416 HISTORY OF THE THEORY OF NUMBERS. prime to 0, \, . . . , w, contained in ir(k~l) consecutive terms of the progression is ^P~lQ>jr(k-V-2, where P=3-5-7-ll. . ., Q= (3-1) (5-1). . .. J. J. Sylvester29 gave a proof. V. I. Berton290 found h such that between x and xh occur at least 2g primes each of one of the 2g linear forms 2py+ri} where n, . . ., r2g are the integers <2p and prime to 2p. C. Moreau30 noted the error in Legendre's22 proof. L. Kronecker5 (pp. 442-92) gave in lectures, 1886-7, the following extension* of Dirichlet's theorem (in lectures, 1875-6, for the case m a prime): If M is any given integer, we can find a greater integer v such that, if m, r are any two relatively prime integers, there exists at least one prime of the form hm+r in the interval from ju to v (p. 11, pp. 465-6). Moreover (pp. 478-9), there is the same mean density of primes in each of the