. Math. Soc., (2), 1,1903,175; Educ. Times, 1903, 270. 
^Periodico di Mat., 18, 1903, 331. 
*«Aiso in Annali di Mat., (3), 9, 1904, 141. 
^^L’interm^diaire des math., 11, 1904, 215. 
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A. Cunningliam^^" noted that 3, 5, 6, 7, 10, 12 are primitive roots and 
13, 15, 18, 21, 30 are quadratic residues of every prime F„>5. He fac¬ 
tored F4^ + 8+(FoFiF2F3)^ 

Thorold Gosset^® gave the two complex prime factors bi of the known 
real factors of composite F„, n = 5, 6, 9,11,12,18, 23, 36, 38. 

J. C. Morehead^^ verified by use of the criterion of Pepin^^ with A; = 3 
that Fj is composite, a result stated by Klein.^° 

A. E. Western^^ verified in the same way that is composite. The 
work was done independently and found to agree with Morehead’s. 

J. C. Morehead^^ found that F^z bns the prime factor 2'^^-5+L 
A. Cunningham®^ considered hyper-even numbers 

^7o.n = 2”, Ea.n=2^0.n . . 

For m odd, the residues modulo m of ^r. i? • • have a non-recurrent 
part and then a recurring cycle. 

A. Cunningham®® gave tables of residues of Ei, E2,«, Er, 0, 3®” and 5®'^ 
for the forming the first cycle for each prime modulus <100 and for 
certain larger primes. A hyper-exponential number is like a hyper-even 
number, but with base q in place of 2. He discussed the quadratic, quartic 
and octic residue character of a prime modulo and of F^ modulo Fn+x* 

Cunningham and H. J. Woodall®^ gave material on possible factors of 
A. Cunningham®® noted that, for every F„>5, 2F„-i^ —(F^— 

algebraically, and expressed F5 and Fq in two ways in each of the forms 
a^-1-6^, c^=^2cP. He®® noted that F^+En is the algebraic product of 
n+2 factors, where and that (F„®+F„®)/(F„+F„) is divisible 
by Mn-r- If n — m'^2y FJ^+F^? is composite. 

A. Cunningham®'^ has considered the period of 1/A to base 2, where N 
is a product F^F^n-i • • ^Fm-r of Fermat numbers. 

J. C. Morehead and A. E. Western®® verified by a very long computation 
that Fg is composite. Use was made of the test by Pepin^® with /c = 3, which 
was proved to follow from the converse of Fermat’s theorem. 

P. Bachmann®® proved the tests by Pepin^^ and Lucas. 
A. Cunningham®® noted that every F„>5 can be represented by 4 

quadratic forms of determinants =‘=2G„, where Gn = FoFi. . .F„^i. 
Bisman^^® (of Ch. XIV) separated 16 cases in finding the factor 641 of Fs. 

"“Math. Quest. Educ. Times, (2), 1, 1902, 108; 5, 1904, 71-2; 7, 1905, 72. 
‘sMess. Math., 34, 1905, 153-4. Amer. Math. Soc., 11, 1905, 543. 
*“Proc. Lend. Math. Soc., (2), 3, 1905, xxi. 
“Bull. Amer. Math. Soc., 12, 1906, 449; Annals of Math., (2), 10, 1908-9, 99. French transl. in 

Sphinx-Oedipe, Nancy, 1911, 49. British Assoc. Adv. Sc., 1906, 485-6. 
“Proc. London Math. Soc., (2), 5, 1907, 237-274. 
“Messenger of Math., 37, 1907-8, 65-83. 
“Math. Quest. Educat. Times, (2), 12, 1907, 21-22, 28-31. 
“/bid., (2), 14, 1908, 28; (2), 8, 1905, 35-6. 
”Math. Gazette, 4, 1908, 263. 
“Bull. Amer. Math. Soc., 16, 1909, 1-6. French transl., Sphinx-Oedipe, 1911, 50-55. 
“Niedere Zahlentheorie, II, 1910, 93-95. 
“Math. Quest. Educat. Times, (2), 20, 1911, 75, 97-98. 
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A. G4rardin®^ noted that = (240x4-97) (2402/+161) for all the 
fully factored to date, and specified x and y more exactly in special cases. 

C. Henry^^ gave references and quoted known results. 
R. D. CarmichaeP^ gave a test for the primality of Fn equivalent to 

Pepin’s^® and a further generalization (p. 65) in the direction of Hurwitz’s.*^^ 
R. C. Archibald®^ cited many of the papers listed above and collected in a 

table the known factors of with the exception of that given by Morehead.®^ 
For a remark on see Cunningham^®^ of Ch. VII. 

«Sphinx-Oedipe, 7, 1912, 13. 
“^Oeuvres de Fermat, 4, 1912, 202-4. 
“Annals of Math., (2), 15, 1913-4, 67. 
“Amer. Math. Monthly, 21. 1914, 247-251. 



CHAPTER XVI. 
FACTORS OF a’‘=t4» 

Fermat^ stated that (2*’+l)/3 has no factors other than 2A;p+l if p is 
an odd prime. 

L. Euler^ noted that a^+46^ has the factors =±=206+26^. 
Euler^ discussed the numbers a for which a^+1 is divisible by a prime 

4n+l==r^+s^. Let p/q be the convergent preceding r/s in the continued 
fraction for r/5; then —gr = =t= 1. Thus every a is of the form (4n+1)w=±= 
k, where k = pr-{-qs. 

Euler^ gave the 161 integers a< 1500 for which a^+1 is a prime, and the 
cases a = 1, 2, 4, 6, 16, 20, 24, 34 for which a^+1 is a prime. 

Euler* proved that, if m is a prime and a, h are relatively prime, a factor 
of not a divisor of a—6, is of the form A;n-i-L If p = kn+l is a prime 
and a =/"=±= pa, then a* — 1 is divisible by p. If af—bg”' is divisible by a prime 
p = mn+l, while / and g are not both divisible by p, then is divisible 
by p) the converse is true if m and n are relatively prime. 

Euler® proved the related theorems: For q an odd prime, any prime 
divisor of a®—1, not a divisor of a—1, is of the form 2nq+l. If a""—lis 
divisible by the prime p = mn+l, we can find integers x, y not divisible by 
p such that A = ax^—y^ is divisible by p (since the quotient of 2/"”” 
by A is not divisible by p if x,y are suitably chosen). 

Euler*^ treated the problem to find all integers a for which a^+1 is divisible 
by a given prime 4n+1 = p^+q^. If a^+5^ is divisible by p^+q^, there exist 
integers r, s such that a^pr+qs, h=ps—qr. We wish 5= ±1. Hence we 
take the convergent r/s preceding p/q in the continued fraction for p/q. 
Thus ps —gr = =t: 1, and our answer is a = =»= (pr+qs). He listed all primes 
P=4n+1<2000 expressed as p^+q^, and listed all the ds for which a^+1 
is divisible by P. The table may be used to find all the divisors < a of a 
given number d+1. He gave his^ table and tabulated the values a< 1500 
for which {d-\-l)/k is a prime, for k=2, 5, 10. He tabulated all the 
divisors of a^+1 for aS 1500. 

N, Beguelin® stated that 2"+l has a trinary divisor 14-2^4*2® only when 
n = 10, 24, 32, although his examples (p. 249) contradict this statement. 

Euler® gave a factor of 2”=*= 1 for various composite n’s. 

MDeuvrea, 2, 205, letter to Frenicle, Aug. (?), 1640. Bull. Bibl. St. Sc. Mat. e Fis., 12,1879, 716. 
“Corresp. Math. Phys. (ed.. Fuss), I, 1843, p. 145; letter to Goldbach, 1742. 
Hhid., 242-3; letter to Goldbach, July 9, 1743. 

588-9, Oct. 28, 1752. Published, Euler.^ 
‘Novi Comm. Petrop., 1, 1747-8, 20; Comm. Arith. Coll., 1, 57-61, and posthumous paper, 

ihid., 2, 530-5; Opera postuma, I, 1862, 33-35. Cf. Euler“* of Ch. VII and the topic 
Quadratic Residues in Vol. III. 

®Novi Comm. Petrop., 7, 1758-9 (1755), 49; Comm. Arith., 1, 269. 
^Novi Comm. Petrop., 9, 1762-3, 99; Comm. Arith., 1, 358-369. French transl., Sphinx- 

Oedipe, 8, 1913, 1-12, 21-26, 64. 
•M6m. Ac. Berlin, ann6e 1777,1779, 255. Cf. Ch. XV and RenryM 
‘Posthumous paper. Comm. Arith., 2, 551; Opera postuma, I, 1862, 51. 
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Eiiler®® discussed the divisors of numbers of the form/a^+^&^. 
Anton FelkeP® gave a table, incomplete as to a few entries, of the factors 

of a^~l, n=l,..., 11; a=2, 3,..12. 
A. M. Legendre^^ proved that every prime divisor of a”+1 is either of the 

form 2nx+l or divides a"+l where co is the quotient of n by an odd factor; 
every prime divisor of a”—l is either of the form nx+1 or divides a"—1 
where co is a factor of n. For n odd, the divisors must occur in a(o”=fcl) 
= 2/^=*= a and are thus further limited by his tables III-XI of the linear forms 
of the divisors of 

C. F. Gauss^^ obtained by use of the quadratic reciprocity law the linear 
forms of the divisors oix^—A, 

Gauss^^ gave a table of 2452 numbers of the forms o^-fl, a^+4,.. 
a^+81 and their odd prime factors p, for certain a^s for which the p^s are 
all <200. 

Sophie Germam^^ noted that p^+4g^ has the factors p^=‘=2pgH-2g^ 
[Euler^]. Taking p = l, ^=2', we see that 2^"‘^^+l has the two factors 
22i+i±2‘+^+l. 

F. Minding^® gave a detailed discussion of the linear forms of the divisors 
of c, using the reciprocity law for the case of primes. He reproduced 
(pp. 188-190) the discussion by Legendre. 

P. L. Tchebychef^® noted that, if p is an odd prime, every odd prime 
factor of 1 is either of the form 2'pz-\-l or is a factor of a—1, and more¬ 
over is a divisor of Hence, for a = 2, it is of the form 2pz-\-l and 
also of one of the forms 8m=tl. ]Every odd prune factor of a^”‘*‘^+l is 
either of the form 2(2n+1)2+1 or a divisor of a+1 [cf. Legendre^^]. 

V. A. Lebesgue^*^ noted that the discussion of the linear forms of the 
divisors of 2^—1), where D is composite, is simplified by use of Jacobies 
generalization (a/h) of Legendre^s symbol. 

C. G. Reuschle^® denoted —l)/(x"—1) by Fa(5). Set a = ah+hi, 
5 = ai6i+52> 5i = a2?>2+&3;• ■ li a, h are relatively prime, 

1 _b—2 bi—2 

A«0 

®®Opera postuma, I, 1862, 161-7 (about 1773). 
i°Abhandl. d. Bohmiachen Gesell. Wiss., Prag, 1, 1785, 165-170. 
iiTh4orie des nombres, 1798, pp. 207-213, 313-5; ed. 2, 1808, pp. 191-7, 286-8. German 

transl. by Maser, p. 222. 
“Disq. Arith., 1801, Arts. 147-150. 
“Werke, 2, 1863, 477-495. Sobering, pp. 499-502, described the table and its formation by 

the composition of binary forms, e. g., (o*4-l){(o+l)*+l} = {a(a+l)+l 1*4-1. 
“Manuscript 9118 fonds frangais Bibl. Nat. Paris, p. 84. Cf. C. Henry, Assoc. franQ. avanc. 

sc., 1880, 205; Oeuvres de Fermat, 4, 1912, 208. 
“Anfangsgriinde der Hoheren Arith., 1832, 59-70. 
“Theorie der Congruenzen, in Russian, 1^9; in German, 1889; §49. 
i^our. de Math., 15, 1850, 222-7. 
“Math. Abhandlung, Stuttgart, 1853, II, pp. 6-13. 
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Reuschle^s^® table A gives many factors of a^^l, a^dbi^ 1 
for a^lOO, and of a” —1 for n^42, a = 2, 3, 5, 6, 7, 10. 

Lebesgue^®® proved that . .+x+l has no prime divisor other 
than the prime p and numbers of the form 

Jean Plana^° gave 3^^+l =4*6091^j', 3^®—l = 2*59r, and stated that q 
is a prime and that r has no factor <52259. But Lucas^® noted that 

q = 523*5385997, r=28537*20381027. 

E. Kummer^^ proved that there is no prime factor, other than t and 
numbers 2mt^l, of the cyclotomic function 

obtained from (a*—l)/(a —1) by setting a+a“^ = rr, < being a prime 2e+l. 
E. Catalan^^ stated that, if n = a=Fl is odd, a"=Fl is divisible by n^, but 

not by 'n?. Proof by Soons, Mathesis, (3), 2,1902, 109. 
H. LeLasseur and A. Aurifeuill^e^ noted that 2^"'*'^+l has the factors 

22n+i^2^+i+l [cf. Euler,2 S. Germain^"]. 
E. Lucas^ proved that (2^4-l)/(2®+l) is a prime and gave the factors of 

30^5^1, 2^.^+l. 
Theorems by Lucas on the factors of a" =*=6"", given in various papers in 

1876^8, are cited in Ch. XVII. 
Lucas^® factored (2m)*‘±l for m = 7,10, 11, 12, 14, 15, and corrected 

Plana. 
Lucas^® gave tables due to LeLasseur and Aurifeuille of functions 

x^y 
(n odd). 

j y2m 

expressed in the form Y^=^pxyZ^, which is factorable if xy = pv^. Factors 
of x^^-\-y^^ are given for various x’s, y's. He gave LeLasseur^s table of the 
proper divisors of 2""—1 for all odd values of n<100 except n = 61, 67, 
71, 77, 79, 83, 85, 89, 93, 97; the proper divisors of 2"+l for n odd and <71 
(except n = 61, 67) and for n = 7S, 75, 81, 83, 99, 135; the proper divisors 
of 2^^+l for 2/c^74 (except 64, 68) and for 2A; = 78, 82, 84, 86, 90, 94, 102, 
126, etc. Lucas proved (pp. 790-4) that the proper divisors of 2^”+l are of 
the form lOn^j'+l, those of a2a6n_|_^2afcn Sabnq-}-!; for n odd, 
those of are of the form 4a?)ng+l if a& = 4/i+l, those of 
are of the form 4a5ng+l if a6 = 4/i+3. 

i®Math. Abhandlung .. .Tabellen, Stuttgart, 1856. Full title ia Ch. I. 
i®'='Comptes Rendus Paris, 51, 1860, 11. 
2oMem. Accad. Sc. Torino, (2), 20, 1863, 139-141. 
2iCf. Bachmann, Kreistheilung, Leipzig, 1872. 
22Revue de ITnstruct. publique en Belgique, 17, 1870, 137; Melanges Math., ed. 1, p. 40. 
23Atti R. Ac. Sc. Torino, 8, 1871; 13, 1877-8, 279. Nouv. Corresp. Math., 4, 1878, 86, 98. 

Cf. Lucas,*® p. 238; Lucas,*® 784. 
*^Nouv. Ann. Math.', (2), 14, 1875, 523-5. 
*®Amer. Jour. Math., 1, 1878, 293. 
*«BuU. Bibl. Storia Sc. Mat. e Fis., 11, 1878, 783-798. 
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Lucas^^ gave the factors of 2^+1 for w=4n^60 and for 72,84; also for 
m-4n+2^102 and for 110,114, 126,130, 138,150, 210. 

E. Catalan^® noted that for = (2r)^*‘^^ has the rational 
factors (2r)^*‘^^=t(2r)*‘^^+g. The caser=g = l gives LeLasseur’s^® formula. 
Again, 3®"=+^+! has the factors 32*+'=t3*+'+l. 

S. R4alis^®® deduced LeLasseur’s^® formula and 2^"+2^"+1=11(2^"=*= 
2"+l). 

J. J. Sylvester^® considered the cyclotomic function ^^(rr) obtained by 
setting = x in the quotient by of 

(a'-l)n(a'/p‘*'»-~l).., 
n(a'/^^~l). . . 

{t=pi^K . .p/»). 
where pi,..., Pn are distinct primes. He stated that every divisor of 
is of the form ^^=*=1, with the exception that, if i=p^(p=Fl)/m, p is a divisor 
(but not p^). Conversely, every product of powers of primes of the form 
^^=*=1 is a divisor of Proofs were given by T. Pepin, ibid., 526; E. 
Lucas, p. 855; Dedekind, p. 1205 (by use of ideals). Lucas added that 

—1 and p = 2^^^~^®—1 are primes if and only if they divide V'p+i(^) 
for a; == V—1 and x = 3\/—1, respectively. 

A. Lef^bure^*^ determined polynomials having no prime factor other than 
those of the form HT+1, where H is given. First, let T=n\ where n is a 
prime. For A, B relatively prime integers, 

FM. B) = A-B 

has, besides n, no prime factor except those of the form Hn^+l, when A 
and B are exact n*~Hh powers of integers. Second, let where n, m 
are distinct primes. The integral quotient of F^iv^y v^) by Fn(^, has only 
prime factors of the form Hn^m^+1 if u, v are powers of relatively prime 
integers with the exponent Similarly, if T is a product of powers 
of several primes. 

Lef4bure^^ discussed the decomposition into primes of — V^, where 
Uy V are powers whose exponents involve factors of R. 

E. Lucas^^ stated that if n and 2n+l are primes, then 2n+l is a factor 
of 2”-l or 2"+l according as n=3 or n=l (mod 4). If n and 4n+l are 
primes, 4n4-l is a factor of 2^"+l. If n and Sn+l = A^+16J5^ are primes, 
then 8n+l is a factor of 2^”-f-l if B is odd, of 2^"=*= 1 if J5 is even. Also ten 
theorems stating when 6n+l =4L^-t-3Ar^ 12n4-l =L^+12Af^ or 24n+l 
=L^4-48M^ are prime factors of 2*”=±=1 for certain fc^s. 

*^Sur la s6rie r^currente de Fermat, Rome, 1879, 9-10. Report by Cunningham.®* 
“Assoc, frang. avanc. sc., 9, 1880, 228. 
“«Nouv. Ann. Math., (2), 18, 1879, 500-9. 
^^Comptes Rendus Paris, 90, 1880, 287, 345; Coll. Math. Papers, 3, 428. Incomplete in Math. 

Quest. Educ. Times, 40, 1884, 21. 
*°Ann. sc. 6cole norm, sup., (3), 1, 1884, 389-404; Comptes Rendus Paris, 98, 1884, 293, 413, 

567, 613. 
•^Ann. sc. 4cole norm, sup., (3), 2, 1885, 113. 
**As80c. frang. avanc. sc., 15, 1886, II, 101-2. 
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A. S. Bang®3 discussed F,(a) defined by (1). If p is a prime, Fpfc(a) has 

only prime factors ap*'-|-l if is prime to p, but has the factor p 
(and not p^) if d is divisible by p. 

Bang^ proved that, if «>!, i>2, Ft{a) has a prime factor at+1 except 
for 1^6(2). 

L. Gianni®® noted that if p is an odd prime dividing a—1 and jf divides 
a*’—1, then p"-^ divides a—l. 

L. Kroneckeri® noted that, if F„(«) is the function whose roots are the 
0(n) primitive nth roots of unity, 

is an integral function involving only even powers of y. He investigated the 
prime factors q of G^ix, s) for 8 given. If is prime to n and s, then q is 
congruent modulo n to Jacobies symbol (s/g). The same result was stated 
by Bauer.®^ 

J. J. Sylvester®® called ^—1 the mth Fermatian function of 6. 
Sylvester®® stated that, for 6 an integer 5*^1 or —1, 

e-1 

contains at least as many distinct prime divisors as m contains divisors > 1, 
except when — 2, m even, and ^=2, m a multiple of 6, in which two cases 
the number of prime divisors may be one less than in the general case. 

Sylvester^® called the above 6^ a reduced Fermatian of index m. If m=np‘, 
n not divisible by the odd prime p, is divisible by p“, but not by p“*^\ if 
^—1 is divisible by p. If m is odd and ^—1 is divisible by each prime factor 
of m, then 0^ is divisible by m and the quotient is prime to m. 

Sylvester^®® stated that if P=l+p+-. .+p’’"^ is divisible by g, and 
p, r are primes, either r divides g — l or r=g divides p —1. If P=g' and 
p, r, j are primes, j is a divisor of g—r. R. W. Genese easily proved the 
first statement and W. S. Foster the second. 

T. Pepin^^ factored various 1, including a=79, 67, 43, n = 5; a=7, 
n=ll; a=3, n—23; a=5 or 7, n = 13 (certain ones not in the tables by 
Bickmore^®). 

H. Scheflfleri^ discussed the factorization of 2’‘+l by writing possible 
factors to the base 2, as had Beguelin.® He noted (p. 151) that, if m=2^~^y 

1 = (1 +2^)2 {1 -.2w+(2m -1)2^ - (2m - 2)2^^ 

His formula (top p. 156), in which 2”“"^ is a misprint for is equivalent 
to that of LeLasseur.®® 

“Tidsakrift for Mat, (5), 4, 1886, 70-80. *^Ibid., 130-137. »»Periodico di Mat., 2, 1887, 114. 
‘•Berlin Berichte, 1888, 417; Werke, 3,1, 281-292. »^Jour. ftir Math., 131, 1906, 265-7. 
“Nature, 37,1888, 152. p. 418; Coll. Papers, 4, 1912, 628. 
♦•Comptes Rendus Paris, 106, 1888, 446; Coll. Papers, 4,. 607. 
♦““Math. Quest. Educ. Times, 49, 1888, 54, 69. 
♦‘Atti Accad. Pont. Nuovi Lincei, 49,1890,163. Cf. Escott, Messenger Math., 33,1903-4, 49. 
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E. Lucas^^ gave algebraic factors of 

x«+27/, x'2+6V". 
K. Zsigmondy^ proved the existence of a prime dividing but no 

similar binomial with a lowrer exponent, exceptions apart (cf. Bang,^^* ^ 
Birkhoff®^). 

J. W. L. Glaisher*® gave the prime factors of p®—( —for each 
prime p<100. 

T. Pepin^* proved that (3P-l)/30, (83®-l)/82, (2^^4-l)/(3*83) are 
prunes. 

A. A. Markoff^^ investigated the greatest prime factor of n^+1. 
W. P. Workman^® noted the factors of [due to Catalan^®! 

and 2^+1, and stated that Lucas^ (p. 326) gave erroneous factors of 2*'^®+!. 
C. E. Bickmore*® gave factors of o”—1 for ng50, a=2, 3, 5, 6, 7, 10, 

11, 12. 
SeveraP®® proved that 1 is divisible by 47^+1 if 4n+l is prime. 
A. Cunningham®® gave 43 primes exceeding 9 million which are factors 

of (rr®=fcl)/(a;=bl), and factors of 3®®+l, 3®®-l, 3«®+l, 3'®®+l, 5^®~1, 
6^Hl, 5'^-l, 5"®+!, 5®®~1. 

A. Cunningham®^ considered at length the factorization of Aurifeuillians, 
i, e., the algebraically irreducible factors of 

w4-l 

(nia:^)“+(-l) * (njy*)" (•ni«2=n), 

where Ui and x are relatively prime to n2 and 2/, while n has no square factor, 
and is odd in the second case. Aurifeuille had found them to be expressible 
algebraically in the form There are given factors of 2”+! for 
n even and ^102, and for n=110, 114, 126, 130, 138, 150, 210. 

A. Cunningham®^ factored numbers 1 by use of tables, complete to 
p = 101, giving the lengths I of the periods of primes p and their powers 
< 10000 to various bases q, so that ^=1 (mod p or p^), 

A. Cunningham and H. J. WoodalP gave factors of iV’=2*10®=fcl for 
*^30, agio, and for further sets; also, for each prime pg3001, the least 
a and the least corresponding x for which p is a divisor of N, Bickmore 
(p. 95) gave the linear and quadratic forms of factors of N. 

T. Pepin®^ factored a^—1 for a=37, 41, 79; also®® 151® —1. 

*®Th6orie des nombres, 1891, 132, exs. 2-4. 
♦‘Monatshefte Math. Phys., 3, 1892, 283. Details in Ch. VII, Zsigmondy.'^* 
♦‘‘Quar. Jour. Math., 26, 1893, 47. 
"Memorie Accad. Pont. Nuovi Lincei, 9, I, 1893, 47-76. 
^’Comptes Rendus Paris, 120, 1895, 1032. ‘^Messenger Math., 24, 1895, 67. 

25, 1896, 1-44; 26, 1897, 1-38; French transl., Sphinx-Oedipe, 7, 1912, 129-44, 155-9. 
«®Math. Quest. Educ. Times, 65, 1896, 78; (2), 8, 1905, 97. 
wProc. London Math. Soc., 28, 1897, 377, 379. ^^Ihid., 29, 1898, 381-438. 
'^Messenger Math., 29, 1899-1900, 145-179. The line of iV'^ = 53^(p. 17) is incorrect. 
®*Math. Quest. Educat. Times, 73, 1900, 83-94. [Some errors.] 
“Mem. Pont. Ac. Nuovi Lincei, 17, 1900, 321-344; errata, 18, 1901. Cf. Sphinx-Oedipe, 5, 

1910, num4ro special, 1-9. Cf. Jahrbuch Fortschritte Math., on a=«37. 
®®Atti Accad. Pont. Nuovi Lincei, 44, 1900-1, 89. 
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A. Cunninghaan'® factored 5”—1 for n = 75, 105. 
L. Kronecker'®” proved that every divisor, prime to <, of (1) is = 1 (mod t). 

H. S. Vandiver®®® noted that the proof applies to the homogeneous form 
F,(o, h) of (1) if a, 6 are relatively prime. 

D. Biddle®’' gave a defective proof that 3-2®®+! is a prime. 
The Math. Quest. Educational Times contains the factorizations of: 
Vol. 66 (1897), p. 97, 2i“-l factor 31>. Vol. 68 (1898), p. 27, p. 112, 2™-l; 

p. 114,10“+4. 
Vol. 69 (1898), p. 61, 382*+l; p. 73, «®-l, ®=500, 2000; p. 117, x'+j/*; p. 118, 

10“+3’, 3M0>»+1. 
Vol. 70 (1899), p. 32, p. 69, 242>»+l; p. 47, 320"‘-l; p. 64, 2“+l, 8>®+l, 

200«+1; p. 72, 20i®-l; p. 107, 972“+l. Vol. 71 (1899), p. 63, p. 72, 

Vol. 72 (1900), p. 61, (3ra)®”—1 factor 24n+l it prime; p. 86, 722“+l; P-117, 
144010+1. 

Vol. 73 (1900), p. 51, 35®»+l; p. 96, 7"-l; p. 104, p. 114, x^+y*. 
Vol. 74 (l901), p. 27, a prime 2«g+l divides g*—1 if fc=2o-*; p. 86, a:i“—5®j/'°- 
Vol. 75 (1901), p. 37, **4-2/®; p. 90, 1792^4-1; p. HI, 7“4-l. [Eduo. Times, 

(2), 54,1901, 223, 260]. 
Ser. 2, Vol. 1 (1902), p. 46, 100820-1-1; p. 84, x'+yy*. Vol. 2 (1902), p. 33, p. 

53, J\r*4-1; p. 118, 11»»4-1. 
Vol. 3 (1903), p. 49, 0*4-5* (cf. 74, 1901, 44); p. 114, 0*4-1, a=60000. 
Vol. 6 (1904), p. 62, 96“4-l. 
Vol. 7 (1905), p. 62, 208“-1; pp. 106-7, 2“*4-l. 
Vol. 8 (1905), p. 50, 96‘04-l; p. 64, 2“»4-l. 
Vol. 10 (1906), p. 36, 54«-M, 60*4-1. 
Vol. 12 (1907), p. 54, 6**4-l, 240“4-l. 
Vol. 13 (1908), p. 63, 106-7, 30*4-2®*. 
Vol. 14 (1908), p. 17, 150“4-1; p. 71, sextics; p. 96, 7*04-1. 
Vol. 15 (1909), p. 57, 30*4-2®*; p. 33, 3'“4-l, 12*o-l-l; p. 103, 28“4-l, 44“4-l, 

6»»-|-l. 
Vol. 16 (1909), p. 21, 190*4-1. 
Vol. 18 (1910), pp. 53-5, 102-3, **4-42/*; pp. 69-71, **4-272/*; p. 93, y*‘-l. 
Vol. 19 (1911), p. 103, *»-|-2/’=«®4-«^- Vol. 23 (1913), p. 92, (x^-Nx+N 

4-V(*o-V)*. 
Vol. 24 (1913), pp. 61-2, **"±2/", 2/=5, 7, 11, 13; pp. 71-2, *“4-2*, *i»-|-3*, 

**“4-3*0. 
Vol. 26 (1914), p. 23, *“4-1 for fc=6n4-3?^3''; p. 39, *“4-6*; p. 42, *>“-50, 

*■*4-7*, *0*4-11“, *00-13*®. Vol. 27 (1915), pp. 65-6, 45**-!, 2000-I, /b®“4-l forfc 
= 6, 8,10; p. 83, **4-42/* (when four factors). Vol. 28 (1915), p. 72, 50®“-]-!. Vol. 
29 (1916), p. 95, 96*«4-l. 

New series, vol. 1 (1916), p. 86, *o“4-10*“, *0*4-14**; pp.-94-5, *»*-5*o, *®“-|-15*‘. 
Vol. 2 (1916), p. 19, *®“-5*®. 
Vol. 3 (1917), p. 16, **o-2/*0; p. 52, *“-1. 

E. B. Escott®® gave many cases when 14-at* is a product of two powers 
of primes or the double of such a product. 

“Proc. London Math. Soc., 34, 1901, 49. 
““Vorlesungen iiber Zahlentheorie, 1, 1901, 440-1. 
w^Amer. Math. Monthly, 10, 1903, 171. 
^Messenger Math., 31, 1901-2, 116 (error); 33, 1903-4, 126. 
“L’interm^diaixe des math., 7, 1900, 170. 
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P. F. Teilhet®® gave formulas factoring cases of 1+x^, as 

(62+b+l)Hl = [(6+l)Hl](6Hl), 

4(c+l)^+l -[(c+2)H(c+l)^[(c+l)Hc^, 

the last being (10, 1903, 170) a case of the known formula for the product 
of two sums of two squares (cf. 11,1904, 50). 

Escott®° repeated Euleris*^ remarks on the integers x for which 
is divisible by a given prime. He and TeiUiet (11, 1904, 10, 203) noted 
that any common divisor of h and a^l divides (a^=t:l)/(a=‘=l). 

G. Wertheim®^ collected the theorems on the divisors, of a”*=fcl. 
G. D. Birkhoff and H. S. Vandiver®^ employed relatively prime integers 

a, 6 (a >6) and defined a primitive divisor of 7„=a’"—6" to be one relatively 
prime to for all divisors m of n. They proved that, if n7*^2, Vn has a 
primitive divisor 9^1 except forn = 6, a = 2, 6 = 1. 

L. E. Dickson®^® noted that (p^~l)(p^--l) has no faetor=l (mod p^) 
if p is prime. 

A. Cunningham®® gave high primes y^+1, (2/^+l)/2, ]f+y+l, 
H. J. Woodall®^ gave factors of y^+1. 
J. W. L. Glaisher®® factored 2^’'=fc2'‘+l for r^ll, in connection with 

the question of the similarity of the nth pedal triangle to a given triangle. 
L. E. Dickson®® gave a new derivation of (1), found when Ft{a) is divisible 

by Pi or pi^, where pi is a prime factor of and proved that, if a is an integer 
>1, Ftia) has a prime factor not dividing a’"—1 (m<t) except in the cases 
^=2, a = 2*—1, and ^=6, a=2; whence 1 has a prime factor not dividing 
a”*—1 im<t) except in those cases [cf. Birkhoff,®^ CarmichaeF®]. 

Dickson®^ applied the last theorem to the theory of finite algebras and 
gave material on the factors of p""—1. 

A. Cunningham®® treated at length the factorization of for n = 2, 
4, 8, 16, and (p®'"+l)/(p”+l) forn = l, 2, 4, 8, by means of extensive tables 
of solutions of the corresponding congruences modulo p. He discussed also 
x^'+y^, n = 4, 6, 8, 12. 

Cunningham®®'* factored X(a;®—2/®)/(a;—2/)-l-p(a;®4-2/®)/(rr^4-2/2) by ex¬ 
pressing the fractions in the form P^—kxyQ^^, k~ 5, 6. 

®*L^interm^diaire des math., 9, 1902, 310-8. 
«o/6id., 12, 1905, 38; cf. 11, 1904,195-6. 
“Anfangsgriinde der Zahlenlehre, 1902, 297-303, 314. 
“Annals of Math., 5, 1903-4, 173. Cf. Zsigmondy,Dickson.®* 
«wAmer. Math. Monthly, 11, 1904, 197, 238; 15, 1908, 90-1. 
“*Quar. Jour. Math., 35, 1904, 10-21. 
«/Wd., p. 95. 

36, 1905, 156. 
«®Amer. Math. Monthly, 12, 1905, 86-89. 
'^Gottingen Nachrichten, 1905, 17-23. 
68Messenger Math., 35, 1905-6, 166-185; 36, 1907, 145-174; 38, 1908-9, 81-104, 145-175; 

39, 1909, 33-63, 97-128; 40,1910-11, 1-36. Educat. Times, 60, 1907, 544; Math. Quest. 
Educat. Times, (2), 13, 1908, 95-98; (2), 14, 1908, 37-8, 52-3, 73-4; (2), 15,1909, 33-4, 
103-4; (2), 17, 1910, 88, 99. Proc. London Math. Soc., 27, 1896, 98-111; (2), 9, 1910, 
1-14. 

®*<*Math. Quest. Educ. Times, 10, 1906, 58-9. 
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L. E. Dickson and E. B. Escott®® discussed the divisibility of 
by where d is a divisor of n, and 5 of d, 

R. D. CarmichaeF® proved that if is divisible by 5a and we 
set Q = (P‘—P“)/ {a(P—jf2)}, then Q/8 is an integer if and only if a is divisible 
by the least integer e for which is divisible by each prime factor of 
a not dividing P—P, and 5 is a divisor of Q. Proof for the case P = 1 had 
been given by E. B. Escott^^. 

A. Cunningham^^ tabulated the factors of 2/^°®=*=! for 2/= 2, 3, 5, 7,12. 
K. J. Sanjana’® considered the factors of 

Sanjana’®® applied his method to prove the statement of M. Kannan that 
20^®-l=ll-19*31*61*251421*3001-261451-64008001 •3994611390415801 

•4199436993616201. 

L. E. Dickson’^ factored n”—1 for various values of n. 
R. D. CarmichaeF® employed the methods of Dickson®® to obtain general¬ 

izations. Let Qn(a, fi) be the homogeneous form of P„(a). Let n=npi®*‘, 
where the p’s are distinct primes, and let c be a divisor of n and a multiple 
of pi\ If a, are relatively prime, the g. c. d. of 6 = and 
Qc(a, i9) is 1 or pi and at most one fi) contains the factor pi when 
8 contains pi; if pi>2 divides 6, at most one Qc(a, P) contains pi, and no 
one of them contains pi^. If a, 0 are relatively prime and c=mpi®s where 
m>l and m is prime to pi, then QdoLf jS) is divisible by pi if and only if 

(mod pi) holds for x=my but not for 0<rr<?w; in all other cases 
1 (mod m). If a, jS are relatively prime, Qc(a, i3), and hence also 

has a prime factor not dividing a*—i3*(s<c), except in the cases (i) c=2, 
= 1, a = 2* — 1; (ii) Qda, jS) = p = greatest prime factor 6f c, and 

(modp); (iii) 4(a,/3) = l. 
E. Miot^® noted that LeLasseur’s^^ formula is the case m=n=l of 

Welsch (p. 213) stated that the latter is no more general than the case k = 0, 
which follows from the known formula for the product of two sums of two 
squares. 

A. Cunningham'^^ noted the decomposition into primes: 

2''^+l = 3-43-617-683-78233-35532364099. 

®*L’interm6diaire des math., 1906, 87; 1908, 135; 18, 1911, 200. Cf. Dickson.®'^ 
’^“Arner. Math. Monthly, 14, 1907, 8-9. 

13, 1906, 155-6. 
^*Report British Assoc., 78, 1908, 615-6. 
’^^Proc. Edinburgh Math. Soc., 26,1908, 67-86; corrections, 28, 1909-10, viii. 
’®aJour. Indian Math. Club, 1, 1909, 212. 
^^Messenger Math., 38, 1908, 14r-32, and Dickaon^^"* of Ch. XIV. 
’®Ainer. Math. Monthly, 16, 1909,153-9. 
'^“L’interm^diaire des math., 17, 1910, 102. 
^Report British Assoc, for 1910, 529; Proc. London Math. Soc., (2), 8, 1910, xiii. 
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A. Cunningham^® discussed quasi-Mersenne numbers with 
af—q a prime, tabulating every prime factor < 1000 for g<50, a;<20 
if g>5, rr<50 if ^=5, and treated Aurifeuillians 

(X<^d=7«)/(Z=i=7), X = Y^qv^ 
H. C. Pocklington^® proved that, if n is prime, (x"—2/”)/{x—y) is divisible 

only by numbers of the form mn+1 unless x—y is divisible by n [Euler], 
and then is divisible only by n and numbers of the forms mn+l, n(m7i+l). 

G. ronten4®° stated that, if p is a prime and Xy y are relatively prime, 
each prime factor of {x^-‘y^)/{x—y) is of the form A;p+1, except for a 
factor p, occurring if x^y (mod p) and then only to the first power if p>2. 

G. Fonten4®^ considered the homogeneous form(re, y) derived from (1) 
by setting a^x/y. If p“ is the highest power of a prime p dividing n, 

/.= (mod p). 

The main theorem proved is the following: If Xy y are relatively prime 
every prime divisor of/n(x, y) is of the form hn+\y unless it is divisible by 
the greatest prime factor (say p) of n. It has this factor p if p — 1 is divisible 
by n/p“ and if a;, p satisfy Jn/po-= 0 (mod p), the latter having for each y prime 
to p a number of roots x equal to the degree of the congruence. In par¬ 
ticular, if n is a power of a prime p, every prime factor of fn is of the form 
kn+ly with the exception of a divisor p occurring if x^y (mod p), and then 
to the first power if n7*^2. 

J. G. van der Corput®^ considered the properties of the factors of the 
expression derived from a*+6^ as (1) is derived from a‘—1. 

A. G4rardin®® factored a®+6® in four numerical cases and gave 

(4a/3)^=n {(3a^± - 2(2a2=fc 2apf}. 

A, Cunningham®^ tabulated factors of p^=t2, 2^^=*=!. 
R. D. Carmichael®® treated at length the numerical factors of 

and the homogeneous form Qn(a, /3) of (1), when a+/d and are relatively 
prime integers, while a, /3 may be irrational. 

A. G4rardiii®®'' factored x^+1 for a; = 373, 404, 447, 508, 804, 929; inves¬ 
tigated x‘^—2 for a;^50, 8 for p^75, 1 for v^25y 2w^—l for w^S7y 
and gave ten methods of factoring numbers Xa^ —1. 

L. Valroff®®® factored 2a:^-'l for 101 180, 8a:^ —1 for rr<128. 
A. G^rardin®®"’ expressed 622833161 (a factor of 20^°+1) as a sum of two 

squares in two ways to get its prime factors 2801 and 222361. 

^Messenger Math., 41, 1911-12, 119-145. 
”Proc. Gambr. Phil. Soc., 16,1911, 8. 
«°Nouv. Ann. Math., (4), 9, 1909, 384; proof, (4), 10, 1910, 475; 13, 1913, 383-4. 
"/bid., (4), 12,1912, 241-260. 
“Nieuw Archief voor Wiskunde, (2), 10, 1913, 357-361. 
“Wiskundig Tijdschrift, 10, 1913, 59. 
“Messenger Math., 43, 1913-4, 34-57. 
“Annals of Math., (2), 15, 1913-4, 39-70. 
““Sphinx-Oedipe, 1912, 188-9; 1913, 34H14; 1914, 20, 23-8, 34-7, 48. 

1914, 5-6, 18-9, 28-30, 33, 37, 73, 
^Ibid., 39. Stated by E. Fauquembergue, I’interm^diaire des math., 21, 1914, 45. 



Chap. XVI] Factobs of a”sfc6^ 391 

A. Cunningham®® tabulated factors of 1/*'=*= 1, y®*', and gave an account 
of printed and manuscript tables of solutions of (mod p*). 

Cunningham®^ tabulated factors of for and certain y’s as 
high as 31 when a: = 2 or 4, where x, y are relatively prime and x> 1, y> 1. 

Cunningham®® noted that x-2*+l is composite for l<a;<233, x 7*^141. 
A. Cunningham and H. J. Woodall®® tabulated factors of 2®=*=g and 

q.2^=^l for and tabulated values of q for which one of these four 
functions is divisible by a given prime p or power of p. They confirmed 
that x.2®+1 is composite when 1 < x< 233 except perhaps when x = 141. In¬ 
cidentally (p. 15), the factors of 2*=*=fc—1 for 17 are given. 

For factors of 2”—1 and 10”—1, see Chapters I and VI. For factor 
tables of numbers w.2^=i=l, see Seelhoff^® and Morehead®® of Ch. XIII; for 

Dines®^. For factors of several numbers a”—1, see Lawrence^®, 
Biddle^®, and Kraitchik®^ of Ch. XIV. For the form of factors of 
when A;=2”, see Euler^^ of Ch. XV. Various results in Ch. XVII relate to 
factors of a”=‘=6”. 

Factors op Trinomials. 

Seven®® primes p such that (p^ — 1)^ has 4 or more factors px+1, x<p. 
List®® of algebraically factorable trinomials x^+xy^+y^, etc. 
Factors®^ of 14®+14"+1, 7®+2-7^+l, etc. 
Conditions that jj®+Px^+c® be a product of 4 rational quadratic factors.®® 
Two®® factors of x®+(4m^+8m®+2)xV+y®* 
Factors^®® of various trinomial expressions. 
For factors of see Dirichlet® of Ch. XVII. See papers 28, 

28a, 65, 89 above. _ 

“Messenger Math., 45, 1915, 49-75. 
^Uhid., 185-192. 
®®Proc. London Math. Soc., (2), 4, 1907, xviii; (2), 15, 1916-7, xxix. 
8<»Messenger Math., 47, 1917, 1-38. Math. Quest. Educ. Times, (2), 10, 1906, 44. 
“Math. Quest. Educat. Times, (2), 15, 1909, 82-3. Amer. Math. Monthly, 15, 1908, 67, 138. 

L’interm4diaire des math., 15, 1908, 121. 
“Math. Quest. Educ. Times, (2), 16, 1909, 39-41. 
«/6id., 65-6. 
»8/6id., (2), 18, 1910, 64-5; (2), 22, 1912, 20-1. 
»«Sphinx-Oedipe, 6, 1911, 8-9. 

i««Math. Quest. Educ. Times, 72, 1900, 26-8; 74, 1901, 130-1; (2), 6, 1904, 97; 19, 1911, 85; 
20, 1911, 25-6, 76-8; 22, 1912, 54-61. Math. Quest, and Solutions, 3, 1917, 66; 4,1917, 
13, 39; 5, 1918, 38, 50-1. 



CHAPTER XVII. 
RECURRING SERIES: LUCAS’ ti„. ii„. 

Leonardo Pisano^, or Fibonacci, employed, in 1202 (revised manuscript, 
1228), the recurring series 1, 2, 3,5, 8,13, ... in a problem on the number of 
offspring of a pair of rabbits. We shall write for the nth term, and 
for the {n+V)th term of 0, 1, 1, 2, 3, 5,... derived by prefixing 0, 1 to the 
former series. 

Albert Girard^ noted the law for these series. 
Robert Simson® noted that this series is given by the successive conver- 

gents to the continued fraction for (V5+l)/2. The square of any term is 
proved to differ from the product of the two adjacent terms by =±=1. 

L. Euler^ noted that (a+\/6)*'=-^fc+5fc\/5 implies 

A» = i{(a+VF)*+(a-v^)‘}, B*=^{(o+Vb)*-(a-V6)‘l. 

J. L. Lagrange® noted that the residues of A*, and Bj, with respect to any 
modulus are periodic. 

Lagrange® proved that if the prime p divides no number of the form 
then p divides a number of the form 

{(t+uVay^^ - 
A. M. Legendre^ proved that, if 0^—A^^ = l, then 1 is 

of the form r+s\/A» where r and s are divisible by a prime co, not dividing 
Arpy for , . X / . V 

5=«-l if = +1, g=a,+l if = -1. 

C. F. Gauss® proved [Lagrange^s® result] that, if b is a quadratic non¬ 
residue of the prime p, then Rp+i is divisible by p for every integral value 
of a. If e is a divisor of p+1, then is divisible by p for 6—1 values of a, 
being a factor of Bp^i. 

G. L. Dirichlet® proved that, if b is an integer not a square and x is any 
integer prime to 6, and if U, V are polynomials in Xj b such that 

{x+Vhr=U+VVby 
then U and V have no common odd divisors. If n is an odd prime, no prime 
of which 6 is a quadratic residue is a factor of V unless it be of the form 
2mn+l. No prime of which 6 is a quadratic non-residue is a factor of V 
unless it be of the form 2mn—l. Lagrange® had proved conversely that a 

^Scritti, I, 1857 (Liber Abbaci), 283-4. 
*L’Arithm4tique de Simon Stevin de Bruges, par Albert Girard, Leyde, 1634, p. 677. Lea 

Oeuvres Math, de Simon Stevin, 1634, p. 169. 
•Phil. Trans. Roy. Soc. London, 48,1, 1753, 368-376; abridged edition, 10, 1809, 430-4. 
^Novi Comm. Acad- Petrop., 18, 1773,185; Comm. Arith., 1, 554. 
‘‘Additions to Euler’s Algebra, 2,1774, §§ 78-9, pp. 599-607. Euler, Opera Omnia, (1), 1,619. 
•Nouv. M6m. Ac. Berlin, ann6e 1775 (1777), 343; Oeuvres, 3, 782-3. 
Th5orie des nombres, 1798, p. 457; ed. 2, 1808, p. 429; ed. 3,1830, vol. 2, Art. 443, pp. 111-2. 
*Disq.Arith., 1801,Art. 123- *Deformislinearibus,Breslau, 1827;Werke, 1,51. Cf.I^onecker.^ 
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prime of which 6 is a non-residue, and having the form 2mn—1, will divide F. 
If b = — n, where n is a prime 47n+3, no prime divides F unless it is of the 
form kn^l, and conversely. The divisors of TJ are discussed for the case 
n a power of 2; in particular, of XJ = when n=4. 

J. P. M. Binet^*^ noted that the number of terms of a solution expressed 
as a function of n, ..., of the equation Vn+2 = «^n+i+^n*^n in finite differ¬ 
ences is 

This equals TJ^ as shown by taking each to be unity. 
G. Lam^^^ used the series of Pisano^ to prove that the number of divi¬ 

sions necessary to find the g. c. d. of two integers by the usual process of 
division does not exceed five times the number of digits in the smaller 
integer. Lionnet^^ added that the number of divisions does not exceed three 
times it when no remainder exceeds half the corresponding divisor. See 
also Serret, Trait4 d’Arithm^tique; C. J. D. Hill, Acta Univ. Lundensis, 
2, 1865, No. l^E. Lucas, Nouv. Corresp. Math., 2, 1876, 202, 214; 4, 
1878, 65, and Th^orie des Nombres, 1891,335, Ex. 3; P. Bachmann, Niedere 
Zahlentheorie, 1902, 116-8; L. Grosschmid, Math.-Naturwiss. Blatter, 8, 
1911, 125-7, for an elementary proof by induction; Math, ^s Phys. Lapok, 
23,1914, 5-9; R. D. Carmichael, Theory of Numbers, p. 24, Ex. 2. 

H. Siebeck^^ considered the recurring series defined by 

iVr=aiV,_i+cNr-2, No=0, iVi = l, 

for a, c relatively prime. By induction, 

iV, = o^-*+ 

where i3 = 0 or 1, 7 = (r —1)/2 or (r—2)/2, according as r is odd or even; 

Nrn,=Tc'-^N'-.\N„N^+ (^^<f-^N'-ANjN,+... +NJNr, 

whence Nrm is divisible by If V and q are relatively prime, Np and 
Ng are relatively prime and conversely. If p is a prime, 5 = a^+4c, and 
s = (h/p) is Legendre^ s symbol, then 

iVp= s, 0 (mod p), 

so that either ^^4.1 or Np^i is divisible by p. 
J. Dienger^^ considered the question of the number of terms of the series 

of Pisano with the same number of digits and the problem to find the rank 
of a given term. 

A. Genocchi^® took a and h to be relatively prime integers and proved 
that Bmn is divisible by and that the quotient Q has no odd divisor in 

“Comptes Rendus Paris, 17, 1843, 563. 
“/bid., 19, 1844, 867-9. Cf. Binet, pp. 937-9. 
i*Compl6ment des 616ments d'arithm^tique, 1857, 39-42. 
“Jour, fiir Math., 33, 1846, 71-6. “Archiv Math. Phys., 16, 1851, 120-4. 
“Annali di Mat., (2), 2, 1868-9, 256-267. Cf. Genocchi**.«. 
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common with other than a divisor of n. If.p is an odd divisor of and 
if h is the least for which Bk is divisible by p, then h is & divisor of m. If p 
is an odd prime, Bp-i or Bj^i is divisible by p according as b is a quadratic 
residue or non-residue of p, whatever be the value of a. This is used to 
prove the existence of primes of the two forms n'z^l{n a prime >2) and 
the existence of an infinitude of primes of each of the forms 1 [Ch. XVIII]. 

E. Lucas^® stated without proof theorems on the series of Pisano.^ The 
sum of the first n terms equals 17^+2 *“2; the sum of those terms taken with 
alternate signs equals ( —l)”f7n^i. Also 

We have the symbolic formulas 

ijn+p^ u\u-iy, 

where, after expansion, exponents are replaced by subscripts. Erom 
E. Catalanos Manuel des Candidats k Pficole Polytechnique, I, 1857, 86, he 
quoted 

Lucas^^ employed the roots a, b of x^=a;+l and set 

Wn = ' 
a”-b” 

Vn = a”+b^ ~ +'Wn+l. 
Un 

The It’s form the series of Pisano with the terms 0, 1 prefixed, so that 
Uq— 0, Ui=it2= 1, Uz = 2. Since 5Un — = =»= 4, Un and Vn have no common 
factor other than 2. If p is a prime 5*^2, 5, we have (mod 
p). We have the symbolic formulas 

Given a law Un+k—^QUn-^v+ .. • + Apf7„ of recurrence, we can replace the 
symbol C/* by 0(C7), where 

<t) (u) .. +Ap_iW+Ap, 

since TJn+hv^ symbolically. 
E. Lucas^® stated theorems on the series of Pisano. We have 

2" V5m„ = (1 + V5)“ - (1 - VS)", M,+i = 1 + (”) + (” 2 + ■ • •. 

and his^® symbolic formulas with u^s in place of U^s, is divisible by Wp 
and Wg, and by their product if p, q are relatively prime. Set 
Then 

t'n+2=t'„+l+f„, t'4n = t^2™-2, «'4n+2 = «^2»+l+2. 

‘•Nouv. Correep. Math., 2, 1876, 74-5. 
lUWd., 201-6. 
‘•Comptes Rendus Paria, 82, 1876, 165-7. 
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If the term of rank A+1 in Pisano^s series is divisible by the odd number A 
of the form lOp^d and if no term whose rank is a divisor of A+1 is divisible 
by A, then A is a prime. If the term of rank A — 1 is divisible by A = 10p=*= 1 
and if no term of rank a divisor of A — 1 is divisible by A, then A is a prime. 
It is stated that A = 2^^^—1 is a prime since A = 10p--3 and Uk is never 
divisible by A for A;=2", except for n = 127. 

Lucas^® employed the roots a, 6 of a quadratic equation a^—Pa;+Q = 0, 
where P, Q are relatively prime integers. Set 

t;„=a"+6”, 5 = a—b. 
a—o 

The quotients of Sun\/—1 and Vn by are functions analogous to the 
sine and cosine. It is stated that ^ 

(1) ^2«=Vn, 

(2) Uji ^n—• 

Not counting divisors of Q or 5^, we have the theorems: 
(I) itjjg is divisible by Upj u^, and by their product if p, g are relatively 

prime. 
(II) Um Vn are relatively prime. 
(III) If d is the g. c. d. of m, n, then Ud is the g. c. d of u^, Un- 
(IV) For n odd, is a divisor of 
By developing Unp and Vnp in powers of Un and we get formulas analo¬ 

gous to those for sin nx and cos nx in terms of sin n and cos n, apd thus get 
the law of apparition of primes in the recurring series of the [stated 
explicitly in Lucas^°], given by Fermat when 8 is rational and by Lagrange 
when 6 is irrational. The developments of u/ and Vn^ as linear functions of 
^nj • • • are like the formulas of de Moivre and Bernoulli for sin^a; and 
cos^x in terms of sin kx, cos kx. Thus— 

(V) If n is the rank of the first term containing the prime factor p 
to the power X, then Upn is the first term divisible by p^'^^ and not by 
this is called the law of repetition of primes in the recurring series of 

(VI) If p is a prime 4g+l or 4g+3, the divisors of UpJUn are divisors 
of x^—pif or 8^x^+py^j respectively. 

(VII) If Up^i is ^visible by p, but no term of rank a divisor of p± 1 is 
divisible by p, then p is a prime, 

Lucas^® proved the theorems stated in the preceding paper. Theorems 
II and IV follow from (I2) and (22), while (2i) shows that every factor 
common to Um+n and divides Un and conversely. 

(VIII) If a and h are irrational, but real, Up^i or Up^i is divisible by the 
prime p, according as 5^ is a quadratic non-residue or residue of p (law of 
apparition of primes in the w’s). If a and h are integers, Up^i is divisible 
by p. Hence the proper divisors of Un are of the form /cn+1 if 5 is rational, 
kn^l if 8 is irrational. 

^®Comptes Rendus Paris, 82, 1876, pp. 1303-5. 
^^Sur la th^orie des nombres premiers, Atti R. Accad. Sc. Torino (Math.), 11, 1875-6, 928-937. 
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The law V of repetition of primes follows from 

where t={p — l)/2. Special cases of the law are due to Arndt,p. 260, 
and Sancery,®^ each quoted in Ch. VII. Theorem VII, which follows from 
VIII, gives a test for the primality of 2"=^! which rests on the success of 
the operation, whereas Euler’s test for 2^^ —1 was based on the failure of 
the operation. The work to prove that 2^^ — ! is prime is given, and it is 
stated that 2®’^-“! was tested and found composite,^^ contrary to Mersenne. 
Finally, is shown to have an infinitude of prime divisors. 

A. Genocchi^^ noted that Lucas’ are analogous to his^® A^. 
[If we set a = a+V6j i3 = a~ Vb, we have 

Uk=-—^=Bk, t)*=a‘+j3*‘=2Jlt.] 
a—p 

Lucas^® stated that, if 4m+3 is prime, = is prime if the first 
term of the series 3, 7, 47,..., defined by 2, which is divisible 
by p is of rank 4m+2; but p is composite if no one of the first 4m+2 terms 
is (fivisible by p. Finally, if a is the rank of the first term divisible by p, 
the divisors of p are of the form 2*"^=^!, together with the divisors of 
a?’-2y^. There are analogous tests by recurring series for the primality of 

3.24m+3 _ 2*3^”‘+^=t 1, 2*3^”“^® -1, 2-52^+^+1. 

Lucas^ proposed as an exercise the determination of the last digit in the 
general term of the series of Pisano and for the series defined by Un+2 

= auni.i+hun; also the proof of VIII: If p is a prime, 

(aWhy-^-{a-Vhy-^ 

Vh 

is divisible by p if b is a quadratic residue of p, excepting values of a for 
which a^ —b is divisible by p; and the corresponding result [of Lagrange® and 
Gauss®] for ^3,4.1. Moret-Blanc^® gave a proof by use of the binomial theorem 
and omission of multiples of p. 

Lucas^® wrote for the sum of the nth powers of the roots of an 
equation whose coefficients are integers, the leading one being unity. 
Then Snp—Sn^ is an integral multiple of p. Take n = 1. Then Si = 0 implies 

0 (mod p). It is stated that if Si = 0 and if s* is divisible by p for k = p, 
but not for k<p, then p is a prime. 

Cunningham, Proc. Lend. Math. Soc., 27, l%95-6, 54, remarked that, while primality is 
proved by Lucas’ process by the success of the procedure, his verification that a number 
is composite is indirect and proved by the failure of the process and hence is liable to error. 

®2Atti. R. Accad. Sc. Torino, 11, 1875-6, 924. 
“Comptes Rendus Paris, 83, 1876, 1286-8. 
“Nouv. Ann. Math., (2), 15, 1876, 82. 
«jrWci., (2), 20, 1881, 258 [p. 263, for primality of 23^-1]. 
“Assoc, frang. avanc. sc., 5, 1876, 61-67. Cf. Lucases. 
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By use of (1) and (2), theorems I-IV are proved. Theorem VIII is 
stated, and VII is proved. Employing two diagrams and working to base 2, 
he showed that 2^^ — 1 is a prime. 

Lucas^^ considered a product m=p"r^... of powers of primes, no one 
dividing Q. Set A = (a—(A/p) =0, (mod p), 

<A(m) =p“-V-\ . .[p- (|)] [r- (^)].... 

Then Ut^O (mod m) for t—yl/im). The ranks n of terms divisible by m 
are multiples of a certain divisor p of . This p is the exponent to which 
a OT h belongs modulo m. The case 6 = 1 gives Euler’s generalization of 
Fermat’s theorem. The primality test^^ is reproduced and applied to show 
that 2^® —1 is a prime. 

Lucas^® considered the series of Pisano. Taking a, 6 = (1=*= V5)/2, we 
have Ui=^U2 — lj uz = 2, etc. According as n is odd or even the divisors of 
Usn/un are divisors of or those of are divisors of 
5x^ — 2Tf or 5x^'\-2y^] those of are divisors of or — those 
of V2n are divisors of o^^2y^ or x^—2y^; those of ^n/'Wn are divisors of 
or — 52/^. The law V of repetition of primes and theorem III are stated. 
The law VIII of apparition of primes now takes the following form: If p is a 
prime 10g=fc= 1, ^^p_l is divisible by p; if p is a prime 10g=fc= ZyU^j^i is divisible by p. 
The test^® for the primality of A is given and applied to show that 2^^^ —1 
and 2^^--l are primes. There is a table of prime factors of for n^60. 
Finally, is expressible in the form x^ — 'py^ or bx^+pp^ according as 
the prime p is of the form 4g+l or 4g+3. 

Lucas^® considered the series defined by r^+i = ~ 2, 

^2 = 

Let A^3 or 9 (mod 10), q^Q (mod 4); or A=7, 9 (mod 10), ^?=1( mod 4); 
or A^ly 7 (mod 10), g=2 (mod 4); or A^l, 3 (mod 10), (mod 4). 
Then p = 2®A --1 is a prime if the rank of the first term divisible by p is 5; 
if a {a<q) is the rank of the first term divisible by p, the divisors of p are 
either of the form* 2aAk+l, or of the forms of the divisors of x^—2y^ 
and —2Ay^. Corresponding tests are given for 2^A +1 and 3^A --1. The 
first part of the theorem of Pepin^^ for testing the primality of a,t = 2^"+1 
follows from theorem VII with a = 5, 6 = 1, p = a„; the second part follows 
from the reciprocity theorem and the form of a^ — l. 

For A=p, let the above rj become r. When p=7 or 9 (mod 10) and 
p is a prime, then 2p — 1 is a prime if and only if 0 (mod 2p — 1). When 
p = 4gH-3 is a prime, 2pH-] is a prime if and only if 2^=1 (mod 2p + l). 
When p =4g+3 is a prime, 2p — 1 is a prime if and only if 

2^Comptcs Rendus Paris, 84, 1877, 439-442. Corrected by Carmichael.®® 
2®Bull. Bibl. Storia Sc. Mat. e Fis., 10, 1877, 129-170. Reprinted as “ Rccherches sur plusieurs 

ouvrages de L6onard de Pise.” Cf. von Sterneck^’- of Ch. XIX. 
2®Assoc. franQ. avanc. sc., 6, 1877, 159-166. *Corrected to 2°-AK^l in Lucas®®; see Lucas."*® 
3®Comptes Rendus Paris, 85, 1877, 329-331. See Ch. XV Pepin*®, Lucas,*8- Proth.®® 
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~;^{(l+V2y-il-\^y}^0 (mod 2p—1). 

To_test the primality of p = use 4a;+l = 0 with the roots 
2=fc\/3. Then if p is a prime, Uj,^i is divisible by p. We use the residues 
of the series 2, 7, 97,... defined by rn+i=2rn^--l. 

Lucas^^ stated that p = 2^’"+^ —1 is a prime if the rank of the first tenn^ 
of 3,7,47,... divisible by pis between 2m and 4w+2. To test P=2^®+^~1, 
form the series 

ri = l, r2=-l, r3=-7, r4=17,..., r,,+i = 2r„2~32"'\' 

if I is the least integer for which is divisible by P, then P is a prime when I 
is comprised between 2g and 4^+1, composite when l>4:q+l, 

Lucas^^ expressed Vn as polynomials in P and A=P^—4Q=6^, obtained 
various relations between them corresponding to relations between sine and 
cosine; in particular, 

Un+2 = P^t'n+l - QV>n, = ^r^n+r “ QX, 

and formulas derived from them by replacing uhy v; also symbohc formulas 
generalizing those^® for the series of Pisano, 

In the second paper, Un+u are expressed as determinants of order n 
whose elements are Q, — P, 2, 1, 0. There is given a continued fraction for 
^(n+DrAnr, f^om wMch is dcrivcd (Ig) and generahzations. The same 
fraction is developed into a series of fractions. 

Lucas®® noted that u^r is divisible by Ur since 

^ = V,n-»r+Q'v^n-Z. Ur 

where i — 1 if n is even, <=|(n — 1) if n is odd, the final factor being then 
absent. Proof is given for (2i) and 2vr,^j^ri-From these are 
derived new formulas by changing the sign of n and applying 

U^n = - Uj Q”, = Vj Q”. 
To show that 

Ur^Un^l . . Ml 

is integral, apply (2i) repeatedly to get 

2[m, n] = [m->-l, n]t;„+[m, n-l]v^. 

Finally, sums of squares of functions Vn are found. 
Lucas®^ gave a table of the linear forms 4A+r of the odd divisors of 

and x^~Ay^ for A = 1,..., 30. By use of (Ig), it is shown that the 
terms of odd rank in the series are divisors of — Qy^; the terms of even or 
odd rank in the series are divisors of x^+Ai/^ or x^+QAy^, respectively. 

^Messenger Math., 7, 1877-8, 186. 
®^Sur la th^orie dea fonctions num^riques simplement p6riodiques, Nouv. Corresp. Math., 3, 

1877, 369-376, 401-7. These and the following five papers were reproduced by Lucas.®® 
®®/Wd., 4, 1878, 1-8, continuation of preceding. 
»*lbid., pp. 33-40. 



400 Histoky of the Theobt of Nxjmbees. IChap. XVII 

Lucas^ proved III by use of (2i) and gave 

<l>n=P^-(”7^)P"-®Q+ ...; 

m„,=5'-V+pQ’‘S’’"V’’-*+^^2^q2»8>--sV-'‘+ .... 

Lucas*® determined the quadratic forms of divisors of V2n from 

‘'2»=AV+2Q", 

In the last, take Q = 2g^, n=2ix+l; thus Vi^+2 factors if Q is the double of a 
square. As a special case we have the result by H. LeLasseur (p. 86): 

22(2fl+i)(2^ff+i^2«+i+1) +1). 

In the first expression for t;2«, take n=/i+l, A = =*=2/1^, Q=^^; thus 
t^4M+2 factors when QA is of the form —2^^. Similarly, factors if A = — 2^*. 

Lucas*’^ gave the formulas 

^=A«„='+3(3", ^=„,2-3Q”, 
Vn 

developments of w/, v/ as linear functions of A; = p, p—2, p—4,..and 
complicated developments of u^r, V. 

Lucas*® reproduced the preceding series of seven papers, added (p. 228) 
a theorem on the expression of as a quadratic form, a proof (p. 231) 
of his^® test for primality by use of the and results on primes and perfect 
numbers cited elsewhere. 

Lucas** considered series of the first kind (in which the roots a, h are 
relatively prime integers) and deduced Fermat^s theorem and the analogue 
Ut^O (mod m)j t—<j>(m), of Euler^s generalization. Proof is given of the 
earlier theorems VII, VIII and (p. 300) of his^^ generalization of the Euler- 
Fermat theorem. The primality test^* is stated (p. 305) and applied to 
show that 2*^ — 1 and 2^* —1 are primes. It is stated (page 309) that 
p=2^®‘^ —1 is prime if and only if 

3=2 cos 7r/2^®+^ (mod p), 

after rationalizing with respect to the radicals in the value of the cosine. 
The primality tests^* are given (page 310), with similar ones for 3®A+1, 
2*5^A+1. The tests^* for the primality of 2p+l are given (p. 314). The 
primality test^* for 2^®+^ —1 is proved (pp. 315-6). 

Lucas^® reproduced his*® earlier results, and for p = 3, 5, 7, 11, 13, 17, 
expressed v/^2r in the form 2pQV? ^^'nd, for p a prime ^31, expressed 

®®Nouv. Corresp. Math., 4, 1878, 65-71. 
pp. 97-102. 

^Ubid,, pp. 129-134, 225-8. 
*®Amer. Jour. Math., 1, 1878, 184r-220. Errors noted by Carmichael.** 
»*/Wd., pp. 289-321. 
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Upr/Ur in the form Aoi^=i=pQ‘y^. The prime factors of 3^®=*=1 are given on 
p; 280. The proper divisors of 2^+1 are known to be of the form Snq + 1] 
it is shown that q is even. Thus for 2^^+l the first divisor to be tried is 

641, for 22^^+l the first one is 114689; in each case the division is exact 
(cf. Ch. XV). The following is a generalization: If the product of two 
relatively prime integers a and h is of the form 4/i+l, the proper divisors 
of are of the form Sahnq+1. A primahty test for — l is 
given. Finally, is a prime if and only if 

(r+V¥^)^+(^-VW+i)^=0 (mod p). 

T. Pepin‘‘ gave a test for the primality of {(=2“—1. Let 

_2{a^-V) , , 
(mod q) 

and form the series Wi, U2y..tt„_i by use of 

2 (mod 3'). 

Then 5 is a prime if and only if u^-i is divisible by 3. This test differs from 
that by Lucas^^ in the choice of Ui, 

E. Lucas^^ reproduced his^® test for the primality of 2®A — 1, etc., and the 
testat the end of another paper,with similar tests for 2^«^®—1 and ■— 1. 

G. de Longchamps^^ noted that, if aw*_i, 

with the generahzation 
X 

n dp =d„ 5=pi+... +p*--a;+l. 
y-i ^ 

Take Pi = • •. =Px=P- Hence 

(^p —1) ^p*—®+l ^^px—X* 

There is a corresponding theorem for the r^s. 
J. J. Sylvester^ considered the g. c. d. of w*, if 

U:, = {2x — - (x—l)lt,_2. 

E.Gelin^^stated and E.Ces^ro^® proved by use of ?7„+p= UpUr,-\- Up^xUn^x 
that, in the series of Pisano, the product of the means of four consecutive 
terms differs from the product of the extremes by =*=1; the fourth power of 
the middle term of five consecutive terms differs from the product of the 
other four terms by unity. 

^^Comptes Rendus Paris, 86, 1878, 307-310. 
<*BuU. Bibl. Storia Sc. Mat. e Fis., 11,1878, 783-798. The further results are cited in Ch. XVI. 

Comptes Rendus, 90, 1880, 855-6, reprinted in Sphinx-Oedipe, 5, 1910, 60-1. 
"Nouv. Corresp. Math., 4, 1878, 85; errata, p. 128. 
^^Comptes Rendus Paris, 88, 1879, 1297; Coll. Papers, 3, 252. 
<*Nouv. Corresp. Math., 6, 1880, 384. 
‘•/Wd., 423-4. 
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Magnon/’ in reply to Lucas, proved that 

Gi 1 —Vs’ 

if an—1 is the sum of the squares of the first n — 1 terms of Pisano^s series. 
H. Brocard^® studied the arithmetical properties of the U*s defined by 

Un^i = Un+2Un^iy Uo-ly C/'i=3, in connection with the nth pedal triangle. 
E. Cesto^® noted that if C/n is the nth term of Pisano’s series, then 

(217+1)** - == 0, symbolically. 
E. Lucas®® gave his*® test for the primality of 2^^+^ —1. 
A.. Genocchi®^ reproduced his^® results. 
M. d’Ocagne®* proved for Pisano’s series that [Lucas^®] 

$*»o psBoo ^p—i 
UpUi-Uf+iUi-l = (-l)*+'«p_i+l, =U%-U%^i + {-iy. 

The main problem treated is that to insert p terms ai,..., ap between two 
given numbers ao = a, ap+i=b, such that a,=at_i+ai_2- The solution is 

hui+(-iyaup^i^i a =-- 
Upj^l 

Most of the paper is devoted to the question of the maximum number of 
negative terms in the series of a’s. 

E. Catalan®*® proved that UJ-Un^pUn+p- (—l)"”'*’^^f7*p_i for Pisano’s 
series. 

"E. Lucas®® stated, apropos of sums of squares, that 

U2n+1 = +Uny «^2» = + 2n\ +n*n+i, 

^2n+l +2, V^n = (2^^^ +.w\ +2. 

L. Kronecker®^ obtained Dirichlet’s® theorems by use of modular systems. 
Lucas®^® proved that, if nn=(a”—b")/(a—b), 

^p—1 ^(p—l)n/^n 

is divisible by Up when p is a prime and n is odd and not divisible by p, and 
by Up when n = 2p+l. 

L. Liebetruth®® considered the series Pi = 1, P2 = x,..., P„=a;P„-_i —Pn-2} 
and proved any two consecutive terms are relatively prime, and 

Pn'^PxPn-X+l^Px—lPn-^X (X<n). 

Taking n=2X, 3X,..., we see that Px is a common factor of P2X, Psx,_ 
The g. c. d. of P^j P^ is P^, where d is the g. c. d. of m, n. Next, 

<’Nouv. Corresp. Math., 6, 1880, 418-420.’ '‘®Nouv. Corresp. Math., 6, 1880, 145-151. 
*^Ibid., 528; Nouv. Ann. Math., (3), 2, 1883, 192; (3), 3, 1884, 533. Jornal de Sc. Math. 

Astr., 6, 1885, 17. 
•^“R^cr^atione math^matiques, 2, 1883, 230. ^^Comptes Rendus Paris, 98, 1884, 411-3. 
“Bull. Soc. Math. France, 14,1885-6, 20-41. 
*2«M6m. soc. roy. sc. Li^ge, (2), 13, 1886, 319-21 ( = Melanges Math., II). 
“Mathesis, 7, 1887, 207; proofs, 9, 1889, 234-5. 
“Berlin Berichte, 1888, 417-423; Werke, 3,1, 281-292. Cf. Kronecker" of Ch. XVI. 
“oAssoc. frang. avanc. sc., 1888, II, 30. “Beitrag zur Zahlentheorie, Progr., Zerbst, 1888. 
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P1+P3+ . • • +P2n--‘l = Pnf P2+i^4+ • • • ’\-P2n~PnPn+l> 

If Pn^Pm (mod Px) then n^m (mod 2X). Also, 

Pn=x^ 14- T ( ^ l)...(n ^k) 2k-i 
^ 1-2.,.A; ^ 

<*n+2 = 2;an+l—On> then If o„/&„ is the nth convergent to 
= a„4.i. Hence a^^Pn if ^1 = 1, 02 = x, 

Sylvester stated and W. S. Foster®®" proved that if f($) is a polynomial 
with integral coefficients and Ux^i—f(Ux), ni=/(0), and 5 is the g. c. d. of 
r, 5, then Us is the g. c. d. of n,., 

A. Schonffies®® considered the numbers %=!, ni,..n^ defined by 

.. .+(-1)'^ (X=0, 1,...) 

and proved geometrically that if n,.__i is the least of these numbers which 
has a common factor with rig, then r is a divisor of g+l, while a relation 

mni^mrir^i (modn^) 
holds for every index L 

L. Gegenbauer®^ gave a purely arithmetical proof of this theorem. 
E. Lucas®® gave an exposition of his theory, with an introduction to 

recurring series. 
M. Frolov®® used a table of quadratic residues of composite numbers to 

factor Lucas’ numbers 
D. F. Seliwanov®® proved Lucas’ results on the factors of u^. 
E. Catalan®^ gave the fir 

Un divides 112 that U2n is 

Ur, = aUn-.i+Un^2, 

Font^s®^® proved theorems stated bj 
elementary way the general term of Pis^ 

E. Maillet®^^ proved that a necessai^ ^ _ 
integer, exceeding a certain limit, shall equal (up to a limited number of 
units) the sum of the absolute values of a finite number of terms of a recur¬ 
ring series, satisfying an irreducible law of recurrence with integral coeffi¬ 
cients, is that all the roots of the corresponding generating equation be roots 
of unity. 

W. Mantel®® noted that, if the denominator F{x) of the generating 
fraction of a recurring series is irreducible modulo p, a prime, the residues 
modulo p of the terms of the recurring series repeat periodically, and the 
length of a period is at most p” — 1; the proof is by use of Galois’ general¬ 
ization of Fermat’s theorem. The case of a reducible F{x) is also treated. 

Quest. Educ. Times, 50, 1889, 54-5. ^®Math. Annalen, 35, 1890, 537. 
®^Denkscliriften Ak. Wiss. Wien (Math.), 57, 1890, 528. 
®8Th6orie des nombres, 1891, 299-336; 30; 127, ex. 1. A pamphlet, published privately by 

Lucas in 1891, is cited in I’interm^diaire des math,, 5, 1898, 58. 
®®Asaoc. frang. avanc. sc., 21, 1892, 149. 
®®Math. Soc. Moscow, 16, 1892, 469-482 (in Russian). 
*^M4m. Acad. R. Belgique, 45, 1883; 52, i893-4, 11-14. 
*^®Assoc, frang. avanc. sc., 1894, II, 217-221. “'^Assoc. frang. avanc. sc,, 1896, II, 78-89 
®*Nieuw Archief voor Wislcunde, Amsterdam, 1, 1895, 172-184. 
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R. W. D. Christie®* stated that, for the recurring series defined by 
^n+i—^ct„ fln—i, 2m 1 is a prime if and only if —1 is divisible by 
2ot -1. The error of this test was pointed out by E. B. Escott.“ 

S. R4alis®^ noted that two of N consecutive terms of 7, 13, 25,..., 
3(n*+n)+7,... are divisible by N if iV is a prime 6m+l. 

C. E. Bickmore®®* discussed factors of in the final series of Catalan®*. 
He®®‘ and others gave known formulas and properties of Pisano’s series. 

R. Perrin®® employed = t>o=3, Wi = 0, V2=2. Then is 
divisible by n if n is a prime. This was verified to be not true when n is 
composite for a wide range of values of n. The same subject was considered 
by E. Malo®® and E. B. Escott®* who noted that Perrin’s test is incomplete. 

Several®’^” discussed the computation of Pisano’s for large n’s. 
E. B. Escott®*® computed 21/m„. E. Landau®’' had evaluated m/un 

in terms of the sum of Lambert’s’ series of Ch. X, and Sl/it2«,+i in relation 
to theta series. 

A. Tagiuri®® employed the series Mi = 1, M2 = 1, W3=2,... of Leonardo 
and the generalization Hi, U2,..., where 17„= I7„_i+I7„_2, with Ui=a, 
Ui—b both arbitrary. Writing e for a*+af>—6®, it is proved that 

J7n+.=-u.+if7„+w.l7„_x, U„^-U„-,U^+t=i-ir-We, 

VJJ, — Ur,-k U,+i = (— 

is an integer independent of a, 6, n; it equals 
It is shown that Ur is a multiple of Ug if and only if r is a 

multiple of a. 
Tagiuri®® obtained analogous results for the series defined by 

+lVn^2f and the particular series Vn obtained by taking vi = l, V2 = h. If 
h and I are relatively prime, Vr is a multiple of if and only if r is a multiple 
of 6. Let be the number of terms of the series of v’s which are ^Vi and 
prime to it; if h>l, ^(v^) is Euler’s but, if h = l, 
the last term being zero if i is odd. If i and j are relatively prime, *!»(%) 

Tagiuri^® proved that, for his series of v^s, the terms between Vkp and 
t^fc(p4-i) are incongruent modulo if h> 1, and for /i = 1 except for 
If fjL is not divisible by k and e is the least solution of (mod v^), then 

(mod Vk) if x^/jl (mod 4/ce). 

If iJL is not divisible by k, and k is odd, and €i is the least positive solution of 
(mod Vk), then (mod Vk) if x^ji (mod 2k€i). 

A. Emmerich^^ proved that, in the series of Pisano, 

"Nature, 56, 1897, 10. "Math. Quest. Educat. Times, 3, 1903, 46; 4, 1903, 52 
"«Math. Quest. Educat. Times, 66, 1897, 82-3; cf. 72, 1900, 40, 71. 

71, 1899, 49-50. Ill; 4, 1903, 107-8; 9, 1906, 55-7. 
"L'interm6diaire des math., 6, 1899, 76-7. 

7, 1900, 281, 312. "L'interm^diaire des math., 8, 1901, 63-64. 
7, 1900, 172-7. ^^^Jbid., 9, 1902, 43-4. 

'^’‘=Bull. Soc. Math. France, 27,1899,198-300. "Periodico di Mat., 16, 1901,1-12. 



Chap. XVII] Recurring Series; Lucas' Un, Vn- 405 

(mod 2), t^n+5=3Wn (mod 5), 'Wn+60=^n (mod 10), 

so that Uo, Us, Uq, Ug,... alone are even, Ug, Us, Uio,... are multiples of 5. 
J. Wasteels’’^ proved that two positive integers x, y, for which 

equals +1 or —1, are consecutive terms of the series of Pisano. If 5x^=±=4 
is a square, x is a term of the series of Pisano. These are converses of 
theorems by Lucas. 

G. Candido^^ treated Un, by algebra and function-theory. 
E. B. Escott^^ proved the last result in Lucas' paper. 
A. Arista’’® expressed Snii Wn ^ in finite form. 
M. Cipolla’® gave extensive references and a collection of known formulas 

and theorems on w„, z;„. His application to binomial congruences is given 
under that topic. 

G. Candido’’^ gave the necessary and sufl&cient conditions, involving 
the Uj,, that a polynomial x has the factor x^—Px-|-Q, whose roots are a, h, 

A. Laparewicz^® treated the factoring of 2'^^ 1 by Lucas' method.^^ 
E. B. Escott^^ showed the connection between Pisano's series and the 

puzzle to convert a square into a rectangle with one more (or fewer) units 
of area than the square. 

E. B. Escott’^^ applied Lucas' theory to the case ^^n=2^^n-l+^^n-2• 
L. E. Dickson’^® proved that if Zk is the sum of the A^th powers of the roots 

of • • • +Pm = 0, where the p's are integers and pi==0, then, in 
the series defined by • • • '■bPm^x-0, Zt is divisible by i if ^ is 
a prime.. 

E. Landau®^ proved theorems on the divisors of where 

(a;+i)”'= U^{x)+iyjx), t = \/^. 

P. Bachmann®^ treated at length recurring series. 
C. Ruggieri®^ used Pisano's series for u^n to solve for J and t? 

= 4ac = 5m^. 

E. Zeuthen®® proposed a problem on the series of Pisano. 
H. Mathieu®^ noted that in 1, 3, 8,..., x„+i = 3xn—x^-i, the expressions 

Xn_iXn+i + l are squaros. 
Valroff^® stated in imperfect form theorems of Lucas. 
A. Aubry®® gave a summary of results by Genocchi^® and Lucas. 

^Mathesis, (3), 2, 1902, 60-62, 
^^Periodico di Mat., 17, 1902, 320-5; I’interm^diaire des math., 23, 1916, 175-6. 
^‘L’interm^diaire des math., 10, 1903, 288. ^‘Giornale di Mat., 42, 1904, 186-196. 
’"Rendiconto Ac. Sc. Fie. e Mat. Napoli, (3), 10, 1904,135-150. 
’^■^Periodico di Mat., 20, 1905, 281-285. 
^sWiadomosci Matematyczne, Warsaw, 11, 1907, 247-256 (Polish). 
78aXhe Open Court, August, 1907. Reproduced by W. F. White, A Scrap-Book of Elementary 

Mathematics, Notes, Recreations, Essays, The Open Court Co., Chicago, 1908, 109-113. 
’^®L’interm6diaire des math., 15, 1908, 248-9. ^®®Amer. Math. Monthly, 15, 1908, 209. 
®°Handbuch.. .Verteilung der Primzahlen, I, 1909, 442-5. 
®^Niedere Zahlentheorie, II, 1910, 55-96, 124. ®*Periodico di Mat., 25, 1910, 266-276. 
“’Nyt Tidsskr. for Math., Kjobenhavn, A 22, 1911, 1-9. Solution by Fransen and Damm. 
»<L’intermddiaire des math., 18, 1911, 222; 19, 1912, 87-90; 23, 1916, 14 (generalizations). 
«/6id., 19, 1912, 145, 212, 285. ssL’enseignement math., 15, 1913, 217-224 
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R. Niewiadomski®^ noted that, for a series of Pisano, 

or -C7ia^i(modi\r), 

according as the primfe N = 10m=fc 1 or 10m=fc3. He showed how to compute 
rapidly distant terms of the series of Pisano and similar series, and factored 
numerous terms. 

L. Bastien®® employed a prime p and integer ai<p and determined 
«2) ^3, • • .,each <p,by means of aiO^^Q, a2+a3=P,a3a4=Q,a4+a5=P, • •. 
(mod p). Then 

(modp), K,+i=PKn-QK^i. 

The types of series are found and enumerated. Every divisor of Kp is of 
the form \p^l. Some of Lucas’ results are given. 

R. D. Carmichael®® generalized many of Lucas’®® ®® theorems and 
corrected several. The following is a generalization (p. 46) of Fermat’s 
theorem: If a+jS and are integers and afi is prime to n=pi"\ . .pk°k^ 
where pi, ..Pk are distinct primes, is divisible by n 
when X is the 1. c. m. of 

(3) (“> /3)pJ (i=l,. .k). 

Here, if p is an odd prime, the symbol (a, fi)p denotes 0, +1 or—1, according 
as {a—fiy is divisible by p, is a quadratic residue of p, or is a quadratic non¬ 
residue of p; while (a, 0)2 denotes +1 if ajS is even, 0 if a0 is odd and a+0 is 
even, and —1 if a0{a-^0) is odd. In particular, if </> is the product of the 
numbers (3), w^=0(mod n), which is the corrected form of the theorem of 
Lucas’ 

Relations have been noted®® between terms of recurring series defined by 
one of the equations 

U^ + U^+l=Un^2, Un+Ur,+2 = Un+3, Vn+l-^Vr,-i = 4cV^, 1^2 = 3. 

E. Malo®^ and Prompt®® considered the residues with respect to a prime 
modulus 10m=‘=l of the series Uq, Ui, W2 = Wo+Wi,..., Wn = ^rt-.i+t^n-.2* 

A. Boutin®® noted relations between terms of Pisano’s series. 
A. Agronomof®^ treated ttn = 'Wn-i+^^n-.2H“^n-~3- 
Boutin®® and Malo®® treated sums of terms of Pisano’s series. 
A. Pellet®® generalized Lucas’®® law of apparition of primes. 
A. G4rardin®'^ proved theorems on the divisors of terms of Pisano’s 

series. 

®’L’mterni6diaire des math., 20, 1913, 51, 53-6. 
88Sphinx-Oedipe, 7, 1912, 33-38, 145-155. 
^Annals of Math., (2), 15, 1913, 30-70. 
*°Math. Quest. Educat. Times, 23, 1913, 55; 25, 1914, 89-91. 
®^L’interm6diaire des math., 21, 1914, 86-8. 
^Ibid., 22, 1915, 31-6. “Mathesis, (4), 4, 1914, 125. 
®*Mathesis, (4), 4, 1914, 126. “L’interm^diaire des math., 23, 1916, 42-3. 
®«L^mtermediaire des math., 23,1916, 64-7 ®^Nouv. Ann. Math., (4), 16, 1916, 361-7. 
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E. Piccioli®® noted that in Pisano’s series 1,1, 2, 3,., 

according as k is odd or even. 
T. A. Pierce^^ proved for the two functions IliiKl of the roots a,- 

of an equation with integral coefficients properties analogous to those of 
Lucas’ Unj Vn- 

Algebraic Theory of Recurring Series. 

J. D. Cassini^®® and A. de Moivre^®^ treated series whose general term is 
a sum of a given number of preceding terms each multiplied by a constant. 
D. Bernoulli^^^ used such recurring series to solve algebraic equations. J. 
Stirling^®^ permitted variable multipliers. 

L. Euler^®^ studied ordinary recurring series and their application to 
solving equations. 

J. L. Lagrange^®® made the subject depend on the integration of linear 
equations in finite differences, treating also recurring series with an additive 
term. The general term of such a series was found by V. Riccati.^^® 

P. S. Laplace^®^ made systematic use of generating functions and applied 
recurring series to questions on probability. 

J. L. Lagrange^^^ noted that if ...+iV'2/t+n = 0 is the 
recurring relation and if A-\-Bt+... +^^ = 0 has distinct roots a, jS,. . 
the general term of the series ir --x i ^ ax t -r. . t 

roots he stated a formula 
the latter gave a new procesi 

Lagrange^had noticed 
general term of a recurring series . 
direct process than that of Malfatti. 

Pietro Paoli^^^ investigated the sum of a recurring series. 

®®Periodico di Mat., 31, 1916, 284-7. 
99Annals of Math., (2), 18, 1916, 53-64. 

^ooHistoire acad. roy. sc. Paris, ann^e 1680, 309. 
loiphil. Trans. London, 32, 1722, 176; Miscellanea analytica, 1730, 27, 107-8; Doctrine of 

chances, ed. 2,1738, 220-9. 
“®Comm. Acad. Petrop., 3, ad annum 1728, 85-100. 
^®®Methodus differentialis, London, 1730, 1764. 
if^introductio in analysin infinitorum, 1748, I, Chs. 4, 13, 17. Cf. C. F. Degen, Det K. Danske 

Vidensk. Selskabs Afhand., 1, 1824, 135; Oversigt.. .Forhand., 1818-9, 4. 
Miscellanea Taurinensia, 1, 1759, Math., 33-42; Oeuvres, I, 23-36. 

^®®M6m, prdsent^s div. sav, Paris, 5, 1768, 153-174; Comm. Bonon., 5, 1767. Cf. M. Cantor, 
Geschichte Math., IV, 1908, 261. 

io^M6m. sav. 6.iT. ac. sc. Paris, 6, ann6e 1771, 1774, p. 353; 7, ann6e 1773, 1776; Oeuvres, VIII, 
5-24, 69-197. Mdrn. ac. roy. sc, Paris, ann6e, 1779,1782, 207; Oeuvres, X, 1-89 (ann6e 
1777, 99). 

losNouv. M6m. Ac. Berlin, amide 1775, 1777, 183-272; Oeuvres, IV, 151. 
i"®Mem. mat. fia. soc. Ital., 3, 1786-7, 571. 
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J. B. Fourier’s^^^® error in applying recurring series to the solution of 
numerical equations was pointed out by R. Murphy.^^^^ 

P. Frisiani^^^'' applied recurring series to the solution of equations. 
E. Betti^^^"* employed doubly recurring series to solve equations in two 

unknowns, by extending the method of Bernoulli. 
W, Scheibner^^^ considered a series with a three-term recursion formula, 

deduced the linear relation between any three terms, not necessarily con¬ 
secutive, and applied his results to continued fractions and Gauss^ hyper- 
geometric series. 

D. Andr4^^^ deduced the generating equation of a recurring series 7, 
from that of a recurring series C/f, given a linear homogeneous relation 
between the terms Vi multiplied by constants and the terms ?/«, ..., 
multiplied by polynomials in n. 

D. Andr6^^^ considered a series i7i, U2,..with 

where are given functions of n, being an integer gn—1, while 
is a given function of k, n. It is proved that 

cr„= s p)u„ p) ...., 

where the second summation extends over all sets of integral solutions of 

ki+k2+... =n-p, ni=ki+pj n< = A;<+nf__i 

Application is made to eight special types of series. 
D. Andr6^^^ discussed the sums of the series whose general terms are 

n{n+l).. .{n+p — iy (an-bid) l' 

where n„ is the general term of any recurring series. 
G. de Longchamps^^®" proved the first result by Lagrange^^® and 

expressed as a symmetric function of the distinct roots a, jd,.... 
reduced C/n=Ail7„_i-|-..+A^17n-^-b/(n), where / is a polynomial of de¬ 
gree Pj to the case /(n)^0 by making a substitution 11^= 7n+Xon^+ .. + Xp, 

C. A. Laisant^^^® studied the ratios of consecutive terms of recurring 
series, in particular for Pisano^s series. 

Analyse des Equations, Paris, 1831. 
i“»PhU. Mag., (3), 11, 1837, 38-40. 
i“cEffemeridi Astronomiche di Milano, 1850, 3. 
“i^Annali di Sc. Mat. Fis., 8, 1857, 48-61. 
i^^Berichte Gesell. Wiss. Leipzig (Math.), 16, 1864, 44-68. 
ii^BuU. Soc. Math. France, 6, 1877-8, 166-170. 
^^^Ann. sc. I’^cole norm, sup., (2), 7, 1878, 375-408; 9, 1880, 209-226. Summary in Bull, des 

Sc. Math., (2), 1,1, 1877, 350-5. 
i“Ck)mptes Rendus Paris, 86, 1878, 1017-9; 87, 1878, 973-5. 
iiwAssoc. frang., 9, 1880, 91-^. 

1885, II, 94-100. 
“6«Bull. des Sc. Math., (2), 5, I, 1881, 218-249. 
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M. d^Ocagne^^® considered the recurring series Ui with 

f7„ = aiC/^_l + tt2C^n—2+• • •+Gpt^n-p> 

and with ?7o,..?7p_i arbitrary; and the series u with the same law, but 
with w» = 0 (^ = 0,..p—2), = Then 

C^n= C^0^n+p-l + (t^l—aif^o)^n+p-2+ • • • + (t^p-1 ““ %C^p~2 ^o)^n* 

For each series he found the sum of any fixed number of consecutive terms 
and the linoit of that sum. 

M. d^Ocagne^^"^ treated t^p4.n='Wp+„_i4-... d-Wn* He^^® discussed the con- 
vergents to a periodic continued fraction by use of tz„=atU„_i+(— 
1/0 = 0, Wi = l. 

•L. Gegenbauer^^®® found the solution of g^Pn =2VP^i+iA»P«-2, 
where 

Po=l, Pl = 2^ (7n = 2-“^/i„, ^n = 22^+^+-n^2n. 

S. Pincherle^^®*' applied p„+i(x) = (ic--a„)(x—i8Jp„(x) to developments in 
series. 

E. Study^^®® showed how to express the general term of a recurring series 
as a sum of the general terms of simpler recurring series, exhibited explicitly 
the general term when n = 3, and annliAd irho, -- 

M. d'Ocagne^^® considered 

(Ai,..., Ap). 

of order p and generating ec 

Set 

Qi{x) =x'+Ai3^~'^+ ...H-A, ^ix) = Y^i+Qi(x)Y^2+ ■ ■ ■ +Qp-i(x)Yo. 

The existence of a common root a of 4>(a;) = 0, "PCx) =0 is a necessary and 
sufficient condition that the F’s satisfy also a law of recurrence of order 
p —1, viz., (Qi(a),..Qp-.i(a)), and then the initial law of recurrence is 
said to be reducible to one of order p — l. 

M. d’Ocagne^^® considered the series with the law of recurrence 

wV = a*o^^n-l+a^^/V2+... +a%^iu\_p, 

and generating equation 

... -aVi, 

“oNouv. Ann. Math., (3), 2, 1883, 220-*6; 3, 1884, 65-90; 9, 1890, 93-7; 11, 1892,526-532 (5, 
1886, 257-272). Bull. Soc. Math. France, 12, 1883-4, 78-90 (case p=2); 15, 1886-7, 
143-4; 19,1890-1, 37-9 (minor applications). Nieuw Archief voor Wiskunde, 17, 1890, 
229-232 (applications to sin ma as function of sin a and cos a). 

“’Comptes Rendus Paris, 104, 1887, 419-420; errata, 534. 
mbid., 108, 1889, 499-501. 
ii®“Sitzungsber Ak. Wias. Wien (Math.), 97, Ila, 1888, 82-89. 
i^®*^Atti R. Accad. Lincei, Rendiconti, 5, 1889,1, 8-12, 323-7. 
‘“cMonatshefte Math. Phys., 2, 1891, 22-54. 
i^Bull. Soc. Math. France, 20, 1892, 121-2. 
^*°Comptes Rendus Paris, 115, 1892, 790-2; errata, 904. 
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such that, for i; = 0, Uq=^ ... =Uj,_2 = 0, Wp_i = l. If <Ao(^)=0iW* • 

summed for all combinations of n’s for which ni +... =n. Application 
is made to the sum of a recurring series with a variable law of recurrence. 

M. d’Ocagne^^^ reproduced the last result, and gave a connected expo¬ 
sition of his earlier results and new ones. 

R. Perrin^^^ considered a recurring series U of order p with the terms 
UojUiy..The general term of the kth derived series of U is defined to be 

u ik)^ 
n 

Wn+1 • • • '^n+k 

^n+2 • • • '^n+k+1 

I ^n-f^n+ifc+1 • • • Un^2k | 

If any term of the (p —l)th derived series is zero, the law of recurrence of 
the given series U is reducible (to one of lower order). If also any term of 
the (p—2)th derived series is zero, continue until we get a non-vanishing 
determinant; then its order is the minimum order of U. This criterion is 
only a more convenient form of that of d’Ocagne.^^®’ 

E. Maillet^^^ noted that a necessary condition that a law of recurrence 
of order p be reducible to one of order p—^ is that 4>(a;) and of 
d’Ocagne^^^ have q roots in common, the condition being also sufficient if 
4>(x) = 0 has only distinct roots. He found independently a criterion anal¬ 
ogous to that of Perrin^^^ and studied series with two laws of recurrence. 

J. Neuberg^^^ considered Un = aUn^i-^hun-2 and found the general term 
of the series of Pisano. 

C. A. Laisant^^^ treated the case F a constant of d’Ocagne’s^^^ 

S. Latt^s^^® treated t^n+p=/('^n+p-i,• •where / is an analytic 
function. 

M. Amsler^^^ discussed recurring series by partial fractions. 
E. Netto,^^’^“ L. E. Dickson,^^"^^ A. Ranum,^^® and T. Hayashi^^® gave 

the general term of a recurring series. N. Traverso^^^ gave the general 
term for Qn= (n-“p(Qn-i+Qn-2) and aUn-i+bUn-2- 

Traverso^^^ applied the theory of combinations with repetitions to express, 
as a function of p, the solution of Qm^piQm-i-hQm-2-i' • • • +Qm-n)- 

^^Uour. de T^cole polyt., 64, 1894, 151-224. 
i22Comptes Rendus Paris, il9, 1894, 990-3. 
i23M6m. Acad. Sc. Toulouse, (9), 7, 1895,179-180, 182-190; Assoc, frang., 1895, Ill, 233 [report 

with miscellaneous Dioph. equations of order n, Vol. 11]; Nouv. Ann. Math., (3), 14, 
1895, 152-7, 197-206. 

i24Mathesis, (2), 6, 1896, 88-92; Archivo de mat., 1, 1896, 230. 
i“Bull. Soc. Math. France, 29,1901,145-9. ^Comptes Rendus Paris, 150,1910, 1106-9. 
127NOUV. Ann. Math., (4), 10, 1910, 90-5. '^vaMonatshefte Math. Phys., 6,1895,285-290. 
i^^i'Amer. Math. Monthly, 10, 1903, 223-6. 
i28BuU. Amer. Math. Soc., 17,1911, 457-461. 
129/bfd., 18, 1912, 191-2. 
^30Periodico di Mat.. 9. 9 3-4. 101-4! 14.5-160. 
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F. Nicita^®^ found many relations like 1)” between 
the two series ai = l, 02=2,.., a„=|(an+i—a„_i),...; ?>i = l, 52 = 3,..., 
5n = 2 (5n>+-l ^n—l), • • • • 

Reference may be made to the text by A. Vogt^^® and to texts and papers 
on difference equations cited in Encyklopadie der Math. Wiss., 1,2, pp. 918, 
935; Encyclop4die des Sc. Math., I, 4, 47-85. 

A. Weiss^^ expressed the general term 4 oi a recurring series of order 
r linearly in terms of 4-i, • • •, where q is an integer. 

W. A. Whitworth^^® proved that, if Co+CiX+C2X^-l-... is a convergent 
recurring series of order r whose first 2r terms are given, its scale of relation 
and sum to infinity are the quotients of certain determinants. 

H. F. Scherk^^® started with any triangle ABC and on its sides con¬ 
structed outwards squares BCEDj ACFG^ ABJH. Join the end points to 
form the hexagon DEFGHJ. Then construct squares on the three joining 
lines EFj GH, JD and again join the end points to form a new hexagon, etc. 
If Ui, hi, Ci are the lengths of the joining lines in the tth set, a^j^i = 5a„_i — 
The nth term is found as usual. 

Sylvester^®^ solved na,= nx-i+(x--l)(x~2)nx_2. A. Tarn^^® treated 

recurring series connected with the approximations to V2, Vs, V5. 
V. SchlegeP® called the development of (1 —x—x^—... — x”)“^ the 

(n—l)th series of Lam6; each coefficient is the sum of the n preceding. 
For n= 2, the series is that of Pisano. 

References on the connection between Pisano’s series and leaf arrange¬ 
ment and golden section. (Kepler, Braun, etc.) have been collected by R. C. 
Archibald. 

Papers by C. F. Degen,^^^ A. F. Svanberg,^^^ and J. A. were not 
available for report. 

i^Periodico di Mat., 32, 1917, 2^0-210, 226-36. 
^^^Theorie der Zahlenreihen u. der Reihengleichung, Leipzig, 1911,133 pp. 
i34Jour. fiir Math., 38, 1849, 148-157. 
“^Oxford, Cambridge and Dublin Mess. Math., 3, 1866, 117-121; Math. Quest. Educ. Times, 

3, 1865, 100-1. 
“®Abh. Naturw. Vereine zu Bremen, 1, 1868, 225-236. 
i^^Math. Quest. Educ. Times, 13, 1870, 50. 
^38Math. Quest, and Solutions, 1, 1916, 8-12. 
139E1 Progreso Mat., 4, 1894, 171-4. 
i^oAmer. Math. Monthly, 25, 1918, 232-8. 
i^iM^m. Acad. Sc. St. P^tersbourg, 1821-2, 71. . 
i42]^ova Acta R. Soc. Sc. Upsaliensis, 11, 1839, 1. 
^^^jBrtekez. a Math., Magyar Tudom. Ak. (Math. Memoirs Hungarian Ac. Sc.), 3, 1875, No. 1. 



CHAPTER XVIII. 
THEORY OF PRIME NUMBERS. 

Existence of an Infinitude of Primes. 

Euclid^ noted that, if p were the greatest prime, and M=2*3*5.. .p is 
the product of all the primes then M+1 is not divisible by one of 
those primes and hence has a prime factor >p, thus involving a contra¬ 
diction. 

L. Euler^ deduced the theorem from the [invalid] equation 

the left member being infinite and the right finite if there be only a finite 
number of primes. Euler^ concluded from the same equation that ^^the 
number of primes exceeds the number of squares.’^ 

Euler^ modified Euclid’s^ argument slightly. The number of integers 
<M and prime to M is <t>(M) =2*4... (p—1), so that they include integers 
which are either primes >p or have prime factors >p. 

The theorem follows from Tchebychef’s^®^ proof of Bertrand's postulate. 
L. Ejonecker® noted that we may rectify Euler's^ proof by using 

where p ranges over all primes >1. If there were only a finite number of 
p's, the product would remain finite when s approaches unity, while the 
sum increases indefinitely. He also gave the proof a form leading to an 
interval from m to n within which there exists a new prime however great 
m is taken. 

R. Jaensch® repeated Euler's^ argument, also ignoring convergency. 
E. Kummer^ gave essentially Euler's^ argument. 
J. Perott® noted that, if Pi,..Pn are the primes there are 2” 

integers which are not divisible by a square, and 

"s)>4-T)>r 
Hence there exist infinitely many primes. 

L. Gegenbauer®® proved the theorem by means of 2)nirn~“*. 

^Elementa, IX, 20; Opera (ed., Heiberg), 2, 1884, 388-91. 
nntroductio in analysin infinitorum, 1, Cb. 15, Lausanne, 1748, p. 235; French transl. by 

J. B. Labey, 1, 218. 
®Comm. Acad. Petrop., 9, 1737, 172-4. 
^Posthumous paper, Comm. Arith. Coll., 2, 518, Nos. 134-6; Opera Postuma, I, 1862, 18. 
®Vorlesungen iiber Zahlentheorie, I, 1901, 269-273, Lectures of 1875-6. 
•Die Schwierigeren Probl. Zahlentheorie, Progr. Rastenburg, 1876, 2. 
’Monatsber. Ak. Wiss. Berlin fiir 1878, 1879, 777-8. 
*Bull. sc. math, et astr.', (2), 5, 1881, I, 183-4. 
8«Sitzung8ber. Ak. Wiss. Wien (Math.), 95, II, 1887, 94-6; 97, Ha, 1888, 374-7. 
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J. Perott® applied the theory of commutative groups to show that, 
if gi,..gn are primes, there exist at least n—1 primes between % and 

T. J. Stieltjes^® expressed the product P of the primes 2, 3,..., p as a 
product AB of two factors in any way. Since A+P is not divisible by 
2,.,., p, there exists a prime >p. 

J. Hacks^^ proved the existence of an infinitudf f primes by use of his 
formula (Ch. XI, Hacks^^) for the number of integers not divisible 
by a square. 

C. 0. Boije af Gennas^^ showed how to find a prime exceeding the nth 
primep„>2. Take P=2’'‘3*'».. .p/”, each Vi'^1, Express P as a product 
of relatively prime factors 5, P/5, where Q =' P/5—5> 1. Since Q is divisible 
by no prime ^ p„, it is a product of powers of primes Pn+2. Take 5 so 
that Q< (p„-f 2)^. Then Q is a prime. 

Axel Thue^® proved that, if (l+n)*'<2'‘, there exist at least k+1 
primes <2”. 

J. Braun^^“ noted that the sum of the inverses of the primes ^ p is, for 
p^ 5, an irreducible fraction > 1; hence the numerator contains at least one 
prime >p. He attributed to Hacks a proof by means of n(l —l/p^)”^ = 

=tt^/G ; the product would be rational if there were only a finite number 
of primes, whereas tt is irrational. 

E. Cahen^^ proved the “identity of Euler’' used by Kronecker.® 
Stormer^®® gave a proof. 
A. L^vy^® took a product P of of the first n primes Pi,..Pn and 

the product Q of the remaining n—k. Then P+Q is either prime or has 
a prime factor >Pn; likewise for P—Q. If p„ is a prime such that Pn+2 is 
composite, there exist at least n primes >p„, but ^l+PiP2. • Pn- When 

Pi ' ' Pn 
is reduced to a simple fraction, the numerator has no factor in common with 
Pi.. .p„; hence there is a prime >p„. He considered (pp. 242-4) the primes 
defined by a;(a; —I) — ! for consecutive integers x. 

A. Auric^® assumed that Pi,.. ., p^ give all the primes. Then the number 
of mtegers<?i=npi“i is 

<«-+»< CS)‘ 
which is small in comparison with n, whence k increases indefinitely with n. 

»Amer. Jour. Math., 11, 1888, 99-138; 13, 1891, 235-308, especially 303-5. 
“Annales fac. sc. de Toulouse, 4, 1890, 14, final paper. 
“Acta Math., 14, 1890-1, 335. 
^^Ofversigt K. Sv. Vetenskaps-Akad. Forhand., Stockholm, 50, 1893, 469-471. 
“Archiv for Math, og Natur., Kristiania, 19, 1897, No. 4, 1-5. 
woDas Fortschreitungsgesetz der Primzahlen durch eine transcendente Gleichung exakt 

dargestellt, Wiss. Beilage Jahresbericht, Gymn., Trier, 1899, 96 pp. 
“filaments de la th^orie des nombres, 1900, 319-322. 
“Bull, de Math. £l4mentaires, 15, 1909-10, 33-34, 80-82. 
“L’interm^diaire des math., 22, 1915, 252. 
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G. M^trod^’^ noted that the sum of the products n—1 at a time of the 
first n primes > 1 is either a prime or is divisible by a prime greater than the 
nth. He also repeated Euler's^ proof. 

Infinitude of Primes in a General Arithmetical Progression. 

L. Euler^° stated that an arithmetical progression with the first term 
unity contains an infinitude of primes. 

A. M. Legendre^^ claimed a proof that there is an infinitude of primes 
2mx+n if 2m and ijl are relatively prime. 

Legendre^^ noted that the theorem wrould foUowr from the following 
lemma: Given any two relatively prime integers A, C, and any set of k odd 
primes 0, X,..., co [not divisors of A], and denoting the zth. odd prime by 

then among consecutive terms of the progression A —C, 2A — C, 
3A — C,... there occurs at least one divisible by no one of the primes 
6,,, .j 0). Although Legendre supposed he had proved this lemma, it is 
false [Dupr4^®]. 

G. L. Dirichlet^® gave the first proof that mz-^n represents infinitely 
many primes if m and n are relatively prime. The difficult point in the 
proof is the fact that 

where x(^) = ^ if n, k have a 
x(n) is a real character difi 
the classes of residues prime 
by use of the classes of binary q\ 

Dirichlet^^ extended the theoren 
E. Heine^® proved ''without higLv.* v>cui.\juLj.u.o jL/iiiijiiiet o xe&ulu 

4(J>+a)‘+''^(&+2a)‘+'+ ■ • I'a 

A. Desboves^® discussed the error in Legendre’s^^ proof. 
L. Durand^^ gave a false proof. 
A. Dupr6^® showed that the lemma of Legendre^^ is false and gave 

(p. 61) the following theorem to replace it: The mean number of terms, 

‘^L'interm^diaire des math., 24, 1917, 39-40. 
“oOpusc, analytica, 2, 1785 (1775), 241; Comm. Arith., 2, 116-126. 

ac. sc. Paris, ann^e 1785, 1788, 552. 
“Th^orie des nombres, ed. 2, 1808, p. 404; ed. 3, 1830, II, p. 76; Maser, 2, p. 77. 
“Bericht Ak. Wiss. Berlin, 1837, 108-110; Abhand. Ak. Wiss. Berlin, Jahrgang 1837, 1839, 

Math., 45-71'; Werke, 1, 1889, 307-12, 313-42. French transl., Jour, de Math., 4, 1839, 
393-422. Jour, fiir Math., 19, 1839, 368-9; Werke, 1, 460-1. Zahlentheorie, §132, 1863; 
ed. 2, 1871; 3, 1879; 4, 1894 (p. 625, for a simplification by Dedekind). 

Abhand. Ak. Wiss. Berlin, Jahrgang 1841, 1843, Math., 141-161; Werke, 1, 509-532. French 
transl., Jour, de Math., 9, 1844, 245-269. 

“Jour, fiir Math., 31, 1846, 133-5. 
“Nouv. Ann. Math., 14, 1855, 281. 

1856, 296. 
2®Examen d’une proposition de Legendre, Paris, 1859. Comptes Rendus Paris, 48, 1859, 487. 
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prime to X,..., CO, contained in consecutive terms of the progression 
is where P=3*5-M1..Q=(3~l)(6-1).... 

J. J. Sylvester^^ gave a proof. 
V. I. Berton^^® found h such that between x and xh occur at least 2g 

primes each of one of the 2g linear forms 2py+riy where n, • • ♦, ^2^ are the 
integers <2p and prime to 2p. 

C. Moreau^*^ noted the error in Legendre’s^^ proof. 
L. Kroneckeri (pp. 442-92) gave in lectures, 1886-7, the following 

extension* of Dirichlet^s theorem (in lectures, 1876-6, for the case m a 
prime)* If p is any given integer, we can find a greater integer p such that, 
if m, r are any two relatively prime integers, there exists at least one prime 
of the form hm+r in the interval from ju to j/ (p. 11, pp. 465-6). Moreover 
(pp. 478-9), there is the same mean density of primes in each of the <p{in) 
progressions where the are the integers <m and prime to m. 

I. Zignago^^ gave an elementary proof. 
H. Scheffleri^ devoted 31 pages to a revision of Legendre’s insufficient 

proof and gave a process to determine all primes under a given limit. 
G. Speckmann®® failed in an attempt to prove the theorem. 
P. Bachmann^ gave an exposition of Dirichlet’s^® proof. 
Ch. de la Vall^e-Poussitf® obtained without computations, by use of 

the theory of functions of a complex variable, a proof of the difficult point 
in Dirichlet’s^^ proof. He^® proved that the sum of the logarithms of the 
primes hk-\-l^x equals x/(l)(k) asymptotically and concluded readily that 
the number of primes hk+l^x equals, asymptotically, 

1 x 
(f> (x) log X 

F. Mertens*^ proved the existence of an infinitude of primes in an arith¬ 
metical progression by elementary methods not using the quadratic reci¬ 
procity theorem or the number of classes of primitive binary quadratic forms. 
He supplemented the theorem by showing how to find a constant c such 
that between x and cx there lies at least one prime of the progression for 
every x^l [cf. Kronecker,® pp. 480-96]. 

2®Proc. London Math. Soc., 4,1871,7; Messenger Math., (2), 1,1872, 143-4; CoU. Math. Papers, 
2 1908 712—3 

2®flComptes Rendus Paris, 74, 1872, 1390. 
30N0UV, Ann. Math., (2), 12, 1873, 323-^. Also, A. Piltz, Diss., Jena, 1884. 
♦Improvements in the exposition were made by the editor, Hensel (cf. p. 508). 
siAnnah di Mat., (2), 21,1893, 47-55. 
“Beleuchtung u, Beweis eines Satzes aus Legendre’s Zahlentheorie [II, 1830, 76], Leipzig, 1893. 
»3Archiv Math. Phys., (2), 12, 1894, 439-441. Cf. (2), 15, 1897, 326-8. 
3^Die analytische Zahlentheorie, 189.4, 51, 74^88. 
“M4m. couronnSs.. .acad. roy. sc. Belgique, 53, 1895-6, No. 6, 24-9. 
3«Amiales de la soc. sc. de BruxeUes, 20, 1896, II, 281-361. Cf. 183-256, 361-397; 21, 1897, I, 

1-13, 60-72; II, 251-368. 
5’Sitzungsber. Ak. Wiss. Wien (Math.), 106, 1897, II a, 254-286. Parts published earlier, 

ibid., 104,1895, Ha, 1093-1121,1158-1166; Jour, fiir Math., 78,1874, 46-62; 117, 1897, 
169-184. 
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F. Mertens^® gave a proof, still simpler than his®^ earlier one, of the 
difficult point in Dirichlet^s^^ proof. The proof is very elementary, involv¬ 
ing computations of finite sums. 

F. Mertens^® gave a simplification of Dirichlet's^ proof of his general¬ 
ization to complex primes. 

H. Teege^® proved the difficult point in Dirichlet's®® proof. 
E. Landau^^ proved that the number of prime ideals of norm ^ a: of an 

algebraic field equals the integral-logarithm Li(x) asymptotically. By 
specialization to the fields defined by V —T or V^, we derive theorems*® 
on the number of primes 4:k^l or Qk^l ^x. 

L. E. Dickson*® asked if aiU+hi (t=l,..m) represent an infinitude of 
sets of m primes, noting necessary conditions. 

H. Weber** proved Dirichlet^s®* theorem on complex primes. 
E. Landau*® simplified the proofs by de la Vall4e-Poussin®® and Mertens.®* 
E. Landau*®’*^ simplified Dirichlet’s®® proof. Landau*® proved that, 

if k, I are relatively prime, the number of primes ky+l^x is 

t=-<!''logx, 

where 7 is a constant depending on k. For 0 see Pfeiffer®® of Ch. X. 
A. Cunningham*® noted that, of the N primes approximately 

N/<j>{n) occur in the progressions nx+a, a<n and prime to n, and gave a 
table showing the degree of approximation when jR = 10® or 6-10^, with 
n even and < 1928. Within these limits there are fewer prunes nx+l than 
primes ncc+a, a> 1. 

Infinitude op Primes Represented by a Quadratic Form. 

G. L. Dirichlet®® gave in sketch a proof that every properly primitive 
quadratic form (a, h, c), a, 2b, c with no common factor, represents an infini¬ 
tude of primes. 

Dirichlet®® announced the extension that among the primes represented 
by (a, h, c), an infinitude are representable by any given linear form Mz+N, 
with M, N relatively prime, provided a, b, c, M, N are such that the linear 
and quadratic forms can represent the same number. 

•*Sitzungsber. Ak. Wiss. Wien (Math.), 108, 1899, II a, 32-37. 
517-556. Polish transl. in Prace mat. fiz., 11, 1900, 194r-222. 
Math. GeseU. Hamburg, 4, 1901, 1-11. 

"Math. Aimalen, 56, 1903, 665-670. 
"Sitzungsber. Ak. Wiss. Wien (Math.), 112, 1903, IIa, 502-6. 
"Messenger Math., 33, 1904, 155. 
"Jour, fur Math., 129, 1905, 35-62. Cf. p. 48. 
"Sitzungsber. Akad. Berlin, 1906, 314-320. 
"Rend. Circ. Mat. Palermo, 26, 1908, 297. 
^^Handbuch .. .Verteilung der Primzahlen, I, 1909, 422-35. 
"Sitzungsber. Ak. Wiss. Wien (Math.), 117, 1908, Ha, 1095-1107. 
«Proc. London Math. Soc., (2), 10, 1911, 249-253. 
KKTk_j Tiri_r»_-(o.4n An cn. i_i CAO ...4- Ajrn4.U 01 
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H. Weber®^ and E. Schering^® completed Dirichlet^s®® proof of his jfirst 
theorem. A. Meyer®® completed Dirichlet^s®® proof of his extended theorem. 

F. Mertens®® gave an elementary proof of Dirichlet^s®® extended theorem. 
Ch. de la Vall^e-Poussin^® proved that the number of primes ^ x repre¬ 

sentable by a properly primitive definite positive or indefinite®^ irreducible 
binary quadratic form is asymptotic to gx/logXy where gr is a constant; and 
the same for primes belonging also to a linear form compatible with the 
character of the quadratic form. 

L. Kronecker® (pp. 494*“6) stated a theorem on factorable forms in 
several variables which represent an infinitude of primes. 

Elementary Proofs op the Existence op an Infinitude op Primes m^+l, 

FOR Any Given m. 

V. A. Lebesgue®® gave a proof for the case m a prime, using the fact 
that • +2/”*”^ has besides the possible factor m only prime 
factors 21km+l. A like method applies®®'* to 2mz—\, 

J. A. Serret®® gave an incomplete proof for any m. 
F. Landry®^ gave a proof like Lebesgue^s.®® If B is the largest prime 

2hm+l and if x is the product of all of them, is divisible by no one 
of them. Since (a;”*+l)/(a;+l) has no prime divisor not of the form 
2hm-\-l, there exists at least one >B. 

A. Genocohi®® proved the existence of an infinitude of primes mz^ 1 
and n'z^l for n a prime by use of the rational and irrational parts of 

(a+VS)*- 
L. Kronecker® (pp. 440-2) gave in lectures, 1875-6, a proof for the case 

m a prime; the simple extension in the text to any m was added by Hensel. 
E. Lucas gave a proof by use of his (Lucas,®® p. 291, of Ch. XVII). 
A. Lef^bure®® of Ch. XVI stated that the theorem follows from his 

results. 
L. Kraus®® gave a proof. 
A. S. Bang^® and Sylvester®® proved it by use of cyclotomic functions. 
K. Zsigmondy^® of Ch. VII gave a proof. Also, E. Wendt,and 

Birkhoff and Vandiver®® of Ch. XVI. 

•’Math. Annalen, 20, 1882, 301-329. EUiptische Functionen (= Algebra, III), ed. 2, 1908, 
613-6. 

“Werke, 2, 1909, 357-365, 431-2. 
”Jour. filr Math., 103, 1888, 98-117. Exposition by Bachmaim,^^ pp. 272-307. 
®°Sitzungsber. Ak. Wiss. Wien (Math.), 104, 1895, Ila, 1093-1153, 1158. Simplification, 

ibid., 109,1900, Ha, 415-480. 
®^Cf. E. Landau, Jahresber. D. Math. Verein., 24, 1915, 250-278. 
“Jour, de Math., 8, 1843, 51, note. Exercices d’analyse num4rique, 1859, 91. 
““Jour, de Math., (2), 7, 1862, 417. 
“Jour, de Math., 17,1852, 186-9. 
•’Deuxi4me m4moire sur la th4orie des nombres, Paris, 1853, 3. 
“Annali di mat., (2), 2, 1868-9, 256-7. Cf. .Genocchi^®- of Ch. XVII. 
•®Casopis Math, a Fys., 15, 1886, 61-2. Cf. Fortschritte, 1886, 134-5. 
'^“Tidflskrift for Math., (5), 4, 1886, 70-80, 130-7. See Bang“- Ch. XVI. 
''Hour, for Math., 115, 1895, 85. 
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N. V. Bervi^^ proved that the ratio of the number of integers cm+-l not 
>n and not a product of two integers of that form to the number of all 
primes not >n has the limit unity for oo. 

H. C. Pocklington^® proved that, if n is any integer, there is an infinitude 
of primes mn+1, an infinitude not of this form if n>^ and an infinitude 
not of the forms mn^l if or n>6. 

E. Cahen"^^ proved the theorem for m an odd prime. 
J. G. van der Corput^® proved the theorem. 

Elementary Proofs op the Existence op an Infinitude of Primes in 

Special Arithmetical Progressions. 

J. A. Serret®^^or the common difference 8 or 12, and for lOx+9. 
V. A. Lebesgue®*^ for 4n=fcl, %n+k (A; = l, 3, 5, 7). Lebesgue®^ for the 

same and 6n—1. Also, by use of infinite series, for the common 
difference 8 or 12. 

E. Lucas®^ for 5n+2, 8n+7. 
J. J. Sylvester®® for the difference 8 or 12 and®^ for 1, p a prime. 
A. S. Bang®® for the differences 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60. 
E. Lucas®® for 471=^1, 6n —1, 8n+5. 
R. D. von Stemeck®^ for on—1. 
K. Th. Vahlen®® for mz+1 by use of Gauss^ periods of roots of unity. 

Also, if m is any integer and p a prime such that n—1 is divisible bv a biorber 
power of 2 than 0(m) is, while 
form m'px-\-km+l represents ai 
are mx+1 and 2px—1. 

J. J. Iwanow®® for the difference 8 t 
E. Cahen^^ (pp. 318-9) for 4a;=tl, 6x- 

508) for the same forms. M. Bauer®® for on —1. 
E. Landau^^ (pp. 436-46) for kn^l. 
I. Schur®^ proved that if (mod k) and if one knows a prime ><l>(k)/2 

of the form kz+l, there exists an infinitude of primes kz-{-l; for example, 

2”2:+2”’“^=‘=l, 87n2+2m+l, 8w2!+4m+l, 8m0+6m+L 

where m is any odd number not divisible by a square. 
K. Hensel®2 for 4n=ti, 6n=tl, 8n-l, 8n±3, 12n-l, lOn-1. 

’^Mat. Sbomik (Math. Soc. Moscow), 18, 1896, 519. 
’’Proc. Cambr. Phil. Soc., 16, 1911, 9-10. ^Nouv. Ann. Math., (4), 11,1911, 70-2. 
’®Nieuw Archief voor Wiskunde, (2), 10, 1913, 357-361 (Dutch). 
®oNouv. Ann. Math., 15, 1856, 130, 236. 
“^Exercices d’analyse num6rique, 1859,91-5,103-4,145-6. 
®2Amer. Jour. Math., 1,1878,309. “Comptes Rendus Paris, 106, 1888, 1278-81, 1385-6. 
*<As80c. franQ. av, sc., 17, 1888, 11, 118-120. 
“Nyt Tidsskrift for Math., Kjobenhavn, 1891, 2B, 73-82. 
®*Th4orie des nombres, 1891, 353-4. ®’'Monatahefte Math. Phys., 7, 1896, 46, 
®®Schriften phys.-okon. Gesell. Konigsberg, 38, 1897, 47. 
®®Math. Soc. St. Petersburg, 1899, 53-8 (Russian). 
®°Jour. fiir Math., 131, 1906, 265-7; transl. of Math, ^s Phys. Lapok, 14, 1905, 313. 
®^Sitzung8ber. Berlin Math. Gesell., 11, 1912, 40-50, with Archiv M. P. 
®®Zahlentheorie, 1913, 304-5. 
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R. D. CannichaeP for p^n—1 (p an odd prime) and 2*’*3n—l. 
M. Bauer^s®^ paper was not available for report. 

Polynomials Representing Numerous Primes. 

Chr. Goldbach^°° noted that a polynomial f{x) cannot represent primes 
exclusively, since the constant term would be unity, whereas it is f{p) 
in f (x+p). 

L. Euler^®^ proved this by noting that, if /(a) —A^ /(nA+a) is divisible 
by A, 

Euler^®^ noted that x^—x-\-4:l is a prime for a; = 1,..., 40. 
Euler^°® noted that x^-\-x+VJ is a prime for a; = 0, 1,.. 15 and [error] 

16; x^+a;+41 is a prime for x=0, 1, ..., 15. 
A. M. Legendre^®^ noted that a;^+a;4-41 is a prime for 1,..., 39, 

that 2x^+29 is a prime for a; = 0, 1,..., 28, and gave a method of finding 
such functions. [Replacing rr by x+l in Euler’s^®^ function, we get 
x^-f-x+41.] If /3^-f 2(a+/d)a;~13a;^ is a square only when rr=0, and a and 
/3 are relatively prime, then a^+2ajd+14/3^ is a prime or double a prime. 
He gave many such results. 

Chabert^^“ stated that 3n^+3n+l represents many primes for n small. 
G. Oltramare^®® noted that ij?+ax+'b has no prime divisor and 

hence is a prime when <iLt^, if c?—Ab is a quadratic non-residue of each of 
the primes 2, 3,..., p. The function a;^-l-aa;+(a^-|-163)/4 is suitable to 
represent a series of primes. Taking x = 0y a=^u/v,lLe stated that -f- 163t;^ 
or its quotient by 4 gives more than 100 primes between 40 and 1763. 

H. LeLasseur^*^® verified that, for a prime A between 41 and 54000, 
x!^-{-xA-A does not represent primes exclusively for x = 0, 1,..., A—2. 

E. B. Escott^*^^ noted that rc^+x+41 gives primes not only fora; = 0,1, 
..., 39, but also^®® for a; = — 1, — 2,..., —40. Hence, replacing x by a:—40, 
we get a:^—79a;+1601, a prime for a; = 0, 1,..., 79. Several such functions 
are given. 

Escott^'’® examined values of A much exceeding 54000 in x^-\-x+A 
without finding a suitable A >41. Legendre’s^®^ first seven formulas for 
primes give composite numbers for a = 2, the eighth for a = 3, etc. Escott 
foundthata;^+a;^+17isaprimefora;=— 14, —13,..., +10. Ina;^—a;^ —17 
replace a; by a; —10; we get a cubic which is a prime for a; = 0, 1,..., 24. 

^Annals of Math , (2), 15, 1913, 63-5. "Archiv Math. Phys., (3), 25, 1916, 131~i. 
looCorresp. Math. Phys. (ed.. Fuss), I, 1843, 595, letter to Euler, Nov. 18, 1752. 
^o^Novi Comm. Acad. Petrop., 9, 1762-3, 99; Comm. Arith., 1, 357. 
^“M4m. de Berlin, aim6e 1772, 36; Comm. Arith., 1, 584. 
i<«Opera postuma, 1,1862,185. In Pascal’s Repertorium Hoheren Math., German transl. by 

Schepp, 1900,1, 518, it is stated incorrectly to be a prime for the first 17 values of x; like¬ 
wise by Legendre, Th^orie des nombres, 1798, 10; 1808, 11. 

iMTh^orie des nombres, 1798, 10, 304-312; ed. 2, 1808, 11, 279-285; ed. 3, 1830, I, 248-255; 
German transl. by Maser, I, 322-9. i°^“Nouv. Ann. Math., 3, 1844, 250. 

^®®M6m. rinst, Nat. Genevois, 5, 1857, No. 2, 7 pp. 
i“Nouv. Corresp. Math., 5, 1879, 371; quoted in Pinterm^diaire des math., 5, 1898, 114-5. 
i°’L’mterm4diaire des math., 6,1899, 10!~11. 
i««The same 40 primes as for a: *0,..., 39, as noted by G. Lemaire, ibid., 16. 1909 n 197 
io*76id., 17, 1910, 271. 
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E. Miot^'o stated that a:"-2999a;+2248541 is a prime for 1460ga;^ 1539 
G. Frobenius^ii proved that the value of ^+xy+viP is a prime if 

that of (y odd) if <p(2p+l), that of a?+2py^ (x odd) if <p(p+2)’ 
and noted cases in which an indefinite form 3?+xy-qf is a prime ' 

L^vyi® examined a:2-a;-l. considered f(x)^ax^+abx-^c, where 
a, h, c axe integers, 0^a<4. Giving to x the values 0, 1, 2, ,.we get a 
set of integers such that, for every n exceeding a certain value, f(n) is 
either prime or admits a prime factor which divides a number /(p), where 
p<n. For example, if for f(x) =^x^-x+U we grant that /(O), /(I), /(2), 
/(3) and /(4) are primes, we can conclude that f(x) is prime for ±^40. 
Likewise when 41 is replaced by 11 or 17. Again, 2a;2-2a:+19 and 3a;2-3a; 
+23 give successions of 18 and 22 primes respectively. Bouniakowsky^ 
of Ch. XI considered polynomials which represent an infinitude of primes. 

Braun^®“ proved that there exists no quotient of two polynomials such 
that the greatest integer contained in its numerical value is a prime for all 
integral values >k of the variable. 

Goldbach’s Empirical Theorem: Evert Even Integer is a Sum op 

Two Primes. 

Chr. Goldbach^2° conjectured that every number N which is a sum of two 
primes is a sum of as many primes including unity as one wishes (up to iV), 

and that every number >2 is a sum of three primes." 
L. Euler^^i remarked that the first conjecture can be confirmed from an 

observation previously communicated to him by Goldbach that every even 
number is a sum of two primes. Euler expressed his belief in the last state¬ 
ment, though he could not prove it. From it would follow that, if nis 
even, n, n—2, n—4,... are the sums of two primes and hence n a sum of 
3, 4, 5,.. . primes. 

R. Descartes^^^ stated that every even number is a sum of 1, 2 or 3 
primes. 

E. Waring^^^ stated Goldbach^s theorem and added that every odd 
number is either a prime or is a sum of three primes. 

L. Euler^^^ stated without proof that every number of the form 4n+2 
is a sum of two primes each of the form 4fc+l, and verified this for 4n+2 
^110. 

“°L’interm4diaire des math., 19,1912, 36. [From X*+-X'+41 by setting X=x—15(X).] 
i“Sitz. Ak. Wise. Berlin, 1912, 966-980. 

Soc. Math. France, 1911, Comptes Rendus des Stances, Extract in Sphinx-Oedipe, 
9, 1914, 6-7. 

i20Corresp. Math. Phys. (ed., P. H. Fuss), 1, 1843, p. 127 and footnote; letter to Euler, June 7, 
1742. 
p. 135; letter to Goldbach, June 30,1742. Cited by G. Enestrom, Bull. Bibl. Storia Sc. 

Mat. e Fis., 18, 1885, 468. 
^®*Posthumous manuscript, Oeuvres, 10, 298. 
^“Meditationes Algebraicae, 1770, 217; ed. 3,1782, 379. The th^rem was ascribed to Waring 

by O. Terquem, Nouv. Ann. Math., 18, 1859, Bull. Bibl. Hist., p. 2; by E. Catalan, Bull. 
Bibl. Storia Sc. Mat. e Fis., 18,1885,467; and by Lucas, Th6orie des Nombres, 1891,353. 

i^^Acta Acad. Petrop., 4, II, 1780 (1775), 38; Comm. Arith. CoU., 2,1849, 135. 
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A. Desboves^^® verified that every even number between 2 and 10000 is a 
sum of two primes in at least two ways; while, if the even number is the 
double of an odd number, it is simultaneously a sum of two primes of the 
form 4n+l and also a sum of two primes of the form 4n—1. 

J. J. Syivester^^® stated that the number of ways of expressing a very 
large even number n as a sum of two primes is approximately the ratio of the 
square of the number of primes <n to ti, and hence bears a finite ratio to the 
quotient of n by the square of the natural logarithm of n. [Cf. StackeP^^]. 

F. J. E. Lionnet^*^ designated by x the number of ways 2a can be 
expressed as a sum of two odd primes, by y the number of ways 2a can be 
expressed as a sum of two distinct odd composite numbers, by z the number 
of odd primes <2a, and by q the largest integer ^a/2. He proved that 
q+x—y'\-z and argued that it is very probable that there are values of n 
for which 3^=2/+2, whence x=0. 

N. V. Bougaief^*’^® noted that, if M{n) denotes the number of ways n can 
be expressed as a sum of two primes, and if Bi denotes the ?;th prime >1, 

i 

G. Cantor^^® verified Goldbach^s theorem up to 1000. His table gives 
the number of decompositions of each even number < 1000 as a sum of two 
primes and lists the smaller prime. 

V. Aubry^^® verified the theorem from 1002 to 2000. 
R. Haussner^®® verified the law up to 10000 and announced results 

observed by a study of his^^^ tables up to 5000. His table I (pp. 25-178) 
gives the number v of decompositions of every even n up to 3000 as a sum 
x+y of two primes and the values of x {x^y)^ as in the table by Cantor. 
His table II (pp. 181-191) gives v for 2<n<5000; this table and further 
computations enable him to state that Goldbach^s theorem is true for 
n< 10000. Let P(2p+1) be the number of all odd primes 1, 3, 5,... which 
are ^2p+l, and set 

5(2p+l)=P(2p+l)~2P(2p-l)+P(2p-.3), P(^l)=.P(-3)=0. 

Then the number of decompositions of 2n into a sum of two primes x, y 

(x^y) is n-l 

S P(2n-2p-l)^(2p+l). 
P"0 

If € = 1 or — 1 according as n is a prime or not, 

,^ = §’ip(2n-2p-l)|(2p+l)+5- 
_P-1_2_ 

mNouv. Ann. Math., 14, 1855, 293. 
“«Proc. London Math. Soc., 4, 1871-3, 4-6; Coll. M. Papers, 2, 709-711. 
“■'Nouv. Ann. Math., (2), 18, 1879, 356. Cf. Assoc, frang. av. sc., 1894, I, p. 96. 
»7<*Comptes Rendus Paris, 100, 1885, 1124. 
“•Assoc, frang. av. sc., 1894, 117-134; l’interm6diaire des math., 2, 1895, 179. 
“®L’interm6diaire des math., 3, 1896, 75; 4, 1897, 60; 10, 1903, 61 (errata, p. 166, p. 283). 
“•Jahresbericht Deutschen Math.-Verein., 5, 1896, 62-66. Verhandlungen Gesell. Deutscher 

Naturforscher u. Aerzte, 1896, II, 8. 
uiNova Acta Acad. Caes. Leop.-Carolinae, 72,1899, 1-214. 
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Table III gives the values of P and ^ for each odd number 2p+l<5000. 
P. StackeP^* noted that Lionnet’s^^^ argument is not conclusive, and 

designated by (r2n the number of all decompositions of 2n as a sum of two 
primes (counting p+e and q+p as two different decompositions). If 
Pjfc is the number of all odd primes from 1 to k, 

I G2n^’'=(i:x^r = (l-^r(I 
n-1 \„-0 / 

where p ranges over all the odd primes. Approximations to G2n for n large 
in terms of Euler^s <jf)-function are 

P\n ^ [P(2w-V^)-^(V^)f n 

<i> (2n) n — V2n </> (2n) ’ 

where P(k) is written for P* for convenience in printing. Lack of agree¬ 
ment with Sylvester^^® is noted; cf. Landau.^^® It is stated that the 
truth of Goldbach^s theorem is made very probable [but not proved^®®]. 

Sylvester^®®" stated that any even integer 2n is a sum of two primes, one 
>n/2 and the other <3n/2, whence it is possible to find two primes whose 
difference is less than any given number and whose sum is twice that number. 

F. J. Studnicka^^^ discussed Sylvester’s statement. 
Sylvester^^^“ stated that, if N is even and X,..., co are the 6 primes > JiV 

and <IN (excluding if it be prime), the number of ways of composing 
N [by addition] with two of these primes is the coefficient of in 

(l^+ (ra2). 

E. Landau^®® noted that Stackel’s approximation to Gn is 

" log^n0(n) 

and showed that S;,i(rn has the true approximation Ja^/log^a;. By a longer 
analysis, he proved that ,if we use Stackel’s to form the sum, we do not 
obtain a result of the correct order of magnitude. 

L. Ripert^®® examined certain large even numbers. 
E. Maillet^®^ proved that every even number ^350000 (or 10® or 9-10®) 

is, in default by at most 6 (or 8 or 14), the sum of two primes. 
A. Cunningham^®® verified Goldbach’s theorem for all numbers up to 

200 million which are of the forms 

(4-3)”, (4-5)”, 2-10”, 2^(2" =f1), a•2^ 2a”, (2a)”, 2(2” =f a), 

for a= 1, 3, 5, 7, 9, 11. He reduced the formula of Haussner for to a form 
more convenient for computation. 

^“GSttingen Nachrichten, 1896, 292-9. “^Encyclop^die des sc. math., I, 17, p. 339, top. 
“^“Nature, 55, 1896-7, 196, 269. i«Ca8opis, Prag, 26, 1897, 207-8. 
maEduc. Times, Jan. 1897. Proof by J. Hammond, Math. Quest. Educ. Times, 26,1914,100. 
’^“Gdttingen Nachrichten, 1900, 177-186. 
*“L'interm6diaire des math., 10,1903, 67, 74, 166 (errors, p. 168). 

12, 1905, 107-9. ««Messenger Math., 36,1906, 17-30. 
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J. Merlin^*® considered the operation A(&, a) of effacing from the natural 
series of integers all the numbers ax+h. The effect of carrying out one of 
the two sets of operations A(ri, pi), pj, A(r\, p*), t = 2,..n, where 
Pn is the nth prime >1, is equivalent to constructing a crib of Eratosthenes 
up to pn. It is stated that in every interval of length vp^ log p^ there is at 
least one number not effaced, if p is independent of n. It is said to follow 
that, for a sufficiently large, there exist two primes having the sum 2a. 
Under specified assumptions, there exist an infinitude of n^s for which 
2?n+i--*Pn = 2. 

M. Vecchi^^® wrote Pn for the nth odd prime and called p^ and ph+a of 
the same order if p^h>Ph+a- Then 2n>132 is a sum of two primes of the 
same order in [J(<^+I)] ways if and only if there exist numbers not 
>n—pw+i-|-l and not representable in any of the forms 

ai+3x, hi+5x,..., h+PmX (^==l, 2), 

where p^+i is the least prime p for which p^+p> 2n, and the known terms a^, 
... are the residues with respect to the odd prime occurring as coefficient of x. 

*G. Giovannelli, Sul teorema di Goldbach, Atri, 1913. 

Theorems Analogous to Goldbach^s. 

Chr. Goldbach^^^ stated empirically that every odd number is of the 
form p+2a^, where p is a prime and a is an integer ^ 0. L. Euler^^® verified 
this up to 2500. Euler^^ verified for ?n = 8iV'+3^187 that m is the sum 
of an odd square and the double of a prime 4n+l. 

J. L. Lagrange^^^ announced the empirical theorem that every prime 
4n--l is a sum of a prime 4m+1 and the double of a prime 4/i+l. 

A. de Polignac^^® conjectured that every even number is the difference 
of two consecutive primes in an infinitude of ways. His verification up 
to 3 million that every odd number is the sum of a prime and a power of 
2 was later^^®“ admitted to be in error for 959. 

M. A. Stern^^^ and his students found that 53-109 = 5777 and 13-641 
= 5993 are neither of the form p+2a^ and verified that up to 9000 there are 
no further exceptions to Goldbach's^^^ assertion. Also, 17, 137, 227, 977, 
1187 and 1493 are the only primes <9000 not of the form p+25^, 6>0. 
Thus all odd numbers <9000, which are not of the form 6n+5, are of the 
form p+2b^. 

E. Lemoine^®° stated empirically that every odd number >3 is a sum 
of a prime p and the double of a prime tt, and is also of the forms p—2t 
andpTr'—p'. 

i®®Comptes Rendus Paris, 153,1911, 616-8. Bull. des. sc. math., (2), 39,1, 1915, 121-136. In 
a prefatory note, J. Hadamard noted that, while the proof has a lacuna, it is suggestive. 

i^°Atti Reale Accad. Lincei, Rendiconti, (5), 22, II, 1913, 654-9. 
^“Corresp. Math. Phys. (ed.. Fuss), 1, 1843, 595; letter to Euler, Nov. 18,1752. 

p. 596, 606; Dec. 16, 1752. 
i^’Nouv. M4m. Ac. Berlin, annde 1775, 1777, 356; Oeuvres, 3, 795. 
i«Nouv. Ann. Math., 8, 1849, 428 (14,1855, 118). 
^^•‘^Comptes Rendus Paris, 29, 1849, 400, 738-9. 
i*®Nouv. Ann. Math., 15,1856, 23. “°L’interm4diaire des math., 1, 1894, 179; 3,1896, 161 
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H. Brocard^®^ gave an incorrect argument by use of Bertrand’s postulate 
that there exists a prime between any two consecutive triangular numbers. 

G. de Rocquigny^®^ remarked that it seems true that every multiple of 
6 is the difference of two primes of the form 6n+l. 

Brocard^^® verified this property for a wide range of values. 
L. Kronecker^^ remarked that an unnamed writer^^® had stated empiri¬ 

cally that every even number can be expressed in an infinitude of ways as 
the difference of two primes. Taking 2 as the number, we conclude that 
there exist an infinitude of pairs of primes differing by 2. 

L. Ripert^^® verified that every even number < 10000 is a sum of a prime 
and a power, every odd one except 1549 is such a sum. 

E. Maillet^®® commented on de Polignac’s conjecture that every even 
number is the difference of two primes. 

E. Maillet^®^ proved that every odd number <60000 (or 9*10®) is, in 
default by at most 8 (or 14), the sum of a prime and the double of a prime. 

Primes m Arithmetical Progression. 

E. Waring^®® stated that if three primes (the first of which is not 3) are 
in arithmetical progression, the common difference d is divisible by 6, 
except for the series 1, 2, 3 and 1, 3, 5. For 5 primes, the first of which is 
not 5, d is divisible by 30; for 7 primes, the first not 7, d is divisible by 
2-3*5*7; for 11 primes, the first not 11, d is divisible by 2-3*5*7-ll; and 
similarly for any prime number of primes in arithmetical progression, a 
property easily proved. TTfinOft hv nnnt.i-minllTr «(f1r1inor +.r\ a -rtrnTviia -m-A 

reach a number divisible by 
J. L. Lagrange^®® proved th 

metical progression, the difference u x 
being 5, d is divisible by 30. He stat 
2*3-5*7, unless the first one is 7, and thcxx 
tive prime terms in a progression whose aiucicnut; i» nut u 

E. Mathieu^®^ proved Waring’s statement. 
M. Cantor^®® proved that if P=2*3.. .p is the product of all the primes 

up to the prime p, there is no arithmetical progression of p primes, no one 
of which is p, unless the common difference is divisible by P. He conjec¬ 
tured that three successive primes are not in arithmetical progression unless 
one of them is 3. 

A. Guibert^®® gave a short proof of the theorem stated thus: Let 
Pij.,Pnhe primes ^ 1 in arithmetical progression, where n is odd and > 3. 
Then no prime >1 and is a Pi, If n is a prime and is a Pi, then t= 1. 

“^L’intermediaire des math., 4, 1897, 169. Criticism by E. Landau, 20, 1913, 153. 
5, 1898, 268. i®*L'interm^diaire des mai., 6, 1899, 144. 

“®Vorlesungen iiber Zahlentheorie, 1, 1001, 68. 
w‘L’interm6diaire des math., 10, JL903, 217-8. 12, 1905, 108. 

13, 1906, 9. ^“Meditationes Algebraicae, 1770; ed. 3, 1782, 379. 
iwNouv. M4m. Ac. Berlin, ann^e 1771,1773,134-7. “^uv. Ann. Math., 19,1860, 384-6. 
“■Zeitschrift Math. Phys., 6, 1861, 340-3. 
“•Jour, de Math., (2), 7, 1862, 414-6. 
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The common difference is divisible by each prime and by n itself if n is 
a prime not in the series. 

H. Brocard^®®" gave several sets of five consecutive odd integers, four of 
which are primes. Lionnet^®®*' had asked if the number of such sets is un¬ 
limited. 

G. Lemaire^^® noted that 7+30n and 107+30n (n = 0, 1,..5) are all 
primes; also 7+lfiOn and 47+210n (n = 0,..6). 

E. B. Escott^^^ found conditions that a4-210n (n = 0, 1,..9) be all 
primes and noted that the conditions are satisfied if a = 199. 

Devignot^^^ noted the primes 47+21071, 71+23107^ (7^ = 0, 1,..6). 
A. Martin^^® gave numerous sets of primes in arithmetical progression. 

Tests for Primality. 

The fact that 7^ is a prime if and only if it divides 1 + (7^ — 1)! was noted 
by Leibniz,^ Lagrange,^® Genty,^^ Lebesgue,®® and Catalan,^®® cited in Chap¬ 
ter III, where was discussed the converse of Fermat’s theorem in furnishing 
a primality test. Tests by Lucas, etc., were noted in Ch. XVII. Further 
tests have been noted under Cipolla^^^ and^^® Cole^^® of Ch. I, Sardi^^® of 
Ch. Ill, Lambert® of Ch. VI, Zsigmondy^® of Ch. VII, Gegenbauer®®* of 
Ch. X, Jolivald®^ of Ch. XIII, Euler,^®"^® Tchebychef,®® Schaffgotsch^®® and 
Biddle^"" of Ch. XIV, Hurwitz^' and Cipolla"® of Ch. XV. See also the 
papers by von Koch,^®® Hayashi,®®®’ ^® Andreoli,^^^ and Petrovitch^® of the 
next section. 

L. Euler^^’ gave a test for the primality of a number iV‘=47^+1 which 
ends with 3 or 7. Let E be the remainder on subtracting from 2N the next 
smaller square (Sti)^ which ends with 5. To R add 100(n-“l), 100(71—3), 
100(71 — 5),_ If among E and these sums there occurs a single square, 
V is a prime or is divisible by this square. But if no square occurs or if 
two or more squares occur, N is composite. For example, if V=637, 
(577)^ = 1225, jR=49; among 49, 649, 1049, 1249 occurs only the square 49; 
hence V is a prime or is divisible by 49 [V = 49*13]. 

W. L. Kraft^^® noted that Gtti+I is a prime if m is of neither of the forms 
6x7/=*= (x+2/); 6771 — 1 is a prime if m9^^xy-^x — y, 

A. S. de Montferrier^^® noted that an odd number A is a prime if and 
only if A+A;^ is not a square for A; = 1, 2, ..., (A — 3)/2. 

M. A. Stern^®® noted that n is a prime if and only if it occurs n — 1 times 
in the (ti—l)th set, where the first set is 1, 2, 1; the second set, foriped by 
inserting between any two terms of the first set their sum, is 1, 3, 2, 3, 1; etc. 

iflaaNouv. Ann. Math., (3), 15, 1896, 389-90. loa^Nouv. Ann. Math., (3), 1, 1882, 33(6. 
i’®L’mterm6diaire des math., 16, 1909, 194-5. 

17, 1910, 285-6. 
^’’^Jhid., 45-6. ^’3gchool Science and Mathematics, 13, 1913, 793-7, 
”®Doubt as to the sufficiency of Cole’s test has been expressed, Proc. London Math. Soc., (2). 

16, 1917--8. ^’■'Opera postuma, I, 188-9 (about 1778). 
”*Nova Acta Acad. Petrop., 12, 1801, hist., p. 76, mem., p. 217. 
^^®Corresp. Math. Phys. (ed., Quetelet), 5, 1829, 94-6. 
““Jour, ftir Math., 55, 1858, 202. 
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L. Gegenbauer^®^ noted that 4n+l is a prime if 

r4n+l—i/H r4n—3—j/H 

L 42/ J”L J 
for every odd y, Ky^ V4n+1, and gave two similar tests for 4n+3. 

D. Gambioli^®^ and 0. Meissner^®^ discussed the impracticability of the 
test by the converse of Wilson’s theorem. 

J. Hacks^®^ gave the characteristic relations for primes p: 
P-. 

S 
y> 

K. Zsigmondy^®® noted that a number is a prime if and only if not 
expressible in the form aia2+fiiP2j where the a’s and jS’s are positive integers 
such that ai+a2=Pi—fi2- An odd number C is a prime if and only if 

is not a square for A; = 0, 1,..[(C—9)/6]. 
R. D. von Stemeck^®®" gave several criteria for the (s+l)th prime by use 

of partitions into elements formed from the first s primes. 
H. Laurent^®®® noted that 

^g2«T(») /»-!)/ -1) 

equals 0 or 1 according as z is composite or prime. 
Fontebasso^®® noted that iV' is a prime if not divisible by one of the 

primes 2, 3,..p, where iV'/p<p+4. 
H. Laurent^®^ proved that if we divide 

Fn{x) = 

/»i 
by (x“ —1)/(a;—1), the remainder is 0 or according as n is composite or 
prime. If we take x to be an imaginary root of a;’* = 1, F^ix) becomes 0 or 

in the respective cases. 
Helge von Koch^®® used infinite series to test whether or not a number is a 

power of a prime. 
Ph. Jolivald^®® noted that, since every odd composite number is the 

difference of two triangular numbers, an odd number iV* is a prime if and 
only if there is no odd square, with a root ^ (2JV’—9)/3, which increased by 
SN gives a square. 

S. Minetola^®® noted that, if k—n is divisible by 2n+l, then 2A;+1 is 
composite. We may terminate the examination when we reach a prime 
2n+l for which (/:—n)/(2n+l)^n. 

A. Bindoni^®^ added that we may stop with a prime giving (k—n) 

“^Sitzungsber. Ak. Wiss. Wien (Math.), 99, Ila, 1890, 389. 
iwPeriodico di Mat., 13, 1898, 208-212. i«Math. Naturw. Bifitter, 3, 1906, 100 
'“Acta Mathematica, 17, 1893, 205. '“Monatsh. Math. Phys., 5, 1894, 123-8. 
'““Sitzungsber. Ak. Wise. Wien (Math.), 105, Ila, 1896, 877-882. 
'“^Comptes Rendus Paris, 126, 1898, 809-810. '“Suppl. Periodico di Mat., 1899, 53. 
w^Nouv. Ann. Math., (3), 18, 1899, 234r-241. 
'••dfversigt Veten.-Akad. FCrhand., 57, 1900, 789-794 (French). 
i«*L’interm4diaire des math., 9, 1902, 10, 1903, 20. 
'•®I1 Boll. Matematica Giom. Sc.-Didat., Bologna, 6, 1907, 100-4. '•'/6td., 165-6. 
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(2n+l)gn+2a--l, where a is the diJfference between 2n+l and the next 
greater prime. 

F. Stasi^^2 noted that AT is a prime if not divisible by one of the primes 
2, 3,.. p, where iV/p<p+2a and a is the difference between p and the 
prime just >p. 

E. Zondadari^^^ noted that 

sin^Tx « TTX 
{Trxy(l —31?)^n^2n sin Tx/n 

is zero when x = =^p (pa prime) and not otherwise. 
A. Chiari^^^ cited known tests for primes, as the converse of Wilson^s 

theorem. 
H. C. Pocklington^®® employed single valued functions <l>{x), ^(x), 

vanishing for all positive integers x (as = ^ = sin tx) , and real, finite and not 
zero for all other positive values of x. Then, for the gamma function T, 

^2(x)+^(i±^) 

is zero if and only if x is a prime [Wigert^®®“]. 
E. B. Escott^®® stated that if we choose ai,..,, an, h so that the coefficients 

of x^^y ..., in the expansion of 

(a;^+airc”"”^+ .. . ■^anYix+h) 

are all zero, then all the remaining coefficients, other than the first and last, 
are divisible by 2nH-l if and only if 2n+l is a prime. 

J. de Barinaga^®^ concluded from Wilson^s theorem that if (P--l)!is 
divided by 1+2+ • •. +(P—1) =P(P—1)/2, the remainder is P—1 when P 
is a prime, but is zero when P is composite (not excluding P=4 as in the con¬ 
verse of Wilson^s theorem). Hence on increasing by unity the least positive 
residues 5*^0 obtained on dividing 1*2.. .x by 1+2+... +Xy for x= 1, 2, 
3,. .., we obtain the successive odd primes 3, 5,.... 

M. Vecchi^^® noted that, ifrc^l,i\r>2isa prime if and only if it be of 
the form 2V'—tt, where tt is the product of all odd primes ^p, p being 
the largest odd primed [VA], and where tt' is a product of powers of 
primes > p with exponents ^ 0. Again, A> 121 is a prime if and only if of 
the form tt—2V' where 2/^1. 

Vecchi^®^ gave the simpler test: iV'> 5 is a prime if and only if a—^3=^, 
a+/3=7r, for a, relatively prime, where tt is the product of all the odd 
primes S [VAT]* 

G. Rados^®® noted that p is a prime if and only if {2!3I. .. (p—2)! 
(p — 1)!} 1 (mod p). 

CarmichaeP® gave several tests analogous to those by Lucas. 

Boll. Matimatica Giorn. Sc.-Didat., Bologna, .6, 1907. 120-1. 
“sRend. Accad.Lincei, (5), 19,1910,1,319-324. '“'ll Pitagora, Palermo, 17,1910-11,31-33. 
^*®Proc. Cambr. Phil. Soc., 16, 1911, 12. i®®L’mterm6diaire des math., 19, 1912,•241-2. 
^•’Revista de la Sociedad Mat. Espafiola, 2, 1912, 17-21. 
“«Periodico di Mat., 29, 1913, 126-8. i»»Math. 48 Term4s ErtesitO, 34, 1916, 62-70* 
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Number op Primes Between Assigned Limits. 

Formula (5) of Legendre in Ch. V implies that if 0, X,... are the primes 

^ Vn, the number of primes Sn and > Vn is one less (if unity be counted a 
prime) than 

n-S ^ +Sh^ 

Statements or proofs of this result have been given by C. J. Hargreave,^®® 
E. de Jonqui^res,^°® R. Lipschitz,^®^ J. J. Sylvester,E. Catalan,F. Ro- 
gel,^^° J. Hannnond^^^ with a modification, H. W. Curjel,^^^® S. Johnson, 
and L. Kronecker.^^® 

E. MeisseP^^ proved that if B{m) is the number of primes (including 
unity) ^ m and if 

1=$(i)o[y] +#(2)0g]+... +$ Weg] • 

E. MeisseP^® wrote 4>(m, n) for Legendre^s formula for the number of 
integers S w which are divisible by no one of the first n primes Pi = 2,..., 

#(m, n) =#(m, n —1) 1^ 

Let 0(m) be the number of primes ^m. Then 

^(m)=4>(m, n) +n(fx+1) - - --- — 1 S 
Z «iB»l \Pn+»/ 

which is used to compute B{m) for m = A;-10®, A; = 1/2, 1, 10. 
MeisseP^® applied his last formula to find ^(10®). 
Lionnet^^®“ stated that the number of primes between A and 2A is 

<B{A), 
N. V. BougaieP^^ obtained from B{n)+B{n/2)+B{nj2^) +... =2[n/p], by 

inversion (Ch. XIX), 

=2 [^] - 2S [^] +3S [-... -2 g] +S [^] -2 + ..., 

where a, 6,. . . range over all primes. 

«6Lond. Ed. Dub. Phil. Mag., (4), 8, 1854, 118-122. 
*“®Comptes Rendus Paris, 95, 1882, il44, i343; 96, 1883, 231. 

95, 1882, 1344-6; 96, 1883, 58-61, 114-5, 327-9. 
mhid., 96, 1883, 463-5; CoU. Math. Papers, 4, p. 88. 
*o»M6m. Soc. Roy. Sc. de Li^ge, (2), 12, 1885, 119; Melanges Math., 1868, 133-5. 
^oArchiv Math. Phys., (2), 7, 1889, 381-8. ^^Messenger Math., 20, 1890-1, 182. 
JiiaMath. Quest. Educ. Times, 67, 1897, 27. 
2i2Nyt Tidsskrift for Mat., Kjobenhavn, 15 A, 1904, 41-4. 
2i3Vorlesungen liber Zahlentheorie, 1,1901, 301—4. *^qour. fiir Math., 48, 1854, 310-4. 
*i«Math. Ann., 2, 1870, 636-642. Outline in Mathews' Theory of Numbers, 273-8, and in G. 

Wcrtheim’s Elements der Zahlentheorie, 1887, 20-25. 
3, 1871, 523-5. Corrections, 21, 1883, 304. 

2i9«Nouv. Ann. Math., 1872, 190. Cf. Landau, (4), 1, 1901, 281-2. 
2i7Bull. sc. math, astr., 10,1, 1876, 16. Mat. Sbomik (Math. Soc. Moscow), 6, 1872-3, I, 180. 
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P. de Mond^sir^^® wrote Np for the number of multiples of the prime p 
which are < 2N and divisible by no prime < p. Then the number of primes 

<2N is N—SNp+w+l, where n is the number of primes <V2N. Also, 

where a, h,... are the primes <p. By this modification of Legendre^s 
formula, he computed the number 78490 of primes under one million. 

*L. Lorenz^^® discussed the number of primes under a given limit. 
Paolo Paci^^° proved that the number of integers divisible by a 

prime < \/n is 

where r, s,... range over all the H primes 2, 3,..., p less than \/n. Thus 
there are n—1 —N+H primes from 1 to n. The approximate value of N is 

“K-4+- 
K. E. Hoffmann^^^ denoted by N the number of primes <m, by X the 

number of distinct prime factors of m, by p the number of composite integers 
<m and prime to m. Evidently A'=<^>(Af) — p-f-X. To find N it suflSices 
to determine p. To that end he would count the products <m by twos, 
by threes, etc. (with repetitions) of the primes not dividing m. 

J. P. Gram^^^ proved that the number of powers of primes is 

PW-s[!]-22)[i]+3zi;i]-.,.. 

[Cf. Bougaief.^^T Of the two proofs, one is by inversion from 

f<»)+p(i)+i>(i)+. -^ii]+^[3+^[?]+ ■ 
E. Ces^ro^^^ considered the number x of primes ^qn and >n, where 

g is a fixed prime. Let coi,..., co„ be the primes ^ n other than 1 and q. 
Let q^^n<. Then 

A:+2+a:=5n-Sr25:l+2r-2^1-.. 
L^iW2j 

Let lr,s be the number of the [qn/(coi. . .wj] which give the remainder r when 
divided by q. Set Then 

x=== (k+l)q- {k+2) - ti+t2-h+- 

*^"Assoc. fran^. av. sc., 6, 1877, 77-92. Nouv. Corresp. Math., 6, 1880, 256. 
"•TidBskr. for Math., Kjobenhavn, (4), 2, 1878, 1-3. 
“°Sul numero de numeri primi inferiori ad un dato numero, Parma, 1879, 10 pp. 
“lArchiv Math. Phys., 64, 1879, 333-6. 
*®K. Daneke Vidensk. Selskabs. Skrifter, (6), 2, 1881-6, 183-288; r^surn^ in French, 289-308. 

See pp. 220-8, 296-8. 
«»M6m. Soc. Sc. Lihge, (2), 10, 1883, 287-8. 
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E. Catalan*^ obtained the preceding results for the case q=2; then <i is 
the number of odd quotients [2n/0], the number of odd quotients 
[2n/037)],..., where d, T, ■ • • are the primes >2 and ^ n. 

L. Gegenbauer*^' gave eight formulas, (29)-(36), of the type of 
Legendre’s, a special case of one being 

ti{x)=-\+Lk{n), 
<-l 

where x ranges over the integers divisible by no prime >\/n, while fx{x) is 
Merten's function (Ch. XIX) and Lk(n) is the sum of the A:th powers of all 
primes >\/n but ^n. The case ^ = 0 is Legendre's formula. The case 

= l is Sylvester's^®® 
E. MeisseP^® computed the number of primes <10®. 
Gegenbauer®®®® gave complicated expressions for 6(n)j one a generaliza¬ 

tion of Bougaief'sP^’ 
A. LuglP®^ wrote i) for the number of integers which are divis¬ 

ible by no one of the first i primes Pi = 2, p2 = 3,.... If t is the number of 
primes ^ -s/n and if s is the least integer such that 

the number \p{n) of primes excluding 1, is proved to satisfy 

^(n) = 
L^J ;=2 VLPyJ / y-» LPjJ 

This method of computing ^(n) is claimed to be simpler than that by 
Legendre or Meissel. 

J. J. van Laar®®^® found the number of primes <30030 by use of the 
primes <1760. 

C. Hossfeld®®® gave a direct proof of 

Pn=^r, n)=gr(pi-l).. .(p„-.l)=fc$(r, n), 

the case of the upper signs being due to Meissel.®^® 
F. RogeP^® gave a modification and extension of Meissel'formula. 
H. Scheffler^®® discussed the number of primes between p and q. 
J. J. Sylvester®®^ stated that the number of primes >n and <2n is 

Cb CIO CLuC 

if a, 6,... are the primes ^ \/2n and Hx denotes x when its fractional part 

Soc. Sc. LiSge, M^m. No. 1. 
^“Sitzungsber. Ak. Wiss. Wien (Math.), 89, 11, 1884, 841-850; 95, II, 1887, 291-6. 
226Math. Annalen, 25, 1885, 251-7. 
*^®®Sitzungsber. Ak. Wiss. Wien (Math,), 94, II, 1886, 903-10. 
“’Giornale di Mat., 26, 1888, 86-95. 
227a]sfieuw Archief voor Wisk., 16, 1889, 209-214. 
22®Zeit8chrift Math. Phys., 35, 1890, 382-4. 
”®Math. Annalen, 36, 1890, 304-315. “oBeitrage zur Zahlentheorie, 1891, 187. 
“^Lucas, Th^orie des nombres, 1891, 411-2. Proof by H. W. Curjel, Math. Quest. Educ. 

Times, 57, 1892, 113. 
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is 1/2, but the nearest integer to x in the contrary case. L. Gegenbauer^®^® 
gave a proof and generalization. 

Sylvester^^^^ noted that, if d(u) is the number of primes and if 
Pi ,..., Pi be the primes ^ and . ,gy those between ^/x and x, then 
xe(x/p)-xd(x/q)= {e(Vi)V- 

H. W. CurjeP^^® noted that the number of primes >p and <p^ is ^p 
if p is a prime ^5. We have only to delete from 1, 2,..., p^ multiples of 
2, 3, 5,..., or p. 

L. Gegenbauer^^^ considered the integers x divisible by no square and 
formed of the odd primes ^w, when Of the numbers [2n/x] 
which are of one of the forms 4s+1 and 4s+2, count those in which x is 
formed of an even number of primes and those in which x is formed of an 
odd number; denote the difference of the counts by a. He stated that the 
interval from w+1 to n (limits included) contains a—1 more primes than the 
interval from n+1 to 2n. 

He gave (pp. 89-93) an expression for the sum of the values taken by an 
arbitrary function g(x) when x ranges over the primes among the first n 
terms of an arithmetical progression; in particular, he enumerated the 
primes of the form 4s+l or 4s—1. 

F. Graefe^®^ would find the number of primes <7n = 10000 by use of 
tables showing for each prime p, 5^p^\/m, fhe values of n for which 
6n+l or 6n+5 is divisible by p. 

P. Bachmann^^^ quoted de Jonqui^res,^°® Lipschitz/®’' Sylvester,^®® and 
Ces^ro.^^® 

H. von Koch^^® wrote f(x) = (x—1) (x—2)... (x—n), 

e{x)- 
X»2L a J 

p(x)= 2 
f(x) 

{x-~pv)f'(fxv) 
(jiv^n)j 

and proved that, fcr positive integers 6(x) = 1 or 0 according as x is 
prime or composite. The number of primes is ^(1) + . ■ .+0(m). 

A. Baranowski^^® noted the formula, simpler than Meissel’s,^^® 

\l/(n)=<l>[n, ^(Vn)]+i^(\/n) —1 

for computing the number ^(n) of primes ^n. 
S. Wigert^^®" noted that the number of primes <n is 

^here/(:r)=sinVx+sinV 

*2i®Denkschr. Alcad. Wiss. Wien (Math.), 60, 1893, 47. 
“i^Math. Quest, Educ. Times, 56, 1892, 67-8. 

58, 1893, 127. 
232Monatshefte Math. Phys., 4, 1893, 98. 
“^Zeitschrift Math. Phys., 39, 1894, 38-50. 
*^Die Analytiache Zahlentheorie, 1894, 322-5. 
*“Compte8 Rendus Paris, 118, 1894, 850-3. 
“‘Bull. Int. Ac. Sc. Cracovie, 1894, 280-1 (German). Cf. *Rozprawy Akad. TJmiej., Cracovie, 

(2), 8, 1895, 192-219. 
awaOfversigt K. Vetensk. Ak. FOrhand., Stockholm, 52, 1895, 341-7. 
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since the only real zeros of f(x) are the primes. The integration extends 
over a closed contour enclosing the segment of the x-axis from 1 to n and 
narrow enough to contain no complex zero off(x). 

T. Levi-Civita^^®'’ gave an analytic formula, involving definite integrals 
and infinite series, for the number of primes between a and 

L. Gegenbauer^^^ gave formulas, similar to that by von Koch,^^® for the 
number of primes 4s=tl or 6s=tl which are ^n. 

A. P. Minin^®^“ wrote =0 or 1 according as y is composite or prime; 

0(n-l)=[n-2]+[n-5]+[n-7]+... -S^(x-l)[n-a:], 
summed for all composite integers x. 

Gegenbauer^^^^ proved that Sylvester^s^^ expression for the number of 
primes >n and <2n equals 'Ejj>(x)[m/x+l/2]j where x takes those integral 
values ^ 2n which are products of primes ^ \/2n. 

F. RogeP^® gave a recursion formula for the number of primes ^m. 
T. Hayashi^^® wrote Rf/q for the remainder obtained on dividing / by q. 

By Laurent^s^®^ result, — i^F„(a;)/(x"—l)n”“^=0 or 1 according as n is 
composite or prime. Hence the sum of the jth powers of the primes between 

Pn(.x) 

which becomes the number of primes for j = 0. If a is a primitive nth root 
of unity, Wilson’s theorem shows that 

2a^’"=nor0 (7n = (n—1)!+1), 
y-o 

according as n is prime or composite. Hence 1) = 1 or 0 
according as n is prime or composite. Thus 

n=»« 

is the number of primes between s and t. 
Hayashi^^° reproduced the second of his two preceding results and gave 

it the form 
{cos (w—n)0—r^cos m6}dd 

l-2r”cosn^+r^” 
= 27r or 0, 

according as n is prime or not, and gave a direct proof. 
J. V. Pexider^^^ investigated the number \l/{x) of primes ^x. Write 

23«i>Atti R. Accad. Lincei, Rendiconti, (5), 4, 1895, I, 303-9. 
"^Monatshefte Math. Phys., 7, 1896, 73. 
*37aBull. Math. Soc. Moscow, 9, 1898, No. 2; Fortschritte, 1898, 165. 
«7J>Monatshefte Math. Phys., 10, 1899, 370-3. 
«8Archiv Math. Phys., (2), 17, 1900, 225-237. 
**®Jour. of the Phys. School in Tokio, 9, 1900; reprinted in Abhand. Gesch. Math. Wise., 28, 
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Hence the number of integers Sx which are divisible by a, but not by 
a 1, CL 2,...,2, is 

[x/a] o—1 

<r.= s n(i-a,). 

'(x), of primes and >j' = [\/5] is [a:] —1—Let 
ie primes ^Va- Let be the greatest prime Then 

-l = [a:]- 
a«3A!=l /i=»2L LPmJJ 

jegendre’s formula. 
otained a formula to compute the number of primes 

)resupposing a knowledge of any primes >2, by consid- 
)Ositive integers n, ti', . • • for which 

l)gZ, (2n+l)(2n'+l)(2n"+l)^i^,.... 

‘-d with Legendre’s formula for the number A(z) of 
d the remainders t—\t\y and wrote Rn(z) for the sum 
inders. He obtained relations between values of the 
IS arguments z, and treated sums of such values. For 

.OXo)y 

2r (^v-t-1 (v) SiBp “1“ (jPn) f 

summed for the primes p between 1 and the nth. prime By special 
choice of the x's, we get formulas involving Euler’s </)-function (p. 1818), 
and the number or sum of the divisors of an integer. See RogeP^ of Ch. XI. 

G. Andreoli^ noted that, if a; is real, and T is the gamma function, 

^(x) = sin^^^^^^ ^^^+sinVa; 
X 

is zero if and only if a; is a prime. Hence the number of primes <n is 

1 f^^'(x)dx 

27rtji , ^{x) 
The sum of the A:th powers of the primes < n is given asymptotically. 

M. Petrovitch^® used a real function 6(x, u), like 

a cos 27ra:+6 cos 27ru—a — h, 

which is zero for every pair of integers x, u, and not if x or u is fractional. 
Let4>(a;) be the function obtained from 6{x, u) by taking 

{l+r(a:)}/a;. 

Thus y=^{x) cuts the rc-axis in points whose abscissas are the primes. 

*<2Giornale di Mat., 47, 1909, 305-320. 
s^fSitzungsber. Ak. Wise. Wien (Math.), 121, 1912, 11 a, 1785-1824; 122, 1913, 11 a, 669-700. 
2«E,endiconti Accad. Lincei, (5), 21, II, 1912, 404-7. Wigert.®“® 
*«Nouv. Ann. Math., (4), 13, 1913, 406-10. 
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E. Landau^® indicated errors in rintenn^diaire des math^maticiens on 
the approxinaate number of prunes ax+h<N, 

*M. Kossler^^ discussed the relation between Wilson^s theorem and the 
number of primes between two limits. 

See Ces^o®^ of Ch. V, Gegenbauer^^ of Ch. XI, and papers 62-81 of 
Ch. XIII. 

Bertrand's Postulate. 

J. Bertrand^®® verified for numbers <6 000 000 that for any integer 
n>6 there exists at least one prime between n—2 and n/2. 

P. L. Tchebychef^®^ obtained limits for the sum 6{z) of the natural 
logarithms of all primes and deduced Bertrand's postulate that, for 
x>Z, there exists a prime between x and 2a;—2. His investigation shows 
that for every €>1/5 there exists a number J such that for every x^^ there 
exists at least one prime between x and {l+€)x, 

A. Desboves/®^ assuming an unproved theorem of Legendre’s,con¬ 
cluded the existence of at least two primes between any number >6 and 
its double, also between the squares of two consecutive primes; also at 
least p primes between 2n and 2n—k for p and k given and n sufficiently 
large, and hence between a sufficiently large number and its square. 

F. Proth^®® claimed to prove Bertrand's postulate. 
J. J. Sylvester^®^ reduced Tchebychef's 6 to 0.16688. 
L. Oppermann^®® stated the unproved theorem that if n>l there exists 

at least one prime between n(n—1) and and also between and n(n+l), 
giving a report on the distribution of primes. 

E. C. Catalan^®® proved that Bertrand's postulate is equivalent to 

(2n)l 

n\ nl 

where a,..., tt denote the primes ^ n, while a is the number of odd integers 
among [2n/a], [2n/a^],.. h the number among [2n/^]y [2n/^%_ He 
noted (p. 31) that if the postulate is applied to 6 — 1 and 6+1, we see the 
existence between 26 and 46 of at least one even number equal to the sum 
of two primes. 

J. J. Sylvester^®^ reduced Tchebychef's e to 0.092; D. von Stemeck^®® 
to 0.142. 

2«L’interm6diaire des math., 20, 1913, 179; 15, 1908, 148; 16, 1909, 20-1. 
247Ca8opis, Prag, 44, 1915, 38-42. 
““Jour, de r6cole roy. polyt., cah. 30, tome 17, 1845,129. 

Ac. Sc. St. Ptosbourg, 7, 1854 (1850), 17-33, 27; Oeuvres, 1, 49-70, 63. Jour, de 
Math., 17, 1852, 366-390, 381. Cf. Serret, Cours d’alg^bre supirieure, ed. 2, 2, 1854, 
587; ed. 6, 2, 1910, 226. 

262NOUV. Ann. Math., 14, 1855, 281-295. 
^®2Nouv. Corresp. Math., 4, 1878, 236-240. 
“^Amer. Jour. Math., 4, 1881, 230. 
2660versigt Videnskabs Selsk. Forh., 1882, 169. 
»«>M6m. Soc. R. Sc. Li^ge, (2), 15, 1888 ( = M61anges Math., Ill), 108-110, 
“^Messenger Math., (2), 21, 1891-2, 120. 
2®®Sitzungsb. Akad. Wiss. Wien, 109, 1900, II a, 1137-58. 
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T. J. Stieltjes stated and E. Cahen^®® proved that we may take € to be 
any positive number however small, since Biz) is asymptotic^^®"® to z, 

H. Brocard^^® stated that at least four primes lie between the squares 
of two consecutive primes, the first being >3. He remarked that this and 
the similar theorem by Desboves^®® can apparently be deduced from Ber- 
trand^s postulate; but this was denied by E. Landau.^^^ 

E. Maillet^^^ proved there is at least one prime between two consecutive 
squares <9-10® or two consecutive triangular numbers ^9-10®. 

E. Landau^^ (pp. 89-92) proved Bertrand^s postulate and hence the 
existence of a prime between x (excl.) and 2x (incl.) for every 

A. Bonolis^^^ proved that, if a;>13 is a number of p digits and a is the 
least integer >V{10(p+l)}, there exist at least a primes between x and 
[■fx—2], which implies Bertrand’s postulate. If a;>13 is a number of 
p digits and ^ is the greatest integer <x/(3p—3), there are fewer than 
^ primes from x to 2]. 

Miscellaneous Results on Primes. 

H. F. Scherk^®® stated the empirical theorems: Every prime of odd 
rank (the nth prime 1, 2, 3, 5,... being of rank n) can be composed by 
addition and subtraction of all the smaller primes, each taken once; thus 

13 = 1+2-3-5+7+11= -1+2+3+5-7+11. 

Every prime of even rank can be composed similarly, except that the next 
earlier prime is doubled; thus 

17 = l+2-3~5+7-ll+2-13=-1-2+3-5+7-11+2-13. 

Marcker®®^ noted that, if a, 5,..., m are the primes between 1 and A 
and if p is their product, all the primes from A to A^ are given by 

and each but once if each numerator is positive and less than its denominator. 
0. Terquem®®® noted that the primes <n^ are the odd numbers not 

included in the arithmetical progressions q^, q^+2q, 5^+4^,... up to n^, 
for g=3, 5,..n —1. 

H. J. S. Smith^®^ gave a theoretical method of finding the primes between 
the xth prime and given the first x primes. 

C. de Polignac^®^° considered the primes in a progression Km-\-h, 

“®Comptes Rendus Paris, 116, 1893, 490; Th^se, 1894, 45; Ann. ficole Normale, (3), 11,1894. 
*’®L’interm4diaire des math., il, 1904, 149. 

20, 1913, 177. 
12, 1905, 110-3. 

^73Atti Ac. Sc. Torino, 47, 1911-12, 576-585. 
=*®°Jour. fiir Math., 10, 1833, 201. 

20, 1840, 350. 
«2Nouv. Ann. Math., 5, 1846, 609. 
*®®Proc. Ashmolean Soc., 3, 1857,128-131; Coll. Math. Papers, 1, 37. 
*83«Comptes Rendns Paris, 54, 1862, 158-9. 
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E. Dormoy^®^ noted that, if 2, 3,..., r, s, u are the primes in natural 
order, all primes (and no others) <u^ are given by 

2-3.. .stm+Diat-{-tCtD^a,-{-tsCtCJ)rar+ ... 
+ter.. .7-5(7AC,.. .CsDsfh+ts.. .5-3C,C,.. .C3, 

where Ct is found from the quotients obtained in finding the g. c. d. pf t 
and 2*3.. .rs by a rule which if applied to four quotients a, 6,,c, d consists in 
forming in turn 1, p = dc+l, p&+d, (p&+d)a+p = C^ Further, — 
the sign being + or — according as there is an odd or an even number of 
operations in the g. c. d. process. 

C. de Polignac^®^“ wrote Pn for the nth prime and discussed the express- 
ibility of all numbers, under a specified limit and divisible by no one of 
Pn. • •, Vn-i, in the form 

(P2, P3, • . ., Pn-l, Vn) + (Ps, P4, • • •, Pn Pi) + • - • + (Pl, • • •, Pn-l) , 

where (a, 6,...) denotes .... For example, every number <53 and 
divisible by neither 2 nor 3 is of the form =t:3‘^=fc2^. 

J. J. Sylvester^®® proved that if m is prime to ^ and not less than n, the 
product (m+^)(^+2^).. .(m+m) is divisible by some prime >n. 

A. A. Markow^®® found a fragment in a manuscript by Tchebychef 
aiding him to prove the latter's result that if /x is the greatest prime divi¬ 
sor of (1+2^) (1+4^).. .(l+4iV^), then ^/N increases without limit with 
N (cf. Hermite, Cours, ed. 4, 1891, 197). 

J. Iwanow^®^ generalized the preceding theorem as follows: If /x is the 
greatest prime divisor of (A+1^).. .{A+L^)y then /x/L increases without 
limit with L. 

C. Stormer^^^ concluded the existence of an infinitude of primes from 
Tchebychef's^^® result and used the latter to prove that ^(^ — 1) 2)... (t—n) 
is neither real nor purely imaginary if n is any integer 7^3, and V —1- 

E. Landau^*^ (pp. 559-564) discussed the topics in the last three papers. 
Braun^^® proved that the (n+l)th prime is the only root 1 of 

»»i 

where Ui = 2, a2, ..., are the first n primes. 
C. Isenkrahe^^® expressed a prime in terms of the preceding primes. 
R. Le Vavasseur^^® noted that all primes between and where 

is the nth prime, are given by S-I" qiWiPJ'Pi (mod P„), where Pn = PiP2 

' • ' Pn and WiPJpi^ 1 (mod p,). 

2®^Comptes Rendus Paris, 63, 1866, 178-181. 
=*®^“Comptes Rendus Paris, 104, 1887, 1688-90. 
285Messenger Math., 21, 1891-2, 1-19, 192. Math. Quest. Educ. Times, 56, 1892, 25. 
28®Bull. Acad. Sc. St. P^tersbourg, 3, i895, 55-8. 
28U6id., 361-6. 
”8Archiv Math, og Natur., Kristiania, 24, 1901-2, No. 5. 
28»Math. Annalen, 53, 1900, 42. 

Ac. Sc. Toulouse, (10), 3, 1903, 36-8. 
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0. Meissner^^^ stated that, if n+1 successive integers w,..m+n are 
given, we can not in general find another set mi,..mi+n containmg a 
prime mi+v corresponding to every prime m+v of the first set. But 
for n = 2, it is supposed true that there exist an infinitude of prime pairs. 

G. H. Hardy^^^ noted that the largest prime dividing a positive integer x is 

lim lim lim S [1 —(cos{(z/!)V/a;})^”]. 
r«»oo m»=»Q0 n«»oo 

C. F. Gauss,in a manuscript of 1796, stated empirically that the 
number T2(x) of integers which are products of two distinct primes, is 
approximately x log log xjlog x, 

E. Landau^^ proved this result and the generalization 

, , 1 a;(log loga;)"”^ r^f^Clog log xy-^\ 

.+^i--logx r 

where tcXx) is the number of integers Sx which are products of v distinct 
primes; also related formulas for 

Several writers^®® gave numerous examples of a sum of consecutive primes 
equal to an exact power. 

E. Landau^^® proved that the probability that a number of n digits be a 
prime, when n increases indefinitely, is asymptotically equal to l/(n log 10). 

J. Barinaga^®^ expressed the sum of the first n primes as a product of 
distinct primes for n=3, 7, 9, 11, 12, 16, 22, 27, 28, and asked if there is a 
general law. 

Coblyn^®® noted as to prime pairs that, when 4(6p—2)! is divided by 
36p^-~l, the remainder is — 6p-3 if —1 and 6p+l are both primes, 
zero if both are composite, ■“2(6p+l) if only 6p —1 is prime, and 6p~l if 
only 6^+1 is prime. 

J. Hammond^^^ gave formulas connecting the number of odd primes 
< 2n, and the number of partitions of 2n into two distinct primes or into 
two relatively prime composite numbers. 

V. Brun^®® proved that, however great a is, there exist a successive com¬ 
posite numbers of the form There exist a successive primes no two 
of which differ by 2. He determined a superior limit for the number of 
primes <x of a given class. 

2“Archiv Math. Phys., 9, 1905, 97. 
***Mes8eijger Math., 35, 1906, 145. 
2»3Cf. F. Klein, Nachrichten Gesell. Wi.ss. Gottingen, 1911, 26--32. 
*^Ibid., 361-381; Handbuch.. .der Primzahleii, I, 1909, 205-211; Bull. Soc. Math. France, 28, 

1900, 25-38. 
**®L’interm6diairQ des math., 18, 1911, 85-6. 

20, 1913, 180. 
*®’L’interm6diaire des math., 20, 1913, 218. 
*®®Soc. Math, de France, C. R. des Stances, 1913, 55. 
*®»Proo. London Math. Soc., (2), 15, 1916-7, Records of Meetings, Feb. 1916, xxvii. 
aooNyt Tidsskrift for Matematik, B, 27, 1916, 45-58. 
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Diatomic Series. 

A. de Polignac^®® crossed out the multiples of 2 and 3 from the series of 
natural numbers and obtained the *‘table 02 

(0) 1 (2) (3) (4) 5 (6) 7 (8) (9) (10) 11.... 

The numbers of terms in the successive sets of consecutive deleted numbers 
are 1,3,1,3,1,, which form the “diatomic series of 3.^^ Similarly, after 
deleting the multiples of the first n primes, we get a table an and the dia¬ 
tomic series of the nth prime That series is periodic and the terms after 
1 of the period are symmetrically distributed (two terms equidistant from 
the ends are equal), while the middle term is 3. Let tt^ denote the product 
of the primes 2, 3,..., P«. Then the number of terms in the period is 
<t>{Tn)^ The sum of the terms in the period is 7r„—0(irn) and hence is the 
number of integers <Tn which are divisible by one or more primes ^Pn. 
As applications he stated that there exists a prime between P„ and P/, also 
between a” and He^°® stated that the middle terms other than 3 of a 
diatomic series tend as n increases to become 1,3, 7,15,..., 2”^—1,.... 

J. Deschamps^®^ noted that, after suppressing from the series of natural 
numbers the multiples of the successive primes 2, 3,..., p, the numbers left 
form a periodic series of period 2-3...p; and similar theorems. Like 
remarks had been made previously by H. J. S. Smith.^°® 

Asymptotic Distribution op Primes. 

P. L. Tchebychef^s^®^ investigation shows that for x sufficiently large 
the number 7r(a;) of primes is between 0-921Q and 1*106Q, where 
Q = x/log X. He®^^ proved that the limit, if existent, of 7r(x)/Q for x= 00 is 
unity. J. J. Sylvester^®^ obtained by the same methods the limits 0-95Q 
and 1-05Q. 

By use of the function f(s) of Riemann, J. Hadamard®^^ 
and Ch. de la Vall^e-PousMn®^® independently proved that the sum of the 
natural logarithms of all primes ^x equals x asymptotically. Hence 
follows the fundamental theorem that 7r(x) is asymptotic to Q, i. e., 

x»»oo X 

•“Recherches nouvelles sur les nombres premiers, Paris, 1851, 28 pp. Abstract in Comptes 
Rendus Paris, 29, 1849, 397-401, 738-9; same in Nouv. Ann. Math., 8, 1849, 423-9. 
Jour, de Math., 19, 1854, 305-333. 

•“Nouv. Ann. Math., 10, 1851, 308-12. 
»”BuU. Sbc. Philomathique de Paris, (9), 9, 1907, 102-112 
•®*Proc. Ashmolean Soc., 3,^1857, 128-131; Coll. Math. Papers, 1, 36. 
“*M6m. Ac. Sc. St. P^tersbourg, 6, 1851, 146; Jour, de Math., 17, 1852, 348; Oeuvres, 1, 34. 
»»Bull. Soc. Math, de France, 24, 1896, 199-220. 
”®Annale8 de la Soc. Sc. de Bruxelles, 20, II, 1896, 183-256. 
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Now Q is asymptotic to the ‘^integral logarithm of 

Lix=lim 

so that the latter is asymptotic to Tr{x). De la Vall4e-Poussiii®^^ proved that 
Lix represents Tr{x) more exactly than a;/log x and its remaining approxi¬ 
mations 

X . X . , {m—iy.x 

log X log^x log^^x 

The history of this extensive subject is adequately presented in the 
luminous and exhaustive text by E. Landau,in which is given (pp. 908- 
961) a complete list of references. The reader may consult the article by 
J. Hadamard,^^® the extensive report by G. Torelli,^^^ the summaries by 
Landau,also G. H. Hardy and J. E. Littlewood,^^^ and the recent papers 
42-44 of Chapter XIX. 

Couroim^s Acad. Roy. Belgique, 59, 1889, 1-74. 
®^®Encyclop6die des sc. math., tome I, vol. 3, pp. 310-345. 
3i»Atti R. Accad. Sc. Fis. Mat., Napoli, (2), 11, 1902, No. 1, 222 pp. 
s^oProc. Fifth Intemat. Congress, Cambridge, 1,1913, 93-108. Math. Zeitschrift, 1, 1918,1-24, 

213-9. 
“^Acta Math., 41, 1917, 119-196. 



CHAPTER XiX. 
i%\EK5:0N CF Fl\ril V \! H \rir\ ^ ri , \J\!£E1CM- 

i%iv:ma:s wd dfmiwiwu 

K r- :: ^ ^ ^ 

A. l\ ^L'Fr*-’ »!i fL*"! »!■. v ^ ^ f i• i.-r , A ^ 4F»AiFE? by t 
>1. t u! f*i Iv -I if t r,A': t f ^ ^srlc'** >1, 

wLiA M 1 -I. H«^ ciiipl M iM ,b' • ii/ t: n ji !h r ,, r, 

„ V L^L, 

life refu?^ e\prr%«rii in ml by anti dtrf ia 
t'liiptiT X- >t*e iZaa L. wh/ lulei thit 

J) i>, :^" = L 

IL lirdfAind* proved tinit. if F *^3/ d , miaere o range? over all ibe 
divi-‘r? i>! ?e, llieii 

.F.,.-iT(l),:r(5)-:f(^,)- .. 

where tlie summation? extend o%vr all the e rnbiirr.I'T.? ! 2, 3* . at a fime 
i'f the tii>tinet prime fat‘t*ir? n, o ^ f TLe pre^ f fullom*? from a 
di-tribatitm of all the factor? s ;f ?>! into two > and F. Put all the divisors 
of n into ?€t 5; all iii\io)r? i-f it »j inP) ?et Id*211f ^! int-s F, etc.,all di^ri- 
5r’»i^ Iff p. ah into all of n ac mto <, etc.: all cf n a’tr into F, etc. 
Then, with the except ion of it?elf, every cEwAor of ’. enrur? as often in the 
set S as in the set T, In particular, for EnlerT !p ’c . d . whence 

For another example, see Dedekind’^ of Ch. VIII. Similarly, Fim) = 
II/ d' implies 

J. Lioulille* stated simultaneously with Bedekind the inversion theorem 
for sums and made the same application to (p m . 

Liounlle* stated the theorem for sums as a problem. 

■Jcur fur Math , 9. 1S32, 105; Werke, 4, 591. He wrot^ 3a for ». n.,. 
mr^ , 4S, 1S54, 301-316. 
C?l»rvat»r*es qiiaedam in theona zumerordm, Berlin, iS30 p? 3-6. 
*Jc'ux. fur Math , 54, 1S57. pp 21, 25. 
^JcAT de MatMn^tiquM, ’2j, 2, 1S57, 110-2. 
“Ncuv Ana Math., 16, 1S57, lSl-2. 
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B Merry^ gave a proof by noting that, if d is any divisor of m, and if q 
of the prime factors of m occur to the same power in d as in m, then f{d) 
occurs once in Fim), q times in liFim/a), q{q-l)/2 times in 'EF{m/ab), etc. 

Thus the coeflScient of /(d) in (2) is 

if g>0, but is unity if 5=0, i. e., if d=m. This proof is only another way of 

stating Dedekind’s proof. , ti,- .u t . 
R Hedekind® gave another form and proof of his theorems. Let 

where n ranges over the positive terms of the expanded product and -rj 
over the negative terms. A simple proof shows that, if v is any divisor 
<TO of w, there are as many terms vi divisible by y as terms ^2 divisible by y. 

n/(y)=F(m) 
imply, respectively, 

f(m) =2FM -SFM, /(”») =nFfi)' 

liouville*" wrote F(n) ='2f(n/D'‘), where D ranges over those divisors of 

n=a'V... for which LF divides n. Then 
f(n) =F(n)-SF(n/o'‘)+SF(w/a'‘6'‘) - .. 

E. Laguerre* expressed (2) in the form 

(3) /(m)=2M(^)F(d), 

where d ranges over the divisors of m. Let 

S/(n)-r^= 2 F(n)x", 
” n-l I ^ n = l 

whence F(m) =S/(d). For m=np“, where the p’s are distinct primes, let 

/(TO)=n/(p‘), and/(p’*)=p”-’(p-l). Then 
F(to) = n {1 +/(p)+.. ■ +/(p“"') 1 =np“=?M. 

The hypotheses are satisfied if / is Euler’s function <#>. This discussion 
deduces S<;>(d)=m from the usual expression of type (3) for <l>{m), rather 

than the reverse as claimed. 
N. V. BougaieF" proved (1). . 
F. Mertcns^^ defined and noted that S/i(d)=0 if where d 

ranges over the divisors of n._____ 

^Nouv. Ann. Math. 16, 1857,434. 
‘Dirichlet’a Zahlentheorie, mit Zuefitzen von Dedekind, 1863, §138; cd. 2, 1871, p.356;ed.4, 

1894, p. 360. 
•“Jour, de Math., (2), 8, 1863, 349. 
•Bull. Soc. Math. France, 1, 1872-3, 77-81. 

wMat. Sbomik (Math. Soc. Moscow), 6, 1872-3, 179. Cf. Stemeck.‘« 
wjour. fttr Math., 77, 1874, 289; 78, 1874, 53. 
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E. Ces^ro^^ proved formulas, quoted in Ch. X, which include (3) as a 
special case. His erroneous evaluation of the mean of ix(n) is cited there. 

Ceskro^^ reproduced the general formula just cited and extended it to 
three pairs of functions: 

=^f2id)F2(^ =2fs(d)Fs(^'), 

F,(n)=Xf2{d)f3(^, ^*2 =2/3/1, -P3 =2/1/2. 

where, in each, d ranges over the divisors of n. 
Ces^ro^^ noted that, if h(n)-{-k(n) = 1 and 

H{n)=h(p)hiq)..K(n) = k(p)k(q),.., 

where p^q,... are the prime factors of n, then 

H(n) =2M(d)X(d), K(n) =SM(d)H(d). 

For h{n) =k(n)—1/2, then H(n) —K(n) is the reciprocal of the number of 
divisors, without square factors, of n. 

Cesto^® treated the inversion of series. Let Q(x) = 1 or 0, according as x 
is or is not in a given set Q of integers. Let Q.(x)Q.{y) Let ei{x) be 
functions such that €„{6^(a;)} =€a^(x) for every pair of indices a, jS. Then 

F(x)=2h{c^)f{eM}. 

where w ranges over all the numbers of 12, implies that 

f{x)=^ZH{o:)F{eM}, 

if the sum 'Zh{d)H{n/d), for d ranging over the divisors of n, equals 1 or 0 
according as n — 1 or n> 1. Cf. Mobius^ 

N. V. Bougaief^® considered the function v{x) with the value log p ii x 
is a power of a prime p, the value 0 in all other cases. Then, if d ranges 
over the divisors of n, Sj'(d) =log n implies 2)ju(d) log d— —v(n). 

H. F. Baker^^ gave a generalization of the inversion formula, the state¬ 
ment of which will be clearer after the consideration of one of his appli¬ 
cations of it. Let Ui,.. ., ttn be distinct primes and S any set of positive 
integers. For A:^n, let F(ai,. .a*) denote the set of all the numbers 
in S which are divisible by each of the primes a^+i, ajt+2, • • •, dn, so that 
F(<2i, .. ., a„) For A; = 0, write F(0) for F, so that F(0) consists of the 
numbers of S which are divisible by Ui,..., Returning to the general 
F(ai,.we divide it into sub-sets. Those of its numbers which are 
divisible by no one of Ui,..., form the sub-set a*). Those 
divisible by ai, but by no one of 02,..., a*, form the sub-set/(a2, Us,..., a*). 

soc. roy. sc. de Li^ge, (2), 10, 1883, No. 6, pp. 26, 47, 56-8. 
“Giornale di Mat., 23, 1885, 168 (175). 
^*Ibid., 25, 1887, 14-19. Cf. 1-13 for a type of inversion formulas. 
»Annali di Mat., (2), 13, 1885, 339; 14, 1886-7, 141-158. 
^“Comptes Rendua Paris, 106, 1888, 652-3. Cf. Ces^ro, ibid., 1340-3; Ces^tro,” pp. 315-320; 

Bougaief, Mat. Sbomik (Math. Soc. Moscow), 13, 1886-8, 757-77; 14, 1888-90, 1-44, 
169-201; 18,1896, 1-54; Kronecker^® (p. 276); Berger^^® (pp. 106-115); Gegenbauer^* of 
Ch. XI—aU on X^l{d) log d. 

iTroc. London Math. Soc., 21, 1889-90, 30-32. 
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Those divisible by ai and 02, but by no one of a^,..a*, form the sub-set 
«*). Finally, those divisible by Ui..a* form the sub-set desig¬ 

nated/(O). Thus 

F(ai, 02? • • • > <^k) • • •; ^k) +2/(02, O3,. . ., O^.) +S/(03, O4,. . ., 

-f... + 2 /(oi)+/(0), 
n—l 

where 5) indicates that the summation extends over all combinations of 
Oi,. .., Or taken* A;—r at a time. 

When we have any such set or function/(oi,..., o^:), uniquely determined 
by Oi,.. ., o*, independently of their order, and we define F by the foregoing 
formula, then we have the inverse formula 

/(Oi, O2, . • ., CL-n) =F(Oi, O2, . • ., (In) 2F(02, O3,. . ., dn) +SF(03, O4,. . . ,0,^) 

-...+(~ir“^2>(oi)+(-imo),' 
n—l 

where 5) now indicates that the summation extends over all the combina- 
r 

tions of Oi,..dn taken n—r at a time. The proof is just like that by 
B. Merry for Dedekind’s formula. 

To give an example, let n = 2, Oi=2, 02 = 3, /S=3, 4, 6, 8. Then F(oi) 
=3, 6; /(oi) =3, /(O) =6; ^(02) =4, 6, 8; /(a^) =4, 8. Thus 

F(ai,O2)-F(ai)-F(o2)+F(0)=5-(3, 6)~(4, 6, 8)+6=0=/(oj, 02). 

A. Berger^^® called/i conjugate to /2 if S/i(d)/2(d) = 1 for A; = 1,0 for 1, 
when d ranges over the divisors of /b. Let glmn) ==g{m)g(n), g(l) = l. 
Write /i(/b)=2/(d)/i(5)^(5), where dd = k. Then f{k\^:^f2{d)g(d)h(d). 
Dedekind’s inversion formula is a special case. For, if /i(n) = l, then 
f2(n)=M(n). 

K. Zsigmondy^® stated that if, for every positive integer r, 

?/(rc)=F(r), 

where c ranges over all combinations of powers ^ r of the relatively prime 
positive integers ni,..., rip, while denotes the greatest integer ^r/c, then 

/(r) =F(r) + S, F(r„„0 ^ , 
n n,n 

where the summation indices n, n',... range over the combinations of 
rii,..., np taken 1,2,... at a time. 

B. D. von Sterneck^® noted that, if d ranges over the divisors of n 
26(d) =\l/{n) implies that 

F(m)=^(l)+... +^(m) = i 

Taking w=l,..., n and solving, we get 6(n) expressed as a determinant 
of order n, whence 

^(n)=^(n)-S^(dO+2^(d2)- . •.+(-l)V(^^.), 
if n = p/‘.. .p/*' and is derived from n by reducing p exponents by unity. 

♦Here and in the statement of the theorem occur confusing misprints for k and n. 
iToNova Acta Regiae Soc. Sc. Upsaliensis, (3), 14, 1891, No. 2, 46, 104. 
“Jour. fUr Math., Ill, 1893, 346. Applied in Ch. V, Zsigmondy.” 
lOA/Tnnnfslipffp Mflfh Phvs 4 6 
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P. Bachmann^" proved that f(n) ='2kZi F(kn) implies that 

F(l)= SmW/W. 
n=»l 

Write X = [x/n]. Taking F{n) =X, nX, #(X), whence fin) = TiX), n<r(Z), 
D{X), respectively, we obtain Lipschitz’s®* (Ch. X) formulas: 

w 
[r]=2M(n)r 

n = l 
=S/x(n)n<r 

X 

n 
^x]==XfjL(n)D\ 

Let F(n) be zero if n is not a divisor of P and write \l/{P/n) for F(n), 
Hence if d divides P, f(d)=-X\l/{P/kd) implies yp{P)=-'I.fi{d)f{d), where 
k ranges over the divisors of P/d, and d over those of P. 

D. von Sterneck^^ considered a function J{n) with the properties: 
(i) /(I) = 1; (ii) the g. c. d. of/(m) and/(n) is/(d) if d is the g. c. d. of m and n; 
(iii) for primes p, other than specified ones, one of the numbers/(p =1=1) is 
divisible by p; (iv) the g. c. d. of /(pn)//(n) and/(n) divides p. Then if 
L{n) is the 1. c. m. of the values of/for all the divisors <ti of n, F(n) =f{n) 
-^L{n) is an integer which can be given the form 

P(n) = n=np/i. 

The four properties hold for the function defined by the recursion 
formula /(n) =a/(n —l)+0/(n—2), where a and are relatively prime, 
with the initial conditions /(I) = 1, /(2) = a. For a = 2a;, /?=5—a;^, we have^^ 

fin) = 
^ ^ 2Vh 

The case a=i3 = l was discussed by Lucas^® of Ch. XVII, and his test for 
primality holds for the present generalization. 

The four properties hold also for 

/(n) = 
a—h 

if a, h are relatively prime then/(p —1) is divisible by p if p is a prime 
not dividing a, h or a—h. 

K. Zsigmondy^^ gave a generalized inversion formula. Let N be any 
multiple of the relatively prime integers ni,..., n^. Set 

where d ranges over those divisors ^ m of V which are products of powers 

2“Die Analytische Zahlentheorie, 1894, 310. 
^^Monatshefte Math. Phys., 7, 1896, 37, 342. 
“Dirichlet, Werke, 1, 47-62. See Dirichlet,® Ch. XVII. 
^^Zsigmondy, Monatshefte Math. Phys., 3, 1892, 265. 
mid., 7, 1896, 190-3. 
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of ni,..., n,. 
no one of viy 

Then, if a ranges over those divisors d which are divisible 
.., j',/, chosen from rii,..n„ 

by 

The left member equals jP(m, Ny e) constructed for the numbers other 
than J'l,..., Vt' of the set ni,..., n,. For s'=s, we have 

f{m, N, «) =F{m, N, «)-2F(g], *n) +.... 

The latter becomes the series in Bachmann^® when iV’=0, €=1, 
while riiy n2,... are prunes. 

F. Mertens^^ considered <r(n) =jLi(l)+M(2) + • - • +mW and proved that 

<r(n) =M9) - 2 mWmCs) f£]. 3= [V^- r.«=i Lrsj 

By means of a table (pp. 781-830) of the values of o’(n) and fx(n) for ?i< 10000, 
it is verified that |<r(n) |< for l<n< 10000. 

D. von Stemeck^® verified the last result up to 500 000, and for 16 larger 
values imder 5 million. 

A. Berger^’’ noted that, if g{rri)g(n) =g{mn), ^(1) = 1, 

SM(%(d)=n{l~^(p)} (n>l). 

where d ranges over all divisors of n, p over the prime divisors of n. 
Xg(m) is absolutely convergent, 

fcasl 

where p ranges over all primes. 
D. von Stemeck^® noted that, if 6(x) ^ 1 for every x and if 

then 
X6{x) 

X = 1 
=f{n), 

2e(fc) 
**1 

<=+6+ fin) -f\ 

•If 

In particular, |2/z(A;)|<8+n/9. 
D. F. Seliwanov^® gave Dedekind’s formula with application to <#>(n). 
H. von Koch^^® defined pik) by use of infinite determinants. 

“Sitzungsber. Ak. Wiss. Wien (Math.), 106, II a, 1897, 761-830. 
^Ibid., 835-1024; 110, Ila, 1901, 1053-1102; 121, Ila, 1912, 1083-96; Proc. Fifth Intern. Con¬ 

gress Math., 1912, I, 341-3. 
*’t)fversigt Vetenskaps-Akad. Forhand., Stockholm, 55, 1898, 579-018. 
“Monatshefte Math. Phys., 9, 1898, 43-5. 
**Math. Soc. St. P^tersbourg, 1899, 120. 
^^‘^Ofversigt K. Vetensk.-Akad. Forhand., Stockholm, 57, 1900, 659-68. 
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E. B. Elliott®® of Ch. V gave a generalization of 
L. Kronecker®® defined the function p(n, A;) of the g. c. d. (n, k) of n, k 

to be 1 if (n, /b) = 1, 0 if (n, A;)>1, and proved for any function/(ri, k) of 
(n, k) the identity 

n n/d 

S p(w, 2) fJL(d)f(ny kd)j 
jfc»i j *-i 

where d ranges over the divisors of n. The left member is thus the sum of 
the values of f(n, k) for k<n and prime to n. Set 

F(n, d) = S/(n, kd), $(n, d) = 2 p(^ kd). 
jfc»i \a / 

Thus when d ranges over the divisors of n, 

F(n, 1) =24>(n, d), $(n, 1) =Sp(d)F(n, d) 
d 

are consequences of each other. The same is true (p. 274) for 

Kn) =md)g(^, /(«) =S/i(d)3(d);i(j). 

if g{r$)=g{r)g{s). Application is made (p. 335) to mean values. 
E. M. L^meray®^ gave a generalized inversion theorem. Let be 

symmetrical in a, 6 and such that the function ^3 defined by 

^3(a, 6, c)=^2{«, c)} 

is symmetrical in a, 6, c. Then the function 

^4(0, 6, c, d) =^3{a, ^2(c, <i)} 

will be symmetrical in a, 6, c, d and similarly for •••,%). For example, 

t/'sK 6) =avT+^+&\/lT^, t/'3 = «&c+2avT4^Vr+^. 

Let v-Q(y, u) be the solution of The theorem states that, 
if di,..., d* are the divisors of m be defined by 

we have inversely/(m) =fi(G, ff), where 

«-44f)'''(?).'■fe)-]- 
where p is the number of combinations of the distinct prime factors p, 
q,... oim taken 0, 2, 4,... at a time, and v the number taken 1, 3, 5,... at a 
time. 

L. Gegenbauer®^ defined pl(x) to be +1 if ^ is a unit of the field R{i) of 
complex integers or a product of an even number of distinct primes of 

*°Vorlesiingen iib^r Zahlentheorie, I, 1901, 246-257. His e„ is p(n). 
«Nouv. Aim. Math., (4), 1, 1901, 163-7. 
®'Verslag. Wiss. Ak. Wetenschappen, Amsterdam, 10, 1901-2, 195-207 (German.) English 

transl. in Proc. Sect. Sc. Ak. Wet., 4, 1902, 169-181 
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R(i)j —1 if a product of an odd number, 0 if a; is divisible by the square of a 
prime of R(i), Let [m] denote a complete set of residues 5*^0 of complex 
integers modulo m. Then the sum of the values of f{x) for all complex 
integers x relatively prime to a given one n, which are in {m}, equals 
X^(d)Xf(dx), where d ranges over all divisors of n in {m}, and x ranges 
over {m/d}. This is due, for the case of real numbers, to Nazimov^®^ of 
Chapter V. Again, SjLi(d) = 1 or 0 according as norm n is 1 or >1. Also 
S/(d) —F(n) implies 'Lfi{d)F(n/d) =f{n). 

J. C. Kluyver^ employed Kronecker^s®® identity for special functions / 
and obtained known results like 

S cos ^^=/A(n), n 2 sin — = 
n ^ n 

where v ranges over the integers <n and prime to n, while y(n) is Bouga- 
ief^s^® function v{n). 

P. Fatou®^ noted that Merten^s ain) does not oscillate between finite 
limits. E. Landau^® proved that it is at most of the order of ne\ where 

t = — aVlogn Landau®® noted that Furlan®*^ made a false use of analysis 
and ideal theory to obtain a result of Landau’s on Merten’s^® (r(n). 

0. Meissne:^^® employed primes qi. For n=np/< set Z(n)=nei^» 
and Z2(n)=Z{Z(n)j. Then Z(n)=n only if n is Ilp/i or 16 or TL'p/iq^i, 
Next, Z2(n)==n in these three cases and when the exponents e* in n are 
distinct primes; otherwise, Z2(n)<n. We have [1/Z(n)] =/x^(n). 

R. HackeP® extended the method of von Stemeck^® and obtained vari¬ 
ous closer approximations, one®® being 

mh) <A+i52+|2/[g_2/[«- 

where a = l, 6, 10, 14, 105; 6 = 2, 3, 5, 7, 11, 13, 385, 1001. 
W. Kusnetzov^® gave an analytic expression for /A(n). 
K. Knopp^®® of Ch. X gave many formulas involving ix{n). 
A. Fleck^°“ generalized/x(m)= Pi(m) by setting 

t=i \ai/ 

Using the zeta function (12) of Ch. X, and 0* of Fleck^^® of Ch. V, we have 

2pA(d)=PA_i(w), 
d\m 

I I 
m=l m=l 

<A*(m) = 2rfMw(5)- 

®3Verslag. Wiss. Ak. Wetenschappen, Amsterdam, 15, 1906, 423-9. Proc. Sect. Sc. Ak. Wet., 
9, 1906, 408-14. 34Acta Math., 30, 1906, 392. 

36Rend. Circ. Mat. Palermo, 26, 1908, 250. ®®Rend. Circ. Mat. Palermo, 23, 1907,367-373. 
s^Monatshefte Math. Phys., 18, 1907, 235-240. 
®’®Math. Naturw. Blatter, 4, 1907, 85-6. 
s^Sitzungsber. Ak. Wiss, Wien (Math.), 118,1909, II a, 1019-34. 
®®Sylvester, Messenger Math., (2), 21, 1891-2, 113-120. 
^°Mat. Sbomik (Math. Soc. Moscow), 27, 1910, 335-9. 
‘®®Sitzungsber. Berlin Math. Gesell., 15, 1915, 3-8. 
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The theorem S„“ipt(n)/n = 0 and other results on sums involving iu(n) 
play an important r61e in the theory of the asymptotic distribution of 
primes. In accord with the plan of not entering into details on that topic 
(Ch. XVIII), the reader is referred for the former topic to the history and 
exposition by E. Landau,and to the subsequent papers by A. Axer,^^ 
E. Landau,^® and J. F. Steffensen.^ 

Proofs of (2) or (3) are given in the following texts: 

P. Bachmann, Die Lehre von der Kreistheilung, 1872, 8-11; Die Elemente der 
Zahlentheorie, 1892, 40-4; Grundlehren der Neueren Zahlentheorie, 1907, 26-9. 

T. J. Stieltjes, Th4orie des nombres, Ann. fac. Toulouse, 4, 1890, 21. 
Borel and Drach, Introd. th^orie des nombres, 1895, 2^. 
E. Cahen, filaments de la th^orie des nombres, 1900, 346-350, 
E. Landau,^ 577-9. 

Numerical Integrals and Derivattves. 

N. V. BougaieP (Bugaiev) called F{v) the numerical integral of f{n) if 
F{m) =Xf(8)j summed for all the divisors 8 of m, and called f{n) the numer¬ 
ical derivative function of F(n), denoted by DF(n) symbolically. 

Granting that there is, for every n, the development 

F(«)=ai[n]+a,[2]+a3[| + ... 

where [x] is the largest integer then a* is the numerical derivative of 
F{k)—F{k — 1). He developed [n^^], etc. 

N. V. Bougaief,®® after amplifying the preceding remarks, proved that 

^ d{n)d(m)=d{nm) 
dS"Bn 

imply 

Writing D^^d(d) for S0(d), summed for the divisors d of n, we have 

D^7:xmd)=2xm^m, 

for any integer //, positive or negative. There are formulas like 

^^Handbuch.. .Verteilung der Primzahlen, II, 1909, 567-637, 676-96, 901-2. 
^Prace mat. fiz., Warsaw, 21, 1910, 65-95; Sitzungsber. Ak. Wiss. Wien. (Math.), 120, 1911, 

11 a, 1253-98. 
"Sitzungsber. Ak. Wiss. Wien. (Math.), 120,1911, Ila, 973-88; Rend. Giro. Mat. Palermo, 34, 

1912, 121-31. 
"Analytiske Studier..., Diss., Kjobenhavn, 1912, 148 pp. Fortschritte, 43, 262-3. Extract 

in Acta Math., 37, 1914, 75-112. 
"Journal de la Soc. Philomatique de Moscou, 5, 1871. 
"Theory of numerical derivatives, Moscow, 1870-3, 222 pp. Extracts from Mat. Sbomik 

(Math. Soc. Moscow), 5, I, 1870-2, 1-63; 6, 1872-3, I, 133-180, 199-254, 309-360 
(reviewed in Bull. Sc. Math. Astr., 3, 1872, 200-2; 5, 1873, 296-8; 6, 1874, 314-6). 
R5sum^ by Bougaief, Bull. Sc. Math. Artr., 10,1, 1876, 13-32. 
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«= 2 Au)lVW^, 2 <l>(u) =i+i2M(«)rjl! 
u-=l u-=l L^J 

20(2) ^e{V^ (mod 2), 20(1) (mod 3), 

where d(n) is the number of primes a^n. Other special results were cited 
under 155, Ch. V; 6, Ch. XI; 217, Ch. XVIII. 

E. Ces^o®®" treated 2/(5) in connection with median and asymptotic 
formulas. 

Bougaief®^ treated numerical integrals, noting formulas like 

2fftW)=2^(d)+S^(d)+..., 
‘*1” d|= d|= 

where ^(n) is the number of prime factors a, . of n — .., 

X ^(d) = 2J ^(d)-}- 2 == 2 ^(ad)-!- 2 \l/(jd), 
d|5 dl" dl= d|^ 

BougaieP* gave a large number of formulas of the type 

Sf(d)|^| =SV(d)+2>”'^V(d)+2'’‘''«V(d)+.. 

where, on the left, d ranges over all the divisors of m; while, on the right, d 
ranges over those divisors of m which do not exceed n, [n/2],..., respectively. 

Bougaief®^ gave the relation 

20(Vd)=2&fen)^ 
d\n P \P / 

where p ranges over all primes ^ Vn, and n) is the sum of the kth 
powers of all divisors ^ m of n, so that is their number, and 6(t) is the 
number of primes 

L. Gegenbauer®^ noted that the preceding result is a case of 

where dx ranges over the divisors of n. Special cases are 

where (m, n) is the sum of the pth powers of the divisors of n. 

““Giornale di Mat., 25, 1887, 1-13. 
”Mat. Sbornik (Math. Soc. Moscow), 14, 1888-90, 169-197: 16, 1891, 169-197 (Russian). 

17, 1893-5, 720-59. 
“Comptes Rendus Paris, 119, 1894, 1259. 
*°Monatshefte Math. Phys., 6, 1895, 208. 
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Bougaief®*'* noted that, for an arbitrary function 
n [(f»*+o)/u] 

= s 2 m, 
t*=»l n»l 

n [nyuj n [n/u] 

2 2 ==n 2 2 
n«»l u«ln»l 

N. V. Bervi®^ treated numerical integrals extended over solutions of 
indeterminate equations, in particular for n=a+b(x+y)+cxyj h^ — h+ac. 

Bougaief®^ considered definite numerical integrals, viz., sums over all 
divisors, between a and 6, of n. He expressed sums of [x], the greatest 
integer as sums of values of f(?i, m), viz., the number of divisors gn 
of m. Also sums of expressed as fi(l)+ft(2) +...+ft(^), where 

is the number of the divisors of n which are ^th powers. 
1.1. Cistiakov®^® (Tschistiakow) treated the second numerical derivative. 
Bougaief*^*’ gave 13 general formulas on numerical integrals. 
Bougaief®® gave a method of transforming a sum taken over 1, 2,..., n 

into a sum taken over all the divisors of n. He obtains various identities 
between functions. 

D. J. M. Shelly,®^ using distinct primes a, 6,..., called 

the derivative of J\r=a“2)^.... Similar definitions are given for derivatives 
of fractions and for the case of fractional exponents a, ^3,.... The primes 
are the only integers whose derivatives are unity. 

*®®Comptes Rendus Paris, 120, 1895, 432-4. 
“^Mat. Sbomik (Math. Soc. Moscow), 18, 1896, 519; 19, 1897,182. 

18, 1896, 1-54 (Russian); see Jahrb. Fortschritte Math., 27, 1896, p. 158. 
20, 1899, 595; see Fortschritte, 1899,194. 
549-595. Two of the formulas are given in Fortschritte, 1899, 194. 

21, 1900, 335, 499; see Fortschritte, 31, 1900, 197. 
MAsociacidn espaflola, Granada, 1911, 1-12. 
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PROPERTIES OF THE DIGITS OF NUMBERS. 

John Hill^ noted that 139854276=11826^ is formed of the nine digits 
permuted and believed erroneously that it is the only such square. 

N. BrownelP“ found 169 and 961 as the squares whose three digits are 
in reverse order and whose roots are composed of the same digits in reverse 
order. The least digit in the roots is also the least in the squares, while the 
greatest digit in the roots is one-third of the greatest in the squares and 
one-half of the digit in the tens place. 

W. Saint^^ proved that every odd number N not divisible by 5 is a divisor 
of a number 11.. .1 of digits [by a proof holding only for N prime 
also to 3]. For, let 1... 1 (to D digits) have the quotient q and remainder 
r when divided by D, This remainder r must recur if the number of digits 
1 be increased sufficiently. Hence let 1...1 (to D-hd digits) give the 
remainder r and quotient Q when divided by D. By subtraction, D{Q—q) 
= 1.. .10.. .0 (with d units followed by D zeros). Hence if 1.. .1 (to d 
digits) were not divisible by every odd number ^ D and prime to 5 [and to 
3], there would be a remainder R; then i^O.. .0 (with D zeros) would be 
divisible by an odd number prime to 5 [and to 3], which is impossible. 

P. Barlow^*" stated, and several gave inadequate proofs, that no square 
has all its digits alike. He^*^ stated and proved that 111111111^= 123456- 
78987654321 is the largest square such that if unity be subtracted from each 
of its digits and again from each digit of the remainder, etc., all zeros being 
suppressed, each remainder is a square. Denote (10*—1)/(10 —1) by [k}. 
Then ^ digits and exceeds {x} by 10{|(a;—1)}^. Since 
zeros are suppressed we have a square as remainder, and the process can 
be repeated. It is stated that therefore the property holds only for 1^, 
IP, IIP, .... 

SeveraP® found that 135 is the only number N composed of three digits 
in arithmetical progression such that the digits will be reversed if 132 times 
the middle digit be added to N. 

W. Saintfound the least integral square ending with the greatest num¬ 
ber of equal digits. The possible final digits are 1, 4, 5, 6, 9. Any square is 
of the form 4n or 4n4-l. Hence the final digit is 4. If the square termi¬ 
nated with more than three 4’s, its quotient by 4 would be a square ending 
with two Ps, just proved to be impossible. Of the numbers ending with 

^Arithmetic, both in Theory and Practice, ed. 4, London, 1727, 322. 
i“The Gentleman’s Diary, or Math. Repository, London, 1767; Davis’ ed., 2, 1814, 123. 
iftJoiir, Nat. Phil. Chem. Arts (ed., Nicholson), London, 24, 1809, 124-6. 
^«The Gentleman’s Diary, or Math. Repository, London, 1810, 38-9,'Quest. 952. 
^dlbid., 1810, 39-40, Quset. 953. 

1811, 33-4, Quest. 960. 
‘/Ladies’ Diary, 1810-11, Quest., 1218; Leybourn’s M. Quest. L. D., 4, 1817, 139-41. 



454 Histoky of the Theohy op Numbeks. [Chap. XX 

three 4’s, the least is 1444. J. Davey discussed only numbers of 3 or 4 
digits of which the last 2 or 3 are equal, respectively. 

SeveraP^ found that the squares 169 and 961 are composed of the same 
digits in reverse order, have roots of two digits in reverse order, while 
the sum of the digits in each square equals the square of the sum of the 
digits in each root; finally, the sum of the digits in each root equals the 
square of their difference. 

An anonymous writer^ proposed the problem to find a number n given 
the product of n by the number obtained from n by writing its digits in 
reverse order [Laisant^®]. 

P. T6denat® considered the problem to find a number of n digits whose 
square ends with the same n digits in the same order. If a is such a number 
of n—l digits, so that a^=10'‘”^64-a, we can find a digit A to annex at the 
left of a to obtain a desired number 10”""^A+a of n digits. Squaring the 
latter, we obtain the condition (2a—1)A= —6 (mod 10). 

J. F. Frangais^ noted the solutions 

ic=2”p=5’‘g+l, 0? = lOyq+x, 
= lOVs+y, 

in which the resulting condition 2”por 5V—2”s = 1 is to be satisfied. 
Special solutions are given by n=l, p = 3; n = 2, p = 19; n = 3, p=47; n=4, 
p = 586; etc., to n=7. 

J. D. Gergonne® generalized the problem to base B, Then 

Let p, q be relatively prime and set =pq. Then x — pt,x—l=qu^ or vice 
versa. The condition gw==l is solved for i, u, jB = 10, ?i = 20, 
the least u is 81199. 

Anonymous writers® stated and proved by use of the decimal fraction for 
1/n that every number divides a number of the form 9.. .90.. .0. 

A. L. Crelle^ proved the generalization: Every number divides a number 
obtained by repeating any given set of digits and affixing a certain number of 
zeros, as 23.. .230.. .0. 

SeveraP® found a square whose root has two digits, their quotient be¬ 
ing equal to their difference. By xly—x—y^ r=2/+l+l/(2/“l), an inte¬ 
ger, whence ?/—2, r=4. Thus the squares are 24^ or 42^. 

The^*' three digits of a number are in geometrical progression; the prod¬ 
uct of the sum of their cubes by the cube of their sum is 1663129; if the 
number obtained by reversing the digit be divided by the middle digit, the 

*^Ladies’ Diary, 1811-'12, Quest. 1231; Leybourn, 1. c., 153-4. 
*Annales de Math, (ed., Gergonne), 3, 1812-3, 384. 
Hbid., 5, 1814-5, 309-321. Problem proposed on p. 220. 

321-2. 
Hbid., 322-7. 
•/bid., 19, 1828-9, 256; 20, 1829-30, 304-5. 
Ubid., 20, 1829-30, 349-352; Jour, fur Math., 6, 1830, 296. 
’“Ladies’ Diary, 1820, 36, Quest. 1347. 
’i»/bid., 1822, 33, Quest. 1374. 
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quotient is 46J. By the last condition, the middle digit must be 3, since 
not a higher multiple of 3. Hence the number is 931. 

To find a symmetrical number abcba of five digits whose square exhibits 
all ten digits, W. Rutherford^'" noted that the square is divisible by 9 since 
the sum of the digits is divisible by 9. Hence the sum of the digits of the 
number is divisible by 3. Also a ^ 3. Taking c =a+6, c =8, he got 35853. 
J. Sampson noted also the answers 84648, 97779. 

J. A. Grunert® proved by use of Euler’s generalization of Fermat’s the¬ 
orem that® every number divides 9... 90... 0. 

Drot®“ asked for the values of x for which A'* has the same final h digits 
as N, when A; = 1, 2 or 3 . 

J. Bertrand®^ discussed the numbers of digits of certain numbers. 
A. G. Emsmann® treated a number 6 of n digits to base 10 equal to the 

product of the sum of its digits by a, and such that if another number of n 
digits be subtracted from h the remainder shall equal the number obtained 
by writing the digits of h in reverse order. 

J. Booth^° noted that a number of six digits formed by repeating any set 
of three digits is divisible by 7, 11, 13 [since by 1001]. 

G. Bianchi^®“ noted various numerical relations like 10® = llin,lU+ 
8.1111111+8.9.111111+.. . + 8.9M + 98=!^?222.+ .. .+7.8®.2+8s, 98- 
(12-1-0)9-1, 987 = (123-12-1)9-3, 9876 = (1234-123-13)9-6. 

C. M. Ingleby^^ added the digits of a number N written to base r, then 
added the digits of this sum, etc., finally obtaining a number, designated 
SNy of a single digit; and proved that S{MN) =S{SM-SN), 

P. W. Flood^^® proved that 64 is the only square the sum of whose digits 
less unity and product plus unity are squares. 

G. Cantor^^ employed any distinct positive integers a, 6,..., considered 
the system of integers in which a occurs a times, h occurs 5 times, etc., and 
called a system simple if every number can be expressed in a single way in the 
form aa+/36+. .where a = 0, 1,..., d; iS = 0, 1,..5;- A systemis 
simple if and only if each basal number k divides the next one I and if k 
occurs k = {l/k) — 1 times. 

G. Barillari^^ noted that, if 10 belongs to the exponent m modulo 6, 
the number P = ai(3.. .Xa/?.. .X..obtained by repeating h times {h>l) any 
set of n digits, is divisible by 6 if 6 is prime to 10”-1 and if nh is a multiple 

■^^Ladies' Diary, 1835, 38, Quest. 1576. 
«Jour. fOr Math., 5, 1830, 185-6. 
®“Nouv. Ann. Math., 4 1845, 637-44 ; 5, 1846, 25. For references to tables of powers, 13, 

1854, 424-5. 
8, 1849, 354. 

•Abhandlung iiber eine Aufgabe aua der Zahlentheorie, Progr. Frankfurt, 1850, 36 pp. 
^°Proc. Roy. Soc. London, 7, 1854r-5, 42-3. 
'““Proprieta e rapporti de’ numeri interi e composti colie cifre semplici . . . , Modena, 1856. 

Same in Mem. di Mat. e di Fis. Soc. Ital. Sc., Modena, (2), 1, 1862, 1-36, 207. 
“Oxford, Cambr. and Dublin Messenger Math., 3, 1866, 30-31. 
i^Math. Quest. Educ. Times, 7, 1867, 30. 
“Zeitschrift Math. Phys., 14, 1869, 121-8. 
i>Giomale di Mat., 9, 1871, 125-135. 
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of m, but P is not divisible by h if nh is not a multiple of w. If b divides 
10"—1, P is divisible by h when but not divisible by h when h is not a 
multiple of 6. 

A. MoreP^ proved that the numbers ending with 12, 38, 62 or 88 are the 
only ones whose squares end with two equal digits. 

H. Hoskins^^'* found the sum of the 117852 numbers of 7 digits which 
can be formed with the digits 1,1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6, 7. 

J. Plateau^® noted that every odd number not ending with 5 has a multiple 
of the form 11.. .1 [Saint 

P. Mansion^® proved the theorem of Plateau. 
J. W. L. Glaisher^^ deduced Crelle^s^ theorem from Plateau’s.^® 
G. A. Laisant^® treated a problem^ on reversing digits. 
G. R. Perkins^®'* and A. Martin^® stated that all powers of numbers end¬ 

ing with 12890625 end with the same digits. 
E. Catalan^® noted that the g. c. d. of two numbers of the form 1... 1 

of n and n' digits is of like form and has A digits, where A is the g. c. d. of n 
and n'. 

Lloyd Tanner,^®® generalizing Martin’s^^ question, found how many 
numbers N oin digits to the base r end with the same digits as their squares, 
i. e., If r" is the product of q powers of primes, there are 
2®—2 values of A. He^®^ found numbers M and N with n digits to the 
base r such that the numbers formed by prefixing M to N and N to M 
have a given ratio. 

J. Plateau^^ proposed the problem to find two numbers whose product 
has all its digits alike. Angenot noted that 

6^«-l 6^-1 

6^-l' 6-1 

give a solution for base 6. Catalan^^ noted that Euler^s theorem 

for n prime to 6, furnishes a solution n, m. 
Lloyd Tanner^^ stated and Laisant proved that 87109376 and 12890625 

are the only numbers of 8 digits whose squares end with the same 8 digits. 

i^Nouv. Ann. Math., (2), 10, 1871, 44-^, 187-8. 
“«Math. Quest. Educ. Times, 15, 1871, 89-91. 
wBuU. Acad. Roy. de Belgique, (2), 16, 1863, 62; 28, 1874, 468-476. 
«Nouv. Corresp. Math., 1, 1874-5, 8-12; Mathesis, 3, 1883, 196-7. Bull. Bibl. Storia Sc. 

Mat., 10, 1877, 476-7. 
^^Messenger Math., 5, 1875-6, 3-5. 

soc. sc. phys. et nat. de Bordeaux, (2), 1, 1876, 403-11. 
^*<*Math. Miscellany, Flushing, N. Y., 2, 1839, 92. 
“Math. Quest. Educat. Times, 26, 1876, 28. 
“M4m. Society Sc. Li4ge, (2), 6, 1877, No. 4. 
'““Messenger Math., 7, 1877-8, 63^. Cases 12, Math. Quest. Educ. Times, 28, 1878,32-4. 
*°*^Math. Quest. Educ. Times, 29, 1878, 94-5. 
”Nouv. Corresp. Math., 4, 1878, 61-63. 
“/hid., 5, 1879, 217; 6, 1880, 43. 
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Moret-Blanc^^ proved that 1, 8,17,18, 26, 27 are the only numbers equal 
to the sum of the digits of their cubes. 

C. Berdell4“® considered the last n digits of numbers, in particular of 5*. 
E. Ces^ro^^ noted that the sum of the pth powers of ten consecutive ^ 

integers ends with 5 unless p is a multiple of 4, when it ends with 3. 
Ni F. de Rocquigny^® noted that if a number of n digits equals the sum of the 
2”~1 products of its digits taken 1, 2,..., n at a time, its final n — 1 digits ^ 
are all 9. 

E. Ces^ro’*® considered the period of the digits of rank n in powers of 5. 
Lists^® have been given of squares formed by the nine digits > 0, or the 

ten digits, not repeated. 
0. Kesslergave a table of divisors of numbers formed by repeating a 

given set of digits a small number of times. 
T. C. Simmons^^® noted that, if the sum of the digits of n is 10, that of 

2n is 11 unless each digit of n is <5 or two are 5. For 4 digits the numbers ^ 
of each type are counted. 

J. S. Mackay^® treated the last subject. 
E. Lemoine^® considered numbers like A = 8607004053 such that, if a is 

the number derived by reversing the digits of A, the sum A+a = 12111011121 
reverses into itself. / 

M. d’Ocagne®® considered the sum (t{N) of the digits of the first N integers. 
If Np = a^*10^+... +arlO+ao and d^a^-lO'^-l, then 

arid) == 10^"^*5ap(ap~14-9p), (r{N^) =o-(d) 4-(Np_i4-l)ap+a(iVp_i). 

Hence p 
<r(Np) = |ao(ao+1) + .S ~ 1+9i) 

The number of digits in 1,..N is (p+l)(i\r+l)~(10^'‘"^ —1)/9. 
next paper. 

M. d'Ocagne®^ noted that, in writing down the natural numbers 1, 
where N is composed of n digits, the total number of digits wi 
n(N+1) — In, where 1^ = 1... 1 (to u digits). 

E. Barbier^^® asked what is the lO^^^^^th digit written if the series of 
natural numbers be written down. 

“Nouv. Ann. Math., (2), 18, 1879, 329; proposed by Laisant, 17,1878, 480. 
“®As30C. frang., 8, 1879, 176-9. 
*^Nouv. Corresp. Math., 6, 1880, 519; Mathesis, 1888, 103. 
“Lea Mondes, 53, 1880, 410-2. 
“Nouv. Corresp. Math., 4, 1878, 387; Nouv. Ann. Math., (3), 2,1883, 144, 287; 1884, 160. 
“®Math. Magazine, 1, 1882-4; 69-70; I’interm^diaire des math., 4, 1897, 168; 14, 1907, 135; 

Sphinx-Oedipe, 1908-9, 35; 5, 1910, 64; Educ. Times, March, 1905. Math. Quest. Educ. 
Times, 52, 1890, 61; (2), 8, 1905, 83-6 (with history). 

*^Zeitschrift Math. Phys., 28, 1883, 60^4. 
27aMath. Quest. Educ. Times, 41, 1884, 28-9, 64-5. 
*®Proc. Edinburgh Math. Soc., 4, 1885-^, 55-56. 
«Nouv. Ann. Math., (3), 4, 1885, 150-1. 
*®Jomal de sc. math, e ast., 7, 1886, 117-128. 

8, 1887, 101-3; Comptes Rendus Paris, 106, 1888, 190. 
^'“Comptes Rendus Paris, 105, 1887, 795, 1238. 
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L. Gegenbauer®^^ proved generalizations of Cantor^s^^ theorems, allowing 
negative coefficients. Given the distinct positive integers ai, a2,..., every 
positive integer is representable in a single way as a linear homogeneous 
function of ai, a2,... with integral coefficients if each is divisible by 
and the quotient equals the number of permissible values of the coefficients 
of the smaller of the two. 

R. S. Aiyar and G. G. Storr^^^' found the number of integers the sum 
of whose digits (each >0) is n, by use of p„_i+ . •. +p„-9- 

E. Strauss^^ proved that, if ai, 02,... are any integers > 1, every positive 
rational or irrational number < 1 can be written in the form 

—2—I-L |_ a2<a2,...)? 
Otj CL1CL2 Clitt2®’3 

the a^s being integers, and in a single way except in the case in which all the 
ai, beginning with a certain one, have their maximum values, when also a 
finite representation exists. 

E. Lucas^ noted that the only numbers having the same final ten digits 
as their squares are those ending with ten zeros, nine zeros followed by 1, 
8212890625 and 1787109376. He gave (ex. 4) the possible final nine digits* 
of numbers whose squares end with 224406889. He gave (p. 45, exs. 2, 3) 
all the numbers of ten digits to base 6 or 12 whose squares end with the same 
ten digits. Similar special problems were proposed by Escott and Palm- 
strom in Tlnterm^diaire des Mathtoaticiens, 1896, 1897. 

J, Kraus^ discussed the relations between the digits of a number 
expressed to two different bases. 

A. Cunningham^® called N an agreeable number of the mth order and 
nth degree in the r-ary scale if the m digits at the right of N are the 
same as the m digits at the right of A” when each is expressed to base r; 
and tabulated all agreeable numbers to the fifth order and in some cases 
to the tenth. A number A of m digits is completely agreeable if the agree¬ 
ment of N with its nth power extends throughout its m digits, the condition 
being A (mod 

E. H. Johnson^^ noted that, if a and r —1 are relatively prime and 
aa.. .a (to r—1 digits to base r) is divided by r —1, there appear in the 
quotient all the digits 1, 2,..., r—1 except one, which can be found by 
dividing the sum of its digits by r — 1. 

C. A. Laisant^*" stated that, if A = 123.. .n, written to base n-f-1, be 
multiplied by any integer <n and prime to n, the product has the digits 
of A permuted. 

’^*^itzungsber. Ak. Wiss. Wien (Math.), 95, 1887, II, 618-27. 
«cMath. Quest. Educ. Times, 47, 1887, 64. «Acta Math., 11, 1887-8, 13-18. 
’*Th6orie des nombres, 1891, p. 38. Cf. Math. Quest. Educ. Times, (2), 6, 1904, 71-2. 
•Same by Kraitchik, Sphinx-Oedipe, 6, 1911, 141. 
»*Zeit8chr. Math. Phys., 37, 1892, 321-339; 39, 1894, 11-37. 
•^British Assoc. Report, 1893, 699. >**Annals of Math., 8, 1893-^, 160-2. 
*^L'interm6diaire des math., 1894, 236; 1895, 262. Proof by “Nauticus,” Matheais, (2), 5, 
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Tables of primes to the base 2 are cited under Suchanek*® of Ch. XIII. 
There is a coUection^'^ of eleven problems relating to digits. 
To find^® the number <90 which a person has in mind, ask him to 

annex a declared digit and to tell the remainder on division by 3, etc. 
T. Hayashi^ gave relations between numbers to the base r: 

123... {r~-l}-(r—l)+r = l.. .1 (to r digits), 

{r — l} {r—2}.. .321*(r—1) —1 = {r—2} {r—2}... (to r digits). 

Several writers^® proved that 

123... {r-l}-(r~2)+r-l = {r~l}.. .321. 

T. Hayashi^^ noted that if A = 10+r(10)^+r^(10)^+... be multipHed or 
divided by any number, the digits of each period of A are permuted cyclically. 

A. L. Andxeini^^® found pairs of numbers N and p (as 37 and 3) such that 
the products of N by all multiples ^ (J3 — l)p of p are composed of p equal 
digits to the base 12, whose sum equals the multiplier. 

P. de Sanctis^® gave theorems on the product of the significant digits of, 
or the sum of, all numbers of n digits to a general base, or the numbers 
beginning with given digits or with certain digits fixed, or those of other 
types. 

A. Palmstrom^® treated the problem to find all numbers with the same 
final n digits as their squares. Two such numbers ending in 5 and 6, 
respectively, have the sum lO'^+l. If the problem is solved for n digits, 
the (n4-l)th digit can be found by recursion formulse. There is a unique 
solution if the final digit (0, 1,5 or 6) is given. 

A. Hauke^^ discussed obscurely (mod sO for x with r digits to base 
s. If m = 2, while r and s are arbitrary, there are 2" solutions, v being the 
number of distinct prime factors of s. 

G. Valentin and A. Palmstrom^^ discussed x^^x (mod 10”), for A; = 2, 3, 
4, 5. 

G. Wertheim"*^ determined the numbers with seven or fewer digits whose 
squares end with the same digits as the numbers, and treated simple prob¬ 
lems about numbers of three digits with prescribed endings when written to 
two bases. 

“dSammlung der Aufgaben... Zeitschr. Math. Naturw. Unterricht, 1898, 35-6. 
Quest. Educ. Times, 63, 1895, 92-3. 

"Jour, of the Physics School in Tokio, 5, 1896, 153-6, 266-7; Abhand. Geschichte der Math. 
Wiss., 28, 1910, 18-20. 

"Jour, of the Physics School in Tokio, 5, 1896, 82, 99-103; Abhand., 16-18. 
6, 1897, 148-9; Abhand., 21. 

a7aperiodico di Mat., 14, 1898-9, 243-8. 
««Atti Accad. Pont. Nuovi Lincei, 52, 1899, 58-62; 53, 1900, 57-66; 54, 1901, 18-28; Memorie 

Accad. Pont. Nuovi Lincei, 19, 1902, 283-300; 26,1908, 97-107; 27, 1909, 9-23; 28, 1910, 
17-31. 

*®Skrifter udgivne af Videnskabs, Kristiania, 1900, No. 3, 16 pp. 
«Archiv Math. Phys., (2), 17, 1900, 156-9. 
^^ForhandUnger Videnskabs, Kristiania, 1900-1, 3-9, 9-13. 
**Anfangsgrtinde der Zahlenlehre, 1902, 151-3. 
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C . L. Bouton" discussed the game nim by means of congruences between 
sums of digits of numbers to base 2. 

il. Piecioli"® employed N — ai.. .a^oi n^3 digits and numbers . .a<„ 
and obtained from N by an even and odd number of transpoktions 
of digits. Then ... ai„ = 

ipf- ^ number of n digits to base R has r fixed digits, including the first, 
iiiifi tlie sum of these r is = — a (mod 1), the number of ways of choosing 
the remaining digits so that the resulting number shall be divisible by 
m tli«» niim!>er of integers of n—r or fewer digits whose sum is =a (modi?-l) 
and heiH‘e in N + l or N, according as a=0 or a>0, where 
jili-l), 

(b Mcdealfe"^ noted that 19 and 28 are the only integers which exceed 
hy unity 9 times the integral parts of their cube roots. 

A. 'ragliirP^ proved that every number prime to the base g divides a 
luiinber 1. . J to base g (generalization of Plateau^s^® theorem). 

it, B, C have 2, 3, 4 digits respectively and A becomes A' on re- 
vf*miig its digits, and 2A —l = il', ZB—2A-{-10= 4C—B4-1+[B/10] 

V\ then A ^ 37, B= 329, C= 2118, 
P. F. TeilheP^ proved that we can form any assigned number of sets, 

fiifli iiieliiciing any aligned number of consecutive integers, such that with 
the digits of the gth power of any one of these integers we can form an 
iiitliiitucle of different gth powers, provided g<m, where m is any given 
integer. 

L. bl Dickson"® determined all pairs of numbers of five digits such that 
their ten digits form a permutation of 0, 1,..9 and such that the sum 
of the two numbers is 93951. 

A. C 'uniiinghiijn"^ found cases of a number expressible to two bases by a 
digit reprinted three or more times. He"‘' noted that all 10 digits or 

all >CI occur in the square of 10101010101010101 or of 1.. .1 (to 9 digits), 
sciuarc Imng unaltered on reversing its digits. 

and Wiggins expressed each integer ^ 140 by use of four nines, 

as Ki U I-+ allowing also .9 = 1, (Vq) !, and the exponent Vq, and 

I’ilcil a lik(* table using four fours. 
If*’-' r 1 (mo<l q), 1. . .1 (with g" digits to base r) is divisible by g". 
if"-' tlu- sejuare of a number n of r digits ends with those r digits, then 

10’ ) 1 - ;i liiis 1iu“ same property. Also, (n — 1)® ends with the same r di^ts 

of Math., (2), .'i, nK)l-2, 35-9. Generalized by E. H. Moore, 11, 1910, 93-4. 

*®^^N’onv. Aim. Math., (4), 2, 1902, 40-7. 
“‘•Math Qiii'Ht. Iviuc. 'rnncH, (2), 1, 1902, 119-120. 

03 4. 
^iVrifMiirn di Mat., IH, UK)3, 45. 
**“*Math Kdiic. Timefl, (2), 5, 1904, 82-3. 

defl math., 11, 1904, 14-6. 
*“Anirr. Math. Monthly, 12, 1905, 94-5. 
**'*Math, Quimt. Kdur. Timee, (2), 8, 1905, 78. 

10 liHKl, 20. *^Math. Quest. Educ. Times, 7, 1905, 43-46. 

7,* 190r>.*49 .50. 7, 1905, 60-61. 
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as n —1. If the cube of a number n of r digits ends with those r digits, 
10*“—n has the same property. 

P. Ziihlke^® proved the three theorems of Pahnstrom^^ and gave all solu¬ 
tions of (mod 10^) for p = 3,..12. 

M. Koppe^^ noted that by prefixing a digit to a solution 0, 1, 5 or 6 

of (mod 10) we get solutions of (mod 10^), then for 10^, etc. We 
can pass from a solution with n digits for 10” to solutions with 2n digits 
for 10^”. He treated also (mod 10”). 

G. Calvitti^® treated the problem: Given a number A, a set C of 7 digits, 
and a number p prime to the base gr, to find the least number x of times the 
set C must be repeated at the right of A to give a number (mod p). 
The condition is G[Ni—No)^0 (mod p), where 

If Ni—No^Oy any r is a solution. If not, the least value X of a; makes 
G=0 (mod p/p), where p is the g. c. d. of Ni—iVo and p. Then X is the 
1. c. m. of Xi,..., Xft, where X^ is the least root of G^O (mod p*), if p/p is the 
product of pi,..., Pft, relatively prime in pairs. Hence the problem reduces 
to the case of a power of a prime p. Write (a)^, for (a*—l)/(a—1). It is 
shown that the least root of (a)*s0 (mod p*) is mp^“*, where m is the least 
root of (a)x=0 (mod p), and p* is the highest power of p dividing (a)„». 
Given any set C of digits and any number p prime to the base p, there exist 
an infinitude of numbers C.. .C divisible by p. 

A. G6rardin'^^“ added 220 to the sum of its digits, repeated the operation 
18 times and obtained 418; 9 such operations on 284 gave 418. A. Boutin 
stated that if a and h lead finally to the same number, neither, a nor h is 
divisible by 3, or both are divisible by 3 and not by 9, or both are divi¬ 

sible by 9. 
E. Malo^® considered periodicity properties of A and a in 

5* = 10’"A„.,+a, (o„<10’», A:=n-2”‘-Hp, 0^pg2”-2-l), 

and solved Cesaxo’s^' three problems on the digits of powers of 5. 
A. L. Andreini“ noted that the squares of A and B end with the same 

p digits if and only if the smaller of r+s and u+v equals p, where 

A+B = a-2’^-5”, A-B=d-2*-5'- 

"Sitz. Berlin Math. Gesell., 4, 1905, 10-11 (Suppl., Archiv Math. Phys., (3), 8, 1905). 
5, 1906, 74-8. (Suppl., Archiv, (3), 11, 1907.) 

^®Periodico di Mat,, 21, 1906, 130-142, 
48®Sphmx-Oedipe, 1, 1906, 19, 47-8. Cf. Tinterm^d. math., 22, 1915, 134, 215. 
^“Sur certaines propri4t6s arith. du tableau des puissances de 5, Sphinx-Oedipe, 1906-7,97-107; 

reprinted, Nancy, 1907, 13 pp., and in Nouv. Ann. Math,, (4), 7, 1907, 419-431. 
•°I1 Pitagora, Palermo, 14, 1907-8, 39-47. 
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W. Janichen®®*’ stated that, if q^{x) denotes the sum of the di^ts of x to 
the base p and if p is a prime divisor of n, then, for /a as in Ch. XIX, 

SM(d)ffp(|) = 0. 

E. N. Barisien^*^*" noted that the sum of all numbers of n digits formed 
with p distinct digits 7^0, of sum s, is 

s(p+1)"-2 -1) /9+(p+1) 10”“^}. 

A. G^rardin®®'* listed all the 124 squares formed of 7 distinct digits. 
Several writers®^ treated the problem to find four consecutive numbers 

a, b==a+l, c = a+2, d = a+3, such that (a)i = ll.. .1 (to a digits) is divisible 
by a+1, (b)i by 2b+l, (c)i by 3c+l, {d)i by 4^+1. 

A. Cunningham and E. B. Escott®^ treated the problems to find integers 
whose squares end with the same n digits or all with n given digits; to find 
numbers having common factors with the numbers obtained by permuting 
the digits cyclically, as 

259 = 7*37, 592 = 16*37, 925 = 25*37. 

E. N. Barisien®^ noted that the squares of 625, 9376, 8212890625 end 
with the same digits, respectively. R. Vercellin®^ treated the same topic. 

E. Nannei®® discussed a problem by E. N. Barisien: Take a number of 
six digits, reverse the digits and subtract; to the difference add the number 
with its digits reversed; we obtain one of 13 numbers 0, 9900,..., 1099989. 
The problem is to find which numbers of six digits leads to a particular one 
of these 13, and to generalize to n digits. 

Several writers®® examined numbers of 6 digits which become divisible 
by 7 after a suitable permutation of the digits; also®^ couples of numbers, 
as 18 and 36, 36 and 54, whose g. c. d. 18 is the sum of their digits. 

E. N. Barisien®® gave ten squares not changed by reversing the digits, 
as 676=26^ 

A. Witting®^ noted that, besides the evident ones 11 and 22, the only 
numbers of two digits whose squares are derived from the squares of the 
numbers with the digits interchanged by reversing the digits are 12 and 13. 
Similarly for the squares of 102 and 201, etc. Also, 

102*402 = 201*204, 213*936 = 312*639, 213*624 = 312*426. 

A. Cunningham®® treated three numbers L, M, N of I, m, n digits, 
respectively, such that N-LM, and N has all the digits of L and M and no 
others. 

»»»ArcMv Math. Phys., (3), 13, 1908, 361. Proof by G. Szego, 24, 1916, 85-6. 
®°«Sphinx-Oedipe, 1907-8, 84-86. For p = n. Math. Quest. Educ. Times, 72, 1900, 126-8. 

1908-9, 84-5. 
®iL’interm4dmire des math., 16, 1909, 219; 17, 1910, 71, 203, 228, 286 [136]. 
®2Math. Quest. Educat. Times, (2), 15, 1909, 27-8, 93^. 
“Suppl. alPeriodicodi Mat., 13,1909,20-21. “Suppl. al Periodico di Mat., 14,1910-11,17-20. 
“/bid., 13, 1909, 84-88. “L’interm^diaire des math., 17, 1910, 122, 214-6, 233-5. 
®^/6id., 170,261-4; 18,1911,207. “Mathesis, (3), 10, 1910, 65. 
®®Zeit8chrift Math.-Naturw. Unterricht, 41,1910, 4^50. 
•®Math. Quest. Educat. Times, (2), 18, 1910, 23-24. 



Chap. XX] Pkopeeties of the Digits of Numbers. 463 

D. Biddle^^ applied congruences to find nuriibers like 15 and 93 whose 
product 1395 has the same digits as the factors. 

P. Cattaneo®^ considered numbers Q (and C) whose square (cube) ends 
with the same digits as the number itseK. No Q> 1 ends with 1. No two 
Q^s with the same number of digits end with 5 or with 6. All Q*s < 10^^ are 
found. A single C of n digits ends with 4 or 6. Any Q is a C. Any Q—l 
is a C. If A is a Q with n digits and if 2N — 1 has n digits, it is a C. 

M. Thi4,®^“ using all nine digits >0, found numbers of 2, 3 or 4 digits 
with properties like 12-483 = 5796. 

Pairs®^^ of cubes 3®, 6® and 375®, 387® whose sums of digits are squares, 
3^ and 6^. 

T. C. Lewis®® discussed changes in the digits of a number to base r not 
affecting its divisibility by p. 

Numbers®* B and having the same sum of digits. 
Pairs®® of primes like 23*89=29-83. 
Cases®® like 7*9403 = 65821 and 3-1458 = 6-0729, where the digits 0, 

1,..9 occur without repetition. 
jypn+i same digits as N, 

Numbers®® like 512= (5+1+2)®, 47045881000000= (47 +4 +58 +81)®. 
AlP numbers like 2-5-27 = 1*18*15, 2+5+27 = 1+15+18. 
Number^® divisible by the same number reversed. 
Number’'^ an exact power of the sum of its digits; two numbers each 

an exact power of the sum of the digits of the other. 
Solve’^^ KN~\-P—N\ N' derived from N by reversing the digits. 
Symmetrical numbers (ihid.j p. 195). 
F. Stasi"^® proved that, if a, h are given integers and a has m digits, we 

can find a multiple of h of the form 

10'’(a*10^^+a-10’"^'-^^ +... +a), p^O. 

Taking b prime to a and to 10, we see that 6 divides 10”**+ ... +1. The 
case m = 1 gives the result of Plateau.^® 

Cunningham"^®" and others wrote Ni for the sum of iV and its digits to 
base r, N2 for the sum of Ni and its ^gits, etc., and found when Nm is 
divisible by r—1. 

“Math. Quest. Educ. Times, (2), 19, 1911, 60-2. Cf. (2), 17,1900, 44. 
“Periodico di Mat., 26, 1911, 20+7. 
“"Nouv. Ann. Math., (4), li, 1911, 46. 
®»^Sphinx-Oedipe, 6, 1911, 62. 
“Messenger Math., 41, 1911-12, 185-192. 
“L’interm^diaire des math., 18, 1911, 90-91; 19, 1912, 267-8. 
^Jbid., 1911, 121, 239. ^Ihid., 19, 1912, 26-7, 187. 

50-1, 274-9. 
77-8, 97. 
125, 211. 

’’mid., 128. 
“/did., 137-9, 202; 20, 1913, 80-81. 
“/did., 221. 
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A. Cuimingham^^ listed 63 symmetrical numbers aoaxa2aiao each a 
product of two symmetrical numbers of 3 digits, and all numbers n®, 
n< 10000, and all n^, n^, n^, n<1000, ending with 2, 7, 8, symmetrical 
with respect to 2 or 3 digits, as 618^=236029032. 

Pairs’^® of numbers whose 1. c. m. equals the product of the digits. 
Pairs’^® of biquadrates, cubes and squares having the same digits. 
*P. de Sanctis^^ noted a property of numbers to the base h^+1. 
L. von Schrutka^® noted that 15, 18, 45 in 7*15 = 105, 6*18 = 108 and 

9*45=405 are the only numbers of two digits which by the insertion of 
zero become multiples. 

G. Apdreoli’'® considered numbers N of n digits to the base k whose rth 
powers end with the same n digits as' N. Each decomposition of k into 
two relatively prime factors gives at most two such A’s. If the base is a 
power of a prime, there is no number >1 whose square ends with the same 
digits. 

Welsch®® discussed the final digits of pth powers. 
H. Brocard®^ discussed various powers of a number with the same sum 

of digits. _ 
A. Agronomof®^ wrote N for the number obtained by reversing the digits 

of N to base 10 and gave several lon^formulas for J. 

The®^“ only case in which is a square for two digits is 65^ — 
56^=33^. There is no case for three digits. 

R. Burg®® found the numbers N to base 10 such that the number 
obtained by reversing its digits is a multiple kN of A, in particular for 
A;=9,4. 

E. Lemoine®^ asked a question on symmetrical numbers to base 6. 
H. Sebban®® noted that 2025 is the only square of four digits which yields 

a square 3136 when each digit is increased by unity. Similarly, 25 is the 
only one of two digits. 

R. Goormaghtigh®® noted that this property of the squares of 5, 6 and 
45, 56 is a special case of = 1... 1 (to 2p digits), where A = 5... 56, 
R=4.. .45 (to p digits). Again, the factorizations 11111 = 41*271,1111111 
=239*4649 yield the answers 115^, 156^ and 2205^, 2444^. 

’<L’intenn6diaire des math., 20, 1913, 42-44. 
80. 
124, 262, 283-4. 

Accad. Romana Nuovi Lincei, 66, 1912-3, 43-5. 
T«Archiv Math. Phys., (3), 22, 1914, 365-6. 
"Giomale di Mat., 52, 1914, 53-7. 
*°L’mterm6diaire des math., 21, 1914, 23-4, 58. 

22, 1915, 110-1. Objections by Maillet, 23, 1916, 10-12. 
“Suppl. al Periodico di Mat., 19, 1915, 17-23. 
“®Sphinx-Oedipe, 9, 1914, 42. 
“Sitzungsber. Berlin Math. Gesell., 15, 1915, 8-18. 
»*Nouv. Ann. Math., (4), 17, 1917, 234. 
“L'interm6diaire des math., 24, 1917, 31-2. 
wj&id., 96. Cf. H. Brocard, 25, 1918, 35-8, 112-3. 
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Several®®® gave 9-7i!+n+l= 1.. .1 forn^9, with generalization to any 
base. 

E. J. Moulton®'^ found the number of positive integers with r+1 digits 
fewer than p of which are unity (or zero). L. O’Shaughnessy®® found the 
number of positive integers < 10^ which contain the digit 9 exactly r times. 

Books®® on mathematical recreations may be consulted. 
F. A. Halliday®® considered numbers N formed by annexing the digits 

of B to the right of A, such that N= as for 81= (8+1)^. Set 
N= Then ACIO""—•■!)= (A+B)(A.4-5 —1), so that it is a ques¬ 
tion of the factors of 1. 

*J. J. Osana®^ discussed numbers of two and three digits. 
E. Gelin®^ listed 450 problems, many being on digits. 

®®<»L’iiiterm6diaire des math., 25, 1918, 44-5. 
*'’'Amer. Math. MQnthly, 24, 1917, 340-1. 

25, 1918, 27. 
*®E. Lucas, Arithm(5tique amusante, 1895. E. Fourrey, R6cr4ation8 Arithm4tiques, 1899. 

W. F. White, Scrap-Book of Elem. Math., etc. 
®®Math. Quest, and Solutions, 3, 1917, 70-3. 
“iBevista Soc. Mat. Espafiola, 5, 1916, 156-160. 
“Mathesis, (2), 6, 1896, Suppl. of 34 pp. 
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Cesaro, 443, 450 
Cistiakov, 451 

Dedekind, 441-2 (444, 446) 
DLrichlet, (445) 

Elliott, 447 

Fatou, 448 
Fleck, 448 
Furlan, 448 

Gegenbauer, 447, 450 (443) 
Glaisher, (441) 

Hackel, 448 

Kluyver, 448 
Knopp, (448) 
Kronecker, 447 (443, 448) 
Kusnetzov, 448 

Cahen, 449 Laguerre, 442 
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Landau, 448-9 
L4meray, 447 
Liouville, 441-2 
Lipschitz, 445 
Lucas, 445 

Meissel, 441 
Meissner, 448 
Merry, 442 (444) 

Mcrtens, 442, 446 (448) 
M6bius, 441 (443) ' 

Nazimov, (448) 

Seliwanov, 446 
SheUy, 451 
Steffensen, 449 

Stieltjes, 449 

Tschistiakow, 451 

Von Koch, 446 
Von Stemeck, 444r-6 (442, 

448) 

Zsigmondy, 444-5. 

Ch. XX. Properties op the Digits op Numbers. 

Agronomof, 464 
Aiyar, 458 
Andreini, 459, 461 
Andreoli, 464 
Anonymous, 454, 458 

Barbier, 457 
Barillari, 455 
Barisien, 462 
Barlow, 453 
BerdeU4, 457 
Bertrand, 455 
Bianchi, 455 
Biddle, 463 
Booth, 455 
Boutin, 461 
Bouton, 460 
Brocard, 464 
Brownell, 453 
Burg, 464 

Calvitti, 461 
Cantor, 455 (458) 
Catalan, 456 
Cattaneo, 463 
Ces^o, 457 (461) 
Crelle, 454 (456) 
Cunningham, 458, 460, 462-4 

Davey, 454 
De Rocquigny, 457 
De Sanctis, 459, 464 
Dickson, 460 
D’Ocagne, 457 
Drot, 455 

Emsmann, 455 
Escott, 458, 462 

Flood, 455 

Fourrey, 465 
Frangais, 454 

Gegenbauer, 458 
Gelin, 465 
G6rardin, 461-2 
Gergonne, 454 
Glaisher, 456 H 
Goormaghtigh, 464 
Grunert, 455 

Halliday, 465 
Hauke, 459 
Hayashi, 459 
HiU, 453 
Hoskins, 456 

Ingleby, 455 

Janichen, 462 
Johnson, 458 

Kessler, 457 
Koppe, 461 
Kraitchik, 458 
Kraus, 458 

Laisant, 456-8 (454) 
Lemoine, 457, 464 
Lewis, 463 
Lucas, 458, 465 

Mackay, 457 
Maillet, 464 
Malo, 461 
Mansion, 456 
Martin, 456 
Metcalfe, 460 
Moore, 460 
Morel, 456 

Moret-Blanc, 457 
Moulton, 465 

Nannei, 462 

Osana, 465 
O’Shaughnessy, 465 

Pahnstrom, 458-9 (461) 
Perkins, 456 
Piccioli, 460 
Plateau, 456 (460, 463) 

Rutherford, 455 

Saint, 453 (456) 
Sampson, 455 
Sebban, 464 
Simmons, 457 
Stasi, 463 
Storr, 458 
Strauss, 458 
Suchanek, (459) 
SzPP'n. 462 

Tagiuri, 460 
Tanner, 456 
T6denat, 454 
Teilhet, 460 
Thi6, 463 

Valentin, 459 
Vercellin, 462 
Von Schmtka, 464 

Welsch, 464 
Wo^heim, 459 
White, 465 
Wiggins, 460 
Witting, 462 

Ztihike, 461 
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Abundant, 3, 7,11,14,15,20, 
31-3 

Agreeable, 38, 458 
Algebraic numbers, 86, 221, 

245, 251, 322, 379, 417, 
447-8 

Aliquot parts, 3, 50-8 
Amantes, 39 
Amiable, 38, 41 
Amicable, 5, 38-50 
-of higher order, 49, 50 
--triple, 50 
Anatomiae numerorum, 348 
Approximation, 114-5, 158, 

281-3,318,330-1,352,354, 
411, 422-3, 430, 448 (see 
asymptotic, mean) 

Arrangement in cycles, 269 
Arithmetical progression, 

100-1, 114, 131, 336, (see 
prime) 

Associated numbers, 64-6, 73 
Asymptotic, 119, 122, 120-7, 

129-132, 134-6, 138, 144, 
154-5, 214-5, 289, 291, 
294, 301-2, 305-0, 308, 
317-325, 328, 333, 416-9, 
434r6, 438-440, 450 (see 
approximation, mean) 

Aurifeuillian, 386, 390 

Base, 178, 182, 186, 199, 273, 
338, 340-1, 354-5, 369, 
373, 375, 379, 385, 398, 
454, 456, 458-460, 463-4 
(see digits, periodic) 

Befreundete, 38 
Belongs (see exponent) 
Bernoullian numbers, 100, 

109, no, 112, 140-1, 145- 
6, 220, 274, 278, 309, 311 

Bernoulli’s function, 268, 325 
Bertrand’s postulate, 132, 

413, 425, 435-6 
Bilinear form, 409 
Binomial coefficients, 59, 62, 

67, 77, 91, 97, 99, 266-278 
-congruence, 92-5,105, 

175, 177, 204-222, 388, 391 
-, identical, 78, 

82, 87-9, 94-5 
Casting out nines, 337-346 
Characters, 201, 415 
Circular permutations, 75,78, 

81,131, 136 

Combinations, 77, 90-1, 106, 
261, 281, 303, 410 

Complementary fractions, 156 
Congeneres, 39 
Congruence (see binomial) 
-, cubic, 252-6, 262 
-, higher, 223-61 
-identical, 73, 87-9 
-, involving factorials, 

275-8, 428 
-, irreducible, 84, 234- 

52 
-, quartic, 254-5, 259, 

260 
Congruent form, 362 
-fractions, 258-9 
-series, 259 
Conjugate functions, 444 
Consecutive numbers, 147, 

332, 353, 355,373, 457 (see 
product) 

Continued fractions, 138, 
158, 210, 363, 367-8, 381, 
393, 399, 403, 408-9 

Crib (see sieve) 
Criteria for given divisor, 337 
Cyclotomic function, 199,245, 

378, 383-5, 387-90, 418 

Decimal (see periodic) 
Defective, 3 
Deficient, 3 
Determinant, 77, 87, 97, 137, 

149, 150-1, 226, 228, 231, 
233, 261, 288, 295, 321, 
336, 368, 399, 410-1, 444, 
446 

-=c(modm), 155, 261 
-of Smith, 122-4, 127- 

130, 136 
Diatomic series, 439 
Differences of order m, 62-4, 

74, 78, 79, 204 
-two primes, 

424-5 

squares, 357 
Digits, 81, 343, 353^, 358, 

360, 366, 438, 453-65 
-of perfect number, 7, 

10, 17, 20 
-permuted in multi¬ 

ples, 164r-5,170,174,176-7, 
458-9 

Digits, sum of, 263-4, 266, 
272,337-8,342-3,367,455, 
457-8, 461^ 

Diminute, 3, 4 

Equivalent fractions, 135 
Euclidean number, 28 
Euler’s constant, 122, 134, 

136, 281-3, 289, 294, 317- 
24, 328-30 

-criterion, 67, 205 
-generalization of Fer¬ 

mat’s theorem, 60-89, 398, 
400 

-numbers, 363 
- <jf>-function, 82, 85, 

110, 113-58, 182, 285-6, 
293, 312, 333-6, 404, 434, 
441-2, 446 
-, gener¬ 

alized by Schemmel, 147 
-Jordan, 

123, 132, 147, 252, 298-9 
Exc4dant, 3 
Excess E of divisors 4m+1 

over divisors 4m+3^, 281, 
289, 293,295-6,300-1,308, 
318-9 

-of odd over even 
divisors, 290-1, 317-8 

Exclusion method, 207, 369- 
70 

Exponent, 61, 112, 163, 169, 
181-204, 240, 242-3, 246, 
257, 259, 260 (see Haupt) 

-to which 10 belongs, 
159-204, 339, 341-2 
-2 be¬ 

longs, 111, 181,190-1,193, 
198, 200, 203, 369-70 

Factor tables, 347 (see graph¬ 
ical) 

Factorial, 62-3, 77, 263-78 
Factoring, 13, 25, 241, 248, 

252, 357 (see graphical, cri¬ 
teria, sieve) 
-, number of ways of, 

52, 109, 282, 285, 298, 331 
Factors of 10’^=*= 1, 159-179 
-2”'-l (see per¬ 

fect) 
-a”=*=b^ 258, 

381-91 
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Farey series, 155-8 
Fermatian function, 385 
Fermat’s-jaumbera 94, 

140/19^375, 398, 401 
--'meorem, 12, 17, 18, 

59-89, 179 
-^ converse of, 

91-5 
-, generaliza¬ 

tion, 84-9, 406 (see Galois) 
Finite algebra, 388 
-differences, 250, 394, 

407 
-field, 247, 250 
Flachen Zahlen, 4 
Frequency of a divisor, 126 

Galois field, 232, 247, 250 
-imaginary, 233-55 . 
Galois’ generalization of Fer¬ 

mat’s theorem, 235, 240, 
246-7, 249, 250, 252, 403 
-Wil¬ 

son’s theorem, 240, 24&-7, 
252 

Gaussien, 194 
Graphical falctoring, 351,353- 

4, 356, 365, 369, 372, 374 
-representation of di¬ 

visors, 330, 351, 354 
Greatest common divisor, 

139, 147, 150, 252, 328, 
332-6, 394, 401-3, 447, 
456, 462 (see determinant 
of Smith) 

-divisor, 329, 331 
-integer in, 89, 119, 

121-2, 126, 13C, 132, 138, 
144, 153, 158, 263, 282, 
293, 295, 297-9, 302-3, 
319, 427, 429-432, 450-1 

Goldbach’s theorem and anal¬ 
ogues, 421-5 

Golden section, 411 
Ground forms, 268 
Groups, 78, 80-1, 84-5, 131, 

137, 152, 155, 177, 194, 
196-8, 201, 203, 216, 221, 
248, 251, 268, 287, 332, 
356, 414-5 

Haupt-exponent, 190,200,203 
Hexagon, 9, 411 
Highest prime power in m.!, 

263, 272 

nomial, 334 
Highly composite number,l323 
History, 32, 84, 157, 200, 

342, 353 
Hyper-even number, 379 

H3rper-exponential number, 
379 

Idoneal (idoneus), 361-5 
Imperfectly amicable, 50 
Index, 85, 182-3, 185, 188, 

190-4, 197-204, 211, 240, 
244-5, 249, 251 

Indian, 337 
Indicator, 118, 131, 155, 186, 

194, 200 
Indivisibilis, 6 
Integral logarithm, 353, 417, 

440 
Invariant, 89, 232-3, 260,364 
Inversion, 84, 120, 127, 129, 

132-3, 135, 140, 145, 150, 
153, 234, 296, 429, 430, 
441-8 

Irreducible function, 234-252 
- fraction, 126, 129, 

133, 138, 155-8, 162, 175 

Kerne, 334 
KOrper Zahlen, 4 
Kronecker’s plane, 155 

Lattice, 173 
Leaf arrangement, 411 
Least common multiple, 82, 

328, 332-6, 445, 464 
-residue, 341-2,344,369 
Legendre-Jacobi symbol, 109, 

210,219, 249, 251,255,260, 
276, 288, 300,308, 330,364, 
382, 385, 394, 398 

Linear differential form, 248, 
250 

-forms of divisors, 160, 
362-4, 370, 382, 386, 390, 
399 

-function, 117-8, 134, 
204-5 

-numbers, 4 
Lucas’ Un, vn, 218, 395, 418 
Lucassian, 27 

Mangelhaft, 3 
Matrix, 137, 226, 228, 233 
Maximum divisor, 332 
Mean, 281, 291-4, 301-2, 305, 

312,318, 320,328-331,333, 
335, 447 (see asymptotic) 

Mediation, 156 
Mersenne number, 31 
Mobius’ (Merten’s) function 

M(n), 86, 122, 127-9, 144-5, 
148-9,150-1,265,289, 322- 
3, 329, 335, 431, 441-9, 462 

-gener¬ 
alized, 135-6 

‘Modular system, 88, 249, 
251, 402 

Mosaic, 212 
Multinomial coefficient, 59, 

266-78 
Multiply perfect, 33 

Nim (game), 460 
Nombres associ^s, 50 
Norm, 236,252, 322 
Normal order, 325 
Number of divisors, 51, 54, 

135-6, 142, 279-325, 328, 
443, 451 

-integers divis¬ 
ible by nth power, 327-32 

-=-solutions of 
ui...uk=n, 125,149,291, 
298, 308, 312, 317, 324 

318 
Numerical integrals and de¬ 

rivatives, 152, 449 

Order modulo m, 138 
-of root, 18,9 

Partial fraction, 73, 135, 161, 
198, 410 

Partition, 279, 290, 292, 303, 
312, 427, 438 

Patrone, 349 
Pedal triangle, 86, 388,402 
Pell equation, 56, 367-8, 393 
Pentagonal number, 279, 292, 

312 
Perfect number, 3-33, 38 
-of second kind, 

58 
Period, 133, 182, 202, 207 
Periodic fraction, 75-6, 82, 

92, 159-179, 193,202, 339- 
341j 371, 379, 386, 454 

Permutations, 78-80,131,136 
Plateau’s theorem, 456, 460, 

463 
Pluperfect, 33 
Plus quam-perfectus, 3 
Polygon, curvilinear, 85 
-, inscribed in cubic 

curve, 85, 150 
-, regular, 71, 75, 133, 

139, 193, 375 
Polynomial, divisors of, 384, 

393-4 
-in X divisible by rn for 

every x, 87, 89, 336 
Primary function, 240 
Prime functions (see irredu¬ 

cible) 
-pairs, 353, 425, 438 
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Primtes 6w=fcl, 7 (see-differ¬ 
ence, highest) 
-, asymptotic distribu¬ 

tion of, 439, 449 
-, density of, 329, 416 
-in arith. progression, 

425 
-, infinity of, 413 
-     in 

arith. progressions, 85,395, 
415-20, 436 
-, large, 352-4, 362, 

365, 386, 388 
-, law of apparition of, 

396, 398, 406 
-repeti¬ 

tion of, 396-8 
-, miscellaneous results 

on, 436-9 
-, number of, 352-4, 

429-35, 450 
-, product of, 126 
-represented by quad¬ 

ratic forms, 417 
-poly¬ 

nomials, 333, 414, 418, 
420-1 
-, sum of two, 421-4, 

435 
Primes, tables of, 347, 381 
-, test for, 35, 276, 302, 

305, 360-65, 370,374, 376- 
8, 380, 396-404, 426-8,445 
-, to base 2, 22, 353-4 
Primitive divisor of a^b^, 388 
-X-root, 202 
-non-deficient number, 

31 
-number, 327, 334 
-root, 63, 65, 72, 103, 

117, 181-204, 222, 378-9 
- -, imaginary, 

235-252 
-of unity, 133, 

136 
Probability, 138, 302, 308, 

328, 330, 333, 335,407,438 
Product of consecutive inte¬ 

gers, 79, 263-4, 269, 331 
-differences, 269 
-divisors, 58, 

332 
Pronic, 357 

Quadratic forms, 109, 130, 
158, 207, 210, 219, 276, 
318, 330, 361-5, 369-70, 
400, 415-8, 420-1 
- residues, 23, 25, 29, 

65-8, 71, 76, 92, 109, 165, 

185, 189, 190, 196-8, 202, 
210, 213-4, 218, 221, 231, 
240, 245-6, 253-5, 275, 
277, 360, 363, 365, 373, 
382, 393, 395-6, 403 

Quasi-Mersenne number, 390 
Quotient — l)/m, 102, 

105-112 

- {(p-l)! + l)/p, 109, 
112 

Rank (see matrix) 
Recurring aeries, 376-7, 393- 

411 
-^ algebraic the¬ 

ory of, 407 
Reducible law of recurrence, 

409-10 
Redundantem, 3, 4 
Remainders on dividing n by 

1,..., n, 290, 313,327-31 
Roots of unity, 133,136,183- 

4, 245, 250, 256, 419 

Secondary number, 327 
-root, 191 
Series of composition, 332 
-Lam6, 411 
-Leonardo Pis¬ 

ano, 393 
Sieve of Eratosthenes, 8, 

347-8, 353-6, 424, 439 
Similar modulo /c, 260 
Simple system of numbers, 

455, 458 
Solution of alg. equations, 

407-8 
Sous-double, 33 
Squares, 52, 54, 284-6, 358, 

361, 366, 453^64 
Stencil, 349, 356, 359 
Substitutions, 75, 78-80, 82, 

85, 158, 232, 262 
Sum of divisors, 5, 18, 19, 

22, 42, 48, 52-8, 135, 139, 
279-325, 445, 450 
-/cth powers of 

divisors, 38, 123, 151, 286- 
325, 450 

-integers 
<n, 95, 106, 121,123, 126, 
140, 332 

-four squares, 283 
-two squares, 

247, 286, 340, 360, 381-2, 
390, 402-3 

Superfluos, 3, 4 
Symbolic, 99,119,124,141-2, 

144-5, 148, 248, 250, 278, 
296, 395, 399, 402, 449 

Symbols, B(n), 281; Br(n), 
296; F(a, N), 84; Fr, 375; 
Him), Hm, 264; Jkin), 147; 
Mg,, 31; M(n), 441; 0, 305; 
Pm, 33; <f>in), 61, 113; 
<l>kin), 140; qu, 105, 109; 
a*(n), 4:8; 8n, 95; Sn,m, 96; 
cin), 53, 279, 446; akin), 
r(n). Tin), 21^; Tkin),2^l; 
0(n),429; Un,Un,m; r(s), 
292; [x], 115, 276; jn, 42; 
*before author, not avail¬ 
able. 

Symmetric fomctions mod. 
p, 70, 95,106, 143 
- number, 112, 455, 

463-4 

Tables, 10, 14, 16, 18, 21-2, 
25, 27, 30-2, 37-8, 45, 
48-9,54-5,110-2,126,135, 
137, 140, 156-7, 160-79, 
181,183,185.187-203, 213, 
217, 219, 22^ 244-5, 248- 
51, 254, 262, 296, 308, 318, 
331, 339-41, 347-58, 361-4, 
366-7, 379, 381-4, 386, 388, 
390-1, 399, 417, 422, 432, 
446, 457 

Talmud, 337 
Totient, 124-5, 148, 153, 246 
-point, 154 
Totitives, 98, 124,130-1, 246 
-all primes, 132,134 
Triangular number, 7, 9, 20, 

59, 284, 290, 295, 302, 310, 
373, 425, 427 

Trinomials, factors of, 391 

tlberflussig, 3 
tlberschiessende, 3 
tlbervollstandig, 3 
UnvoUkommen, 3 
Unvollstandig, 3 

Verwandte, 38, 47 
Vollkommen, 3 
Vollstandig, 3 

Wilson’s theorem, 59-91, 99, 
103, 275 
-, converse of, 

63, 427-8 
-, generalization 

of, 65, 68-74, 77-84, 87, 
90-1 (see Galois) 

Zeta function, 121, 125-7, 
134,139,149,292-3, 298-9, 
310,318, 322,324,328,331, 
439, 448 
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ARRANGED ALPHABETICALLY BY AUTHOR 

THEORIE DER .FUNKTIONEN MEHR- 
ERER KOMPLEXER VERAENDER- 
LICHEN, By H. Behnke and P. Thullen. 
From the Ergebnisse der Mathematik. 1934. 
vii+115 pages. 5j^x8j4. $3.25 

LEHRBUCH DER FUNKTIONEN- 
THEORIE, By L. Bieberbach. Vol. 1 Fourth 
(latest) edition, xiv+322 pages. Vol. 2. Sec¬ 
ond (latest) edition, vi+3/0 pages. 5^x8j4. 
Original price $14.80. Two vol. set $7.50 

‘‘One of the best introductions to the theory of 
functions of a complex variable. . . . scores of new 
problems, methods and results. Indispensable for 
anyone interested in modem developments.” 

—Bulletin of the A. M. S, 

KREIS UND KUGEL, By W. Blaschke. 
x+169 pages. S)4x8j4. $3.50 

Three main topics are dealt with: The isoperi- 
metric properties of the circle and sphere, the 
(Brunn-Minkowski)^ theory of convex bodies, and 
differential-geometric properties (in the large) of 
convex bodies. 

VORLESUNGEN UBER INTEGRAL- 
GEOMETRIE, By W. Blaschke. 2 Vols. 

“elegant theory of integral invariants, with applica¬ 
tions not only to geometric probability, but also to 
differential geometry, maximum and minimum prob¬ 
lems and geometrical optics.”—Bulletin of the A. M. S. 

Bound together with: 

EINFUHRUNG IN DIE THEORIE DER 
SYSTEME VON DIFFERENTIALGLEI- 
CHUNGEN, By E. Kahler. Blaschke: Vol. 1 
(2 ed.) 1936, Vol. 2 1937; K'dhler: 1934. All 
three vols: 222 pp. Sj4x8j4. 

Three Vols. in One $3.95 

VORLESUNGEN UBER FOURIER- 
SCHE INTEGRALE, By S. Bochner. 1932. 
237 pages. 5j^x8j4. Originally published at 
$6.40. $3.95 

“a readable account of those parts of the subject 
useful for applications to problems of mathematical 
physics or pure analysis. 

The author has given in detail such of the results 
of the theory of functions required as are not in¬ 
cluded in the standard treatises.” 
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ALMOST PERIODIC FUNCTIONS, By 
H. Bohr. 1932. 120 pages. 6x9. Lithotyped. 
Cloth. Original German editio'n was pub¬ 
lished at $4.50. $2.50 

From the famous series Ergehnisse der Mathematik 
und Ihrer Gremgehiete, this monograph is a beautiful 
exposition of the subject of almost periodic functions, 
written by the creator of the theory. 

THEORIE DER KONVEXEN KORPER, 
By T. Bonnesen and W. Fenchel. 1934. 171 
pages. Cloth. Originally published 
(paper bound) at $7.50. $3.50 

“The reading of this remarkable monograph . . . 
is extremely suggestive and . . . well worth the 
effort.”—J. D. Tamarkin, Bulletin of the A, M. S. 

VORLESUNGEN UBER REELLE 
FUNKTIONEN, By C. Caratheodory. 2nd, 
latest complete, edn. 728 pp. 5j4x8j4. Orig¬ 
inally published at $11.60. $6.95 

This great classic is at once a book for the beginner, 
a reference work for the advanced scholar and a source 
of inspiration for the research worker. 

REELLE FUNKTIONEN, By C. Cara¬ 
theodory. 1939. 190 pages. 5^x8. $3.50 

Reelle Funktionen is a rewriting of the elementary 
part (the first third) of the author’s famous Vorle- 
sungen Ueber Reelle Funktionen. 

EIGENWERTPROBLEME UND IHRE 
NUMERISCHE BEHANDLUNG, By L. 
Collatz. 1945. 350 pages. 5}4x8^. Originally 
published at $8.80. $4.50 

“Part I presents an interesting and valuable col¬ 
lection of PRACTICAL APPLICATIONS. 

“Part II deals with the MATHEMATICAL 
THEORY. 

“Part III takes up various methods of NUMER¬ 
ICAL SOLUTION of boundary value problems. 
These include step by step approximations, graph¬ 
ical integration, the Rayleigh-Ritz method and 
methods depending on finite differences. Here, as 
throughout the book, the theory is kept in close 
touch with practice by numerous specific examples.” 

—Mathematical Reviews. 

ALGEBREN, By M. Deuring. 1935. v+143 
pages, 5j4x8j4. Cloth. Originally published 
(in paper binding) at $6.60. $3.50 

From Rraehnisxp dj>r Mrcikfini.ntih 
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LES INTEGRALES DE STIELTJES ET 
LEURS APPLICATIONS AUX PROB- 
LEMES DE LA PHYSIQUE MATHEMA- 
TIQUE, By N. Gunther. 1932. 498 pages. 
Sj4x8 inches. $4^95 

LECONS SUR LA PROPAGATION DES 
ONDES ET LES EQUATIONS DE 
L’HYDRODYNAMIQUE, By J. Hadamard. 
viii+37S pages. 534x8j4. $4.50 

“[Hadamard's] unusual analytic proficiency enables 
him to connect in a wonderful manner the physical 
problem of propagation of waves and the mathematical 
problem of Cauchy concerning the characteristics of 
partial differential equations of the second order.” 

—Bulletin of the A. M. S, 

REELLE FUNKTIONEN. Punktfunk- 
tionen, By H. Hahn. 1932.426 pages. 5j4x8j^. 
Originally $12.80. $5.50 

‘‘admirably suited ... to the needs of the mathe> 
matical reader wishing to familiarize himself with 
. . . recent developments.”—Bulletin of the A. M. S, 

INTRODUCTION TO HILBERT SPACE 
AND THE THEORY OF SPECTRAL 
MULTIPLICITY, By P. R. Halmos. About 
120 pp. 6x9. (June, 1951). $3.25 

Prof. Halmos' latest book gives a clear, readable 
introductory treatment of Hilbert Space. The multi¬ 
plicity theory of continuous spectra is treated, for the 
first time in English, in full generality. 

GRUNDZUGE DER MENGENLEHRE, 
By F. Hausdorff. First edition. 484 pages. 
5^x8j4. $4.95 

Some of the topics in the Grundzilge omitted from 
later editions: 

Symmetric Sets—Principle of Duality—most of 
the “Algebra” of Sets—most of the “Ordered Sets” 
—Partially Ordered Sets—^Arbitrary Sets of Com¬ 
plexes—Normal Types—Initial and Final Ordering 
—Complexes of Real Numbers—General Topolog¬ 
ical Spaces—Euclidean Spaces—the Special Methods 
Applicable in the Euclidian Plane—^Jordan's sepa¬ 
ration Theorem—The Theory of Content and Meas¬ 
ure—The Theory of the Lebesgue Integral. 

VORLESUNGEN UBER DIE THEORIE 
DER ALGEBRAISCHEN ZAHLEN, By 
t? Tjr_ino-i __Ct/,,Ot/ _ 
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‘The aim of the book is to bring the reader to a 
comprehension of the questions which at present form 
the summit of the theory of algebraic number fields, 
without presupposing any knowledge of the theory of 
numbers. 

“an elegant and comprehensive account of the 
modem theory pf algebraic numbers.” 

—Bulletin of the A. M. S. 

PRINCIPLES OF MATHEMATICAL 
LOGIC, By D. Hilbert and W. Ackermann. 
1950. xii+172 pages. 6x9. $3.50 

The famous Grundzuge der Theoretischen Logik 
by Hilbert and Ackermann, translated into English, 
with added notes and revisions, 

DIE METHODEN ZUR ANGENAEHER- 
TEN LOESUNG VON EIGENWERT- 
PROBLEMEN IN DER ELASTOKINE- 
TIK, By K. Hohenemser. 1932. 89 pp. 5j4x 

cloth. Originally published at at $4.25. 
$2.75 

. . condenses the results obtained by wide read¬ 
ing, many of the journals being inaccessible to the 
general reader.”—H. Bateman, Bulletin of the A. M. S. 

ERGODENTHEORIE, By E. Hopf. 1937. 
89 pages. $2.75 

From the series Ergehnisse der Mathematik. 

THE CALCULUS OF FINITE DIFFER¬ 
ENCES, By Charles Jordan. 1947. Second 
edition, xxi+652 pages. 5j4x8}4* Originally 
published at $8.00. $5.50 

. . destined to .remain the classic treatment of 
the subject... for many years to come.”—Harry C. 
Carver, Founder and formerly Editor of the Annals 
OF Mathematical Statistics. 

THEORIE DER ORTHOGONALREI- 
HEN, By S. Kaczmarz and H. Steinhaus. 
304 pages. 6x9. $4.50 

The theory of general orthogonal functions. Mono- 
grafje Matemaiyczne, Vol. VI. 

DIFFERENTIALGLEICH UN¬ 
GEN REELLER FUNKTIONEN, By E. 
Kamke. 1930. 450 pages. 5}^xS)4. Originally 
published at $12.80. $4.50 

The existence and uniqueness of solutions, their 
topological structure are studied exhaustively. A full 
one hundred pages of the text are devoted ta the study 
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DIFFERENTIALGLEICHUN- 
GEN: LOESUNGSMETHODEN UND 
LOESUNGEN, By E. Kamke. 3rd Edition. 
1944. 692 pages. 6x9. Originally published at 
$15.00. $7.00 

Everything possible that can be of use when one 
has a given differential equation to solve, or when 
one wishes to investigate that solution thoroughly. 

PART A: General Methods of Solution and the 
Properties of the Solutions. 

PART B: Boundary and Characteristic Value 
Problems. 

PART C: Dictionary of some 1600 Equations in 
Lexicographical Order, with solution, techniques for 
solving, and references. 

ASYMPTOTISCHE GESETZE DER 
WAHRSCHEINLICHKEITS- 
RECHNUNG, By A. A. Khintchine. 1933. 82 
pages. S>4x8j4. Paper. Originally published 
at $3.85. $2.00 

From the series Ergehnisse der Mathematik, 

ENTWICKLUNG DER MATHEMATIK 
IM 19. JAHRHUNDERT, By F. Klein. 
2 Vols. 616 pages. 5j4x8j4. Originally pub¬ 
lished at $14.40. The set $7.00 

“the fruit of a rich life lived in the midst of scien¬ 
tific events, the expression of superior wisdom and 
of a deep historical sense, of a highly cultured per¬ 
sonality and of a masterly power of organization.” 

—R. Courant and 0. Neugebauer. 

VORLESUNGEN UBER HOHERE GEO- 
METRIE, By Felix Klein. Third edition. 
413 pages. 5j4x8. Originally published at 
$10.80. $4.95 

In this third edition there has been added to the first 
two sections of Klein’s classical work a third section 
written by Professors Blaschke, Radon, Ariin and 
Schreier on recent developments. 

THEORIE DER ENDLICHEN UND 
UNENDLICHEN GRAPHEN, By D. 
Kbnig. 1936. 269 pages. 5j4x8j4- Originally 
published at $7.20. $3.95 

“an important branch of topology... 
“elegant applications to matrix theory.. . abstract 

set theory . . . linear forms . . . electricity . . basis 
problems . . . 

“numerous applications to Logic, Theory of 
Games, Group Theory . . . problems of graph theory 
have a special inherent attractiveness independent of 
their aDolications.”—L. Kalmar. Acta Szeaed. 
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DIOPHANTISCHE APPROXIMA- 
TIONEN, By J, F, Koksma. From the 
Ergebnisse der Mathematik, 1936. 165 pages. 
5J4x834. Originally published at $7.25. $3.50 

FOUNDATIONS OF THE THEORY 
OF PROBABILITY, By A. Kolmogorov. 
(English translation). 1950. vi+74 pp. 6x9 
in. Cloth binding. $2.50 

Almost indispensible for anyone who wishes a thor¬ 
ough understanding of modem statistics, this basic tract 
develops probability theory on a postulational basis. It 
is available for the first time in English. 

EINFUEHRUNG IN DIE THEORIE 
DER KONTINUIERLICHEN GRUP- 
PEN, By G. Kowalewski. 406 pages. 5}ix8}i, 
Originally published at $10.20. $4.95 

‘'distinctly readable . . . indispensable to workers 
in its field and generally to be recommended.” 

—Bulletin of the AMS. 

DETERMINANTENTHEORIE EIN- 
SCHLIESSLICH DER FREDHOLM- 
SCHEN DETERMINANTEN, By G. 
Kowalewski. Third edition, 1942. 328 pages. 
5j4x8. $4.25 

“a classic in its field.”—of the A. M, S, 

IDEALTHEORIE, By W. Krull. 1935. 159 
pages. 5^x8j4. cloth. Originally published 
(paper bound) at $7,00. $3.50 

“highly recommended.”—of the A. M. S. 

FOUNDATIONS OF ANALYSIS, By E. 
Landau $3.25 

“Certainly no clearer treatment of the foundations 
of the number system can be offered... . One can only 
be thankful to the author for this fundamental piece of 
exposition which is alive with his vitality and genius.” 

—F. Ritt. 

GRUNDLAGEN DER ANALYSIS, By E. 
Landau. Originally published at $4.00. $2.75 

Original German-language version of Foundations 
of Analysis. 

The student who wishes to learn mathematical 
German will find this book ideally suited to his needs. 
Less than fifty German words will enable him to read 
the entire book with only an occasional glance at the 
vocabulary 1 [A complete German-English vocabulary 
has been added.] 
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DIFFERENTIAL AND INTEGRAL 
CALCULUS, By E. Landau. 1950. 372 pp. 
6x9. $5.00 

An English translation of Landau’s sparkling 
Einfiihrung. Completely rigorous, completely self- 
contained, borrowing not even the tundamental 
theorem of algebra (of which it gives a rigorous 
elementary proof), it develops the entire calculus 
including Fourier series, starting only with the 
properties of the number system. A masterpiece. 

HANDBUCH DER LEHRE VON DER 
VERTEILUNG DER PRIMZAHLEN, By 
E. Landau. 2 vols. Over 1,000 pages. 5j4x8j4. 
With added notes on recent developments, 
by P. T. Bateman. 

ELEMENTARE ZAHLENTHEORIE, By 
E. Landau. 1927. vii+180+iv pages. 5j4x8j4. 

$3.50 
'Interest is enlisted at once and sustained by the 

accuracy, skill, and enthusiasm with which Landau 
marshals ., . facts and simplifies ... details.” 

—G. D. Birkhoff, Bulletin of the A. M, S. 

VORLESUNGEN UBER ZAHLEN- 
THEORIE, By E. Landau. 1937. 864 pages. 
5j4x8>4. Originally published at $26.40. 

Three volumes $15.00 
Landau’s monumental treatise is a virtual encyclo¬ 

pedia of number theory, and is universally recog¬ 
nized as the standard work on the subject. 

Vol. I, Pt. 2. Additive Number Theory. VoL II. 
Anal3rtic Number Theory. VoL III. Algebraic Num¬ 
ber Theory. [Vol. I, Part I is issued as Elementare 
Zahlentheorie.] 

DARSTELLUNG UND BEGRUENDUNG 
EINIGER NEUERER ERGEBNISSE 
DER FUNKTIONENTHEORIE, By E. 
Landau. Second edition, 1929. 122 pages. 
5j4x8. Originally published at $4.00. $2.95 

. a veritable mine of important results.” 
—F. Ritt. 

EINFUHRUNG IN DIE ELEMENTARE 
UND ANALYTISCHE THEORIE DER 
ALGEBRAISCHEN ZAHLEN UND DER 
IDEALE, By E. Landau. Second edn. vii+ 
147 pages. 5j4x8. $2.95 

Landau’s book covers substantially different material 
both from that in Hecke’s book and that in the third 
volume of Landau’s own famous Vorlesungen Uber 
Zahlentheorie, 



RESIDUS, By E. 
Lmdelof. 151 pages. S^xSU. ^2 95 

mihefflS ® diversit'of 
theory of FOTrier lerief i “’J'"*’® r 
ences, mathemadLl of &«te differ- 
well as function thlo?J itsllf®”'^ advanced calculus as 

M?cI)2Sf matrices. By C. C. 
MMDuffee. Second edition. 116 oae-es 6v9 

originally at $5.20. ^ ^ $2 75 

“No®nS^Scf"“ff ^ ■ 
this book."—Bulletil ’^‘***°"* 

the®* SPECtI^^ FOR 

pages.'^ex^p'^Gf 1948. 182 
at $7.00. Lilian edition was published 

referMcrwlrk’are'Sa!:^^^^^^ well-arrfngS 
important functioL Sed®bv 

CHEN^By O^Pe^rSf ? KETTENBRUE- 
pages. Syja ”• edition 536 

Bo^h'^the^Arithmetic^^'^^ ^4°a texts, 
are treated full ” Theory and Analytic Theory 

«o» “^■ 

Methods of intrAi,.: ■ .^^’.Pages. 5>^x8. $3.25 
Bolzano. Weierst?^rn£)*l'^®j°??‘ numbers (Cauchy, 
man, etc.) 5y!rtS Meray. Bach- 
Cmtor's series and continued fractions, 

s^ies. CaZo^s produT aA 
l^iophantine aonrovimof; ’ including 
braic ^bcor^, Algl 
cendency proofs for e and (including trans- 
QTnsxx A T,,, ^ numbers, etc.) 

lYS lw“°SS ■'ONCTIONS, By T. 
From the .PP- inches. $2.0p 

md Ihrer GrenzgebkTe]^^ E,rgehmsse der Mathematik 

I?rtitJarty^!S^^f^) I^P^ijesders^d wiH be 

Sy''S“.i",.''>« >-* id »i™«S 

—D, Tamarkin, Bulletin of the A. M. S, 
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THE PROBLEM OF PLATEAU, By T. 
Rado. 1933. 113 pages. 5j4x8. Cloth. Origin¬ 
ally publ. (in paper binding) at $5.10. $2.95 

From Ergebnisse der Mathematik, 

EINFUEHRUNG IN DIE KOMBINA- 
TORISCHE TOPOLOGIE, By K, Reide- 
meister. 221 pages. $3.95 

Group Theory occupies the first half of the book; 
applications to Topology, the second. This well- 
known book is of interest both to algebraists and 
topologists. 

KNOTENTHEORIE, By K. Reidemeister. 
1932. 78 pages, 5j4x834. $2.25 

“well written . . . the problem is . . . fascinating. 
The complete and concise little work of Reide¬ 
meister will do much to encourage further. [re¬ 
search].”—Bulletin of the American Mathematical 
Society, 

FOURIER SERIES, By W. Rogosinski. 
1950. 182 pp. inches. (English trans¬ 
lation). $2.50 

This text, designed for beginners with no more back¬ 
ground than a year of calculus, covers, nevertheless, an 
amazing amount of ground. It is suitable for self-study 
courses as well as classroom use. 

“Up to modern standards and, at the same time, 
suitable for beginners.”—F. Riesz^ Acta Sseged. 

INTRODUCTION TO MODERN ALGE¬ 
BRA AND MATRIX THEORY, By O. 
Schreier and E. Sperner. About 400 pp. 6x9. 
(Summer, 1951) $4.95 

An English translation of the revolutionary work, 
Emfuhrung in die Analytische Geometric und Algebra, 
Chapter Headings: I. Affine Space. Linear Equa¬ 
tions. (Vector Spaces). II. Euclidean Space. Theory 
of Determinants. III. The Theory of Fields. Funda¬ 
mental Theorem of Algebra. IV. Elements of Group 
Theory. V. Matrices and Linear Transformations. 
The treatment of matrices is especially extensive. 

LEHRBUCH DER TOPOLOGIE, By H. 
Seifert and W. Threlfall. 1934. 360 pages. 
5J4x854. Originally published at $8.00. $4.50 

This famous book is the only modern work on com¬ 
binatorial topology addressed to the student as well as 
to the specialist. It is almost indispensable to the mathe¬ 
matician who wishes to gain a knowledge of this 
important field. 
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'*The exposition proceeds by easy stages with 
examples and illustrations at every turn.” 

—Bulletin of the A, M, S, 

VARIATIONSRECHNUNG IM GROS- 
SEN, (Theorie von Marston Morse), By H. 
Seifert and W. Threlfall. 1938. 120 pages. 
6x9. $2.75 

The brilliant expository talents of Professors Seifert 
and Threlfall—^familiar to the many readers of their 
Lehrbuch der Topologie—are here devoted to an emi¬ 
nently readable account of the calculus of variations 
in the large. 

Topologically the book is self-contained. 

DIOPHANTISCHE GLEICHUNGEN, By 
T. Skolem. 1938. ix+130 pages. 5j4x8j^. 
Cloth. Originally published at $6.50. $3.50 

From the famous series Ergebnisse der Mathe- 
matik. 

**This comprehensive presentation . . . should be 
warmly welcomed. We recommend the book most 
heartily.”—Acta Szeged, 

ALGEBRAISCHE THEORIE DER 
KOERPER, By E. Steinitz. 177 pages, in¬ 
cluding two appendices. $3.25 

‘^epoch-making.”—A. Hoar, Acta Szeged. 

“will always be considered as one of the classics... 
“I should like to recommend the book to students 

of algebra; for teachers of advanced algebra it would 
make a very suitable nucleus for a short seminar on 
abstract fields.”—Bulletin of the A.M.S, 

INTERPOLATION, By J. P. StefFensen. 
1950. Second edition. 256 pages. 5j4x8j4. 
Originally published at $8.00. $3.50 

“Prof, Steffensen’s book is intended as a text for 
students in American colleges and requires as mathe¬ 
matical equipment only an elementary knowledge of 
the differential and integral calculus. . . . The topics 
covered are (1) the general theory of interpolation and 
extrapolation including the standard formulas ... of 
Newton^ Gauss, Bessel and others; (2) numerical differ- 
entiation; (3) numerical integration; (4) numerical 
solution of differential equations. 

“more rigorous than is usual in books on inter¬ 
polation. ... It should not be supposed, however, 
that this adds to the difficulty of reading the text. 
The style is clear and ... the book should prove very 
valuable. The formulas and methods are illustrated 
by simple numerical examples.” 

--Bulletin of the A.M.S. 



CHELSEA SCIENTIFIC BOOKS 

A HISTORY OF THE MATHEMATICAL 
THEORY OF PROBABILITY, By I. 
Todhunter. 640 pages. 5 J4x8. Previously pub¬ 
lished at $8.00. $4.95 

Introduces the reader to almost every process and 
every species of problem which the literature of the 
subject can furnish. Hundreds of problems are solved 
in detail. 

LECTURES ON THE GENERAL THE¬ 
ORY OF INTEGRAL FUNCTIONS By G. 
Valiron. 1923. xii+208 pages. 5j4x8. $3.50 

**Will not be found difficult by the earnest student. 
He may hope to master it without any elaborate pre¬ 
liminary preparation.”—W. H, Young. 

GRUPPEN VON LINEAREN TRANS- 
FORMATIONEN, By B. L. van der 
Waerden. 1935.94 pages. 5>^x8j^. cloth. $2.50 

From Ergebnisse der Mathematik. 

DIE IDEE DER RIEMANNSCHEN 
FLAECHE, By H. Weyl. Second edition. 
200 pages. 5j4x8j^. $3.50 

ALGEBRAIC SURFACES, By O. Zariski. 
1935. 204 pages. Originally pub¬ 
lished at $9.20. $3.95 

From Ergebnisse der Mathematik, 

THE THEORY OF GROUPS, By H. 
Zassenhaus. 180 pages. 6x9. (An English 
translation of the famous German textbook). 

$3.50 
The tremendous development of algebra in the last 

25 years has made long overdue a fresh presentation of 
group theory which would make use of modern methods 
and concepts. 

'*The treatment here presented achieves a certain 
unity which the classical presentation lacked. . . . 
This method of approach is likely to appear more 
coherent than the former to students approaching 
groups in detail for the first time.” 

—Bulletin of the A. M. S. 

In Preparation ; Lehrbuch der Funktionentheorie, by 
W. F. Osgood; Group Theory, by Kurosh; Geometric 
der Zahlen, by Minkowski; and many others. 
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FOUNDATIONS 
OF ANALYSIS 

By EDMUND LANDAU 

Landau’s famous Grundlagen der Analy¬ 
sis is now made available for the first time 
in English translation. 

“Certainly no clearer treatment of the 
foundations of the number system can be 
offered... Starting with Peano’s five axioms 
, . . Landau develops, with the utmost ele¬ 
gance, precision and completeness, the theo¬ 
ries of the natural numbers, fractions, real 
numbers and complex numbers. Never be¬ 
fore has this subject been treated with such 
explicitness. 

“One can only be thankful to the author 
for this fundamental piece of exposition 
which is alive with his vitality and genius.” 

— /. F, Ritt, American Mathematical 
Monthly. 

(Note: The German edition of this book, 
containing a complete German-English vo¬ 
cabulary, will continue to be available. 
Orders for the German edition §hould 
specify “German-language edition.” Price 
$2.75.) 

$3.25 
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DIFFEREINTIAL AND 

INTEGRAL CALCULUS 

By E. LANDAU 

Landau’s famous Calculus is now available, 

in English, as a textbook for advanced calculus 

courses. Completely rigorous, completely self- 

contained, borrowing not even the funda¬ 

mental theorem of algebra (of which it gives 

a rigorous elementary proof), it develops the 

entire calculus including Fourier series, start¬ 

ing only with the properties of the number 

system. A few of its important features are 

the following: 

Everything is defined and proved within th#* 

text itself—logically comp^ 

Nothing assumed but th 

number system. 

Every hypothesis, including the u 

hypotheses, are fully explicit. 

Unimpeachable rigor. 

Short and elegant proofs. 

No issues are left hanging in the air and no 

appropriate question is left unanswered— 

complete to the last detail. 

Every relevant detail strictly accounted for 

—^no dust swept under the carpet. 

Every pitfall meticulously pointed out— 

including the possible acceptance as “obvious” 

of matters actually requiring proof. 
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‘‘Edmund Landau is a great mathemati¬ 

cian and a great expositor of whom the 

whole mathematical world may be justly 

proud. His writings perpetuate brilliantly 

the traditions of Gauss and Weierstrass. 

This latest book [is] in its crystalline beauty, 

an inspiration to students of all nations.” 

—/. F. Riff, American Math. Monthly 

. should be required reading for 

writers of text-books in the calculus ... it 

shows that rigorous proofs are simple 

proofs.” 

—W. A. Wilson^ Bulletin of the A. M. S. 

CONTENTS 

Introduction: Residue Systems, The Decimal System, Finite 
and Infinite Sets. Chap. I. Limits. Chap. II. Logarithms, 
Powers and Roots. Chap. III. Functions and Continuity. Chap. 
IV. Limits for n-> t. Chap. V. Definition of the Derivative. 
Chap. VI. General Theorems on the Formati<m of the Deriva¬ 
tive. Chap. VII. Increase, Decrease, Maximum, Minimum. 
Chap. VIII. General Properties of a Continuous Function in a 
Closed Interval. Chap. IX. Rollers Theorem and the Theorem 
of the Mean. Chap. X. Higher Order Derivatives^ Taylor*s 
Theorem. Chap. XI. “0/0” and Similar Topics. Chap. XII. 
Infinite Series (including double series, rearrangement of series, 
etc.) Chap. XIII. Uniform Convergence (series of functions). 
Chap. XIV. Power Series. Chap. XV. The Exponential Series 
and the Binomial Series. Chap. XVI. The Trigonometric Func¬ 
tions. Chap. XVII. Functions of Two Variables; Pa,rtial Deriva¬ 
tives. Chap. XVIII. Inverse Functions; Implicit Functions. 
Chap. XIX. The Inverse Trigonometric Functions. Chap. XX. 
Some Algebraic Theorems (The Fundamental Theorem of Al¬ 
gebra, Decomposition of Rational Functions into Partial Frac¬ 
tions). Chap. XXI. The Integral. Chap. XXII. Basic Formulas 
of the Integral Calculus. Chap. XXIII. The Integration of 
Rational Functions. Chap. XXlV. The Integration of Certain 
Mon-Rational Functions. Chap. XXV. The Definite Integral. 
Chap. XXVI. Theorems on the Definite Integral (properties of 
the integral, second Mean-value Theorem, etc.) Ch^. XXVII. 
The Integration of Infinite Series. Chap. XXVIIi. The Im¬ 
proper Integral. CHap. XXIX. Improper Integral (Infinite 
Limits of Integration). Chap. XXX. The Gamma Function. 
Chap. XXXI. Fourier Series. 

1951 374 pages 6x9 

$5.00 


