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PREFACE. 

Diophantine analysis was named after the Greek Diophantus, of the 
third century, who proposed many indeterminate problems in his arithmetic. 
For example, he desired three rational numbers, the product of any two of 
which increased by the third shall be a square. Again, he required that 
certain combinations of the sides, area, and perimeter of a right triangle 
shall be squares or cubes. He was content with a single numerical rational 
solution, although his problems usually have an infinitude of such solutions. 
Many later writers required solutions in integers (whole numbers), so that 
the term Diophantine analysis is used also in this altered sense. For the 
case of homogeneous equations, the two subjects coincide. But in the 
contrary case, the search for all integral solutions is more difficult than that 
for all rational solutions. In his first course in the theory of numbers, a 
student is surprised at the elaborate theory relating to the equation which 
in analytic geometry represents a conic; but it is a real difficulty to pick 
out those points of the conic whose coordinates are rational and a greater 
difficulty to pick out those points whose coordinates are integral. 

Our subject has appeared not only in works on arithmetic and geometry, 
but also in algebras; to it was devoted the larger part of Euler’s famous 
Algebra. Some of its topics, as the theory of partitions, belong equally 
well to analysis. Although most of the problems in this domain may be 
stated in simple language free of technical mathematics, their investigation 
has quite often required the aid of many branches of advanced mathe¬ 
matics. A mere reference to the extensive subject index will show how 
frequently use has been made of elliptic functions and integrals, infinite 
series and products, algebraic and complex numbers, covariants, invariants, 
and seminvariants, Cremona and birational transformations, geometrical 
methods, matrices, gamma and theta functions, cyclotomy, linear differ¬ 
ential and difference equations, integration, approximation, limits, minima, 
asymptotic and mean values. 

Following the plan used in Volume I, we proceed to give an account in 
untechnical language of the main landmarks in the successive chapters. 
If a reader will not pause to read this entire introduction, let him sample it 
by selecting the account of the final chapter. This introduction is followed 
by an explanation of the author’s point of view in producing a work quite 
different from conventional histories. 

The notion of triangular numbers 1, 3, 6, . . . goes back to Pythagoras, 
who represented them by points arranged as are the shot in the base of a 
triangular pile of shot. The number of shot in such a pile is called a tetra¬ 
hedral number. In an analogous manner we may define a polygonal 
number of m sides (m-gonal number) and a pyramidal number. Simple 
theorems concerning these numbers occur in the Greek arithmetics of 
Theon of Smyrna, Nicomachus (each about 100 A.D.), and Diophantus 
(250 A.D.), who wrote also a special tract about them. Thev were treated 
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two centuries later by Roman and Hindu writers. The most important 
theorem on the subject is that first stated by Fermat: Every positive integer 
is either triangular or a sum of 2 or 3 triangular numbers; every positive 
integer is either a square or a sum of 2, 3, or 4 squares; either pentagonal 
or a sum of 2, 3,4, or 5 pentagonal numbers; and similarly for any polygonal 
numbers. Throughout his half century of mathematical activity, the great 
Euler was engaged on the subject of polygonal numbers and solved many 
questions concerning them, but wag able to prove Fermat’s above theorem 
only for the case of squares, and noted that the theorem for the case of 
triangular numbers is equivalent to the fact that every positive integer of 
the form Sn + 3 is a sum of three squares. This fact is a case of the 
theorem that every positive integer, not of one of the forms Sn + 7 and 4n, 
is a sum of three squares, which was proved in a complicated manner by 
Legendre in 1798 and more clearly by Gauss in 1801, by means of the theory 
of ternary quadratic forms. Gauss showed how to find the number of 
ways in which a number N is a sum of three triangular numbers, by means 
of the number of classes of binary quadratic forms of determinant — SN — 3. 

Cauchy gave in 1813-15 the first proof of Fermat’s theorem that every 
number is a sum of m m-gonal numbers (all but four of which may be taken 
to be 0 or 1). Legendre immediately simplified this proof and showed that 
every sufficiently large number is a sum of four or five m-gonal numbers 
according as m is odd or even. In 1892 Pepin gave another proof of 
Cauchy’s result. In 1873 R6alis proved that every positive integer is a 
sum of four pentagonal or hexagonal numbers extended to negative argu¬ 
ments. In 1895-96 Maillet proved that every integer exceeding a certain 
function of the relatively prime odd integers a and p is a sum of four numbers 
of the form %(ax2+px); also, if ^>(x) = aoX5+ . . . +a5, where the a’s are 
given rational numbers, is integral and positive for every integer x suffi¬ 
ciently large, then every integer exceeding a fixed function of the a’s is a 
sum of at most v positive numbers cj>(x) and a limited number of units, 
where v = 6, 12, 96, or 192, according as the degree of <f> is 2, 3, 4, or 5. 

From formulas in his treatise on elliptic functions of 1828, Legendre 
concluded that the number of ways in which N is a sum of four triangular 
numbers equals the sum of the divisors of 2N+1, and found the number of 
ways in which N is a sum of eight triangular numbers. In 1918 Ramanujan 
obtained expressions for the number of representations of any number as a 
sum of 2s triangular numbers. 

In 1772 J. A. Euler, the son of L. Euler, remarked that, to express every 
number as a sum of squares of triangular numbers, at least twelve terms 
are required, and stated that, to express every number as a sum of figurate 
numbers 

1, n+a, 
(n+l)(n+2a) 

12 

(?i-bl)(w“i_2) (?2^—f- 3ot) 

1-2-3 

at least a+ 2n—2 terms are necessary. About the same time, N. Beguelin 
stated erroneously that at most a+2n—2 terms are sufficient. In 1851 
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Pollock stated that 5, 7, 9, 13, 21, 11 terms are needed to express every 
number as a sum of tetrahedral, octahedral, cubic, icosahedral, dodeca¬ 
hedral, and squares of triangular, numbers, and related facts. In 1862-63 
Liouville proved that the only linear combinations of three triangular 
numbers A which represent all numbers are A+A'+cA" (c=l, 2, 4, 5) and 
A+2A'+dA" (d = 2, 3, 4). 

Chapter II opens with an account of the method of solving ax+by = c 
given by the Hindu Brahmegupta in the seventh century. It was based on 
the mutual division of a and b, as in Euclid’s process of finding their greatest 
common divisor. Essentially the same method was rediscovered in Europe 
by Bachet de Mdziriac in 1612, and expressed in the convenient notation 
of the development of ajb into a continued fraction by Saunderson in 
England in 1740 and by Lagrange in France in 1767. The simplest proof 
that the equation is solvable when a and b are relatively prime is that given 
by Euler in 1760, who noted that, on dividing c—ax {x = 0, 1, . . ., 6— 1) 
by b, we obtain 6 distinct remainders which are therefore 0, 1, . . .,6 — 1 
in some order, the remainder zero leading to a solution. Since the same 
principle underlies the most elegant proof of Euler’s generalization a? 2= l 
(mod 6) for p—<j>(b) of Fermat’s theorem, it was a simple step to solve our 
equation, or—what is the same thing—the congruence ax^c (mod 6), 
by multiplying its members by o?~l. This step was made about 1829 by 
Binet, Libri, and Cauchy. Or we may evidently employ Wilson’s gener¬ 
alized theorem, which states that the product of the positive integers less 
than and prime to 6 is = ±1 (mod 6). In 1905 Lerch expressed the solution 
of ax=l (mod 6) as a sum involving the greatest integer function. 

In the Chinese arithmetic of Sun-Tsu, about the first century, occurs 
the problem of finding a number having the remainders 2, 3, 2 when divided 
by 3, 5, 7, respectively, with a rule leading to the answers 23+3-5-7n. 
The same problem and. answer 23 occur in the Greek arithmetic of Nico- 
machus, about 100 A.D. The rule is essentially the following, given 
centuries later by Beveridge, Euler, and Gauss: To obtain a number x 
having the remainders rh r2,. . . when divided by mh m2, . . ., respectively, 
where mh m2j . . . are relatively prime in pairs, find numbers aly a2, . . . 
such that 1 (mod wi,-), a;=0 (mod m/m»), where m is the product 
m\m2 . . .; then x — air1+a2r2+ ... is an answer. In the seventh cen¬ 
tury, the Chinese priest Yih-hing extended this rule to the case in which 
mi, m2, . . . are any integers: express the least common multiple of mi, m2, 
... as a product m=jlh/x2 ... of factors relatively prime in pairs (some of 
which may be unity), such that jut- divides miy and find a2j . . . such 
that ce»=l (mod /z;), «»=0 (mod m/m); then x — alnd-o^d- .... 

The Hindus Brahmegupta and Bhascara found the correct answer 59 to 
the “popular problem” of finding a number having the remainders 5, 4, 3, 2 
when divided by 6, 5, 4, 3, respectively; Leonardo Pisano in 1202 added 
the condition that the number be a multiple of 7. He treated the problem 
of Ibn al-Haitam (about 1000 A.D.) of finding a multiple of 7 which has 
the remainder unitv when divided bv 2. 3. 4. Hnr fi « nrnhia™ 
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in many later books. This subject of the Chinese remainder problem found 
application in questions on the calendar; for example, to find the year x 
of the Julian period when the solar cycle, lunar cycle, and Roman indiction 
are given numbers n, r2, r3, we seek a number which has the remainders 
7*1, r2, r3 when divided by 28, 19, 15, respectively, these being the periods 
of the solar, lunar, and indiction, cycles. 

The problem of finding the number of positive integral solutions of 
ax+by^c, where a, b, c are positive integers, was treated by Paoli in 1780, 
Hermite in 1855-58, and many others. There is the corresponding question 
for a system of such equations. 

Systems of equations of the type x+y+z — m, ax+by+cz—n, where 
?72, n, a, 6, c are given positive integers and the unknowns are to have 
positive integral values, occurred in Chinese and Arabic manuscripts of 
the sixth and tenth centuries respectively, in Leonardo Pisano's writings, 
and in many of the early printed books on algebra and arithmetic. The 
usual method of solution, which began with the elimination of one unknown, 
was called regula Coed, or the rule of the virgins, a term later applied to a 
system of any number of linear equations in any number of unknowns with 
positive integral coefficients. The most important papers on general sys¬ 
tems of linear equations or congruences are those by Heger (1858), H. J. S. 
Smith (1859, 1861, 1871), Weber (1872, 1896), Frobenius (1878-79), Kxo- 
necker (1886), and Steinitz (1896). 

Chapter II closes with a series of modern theorems, such as the fact that, 
if co is irrational, there exist infinitely many pairs of integers x, y, for which 
y—ux is numerically less than the reciprocal of VS x; and Minkowski's 
theorem (of prime importance for the theory of algebraic numbers) that, 
if fiy . . ., fn are linear homogeneous functions of xh . . ., xn with any real 
coefficients whose determinant is unity, we can assign integral values not 
all zero to xh . . xn, such that each /» taken positively does not exceed 
unity. 

Chapter III treats of partitions, which have important applications 
to symmetric functions and algebraic invariants. The first investigation 
was that by Euler in 1741, who discussed the two problems of finding the 
number of ways in which a number n (as 6) is a sum of a given number m 
(as 2) of distinct parts (6 = 5+1 = 4+2), and the number of ways n is a 
sum of 77i equal or distinct parts (so that also 6 = 3+3 is counted). The 
numbers in question are the coefficients of xn in the expansions of xmim+1) 12jD 
and xmID, respectively, into series of powers of x, where 

D = (1—x)(1—x2>) . . . (1— xm). 

Functions like these which serve to enumerate all the partitions of a specified 
kind are now called generating functions. In his more attractive exposition 
in his Introductio in Analysin Infinitorum of 1748, Euler noted that 1/D is 
the generating function giving the number of partitions of n into parts =m 
which need not be distinct. For n—5, m = 3, these partitions are 3+2, 
3 + 1+1, 2+2+1, 2+1+1+L 1+1+1 +1 +1. Similarlv. the recinrnr.fl.1 
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of IK? (1—s') is the generating function for the number of unrestricted 
partitions of n, where now also 5 and 4+1 are counted. Again, the number 
of partitions of n into m or fewer parts ^=t is the coefficient of xn in the 
expansion of 

(l-a^Xl-s**) . . . (l-xi+m)/D, 

where D is the above product. Euler stated empirically the important 
fact that 

f[(l-s*) = £ (-l)”x(3n2sfc^/2, 
A=1 «.=—oo 

which has since been proved by many writers, in particular by Jacobi in 
his Fundament a Nova of 1829, where he made important applications of 
elliptic functions to the theory of partitions. As noted by Legendre in 1830, 
the last formula implies that every number, not a pentagonal number 
(3n2±n)/2, can be partitioned into an even number of distinct integers as 
often as into an odd number, while (3n2±n)/2 can be partitioned into an 
even number of parts once oftener or once fewer times than into an odd 
number of parts, according as n is even or odd. Jacobi in 1846 extended 
this result to partitions into any given distinct elements. 

In 1853 Ferrers gave a diagram which establishes a reciprocity between 
the partitions of the same number. The partition 3+3+2+1 is repre¬ 
sented by four rows of dots containing 3, 3, 2, 1 dots, respectively, such that 
the left-hand dots are in the same vertical column. Reading the diagram 
by columns, we get the partition 4+3+2. 

Sylvester stated in 1857 that the number of partitions of n into given 
positive integral elements a1} . . ., aT with repetitions allowed is 2TFfl, where 
the “wave” Wq is the coefficient of ljt in the development in ascending 
powers of t of 

r 

Sp-”entn (1 - p°ie-ai‘)-1, 
j=l 

the summation extending over the various primitive qth. roots p of unity. 
Proofs were soon given by Battaglini, Brioschi, Roberts, and Trudi; 
Sylvester published his own method in 1882. Cayley wrote several papers 
on the theory and its applications. 

During the years 1882-84, Sylvester and his pupils at Johns Hopkins 
University published many papers on partitions, in particular on their 
graphical representation, with the aim to derive the chief theorems con¬ 
structively without the aid of analysis. 

Beginning with his paper of 1886 on perfect partitions, Major MacMahon 
has made numerous contributions to the thoery of partitions and the more 
general subject of combinatory analysis, culminating in his treatise in two 
volumes published in 1915-16 (see the report, pp. 161-2). 

Vahlen proved in 1893 that, among the partitions of s into distinct parts 
the sum of whose absolutely least residues modulo 3 equals a given integer h, 
there occur as many partitions into an even number of parts as into an odd 
number of parts, except only when s is the pentagonal number 
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for which there exists an additional partition into an even or odd number 
of parts according as h is even or odd. This implies the corollary of Legendre 
mentioned above. Analogous theorems were obtained by von Stemeck in 
1897 and 1900. 

Mention should be made of the various papers by Glaisher of 1875-76 
and 1909-10, that of Csorba of 1914, and the asymptotic formulas obtained 
by Hardy and Ramanujan jointly in 1917-18. 

Chapter IV reports on the extensive, mostly old, literature on rational 
right triangles, a subject which was the source of various problems treated 
in later chapters. Diophantus knew that if the sides of a right triangle are 
expressed by rational numbers they are proportional to 2mn, m2—n2, 
m2+n2, and referred to the right triangle having the latter sides as that 
“formed from the two numbers m and n.” Pythagoras and Plato had 
given special cases. Among the many problems on rational right triangles 
treated by Diophantus, Vieta, Bachet, Girard, Fermat, Frenicle, De Billy, 
Ozanam, Euler, and others, are the following: Find n(n^3) rational right- 
triangles of equal areas; two whose areas have a given ratio; one whose 
area is given or becomes a square on adding a given number or a certain 
function of the sides; one whose legs exceed the area by squares; one whose 
legs differ by unity or by a given number; right triangles the sum of whose 
legs is given; or with a rational angle-bisector. 

Chapter V deals with rational triangles, whose sides and area are ra¬ 
tional, and rational quadrilaterals, having also rational diagonals. By the 
juxtaposition of two rational right triangles with a common leg, we obtain 
a rational triangle. During 1773-82, Euler wrote a series of four papers 
on triangles whose sides and medians are all rational, while Bachet in 1621 
had been content when a single median or single angle-bisector is rational. 
The Hindus Brahmegapta and Bhdscara showed how to form a rational 
quadrilateral by juxtaposing four right triangles with pairs of equal legs 
such that the right angles have a common vertex and do not overlap. In 
1848 Kummer showed how to obtain all rational quadrilaterals. Euler 
gave (p. 221) a construction for a polygon of n sides inscribed in a circle of 
radius unity such that the sides, diagonals, and the area are all rational. 
No mention will be made of the 160 further papers reported on in this 
chapter, which closes with the papers on rational pyramids, trihedral 
angles, and spherical triangles. 

Chapters VI-IX deal with the specially interesting literature on the 
representation of numbers as sums of 2, 3, 4, n squares. Diophantus knew 
how to express the product of two sums of two squares as a sum of two 
squares in two ways: 

(a2+b2) (c2+d2) = (ac ±6d)2+ (adT 6c)2. 

He knew that no number of the form 4n— 1 is a sum of two squares. But 
Girard in 1625 and Fermat a few years later were the first to recognize 
that a number is a sum of two squares if, and only if, its quotient by the 
--• 1 ... 



Preface. ix 

double of such a product. Fermat also knew how to determine the number 
of ways in which a given number of the proper form is a sum of two squares. 
He stated that he could prove that every prime 4n+l is a sum of two squares 
by the method of indefinite descent, i.e., if a prime 4n+l is not a sum of 
two squares there exists a smaller prime of the same nature, etc., until 5 is 
reached. Euler wrestled with this theorem for seven years before he 
succeeded in finding a complete proof in 1749. He published more elegant 
proofs in 1773 and 1783. In the meantime, Lagrange gave several proofs 
in 1771-75. An expression for the number of representations of an integer 
as a sum of two squares was given by Legendre in 1798 and by Gauss in 
1801, while a more elegant expression was deduced by Jacobi in 1829 from 
infinite series for elliptic functions and proved arithmetically by him in 
1834 and by Dirichlet in 1840. In a posthumous paper, Gauss left a 
formula for the number of sets of integers x} y for which x2 + y2 ^ A, 
i.e., the number of lattice points inside or on the circumference of a given 
circle; the same subject was studied by Eisenstein in 1844, Suhle in 1853, 
Cayley in 1857, Ahlbom in 1881, and Hermite in 1884 and 1887, while 
asymptotic formulas were proved by Sierpinski in 1906, Landau in 1912-13, 
Hardy in 1915-19, and Szilysen in 1917. 

Diophantus stated in effect that no number of the form 8m+7 is a sum 
of three squares, a fact easily verified by Descartes. Fermat gave in effect 
the complete criterion that a number is a sum of three squares if, and only 
if, it is not of the form 4n(8m-}-7). For many years Euler tried in vain to 
prove this theorem, nor did Lagrange find a proof for all cases. In 1798 
Legendre gave a complicated proof by means of theorems on the quadratic 
divisors of t2+cu2. In 1801 Gauss published a proof which also expresses 
the number of ways a number n is a sum of three squares in terms of the 
number of classes in the principal genus of the properly primitive binary 
quadratic forms of determinant —n. Other such expressions were obtained 
by Dirichlet in 1840 by means of his formulas for the number of classes of 
binary quadratic forms; also by Kronecker in 1860 by use of series for 
elliptic functions and in 1883 by means of the number of classes of bilinear 
forms in two pairs of cogredient variables. In 1850 Dirichlet gave an 
elegant proof of Fermat's criterion by means of reduced ternary quadratic 
forms. Many writers have discussed the solution of x2+y2+z2 = n2; a 
simple expression for the number of solutions was given by A. Hurwitz 
in 1907. The problem of the number of integers ^x which are sums of 
three squares was investigated by Landau in 1908, while he (in 1912) and 
Sierpinski in 1909 found asymptotic formulas for the number of sets of 
integers u, v7 w for which u2+v2+w2^=x. 

In the three problems in which Diophantus employed sums of four 
squares, he expressed 5, 13, and 30 as sums of four rational squares in two 
ways without mention of any condition on a number in order that it be a 
sum of four squares, although he gave necessary conditions for representa¬ 
tion as a sum of two or three squares in the problems where the latter 
occur. Hence Bachet and Fermat ascribed to Diophantus a knowledge 
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of the beautiful theorem that every positive integer is a sum of four integral 
squares. In 1621 Baehet verified this theorem for integers up to 325. The 
theorem was stated to be true by Girard in 1625 and as an unproved fact 
by Descartes in 1638. Fermat stated that he possessed a proof by indefinite 
descent. 

This theorem engaged the serious attention of Euler for more than 
forty years, as appears from his life-long correspondence with Goldbach; 
in vain did he convert the problem into an equivalent, but equally baffling, 
question. Not until twenty years after he began the study of the theorem 
did he publish in 1751 some important facts bearing on it, including his 
formula which expresses the product of two sums of four squares as such 
a sum. The first proof published was that by Lagrange in 1772, who 
acknowledged his indebtedness to ideas in Euler’s paper. The next year 
Euler published an elegant proof, which is much simpler than Lagrange’s 
and which has not been improved upon to date. Gauss noted in 1801 that 
the theorem follows readily from the fact that any number having the 
remainder 1, 2, 5, or 6, when divided by 8, is a sum of three squares; but 
the latter fact has not yet been proved in so simple and elementary a 
manner as the former. In 1853-54 Hermite gave two proofs by means 
of the theory of quadratic forms in four variables and a. proof by means 
of a Hennitian form with complex integral coefficients and two pairs of 
two conjugate complex variables. 

In 1828-29 Jacobi compared two infinite series for the same elliptic 
function to show that, if p is odd and <r(p) is the sum of the divisors of p, 

the number of representations of 2ap as a sum of four squares is 8<r(p) 

or 24cr(p), according as a = 0 or a>0, where in a representation the signs 
of the roots and their arrangement are taken into account. In a similar 
manner, he and Legendre proved simultaneously that there are exactly 
<r(p) sets of four positive odd numbers the sum of whose squares is 4p. 
For the latter theorem Jacobi gave an arithmetical proof in 1834, which was 
simplified by Dirichlet in 1856 and by Pepin in 1883 and 1890. For the 
former theorem on the representations of 2“p, elementary proofs have been 
given by Stem in 1889, Vahlen in 1893, Gegenbauer in 1894, and I/. Aubry 
in 1914, while Mordell gave in 1915 a proof by means of theta functions. 

Cauchy proved in 1813 that any odd number k is a sum of four squares 
the algebraic sum of whose roots equals any assigned odd number between 
V3fc—2—1 and Vifc. In 1873 Bialis proved also that every number 
N~4n+2 is a sum of four squares the algebraic sum of whose roots is 
any assigned one of the numbers 0, 2, 4, . . ., 2/*, where p2 is the largest 
square <N. Mention should be made of papers by Torelli (p. 294), 
Glaisher (p. 296, p. 301), and Petr (p. 300). 

Many of the papers in this long Chapter VIII prove the existence of 
solutions of the congruence ax2+by2+cz2^0 (mod p), in which a, 5, c are 
not divisible by the prime p, while some determine the number of sets of 
solutions. The corresponding question for n unknowns is discussed in the 
brief Chapter X. 
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In Chapter IX the material on representation as sums of n squares is 
separated from the reports on the more elementary papers giving relations 
between squares and .mainly concerning n squares whose sum is a square. 
Following a hint by Jacobi, Eisenstein stated in 1847 that the number 
of representations of an odd number as a sum of eight squares equals 16 
times the sum of the cubes of its divisors, and theorems almost as simple 
for six and ten squares. He also gave, without proof, formulas which 
express the number of representations of m by 5 and 7 squares as sums of 
Legendre-Jacobi symbols of quadratic residue character modulo m. In 
1860-65 Liouville stated various theorems on representation by 10 and 12 
squares, which he apparently deduced from series for elliptic functions, and 
which have been so proved and generalized by Bell in 1919, and were proved 
by means of theta functions by Humbert and Petr in 1907. In 1867 
H. J. S. Smith stated general results on representation by 5 and 7 squares. 
This paper was unknown to the members of the commission whose recom¬ 
mendation led the Paris Academy of Sciences to propose for its grand prix 
des sciences math6matiques for 1882 the subject of representation by 5 
squares. Prizes of the full amount were awarded both to Smith and to 
Minkowski (the latter being then 18 years of age), each of whom developed 
the theory of quadratic forms in n variables and evaluated the number of 
representations by 5 squares. There are further papers on the last topic 
by Stieltjes, Hermite, Pepin, and Hurwitz (pp. 310-1). Mention should 
be made of the papers by Gegenbauer (p. 313), Boulyguine (p. 317), 
Mordell, Hardy, and Ramanujan (p. 318) on representation by n squares. 

Chapter XI, which is closely related to the last topic, gives a summary 
of Liouville’s series of eighteen articles published in 1858-65, in which 
he stated results (apparently found from expansions of elliptic functions) 
which express many equalities between sums of the values of quite general 
arithmetical functions when the arguments of the functions involve the 
divisors of two (or more) numbers whose sum is given. The chapter closes 
with a citation of papers which together give proofs of all the formulas, 
except only (Q) of the sixth article, besides proving a few related theorems. 

The sixty pages of Chapter XII give reports on more than 300 papers 
on ax2~\-bx+c — y2. Diophantus was led to such an equation in at least 
forty of his problems. He was content with rational solutions, which he 
showed how to find if a or c is a square, or if 5 = 0 and one set of solutions 
is known. It is a remarkable fact that the Hindu Rrahmegupta in the 
seventh century gave a tentative method of solving ax2+c=y2 in integers, 
which is a far more difficult problem than its solution in rational numbers. 
His method was explained more clearly by the Hindu BMscara in the 
twelfth century. Much earlier, the Greeks had given approximations to 
square roots which may be interpreted as yielding solutions of ax2Jrl=y2 
for a=2 and a=3. Moreover, the famous cattle problem of Archimedes, 
which imposed nine conditions upon eight unknowns, leads in its final 
analysis to the difficult equation ax2+l=y2, where a=4729494, and has 
been solved in modem times. 
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Such an equation x2—Ay2 = 1 has long borne the name Pellian equation, 
after John Pell, due to a confusion on the part of Euler; it would have been 
more appropriately named after Fermat, who stated in 1657 that it has 
an infinitude of integral solutions if A is any positive integer not a square, 
and who stated in 1659 that he possessed a proof by indefinite descent. 
He proposed it as a challenge problem to the English mathematicians 
Lord Brouncker and John Wallis, who finally succeeded in discovering a 
tentative method of solution, without giving a proof of the existence of 
an infinitude of solutions. This theorem is really only the simplest and 
first known case of Dirichlet’s elegant and very general theorem on the 
existence of units in any algebraic field or domain. The former theorem 
is also of great importance in the theory of binary quadratic forms. More¬ 
over, the problem to find all the rational solutions of the most general 
equation of the second degree in two unknowns reduces readily to that for 
x2—Ay2=B, all of whose solutions follow from one solution and the solutions 
of x2—Ay2=1. 

In 1765 Euler exhibited the method of solving a Pellian equation due 
to Brouncker and Walks in a more convenient form by use of the continued 
fraction for VZ and found various important facts, but gave no proof that 
the process leads always to a solution in positive integers. This funda¬ 
mental fact of the existence of solutions was first proved by Lagrange a 
year or two later; while in 1769 and 1770 he brought out his classic 
memoirs which give a direct method to find all integral solutions of 
x2—Ay2=B, as well as of an equation of degree n, by developing its real 
roots into continued fractions. 

Of the further extensive literature on the Pellian equation, the most 
notable papers are those by Legendre, Gauss, Dirichlet, Jacobi, and Perott; 
limits for the least positive solution were obtained by Tchebychef in 1851 
and by Eemak, Perron, Schmitz, and Schur in 1913-18. Useful tables have 
been given by Euler, Legendre, Degen, Tenner, Koenig, Arndt, Cayley, 
Stem, Seeling, Roberts, Biekmore, Cunningham, and Whitford. 

Chapter XIII treats of further single equations of the second degree, 
including axy+bx+cy+d=0, x2—y2 = g, ax2-\-bxy-{-cy2~dz2 or d, the most 
general equation of the second degree in x} y, and its homogeneous form 
aX2-\-bY2+cZ2+dXY+eXZ-\-fYZ=0. Criteria for integral solutions of 
the latter were stated by H. J. S. Smith (p. 431) and proved by Meyer for 
the case of an odd determinant, while its complete solution was given by 
Desboves (p. 432) when one solution is known. Lagrange’s method for 
x2—Ay2=B, cited above, was employed by Legendre in 1785 to prove the 
important theorem that, if no two of the integers a, 6, c have a common 
factor and if each is neither zero nor divisible by a square, then 
ax2+by2+cz2~0hsis integral solutions not all zero if, and only if, —6c, — ac, 
—ab are quadratic residues of a, 6, c, respectively, and a, 6, c are not all 
of the same sign. Gauss gave a proof by means of ternary quadratic forms, 
while a generalization was made by Dirichlet (p. 423) and Goldscheider 
(p. 426). Meyer gave criteria (pp. 432-3) for integral solutions of /=0; 
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where / is any quadratic form in four variables, with simple criteria in the 
case of ax2Jrby2-\-cz2+du2~0; and noted that, when there is a fifth term 
ev2, the equation is solvable in integers not all zero if the coefficients are odd 
and not all of the same sign. Minkowski (p. 433) proved the generalization 
that zero can be represented rationally by every indefinite quadratic form 
in five or more variables, and gave invariantive criteria for four or fewer 
variables. 

Chapter XIY reports on many elementary papers on squares in arith¬ 
metical or geometrical progression. While there is a simple, general, 
formula for three squares in arithmetical progression, known by Vieta, 
Fermat, and Frenicle, there do not exist four distinct squares in arithmetical 
progression. 

Chapter XV opens with a collection of the problems from Diophantus, 
in which it is a question of finding values of the unknowns for which several 
linear functions of them become equal to squares. Such problems were 
treated by Brahmegupta in the seventh century, by Vieta in 1591, and by 
Bachet, Fermat, Prestet, Ozanam, and others, in the seventeenth century. 
One of the problems studied most frequently is that of finding three numbers 
such that the sum and difference of any two of them are squares; it was 
treated by Petrus in 1674, Leibniz in 1676, Rolle in 1682, Landen in 1775, 
by Euler in his Algebra and elsewhere, as well as by various later writers 
(all cited in note 28, p. 448). 

The story of congruent numbers, given in Chapter XVI, is a long one, 
beginning with Diophantus. If x and k are rational numbers such that 
x2+k and x2—k are both rational squares, k is called a congruent number. 
Diophantus knew that x2-\-y2 = z2 implies z2dz2xy=(xzky)2, so that 2xy is a 
congruent number. This topic was the chief subject of two Arabic manu¬ 
scripts of the tenth century. Leonardo Pisano, in his Liber Quadratorum 
of 1225, treated the subject at length and with skill, making repeated use 
of the fact that any integral square is a sum of consecutive odd numbers 
beginning with unity. In particular, he stated, but did not completely 
prove, that no congruent number is a square, which implies that the area 
of a rational right triangle is never a square and that the difference of two 
biquadrates is not a square, results of special importance historically. 
Although part of Leonardo’s work was incorporated in the arithmetics of 
Luca Paciuolo, Ghaligai, Feliciano, and Tartaglia, the original seemed to 
be lost and Cossali made a laborious, but unsuccessful, attempt to recon¬ 
struct it. The original was found and published by Prince Boncompagni 
in 1854 and in the Scritti di Leonardo Pisano, II, 1862. The most important 
later papers on congruent numbers are those by Euler, Genocchi, Woepcke, 
Collins, and Lucas. 

The related problem of concordant forms is to make x2+my2 and 
x2+ny2 both squares and was studied by the same writers, especially by 
Euler in several of his memoirs. The remaining problems of this chapter 
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and those of Chapter XVII relate to special systems of two quadratic 
functions or equations and do not possess sufficient general interest to 
warrant mention here. The last remark applies also to Chapter XVIII, 
which treats of three or more quadratic functions. 

Chapter XIX begins with the history of the problem of finding three 
integers x} y, z such that x2+y2, x2+z2, y2+z2 are all perfect squares. Solu¬ 
tions involving arbitrary parameters, but obtained under special assump¬ 
tions, were found by Saunderson (who was blind from infancy) and Euler 
in their Algebras of 1740 and 1770. The problem is equivalent to that of 
finding a rectangular parallelopiped having rational values for the edges 
and the diagonals of the faces. If we impose the further restriction that 
also a diagonal of the solid shall be rational, we have a difficult problem 
which has been recently attacked but not solved. 

The problem of finding n squares the sum of any n—1 of which is a square 
was treated at length by Euler for n=4, and for any n by GiU by use of 
trigonometric functions. The problem of finding three squares the sum of 
any two of which exceeds the third by a square was treated by four special 
methods by Euler in a posthumous paper, as well as by Legendre and others. 
The problem of making a quadratic form in x and y} one in x and z, and one 
in y and z simultaneously equal to squares has received much attention during 
the past hundred years. Beginning with Diophantus, there is an extensive 
early literature on the problem of finding n numbers such that the product 
of any two of them increased by a given number shall be a square. 

Euler developed an interesting method (p. 522) to make several func¬ 
tions simultaneously equal to squares. He selected a suitable auxiliary 
function f such that solutions of /=0 can be readily found. For any set 
of solutions, P2—/ is evidently a square, whatever be the function P. 
Many further problems occur in this long chapter, which closes with an 
account of rational orthogonal substitutions. 

The nature of Chapter XX will be illustrated by means of an example 
of considerable interest for the history of algebraic numbers. Fermat 
stated that he had a proof that 25 is the only integral square which if 
increased by 2 becomes a cube. Euler, in attempting a proof in his Algebra 
of 1770, assumed that x2+2=tz implies that each factor 2 is the 
cube of a number p+g where p and q are integers, although he knew 
that a like assumption is not valid when 2 is replaced by other numbers. 
The justification of his assumption in the first example is due to the fact 
that for these numbers p+gV—2 factorization into primes is unique and 
to the further fact that ±1 are the only ones of these numbers which 
divide unity. Instead of this explanation by means of algebraic numbers, 
we may employ the theory of classes of binary quadratic forms, as was done 
by Pepin (p. 541). 

In the 69 pages of Chapter XXI report is made on about 500 papers on 
Diophantine equations of degree 3. The method by which Diophantus 
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expressed the difference of two given rational cubes as a sum of two positive 
rational cubes was given in his Porisms, a work which has not been pre¬ 
served. The formula (p. 550) which Vieta used in 1591 for this purpose 
is valid only when the greater of the given cubes exceeds the double of the 
smaller. While also Bachet could solve only this case, Girard and Fermat 
showed how, by employing Yieta’s three formulas in turn, to solve the 
remaining case as well as the problem to express a sum of two given rational 
cubes as another such sum. The last problem had been proposed by Fermat 
to the English mathematicians Brouncker and Wallis, who gave merely solu¬ 
tions derived from known solutions by multiplication by a constant. The 
general solution in integers of this problem was first given by Euler in 
1756-57. His solution was expressed in a simpler form by Binet in 1841 
and deduced elegantly by Hermite in 1872 by means of the ruled lines on the 
corresponding cubic surface (a method extended to a certain equation of 
degree n by Brunei, p. 556). Report is made on pp. 560-1 on Japanese 
writings during 1826-45 on this subject. The related problem of finding 
three equal sums of two cubes arose in the question of finding four integers 
the sum of any two of which is a cube. 

There are many minor papers of recent decades which give relations 
between five or more cubes, or express a sum of three cubes as a square. 
The problem of making a binary cubic form equal to a cube was treated by 
obvious elementary methods by Fermat and Euler, and recently by bi- 
rational transformation by von Sz. Nagy, and by covariants by Haentzschel. 
To make a binary cubic form equal to a square, Fermat and Euler equated 
it to the square of a linear or quadratic function, and Lagrange used the 
norm of an algebraic number (p. 570), while Mordell in 1913 employed the 
theory of invariants. 

Since every rational number is a sum of three rational cubes (p. 726), 
it is an interesting question to determine the rational numbers which are 
sums of two rational cubes, or, if we prefer, the integers 4 for which 
xz+yz~Azz is solvable in integers. Reports on fifty papers on this subject 
are given on pp. 572-8. Euler proved that the problem is impossible if 
4 = 1 and 4=4, and that x = zky if 4 = 2. Legendre erred in his statement 
that it is impossible if 4 = 6. In 1856 Sylvester stated that it is impossible 
if 4 =p, 2p, 4p2, 4q, q2, 2q2, where p and q are primes of the respective forms 
181 + 5 and 181 + 11. In 1870 Pepin proved these and similar results. 
Using also analogous facts proved by Sylvester in 1879, we can state whether 
or not any proposed number, not exceeding 100, is a sum of two rational 
cubes. 

There are 42 papers (pp. 582-8) on the problems of finding numbers 
in arithmetical progression the sum of whose cubes is a cube or a square. 

If F(x, y, z) = 0 is a homogeneous cubic equation with rational coefficients 
and if P is a rational point (i.e., having rational coordinates) on the curve 
F=0, the tangent at P cuts the curve in a new rational point, called the 
tangential to P. Similarly, the secant through two rational points on the 
curve cuts it in a third rational point. Curiously enough, the analytic 
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equivalents of these facts were obtained by Cauchy in 1826 without their 
geometrical setting. Levi in 1906-9 defined a configuration of rational 
points on a cubic curve without double points to be the set of all rational 
points which can be derived from one or more rational points by the opera¬ 
tions of finding the tangential to a point of the set and of finding the third 
intersection of the curve and the secant joining two points of the set. In 
1917 A. Hurwitz called such a set of points a complete set and obtained 
theorems on the number of rational points on the cubic curve. Mordell 
made use of the invariants of F. 

The problem of finding n rational numbers the cube of whose sum in¬ 
creased (or decreased) by any one of the numbers gives a cube was treated 
for n=3 by Diophantus and his commentators, by Ludolph van Ceulen in his 
Dutch work on the circle, by van Schooten, J. Pell and others—the simplest 
answer being that by Hart (p. 611). 

Chapter XXII devotes 57 pages to reports on 400 papers on Diophantine 
equations of degree 4. Fermat's proof of his challenge theorem that no 
rational right triangle has an area which is a rational square is of special 
interest, as it illustrates in detail his method of indefinite descent; his proof 
also shows that the difference of two biquadrates is never a square. Leibniz 
left a manuscript giving a proof. 

Fermat affirmed that the smallest rational right triangle whose hypote¬ 
nuse and the sum of whose legs are squares has its sides expressed by 
numbers of thirteen digits. The problem is equivalent to that of finding two 
numbers (for n numbers, pp. 665-7) whose sum is a square and whose sum 
of squares is a biquadrate, and was proposed in this form by Leibniz and 
treated several times by Euler, and at great length by Lagrange in 1777, who 
found it necessary to solve several equations of the form ax4+by4=cz2. 
The extensive literature on the latter equation is reviewed on pp. 627-634; 
some of the methods employed apply also when there occurs a term dx2y2 
in the equation (pp. 634-9). 

Just as in algebra no general equation of degree exceeding 4 can be 
solved by radicals, so in Diophantine analysis nearly all the problems for 
which solutions have been found are those which reduce finally to the 
question of making a given binary form / of degree ^4 equal to a square or 
higher power. Among the methods (pp. 639-644) of making a quartic 
function f(x) of special type equal to a square are the rather obvious 
methods of Fermat; the method of Euler of reducing / to the form P2-\-QR, 
where P, Q, R are quadratic functions of x, so that / = (P-f-Qy)2 becomes an 
equation quadratic in x and in y; and the invariantive methods of Mordell 
and Haentzschel. Euler's method is similar to that employed by him in 
the problem of the multiplication of an elliptic integral; Jacobi noted a 
generalization by use of Abel's theorem (p. 641). 

Euler, after solving A4-5rB4~C4-j-D4 by several methods, stated (p. 648) 
that it is impossible to find three biquadrates whose sum is a biquadrate, 
and that he believed it possible to assign four biquadrates whose sum is a 
biquadrate;v But his investigation was incomplete and led to no example. 
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The first example, 304+1204+2724+3154=3534, was found by Norrie in 
1911. In the meantime various writers gave examples of five or more 
biquadrates whose sum is a biquadrate and cases of equal sums of bi¬ 
quadrates. 

Chapter XXIII, on equations of degree >4, will doubtless be more 
useful than any other chapter in the volume since it reports on the papers 
which offer general methods of attacking Diophantine equations. Lagrange 
showed how to use continued fractions to solve /= c, where / is a binary 
form of any degree. Hunge and Maillet obtained conditions for the 
existence of infinitely many pairs of integral solutions of /(a;, y) = 0, where 
/ is an irreducible polynomial with integral coefficients. Thue proved the 
useful theorem that, if TJ(x, y) is an irreducible homogeneous polynomial 
of degree >2 with integral coefficients and c is a given constant, U—c 
has only a finite number of pairs of integral solutions. Maillet gave a 
generalization (p. 675) to non-homogeneous polynomials U. 

Hilbert and Hurwitz, in their joint paper of 1890-1, proved that any 
homogeneous equation with integral coefficients which represents a curve 
of genus zero can be transformed birationally into a linear or quadratic 
equation. Poincard in 1901 proved the same theorem and found when 
a curve of genus unity can be transformed birationally into a curve of 
order p. The related later papers are cited on p. 677. 

It is convenient to define at this point the product 

F(z, y, . . ., z) = ll(x+ay+ . . . +an-1z), 

extended over all the roots a, ... of any irreducible equation of degree n 
with integral coefficients, to be the norm of the general number x+ay+ . . . 
of the algebraic field determined by a. Dirichlet noted that F= 1 has 
infinitude of integral solutions except when the field is an imaginary quad¬ 
ratic field. If the field is real and if F can take a given value, it takes that 
value for an infinitude of sets of integers x, . . ., z. Also Poinear6 (p. 678) 
discussed this problem F—g. Lagrange (pp. 570, 691) proved in effect 
that the norm of a product equals the product of the norms of the factors 
and hence solved F(X, Y, . . ., Z) = Vm, where V=F(x, y, . . ., z). This 
method is of considerable power in seeking special solutions of various 
types of equations. The particular case xz+nyz+n2zz—Znxyz occurs in 
the papers on pp. 593-5. This case is also a special case of another type 
of equations of general degree obtained by Maillet from the theory of 
recurring series (p. 695). A. HurwitzJs complete discussion (p. 697) of 
the positive integral solutions of . . . -\-x2n=xxi. . . xn furnishes a 
model for thoroughness which may well be imitated by writers on Diophan¬ 
tine equations, too many of whom seem to be content with a special solution 
of their problems. 

Chapter XXIY deals with sets of integers with equal sums of like 
powers. For example, a, 6, c and a+b+c have the same sum and same 
sum of squares as a+b, a+c, b+c. Of the seventy papers on this topic, 
only five are prior to 1878. On pp. 714-6 is noted the connection of this 
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problem with the older one of rapidly converging series convenient for the 
computation of logarithms, in which we desire two polynomials in x which 
differ only in their constant terms and have exclusively integers as their 
roots. 

Chapter XXV furnishes a typical example in the theory of numbers of 
the contrast between the ease with which empirical theorems are discovered 
and the difficulty attending a complete mathematical proof. On the basis 
of numerical experiments, Waring announced in 1770 the empirical theorem 
that every positive integer is a sum of at most 9 positive cubes, a sum of 
at most 19 biquadrates, and in general a sum of a limited number of positive 
mth powers. The last fact was first proved in 1909 by Hilbert, although 
his investigation does not determine the precise value of the number Nm 
such that every positive integer is a sum of at most Nm positive mth powers. 
About the year 1772, J. A. Euler stated that Nm^v+2m—2, where v is 
the largest integer <(3/2)m. Just before 1859, Liouville proved that 
iV4<53 by means of an identity equivalent to 

6(x?+X2+a;3+X4)2 = X)(^i+^2)4+Z)(^i~^2)4 
6 6 

and the fact that any positive integer n is expressible in the form 3%+xl 
so that 6n2 is a sum of 12 biquadrates. But any positive integer 

is of one of the six forms 6p, 6p+l, . . ., 6p+5, while p = nl+ni+nl-\-ni. 
Thus 6p is a sum of 4X12 biquadrates. Since 1, . . 5 are sums of as 
many units, each a biquadrate, we have V4 =4X12+5. Maillet was the 
first to prove, in 1895, that V3 is finite, in fact ^21. Later writers suc¬ 
ceeded in proving that N3 = 9. In his proof that Nm is finite, Hilbert 
employed a five-fold integral, while later writers have given an algebraic 
proof. Quite recently, Hardy and Littlewood gave a proof by use of the 
theory of analytic functions and showed that 2)2m_1+5, which 
gives 9 cubes, 21 biquadrates, 53 fifth powers, etc. Earlier papers (pp. 
726-9) gave elementary proofs that every positive rational number is a 
sum of three rational cubes and a sum of four positive rational cubes. 

The final chapter devotes 46 pages to reports on more than 300 papers 
on Fermat’s last theorem, which states that it is impossible to separate 
any power higher than the second into two powers of like degree, and the 
more general trinomial equation axr+by8=czl, and congruence of the same 
form. In letters and in annotations to his copy of Diophantus, Fermat 
announced many interesting discoveries in the theory of numbers, usually 
with the statement that he possessed a proof. All of these facts have since 
been proved with the exception of his “last theorem” above, for which 
he stated that he had found a truly remarkable proof. If there was an 
oversight in his proof it was certainly not one of the foolish errors com¬ 
mitted in the past decade in the thousands of efforts to secure a large cash 
prize. Fermat proposed the cases of exponents 3 and 4 (p. 545, pp. 616-7) 
as challenge problems to the mathematicians of his time. The general 
case has remained a challenge problem to the mathematicians of the sub- 
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sequent three centuries. At intervals during the past century, leading 
scientific academies offered one of their prizes for a proof. The dignity of 
this famous theorem was injured by the offer of a very large prize in 1908. 
Since only printed proofs may compete, the gain thus far has gone to the 
printers; in this history no mention will be made of the very numerous false 
proofs called forth by this last prize. 

Fermat’s last theorem is not of special importance in itself, and the 
publication of a complete proof would deprive it of its chief claim to atten¬ 
tion for its own sake. But the theorem has acquired an important position 
in the history of mathematics on account of its having afforded the inspira¬ 
tion which led Kummer to his invention of his ideal numbers, out of which 
grew the general theory of algebraic numbers, which is one of the most 
important branches of modern mathematics. 

Although Gauss had proved in 1832 that the laws of elementary arith¬ 
metic hold also for complex integers (numbers like 5+7 V^l) and made a 
brilliant application of them in his investigation of biquadratic residues, 
the theory of algebraic numbers was really born in the year 1847. For it 
was then (pp. 739, 740) that the mathematical world became definitely 
conscious of the fact that complex integers ao+air+ . . . +an_1rn-1, where 
the a’s are ordinary integers and r is an imaginary nth root of unity, do 
not in general decompose into complex primes in a single manner, do not 
possess a greatest common divisor, and hence do not obey the laws of 
elementary arithmetic. This historical fact came to light through dis¬ 
cussions of lacunae in the attempted proof by Lam£ that, if n is an odd 
prime, xn+yn = zn is not satisfied by such complex integers. Other errors 
of the same nature were made in the same year by Wantzel and by so great 
a mathematician as Cauchy. Curiously enough, Kummer himself made 
the error, in a letter of about 1843 to Dirichlet, of assuming that factoriza¬ 
tion is unique, so that his initial proof of Fermat’s last theorem was 
incomplete. But Kummer did not stop with the mere recognition of the 
fact that algebraic numbers do not obey the laws of arithmetic; he suc¬ 
ceeded in restoring those laws by the introduction of ideal elements, this 
restoration of law in the midst of chaos being one of the chief scientific 
triumphs of the past century. 

Although the theory of algebraic numbers appears to be a powerful 
tool especially adapted to attack Fermat’s last theorem, it has not yet led 
to a complete proof of it. Numerous facts have been obtained by a variety 
of more elementary methods. Until the theorem is actually proved, it will 
obviously be unwise to attempt to weigh the importance of any particular 
fact or method. Hence no further analysis will be given here of the con¬ 
tents of the long Chapter XXVI which is itself a condensed history of 
Fermat’s last theorem. Moreover this subject is one of those for which 
the subject index gives a rather minute classification of the subject matter. 

In the preceding summary mention was made of only the most im¬ 
portant of the upwards of 5,000 writings upon which report has been made 
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in the text. While many of these papers are of minor importance, the aim 
has been to give an exhaustive account of the literature on the subject 
rather than a selective account reflecting the author’s imperfect views as to 
relative importance. This work is intended as a source book not merely 
for the fastidious professional mathematician, but also for the larger number 
of amateurs who find endless fascination for the “queen of the sciences,” 
whose rule began centuries ago and has continued without interruption 
to the present. 

Unfortunately, following the practice of Diophantus, many writers on 
this subject have been content with a special solution of their problem, 
obtained by making various assumptions which simplify the analysis. A 
report which would give merely the final formulas in such a paper, without 
indicating also the restrictive assumptions, would be useless. Instead, there 
is given here a summary of the essential steps in the proof, and this plan is 
followed especially in the case of papers not to be found in the average 
large library. These papers which give only special solutions of the problem 
attacked have at least the value of showing that the problem is not im¬ 
possible. Moreover, an examination of many such papers reveals the fact 
that there are a few constantly recurring types of auxiliary Diophantine 
problems (such as that of making a quartic function equal to a square), 
whose complete solution would permit the complete treatment of a very 
large number of problems, and hence suggest specially useful subjects for 
thorough investigation. Since there already exist too many papers on 
Diophantine analysis which give only special solutions, it is hoped that all 
devotees of this subject will in future refrain from publication until they 
obtain general theorems on the problem attacked if not a complete solution 
of it. Only in this way will the subject be able to retain its proper position 
by the side of other virile branches of mathematics. 

It was initially planned to give this work the title “topical history of the 
theory of numbers”; but the word topical was omitted at the advice of a 
prominent historian. It is inconceivable that any one would desire this 
vast amount of material arranged other than by topics. Again, conven¬ 
tional histories take for granted that each fact has been discovered by a 
natural series of deductions from earlier facts and devote considerable 
space in the attempt to trace the sequence. But men experienced in 
research know that at least the germs of many important results are dis¬ 
covered by a sudden and mysterious intuition, perhaps the result of sub¬ 
conscious mental effort, even though such intuitions have to be subjected 
later to the sorting processes of the critical faculties. What is generally 
wanted is a full and correct statement of the facts, not an historian’s per¬ 
sonal explanation of those facts. The more completely the historian 
remains in the background or the less conscious the reader is of the his¬ 
torian’s personality, the better the history. Before writing such a history, 
he must have made a more thorough search for all the facts than is necessary 
for the conventional history. With such a view of the ideal self-effacement 
of the historian, what induced the author to interrupt his own investigations 
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for the greater part of the past nine years to write this history? Because 
it fitted in with his conviction that every person should aim to perform at 
some time in his life some serious, useful work for which it is highly im¬ 
probable that there will be any reward whatever other than his satisfaction 
therefrom. Certainly, the eight mathematicians mentioned below, who co¬ 
operated with the author, are justly entitled to enjoy the same satisfaction 
from their work. 

Concerning the various sources of references consulted and the various 
libraries in America and Europe in which the material was collected, the 
remarks made on page XI of the Preface to Volume I apply also to the 
present volume. In particular, those references in the Subject Index of the 
Royal Society Catalogue of Scientific Papers, Volume I, 1908, which relate 
to Diophantine analysis were used not only in the preparation of the manu¬ 
script, but were checked on the proof-sheets. The references to Diophantus 
follow the usual numbering and hence not that in the second edition by 
Heath. 

The reports in Chapters XI-XXVI have been checked by the original 
papers in case they are to be found in Chicago. The computations occurring 
in the reports in Chapters XXI-XXIV were checked by the author and 
various errors in the original papers were detected. Moreover the reports 
in four chapters were read carefully and critically by an authority on the 
subject of the chapter as follows: Chapter III on partitions by Major 
P. A. Mac Mahon, Chapter XXIV on sets of integers with equal sums of 
like powers by E. B. Escott, Chapter XXV on Waring’s problem by A. J. 
Kempner, and Chapter XXVI on Fermat’s last theorem by H. S. Vandiver. 
A high degree of accuracy and clearness for these Chapters III, XXI-XXVI 
was especially desired since they are the ones which will be most frequently 
consulted. Also Chapters I-XII were read minutely by Kempner, thanks 
to whom various imperfections and errors have been removed. Further¬ 
more, the proof-sheets of the entire volume were read by R. D. Carmichael, 
A. Cunningham, E. B. Escott, A. G6rardin, and E. Maillet, each of whom 
has written extensively on Diophantine equations and made very valuable 
suggestions on the present work. To these eight experts, who gave so 
generously of their time to perfect this volume, is due the gratitude not 
merely of the author but also of every devotee of Diophantine analysis who 
may derive benefit or pleasure from this history. 

Miss Minna J. Schick read the proof-sheets of the first eleven chapters 
and compared them with the original manuscript, for which purpose the 
authorities at the University of Chicago considerately relieved her of the 
duties connected with her fellowship in mathematics. Mrs. Louise M. 
Swain, who had just completed a year of postgraduate studies in mathe¬ 
matics at the University of Chicago, read the proof-sheets of the last 
fifteen chapters, checked the many cross-references throughout the volume, 
constructed and checked the author indexes, helped to check the references 
with the Royal Society Catalogue, and checked the page-proofs with the 
galleys and separately for various types of faults. The author is under 
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great obligations to these gifted young women for the many improvements 
in the book due to their accuracy and alertness. In addition to all this help, 
the author has devoted a large part of his time for fifteen months to the 
proof-sheets, comparing them with his original notes, checking computa¬ 
tions, comparing reports and readers’ suggestions with the original papers, 
adding reports on current papers, repeating the work done on the manu¬ 
script of examining minutely all the reports for results needing citation 
elsewhere by cross-reference, and inspecting every change made in the proof. 

Eeaders are requested to supply, for insertion in a concluding Volume 
III on quadratic and higher forms, residues, and reciprocity laws, notices of 
errata or omissions, as well as abstracts of the few papers marked by the 
symbol * before authors’ names to signify that the papers were not avail¬ 
able for report. 

L. E. Dickson 
April, 1920. 
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CHAPTER I. 
POLYGONAL. PYRAMIDAL AND FIGURATE NUMBERS. 

The formation of triangular numbers 1, 1 + 2, 1 + 2 + 3, • • *, and of 
square numbers 1, 1 + 3, 1+3 + 5, *, by the successive addition of 
numbers in arithmetical progression, called gnomons, is of geometric origin 
and goes back to Pythagoras1 (570-501 B.C.): 

• 

• • • 

0 0 0 0 0 0 

If the gnomons added are 4, 7, 10, * • • (of common difference 3), the 
resulting numbers 1, 5, 12, 22, • • • are pentagonal. If the common differ¬ 
ence of the gnomons is m — 2, we obtain m-gonal numbers or polygonal 
numbers with m sides. 

In the cattle problem of Archimedes (third century B.C.), the sum of 
two of the eight unknowns is to be a triangular number (see Ch. XII). 

Speusippus,2 nephew of Plato, mentioned polygonal and pyramidal 
numbers: 1 is point, 2 is line, 3 triangle, 4 pyramid, and each of these 
numbers is the first of its kind; also, 1 + 2 + 3 + 4 = 10. 

About 175 B.C., Hypsicles gave a definition of polygonal numbers 
which was quoted by Diophantus8 in his Polygonal Numbers, “If there 
are as many numbers as we please beginning with one and increasing by 
the same common difference, then when the common difference is 1, the 
sum of all the terms is a triangular number; when 2, a square; when 3, a 
pentagonal number. And the number of the angles is called after the 
number exceeding the common difference by 2, and the side after the 
number of terms including 1.” Given therefore an arithmetical progres¬ 
sion with the first term 1 and common difference m — 2, the sum of r 
terms is the r-th m-gonal number3 prm. 

The arithmetic of Theon of Smyrna4 (about 100 or 130 A.D.) contains 
32 chapters. In Ch. 15, p. 41, the squares are obtained from 1 + 3 = 4, 

lF. Hoefer, Histoire des mathematiques, Paris, ed. 2, 1879, ed. 5, 1902, 96-121; W. W. E. 
Ball, Math. Gazette, 8, 1915, 5-12; M. Cantor, Geschichte Math., 1, ed. 3, 1907, 160-3, 
252. 

8 Theologumena arithmeticae, ed. by F. Ast, Leipzig, 1817, 61, 62. For a French transl. and 
notes, see P. Tannery, Pour l’histoire de la science Hellene, Paris, 1887, 386-390 (374). 

* Denoted by in Encyc. Sc. Math., I, li, p. 30. 
4 Theonis Smyrnaei Platonici, Latin transl. by Ismael Bullialdi, 1644. Cf. Expositio rerum 

mathematicarum ad legendum Platonem utilium, ed., E. Hiller, pp. 31-40. 
1 
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1 + 34-5 = 9, etc. In Ch. 19, p. 47, the triangular numbers are defined 
to be 1, 1 4- 2, 1 4- 2 4- 3, • • •. In Ch. 20, p. 52, the squares are obtained 
as before and the pentagonal numbers are obtained by addition of 1, 4, 7, 
10, • • •. In Chapters 26 and 27, pp. 62-64, pentagonal and hexagonal 
numbers are shown by dots forming regular pentagons (as in the figure 
on the preceding page) or hexagons. Ch. 28, p. 65, gives the theorem that 
the sum of two consecutive triangular numbers is a square. In Ch. 30, 
p. 66, is defined the pyramidal number Prm = pjn + p* + * • • + p'. 

Nicomachus5 (about 100 A.D.) gave the same definitions and results 
as did Theon of Smyrna and perhaps gave them slightly earlier. Ch. 12 
gives the theorem on consecutive triangular numbers: 

(r - 1 )r r(r + 1) _ 2. 
2 ‘ 2 ’ 

also the corresponding theorem that the sum of the rth square and (r — l)th 
triangular number is the rth pentagonal number, just as a pentagon is 
obtained by annexing a triangle to a square. He gave the generalization 
(apart from the notation): 

Vm 4- pS — Pm+1- 

These theorems are illustrated by means of the following table: 
Triangles 1 3 6 10 15 21 28 36 45 55 
Squares 1 4 9 16 25 36 49 64 81 100 
Pentagons 1 5 12 22 35 51 70 92 117 145 
Hexagons 1 6 15 28 45 66 91 120 153 190 
Heptagons 1 7 18 34 55 81 112 148 189 235. 

Each polygon equals the sum of the polygon immediately above it in 
the table and the triangle with 1 less in its side [triangle in the preceding 
column]; for example, heptagon 148 is the sum of hexagon 120 and 
triangle 28. 

Each vertical column is an arithmetical progression whose common 
difference is the triangle in the preceding column. 

In Ch. 13 he remarked that just as polygonal numbers arise by summing 
the simple arithmetical progressions, so by summing the polygonal numbers 
one obtains the like named pyramidal numbers,—triangular pyramid from 
the triangular numbers, pyramid with square base from the squares, etc., 
the base being the largest polygon. 

5 Introductio arithmetica (ed., Hoche), 2,1866, Book 2, Chs. 8-20. Cf. G. H. F. Nesselmann, 
Algebra der Griechen, 1842, 202. 
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Plutarch,6 a contemporary of Nicomachus, gave the theorem that if 
we multiply a triangular number by 8 and add 1, we obtain a square: 

+ j = (2r + 1)2_ 

This theorem was given by lamblichus7 (about 283-330 A.D.), who 
treated at length (pp. 82-176) polygonal and pyramidal numbers. 

Diophantus8 (about 250 A.D.) generalized this theorem and proved by 
a cumbersome geometric method that 

(1) 8(m - 2)fm + (m - 4)2 = {(m - 2)(2r - 1) + 2}2, 

and spoke of this result as a new definition of p equivalent to that of 
Hypsicles. Diophantus gave a rule for finding r, equivalent to the solution 
of (1) for r, and a rule for finding p equivalent to 

(0-s = — 2)(2r — 1) + 2J2 ~ (m — 4)2 

V ; Pm 8 (m ~ 2) 

but did not give the equal simpler expression 

(3) prm = £r{2 + (m - 2)(r - 1)}. 

In fact, starting with (2), he gave a long geometric discussion to find the 
number of ways a given number can be polygonal, but made little headway 
before the abrupt termination of the fragment. G. Wertheim9 gave a 
lengthy continuation in the same geometric style which eventually leads 
to the geometric equivalent to (3) and remarked that we can readily find 
from (3) the ways in which a given number p can be polygonal: Express 
2p as a product of two factors > 1 in all possible ways; call the smaller 
factor r; subtract 2 from the larger factor and find whether or not the 
difference is divisible by r — 1; if it is, the quotient is m — 2, and p is 
a prm. Since m — 2 equals 2(p — r)/[r(r — 1)], the latter must be an 
integer ^ 1, so that _ 

r ^ J(^8p + 1-1). 

For example, if p = 36, then r ^ 8. Since r divides 2p = 72, we have 
r = 2, 4, 8, 3, 6, of which r = 4 is excluded. We get 

36 = p3« = PlZ — P4 — P's- 

In the Roman Codex Arcerianus10 (450 A.D.?) occur a number of 
special cases of the remarkable formula for pyramidal numbers 

Pl=1L~Vv’m + r). 

8 Platonicae quaestion., II, 1003. 
7 In Nicomachi Geraseni arith. introd., ed., S. Tennulius, 1668, 127. 
8 Polygonal Numbers. Greek text by P. Tannery, 1893, 1895. Engl, transl. by T. L. 

Heath, Cambridge, 1885,1910; German transl. by F. T. Poselger, 1810, J. O. L. Schulz, 
1822, and G. Wertheim, 1890; French transl. by G. Massouti6, Paris, 1911. Cf. Nessel- 
mann, Algebra der Griechen, 1842,462-476; M. Cantor, Geschichte Math., ed. 3,1,485-7. 

9Zeitschrift fur Math. Physik, Hist. Lit. Abt. 1897, 121-6. Reproduced by T. L. Heath, 
Diophantus, ed. 2, 1910, 256, where doubt is expressed as to the validity of the restora¬ 
tion in view of the ease with which the geometric equivalent of (3) can be derived geo¬ 
metrically from that of (2). 

10 Cf. M. Cantor, Die Romischen Agrimensoren, Leipzig, 1875, 95-127. 
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It gave prs = K37*2 + r), pi = f(4r2 + 2r), where the plus signs should be 
minus. M. Cantor11 suggested the following probable derivation. By 
factoring the numerator of (2), we obtain 

(m- 2) (m - 4) 
P- =-2-^-2- ’ 

(l2 + 2* + ••• + r2) -(m~: 4)(l + 2+ +r). 

As known by Archimedes (b. Syracuse about 287 B.C.), 

1+2 + ••• +r = 

Hence 

r(r + 1) 
l2 + 22 + • •. + r2 = 

r(r + l)(2r + 1) 

6 

K - r-±i ^ , + r] - r-±l(2p■ + 

The Hindu Axyabhatta12 (b. 476 A.D.) gave the formula 

, Hr + 1) r(r + l)(r + 2) (r + l)3 - (r + 1) 
1 + 3 + 6+ •••+—2— = -e-=-g- 

for the number of spheres in a triangular pile, and hence for the rth 
pyramidal number Prz of order 3, called also a tetrahedral number. The 
Hindus of his time knew13 also that PI = Pl + Pl~\ whence 

6P; = r(r + l)(2r + 1). 

The above general formulas relating to polygonal and pyramidal numbers 
were collected about 983 A.D. by Gerbert14 (Pope Sylvester II). 

Yang Hui15 gave in his Suan-fa, 1261, the formulas 

1 + (1 + 2) + (1 + 2 + 3) H-h (1 + 2 H-b w) = n(n + l)(n + 2)/6, 
l2 + 22 H-hn2 = \n(n + |)(n + 1) 

for the sums of triangular numbers and squares. 
Chu Shih-chieh,16 in 1303, tabulated in the form of a triangle the 

binomial coefficients as far as those for eighth powers. This arithmetical 
triangle was known17 to the Arabs at the end of the eleventh century. 
Such a triangle was published by Petrus Apianus.18 

Many of the early arithmetics mentioned (some with fuller titles) in 
Vol. I, Ch. I, of this History, gave definitions and simple properties of 

11 Die Romiachen Agrimensoren, 1875, 122; Geschichte der Math., 1, ed. 2, 519; ed. 3, 558. 
Cf. H. G. Zeuthen, Bibliotheca Mathematics, (3), 5,1904, 103. 

12 French transl. by L. Rodet, Jour. Asiatique, 13, 1879; Le9ons de calcul d’Aryabhatta, 
p. 13, p. 35. 

UE. Lucas, La Nature (Revue des Sciences), 14, 1886, II, 282-6: L’Arithm&ique en Batons 
dans l’lnde au temps de Clovis. 

14 Geometric, Chs. 55-65. 
15 Y. Mikami, Abb. Geschichte Math. Wise., 30, 1912, 85. 
18 Ibid., 90. Cf. K. L. Biernatzki, Jour, fiir Math., 52,1856, 87; Stifel.54 
17 M. Cantor, Geschichte der Math., 1, ed. 3, 1907, 687. 
18 Ein newe . . . Kauffmans Rechnung ...» Ingolstadt, 1527, title page. The latter was 

reproduced by D. E. Smith, Kara Arith., 1908,156, who remarked that he knew of no 
earlier publication of this Pascal triangle. 
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polygonal numbers; for example, Boethius,19 G. Valla,20 Martinus,21 
Cardan,22 J. de Muris,22a Willichius,23 Michael Stifel,24 who gave a table 
of figurate numbers (binomial coefficients), Faber Stapulensis,25 and F. 
Maurolycus,26 who gave 

P\ = Bpr1 + r, vl = ^VT1 + r2, 
p; + P7X = pi p: = p; + 2 p:~\ p; = pi + p;-\ 

and treated (pp. 32-74) polygonal numbers of the second order or central 
polygonal numbers (the pentagonal being 1, 6, 16, 31, 51, 76, •••, when 
in the second are counted the vertices and center of a pentagon), as well as 
central pyramidal numbers (the pentagonal being 1, 7, 23, 54, 105, • • •)• 
Also I. Unicomus,27 and G. Henischiib.28 

Johann Faulhaber29 treated polygonal and pyramidal numbers. 
Johann Benzius30 devoted twenty chapters to these and figurate numbers. 
J. Rudolff von Graffenried31 noted that 

(pi)2 - (Pl~1)2 = r3, (Pd2 + (Pl~ly = p?, 
the final number being 666 for r = 6. 

C. G. Bachet32 wrote a supplement of two books to the Polygonal Num¬ 
bers of Diophantus. The most important ones of his theorems (when ex¬ 
pressed as formulas) are as follows: 

I, 10. 
II, 18. 

II, 21. 

II, 25. 

II, 28. 

II, 31, 32. 

pi+r = Pi + Pi + Mm - 2), Pi = Pi + (m- 3)p; 
Pi + pZ H-1-PZ = PiPl + r\m - 2) (pI + j>\ + • • • + p'f'). 

3 (Pi + Plr+---+ PZ) = Pipl + (n + 1)20 

n3 + 6 pi + 1 = (n + l)3. 

F + (2k)3 H-+ (nk)3 = k3(p;y = k(k + 2k H-+ nk)\ - 

10 Axithmetica boetij, 1488, etc., Lib. 2, Caps. 7-17. 
,0 De expetendis et fvgiendis rebvs opvs, Aldus, 1501, Lib. III. 
11 Are Axithmetica, 1513, 1514; Arithmetica, 1519, 15-18. 
n Practica Arith., 1537, etc. 
*** Arith. Speculativae, 1538, 53-62. 
“ I. Vvillichii Reselliani, Arith. libri tres, 1540, 95-111. 
44 Arith. Integra, 1544. See references 16-18, 50-52. 
45 Stapulensis, Jacobi Fabri, Arith. Boethi epitome, 1553, 54-65. 
* Arith. libri dvo, 1575, 6-8, 14-21. Historical remarks on same by M. Fontana, Memorie 

dell' Lstituto Nazionale Ital., Mat., 2, Pt. 1, 1808, 275-296. 
47 De PArithmetica Vniversale, 1598, 67-70. 
48 Arith. Perfecta et Demonstrata [1605], 1609, 133. 
40 Cubicoss Lustgarten, 1604 (also in part 2 of Petrum Rothen, Arithmetica Philosophica, 

Niimberg, 1608); Neuer Math. Kunstspiegel, Ulm, 1612, which notes that 1335 (men¬ 
tioned in the Bible, Daniel, XII, 12) is a pentagonal number whose root 30 is a pronic45 
number with the pentagonal root 5 whose root 2 is pronic, while 2300 (Daniel, VIII, 14) 
is tetradecagonal whose root 20 is pronic, etc.; Numerus Figuratus, 1614, 24 pp.; 
Miracula Arithmetica, Augspurg, 1622, a book chiefly on arithmetical combinations 
giving the “ Wunder Zahl ” 666, the Apocalyptic number mentioned in the Bible, 
Revelations, XIII, 18; cf. Remmelin,** A. G. Kastner, Geschichte Math., Ill, 111-52. 

“ Manuductio ad Nvmervm Geometricvm, Kempten, 1621. 
41 Arith. Logistica Popularis, 1618, 238, 627. 
44 Diophanti Alex. Arith., 1621. 
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His II, 27, relates to the formula of Nicomachus5 (Ch. 20) 

1 = 13, 3+5 = 23, 7+9 + 11 =33, 13 + 15 + 17 + 19 = 43, • 

from which follows the above formula II, 25, by addition (as in the 
Codex Areerianus10). Fermat33 generalized this proposition by introducing 
“colonne”: In the arithmetical progression 1, 1 + (m — 2), 1 + 2(m — 2), 
• • • leading to m-gonal numbers, the first term 1 gives the first colonne; 
the sum of the next two terms diminished by m — 4 times the first tri¬ 
angular number 1 gives the second colonne 2m; the sum of the fourth, 
fifth and sixth terms diminished by m — 4 times the second triangular 
number 3 gives the third colonne 9m — 9; similarly, the fourth colonne is 
8(3m — 4) and the rth is r2 + +(r — l)(m — 2)/2. It follows (as noted 
by Editor Tannery) that the rth colonne is the product of the rth m-gonal 
number by r, and for m = 4 is r3. The term colonne was not coined by 
Fermat, as Tannery thought, but34 was used by Maurolycus.26 

J. Remmelin35 noted that 666 (cf. Faulhaber29) is a triangular number 
with the root 36, which is a square with the root 6, while 6 is a pronic 
number [of the form n2 + n] whose base 2 is also a pronic number. 

Later we shall quote Bachet’s empirical theorem that any integer is the 
sum of four squares, made k prop os of Diophantus IV, 31. In this connec¬ 
tion Fermat36 made the famous comment: “I was the first to discover the 
very beautiful and entirely general theorem that every number is either 
triangular or the sum of 2 or 3 triangular numbers; every number is either 
a square or the sum of 2, 3 or 4 squares; either pentagonal or the sum of 
2, 3, 4 or 5 pentagonal numbers; and so on ad infinitum, whether it is a 
question of hexagonal, heptagonal or any polygonal numbers. I can not 
give the proof here, which depends upon numerous and abstruse mysteries 
of numbers; for I intend to devote an entire book to this subject and to 
effect in this part of arithmetic astonishing advances over the previously 
known limits.” But such a book was not published. Fermat37 stated 
the theorem in a letter to Mersenne, Sept., 1636 (to be proposed to St. 
Croix); to38 Pascal, Sept. 25,1654, and Digby, June 19,1658. The theorem 
was attributed to St. Croix by Descartes39 in a letter to Mersenne, July 27, 
1638. Descartes40 gave an algebraic proof of Plutarch’s6 theorem that 
8Af + 1 = (2r + l)2. We shall often write Ar or A(r) for the rth tri¬ 
angular number r(r + l)/2, A or A' for any triangular number, □ for 
any square, El, SI or S3 for a sum of two, three or four squares. 

33 Oeuvres, I, 341. 
u Wertheim, Zeitschr. Math. Phye., 43, 1898, Hist.-Lit. Abt., 41-42. 
15 Johanne Lvdovico Remmelino, Structura Tabularvm qvadratarvm, 1627, Preface. The 

book treats magic squares at length. 
16 Oeuvres, I, 305; French transl., Ill, 252. E. Brassinne, Precis des Oeuvres Math, de P. 

Fermat, M6m. Acad. Imp. Sc. Toulouse, (4), 3, 1853, 82. 
37 Oeuvres, II, 1894, 65; III, 287. 
38 Oeuvres de Fermat, II, 313, 404; III, 315. 
39 Oeuvres de Descartes, II, 1898, 256, 277-8 (editors’ comments); X, 297 (statement of 

the theorem in a posthumous MS.). 
40 Oeuvres, X, 298 (posth. MS.). 
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The rth figurate number of order n is the binomial coefficient 

+ n — 1\__ (r + n — l)(r + n — 2) •»* r 

/n “ \ n / 1-2-•-n 

Thus fl is the rth triangular number pi, while fl is the rth pyramidal or 
tetrahedral number Prs. In a comment on the Polygonal Numbers of 
Diophantus, Fermat41 stated a theorem which, in the present notation, is 

rf:+1 « (n + l)/;+1 

and called fl the rth triangulo-triangular number. 
In April, 1638, St. Croix proposed to Descartes the problem: “Trouver 

un trigone [Triangular number] qui, plus un trigone t6tragone, fasse un 
t4tragone [square], et de rechef, et que de la somme des cotes des tetragones 
r4sulte le premier des trigones et de la multiplication d’elle par son milieu 
le second. J’ai donn6 15 et 120. J’attends que quelqu’un y satisfasse par 
d’autres nombres ou qu’il montre que la chose est impossible.” The 
problem, without the example, was proposed to Fermat (Oeuvres, II, 63) 
in 1636, who did not solve it. 

Descartes42 understood a trigone tetragone to be the square A2 of a 
triangular number, and proved that 15, 120 is the only solution if the 
problem is understood to require two triangular numbers such that, if 
either be added to the same A2, the sum is a square; while if one is per¬ 
mitted to add both A2 and a new A'2 to the second required triangular 
number, the two triangular numbers may be taken to be 45 and 1035, since 

45 + 62 = 92, 1035 + 62 + 152 = 362, 36+9 = 45, 45-46/2 = 1035. 

St. Croix did not admit the validity of Descartes’ solution, and probably 
meant a trigone tetragone to be a number both triangular and square (like 
1, 36). The question would then be to find two numbers of the form 
n{n + l)/2 such that, if a number both triangular and square be added 
to each, there result two squares; further, the sum of the square roots of 
these squares must equal the first required triangular number and must 
also be the first factor n used in forming the second triangular number. 
If, as seems intended, the numbers to be added to the triangular numbers 
are to be identical, the only solution is 15, 120. Cf. G6rardin.220 

Fermat43 proposed to Frenicle the problem to find a number which 
shall be polygonal in a given number of ways. Neither gave a solution. 
[Cf. Euler,59 end.] 

John Wallis44 derived by summation the expression for the general 
triangular number (p. 139), pyramidal number with triangular base PI 
(p. 143), the sum (called trianguli-pyramidai number) of the latter for 
r = 1, 2, • • -, l (p. 145), and the sum (called pyramidi-pyramidal number) 
of these last for l = 1, 2, • • - . The values found are the expanded forms of 

41 Oeuvres, I, 341; French transl., Ill, 273. Also, II, 70, 84-5; French transl., Ill, 291-2; 
letters to Mersenne, Sept., 1636, and to Roberval, Nov. 4, 1636. 

43 Oeuvres, II, 1898, 158-165, letter from Descartes to Mersenne, June 3, 1638. 
45 Oeuvres, II, 225, 230, 435, June and Aug., 1641, Aug., 1659. 
44 Arithmetica Infinitorvm, Oxford, 1656. 
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the figurate numbers fr2, fl, f[, fr5} so that his work amounts to a verification 
of cases of 

/;+1 =/+/2+ ••• +/;• 

Frans van Schooten45 quoted three of Bachet’s rules, proving one. 
On certain hexagons whose sum is a cube, see Frenicle6 of Ch. XXI. 
Fermat46 proposed that Broun cker and Wallis find a proof of the pro¬ 

position (which he himself could prove): There is no triangular number, 
other than unity, which is a biquadrate. 

Diophantus, IV, 44, desired three numbers which if multiplied in turn 
by their sum give a triangular number, a square, and a cube. Let the sum 
be x2. Then the numbers are a(a + l)/(2x2), /32/x2, yz/x2. Thus 

Aa + P2 + 73 = s4. 

Take 0 = x2 — 1. Then Aa = 2x2 — 73 — 1. But 

8Aa + 1 = (2a + l)2 = 16x2 - 87s - 7 = (4® - 5)2, 

if x = (87s + 52 + 7)/(85). Take 7 = 2, 5 = 1; then x — 9 and the 
desired numbers are 153/81, 6400/81, 8/81. 

Bachet convinced himself by trial that 5 must be unity in order that 
a = (87s + 7 — 52 — 25)/(45) be integral. 

Fermat remarked that “Bachet's conclusion is not rigorous. Indeed, 
let 7 be any number of the form 3ft + 1, say 7 = 7. To make 

2x2 - 73 - 1 = A 

and hence 16x2 — 8*73 — 7 = □, we may take the latter to be the square 
of 4a? — 3 [whence x = 115, 5 = 3]. Nothing prevents us from gen¬ 
eralizing the method, taking instead of 3 any odd number and making a 
suitable choice of 7.” 

G. Loria47 remarked that the solution becomes evident if we replace 
x2 by x; the problem did not require that the sum of the numbers be a 
square. 

Bachet32 (p. 274) proposed the problem to find five numbers which if 
multiplied in turn by their sum give a triangular number A, a square, a 
cube, a pentagonal number, and a biquadrate. The sum of the latter 
shall be x4. Let the square be (x2 — l)2, the cube 8, the pentagonal number 
5, and the biquadrate 1. Then A — 2x2 — 15. Thus 

8A + 1 = 16x2 - 119 = □, 

say (4x — l)2. Hence x — 15. 
Ren6 F. de Sluse48 (1622-1685) employed the triangular number q, the 

square b2 and cube z3. Then q + b2 + z3 = □ = (b + n)2, whence 

b = (q + z3 — n2) / (2n). 

48 Exercitationum Math., 1657, Lib. V, 442-5. 
48 Oeuvres, III, 317, letter to Digby, June, 1658. 
47 Le science esatte nell' antica Grecia, Libro V, 138. 
48 Renati Fr&ncisci Slusii, Meeolabum, ••*, accessit pars altera de analysi et miscellanea, 

Leodii Eburonum, 1668,175. 
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Hence we may assign any values to qy z3, n and find 6. Likewise for 
Bachet's generalization, we may assign any values to all five products 
other than the square 62, and find b, 

A. G&rardin49 noted that the simplest solution of Diophantus’ problem is 
furnished by the three numbers (z2 + l)/2, 02, z, with a = x2, fi = x$, y = x, 

i(x2 + 1) + 62 + x = x2. 

Set x = 2H + l. Then Q2 - 2H2 = - 1, with the solutions (U, 0) = (1,1), 
(5, 7), (29, 41), etc., giving the numbers 5, 1, 3; 61, 49, 11; 1741, 1681, 59. 

Ren4 F. de Sluse50 gave the table [cf. Stifel24] 

0 11111 

1 2 3 4 5 

1 3 6 10 

1 4 10 

1 5 

1 

in which the numbers (like 1, 3, 3, 1) in a diagonal are binomial coefficients, 
those in the third column are triangular numbers, those in the fourth 
column are pyramidal numbers with triangular base, those in the fifth are 
triangular pyramids of the second order. 

B. Pascal51 gave the same table and noted that any number in it is the 
sum of the numbers in the preceding column and hence (p. 504) is the sum 
of the number above it and that immediately to its left. He noted (p. 533) 
that n(n + 1) • • *(n + k — 1) is divisible by &!, the quotient being a 
figurate number. 

G. W. Leibniz52 gave a table formed by the diagonals (as 1, 2, 1) of the 
above table. 

J. Ozanam53 found pairs* of triangular numbers 15 and 21, 780 and 990, 
1747515 and 2185095, whose sum and difference are triangular. Their 
sides are 5 and 6, 39 and 44,1869 and 2090. Polygonal numbers are treated 
in the English translation by C. Hutton, London, 1803, pp. 40-47, p. 60. 

Pierre Esmond de Montmort54 cited special cases of (1), due to Dio- 
phantus. 

F. C. Mayer55 defined “generalized figurate” numbers 

x(x + 1) • • • {x + n — 1) . . x{x — 1) • • • (x + n — 2) 
°-T2^-+d-«)-i.2...(„-l)-’ 

49 Sphinx-Oedipe, 6, 1911, 42. 
80 MS. 10248 du fonds latin, Biblioth^que Nationale de Paris, f. 187. 
81 Traitd du triangle arith., Paris, 1665 (written 1654); Oeuvres, III, 1908, 466-7. 
82 Leibniz Math. Schriften, ed., C. I. Gerhardt, VII, 101. 
* Others are 171 and 105, 3741 and 2145. Gerardin gave a general discussion in Sphinx- 

Oedipe, 1914, 113. 
83 Recreations math, et phys., 1, 1696, 20; new eds., 1723, etc. 
84 M6m. Acad. Roy. Sc., 1701. Essai d*Analyse sur les Jeux de Hazards, 1708; ed. 2,1713,17. 
86 Maiero, Comm. Acad. Petrop., 3, ad annum 1728 C1726U, 52. 
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which for n — 2, 3, 4 include the polygonal numbers and the pyramidal 
numbers of the first and second kind, the number of sides being a + 2. 

L. Euler56 investigated polygonal numbers which are also squares. 
The problem is a special case of that to make a quadratic function a square. 
The triangular numbers equal to squares are those with sides 0, 1, 8, 49, 
288,1681, 9800, • • • and equal the squares of 0, 1, 6, 35, 204,1189, 6930, 
The rth polygonal number with l sides is {(Z — 2)x2 — (Z — 4)z}/2. To 
make it a square, set 2(1 — 2)p2 + 1 = q2. Then the product of the 
polygonal number by 4 is the square of 0, (l — 4)p, 2(1 — 4)pq} • • • if 

<4> *-»• 

Euler gave a law for the derivation of any solution x in terms of two solu¬ 
tions. It remains to make the expressions (4) integers. For Z = 5, q is 
to be chosen from 1, 5, 49, • * • and hence p from 0, 2, 20, • • *. The first 
fraction (4) is here* (1 — q)j6 and is an integer for q = 49, whence x ~ — 8. 
But Euler had previously stated that, for Z > 4, q was to be taken negative. 
The value q = — 5 gives x ~ 1 and the pentagonal number 1. 

Euler57 proved Fermat’s theorems that no triangular number except 
unity is a cube (since x5 =b y6 is not a square), and no triangular number 
x(x + l)/2 > 1 is a fourth power. According as £ is even or odd, x/2 or 
(x + l)/2 must equal a fourth power m\ if the A is to be a fourth power. 
Thus 2m4 db 1 = n4. But he had just proved that 2n4 =b 2 = □ only 
when n = 1, whence m = 0 or 1, x ~ 0 or 1. 

Abb6 Deidier58 gave the simplest properties of polygonal numbers and 
derived central polygonal numbers as follows: adding unity to the products 
of the triangular numbers 0, 1, 3, 6, 10, • ■ * by 3, 4 or 5, we get central tri¬ 
angular, square or pentagonal numbers, respectively. 

We shall now quote from the correspondence59 between Euler and Gold- 
bach remarks on polygonal numbers, reserving for later use the comments 
in which the interest is chiefly on sums of squares. June 25, 1730 (p. 31), 
Euler noted that (x2 + x)/2 equals (6/7)4 for x = 32/49, but said this does 
not disprove Fermat’s assertion that no (integral) triangular number is a 
biquadrate. Aug. 10, 1730 (p. 36), Euler noted that if 

a = (3 + 2^2)*, 6 = (3 — 2^2)n, 

the square of (a—Z>)/ (4^2) is a triangular number with the side (a+b—2)/4 
^evident since db = 1]. Chr. Goldbach stated April 12,1742 (p. 122) that 
4mn — m — na =f= A. Euler remarked May 8, 1742 (p. 123) that 
4mn — m ~ n is not a heptagonal number. June 7, 1742 (p. 126), Gold- 

M Comm. Acad. Petrop., 6, 1732-3, 175; Comm. Arith. Coll., I, 9. Cf. Euler.79 
* Thus q - 1 — 6a; so that 6p2 + 1 = q2 becomes p2 = — lx + 6x2. Hence p = 2P, 

P1 ~ (3a:2 — x) /2, and we have returned to the problem from which we started. 
67 Comm. Acad. Petrop., 10, 1738, 125; Comm. Arith. Coll., I, 30, 34. Proof republished 

by E. Waring, Medit. Algebr., ed. 3, 1782, 373. 
58 Suite de l’arithm6tique des g6ometres, Paris, 1739, 352-365. 
M Correspondance Math&natique et Physique (ed., P, H. Fuss), St. P6tersbourg, 1, 1843. 



Chap. I] POLYGONAL, PYRAMIDAL AND FlGURATE NUMBERS. 11 

bach inferred that every number is of the form 2A ± □, and incorrectly 
(Euler, p. 134) that every number is a sum of three triangular numbers. 
Euler, June 30, 1742 (p. 133) noted that every number is of the form 
y1 + y — x2 = 2 Av — x2. April 6, 1748 (pp. 447-9, 468), Goldbach stated 
that every number can be expressed in each of the eight forms 

□ + 2D' + A, □ +2D' + 2A, □ + D' + 2A, 
2D + A + 2 A', etc. 

June 25, 1748 (pp. 458-460), Euler gave the identity 

for a = d + e, b = d — e. 

Hence [Fermat's36 theorem] every n is a sum of three A's implies 

n = □ + 2 A + A'. 

Euler expressed his belief that every number of the form 4n + 1 is a sum 
ED of three squares, whence n = □ + □' + 2a. Replacing n by 2n, we 
see that every n =□ + □'+ A. Euler gave fourteen such formulas. 
June 9, 1750 (p. 521), Euler remarked that an algebraic discussion of the 
theorem that any number n is a sum of three triangular numbers is of no 
help, since the theorem is not true if n is fractional (unlike the theorem on 
33). Dec. 16,1752 (p. 597), Euler noted as facts, of which he had no proof, 
that every prime Sn + 1 or Sn + 3 is of the form x2 + 2y2, whence if 
n + □ + A, 8n+l=t= prime, and if n 4= 2 A + A', Sn + 3 =}= prime. Also 
(p. 630), if n =}= □ + 2A, 4n + 1 4= prime. 

April 3, 1753 (pp. 608-9), Euler treated the problem [of Fermat43] to 
find a number z which is polygonal in a given number of ways. Let n be 
the number of sides of the polygonal number, x its root. Then 

2z — (n — 2)x2 — (n — 4)z, n = 2 — — + ——~. 
x x — 1 

Thus 2z must be divisible by x} and 2z — 2 by x — 1. Hence we desire 
two numbers differing by 2 which have divisors differing by 1. For example, 
450 and 448 have such divisors 3 and 2, 5 and 4, 9 and 8, 15 and 14. Thus 
225 is a square, 8-gon, 24-gon, and 76-gon. 

Euler60 noted that, if 4n + 1 is a sum of two squares, Sn + 2 is a sum 
of two odd squares (2x + l)2, (2y + l)2, whence n = A* + A„. S. R6alis60a 
noted that conversely this expression for n implies 

4n + 1 = (x + y + l)2 + (x - 2/)2. 

In Ch. Ill are cited Euler's3 theorem JT(I ” x*) = XX1)'^, where 
p = (3j2 ± j)/2 is a pentagonal number, and theorems by Legendre,23 
Vahlen,150 and von Sterneck,169 on the partitions of N, in which an excep¬ 
tional r61e is played by the N’s which are pentagonal or triangular. 

60 Novi Comm. Acad. Petrop., 4, 1752-3 (1749), 3-40, § 34; Comm. Arith. Coll., I, 164. 
60a Nouv. Ann. Math., (3), 4, 1885, 367-8; Oeuvres de Fermat, IV, 218-20. 
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G. W. Kraft61 and A. G. Kastner62 proved that 

24m+i ~ 22™ - 1 (2N)(2N + 1) 

9 “ 2 _ A’ 

since (22m — l)/3 is an integer N. 
M. Gallimard63 obtained “central polygons” by multiplying each term of 

0, 1, 3, 6, 10, 15, • • • by the number n of angles of any polygon whatever 
and adding unity to each product. Given a central polygon, he treated 
the problem to find the number of angles if the side be given, or vice versa. 

L. Euler64 proved that a number not the sum of a square and a triangular 
number A is composite; one not A + 2 A' is composite. 

Nicolas Engelhard65 treated Plutarch’s6 questions on triangular numbers. 
Elie de Joncourt66 gave a table of triangular numbers N(N + l)/2, N 

up to 20000, and showed how the table may be used to test if a number 
less than a hundred million is a square or not, and to extract square roots 
approximately. 

L. Euler67 noted that, if N — ab = AP + Aq + Ar and p — q = a — b, 
then N = Ap+b + Ap~a + Ar. N. Fuss, I, (pp. 191-6) also gave an 
incomplete argument to show that N is a sum of three triangular numbers 
if every integer < N is. Let N — p = Aa+ Ab+ Ac and 

V ~ (b ~ a)n + n2 

[a restriction]; then N = Aa-n + Ah-« + Ac. He gave a similar in¬ 
complete discussion of the problem to express N as a sum of m w-gonal 
numbers, given that every integer < N is such a sum. He noted (p. 201) 
that 9n + 5, 8; 49n + 5, 19, 26, 33, 40, 47; 81n + 47, 74; etc., are not 
sums of two triangular numbers; thus, 49n + 19 = A0 + Ab would imply 
(2a 4- l)2 + (26 + l)2 = 8(49n + 19) + 2, whereas the factor 7 of the 
latter is not a divisor of a sum of two squares. L. Euler (p. 214) noted that 
Ax Av- Az is satisfied* if px(y + 1) = 2qz, qy(x +■ 1) = p(z + 1); the result¬ 
ing values of z are equal if {(2#2 — p2)x + 2q2}y — p2x + 2pq. L. Euler 
(pp. 264r-5, about 1775) noted that 

9 A a + 1 = Asa-fl, 49 A 0. 4“ 6 = A7a+3, 

25 Ac 4~ 3 = Asa+2> 81 Aa 4“ 10 = Ada-f4. 

J. A. Euler68 (the son of L. Euler) stated that to express every number 
as a sum of terms of l2, 32, 62, 102, 152, • • •, at least 12 terms are required. 

“ Novi Comm. Acad. Petrop., 3, ad annum 1750 et 1751,112. 
43 Comm. Soc. Sc. Gottingensis, 1, 1751, 198. Cf. T. Pepin, Atti Accad. Nuovi Lincei, 32, 

1878-9, 298. 
M L’Algebre ou la Science du Calcul litteral, Paris, 2, 1751, 131-143. 
MNovi Comm. Acad. Petrop., 6, 1756-7 [1754], 185; Comm. Arith. Coll., I, 192. 
66 Verhandel. Hollandse Maatschappy Weetenschappe te Harlem, 3 Deel, 1757, 223-230; 

4 Deel, 1758, 21 (correction to p. 224). 
MDe Natura et Praeclaro Usu Simplicissimae Speciei Numerorum Trigonalium, Hagae 

Comitum, 1762, 267 pp. 
87 Opera postuma, 1, 1862, 190 (about 1767). 
* The least solution is * * 2, y = 5, z = 9, Sphinx-0edipe, 1913, 90; 1914, 145. 
48 Ibid., pp. 203-4, about 1772. 
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To express every number as a sum of figurate numbers 

i n + a (n + l)(ft + 2a) (n + T)(n + 2 )(n + 3a) 

’ 1 ’ 1 *2 ’ 12*3 

(n + 1 )(n + 2)(n + 3 )(n + 4a) 

1 *2*3*4 ’ 

at least a + 2n — 2 terms are necessary. Cf. Beguelin,72 Pollock,117 
Maillet.181-2 

L. Euler69 remarked that Fermat’s36 theorem that every integer is a 
sum of m ra-gonal numbers would follow if we could prove that every 
integer occurs among the exponents in the expansion of the rath power of 
1 + x + xm + x3m~3 + • • •, whose exponents are the ra-gonal numbers. 
Fermat’s theorem that every integer is a sum of three triangular numbers 
would follow if it were shown that in 

1/{(1 - s)( 1 - xz){ 1 - x3z)( 1 - x*z) * * *} = 1 + Pz + Qz2 + Rz* + * * *, 

all integers occur as exponents of £ in the series for R. 
Euler70 found squares which are triangular or pentagonal. If A* = x2, 

then y2 - Sx2 + 1 for y = 2z + 1. If (3z2 — z)j2 = x2} y2 = 24a;2 + 1 for 
y = Qz — 1. If (3$2 — q)/2 = AP) (6q — l)2 = 3x2 — 2 for x = 2p + 1. 
Special solutions of the three equations y2 = ax2 + b are found by his 
general method of treating the latter (Ch. XII, below). 

Euler71 admitted that he had no proof of Fermat’s assertion that every 
number is a sum of three or fewer triangular numbers and noted that 
this is true only of whole numbers, since no one of §, §, |, £, etc., can be 
resolved into three triangular numbers. There are no rational solutions 
x, y, z of 

1 _x2 + x y2 -by z2 + 2 

2 2 2 2 * 

Nicolas Beguelin72 attempted to prove Fermat’s theorem that every 
integer is a sum of $ polygonal numbers of s sides. For s = d +■ 2, the 
latter are 0 and 1, A = d + 2, B = 3d + 3, C = 6d + 4, D = lOd + 5, 

* • *, a series whose second order of differences are d. Let t be the number 
of terms > 0 needed to produce a given sum e. For 1 < e < A, evidently 
t < A — 1. For e = A + e, where 1 ^ e ^ A — 1, t < A; for e = 2A + e, 
0 Si e Si d — 2, t ^ d. Next, let B < e < C. For e=B + €, 1 ^ € 
Si A — 1, t ^ A; for e = B + A + e, 0 Si € Si A — 2, t ^ A; for the 
“doubtful case” e = 5 + 4*f4 — l,we replace B by its equal 2 A + d — 1 
and have e = 4A -b d — 2, £ = d + 2; finally, for e = B + 2A + €y 

99 Novi Comm. Acad. Petrop., 14,1, 1769, 168; Comm. Arith. Coll., I, 399-400. 
70 Algebra, 2, 1770, §§ 88-91; French transl., 2, 1774, pp. 105-9 (Vol. I, Ch. V, pp. 341-354, 

for definitions of polygonal numbers). Opera omnia, (1), I, 373-5, 159-64. 
71 Acta Eruditorum, Lips., 1773, 193; Acta Acad. Petrop., I, 2, 1775 (1772), 48; Comm. 

Arith. Coll., I, 548. 
» Nouv. M&n. Acad. Sc. Berlin, ann<§e 1772, 1774, 387-413. 
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0 ^ ^ d — 4, — After this expansion of the argument by 
Beguelin, we are ready to admit that if e is in one of the intervals 1 to A, 
A to B, B to C, it is a sum of d + 2 or fewer terms 1, A, B. He treated four 
more intervals with a rapidly increasing number of “doubtful cases” for 
which linear relations between the polygonal numbers were employed, 
and found in every case that t ^ d + 2. But he finally admitted (p. 405) 
that this method does not lead to a proof of the general theorem of Fermat. 

On p. 411, Beguelin stated without proof the erroneous generalization 
[cf. J. A. Euler,63 L. Euler73] that any number is the sum of at most 
t = d + 2n — 2 terms of the series 

^ , j (n + l)(n + 2d) (n + l)(n + 2)(n + 3d) 
1, n + d, ---, -r-r-z-, 

a series whose nth order of differences are constant and equal to d. For 
n = 2, we have the case of polygonal numbers just considered. For n = 3, 
we have the pyramidal numbers 2 for r = 1, 2, 3, • • •; for n = 4, their 
sums, etc. For n = 4, d = 1, the series is 1, 5, 15, 35, 70, • • • and the 
theorem gives t = 7, whereas 8 terms are evidently required to produce the 
sum 64 (since 4 terms must be unity), as expressly mentioned on p. 412. 
Thus Beguelin contradicts himself in his generalization of Fermat’s theorem 
to pyramidal and figurate numbers. 

L. Euler73 probably overlooked the last remark, since he stated that the 
unproved generalization merits great attention. He extended Beguelin’s 
tentative process to any series 1, A, B, * *. We must employ A + n — 2 
summands 1, A to produce nA — 1. Thus if 

nA — 1 ^ B < (n + 1 )A — 1, 

we need A + n — 2 summands 1, A to produce all numbers 1, 2, 
Then 

, , B — 2A + 1 , , , B - A + 1 
A _ n--—<A + n — 2^A — 1H--A  

B. 

Denote by {x} the least integer > x, and by h the number of terms 1. A 
needed to produce 1, ** •, B. Hence 

ti - A - 1 + 
B - 2A + 1 

A 

Bringing in also the summand B, let b be the least positive integer such 
that B + b requires h + 1 summands 1, A, B. If C < B + b, we need 
only t± summands to produce the numbers ^ (7. But if C ^ B + 6, let 

(m + 1)B + b ^ C > mB + b. 

To produce the numbers ^ C from 1, A, B, we need 

ti + — ti + |-£- = h 

78 Opnsc. Anal., 1, 1783 (1773), 296; Comm. Arith. CoU., II, 27.- 
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summands. Next, bring in the summand C and let c be the least posi¬ 
tive integer such that C + c requires t2 + 1 summands from 1, Ay By C. To 
produce the numbers ^ D, we need 

*+{*++* 
summands, etc. In the case of an infinite series 1, A, B, • • *, the process 
furnishes a lower limit to the number t of summands. Euler showed that, 
for series whose nth order of differences are constant, Beguelin’s rule is 
often quite erroneous, but did not treat the series 1 , n + d, • • • of polygonal 
and pyramidal numbers. 

N. Beguelin74 made a puerile illogical attempt to prove that every num¬ 
ber is the sum of three triangular numbers. Admitting the last theorem, 
Beguelin75 deduced Bachet’s theorem that every integer is a 03. For, 

(5) n = 2(a2 + a)/2 implies 8n + 3 = 2(2 a + l)2. 

Adding 1, we conclude that 8n + 4 is a 3L But it is known that the half 
or double of a SO is a 0]. Hence 2n + 1 and its product by any power of 
2 are SJ. Since Lagrange had given in 1770 an independent proof of this 
theorem of Bachet, Beguelin next attempted, but failed completely, to 
deduce from it the result that every integer is a sum of three triangular 
numbers A. On p. 338, he gave the equivalent formulas 

3 = -4g + l = (a —6)*+ (o + 5 + l)*. 

He concluded without adequate proof that every number is a sum of a A 
and two squares, and also is A + 2a' + 2 a" (p. 345); further, that 
every integer = 1, 2, 3, 5 or 6 (mod 8) is a SI, later proved by Legendre19 
of Ch. VII. A fitting sample of the lack of insight of Beguelin is furnished 
by his final theorem* (p. 368): If any number 4m + 1 is a sum of three 
squares [each #= 0], it is composite [but 17 = 9 + 4 + 4 is prime]. 
Curiously enough, he supposed he had verified the theorem for all numbers 
< 200; but his tables (pp. 363-4) imply that he assumed that a number 
can be expressed in a single way as a sum of squares. On this he based a 
new “proof” that every prime 4m + 1 is a 12. 

L. Euler76 noted the result (5). 
Euler77 noted that J is not the sum of three fractional triangular numbers 

(x2 + x)/2, since 7 is not the sum of three odd squares (2x + l)2. But every 

7< Nouv. M6m. Acad. Berlin, ann6e 1773, 1775, 203-215. 
78 Nouv. M&n. Acad. Berlin, ann6e 1774, 1776, 313-369. 
* One error is that if the sum of three A’s, each 4s 0, is of the form 3v + 2, then v is 

not divisible by 3, assumed to follow from the converse in § 50. But 45 + 10 + 1 = 2 
(mod 9). 

78 Acta Acad. Petrop., 4, II, 1780 [1775], 38; Comm. Arith. Coll., II, 137. Euler11 of Ch. VII. 
77 Opusc. Anal., 2, 1785 (1774), 3; Comm. Arith. Coll., II, p. 92. 



number N is the sum of four fractional pentagonal numbers (3z2 — x)/2, 
smce 

24iV + 4 = 2a2 = 2(6s - l)2, ® = ——, .... 
6 

To prove the theorem that any number is the sum of three integral tri¬ 
angular numbers A, it would be sufficient to show that the coefficient of 
every term xk in the expansion of 

(1 + x + x3 + x6 + • • • + x* + • • *)3 

is not zero; similarly for squares, pentagons, etc. [Euler69]. Let the 
polygonal numbers with t sides be 0, <x = 1, ff = t, y = St - 3, • * *, 
and denote by [n] the coefficient of xn in (1 + xa + x? + • • -)T* Euler 
proved by logarithmic differentiation the recursion formula 

= . 2 [nj — (n — j) }[n — j]. 
3 — O-y 0, . . • 

F. W. Marpurg78 treated (pp. 185-257) polygonal numbers, giving special 
cases of formula (1) of Diophantus, pyramidal numbers and central poly¬ 
gonal numbers, viz., unity more than the number of the angles and division 
points on m-gons drawn about a common mid point. Also (p. 307) poly¬ 
hedral numbers, the rth hexahedral, octahedral, dodecahedral and icosa- 
hedral being 

r3, ;j (2r2 + 1), ^(9rs-9r +2), + 

Euler79 proved that (x2 + a:)/2 is a square y1 only when 

_a + j9 — 2 a — 8 
x--- , = a=(3 + 2V2)», /S = (3-2V2)». 

For n = 0, 1, 2, we get * = 0, 1, 8; y = 0, 1, 6. We have the recursion 
formulas 

xn = + 2, yn = 6 2/n-i — yn~i- 

Certain squares x2 which exceed (y2 -f- y) /2 by unity are given by 

~ - (2^ + !)« + (2^2 - l)fl _ (2V2 + l)a - (2^2 - 1)0 1 
4V2 > y - 4 2' 

For n 0, * — 1, y — 0; for w = 1, x — 4, y = 5. The recursion formula 

xn - 6a;tl_1 — a;„_2, yn = 6y„_x — y„_2 + 2. 

A second series of solutions is obtained by use of these formulas for negative 
ns. Thus x x = 2, y_x = - 3; z_2 = 11, y_t = - 16. Since the tri¬ 
angular number A_„ equals Am_i, we replace y = — robytn- 1 and get 
the sets of positive solutions 2, 2; 11, 15; etc. 

I! vJifan^lgr<inte dea Pr°Sreaaional Calculs, Berlin, 1774, Book 2. 
M4m. Acad. St. P4terabourg, 4,1811 [1778], 3; Comm. Arith. CoU., II, 267-9. 
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To find triangular numbers whose triples are triangular, Euler proved 
that 3 (a2 + x) = y2 + y has only the solutions 

X = r = (3V3 + 5)(2 + V§)», 

y = LlT-l’ s = ( 3V3-5)(2-V3)», 

for ft = 0, ± 1, =h 2, • • •. Examples are z = 1, y = 2; x = 5, y = 9. 
It was proposed as a prize problem in the Ladies’ Diary for 1792 

to find n (n > 1) such that l2 + 22 + • • ■ + n2 — □. The sum is 
n(n + l)(2n + l)/6. T. Leyboum80 took 2n + 1 = z2, whence (z4 — l)/24 
is to be a square y2. Thus z4 = 24?/2 + 1 = □ = (pcy — l)2, say. Thus 
y = 2xj{x2 — 24) >0. It is stated that x = 5 or 6. Since z = 6 is 
excluded, n = 24. C. Brady took n = 6r2. Then the condition is 
(6r2 + l)(12r2 + 1) = □. Thus (9r2 + l)2 - (3r2)2 = □, so that 9/2 + 1 
and 3r2 equal the hypotenuse and one leg of a right triangle. Thus the 
other leg is 9r2 — 1, whence r = 2, n = 24. 

A. M. Legendre81 proved Fermat’s theorems that no triangular number 
z(z + l)/2, except unity, is a fourth power or cube. For, in the first 
problem, x or x + 1 is of the form 2m4, whence either 1 = n4 — 2m4, 
contrary to 1 + 2m4 =f= □, or 1 = 2m4 — n4, m8 — n4 = (m4 — l)2, con¬ 
trary to p4 — n4 4= □ unless m = 1 = x. In the second problem, one of 
1 + x, x is a cube and the other the double of a cube, whence n3 ± 1 = 2m3, 
which is impossible if n ={= L 

C. F. Gauss82 proved by means of the theory of ternary quadratic forms 
that every number n = 8M + 3 is a sum of three odd squares, so that, by 
(5), M is a sum of three triangular numbers. The number of ways M 
can be so decomposed depends in a definite manner on the prime factors 
of n and the number of classes of binary quadratic forms of determinant — n. 

• G. S. Kliigel83 gave an account of figurate, polygonal, polyhedral, and 
pyramidal numbers Prm of the first order, those of the second order being 

Pi + * * * + Prm) etc. 
John Gough84 attempted to prove Fermat’s theorem that every number 

is a sum of m m-gonal numbers. P. Barlow85 noted that the first three 
propositions by Gough are correct, but are not used in his defective proof 
of Fermat’s theorem, while various points are not proved, as the Cor. 2 
to Prop. 4: every number is a sum of a limited number of polygonal num¬ 
bers. As to Gough’s reply (pp. 241-5), Barlow86 stated that the defense 

80 Ladies’ Diary, 1793, p. 45, Quest. 953. T. Leybourn’s Math. Quest, proposed in the 
Ladies’ Diary, 3, 1817, 256-7. Cf. Lucas, papers 130-8. 

81 Th6orie des nombres, 1798, 406, 409; ed. 2, 1808, 345, 34S; ed. 3, II, 1830, arts. 329, 335; 
pp. 7, 11. German transl. by Maser, 1893, II, 8, 13. 

82 Disquis. Arith., 1801, art. 293; Werke, I, 1863, 348; German transl. by Maser, 18S9, p. 334. 
83 Math. Worterbuch, 2, 1805, 245-253; 3, 1808, 825-8, 931. 
84 Jour. Nat. Phil., Chem., Arts (ed., Nicholson), 20, 1808, 161. 
86 Ibid., 21, 1808, 118-121. 
88 Ibid., 22, 1809, 33-35. 
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is on grounds not proved. As to the revised version by Gough87, Bar- 
low noted (p. 44) that the argument is correct and trivial to within 12 
lines of the end; the proof is valid for numbers ^ 3m, but not for those 
> 3m. 

E. Barruel88 noted that sums of 1, 2, 3, • • • give the triangular numbers 
1, 3, 6, • * *, whose sums give the pyramidal numbers 1, 4, 10, 20, • • etc. 
Forming these sums, we get the general triangular and pyramidal numbers 
n(n + l)/2, n(n + l)(n + 2)/6, etc. Application is made to prove the 
ordinary rule for deriving a binomial coefficient from the preceding coeffi¬ 
cients. 

F. T. Poselger89 gave (pp. 19-31) various properties of numbers from 
the writings of Theon of Smyrna, and (pp. 32-60) gave algebraic expres¬ 
sions for polygonal and figurate numbers, with a discussion of arithmetical 
series of general order. 

P. Barlow90 noted that, if A" is a sum of five pentagons (3v? — u)/2, 
and M a sum of six hexagons 2x2 — x} then 

24N + 5 = E (flu, - l)2, SM + 6 = E (4x{ - 1)( 
i=l 4=1 

In general, if P is a polygonal number of a + 2 sides, Fermat’s36 theorem is 
‘equivalent to 

a-f 2 

8aP + (a + 2)(<* - 2)2 = £ (2ax,- - a + 2)2. 
i=i 

He erred100* 107 (p. 258) in saying that no triangular number >1 is pentagonal. 
J. Struve91 discussed figurate numbers (binomial coefficients). 
J. D. Gergonne92 noted that the number of terms of a polynomial of 

degree mmn unknowns is (m -bn)!-*- (m! nt). If the latter be designated 
(m, n), then (m, n) — {m — 1, n) + (m, n — 1). 

A. Cauchy93 gave the first proof of Fermat’s theorem that every number 
is a sum of m m-gonal numbers. The proof shows that all but four of the 
m-gons may be taken to be 0 or 1. The auxiliary theorems on sums of 
four squares will be quoted in Ch. VIII. In the simplified proof by 
Legendre,94 the case m = 3 is not presupposed, as was done by Cauchy. 
Moreover, Legendre proved (p. 22) in effect that every integer > 2S(m — 2)3 
is a sum of four m-gonal numbers if m is odd; while, for m even, every 
integer > 7(m — 2)3 is a sum of five m-gonal numbers one of which is 0 or 1. 

87 New Series of the Math. Repository (ed,, T. Leybourn), 3, 1814, II, 1-7. 
88 Correspondence but TEcole Imp. Polytechnique, Paris, 2, 1809-13, 220-7. 
89 Diophantus tiber die Polygonzahlen uebersetzt, mit Zusatzen, Leipzig, 1810. 
90 Theory of Numbers, 1811, 219. Minor applications in papers 17-19 of Ch. IX. 
91 "CJber die gewohnlichen fig. Zahlen, Progr. Altona, 1812. 
» Annales de Math, (ed., Gergonne), 4, 1813-4,115-122. 
93 M6m. Sc. Math, et Phys. de l'Institut de France, (1), 14, 1813-15, 177-220; same in 

Exercices de Math., Paris, 1, 1826, 265-296. Reprinted in Oeuvres de Cauchy, (2), VI, 
320-353. J. des Mines, 38, 1815, 395. Report by Cauchy, Bull. Sc. par Soc. Philo- 
matique de Paris, (3), 2, 1815, 196-7. 

94 Thiorie des nombres, 1st supplement, 1816, to the 2d edition, 1808, 13-27; 3d ed., 1830, 
I, 218; II, 340; German transl. by Maser, II, 332. 
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Cauchy96 denoted the sth polygonal number of order m + 2 by 

xm 
x(x — 1) 

2 
m + x, 

and proved that if A, B, • • •, F are integers, not divisible by the odd prime 
p, there exist integers xly • • •, xn, such that 

Ax™ + Bx™ + * • • + Ex™ + F = 0 (mod p), 

where n = m if m is even, and n = 2m if m is odd. The case m = 2 shows 
that there exist integral solutions of [Lagrange,9 etc., of Ch. VIII] 

Ax\ + Bx2 + C = 0 (mod p). 

L. M. P. Coste96 showed that the problem to make two integral functions 
of one variable equal to polygonal numbers of a given order can be reduced 
to the problem to make two functions equal to squares. Let 

P(Z) = (pZ2 + qZ)/2, /i = Az2 + A'z + P(a), /2 = Bz2 + B'z + P(fi). 

Then to make fi and /2 equal to numbers P(Z), take Z = az + a and 
Z = pz + & in the respective cases. We obtain a quadratic equation for a 
and one for 0, each linear in 2. Solving for a and /3, we require that the 
quantities under the radical signs be squares, viz., 8p/i + q2 = □, 
8p/2 + <Z2 = Next, if /i and /2 are of the form 2a2pz2 + Az + A', use 
Z = 2az 4- (x. We can make two quadratic functions equal to P(Z) if a 
particular solution is known. 

Several solvers97 readily found two pentagonal numbers Px = (3x2 — x) /2 
and Py whose sum and difference are triangular by solving 

8(P, =fc Py) 4- 1 = □. 

A. M. Legendre98 concluded from the formula 

(6) (l+g + 9» + g« + 91«+ ••-)4 = r^ + r^ + r5^+ ••• 

that every integer N is a sum of four triangular numbers in <r(2N + 1) ways, 
where <r(k) denotes the sum of the divisors of k. ' He gave an identity which 
shows the number of ways A is a sum of eight triangular numbers. 
Cauchy99 gave (6); it was attributed to Jacobi by Bouniakowsky (see 
Yol. I, Ch. X12*19 of this History). Cf. Plana.123 

Several100 found numbers > 1 which are simultaneously triangular, 
pentagonal and hexagonal. Let |m(m 4- 1) = i(3n2 — n) = 2p2 — p. 
Then m = 2p — 1, n = (1 + jR)/6, where R2 = 48p2 — 24p 4“ 1. Thus 
1 4- R = 6&p, whence p = (2 — 7b)/(4 — 3&2). Take k = &/a. Then p is 
integral if 4a2 — 3&2 = 1. By the continued fraction for V3, we get 

96 Jour, de l’Ecole Polyt., Cah. 16, Vol. 9, 1813,116-123; Oeuvres, (2), I, 59-63. 
96 Annales de Math, (ed., Gergonne), 10, 1819-20, 101-122. 
97 The Gentleman’s Math. Companion, London, 5, No. 30, 1827, 558-9. 
98 Traits des fonctions elliptiques, 3, 1828, 133-4. 
99 Comp'tes Rendus Paris, 17, 1843, 572; Oeuvres, (1), VIII, 64. 
100 Ladies’ Diaiy, 1828, 36-7, Quest. 1468. 
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(2a, b) = (2, 1), (26, 15), (362, 209), (5042, 2911), • • •, whence p = 1, 143, 
27693, • • *, so that answers are 1, 40755, 1533776801, 

J. Whitley101 found pairs of pentagonal numbers p, q whose sum and 
difference are pentagonal. The conditions are 

24p + l = &, 24g + l = y2, 24(p + q) + 1 = a2, 24(p-9)+l = «2. 

Hence z2 = x2 + yi - l,®2 =a?-y* + 1. Let a? = ri* + m2, y1 = 2nm + 1. 
Then z = n + m, t> = n — m. Take n — r- — s2, m = 2rs, whence 
x = r2 + $2. There remains the condition 

4rs(r2 — s2) + 1 = □ = y2. 

This is said to hold if r = f(<£5 — <f>), $ = f (<£5 — 3<£)j which lead to larger 
numbers than those found by trial, using (r, s) = (3, 2), (6, 1), (8, 5), 
(13, 2), (13, 8), (19, 14). [But the resulting numbers p = 7, 37, 330, • * • 
are not pentagonal.] See Gill.108 

C. G. J. Jacobi22 of Ch. VII gave in 1829 the result 

{ Z (~ l)"»<8"*~>'a }3 = Z(-~l)n(2n+ l)x(n’+n)/2, 
{ m=~» J »=0 

the exponents on the left being pentagonal numbers for m negative, and 
those on the right triangular. Polygonal numbers appear incidentally in 
Jacobi’s paper of 1848 [see Ch. III]. 

J. Huntington,102 given a pentagonal number P = r(3r — l)/2 of n 
digits, found another number p also of n digits such that if p is prefixed to 
P there results a pentagonal number. Let x be the root of the latter. 
Then shall 10np + P = x(3x — l)/2. Taking p = x — r, we get 

x = §(2-10* + 1) - r. 

For example, let r = 1; then n=l, x = 6, p = 5 and 51 is pentagonal. 
A. Cauchy103 defined triangular and pyramidal numbers as binomial 

coefficients. 
J. Baines104 found two squares x2, y1 whose sum and difference are 

hexagonal. Take 8(x2 — y2) -f 1 = {2(x + y) l}2, whence x = 3y ± 1. 
Then 8(x2 + y2) + 1 = 80y2 =k 4&y + 9 = (ny dh 3)2 determines y. 

A. Bemerie105 gave a table of triangular numbers. 
A. Casinelli100 noted that every triangular number is of one of the three 

forms 

(9m2 + 3m)/2 = Am~i + 2 A2m, (9m2 + 9m + 2)/2 = Am+ A2m+ A2m+i, 

(9m2 + 15m + 6)/2 = Am+i + 2A2m+i, 

also a sum of four A’s, and hence a sum of any number of A’s. By adding 

101 Ladies’ Diary, 1829, 39-40, Quest. 1489. 
103 Ladies’ Diary, 1832, 36-7, Quest. 1530. 
101 R4sum6s Analyt., Turin, i, 1833, 5. 
1<H The Gentleman’s Diary, or Math. Repository, London, 1835, 33, Quest. 1320. 
108 Nouv. table des triangulaires, Bordeaux, 1835. 
108 Novi Comm, Acad. Sc. Inst. Bononiensis, 2,1836, 415-34. 
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the first two or the second and third equations, we get 

(3m + l)2 = m2 + (2m 4- l)2 + 2 A2m, 

(37?2- 4~ 2)2 = (m + l)2 + 2 A2m+i 4~ (2m 4“ 1)~- 

Also, (3m 4- 3)2 = (m + l)2 4- 2(2m 4- 2)2. Hence every square is a sum 
of three squares or a sum of two squares and two A’s. Further, every A 
is a sum of a square and two equal A’s. Next, 

Am 4- An 4* 27m = Am+n, Am + An 4 4“ 1)(^ 4* 1) = Am+n+1, 

and similarly for three or more A’s. Also, Am 4- An — min 4- 1) = A»-m* 

C. Gill107 found numbers both m-gonal and n-gonal, and the generaliza¬ 

tion 
T = ax2 — o!x — by2 — b'y, 

where a, a', b, b' are given integers with no common factor. Take 

ax — a' = ypfa, x = (by — b')q[p} 

so that 

x = q(Vp + a'bq)/N, y - $(a'p 4- fc'a?)/#, - N = p2 - 

Let p', g' give a particular solution of the last equation such that 

A = (a'p' 4“ ob'q')IN3 B = (b'p' 4- ba'q')/N 

are integers. Take p = p't 4* dbq'u, q — q’t 4- p'u. Then 

p2 — abq2 — — NFy 

where F = t2 — abu2, and x = q(Bt 4- Abu)/F, y = q(At 4- Bau)/F. From 
the initial solution U = 1, «o = 0, of P = 1, we get as usual the solution 

U = 2txti-i - «i-2, Wi = 2iiWi_i - Wa-2. 

It remains only to find a solution p', q' of p2 — a&g2 = — iV. While one 
may employ the continued fraction for ^jab} it suffices for our initial problem 
to note the solution p' — a — a', q' — 1, for the case a — a' = b — b ; 
then N = ah' + ba' — a'b'y A = B = 1. First, if m and n are both odd, 

we may take 
a = m — 2, a' = m — 4, b = n ~ 2, V = ft — 4, 

which have no common factor. Then a — a' = b — b' — 2. For Pi = §7\-, 

P0 = i, P< = ~ Pi-2 4- (2d - 1)(*4 - 1), 

(m + n — 4)(mn — 2m — 2n 4- 8) 

16(m — 2)(n — 2) 

But if m and n are both even, take a — \m — 1, a' = |m — 2, & = — 1, 
V ~ \n — 2, whence a — a' = b — 6/==l, and P» = T% satisfies the same 

recursion formula. Also, 

Pi = i(U 4“ 1) 4" d(U ~ 1) 4“ - rrmui, 
6 

107 Math. Miscellany, Flushing, N. Y., 1, 1836, 220-5. 
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where e = 8 in the former case and e = 16 in the present ease. For ex¬ 
ample, 1, 210, 40755 are both triangular and pentagonal, whereas Barlow90 
stated that this is true only for unity. 

Gill108 found n-gonal numbers whose sum and difference are n-gonal, 
i. e., Px + Pv = Pz, Px ~ Py ~ Pv, where Px = (n — 2)x2 — (n — 4)x. 
As a generalization, take Px = m2 — m!x, where m and m' are relatively 
prime. The first condition is satisfied if 

z V = ~ (wix — mr), m(z + y) — m' = 

Each of these linear equations is solved separately and the resulting z’s 
equated. The second of our conditions is treated similarly and the two 
sets of values of x and y are compared. But the resulting solution does 
not lead to “convenient numbers.” Another method is to assume that 
x = aw — A, y = bw, z = cw — A, where 

a2 + b2 = c2, 2 mA(c — a) = m'(a + b — c), 

whence our first condition is satisfied. Thus take 

a = 2kl} b = k2 — l2, c = A2 + ?2, l = mA, k = mA + m'. 

The second of our initial conditions now becomes 

4m2(d2 — 2mri)w2 — 4m (2mA + m')dw + (2mA + m')2 = (2mt> — m')2, 

where d = a — m'\ Take 2mv — m! - 2wtlu + 2mA + w'. We get w 
and then v rationally. By choice of the denominator t2 — (d? — 2m/*)m2u2 
we get integral answeis unless m! = 0. 

Many109 found two squares x2} y2 such that x2 =t y2 are pentagonal. 
Let 24 (s2 — y2) + 1 = (4(x + y) ± l}2, whence x = 5y =F 1. Then 

24(^ + y2) + 1 = 624y2 =F 240y + 25 = (5 - yr/s)2 

determines y. Again, to find pentagonal numbers p, q whose sum and 
difference are squares x2, y2, take 12 (x2 — y2) + 1 = {3(x + y) d= l}2 and 
12(x2 + y2) + 1 = (7 — yr/s)2, whence x = 7y =fc 2. 

0. Ter quern110 proved that no triangular number > 1 is a biquadrate. 
The ordinary definitions of polygonal and figurate numbers as sums of 

series were repeated by F. Stegmann,111 George Peacock,112 A. Transon,113 
H. F. Th. Ludwig,114 Albert Pilling,115 and Y. A. Lebesgue.116 

F. Pollock117 stated that every integer is a sum of at most 10 odd squares, 
and a sum of at most 11 triangular numbers 1,10,28,55, • • • of rank 3n+l, 

108 Math. Miscellany, Flushing, N. Y., 1,1836, 225-230. 
The Lady’s and Gentleman's Diary, London, 1842, 41-3, Quest. 1677. 

no Nouv. Ann. Math., 5,1846, 70-78. 
m Archiv Math. Phys., 5,1844, 82-89. 
m Encyclopaedia Metropolitan, London, 1,1845, 422. 
m Nouv. Ann. Math., 9,1850, 257-9. 
114 Ueber fig. Zahlen u. arith. Relhen, Progr. Chemnitz, Leipzig, 1853. 
“ Die Progressionen, fig. u. polyg. Z., Progr. Muehlhausen, 1855. 
m Exercices d'analyse num^rique, 1859,17-20. 
117Proc. Roy. Soc. London, 5, 1851, 922-4. Cf. Euler,<»Beguelin” 
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while 5, 7, 9, 13, 21, 11 terms are needed to express every number as a sum 
of tetrahedral, octahedral, cubic, icosahedral, dodecahedral, and squares of 
triangular, numbers. Legendre had proved that 8ft + 3 is a sum of three 
odd squares, each being 8 A + 1. Pollock gave the generalization that, 
if Fx is any figurate number of order x, 8Fx + 3 is a sum of 3 or 3 + 8, • • *, 
or 3 + 8ft terms of a series whose general term is 8Fy + 1. 

V. Bouniakowsky118 employed (1) and (9) of Vol. 1, Ch. X, of this 
History, to prove that every odd pentagonal number can be expressed as a 
sum of another pentagonal number and either a square or the double of a 
square; every odd square not a triangular number is a sum of double a 
triangular number and either a square or the double of a square. Similarly, 

(1, 2)a2 = Ax + (1, 2)u\ Ax * A, + (1, 2)ft2, 
the factor (1, 2) denoting 1 or 2. 

F. Pollock119 stated without proof that any integer between two con¬ 
secutive triangular numbers is the sum of four triangular numbers the sum 
of whose bases is constant. 

J. B. Sturm120 gave the relations 

(2» + l)2 + (4 A n)2 = (4 An + l)2, 
(2ft + l)2(2m + l)2 + (4An - 4Am)2 = (4An + 4 A- + l)2. 

V. A. Lebesgue121 gave two proofs of the final theorem under Wallis.44 
J. Liouville122 proved readily that the only forms aA + Z)A' + c A" 

which represent all numbers, where the A's are triangular numbers and 
a, b, c are positive integers, are A + A' + c A" (c = 1, 2, 4, 5) and 
A + 2 A' + dA" (d = 2, 3, 4). That conversely each of these seven forms 
represents all numbers is proved by use of Legendre's theorem that a 
number = 1, 2, 3, 5, 6 (mod 8) is a OS. The case c = 1 was treated by 
Gauss.82 Next, 

2 (2n + 1) = 4ft2 + (21 + l)2 + (2 z + l)2 
8ft + 4 = (2ft + 2t + l)2 + (21 -2ft + l)2 + 2(2z + l)2, 

ft = Au+i “f" At—u “b 2 A*, 

proves the case c = 2. Next, 

8ft + 6 = (2x + l)2 + (2 y + l)2 + 4(2s + l)2, ft = Ax + A* + 4A„ 
8n + 5 = (2x + l)2 + 4(2s + l)2 + 16£2 

= (2x + l)2 + 2(25 + 1 + 22)2 + 2(25 + 1 - 21)\ 

ft = Ax + 2 Aj+£ + 2 Aa-t, 

or case d = 2. Next, as shown by Gauss, 

8ft + 7 = □ + □ + 2D = (2x + l)2 + 4(2z + l)2 + 2(2 y + l)2, 

ft = Ax “h 2 Ay + 4A*. 

The proofs for the remaining cases c = 5 and d = 3 are longer. 

118 Uim. Acad. Sc. St. PStersbourg, (6), 5, 1853, 303-322. 
119 Phil. Trans. Roy. Soc. London, 144, 1854, 311. 
™ Archiv Math. Phys., 33, 1859, 92-3. 
121 Introduction k la th6orie des nombres, Paris, 1862,17-20 (26-8). 
m Jour, de Math., (2), 7, 1862, 407; 8, 1863, 73. 



24 History op the Theory op Numbers. [Chap. X 

J. Plana123 wrote £4 for the left member of (6). By expanding the second 
member as a power series in q and examining the earlier terms, he verified 
that 

£4 = 1 + Z gv(2n + 1), 
»=1 

where <r(k) is the sum of the divisors of fc. Hence any integer n is a sum of 
4 triangular numbers in a(2n + 1) ways. Give to £3 the notation of a 
power series in q, multiply it by £ and compare with the above series for £4; 
we get a recursion formula for the coefficients of £3. He states without 
proof that the coefficient of every power of q is not zero, and so concludes 
that every integer is a sum of three triangular numbers. 

F. Pollock124 verified for small values that any number may be expressed 
in the form s — s', where s and s' are sums of two triangular numbers. 
Now s is always the sum of a square and the double of a triangular number. 
Thus the theorem is that 

(7) a2 + a + b2 — (m2 + m + n2) 

represents any number. Take p2 — c2 — c + q as the number. Then 

a2 + a + b2 + c2 + c = m2 + m + n2 + p2 + 

Double and add unity. Thus A = M + 2q, where 

A = 2a2 + 2a + 1 + 2b2 + 2c2 + 2c, M - 2m2 + 2m + 1 + 2n2 + 2p\ 

Since q is arbitrary, it is concluded that any odd number can be represented 
by either of the forms A or M. But M is the sum of four squares. 

Again, represent p2 — Kc2 + c) + q by (7). As before, 

2a2 + 2a + 1 + 262 + c2 + c 

represents any odd number 2n -f 1. But a2 + a + b2 is the sum of two 
triangular numbers. Hence n is the sum of three triangular numbers. 

Pollock53 of Ch. VIII noted that the theorem that every number 4^ + 2 
is a sum of four squares implies that every integer n is a sum of four A s. 

J. liouville125 considered the partition of any number into a sum of 
ten triangular numbers. 

S. Bills126 solved A* + A* = A« by setting y — a — xr/s and finding 
z rationally. 

E. Lionnet stated and V. A. Lebesgue and S. R6alis127 proved that 
every integer is a sum of a square and two A’s, also a sum of two squares 
and a A. 

A. Hochheim128 gave linear relations between polygonal and polyhedral 
numbers. 

M&n. Acad. Turin, (2), 20,1863, 147. 
134 Proe. Roy. Soc. London, 13, 1864, 542-5. 
m Comptea Rendus Paris, 62,1866, 771. 
135 Math. Quest. Educ. Times, 6, 1866, 18. 
m Nouv. Ann. Math., (2), 11, 1872, 95-6, 516-9; (2), 12,1873, 217. 
138 Archiv Math. Phys., 55, 1873,189-192. 
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S. R6alis129 proved that every integer is a sum of four numbers of the 
form (3z2 =h z)j2 and also of four of the form 2z2 db z, i. e., pentagons and 
hexagons extended to negative arguments. Use was made of the theorems 
that any odd number is a sum of four squares the algebraic sum of whose 
roots is 1 or 3, and its double 2co is a sum of four squares the algebraic sum 
of whose roots is zero. Further, every odd number divisible by h, or the 
double of every odd number divisible by the even number h, is a sum of 
four polygonal numbers of order h ■4-2, extended to negative arguments. 

E. Lucas130 stated that [cf. Leyboum80] l2 + • • • + n2 is a square only 
when 7i = 24 [and n = 1], and is never a cube or fifth power. A triangular 
number [> 1] is never a cube, biquadrate or fifth power [Euler67]. No 
pyramidal number is a cube or fifth power, or a square with the exception of 

2-3-4 

1-2-3 
= 22, 

48-49-50 

1-2-3 
1402. 

Hence except for these and for the pile 24-25-49/6 = 702 with a square 
base, no pile of bullets with a triangular or square base contains a number 
of bullets equal to a square, cube or fifth power. 

Lucas131 stated and proved incompletely that the [pyramidal] number 
x(x+l)(2x+l)/6 of bullets in a pile, whose base is a square with, x to a side, 
is a square only when x = 1 or 24 (see papers 130, 132, 137-8). 

T. Pepin132 noted that one case of Lucas’ proof of the last result leads 
to an equation 9r4 — 12/V2 — 4f4 = R2, not treated by Lucas when / and 
R are divisible by 3. Pepin found an infinitude of solutions in this case. 
G. N. Watson1320 noted the solution r = 5, / = 3, R ~ 51, and1326 proved 
Lucas’131 theorem by use of elliptic functions. 

Lucas133 stated that the number of bullets in a pile with a square or 
triangular base is never a cube or fifth power. Moret-Blanc134 gave a proof. 

Moret-Blanc135 noted that the tetrahedral number n(n + 1) (n -f 2)/6 
is a square for n = 1, 2, 48. Lucas stated that it is a square only then, 
a fact proved by A. Meyl.136 

E. Fauquembergue137 and N. Alliston138 proved that l2 + • • • + t&2 4= □ 
if 7i > 24. Cf. Lucas131 and the papers cited on p. 26. 

129 Nouv. Ann. Math., (2), 12, 1873, 212; Nouv. Corresp. Math., 4, 1878, 27-30. 
130 Recherches sur l’analyse ind6termin6e, Moulins, 1873, 90; extracted from Bulletin de la 

soci6t6 d^mulation Dept, de l'Allier, Sc. Bell. Let., 12, 1873, 530. 
131 Nouv. Ann. Math., (2), 14, 1875, 240; (2), 16, 1877, 429-432. The proof by Moret- 

Blanc, (2), 15, 1876, 46-8, is incomplete (as noted p. 528). 
132 Atti Accad. Pont. Nuovi Lincei, 32, 1878-9, 292-8. 
wsaproc. London Math. Soc., Record of Meeting, March 14, 1918. 
i3» Messenger of Math., 48, 1918, 1-22. 
133 Nouv. Ann. Math., (2), 15, 1876, 144 (Nouv. Corresp. Math., 2, 1876, 64; 3, 1877, 247-8, 

433, and p. 166 for incomplete proof by H. Brocard). 
™Ibid., (2), 20, 1881, 330-2. 
33» Ibid., (2), 15, 1876, 46. 
133 Ibid., (2), 17, 1878, 464-7. 
137 L’interm&iiaire des math., 4, 1897, 71. 
333 Math. Quest. Educ. Times, 29, 1916, 82-3 (for n < 1021 by J. M. Child, 26, 1914, 72-3; 

for n < KF by G. Heppel, 34, 1881, 106-7). 
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For analogous theorems on sums of consecutive squares or the sum of 
the squares of the first n odd numbers see papers 70, 76, 81, 86, 87, 100, 
and 103 of Ch. IX, and Brocard92 of Ch. XXIII. 

W. Goring139 proved by use of infinite series that 2 A + 6 A' + 1 can 
always be represented by the form a2 + 3b2. 

J. W. L. Glaisher140 noted that every representation of an odd number as 
a sum of an even square and two triangular numbers corresponds to a 
representation in which the square is odd, since 

1Bf+Pto±i)+«Cg±i) 

+S|(±m + S±i)(±m + ^+l), 

for p, q both even or both odd, with a similar identity if one is even and 
the other odd. 

Glaisher141 stated that every triangular number is a sum of three 
pentagonal numbers. 

D. Marchand142 noted the relations 

Vl ^ VT1 + r2, pi - 2pl~l -f r2, p\ -f p\ + ••• + pi = rpl 

Marchand143 gave identities like 

A (3 y + 1) = A (y) + (2 y + l)2, 
(x + l)5 - x5 = A(y) + A(3y + 1) = 2 A(y) + (2y + l)2, 

where y = s2 + x, and (p. 105) discussed triangular numbers which are 
squares. 

E. Lucas144 asked when (A* +„••* + A*)/( Ai 4 • • • + An) is a square. 
S. R6alis, E. Catalan and others145 investigated numbers simultaneously 

squares and triangular. S. R6alis stated and E. Ces&ro146 proved that the 
square of every odd multiple of 3 is a difference of two A’s prime to 3, 
9(2n 4- l)2 = A(9n 4- 4) - A(3n 4- 1). E>. Marchand147 gave the gen¬ 
eralization that the square of any odd number is the difference of two 
relatively prime triangular numbers (with sides 3a; 4-1 and x). C. Henry148 
proved a like result for the product of any odd square by any number. 

S. Rdalis149 stated that the theorem that every integer n is a sum of 
three A’s implies that n is a sum of four A’s of which two are consecutive 
and that n is a sum of four A5s two of which are equal. 

m Math. Annalen, 7, 1874, 386. 
140 Phil. Mag., London, (5), 1,1876, 48. 
141 Messenger Math.., 5,1876,164-5. 
145 Les Mondes, 42,1877,164-170. 
143 La Science des nombres, 1877. 
144 Nouv. Corresp. Math., 3,1877, 433. 
** 4,1S7S,* 167; 5,1879, 285-7; Math. Quest. Educ. Times, 30, 1879, 37. 
146 Nouv. Corresp. Math., 4, 1878,156. 
147 Nouv. Ann. Math., (2), 17, 1878, 463. 
143 Ibid., (2), 19, 1880, 517. 
143 Ibid., (2), 17,1878,381. 
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E. Lucas150 listed values of A for which xy(x + y) = Azz has no distinct 
rational solutions 4= 0. Taking y = 1 and y = x + 1, we obtain theorems 
on triangular numbers and numbers x(x + l)(2x + 1). 

Lucas stated and Moret-Blanc151 proved that l2 -f ... + x2 = ky2 and 
A* + • • • + A* = ky2 are impossible if k = 2, 3, 6. 

S. Roberts152 proved by use of y2 — 2z2 = 1 [Euler70] that the A’s 
which are squares are 

f(l+ - (1 - V2)2m 12 

t 4V2 J ' 

J. Neuberg stated and E. Ces&ro153 proved that the sum of the squares 
of n + 1 consecutive integers, beginning with the 2nth triangular number, 
equals the sum of the squares of the n succeeding integers, each being 
divisible by l2 + * • • + n\ Cf. Dostor75 of Ch. IX. 

E. Lionnet154 stated that unity is the only triangular number A which 
equals the sum of the squares of two consecutive integers; 10 is the only A 
equal to the sum of the squares of two consecutive odd integers; when A 
is a product of two consecutive integers of which the least is double a 
triangular number, then 4A + 1 (and its square root) is a sum of squares 
of two consecutive integers. 

Moret-Blanc155 proved the preceding theorems stated by Lionnet. 
E. Ces&ro156 noted that no triangular number ends with 2, 4, 7, 9. 
S. R6alis157 noted that 

A(5p + 1) - A(4p + 1) + A(3p), A(5p + 3) = A(4p+2) +A(3p+2), 
A (k + a) = Aik) + A(2 ap + a), k = 2ap2 + (2a + l)p. 

E. Lionnet158 noted that 0, 1, 6 are the only A’s whose squares are A's. 
He stated and E. Ces&ro159 proved that there is at least one and at most 
two A’s between any two consecutive squares 4 0; at most one square be¬ 
tween two consecutive A’s; if there are exactly two A’s between (a + l)2 
and (o + 2)2, where a > 0, there is just one A between a2 and (a + l)2, and 
just one A between (a + 2)2 and (a + 3)2. 

E. Ces&ro160 denoted by V (ri) the number of the first 2n triangular 
numbers which are relatively prime to n. Let SIr(n) be the number of 
products 1-2, 2*3, 3*4, • • •, n(n + 1) which are prime to n. Then if v 
is the largest odd divisor of n, 

V (n) _ Sfr(n) ^ ^jn) _ V (n) V(p) 

n n_v ’_n_n_v _ 
160 Nouv. Ann. Math., (2), 17, 1878, 513. 
mibid., 527; (2), 18, 1879, 470-4. 
1BS Math. Quest. Educ. Times, 30, 1879, 37. 
m Nouv. Corresp. Math., 6, 1880, 232. 

Nouv. Ann. Math., (2), 20, 1881, 514. 
JWd., (3), 1, 1882, 357. 
Mathesis, 4, 1884, 70. 

167 Jour, de math. sp4c., 1884, 6. 
168 Nouv. Ann. Math., (3), 1, 1882, 336. Proof by H. Brocard, (3), 15, 1896, 93-6. 
™Ibid., (3), 2, 1883, 432 (misprints); 5, 1886, 209-213. 
180 Annali di Mat., (2), 14, 1886-7, 150-3. 
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The mean value of V (n) is three times that of SP(n). He found that the 
probability that two triangular numbers taken at random shall be relatively 
prime is 

Ceskro161 stated and E. Fauquembergue181 proved that 5 and 17 are the 
only integers whose cubes diminished by 13 are quadruples of triangular 
numbers. 

G. de Rocquigny162 noted that, if k = (a2 + b2 + a + b)/2, 

Ah = Afc-i + A« + A&, (a2 + l)2 = 1 + A (a2 + a) + A (a2 - a). 

S. R6alis163 used the known fact that, if p is a product of primes Sq + 1, 
2a;2 + y2 = V has integral solutions. Thus 

3(8 q + 1) = 2 (2a + l)2 + (2b + l)2, 

so that 3q = 2A + A'. 

R^alis16" gave various sums like 

Ai + A3 + As + * • * + A2n-i — + 1)(4n — 1), 
A2 4~ A4 + As + * • * 4* A2n = 6n(n 4 l)(4n + 5), 

A3 + As + A9 + • * • + A3« = ln(n + l)2. 

E. Cesaro165 noted that (ns — l)/4 = AP + Aq, n =f= 5, implies that 
2p 4* 1 or 2q + 1 is composite. 

S. Tebay and others166 found that the least heptagonal number 
%(5x2 — 3x) which when increased by a2 is equal to a square is given by 
x — 24(19a — 9). 

C. A. Laisant167 wrote aa for the ath (a + 2)-gonal number p“+2 and 
gave 

(a 4* b)a = aa + ba + acib, (a 4- * • * 4~ Oa — Satt 4" ctXcib. 

E. Ceskro168 noted that the number of A’s prime to n and < 2n(n 4- 1) 
is k — nll(l — 2/p) or 2k according as n is even or odd, where p ranges 
over the odd prime factors of n. 

E. Catalan169 proved that every A > 1 is a sum of six pentagonal num¬ 
bers. For,170 6(2n 4- l)2 = (6x =F l)2 4“ (6y =F l)2 4- 4(62 =F l)2, whence 

n(n 4- 1) _ 3x2 =F x s 3y2 ^ y , (Zz2 =F z\ 
2 2 * 2 • ^ ^ 2 J * 

161 Mathesis, 6,1886, 23 ; 7, 1887, 257-9. 
162 Ibid., 6, 1886,224. 
l“ Nouv. Ann. Math., (3), 5, 1886, 113. 
184 Jour, de math. sp6c., 1888, 94. 
185 Mathesis, 8, 1888, 75. 
186 Math. Quest. Educ. Times, 50, 1889, 84-5. 
187 Bull. Soc. Philomathique de Paris, (8), 3, 1890-1, 29-30. 
168 Mathesis, (2), 1,1891, 95-96. 
189 Assoc, frang. av. sc., 1891, II, 201-2. 
170 Recherches sur quelques prod, indefMim. Acad. Roy. Belgique, 40,1873,61-191, formula 
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[But the denominator 2 on the left should be suppressed. Legendre94 had 
already proved a more general theorem.] 

E. Lucas171 collected results, mostly algebraic, on triangular and figurate 
numbers. , 

E. Catalan172 stated that every A, not pentagonal, is a sum of fewer 
than 7 pentagonal numbers. [Catalan.169] 

T. Pepin173 gave a proof of Cauchy’s formulation of Fermat’s theorem 
that every integer A is a sum of m + 2 polygonal numbers \m(x2 — x) + x 
of order m + 2 of which m — 2 are 0 or 1. We are to prove that 

A = §m(a — b) + b + r, 

where a = a2 + ■ • • + 52, 6 = a + • • • + j, O^r^w — 2, whence 
(mod 2). Since r can take the values 0 and 1, we may take b odd, 

whence 
4a - b2 = 81 + 3 = s2 + y2 + z2, 

x > y > z > 0. Determine integers a, • • •, 6 so that 

— y — 8~x, a + 8 — ft — y = zk z, 

a + y — ft — 8 — y, a + P + y + 8 = b. 

Then a = Xa2 is satisfied. The condition b2 < 4a is satisfied if B > 110, 
where A = mB + c, 0 < c = m. Hence the theorem is true for all numbers 
A > 110m. It was verified separately for all numbers = 120m + 16. 

G. Musso174 proved, by use of geometrical representations, Bachet’s32 
second formula I, 10, and the generalizations 

V\ = + (ff “ »)!C1 + ^ (« odd), 

P'q = S~Y^Pl + (2 - s)pr* + *—^v7' + n~ S-~2^ (-s even); 

also 
j>; = n2 - (n - 1)’ + (n - 2)2 - • • • ± 1, 

p; = 2p; + {* - (2a - l)}pTl + V7* - 1- 

E. Catalan175 gave a shorter proof of Bachet’s same formula. 
G. de Rocquigny176 noted that, ifa + b + c^a + P+ y — 0, 

P = (Ao + A& + Ac)(Aa + Ajj + Ay), (An + An+i)(Ap + Ap+2), 

6n4, 6n4 + 1, 6n4 + 2n2 + l, 

are sums of three A’s, while n2 + (2n — l)2 + (2n + l)2 is a sum of two. 

171 ThSorie des nombres, 1891, 52-62, 83. 
178 Jour, de math. sp6c., 1892, No. 353. 
17* Atti Accad. Pont. Nuovi Lincei, 46, 1892-3, 119-131. 
174 Giornale di Mat., 31, 1893, 173-8. His P* is our 
™Ibid., p. 227. 
«• Mathesis, (2), 4, 1894, 123 171, 211; (2), 5,1895, 23, 150, 211-2. C . Curjel.1* 
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The sum of 2n + 1 consecutive A’s equals the product of the middle one 
by 2n + 1, increased by l2 + * • • + n2. He asked when 

Ai + * * * + An 53 A. 

E. Barbette177 noted that the sum Tk of the Jcth. powers of the first n 
triangular numbers equals Sk(S + l)kj2k symbolically, where, after expan¬ 
sion, S* is to be replaced by Stt the sum of the Zth powers of 1, * • •, n. 
The values of Th T2, Tz are given as functions of n and as functions of the 
S’s. It is shown that Txk = Tvr implies x - y, k - r. 

A. Boutin178 noted that A* = pAv has an infinitude of solutions if p 
is not a square. Let 2x = k — 1, 2y = z — 1. Then k2 — pz2 = 1 — p. 
Let k = a + p/3, z = /3 + a. Then a2 — p/32 = 1, having an infinitude of 
solutions if p is not a square. If p — mr, the problem has only a finite 
number of solutions if any. It is impossible if m = 3, 4, 5, 7, 8, 9,11, 
12, 13, 15, 16, 17. If m = 4\ + 2, x - 4X2 + 4X, y = X is a solution. 

Several179 solved A* + Av = 2 Az, i. e., 

(2z + l)2 + (2y + l)2 - 2(2z + l)2. 
See Ch. XIV. 

H. W. Curjel,180 to prove de Rocquigny’s176 first statement, took 

a — y — z, b = z ~ x, c ** z — y, at = rj — t, £ = f - y = £ — ?7, 

X = z£ + Z7j + y£, 7 = s£ + yp + zf, Z = p£ + xtj + zf, and got 

P = A(F - Z) + A(Z - X) + A(X - 7). 

E. Maillet181 proved the following generalization of Fermat’s36 theorem 
on polygonal numbers: If a and /3 are relatively prime odd numbers, 
a > 0, every integer A exceeding a certain limit (function of a, /3) is a sum 
of four numbers of the form {ax2 + j3x)l2. We can assign an inferior limit 
to A such that this decomposition can be made in any assigned number of 
ways. A like theorem holds if a/2 is an odd integer and one of A, /3/2 is 
odd and the other even, provided a/2 and /?/2 are relatively prime; also if 
a/2 is even and j3/2 and A both odd. He proved three complicated theorems 
stating that every number with certain residues modulo 6 is a sum of at 
most 5 < 59 (or 5 < 53) numbers of the form (az4 + /3z2)/2. Later 
Maillet182 proved that if <£(z) = a0z5 + • • • + a5, in which the a’s are given 
rational numbers, is integral and positive for every integer x ^ y, every 
integer exceeding a fixed limit, depending on the a’s, is the sum of at most 
v positive numbers <£(z) and a limited number of units, where v = 6, 12, 
96, or 192, according as the degree of <£ is 2, 3, 4 or 5. Every integer 
— 19272 is a sum (p. 372) of at most 12 pyramidal numbers (z3 — z)/6. 

177-MathegJs- ^ ^ 18Q5^ m_2 

178 Jour, de math. 61dm., (4), 4, 1895, 179-180. 
179 Math. Quest. Educ. Times, 63, 1895, 40. 
180 Ibid., 33-4. Other proofs, (2), 20, 1911, 78-9. 
m Bull. Soc. Math, de France, 23, 1895, 40-49. 
1W Jour, de Math., (5), 2, 1896, 363-380. 
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Several writers183 found the first six integers n making n(n + l)/2 a 
square. Several184 proved that the difference of the roots of two successive 
triangular numbers, each a square, equals the sum of two successive integers 
the sum of whose squares is a square. 

A. Boutin185 reduced x2 = A* + 1 to p2 — 2q2 = — 1 by setting 
2x = 3q =F Pt y = (k — l)/2, k = 3p =F 2# [Euler79]. 

G. de Rocquigny186 noted the identities 

(6n ± i), = + (7«±1)(7»±2) 
2 2 f 

\A(a2 + a - 1) + A (a2 - a - 1)} {A(&2 + 6 - 1) + A(&2 - b - 1)} 
= A (a2b2 + ah — 1) + A (arb2 — ah — 1), 

{A(7a + 1) + A (a - 1)}{A(7& + 1) + A (b - 1)} 
= A (7c + 1) + A(c — 1), c = 5a6 + a + 6, 

and expressed w6, n + n2 + n3 4- n4, n3 + n4 + nB + n9 and n + • • • + n9 
as sums of three triangular numbers, etc. 

A. Boutin187 solved A*~i + An = y2 by setting x = an ~ b, y - cm — ft. 
Then 

a2 + 1 = 2a2, b2 + b = 2p2, 4a(3 + 1 = a(26 + 1), 

which are solved by means of recursion formulas. 
A. Berger188 proved many relations and inequalities involving the rth 

m-gonal number (3) designated by P(m,r), If \x \ < 1, 

Z P(a, r)xr = 
r=l 

a; + (a — 3)a:2 

(1 ~ *): ’ 
z -P(a, - r)*r = 
r=l 

x2 + (a — 3)s 

(1 - xy * 

He evaluated 21/P(a, r), where r ranges over all integers for which P(a, r) 
takes positive values and each but once. If a ^ 3, | x | < 1, € = 1, 

00 +00 

II (1 - *(«-»>•) d + (1 + = Z eV’f“'r), 
r=l r=—oo 

combinations of special cases of which give 

fid -x'y-»r = z fia - = t (- dv^. 
Let c(k) be the sum of the divisors of k, and \p(k) the excess of the sum of the 
odd divisors of k over the sum of the even divisors. Then 

log z (-1yj9’* 
r=—oo 

^ <r(k)xk 

h k 1 iogi>n$'r) 
r=0 

y 1'(k)xk 

h k 

188 Amer. Math. Monthly, 3, 1896, 81—2; Math. Quest. Educ. Times, 65,1896, 53; 69, 1898, 
51. 

184 Amer. Math. Monthly, 4, 1897, 187-9. 
Mathesis, (2), 6, 1896, 28-29. 

188 Mathesis, (2), 7, 1897, 217-221. 
187 Ibid., 269-270. 
188 m va Acta Soc. Sc. UnflAlipnflis CU i? iooq o 
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He studied (pp. 20-25) the number k) of polygonal divisors of order a 
of a positive integer k; every integer has in mean two triangular divisors, 
tt2/6 square divisors, etc. 

A. Goulard and A. Emmerich189 found two consecutive integers of which 
one is a square and the other triangular. In x2 — %y(y + 1) = ± 1, set 
2x = z, 2y + 1 = ty whence 2z2 — t2 — 7 or — 9, which are reduced to the 
Pell equations u2 — 2v2 ~ — 1, or + 1, and solved. 

P. Bachmann190 gave an excellent exposition of Cauchy’s93 proof of 
his modification of Fermat’s theorem: every integer is a sum of m ra-gonal 
numbers of wThich all but four are 0 or 1. 

E. W. D. Christie191 noted two formulas of the type 
4 4 4 

2 A (a,* + n) = 52 A(cr — a,- + n), a = \ X) 
i= 1 i=l i=l 

J. W. West192 noted that if A« = 6 Ab+ 1, Aa is not a square. 
It. W. D. Christie193 proved that, if p™ is the rath r-gonal number, 

(2n)3(r - 2)p™ + §(4n3 — n)y2 = (x — y)2 + (* — 3y)2 + (a; — 5i/)2 + • • •, 

a? — 2mn(r — 2), y = r — 4. 

W. A. Whitworth and A. Cunningham194 noted that if N — Am 4 An, 
4N + 1 = (ra +• n + l)2 + (m — n)2; conversely, if 4JV + 1 has no prime 
factor 4& — 1, it is a sum of two squares and hence N is a sum of two A’s. 

Crofton195 noted that 

9A* + 1 = A(3k + 1), 4A* + 4A* + 1 = (fc - Z)2 + (k + l + l)2. 

Christie employed A™ + Am+i = (ra 4* l)2 to get 

An + A2 + J32 + • • * ^ An 4- (An+l 4~ An+2) 4“ * ' * 4* (A2n-2 4- A2n-l) 

= (An 4" An+l) 4~ (An+2 4" An+J 4“ ' ’ * 4* A2n-1 

~ A2n~l + a2 + /32 4" * * * • 

W. A. Whitworth196 gave rules, depending on the convergents to the 
continued fraction for V2, to solve A = □ or A = 2 A', equivalent to 
known rules to solve u2 — 2v2 = ±1. 

E. Lemoine197 called a number N decomposed into its maximum tri¬ 
angular numbers A, and ra the index of N, if N — Ax 4- • • • 4- Am, where 
Ai is the largest A ~ N, A2 the largest A — N — Au A$ the largest 
A = A — At — A2, etc. If Ym is the least number of index ra, 

Ym = 4- 3), 2m~1Ym = (Fx + 3)(7, + 3) • - • (Ym^ + 3). 
189 Mathesis, (2), 8, 1898, 52-4. Cf. Tits.223 
190 Die Arith. der Quadratischen Formen, 1, 1898, 154-162. 
191 Math. Quest. Educ. Times, 68, 1898, 84. 
192 Ibid., 69, 1898,114. 
193 Ibid., 70, 1899, 119. 
194/bid., 71, 1899, 33. 
196 Ibid., 69. 
199 Ibid., 73, 1900, 32-3. 
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E. Grigorief198 discussed Fermat's theorem that every number is a 
sum of three A's. 

L. Kronecker199 gave a brief history of polygonal numbers. 
J. J. Barniville200 evaluated series involving figurate numbers, such as 

l3 + (p + 33)2-1 + (p + 33 + 63)2~2 + (l3 + 33 + 63 + 103)2“3 + • • • - 6416. 
A. Cunningham201 noted that a! + A* = 2A^if A* = f A„ Av = v A*, 

where (f, v) = (1, 1), (7, 5), (41, 29), (239, 169), etc. 
Cunningham and Christie202 solved ^A* = vAy, which is equivalent to 

y.(2x 4- l)2 — v(2y + l)2 = m — v, by use of a solution of £2 — fiprj2 = 1. 
R. W. D. Christie203 argued that no A is a cube > 1. 
A. Cunningham204 noted that AaAx = AaA*, is equivalent to 

Aa(X2 - 1) = Aa(F2 - 1), 

whose solutions follow from the least solution of £2 — AaAa7?2 = 1. 
Christie205 noted that N = A2a + A2& + A2c implies 

2N + 1 = (fl + b + c -f l)2 -f (a — b — c)2 + (a + b — c)2 + (a — b + c)2, 

and similar formulas in which some of 2a, 2b, 2c are replaced by odd numbers. 
Cunningham206 noted that, if x = §(10* — 1), A* = 2 - ■ -21 • • *1 (n 

two's and n one's). 
E. B. Escott207 proved that 55, 66 and 666 are the only triangular 

numbers, with fewer than 30 digits, consisting of a single repeated digit. 
F. Hromddko208 noted that if Ai, • * *, A„ are any consecutive A's, 

An “ A l = (A2 ” Al)3 + ( A3 ~ A2)3 + * * • + (An — An-l)3- 

L. von Schrutka209 proved that, if l s p“ (mod k), then 

(i-o-^y-id-o-d-or <”“>• 
and conversely if m/2 — 1 is prime to k, so that k is called regular. The 
question of polygonal residues thus reduces to that of quadratic residues. 
Irregular moduli k are treated on pp. 190-3. 

J. Blaikie210 noted that §n(n + 1) is also a pentagonal number 
§m(3ra — 1) if 3y2 — x2 = 2, where x = 6m — l, y = 2n + 1. From solu¬ 
tions of the Pell equation j)2 — 3q2 = 1, we get solutions x = 123g d= 71p, 
y = 41p =b 71q of the former. 

188 Kazan Izv. fiz. mat. obsc. (== Bull. Math. Phys. Soc. Kasan), 11, 1901, No. 2, 64-69 
(in Russian). 

199 Vorlesungen liber Zahlcntheorie, 1901, 17-22. 
200 Math. Quest. Educ. Times, 74, 1901, SO. 
201 Ibid., 65-6. 

202 im, 87-8. 
288 Ibid., 75, 1901, 36. 
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It is stated211 that every nth power is a sum of n A’s + 0; for example, 

34 = 55 + 15 + 10 + 1, 

5s = 2850 + 210 +• 45 +• 2*10 = 3003 + 105 + 10 + 6 + 1. 

G. Nicolosi212 gave an elementary proof of Cantor’s result that 

$(« + y)(® + y + l)+y = a 

has one and but one set of integral solutions. Solving for y we see that 
8x + 8a + 9 must be a square u\ Thus x is integral only if n2 — 1 = 80, 
whence 6 = t(t + l)/2. 

C. Burali-Forti213 noted relations like 

pi ~ Pnr = (w — r)pn3~\ Pl + Pm^ Pnmr - Wf(W — 2), 

mp” — npn = \mn{m — n). 

A. Cunningham214 gave a method of expressing an integer as a sum of 
three triangular numbers. 

P. Bachmann215 gave an introduction to polygonal and figurate numbers. 
T. Hayashi216 proved that the quadruple of a number a(a + (3) (a + 2/5)/6 

and hence of a pyramidal number is not a cube, by making use of the known 
impossibility of xz + yz — 323. 

E. Barbette217 summed the pth powers of consecutive n-gonal numbers, 
found sums of pth powers of n-gonai numbers equal to a pth power of an 
n-gonal number, found cases with n ~ 6 in which a sum of two n-gonal 
numbers is n-gonal, and gave a table of the first 5000 triangular numbers. 

H. Brocard218 solved 10 Ax + Ay = z2 for x and made the radical 
rational. 

L. Aubry219 noted that Ax_iAxAx+i = □ if (s — l)(z + 2) = 2y\ 
whence u2 — Sv2 — 1, where 2x + 1 = 3n, y — Sv. The solutions are 
known to be u = 1, 3, 17, * • •, un = 6wn~i — w„_2. 

A. G&ardin220 collected recent problems on triangular and pentagonal 
numbers. He noted (p. 70) that 

32nx = Aa - A6, a = 3*x + (3* - l)/2, b = 2nx - (3* + l)/2. 

Let a, b become c, d when x = y2; then 

A(c) + A (d) = A id — 3 ny) +‘A (d + 3 nt/). 

ni Sphinx-Oedipe, 1906-7, 31, 46. 
2W n Pitagora, Palermo, 15, 1908-9, 15-17. In Suppl. al Periodico di Mat., 1908, fasc. 5-6; 

there is a proof by triangular numbers. 
m7W<2., 16, 1909-10, 135-6. 
214 Math. Quest. Educ. Times, (2), 15, 1909, 44-5. 
aus Niedere Zahlentheorie, 2, 1910, 1-14. 
116 Nouv. Ann. Math., (4), 10, 1910, 83. 
217 Lea sommes de p-i&mes puissances distinctes Agales h une p-i£me puissance, Ii&ge, 1910, 

154 pp. Extract by Barbette.224 
218 Sphinx-Oedipe, 6, 1911, 29-30. 
219 Ihid.f 187-8. Problem of Iionnet, Nouv. Ann. Math., (3), 2, 1883, 310. 

Sphinx-Oedipe, 1911, 40-3, 57-8, 81-6, 113-21, 129-32. 
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He treated (pp. 97-101) the decomposition of various types of numbers 
into a sum of three triangular numbers. 

The ordinary definitions of polygonal and figurate numbers were repeated 
by L. Tenca221 and E. A. Engler.222 

L. Tits223 solved Emmerich’s189 equation for y, made the radical rational 
and was led in both cases to t2 — = 1. 

E. Barbette224 gave many numerical examples in which a sum of n-gonal 
numbers equals an n-gonal number. 

L. von Sehrutka225 found that §{(|Tr)2 + U2} is not expressible in a 
single way as a sum of two numbers of the form T(x2 + x)/2 + Ux unless 
T/2 = 3 or 5. In the first case it is shown that, if p is a prime s= 5 (mod 
12), (p — 2)/3 can be expressed in one and but one way as a sum of two 
8-gonal numbers 3x2 — 2x. He gave an analogous theorem for 12-gonal 
numbers 5x2 — Ax, and one for numbers 5a;2 — 2x. 

A. G6rardin226 solved n2 + 26n = Ax for x by setting n = xp/q. He 
(p. 128) reduced AxAy = Axj+* to 2A* + 1 = Av and noted the solutions 
Ax = 10, 45, Ay = 21, 91. 

L. Bastien227 noted that x4 — y4 = Az if z = x2 + y2 and x2 — 3y2 = 1, 
or if z = (re2 + y2)/X, z + 1 = 2X(rc2 — y2) or vice versa, whence 

(2X2 - l)x2 - (2X2 + 1 )y2 - ± X. 

G. M6trod228 noted that Au — A* = x3 if (u — v)(u + v + 1) = 2x3, 
whence 2x% is to be expressed as a product of two distinct factors, one even 
and one odd. 

F. Mariares229 noted that the sum of 1, 2, • • •, n is n(n + l)/2 since the 
sum duplicated makes a rectangle of n by n + 1. Again, 

1 + 3 + 6+ +!^?L±i) = 2* + 42+ ••• +(2-|)4 

or 

1 + 3 + 6+ = l2 + 32+ ••• + (2 - - l)2, 

according as n is even or odd. Hence 
n 

Al + A2 + • * * + An—1 + Ai + * • # + An = X &2* 
*=1 

Numbers simultaneously triangular and pentagonal have been treated.230 

22»- II Boll. diMat. Sc. Fis. Nat., 12, 1910-11, No. 1, p. 16, No. 3, p. 24. 
222 Trans. St. Louis Acad. Sc., 20, 1911, 37-57. 
221 Mathesis, (4), 1, 1911, 74r-5. 
224 L’enseignemcnt math., 14, 1912, 19-30. Cf. Barbette.217 
225 Monatshefte Math. Phys., 23, 1912, 267-273. 
224 Sphinx-Oedipe, 8, 1913, 110, 121-2 (1907-8, 173; 1911, 75). 
227 Ibid., 156, 172-3. 
224 Ibid., 174. 
229 Re-vista Soc. Mat. Espafiola, 2, 1913, 333-5. 
230 Mathesis, (4), 3, 1913, 20-22, 80-81. Cf. Euler.70 
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* S. Minetola231 gave a combinatory definition of the numbers in 
Tartaglia’s triangle. 

N. Alliston and J. M. Child232 proved that no triangular number > 1 
is a biquadrate. 

An anonymous writer233 proved that if a number 4?i + 1 is a JZJ, it is a 
sum of two triangular numbers c(c + l)/2 and d(d + l)/2, where d may be 
negative; then c and d are of the same parity. 

G. M6trod234 stated that, if pnq is the nth polygonal number of q sides, 
the g.c.d. of p* and pq+l is the g.c.d. of n + 1 and q — 3 unless the latter 
are even and then is the g.c.d. of (n + l)/2 and q — 3. The g.c.d. of pnq 
and pq+i is n or n/2 according as n is even or odd. 

A. G&ardin234® noted that 2 Ax — 1 is a prime for 2^9. He2346 gave a 
series for Ax • Av = At with the law of recurrence zn+i = fan — zn~1 + 2, 
Zo = 3, 21== 20. He234c gave a general solution of Aa + A& = e2 + 2 Ad, a 
special case having been noted by Euler59, and noted the examples a = 2s+1, 
5 == 4s, d = 3s, e — s -f 1; a = 6s 4- 2, 5 = 4s — 1, d = 5s + 1, 0 = s 1- 

E. Bahier235 found sets of three m-gonal numbers in arithmetical pro¬ 
gression: pi + Pm = 2Multiply each p by 8 (m — 2) and add (in — 4)2 
to each product. By Diophantus’ relation (1), we get 

Pl + Pl- 2 Pi PA ^ (m - 2)(2X - 1) + 2. 

Hence, by Ch. XIV, 

Pa = =fc (z2 - 2xy - t/2), PM = X2 + y2, Pv « x2 + 2xy - y2. 

Then X, ju, p are found in terms of x1 y} m by use of the above equation 
defining PA. The conditions that X, p, v be positive integers are discussed 
at length. 

S. Ramanujan235® obtained expressions for the number of representations 
of n as a sum of 2s triangular numbers. 

Notes* from l’interm^diaire des mathematiciens. 

A. Boutin,238 1,1894, 91; 2, 1895, 31, noted that the square of each term 
of the series 0, 1, 6, 35, • * *, un = 6w„_i — un-2, • • • is a triangular number 
A, and stated that the A's in this series (viz., 0, 1, 6 up to thi) are the only 
A’s whose square is a A. He gave all solutions 2 = 8, 800, • • • of 
x2 + A* = □ and stated that y3 rfc 1 = Ax only for y — 1, 3, 16, 20; 
x = 0, 1, 7, 90,126. An incorrect solution of the latter by E. Fauquem- 

m BoU. di Matematica, Roma, 12, 1913, 214-22. 
183 Math. Quest. Educ. Times, 25, 1914, 83-5. 
333 Nouv. Ann. Math., (4), 14, 1914, 16-18. 
334 Sphinx-Oedipe, 9, 1914, 5. 

Ibid., p. 41. 
K4b Ibid., p. 75, p. 146. 
»4c Ibid., p. 129. 

335 Recherche . . . Triangles Rectangles en Nombres Entiers, 1916, 217-233. 
3350 Trans. Cambridge Phil. Soc., 22, 1918, 269-272. 
*For a more extended account see Gdrardin.220 The present notes were obtained inde¬ 

pendently. 
** Jour, de math, 616m., (4), 4, 1895, 222. Cf. Lionnet.158 
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bergue, 4,1897,159-162, was corrected later, 5,1898,257. P. F. Teilhet, 11, 
1904, 11-12, verified that aside from 0, 1, 6 there is no A with fewer than 
660 digits whose square is a A. 

G. de Rocquigny, 2, 1895, 394, noted that every triangular number 
except 1 and 6 is a sum of three, each =j= 0, since237 

A(3p - 1) = 2 A(2p — 1) -f A(p), A(3p) = 2A(2p) + A(p - 1), 

A(3p + 1) = A(2p) + A(2p + 1) + A (p). 

On A’s expressed as a sum of two or three A’s, see 4, 1897, 158. For solu¬ 
tions of (x + l)3 — xz ~ AVJ see 4, 1897, 262-4; 5, 1898, 18, 110-1 (and 
Mathesis, (2), 8, 1898, 126). 

E. Fauquembergue, 4, 1897, 209, noted that A* + Ay = z2 is equivalent 
to (2x + l)2 + (2y + l)2 = (2z + l)2 + (2z — l)2, which by Euler’s for¬ 
mula for the product of two sums of two squares has the solution 
2x + 1 = ac + bd, 2y + 1 = be — ad, if be + ad = ac — bd + 2. Cf. 
G6rardin12 of Ch. XXIV. A. Palmstrom, 210, noted that the problem is 
equivalent to 

(x + y)(x - y -f 1) = 2{z + y)(z - y). 

On Ax + Ay = s3 see 7, 1900, 250. E. B. Escott, 11, 1904, 82, noted 
that Ax + A„ = z5 is equivalent to (2x + l)2 -f (2p + l)2 = 2(4z3 + 1), 
a necessary and sufficient condition for which is that every prime factor 
of 4z5 + 1 be of the form 4?i + 1; and gave solutions for z — 1, 4, 6, 9, 12,16. 

On Ax = y2 + z2 see 3, 1896, 248; 4, 1897, 129-132, 255. 
Any number AMs a sum of three pentagons (3x2 =b x) /2 since 

24N + 3 = E (6s db l)2 
3 

is solvable, 4, 1897, 157. On A' + A" = A, 4, 1897, 158; 5, 1898, 70. 
The sum n(n + l)(n + 2)/6 of the first n A’s is a A for n = 1, 3, 8, 20, 34, 
but for no further n < 316, 4, 1897, 159; 6, 1899, 176; 7, 1900, 192; 16, 
1909, 236; 17, 1910, 110; and is a square for n ~ 1, 2, 48, but for no others 
< 1012, 9, 1902, 279; 10, 1903, 235. The sum n{n -f 1)(2n + l)/6 of the 
first n squares is a A for n = 1, 5, 6, 85 by 6, 1899, 175; 7, 1900, 211; 9, 
1902, 278. 

P. Tannery, 5, 1898, 280, and C. Berdelle, 7, 1900, 279, gave algebraic 
and geometric proofs that, aside from 6, every p-gonal number is a sum of 
p — 2 triangular numbers > 0. 

A prime 6n + 1 = 3p2 + q2 is a sum of 3 A’s > 0, 4, 1897, 119. Since a 
prime 8n + 1 equals Sm2 + (2p + l)2, it equals Aa™ + □ + P, where 
P = m(6m — 1) is pentagonal, 8, 1901, 183. 

G. de Rocquigny, 7, 1900, 65, 195; 8, 1901, 52; 9, 1902, 116, 176, 230; 
10, 1903, 5-6, 40, 122, 205-6, 285, 300-2; 11, 1904, 99, 150, 15S, 163-4, 
189, 214, 237; 15, 1908, 181, stated many theorems of the following type: 
every sixth power is a sum of a square, cube and triangular (or hexagonal) 
number; every number > 7 is a sum of three A’s and three squares each 
=|= 0. A. G6rardin, 18, 1911, 177-184, 199, 275, discussed these theorems. 

237 Same by R. W. D. Christie, Math. Quest. Educ. Times, 69, 1898, 48. 
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G. Picou, 9, 1902, 115, noted that a2 — b(b + l)/2 = 22n for 

a = 2n+1 + 2n =fc 1, b « 2rt+2 + 1 or 2n+2 - 2. 

H. Brocard, 10, 1903, 24-6, noted the solution 

a - (9-2» - 2)/7, 6 - 8(2" - l)/7. 

p p Teilhet, 10, 1903, 240-1, gave a somewhat general discussion. 
' That 1 + 6 A * cube * 0, see 10, 1903, 97, 197. 

P. Jolivald, 12, 1905, 16, 152, gave an erroneous proof that unity is the 
only number simultaneously a A, square and hexagon. As noted by M. 
Rignaux, 24, 1917, 80-1, a hexagonal number r(2r — 1) is triangular, so 
that we have only to solve r(2r — 1) = y2, whence 8y2 + 1 = □, whose 
solution is known. 

A product of 3 consecutive A’s may be a square, 11, 1904, 158. 
H. B. Mathieu, 16, 1909, 34, gave identities showing that the square of 

any number + 1 [4, 16], and not a multiple of 3, is a sum of a A and a 
square, each not zero [three A’s]. 

A. Arnaudeau, 18, 1911, 132, deposited with the library of the Institute 
of France the manuscript of his unpublished table of triangular numbers. 

A. G6rardin, 1911, 205-7, gave solutions of xA + yA + z4 = 2 T2/t2, where 
T and i are triangular numbers A. He cited, 273, Fuss’67 note giving 9r+5, 
9x + 8 as linear forms of numbers not a sum of two A’s. 

To decompose (n + l)5 — n5 into three A’s see 19, 1912, 37, 104-5. 
For 

(X + 1Y+ (z + 2)3 + ... + (r + m)3 = Al+m — A*, 

see 19, 1912, 114. L. Aubry, 19, 1912, 231; 20, 1913, 108, noted that 
A* - Aj = 23 for x, y = (8m4 db 12m3 - 4m2 - l)/3. A. S. Monteiro, 
20,1913, 18-20, obtained solutions from the fact that the sum of the cubes 
of any number of consecutive integers equals the difference of the squares 
of two A’s. 

R. Niewiadomski,238 20, 1913, 5-6, gave many algebraic identities be¬ 
tween polygonal numbers, also expressions for nk, nz + 1, n3 + (n + l)3, 
etc., as polygonal numbers. 

U. Alemtejano (a pseudonym), 21, 1914, 169, stated that if 4m + 1 is 
a sum of two squares, m is a sum of two A’s, and conversely, since 

4(A„ + A0) + 1 = (n + a + l)2 + (n - a)2. 

Also, 9 is the only number 4 An + 5 which is a square of a prime and not a 
sum of two squares. Again, A2n+a + Aa-i - n = n2 + (n + a)2. Proofs 
by L. Aubiy, 22, 1915, 69. Alemtejano, 22, 1915, 8, gave 

{4(A» + Aa) + l}2 = (2a + l)2(2n + l)2 + {4(An - Aa)}2. 

Several, 22,1915,167-8, proved that every square is expressible in the form 
Att — 2 A* in an infinitude of ways. On the last digits of A, see 22, 1915, 
OO e e* ° ; ; ; 

08 Also in Wiadomsci Mat., Warsaw, 17, 1913, 91-98. 
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A. Gerardin, 21, 1914, 133-5, considered numbers expressible simul¬ 
taneously in the form (x + l)(rc + 2) ♦ • •(# -f- p)/p! for p = 2, 3, 
He, 22, 1915, 203-5, considered the representation of numbers by x2 + y2 
+ z2 + w} where w is polygonal. 

The question [Meyl136] of tetrahedral numbers which are squares 
reduces to Nz — N ~ 6n2, which was treated incompletely by L. Aubry, 
26, 1919, 85-87. 

A. Boutin, 26, 1919, 35, 123, proved that no number is simultaneously 
triangular, hexagonal, and a square. 

For minor remarks on triangular numbers, see Glaisher88 of Ch. Ill; 
Euler12 of Ch. VII; R6alis53 and paper 8 of Ch. XIII; Pepin,193 and Cunning¬ 
ham282 (on Ax - cAv) of Ch. XXI; Mathieu282 of Ch. XXII. 

In Vol. I of this History were quoted theorems on triangular numbers 
by G. W. Leibniz, p. 59; V. Bouniakowsky, pp. 283-4; R. Lipschitz, pp. 
291-2; E. Barbette, p. 373; H. Brocard, p. 425; and P. Jolivald, p. 427. 

Papers on polygonal or figurate numbers not available for report. 

G. U. A. Vieth, Ueber fig. Zahlen, Progr., Dessau, 1817. 
J. P. L. A. Roche, D6m. nouv. des formules des piles de boulets, Toulon, 1827. 
H. Anton, Arith. Reihen hoh. Ord. u. die fig. Z., Progr. Ols, 1850. 
A. Wiegand, Trigonaltriaden in arith. Progres., Halle, 1850. 
J. Van Cleeff, Verhandeling over de polygonaal of veelhoekige getallen, Groningen, 1855. 
N. Nicolai'd&s, Les Mondes, 7, 1865, 693; 8, 1865, 615, 708. 
J. L. A. Le Cointe, Les Mondes, 8, 1865, 707. 
Soufflet, Les Mondes, 13, 1867, 336 Past 3 papers on fig. numbers]. 
J. Talir, Arith. Reihe hoh. Ord. u. fig. Z., Progr., Waidhofen, 1872. 
G. de Rocquigny-Adanson, Les nombres triang., Moulins, 1896. 





CHAPTER II. 

LINEAR DIOPHANTINE EQUATIONS AND CONGRUENCES. 

Solution of ax + by — c. 

The Hindu Aryabhatta1 (fifth century or earlier) knew a general 
method of solving indeterminate equations of the first degree. The original 
of his treatise (on astronomy mainly) has been lost. Such a method of 
solution is given in outline by Brahmegupta without the clear details of the 
later presentation by BMscara. 

Brahmegupta2 (bom 598 A.D.) gave the following rule to find a constant 
“ pulverizer.” From the given multiplier and divisor, remove their greatest 
common divisor (found by mutual division). The thus reduced multiplier 
and divisor are mutually divided until the residue unity is obtained, and 
the quotients are written in order. Multiply the residue unity by a number 
chosen so that the product less one (or plus one, if there be an odd number 
of quotients) shall be exactly divisible by the divisor which produced the 
residue unity. After the above listed quotients place this chosen number 
and after it the quotient just obtained. To the ultimate add the product 
of the penultimate by the next preceding term [etc.]. The number found, 
or its residue after division by the reduced divisor, is the constant pulverizer. 

Thus if 3 and 1096 are the reduced multiplier and divisor, the single 
quotient is 365. Multiply the residue unity by the chosen number 2 and 
add 1. Dividing the sum by 3, we get the quotient 1. Hence the series 
is 365, 2, 1, so that the pulverizer is 1 + 2-365 - 731. [We have 
3-731 - 1 = 2-1096.] 

Again (§ 27, p. 336), let the reduced dividend [multiplier] and divisor 
be 137 and 60, while the augment or additive quantity is 10. By reciprocal 
division of 137 and 60, we get the quotients 0, 2, 3, 1, 1 and last two re¬ 
mainders 8 and 1. Since the augment is now positive and the number of 
quotients is odd and since 1-9 — 1 is divisible by 8, we select 9 as the chosen 
number. The constant pulverizer is said to be found as before. Its product 
by 10 is divided by 60 to give the desired multiplier 10; 10 -137 + 10 = 60 • 23. 

There occur various problems (§§ 52-60, pp. 348-360) on astronomical 
time leading to a linear equation in two or more variables, special values 
being arbitrarily assigned to all but two of the variables. One equation is 
6y — 136c = 266; without detail, the constant pulverizer is said to be 2 
and the multiplier 4 = c, whence the quotient gives y = 135. 

Mahaviracarya3 (about 850 A.D.) gave a process essentially that due 
to Brahmegupta, though not requiring that the initial division be continued 
until the remainder unity is reached. To find x such that 3lx — 3 is 

1 Algebra, with arithmetic and mensuration, from the Sanscrit of Brahmegupta and Bhiscara, 
translated by H. T. Colebrooke, London, 1817, p. x. 

* Brahme-sphut'a-sidd’h4nta, Ch. 18 (Cuttaca=algebra), §§ 11-14. Colebrooke,1 pp. 330-1. 
* Ganita-Sara-Sangraha; described by P. V. S. Aiyar, Jour. Indian Math. Club, 2,1910,216-8. 
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divisible by 73, employ 

31 = 0-73 + 31, 73 = 2-31 + 11, 31 = 2-11 + 9, 

11 = 1-9 + 2, 9 = 4-2+ 1. 

The least remainder of odd rank is 1. Choose a number a = 5 such that 
a-1 - 3 is divisible by the last divisor 2, the quotient being 1. By use of 
5,1 and the quotients 2, 2, 1, 4 after the first, we derive 

2 2 1 4 5 1 

172 = 2-73 +26, 73 = 2-26 + 21, 26 = 1-21 + 5, 21 = 4-5+1. 

A smaller answer than 172 is given by 172 — 2 • 73 = 26. 
In the second example, 63# + 7 is to be made a multiple of 23. Here 

63 = 2-23 + 17, 23 = 1-17 + 6, 17 = 2-6 + 5, 

6 = 1-5 + 1, 5 =4-1 + 1, 

the division being carried an extra step so as to yield the last remainder of 
odd rank. Here a = 1 makes a-1+7 divisible by the last divisor 1. 
Discarding the first quotient, we have 1, 2, 1, 4, 1, 8 and then get 51, 38 
13, 12. Since 51 = 2-23 + 5, an answer is 5. 

Bhdscara Acharya4 (born, 1114) gave detailed methods of finding a 
pulverizing multiplier (Cuttaca) such that if a given dividend be multiplied 
by it and the product added to a given additive quantity, the sum will be 
exactly divisible by a given divisor. 

First (§§ 248-252), we reduce the dividend, divisor and additive by 
their g.c.d. If a common divisor of the dividend and divisor does not 
divide also the additive, the problem is impossible. 

Next (§§ 249-251), divide mutually the reduced dividend and divisor 
until the remainder unity is obtained. Write the quotients in order, 
after them write the additive, and after it zero. To the last term add the 
product of the penult by the next preceding number. Reject the last term 
and repeat the operation until only two numbers are left. The first of these 
is abraded by the reduced dividend, and the remainder is the desired quo¬ 
tient. The second of the two, abraded by the reduced divisor, is the 
desired multiplier. 

Example (§ 253): Dividend 17, Divisor 15, Additive 5. The quotients 
are 1, 7, so that the series is 1, 7, 5, 0. Since 0 + 7 - 5 = 35, the new series 
is 1, 35, 5. The final series is 40, 35. Abrading them by multiples of 17 
and 15 respectively, we get 6 and 5 as the desired quotient and multiplier 
[17-5 + 5 = 15-6]. 

4 LMvatl (Ajithmetic), Ch. 12, §§248-266, Colebrooke1, pp. 112-122. [It is nearly word 
for word the same as Ch. II of Bhdscara’s Vija-ganita (Algebra), §§ 53-74, Colebrooke,1 
pp. 156-169; Bija Ganita or the Algebra of the Hindus, transl. into English by E 
Strachey of the Persian transl. of 1634 by Ata Alla Rasheedee of Bhascara Acharya, 
London, 1813, Ch. / of Introduction, pp. 29-36. Lilawati or a Treatise on Arith. & 
beom.by Bhascara Acharya, transl. from the original Sanskrit by John Taylor, Bom- 
bay, 1816, Part III, Sect. I, p. Ill; the Persian transl. in 1587 by Fyzi omitted the 
chapters on indeterminate problems. Lilawati was the name of Bhascara's daughter.] 
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In case (§ 252) the number of quotients is odd, the numbers found by 
the above rule must be subtracted from their respective abraders to give 
the true quotient and multiplier. Thus (§ 255) for Dividend 10, Divisor 63, 
Additive 9, the successive series are 0, 6, 3, 9, 0 [and 0, 6, 27, 9 and 0, 171, 
27, and 27 = 2-10 + 7, 171 = 2-63 + 45], so that 10 - 7 = 3 is the 
quotient and 63 — 45 = 18 is the multiplier [check: 10*18 + 9 = 3*63]. 

Concerning a “constant pulverizer” (§263, pp. 119-120), we may 
solve the first example above by first treating the related problem: Dividend 
17, Divisor 15, Additive 1, then multiply the deduced multiplier 7 and 
quotient 8 by the former additive 5, abrade and get 6 and 5 as the quotient 
and multiplier when the additive is 5. 

As to a “conjunct pulverizer” (§§265-6, p. 122), if there be a fixed 
divisor and several multipliers, make the sum of the latter the dividend, 
the sum of the remainders the subtractive quantity, and proceed as before. 
Thus, to find a number whose products by 5 and 10 give the respective 
remainders 7 and 14 when divided by 63, take Dividend 5 + 10, Divisor 63, 
Subtractive 7 + 14; reduced Dividend, Divisor and Subtractive are 5, 
21, 7; the desired multiplier is 14. 

Bhdscara5 gave a rule for solving linear equations in two or more un¬ 
knowns. In case there are k equations, eliminate k — 1 of the unknowns 
and proceed with the single resulting equation as follows. Assign arbi¬ 
trarily special values to all but two of the unknowns. In the resulting 
equation in two unknowns, solve for one in terms of the other and render 
it integral by use of the pulverizer. 

For example, of two equally rich men, one has 5 rubies, 8 sapphires, 
7 pearls and 90 species; the other has 7, 9, 6 and 62 species; find the prices 
(:y, c, n) of the respective gems in species. Thus 

_ r J-. n J-. 28 
5y + 8c + 7n + 90 = 7y + 9c + 6n + 62, y =...—. 

Take n — 1, and use the method of a pulverizer to find c so that 
y = (■— c + 29)/2 shall be integral. We get 

c = 1 + 2p, y = 14 - p, 

where p is arbitrary. For p = 0, 1, we get (y, c, n) = (14, 1, 1), (13, 3, 1). 
Again (§ 161, pp. 237-8), what three numbers being multiplied by 5, 7, 9 

respectively, and the products divided by 20, have remainders in arith¬ 
metical progression with the common difference 1, and quotients equal to 
remainders? Call the numbers c, n, p; the remainders y, y + 1, y + 2. 
Thus 

5c -20y = y, y = 5c/21 ; 

7n - 20(y + 1) = y + 1, y = (7n - 21)/21; 

9p - 20(y + 2) = y + 2, y = (9p - 42)/21. 

By the first two values of y, c = (7n — 21)/5. By the last two, 

_n = (9p — 21)/7,_ 

4 Vlja-ganita (Algebra), §§ 153-6; Colebrooke,1 pp. 227-232. 
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which by use of the pulverizer gives n = 9Z + 6, p = 71 + 7. Then 
c = (631 + 21 )/5, which by the pulverizer-gives c = 63/i + 42, l = hh + 3. 
Hence n = 45h + 33, p = 35A 4* 28, y = 15/i + 10. Since the quotient 
equals the remainder, which cannot exceed the divisor, we must take h = 0. 

What two numbers, except 6 and 8, being divided by 5 and 6 have the 
respective remainders 1 and 2; while their difference divided by 3 has the 
remainder 2; their sum divided by 9 has the remainder 5; and their product 
divided by 7 leaves 6 (§ 163, p. 239)? The conditions other than the last 
give 45p + 6 and 54p + 8 as the numbers. As the product is quadratic, 
take p = 1 [provisionally^. Abrading the product by multiples of 7, 
we get 3p + 2, which must equal 71 + 6. By the pulverizer, p = 7h + 6, 
and the second number is 378h + 332. The additive (45p) of the first 
number multiplied by 7h is its present additive, so that the first number is 
3157& + 51. 

What number multiplied by 9 and 7 and the products divided by 30 
yields remainders whose sum increased by the sum of the quotients is 26 
(§ 164, p. 240)? Answer, 27. 

What number multiplied by 23 and the product divided by 60 and 80 
has 100 as the sum of the remainders (§§ 166-7, p. 241)? Taking 40 and 60 
as the remainders, we get the number 2401 + 20. Taking 30 and 70, 
we get 240Z + 90; etc. 

Bachet de Meziriac6 stated that if A and B are any relatively prime 
integers, we can find a least integral multiple of A which exceeds an integral 
multiple of B by a given integer J [i. e., solve Az = By + J]. Proof was 
givemin. the 1624 edition, pp. 18-24. It suffices to solve AX ~ BY 4 1. 
Bachet employed notations for 18 quantities, making it difficult to hold in 
mind the relations between them and so obtain a true insight into his correct 
process. Hence we shall here carry out in clearer form his process for his 
example A = 67, B ~ 60. Subtract the smaller number B as many times 
as possible from the larger number A, to give a positive remainder C. 
If C = 1, A itself is the desired multiple of A which exceeds a multiple of B 
by unity. Next, let C > 1 and subtract C from B as many times as possible, 
continuing until the remainder 1 is reached: 

(1) 67 = 1-60 4 7, 60 = 8-7 + 4, 7 = 1-4 + 3, 4 = 1-3 + 1. 

From the last equation we deduce 

(2) 3-3 = 2-4 + 1, 

by the rule that if a = mb + 1 then ab + 1 - a is the least multiple of b 
which exceeds by unity a multiple of a. Multiply the third equation (1) 
by first coefficient 3 in (2) and eliminate the term 3 - 3 by use of (2); we get 

(3) 3-7 = 5-4 + 1. 

6 Clavde Gaspar Bachet, Problemes Plaisana et Delectables, Qui se font par les Nombres, 
ed. 1, Lyon, 1612, Prob. 5; ed. 2, Lyon, 1624; ed. 3, Paris, 1874, 227-233; ed. 4, 1879; 
ed. 5, 1884; abridged ed., 1905. See Lagrange.19 
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Multiply the second equation (1) by the coefficient 5 in (3), and eliminate 
the term 5-4 by use of (3); we get 

(4) 43-7 = 5-60 + 1. 

Finally, multiply the first equation (1) by the coefficient 43 in (4) and 
eliminate the term 43 • 7 by use of (4); we get 

(5) 43-67 = 48-60 + 1, 

so that the least X is 43 and the corresponding Y is 48. 
Bachet’s first step, leading to (1), is Euclid’s algorithm for finding the 

greatest common divisor of A and B. His next steps are the elimination 
from equations (1) of the terms in 3, 4, 7, respectively, in a special way 
so that negative quantities are not introduced. 

John Kersey7 treated Problems 18 and 21 of Bachet,6 but “ without 
following Bachet’s very tedious and obscure method of solution.” To 
solve 9a + 6 = 76, start with 6 and by successive additions of 9 form the 
series 15, 24, 33, 42, • • •; next, form similarly the multiples 7, 14, 21, 28, 
35, 42, • • • of 7; the common number 42 yields a = 4, 6 = 6. Another 
method is used for 49a + 6 = 136; find the multiple (65) of 13 which just 
exceeds 49 + 6; divide 49 by 13; since in 55 = 65 — 10, 49 = 39 + 10, 
we have remainders differing only in sign, we add and get 104; then 
6 = 104/13, a = 2. If one remainder had been merely a divisor of the 
other remainder, we first multiply one of the equations. Neither of these 
cases arises for 121a + 5 = 936. Then 126 = 186 — 60, 121 = 93 + 28, 
and we seek c and d such that 93c + 60 = 28c?. After the latter is solved 
by the former process, we deduce a and 6 as in the preceding case. In a 
new type of problem, the constant term occurs in the member with the 
smaller coefficient, asin71a + 3 = 1736. Take 2 • 71, which increased by 3, 
gives a sum < 173. Since 145 = 173 — 28, solve 173A + 1 = 7IB as 
above to obtain A = 16, B = 39. Multiply the latter equation by 28 
and subtract the former. Thus 173(16-28 + 1) = 71*39-28 + 145, whence 
6 = 16-28 + 1 = 449, a = 1094. 

Michel Rolle8 (1652-1719) gave a rule to find integral solutions; he 
applied it as follows. For 12z = 221 k + 512, divide the larger coefficient 
221 by the smaller 12; the largest integer in the quotient is 18. Set 
z = 186 + p; we get 12p = 56 + 512. By the same method [dividing 
12 by 5], 6 = 2p + s, 2p = 5s + 512. By the same method, p = 2s + m. 
Then 2m = s + 512, and we have now reached a coefficient which is unity. 
Eliminating 5 and p from 

s = 2m — 512, p = 2s + m, 6 = 2p + s, z — 186 + p, 

we get the desired solution 

^ = 221 m - 47104, 6 = 12m - 2560. 

7 The Elements of Algebra, London, I, 1673, 301. 
8 Trait6 d’Algebre; ou Principes generaux pour resoudre les questions de mathSmatique, 

Paris, 1690, Bk. 1. Ch. 7 f “evit.#»r Iaq fro/>+i/>r.o,,A vo 
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But for lllx — 301?/ = 222, it is simpler to begin with 301 = 3-111 — 32, 
rather than with 301 = 2*111 + 79. 

Thomas Fantet de Lagny9 gave examples of a “new method” of solving 
indeterminate equations. To make m — (19n — 3)/28 an integer, double 
2871 - (1977. - 3) and subtract the result 18?i + 6 from 19?z — 3; thus 
n — 9 is to be divisible by 28. Hence n = 9 + 28/, where / is any integer. 
Later, he10 gave (pp. 587-595) the following rule for solving y = (ax + q)/p} 
where a and p are relatively prime, and (as may be assumed) a < p, q < p: 
Take a from p as many times as possible and call the remainder r; take r 
from a as many times as possible and call the remainder t; etc., until the 
remainder 1 is reached. Then make the same divisions for q and p as were 
made for a and p, having regard to the signs. According as the last re¬ 
mainder is — $ or + s, wre have x — s or p — s. 

L. Euler11 gave a process to find an integer m such that (ma + v)/b is 
integral, where v > 0. Set a = ab + c. Then A = (me + v)/b must be 
an integer. Thus m = (Ab — v)/c. First, if v is divisible by c, we get a 
solution by taking A - 0. Second, if v is not divisible by c, set b = /3c + d. 
Then m will be integral if (Ad - v)/c is integral. Thus we set c = yd + e, 
etc. Euler remarked that the process is therefore that of finding the 
greatest common divisor of a, b, continued until we reach a remainder which 
divides v. His formula for a solution of ma + v = rib is equivalent to 

in which the series are continued until we reach a remainder dividing v. 
For the case a, b relatively prime, these results have been given by C. 
Moriconi.12 

N. Saunderson13 (blind from infancy) gave a method to solve ax — by = c, 
where c is the g.c.d. of a, 5. Let a = 270, b = 112, whence c = 2. He 
employed the equations and successive quotients 

la — 06 = 270, 5a - 12b = 6, 3; 

0a - 16 = - 112, 2; 17a - 416 = - 2, 2; 

a — 26 = 46, 2; 39a - 946 = 2. 

2a — 5b = — 20, 2; 

Divide the term 270 of the first equation by the absolute value 112 of the 
term of the second, to obtain the quotient 2. Multiply the second equation 
by 2 and add to the first; wre get the third equation. The division of 112 

9i\ouveaux Elemens d’Anthmetique et d’Algebre, ou Introduction aux Mathematiques, 
Pans, 1697, 426-435. 

10 Analyse g6n6rale; ou methodes nouvelles pour r^soudre les problAmes de tousles Genres <fc 
de tous les Degrez k l’infini, Paris, 1733, 612 pp. Same in Mdm. Acad. Roy. des 
Sciences, 11, 1666-1699 [1733], annde 1720, p. 178. 

u Comm. Acad. Petrop., 7, 1734-5, 46-66; Comm. Arith. Coll., I, 11-20. 

j!t£”0J!C0 ^ ^a*'» 2) 1887, 33-40. Cf. C. Spelta, Giornali di Mat., 33, 1895,125. 
The Elements of Algebra, Cambridge, 1, 1740, 275-288. The solution of the first problem 

was reproduced by de la Bottiere, M4m. de Math, et Phys., pr6sent6s . . . divers 
savans, 4, 1763, 33-41. Cf. Lagrange.22 
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by 46 gives the quotient 2; the product of the third equation by 2 when 
added to the second gives the fourth equation; etc. But on dividing 6 by 2 
we use 2 and not the exact quotient 3, since the latter would lead to an 
equation 56a — 1356 = 0 with constant term zero. 

Our sixth and seventh equations each solve the problem. Other solu¬ 
tions follow by adding to either equation 56a — 1356 one or more times. 

The process must succeed since the formation of the constant terms is 
identical with Euclid's process to find the g.c.d. of a, 6. 

The determinant of the coefficients in any two successive equations of 
the above set is ± 1. From the pairs of coefficients form the fractions* 

0 1 2 5 12 41 94 

1’ O’ r 2’ 5' 17’ 39* 

They are alternately less than and greater than a/6 and converge to it; 
if / and F are two successive fractions of the set, a/6 lies between them and 
differs less from F than from/. Also a/6 is nearer to F than to any fraction 
whose denominator is less than that of F. This method of approximating 
to fractions is attributed to Cotes and is said to be simpler than the methods 
of Wallis and Huygens.17 

L. Euler14 proved that if n and d are relatively prime, a + kd(k = 0,1, • * •, 
Ti — l) give n distinct remainders when divided by n, so that the remainders 
are 0,1, • • •, n — 1 in some order. Smce one remainder is zero, a + xd = yn 
is solvable in integers. 

W. Emerson15 used the first method of de Lagny9 to solve ax = by + c. 
Let d and / be the remainders obtained by dividing 6 and c by a. Subtract 
some multiple of (dy +f)/a from the nearest multiple of y, The resulting 
“abridged” fraction or some multiple of it is to be subtracted from the 
nearest multiple of y, etc., until the coefficient of y is unity. Thus 
x = (14y — 11)/19 is subtracted from y; the product of the difference by 4 
is subtracted from y; we get (y + 6)/19, an integer p, whence y = 19p — 6. 
The same rule and same example was given by John Bonnycastle.16 

J. L. Lagrange,17 to find integers pL and qx satisfying pqx — qpx = ± 1, 
where p, q are relatively prime, reduced pjq to a continued fraction (§ 29, 
p. 423). As noted by Chr. Huygens, De scriptio automati planetarii, 
1703, we get a series of fractions converging towards p/q} alternately less 
than and greater than pjq. Hence take px equal to the numerator and qi 
equal to the denominator of the convergent immediately preceding p/q. 
Then pqx — qpi = + 1 or — 1 according as pi/qi < or > pjq. To apply 
(§ 8) to py — qx = r, where p, q may be assumed relatively prime, multiply 
the former equation by =fc r and subtract. Thus 

x = mp rpi, y = mq =fc rqi. 

* The last is replaced by a/6 if the final quotient had been taken as 3. 
14 Novi Comm. Acad. Petrop., 8, 1760-1, 74; Comm. Axith. Coll., I, 275. 
“ A Treatise of Algebra, London, 1764, p. 2l5; same paging in 1808 ed. 
18 Introduction to Algebra, ed. 6,1803, London, 133. 
17 M&n. Acad. Berlin, 23, ann£e 1767, 1769, § 7; Oeuvres, 2, 1868, 386-8. 
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Lagrange18 proved as had Euler14 that, if b and c are relatively prime, 
there exist integers y and z such that by — cz = a. Next, if y = p, z = q 
is one set of solutions, every set of solutions is given by y — p + me, 
2 ~ q + mb. If a = ard, c = dd, where a' and d are relatively prime, then 
V is divisible by d, say p = p'd. As in the proof of the initial theorem, we 
can find m such that p' + md is divisible by a'. Hence we can always 
find a value of y which is a multiple ar of a; then z is a multiple a's of a', 
and hr — c's = 1. From a set of solutions r, $ of the latter, we get 
y = ra + me, z = sa' + mb. 

Lagrange19 noted that his17 method is “ essentially the same as Bachet’s,6 
as are also all methods proposed by other mathematicians.” To solve 
39# — 56y = 11, employ 

56 = 1 *39+17, 39 = 2-17+5, 17=3-5+2, 5 = 2-2+l, 2 = 2-1. 

By means of the quotients 1, 2, 3, 2, 2, we get the convergents 

1 3 10 23 56 

V 23 7 3 163 39* 

Thus # = 23*11 + 56m, y = 16-11 + 39m. 
L. Euler20 employed the method of always dividing by the smaller 

coefficient, thus following Rolle8 in essence. For 5z = 7y + 3, 

The numerator must be a multiple of 5. Thus 2y + 3 = bz, 

y = 2z + g ~ - 2 - 3 = 2u, 

whence y = 5u + 6, x = 7u + 9. He showed that the process is equivalent 
to that for finding the greatest common divisor of 5 and 7: 

7 = 1-5 + 2, x = 1 -y+z, 

5 = 2-2 +1, y = 2-2 + Uj 

2 = 2-1 + 0, 2 = 2-^ + 3. 
Jean Bernoulli21 applied Lagrange’s19 method to find the least integer 

u giving an integral solution of A = Bt — Cu, when B, C are relatively 
prime, in the special cases A = kCy \C + 1, \{C ± 1). For example, if C 
is even and + = C/2, then u = (B — l)/2, t = C/2. If C is odd and 
A = J(C + 1), then u = \{B + $ — !),£ = |(C + r), where Hr — Cs = 1, 
r/s being the convergent just preceding C[B in the continued fraction for 
the latter. 

18 M€m. Acad. Berlin, 24, ann£e 1768, 1770, 184-7; Oeuvres, II, 659. 
19 Ibid., 220-3; Oeuvres, II, 696-9. Additions by Lagrange to Vol. 2 of the transl. by Jean 

III Bernoulli of Euler’s Algebra, Lyon, 1774,517-523 (Euler’s Opera Omnia, (1), 1,1911, 
574-7; Oeuvres de Lagrange, VII, 89-95). 

20 Algebra, 2, 1770, §§ 4-23; French transl., Lyon, 2, 1774, pp. 5-29; Opera Omnia, (1), I, 

326-339. 
21 Nouv. M4m. Acad. Roy. Berlin, ann4e 1772,1774, 283-5. 



Chap. II] Solution of ax+by=c. 49 

J. L. Lagrange22 used the method of Saunderson13 and noted that the 
process is equivalent to the usual one of converting b/a into a continued 
fraction. He23 gave a more popular account [[results as in Lagrange17]. 

C. F. Gauss24 employed the notations 

£ = = C = [a, ft y~} = yB+a, [>, ft y, $]= oC+B, •••. 

Apply the g.c.d. process to a and b which are relatively prime and positive, 
with a ^b; let a = ab + c, b = (3c + d, c = yd e, ■ • •, m = nn + 1, 
so that 

a = /x, • • *, t, ft a], & = [n, v, • • •, % /?]. 

Take x = [>, • • •, 7, 0], y = [>, * • •, 7, ft a]. Then ax = by + (- 1)* 
if k is the number of the terms a, ft • • •, jjl, n. Cf. Euler.38 

Pilatte25 solved axx + ax 1 = b, where ax and a are relatively prime, 
a > ah by applying the greatest common divisor process: 

a — a+ a2j ai = a2#2 + 03, * • *, #»-i = 

Replacing a by its value, we get x — x2 — qxXi, where x2 =* (b — a2Xi)/ai 
must be integral. Thus a2xx + axx2 = 6. Proceeding similarly with the 
latter equation, we get a3x2 + a2x3 = b, * • •, xrt_i + an_ix« = 6. Eliminat¬ 
ing xn—x, xn-2, • • •, we get x = ± ah ^ ax«, where a: is an integer deter¬ 
mined by the process. 

P. Nicholson26 gave a method best explained by his example 

V = 

500 — llx , . llx — r 

~35~ = 14 “ 35 ’ 
r = 10. 

Divide 35x by llx — r to get the remainder 2x + 3r. Then divide llx — r 
by 2x + 3r to get the remainder x — 16r, in which the coefficient of x is 
unity. The remainder 20 from the division of 16r = 160 by 35 is the least 
positive x. But in the example 

V = 

200 - 5x 

11 
= 18 - 

5x 

11 
2, 

we reach the remainder x + 2r in which the sign is plus; thus 11 — 2r = 7 
is the least x. 

G. Libri27 gave as the least positive integral solution x of ax + b = cy, 
where a and c are relatively prime, 

c-i i^sinM6-^} 
2 2 u=i . uair 

sm- 
c 

22 Jour, de l’6cole polyt., call. 5, 1798, 93-114; Oeuvres, VII, 291-313. 
23 Ibid., cahs. 7, 8, 1812, 174-9, 208-9; Reprint of Lecons 616m. sur math., S6ances des 6coles 

normales, 1794-5; Oeuvres, VII, 184-9, 216-9. 
24Disq. Arith., 1801, §27; Werke, I, 1863, 20; German transl., Maser, 1889, 12-13. 
25 Annales de Math, (ed., Gergonne), 2,1811-12, 230-7. Cf. E. Catalan, Nouv. Ann. Math., 

3, 1844, 97-101. 
20 The Gentleman’s Math. Companion, London, 4, No. 22, 1819, 849-60. 
27 M6m. pr6sent6s pars divers savants & l’acad. roy. sc. de l’Institut de France, 5, 1833, 32-7 

(read 1825); extr. in Annales de Math., ed., Gergonne, 16,1825-6, 297-307; Jour, fiir 
Math., 9, 1832, 172. Cf. A. Genocchi, Nouv. Corresp. Math., 4,1878, 319-323. 
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The number of integral solutions x, 0 ^ x < c, is 

1 ^ 2u(ax + b)t 
- X, IJ cos —-~ . 
C x=Q u=0 C 

A. L. Crelle,28 after proving the existence of solutions of a%xi = a& + k, 
where ai and a* are relatively prime [Euler14], solved it by setting 

ai—PiCh+(ki cL2=p2az+ai, Xi — piX2+xZi x^-p^xz+x^i •••; 

also by the modified equations in which the left members are all ai, or a*. 
There are given three more such methods. The sixth method uses a prime 
factor ol\ of ai = a$i, and a primitive root ti of ay There exists an integer 
ex such that a2Ti = z&i =fc 1. Multiply the proposed equation by 
Thus ZiXi = PiiriXt + Xzj where xz = (far? =f Xi)/ai is an integer. The 
latter gives = ¥ (ai£3 — kwl1). Here xs must satisfy a&z = =F /te + zjc, 
which is treated as was the initial equation. 

Crelle29 considered ay = bx + 1, where a, b are relatively prime and > 1. 
If So* 2/0 give the least positive solution, the general solution is = pa + £o, 
y„ = pb + 2/0 0* = 0, ± 1, rfc 2, • • •). If 2/0 < 5/2, the numerators of 

2/o y_i y-2 y* 
Xo* X~i’ Xi X-21 %% 

increase alternately by b — 2y0 and 2y0) and the denominators alternately by 
a — 2rr0 and 2x0, and no one of these fractions differs more from a/b than the 
next fraction. There are similar theorems on series of fractions involving 
only positive or only negative subscripts. If yjx„ — bja = k > 0, 
vju - b/a = X > 0, where | v | < | y„+1 |, | u | < | ® +1 |, then X > k. 
If X < 0, he found the number of fractions vju for which k > X, p being 
given. 

J. P. M. Binet30 treated ax — Ay = 1, A > a, by a process for finding 
the g.c.d. of a and A in which A is always the dividend. On dividing A by 
a, ai, a2, y • *, let p, ph p2, • * • be the quotients and — ah — a2) — a3, 
the remainders. Then 

(6) appy * = ai + A {1 + pi-i + pi-iPi-2 + • • * + Pi-v * 'PtVi}- 

Let a» be the divisor when the remainder is zero. Since a» divides A} 
it is the g.c.d. of A and a if it divides a. But if an is not a divisor of a, 
proceed as above with a and an and call the remainders — bh — b2, • • •, 
- bn', the last corresponding to the remainder zero. Then an, bn', cft", • • • 
form a rapidly decreasing series and one of them will be ±1. If a„ = =h 1, 
(6) for i = n gives a relation of the form aP = ± 1 + APX. 

E. Midy31 used Euler’s14 result to solve by - cz = a by trial. 

” Abh. Akad. Wiss. Berlin (Math.), 1S36, 1-53. 
** Ibid., 1840, 1-57. 

” Comptes Rendus Paris, 13,1841, 349-353; Jour, de Math., 6, 1841, 449-494. 
a ^ouv* Ann. Math., 4,1845,146; C. A. W. Berkhan, Lehrbuch derUnbest. Analytik, Halle, 1, 

1855,144; A D. Wheeler, Math. Monthly (ed., Runkle), 2, 1860, 23, 55, 402-6; L. H. 
Bie, Nyt Tidsskrift for Mat., Kjobenhavn, (4), 2, 1878, 164; J. P. Gram, ibid., 3, B, 
1892, 57,73; E. W. Grebe, Archiv Math. Phys., 14, 1850, 333-5. 
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J. A. Grunert32 solved bx — ay = 1 by a process for finding the greatest 
common divisor of b, a in which the divisor is always a, while the dividend 
is the sum of b and the preceding remainder, a process due to Poinsot, 
Jour, de Math., 10, 1845, 48. 

V. Bouniakowsky33 would solve ax + by = k by adjoining a'x + b'y = h', 
whose coefficients are arbitrary. Set D = abf — 5a', p = b'/D, q = Ji'/A 
r = a'/D. Then x = kp — bq, y = aq — kr, subject to ap — br = 1. 

A. L. Crelle34 gave over 4000 pairs of positive integral solutions Xi < au 
x2 < a2, of axx2 — a2Xi + 1, for ax ^ 120, 0 < a2 < ai, with a2 prime to 
ah and indicated methods used to simplify the calculation of the table. 

Y. Bouniakowsky35 integrated by parts 

j* (ax + b)m~l(a'x + b^^dx 

to obtain an identity giving a solution of bmX — b'nY = 1, where x = a', 
y = a is a particular solution of bx — b'y = 1. For m = n = 2, the 
identity is 

(3a2a'b - a35')&'2 - (3aa%' - a«b)b2 = (a'6 - a&')3. 

H. J. S. Smith36 reported on a recent method to solve ax = 1 + Py 
[no reference]. Join the origin to the point (a, P). No lattice point 
(i. e., with integral coordinates) lies on this segment; but on each side 
of it there is a point lying nearer to it than any other. Let (fx, 971) and 
(£2, V2) be these two points and let £1/971 < £2/972- Then the £’s and 97’s are 
the least positive solutions of arji — P£i = 1, ar\2 — P£2 = — 1. 

G. L. Dirichlet37 solved ax — by = 1 by continued fractions, using the 
algorithm due to Euler.38 

C. G. Reuschle39 found the general solution of ax + by = cby combining 
it with ax + fiy = w, where m is an arbitrary integer, while a and 0 are 
integers determined so that a($ — ba = zb 1 [cf. Bouniakowsky33]. 

J. J. Sylvester40 noted that the number of positive integers < pq which 
are neither multiples of p or q nor can be made up by adding together mul¬ 
tiples of p and q is J(p — l)(g — 1) if p and q are relatively prime. 

H. Brocard41 solved ax + by = 1 by a process of reduction. It suffices 
to find the residue of a modulo a — b to obtain an equation x + y — f 
consistent with the given one. Thus, if b ~ 563036, a — b + 7, then 
a s b = 5 (mod 7), 3*5 s 1, and the given equation may be combined 
with x + y = 3 to get integral solutions x, y. A table gives the successive 

82 Archiv Math. Phys., 7, 1846, 162. 
88 Bull. Acad. Sc. St. Pdtersbourg;, 6, 1848, 199. 
84 Bericht Akad. Wiss. Berlin, 1850, 141-5; Jour, fur Math., 42, 1851, 299-313. 
« Bull. Cl. Phys.-Math. Acad. Sc. St. PStersbourg, 11, 1853, 65. 
86 Report British Assoc, for 1859, 228-267, § 8; Coll. Math. Papers, I, 43. 
87 Zahlentheorie, §§ 23-24, 1863; ed. 2, 1871; ed. 3,1S79; ed. 4, 1894. 
88 Comm. Acad. Petrop., 7, 1734-5, 46 (Euler98). Novi Comm. Acad. Petrop., 11, 1765, 28; 

see Euler,72 Ch. XII. Cf. Gauss.24 
88 Zeitschrift Math. Phys., 19, 1874, 272. Same by J. Slavik, Casopis, Prag, 14, 1885, 137; 

V. Schawen, Zeitschrift Math. Naturw. Unterricht, 9, 1878,107 [194, 367]. 
40 Math. Quest. Educ. Times, 41, 1884, 21. 
41 M6m. Acad. Sc. Lettres Montpellier, Sec. Sc., 11, 1885-6, 139-234. See p. 153. 
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values of x + y when a — b = 1, 2, • • •, 100. The paper ends with a 
twenty page bibliography and history of linear diophantine equations. 

C. A. Laisant42 constructed the points having as abscissas 1, 2, • • •, p 
and as ordinates the corresponding residues < p modulo p of r, 2r, • ■ •, pr 
(r prime to p). The lattice defined by these points leads to an immediate 
solution of rx — pz = a since every point of the lattice has the coordinates 
x,y — rx — pz. 

W. F. Schuler43 gave a collection of 374 problems on linear Diophantine 
equations and an extract from Bachet6 with a German translation. 

E. W. Davis44 used points with integral coordinates to solve ay — bx = h. 
P. Bachmann45 gave an extended account of Euclid’s g.c.d. algorithm, 

continued fractions, and related questions. 
A. Pleskot46 treated 13a; + 23y = c somewhat as had Rolle8: 

c = 13(s + 2y) - Sy « 3(4z + 7y) + * + 2y, 

4z + 7y - t, x + 2y = c — 3$, x = — 7c + 23$, y = 4c — 13$. 

J. Kraus47 solved ax — ary = c, where a! — a = /c exceeds a and c, 
by use of axk - rx+1 = kax, 0 < rk < h, 0 ^ ak < a, X = 1, 2, • • thus 
representing rjk as a number with the digits ax, aA+1, • • • to the base a. 

P. A. MacMahon48 proved that, if the continued fraction for X/m has a 
reciprocal series ax, a2, • • *, a2, ai of partial quotients, 2i — 1 in number, 
then the fundamental (ground) solutions of \x = py + z are (a:* y3, yv+i-j), 
j — 1, • * *, o', if X > "where cr = 1 + &i + #3 -j- <25 + • * • + 05 -J- az + J 
but are fe, yj} x^3) and (xff, yv3 0), j = 1, • • •, <r - 1, if X < y, where 
<r = 1 + a2 + ck + • * • +04 + 02+1, not including a,- twice. When the 
partial quotients are even in number, the fundamental solutions depend 
upon both the ascending and descending sets of intermediate convergents 
to X/ju. He48a had proved that the fundamental solutions are always 
fe Vh z/)j j = 1, - - *, cr, where the y^Xj are the ascending intermediate con¬ 
vergents to X/jLt. 

A. Aubry49 plotted the points with integral coordinates 0 ~ x < n, 
0 = 2/ < n, as well as the lines y = x, y = ax, y = bx, • * •, where 1, a, 6, 
• • • are the integers < n and prime to n. Thus we can read off the integer 
s Vlx (mod n) and hence solve ax — nz = <7. 

N. P. Bertelsen49® solved to — cp = ± 2, 1 ^y <b} O^x^c, 1 ^ z < £>, 
by use of the convergents bTfcr to the continued fraction (a0, ax, • • •, a«) 
for 6/c. Then y is a linear function with positive integral coefficients of 
br + kbr+i (k — l, 2, • • ■, ar+2 — 1), and x is the same function of the 
Cr + fcCr+l. 

“Assoc. fran$. av. sc., 16, II, 1887, 218-235. 
41 Lehrbuch der unbestimmten Gl. 1 Grades, Stuttgart, 1,1891,176 pp. (Kleyers Encykl.). 
44 Amer. Jour. Matli., 15, 1893, 84. 
44 Niedere Zahlentheorie, 1, 1902, 99-153. 
48 Zeit. Math. Naturw. Unterrieht, 36, 1905, 403 [33, 1902, 47]. 
47 Archiv Math. Phys., 9,1905, 204. 
4#Quar. Jour. Math., 36, 1905, 80-93. 
484 Trans. Cambridge Phil. Soe,, 19,1901,1. 
^Uenseignement math., 13, 1911, 187-203. Cf. G. Arnoux, Arith. Graphique, 1894, 1906. 
4,0 Nyt Tidsskrift for Mat., B, 24, 1913, 33-53. 
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Papers without novelty. 

Abb6 Bossut, Cours de Math., II, 1773; ed. 3,1, 1781, 418 (g.c.d.). 
P. Paoli, Elementi d’algebra, Pisa, 1794, I, 159 (Rolle’s8 method). 
J. C. L. Hellwig, Anfangsgriinde unbest. Analytik, Braunschweig, 1803, 1-80. 
S. F. Lacroix, Complement des E16mens d’Alg&bre, ed. 3, 1804, 273-9; ed. 4, 1817, 287-292 

(g.c.d. and continued fractions). 
F. Pezzi, Memorie di Mat. e Fis. Soc. Ital. Sc., Modena, 11, 1804, 410-25 (cont. fr.). 
J. G. Gamier, Analyse Alg6brique, Paris, ed. 2, 1814, 58-65 (cont. fr.). 
L. Casterman, Annales Acad. Leodiensis, Li&ge, 1819-20 (cont. fr.). 
P. N. C. Egen, Handbuch der Allgemcinen Arith., Berlin, 1819-20; ed. 2, 1833-4; ed. 3, II, 

1849, 431. 
M. W. Grebel, Ueber die unbest. Gl. 1 Gr., Progr. Glogau, 1827 (cont. fr.). 
A. J. Chevillard, Nouv. Ann. Math., 2, 1843, 471-3 (cont. fr.). 
F. Heime, Arith, Untersuchungen, Progr. Berlin, 1850 (Euler14). 
T. Dieu, Nouv. Ann. Math., 9, 1850, 67 (g.c.d.). 
H. Scheffler, Unbestim. Analytik, Hanover, 1854 (cont. fr.). 
F. Thaarup, Nyt Tidsskrift for Mat., A, I, 1 (g.c.d.). 
V. A. Lebesgue, Exercices d’analyse num6rique, Paris, 1859, 48-54. 
Lebesgue, Introduction k la thdorie des nombres, 1862, 39-47 (g.c.d.). 
J. J. Nejedli, Euler’s Auflosungs-Methode unbest. Gl. 1 Gr., Progr. Laibach, 1863. 
J. A. Temme, Bemerkungen . . . unbest. Gl., Progr. Munster, 1865 (Euler20). 
B. I. Clasen, Ann. de l’<$cole norm, sup., 4, 1867, 347 (g.c.d.). 
O. Porcelli, Giornale di Mat., 10, 1872, 37-46 (cont. fr.). 
J. Knirr, Auflosung der unbest. Gl., Progr. Wien, 1873 (Euler20). 
C. de Comberousse, Algebre sup6rieure, I, 1887, 161-173 (g.c.d., cont. fr.). 
L. Matthiessen, Kommentar zur Sammlung . . . Aufgaben . . . E. Heis, ed. 4,1902, 98-9; 1897, 

221. 
H. Schubert, Niedere Analysis, I, 1902, 116-126 (cont. fr.); ed. 2, 1908. 
G. Calvitti, Suppl. al. Periodico di Mat., 1905 (Euler20). 
M. Morale, ibid., 1909; Periodico di Mat., 25, 1910, 182-3 (cont. fr.). 
A. Bindoni, II Boll, di Matematica, 11, 1912, 151-3 (Euler20). 
E. Cahen, ThSorie des nombres, I, 1914, 90-108 (also graphic). 
A. Sartori, II Boll, di matematiche e sc. fis., 18, 1916, 2-10. 

Papers not available for report. 

Bertrand, Analyse inddterminde du premier degr6. 
L. Casterman, Petitur ut aequationes indet. 1 Gr., Grand, 1823. 
C. L. A. Kunze, Einfache u. leichte Methode die unbest. Gl. des 1 Grads mit 2 unbekannten Z. 

aufzulosen, Progr. Weimar, Eisenach, 1851. 
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Progr. Innsbruck, 1856. 
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G. Elowson, Om indet. Eqvationer af 1 Graden, Progr. Lulea, 1865. 
K. Weihrauch, Beitrag zur Lehre unbest. Gl. 1 Gr., Arensberg, 1866. 
H. Dembschick, Unbest. Gl. 1 u. 2 Grades, Progr. Straubing, 1876. t 
Ferrent, Jour, de math. <51<$m., (2), 3, 1884, 121, 155, 169, 193, 217, 241. 
E. Sanczer, New method for indeter. first degree (Polish), Cracow, 1887. 
G. M. Testi, Sulla ricerca di una soluzione di una equazione di primo grado a due incognite, 

Livorno, 1902, 4 pp. 
E. Ducci, Le mie lezioni di analisi indeterminata di primo grado . . ., Bologna, 1903. 
S. Soschino, Suppl. al Periodico di Mat., 12, 1908-9, 20-22. 
R. Guatteri, ibid., 52-3; 13, 1909-10, 76-9 (both on Euler20). 
G. Bernardi, Nuovo metodo di risoluzione dell’equazione ax + by = cm numeri interi e positivi 

. . ., Bologna, 1913, 27 pp. 
L. Carlini, II Boll, di Matematica, 12, 1913, 128-136. 
F. Palatini, ibid., 284. 
L. Struiste, Die linearen diophant. Gl., Progr., Innsbruck, 1913. 
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Solution of ax = b (mod m) without Fermat’s Theorem. 

C. F. Gauss50 noted that ax = b (mod rri) is solvable if and only if b is 
divisible by the g.c.d. d of a = de and m = df. Let b ~ dk. Then £ is a 
root of the proposed congruence if and only if ex = k (mod/), while the 
latter has a unique root modulo /. For a compoiste modulus mn, a second 
method is often preferable. First, employ the modulus m as above and 
let x s= v (mod mid), where d is the g.c.d. of m and a. Then x — v + x'mjd 
is a root of ax = b (mod mn) if and only if x'ajd = (b — av)/m (mod n). 

P. L. Tchebychef51 proved that, if the g.c.d. d of a and p divides b, 
ax ss b (mod p) has the d roots a, a + p/d, • • •, a + p(d — l)/d, where 
aa/d zeb b/d (mod p/d). 

C. Sardi52 considered the congruence a& = 6 (mod p) in which p is a 
prime not dividing ai, and b < p. Dividing p by ah let a2 be the remainder 
and Q>/ui] the quotient, where [n] is the greatest integer ~ n. Multiply 
our congruence by [p/a J; we get 

a2x = — b [p/aj (mod p). 

Let a3 be the remainder when p is divided by a2. Let the decreasing series 
aly a2) a3, • * • end with as = 1. Then 

’-‘-Wis]&,]■"[£] 
C. Ladd53 showed that if a is prime to M = • -Mk and if z{ is deter¬ 

mined by azi +1 = 0 (mod Mi), the root of ax + & s= 0 (mod M) is 

x = + a2lZiZjZk + • • *}. 

L. Kronecker54 reduced the solution of ax s= 6 (mod m), where a is 
prime to m = lip?, to the case in which m is a power pr of a prime. Then 
a root can be expressed to the base p in the form 

£ = £o + £iP + * * * + £r-ipr~1, 

where each £* is an integer chosen from 0,1, * • •, p — 1. First find the root 
of a£0 = b (mod p). Then seek from a(£0 + hp) = & (mod p2), whence 

= (6 — a£0)/p (mod p), etc. Again, if N is the denominator of the 
next to the last convergent in the continued fraction for a/m, then x = =h bN 
(mod m). 

M. Lerch55 showed that, if p is a prime, 

o“a“12§*'[f] (modp)’ 
where [Q is the greatest integer ^ t, and hence solved ax - py = 1. If m 

60 Bisq. arith., 1801, Arts. 29, 30; Werke, I, 1863, 20-3; Maser’s German transl., 13-15. 
81 Theorie der Congruenzen, in Russian, 1849; in German, 1889, § 16, pp. 58-63. 
M Giomale di Mat., 7, 1869,115-6. 
“ Math. Quest. Educ. Times, 30, 1879, 41-2. 
84 Vorlesungen uber Zahlentheorie, 1, 1901, 108-120. 
“ Math. Annalen, 60, 1905, 483. 
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is any odd number relatively prime to* <f>(m), then 

1 

a a 

12 

>(m) 
26 (mod m), 

where the summation extends over all positive integers 6 which are < m 
and prime to m, while P(m) = (1 — p)(l — p') • • •, if p, p', * • • are the 
distinct prime factors of m. 

E. Busche56 obtained graphically the number of solutions of az = 6 
(mod m)y including solutions called improper or transfinite,57 introduced 
when a and m have a common factor >1. As the ordinary (proper) solu¬ 
tions may be restricted to the integers 0, 1, • • •, m — 1, we are at liberty 
to designate the improper solutions by numbers ^ m. The simplest case 
is one like 3z = 6 (mod 15), in which 3 and 15/3 are relatively prime; then 
there is defined an improper solution designated by 15 if 6 = 0, 15 + j if 
6 = j U = 1, • * *, 4), 15 if 6 = 5, 15 +j if 6 = 5 +j (j - 1, * • *, 4), etc. 

Solution of ax == 6 (mod m) by Fermat’s or Wilson’s Theorem. 

J. P. M. Binet58 noted that, if a is a prime not dividing 6, bx — ay = 1 
has the solution x = 6a~2, the corresponding y being integral; while, if 
p, p', - • • are the equal or distinct prime factors of a, 

= 1 — (1 — 6P”1)(1 - 6P'~X) • • • 

gives an integer x> leading to an integer y, such that x, y satisfy the same 
equation. The same method was found independently by G. Libri.59 

A. Cauchy60 expressed Binet’s method in the following form: let 

n = cflf • • •, (1 - ^-^(l - • • • = 1 - kK. 

Then for k prime to w, 1 — kK is divisible by n, so that kx = h (mod n) 
has the solution x = hK (mod n). 

Y. Bouniakowsky61 proved that, if a, 6 are relatively prime positive 
integers, ax =F by — c has the integral solutions* 

* = ca*(M_1, y = 4^ (a*m - 1). 
0 

G. dePaoli62 gave the last solution, with replaced by <£(6)/2 when 6 
is divisible by 4. To solve ax — by — cz = e, where a, 6, c, e have no com¬ 
mon divisor, let a = dA, b = dB} where d is the g.c.d. of a, 6; then e + cz 

* By <j>(m) is meant the number of integers < m which are prime to m. 
M Mitt. Math. GeseU. Hamburg, 4, 1908, 355-380. 
57 Imaginary by Gauss, Disq. Arith., Art. 31; G. Arnoux, Arithmdtique graphique, 2, 1906, 

20. Both excluded such solutions. 
58 Jour, de l’6cole polyt., cah. 20, 1831, 292 [read 1827]; communicated to the Socidtd 

Philomatique before 1827. 
M M^moires de Math, et de Phys., Florence, 1829, 65-7. Cf. Libri148 of Ch. XXIII. 
60Exercices de Math., 1829, 231- ; Oeuvres, (2), IX, 296. 
81 M6m. Acad. Sc. St. P6tersbourg (Math. Phys.), (6), 1, 1831, 143-4 [read Apr. 1, 1829]. 
° Opuscoli Mat. e Fis. di Diversi Autori, Milano, 1,1832, 269. He stated that the paper was 

written in 1830 without knowledge of that by Binet. 
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must be a multiple du of d; the equations Ax — By ~ u, du — cz = e are 
each solved by Fermat’s theorem; similarly for n variables (pp. 327-338). 

A. L. Crelle63 noted that ax s 1 (mod m) has the solution a*(m)-1. 
A. Cauchy64 obtained independently the result of Bouniakowsky.61 
J. P. M. Binet65 employed Wilson’s theorem to solve ax = 1 + py, 

when p is a prime. We may take 0 < a < p. Then x = — (p — 1) !/a. 
Whether p is prime or composite, we may also proceed as follows. Divide 
p by a and call the quotient q and remainder ai\ divide p by aq and call the 
quotient qi and the remainder a2; etc., until the remainder a„ = 1 is 
reached. Then 

aqqv • -ffn-i + (- l)n+1 = pM} x = (- l)ng?r * -gv-1- 

V. BouniakowTsky66 employed (p, n) = p(p — 1) • * • (p — n + !)• Then, 
if b <p, 

(P + 6, P) = (P, V) + (j) (P, P - 1)(6,1) + (2) (P. P “ 2)(*>> 2) 

+ • ■ • + (J ) (p, p - 6)(6, 6). 

Divide by (p, p) and write a ~ p + b. We get ai£ = 1 + pK, where F7 
and K are integers* if p is a prime. Hence we have solved ax = 1 + py 
in integers if a > p and p is a prime. To solve 

Mx — Ay =1, N = pxgV' * •> 

where p, g, r, • • • are distinct primes, determine ♦ so that 

Mai ~ pj3i = 1, Afce2 — £02 = 1, Mdz — rft = 1, • • *, 

as above. Raise Mai ~ B Mot2 — 1, * * * to the powers X, p, • •. Then 

Afer -h (— l)x = pxft\ Me2 + (- 1)* = 

where €1, e2, * • *, and A below are integers. By multiplication, 

MA + (— ^ B = 

According as X + p -f* v -f • * • is odd or even, y = B or — B. 
L. Poinsot67 noted that Lx — My = 1 has the solution x = Lm~x if 

Lm s= 1 (mod M), e. g., if m = <f>(M). He also expressed the method in 
terms of regular polygons. Thus, for 12x - 7y = 1, take 7 points P1} • • *, 
P7. Take the first, the fifth after the first, etc. (5 being 12 — 7); we get 
PxP ePiPPPhPz* Since P2 is now the third point after Ph we have 2 = 3. 
We get y from the equation or by use of 12 points. 

63 Abh. Akad. Wiss. Berlin. (Math.), 1836, 52. 
u Comptes Rendus Paris 12, 1841, 813; Oeuvres, (1), VI, 113. Exercices dJ Analyse et de 

Physique Math., 2, 1841, 1; Oeuvres, (2), XII. See Vol. I, p. 187, of this History. Cf. 
report by J. A. Grunert, Archiv Math. Phys., 3, 1843, 203. 

65 Comptes Rendus Paris, 13, 1841, 210-3. 
M M&n. Acad. Sc. St. Pdtersbourg (Math. Phys.), (6), 3,1844, 287. 
*E = (p + b — 1)! {p\ 5!} is an integer by Catalan,21 p. 265 of Vol. I of this History. 
67 Jour, de Math., (1), 10, 1845, 55-59. 
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J. G. Zehfuss68 gave the formula of Cauchy60 and noted that, if 
jjl = amfin • • •, and if A is not divisible by the prime a, B not by ft • • •, 
then 

+ • • • 22 1 (mod jti). 

For A = B = • • • = a, let the left member become k. Then ax = b 
(mod ai) has the root kbja. It also has the root (1 — AB * • •)bfa, where 

A = (1 + a )”* — 0 (mod am), 

B = (1 + a ^ ~ --!y = 0 (mod /?"), •••, 

where aa is the least positive residue of a modulo a, since, by Wilson’s 
theorem, aa + (a — 1)! a is divisible by the prime a. 

M. F. Daniels69 noted that, if pr--pn = d= 1 (mod k) by Wilson’s 
generalized theorem, then piX = 1 (mod k) has the root ±pi--*pt-_i 
Pi+i‘ • *pn. Further, if k = p^q*- * • and if act s 1 (mod p), ac2 = 1 (mod 
<?), • • •, then ax 2= 1 (mod A;) has the root 

x=-{l-(l 
a 

aci)'(l — ac2)M* • • |. 

J. Perott70 noted that if a and u are relatively prime and if a belongs to 
the exponent t modulo u, ax = 1 (mod u) has the unique solution x = aL~l 
(mod u). He admitted he was anticipated by Cauchy. 

Chinese Problem of Remainders. 

Sun-Tsu,71 in a Chinese work Suan-ching (arithmetic), about the first 
century A.D., gave in the form of an obscure verse a rule called t’ai-yen 
(great generalisation) to determine a number having the remainders 2, 
3, 2, when divided by 3, 5, 7, respectively. He determined the auxiliary 
numbers 70, 21, 15, multiples of 5-7, 3-7, 3*5 and having the remainder 1 
when divided by 3, 5, 7, respectively. The sum2 -70 + 3*21 + 2-15 = 233 
is one answer. Casting out a multiple of 3 • 5 • 7 we obtain the least answer 
23. The rule became known in Europe through an article, “ Jottings on 
the science of Chinese arithmetic,” by Alexander Wylie,72 a part of which 
was translated into German by K. L. Biernatzki.73 A faulty rendition by 

68 Diss. (Heidelberg), Darmstadt, 1857; Archiv Math. Phys., 32, 1859, 422. 
69 Lineaire Congruenties, Diss., Amsterdam, 1890, 114, 90. 
70 Bull, des Sc. Math., (2), 17, I, 1893, 73-4. 
71 Y. Mikami, Abh. Geschichte Math. Wiss., 30, 1912, 32. 
72 North China Herald, 1852; Shanghai Almanac for 1853. Cf. remark by G. Vacca, 

Bibliotheca Math., (3), 2, 1901, 143; H. Cordier, Jour. Asiatic Soc., (2), 19, 1887, 358. 
73 Jour, fur Math., 52, 1856, 59-94. French transl. by O. Terquem, Nouv. Ann. Math., (2), 

1, 1862 (Bull. Bibl. Hist.), 36-44; 2, 1863, 529-540; and by J. Bertrand, Journal des 
Savants, 1869. Cf. Matthiessen.79 
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For x = 17, the completed part is 8-2 + 5-3 + 2*6 + 1-12 = 55. We 
may equally well take mi = 1, m2 = 3, ju3 = 1, ju4 = 4 and get ai = 12, 
a2 = 4, a3 = 12, a4 = 9, 2atr» = 125 s 17 (mod 12). 

A condition on the solvability of the problem is that r* — Tj be divisible 
by the g.c.d. of mt-, my. 
^ Ibn al-Haitam80 (about 1000) gave two methods to find a number, 
divisible by 7, which has the remainder 1 when divided by 2, 3, 4, 5 or 6. 
The first method gives the one solution 1 + 2 • 3 • 4 • 5 • 6 = 721. The second 
method gives a series of solutions 301, etc.; in effect f(6 + 2?i«7)20 + 1, 
where n is an integer such that 6 + 2n*7 is a multiple of 4. 

BMscara81 (bom, 1114 A.D.) treated the problem to find the number 
having the remainders 5, 4, 3, 2 when divided by 6, 5, 4, 3 respectively. 
By the first two conditions, the number is 6c + 5 = bn + 4. By use of 
the “ pulverizer,” the integral value of c = (5n — l)/6 is c = 5p 4- 4. The 
number 6c + 5 = 30p + 29 must equal 41 + 3. Hence p = (41 — 26)/30, 
which is converted by the pulverizer into 2h + 1. Thus 

30p + 29 = 60h + 59 
is the answer. 

Again (§ 162, p. 238), what number being divided by 2, 3, 5 has the 
respective remainders 1, 2, 3, while the quotients divided by 2, 3, 5 respec¬ 
tively have the remainders 1, 2, 3? Call the quotients 2c + 1, Sn + 2, 
51 + 3. Then the number is 4c + 3 = 9n + 8 = 251 + 18. Applying the 
pulverizer to the first equality, we get c = 9p + 8. The resulting number 
36p + 35 must equal 251 + 18, whence p = 25h + 3 and the answer is 
900& + 143. 

Leonardo Pisano82 treated (p. 281) the problem to find a number A, 
divisible by 7, which gives the remainder 1 when divided by 2, 3, 4, 5 or 6. 
By the latter condition, N exceeds 1 by a multiple of 60; but 60 has the 
remainder 4 when divided by 7, while we need the remainder 6; thus we 
multiply 60 by 2, 3, • • • until we reach 60 X 5 with the remainder 6. 
Thus N = 301, to which we may add a multiple of 420 = 60-7. Simi¬ 
larly, 25201 is the multiple of 11 having the remainder 1 when divided by 
2, 10. 

To find (p. 282) a multiple of 7 having the remainders 1, 2, 3, 4, 5 when 
divided by 2, 3, 4, 5, 6, we take 1 from a multiple of 60 such that the dif¬ 
ference is divisible by 7; the result is 2*60 — 1 = 119. Similarly, to find 
a multiple of 11 having the remainders 1, 2, • • *, 9 when divided by 2, 3, 
• • •, 10, we subtract 1 from the least common multiple 2520 of 2, • • •, 10 
and get 2519, which being a multiple of 11 is the answer. 

He employed83 (p. 304) in effect the rule t’ai-yen71 to tell what number 
not exceeding 105 a person has in mind if the latter gives the remainders 

80 Arabic MS. in Indian Office, London. Cf. E. Wiedemann, Sitzungsber. Phys. Medic. 
Soc. Erlangen, 24, 1892, 83. 

81 Vlja-ganita (algebra), § 160, Colebrooke,1 pp. 235-7. 
82 Liber Abbaci (1202, revised 1228), pub. by B. Boncompagni, Rome, 1, 1857. 
83 M. Curtze, Zeitschrift Math. Phys., 41,1896, Hist. Lit. Abt., 81-2, remarked that if Leonardo 

had found the rule independently, he would have so stated and would have given a proof. 
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(say 2, 3, 4) obtained by dividing it by 3, 5, 7: 

2.70 + 3*21 + 4-15 = 263, 263 - 2-105 = 53 = ans. 

Similarly for the number not exceeding 315, given the remainders upon 
division by 5, 7, 9: the remainders are to be multiplied by 126, 225, 280, 
and from the sum of the products is to be subtracted a multiple of 315. 

Ch’in Chiu-shao84 gave a method applicable to the problem to find a 
number x having the remainders ru • • - , rn when divided by mi, • • •, mn, 
which are relatively prime in pairs. Let M be any one of the quotients 
Mk = mr * -mn/Mki and seek p so that.Afp = 1 (mod m = m*). We may re¬ 
place M by its residue R modulo m. On dividing m by R, let the quotient be 
Qi and the positive remainder be rx < R. Divide R by rx to get the quotient 
Q2 and positive remainder r2 < r±; divide r1 by r2 to get the quotient Qz 
and remainder ^ r2; proceed until we reach an = 1. Let Al = Qlt 
A2 = i!<?2 + 1, A* = A2QZ + Al9 +4 = AzQi + A2} * • - . Then p = A*, 
and x = nMipi + r2M2p2 + • - • + rnMnpn. 

A German MS.85 of the fifteenth century proved a general rule corre¬ 
sponding to the Chinese Vai-yen rule. 

Hegiomontanus86 (1436-1476) proposed in a letter the problem to find 
a number with the remainders 3, 11, 15 when divided by 10, 13, 17. It is 
possible87 that he got acquainted in Italy with the work of L. Pisano. 

Elia Misrachi88 (1455-1526) reproduced L. Pisano82 (pp. 281-2) and 
gave answers to similar problems. 

Michael Stifel89 gave the correct result that if x has the remainders 
r and s when divided by a and a + 1, respectively, then x has a remainder 
(a + l)r + a2s when divided by a(a + 1). 

Pin Kue90 treated in 1593 the problem given by Sun-Tsu.71 
The problem to find a multiple of 7 having the remainder 1 when 

divided by 2, 3, 4, 5 or 6 was treated also by Casper Ens91 and Daniel 
Schwenter.92 

Frans van Schooten93 treated the problem to find a multiple of 7 having 
the remainder 1 when divided by 2, 3 or 5. He used 30A; + 1, where 
^ “ 3 is chosen so that the number is divisible by 7. He gave what is 
really the t ai-yen rule, but attributed it to Nicolaus Huberti; it leads 
here to the multipliers 3-5-7 = 105, 2-5-7 = 70, 3(2-3-7) = 126, each 
with the remainder 1 -when divided by 2, 3, 5, respectively. 

84 Nine Sections of Math, (about 1247). Cf. Mikami,71 pp. 65-9. 
85 M. Curtze, Abh. Geschichte der Math., 7, 1895, 65-7. 

MC- T- de Murr, Memorabilia Bibl. publ. Norimbergensium et Universitatis Altdorfmae, 
Pars 1,1786, p. 99. 

87 Cantor, Geschichte der Math., ed. 1, II, 263. 
88 G. Wertheim, Die Arithmetik des E. Misraehi, 1893, ed. 2, 1896, 60-61. 

Anthmetica mtegra, 1544, Book I, fol. 38v. Die Coss Christoffs Rudolffs, Die Schonen 
Exempeln der Coss Durch Michael Stifel Gebessert, Konigsperg, 1553, 1571 

MS-in Bibl Nat-Paris; “by E-Biot-Jour- 
91 Thaumaturgus Math., Munich, 1636, 70-71. 

w ?ysico'Ma^-ody Math.-u. Phil. Erquickstunden, Niiraberg, 1,1636, 41. 
hxercitationum math, hbn quinque, Lugd. Batav., 1657, 407-410. 
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W. Beveridge94 treated the problem to find the least number P which 
has given remainders K and L when divided by A and B, when the latter 
are relatively prime. Let D be the least multiple of B which has the 
remainder I when divided by A; let C be the least multiple of A which 
divided by B leaves 1. Then P — DK + CL, as shown by a two page 
proof. 

To find the least number P which has the given remainders K, L, Z 
when divided by the relatively prime numbers M, B, A, first find the least 
multiple F of AB, least multiple N of AM, least multiple Q of BM, which 
have the remainder 1 when divided by M, B, A, respectively. Then 
P = KF + LN + ZQ. 

This is precisely the rule as given later by Euler96 and Gauss.76 
* J. Wallis95 gave an empirical solution of the problem of the Julian 

period. 
T. F. de Lagny9 treated the problem to find the year x of the Julian 

period when the solar cycle is 13, the lunar cycle is 10 and the “indiction” 
is 7; thus if x is divided by 28,19,15, the remainder is 13, 10, 7, respectively. 
From x = 28m + 13 = 19ft + 10, he found9 that n = 9 + 28/, where / 
is an integer. Thus x = 19ft + 10 = 181 + 532/. Since x — 7 is to be 
divisible by 15, the least / is 3. 

L. Euler96 treated the problem to find an integer z which has the re¬ 
mainders p and q when divided by a and b, respectively, where a > b. 
Thus z = ma + p = nb + q. He solved the second equation by use of 
the process for the greatest common divisor for a, b, continued until one 
of the remainders c, d, e, • • • is reached which divides v = p — q. He thus 
deduced the result 

z = q + abv (1-I + I-I+...), 

in which the series is continued until we reach a remainder dividing v. 
At the end of the paper, Euler gave a rule generally attributed to Gauss.76 
To find a number which has the respective remainders p, q, r, s, t when 
divided by a, b, c, d, e, which are relatively prime in pairs. An answer is 
Ap + Bq + Cr + Ds + Et + Mabcde, where 

A = 0 (mod bcde), A = 1 (mod a); B = 0 (mod acde), 

B 55 1 (mod b); • • • E s 0 (mod abed), E = 1 (mod e). 

C. von Clausberg97 found a multiple of 7 having the remainder 10 when 
divided by 15. 

N. Saunderson98 treated the problem to find a number which has the 
remainders d and e when divided by a and b, a > b. Let l be the g.c.d. 

94 Institutionum Chronologioar'um libri II. Unit cum tot idem Arithmcticea Chronologicae 
Libellis. Per Guilielm Beveregium, Londini, 1669, lib. II, pp. 253-6. 

95 Opera, 2, 1693, 451-5. Cf. Hutton.101 
98 Comm. Acad. Petrop., 7, 1734-5, 46-66; Comm. Arith. Coll., I, 11-20. 
97 Demonstrative Rechnenkunst, 1732, § 1366, § 1493. 
98 The Elements of Algebra, Cambridge, 1, 1740, 316-329. Reproduced by de la Botticre, 

M6m. de math, phys., pr6sent<5s . . . divers savans, 4, 1763, 41-65. 
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of a and fc. Evidently l must divide d — e. Let this condition be satis¬ 
fied and determine A and B so that Aa — Bb = — l. Multiply the last 
equation by (d — e)/l. Then 

Aa . —--f~ d — Bb * —--j- 6 

is an answer. Other answers follow by adding any multiple of the l.c.m. 
M of a, 6. Next, let there be three divisors a, b, c and corresponding 
remainders d, e, /. By the first problem find a number g having the re¬ 
mainders d and e when divided by a and b, and then a number h having the 
remainders g and / when divided by M and c. From the answer h we obtain 
others by adding any multiple of the l.c.m. of a, b, c. 

* A. G. Kastner," * Ludicke100 and C. Hutton101 treated problems on 
the Julian period. To find the year x of Christ in which the solar and 
lunar cycles are 18 and 8, and Roman indiction is 10, Hutton noted that 
the year before the Christian era was the ninth of the solar cycle, first of 
the lunar and third of the indiction. Hence the remainders on dividing 
x + 9, x -f 1, x + 3 by 28, 19, 15 respectively (the periods of the solar, 
lunar and indiction cycles) must be 18, 8, 10. Thus x = 7980p + 1717. 

To apply102 the rule in J. KeilFs Astronomy Lectures, p. 380, divide 
18*4845 + 8*4200 + 10*6916 by 7980; the remainder 6430 is the year of 
the Julian period; subtract 4713, the Julian year at the birth of Christ. 

A. Thacker103 proved the last rule, starting as had Hutton.101 
The least number104 with the remainders 1, 2, 3, 4, 5 when divided by 

2, 3, 4, 5, 6 is 60 — 1 [L. Pisano82]. 
R. Robinson105 found a number x which has the remainders 19, 18, 

* • *, 1 when divided by 20, 19, - • *, 2. Since 
£ = 2a 4-1 = 35+ 2= ••• = 20A + 19, b ~ 2m — 1, a — 3m — 1; 
then use x = 4c + 3, etc. Hence x = 232792560B - 1, the least being 
given by B = 1. 

J. L. Lagrange106 determined n so that it shall have given remainders 
N, Nij Nz, • • *, when divided by M, Mh M2l • • • respectively. Let P be 
the l.c.m. of M, M1} M2, * * *; Q that of M, M2} Mh * * * (omitting Mi); 
Qt that of M, Mi, Mz, * * * (omitting M2); etc. Then seek (Lagrange17) 
integers ju, v, /z1? vh * * • such that 

fiQ-vMi-Ni—N, n2Q2-v2Mz=Nz-N, ••• 

99 Angewandte Math, in der Chronologie. 
100 Archiv der Math, (ed., Hindenburg), 2,1745, 206. 
101 The Diarian Repository, or Math. Register, by a Society of Mathematicians, London, 

1774, 306; The Diarian Miscellany, extracted from Ladies’ Diary, London, 2, 1775, 
33-4; Leybourn’s Math. Quest, proposed in Ladies’ Diary, 1,1817, 232-3 

192 Ladies’ Diary, 1735, 33-4, Quest. 175. 
103 A- Miscellany of Math. Problems, Birmingham, 1,1743, 167-8. 

Ladies Diary, 1749, 21, Quest. 296; Diarian Repository ... by a Society of Mathe¬ 
maticians, London, 1774, 501-2; C. Hutton’s Diarian Miscellany, 2, 1775 264-5' Ley- 
bourn’s Math. Quest. L. D., 2, 1817, 2. 

Gontlom^’a Diary, or Math. Repository, 1748; A. Davis' ed., London, 1,1814,154-5. 
M6m. Acad. Roy. Sc. Berim. 23, annde 1767 (1769); Oeuvres, II, 519-20. 
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Then n = XP + N + p.Q + inQi + i±2Q2 + * **, where X is any integer. 
The first of the above set of equations has an infinitude of solutions if Q 
and Mi are relatively prime, but no solution in the contrary case unless 
Nx — N be divisible by the g.c.d. of Q, Mx. 

Lagrange107 noted that the problem is to make Mt + N, Mxu + Nh 
M2x + N2, • • • equal. The general value of t making the first two equal 
is t = Ar + Mim, where A = Nx — N, r is fixed and m is arbitrary. The 
next step is to solve 

M(Ar + M\m) + N = M2x + N2 

for m, x; etc. 
K. F. Hindenburg108 gave a method of “cyclic periods” to find, for 

example, a number x having the remainders 1 and 2 when divided by a = 2 
and (3 = 3. The numbers 1, 2, • • ♦, a are written in a column and repeated 

times; similarly 1, 2, • * •, /3 are written in a second column and repeated 
a times. The given remainders appear in the 5th row; hence x = 5. 

1 1 
2 2 
1 3 
2 1 
1 2 
2 3 

C. F. Gauss,109 to find z with the remainders a and b when divided by 
A and B, solved z = Ax + a = b (mod R), obtaining x = v (mod R/5), 
if 6 is the g.c.d. of A, B. Hence z = Av + a (mod M) is the complete 
solution of the problem, where M = AB/5 is the l.c.m. of A, B, If we add 
the condition that z s c (mod C), we get the complete solution 

z = Mw + Av + a (mod M')} 

where Mf = ABC/de is the l.c.m. of A, B, C, while e is the g.c.d. of M, C. 
We may replace z = a (mod A) by z = a (mod A'), z = a (mod A"), 

• • •, where A'A" - • • = A and A', A", • • * are powers of distinct primes. 
Similarly, let B = R'R"- • •. In case B' = pr, A' = p8, r ^ s, the problem 
is impossible unless b = a (mod A'), while if this is satisfied the condition 
z ss a (mod A') may be dropped. In this way we can derive an equivalent 
set of congruences in which the moduli are relatively prime in pairs and 
proceed as above or as in Gauss76 [due to Euler96]. 

A. D. Wheeler110 noted that the least integer k which has the given 
remainders r,r't • * • when divided by the given numbers d, d', * • • is found 
by reducing (x — r)/d} (x — r')/d', to equivalent fractions with a 

107 M&n. Acad. Roy. Sc. Berlin, 24, ann<*e 1768 (1770), 222; Oeuvres, II, 698. ” 
108 Leipziger Magazin reine u. angewandte Math., 1786,281-324; extr. by Lorentz, Lehrbegriff 

der Math., ed. 2, I, 406-442, and by C. A. W. Berkhan, Lehrbuch der Unbestimmten 
Analytik, Halle, 1, 1855, 124-144. 

109 Disq. Arith., 1801, arts. 32-5; Werke, I, 1863, 23-6; Maser’s German transl., 15-18. 
110 The'Math. Monthly (ed., Runkle), New York, 2, 1860, 410. 
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common denominator and taking a linear combination x — k of the new 
numerators such that the coefficient of x is unity. 

L. Matthiessen111 discussed the Chinese rules in modern form. 
M. F. Daniels69 noted that if a, b, • • • are relatively prime integers, 

x == A (mod a), x = B (mod 6), • • • have the solution 

x = J A + B+-- (mod k = ab-• ■)• 

T. J. Stieltjes112 noted that the congruences x = a (mod A), 
x == x (mod L) have a common solution if and only if a — (3, a — 7, (3 — y, 
... are divisible by (A, B), (A, C), (B, C), ■ * respectively, where (A, B) 
denotes the g.o.d. of A, B. The case in which A, ■ • •, L are not relatively 
prime in pairs can be reduced [Yih-hing79] to the contrary case by writing 
the l.c.m. of the moduli in the form M = A'B' • • -Z/, where A', •••,!/ are 
relatively prime in pairs and divide A, * ••, L respectively. Then any 
solution of the initial congruences satisfies also x = a (mod A'), •••, 
x = X (mod V), "whence x s a (mod M). Conversely, the last x satisfies 
the initial congruences if they are solvable. 

H. J. Woodall113 found numbers with given remainders when divided 
by 3, 5, 7,11, 13. 

J. Cullen114 gave a graphical method to solve x = a (mod P), • • 
x = X (mod L), useful when P, • • •, L are very large. 

G. Amoux115 gave implicitly the theorem that, if mi, • • •, m„ are rela¬ 
tively prime in pairs, M = mx- • *m„, m = Mjm^ and if • • •, am are 
integers such that a^i ss r (mod for i = 1, • • *, n, then a^i + • • • 
+ = r (mod M). Proofs wrere given by C. A. Laisant116 and T. 
Havashi.116 

Articles on the problem of remainders without novelty. 

G. S. Klugel, Math. Worterbuch, 3, 1808, 792-800. 
J. C. Schafer, Die Wunder der Rechenkunst, Weimar, 1831, 1842, Prob. 60. 
H. Kaiser, Archiv Math. Phys., 25, 1855, 76. 
G. Dostor, ibid,, 63, 1879, 224. 
V. A. Lebesgue, Exercices d’analyse numdrique, Paris, 1859, 54-8. 
Szenic, Von der Kongruenz der Zahlen. Progr. Schrimm, 1873. 
A. Domingues, Les Mondes (Revue Hebdom. des Sciences et Arts), Paris, 55, 1881, 62. 
G. de Roequigny, ibid., 54,1881, 304. 
D. Marchand, ibid., 54, 1881, 437. 

Number w of Positive Integral Solutions of ax + by = n, Where 

a and b Are Positive and Relatively Prime. 

P. Paoli117 noted that if ax + by = n has integral solutions, any common 
factor of a and b must divide n and hence can be removed from every term. 

111 Zeitschr. Math. Naturw. Unterricbt, 10, 1879, 106-110; 13, 1882, 187-190. 
111 Annales Fac. Sc. Toulouse, 4, 1S90, final paper, pp. 31-32. 
113 Math. Quest. Educ. Times, 73, 1900, 67. 
114 Proc. London Math. Soc., 34, 1901-2, 323-34; (2), 2, 1905, 138-141. 
m Arith. Graphique, Paris, 1906, 29-31. 
m L’enseignement math., 10, 1908, 220-5; 12, 1910, 141-2. 

Opuscyla analvtiea, Liburni, 1780, 114. In one place in the text and in his example, he 
erroneously took # between — 6/2 and 6/2, instead of positive. 
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Let henceforth a and b be relatively prime and positive. Let p denote 
the least positive integer such that n — ap is divisible by b. Then every 
solution is given by 

„ , , n — aP 
x = p + brtiy y = — ^-am. 

The values of m makings and y positive are 0, 1, • • •, E, where E is the 
largest integer less than (n — ap)l(ab). Thus there are oj = E + 1 sets 
of positive integral solutions x, y. 

P. Barlow118 employed positive integers p, q such that aq — bp = + 1. 
Then all solutions of ax + by = n are given by 

x = nq — mb, y = ma — up. 

Let p] denote the greatest integer 2= t Then 

_ f nql \np~\ 

" lb\ la 1 

or one less according as nq/b is not or is an integer. In fact, m must be 
less than nq/b and > npja to make x and y positive. 

Libri27 expressed w as a sum of trigonometric functions. 
C. Hermite119 employed the integers 

- n , 

Then every positive integral solution of ax + by = n is given by 

-m-m+ra 
where £, 7? take the oj + 1 sets of integral values ^ 0 which satisfy £ + 17 = <0. 

Here oj is such that n(i} = wab. Thus if r is the greatest integer ^ n/(ab)} 
and n ~ rah + v, then « = r or r+1, according as ax + by — v has 
positive integral solutions or not. 

M. A. Stern120 gave Barlow's118 result. 
A. D. Wheeler121 noted that if ax+by = c has the least positive solution 

x = v, it has the solutions x = v + b, etc., and hence n positive solutions 
if c > nab. The least and greatest values of c for n positive solutions are 
(■n — l)a& + a + b and (n + 1 )ab. If c = nab there are exactly n — 1 
solutions. If c = nab + ax' + bythere are n + 1 solutions. 

118 Theory of Numbers, London, 1811, 324. 
119 Quar. Jour. Math., 1, 1855-7, 370-3; Nouv. Ann. Math., 17, 1858, 127-130. Oeuvres, 

I, 440. Cf. Crocchi.136 
1?° Jour, fur Math., 55, 1858, 210. 
181 The Math. Monthly (ed., Runkle), New York, 2, 1860, 56, 193-4. 
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J. J. Sylvester122 stated two theorems on the number (n; a, b) of positive 
integral solutions of ax + by = r for the values r = 0, 1, • • *, n: 

(u) aj b) — \k(kab -j- a -}- b -j~ 2nr — 1) -f* (u'\ a, b), 

if k and n' are positive integers for which n + 1 = kab + n'; 

(p;a,5) = (p';a', V) v < ab, v = 

where a1, V are positive integers such that ah' — ha' = 1, a' < a, bf < b. 
E. Catalan123 made use of the known fact that the solutions of 

ax + by = n 

are x = a — bd, y = (3 + a8, if a, $ is one set of positive integral solutions. 
Let a, b, n be positive. Then the positive solutions have 6 < a/b, 8 > — j0/a, 
which are equivalent to 8 < aa/(ab), 8 > (act — n)i(ab). Hence oj = [n/a&] 
or [n/ab]+l. Writing n — abq-\-n', Q^n' <ab, he proved that ax+by~n 
has q + l or q positive solutions according as ax' + by' = n' has a positive 
solution or none. 

C. de Polignac124 remarked that ax + by — n may be solved graphically 
by means of a lattice whose initial rectangle has the base a and altitude b 
He concluded that, if r = [ji/ab]|, co = r if the remainder obtained by 
dividing n by ab is < b[3, where is the least positive y, while to = r + 1 
in the contrary case. 

E. Catalan125 stated and E. Cesaro proved that, if we count the integral 
solutions ^ 0 of each of the equations x + 2y = n — 1, 2x + Zy = n — 3, 
3x + 4y = n - 5, • • *, the total number of solutions equals the excess of 
n+2 over the number of divisors of n+2. For, px-\-{p+l)y — n — (2p—1) 
has 

r-f1]-[?£]- 
solutions ^ 0, where e = 1 or 0 according as p + 1 is or is not a divisor 
of n + 2. 

E. Ces&ro stated and J. Gillet126 proved that if we count the integral 
solutions ^ 0 of each of the equations x + 4y = 3n - 1, 4x + 9y = 5n ~ 4, 
9z + 16j/ = 7n — 9, • • •, the total number of solutions is n. 

E. Catalan stated and E. Cesaro and H. Schoentjes127 proved that if 
we count the integral solutions ^ 0 of each of the n + 1 equations 

1:2 Comptes Rendus Paris, 50, I860, 367; Coll. Math. Papers, II, 176. 
123 Melanges Math., 1868, 21-23; Mem. Soc. Sc. Li&ge, (2), 12, 1885, 23 (Melanges Math. I). 

Mathesis, 10, 1890, 220-2. 

124 Bidl. Math. Soc. France, 6, 1877-8, 158. E. M. Laquiere, ibid., 7, 1878-9, 89, simplified 
Polignac’s work. A resume of both is given by S. Gunther, Zeitschr. Math. Naturw. 
Unterricht, 13, 1882, 98-101. 

12>Nouv. Ann. Math., (3), 1, 1882, 528; (3), 2, 1883, 380-2. 
156 Mathesis, 2,1882, 208; 5, 1S85, 59-60. 
127 Ibid., 2,1882, 158; 3,1883, 87-91. 
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x + 2y = n, 2x + Zy = n — 1, • • •, (n + l)x + (n + 2)y = 0, the total 
number of solutions is n + 1. 

Ces&ro128 proved the last theorem with n replaced by n — 1, by showing 
that p(x + y + l)+y~n has exactly Np - [n/p] — [nf(p + 1)] in¬ 
tegral solutions ^ 0. Also, 

Np + Np+1 4* • * • + Nn = ["-1 , 

while A'i + Nz + iV5 4- • * * equals the difference between the number of 
odd divisors and the number of even divisors of 1, 2, • • •, n. The number 
of integral solutions ^ 0 of x + 2y = 2(n — 1), 2x 4- 3y = 2(n — 2), • • •, 
nx + (n + l)y — 0 is the number of non-divisors of 2n -f 1. As a general¬ 
ization, px + (p + 1 )y ~ k{n — p)} for p = 1, • • *, n, have 

M = M i +-hln 

integral solutions ^ 0, where Mv = [fcn/p] — [(&n + h — l)/(p + l)]is the 
number of solutions of the equation written; for k = Z} M equals the sum 
of the numbers of divisors of 3n + 1 and 3n + 2. [The preceding results 
are special cases of a formula given by Lerch in 1888; cf. Gegenbauer,29 
p. 227 of Vol. I of this History.] As a generalization of Catalan's127 
theorem, the total number of integral solutions = 0 of 

(1 + jk)x + (1 + j + 1 k)y = k(n - j - 1) (j = 0, 1, • • •) 

is n. Given a set x — — a, y = 0 of integral solutions of ax + by — n, 
the number of integral solutions ^ 0 is [/3/a] — [(a — !)/&]. 

Consider a set uu uo, • • • of positive integers each prime to the term 
following it. Let vh v2) • • • be integers and determine a series of wys by 

Wp = VpUp+i - (1 + Vp+i)up. 

If wr is the first negative term, the total number of integral solutions = 0 of 

UpX + up+1y = wp (p = 1, • • •, r - 1) 

is — [tv/ttr], since the equation written has [vp/uP2 — [^P+i/^P+i] 
solutions ^ 0. The case vp ~ n, up = p2, gives the result of Ces&ro.126 

He quoted (p. 273) from a letter from Hermite the result that 

["^]+[=^6]+["^] + ■ •=M+[”^] ^ • 
each member being the number p of sets of positive integers for which 
ax -f- by ^ n. Henceforth, let a and b be relatively prime. Then the 
number of integral solutions ^ 0 of ax + by — n is known to be 
Nn = [n/a&] + r, where r = 0 or 1. Ces&ro noted (p. 278) that r — 1 if 
the remainder R obtained by dividing n by ab is of the form pa 4- <4>, 
where p, a are integers ^ 0, and r = 0 in the contrary case [Catalan123]. 
This theorem, which may be expressed in the form Nn — NR — [n/a6], is 

“* M&n. Soc. Roy. Sc. de LiSge, (2), 10, 1883, 263-283. 
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proved in two ways, one by use of a geometric process communicated to 
him by Lucas: Given one point on the line ax + by ~ n with integral 
coordinates S 0, it is easy to find all such points. If M is the point with the 
maximum abscissa, we get a second point M' by subtracting b from the 
abscissa of M and adding a to the ordinate of M. From Mf we obtain 
similarly a new point, etc. 

Ces&ro stated and N. Goffart129 proved that the total number of integral 

solutions = 0 of 

X 4. iy = 3(n -1), Ax + 9y = 5(n — 2), 9x + 16y = 7(n — 3), ••• 

is n. 
J. Gillet130 stated that the sum of the numbers of solutions of 

pmx + (p + 1 )my = {(p + l)n - pm}n “ vm (p = 1, • • •, n) 

is n, a generalization of the theorems by Ceshro126 and Catalan.127 

E. Lucas131 proved Catalanos123 result and added the remark that there 
are |(a - 1)(& — 1) values of his n' for which ax + by = n' has no solutions 
s 0. In the continued fraction for a/b, let be the convergent of rank 

Ti — l immediately preceding a/b. Then, writing r for n', we have the 
solution xq = (— l)nrjS, yQ = — ( — l)nra: of ax + by = r. The sum of 
the squares of the values x = xQ + bt, y — yo — at, giving the general 
solution, is a minimum for t — s/(a2 + b2), where s = (— l)n~l(aot + b(3)r. 
Let pi be the least positive remainder and — p2 the greatest negative 
remainder when s is divided by Jc = a2 + b2. Then the sets of minimum 
solutions are given by 

kxi = ar - bph kyi = br + apu kx2 = ar + bp2, ky2 = br — ap2. 

In only one of the sets are the unknowns ^ 0. Hence ax + by = r is 
solvable in integers ^ 0 if and only if one of ar — bpi and br — ap2 is not 
negative. 

E. Catalan132 showed by an example that Lucas1 last method requires 
long computations. He noted (ibid., 241-3) that, if a(ri) denotes the 
number of integral solutions ^ 0 of px + qy = n, 

, 9p« — 1 

1 + 2«(1) + 22u(2) -\-+ 2™-r-*u(pq - p - q) = (2p - l)(2« - 1) * 

A. S. Werebrusow133 noted that oj = (n — bft — aa)/ab, if ft is the least 
positive y, and a the greatest negative x. 

L, Salkin134 employed the argument of Catalan123 to show that u = q or 
g + 1, according as d s 6! or d > d\ where, if — l, m is one set of solutions, 
d = Ijb - [Z/6], d' = m/a — [mid]. 

m Nouv. Ann. Math., (3), 3, 1884, 399, 539-40. 
1,0 Mathesis, 6, 1886, 32. 

m Mathesis, 10,1890,129-132; Th6orie des nombres, 1891, 479-484: Jour, de math. sp6c., 
1886,20-22. 

m Mathesis, 10,1890,197-9. 
1X8 Spaczmski's Bote Math., Odessa, 1901, Nos. 298, 299. 
w Matheas, (3), 2,1902,^107-9. 
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V. Bernardi135 would find the positive integral solutions of ax + by = k 
by employing the remainders r\, r” and quotients q[, q\' obtained on dividing 
k — b by a and k — a by b. Thus 

axi + byi = hi, ki ~ k — a — b — r[ — r[\ 

Similarly, ax2 + by2 = fa, • • •, axm + bym~ k« = km~i — a — b — r'm — r", 
where rm, r" are the remainders and qm, qZ the quotients obtained on 
dividing km~i — b by a and km-1 — a by 6. In this way we find a value 
u of m such that a zero remainder results from that one of the two divisions 
in which the divisor is the smaller of a, b, or such that the remainder from 
the other division is zero or is divisible by the smaller coefficient. Then 
fa is divisible by the larger or the smaller of a, b in the respective cases. 
The positive integral solutions with fa divisible by a are 

xu = fa/a — rib, yu = na (n = 0, 1, • • •, [fc/a&]). 

Then all positive integral solutions of the given equation are 

x = (- l)uxu + q[ — q'2 + • • * + (- 

y = (- l)uVu + q" - q* + * • • + (- 
Cf. Hermite.119 

L. Crocchi136 noted that Hermite’s119 formulas do not give merely the 
integral solutions. Thus, if n < a, n < b, they give x = =h b%, y = ± ay, 
£ + v = =b n/(ab), which lead to fractional solutions of ax + by = n. 
Crocchi therefore transformed Hermite’s formulas so that the resulting 
formulas give merely positive integral solutions. Set 

n = ^Ja + r = J b + s, ri = n — r—s} ?i' = ^Ja+r', 

Then 

i_ r^i r—i=r~i -r-i 
a La J a LaJ LaJ a * LaJ LaJ La _]+’ 

where [’s/a]+ is the quotient by excess of s by a. Similarly, 

KH;Ha-EL- 
Taking alternate signs and adding, we get, for m even, 

Atti society italiana per il progreseo delle ecienze, 2,1908, 317-8. 
w II Boll, di Matematica Gior. Sc.-Didat., 7, 1908, 229-236. 
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and, for m odd, 

Then x = x' + (- l)m+1&f, y = yf + ( — 1)™+Ia?7, £ + v = n(m)/(ab). 
L. Crocchi137 noted that, if in Hermite’s119 process we have reached the 

dividend n(p) = aQ + rp = bQ' + r'P) then n(p'hl) = n(p) — rp — r'P. For 
example, consider 5x + lly = 488. 

Residues Quotients 

Dividends by 5 by 11 by 5 by 11 

488 3 4 97 44 
481 1 8 96 43 
472 2 10 94 42 
460 0 9 92 41 
451 1 0 90 41 
450 0 10 90 40 
440 0 0 88 40 

Here 481 = 488 — 3 — 4, etc. Thus 

x' = 97 - 96 + 94 - 92 + 90 - 90 + 88 = 91, 

yf = 1 + 1 + 1 + 40 = 43, x = 91 — 11m, 

y = 43 - 5n, m + n = 440/(5-11) = 8. 

To find %' more readily, use the second, fourth and sixth entries 8, 9, 10 
in the third column and set 

Similarly, from the second column, y* = 44 - 1 - 0 - 0 = 43. But if the 
number of operations had been even, we would have used Ih J3, J6. 

L. Rassicod,138 V. A. Lebesgue,139 G. Chrystal,140 L. Aubry141 and E. 
Ceshro142 evaluated a by known methods. Of. Laguerre91 of Ch. III. 

137II Pitagora, Palermo, 15,1908-9, 20-33. — 
138 Nouv. Ann. Math., 17,1858, 120-7. 
139 Exercices d’analyse numdrique, 1859, 52-3. 
140 Algebra, 2,1889, 445-9; ed. 2, vol. 2, 1900, 473-6. 
m L’enseignement math., 9, 1907, 302. 
112 M&n. Soc. Roy. Sc. de Liege, (3), 9, 1912, No. 13. 
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G. B. Mathews142® proved that, if ^(n) is the number of positive integral 
solutions of x + y = n in which Sx ^ 4y, 2x ^ 7y, then 

2f(n)xn = (1 + z3 + • • • + xl*)/{ (1 - x7)(l - x9)}. 

For the problem in n instead of two unknowns, see Ch. III. 

One Linear Equation in three Unknowns. 

T. F. de Lagny10 (p. 595) treated py = ax + z by giving values to z 
which are the successive multiples of the g.c.d. of p and a. The methods of 
de Paoli62 and Mac Mahon48 were given above. 

Several143 found the 12 sets of positive integral solutions of 

10a + ID/ + 12z = 200. 

L. Euler144 treated Aa + Bb + Cc = 0. For example, 

49a + 596 + 75c = 0. 

Divide by 49 and set a + 6 + c = d. Thus 106 + 26c + 49d = 0. Di¬ 
vide by 10 and proceed as before. We ultimately get all integral solutions: 

a - - 8c - 7/, 6 = 13c + 2/, c = 3/ - be. 

P. Paoli145 solved 5x + Sy + 7z = 50 by successive substitutions: 

x + y = t, bt + 3?/ + 72 = 50, 

y + t = tr, 3 i! + 2t + 7z = 50, 

t + t' = 21" + H + 7z = 50. 

Since a coefficient is now unity, the solution is evident. 
A. Cauchy146 proved that every solution of ax + by + cz ~ 0 is given by 

x — bw — cv, y — cu — aw, z = av — bu, 

if the g.c.d. of a, 6, c is unity. 
V. Bouniakowsky147 proved Cauchy’s146 result by solving 

ax + by + cz = 0, a'x + Vy + c'z = h', a"x + b"y + c"z = h", 

the two adjoined equations having arbitrary coefficients. Then 

x = bw — cv, 

etc., where u = {a!h!t — h'a")/As etc., A being a determinant of order 
three. 

142a Math. Quest, and Solutions, 6, 1918, 62-64. 
143 The Gentleman's Diary, or Math. Repository, 1743; Davis’ ed., London, 1, 1814, 45-7. 
144 Opus, anal., 2, 1785 [1775], 91; Comm. Arith. Coll., II, 99. 
145 Elementi d'Algebra di Pietro Paoli, Pisa, 1, 1794, 162. 
148Exercices de math., 1, 1826, 234. Oeuvres de Cauchy, (2), 6, 1887, 287. Extr. by J. A. 

Grunert in Archiv Math. Phys., 7, 1846, 305-8. 
147 Bull. Acad. Sc. St. P^tersbourg, 6, 1848, 196-9. 
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Y. A. Lebesgue148 noted that, if the g.e.d. of a, 6, c is unity, all solutions of 

(1) ax + by + cz = d 

are given by 

x = dad + cau -f vb/D, y = <3/35 + cj3u — va/D, z = dy — Du, 

where u and v are arbitrary, aa + 6/3 = D, D being the g.e.d. of a, b, and 
DS + cy = 1. 

H. J. S. Smith149 stated that if a, b, c and a', 6', c' are two sets of solutions 
of Ax + By + Cz = 0, where A, B, C have no common divisor, the com¬ 
plete solution is 

x = at + a’u, 1/ = bt + b'u, z = ct + c'tt, 

if and only if there is no common divisor of 

6c' — 6'c, ca! — ac', abf — a'6. 

A. D. Wheeler150 treated (1) by taking 1, 2, • • • for z until we reach a 
value for which axx + byi = d — cz < a + b and hence is not solvable. 
By simplifying this method, he found the number of solutions. 

L. H. Bie151 expressed the general solution of (1) in terms of the residues 
of d — pc modulo 6. 

C. de Comberousse152 employed the g.e.d. 6 of a, 6. Let the g.e.d. of 5 
and c divide d. Then d cz = 86 has an infinitude of solutions z, 6. For 
each 6, xa/5 + yb/8 — 6 has an infinitude of solutions. If a, p, y is one set 
of solutions of (1), every solution is given by 

x = a —bd + cdf, y = p + ad + cQ", z = y ~ a6' — 65" (5, 5', 5" arbitrary}’. 

A. Pleskot153 treated (1) by continued fractions? 
While in various books154 on algebra the solution of (1) involves three 

parameters, that by G. M. Testi155 involves only two. Let the greatest 
common divisor 5 of a and 6 be prime to c. Then 

a , 6 
+ -y = t, 8t + cz = d. 

The second has the general solution t0 — c<f>, z0 + 8<j>, if t0) z0 is one solution. 
All solutions of the first are given by x = xQt - 56/5, y = y0t + dal8f if x0, 
Vo is a solution of 

a . b 
__r + 5^1- 

148 Exercices d’analyse mim&rique, Paris, 1859, 60. 
“■Bn*5* Report, 1860, II, 6; Coll. Math. Papers, I, 365-6. 

Matt* Monthly (ed., Runkle), New York, 2, 1860,407-410. 
m Tidsskrift for Mat., 2,1878, 168-78. 
141 Algfebre sup&ieure, 1,1887, 179-183. 
153 Casopis, Prag, 22, 1893, 71. 

i8so: transi-by e- Bwti- Fi°rence>i862-28s- 
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Thus (1) has the solution a = x0to, p = yQtQ) y = z0, and also 

x = a — cxo4> — Objh, 

y = p ~ cyQ<f> + 6a/8, 

z ~ y 8<f>. 

The latter give all integral solutions of (1) when <f> and 6 take all positive 
and negative integral values and zero. A like result was given by F. 
Giudice.156 

*H. Ruoss157 showed graphically how to find those values of x, y, z in 
(1) which satisfy certain restrictions, e.g., are all positive. 

One Linear Equation in n > 3 Unknowns. 

Brahmegupta2 and BMscara5 assigned values to all but two of the 
unknowns. 

T. Moss158 tabulated the 412 sets of positive integral solutions of 

17v + 21® + 27 y + 362 = 1000. 

C. F. Gauss159 noted that, if the constant term is a multiple of the 
g.c.d. g of the coefficients of the unknowns, then g is a linear function of 
those coefficients, and the equation is solvable in integers. 

V. Bouniakowsky147 would solve ax + by + cz + du = 0 by adjoining 
three equations a'x + • • • = h', etc., and solving the system. The general 
solution of the given equation is thus 

x — dp — eg + hr, z — dr' — bq' + aq, 

y = — dp' + cq' — ar, u = — cr' + bp' — ap, 

where p, q, r, p', q'} r' are arbitrary. He gave a like result for five unknowns 
and outlined the law for n unknowns. Y. Schawen160 gave the same method. 

* B. Jaufroid161 assumed that there is no common divisor of a, • • *, m in 

(1) ax + by + cz.+ • • • + + n — 0. 

First, let a and b be relatively prime. Then 

a A. “f* bA% *4" c == 0, • • •, aL -j- bLi -j- rti = 0, aM -f- bM\ -f* ti == 0 

are solvable for A, Ai, • • *, so that (1) is satisfied by 

x = Az + Bv + • * • + Lu + M — bt, 

y = AiZ -f* • * * ”j~ Lyty Mi -f* at. 

Second, let 5 be the g.c.d. of a, b and let 6 and c be relatively prime. Set 
a = ai5, b = M, and 
(2) _aix + &i y = p-_ 

154 Giomale di Mat., 36, 1898, 227. 
187 Korresp. Bl. f. d. hoheren Schulen Wiirttembergs, Stuttgart, 9, 1912, 481-4. 
188 Ladies’ Diary, 1774, 35-6, Quest. 658; T. Leybourn’s Math. Quest. L. D., 2,1817,374r-6. 
189 Disquisitiones Arith., 1801, art. 40; Werke, I, 32. 
180 Zeitschr. Math. Naturw. Unterricht, 9,1878, 111-8. 
181 Nouv. Ann. Math., 11, 1852, 158. 
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Then (1) becomes bp + cz + • • • 4* mu + n = 0 and is satisfied by 

z _ LiU + + btj p — B$v + • • • + LzU + Ms — ct. 

For these values, (2) becomes a& + by - Bzv - • • • = 0. Thus by the 
first case we obtain solutions x, y, z in terms of v, • • •, u, t, t'. A similar 
method applies when the g.c.d. of &} 6, c is prime to d, etc. 

V. A. Lebesgue162 noted that if a and b are relatively prime, we may set 
aa -f bp = 1; then the general solution of (1) is 

x = Qa + bw, y = QfS ~ aw, Q = - n - cz - ••• - mu. 

But if no two of the coefficients are relatively prime, proceed as for 

fliXi + • • • + a&s = a6. 

Set Ax = au and let A* be the g.c.d. of ah • • *, at for i = 2, * • •, 5. Remove 
from Oe the necessary factor A5, so that now A5 = 1. Determine integers 
a;, Pi such that A fit + 0*+ ica+i = Ai+1 (i = 1, • • •, 4). Solve each of 
Ai_it/i-i + atxt = Atyt (i = 2, 3, 4), where y1 = xh and AAy± + a^xs = a6. 
Thus 

i/i-1 = Pi-iyt + ZidtlAi, i/4 = A«6 + G&Z6, 

Xt = a%yt - z,Ai_i/At-, x5 = a$OQ - A425, 

for i = 2, 3, 4. Eliminating the y’s, we get x1} * • *, x5 in terms of the 
parameters z2f • • *, Zs- 

E. Betti154 gave without proof a formula for the integral solutions of 
OiXi -|-+ anxn = a, where ah • • •, an have no common divisor, and 

• • •, an is a particular set of solutions: 

Xi = + U202 + 0303 + ''**• 4“ (In-lOn-l + 0n0»j 
x2 = a2 — 0i02 + afis + * • • + an-i^-i + an0l, 

X3 = as — 0103 “ 0203 4" * * * 4" 0n-10n-l 4" 0>n^n j 

Xn—1 = 1 010n—1 ' 020n—1 —•••—- (Zn—20»—1 ^ 4"* 0»0» > 
xn = an ~ afin ~ 020n — • • • — an_20f« 3) f- 0n—i0$T 2\ 

o 
where the n(n - l)/2 numbers are arbitrary. FVGiudiee156 proved that 
every solution is of this form and gave a method (based upon equations in 
two variables) of obtaining the general solution in terms of n — 1 para¬ 
meters. 

C. G. J. Jacobi183 treated in several ways the solution of 

«i*i 4* U2X2 + • • * + <xnxn = fu, 

where / is the g.c.d. of ah • • *, an. Let [a, be the g.c.d. of a, b. One 
obtains easily all solutions of 

+ <*2X2 = /22/2, /2 = D*i, a2], 
hy2 4* 0:3X3 = fzyz, /3 = [/2, a3], 

_ 4* 0:4X4 = fAyA, fA = [/3, 04], * • *. 

Exercicea d’an&lyse num^rique, 1859, 58. 
183 Jour, fiir Math., 69,1868,1-28; Werke, VI, 355-384 (431). 
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Adding, we get the given equation since fn = /. His second method con¬ 
sists in treating these equations taken in reverse order, after each is divided 
by the /* in the second member. He noted that the method of Euler144 

is applicable also to Aa + Bb + Cc = u. 
K. Weihrauch164 denoted by E{M : N) the integral part obtained on 

dividing M by N, and by R(M : N) the remainder. Thus [if Ai + 0] 

(3) Axxi + A2x2 + • * • + Anxn = A 
gives 

X\ = E{A : Ai) —* x2E{A2 : Ax) — . • * — xnE(An : Ai) + t\, 

: ^ ~ ~ ' ‘' ~ '■ ^i)}• 

Treating the latter similarly, we get x2. Finally, we get a relation between 
xn-i, xn, whose solution involves a new parameter £n-i* Thus 

(4) Xi = Mi + anti + • • • + a»n_i^n-i — 1, * * *> ft), 

in which Mi, • • *, Mn is a set of solutions of (3), and 

Aidiy "h A2a2j *4~ * • • A" AnCt«y ==: 0 ^ 1, • • — 1). 

The condition that (4) shall give all solutions of (3) is 

I an I = ±1 (i = 2, • • •, «; j = 1, • • •, n - 1), 

where the symbol denotes an (n — 1)-rowed determinant. 
T. J. Stieltjes165 reduced axxx + **.* + an+Xxn+i = u to an equation in 

one variable. If X = (ai, a2) is the g.c.d. of ah a2) we can find relatively 
prime integers a, y such that axa + a2y — X. Taking (3 — — a2/X, 
5 = ai/X, we have ad — (3y — 1. Set 

xx = axl' + px2, x2 = yxl + 5x2. 

Then the initial equation is equivalent to 

(ah a2)x[ + <23X3 + • • • + an+iXn+i = u. 

Similarly, we can replace the first two new terms by (ah a2, a3)xetc., and 
finally get dxf = u, where d = (a1} • • •, an+x) is the g.c.d. of a1} • •, 
Giving to X2, • • •, xn+1 all sets of integral values, we get all solutions of the 
initial equation if it be solvable, viz., if u be divisible by d. A system of 
n independent sets of solutions is fundamental (Smith207) if the g.c.d. of 
the n + 1 n-rowed determinants is unity. 

W. F. Meyer166 solved (3) by use of recurring series obtained by simplify¬ 
ing and extending C. G. J. Jacobi’s167 generalized continued fraction 
algorithm. 

144 Untersuchungen liber eine Gl. 1 Gr., Diss. Dorpat, 1869. Zeitschrift Math. Phys., 19, 
1874, 53. 

144 Annales Fac. Sc. Toulouse, 4,1890, final paper, pp. 38-47. 
164 Verhand. des ersten Intern. Math.-Kongresses, 1897, Leipzig, 1898, 168-181. 
147 Jour, fiir Math., 69, 1868, 29-64; Werke, VI, 385-426. 
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H. Ayza168 treated ax + by + cz + du + • • * = k by means of 

ax + by = hi, cz + du = k2, * • •, hi = k — k2 — fa — • • •, 

where k2) h, • • • are arbitrary. For m linear equations in m + n variables, 
successive elimination gives one equation in m + n variables, one in 
mn-n — l variables, • • •, one inn -f 1 variables, which is solved as above. 

A. P. Ochitowitsch169 treated = 0. If ap, aq are relatively prime, 

yp = zaq + ryp) yq = - zap + ry'q, apyp + aqyq + 1 = 0, 

where r = 2a#* for i + p, g. For <Zi = p”11- • -p^, where pi, • • •, p» are 
distinct primes, a set of solutions of 1 + aia^ + a2x2 = 0 is given by 

Lt-MlV1 ( 1 + ( 1 + Q2PlP2- • -Pn-l^n 

where zi, • • •, zn are to be chosen to make the indicated fractions integral. 
E. B. Elliott170 recalled the fact that all sets of positive integral solutions 

of a linear diophantine equation in n variables are linear combinations of 
a finite number of “ simple ” [fundamental] sets of solutions (au * • *, an)} 

•••, (a>i, *•*, «») and that a linear combination of these simple sets is 
always a solution. He noted that two such combinations may give the 
same solution since the simple sets are usually connected by syzygies. 
For example, the three simple sets (103), (230), (111) of solutions of 
3x = 2y + z are connected by the syzygy (103) + (230) = 3(111), so that 

x = ti + 2U + U, y = Oh + 3/2 + t*, z = 3*! + 012 + U 

give duplicate solutions unless we restrict ts to the values 0, 1, 2. In this 
sense, he obtained formulas giving each solution of an equation in n variables 
once and but once, making use of generating functions. 

G. Bonfantini1'1 noted that, if a, •••, Z, k have no common factor, 
ax + by + • • * + lu = k has integral solutions if and only if a, • • •, l 
have no common factor. 

Several172 found all positive integral solutions of 

13 k + 211 + 29m + 37?z = 300. 

* P. B. Villagrasa173 treated (3). 
D. N. Lehmer173a proved that (3) with A = 1 is satisfied by the co¬ 

factors of the elements of the last row of a certain determinant of value 
unity, those elements being any integers whose g.c.d. is 1. The general 
solution of (3) is deduced. 

1M Aichivo de Matematicas, Madrid, 2, 1897, 21-25. 
169 Text on linear equations, Kasan, 1900. 
170 Quar, Jour. Math., 34,1903, 348-377. 
171II Boll, di Matematica, Gior. Sc. Didattico, 3, 1904, 45-47. 
17* Math. Quest. Educ. Times, 7, 1905, 21-22. 
m Revista de la Sociedad Mat. Espanola, 3, 1914,149-156. 
173a Proc-Nat- Acad. Sc., 5, 1919, 111-4; Amer. Math. Monthly, 26,1919, 365-6. 
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Since the problem to solve n = ax + by + • • • in positive integers is 
the same as to partition n into parts a, b, • • •, reference should be made to 
Ch. Ill, in particular for theorems on the number of solutions. 

System of lineab equations. 

Chang Ch’iu-chien174 (sixth century A.D.) treated a problem equivalent 
to 

x + y + z = 100, 5x 4* Sy + \z = 100, 

and gave the answers (4, 18, 78), (8, 11, 81), (12, 4, 84)% 
Mahaviracarya175 (about 850 A.D.) treated special cases of 

x + y + z + w = n, ax + by 4* cz + dw = p. 

Shodja B. Aslam176 (about 900 A.D.), an Arab known as Abu Kamil, 
found positive integral solutions of x + y + z = 100, 5x + y/20 4* z = 100, 
whence y = 4x + 4a:/19, x = 19; x + y + z = 100 = $x + \y + 2z, 
whence x = 60 — 9y/10, y = 10 m, 771 = 1, • • 6; 

x + y + z + u = 100, 4x 4- fay + \z + u = 100, 

whence x — fay + \z, with 98 sets of solutions (two of which are omitted). 
When the last equation is changed to 2x + iy + \z + u = 100, there are 
304 sets of solutions. There is no solution of 

x + y + z = 100 = 3x + y/20 4* iz. 

There are 2676 sets of positive integral solutions of 

x + y + z + u + v= 100, 2x 4- \y 4- \z 4- \u 4- v - 100. 

Alhacan Alkarkhi177 (eleventh or twelfth century) treated the system 

\x + v> = \s, f y 4- w = %z + w = %s, (X Zf z \ 

2+ 3+ 

by taking z = 1, whence x = 33, y = 13. He treated the problems of 
Diophantus I, 24-28, as had Diophantus, by making the indeterminate 
problems determinate by assigning a value to one unknown. 

Leonardo Pisano/78 in 1228, treated various linear systems, the first 
being that of Alkarkhi177 without the final condition: 

. . , t x . t 2y t 5z 
x + y + z = t, ~2=~2 + u, g-j + tt, 6=6+M- 

174 Suan-ching (Arith.). Cf. Mikami,71 43-44. 
176 Ganita-Sara-Sangraha.3 Cf. D. E. Smith, Bibliotheca Math., (3), 9, 1909, 106-10. 
1V#H. Suter, Bibliotheca Math., (3), 11, 1911, 110-20, gave a German transl. of a MS. copy 

of about 1211-8 A.D. 
177 Extrait du Fakhri, French transl. by F. Woepcke, Paris, 1853, 90, 95-100. 
178 Scritti di L. Pisano, 2, 1862, 234-6. Cf. A. Genocchi, Annali di Sc. Mat. e Fis., 6, 1855, 

169; O. Terquem, ibid., 7, 1856, 119-36; Nouv. Ann. Math., Bull. Bibl. Hist., 14, 1855, 
173-9; 15, 1856, 1-11, 42-71. 
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These determine x, y, z, t in terms of u. Since 71 = 47u, he took u = 7, 
whence t = 47, x = 33, y = 13, 2 = 1. His next indeterminate problem179 is 

t + X! = 2(x2 + 3s), t + xz = 4(34 + 3l)» 

t + x2 = 3(33 + 34), t + Xi = 5(3i + 3a). 

Since the problem is impossible if xx and x2 are positive, change 3i to — X\. 
Now 32 *= 43X. Take x2 = 4, whence 3X = x3 = 1, 34 = 4, t = 11. 

For180 3 + y + z = 30, fx + \y + 2z = 30, we have p + 102 = 120, 
y + z < 30, 2^9. The case 2 = 10 is impossible. For z = 11, we get 
y = 10, x — 9. The same problem with the constant term 30 replaced 
by 29 pr 15 is treated similarly. 

Finally,181 consider the system 

x+y + z + t = 24, 5 + !+2, + 3* = 24. 
o o 

Hence 2p + 27z + 42t — 288, y + z + t < 20. Thus z is even and < 10. 
The cases z = 6, z = 8 are impossible. Thus there are only two solutions: 

2 = 2, t = 5, y = 12, 3 = 5; 2 = 4, t = 4, y — 6, 3 = 10. 

Regiomontanus (1436-1476) proposed in a letter (cf. de Murr,86 p. 144) 
the problem to solve in integers 

3 + y +2 = 240, 97x + my + 32 = 16047. 

J. von Speyer gave the solution 114, 87, 39 (de Murr, p. 167). 
Estienne de la Roche182 treated the solution in integers of 

3 + y + z = a, mx + ny + pz = b. 

His rule [applied to the case a = b = 60, m = 3, n - 2, p = ^] is as follows. 
Let p be the least of m, n, p. From the second equation subtract the 
product of the first by p; we get 

(m - p)x + (n — p)y = b — ap [fx + fp = 30]. 

To avoid fractions, multiply by 2. Thus 5x + 3y = 60. Although 
x = 60/5 gives an integral solution, the corresponding y is zero and is 
excluded. The next smaller values 11 and 10 for x lead to fractions for p, 
while 3 = 9 gives y = 5 [whence z = 46]. For 3 = 1,2, • • •, the least x 
yielding an integer for y is x = 3, whence y = 15, z = 42. The problem 
may be impossible, as shown by the case a = b = 20, m = 5, n = 2, p = b 
whence 9x + 3p = 20. 

179 Scritti, II, 238-9 (De quatuor hominibus et bursa). Genocchi,178172-4. Three misprints 
in the account by Terquem. 

180 Scritti, II, 247-8 (De auibus emendis). Genocchi, 218-22. For analogous problems, 
see Liber Abbaci, Scritti, 1,1857, 165-6. 

181 Scritti, II, 249 (Item passeres). Genocchi, 222-4. 
182 Larismetique & Geometrie, Lyon, 1520, fol. 28; 1538. a. L. Rodet, Bull. Math. Soc. 

France, 7,1879,171 [1623. 
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Luca Paciuolo183 treated the solution of 

p + c + 7r + a = 100, fp + §c 4- 7t + 3a = 100, 

giving the single solution p = 8, c = 51, t = 22, a = 19. Many solutions 
were found by P. A. Cataldi.184 

Christoff Pudolff185 stated the following problem. To find the number 
of men, women and maidens in a company of 20 persons if together they 
pay 20 pfennige, each man paying 3, each woman 2 and each maiden 
The answer is given to be 1 man, 5 women, 14 maidens. [The only solu¬ 
tion of x + y + z = 20, Zx + 2y + \z = 20 in positive integers is x = 1, 
y = 5, z = 14.] The solution is said to be found by the rule called Cecis 
or Virginum. 

C. G. Bachet de M6ziriac186 solved in integers the system of equations 

x + y + z = 41, 4x + 3y + \z = 40. 

Multiplying the second by 3 and subtracting the first, he obtained 
llx + Sy = 79. Since y = 9| — lfx, x must have one of the values 1, 
• • •, 7. By the value of 8z in terms of x, 1 + Zx must be divisible by 8. 
Hence x — 5, so that y = 3, z = 33. He treated RudolfTs185 and a similar 
system and found 81 sets of positive integral solutions of 

x+y+z+w^ 100, Zx + y + \z + = 100. 

J. W. Lauremberg187 described and illustrated by examples the rule called 
Cecis [Coeci] or Virginum188 for solving indeterminate linear equations, 
referring to the Arabs [although known to the Indians]. 

Ren6 Frangois de Sluse189 (1622-1685) treated the problem to divide a 
given number b into three parts the sum of whose products by given 
numbers z, g, n shall be p. Call the first and second parts a and e. Then 

za + ge + n(b — a — e) = p, a = 
p — nb + ne — ge 

z — n 

Take p = b = 20, z — 4, g — n = Then a = (60 — e)/15. 
Johann Pratorius190 solved the following problem: Anna took to market 

10 eggs, Barbara 30, Christina 50. Each sold a part of her eggs at the 
same price per egg and later sold the remainder at another price. Each 

183 Summa de Arithmetica, 1523, fol. 105; [Suma . . ., Venice, 1494]; same solution by 
N. Tartaglia, General Trattato di Nvmeri . . ., I, 1556. 

184 Regola della Quantita o Cosa di Casa, Bologna, 1618, 16-28. 
185 Ktinstliche Rechnung, 1526; Numberg, 1534, f. nvij a and b; Nurnberg, 1553 and Vienna, 

1557, f. Rvii a and b. 
186 Diophantus Alex. Arith., 1621, 261-6; comment on Dioph., IV, 41. 
187 Arithmetica, Sorae, Denmark, 1643, 132-3. Cf. H. G. Zeuthen, linterm&liaire des math., 

3, 1896, 152-3. 
188 According to O. Terquem, Nouv. Ann. Math., 18, 1859, Bull. Bibl., 1-2, the term problem 

of the virgins arose from the 45 arithmetical Greek epigrams, Bachet,186 pp. 349-370, 
and J. C. Heilbronner, Historia Math. Universae, 1742,845. Cf. Sylvester64 of Ch. III. 

189 MS. No. 10248 du fonds latin, Biblioth&que Nationale de Paris, f. 194, “De problematibus 
arith. indefinites/5 Prob. 2. 

190 Abentheuerlicher Gliickstopf, 1669, 440. Cf. Kastner.197 
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received the same total amount of money. How many did each sell at 
first and what were the two prices? The answer given is that at first A 
sold 7, B 28, C 49 at 7 eggs per kreuzer; the remainder were sold for 3 
kreuzer per egg. Thus they received 1 + 9, 4 + 6, 7 + 3 kreuzer each. 

There191 are eleven sets of positive integral solutions of 

x + y + z = 56, 32rr + 20z/ + 16z — 22*56. 

T. F. deLagny10 (p. 583) treated the problem of Diophantus192 II, 18, 
to find three numbers such that if the first gives to the second -J- of itself + 6, 
the second gives to the third | of itself + 7, the third gives to the first v 
of itself + 8, the results after each has given and taken shall be equal. 
To avoid fractions call the numbers 5x, 6y, 7z. Then the first gives x + 6 
and receives 2 + 8 and becomes 4x + z + 2. Thus 

4x + 2 + 2 = 5y + a: — l = 6z + y — 1. 

Eliminating z and y in turn, we get 

19a; + 18 17a; + 12 

V 26 ’ 2 ~ 26 '• 

Their difference (2a; + 6)/26 must be an integer. Multiply it by 8 and 
subtract from z\ thus x — 36 and hence rr — 10 is divisible by 26. Since 
2x + 6 and 2 (a; — 10) are divisible by 26, while their difference is 26, the 
problem is possible. We may take x = 10 + 26k and get an infinity of 
integral solutions. He employed the same method to treat any such 
“ double equalities ” of the first degree, which may be reduced to 

± bx ± d 
y ==-2 =-. v v 

The principle is to get x ± c by elimination. 
N. Saunderson13 (pp. 337-354) and A. Thacker193 treated two equations 

in x,y,z in the usual way. 
L. Euler194 discussed the regula Coeci. Given 

V + q + r = 30, 3p + 2q + r = 50, 

eliminate r. Thus 2p + q = 20, whence p may have any value = 10. 
In general, for 

(1) x + y + z = a, fx + gy + hz = 5, / > g ^ h, 

b Ss f(x 4- y + z) = /a, b ^ h(x + y + z) = ha, 

while b must not be too near these limits fa, ha. By eliminating z, we get 
<*x + py = c, where a and 0 are positive. A similar pair of equations in 

191 Ladies’ Diary, 1700-10, Quest. 8; C. Hutton’s Diarian Miscellany, 1, 1775, 52-3; T. 
Leyboum’s Math. Quest. L. D., 1, 1817, 5. 

199 Diophantus used 5x, 62,7x and got x — 18/7. G. Wertheim, in his edition of Diophantus, 
1890, proceeded as had de Lagny. 

192 A Miscellany of Math. Problems, Birmingham, 1, 1743,161-9. 
194 Algebra, II, 1770, Cap. 2, §§ 24-30; 1774, pp. 30-41; Opera omnia, ser. 1,1,1911,339-344. 
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four variables is treated; also 

3x + by + 7z = 560, 9x + 25y + 49 s = 2920. 

E. B6zout195 solved x + y + z = 41, 24x + 19y + lOz = 741 by elimin¬ 
ating x and showing that the integral solutions of by + 14z = 243 are 
z = bu — 3, y = 57 — 14u. 

Abb6 Bossut196 solved by eliminating z 

x + y + z = 22, 24rc + 12 y + 6z = 36. 

A. G. Kastner197 treated the problem of Pratorius190 and its generaliza¬ 
tion: Three peasants have a, 6, c eggs, respectively, where a, bx c are distinct 
numbers. They sold x, y, z eggs respectively at the price m per egg and 
the remainder at n. Each received the same total amount of money. 
Find x, y, z, mjn. We have 

mx + n(a — x) = my + n(b — y) = mz + n(c — z), 

where x, a — x, etc., are to be positive integers. We get 

m b — a c — b ^ (b — c)x + (c — a)y 
— =-hi —-h z = -77 : . 
n x — y y — z (b — a) 

Give successive values to x and solve the equation in y, z. 
A. G. Kastner198 discussed the “ Kegel Coci.” From (1), 

b — ah — (/ — h)x 

V~ g-h 
whence 

b — ah 

x “ * 

Also, ag + (/ — g)x ^ 6, so that we have limits for x. 
J. D. Gergonne199 considered n equations in m > n variables, 

anXi + • • • + aimxm = hi (i =!,*••, n), 

with integral coefficients, and stated a priori that 

Xj — Tj + Ajo. + BjP + • • • 

where a, (3, • • * are parameters in number m — n at least. Substitute these 
expressions for the x’s into the given equations and equate the coefficients 
of a, of /?, etc. Some of the resulting conditions show that Ti, T2, 
is a set of solutions of the given equations. The remaining conditions 
show that the A’s, the B’s, • • • are sets of solutions of 

a>i\X\ “h * * ‘ “f" O/imXm = 0 (J> 1, * * *, 7l), 
195 Cours de Math., 2,1770, 94-6. 
196 Cours de Math., II, 1773; ed. 3,1, Paris, 1781, 414. 
197 Leipziger Magazin fiir reine u. angew. Math., i788, 215-227. 
198 Math. Anfangsgrfinde, I, 2 (Fortsetzung der Rechenkunst, ed. 2,1801, 530). 
199 Aunalea de Math, (ed., Gergonne), 3, 1812-13,147-158. 
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and hence are determined by the matrix (a#). The same discussion was 
given by J. G. Gamier,200 who remarked that the determination of the A’s, 
B}s, * * * is facilitated by the use of determinants. 

J. Struve201 reduced the solution of (1) to an equation in 2 variables. 
V. Bouniakowsky202 discussed the solution of one or more indeterminate 

equations, chiefly of linear type. 
G. Bianchi203 treated three linear equations in x, y} z, u> solving by 

determinants for x, y} z as linear functions of u and determining by inspec¬ 
tion what positive integral values, if any, may be given to u such that the 
expressions for x, y, z become integers. 

C. A. W. Berkhan204 noted that if (1) have positive integral solutions, 
the x’s are in arithmetical progression, with the common difference g — h. 

I. Heger205 considered a system of homogeneous equations 

(2) knXi * * * *4“ m+nXm+n 0 L * * > 

with integral coefficients. Let xn be the numerically least value 4= 0 of aq 
in all possible sets of integral solutions, and let xn, • * *, X\ m+n be one such 
set. Their products by £1 give a set of solutions. The only possible aq’s 
are multiples of xn. In (2) set 

xl = Xiitu = zuii + x\ (i = 2, • • •, m + n). 
Then 

ki2x2 ”}■* * * • “f* ==: 0 (i 1, * • *, ti)• 

As before, x2 = x2oij2} where x22 is the numerically least value =t= 0 of x2 in 
all sets of integral solutions. Let x22) • • •, x2 m+n be such a set. Proceeding 
in this manner, we get 

*1 * Sll£l, 
X2 = £i2£i ^22?2j 

XZ = + ^23^2 + %33%3, 

Xm “4“ X2m^2 "4“ Xzm^Z "4“ * * * 

If the determinant of the coefficients of xm+h * • •, xm+n in (2) is not zero, 
those variables are definite linear functions of xXy • • •, xm) whence 

= *Elm4-j£l “H * ‘ ‘ “4" Xmm+j^m 0* == L ') J 

where the Xi may be taken integral. Giving arbitrary integral values to 
* * *, fm, we obtain all integral solutions of (2). 
For n non-homogeneous equations in m variables, n < m, let all the 

determinants D of order n of the matrix of coefficients have the g.c.d. /; 

200 Corns d’Analyse AlgSbrique, ed. 2, Paris, 1814, 67-79. 
201 Erlauterang einer Regel fur unbest. Aufgaben . . Altona, 1819. 
2W Bull. pbys. math. acad. sc. St. PStersbourg, 6,1848, 196. 
203 Memorie di Mat. e Fis. Soc. Italiana Sc., Modena, 24, II, 1850, 280-9. 
204 Lehrbuch der Unbest. Analytik, Halle, 1,1855, 46-53. 
205 Senkschriften Akad. Wiss. Wien (Math. Nat.), 14, II, 1858,1-122. Extract in Sitzungs- 

ber. Akad. Wise. Wien (Math.), 21,1856, 550-60. 
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consider the determinants K in which the constant terms appear in one 
column, and let F be the g.c.d. of the D’s and K*s. There exist integral 
solutions if and only if / = F; while f/F is the least common denominator 
of all sets of fractional solutions. Cf. Smith207 and Frobenius.210 

V. A. Lebesgue206 would select, if possible, two equations axx = F(x2, 
• • xn) and a'xi — Fx(x2, • • •, xn) from the system of linear equations such 
that a, a' are relatively prime. Determine r, s, p, q so that ar — a's = 1, 
ap — a'q ~ 0. Then xx ~ rF — sF1} pF — qFi = 0, whence the system is 
reduced to the former and equations in x2, • • •, xn only. To solve 
ax + by = cz} a'x + b'y = crt, where the g.c.d. of a, b, c is unity, we may 
set z = Du, where D = aa + 6/3 is the g.c.d. of a, b. Thus x = cau + bv/D, 
y = cpu — av/D. Then the second equation becomes Au + Bv — c't, 
which may be treated as was the first. Given a system of m linear equa¬ 
tions in m + n unknowns in which an m-rowed minor D is not zero, we get 
Dxi — fi(yi, , yn), i = 1, * • •, m. It remains to solve the congruences 
fi s 0 (mod D), which can be treated by the method for linear equations. 

H. J. S. Smith207 proved that if the excess of the number of unknowns 
above the number of linearly independent equations is m, we can assign m 
sets of integral solutions (called a fundamental system of sets of solutions) 
such that the determinants of the matrix formed by them admit no com¬ 
mon divisor > 1. Every set of integral solutions of the equations can be 
expressed linearly and with integral multipliers in terms of the fundamen¬ 
tal system. By use of this concept he proved the theorem of Heger:205 A 
system of linear equations is or is not solvable in integers according as the 
g.c.d. of the determinants of the matrix of the coefficients is or is not equal 
to the g.c.d. for the augmented matrix obtained by annexing a column com¬ 
posed of the constant terms (cf. Frobenius210). Use is made of the im¬ 
portant elementary divisors. 

H. Weber208 considered the system of equations 

hi = mx<Tu + • • • + mp(rPi 4- X* (i -l, * ■ •, p) 

with integral coefficients aof determinant 5. If 8 =t= 0 we obtain every 
set of integers h1} • • •, hp and each S*”1 times if we take all possible combina¬ 
tions of integers for mu • • •, mp and let \i, • • *, Xp run independently 
through a complete set of residues modulo 8. If 8 = 0, we can apply to the 
m’s such a substitution of determinant db 1 that the matrix (<r,») is trans¬ 
formed into one with columns of zeros at the right. Then by a linear sub¬ 
stitution on hi, * * *? bp of determinant db 1, we get a matrix having zeros 
except in the g-rowed minor in the upper left-hand corner. 

E. d’Ovidio209 treated algebraically a system of n — r independent 
linear homogeneous equations in n unknowns and the conditions that it 
have the same °°r solutions as a second such system. 

206 Exercices d’analyse num6rique, Paris, 1859, 65-75. 
207 Phil. Trans. London, 151, 1861, 293-326; abstr. in Proc. Roy. Soc., 11, 1861, 87-9. Coll. 

Math. Papers, I, 367-409. 
208 Jour, fur Math., 74, 1872, 81. 
209 Atti R. Accad. Sc. Torino, 12, 1876-7, 334-350. 
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G. Frobenius210 proved the following generalization of the theorem of 
Heger:205 Several non-homogeneous linear equations have integral solutions 
if and only if the rank l and the g.c.d. of the l-rowed determinants of the 
matrix of the coefficients of the unknowns are the same as for the augmented 
matrix obtained by annexing a column formed by the constant terms. 
Again, sets of integral solutions of m independent linear homogeneous 
equations in n unknowns (n > m) form a fundamental system if and only 
if the (n — m)-rowed determinants formed from them have no common 
divisor. He discussed (pp. 194-202) the equivalence under linear trans¬ 
formation of determinant db 1 of two systems of m linear forms in n vari¬ 
ables; on this subject, see Smith,207 G. Eisenstein,211 and G. Frobenius.212 

Ch. M4ray213 considered a system of m linear forms 

(3) fa = cux + &#+•••+ JiV (i = 1, • * •> wi) 

in n > m unknowns. Multiplication of this system by the matrix 

/ Xi jut * • • \ 

« . 
\ Xm fj,m • • • com 1 

is defined to be the operation of forming the system of m forms 

lAl = Xi^i + + * * • + Xn(f>m, * * *, = Wl</>1 + &*<!>2 + * * * + 

If we multiply the latter system by a second matrix, we get a system which 
can be derived from (3) by multiplication by the product of the two 
matrices. Given a system of m forms (3) with integral coefficients, the 
m-rowed determinants of whose matrix of coefficients are not all zero and 
have the g.c.d. d, we can assign a matrix (4) of rational elements of deter¬ 
minant 1/d, and a linear substitution on n variables with integral coefficients 
of determinant unity, such that after multiplication by the matrix and 
transformation by the substitution, we. obtain a system of forms d= xi, 
db x2, •• •, db xm. Then the system <j>i + ft; = 0 (i = 1, • • m) have 
integral solutions if and only if the m-rowed determinants of the coefficients 
of the <£’s have for their g.c.d. a number d dividing all the m-rowed deter¬ 
minants obtained from the preceding determinants by replacing the elements 
of an arbitrary column by the ft’s [Heger205]. When the equations have a 
set of integral solutions £, •••, all sets of integral solutions are given 
without duplication by 

X == S + Ml + • • • + :Cn_m0n„m, • • •, V = \'/ + Ml + • • • + 

where the 0’s are arbitrary integers and the coefficients of any 0/ satisfy 
the system <£; = 0 (x = 1, * * *, m). 

A. Cayley214 suggested that, to solve a system of linear homogeneous 

210 Jour, fur Math.., 86,1878,171-3. Cf. Kronecker.218 
211 Berichte Akad. Wiss. Berlin, 1852, 350. 
212 Jour, fur Math., 88,1879, 96-116. 

211 Annalea sc. de TScole normale sup., (2), 12, 1883, 89-104; Comptes Rendus Paris, 94, 
1882, 1167. 

»‘Quar. Jour. Math., 19, 1883, 38-40; Coll. Math. Papers, XIX, 19-21. 
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equations in the unknowns A, B, • • •, we first equate to zero as many 
unknowns (say A, • • •, E) as possible such that there exists a solution 
with F 4= 0; we may take F = 1 and have a solution “ beginning with 
F = 1.” Next, set F = 0 in the initial equations and equate to zero as 
many of the earlier unknowns (say A, B, C) as possible such that there 
exists a solution with D + 0; we may take D = 1 and have a solution be¬ 
ginning with D = 1 and having F = 0. The third step might lead to a 
solution with A = 1, D ~ F = 0. Then we have a system of three 
standard solutions. 

E. de Jonquieres215 discussed the equations, arising in Cremona trans¬ 
formations, 

n—1 
^ioii = 3(ft — 1), 2 i2cti = ft2 —- 1. 
»=i 

G. Chrystal216 proved that if x', y', z' form a particular set of solutions of 

ax + by + cz = d, a'x + b'y + c'z — d', 

and if e is the g.c.d. of the determinants (be'), (ca'), (ah'), while u is an 
arbitrary integer, all solutions are given by 

x = x' + (bc')u/e, y = y' + (ca')u/e, z — z' + (ab')u[e. 

T. J. Stieltjes217 gave an exposition of the results by H. J. S. Smith207. 
L. Kronecker218 gave a simple proof by induction of the theorem due 

to Frobenius210 that every ft-rowed square matrix with integral elements 
can be reduced by elementary transformations (interchange of rows or 
columns and simultaneous change of sign of one row or column, and the 
addition of one row or column to another) to a matrix in which every 
element outside the diagonal is zero while every element =j= 0 in the diagonal 
is positive and a divisor of the following element. A matrix has a single 
such reduced form. 

P. Bachmann219 gave a detailed account of the theory of systems of 
linear forms, equations and congruences. For a summary account, see 
Encyclopedic des Sc. Math., tome I, vol. 3, 76-89. 

J. H. Grace and A. Young220 gave a simple proof that any system of 
linear homogeneous equations with integral coefficients has only a finite 
number of irreducible solutions in integers ^ 0, a solution being called 
irreducible if not the sum of two solutions in smaller integers. ^ 0. 

J. Konig221 treated, from the standpoint of modular systems, systems of 
linear equations and congruences whose coefficients are polynomials in 
assigned variables. 

215 Giomale di Mat., 24, 1886,1; Comptes Rendus Paris, 101, 1885, 720, 857, 921. * Pam¬ 
phlet, Mode de solution d’lme question d’analyse ind6termin6e . . . tbiorie des trans¬ 
formations de Cremona, Paris, 1885. 

216 Algebra, 2,1889, 449; ed. 2, vol. 2, 1900, 477-8. 
*17 Annales Fac. Sc. Toulouse, 4, 1890, final paper, pp. 49-103. 
218 Jour, fiir Math., 107,1891, 135-6. 
219 Arith. der Quadratischen Formen, 1898, 288-370. 
220 Algebra of Invariants, 1903, 102-7. 
221 Einleitung . . . Algebraischen Groszen, Leipzig, 1903, 347-460. 
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A. Chatelet222 gave a brief summary of results, especially Heger’s.205 
E. Cahen223 gave an extended treatment of systems of linear equations, 

congruences, and linear forms. 
M. d’Ocagne224 solved x + y + 2 + i = n, 5x + 2y + z 4- it = n to 

find the number of ways to pay a sum of n francs with 5, 2, 1, £ franc coins, 
n in all. For similar problems, see Schubert143 and d’Ocagne178 of Ch. III. 

One linear congruence in two or more unknowns. 

Th. Schonemann225 considered the number Q of sets of solutions of 

flifi + ■ • ■ + am%m = 0 (mod p), 

with $1, •••, £m distinct and with the understanding that the solutions 
obtained by permuting equal elements a count as a single solution, and 
V is prime. Let p of the a’s be equal, v further a’s be equal, etc. If 
fli + * * • + dm + 0 (mod p) and m ^ p, 

0 = (P - l)(p - 2)- • - (p - m + 1) 
H n\v\ ••• 

But if cq + • ■ • + am 2s 0 (mod p), while the sum of fewer a’s is not divisible 
by p, 

n - (m ~~ !)Kp - 1)(— l)”1-1 (p — 1)- • *(p - m 4- 1) 
**!*!•■• p\v\ • • • 

V. A. Lebesgue,226 by specialization of his17 result in Ch. VIII of Vol. I 
of this History, found that, if p is a primitive root of the prime p, 

Pbxi 4 pcx2 + • • • + p% sO, Pa + pbx 1 + • • • + p*xk s 0 (mod p) 

each have p^1 sets xi, • • •, xk of solutions ^ 0, but have 

i(p - 1){(P - 1)»H» - (_ l)*-!), I {(p _ 1)* _ (_ 1)*} 
v p 

sets of solutions > 0, respectively. 
M. A. Stem227 proved that, if p is an odd prime, any integer can be 

expressed modulo p in exactly P = (2P_1 — l)/p ways as one or the sum 
of several distinct numbers chosen from the set 1, 2, • • •, p — 1. For 
example, 3 = 1 -)-2s 1 *f 3 -f 4 (mod 5). ■ Restricting ourselves to an 
even number of summands, we find that zero can be expressed in 
2(-P -f p — 2) ways, while 1, 2, • • *, or p — 1 can be expressed in £(P — 1) 
ways. We shall report in the chapter on quadratic residues on his results 
when the set is 1, 2, - - -, (p — l)/2. 

m Lemons sur la thSorie des nombres, 1913, 55-8. 
^ Throne des nombres, 1, 1914,110-85, 204-62, 278, 299-315, 383-7, 405-6. 

Z t ^th;> 1S> 1916> 45-7. Cf. Amer. Math. Monthly, 26, 1919, 215-8. 
m Jour, fur Math., 19,1839, 292. 
** Jour, de Math., (2), 4, 1859, 366. 
227 Jour, fur Math., 61,1863, 66. 
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E. Lucas228 noted that, if a is prime to n, the points (x, y), where x = 0, 
1, • • •, n and y is the residue modulo n of ax, lie on a lattice (composed of 
equal parallelograms), and are said to form a satin na. These satins lead 
graphically to all solutions of mx + ny ^ 0 (mod p). 

L. Gegenbauer229 gave a direct proof of Lebesgue’s226 results. Let the 
number of sets of solutions each + 0 of a&i + • • • + ctkxk + 6 0 (mod 
p), where each a is not divisible by the prime p, be S'k or Sk according as 
6 is or is not divisible by p. Let N be the number of all sets of solutions. 
Since akxk + 6 ranges with xk over a complete set of residues modulo p, 
N is the sum of the numbers of sets of solutions of the p congruences 

+ • • * + ak~i%k~i + c = 0 (mod p), c = 0, 1, • • *, p — 1; while the 
number of those of these sets of solutions whose elements are prime to p 
equals the sum of the numbers of the sets of solutions of like property of the 
p — 1 congruences axxi + • • • + ak-iXk-i + cf s= 0, c' = 0, • • *, 6—1, 
6 + 1, • * •, p — 1. Hence 

N - p*“+ S'k = (p - 1 )£*-!, Sk = SU + (p - 2)Sk-i. 

K. Zsigmondy230 proved that, according as a is not or is divisible by the 
prime p, k0 + ki + * • * + s a (mod p) has \p(p — 1) or ^(p — 1) — 1 
sets of solutions in which each hi is prime to p, where \pin) is the number of 
congruences of degree n with no integral root modulo p. The system of 
congruences 

&<>+•••+ &p~i = 0, ki + 2k2 + • • • + (p — l)kp-i = a (mod p) 

has \p(p — 2) or \p(p — 2) + p — 1 sets of solutions prime to p according 
as a + 0 or a s 0. 

R. D. von Sterneck231 found the number (n)» of additive compositions 
of n modulo M formed of i summands which are incongruent modulo M, 
i. e., the number of solutions of 

n s= xi + x2 + • • • + Xi (mod M), 0 ^ xx < x2 < • • • < Xi < M. 

Let (n)\ denote the corresponding number when each summand is not 
divisible by M, so that 0 < Xi < • • • < Xi < M. Define fin, d) to be zero 
if any prime occurs in d with an exponent which exceeds by at least 2 its 
exponent in n; but when the primes pi, • • •, pj occur in d with exponents 
which exceed by unity their exponents in n, and the remaining prime 
factors of d occur in n at least to the same power as in d, let 

fin, d) (-1 ym 
(pi !)•.*• {pj — 1) ’ 

m Application de l’arith. k la construction de l’armure des satins r^guliers, Paris, 1868. 
Principii fondamentali della geometria dei tessuti, l'Ingegnere Civile, Turin, 1880; French 
transl. in Assoc. fran$. av. sc., 40,1911, 72-87. See S. Gunther, Zeitschr. Math. Naturw. 
Unterricht, 13,1882,93-110; A. Aubry, l'enseignement math., 13,1911,187-203; Lucas106 
of Ch. VI. 

429 Sitzungsber. Akad. Wiss. Wien (Math.), 99, Ila, 1890, 793-4. 
230 Monatshefte Math. Phys., 8, 1897, 40-1. 
231 Sitzungsber. Akad. Wiss. Wien (Math.), Ill, Ila, 1902, 1567-1601. By simpler methods, 

and removal of the restriction on the modulus M, ibid., 113, Ila, 1904, 326-340. 
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where 4> is Euler’s function; finally, let/(n, d) = 4>(d) if no prime occurs in 
d to a higher power than in n, so that n is divisible by d. Then 

(»); = d)(- l)‘ld 

(»)' 

summed for all the divisors d of M, where (*) is a binomial coefficient 
and is zero if j is not an integer. By the second formula, /(n, M) equals 
the difference between the numbers of representations of n by an odd and 
by an even number of summands not divisible by the modulus M. 

Von Stemeck232 proved that the number [n]i of representations of n as 
the residue modulo M of a sum of i elements chosen from 0, 1, • • •, M — 1, 
repetitions allowed, is 

n ^({M + i)ld- 1\ 

summed for all the divisors d of M. If the elements are chosen from the 
numbers eh • • •, ev incongruent modulo M, then 

W = SE[« - Xe3f-A, i(n)i = E (~ l)x_1 T,(n- Xe);-x. 
k-l e=ei A=i e 

Von Stemeck233 determined (n)»- and [n]; for a prime power modulus. 
0. E. Glenn234 found the number of sets of solutions of X + a* + v = 0 

(mod p — 1) and ofX + /i + v + f==0 (mod p — 1), the order of X, p, 
- * - being disregarded, and p being prime. 

D. N. Lehmer235 proved that aiXi + • • • + anxn + an+i = 0 (mod m) 
has mn~lh solutions or no solution according as the g.c.d. 8 of ai, • • •, an, m 
does or does not divide a„+i. 

L. Aubry236 noted that if A is prime to N and if B/ VjV is not integral, 
Ax = By (mod N) is solvable in integers #= 0 numerically < W. 

System op linear congruences. 

A. M. Legendre237 treated the problem to find integers x such that, if 
a and 6, a! and b', • * • are relatively prime, 

ax — c arx — d 

b ’ U~’ 

are all integers. The first condition gives x = m + bz. Then the second 
condition requires that a'bz + a!m — cr be divisible by 6', which is im- 

” Sitzungsber. Akad. Wise. Wien (Math.), 114, Ha, 1905, 711-730. 
mIbid.t 118, Ila, 1909,119-132. 

Amer. Math. Monthly, 13,1906, 59-60, 112-4. 
20, 1913,155-6. 

m Mathesis, (4), 3,1913,33-5. 

»7 Thdorie des nombres, 1798,33; ed. 2, 1805, 25; ed. 3,1830,1, 29; Maser, I, p. 29. 
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possible if the g.c.d. 6 of b and V is not a divisor of a'm — c'; but, if 0 be 
such a divisor, the general solution is of the form z — n + z'b'jO. Thus 
x = mf + B'z, where B' is the l.c.m. of b, b'. Similarly, also the third 
fraction will be integral if x = M + Bz, where B is the l.c.m. of b, b". 

* M. Fekete238 treated the general system of linear congruences in one 
unknown. 

C. F. Gauss239 discussed at length the solution of n linear congruences 
in n unknowns. His second (more typical) example is 

3x + by + z 25 4, ^2x + 3y + 2z s= 7, 5x + y + 3z = 6 (mod 12). 

We first seek integers240 £, £', £" without a common factor such that the sum 
of their products by the coefficients of y (and by those of z) is congruent 
to zero: 

5£ -f- 3£' -f* £r/ = 0, £ 2£7 -f- 3£r/ = 0 (mod 12). 

Thus £ = 1, £' = — 2, £" = 1. Multiplying the congruences by these, 
and adding, we get 4x = — 4 (mod 12). Similarly, the multipliers 1, 
1,-1 give 7y s 5, while the multipliers — 13, 22, — 1 give 28z = 96. 
Thus x = 2 + St, y = 11 (or 11 + 12r), z = 3^. The proposed congru¬ 
ences now give three equivalent to 

19 + St + u = 0, 10 + 2t + 2u ss 0, 5 + 5t + Su s 0 (mod 4), 

which are all satisfied if and only if u s ^ + 1 (mod 4). Thus 

(*, V, *) ® (2, 11, 3), (5, 11, 6), (8, 11, 9), (11, 11, 0) (mod 12). 

H. J. S. Smith241 noted that the theory was left imperfect by Gauss. In 

(1) Aixx 1 + • • • + AinXn = iin+1 (mod M) (i = 1, • • •, n), 

denote the determinant | Ay | by D. If D is prime to M, there is one 
and but one set of solutions. Next, let D be not prime to M = pilp?- • •, 
where the p’s are distinct primes. A necessary condition for solvability is 
that there be solutions for each modulus p?{. Conversely, if there be Pi 
sets of solutions for modulus p?*, there are PiP2 • • • sets of solutions modulo 
M. Hence consider (1) for the modulus pm, and let Ir be the exponent of 
the highest power of p dividing all the r-rowed minors of D. Then, if 
In — In-1 ^ m, the congruences, if solvable, have p/n sets of solutions. 
But if In — In-1 > m, we can assign a value of r such that 

Ir+l Ir ^ W = Ir Ir— 1 

and then the number (if any) of sets of solutions is pk, where 

k = Ir + (n — r)m. 

MS Math. 4s Phys. Lapok, Budapest, 17, 190S, 328-49. 
189 Disq. Arith., Art. 37; Werke, I, 27-30. 
840 F. J. Studnicka, Sitzungsberichte, Akad. Wiss., Prag, 1875, 114, noted that they are pro¬ 

portional to the signed minors of the coefficients of the first column in the determinant 
of the coefficients. 

841 Report British Assoc, for 1859, 228-67; Coll. Math. Papers, I, 43-5. 



90 History op the Theory of Numbers. [Chap. II 

Smith207 wrote Vn for the determinant | An | of (1), Vn-i for the g.c.d. 
of its first minors, • • Vi for the g.c.d. of the elements An, and set Vo = 1. 
Let Dny Dn-i, •••> Do be the corresponding g.c.d.’s for the augmented’ 
matrix. Let 5i and d{ denote respectively the g.c.d. of M, Vt/Vi_i, and 
M, Di/Di-i. Set d = di- * -dn, 6 = 5i***8n. Then the system of con¬ 
gruences (1) is solvable if and only if d — 8; when this condition is satisfied 
the number of incongruent sets of solutions is d. There are similar theorems 
(pp. 402^) when the number of unknowns is either less or greater than 
the number of congruences. 

Smith242 employed a prime factor p of M, and the exponents p, u8, <*« 
of the highest powers of p dividing M, Da, V8J respectively. He proved 
that his preceding theorems can be replaced by the following: For the 
modulus /, the congruences (1) are solvable if and only if a, = ac, where 
a* — is the first term of an — an_i, an~i — an-2, • • * which is < p; 
when this condition is satisfied the number of incongruent sets of solutions 
is pk, where k = aa + (n — a)p. 

G. Frobenius210 (pp. 185-194) proved that the congruences (1) have 
Mn_1 incongruent sets of solutions if the Z-rowed determinants of A have 
with M no common divisor and if the (Z + 1)-rowed determinants of the 
augmented matrix of all coefficients are divisible by M, where l is the rank 
of the matrix A of the coefficients of the unknowns. If the rank of the 
augmented matrix is l + 1 and the g.c.d. of the (l 4-1)-rowed determinants 
is d', while the rank of A is l and the g.c.d. of the Z-rowed determinants is 
dy the congruences (1) have no solutions if the modulus M is not a divisor 
of d'[d. The number of incongruent sets of solutions of the homogeneous 
congruences AnXi + • • • 4- Ainxn * 0 (mod M) equals Si$2- ■ *Sn, where sx 
is the g.c.d. of M and the Xth elementary divisor of the matrix (An). 

Frobenius212 proved that a system of linear homogeneous congruences 
modulo M in n unknowns has a fundamental system of n — s sets of solu¬ 
tions, but none of fewer than n — s, if the determinants of order s + 1 have 
with M a common divisor but the determinants of order s do not. He in¬ 
vestigated the rank and equivalence of linear forms modulo M. 

F. Jorcke243 treated systems of linear congruences without novelty. 
D. de Gyergy6szentmiklos244 considered the congruences 

n 

= up (mod m) (p = 1, • • •, n). 

Let I) = j apj |, and 7* be the determinant derived from D by putting the 
tt’s in the kth. column. Let 8 be the g.c.d. of m and D. If any Vk is 
not divisible by 8, there is no solution. Next, let each Vk be divisible by 8. 
Then Dxk = Vk (mod m) uniquely determines xk == ak modulo ml8. Set 
Xjc — <xk 4 tml8 in the initial congruences. Thus 

(a„ih 4 ... 4- apntn)m/8 = up — aplax — ... — ajnan (mod m), 

_flpih 4- ... 4- g?ntn = wp (mod 8). 

^ndo11 Math. Soc., 4,1871-3, 241-9; Coll. Math. Papers, II, 71-80. 
Ueber ZaMenkongruenzen imd einige Anwendungen derselben, Progr. Fraustadt, 1878. 

*** Comptes Rendua Paris, 88, 1879,1311. 
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For the latter system, the modulus 8 divides the determinant D. Hence 
if some minor of order n — v is not divisible by 8, while all minors of higher 
order are divisible by 5, the solution involves exactly v arbitrary parameters 
and there are 8V sets of solutions. 

L. Kronecker245 deduced from his theory of modular systems the theorem 
that, for p a prime, the general solution of 

E VikXk = 0 (mod p) (i = 1, • • •, t) 

involves r — r independent parameters if the matrix of the tr numbers Vik 

is of rank r modulo p. 
K. Hensel246 considered a system of m linear homogeneous congruences 

in n unknowns in which the coefficients and the modulus P are either 
integers or rational integral functions of one variable. We may replace 
the system by an equivalent system whose modulus divides P and hence 
finally obtain modulus unity. 

E. Busche247 proved that the number of solutions of a system of n linear 
homogeneous congruences in n unknowns equals the modulus if the latter 
divides the determinant of the system. This theorem is equivalent to the 
following. Write a^bifa — 6 is an integer. If the a# are integers of 
determinant =)= 0, the number of non-equivalent solutions xu • • •, xn of 
anXi + • • • + a,inxn 0 (i = 1, • • •, n) is the absolute value of the deter¬ 
minant | dij | . 

G. B. Mathews248 noted that a system of n linear congruences in which 
the moduli are mi, • • •, mn respectively may be reduced to a system with 
the same modulus m (the l.c.m. of mi, • • •, mn), by multiplication by m/mi, 
• * mjmn respectively. For the case of a common modulus m the method 
is to derive an equivalent system of congruences involving respectively 
n,n— 1, • • •, 1 unknowns. Details are given only for the example 

ax + by + cz s= d, o!x + b'y + c'z s df> a!,x + b"y + c"z s= d" (mod m). 

Let 8 be the g.c.d. of a, a', a" and let 6 = pa + qa' + ra". Multiplying 
the congruences by p, q, r respectively and adding, we get a congruence 
8x + 0y + yz ss 5. If, for example, p is prime to m, we get an equivalent 
system by taking the latter in place of the first congruence of the system. 
Then eliminate x from the second and third by means of 8x + 

L. Gegenbauer249 showed that the system of linear congruences 
P-2 

E h+PVk = 0 (mod p) (p = 0, • • •, p - 2) fc=0 

has as many linearly independent sets of solutions as 
p~t 

bkxk s 0 (mod p) 
k~0 

M Jour, ftir Math., 99, 1886, 344; Werke, 3,1, 167. Cf. papers 24-26, p. 226, and 43, p. 232 
of Vol. I of this History. 

** Jour, ftir Math., 107, 1891, 241. 
M Mitt. Math. Gesell. Hamburg, 3, 1891, 3-7. 
M Theory of Numbers, 1892,13-14. 
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Has distinct roots not divisible by p. Such a system of linear congruences 
has been discussed by W. Burnside.250 

E. Steinitz251 stated that all theorems on linear congruences follow 
easily from one: Given k linear congruences in n variables modulo m, the 
k sets of coefficients form the basis of a Dedekind Modul. If elf • • •, en 
are the invariants of this Modul (the last n — r e’s are zero if the rank 
r is < 7i) and if [e,-, m] is the g.c.d. of e* and m, then the totality of sets of 
solutions of the k congruences represent a Modul with the invariants 

m m 

’[>!, m]‘ 
Expositions in the texts by Bachmann,219 J. Konig,221 and Cahen228 have 

been cited. Zsigmondy230 found the number of solutions of a system of two 
special congruences.- 

H. Weber252 made a direct examination of the conditions under which 

(2) outfi + <hjV2 + • • • + apjyp as 0 (mod pT) (j = 1, • • •, n) 

shall require that each t/t be divisible by pT, where p is a prime. It is as¬ 
sumed that not every an is divisible by p (otherwise a solution is obtained 
by taking each y{ to be any multiple of p*~l). We may assume that 
A = | a# |it/.i,..., T is not divisible by p, while every (r + 1)-rowed deter¬ 
minant of the matrix (a#) is divisible by p. Denote the signed minors of 
A by Akh and set 

= Afcia*i + Afc2U«2 + • • • + A *Ta,T. 

Thus Dks = A if k = $; Dk& = 0ifs^r, while, if s > r, Dka is a r- 
rowed determinant of {an). Applying Cramer’s rule to the first r con¬ 
gruences (2), we get 

(3) Ays + DJiT+lyT+1 + • • • + Dhyp s 0 (mod p") {j = 1, • • *, r). 
Hence 

A(flirVi + * * * + apryp) s AT+liryTJrl + • • • + Apryp (mod pn), 
where 

r 

Asr = Afl/gr O'krDks 
A=1 

equals a (r + 1)-rowed determinant of {an) and hence is divisible by p. 
Thus, if t < p, (2) are satisfied when yT+u • • •, yp are divisible by p*""1. 
In order that (2) shall require that each yi be divisible by pv it is therefore 
necessary that r = p. This condition is also sufficient, since (3) then 
reduce to Ai/j. s 0, • • •, Ayp s= 0, whence yi, • • •, yp are divisible by p*. 

F. Riesz253 stated that, if the oak and jSi are real, the congruences 

2 m&k s fc (mod 1) 
fc=l 

{i = 1, • • •, m) 

Messenger Math., 24,1894, 51. 

Jatasbericht d. Deutschen Math.-Verein., 5,1896 [1901], 87. 
Lebrbuch der Algebra, 2, 1896, 87-8; ed. 2,1899, 94. a. Smith.242 
U>mptes Rendus Paris, 139, 1904, 459-462. 
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are solvable in integers when the /3’s are arbitrary, with a desired approxima¬ 
tion, if and only if 2aikxk = 0 (mod 1) are not solvable exactly in integers 
not all zero. 

U. Scarpis254 proved that a system of n linear homogeneous congruences 
in n unknowns has solutions not all divisible by the modulus M if and only 
if the determinant A of the coefficients is not prime to M. The problem 
is reduced as usual to the case M = pm, where p is a prime. Then let 
some p-rowed minor of A be prime to p, but all ft-rowed minors (Jc ^ p + 1) 
be divisible by p. Let pe be the highest power of p dividing A and all its 
Crowed minors (Jc ^ p + 1)* Then p of the congruences are linearly 
independent. We may assume that | a#1 , where i,j = 1, • • •, p, is prime 
to p. Then the last n — p of the congruences can be replaced by congru¬ 
ences in Xp+i, • • *, xn in which each coefficient is divisible by p\ If m = 1, 
no more than p of the initial congruences are linearly independent; the 
values of xh • • •, xp are uniquely determined in terms of xp+i, • • *, xn which 
are arbitrary, so that there are pn_p sets of solutions. 

Linear forms with real coefficents; approximation. 

J. L. Lagrange255 noted that, if a is a given positive real number, we 
can find relatively prime positive integers p, q such that p — aq shall be 
numerically smaller than r — as for r < p, s < q, by taking p/q as any 
principal convergent to the continued fraction for a with all terms positive. 

Lagrange22 determined a fraction m.ja, with given numerator or denomi¬ 
nator, which shall approximate as closely as possible to the given fraction 
B/A < 1, where A, B are relatively prime. For example, let m be given. 
Take as a the quotient found on dividing Am by B. If C is the remainder 
numerically < JR. then Ba — Am = d= C, B/A — m/a dr C/(Aa). Start¬ 
ing with C/A, determine similarly n/b, with n given, by using the quotient 
b and remainder =F D when An is divided by C, whence C/A = n/b dr D/(Ab). 
Similarly, D/A — p/c dr Ej(Ac). It follows that m < a, n ^ b, p ^ c, 
• • * and that A, B, C, D} • • • form a decreasing series terminating with zero: 

B m n p 

I “ a ^ a&± o6c± 

In case the denominators a, 6, c, • • • were given and all equal, we have 
expressed B/A to the base a. Finally, suppose that neither m nor a is 
given, but are to be found such that m < B, n < Ay and such that m/a is 
as close an approximation to B/A as possible. Hence must C = dr 1. 
Then m and a are found by Euciid;s g.c.d. process. Saunderson13 had 
already treated the approximation to a fraction and cited earlier writers. 

C. G. J. Jacobi256 proved that integral values not all zero can be assigned 
to x} y, z such that ax + a'y + anz and bx 4- b'y + Vrz are less than any 
assigned quantity. Cf. Sylvester108 of Ch. III. 

254 Periodico di Mat., 23, 1908, 49-61. 
2511 Additions to Euler’s Algebra, 2,1774, 445; Oeuvres, VII, 45-57. 
^ Jour, flir Math., 13, 1835, 55; Werke, II, 29-31. 
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G. L. Dirichlet257 stated that; it has been long known from the theory of 
continued fractions that, if a is irrational, there exists an infinitude of pairs 
of integers x, y for which x — ay is numerically < 1 fy» He proved, the 
following generalization: If alf • • •, am are such that 

/ = #0 4* 4~ * * * 4" <Xm$m 

vanishes for no set of integral values of Xo, * * * > not all zero, there exists 
an infinitude of sets of integers Xo, • • •, xw, with Xi, • • •, xm not all zero, 
such that / is numerically < 1 /sm, where a is the greatest of Xi, • • •, xm* 
Similarly for several forms/. For example, if ol = «iXi 4- * * • 4" amxm and 
0 = PiXi + • • • + @mxm vanish simultaneously only when xh * • *, xm are 
all zero, there exists an infinitude of sets of integers Xi, • • •, xm not all zero 
for which | a | < A/sa, | p | < B/sm~2~a, in which A and B are constants 
depending on the a*, j8,-, while a is any constant between 0 and m — 2. 

Ch. Hermite258 remarked that, if A and B are given irrational numbers, 
we can readily find the linear relations Aa + Bb + c = 0 (if existent), 
where a, b, c are integers. In fact, a = mA — m! and (3 = mB — m" can 
be made as small as one pleases [by choice of integers m, m', m"]. Since 
act + bf$ = — am! — bm" — cm is an integer, it cannot be made < 1 with¬ 
out reducing to zero. Thus to find m, mf, m", we have only to convert 
Pja into a continued fraction to obtain the desired relation. 

Hermite259 proved by means of the minimum of a binary quadratic form 
that, if a, A are real, there exist integers m, n such that 

1 /i 
(m - an)2 + n2/A2 < - yj-, 

whence \m — an | < l/(n43). Let m', n' be the integers corresponding 
to A' = A + where 5 is an infinitesimal. Then mnf — nm! = ± 1. 

P. L. Tchebychef260 proved that, if a is irrational and b is given, there 
exists an infinitude of sets of integers x, y such that y — ax — b is numer¬ 
ically < 2/1 x | . 

Hermite261 proved that, in Tchebychef^ result, we may replace 2/1 x | 

by l/{2 | x j 1 and in fact by 42/27 /1 x 1 . 
L. Kronecker262 treated the problem to find integers w, wf such that 

aw 4- o!w( takes a value as near as possible to £, where a, a', £ are given 
real numbers. In general, consider a system of p equations 

dilWl -{-•••+ aiqWq = ^ = 1, • • •, P), 
with real coefficients. Let r be the number of these equations whose left 

“7 Sitasungsber. Akad. Wise. Berlin, 1842, 93; Werke, I, 635-8. ~~ 
** far Math., 40,1850, 261; Oeuvres, I, 101. 
** *1, 1851, 195-7; Oeuvres, 1,168-171. 
Z Zapiski Acad. nauk St. P&ersbourg, 10,1866, Suppl. No. 4, p. 50; Oeuvres, 1, 1899, 679. 
Z ^ 10-15; Ouevres, III, 513-9. 

M?™' Akad. Wise. Berlin, 1884, 1179-93, 1271-99; Werke, Ull} 47-109. Cf. ibid., 
,106, 1883, 93-8, 148-52, 216-21; 99, 1884, 765-71, 

Werke, III,, 1-44, for application to algebraic units. 
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members are linearly independent, so that r is the ordinary (absolute) rank 
of the rectangular matrix 

(&ifc) (i = 1, • • *, p) k = 1, • • •, q). 

This matrix is said to be of relative rank (or rank of rationality) R if R is 
the least number such that, by means of a linear substitution on the rows 
with arbitrary coefficients, the matrix can be transformed into a matrix 
all but r of whose rows contain only zero elements and all but R rows 
contain only integral elements. Necessary and sufficient conditions for 
the approximate solution in integers of our equations are expressed in dif¬ 
ferent forms: R of the £’s can be given arbitrary values, while the choice 
of r — R of the £’s is limited only by certain conditions of rationality, 
while the remaining p — r f’s are uniquely determined in terms of the earlier 
r £’s. 

A. Hurwitz263 proved that if co is irrational there exists an infinitude 
of pairs of integers x, y for which | y/x — co | < l_/(-\f5x2). Likewise, 
| yjx — co | < l/{ V&r2} if w is not equivalent to (1 + V5)/2. 

H. Minkowski264 found by use of lattice points and other geometrical 
concepts the fundamental theorem that, if fh • ■•,/* are linear homogeneous 
functions of xh • • •, xn with any real coefficients whose determinant A is 
not zero, we can assign integral values not all zero to xu • • •, xn such that 
1 /* | ^ VfAl for i = 1, ••*, n. If oi, an-1 are real, we can find 
integers xh • • •, xn without a common factor and with xn > 0 such that 

k = 
n 

n-~l' 
(j = 1, 1). 

For n > 1, consider n linear forms fh • • •, fn in xh * * •, xn with a determinant 
A 4= 0, such that r of the forms have real coefficients and s = (n — r)/2 pairs 
have conjugate imaginary coefficients, and let p be any real number ^ 1. 
Then integral values not all zero can be assigned to xh • * *, xn such that265 

-Y\f\><\ (2Y rrn,pY(l + nip) 1 A ] 
WirJ {T(1 + llp)Y2-**lp{T(l + 2/p)\° 

except for p — 1, $ = 0, n = 2, when the members may be equal; here T 
denotes the ordinary gamma function. He obtained (p. 161) Lagrange’s255 
result on the minimum of x — ay. 

A. Hurwitz266 gave an elegant analytic proof of Minkowski’s264 theorem, 
and the fact that the inequality sign may be taken in n — 1 of the n relations. 

Ch. Hermite267 remarked that Euclid’s g.c.d. process leads to approxi- 

2M Math. Annalen, 39, 1891, 279. This and papers cited on p. 158 of Vol. I of this History 
give approximations by use of Farey series. 

m Geometrie der Zahlen, 1896, 104-123. Extracts in Math. Papers Chicago Congress, 1896, 
201-7; French transl., Nouv. Ann. Math., (3), 15, 1896, 393-403. 

2M Also in Comptes Rendus Paris, 112, 1891, 209; Werke, I, 261-3. 
266 Gottingen Nachrichten, 1897, 139. French transl., Nouv. Ann. Math., (3), 17, 1898, 

64-74. Cf. P. Bachmann, Allgemeine Arith. d. Zahlenkorper, 1905,335-41; G. Humbert, 
Annales de la Fac. Sc. Toulouse, (3), 3, 1911, 8-12. 

267 Le Matematiche pure ed applicate, CittA di Castello, 1, 1901, 1-2; Werke, IV, 552-3. 
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mations to a fraction by means of a seiies of fractions m/n, the error being 
< h/n2. He gave a slight modification of Dirichlet’s257 method. 

H. Minkowski268 proved that if £ = ax + fiy and 77 = yx + hy have 
any real coefficients of determinant a5 — (3y ~ 1 and if £0, Vo are any given 
real numbers, there exist integers x, y for which | (£ — £0)(?7 — 770) | S 
In particular, if a is irrational and b is not an integer, there are integers x, 
y for which \ (y — ax — b)(x — c) \ < \', the case c = 0 gives a better 
approximation than Hermite's,261 since 1/4 < V2/27. 

E. Cahen269 discussed the approximate solution in integers of a system 
of linear equations. 

E. Borel270 proved that if a, 2>, M are any given real numbers, integers 
x, y) z, numerically < M, can be assigned such that 

| ax + by + z | < ^ Va2 + b2 + 1, 

0 being independent of a, 6, M (but not found). Again, intervals (An, Bn) 
can be found such that An and Bn increase indefinitely with n and such 
that, if a is any irrational number between 0 and 1, integers pn, Qn exist 
for which 

( “ a I 2 j~ } An < Qn < Bn. 
iff* I ql^d 

At least one of three successive convergents to a satisfies the first inequality 
[cf. Hurwitz263]. 

Minkowski271 proved that if a is real we can choose integers x, y such 
that 1 xjy — a | < Ijy2 and deduced the existence of solutions of sx — ry = 1 

if s, r are relatively prime integers. He gave a new proof, suggested by 
D. Hilbert,2710 of his264 theorem on n real linear forms. He discussed (pp. 
47-58) the maximum value of the minimum of | £ \p + | 77 (p, where £ and 
77 are real linear forms. He treated (pp. 68-82) the equivalence and mini¬ 
mum of three linear forms £, 77, f, and gave theorems on the values of their 
sum or product. 

B. Levi272 proved Minkowski’s264 thoerem, and for the limit case in 
which no integers, not all zero, make each \f{\ < 1, proved his result 
that then at least one of the /< has integral coefficients. 

5811 Matt. Annalen, 54,1901, 91-124, see pp. 108,116 (Ges. Abhandl., I, 320); French transh, 
Ann. de 1’ecole normale sup., (3), 13,1896, 45. For an account of Minkowski’s investi¬ 
gations, see Verhandl. des dritten intern. Math. Congresses Heidelberg, 1905, 164. 
Proof by J.Uspenskij, Applications of continuous parameters in the theory of numbers, 
St. Petersburg, 1910; cf. Jahrb. Fortschritte Math., 1910, 252. 

565 Bull. Soc. Math. France, 30, 1902, 234-242. He also made additions to the subject in 
his article in the Encyclopedic des Sc. Math., 1906, tome I, vol. Ill, 89-97. 

Jour, de Math., (5), 9,1903, 329-375; Comptes Rendus Paris, 163, 1916, 596-8. Lemons 
kit la th4orie de la croissance, 1910, 143-154. Cf. A. Denjoy, Bull. Soc. Math, de 
France, 39,1911,175-222. 

™ ^opt^tische Approximationen, Leipzig, 1907, 1-19, 28. 
“CL J. Sommer, Vorlesungen liber Zahlentheorie, 1907, 65-72; French transl. by A. Levy, 

m Rendieonti Circolo Mat. Palermo, 31,1911, 318-340. 
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S. Kakeya273 proved the theorem (Minkowski,264 p. 108) that if au • • •, an 
are real there exist integers xi, • • *, xn, z such that Xi — axz, • • •, xn — OnZ 
are as small numerically as we please. He proved that these forms approach 
indefinitely any real numbers. He274 gave a generalization to any linear 
functions. 

R. Remak274° proved arithmetically Minkowski's268 first theorem. 
H. Weber and J. Wellstein2746 gave a new aiithmetical proof of Min¬ 

kowski’s264 initial theorem for both real and imaginary linear forms. 
H. F. Blichfeldt275 proved a result which in Minkowski's notations 

becomes 

l/xl + ••• + !/»I s^{r(i+^)(1;"|Ap/». 

For small values of n this limit is higher than Minkowski's264 (p. 122), but 
for large n's it is smaller. Given the positive numbers ah • • •, a^x and 
any positive number b < f, we can find integers XX) • • •, Xn-i, Z such 
that the n — 1 differences | Xi/Z — a,-1 are ^ 2b and 

(n - l)Z“»/<»-i> 

l + ^n_=_2y+2|1/<rt""1)' 

Except for n — 2, this approximation is closer than that obtained by 
Hermite,259 Kronecker, and Minkowski.264 

G. H. Hardy and J. E. Littlewood276 proved that if 6h • • •, 6m are ir¬ 
rational and connected by no linear relation with integral coefficients not 
all zero, and if au, akm are any numbers such that 0 ~ < 1, there 
exists a sequence of positive integers nx, nz, • • • such that the fractional 
part of nlrdp approaches aip as r increases, for l = 1, • • *, k; p — 1, • • •, m 
(the case k = 1 being due to Kronecker262). Given X, there is therefore a 
function $ of k, m, X and the 0’s and a's such that the difference between 
the fractional part (nlQp) of nldp and aXp is numerically < 1/X for some n < 
When the 0's are given, a $ can be found independent of the a’s. When 
all the a's are zero, a $ can be found independent of the 0's. An upper 
bound for $, in this last case, was later given by H. T. J. Norton.277 H. 
Weyl277a went further by showing that the numbers (nl6p) are “ uniformly 
distributed " throughout the unit cube 0 ^ XiP ^ 1 in space of km di¬ 
mensions [i.e., if we associate with n the point whose km coordinates are 
Xip = (nl6p) and denote by nv the number of the first n points which lie 
inside an assigned part of the cube, of volume 7, then nv ~~ nV when 
n oo]. 

178 Science Reports T6hoku University, 2, 1913, 33-54. 
874 Tdhoku Math. Jour., 4,1913-4, 120-131. 
5740 Jour, fur Math., 142, 1913, 278-82. 

Math. Anna! n. 73. 191 . 2 5- 5. 
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Hardy and Littlewood276 also considered the same problem when nl 
is replaced by an arbitrary increasing sequence Xn with infinite limit and 
obtained the same result, but with the exception of a set of values of 6 of 
measure zero. R. H. Fowler2776 established uniform distribution, with an 
upper bound for the error, when \n increases as rapidly as an exponential 
eni (6 > 0). Weyl277a extended the theorem of uniform distribution to all 
cases in which X„ increases with tolerable regularity and as fast as (log n)'+s 
(5 >0). These questions are intimately connected with the problem of 
the behavior of the series exp. (2xfk„) when N -» 00, which has been 
considered in detail by Hardy and Littlewood,2770 and Weyl.277° 

G. Giraud278 proved that there exist integral values of the £Js and y’s 
for which 

I Xi - anyi - ... - aipyp - Ai \ < e (i = 1, ■ * *, ^), 

whatever € be, if and only if all the forms rriiXx + ■ ■ • + which take 
integral values when Xh • • *, Xn are replaced in turn by the p sets of 
values aiy, • • *, anj (j — 1, • • *, p), take also integral values when we replace 
•^lj ‘f Xn by Ai, An* 

S. L. van Oss279 proved that n real linear functions of xu • • •, xn of deter¬ 
minant unity have the minimum value unity for integral x’s if at least one 
of the forms has integral coefficients without a common divisor. This 
had been proved by Minkowski for n = 3. 

W. E. H. Berwick280 gave a method to find which pair of integers 
x,y{Q^y<N) gives the least value for/ = ax + by + c, where a, b, c 
are real and not zero. Thus he finds the point with integral coordinates 
nearest to the line / = 0 and within the strip between y = 0 and y = N. 

A. Brown281 noted that, to find the fraction whose denominator does 
not exceed a given integer and which approximates most closely to a given 
number, Lagrange’s theory gives the fraction nearest in defect and the 
fraction nearest in excess, but does not decide which of them is nearest in 
absolute value to the given number. A simple method is here given for 
deciding between the two fractions. 

A. J. Kempner282 noted that any straight line with an irrational slope 
has on either side of it an infinitude of points with integral coordinates 
lying closer to it than any assigned distance. 

G. Humbert283 developed Hermite’s259 method of approximating to an 
irrational number w, showed that it differs very little from the method of 

”!£cta Math., 37,1914, 155-191; Proc. Fifth Internat. Congress Math., 1, 1912, 223-9. 
177 Proc. London Math. Soc., (2), 16,1917, 294-300. 
^Gottingen Nachrichten, 1914, 234-244; Math. Annalen, 77, 1916, 313-352. 
8776 Proc. London Math. Soc., (2), 14, 1915, 189-206. 

Acta Math., 37,1914, 155-238; Proc. Nat. Acad. Sc., 2, 1916, 583-6; 3, 1917, 84-8. 
ml?0’ ^’rance> Comptes Rendus des Seances, 1914, 29-32. 

^an^e^ngen XVde Nederlandsch Natuur- en Geneeskundig Congres, 1915, 192-3. 
280 Messenger Math., 45, 1916,154-160. 
281 Trans. Phil. Soc. South Africa, 5,1916, 653-7. 
m Annals of Math., 19,1917,127. 

,MC79?iS ReEdus Paris’161’1915’717_21:162> 1916>67;Jour-de Math’> (7>> 2> 1916> 
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continued fractions, and found necessary and sufficient conditions that a 
given fraction be in Hermite's series of fractions tending towards o>. The 
main condition was generalized by E. Cahen.284 

Humbert285 gave simple proofs of the theorems by Hurwitz.263 
M. Fujiwara286 supplemented Hurwitz’s263 second theorem as Borel270 

had the first. 
J. H. Grace287 proved that if -f ^ k ^ 2 and if x/y and x'/y' are two 

consecutive rational approximations to an irrational number 0 such that 

< ky2’ 

then xyf — x'y = =b 1 [Hermite259 for k = V3, Minkowski268 for k = 2]. 
He288 proved that Minkowski's268 last result is final, i.e., if k < |, it is 
possible to choose a and b such that there is not an infinitude of integers 
x for which \ y — ax ~ b \ < k/\ x |. 

284 Comptes Rendus Paris, 162, 1916, 779-782. 
285 Jour, de Math., (7), 2, 1916, 155-167. 
288 T6hoku Math. Jour., 11, 1917, 239-242. Cf. 14, 1918, 109-115. 
287 Proc. London Math. Soc., (2), 17, 1919, 247-258. 
288 Ibid., 316-9. 





CHAPTER III. 
PARTITIONS. 

G. W. Leibniz1 asked Bernoulli if he had investigated the number of 
ways a given number can be separated into two, three or many parts, 
and remarked that the problem seemed difficult but important. Leibniz2 
used the term number of divulsions for the number of ways a given integer 
can be expressed as a sum of smaller integers, as 3, 2 + 1, 1 + 1 + 1, 
and noted the connection with the number of symmetric functions of a 
given degree, as 2a3, 2a2b, Zabc. 

L. Euler3 found relations between A = 2a, B = 2a2, C — 2a3, • * •, and 

a = 2a, = 2 ah, y = 2a6c, • • •, 

21 = 2a, 

58 = a2 + ab + b2 + ac + * • •, 

(£ = a3 + a2b + ab2 + bz + a2c + dbc + • • *, 

£) = a4 + a3b + • • • + abed + • • •, 

We have 

P = 2: 
az 

az 
— Az + Bz2 + Cz3 + 

n ___ zdR ^ a 

Q ^Rdz"*^ 1 + 02 
= +z - £z2 + Cz3 - 

az + 2/3z2 + PQ. 

P s n(l + az) = 1 + az + £z2 + 

zdR 

dz 

Hence 
+ = a, aA - B ^ 2(3, j3A - a£ + C = 3y, •■ 

Next, expanding (1 + az)-1, we get 

T^- = l~%z + $8z2- (Sz3+--., 2t-a = 0, $B-a2I+0=O, 

Now take a — n, b ~ n2, c = n3, • • •. Then 

+ = n/(l - n), B = n2/(l - n2), 
Hence 

P s 
nzz 

+ 
nz n2z2 

1 — nz ' 1 n2z 1—71 1 — 7l2 

P = (1 + nz) (1 + n2z) • • • = 1 + az + 0z2 + 

a = n + n2 + n3 + • • •, 

1 Math. Schriften (ed., Gerhardt), 3, II, 1856, 601; letter to Joh. Bernoulli, 1669. 
2 MS. dated Sept. 2, 1674. Cf. D. Mahnke, Bibliotheca Math., (3), 13, 1912-3, 37. 
* “Observ. anal, de combinationibus,” Comm. Acad. Petrop., 13, ad annum 1741-3, 1751, 
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/3,y, • * • being the sum of the products of n, n2, • • • two, three, * ■« at a time, 
whence 

jS = nz + ft4 + 2n5 + 2n6 + 3n7 + • • •, y = n6 + n1 + 2n8 + 3n9 + * • *. 

The coefficient of n4 in 0, 7, • • * is the number of ways s is a sum of two, 
three, • * • distinct parts. This solves the problem (proposed to Euler by 
Ph. Naud6) to find the number of ways a number is a sum of a given number 
of distinct parts. 

By the above relations between a, (3, • * •, A, B, • * *, we get 

n . nz AT> 
ol = - = A, /? = 7:-rrz-^ = A£S, 

1 — n (1 — 7i) (1 — n2) 

YtP 

7 = (1 -n)(l -n2)(l -n3) = ABC> 

To give a proof of these results found by induction, write nz for z in R. 
We get (1 + nh){ 1 + nzz) • • • = 1 + anz + /3n2z2 + ■ • •• Its product by 
1 + nz gives R = 1 + az + • • •. Hence we get the preceding values of 
a, /3, 7, • • •. Let m*00 be the number of ways m is a sum of /x distinct integral 
parts, where the affix i (signifying inaequalus) is omitted if the parts need 
not be distinct. This miw is the coefficient of nm in 

nM0*+l)/2 

(1 — ft) (1 — n2) • • • (1 — nM) * 

the sum of the juth series a, 0, 7, • •. Replacing the numerator by 
nM(M“i)/2, we get the series whose general term is or, if we prefer, 
(m + )u)iwnm. Subtract the former fraction from the latter; we get 

(1- n)---( 1 - n^)’ 

the general term of the series for which is Hence, transposing, 

(1) (m + = 7mw + mi(M-1), 
which serves as a recursion formula. Since in the series for 1/ {(1 — n) 

• • * (1 — n*)) the coefficient of n* is the number of ways 5 is a sum of parts 
1, •••,/! when the number of parts is not prescribed and the parts may be 
equal, mf1 also gives the number of ways m — ju(/x + l)/2 can be obtained 
by addition from 1, * • /x. 

The second problem proposed by Naud6 was to find the number mCM) 
of ways m is a sum of n equal or distinct parts. To treat it, set 

_1_ 
(1 — nz)( 1 — n2z) • • * 

Writing nz in place of z, we get 

1 + %z + $8z2+ 

(1 - nz){l + %z + SQz2 + •••) = 1 + %nz + 93nV + * • *, 
yin ___tt2 SQn 

1 - n2 " (1 - n) (1 - n2), ® = 1 ~ n3’ 1 — n 
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Hence a = 81, /3 = n$3, y = n3(&, 5 = n6T), • ••, where 1, 3, 6, • • • are the 
successive triangular numbers. From the above series for a, (3, ♦ • •, we 
see that 

9 00 {m + ^ 1) r i >> = 
—}<M>- 

Hence m(M) is also the number of ways m — fx can be obtained by addition 
from 1, • • •, ix. The former recursion formula for gives 

(2) = (m - + (m - 1 

He stated, as a fact he could not prove, 

(3) p(x) = IT (1 — = l — x ~ x2 x5 x7 — • • • + ( — l)n£(3n2ifcn)/2 + • • 
*=i 

and that the reciprocal of the product is 1 + x + 2rc2 + 3x3 + 5a;4 + • • •, 
the coefficient of x8 being the number of ways s can be partitioned into 
equal or distinct parts. As to (3), see Euler1-6, Ch. X, Vol. 1. 

Euler,4 in a letter to N. Bernoulli, Nov. 10, 1742, stated the preceding 
facts on partitions. The answer to the second problem he stated in the 
following equivalent form: m(M) is the coefficient of nm in the expansion of 
rtf I {(1 - n){ 1 - n2)-..( 1 - Ob 

Euler5 gave (3) and p(x) = 1 — Pi + P2 — Pz + • • • [see Euler9]. 
P. R. Boscovich6 gave a method of finding all the partitions of a given 

number n into integral parts > 0. Write down n units in a line. Replace 
the last two units by 2, then replace two units by 2, etc. Next, write 
n — 3 units and 3; replace two units by 2, etc. Then write n — 6 units 
and two 3’s; replace two units by 2, etc. Thus the partitions of 5 are 

mil, 1112, 122, 113, 23, 14, 5. 

He applied partitions to find any power of a series in x, also in a paper, 
ibid., 1748. In his third paper, ibid., 1748, he showed how to list the parti¬ 
tions of n into parts ^ m, by stopping his above process just before a part 
m + 1 would be introduced. He applied the rule also to the case when the 
parts are any assigned numbers. He treated the problem to find ail the 
ways in which a given integer n can be decomposed in an assigned number 
m of parts, equal or distinct; but the solution by Hindenburg16 is much 
more simple and direct. Boscovich attempted in vain to find a formula 
for the number of partitions. He gave elsewhere7 his rule. 

K. F. Hindenburg8 would obtain the partitions of 8 by annexing unity 
to those of 7, and supplement them with 

2222, 224, 233, 26, 35, 44, 8._ 

4 Opera postuma, 1, 1862; Corresp. Math. Phys. (ed., Fuss), 2, 1843, 691-700. 
5 Letter to d'Alembert, Dec. 30, 1747; Bull. Bibl. Storia Sc. Mat., 19, 1886, 143. 
6 Giornale de’ Letterati, Rome, 1747. Extract by Trudi,98 pp. 8-i0. 
7 Archiv der Math, (ed., Hindenburg), 4, 1747, 402. 
8 Ibid., 392, and Erste Samml. Combinatorial-Analyt. Abhand., 1796, 183. Quoted from 

G. S. Klugel's Math. Worterbuch, 1, 1803, 456-60 (508-11, for references). 
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L. Euler9 noted that the coefficient of xnzm in the expansion of 

(1 + xaz)( 1 + afz) (1 + xyz) * • * 

is the number of different ways n is a sum of m different terms of the set 
oty ft 7, • • *. The coefficient of xnzm in the series giving the expansion of 

(1 - x'z)-K 1 - - xyz)-'- • • 

is the number of different ways n is a sum of m terms of a, p, * ••, repetitions 
allowed. In particular, the coefficient of xn in 

n (1 “ ri)-1 = 1 + * + 2x2 + 3z3 + 5x4 + 7x* H- 
j=i 

is the number of partitions of n. If the product extends only to j = m, the 
coefficient of xn is the number of partitions of n into parts ^ m. In 

Z = n (1 + xPz) « 1 + PiZ + P2z2 + • • *, 
j=i 

replace z by xz} so that Z becomes Z/( 1 + xz). Hence 

(1 + xz)( 1 + Pixz + P2x2z2 + * •.) = Z. 

By comparison of coefficients, we get 

Pm = (1 - a:)(l - s2)--.(l - x")' 

Hence the number of partitions of n into parts ^ m equals the number of 
ways of expressing n + m(m + 1) /2 as a sum of m distinct parts. Applying 
the same process to II(1 — xjz)~l} we obtain the series 

- , xz ___rV_ 

1 — x (1 — x)(l — x2) (1 — x)(l — x2)(l — x3) 

Hence the number of partitions of n into parts ^ m equals the number of 
ways of expressing n + m as a sum of m parts, not necessarily distinct. 

If (n, m) is the number of partitions of n into parts m, then 

(n, m) — (n, m — 1) + (n — m, m). 

By use of this recursion formula, Euler computed a table of the values of 
(n, m) for n ^ 69, m ^ 11. The product of 

p=n a - »o, q = n a+xf) 
j=i y*i 

is n(l — x2f), all of whose factors occur in P. Hence [proof by L. 
Kronecker10 for | x | < 1, to insure absolute convergency], 

(4) Q = ^ =_l_ 
__P (1 — £)(1 — a^)(l — z5) • • •9 

• Introductio in analysin infinitorum, Lausanne, 1, 1748, Cap. 16, 253-275. German tranel. 
by J. A. C. Michelsen, Berlin, 1788-90. French transl. by J. B. Labey, Paris, 1, 1835, 
234-256. 

10 Vorleaungen fiber Zahlentheorie, 1, 1901, 50-56. 
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so that the number of partitions of n into distinct integers equals the number 
of partitions of n into odd parts not necessarily distinct. 

Replace x by x2 in (3) . Since n(l — x2k) = PQ, 

Q = (1 - x* - x* + x10 + xu - ■ ■ ■)-, 

p = 1 + x + 2x* + 3x3 + 5x4 + • • •. 

Hence, by multiplication, 

Q~l + x + x2 + 2x3 + 2x4 + 3a:5 + 4x6 + • • •. 

Thus the coefficient of x* in this series gives the number of partitions of s 
into distinct parts. Since 

(1+ a;)(l + a;2)(l + x4) • * * = 1 + x + x2 + x3 + *4 
(ar1 + 1 + x)(ar3 + 1 + s®)(ar» + 1 + x9) • • • = 1 + * + z2 + a;3 + • • • 

+ x~l + x~2 + x~3 + * ■ •, 

every integer can be obtained by adding different terms of the progression 
1, 2, 4, 8, 16, • • • or of ± 1, db 3, dz 32, • * •. The latter facts were known 
by Leonardo Pisano,11 Michael Stifel,lla and Frans van Schooten,12 who gave 
a table expressing each number ^ 127 in terms of 1, 2, 4, • • •, and every 
number ^ 121 in terms of =t 1, db 3, =fc 9, 

Euler13 reproduced essentially his preceding treatment. He concluded 
(§ 41, p. 91) that, if P(n) or n(oe) denotes the number of all partitions of n, 

P(n) = P(n - 1) + Pin - 2) - P{n - 5) - P(n - 7) + P(n — 12) H-, 

the numbers subtracted from n being the exponents in (3). His table of 
the number n(m) of partitions of n into parts ^ m here extends to n ^ 59, 
m ^ 20 and includes m = co. He proved again that every integer equals 
a sum of different terms of 1, 2, 4, 8, 

Euler14 noted that the number (N, n, m) of partitions of N into n parts 
each ^ m is the coefficient of xN in the expansion of (x + x2 + * • • + xm)n. 
Set 
(5) (1 + x + • • • + ^m~1)n = 1 + Anx + Bnx2 + • • 

bring to a common denominator the derivatives of the logarithms of each 
member and equate the coefficients of like powers of x in the expansions of 
the numerators. The resulting linear relations determine An, Bn, • • • in 
turn, whence 

X(n + X, n} m) = (n + X — l)(n + X — 1, n, m) 

— (mn + m — X) (n + X — m, n, m) 

+ {mn — n + m + 1 — X)(n + X — m — 1, n, m). 

11 Scritti L. Pisano, I, Liber abbaci, 1202 (revised about 1228), Rome, 1857, 297. 
Ua Die Coas Christoffs Rudolffs . . . durch Michael Stifel gebessert . . ., 1553. 
12 Exercitationum Math., 1657, 410-9. 
12 Novi Comm. Acad. Petrop., 3, ad annum 1750 et 1751, 1753, 125 (summary, pp. 15-18); 

Comm. Arith. Coll., I, 73-101. 
14 Novi Comm. Acad. Petrop., 14, I, 1769, 168; Comm. Arith. Coll., I, 391-400. 
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Again, by comparing (5) with the corresponding relation with n replaced 
by n + 1, it is found that 

(N + 1, n + 1, m) = (N, n + 1, m) + (N, n, m) — (N — m, n, m). 

Finally, by expanding (1 — xm)n and (1 — x)~n by the binomial theorem, 

. /n + X — 1\ (n\ (n + X - m - 1\ 
(n + X, n, m) = ( x x_m ) 

/n\ (n + X — 2m — 1\ /n\/w + X*~3m — 1\ 

~\2 / \ X — 2m / V3/\ X - 3m ;+**** 

Euler’s proofs were made for m = 6 and, except for the third formula, 
involve incomplete inductions. By evaluating the coefficient of xN in the 
expansion of 

(x + * • • + x6)(x + ■ • • + x8)(x + • • • + x12) 
= (x3 - x9 - • • * - x29)/( 1 - x)3, 

Euler found the number of partitions of N ^ 26 into three parts, the 
first part ^ 6, the second ^ 8, the third ^ 12. 

As to the problem known as the rule of the Virgins [cf. Sylvester,54 and 
note 188 of Ch. II], the number of sets of integral solutions p, q, • • •, 
each ^ 0, of the pair of equations 

ap + bq + • • • = 7i, ap + Pq + * * * = v, 

is the coefficient [not determined] of xnyu in the expansion of 

(1 — xaya)~l( 1 — xV)"'1* * 

K. F. Hindenburg15 gave a method, different from Boscovich’s, for 
listing all partitions of n. For n = 5, the method lists them in the order 

5, 14, 23, 113, 122, 1112, 11111. 

Hindenburg16 gave a method of listing all partitions of n into m parts. 
The initial partition contains m — 1 units and the element n — m + 1* 
To obtain a new partition from a given one, pass over the elements of the 
latter from right to left, stopping at the first element / which is less, by 
at least two units, than the final element [/ = 2 in 1234]. Without 
altering any element at the left of /, write / -1- 1 in place of / and every 
element to the right of / with the exception of the final element, in whose 
place is written the number which when added to all the other new elements 
gives the sum n. The process to obtain partitions stops when we reach 
one in which no part is less than the final part by at least two units. 

Case n — 10, m = 4: 
1117 12 3 4 
1 1 2 6 1 3 3 3 
1 1 3 5 2 2 2 4 
1144 2233 

__1 2 2 5__ 
16 Methodus nova et facilis serierum infinitarum exhibendi dignitatea, Leipsae, 1778. Infini- 

tinomii dignitatum historia, leges, ac formulae, Gottingae, 1779, 73-91 (166, tables of 
partitions). A less interesting method is given in a Progr., 1795. 

16Exposition by C. Kramp, El^mens d’Arith. TTnivprdpllp R qqq u,. os 
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P. Paoli17 noted (p. 38) that n can be separated into m positive integral 
parts in QlJ) ways, if different permutations are counted separately. The 
number (p. 42) of partitions (different permutations not counted) of n 
into m parts > 0 is 0(1) + 0(m + 1) + 0(2m + 1) ■+* • • *, where is 
the number of partitions of n — j into m — 1 parts. The number (p. 53) 
of ways n can be divided into m distinct parts is X(ra) + \(2m) + X(3m) + 
• • •, if \(j) is the number of ways n — j can be divided into m — 1 distinct 
parts. There are (p. 63) as many divisions of n into m distinct parts as of 
n — m(m — l)/2 into m parts equal or distinct. Let 0, 0, co be the number 
of ways 2n + 1, 2n, 2n + 1 can be divided into 2m — 1, 2m, 2m ■+* 1 odd 
parts, respectively; let 0|V], 0[r], co[r] be the corresponding numbers 
when n is replaced by n — r. Then 

0 = 0p.[] + \f/[2 m + 1] + 0[4m 4- 1] 4~ 0£6m + 1] + • • *, 

co = 0 -f- (f>[2m + 1] + <j>\^m -j- 2T\ T* —j— 3] —f— * • •« 

If we impose also the condition that the odd parts be distinct, we have 

0 = \l/(2m) + ^(4ra) + • • •, co = <£(2m) + <£(4m + 1) + <£(6ra + 2) + 

The number (p. 76) of ways 2n is a sum of m even parts is 0(1) + 4>{m + 1) 
+ (f>{2m + 1) + • • •, if 0(r) is the number of ways 2(n — r) is a sum of 
m ~ 1 even parts. The number (p. 79) of ways n is a sum of m parts is 
the number of ways 2n is a sum of m even parts. The number (p. 80) of 
ways n is a sum of m distinct parts is the number of ways pn is a sum of m 
distinct parts multiples of p. The number P(n, m) of partitions of n into 
parts ^ m is 2P(n — j, m — 1), summed for j = 0, m, 2m, • • The 
number (p. 85) of partitions of n into m parts equals P(n — m, m). If 
0, co denote the number of ways (m — l)a -f rb and ma + rb can be formed 
additively from m and m — 1 terms of the progression a, a + b, a + 2b, 
• • •, then co = 0 + 0(m) + 0(2m) + • • *, where <f>(j) is derived from 0 by 
replacing r by r — j. Similarly (p. 92) when only distinct terms of the 
progression are used. If (p. 98) 0 is the number of ways n is a sum of 
numbers chosen from a, a + b, • * •, a + (m — 1)5, and co that for a, • • 
a + mb, then 

co = 0 -f- 0[a + mb^ 4~ 0£2(cx 4” mb)^ 4~ * • •• 

Finally (p. 103) the number of ways n is a sum of terms of any given series 
is discussed. He gave a more extended treatment in his next paper. 

Paoli18 treated linear difference equations with variable coefficients: 

Z(y, x) = AxZ(y - 1, s) + BxZ(y - 2, s) + • ■ • + XxZ(y -»,«)+•■• 

+ A'JZfa x - 1) 4- B'xZ{y - 1, x - 1) + • • • 4“ X'xZ(y - x, x - 1) 4- • • •, 

where Ax, • • • are given functions of x, and y is a function of x. Let the 
integral be 

Z(y, x) = mayVdx 4" nbyvpx 4- • * •, Vas = axa2 • * • ax, 

where m, a, n, b, • • • are constants. The condition that avVax shall be an 

17 Opuscula analytica, Liburni, 1780, Opusc. II (Meditationes Arith.), § 1. 
18 Memorie di mat. e fis. society Italiana. 2, 1784, 787-845. 
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integral is 

= + Bjjt1 4- •• • 4~ Xxarx 4- * * • 
“ 1 - A*arl - Bjr* - ... - Xjr* - ■■■' 

Hence we get Vax; let its expansion be 

Vax == A + A'ar1 + A" or2 + • • •. 

Differentiate its logarithm, regarding x as constant and a variable. Thus 

a2dVax A' + 2 A" cr1 + 

Votx'da A + Ara~~l + 
• = r + r'a-1 + r"<T2 + 

where r(w) is the excess of the sum of the (m + l)th powers of the roots of 
the denominator over the sum of the (m + l)th powers of the roots of the 
numerator in the fractional function of a-1 giving Vax. Hence 

A' = Ar, 2 A"~A'r + Arf, ZA”'= A"r + A'r'+ Ar", 

which give A'/A, A”/A, • • • as functions of r, r', • • •. Hence, evidently, 

Z(y, x) « A<f>(y) + A'<Ky - 1) + A"<f>(y - 2) + • • •, 

<f>(y) * mav + nby + • • •. 

Consider (pp. 817-21) the number (y, x) of ways y is a sum of x equal 
or distinct positive integers. Those in which 1 is a part furnish the (y — 1, 
x — 1) ways y — 1 is a sum of x — 1 parts; while those in which each 
part exceeds 1 give, upon subtracting 1 from every part, the (y — x, x) 
ways y — x is a sum of x parts. Hence 

(y> «) = (y - S, x) + (y - 1, x - 1). 

It has the integral (y, x| = avVax if as = a~xax + o'"1, whence 

Vax 
a~x 

(1 -a-1)(l-a-*)..-(l-o^)“ 

The sum of the mth powers of the roots of a = 1, a2 = 1, * • •, ax = 1 is 
the sum 5(m) of those of the numbers m, m/2, m/3, • * *, m/m which are 
integral and ^ x. Hence 

ro») = 5 (m + 1), Af = 5(1), 

ACm> 
5(m) 5(1) 5(m — 1) 

A" = *{«(2) + 52(1)}, 

5(m - 2) 
m 

+ 

m 

5(3) , 

+ i {5(2) + 52(1)} 

5(1) 5(2) / 5(2) 52(1)\ 5(1) \ 5(m - 3) 

f\2 + 2 / 3 I m 3 ' 3 

Vax = arx + A'or*-1 -f A"ar^~2 -f • • 

(y, x) = <t>(y - x) + A'<j>(y - x - 1) + A"4>(y - z - 2) + • • 

Take* = 1. Then A' = A" = • • • = 1, (y, 1) = <j,{y - l) + ^(y - 2) + 
• • •. Replace y by y - 1. Thus (y - 1, 1) = <f>(y - 2) + <t>(y - 3) + 

Hence {y, 1) — (y — 1, 1) = <j>(y — 1). By the nature of our 
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problem, (y, 1) = 1 or 0 according as y > 0, y 0. Hence <f>(z) = 1 or 0 
according as z = 0 or z + 0. Hence (y, x) reduces to the single term 
A(v~x\ so that 

&.«> - ‘-fff++im + ««r+ 
Next (pp. 821-4), to find the number (y, x) of ways y is a sum of x 

distinct positive integers, we have (y, x) ~ (y ~ x} x) (y — x, x — 1). 
Now ax = arx/(l — orx). The values of r(m), 5(m), A(m) are the same as in 
the preceding problem. But 

Vax = arz + A'or*-1 + • • ♦, (y, x) « <j>(y - z) + A'4>(y - z - 1) + • • •, 

x(x + 1) 

Again, <f>(y) = 1 if y = 0, 0(y) = 0 if y =f= 0. Hence (?/, a;) is derived from 
A(m) by replacing m by y — x(x + l)/2. Hence y is a sum of x distinct 
parts as often as y — x(x — l)/2 is a sum of x equal or distinct parts. 

For (pp. 824-7) the number (y, x) of ways y is a sum of x equal or dis¬ 
tinct positive odd numbers, it is stated that (y, x) = (y — 2x, x) + (y — 1, 
x — 1). Here ax = a~7(l — or2x), (y, x) = <f>(y — a;) + A'4>(y — x — 2) + 
• • •, and 0(y) = 0 unless y = 0, 0(1) = 1. Thus (;y, x) is obtained from 
A(m) by taking m = (y — x) /2, where y and z are necessarily both even or 
both odd. If y is partitioned into distinct odd numbers, (y, x) = (y — 2x, 
x) + (y — 2x + 1, x — 1), and (y, x) is obtained from ACm) by taking 
m — (y — x2)/2. Hence y is a sum of x distinct odd numbers as often as 
y — x(x — 1) is a sum of x equal or distinct odd numbers. 

The number (yy x) of ways y is a sum of terms chosen from zh •••,£* is 
the number of sets of solutions p, • • •, t of y = pzx 4* * • • 4* tzx. Taking 
t = 0, 1, • • • in turn, we get 

(y, s) = (y} x - 1) + (y - zx, x - 1) + (y - 2zX) x - 1) 

+ (y - 3zX) x - 1) 4- 

Replace y by y — zx and subtract. Thus (y, x) = (y — zx, x) + (y, x — 1). 
Here = 1/(1 — cCx*). Write S(m) for the sum of those terms m, mj2, 
• • •, m/m which are integers sg zx and are z7s. The formula for A(w) is 
the same as in the first problem. Since A(*l) is the fitet A which is not 
zero, we have 

(y, 1) = <f>(y) + 4>(y - »0 + 0(?/ - 2zx) + * ■ *, (yy 1) - (y — zi, 1) = 0(2/). 

Thus 0(0) = 1, <f>(y) = 0, y 4 0. Hence (2/, x) is given by A(v). In par¬ 
ticular, if zx = x, we have the number of ways y is a sum of numbers ^ x. 
Hence by the first problem, y is a sum of x integers as often as y — x is a 
sum of integers ^ x. For zx = n(2x — 1), (y, x) is given by A(y/n) if to 
form 5(m) we retain only the terms which are integral, odd and = 2x — 1. 

For the number (y, x) of ways y is a sum of distinct terms chosen from 
Zi, • • •, Zx, (yy x) == (yy x - 1) + (2/ - zx, x - 1). Let y(m) be the sum 
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of those numbers m, — ?n/2, m/3, — m/4, ■ • •, db m/m which are integers 
zx and are z}s. Then Aim) is derived from the A(m) of the first problem 

by replacing 6’s by 7’s, while (y, x) is given by A{v). Let zx = 2X~1 and 
let x increase indefinitely, i. e., use the infinite series 1, 2, 4, 8, * • *. Then 
7(m) = 2m - 2m~1 — • • - — 1 = 1, (y} x) = 1, so that every integer is a 
sum of terms 1, 2, 4, 8, • ■ ■ in a single way [L. Pisano11]. 

For the number (y, x) of ways y is a sum of x terms of m, m + n, m -f- 2n, 
• • • or x distinct terms, (y, x) = (y — nx, x) + (z, x — 1), where z — y — m 
or y — nx + n — m, respectively. Then (y, x) is given by Aw for 
nn = y — mx or y — mx — nx(x — l)/2, respectively. Hence y is a sum 
of x distinct terms of the progression as often as y — nx(x — l)/2 is a sum 
of x equal or distinct terms. 

Finally (pp. 842-5), to reduce the integration of 

0, x] = A*lv ~ m^ix), x] + Bx[_y - ${x), x - 1] 

to that of (y, x) = Ax{y — <£(x), x) + Bx(y —/(x), x — 1), substitute 
[_y, a:3 = ({y — F(x) ] /m, x) into the former and compare the result with the 
latter. The condition for agreement is F(x) — F(x — 1) = ^(x) — m/(x), 
whence, for a constant c independent of x, 

F(x) = 2{^(x + 1) - m/(x + 1)} + c. 

Thus, in our second problem, [_y, x] = [y — x, x] + jj/ — x, x — 1], 
while in the first problem concerning 21, • • ■, 3X = x, 

(25 s) = (y - x, x) + (y, x - 1). 

Hence F(x) = 2(x -f 1 - 0) = x(x + l)/2 + c and c = 0. Hence 

\jf> x] = (y - x(x + l)/2, x), 

so that y is a sum of x distinct parts as often as y — x(x + l)/2 is a sum of 
parts si x. Again, for the equation in our first problem, and 

05 x] = Q/ - 2z, x] + [y - 1, x - 1] 

of our third problem, we have F(x) = — x, [y, x] = ({*/ + x}/2, x}, so 
that y is a sum of x odd parts as often as (y + x) /2 is a sum of x even or odd 
parts. Finally, for our first and last problems, F(x) ~ {m — ri)x, so that 
y is a sum of x terms of m,m n,m A~ 2n, • • • as often as ft/ — (m — w)x j In 
is a sum of x positive integers. 

G. F. Malfatti19 obtained the general term of a recurring series whose 
scale of relation has a multiple root. In the Appendix, he treated the 
number of partitions into x distinct terms of the series 1,2, • • •, extended 
either to infinity (as by Paoli) or to a given number p. Taking first the 
former case, he showed how to pass from any of the series 

x = 1: 111111111 
x = 2: 1 12233445 ••• 
x = 3: 1 1 2 3 4 5 7 8 10 ••• 

19 Memorie di mat. e fis. society Italiana, 3, 1786, 571-663. 
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to the next. Here the entries for x = 2 give the number of partitions of 
3 = 1 + 2, 4, 5, • • • into 2 distinct parts; and are the sums of the units 
in the respective columns in the accompanying scheme of units arranged by 

11 11 11 11 
11 11 11 

11 11 
1 1 

twos. Apply the same process to these numbers for x = 2, taking them 
by threes: 

112 233 445 ••• 
1 1 2 2 3 3 

112 

Summing the columns, we obtain the number of partitions of 6 = 1 + 2 + 3, 
7, 8, • • • into x = 3 distinct parts. Taking these by fours, we get similarly 
the series for x = 4. This property shows that 

(t, x) = (t - x, x) + (t, x - 1), 

if (t, x) is the tth term of the series for x. 
To pass to the number of partitions into x distinct terms of 1, • • •, p, 

we must delete the partition (p + 1) + 1 of p + 2, and (p + 1) + 2, 
(p + 2) + 1 of p + 3, etc. Thus the number of terms in the “ first series 
of subtraction ” is 

2 = 1: 111111 
z = 2: 1 2 3 4 5 6 
2 = 3: 1 2469 12 ••• 

any line of which is formed from the preceding line as in the former problem. 
Thus (t, x + 1) = (t — x, x + 1) + (£, 2). But for 2 = 2 we counted the 
partition of 2p + 2 into parts each p + 1. Hence we must correct our 
subtractive series by employing the “ first additive series ”: 

2= 2: 1 1 2 2 3 3 2 = 3: 1 2 4 6 9 12 •••; 

leading to (t, x + 2) = (t — 2, 2 + 2) + (t, 2 + 1). Then we have a 
second subtractive series, etc. The general one of these difference equa¬ 
tions is 

(t, x + X) = (t — 2, 2 + X) + (£, 2 + X — 1). 

It has the integral allI, where II = if aJ+K = 1/(1 — a~j). Thus 
n = 1 ID, D = (1 - orl)a - ar2) • • .(1 - or*). If 

1/D = 1 + Al'cl~1 + A+gT"’2 + * • *, 

we find (as by Paoli) that Af — r, 2A" = A'r + rf, • • *, where r(m) is the 
sum of the (m + l)th powers of the roots of D = 0. The general integral 
is (ty 2 + X) = <f>(t) + Ar4>(t — 1) + A"<j>{t — 2) + • • *. For X = 0, we 
find by using 2 = 1 (cf. Paoli) that (t, x) = For general X, write 
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in place of A(<). Taking x = 1 in the general integral, we see that 
{ty 1 + X) — (t — 1, 1 + X) = <f>(t)f which is shown to be of Paoii’s 
case. Hence 4>(t) = and 

(ty x + X) = r%-" + A'n(r2) + + • • • + 

He gave the following results for x ^ 4: 

(ty 2) - J{2* + l-(- iy], 

o\ _ W + 24* + 17 (- 1)* . a*-1 + a{“1 
C*.3) - 72 8~+ 9 ’ 

,, 2P + 24? + 81< + 68 (< + 4)(— 1)' am + al+1 
1 ’ ’ 288 32 27 

2(a‘ + «!) fl'-'+Pl-1 

27 ^ 16 

where a and ai are the imaginary cube roots of unity, and 0 = i} fix = — i. 
He also gave the general term of the first subtraction series: 

(tfy 2) = *' = *—-p+1; 
(*', 3) = \{2t* + 4*' + 1 - (- 1)*'}, V = t - p + 2; 

_ 4*'3 + 30*'2 + 60*' + 25 (- 1Y 
1 } 144 16 

_(^ + ar,)_2(«>;+«0 (' = ( _ p 4. 3. 
27 27 

Earlier in the paper (pp. 618-26), he gave (t, 5) and the general terms of 
the addition and subtraction series; these and various other results given 
above occur in his earlier two articles in Prodromo delT Enciclopedia 
Italiana and (in more detail) in Antologia Romana, 11, 1784. 

V. Brunacci20 reproduced Paoli’s18 treatment of his first problem. 
S. Vince21 proved by induction that every positive integer is a sum of 

distinct terms of 1,2,4,8, ••. For, if true for numbers up to s = 1 + 2 + 
... 4- 2n“1 = 2n — 1, it will be true for the remaining numbers up to 
s + 2n. The proof for ± 1, ± 3, ± 32, • * • is longer. 

S. F. Lacroix22 reproduced part of the discussion by Euler.8 
Fr6gier22a proved that am equals a sum of a terms of the arithmetical 

progession whose first term is unity and common difference is 

2 + 2a + * •. + 2aw-2. 

Cf. Volpicelli,87 Lemoine,76 Mansion,87 and Candido.218 

10 Cotso di Matematica Sublime, Firenze, 1,1804; §§ 108-9. pp. 237-248. Cf. Compendium 
del Calc. Subl., 1811, § 114. 

» Trans. Roy. Irish Acad., 12,1815,34-38. Euler.1* 
** Traits du Calcul Diff. Int., 3,1819, 461-6. 

Annales de math, (ed., Gergonne), 9,1818-9,211-2. 



Chap. Ill] Partitions. 113 

C. G. J. Jacobi226 gave fundamental applications of elliptic function 
formulas to the theory of partitions. He proved the identical relation 

1 + q(v + tr1) + ^(v2 + v~2) + g9(t^ + tr3) + • • • 

= (1 ~ g2)(l - q*)( 1 - q6) • • • X (1 + qv)( 1 + gV)(l + q*v) 

X (1 + qv~x){ 1 + gV^Xl + tftr1) • • •, 

if | g | < 1, and another deducible from it by writing qv2 for v and multiplying 
by qlUv, viz., 

qlU(v + tr1) + g9/4(y + tr3) + g25/4(V + tr5) + * * * 

= (1 — g2)(l — g4)( 1 - g6) ■ • * X g1/40 + tT1) 

X (l+fiVJ^+S^OCl+g8^) • • • X (l+g2tr2) (l+q*v~2) (1+g6”~2) 

From this he inferred, through the intermediary of the four theta functions, 
the following relations of great importance in the theory of partitions: 

m +o° °° 
V—= £ r - n a - e2m)d + 92”-1)2) 

7T m=—oo m=l 

/o^ir +« » 
V— = £ (- 1) v = n (1 - 32m)(l - g2m-1)2, 

7T m=—oo m=l 

{OtsTT +oo oo 

JfJh = 2 = 2g1/4 IX (1 - 92m)(l + S2m)2, 
X mss— oo m=l 

= “ 2 (- l)»(2m + l)g<2”v+,)’/‘l = £9* ft (1 - ?2m)3- 
X JjJlx. m=—oo -ft- m=l 

For his expansions, as series in g, of powers of these functions see Chs. VI- 
IX on sums of squares. If in the first identical relation above we write + z 
and — z in turn for v and multiply the results together, we obtain 

2(— l)”qm'+n9zm+n = 2(— l)™+«g2{ffll+nV,n. 

A. M. Legendre23 noted that Euler's formula (3) implies that every 
number, not a pentagonal number (3n2 ± n) /2, can be partitioned into an 
even number of distinct integers as often as into an odd number; while 
(3n.2 ± n)/2 can be partitioned into an even number of parts once oftener 
or once fewer times than into an odd number, according as n is even or odd. 
This result was implied by Euler13 (§ 46). 

C. J. Brianchon24 noted that the literal part of the general term in the 
expansion of (ai + a% + • • • + an)m is of the type aT • - • a?, where 

+ * * - ax — m, x ^ m, x ^ n. Thus the terms form as many classes 
as there are values of x, and the terms of a class form as many groups as 
there are partitions of m into x numbers a;;. In view of Euler's9 table we 
know the number of groups of each class. 

326 Fundamenta Nova Theoriae Func. Ellip., 1829,182-4. Werke, I, 234-6. Cf. Jacobi.80 
See the excellent report by H. J. S. Smith, Report British Assoc, for 1865, 322-75; 
Coll. Math. Papers, I, 289-94, 316-7. 

23 Thdorie dee nombres, ed. 3, 1830, II, 128-133. 
“ Jour, de T6cole polyt., tome 15, cah. 25, 1837, 166. 
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E. Catalan25 proved that xi + ■ • • -4- xn = m has (n+™-1) sets of solu¬ 
tions ^ 0. 

O. Rodrigues26 noted that the number Zn< * of ways of permuting n 
letters, such that there are i inversions in each permutation, is the number 
of sets of solutions of xQ + Xi + * • • + xn_i = i, where xk takes only the 
values 0, 1, • • k and where the value of xk for each permutation is the 
number of inversions produced by xk+i. Thus Zn,» is the coefficient of 

in the expansion of 

(l + 0(1 +1 + f) ... (l + «+■-. + *»-*) = (l - 0~nP, 

where P - (1 - t)(l — t2) • • • (1 — tn). Let En, » be the coefficient of tl 
in the expansion of P. Thus En, * = P»~i. » — Pn-i,»-», P», % = Pi, »> and 

Znti En,{+ (j)j?n.*_i+ ••• + (n+j 

("+r1)+(*t-72)j!>-+-+i- 
Here Pn, *■ equals the excess of the number of partitions of i in an even 
number of distinct integers < n + 1 over the number in an odd, the number 
of parts being also < n + 1. 

M. A. Stem27 wrote nCq (or nC'q) for the number of combinations without 
(or with) repetitions with the sum n and class q (i. e., q at a time), meaning 
the number of partitions of n into q distinct parts (or equal or distinct 
parts). Evidently nC'z — [?i/2]. Hence, by (2), we get 

n c: £2 • • • t X B in - (3k + 1) - (4h +1)-(9V,+1))]• 
*9-3=0 *1=0 *=Q 

Since nCq = if m = n — q{q — l)/2, we get by (1), 

Again, 

If C(n) is the number of all partitions of n into distinct parts, 
2n 
E (- 1 )zC{n - yl2) = (- 1)- or 0 (y = 3z2 =F 2), 
v=o 

according as n is or is not of the form 3r2 r. This follows by expanding 

1 — x2 1 — r4 1 — x6 

1—35 1 — X2 l — Xz 

25 Jour, de Math., 3,1838,111-2. 
28 Jour, de Math., 4,1839, 236-240. 

27 Jour, Math., 21, 1840, 91-97, 177-9. Further results were quoted under Stern154 of 
Ch. X U1 Vol. I Of this Hintnrv 
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Also, 

23 (— 1 )zC(n — y) = 1 or 0 (y ss 3z2 =F 2), 
y—0 

according as n is or is not of the form z(z + l)/2. 
A. De Morgan28 considered the number ux, y of ways x can be formed 

additively from y and numbers ^ y. Adding y to each such composition 
of x — y, we see that 

Ux, y = Ux—y, 1 “f“ Ux-—y, 2 ”4“ * * ' *4" Ux—y, y• 

Subtracting from this the equation obtained by decreasing x and y by unity, 
we get 
(6) UXt y V>x—1, y— 1 = Ux—y, y• 

Regard y as fixed and the second u as a given function, we have a difference 
equation of order y whose general integral is of the form 

Ux, y “ 1 *4“ A.a%P2 "f“ * "f“ AayPj/, 

where Aan is a rational integral function whose degree an is the greatest 
integer in (n — y)/yf while P„ is a circulating function with a cycle of n 
values. In particular, 

Ux'2 “ 2 ~ ^ 

ux, 3 — ~T2 {6a;2 — 7 — 9(— l)x + 8(0Z + 7*)), 

ux, 4 = irk (6#3 + 18a;2 - 27a; - 39 + 27(x + 1)(- 1)* 

+ 32(j3x~1 + 7X~1 ~ ]8* ~ 7Z) + 54i* + 54( — t)*}, 

where /3, 7 are the imaginary cube roots of unity and i = V— 1. Thus 

12uXi 3 = a:2, x2 ~ 1, x2 — 4, x2 + 3, a:2 — 4, x2 — 1, 

according as x = 0, 1, 2, 3, 4, 5 (mod 6). Similarly, uz% 4 has 12 forms 
depending on the residues of x modulo 12. Again, uXtz is the integer 
nearest rc2/12, and uXt 4 that nearest to (a;3 + 3a;2)/144 or (a;3 + 3a;2 — 9a;)/144, 
according as x is even or odd. 

A. Cauchy29 proved (3) and the other formulas of Euler3 and the related 
ones involving a finite number of factors: 

p(x) = n a + m = 1 + 
i=0 l — l (l - 0(1 -1•) 

1 a - m - w - tn)x*, 
^ (l - «)(i - *0(1 - o 

pc-*) 
= 1 + 

1 

1 - < ' (1 - 0(1 - O 
/i 

+ 
(1 I(1 f+Q(l - tn+2) ^3 

(l - 0(1 - 0(1 - o 
X3 + 

18 Cambridge Math. Jour., 4,1843, 87-90. 
” Comutes Rendus Paris. 17. 1843. S23: Oeuvres, III. VIII. 42-50. 
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C. G. J. Jacobi30 stated that if we replace q by qn and set v = =F= qm in 
his first formula,226 we get 

(1 d= do qn+m)(l - g2n)(l =fc g3n-m)(l =fc g3n+nt)( 1 ~ g4n) • * * 

SS f[ (1 dh i (-t l)ign^+»<# 

fcsl “« 

For m = 1/2, n = 3/2, that with the lower signs becomes Euler’s (3). 
Although he226 (pp. 185- 6) gave two simple proofs of it, Jacobi here repro¬ 
duced Euler’s proof in essential points, but with a generalization. He 
gave a proof of Legendre’s23 corollary and proved the following generaliza¬ 
tion. Let (P, a, P, • • •) be the excess of the number of partitions of P 
into an even number of the given distinct elements a, \S, • • •, each + 0, 
over the number of partitions into an odd number of them. Then 

(P, a, ft 7, ' • •) = (P, ft 7, • • •) - (P - a, ft 7, ' • •)• 

Let a, alf • • *, am_i form any arithmetical progression, and bo, bi, • • *, bm 
an arithmetical progression with the common difference — a. Set 

Ci := b{.j-i *■— d>i = Ci-j-i — ai-f-i, *• 

Then 

L s (&o> a) + (hi, a, ai) + (62? a, Q>\, a2) H~ * • • + (bm-i, cl, a\, • * *, Om-i) 

A (bin) 0*1} ' * *j “f“ (Cm—lj * * *j CLm-i) 

~ (dm_2, Ct3, ‘ * • , CLm-z) + * ‘ * > 

A S [7>0] - [c0] “ [ci] + [di] + [d2] - [>2] “ 

If bo and a are positive and ma > b0, L vanishes except when fri equals 
St—i + 2sj or 2st*_i + Si, and then equals (— 1)( where 

Si = ai + ai + • • • + 

Jacobi31 noted that Euler9 expressed P = (1 + <y)(l + #2)(1 + q3) * * * 
in the form f(jf)lf(q), where f(x) is given by (3). Jacobi expressed P in 
six ways as quotients of two infinite products and expanded each into 
infinite series; the next to the last case is 

ci + g)( i+ga)(i - g*)q + g«)(i + g»)(i - g») • • • = 

(1 - ?3)2(1 - g*)(l - g9)2(l - 0(1 - g15)2(l - O • • • S(- 1 Yqu" 

Expressing this in the form Cjq3', we conclude that, if Ci is the number 
of partitions of i into arbitrary distinct integers or into equal or distinct 
odd integers, 

Ci = 2{Ci-3 — C,*—12 + Ci—27 “ Ci—48 + Ci-75 *“ * * * } +5, 

where 5 = 1 or 0 according as i is or is not of the form (3n2 do n)/2. He gave 

80 Jour, fur Math., 32,1846, 164-175; Werke, 6, 1891, 303-317; Opuscula Math., 1, 1846, 
345-356. Cf. Sylvester117, Goldschmidt.148 

81 Jour, fur Math., 37,1848, 67-73, 233; Werke, 2,1882, 226-233, 267; Opuscula Math., 2, 
1851,73-80,113. 
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expansions of P2 and P3. Only those m-gonal numbers give the remainder 
1, when divided by m — arb, whose side has the remainder 1 when divided 
by ab} where a2 is the greatest square dividing m. 

H. Warburton32 considered the number [N, p, 77] of partitions of N 
into p parts each ^ 77, and proved that 

PV, P, vl - PV, p, v + 1] = £N — v, P - 1, *7], 

[JV + p, p, 1] = s £N, z, 1], [iV, p, 1?] = 2 PV ~ Pv, Z, 1], 
PV, p, 1] « [tf - 1, p - 1, 1] + IN - p - 1, p -~1, 1] 

+ [iV-2p-l)p-l)l]+ 

to pV/pH terms. He applied these formulas to the construction of a table 
•of partitions and proved that the number of partitions of x into three parts 
is 3f} 312 =fc t, St2 ± 21, 312 + + 1 according as x = 6t, & ± 1, 6Z db 2, 
6i •+- 3 pn accord with De Morgan]. 

J. F. W. Herschel33 recalled his34 earlier notation sx = where a 
ranges over the sth roots of unity, so that sx = 1 or 0 according as x is or 
is not divisible by s. Then Axsx + PxSs-i + • • • + Nxsx^8+1 will circulate 
in its successive values as x increases by units from zero, being Ax when x 
is divisible by $, but Bx when n: — 1 is divisible by s, etc. If AXJ etc., are 
constants, the function is called periodic. He wrote ‘II(x) for the number 
(x, s) of partitions of x into s parts > 0. Starting with 

(x} s 1) == $(%) “h 

where is the non-periodic part and Qx the periodic or circulating func¬ 
tion, and applying the final formula quoted from Warburton, he obtained 

(x, s) = A + Z, A = <f)(x — 1) + <f>(x — s — 1) + • • 

Z = Qx-i + Qxs-i + • • *, 

each extending to [x/s] terms. Then A is expressed explicitly in terms of 
the numbers Am0n, giving the mth order of difference of zn for 2 = 0, while Z 
is expressed in terms of these numbers and the above circulating functions sx. 
He deduced explicit expressions for (x, $), $ = 2, 3, 4, 5, as (x, 2) = f (x—2x_i), 

(x, 3) = r£{£2 — 6x~i — 4-6x_2 + 3-62-^ — 4-6x-4 — 6x~s), 

which, with the expression for (x, 4), are in accord with the results by 
De Morgan,28 although the latter was not treating partitions into $ parts. 
While the method of Herschel is laborious, it anticipated to some extent 
the simpler method of Cayley.44 

J. J. Sylvester35 quoted Euler’s theorem that the number of partitions 
of n is the same whether the number of parts is ^ m or every part is ^ m, 
and noted that, if we apply the theorem also when the limiting number is 

32 Trans. Cambridge Phil. Soc., 8, 1849, 471-492. 
n Phil. Trans. Roy. Soc. London, 140, II, 1850, 399-422. 
34 From his paper on circulating functions, ibid., 108,1818, 144-168. 
* Phil. Mag., (4), 5, 1853,199-202; Coll. Math. Papers, I, 595-8. 
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m — 1, we obtain by subtraction the following corollary. The number of 
partitions of n into m parts equals the number of partitions of n into parts 
one of which is m and the others are ~ m. Sylvester credited the corollary 
to N. M. Ferrers who communicated to him the following proof. Take 
any set A composed of 3, 3, 2, 1, written as 

1, 1; 1 
1, 1, 1 

1, 1 
1. 

Reading it by columns, we get the set B composed of 4, 3, 2. Similarly, 
every A in which the number of parts is 4 gives rise to a B in which 4 is a 
part and every part is ^ 4; conversely, every B produces an A. Euler’s 
theorem can be proved by the same diagram. Similarly, the number of 
partitions of n into m or more parts equals the number of partitions of n 
into parts the greatest of which is is m. If we partition each of i numbers 
into parts so that the sum of the greatest parts shall not exceed (or be less 
than) m, the number of ways this can be done is the same as the number of 
ways these i numbers can be simultaneously partitioned so that the total 
number of parts shall never exceed (or never be less than) m. 

P. Volpieelli38 arranged the natural numbers n, n + 1, * * • in a rectangle 
with k + 1 rows, each with h + 1 numbers, but in reverse order in alternate 
rows. For example, 

18 19 20 
23 22 21 
24 25 26. 

The successive sums by columns are 65, 66, 67 (of common difference unity) 
and so always when the number of columns is odd; but, if k + 1 is even, 
the sum of the numbers in each column is constant, being 

a = {2n *4" h{k -j- 1) k}(k -h l)/2, 

and we have special partitions of a. Given a, to find integral solutions 
n, h, k, we note that h = 7/5, where 6 = (k + l)2, while 7 and (2a)2/ 8 are 
integers. Hence seek those divisors of (2a)2 which are squares 8; for each 
such 8, we have k and seek integers n for which 7/5 is an integer h. 

Volpieelli37 expressed nk as a sum of numbers in arithmetical progression. 
* P- Bonialli38 treated partitions. 
T. P. Kirkman39 proved that the number of partitions of N into p parts 

= a equals the sum of the number of partitions oi N — a, N ~ p ~ a, 
N — 2p — a, ••• into p — 1 parts ^ 0. The case a =^1 is the last formula 
of Warburton.32 He gave an analytic expression for the number (xy k) of 

» Atti Accad. Pont. Nuovi Lincei, 6,1852-3 (1855), 631; 10,1856-7,43-51,122-131; Annali 
di sc. mat. e fis., 8, 1857, 22-27 

17 Atti Accad. Pont. Nuovi Lincei, 6, 1852-3,104-119. Frdgier.22* 
18 Formole algebriche esprimenti il munero delle partizioni di qualunque intero. Progr., 

Clusone, 1855. 
88 Mem. Lit. Phil. Soc. Manchester, (2), 12, 1855,129-145. 
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partitions of x into k parts > 0, for k = 2, • •6, in terms of the circulator 
sej which is unity if e/s is a positive integer, zero if e/s is fractional or negative. 
For k ^ 5, his results are identical with those of IIersehel,,u imt were oh- 
tained by more elementary methods. Kirkmaiv10 corrected his expression 
for (x, 6) and found (x, 7). He41 found (r2 — r + lf r). 

J. J. Sylvester42 called the number of ways of composing n with given 
positive integral summands aX) • • •, ar the quotity Q of n with respect to 
ah • * ar. Thus Q is the number of sets of integral solutions * 0 oi 

&lX\ -j- • • • -f- CLrXr = Ti. 

He stated that Q = A + U} the periodic part U (depending on roots of 
unity) not being discussed, while the non-periodic part A is the coefficient 
of 1/t in the expansion of 

ent(l — e~ait)~l- • • (1 — e”tfr0~h 

Other formulas for A are given. But all these formulas were provisional 
and were replaced in his next paper by others more expeditious for c<im¬ 
putation. 

Sylvester43 stated that Q — ^Wq) where \VQ (called a mm) is the 
coefficient of 1/t in the development in ascending powers of t of* 

Zp-nent II (1 - Paie^ 
j=i 

summed for the various primitive <?th roots p of unity. Thus )V4 0 
except for a q which divides one or more of the a*. Thus IF* is his ft inner „ f. 
Taking the a’s to be 1, • • *, 6, Sylvester computed • * *» }\\ initially in 
terms of certain 2pk and finally in terms of IIersehel\s34 circulating function^ 
obtaining results agreeing with Cayley’s.44 

But Sylvester did not give a full account107 of his theorem until lss:i 
A. Cayley44 employed P(a, 5, * • -)q in the sense of Sylvester's Q, to 

denote the number of partitions of q into the elements a, hk • * >, with 
repetitions allowed. As known, it is the coefficient of in Iff! ,r*i *. 
By decomposing the latter into partial fractions, it is shown that 

P(a, &,■••){? = Aq^1 + Bqk~2 + • • • + Lq + M + A u • • *. A i i iptrl4i 

where k is the number of the elements a, b, • • and l is any divisor * t n( 
one or more of these elements, and the summation extends, for each mrh 
divisor, from r = 0 to r = x - 1, if z is the number of elements u, ht • 
having l as a divisor. Also 

(Aoj *; Ai—i)pcrlq — Aqclq T A\dq T A 4I tat. 4 ‘Hi 

40 Mem. Lit. Phil. Soc. Manchester, (2), 14, 1857, 187" 149. 
41 Proc. and Papers Lancashire and Cheshire Hint. Son. Liverpool 9 IK57 l'*7 

4i nl/j1*’ ^55 (1857), 81-4; Coll. Math. PuperH, II, HU 9. * 

An ltali,lU lnuud- <lf «* “H—* 

*STobtta/^daTr0udi^bCOn Cha‘1KC<I tMp'" 10 ,lm,nl w,Ul Hnn»K|tltl - 
44Phil. Trans. Rov. Soc. Lnndnn iaa iqsa 
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is the “prime circulator to the period a,” if aq = 1 or 0 according as q is 
divisible by a or not, and 

Ai + Aw + • • • + A(x~ih+* = 0 (i = 0,1, • • •, l — 1; X = a/Z). 

He showed how to evaluate the Ays and then the coefficients A, • • *, L, M 
of the non-circulating part. Next, he evaluated the number P( 0,1, • • *, k)mq 
of partitions of q into m terms 0,1, • * •, Jc, with repetitions allowed, known 
to be the coefficient of xqzm in (1 — z)~L(l — xz)~Y • • • (1 — xkz)~~l. 

Finally, Cayley proved that the non-circulating part of the fraction 
<t>(x)/f(x) is the coefficient of Iji in 

1 — xe* /(e~*) * 

Cayley45 later considered his last formula for s= 1, obtaining a 
formula equivalent to Sylvester’s theorem, and applied it to find 

P( 1, 2, 
Cayley*6 noted that P(0, 1, • * *, m)°q — P(0, ••*, m)°(q — 1) is the 

number of asyzygetic covariants of degree 8 and order q of a binary quantic 
of order m. Thus it is the coefficient of of in the expansion of a given 
function. He calculated the literal parts of covariants by Arbogast’s 
method of derivatives.850 

F. Brioschi47 started with Euler’s remark that the number C8 of parti¬ 
tions of s into r parts ^ n is the coefficient of x8zr in the expansion of 

Z = (1 - z)~\ 1 - xz)"1- • •(! - x»z)~\ 

Now Z = 2^(x)zr, where 

. / v = q-g^ci _ m 
n} (1 — s) (1 — x2) • • • (1 — xr) ~~ 4>(x)' 

Since \fr(x) is unaltered by the interchange of n and r, CB equals the number 
of partitions of s into n parts ^ r. Let ah a2} • • • be the roots of f(x) = 0; 
ft, ft, • • ■ the roots of <f>(x) = 0 and set 

Sm = ^ ft* ~ ^ ~a^ ’ == 1 + + C2x2 + • • *. 

Then 

fix) 
t(x) 

Si + s2x + 

(7) Ci — Si, 2C2 — CiSi + $2, —, = Cp-iSi + • * • + CiSp-i + sp. 

" ^an8‘R- Soc* ^don, 148,1,1858, 47-52; Coll. Math. Papers, II, 500-512. 
«Phfl. Trans R. Soc. London, 146, 1856, 101-126; Coll. Math. Papers, H, 250-281. Cf. 

F. Brioschi, Annali di Mat., 2, 1859, 265-277. 
47 Annali di sc. mat. e fia., 7,1856, 303-312. Reproduced by Fak di Bruno." 
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Hence 
Sl - 1 0 • • • 0 

$2 Si — 2 • • • 0 

P* Cp = sz s2 Si • • • 0 

[ Sp Sp—-X —2 * 

Set cQi/k) = 0 or k, according as h is not or is divisible by k. Thus 

-•(^)-(=5v)- 
G. Battaglini48 proved Sylvester’s formula for the wave Wq by means of 

the special case (ai = 1, • * •, ar = 1) where the coefficient of xn in (1 — rr)~r 
equals the coefficient of 1/t in en<(l — e~t)~r. To evaluate the waves, we 
need the value of S: 

S = aU-, Fa = 2Fo = 
fib 

where, in S, the summation extends over all imaginary &th roots Xi of unity. 
We can find c’s such that 

Fa/Fb = Co + C\X{ + * * * + Cjfe-i#**”1. 

Since 'Zxj = — 1 forj ^ k — 1, we see that S is y0, yt, • • •, yjc~i, according 
as n ss 0, 1, • • •, k — 1 (mod k), where yj = kcj — c0 — Ci — • • • — c*_i, 
and 27/ = 0. Hence we obtain Cayley’s44 prime circulator [with kq for aj 

S = yokn + yikn-i + — + 7*-i&«~*+i* 

F. Brioschi49 proved Sylvester’s43 theorem by use of Cauchy’s theory of 
residues. He noted that, if ah • • *, a* are all primes, 

Wm = ±il yrn K (l - y,*)-1 or o, 
m i*i *=i 

according as m is or is not one of the a’s. Here yi, • • *, yi are the primitive 
mth roots of unity, and ft, fo, • • • are the a’s not divisible by m. Applica¬ 
tion is made to 2xx + Sx2 + 5z3 = n. 

A. Cayley60 wrote (p? * * -p"r) for the partition of n into nt parts pu 
n2 parts p2, etc., where Pi> Vz> It is conjugate to the partition 

((tt! + • • • + nr)Pr(ni + • • • + rtr-iY^ •••(«! + n2rX"w) 

of n. For example, (6 32 22) and (52 3 l3) are conjugate partitions. Given 

« Memorie della R. Accad. Sc. Napoli, 2, 1855-7 (1857), 353-363. 
49 Annali di sc. mat. e fis., 8, 1857, 5-12. 
*o Phil. Trans. Roy. Soc. London, 147, 1857, 489-499; Coll. Math. Papers, II, 417-439. 

Reviewed by E. Betti, Annali di mat., 1, 1858, 323-6. 
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xm — a,ixm~l + • * • ± am = 0 with the roots xthe symmetric function 
belonging to the partition (pi • • • pm) is Sx*1 • • • x%*. Part of a[al • • * apm is 
the symmetric function 

Xx^g+"'+txp2+‘"+s • • • 

to which belongs the partition (p + • • * +1, •••, p) conjugate to 
(mp---2Tf). Thus aja3; belonging to (313), contains with the coefficient 
unity the symmetric function belonging to the conjugate partition (412), 
and with other coefficients, the symmetric functions belonging to (321), 
(23), (313), (22 l2), (21*), (l6), but not (32). 

J. J. Sylvester51 stated that the number of ways n can be composed 
additively of the positive integers au • • •, relatively prime in pairs, 
differs by a periodic quantity depending on the remainder of n modulo 
<2i&2 * * 'O'i from 

‘)*+ 
where Si, • • *, S;_1 are the coefficients of a, • ♦*, xi_1 in 

(x + ai — l)(s + a* — 1) ■ • • (re + a* - 1). 

For systems like (a1# • • *) = (1, 2, 3) or (1, 3, 4), the residual periodic 
quantity lies between \ and — J, whence the number of partitions is the 
integer nearest to Qn. 

Cayley52 proved that the number of partitions into x parts, such that 
the first part is unity and no part is greater than the double of the preceding 
part, equals the number of partitions of 2*"*1 — 1 into the parts 1, 1', 2, 
4, * * *, 2-2. 

Sylvester53 gave an explicit expression for 2xay* • • • summed for 
all N sets of integral solutions of ax + by + •.. -j- lw = n, where a, • • •, Z 
are positive integers. The case a = (3 = ••• = x = 0 gives the number 
N of sets. Let B(Ft) denote the coefficient of 1/t in the expansion of Ft 
in ascending powers of L Let m be the l.c.m. of a, • • •, l. Then his43 
former theorem may be expressed in the form 

N = 2 0 
A(- n) 

(1 - Aa) • ■ ■ (1 - AZ) ’ 

summed for the primitive mth roots p of unity, where Ap = pe~vt. Then, 
for example, 

Tri = TA| A(q)(l + Aa) ■ ■ • (t - 1 + Aa)A( — n) I 

V (1 - Aa)’+1(l — Kb) • • • (1 — AZ) J* 

“ Quar. Jour. Math., 1, 1857, 198-9. 
“Phil. Mag., (4), 13, 1857, 245-8; Coll. Math. Papers, III, 247-9. 
»Ibid., (4), 16, 1858, 369-371; CoU. Math. Papers, II, 110-2. 



Chap. Ill] Partitions. 128 

Sylvester54 cited Euler’s14 transformation of the problem of the Virgins 
and noted that the general form of the problem is to find the number* of 
ways in which a given set of numbers h, • • •, lr [an r-partite number] can 
be made up simultaneously of the compound elements ai, • • •, ar; bh • • •, br; 
etc. This problem of compound partition can be made to depend on simple 
partition. Omitting details, he stated the following theorem: Given r 
linear equations in n variables with integral coefficients such that the r 
coefficients of each variable have no common factor, and such that not more 
than r — 1 variables can be simultaneously eliminated from the r equations, 
then the determination of the number of sets of positive integral solutions 
may be made to depend on like determinations for each of n derived inde¬ 
pendent systems each in n — 1 variables. The conditions are satisfied by 
Euler’s equations 

ax + ... + lw = m, x + • • • + w = ju, 

if a, - • •, l are distinct. Sylvester never published an explicit statement of 
the theorem just sketched, nor of his obscure generalization. See the 
following paper. 

Cayley66 called (a, a) + (b, P) + • • • a double partition of (m, n) if 

a + b + • • • = m, a + £+•••= ju. 

If a/a, b/p, • • • are distinct irreducible fractions and if a, p, • • • are each 
< n + 2, the number of such partitions is 

D(am — an) ab — ap, ac —* ay, • * •) 

+ D(Pm — bn) @a — ba, fie — by, 

where the denumerant107 D(m) a, b, • - •) is the coefficient of xm in 

(1 - a^-Kl - a6)"*1- • •. 

He noted that Sylvester apparently eliminated each of the r variables in 
turn from ax + by + • • • = m, ax + Py 4- • • • = n, obtaining r equations 
of the form 

(ab — aP)y + (ac — ay)z + * • • = am — an, 

from which the above formula follows. 
* E. Mortara56 treated partitions into three distinct elements. 
Sylvester57 delivered seven lectures on partitions in 1859. 
G. Bellavitis58 proved that the number [ju, n, p] of sets of integral solu¬ 

tions ^ 0 of «o + oli + • • * + <>Ln = p, a\ + 2«2 + • • • + n&n = equals 
the number \ji, p, 7i] of sets of solutions ^ 0 of po + £i + • • • + /?*> = n, 
Pi + 2ft* + • • • + ppp = ju. For, every set of solutions of the first pair 

* Number of sets of integral solutions ^ 0 of cux + hy + • ■ • = li (i = 1, • • •, r). 
64 Phil. Mag., (4), 16, 1858, 371-6; Coll. Math. Papers, II, 113-7. 
“Phil. Mag., (4), 20, 1860, 337-341; Coll. Math. Papers, IV, 166-170. 
“ Le partizioni di un numero in 3 parti differenti, Parma, 1858. 
67 Outlines of the lectures were printed privately in 1859 and republished in Proc. London 

Math. Soc., 28, 1897, 33-96; Coll. Math. Papers, II, 110-175. 
« Annali di mat., 2, 1859, 137-147. 
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of equations consists of a partition of p into numbers n, • • *, ax numbers 

1, where p is the total number of parts. To such a partition corresponds 

as conjugate 
(an + an-i + ■ • • + «i) + («n + * * * + oi2) + • • • + (an + a„_i) + an = p3 

which gives a partition of p into n parts ^ p. These parts occur in the 
second pair of equations as /?p numbers p, • * *, ft numbers 1. Again, 

[ft », p] = [ft n - 1, pi + [> - n, n, p - 1], 

[ft ft p] = [rvp - fi, n, p]. 

There are Qi, n, p] partitions of N into p parts from c, c + d, • • c + nd, 
if /x = (JV — cp)/d, since if each part be diminished by c and the remainder 
be divided by d, we get the parts 0, 1, * • n whose sum is p, Application 
is made to seminvariaDts. 

L. Oettinger59 stated and J. Derb£s59 proved that (k — l)v¥~v is the 
maximum of the products of the r equal or distinct integers into which the 
positive integer N = rk — v can be partitioned, where v is the least positive 
integer such that h is integral. 

Sylvester60 noted that Beliavifcis’58 first theorem reduces for p infinite 
to Euler’s theorem that the number of partitions of p into parts ^ n equals 
the number of partitions of p into n or fewer parts. Bella vitis’ theorem, 
which is capable of intuitive-proof by Ferrer’s35 method, may be stated as 
follows: The number of distinct combinations of do, ■ * *, an figuring in the 
coefficient of x? in (a0 + a^x + • • • + anxn)p is the same as the number of 
distinct combinations of 60, • • •, bp in the coefficient of xf1 in (&0 + bix + 
+ Mp)n- 

S. Roberts61 proved Sylvester’s43 formula for waves. 
Sylvester62 noted that, if Bn = nl, 

V---= 1 
•^na-a'-n/S-b8 ••• ’ 

where the summation extends over all ways of expressing n as a sum of a 
parts each a, (3 parts each 6, etc. 

E. Fergola63 proved the analogous result: 

y_Hn_Aa0n 

Z'nri-n2a*. • • un^-uai • • * nan “ 

summed for all positive integers satisfying 

^ = a, ai 4- 2q:2 + . •. 4- nan = n, 

where Aa0n denotes the ath order of difference of xn for x = 0. He evaluated 

69 Nouv. Ann. Matt., 18,1859, 442; 19, 1860, 117-8. 
60 Phil. Mag., (4), 18,1859, 283-4, under pseud. Lanavieensis. 
« Quar. Jour. Math., 4,1861, 155-8. 
82 Comptes Rendus Paris, 53, 1861, 644; Phil. Mag., 22,1861, 378; CoU. Math. Papers, II. 

245,290. 
“ Rendiconto delTAccad. Sc. Fis. e Mat., Napoli, 2, 1863, 262-8. 
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sums in which the preceding summand is multiplied by 33(a — 1 )ya or 
n (*)ya. 

Fergola64 stated that the number of sets of positive integral solutions of 

alXl + • • • + anxn = n 

is A/(ft!), where 

<Tl(Tn-l + <?n — 01 — or 2 — cr3 “ 0 n—3 O'n—2 

0\0n-2 + <?n-l n — 1 — 0i — 0-2 * * n—4 ~~ O’ n—3 

O\0n-z + crn-2 0 n — 2 — 0i • — crn_s O’ n—4 

O\0n—4 + <Tn- 3 0 0 n — 3 * * — <r n—6 n—5 

<ri<?2 + cr$ 0 0 0 3 — o-i 

0-101 + 02 0 0 0 0 2 

while <rr is the sum of those divisors of r which occur among the positive 
integers ai, a2, •••. When a» = i (i = 1, • • •, n), a> becomes the sum <r(r) 
of all the divisors of r. If in A we change the sign of the second components 
in the first column and change the sign before each <r above the main 
diagonal, we obtain a determinant equal to (— l)*n! when n is of the form 
k(3k ± l)/2, but equal to zero when n is not of that form. 

C. Sardi65 proved the preceding theorems. 
N. Trudi66 proved Sylvesters formula 2Wq for the number Pn(a, • * X) 

of partitions of n into elements a, • • •, X. He also showed that Wq = 2F(p), 
summed for the primitive qth roots p of unity, where F(p) is the coefficient 
of 1/t in 

- (p + t)~*~Ml - (p + OT1- • • {1 - (p + 0X)“1- 

Let ai, • • *, ar be those of the numbers a, • • •, X which are divisible by q> 
and bh • • •, b8 the remaining numbers. Let 

__= 1 + A1t + A2t2 + • • • 

H(1 - e~at)H(l - pbe~~bl) Far • -<01(1 - p6) ' 

upon writing the denominator on the left as the exponential of its logarithm 
and expanding the exponentials. Laws are given to determine the A’s. 
From the coefficient of tr1 we see that Pn - 2Fr, q, summed for the various 
divisors q of the various elements a, • • •, X, where 

Vr.< 
1 Ar-ip-n 

or--* (1-p*1)•••(!- pY 

summed for all the primitive gth roots p of unity. Simplifications are given 
in three cases: m = 1, m = 2, r = l. He tabulated results for 

Pn(l, 3, 6, 8), P„(l, 2, 3, 6, 8, 10), Pn(l, 2, ■■■, q), Pm(2, 3, • • •, q), qS 8. 

64 Giornale di Mat., 1, 1863, 63-64. 
w Ibid., 3, 1865, 94-99, 377-380. 
•• Atti Accad. Sc. Fia. e Mat. Napoli, 2, 1865, No. 23, 50 pp. 
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A. Cayley,67 denoting by Pt the number of partitions of n into i parts, 
proved that 

1 — P2 + 1 • 2 P3 — ••• ± (n - l)!Pn = 0. 

For, the number of partitions n = aa + 6/3 + • • • is 

n\ 

a! 6!- * *(a!)a(/3!)6* ♦ • * 

Multiply this by (— l)p_1(p — 1)! and sum for the sets of solutions of 
p = + jS + * • •; we get the initial theorem. 

A. Vachette68 stated that one of n2, n2 — 1, n2 — 4, n2 + 3 is divisible 
by 12 and the quotient is the number of sets of integral solutions > 0 of 
x + y + 2 = n [De Morgan28]. 

L. Bignon69 noted that the respective cases occur for n = 6n', 6n' + 1 
or 5, 6nr + 2 or 4, 6n' + 3. For n = 6n', for example, he separated the 
sets of solutions into n/Z sets each with y — x a constant 0,1, • • *, \n — 2, 
and exhibited the solutions of each set. 

E. Catalan70 noted that Xi+ • • • + xn = s has ('!}) sets of positive 
integral solutions. Subtract unity from each x and apply his25 former 
result. 

Let71 (n, q) be the number of partitions of n into q distinct parts, [n, g] 
into q equal or distinct parts. Proof is given of theorems of Euler: 

(n, q) = (n - q, q - 1) + (n - q, q), (n, q) = - g'g 2 ^ , g] , 

O, g] = E [n - q, i], (n, g) = ”'£(*'-iq, g- 1), P = [ ^7^1 > 
i=l <=1 L g J 

and the first written for [ ]. Here n s 2g. 
In xi + * • • + xg = n, £i ^ x2 ^ ^ xq, take Xi = a ^ [n/g], and 

set + a — 1 (i = 2, • • •, g). Then 

2/2 + ■ * • + 2/g = n — 1 — (a — l)g 

for y’s > 0. Hence72 

[»,g] = Z[n-l-(« - l)g, g - 1], a = [n/g]. 
0=1 

Taking g = 3, he deduced the result of De Morgan28 and Vachette.68 
C. Hermite73 stated that the number of sets of positive integral solutions 

of 
x + y + z = N> x + z) y ^ z x, z si x + y 

67 Math. Quest. Educ. Times, 7, 1867, 87-8; Coll. Math. Papers, VII, 576-8. 
68 Nouv. Ann. Math., (2), 6, 1867, 478. 
89 Ibid., (2), 8, 1869, 415-7. 
70 Melanges Math., 1868, 16; M6m. Soc. Roy. Sc. Li&ge, (2), 12,1885, No. 2, 19. 
71 Ibid., 62-65; M4m. Ltege, 56-58. 
72 Ibid., 305-12; M6m. Li&ge, 264-71. Nouv. Ann. Math., (2), 8, 1869, 407. 
73 Nouv. Ann. Math., (2), 7, 1868, 335. Solution by V. Schlegel, (2), 8, 1869, 91-3. 
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is (N2 — l)/8 or (N + 2) (A + 4)/8 according as N is odd or even. An 
anonymous writer (pp. 93-4) stated that the number of sets of positive 
integral solutions of Xi+ • * • + xm = N is {N} — m{(N — j)/2}i where 
{i\ = (m+i_1) and./ = 1 or 2 according as N is odd or even. 

K. Weihrauch74 discussed the number fn(A) of sets of solutions of 

a,iXi + * • • + anxn = A, 

where the a’s are positive integers. Set 

P = axa2' * -a„, Si = a[ + • • • + ai, A = pP + m, 

where m is one of the integers 1, • • *, P. Then 

h (A) = p + Mm), f»(A) = ^f+p(m-|) + Mm), 

<• ^ - *t-+x o" -1)+11 o" -1 y -11+«"*>• 
fn{A) =/nW+E^ vn 

(n-r - !)!£$ 
Z (- lyn*-2* 

'2 ff 
(r-2q)V 

the last being stated without proof, where € is the largest integer r/2, 
R = m — aSi/2, and 

D2a — £i_ £i 
^-.«!/3! 7! 

(2a +4,0 + 67 + • • • = 2s), 

__ S2rB2r-l 
C2r “ 2r(2r)! 

(Pi = i, P3 = ^sr, B6 = • • •), 

the P’s being Bernoulli numbers. Cf. Meissel135 and Daniels.146 
* E. Meissel75 treated the partition of very large numbers. 
E. Lemoine76 noted that every power n* of an integer n equals a sum of 

nk consecutive terms from 1, 3, 5, 7, • • •, if /x ^ 2k. Cf. Fr6gier.22° 
G. B. Marsano’s77 Table 1 is an extension of Euler’s table of partitions 

of n into m parts, for n ^ 103, m ^ 102. Table 2 gives the coefficients as 
far as x53 of the expansions of 

S, 
s 

1 - X9 (1 - x)(l - x2) ’ ’ (1 - x) • • •(! - X35) ’ 
S •na-ao-1, 

3=0 

and the coefficients as far as x107 of the expansion of the first ten functions. 
The results for S/(l — x) give the number of ways of partitioning a number 
into parts 1, 1', 2, 3, • • •. Those for S/(l — x)(l — x2)} into parts 1, 1', 
2, 2', 3, 4, . .. 

74 Untersuchungen Gl. 1 Gr., Dies. Dorpat, 1869, 25-43. Zeitschrift Math. Phys., 20, 1875, 
97, 112, 314; ibid., 22, 1877, 234 (n = 4); 32, 1887, 1-21. 

76 Notiz liber die Anzahl aller Zerlegungen sehr grosser ganzer positiver Zahlen in Summen 
ganzer positiver Zahlen, Progr., Iserlohn, 1870. 

76 Nouv. Ann. Math., (2), 9, 1870, 368-9; de Montferrier, Jour, de math. 616m., 1877, 253. 
77 Sulla legge delle derivate generali delle funzioni di funzioni e sulla teoria delle forme di 

partizione de’numeri interi, Genova, 1870, 281 pp. Described by A. Cayley, Report 
British Ass c. f r 875 (1 76). 22-4: Coll. Math. PaDers. IX. 481-3. 
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G. Silldorf78 considered the number f(s, k) of decompositions of s into 
k integral summands ^ 0, and the number /r(s, k) in which r is the least 
summand. In the former, 0 occurs in the first place /($, k — 1) times, 1 
occurs fi(s — 1, k - 1) times, etc. But /(s, &) = fr(s + rk, k). Hence 

/(*, k) = /(s, fc — 1) +f(s -k,k- 1) + • • • + /(* - ri, fc - 1) + • • •. 

Thusf(s, 2) = + 2) or ■§($ + 1) according as s is even or odd, 

/(*, 3) = (s2 + 6s + 12)/12, s s 0 (mod 6), 

with similar results for s ss 1, • • •, 5 (mod 6). Let F(s, k) be the number of 
combinations without repetitions of k elements with the sum s. Then 

F(s, k) = F(s — k, k — 1) + ••• + F(s — rk, k — 1) + • * *, 

CEuler,9 § 315]. There are as many partitions in parts as into m 
or fewer parts. The number of ways s can be expressed as a sum of numbers 
Si m, with repetitions allowed, is 

2*~1 — (s — m — l)0(s -m + 1)2*~^"2 + (s - m - l)i*~2”—- 
z 

-(s-m- 1)2-—^±32-^ + .... 

F. Gambardella79 noted that ax + by + cz = m has 

iq(2 m + a + b + c — dbcq) + $ + k 

sets of integral solutions if a, b, c are positive and relatively prime in pairs, 
and m > 0, m ~ cy + \, y + l= qab + r. Here $ is the sum of the 
quotients and pi, • • •, pr the remainders upon dividing X, X + c, • • •, 
X + (r — l)c by db; while k is the number of solvable equations ax + by = pa. 

T. P. Kirkman,79acounting 5-1 = 1*5 = 1-3+ 1-2= 1*3+ 2*1 = • • • 
as partitions of 5, evaluated the sum of the reciprocals of (2ei)mi(2e2)mi 
* • - m1hn2l • • *, for all such partitions mxex + w2e2 + • • • of R. 

J. J. Sylvester80 noted that a list of all partitions of n may be checked by 

2(1 — x + xy — xyz +••*) = 0, 

summed for all the partitions, where in any partition, x is the number of 
Ts, y the number of 2’s, etc. 

Von Wasserschleben81 expressed 60k as a sum of four numbers each a 
prime or product of two equal or distinct primes, for k = 1, • • *, 16. 

* L. Jelinek82 treated a kind of partitions. 

78 Ueber die Zerlegung ganzer Zahlen in Summanden, Progr. Salzwedel, 1870, 17 pp. 
79 Giornale di Mat., 9, 1871, 262-5. Extensions by C. Sardi, 11, 1873, 123. 
7#* Math. Quest. Educ. Times, 15, 1871, 60-3; 16, 1872, 74-5. 
80 Report British Assoc., 41, 1871 (1872), 23-5; Coll. Math. Papers, II, 701-3. 
81 Archiv Math. Phys., 54, 1872, 411-8 
82 Die Wiirfelzahlen u. die Zerlegung einer Zahl in ganzen Z., deren Summe gegeben ist, 

"D__ nr:__XT_t j ° 
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* V. Bouniakowsky83 treated partitions. 
J. W. L. Glaisher84 considered the number P(a, •••, q)x of ways of 

forming x by addition of the elements a, • • •, q, repetitions allowed, and 
proved that 

P(l, 3, 5, • ■ 0(2®) = 1 + P(l, 2)(a? - 1) + P(l, 2, 3, 4)(x - 2) + - • • 

+ P(1,2, • • - ,2x — 2)1, 

P(l, 3, 5, • • 0(2® + 1) = 2 + P(l, 2, 3)(® - 1) 

+ P(l, 2, * * •, 5){x - 2) + • • • + P(l, 2, • • 2x - 1)1, 

P(l, 3, 5, • • 0® = P( 1, 2)(a? - 1) + P(l, 2, 3, 4)(® — 1 — 2 — 3) + 

Glaisher85 formed the derivations of a4 by the rule of L. F. A. Arbogast:85a 

a4; a36; a3c, a2h2; azd, a2bct abz; • • *, 

omitting coefficients. Each term corresponds to a partition of 4. Thus, 
if a = 1, b = 2, • • •, azb corresponds to the only partition 1 1 1 2 of 5 
into 4 parts > 0. In general, from the derivations of an we see that the 
number of terms of the zth derivations of an equals the number of partitions 
of x into n parts including zero, also equals the number of partitions of 
x + n into n parts > 0, and finally equals P(l, • • •, n)x. 

Glaisher86 gave formulas for checking the tabulation of partitions. 
The summations extend over all the N partitions of a given number n, 
while in any partition, x is the number of l’s, y the number of 2*s, etc. 

2(1 + x + xy + xyz + • • •) = 22r, 2(® - 2xy + 3xyz - • • •) = r(n), 

2(1 -2 y + 3 yz — 4yzw +•••)= r(n + 1) — r(n), 

2{z - 1 — (x — 2)y + (x — 3)yz — • • •} = N — 1, 

where r is the number of different elements in a partition, and r(n) is the 
number of divisors of n. If Q(a, b, • • ')n is the number of partitions 
without repetitions of n into the elements a, b, • * •, and S( 1, • • *, r)n the 
number of partitions of n into 1, • • •, r in which all but the highest r appears 
at least once, 

2Q(1, 2, -.•)»« 1 + S( 1, 2)n + S( 1, 2, 3)n + • • •, 

G(l, 3, 5, •••)»-«( 1,3,5, ■••)(« “4) 

- Q( 1, 3, 5, • • •)(» - 8) + Q( 1, 3, 5, • • -)(n - 20) + • • • = 1 or 0, 

according as w is a triangular number or not. The excess of the number 
of partitions of n into an even number of parts over an odd number of 
parts is (— 1)”Q(1, 3, 5, • • •)n. A partition into a Ts, £ 3’s, y 5% etc., 
is transformable into tt = a + 3j3 + 57 + • • •. Express a, 0, * • • in the 
binary scale: a = 2° + 2a' + • • •, 0 = 2& + • • •. In the new form of nr 
no two parts are equal. Hence a partition into odd parts is converted 
into a partition into distinct parts, and conversely. 

83 Memoirs Imp. Acad. Sc., St. Petersburg, 18,1871, 20; 25,1875 (Suppl.), No. 1 (In Russian). 
M Phil. Mag., (4), 49, 1875, 307-311. 
86 Report British Assoc, for 1874 (1875), Sect., 11-15; Comptes Rendus Paris, 80,1875,255-8. 
850 Calcul des derivations, Strasburg. 1800. See papers 46, 102, 198. 
86 Proc. Roy. Soc. London, 24, 1875-6, 250-9. 
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P. Mansion87 noted that the &th power of an integer n is the sum of 
n consecutive odd numbers (those nearest n*-"1), as 34 = 25 + 27 + 29. 

J. W. L. Glaisher88 stated that, if Cm is the number of compositions of 
N into m triangular numbers, and A is the sum of the reciprocals of those 
divisors of N whose conjugates are odd, B if even, then 

Cx - ic2 + ic3 - • • • ±jfCK = A - C. 

Glaisher89 noted that, if P(x) is the number of partitions of x into 1, 2, 
3, • • *, repetitions allowed, and Q(x) is the number of partitions of x into 
1, 3, 5, 7, repetitions excluded, then Q(x) = 2P{(x — 0/4}, summed 
for the triangular numbers t < x such that t ss x (mod 4). 

Glaisher890 used an identity due to Jacobi,225 p. 185, to show that 

P(x) + 2P(x - 1) + 2P(x - 4) + 2P(x - 9) + • • • 

= Q(x) + Q(x - 1) + Q{x - 3) + • • • + Q(x - }»(» + 1)) + • • 

if P(x) is the number of partitions of x into even elements without repeti¬ 
tions, and Q(x) the number into odd elements without repetitions. 

A. Cayley90 denoted by un the number of partitions of n with no part < 2 
and order attended to. Then = uz = 1, un = Un~i + m»-2. 

E. Laguerre91 started with Euler's result that the number T(N) of 
sets of positive integral solutions of ax + by + - • • = N is the coefficient 
of £n in 

m = (i - ^)(i 
decomposed the latter into partial fractions, and called the result $(£)+<£(£)> 
where $(£) is the sum of the simple fractions whose denominator is a power 
higher than the first of one of the factors in the denominator of F(£). Let 
0(A) denote the coefficient of ^ in the expansion of <$>(£). Then 

T(N) = 0(A), 

with an error which is independent of N. For example, if ax + by = N 
and o, b are relatively prime, Q(N) = (N + 1 )/(a&), so that T(N) = N/(ab) 
approximately [Paoli117 of Ch. II], the error being < 1. For 

ax + by + cz = N> 

the approximation is N(N + a + b + c)/(2abc). 
F. Faa di Bruno92 gave an exposition of Brioschi's47 work and noted 

that his linear equations (7) are of the same form as Newton's identities if 
the sign of s* be changed. Hence, by Waring?s formula, 

87 Messenger Math., 5,1876, 90. Cf. Frdgier.22* 
M Ibid., 91. 
89 IUd., 164-5. 
89,1 Math. Quest. Educ. Times, 24,1876, 91. 
80 Messenger of Math., 5,1876, 188; Coll. Math. Papers, X, 16. 
“BuU. Math. Soc. France, 5, 1876-7, 76-8; Oeuvres, 1, 1898, 218-20. 

Throne des formes binaires, 1876, 157; German transl. by T. Walter. 1881. 127. 
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summed for all solutions of Xi + 2X2 + • • • + pXp = p. At the end of 
this § 12, he gave other expressions for Cp. He93 later transformed the 
above formula into 

p!C, = 3 + 72; + ^ x2+ ••• + — X 
1 2 p ■r 

= |>p] | 5 + log 
(1 -- xn+1) • • - (1 - xn+r) lp 

(1 — a;) •••(!— xr) J ’ 

where denotes the coefficient of xp in r, while, after the expansion, 
5*' is to be replaced by i !. Similarly, for the number Wp of sets of positive 
integral solutions of aiXx + • • • + anxn = V, 

plWP = [V]{5 - log (1 - a") • • • (1 - za")}p, 

which is much simpler to apply than Sylvester’s43 formula. He stated 
(p. 1259) the generalization to two variables: 

Cx’Yj^Cx, y) = [spj/4](S + (5 + log i)p}q. 

F. Franklin94 proved that if, in all the partitions of n which do not con¬ 
tain more than one element 1, each partition containing 1 be counted as 
unity and each partition not containing 1 be counted as the number of 
different elements occurring in it, the sum of the numbers so obtained is 
the number of partitions of n — 1. Application is made to the distribution 
of bonds between atoms. 

A. Cayley95 noted that the partition abc-def of 6 letters into 3’s contains 
6 duads ab, ac, be, • •*, while the partition ab-cd-ef into 2’s contains 3 
duads. Hence if a partitions into 3’s and p partitions into 2’s contain all 
15 duads once and but once, 6a + 3/3 = 15. The solution a = 1, 0 = 3, 
furnishes an answer of the partition problem: abc-def, ad-be-cf, ae-bf-cd, 
af-bd-ce. Likewise for a = 0, p = 5; but not a — 2, (3 == 1. Similarly 
for 15 or 30 letters. 

J. J. Sylvester96 considered the e = (w; i, j) partitions of w into j parts 
0, 1, • • •, i, the elements of a partition being arranged in non-increasing 
order, as 3, 2, 2. Without computing e and f = (w — 1; i, j) separately, 
we obtain e — / = E — F, by counting the E partitions of w in which the 
initial two parts are equal, and the F partitions of w — 1 in which one 
element is i. Also, 

e -/ = - (w - i - 1; i, j - 1) + Z (w - 2q; q, j - 2). 
9=0 

F. Franklin97 proved this rule of Sylvester’s by converting each partition 
into one consisting of i of the numbers 0, 1, • • *, j. Then e — / = e — <j>, 

03 Comptes Rendus Paris, 86, 1878, 1189, 1259; Jour, fur Math., 85, 1878, 317-26; Math. 
Annalen, 14, 1879, 241-7; Quar. Jour. Math., 15, 1878, 272-4. 

84 Amer. Jour. Math., 1, 1878, 365-8. 
98 Messenger Math., 7, 1878, 187-8; Coll. Math. Papers, XI, 61-2. 
M Ibid., 8, 1879, 1-8; Coll. Math. Papers, III, 241-8. 
97 Amer. Jour. Math., 2, 1879, 187-8. 
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where e is the number of partitions of w not containing the element 1, and 
4> is the number of partitions of w — 1 not containing 0. 

N. Trudi98 gave an account of the early history of partitions, made 
extensive applications to isobaric functions, and finally enumerated the 
combinations of n letters into a sets each of p letters, /3 sets of q letters, etc., 
first when the n letters are distinct and second for repeated letters. 

C. M. Piuma" treated the following problem: From an urn containing B 
balls marked 1, •••,£, three are drawn and the three numbers written on 
them are added; find the number of times the sum is ^ C. To find the 
number SH of sets of solutions of 4> + 0 + x = #with0 <0<0<x=#- 
First, let C < B + 4. Then every solution satisfies the inequalities. Of 
the six cases H = 6A + j (j = 0, • • *, 5), let# = 6h + 4 and set — <f> = x, 
X — <j> = y. Then x + y = 6h — 3<£ + 4, 0 < x < y. If <f> is even, 
<f> = 2a, there are evidently Zh — 3a + 1 sets of solutions x, y, and h is 
shown to be the largest a giving a solution. Thus there are 

2*=1(3h - 30 + 1) = h(Sh - l)/2 

sets <f>, 0, x* For 0 odd, we get h(Sh + 3)/2 sets. Adding, we get 
S6h+4 = h(Sh + 1). Then Tc = 2h=6Sh is found by treating six cases; 
for example, T5c = c(12c2 — 15c + 5)/2. Finally, there is treated the case 
C ~ JB -f- 4. 

P. Boschi100 treated partitions into s parts from 1, • • •, n. Let 

51, r = Xr + X1*1 + ••• + Xn, 

52, r = XrSl, r+1 + X^Si, r+2 + * * * + X^Si, n, 

Sz, r = XrSit r+i + ®rflS2t r+2 + * * * + Xn~2S2, n-l, • * • 

Expand and collect the terms of Su,r; the coefficient of z? is the number 
of ways P is a sum of distinct numbers chosen from r, r + 1, • • *, n. It is 
proved by induction that 

Su x(2r+u-l)uj2TUt f, 
^ (1 - a?n~f+1)(l -- Xn~r) . . .(1 — sn-r-iH-f) 

(1 — x) (1 — X2) • • • (1 — xu) 

Thus the coefficient of in Su, i = x^u+t)vf2Tu, x is the number of ways P 
is a sum of s different terms of 1, • • •, n. For u = 2, 

T2, i = A0 + Aix + • • • + A2n_4X2n-4, 

where A, is the number of ways $ + 3 is a sum of two numbers of 1, • • •, n. 
Then Ar = A2n^, 

Ar = J{2r + 3 + (~ 1Y) if2^r^n-2; 

Ar = n — 2 + r + \ {2r + 3 + (— l)r} if n~-2<r^2n — 4. 

*8 Atti R. Accad. Sc. Fis. Mat. Napoli, 8, 1879, No. 1, 88 pp. 
99 Giomale di Mat., 17,1879, 360-372. 
100 Memorie Accad. Sc. 1st. Bologna, 1, 1880, 555-571. 
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Let UT be the number of pairs from 1, • • •, n whose sums are ^ r. Then 

Ur = ZAS; 

Ur = i {r(r - 2) + Hi - (~ 1)']}, 3^fS» + l; 

Ur = \n(ri — 1) — Utn-r+i, n + l<r^j2n — 1. 

Similar applications are made to the cases u = 3, u = 4. 
J. W. L. Glaisher101 noted that, if P(u) is the number of partitions of u 

into the elements 1, • • •, n, each partition containing exactly r parts, order 
attended to and repetitions not excluded, then 

P(r + k) + P(r + n + k) + P(r + 2 n + k) + • • • = nr~l 

(Jc = 0, 1, • • *, n — 1). 

E. A. A. David102 noted that Arbogast’s850 law of derivatives gives 

£l _i_ ar2fl2 , ai~\ , ar4(ai + alt2) 
nl ^ (n - 2)! ^ (n - 3)! + (n - 4)! 

, d\ 5 ((I2CI3 4“ as) , __ y, a? 

+ (n-5)! + 

summed for all sets of positive integral solutions of 

Pi + 2p2 + 3p3 + • • • = 71. 

The latter sets are all given by the exponents of the terms in the left member. 
A. Cayley103 tabulated all partitions of 1, * * *, 18, where in each partition 

1,2, • • • are designated by a, 6, • • •, so as to give the literal terms in the co¬ 
efficients of any covariant of a binary quantic. 

G. B. Marsano104 treated the number of combinations 2 or 3 at a time 
of 1, 2, • • *, m to give a sum ^ C. Simpler and more general results were 
given by Gigli.181 

E. Franklin105 proved Euler’s formula (3). The coefficient of xw in the 
left member is evidently the excess E of the number of partitions of w into 
an even number of distinct parts over that into an odd number of parts. 
To find E, write (a) for a number ^ a, and let the parts of each partition 
be in ascending order. Consider a partition with r parts, the first being 1 ; 
deleting 1 and adding 1 to the final part, we get a partition into r — 1 
parts, the first being {2}, and without two consecutive numbers at the end, 
and conversely. These two types of partitions do not affect the required 
E, one being of even order and. one of odd order. Hence we need consider 
only partitions commencing with {2} and ending with two consecutive 
numbers. Consider any one of these with r parts, the first being 2; deleting 
2 and adding 1 to each of the last two parts, we get a partition into r — 1 

101 Messenger Math., 9, 1880, 47-8. 
102 Comptes Rendus Paris, 90, 1880, 1344-6; 91, 1880, 621-2; Jour, de Math., (3), 8, 1882, 

61-72. 
10» Amer. Jour. Math., 4, 1881, 248-255; Coll. Math. Papers, XI, 357-364. 
104 Giomale di Mat., 19, 1881, 156-170; 20, 1882, 249-270. 
106 Comptes Rendus Paris, 92, 1881, 448-450. Cf. Sylvester,117 11-13. 
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parts, the first one being {3} and without three consecutive numbers at the 
end. We may suppress these partitions. In general, consider a partition 
commencing with {n} and ending with n consecutive numbers. If the 
first term is n, efface it and add 1 to each of the last n numbers, which can 
be done unless the number of parts is ^ n, whence w = n(3n — l)/2. If 
the first term is n + 1 and if the last n + 1 terms are not consecutive, 
reduce by 1 each of the last n and place n before the first part, which can 
be done unless the number of parts is n, whence w = n(3n + l)/2. Hence 
B = 0 unless w = n(3n rb l)/2, and in that case E = 1, there remaining 
a single partition into n parts. For an exposition of this proof, with illus¬ 
trative graphs, see E. Netto, Lehrbuch der Combinatorik, 1901, 165-7. 

A. Capelli106 considered a matrix (ay) of n2 integers ^ 0 such that the 
sum of the numbers in each row or column is always m: 

<2*1 + <2*2 + * • • + OLin = ay + + • • • + <2»y = m. 

The number of these matrices equals the number of linearly independent 
forms derived from the general form in n sets of variables, homogeneous 
and of degree m in each set of variables, by means of the operation X^d/dZi, 
where the £ and 17 are two of the n sets. 

Several106® found the number of ways 34 is a sum of four distinct positive 
integers. 

J. J. Sylvester107 gave an exposition of the theory previously only 
sketched by him.43 Employing Cauchy’s term residue to denote the coeffi¬ 
cient of l[x in the expansion of a function of a; in ascending powers of x, he 
considered any proper rational function Fix), so that the degree of the 
numerator is less than that of the denominator. Then we may write 

F{x) 
tl *=1 i% - x) 

,+ £ Yx 

The residue of F(a,ez) is easily seen to be the constant term of — F(x). 
Hence if x~nf(x) is a proper rational function, the coefficient of xn in the 
rational function f(x) is the residue of 2r“neni/(re~z), summed for each 
value r + 0 of x making/^) infinite [as the a’s for F(z)]. The “ denumer- 
ant to the equation ax + * • • + It = n” denoted by 

n 

at b} * • •, ly 

is the number of sets of integral solutions ^ 0 of the equation, and equals 
the coefficient of xn in the expansion of 

F[x) = (1 - a?)-1- • -(1 - xl)-\ 

Let Si = 1, $2j * • *, be the integers dividing one or more of the numbers 

106 Giornale di Mat., 19,1881, 87-115. 
106a Math. Quest. Educ. Times, 34, 1881, 51. 
107 Amer. Jour. Math., 5, 1882, 119—136 (Excursus on rational fractions and partitions). 

Johns Hopkins Univ. Circ., 2, 1883, 22 (for the first theorem). Coll. Math. Papers, 
III, 605-622; 658-660. 
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a, • • *, 1. The denumerant thus equals 2-if Wi, where the wave W% is 
the residue of 

ZrqnenxF(rqe~x) = XrnqenxF(r~le-x), 

summed for the primitive 5z~th roots rq of unity (or for their reciprocals). 
Now make the important substitution v = n + {a + • • * + Z)/2. Then 

Wi = residue of Xrvqevx/H(raq,2eaxl2 - r;(a,2)e~(azl2)), 

the product extended over the similar terms in a, b, •••,£. Expanding the 
summands into power series, we see that each wave and hence the denumer¬ 
ant is a sum of products of polynomials in v each multiplied by a quantity 

d= r^6), where 6 is one-half of the number <f>{i) of integers < i 
and prime to i (since Wi becomes =b Wi when v is changed in sign). Give 
to each such term of the denumerant an undetermined coefficient, as 

= AS + B + (- 1)”C + Z)2(/+1 + O, r2 + r + 1 = 0. 

Write s = a + •** + Z ($ = 6 in this case). It is shown that the denumer¬ 
ant is zero for all values of v from 0 to — 1 inclusive if s be even, and for 
all values from \ to — 1 inclusive if s be odd. This fact serves to deter¬ 
mine uniquely the ratios of undetermined coefficients. For example, in 
the above case, v = 0, 1, 2, and 

B -j- C — 2D — 0, A+B-C + D^ 0, 4A+£ + C + Z> = 0, 

whence A = 6a, B = — 7a, C — — 9a, D = — 8a. The value 9A + B 
— C — 2D for v = 3 must be unity. Hence a = 1/72. Since v = n + 3, 
the result agrees with that given by De Morgan.28 The case of the elements 
1, 2, 3, 4 is treated similarly. The wave Wi is discussed in detail. Applica¬ 
tion is made to the number of sets of solutions of 

a&i -j- • • • -f* ciiXi < neti* • ‘diy 

where dh • • •, a* are relatively prime in pairs. For i = 2, the number is 
(aifl2 — ai — a2 — l)/2. 

Sylvester108 noted that there is a one to one correspondence between 
the indefinite partitions of n with parts in ascending order and the series 
0, * • •, n such that each term is not greater than the mean between its 
antecedent and consequent. 

If d and b are incommensurable, integers x, y can be found such that 
dx + by + c is indefinitely small. If it be impossible to find integers 
X, fx} v such that 

\(by — c<x) + fx(ca — ay) + v(ay — ba) = 0, 

dx + by + cz + d and ax + Py + yz + 8 may simultaneously be made 
arbitrarily small by choice of integers x, y, z. Cf. Jacobi256 of Ch. II. 

108 Johns Hopkins Univ. Circ., 1,1882,179-180; Coll. Math. Papers, III, 634-9. First theorem 
also in Math. Quest. Educ. Times, 37, 1882, 101-2. 
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0. H. Mitchell109 wrote (to; i, j) for the number of partitions of to into j 
or fewer* parts each ^ i. Let &(to) be the largest integer < (j - 1 )w/j. 

’Dm 
(w; i, j) = E (x; w — x,j — 1). 

i=to—i 

By successive applications of this formula, j can be reduced to unity. Hence 
4>:(u>) </>/-it*i) </>y-sC*4) 

(w; m) - S 2 !£ (i)> 
*!=«--< ar2=2*i~«^ xa-2x2-xi *y_1=2^-*7-j 

where the final 2(1) denotes 1 + <£2(^-2) - (2^_2 - ry-s), i. e., as many 
units as values of the summation index. There is given the long expression 
equivalent to the last two signs of summation. This is said to furnish a 
proof of the final result by Sylvester.98 

G. S. Ely110 noted that Euler’s13 table of partitions 

0 1 2 3 4 5 6 

1 1 1 1 11 1 1 

2 1 1 2 2 3 3 4 
3 1 1 2 3 4 5 7 

may be constructed by use of columns instead of rows: To get the zth 
element in the jth column, add to the (i — l)th element in the 7th column 
the tth element in the (j — t)th column. Euler had noted that the number 
(to; to, j) of partitions of to into j or fewer parts is given by the number in 
line j and column to. The number (to; i, j) of partitions of to into j parts 
g % can be found from this table when the greater of i and j is ^ (to — 4) /2 

by the following rule: Since (to; t, j) = (to; j, t), let i ^ j. Then to get 
(to; i,j) subtract from the tabulated value of (to; to, j) the sum of the 
first to - i elements in the (j — l)th row and add to the result 0, 1 or 2, 
according as i ^ (to - 2)/2, = (to - 3)/2 or = (to — 4)/2. Next, the 
number of expressions (to; i, j) is 

JV _ to2 ~ 2to + ^ _ y, j" w — n2 — n — 1 I 

2 n=zi L n +1 J9 

where ^ = 6 if to is even, t = 5 if to is odd. Let s = 24 or 27 in the respec¬ 
tive cases. Then 

2nz — 3 n2 + 2 Sn — $ 

12 - 1) + 2a,i(n - 

W. P. Durfeelu defined a self-opposite or self-conjugate partition to be 
one such that, if exhibited as an array of units (an element n being repre- 

108 Johns Hopkins Univ. Circ., 1.1882, 210. ~ ~ — 
211 (in full), 

111 Ibid., 2, Dec., 1882,23 (in full). 
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seated by n units in a row), the sums of the columns reproduce the original 
partition. Thus 4 3 2 1 is a self-conjugate partition of 10. Evidently 

1111 1 
i 111 
i.r 
i_ 

4 3 2 1 

4 

3 

2 
1 

every such array contains a central square of q2 units (4 in the diagram), 
where q is odd or even, according as the partitioned number n is odd or 
even, since of the n — q2 units outside the square half are at the right and 
half below the square. The partition remains self-conjugate under any 
rearrangement of the (n — q2)l2 units to the right, provided those below 
be arranged symmetrically. The number {|(n — q2); q] of such rearrange¬ 
ments is the number of ways of dividing %(n — q2) into q or fewer parts. 
In the above diagram we may replace the double row of three dots to the 
right of the square by a single row of three dots and derive the only other 
self-conjugate partition of 10. In general, the number of self-conjugate 
partitions of n is 2{|(n — q2); q], summed for all odd or all even integers 
q < ^ln, according as n is odd or even. 

J. J. Sylvester112 noted that Durfee’s111 theorem may be expressed in the 
following form: The number of self-conjugate partitions of n (or of sym¬ 
metrical partition graphs for n) is the coefficient of xn in 

1 + • • • + (1 _ j) (1 _^).:. (1 - a*) + • • • = 0 +x) (1 + (1 + **) • • • 

and hence is the number of partitions of n into unrepeated odd integers. 
He gave a modification of Franklin’s105 proof of (3). 

Sylvester113 proved Brioschi’s47 formula Z = Z\j/(r)zr. 
Sylvester114 proved by use of the binary scale Euler’s theorem that the 

number of partitions of n into odd parts equals the number of its partitions 
into distinct parts [Glaisher86]. Of graphical methods in partitions, he 
called Ferrers’35 method transversion and Durfee’s111 method apocopation. 
He gave a graphical proof of Euler’s (3). 

F. Franklin115 noted that, since the number (w; i, j) of ways w can be 
partitioned into i or fewer parts ^ j is the coefficient of ajxw in the develop¬ 
ment of the reciprocal of (1 — a)(l — ax) • * • (1 — ax*), the coefficient of ay 
in its development in ascending powers of a is the generating function F 
in which the coefficient of xw is (w; i, j). To obtain F directly, note that 
the number of ways of forming w with i or fewer parts of which at least one 
is a number > j, say j + k, equals the number of ways of forming 
w — (j + k) with i — 1 or fewer parts; the number of partitions in which 

- “ Johns Hopkins Univ. Circ., 2, 1882-3, 23-24, 42-4; Coll. Math. Papers, III, 661-671. 
™Ibid., 2, 1883, 46; Coll. Math. Papers, III, 677-9; Amer. Jour. Math., 5, 1882, 271-2; 

Coll. Math. Papers, IV, 21-23. 
114 Ibid., 70-71; Coll. Math. Papers, III, 680-6. Cf. Coll. Math. Papers, IV, 13-18. 
115 Ibid., 72 (in full). 
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at least two of the parts are > j, say j + k, j + kf, equals the number of 
partitions of w — (j + k) — (J + hl) into i — 2 parts; etc. Hence 

_1_xj+l + xj+2 + • • ♦ 
x) (1 — X2) • • • (1 — X*) (1 — x) • • • (1 — X*-1) 

xj+1(xj+2 + X>'+* + • • ■) + x*2(x>+3 + • • •) + ••• 

+ (1 -a)--.(i -r~2) 

_ ^i+V+2(a;J’+3 + --♦) + xj+2xs+3(xi+i + • • •) + • • • , 

(1 — x) • • • (1 — xi_3) 

~«)- -T(l-"»0 fl “ (1 “ x^(-xi+l’ ■ ■ •) 
+ (1 - X^)(l - x*)Mxi+1, • • •)-}, 

where 2m(xJ'+1, • • •) is the sum of the ra-ary combinations of x*+1, xj+2, 
By induction, 

(1 - x{) • • .(1 - • • *) = 2m(tf+1, •• •, a^+0- 
Hence 

(1 - x*1) (1 - xj+2) • • ■ (1 - ^'+i) 

* (1 ~z)(l - z2)**.(l - x<) * 

Euler’s theorem that a number can be partitioned into odd parts as 
often as into any distinct parts is proved constructively and extended. 
The number of ways of forming w additively with an indefinite number of 
parts not divisible by k and with m distinct parts (each repeated indefinitely) 
divisible by h is equal to the number of ways of forming w with an indefinite 
number of parts each occurring fewer than k times and with m distinct 
parts each occurring k or more times. The proof is made for k = 10, 
though the argument is general. First, let m = 0. Consider any partition 
consisting only of parts not divisible by 10 and let the number of times any 
such part X occurs be written in the decimal notation, say • • -cba; then if 
in place of • • - cba times X we write a times X, b times 10X, c times 100X, ••*, 
we get a partition in which no part occurs as many as 10 times, and the 
correspondence is 1 to 1, so that the theorem is proved if m — 0. Next, if 
along with the non-tenfold parts we introduce m distinct parts each divisible 
by 10 and at the same time introduce in the corresponding partition of the 
other set 10 times these same parts, each divided by 10, the partitions of 
the second set will contain m parts occurring 10 or more times, while the 
1 to 1 correspondence will not be disturbed. 

A. Cayley116 remarked that Franklin’s105 theory does more than group 
the partitions into pairs. In addition to the existing division E + 0 of the 
partitions into even and odd, it establishes a new division I + D of the 
same partitions into increasible and decreasible. There is thus a fourfold 
division El, 01, ED, OD. For instance, if N = 10, the arrangement is 

El: 8 + 2, 7 + 3, 6 + 4 01: 10, 5 + 3 + 2 
ED :9 + l, 4 + 3 + 2 + 1 Ob : 7 + 2 + 1, 6 + 3 + 1, 5 + 4 + 1 

116 Johns Honlnrm TTniv P.irrv fin fnll'l 
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where the El and ODy each taken in order, pair with each other, and 
similarly for the 01 and ED. Of course for the exceptional numbers 1, 2, 5, 
7,12, * • •, there is just one partition which is neither I nor D, and, according 
as it is 0 or E, we have in the product a coefficient — 1 or + 1. 

J. J. Sylvester117 called a partition regularized if its parts be written in 
their order of magnitude, represented each part p by p points (nodes) in a 
horizontal line, and noted that the conjugate partition is obtained by 
counting the nodes by columns [Ferrers35]. There is given (pp. 4-7) a 
method due to Franklin to construct the partitions which are to be elimi¬ 
nated from the indefinite partitions of n into j parts, including zero, so as to 
obtain the partitions of n into j parts ^ i, and hence to obtain the generating 
function enumerating the latter partitions; also (pp. 18-21) his constructive 
proof for the generating functions for partitions into repeated or unrepeated 
parts limited in number and magnitude. Sylvester (p. 7) gave his own 
construction of partitions of n into j parts chosen from 0, 1, • • •, i by em¬ 
ploying a square matrix Mx of order j in which the diagonal elements are 
alH + 1, the elements below the diagonal are all unity and those above the 
diagonal all zero. For 1 s q < j} let Mq be the matrix whose ({) rows are 
obtained by adding the rows of Mx in sets of q. Denote the rth row of 
Mq by (r, q) and the sum of its elements by [r, #]. To each regularized 
partition of n — [r, q~] into j parts ^ 0, add (r, q) term to term. The 
partitions of n into j parts so obtained from Mq for all values of r are said 
to form the system Pq. If P is the system of all partitions of n into j 
parts, the complete system of partitions of n into j parts ^ i is 

8 = P - Pi + P2 - • • • + (- 1 yPi, 

where the minus sign denotes cancellation, and the system may involve 
duplicates as well as non-regularized partitions. It remained to prove that 
a partition of n, in which the number /* of different parts is > i, occurs (£) 
times in Pq and hence (1 — 1 )M times in S; this was proved later by M. 
Jenkins.118 Hence the number of partitions of n into j parts ^ i is the 
coefficient of xn in 

(1 - a^Xl - xi+2) • * • (1 - zi+0/{( 1 - x) • • • (1 - tf)}. 

Any integer N can be expressed (p. 15) as a sum of consecutive integers 
in as many ways as N has odd factors; Sylvester119 also stated this else¬ 
where. Cf. Barbette,201 Agronomov,204 and Mason.207 

The subsequent topics treated are: generating functions, correspondence 
(p. 24, p. 38) between partitions into odd parts and partitions into distinct 
parts,119* and graphical conversion of continued products into series. Then 
he noted (p. 60) that if in Jacobi's30 formula we use the lower signs and take 

117 A Constructive Theory of Partitions . . ., Amer. Jour. Math., 5, 1882, 251-330; 6, 
1884, 334-6 (for list of errata noted by M. Jenkins). Coll. Math. Papers, IV, 1-83 
(with the errata noted by Jenkins corrected in the text), to which the page citations 
refer. 

11875id., 6, 1884, 331-3. 
u9Comptes Rendus Paris, 96, 1883, 674-5; Coll. Math. Papers, IV, 92. Math. Quest. 

Educ. Times, 39, 1883, 122 ; 48, 1888, 48-49. 
119a f'Vvmnf.pn Poiria Qfi 151R3 111 ft—9 • fV»ll A/fo+Ti P«r\ora TV 
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n =r J, m = J + e, where e is infinitesimal, we get 

{(l~g)(l-g2)(W)•••)3 = l~3g+5g3-+ (-l)«(2n+l)^^/2+ 

a result due to Jacobi10 of Ch. X in Vol. I of this History. Sylvester wrote 
Jacobi’s initial formula in an equivalent form by setting n ~ m = a, 
7i + m = b, and discussed at length (here and elsewhere120) the new formula 
from the standpoint of arrangements of three kinds of elements. He noted 
(p. 53, p. 70) that Euler’s formula (3) is the special case a = — 1 of 

1 “f" ax^ 
(1 + ax)( 1 + 0(1 +ax3) ■■■ = 1 + l_x xa + • • • 

, (1 + ax) • • • (1 + ax1'-1) (1 + ax-’) . , 

+ (1 -*)...(1-^-0 1 ^ * 

which was given elsewhere by Sylvester121 and proved also by Cayley.122 
Chr. Zeller123 stated Euler’s13 recursion formula for P(n) and expressed 

the number <r(n) of divisors of n in terms of the P(j), j < n. [See Yol. I 
of this History, p. 290, Catalan,42 p. 292, p. 312, Glaisher,55'114 p. 303, 
Stern.85] 

E. Cesaro124 noted that ax^i + • • • + akxk = n has n^1/ {ar * -ak(k — 1)!} 
sets of positive integral solutions, in mean. 

J. W. L. Glaisher125 noted that Euler’s theorem that there are as many 
partitions without repetitions as into odd parts follows from the case r = 2 
of the fact that the number of partitions of n, in each of which a part occurs 
at least r times, equals the number of partitions of n in each of which either 
r or a multiple of r occurs. In the proof, a repeated term is replaced by its 
expression to base r (Glaisher86). If Pin) is the total number of partitions 
of n, and QK(n) is the number of partitions of n in which no part occurs 
more than r times, 

P(n)-P(n-r)”P(n~2r)+P(7i~5r)+P(n —7r)-= Qr_ i(n), 

Qr(n)-Qr(n-l)-»Qr(n~-2)+Qr(ri~5)+Qr(n-7)-=0 or (-1)* 

according as n is or is not of the form (3m2 rib m)(r + l)/2, and 

P(0) = Qr{0) « 1. 

Write Q = Qx. There are given recursion formulas for Q, and 

Q(2m) = P(n) + P(n - 3) + P{n - 5) + P(n - 14) + • ■ 

involving halves of triangular numbers; similarly for Q{2m + 1). 
M. A. Stem126 proved that the number of variations [with attention to 

the arrangement of the parts] with the sum n formed from two elements 1 
and m equals the number of variations with the sum n + m formed from 
all elements = m. This is the analogue of Euler’s9 second theorem. 

120 Comptes Rendus Paris, 96, 1883, 1276-80; Coll Math. Papers, IV, 97-100. 
121 Comptes Rendus Paris, 96, 1883, 674, 743-5; Coll. Math. Papers, IV, 91, 93-4. 
122 Amer. Jour. Math., 6,1884, 63-4; Coll. Math. Papers, XII, 217-9. 
123 Acta Math., 4,1884, 415-6. 
124 M4m. Soc. R. Sc. de Lilge, (2), 10, 1883, No. 6, 229. 
125 Messenger Math., 12,1883, 158-170. 
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G. S. Ely127 noted that the partitions of n + 1 can be derived from those 
of n by adding unity to each of the parts in turn or adding a new part unity. 
Hence every partition of n into parts of which v are distinct gives v + 1 
partitions of n + 1. If the total number of partitions of n be of parity 
opposite to that of the number of partitions of n + 1, there has been a gain 
in the self-conjugate partitions of n + 1 over those of n, if n > 1. 

A. Cayley127® wrote the article on partitions in the Encyclopaedia Britan- 
nica. The article on combinatory analysis was by P. A. MacMahon.1276 

G. S. Ely128 called a compound54 partition of N, 

aia2 * • * aa | bx • • • bp | • • • | et • • • e„ 

regular if ^ 6,- ^ • = e* for every i. A graph is obtained by repre¬ 
senting each portion by an array of points in a plane and superimposing 
the planes in order. Thus any compound partition may be read in six 
ways. If (w; n; i, j) is the number of regular compound partitions of w, 
the number of portions being ^ n, and each portion being partitioned into 
i or fewer parts ^ j, the symbol is unaltered by any of the six rearrange¬ 
ments of n, % j. 

G. Chrystal129 gave a recursion formula which may be used to form 
mechanically a double entry table for the number nPr of partitions of r 
obtained from 2, 3, • • •, n. Since 

_1_ 

(1 - s2)(l - x8) • • - (1 - xn) 

n 
n(i + ^+^+ •••) 

= 1 + nPtX + • - • + nPrXr + • * 
we see by changing n to n + 1 that 

(1 ~ £n+1)(l + n+lPlX + n+lP*X2 +•“)= * + nPlX + • • •, 

whence 
n-fl-Pa = nP9 (s ~ 1, * ’ n-f-lP »-{-l == nPn+1 “f“ 

n+lPn+r = nPn+r + nPn—r-f 1 (r ~ 2). 

He noted that Tait138 had recently communicated similar results. 
J. J. Sylvester stated and W. J. C. Sharp129® proved the double theorem 

that, if v [and vf] is the number of ways n is a sum of i distinct positive 
integers [and ^ j], then 

'Zxn = (1 — x3‘)(l — x3"1) • • • (1 — x3~i+l)2vxn. 

M. Jenkins1296 evaluated the number of partitions of n into three parts. 
A. Cayley130 employed non-unitary partitions (into parts > 1) and gave 

the developments up to xlQ0 of the reciprocals of (2), (2)(3), • • •, (2) • • • (6), 

m Johns Hopkins TJniv. Circ., 3, 1884, 76-7. 
Ed. 9, 17, 1884, 614; ed. 11, 19, 1911, 865. Coll. Math. Papers, XI, 589-91. 

“7b Ed. 11, 6, 1911, 752-8; ed. 9, Supplement, 3 (= ed. 10, vol. 27), 1902, 152-9. 
128 Amer. Jour. Math., 6, 1884, 382-4. 
129 Proc. Edinburgh Math. Soc., 2, 1884, 49-50. 
1391 Math. Quest. Educ. Times, 41, 1884, 66-7. 
“9bim, 107. 
180 Amer. Jour. Math.. 7. 1885. 57-8: Coll. Math. Papers, XII. 273-4. 
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where (k) = 1 — xky for application to seminvariants. 
M. Jenkins131 gave a method to examine bends of a graph of a partition 

without actually constructing the graphs (cf. Sylvester117), and discussed 
the addition of two regularized graphs, row to row, in order. 

J. B. Pomey132 wrote A» for the number of sets of values X* = 0 or 1 
satisfying Xi + 2X2 + • • • + wXm = n. Then 

f(x) ss (1 + j)(l + x7) • • • (1 + xm) = E A”x% jx = m(m + l)/2. 
i=0 

It follows readily that 

a: = a;_, a: = a:~' + a^, £;a: = 2»-v, E a? = 2- 
t=0 <=0 

7TT = E C?®1* C7 = S(- 1)**+-+*- 
f(X) i=o 

summed for all positive solutions of Xi + 2X2 + • • • + m\m — i. Thus 
C7 is the excess of the number of partitions into an even number of parts 
over that into an odd number. Also, 

= 0, C] + ECU = °- 
5-0 j~\ 

D. Bancroft133 considered the (w; i, j) partitions of w into j parts ^ i. 
Then 

(w; i, j) = (w-j; i~ 1, j) + (w; t, j - 1). 

Taking j ~ w — k and summing for & = 0, • • •, k, we get 

k 
(w; i, w) == (w; i, w — & — 1) + E (z; f — 1, w — a;). 

x=0 

Hence, if k ^ w/2, (w; i, w — k — 1) is expressed in terms of 77 = (r; r, j). 
Jik = + a, where w is even and 0 < a ^ (w + 4)/6, 

k 
(w; i, iw - a - 1) = Wi — E**(-i + a(0<_2 + li_2) 

x=0 

+ (a — l)(2i_2 4" 31—2) 4" * * * 4~ (2a — 2)i-2 4” (2u — 1)»—2- 

This and a like formula include the rule by Ely.110 
E. Catalan134 noted that, if (N, p) is the number of partitions of N into 

p distinct parts, and r(fc) is the number of divisors of k, 

(N, 1) - 2 (A, 2) + 3 (N, 3)- 

= t(N) - t(N - 1) - t(N - 2) 4- t(N - 5) 4- rOV - 7) - 

131 Amer. Jour. Math., 7,1885, 74-81. 
Nouv. Ann. Math., (3), 4,1885, 408-417. 

133 Johns Hopkins Univ. Circ., 5, 1886, 64. 
134 Assoc. fran$. av. sc., 15, 1886,1, 86. 
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E. Meissel135 gave the formulas of Weihrauch74 for n = 3, 4, 5 and noted 
that a synthesis of these cases gives 

, /„t> , _ 1 dfn+i(pP + m) 
fnVPP + m) - Jn(m) = -p -—-, 

provided the final term of the derivative be omitted. 
P. A. MacMahon136 called a partition perfect if it contains one and only 

one partition of every lower integer; sub-perfect if, when each part is 
taken positive or negative (but not both), it is possible to compose every 
lower number in only one way. Thus, 3 -f- 1 is sub-perfect since 2 = 3 — 1, 
3 = 3, 4 = 3 + 1. Any factorization 

4>u. l = <l>i,\<t>m, M * • • 7 4>p, a — 1 + xq + x2q + - ■ • + xpq, 

leads to the perfect partition (XV*• • •) of u; then 

«+ 1 - (f + l)(m+l)..*, u + 1 = (Z+1)X, X= •••. 

Formulas involving the number of partitions of u are given. For sub¬ 
perfect partitions, use 

tp, q = + ... + ar« + 1 + xq + • • • + xpq 

instead of <f>, and divisors of 2u + 1 instead of those of u + 1. 
E. Catalan137 noted that 

log (1 + X + 3? + • • •) = - log (1 - x) = S + |- + |- + ■ • 

1 + x + x2 + • • • = exe^l2e^lz 

Developing each exponential, we get Jacobi’s result (Jour, fur Math., 22, 
1841, 372-4) 

V_i- = 1 
^2*3*4“ • • • r(a + l)r(6 + l)r(c + 1) • • • ’ 

where the summation extends over all solutions ^ 0 of 

a> + 2b -f- 3c -f- • • • = ti. 

Since the denominator equals 1 *2* • *a-2*4*6-• *26*3*6* • *3c* • •, we see 
that if n is partitioned in all ways into parts a, p, y, • • • belonging to pro¬ 
gressions with the differences 1, 2, 3, • *•, the sum of the fractions lftofiy • •) 
is unity. 

W. J. C. Sharp stated and EL W. Lloyd Tanner137* proved that, if Pn 
or Qn be the number of partitions of n without or with repetitions, then 

Qn = Pn + P»~2Ql + Pn-M2 + * * •, 

ltt fiber die Anzahl der Darstellungen einer gegebenen Zahl A durcb die Form A — Sp«xn, 
in welcher die p gegebene, unter sich verschiedene PrimzaJhlen sind, Progr. Kiel, 1886. 
His fn-1 has been changed to fn to conform to Weihrauch’s notation. 

1M Quar. Jour. Math., 21, 1886, 367-373. 
137 M6m. Soc. Roy. Sc. de Li&ge, (2), 13, 1886, 314-8 (= Melanges Math. II). 
137a Math. Quest. Educ. Times, 45, 1886, 123. 
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and two similar relations. There is a list of unsolved questions on parti¬ 
tions by Sylvester.1376 

P. G. Tait138 considered in connection with knots of order n those 
partitions of 2n with no part > n and no part < 2. After the largest part 
is removed, the numbers left form the partitions pnn} pH+l, • • *, where 
pra is the number of partitions of s with no part > r and none < 2. If 
r > s, pra = pi. If r < Sj the above argument shows that 

Pi = Pl-r + Pllr-I + * ' * + P»_2- 

There is a table of values of pr8 for r ^ 17, $ < 32. 
E. Pascal139 used n numerical functions fi(x) which increase when x 

increases. Let the difference of two values of ft for two successive integral 
values of Xi be unity. If < xk and 

fk(x + 1) - fk(x) > fk-i(x), fk-.t(xk-t) <fk(xk + 1) —/*($*), 

every number is expressible in the form fi(xi) + • • • + fn(xn) in one and 
but one way. As corollaries, every number N can be expressed in one and 
but one way as a sum of n decreasing binomial coefficients: 

N = + (X2)z + * * * + («n)n, Xk < Xk+1) 

also as a sum of n increasing binomial coefficients: 

N = [2]Xl + [Z2** + • • • + [n + 11B, xk < xk+1. 

E. Sadun140 considered the number s(n, r) of sets of integral solutions ^ 0 
of the pair of equations, in which r ^n, 

Xi + X2 + • * * + Xn — t, Xi + 2X2 + • • • + n\n = n. 

Set S(n) = s(n, 1) + ... + $(n, n). If r ^ [n/2], S(n — r) = $(n, r). 
Eor r ^ n, the pair of equations have as many solutions as the equation 

at + 2a2 + • • • + rar = n 

has integral solutions ^ 0 with ar > 0, or as the system 

at + + • • * + (r — l)ar-i = n — ir (t = 1, 2, * * •, [n/r]) 

has solutions. Hence we can compute s(n, r). For r = 1, the equation 
is at = n, a 1 > 0, whence s(n, 1) = 1. For r = 2, the system is 

= n — 2, at = n — 4, at n •2, 
whence s(n, 2) = [n/2]. Finally, he identified s(n, r) with a function 
connected with a linear differential equation of order n. 

P. A. MacMahon1*1 employed symmetric functions as an instrument for 
the study of partitions and other problems of combinations. He considered 
n objects specified by (pgr - • •)> P + <? + • • • = n, meaning that p objects 

wb Math. QuesUSduc. Times, 45,1886,133-7. One is proved by Sharp, 47,1887, 130-140. 
118 Trans. Roy. Soc. Edinburgh, 32, 1887, 340-2. 
189 Giornale di Mat., 25,1887, 45-9. 
140 Annali di Mat., (2), 15,1887-8, 209-221. 
lttProc. London Math. Soc., 19, 1887-8, 220-256. Cf. 28, 1896-7, 9-10. 
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are of one kind, q of another kind, etc. The general problem of combinatory 
analysis is to enumerate, under various imposed conditions, the distributions 
of the n objects amongst the m parcels specified by 

(Mi***), P1 + Q1+ ••• = w, 

when the arrangement of the objects in a parcel is immaterial, and when the 
arrangement is material. The solution is effected by identities between 
symmetric functions. To pass to the special case of partitions of n into m 
parts, consider the distributions of n similar objects (n) into m similar 
parcels (m), it being allowed to place more than one object in a parcel. In 
the partitions of multipartite numbers, we distribute objects (pqr- • •) into 
parcels (m). 

G. Platner142 found for r ^ 6 the number n) or yj/(r, n) of ways of 
forming a sum nor a sum ^ n from r terms of 1, 2, 3, • • •. For r = 2, 
the result is q + x — 1 or q2 + (x — l)q, respectively, if n = 2q + x, 
x < 2. In the second paper, he expressed the results as functions of n. 
For example, the number of pairs with the sum n is (n — k)j2, k = 2 or 1 
according as n is even or odd; the number of pairs with a sum ^ n is 
(n2 — 2n + Z)/4, l = 0 or 1 according as n is even or odd. For r = 3, 4, 5, 6 
the formulas involve a parameter with listed values for the least positive 
residues of n modulo 6, 12, 60, 60, respectively. It is proved that 

fir, n + r) = /(r, n) -f f(r - 1, n), / = <£ or 

[All the results for <f> are due to De Morgan,28 Herschel,33 Kirkman,39 etc.; 
while the results for \f/ follow readily from those for <£.] 

Schubert143 noted that 10m Pfennige can be made up of 1, 2, 5 and 10 
Pfennige coins in 1 + 10mi + 19m2 + 10m3 ways, if — (7), and treated 
two similar problems. 

G. Chrystal144 collected theorems on partitions and introduced various 
notations. 

Bellens and Vemiory145 found the number of sets of solutions of 
x + y + z — n + 2, x, y, z chosen from 1, ♦ • -, n} by grouping the solutions 
corresponding to a fixed xy and separating the cases n = 0, • • 5 (mod 6). 

M. F. Daniels146 obtained the results of Weihrauch74 another way. 
P. A. MacMahon147 enumerated the perfect and sub-perfect partitions. 

For example, if a is a prime, there are 2a_1 perfect partitions of a° — 1. If 
a, 6, • • • are primes, cftf* • • * — 1 has as many perfect partitions as the multi¬ 
partite number (a, /?, * • •) possesses compositions (partitions with attention 
to order). 

S. Tebay147a found the number of ways s is a sum of i distinct integers, 
also when each part is ^ q. 

142 Rendiconti R. 1st. Lombardo di Sc. Let., (2), 21, 1888, 690-5, 702-8. 
143 Mitt. Math. Gesell. Hamburg, 1, 1889, 269 Cf. d’Ocagne221 of Ch. II. 
144 Algebra, 2, 1889, 527-537; ed. 2, vol. 2, 1900, 555-565. 
146 Mathesis, 9, 1889, 125-7. 
146 Lineaire Congruences, Dies., Amsterdam, 1890, 120-135. 
147 Messenger Math., 20,1891, 103-119. Cf. MacMahon.18® 
1474 Math. Quest. Educ. Times, 56, 1892, 34-37. 
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L. Goldschmidt148 gave an elementary proof of Jacobi’s30 theorem on the 
excess (P a, ft, • • •) of the number of partitions of P into an even number 
of the a} 0, • • over those into an odd number of them, and showed that 

(P, 1, 2, 1) = (P, 1, 2, 3, • • •) + (P - m, 2, 3, • • •) 
+ (P-2m, 3,4, •••)+ •••. 

His proof of Euler’s formula (3) is essentially the same as Franklin’s,105 as 

admitted, ibid., 39,1894, 212. 
J. Zuchristian149 proved, by means of Euler’s recursion formula for the 

number nk of partitions of n into k parts, that n3 is the integer nearest to 
(n -+- 3)2/i2, while 

according as n is congruent to an odd or even number k modulo 12, while 
■n = O if A + 8, ij = 1 if fc = 8. 

K. Th. Vahlen150 wrote N(s = 2a,-) for the number of partitions s = 2a,-. 
Consider a partition s = _2e,-a; where the v elements a,- are distinct. If we 
select X of these a’s, say ah ■■■, ak, the partition may be written 

(8) s — dj 4- 2&,a,-, 
l 

Consider all possible partitions (8). The excess of the number of those 
for which X is even over the number for which X is odd is denoted by 

= + (- i)x), 
i 

and is proved to be zero. It suffices to prove this for the partitions (8) 
which arise for any one s = XeiCii. From the latter we get (0 partitions 
(8) for each X; since X has the values 0, 1, • • •, v, 

n-'-(;)*■(2) --+<- o’C) - - »■ - °- 
He proved analogous formulas. Next (p. 10), from the theory of elliptic 
functions, we have 

f[(l - x*n-2z)(l - a^-V^Xl - x*n) = E (- 
»=1 h~—co 

which, if R(n) denotes the absolutely least residue of n modulo 3, may be 
written 

f[(l — xnzRW) = E (- 
»=1 A=—00 

Hence N(s = ESNiJ (— 1)*), for 2P(na-) = h, equals 0 unless $= (3h2—h)/2, 
and then equals (~ l)h. Or, in words, among those partitions of s into 

148 Zeitschrift Math. Phys., 38, 1893, 121-8; Progr. d. hoheren Handelsschule, Gotha, 1892. 
149 Monatshefte Math. Phys., 4, 1893, 185-9. Cf. Glosel.166 

Jour, fiir Math., 112,1893, 1-36. Cf. von Schrutka218 
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distinct positive summands in which the sum of the absolutely least residues 
modulo 3 of the summands equals a given positive or negative number h, 
there occur as many partitions into an even number of summands as into 
an odd number, except only when s is the pentagonal number (3h2 — h)/2, 
for which there exists an additional partition into an even or odd number of 
parts according as h is even or odd. Also a purely arithmetical proof is 
given. If we employ this theorem for each of the permissible values of 
h and add the results, we get Legendre’s23 result: 

N(.» = t(- 1)X) = N (« = ; (- l)*) • 

These theorems are extended (pp. 16-17) to m-gonal numbers. 
T. P. Kirkman151 took all partitions of x into k parts ^ 0, as 0 0 5, 

1 1 3, 2 2 1, 0 1 4, 0 2 3 for x = 5, & = 3, formed their permutation 
symbols, 3a2b + 2abc, counted their permutations 3*3 + 2*6 = 21 = (2), 
and stated that the result is always Ct*!-1)- There is a question on the 
partition of a polygon of r sides into k parts, treated later (ibid., 8, 1894, 
109-129); cf. Cayley.152 

P. Bachmann153 gave an exposition of the work by Euler. 
P. A. MacMahon154 considered compositions, i. e., partitions in which 

the arrangement of the parts is essential. The number of compositions of 
n into p parts > 0 is the binomial coefficient (*ll). The total number 
of compositions of n is 2n_1. If the parts are ^ s, the number is the 
coefficient of xn in (x + x2 + • ■ • + x*)p. A multipartite number pip2* • • 
specifies pi + p2 -+- • * • numbers (or things), pi of one sort, p2 of a second 
sort, etc. The number of its compositions into r parts is the number of 
distributions of the pi + p2 + • • • numbers into r parcels and is the coeffi¬ 
cient of ax'd** • • • in the expansion of (hx + h2 +■ *••)’’> where ha is the sum 
of the homogeneous products of degree s of aXj a2, • • *. The graph of a com¬ 
position (2, 1, 4) of 7 is given by placing nodes at points P, Q on the line 
AB divided into 7 equal segments, so that in moving from A to £ by steps 
proceeding from node to node, 2, 1 and 4 segments of the line are passed 
over in succession. The graph of a composition of a bipartite number pq 
is derived by placing nodes at suitable points on q + 1 similar graphs of p 
placed parallel and equidistant and with corresponding points joined by a 
second set of parallels. Let A and B be opposite vertices of the resulting 
total parallelogram [see figure, MacMahon168]. Pass from A to B by 
successive steps, each consisting in moving a certain number of segments 
parallel to AK and then moving a certain number of segments parallel 
to KB. The successive steps are marked by nodes, which define the graph 
of a composition. An essential node is where the course changes from the 

161 Mem. and Proe. Manchester Lit. Phil-. Soc., (4), 7, 1893, 211-3. Math. Quest. Educ. 
Times, 60, 1894, 98-102. 

1M Proc. London Math. Soc., 22, 1891, 237-262; Coll. Math. Papers, XIII, 93-113. 
m Zahlentheorie, 2, 1894, Ch. 2, 13-45. 
154 Phil. Trans. Roy. Soc. London for 1893, 184, A, 1894, 835-901. 
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KB direction to the AK direction. The number of different lines of route 
with exactly s essential nodes is (?)(!). Each of these lines of route 
represents 2v+q~*~l compositions. For tripartite numbers, we need three 
dimensions. Generating functions were found for the number^ of all 
compositions of multipartite numbers; he155,194 treated this topic also 
later. 

K. Zsigmondy156 partitioned m into distinct parts each unity or a product 
of distinct ones of the first s primes; for example, the parts may be 1, 2, 3, 
5, 2-3, 7, 2-5, 11. If the partition has an even number of parts, consider 
the excess of E of the number of parts with an odd number of prime factors 
over the number of terms with an even number of prime factors, unity 
being a possible term. Thus for 11 = 2-3 + 5, E = 0; for 2*5 + 1, 
E = — 2; for 5 + 3 + 2 + 1, E = 2. But if the partition has an odd 
number of parts, let E be the excess of the number of parts with even 
over that with odd number of prime factors. Thus for 2-3 + 3 + 2, 
or 7 + 3 + 1 or 11, E = - 1. The sum 2n of the E’s for these 6 partitions 
of 11 is 0 — 2 + 2 — 1 — 1 — 1= — 3. Next, on = 3 — 3 = 0 is the 
excess of the number of the partitions of 11 into an odd number of parts 
over those into an even number of parts. He proved that, if m > 1, 
2m + oTflj—i = 1 or 0, according as m is the (s + l)th prime p or is < p. 
For example, if p = 13, m = 11, we had 2+ = — 3, while o-m-i = 3 since 
the partitions of 10 into an odd number of parts are 2*5, 7 + 2 + 1, 
2-3 + 3 + 1 and 5 + 3 + 2, while 7 + 3 is the only partition into an 
even number of parts. 

W. J. C. Sharp stated and H. J. Woodall156* proved that, if P„ is the 
number of partitions of n without repetitions and Qn is the number of par¬ 
titions into odd parts, then Pn = Q„ + Qn-JPi + Qn-tP* + * * *, and that 
the same formula holds when Pn and Qn denote the number of such parti¬ 
tions with repetitions. 

L. Eamonson1566 expressed the number of partitions of 2n into two 
primes in terms of the number of odd primes = k for various values 
of fc. 

L. J. Rogers1566 established the important identities 

1+-2- +_t_ , 9s , ... 
1 - 1 & - s)(l - <f) + (1 - q){ 1 - s2)(l -<ty 

_1__ 

(1 - g) n (1 - fl^Xi - g6B+l) 

Trans. Roy. Soc. London for 1894, 185, A, 111-160. 
Monatshefte Math. Phys., 5,1894,123-8. 

Q^esfc. Educ. Times, 60,1894. 41. 
63,1895,116-7. 

*"1011(1011 Soc., (1), 25,1894, 328-9, formulas (1), (2). Cf. papers 226-8. 
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1 - 9 (1 ~ S)(l - 92) (1 - fl)(l - 92)d - 9s) 
_1_ 

(1 - 92) ft (1 - g5“-2) (1 - g5n+2) ’ 
»=1 

where, on the left, the exponents in the numerators are n2 and n(n + 1). 
G. Brunei157 considered two sets of n points such that from each point 

of each set issue two bonds connecting it with two points or a single point 
of the other set. Each such configuration can be considered as the result 
of the juxtaposition of polygons of 2&i, • • •, 2kr sides, where 

k\+ * • • + hr = n. 

Regard two configurations as identical if, after a permutation of the points 
of each set, the bonds are in the same order in the two. For the number 
hn,r of configurations relative to n and r, 

hn, r ^ ^n—l, r— 1 ”1“ ^n—r, r* 

J. Hermes158 noted that the number of compositions [as by Mac- 
Mahon154] of m into k parts ^ p is (m+ll1r*p). There are 2m~1 compositions 
of m; each defines the elements of a Gauss Klammer [at, • • p], occurring 
in continued fractions (Gauss24 of Ch. II); they give the 2m~*2 Farey numbers 
of the (m — l)th set, each taken twice [see Vol. 1, p. 158 of this History]. 

Hermes159 generalized Euler’s9 formulas on the number of partitions. 
If Sj t, n are integers ^ 0, let Ea, t(n) = Et, 8(n) be an integer such that 
E(0) — 1, Eoo(ri) = 0 if n > 0, and 

E8t t(ri) = Ea, t(n — t) + Ea, tr~i{n). 

For t = 0, Ea, o(n) is the number of partitions of n + 5 into s positive parts. 
Several recursion formulas are proved, including 

Ea, t(n) = iLEa-ht t(n — s + h), 
A=0 

at—1 

t(x — ks) = Ea, t(x) — Ea, t(x — ds). 
fc=0 

The number of partitions of n + x — 1 into x — 1 terms chosen from 
1, • • •, s + 1 is 

A...(») = g (- 1 *(» - A(* + )) = Ax-i, »+i(re), 

unless n > sr — s, when the sum is zero. Properties of the A’s are given. 
A. Thorin160 asked for the integer k for which the number of sets of 

positive integral solutions of axXi + • • • + anrn = 5, xi + • • * + xn = k 
is a maximum. 

167 Proc&s-verbaux des stances soc. des sc. phys. nat. de Bordeaux, 1894-5, 24r-7. 
188 Math. Annalen, 45, 1894, 370-80. 
U9 Ibid., 47, 1896, 281-297. 
160 L’interm^diaire des math., 1, 1894, 181-2. 
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“Rotciv”161 treated the last question for n - 3. Take the greatest integer 
X2 ^ (5 — ax — a3)/a2. In the first of the pair of equations, replace x2 
by X2. Then if axxi + a3x3 — b — a2X2 has integral solutions XXy X3) the 
required k is Xx + X2 + X3. 

M. Kuschniriuk162 proved that, if r^(w) is the number of partitions of 
m into h parts > 0, then 

MV)'*- 
R. D. von Sterneck163 considered the number \n} of ways of obtaining 

n additively from ax, a2, • • •, using ax at most kx times, a2 at most k2 times, 
etc. The number of these representations of n in which the element co¬ 
occurs at least once is 

J2{n— (Xfc* + 1)00} — ~ 
X iQ Xi I 

where k\ ~ hi + 1. This is used to prove that the number of representa¬ 
tions of n as a sum of an odd number of distinct summands is odd if and 
only if in the decomposition of 24n + 1 into primes either a single exponent 
is odd and of the form it + 1 or no exponent is odd and there is an odd value 
to the half sum of the exponents of those primes which are s= 1, 5, 7, 11 
(mod 24). He also found the condition that there be an odd number of 
those representations of n by distinct summands whose number is an odd 
multiple of 3 (or of 5 or of 7). Finally, he drew similar conclusions from a 
general theorem due to Vahlen.150 

A. R. Forsyth164 expanded the reciprocal of the product 

(i — os) (1 — ^) • (1 — abx2) ( i — ^) • (i — abcx3) (1 ~ 

of n pairs of factors, suppressed every term with a negative exponent for 
any of the symbols a, 5, • • *, and in the surviving terms replaced each a, 6, 
• * • by unity, and proved (in accord with a conjecture communicated pri¬ 
vately by MacMahon) that the sum of the resulting series is the reciprocal 
of 

(1 - x)(l - x2)2(l - x3)2* • .(1 - xn)2(l - x"+1). 

He gave a similar theorem when each pair of factors is replaced by r + 1 
factors. 

G. B. Mathews165 showed that the problem of multipartite partition 
is reducible in an infinitude of ways to a problem in simple partition. For 
example, every set of integral solutions ^ 0 of 

ax + by + cz + dw = m, a'x + b'y + o'z + dfw = m! 

m L’intermediaire des math., 3,1896, 249-250. 
m Progr., Mahr.-Triibau, 1895. Quoted from Netto,180 128-130. 
184 Sitzungsber. Akad. Wiss. Wien (Math.), 105, Ha, 1896, 875-899. 
l84Proc. London Math. Soc., 27, 1895-6, 18-35. 
185 Ibid., 28,1896-7, 486-490. 
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is a set of solutions of 

(Xa + iiar)x + • • • + (Xd + ixd')w = Xra + pm'. 

Conversely, if X, \x are suitably chosen positive integers, every set of solu¬ 
tions ^ 0 of the latter is a set of solutions of the pair of equations. 

K. Glosel166 considered the number Cr(a) of ways of expressing <r as a 
sum of r distinct positive integers, gave a new proof of De Morgan’s28 
formulas for r = 2, 3, and, for r = 4, simpler expressions than Zuchris- 
tian’s.149 If {a} is the integer nearest to a, 

which may be combined into 

The complicated expression for C5(o-) was simplified on page 290. 
P. A. MacMahon167 gave a report on combinatory analysis and parti¬ 

tions. He suggested (pp. 30-1) a method of enumerating multipartite 
partitions. 

MacMahon168 noted that a partition (pr • *p5) has the “ separations ” 
{ViVi)(V2,V*)(Vf), (.P1P2P2) {p±P$), etc., the numbers in any parenthesis being 
considered as a partition with those parts. It is easily proved that the 
number of separations of the partition (pPp*2- * where indicates the 
number of repetitions of the part ph is identical with the number of parti¬ 
tions of the multipartite number ttiTi • * •. Sylvester’s method of graphical 
representation of partitions can not be simply extended to multipartite 

partitions. But there is a correspondence between m-partite partitions 
and (m + 1)-partite compositions. For example, let m = 1 and consider 
the graph of the bipartite number 76. Each composition has a line of 
route through the lattice [as MacMahon154], a, 6, c being the essential 
nodes of the line of route shown in the figure. The principal composition 

1M Monatshefte Math. Phys., 7, 1896, 133-141. 
147 Proc. London Math. Soc., 28,1896-7, 6-32. 
mb Phil. Trans. Roy. Soc. London, for 1896, 187, A, 1897, 619-673. Memoir I on Partitions. 
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is (41 12 11 12), since 4, 1 are the coordinates of a referred to the origin A, 
1, 2, the coordinates of b referred to the origin a, and of B referred to the 
origin c. The nodes in the lower portion Ca---cDK form a Sylvester 
regularized graph of the partition (3 22 1); similarly for the nodes in the 
upper portion. 

Again, we may think of Sylvester’s graph : : * ■, not as representing 

the partition (3 2), but as representing the multipartite number 4, 2. 

Then consider the partition (42,31) of the multipartite number 4 + 3,2 + 1. 

By placing the graph of 3, 1 upon the former graph, we obtain a three- 
dimensional graph of the partition. Such a graph can in general be read 
in six ways. At the end of the memoir are conjectures as to the generating 
functions of partitions whose three-dimensional graphs are limited in height, 
breadth and length. 

It. D. von Stemeck169 proved Legendre’s23 theorem and deduced from 
it in a simple way Vahlen’s160 extension. He proved also that, if & is not a 
triangular number and if we represent k as a sum of integers so that the 
same part is not used oftener than 3 times in the same representation, then 
among the representations which contain p distinct parts less often than 3 
times there are as many sums of even as of odd parts. If \(n — h) is not 
triangular, among the representations of n by distinct summands for which 
the sum of the absolutely least residues of the summands is ss h (mod 3) 
and in which occur p pairs, each pair being two of three numbers of the 
form 3m — 1, 3m, 3m + 1, there are as many sums of even as of odd parts. 
Corresponding to the last two theorems there are more complicated ones 
for triangular numbers. 

J. Franel170 stated that, if a, b, c are positive integers, relatively prime 
by twos, and if n is a positive integer, 

(9) ax + by + cz — n 

has n(n + a + b + c)/(2abc) sets of integral solutions ^ 0, if we neglect a 
quantity whose absolute value remains, for every n, less than a fixed number. 

E. Barbette171 considered (9) for a, b, c positive, a and b relatively prime. 
If a, £ are particular solutions of ax + by — 1, then 

x ~ a(n — cz) + bd, y = (S(n — cz) — ad 

are the solutions of (9). Let k and h be the quotients obtained when n 
and c are divided by ab; then the number co of positive integral solutions is 

- (q + 1)A - 2]g, 

where q is the largest integer ^ njc. If n is divisible by b, and c is divisible 
by ab, set H = cjab and call K the largest integer ^ n/ab; then 

« = - (ff + 1)# 

189 Sitznngsber. Akad. Wiss. Wien (Math.), 106, Ila, 1897, 115-122. 
1701/interm&liaire des math., 5, 1898, 54. 
171 Mathesis, (3), 5, 1905, 125-7. 
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P. A. MacMahon172 found the number of ways n is a sum of 8 numbers 

n i n2 nz n4 

mi m2 mz 
two solutions being identified if one can be derived from the other by a 
permutation of the two tows or of the four columns. This question of bi- 
partition is solved also when the number of columns is arbitrary. . # 

H. Wolff173 evaluated the number F^in) of partitions of n into p positive 
integers Xi arranged in order of magnitude, xQ Si xx ^ x2 ^ * * * « 
and proved that 

= zf]/gin}— (m = n + gr, + ■ • •), 

where the summation extends over all decompositions p = /£ + gy + * * *> 
while, for each, <f>(n) is the number of partitions of n into / sets of £ successive 
equal parts, followed by g sets of y successive equal parts, etc., the various 
groups not being arranged according to the magnitude of the parts. Thus, 
for example, ti~4 = 0 + 0 + 2 + 2 and 2 + 2 + 0 + 0 are counted as 

distinct in computing 4>(n). 
The number of decompositions of n into X equal parts is evidently 1 

or 0 according as n is or is not divisible by X, and hence is 

if R(n/\) denotes the least positive remainder on the division of n by X. 
If X is the g.c.d. of £, 77, • • *, the above <j>{n) equals the product of p(n, X) 
by the number of partitions n = jff/X + gy/'h + • * ** Again, the 
number of decompositions n = /£ + gy is p(n, tf) + [nf'/G ~ Cny'hj> ^ 
£, 7j are relatively prime and £77' —• r?£' = =F 1. Recursion formulas for the 
<£*s are found and the FJji) evaluated for p ^ 6 as explicit functions of n. 
By means of Bernoullian functions, F^n) is expressed as a polynomial in 
n whose coefficients are linear functions of the coefficients of F 

* G. Csorba173a made an addition to the theory of partitions. 
P. A. MacMahon174 generalized the concept of a partition into parts 
a2) * • •, a* by replacing the conditions ax ^ a2 * * * by the conditions 

A^ai 4" A^oi2 ■+••** + A^a8 ~ 0 (i = 1, * * •> r), 

where at least one of the integers A is positive. There is a finite number of 
fundamental solutions (a(/\ • • *, c&}) for j - 1, y,m of these ^conditions, 
such that every solution is of the form = Xia^ + • • • + 'KnOtT for i = 1, 
* • •, s, where the XJs are positive integers. 

MacMahon175 treated the generating functions for the enumeration of 
three-dimensional graphs possessing either xy-symmetry (when each layer 

”2 Bull. Soc. Math. France, 26, 1898, 57-64; M. d’Ocagne, p. 16, for n - 3, 4. 
178 Tiber die Anzahl der Zerlegungen einer ganzen Zahl in Summanden, Hiss., Halle, 1899. 
173a Math. 48 term4s 4rtesito (Hungarian Acad. Sc.), 17,1899, 189. 

Phil. Trans. Roy. Soc. London, 192, A, 1899, 351-401. Memoir II on Partitions. 
175 Trans. Cambridge Phil. Soc., 17, 1899, 149-170. 
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of nodes is symmetrical in two dimensions) or zyz-symmetry (when the six 
forms obtained by rotations about the various axes are identical). 

MacMahon,176 to enumerate the combinations defined by certain laws, 
would find an operation and a function such that the result of performing 
the operation on the function gives the number of combinations. Thus, 
operating with (d/dx)n on xn we get the number n\ of-permutations of n 
distinct letters. Again, let di = djdax + aidjda2 + a2d/da3 + • • •, where 
the a’8 are the elementary symmetric functions of ah ••*, a„. Using 
symbolic multiplication as in Taylor's theorem, write Da = d\/sl Then 
operating with DWI • * • DWn on (ai + • • • + an)n we get the number of 
permutations of ol[x * • • aln where 27r< = n. Finally, if we apply DzD\Di 
to the symmetric function (14)(13)(1), where (1*) denotes aa = Sou - • • aa 
in partition notation, we get the Sylvester-Ferrers’ graph of the partition 
(3 22 1) or its conjugate (4 3 1), according as it is read by rows or columns. 
The method is successful in solving the problem of the Latin Square189 in 
its most general aspect. Cf. Hammond.217® 

R. D. von Sterneck,177 to extend Vahlen's150 work from modulus 3 to 
modulus 5, considered the excess \n)h of the number of representations of n 
by an even number of summands over the number by an odd number of 
summands, where the summands are distinct and the sum of their absolutely 
least residues (— 2, — 1, 0, 1, 2) modulo 5 has the value h. He proved the 
recursion formulas 

[k}h = {k - 2h + 3)3_A, {k}* = - {k-5h+ I5}h~b. 

By successive applications of the second, we get 

{*)» = (- l)r{fc - 5t[h - ^^)f"5T. 

Hence its value depends on certain {Zp’for j = 0, ± 1, ± 2. By Lagrange's 

theorem, 2{k}h — 0 or (—l)4 for k + or k = (312 ± t)/2, 

where h ranges over the integers s k (mod 5). This gives a recursion 
formula for {k}3', j = 0, ± 1, =b 2. Hence we can compute any {k}h. 

M. d'Ocagne178 found the number of ways s francs can be formed with s 
French silver corns (5, 2, 1, i, 3- francs), also when the number of smallest 
coins is fixed. 

R. D. von Sterneck179 gave an elementary derivation of the number of 
decompositions of n into six or fewer equal or distinct positive integral 
summands, distinguishing 29 types like n = a + a + j8-j-/3, often with 
various sub-cases. Thus the results are expressed by many formulas. 

E. Netto180 employed eight symbols for the various types of combinations 
and variations, with a prescribed sum, of given numbers taken k at a time, 

178 Trans. Cambridge Phil. Soc., 16, 1898, 262; Phil. Trans. Roy. Soc. London, 194, A, 
1900, 361. 

177 Sitzungsber.. Akad. Wiss. Wien (Math.), 109, Ila, 1900, 28-43. 
178 Bull. Soc. Math. France, 28,1900, 157-168. 
179 Archiv Math. Phys., (3), 3, 1901, 195-216. 
180 Lehrbuch der Combinatorik, 1901. 
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with or without repetitions. In Ch. 6, he gave an exposition of Euler's 
work on partitions and Sylvester’s theory of waves, illustrated by examples. 
In Ch. 7 it is noted that any relation between two partitions of n leads to an 
identity between two infinite series. 

A. S. Werebrusow180a noted that if a, 5, •••,&, l are positive integers and 
if [n] denotes the number of sets of positive integral solutions of 

/ == ax + by + • • • + kt = n, 

the number of sets for f+lu = m is {m — 1} + \m — 21} + {?n — 31} ~\-. 
D. Gigli181 considered the number N8 of combinations of 1, • * •, m taken 

n at a time with the sum s. The least s is L = n(n + 1 )/2 and the greatest 
is G = mn — n(n — l)/2. It is shown by induction that NL, NL+i, * • *, N0 
are the coefficients of the powers of x in the expansion of 

(m, n) = 
(1 - xm)(l — s™-1) -■>(!— xm-n+1) 

(1 ~ #)(1 — x2) • • * (1 — xn) 

C. F. Gauss182 had treated this function without reference to partitions and 
noted that 

m—1 

(m, n) = (m, m — n), (ra, p + 1) — 2 /*)• 
i=M 

Gigli tabulated the A's for m = 10, n = 2, 3, • • •, and proved that 
m—n+l 

(m, n) = — p, w — 1). 
j>=i 

T. Muir183 noted that there are Cn_*r+*, r combinations of n elements 
taken r at a time such that no element is taken along with any one of the k 
elements immediately following it in the initial set. The number of sets 
of r things obtained from n by omitting n — r of them so chosen that they 
form (n — r)/k sets of k consecutive things is C«, r, where s = (n + kr — r)/&. 

E. Landau184 discussed the maximum order of literal substitutions on 
a given number n of letters. It is a question of the maximum of the l.c.m. 
of ai, • • •, av in all decompositions n = -f • • • + a„ of n into positive 
integral summands. Cf. Landau.196 

E. Netto185 found the number of cyclic decompositions obtained by 
arranging in a circle each of the Qz\) decompositions of n into p summands 
with attention to order. 

L. Brusotti186 proved the result of Catalan's.26 
F. H. Jackson187 wrote Px for p? • * • and [pxzjn for 

(1 + P*K*r-WZ)( 1 + ps-Kn-2^) . . . (1 + p*+(n-k)lz) 

fc-->oo (1 + P*-lz)( 1 + P*-*lz) •••(! + P*~hlz) 

180a Spaczinski’s Bote, Odessa, 1901, Nos. 298-9, pp. 224-9, 250-4. 
181 Rendiconti Circ. Mat. Palermo, 16, 1902, 280-5. 
Ui Comm. Soc. Gotting., 1, 1811; Werke, II, 16-17. 
188 Proc. Roy. Soc. Edinburgh, 24, 1901-3, 102-4. 
184 Axchiv Math, Phys., (3), 5, 1903, 92-103. 
188 Ibid., 185-196. 
188 Periodico di Mat.. 17. 1903. 191-2. 
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which reduces by cancellation to (1 + F*)(l + P^\ • • • (1 + f*rHn ”'?) 
if n is a positive integer. The simplest of the general formulas proved is 

/pm _ i)(pcn-m _ i) ... (pc»-r+U! _ i) 
[P*s]" = 1 + Si5ra+r(r_I)I'2 ( , _ 1)(p2i (p,« _ i) 

which includes as special cases formulas of Euler3*9 and Cauchy.29 
4 S. Werebrusow188 gave a recursion formula for the number of sets of 

positive integral solutions of &iX\ * * * “b = A, where the positive 
integers a have no common factor. Then he considered the number of 

sets when at least one x is ^ 0. . . . 
P. A. MacMahon189 treated a general magic square,” consisting of n2 

integers (zeros and repetitions permitted) arranged in a square such that 
the rows, columns and diagonals contain partitions of the same number 
(whereas*in an ordinary magic square the n2 integers are 1, 2, * • *, n2). 
The treatment applies to all arrangements of integers which are defined by 
linear homogeneous Diophantine equations or inequalities such that the 
sums of corresponding elements of two solutions give a solution [cf. Mac¬ 

Mahon174]. 
0. Meissner190 noted that to decompose n into positive integral sum¬ 

mands whose product is a maximum, the summands must be equal or differ 
at most by unity, and must include as many threes as possible. 

G. Mignosi191 wrote cn for the number of sets of integral solutions ^ 0 
of aiXi + • • • + amxm = n, and a(j) for the sum of those of Oi, • *, am 
which are divisors of j, and proved the recursion formula 

cr(l)c;_i + <t(2)Cx_2 + * * * + cr(l)Co = ICi, Co = 1. 

Taking i = 1, ♦ * n, we obtain n\cn as a determinant of order n. If eacl| 
di = 1, then <r(i) = m and cn is the number of combinations of m + n — 1 
things taken n at a time. 

S. Minetola192 wrote Rm, n for the number of different ways m distinct 
objects can be separated into n groups, where n ^ m. For example, 
Rit 2 = 7, the separations being ai — a2a3a4, • • •, a4 — aia2a3, ai<z2 — 
aiaz — a2a4, aia4 — a2az. We have 

Rm, n — nRm-1, n + Rm-1. n-1, Rm, 2 = 1 + 2 + 22 + • * • + 2m 2. 

(k)Rm-n ~ 

+ (OT n-kRk+1, k + • • ' + (w™ Rn—k, n—kRm—n+k, ky 

188 Matem. Sbornik (Math. Soc. Moscow), 24, 1904, 662-688. 
189 Phil. Trans. Roy. Soc. London, 205, A, 1906,37-59. Memoir III on Partitions. Abstract 

in Proc. Roy. Soc., 74, 1905, 318. 
190 Math. Naturw. Blatter, 4,1907, 85. 
191 Periodico di Mat., 23,1908,173-6. 
192 Giomale di Mat., 45,1907, 333-366; 47,1909,173-200. Corrections, generalizations and 

simplifications in II Boll, di Matematica Gior. Sc.-Didat., Rome, 11, 1912, 34r-50, with 
errata corrected pp. 121-2. 
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which for k = 1 becomes 

The number Rm, n of ways of separating m like objects into n groups is the 
number of partitions of m into n parts > 0. Let k = m — n. Then 

Rm, n ~ ^"I Rk, j (k =~ 7l)j Rm, n — X/ Rk, i (k Tl)• 
j==i 

There are as many partitions of m as partitions of 2m into m parts. Recur¬ 
sion formulas are found for the number N of ways of separating into n 
groups m = l + ai + • • • + 0Lh objects192® of which l are distinct, but one 
is repeated ai times, and the last ah times. Thus if the objects are a, a, a, 
5, by Cy dy then Z = 4, = 2, a2 = 1* There are N factorizations into n 
positive integral factors of a number which is a product of m primes not 
necessarily distinct. 

Minetola193 proved by use of (2n + 1)(2n' + 1) = 2k + 1, etc., that if 
2k + 1 is decomposed into a product of h primes, the h — 1 equations 

2nn' + Xn = k} 22n1nln'i + 2Xnin[ + Sni = k, 

admit Rh,2, Rh,z, • • • sets of positive integral solutions, respectively. 
P. A. MacMahon194 used the example of a permutation 3, 1 | 4 | 5, 2 of 

the first five integers separated into compartments with the numbers in each 
arranged in descending order; the succession of numbers 2, 1, 2 giving 
the size of the compartments is a composition of 5. He found the number 
iV(a, b, • • •) of permutations of 1, • * *, n having as the descending specification 
(corresponding to 2, 1, 2 in the example) a given composition (a, b, • * •) 
of n. He proved that 

^ ai ... _j_ ^ N(a,\ • • • a8)N(a*+i • * • &«+<) 

= A^ai • • • a8+t) + A"(ai • • • i, a8 + a8+t, a8+2, * • *, #«+*) 

and similar formulas. He found the number of permutations of 1, • • •, n 
whose descending specifications contain a given number of integers. He 
treated the analogous problems for permutations of numbers not all dif¬ 
ferent, and problems on packs of cards. The number of permutations of 
ail • • • apkk with descending specifications of m parts is the coefficient of 

the reciprocal of 

1 - + (1 - X)So:ia2 - (1 - X^So'icw + • • •. 

His154 study of this generating function is continued here. 

1910 Giornale di Mat., 47,1909, 43-54, for the number of combinations of these m objects n 
at a time. 

193 Ibid., 47, 1909, 305-320. 
194 Phil. Trans. Roy. Soc. London, 207, A, 1908,*65-134. Abstract, Proc. Roy. Soc., 78, 

1907, 459-60. 
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MacMahon195 applied his174 second memoir to find the probability that 
in the election of P by m votes to Q’s n votes (m > n) the order of the ballots 
is such that P has at all times more votes than Q, and similarly for n candi- 

^Start with any Ferrers' graph of an ordinary partition and place the 

parts of the partition at the nodes so that the numbers in a row, read 
from west to east, and in columns, read from north to south, are in descend¬ 
ing order. We obtain a two-dimensional partition of 19: 

3 2 2 2 
2 111 
2 1 
2 

E. Landau196 considered the maximum value f(n) of the l.c.m. of a1} 
..., ap in all the partitions of n into positive parts, n = ai + • • * + ap 
(p < »). Thus, for = 5 = 4 + 1 = 2 + 3, /(5) = 6. He proved that 

*=* Vx log x 

R. W. D. Christie197 noted that, if 1 < M ^ 5, 6N + M has 

p = (3 N + M)(N + 1) 

partitions into parts ^ 3, and v + 1 partitions if M = 0. 
J. W. L. Glaisher198 treated various questions of partitions by solving 

equations in finite differences which were constructed by means of L. F. 
A. Arbogast's85® rule of derivations. The capital letters A, B, C, 
signify any distinct numbers in ascending order of magnitude, while Greek 
letters denote any distinct numbers. The only partition of 8 of the form 
A2BC is 1, 1, 2, 4; the only one of the form AB2C is 1, 2, 2, 3; while either 
partition is of the form a2Py, Denote by Pn(i, j} k> • • •; ApBq‘ • -)x the 
number of partitions of x into the elements i, j, k, * • •, each partition con¬ 
sisting of n parts and being of the form AvBq- • *. When the elements are 
0, 1, 2, • • *, this number P is the number Gn(x, ApBq- • •) of terms of that 
form in the xth derivation of an; its values for n = 2, 3, 4 and all possible 
forms are tabulated (p. 67), and by simple additions, we deduce 

Pn(0, 1, * * •; • -)x = Gn(x, ctpPq-• •). 

The latter are computed for n ^ 7; likewise Gn(x) = P(l, 2, • • •, n)x 
and P»(l, 2, • - •) for n ^ 9, and Pn(l, 2, • • •; a?fiq- • •)x for n ^ 7. It is 

196 PM. Trans. Roy. Soc. London, 209, A, 1909, 153-175. Memoir IV on Partitions. 
194 Handbuch . . . Verteilung der Primzahlen, 1, 1909, 222-9. Cf. Landau.144 
197 Math. Quest. Educ. Times, (2), 16,1909, 104. 
194 Quar. Jour. Math., 40,1909, 57-143. 
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proved that the last circulator of Gn(x, ap(3q- • •) is the same for all forms 
otpPq * * •, and hence need be computed for the form an only, which case is 
treated at length. 

Glaisher199 proved Sylvester’s theorem on waves, developed the formulas 
for waves of periods 3, 4, 5, 6, and treated the non-periodic terms. 

Glaisher200 noted that his198 formulas for the number P(l, • • •, n)x of 
partitions of x into 1, • • •, n, repetitions allowed, are greatly simplified if 
expressed in terms of £ = x + \n(n + 1) instead of x and gave the simplified 
formulas for n ^ 9, and also those in terms of X — 2£ for n = 2, 5, 6, 9. 
He proved (p. 104) that 

(- Dn-m • • n)(- x) = P(l, • • •, n) {x - *n(n + 1)} = Qn( 1, 2, ■••)*, 

where Q is the number of partitions of x into elements 1, 2, • • unlimited 
in number, each partition containing exactly n parts without repetition. 
He proved (p. 106) that, if in the circulators occurring in the ^-formulas, 
the order of the elements be reversed, the original circulator is reproduced 
except as to sign. Finally, he gave the leading circulator in each wave 
Wm(l, 2, + r). 

E. Barbette201 noted that there are exactly 2(2X”2 — 1) ways of partition¬ 
ing x + a into distinct parts the greatest of which is x, where 

a = Sx - R, %x{x - 1) - 1, sx S 1 + 2 + • * • + X. 

In fact, such a partition of x + a corresponds to a partition of a into distinct 
parts each < x. Next, to find all the partitions of N into distinct parts, let 
x be the least integer for which Sx ^ N, and convert Sx, ■ • •, i 
into sums of distinct numbers of which the greatest is N and such that all 
the other parts are less than x, 3 + 1, • • •, 2V — 1, respectively. Suppress 
the parts in common to two members of the resulting equalities. Finally, 
to find all sets of consecutive integers whose sum is N (as 8 + 9 = N), 
write 1, 2, 3, • • • along the diagonal of a square; above x in the diagonal 
write the sum 2x — 1 of x and the preceding term x — 1; above that sum 
write the sum 3a; — 3 of it and the number x — 2 preceding it in the former 
list; etc., until 1 is added. Cf. Sylvester.119 

P. Bachmann202 gave an extended clear account of the literature on 
partitions. He inserted (pp. 109-110) a theorem communicated to him 
by J. Schur: If S is any set of positive integers not divisible by r, and R is 
the set of numbers obtained by multiplying the numbers in S by 1, r, r2, • * *, 
then any positive integer can be partitioned into equal or distinct parts 
chosen from S as often as into parts chosen from R, each occurring at most 
r — 1 times. The case r = 2 gives Euler’s theorem that any integer can 
be partitioned into equal or distinct odd integers as often as into any distinct 
parts. 

139 Quar. Jour. Math., 40, 1909, 275-348. 
200 Ibid., 41, 1910, 94r-112. 
201 Les sommes de p-i6mes puissances distinctes 6gales k une p-i&me puissance, Ltege, 1910, 

12-19. 
501 MififloPD O. 1Q1H lOO— 
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R. D. von Stemeck203 proved De Morgan's28 result that the number of 
partitions of n into 3 parts is the integer nearest to ^2/12 by use of three 
coordinate axes every pair of which make an angle < 60° and counting the 
lattice points inside or on the triangle cut out of the plane x+y+z-n 
by the coordinate planes. Similar use is made of 4-dimensional space to 
show that the number of partitions of n into 4 parts is the integer nearest 

(n3 + 3 nr — 4)/144. 
N. Agronomov204 noted that N = 2ap?---p? is representable as a 

sum of consecutive integers in (at + 1) • • • (a* + 1) ways [Sylvester119]. 
P. A. MacMahon205 noted that his three-dimensional graphs of plane 

partitions admit not only of 1, 3 or 6 readings, but may admit just two 
readings if the weight be ^ 13. Let each part be ^ l and be placed at a 
node of a two-dimensional lattice with m rows and n columns. The 
generating function giving as the coefficient of xw the number of partitions 
of weight w is expressible in six ways, one of them being 

A (l + s)(l + s + 1) • ♦ <1 + m + s - 1) 

M (*)(*+!) •••(*» + «-1) 
(0 — 1 — 

and the other five being derived from this by permuting l, m, n. A general 
proof is here first given. The theory of generating functions, especially 
for l = co, is developed further here and in his next paper.206 

T. E. Mason207 proved that 2‘p?1 • • -pft where the p's are distinct odd 
primes, can be represented as a sum of consecutive integers not necessarily 
positive in 2(ai + 1)- • -(ar + 1) ways. In just one half the representa¬ 
tions there is an even number of terms, and in just one half are the terms 
all positive [Sylvester119]. 

W. J. Greenstreet208 proved that x + 2y + 3z = 6n has 3n2 + 3n + 1 
integral solutions ^ 0. 

MacMahon209 showed that the enumeration of partitions of multipartite 
numbers may be made to depend upon his141 theory of distributions and 
symmetric functions of a single system of quantities. 

A. J. Kempner210 proved that, if 1, c1} c2, • * • form a set of increasing 
positive integers such that every positive integer is a sum of k or fewer of 
them, the radius of the circle of convergence of 1 + CiX + c2x2 + • • • is 
unity. Let every positive integer be a sum of at most k terms of a given 
set ah a2j * • •; let <*;, ft be integers such that 0 < si R, | ft | = S, 
where R and S are any given positive integers; then every positive integer 
is a sum of fewer than Rl(2kS + k + 1) terms of the set 1, a^i + ft, 
a2a2 + ft, • • •. Finally, the known theorems that any positive integer n 
is a sum of four squares and that x2 = 1 + 3 + 5 + • • • + (2x — 1) imply 

203 Rendiconti Circ. Mat. Palermo, 32,1911, 88-94. 
204 Math. Unterr. 2,1912, 70-2 (Russian). 
205 phii. Trans. Roy. Soc. London, 211, A, 1912, 75-110. Memoir V on Partitions. 
208 Ibid., 345-373. Memoir VI on Partitons. 
207 Amer. Math. Monthly, 19,1912, 46-50. Cf. Sylvester.119 

208 Ibid., 50-1. 
209 Trans. Cambridge Phil. Soc., 22,1912,1-13. 
210 Uber das Waringsche Problem . . ., Diss. Gottingen, 1912. 
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that n = u\-l + w2*3 + u3-5 + • • • is solvable in integers such that 
4 ^ Ui ^ u2 ^ us • • • ^ 0. A generalization is noted. 

S. Minetola211 investigated the number R(t; ai} • * *, ap; n) of ways of 
separating into n groups m = t + ai + • • • + ap objects of which t are not 
repeated, while p further objects, distinct from each other and from the 
preceding t, are repeated ah • *, ap times, respectively. After finding 
recursion formulas for R} he proved theorems on the maximum value of R 
when m and n vary, but so that m — n remains constant. Finally, he 
studied R(l; m; ri), so that one object is taken single and another is 
repeated m times. It is the coefficient of xm+1 in 

xnJ{(1 - x)2(l - £2)(1 - x3) • * •(! - x^1)}. 

Its recursion formula is 

R( 1; m; n) = R{ 1; m — 1; n — 1) + R(l; m — n + l; ri). 

G. Scorza212 evaluated sums of reciprocals of products, each summation 
extended over all the partitions of a given arbitrary integer. 

G. Candido213 noted that am is a sum of a consecutive odd integers. 
For m = 3, this was also proved by J. W. N. le Heux.214 Cf. Fr£gier.22° 

G. Csorba215 stated that all questions concerning partitions can be 
reduced to a single one, viz., the question of the number of ways A can be 
obtained from Ui, • • •, an by addition, repetitions allowed. Cayley44 
had expressed this number of partitions of A in the form 

Co(A) + Aci(A) + A2c2(A) + • * • + A^Cn-iCA), 

where c»(A) is a periodic function of A; but essentially proved only the 
existence of such a representation. Csorba gave for C;(A) an explicit 
formula involving Bemoullian numbers and the g.c.d. d of all the cl’s except 
aii) * *') <*>^1 and involving summations extended over all solutions £, of 
the congruence X'(Tiait£e ss A (mod d). 

*Csorba216 treated multiple partition. 
P. A. MacMahon217 has given an extended account of the theory of 

partitions as a branch of combinatory analysis. A small part of Vol. I and 
nearly the whole of Vol. II are taken up with theories more or less connected 
with the partitions of numbers. The theory is investigated from the 
standpoint of a new definition of a partition. A partition is defined 
as a set of positive integers aX) a2, • • •, an, whose sum is n, such that 
«i ^ a2 = • • • = «n- The importation of linear Diophantine inequalities 
leads to a syzygetic theory and thence to the determination of ground 
forms connected by various orders of syzygies as in the theory of algebraic 
invariants. A generalization is made by considering one or more general 

411 Periodico di Mat., 29, 1913, 67-82. 
2X2 Rendiconti Circolo Mat. Palermo, 36, 1913, 163-170. 
213 Suppl. al Periodico di Mat., 17, 1914, 116-7. 
214 Wiskundig Tijdschrift, 12, i915-6, 97-8. 
216 Math. Annalen, 75, 1914, 545-568. 
218 Math. 6s term6s 6rtesitS (Hungarian Acad. Sc.), 32, 1914, 565-601. 
217 Combinatory Analysis, Cambridge, I, 1915; II, 1916. 
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linear inequalities connected with a number of linear relations. Such 
theories are grouped under the title “ partition analysis.” As regards 
the simple partition of numbers the idea results in laying foundations deeper 
than the intuitive generating functions which served Euler and his successors 
as points of departure. There is an extension in the direction of two dimen¬ 
sions in such wise that the parts are laid out in the compartments of a chess 
board of any dimensions, a partition being defined as a distribution of 
numbers such that in every row and in every column of the board a de¬ 
scending order of part magnitude is in evidence. The complete enumerative 
solution of this question for a complete or incomplete lattice or chess board 
is reached. The solution depends upon the idea of a lattice permutation 
and of an associated lattice function. An assemblage of letters al'af • • • a?* 
is said to be a lattice assemblage when the repetitional exponents satisfy 
the condition on ^ a2 ^ ^ a8; and of this assemblage a permutation 
is a lattice permutation h the first k letters (k being any number < $) 
of the permutation constitute a permutation of a lattice assemblage 
af'aS* * *' These permutations have been enumerated, but the theory 
of the derived lattice functions is not yet complete. The theory of parti¬ 
tions in three dimensions is completed in this book only as far as the simplest 
case when the parts are placed at the angular points of a single cube. The 
enumeration of the partitions of multipartite numbers is investigated 
principally by means of J. Hammond’s217® differential operators pVlac- 
Mahon176]. The problem of enumerating partitions which do not involve 
sequences of parts is considered in Vol. I. 

* L. von Schrutka218 gave an extended account of methods employed 
to further develop Vahlen’s150 results. 

It. Goormaghtigh219 noted that, if N is the sum of the consecutive integers 
comprised between v + 1 and n, then 2N = (n — v)(n + v + 1) and the 
number of couples n, v is the number of odd divisors > 1 of N. 

G. H. Hardy and S. Ramanujan220 proved that the logarithm of the 
number p(n) of partitions of n is asymptotic to wsl2n/3, and the logarithm 
of the number of partitions of n into distinct positive integers is asymptotic 
to a shift. They221 developed a general method for the discussion of these, 
and analogous problems of combinatory analysis, by means of the methods 
of the theory of functions of a complex variable. This method is, within 
limits, applicable to the study of all numerical functions which occur as 
coefficients in power series possessing the unit circle as a natural boundary. 
In this particular problem it leads to the result that 

pin) 
1 d e*Vxn~ll24)!* 

2ttV2 dn Vn "~ 1/24*^ ^ ^ 
k < tr/V6, 

*1Ta Proc. London Math. Soc., 13, 1882, 79; 14, 1883, 119. 

218 ^m^iosfnes46,1915~^ 245“254, S^21111©3^ Akad. Wiss. Wien (Math.), 126, Ha, 

218 L’intennSdiaire des math., 24, 1917, 95. 
220 Proc. London Math. Soc., (2), 16, 1917, 131. 

221 Comptes Rendus Paris, 164,1917, 35-38. Proc. London Math. Soc., (2), 17,1918, 75-115. 
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and to still more exact results in which the sum of a number of approximating 
functions appears on the right hand side. Six terms of the series thus 
obtained give p(200) = 3972999029388, with an error of .004, a result 
confirmed by MacMahon by direct calculation. Here 0(g(t)) denotes 
a function whose quotient by g(t) remains numerically under a fixed finite 
value for all sufficiently large values of t. At the end of the paper occurs 
a table, calculated by MacMahon, of the number of partitions of n for 
n ^ 200. 

P. A. MacMahon222 proved that, if ph • • *, pt are integers in descending 
order of magnitude and (mi • • • ms) is the partition conjugate to (pi • • * pt), 
the number of ways of distributing n objects of specification (n) into boxes 
of specification (mi • • • m8) is the coefficient of xn in the expansion of 

1 -s- {(1 - aOw(l - x2)Pi • • • (1 - zOPtK 

MacMahon223 established a (1,1) correspondence between combinations 
derived from m identical sets of n distinct letters and general magic squares 
of order n in which the numbers in any row or column have the sum m 
[MacMahon189]. 

S. Ramanujan224 proved that, if p(n) is the number of partitions of n, 

p(5m + 4) ~= 0 (mod 5), p(7m + 5) == 0 (mod 7), 

p(35m -f 19) he 0 (mod 35), p{25m + 24) = 0 (mod 25), 

p(49n + 47) = 0 (mod 49); 

{(1 - z5)(l - s1Q)(l - X15) • • • 
p( 4) + p(9)x + p{ 14)z2 + 

p(5) + pil2)x + p(19)x2 + • 

- 5 
{(1 -s)(l 

f(l ~*7)(1 - 

— x2)(l — X3) 

xu) (1 - X21) • 

{(1 — a?)(l — »»)(1 — x3) * • • }4 

{(1 — x7)(l ~-s14)(l -x21) ■■ 
4- 49a; 

}7 

K1 -s)(l -*2)(1 ~*3) 

which imply the first two congruence theorems. 
H. B. C. Darling225 gave elementary proofs of the first two of Ramanu¬ 

jan’s224 congruence theorems. 
L. J. Rogers226 gave a new proof of his156c two identities. J. Schur227 

gave two proofs. Finally, Rogers228 and S. Ramanujan228 each gave a proof 
which is much simpler than all earlier proofs. 

P. A. MacMahon229 solved the problem of multipartite partition. 

*»Proc. London Math. Soc., (2), 16, 1918, 352-1 
228 Ibid., (2), 17, 1918, 25-41 
^Pfoc. Cambridge Phil. Soc., 19, 1919, 207-210. 
™Ibid., pp. 217-8. 
m Proc. London Math. Soc., (2), 16, 1917, 315-7. 
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A. Tanturri230 gave expressions for the number of partitions of n into 2, 
3, 4 or 5 distinct parts, and recursion formulas. He231 investigated the 
number D» of partitions of n into powers of 2 and the number D(2P, n) of 
partitions of n into powers of 2 of which 2P is the maximum. The first 
function can be computed from the second. In the second paper occur 
recursion formulas for the second function, and expressions for D(2P, 2pk) 
and D{2P, 2pk + 2P~1) in terms of binomial coefficients. 

On the number of positive integral solutions of ax + by = n, see papers 
117~142a of Ch. II. Ces&ro, Vol. I, p. 306, gave relations involving the 
number of positive integral solutions of £i + 2f2 + • • • + v%v = n. 

Yon Sterneck, Vol. I, p. 427, used partitions into elements formed from 
the first s primes. 

230 Atti R. Accad. Sc. Torino, 52,1916-7,902-918. In Peano’e symbolism, with a translation 
of most of the results. 

m Ibid., Dec. 1,1918. Continued in Atti R. Accad. Lincei, Rendiconti, 27, II, 1918, 399- 
403. In Peano’s symbolism with partial translation. * 



CHAPTER IV. 
RATIONAL RIGHT TRIANGLES. 

Methods of solving x2 + y2 = z2 in integers. 

According to Proclus,1 Pythagoras represented the smaller leg by 
x = 2a + 1, the larger leg by y = 2a2 + 2ay and the hypotenuse by 
z ~ y + 1. Plato1 took the difference z — y to be 2 (instead of 1) and 
obtained2 x = 2a, y = a2 — 1, z — a2 + 1. 

The Hindus Baudh&yana and Apastamba,3 about the fifth century B.C., 
obtained independently4 (?) of the Greeks the solutions (3, 4, 5), (5, 12, 13), 
(7, 24, 25), which are cases of the rule of Pythagoras, and (8, 15, 17), 
(12, 35, 37), cases of the rule of Plato. 

Euclid6 gave the set of solutions 

a/?7, i<*(/32 - 72), M/32 + 72), 

as well as (II, 5; X, 30) the related set 

Vrm, £(m — n), |(m + n). 

Marcus Junius Nipsus,6 at least a century before Diophantus, gave 
two rules to find right triangles with integral sides, one leg being given. 
Expressed algebraically, his rules give, as solutions of z2 — y2 = x2, 

z » %(x2 +i), y = K^2 — i), for * <>&*; 
2 — \x2 + 1, y = i$2 — 1, for x even, 

formulas equivalent to those of Pythagoras and Plato, respectively. 
Diophantus7 took a given value (in fact, 4) for z and required that 

z2 — x2 shall be a square of the form (mx — z)2. Thus 

2 mz 

X ~ rtf + 1 ’ 
y — mx — 2 = 

/ m2 — 1 

Vm2+ 1 
Here m is any rational number; replacing it by m/n, and taking z = m? + n2, 
we get 

(1) x = 2 mn, y — m2 — n2, z = m2 + ft2* 

1 Proclus Diadochus, primum Euclidis elem. libr. comm. (5th cent.), ed. by G. Friedlein, 
Leipzig, 1873, 428. Elements d’ Euclide avec les Comm, de Proclus, 1533, 111; Latin 
trails, by F. Barocius, 1560, 269. M. Cantor, Geschichte Math., ed. 3,1, 1907, 185-7, 
224. G. J. Allman, Greek Geometry from Thales to Euclid, 1889, 34. 

* Cited by Heron of Alexandria, Geometrie, p. 57; Boethius (6th cent.), Geometrie, lib. 2. 
* Sulbasutra, publ. by A. Biirk with German transl., Zeitschrift der deutschen morgenland- 

ischen Gesell., 55, 1901, 327-91, 543-91. 
4 Biirk.* H. G. Zeuthen, Bibliotheca Math., (3), 5, 1904, 105-7. M. Cantor, Geschichte 

Math., ed. 3,1, 1907, 636-45; 96 for 3* + 4* = 5* in Egypt. 
* Elementa, X, 28,29, lemma 1; Opera, ed. by J. L. Heiberg, 3, 1886, 80. M. Cantor, Ges¬ 

chichte Math., ed. 3,1,1907, 270-1, 482. 
* Cf. J. B. Biot, Jour, des Savants, 1849, 250-1; Comptes Rendus Paris, 28, 1849, 576-81 

(Sphinx-Oedipe, 4, 1909, 47-8). M. Cantor, Die romischen Agrim . . . Feldmess., 
1875, 103, 112, 165. C. Henry, Bull. Bibl. Storia Sc. Mat. Fis., 20, 1887, 401-2. 

7 Arith., II, 8; Opera, ed. by P. Tannery, 1, 1893, 90; T. L. Heath, 1910, 145. 
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Diophantus (III, 22, etc.) referred to the right triangle with these sides as 
that formed from the two numbers m, n. 

Brahmegupta8 (born 598 A.D.) gave explicitly the solution (1). 
An anonymous Arabic manuscript9 of 972 stated that in every primitive 

right triangle (i. e., with relatively prime integral sides), the sides are given 
by (1). Necessary conditions that (1) give a primitive triangle are that 
m, n be relatively prime and m + n be odd. The hypotenuse of a primitive 
right triangle is a sum of two squares and is of the form 12A; + 1 or 12A; + 5, 
though not all such numbers are sums of two squares. But 652 is a sum 
of two squares in two ways: 632 + 162 = 332 + 562. To find a triangle 
with a given hypotenuse h, we need an expeditious method to find two 
numbers the sum of whose squares equals h. If the last digit d of h is 1, the 
two squares end in 5 and 6 or in 00 and 1. If d = 3, they end in 4 and 9; 
if d = 7, in 1 and 6; if d = 5, in 00 and 5, 1 and 4, or 6 and 9; if d = 9, 
in 00 and 9, or 4 and 5; with similar rules if d is even. 

The Arab Ben Alhocain10 (tenth cent.) gave a geometrical proof that 
(1) give the sides of a right triangle, and noted that if the hypotenuse is 
even, also both legs are even. Rules equivalent to that by Pythagoras are 
given; also false theorems on triangles formed from several consecutive 
numbers. 

Alkarkhi11 (end of tenth cent.) derived the solution 3, 4, 5 of x2 + y2 — z2 
by setting y — x -f 1, z = 2x —• 1. 

BMscara12 (born 1114) gave (1) and employed it, as had Brahmegupta, 
to find the second leg (m2/n — ri)/2 and hypotenuse, (ra2/n + n)/2, given 
one leg m. Given the hypotenuse A, the legs are12a l = 2hbj(b2 + 1) and 
lb — h or h — q and bq, where q = 2h/(b2 + 1). To find (p. 201) a right 
triangle whose area equals the hypotenuse take 3x, 4x, 5x as the sides. 

Leonardo Pisano13 employed the fact that the sum 1 + 3 + • • • of n 
consecutive odd numbers is n2 to find two squares whose sum is a square. 
First, if one square a2 is odd, take the other to be 1 + 3 + * * * + (a2 — 2) ; 
their sum 1 + 3 + • • • + a2 is a square. If one square is even, as 36, add 
and subtract unity from its half, obtaining the consecutive odd numbers 
17 and 19; then 1 + 3 +-b 15 = 64 and 

64 + 36 = 1 + • • * + 15 + 17 + 19 = 102. 

8 Brahme'spliut'a-sidd’h.inta; Algebra with Arithmetic and Mensuration, from the Sanskrit 
of Brahmegupta and BMscara, transl. by H. T. Colebrooke, London, 1817, 306-7, 
363-72. 

9 French transl. by F. Woepcke, Atti Accad. Pont. Nuovi Lincei, 14, 1860-1, 213-227, 241- 
269 (M. Cantor, Geschichte Math., ed. 3,1,1907, 751-2). 

10 Ibid., 301-24, 343-56. 
11 Extrait du Fakhri, French transl. by F. Woepcke, Paris, 1853, 89. 
12 Colebrooke,8 pp. 61-63. John Taylor’s transl. of Brahme . . . ,8 Bombay, 1816, p. 71. 
120 Same in Ladies’ Diary, 1745, 14, Quest. 254; T. Leybourn’s Math. Quest. Ladies’ Diary, 

1, 1817, 366-7; C. Hutton’s Diarian Miscellany, 2, 1775, 200. 
13 Liber quadratomm L. Pisano, 1225, in Tre Scritti inediti, 1854, 56-66, 70-5; Scritti L. 

Pisano, 2, 1862, 253-1. Cf. A. Genocchi, AnnaliSc. Mat. Fis., 6, 1855, 234-5; P. Vol- 
picelli, Atti Accad. Pont. Nuovi Lincei, 6, 1852-3, 82-3; P. Cossali, Origine, Trasporto 
in Italia . . . Algebra, 1,1797, 97-102,118-9. 
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[These correspond to the rules of Pythagoras and Plato.] Leonardo14 
obtained rational solutions of x2 + y2 = a2 by a method quite different 
from that of Diophantus; starting with any known rational triangle for 
which or + /52 = y2, he took x = aa/y, y = a/5/y. 

F. Vieta15 (1540-1613) used the method of Leonardo, last cited, and 
that of Diophantus. 

M. Stifel16 called a • b a diametral number if a2 4* b2 = c2 and stated in¬ 
correctly that a-b is a diametral number if and only if a/b belongs to one of 
the series 1%, 2-f, 3y, • • • and 1-J, 2\%, 3t|, • • *, and hence in effect that 
a : b ~ 2n2 + 2n : 2n 4* 1 or a : 6 = 4n2 4* 8n + 3 : 4n + 4 [cf. Meyer46], 
which correspond to the solutions of a2 + b2 = c2 by Pythagoras and Plato. 
These diametral numbers are not those defined by Theon of Smyrna2 of 
Ch. XII. 

The Japanese manuscript of Matsunago17 of the first half of the eigh¬ 
teenth century contains three proofs of (1). 

T. Fantet de Lagny18 replaced m by d + n in (1) and obtained 

x = 2 n(d + n), y = d(d + 2 n), z — x + d2 = y + 2 n2. 

Taking d = 1 or n = 1, we obtain the rule of Pythagoras or that of Plato. 
C. A. Koerbero19 proved that the sides of any rational right triangle are 

proportional to the numbers (1). 
L. Euler20 expressed the hypotenuse c as b + anjm. By a2 + b2 = c2, 

b: a — m2 — n2: 2mn. Hence a, 6, c are proportional to the numbers (1) 
with m > n > 0. 

Euler21 noted that the sum of the squares of x + 1/x and y + 1/y is a 
square if 

y = , (x + p)2(px — l)2 + x2(p2 + l)2 == □, 

the latter being true if (p2 — l)x == 4p. 
J. P. Griison22 noted that n + 1 and n generate a triangle [of Pythagoras' 

type] whose larger leg y = 2n2 + 2n and hypotenuse y + 1 generate a 
new triangle whose least side is a square [2y ~j~ 1 = (2n + l)2]- 

L. Poinsot23 noted that every set of integral solutions of z2 — y2 = x2 
is given by z = (p + q)/2, y = (p — q)/2, where x2 has been expressed 
in every way as a product of two integers p and q, both odd and relatively 
prime or both even, but with no common factor > 2. 

14 Liber Abbaci, Ch. 15 (Scritti L. Pisano, Rome, 1, 1857). 
15 Franciscus Vieta, Zetetica, 1591, IV, 1; Opera Math., 1646, 62. 
16 Arith. Integra, Nurnberg, 1544, f. 14v~f. 15v. Copied by Ioseppo Vnicorno, De 1’Arith. 

Universale, Venetia, 1598, 62. 
17 Y. Mikami, Abh. Gesch. Math. Wiss., 30, 1912, 229. Report by K. Yanagihara, TChoku 

Math. Jour., 6, 1914-5,120-3; continued, 9, 1916, 80-7 (by use of progressions). 
18 Hist. Acad. Sc. Paris, 1729, 318. 

Nova trianguli rectanguli analysis, Halae Magd., 1738, 8. 
20 Comm. Acad. Petrop., 10, 1738, 125; Comm. Arith., 1, 1849, 24. 
21 Opusc. anal., 1, 1783, 329; Comm. Arith., II, 46. 
22 Enthullte Zaubereyen u. Geheimnisse der Arith., Berlin, 1796, 104-6. 
23 Comptes Rendus Paris, 28, 1849, 581-3; also p. 579 by J. B. Biot. 
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P. Volpicelli24 noted that z = a2 + 62 = a2 + /32 imply that 

x = rfc (aa =F 6/3), y = ± (a/3 dh 6a) 

are solutions of a;2 + y2 = z2 and stated incorrectly that they give all the solu¬ 
tions, whereas formulas (1) do not. As to J. Liouville’s25 remark that, for z 
given, x2 + y2 = z2 has relatively prime solutions if and only if z is a product 
of primes 4n + 1, the solutions x = 1020, y = 425, z = 5 T3 • 17 are not 
relatively prime. 

Volpicelli26 distinguished k types of solutions of x2 + y2 = z2, where 
z = hi- “hk, hj = a* + b). The k solutions of the first type areq{a) — b)), 
2qa,jbs, where q = z/hj. The k(k — 1) solutions of the second type are 

q{(a] - b])(a2j - 6]) d= 4aia,-6i6i}, q{2(aiaj =fc 6,6,-)(ai6i =F a^-)}, 

where q = z/ihihj), the quantities x2, y2 in brackets being such that 
xl + yl ~ h%). From 

a5 + y\ - <A + 2/D{(a? - b])2 + (2atbt)2} = 

we obtain the 4(J) solutions qx&, qyz of the third type, where q = z/(hihjht). 
Thus the total number of solutions is 

^ 28~1k(k — 1) • * • (fc — s + 1) _ lf t . 

h i-2 ...s 

Volpicelli27 noted that all solutions of x2 + y2 = z2 depend on the solu¬ 
tions of x2 + y2 - z2 (j = 1, • * •, k), where zh • • z* = z are the products 
of the factors of z taken 1, 2, • • *, k at a time. For z2 = (a2 + 62)*, a 
solution is 

a; = ak - ®a*~262 + (J)aA"464-, y = (J)aM6 - G)a*~363 + . ... 

For, if (a + f6)fe = A + iB} (a2 + 62)fc = A2 + B2, which was verified with¬ 
out using i = V— 1. Also a2 — 62 is a factor of B if k = 4/i, but is a 
factor of A if k = 46. + 2. 

C. A. W. Berkhan28 gave nineteen methods of finding two numbers the 
sum of whose squares is a square, with references on several proofs. 

E. de Jonqui&res29 discussed Volpicelli’s26 topic. 
A. J. F. Meyl30 noted that, according to an argument by de Jonqui&res,29 

(x + 3)2 + (x + 4)2 = [(y + l)2 -r(y + 2)2]2 

has only the solutions x + 3 = 3 or — 4, whereas £ + 3 = 0 or — 1 also. 
C. de Polignac31 used a rectangular lattice to prove that (1) gives all 

integral solutions of £2 + y2 = z2. 

24 Giomale Arcadico di Sc. Let. ed Arti, Rome, 119,1849-50,27. Annali di Sc. Mat. Fis., 1, 
1850,159-166, 369, 443. 

u Comptea Rendus Paris, 28, 1849, 687. 
“ Atti Accad. Pont. Nuovi Lincei, 4, 1850-1, 124-140, 346-377, 508-510. 
37 Ibid., 5, 1851-2, 315-352; Comptea Rendus Paris, 36, 1853, 443-5. Extract in Annali di 

Sc. Mat. Fis., 3, 1852, 130-3; 4, 1853, 286-297. 
28 Die merkwurdigen Eigenschaften der Pythag. Zahlen, Eisleben, 1853. 
19 Nouv. Ann. Math., (2), 17, 1878, 241-7, 289. Cf. papers 26-31 of Ch. XVII. 
30 Ibid., (2), 18,1879, 332-3. 
11 Bull. Math. Soc. France, 6, 1877-8, 162. 
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C. M. Piuma32 quoted the known result that all relatively prime integral 
solutions of x2 + y2 = z2 are given by 

m2 —- n2 m2 + n2 
x = rrmy y =--— , 2 = —-—, 

where m and n are relatively prime odd integers, and proved conversely 
that then these three expressions are relatively prime in pairs, by showing 
by use of congruences that no two are divisible by the same power of a prime. 

D. S. Hart33 proved for n ^ 4 that, if z is a product of n primes each a 
sum of two squares ED, z2 is a [21 in (3n — l)/2 ways [Volpicelli26]. 

L. E. Dickson34 obtained, as a solution equivalent to (1), r + s, r + t, 
r + s + t, where r2 = 2st is. a square. The same rule was given later by 
P. G. Egidi,35 D. Gambioli,36 A. Bottari,39 and H. Schotten.36a 

Graeber37 noted that if the point of tangency of a circle inscribed in a 
right triangle divides the hypotenuse z into the segments k and m, while 
n and m are the corresponding segments of leg y, then 

(k + m)2 = (m ~f- ft)2 + (n + k)2, k = (n2 + mn)/(m — n). 

Thus z, y, z are proportional to (1). The sides if integral are shown by a 
long proof to be (1). 

L. Kronecker38 proved that all positive integral solutions of x2 + y2 = z2 
are given without duplication by 

x = 2pqt, y = t(p2 - q2), z = t(p2 + q2), p > q > 0, t > 0, 

p and q being relatively prime and not both odd. The reason why every 
solution is obtained once and but once is due to the fact that the circle 
£2 -f r)2 = 1 is of genus zero, all its points being expressible rationally in 
r = tan co/2: 

f COS CO = 
1 - 
1 + V sin co = 

2 r 

1 +T2* 

A. Bottari39 proved that all integral solutions of x2 + y2 = z2 are given 
by x = u + w} y = v + wy z = u + v + w, where u — p2k> v = 22*-1#2&, 
w = 2*pqk, p and q being relatively prime odd integers. Thus xy is not 
a square. 

P. Cattaneo40 gave a simple proof of Bottari’s theorem. 
P. Beutzel41 noted that, if a > 2, we can solve c2 ~ h2 = a2. Set 

c = b + v. Then b = (a2 — v2)/(2v) is an integer if v = 1 and a is odd, 
or if v = 2 and a is even. We may take v to be any divisor a/n of a; then 
b = (n2 — 1)^/2, c = (n2 + 1)^/2. 

32 Giomale di Mat., 19, 1881, 311-5. 
33 Math. Quest. Educ. Times, 39, 1883, 47-8. 
34 Amer. Math. Monthly, 1, 1894; 8. 
35 Atti Accad. Pont. Nuovi Lincei, 50, 1897, 103. 
» Periodico di Mat., 16, 1901, 151-5. 
3Sa Zeitschrift Math. Naturw. Untemcht, 47, 1916, 181-2. 
37 Archiv Math. Phys., (2), 17, 1900, 36. 
38 Vorlesungen liber Zahlentheorie, 1, 1901, 31-35. 
39 Periodico di Mat., 23, 1908, 104-110. Cf. Dickson.34 
40 IUd., 218. 
41 qc 100Q ono-ii 
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J. Gediking42 noted that, for relatively prime solutions of x2 ~ y2 — z2, 
we may take as x — y any number of the form (2n + l)2 or 2n2} but no 
other. Then x + y = (2m -j- l)2 or 2m2, with 2m + 1 and 2n + 1 or 
m and n relatively prime, pt was overlooked that we may restrict to 
one of the two cases.] All solutions < 1000 are given. J. C. Milborn 
(pp. 167-9) erred in saying that this method does not give all solutions. 
T. Boelen (pp. 238-40) noted that we may take as z any integer > 2, if 
solutions with a common factor are allowed. 

C. J. van der Burg43 gave an incomplete proof of (1). 
Fitting44 discussed the relatively prime solutions of x2 + y2 = z2 by 

setting z = x + a, whence y2 = a(2x + a). Without loss of generality we 
may take a to be an odd square 1, 9, 25, • •and equate 2x + a to the 
successive odd squares. 

W. Kluge45 noted that x2 + y2 = z2 is satisfied by 

t — d t d 
x2 = d£} d < x} y — ^ > % = ^ ? 

and gave recursion formulas for computing successive solutions. 
E. Meyer46 noted that Stifel’s16 formulas for diametral numbers do not 

give all, for example not 33*56, and that he should have used 

a :b = m2 — n2 : 2mn. 

He compared many known ways of solving x2 + y2 = z2, 
P. Lambert47 solved x2 + y2 = z2 by use of numbers a + hi. 
N. Gennimatas48 would solve x2 + y2 = a2 by setting 2a = c + d} where 

cd is a square x2, whence y = a — d. 
*E. Haentzschel48a noted that from one rational right triangle we can 

derive an infinity by use of the formulas for sin na and cos na [cf. Vieta,4 
Ch. VI]. From two right triangles whose hypotenuses are primes of the 
form 4&+1, we can derive an infinity by use of the addition theorem for 
sine and cosine. By means of these theorems we can arrange in order the 
proper solutions of x2+y2 — z2. 

P. Quintili49 attributed to F. Klein (!) the solution (1) of x2 + y2 = z2. 
A. E. Jones50 discussed right triangles whose three sides are of the form 

x2 — 1. 
C. A. Laisant51 noted that MQ, 2PN, P2 + N2 are sides of a right tri¬ 

angle if M} N, P, Q are four consecutive terms of Fibonacci's series (Vol. I, 
Ch. XVII of this History), so that P = M + N, Q = N + P. 

42 Vriend der Wiskunde, 25, 1910, 86-96. 
«Ibid,, 26, 1911, 188-191. 
54 L’interm^diaire des math., 18, 1911, 87-90 (233-4). 
46 Verhandlungen der Versamm. deutscher Philologen u. Schulmanner, Leipzig, 51,1911,137. 

Unterrichtsblatter Math. Naturwiss., Berlin, 19,1913,11. 
46 Zeitschrift Math. Naturw. Unterricht, 43, 1912, 281-7. 
47 Nouv. Ann. Math., (4), 12, 1912, 408-421. 
48 Zeitschr. Math. Naturw. Unterricht, 44, 1913,14-15. 
48a Blatter fur d. Fortbildung d. Lehrers u. Leherin, Berlin, 6,1913, 395-6. 
49II BoU. Mat. Sc. Fis. Nat., 16, 1915, 69-71. 
60 Math. Quest, and Solutions (contin. of Math. Quest. Educ. Times), 2, 1916, 18. 
81 Comptes Rendus des Sc. Soc. Math. France, 1917,18-19. 
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Papers without Novelty. 

G. Oughtred, Opuscula Math., Oxonii, 1677, 130-8. 
A. Thacker, A Miscellany of Math. Problems, Birmingham, 1, 1743, 171-8 [Proof of (1)3- 
Anonymous, Ladies’ Diary, 1752, 39, Quest. 344 [Proof of (l)]. 
A. D. Wheeler, Amer. Jour. Arts. Sc. (ed., Silliman), 20, 1831, 295 [Plato’s rule]. 
J. A. Grunert, KliigePs Math. Worterbuch, 5, 1831, 1141-3 [Euler20]. 
C. M. Ingleby and S. Bills, Math. Quest. Educ. Times, 6, 1866, 39-40 [Proof of (1)]. 
M. A. Gruber, Amer. Math. Monthly, 4, 1897, 106-8. 
H. Schubert, Niedere Analysis, 1, 1902, 159-162 [Proof of (1)]. 
F. Thaarup, Nyt Tidsskrift for Mat., 15, A, 1904, 33 [Proof of (1)]. 
A. Aubry, Mathesis, 5, 1905, 6-13 [historical]. 
A. Holm, Math. Quest. Educ. Times, (2), 9, 1906, 92; 10, 1906, 56 [Proof of (1)]. 
V. Varali-Thevenet, Rivista Fis. Mat. Sc. Nat., 8,1, 1906, 422-3. 
C. Botto, Giornale di Mat., 46, 1908, 297-8 [Poinsot23]. 
P. Richert, Unterrichtsblatter Math., 14, 1908, 55-7, 87. 
C. Botto, Suppl. al Periodico di Mat., 12, 1908-9, 68-74. 
T. S. Rao, Jour. Indian Math. Club, Madras, 1, 1909, 130-4. 
School Sc. and Math., 10, 1910, 683; 11, 1911, 293-4; 13, 1913, 320-2. 

Sides of a right triangle divisible by 3, 4, or 5. 

Frenicle de Bessy52 (t 1675) noted that if the g.c.d. of the integral 
sides of a right triangle is a square or the double of a square, the sides are 
of the form (1), and that one of the sides is divisible by 5, one of the legs 
by 3 and one by 4. If the sides are relatively prime, the sum and difference 
of the legs are of the forms 8ft d= 1. 

P. Lenth6ric53 noted that the product xyz of the numbers (1) is divisible 
by 60, since mn(m2 — n2) is divisible by 6 and if no one of m, n, m ± n is 
divisible by 5, m2 + n2 is. F. Paulet added (p. 382) the remark that 
m4 — n4 is divisible by 5 if neither m nor n is, since m4 — 10ft + 1 or 10ft + 6. 

L. Poinsot23 stated, as if new, that if x, y, z are relatively prime solutions 
of x2 + y2 — z2, 3 is a factor of x or y> 4 a factor of x or y, and 5 a factor of 
xy y or z. This was proved by E. R. Grenoble54 by considering the residues 
modulo 3, 4 or 5, and by J. Binet (pp. 686-7, 755) by use of Fermat's 
theorem. J. Liouville remarked (p. 687) that x, y, x + y or x — y is 
divisible by 7. Bourdat55 stated that he had found these facts in 1839 and 
added that, if x2 + y1 = z4, 5 is a factor of x, y or z, likewise 7 and 24. 
If x2 + y2 — z8y one of the numbers has the factor 24*3*7. 

A. Vermehren56 proved that xyz is divisible by 60. 
A. L6vy57 noted that in a2 + b2 = c2, 7 divides a + b or a — b if 7 is 

prime to a, 6, c; 11 divides one of 5a ± b, 5b ± a if 11 is prime to a, 5, c. 

“Traits des triangles rectangles en nombres, I, Paris, 1676, §§24-25, pp. 59-61. Re¬ 
printed with part II in 1677 at end of Probl&mes d’Architecture de Blondel. Both parts 
in M6m. Acad. R. Sc. Paris, 5, 1666-99; 6d. Paris, 1729, pp. 146-7. C. Henry, Bull. 
Bibl. Storia Sc. Mat. Fis., 12, 1879, 691-2, gave a list of Frenicle’s writings; cf. Nouv. 
Ann. Math., 8, 1849, 364-5. 

53 Annales de Math, (ed., Gergonne), 20,1829-30, 376-382; 21, 1830-1, 96-98. Cf. Jour, fur 
Math., 5, 1830, 386; Jour, de math. 616m. sp4c., 1880, 261. 

M Comptes Rendus Paris, 28, 1849, 665-6. 
“ Bull, de l’Acad. Delphinale, Grenoble, 3, 1850, 37-43. 
66 Die Pythagoraischen Zahlen, Progr. Domschule, Giistrow, 1863. 
67 Bull, de math. 614m., 15, 1909-10, 277. 
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Number of right triangles with a given side. 

Report has been given above of the papers by Volpicelli,26 Hart33 
and de Jonqui&res.29 See Fermat10 and Frenicle17 of Ch. VI and papers 
19-32 of Ch. XIII. 

F. Gauss58 noted that to every hypotenuse composed of h distinct 
primes belong 

[f]+2[i]+2'[|]+ -+2M[i] 
different pairs of legs, where [V] is the largest integer ^ x. The legs are 
relatively prime for 2H pairs.59 

D. N. Lehmer60 proved that the number N of right triangles whose 
sides are integers with no common divisor, and whose hypotenuse is ^ w, 
is asymptotically n/(2x). But, if the sum of the three sides is n, 
N — n (log 2)/7r2, asymptotically. 

0. Meissner61 stated that the number P of integral right triangles with 
one leg x = 2mp™1 • • * p™n (p’s distinct primes) is: 

P = P2 + 

r1+—i L mJ 

(2 P2 + 1), P2 ^{jl(2m,+ 1) - l}, 

where [a] is the largest integer ^ a. Also P + 1 is the number of sets of 
positive integral solutions z, y of z2 — y2 = x2 (x given). 

E. Bahier62 noted that if A, B, • • •, P are distinct odd primes the number 
of right triangles one of whose legs is AaBp • • • P* is 

2a + 22a/3 + 222af3y + * * * + 2fc T-afiy • * * t. 

If A = 2, we have only to replace a by a — 1 in the last result. 

Right triangles of equal area. 

Diophantus, V, 8, required three rational right triangles of equal areas. 
If, as in V, 7, ab + cl2 + 62 = c2, the right triangles formed7 from c, a; c, 6; 
c, a + b have the same area abc(a + b). The chosen example has a = 3, 
6 = 5, c — 7. This solution was given in general form by F. Vieta, 
Zetetica, IV, 11. Fermat62* observed that if z is the hypotenuse and 6, d 
the legs of a rational right triangle, we obtain a new right triangle of the 
same area by forming the triangle from z2} 2bd and dividing its sides by 
2z(62 — dr). From this new triangle we may derive similarly a third, etc. 
Apart from notation, this method is the same as the “ construction ” in 

58 Uber die Pythag. Zahlen, Progr. Bunzlau, 1894, p. 15. 
69 If the hypotenuse is 65, the legs are 25, 60; 16, 63; 33, 56; or 39, 52. 
80 Amer. Jour. Math., 22, 1900, 327-8. 
81 Archiv Math. Phys., (3), 8, 1904, 181. 
88 Recherche M6thodique et Propri6t£s des Triangles Rectangles en Nombres Entiers, Paris. 

1916, 21-27. 
Oeuvres, III, 254^5; S. Fermat's Diophanti Alex. Arith., 1670, 220. 
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the second part of FrenicleV2 Traite; this process has been summarized 
by A. Cunningham.63 

Fermat64 stated that he could give five right triangles of equal area and 
had a method to find as many as one pleases, whereas Diophantus, Y, 8, 
and Yieta, Zetetica, IV, 11, gave only three. 

J. de Billy65 noted that the right triangle with the legs 3r, (x + 4)r 
will have the same area 6 as (3, 4, 5) if f (x + 4)r2 = 6. Thus x + 4 and 
9 + (x + 4)2 must be squares, which is the case if x = — 6725600/2405601. 

John Kersey66 discussed the problem to deduce a rational right triangle 
with the same area as a given one, and stated many problems on areas. 

L. Euler67 discussed the solution of 

pr(p2 — r2) = qs(q2 — s2), 

noting the case p = 11, r — —35, q = — 23, s = 33. Hence the right 
triangles formed7 from 11, 35 and 23, 33 have equal areas. 

Euler68 noted that if we take q = p, p2 = r2 + rs + $2, we get 

2r + s = V4p2 — 3s2 = 2p ~ sf/g if - = --Tjr— • 
s 4fg 

Take p = f2 + 3g2} s = 4fg. Hence the values x = f2 + 3g2, y = 4fg or 
3g2 — f2 =L 2fg give the sides 2xy, x2 — y2, x2 + y2 of three right triangles 
with the same area xy(x2 — y2). 

Griison22 (pp. 109-114) and Young134 of Ch. XIX discussed the deter¬ 
mination of three right triangles of equal area. 

J. Collins69 employed the three right triangles with the legs 

v2 — x2, 2vx; v2 — y2, 2vy; z2 — vP, 2zv. 

The first two are of equal area if v2 = x2 + xy + y2. Set v ~ x — t. 
Then x = (t2 — y2)/(y + 21). The first and third have equal areas if 
v2 = x2 — xz + z2. Set v = x — s. Then x = ($2 — z2)l(2s — 2). To make 
the values of x equal, take t — m + n, y~m — n, s — p + q, z = p~q. 
Then mnj(3m + n) = pq/(3p + q) determines m in terms of p, qy n. 

J. Cunliffe70 treated the problem to find k rational right triangles of 
equal areas. For k = 3, let m2 db n2, 2mn be the sides of one triangle. In 

mn(m2 — n2) = pq(p2 — q2), 

set p = m-\-r, q = n — r, and solve the resulting quadratic for r. Thus 
4r = ± YK — 3(m — n), where R = m2 + 14mn + n2. Set 

R = (m + n + s)2, 

63 Math. Quest. Educ. Times, 72, 1900, 31-2. 
34 Oeuvres, II, 263, letter to Mersenne, Sept. 1, 1643. He had asked (p. 259) for four. 
65 Inventum Novum, I, § 38, Oeuvres de Fermat, III, 348. In his Diophantus Geometra, 

Paris, 1660, 108, 121, de Billy treated the problems of Diophantus V, 8, VI, 3. 
66 The Elements of Algebra, London, Books 3 and 4, 1674, 94, 124-142. 
67 Nova Acta Acad. Petrop., 13, 1795 (1778), 45; Comm. Arith., II, 285. 
68 Opera postuma, 1, 1862, 250-2 (about 1781). 
69 The Gentleman's Math. Companion, 2, No. 11, 1808, 123. 
70 New Series of the Math. Repository (ed., Th. Leybourn), 3, II, 1814, 60. 
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thus determining m rationally. Hence we get two new rational right 
triangles. For any k, let a, b, h be the legs and hypotenuse of one right 
triangle; another of equal area has the sides 

2abh 2 b2 — h2 h4 + 4b2h2 - 4b4 

2b2 — h2 ’ 2 h ’ 2h(2b2-h2) ‘ 

From this, we obtain a third, etc. To find any number of rational squares 
h2, h'2, • * • and a number N which if added to or subtracted from each of 
the squares yields sums and differences which are rational squares, use 
right triangles of equal area and take h2 = a2 + b2, h'2 = a'2 + b'2, • 
N = 2a6 = 2a!b' = • •. Cf. Ch. XVI. 

D. S. Hart71 repeated the method of Diophantus V, 8. 
A. Martin,72 using the 3 triangles of Collins,69 concluded that the 

conditions reduce to x ~ z — y, v2 = z2 — zy + y2) which is satisfied if 
y — m2 — n2, z = 2mn + m2, v = m2 -f* wn + n2. 

C. E. Hillyer73 noted that equal right triangles are formed7 from 

k2 + kl+ l\ k2 - l2; k2 + kl + l2, 2kl + l2; k2 + 2kl, k2 + kl + IK 

C. Tweedie,74 to find all rational right triangles of area A, discussed 
a2 + p2 = 72, aP = 2A, whence x\ + y\ = 1, y2xxyi = 2A. Thus 

*» = lTri» ^ = 2A(1 + m2)2. 

Write x = m, y = (1 + m2)jy. Hence we seek the rational points on 

(2) x(l - x2) = Ay2. 

To apply Cauchy’s tangential method (papers 287, 296, etc. of Ch. XXI), 
start with any right triangle with sides a, p, y and derive the corresponding 
rational point (x, y). The tangent there cuts the cubic at a new rational 
point, which corresponds to a new right triangle with the legs 2apy/(a2 — P2), 
(a2 — p2)/(2y). From it we get a third right triangle. The problem is also 
treated by Cauchy’s second method (the line joining two rational points 
of a cubic determines a third). 

E. Bahier,62 pp. 149-168, treated the subject. 

TWO RIGHT TRIANGLES WHOSE AREAS HAVE A GIVEN RATIO. 

Diophantus, V, 24, asked for three squares x\ such that x\x\x\ + x\ 
are squares for i = 1, 2, 3. A solution will be X{ — sbi/pi if three right 
triangles (pi} biy hi) are found such that pip2pz = s2bib2bz, since 

XlX2Xz=S, s* + *!-«* (i + ^) - (^). 

71 Math. Visitor, 2, 1882,17-18. 
72 Math. Quest. Educ. Times, 48, 1888, 118-9. 
73 Math. Quest. Educ. Times, 72, 1900, 30. 
74 Proc. Edinb. Math. Soc., 24, 1905-6, 7-19. He quoted from “Life and Letters of Lewis 

Carroll,” p. 343, that the triangles (20, 21, 29) and (12, 35, 37) are equal, but failed to 
find three. 
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Diophantus took (3, 4, 5) as one triangle and stated that it is easy to find 
two triangles such that the product of the legs of one is 12 (or 3) times that 
of the other, as (9, 40, 41), (8, 15, 17). C. G. Bachet74a chose an arbitrary 
triangle (ph bh Ai) and the two triangles formed7 from bh hi and pu hu 
obtaining s = pi/(2hi). Fermat75 gave general rules for finding two right 
triangles whose areas are in a given ratio r/sf where r > s, viz., form the 
triangles from 2r db s, r =F $ and 2s ± r, r =F s; or from 6r, 2r — s and 
4r + s, 4r — 2s; or from r + 4s, 2r — 4s and 6s, r — 2s. Thus to find 
three right triangles whose areas are proportional to given numbers r, s, t, 
such that r + t = 4s, r > t, form the triangles from r + 4s, 2r — 4s; 
6s, r — 2s; 4s + t, 4s — 21. The areas of the triangles formed from 49, 2; 
47, 2; 48, 1 are themselves the sides of a right triangle.76 

L. Euler77 found ten types of pairs of right triangles whose areas 
A — PQ(p2 “ Q2) and B = rs(r2 — s2) have a given ratio a :b. He equated 
r and s to two of the numbers p, 2p, q, 2q, p zt q. For example, r — p, 
s = p — q give p + q : 2p — q = a : b, whence p : q = a + b : 2a — b; 
taking r = p = a + b, we get q = 2a — b, s = 2b ~ a. He gave (pp. 
222-3) several methods to make A/B a square (cf. Euler33 of Ch. XV, Euler81 
of Ch. XVI, Euler18-19 of Ch. XVIII and Euler253 of Ch. XXII). 

A. Holm78 noted that the problem leads to a cubic curve with two given 
rational points, whence the chord determines a third. 

Other problems involving only area. 

An anonymous79 Greek manuscript, probably dating between Euclid 
and Diophantus, found the sides of a right triangle with the area 5 by 
seeking a product of 5 and a square 36, divisible by 6, such that the product 
5*36 is the area of a right triangle with the sides 9, 40, 41, and reduced 
them in the ratio 1 :6,—which shows a knowledge of the fact that the area of 
a right triangle with integral sides is a multiple of 6 (L. Pisano,14 Ch. XVI). 

Diophantus, VI, 3, required a right triangle whose area increased by a 
given number g yields a square. Take g = 5 and denote the triangle by 
(hx, px, bx); we are to choose x so that %pbx2 + 5 = n2x2. Let (A, p, b) 
be formed from m, 1/m and take n = m + 2-5/m. Then |pb — m2 — 1/m2. 
When this is subtracted from n2, the difference shall be 5 times a square. 
Hence 100m2 + 505 = □, say (10m + 5)2. Thus m = 24/5, n = 413/60, 
x = 24/53. F. Vieta (Zetetica, V, 9) took g = r2 + s2, formed the triangle 
from (r + $)2, (r — s)2, and divided its sides by 2 (r + s)(r — s)2; the area 
is now 2rs(r2 + $2)/(r — s)2, which added to g yields the square of (r2 + $2)l 
(r — s). C. G. Bachet74a remarked that g need not be the sum of two squares 

740 Diophanti Alex. Arith. . . . Commentariis . . . Avctore C. G. Bacheto, 1621, 333. 
75 Oeuvres, I, 319; French transl., Ill, 259. Cf., II, 224-6. 
78 Other solutions, Oeuvres de Fermat, II, 93, 250, 277; Oeuvres de Descartes, II, 165. 

De Billy gave the triangles formed from 6, 1; 7, 6; 8, 1; Oeuvres de Fermat, IV, 1912, 
139; Bull. Bibl. Storia Sc. Mat. Fis., 12, 1879, 517. 

77 Opera postuma, 1, 1862, 224-7 (about 1773). 
78 Proc. Edinburgh Math. Soc., 22, 1903-4, 48. 
79 With German transl. by J. L. Heiberg and comments by H. G. Zeuthen, Bibliotheca Math., 

(3), 8,1907-8, 121-131. 
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and solved the problem when 0 = 6. Fermat (Oeuvres, III, 265) pointed 
out the probable origin of Vieta’s unnecessary assumption on g. Let the 
triangle be formed from ax2, a; its area x2a4(x4 — 1) increased by 5z2 shall 
give a square. Since 5 is a sum of two squares, we can determine y so 
that 5y2 — 1 = □. Take y = x + 1; then x4 — 1 + 5y2 can readily be 
made a square. But Vieta did not observe that the problem can be solved 
when x4 — 1 is replaced by 1 — x4 since we can solve gy2 + 1 = □. Fermat 
found the triangle (9/3, 40/3, 41/3) whose area 20 increased by 5 gives 52. 

The history of the theorem that the area of a rational right triangle is 
never a square or double a square is given in Ch. XXII, where are given 
Bachet’s and Vieta’s comments on the problem to find a right triangle 
with a given area. 

Fermat80 stated that the area of the right triangle with the sides 
2896804, 7216803, 7776485 is of the form 6u2; likewise for the triangle with 
the sides 3, 4, 5. E. Lucas81 obtained these triangles and that with the 
sides 49, 1200, 1201 and area 6(70)2. He noted that the area of a right 
triangle is never a square, nor the double, triple or quintuple of a square. 

Fermat’s problem to find three right triangles the sum of whose areas 
by twos are sides of a right triangle was solved by Gillot at the request of 
Descartes.82 The triangles 

/24 35 337\ /8 21 65\ ( 7 25\ 

V 5 ’ 12’ 60 )’ \3’ 2 ’ 6 )’ \ ’ 2’ 2 / 

have the areas 7, 14, 21, whose sums by twos are the sides 35, 28, 21 of a 
right triangle. Gillot gave also the areas 15, 30, 45 and 7 more sets. 

Miscellaneous problems involving the area and other elements. 

In an early Greek manuscript79 there occurs the problem to find the 
integral legs a, b and hypotenuse c of a right triangle such that the sum of 
the area T and perimeter 2s is a given number A. The solution given for 
A - 8-35, 6-45, 5-20, 5 18 is made clear if we introduce the radius r of 
the inscribed circle, whence T = rs = ab/2, r + s = a + 5, c = s — r. 
Separate A into two factors s, r + 2 such that (r + 5)2 — Srs is a perfect 
square n2. Then 2a, 2b = r + s ± n. Cf. E. Bahier,62 pp. 190-9. 

Diophantus VI, 6-9 relate to right triangles whose areas increased or 
diminished by one leg or by the sum of both legs shall be a given number g. 
To solve the first two problems, Fermat formed the triangle from g, 1 
and divided the sides by g 4? 1 or g — 1; he enunciated the problems to 
find a right triangle such that one leg or the sum of the legs diminished by 
the area is a given number. Cf. E. Bahier,62 pp. 170-190. 

Diophantus, VI, 10 [11], found a right triangle (28a;, 45a;, 53a;) whose 
area increased [diminished] by the sum of the hypotenuse and one leg is 4. 

80 Oeuvres, III, 256, 348; comment on Diophantus V, 8 and Inventum Novum, I, §38, 
„ -r» „ Genoccti, Annali Sc. Mat. Fis., 6,1855, 310-20. 

BuU. Bibl. Storia Sc. Mat., 10,1877, 290. 
88 Oeuvres, II, 179; letter from Descartes to Mersenne, June 29, 1638. Cf. Oeuvres de 

Fermat, IV, 1912, 56. 
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Fermat asked that the sum of the hypotenuse and one leg, diminished 
by the area, shall be 4; the answer (17/3, 15/3, 8/3) is given in the Inventum 
Novum, III, 33 (Oeuvres de Fermat, III, 389). Bachet found a right 
triangle whose area increased (or decreased) by the hypotenuse is 4. 

Diophantus VI, 13 relates to a right triangle (px, bxy hx) whose area 
increased by either leg is a square. Let A = pb/2. From Ax2 + bx = m2x2f 
x = b/(m2 — A). Then Ax2 + px = □ requires that 

pbm2 + Ab(b — p) = □. 

As in YI, 12, we may choose (p, 6, ft) similar to (3, 4, 5) so that the greater 
leg by b — p and p + A are all squares, say b — p = m2. The preceding 
condition is thus satisfied. Fermat’s method (Oeuvres, III, 267) yields an 
infinitude of triangles not similar to (3, 4, 5). 

Diophantus, VI, 15 [17], gave a right triangle (Sx, 15x, 17x) whose 
area diminished [increased] either by the hypotenuse or one leg is a square. 
Fermat83 required that on subtracting the area from the hypotenuse or 
one leg each difference be a square. 

Diophantus, VI, 19 [20], required a right triangle the sum of whose area 
and hypotenuse is a square [cube], and perimeter a cube [square]. His 
solution and various related papers are considered in Ch. XX. 

Diophantus, VI, 21 [22], required a right triangle the sum of whose 
area and one leg is a square [cube], and perimeter a cube [square]. Use 
a triangle given by the rule of Pythagoras,1 after dividing its sides by 
a + 1. The perimeter 4a + 2 is to be a cube. By the other condition, 
2a + 1 = □. But 8 is the only cube which is double a square. Hence 
a = 3/2. 

Diophantus VI, 23 [24]84 relates to a right triangle the sum of whose 
area and perimeter is a cube [square], and perimeter a square [cube]. 
Use a triangle given by the rule of Plato.1 The perimeter p — 2a2 + 2a 
is a square for a = 2/(m2 — 2). Then a (a2 — 1) + p and hence 2m is to be 
a cube for 2 < m2 < 4, which is the case when m = 27/16. 

BMscara12 found a right triangle whose area equals the hypotenuse. 
C. G. Bachet, at the end of book VI of his edition of Diophantus, added 

22 problems. In the first 13, we are given the perimeter, or hypotenuse or 
area of a rational right triangle and seek the maximum or minimum of some 
specified function of the sides. In 14-18, we seek the sides, given the sum 
of the legs or perimeter p, or p and the area A, or p and the product of the 
sides. In 19, p and p db A are to be squares. In 21 and 22, we are given 
p or A and the perpendicular from the right angle to the hypotenuse. 

J. de Billy85 found a right triangle in which one leg, the sum of the legs, 
and the excess of each leg over double the area are all squares. If x and 
y = 1 — x are the legs, the conditions are that y and x2 + y2 be squares, 
as is true if x = 40/49. If we formulate the problem algebraically and then 

88 His solution is in Inventum Novum, I, 26, 40; Oeuvres, III, 341, 349. 
84 For VI, 24, see T. L. Heath, Diophantus, 1885, 236-7; 1910, 244-5; P. Mansion, Mathesis, 

(4), 4, 1914, 145-9. 
85 Inventum Novum, I, § 52; Oeuvres de Fermat, III, 359. 
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interpret- as the hypotenuse the letter which stood for one leg, we have a 
new problem solved by A. Cunningham.86 

Fermat87 proposed that St. Martin find two right triangles whose areas 
are in a given ratio and such that the two legs of the larger triangle differ 
by unity. 

Fermat88 noted that if in (205769, 190281, 78320) we add the area to 
the square of the sum of the legs, we get a square. 

Freniele89 stated the last result without comment; also that the sum 
of the area and hypotenuse of (17, 144, 145) is a square; while the first 
three right triangles in which the sum of the area and smaller leg is a square 
are (3, 4, 5), (16, 30, 34), (105, 208, 233). 

J. de Billy90 treated a large number of problems on rational right tri¬ 
angles.. In the first 44, a prescribed multiple of the area when added to 
or subtracted from certain sides gives squares. The next five involve 
the perimeter. In Prob. 58, the cube of the sum of the hypotenuse and 
one leg when increased by a given multiple of the area shall be a cube, 
while 55-67 are analogous. In Prob. 68, the areas of (30-23n, 18-23n, 
24 *2371) are seen to form a geometrical progression of ratio 26, while 69-73 
are similar. The 120 problems of Ch. 2 do not involve areas, but make 
certain functions of the sides squares and cubes. 

J. Ozanam91 found that in the right triangle whose sides are the ratios 
of 2264592, 18325825 and 18465217 to 20590417 each side exceeds double 
the area by a square. This problem was proposed in obscure verse in the 
Ladies’ Diary for 1728 as Question 133; a modified uninteresting problem 
was solved in 1729. 

C. Wildbore92 took x and 1 — x as the legs; they exceed the double area 
by x2 and (1 — x)2. Equating the hypotenuse h to v(l — x) + x, we get 
x = (1 — «*)/( 1 4 2v — u2). The condition h — (x — x2) = □ becomes 
1 + 4^ — v* = □. First, take v = b/a, b = d — 3, a = d 4 5; then 
4d4 4- * * * = □ = (2d2 — 260d — 2)2 for d = 4223/66, which yields Oza- 
nam’s answer. The next value of v is said to be 491050/555466, which 
gives x = 8426546832/76616941657. Elsewhere93 he took 

1 4 4^ — v* = (1 + nv2)2. 

By the radical in the solution for v, 

2(1 - n)(2 4 n 4 n2) = □ = 4r2(l - n)2, 

say. Solving for », we see that 4r4 4 12r2 — 7 = □. Take r = a/b, 

88 Math. Quest, and Solutions, 3,1917, 79-80. 
87 Oeuvres, II, 252, letter to Mersenne, Feb. 16, 1643. 
88 Oeuvres, II, 263 (260, 3°), letter to Mersenne, Sept. 1, 1643. 
89 Methode pour trouver la solution des probl&mes par les exclusions, Ouvrages de Math., 

Paris, 1693; M&n. Acad. R. Sc. Paris, 5, 1666-99 (1676), 6d. 1729, 56. 
90 Diophanti Redivivi, Lvgdvni, 1670, Pars Prior, pp. 1-302. 
91 Nouveaux Siemens d’alg&bre, 1702, 604. 
n Ladies’ Diary, 1772, 40-1, Quest. 638; T. Leybourn’s Math. Quest, from Ladies’ Diary, 

2, 1817, 342-5; C. Hutton’s Diarian Miscellany, 3, 1775, 356-7. 
w C. Hutton’s Miscellanea Math., London, 1775, 163-4; Leyboum’s Math. Quest. L. D., 

2, 1817,342-5. 
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a ~ d l,b = d — 1 and equate the quartic in d to the square of 3 + 
22d/3 — 43d2/27; thus d = 202752/179200, which gives the last answer. 
A longer analogous discussion led to the new value r = 50929/46200, which 
yields an answer involving numbers of ten digits, 

T. Leybourn94 took x/(x + y) and y/(x + y) as the legs, since each 
exceeds double the area by a square. Take x = m2 — n2, y — 2mn. Then 
the hypotenuse exceeds double the area by a square if m4 + 4mn3 — n4 = □. 
Take m = 1 + v, n — 4, and equate the quartic in v to the square of 
v2 — 130i> + 1, whence v = 4223/66. Or take m — n = v — 3, and 
equate the quartic in v to (2v2 — 2362; — 2)2, whence v = 7619/176. 

Mal6zieux95 proposed to find two right triangles the sum or difference of 
whose perimeters is a square; the difference of the areas a square; the 
difference of the least side of the first and the least side of the second equals 
the difference of the two largest sides of the first or of the two largest sides 
of the second, the difference being a cube; the difference of the largest leg 
of the first and the least leg of the second is a square; and the sum of the 
least side of the first and the medium side of the second is a square, 

L. Euler96 discussed the problem proposed by Fermat (on the margin 
of his Diophantus VI, 14): Find a right triangle such that each leg exceeds 
the area by a square. Euler denoted the legs by 2x/z, yjz, where x — ab, 
y — a2 — b2. Subtract the area xyjz2. Hence 2xz — xy and yz — xy are 
to be squares. Let their product be the square of xy — yzpjq. Hence 

z — x — x2y(p — q)2/k, 2z — y — x(2qx — py)2/k} k = 2 q2x2 — p2yx. 

It remains only to make k a square, say r2x2. Thus x : y = p2 : 2q2 — r2. 
Taking the proportionality factor with z, we may set x = p2, y = 2q2 — r2. 
Then z = p2 + (p — q)2(2q2 — r2)/r2. The condition 4x2 + y2 = □ be¬ 
comes E = 4p4 + (2q2 — r2)2 = □. Special solutions are obtained by set¬ 

ting VE = 2p2 =F r2, 2p2 db 2q2 or r2 + 2q2 db 2p2. Returning in § 20 to 
the general case, Euler expressed k = r2x2 in the form 

ab(a2 - b2) = (2q2 - r2) == 212 - u2. 

Every product of primes 2, 8m zb 1 and a square is of the form 212 — u2 
and only such products. Moreover, if a product of two numbers whose 
g.c.d. is 1 or 2 is of the form 212 — u2, each factor is. Hence a, 6, a + b, 
a — b must each be of the form 212 — u2. Conversely, when this is the 
case, solutions of the initial problem can be readily found. Euler tabulated 
the permissible values a < 200 for each permissible b < 100, and gave 
formulas for p, q, r, z. 

To find a right triangle whose area increased by the square of the 
hypotenuse is a square, J. Whitley97 wrote rs(r2 — s2) + (r2 + s2)2 = a2 

84 Math. Quest, from Ladies’ Diary, 1, 1817, 173-5. 

98 Elements de Geom6trie de M. le Due de Bourgogne, par de Mal6zieux, 1722. Solved by E. 
Fauquembergue, Sphinx-Oedipe, 2, 1907-8, 15-16. 

96 Novi Comm. Acad. Petrop., 2, 1749, 49; Comm. Arith., I, 62. 
97 The Gentleman’s Math. Companion, 2, No. 10, 1807, 69. 
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and took r ~ t ~ &s, a = tf — mts + 61s2, and found t = 3839s/488, 
r — — 65s/488. J. Wright took a = r2 + s2 + Jrs and found r — ~ 8s, 
which does not give positive answers. Hence set r = t — 8s. 

“ Calculator ” 98 found three right triangles of equal perimeters and 
areas in arithmetical progression. The areas are proportional to the radii 
r of the inscribed circles; for the sides 2amn, a(m2 ±ti2), r — an(m — n). 
A long computation yielded triangles all of whose sides involve eight digits: 

(18601944, 13951458, 23252430), (18559223, 13999464, 23247145), 
(18515584, 14048388, 23241860). 

W. Wright99 found a right triangle whose perimeter is a square and 
area a cube by taking m2 =b n2, 2mn as the sides. Let the perimeter equal 
q2m2j whence m = 2n/(q2 — 2). Then the area is a cube if 

8 n — 2 n(q2 — 2)2 == s3, 

which gives n. “Epsilon” took p(m2 ± n2), 2pmn as the sides. The 
perimeter is a square if p = 2m(m + n). The area is a cube if 4n(m — n) 
is, whence either n is a cube and the double of m — n is a cube or vice versa. 

To find a right triangle the sum of whose sides equals the area, many 
solvers100 noted that 2s2 + 2rs = rs(s2 — r2) implies — 2 = r2 — sr. The 
root r involves the radical Vs2 — 8, which is equated to s - x, giving 
s = (8 + x2)l(2x). For integral solutions we have x < s, whence x = 4, 
s = 3, r — 2 or 1 and the only triangles are (13, 5, 12), (10, 8, 6). 

J. Baines,101 to find two right triangles the differences between whose 
bases, perpendiculars, hypotenuses, perimeters and diameters of inscribed 
circles are all squares, and difference of areas a cube, took 25m2 — n2, 
lOmn and 25m2 + n2 as base, perpendicular and hypotenuse of one, and 
9m2 — n2, 6mn, 9m2 + n2 for the other, so that we have only to make 4mn 
and A = 32m2 + 4mn squares and B = 98m3n — 2mn3 a cube. Take 
mn = a2. Then A = □ if 8a2 + n2 = □ = (2ar/s + n)2. Take r = s = 1, 
whence n = a = m. Then B == 96a4 is a cube if a = 63/96. G. Heald 
took the triangles (10x2, 24a;2, 26a;2) and (6a;2, 8a;2, 10a;2). All but the last 
condition is satisfied identically. The difference 96a;4 of the areas is a cube 
if x = p3/12. 

J. Davey102 found a right triangle whose perimeter is a square p2 such 
that p3 equals the area. Take pr, ps, pt as the sides. Then r — p — s — t, 
$ = 2p/t, and r2 = s2 + t2, which gives p = 2t(t — 2)j(t — 4). 

Many103 found the sides a, b and hypotenuse c of a right triangle such 
that a, c + by c — b are integral cubes, say p3, m3, n3. Then c2 — b2 — a2 
gives mn = p2. 

88 The Gentleman’s Math. Companion, 4, No. 22, 1819, 861-4. Cf. Perkins.104 
88 Ibid., 5, No. 28,1825, 371-3. 
100 Ladies’ .Diary, 1828, 34, Quest. 1465. 
101 Ladies’ Diary, 1830, 37, Quest. 1500. 
102 The Lady’s and Gentleman’s Diary, London, 1841, 58 (Quest. 1416 of Gentleman’s Diary, 

1840). 
108 Ibid., 1845, 51-2, Quest. 1722. 
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G. R. Perkins104 noted that the triangles (40, 30, 50), (45, 24, 51), 
(48, 20, 52) have equal perimeters and areas 600, 540, 480 in arithmetical 
progression. 

V. J. Knisely105 found the same result as had Perkins, by taking as the 
sides 

(p2 + 2 pq)a, (2 pq + 2 q2)a, (p2 + 2 pq + 2 q2)a, 
(p2 - q2)b, 2pqb, (p2 + q2)b, 
(p2 — 4g2)c, 4pgc, (p2 + 4#2)c. 

The conditions reduce to 

(p + 2 q)a = pb, (p + q)a = Vc> 2(p — g)5 = pa + 2pc — 4gc. 

Substitute into the third the values of 5, c given by the first two conditions; 
we get p = 4g, whence b = 6a/4, c = 5a/4. For g = 1, p = a == 4, c = 5, 
5 = 6, we get the answer cited. A. B. Evans gave a long discussion said 
to give the complete solution; but his numerical example involves very 
large numbers. 

E. Lucas proposed and Moret-Blanc106 solved the problems to find a 
right triangle such that the square of the hypotenuse increased or diminished 
by the area (or by double the area) is a square. 

Lucas107 showed that the method of descent leads to a complete solution 
of the second (double area) of the last two problems. 

C. de Comberousse108 discussed rational right triangles whose area and 
perimeter are equal. Eliminating z between x2 +■ y2 = z2 and 

x + y + « = xy/2, 

we get y = 4 + S/(x — 4). Thus x — 4 is a divisor of 8, and the only 
solutions are (x, y} z) = (5, 12, 13), (6, 8, 10). 

A. Holm109 discussed a problem including the cases of Diophantus VI, 
6-11, and the additions by Bachet and Fermat: Find a rational right 
triangle such that the sum of given multiples of the area and three sides 
shall be a given number. Taking (x2 db 1 )/y, 2xjy as the sides, the con¬ 
dition is 

r x(x2 — 1) 

1 y2 

'2x\ 

y / 

The discriminant of this quadratic for y is a quartic function Q(x) in which 
the coefficient of x4 and the constant term are squares. There are many 
known methods of making Q(x) a square. 

Right triangles whose legs differ by unity. 

A. Girard1090 gave fourteen such triangles in which the least leg is 3, 20, 
119, 696, 4059, 23660, 137903, 803760,- -, 31509019100._ 

104 The Analyst, Des Moines, 1, 1874, 151-4. Cf. Calculator.®8 
108 Math. Quest. Educ. Times, 20, 1874, 81-3. 
108 Nouv. Ann. Math., (2), 14, 1875, 510; (2), 20, 1881, 155-160. 
107 Bull. Bibl. Storia Sc. Mat., 10, 1877, 291-3. 
108 Alg&bre sup6rieure, 1, 1887, 190-1. 
109 Proc. Edinburgh Math. Soc., 22, 1903-4, 45-8; Math. Quest. Educ. Times, (2), 10, 

1906, 47-8. 



182 History of the Theory of Numbers. [Chap. IV 

From one right triangle (x, x + 1, z) whose legs are consecutive integers, 
Fermat110 deduced the second triangle (X, X + 1, Z), where 

X = 2z + 3z + 1, Z **Zz + 4x+ 2. 

For example, we have the series (3, 4, 5), (20, 21, 29), (119, 120, 169), 
The alternate triangles give solutions of the problem to find right triangles 
whose least side differs from the other two sides by squares. He noted 
later (pp. 232-3) that such a triangle is formed from r2 + s2, 2s(r — 5). 

Fermat111 noted that the sixth such triangle is (23660, 23661, 33461). 
From the first such triangle (3, 4, 5), we get the second by taking the double 
(viz., 24) of the sum of the three sides and subtracting separately the legs 
and adding the hypotenuse. 

J. Ozanam112 gave the first six such triangles. If one is formed (Dio- 
phantus7) from m, n, where m > n, the next is formed from m, 2m + n. 
In the edition by J. E. Montucla, 1, 1790, 48, the triangle is formed from 
any two consecutive terms of 1, 2, 5, 12, 29, 70, • • •, &, where k is such that 
one of the two numbers 2k2 rb 1 is a square. The same rule was given 
by Griison.22 

C. Hutton113 noted that, if pr/gr is the rth convergent to '^2, then 
Prpr+i and 2qrqr+i are consecutive integers the sum of whose squares is a 
square gL+a- 

Du Hays114 gave triangles the difference of whose legs is 1 (or 7). 
L. Brown115 gave the first six and the eleventh such triangles. 
G. H. Hopkins and M. Jenkins116 reduced the problem to x2 — 2y2 — =fc 1, 

and gave recursion formulas for the solutions. A. B. Evans used the con¬ 
tinued fraction for V2. Cf. Moret-Blanc154 of Ch. XII. 

Judge Scott117 gave the first eight and the eleventh. 
A. Martin118 employed the legs db 1), whence x2 — 2y2 = — 1, and 

the odd convergents xnlyn to the continued fraction for V2. Thus 
xn = 6zn-i - xn-2 and likewise for the y*s. Also 

2xn, 2-l2yn = (1 + V2)2»+1 ± (1 - 

The eightieth such triangle is found. 
T. T. Wilkinson stated and J. Wolstenholme119 proved a rule equivalent 

to a recursion formula for the solutions of x2 — 2y2 = 1. 
D. S. Hart120 took x and x + 1 as the legs. Then 

_2s2 + 2x + 1 = □ = (xp/q - l)2_ 

110 Oeuvres, II, 224-5. Reproduced in Sphinx-Oedipe, 7,1912, 103-4. 
111 Oeuvres, II, 258; letter to St. Martin, May 31,1643; reproduced, Sphinx-Oedipe, 7, 1912, 

104. 

112 Recreations Math., 1,1723; 1724; 1735, 51; etc. (first ed., 1696). 
113 English transl. of Ozanam’s Recreations, 1, 1814, 46. 
114 Jour, de Math., 7,1842, 331. 
115 Math. Monthly (ed., Runkle), Cambridge, Maas., 2, 1860, 394. 
116 Math. Quest. Educ. Times, 12, 1869, 104r-6. 
117 Of commensurable right-angled triangles . . . , Bucyrus, Ohio, 1871, 23 pp. 

!!! ^uest-Educ* Times> 14> 1871> 89~91; 16> 1872> 107i 19; 1873,89; 20,1874, 21,42-4. 
119 Ibid., 20, 1874,97-99. 
“•JW3.,6W. 



Chap. IY] RIGHT TRIANGLES WlTH A GlVEN DIFFERENCE OF LEGS. 183 

gives x = (2pq + 2q2)/d, where d = p* — 2q2. He made d = db 1 by use 
of the theory of Pell's equation. 

A. Martin121 gave the nth triangle for n = 80 and 100. 
P. Bachmann122 proved that the only integral solutions of x2 + y2 — z2 

in which z > 0, while x and y are consecutive integers, are those given by 

x + y + z<2 = (1 + V2)-(3 + 2V2)* (k = 0, 1,2, •••)• 

Several writers123 obtained the first six triangles. 
R. W. D. Christie124 noted that the solution of x2 + (x + l)2 = y2 in 

integers is 
X — 2o “f“ 2l + * * * -j- 22r—1> y — %2r, 

where 2r is the simple continuant of order r all of whose diagonal elements 
are 2. This was proved by T. Muir,125 who cited Fermat's110 rule. 

A. Martin126 noted various methods. The first three methods are based 
on the solution of 2k2 d= 1 = □ [Ozanam,112 Hutton,113 Bachmann122]. 
Fermat's method was used to compute a table (p. 322) of the first forty 
such triangles. 

A. IAvy127 found when two of the numbers (1) are consecutive. Evi¬ 
dently z — y = 2n2 4= 1. Next, z — x = (m — n)2 = 1 for m = n + 1. 

Finally, y ~ x = ± 1 gives (m — ri)2 — 2n2 = db 1. Write (1 — V2)p in 

the form a — fcV2; then a, 6 are integral solutions of a2 — 262 = (— l)p, 
and all solutions of u2 — 2w2 = dz 1 are said to be obtained in this way by 
using all integral values of p. Or we may compute the solutions of the 
latter by the recursion formulas of G. Fonten6284 of Ch. XII. We get 

(3, 4, 5), (21, 20, 29), (119, 120, 169), (697, 696, 985), (4060, 4059, 5741). 

G. A. Osborne128 discussed the problem. Cf. Barisien100 of Ch. IX. 
Several129 made use oix2—2y2 — — 1. F. Nicita130 employed recurring series. 

Right triangles the difference d or sum of whose legs is given. 

Frenicle131 stated that every number is the difference of the legs in an 
infinitude of ways, every prime 8n + 1 or product of such primes is the 
difference of the legs of an infinitude of primitive triangles. To find all 
triangles with d = 7, start with (5, 12, 13) formed from 3, 2, and take that 
formed from 3, 2-3 + 2, etc. A second series is found similarly from 
(8, 15, 17), formed from 4, 1. He discussed right triangles the sum of 
whose legs is given. 

121 The Analyst, Des Moines, 3,1876, 47-50; Math. Visitor, 1,1879, 56,122 (erroneous values 
for n = 5, 6 occur on pp. 55-6). 

122 Zahlentheorie, 1, 1892, 194-6; Niedere Z., 2, 1910, 436. 
125 Amer. Math. Monthly, 4, 1897, 24-28. 
124 Math. Gazette, 1, 1896-1900, 394. 
125 Pr*A/> Prvtr Qaa 17/li+hnT*ffk OQ 1 QQO_1 Qfll OA.A_7 
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Fermat132 noted that d = 7 for (5, 12, 13) and (8,15, 17); from these we 
get all by his111 rule. 

Frenicle89 examined the 16 triangles with hypotenuses <100 and found 
that d = 1, 7, 72, 17, 23, 31, 41, each of the form Sn ± 1. The triangles 
formed from n, m and m, 2m + n have the same difference of legs.132a 

T. T. Wilkinson133 would start with a solution of a2 4- b2 = c2 and form 
a = a + c, p — b + c, y = a + b + c; repeat the process; we obtain 

a' = a + 7 = 2a + b + 2c, b' = P + y = a + 2b + 2c, 

cr ~a-]-p-\-y~ 2a -f- 2b -f- 3c, 

which are sides of a new triangle with a' — bf — a — b. H. S. Monck 
(pp. 20-21, 76) failed in his attempt to prove that if we start with (3n, An, 
5n) and apply the process repeatedly we obtain all triangles with the same 
difference of legs. J. W. L. Glaisher (p. 54) noted that the proof is 
inadequate. Proof was given by S. Tebay (p. 99) and P. Mansion.134 

T. Pepin135 considered the problem of Fermat (Oeuvres, II, 231) to find 
the number of right triangles the sum of whose legs is a given number A. 
To the resulting condition x2 — 2y2 — A we may apply the theory of 
quadratic forms and show that, if A = aa • • • cy, where a, * • •, c are primes 
81 db 1, the total number of primitive triangles whose sum of legs is A is 
i {(2a + 1) * • • (2y + 1) — 11. 

J. H. Drummond and M. A. Gruber138 found solutions when d is given. 
Several137 treated the case <2 = 7. 
E. Bahier,62 pp. 72-120, treated the problem at length by recurring series. 

TWO RIGHT TRIANGLES WITH EQUAL DIFFERENCES OF LEGS, AND LARGER 

LEG OF ONE EQUAL TO THE HYPOTENUSE OF THE OTHER. 

Frenicle138 proposed the problem to J. Wallis. Wallis (Aug., 1661) took 
two overlapping triangles BAC and BCE with the respective hypotenuses 
BC - 5 + x and BE. Take BA =5—2. Then BC2 - BA2 = 20x is a 
square if 5x is; take 5 = ba2, x = be2. Then 

BC = ba2 + be2, BA = ba2 - be2, AC = 2bae. 

On AB lay off AD = AC; on BC lay off « BD. Since 

BC — CE = AB — AC = BD 

132 Oeuvres, II, 258-9; letter to St. Martin, May 31, 1643. 
132a Oeuvres de Fermat, II, 235-7. 
131 Math. Quest. Educ. Times, 20, 1874,20,100. G. H. Hopkins, p. 22. On the proof sheets, 

E. B. Escott noted that “ this process can be applied to other triangles than right-angled 
triangles. Under this transformation, c2 — 2ab as well as a — b is invariant. Cf. 
Dickson.34” 

134 Mathesis, (3), 6,1906, 113. 
136 Mem. Pont. Accad. Nuovi Lincei, 8, 1892, 84-108; extract, Oeuvres de Fermat, 4, 1912, 

205-7; cf. 253. 
133 Amer. Math. Monthly, 9, 1902, 230, 292-3. 
137 Math. Quest. Educ. Times, (2), 7, 1905, 88-9. 
138 Cf. C. Henry, Bull. Bibl. Storia Sc. Mat. Fis., 12, 1879, 695; 13, 1880, 446; 17, 1884, 

351-2. 
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by hypothesis, CE = 5C = 2be2 + 2bae. Hence 

BE2 = BC2 + CE2 = 62/, / = a4 + 5e4 + 6a2e2 + 8ae3. 

It remains to make / a square, which Wallis suspected to be impossible. 
Freniele (Dec. 20, 1661) took a = 2, e = 4, whence / = 522 [whereas we 
desire a > e]. Fermat139 formed the first triangle from N + 1 and 2. 
Then the legs of the second triangle are N2 + 2N + 5 and 4N + 12; by 
their sum of squares, 

N4 + 42V» + 30iV2 + 116iV + 169 = □ = (l3 + || - N2J, 

say. Thus N = — 1525/546. Hence we use as the first triangle that 
formed from + 979 and 2*546. The resulting triangles are 

(2150905, 2138136, 234023), (2165017, 2150905, 246792). 

If we had used the sum of the legs instead of their difference, we would 
obtain the simpler solution (1517, 1508, 165) and (1525, 1517, 156). 

T. Pepin140 noted that the initial problem is equivalent to 

(3) x2 + y2 — z2, u2 + v2 = x2} u — v = x — y > 0. 

We have u, v — a2 — e2, 2ae; x = a2 + e2. According as u is odd or even, 
y = 2e(a + e) or 2a(a — e). Then the first condition becomes 

z2 = a4 + 5e4 + 6a2e2 + 8ae3 or z2 = 5a4 + e4 + 6a2e2 — 8 a% 

according as the larger leg of the smaller triangle is odd or even. Contrary 
to Freniele’s solution a = 2, e = 4, the geometry requires a > e. But 
we can satisfy the first condition by taking x — d(m2 — n2), y = 2dmn, 
z = d(m2 + n2), where d = 1 if x, y are relatively prime, and d = 2 if 
x, y are even, while m, n are relatively prime and one is even. Then 
2dmn = 2e(a + e), which is completely solved by 

(4) m = a:/3, n — hk, e = (3k, a + e = aA, or e = ah, a + e = 2/?&, 

according as d == 1 or d = 2, where a, (3, h, k are relatively prime in pairs, 
the first three being odd and k even. Whether d = 1 or d = 2, 

d(m2 — n2) = a2 + e2 
gives 
(5) k2(h2 + 2/32) - 2a/3M + o:2(^2 - /32) = 0. 

Solving this for kja or 7z.//5, and making the radicals rational, we get 
2/34 — h4 — □, a4 — 2/c4 = □, which have been completely solved by 
Lagrange54 of Ch. XXII, so that we know all solutions under a given limit. 
Then (4) give solutions of the proposed problem. We may also solve (5) 
by a method equivalent to that of Euler143-145 of Ch. XXII. Set = f, 
k/a = rj; then 
_(g2 + 2) 7y2 - + j2 - 1 = 0._ 

119 Inventum Novum of de Billy, in S. Fermat’s Diophanti Alex. Arith., 1670,34-35. Oeuvres 
de Fermat, 3, 1896, 393-4; 4, 1912, 132. 

140 Atti Accad. Pont. Nuovi Lincei, 33, 1879-80, 284r—9; extract in Oeuvres de Fermat, 4, 
1912, 219-220. 
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Call T)} 7}' the values corresponding to the same £; and £' the values 
corresponding to the same y. Hence 

Hence all solutions follow from the primitive solution n = 0, £ = 1: 

, _2 £-_l _ _ 84. t_ 
£ ~ lj n~Z’ 41 13’ Vl 113’ *2 1525’ 

The second set is said to furnish the least positive solution of (3): 

x = 2150905, y = 246792, 2 = 2165017, u = 2138136, v = 234023. 

M. Martone141 satisfied the first equation (3) by taking x = 2ab, 
y - a2 - b2, z2 = a2 + b2. From the square of the third given equation, 
we get x2 — 2uv = z2 — 2xy. Thus we have uv and u — v expressed in 
terms of a, b. Thus 

2v = a2 — 2ab — 62 ± r, r2 2= 8a262 — (2ab — a2 + b2)2. 

Taking a = 55, we get r2 = 454, (y, u) = (652, — 852) or (852, — 652). 

Miscellaneous problems involving the sides, but not the area. 

Diophantus Y, 25 relates to x\x\xl — x] = □ for i = 1, 2, 3. A solution 
will be Xi - tbi/hi if three right triangles (pi} bi} hi), are found such that 
hji2h = t2bib2bz. He took (3, 4, 5) as the first triangle and 53 = 4. From 
the triangles (13, 5, 12) and (5, 3, 4), the ratio of whose areas is 5 : 1, we 
can find two triangles such that the product of the hypotenuse and base of 
one is 5 times that of the other. Indeed,142 he knew how to deduce from 
a right triangle (a, 0, 7) a triangle (a, 5, c) with ac = 0y/2, where a and a 
are the hypotenuses. He took a = a/2, b = (/32 — y2)f(2a), c = (3y/a. 

From (13, 5, 12) and (5, 3, 4) he thus deduced (6|, 119/26, 60/13) and 
(2|, 7/10, 12/5), the product of the hypotenuse and final leg being 30 and 
6, respectively. Fermat143 gave two such triangles for which the ratio in 
question is 5 :1, the sides being numbers of 10 and 11 figures (Oeuvres, I, 
325; III, 263). 

Fermat,144 to find two right triangles (p, b, h), (p', b', hf) for which 
p — b = bf — h' and b — h — pf — b', took three squares r2, s2, t2 in arith¬ 
metical progression and formed the triangles from r + s, s and $ + t, s. 
From r = 1, s = 5, t = 7, we get (11, 60, 61), (119, 120, 169). We may 
also take r = 7, s = 13, t = 17. 

141 Sopra un problema di analisi indeterminata, Catanzaro, 1887. 
142 Restoration of the obscure text by J. O. L. Schulz, “ Diophantus,” 1822, 546-61. 
143 P. Tannery, Bull. Math. Soc. France, 14, 1885-6, 41-5 (reproduced in Sphinx-Oedipe, 4, 

1909,185-7), concludes that Fermat was aided by chance in obtaining his solution, 
which is not general and contains an error of sign. S. Roberts, Assoc. fran<j. av. sc., 
15, II, 1886, 43-9, discussed the problem. Both papers are reprinted in Oeuvres de 
Fermat, 4, 1912, 168-180. This problem of Fermat’s has been treated by A. Holm 
and A. Cunningham, Math. Quest. Educ. Times, (2), 11, 1907, 27-29; special cases 
by K. J. San j ana and Cunningham, ibid., (2), 13, 1908, 24-26; E. Fauquembergue, 
l’intermddiaire des math., 24, 1917, 30-1; cf. 25, 1918, 130-1. 

144 Oeuvres, II, 225, letter to Frenicle, June 15, 1641. Cf. II, 229, 232. 
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Saint-Martin asked how many ways 1803601800 is the difference of the 
[larger] sides of a right triangle whose least side differs from the other 
sides by squares. Fermat145 replied that there are exactly 243 such triangles. 

Fermat146 asked for two right triangles such that the product of the 
hypotenuse and least leg of one shall have a given ratio to the corresponding 
product for the other triangle. 

Under 2a:4 — y4 = □ in Ch. XXII are discussed right triangles whose 
hypotenuse is a square and either the sum of the legs is a square or the 
least side differs by a square from each of the remaining sides. 

Fermat147 gave (156, 1517, 1525) in reply to Frenicle’s question to find 
a right triangle in which the square of the difference of the legs exceeds the 
double of the square of the least leg by a square. A. Aubry148 obtained an 
infinity of solutions by descent. 

Frenicle89 noted (pp. 71-8) that if the hypotenuse and perimeter of a 
right triangle are squares, the perimeter has at least 13 digits. 

J. Ozanam149 gave a rule to find a right triangle whose hypotenuse exceeds 
the larger leg by unity [Pythagoras1]. From the lengths of its legs form a 
new triangle; its hypotenuse is a square. He found right triangles whose 
base and hypotenuse are triangular numbers and altitude is a cube. 

Wm. Wright150 found a right triangle the sum of whose perimeter and 
square of any side is a square. Let the sides be ax, bx, cx, where a- + 62 = c2. 
Then x2 + px, x2 + qx, x2 + rx are made squares in the usual way (Ch. 
XVIII), where p = sja2, q = s/62, r = s/c2, s = a + 6 + c. He and others151 
gave a similar treatment to find a right triangle such that the square of 
any side exceeds that side by a square. 

Several152 found a right triangle whose perimeter is a square, also the 
sum of the square of any side and the remaining two sides, also the sum of 
any side and the square of the sum of the remaining two sides. These seven 
conditions are satisfied if the sum of the sides is 1/4. Take/(p2 =F q2), 2fpq 
as the sides. Equating the sum to 1/4, we get /. 

R. Tucker and S. Bills153 found a right triangle with perimeter a square 
and diameter of the inscribed circle a cube [or vice versa]. Let the sides 
be (p2 dt q2)x, 2pqx. Then 2p(p + q)x = □ = r2, and the diameter 
2q{p — q)x is to be a cube, say r3/s3. From the two values of x we get r 
in terms of q, s. 

A. B. Evans1530 found a right triangle with integral values for the sides 
a, 6, c, diameter d of the inscribed circle and side $ of the inscribed square 
having one angle coincident with the right angle of the triangle and having 

145 Oeuvres, II, 250, letter to Mersenne, Jan. 27, 1643. 
146 Oeuvres, II, 252, letter to Mersenne, Feb. 16, 1643. 
147 Oeuvres, II, 265, letter to Carcavi, 1644. 
14S L’interm&iiaire des math., 20, 1913, 141-4. 
149 Recreations Math., 1, 1723, 1735, 52-5. 
160 The Gentleman’s Math. Companion, London, 5, No. 24, 1821, 59-60. 
151 Ibid., 5, No. 27, 1824, 312-6. 
152 Ibid., 5, No. 25, 1822, 157-9. 
155 Math. Quest. Educ. Times, 19, 1873, 82. 

J&itf., 21, 1874, 103-4. 
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the opposite vertex on the hypotenuse c, and such that d + $ is a square. 
Take the sides to be the products of the numbers (1) by uv. Then 5 = 
abc/(ab + c2) equals uv times a fractional function of m, n, whose denomi¬ 
nator is taken as u. Since d = a + b — c = 2n(m — n)uv} the condition 
d + $ = □ is of the form Av = □ and holds if v = A. 

S. Tebay154 noted the existence of an infinitude of pairs of right triangles 
with the same hypotenuse such that the differences between the hypotenuse 
and the legs are a square and double a square. 

G. de Longchamps154® stated and Svechnikoff proved that x2 ~ y2 + & has 
an infinitude of solutions for which x + y is a biquadrate. 

Several155 found right triangles with the base 105, and two right triangles 
with the same base which is a mean proportion between the two perpen¬ 
diculars. 

To find any number of dissimilar rational triangles of equal perimeter, 
R. W. D. Christie156 multiplied the sides of special triangles by suitable 
common factors, while A. Cunningham employed (1) and solved 

m(m + ri) = const. 

A. G6rardin157 noted that, to find two right triangles having the same 
sum of squares of the hypotenuse and one leg, we have to solve 

(*2 + y2)2 + (2xy)2 = (a2 + p2)2 + (2 a/3)2, 

and gave a solution in which x, y, a, are functions of the seventh degree 
of two parameters. 

R. Janculescu158 noted that the problem to find a right triangle with 
integral values for the sides and perpendicular from the right-angle leads 
to ljx2 -f ljy2 = 1/z2. Thus x2 + y2 — t2. Let d be the g.c.d. of x = da> 
y = dp, t = dy. Then z = ± dafty, so that d must be a multiple of 7. 

E. Turri&re159 discussed right triangles each of whose sides is a sum of 
two squares, as 9 = 32, 40 = 22 + 62, 41 = 42 + 52. 

E. Bahier,62 pp. 122-148, investigated right triangles with a given 
perimeter. 

Right triangle with a rational angle-bisector. 

Diophantus, VI, 18, found a rational right triangle with the bisector 
of one acute angle rational. Let the bisector be 5Ny altitude 4N, so that 
one segment of the base is 3N. The other segment is taken to be 3 — 3N. 
Then (by proportion) the hypotenuse is 4 — AN. Equating its square to 
(4iV)2 -f 32, we get N = 7/32. Multiply all our numbers by 32. Then 
the sides are 28, 96, 100, and the bisector is 35. 

C. G. Bachet740 in his commentary on the preceding noted that no rational 
right triangle has a rational bisector of the right angle. 

1M Math. Quest. Educ. Times, 55, 1891, 99-101. 
154(1 Jour, de math. 416m., 1892, 282. 
185 Amer. Math. Monthly, 5, 1898, 51-4, 277-9. 
156 Math. Quest. Educ. Times, (2), 14, 1908, 19-21. 
187 Sphinx-Oedipe, 5,1910, 187. 
188 Matheeis, (4), 3, 1913,119-20. 
189 L’enseignement math., 19, 1917, 247-252. 
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J. Kersey66 (p. 143) took the right triangle with the rational sides 

AC = p(p2 + 62), AB = p(p2 — b2), BC = p{2bp). 

The bisector AD of angle A divides the base into two segments 

CD = b(p2 + 62), BD = b(p2 - b2) 

proportional to AC and AB. Since AB : BD — p :b, we have 

AD = h(p2 - 52), 

if h, p, 6 are sides of any rational right triangle. 
Several160 writers found a right triangle with a rational bisector of one 

acute angle. 
E. Turri&re161 found a rational right triangle with rational interior and 

exterior bisectors of an acute angle. 

Tables of right triangles with integral sides. 

The tables are usually arranged according to the magnitude of the 
hypotenuse h or the area A. 

An Arab manuscript9 of 972 gave a brief table (see Ch. XVI). 
J. Kersey, Elements of Algebra, Books 3, 4, 1674, 8, h ^ 265. 
J. C. Schulze, Sammlung Log., Trig. * • • Tafeln, Berlin, II, 1778, 308, 

gave the decimal values of tan o>/2 = mjn for 200 pairs of relatively prime 
integers m, n each ^ 25, m < n; also right triangles with an angle co. 

A. Aida17 (1747-1817) listedjhe 292 primitive triangles with h < 2000. 
Le p£re Saorgio, M6m. Acad. Sc. Turin, 6, ann6es 1792-1800, 1801, 

239-252, quoted a table of primitive right triangles from Schulze. 
C. A. Bretschneider, Archiv Math. Phys., 1, 1841, 96, h ^ 1201. 
Du Hays, Jour, de Math., 7, 1842, 331-4, gave four tables each with 

32 entries to illustrate the systematic tabulation of primitive right triangles, 
using (1) with m, n relatively prime, m > n. First, give to m the values 
2, 3, * * • and to n the values < m and prime to m, such that one of m, n is 
even. Second, take 1, 3, 5, • • • as the odd side and factor each into two 
factors m ± n. Third, begin with the even side 2mn. Fourth, take a sum 
of two squares as the hypotenuse. 

A. Wiegand, Sammlung Trig. Aufgaben, Leipzig, 1852, 131 triangles 
and their angles. 

D. W. Hoyt, Math. Monthly (ed., Runkle), Cambridge, Mass., 2, 
1860, 264-5, h < 100. 

E. Sang, Trans. Roy. Soc. Edinburgh, 23, III, 1864, 757, h ^ 1105. 
S. Tebay, Elements of Mensuration, London and Cambridge, 1868, 

111-2, gave an incomplete table arranged according to area A, the largest 
A, 863550, being an error for 934800. Reprinted by G. B. Halsted, Metrical 
Geometry, 1881, 147-9. 

H. Rath, Archiv Math. Phys., 56, 1874, 188-224, used formulas [[due to 
de Lagny18] to form a double-entry table, and noted an error by Berkhan.28 

wo Amer. Math. Monthly, 7,1900, 83-5. 
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W. A. Whitworth, Proc. Lit. Phil. Soc. Liverpool, 29,1875, 237, h < 2500. 
Whitworth and G. H. Hopkins, Math. Quest. Educ. Times, 31, 1879, 

67-70; D. S. Hart, Math. Visitor, 1, 1880, 99, forty triangles with 

h = 5-13-17-29. 
N. Fitz, Math. Magazine, 1, *1884, 163, primitive with h < 500. 
G. B. Airy, Nature, 33, 1886, 532, h < 100. 
A. Tiebe, Zeitschr. Math. Naturw. Unterricht, 18, 1887, 178, 420, 

solved ar + x2 = h2 by setting h = x + y, whence 2x = a2!y — y, so that y 
is to be chosen as a divisor of a2 (a > 2) such that the difference is even. 
Whence he constructed a table with h < 100. Cf. T. Meyer, ibid., 36, 
1905, 339. 

H. Lieber and F. von Luhmann, Trig. Aufgaben, ed. 3, Berlin, 1889, 
287-9, gave the 131 primitive triangles with h < 999. 

P. G. Egidi, Atti Accad. Pont. Nuovi Lincei, 50, 1897, 126-7, h ^ 320. 
J. Sachs, Tafeln zum Math. Unterricht, Wiss. Beilage zum Jahres- 

bericht Gym. Baden-Baden, 1905, h < 2000; 2000 < h < 5000, h a product 
of primes An + 1; one side < 500. 

J. Gediking,42 h < 1000. 
A. Martin, Math. Mag., 2, 1910, 301-324 (preface, 2, 1904, 297-300), 

tabulated the values of p2 ± q2, 2pq and area A = pq(p2 — q2) for p = 65, 
q < p, q prime to p, q even if p is odd. Omitting the entries p = 33, 
q — 22, and p = 35, q — 14, we have 862 triangles of which 443 have 
A ^ 934800 (the largest A of the 178 triangles in Tebay’s table). There 
is a table of the sides p2 =fc q2, 2pq of triangles for which p = q 1 « 157 
and those with p si 312, q = 1, whence h exceeds a leg by 1 or 2 respectively. 

P. Barbarin, Tintermediaire des math., 18, 1911, 117-120, gave the 
35 pairs of primitive triangles with the same h < 1000. A. Martin, ibid., 
19, 1912, 41, 134, noted the omission of one pair and stated that there are 
41 pairs with 1000 < h < 2000. 

A. Martin, Proc. Fifth Intemat. Congress Math., 2, 1912, 40-58, gave 
the primitive triangles with h < 3000, noting two omissions by Sang. 
He listed many sets of k (k ^ 15) triangles whose h’s are consecutive 
integers; also sets of three triangles whose are sides of a right or scalene 
triangle. A product of n distinct primes 4m + 1 is the hypotenuse of 
(3n — l)/2 different right triangles, only 271-1 of which are primitive. 

W. Konnemann, Rationale Losungen Aufgaben, Berlin, 1915, h < 1000 
(adverse review, Zeitschrift Math. Naturw. Unterricht, 46, 1915, 390). 

E. Bahier,62 pp. 255-9, tabulated the primitive triangles with a leg ^ 300. 
On systems of equations including x2 + y2 = z2 see papers 76, 77, 80, 

46, 84, 89, 139, 140 of Ch. XVI; 5 of Ch. XVII; 51, 146 of Ch. XIX; 
354, 357, 360, 362, 366, 369-71, 436 of Ch. XXI; 109, 113, 313 of Ch. 
XXII; 207 of Ch. XXIII. 

Papers not available for report. 

G. M Pagmjpi, Collezione d’ Opuscoli Sc., Firenze, 3, 1807, 3-24: Giornalo di Fisica, Chimica e 

rrJt0™ 3’1!?10’ 193-2<>7. [Series of rational right triangles.] 
irtUhl, Die Aufstellung Pythagoreischer Zahlen, Blatter Fortbildung d. Lehrers u. d. Lehrerin, 

Berlin, 4,1911, 998-1000. 



CHAPTER V. 
TRIANGLES, QUADRILATERALS AND TETRAHEDRA 

WITH RATIONAL SIDES. 

Rational or Heron Triangles. 

Heron of Alexandria gave the well known formula for the area of a 
triangle in terms of the sides and noted that when the sides are 13, 14, 15, 
the area is 84. A triangle with rational sides and rational area is called a 
rational triangle or Heron triangle. 

Brahmegupta1 (born 598 A.D.) noted that, if a, b, c are any rational 
numbers, 

Kf-O+iG-) 
are sides of an oblique triangle C whose2 altitudes and area are rational and 
which is formed by the juxtaposition of two right triangles with the common 
leg a]. 

S. Curtius2a proposed the following question: Three archers A, B, and 
C stand at the same distance from a parrot, B being 66 feet from C, B 50 
feet from A, and A 104 feet from C; if the parrot rises 156 feet from the 
ground, how far must the archers shoot to reach the parrot? He noted 
that they stand at the vertices of a triangle the radius of whose circum¬ 
scribed circle is 65 feet, while the parrot is 156 feet above its center. Since 
652 + 1562 = 1692, each archer is 169 feet from the parrot. It is stated to 
be difficult to explain why the radius turns out to be an integer. Cf. 
Gauss.14a [The triangle is rational since its area is 23 • 3 • 5 • 11 = 1320.] 

C. G. Bachet,3 in his comments on Diophantus VI, 18, treated several 
problems, the second of which is to find a triangle with 
rational sides and a rational altitude (and hence a a 

Heron triangle). Taking a right triangle ADC with /\ 
the sides 10, 8, 6, he found BD = N such that N2 j \ 
4- 82 shall be the square of a rational number (AB). / 8 
Assuming first that angle RAC is acute, so that DC : /n n \ 
AD < AD : BD, we must have 6A < 64, whence -s £ 2 c 
N < 32/3. Let N2 + 82 be the square of 8 — xN; then 

16x 32 x2 — 1 -r 2 .. 0 „ 
j^T_ j[ = N < 3-. x = .N < 3 Or2 ~ !), 3z + 2 < 2a:2, 

1 Brahme-Sphut'a-Sidd’hdnta, Ch. 12, Sec. 4, § 34 Algebra with Arith. and Mensuration, 
from the Sanscrit of Brahmegupta and Bhdscara, transl. by H. T. Colebrooke, London, 
1807, 306. 

2E. E. Kummer, Jour, fur Math., 37, 1848, 1. 
2a Tractatus geometricus . . . , Amsterdam, 1617. Quoted by A. G. Kiistner, Geschichte der 

Math., Ill, 294. 

3 Diophanti Alex. Arithmeticorum . . . Commentariis . . . Avctore C. G. Bacheto, 1621, 
416. Diophanti Alex. Arithmeticorum, cum Commentariis C. G. Bacheti & Observa- 
tionibus D. P. de Fermat (ed., S. Fermat), Tolosae, 1670, 315. 

191 
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whence x > 2. Taking x = 5, we have 

N2 + 82 = (8 - 5N)2, N = ^ 

and the sides are 10, 9J, 8§, while the altitude is 8. 
If BAC is oblique, N > 32/3. He took 

N* + & = N = J- 

Bachet’s second method of solution is of greater importance, since it 
consists in juxtaposing two rational right triangles having a common side 
AD. Take as the latter any number, as 12. Seek two squares such that 
the sum of each and 122 is a square: 352 + 122 = 372, 162 + 122 = 202. 
Hence by juxtaposition, we get a rational triangle with the sides 37, 20, 
35 + 16 = 51, and altitude 12. Using the first relation with 92 + 122 = 152 
or 52 + 122 = 132, we get the rational triangle (37, 15, 35 + 9) or (37, 13, 
35 + 5). 

F. Vieta4 started with a given right triangle with legs B, D and hypote¬ 
nuse Z, and formed (Diophantus7 of Ch. IV) a second right triangle from 
F + D and B, having therefore the altitude A = 2B(F + D), and multi¬ 
plied its sides by D, and the sides of the given triangle by A. Juxtaposing 
the resulting two triangles with the common altitude AD, we obtain a rational 
triangle with the sides AZ, D(F + D)2 + B2D, D(F + D)2 — B2D + BA, 
whose angle at the vertex is acute or obtuse according as F < Z or F > Z. 

Frans van Schooten5 used the juxtaposition of right triangles. 
The Japanese manuscript of Matsunago,6 first half of the eighteenth 

century, started with any two right triangles with integral sides and multi¬ 
plied the sides of each by the hypotenuse of the other and then juxtaposed 
the triangles. The sides below 1000 of the resulting oblique triangles were 
tabulated. Removing common factors, he obtained a table of primitive 
triangles. From Kurushima (f 1757) he quoted the result that, if 

7lz dz — d\d2 — 7liYl2 * 711^2 “f* Tl%d\, 
then 

ni(n2dz + nzd2), n2(nzd1 + Uxdz), nz(rhd2 + n2di) 

are sides of a triangle with rational area. 
Nakane Genkei6oin 1722 considered triangles whose sides are consecutive 

integers such that the perpendicular upon the longest side from the opposite 
vertex shall be rational. Denote the solutions (3, 4, 5), (13, 14, 15), (51, 
52, 53) and (193, 194, 195) by (ay, fry, c3), j — 1, 2, 3, 4. Then 

a*+i = 4a*+2-aJS_i, 

and similarly for the b’s and c’s. Whether or not he made the induction 
complete does not, however, appear. 

4 Ad Logisticem Speciosam Notae Prioree, Prop. 55, Opera Math., 1646. French transl. by 
F. Ritter, Bull. Bibl. Storia Sc. Mat., 1,1868, 274-5. 

8 Exercitationum Math., Lugd. Batav., 1657, 426-432. 
8 Y. Mikami, Abh. Gesch. Math. Wiss., 30, 1912, 230-1. 
6a D. E. Smith and Y. Mikami, A History of Japanese Mathematics, Chicago, 1914, 168. 
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L. Euler7 noted that in any triangle with rational sides a, 6, c, and 
rational area, 

, (ps ± qr)(pr qs) p2 + q2 r2 + s2 
(1) a :b :c = ~-—:  -— :-, 

pqrs pq rs 

and that every pair of sides are in the ratio of two numbers of the form 
(a2 + @2)/<x($, since 

r2 + s2 x2 + y2 
a : b = ——: —, if x = j>s±qr, y = pr^qs, 

To xy 

whence 
x2 + y2 = (p2 + q2)(r2 + $2). 

The portion of Euler’s paper containing his derivation of (1) is missing. 
It is probable that he employed Bachet’s method of juxtaposing two right 
triangles, using those with the sides 

2, p2 + q2 p2 

pq pq 
2, r2 + s2 r2 — s2 

rs rs 

and obtaining (1) with the upper or lower signs according as the component 
triangles do not or do overlap. 

J. Cunliffe8 juxtaposed two right triangles with a common side 2rs ~ 2mn 
and hypotenuses r2 + $2, m2 + n2. 

J. Davey9 found three triangles with integral sides and areas having 
equal perimeters and areas in the ratio of a = 2, b = 7, c = 15. Let the 
triangles be AFB3 BFC, CFD with collinear bases and the common altitude 
FE. Take 

r2 + l m, s2 +1 rF _ t2 +1 u2 +1 _ 
AF-"2T'v’ BF ~~ ~2s~ Vf CF--2T'V' 

Then AE = (r2 — l)v/(2r), etc. By the equality of the perimeters, 

s2 - 1 1 t2 - 1 1 

t S u s 
= r-?, 

Then the conditions that the bases be proportional to a, 6, c reduce to 
(ar2 + 6)/r = (a£2 + 6)/£, whence r = b/(at) (since r =M), and to = c/(6$). 
Eliminating r, s between our four relations in r, u, s3 t3 we get 

<*- (<P + de + 2)t2 + de + 1 = 0, d = ^^, 
c a 

For a = 2, 6 = 7, c = 15, we get the rational root 2 = 5/3. Taking 
v = 420, we have AF = 541, BF = 525, CF = 476, DF = 421, AB = 26, 
BC = 91, CD = 195, perim. = 1092. 

To find a triangle ABC with integral sides and area such that the dis¬ 
tances from Aj B, C to the center 0 of the inscribed circle shall be integers, 

7 Comm. Arith. Coll., II, 1849, 648, posthumous fragment. Same in Opera postuma, 1, 
1862, 101. 

8 The Gentleman’s Math. Companion, London, 3, No. 15, 1812, 398. 
9 Ladies’ Diary, 1821, 36-7, Quest. 1364. 
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C. Gill10 made a computation which (although not so stated) in effect 
consists in finding three right triangles A OF, BOF, COE (see the figure 

below) with integral sides such that OF = OE 
= OD — r is the radius of the inscribed cir¬ 
cle, but omitted the condition that the sum of 
their angles at 0 shall be two right angles. 
If AF = m, BF = n, CE = s, this condition 
is mns = r2(m + n + $). Thus his solution 
fails. 

A. Cook11 gave the following solution. Draw 
OR perpendicular to AO to meet AB at R. 
[The sides of any rational right triangle are 
proportional to r2 ± a2, 2ra.] Hence we may 

take 

AF = (r2 - a2)/(2a), AO = (r2 + a2)/(2a), 

BO « (r2 + b2)/(2b), OF = 

By similar triangles, 

AF : FO :: FO:FR = AO-.RO > 
/ — a2 

BF = (r* - 62)/(26), 

T. 

r(r2 + a2) 

r2 — a2 

Hence we have BB = BF — FR. Since angles BOR and OCB are equal, 
the same lettered triangles are similar. Hence 

BR : BO :: RO : OC 
r(r2 + a2)(r2 + b2) 

d 
:: BO: BC 

(r2 + b2)2(r2 - a2) 

2 bd 

where d = (r2 — a2)(r2 — b2) — 4abr2. Hence 

DC = BC — BD = 2r2{(r2 - a2)l + (r2 - l2)a}jd. 

We may assign any values to a, b and any value, exceeding a and b, to r. 
For a = 16, 6-18, r = 72, we get AF = 154, AO - 170, BF = 135, 
BO - 153, 00 = 120, CD = 96, AB - 289, AO = 250, BO - 231. 

Several12 employed Heron's formula 

A2 = (B + S + *)(B + S — s)(B — S + s)(— B + S + «) 

for the square of the area A of a triangle with sides 2B, 2$, 2s. T. Baker 
wrote x, y, 2 for the last three factors of A2. Then A2 = xyz(x + y + z). 
Let A = (axz)2. We get x rationally. “ A. B. L.” took B = x — y, S = x, 
s = x + y; then 3x2 — 12y2 = □, whence u2 — 3v2 — 1. C. Holt equated 
the last three factors of A2 to 4p2g2, (g2 + r2 — p2)2, 4p2r2; by addition, 
B + S + 5 == (q2 + r2 + p2)2. J. Anderson equated the product of the 
four factors to s2x2. Hence 

{B2 - (S2 + s2) }2 = s2(4$2 - x2) = s2(2B - p)2, 

say; hence we get S and then B2. 

10 Ladies’ Diary, 1824, 43, Quest. 1416. 
11 Ladies’ Diary, 1825, 34-5. 
12 The Gentleman’s Math. Companion, London, 5, No. 27,1824,289-292. Report in changed 

notations in Math. Mag., 2, 1898, 224r-5. 
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C. Gill13 found integral sides x, y, z of a triangle the four diameters of 
whose inscribed and escribed circles are integral squares r2 and R2, R\y R\. 
Take x + y + z = a2, y + z — x = b2y x + z — y = c2, x + y ~ z — d2. 
Let the condition a2 = b2 + c2 + d2 be satisfied. We get x — (a2 — b2)/2y 
y, z. It is known that 4A = r2a2 = R2b2 = R\c2 - Rid2. 

C. L. A. Kunze14 derived eight rational triangles from the two rational 
right triangles (3, 4, 5) and (5, 12, 13) by reducing their sides in proper 
ratios so that any chosen leg of one shall equal any chosen leg of the other 
and then juxtaposing the resulting triangles either with or without over¬ 
lapping. Schlomilch36 noted that we may start with any two rational 
right triangles. 

C. F. Gauss,14a whose attention had been called to Curtins' 2a problem 
by Schumacher, stated that the sides of every triangle such that each side 
and the radius r of the circumscribed circle are integers are of the form 

Aabfgia2 + b2), =fc 4a&(/ + g) (a2/ — b2g), 4ab(a2/2 + b2g2), 

where a, by /, g are positive integers, while r = (a2 + b2)(a2p-\-b2g2). We 
obtain Curtius' numbers by taking a = g = 1, b = 2, / = 10, and deleting 
the common factor 8. Many writers146 derived Gauss' formula. 

E. W. Grebe15 tabulated for 46 rational triangles the 12 rational values 
of the segments of the altitudes and the segments of the sides cut off by the 
altitudes. 

Grebe16 gave a table of 496 rational triangles, showing also the area, 
perimeter, altitudes, and diameter of the circumscribed circle. He began 
with 32 rational right triangles (4, 3, 5), •••, (195, 28, 197) with small 
ratios of sides, took each pair of these triangles and multiplied their sides 
by such factors as produce two triangles whose larger legs are equal. By 
juxtaposition he formed a rational acute triangle. 

To find a triangle with integral sides whose area and perimeter are 
equal, B. Yates17 took, in accord with (1), the sides to be pq(r2 + s2)[ny 
rs(p2 + q2)/ny (ps + qr){pr — qs)In. The latter multiplied by pqrs/n is the 
area. Equating the area to the perimeter 2pr(ps + qr)[ny we get 

qs(pr — qs) = 2n. 

Integral solutions are found when n = 1, 2, 8. Many solvers used the 
segments l, my n into which the sides a, b, c are divided at the points of 
contact of the inscribed circle of radius r. Thus 1 + m — a, l + n = b, 
m + n = c. If 5 is the semi-perimeter, rs = 2s, whence r = 2. But 
r2s2 = slmn. Hence 4(Z + m + n) = Iran. The least side exceeds 2r = 4. 
Hence we may take l + m = 5, 6, • • • and find integral solutions. 

13 The Gentleman’s Math. Companion, London, 5, No. 29, 1826, 509-512. 
14 Lehrbuch der Geometrie, Jena, 1842, 205. 
MaBriefwechsel zwischen C. F. Gauss and H. C. Schumacher (ed., C. A. F. Peters), Altona, 

5,1863, 375; letter of Oct. 21, 1847. Quoted in Archiv Math. Phys., 44,1865, 504-6. 
Archiv Math. Phys., 45,1866, 220-231. 

16 Eine Gruppe von Aufgaben liber das geradlinige Dreieck, Progr., Marburg, 1856. 
18 Zusammenstellung von Stiicken rationaler ebener Dreiecke, Halle, 1864, 248 pp. 
17 The Lady’s and Gentleman’s Diary, London, 1865, 49-50, Quest. 2019. 
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Many18 proved that if the sides and area be integers, the area is divisible 
by 6. Take the sides to be the products of (1) by pqrs. Then the area is 
pqrs(ps + qr) (pr - qs). 

S. Tebay19 tabulated 237 rational triangles arranged according to the 
magnitude of the area, the greatest area being 46410 (cf. Martin46). 

J. Wolstenholme20 found a triangle whose sides and area are in arith¬ 
metical progression. Take a — b, a, a + b as the sides, a + 2b as the area. 
Then 

a(3a^-16) 

b 16 + 3a2 * 

W. Ligowski21 found a triangle whose sides a, 6, c, area F, and radii r 
and p of circumscribed and inscribed circles, are all rational. He assumed 
that s — <2 = px} s — 6 = pyy s — c = pz} where s is the semi-perimeter, and 
readily proved that the sides are proportional to 

a = x(y2 + 1), b = 2/02 +1), c = (x + y)(xy - 1), 
whence 

P = xy — 1, r = \{x2 + 1 )(t/2 +1), F = xy(x + y)(xy - 1). 

W. Simerka210 gave several methods of finding rational triangles and a 
table of the 173 having sides ^ 100, showing also the area, tangents of the 
half angles, and the coordinates of the vertices (cf. Scherrer62®). He proved 
that the perimeter is always even. 

H. Rath22 employed the segments a, 0, y of the sides determined by the 
points of tangency of the inscribed circle. Then the sides are a + /?, 
a + y, P + y and the square of the area is a&y(a + P + 7). The latter 
is a rational square only for a — dj2, = SB, y = dC, where B and C are 
any two positive relatively prime integers, and likewise for k and j, while 
d/5 is the value of the fraction 

BC{B + (J) 

k2 - BCf 

when reduced to its lowest terms. Each resulting set of rational numbers 
a, /?, y defines a rational triangle, the condition that the sum of any two 
sides shall exceed the third being evidently satisfied. His final tables 
show relatively prime integral sides, the triangles whose area is a multiple 
of some side being listed separate from the others. He gave (p. 218) nine 
rational triangles whose sides form an arithmetical progression, the common 
difference being here given as a subscript: 

(3,4,5)!, (13,14,15)!, (15,26,37)n, (75, 86, 97)n, 

_(25,38,51)i3, (61y74,87)i„ (15, 28, 41) 13._ 

18 The Lady’s and Gentleman’s Diary, London, 1866, 61, Quest. 2044. 
19 Elements of Mensuration, London and Cambridge, 1868, 113-5. Table reprinted by 

G. B. Halsted, Metrical Geometry, 1881, 167-170. 
99 Math. Quest. Educ. Times, 13, 1870, 89-90. Same by D. S. Hart, 20, 1874, 56. 
21 Archiv Math. Phys., 46,1866, 503-4. 
21a Ibid., 51, 1870,196-240. 
^Archiv Math. Phys., 56, 1874, 188-224. See the compact exposition by P. Bachmann, 

Niedere Zahlentheorie, 2,1910, 440-1. Cf. Kommerell2™ of Ch. XXII. 
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D. S. Hart23 juxtaposed two right triangles with the common leg 2pr 
and further legs r(p2 — 1), p(r2 — 1), and obtained 

(p + r)(pr - 1), r(p2 + 1), p(r2 + 1), 

viz., (1) for the case of the upper signs and q = $ = 1. The last assumption 
does not restrict the generality of the result. 

Hart24 noted that the triangle with the sides w — 1, w, w + 1 has a 
rational area if 3w2 — 12 = □. He obtained w = n/d, d = x2 — 3?/2 and 
took d = 1, whose general set of solutions is known. 

A. B. Evans25 found a triangle whose sides a, 6, c, radii 

x = |r(l + tan JA)(1 + tan JR)/(1 + tan |C), 

y, z of Malfatti’s circles, and radius r of the inscribed circle are all rational. 
Take cot \A = m/n, cot \B = p/g, m2 + n2 = □, p2 + g2 = □. Then 
tan \Ay etc., are rational. A. Martin took cot \C = 3, cot \B = 4; then 
the ratios of x, ?/, z, a, 6, c to r are known. 

H. S. Monck26 showed how to deduce a second from one triangle with 
integral sides, two differing by unity. 

J. L. McKenzie27 found a triangle whose area and sides are integers, 
semi-perimeter is a square, two sides having a given common difference. 

D. S. Hart28 discussed rational triangles two of whose sides differ by 
unity. 

R. Hoppe29 discussed triangles with the sides ft — r, n, n + r and 
rational area A. Thus A = § mn, where 3m2 — n2 — 4r2. Hence n is even, 
tt = 2p, and m = 2q, whence p2 — 3q2 = r2. First, let r = 1. If pk} qh is 
a solution in integers, then is also 

Pk+i = 2 pit + 3 qk, qit+i — p* + 2qk. 

Further, pfc+i — 4pfc + p*_x = 0 and similarly for the q’s. Hence 

. _ „ /o , _ pk ~ (2 + V3)p*-1 
s* = p*+i — (2 + ^3)p* = -——-, 

2 + V3 

Sjb( 2 + “>§)* = 5c» 

The resulting values of n, A are 
Jo 

ft = (2 + V3)* + (2 - V3)*, A = -~ {(2 + V3)2* - (2 - 

for h = 0, 1, • • •. It is proved that there are no further solutions. 
Next, let r be undetermined. Then p : r = 3\2 + m2 • 3X2 — >x2, where 

X and p are relatively prime integers. Thus the sides are 

_3(X2 + m2), 2(3X2 + m2), 9X2 + /A_ 

28 Math. Quest. Educ. Times, 23, 1875,108. 
«/6id.,23, 1875, 83-4. 
28 Ibid., 22, 1875, 70-1. 
28 Ibid., 24, 1876, 36-8. 
27 Ibid., 25, 1876, 105-6. 
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W. A. Whitworth30 noted that the triangle with the altitude 12 and sides 
13, 14, 15 is the only one in which the altitude and sides are consecutive 
integers. 

G. Heppel31 noted that there are 220 triangles with integral sides ^ 100 
and integral areas, but repeated (39, 41, 50). He listed only 55 rational 
scalene triangles with relatively prime sides. 

Worpitzky32 gave without proof a formula equivalent to (1). 
R. Muller33 considered rational triangles whose sides are consecutive 

integers x — 1, x, x + 1. Since the area is to be rational, x2 — 4 = 3y2, 
whence x = 2u> y = 2v, u2 — 3a2 = 1. Hence the triangles are (3, 4, 5), 
(13, 14, 15), etc. 

A. Martin34 noted that the triangle with the sides 2m2 + 1, 2m2 + 2, 
4m2 + 1 has a rational area. 

T. Pepin35 gave a historical note on rational triangles. 
0. Schlomilch36 gave the same method and results as Hart.23 
C. A. Roberts37 noted that, if u is a square and w the double of a 

square, u + w, u + 2w, 2u w are the sides of a triangle with rational 
area (u + w) J2uw and listed many triangles with sides < 500. The triangle 
is special since one side equals one-third of the sum of the remaining two. 

S. Robins88 tabulated rational triangles with a given base and a given 
difference between the remaining two sides; also (pp. 262-3) rational 
triangles with sides x, x + n, 2x — n for given n’s. 

H. F. Blichfeldt39 derived (1) by use of Heron’s formula for area. 
S. Robins40 found rational triangles whose sides are consecutive integers 

by taking x — 2 and x + 2 as the segments of the base made by the per¬ 
pendicular to the base. The altitude is (3x2 — 3)*, which is made rational 
by choice of x by means of convergents to the continued fraction for a/3. 

A. Martin41 juxtaposed two right triangles in various ways to obtain 
rational triangles. From Heron’s formula for the area A of a triangle with 
the sides x, y} zy 

(z2 -x2 - y2)2 = ixY - A2 = (ixy - Aqlp)2, if A = • 

Then 

32 = x2 + y2 d= 
2(p2 - <f)xy 

f + s’- )' 
80 Math. Quest. Educ. Times, 36, 1881, 42. 
81 Ibid., 39, 1883, 37-8. Cf. Martin.” 
82 Zeitschr. Math. Naturw. Unterricht, 17,1886,256. 
88 Arehiv Math. Phys., (2), 5, 1887,111-2. 
84 Math. Magazine, 2,1890, 6. 
85 Mem. Acead. Pont. Nuovi Iincei, 8,1892, 85. 
86 Zeitschr. Math. Naturw. Unterricht, 24,1893, 401-9. 
87 Math. Magazine, 2,1893,136. 
88 Amer. Math. Monthly, 1, 1894,13-14, 402-3 (for base 9). 
88 Annals of Math., 11, 1896-7, 57-60. 
40 Amer. Math. Monthly, 5, 1898,150-2. 
41 Math. Magazine, 2,1898, 221-236. 
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determines xjy. Taking x to be the numerator of the resulting fraction, 
we have 

x = (p2 + q2)(r2 — s2), y = 2rs(p2 + q2) ± 2s2(p2 — g2), 

z = (p2 + #2)(r2 + s2) ± 2r$(p2 — #2). 

He discussed at length rational triangles two of whose sides differ by a 
given integer, making use of a Pell equation gq2 — p2 = ±1. 

T. H. Safford42 juxtaposed the right triangles (5, 12, 13), (9, 12, 15) of 
areas 30 and 54 to obtain Heron’s triangle (13, 14, 15) of area 84, also to 
obtain (4, 13, 15) of area 54 ~ 30. He listed 37 rational right triangles. 

D. N. Lehmer43 derived (1) by use of the rationality of the sines and 
cosines of the three angles, a necessary and sufficient condition for the 
rationality of the triangle. 

Rational triangles with consecutive integral sides have been found.44 
W. A. Whitworth and D. Biddle45 proved that there are only five 

triangles with integral sides whose area equals the perimeter: (5, 12, 13), 
(6, 8, 10), (6, 25, 29), (7, 15, 20), (9,.10, 17). 

A. Martin46 formed rational triangles by the juxtaposition of two 
rational right triangles. He tabulated 168 rational triangles of area ^ 46410 
not found in Tebay’s19 table. 

H. Schubert47 considered a Heron triangle with integral sides a, b, c 
and area J. If a, /?, y are the angles, / = tan a/2 and hence also sin a 
and cos a must be rational (such an angle a being called a Heron angle). 
Set / = n/m, where n and m are relatively prime integers. Then 

sin a 
2 mn 

m2 + n2’ 
sin /3 2pq 

p2 + q2’ 

2 (mq + np)(mp— nq) 

(m2 + n2) (p2 + q2) 1 

since tan yj2 = cot {a + /3)/2. By a = 2r sin a, etc., 

4r = (m2 + n2) (p2 + q2). 
Hence 

a = mn(p2 + q2), b = pq(m2 + n2), c = (mq + np)(mp — nq), J = mnpqc. 

J. Sachs48 gave tables of rational triangles with altitudes < 100; acute 
rational triangles with altitudes 100, • • *, 500; rational triangles arranged 
according to the least side and according to the greatest side. The last 
tables are convenient for the formation by juxtaposition of rational quadri¬ 
laterals, pentagons, etc. 

T. Harmuth49 considered rational triangles with sides a, a + d, a + 2d. 

43 Trans. Wisconsin Acad. Sc., 12, 1898-9, 505-8. 
« Annals of Math., (2), 1,1899-1900, 97-102. 
44 Amer. Math. Monthly, 10,1903,172-3. 
45 Math. Quest. Educ. Times, 5, 1904, 54-6, 62-3. 
44 Math. Magazine, 2, 1904, 275-284. 
47 Die Ganzzahligkeit in der algebraischen Geometrie, Leipzig, 1905, 1-16. Festgabe 48 

Versammlung d. Philologen u. Schulmanner zu Hamburg, 1905. Reprinted in Aualese 
aus meiner Unterrichts- u. Vorlesungspraxis, Leipzig, 2,1905,1-23. 

48 Tafeln zum Math. Unterricht, Progr. 794, Baden-Baden, Leipzig, 1908. 
49 Unterrichtsblatter fur Math. u. Naturwiss., 15,1909, 105-6. 
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Its area is rational if (a + 3d!) (a — d) = 3y2. Hence decompose 3y2 in 
every way into two factors congruent modulo 4. 

E. N. Barisien50 noted that, if 2p is the perimeter, the area is an integer if 

p = (an + l)(Pn + 1), p — h = \n(yn + 1), 

p - a = (an + l)(yn +1), p - c = pn(Pn + 1), 

and = &2. The condition p = X(p — a) is satisfied if 4y + p = 5a, 
0 — = 5. If in p — 6 and p - c we replace \n and pn by 5n + 1, the 
area is integral and the condition p = X(p — a) gives for hn + 1 a value 
which is integral if p + y = 2a; then B is a right angle. A. G&rardin noted 
that we may set p = (an + t)(Pn + etc., and take P + y = 2a, 
P — y = 2p, * = (p ~ a)n. 

L. Aubry51 noted that the triangle with the sides x — 1, x, x + 1 has an 
integral area if (x/2)2 — 3y2 = 1, i. e., if 

x = 2, 4, 14, • • *, a;n = 4a;n_i — a;n-2. 

The area52 of any triangle with integral sides and area is a multiple of 6. 
B. Hecht53 discussed triangles whose sides are integers, also the area 

or the four radii of the escribed and inscribed circles. 
A. Martin54 proved that in any primitive rational triangle two sides are 

odd, the least side is > 2, the difference between the sum of the two smaller 
sides and the largest side is not unity, and the area is a multiple of 6. 
Every integer > 2 is the least side of an infinitude of primitive rational 
triangles. 

E. N. Barisien55 noted that the triangle with the sides 7, 15, 20 has its 
area and perimeter each 42. Multiplying the sides by 10, we get a triangle 
with integral altitudes. 

* H. Bottcher56 gave rational triangles with an angle 60° or 120°. 
Barisien57 gave complicated formulas for the integral sides of a triangle, 

with integral values for the altitudes, area, radius of circumscribed circle, 
radii of tritangent circles, segments of the sides made by the altitudes, and 
segments of the altitudes made by the orthocenter. 

Of several triangles58 with integral sides, area and one altitude, the 
least appears to have the sides 4, 13,14, area 24 and altitude (to side 4) 12. 

A. Martin59 added 61 rational scalene triangles to Heppel’s31 list. 
N. Gennimatas60 proved that any rational triangle is similar to one with 

80 SpMnx-Oedipe, 5,1910, 57-9. 
» Ibid., 6,1911, 188. 
83 Math. Quest. Educ. TimeB, 21, 1912, 17-8. See paper 18 above. 
83 XTeber rationale Dreiecke, Wiss. Beil. z. Jahresber. Stadt Realschule in Konigsberg, 1912,7 pp. 
84 School Science and Math., 13, 1913, 323-6. 
88 Mathesis, (4), 3, 1913, 14, 67. 
88 Untemchtsblktter fur Math. u. Naturwiss., 19,1913,132-3. 
87 Sphinx-Oedipe, 8,1913,182-3; 9,1914,74-5,91,94. Assoc, frang. av. sc., 43, 1914, 48-57. 

Mathesis, (4), 4,1914,114-6 for 7 examples. 
88 L’intermgdiaire des math., 21, 1914, 76,143, 186-8; 22,1915,119-120. 
88 Math. Quest. Educ. Times, 25, 1914, 76-8. 
601/enseignement math., 16,1914, 48-53. 
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the sides x2 + y2, (1 + y2)x, c = (1 + x)(y2 — x). Conversely, if xy yt 
y2 — x are positive, these numbers are the sides of a triangle, of area cxy. 

E. Turri&re61 noted several methods to find Heron triangles. There is 
an infinitude of Heron triangles with sides in arithmetical progression such 
that no two are similar. He investigated Heron triangles in which the semi¬ 
perimeter p and p — a, p — by p — c are all rational squares, and the 
analogous problem for inscriptible quadrilaterals. He62 found Heron tri¬ 
angles in which the sum of the squares of two sides is a square. 

F. R. Scherrer62a made use of the theory of complex integers a + hi to 
obtain the coordinates of the vertices, of the centers of the circumscribed, 
inscribed, escribed and Feuerbach circles, of the intersection of the alti¬ 
tudes, etc., of primitive Heron triangles. Cf. Simerka.21a 

M. Rignaux63 stated the final formulas of Schubert.47 
E. T. Bell stated and W. Hoover64 proved incompletely that if uQ = 2, 

Ui = 4, • • •, un+2 = 4un+1 — uny then un — 1, un, un + 1 are the consecu¬ 
tive sides of a triangle with integral area, and all such triangles are given 
by this method. 

Pairs of Rational Triangles. 

Frans van Schooten5 found two isosceles rational triangles with equal 
perimeters and equal areas. Divide each into halves and let the right 
triangles be formed from a, b and k, d respectively. By the perimeters, 

2 (a2 + b2) + 2(2 ab) = 2 (k2 + d2) + 2(2 kd), a + b~k + d. 

Set k == a + Xy d = b — x. The equality of the areas requires 

2x2 + 3(a — b)x -f a2 — 4ab + b2 — 0, x = |(r + 36 — 3a), 

where r2 = a2 + 62 + 14a6. Set r = a + 5 4- c. Thus 

c2 + 2 be 

a ~ 12b - 2c' 

The general solution thus involves the parameters b, c. For b = 1, c = 3, 
we get a = 5/2, x = 1/2. Multiply the sides by 4. We get the right 
triangles (20, 21, 29) and (12, 35, 37). Their doubles have the perimeter 
98 and area 420. 

J. H. Rahn65 devoted 8 pages to this problem, and J. Pell 62 pages. 
There is first given the above solution by van Schooten, attributed to 
Descartes. 

Several66 gave straightforward solutions to van Schooten’s problem. 
J. Cunliffe67 treated the problem to find two triangles with rational 

altitudes and segments of sides and with equal perimeters and equal areas. 

81 L’enseignement math., 18, 1916, 95-110. 
82 Ibid., 19, 1917, 259-261. Cf. Euler21 of Ch. IV. 
82a Zeitschrift Math. Naturw. Unterricht, 47, 1916, 513-30. 
83 L’interm^diaire des math., 24, 1917, 86. 
MAmer. Math. Monthly, 24, 1917, 295, 471. Cf. Hoppe.29 
“ Algebra, Zurich, 1659. Engl, transl. by T. Brancker, augmented by D. P., London, 1668, 

131-192. 
86 The Gentleman's Math. Companion, London, 5, No. 26,1823,183-5. 
87 Sftrifts of t.hfi Math. Ttanoflitorv fad.. Th. LavbournL 2. 1809. II. 54—7. 
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He found a pentagon inscribed in a circle with rational sides and areas for 
all the triangles into which the pentagon can be divided by diagonals. 

Triangles all of whose Sides and Medians are rational. 

L. Euler®8 denoted the sides by 2a, 2b, 2c, and the medians by f, g, h. 

Then 
2b2 + 2c2 - a2 = P, etc., 2g2 + 2Ji2 - f2 = 9a2, etc. 

Hence, if 2if, 2g, 2h be taken as sides of a triangle, its medians are 3a, 3b, 3c. 
Write or = a + b + c. Then 

(b — c)2 + <r(b + c — a) = f2, (a — c)2 + a(a + c — b) = g2. 

Set / = b — c + <rp, g = a — c + <rq. Then 

b + c — a = 2(b — c)p + cp2, a + c — b = 2 (a — c)q + erg2. 

Solving each for c and adding a + b, we have two expressions for <r. Equat¬ 
ing these, we get the ratio a! : b' of a : b. Euler took a' — a and got 

a = 1 + g — p2 — 2pq ~ p2g + 2pq2, b = 1 + p — g2 — 2pq — pg2 + 2p2g. 

Then <r/2 « 1 + p + 5 — 3pq, so that c is known and hence also /, g. 
Next, 

h2 = (a - b)2 + <r(a + b ~ c) = A2g* + 2£g3 + Cg2 + 2Dq + W, 

where 

A = 1 + 3p, B = - 1 + lip - 9p2 - 9p3, 

0 = - 3(1 + 2p - 2p2 + 6p3 - 3p4), D = 2 — 9p — 3p2 + lip8 + 3p4, 

E = 2 + p —■ p2. 

We can obtain rational solutions by setting 
T> T) 

h = Ag2 + — g ± J5J or Ag2 ± ^ g =fc E. 

Euler examined the simplest cases p = rb 2 (p = 0 or db 1 being excluded). 
For p = — 2, we have A = — 5, B = 13, <7 = 321, Z> = — 32, E = —4. 
Taking the second expression for h, we have 

A = — 5g2 — 8g + 4, g = ^ A = i|i. 

Multiplying the resulting values of a, b, • • • by 4/3, we get 

a - 158, b = 127, c = 131, / = 204, g = 261, h = 255. 

Since f/, f g, fb, are sides of a triangle with the medians a, b, c as remarked 

at the outset, we get the new solution 

a = 68, b = 87, c = 85, / = 158, g = 127, h = 131. 

EulerTs6 9 paper of 1778 deals with triangles in which the distances of the 
vertices from the center of gravity are rational and the sides are rational. 

88 Novi Comm. Acad. Petrop., 18, 1773,171; Comm. Arith. Coll., 1, 1849, 507-15. 
19 Nova Acta Acad. Petrop., 12,1794,101; Comm. Arith., II, 294-301. 
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We have g2 — K2 = 3 (c2 — 62). Euler took 

g + h = 3 pq, g — h = rs, c + b = pr, c — h = qs. 
From 

g2 + /i2 = 4a2 + b2 + c2, /2 = 2c2 + 2b2 - a2, 

we get, on setting p — x + y,s — x—y, 

~2 = x2 + y2 + 2Mxy, '~=x2 + y2 + 2 Nxy, 

„ Bq2 - r2 „ 5r2 - 9q2 

4g2 4r2 

Take a/q = x + ty, f/r — x + uy. Then 

x _ 1 -i2 1 -u2 

y ~ 2(t - M) ~ 2(u - A) * 

All conditions are satisfied if we take 

N — M x (M — N)2 — 4 

“ 2 ’ y 4 (M + A) • 

The cases r = g and r = 3q are excluded since ilf + AT + 0. For 
g = 1, r = 2, we obtain the solution given above. For q = 2, r = 1, we get 

a = 404, b = 377, c - 619, / = 3*314, g = 3*325, h = 3-159. 

Euler's70 paper of 1779 does not differ materially from the preceding. 
Euler's71 paper of 1782 avoided the earlier restrictions on the generality 

of the solution. Changing the notations to conform with his earlier ones, 
we may set 

h + g=^Q>-c), h — g = — (b + c). 
P a 

From 

(h + g)2 + Qi — g)2 = 2h2 + 2g2 = 8a2 + (b + c)2 + (b - c)2, 

we get 

8«2 = (& -c)2 + o+ 
Then f2 = (b + c)2 + (6 — c)2 — a2 gives a similar formula for /2. Write 

6 + c = a(7 + «), b — c = /?(? - S), P = —^—, Q = —^ « . 

Then 

(2) - = y + 52 + 2PyS, 2 = T2 + S2 + 2Q7«- 
a2 fr 

Take y = 4(P + Q), 5 = (P — Q)2 — 4. Then (2) are the squares of 

(P - Q)(3P + Q) - 4, (Q - P)(3Q + P) - 4. 

70 M6m. Acad. Petrop., 2, 1807-8, 10; Comm. Arith., II, 362-5. 
71 M6m. Acad. Petrop., 7, 1820, 3; Comm. Arith., II, 488-91. 
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Set PQ + 1 = n(P + Q). We may discard the common factor P + Q 
of 7 and 8, thus altering a and /3 in the same ratio, and set 7=4, 
8 = P + Q — 4n. The first expression (2) is the square of 

(P - Q)(P + Q) + 2P{P - Q) - 4 = (P + Q)(3P - Q - 4»), 

which is to be divided by P -f Q. Hence 

- = 3P - Q - 4n, { = 3Q - P - 4n. 
O' p 

From the above expressions for P, Q, we readily get n = — 5/4. Set 

C = 16a2/?2, P = (9a2 + /?2)(a2 + /?2), F = 2(9a4 - /?4). 

Then 7=4, 5 = P/(4a2/32). Suppressing the common denominator 4a2/?2 
in a, 6 d= c, /, h d= g, we get 

a = a(D - JP), 6 + c - <*(C + P), h - c = 0(C - P), 

/ » 0(2) + P), & + * = 3a(C - P), A - ? = 0(C + P). 

Euler72 noted that 2a2 + 262 — c2 is a square if 

a = (m + n)p ~ (m — n)g, b = (m — n)p + (m + n)g, c = 2mp — 2ng. 

It suffices to make the product of the remaining two medians a square. 
We obtain a homogeneous quartic in p, q. A special set of values making 
it a square is found to be 

p = (m2 + n2) (9m2 — n2), q = 2mn(9m2 + ?t2). 

Euler deduced his68 two solutions and three others: 

207, 328, 145 ; 881, 640, 569; 463, 142, 529. 

To make a = 2x2 + 2y2 — z2, p = 2x2 + 2z2 — y2, y = 2y2 + 2z2 — x2 
squares, £< Atticus” 73 took x = 5n — 4m, y = 2m, z = 2m + n. Then 
a = (7n — 6m)2, and 7 = 48mn — 23n2 = p2 determines m. Also, 

64n2/3 = p4 - 50p2n2 + 1649n4 = □ 

if p = n, whence m — n/2. 
J. Cunliffe74 treated the problem subject to very special assumptions 

and obtained for the halves of the sides 807, 466, 491. Later, he76 gave 
another very special treatment and obtained the sides 884, 510, 466 and 
medians 208, 659, 683. 

N. Fuss76 reproduced the solution in Euler’s paper of 1782 with a 
replaced by r — s, p by r + s, 7 by p, etc. 

J. Cunliffe77 wrote x = AC, y = BC, z = AB for the sides, and BE, 
AF, CD for the medians. Take z = x + y — d. Then 

4AF2 = 2(AB2 + AC2) — BC2 = 4x2 -j- 4xy + y2 — 4d(x + y) + 2d2. 

72 Posthumous paper. Comm. Arith. Coll., 2,1849, p. 649; Opera postuma, 1, 1862, 102-3* 
71 The Gentleman's Math. Companion, London, 2, No. 9,1806, 17. 
74 New Series of the Math. Repository (ed., Leyboum), London, 1, 1806, II, 44. 
78 Ibid,, 2,1809, H, 31-4. 
78 M6m. Acad. Sc. St. Petersburg, 4,1813, 247-252. 
77 The Gentleman's Math. Companion, London, 5, No. 27,1824, 349-53. Extract in Pinter- 

m&liaire des math., 5,1898, 10-11. 



Chap. V] Triangles with Rational Medians. 205 

Equate it to (2x + y — m)2 and the similar expression for 4BE2 to 
(x + 2y — ft)2. Solve the two resulting linear equations for x, y in terms 
of m, n. Reject the common denominator. Thus 

x — d2(An ~ 2m) + 2 d(m2 — n2) — mn(2m — n), 

y = d2(4m — 2 n) — 2d(m2 — n2) + mn(m — 2n), 

^ = 2d2(m + n) — 6mnd + mn(m + n). 

Then 4CD2 = 2(rc2 + y2) — z2 becomes a quartic in d which is a square for 

^ 4- n)(m — n)2(2m2 — 5mn + 2?^2) 

10 (m — n)4 — mn{mr + n2) 

C. Gill78 gave a solution in which the sides are proportional to expres¬ 
sions in the sines and cosines of two of the angles A, B, subject to the condi¬ 
tion that tan A/2 equals one of four complicated functions of sin B and 
cos B, The numerical example is the same as the first one of Euler’s68 
paper of 1773. 

E. W. Grebe79 thought the problem was a new one. Changing his nota¬ 
tions to conform with Euler’s, we see that 2b2 + 2c2 — a2 ~ f2 implies 

(b + c+f)(b + c- f) = (a + b- e)(a - b + c). 

From this and a similar formula involving g, we get 

b + c + / = m(a + b — c), b + c — / = ~ (a - b + c), 

c + a + g = p(6 + c — a), c + a — g=-(b-c + a), 
V 

where m and p are unknowns. These four relations determine the ratios 
of a, bj c, /, g as rational functions of m and p. Then 2a2 + 2b2 — c2 (which 
is to equal h2) is made a rational square by choice of p rationally in terms 
of m. Then the sides and medians are quintic functions of m. 

C. L. A. Kunze80 gave essentially the solution in Euler’s71 paper of 1782. 
J. W. Tesch81 gave Cunliffe’s75 solution. 
* E. Haentzschel82 and Schubert88 treated the problem. Cf. papers 101, 

106. 
The medians of a triangle with rational sides a, 6, c are proportional to 

the sides if and only if a2 + c2 = 2b2; such a triangle is called autom6dian. 
Reports of many papers on this equation are given in Ch. XIV. 

Triangles with a Rational Median and Rational Sides; Parallelo¬ 

grams with Rational Sides and Diagonals. 

C. G. Bachet’s3 fourth problem, added to his comment on Diophantus, 
VI, 18, was to find a rational triangle with one rational median. First 

78 Application of the angular analysis to the solution of indeterminate problems of the second 
degree, New York, 1848, 50-2. Results quoted in l’interm^diaire des math., 5,1898,10. 
Cf. A. Martin, Math. Quest. Educ. Times, 25, 1876, 96-7; E. Turri&re, l’enseignement 
math., 19, 1917, 267-272. 

79 Archiv Math. Phys., 17, 1851, 463-74. 
80 Ueber einige Aufgaben aus der Dioph. Analysis, Progr. Weimar, 1862, 9. 
81 L’interm&iiaire des math., 3, 1896, 237. Repeated, 20, 1913, 219. 
88 Jahresber. d. Deutsc en Ma h.-Vereinicune. 25. 19i6. 333-351. 
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let the angle A from which the median AD is drawn be acute. Let BC 
denote the side whose mid point is D. Take any number, as 13, which 
is a sum of two squares, 22 + 32, and take DC = 2, AD = 3. Then 
AB2 + AC2 = 2AD2 + 2DC2 = 2-13 = 52 + l2, since the double of a sum 
of two squares is a sum of two squares. But 5 and 1 are not values of AB, 
AC. Hence we divide 52 + l2 into a sum of two other squares by Dio- 
phantus II, 10, viz., (5 - N)2 + (1 + 2N)2, whence N = 6/5, AB = 3f, 
AC = 3f. Multiplying all by 5, we get AB = 19, AC = 17, BC = 20, 
AD = 15. 

If A is obtuse, take DC = 3, AD = 2. We get the same values of AB 
and AC as before, while BC = 30, AD — 10 (in place of the misprint 12). 

T. F. de Lagny83 proved that in any parallelogram the sum of the squares 
of the two diagonals equals the sum of the squares of the four sides and 
noted the examples 92 + 132 = 2(52 + 102), 172 + 312 = 2(152 + 202). To 
solve x2 + y2 = 2 (a2 + b2) in integers, we may, for a — b, take y = 2a — xb/c, 
whence x = 4<zbc/(b2 + c2). Next, a special solution of 

x2 + y2 = 2 {a2 + (a + b)2} 

is given by x — b, y = b + 2a; to find the general solution, set c = 2a + b, 
2==cdbz, 2/ — bT zd/e; then z = (± 2bde =F 2 ce2)/(d? + c2)* 

B. A. Gould84 found a parallelogram with rational sides o, b and diagonals 
x, y. The condition is x2 + y2 = 2(a2 + b2). Set a + b = s, a — b = t, 
whence x2 + y2 = t2 + s2. A solution is /x = sd + fe, fy = se — td, if 
Z2 = d2 + e2. Wm. Lenhart called the sides a ±. a' and diagonals 2b, 2b', 
whence a2 — b2 = b's — a'*, which is satisfied if 

a, b = nn' zfc mm'; b', a' = nm' ± m'. 

J. Maurin85 gave Gould's solution. 
E. H^net86 noted that in the triangle with the sides x = pv + u, 

y — pu — v, z = u + v + p(u — v), where u > v, p > 1, the median mz is 
rational: 2m* = p(u + v) — u + v. Also my is rational if 

u i v = (/* 2)(4p — ju) : (p — 4)(2p + p), 4 < p < 3 + p. 

M. A. Gruber87 solved 2(a2 + b2) = c2 + d2 by setting b = a + 
c = 2a + q, whence a follows rationally. W. F. King (pp. 320-2) proceeded 
as had Gould.84 

H. Schubert88 discussed triangles with rational sides o, b, c, and one or 
more rational medians, that to side a being designated by ta. Since 

(2Q2 — (b — c)2 = (b + c)2 — a2 ~ 4s(s — a), s = |(a + b + c), 

the rationality of ta implies that of x, where 

_Aita — j(b — c) = ax, =b + |(b — c) = (s — a) lx._ 

» Hist. Acad. Roy. Sc. avec lea M&n., ann6e 1706, Paris, 1731, 319-333 (Hist., 83-99). 
84 Cambridge Miscellany, 1,1843, 14. 
85 L’mterm^diaire des math., 3, 1896, 210. 

240. 
87 Amer. Math. Monthly, 3, 1896, 219-221. 
88 Auslese Unterrichts- u. Vorlesungspraxis, Leipzig, 2, 1905, 68-92; same in Schubert,47 

3S-50. 
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Subtract, replace sx by (s — a)x -f* (s — b)x + (s — c)x, and c — b by 
s — 6 — (s — c). Thus 

'= 0. 

Since s — a, etc. shall be positive — 1 < x < 1. Similarly, the rationality 
of tb implies the existence of a rational value y, — 1 < y < 1, for which 

y y + l y — l 
The two equations determine the ratios of s — a, • • •. We may set 

s — a = (x + 2y + l)x{l - y) = A, s -b = (2x + y - 1) (1 + x)y = B, 
$ - c == (x — y + 1)(1 - s)(l + y) = C. 

By addition, s = 3xy + % — y + 1. Hence for any proper fractions x, y, 
we have rational values of a, b, c, and of 

=t 2£0 = sx + (s — a)/x, =t 24 = sy + (s — &)/y. 

For x = y = J, we find a = 17, & = 27, c = 16, 2£a = 41, 2fe = 19. 
If also tc is to be rational, we must have a rational solution 2, — 1 < 2 < 1, 

of 

— c -‘ + 1^4,0. 
2+1 2—1 

Replacing $ — a, s — 6, s — c by their values A, B, C, we obtain a rela¬ 
tion R between x, y, 2, quadratic in each. Now the pair of equations 

3ya(l - y) _ B = Q (x - y + l)s(l - y) C = Q 
J —J— 1 — jg 7 J 

have the sum R and are such that the elimination of 2 gives 

y - (7 - Ax - 2x2)/(10x - 5). 

He gave eight further pairs of equations with the sum R such that the 
elimination of 2 yields an equation linear in x or y. For the problem of 
three rational medians, this method lacks the generality and simplicity 
of Euler’s.71 

Heron triangles with a rational median; Heron parallelograms. 

H. Schubert89 defined a Heron parallelogram to be one whose sides, 
diagonals and area are rational. Call a, /3 the angles made by a diagonal 
with the concurring sides a, b; and 6 the angle between the diagonals and 
opposite b. Then 

a : b = sin (0 + $) : sin (0 — a), a sin a = b sin ft 

the second following from the equal areas on each side of our diagonal. 
Hence 

2 cot 0 = cot a — cot ft 

89Auslese TJnterrichts- u. Vorlesungspraxis, Leipzig, 2, 1905, 36-45. Lntemchtsbl&tter 
Math. u. Naturw., 6, 1900, 70-1. Schubert,47 21-26. 
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The area being rational, we may set (Schubert47) 

'{I, n y 
tan $oc = —, tan bp — -, tan §0 = -, 

m V x 

where m, n are relatively prime integers, etc. Hence 

2 x2 ~ y2 _ m2 ~~ n2 V2 ~~ ff2 
2 xy 2 ran 2pq 1 

2(x2 — y2)mnpq = xyirnp + nq)(mq — np). 

It is concluded erroneously90 that the only integral solutions are 

(z, y) = (mq, np) or (rap, ng). 

Hence there remains in doubt his conclusion that no Heron triangle has 
more than one rational median. 

R. Gimtsche91 considered a triangle ABC whose sides a, 6, c, area I and 
median CF are rational. If $ is the semi-perimeter and p the radius of the 
inscribed circle, 

cot |A = s(s — a)/I, sp = I, 

so that the cotangents a, /?, y of \A, \C must be rational. Also, 
ol + P + 7 = aPy. Taking p = (aft — l)/(a/3), we have 

s = ct + p, a = /3+i & = <*+-, c = s — --^ = 1. 
p a a p 

Let F be the center of AB and v — cot \(CFB). From triangles CAF and 
CFB we obtain the two values of c/2: 

^ 1,1 1 , , 1 
a v v P 

To secure symmetry, set pr = ljp. We obtain 

(4) 2 v2P'ct - v(p'2a + Pra2 - pr -a)- 2P'et = 0, 

which is quadratic in each of v, a, p'. Taking a as a parameter, we may 
treat the equation in v, pr by Euler’s144 method of Ch. XXII. But the 
second value of v belonging to /?' is — 1/v, so that the corresponding angle 
has been increased by x. To obtain an essentially new solution, introduce 
the variable £ = vP' in place of v before applying Euler’s process. A 
similar remark holds for the more general equation 

(5) px^y + qxy2 + rxy + hqx + hpy = 0. 
80 Other sets of solutions are m = 2, n - 1, p * — 2, q = 1, x =* 2, y =* 1 or x » 1, y = — 2; 

m = 2, n = 1, p = 3, q = 1, z = 3, y = 4 or x = 4, y = — 3. For x = mq, y — np, 
the factor mq — np may be cancelled from the equation in the text, giving p(m — 2n) 
= 5 (2m — n). Hence 2m — n = lp} m — 2n — Iq, where l — 1 or 3 (m and n being 
relatively prime). Schubert erroneously excluded 2 = 3, an example for which is p = 3, 
5 *= 1, m = 5, n = 1; this however does not affect the relation between tan (a/2) and 
tan 05/2). 

91 Sitzungsber. Berlin Math. Gesell., 4, 1905, 27-38. 
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which includes the case treated by Hummer.133 
set 

*tt) = 
q% + ph 

Xi=- 
pZ + qh* Xi 

From the initial pair x = x0, y = yo, we form 

To simplify Euler’s process, 

Vi' 

*1 = VqOi, Vi = XoOi, Oi 33 0(xQyo); x2 = yi62, y2 = Xi02, 02 a 0(siPi); 

Then Xi, pt* is a new pair of solutions of (5). Similarly, we may start 
with Xo, To* For (4), 

h « - 1, P = 2a, q = - a, r = 1 - a2, 6(Q ~ - ft + 2)/(2* + 1). 

Hence from the initial pair vQ, 0'o, we get v1 = 0qQ(vo0'o), 0[ = — v716(vo0o)> 
From the trivial solution a — p, v0 = 1, 0'o = 1/p, we get 

a = p, = 
- (2p + 1) 

A - 
2p+l 

p(p + 2) ’ p + 2 

From these we obtain a new set; etc. We may replace v by — 1/y, since 
(3) remains unaltered; we obtain the solution 

oj = p, 
p(p + 2) 

0“ 
P + 2 

a = 6{(p + 2)2+(2p + l)2} 
2p -f* 1 ’ ** 2p + 1 ’ 

6 = (p + 2)(2p + l)(p2 + 1), c = 2(p2 - l)(p2 + p + 1), 

CF - p2(p + 2)2 + (2p + l)2, I = |p(p2 - l)(p + 2)(2p + l)(p2 + p + 1). 

E. Haentzschel92 repeated Giintsche’s deduction of (3), with a, 0 inter¬ 
changed. For symmetry replace the new a by its reciprocal. Hence 

o'2 - 1 t 02 - 1 „a __ 1 
2a 1 20 v ‘ 

The value obtained by solving for v will be rational if 

{0 2a + 0(a2 — 1) — o'}2 + (4/fo)2 = □. 

This quartic in 0 is treated by use of Weierstrass’s elliptic ^-function 
[cf. Haentzschel82 of Ch. XV]. There result various particular types of 
Heron parallelograms. 

Triangles with rational sides and one or more rational angle- 

bisectors. 

C. G. Bachet98 gave a long construction and discussion leading to the 
special acute angled triangle with the sides (reduced 1 :4) 20, 20, 5 and 
having 6 as the bisector of either equal angle; also the oblique angled tri¬ 
angle with the sides 80, 125, 164 and having 60 as the angle-bisector drawn 
to the side 164. [The area of each triangle is irrational.]] 

J. Kersey94 discussed oblique triangles with rational sides and area and 
one rational angle-bisector or median. 

w Sitzungsber. Berlin Math. Gesell., 13, 1913-4, 80-9. 
“ Diophanti Alex. Aiith.* . . ., 1621, 419-21. Ed. by S. Fermat, 1670, 317-9. 
M The Elements of Algebra, London, Books 3 and 4, 1674,144-8. 
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N. Fuss95 investigated triangles with rational sides a, b, c, rational 
angle-bisectors a, 7 and rational area or. The altitudes are then rational, 
feet 

& + c — a = 2/, a + c — b = 2g, a b — c = 2h. 
JLnen 

a + b + c = 2(f+g + h), cr*= (f + g + h)fgh. 

He took/ = pq,g = qr, h = pr. Then <7 is rational if 

pq + pr + qr = s2, 

where a is rational Since a = g + h,b = f + h, c = f + g, we get 

_ + c + a) (5 + c — a) 2pgs r—-—--—-—- 

b + c ~^+^'^(p + r) (q + r)' 

The quantity under the last radical equals r2 + s2, which is therefore to be 
a square. Similarly, p2 + $2 and q2 + s2 are to be squares. Set p = Is, 
q — ms, r = ns. Then 1 + l2, etc., are to be squares, while 

Im + In + mn = 1. 

These conditions are satisfied if 

1 = p2~Q2 ^ _ & - S2 1 - Zro 
2PQ 1 w n= 

For example, letP = R = 2, Q = S = 1. Then l = to = 3/4, n = 7/24. 
lake s = 1 and multiply a, a, etc. by 32. We get 

a = 14, b = c = 25, a = 24, 0 = y = 

J. Cunliffe9* noted that the triangle with the pidAS 

mn{rri? - n2)^ + s2)2, rs(r2 - ^(m2 + n2)2, 

_ - a2) - rs(m2 - n2)} {(r2 - - n2) + 4non) 

has rational area and angle-bisectors.. He97 obtained such a triangle with 
the sides 39, 150, 175 by taking three right triangles (to2 + n2, to2 - n2, 

2””’ Whe™ ”• " * '• «. * 3 and u»g 

M Sc- St* Pet4rsbouig, 4,1813, 240-7. 

"^.,^.1,^819^London> 3- **• 2> 1814> 13-15. 
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Cunliffe98 found a rational triangle ABC with rational values for the 
sides, altitudes and angle-bisectors. Circumscribe the circle with the 
rational diameter d. Let the perpendicular bisectors mD, nE, pF of the 
sides meet the circle at D} E, F (see right-hand figure on p. 210). Set 
a = AD = DB, b = AE, c = BF. Then Dm = a2jd, En = b2/d, Fp = c2/d, 

Am = - Vd2 — a2, Cn = ~ Vd2 — b2, Cp = - Vd2 — c2. 

Since the chords a, 6, c subtend arcs whose sum is the semi-circle, they 
serve to form with the diameter an inscribed quadrilateral with sides 
a = MP, c ~ PQj b = QN, d = MN. Hence 

and 
NP2 = d2 - a2, 

MPNQ + MN-PQ = NP'MQ, 

MQ2 = d2 - 62, 

cd = Vd2 - a2* Vd2 - 62 - 

Hence if d2 — a2 and d2 — 62 are rational squares, c as well as a and b are 
rational. By the inscribed quadrilateral ACBD, 

AB-DC = DB>AC + AD-BC; 

hence DC is rational. Thus the angle-bisector Dl = (DB)2/DC is rational. 
A second solution employs the inscribed circle with radius r and center S, 
lengths a, b, c of the tangents from A, B, C, and foot T of the perpendicular 
from S to AB. Then AS2 = AT2 + ST2 = a2 + r2. To satisfy it in 
integers, take a = 2mnr/(m2 — n2). Similarly, satisfy RS2 — &2 + r2. It 
is proved that CS2 = c2 + r2 is a rational square by use of 

abc = r2(a + b + c). 

W. Wright and C. Gill99 employed an isosceles triangle with the equal 
sides CA and CB, altitude CD, and intersection 0 of the angle-bisectors 
AP and BQ. Set x = AD, a = AC + x = semi-perimeter. Then 

CD = Va2 — 2ar 

will have a rational value ap if r = §a(l — p2). Then 

OD = “ P2), AO = ia(l - p2) Vf+72. 

It follows from certain proportions that CP is rational, while AP involves 
VF+p. Hence the problem is solved ifl + p2=n = (l— qp)2, say, 
which gives p ~ 2q/(q2 — 1). Taking q = 3, 4, 5, 7, we get four isosceles 
triangles with the same perimeter and having rational sides, areas and 
angle-bisectors. 

S. Jones100 found a triangle whose sides x, y, z and angle-bisectors are 
rational. Let nx and ny be the segments of z made by the bisector of the 
opposite angle; mx and mz those of y. Hence y = (1 + ri)mx/(l — ran), 
z = (1 + m)nx[( 1 — mn). The square of the bisector of angle (x, y) is 

98 The Gentleman’s Math. Companion, London, 5, No. 27, 1824, 344-9. 
” Ibid., 5, No. 30, 1827, 588-9. 
100 The Gentleman’s Diary, or Math. Repository, London, 1840, 33-5, Quest. 1400. 
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xy(l — n2), which is a square if (1 — n)m(l — mn) = □ = m2n2, say, 
whence m = (1 — ri)/n. Then y = (1 — n2)x/n2, z = x/n. Then the bi¬ 
sectors of angles (x, z) and (y, z) are rational if 2n2 — n and 2n2 + n are 
squares. Equating the first to pH2, we get n. Then 2n2 + n = □ if 
4 — p2 = □ = (2 — pq)2, which determines p. W. Rutherford called the 
sides a, 6, c; the square of the bisector AD of angle A equals 46cs(s — a)/ 
(b + c)2, where s = (a + b + c)/2. Thus bcs(s — a) = □. Similarly, 
abs(s — c) = □, ac$(s — 6) = □. Hence s(s — a)(s — b)(s — c) = □ and 
the area is rational. Thus the problem is that treated by Cunliffe.98 

J. Davey101 found a triangle ABC in which the sides, the angle-bisector 
CD, the median CE, and the segments AE = EB and ED of the base are 
all integers. Take 

AC = (m + 1 )p, BC = (m — l)p, AD = (m+ l)q, BD = (m~~ l)q. 

Then AE = mq, ED = q, CD2 — (m2 — l)(p2 — q2). Take 

CD - (m2 - 1 )(p - q), 

whence p — m2q/(m2 — 2). Then 

CE2 — (m2 + l)p2 — m2q2 ~ ( ) (5m2 — 4). 
Vwr — z / 

Hence take 5m2 — 4 to be the square of 5(m — l)r/s — 1, thus obtaining 
m rationally. 

Feldhoff102 treated 31 problems on triangles in which certain elements 
(area, perimeter, side) are rational, are equal, or are squares. In the tri¬ 
angle formed by the juxtaposition of two rational right triangles, the angle- 
bisectors are rational if two expressions of the form x2 + 1 are squares.108 

Worpitzky32 stated that, if the rational triangle with sides (1) has its 
angle-bisectors rational, then p = fj2 — v2, q = 2pv, r = p2 — <r2, s = 2pa. 

D. Biddle104 found special oblique triangles having integral values for 
the sides, area, altitude from one vertex and bisector of the angle at that 
vertex. Use is made of 3 right triangles with a common side. 

R. Chartres105 and others found integral values for the sides and the 
bisector g of the largest angle such that the perimeter equals mg. 

* P. Do!gu§in106 gave examples, but no general solution, of the problem 
to find all triangles whose area, bisectors, medians, etc. are all rational. 

101 The Lady’s and Gentleman’s Diary, London, 1842, 69. He noted that J. Holroyd’s 
solution, 1841, 57-8, leads only to degenerate triangles whose base equals the difference 
of the other sides. 

1<e Einige Satze fiber das Rationale Dreieck, Progr., Osnabriick, 1860. 
108 For if 2rs = 2mn is the common side, so that the composite triangle has the sides 

b = wz.2 + n5, c = r* + s2, a = m* — n2 + r2 — s2, then 

a + b + c = 2(r2 + m2), b + c — a = 2(s2 + w2). 

Hence the quantity under the radical in the expression for the bisector a (Fuss94) is a 
product of four sums of two squares and hence equals such a sum. In the expression for 
the bisector /3 occurs the square root of E = ac(a + 6 + c)(a + c — b) = 4(r2 + a2) 
X (r2 4- m2)a(r2 — n2). Replacing s by mnfr in a, we get a = (r* — n2) (1 + m2 /r*). Hence 
F is a sum of two squares. The product <x(3y is rational since the area is rational. 

104 Math. Quest. Educ. Times, 57, 1892, 32. 
104 Ibid., 66, 1897,102-3. 
** Vest, opytn. Fiziki (Spaczinski’s Bote), Odessa, 1903, No. 355, 145-157 (Russian). 
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H. Schubert47 (pp. 17-21, or Schubert,88 27-36) considered a Heron 
triangle ABC in which the bisector wa of angle A is rational. Since it 
divides the triangle into two Heron triangles we need only take A/2 and B 
to be Heron angles, i. e., 

. A 
sin 7- — 

2 uv 

u2 + v*’ 

u2 v2 . D 2pq 
cos B = 

p2 — q2 

pH7?' 
Thus sin A and cos A are rational, so that in his47 formulas for the sides of a 
Heron triangle we need only take m - u2 — v2, n = 2uv. To make wa 
and Wb (and hence wc) rational, take both A/2 and B/2 as Heron angles. He 
considered (§ 6) Heron triangles with both a rational bisector and a rational 
median. 

An anonymous writer107 gave three large integers which are the sides 
of a triangle having integral values for the area, three interior and three 
exterior angle-bisectors and the 12 segments cut off by them on the opposite 
sides. Also a triangle having integral values for the sides, area, altitude 
and two bisectors from the vertex, and the four segments of the base cut 
off by the two bisectors. M. Rignaux108 gave a solution in smaller integers 
of the last problem. 

E. Turri&re109 considered a triangle with rational values for the sides 
a, b} c and bisector d of the interior angle A. Thus 

y2 = nx2 + 1, y = 
b + c b + c , 

x --a, 
1 

n=bc■ 
The rational solutions of this Pell equation are 

V = 

t2 + n 

t2 - n' 

21 

t2 — n 

Hence the desired triangle is obtained by assigning any rational values to 
b, c and taking a = (6c — t2)(b + c)/q, d = 2bct[q, q = be + t2. In a Heron 
triangle, the bisector of angle A is rational if and only if tan \A is rational. 
Every Heron triangle whose bisectors are rational is the pedal triangle to 
a Heron triangle. 

* O. Schulz157 (pp. 72-3) treated rational triangles with three rational 
angle-bisectors. 

Triangles with rational sides and a linear relation between 

THE ANGLES. 

K. Schwering110 discussed triangles with integral sides one of whose 
angles is double another. 

J. Heinrichs111 generalized the problem, taking the relation a = n@ + y 
between the angles. Set B = £/2. Then 

a : c : b = cos (n — 1 )B : cos (n + 1) B : 2 cos B Vl — cos2 B. 

107 L’intenn&liaire des math., 23, 1916, 51-2, 73. 
108 Ibid., 234-7. 
'10* L5enseignement math., 18, 1916, 397-407. 
110 Gymn. Progr., Coesfeld, 1886. 
m Zeitschr. Math. Naturwiss. Unterricht, 42, 1911, 148-153. 
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Use may be made of the expansion of cos kB in terms of cos B or of 

2 cos kB = (x + Vx2 — 1)* + (x — Vx2 — 1)*, x = cos B. 

K. Schwering112 took any linear relation between the angles. 

Miscellaneous Results on Triangles whose Area need not be 

Rational. 

A. Girard1120 noted that z=B2+BD+D2, x = 2BD+D2, y = 2BD+B2 
are sides of a triangle in which an angle is 60° [i.e., satisfy z2 = x2—xy+y2]) 
and the same is true of z, Xi=B2—D2i y. Also z} x, xx are sides of a triangle 
in which an angle is 120° [i.e., z2 = x2 + xxx + xl]. 

To find integral sides a, 6, c of a triangle ABC such that, if P is the point 
within it from which the sides subtend equal angles, the distances x = AP, 
y = BPy z = CP are expressed by integers, we have 

c2 = x2 + xy + y2} b2 = x2 + xz + z2, a2 = y2 + yz + z2. 

Many solvers113 took c ~ x + y ~ m, b = x + z — n and obtained two 
values for x, from which we get z = Qiy — mn)j{y — k), where h and k are 
known. Then 

h-2k 
(:y ~ k)2a2 = ?/4 + r -y + mn 

determines y rationally. Cf. papers 116 and 123; also 65, 67, 68, 70-73 
of Ch. XIX. 

Berton stated and J. de Virieu114 proved that the area of a triangle is 
not rational if the sum of the sides, without a common factor 2, is odd. 

W. S. B. Woolhouse115 proved that, if three numbers ^ n are taken at 
random from a list of such triples and if pn is the probability they will be 
sides of a possible triangle, then p», p»+i, pn+ 2 are in arithmetical progression 
if n is even. He found the probability that three integers ^ n named by 
three different persons or by the same person will be proportional to the 
sides of a real triangle. 

S. Bills116 found the least integral sides PC, CA} AB of a triangle for 
which x ~ OA, y = OB and z ~ OC make equal angles and are measured 
by integers.113 First, AB2 = x2 + xy + y2 = □, AC2 = x2 + xz + z2 = □ if 

V = 

r 
2p + 1 

xy g2 - 1, 
2g + 1 

Take q — 2. Then PC2 = y2 + yz + z2 = □ if 25pA +••• = □, which 
holds if p = 9/4, whence x = 440, y = 325, z = 264. 

H. S. Monck117 gave a very special discussion of the problem to find 
the least triangle with sides in arithmetical progression and altitudes in 

m Archiv Math. Phys., (3), 21, 1913,129-136. 
“^L’Arith. de S. Stevin . . . par A. Girard, Leide, 1625, 676; Les Oeuvres Math, de S. 

Stevin, par A. Girard, 1634, 169. 

m The Lady’s and Gentleman’s Diary, London, 1844, 50-1, Quest. 1705. 
m Nouv. Ann. Math., (2), 3, 1864, 168-170. 
m Math. Quest. Educ. Times, 9, 1868, 63-5, 91-2. 
118 Ibid.y 20,1874, 60-1. 
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harmonical progression. Its sides are the halves of the sides of a triangle 
whose area is divisible by each side. A. B. Evans11'8 noted that the altitudes 
Pi vary inversely as the sides a, b, c, whence the condition is a + c = 26. 
Let x = cot y = cot \B. Thus 2y = x + (x + y)/(xy — 1), which 
gives y rationally. Then, if r is the radius of the inscribed circle, 

a = r (cot %B + cot |C), • • •, px = r{a + b + c)/a, • • *. 

Evans and A. Martin119 found rational triangles with integral sides and 
lines from the vertices to the center 0 of the inscribed circle, by use of 
OA = r esc |A. 

M. Weill stated and E. Ces&ro120 proved that (4, 5, 6) is the only triangle 
whose sides are consecutive integers and the ratio of two of whose angles 
is an integer. 

K. Schwering121 noted that the ratios of the sines of the three angles 
a, p, y are rational if the sides are rational. Assigning values to tan a/2 
and tan 0/2, whose ratio is rational, we have tan 7/2 and hence the ratios 
of a =b b ± c and therefore the ratios of a, b, c. He discussed the problem 
to find a point 0 inside an equilateral triangle with the given rational side a 
such that the distances from 0 to the vertices shall be rational. 

Ziige122 gave the general solution of z2 = x2 + y2 — 2xy cos a, where 
cos a is rational. [But the topic is of little interest since we obtain a 
triangle with rational sides x, y, z by assigning to them any rational values 
such that x + y > z, etc.] 

A. B. Evans123 noted that, if BC = 399, AC = 455, AB = 511, CO = 195, 
BO = 264, AO = 325, the lines joining 0 to the vertices of triangle ABC 
make equal angles.113 

Several124 gave triangles with integral sides and an angle 60°. 
A. Martin125 discussed the last problem. 
R. A. Johnson126 gave expressions for the integral sides of any triangle 

with a given rational value for the cosine of one angle. 
Several127 gave pairs of triangles with integral sides having a common 

base and equal altitudes. 
E. Turri&re128 found points whose distances from the three vertices of 

a given triangle with rational sides are all rational. 
N. Alliston129 gave special triangles with integral sides and points whose 

distances from the vertices are integers. 

118 Math. Quest. Educ. Times, 22, 1875, 54. 
119 Ibid., 102-3. 
140 Mathesis, 9, 1889, 142-3. Also proof by Weill, Nouv. Ann. Math., (4), 14, 1914, 526-7. 
121 Geom. Aufgaben mit rationalen Losungen, Progr. Duren, 1898. 
l» Archiv Math. Phys., (2), 17,1900, 354. 

Math. Quest. Educ. Times, 72, 1900, 77. 
114 Zeitschrift Math. Naturw. TJnterricht, 45, 1914,184r-5. 
145 Amer. Math. Monthly, 21, 1914, 98-0. a. Neuberg^ « of Ch. XIII. 
™>Ibid., 22,1915, 27-30. 
147 Math. Quest. Educ. Times, 27, 1915, 91-2. 
148 L’enseignement math., 19, 1917, 262-7. 
149 Math. Quest, and Solutions, 5, 1918, 37. 
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On the ratios of the sides to the radius of the inscribed circle see 
Gerono,150 Ch. XXIII. 

The following papers were not available for report: 
C. Klobassa, Tiber Fythagoreische u. Heronische Zahlen, Progr,, Troppau, 1908. 
E. Haentzschel, Das Rationale in der algebraischen Geometrie [an addressJ, Unterrichtsblatter 

Math. Naturw., 21, 1915,1-5. 

Rational Quadrilaterals. 

A rational quadrilateral is one whose sides, diagonals and area are 
expressed by rational numbers. 

Brahmegupta1 (§ 38) stated that “ the legs of two right triangles multi¬ 
plied reciprocally by the hypotenuses give the four sides of a trapezium.” 

Bh&scara180 (bom 1114) illustrated this construction of a rational quadri¬ 
lateral by starting with the right triangles (3,4, 5), (5,12,13). Multiplying 

the legs of the first by the hypotenuse of the 
second, we get two opposite sides of the quad¬ 
rilateral; multiplying the legs of the second by 
the hypotenuse of the first, we get the two re¬ 
maining sides of the quadrilateral. One diago¬ 
nal is the sum 4*12 + 3-5 = 63 of the products 
of the legs of one triangle by the corresponding 
legs of the other. The other diagonal is 

4-5 + 3-12 = 56. 

As the Commentator Gan6sa (1545 A.D.) indicated (p. 81), the quadri¬ 
lateral is formed by the juxtaposition of four right triangles obtained by 
multiplying the sides of each given triangle by the perpendicular and base 
of the other. BMscara noted that if we take the sides of the quadrilateral 
in the new sequence 25, 39, 52, 60, one diagonal is still 56, but the other 
is now the product 65 of the two hypotenuses. He noted (§§ 179-184, pp. 
76-8) that the quadrilateral with the sides 40, 51, 68, 75 and diagonals 77, 
85 has the area 3234. 

M. Chasles181 made clear the true sense of Brahmegupta’s theorem. 
Let a, 5, c, d, e be integers, such as 3, 4, 5, 12, 13, for which a2 + b2 = c2, 
c2 + d2 = e2. Construct the quadrilateral ABCD with perpendicular diag¬ 
onals AC, BD, crossing at I (see figure above), with 

AI = ac, Cl = bd, BI = ad, DI — be. 
Then 

AB = oe, BC = cd, CD = be, AD = c2. 

Hence the sides are rational and the quadrilateral is inscriptible in a circle, 
since AI‘Cl = BI-DI; its diameter is ce/2. The area is 

§(ac + bd)(bc + ad). 

1,0 LflAvati, $ 191-2; Colebrooke,1 pp. 80-83. 
m Aper$u hidtorique, Bruxelles, 1837, Note 12, p. 440; ed. 2, Paris, 1875; ed. 3, Paris, 1889, 

p. 421. Cf. O. Terquem, Nouv. Ann. Math., 5, 1846, 636; H. G. Zeuthen, Bibliotheca 
Math., (3), 5,1904,108. 
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From one inscriptible quadrilateral we get two others (but not with per¬ 
pendicular diagonals) by permuting the sides. The area of each of the 
three quadrilaterals is the product of the three distinct diagonals divided 
by double the area of the circumscribed circle (A. Girard; proof by Grebe, 
Manuel de G6om., 1831, 435). 

L. N. M. Carnot132 noted that the segments of the diagonals of a quad¬ 
rilateral are expressible rationally in terms of the sides and diagonals. 

E. E. Kummer133 noted that Chasles unriddled the obscurity of Brah- 
megupta without perceiving the method used by the latter, and expressed 
Brahmegupta’s theorem in the following form. If the four sides of a 
quadrilateral, inscriptible in a circle, have the values 

(a2 + b2)(c2 - d2), (a* - b2)(c2 + d2), 2cd(a2 + b2), 2ab(c2 + d2), 

where a, 6, c, d are rational, then both diagonals (perpendicular to each 
other), the segments of them, the area of the quadrilateral and the diameter 
of the circumscribed circle are all rational. 

Kummer showed how to obtain all rational 
quadrilaterals. Let ABCD have rational sides and 
diagonals. Then the segments a, (3, y, 8 of the 
diagonals are rational. For, by 

b2 — a2 + AC2 — 2a-AC cos u, 

cos u is rational; likewise cos v and cos (u + v). 
Hence sin u sin v is rational; also sin2 u and there¬ 
fore sin ujsin v. But 

a __ sin w d __ sin w p _ a sin u 

p sin u’ 1 sin v} 5 d sin d * 

Hence p/8, 1 + p/8 = BD/8, 8 and P are rational. Similarly, a and y are 
rational. Next, c = cos w is rational, in view of 

(1) a2 = a2 + P2 — 2 aPc. 

Set c = m/n, where m, n are relatively prime. Without loss of generality, 
we may assume that a, a, p are integers with no common factor. To treat 
one of two analogous cases leading to like results, let n be odd. Then n 
must divide ap. Thus a = rai, p = spi, n = rs, 

(2) a2 = r2a\ + s2p\ — 2ma-ip1. 

Now ai, Pi are relatively prime, since a common factor would divide a. 
We may take pi odd. The product of (2) by r2 may be given the form 

FiF2 = (n2 — m2)p\, Fi = ar + r2ai — mph F2 ~ ar — r2ai + mPi. 

If Fi and F2 were both divisible by a prime factor p of pi, then 2r2ai and 
hence rax would be divisible by p, likewise a by (2), whereas a, a, p do not 

1,2 G£om6trie de position, Paris, 1803, 391-3. 
m Jour, ftir Math., 37,1848, 1-20. 
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have the common factor p. Hence 

Fi = fy2, Fi — gz2, yz = ft, fg = n2 — m2, 

Fi ~ Ft = 27fai _2m=fj[_0Z 
ft iSx z y' 

Divide the latter equation by n and set £ = fyl(nz). Thus 

— = 2c4-£—- + — 
/» + * l+£’ P 2£ 

The rationality of £ is thus a necessary condition for the rationality of the 
ratios of the sides of triangle AEB. It is a sufficient condition, since 

P 2£ 

by (1). There are similar formulas for the remaining three triangles whose 
angles at E are w and 7r — w. Taking p as the unit of length, we have 

(£ + c)2 - 1 

B 

a 

(x 
2£ 

-c)2 

y = 

B 

y 

(y -cY-1 

2v 
(y + c)2 - 1 

(3) 

^ a 2x 7 y 2 y ’ 

where £, y, x, y are rational. By multiplication, we obtain two values for B. 
Hence we have the condition 

f6v ft + c)2 - 1 (a: — c)2 — 1_(77 — c)2 - 1 (y + c)2 - 1 

V ; 2£ 2x 2y ' 2y ' 

Hence for any set of rational solutions of (5), such that | c | < 1, we obtain 
a quadrilateral with rational diagonals and rational sides 

where t = 1 — c2, while a, y are given by (3). 
Let also the area $ (ap + Py + yB + Ba) sin w of the quadrilateral be 

rational, and hence also sin w. The rational solutions of sin2 w + c2 = 1 are 

sin tp = 
2\ 

X2 + V 

X2 - 1 

C X2 + 1 ‘ 

Hence to obtain all rational quadrilaterals we have only to seek the rational 
solutions c, £, 1?, x, y of (5) for which c is of the form (X2 — 1)/(X2 + 1). 
Now (5) is a quadratic equation in y whose discriminant must be a square: 

(7) {ax2 — 2c(a + y)x — at}2 + 4J,y2x2 = z2. 

Hence we may obtain all rational quadrilaterals as follows: Give arbitrary 
rational values to £, y} X and set 

X2 - 1 

C X2 + l' 
t = 1 - c2. 
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Determine all rational solutions134 x, z of (7). Then (5) determines two 
rational values of y, and (3), (4), (6) give the segments of the diagonals and 
the sides as rational numbers. 

W. Ligowski135 and J. Cunliffe1850 gave special rational inscribed quadri¬ 
laterals. 

D. S. Hart188 desired an inscriptible quadrilateral with integral sides 
o, b, c, d and diagonals x, y. Thus xy — ac + bd,x :y =* be + ad : ab + cd, 
so that the product of the three sums is to be a square, say the square of 
abc + d(a2 + b2 + c2)/2, which determines d. A. B. Evans took the sides 
AB = x, BC = mx, CD = nx, AD = px. As known, 

AC2 = (mp + n)ax2, BD2 = (mp + n)x2/a, a = . 
m pn 

The last gives p rationally. Let 

a = a2, n — q2, mp + n = {g + my/(a2q2 — 1) }2, 

which gives ?n. Hart137 found a trapezoid with integral values for the sides, 
diagonals, area and perpendicular between the parallel sides. 

G. Darboux188 based a geometrical theory of quadrilaterals upon two 
equations 

ati + bt2 + ctz + dti = 0, 74-7+7 + 7 = 0, 
II I2 I3 H 

where a, 6, c, d are the sides, and tj = eiuj, co,- being the angle between 
the yth side and any line in the plane. Regarding the t’s as homogeneous 
coordinates, we have a plane cubic curve. 

O. Schlomilch,139 started with two right triangles Ta=(l—a2, 2a, l-f**2) 
and Tfi, reduced their sides proportionally to obtain a common leg, 
and juxtaposed them to obtain a triangle with the sides (1 + c?){l, 
{a + j8)(l — ap), (1 + p2)a. Treating two such oblique triangles similarly, 
we obtain a quadrilateral with the sides (1 + a2)p, (1 + (F)a, (1 + y2)Se, 
(1 + 82)ye, where 

= (« + g)(l ~ 
€ (7 + 5)(1 — yh) * 

The sides, diagonals and area are rational if a, • • •, 5 are. 
S. Robins140 listed rational trapeziums whose area equals the square 

root of the product of the four sides, found by use of convergents to Va* + 1. 
H. Schubert88 (pp. 49-54) considered quadrilaterals inscribed in a circle 

of radius r. Let 2ai, • • •, 2o« be the arcs subtended by the sides. Then 

1M From simple solutions of (7), Kununer obtained new solutions by the method of Euler14*"148 
of Ch. XXII and thus deduced various rules for forming rational quadrilaterals. 

Archiv Math. Phys., 47, 1867,113-6. 
isfia New Series of Math, Repository (ed., T. Leyboum), 2, 1809,1, 74-5, 225-6. 
138 Math. Quest. Educ. Times, 20, 1874, 64r-5. 
I. 7 Ibid., 80-81. For history of inscriptible quadrilaterals with given sides, 21, 1874, 29-35. 

Bull. Sc. Math. Astr., (2), 3,1,1879,109-128; Comptes Rendus Paris, 88,1879,1183,1252. 
1,9 Zeitschr. Math. Naturw. Unterricht, 24,1893, 401-9. 
140 Amer. Math. Monthly, 5,1898,181-2. 
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the sides are 2r sin a,-, the diagonals are 

e = 2r sin (ai + a2), / = 2r sin (a2 + <*3)- 

The area is Je/ sin («i + <*3). In the very special case in which the tangents 
of |a2, |a3 are rational, as well as one side or r, the four sides, diagonals 
and area will be rational. 

A. Gerardin141 juxtaposed two right triangles with a common hypotenuse 
to obtain a quadrilateral whose sides have the values quoted from Brah- 
megupta by Hummer; also a second quadrilateral. 

E. N. Barisien142 noted the inscriptible quadrilateral with the sides 
AB = 75, BC = 68, CD = 40, DA = 51, segments of diagonals (at right 
angles) AI = 45, BI = 60, Cl = 32, DI = 24, and diameter 85 of circum¬ 
scribed circle. 

F. Neiss142a treated rational triangles and rational quadrilaterals. 
I. Newton1426 treated the problem to find the diameter x = DA of a 

circle having an inscribed quadrilateral ABCD, three of whose consecutive 
sides a = AB, b = BC, c = CD are given, while the fourth side is the diam¬ 
eter. We have xz — (a2 + i>2 + c2)x — 2abc = 0. E. Haentzschel and 
E. Lampe142c found rational quadrilaterals of this type by the method of 
Kummer.133 

E. Haentzschel148 treated rational quadrilaterals with perpendicular 
diagonals by setting c = 0, t = 1, in Hummer's work. Condition (7) is 
now a2(x2 — l)2 + Ay2x2 = z2; methods of finding rational solutions are 
developed. An evident special solution is obtained by taking £ = 77; then 
y = x, AB = BC, CD = AD, and the quadrilateral is given by the juxta¬ 
position of two congruent rational triangles. Next, taking x = 17 = cjd, 
y = { = a/b, we get Brahmegupta’s quadrilateral as quoted by Kummer. 
More general solutions are found by use of Weierstrass* ^-function. 

Haentzschel144 noted that the determination of a quadrilateral with 
rational sides, diagonals, area, and radii of the inscribed and circumscribed 
circles, depends on the rational solution of 

(fj? + 1)(^2 + 1) { (ac2 + l)(v2 + 1) + 4jw') = □. 

By use of Weierstrass’ ^-function, he found two infinite sets of rational 
solutions, including the special solutions by O. Schulz157 (pp. 98-103). 
Ankum’s method to deduce a rational tetrahedron from a rational quadri¬ 
lateral is applied to the quadrilaterals found here. 

E. N. Barisien145 noted that in the quadrilateral with the sides 

AB = 1625, BC = 2535, CD = 3900, DA = 3380, 

**■ Sphinx-Oedipe, 6,1911,187. ~ 
141 Mathesis, (4), 3, 1913, 263. He noted (p. 14) the quadrilateral with successive sides 15, 

20, 24, 7, diagonals 20, 25, and area 234. 
142a Rationale Dreiecke, Viereeke . . ., Diss., Leipzig, 1914. 
1426 Arithmetica universalis, Amsterdam, 1,1761, IV, Ch. 1, 140-150. 
142c Zeitschrift Math. Naturw. tJnterricht, 46, 1915, 190-4; 49, 1918, 139-144,144-5. 
141 Sitzungsber. Berlin Math. GeseJl., 14,1915, 23-31. 
144 Ibid., 14,1915, 85-94. 
145 L,interm6diaire des math., 23, 1916,195-6. 
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with diagonals crossing at right angles at 7, and having E, F, <?, E as the 
projections of 7 on the sides and K, L, M, N as its projections on EFy FGy 
GH, HE, there, are integral values for the distances from 7 to these 12 points, 
for the 8 segments on the sides, and for the 8 segments on EF, FG, GH, HE. 

E. Turri&re146 gave known results on inscriptible quadrilaterals with 
rational sides and diagonals. 

W. F. Beard stated and G. N. Watson147 proved that if two circles with 
centers 0 and O', and radii R and R'y are such that quadrilaterals can be 
inscribed in the first and circumscribed about the second circle, then the 
least integral values for Ry R'y c = 00' are 35, 24, 5, while general solutions 
follow from 

(R2 - c2)2 = {R'(R + c)}2+ {R'{R - c)}2. 

For rational quadrilaterals, see Turri£re,61~62 Euler148 and Schwering160; 
also, Euler32 of Ch. XV. Cf. Berton49 of Ch. XXIII. 

Rational Inscribed Polygons. 

L. Euler148 gave a construction to find a polygon with any number n 
of sides, inscribed in a circle with center 0 and radius unity, such that the 
sides, all diagonals, and the area are rational. Employ n — 1 arbitrary 
angles 2Ay 2By • • •, and take as the nth angle one whose sine and cosine 
equal the sine and negative of the cosine of the sum of those n — 1 angles. 
Take arc AB = 2A, arc BC = 2By arc CD = 20, etc. Hence side AB is 
2 sin A, side BC is 2 sin B, • • *, diagonal AC is 2 sin (A + B)y • • *. To 
make all the sines and cosines rational, take sin A = 2ab/(a2 + b2)y etc. 
Since triangle AOB equals sin A cos A, the area is rational. He gave 
complicated expressions which serve as rational sides and diagonals of 
an inscribed quadrilateral, but do not make the area rational. 

H. Schubert47 (pp. 28-38, or Schubert,88 pp. 55-67) considered an in¬ 
scribed polygon with the sides aXy • • •, an. Let 2cu be the arc subtended by 
a». Let n — 1 of the a’s (and hence all) be Heron angles.47 Let 

n—1 

tan §<*,• = qjpi, 4r = XI (?! + <$> 
<= l 

so that r is the radius of the circumscribed circle. Then the sides 
a,{ = 2r sin a,- are rational, also all diagonals since the ratio of any one to 2r 
is the sine of a sum of certain a9s. The area (sin 2ai + * • • + sin 2an)r2/2 
is rational. 

J. Cunliffe67 found rational inscribed pentagons. 

Rational Pyramids; Rational Trihedral Angles. 

A rational pyramid is one whose edges and volume V are rational. 
R. Hoppe149 considered a rational trihedral angle (one having rational 

sines and cosines of the face and dihedral angles). Let o, by c be the tangents 

146 L’enseignement math., 18, 1916, 408-410. 
147 Math. Quest, and Solutions, 4, 1917, 31-2. 
14* Opera postuma, 1, 1862, 229 (about 1781). 
149 Archiv Math. u. Phys., 61, 1877, 86-98. 
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of the half face angles. Then the cosine of the dihedral angle (2>, c) is 
[62 + c2 - a2(l + b2c2)~]l{2bc(l + a2)}. Adding and subtracting 1, we ob¬ 
tain as factors of the numerators 

D = a -f~ 2> -f- c — abc, A. = — cs. -f- ?> ~f~ c -f- abc, 

B — a — b + c + abc, C = a + 6 — c + abc. 

Hence s = sin (b, c) = ^lABCD/ {26c(l + a2)}. If /, g, h are the tangents 
of the half dihedral angles, then 

a - 2//(l +/*), (1 + 62)(1 + hz)jbh - (1 + c2)(l + g2)!cg, 

etc. If the latter equation has rational solutions, we obtain 32 distinct 
rational trihedrais, since we may replace b by its reciprocal, etc. 

To obtain a rational tetrahedron, we may take two rational trihedrais 
having a common dihedral angle and subject to the condition that the 
edges converge (in the earlier notation, bbr < 1, cc' < 1, / = /')• While 
the tetrahedron now has a rational volume, it remains to make the sixth 
edge rational. The condition is that b\ + b\ + c\ + c\ — 2 — 26i&2CiC2 — 2m 
be a square, where 

1 + W x b-V 1 + cc' c — cr 

1 1 - 66" 6 + 6" Cl ~ 1 - cc” c + c” 

mcb'c'il-P) 

m (1 - 66') (1 - cc')(6 + 60 (c + <0(1 + P) ‘ 
K. Schwering150 discussed rational tetrahedra by use of the formula 

36 F2 = Pg2h2F, F = (1 — cos2 a)(l — cos2 #) — (cos y — cos a cos #)2, 

where /, g, h are the edges from the vertex D, and a, #, y are the face 
angles at D, while a, b, c are the sides of the base of the tetrahedron. 
The first problem is to choose rational values of the cosines such that F 
shall be the square of a rational number. The first term of F must be the 
sum of two squares. Give 1 — cos2 a the form of a fraction whose de¬ 
nominator is a perfect square. Then its numerator is a divisor of a sum 
of the squares of two integers and hence is itself the sum of two squares. 
Thus 1 — cos2 a equals the sum of two rational squares. Hence cos2 a is 
one of three rational squares whose sum is unity; likewise for cos2 ft. Con¬ 
sider the integral squares equal to the sums of the squares of three inte¬ 
gers; for instance 

(m2 + n2 + p2 + <Z2)2 = (m2 + n2 — p2 

If 
Q2 = M2 + 2V2 + P2, 

we take 
M 0 Mt 

COS ot — , cos# = 

q2)2 + (2 mp + 2 nq)2 + (2 mg — 2 np)2. 

Q\=M\ + N\ + PI 

MMi - NPi + PNt 

and find that F is the square of (NN± + PPOIQQi* 

Jour, fttr Math., 115,1895, 301-7. 
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The next problem is to find rational solutions of 

a2 ~ g2 + h2 — 2gh cos a, b2 = h2 + /2 — 2hf cos 0, c2 = Z2 + 92 — 2/g cos 7, 

where the cosines are given rational numbers. Set 

a = \g + h, 5 = p/ + ft, c = vg + /. 
Then 

#(1 — X2) = 2ft(X + cos a), /(I — p2) = 2ft(p + cos 0), 

g(l — v2) = 2/(p + cos 7). 

Hence gjf has the value 

_1 — p2 X + cos a __ 2{v + cos 7) 

3 ~ 1 - X2' fi + cos 0 - 1 - V2 ' 

If cos a = cos 0 = cos 7 = 0, we have a rectangular tetrahedron and 
the problem reduces to that treated by Euler3 of Ch. XIX to find three 
squares such that their sums by pairs are squares. This process of Euler 
leads in the general problem to 

— X — + cos 7) + 2p (cos a + cos 0) + 1 — cos 7 + 2 cos a cos 0 
4(p + cos 0) 

For example, let M = N = 0, P = Q = 3, Mi = Pi = 2, Ni = — 1, 
Qi = 3. Then 

A * 2 - 1 x p2 + 2p + 2 
cosa = 0, cos 0 = Qt cos 7 =-3", “X= 6^+T~‘ 

Thus /, g, ft are proportional to (6p + 4) (p2 — 2p — 4)(5p2 + 2p — 2), 
6(6p + 4)(p2 - l)(p2 + 2p + 2), 3(p2 - l)(p2 - 4p - 2)(p2 + 8p + 6). 
For p = 0, we remove the factor 4, and get / = 8, g = — 12, ft = 9, 
a = 15, b = — 7, c = 12, F = 96, in which the signs may be taken positive. 
For p = - 2 we get / = 112, 0 = 72, ft = 135, a = 153, 5 = 103, c = 152, 
V = 120960. 

To obtain a rational quadrilateral, set 0 + 7 = a or 2t — a. For 
example, for cos a = cos 0 = cos 7 = — we have 

/ • (7p2 - 4)(p2 - 4)(2p - 1), p = 8(p2 - l)(p2 + 2)(2p - 1), 

h = p(p2 — l)(p + 4) (p2 — 12p + 8). 

Thus, for p = — I, we have the rational quadrilateral ABCD, in which 

AR - 138, RC = 192, CD = 168, DA = 127, AC = 283, DB = 120. 

We obtain a simpler solution by taking X = p. Thus, for cos a = — 3/7, 
cos 0 = 0, cos 7 = 2/7, j/ = — 2, we have X = — 3 and/ — 6} g — 7, h = 8, 
a = 9, 5 = 10, c = 11, F = 48. For cos a = cos 7 = J, cos 0 = — J, 
v = 2, we get the rational quadrilateral AB = 48, RC = 57, CD = 73, 
DA = 80, AC = 63, RD = 112. 

H. Schubert47 (pp. 50-7, or Schubert,88 92-104) employed a rational 
polygon inscribed in a circle of radius r and center C. Draw a perpendicular 
to its plane at C and of length ft such that in the right triangle of legs ft 
and r the angle opposite ft is a Heron angle47 p. Thus we have a rational 
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pyramid. For example, if the sides of the triangular base are 13, 14, 15, 
take cos ju = 65/97, sin /* = 72/97; then the altitude is h = 9, lateral edge 
97/8, and volume 252. 

Schubert151 discussed rational spherical triangles, i. e., having rational 
values for the tangents of half of each side and angle. 

R. Giintsche152 made use of F. Bessell’s153 relations between the face and 
trihedral angles and reduced the problem of the rational tetrahedron to 
a diophantine equation quadratic in q and quadratic in r with coefficients 
involving an arbitrary parameter p. Euler’s144 process of Ch. XXII is 
used to find solutions q, r rational in p, so that the six edges, the surface 
areas and volume are expressed rationally in p. 

Giintsche154 considered tetrahedra whose edges, surface areas and 
volume are all rational and having all faces congruent. He reduced the 
problem to the solution of 

^ + 0 - i)(^0 - - 0 - 1) = h% 

but did not solve it in general. But seven particular sets of solutions in¬ 
volving an arbitrary parameter are found.165 The tetrahedra of Hoppe149 
are all of the type here considered. 

E. Haentzschel166 wrote Giintsche’s cubic function in the form 

^(03 - 0) - 4^202 - i£(03 ~ 0) 

and reduced it to Weierstrass7 normal form 4H(s — e,) by the substitution 

4(s + 02/3) 

*= ■>-« » 

obtaining e1 = — 02/3; e2, ez = =F 03/4 + 02/6 =F 0/4. By use of Weierstrass7 
^-function, he solved 411 (s — c*) = v2. The case 0 = 7/3 is treated in detail. 

* O. Schulz157 treated rational tetrahedra. 
For special tetrahedra, see papers 30-31 of Ch. XIX. 

151 Auslese . . . Unterrichts- und Vorlesungspraxis, 3,1906, 202-250. 
ui Sitzungsber. Berlin Math. Gesell., 6, 1907, 2-16. 

Archiv Math. Phys., 65, 1880, 363-372, on spherical triangles with rational values for the 
sines and cosines of the angles and sides. Cf. M. Bambas, (3), 26, 1918, 195-6. 

154 Sitzungsber. Berlin Math. Gesell., 6, 1907, 38-53. 
146 He gave two such sets in Archiv Math. Phys., (3), 11,1907, 371. 

Sitzungsber. Berlin Math. Gesell., 12, 1913, 101-8. Continued, 17, 1918, 37-9. 
ur Ueber Tetraeder mit rationalen Masszahlen der Kantenlangen und des Volumens, Halle, 

1914, 292 pp. Cf. HaentzscheL144 



CHAPTER VI. 
SUM OF TWO SQUARES. 

Diophantus, II, 10, divided a given number 13 = 22 + 32, which is a 
sum of two squares, into two other squares, (z + 2)2 + (mz — 3)2, by taking 
m = 2, whence z = 8/5. In III, 22, Diophantus required four numbers x»* 
such that each of the eight expressions E = (2a;,-)2 db a;,- shall be a square. 
In any right triangle (p, 6, A), /i2 ± 2p6 = □. [If h2 = p] + b] (i = 1, 
* • *, 4), take a;,- = 2p,6,-a;2, 2a:,- = far; then E = a^(/i2 =b 2pt-6i) = □. j 
Hence we seek four right triangles with equal hypotenuses. We must 
therefore find a square which can be expressed as a sum of two squares in 
four ways. Take the right triangles (3, 4, 5) and (5, 12, 13); multiply the 
sides of each by the hypotenuse of the other. We obtain the triangles 
(39, 52, 65) and (25, 60, 65) with equal hypotenuses. The number 65 can 
be expressed as a sum of two squares in two ways: 65 = 42 + 72 = l2 + 82, 
since 65 is the product of 13 and 5, each a sum of two squares. Now form* 
the right triangle (33, 56, 65) from 7, 4 and (16, 63, 65) from 8,1. We now 
have four right triangles with equal hypotenuses. [If we carry out the 
corresponding process on the right triangles (a2 — 62, 2a6, a2 + 62), (c2 — d2, 
2cd, c2 + d2), we obtain by multiplication two triangles with the hypotenusef 

(1) (a2 + ¥) (c2 + d2) = (ac db 6d)2 + (ad T be)2. 

The right triangles formed from ac db bd and ad =F be give two new tri¬ 
angles with the same hypotenuse, provided c/d is distinct from a/5, 6/a, 
(a zb 6)/(a T 6).] 

Diophantus, V, 12, treated the division of unity into two parts such 
that, if a given number a is added to each part, the sums are (rational) 
squares. The problem is equivalent to the representation of 2a + 1 as a 
sum of two squares. It is stated that a must not be odd [so that no number 
4n — 1 is a sum of two squares]. Unfortunately the text of the second 
part of the necessary condition is very obscure. C. G. J. Jacobi1 emended 
it to read that 2a + 1 must have no factor of the form 4n —l; P. Tannery 
and T. L. Heath, in their editions of Diophantus, read prime factor; but 
neither correction makes the criterion exact. 

Diophantus, VI, 15, stated that 15 is not a sum of two (rational) squares. 
Mohammed Ben Alhocain,2 an Arab of the tenth century, gave a table 

of numbers equal to a sum of two squares, formed by adding each square to 
itself and to the larger squares. It is stated falsely that if an even number 
is a sum of two squares, one of them is unity. 

* See Ch. IV, Diophantus.7 
t For a like composition of factors a2 — eb2, see Euler*6 of Ch. XII. 
1 Berichte Akad. Wiss. Berlin, 1847, 265-278; Werke, 7, 1891, 332-344 (report below). 

Same by H. Hankel, Zur Geschichte der Math., 1874, 169. 
* Cf. F. Woepcke, Atti Accad. Pont. Nuovi Iincei, 14,1860-1, 306-9. 
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Leonardo Pisano,3 in his Liber Quadratorum of 1225, proved (1) and 
used it to solve x2 + y2 = a2 + b2, given a solution of c2 + d2 = e2\ 

x — (ac + bd)Iej y = (ad — bc)/e. 

This solution was reproduced without proof by Lucas Paciuolo and Cardan 
in their arithmetics (full titles on p. 6 and p. 8 of Vol. I). 

F. Vieta4 noted that X2 = F2 + (?, Z2 = B2 + D2 imply 

(1') (XZ)2 = (BG db JDF)2 + (BF T DG)2. 

If B and D are the hypotenuses, M, N and MDjB, ND/B the pairs of 
legs of two similar right triangles, a third right triangle with the legs 

(BM db DN)IB and (BN =F DM)/B has the hypotenuse V#2 + D2. In 
the special case F = B,G = D, (1') becomes (X2)2 = (2BD)2 + (B2 - D2)2; 
the right triangle with the sides 2BD, D2 — B2, X2 is called the triangle of 
double angle. Using the latter and the given triangle (Bf D, X), and 
applying the same rule, we obtain the triangle (3BD2 — Bs, D3 — SB2D, X3) 
of triple angle, etc. [equivalent to De Moivre’s formulas for cos na, sin na 
in terms of cos a, sin a]. 

Vieta,5 to express Z2 = B2 4- D2 as the sum of two new squares, employed 
a second right triangle (F} G, X) to obtain (1'), whence [cf. L. Pisano3] 

He noted that the method of Diophantus II, 10 consists in denoting the 
sides of the required squares by A + B, SA/R — D. Thus 

2SRD - 2R2B 2SRD + B(S2 - R2) 
A S2 + R2 5 A + B S2 + R2 

Hence from (J3, D, Z) and the triangle (2SR, S2 — R2} S2 + R2), formed 
from S} R} construct a third triangle by (F) and reduce the sides in the 
ratio R2 + S2. 

G. Xylander,6 in his comment on Diophantus V, 12, stated incorrectly 
that a must be the double of a prime. 

C. G. Bachet7 remarked that 10 is the double of a prime, while 
2*10 + 1 = 21 is neither a square nor the sum of two integral squares, 
and expressed his belief that 21 is not the sum of two rational squares. 
While Diophantus seemed to infer that the double of the even number a, 
increased by unity, should be a prime, this would exclude 22, 58, 62, for 
which 2*22 + 1 = 45 = 36 + 9, etc., whereas 45, 117 are not primes. 

* Tre Scritti inediti, 1854, 66-70, 74-5; Scritti L. Pisano, 2, 1862, 256. Review by O. 
Terquem, Annali Sc. Mat. Fis., 7, 1856, 138; Nouv. Ann. Math., 15, 1856, Bull. Bibl. 
Hist., 61. Cf. Woepcke, Jour, de Math., 20, 1855, 57; A. Genocchi, Annali Sc. Mat. 
Fis., 6, 1855, 241-4; M. Chaales, Jour, de Math., 2,1837, 42-9, who gave a geometrical 
proof. 

4 Ad Logisticem Speciosam Notae Priores, Props. 46-48; Opera Math., 1646, 34. French 
transl. by F. Ritter, Bull. Bibl. Storia Sc. Mat., 1, 1868, 267-9. 

5 Zetetica, 1591, IV, 2, 3; Opera Math., 1646, 62-3. 
6 Diophanti Alex. Rerum Arith. Libri sex, Basel, 1575, 129,1. 9. 
7 Diophanti Alex, Arith., 1621, 301-4. 
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He treated the generalization to divide any number (as 2) into two parts 
such that, if a given number (as 4) is added to each part, the sums are 
squares,—whence 10 is to be expressed as a sum of two squares each > 4. 

Fermat’s8 comment was: “ The true condition (namely, that which is 
general and which excludes all the numbers which are inadmissible) is that 
the given number a must not be odd and that 2a + 1, when divided by the 
largest square entering it as a factor, must not be divisible by a prime 
An - 1.” 

A. Girard9 (f Dec. 9, 1632) had already made a determination of the 
numbers expressible as a sum of two integral squares: every square, every 
prime 4n + 1, a product formed of such numbers, and the double of one 
of the foregoing. 

Bachet7 (p. 173) in his comment on Diophantus III, 22 found that 5525 
is the sum of the squares of 55 and 50, 62 and 41, 70 and 25, 71 and 22, 
73 and 14, 74 and 7. Also 1073 = 322 + 72 - 282 + 172 is a sum of two 
squares in four ways. Thus 5525 • 1073 is a sum of two squares in 24 ways, 
all being given. He stated and proved (1) in his Porisms, III, 7. 

Fermat10 made, apropos of Bachet;s preceding comments, the remarks: 
(A) Every prime of the form An + 1 is the hypotenuse of a right 

triangle in a single way, its square in two ways, its cube in three, its bi¬ 
quadrate in four, and so on indefinitely. 

(B) The same prime [An +1] and its square are the sums of two 
squares in a single way, its cube and biquadrate in two ways, its fifth and 
sixth powers in three ways, and so on indefinitely. 

(C) If a prime which is the sum of two squares be multiplied by an¬ 
other prime also the sum of two squares, the product will be the sum of two 
squares in two distinct ways; if the first prime be multiplied by the square 
of the second prime, the product will be the sum of two squares in three 
distinct ways; if the first prime be multiplied by the cube of the second, 
the product will be the sum of two squares in four distinct ways, and so on 
indefinitely. 

(D) It is now easy to determine in how many ways w a given number 
can be the hypotenuse of a right triangle. For the number paqbrc$, where 
p, q, r are primes of the form An + 1, while $ is a square having no such 
prime factor, 

w = 2c(2db “j“ a -f* 6) -{-* 2ab -f* a -1- b -f* c. 

Here, and in (E), Fermat used numerical values. 
(E) To find a number which is an hypotenuse in an assigned number 

w of ways, take the prime factors of 2w 4- 1, subtract 1 from each and 

8 Oeuvres, III, 256. 
9 L/arith. de Simon Stevin • • • annotations par A. Girard, Leide, 1625, 622; Oeuvres Math. 

de Simon Stevin par Albert Girard, 1634, p. 156, col. 1, note on Diophantus V, 12. Cf. 
G. Vacca, Bibliotheca Math., (3), 2,1901,358-9. Cf. G. Maupin, Opinionset Curiosites 
touchant la Math6matique, Paris, 2, 1902, 158-325. 

10 Oeuvres, I, 293; III, 243-6. Diophanti Alex. Arith., ed., S. Fermat, 1670, 127. 
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take half of the remainder as the exponent of any prime 4n + 1. [Since 

2w + 1 = (2a + 1)(26 + l)(2c + !)•*•, 

by D.] For w = 7,15 = (2 + 1)(2*2 + 1), and pq2 answers the question. 
(F) To find a number which shall be the sum of two squares in any 

assigned number w of ways. For w = 10, set 2w = 2-2*5. Subtracting 
1 from each prime factor, we get 1, 1, 4. Take three primes of the form 
4n + 1; for example, 8, 13, 17. The number sought is the product of two 
of these by the fourth power of the third. 

(G) Conversely, to find in how many ways a given number, say 325, 
is the sum of two squares, consider its prime factors of the form 4n + 1. 
Since 325 = 52-13, we take §{2-1 + 2+1 + 1} =3. Then 325 is the 
sum of two squares in three ways. For three exponents a, b, c, the number 
of ways is kj2 if k = (a + l)(b + l)(c + 1) is even, but is (k — l)/2 if k 
is odd. 

(H) To find an integer which is the hypotenuse of any assigned number 
w of right triangles, and which if increased by a given number a becomes 
a square. The question is difficult. If w = a = 2, 2023 and 3362 satisfy 
the conditions, as do also an infinitude of numbers. 

That no number 4n — 1 is a square or a sum of two rational squares 
was communicated to Descartes March 22, 1638, as having been proved 
by Fermat. Descartes11 proved this for integral squares by observing 
that a square is of the form 4k or 8k + 1. 

Fermat12 stated that he had proved that a number is neither a square nor 
the sum of two squares, integral or fractional, if its quotient by the largest 
square dividing it contains a prime factor 4n — 1; and that x2 + y2 is 
divisible by no prime 4n — 1 if x and y are relatively prime. 

Fermat (Oeuvres, II, 213) stated the contents of A, B, D, E in a letter 
to Mersenne, Dec. 25, 1640. Frenicle, in a letter to Fermat (ibid., 241), 
Sept. 6, 1641, proposed the problem to find the least number in F. T. 
Pepin13 noted that this problem and D are answered by the theory of 
quadratic forms. 

Fermat14 called the theorem that every prime 4n + 1 is a sum of two 
squares [cited henceforth as Girard's9 theorem] the fundamental theorem 
on right triangles. He15 stated that he possessed an irrefutable proof. 
Elsewhere he16 stated that his proof was by the method of indefinite descent: 
“ If a prime 4n + 1 is not a sum of two squares, there exists a smaller 
prime of the same nature, then a third still smaller, etc., until the number 
5 is reached," thus leading to a contradiction. He found it much more 
difficult to apply the method to such an affirmative question than to 
negative theorems (cf. Fermat,2 etc., Ch. XXII); for the former, “ the 
method had to be supplemented by some new principles." 

u Oeuvres de Descartes, II, 92; letter to Mersenne, March 31,1638. Cf. p. 195. 
u Oeuvres, II, 203-4; letter to Roberval, Aug., 1640. 
13 Memorie Accad. Pont. Nuovi Lincei, 8, 1892, 84-108; Oeuvres de Fermat, 4, 1912, 205-7. 
14 Oeuvres, II, 221; letter to Frenicle, June 15,1641. 
16 Oeuvres, II, 313,403; III, 315; letters to Pascal, Sept. 25,1654, and to Digby, June 19,1668. 

Oeuvres, II, 432; letter to Carcavi, communicated to Huygens, Aug. 14, 1659. 



Chap. VI] Sum of Two Squares. 229 

Frenicle17 concluded from numerical tables that, if pu p2, * • * are 
distinct primes, each the hypotenuse of a right triangle (a necessary and 
sufficient condition being that the prime is of the form 4k + 1), a number 
N = pi1 • • • pen is the hypotenuse of exactly 2n‘~1 primitive right triangles 
(i. e., with relatively prime legs). He recognized that the problem reduces 
to the question of the number of ways in which the proposed number N 
can be expressed as the product of two relatively prime factors. The non- 
primitive triangles are obtained from the primitive triangles whose hypot¬ 
enuses are the factors of N. Fermat’s rule D is given. Problem G is dis¬ 
cussed (pp. 34-^46). 

John Kersey,18 to treat x2 + y2 = d2 + b2 of Diophantus II, 10, set 
x = ra + b, y = sa — d. Thus a = 2(sd — rb)/(s2 + r2), so that the values 
of x, y follow. He also treated the problem [Baehet,7 304] with the restric¬ 
tion that x or y shall fall within given limits. 

Claude Jaquemet,19 in a letter Jan. 26, 1690, proved that an integer not 
a square, which divides no sum of two squares without dividing each 
square, is not a sum of two squares, integral or fractional. A manuscript 
by Jaquemet or N. Malebranche proved also that a number which 
divides a sum of two relatively prime squares is itself a sum of two squares ; 
but the later proof by Euler24 is far simpler. Cf. Bh&scara,30 § 88, of Ch. XII. 

The Japanese Matsunago,20 the first half of the 18th century, would 
solve x2 + y2 = k by setting Jc/2 — r2 + R, where r2 is the greatest square 
contained in ky and forming the equations 

di = 2r — 1, a2 = di — 2, a3 = a2 — 2, • • •, 

hi = 2r -j- 1, b2 = bi -f- 2, 63 = 62 -f* 2, • • *. 

From 2R subtract successively 61, b2) *. When a difference is negative, 
add the corresponding a*. If the remainder zero is reached, and a', br 
are the values last employed, a solution is 

s * W + 1), V = i(P - !)• 

It was stated that a set of solutions of x2 + y2 = z3 is given by 

x = (m2 — 3 n2)m, y — (3m2 — n2)n, z = m2 + n2. 

.L. Euler21 proved that, if neither a nor b is divisible by the prime 
p = 4n — i9 then a2 + b2 is not divisible by p. For, a4n“2 — 64n“2 is 
divisible by p and hence a4n~~2 + &4n~2 is not; thus the factor a2 + b2 of 
the latter is not divisible by p. 

Euler22 stated that if 4m + 1 is composite it is either not a sum BO of 
two squares or is so in more than one way; if ab and a are GS, b is a G2. 

17 M&n. Acad. Roy. Sc., 5,1666-99, 6d. Paris, 1729, 22-34, 156-163. 
18 The Elements of Algebra, London, Book 3, 1674, 9-17, 20-23. 
19 Bull. Bibl. Storia Sc. Mat. e Fis., 12, 1879, 890-4, 644; 13, 1880, 444. 
20 Y. Mikami, Abh. Geschichte Math. Wiss., 30,1912, 233. 
21 Correspondence Math. Phys. (ed.. Fuss), 1, 1843, ll7; letter to Goldbach, March 6,1742. 

Novi Comm. Acad. Petrop, 1, 1747-8, 20; Comm. Arith., I, 53, § 16. French transl. 
in Nouv. Ann. Math., 12,1853, 46. 

22 Corresp. Math. Phys. (ed., Fuss), 1, 1843, 134, letter to Goldbach, June 30, 1742. 
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He stated he had a rigorous proof. He stated Feb. 16, 1745 (p. 312) that 
it has not yet been proved that the sum of the squares of two relatively 
prime integers has no divisor other than a 2, nor that every prime 4n + 1 
is a 12, uniquely. 

Chr. Goldbach23 proved Fermat’s statement that a prime 4& — 1 cannot 
divide the sum of two relatively prime squares. Let a2 be the minimum 
square of the form (4n — 1 )m — 1. Set v = 4n — 1. Then 

v(m — 2a + v) — 1 = (a — v)2, 

so that a2 ^ (a — v)2, whence v ^ 2a. Similarly, 

{4(n — a m) — l)m — 1 — (a — 2m)2, a2 ^ (a — 2m)2, m is a. 

Thus a2 + 1 = m ^ 2am ^ 2a2, a = 0 or 1, values leading to contradic¬ 
tions. 

Euler24 proved the Lemma: Every divisor of the sum of two relatively 
prime squares is itself the sum of two squares. 

It is first shown that, if p = c2 + d2 is a prime and pq — a2 + 62, then 
$ is a 12. Since c2(a2 + b2) — a2(c2 + d2) is divisible by p, one of the factors 
be ±ad is of the form mp. Set b = me + x, a = ± md + y. Then 
cx zb dp = 0. But c is prime to d. Thus* x — ndt y = =F nc. Hence 

pq = (m2 + n2)(c2 + d2), g = m2 + n2. 

It now follows from (1) that, if the primes pi, • • *, pk and the product 
Pi * • • pkq are all 12, then q is a El. Hence if pg, but not g, is a S3, p has a 
prime factor not a EL 

Let p divide a2 + 62, where a, 5 are relatively prime, while p is not 
a El. Set a = mp dt c, 5 = np ± d, 0 ^ c ^ |p, 0 d ^ §p. Then 
c2 + d2 = pg ^ |p2. Hence g has a prime factor r ^ Jp, not a (2. As 
before, the divisor r of c2 + d2 divides a sum e2 + f2 |r2, and e2 + /2 
has a prime factor ^ |r not a El. Proceeding in this manner we ulti¬ 
mately reach a contradiction with the fact that the sum of two sufficiently 
small squares has all its prime factors sums of two squares. 

Euler gave a “ tentative proof ” of Girard’s theorem that every prime 
p = 4n + 1 is a (2. If neither a nor b is divisible by p, a4n — b4n is divisible 
by p. If p divides the factor a2n + £>2n, a 12, then p is a 2. It remains 
to showf that a2n — b2n is not divisible by p for some pair of values of a, b 
[proved later by Euler25]. 

Since p = a2 + b2 implies 2p = (a + 6)2 + (a — 6)2, and conversely 
2p = a2 + b2 implies p = a2 + /32, where a = (a + 6)/2, /3 = (a — b)j2 are 
integers, there are as many representations of p as of 2p as a sum of two 
squares (including the case in which one square is zero). 

23 Correep. Math. Phya. (ed., Fuss), 1,1843, 255, letter to Euler, Sept. 28,1743. Euler, p. 
258, expressed surprise at the simplicity of the proof. 

24 Ibid., 416-9; letter to Goldbach, May 6, 1747. Novi Comm. Acad. Petrop., 4, 1752-3 
(1749), 3-40; Comm. Arith., I, 155-173. 

* In the letter, it is concluded from be db ad = m (c2 + d?) that md T a is divisible by c; 
Thus =F a - cn — dm, b = cm + dn. 

t In the letter, it is stated that there are innumerable cases in which o2n — bin is not divisible 
by 4 n 4* 1. 
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From Girard’s theorem and (1) it was concluded that any number is 
a El if it has the form 2J'a2b, where each prime factor of b is of the form 
4Jc 1. 

Euler25 later succeeded in establishing the point which he could not 
prove in his preceding paper.24 If the differences (a + l)2n — a2n of the 
first order of 1, 22n, 32n, (4ri)2n were all divisible by p, the differences of 
order 2n would be divisible by p, whereas they equal (2n)l This point 
can also be proved by means of Euler’s26 criterion for quadratic residues; 
however, Euler proved this criterion by the method of differences. In the 
former25 paper (§ 70), Euler noted that the negative of a residue of a square 
when divided by a prime 4n — 1 is not the residue of a square, whence 
a2 + b2 is not divisible by An — 1 if a and b are not. Since a product of 
primes of the form Ah + 1 is of that form, it follows (§ 73) that An — 1, 
whether prime or composite, is not a divisor of a sum of two relatively prime 
squares. 

Lagrange9 of Ch. VIII proved that if a El divides a El the quotient is a El. 
Euler27 proved (1) by multiplying (a + bi) (c + di) by its conjugate. 
Euler28 gave a more elegant proof of the Lemma.24 Let N divide 

P2 + Q2, where P and Q are relatively prime. Set 

P = fN ± p, Q = gN =fc q, 0 ^ p ^ %N, 0 ^ q ^ JN. 

Then p2 + q2 — Nn, where n ^ fiV. Set p = an + a, q = @n + b, where 
a and b are numerically ^ \n. Set A = aa + b(3. Then 

Nn = n2(a2 + /32) + 2 nA + a2 + b2. 

Hence a2 + b2 = nn', nf ^ \n. Thus N = n(a2 + /82) +2A + n*. By (1), 

nn'ia2 + /32) = (a2 + b2)(a2 + £?2) = A2 + B2, B = a/3 — ba. 

Hence Nnf = (V + A)2 + B2. Just as this was derived from Nn = p2 + q2r 
so from it we get Nn" = E3, n" ^ Jn', etc., finally N A = E. 

C. G. J. Jacobi1 (p. 341) repeated this proof and stated that, while it 
contained nothing not known to Diophantus, there is no ground for the 
assumption that the latter actually possessed the proof. 

Euler29 gave a second proof of Girard’s theorem. Since ~ 1 is a 
quadratic residue of every prime p = An + 1, there exists a square b2 
with the residue — 1, so that p divides 1 + b2. Hence, by the Lemma, 
p is a E]. 

In a posthumous manuscript, Euler30 proved the first step in the above 
Lemma. Let P — p2 + q2 be divisible by A = a2 + ¥, where a is prime 

25 Corresp. Math. PhySv (ed., Fuss), 1, 1843, 493; letter to Goldbach, April 12, 1749. Novi 
Comm. Acad. Petrop., 5, 1754-5 (1751), 3; Comm. Arith., I, 210. 

26 Novi Comm. Acad. Petrop., 7, 1758-9 (1755), 49, seq., §78; Comm. Arith., I, 273. 
27 Algebra, St. Petersburg, 2, 1770, §§ 168-172. French transl., Lyon, 2, 1774, pp. 201-8. 

Opera Omnia, (1), I, 417-420. 
28 Acta Eruditorum Lips., 1773, 193; Acta Acad. Petrop., I, 2, 1780 (1772), 48; Comm. 

Arith., 1,540. Proof reproduced by Weber-Wellstein, Encyklopadie der Elem. Math., I 
(Alg. und Analysis), 1903, 244-250. 

29 Opusc. anal., 1, 1783 (1772), p. 64 seq., § 36; Comm. Arith., I, 483. 
*°Tractatus de numerorum, §§ 564-7; Comm. Arith., II, 572. Same in Opera Postuma, 1, 

1862, 72. 
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•to b. Since A is prime to a and b, we may set p = mA ± fa, q — nA ± gb. 
Thus fa2 + g2b2 is divisible by A. The error in the conclusion that g = / 
was pointed out in a marginal note by means of the case p = 17, q = 6, 
a = 7, 6 = 4. However, (gr2 —/2)b2 and hence — /2 is divisible by A. 
If we assume that A is a prime, we see that g d= / is divisible by A, so that 
q = vA zkfb. Hence 

PI A = (/ ± ma d= z>b)2 + (=b va =F mb)2. 

Thus Euler’s proof of the first step in the Lemma is valid if A is a prime. 
He gave (p. 570) another proof by setting p — ma — nb, q = na + mb + $. 
Then P = A(m2 + n2) + sk7 k = 2 (na + mb) + $• Since A is a prime, 
either s — tA or k = — tA. In either case, 

P/A = (m + bt)2 + (n + at)2. 

J. L. Lagrange31 deduced from Wilson’s theorem the fact that the 
prime An + 1 divides (1*2 ■ • • 2n)2 + 1. He32 proved the Lemma in con¬ 
nection with the general problem to find the form of the divisors of numbers 
represented by Bt2 + Ctu + Du2. He33 deduced Girard’s theorem from 
the fact that a prime p of the form An + 1 divides x2n + 1 for 2n integral 
values of x numerically < \p (it being a factor of x^1 — 1). 

Beguelin75 of Ch. I failed in his attempt to prove Girard’s theorem. 
P. S. Laplace34 remarked that every prime An + 1 will be a El if proved 

to divide a E3, in view of Lagrange.32 But An + 1 divides (a2n 4* l)(a2n — 1) 
and not the last factor for every a, since 

(2n)l = {(2n + l)2* - 1} - 2n{{2n)2n - 1} + - • 

by the formula for the 2n\h order of differences of x2n — 1 for x = 1 
[Euler25]. 

J. Leslie34* solved x2 + y2 = a2 + b2 by setting 

x + a = (b — y)m, x — a ~ (b +y)/m. 

C. F. Kausler35 gave tentative numerical methods of expressing a given 
number A as a sum of 2, 3 or 4 squares. 

Let A = 4C + 1 = (2P)2 + (2Q + l)2. Then C = P2 + Q(Q + 1). 
If G - 2D + 1, then P = 2T + 1 and D - ±Q(Q + 1) = 2T(T + 1). 
Hence we subtract from D in turn the halves of the pronic numbers 
Q(Q + 1), given by a table (extending to Q = 225), and note if any re¬ 
mainder is double a pronic number. If C = 2D, then P ~ 2T and we 
use D - iQ(Q + 1) = 2TK 

A number A = AB + 2 can only be the sum of two odd squares, whence 

B ~ P(P + 1) + Q(Q + 1)* • 

Thus B = 2C. Set P = Q + R. Solving the quadratic for Q, we see 

81 Nouv. M6m. Acad. Berlin, amide 1771 (1773), 125; Oeuvres, III, 431. 
uIbid., annde 1773, 275; Oeuvres, III, 707. 
88 Ibid., amide 1775, 351; Oeuvres, HI, 789-790. 
u Throne abrdgde des nombres premiers, 1776, p. 24. 

Trans. Roy. Soc. Edinburgh, 2,1790,193. 
86 Nova Acta Acad. Petrop., 11, ad annum 1793 (1798), Histoire, 125-156. 
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that 4C2 + 1 — R2 must be a square. The problem thus reduces to finding 
two squares with the sum 4C2 + 1, treated in the first case. 

The methods employed to express A as a S3 or (2 are no better than the 
similar one of subtracting from A in turn squares, or sums of two squares, 
and ascertaining if the remainder is a E. 

Kausler36 extended his table of pronic numbers to Q = 1000, and gave 
their halves and quarters, and applied them as in the former paper. Given 
A = a2 + b2, to solve x2 + y2 — A, set x = a + 2ma, y — 2na ~ b. Then 
a — {rib — ma)/{m2 + n2) is to be integral. Let m, n be relatively prime. 
Then b = an + 13m, where /3 = (am + a)/n is an integer. The latter gives 
n = pa + pa, m — qa + /x0, where p/q is a convergent to a//3. Then the 
former gives a relation between a, 0, p, q, p which is not solved. 

C. F. Gauss37 applied the theory of binary quadratic forms to prove that 
every prime 4n + 1 is a E in a single way. In a foot-note he considered 
M = 2^Saab^ • • •, where a, b, • • • are distinct primes of the form An + l, 
and S is the product of all the prime factors An + 3 of M. If S is not a 
square, M is not a El. It is stated that, if S is a square, there are 

* = *(«+ 1)0? + !)••* 

decompositions of M into a sum of two squares, when one of the exponents 
a, p, • • • is odd; but k + | if a, (3, • • • are all even. Here the squares and 
not their roots are counted. 

A. M. Legendre38 had already given the last result. 
Legendre39 developed Vp into a continued fraction with the 

quotients a a (3 p p j3 a 2a--*, 

A la mo m f0 f 
convergents ^ ... ... ***> 

0 1 n0 n <7o g 
where /2 — pg2 = — 1. Then by use of the convergents corresponding 
to p, p, 

f __ m{n/no) + m0 

g ~~ n{nlno) + n0 ’ 
f = mn + mQno, g = n2 + nl. 

Substituting these values into f2 — pg2 — — (mn0 — mQn)2, we get 

m2 — pn2 — — (mo — pn\). 

But if (Vp + Jo) /D0 and (Vp + J)/Z> are the complete quotients corre¬ 
sponding to m0/tt0, w/n, then 

m2 — pn2 = (mn0 — m0n)D, ml — pn20 — — {mno — mori)Do. 

Hence D0 = D, so that DDQ + I2 = p gives p = D2 + J2-__ 

“ Nova Acta Acad. Petrop., 14, ad annos 1797-8 (1805), 232-267. 
17 Disquisitiones Arith., 1801, Art. 182; Werke, I, 1863, 159-163. 
» Th6orie des nombres, 1798, p. 293; ed. 3, 1830,1, 314 (transl. by Maser, I, 309). 

Th^orie des nombres, ed. 2, 1808, 59-60; ed. 3,1830,1, 70-1. (Maser, I, 71-73). Cf. 
Dirichlet,88 § 83, long footnote. Cf. Euler72 (end), of Ch. XII. 
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Legendre40 stated that every divisor of a sum of two relatively prime 
squares is a sum of two relatively prime squares. P. Volpieelli41 noted 
that the latter need not be relatively prime since d = 2197 = 392 + 262 
is a divisor of 13d = 1192 + 1202 [but d also equals 92 + 462]. 

P. Barlow42 stated that a number + 1 is a prime if a (23 in one way 
only. [He should have said relatively prime squares; 45 = 36 + 9 is a El 
in a single way. For Euler's proofs of the correct theorem see Ch. XIV 
of Vol. I]. 

A. Cauchy43 obtained (1) by taking the norm of the product of two 
complex numbers. 

C. F. Gauss44 stated that, if a prime p = 4ft + 1 is expressed in the form 
e2 + Z2, e odd, / even, then d= e and zb / equal the minimum residues (i. e., 
between — p/2 and + p/2) modulo p of \rj(k\) and Jr2, respectively, where 

r - (k + 1)(* + 2) * • * (2k). 

The residue of db e is positive or negative according as the positive value 
of e is of the form 4m + 1 or 4m + 3. But there is given no general rule 
as to the sign of zb / (cf. Goldscheider130). 

Gauss45 noted that the number of sets of integers x, y for which 
x2 + y2 ^ A is 

4g2 + 1 + 4[VJ] + 8 £ [a/A -j2] 
j=q+l 

— 1 + 4{[A] — [A/3] + [A/5] — [A/7] + * • •}, 

where q — [Va/2], r = q + [ Va], and p] denotes the greatest integer ^ t. 
Denote by /(A) the number of representations of A by x2 + y2, which ia 
8 if A is a prime 4n + 1, while for A = 2u£aa&p • * • (as in Gauss37) 

/(A) - 4(« +1)05 + 1).. ■ 

or 0, according as S is a square or not. The mean of /(A) is t. Set 
f(m) = /(m) +/(3m); the mean of f(m) is 47r/3. Set 

r(m) = /'(5m) -/'(m); 

the mean of f"(m) is 16tt/15. Proceeding, we approach the mean 4 and 
find that 

4 = it • i • i • f * xf • • • (to infinity), 

the denominators being the successive odd primes p, and the numerators 
being p ± 1. 

40 ThSorie des nombres, 1798, 190; ed. 2, 1808,175; ed. 3, 1830,1, 203 (Maser, I, 204). 
41 Annali di Sc. Mat. Fis., 4, 1853, 296. 
42 Theory of Numbers, London, 1811, p. 205. 
a Cours d’analyse de Pecole polyt., 1,1821, 181. 
44 Gott. gelehrte Anz., 1, 1825; Comm. soc. sc. Gott. recent., 6, 1828; Werke, II, 1863, 168, 

90-1. Cf. Bachmann,96 Kreisteilung, Ch. X. 
46 Posth. MS., Werke, II, 1863, 269-275, 292; Gauss-Maser, Hohere Arith., 1889, 656-661. 

Cf. Eisenstein,58 Hermite.117* m 



Chap. VI] Sum of Two Squares. 235 

C. G. J. Jacobi46 stated in a letter to Legendre, Sept. 9, 1828, that the 
theorems relative to numbers represented as a (2! follow from 

(1 +2j + 23' + 22»+. = + 

= i . 4? ^ __ 4g6 4g10 

1-g 1 + g2 l-g^l + g4^ *"* 

A. Genocchi75 noted the conclusion that, if x2 + y2 = n has Ni (0 or 2) 
sets of solutions with x or y zero, and N2 other sets, Ni + 2N2 is double the 
excess of the number of divisors 4m -f 1 of n over the number of divisors 
4m -f 3 of 

Jacobi47 gave the formulae 

2 kK 4 g1/2 4 <?!2 4 g5/2 

1 - <f 
+ = 42il/(ri)qm'nl2, 

where m, n range over all odd integers such that all prime factors of m 
are s 3 (mod 4), all of n are = 1 (mod 4), while k(n) is the number of 
factors of n and hence is the excess of the number of divisors 4k + 1 of 
m2n over the number of divisors 4k + 3 of m2n; 

J -2 g1/4 + 2g9/4 + 2g25/4 + • • •. 

A comparison of the square of the latter series with the former shows that 
the number of representations of 2m2n as a sum of two odd squares is the 
excess of the number of divisors 4k + 1 of m2n over the divisors 4k + 3. 

Jacobi48 proved that 
9 JC co 

-=1+4E4<V, 
7T x=l 

where A(a:) is the excess of the number of divisors 4m + 1 of x over the 
number of divisors 4m + 3. Although not explicitly stated by Jacobi, 
it follows that the number of representations of x as a (2) is 4A(x) [cf. 
Dirichlet52]. Evident corollaries relating to the evenness or oddness of 
the two squares were noted by J. W. L. Glaisher.49 

Jacobi50 gave an arithmetical proof of his47 first theorem: If p is odd, 
the number of sets of positive integral solutions of y2 + z2 == 2p is the 
excess E of the number of factors 4m + 1 of p over the number of factors 
4m + 3. Let 

? = pRaf* • • • 

where ay • • •, p are primes 4m + 1, and a!, • • *, a' are primes 4m + 3. 
The factors of p are the terms of the product 

(l + a+ • • • + cla) • • * (1 + p + • • • + pR){ 1 + o! + • ■ * + ol,a ) • • •. 

48 Jour, fiir Math., 80, 1875, 241; Werke, I, 424. 
« Fundamenta Nova Func. EUip., 1829, 106 (31), 107, 103(5), 184(7); Werke, I, 162(31), 

163, 159(5), 235(7). a. Jacobi226 of Ch. III. 
48 Fund. Nova Func. Ellip., 107, 184 (6); Werke, I, 162-3, 235(6). 
49 Quar. Jour. Math., 38, 1907, 7. 
60 Jour, fur Math., 12, 1834, 167-9; Werke, VI, 245-7. 
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Set a = * * • = p = 1, a = • • • = <r' = — 1. Then a factor 4m + 1 is 
replaced by + 1, a factor 4m + 3 by — 1. Hence the product is replaced 
by E. Thus 

E = (1 + A) * • • (1 + R) 

Hence E = 0 unless A', • • *, S' are all even. If the latter are all even, E 
is the number of factors of n = aA * • • pR, while p = nQ2, where every prime 
factor of Q is of the form 4m + 3. Now 2p is not a 03 unless p is of this 
form nQ2. Also 2nQ2 = p2 + z2- requires that y and z be divisible by Q, 
while 2n = w2 + x2 has as many sets of positive solutions as n has factors 
(all the factors of n being ofvthe form 4m + 1). 

A. D. Wheeler51 gave trivial or known results on E. 
G. L. Dirichlet62 obtained, as a special case of a general thoerem on 

quadratic forms, Jacobi’s48 result that, if n is odd and positive, the number 
of sets of solutions of x2 + y2 = n is the quadruple of the excess of the 
number of divisors Ak + 1 of n over the number of divisors Ak + 3. 

A. Cauchy53 proved Gauss’44 result that, if p = x2 + y2, 

1 (2«)t f j \ p-l 

Cauchy54 proved identities of the type 

(1 + 21 + 2£4 + 2t* + • * -)2 = (1 + 212 + 2t* + •. -)2 

+ 42(1 + J4 + 212 + 224 + * • *)2- 

G. Eisenstein55 gave the values of A, B in p = 4n + 1 = A2 + J32 and 
p = 3n + 1 = A2 — AB + B2, where p is a prime. He58 stated that the 
nimiber of lattice points inside and on the circumference of a circle of radius 
•Vm and center at the origin is 

C. G. J. Jacobi57 gave the representation as a E] of each prime 
An + 1 ^ 11981. 

Jacobi1 noted in 1847 that an insignificant change in the text of 
Diophantus V, 12 gives the result that, if a number without a square 
factor is a El, neither itself nor a factor of it has the form 4n — 1, and 
expressed his belief that Diophantus had a proof, though he gave none, 
since all that is essential to a proof was in the Greek mathematics and is 

51 Amer. Jour. Sc. and Arts (ed., B. Silliman), 25, 1834, 87. 
63 Jour, fur Math., 21, 1840, 3; Werke, I, 463. Zahlentheorie, § 91. 
M M6m. Ac. Sc. Paris, 17, 1840, 726; Oeuvres, (1), 3, 1911, 414. 
M Comptes Rendus Paris, 17,1843, 523, 567; Oeuvres, (1), VIII, 50, 54. 
M Jour, fur Math., 27, 1844, 274. 
K Ibid^ 28, 1844, 248. Cf. Gauss,45 Suhle73* and Cayley.81 Proved also by H. Ahlborn, 

Ueber Berechnung von Summen von grossten Ganzen auf geometrischem Wege, Progr. 
Hamburg, 1881, 18. 

w Jour, fur Math., 30, 1846, 174r-6; Werke, VI, 265-7. Errata, Mess. Math., 34,1904, 132. 
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in the spirit of their method. From this point of view, Jacobi proved that, 
if a given odd number N is the sum of the squares of two integers b and c 
having no common factor 4n — 1, every prime factor p of N is of the form 
4k + 1. When 5, c are relatively prime, the proof shows that p and hence 
every divisor of N is a sum of two rational squares. The fact that every 
divisor is a sum of two integral squares is established by an argument 
perhaps not known to Diophantus and not necessary for his assertion. 

F. Arndt,58 using continued fractions as had Legendre39 for the case of a 
prime, proved that the hih power of a prime 4n + 1 is a El in 2h~~1 ways. 

J. B. Kulik59 gave the representation as a E of each prime ^ 10529. 
Y. A. Lebesgue60 noted that x2 + y2 = z2 + t2 becomes pq = rs if we set 

2x = p + g + r - s, 2y = p + q~-r + $, 

2z = p — q + r + s, 2 t~p — q — r — s. 

C. Hermite61 developed a/p into a continued fraction, where a2 ss — 1 
(mod p), and employed two consecutive convergents m/n, m'/n', such that 
n < Vp, nf > Vp. Then 

£ = ^ + A > « < 1; (na - mp)2 = ey/n'2 < p. 
p n nn 

Since (na — mp)2 + n2 is a multiple of p and is < 2p, it equals p. 
J. A. Serret62 employed q2 = — 1 (mod p), q < p, and developed pjq 

into a continued fraction so that the number of quotients is even (replacing 
if necessary the last quotient Q by Q — 1 + 1). In the series of quotients 
the terms equidistant from the extremes are shown to be equal. Let mjn 
be the convergent which includes the quotients of the first half of the series, 
and m0/n0 the preceding convergent. Then the continued fraction whose 
quotients are those of the second half of the series has the value m/mQ. 
If co is the common middle quotient, the convergent following mjn equals 

moo + 
nto + nQ ‘ 

Replacing co by m/m0, we get the entire continued fraction. 

p __ m2 + 

q mn + mQno1 
p = m2 + m\. 

Thus 

L. Wantzel63 stated that the use of complex integers affords the simplest 
proof that every prime divisor of a E is a E. He proved that no complex 
prime a + bi divides a product without dividing one factor [due to Gauss]. 

68 Jour, fiir Math., 31, 1846, 343-358; extract of Diss., Sundiae, 1845. Arndt,m Ch. XII. 
M Tafeln der Quadrat- und Kubik-Zahlen aller Zahlen bis Hundert Tausend . . . , Leipzig, 

1848, Table 2. 
60 Nouv. Ann. Math., 7, 1848, 37. 
81 Jour, de Math., 13, 1848, 15; Oeuvres, I, 264; Nouv. Ann. Math., 12, 1853, 45; Soci6t6 

philomatique de Paris, 1848, 13-14. 
“ Alg&bre Sup4r., ed. 1,1849, 331; Jour, de math., (1), 13,1848,12-14; Nouv. Ann. Math., 12, 

1853,12; Soci6t6 philomatique de Paris, 1848,12-13, 
“ Soci6t6 philomatique de Paris, 1848, 19-22. 
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P. Volpicelli64 noted that, if z — a) + b) (j - 1, • • *, m), (1) shows that 
z2 is a sum of two squares in m(m — 1) ways, not necessarily distinct. If 
z = m2 + n2 = p2 + q2} then 

z = (a\ + bl)(al + bz2), aia2 = —^2 ~ ~ 2 ’ 

a20i = = —2— * 

To show that a number having a prime factor p = 4n + 3 is not a sum of 
two relatively prime squares, raise a2 = pq — b2 to the power 2n + 1, 
whence 5 = av~l + 675-1 is a multiple of p, whereas s s 2 (mod p) by 
Fermat’s theorem. In attempting to prove that every prime p = 4n -f 1 
is a 121, he employed relatively prime integers x, y, not divisible by p and 
one even. By Fermat’s theorem, x4n — y4n = pQ. Since every odd num¬ 
ber can be expressed as a difference of two squares, he claimed that we can 
satisfy x2n — y2n = Q, whence p = (xn)2 4* (yn)2. By use of (1), a product 
of k distinct primes of the form 4?i + 1 is a sum of two squares in 2*-1 
ways, and only in that many ways. Several examples illustrate the method 
to express A as a 121 by use of the continued fraction for V3. The nth 
power of a El is a 23 in n/2 or (n + l)/2 ways, according as n is even or 
odd. 

Volpicelli65 considered the number v of ways of expressing z as a 121, 
when each prime factor of z is a El. When z is a product of k distinct 
primes, v = 2*“i. When just two of these k primes have exponents m 
and m', his three formulas can be combined into the single one v — 2*~3+M+M, 
where p = m/2 or (m + l)/2 according as m is even or odd, and similarly 
for p'. When the roots of the two squares are given double signs, the 
number is 4v. 

Volpicelli66 considered Gauss’37 theorem on the number v of the ways 
of expressing P = a*lP • • • as a El, when a, b, • • • are distinct primes of 
the form 4n + 1. Let N = (a + 1)(/? + 1) * • • be the number of divisors 
of P. Let N' be the number of ways of expressing P as a product of two 
factors A, B. Then Nf = (N + l)/2 or i\T/2 according as a, ft ■ • * are all 
even or not all even. If P is a product of two distinct factors > 1 each 
expressible as a El, the product theorem (1) yields two expressions for 
P as E3, and conversely. Thus if P is not a square, v = Nr = N/2. 
If P is a square, v — 1 = N' — 2, v = (N — l)/2, whereas Gauss gave 
v = (N + l)/2. [It is merely a question as to the inclusion or exclusion 
of P = P + 0, cf. Genocchi.75] The special cases in which P is a power 
of a prime or a product of distinct primes are treated (pp. 71-81). He67 
insisted until76 1854 that there is a misprint in Gauss’ formula. 

M Raccolta di Lettere . . . Fis. ed Mat. (Palomba), Roma, 5, 1849, 263, 313, 392, 402. 
65 Giomale Arcadico di Sc., Let. ed Arti, Roma, 119, 1849-50, 20-26; Annali di Sc. Mat. e 

Fis., 1,1850,156. 
w Atti Accad. Pont. Nuovi Lincei, 4,1850-1, 22-31. Same by Volpicelli.67 
67 Nouv. Ann. Math., 9, 1850, 305-8; Annali di Sc. Mat. e Fis., 1, 1850, 527-531; 2, 1851, 
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V. A. Lebesgue68 proved that y2 + 1 4s %m if V + 0, m > 1, by use of 
complex numbers. 

G. Bellavitis69 stated that every solution of x2 + y2 = 5-13-17 is given 
by 

x + yi — (2 ± i)(3 ± 2t)(4 db i). 

If each Ci is a prime 4& + 1, x2 + y2 = hpc? • • • has & = |(mi+l)(m2+l) • * * 
or k — \ essentially different sets of solutions, according as y = 0 gives 
no solution or a solution. 

E. Prouhet70 proved Gauss’37 formula. 
D. Chelini71 gave an “ elegant proof ” of Gauss’ formula by noting that 

every solution of x2 + y2 = (a2 + b2)m(a\ + b\)mi • • • is given by the de¬ 
velopment of 

x + yi = (a + bi)n(a — bi)m~n(ai + M)ni(ai — bii)mi~ni - * - , 

where n — 0, 1, - • •, m; nx = 0, 1, • • mi; etc. 
A. Genocchi72 noted that Chelini71 did not prove that the solutions 

obtained are all different, nor that no other solutions exist. 
V. Bouniakowsky73 proved that every prime 8Jc + 5 is a C2 by use of 

his formula (10), Ch. X, Vol. I, involving sums of divisors. 
H. Suhle73a noted that Jacobi’s48 theorem implies the generalization that 

the number of positive solutions x, y of x2 + y2 = p is the excess of the 
number of divisors 4m + 1 of p over the number of divisors 4m + 3. He 
proved Eisenstein’s56 result. 

C. Hermite74 noted that, to express as a i a number A for which 
a2 s — 1 (mod A) is solvable, it suffices to consider the form 

Ax2 + 2axy + A~\a2 + 1 )y2, 

which is reducible to X2 + Y2. 
A. Genocchi75 considered the number of representations of n by u2 + v2. 

By the remark of Euler24 (end), it suffices to take n odd. Let t be the g.c.d. 
of u} v. If n has a prime factor p = 4m + 3, set n — pTn', t = ppt\ 
where nf and tf are prime to p. Since p cannot divide a 12, t = 2p, so 
that the product of all the prime divisors 4m + 3 of n is a square which 
divides u2 and v2. It thus suffices to treat the case in which every prime 
factor of n is of the form 4m + 1. For such an n, set n = p*n', p being a 
prime not dividing n'. Then 

(u + iv)(u — iv) = (q + ir)w(q — irJ’V, q2 + r2 = p. 

Now q do ir are complex primes, and decomposition into such primes is 
unique. Thus 

u -j- iv — i^q + ir)h(q — ir)k(u' + iv'), 

88 Nouv. Ann. Math., 9, 1850, 178-181. 
89 Annali di Sc. Mat. e Fis., 1, 1850, 422-5. 
70 Comptes Rendus Paris, 33, 1851, 225-6. 
71 Annali di Sc. Mat. e Fis., 3, 1852, 126-9. 
n Nouv. Ann. Math., 12, 1853, 235-6. 
78 M6m. Ac. Sc. St. PStersbourg, (6), 5, 1853, 303. 
730 De quorundam theoriae numerorum theorematum applications, Berlin, 1853, 18, 26. 
74 Jour, fur Math., 47, 1854, 345; Oeuvres, I, 237. 
76 Nouv. Ann. Math., 13, 1854, 158-170. 
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where the final factor divides n\ Multiplying by the conjugate, we get 

n = pk+k (u'2 + v'2). Hence h + k = x, nf = u'2 + v'2. The multiplica¬ 
tion of u + iv by i~l at most interchanges u2 and v2. Hence the effective 
solutions u, v are given by 

u + iv = (q + ir)h(q — iry~h(u' + ivr) (h = 0,1, * • •, x), 

where u\ v' range over the N' solutions of u/2 + v'2 = If we change 
the sign of v' and replace h by x — h} we get u — iv. If x is even, and w' 
is a square w'2, the representation n = (p*^')2 is excluded. Hence the 
number of representations of n as a 121 is f (x + 1)V', unless x is even and n 
is a square, and then is § {(x + 1 )Nf — 1}. The number of representations 
of nr is \Nr or %(N' — 1) according as N' is even or odd. Hence by induc¬ 
tion we obtain Gauss137 result that if a, 6, • • * are distinct primes 4m + 1, 
the number of representations of n = aab^ • • • as a S3 is or %(N — 1), 
according as n is or is not a square, where N = (a + 1) (0 + 1) • * * • The 
second would be %(N + 1) if we count also the case of n + 0. Hence the 
u correction ” by Volpicelli67 is unnecessary. 

P. Volpicelli76 retracted his67 claim of an error on the part of Gauss37 
and Legendre,38 but gave h — § as the number of representations of M 
as a S3 when p and a, /3, • • • are all even, i. e., when M itself is a square. 
Concerning Euler’s remark, quoted by Genocchi,75 that an integer .and its 
double have the same number of representations as a S3, Volpicelli (p. 185) 
stated that p = 4225 has only four [omitting p = 652 + 0], wliile 2p has 
five, representations. 

A. Genocchi77 answered the latter objection by noting that zero is to be 
counted as an integer. He remarked (p. 495) that the “ new ” case noted 
by Volpicelli (that of M a square) had been treated by Fermat, who dis¬ 
cussed the number of ways a number is the hypotenuse of a rational right 
triangle. 

A. Cayley78 noted that a formula of Dirichlet’s52 becomes, for D = — 1, 

(1 + 2q* + 2g16 + 2g36 + . • -)(q + q* + q25 + • • •) 

= g <? , g5_<? » ... 
I_q2 i _q6'l_q10 1_ q1* ‘ 

H. J. S. Smith,79 in accord with Gauss24 of Ch. II, denoted by [_qi * * * 
the numerator of the common fraction equal to the continued fraction 

4-1 I 1 
^ #2 + #3 + * * • + qj 

and employed Euler’s72 relations (Ch. XII) 

(2) biff2 * • * qi-iQil = taw * * • ffsgil 

(3) [gl - • gn] = [gl ■ - g»Xg*H ^ • ■ gn] + [gl - » gv-lXq+2 * - * gn]- 

74 Annali di Sc. Mat. e Fis., 5, 1854, 176-186; Jour, fur Math., 49, 1855, 119-122. 
77 Annali di Sc. Mat. e Fis., 5, 1854, 491-8. 
78 Cambridge and Dublin Math. Jour., 9,1854,163-5. 
78 Jour, fur Math., 50,1855, 91-2; Coll. Papers, I, 33-4. Reproduced by Borel and Drach, 

Introduction k la thSorie des nombres, 1895, 109-12; Chrystal, Algebra, ed. 1, II, 1889, 
471; ed. 2,11,499. 
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For p a given integer, let * * *, denote the integers prime to p and < 
In the continued fraction for p/ixk, [gL • • • g J is now p. In view of (2), 
Q?n • • • arises from some p/p#. Let p be a prime 4X +■ 1, so that 
s = 2X. Hence there is some pk + 1 which coincides with pk, and thus 
there is a set of quotients qlt • •, qn symmetrical from the ends. If n 
were odd, n = 2i — 1 ^ 3, p = [gx • * • gi_ig;gt_i * • • gx] has the factor 
[gi • • • g»_i] by (3). Hence n = 2i and 

V = fel • • • mi ••• 5l] =[?!•• • QiJ +[«!•■• <?<_!?. 

C. G. Reuschle80 expressed as a sum of two squares each prime 4n + 1 
up to 12377, and to 24917 for those primes for which 10 is a quadratic 
residue. 

A. Cayley81 wrote E'(n/k) = 1 or 0 according as n/k is an integer or not 
and proved that the number of ways the integer n is a S3 is 

p = E'(n) - J£'(n/3) + jB'(»/5) - E'(n/7) + • • - , 

if n = a2 + j82 is counted twice when a =f= 0. Hence v is_the number of 
lattice points on the quadrant of the circle with radius Vn and center at 
the origin. Eisenstein’s56 formula follows readily. 

J. Liouville82 stated the formula 

2(— i)(-l)fl[j] = 

summed for s = 1, 3, 5, • • • and for 6 = 0, 1, 2, • • •, [Vn], and implied 
that it is connected with sums of two squares. It was proved geometrically 
by L. Goldschmidt,83 who showed that the right member is the number of 
lattice points in a quadrant of the circle t2 + 62 = n. 

F. Unferdinger84 proved, by use of norms of complex numbers, that a 
product of n sums of two squares can be expressed as a 23 in 2n~1 ways, 
distinct in general. 

S. Kaminsky85 proved that x2 + y2 = pz2 is impossible in integers if p 
is a prime 4n + 3. 

F. Woepcke86 proved by induction from p, pn, pn+l to pn+2 that any 
power of a prime 4m + 1 can be expressed in one and but one way as a 
sum of two relatively prime squares. The proof shows that the number 
of all decompositions (primitive or not) of pK as a 2] is (X + l)/2 if p is 
odd, X/2 if p = 2. Hence follows Gauss’37 formula. Also the number 
of primitive decompositions of pi1 • * • pavv is 2V~1, if each Pi is of the form 
4m + 1. 

J. Plana87 used Jacobi’s46 formula to prove Gauss’37 result on the number 
of ways of expressing N = 2^S2pap'p ■ • • as a2 + b2, where p, p', • • • are 

80 Math. Abh., Neue Zahlenth. Tabellen, Progr. Stuttgart, 1856. Errata by Cunningham, 
Mess. Math., 34, 1904-5, 133-5. 

81 Quar. Jour. Math., 1, 1857, 186-191. 
“Jour, de Math., (2), 5,1860, 287-8. 
88 Beitrage zur Theorie der quad. Formen, Diss. Gottingen, Sondershausen, 1881. 
M Archiv Math. Phys., 34, 1860, 83-100. 
88 Nouv. Ann. Math., (1), 20, 1861, 97-9. 
M Atti Accad. Pont. Nuovi Lincei, 14,1860-1, 311-5. 
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primes 4k + l. To find „ 7, -a. CChap. VI 
fractions and apply (i) and m °Ut tnaI> exPress p, p' as El by continued 

(P2 + Q2)‘ = GP + H2, G~P‘ /An /<\ 

a ™ is a produr;tUoTVitlts^?V^iJlm1?'^,uadratic forms to prove 
relatively prime solutions y 0f ** i1^*3 ^ + !>the number of sets of 
? aU sete of solutions is the ouaLtl! 7£" 21 The number (§ 91) 

or®4A + 1 over the number of its ^ ?[Cess °f tbe number of its 
A. Vermehren 99 tn , 1 lts “visors 4h + 3. 

*%*-«<* + 3v) + »^3u+ »)* HeT t Squares’ Put z = w + v; 
. ^ Gnferdinger" noted that tho jtool£M + 3r = 4n2, 3u + v = 4w>. 

P,e\(a! + b^m = A2 + 52, whCTePi°dRCt °f t,he expansi°ns of (a =b W)”* 
ra f that a Product P o7n sumf ’J?t 8X6 known PoI3“omials. He84 
E1®2‘ ways distinct in general TV* tW° Squares can be expressed as a 

G. C. Gerono900 proved that wo ® same result therefore holds for P*. 

v. Eugenio91 proved tiJrlL JIy pnme squares, 
where P is prime to Q, and call P'/Q' foUows- M divide P2 + Q2, 
continued fraction for P/Q. ThenPO^ th®Iast convergent of the 

+W + 1- Th^SfV/«=±l By (1), M divides 
xp ess M/N as a continued fraction with Wbere N “ mteger < M. 

traction with an even number of quotients: 

o-f- 

where n = 2s. 
vergents. Then 

(4) Mi+1 = Midi + M ■ i\j _ 
M *” Ni0< + N*-h - NMn_x = (_ i)», 

MZi = a-1+aL, i. 
Now iV2 + 1 = tu*xr/ r«, n 2 a 

MpH £d^ldes N ~ M»~T<hM. (4RenS(M ~ %?(N ~ 
9 an~i} etc. Hence n~1 ^us (5) equals 

1 

ai+ +a„V 

^ *•&. - M/N be fte successive 

(5) 

Af 

N ~ 0 ^— iV aj + 1 = M. -L i 1 

But = jv T, + + • • • + a* + a N. 

=M+JQlM.N., M = M*. + N2. 

+v(fc). 
” ?yfcW°raiachen Zahien Proi?7^^* 3’ 18791 ed. 4,1894 

AUtbJPhys‘’49' 186®« n^7Domachule. Gostrow, 1863.’ 
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P. Seeling92 proved that if A is a prime 4m + 1 the period of the con¬ 
tinued fraction for VA has an odd number of terms. Hence A is a 123. 

J. Petersen93 reproduced Euler’s24 proof that every divisor of a sum of 
two relatively prime squares is a EL Then by Wilson’s theorem, every 
prime 4n + 1 is a EL He proved Gauss’37 result on the number of solu¬ 
tions of x2 + y2 = A. 

L. Lorenz94 proved that 

£ = 1+4EZ {gC4m+l)n _ g(4«+3 )n}> 

m, »=—oo m=0 n=l 

whence m2 + n2 = N has 4(a^ — bN) solutions if is the number of 
divisors of the form 4m + 1 of N, and bN the number of divisors of the 
form 4m + 3. 

P. Bachmann95 employed the theory of roots of unity to prove that 
every prime p = 4n + 1 is a sum of two squares, to compute the squares, 
and to prove Gauss’44 result. 

J. W. L. Glaisher96 would strike out of the list of numbers 

1 2 3 4 5 6 
-3 - 6 - 9 - 12 - 15 - 18 

5 10 15 20 25 30 
- 7 - 14 - 21 - 28 - 35 - 42 

9 18 27 36 45 54 

every one whose negative occurs in the list. Each remaining positive 
number 1, 2, 4, 5, 8, 9, 10, • * • is a E3 and every (21 occurs in the final set. 
The proof is by Jacobi’s46 formula. He gave a like scheme to obtain the 
numbers expressible as a sum of two odd squares. 

R. Hoppe97 proved that every prime p = An + 1 is a El. The values 
of r = x2 for x = 1, • • *, 2n are incongruent modulo p. But r2n s 1 has 
only 2n roots and — r is a root. Hence to each x corresponds an integer y 
such that y2 s — r. Thus x2 + y2 = pq. If pi is a factor of qy we get 
xi + yi = PiQi- Since the q’s decrease, we finally get a qk = 1, whence 
x\ + yl = p*. The remaining factors of are ED, whence is a El. 
Then p^i = El/qk-i = El, etc. Finally, p is a El. 

F. L. F. Chavannes98 considered an integer N whose prime factors are 
distinct and each of the form 4e + 1 and hence a El. Thus N = Tl(a2 + 02). 
Set Ni = (a2 + /32)(t2 + 52), N2 - Wx(c2 + f2), • • *, whence Nx = x\ + 2/i 
for xi = ay dz 08, yx = =F <*5. Similarly, each pair Xi, yx yields two 

M Archiv Math. Phys., 52, 1871, 40-9. 
“ Tidsekrift for Math., (3), 1, 1871, 80-4. 
M Ibid., 97. 
86 Die Lehre von der Kreistheilung, 1872, 122-137, 235. 
* Math. Quest. Educ. Times, 20, 1873, 87; British Assoc. Report, 46, 1873, 10-12 (Trans. 

Sect.). 
*y Archiv Math. Phys., 56, 1874, 223. 
M Bull. Soc. Vaudoise des Sc. Naturelles, Lausanne, 13, 1874-5, 477-509. 
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sets of2 solutions x2, y2 of N2 *= xl + yl = (x\ + y\) (e2 + f2). Then 
Ns = xl + y\ has 8 sets, etc. It is proved (pp. 503-6) that if p and p' 
are primes 4e — 1, no one of p, pf or pp/ is a El. 

V. Schlegel" stated that the numbers (8\ + 7)4M are the only ones 
not a sum of fewer than four squares; the numbers (4X + 3)2M and the 
products of two relatively prime numbers of that form are the only numbers 
not a sum of fewer than three squares. The numbers representable as a E 
are s-2M, where s - 4(X2 + v2 + v) + 1. The numbers representable in n 
ways as a El are 2* times the product of n factors s. 

T. Muir100 noted that by Lagrange’s theorem any integer A is of the form 
x2 + y2 if in the continued fraction for VZ the period of the partial de¬ 
nominators has an odd number of terms. Muir101 gave formulas for x 
and y. For, the general expression for such an integer is A = R2 + S, 

R = %K(aia2 • • • a2ai)M + %K(did2 * ■ • a2)K(a2d3 • • • a3a2), 

S = K{q>xCl2 • • • <z2)ilf -f* K(a2 • • * <z2)2, 

where aia2 • - • anan • • • a2ai is the period, while K is a continuant, 
example, 

K{aia2aza^) = 

Then A — x2 + y2, 

ai 1 
1 a2 
0 ~ 1 
0 0 

0 0 
1 0 
a3 1 
1 &4 

For 

2x = {K{ax • • • an)2 — K(ai • • • an_i)2Jikf 4- K(ax • • • an)K(a2 • • • a„)3 

— K{ai • • * an^i)K(a2 • * * an—i)3 + ( — l)n3I£(a2 • * * an—i)K(a2 • * • n»), 

y = {Z(ai * • • an)K(di * * • a»-i) }M + K(ai • • • an)K(a2 * * • a„_i)3 

+ K(dx • • • dn-i)K(a2 * • • a„)8. 

When M — K(di • • * a2), A = x2 + y2 is also the sum of 3 squares. 
E. Lucas102 gave the complete solution of u2 + v2 = y4 and stated that 

the same process applies to u2 + v2 = y2\ 
S. Roberts103 derived all the decompositions into the sum of two squares 

of an odd positive integer D, containing no square factor, and such that 
t2 — Du2 = — 1 is solvable in integers, by developing into a continued 
fraction^ -VNjM> where M and N are complementary factors of D and 
M < VD. For D odd, we take M < Vlty2* 

G. H. Halphen104 considered the sum s(x) of the positive divisors d of a 
positive integer x such that x/d is odd. Then 

§s(x) = $(z — 1) — s(x — 4) + s(x — 9) — • • • db s(x — n2) + • • •, 

99 Zeitschrift Math. Phys., 21,1876, 79-80. 
100 Proc. London Math. Soc., 8, 1876-7, 215-9. The Expression of a Quadratic Surd as a 

Continued Fraction, Glasgow, 1874, § 51. Euler72 of Ch. XII wrote (a, b) for K{a, b). 
101 Proc. Roy. Soc. Edinb., 1873-i, 234. 
102 Bull. Bibl. Storia Sc. Mat. Fis., 10, 1877, 243. Cf. J. Bertrand, Trait6 616m. d’alg6bre, 

Paris, 1850, 244; 1851, 224. Cf. Lucas57 of Ch. XXII. 
103 Proc. London Math. Soc., 9,1877-8,187-196. 
104 Bull. Soc. Math. France, 6, 1877-8,119-120, 179-180. 
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the series being continued as long as z — n2 is positive; if x is a square, 
s(0) is replaced by x/2. The proof is by use of the series for 

Q— (1 — ff)(l - ?2)(1 - Qz) * * - - (1 + <?)(! +Q2) • • •(l-2ff+2g«-2ff*+ • • •). 

Hence if re is not a square and no x — n2 is a square, s(x) is a multiple of 4. 
Thus s(x) is a multiple of 4 when z is not a square or a E3. If also x is a 
prime, x is of the form 4m — 1, since s(x) = x + 1. Hence every prime 
not a BO is of the form 4m — 1, so that every prime 4m + 1 is a El. 

S. Eialis105 proved that every prime An + 1 is the quotient of x2 + y2 
by the common factor of x2 and y2} where 

X = a2 + (32 — y2, y = (y — a)2 + (7 — 0)2 — y2. 

For the latter values and 

u = a2 + (a — y)2 — (cl — (3)2} v = j32 + (fi - y)2 — (0 — c*)2, 

we have x2 + y2 = u2 + y2, identically, and they furnish all the solutions. 
E. Lucas106 proved that every prime Ah + 1 is a El by use of “ satins ” 

na formed of the points (x, y) with x = 0,1, • • •, n such that y is the residue 
of ax modulo n where a is prime to n and a < n. Since each parallel to 
the p-axis contains one and but one point of the satin, ax = 1 (mod n) 
has a unique solution. If f2 + 1 s 0 is solvable, y = fx gives /p=/2x=e —x, 
and the satin nf is unaltered by a rotation through a right angle and is a 
square satin. If n is a prime p = Ah + 1, we can separate 2, 3, • • •, p — 2 
into (p — 5)/4 sets of four numbers like a, a, p — a, p — a, where tosl 
(mod p), and one set p, p — such that/(p — /) = 1, whence/2 +1 — 0 
is solvable. Thus p divides a sum of two squares. Since the satin is 
formed of squares having p as a side, p is a sum of two squares. 

T. Harmuth107 proved that every prime p = An + 1 divides a sum of 
two relatively prime squares. Let g be an odd primitive root of p and 
set px = 2 (mod p). Then g2e + 22 = 0 (mod p), e = X + (p — l)/4. 

S. Gunther108 proved (1) by use of lattice (gitter) points. No three 
lattice points are vertices of a regular triangle. The geometrical proof by 
Lucas shows that 

x2 + y2 — u2 + v2 = 2 (ux + try) 

have no rational solutions. If a2 is a C3, a is a El. 
For the knight’s path problem in chess, we have (pp. 14-16) the system 

of equations 
(Xi - Xi+i)2 + (yi - yi+1)2 = 5 (i = 1, 2, • ♦ •, n2 - 1), 

and, if the path is closed, also 

(xn* - X1)2 + (y* - Vi)2 = 5._ 

108 Nouv. Ann. Math., (2), 18, 1879, 500-4. 
104 L’lngegnere Civile, Turin, 1880; French transl., Assoc, fratnj., 40, 1911, 72+7. Cf. 

A. Aubry, l’enseignement math., 13, 1911, 200; Sphinx-Oedipe, num&ro special, Jan., 
1912,10-13. 

107 Archiv Math. Phys., 66, 1881, 327-8. 
108 Zeitschrift Math. Naturw. Unterricht, 13, 1882, 94r-98, 102. 
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If the path is symmetrical, there are further conditions. He gave a history 
of the subject. 

N. V. Bougaief109 applied elliptic functions to the decomposition of 
numbers into squares (with relation to Jacobi’s47 Fundamenta Nova). 

E. Fauquembergue119 noted that a cube + 1 is never a sum of squares 
of two consecutive integers. 

E. Ces&ro111 considered the function 0(n) = 2/(a), where a ranges over 
all the positive integers for which n — a2 is a square. Then 

Z'P(j) = Zr,f(j), Tj = [V?i - f ], M = 
i 

For f(x) = 1, 0(n) is the number of positive integral solutions of x2 + y2 = n; 
then 20(j) equals nx/4 asymptotically, whence the number of ways of 
decomposing a number into a sum of two squares is in mean 7r/4. 

T. J. Stieltjesm states that if f(n) is the number of solutions of 
x2 + y2 — n, and if/ju is the largest odd integer ^ Vn, then 

+ 4 cos2 ^ , n = 1 (mod 4), 

cos' 

4 

(fi - 1)tt 
n ss 1 (mod 8), 

/(2-1) +/(2-5) + • • • +/(2*n) 

/(l) +/0) +/(17) +•••+/(») 

/(5) +/(13) + /(21) + •■•+/(«) 

= 82(-1) L-8(21+1)-J + sm2 —, n = 5 (mod8), 

where, in the last, k — [§( + 4 — 1)]. If <j>(x) is the sum of the odd 
divisors of x, 

0(1) + 0(5) + • • • + 0(4n + 1), 0(1) + 0(3) + * * * + 0(2n — 1), 

0(1) + 0(2) + • • • + 0(fl) 
are expressed as sums of greatest integers. 

T. Pepin113 proved that, if ra is an odd number not a square, 

mc{m) = 2 {2 + (— l)m~n) (5n2 — m)X(m — n2), 

where X(k) is the sum of the odd divisors of k and <r(k) is the sum of all 
the divisors of k. Let m be a prime 4Z + 1. Hence 

1 ss 2(20/x2 — m)cr(rn — 4/x2) (mod 2). 

Thus among the differences m — 4/x2 occur an odd number of squares, so 
that m is a [2]. 

108 Math. Soc. Moscow, 11, 1883, 200-312, 415-456, 515-602; 12, 1885, 1-21. 
110 Nouv. Ann. Math., (3), 2, 1883, 430. 
m M6m. Soc. Roy. Sc. de Ltege, (2), 10, 1883, No. 6, pp. 192-4, 224. 
m Comptes Rendus Paris, 97, 1883, 889-891. 
m Atti Accad. Pont. Nuovi Iincei, 37,1883-4, 41. 
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E. Catalan114 expressed s = xAn+2 + 2/4n+2 as the sum of the squares of 
two polynomials, and a2 as such a sum in two ways (p. 51). By use (p. 63) 

of (x db iy) (x2 db iy2) • • • (;x2n“1 d= iy2*"1) = P + iQ, we get 2n_1 decomposi¬ 

tions of (x2 + t/2)(^4 + y4) •• • (x2Tl + y2") as a ES. 
Catalan115 noted that, if a + b = El, and n — 2P, 

(xn 1 + an~2b + • • • + ft”"1 = ED. 

C. Hermite116 stated that if/(ft) is the number of solutions of x2 + y2 = n, 

/(2) +/(6)+ ••• +/(4n + 2) 

where #i(x) = [x + §] — Qc] = pa;] — 2p] is the function used by 
Gauss. 

Hermite117 proved by use of expansions of elliptic functions 

s s/( 1) +/(2) + •••+/«?) = 42(— ly^^C/aJ 

t s /(2) + /(10) + • * * + /(8C + 2) = 42( — 1)-1[(2C + c)/(2c - 1)], 

summed for a = 1, 3, 5, • • •; c = 1, 2, 3, • • •. He stated that 

where n = [(V8C + 1 + l)/4]. Also, for n = [(V4C + 1 + l)/2], 

He proved Gauss'45 result for $; also, J. LiouvilleV18 result 

< = 4 X [|( V4n + 2 - o2 + 1)]. 

L. Gegenbauer119 concluded from a general theorem on quadratic forms 
that the number of ways any number r which is odd or the double of an odd 
number can be represented as a sum of two squares is the quadruple 
of the number of decompositions into two relatively prime factors of 
those divisors of r which have only prime factors of the form 4s + 1 and 
a square as complementary factor. The number of representations by 
x2 + y2 of those divisors of r whose complementary divisor is a product of 

1M Atti Accad. Pont. Nuovi Lincei, 37, 1883-4, 80. 
115 Mathesis, 4,1884,70. 
118 Amer. Jour. Math., 6, 1884, 173-4. 
117 Bull. Ac. Sc. St. P6tersbourg, 29, 1884,343-7 (Oeuvres, IV, 159-163); reprinted, Acta 

Math., 5, 1884-5, 320. 
118 Jour, de Math., (2), 5, 1860, 287-8. 
119 Sitzungsber. Akad. Wise. Wien (Math.), 90, II, 1884, 438. 
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remaining divisors by^th? t^A number of representations of the 
complementary square divisor nAh ^ ^umber of tilQse divisors, with 
divisors of the form 4s — 1 ’ e ^orm 4s + 1 over the number of such 

tions of an odd number nbv^ 4- t^orfra ^at tbe number of representa- 
y x V is 4p, where 

■z(^) *\» \ l ) 
is a sum of Leeendrp t u* \ i ) 
°f representations of 2n is4o follows readily that the number 
P/sthe excess of the nm^*f of decompositions is p. Since 

• + 3, we have Jacobi's50 theorem 1 0ver number 0f divisors 
3 that excess t ;i,_• orem that the number of rWnmni-,oi+.7‘nr>o nf o*> 

A, , OA.M35S oi tne numKpr nf • ,7 . “™*uyjusiu«ns is p. omce 
■ t we have Jacobi’s50 theorem +b°+S*t^ 1 over *be number of divisors 
is that excess. Likewise 2V “ number of decompositions of 2n 
. S. R^m not<rf£t ~f + ^as ^ elutions. 
orm 4g. + i an integral sohiHn & P?m? or a Produ°t of primes of the 

identity tegral soIutions of ** + t = p are fo!fnd from the 

(« + 6 + I)* + (a _ fc)2 = 4/V + a i2 + 6\ 

V giving to a and & « i, * ^2 2 ) ’ 

value p Thus the probleSSl Va]uef.that the second member takes the 
angular numbers. If » js nrij 68 °f expressing q as a sum of two 

*-* + »*, where * Md v °tlZ ? d°uble of an odd number and if 
y ^ relatively prime, then 

z,y = p~ m + j 

(2n)* From any n^n ~ J) P8™ formed by two of l2, 22, • • •, 

If We obtain 2n inconerf6 f*™ ^ n°t <b’ldsible by the prime 
“ 15 + vl is not Congruent sums + M, r =1 • • 2n 

^wsums^ + ^f?tc. * ButlVdi^V^3’ nor to zero>i<; leads *° 2w 
StH ^ * m * + fkuTn0t^Viden(2n - «■ Hence there 
Me attempt to prove tW , by p, 0 < A < ip, 0 < B < In 

Jtrtb-* asumof two squares tL?^^6 by & prfme q = + h\ the J 7 . * SUIU Oi two snnsimc 4.i_ . c uy a prime q = a* 4- 

From »beillg2assumed inte^al Bv taken to be c" + d* 
R T? Z,+ ^ it» coSded Li J’ q(c + ^ is of the form a:2 + ^ 
«- Iapachitj.ja noted that n em®leousIy that A = x or v B = von 

of iSL'sj 

0. + a,0f, t ’ *UW'P^) - even by multiply*,* y 

iXV "0,'(x- - *-><». + m 

■ f-k- French transl. 
i Bull, des Sc. Math. 
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conversely. In particular, all rational automorphs of x\ -f x\ are derived 
by taking X0 and \12 to be relatively prime integers. To show (p. 384) 
that every prime p = 4r + 1 is a El, use a solution of or + 1 = 0 (mod p) 
and set fi = w£2, where f2 is any integer not divisible by p. We can choose 
relatively prime integers p0, p2i such that rp0 and rp21 are numerically 
< p/2 and congruent modulo p to £i and £2 respectively. Take pi2 = — p2i. 
Then r2(po + p?2) is < Jp2 and is divisible by p. Hence pi + pi2 = pt, where 
t < p/2. Determine 0O and 0i2 numerically < t/2 and congruent modulo 
£ to pq and pi2 respectively. Then 0l + 0?2 = ttf, where tr ^ t[2. Then 

(0o — i<f>u)(pQ + fpi2) = r^(pi + fpi*), 

where po, p(2 are relatively prime. Hence p'Q2 + p\\ = pk, k = t'/T* ^ t/2. 
Repeating this process, we finally get X0 = p(0a), Xi2 = p\% such that 
Xo + Xi2 = p, and 

(b) XoJi — Xi2{2 = 0, Xi2£i + X0f2 = 0 (mod p). 

Similarly we can find a complex integer with relatively prime coordinates 
Xo, Xi2, whose norm is any power pY of p and which satisfies (6) modulo pY. 
If m = pYg5 • • *, where p, q, • * • are primes = 1 (mod 4), or if m is the 
double of such a product, apply the preceding discussion for each pY and 
take the product of the resulting complex integers. By using all sets of 
solutions of £ + ?2 = 0 (mod pY), we get every proper representation of 
m as a 03 and each once and but once. 

C. Hermite124 proved by use of elliptic functions that, if M = An + 1, 

£=/(!) +/(5)+/(9) + ••• +f(M) 

= 42(- 1)<“-»/» + 82( — 

summed for m = 1, 3, 5, ■ • •, where/(n) is the number of representations 
of n as a EL The asymptotic value of 8 is 

A. Berger125 gave an elementary proof of the theorem that, if n is a 
positive odd integer, the number of all sets of solutions of x2 + y2 = n 
is 42 ( — 1)(5~1) /2, where 5 ranges over all positive divisors of n. While 
Dirichlet’s proof was by transcendental analysis, Berger uses only the 
known number (Dirichlet88) of relatively prime sets of solutions. 

Berger126 proved that if n is a positive integer the number of sets of 
integers x, y for which x2 4- y2 = n is 42 sin for/2 (Berger125). 

C. Hermite127 proved Gauss’45 formula for the number of sets of integers 
x, y for which x2 + y2 ^ A. 

E. Catalan128 noted that, if x2 + y2 + z2 is a square, 

[(x2 + z2)p — (y2 + z2)qj + 4 — EL 

If B2 — AC = - m2, (Ca - Ac)2 - 4(Bc - Cb)(Ab - Ba) = EL 

m Jour. fur Math., 99, 1886, 324-8; Oeuvres, IV, 209-214. Cf. Gegenbauer.131 
156 Acta Math., 9,1886-7, 301-7. 

138 Ofversigt af Kongl. Vetenskaps-Akad. Forhandl., 44,1887, 153-8. 
127 Amer. Jour. Math., 9, 1887, 381-8; Oeuvres, IV, 241-250. 
138 Mathesis, 7,1887, 120, 144. 
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J. W. L. Glaisher129 wrote 4(?(n) for the excess of the number of repre¬ 
sentations of n in the form (6r)2 + (6s + l)2 over the number of those in 
the form (6r + 2)2 + (6s + 3)2, provided n s 1 (mod 12), whence the 
representations of n as a ED are of one of those two types. If p, q are rela¬ 
tively prime numbers 12k + 1, G(pr) = G(p)G(r). He evaluated G(aa)} a 
being a prime. The number of representations of n as a G2 is 4E(n), 
where E(n) is the excess of the number of divisors 4k + 1 of n over the 
number of divisors 4& + 3. There are noted simple relations between 
E(n) and G{n). It is shown (p. 195) by elliptic functions that the number 
of representations of 4n + 1 as a sum of an even and an odd square is 
4E(4n + 1); the number of representations of 8n + 2 as a sum of two odd 
squares is 4E(4n + 1). Hence if n = 1 (mod 4), n and 2n have the same 
number of representations as ED. Next, E(3Qn + 9) = E(4n + 1). The 
number of compositions of a number as a sum of two squares, both of the 
form (12n + l)2 or both of the form (12n + 5)2, or one of each form, is 
expressed in terms of functions E and G. Similarly for representations by 
the forms at the beginning of this summary. Let (pp. 211-3) m be odd, 
a even, b odd and not divisible by 3, c ss 1, d ss 5 (mod 12); then the 
number of representations by 3a2 + b2, 3a2 + c2, 3a2 + d2, 3m2 + c2 or 
3m2 + dr is expressed in terms of G and the excess H(n) of the number of 
divisors s 1 (mod 3) of n over the number of divisors s 2 (mod 3). 

F. Goldscheider130 discussed the sign of /, not determined by 
Gauss.44 

L. Gegenbauer131 noted that HermiteV24 formula is one of a set which 
follows from a general formula for the sum of the values taken by an 
arbitrary function f(y) when y ranges over all those divisors ^ Vfc of 
h = 4n + 1 or 4n + 3. 

E. Lucas132 gave two proofs by use of continued fractions that every 
divisor of a sum of two relatively prime squares is a El. 

K Th. Vahlen133 deduced from the theory of partitions the fact that 
every odd integer is a GO in E ways, if g2 + u2 and (— g)2 + u2 are regarded 
as different ways, while E is the excess of the number of factors 4m + 1 
over the number of factors 4m + 3. He noted that this fact is equivalent 
to the theorem of Jacobi60 in view of a remark by Euler24 (end). Since 
every integer N is the product of an even power of 2 by an odd integer or 
by the double of an odd integer, the number of sets of solutions ^ 0 of 
x2 -f- y2 = N is E. He gave a summation formula for the number of primi¬ 
tive representations as a ED. 

From a representation a2 + 62 + c2 + d2 of an odd prime p we obtain 
a multiple of 32 representations by permuting a, • * •, d or changing their 
signs, except when two are zero, the factor being then 12-4. But there are 
8<r(p) representations of p. Thus if p — a2 + b2 has N sets of solutions 

m Proc. London Math. Soc., 21,1889-90,182-215. 
u# Das Reziprozitatagesetz der achten Potenzreste, Progr. Berlin, 1889, 26-29. 
m Sitzungaber. Akad. Wise. Wien (Math.), 99, Ila, 1890, 387-403. 
1,1 Thdorie des nombrea, 1891, 454-6. 
1M Jour, fur Math., 112, 1893, 25-32. 
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b > a > 0, then 8<r(p) s 48A (mod 32). For p = 4n + 1, 

<r(p) = 2(2n + 1) 
and A is odd. 

A. Matrot134 noted that, if p = 2h -f 1 is a prime, and a is not divisible 
by p, ah s =h 1 (mod p) by Fermat’s theorem. If the upper sign held for 
every a, 

sh = lh + (mod p), 

whereas, for q < p — 1, $q = 0 (mod p), as shown by induction. Hence 
there exists an a for which ah = — 1. Let h = 2k. Thus p divides a El. 
That p is a El follows as in his 1891 paper on SI. 

E. Catalan135 repeated the proof by Eugenio.91 
H. Weber138 proved that every prime n = 4/ + 1 is a El by use of the 

four periods each of f terms of nth roots of unity. 
C. Stormer137 proved that 1 + x2 + 2yn if | x | > 1 and n has an odd 

divisor > 1. 
Several138 treated x2 + (x + l)2 = yi) whence t2 — 2u2 ~ — 1 if 

t = 2x + 1, u = y2. 

Stormer139 applied a theorem on Pell’s equation (Stormer230 of Ch. XII) 
to find the complete solution of 1 + x2 = kA\l • • • Axn* in positive integers, 
where h, Ah • • •, An are given positive integers. In particular, there is a 
new proof that 1 + x2 = yn or 2yn is impossible if x > 1, y > 1, n being an 
odd prime. 

M. A. Gruber140 gave a table and identities for An + 1 = El. 
Several writers141 discussed x2 + p2 = yz for p a prime. 
G. de Longchamps142 noted that A4 is a El or 00 if N/\ — 1 is a square 

or El, since 

N* es 16X(A - X)(A - 2X)2 + (A2 — 8XA + 8X2)2. 

R. Hoppe143 used Girard’s theorem to prove that a number is a E] or 
not according as it has no prime factor of the form 4n — 1 to an odd power 
or at least one such prime power factor. 

J. H. McDonald144 gave a direct proof of Jacobi’s48 result on the number 
of representations of an odd positive number as a El. 

C. A. Laisant145 noted that (a4n+2 + 1 )/(a2 + 1) is always a El. 

184 Jour, de math. 616m., (4), 2, 1893, 73. 
485 M6m. Acad. Roy. Belgique, 52, 1893-4, 17. 
»«Lehrbuch der Algebra, I, 1895, 583-5; ed. 2,1,1898, 632-4. 
187 L,interm6diaire des math., 3, 1896, 171; 5,1898, 94 for n = 2m. 
188 Ibid., 4, 1897, 212-5. 
189 Videnskabs-Selskabets Skrifter, Christiania, 1897, No. 2. 
140 Amer. Math. Monthly, 5, 1898, 240-3. 
141 L,interm6diaire des math., 5, 1898, 157-9; 16,1909, 177. 
148 Ibid., 7, 1900, 65. Misprint of 2N - X for N - 2\. 
148 Archiv Math. Phys., (2), 17, 1900, 128, 333. 
144 Proc. and Trans. Roy. Soc. Canada, (2), 6, 1900, Sec. Ill, 77-8. 
148 Nouv. Ann. Math., (4), 1, 1901, 239-240. 
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H. Schubert146 noted that, if in x2 + y2 = u2 + z2 the unknowns have 
no common factor, either all four are odd or in each member one number 
is odd and one even. In the first case, 

+ z)-i(x - z) = + y) •§(« ~ y), 

whence we must factor an arbitrary number g in two ways with always 
one factor even and the other odd. In the second case, g must be a product 
of two even factors and also a product of an even and an odd factor. 

R. E. Moritz1460 proved that every rational number not a square can 
be expressed in an infinitude of ways as a quotient of two sums or two 
differences of two squares, and gave one such expression for each such 
number < 100. 

A. Palmstrom147 noted that xz = y2 + z2 implies x = a2 + b2, whence 
y = az + ab2 or a3 — Sab2 [provided y and z are relatively prime]. P. F. 
Teilhet148 obtained all the solutions. 

A. Thue149 proved that a prime divisor of a 2 is a 2. 
Several1490 found three consecutive integers each a 12, including 

(2n)2 + (2n)2, 8n2 -f 1, (2n — l)2 + (2n + l)2, provided the second be a GO, 
i. e., n be triangular, n — (m2 + m)/2. 

L. E. Dickson150 proved that all factors of a sum of two relatively prime 
squares are sums of two squares by use of the theorem that if a and b are 
relatively prime every prime divisor of a2 + b2 is of the form 4n + 1 and 
the theorem that every prime 4n + 1 is a sum of squares of two relatively 
prime integers. 

G. Fonten6151 proved Gauss'37 theorem by showing that, if A, B, 
are primes 4h + 1, there is a (1, 1) correspondence between the decomposi¬ 
tions of AaBp • • • as a product of two factors and its decomposition into a 
sum of two squares, provided we fix the order of the two squares whose sum 
is A, or R, etc. 

A. Cunningham152 expressed each prime 4n + 1 < 100000 as a 2. 
P. Pasternak153 proved that all solutions of x2 + y2 = v* +• w2 are 

x — mu + np, v = mu — np, y ~ nu — mp, w = nu + mp, 

whence 
x2 + y2 = (m2 + n2)(co2 + p2). 

Thus every integer which can be expressed as a 2 in more than one way is 
itself a product of two sums of two squares. From known theorems it is 
said to now follow that no prime 4n + 1 is a 2 in more than one way. 

146 Niedere Anal., 1,1902,167-171; ed. 2, 190& 
148fl Ueber Continuanten . . Diss. Strassburg, Gottingen, 1902. Cf. Moritz40 of Ch. IX. 
147 L’interm&iiaire dea math., 8,1901, 302. 
148 Ibid., 10, 1903, 210-1. 
149 Oversigt D. Viden. Selsk. Fork, Kristiania, 1902, No. 7. 
1490 Math. Quest. Educ. Times, (2), 3,1903, 41-3. 
uo Amer. Math. Monthly, 10,1903, 23. 
m Nouv. Ann. Math., (4), 3,1903,108-115. 
m Quadratic Partitions, London, 1904. Errata, Mess. Math., 34, 1904r-5, 132. 
m Zeitschr. Math. Naturw. Unterricht, 37, 1906, 33-35. 
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A. G6rardin154 discussed the solution of 

(lOx 4- m)2 + (102/ + p)2 = 100a, a = b2 + d2, m < 10, p < 10. 

Since m2 + P2 — 20h, we have m = 2, p = 4 or 6; m = 4 or 6, p - 8. 
These cases are treated in turn. To solve (pp. 89-90) x2 + y2 = a2 + b2, 
set x = a + mh, b = y + h, m(x + a) = b + y. Then 

h = 2 (y — am)/(mr ~ 1), 

and the general solution is said to be 

(am2 — 2my + a)2 + y2(m2 — l)2 = a2(m2 — l)2 + (ym2 — 2am + y)2. 

W. Sierpinski155 gave a long proof that, if A(x) is the number of pairs of 
integers u} v for which u2 + v2 ^ x, A (re) = ttz + 0(xllz), for 0 defined as 
in Landau,179 while w is the usual constant. 

E. Jacobsthal156 proved that, if p is a prime s 1 (mod 4), p = a2 + b2, 
where, in terms of Legendre^ symbols, 

a = Uir), b = **(n), 0(e) = ± (^) (~^), 
where r is any quadratic residue (as — 1) of p, and n any non-residue. Also, 

(p — 3)/2 (mod 8). Proof is given of formulas, equivalent to Gauss',44 
for the residues of a, b modulo p. 

Identities157 solving a2 + b2 = 2cn have been given. 
W. Sierpinski158 evaluated sums like 

flr(n2), X) T2(n), X)r8(n), 
«=i 

where r(n) and r%(n) denote the number of decompositions of n into 2 
and 8 squares. 

* E. N. Barisien159 expressed 2n as a ratio of two El. 
J. Sommer160 applied ideals to show that every prime + 1 is a El. 
L. Aubry161 cited known results. 
G. Bisconcini162 proved that n is a 12 if and only if n contains no odd 

power of a prime 47c — 1, and deduced all decompositions of pT as a 12, 
given that of the prime p = 4fc + 1. He163 proved that, if pi is a prime 
4& + 1, p?1 • • • p°r has 2m“1 proper decompositions into G3; also Gauss'37 
theorem. He treated (pp. 68-80) the decomposition of fractions into 
one of the forms x2 ± y2. 

1M Sphinx-Oedipe, 1906-7, 112-9. 
158 Prace mat.-fiz., Warsaw, 17,1906, 77-118 (Polish). See papers 179,180, 189, 198-203. 
m Anwendungen einer Formel aus der Theorie der quadratischen Reste, Diss. Berlin, 1906,13; 

Jour, fur Math., 132, 1907, 238-245. 
157 L’interm&liaire des math., 13, 1906, 62,184; 14,1907, 72. 
158 Prace mat.-fiz., Warsaw, 18,1907,1-60 (Polish). Reviewed in Jahrb. Fortschritte Math., 

38, 319-21; Bull, des Sc. Math., (2), 37, II, 1913, 30-31. 

769 Bull. Sc. Math. E16m., 12, 1907, 262-0. 
i«° Vorlesungen fiber Zahlentheorie, 1907, 112,123-4. French transl. (of revised text) by A. 

L6vy, 1911, 105, 117-9. 
161 L’enseignement math., 9, 1907, 421. 
168 Periodico di Mat., 22, 1907, 270-285. 
188 Ibid., 23, 1908, 9-23. 



254 History of the Theory of Numbers. [Chap, vi 

F. Ferrari164 found the known solution of x2 + y2 = zn by use of 
z = r + si. 

H. Brocard165 noted that n2 + (n + l)2 = mk has solutions for k = 2, 
but not for k = 3. 

E. Landau166 considered the number B(x) of positive integers ^ x 
which are El and gave a long proof that 

where r ranges over all primes of the form 4m + 3. 
E. Landau167 applied binary quadratic forms to show that a number is 

a El if and only if it has no prime factor 4m 4- 3 to an odd power. 
E. N. Barisien168 used the epicycloid to derive the identity 

(8*3 - 6*2 - 6* + 3)2 + 4(1 - *2)(1 +3* - 4*2)2 = 13 - 12*, 

whence 12 — 13* is a El if * = (1 — 02)/(l + 62). 
M. Kaba and L. E. Dickson169 deduced, by use of special theta functions, 

= 1 + 2q + 2<f + 
2K 

7T 1+4(r 
g 

- g 

Hence there is no representation as a E3 of a number having a prime factor 
4m + 3 with an odd exponent, and no proper representation when such a 
factor has an even exponent. If P ~ p*1 • • • pp, where ph • • •, pa are all 
the distinct primes of the form 4m + 3 which divide e, and if xi, • * •, ir* 
are all even, there are as many improper representations of e as there are 
representations of e/P; every representation of e is of the type (Px%)2 
+ (Pli2y)z. Hence the problem reduces to the case in which every prime 
factor of e is of the form 4m + 1. Then the number of representations of e 
as a Ei is (xi + 1) • • • (x» + 1). 

P. Bachmann170 gave an exposition of the work of Lagrange32 and 
Vahlen.133 

Welseh171 stated that the general solution of u2 + x2 = y2 + 22 is 

2x = ab + cdy 2y ~ ac + bd, 2z ~ ab — cd, 2u ~ ac ~ bd, 

where a, d are even, or b, c are even, or all four are odd. 
L. Aubry172 proved that x2 + (x + l)2 =j= m* if k is not a power of 2. 
A. Deltour173 applied continuants (Muir101) to prove that a prime 

4h + 1 is a E3 in one and but one way. 

1M Periodico di Mat., 25,1909-10, 59-66; Supplem. al Period, di Mat., 12,1908-9,132-4. 
166 L'mtexm6diaire des math., 15,1908,18-19. 

Archiv Math. Phys., (3), 13, 1908, 305-12. 
167 Handbuch . . . Verteilimg der Primzahlen, 1, 1909, 549-550. 
168 Assoc, fran?. av. sc., 38, 1909,101-7. 
189 Amer. Math. Monthly, 16, 1909, 85-7. 
170 Niedere Zahlentheorie, 2,1910, 304-319 (477). 
171 L’interm^diaire des math., 17, 1910, 96,118, 205. 
inIbid.j 18, 1911, 8-9; errata, 113; Sphinx-Oedipe, num&ro special, March, 1914, 15-16; 

errata, 39. 
178 Nouv. Ann. Math., (4), 11,1911,116. 
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Marchand174 presented the known application of complex integers 
a + bi to find all decompositions of a product of primes 4n + 1 as a EL 

Paulmier175 gave solutions of x2 + y2 = Az for five special values of A. 
Several writers176 found x such that x + 1 and x2 + 2 are sums of two 

squares. 
J. K. Heydon177 noted that, if a, b, • • • are distinct primes, 

a2P-i£2?-i ... _ (g] in 2p+q+ 1 or 0 ways. 

P. Lambert178 applied complex integers a + bi. He gave two proofs 
that a divisor of a 121 is a IS. 

E. Landau179 proved that, if A(x) is the number of pairs of integers 
u, v for which u2 + v2 ^ x, then A(x) = wx + 0(xvz+t)y for every e > 0. 
Heref(x) = 0{g(x)) means a function such that there exist two numbers £ 
and A for which | f(x) | < Ag(x) when x ^ £. Although the result is 
not quite as sharp as that by Sierpinski,155 the proof is much shorter. 

Landau180 gave a new proof of the theorem due to Sierpinski.165 
R. Bricard181 gave an elementary proof that every prime p = 4n + 1 

is a EL By Wilson’s theorem, ra2 + 1 = 0 (mod p) for m = [(p — l)/2]l 
Write Xi for the minimum residue of mi modulo p. Consider the p — 1 
points Mi — (xi} i). The square of the distance M{Mj between any two 
of these points is divisible by p. It is shown that the least of these squares 
is < 2p if p > 32 and hence equals p. A like proof shows that every prime 
8g d= 1 is of the form x2 — 2y2. 

F. Ferrari182 noted that the least number decomposable in 2n distinct 
ways as a sum of two relatively prime squares 4= 0 is the product, found by 
(1), of the first n + 1 primes of the form 4k + 1. For this least x = p\ + q] 
(i = 1, • • *, 2n), set yi = pj — q], Zi = 2p#,-; then x2 = y) + «Jis the least 
square decomposable in 2n ways as a IS. To find the least (p + l)th 
power decomposable in 2P ways as a 123, use P = b* + c] (i — 1, • • •, 2P), 
whence 11(6* + c*) = Pp+1 has 2P decompositions. 

A. Aubry183 noted that (1) can be derived from Brahmegupta’s (Ch. V) 
inscribed quadrilateral ABCD whose diagonals meet at right angles at 0, 
by evaluating the perpendiculars BE and OJ to DC. 

E. Haentzschel184 noted that his 152 method in Ch. XXI to deduce a new 
solution of arc3 + • • • + d = yz from one solution may be applied to 
x2 + y2 = zz in two ways according as x or y is taken as the variable. He 

174 L'mterm^diaire des math., 18,1911, 228-232. 
175 Ibid., 19,1912, 151. 
17«/6id., 55-7, 257. 
177 Math. Quest. Educ. Times, (2), 21, 1912, 98-9. 
178 Nouv. Ann. Math., (4), 12, 1912, 408^21. 
179 Gottingen Nachxichten, 1912, 691-2. Giornale di Mat., 51, 1913, 73-81. 
180 Annali di Mat., (3), 20, 1913, 1-28; Sitzungsber. AJkad. Wiss. Wien (Math.), 121, 1912, 

Ila, 2298-2328. 
181 Nouv. Ann. Math., (4), 13, 1913, 558-562. 
m Periodico di Mat., 28, 1913, 71-8. 
183 Sphinx-Oedipe, num6ro special, June, 1913, 23-24. 
184 Sitzungsber. Berlin Math. Gesell., 13, 1914, 92-6. 
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quoted from A. Fleck185 the solution 

(a2c 2abd - b2c)2 + (b2d + 2abc - a2d)2 = (a2 + &2)3, a2 + b2 = c2 + d2, 

which includes the primitive solution (a3 — 3a62)2 + (3a2& — 63)2 = (a2 + &2)3 
by Euler6 of Ch. XX. 

* Hesse186 gave the general solution of x2 + y2 = zn. 
Several writers187 found solutions of x2 + y2 = z4. 
* J. G. van der Corput188 treated sums of two squares. 
G. H. Hardy189 wrote r(n) and R(n) for the number of integral solutions 

of /x2 + v2 = n and of y2 + v2 ^ n, respectively, and set R(x) = irx + P{x). 
He proved the existence of a positive constant K such that each of 

P(x) > Kx1!*, P(x) < - Kxli* 

is satisfied by values of x surpassing all limit. Hence in Sierpinski's155 result 
P(x) — 0{xl>z), with 0 defined as by Landau,179 the exponent § cannot 
be replaced by a number < J. He gave an explicit analytic expression 
for -P(rc) in terms of Bessel's functions. 

Hardy190 proved that, for every positive e, P(x) is on the average 
0(x1f^*)} i. e., 

I r\P(r)\dT = 0(xV<+'). 
X Ji 

G. Bonfantini191 proved that, if a number n not a prime is a El, it equals 
either a product of several factors each a El or such a product multiplied 
by a square which is a common factor of the given squares whose sum is n. 
Conversely, if m is a product of several sums of two squares and if m is 
not an even power of 2, m is a S3. 

G. Koenigs and L. Bastien192 discussed the number of decompositions 
of (a2 + b2)5 as a EL 

A. Gdrardin193 noted that t2 — 2hu2 = 1 implies 

{(h - 1 )t}2 + {(h - 1 )V - l}2 = 1 + {(ft - 1 )2u2 + h - l}2. 

By means of the fact that every prime of the form An + 1 is a factor of 
a number t2 + 1, R. D. Carmichael193®, proved by Fermat's method of infinite 
descent that such a prime is a El. 

* A. L. Bartelds194 gave an elementary proof of Girard's theorem. 
T. Hayashi195 proved that y2 + 1 =(= zz if y =f= 0. 

i8s Vossische Zeitung zu Berlin, June 1, 1913. 
186 TJnterrichtsblatter fur Math. u. Naturwiss., 20, 1914, 16. Haentzschel, p. 55, discussed 

Hesse’s paper. 
187 Amer. Math. Monthly, 21, 1914, 199-201. 
188 Nieuw Archief voor Wiskunde, 11, 1914-5, 61. 
189 Quar. Jour. Math., 46,1915, 263-283; Proc. London Math. Soc., (2), 15, 1916,15-16. 
io° proc. London Math. Soc., (2), 15, 1916, 192-213. 
191 Suppl. al Periodico di Mat., 18, 1915, 81-6. By use of Bonfantini142 of Ch. XIII. 
194 L’interm&liaire des math., 22, 1915, 253-4; 23, 1916, 34-5. 
193 Ibid., 22,1915, 57. 
i#3a Diophantme Analysis, 1915, 39-40. 
1M Wiskundig Tijdschrift, 12,1915-6, 159-166. 
198 Nouv. Ann. Math., (4), 16, 1916,150. 
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M. Weill196 noted that the product of p sums of two squares is a sum of 
two squares in 2P~1 distinct ways. 

M. Chalaux197 proved Girard’s theorem by induction using the fact that 
if a prime is a S3 and divides a sum of two relatively prime squares, the 
quotient is a sum of two relatively prime squares. 

E. Landau198 proved his179 former theorem by means of a new simplifi¬ 
cation of Pfeiffer’s method (cf. pp. 305, 322 of Vol. 1 of this History). 
He199 next considered the lower limit a of the constants for which A(x) = 
ttx + 0(xa), and proved that Later he200 proved a theorem on the 
number of lattice points in certain regions which is a generalization of the 
main theorem applied in his179 above papers. 

* K. Szilysen201 stated empirically an asymptotic formula for the num¬ 
ber of pairs of integers for which x2 + y2 ^ N, a formula already proved 
by Lipschitz. 

M. Rignaux202 announced a table in manuscript of the decompositions 
as a 2] of the 3908 decomposable numbers < 10000. 

G. H. Hardy203 deduced Landau’s179 theorem very simply by two dif¬ 
ferent methods from the theorems in Hardy’s190 former paper. If204 ah- 
am are primes of the form 4k + 1, there are 4(n + l)m sets of solutions of 
x2 + y2 — («i 02 • * • am)ny in 2m+2 of which x and y are relatively prime. 

On the number of solutions of x2 + (4y)2 = n, see Nasimoff68 of Ch. 
XIII. On x2 + y2 = (m2 + n2) z2, see papers 142-5 of Ch. XIII and the 
cross-references given there. On 1 + x2 = 2y4, see Euler7 of Ch. XIV and 
Cunningham79 of Ch. XX. In Ch. XVII are given reports on papers on 
a number and its square both sums of two consecutive squares; cf. Meyl30 
of Ch. IV. On x2 + n2 + yz, see Pepin10 and Hayashi61 of Ch. XX. On 
x + y = □, x2 + y2 = z4, see papers 40, 48, 50,52, 54-56, 63 of Ch. XXII. 
On systems of equations including x2 + y2 = z3, see papers 353, 363, 368 of 
Ch. XXI. Equal sums of two squares occur on p. 37, p. 206; in paper 
107a of Ch. VII; 18 of Ch. XIII; papers 21, 35, 45, 62, 80 of Ch. XV; 7, 
9, 18, 20 of Ch. XVIII; 4,13, 15, 33, 37, 42,46-50, 75, 102,133, 149 of Ch. 
XIX; 177 of Ch. XXII; 45 of Ch. XXIV. In Vol. I were cited the papers 
by Euler3*7 and Gauss,13 pp. 381-2, containing tables of primes and factors 
of numbers x2 +y2; by Lucas53 and Catalan,61 pp. 402-3, on special num¬ 
bers which are 121; by Liouville28, p. 286; and various papers, pp. 360-1, 
on factoring numbers which are El in two ways. 

106 Nouv. Ann. Math., (4), 16, 1916, 311-4. 
187 Ibid., (4), 17, 1917, 305-8. 
188 Gottingen Nachrichten, 1915, 148-160. 
188 Ibid., 161-171. 
300 Ibid., 209-244; 1917, 96-101. Cf. Revue semestrielle, 27,1, 1918, 16,18. 
301 Math, is term<§s. Srtesito (Hungarian Acad. Sc.), 35, 1917, 54-6. 
302L'mterm&iiare des math., 25, 1918, 143; 26, 1919, 54-55. 
^Proc. London Math. Soc., (2), 18, 1919, 201-4. 
204 Amer. Math. Monthly, 26, 1919, 367-8. 





CHAPTER VII. 
SUM OF THREE SQUARES. 

Diophantus V, 14 relates to the division of unity into three parts such 
that if the same given number a be added to each part the sums will be 
squares. This problem is equivalent to the determination of three squares, 
each > a, whose sum is 3a + 1. Diophantus stated that a must not be 
of the form 81 + 2. 

C. G. Bachet1 stated that this condition is not sufficient and gave as a 
sufficient condition that a must not be of the form 8ft + 2 or 32ft + 9, 
stating that he had tested the numbers a < 325. He also divided 5 into 
three parts such that each increased by 3 is a square; since 

3 * 3 + 5 = 1 + 22 + 32, 

he took the sides of the squares to be 1 + 7N, 2 + N, 3 — 5N, whence 
N = 4/25. 

Fermat2 remarked that Bachet's condition fails to exclude a = 37, 149, 
etc., and himself gave the correct sufficient condition that a must not be of 
one of the forms 

8ft+ 2, 4-8*+ 2-4 + 1, 42-8ft + 2-42 + 4 + 1, 

43*8ft + 2-43 + 42 + 4 + 1, 

[Thus a must not equal 

4*-8ft + 2-4" + (4n - l)/3 = [(24ft + 7)4“ - l]/3, 

so that 3a + 1 must not be of the form (24ft + 7)4n and hence not 
(8m + 7)4n, since m is a multiple of 3 if 3a + 1 is of the latter form.] 

Regiomontanus3 (Johannes Muller, 1436-1476) proposed in a letter the 
problem of solving the pair of equations 

x + y + z = 116, x2 + y2 + z2 = 4624 = 682. 

Fermat4 stated that no integer 8ft + 7 is the sum of three rational 
squares. Descartes5 proved this for integral squares by noting that a 
square is of one of the forms 4ft or 8ft + 1. 

Fermat6 treated the problem to find two numbers each of which, as 
well as their sum, is composed of three squares only [not composed of one 
or two squares]. He took any such number, as 11, and multiplied it by 
two squares whose sum is a square, for example, 9 and 16. The problem 
was proposed by Sainte-Croix to Descartes in April, 1638, with the illustra- 

1 Diophanti Alex. Arith., 1621, 310-3. 
2 Oeuvres, I, 314-5; French transl., III, 257-8. 
* C. T. de Murr, Memorabilia Bibl., 1, 1786, 145. 
4 Oeuvres, II, 66; III, 287; letter to Mersenne, Sept, or Oct., 1636. The latter communi¬ 

cated it to Descartes. 
5 Oeuvres, II, 92; letter from Descartes to Mersenne, March 31, 1638. See also p. 195. 
6 Oeuvres, II, 29, 57; letters to Mersenne, July 15 and Sept. 2,1636. 
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tion 3, 11. In his reply, Descartes7 gave a2 + 2, h2 + 2 (a and b odd); 
he8 took the interpretation that each required number and their sum shall 
be the sum of three squares in one and but one way, and gave nine examples 
including 

22 = 9 + 9 + 4, 35 = 25 + 9 + 1, 57 = 49 + 4 + 4. 

But Sainte-Croix desired that each be the sum of 3, but not of 4, squares. 
Fermat9 asserted that the double of any prime Sn — 1 is the sum of 

three squares; he desired that Brouncker and Wallis seek a proof. Refer¬ 
ence will be made under the subject of binary quadratic forms to the 
assertion of Fermat and proof by Lagrange that any prime Sh + 1 or Sh + 3 
is expressible in one and but one way as the sum of a square and double of a 
square. 

The Japanese Matsunago10 in the first half of the eighteenth century 
solved x2 + y2 + z2 = u2 by taking x and y at pleasure, expressing x2 + y2 
as a product of two factors and equating the latter to u — z and u + z. 
He noted that x2 + y2 + z2 = u4 has the solutions 

x = m4 — n4, y = 4m2n2, z = 2 (m2 — n2)mn, u = m2 + n2. 

L. Euler11 noted that if Fermat’s theorem that every number £ is a sum 
of three triangular numbers (a2 + a)/2 is true, then every number Sx + 3 
is a sum of three squares (2a + l)2. 

Euler12 noted that, to prove that a prime 8m + 3 is of the form 2a2 + b2, 
one needs the theorems (of which he had no proofs): If the integer n is not 
a sum of two integral squares, then no integer rvp2 is a sum of two integral 
squares; if n is not a sum of three integral squares, it is not a sum of three 
fractional squares. 

May 6,1747 (p. 414), Euler wrote that he had verified for small integers 
m that there always exists a triangular number A = (x2 + x)/2 such that 
4(m — A) + 1 is a prime. If this be true, set n = m — A; then 4tn + 1 is 
a El and 2(4n + 1) is a El. Set a = 2x + 1. Then n = m — A gives 
8m + 1 = 8n -f a2. Hence 8m + 3 = 2(4n + 1) + a2 is a SJ. On pp. 
442-5, Euler and Chr. Goldbach discussed without result the problem to 
express 8m + 3 as a SI. June 25, 1748 (pp. 458-460), Euler expressed his 
belief that any number 4n + 1 or 4n + 2 is a SI. The latter would give 

4n + 2 = (2a)2 + (2b + l)2 + (2c + l)2, 2n + 1 = 2a2 + (2e)2+ (2d+l)2, 

for b = d + e, c — d — e, whence any odd number is of the form 
2s2 + y2 -f- z2. 

March 24, 1750 (p. 512), Goldbach gave the identity 

P + 72 + (35 - 0 - y)2 = (25 - 0}2 + (25 - y)2 + (5 - P - y)2. 

7 Oeuvres, II, 167; letter to Mersenne, June 3,1638; Oeuvres de Fermat, 4, 1912, 57. 
8 Oeuvres de Descartes, II, 180-2. 
9 Oeuvres, II, 405; III, 318; letter to K. Digby, June, 1658. 
10 Y. Mikami, Abh. Geschichte Math. Wiss., 30,1912,233. 
11 Corresp. Math. Phys. (ed., Fuss), 1, 1843, 45; letter to Goldbach, Oct. 17, 1730. 
*Tbid.t2m; Oct. 15, 1743. 
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June 9, 1750 (p. 515), Euler expressed this as the first of the following: 

a2 + 62 + c2 = (2m — a)2 + (2m — 6)2 + (2m — c)2, if a + b + c = 3m; 
a2 ^ ^ ^ _ a)2 _ 5)2 (2m — c)2, if a + 5 + 2c = 3m; 

a2 + 62 + c2 = (2m — a)2 + (4m — 6)2 + (4m — c)2, if a + 26 + 2c = 9m; 

and gave five more such formulae and similar ones for 30. 
Euler13 verified that if m ^ 187 and n is of the form SN + 3, then m 

is the sum of an odd square and the double of a prime 4n + 1. Since 
4n + 1 = a2 + 62, 2(4n + 1) = (a + 6)2 + (a — 6)2, and the ra’s in ques¬ 
tion are HI. 

J. L. Lagrange14 remarked that a prime Sn — 1 is of the form 24n — 1 
or 24n + 7. Since he had proved that any prime 24n + 7 is of the form 
y2 + 6z2, its double equals (y + 2z)2 + (y — 2z)2 + (2z)2. He added that 
he did not see a proof of Fermat’s9 assertion for the remaining case of 
primes 24n — 1. 

J. A. Euler15 used (a2 — l)2 + 4a2 = (a2 + l)2 for a = p, q, to prove the 
identity 

Cp2 + l)2(g2 + l)2 = (q2 - 1 )2(p2 + l)2 + 4q2(jp2 - l)2 + (4pq)2. 

A. M. Legendre16 remarked that Fermat’s9 assertion is true not only of 
primes but of all odd numbers, and stated that either every number or its 
double is a HL His proof17 (pp. 545-8) was based on empirical theorems on 
the quadratic divisors of t2 + cu2. He was led (pp. 530-542) to the empirical 
theorem that, if c is a prime 8m — 3 or 8m + 1, the number of decomposi¬ 
tions of c into a sum of three squares (ignoring the order and signs of the 
roots) is the number of reduced quadratic divisors of the form 4n + 1 
(or of the form 4n — 1); while for a prime c = 8m + 3, it is the number of 
reduced quadratic divisors. 

P. Cossali18 noted that the sum of the squares of n, n + 1, n(n + 1) 
equals the square of n2 + n + 1. This result has been attributed100 to 
Diophantus, who in III, 5 noted that 22 + 32 + 62 = □. 

Legendre19 proved [the statement of Beguelin75 of Ch. I] that every 
positive integer, not of the form 8n + 7 or 4n, is a sum of three squares 
having no common factor; the proof is by means of theorems on reciprocal 
(p. 367) quadratic divisors of t2 + cu2. In 2 (2a + 1) = x2 + y2 + z2, two 
of the squares must be odd and the third even. Hence we may set 
rc = p + g, y = p — q} z=2r and get 2a + 1 = p2 + q2 + 2r2. Again, 
any integer is of the form 22n(2a + 1) or 22n-2(2a + 1), and the latter is a 
SO; hence either any integer or its double is a EO. The product (p. 198) 
of two GS is not in general a HI, since (1 + 1 + 1)(16 + 4 + 1) is not a ED. 

11 Acta Acad. Petrop., 4, II, 1780 (1775), 38; Comm. Arith., II, 138. 
u Nouv. M6m. Acad. Roy. Berlin, ann6e 1775, 356-7; Oeuvres, III, 795. In the quotation 

from Fermat, sum of a square and a double square should read sum of three squares. 
18 Acta Acad. Petrop., 3, 1779, 40-8. L. Euler’s Comm. Arith., II, 463. 
M Hist, et M6m. Acad. Roy. Sc. Paris, 1785, 514-5. 
17 Incomplete. Cf. A. Genocchi, Atti Accad. Sc. Torino, 15, 1879-80, 803; Gauss.50 
18 Origine, Trasporto in Italia. . . Algebra, 1, 1797, 97. 
18 ThSorie des nombres, 1798, 398-9 (stated p. 202); ed. 2, 1808, 336-9 (p. 186); ed. 3, I, 

1830. 393-5 (German tranal. bv Maser. I. 1893. 386-8). 
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C. F. Gauss20 determined the number of proper representations 
x, y, zy without common factor (and counted as different from y, xy z and 
from — x,yyz; etc.) of an integer masatS. Let h be the number of classes, 
in the principal genus, of the properly primitive binary quadratic forms of 
determinant — m. Let y. be the number of distinct prime factors of m. 
Then 

4>(m) = 3*2M+% if m = 1, 2, 5, 6 (mod 8), 

= 2^% if m s 3 (mod 8). 

In particular, we have Legendre’s19 theorem. But the squares of xy yy z; 
— xy y} z; y} x, z) etc. give the same decomposition of m into a G3. The 
resulting number of decompositions (art. 292) of m agrees with that derived 
by (incomplete) induction by Legendre16 for the case m a prime. 

A. Cauchy21 noted, as a corollary to Legendre’s theorem,19 that if a is 
any integer and if 4a is the highest power of 4 dividing a, then a is a SI if 
and only if a/4tt is not of the form Sn + 7. 

J. R. Young21® solved x2 + y2 + z2 = w2 by taking w = x + p and 
finding x rationally, or by setting y2 = 2xz. Then if w is given, take y = pz, 
whence z is found in terms of p. To find (p. 346) three numbers in har- 
monical progression whose sum of squares is a square, take l/(x db y)} l/x 
as the three numbers; the condition 3x4 + y4 = □ is satisfied if x = 2, 
V = L 

C. Gill216 noted that the sum of the squares of 2mn(k2 + l2)y 2kl(m2 — n2) 
and (k2 — l2) (m2 — n2) equals the square of (k2 + l2) (m2 + n2). 

C. G. J. Jacobi22 proved by use of elliptic functions that 

(1) {2 c-1) r=t (~ Dn(2n+i>(n,+n)/2, 
l m=~ 00 J n=0 

a result occurring also in Gauss’ posthumous papers. 
Jacobi23 gave an elementary proof of (1). Replace x by x24 and multiply 

the resulting equation by x3; we get 

(2) E (- l^em+D’ T = E (- l)*-l'*bar (ib odd, b > 0). 
m=-co J b 

For m positive, set a = 6m + 1; for m negative, set a — — 6m — 1; thus 

(E ± xa'Y = E (- 
a b 

where a and b range over all positive odd integers such that a is not divisible 
by 3. The sign in the left member is + if a = 12k ± 1, — if a = 12& ± 5. 
The expansion gives the following theorem: If a number 24k + 3, not of 
the form 3b2, be expressed as a sum of three squares (6m ± 1)2 in all possible 

80 Disq. Arith., 1801, Art. 291; Werke, 1,1863, 343; German transl. by H. Maser, pp. 329-33. 
Cf. H. J. S. Smith, British Assoc. Report, 1865; Coll. Math. Papers, I, 324. 

21 M6m. Sc. Math. Phys. de l’Institut de France, (1), 14,1813-5,177; Oeuvres, (2), VI, 323. 
2ltt Algebra, 1816; S. Ward’s Amer. ed., 1832, 326-7. 
216 The Gentleman’s Math. Companion, London, 5, No. 29, 1826, 364. 
22 Fund, nova func. ellip., 1829, § 66(7); Werke, I, p. 237 (7). 
25 Jour, filr Math., 21, 1840, 13-32; Werke, VI, 281-302. French transl., Jour, de Math., 

7,1842, 85-109. 
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ways, counting two for each case of three distinct squares, then the number 
of decompositions in which one or three of the mis are even equals that in 
which one or three of the m’s are odd. But for 3b2 the first number exceeds 
the second if and only if b = 1 (mod 4), the excess being always [6/3]. 

If N is any odd integer, (2) shows that 

3 N2 = (6m + l)2 + (6m! + l)2 + (6m2 + l)2 

in more than one way if N > 1, so that the squares need not all be equal. 
Thus 

N2 = n2 + 2nf + 6n2, n = 2(m + mx + m2) + 1, 

rii = 2m — mi — m2, n2 ~ nii ~ nh, 

where ni and rh are not both zero. By changing the sign of n if necessary, 
we may assume that N — n is divisible by 4. Let N be a prime. Then 
(N — n)/4 and (N + n)/2 are relatively prime and each divides n\ + Znl, 
whence each are of the latter form: 

+ n) ~ a2 + 3y2, J(2V — n) = /32 + 352. 

Hence every prime can be expressed in the form a2 + 2/32 + Zy2 + 652. 
Since the product of two such expressions is of the same form, every number 
can be expressed in that form. 

G. L. Dirichlet24 remarked that, by use of his formulas for the number 
h of classes of binary quadratic forms, one can give a new expression for 
the number of proper representations of m as a GS (Gauss20). Accord¬ 
ing to G. Eisenstein,25 the result is 

= 24g(^— J,ifm = l (mod 4); 

EyAJ / o \ 
<p(m) = 8 g y — J, if m = 3 (mod 4), 

where (s/m) is Jacobi’s symbol and is 0 if s, m have a common factor. 
T. Weddle26 noted that, if (a, p, z), (6, q} z') and (c, r, z") are the extremi¬ 

ties of a system of conjugate semi-axes of an ellipsoid, 

(a2 + b2 + c2)(p2 + q2 + r2) = (aq — bp)2 + (ar — cp)2 + (hr — cq)2. 

J. R. Young27 noted that the last formula follows by taking d = s = 0, 
ap + bq + cr = 0 in Euler’s formula (1) of Ch. VIII. But if we take 
d = s = 0, a/p = b/q, we get 

(a2 + b2 + c2)(p2 + q2 + r2) = (ap + bq + cr)2 + (ar — cp)2 + (hr — eg)2. 

G. L. Dirichlet28 gave an elegant proof of Legendre’s19 theorem. Let 
a be a positive integer not of one of the forms 4n, 8n + 7. It suffices to 

24 Jour, fur Math., 21, 1840, 155; Werke, 1, 1889, 496. 
25 Jour, filr Math., 35, 1847, 368. Cf. T. Pepin, Atti Accad. Pont. Nuovi Lincei, 37, 1883- 

4, 44. 
28 Cambridge and Dublin Math. Jour., 2, 1847, 13-19. 
27 Trans. Irish Acad., 21, II, 1848, 330. 
28 Jour, fur Math., 40,1850, 228-232; Werke, 2, 1897, 91. French transl. by J. Houel, Jour. 

de Math., (2), 4, 1859, 233. 
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show that there exists a positive ternary quadratic form F of determinant 
+ 1 whose first coefficient is a. Indeed, such a form is equivalent to 
& + y2 + z2, so that the latter can be transformed into F by a substitution 
of determinant unity; thus a is the sum of the squares of three of the 
coefficients (having no common factor) of the substitution. Now the 
ternary form 

ax2 + by2 + cz2 + 2 a'yz + 2 xz (A — be — a'2) 

has the determinant + 1 if 6 = aA —• 1. The form is positive if A > 0. 
It suffices to show that a positive value of A can be found for which — A is 
a quadratic residue of 6, so that c and a' may be determined to satisfy 

a'2 — be — — A. For a = 4k + 2, we take A odd. Then 6 = 1 (mod 4). 
We seek a suitable prime 6. Since, for Jacobi symbols, 

(i-1) - G) - G) - (V) -+ 
A must be of the form 41 + 1, whence b = 4aZ + a — 1. The latter is the 
general term of an arithmetical progression, containing primes. For 
a « Sk + 1, we take A = St + 3, and seek a prime p for which 2p — 6. 
Since 2p = aA - 1, p s 1 (mod 4), 

'-(irMzMiMirMir)- 
There exists a prime in the progression p = 4aZ + ^(3a — 1). A like 
result follows for a = 8k + 3, A = 8t + 1, and for a = 8k + 5, A = St + 3. 

H. Burhenne29 noted that x2 + y2 + z2 = (a2 + b2 + c?)s2 if 

$ = w2 + n2 + p2 
and 

£ — 2ml — as, y = 2nl — 6s, 2 = 2pZ — cs, Z = aw + Zw + <%>• 

H. Faure80 noted that no number m2(8x + 7) is a SI. 
V. A. Lebesgue31 proved that every odd number p is of the form 

x2 + y2 + 2z2y where xf y, z are integers with no common factor. The 
method is that of Dirichlet.28 It follows that 

2p « (x + y)2 + (x - y)2 + (2*)2. 

J. Iiouville82 denoted the number of sets of integral solutions of 
x2 + y2 + z2 = by^(/i). n = 2°w, m odd, a > 0. Let a be the 
greatest integer ^ -Vn. Then 

X (As4 + Bs2 + C)i(n - s2) = (3An2 + 6Bn + 24C)<r(m) 

(s = 0, ± 1, • • d= cj), 
where o-(w) is the sum of the divisors of w. 

*9 Archiv Math. Phys., 20, 1853, 466-8. 
10 Nouv. Ann. Math., 12, 1853, 336. 
u Jour, de Math., (2), 2,1857, 149-152. 
« Jour, de Math., (2), 5, I860, 141-2. 
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L. Kronecker33 proved by use of series for elliptic functions that the 
number of representations of n as a ® is 24F(n) — 12G(ri)y where G(ri) 
is the number of classes of binary quadratic forms of determinant — n, and 
F(n) is the number of classes of such forms of determinant — n in which 
at least one of the two outer coefficients is odd. This result gives the 
theorem of Gauss20 since G(n) = F(n) if n = 1 or 2 (mod 4); G(n) = 2F(n) 
if n s 7 (mod 8), 3G(n) = 4F(n) + t if n = 3 (mod 8), where t = 2 if n 
is the triple of an odd square, t = 0 in the remaining case. 

J. Liouville330 noted that, if m = 3 (mod 8), the number of solutions of 
m = i2 + i\ + iz2, where iy i\y i% are odd and positive, is 

(m-V\ , (m ~ 22\ , 

P\~2~ ) + P\~2 J 
= p'(m) + 2 p'(m — 4-l2) + 2p'(m — 4*22) + • • •, 

where p(n) is the excess of the number of divisors < Vn of n which are of 
the form 4p + 1 over the number of such divisors of the form 4/t + 3, 
while p(n) is the corresponding excess for all the divisors of n. 

V. A. Lebesgue34 stated that every solution of t2 = z2 + y2 + z2 is 
given by 

t - G(e2A + /2Q, a: = G{e2A - fC)y y2 + z2 = 4e2PG2ACy 

where G = g2 + h2y A = a2 + Z>2, C = c2 + d2. In the identity 

— x2 ~ y2 ~f~ z2y 

set g = 1, /i = 0, and replace oe, 6e, cf, df by a, ft 7, 5; we get 

(3) (a2 + /32 + 72 + $2)2 = (<*2 + 02 - 72 - &2)2 

+ 4(a7 + 06)2 + 4(a5 — fiy)2, 

a special case36 of Euler’s formula (1) of Ch. VIII. Since every integer n 
is a SI, n2 is a sum of three squares [each # 0, in general]. 

A. Genocchi36 proved Fermat’s statement that the double of any prime 
8ft — 1 is a EL 

J. Liouville87 stated that, if m = 1 (mod 4) and F is any function, 

2( — 1 )rK*-i)/•*»(„) = 2(— lY'FM, 

summed for all the decompositions i2 + o>2 + 16s2 = m = i\ -f <£ + 8s? 
in which i and i\ are odd and positive, while 00 and an are even. G. Zolo- 
taref38 gave a proof by use of elliptic functions. 

** Jour, fur Math., 57, 1860, 253. French transl., Jour, de Math., (2), 5, 1860, 297. Cf. 
Mordell.112 For n m 3 (mod 8), C. Hermite, Jour, de Math., (2), 7,1862,38; Comptea 
Rendus Paris, 53, 1861, 214; Oeuvres, II, 109. 

”• Jour, de Math., (2), 7, 1862, 43-44. Cf. Liouville7 of Ch. XI. 
u Comptes Rendus Paris, 66, 1868, 396-8. 
M Also given in Bellacchfs Algebra, 1, 1869,105. 
“ AnnaH di Mat., (2), 2, 1868-9, 256. 
17 Jour, de Math., (2), 15, 1870, 133-6. 
88 Bull. Acad. Sc. St. P^tersbourg, 16, 1870-1, 85-7. 
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E. Catalan39 noted that the excess of the number of even values of 
x + y + z in 

(6* ± l)2 + (6y db l)2 + (62 db l)2 = 3(2n + l)2 

over the number of odd values of x + y + z is (2n + 1)(— l)n. There 
are at least [(2n + l)/6] decompositions of 3(2n + l)2 into a S3. The 
sextuple40 of an odd square is a sum of three squares, two of which are of 
the form (6/x db l)2 and the third is 4(6& db l)2. The excess of the number 
of even values of x in 

4s2 + 4y2 + (:2z + l)2 = (2 n + l)2 

over the number of odd values is {(2n + 1)( — l)n — l}/4. If a prime p 
is not a 123, then p2 is a S3. 

Catalan stated and Y. A. Lebesgue41 proved that the square of a SI is 
a S3, since (3) for 5 = 0 becomes 

(4) (a2 + fP + 72)2 = (<*2 + P - 72)2 + (2a7)2 + (2^7)2. 

This formula was employed by Euler308 of Ch. XXII. 
J. Neuberg42 also gave (4). 
Catalan43 gave the identity 

(a2 + b2 + c2 + db + be + ac)2 

= (a + c)2(a + b)2 + (6 + c)2(a + b)2 + (c2 + ac + be - db)2 

and by a change of notation deduced 

(P + 2<72 + h2)2 = (/2 - h2)2 + {2g{f + h) }2 + (2\fh - 2<?2)2 

= {2g(f+h)}2+ {2g(f - h)}2 + (f2 ~ 2g2 + h2)2. 

Catalan44 stated empirically that the triple of any odd square not divis¬ 
ible by 5 is a sum of squares of three primes other than 2 and 3. 

G. H. Halphen45 proved that every prime 8m + 3 is a S3 by means of 
his104 recursion formula (Ch. VI) for the sum s(x) of the divisors of x whose 
complementary divisors are odd. Let x be not a square, S3 or S3; then 
no one of the arguments x — n2 is a (23, so that s(x) is divisible by 8. Let 
also a; be a prime, so that s(x) = x + 1. Hence a prime not a S3 or S3 
is of the form 8m — 1. 

U. Dainelli46 derived by integration the case c = 0 of Catalan^43 formula 

(a2 + db + 62)2 = (ab)2 + {a(a + b)}2+ {b(a + b) }2. 

S. K6alis47 noted that kz2 = z\ + z\ + z\ if 

k = A2 + B2 + C2, 2 - a2 + 02 + 72, *1 = A (/32 + 72 - a2) - 2a(Bp + Cy), 
Z2 = Biot2 - ff2 + 72) - 2ff(Cy + Act), g3 = C(a2 + /32- 72) ~ 2y(Aa + Bp). 

,fl Recherches but quelques produits ind^finis, M4m. Acad. Roy. Belgique, 40, 1873, 61-191; 
extract in Nouv. Ann. Math., (2), 13, 1874, 518-523. 

40 Repeated by Catalan, Nouv. Ann. Math., (2), 14,1875, 428. 
41 Nouv. Ann. Math., (2), 13, 1874, 64, 111. 
48 Nouv. Corresp. Math., 1, 1874r-5, 195-6. 
«Ibid., 153; 2,1876, 117. 
44 Nouv. Corresp. Math., 3, 1877, 29. 
46 Bull. Soc. Math. France, 6,1877-8, 180. 
44 Giomale di Mat., 15,1877, 378. 
47 Nouv. Corresp. Math., 4, 1878, 325. Cf. Malfatti19 of Ch. VIII. 
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The case A = l, J3 = C = 0 expresses the square of a 05 as a S3. The 
case A~ — a expresses the cube of a SI as a S3. 

H. S. Monck48 noted that if a, b, c are integral edges of a rectangular 
parallelopiped and the diagonal d is an integer, then a2 + b2 + c2 = d2, 
and another has the edges a -f- & + d, a + c + d, b + c + d and diagonal 
a + b + c + 2d. From a = 1, b = — 2, c = 2, d = 3, we get the new 
edges 2, 3, 6 and diagonal 7. Cf. papers 25-29 of Ch. XIX. 

S. BAalis49 gave a complicated identity 

x2 + y2 + z2 = t2 + u2 + t?, x = a2 + j32 + 72 - 52 - €2, • • •, 

said to give all solutions of the equation. He gave a similar identity which 
is said to give all solutions of S3 = 33. Supplementing the theorem that N 
is a S3 if N has no square factor and is of one of the forms 4p + 1, 4p 4- 2, 
8p + 3, he stated that N is the quotient of x2 + y2 + z2 by the factor com¬ 
mon to x2, y2, z2} where x, y} z are given above. 

F. Pisani50 discussed u2 + (u + l)2 == (x — l)2 + a;2 + (a; + l)2, whence 
(2w + l)2 = Qx2 + 3. Thus 2u + 1 = 3y, 2x2 — 3y2 = — 1. An infini¬ 
tude of solutions is found from the continued fraction for V3/2- 

S. RAalis51 expressed as a 123 the sum of the three squares of 

2(a2 - /32 - 72 + S2) + 2a(2/3 + 37 + 45) 

and two similar expressions. He gave (p. 501) expressions for 9Pn and 
18Pn as SI if P = a2 + b\ 

E. Catalan stated and RAalis52 proved that every power of 3 is a sum of 
three squares prime to 3. R6alis (p. 75) expressed n2(x2 + y2 + z2) as a 
S3 when n = a2 + ab + b2. 

Catalan53 proved that, if a = b (mod 3), a2 + b2 is a sum of three 
squares 4= 0; also if a ss b (mod x + y) and 2xy = □. Also that every 
power of 3 is a sum of three squares prime to 3. He54 proved that every 
even power of a2 + ab + b2 is a S3 and gave special identities S3 • S3 = S3. 

O. Schier55 solved x2 + y2 + z2 = u2 by setting y = x + p, z = x + y, 
u = x + 5, and taking /3 + 7 = 5. Then 

2x2 = S2 — /32 — 72, x2 = fiy = (y — r) (2 — x), 

whence x = ^/(t/ + 2). Multiplying the values by y + z, we get the 
identity of Dainelli.46 

J. Neuberg56 noted that x2 + y2 + z2 = X2 + Y2 + Z2 for 

x/a = y[b = 2/c = /c2 + 3, X = a(/b2 - 1) + 25(fc + 1) - 2c(fc - 1), 

Y and Z being derived from X by permuting a, b, c cyclically. 

48 Math. Quest. Educ. Times, 29, 1878, 74. 
49 Nouv. Ann. Math., (2), 18, 1879, 505-6. 
60 Nouv. Ann. Math., (2), 19,1880, 524-6. Same in Zeitschr. Math. Naturw. Unterricht, 12, 

1881, 268. Cf. Iionnet183 of Ch. XII. 
81 Ibid., (2), 20,1881, 335-6. 
« Mathesis, 1, 1881, 73, 87. 
53 Atti Accad. Pont. Nuovi Lincei, 34, 1880-1, 63-4, 135-6. 
64 Ibid., 35, 1881-2, 103-114. Extract in Sphinx-Oedipe, 5, 1910, 54-55. 
“ Sitzungsber. AJkad. Wise. Wien (Math.), 82, II, 1881, 890-1. 
“ Mathesia. 2. 1882. 116: (4). 4. 1914. 116-7. 
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S. R^alis57 gave expressions involving five parameters satisfying 

X2 + Y2 + Z2 = k(x2 + y2 + z2) 

for k = 7,19, 67, and formulas to deduce solutions from a given one. 
L. Kronecker®8 employed the number of classes of bilinear forms in two 

pairs of cogredient variables to find the number of ways any integer is a 01, 
in accord with Gauss.20 

E. Catalan69 stated that all solutions of x2 + y2 = u2 + v2 + w2 are given 
without repetition by u = x + a, v = y — p, x = sp + P6, y = sq + &Q, 
where 2$ = a2 -f- jS2 + w2 and a, p are relatively prime integers, while 

Pq — ap = L If r, s — db a + Va2 + 62, and n > 1, then60 

(r2»-l s2n-i)y(r 

isa t23 and S3. Hence the same is true of x4n — xin~2y2 + * • • + yitl for x, y 
relatively prime integers > 1. 

G. C. Gerono61 noted that if N2 is a sum of squares of two consecutive 
integers, N is a sum of squares of three integers of which two are consecu¬ 
tive, as 292 = 202 + 212, 29 = 22 + 32 + 42. 

Catalan62 noted that every power of a SI is a S3 since 

(x2 + y2 + z2)2 = y2(3z2 -x2 - y2)2 + x\Zz2 - x2 - y2)2 + z\z2 - Sx2 - 3y2)\ 

To solve (p. 103) x2 + y2 = u2 + ^ + w2, set u — x a, v — y — P* 
Then py — ax = s, where s = £(«* + p2 + w2). Take a, p relatively prime 
and w such that s is an integer. For pq — ap = 1, all solutions are given 
without repetition by x = sp + p6, y = sq + ad. [Catalan59]. 

Catalan stated and E. Fauquembergue68 proved that, unless x = 1 or 
4a2 + 1, (a2 + l)x2 = y2 + 1 implies that x is a S3, since all solutions (if 
any) of y2 — Ax2 = — 1 are given by the terms of convergents of even 
rank in the continued fraction for VX The latter proved (p. 346) that 
x2 + y2 = u2 + v* + 1 is satisfied by 2a + 1, a — 1, a + 1, 2a and by 
2a2 + 1 ,p2- 1, 2a2 - p? + 1, 2ap. 

J. W. L. Glaisher64 proved that, if the number of representations of 
8n + 1 by 

(2p + l)2 + (4r)2 + (4s)2, (2p + l)2 + (4r + 2)2 + (4s + 2)2 

is Ei, Rt, respectively, then E\ — R2 unless 8n + 1 is a square, while if 
8u -j- 1 = f2, 

Ri - R2 = 61(- 1 

87 Mathesis, 2,1882, 64-7. 
84 Abh. Akad. Berlin (Math.), 2, 1883, 52; Werke, 2, 1897, 483. 
89 Assoc. fran$. av. sc., 12, 1883, 98-101. 
w Also stated Nouv. Ann. Math., (3), 3, 1884, 342; Mathesis, 6, 1886, 65, 113. 
81 Nouv. Ann. Math., (3), 2,1883, 329. 
63 Atti Accad. Pont. Nuovi Lincei, 37, 1883-4, 54-6. 
M Nouv. Ann. Math., (3), 3, 1884, 53S. Cf. Catalan181 of Ch. XII. 
M Quar. Jour. Math., 20, 1885, 94. 
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Catalan65 noted that (3) with 5 = 0 does not give all solutions of 
u2 = x2 + y2 + z2, for example not that with u = 27. But all primitive 
solutions (u, x, y, z with no common factor) are said to be given by (3). 
There are several identities giving an infinitude of (but not all) solutions 
of (x2 + y2 + z2)2 = SI. 

A. Desboves66 noted that the complete solution in integers of 

X2 + Y2 + Z2 = V2 
is given by the identity 

[2(p2 + g2 - a2)]2 + {2[(p - s)2 - q2 + p(g - s)](2 

+ — s)2 - p2 + 4q(p - a)]2 = (3[(p - s)2 + g2] + 2s(p - g)}2. 

Catalan67 noted that, if x2 + y2 + z2 = 1, xxf + yyr + zz* = 0, 

(V2 + 11* + S'2) {(2/2" - 22/")2 + (a*7' - xz"y + (xy" - j/x")2} 

= (x'x"+y'y"+z'z")2+ {{yz"-zy")x'+(zx”-xz")y'+ (xy”-yx")z'}\ 

Catalan68 treated u2 = x2 + y2 + z2. Since a prime 4/* + 1 is of the 
form y2 + z2, one solution is given by u = 2/i + 1, x = 2ju. We may set 
w + a; = a2 + /32, w — x = y2 + S2 and obtain a solution leading to the 
identity (3). 

C. Hermite69 expressed the number of decompositions of an integer into 
3 and 5 squares in terms of the number of classes of binary quadratic forms. 

J. W. L. Glaisher70 considered the compositions a2 + b2 + c2, a2 + b2 + 62, 
a2 + cl2 + a2 of n as a sum of three squares when n s 3 (mod 4), a, b, c 
being distinct odd numbers, and formed from them the respective quan¬ 
tities 8aa. + 86/3 + 8cy, 4aa + 86/3, 4aa, where a = (— l)^"1^2, • • •, 
y = (— l)(c~1)/2. The sum of the quantities so derived from all the com¬ 
positions of n equals the expression 

<r(ri) — 2<r(7i — 4) + 2<r(n — 16) — 2<r(n — 36) + • • •, 

where <r(Jc) is the sum of the divisors of k. This result holds also when 
n S3 1 (mod 4) if we use the quantities Saa, 4aa, 4aa, aa for the respective 
compositions a2 + 62 + c2, a2 + b2 + 0, a2 + 62 + 62, a2 + 0 + 0, where a 
is odd, 6 and c are even, distinct and + 0. The number of representations of 
n as a sum of three squares is expressed in several ways as a series involving 
the number of representations of & as a sum of two squares. 

E. Catalan71 noted that 

3{(a + 26 - l)2 + (6 + 2a - l)2 + (a - 6)2} 

= (3a - l)2 + (36 - l)2 + (3a + 36 - 2)2, 

(s2 + y2 + z2){xf2 + y'2 + z'2) = £ W - zy")\ 
(3) 

if x'x" + • • * = 1, x = xr — xn'Lx,11 • • •. 

« Bull. Acad. Roy. Belgique, (3), 9, 1885, 531. 
« Nouv. Ann. Math., (3), 5, 1886, 232. 
w M6m. Soc. Roy. Sc. Li&ge, (2), 13, 1886, 34-9 (Melanges Math. III). 
**lbid., (2), 15,1888, 73-5, 211, 259 (Melanges Math. Ill, 1885, 120). 
65 Jour, fur Math., 100, 1887, 60, 63; Oeuvres, IV, 233, 237. 
70 Messenger Math., 21, 1891-2, 122-130. 
71 Assoc, franc, av. sc.. 1891. II. 195—7. 
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De Rocquigny72 obtained a solution of S3 • S3 = SI by use of 

(a2 + \b2)(al + \b\) = (aax + \bbx)2 + - ai&)2> X = c2 + d2. 

Catalan73 took the fourth variables zero in Euler’s (1) of Ch. VIII 
and got 

P == (x2 + y2 + z2){x\ + y] + z\) 

= (xxx + yyi + zzx)2 + (xy^ - yxi)2 + (yzx — zyO2 + (zxx - xztf. 

Taking x : X] = y : yx [Young27], we get P = SI; but the condition is not 
necessary in view of (9 + 4 + 1)(1 + 1 + 1) =25+16 + 1. 

K. Th. Vahlen74 deduced (1) from the theory of partitions. The identity 

a2 + 2/32 + 3y2 + 652 = a2+(jS + Y + 5)2+(—-/3 + Y+ ^)2 + (y — 2$)2 

and Jacobi’s23 final result shows that every number is a S3. 
Catalan75 proved that if p is not a ED, then p2 is a S3. For, if 

p = a2+ b2 + c2, p2 = (a2 + 62 - c2)2 + (2ac)2 + (2be)2. 

If p = a2 + b2 + c2 + d2, then 

p2 = (a2 + b2 - c2 - d2)2 + 4(a2 + 62)(c2 + d2). 

Catalan76 noted that every odd square > 1 is a sum of 2 or 3 squares. 
P. Bachmann77 considered the number A of decompositions of $ into 

three distinct squares a2 + <x\ + al where one (or three) of ol, ol^ a2 is of 
the form 12A: ± 1 and the others are of the form 12A; =fc 7; the number Af 
of decompositions into three distinct squares for which the reverse is true; 
the number B of decompositions s = a2 + 2a\ in which a, cc1 are distinct 
and a is of the form 123b ± 1; and the number B' of such decompositions 
in which a ~ 12h =b 7. He proved that 2A + B = 2A1 + B' + D, where 
D = 0 or {(— l)*'(2t + 1) — j)/3, according as $ is not or is of the form 
3(2?, + l)2, and j is the absolutely least residue modulo 3 of ( — l)4‘(2t + 1). 

Bachmann78 gave an exposition of the theory of SI. 
J. F. d’Avillez79 applied Catalan’s43 formula to express the squares of 

1, 3, 6, 11, 17, 25, 34, 45, • * • as BO. 
We may express 1521 as a SI in 7 ways.80 Many identities giving equal 

sums of three squares have been noted.81 
M. A. Gruber82 tabulated solutions of 32n = S3 for n 6. 
R. D. von Stemeck83 gave an elementary proof of (1). 

73 Mathesis, (2), 2,1892, 136. 
nIUd., (2), 3,1893, 105-6. 
74 Jour, fur Math., 112, 1893, 23. 
75 M&n. Acad. Roy. Belgique, 52, 1893-4, 21. 
78 Mathesis, (2), 4, 1894, 27, 52-53. 
77 Die Aualytische Zahlentheorie, 1894, 37-0. 
78 Arith. der Quadrat. Formen, 1898,139-162, 600; Niedere Zahlentheorie, 2, 1910, 320-323. 
79 Joraal de Sc. Math. Phys. e Nat., (2), 5, 1897-8, 90-2. 
80 Amer. Math. Monthly, 5, 1898, 214. 
81 Ibid., 6, 1899, 17-20. 
83 Ibid., 8, 1901,49-50. 

83 Sitzungsber. Akad. Wiss. Wien (Math.), 109, Ila, 1900, 28-43. 
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H. Schubert84 treated x2 + y2 + z2 = u2, where x, y, z have no common 
factor. They are not all odd, as seen by their residues modulo 4. Hence 
we may assume that x and y are even, and z and u odd. Thus (z/2)2 + (y/2)2 
is to be factored into |(u + z), i(u — z), which is done by trial. 

P. Whitworth84" tabulated the number of ways each integer ^ 64 is a 
sum of three squares each > 0. R. W. D. Christie noted cases of equal 
sums of three squares. 

E. Grigorief85 noted that [by (3)] x2 + y2 + 1 = z2 is satisfied if 

2x = p2 — q2 + r2 — s2, y = pq + rsy 2z = p2 + q2 + r2 + s2, ps — rq = 1, 

when p + q + r + s is even. Escott (p. 285) listed 34 values < 500 of z. 
F. Hromddko86 noted that n2 + (n + l)2 + x2 *= (x + l)2 for 

x = n(n + 1), 

while a2 + b2 + x2 = z2 for z = x + a — b, (a — b)x = ab. 
Haag87 stated that every number not of the form (8n — 1 )p2 is a S3. 
H. B. Mathieu88 noted the identity 

(a2 + P2 + y 2)[aV + b2y2 + (aa + 6£)2] 

= [aap + b(/32 + 72) J + [a(a:2 + Y2) + &#/3]2 + (a/? y — bay)2. 

G. Humbert89 gave theorems on the decomposition of M + Pp into a 
sum of three squares of such complex integers, where p = (1 + V5)/2. 

A. Hurwitz90 noted that, if n = 2fLmqTq? * *, where qly q2} • • • are 
primes 4k + 3, and m is a product of powers of primes 4k + 1, 

n2 = x2 + y2 + z2 
has 

solutions. It has solutions each + 0 except for n2 = 22M, 52*22M, since 
n2 = x2 + y2 has 4<r(n2) solutions. 

A. S. Werebrusow91 expressed a SI as the cube of a SI, but made errors. 
G. Bisconcini92 gave a table of solutions of (4). 
E. Landau93 considered the number C(x) of integers si x which are SL 

Since a positive integer is a S if and only if it is not of the form 

/ = 4a(85 + 7), a is 0, 5 is 0, 

84 Niedere Analysis, 1, 1902, 165-6. 
Math. Quest. Educ. Times, (2), 1, 1902, 94-5. 

86 LJinterm6diaire des math., 10, 1903, 245. 
88 Zeitschr. Math. Naturw. Unterricht., 34, 1903, 258; 35, 1904, 305. 
87 Ibid., 35, 1904, 57. 
88 L’intermidiaire des math., 11, 1904, 273. Taking a = /3 == 7 = 1 and replacing 6 by 

6 + a, we get the identity on p. 163. 
89 Comptes Rendus Paris, 142, 1906, 537. 
90 L’interm^diaire des math., 14, 1907, 107. 
91 Ibid., 15, 1908, 275-6; cf. 16, 1909, 135, 256. 
92 Periodico di Mat., 22, 1907, 28-32. 
98 Archiv Math. Phys., (3), 13, 1908, 305. 
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the number of integers S x of one of the forms/is fxl - C(x). Since there 
are [(* + l)/8] integers 8t + 7gi, 

W ~ C(z) = lim^ = f. 
J=«L 8 J’ *=«, X 6 

A. G6rardinM noted that 

{mx - ny)2 + (nx + 2my)2 = (mx + ny)2 + (nx)2 + (2my)2, 

(x - l)2 + x2 + (x + l)2 = 1 + t2, if t2 = 3x2 + 1, 

as for (x,t) = (0, 1), (1, 2), (4, 7), (15, 26), (56, 97), . To Lucas is 
attributed 

(12m ± 2)2 + 1 = (8m ± 2)2 + (8m ± l)2 + (4m)2. 

W. Sierpinski95 noted that if Jc is a OS in r3(k) ways, 

~ 'Zp + m2 -ftf = It^^ {5(*) - 4tt^( = const., 

where 0 <1? + m2 + n2 s x. The number of sets of integers l, m, n 
satisfying that inequality is W-'2 + 0(xV*), for 0 as in Landau179 of Ch. VI. 

^ Landau96 proved that every positive integer not of the form 
4°(8m + 7) is a IS, using the equivalence of every positive ternary quadratic 
form of discriminant unity to x2 + y2 + z2. 

K. J. Sanjana97 found solutions of the system of equations 

3? = y2 + z2 + u2, x + y + z + u = 100. 

Let * = o +6, y = a — 6. Then z2 + u2 = 4ab, 2a = 100 — z — u. Hence 

(2 + b)2 + (u + b)2 = 262 + 2006. 

He took u + 6 = 2 - 6, whence z2 = 1005. Taking 6 = 1, 4, 9, • • •, he 
found the solutions 42, 40, 10, 8 and 38, 30, 20, 12. The solution 39, 34, 
14, 13 was noted by N. B. Pendse. 

H. B. Mathieu98 stated that the general solution of EE = QD is 

lA±rB ± pD, pA + qB=F ID, tA=fIB- qD. 

Welsch®9 gave Z d= mv, 71 =F pv, Im — np =F t> as the general solution. 
A. Gdrardin100 gave the identity 

(7<z2 -f 7b2 - 12aZ>)2 = (6a2 + 662 - 14aZ>)2 + (3a2 - 362)2 + (2a2 - 2b2)2. 

L- Aubry101 noted the existence of an infinitude of primes each a sum of 
three distmct squares. Every prime p = 12n + 5 > 17 gives a solution. 

M Assoc, fran$., 38, 1909,143-5. 

rrPwaxz' Nauk (Proc. Sc. Soc. Warsaw), 2,1909,117-9. 
Handbudi . Verteilung der Primzahlen, 1, 1909, 545-505. 

,F* hidian Math. Club, 2,1910, 202. 

^ ’ 17» 1910, 288- On pp. 72, 166 it is shown that his earlier solu- 
M won, lb, 1909, 220, is not general. 

Values tc??*m^n ^e^zes> 156-7, stated that we may need to give fractional 

m l7A j910) 27^; Sphinx-Oedipe, 1907-8, 27. 
phinx-Oedipe, 6,1911,25-26. Proposed bv F. Proth, Nouv. Corresp. Math., 4,1878, 95. 
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We have p = a2 + b2, where a and b are prime to 3, so that we can set 
a + &sO (mod 3), 

where the three squares are distinct if p > 17. 
L. Aubiy102 proved that not all decompositions of the square of a SI 

into a SI are given by (4). Expressions for x2 + y2 or x2 + 2y2 as a ED are 
given on p. 124 and 19, 1912, 11, 188-190. 

H. C. Pocklington103 noted that, if N = 4m + 1 or 4m + 2, there are 
properly primitive forms of determinant — N that have the quadratic 
character — 1; while if N = 8m + 3 there are improperly primitive forms 
of determinant — N which have the character — 2. Transform such a 
form into (6, /, c), where b is prime to N. Solve bg2 s — 1 (mod N) for g 
and let bg2 + 1 = aN. Then 

N = (a, 6, c} /, g, 0)(jbc - /2, fg, - bg) 

is a representation of N by a definite ternary quadratic form of determinant 
unity. Reducing it in the ordinary way, we get N = S3. 

R. F. Davis104 noted that, if p + q + r = 1, 1/p + 1/q + 1/r = 0, then 

a2 + b2 + c2 = (pa + qb + rc)2 + (qa + rb + pc)2 + (ra + pb + qc)\ 

E. Landau106 proved that the number of sets of integers u, v, w for 
which u2 + v1 + w2 ^ x is ^ttz?12 + 0(xm+t), for e > 0. Application is 
made to the number of classes of positive forms of given discriminant. 

L. Aubry106 proved that pA2 = B2 + C2 + D2 implies that p is a sum of 
three squares; similarly for four squares. 

E. N. Barisien107 noted various special cases of (3). 
*G. Muhle107a solved x2+y2+z2=g2, where g is given; also, x2+y2=g2 

and x2Ay2 = z2-\-w2. 
G. Humbert,108 by use of an identity involving theta-functions, proved 

that if f(x) is any even function of x} 

2/(0 = 2(— l)«-»l2f(d + 2h), 

where t ranges over the integers occurring in the decomposition of a given 
number 8M + 3 into t2 + t\ +1\} each t an odd integer > 0, while in the 
second member the summation extends over the decompositions 

m + 3 = Ah2 + ddt (dx>d> 0). 

The case / = 1 is due to Hermite.69 He gave a similar result and 

2/(0 = 22 (dx + d- 4 h)f(d + 2/0, 

4AT + 3 = t2 + tl + tl + 4:l2 + 4:ll==4h2 + ddl (i, h, t2 odd). 

10* L’interm6diaire des math., 18, 1911, 236. Cf. M. Rignaux, 24,1917, 35-6. 
1M Proc. Cambr. Phil. Soc., 16, 1911, 19. 
104 Math. Quest. Educ. Times, (2), 21, 1912, 23. 
108 Gottingen Nachr., 1912, 693, 764-9. Cf. Sierpinski.96 
106 Sphinx-Oedipe, 7,1912, 81. 
107 Ibid., 8, 1913, 142, 175. 
ma Ein Beitrag zur Lehre von den pythagoreischen Zahlen, Progr., Wollstein, 1913. 

1KQ lOIA 99A_A* ot-ro+o QfiA 1K7 1Q13 13A1-9 
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W. C. Eells,109 to solve x2 + y2 + z2 = a2, took x — 2MN, y ~ M2 — N2, 
a = m2 + ft2, and gave to M2 + N2, z the values m2 — ft2, 2mn in either 
order. He tabulated 125 sets of solutions arranged according to the size of a. 

A. G6rardin and E. Miot110 gave many identities x2 + y2 = u2 + v2 + w2- 
L. Aubry111 gave a very long, but elementary proof, by use of theorems 

on divisors of numbers x2 + my2, that every number not of the form 
4r(8n + 7) is a SI. 

L. J. Mordell112 proved Kronecker’s33 theorem by use of theta functions. 
A. S. Werebrusow113 noted that the problem to find two equal sums of 

three squares is evidently equivalent to mm! + nnf + ppr — 0, the general 
solution of which is stated to be 

m = aj3 — ba, n = ay — ca, p = ah — da, 

mf ~ ch — dy, ft' = dp — bh, p' = by — c/3. 

He gave long formulas said to solve x2 + y2 = u2 + v2 + w2 completely. 
E. Bahier114 found solutions of a2 + b2 + c2 = d2 in which a 4* b = d, 

d = c + 1, d2 = c2 + 72, or a and b are given. He discussed the nature of 
numbers d such that d2 is a sum of three squares 4= 0. 

E. Turriere115 derived (4) geometrically and showed how to deduce new 
solutions of x\ + • • • + = R2 from a given solution. 

W. de Tannenberg116 found real polynomials of degree 2ft in a variable 0 
satisfying x2 + y2jfz2 — P2, where P is a given polynomial of degree 2ft in 6, 
net zero for any real 0. Hence set P = (af — <?)--- (ai — £), tp = i(0 + bp). 
For arbitrary parameters aQ, • • *, an, define two sets of functions by 

up = (apUp„i 4- ipVp^)eia>, vp = (apvp„i + tpU^e"^ (p = 1, • * ft)> 

Uq == eia% v0 = e~iac. Let the u, v become u', vf when h, • • *, tn are changed 
in sign. Define x, y, z by means of 

P — z = 2unvn, P 4- z = 2vnun, x + iy = 2unun, x — iy = 2vnvn, 

which are consistent since unvn 4- vnun = P. Take tp = i(6 + bp). 
On two equal sums of three squares, see papers 19 and 86 of Ch. VIII. 

By Cesaro26 of Ch. IX there are in mean im112 representations of ft as a S3. 
On a SI equal to 2v2, or «*, see papers 171 of Ch. XIII, 69 of Ch. XV, 312 
of Ch. XXII. On numbers not a SI, papers 4, 5 of Ch. VIII. On systems 
of equations including S3 = □, papers 97 of Ch. VII, 94 of Ch. IX, 32-39a, 
51, 146, 165,168 of Ch. XIX, 390-8 of Ch. XXI, 308-9 of Ch. XXII. On 
systems including S3 = ft3 or ft5, papers 95, 97 of Ch. XX, 353, 392, 402-3 
of Ch. XXL 

109 Amer. Math. Monthly, 21,1914, 269-273. 
110 L’mtenn6diaire des math., 21,1914, 190-2. 
1U Sphinx-Oedipe, numdro special, Jan., 1914, 1-24. 
112 Mess. Math., 45,1915, 78. 
n3 L'mterm&iiaire des math., 23,1916, 12-13, 17-18. 
114 Recherche . . . Triangles Rectangles en Nombres Entiers, 1916, 234-254. 
ns L enseignement math., 18,1918, 90-5. 
m Comptes Rendus Paris, 165, 1917, 783-4. 



CHAPTER VIII. 
SUM OF FOUR SQUARES. 

Diophantus, IV, 31 [32], desired four numbers Xi such that the sum of 
their squares increased [diminished] by the sum of the numbers is a given 
number n. He took n = 12 [n = 4]. Since x2 x + £ is a square, 

± SXi + 1 is the sum of four squares, here 13 [5]. Hence we have to 
divide 13 [5] into four squares and subtract f from [add | to] each of their 
sides to obtain the sides of the required squares. Since 

13 = 4 + 9 = ^ + ^ + ^+^ 
d * + y 25^25^25^25’ 

[, 9 ,16 ,64 36] 
L5~ 25 + 25 +25 +25j’ 

the sides of the required squares are 

11 ]] 19 13. [11 13 21 17] 

10’ 10’ 10’ 10’ 110’ 10’ 10’ 10J 

G. Xylander1 noted that if we take 1430 in place of 4 in the second prob¬ 
lem, we get the solution 62, ll2, 212, 302. 

C. G. Bachet10 remarked that Diophantus apparently assumed here 
and occasionally in Book V that any number is either a square or the sum 
of 2, 3 or 4 squares [Bachet’s theorem], and added that he himself had 
verified this proposition for all numbers up to 325 and would welcome a 
proof; he gave decompositions into 4 or fewer squares of each number up 
to 120. He mentioned the generalization of Diophantus IV, 31 to the 
problem to find k numbers such that the sum of their squares increased by 
the sum of the numbers is a given number n. Thus n + k/4 is to be the sum 
of k squares. Bachet stated that if k 4 there is no condition. 

Fermat, in his comment quoted in Ch. I36, stated that he possessed a 
proof that every number is a sum of four squares. In stating the theorem 
elsewhere, Fermat2 remarked that Diophantus seems to have known the 
theorem. 

The reason for ascribing a knowledge of this theorem to Diophantus 
lies in the fact that he made no mention of a condition on a number in order 
that it be a sum of four squares, in the three cases IV, 31, 32 and V, 17, in 
which he mentioned the subject, but that he gave necessary conditions for 
representation as a sum of two or three squares (Chs. VI, VII). 

Diophantus, V, 17, sought to divide a given number into four parts 
such that the sum of any three of the parts is a square. Thus three times 
the sum of the four parts is the sum of four squares. Let the given number 

1 Diophanti Alexandrini Rerum Arith., . . . , G. Xylandro, Basileae, 1575, 104. 
la Diophanti Alex. Arith., 1621, 241-2. 
* Oeuvres, II, 65; III, 287; letter to Mersenne, Sept, or Oct., 1636; to be proposed for 

solution to Sainte-Croix. Mersenne communicated it to Descartes, March 22, 1638. 
The latter ascribed the theorem to St. Croix (Oeuvres de Descartes, II, 256). Fermat, 
Oeuvres, II, 403-4; III, 315, letter to Digby, June, 1658, proposed that Brouncker and 
Wallis seek a proof of the theorem. 

OTI 
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be 10. Then 30 is to be divided into four squares each < 10. Since 
30 = 16 + 9 + 4 + 1, we take 9 and 4 as two of the squares and divide 
17 into two squares each < 10 [the squares of 1016/349 and 1019/349]. 
If we subtract each of the resulting four squares from 10, we obtain the 
required parts 1, 6, etc. In V, 16, the number 10 is divided into three 
such parts. For a generalization to n parts, see Kausler47 of Ch. XV. 

Regiomontanus3 (J. Muller) proposed in a letter the problems to find 
four squares whose sum is a square and twenty squares whose sum is a 
square > 300000. 

Jakob von Speyer3® gave 

1 + 22 + 42 + 102 - ll2, 22 + 42 + 72 + 102 = 132. 

A. Girard,4 in commenting on Diophantus V, 15, stated that there are 
numbers, as 7, 15, 23, 28, 31, 39, not a sum of three squares, but that any 
integer is a sum of four squares. 

It. Descartes5 announced the theorem (“ whose demonstration he judged 
so difficult that he dared not undertake to find it ”): Any number which 
is the sum of three squares and exceeds 41 can be expressed also as the sum 
of four squares, excepting only the products of 6 or 14 by 4, 42, 43, 
There are no other numbers which are not composed of four squares, except 
2*4n, which is not a square, nor composed of three or four squares, but only 
of two. 

Fermat6 stated that he had much trouble in finding the new principles 
needed to apply his method of infinite descent to show that every number 
is a square or the sum of 2, 3 or 4 squares; but stated that he had finally 
proved that if a given number is not of this nature there would exist a 
smaller which is not. 

L. Euler7 admitted that he could not prove Sachet’s theorem that 
every integer is a SI, nor give a general rule to express n2 + 7 as a SI. 
Oct. 17, 1730 (p. 45), he noted that, if Fermat’s theorem that every integer 
s is a sum of three triangular numbers (a2 -j- a) /2 is true, then Sx + 3 is 
the sum of the three squares (2a + l)2. Hence Sx + 4 and Sx + 7 are S3. 
[Of. Beguelin75 of Ch. I.] Since m2(Sx + 4) = k2(2x + 1), it remains only 
to prove that 4® + 2 is a S3. Oct. 15, 1743 (p. 263), Euler noted that, if 
np2 is a SI, is a sum of four integral squares. Thus if it be true that 
8m + 3 is a S3, 8m + 4 is a S3 and also 2m + 1, so that every integer is a SI. 
May 6, 1747 (p. 419), he stated that Bachet’s theorem depends on the 
improved fact that every number 4m + 2 is the sum of two numbers 4x + 1 
and 4.y -f* 1, neither having a factor 4p — 1 [and hence each a S3]. For, 

* C. T. de Murr, Memorabilia Bibl., 1,1786,160, 201. 
** Ibid., 168. 

4 L’arith. de Simon Stevin .. . annotations par A. Girard, Leide, 1625, p. 626; Oeuvres 
math, de S. Stevin par A. Girard, 1634, p. 157. 

5 Oeuvres, 2, 1898, 256, 337-8, letters to Mersenne, July 27 and Aug. 23, 1638. The limit 
33 given in the first letter was changed to 41 in the second. 

• Oeuvres, II, 433, letter to Carcavi, communicated Aug. 14,1659, to Huygens. 
T Corresp. Math, et PhyB. (ed., P. H. Fuss), St. Petersburg, 1, 1843, 24, 30, 35; letters to 

Goldbach, June 4, June 25, Aug. 30,1730. 
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then 2(4m + 2) is a S3 and hence 2m + 1 is a 31. May 4, 1748 (p. 452), 
he gave the fundamental formula (Cf. Euler165 of Ch. XIX) 

(a2 + b2 + c2 + d2) (p2 + g2 + r2 + s2) = x2 + y2 + z2 + fl2, 
(1) - x = ap + bq + cr dsy y = aq — bp =fc cs =F dr, 

z ~ ar F1 bs — cp ± dq, v = as db br ^ cq ~ dp, 

and stated (p. 454, and Aug. 17, 1750, p. 531) that Bachet’s theorem would 
follow if the fourth power of 1 + x + x4 + rc9 + rc16 + • • • contained xn 
with a coefficient =f= 0. April 12, 1749 (pp. 495-7), he stated that he had a 
proof that, if p is any prime, there exist four integers a, • • •, d, each not 
divisible by p, such that a2 + • • • + d2 is divisible by p. Set a = <xp db x, 
• • *, d = 5p dh v, where 0 rr ^ Jp, • • *, 0 ^ ^ |p. Hence re2 + * • • + ^ 
is divisible by p. If p is odd, rr < |p, • • •, so that x2 + • • - + v* < p2. 
To prove that every prime is a 33, suppose there is a minimum prime p 
not a SI. But x2 + • • • A~ v2 = pq, q < p. Euler believed, but could not 
prove, that if pq = S3, p + 31, then q 4= 33. Admitting this, we would 
have a contradiction with the assumption about the minimum p. Thus 
every prime is a 33 and hence by (1) every integer is a 33. 

On the point here left in doubt that pq = 33 and q = S3 imply p = 31, 
Euler proved, July 26, 1749, pp. 505-10, that, if* m ^ 7, mA = 31 and 
m = S3 imply A = 33. Set 

m = a2 4* b2 + c2 + d2, 

mA = (/ + mp)2 + (g + mq)2 + (h + mr)2 + (& + ms)2, 

[where /, * • *, k are numerically ^ m/2]. Then f2+ • • • + k2 is divisible 
by m. For m 7, the quotient was verified to be a 31, 

P + g2 + h2 + k2 = m[X2 + Y2 + Z2 + F2], 

and pn accord with, but not a consequence of, (1)] 

f^aX+bY + cZ + dV, g = bX-aY-dZ + cV, 

h ~ cX + dY — aZ — bV, k = dX~cY+bZ~ aV, 

A = X2 + Y2 + Z2 + F2 + 2(/p + gq + hr + ks) + m(p2 + g2 + r2 + s2) 

= (* + X)2 + (y - F)2 + (* - Z)2 + (t> - F)2 

where rr, • • •, are given by (1) with the upper signs. Moreover, he gave 
a proof of Chr. Goldbach’s assertion of June 16 (p. 503) that the sum s of 
four odd squares can be expressed as a sum of four even squares. Since 

§(2p + l)2 + J(2q + l)2 - (p + q + l)2 + (p - <?)2, 

| = (a + 6 + l)2 + (a - by + (c + d + l)2 + (c - d)\ 

The last sum involves two even and two odd squares since s = 8m + 4. 

* For the general case Euler8 admitted in 1751 that he had no proof. 
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Hence 

| = (2p + l)2 + (2 q + l)2 + 4r2 + 4s2, 

| = (p + q + l)2 + (p ~ q)2 + (r + s)2 + (r “ s)2. 

As a corollary, 2A = S3 implies A = S3. 
On March 24,1750 (p. 513), Goldbach had stated that there is a definite 

connection between the sets of four squares whose sums are 2m — 1 and 
2m + 1, as derived from 8m + 3 = ED. June 9, 1750 (p. 518), Euler 
interpreted this as follows: From 8m — 5 = a2 + 52 + c2, where a, b, c 
are odd, 

where two of the squares are even. Set 2p = (a + l)/2, 2q = (6 + c)/2. 
Then 

4m — 2 = (2p)2 + (2 q)2 + r2 + s2, 

2m - 1 = (p + g)1 + (p - g)! 4- ) + ( ~2~) 

jy, 

where two or four signs are +. From 8m + 4 = 9 + a2 + b2 + c2, 

4m+2=(«-±iy+(^y+(^y+(^)-, 

a»+iBZ(!iM|A±,3),) 

where two or four signs are +. Hence, from 8m — 5 = ED, 

2m - 1 = p2 + q2 + r2 + s2, 

2m + 1 = (p + l)2 + (g + l)2 + (r - l)2 + (s - l)2. 

Thus r + s — p — g = 1 and we can express any odd number as a sum of 
four squares the algebraic sum of whose roots is unity. [Cf. Cauchy, 1813]. 
Euler stated (p. 521, p. 527, and again on Dec. 4, 1751, p. 559) that while 
he had proved that any rational number is the sum of four rational squares, 
he had not proved the theorem for integral squares. 

Goldbach (p. 526) noted that a, ft, y, a + ft + y + 25, and a + ft + 5, 
& + y 4* 5, ft + 7 + 5, 5, and a -f 5, /3+§, 7 + 5, + have 
the same sum of squares. 

Euler, July 3, 1751, p. 542, discussed the problem to make 

s = «2 + ?2 + 72+«2 + e 

a 00, Call the roots a — kxy ft — mx, y — nx, 5 + x. Then 

5 = A — \Bx + ~, A s ka + mft + ny, B = k2 + m2 + n2 + 1. 
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Resolve e-B into two factors a, b, both even or both odd. Then for 
x = e/a, S = A + (a — 6)/2. Take &, ra, ti arbitrarily and determine 
a — b, or conversely. The case e = 8 was partially treated by Goldbach, 
pp. 540, 546-8, 555 and by Euler, p.- 557. A 31 with the sum of the roots 
zero is a SO since (pp. 548-9) 

a2 + b2 + c2 + (a + b + c)2 = (a + b)2 + (a + c)2 + (6 + c)2. 

Goldbach (p. 548) noted that 

8n + 4 = a2 + 62 + c2 + d2, a + b + c + d = 2. 

Euler, Sept. 4, 1751, p. 551, deduced this from 

8n + 3 = QD = (a + b - l)2 + (a + c - l)2 + (b + e - l)2. 

Euler8 published some results on Bachet’s theorem. He proved 
Theorem I. There exist integers a, b for which 1 + a2 -f- b2 is divisible 

by a given prime p. For, if — 1 is a quadratic residue of p, there is an 
integer a for which 1 + a2 is divisible by p. Next, let — 1 be a non¬ 
residue and suppose the theorem is false. Then 1 + 1 - 2 = 0 shows 
that — 2 is a non-residue and hence + 2 a residue; then 1 + 2 — 3 = 0 
shows that — 3 is a non-residue and hence + 3 a residue; and in this way 
1, 2, • • •, p — 1 would all be residues. 

If A - a2 + • • • + d2, P - p2 H-, then A/P = AP/P2 = (x/P)2 + • • • 
by (1), so that AjP is the sum of four rational squares. Euler admitted 
he was unable to prove that, if A is divisible by P, A/P is the sum of four 
integral squares. If this were proved, Bachet’s theorem would follow. 
But it is readily proved that every integer is a sum of four rational squares. 
For, if p be the least prime not such a sum, there exists (Theorem I) an 
integer A = a2 + b2 + c2 divisible by p, where a, 6, c are < p/2. Then 
A Ip < fp, and yet A/p was seen to be the sum of four ratio?, d squares. 

J. L. Lagrange9 gave the first proof of the theorem of Bachet and 
acknowledged his indebtedness to ideas in the preceding paper by Euler. 
The steps are as follows: 

(i) If p2 + q2 = tp and r2 + s2 = up, where p, q, r, s have no common 
divisor, then t and u are sums of two squares. 

For, call M the g.c.d. of p = Mp1 and q = Mqp, N that of r — Nr1 and 
s = Nsi. Then M and N are relatively prime. Call p the g.c.d. of M2 
and p = ppi. Since 
(2) M2(pl + ql) = <MPl, 

Pi divides the sum pi + q\ of two relatively prime squares. By Euler’s24 

theorem of Ch. VI, the quotient is a sum c2 + d2 of two squares. Set 
n = v2m, where pi has no square factor. Then M is divisible by vpi, 
M = Kvpi. Now N2(r\ + s[) = uppx. Since p divides M2, it is prime to 
N2 and hence divides r\ + As before, pi = e2 + /2. Then, by (2), 

t = (c2 + d2)M2/p = (c2 + d2)K2pi = K2(ec + fd)2 + K2(ed - fc)\ 

8 Novi Comm. Acad. Petrop., 5, 1754-5 (1751), 3; Comm. Arith., I, 230-233. 
8 Nouv. M6m. Acad. Roy. Sc. de Berlin, ann€e 1770, Berlin, 1772, 123-133; Oeuvres, 3, 

1869,189-201. Cf. G. Wertheim's Diophantus, pp. 324-330. 
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(ii) If 72 + 52 is divisible by m2 + n2, the quotient t is a sum of two 
squares. 

Let l be the g.c.d. of y ~ lp} 6 - Iq, m = Ir, n = Is. Then p2 + f is 
divisible by r2 + s2 = p. Hence, by (i), t = (p2 + q2)/p is a sum of two 
squares. 

(iii) If P = p2 + q2 + r2 + s2 is divisible by a prime A > ^P, then A 
is a sum of four squares. 

Set P = Aa. Then a < A. A common divisor d of p, qy r, s is < A, 
so that d2 divides a and may be deleted from a, p2, • • •, s2. Let therefore 
d = 1. 

Let p be the g.c.d. of a = bp and p2 + q2 = ip. Then (r2 + s2)[p is an 
integer u. By (i), t — m2 + n2, w = ft2 + l2. Thus 

iu = £2 + p2, a; = mh + ril, y — ml — nh. 

From P ~ Aa follows 

Ab = t + u, Abt = t2 + x2 + p2. 

Since & is prime to i, there exist integers a, • • •, 5 such that 

x — at yb> y = fit + 56, | a | < §6, | # | < f 6, 

(3) A6* = ft£2 + 2aytb + 205*6 + (y2 + 52)62, ft s 1 + «2 + 02. 

Hence ft*2 is divisible by 6. Thus ft = aib, where ax < 6/2 +1/6. Then 

At = axt2 + 2ayt + 2/351 + (y2 + 52)6, 

d\At = (axt + cry + 05)2 + y2(a>ib — <x2) + 52(ai6 — /32) — 2a/3y5. 

Replacing ai6 by 1 + a2 + 02, we get 

Mi = (aii + + 05)2 + (07 - «5)2 + 72 + 52. 

By (3), 72 + 62 is divisible by i = m2 + n2. By the last equation and (ii), 

Y2 + «2 = t(p] + ql), (aj + ay + $&)* + (fiy - «5)2 = t(r\ + sj), 

+ ql + t\ + s’. 

If a = 6p is > 1, ax < 6/2 + 1/6 < a. Similarly, if ai > 1, a%A is the 
sum of four squares, where a2 < ah etc. But each a,- ^ 1. Thus a certain 
a* = 1, and akA — A is the sum of four squares. 

(iv) Any prime which divides the sum of four or fewer squares which 
have no common factor is itself the sum of four or fewer squares. 

If the prime A divides p2 + q2 + r2 + $2, it divides the sum obtained by 
replacing p by d= (p — mA), where m is such that 0 ^ | p — mA | < |A, 
etc. The sum of the four new squares is < A2 and is divisible by A. 
Then (iii) may be applied, even if some of the four squares are zero. 

(v) If B and C are integers not divisible by the odd prime A, there 
exist integers p and q such that p2 — Bq2 — C is divisible by A. 

Suppose that there is no integer q which makes 6 = Bq2 + C divisible 
by A (since otherwise we may take p = 0). For 

p = p*~* + bpA~s + 6V'7 + • * • + 6(j4"”8)/2, 

(p2 - b)P = pA~l - 1 - (6(X"1)/2 - 1). 
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Multiply the last equation by Q = bu~m + 1. If p and q can be chosen 
so that pPQ is not divisible by A, then p2 — b will be divisible by A, as 
shown by using Fermat’s theorem. For q constant and p = 1, • • *, A — 2, 
let R become Pi, • • •, P^_2* Then by the theory of differences, 

Pi-(A- 3 )P2 + i(A - 3 )(A - 4)PS-+ = (A - 3)!. 

Hence at least one P* is not divisible by A. Set ra = f (A — 1). Then 

Q = q*R + Cm+ 1, P = PV~3 + + • • • + mBCm~K 

If O + 1 is not divisible by A, it suffices to take q = 0. In the contrary 
case, we note that if R becomes Ri for q = i> 

Ri - (A - 3)P2 + J(A - 3)(A - A)Ri - -. - + = (A - 3)! P", 

so that at least one Ri is not divisible by A. Hence by (iv) every prime is 
a 33. 

(vi) Every positive integer is the sum of four or fewer squares. 
This follows from Euler’s relation (1). Lagrange added the generaliza¬ 

tion 

(p2 - Bq2 - Cr2 + - Bql - Cr* + PCs*) 

(4) = {ppx + Bqqx =fc C(rri + Bssx) }2 - Pfpgi + qpx dh C(rsx + srx) }2 

— C{prx — ± rpi =F Psgi}2 + BC{qrx — =fc spx =F rgx}2. 

L. Euler’s10 proof is much simpler than Lagrange’s. It is shown that if 
N divides P = p2 + q2 + r2 + s2, but not all the numbers p} • • *, a, then 
2V is a sum of four squares. Set P = i\Tn. Determine a, 6, c, d, each 
numerically < |n, so that 

p = a + na, q — b + r = c + ny, s = d + nS. 

Set <r = a2 + 62 + c2 4- d2. Then a ^ n2. We readily dispose of the case* 
cr = n2. pf n is odd, a, • • *, d may be chosen numerically < n/2, whence 
cr < n2. If n is even, we have <r < n2 unless a, • • •, d numerically equal 
n/2, whence p ± # and r ± $ are divisible by n and are even. But 
Nn = P = 2p2, whence 

may be used in place of the initial multiple P of N.2 Hence let <r < n2. 
Then 

Nn = cr + 2nA + n% A = aa + bp + cy + d8, t s a2 + /32 + 72 + 

Thus cr is divisible by n. Set <r = nn', so that n' < n. By (1), 

at = A2 + P2 + C2 + DK 

Multiply N = n' + 2A + nt by n'. Then 

_Wn' = (n' + A)2 + P2 + C2 + D\_ 

10 Acta Erudit. Lips., 1773, 193; Acta Acad. Petrop., 1, II, 1775 [1772], 48; Comm. Arith., 
1,543-4. Euler's Opera postuma, 1,1862,198-201. He first repeated Lagrange's proof 
and his8 proof of Theorem I. 

* Stated to occur only when a~b~c — d — $n — whence p, • • r are odd and N ** iP 
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In the same way, Nn" (n" < n') is the sum of four squares; etc., finally 
N-1 is a sum of four squares. 

He proved that, if N is a prime not dividing the given integers X, n, v, 
we can find integers x, y, z not divisible by N such that s = Nc2 + ny2 + vz2 
is divisible by N. Since X is prime to N, we can determine integers m 
and n such that Xm s= — \n == — v (mod N). Then 5 s 0 is equivalent 
to a s nib + nc (mod N) for quadratic residues a, b, c. If the latter is 
impossible, then mb + n is a non-residue for each of the (N — 1) /2 residues 
b and hence gives all the non-residues. Then if d is any residue, bd is a 
residue e, so that me + dn must be a non-residue. This exceeds the non¬ 
residue me + n by n(d ~ 1) = co. For d 4* 1, co is prime to N. Thus, 
if or is any non-residue, a + co is a non-residue. But a, a + co, • • *, 

a + (N — l)co are congruent to 0, 1, • • *, N — 1 in some order and hence 
are not all non-residues. 

Euler11 gave a slight modification of his preceding proof. We may 
assume that p, q, r, s in Nn = p2 + q2 + r2 + s2 are numerically < %Nf 
where N is a prime. Then n < N and we can find integers a, a, • • •, d, 5, 
such that 

V — Na + not, q = Nb -f np, r = Nc -f ny, $ = Nd + n8, 

where a, b, c, d are numerically < \n. Then Nn = N2<r + 2NnA + n% 
so that <r = nn', n' < n. Multiplying by n'/n, we get 

Nn' = (Nn' -f A)2 + B2 + C2 + D2. 

Euler12 noted that a2 + b2 + c2 = 4(x2 + 3^2) = ffl for 

a = 2m(ps + qr) + 2n(Sqs — pr), 

b, c ~ m{(8q ± p)s + (q =F p)r\ + n{8(q ^ p)s — (3q ± p)r}. 

Euler13 remarked that the sum of two primes of the form 4n + 1 is a 3] 
since each is a El, and verified that every number 47b —|— 2 S 110 is a sum 
of two primes 4n -f 1. 

A. M. Legendre14 remarked that a proof of Fermat’s assertion that 
every prime 8n — 1 is of the form p2 + q2 + 2r2 would complete the proof 
that every number is a HI. For, any prime 8n — 3 is of form p2 + q2, 
any prime 8w + 3 is of form p2 + 2q2, any prime 8n + 1 is simultaneously 
of the last two forms. 

Legendre15 reproduced Euler’s10 proof, using in place of Theorem I its 
generalization by Lagrange. 

C. F. Gauss18 subtracted from the given number 4n + 2 any square 
less than it, from 4ra 4* 1 an even square, from 4n + 3 an odd square. The 
remainder is s 1, 2, 5 or 6 (mod 8) and hence is a sum of 3 squares. Thus 

11 Opera postuma, 1, 1862, 197-8 (about 1773). 
“Novi Comm. Acad. Petrop., 18, 1773,171; Comm. Aritb., I, 515. 

Acad. Petrop., 4, II, 1780 (1775), 38; Comm. Arith., II, 134-9. 
“MSm. Acad Roy. Sc Paris, 1785, 514 Cf. Pollock"; also Euler,” Lebesgue" of Ch. VII. 

Essm aux la throne des nombres, Paris, 1798, 198; ed. 2, 1808, 182; ed. 3,1830, I, 211-6, 
Nob. 151-4 (Maser, I, pp. 212-6). ’ ' 

“ Vm- Arith., 1801, art. 293; Werke, 1, 1863, 348. 
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the given number is a sum of 4 squares. Finally, a multiple of 4 is of the 
form 4W, where N is one of the preceding three types. 

Gauss17 noted that the theorem (1) that a product of two sums of four 
squares is a SI is represented in the simplest way by 

(Nl + Nm)(N\ + Nfi) = N(l\ + mp) + N(lp' - mV), 

where N denotes the norm and l, m, X, p, X', p' are complex numbers, 
X, X' and p, p! being conjugate imaginaries. He noted (p. 447) that [cf. 
Glaisher,59 Hermite69] 

(6) (l + 2y + 2y* + 2y* + • - -)4 

« (1 - 2y + 2y* - • • -)4 + + V'4 + • • -)4- 

He noted (p. 445) that [cf. Legendre,23 Jacobi,24 and Genocchi39] 

(7) (l + 2*r + V+V+”-)4“l+8(r^ + j^ + r^i+ •••), 

(8) (« + 9» + <r + «" + •••)4=I^ + r^i + r^ro+ •••• 

Gauss18 noted that every decomposition of a multiple of a prime p 
into a2 + b2 + c2 + d2 corresponds to a solution of x2 + y2 + z2 = 0 (mod p) 
proportional to a2 + b2, ac + bd} ad — be or to the sets derived by inter¬ 
changing b and c or b and d. For p = 3 (mod 4), the solutions of 
1 + x2 + y2 ss 0 (mod p) coincide with those of 1 + (x + iy)P+1 = 0. 
From one value of x + iy we get all by using 

(x + iy)(u + i)/(u - i) (u = 0, 1, • * •, p — 1). 

For p s 1 (mod 4), p = a2 + b2; then b(u + i)/{a(u — ^)} give all values 
of x + iy if we exclude the values a/b and b/a of u. 

G. F. Malfatti19 did not prove as he promised to do that every integer 
is a SI. After verifying this for about 50 small numbers, he considered the 
equation Kn2 = p2 + q2, where K is a given integer. If we admit his 
assertion that K must be a El, the equation has evident solutions with 
n = 1. Taking K — a2 + b2, he found an infinitude of solutions, with / 
and g arbitrary, by setting 

an — q p — bn , , . ,, , _ . 
—— = —j— , g(an + q) = f(p + bn). 

The equation obtained by eliminating p is satisfied if we take 

f2 + g2, q = (/2 - g2)a + 2fgb. 

Next, Kn2 = p2 + q2 + r2, in which we may limit K to be odd or the double 
of an odd number, and n to be odd, is said without adequate proof to be 

17 Posth. MS., Werke, 3, 1876, 383-4. 
18 Posth. paper, Werke, 8, 1900, 3. 
18 Memorie di Mat. e Fis. Soc. Italiana Sc., Modena, (1), 12, pt. 1, 1805, 296-317. 
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impossible unless K is a SI. For K = a2 + b2 + c2, the equation becomes 

H 

Hh(an + r) - Ff{q + bn) + Gg(p + cn), 

an — r „ q — bn p — cn 

f ’ ^ * ’ J ' 0 
It is stated that H — F — G, and that the linear equation in n, r, derived 
by eliminating p, q requires n = f2 + g2 + h2, whence 

P = (Z2 — g2 + h2)c + 2gha - 2fgb, 
q = (— p + 02 + h2)b + 2fha — 2\fgc, 

r - (f2 + g2 — h2)a + 2fhb + 2ghc. 

[For these, n2(a2 + bz + c?) = p2 + g2 + r2, identically in /, g, h, a, 6, c.] 
There is a similar treatment of the corresponding problem for 4 or 5 squares. 
If Malfatti had proved his statement that K must be a sum of the like 
number of squares, he could have deduced Bachet’s theorem from Euler’s8 
result that every integer is a sum of four rational squares. 

P. Barlow20 gave a “ simplification of Legendre’s15 proof.” To show that 
any prime A divides a sum of SI, he proved at length that x2 + w2 — 1 = mA 
is solvable [evidently by x = 1, w = 0!] and stated that a like proof shows 
that y2 + z2 + 1 = nA is solvable. The proof probably meant for the 
latter is as follows. If p s y2 (mod A), either — (p + 1) is a quadratic 
residue (= z2) and the result follows, or it is a non-residue and hence p + 1 
a residue, since — 1 is a non-residue (otherwise our equation holds for 
y = 0). But p, p + 1, p + 2, • • • are not all residues. The proof is thus 
only a slight modification of that by Euler.10 

A. Cauchy’s proof in 1813 of Fermat’s theorem on 3 triangular numbers, 
4 squares, 5 pentagons, etc., was considered in Ch. I. It is in place to 
mention here the theorems on sums of squares upon which his proof rests, 
especially since special cases were cited above from the correspondence 
of Euler and Goldbach. If 

(9) k - t2 + u2 + a2 + w2, s = t + u + v + w, 
then 
(10) 4k — s2 * (t + u — v — w)2 + (f — u + v — w)2 + (t — u — v + w)2. 

But if 4* is the highest power of 4 dividing a, then a is a SI if and only if 
a/4* is not of the form 8n + 7. If fc is even, the three sums in (10) are 
even, so that k — s2/4 is a SI. By (9), k s $ (mod 2). Cauchy proved that, 
if k is even, sufficient conditions for (9) are that s be even and between 

^3k ~ 1 and and k — s2/4 + 4°(8w + 7). With the exception of 

8 > ^3k — 1, these were seen above to be necessary conditions. For k 

odd, sufficient conditions for (9) are that s be odd and between V3k — 2 — 1 

and aS; there exists such an s for any k. As to the former case, he proved 

that for any k there exists an integer between V3k and Vik and congruent 
to k modulo 2 except when k = 1, 5, 9, 11, 17, 19, 29, 41, 2, 6, 8, 14, 22, 
24, 34. 

10 New Series of Math. Repository (ed., Leyboum), 2, 1809, II, 70; Theory of Numbers, 
London, 1811, 212. 
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Cauchy21 noted that if p is a prime and a, P are integers for which 
a + P + 1 ^ p, and if A ranges over a + 1 distinct values modulo p, 
and B over P + 1 values, then A + B takes at least a + p + 1 distinct 
values modulo p. For A and B not divisible by p, Ax2 and By2 + C each 
take (p + l)/2 distinct values modulo p, when p is a prime > 2. Hence 
Ax2 + By2 + C takes all p distinct values modulo p and therefore the value 
zero. Cf. Cauchy95 of Ch. I. 

Cauchy22 noted [the case d = s = 0 of (1)] 

(a2 + b2 + c2) (p2 + q2 + r2) 

= (ap + bq + cr)2 + (aq — bp)2 + (dr — cp)2 + (br — cq)2, 

and a like formula with n squares instead of 3 [see Cauchy81 of Ch. IX], 
A. M. Legendre23 gave (8) and concluded that every number of the form 

8n + 4 is a sum of four odd squares in a(2n + 1) ways, where a(k) is the 
sum of the divisors of k. It is said to follow readily that every integer is a 00. 

C. G. J. Jacobi24 proved Bachet’s theorem by comparing the formulas 

<2K/t = 1 + 2q + 2q* + 2q* + ■ • • = Z 

(2Z/tt)2 =1 + 8 
2 2s 

+ 3 q* + 
1 - q ' 1 + ' 1 - 3* 

= 1 + 82 <r(p)(qp + 3gs* + + 3g8p + 

...) 

including (7), where p ranges over the positive odd numbers, and <r(p) 
denotes the sum of the divisors of p. At the same time we obtain the 
theorem: The number of representations76 of 2ap as a sum of 4 squares is 
8<r(p) or 24<r(p), according as a = 0 or a > 0. Cf. Jacobi225 of Ch. III. 

Jacobi25 compared the formulas28 

(2kKM2 = 162<r(p)g*>, = 2q'J* + 2 g9/4 + 2g25/4 + • ■ 

where p ranges over the odd positive numbers, and concluded that there 
are cr(p) sets of four positive odd numbers the sum of whose squares is 
4p [see papers 23, 30, 42, 52, 69, 72, 82, 91]. 

Y. Bouniakowsky27 proved that, if A, B, C are integers not divisible by 
the prime p, we can give to x, y such integral values that Ax2 + By2 — C 
is divisible by p. He first found the conditions that x or y can be a multiple 
of p; then noted that, if neither can be a multiple of p, the congruence can 
be written pM + pN — 1 ss 0 (mod p), where p is a primitive root of p, 

21 Jour, de l’6cole polyt., vol. 9 (cab. 16), 1813, 104-116; Oeuvres, (2), I, 39-63. 
w Coins d’analyse de l’^cole polyt., 1, 1821, 457. 
38 Traits des fonctions elliptiques, 3, 1828, 133. Stated in Legendre’s Th^orie des nombres, 

ed. 3,1, 1830, 216, No. 154 (Maser, I, 217); not in eds. 1, 2. Cf. Bouniakowsky, Vol, 
I, p. 283. Cf. Jacobi" 

u Werke, 1,423-4; Jour, fiir Math., 80,1875,241-2; Bull, des sc. math, astr., 9, 1875, 67-9; 
letter, Sept. 9,1828, Jacobi to Legendre. Jacobi, Fundamenta Nova Funct. Ellipt., 
Konigsberg, 1829, p. 188, p. 106 (34), p. 184 (6); Werke, I, 239. Cf. J. Tannery and 
J. Molk, E16m. thSorie fonct. ell., 4,1902, 260-3; J. W. L. Glaisher, Quar. Jour. Math., 
38, 1907, 8; papers 51-2, 81, 88, 110-1. 

38 Jour, for Math., 3, 1828, 191; Werke, I, 247. a. Lioimlle1 and Deltour" of Ch. XI. 
* Fundamenta Nova Fundt. Ellipt., 1829, 106 (35), 184 (7); Werke, I, 162, 235. 
*7 A A* A Ci. DitinwVi/MiM /TVTy.A'U "V 1 ICOI KAK_KQ1 
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and M and N are odd. The latter congruence can be solved. Or the 
theorem can be derived by multiplication from Lagrange’s case A — l- 

If N is any odd integer or the double of an odd integer, while A, B, C 
are integers prime to N, Ax2 + By2 — C = 0 (mod N) is solvable. 

Given two arithmetical progressions whose first terms a, /3 are arbitrary 
and whose common differences A, B are not divisible by the prime p, 
we can choose n and nr so that the total sum of n terms of the first, nf 
terms of the second, and any given integer E, is divisible by p: 

i{2a + (n ~ l)A}n + £{2/3 + (n' - 1 )B}n' + E = 0 (mod p). 

For, this can be reduced to the above congruence. 
F. Minding28 noted that integers u and v can be chosen so that 

u2 — Bt? — C is divisible by the prime p, if neither B nor C is divisible by p. 
In fact, for v = 0, 1, * * *, (p — l)/2, the function Bv1 + C takes (p + l)/2 
distinct values modulo p, and at least one must be congruent to one of the 
(p + l)/2 values of u2, since otherwise there would be p + 1 residues 
modulo p. Hence we can choose u and v less than p/2 so that u2 + v2 + 1 
is divisible by p. The proof that p is a 33 is that by Euler.10 

G. Libri29 proved that there are nil sets of solutions < n of 

x2 + oiy2 + 6 s 0 (mod n), 

if a, 5 are not divisible by the prime n. He first expressed the number 
of sets of solutions as a double sum involving roots of unity. 

C. G. J. Jacobi80 gave an arithmetical proof of his25 theorem on the 
number p of sets of positive odd solutions w, • • •, z of 

(II) w2 + x2 + y2 + z2 = 4p, 

where p is a given positive odd number. Two distinct permutations of the 
same numbers are counted as different solutions. For such a set, 

n* + *2 = 2p', y2 + = 2p", p' + p" = 2 p, 

where p' and p" are odd. Conversely, these equations imply (11). Hence 

M * JE^Pp' = u? + x*yNl2p" = y2 + z2l, p' + p" = 2p; p', p" odd, 

where N[2p' — id2 -j- x2] denotes the number of positive solutions w, x of 
2p' = w2 -f x2. The latter number is N[p' = acT\ — iV[p' = aa~], where 
cl ranges over the factors of the form 4m + 1 of p' and a' over the factors 
4m + 3. Let 0 and 0' range over the factors 4m + 1 and 4m + 3, respec¬ 
tively, of p". Then 

2V[2p" » p* + s2] » JVtip" = 6/3] - iV[p" = 6/3']. 
Set » tf[2p = UJ Then 

SlVCp' - aofJ.JTEp" = 6/3] = tf[a<x + 6/3], etc., 
_M = Nla* + 6/3] + NjW + 6/3'] - 2N[oql + 6/3']. 

» AnfanpgrthHk der hoheren Arith., Berlin, 1832,191-3. 

M ** ?k1832,182* See of Ch. XXIII. 
Jour, to Math., 12,1834,167-172; Werke, 6,1891, 245-251. 
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Unless a = (3, a — 0', we may set 0 — a + 44, 0' = cl + 44, A > 0, if 
the term be repeated. Thus 

M - #[«(<* + 6)] + Any (a + 6)] - 2 N[aa + 60'] 
+ 2N[a(a + 6) + 464.] + 2N[a! (a + 6) + 464]. 

Let c range over both the a and a! numbers. Then 

fj. = N£c(a + 6)] + 2N[c(a + 6) + 464] - 2A[aa + 60']. 

In the second term set c = d 4- 441?, d < 44, B =£ 0. Now a + 6 may 
represent any even number 2(7, and 6 + B(a + 6) any odd number e. 
Thus 

ju = A[c(a + 6)] + 2N[2Cd + 44e] - 2N[aa + 60']. 

Since a + 0' s= 0 (mod 4), a H= 6. Thus the second member of 

2N[aa + 60'] = A[aa + 60'] + A[a0' + 6a] 

is twice the like sum with 6 > a. Set 6 = a + 2(7, a + 0' == 44. Then 

N[aa + 60'] = 2V[20'G + 44a] + A[2aG + 44a] = N[2dG + 44a], 

where d < 44. Hence /x = N[c(a + 6)]. Here c ranges over all the 
divisors of p. If p = c/, the equation 2p = c(a + 6) becomes 2/ = a + 6, 
which has / sets of odd solutions. But 2p/c is the sum of the divisors of p. 
Thus /x = <r(p). 

T. Schonemann31 used the notation cos n, sin n for a pair of solutions 
of x2 + y2 3= 1 (mod p). If cos m, sin w is the notation for a second pair 
of solutions, then the expansions of cos (n + m), sin (n + m) give a third 
pair of solutions. Then, for a an integer, 

(cos n + i sin n)tt ss cos an + i sin an (mod p). 

If p is a prime, cos pn === cos n, sin pn ss (— l)(p-1)/2 sin n (mod p). Hence 
cos (p =F l)n s 1 if p = 4fc ± 1. An integer a is put into “ class 4 ” 
if 1 — a2 is a quadratic residue of p, otherwise into class B. It is proved 
that if cos n belongs to class 4 and if a is the least integer for which 
cos an 2s 1 (mod p), then a is a divisor of p =F 1 when p = 4k ± 1; then 
cos n is said to belong to the number a. There exist <f>(p 1) “ primitive ” 
cosines which belong to p db 1. For p = 4n + 1, cos n is primitive, so 
that all sets of real solutions of x2 + y2 s 1 (mod p) are given by cos tn, 
sin in for Z = 1, 2, • • -, p — 1; the cases of coincidence are found. The 
result is that for any prime 8m db 1, 8m + 3 or 8m + 5, there are m essen¬ 
tially different sets of solutions, provided 02 + l2 = 1 is excluded. The 
same ideas are applied to the determination of the quadratic character 
of 2, 3, 5. 

G. Eisenstein32 stated without proof that the number of all repre¬ 
sentations of an odd integer m as a S is 8cr(m) [Jacobi24], and that, if 

S1 Jour, fur Math., 19, 1839, 93-110. 
“Jour, ftir Math., 35, 1847, 133; Math. Abhandlungen, 1847, 193. In Jour, de Math., 17, 

1852, 477, the first result is said to follow from a property of ternary quadratic forms. 
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m = aab& • • •, where a, b, * • • are distinct primes, the number of proper 
representations is 

8w(l -j- 1/a)(1 -f- 1/6) * • *. 

P. L. Tehebychef33 proved that x2 — Ay2 — B s= 0 (mod p) is solvable 
if A is not divisible by the prime p. Proof is needed only when p > 2 and 
Ap2 + B is never divisible by p, whence 

(Ay2 + j5)(p-d/2 |i~0 (mod p). 

This congruence of degree p — 1 is not satisfied by all the values 0, 1, * • *> 
p — 1 of y, so that for one of them Ap2 + B is a quadratic residue of p. 

P. Pollock34 noted that if any odd square 16?i2 Sn + 1 is increased by 
3 the sum is 3(4n2 db 4n + 1) + (4n2 =F 4n + 1), and hence is the sum of 
four odd squares. By adding also 8, the new sum is divisible into four odd 
squares, with a like result for each addition of 8. He stated that^ every 
number 8k 4* 4 is reached in this way. Since every number 8k + 4 is thus 
a S3, Bachet’s theorem is said to follow. 

C. Hermite35 showed that, if A is odd or the double of an odd number, 

(12) (x2 + P2 + 1 = 0 (mod A) 

has integral solutions. First, let A ^ e (mod 4), « = ±1. The^ arith¬ 
metical progression with the general term 4Az + 2eA — 1 contains by 
Dirichlet’s theorem an infinitude of primes, each = 1 (mod 4) and hence 
the sum of two squares a2 + jS2. Next, let A = 2 (mod 4); we employ 
similarly the progression 2Az + A - 1. 

For integral solutions a, p of (12), the definite form 

/ = 04-3 + az + pu)2 + (Ay — pz + au)2 + z2 + u2 

has as the numerical value of the invariant A the value A4 (being the product 
of the square of the determinant A2 of the four linear functions by the value 
1 of A for the sum of 4 squares) and hence its minimnrn for integral values 
of the variables x, *•, u is < (|)3'2A1/4 < 2A. Since / represents only 
multiples of A, the minimum is A itself. Thus A can be represented by / 
and hence is a sum of four squares. 

Hermite36 repeated the preceding proof and gave the following. The 
form 

\f - + V1) + 2a(ar + yu)+ 2(3(xu - zy) + I- {o? + (S2 + l)(z2 + «2) 
A. 

has integral coefficients, and A = 1. Hence it is equivalent to 

X1 + P + 2? + C7», 

the single reduced definite quaternary form with A = 1. Hence in the 
^oufJ*?ear factions X, , U of x, •••,«, the sum of the squares of the 
coefficients of x or of y equals A. 

»Theon> der Congruensen,ia W 1849; German, 1889,207-9. 
** Proc. Roy. Soc. London, 6,1851,132-3. 
“ Comptes Rendna Paris, 37,1853,138-4; Oeuvres, I 288-9 

“ Jour- Matk.«, 1854, 348-5,364-8; Oeuvres, I, 284^ 258-263. 
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For M an odd integer, the Hermitian form 

MVV + (a + &)VU + (cc - ffiVU + ^(<*2 + P + 1)VU, 

with complex integral coefficients^ has for the invariant A the value — 1, 
and hence is equivalent to vv + uu, the single reduced form with A = — 1. 
Let the latter be transformed into the former by 

v = aV + bU, u = cV 4~ dU, ad — be — 1, 

a, • * •, d being complex integers. Then M = ad + cc, where a and c are 
relatively prime. Thus any odd integer is the sum of four squares such 
that the sum of two of the squares is prime to the sum of the two remaining 
squares.37 

By considering the proper and improper representations of M by 
vv + uu, he obtained Jacobi’s formula 8n(p* + 1) for the number of repre¬ 
sentations as a sum of 4 squares of M = Ilpi, when M is not divisible by 
the square of a prime. 

F. Pollock38 proved Cauchy’s theorem (1813) that any odd number 
2p + 1 is a sum of four squares the algebraic sum of whose roots is any 
assigned odd number from 1 to the maximum. For, p is a sum of three or 
fewer triangular numbers. If p = (g2 + q)j2, then whether q = 2n or 
2n — 1, we have 2p + 1 = 4n2 =fc 2n + 1, which is the sum of the squares 
of n, — n, =F n, =fc (n ± 1). If p = (<q2 + q)/2 + (r2 + r)/2, then p is of 
the form a2 + a + h2, and 2p + 1 is the sum of the squares of a + 1, — a, 
b, — b. If p is the sum of three triangular numbers, 

p = a2 + a + h2 + i(m2 + m), 

2p + 1 = 2 (a2 + a + b2) + 4n2 ± 2n + 1, 

the latter being the sum of the squares of b =F n, — b =F n, — a db n, 
a ± n + 1. In every case the algebraic sum of the four roots is unity. 

A. Genocchi39 “ recalled ” (without reference) formulas (7) and (8) 
and noted that the second implies that the number of representations of 
4n as a SI is <r(n) when n is odd, and that the first implies 

Nx + 2N2 + 4A3 + 8^4 = 4(Z)x + D* - A), 

where Di is the sum of the odd divisors of n, A (or A) the sum of the even 
divisors d of n with njd odd (or even), while Ni, • * •, Nt is the number of 
solutions of x\ + • • • + x\ = n with 3,2,1,0 unknowns zero. For another 
similar formula see Cesaro30 of Ch. IX. 

A. Desboves40 stated empirically that the double of any odd integer is 
a sum of two primes 4n + 1. Such a prime is a El. Hence every integer 
is a SI. 

3,7 E. Heard, the editor of Hennite’s Oeuvres, 1, p. 259, noted that when a and c are relatively 
prime, aa and cc are not necessarily so; but that the theorem in the text is probably true. 

88 Phil. Trans. Roy. Soc. London, 144, 1854, 311-9. 
89 Nouv. Ann. Math., 13, 1854,169. 
« Nouv. Ann. Math., 14, 1855, 293-5. 
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C. A. W. Berkhan41 decomposed the integers < 360 into four rational 
or integral squares, and into two or three squares if possible. 

G. L. Dirichlet42 gave a simplification of Jacobi’s30 proof. According 
as a factor a' of p' = a'g' has the form 4m + 1 or 4m + 3, set 5' = + 1 or 
— 1. Then the number of positive solutions of 2p' = w2 + x2 is 25'. 
Hence each couple p\ p" furnishes 25'-25" = 2q solutions of (11), where 
7j = + 1 or — 1 according as a' — a" is or is not divisible by 4. Thus 
M = 217, obtained by varying also p', p", so that there is a term r\ for each 
set of odd solutions a', a" of 

(13) a'q' + a"q" = 2p. 

Let 7jf be a term obtained when af = a", rj" one when a! > a". Then 
p = 2 77' + 22r]". From one set of odd solutions of (13), we obtain the 
new odd solutions 

A' = q"(x + 1) + q'(x + 2), 

A" = q"x + q'(x + 1), 

Q' = - a'x + a"(x + 1) = a" - (a' - a")*, 

Q" = a'(x + 1) - a"(x + 2) = (a' - a"){x + 1) - a". 

Let a' > a". In order that Q' and Q" be positive, (a' — a")z niust be the 
deast multiple of a! — a" less than a". Then x is uniquely determined 
and A' > A" > 0. If we repeat the process, starting with A', QA", Q", 
we obtain merely the initial set a', g', a", g", since the preceding equations 
hold after the interchange of a' with A', g' with Q', etc. Since 

a' - a" = Q' + Q", 

two such sets of solutions give values of rj" differing in sign. Indeed, one 
and but one of the even numbers a' — a" and g' + q" is divisible by 4, 
since a' = db a", g' = =F g" (mod 4) contradicts (13). Hence 2tj" = 0. 
Thus p = 2)77', with each 17' = + 1, so that p = N[a'(q' + g'OD — 
as above. Cf. Pepin.72 

J. J. Sylvester43 employed the lemma that, if 3M = p2 + g2 + r2 + $2, 
M is a sum of four squares. We may assume that p is divisible by 3 and, 
by a proper choice of the signs of g, r, s, take g = r = s (mod 3). Then 
M is the sum of the squares of the integers 

Kff + r + s), Kp + r-s), Kp-ff + «), KP + ff-O- 

For 2V s 1 (mod 4), the function 32x+W — 2 of x is not rationally de¬ 
composable and has no constant divisor; it is assumed to represent a prime 
T for some integer x. Since T s 1 (mod 4), T is the sum of two squares. 
Hence T + 2 = 32z+W is the sum of four squares. The same is true of N 
by the lemma. 

For N s 3 (mod 4), 32xN — 2 is employed similarly. For N even, it 
suffices to treat N = 2 (mod 4), by use of 3XN — 1, since the theorem is 
true for 4N if true for N. 

41 Lehrbuch der Unbestimmten Analytik, Halle, 2, 1856, 286 
42 Jour, de Math., (2), 1,1856, 210-214; Werke, 2, 1897, 201-8. 
1 Quar* Jour. Math., 1, 1857, 196-7; Coll. Math. Papers, 2, 1908, 101-2. 
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J. Liouviile44 considered an integer m all of whose prime factors are 
ss 1 (mod 4). Express 4m in all possible ways in the form (u2 + v2) (u\ + uj), 
where u, • • •, vx are odd and positive, and call two such decompositions 
identical if and only if u = a', • • *, Vi = v[. Denote the first factor u2 + v2 

by 2a. It is stated that 2a equals the number of decompositions of 16m 
as a product of two sums of four positive odd squares. The latter number 
exceeds 2a if m has a prime factor = 3 (mod 4). 

Liouviile45 considered the N representations of a given even integer n 
as a sum 5 • + t] + u] + v\ of four squares, where sif • • •, v* may be positive, 
negative or zero, and two representations are distinct unless Si = • • •, 
Vi = v2. For the first squares s*, we have 

Est = 0 0* odd), its] = 7 N, Its] = 5N• 
i=i i==i 4 <=i 8 

The second follows from nN = 2s* + • • • + 2u) and 2s] = 21), etc. The 
third was verified for small values of n [jproved by Stern81]. By means of 
it and n2N = 2(^ + • • • + t><)2, we get 2^ — nW/24. 

J. G. Zehfuss46 noted the identity 

(2a)2 + (2b)2 + (2c)2 + (2d)2 = (a + b + c db d)2 + (a + b - c =F d)2 

+ (a — 6 + c=Fd)2 + (a-6--c± d)2. 

F. Pollock47 stated that any odd number is the sum of four squares 
the roots of two of which differ by any assigned number d from zero to the 
maximum. For d — 0, we use a2 + b2 + 2c2 (Legendre, Th^orie des nom- 
bres, I, 186; II, 398). Next, let d = 1. Since 4n + 1 is a sum of three 
squares, only one being odd, 

4n + 1 = (2a)2 + (2b)2 + (2c + l)2, 

2n + 1 — (a + b)2 + (a — b)2 + c2 + (c + l)2. 

The case in which d is general is discussed by means of a special arithmetical 
series with the general term 2n2 + 1. 

C. Souillart48 proved Euler's formula (1) by multiplying 

(a2 + b2 + c2 + d2)2 

bed 
a — d c 
d a — b 
c b a 

by the similar determinant with p, q, r, s as first row. 
F. Pollock49 stated that every odd number is a sum of the squares of 

a + p + I, a, — p, a + q, a — q, the sum of two of which exceed the sum 
of the remaining two by unity; also is a sum of four squares the sum of 
whose roots is unity. 

“ Jour, de Math., (2), 2, 1857, 351-2. 
«/Wd., (2), 3, 1858, 357-360. 
44 Archiv Math. Phys., 30, 1858, 466. 
« Phil. Trans. Roy. Soc. London, 149, 1859, 49-59. 
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J.Liouville49a proved that the number of representations by x2+y2+z2+it2 
of an odd number ra is {4 + 2( — l)(m“1)/2}<r(m), of 2m is 12<r(m), of 4m is 
8<r(m), of 2am (a ^ 3) is 24<j(m). The number of representations by 
x1 + Ay2 + 4s2 + At2 of m = Al + 3 is zero, of m = Al + 1 is 2<r(m), of 2m is 
zero, of 4m is 8(r(m), of 2am (a ^ 3) is 24<r(m). He found also the number 
of proper representations by these forms. He496 expressed the number of 
representations of 2am by x2 + ay2 + bz2 + 16£2 for (a, 6) = (4, 4), (16, 16), 
(4, 16), (1,16), (1, 4), (1,1), in terms of <r(m) and 2(- l)**"1***, summed 
for the odd integers i for which m = i2 + 4s2. From Jacobi’s 24 result, he49c 
derived also the number of representations by x2 + y2 + 9z2 + 9P. . 

J. liouville50 considered an odd integer m and the decompositions 

4m = i2 + i\ + i\ + i\, 2m = r2 + r\ + 4s2 + 4s*, 

where i, i1} i2} iz, r, rx are positive odd integers, and stated that 

2(- = (- l)(m-1)/22(- l)^-1^!. 

J. Plana51 proved Jacobi’s24 formula 

(1 + 2q + 2<f + 2q* + • • -)4 = 1 + 82<t(p)($p + + 3?’ + * * *)• 

H. J. S. Smith52 discussed Jacobi’s24,25 theorems that the number of 
representations of an odd number m as a HI is Sa(m); the number of 
representations of 4m as a sum of four odd squares is 16<r(m). 

F. Pollock53 stated that the algebraic sum of the roots in some repre¬ 
sentation of a given odd number as a SI will equal any assigned odd number 
not exceeding the maximum; that the difference of some two of the roots 
will equal any number not exceeding the maximum. But all that is defi¬ 
nitely proved in this paper, dealing with numerical statements, is that 
any number n is a sum of four triangular numbers, since Bachet’s theorem 
gives 

An + 2 = (2a + l)2 + (26 + l)2 + (2c)2 + (2d)2, 

n = (a2 + a + c2) + (62 + 6 + d2). 

V. Bouniakowsky54 employed the known result that the quadratic 
residues of a prime p = An + 1 may be paired so that the sum of a pair is p, 
and likewise the non-residues, to obtain relations like 

IQ2 + ll2 = 22 + 32 + 82 + 122, 62 + 72 = l2 + 22 + 42 + 82 (p = 17), 

133 = l3 + 53 + 73 + 123, 133 + 143 = l3 + 38 + 173 

[the first from 22 + 32 = 13, 82 + 122 = - 1 + 1 (mod 13)]._ 

de Math., (2), 6,1861, 440-8. Cf. Liouville* of Ch. XI. 

(2)> 7’ 1862» 73_6>77‘80> 105-8,117-20, 157-60, 165-8. 
4Sc Tbid.j (2), 10,1865, 14-24. 
* Jour- de Math., (2), 8,1863, 431-2. 
a Mem. Accad. Turin, (2), 20,1863,130. 
* ^tiah Asaoc. Report, 1865,337; Coll. Math. Papers, I, 307. 

^ Lond?n’ 15> m7> 115-127; 16,1868, 251-4; abstract of Phil. Trans., 158, 
M Tt ti?* 5^®<<pr00^ ” °* Bachet’s theorem is given in Ch. I.1*4 

Acad. Sc. St. PStensbourg, 13,1800,25-31. 
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F. Unferdinger55 denoted a2 + b2 + c2 + d2 by 2a2 and expressed 
2a2-2a\ • • • algebraically as a 00 in 48n“1 ways, different in general. 

E. Lionnet stated and V. A. Lebesgue58 proved that every odd number 
is a sum of four squares of which two are consecutive. For, An + 1 is a S3, 
necessarily Aq2 + 4r2 + (2s + l)2, whence 

2n + 1 = (q + r)2 + (q - r)2 + s2 + (s + l)2. 

J. W. L. Glaisher57 noted that, by an identity in Jacobi’s Fund. Nova, 

48a + 24a2 + 12a22 + 8a3 -)- 2<xt + 24/3 + 12ft + 4ft + 67 + 372 + 5 

equals <r(N) if N is odd, and 3cr(N) if A is even, where a, a2, a22, a3, <*4 is 
the number of ways iV is a sum of four squares all distinct, two equal, two 
pairs equal, three equal, four equal, respectively, while ft ft or ft is the 
number of ways N is a sum of three squares, distinct, two or three equal, 
and 7, 72, 5 are the analogous numbers for two squares and one square. 

S. Itealis58 employed Sn + 3 = (2a - l)2 + (2b - l)2 + (2c ~ l)2 to 
show that 2n + 1 is the sum of the squares of 

%{k zk (a — b + c)}, §[k zb (a + b — c)}, 

§{&:£(—a + & + c)}, T (a + 6 + c — 2)}, 

whose sum is unity, where, if$ = a + 6 + cis even, the upper signs are 
chosen and k = 0, while if s is odd, the lower signs are taken and k = 1. 
More generally, every odd number N is a sum of 4 squares, the algebraic 
sum of whose roots equals any odd number < 2 VA. Any number 
N = An + 2 is a sum a2 + b2 + c2 + k2, where k2 is any chosen square < N; 
for, according as k is even or odd, N — k2 is of the form Ap + 2 or Ap + 1 
and hence a SI. Also [Zehfuss46], 

N = a2 + ft + 72 + 62, 2a — a + b + c + k, 2p — — a + b — c + k, 

27=— a — b + c + k, 2 5 = 0 — 6 — c +ft a + P + y+ 8- 2 k. 

Hence every number N = An + 2 is a sum of 4 squares the algebraic sum 
of whose roots is any assigned one of the numbers 0, 2, 4, • • •, 2ju, where n2 
is the largest square < N. Every number N — An + 1 (or An + 3) is a 
sum of 4 squares one of which can be chosen arbitrarily among the even 
(or odd) squares < N. 

Glaisher69 expanded Gauss’ proof of (6) and gave an arithmetical proof 
by showing that, if N is odd, the number of representations of AN as a 
sum of 4 odd squares equals double the number of representations of N 
as a sum of 4 or fewer squares. 

E. Catalan60 attributed to J. Neuberg the identity 

(a2 + b2 + c2 + bc + ca + ah)2 = (a + b + c)2(a2 + b2 + c2) + (be + ca + ah)2. 

w Sitzungsber. Akad. Wiss. Wien (Math.), 59, II, 1869, 455-464. 
“ Nouv. Ann. Math., (2), 11, 1872, 516-9; same by RSalis.58 
67 British Assoc. Report, 46, 1873, 11 (Trans. Sect.). 
88 Nouv. Ann. Math., (2), 12,1873, 212-23. 
88 Phil. Mag. London, (4), 47, 1874, 443; (5), 1,1876, 44-7. 
80 Nouv. Corresp. Math., 1, 1874-5,154-5. 
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Hence, by a change of notation, 

(P + 2g2 + h2)2 = (/2 - g2)2 +U + gY(g + hy 

+ (/ + 9)Kg ~ hY + (h2 - 2fg + g2)2. 

Since every odd number is of the form /2 + 2g2 + h2, every odd square is a 
sum of four squares. 

S. R6alis61 used (1) to show that, for any integer p, 

p* = P*+Q2 + R2 + S2, 2p + P + Q + R + S = □, 

and that we can find four integers whose algebraic sum is p and the sum of 
whose squares is p2. 

Catalan62 gave the identity 

2a22(&7 - c/3)22/2 
= (2aflaa - ZafZa2)2 + {a2f(by - c/3) + (by - c/3)2a/ }2 

+ (b2/(6y ~ c/3) + (ca - ay)2af }2 + {c2/(6y - c/3) + (a/3 - ba)2af }2, 

expressing a product of three 12 as a GO. 
R6alis63 noted that, for every odd integer p, 

p = P + Q + R + S, p2 — P2 + Q2 R2 + S2, 

the algebraic sum of three of P, • * •, S being a square. For, 

p = x2 + y2 + 2z2 

= (x + z)(x - z) + (x + jz)(z + y) + (x + z)(z — y) + (:y2 + z2 — 2xz). 

Also, if p = 4n + 1,4n + 2 or Sn + 3, we can make P-f-Q + # + 3£ = □. 
For, ' 

p = SI = (x2 — yz) + Q/2 — xz) + (z2 — xp) + (xy + xz + pz). 

G. Torelli64 proved by means of Jacobi’s25 theorem the result (I) that 
if 2n ~ 1 is not divisible by 3 and if p, q are respectively the numbers of 
sets of distinct odd integral solutions, not all divisible by 3, of 

2x2 + f + z2 = 36(2ft - 1), x2 + V2 + z2 + t2 = 36(2n - 1), 

then p + 2q is the sum cr(2n — 1) of all the divisors of 2n — 1. (II) When 
the second members are replaced by 4-3,l+2(2w — 1), then 

p + 2q = 3V(2m — 1). 

(Ill) If k is a prime 12X - 1 and if 2n — 1 is not divisible by h, while p, q 
are respectively the numbers of sets of distinct odd integral solutions not 
all divisible by k of 

2x2 + y2 + z2 = 4fc*(2n — 1), x2 + y2 + z2 + t2 = 4Jc*(2n — 1), 

then p + q = kK^la(2n - 1). (IV) If M = a'V • • where a, b, • • * are 
distinct odd primes, 4M is a sum of four odd squares without a common 

Nouv. Ann. Math., (2), 14,1875,90-91. 
“Nouv. Corresp. Math., 4,1878, 333, foot-note. 
81 Nouv. Ann. Math., (2), 17,1878, 45. 
84 Giornale di Mat,, 16,1878, 152-167. 
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factor in M(1 + 1/a) (1 + 1/6) • • • ways. (V) If rh ph p2 are the numbers 
of sets of distinct integral solutions not zero of 

s* + y2 + z2 + t2 =* 2(2n - 1), re2 + y2 + z2 + t2 - 2n - 1, 

2z2 + 2/2 + z2 = 2?& — 1, 

then n = Zpi + pi. (VII) If x2 + y2 + z2 + t2 = 4(2n — 1) has Si sets of 
distinct odd integral solutions and x2 + y2 + z2 = 2n — l has p4 sets of 
distinct solutions =1= 0, then Si = 2pi + p4. (IX) If S4 denotes x2 + y2 
+ 22 + Z2, the number of sets of solutions of S4 = 2k(2n — 1) is expressed 
in terms of the numbers of sets of solutions of S4 — 2n — 1 and S3 = 2n — 1 
and the number of sets of solutions when two or three variables are equal. 

E. Fergola65 had stated the preceding theorem (V), and (I) with the 
restriction that 2n — 1 is not a square. 

E. Catalan66 noted that 2p = a + 6 + c implies 

p2 + (p — a)2 + (p — 6)2 + (p — c)2 = a2 + 62 + c2 

and gave various identities in a, b, c} which express the square of the sum 
of three squares as a S3. 

J. J. Sylvester67 proved that any prime p is a divisor of x2 + y2 + 1. 
Assume the contrary. Then p =1= + 1 since p does not divide x2 + 1. 
Let p be any primitive pth root of unity and set R = Sp*2, summed for 
the quadratic residues x2 < p. Let R' be the period conjugate to R. 
Expand R2 as a sum of powers of p. Since p =1= 4d + 1, x2 + y2 =1= p and 
no pth power of p can occur in the expansion of R2. Since, by hypothesis, 
neither 2x2 nor x2 + y2 is = — 1 (mod p), no such power as p*5-1 can appear 
in R2, while it belongs to Rf. Thus no term of R' appears in R2. As each 
power of p in R2 belonging to the same period must appear a like number 
of times, we have R2 = R(p — l)/2, whereas R + 0 or (p — l)/2. 

From this theorem follows Bachet’s theorem. A similar proof shows 
that Ax2 + By2 + Cz2 = 0 (mod p) is solvable. 

H. J. S. Smith68 indicated a proof of Bachet’s theorem by continued 
fractions. 

C. Hermite69 proved (6) by elliptic functions and concluded that the 
number of decompositions into four squares of any odd integer n equals 
8 times the number of decompositions of 4n as a sum of four squares whose 
roots are odd and positive. Cf. Jacobi.25 

J. W. L. Glaisher70 considered the a(N) compositions (allowing permuta¬ 
tions) of AN as a sum of 4 odd squares, took the square root of the first 
square (for example) in each such composition, giving it the sign =fc accord¬ 
ing as it is of the form Am ± 1, and formed the algebraic sum A of these 
square roots. Next, consider the compositions of 2N as a sum of 2 odd 
squares, take the product of the square roots of the two squares in each such 

“ Giornale di Mat., 10, 1872, 54. 
M Nouv. Corresp. Math., 5, 1879, 92-93. 
47 Amer. Jour. Math., 3, 1880, 390-2; Coll. Math. Papers, 3, 1909, 440-8. 
48 Coll. Math, in memoriam D. Chelini, Milan, 1881, 117; Coll. Math. Papers, II, 309. 
49 Cours, Fac. Sc. Paris, 1882; 1883, 175; ed. 4, 1891, 242. 
70 Quar. Jour. Math., 19, 1883, 212-5; 36, 1905, 342-3. 
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composition, determine the sign as before, and form the algebraic sum 
B of the products. Then A = B, as shown by use of infinite series and 
products. 

E. Catalan71 noted that 

s4n + 
£2n+2 y2n+2 

x2 + y2 

x2n ^ y2n 

x2 + y2 
X2n~2±y2n^\2 

x2 + y* )' 

T. Pepin72 gave a purely arithmetical proof that the number of repre¬ 
sentations of m as a SI is 8{2 + (— l)m)X(m), where X(m) is the sum of 
the odd divisors of m. The proof is like that by Jacobi30 and Dirichlet.42 
Pepin73 gave an exposition of this proof by Dirichlet and noted (p. 173) 
that the theorem is a special case of one by Liouville; he proved (pp. 
176-184) the theorems of Jacobi.24 

M. Weill74 noted that Jacobi deduced from the formula k2 + krl = 1 
in elliptic functions the result that, if N is odd, the number of representa¬ 
tions of 42V as a sum of 4 odd squares is double the number of representations 
of N as a IS, and gave a direct proof by means of the identity of Zehfuss.46 
By a similar identity, Weill proved that if N is any integer not divisible by 
3, and if N and 3N admit only decompositions into four distinct squares 
4= 0, the number of decompositions of 32V as a EQ is double the number of 
those of N. 

G. Prattini75 proved that the number of pairs of squares for which 
x2 - Dy2 = X (mod p) is §{p — (D/p)}, where (D/p) is the quadratic 
character of D with respect to the prime p. There is given an elegant 
proof, due to Bianchi, of the existence of solutions if p > 3. If X is a 
residue, take y = 0. If X is a non-residue, it is shown that, when a ranges 
over the (p — l)/2 residues, a — X is not always a residue and not always 
a non-residue. For, if e = (p — l)/2 and every root of x6 s 1 satisfies 
(x — x)e ~ ± l, it satisfies (x — X)e — xe s= 0 or — 2, whereas the degree 
is less than the number e of the roots. 

J. W. L. Glaisher78 used the term partition (resolution) of N as a sum 
of squares when we disregard the order in which the squares are placed 
and the si|gns of the roots; composition when the order of the squares is 
taken into account, but not the signs of the roots; representation when both 
the order and the signs are attended to. For N odd, x(2V) denotes the sum 
of the square roots of the distinct squares appearing in the various partitions 
of 2N into two squares, the sign + or — being prefixed to each root accord¬ 
ing as its numerical value is of the form 4n + 1 or 4n + 3. An equivalent 
definition (p. 98) is that x(2V) is the sum of all the primary complex numbers 
a + bi of norm N = a2 + &2. Two odd squares are said to be of the same 
class if and only if both are of the form (8n =b l)2 or both of the form 

£Nouv. Ann. Math., (3), 3,1884, 347. 
™ Atti Accad. Pont. Nuovi Lincei, 37,1883-4, 12-20. 
” Ibid., 38,1884-5,140-5. 

Comjtea KenduB Paria, 99, 1884, 859-861; BuU. Soc. Math. France, 13, 1884-5, 28-34. 
tendiconti Reale Accad. Lincei, (4), 1, 1885,136-9. 
Qua*. Jour. Math., 20,1885, 80-167. 
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(8ft ± 3)2. The following theorems were proved by use of infinite series. 
If N = 4n + 1 and if H1 (or H2) denotes the number of compositions of 
4N as a sum of 4 odd squares of the same class (or not of same class), then 
Hi - Wt = x(N). As known, Hx + H% = <r(N). If N = 4n + 1 and if 
of the partitions of AN into 4 odd squares of which two are equal, P is the 
number having the remaining two squares of the form (8ft ± l)2 and Q 
the number for which they are of the form (8m 3)2, then P = Q if N is 
not a square, while 

p-«-2((;t)' + (p)}’ 
Write S for (2p + l)2 + (2g + l)2; the number of representations of 
Sn + 2 as S + (4r)2 + (4s)2 or S + (4r + 2)2 + (4s + 2)2 is respectively 

12{<r(4n + 1) + x(4n + 1)}, 12{<r(4ft + 1) - x(4ft + 1)}; 

while there are 12<r(4n + 3) representations Sn + 6 = S + (4r)2 + (4s + 2)2. 
Let E(N) denote the excess of the number of divisors 4n + 1 of N 

over the number of divisors An + 3; then E(N) is the number of primary 
numbers of norm N. If ft = 1 (mod 4), 

x(») = E(l)E(2n - 1) - E(5)E(2n - 5) + E(9)E(2n - 9) - • • • 

+ j&(2ft - l)F(l), 

cr(2m + 1) - E(l)E(Am + 1) + E($)E(Am - 3) + E(9)E(Am - 7) + - • • 

+ E(Am + l)E(l). 

Call E2(n) the excess of the sum of the squares of the divisors Am+ 1 
of ft over the sum of the squares of the divisors Am + 3; \(n) the sum of 
the squares of the primary numbers of norm ft. There are given many 
formulas serving to evaluate <*> \ whose values are tabulated 
for arguments n ^ 100, with citation to longer tables. 

It. Lipschitz77 found the number of sets of solutions of £? + £ + = 0 
(mod py), where p is a prime, and applied the result to find all integral 
quaternions with a given norm and hence the solutions of ra = 00. He 
discussed the real and rational automorphs of x\ + x\ + 

S. R4alis78 concluded from pq = a2 + * • • + 52 three sets of fractional 
expressions for p and q in terms of a, * • *, 6 and new parameters, but ad¬ 
mitted that he was unable to utilize them to prove Bachet’s theorem. 

A. Puchta79 repeated Gauss’17 derivation of Euler’s formula (1). To 
interpret (1), use the four-dimensional regular body bounded by 5 tetra- 
hedra and having as vertices 5 equidistant points P,-. There exists a point 
0 such that OPx, • * •, OP4 are perpendicular lines, while the “ planes ” 
through 0 and any three of Pi, • • *, P4 are perpendicular. We may take 
0 to be the point with the coordinates = (ai + a2 + «3 + a4)/2, etc., 

77 Untersuchungen liber die Summen von Quadraten, Bonn, 1886. French transl. by J. 
Molk, Jour, de Math., (4), 2,1886, 393-439. 

78 Jour, de math. 616m., (2), 10, 1886, 89-91. 
79 SitzungBber. Akad. Wiss. Wien (Math.), 96, II, 1887,110. 
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and get the identity 2a]-2x] = 2t], where 

tti = §(— ai + a2 + a3 + a^)xx + K~ — a2 + a* — + • • •, 
etc. By permuting the a’s or changing the signs, we get 96 formulas (1). 

E. Catalan80 made an invalid criticism of Legendre’s16 proof that every 
prime is a S3, who is said to have assumed that every integer N has a prime 
divisor > Catalan’s remark (p. 164) that if N and A are sums of 
four integral squares, their quotient N/A is a sum of fractional squares, 
was known to Euler.8 Catalan proved that every integer is a sum of four 
fractional squares in an infinitude of ways and stated (p. 212) that every 
number 8w + 4 is a sum of four odd squares of which two are equal. 

M. A. Stern81 gave an elementary proof of Jacobi’s24 theorem. Let m 
be odd. The number of representations of 2m as a S3 is three times that 
of m, since m = p2 + q2 + r2 + s2 implies 

2m = 2(p zb q)2 + 2(r zb s)2 = 2(p zb r)2 + 2(q zb s)2 

= 2(p zb s)2 + 2(0 zb r)2. 

Conversely, if 2m - a2 + j32 + y2 + 82, two of the squares are even and 
two odd, so that 

- - (“-H+(4-*)'+C-T-7+ 
Repeating the process, we get [cf. Zehfuss46] 

4m = (2p)2 + (2 q)2 + (2r)2 + (2s)2, 

(14) 4m = (p + q + r zb s)2 + (p + q — r =F s)2 

+ (p — q + r s)2 + (p — 0 — r=b s)2. 

Conversely, 4m = 2a2 implies 2m = + 0)}2 + *'• Hence 4m and 
2m have the same number of representations as a 00. It is shown that if 
2*m and 2a+1m have the same number v of representations, then 2 lm(t ~ a) 
has v representations. If m = 4k + 1, three of the numbers p, q, r, s 
are even and the fourth is odd, so that the squares in (14) are all odd. If 
m = 4fc + 3, three of p, q} r, s are odd and one is even, and the preceding 
conclusion holds. By Jacobi’s30 theorem, there are 16<r(m) representations 
of 4m by four odd squares. Hence if pqrs 4= 0, there are 8<r(m) representa¬ 
tions of 4m by four even squares and hence 24<r(m) representations in all. 

result is proved to hold also if pqrs = 0. Cf. Vahlen.88 
T. Pepin82 proved Jacobi’s25 theorem that, if m is odd, the number of 

occompositions of 4m as a sum of 4 odd squares with positive roots is 
* = x/2 in a formula involving sums of sines of multiples 

t The number of representations of 2m by x2 + y2 + 4z2 + 4t2 is 4<r(m). 
of representations of 2m by x2 + y2 + z2 + t2 or x2 + y2 + z2 

y 5g 1 (mod 2), is 16<r(m) or 8<r(m) respectively. He gave 

nde <2)> 15» 1888,160 (Melanges 
105» 1889> 251-262. 

*«**H*k, (4), 6,1890,10-20. 

xx*.j. 
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various theorems on the representations of 2km by forms 

x2 + (2 ay)2 + (2^)2 + (pw)*. 

E. Catalan83 noted that, if k = 2a2 + 3, k is a 00 and k2 a S3. 
A. Matrot84 duplicated in essence the proof by Euler10 except as regards 

the theorem that every prime p divides a sum of 2 or 3 squares. Let 
p — 2h + 1. Consider the couples j, 2h — j (j = 1, * • •, h — 1). If both 
terms a, at of some couple are quadratic residues of p, a = A2, at = Al, 
A2 + Ai + 1 s 0 (mod p). But if no couple is composed of two quadratic 
residues, the number of residues contained in the couples is ^ h — 1. 
Hence one of the numbers h, 2h, not lying in a couple, is a quadratic residue 
(there being h such). If h = A2, A2 + A2 + 1 s 0 (mod p). If 2h s= A2, 
A2 + 1 = 0 (mod p). 

E. Humbert86 proved that if p is odd and =(= 3, 9, at least one of the 
numbers %(p + 1), J(p + 3), • • •, p — 1 is a square. Hence if the abso¬ 
lutely least quadratic residues of a prime p > 3 be arranged in increasing 
order of numerical value, the series contains negative terms. Hence if 
p = An + 3, there exsits a positive residue a followed by the residue — a — 1. 
Then a = x2, —a — 1 = y2, x2 + y2 + 1 ss 0 (mod p). 

R. F. Davis86noted that, if s = a + b + c + dis even, a2 + b2 + c2 + d2 
is expressible as a sum of four new squares by means of the identity of 
Zehfuss46 (divided by 4). If s is odd, add m2 to each member and transform 
into a 00. R. W. D. Christie made use of various formulas expressing a ED 
as a SI after proper selection of three of four squares. 

A. Matrot87 noted that, if p = 2h + 1 is a prime, we can find two 
consecutive integers a and a + 1 satisfying xh = 1 and xh s — 1 (mod p), 
respectively. For, otherwise 1, 2, • • *, p — 1 would all satisfy the first. 
Hence 

<**+1 + (a + l)h+1 + lsa-(a + l)+lsO (mod p). 

For p = 3 (mod 4), h + 1 is even, and p divides a SL His proof that 
every prime p s 1 (mod 4) divides a G] was quoted under that topic. 

K. Th. Vahlen88 gave essentially the same argument as had Stern.81 
His proof of Bachet’s theorem is given in Ch. VII.74 

E. Catalan89 gave Legendre’s16 proof of Bachet’s theorem. Euler8 gave 
the empirical theorem that an integer is not a sum of four fractional squares 
unless it is a sum of four integral squares. This is said to be false since 
every integer is a sum of four fractional squares in an infinitude of ways. 

83 Absoc. franc?, av. sc., 20, 1891, II, 198. 
84 Assoc. fran$. av. sc. (Limognes), 19, 1890, II, 79-81 [20, 1891, II, 185-191 for historical 

remarks on the proofs by Lagrange and Euler]; Jour, de math. 616m., (3), 5, 1891, 
169-74; pamphlet, Paris, Nony, 1891. Reproduced by E. Humbert, Arithm6tique, 
Paris, 1893,284, and by G. Wertheim, Zeit. Math. Naturw. Unterricht, 22, 1891,422-3. 

“ Bull, des Sc. Math., (2), 15, I, 1891, 51-2. 
86 Math. Quest. Educ. Times, 57, 1892, 120-2. 
87 Jour, de math. 616m., (4), 2, 1893, 73-6. 
88 Jour, far Math., 112, 1893, 29. 
89 M6m. Acad. Roy. Sc. Belgique, 52, 1893-4, 22-28. 
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F. J. Studnicka90 noted that Euler's (1) includes the formula of Cauchy,22 
and deduced the like formula expressing a product of three sums of 3 
squares as a 33. 

L. Gegenbauer91 proved new expressions of Jacobi's theorems. The 
number of representations of an odd number n as a SI equals 8 times the 
number of divisors of the various g.c.d.'s of n with the numbers ^ n; also 
equals 8 times the sum of the products obtained by multiplying the number 
of divisors of every factor of n by the number of integers not exceeding the 
complementary factor and relatively prime to it. The number of proper 
representations of an odd number n as a 31 equals 8 times the number of 
decompositions, into two relatively prime factors, of the various g.c.d.'s of n 
with the integers ^ n; also equals 8 times the sum of the products obtained 
by multiplying the number of decompositions of every divisor of n into two 
relatively prime factors by the number of integers relatively prime to and 
not exceeding the complementary divisor. 

B. Sollertinski92 noted [Catalan66] that a S3 is a 33: 

^(f )’+(?)■+{~y+(—)’. 
p2 = m2 + n2. 

E. N. Barisien93 noted that s5 is a 31 if s = x2 + y2, since 

$2 _ fa? ^2)2 4x2y2} s3 = (3xy2 — x8)2 + (Sx^ — y3)2. 

[We may conclude that s5 is a S3, not merely a 33.] 
G. Wertheim94 proved that every prime p divides a S3 as had Matrot,84 

and also by finding how often in the series 1, 2, • • •, p — 1 a residue follows 
a residue, or a quadratic non-residue follows a residue. 

L. E. Dickson95 exhibited all solutions of x2 + y2 = 1 (mod p) and of 
s2 + y* = 0 (mod 54). 

K. Petr96 proved two formulas by Gauss (Werke, III, 476) on theta 
functions by the method outlined by Gauss. From them are derived 
relations giving the number <p(N), ^(N), \p'(N) of representations of N by 

x2 + y2 + 9 z2 + 9u2, x2 + y2 + z2 + 9 u2, x2 + 9 y2 + 9;z2 + 9w2, 

respectively. Let x(N) be the known number for four squares. Then 

<p(N) = Ux(N) + 162(- ly^^x}, N # 0 (mod 3), 

summed for all positive odd solutions of Sx2 + y2 ~ 4AT. For N divisible 
by an odd power of 3, <p{N) = 0; if by an even power of 3, <p(N) = x(N/9). 
Also, 

m + WW - 3.W - y;3), % j g g I. 
•° Prag Sitzungsber. (Math. Naturw.), 1894, XV. 
5,1 Sitzungsber. Akad. Wise. Wien (Math.), 103, Ila, 1894, 121. 
n El Progreso Matem&tico, 4,1894, 237. 
M Le matematiche pure ed applicate, 1, 1901,182-3. 
•* Anfangsgriinde der Zahlenlehre, Braunschweig, 1902, 396. 
» Amer. Math. Monthly, 11,1904,175; 18, 1911, 43-4,118. 
* Prag Sitzungsber. (Math. Naturw.). 1904. No. 37. 6 dd 
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Now the third form represents N only if AT is a quadratic residue 0, 1, 4, 7 
of 9. But in these cases, the first form represents N only when x or y is 
divisible by 3. Thus $'(N) is zero except in the following cases: 

tf(N) = i<p(N) if N e 1, 4, 7 (mod 9); tf(N) = xW9) if N m 0. 

Thus and hence also is fully determined. 
It. D. von Stemeck97 gave an elementary proof that every prime p 

divides the sum of two or three squares, no one divisible by p. Let R$ 
denote a quadratic residue and Nj a non-residue of p. If — 1 is a residue 
of p, a sum 1 + s2 is divisible by p. If — 1 is a non-residue of p, there 
exist two residues whose sum is a non-residue. For, if not, the sum of j 
residues is a residue; in particular, jR = Rj (mod p), which is false when j 
is a non-residue. From 

R R1 = N, — N = R2 (mod p) 

follows R + Ri + R2 = 0 (mod p). 
B. Bolzano98 proved the existence of integers t, u such that 

t2 — Bu2 — C ss 0 (mod p), 

J5 and C not being divisible by the prime p [Lagrange9]. For t = 0,1, • • *, 
J(p — 1), its square t2 takes |(p + 1) incongruent values modulo p. For 
u = 0, 1, • * •, |(P — 1), the sum Bu2 + C takes J(p + 1) incongruent 
values. Hence at least one of the first values is congruent to one of the 
latter, since otherwise there would be p + 1 incongruent numbers modulo p. 

J. W. L. Glaisher" noted that all the partitions a2 + p2 + y2 + $2 of 
4m into 4 odd squares can be derived from the partitions a2 4- b2 + c2 + d2 
of the odd number m by the transformations [cf. Stern81]: 

a — ct,dhb-\-c-\-dy (3 = o, b — c dy 

y = & -F b c — dy 5 — rb 6 — c — d. 

A partition of m produces twice as many representations of 4m as of m, 
and every partition of 4m can be derived from one of m by such a transforma¬ 
tion. Hence the number of representations of m as a 00 is 8 times the 
number of compositions of 4m as a sum of 4 odd squares. Here and later, 
he100 made a further study of the function X(m) [Glaisher76] and the related 
functions P(m), Q(m), Q(m), defined as the sums of the products of the 
roots (taken in the form 4n + 1) of the first 2, 3, 4 squares in each composi¬ 
tion of 4m as a sum of 4 odd squares, \(m) itself being the sum of the roots 
of the first square in the various compositions. 

Glaisher101 applied elliptic function formulas to find the number of 
representations of a number as a sum of four squares of which r are even, 
for r = 0,1, 2, 3, 4. 

” Monatshefte Math. Phys., 15, 1904, 235-8. 
88 Ibid., 237-8 (posthumous paper). 
89 Quar. Jour. Math., 36, 1905, 305-358. Extracts by P. Bachmann, Niedere Zahlentheorie, 

II, 287-292, 319. 
100 Ibid., 37,1906, 36-^8. 
101 Ibid., 38,1907, 8-9. 
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A. Martin102 noted that, if t = 2p2 + 2q2 — n2, the sum of the squares 
of t + 4np, t — 4np, £ + 4ng, 2 — 4nq equals the square of 4p2 + 4g2 + 2n2. 
Also [Aida59 of Ch. IX], 

(p2 + £2 + r2 — s2)2 + (2ps)2 + (2gs)2 + (2r$)2 = (p2 + q2 + r2 + s2)2. 

P. Bachmann103 gave an exposition of papers by Glaisher,70 Dirichlet,42 
and Stem.81 

L. Aubry104 proved that every integer A is a SI. It evidently suffices 
to treat the case A odd or double an odd number. It is first shown that 
A divides a certain X2 + Y2 + 1, where we may take X ^ A/2, Y ^ A/2. 
Consider therefore the numbers Ai, A2, • * * defined by 

X] + Y]+ 1 = NJft+u Xi S A.-/2, Yi m Ai/2. 

The A’s form a decreasing series of positive integers. Hence a certain A„ 
is unity. Then An-i = XLi + Fn-i + 1* But if 

X2 + Y2 + 1 = DE, E = p2 + q2 + r2 + s2, - pX + rY + $ = aF, 

sX + qY + p - cE} qX — sY + r = dE, rX + pY — q = bE, 

then D = a2 + b2 + c2 + d2. Applying this theorem for p — 1, r ~ 0, 
5 = Xn_i, # = F„_i, X = X„_2, Y = 7„_2, whence D = An-2, E = An_i, 
we see that A„„2 is a SI. By the same theorem we see by induction that 
every A*- is a SI. Hence A = Ai is a SI. [There is no explicit proof that 
ay • • •, d may be taken to be integers and hence that the decomposition is 
not merely into four rational squares.] 

E. Dubouis105 proved that Descartes'5 statements are true. The 
numbers not a sum of 4 squares > 0 are 1, 3, 5, 9, 11, 17, 29, 41 and 
4nX (X = 2, 6, 14), n ^ 0. 

S. A. Corey106 gave a vector interpretation of (1) by use of four pentagons 
with a common vertex and four consecutive sides in one pentagon parallel 
to corresponding sides of the others. 

C. van E. Tengbergen107 proved that x2 + y2 + z2 = 0 (mod p) has 
(p — l)(p — k)/4S sets of solutions < p/2, where k = — 1, 5, 11, 17 
according as the prime p = Sv — 1, Sv — 3, Sv + 3, Sv + 1. 

E. Landau108 proved that the number of sets of integral solutions of 
u2 + v1 + w2 + y2 ^ x is |7r2x2 + 0(z1+<), for c > 0 and 0 as by Landau,179 
Ch. VI. 

G. M6trod109 solved x2 + (x + y)2 + (x + 2y)2 + (x + 3y)2 ~ z2 for x; 
the radical is rational if z2 — 5y2 = u2 and hence if z = a2 + 5b2, y = 2ab, 
u = a2 - 5b2. 

L. Aubry110 showed how to find all solutions of a2 + b2 + c2 + d2 = A, 
first when a2 + b2, ac + bd and A have no common factor, and next when 

102 Amer. Math. Monthly, 16, 1909, 19-20. 
103 Niedere Zahlentheorie, 2,1910, 286, 323, 348-358. 
104 Assoc, frang., 40,1911,1, 61-6. 
105 L’intermediate des math., 18, 1911, 55-6, 224-5. 
106 Amer. Math. Monthly, 18, 1911,183. 
107 Wiskundige Opgaven, Amsterdam, 11, 1913, 244-7. 
108 Gottingen Nachrichten, 1912, 765-6. L 
109 Sphinx-Oedipe, 8, 1913, 129-130. 
110 Ibid., num£ro special, March, 1914,1-14; errata, 39. 
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their g.c.d. is ra, but a, • • •, d have no common factor. Combining numer¬ 
ous cases, he obtained Jacobi's24 theorem on the total number of solutions, 
and the theorem that, if N = 2apf • • • p\ and a ^ 2, the number of 
solutions in which a, • • •, d have no common factor is 

8A(pi + 1) • • • (Pi + l)p?_l • • • p--1, 

where & = 1 if a = 0, /& = 3 if a = 1, ft = 2 if a = 2. He showed how 
to find the 4n sets of solutions of x2 + y2 + 1 = 0 (mod p), where p is a 
prime 4n ± 1, also the solutions for any composite modulus. 

L. J. Mordell111 proved by use of theta functions that the number of 
solutions of x2 + y2 + z2 + t2 — m is 8 {26 — 2(— l)cc}, where b and c 
range over those divisors of m whose complementary divisors are odd and 
even respectively [equivalent to Jacobi's24 result]. 

Mordell112 proved the conjecture by Glaisher100 (p. 48) on the derivation 
of all representations of 4mxm2 as a 00 from those of 4mi and 4m2. 

A. S. Werebrusow113 gave the general solution of 3] = 3]. 
L. E. Dickson114 gave a history of the proofs of Euler's7 formula (1), 

its interpretations and generalization to 8 squares. 
For Pellet's proof that Ax2 + By2 + (7 = 0 (mod p) is solvable see 

paper 104 of Ch. XXVI. 
For minor results, see papers 12 (end), 31, 49, 106 of Ch. VII; 13,26,30, 

39, 52, 76, 84, 94, 95 of Ch. IX; 159 of Ch. XIX; 434 of Ch. XXI. 

111 Mess. Math., 45, 1915, 78. 
112 Ibid., 47, 1918, 142-4. 
111 L’intenn^diaire des math., 25, 1918, 50-51; extr. from Math. Soc. Moscow. 
114 Annals of Math., (2), 20, 1919, 155-171, 297. 





CHAPTER IX. 

SUM OF n SQUARES. 

Representation as a Sum of Five or More Squares. 

C. G. J. Jacobi1 remarked that a comparison of the sixth and eighth 
powers of two series for (2K/t)112 would yield arithmetical theorems (for 
that from the fourth powers see Jacobi24* 25 of Ch. VIII). 

G. Eisenstein2 stated that he had obtained purely arithmetical proofs 
of these theorems of Jacobi on the representation* of numbers as the sum of 
six or eight squares and stated the generalizations: 

The number of representations of 4r + 1 as a sum of six squares is 12s 
and that of 4r + 3 is — 20s, where s = 2(d* — df), di ranging over the 
divisors of the form 4Jc + 1 of the given number, d3 over the divisors 4Jc + 3. 

The number of representations of an odd number as a sum of eight 
squares equals 16 times the sum of the cubes of its divisors. 

He stated that there is no analogue for 4r + 1 of the theorem that the 
number of representations of 4r + 3 as a sum of ten squares is 122 (d* — dj). 

Eisenstein3 stated that, if m is an odd number > 1 having no square 
factor, the number yp{m) of representations of m as a sum of five squares is 
— 80s, — 80cr, — 112s, 80cr, according as m = 1, 3, 5, 7 (mod 8), where 

S = 2(to)M’ * = 2(- (* = 1,2, •••,—g—), 

the symbol being Jacobi’s. For proofs see Smith13*31 and Minkowski.28 
Eisenstein4 stated that the number of solutions of x\ + • * * + x\ = m is 

- 16-372 (-)n\ if to = 7 (mod 8); 
\m / l 

8-35 { fTO2s(^) — 2S (^)m2 }, if to = 3 (mod 8); 

282(— i)'*-1)'2 (^-) fi(2m — /i), ft odd and < to, if to = 1 (mod 4); 

provided m has no square factor. 
V. A. Lebesgue5 discussed the decomposition of a prime p or its double 

into m squares, where m is a divisor > 2 of p — 1. Using indices relative 
to a primitive root of p, divide the indices of s(s + 1) for $ = 1, 2, • ♦ *, 
p — 2 by m and let cb, ai, • • *, dm-i be the number of the indices with the 

1 Fundamenta Nova Func. Ellip., 1829, p. 188; Werke, 1, 1881, 239. Cf. H. J. S. Smith, 
Coll. Math. Papers, 1, 1894, 306-11. a. Jacobi** of Ch. III. 

2 Jour, fur Math., 35, 1847, 135; Math. Abh., Berlin, 1847, 195. 
* One representation yields a new one if the roots of the squares are permuted or changed 

in sign, while a composition is unaltered. 
* Jour, fiir Math., 35, 1847, 368. 
4 Jour. fGr Math., 39, 1850, 180-2. 
8 Comptes Rendus Paris, 39,1854, 593-5. 
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residues 0, 1, • * •, m — 1 respectively. Write am+t = at. For m odd, 
TO—1 TO—1 

^ &i P — 2aiCti+i — = • • • = '2iQ,\CLiJrTn—1> 2p ^ j 
i=0 t=0 

when & = 1, • • -,m — 1. For m even, 2aiai+i = 2aiai+fc if j — A;is even, and 
TO—1 

2p = E (a,- - ai+2i)2, %m> k> 0. 
i=0 

Lebesgue6 proved his preceding results. 
Lebesgue7 noted that tables of indices lead to integers a,* such that 

P = /(p)/(p—1)j /(p) = «o + aip + • • • + am-ip”*"1, pw = 1, 

where p is a prime mco + 1, m > 2. Set 

{/(P) }* = A0 + AlP + • • - + Am-ip™-1 = F(p). 

Then pk = F(p)F(p~l). Hence if in the decomposition of 2p into a sum 
of m squares we change a» into Ai, we get a decomposition of 2pk. 

J. Liouviile8 stated that the number of representations of the double of 
an odd number masa sum of 12 squares is 2642<25, where d ranges over 
the divisors of m. The number of proper representations is 264Z5(w), where 

Zn(m) = {ana + • • . {cny + c*^}, m = a'V* • •• c7, 

a, • • •, c being distinct primes. If D2 ranges over the square divisors of m, 

E Z„(m/D') = E*. 
2> d 

Liouviile9 stated that the number of representations of 2“m (a > 0) as 
a sum of 12 squares is 

24 
22* (21 + 26tt+1-5)S<i5, 

summed for the divisors d of m. Proof by Humbert.48 
Liouviile10 denoted by N(n, p, g) the number of decompositions of n 

into p squares of which the roots of the first q are taken odd and positive, 
while the last p — q are even and the roots are taken positive or negative 
or zero; by N(n} p) the number of representations of n as a sum of p 
squares. It is stated that 

(1) N(2m, 12) = 264{N(2m, 12, 2) + 224N(2m, 12, 6) 

+ 256W(2m, 12, 10)) (m odd). 

Let m be odd, d any divisor of m> $ = m/d, and set 

f» = PM(m) = 2(- 

8 Jour, de Math., 19,1854, 298; (2), 2,1857, 152. 
7 Ibid., 19, 1854, 334-6; Comptes Rendus Paris, 39,1854, 1069-71. 
8 Jour, de Math., (2), 5,1860,143-6. 
9 Ibid., (2), 9,1864, 296-8. 

Ibid., (2), 6,1861, 233-8. Proof by Bell.686 
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The following formula is stated: 

f2v-i(w) = VyEA8N(2m, 4p, 4s + 2), 

A0 = 1, Av_x = Av^ = 16v“2a-X 

The cases v = 1, v = 2 correspond to theorems proved by Jacobi.1 For 
v = 3, (1) gives N(2m, 12) = 264f5(w). It is stated that 

iV(m, 12) = 8f6(m) - lOm^xCm) + 162s4 = 24f6(m) - 21W(4mJ 12, 12), 

where 2s4 is the sum of the squares of the first terms in the various repre¬ 
sentations of m as a sum of 4 squares s2 + si + s2 4- S3. 

It is stated that 

P2„(m) = BsN(2m, 4v + 2, 4s + 2), P0 = 1, Bu - 0 (^ > 0), 
*=0 

Ba being independent of m, but dependent on v; 

Po(m) = N(2m, 2, 2), p4(m) = N(2m, 10, 2) 4* 64AT(2m, 10, 6). 

From the latter, N(2m, 10) = 12-17p4(m), when m = 3 (mod 4). For 
such an m, Eisenstein2 had given N(m, 10) = 12p4(m). 

Liouville11 noted the existence of numbers a0 = 1, ah • • *, a„_x = 16v_1, 
60=1, hi, • • *, independent of m and a, but depending on r, such that, 
for every odd integer m and every integer a ^ 0, 

2(2y+1)ttf2v+1(m) = X>aiV(2a+2m, 4, + 4, 4s + 4), 
«=0 

= Z WV(2*+2m, 4» + 2, 4s + 4). 
*=t> 

These results and those in his10 preceding paper hold also if N be replaced 
by M, where M(n, p, q) is the number of solutions of 

n = 4* * • • 4- 4 "I" a* H™ • • • 4* co2_g 

(i’s odd and positive, co’s even) for which ih • • •, a>p_c have no common 
factor, and if fM, pM be replaced by 

zM(w) = n{Pr* 4- p(r“1^}, pM(m) = n{PrM 4- (- ly^p^1*}, 

ZJt 1) = JBm(1) = 1, m = IIP', 

where P ranges over the distinct prime factors of m. 
Liouville110 noted that, if m is odd, the number of representations of 

2*+2m by Q = x2 4“ 4 (y2 + z2 + t2 + u2 4- v2) evidently equals the number 
4{4a+1 — (— l)(w'“1)/2}p2(m) of representations of 2as a sum of six squares 
(Jacobi1). The number of representations of n = 1 (mod 4) by Q is 
P2(n) + 22t2 — npo(n), summed for the odd integers i for which n = i2+4$2. 
Corresponding results are found for forms like Q in which however only 4, 
3, 2, or 1 of the coefficients are 4, and for x2 4- 4(t/2 + 22 + t2 4- u2) + 16V2. 

11 Jour, de Math., (2), 6, 1861, 369-376. 
llfl Ibid(2), 10, 1865, 65-70, 71-2, 77-80, 151-4,161-8, 203-8. 
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Liouville12 stated that the number of representations of n = 2am (m odd) 
as a sum of 10 squares is 

i{ 16a+1 + (- 1)(W-1)/2}X + 

where X is the positive value of 2)($ — <fi), where d3 ranges over the divisors 
42 4- 1 of n and dz over the divisors 42 + 3 (X being the same for m as for n), 
while /i is the number of integral solutions, positive, negative or zero, of 
n a §2 ^ s/2, and v is the sum of the products sV2 for all the solutions. 

When m = 3 (mod 4), p = v = 0 and the formula becomes that of 
Eisenstein2 if a = 0, and that of Liouville10 for a = 1. In the notation of 
that paper, X = p4(m). Thus 

N(2*m, 10) {16‘+1+ (-1 + -¥LE(s4- 3s2s'2) ($2+s'2=n). 
8, 8' 

The last sum is multiplied by — 4 when a is replaced by a + 1* Hence 

N(2a+1m, 10) + 4N (2am, 10) « {16a+2 + 4(~ 1 )Cm-l)/2}p4(rn). 

The values of Ni — N (2a+2m, 10, 4) and Ns — N (2a+2m, 10, 8) follow from 

2VW = N* + 4NSl 4(- l)<m-1)/2p4(m) = 5N(2am, 10) - 96iV4 + 256I\T8, 

N* - 1 Ws = p(s4 - SsV2) (a2 + s'2 - 2*m). 

H. J. S. Smith13 stated that the principles indicated in his paper enable 
one to deduce by a uniform method the theorems of Jacobi, Eisenstein 
and the numerous recent ones by Liouville on the representation of numbers 
by a sum of four squares and other simple quadratic forms; also the 
theorems of Jacobi1 on six and eight squares. In view of Eisenstein^ 
remark that there is a single class of quadratic forms of discriminant unity 
in ^ 8 variables, but always more than one class if n > 8, the series of 
theorems relating to representation by sums of n squares ceases when 
n > 8. There remain the cases n = 5, 7. Smith gave a description of the 
general theory on which are based the formulas for the numbers N$ and Ni 
of primitive representations of 4aco25 as a sum of 5 and 7 squares, respec¬ 
tively, where co is odd and 5 has no square factor: 

where, as in Ni, the product extends over every prime dividing co but not 5, 
while Ft is defined as follows: For 5^1 (mod 4), 

and q = 12 if 5 2s 1 (mod 8); rj = 28 or 20, if 5 = 5 (mod 8), according 
as a = 0 or a > 0; while,* if 8 = 1, i?n is to be replaced by 2. But, if 
5 + 1 (mod 4), 

^ = |:(-*)s(s-4a), 

13 Comptes Rendua Paris, 60, 1865, 1257; Jour, de Math., (2), 11, 1866, 1-8. 
13 Proc. Roy. Soc. London, 16, 1867, 207; Coll. Math. Papers, 1, 1894, 521. 
f The 17S here used was replaced by rjJl in his81 later paper giving proofs. 
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where y = 1 or §, according as a = 0 or a > 0. Next, 

For i = 3 (mod 4), 

^=i:(j)3(S-S)(2S-8), 

where i? = 30ifa = 0, A = 3 (mod 8); y = 74/3 if a « 0, A = 7 (mod 8); 
y = 140/3 if a > 0. For 6 + 3 (mod 4), 

^ = £(~)*(s-25)(S-4S), 

where y = 1/3 or 5/12 according as a — 0, a > 0. 
J. IAouville14 stated that, if m is of the form 8k + 7, 

E (m - 7V)P> ) = 0, f>i(n) = 2(— 1)™ (^)‘, 

where i ranges over the positive odd integers < Vm, and d ranges over the 
divisors of the odd number n. 

E. Catalan15 obtained by means of elliptic functions the result that the 
number of solutions of i\ + * • • + ig = Sn in odd integers ih • • •, % equals 
the sum of the cubes of the divisors of n. 

J. W. L. Glaisher16 stated that, if Rm is the number of representations 
of N as a sum of m squares (attention being paid to the signs of the roots of 
the squares), and if P is the sum of the reciprocals of the odd divisors of N, 
then 

Ri-hR* + iR3-= (- 1 y~'2P. 

C. Sardi17 stated that the numbers of the form 40m + 63 are decompos¬ 
able into seven squares which end with the digit 9. Cf. Santomauro.19 

G. Torelli18 noted that the preceding result follows from Fermat’s 
theorem that every number is a sum of m m-gonal numbers, in the equivalent 
formulation by Barlow90 of Ch. I, which implies also that 200m + 14283 
is a sum of 27 squares ending in 29, of which 23 equal 529 or 729. 

E. Santomauro19 proved that every integer 40m + 9fc is a sum of k 
squares which end with the digit 9 [if k > 1, as it fails for m = 2, k = 1]. 
a. Sardi.17 

E. Lemoine20 called N = a\ + • • • + a* a decomposition of N into 
maximum squares and n the index of N if a\ is the largest square ^ N, 

u Jour, de Math., (2), 14, 1869, 302-4. 
14 Recherches sur quelques produits ind6fmis, M6m. Ac. Roy. Belgique, 40,1873, 61-191. 

R&um6 in Nouv. Ann. Math., (2), 13,1874, 518-23. a. Berdell6.» 
« Mess. Math., 5, 1876, 91. 
17 Gionude di Mat., 7,1869,115. 
"Ibid., 16,1878, 167. 
19 Un teorema d'analisi, 1879, 8 pp. 
*• Comptes Rendus Paris, 95, 1882, 719-22. 
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a® the largest square ^ N — 
For n even, yn ends with 67 

2/p+i « 

Let yn be the least number of index n. 
for n odd, with 23. Also, 

au etc. 

(W-* (ps3). 

M. d Ocagne21 stated the empirical generalization that, if m a 3, the 
last (_(m — l)/23 digits of ym are the same and in the same order as those 
°* Lemoine added the remark that the only possible final squares 
are R\ R* + 1, E2 + 1 + 1, iP + 1 + 1 + 1, ft2 + 22, fl2 + 22 + 22, 
Ri + 2s + 1, J®2 + 22 + 1 + l, R* + 22 + 1 + 1 + 1, where R > 2. 

T. J. Stieltjes22 noted that, in view of Jacobi26 of Ch. VIII, the number 
of decompositions of N = 5 (mod 8) as a sum of 5 positive odd squares is 

N — (2j — l}2 I 
-- ) = /W + 2/(2V - 8-12) + 2f(N - 8-22) + • • 

where <r(n) is the sum of the divisors of n, and 4/(m) = - 2(- lJwM/y, 
summed for the divisors d of to. 

C’'. Hermite23 proved by use of elliptic functions that the number of 
decompositions of N ss 5 (mod 8) as a sum of 5 positive odd squares is 

MN) + x(N - 22) + X(N - 42) + X(N - 62) + •• 
x(w) a 2(3d + dO/4, 

summed for all factorizations n = dd', dr > 3d. 
Stieltjes24 noted that the total number F(ri) of solutions of 

n = x\ + • • • + x\ 

is 24A (n) + 16B(n) for n even, and SA (n) + 48B(n) for n odd, where 

A(n) « X(n) + 2X(n - 4) + 2X(n - 16) + 2X(n - 36) + 
B(n) - X(n - 1) + X(» - 9) + X(» - 25) + • • •, 

X(n) being the sum of the odd divisors of n. He expressed A in) in terms 
of B{n)t and B(4n) in terms of B(n)f and therefore F(4n) in terms of F(n). 
He verified for each odd prime p < 100 that F(p2) = 10(p3 — p + 1), and 
for p ® 3, 5, 7 that 

F(p4) - 10{p(p2 - l)(p3 + 1) + 1}. 

T. Pepin26 expressed the number N{mt 5) of representations of m as a 
sum of 5 squares in terms of N{m) 4) in the evident way of considering 
to — x% as a BO. By use of elliptic functions he evaluated Ni — N2) where 
N% (or N%) is the number of representations of w as a sum of 5 squares of 
which the first is even (or odd); also P — Q, where P (or Q) is the number 
of representations of to as a sum of 5 squares of which the first two have an 
even (or odd) sum; he also proved that 

N'(m) - N"(m) = 2(- l)-(26 - 2a),__ 

n X/intorm&liftire ties math., 1, 1894, 232. 
» Comptes Rendue Paris, 97, 1883, 981. 
•* JbitL, 982. 
" Ibid., 1545. 
* Atti Accad. Pont. Nuovi Iincei, 37, 1883-4, 9-48. 
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where a ranges over the divisors SI ± 1 of m, and b over the divisors SI ± 3, 
while N' (or N") is the number of solutions of m = x2 + y2 + z2 + 2t2 
with x2 even (or odd). For m = SI =fc 1, N' = 2N". He noted the recur¬ 
sion formulas 

mN(m, 5) = 2 ^ (6n2 — m)N(m — n2, 5) = 102nW(m — n2, 4). 

He proved (p. 48) for any odd prime p the statements by Stieltjes24 con¬ 
cerning F(p2)} F(p4). 

E. Ces&ro26 stated that the number of ways of decomposing n into a 
sum of p squares is in mean Cnp/2~1, where 

c =_i_(iY"21 
2(p-2)(p-4)(p-6) ••• \2/ • 

For p = 3, C = 7r/4. For p = 4, C = t2/16. 
A. Hurwitz27 proved and generalized the conjectured results by Stieltjes24 

concerning F(p2) and F(p4). If m = 2kp*<f • * *, where 2, p, q> • • • are 
distinct primes, the number of decompositions of m2 into 5 squares is 

F(m2) = X [p, a][g, £] * ■ X = 10 
23AH-3 _ 1 

23 — 1 5 

p3a+3 - p^+i + p~ i 

For proof, set m = 2*r&. Then by Stieltjes’ formula, F{rn?) is K times the 
sum, for all positive odd integral solutions a, b of a + b = 2n, 

2X(a, fc) = X(n2) + 2X(n2 - 22) + 2X(n2 - 42) + -. •. 

But if 7, 5, €, • * * are the odd primes dividing both a and b, 

X{a, 5) - I(.») - 2rX (fj X (\) + ZytZ (i ) Z (£) - ■ • •, 

2X(a, b) = 'E X(aJXibJ - Zp E X(aP)X(&P) 

+ Em £ -, 
apq, bpq 

where the summation with respect to at, bt extends over all positive odd 
integers at) bt whose sum is 2njt, By the known formula 

X(l)X(2n - 1) + X(3)X(2n - 3) + X(5)X(2n - 5) + • • • 

+ X(2n - l)X(l) = f,(n), 

viz., the sum of the cubes of the divisors of the odd number n, we get 

2X(a, b) = [r3(pa) - Pttfr-'mztf - qUq*-1)! • • *, 

and hence equals [p, ajjl, 0] • • • in the desired formula for F(m2), Part 
of Stieltjes’ formulas follow from those of Liouville5 of Ch. XI. 

M6m. Soc. Roy. Sc. de Li&ge, (2), 10, 1883, No. 6, pp. 199-200. 
27 Comptes Rendus Paris, 98, 1884, 504-7. 
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T. J. Stieltjes270 wrote F7(n) for the number of decompositions of n into 
7- squares and stated that F1(4:km)/F1(m) equals 

/(*) = , mm 1,2 (mod4); 3-^~ m m 3 (mod 8); 

28/(/b) +9 „ , j oN 
™ s 7 (mod 8). 

H. Minkowski28 proved that the numbers of the form 8n + 5 are sums of 
3 odd squares. The number of proper representations of d as a sum of 5 
squares, not all odd, is 

^{3 — (— -t, 
ir2 \mj m2 

summed for the integers m prime to 2d. A number d = 5 (mod 8) has 

proper representations as a sum of 5 odd squares. 
P. S. Nasimoff29 proved that the number of decompositions of n = 2am 

(m odd) as a sum of 8 squares is -7^(8a+1 — 15)f3(m), where £z(yn) is the sum 
of the eubes of the divisors of m. He determined the number of decomposi¬ 
tions of any integer into 12 squares. 

E. Ces&ro30 noted that the number of decompositions of n into v squares 
is ~ N2 — Ns + Ni — N& + Ne + • • *, where Np is the number of 
positive integral solutions of the system of equations 

xix% • • • xy = p, xtyi + • * • + = n. 

The numbers of decompositions of n into two and four squares increased 
by double the number into three squares is Mi — Mz + M$ — M7 + * * *, 
where MP is the number of positive integral solutions of xy = p, + yrj = n. 

H. J. S. Smith31 proved the formula for the number of representations 
as a sum of five squares which had been stated by him in 1867, and deduced 
therefrom the formulas of Eisenstein.3 The subject proposed by the Paris 
Academy of Sciences for the Grand Prix des Sciences Math, for 1882 was 
the theory of the representation of integers as a sum of 5 squares (with 
citation of results of Eisenstein). Apparently no member of the commission 
which proposed the subject of the prize knew of the earlier paper by Smith; 
nor was the latter mentioned in the report32 of the commission which 
recommended that prizes of the full amount be awarded to Smith and to 

r7a Comptes Rendus Paris, 98,1884, 663-4. 
28 M6m. prdsentds k l’Acad. Sc. Inst. France, (2), 29,1884, No. 2. Gesamm. Abh., I, 1911, 

118-9,133-4. 
29 Application of Elliptic Functions to Number Theory, Moscow, 1885. French rdsumd in 

Annales sc. de l’dcole norm, supdr., (3), 5,1888, 36-7. 
80 Giomale di Mat., 23, 1885, 175. 
n M«m. Savans Etr. Paris Ac. Sc., (2), 29,1887, No. 1; Coll. Math. Papers, 2,1894,623-480; 

cf. p. 677. 
82 Smith's Coll. Math. Papers, 1,1894, lxvii-lxxii. 
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Minkowski,28 then a student of 18 years of age at the University of Konig^- 
berg. 

Ch. Berdell633 proved that any multiple of 8 is a sum of 8 odd squares. 
From 

n = a? + b2 + & + d2, 8a? = 4a2 — 4a + 4a2 + 4a, 

8 + 8n is the sum of the squares of 

2a + 1, 2a — 1, 2b + 1, 2b - 1, 2c + 1, 2c - 1, 2d +1, 2d - 1. 
If k of the integers a, 6, c, d are zero, 2k of the 8 squares are unity. 

J. W. L. Glaisher34 noted that, if <r(n) is the sum of the divisors of n, 
the number of representations of n as a sum of five squares is 

10{(t(tl) + 2a(n — 4) + 2<r(n — 16) + • • *} if n = 1 (mod 8), 

but twice that expression if n s 3 (mod 4). 
L. Gegenbauer35 proved that the number of representations of an odd 

number n as a sum of eight squares equals 162kf, where M is the number of 
divisors of the various g.c.d.'s of n with all triples chosen from 1, • • *, n. 
Also M is the sum of the products of the number of divisors of every factor 
of n by the number of those triples whose elements do not exceed the com¬ 
plementary divisor and form a system relatively prime to it. There are 
three further theorems on sums of 8 squares, five on sums of 12 squares 
and two on sums, of 6 and 10 squares each. The number of all [or proper] 
representations of an odd number n as a sum of three squares and double 
a square is 2 {4 — (2/n) }ju, where the symbol is Jacobi's and n is the num¬ 
ber of all [or proper] representations x2 — 2y2, y ^ 0, 2x > 3y, of the 
various g.c.d.'s of n and the numbers ^ n. There is a similar theorem 
on a sum of five squares and double a square. 

G. B. Mathews36 noted that the number of sets of solutions of 

*! + + x\ = n 

is the coefficient cn of qn in the expansion of 

ei = (1 + 2g + 2q* + 2g9 + • • •)*, 6 = 

By logarithmic differentiation, 

1-g2 1+g* 
1+ g2 ‘ 1 - g3''' 

1 d/9 00 

Idg = ~ S - 2 E (“ 1 )n/"«/M, 

summed for all odd divisors n of n. For34 n = 2am, = 2a+1<r(m). By 
the logarithmic differentiation of 8k = 1 + cxq + c^q2 + • • * and comparison 

» Bull. Soc. Math, de France, 17, 1888-9, 102, 205. Cf. Catalan.16 
* Messenger Math., 21, 1891-2, 129-130. 
u Sitzungsber. Akad. Wiss. Wien (Math.), 103, Ha, 1894, 122-5. 
M Proc. London Math. Soc., 27, 1895-6, 55-60. 
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of coefficients, we get linear equations for the c’s, from which 

k$(ri) k\p(n — 1) • • bK 2) km 
( — l)n(n-l)/2 

Cb - nl 

k$(n — 1) kyp{n — 2) • • kill) n — 1 
k\l/(n — 2) kyp(n — 3) ... n — 2 0 

mi) 1 ... 0 0 

P. Bachmann37 gave an exposition of the work of Smith13*31 and Min¬ 
kowski28 on sums of 5 squares, and Eisenstein2-4 on sums of 5, 6, 7,8 squares. 

E. Lemoine stated and L. Ripert38 proved that every integer equals 
the sum of p and certain distinct squares, where p = 0, 1, 2 or 4. 

H. Delannoy39 proved that every even square > 4 and every 4th 
power > 1 is a sum of five squares > 0, and that a(a + 2) is a sum of 4 or 
5 squares > 0. 

R. E. Moritz40 considered the representation of numbers as quotients of 
sums and differences of squares. 

0. Meissner41 considered the representation of numbers of an algebraic 
field as a sum of n squares. In particular, the numbers of the field defined 
by % Vz are sums of 5 squares, 4 of which are rational. 

J. W. L. Glaisher42 employed the sums P(m) and Q(m) of the products 
of the roots (taken in the form 4n + 1) of the first two and three squares, 
respectively, in each composition of 4m as a sum of 4 odd squares, and 
proved the following theorems when m is odd. The sum of the odd roots 
in all the representations of m as a sum of 6 squares, 3 of which are odd and 
3 even, is rfc 120P(m), the sign being + or — according as m = 7 or 3 
(mod 8). If a2 + • • • + f2 is any partition of 2m into 6 odd squares, 
where a, ■••,£* are taken in the form 4n + 1, and if s is the sum of the 15 
products of a, • • •, f taken two at a time, then 2s = — 120 Q(m), summed 
for all the representations of 2m by 6 odd squares. For the partitions of 8N 
into 8 odd squares, where N is even, the corresponding sum 2$ is zero. 
The number of compositions of 8m as a sum of 8 odd squares is the sum of 
the cubes of the divisors of m. 

K. Petr43 proved, by use of theta functions, two hitherto unproved 
theorems stated by Liouville on the representation of even numbers as a 
sum of 12 or 10 squares. 

E. Jacobsthal44 proved that every prime p = 4n + 1 is a sum 

V = 4>n(a) 2 /m\ /mw + a\ 

\p) \ p )’ 
of 5 squares, where 8 is the g.c.d. of n and p — 1, and g is a primitive root 
of p, while p ranges over a complete set of residues modulo 5. 

37 Arith. der Quad. Formen, 1898, 608-22, 652-68. 
38 Nouv. Ann. Math., (3), 17,1898, 195-6; 19,1900, 335-6. 
39 L'interm6diaire des math., 7, 1900, 392; 9, 1902, 237, 245. 
40 Univ. Nebraska Studies, 3,1903, 355. Cf. Moritz1**1 of Ch. VI. 
41 Archiv Math. Phys., (3), 5,1903, 175-6; 7, 1904, 266-8. 
43 Quar. Jour. Math., 36, 1905, 349-354. 
43 Casopis, Prag, 34, 1905, 224-9. Petr.49 
44 Anwendungen . . . quadratiachen Reste, Diss. Berlin, 1906,20. Cf. Jacobsthal,15* Ch. VI. 
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J. W. L. Glaisher45 evaluated the number R(t)(n) of representations of 
n as a sum of t squares for each even integer t ^ 18. The simplest results 
are 

B®(n) = 4{42?'(ft) - E2(n)}, B«(n) - (- l^iejtfn), 

RW(n) = HE^n) + 16#(») + 8X4(n)l, R™(2n) = - %(2n), 

the first two of which are due to Eisenstein2 for n odd and to H. J. S. Smith1 
for any n. Here Er(n) [or E'r(n)‘] is the excess of the sum of the rth powers 
of the divisors of n which [or whose conjugates] are of the form 4k + 1 
over the sum of the rth powers of the divisors of n which [or whose conju¬ 
gates] are of the form 4k + 3; also, 

rr(n) = 2(- l)*-1*, Un) = 2)(- 1 {dd’ = n); 

while 4x4 (w) is the sum of the fourth powers of all the complex numbers 
having n as norm. In an addition to this paper, Glaisher46 evaluated by 
elliptic modular functions the sum of the rth powers of all primary com¬ 
plex numbers of norm n and (p. 274) evaluated Rai)(n). 

W. Sierpinski47 noted that the number of representations of n as a sum 
of r squares is 

~i" | + “ ai(n) +~ia2(n) + ‘ | > 

where ai(n) is a polynomial of degree 2i with rational coefficients. 
G. Humbert48 derived the formula, in which vi = Hi(0), 6X = Gi(0), 

in Jacobi's notations for elliptic functions of the variable q, 

(2) 4rj$di + v\d\ = 4 E (2m + l)y*+1/2/(l + g2-+1). 
m=0 

Let Gp, q(a) be the number of decompositions of a into p + q squares of 
which the first p are odd and the last q are even. By equating the coeffi¬ 
cients of q*+112 in the two members of (2) and in the formula obtained by 
changing q to — q, we get 

4G6,4(4N + 2) + G2t s(4N + 2) = 4(- 1)*S(- l)m(2m + l)4, 

5G10, o(4N + 2) - 6<?.. 4(4N + 2) + G2,8(4N + 2) = 42(- l)m(2rn + l)4, 

the summations extending over the odd divisors 2m + 1 of 4N + 2. If 
N is odd, N = 2M + 1, Gio, o(4N + 2) is evidently zero. The preceding 
equations give 

G*, i(8M + 6) = G2, 8(&Jf + 6) = *2(- l)m+1(2m + l)4. 

The total number of decompositions of 8M + 6 into ten squares is 
evidently 

10 *9 *8-7 ^ , 10*9 ^ 

_123-4 Ge,4+ 1 2 (?2,8'_ 

46 Quar. Jour. Math., 38, 1907, 1-62, 178-236, 289-351; summary in Proc. London Math. 
Soc., (2), 5, 1907, 479-490. 

48 Quar. Jour. Math., 39, 1908, 266-300. 
47 Wiadomosci Mat., Warsaw, 11, 1907, 225-231. 
48 Comptes Rendus Paris, 144, 1907, 874-8. 
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and this number equals 2042(dj — dj), where d> ranges over the divisors 
4k + 3 of 8Jf + 6, and dt over the divisors 4h + 1. 

In (2) replace vl(q) by 2in(q2)B1(qi) and 6f(q) by 8f(q2) + vK<?)- Then 
change q2 into q. We get 

v\8i + 38,{9j + Vle\ + 20ijle; + 2Qn\e\ = 22(2m + l)^C2">+»/4/(i + ge*+ »/*). 

Equating the coefficients of q***1* and those of g^+1/4, we get 

10ft, 3 (47V + 3) + 10ft,7(4TV + 3) = 2(- 1)”+1(2to + l)4, 

ft. ,(4TV + 1) + ft, i(4AT + 1) + 38ft. 5(47V + 1) = 22(- l)”(2m + l)4, 

where 2m -f1 ranges over the odd divisors of 47V + 3 and 47V + 1, respec¬ 
tively. The first formula gives for the total number 120(ft, $ + ft.») of 
decompositions of 47V + 3 into ten squares the value 122(dJ - d{), due 
to Eisenstein.® 

For 12 squares, it is shown that 

*!*«! + 14>h0? + = if, (2m + iyqm+ll2J(l - g2"+1). 
*»=0 

Thus the total number 66(ft0, 2 + 14ft, « + ft,10) of decompositions of 
4N + 2 as a sum of 12 squares equals 2642d5, d ranging over the divisors of 
4N + 2. Changing q into q2, we find that 

ft, 4(8 M) = ft, s(8 M), ft, 4(8 M + 4) + ft, s(8M + 4) = 162(2m + l)6, 

summed for the divisors 2m -f 1 of 8M + 4. Next, 

y& + vffl = 162m5r/(l - q2m) 

gives Gs,i(8M) + ft, 8(8M) = 162m5, m being such that 2M/m is odd. 
By these and a more complex relation, one may obtain the total number 

ft2,0 + Go. 12 + 495(ft, 4 + ft, 8) 

of decompositions of 4JV into 12 squares, and thus prove Liouville’s9 theorem. 
K. Petr49 proved Liouville’s12 formula for the number of representations 

of 2 °m as a sum of ten squares by use of the theta functions with the char¬ 
acteristics (1,1), (1, 0), (0, 1), (0, 0) and formulas in Jacobi’s Fundamenta 
Nova (p. 101). Also, Liouville’s9 result on 12 squares by use of the fourth 
derivatives of f(u). 

E. Dubouis60 wrote Sn for a sum of n squares each > 0. For k > 45, 
the odd number k — 1 or & — 4 is a ft, whence k is a ft. The only numbers 
not ft’s are stated to be A = 0, 1, 2, 3, 4, 6,7, 9,10,12,15,18, 33. Every 
number + A + 1 is a ft. The numbers not ft’s are stated to be B = 1, 
2, 3, 4, 5, 7, 8, 10, 11, 13,16,19. The only numbers not a ftf„ are the 
B + n and the first n integers. 

* J- V. UspensJdj51 discussed the representation of numbers as sums of 
squares. 

" Archiv Math. Phys., (3), 11,1907, 83-5. Petr" 
10 L’intexm6di&ire des math., 18, 1911, 55-56. 
a Math. Soc. Kharkov, (2), 14, 1913, 31-64. 
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B. Boulyguine52 employed the notations 

fate, y) = §{(» + yi)ik + (x - yi)ik( = xik - ('+ • • • 

k 
E (n) = a;*), 

J> 

summed for all the Np(n) integral solutions (positive, negative, or zero) 
of x\ + • * * -h = n. Write <rk(m) for the sum of the Mh powers of the 
divisors of m and 

p*(m) = 2(- 1 y™id~i)/2d* 

for the difference between the sum of the kth powers of the divisors 4Ji + 1 
of m and the sum of the kth powers of the divisors 4h + 3. By use of 
elliptic functions, it is shown that, if n = 2am, where m is odd, 

2Wn) = ar{24r+4ra + (— i)0»-D/2}p4r(m) 

+ all) E (n) + a‘2> £(”)+•••+ a<r) 12 («)• 
8r—6 8r~14 2 

There is given a similar expression for iW+efa). Also, 

04H-3(l+«> _ 04H-4 4. 1 

N8r+s(n) = dr(- 1)*-.i~r-{<r+z(m) 

+ d(2 £ (») + d<2) E (») + ••• + E (»), 
Sr 8r—8 8 

with a similar expression for AV-nfa). Here the a’s and cTs are rational 
numbers not depending on n. It is stated that there result the known 
formulas for the number of decompositions into 2, 4, 6, 8, 10, or 12 squares 
and apparently new formulas for 14 or 16 squares. 

Boulyguine53 stated a recursion formula for his52 2 fa): 

ArNr(n) = Fr(n) + Ari E fa) + ^ E fa) + A* E fa) + ’ * * > 
r—8 r—16 r—24 

for r = 2, 3, * • *, where An Ari, • • * are independent of n, while Frfa) is a 
specified function differing in the three cases r odd, r = 4& + 2, r = 4fc + 4. 

S. Ramanujan64 studied the function ^fa) for which 

e ^fa)^n = nf(^), /w ® ^i/24a - *)u - ^2)(i -**)•••. 
n=0 i—1 

Special cases of are the functions xfa), Pfa), X4fa), 0fa), ftfa) of Glaisher" 
of Ch. VIII. He touched (pp. 179,183-4) on the number of representations 
of n as a sum of s squares, s = 10, 16, etc. 

L. J. Mordell55 proved that various empirical results of Ramanujan54 
follow from expansions of elliptic modular functions. 

M Comptes Rendus Paris, 158, 1914, 328-330. 
“ JWd., 161, 1915, 28-30. 
54 Trans. Cambr. Phil. Soc., 22, 1916, 173-9. 
“Proc. Cambr. Phil. Soc., 19, 1917, 117-124. 
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It. Goormaghtigh56 proved that every power of an even [odd] integer 
with an exponent ^ 3 is a sum of 5 [6] squares >0. If n is odd and > 1 
and if a > 0, n4**1 is a sum of 5 squares > 0. 

Mordell57 employed the theory of modular functions to find the number 
of representations as a sum of 2r squares. 

G. H. Hardy58 deduced from the theory of elliptic functions the number 
of representations as a sum of 5 or 7 squares. This investigation, con¬ 
tinued by S. Ramanujan,580 led to a complete solution of the problem of 
the representation of a number as a sum of n squares for n < 8, and to 
asymptotic formulas for any n. The method used is an application of the 
general theory cited in Ch. III.221 

E. T. Bell586 proved Liouville’s10*11 formulas by use of series for elliptic 
functions and stated that they are only the first cases of an infinitude of 
similar results which may be found by using higher powers than the first 
and second, or products, of the series. 

On 10 odd squares, see Pollock117 of Ch. I. On 8 squares, see Sier- 
pinski158 of Ch. VI. For 5 squares, see Hermite69 and Humbert108 of Ch. 
VII. In Ch. XI are noted Liouville’s results on sums of n squares for 
n ~ 8 and 12 and in papers 6 and 7 minor results for n = 5 and 7. 

Relations between squares. 

The Japanese Aida Ammei59 proved between 1807 and 1817 that 

= - cl\ + a\ + a\ + • • * + a2, xr = 2axar (r = 2, • • *, n), 

y = a\ + • • • + a* 

satisfy x\ + • • • + x2 = y2. This result was known to Euler191*294*308 of Ch. 
XXII. Ajima Chokuyen,59* in a manuscript dated 1791, had solved 
x\ + • • • + x\ = y2 in integers. 

It was proved by J. R. Young,60 who proved also the identity 

(*?+•••+ x2J(yl + • • • + yl) = (xjyi + * • • +'xnyn)2 

+ - xjyt)2 (i, j = 1, • * •, n; i < j). 

The latter was proved otherwise by A. Cauchy.61 
Aida’s result has been published also by D. S. Hart and A. Martin,62 

E. Catalan,63 A. Martin,64 and G. Bisconcini65 (by geometrical considerations 

M L'interm&liaire des math., 23,1916, 152-3. 
57 Quar. Jour. Math., 48,1917, 93-104. 
58 Proc. Nat. Acad. Sc., 4, 1918, 189-193. Proc. London Math. Soc., Records of Meeting, 

March, 14, 1918. 
Trans. Cambr. Phil. Soc., 22,1918, 259-276. 

m Bull. Amer. Math. Soc., 26,1919,19-25. 
59 Y. Mikami, Abh. Geach. Math. Wisa., 30, 1912, 247. Based on C. Hitomi's article in 

Jour. Phys. School of Tokyo, 15, 1906, 359-62. 
*9a Jour. Phys. School of Tokyo, 22,1913, 51. 
60 Trans. Roy. Irish. Acad., 21, II, 1848, 333. 
n Cours d'analyse de l'6cole polyt., 1, 1821, 455-7. 
81 Math. Quest. Educ. Times, 20,1874, 83; 63,1895, 49,112. 
68 Bull. Acad. Roy. Sc. Belgique, (3), 27, 1894, 10-15. 
64 Proc. Edinburgh Math. Soc., 14, 1896,113-5; Math. Mag., 2,1898, 209. 
86 Periodico di Mat., 22, 1907, 28. 
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in n-space). By multiplying a» by Vai for i = 2, • • *, n, we get 

(a2 + X^a?)2 = (- a2 + Sofia?)2 + 2<*x(2aax)2, 

a formula noted by G. Candido.66 
M. Moureaux67 noted that successive applications of Aida’s formula 

gives 
(<*?+•••+ a?)2’ = b\ + • • • + bl 

J. Cunliffe68 noted that we can find any number of rational squares 
whose sum is a rational square since n + k2 — □, k = (4r2 — n)/(4r). 
Thus* if n = 1+4 + 9 + 16, take r = 3, whence k = 1/2, and we have five 
squares whose sum is a square. 

L. Calzolari69 found special solutions of 

x\ + • • * + xl = y2 

by setting re* = k + aiy y = & + Sax. The new equation is linear in each a,-. 
E. Lucas70 noted that the sum of x consecutive squares may be a square 

for x = 2, 11, 23, 24, but for no further value 1 < x ^ 24; the sum of n 
consecutive odd squares is =}= □ if 1 < n < 16. Cf. papers 76,81,86,87,100, 
and 103 below; also papers 80,130-8 of Ch. I; and Brocard92of Ch. XXIII. 

H. S. Monck71 noted that t2 = (a2 + b2)2 = (2ab)2 + (2be + c2)2 if 
a = b + c. Hence if 

a2 = c\ • • • + c2, t2 = 4b2c\ + * • • + 4b2c\ + (2be + c2)2 

is a sum of n + 1 squares. Also,72 

So:? = {2s + (n + l)a}2, s = 2c», a * = 2s + 2a — (n — l)c». 

F. P. Ruffini73 discussed the positive integral solutions ir ^ ir-i ^ ^ i\ 
of 

i\ -j- . . . _j_ = U, ii + * • * + ir ~ V. 

Let xi be the number of i’s with the value 1, and x2 the number with the 
value 2. Set s ~ r — Xi — x2. Then 

Xi + 4x2 + Si2 = u, Xi + 2x2 + = v (3 ^ i8 ~ i»-i • • • ^ t‘i). 

Solve for xx and x2) and require that the values be ^ 0. By xh 

H - 2it > V s u - 2v - Si2 + 22i, 

where the summations extend over s — 1 values of i. Hence 

i,2l + Vi + v. 
The condition 1 -f F = 0 is treated similarly, first solving for t,_i. For 

M Suppl. al Periodico di Mat., 19, 1916, 97-100. Case ar ** r by Aida148 of Ch. XIII. 
67 Comptes Rendus Paris, 118, 1894, 700-1. 
68 The Gentleman’s Math. Companion, London, 3, No. 14,1811, 281-2. 
89 Giornale di Mat., 7, 1869, 313. Cf. Ch. XIII.123 
70 Recherch.es sur l’analyse ind£termin6e, Moulins, 1873, 91. Extract from Bull. Soc. 

d’Emulation D6pt. de l'AUier, Sc. Bell. Lettres, 12, 1873, 530. 
71 Math. Quest. Educ. Times, 20, 1874, 83-4. 
™IUd., 30,1879, 37-8. 
73 Mem. Accad. Sc. Istituto Bologna, 9,1878,199-215. Simpler than his paper, ibid., 8,1877. 
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u = n2 — 1, v = Z(n — 1), the initial pair of equations are the conditions 
on a Cremona transformation. For u = n2 — 2, v ~ Sn + 2p — 4, they 
are the conditions on the transformation of E. De Paolis, Mem. Accad. 
Iincei, 1877-8. 

J. W. L. Glaisher74 expressed the sum 2(a,- — a,)2 of n(n — l)/2 squares 
as 

S', {(^1 + CLlCi + Gofai + * * • + <XnC(n-l)i)2 + (<h8i + * * ‘ + <Z»$(n-nt)2}> 
i=l 

where v = (n — l)/2 or n/2 — 1, according as n is odd or even, and 

Cm = cos (2mi/n), sm == sin (2mT/n). 

G. Dostor76 desired 2n + 1 consecutive integers such that the sum of 
the squares of the first n + 1 of them equals that of the last n> and proved 
that the first of the numbers is n(2n + 1) or — n. 

A. Martin78 proved for n = 3, 4, 5 that a sum of n consecutive squares is 
not a square. Call x2 the middle square when n = 3 or 5; the problem 
reduces to the fact that Sx2 + 2 = □ or 5(x2 + 2) = □ is impossible. 

G. Dostor77 noted that, if at + • • • + an — up/2, 

al+-Mi! = E (p - «<)2i a\-\-+ a2-! = p2 + E (p - «<)*, 
i= I <=1 

the last by setting an = 0, so that78 a sum of n or n — 1 squares is ex¬ 
pressed as a sum of n squares. Also 

(Sal + Sa^ay)2 - (Sat-)2Sal + (2at-ay)2. 

D. S. Hart79 found squares whose sum is a square by subtracting 
(s + m)2 — s2 from l2 + 22 + • - • + n2 and, by trial, expressing the dif¬ 
ference as a sum of squares, which are then deleted from the n squares. 

J. A. Gray80 noted that we may start with a sum S of squares, choose a 
divisor a of S and set S -I- x2 = {x + a)2, whence 2x — S/a — a. 

Hart81 considered the sum S of the squares of 2n — 1 consecutive 
numbers the middle one of which is x and, for special values ^ 181 of n, 
made S a square. Cf. Lucas70. 

E. Catalan82 proved there is a number equal to a sum of p squares and 
having its square equal to a sum of 2p squares, by use of the identity 

(x2» + x2n~y~ + • - • + y2n)2 = (x2n)2 + (x2*-^)2 + ... + (y2n)2 

+ [xy(x2n~2 + x2n~*y2 + • • • + t/2n-2)]2. 

74 Messenger Math., 8, 1878-9, p. 48. 
« Archiv Math. Phys., 64, 1879, 350-2. Cf. Zeitschr. Math. Naturw. Unterricht, 12, 1881, 

269; E. ColHgnon, Assoc, fran?. av. sc., 25, H, 1896, 17; Ces&ro163 of Ch. I. 
75 Math. Visitor, 1,1880,156. Cf. Lucas.70 
77 Archiv Math. Phys., 67,1882, 265-8. 
78 For « = 3, E. Catalan, Nouv. Corresp. Math., 4,1878, 3. 
79 Math. Magazine, 1,1882-4,8-9. 
40 Ibid., 76. 
81 Ibid., 119-122; errata corrected by Martin, 2,1892, 94. 
88 Mathesis, 3,1883,199. 
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Catalan83 proved the last result and (p. 106) gave a long identity 
furnishing particular solutions of u2 = x\ + • • • + %l* If an odd number 
N is a E3 and if n is the number of equal or distinct prime factors of N, then 
IV"2 is a sum of h squares =(= 0, h = 2, 3, • • *, n + 1. 

R. W. D. Christie84 noted equal sums of four or more squares. 
A. Martin85 noted that 22 + 32 + 62 = 72, l2 + 22 + 42 + 62 + 82 « ll2, 

l2 + 22 + ... + 502 _ 2062 = 1 + 22 + 222 - 52 + 82 + 202. 

He86 stated that one can find several sets of 50 squares whose sum is 2312, 
that l2 + 22 -f • • • + 242 = 702, and similar results. Cf. Lucas.70 

F. Tano’s method to find an infinitude of solutions of 

+ * • • + *1 - y\ --vUi = «» 

when A; is of the form (3n — l)/2, is given in Ch. XII.207 
A. Martin87 found many sets of squares whose sum is a square by 

means of the methods of Aida69 and Gray,80 and by seeking to express 
Sn — &2 as a sum of distinct squares ^ n2, where b2 lies between n2 and 
Sn = l2 + • • • + n2. He noted that the sum of n consecutive squares is 
not a square for 2 < n < 11, and gave solutions for n = 11, 23, 24, 26, 
etc. [cf. Lucas70]]. He gave solutions of 

Sn - X2 = □, Sn + 1 = □, Sn-Sm-X2= □, 

and tabulated the values of Sn for n < 400. 
E. Catalan88 noted that, if N =b 1 are primes and N 4= 2, 2N2 + 2 

is a sum of 2, 3, 4, and 5 squares. 
E. Fauquembergue89 and others noted the identities 

(a{ + • • • + ay = (a\ + • • • + a\ - oJ+1 - • • • - + Z L (2a#.)1, 
r=1 «=<+l 

(«!+•••+ al)2 = (af + a\ + a\ - a\ - a2)2 + 4(aia4 =fc a5a5)2 

+ 4(aia6 =F a3a4)2 + 4a\a\ + 4a\a\. 

P. H. Philbrick90 noted that we may find n squares whose sum is a 
square by Aida’s59 method or by starting with a sum S of n — 1 squares 
such that & is a product of two factors a and 6, both even or both odd, and 
applying 

R. J. Adcock91 noted that, iis = x + y + z + v, 

x2s2 + y2s2 + z2s2 + + (xy + xz + xv + yz + yv + zv)2 = (2x2 + Xxy)2. 

88 Atti Accad. Pont. Nuovi Lincei, 37, 1883-4, 53. 
84 Math. Quest. Educ. Times, 49, 1888, 159-173; French transl., Sphinx-Oedipe, 7, 1912, 

177-87 
86 Bull. Phil. Soc. Wash., 10,1888,107 (Smithsonian Miscel. Coll., 33, 1888). 
88 Ibid., 11, 1892, 580-1. 
87 Math. Mag., 2, 1891-3, 69-76, 89-96, 137-140. 
88 Mathesis, (2), 3,1893, 235. ' 
88 Mathesis, (2) 4,1894, 277; 6,1896,101. 
90 Amer. Math. Monthly, 1, 1894, 256-8. 

2, 1895, 285. 
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Several writers92 found nine integers in arithmetical progression whose 
sum of squares is a square. 

A. Martin93 noted that the sum of the squares of the nine numbers 
x — 4y} x — 3y} • • *, x + 4y in arithmetical progression is a square if 
9x2 + 6(h/2 = □. Take y = 3z, x2 + 6O22 = (x + zp/q)2; hence x/z is 
found rationally. 

Various writers94 made and Sx? squares for n = 2, 3, 4, 5, 9. 
A. Boutin95 noted values n = 4, 9, • •, 50 such that the sum of the 

squares of n integers in arithmetical progression is a square. 
A. Martin96 solved b\ + • • • + = c\ + • • • + c2 by setting cn = a + bm 

and finding bm rationally.. 
T. Meyer97 gave solutions of a2 + b2 + • • • + n2 + x2 = z2. 
G. La Marea98 proved that 2a2 = □ if aX) • • •, an are integers such that 

ax : a2 = 3 :4, : ai+1 = 3:5 (i = 2, • • •, n — 1). For, by ax = 3gi, 
a2 = 4qh a2 = 3q2j a3 = 5q2, we have a\ + a\ = (5g02, 5qx : a3 = 3 :4, 
(5gi)2 + a\ = (5z)2, etc., where z = 5q2/4 is stated erroneously to be q2. 

Ed. Collignon" noted that x = 2ak(k + 1) is a solution of 

x2 + (x — a)2 + • • • + (x — ka)2 = (x + a)2 4* • • • + (x + ka)2. 

E. N. Barisien100 noted that a sum of p consecutive squares is not a 
square for p < 20, except for p = 2, 11, without treating the case p = 13. 
First, let p = 2n + 1 and denote the middle square by x2 and the least 
square by (x — n)2. The sum of the squares is (2n + 1) {x2 + n(n + l)/3}, 
which is not a square for n ^ 4, n — 7, 8, 9. For n = 5, ll(x2 + 10) is 
to be a square, whence x = llh db 1. Then x2 + 10 = 11m2, h = 2Z, l s 0 
or 1 (mod 3). A table of 8 solutions includes 

(x, h, m) = (23, 2, 7), (43, 4, 13), (461, 42, 139), (859, 78, 259). 

For p — 2n, let (x + n)2 be the largest square. Their sum is 

N = 2nx(x -f- 1) -f- n(2u2 l)/3. 

For n = 1, N = 2x2 + 2x + 1 = 4T + 1, where T is a triangular number. 
Thus T = 6, 210, 7158, • • giving 

32 + 42 = 52, 202 + 212 = 292, 1192 + 1202 = 1692. 

The cases 1 < n ^ 9 are impossible. Cf. Lucas.70 
E. N. Barisien101 gave the identity 

(a2 + b2 + c2)3 = [a(62 + c2 - a2)]2 + [6(52 + a2 - 3c2)]2 

_+ [c(a2 + c2 - 3b2)]2 + (2a25)2 + (2a2c)2 + (4abc)\ 

92 Amer. Math. Monthly, 2, 1895,129-30,163. 
93 Math. Quest. Educ. Times, 63, 1895, 111-2. 
84 L’interm6diaire des math., 1,1897, 42-4. 
96 Ibid., 5, 1898, 75. 
98 Math. Magazine, 2,1898, 212-3. 
97 Zeitschr. Math. Naturw. Unterricht, 36, 1905, 337-340. 
98II Boll. Mat. Giomale Sc. Didat. (ed., Conti), 5, 1906, 152-5. 
99 Sphinx-Oedipe, 1906-7,129. Case a - 1, Dostor.75 
100 Sphinx-Oedipe, 1907-8, 121-6. Cf. Martin.87 
1<a Bull, de math. 416m., 15,1909-10,181. 
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and obtained102 ten decompositions of 2662 into nine squares by multiplying, 
two by two, five decompositions of 266 as a sum of three squares. 

E. Barbette103 used the method of Martin87 to find squares whose sum 
is a square. He gave (pp. 87, 96) many sets of consecutive squareswhose 
sum is a square, [cf. Lucas70] 

E. Miot104 stated that, if 2k < m ^ 2fc+1, the square of a sum of m squares 
is a sum of 2k + 1 squares. 

E. N. Barisien105 noted that the sum of the squares of z6, 4sV, 4zy5, 
2y* and 2xy(2x4 + 5x2y2 + 2y4) equals the square of x6 + 8x4y2 + 8x2y4 + 2y6, 
and gave seven squares whose sum is a square. 

L. E. Dickson106 gave a history of the problem to express the product of 
two sums of n squares as a sum of n squares. 

On l2 + • • * + x2 = Icy2, see Lucas151 of Ch. I. On x\ + • • • +x2n — R2, 
see Turri&re115 of Ch. VII, Escott261 of Ch. XXI and paper 94, p. 322. On 
x\+ • • * + xl = yp, see papers 96a, 98 of Ch. XX ; 268 of Ch. XXI (p = 3); 
and papers near the end of Ch. XXII (p=4). By Landau21 of Ch. XXV, 
every definite polynomial in x is a sum of the squares of 8 polynomials. 

103 Mathesis, 10, 1910,185. 
103 Lea sommes de p-i&mea puissances distinctes 4gales k une p-i6me puissance, Li&ge, 1910, 

77-104. 
1W L^term^diaire des math., 19,1912, 195. 
106 Sphinx-Oedipe, 8, 1913, 142. 

Annals of Math., (2), 20, 1919, 155-171, 297. 





CHAPTER X. 
NUMBER OF SOLUTIONS OF QUADRATIC CONGRUENCES IN 

n UNKNOWNS. 

For n ^ 4, report was made in Ch. VIII on the papers by Libri,29 Schone- 
mann,31 Frattini,75 Lipsehitz,77 Dickson,95 Tengbergen,107 and L. Aubry,110 
and to many papers proving merely the existence of solutions. See also 
Hermite,21 Lebesgue,63 and Pepin80 of Ch. VIII, Vol. I of this History. 

V. A. Lebesgue1 noted that F = 2o»<r? s= 0 (mod p), where p is a prime 
2h + 1, may be reduced by multiplication of the variables by constants to 
a form 
(1) y\ 4 • • • + y} 3 n(z\ 4-b z*) (mod p), 

where n = lifp=4g — 1, and n is a quadratic non-residue of p if 
p = 4g + 1. Let Nl, Nk, N'k denote the number of sets of solutions of 

y\ 4 • • * 4 yl = a (mod p), 

according as a = 0, a is a quadratic residue or non-residue of p. In view 
of his2 general theorem, the number of sets of solutions of (1) is 

mm + HNfNi+mm\ mm + h(Nfm+mm), 
according as n = 1 or a quadratic non-residue of p. Also, if P0 is the 
number of solutions of F s 0 and t the number of F — ax2 ss 0, the 
number for F = a is (w — Po)/(p — 1). It is proved that, if & is odd, 

Nl = p^\ Nk = p^ + t, N'h- -t, 

while, if A; is even, 

Nl = p*-1 + (p - 1 )Z, Nk = N'k = p*"1 -l, 1= (- 

Lebesgue3 gave a simpler proof of the last results and also found the 
number of sets of solutions prime to p. 

C. Jordan4 proved by induction from n = l and n — mton — l + m 
that, if cli • • • a2n # 0, axx\ 4 • • • + a2nxL = k (mod p), where p is an 
odd prime, has p2n~l — pn~lv sets of solutions if k # 0 (mod p), and 
p2n~i 4 (pn — pn~l)v sets if k ss 0, where 

(- l)nui - - - azn+ik 

V 

are Legendre symbols. Also, axx\ 4 * * • 4 «2»+i^ln+i = k (mod p) has 
p2n 4 pV sets of solutions. As a corollary, there are (p — l)/2 variations 

1 Jour, de Math., 2, 1837, 260-275. 
* Vol. I, pp. 224-5 of this History. 
* Jour, de Math., 12, 1847, 467-471. 
4 Comptes Rendus Paris, 62, 1866, 687-90; Traits des substitutions, 1870, 156-61 (with a 

misprint of sign in the theorem on p. 610). 
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of signs in 

(;)• (!)■ -• 
V. A. Lebesgue5 gave two proofs of Jordan’s formulas, not using induc¬ 

tion. The first proof uses bis1 results for reduced congruences. The second 
proof is based on his2 amplification of Libri’s method. 

H. J. S. Smith6 proved that if p is an odd prime and m any integer, 
xz — y2 s m (mod p) has p{p + (— m/p)} solutions. Each of the con¬ 
gruences xz — y2 2= l, 3, 5, 7 (mod 8) has 48 solutions in which x and y 
are not both even. If p is any prime and i > 0, i' ^ 0, 

xz — y2 ss mpi (mod pi+i>) 

has p2i+2t' (1 — 1/p2) solutions in which x} z are not both divisible by p. 
C. Jordan7 proved that xxyx + • * • + xnyn = 0 (mod 2) has 22n"~1 + 2n~1 

sets of solutions, while xx + yx + xxyx + • • • + xnyn = 0 has 22n~1 — 2n“1 
sets of solutions. 

Jordan8 determined the number of sets of solutions of / = c (mod M), 
where/is any homogeneous quadratic function of xh •, xm. The number 
is the product of the numbers of solutions for moduli which are the powers 
of primes whose product is M. Consider 

/ = P^aisJ + • • • + amxi + b 12X1X2 + • • •) ss c (mod Px), 

where at least one coefficient ah • • •, am, 6i2, • • • is not divisible by the 
prime P. First, let P > 2. By means of a linear transformation, we may 
remove the terms xxX2, etc., not squares. The problem is reduced to 

Axx\ + • • • + A&l + Pp(Bxyl + • • • + Bqy*) + * • • 35 d (mod PM). 

The number of sets of solutions, in which xx, • • •, xp are not all divisible by 
P, is PrU, where — l)(n~l)~\~n — p, n—p-^-qA- • • •, and U 
is the number of sets of solutions of Axxx + • • * + Apx; = d (mod P), 
given above.4 For solutions in which xX) • • *, xp are divisible by P, we can 
remove a power of P and are led to the preceding case. 

For P = 2, we can transform / linearly into 2a2a + 2/*2/s + • • •, where 
each is of one of the four types Sp = xxyx + • • * + xpyPi 

Sp + Az2, Sp + Az2 + Axz2, Sp + u2 + uv + v2, 

where A and Ax are odd integers, A ^ 7, and p may be zero. The number 
of solutions is found by treating these four cases in turn. 

T. Pepin9 proved Jordan’s4 results by expressing the number of solu¬ 
tions in terms of the number for the congruence in which the number of 
unknowns is less by two. 

* Comptea Rendus Paris, 62,1866, 868-72. 
* Trans. Phil. Soe. London, 157, 1867, 286-7, § 18; Coll. Math. Papers, I, 492-4. 
7 Traits des substitutions, 1870,198. 
8 Jour, de Math., (2), 17, 1872, 368-402. Comptes Rendus Paris, 74, 1872, 1093. 
9 Nouv. Ann. Math., (2), 10, 1871, 227-234. 



Chap. X] QUADRATIC CONGRUENCE IN n UNKNOWNS. 327 

H. Minkowski10 found the number/{m; N\ of sets of solutions of 
» 

/ — dikXiXk ^ m (mod N). 
i, k=1 

If 
f(.h; N) = Z]/{m; N}pmh, P = eWIN, 

OT=1 

then 

f{m-,N) N)p~hm, 
A=1 

so that the problem remains to find f(m; N) whose determination depends 
upon that of '2pmf, where xh • • •, xn range each over a complete set of 
residues modulo N. The problem is reduced to the case of a power of 
prime modulus. The paper is too complicated to admit of a brief report. 

L. Gegenbauer11 considered / = a^xl + • * • + anx% with r of the a’s 
quadratic residues of the odd prime p. Let cr'(r) be the number of sets of 
solutions of / = 0 (mod p), and crn(r) the number of those in which no x s 0. 
Let s' and $ be the corresponding numbers for / = 1 (to which we may 
reduce/i = b + 0 by multiplication). For r > 0, 

*J?) = <rn-i(r — 1) + (p — l)s«~i(r - 1), crl(0) = </n(n), 

<rn(r) « (p — l)$n-i(r ~ 1), <rrt(0) = <r»(n), 

with more complicated recursion formulas for s«(r), sn(r), which with 
<ri(r) = 1, <7i(r) * 0, $i(r) = $'x(r) = 1 + (2r — 1)(— 1/p) determine the s 
and cr as by Jordan.4 

K. Zsigmondy12 proved the final results of Lebesgue.1 
P. Bachmann13 gave an exposition of the subject. 
L. E. Dickson14 gave a generalization of Jordan's4*7 work to any finite 

field and a derivation of canonical forms. 
R. Le Vavasseur15 discussed / = u (mod p), where p is a prime and 

/ = ax2 + bxy + ofy2 + cx + c'y + d, A = 4aa'd + bcc' — ac/2 — a'c2 — db2, 

8 = 4 aa' — &2. 

If 8 is a quadratic non-residue of p, / = A/5 has one and but one solution; 
for u + A/5, f = u has p + 1 solutions. If 5 is a quadratic residue of p, 
f = A/5 has 2p — 1 solutions, / = u + A/5 has p — 1 solutions. If 5 = 0, 
/ s u has p solutions. 

J. Klotz15 found the number of sets of solutions of the general quadratic 
congruence in any algebraic field. 

10 M6m. pr6sent£s & FAcad. Sc. Inst. France, (2), 29, 1884, No. 2, Arts. 7, 8, 9; Acta Math., 
7, 1885, 201-258, espec., pp. 210-37. Gesamm. Abh., 1, 1911, 3,157. 

11 Sitzungsber. Akad. Wiss. Wien (Math.), 99, Ila, 1890, 795-9. 
14 Monatshefte Math. Phys., 8, 1897, 38. 
13 Arith. der Quadrat. Formen, 1, 1898, 478-515. 
14 Linear Groups, 1901, 40-9, 158, 197-9, 205-6; Madison Colloquium Lectures, Amer. 

Math. Soc., 1914. Cf. J. E. McAtee, Amer. Jour. Math., 41, 1919, 225-42, on Jordan.* 
18 M6m. Acad. Sc. Toulouse, (10), 3, 1903, 44-8. 
18 Vierteljahrsachrift d. naturf. Gesell. Zurich, 58, 1913, 239-68. 





CHAPTER XI. 
LIOUVILLE’S SERIES OF EIGHTEEN ARTICLES. 

J. Liouville enunciated without proof numerous results in a series of 
eighteen articles, “ Sur quelques formules g4n6rales qui peuvent 6tre utiles 
dans la th^orie des nombres.,, 

Let m be an odd integer, a an integer ^ 1. Set 

2 *m = mf + m", m = db, mf — d'b', m" — d"$", 

where mf and m" are odd positive integers. Let fix) = /(— x) be an even 
single-valued function. He1 stated that 

(a) E( E [/(<*' - d") -Kd' + d")]l = 2—1 Xdim ~}, 
d't d» d 

where d, d', d" range over all the divisors of m, m!, m”, respectively, and 
the first summation extends over all the pairs of positive odd integers mf9 
m” whose sum is 2 ara. Taking fix) = x2*, we get 

2J*'“*‘~*rv+1(m) = 

where the coefficients are those of even rank in the binomial formula, and 
$‘M(m) denotes the sum of the juth powers of the divisors of m. For /x = 1 
and n = 2, we have 

= 2ri(m0fi(m"), 25-6f6(m) = 2ft (*»')&(»»"). 

The first gives the number of decompositions of 4*2“ra as a sum of 8 odd 
squares; the second gives the number of decompositions of 8*2“m into 
8 + 2or, where s is a sum of 8 odd squares such that s/8 is odd, while <r is a 
sum of 4 odd squares. 

For f{x) = cos xty (a) gives 

2(2 sin d't • 2 sin d"t) = 2-12d sin2 (2 

Taking a = 1, t = v/2, or by setting/(a:) = (— 1)*/2, we get 

2(2( — 1 yd'~1)I2.2(— l)(d"~1)/2) = 2d = Urn), 

which yields Jacobi's26*80 theorem of Ch. VIII that 4m has ti(m) representa¬ 
tions as a sum of four odd squares. 

For a function f(x, y) which is unaltered by the change of the sign of x 
or of y, Liouville stated that 

E { E [/(<*' - d”, S' + S") -/(S' + 5", d! - d")]} 
/-L\ d', d" 

(b} = 2-i E d{f(0, 2‘d) - /(2‘d, 0)1 = <r, 

(c) E ( E [/(<*' - d", S’ + «") - /(/+ d", S’ - 5")]1 = 
d', d't _ 

1 Jour, de Math., (2), 3,1858, 143-152,193-200. First and second articles. 
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Set 
f(Xj y) = cos atf-cos yz> 

rp(jn) = Z sin dt • cos 8z, w(m) = 2 cos dt-sin 8z (d8 = m). 
d d 

Then (c) yields the result 

— 2a)(m')a>(m'') = 2a~12d{sin2 2a^1dt — sin2 2tt_1dz}. 

We now include the case in which a = 0 and set 

2am = 2ttW + 2tt"m" (a's 0, a" s 0, w', m" odd). 

Let m = d5, etc., as before. Liouville2 stated the formula £a case of (e)3] 

Z { E C/(2a/d' - 2a"d") - /(2‘'<f + 2‘"d")]} 

(G) =Z(8-2*d){/(2“d-/(0)}, 
d 

where d, d\ dn range over all the divisors of m, m', m", respectively, and the 
first summation extends over all the pairs of even or odd integers 2aW, 
2*"m,/ whose sum is 2am. Consider the case a = 0; then a' or a" is zero; 
but, by introducing the factor 2 before the first member of (G), we may 
restrict attention to the case m = mf + 2a"m". Since 25 = 2d, we get 

(F) 2£{ £ C/(d' - 2*"d") - /(<*' + 2“V')]} = £ (a - <*)/(<*), 
d', d" d 

a case of (d). For example, if f(x) = x2, 

2{2a/,f1(m')ri(w")} = KtsW - rofi(ro)}. 
For /(x) = x2 or x4 in (G) we get 

2{2‘/+‘//f1(m,)fi(m")} = - 22a"2mf1(m); 
2{2wf3(m')fi(m/0 = 26a~4f6(m) - 24*-4m{3(m). 

Again using the notation m = ml + 2tt"m", Liouville stated the follow¬ 
ing two cases of (d): 

mum) = £ {/(0) + 2/(2) + 2/(4) + • • • + 2/(d - 1)) 

(D) * + 2 £ { £ lf(d' - d") - f(d' + d")]!, 
d\ d” 

£ { £ [F(d' - d” + 1) - F(d' - d" - 1) - F(d! + d" + 1) 
/Tp\ 4', d" 

W + Md’ + d" - 1)]} = F(l) $■,(«) - £ F(d), 
d 

where F is an odd function:* F(— x) = — F(x). For /(x) = (— l)x/2, 
(D) gives 

iffiW - p(w)} = 2p«)p(™"), p(m) s 2(- 

The first expression is therefore the number of decompositions of 2m into 

(l) y2 + z2 + 2 a(u2 + tP), 

with y, z, u, v odd positive integers and a > 0; it is also the number of 
decompositions of m into the form (1) with y and z positive odd numbers, 

* Jour, de Math., (2), 3, 1858, 201-8, 241-250. Third and fourth articles. 
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and u, v any even integers. For /(x) = x2, we deduce from (D) that 

- him)} = Sfi(mOfi(m"), 

which gives the number of decompositions of 4m into s + 2V, where s 
and <r are sums of 4 odd squares. 

For m any integer > 1, let m = m' + m". Liouville stated the follow¬ 
ing case of (f): 

/TTX £ { £ U(dr - d") -/(<f + <*")]} = /(0)[fiW - f(m)} 
(H) d'*d" 

- £/(<*) (2r(5) + d - 25 - 1} - 2 £'{/(2) +/(3) + • • • +/(d-1)}, 

where f (m) is the number of factors of m and the accent on the final sum¬ 
mation sign signifies that a term/(A;) is to be suppressed when & is a divisor 
of d. For /(x) = x2 and m a prime, (H) gives 

(HO 2Um')Um") = A(m2 - l)(5m - 6). 

This result may be used to prove the theorem of Bouniakowsky that 
any prime m of the form 16& + 7 can be decomposed into 2x2 + p4l+1y2 
in an odd number of ways, where p is a prime 4X4-1 not dividing y. 

Liouville8 stated that, if /(x, y) is unaltered by the change of the sign 
of x or y, 

2£{£ [/(d' - 2‘V', S' + S") —/(d' + 2 ‘"d", 5' - 5")]} 

(d) = £ (M 0) + 2m 2) + 2/(d, 4) + • • • + 2/(d, 5 - 1) - d/(d, 0)}, 

where the first summation extends over all decompositions ml + 2“"m" of 
m. If fix, y) reduces to a function/(x) of x only, (d) becomes (F). If it 
reduces to f(y), (d) becomes (D). To pass from (D) to (E), take 

fix) = F{x + 1) - Fix - 1). 

In (d) take / to be (— l)1',J/(x), where fix) is an even function. Then 

22 (2(- l)(*'-»/2(_ l)(!"-««[/(d' - 2*"d") + /(d' + 2«"d")]) 

= 2dfid) - 2(— iys~»iJid). 
For 2*m = 2‘W + 2‘"m", 

2{2C/(2“'d' - 2“"d", 8' + 8") - /(2*'d' + 2*''d", 8' - «")]} 

= 2d{/(0, 2d) + 2/(0, 4d) + 4/(0, 8d) + • • • + 2-/(0, 2*d)} 

+ 2 {/(2“d, 0) + 2/(2*d, 2) + 2/(2‘d, 4) + • • • 

+ 2/(2*d, 8 - 1)} - 2‘2d/(2“d, 0), 

which reduces to (G) for f(x, y) = /(*). Formula (H) is a special case of 

£ { £ [/(<*' - d", 8' + 8") - fid’ + d", 8' - 8")]} 

(f ) = £ (d - 1) {/(0, d) -/(d, 0)} + 2 £'{/(S, 2) + • • ■ 
+/(8, d - 1)} - 2£'{/(2, 8) + • • • +/(d - 1, 8)}, 

where the accent indicates that /(8, y) is to be suppressed if y is a divisor 

* Jour, de Math., (2), 3,1858, 273-288. Fifth article. 

(I) 

(e) 
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of d, and/(*, 8) if x divides d. Set A(x, y) = f(xy y) - f(y, x). Then 

2{2A(d' - d", 5' + 5")} = 2(d - 1)A(0, d) 

(g) + 22'{A(S, 2) + • • • + A(5, d - 1)}, 

where A(5,2/) is to be suppressed from the final sum if y divides d. The 
last formula is valid for any function A for which A(x, y) = — A(yy x). 

Liouville4 employed in his sixth article two simultaneous partitions 

2m = m' + m", m = mx + 2“*m2 (m's odd and > 0). 

Set Ttii = difii, etc. Let F(x) be a function for which 

F(0) = 0, F(- x) = - F(z). 
He stated that 

(L) S^-W^^CF^+d'O+fCd'-d'O]! = 2F(2d)+422P(m2)F(2di), 

where d, dh d'y d" range over the divisors of m, mi, m', m", and the first 
summation extends over the m' and mff whose sum is 2m. For F{x) = xy 

Sfi (m')p(w") = fi(m) + 42fi(mi)p(m2), 

so that there are fi(m) + 4B decompositions of 8m into $ + 2<r, where 5 is 
the sum of the squares of four odd positive numbers and cr is the sum of the 
squares of two such, while B is the number of decompositions of 4m into 
s + 2 V. 

For a like function F(x)y another formula was stated: 

82{222[F(d' + d" + d"') + F(d' - d" - d'") - F(d' + d" - d'") 

{ } - F{df - d" + d"')]} = 2(d* - l)F(d) - 24SXf1(m2)F(d1), 

where the two members relate to the respective modes of partitions 

m = m' + m" + m'", m = mx -f 2“*m2. 

For F(x) = x* there results the formula 

192Sf1(m')fi(m")fi(m/") + 242f8(m1)fi(m2) = f6(m) - f3(m). 

Hence if G is the number of decompositions of 4m into a sum of 12 odd 
squares, and H that of 8m into $ + 2V, where $ is a sum of 8 odd squares 
with s/8 odd, and <r is a sum of 4 odd squares, then 

8(r + H = Tt{fs(m) — f3(m)}. 

From (M) and (F), with/(x) = xF(x) is derived 

42{222“*d2[F(di + 2%) + F(d, - 2“*d2)]} 

K } = 2(d* - l)F(d) + 822(2“* - 3)fi(m2)F(di), 

42{22d1[F(d1 - 2“*d2) - F(dL + 2“*d2)]} 

V ' - 2(2m - 1 - d?)F(d) + 822(2“* - 3)ri(w2)F(di), 

each relating to the single mode of partition m = mx + 2“*ma, m* = d,-$<. 

4 Jour, de Math., (2), 3,1858, 325-336. Sixth article. 
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Liouville5 remarked that if we multiply the members of (a) by xp, 
where p = 2am, and sum for p = 2, 4, 6, • • •, we get 

, s '•lA-W_ 
W fa’ (1 - X2') (1 - X2’") f=[ 1 - xu 

which includes various formulas of the theory of elliptic functions. He 
stated that it is easy to prove (a) and then deduce (a), and that he had 
in his lectures at the College de France given a direct, elementary proof of 
(a), based on Dirichlet42 of Ch. VIII, the method applying to (b) and with 
slight changes to the other formulas. 

For any integer m, let 

s") - f(s'+ A s(/(0) — f(2s)}x2* 

(2) m = m'2 + mh rrt 2*"cT5" > 0 (d", 5" odd and > 0), 

03) SS(- l)m"-1F(2a/,d" + mJ ■h 

while m' may be negative. Then for F(— x) — — F(x), F(0) = 0, 

Vm F( Vm) if m = square, 

0 if m + square. 

A discussion of the case F(x) = x shows that, if we set 

or = f x(m) - 2fi(m — 1) + 2f i(m - 4) - 2fi(m - 9) + 2f1(w -16) - 

continued as long as the argument of is positive, then for m even, 

22‘d = Mm) - fi (^), 

4\ f — m if w — square, 

0 if m =(= square, 
while for m odd, 

fm — 1 \ , m — 9\ __ f m if m = square, 

2 / ^ \ 2 / 1 0 if m 4s square. 

Using the same partitions of m and a function such that 

“ V) = &fry V)y Z, y) * - V), ^(0, y) = 0, 

Liouville stated in his eighth article that 

2E(- l)’""-1<r(2‘"d" + m', 6" - 2m') 

= 0 or 1) + 3) + • • • + 2^ - 1), 

according as m is not or is a square. As a special case, 

-*(?)-*■(=?*)-i 
_ - odd, 

. + 2f,(i^i) + 2 C.(! 

(7) 

p(m) — 2p(m — 4) + 2p(m — 16) — 0 or (— 1) = iJm. 

For &(x> y) a function of x only, (7) reduces to (/3). 
Set <^(x, y) = (— l)W2F(x, 2/), so that F is an odd function with respect 

to x and to y. Then (7) gives 

2S(- l)(*"~mF(2a"dn + m', 5" - 2m') 

(«) = 0 or (- 1)"+1{F(V^, 1) - Fi'lm, 3) 

+ F(Jm, 5)-± F(Vm, 2Vm — 1)}, 
according as m is not or is a square. 

k Jour, de Math., (2), 4,1859,1-8, 72-80. Seventh and eighth articles. 
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Liouville6 stated that, for a function/(x) = /(— x), 

(f) 2(- lK->8"/(2-d" + m') - ZMmMmO = { ^ J 

where the summations relate to the partitions (2) and m = ml + 2ms 
respectively. 

For m — Sv + 5, /(x) = x sin (xx/2), he derived the relation 

p(m — 4) — 4p(m — 16) + 9 p(m — 36) — • • • 

It follows that, if we effect in all possible ways the decompositions 

w = 4s2 + sj + si, m = n2 + 4(nj + * * • + nj) (s>0, n odd and >0), 
2(- 1 )<»“«/*» = 22(- l)*-^2. 

If, in place of the second type of decomposition, we employ 

m = r2 + r! + ••• + rj, 

where r, ri, • • •, r4 are positive and odd, then 

42(- l)(r~1)/2r = 2(- l)*-is2. 

For the same two types of partitions and for a function f(x, y), even 
with respect to x and to y, Liouville stated in his tenth article that 

22(—1)m”'~1 5"/(2a"d,f+m', $"-2m')-22(2d2-52)/(m1, 2d2+52) 

(v) =0 or /(Vm, 2 Vm — 1) + 3/( Vm, 2 Vm — 3) 

+ - • • + (2 ^m — l)/(^, 1), 

according as m is not or is a square. If /(x, y) is a function of x only, this 
reduces to ($*)• 

For the same partitions and for a function eF(x} y, z, t), even with respect 
to x, y, z and odd with respect to t, it is stated that 

22(- + m', 5" - 2m', 2*"d" + m' - 5", 5") 

00 22^"(rnii, 2d>2 52, 2d2 ~~ mi — 52, 2d2 — 2mi — 52) 

= 0orl>( 2Vm — j, j — Vm, j) 0* ~ 1, 3, 5, * • •, 2 — 1), 

according as m is not or is a square. If & = £f(x, y), (v) becomes (17). 
Other noteworthy cases are & = #(z) and & = F(£). 

Liouville7 stated in his eleventh article that, if / is an even function, 

ft) 22(- l)^/(6" - 2m') = /(l)P(2m - 1) +/(3)p(2m - 9) + * • *, 

the summation extending over all integers m' and all divisors 5" of m", where 

(3)_m = 2m'2 + ro", m" = d"5" (m" odd and > 0). 

•Jour, de Math., (2), 4,1859,111-120,195-204. Ninth and tenth articles. 
7 Jour, de Math., (2), 4,1859, 281-304. Eleventh article. 
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The second member of (£) equals 2/(t), the summation extended over all 
the decompositions 

(4) 2m = i2 + i\ + p2 (h odd and > 0, p even). 

For/(x) = (— 1 y*-Wx, the first member of (£) is2(— l)m'fi(^ — 2m'2) 
and equals -gE, where E is the excess of the number of cases in which mr 
is even over the odd cases in 

m = 2m'2 + m2 + • • • + m\ (m', my any integers), 

since 8fx(m) is the number of representations of m as a sum of 4 squares for 
m odd. 

Let dZx be the number of sets of solutions of 

m — 2 m'2 + m? + • • • + m\ 

in which m! is odd, QZ2 the number in which m' is even. Then a discussion 
of (£) for the case /(x) = x2 leads to the result, relating to (4), 

T2W2 ~ = Si* - Xp2 if m = 1 (mod 4), 

-hWx “ ir^2 = St2 - 2p2 if m s 3 (mod 4). 

If M is the number of solutions of (4), 

2mM = 2 'Ll2 + 2p2. 

Let /(x, y) be a function even with respect to x and to y. Then 

(x) 22(- l)(8"-1)/2/(5" - 2m', 2d" + 4m') = 2E(- 1 )(ij"1)/s/(m1, d2 + S2), 

where the summation on the left relates to (3) and that on the right to 

2m = m\ + m2, m2 = d2h2 (mi, m2, d2 odd and > 0). 

If / reduces to /(x), (x) becomes ({). Also, 

(p) 4S2(-l)’”'+‘‘"-«,2/(2*"d" + to') - 22(—l)*/(s') = 2( — l)n‘~lf(^m) or 0, 

according as m is a square or not, where m is any integer and 

m == m'2 + m", m" = 2 m = s2 + s'2 + s,/2, 

m", d", 5" being positive and the last two odd. 
A discussion of the case m = Sv + 7, /(x) = x2, shows that Ni/N2 ~ 17/20, 

where Ni is the number of representations of m as a sum of 7 squares in 
which the first square is odd, and N2 the number in which the first square 
is even, including zero. 

For m odd and /(x) any even function, 

(r) 22(— ( m'+d"4—) s | 

m 

(_l)(^-D/2Vm/(0) 
0 

= 4to'2 + d"8" (d", 8" odd and > 0). 

if m~ square, 

ifm=|= square, 

For m = + 1, this formula holds for any function/(x). 
Liouville8 stated that for F(x, y, z) odd with respect to x, p, and z, 

(v) XXF(2°’"d" + to', 8" - 2to', 2*"+1d" + 2to' - 8") = 0 or 2F{Jm, j, j), 

8 Jour, de Math., (2), 5, I860, 1-8. Twelfth article. 
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according as to is not or is a square, where j = 1, 3, 5, • - •, 2 Vm — 1, 

TO = m'2 + 2‘"d"S" (d", «" odd and > 0). 

This becomes (e) for F = (- l)Q-t'iltF(z, y). Next, 

22F(d" + to', 3" - 2to', 2d" + 2to' - 3")_ 
(ip) 2Vm-l V»-l _ 

= 0 or F(ym, s, s) — £ 2>ro, 2<), 
J = 1 < = 1 

according as m is not or is a square, the summation on the left relating to 

m = m'2 + d"B” (d” > 0, 8" > 0). 
For m, d”, 8" odd and positive, 

(x) 22F(d" + 2m', 8" - 2m', 2m' + d" - 6") = 0 (m = 2m'2 + d"$"). 

Liouville9 stated that for a function F(x} y, z) odd with respect to x, yt 
and z, 
(A) — 2m2, dz + 2m2 — mh dz + 2rrh + mx) = 0, 

the summation extending over all partitions of a given integer m = 3 
(mod 4): 

m = mj 4- 4m* + 2d353 (mi, d3, S3 odd, dz > 0, $3 > 0). 
Take 

F(x, y, z) = <f(s, z-±l) _ LZJ'), 

^ (a?, u) being odd with respect to x, even with respect to u. Then (A) 
becomes 

(A2) X^(Sz — 2m2, + 2m2) = 2<^($3 — 2m2, m^. 

With the same notations, Liouville stated in the fourteenth article that 

(B) 2F(53 — 2m2, dz + 2m2 — mi, $3 + mi) = 0, 

and if &(x, y, z, t) is changed in sign by a change of sign of x only, or of 
y only, or of both z and t, 

(C) — 2m2, dz 4" 2m2 — mi, dz 4" 2m2 -j- mi, Sz mi) = 0. 

When <^is independent of t or z, (C) becomes (A) or (B), respectively. 
In the fifteenth article is given the following generalization of (C): 

2^(2a*Sz 2m2, dz 4" 2m2 — mi, dz 4~ 2m2 *4- mi, 2a‘Sz -f- mi) 

= E,'fV(^, «-2s-l, /J + 2s + l, ^), (a2 + /S2 = 2to), 

where a > 1 and the sign of 0 is chosen so that §(a + 0) is odd, while 
the summation in the first member applies to the partition 

m = m21 + 4m22 + 2a’+1dz8z (mh d8, 83 odd, dz > 0, 83 > 0), 

m being a given odd integer > 1. 

• Jour, de Math., (2), 9,1864, 249-256, 281-8, 321-336 (13th-15th articles). 
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Liouville10 stated that, if cF(x, yi z, t) changes sign with x} or y, or both 
z and ts 

2<^(53 — 2m2, dz + m2 — mh d3 + m2 + mi, 8Z + 2mi) 

= 22 ^(2a — 2s — 1, a — 6, a + b, 2b + 2s + 1) (a2 + b2 = m, a > 0), 
a, b s=0 

where the summation on the left relates to the partitions (of any given 
integer m) 

m = m\ + ml + d353 (d3 > 0, 53 > 0, 53 odd). 

Liouville11 stated that if \p(x, y) is symmetric and even with respect to x, 

2(- _ d", 8' + 8") = 2(- 2d) 

+ 42(- l)<5l“1>/2+(3,”1)/V(2d1, 2aa+1d2), 

where the summations relate to the partitions, in which m is odd: 

2m = d'8' ~f- d"8"f m = d§, m = di§i -b d282f 

all the symbols being positive integers and, with the exception of oc2, odd. 
In the eighteenth article, Liouville employed a function ef(xy y)} odd 

with respect to x and even with respect to y, and stated that 

2(- l)w',-D/2{^'(d/ + d", 8' - 8") + <T(d' - d", 8' + 8")} 

= S^(2d, 0) + 42(- iy*-M&(2dl9 2“I+1d2). 

For ^(x, y) = x, the latter gives 

2£i (m')p(m'O = ?i(m) + 42fi(mi)p(ma), 

the summations relating to 2m = mf + m", m = + 2aim2, where the m’s 
are all odd and positive. 

G. L. Dirichlet12 proved (a) of Liouville1 for a = 1. G. Humbert13 gave 
a proof by use of infinite series. G. B. Mathews14 gave a proof. 

J. Liouville15 stated his5 formula (7) and that 

22(- l)m(2“d + m' - 8)f(2ad + m', 2m' - 8) = 22(2ad - S)/(m', 2ad + '5), 

where the double accents on m, a, d, 5 have been dropped. 
Liouville16 considered two arbitrary functions /(m) and F(m) having 

definite values for m = 1, 2, 3, • • •, and set 

XJtm) = 2d"/(d), ZJtn) = 2<W(d), 

where each summation extends over all divisors d of m. For any real or 
complex numbers n, v, 

Zdr~XJMZ£b) = Sd"-%(d)XM(5) (5 = m/d). 

If we take/(m) and F(m) to be powers of m, we obtain a formula concerning 

10 Jour, de Math., (2), 9, 1864, 389-400. Sixteenth article. 
11 Jour, de Math., (2), 10,1865,135-144,169-176 (17th and 18th articles). 
u Bull, des Sc. Math., (2), 33,1, 1909, 58-60; letter to liouville, Aug. 27, 1858. 
“ Ibid., (2), 34,1, 1910, 29-31. 
w Proc. London Math. Soc., 25,1893-4, 85-92. 
» Bull, des Sc. Math., (2), 33,1, 1909, 61-4; letter to Dirichlet, Oct. 21, 1858. 
“ Jour, de Math., (2), 3, 1858, 63-68. 
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the sum crjjz) of the pith, powers of the divisors of k and given in Ch. X of 
Vol. I of this History. From the above formula we readily pass to 

2xXd)zll(S) = S^(d)*M(5), xjjn) = 2$y(d), z,(m) = 25#,F(d). 

V. A. Lebesgue17 noted that for any integer m, 

= t^{5f3(m) - (6m - l)fi(m)}, 

which reduces for the case m a prime to the final formula (H7) of Liouville.2 
Liouville18 gave formulas of the type of those in his series of articles- 
Liouville19 noted that, for any integer m, 

[I'm] 

m£i(m) + 2 £ (m - 5m2) ^(m — m\) = 0 or m(4m — l)/3, 
mi~ 1 

according as m is not or is a square. This follows from (<j>) of Liouville8 
with F(x, y, z) = xyz. 

H. J. S. Smith19a gave a proof of (a) and 

2/(d' + 2m7) -2/{«4+fc)}, 

the summations extended respectively over all solutions of 

m = 2m/2 + d'8', 2m = m\ + d±hi, 

where d', S', dh Si, m, are positive and odd, while f(x) is an odd 
function. 

C. M. Piuma20 proved (e), (L), (N), (7), and (v). 
E. Fergola21 stated and G. Torelli22 proved a theorem related to one in 

Liouville’s seventh article. Let an denote the product of the highest 
power of 2 dividing n by the sum of the odd divisors of n. Then 

a„ — 2a„_i + 2a„_4 - 2on_9 *f 2an_16 — 2<2n_.25 + • * * = (— l)”-1 n or 0, 

according as n is or is not a square. 
S. J. Baskakov23 proved the formulas in Liouville7s twelfth article. 
T. Pepin24 proved all the formulas in Liouville’s first five articles except 

(f) and its specializations (H), (g). 
N. V. Bougaief25 proved some of the theorems in Liouville7s series of 

articles by showing that, if F(x) is an even function, an identity 
00 * 

X Am cos mx = X) Bn cos nx 
m=0 »=0 

implies SAmF(m) — SBnF(n), and a similar theorem involving sines and 
an odd function Fi(ri). 

”~Jour. de Math., (2), 7,1862,256. ~ ~ 
18 Ibid., 41-8. To be considered under class number in Vol. III. 
19 Jour, de Math., (2), 7, 1862, 375-6. 
130 Report British Assoc, for 1865, art. 136; Coll. Math. Papers, I, 346. 
20 Giomale di Mat., 4,1866,1-14, 65-75, 193-201. 
21 Giomale di Mat., 10,1872, 54. 
nIbid., 16,1878, 166-7. 
23 Math. Soc. Moscow, 10,1,1882-3, 313. 
24 Atti Accad. Pont. Nuovi Lincei, 38, 1884-5, 146-162. 
25 Math. Soc. Moscow, 12, 1885, 1-21. 
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Pepin26 proved all the theorems in Liouville’s first five and last two 
articles, and (L) of the sixth. 

E. Meissner27 proved all the theorems in Liouville’s articles VII-XVI. 
Thus there remain unproved essentially only (N) and (Q) of the sixth 
article. [Piuma,20 pp. 197-201, proved (N).] 

P. Bachmann28 gave an exposition of selected formulas from Liouville’s 
series. 

A. Deltour29 proved (a) and recalled how it implies that, if m is odd, 
the number of decompositions of 4m (or 8m) into a sum of 4 (or 8) odd 
squares equals the sum (or sum of cubes) of the divisors of m. 

P. S. NasimofP proved formulas (a) and (c) of Liouville,1 (F) of Liou- 
ville,2 (P) of Liouville,4 one of Liouville,18 and related results. 

M Jour, de Math., (4), 4, 1888, 83-127. 
27 Zurich Vierteljahx Naturf. Ges., 52, 1907, 156-216 (Diss., Zurich). 
28 Niedere Zahlentheorie, 2, 1910, 365-433. 
29 Nouv. Ann. Math., (4), 11, 1911, 123-9. 
30 Application of Elliptic Functions to Number Theory, Moscow, 1885. French r£sum6 in 

Annales sc. de l’icole norm. sup6r., (3), 5, 1888, 147-64. 





CHAPTER XII. 

PELL EQUATION; ax' + bx + c MADE A SQUARE. 

The very important equation x2 — Dy2 = 1, which has long borne the 
name of Pell, due to a confusion originating with Euler, should have been 
designated as Fermat’s equation (cf. papers 41, 62-64). 

There appeared in India and Greece as early as 400 B.C. approxima¬ 
tions ajb to V2 such that a2 — 2b2 = 1, and similarly for other square 
roots, the derivation of successive approximations being in effect a method 
of solving the Pell equation. For example, Baudhayana, the Hindu author 
of the oldest of the works, Sulva-sutras, gave the approximations 17/12 
and 577/408 to V2. Note that 

l + ririz-ji' 577* — 2-4082 ™ 1- 

Proclus1 (410-485 A.D.) noted that the Pythagoreans made the fol¬ 
lowing construction: On the prolongation of the side AB of a square 
with the diagonal BE lay off BC — AB, CD = BE. Then 

AD2 + CD2 = 2 AB2 + 2J3D2. 

But CD2 = BE2 = 2AB2. Hence 

AD2 = 2BD2 = FD2, FD = AD = 2 AB + EB. 

Also BD = AB + EB. Write $x, s2, • • • for the sides AB, BD, • • *, and 
di, d2, • * • for the diagonals BE, FD, • • •. Then 

Sn-f-l == Sn + din, dn+i == 2Sn 4" dn- 

Now let $i = l and replace dx = V2 by the integral approximation 5i = 1, 
and employ our recursion formulae with dn replaced by Sn. We get 

s2 = $i + = 2, $2 = 2si 4- Si = 3, 
$3 = $2 4" ^2 == 5, S3 = 2$2 4- $2 = 7, * * * 

Then 6n, sn give a solution of S2 — 2s2 = (— l)n. 

1 In Platonis rem publicam commentarii, ed., G. Kroll, 2, 1901, 24-9; excurs II (by F. 
Hultach), 393-400. 
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Theon of Smyrna2 (about 130 A.D.) called the s’s and $’s side and 
diametral (diagonal) numbers and gave the above recursion formulae without 
the geometrical interpretation. 

Archimedes (third century B.C.) gave the approximations 265/153 and 
1351/780 to V3, which can be explained in connection with x2 — Zy2 - — 2, 
x2 - 3y2 = 1. _ 

Heron of Alexandria used the approximation a + r/(2a) for Va2-f r. 
For a more detailed account than what precedes of the connection be¬ 

tween the knowledge of the early Greeks and Hindus of approximation to 
square roots and Pell equations, see H. Konen3 and E. E. Whitford.4 

The history of the cattle problem of Archimedes will now be discussed 
in detail. 

In 1773, Gotthold Ephraim Lessing5 published a Greek epigram in 24 
verses, from a manuscript in the Wolfenbiittel library, stating a problem 
purporting to be one proposed by Archimedes,6 in a letter to Eratosthenes, 
to the mathematicians of Alexandria, as well as a scholium giving a false 
answer, and a long mathematical discussion by Chr. Leiste. The problem 
is to find the numbers W, X, Y, Z of the white, black (or blue), piebald (or 
spotted), and yellow (or red) bulls, and the numbers x, y} z of the cows 
of the corresponding colors, when 

(i) w « a + i)x + z, 
(3) Y=(i + i)W + Z, 
(5) *=(i + l)(7 + y), 
(7) *=(i + MW + w), 
(9) Y + Z = A, 

(2) (i + })Y + Z, 

(4) w — ($ + i)(X + x), 

(6) (* + «(£ + *), 
(8) W + X = □, 

the final notations being those for a square and a triangular number. 
Leiste found at once the integral solutions of (1), (2), (3): 

(10) Y = 1580m, Z = 891m, W = 2226m, X = 1602m. 

Then, by (4), m = 2p, x - 12a. By (5), a = 3/3, y = 20(4# — 158p). 

1 Platonici . . . expositio, 1544, 67. Theon Smyraaeus, ed., E. Hiller, Leipzig, 1878, 43; 
French transl., by J. Dupuis, Paris, 1893, 71-5. 

3 Geschichte der Gleichung P — Dv? = 1, Leipzig, 1901, 2-17. Reviews by Wertheim, 
Bibl. Math., (3), 3, 1902, 248-251; and Tannery, Bull, des Sc. Math., 27, II, 1903, 47. 

4 The Pell Equation, Columbia Univ. Diss., New York, 1912, 3-22. The following related 
papers are not mentioned in the pages just cited: E. S. Unger, Kurzer Abriss der Gesch. 
Z. von Pythagoras bis Diophant, Prop:., Erfurt, 1843; C. Henry, Bull, des Sc. Math. 
Astr., (2), 3, 1, 1879, 515-20; H. Weissenbom, Die irrationalen Quadratwurzeln bei 
Archimedes und Heron, Berlin, 1884; Zeitschr. Math. Phys., Hist.-Lit. Abt., 28, 1883, 
81; E. Mahler, ibid., 29,1884, 41-3; W. Schoenbom, 30, 1885, 81-90; C. Demme, 31, 
1886,1-27; K. Hunrath, 33,1888, 1-11; V. V. Bobynin, 41, 1896, 193-211; M. Curtze, 
42,1897, 113, 145; F. Hultsch, Gottingen Nachr., 1893,367; G. Wertheim, Abh. Gesch. 
Math., VIII, 146-160 (in-Zeitschr. Math. Phys., 42, 1897); Zeitschr. Math. Naturw. 
Unterricht, 30,1899, 253; T. L. Heath, Euclid’s Elements, 1, 1908, 398-401. 

6 Zur Geschichte der Literatur, Braunschweig, 2,1773, No. 13,421-446. Lessing, Sammtliche 
Schiiften, Leipzig, 22,1802, 221; 9, 1855, 285-302; 12,1897, 100-15; Opera, XIV, 232. 

s Archimedes opera, ed., J. L. Heiberg, 2,1881, 450-5; new ed., 2, 1913, 528-34. 
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By (6), p = 5#, z = 307, y = 11(297# + 7), whence 117 = 800 — 19067#. 
Then (7) gives 307 = (1505# + 0)13/2, # = 2r, 0 = 25. Comparing the 
resulting 7 with the earlier 7, we get a linear equation in 5, r, whence 

r = 46572*, 5 = 13592352*. 

By substitutions, we get m = 931402*, whence 

(100 

W - 2073296402*, 

X = 1492102802*, 

7 = 1471612002*, 

Z = 829877402*, 

w = 1441272002* 

x = 978649202* 

y = 70316400^ 

2 = 1087842602*. 

For 2* = 4, we get the numbers in the scholium; but they satisfy neither 
(8) nor (9), since neither W + X nor 8(7 + Z) + 1 is a square. 

Returning to (100, note that the greatest common divisor of the 
numerical factors is 20, whence 2* = v/20, where v is an integer. Then 

W + X = 4-957 *4657z>, v = 957 • 4657n2, 

since W + X is to be a square. Then Y + Z = (t2 + t)/2 gives 

(21 + l)2 = 8(7 + Z) + 1 = an2 + 1, a = 410286423278424. 

Since a is positive and not a square it is possible to choose an integer n 
so that an2 + 1 = □ by Euler.81 If the resulting square is even, we can 
deduce one making an2 + 1 an odd square (Euler,83 § 86, § 88). 

J. J. I. Hoffmann7 said the problem was due to a much later computer. 
J. Struve8 gave a 36 page discussion making no advance over Leiste. 
Gottfried Hermann9 made an interpretation which led, not to (8) and 

(9), but to W + X = a square whose side is of the form a2(a — 6), 
7 + Z= A, T7 + X+ 7 + Z== Ai. Thus if we take the numbers (10), 
we must make 

3828m = {a2(o - b)}-, 2471m = - 6299m = 
2 2 

He stated on the authority of K. B. Mollweide that C. F. Gauss had com¬ 
pletely solved the problem under the earlier interpretation, but had not 
published the solution. 

J. Fr. Wurm,10 in a review of Hermann's paper, replaced (p. 201) condi¬ 
tion (8) by the condition that W + X shall be a product of two approxi¬ 
mately equal factors. Without returning to this condition, he passed to (9): 

7 + Z = 2471m = 2471-15H = A. 

7 Ueber die Arith. der Griechen, Mainz, 1817, Introd., p. xvi (transl. of Delambre). 
8 Altes griechisches Epigramm, mathematischen Inhalts, von Lessing erst einmal zum Drucke 

befdrdert, jetzt neu abgedruckt und mathematisch und kritisch behandelt von Dr. J. 
Struve und Dr. K. L. Struve, Vater und Sohn. Altona, 1821, 47 pp. 

°Ad memoriam Kregelio-Sternbachianam in and. jur. die 17 Julii 1828: De Archimedis 
Problemate Bovino, Universitats programm, Leipzig, 1828. Reprinted in Godofredi 
Hermanni, Opvscvla, Lipsiae, 4, 1831, iii-v, 228-238. 

10 Jahrbucher fur Philologie u. Paedagogik (ed., J. C. Jahn), 14,1830, 194r-202. 
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The least t is 990, the side of A being then 27180. He considered also 
higher values of t, but gave no final answer to (1)~(9). 

G. H. F. Nesselmann11 argued that the final part of the epigram leading 
to conditions (8) and (9) was a later addition, partly since he believed that 
triangular numbers were not employed in Archimedes’ time (a view already 
expressed by G. S. Klugel12). 

0. Terquem13 stated that the tenth condition added by Hermann is 
incompatible with the earlier conditions. 

A. J. H. Vincent14 regarded as spurious the conditions relating to the 
cows. By the first three conditions, we have (10). Then Y + Z = 2471m 
is to be a A and this is the case if m = 99 * 122314, the side of the A being 
244628. Then 4 VlV + Z is approximately 861182, which is very nearly 
the area of Sicily in square stales, in accord with Vincent’s interpretation 
of the condition to replace (8). 

C. F. Meyer15 duplicated the paper by Lessing and discussion by Leiste, 
adding merely that, in attempting to make an2 + 1 a square by the con¬ 
venient method of Kausler, he had carried the development of a!g into a 
continued fraction to the 240th quotient without finding the period. 

A. Amthor16 showed that Wurm’s problem (l)-(7), (9) is satisfied by 
taking u = v[20, v = 117423 in Leiste’s values of W, • • z, since then 

Y + Z — 1643921 • 1643922/2, W + X = 1485583 • 1409076. 

For the main problem (1)—(9), he satisfied (8) by taking v = /-4657ft2, 
/ = 3*11*29 = 957, as in Leiste. Then in (9), viz., Y + Z = q(q + 1 )/2, 
set t = 2q + 1, u = 2-465771. We obtain the Pell equation 

t2 - Du2 = 1, D = 2-7*/*353 = 4729494. 

He found that the continued fraction for V5 has a period of 91 terms 
and obtained as the least solutions 

T * 109 931 986 732 829 734 979 866 282 821 433 543 901 088 049, 

U = 50 549 485 234 315 033 074 477 819 735 540 408 986 340. 

It remains to derive the least solutions t, u in which u is divisible by 
2*4657, so that n shall be integral. By proving and applying general 
lemmas concerning tk + ukVZ> = (T + U V5)*, he found that, for k = 2329, 
tk, uk is the desired pair. He verified that W has 206545 digits. 

B. Krumbiegel17 made a historical and philological discussion of the 
problem and concluded that, while the epigram itself is probably subsequent 
to Archimedes, the problem itself is due to him. This accords with the 

11 Die Algebra der Griechen, Berlin, 1842, 488. On p. 485, bis g = 57 * • • should be 54 • • •. 
“ Math. Worterbuch, 1,1803,184. Cf. M. Cantor, Geschichte Math., ed. 2,1, 297; ed. 3,1, 

312. 

11 Nouv. Ann. Math. 14,1855, Bull. Bibl., 113-124,130-1. He at first attributed incorrectly 
Hermann's paper to F. E. Theime. 

14 Nouv. Ann. Math., 14, 1855, Bull. Bibl., 165-173; 15, 1856, Bull. Bibl., 39-42 (restored 
Greek text and French transl.). 

15 Ein diophantisches Problem, Progr., Potsdam, 1867,14 pp. 
16 Zeitschrift Math. Phys., 25, 1880, Hist.-Lit. Abt., 153-171. 
17 Zeitschrift Math. Phys., 25,1880, Hist.-Lit. Abt., 121-136. 



Chap. XII] PELL EQUATION, OX2+bx+C= □. 345 

view of J. L. Heiberg,18 P. Tannery,19 F. Hultsch,20 T. L. Heath,21 and 
S. Gunther.22 

A. H. Bell23 found a “ complete solution,” based on the an2 + 1 = □ of 
Leiste, involving numbers of 206545 digits, as by Amthor.16 

G. Loria,23® M. Merriman,236 and R. C. Archibald236 gave accounts of the 
cattle problem. 

Diophantus (about 250 A.D.) was frequently led to special Pell equa¬ 
tions in solving problems in his Arithmetica. In II, 12, 13, 14, 29, he 
made y2 + 1, y2 + 12, y2 — 1, y2 + 1, 9y2 + 9 equal to a square z2, by 
taking z = y — 4, y — 4, y — 2, y — 2, Zy — 4, respectively, and similarly 
in II, 30. In III, 12, 13, he avoided the initial equations 52a;2 + 12 = □, 
266a;2 — 10 — □, since 52 and 266 are not squares [though a? = 1 is 
a solution of each], and, beginning anew, was led to y2 + 12 = □, 
772z2 — 160 = □, which he solved by equating them to (y + 3)2 and 
(772? — 2)2, respectively. In IV, 8,33, he treated 2a;2 + 4 = □ = (2a; — 2)2 
and 7m2 + 81 = □ = (8m + 9)2. In V, 12, 14, he discussed 

26a;2 + 1 — □ = (5a; + l)2 

and 30a;2 + 1 = □ = (5a; + l)2. So far, the problems solved are all of 
the form oa;2 + 6 = □ with either a or b a square. In VI, 12, he stated the 
lemma: Given two numbers whose sum is a square, we can find an infinitude 
of squares s such that, when the square $ is multiplied by one of the given 
numbers and the product is added to the other, the result is a square. 
Thus, given the numbers 3 and 6, let $ = (a; + l)2; then shall 

3 (a; + 1)2 + 6 = 3a;2 + 6a; + 9 = □, 

say (3 — 3a;)2, whence x — 4; and an infinitude of other solutions can be 
found. This lemma is applied in VI, 13, 14 to 12a;2 + 24 = □ to obtain 
the solutions x = 1, 5. In VI, 15, 15a;2 — 36 = □ is said to be impossible 
since 15 is not a sum of two squares. In VI, 16, he made the important 
statement that, given one solution of Ax2 — B = y2, we can find a second 
solution; thus, given 3-52 — 11 = 82, set x = 5 + z, whence 

3(5 + z)2 - 11 = 3z2 + 302 + 82 

will be the square of 8 — 22 for z = 62. In VI, 12, he had made the more 

l8Questiones Archimedeae, Diss. Hauniae, 1879, 25-27; Philologus, 43, 1884, 486. 
19 M6m. 80C. sc. phys. nat. Bordeaux, (2), 3,1880, 370; Bull, des Sc. Math, et Astr., (2), 5,1, 

1881, 25—30; Bibl. Math., 3,1902,174. Reprinted in Tannery’s M^moires scientifiques, 
1,1912, 103-5, 118-23. 

20 Archimedes, in Pauly-Wissowa’s Real-Encyclopadie, Hi, 1896, 534,1110. 
21 Diophantus, ed. 2, 1900, 11-12, 122, 279; Archimedes, 1897,319; Archimedes’ Werke, 1914, 

471-7. 
22 Die quadr. Irrationalit&ten, etc., Zeitschrift Math. Phys., Abh. Gesch. Math., 27,1882,92. 

This and K. Hunrath’s Ueber das Ausziehen der Quadratwurzel bei Griechen und Indem, 
1883, were reviewed in La Revue Scientifique, 1884,1, 81-3, 499-502. 

23 Math. Magazine, Washington, 2, 1895, 163-4; Amer. Math. Monthly, 2, 1895, 140-1 
(1, 1894, 240). 

**■ Le scienze esatte nell’antica Grecia, ed. 2, 1914, 932-9. 
238 The Popular Science Monthly, 67,1905, 660-5. 
“* Amer. Math. Monthly, 25, 1918, 411-4. 
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special remark that 6z2 + 3 - □ has an infinitude of solutions, since it 
has one solution x = 1. 

Diophantus solved Ax2 + Bx + C = y2 only in the following cases. 
(a) If A is a square, a2, set y = ax + m, whence x is found rationally; 
examples in II, 20, 21, 23, 24, 33, III, 9, 16, 18, IV, 15, 21, V, 3, 4, 18, 20. 
(b) If C = c2, set y = mx + c; examples in II, 17, IV, 9, 10, 12, 14, 45. 
(c) In IV, 33, 18 + 3z — x2 is to be made a square, say m2x2, where 
(m2 + 1) 18 + (f)2 = □. Then, multiplying by 4, 72m2 + 81 = □, say 
(8m + 9)2, whence m = 18, 18 + 3x — 325x2 — Q,x = 6/25. In general, 
as remarked by Nesselmann11 (pp. 333-4), the corresponding condition that 
the root x of Ax2 + Bx + C = m2x2 be rational is \B2 — AC + Cm2 = □, 
and, as in (b), can be satisfied if \B2 — AC is a square. 

While H. Hankel24 believed that Diophantus was influenced by Indian 
sources, M. Cantor25 took the opposite view except as to integral solutions. 
P. Tannery26 went to the extreme of believing that the Greeks influenced 
the Indians also in the question of integral solutions, while even the cyclic 
method [next explained] is only a variation of the Greek method of solv¬ 
ing t2 — Du2 = l,_since from the Greek method of deriving from one ap¬ 
proximation to VI) a closer approximation it is easy to pass to the Indian 
method. 

E. B. Crowell27 compared the work of Diophantus with that of Brahme- 
gupta,28 and the first solution by Brouncker13 with that of BMscara.30 

Brahmegupta28 (born 598 A.D.) gave a rule to find x so that Cx2 + 1 
shall be a square. Assume any “least root5’ L and add to CL2 such an 
“additive” number A that the sum is a square G2; call G the "greatest 
root” [L and G are values of x} y satisfying Cx2 + A = y2~}. Write L, G, 
A twice. By cross multiplication, we obtain a least root LG + GL, while 
CLL + GG is a greatest root, for additive A A; dividing these new roots 
by A, we get roots for additive unity. For details, see BMscara.30 

For example (§ 67), let C = 92. Take L = 1, A = 8, whence G = 10. 
Then 2LG = 20, 92L2 + G2 = 192 are least and greatest roots for additive 
64. Dividing them by 8, we get 5/2 and 24 as roots for additive unity. 
By composition of the last pair with itself, we get other roots 120 and 1151 
for additive unity. 

By composition of the roots for additive unity with the roots for additive 
A, we get roots for additive A (§ 68, p. 364). For example (§ 77, p. 368), 
from 3-302 + 900 = 602, 3*12 + 1 = 22, we get the least root 

30*2 + 1-60 = 120 

and greatest root 3-30-1 + 60*2 = 210 for 3-1202 + 900 = 2102. 

24 Zur GeachicMe der Math, in Alterthum und Mittelalter, 1874, 204. 
28 Vorles. uber Geschichte Math., 1, 1880, 533; ed. 2, 556; ed. 3, 596. 
24 M4m. Soc. Sc. Phys. Nat. Bordeaux, (2), 4, 1882, 325. 
27 M. Elphinstone’s History of India, ed. 9, 1905, 142, Note 16 (ed., Crowell). 
28 Brahme-sphut'a-sidd'h&nta, Ch. 18 (algebra), §§ 65-66. Algebra, with arith. and mensura¬ 

tion, from the Sanscrit of Brahmegupta and Bh&scara, transl. by H. T. Colebrooke, 1817, 
p. 363. Cf. Simon.800 
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We may deduce roots for additive unity from roots for additive 
db 4(§§ 69-72, pp. 365-6). If CL2 + 4 = G2, then L(G2 - l)/2 and 
G(G2 — 3)/2 are corresponding least and greatest roots for additive unity. 
If CL2- 4 = G2, and we set p = (G2 + 1 )(G2 + 3)/2, then pLG and 
(p — 1)((j2 + 2) are corresponding least and greatest roots for additive 
unity. 

If the coefficient C be a square (§ 73, p. 366), divide the additive by any 
assumed number b. To the quotient add b and from it subtract b and di¬ 
vide by 2. The first result is a greatest root; the second, divided by the 
square root of C, is the corresponding least root. 

If the coefficient be divisible by a square t2 (§ 75, p. 367), use the quo¬ 
tient as a new coefficient and find roots. If the least root so found is divided 
by t, we get the desired least root. The greatest root rema ns the same. 

For C = 3, A = — 800 (§ 77, p. 368), remove the factor 202. For the 
new additive — 2, we get roots 1 and 1. Their products by 20 are the roots 
desired. 

Alkarkhi29 (about 1010) solved x2 + 5 = y2 by setting y = x + 1, and 
x2 - 10 = y2 by setting y = x — 1. To solve 772x2 — 160 = w2, set 
w = 77x — 2. To solve (pp. 72-4) x2 + 4a; = y2} set y = 2x; to solve 
4x2 + 16z + 9 = y2} set y = 2x — n, where n2 > 9, say n = 5. As the 
condition (p. 113) for rational solutions of db (ax — b) — x2 = □, he found 
that Ja2 =F b must be a sum of two squares. Finally (p. 121), v2 — w2 = ct& 
for v - (a + £)/2, w = (a — p)/2. 

Alkarkhi290 used the approximation a + rj(2a + 1) for Va2 -f* r. 
Ibn Albann429& (bom about 1255) used the same approximation when 

r > a, but for r ^ a employed a + r/(2a). The latter was used by Heron 
of Alexandria and by Elia Misrachi (1455-1526) in his Arithmetic (ed., 
G. Wertheim, 1893, 1896). 

BMscara AcMrya80 (bom 1114) gave a method of deducing new sets of 
solutions of Cx2 + 1 = y2 from one set found by trial. Take any number 
+ 0 and call it the “least root” L [for additive A]. By the positive or 
negative additive quantity A is meant a number which added to or sub¬ 
tracted from CL2 makes the sum or difference a perfect square, its root being 
called the “greatest root” G. Thus if C = 8, L = 1, A = 1, then G = 3. 

Composition (§§ 76-77, p. 171). From these roots L, G and the same 
or a new set of roots Z, g, we obtain by cross multiplication and addition a 
new least root X = Lg + IG, while y = CLl + Gg is the corresponding new 
greatest root. The product of the two additives gives the new addit ve. 
Thus (§82) for the former example, take Z = 1, g = 3, A = 1; then 
X = 6, 7 = 17. Next, from L = 1, G = 3 and X = 6, y = 17, we get the 
new roots 35, 99 and so on indefinitely by means of composit;on. 

29 Extrait du Fakhri, Traits d'algdbre par Ben Alhacan Alkarkhi (Arab MS.), French traiml 
by F. Woepcke, Paris, 1853, 84, 120. 

i0° KM fil His&b, German transl. by A. Hochhcim, II, 14. 

186 Le Talkhys, p. 23. French transl. by A. Marre, Atti Accad. Pont. Nuovi Lincei 17 
1864,311. ' * 

30 Vija-gan'ita (algebra), Ch. 3, §§75-99, u Affected square.” Colebrooke,38 170-184. 
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Or (§ 78, p. 171) we may take Lg — IG and CLl — Gg as new roots. 
A second method (§§ 80-81, p. 172) for additive unity consists in taking 

the least root to be 2<z/(a2 — C), where a is arbitrary, and finding the greatest 
root. Thus (end of § 82, p. 174), for <7 = 8, take a = 3; the least root is 
6 and the greatest is the square root 17 of 8 -62 + 1. 

Cyclic method (§§ 83-86, pp. 175-6). Taking the least root, greatest 
root and additive as dividend, additive and divisor, find the multiplier 
by use of the pulverizer (see papers 2, 4 of Ch. II). If the excess of the 
square of that multiplier over the given coefficient C be divided by the 
original additive, we get a new additive. The quotient corresponding to 
the multiplier and found from it will be the new least root, from which a 
greatest root may be deduced. The operation may be repeated. We find 
integral roots with 4, 2 or 1 for additive, and by composition deduce roots 
for additive unity from those for additives 4 and 2. 

For example (§ 87, pp. 176-8), to make 67z2 + la square, take 1 as a 
least root, — 3 as' additive, whence 8 is the greatest root. Thus divi¬ 
dend = 1, divisor = — 3, additive = 8. By the pulverizer, a multiplier 
is 7 and the quotient is — 5, a new least root. The new additive is 
6 = (72 — 67)/(— 3). By 67(- 5)2 + 6 = 412, 41 is the new greatest root. 
Now start with dividend 5, divisor 6, additive 41, get the multiplier 5, 
quotient 11 = least root, new additive — 7 = (52 — 67)/6, and greatest 
root 90. Next, start with dividend 11, divisor — 7, additive 90. Reducing 
the last by multiples of the divisor, we get the abraded additive 6. The 
multiplier is 2. Adding the negative of the divisor, we get the new multi¬ 
plier 9 and the quotient 27, giving a least root. The new additive is 
(92 — 67)/(— 7) = — 2, and greatest root is 221. By composition of this 
set of roots with itself, we get L = 11934, G = 97684, A = 4. Divide 
the roots by the square root of 4. We get l = 5967, g = 48842 for addi¬ 
tive 1. 

When unity is subtractive (§§ 88-89, p. 179), the problem is impossible 
if the coefficient C be not a sum of two squares. In the contrary case, we 
may take as two least roots the reciprocals of the roots of the two component 
squares. Thus (§ 90) if C = 13 = 22 + 32, the least root § gives the 
greatest root -f. Doubling and applying the cyclic method, we have divi¬ 
dend 1, divisor - 2, additive 3. We deduce the multiplier 3 and quotient 
— 3, the least root. The new additive is 4 and greatest root is 11. Repeat¬ 
ing the operation, we get L = 5, G = 18, A = — 1. 

When C is a square a2 (§ 95, p. 182) and the additive is A, least and 
greatest roots are (for b arbitrary) 

Kf+O- 
Bh&scara solved various problems by the method of the affected square. 

For 6t/2 + 2y = c2 (§ 177, p. 247), (62/ + l)2 = 6c2 + 1 for c = 2 or 20, 
y = or 8. To find (§ 178, p. 248) two numbers the square of whose 
sum added to the cube of their sum equals twice the sum of their cubes, 
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take y — c and y + c as the numbers, whence 

(2 y)2 + (2 y)3 = 2(2y3 + 6 yc2), (2 y + 1 )2 = 12c2 + 1, 

c = 2, 28; y = 3, 48. 

For 5t/4 — lOOt/2 = c2 (§ 181, p. 249), divide by y2. To find (§ 182) two 
numbers whose difference is a square, and sum of squares a cube, take c 
and c — n2 as the numbers; the sum 2c2 — 2cn2 + n4, of their squares is 
equated to n8 (a restriction), whence (2c — n2)2 = nA(2n2 — 1), and 2n2 — 1 
is made a square. To make (§ 188, p. 253) y2 + z3 and y + z both squares, 
treat the first condition by § 95 with z3 as the additive and z as the arbitrary 
number b; we get y — (z2 — z)j2; the second condition now becomes 
\(z2 + z) = p2, or (2z + l)2 = 8p2 + 1, which is a square for p = 6 or 35. 
The sum (§ 189, p. 254) of the squares of two numbers increased by their 
product is to be a square; on adding unity to the product of their sum by 
the root of that square, the sum shall be a square. The first condition is 
found to be satisfied by the numbers -fc and c; then the second condition 
(|c)(fc) + 1 = □ holds if c = 6 or 180. 

E. Strachey31 translated into English the Persian manuscript of 1634 
of BMscara. To solve Ax2 + B = y2, take any square/2 and find a number 
P such that Af2 + p is a square, say g2. Then xf - 2fg, yr = Af2 + g2 
satisfy Ax'2 + j3' = y'ljor p' = p2; and 

x'r=Xrg±y'f, y" = y'g ± Ax'f 
satisfy 

Ax"2 + p" = y"2, p" = p'p. 

If p" = Bp2, remove the factor p from x", y"; we get a solution of the pro¬ 
posed equation (if P" = B/p2, multiply by p). Otherwise, we proceed as 
before. For example, consider Sx2 + 1 = y2. Take / = 1; then 

8/2 + 1 = 32, 
so that we take p = 1. Then 

o' = 2*1*3 = 6, y' = 8-l2 + 32 = 17, 8 - 62 + 1 = 172. 

A new set of solutions is given by 

x" = 6*3 + 17*1 = 35, y" = 17-3 + 8*6*1 - 99. 

For the cyclic method (“operation of circulation”), choose as before 
[relatively prime] numbers / and g such that A/2 + p = g2. Then by an 
earlier rule [for solving a linear Diophantine equation] choose integers X, 
Y such that (fX + g)jp = Y. Choose an integer m so that the difference 
between (mp + X)2 and A shall be as small as possible numerically. Now 
(mp + X)2 — A is divisible by P; call the quotient p\ Set x' = mf + Y. 
Then Ax'2 + p' is a square, say y'2. Unless p' = Bp2 or B/p2, proceed as 
before. For example, let A = 67, B = 1. Take / = 1, p = — 3; then 
g = 8, X = 1, Y — — 3, m = — 2, 

(mp + X)2 — A = 72 — 67 = — 18 = pp', /3' = 6, x'=-h, t/'=41. 

11 Bija Ganita, or the algebra of the Hindus, London, 1813, Introduction, pp. 36-53. 



The next step gives 0" = — 7; the third, = — 2. His solution of 
x2 — 61?/2 = 1 is quoted by Whitford4 (pp. 37-8), who remarked that the 
wording is clearer than in Colebrooke’s translation. 

El-Hassar32 (1432) obtained for Va2 + r, when a = 2, r = 1, the approxi¬ 
mations a + p = 9/4, where p = r/(2a), and 

a + p~p2/{2(a+p)} = 161/72. 

[Note that (9, 4) and (161, 72) are solutions of x2 — by2 = 1.] 
Nicolas Chuquet33 obtained, in 1484, successive approximations to Vn 

for n ^ 14. He began by noting that VS lies between 2 and 3. Their 
arithmetical mean- is 2§; its square 6| exceeds 6 by J. Take the next 
smaller term J in the series f, f, i, • ••. We have , whose square is 
less than 6. We now have an approximation exceeding the root and one 
less than it. Adding the numerators and denominators of § and |, we get 
the new approximation 2f, whose square < 6. Similarly from 2J and 2f 
we get 2f. In this way he obtained the approximations 2 + r, where 

r = h h f> f? A’, At, w, tI, It, it, ttt, 
[For r = 0, §, i, Af, it? 2 + r gives the successive convergents to the 
continued fraction for V6. To deduce a third convergent p2/qi from two 
successive ones po/qo, Piiqi, the law is p2 = pQ + zpu q2 = qQ + sffi. Thus 
Chuquet’s process produced also intermediate fractions, obtained by re¬ 
placing z by smaller numbers.] Chuquet34 gave answers to the following 
problems, but with no details as to solution. Find a square which increased 
by 7 (or 4) gives a square; answer, 9 (or 9/4). Find three squares whose 
sum is 13; answer, Hi, if, i. Find three cubes whose sum is 20; answer, 
15|, 3|, 1. 

Jordanus Nemorarius35 noted that x(x + 1) is neither a square nor a 
cube [if x is an integer +0, — 1; for x = it equals (f)2]. 

Estienne de la Roche36 copied the above method of approximation from 
Chuquet’s manuscript. 

Juan de Ortega in the later editions (1534,1537,1542) of his Arithmetica 
gave the approximations 

•'<128 = 11H, •'<297 = V300 = 17ff, 

•'<375 = 19fff, ^135 = 11M, 

which correspond37 to the first solution of x2 — Dy2 = 1, and 

^ = 8tt, V75 = 8m, ■'<756 = 27iU, ^231 = 15+$*, 
which correspond to the second solution. 

32 H. Suter, Bibliotheca Math., (3), 2,1901, 37. Also simultaneously by Alkalc&di, French 
txansl. in Atti Accad. Pont. Nuovi Lincei, 12, 1858-9, 402-4. 

“ Le triparty en la science des nombres, Bull. Bibl. Storia Sc. Mat., 13,1880, 697-9. Dis¬ 
cussed by S. Gunther, Zeitschrift fur das Eealschulwesen, 2,1877, 430; L. Rodet, Bull. 
Soc. Math, de France, 7, 1879, 162; P. Tanhery, Bibliotheca Math., (2), 1, 1887, 17. 

be triparty . . . , Appendix; Bull. Bibl. Storia Sc. Mat., 14, 1881, 455. 
35 Elementa Arith. decern libris, demonstr. Jacobi Fabri Stapulensis, Paris, 1514, VI, 26. 
*®Larismetique, 1520. 
37 J. Perott, Bull. Bibl. Storia Sc. Mat. Fis., 15,1882,169. Cf. P. Tannery, Bibliotheca Math., 

(2), 1,1887,19-20. 



Chap. XII] Pell Equation, ax2+hx+c=D. 351 

J. Buteo38 gave several approximations for V66 all of which give solu¬ 
tions of x2 — 66y2 — 1, the last one being x/y, x = 8449, y = 1040. He also 
made use of Chuquet's method. 

P. A. Cataldi39 gave approximations to V44 by the two formulas used 
by El-Hassar32 and used implicitly approximations by continued fractions. 

Nicolas Rhabdas40 used the first approximation by El-Hassar. It was 
used later by Luca Paciuolo, Cardan and Tartaglia (references, Vol. I, Ch. I). 

Fermat41 stated February, 1657, that if D is any number not a square 
there exists an infinitude of integral solutions of x2 — Dy2 = 1; for ex¬ 
ample, 22 — 3-12 = 1, 72 — 3 * 42 = 1. He asked for the least solution of 
61 y2 + 1 = □ and of 109y2 + 1 = □, and a general rule for finding the 
solutions of Dy2 + 1 = □. 

Although Fermat, in the introductory remarks to his “Second d£fi,” 
had expressly called for solutions in integers, this introduction was omitted42 
in the copy made for Lord Brouncker by the secretary of K. Digby. This 
explains why W. Brouncker and John Wallis43 first gave merely the rational 
solution 

— 4ps _ s2 + 4p2n 

X s2 — 4phi ’ ^ s2 — 4p2n 

of nx2 + 1 = y2, the case p = 1, s = 2r, giving Brouncker’s solution 
x — 2r/(r2 — n). The latter had been given by BhAseara30 (second method), 
and was obtained by Ren6 Frangois de Sluse44 (1622-1685) by setting 
nx2 + 1 = (1 — rx)2. 

Fermat45 was not satisfied with these evident solutions in fractions. 
W. Brouncker46 gave an infinitude of integral solutions x for n = 2, 3, 

5, 6 and their products by squares; thus, for n = 2, 

x = 2 X 5x X 5-f X 5§f X • • •, 

each numerator being equal to the corresponding denominator diminished 
by the preceding denominator, while each denominator equals the numerator 
of the term immediately preceding when reduced to an improper fraction. 
[The formula gives \x = 1, 6, 35, 204,1189, • • *, with the recursion formula 
tn+l ~ ^n—I-]] 

Wallis47 noted that if x = / is one solution, so that nf2 + 1 = l2, then 
x = 2fl is a second: n(2fl)2 + 1 = (2Z2 — l)2, so that one can get an 

8S loan. Buteonis Logistica, quae et arith. . . . , Lyons, 1559, 76. 
89 Trattato del Modo Brevissimo di trouare la Radice quadra delli numeri, Bologna, 1613, 12. 
40 P. Tannery, Notice sur les deux arithm6tiques de N. Rhabdas, Paris, 1886, 40, 68. 
41 Oeuvres, II, 333-5, letter to Frenicle and “Second d6fi aux math6maticiens” [Wallis and 

Brouncker]; French transl. of latter, III, 312-3. 
48 G. Wertheim, Abhandl. Geschichte Math., 9,1899, 563. 
48 Commercium epistolicum de Wallis, Oxford, 1658, 767; bound with Wallis’ Algebra, 

Oxford, 1685; Wallis’ Opera, Oxford, 2,1693. French transl. in Oeuvres de Fennat, 
III, 417-8; letter IX, Wallis to Digby, Oct. 7, 1657. 

44 MS. 10247, f. 286 verso, du fonds latin, Bibliothfcque Nat. de Paris. 
45 Oeuvres, II, 342, 377; letters to Digby, June 6,1657, April 7, 1658. 
46 Commercium, 775, letter XIV, Nov. 1, 1657; Oeuvres de Fermat, III, 423. 
47 Letters XVI, XVIII to Digby, Dec. 1, and Dec. 26, 1657; Oeuvres de Fermat, III, 434r-5; 

480-9. 
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infinitude of solutions in this way, but not all. He stated that all solu¬ 
tions are obtained from Brouncker’s rule by setting r = aje, whence 
x = 2aej(a2 — ne2), and choosing integers a, e such that a2 — ne2 divides 

Wallis48 gave a long exposition of results which he implied are essentially 
due to Brouncker. He gave a tentative method to solve na2 + 1 = □. 
For n = 7, take the square 32 just > 7; then 7 = 32 — 2, 7*22 = 62 — 8, 
7 *32 = 92 — 18, whence we have a number 18 which is double the root 9; 
hence 7-32 = (9 — l)2 — 1. In general, use the square c2 just > n and 
exceeding n by b. Employ na2 = (ca)2 — ba2 for a = 1, 2, 3, * • •, until we 
reach a value a of a for which bd2 ^ 2ca, and then replace ca by (ca — 1) + 1. 
For each a ^ a, we thus have two values of na2. Presently we can make 
a further reduction of ca — 1 to ca — 2, etc., etc. It is stated that we finally 
reach an equation in which the number subtracted is unity and hence a 
solution. Devices are suggested (pp. 465-74) to abbreviate the long calcu¬ 
lations. 

Given (pp. 47^-8) one solution, nr2 + 1 = s2, set t — 2s; then the 
values of x in the successive solutions of nx2 + 1 = □ are r, rt, r(t2 — 1), 
r(tz — 21), • • *, while if ra, rp are any two consecutive terms, the next term is 
r(t& - a). 

Wallis49 explained in an example Brouncker’s method of finding a funda¬ 
mental solution. The example chosen was 13a2 + 1 = □. Since 13 lies 
between the squares 9 and 16, set 13a2 + 1 = (3a + b)2, whence 

4a2 + 1 = Qab + b2, 2b > a > b. 

Hence set a - b + c, whence 2bc + 4c2 + 1 = 3b2} 2c > b > c. Set 
b = c + d, c = d + e, d = e+f. Then e2 + 1 = Qef + 4Z2, 7/ > e > 6/. 
Hence set e = 6/ + g, f = g + h} g = h + i. Then 4M + Si2 + 1 = 3h2. 
Thus h> i. Taking* h = 2i, we see that the last equation becomes 
Hi2 + 1 = 12$ and holds for i = 1, whence h ~ 2, • • •, a = 180. It is 
noted (pp. 492-3) that, since by c, d, • • * are decreasing integers, we finally 
reach a term which divides the preceding, as in Euclid’s process to find the 
g.c.d., a process entirely analogous to the present one. If we had proposed 
the example 13a2 + 9 = □, we would get lli2 + 9 = 12i2, whence i = 3, 
and similarly for any square in place of 1 or 9. But if k is not a square, 
13a2 -+- k = □ is not always solvable, but when solvable the solution can 
be found by the above method. 

As noted by H. J. S. Smith,50 Brouncker’s method is the same as that 
given by Euler63*72*81 and really consists in the successive determination 

48 Commercium, 789, letter XVTI to Brouncker, Dec. 17, 1657: Oeuvres de Fermat, III, 
457-480. 

48 Commercium, 804, letter XIX to Brouncker, Jan. 30, 1658: Oeuvres de Fermat, III, 490- 
503. Of. Wallis, Algebra, 1693, Ch. 98. 

* To proceed as would later writers, set h - i +jt whence — 4^ + 2ij *f 3j* - 1; then 
1 = i/t k, whence j* — 6jk — 4fc2 = 1, with unity as coefficient of a square term, so 
that j » 1, k = 0 is an evident solution. 

80 British Assoc. Report, 1861,313; Coll. Math. Papers, 1,193. Of. Konen * p. 39: Whitford,4 
pp. 53-6; Wertheim.42 
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of the integral quotients in the development* of T/U into a continued 
fraction, where T = 649, U = 180, is the fundamental solution of 
T2 — 13H2 = 1. But51 Brouncker did not prove that his method will 
always lead to a solution of T2 — DU2 = 1. 

Frenicle52 cited his table53 of solutions of x2 — Dy2 = 1 for all values 
of D up to 150 which are not squares and suggested that Wallis extend it 
to 200 or at least solve it for D = 151, not to speak of D = 313 which is 
perhaps beyond his ability. In reply, Brouncker54 stated that within an 
hour or two he had found by his method that 313a2 — 1 = b2 for 
a = 7170685, b = 126862368, whence x = 2ab is the desired solution. 

Wallis55 gave the last solution and 151(140634693)2 + 1 = (1728148040)2. 
Fermat56 was at first satisfied with the solution of an2 + 1 = □ by 

Brouncker and Wallis. Later, Fermat57 stated that he had proved by 
the method of descent the existence of an infinitude of solutions n of 
an2 + 1 = □ when a is any number not a square. He admitted that 
Frenicle and Wallis had given various special solutions, though not a 
proof and general construction. 

In an anonymous letter to Digby, either by Frenicle58 or inspired by 
him, it is stated that Wallis47 affirmed that he could easily prove the exis¬ 
tence of an infinitude of integral solutions of an2 + 1 — □ and implied 
that the proof is expressly contained in that passage; “but our analysts 
recognize no trace of proof there”. 

N. Malebranche59 (1638-1715), after stating that he had not seen the 
work in the Commercium Epist. of Fermat and Wallis on Ax2 + 1 = □, 
remarked that we can find a solution if A = a2 db Jca, k = 1, 2, or f (no 
details given), or if the difference between A and some square^2 divides 2t 
Thus, if A = 33 or 39, t = 6, A — t2 = ± 3, a divisor of 21. We have 
39a;2 + 1 = (6x + l)2, x = 4; 33a;2 + 1 = (Qx — l)2, x = 4. He treated 
by a tentative process the new types A = 13, 19, 21. For 13, multiply by 
the squares 1, 4, 9, • • •, until we get a product whose difference from the 
square divides double the root of the same square; since 13 -25 — 1 = 182, 
set 325a;2 + 1 = (18a; +■ l)2, whence x = 36. Again, 19-9 — 132 = 2, 
whence 171a;2 + 1 = (13a; + l)2, x = 13. He noted that if Ax2 + 1 = y2, 

+_jl_ . 
a a b+c 3 + 1/(1+5) = 3 + 1/(1 + 4^)' 

= 3 + 
11111111 1 649 

n Ako noted Sept. 6, 1658, by Chr. Huygens, Oeuvres completes, II, 1889, 211. 
“ Commercium, 821, letter XXVI to Digby, sent by the latter to Wallis Feb. 20, 1658; 

Oeuvres de Fermat, III, 530-3. 
“ Solutio duorum problematum . . .., 1657 (lost work). 
M Commercium, 823, letter XXVII to Digby, March 23,1658; Oeuvres de Fermat, III, 536-7. 
“ Letter XXIX to Brouncker, March 29, 1658; Oeuvres de Fermat, III, 542. 
M Letters from Fermat, June, 1658, and Frenicle to Digby, Oeuvres, III, 314, 577; II, 402 

(Latin). 
87 Oeuvres, H, 433, letter to Carcavi, Aug. 1659. 
M Oeuvres de Fermat, HI, 604-5 (French transl., 607-8). 
88 C. Henry, Bull. Bibl. Storia Sc. Mat. Fis., 12, 1879, 696-8. 



then A(2xy)2 + 1 = □, so that we obtain an infinitude of solutions, but 
not all, from one solution. A. Marre60 stated that the last result was 
copied from a letter written by Claude Jaquemet, who gave the second 
solution X = 2xy, Y = 2Ax2 + L 

Wallis61 attempted to prove that t2 — Du2 = 1 always has positive 
integral solutions, but made use of a lemma which is false [Lagrange74,85 
and Gauss93]: Let m be the integer just > VZ), whence m — 45 < 1, and 
set p = m — VZ), r = 1/(2 VI)); then it is possible to find two integers z 
and a such that _ 

z sjz2 4pr + z 
- < p <---. 
a 2 a 

But the difference of the fractions in this inequality approaches zero as 
z and a increase, so that their ratio approaches p. 

The name Pell equation for x2 — Dy2 — 1 originated in the erroneous, 
notion of L. Euler82 that John Pell was the author of the unique method of 
solution explained in Wallis’ Opera, whereas Wallis gave only Brouncker’s 
method. Nor, as stated by Hankel,24 had Pell treated the equation in a 
widely read work, i. e., in his notes to Brancker’s63 English translation of 
J. H. Hahn’s algebra. After examining three copies of this translation, 
G. Enestrom64 stated that there is nothing relating to this equation. How¬ 
ever, x = 12y2 — z2 is treated in Hahn’s63 Algebra, p. 143. 

Euler62 noted that if oz2 + bz + c is a square l2 for 2 = p, it is a square 
. for 

z = ^ (- b + 6R) + pfi + XZ, R = Vl + ox2, 

sp that the problem is to make 1 + uX2 a square. 
Euler65 again noted that, if / s= ax2 + bx + c is a square m2 for x = n, 

it is the square of m' = apn + pbj2 + qmioxx = qn + pm + (bq — b)/(2a), 
provided that q2 = ap2 + 1. In the latter expression for x we replace n 
by this x and replace m by m' and get 

xr = 2q2n + 2pqm + ~ (ff2 “ 1) ~ n, 

which makes / = □. If A, B are consecutive terms of the series n, x, x\ 
* • *, the next term is 2qB — A + b(q — 1 )ja. In the case / = ax2 + 1? 
whence b = 0, c = 1, the series becomes 0, p, 2pg, 4pq2 — p, * • •, A, B, 

60 Bull. Bibl. Storia Sc. Mat. Fis., 12, 1879, 893. Attributed incorrectly to Marquis de 
PHdpital in Comptes Rendus Paris, 88, 1879, 76-7, 223. 

81 Algebra, Oxford, 1685, Ch. 99; Opera, 2, 1693, 427-8. Reproduced by Konen,3 43-6. 
62 Letter to Goldbach, Aug. 10, 1730, Correspondance Math, et Physique (ed., P. H. Fuss), 

St. Petersburg, 1, 1843, 37. Also, Euler.65-72 Cf. Euler56 of Ch. XIII. Cf. P. Tan¬ 
nery, Bull, des Sc. Math., (2), 27,1, 47-9. 

63 An introduction to algebra, translated out of the High Dutch into English by T. Brancker. 
Much altered and augmented by D. P. London, 1668. On Rahn’s algebra of 1659, see 
Bibliotheca Math., (3), 3, 1902, 125. 

64 Bibliotheca Math., (3), 3, 1902, 204; cf. G. Wertheim, 2,1901, 360-1. 
65 Comm. Acad. Petrop., 6, 1732-3, 175; Comm. Arith. Coll., 1, 1849, 4; Op. Om., (1), II, 6 



2qB — A, • • - . Hence if one solution ap2 + 1 = q2 is known, we get an 
infinitude of solutions p' = 2pq, etc. Euler noted special forms of numbers 
a for which a solution of ap2 + 1 = q2 may be given at once, viz., (a, p, q): 

e2 — 1, 1, e; e2 + 1, 2e, 2e2 + 1; are26 d= 2ae6~1, e, aeb+1 db 1; 

(ac* + jSe*1)2 + 2ac*~1 + 2j8e'-1, e, ae1+1 + pd*1 +‘ 1; 

\cck2e2b db ae*-1, he, ^ak2eb+1 db 1. 

If a is not of one of these forms, apply the method explained by Wallis, 
which is here illustrated for 31p2 + 1 = q2- Euler gave a table showing, 
for each a ^ 68 not a square, the least positive integer p and the corre¬ 
sponding q satisfying ap2 + 1 = q2. From Va = Vg2 - 1 Ip, Euler noted 
that, if q is sufficiently large, qfp is a close approximation to Va; let P 
be the ith term of the above series 0, p, 2pq, • • • and Q the ith term of the 
series 1, q} 2q2 — 1, • • • such that aP2 + 1 = Q2; then the successive 
values of Q/P are closer and closer approximations to Va. 

Euler66 noted that the least integral solution x of ax2 + 1 = □ is 
226153980 for a = 61, and 15140424455100 for a = 109, and stated he 
could shorten very much the work necessary by “Pell's method." If 
x2 — ey2 = N has the solution a, 5, it has also the solution 

x = a + pz, y = b + qz, 
2 ebq — 2 ap 

p2 — eq2 

Making use of the existence of integral solutions of p2 — eq2 = 1 for e not a 
square, we can assign an infinitude of integral solutions of x2 — ey2 — N, 
since 

(11) N = (a2 — eb2)(p2 — eq2) = (ap d= ebq)2 — e(bp d= aq)2. 

This formula of composition was known67 by Brahmegupta.28 
R. Simpson68 noted that if we are given a and a fraction b/c such that 

(b2 =F l)/c2 - a, the series of fractions, converging to Va, 

b d _b2 + acc f bd + ace h __ bf + acg 

c’ e 2 be 1 g cd + be ) k cf + bg 1 

are such that the numerator of any fraction (as h/k) is the sum of the prod¬ 
ucts of the numerators and the denominators of b/(ac) and the preceding 
fraction (then f/g)} while the denominator (then k) is the sum of the prod¬ 
ucts of the numerators and denominators of c/b and that preceding fraction 
(fig). By (11), every fraction N/D in the series has the property 
N2 — 1 = aD2 if b2 — 1 = ac2; but if b2 + 1 = ac2 that property holds 
only for alternate fractions, while N2 + 1 = aD2 for the others. He cited 
the “ obscure passage ” where A. Girard68a gave the approximations 577/408 

“Corresp. Math. Phys. (ed., Fuss), 1, 1843, 616-7, 629-631; letters to Goldbach, Aug. 4, 
1753, Aug. 23, 1755. 

67 Cf. M. Chasles, Jour, de Math., 2,1837, 37-50. Reprinted, Sphinx-Oedipe, 5, 1910, 65-75. 
68 Phil. Trans. London, 48,1, 1753, 370-7; abr. ed., 10,1809, 430-4. 
68a Les Oeuvres math, de Simon Stevin de Bruges . . . par A. Girard, Leyde, 1634,1, 170. 



and 1393/985 to V2 and an approximation to VlO. Jean Plana69 gave 
reasons to show that Girard there in effect reduced VA to a continued 
fraction. 

A solution70 of 44000x2 + 1 = □ is x = 40482981221781. 
Euler71 published his formula (11), and treated ax2 + bx + c — y2, 

jpven the solution x - n, y = m. Set x = n + yz, y = m + vz. Then 
{y2 — ay2)z = 2ayn — 2vm + by. If a is positive and not a square, we 
can make v2 — aju2 = 1 and obtain integral solutions, and then a third 
set, etc.; if the general set is (xi} yt), we have 

Xi+2 = 2{v2 + ay2)xi+x - Zi + 2by2, yi+2 = 2{v2 + ay2)yi+1 - Vi- 

But we may obtain solutions not having v2 — ay? = 1; setting 

v2 + aju2 2/ij/ 

V ~ v* - a^’ q~ v* - aM2’ 

we obtain the first formulas in Euler’s65 earlier paper. Euler proved that 
if an odd prime, not dividing a, is of the form b2 — aa2, it is of one of the 
linear forms 4cm + r2, 4cm + r2 — a, where r ranges over the odd and even 
numbers < a and prime to a, respectively. He conjectured, conversely, 
that if A is a prime or product of primes of these linear forms, then 
A = x2 — ay2 is solvable in integers [not always true, Lagrange76]. 

Euler72 again repeated his initial formulas and added that, if P, Q,R 
are the values of y in three successive sets of solutions, R — 2qQ — P, while 
the general set of solutions is said to be [after correction of signs] 

x = , ys=T^9 r» « s (2an + 6±2mVa)(gd=pVa)#‘, 

where y is an integer. The method published by Wallis to find integral 
solutions of x2 = ly2 + 1, where l is positive and not a square, can be more 
conveniently exhibited by means of the continued fraction for VL If 
x = p, y * q is a solution, it is stated that p/q > Vl and that pjq gives so 
close an approximation to VZ that a closer one cannot be found without 
using larger numbers. After developing Vz into a continued fraction for 
z = 13, 61, 67, he took a general z and set 

r , 1 1 1 
a+ 6 + c + • * •, 

where v is the largest integer < Vz, and a, b} c, • • - are found as follows. 
In Vz = v + 1/x, £ = l/( Vz — *;) = ( Vz + t>)/a, where a = z — v2; hence let 

M Reflexions nouvelles but deux m6moires de Lagrange74 . . . , Turin, 1859,24 pp; Memorie 
R. Accad. Torino, (2), 20,1863, 87-108. 

70 Ladies* Diary, 1759, pp. 39-41, Quest. 443. The Diarian Repository, or Math. Register 
... by a Society of Mathematicians, London, 1774, 677-9. C. Hutton*s Diarian 
Miscellany, 3,1775, 81-83. T. Leyboum’s Math. Quest, proposed in Ladies* Diary, 
2, 1817,162-1. 

71 Novi Comm. Acad. Petrop., 9, 1762-3 (1759), 3; Comm. Arith. Coll., I, 297-315; Op. 
Om., (1), H, 576. 

71 Novi Comm. Acad. Petrop., 11, 1765 (1759), 28; Comm. Arith. Coll., I, 316-336; Op. 
Om., (1), III, 73. 
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a be the largest integer ^ (Vz + v)[a. In x = a + 1/y, 

_ 1_a_a( Vz — v + aa) V2 + B 

y ~ x- a~ Vz +1> - aa~ 2 - (0 - oaY ~ /3 ’ 

where B — aa — v, (3~l + 2av — a2a. Hence let b be the largest integer 
^ (Vz + B)lp, Taking y = & + 1/i, and proceeding similarly, we obtain 
Euler's table: 

I A - v, 

II B — aa — A} 

III C = - B} 

IV D~yc-C, 

a ~ Z — A2 ~ Z — V2, 

fi = 1—^ = 1 + a{A - B), 
a 

y = Z-=^ =a + b(B-0, 

Z - D2 
5 = ?-— = 0 + c(P - 2>), 

7 

v + A 
a ^- 

a 

b£i±i 
p 

v + C 

;;s 
etc., where in the last column the equality sign is taken only when the 
fraction is an integer. It follows that A, B, C, • • • are ^ v, and the indices 
a, b, c, • • • are ^ 2v. Euler observed in many examples that when the 
value 2v is reached, the values a, b, c, • • • repeat; but no proof73 is given 
that the index 2v exists [proof by Lagrange74]. For each z ^ 120 and 
not a square, he gave the values of v, a,b, c, • • • (at least as far as a period), 
and underneath them the values of 1, ay ft y, * • •. Such values are given 
also for certain types of numbers, viz., z = n2 + k, k = 1, 2, n, 2n — 1, 2ft, 
and z = 4n2 + 4, 9n2 + 3, 9ft2 + 6. 

The successive convergents v, (va + l)/a, • • • to Vz are found by the law: 

Vy dy by Cy * * * , 7fly ft, ' ' *, 

1 v av + 1 (ab + l)u + b M N nN + M 

O’ P ~a~’ ab + 1 ’ P9 Q’ nQ + P ’ 

These convergents are given the symbolic notation 

1 (v) (Vy a) (Vy a, b) (vy a, 6, c) 

0’ 1 ’ (a) ’ (a, b) 9 [flyb, c) 9 **’’ 
where 

(v) = Vy (vy a) = v{a) + 1, (*>, a, b) = v(af b) + by 

(v, a, l, c) = via, b, c) + (6, c), ■■■. 

He stated that 

(Vy dy by Cy 6y C) = V(dy 6, Cy <f , e) + (6, Cy <f, C) = (V, d) (6, C, <f, C) + 1>(C, (f, e) 
= (v, a, b) (c, d, e) + (», a) (d, e) = (v, a, b, c) (d, e) + (», a, b) (e), 

” As remarked by H. J. S. Smith, British Assoc. Report, 1861, § 96, pp. 313—5; Coll. Math. 
Papers, 1,1894, 194, Euler’s paper contains all the elements necessary to give a rigorous 
proof of this fact and hence that the process always leads to a solution, other than 
x =* 1, y — 0, of x* — zy1 — 1. Plana69 noted that Euler’s proof becomes rigorous if 
slightly modified as by Legendre.87 For (a, 0, • • •), Gauss24 of Ch. II wrote [a,p, • • •]* 

74 Miscellanea Taurinensia, 4,1766-9, 41; Oeuvres, 1,1867, 671-731. 
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and proved that 

0v)2 — Z'l2 = — a, (v, a)2 — z(a)2 = ft (v, a, b)2 — z(a, b)2 = — y, 
(v, a, by c)2 — z(a, b, c)2 = 8, (v, a, b} c, d)2 — z(a, b, c, d)2 = — €, 

so that, for example, x2 — zy2 = — y has the solution x = (tf, a, b), 
y = (a, b). No one of ft y,5, • • • equals db 1 unless the corresponding 
index is 2v. Hence if any period contains the index 2v and if xjy is the 
convergent defined by this period, we have x2 — zy2 = — 1 or + 1, accord¬ 
ing as the number of indices in the period is odd or even. In the first case, 
£ = 2x2 + 1, r) = 2xy give a solution of £2 — zy2 = + 1; or we may take 
two successive periods and apply the second case. He applied this theory 
to eight special types of periods, such as v, a, b, b, a, 2v, a, • • •. He recog¬ 
nized that we need only use a half period. Thus, for the period just cited, 
we employ the hah period v, a, b of indices and convergents 1/0, v/1, J3/ft 
Cjy. Then x2 — zy2 = — 1 for 

x = (v, a, by by a) = (a, b)(v, a, b) + (a)(v, a) = yC + ftB, 

y = (a, b, b, a) = (a, b)(a, b) + (a) (a) = y2 + 02. 

But if z has the indices v, a, b, c, b, a, 2v, with an even number of terms in 
the period, we use the half period a, b, c and the additional convergent 
Dj 8 and find that x2 — zy2 = + 1 for 

x = (a, b)(Vy a, b, c) + (a)(^, a, b) = yD + pC} 

y = (a, b)(a, b, c) + (a)(a, b) = y8 + &y. 

As equivalent formulas were restated by Tenner,118 they are often attributed 
to him rather than to Euler. The formulas are stated in general form by 
Muir160a and Konen,3 pp. 55-6. 

Finally, he tabulated the least solutions of p2 — lq2 = 1 for each l < 100 
which is not a square, and for l = 103, 109, 113, 157, 367 [errata for l = 33, 
83, 85, Cunningham309]. 

J. L. Lagrange74 gave the first proof that x2 — ay2 = 1 has integral 
solutions with y + 0, if a is any integer not a square. He noted that 
Wallis61 committed a petitio principii in attempting a proof, while the 
method of solution explained by Wallis49 is tentative and not shown to 
succeed. Lagrange started with the continued fraction 

1_ 
+ q" + • • • 

and its successive convergents m/n, MjN> m'/n'y M'/N', Taking 
Or, y) = (M} N)y (M'} Nf), • • *, we always obtain positive values < 2M/N 
for x2 — ay2. Hence an infinitude of these values are identical. Let 
(Xy y)y (x'y y')} (x"y ^/"), • * • be an infinitude of pairs of integers for which 
x2 — ay2 has the same value R. First, let R, a be relatively prime. By 
multiplication and by elimination of a, 

(A) R2 = (xxf db ayy')2 — a(xyr =fc yx')2, 

(B) R(y'2 - y2) = xY ~ y2x'\ 
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If R is a prime, (B) gives xy' db yx' = qR, whence, by (A), xx' dt ayy' = pR, 
where q and p are integers. Thus, by (A), p2 — aq2 = 1. Next, let 
jK = AB, where A and B are primes. By (B), one of xy' + yx', xy' — yx' 
is divisible by AB, or one by A and the other by B. In the first case we 
have the same result as when R was a prime. In the second case, 
xy' dt yx' = qB, where q is an integer not divisible by A. Then (A) gives 
xx' dt ayy' = pB, whence 

(C) p2 — aq2 = A2. 

Arguing similarly with a third equation x"2 — ay"2 = R of our set, in con¬ 
junction with x2 — ay2 = R, we get p\ — aq\ ~ A2. Treating this and 
(C) as we did our first pair, we get a solution of r2 — as2 = 1. A similar 
treatment is made for the case in which R is a product of several primes or 
is an arbitrary number. 

Second, let R = 6T, a = 6b be not relatively prime. To treat the first 
of two analogous cases, let 0 be not divisible by a square. Then x = Qu and 
T = 9u2 — by2. Hence T2 = (8u2 + by2)2 — a(2uy)2. Since T2 and a are 
relatively prime, we may employ this equation in place of the former 
x2 — ay2 = R. Hence there exist solutions of x2 — ay2 = 1 and we have 
a process to find them. 

If p2 — aq2 = 1, then x2 — ay2 = 1 for 

x + y*>fa = E = (p + q^a)m, x — y^a = F = (p — g Va)w, 

and 

(12) z = KE + F), y = J-(E-F) 

are expressed as polynomials in p, q, a. If p, q is the least positive solution, 
then (12) gives all the solutions, m being an integer. All solutions occur 
among the sets (M, N), (Mf, N')_, • • • given by the convergents MjN, 
M'JN', * • • to Va, and each is > ala. If m is a prime, and if x, y are given 
by (12), x — p and y — qaim~1)l2 are divisible by m; hence, if r is the residue 
(0 or db 1) of aCm-1)/2 modulo m, and if p', q' are given by (12) with m replaced 
by m - r, then p'2 — aq'2 = 1, and q' is divisible by m, and either pf — p 
or p' — 1 is divisible by m according as r = 0 or r ={= 0. Likewise when in 
(12) m is replaced by M = n(m — r)(m' — r') • • •, where m, m', * * • are 
odd primes and r' is the residue of aCm/“1)/2 modulo m', etc., n being any 
positive integer, x2 — ay2 — 1 and y is divisible by N — mm! * • •, and either 
x — p or x — 1 is divisible by N according as M is odd or even. After 
giving numerical examples illustrating what precedes, Lagrange stated that, 
if a is not a sum of two squares, no number is simultaneously of the forms 
x2 — ay2, ay\ — x\; but was not certain of the converse [cf. Legendre88]!. 
If x2 — ay2 = R and x\ — ay\ ~ — R, and if R is a prime, we can solve 
p2 — aq2 = — 1, and conclude that every number of the form x2 — ay2 is 
also of the form ay\ — x\. By squaring t2 — an2 = — 1, we get solutions 
(12) of x2 — ay2 = 1; hence p =h q Va must be the square of a quantity 
r ± s Va, whence p = r2 + as2, q = 2r$. Hence t2 — au2 = — 1 is impossible 
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unless p, q are of this form; and if they are, the resulting t, u give the least 
solutions. 

Lagrange75 gave a direct method to solve a + bt2 = u2 in integers. 
Removing the factors common to t and u, it suffices to treat 

(13) A = p2 - Bq2, 

where p, q are relatively prime. If B is negative, we may assume that 
| A | > — B, since otherwise pq = 0. If B is positive, we here assume that 

A2 > B, treating later the contrary case. Choose integers pu q% such 
that pqi — qpi = ± 1, and multiply (13) by Ai ss pi — Bq\. Thus 
AAx — a2 — B, where a = ppi — Bqqx. Since a2 — B is divisible by A, 
(M ± a)2 — B is divisible by A, and yA =fc a can be made numerically 
< | A |/2 by choice of y. Hence if or* — B is divisible by A for no value of 
a < \A |/2, (13) is not solvable. If such an a exists, the problem reduces 
to the solution of 

(14) Ax = p\ - Bql, | Ax | < | A | . 
If solutions of the latter are found, we deduce solutions 

^ _ Qffi =*= Rgi „ _ aqx =F px 
P Ax ’ Ax 

of (13) from ppx - Bqqx = a, pqt - qpx = =fc 1. If, in (14), B < 0 or if 
B > 0, A\ > B, we proceed as before and see that (14) reduces to the 
solution of 

A2 pi Bql, ax < i | Ai | , | A2 | < | Ax | . 

The case B > 0, Ai2 < B, falls under that treated later. Thus, unless such 
a postponed case arises at some stage, we shall finally reach, if B is negative 
(B = — b), a term An such that | An | = b or < b. If |An| = b, we 
have & = pi + bql, whence gn> = 0 or 1 and (13) is solved. If | An \ < b, 
then qn = 0. But, if B is positive, we reach a term an = e, where e < V5, 
and A„An+i = e2 — B. Thus An = =i=[E, An+l*j= ^FlD, where D and E 
are positive and DE = B — e\ Moreover, 

D *= p2 - Be2, dzE = r2- Bs2, 

the solution of one of which implies that of the other. Since DE < D, 
one of the equations is of the next type. 

The postponed type is db ^ = r2 - Bs2, where E < V5, B > 0. 
We first seek (§ 34, p. 435) an integer e, > €>J§ - E, such that 
B — e2 is divisible by IL If no such € exists, the equation is impossible In 
integers. In the contrary case, take a particular e, and determine uniquely 
integers Ei, Xt* by means of the equations 

EEx = B - €2, = R — €?, 

^1 ^1-^1 €2 == X-^2 — €1, 
+ * , Vb + «x 

j?i > Xl > 

EJEz ~ B — €2, 

€3 — X3J573 — €2, 

> X2 > + « 1 

.&» 

9 

» M&n. Acad. Berlin, 23, ann<$e 1767,1769,242; Oeuvres, 2,1868, 406-495. German trails I. 
by E. Netto, Ostwald’s Klaseiker, No. 146, Leipzig, 1904. 
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where the effect of the inequalities is to insure that the X’s shall be positive 
integers making 0 < < V§. It is proved at length that, if the proposed 
equation is solvable, we will finally reach a least positive integer ju such 
that the term E„ is identical with E and such that E„+i = Eh whence 
E^v = E„ and also that Em = =fc 1 for a certain m, 0 ^ m ^ n. Then 
em-1 equals the greatest integer $ which is < VP. For brevity, set 

f _(€+VB)(e1+VB)fa+V^--(«<-1+yg) 

U^R+S^B, f,=X+Y^B. 

Since Em = ± 1, fmfm gives R2 — BS2 = ± E, and the general solution is 
given by 

r+s Vfi = (2J+-S VB) (Z+F a®)”. 

By actually multiplying together the factors in ftny it is shown that 

E ^ Plm—l ”1“ l-m—2) $ ~ lm—ly 

where the Z’s are derived from the relations (p. 448) 

Z=l, Zi=XiZ, +Z, Z3 ~ X3Z2 “I” Zi, ^4=X4Z3-I-Z2, 
Is== X5Z4 "t” Z3, ••*. 

The notation is at fault if m = 0, when we have E = 1, S = 0, and if 
m = 1, when we have E = e = 0, $ = 1. 

Application is made (pp. 454-94) to various numerical equations (13). 
For Pell’s equation (pp. 494-5), we have E = 1, whence /? = e, m = 0, 
R = i; s = 0, 

A=jSZM_i+ZM_2, F=Z„~i, r+s Vb = (X+F VB)n, 

where n is a positive integer such that nji is even or odd according as 
r2 — Bs2 = + 1 or — 1. For the former, n is arbitrary if ji is even, but 
n must be even if ju is odd. Hence if B is any positive number not a square, 
r2 — Bs2 == + 1 has positive integral solutions. Lagrange noted (pp. 457- 
461) that Euler’s65, 71 method to derive an infinitude of integral solutions 
of ax2 + bx + c = y2 from a given solution does not always lead to all 
integral solutions unless fractional values of the parameters be used or 
unless, my2 — Bx2 = A, A is a prime. 

Lagrange75a investigated the approximation of roots of algebraic equa¬ 
tions by continued fractions and proved that the real roots of any quad¬ 
ratic equation with rational coefficients can be developed into a periodic 
continued fraction, and conversely. 

Lagrange76 derived his preceding formulas for the solution of 

—r2—Bs2 

75a M6m. Acad. Berlin, 23, ann£e 1767, 1769; 24, ann&e 1768, 1770; Oeuvres, II, 560-652 
(especially 603-15). Traite de la resolution des equations numeriques, 1798; ed. 2,1808, 
Ch. VI; Oeuvres, VIII, 41-50, 73-131. 

78 Mem. Acad. Berlin, 24, annee 1768,1770, 236; Oeuvres, II, 662-726. For simplification, 
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by a method first applied to equations of any degree n (see Lagrange1 of 
Ch. XXIII). His method for t2 — Au2 — A, where A is positive and not a 
square, is as follows. First, consider solutions with u prime to A. Then 
we can determine integers 6 and y such that t = 6u — Ay, 9 < \A. For 
this value of t, the initial equation becomes, after division by A, 

EiU2—26uy+Ay2 = l, 

where (62 — A)/A = Ex is an integer. Employ in turn each value of 6 for 
which 62 e= A (mod A) and solve the new equation by developing into a 
continued fraction either root of the corresponding quadratic 

EX-26Y+AY* = 0. 

Second, for solutions with u — ru', A = r2Af, whence t = rtf, with u', A' 
relatively prime, we have only to treat t'2 — Au'2 — A' as before. 

The same method applies to Bt2 + Ctu + Du2 = A, C2 > 4JBD. By 
the same substitution we now get Exu2 — Quy + ABy2 — 1, where 
Ex = {BB2 + ce + D)/A, Q = 2BB + C. 

He noted that a conjecture made by Euler71 is false since 101 == x2 — 79y2 
has no integral solutions, although 101 = — 4-4-79 + 382 — 79. 

He applied (p. 719-723) the method of his former paper to deduce the 
solution u = 34, i = 123, of 101 = t2 — 13u2, chosen probably in view of 
his correspondence with Euler next mentioned. 

Euler77 stated he found trouble in applying Lagrange’s75 method of 
solv'ng (13) to the case 101 = p2 — 13q2. By that method we seek an 
integer a < 101/2 such that a2 — 13 is divisible by 101. This is true for 
<x = 35. Then (14) becomes Ax = 12 = p\ — 13<rf. Since 12 is divisible 
by the square 4, set the quotient 3 equal to t2 — 13u2. Then t = 4, u — 1, 
whence px = 8, qx = 2. By Lagrange’s method, 

ap^Bqy 35-8^13-2 _aq1zFp1 35-2=F8 

V Ax 12 q~ Ax ~ 12 

As these are not integers, one should conclude that the problem is impossible. 
However, p = 123, q = 34 are solutions, which fact led Euler to believe 
that Lagrange’s method is not sufficient. He noted that this solution 
123, 34 is given by px = 47, qx = 13: 

P = 123 = (35 • 47 -13 • 13)/12, q = 34 = (35 • 13 -47)/12. 

But what reason leads us to suppose that px = 47, qx — 13? 
To test whether A = p2 ± Bq2 is possible or not, Euler gave for the 

case A a prime the following rule, of which he had no proof: Subtract 
from A any multiple of 4B; if A — 4nB is of the form ab2, where a is a 
prime or unity, and if a = p2 ± Bq2 is solvable, then the proposed equation is 
solvable. Thus, 101 ~ p- — 13q2 is solvable since 101 — 4-13 = 72 and 
1 = p2 — 13g2 is solvable. 

77 Letter to Lagrange, Jan., 1770; Euler’s Opera postuma, 1, 1862, 571-3; Lagrange's 
Oeuvres, XXV, 214-8. See Lagrange,88 end. 
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Lagrange’s reply has not been preserved, but it convinced Euler78 of 
the correctness of Lagrange’s treatment of 101 = p2 — 13g2, though, being 
then blind, Euler confessed he did not follow the real meaning of all the 
deductions, nor the significance of all the letters introduced. 

Euler79 noted that ar2 — 4 = s2 implies that ax2 + 1 = y2 holds for 

x^ip2(q2-1), 2/ = §g(g2—3), p=rs, g = s2+2. 

Thus, if a = 61, we may take r = 5, s = 39 and deduce the large numbers 
Xy y in his table. 

E. Waring80 quoted results due to Brouncker and Euler. 
Euler81 treated, essentially as had Brouncker,49 an2 + 1 = y2, where a is 

positive and not a square. Thus, for a = 5, y is > 2n and Euler set 
y = + p, whence n2 = 4up + p2 — 1, n = 2p^+ V5p2 — 1- The radical 
exceeds 2p, whence n > 4p. Set n = 4p + q, whence p2 = 4pg + g2 + 1, 
p = 2g + Vfi#2 + 1. Having now the initial radical, we may set q = 0 
and obtain p = 1, n = 4, y = 9. For a = e2 ± 2 or e2 ± 1, we can give 
explicit solutions n, y: 

(*2±2)e2+1 s (e2± l)2, (e2± 1) (2e)2+1 s (2e2± l)2. 

He repeated82 his table72 of the least positive solutions of an2 + 1 = m2i 
a < 100. 

Euler83 treated / = a + bx + cx2 = □ as had Diophantus when a or c 
is a square; also the case in which / is a product of two linear functions, 
ly m of Xy by equating / to the square of Iky as well as the case in which / 
equals l2 + wm. In Ch. V, Euler noted certain forms which are never equal 
to rational squares, as 3x2 + 2, 3Z2 + (3n + 2)u2, 512 + (5n ± 2)u2. In 
Ch. VI, he noted that, given af2 + bf + c = g2, we can find new solutions of 
ax2 + bx + c = y2. Subtract and factor each new member; thus we may 
set 

Pfr-f )=$&-&), q(ax+af+b)=p(y+g). 

Multiply the first by p and the second by q and subtract. Hence 

x=ng-mf-^~~1\ y = mg-naf-\bn; m= — 
2a aq2~p2 aq2 — p2 

To obtain integral solutions take p2 = aq2 + 1 and change the sign of g. 
Thus 

x=2 gpq+f(aq2+p2)+bq2, y=g(aq2+p2)+2afpq+bpq, p2-aq2= 1. 

The method for ax2 + c — y2 is similar, but simpler, giving x = qg + pf, 
y = pg + aqfi and is derived a second way (§ 86) given earlier by Euler.66 

78 Opera postuma, I, 574; letter, March, 1770, to Lagrange, Oeuvres, XIV, 219. 
79 Ibid., 585; letter, Sept. 24, 1773, to Lagrange, Oeuvres, XIV, 239-40. 
80 Meditationes Algebraicae, 1770, 180-199; ed., 3, 1782, 308-337. 
81 Algebra, St. Petersburg, 2,1770, Ch. 7, §§ 96-111; French transl., Lyon, 2,1774, pp. 116- 

134; Opera Omnia, (1), I, 379-87. 
82 Also in Nova Acta Acad. Petrop., 10, ad annum 1792, 1797 (1777), 27; Comm. Arith., II, 

185. 
** Algebra, II, Chs. 4-6, §§ 38-95; French transl., 2,1774, pp. 50-115; Opera Omnia, (1), I, 

349-78. 
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Euler84 solved ax2 + 1 = y2 for special types of numbers a. Given 
p2 = b2 + c2, determine g} f so that bg — cf = ± 1 and take q = bf + eg, 

^en ap2 — 1 = q2, x-2pq, y = 2q2+l. Next, if ap2:=F2 = g2, the 
divisor p2 of g2±2 must be of the form b2dz2c2; hence take a=f2±:2g2i 
cf—bg~l or —1, q~bfd-2cg. If ap2zb4=g2, the divisor p2 of q2-F4 must be 
of the form b2z¥c2; hence take a=f2z¥g2, cf~bg = 2 or — 2, q — bf^Fcg. 

Lagrange85 simplified his76 method applicable to equations of any degree. 
Of two methods to solve F = Cif-—2nyz-\~Bz2 = 1 in integers, one is to 
render F a minimum, and the other consists in applying transformations 
which replace F=1 by = where 2 | 2VT | .exceeds neither 

| L | nor | M |, while the determinants N2—LM and n2—CB=A are equal. 
By multiplication by M, we get v2—A£=M where v=M\p—N£. If A = — a, 
where a>0, it is proved that £=0, M = l. If A>0, is a convergent of 
the continued fraction for VA. Euler’s77 example, 101=x2“13p2 is now 
(pp. 614H320) transformed into 22~T3w2= —1 which is solved by use of the 
continued fraction for Vl3. 

Euler108 of Ch. XXII deduced an infinitude of solutions of a2—X/32 = 4 
from one solution. 

Petri Paoh86 treated a-\-c2x2=y2. Since a is a difference of two squares, 
set y = cx+1, cx+2, • • •, in turn. Then a = 2cx+l, 4cx+4, 6cz+9, * • •. 
For a odd, use the first, third, • • • terms, so that x will be an integer chosen 
from the series (a—l)/(2c), (a—9)/(6c), • • •. Similarly for a even. If a is 
positive, the terms of the series decrease and there is a finite number of 
trials. The case in which a is negative can be reduced to the preceding. 

A. M. Legendre87 obtained important conditions for the solvability of 
equations of degree 2 by use of Lagrange’s75 method for x2—By2 — A, 
where A and B are integers with no square factor and A>B>0. By that 
method, 

(15) a2—B = AA,k2)a!2—B^A,A"k,21 * • -,a^A/2, a!iiA'^za^A'j2, • • *, 

where A', - • • have no square factors, and A(n) < B, so that the proposed 
equation depends upon 

(16) x2-By2=A', x2-By2=A”, •••, z2-£t/2=A<*>. 

Legendre proved that, if for x2—By2=A and the first transformed equation 
(16) there exist integers a, a', /?, such that 

a2z=B (mod A), (mod AO, /32^A, /3,2==A' (mod B), 

the like conditions hold for the second transformed equation (16). Since 
ol’2=B (mod A'O, by (15), it remains only to prove the existence of an 
integer 0" for which $n2^A,r (mod B). If 8 is a prime factor of B, we 

84 Opusc. Anal., 1, 1783 (1773), 310; Comm. Arith. Coll., II, 35-43. 
86 Additions to Euler’s Algebra, Lyon, 2,1774, pp. 464-516, 561-635; Oeuvres de Lagrange, 

VII, 57-89,118-164; Euler’s Opera Omnia, (1), I, 548-573, 598-637. 
86 Opuscula analyUca, Iibumi, 1786,122. 
87 M4m. Acad. Sc. Paris, 1785, 507-513. Cf. Legendre, Thdorie des nombres, 1798, 43-50; 

ed. 2,1808, 35-41; ed. 3, 1,1830, 41-48; German transl. by Maser, I, 41-49. In his 
texts, Legendre introduced the factor z2 in the right members of (16). 
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seek an integer X for which X2=A" (mod 0). First, let 0 divide A'. Then 
by (15), 0 divides a. Since k' has no divisor in common with B, which has 
no square factor, and hence is prime to 0, we can find integers n, p such that 
kp=nk'—p9. Hence 

A"k’2 = = -P— = ix2A’±2P.a+A!^=Aki (mod 8), 

0=k2(P2-A)^kip--A"k'2 = (ni-A'')k'\ (mod 8). 

Second, let 0 be not a divisor of Af and hence not of /3'. We may set 
a'^nfi'k'—pd. Then 

0=-A''fc'2(^,2—A0 = /,i0/2^,2—a:'2=(A"—^2) (mod 0). 

The preceding result leads to the theorem: The equation x2—By2—A is 
solvable in integers if A and B are quadratic residues of each other, and if, 
in the first transformed equation x2—By2=Af, A' is a quadratic residue of B. 

We readily deduce the more elegant theorem: If each of the positive 
numbers a, b, c has no square factor and if no two have a common factor and 
if there exist integers X, p, v such that 

o\2+6 c/r —6 CP2-—a 

c ’ a ’ b 

are all integers, then ax2+by2—cz2 has integral solutions not all zero; if the 
three conditions are not all satisfied there are no integral solutions. Apply¬ 
ing to (cz)2—bcy2 — acx2 the earlier theorem, we have the conditions cr^bc 
(mod ac), (P^ac (mod 6c), /S/2=A' (mod 6c). Set a = c/x, fi=cv. Then 
the first two give cp2=6 (mod a), cv2^a (mod 6). By (150, cpr—b — aA'k2, 
while ak2 is prime to be. Hence the third condition becomes ak2p'2^c/i2—b 
(mod 6c). This will hold if aX2+6 s 0 (mod c) is solvable. For, it is solvable 
for jS' modulo 6 since cv2k2^2 ^cp2 (mod 6) is solvable for /3'. 

Legendre88 proved that x2—ay2 = — 1 has integral solutions if a is a prime 
4n+l. Lagrange74 had stated that he was not certain of a converse that, 
if a is a sum of two squares, every number x2—ay2 is also of the form 
ay\—x{) Legendre noted that this is true if a is a prime, but fails for 
a=2*17, 5-41, 13*17. If a is a prime 8n+3, ax2—y2=2 is solvable. If a 
is a prime 8n—l,y2—ax2 = 2 is solvable. While each of the preceding three 
theorems was here treated separately, Legendre, in ed. 2, 1808, 54-60, first 
gave a preliminary discussion applicable to" all the cases. Although he 
took A to be a prime, it suffices pDirichlet108] to assume that A is positive 
and has no square factor. Let p, q be the least positive integral solutions 
of p2—Aq2=1, The g.c.d. of p —1 and p+1 isf-1 or 2. Hence 

p+1 =fMg2, p—1 =fNh2, 

where MN=A, fgh — q. By subtraction, 2 =fMg2 —fNhr. We must take 
for M, N the various pairs of factors (including unity) of A. Let A be 
a prime. The case 2 = 2g2—2Ah2 is excluded since h<q, g<p. Let A be 
a prime 4n+l. Then in 2=Ag2—h2 and 2=g2-~Ah2, g and h are not both 

M Mem. Acad. Sc. Paris, 1785, 549-551; Throne des nombres, 1798, 65-67; ed. 3, 1, 1830 
64-71; Maser, I, 65-72. 
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even (since the right members would be multiples of 4), and hence both 
are odd, whence g2=h2= 1 (mod 8), and the right members would be 
multiples of 4. Hence the only possibility is the case 2-2Ag2—2h2, so 
that h2—Ag2 = — 1 is solvable. Besides the remaining two theorems for 
primes 8n+3, 8n—1, cited above, Legendre proved that one of 

Mx2—Ny2 = ±1 

is solvable if M and N are primes of the form 4n+3. Given a positive 
integer A not a square, it is always possible to decompose it into two factors 
My Ny such that one of Mx2—Ny2=zlzl, Mx2—Ny2 = dz2 is solvable when 
the signs are suitably chosen. When x2—Ay2= —1 is solvable, A is a sum 
of two squares. Cf. Arndt.124 In Table XII, he gave the least positive 
solutions of m2—an2 = — 1, when it is solvable, and of m2—an2— ~fl in the 
contrary case, for 2 1003, a not a square [errata, Cunningham,259,309 
Richaud,198 Whitford4 (p. 97), G6rardin311], but with no indication as to 
which equation has the solution listed. It was reprinted (with fewer errata) 
as Table X in ed. 3, 1, 1830, and abridged to a ^135 in ed. 2, 1808. 

J. Tessanek89 considered (a2+b)n2+1 = D, say (an+p)2. Set n=p+q- 
Then p satisfies a quadratic. Write b — a=h, 2aJrl~b — g. Then 

gp = hq+ V(a?+b)q2+g. 

Replace p by q+r and solve for q in terms of r. Thus 

g'q = h'r+ V(a2+6)r2 —g', 
where 

h'=g-h=3a-2b+l, g>^+l~^~h^ = 2/t-g+6=46-4a-l. 

Replace q by r+s and solve for r in terms of s. Thus 

where 
g"r=h"s+ Tl(a?+b)s>+g", 

h”=g'—h' = 6b—7a—2, 

9 = 
_aH-6—(g—^i!=2A,_s,+ff=12a_9&+4_ 

Replace r by s+t. Then 

g"'s = h"'t + j(a2+b)t2-g"‘ 

ar+b-ig'* 
h"' = g"-h"y <?'" = - 

-K")2 

9 
According to the method of Pell,62-4 one ultimately obtains an equation in 
which the number g under the radical is +1. To find values of n for various 
a’$y set # = 1 or gn = 1, etc., whence b=2a; or 35 = 4a+1, s = 0, r=q = 1, p = 2, 
n = 3; etc. The terms free of a, b in 1, g, g"y g^\ ... are 1, 1, 4, 25, • * 
i. e., the squares of 1, 1, 2, 5, 13, 34, • * *, whose differences of second order 
give the same series. Thus the scale of relation is un+i~3un—un-i, so 
that the general term is expressible in terms of the roots of 1—3z+z2 = 0; 
likewise for the coefficients of 5, a. 

89 Abh. Bohmisehen Gesell. Wise., Prag, 2,1786, 160-171. 



367 Chap. XII] PELL EQUATION, OX2+bx+C = □. 

John Leslie90 treated x2+y2+bxy~a2 by factoring a2—y2} solved 

Ax2+Bx+C — y2 

if A, C or B2—AAC is a square, and derived a second solution of ax2+b = y2 
from one solution. 

P. Paoli91 noted that, if t~h, u=k give one set of rational solutions of 
At2+B=u2, all are given by 

hr2—2kr-\-Ah 

r2—A 7 
u — k+r(t—h). 

P. Cossali92 discussed Euler’s and Lagrange’s methods to solve (13). 
C. F. Gauss93 showed how to find all solutions of t2~Du2=m2, given 

two linear substitutions which transform any reduced form AX2+2BXY 
+CY2 of determinant D into the same quadratic form (see quadratic 
forms in Vol. III). 

J. C. L. Hellwig94 gave an exposition of Pell’s and other equations of 
degree 2. 

E. Adrain95 reproduced the simpler proofs from Euler’s83 Algebra, II, 
Chs. 4-5. 

F. Pezzi96 employed the continued fraction 

x = a_j_! ± J_ 1 _xnMn+Mn- j 

&1 + &2 H   + dn-l + XnNn-\-Nn-1 ’ 

where Mn/Nn is the convergent derived by deleting l/xn. Take x= VZ, 
£i=l/( VZ—a), etc. Then x„= (VZ+5«)/cn, where 

bn=(—l)n{ANnNn-i—MnMn~i}, cn = {-iy{Ml-ANl}. 

By substituting this value of xn and the corresponding value of xn+i in 
xn — an+l/xn+i and equating rationals and irrationals, and changing n to 
n—1, we get 

bn = a„-iCn-l~bn—i, Cn-iCn = A -b2n) xn = cn-il(VZ-5n). 

Since the a’s do not exceed 2a, the a’s repeat after a certain number n of 
terms. Then Ml = ANl + (— l)n. Hence x2 — Ay2 = 1 is solvable in 
an infinitude of ways, likewise x2—Ay2= —1 if and only if the period 
length n is odd. Consider any solutions of M2m=AN2m+{—l)m. If Nm is 
even, Mm is odd and m even. If A is even and Nm odd, Mm is odd and 
( l)n== ( l)m. If A and Nm are odd, Nm is even and (—l)n = ( —l)m+1. 

50 Trans. Roy. Soc. Edinburgh, 2, 1790,193-209. Reprinted in the Math. Repository (ed., 
Leyboum), London, 1, 1799, 364; 2, 1801, 17; Encycl. Britannica. Cf. Berkhan.136 

n Elementi d’algebra, Pisa, 1, 1794, 165-6. 
82 Origine, trasporto in Italia . . . Algebra, Parma, 1, 1797,146-155. 
83 Disquisitiones Arithmeticae, 1801, arts. 162, 198-202; Werke, 1, 1863, 129, 187; German 

transl. by Maser, 1889, 120, 177-87. Cf. Dirichlet.183 
84 Anfangsgriinde der Unbest. Analytik, Braunschweig, 1803, 80-184. 
95 The Math. Correspondent, New York, 1, 1804, 212-222 (first American math, periodical). 
88 Memorie di Mat. e di Fisica Soc. Ital. Sc., Modena, 13, 1807, I, 342-365. 



C. Kramp97 treated periodic continued fractions and application to 
A.y2+1 = □. The error (p. 283) on lly2+4Q=x2 was corrected in the second 
note. 

P. T4denat98 stated that, if y2~~Ax2—B is solvable in integers, its 
solution reduces to the integration of the equation y *+2—2my+?/1=0 in 
finite differences, the integral being y = (r+s)/2, s = (r—s)/(2 V3), where 

r = (Y+X 4A) (m+n VJ)-1, s = (Y-XVJ) (m-n 

Y, X being the least integral solutions of Y2—AX2=B, and m, n being 
integral solutions of m2—An2=1. This is Euler's72 result in changed nota¬ 
tion. 

P. Barlow" gave 15 theorems on x2—Ny2 = l and the fundamental 
solution for 2^^102. He100 gave general formulas for the solution of 
x1•—Ny2 = db A or z2. 

C. F. Degen101 gave in his introduction an account of y2=ax2+1 by 
tlie development of Va into a continued fraction, and its solution by an 
artifice for certain a's, as a=p2±l, p2±2. His table I (pp. 3-109) gives, 
for a ^1000 and not a square, the solutions of y2 = ax2+1 and the continued 
fraction for Va [errata, Cunningham259* For example, in the entry 

209 [=a] 14 2 5 3 (2) 
1 13 5 8 (11) 

3220 [=z] 
46551 [=2/] 

the first line gives the continued fraction 

V209 = 14+- i -1 -1 H -1 i ! 
^2+5+3+2+3+5+2+28+2+ • • - . 

The second line shows auxiliary numbers 1, 13, 5, 8,11, 8, 5, 13,1 arising 
in the process. Thus, 

ie= V209 = 14+-, 
a 

13 

R-12 

P+14 

13 

P+12 K 1 
—-—=5H ,• • •. 

O 7 

Table II (pp. 109-112) gives the solutions of y2 = ax2—l when solvable 
[omitted when a is of the form t2-\-1, when y=t, x = l is a solution]. It is 
said to be solvable only for those values (+2, 5) of a which correspond in 
table I to a period with an even number of terms. For extensions of 
Degen's tables, see Bickmore,219 and Whitford, p. 398 below. 

07 Annales de Math, (ed., Gergonne), 1,1810-11,261-285, 319-320, 351-2. 
98 Ibid., p. 349. 
99 Theory of numbers, London, 1811, 294. In x2 - 565873/* = 1, the figure 7 is omitted; 

cf. A. Martin, Bull. Phil. Soc. Washington, 11, 1888, 592, and Martin.188 
100 New Mathematical Tables, London, 1814, 266. 
101 Canon Pellianus sive tabula simplicissimam aequationis celebratisaimae y3 = ox* + 1 

solutionem pro singulis numeri dati valoribus ab 1 usque ad 1000 in numeris rationalibufl 
iisdemque integris exhibens. Havnipe [Copenhagen], 1817. 
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P. N. C. Egen102 gave the 121 values of A < 1000 for which x2—Ay2— — 1 
is solvable. 

J. L. Wezel103 proved that if S is the denominator of a complete quotient 
(VZ+r)/S for the continued fraction for VZ, and if p/q is a convergent, 
then p2—Aq2=zkS. By the periodicity, we ultimately get an S=1. Thus 
x2—Ay2=Ail is solvable for the plus sign, and for the minus sign only if 
the length of the period is odd. Also x2—Ay2~dzC is solvable if there oc¬ 
curs in the continued fraction for VZ a complete quotient of denominator C. 

In the chapter on biquadratic residues in Vol. III will be given reports 
on the paper by G. L. Dirichlet (Jour, fur Math., 3,1828, 35-69) where he 
discussed t2zkqu2=p§?, p and q being primes and p=1 (mod 4), and the 
related pamphlet of 1861 by H. R. Gotting. 

J. Baines104 found values of n for which 

25- 
l4+24+ 

l2+22+ 
+ft4 

+ft2 
==15ft2+15ft—5 = □. 

Set n=m+1. Then 15m2+45m+25 = (mr/sAiS)2 if m = 5s(9s=F2r)/Z>, where 
Z)=r2-15s2. As by Euler, D = 1 if (s, r) = (l, 4), (8, 31), (63, 244), (496, 
1924), • whence ft=6, 86, 401, 5361, 

F. T. Poselger105 treated rx2+l=D by continued fractions. 
C. G. J. Jacobi106 stated that the solutions of x2—ay2 — 1 can be expressed 

in terms of the sine and cosine of 2m7r/a, and stated that he possessed a 
generalization to the case in which a is a product of several factors. If 
a = be, we can find in an infinitude of ways four integers u, v, w, x such that 
the product of the four factors udzv^bdzw^lcdzx ^bc is unity, where two 
or four of the signs are plus. The resulting relation can easily be given 
the three forms y2—bz2—l, y\—cz\ = l, yl—az22~l. Hence the solutions 
y, • • *, Z2 depend on u, v, w, x. The latter can be expressed by trigonometric 
functions. 

T. L. Pistor107 gave an exposition, illustrated by examples, of the methods 
of Gauss and Legendre to reduce the general quadratic equation in x, y 
to vL—Dy2=N, its solution by continued fractions if D > 0 and by trial 
if Z)= —d, using y=0, ±1, ±2, • • •, up to 4N]d. On p. 44 is given a 
table of the least solution of PelTs equation x2—Dy2=l, D=2, • * *, 200. 

G. L. Dirichlet108 recalled Legendre^88 result that if p, q are the least 
positive integral solutions of p2—Aq2=l, then 2=fMg2—fNh2, where / = 1 
or 2, and MN=A is a decomposition of A. Dirichlet proved that at 
most one of the latter equations, in addition to l=g2—Ah2, is solvable. 
Besides Legendre’s theorems for primes A =4n+l, 8n+3, 8ft—1, Dirichlet 

mHandbucli der aUgemeinen Arith., Berlin, 1819-20; ed. 2, I, 1833, 457; II, 1834, 467; 
ed. 3, 1,1846, 456; II, 1849, 468. Cf. Seeling.™ 

103 Annales Acad. Leodiensis, Ltege, 1821-2, 24-30. 
101 The Gentleman’s Diary, or Math. Repository, London, 1831, 38, Quest. 1268. 
106 Abh. Akad. Wiss. Berlin (Math.), 1832, 1. 
106 Letter to Legendre, May 27,1832; Werke, 1,458; Jour, fur Math., 80,1875,276; Ann. de 

FEcole Normale Sup., 6, 1869,176-7; Bull. Sc. Math. Astr., 9,1875,139. Cf. Koenig.1" 

107 Tiber die Auflosung der unbest. Gl. 2. Grades in ganzen Zahlen, Progr., Hamm, 1833. 
108 Abh. Akad. Wiss. Berlin, 1834, 649-664; Werke, I, 219-236. 
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proved that, when A-2a, where a is a prime, 2t2—au2—+l is solvable for 
a=8n+7, 2t2—au2— “1 for a=8n+3, and t2—2au2 = — 1 for a=8n+5. 
This method of exclusion yields no result when a=8?i+l. But using 
also the quadratic reciprocity law, he proved that t2—2au2~ —1 is solvable 
if o is a prime 16n+9 such that 2(o_1)/4= —1 (mod a), though the conditions 
are not necessary. If a and 6 are both primes 4n+3, at2—bu2— (a/6) is 
solvable.* If a and b are both primes 4n+l and if (a/6) = — 1, t2—abu2 — —1 
is solvable; but if (a/6) = 1, and* (a/6)4= — 1, (6/a)4= — 1, t2—abu2~ —1 is 
solvable, though the conditions are not necessary. He gave criteria for 
the solvability of t2~abcu2— — 1, where a, 6, c are primes 4n+l. Finally, 
Dirichlet removed the initial hypothesis that p, q give the least solution of 
p2-Ag2=1. 

M. A. Stem109 developed the theory of continued fractions and in the 
final article (pp. 327-341) made application to x2—Ay2—D, in particular 
when D—±1, =fc2. He tabulated 42 forms for A, like m2tt2+2?tt and 
(6n=bl)2+ (8n±2)2, such that there is a small number of explicitly given 
partial denominators in the continued fraction for VA, whence one finds 
at once the least solution of x2—Ay2= ±1. 

B. Peirce and T. Strong110 solved 376z2+1142+34=y2 by setting 
376x+57 -x' and treating 376y2—$'2=9535 by the theory of binary quad¬ 
ratic forms. 

C. Gifi111 noted the solution (1364557)2 - 369(71036)2=25 and that in 
the least solution of /2—94075lu2 = l, u has 55 digits and t has 58 digits. 

C. G. J. Jacobi112 stated that, if p is a prime 4n+l, and x2—py2 = —4, 
then 

4p (x+y Vp) == 2(p+1) /2 n sin2 ™, 
V 

where a ranges over the quadratic residues, between 0 and p/2, of p. If <7 
is a prime 8n+3, and x2—qy2= —2, then 

x+y^lq= V2H sin 

If q and q' are primes 4n+3, and q is a quadratic residue of q\ then 

■jfr-.Wi-V-i)/. n sin (j+Y )=^Z+ Sq'y, 

where qx2—q'y2=4:. Cubing §( Vg£+ ^q'y), we get solutions of qtf—q'v2 = 1. 

* Legendre’s symbol (a/b) denotes -f*1 or — 1 according as x* a a (mod b) is solvable or not. 
Let c be a prime 4n + 1, and k an integer not divisible by c for which (fc/c) — H- 1, 
viz., s+l (mod c). According as fc(c~1)/4 si + 1 or — 1 (mod c), Dirichlet wrote 
(Jkfc) 4 = -+ 1 or — 1, respectively. 

109 Jour, fur Math., 10, 1833, 1-22, 154-166, 241-274, 364-376; 11, 1834, 33-66, 142-168, 
277-306, 311-350. 

110 Math. Miscellany, 1,1836, 362-5; French transL, Sphinx-Oedipe, 8,1913, 117-9. 
™Ibid., 230. 
112 Monatsber. Akad. Wiss. Berlin, 1837, 127; Jour, fiir Math., 30, 1845, 166; Werke, VI, 

263-4; Opuscula Mathematics, 1, 1846, 324-5. Proof by Genocchi.130 
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G. L. DiricMet113 solved t2~pu2 = 1 by use of trigonometric functions and 
remarked that the method is not so well adapted to numerical calculation 
as that by continued fractions and does not give the least positive solutions. 
Let a,i, • • •, a* be the $ = (p —1)/2 quadratic residues of the odd prime p, 
and let bly • * •, 6, be the quadratic non-residues. Write i= V^l. In 

Y+Zf±p =2n (x-e^ilp), Y-Z^±p = 2ll(x-eM^p), 
J=l i=i 

where the upper or lower sign is taken according as p=4ju+l or 4p+3, Y 
and Z are polynomials in x whose coefficients (as shown by Gauss, Disq. 
Arith., art. 357) are integers. By multiplication, we get 

Y^pZ2=4X, 
x—1 

Let p=4p+l. For x=l, let F, Z become the integers g, h. Then 
g2—ph2=4:p. Hence g=pk, h2~pk2— —4. It remains to evaluate g and 
h. Since aly •••,«* have in some order the same remainders as l2, 22, * • •, s2 
when divided by p, we have 

Vp = 2H (l—e*wSH,p) =2(J,+1)/2HsiniV/p^o;, 
j=i j=i 

since 

l—eUSH,p= -2i sin — • ewit‘IP, l+22+ • • ■ +s2 = = (~l)(y~l)/4 
p 24 

(mod 2). 
In terms of the trigonometric product ay we evidently have 

To pass from these solutions of h2—pk2= —4 to solutions of t2—pu2 — l, let 
first p=8p+l; then h and k are both even, so that 

For p=8p+5, it is stated that h and k are both odd, whence solutions ty u 
are easily deduced. But R. Dedekind114 noted that both h and k can be 
even, as for p=37, 101, etc. Finally, if p=4p+3, it is shown that, for 
x—i, Y and Z become g(ldzi) andr^l^Fi), where g and h are real integers, 
and the upper or lower sign holds according as p=7 or 3 (mod 8). Evi¬ 
dently X becomes i. Hence Y2+pZ2=4X takes a form equivalent to 
g2—ph2 = ±2. From this solvable equation, we pass to t2—pu2 — l by 
setting (g+h'Jp)2=2t+2u^p. The expressions for g and h in terms of 
trigonometric functions can be found as before by use of x~iy but are 
not given. 

113 Jour, fur Math., 17, 1837, 286-290; Werke, I, 343-350. Reproduced by P. Bachmann, 
Die Lehre . . . Kreistheilung, 1872, 294r-9. 

114 Dirichlet’a Werke, II, 418. 
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Dirichlet115 noted that while k~g/p is positive, the determination of 
the sign of h presents difficulties. He showed that h has the same sign as 

where n ranges over the positive integers not divisible by the prime p, and 
the symbol (n/p) is Legendre’s. 

C. d’Andrea116 proved by use of continued fractions that x2—Du2 = l 
is solvable. 

Dirichlet117 noted that, if P is an integer >1 not necessarily a prime, 

$(Y+Z'IP)*=n(x-<P’i'p), 

where b ranges over the integers <P and prime to P for which (b/P) = — 1, 
and 7, Z are polynomials in x with integral coefficients. For x = l, let 
Y and Z become the integers 7i, Zx. • Then, if e = 1 or VP according as the 
number of prime factors of P is > 1 or =1, 

(T+V VP)»= ( 7l-$el^y, 614-2(1), 

where h is the number of classes of binary quadratic forms of determinant 
P, and T, U give the least positive solutions of t2-~Pu2 = 1. For example, 
if P = 17, 

7=2tf+x7+5x6+7x5+4x4+7x*+5x2+x+2, 

Z=x7+x?+x?+2x4+x*+x2-\-x, 

7i = 34, £1=8, e—2, T=33, U=8, whence h=l. 

G. W. Tenner118 gave a convenient method to convert Va into a continued 
fraction. Let a2 be the largest square <a. Then proceed as for 
a = 113 = 102+13. 

I II m IV V VI 
10 X 10 = 113 — 13 

1, 7, 3, 9, 104, 8 
1, 5, 5, 25, 88, 11 
1, 4, 6, 36, 77, 7 
2, 2, 8, 64, 49, 7. 

Divide 10+10 by 13 and write the quotient 1 in column I and the re¬ 
mainder 7 in II in the second line. Subtract 7 from a = 10 and write the 
remainder 3 in HI, and its square 9 in IV. Write the difference a—9 = 104 
in V. Divide 104 by 13 (under VI in the preceding line) and write the 
quotient 8 in VI. Similarly, to form the third row divide a+3 (3 of III) 
by 8 (of VI) and write the quotient 1 in I and the remainder 5 in II; sub¬ 
tract it from a and write the remainder 5 in III, its square in IV, a—25 = 88 
in V, and its quotient 11 by 8 (of VI) in VI. Continue until we find in VI 

118 Jour, fur Math., 18,1838, 270; Werke, I, 371-2. 
116 Trattato elementare di aritmetica e d’algebra, II, 1840, 671, Naples. 
117 Jour, fur Math., 21,1840,153-5; Werke, I, 493-6. 
118 Einige Bemerkungen uber die Gleichung ax2 ± 1 = y2, Progr., Merseburg, 1841. 
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or II a number equal to the one above it. Then column I gives the de¬ 
nominators (quotients) and VI the complete quotients in the continued 
fraction; if the repeated number (7 in our example) occurs in VI, the last 
number 2 in I is the last term of the first half of the symmetrical period 
with an even number of terms;* but if the repeated number occurs in II, 
the last number in I is the middle term of the symmetrical period with an 
odd number of terms. If y2~ax2 = — 1 is solvable, let L/l, M/m be the 
last two convergents for Va, the second corresponding to the last quotient 
in the first half period; it is stated that x=l2+m2, y = Ll+Mm [cf. Euler,72 
end]. For example, if a=113, a = 10, the half period is 10, 1, 1, 1, 2 and 
the convergents are 10/1, 11/1, 21/2, 32/3, 85/8, whence #=32+82=73, 
y=3-32+8*85. But if we use 1, 1, 1, 2 and the convergents 1/1, 1/2, 2/3, 
5/8 to Va—a, we have the same x, while y=a(l2+m2)+l\+my. If there 
be an odd number of quotients a, ■ • 2a, let K/k, L/l, M/m be the last 
three convergents for Va, the third corresponding to the middle quotient; 
it is stated that x=(k+m)l, y— (K+M)l±l = (Jc+m^L^l [equivalent to 
Euler’s y=lM+kL, since kL—Kl~ ±1]. Tenner continued Degen’s table 
from 1001 to 1020. 

Dirichlet119 proved that, if D is a complex integer not a square, 
t2—Du2 — 1 is solvable in complex integers and deduced all solutions. It 
applies120 without change to the case of real numbers. The proof rests on 
the lemma: if a is a given complex irrational number, we can find an infini¬ 
tude of pairs of complex integers x, y Q/=j=0) such that N(x—ay) < 4/iV(y), 
where N(k+bi) — k2+b2 for k and b real. Then, since the modulus of r+s 
does not exceed the sum of the moduli of r and s, 

^N(x+ay) ^ ^N(x—ay)+ VN(2ay). 

Since N(y) ^1, the lemma gives 

ViV(x2-aV) <4 VjV(o)+-A- <4 VV(a) +4. 
N{y) 

Hence N(x2—a2y2) remains less than a fixed limit for an infinitude of pairs 
of complex integers. Now take a= V5. Hence x2—Dy2 takes the same 
value Z={=0 for an infinitude of pairs x, y, and hence for an infinitude of 
pairs for which the s’s and y1 s differ by multiples of l: 

x2-Dy2^x\—Dy\ = l) x=xh y^yx (mod Z). 

By multiplication, (xxx—Dyy^2—D(xyi—yx-i)2 = l2. Since xyx—yxx is di¬ 
visible by Z, also xxx—Dyyx is divisible by Z. Hence Z2—Du2 —l is solvable 
in complex integers Z, u (u =J= 0). All solutions are shown to be given without 
duplication by 

<+wVD=±(r+Z7VD)~ (n=0, ±1, ±2, •••), 

* Note that Vll3 — 10 
_i_i iiiiiiij_ 

t = Vli3 - 10. 

119 Jour, fur Math., 24, 1842, 328; Werke, I, 578-588. 
120 Abh. Akad. Wise. Berlin, 1854, 113; Jour, de math., (2), 2,1857,370; Werke, II, 155,176. 

Cf. Dedekind.141 
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where T, U is a fundamental solution, i. e., one for which N(T+U^D) is 
the minimum of all the N(t+u^D) >1. If D is real and positive, t, u are 
both real or both pure imaginaries. Thus if the fundamental solution is 
real, all solutions are real. But if it be imaginary, only even values of n 
give real solutions. Since pure imaginary solutions give real solutions of 
i2—Du2 — — 1, the fundamental solution is imaginary or real according as 
the latter equation has real solutions or not, and the least positive solutions 
are T/i, U/i in the former case. 

Du Hays121 derived, for the case b = 0, Euler’s65 recursion formulae be¬ 
tween consecutive sets of solutions of ax2+c= □, and gave the nth set. 

Chabert122 treated ny2+py-\-q= □ by equating it to n(y—p) (y—P') and 
setting (y——{y—/3')/. Use an irrational / if P, /?' are irrational. 
While we cannot always get rational x} y, the process is said to be far simpler 
than Legendre’s. 

G. Eisenstein123 proposed the problem to find a criterion to decide a 
priori if p2—jDg2=4 is solvable in odd integers, given that D is a positive 
integer 8n+5, i. e., if the number of improperly primitive classes of quad¬ 
ratic forms of determinant D equals the number of properly primitive 
classes of determinant D or is three times the latter number. 

F. Arndt124 extended the work of Legendre88 on p2—Ag2= 1, who treated 
only the cases in which A is a prime or a product of two primes. Let p, 
q be the least positive solutions. First, let A be odd. Let 0i be the g.c.d. 
of p+1, g, and 02 that of p—1, g. Then 

p+l = !0iP!, p—I = j02p2, 0i02 = 2g, p1p2=A, 1 = (i0i)2pi— (§^i)p2 (podd); 

P+i= #01, P“l= 02 0 2, 0!02= g, 0-i0-2=A, 2 = 010-1-02*2 (p even). 

If A=4m+1, only the first system of relations holds and pi, P2 are both. 
= 1 (mod 4) if |0X is odd, while both are =3 (mod 4) if J0i is even. If 
A=4m~f3, either system may hold; if the first holds, Plsl, p2s3 (mod 4). 
If A is an odd power of a prime 4m+l, then pi=A, p2=l, and 

— 1 = Q02)2—(§0i)2A, 

whence —1 is a quadratic residue of A, and the number k of terms in the 
period of the continued fraction for VA is odd. Let (VA-ibe any 
complete quotient; then if k is odd A^Bl+I2., s = (fc+l)/2. If, for 
A=4m-fl, the number k of terms in the period is even, the denominator 
of the middle complete quotient is odd. If A = 2n, where n is odd and 
>3, it is proved that 

p=2pl-l, g=p<#0, Po—2n~2go = l- 

If po, go be the least solutions of the latter, then p, q give the least solutions 
of p2—2ng2=l. Since p0 = 3, g0 = l when A = 8, we can find the solutions 
step by step. Finally there is treated the case A = 2nA', A' odd. 

m Jour, de Math., 7,1842, 325-30. 
m Nouv. Ann. Math., 3, 1844, 250-3. 
153 Jour, fur Math., 27, 1844, 86. 
124 Disquisitiones nonnuUae de fractionibus continuis, Diss. Sundiae, 1845, 32 pp. Extract 

in Jour, fur Math., 31,1846, 343-358. 
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F. Arndt125 simplified the solution of xi-Ayi = ±1 when ^ has a square 

faCtJ!rF. Koenig126 stated that Jacobi had remarked to him that if 

A-a+b+f+cJ-g+dW, B=a-b^rC^r{g’A».rD 
and C, D are derived from A, B by changing the sign of fif, t en 
AC-BD, AD BC equal, respectively 

(a) 
where 

mf -fgn-, 

(P) 

= 2(ad—bc), 

±n' =2 (db-gcd), 
±»" = 2(oc-/M). 

±m = a2 —fb2—gc2+fg<P, 
±m' =a2+fb2-gc2-fgd2, 

- - • . 
Given values of m, • • •, n" for which the expressions (a) are unity, 
desired solutions a, • • •, d of ($). Koenig employed 

z = a?+fb2+gc2+fgd1 

and noted that a2, • • •, d2 are linear functions of 2, while, by computat 0 , 

z = mm'm"±fgnn'n". 

He gave a table of values of a, b, c, d for /=2, 3, 5, 6, 7, 0=20, and value 
of a, • • •, d giving xt—fgyi= — 1 for/, p< 100,/-0< 1000. . j,ence 

J. B. Luce127, to solve x2—ny2=zt, set n — a ±h, Vn 3> 

r 111 
n~a±m±2adbmdb' 

(m=2a/6). 

In the resulting successive convergents, take the; numera 
nominators as values of x, 1/. If m—2a[b is Integra, p 9 , 
p = am+l, g=m. If not integral, seek a square whose pro u y 

to an integral value of 2alb. He gave a table of such square p 

OT F."Arndt128 was led by investigations on binary quadratic toms to 
x2—Dy2=±4, 2»0. If H=0 (mod 4), its roots are x=2t, y-u, wnere 

i2—|Du2 = dhi. 

If D=2 or 3 (mod 4) or D=1 (mod 8), its roots ^ * = 
t2—Dw2 = ±l. For the remaining case D=5 (mod 8), e eauation 
least solutions for those values <1005 of D for whic ? , 
x2-L»2/2=±4 has relatively prime solutions, J ^ve the 
x2—Dy1— -4 if it is solvable (such a D being marked D ). H *, V give the 
least posit ve solutions of the latter, X=x2+2, F—81™. ® . ^ 
solutions of X2—DF2 = +4. If the last is solvable m r®latl^e^_Pnme 
bers, its least solution is easily deduced from that for x2 Dy i-- 

“ Archiv Math. Phys., 12,1849,239-243. „ 'K'nmVsh^re- 1849 23 pp. 
■ Zerlegung der Gleichung ** -fgy> = ± 1 in Factory. ^i-MKonlS8ber«- 1849> " PP‘ 

Extract in Archiv Math. Phys., 33,1859,1-13. _ Ja0° ■ 
117 Amer. Jour. Sc. Arts (ed., SiHiman), (2), 8,1849, 55—ou. 
i» Archiv Math. Phys., 15,1850, 467-478. 
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C. Hermite129 proved that if D is positive, x2—Dy2 — 1 has an infinitude 
of integral solutions, and all are given by 

x+y^D = (a+b^Dy (f =0, ±1, ±2, *••) 

where a, b are solutions such that a+b^D is a minimum. 
A. Genocchi130 proved the results stated by Jacobi112 by means of 

Y2=FpZ2=4X [cf. Dirichlet113^. For x — i — let Y and Z become 
y+yii and z+zii. According as the prime p is of the form Sk+Z or Sk+7, 
we have 

2/2-pz2 = =F2, rFz-\/^=±(-l)*X/V2, X=±2<»+»'2nsiii(|-^), 

where the product extends over the (p—1) /2 quadratic residues of p. 
P. L. Tchebychef131 proved that if a, /3 give the least positive solutions of 

x2—Dy2=1, and if x2—Ly2 — zLN is solvable, one solution has 

0^^V(a=Fl)AT/(2D). 

If a, b and au bi are solutions x, y within these limits of x2—Dy2 — AzN, 
then (abi+aibiiabi—aib) is a multiple of N, while neither factor is. Hence 
if x2—Dy2 = dtzN has two distinct sets of solutions within these limits, N is 
composite. 

A. Gopel132 proved, by use of continued fractions, that if A is a prime 
of the form 4A/+3 or the double of such a prime, x2—Ay2:= ±2 is solv¬ 
able, the sign being + or — according as A (or \A) is h=7 or 3 (mod 8), 
and related theorems as to the values of A for which x2—Ay2 — 2 is solvable, 
to be given in Yol. Ill under binary quadratic forms. 

G. L. Dirichlet133 noted that if /=ax2+2bxy+cy2 has for its determinant 
D-b2—ac a number not a square, and if <j is the g.c.d. of a, 2b, c, and if 

rc = Xrc'+juyr, y^vx'+py', \p — pv — 1, 

is a transformation with integral coefficients of determinant unity which 
transforms / into itself, then 

X= (t—bu)la, p— —cuf a, v—aujv, p — (t+bu)/(r, 

where i, u are integral solutions of t2—Du2 = <r2; and conversely, if t, u are 
integral solutions, the values of X, • • p are integers which determine a 
transformation of / into itself. For the more difficult case in which D is 
positive, and / is a reduced form, obtain from the period of reduced forms 
defined by / all the transformations of / into itself and hence, by the above, 
deduce all solutions of t2—Du2 — a2. This theory, which will be given under 
binary quadratic forms in Yol. Ill, is closely connected with the continued 
fraction for the positive root of a+26o)+ca>2=0. 

129 Jour, fur Math., 41,1851, 209-211; Oeuvres, 1,185-7. 
120 M4m. CouronnSs Acad. Sc. Belgique, 25,1851-3, IX, X. 
121 Jour, de Math., 16,1851, 257-265; Oeuvres, I, 73-80; Sphinx-Oedipe, 10,1915, 4, 18. 
m Jour, fur Math., 45, 1853,1-14. Summary, ibid., 35, 1847, 313-8; Jour, de Math., 15, 

1850, 357-362. Cf. Smith,129 § 123, p. 783; Coll. Math. Papers, 1,284-8. 
123 Abh. Akad. Wiss. Berlin, 1854,111-4; French transl., Jour, de Math., (2), 2,1857, 370-3; 

Werke, II, 155-8,175-8. Zahlentheorie, § 62, § 83,1863; ed. 2, 1871; ed. 3, 1879; ed. 
4,1894. Cf. H. Minkowski, Geometrie der ZaMen, 1,189'6,164-170. 
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Dirichlet134 recalled the fact that if T, U are the least positive solutions 
of t2—Du2 = 1, where D is positive and not a square, all positive solutions 
are given by 

/,+tt,VD-(T+D’VF)n (»-1,2, •••)• 

An infinitude of values of un are divisible by any positive integer S. He 
proved that, if N is the least n for which un is divisible by S} the remaining 
n’s are the successive multiples of N. If D'-DS2 and if T', U' give the 
least positive solutions of t2—D/w2 = l, then N is determined by 

T'+U'JD'^iT+uJD)11. 

For any prime factor p of S} let v be the least index for which uv is divisible 
by p and let ps be the highest power of p dividing uv. Then, if e is arbitrary, 
the exponent of the highest power of p dividing uye is 5+e, where e is the 
exponent of the highest power of p dividing e. Let v{, 5* be the values 
corresponding to the general prime factor p* of S=Up? and let N be the 
l.c.m. of VipTh (i = 1, 2, * * •)* When ax, a2, • • • increase indefinitely, S/N 
approaches a limit. The application to quadratic forms will be given under 
that topic. 

C. A. W. Berkhan135 gave an exposition of the theory of ax2+l — y2 
and a table of solutions for a^160. 

M. A. Stem136 applied new theorems on continued fractions to shorten 
the work of forming an extended table of least solutions of x2—Ay2 = 1. 
Given the period for one number, we can find an infinitude of numbers the 
continued fraction for whose square root has a known period. He gave a 
table showing the manner in which the continued fractions for the square 
roots of 163 of the numbers < 1000 can be derived from that for 2. 

A. Cayley137 gave for D<1000, 5 (mod 8), a table showing the least 
odd solutions of x2—By2 = —4, when it is solvable, or, if not, of x2—By2 — +4, 
when the latter is solvable. The computation was made by means of 
Degen’s101 table; if in the second line of the entry for D the number 4 does 
not occur, there is no solution of x2—Dy2~ 4; if the rank of the place in 
which 4 occurs is even, this equation and also x2-~Dy2= —4 is solvable; if 
of odd rank, only x2—Dy2=4: is solvable. Also the least solution can be 
found by means of the series of quotients (in the first fine of the entry) by 
stopping at the number preceding that above 4 and computing the con¬ 
tinued fraction determined by this series. From the least solution of 
t2 Dv2~ —4 we get the least solution x = r2Jr2, y=rv, of x2—Dy2~ +4, 
and the least solution X=(r3+3r)/2, F=(r2+l>/2, of X2-DF2=-1. 
From the least solution of T2-~DU2=4i we get the least solution 
£ = (T3—3T)/2, y— (T2—1)17/2, of x2-Dy2 = 1. 

184 Monatsber. Akad. Wiss. Berlin, 1855, 493-5; Jour, de Math., (2), 1, 1856, 76-9; Jour, fur 
Math., 53,1857, 127-9; Werke, II, 183-194. 

185 Lehrbuch der Unbestimmten Analytik, Halle, 2, 1856, 121-193. 
138 Jour, fur Math., 53, 1857, 1-102. 
187 Jour, fur Math., 53, 1857, 369-371; Coll. Math. Papers, IV, 40. Reprinted, Sphinx- 

Oedipe, 5,1910, 51-3. Errata, Cunningham,309 p. 59. Extension by Whitford.302 
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G. C. Gerono138 proved, following Lagrange,85 that x2—ny2 = 1 has an 
infinitude of integral solutions, if n is positive and not a square. If y 
are positive integral solutions, xjy is a convergent of even rank of the con¬ 
tinued fraction for Vn and corresponds to the next to the last incomplete 
quotient of one of the periods. 

H. J. S. Smith139 stated the principal theorems relating to t2—Du2 = l or 
4 by use of Euler’s72 notation (qu * • •, qn). He noted, as had Lagrange75 
and Gauss93 (Art. 222), that the methods used by Euler65*71*83 are incomplete 
because he always assumed that a first solution is known and merely 
deduced from it those solutions which belong to the same set, whereas there 
may exist solutions belonging to a different set, and lastly because he gave 
no method to distinguish between the integral and fractional values con¬ 
tained in his formulas for x, y. 

L. Kroneeker140 noted that if T, U are the least solutions of T2—PU2=1, 
log (T+U VP) can be expressed in terms of special theta functions or elliptic 
functions, and the number of classes of binary quadratic forms of deter¬ 
minant P. He deduced approximate values for T, U; likewise, for the least 
solutions 4,1 of t2—l7u2— — 1, 4+ Vl7 has the two approximations 

^ (5/18)* 41? _Lp(l/10)jr-sS5 

96 ’ V5 

R. Dedekind141 proved the existence of integral solutions t, u (u+Q) 
of t2—Du2=l by the method used by Dirichlet120 for complex integers, 
but replacing his lemma by the following: There exist infinitely many pairs 
of integers x, y such that x2—Dy2 is numerically <1+2 V5. 

C. Richaud142 stated that x2—Ny2— —1 is solvable for various types of 
values of N: If A, **•, L are primes of the form 8n+5 and N=2Aa, 
2Au+lB2p+1 or 2A2aBw • • -Lu. If B, *••,!/ are not included among the 
linear d‘visors of t2~2Au2, and N=2+ttjB*, 2AaB2p+1C2y+1 or 2A2a+1B2p • * -L2\ 
If a, fe, * • •, l are primes of the form 8n+l, and are not included among the 
linear d'visors of t2—2Au2, and N — 2A2m+1aa, 2A2m+1au+1b2$+1 or 2A2m+1aZa 

* ■ If A, **-,L are primes not included among the linear divisors of 
t2—om2, where w is a prime 4n+l, and N=camAta+1y co2m+lAa, w2m+1Au+1B2fi+1f 
w2m+1A2*-. Also for 8 more such sets of APs. He143 proved these 
results and similar ones by use of the continued fraction for ViV and the 
reciprocity law for quadratic residues. 

Richaud144 gave minimum integral values of x, y satisfying x2—Ay2 = l 
for A=a2dzd (d a divisor >1 of 2a) and for many values of A such as 
(9a+3)2dz9, (9a+6)2db9, (25a+5)2—25. Likewise for x2~Ay2— —1. 

138 Nouv. Ann. Math., IS, 1859, 122-5, 153-8. 
189 Report British Assoc., 1861, §§ 96, 97, pp. 313-9; Coll. Math. Papers, I, 195-202. 
140 Monatsber. Akad. Wiss. Berlin, 1863, 44; French transl. in Annales sc. de l’^cole normale 

sup., 3,1866,302-8. Cf. Smith, Report British Assoc., 1865, § 138, p. 372; Coll. Math. 
Papers, I, 354-8. 

141 Dirichlet’s Zahlentheorie, §§ 141-2, 1863; ed. 2, 1871; ed. 3, 1879; ed. 4,1894. 
141 Jour, de Math., (2), 9, 1864, 384r-8. 

(2), 10, 1865, 235-280; (2), 11,1866,145-176. 
144 Atti Accad. Pont. Nuovi Iincei, 19, 1866,177-182. 
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M. A. Stem145 proved (p. 27) that x2—Ay2 = dn has one and but one 
solution in integers if <£» (0<dn< VZ) is the denominator of a complete 
quotient which belongs to a partial denominator an+1 of the “ negative ” 
periodic continued fraction 

r 1 1 L<X, Gtl, O2, * * * J & 
Ctj — 0&2 — * * * 

for ■VA, and a:, 1/ are the numerator and denominator of the convergent 
[a, ah • •, On]. The first dn which is unity leads to the solution of 
x2—Ay2=l in least integers; this dn is the denominator belonging to the 
final term of the first period. He found (pp. 30-43) the conditions for 
dm=2. Finally there is a table giving for iV< 100 the partial denominators 
of the half period and the complete quotients for the negative continued 
fraction for VA. Lagrange85 had shown by an example that Pell's equation 
cannot be solved by use of a continued fraction in which the partial de¬ 
nominators have signs chosen at will. 

J. Frischauf146 noted that Gauss93 (Arts. 197-202) obtained the least 
solutions T} U of t2—Du2~ a2 by use of a reduced quadratic form of deter¬ 
minant D. It is here shown that T, U are independent of the particular 
reduced form used. 

N. de Khanikof147 used a table showing the last two digits of the root 
of a square ending in 01, 04, • • *, 96 to find the endings of possible integral 
solutions of A+Bt2=u2. 

P. Seeling148 treated the form of numbers the continued fractions for 
whose square roots have periods with a given number g of the terms, 
treated the cases <7 = 2, • • *, 7 in detail, and tabulated the period of the 
continued fraction for VZ, 2^A^602. He noted that Egen102 omitted 
from his table all numbers of the form n2+l, though they belong there. 
Egen stated that x2—Ay2 = —1 is solvable only when the period of the con¬ 
tinued fraction for VZ has an odd number of quotients. Seeling stated 
that it is possible in relatively prime integers x, y only when A =4m+l or 
4m+2. Hence if the period for VZ has an odd number g of quotients, 
A=4m+1 or 4m+2; this is proved for g~l, 3, 5, 7. 

L. Ottinger149 gave tables showing several solutions of x2—Ay2—±b 
for 4=2, • • *, 20; 5 = 1, • • •, 10, 3fc, 5fc, 7fc (fc = 1, 2, 3, 4). If we have found 
by continued fractions the least solution of p2—Aq2 = ztb and know a 
solution of t2—Au2 — 1 or —1, another solution of x2—Ay2= ±6 is given by 
a-pt±Aqu, y=pudbqt. 

A. Meyer150 proved by use of ternary forms that if Pis a positive integer, 
2* the highest power of 2 dividing D, <r^4, S2 the greatest odd square 
dividing D, and D = 2ffS2Di, then there exist integers J, 77, relatively prime 

14fi Abhand. Gesell. Wiss. Gottingen (Matb.)j 12,1866, 48 pp. 
146 Sitzungsber. Akad. Wiss. Wien (Math.), 55, II, 1867, 121. 
147 Comptes Rendus Paris, 69, 1869, 185-8. 
148 Archiv Math. Phys., 49, 1869, 4-44. 
149 Ibid. 193—222. 
160Diss., Zurich, 1871; Vierteljahrsschrift Naturf. Gesell. Zurich, 32, 1887, 363-382. Cf. 

Got.598 
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to 2D, such that for all primes p and q satisfying 

V= t, Q^y (mod 8SDJ, 

the equation t2—pqDu2 = 1 has a fundamental solution T} U for which 
neither T+l nor T~~ 1 is divisible by pq. 

L. Lorenz151 found the number of integral solutions of m2+en2—iV, 
where 6 = 1,2, 3,4 or — 1, and N is a given positive integer, by transforming 
the series 

+ ®0 

Z <fHen2 (g<l) 

into a series of another form and finding the term qN of the latter. For 
details when e=1 see Lorenz94 of Ch. VI. 

P. Seeling152 noted that, if A is positive and not a square, and the con¬ 
tinued fraction for VZ has the symmetric period n; a, 6, •••, b, a,. 2n, 
solutions x} y of x2—Ay2~ ±1 are given by the numerator and denominator 
of the convergent belonging to the quotient 2n. The sign is plus if the 
number of quotients in the period is even; while if it be odd, the sign is 
plus after 2, 4, 6, •••, periods, minus after 1, 3, 5, ••• periods. If 
x2~Ay2= — 1 and the number of quotients in the period is odd, then 
A = 4m+l or 4m+2 and A has no factor 4m+3; if A is a prime 4m+lj the 
number of terms in the period for VZ is odd; if A. is a product of two or 
more primes 4m+l or the double of such a product, no general rule has been 
found. Finally, he tabulated all numbers A <7000 for which the period of 
VZ has an odd number of terms, so that x2—Ay2= —1 is solvable. 

A. B. Evans and A. Martin153 found the least solution of nc2+1 = 0, 
where r=940751, and noted that rrc2+38= □ has no integral solution. 

Moret-Blane154 noted that if x=A, y = k is & solution of 2x2-l=y2, then 
x—hu+kv, y~2hv-\-ku give a second solution, provided u2—2v2 = 1, as for 
u=3, t?=2. 

. F* Di&)n stated and C. Moreau155 proved that, if D = (4n+2)2+l, where 
n is a positive integer, t2—Du2=4 has no solution in odd integers, and the 
least positive solution is Z = 16(2n+l)2+2, u = 8(2n+l). 

O. Schlomilch156 discussed the continued fraction for Va2/4dr/3. 
^ L. Matthiessen157 noted that if x =/, y=g give the least solution of 

ax2—y2=l, all solutions are given by 

a J a“/2»+'+(2n+1) an-i/=n-y+(2w+1jan-2/2n-3?4+ . . . j2_ (ay2_ff2)2»+l 

161 Tidsskrift for Math., (3), 1, 1871, 97. 
152 Archiv Math. Phys., 52,1871, 40-9. 
153 Math. Quest. Educ. Times, 16, 1871, 34-6. 
154 Nouv. Ann. Math., (2), 11, 1872,173-7 
155 Ibid., 48; (2), 12,1873,330-1. 
154 Zeitschiift Math. Phys., 17,1872, 70-71 
157 Ibid., 18,1873, 426. 

Of. *J. Petersen, ibid., p. 76. 
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If x=f} y—g give the least solution of ox2—p2= — 1, all solutions are given 
by the preceding and a similar formula. 

D. S. Hart158 stated that, if the fundamental set of solutions p0, go of 
p2~Nq2 = zk 1 has been found, so that we have a set in addition to 1, 0, the 
simplest method to find successively all further sets of solutions is to use 
the relations p = 2pQr+r', q = 2p0szF$', where r, s are the last found vaues 
of p, q, and r', s' the next preceding values. 

B. Minnigerode159 modified the theory as presented by Dirichlet133 by 
using a different definition of reduced forms and using the continued fraction 

__1 Jl 1 1 

€L\ “ #2 - • *-dy-1 - CO,’ 

with negative quotients (see the chapter on binary quadratic forms in 
Vol. III). 

W. Schmidt160 showed that all positive solutions of t2—Du2~zk4: are 
given by the development into a continued fraction of a root of a certain 
reduced binary quadratic form of determinant Z). 

T. Muir160a treated the development into a continued fraction of the 
square root of any positive integer or fraction. In particular, he obtained 
(p. 19) in general form the results of Euler,72 calling Euler’s (a, • • •, l) a 
continuant K(a, • • •, 0* 

D. S. Hart and W. J. C. Miller161 proved by use of p2—103n2=l that 
103(3x—2)2+l = □ has no integral solution x and that 22421/3 is the least 
positive solution. 

M. Collins and A. M. Nash162 proved that x2+Dm=(N2+D)y2 is solvable 
in rational numbers if m=2n+l by taking 

xJrNy = kD(y~kDn), x—Ny—(y—Dn)jk. 

Several163 solved x2--953p2 = dbl by the continued fraction for V953. 
S. Tebay164 noted that, if p, q are the least solutions of x2—ny2—1, then 

x=§(i?r+i?“r), y = \rrll2{if— irr)> V =p+$n1/2. 

Let na2ztk=m2. To solve nfztk— □, set t = a+r. Then 

m2+2naT+nT2 = □ = (m+ tx/p)2, if r = 2y(nay—mx) / (x2—ny2). 

S. Bills165 illustrated a “new, practical” method of solving x2—Ay2 = zk 1 
by taking A=953. Then &=30 is the root of the square just < A. From 

168 Math. Quest. Educ. Times, 20, 1874, 64. 
159 Gottingen Nachrichten, 1873, 619-652. Cf. A. Hurwitz.206 
140 Zeitschrift Math. Phys., 19, 1874, 92-94. 
WOa The Expression of a Quadratic Surd as a Continued Fraction, Glascow, 1874, 32 pp. 

Cf. R. E. Moritz, Ueber Continuanten und gewisse ihrer Anwendungen im Zahlen- 
theoretischen Gebiete, Diss. Strassburg, Gottingen, 1902. 

141 Math. Quest. Educ. Times, 20, 1874, 66-7; 28, 1878, 65-66. 
™lbid., 22,1875, 23-24. 
163 Ibid., 78-80; 23,1875, 107. 
144 Ibid., 23,1875, 30. 
166 Ibid., 98-99. 
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0,1, S as the initial triple and M, N, P as any triple, derive the next triple by 

Mi=NP—M, p rs+i^i 
Pi L ]■ 

where [k] is the largest integer ^k. When we reach a triple with P=2S, 
we get a solution. Application is made to solve nt2±k~ □. 

Several writers166 proved that, if r is the least integer for which Ar2—1 = □ 
and if AR2+1= □, then R is a multiple of r. 

D. S. Hart167 showed that 560 is the least z making 95322+87z+l = □. 
A. Martin168 noted that x = 1284836351 gives the least solution of 

x2—5658y2=l, whereas Barlow" gave erroneously a number of 48 digits. 
[Barlow solved x2—565872/*=1; the omission of 7 was a misprint.] 

H. J. S. Smith169 proved that, if T, U are the least integral solutions of 
T2—DU2~(—l)i^ then T+U^I5 equals the product of the i complete 
quotients in a period in the development of V5 as a continued fraction. Also 
theorems on the number of different periods of complete quotients. 

D. S. Hart170 gave a “ new ” method to solve x2—Ay2 = 1. Set A =r2±w. 
Then (xJrry)(x—ry) = l±my2. Set x—ry=l. Then 

y=dtz2r/m, x-l =t 2r2/m. 

But the solutions are not in general integers. He and A. Martin171 found 
positive integral solutions of 94x2+57:r+34 = □. 

A. Kunerth172 required rational values of p for which x—N/D is an 
integer, N and D being given quadratic functions of p with integral coeffi¬ 
cients. Replacing p by a suitable linear function of q, we get* 

x^ax—A^- (f-dq)xv+d2'- 

where S—p—gd2 is known. Any common factor of d, f may be removed 
from each member of the second equation. Write v/w for the rational 
number q and equate each positive or negative factor of S in turn to 
v2—gw2. Hence for g negative, there is only a finite number of trials. To 
apply to y2=ax2+bx+c with the given solution xh yh set y=p(x-~xi)+Vi 
my2=a(x2-x*)+b(x-xi)+yi- We get 

« « _ -22/1p+2aa1+& 
X Xi — ;-. 

p2—a 

The case 5=0 is treated at length. The method is applied (pp. 24-32) to 
Pell’s equation y2=ax2+1; as y~px+1, x= —2p/(p2—a). He reproduced 
(pp. 56-8) Tenner’s rule.118 

166 Math. Quest. Educ. Times, 23, 1875, 109-110: 24, 1876, 109-111. 
187 Ibid., 25,1876,97. 
188 Tke Analyst, Des Moines, 2, 1875, 140-2; Math. Quest. Educ. Times, 26, 1876, 87; 

Math. Magazine, 2,1890, 59. 
189 Proc. London Math. Soc., 7, 1875-6, 199-208; Collectanea Mathematics, Milan, 1881, 

117; Coll. Math. Papers, 2, 1894, 148. 
170 Math. Quest. Educ. Times, 28, 1878, 29-30. 
171 Ibid., 101-2; 24,1876, 39-40. 
173 Sitzungsber. Akad. Wiss. Wien (Math.), 75, II, 1877, 7-58. 
* There are five errors of signs on pp. 15-16. In the examples the signs are correct. 
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A. Martin173 noted that, in the least solution of #2—98172/2 = l, x has 97 
digits. 

D. S. Hart174 noted that (r2+s2)y2—1 = □ for y = m2-{-n2, if 

ra$ = rn± V(r2-f s2)n2±$, 

where one of r, s is odd and the other even, while n is to be found by trial. 
Martin174® found the least solution of x2—9781t/2 = 1. 
S. Roberts175 noted that if t2—J)u2—— 1 is solvable in integers, where 

D~2*icxapb- ♦ *, ju=0 or 1 and a, /3, • • • odd, then t2—D'u2= —1 is solvable, 
where D'=2(la?+2p0b+2q • • •. Since any prime 4n+l is a Z>, any odd power 
of it is a Dr. If D = $2d, the solvability of t2—du2 = — 1 is a necessary, but not 
sufficient, condition for the solvability of t2—Du2= —1. 

Roberts176 proved that, if t, u are the least solutions of t2—Au2 = l, there 
are values tlf uu less than t, u, for which either — MN=A, 
or Mtl—Nu2i = ±2, MN=A, unless 1. If the first of these equations 
is solvable and M<N, then M is the middle denominator of the period of 
the continued fraction for tJA; but if the second holds, and not the first, 
2M is the middle denominator. 

H. Brocard177 gave a bibliography and historical notes on Pell’s equation. 
K. E. Hoffmann178 recalled that Lagrange proved that xQ, y0 is a solution 

of x'—Ay2 — 1 if Xo/yo is the convergent corresponding to the first or first 
two periods of the continued fraction for V2. Other solutions follow from 

Xn+Vn = (Xo+2/0 VZ)». 
While it is usually merely stated that xn(yn is a convergent to a later com¬ 
plete period, a direct proof is here given by use of the “ closed form ” of 
a periodic continued fraction (ibid.y 62, 1878, 310-6). 

A. Kunerth179 gave a “ practical ” method of solving 

(17) y2 = ax2+bx+c. 

If a rational solution is known, we may transform (17) into 

(18) y2 = (ax+p)2+ (yx+ 5) (ex+f). 

Hence every such transformation yields two values —5/7 and — f/c of x 
giving rational solutions. If x = min, y = r/n is a solution of (17), take 
7=71, 5=—m. Then r=ma+n/3, from which we may determine a, /?. 
Then e, f may be found from (18). To proceed without a known solution, 
subtract (ax+p)2 from (17) and employ the condition that the difference 
be a product of two linear functions: 

(19) (b - 2ap)2 - 4 (o - a2) (c - /32) = A2. 

178 The Analyst, Des Moines, 4, 1877, 154-5. 
5,1878, 118-9. 

174a Math. Visitor, 1,1878, 26-7. 
175 Proc. London Math. Soc., 9, 1877-8, 194. 
178 Ibid., 10,1878-9, 30-32. 
177 Nouv. Corresp. Math., 4,1878,161-9, 193-200, 228-232, 337-343. 
178 Archiv Math. Phys., 64, 1879, 1-8. 
179 Sitzungsber. Akad. Wiss. Wien (Math.), 78, II, 1878, 327-37. 
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Set D=b2-4ac} p=(K+b*)l(2a). Then K2=aA2+D(a2~a). Hence we 
have to assign to A and a such values that the latter sum is a square. 

To apply (pp. 338-346) this method to the congruence ^2=c (mod b), 
where b is a prime, we have (17) for a = 0. Then (19) holds for A = b+2pa if 

~bw(v-{-l3w) v 

a V2— cw2 ’ w 

The first denominator may be made equal to ±6 if ±6 is a quadratic 
residue of c. Then a^^wofa+pwo). 

Kunerth180 continued the same subject. Let a1} pi be a solution of 
r=ma+np. Then a=<xi—np, p = pi+mp. Substitute these in (18), with 
y=n, 5= —ra. After several reductions, we get 

— €X—Z;= (np2 — 2<xip — e)x — (mp2+2Pip+f). 

Then (17) has an integral solution if and only if p can be chosen to make the 
value of x for which the preceding vanishes an integer. 

A. B. Evans and others181 proved that, if pnlqn is the last convergent in 
the first period of the continued fraction for VZ, and r is the largest integer 
^ VZ, then pn~rqn—qn~i- Hence we can derive x from y in a solution 
of x2—Ay2 — L 

J. de Virieu182 used the final digits to show that xy is divisible by 5 in 

(20) 24z2+l =2/2. 

E. Lionnet183 stated and M. Rocchetti and F. Pisani183 proved easily that 
three successive sets fa, yt) of solutions of (20) or 2x2+l = 3^2 satisfy 
Xn+i^lOxn-Xn-x, yn+i=lOyn—yn~i, with fa, y^) = (0, l) or (1, 1), fa,2/2) 
= (1,5) or (11, 9), respectively. For solutions x of the second equation, Zx2 
+2 is of the form 360?i+5 and is simultaneously a sum of three consecutive 
squares and a sum of two consecutive squares. For x2+l = 2y2, xn = 6xn-i 
—Xn-2, yn=Syn~i-yn-2, fa, 2/0 = (1, 1), fa, y*) = (7, 5). 

S. R6alis184 used x2-ky2= (cA~kp2)(A2-kB2)2, where 

x=aA2-2k$AB+kaB\ y~-pA2+2aAB~kpB2, 

to derive a new solution of x2—ky2~h from a given solution a, p and a 
solution of A2—kB2= 1. 

H. Poincar6185 noted that, if m is odd, and a, b give the least integral 
solutions of a2—m&2=l and c, d give the least odd integral solutions of 
c2—md2=4, then 

Several184 proved easily that xTt+p=2xpx„-x^P) yP+P=2xpyn-yn-p, if 
yn be the nth set of positive integral solutions of x2—Ny2=-l[x0 = l1 2/0 = 0]. 

Sitzungsber. Akad. Wiss. Wien (Math.), 82, II, 1880, 342-75 
m Math. Quest. Educ. Times, 30,1879, 49. 
m Nouv. Ann. Math., (2), 17, 1878, 476. 

S"*’’ (n’18> 183 f9, 528; (2)’ 20> 1881> 425-7, 373-4. Cf. Pisani^ of Ch. VII. 
184 Nouv. Corresp. Math., 6,1880, 306-312, 342-350. 
1M Comptes Rendus Paris, 91,1880, 846. 
186 Math. Quest. Educ. Times, 34,1880,114. 
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W. P. Durfee187 stated that, if xQ, yQ; xh yi, • • * be the integral solutions 
of ax2—y2~ — 1, arranged according to magnitude, then 

^n2/»+< %n+tyn ^ **"£<) 02/ft2/n+< 2/n2/n+< — Vt- 

S. Gunther188 noted that the solution of 2a;2—1=t/2 was apparently 
known to Plato. Its complete solution implies that of 2a;2+l=?/2, and 
conversely. To solve (a2+62)a;2—1=t/2, seek the integral solutions of 
£2—(a2+52)?72=a2£ and test whether or not a2£ divides 2(a2+52) 26^ ; 
if so we have a solution of the initial equation. 

E. de Jonqui&res189 found the period of the continued fraction for VA 
for special types of numbers A, and treated periodic continued fractions 
whose numerators differ from unity. 

D. S. Hart190 stated that a process, simpler than Euler’s and Lagrange’s, 
to find integral solutions of ax2+bx+c = □ is to subtract such a square 
Qx+m)2 that the difference will factor into two linear functions with integral 
coefficients. Then L2+MN = □ — (L—Mr/s)2 gives x; equate its denomi¬ 
nator to unity. 

E. Catalan191 discussed Ax2=^2+1. Thus A is of the form a2+b2. If 
p, q give the least solution, x is divisible by p. Set x=pz; then 

(<?2+l)22==2/2+l. 

Hence consider (a2+l)x2=p2+l. For its solutions, 

Xn = 2(2a2+ Xn—2j 71 — 3. 

It is shown that xn is a sum of three squares if n^3. If b > 1 in the initial 
equation, xn is a sum of four squares. Every integer y> 1, for which 
(a2+l)a;2=7/2—1, is a sum of three squares. Cf. Catalan63 of Ch. VII. 

S. Roberts192 proved that q2 —Dr2 = l can be solved by using the nearest 
integral limits exclusively or superior limits exclusively as the partial 
quotients belonging to the continued fraction for Vl>, instead of using the 
customary inferior limits exclusively. But he admitted his results are due 
to Stem145 and Minnigerode.159 

G. de Longchamps193 gave a bibliography of Pell’s equation. 
J. Perott194 proved that there exists a positive integer X such that, in 

4+% ^ = (h+U!Vd)x, 
% is divisible by a given odd prime, where th Ui give the least positive 
solutions of t2—du2=1. He repeated (pp. 342-3) Poincare’s185 remark. 

M. Weill195 noted that x2—Ay2=N2 has the solution x=Au2+t2, y = 2tu, 
lit, u give a solution of t2—Au2=N. Taking #==1, consider a, a1} a2} • • *, 

187 Johns Hopkins University Circular, 1,1882,178. 
188 Blatter fur Bayer. Gymnasialschulwesen, 18,1882, 19-24. 
189 Comptes Bendus Paris, 96, 1883, 568, 694, 832, 1020,1129, 1210, 1297, 1351, 1420, 1490, 

1571, 1721. 
190 Math. Magazine, 1, 1882-4, 40-1. 
191 Assoc, frang. av. sc., 12, 1883, 101; Atti Accad. Pont. Nuovi Lincei, 37, 1883-4, 84-95. 
192 Proc. London Math. Soc., 15, 1883-4, 247-268. 
198 Jour, de math. 616m., 1884, 15 (1885, 171, on continued fractions). 
194 Jour, fur Math., 96, 1884, 335-7. 
196 Nouv. Ann. Math., (3), 4, 1885, 189-193. 
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ai.-2ai.i-1, obtained from a2—Au2=l, yl = 2au, ai=Au2+a2^2a2-l, 
* • *. He gave an explicit expression for a* and noted the connection 
with the formula for cos m<j> in terms of sin <j> and cos <£. 

H. van Aubel196 proved the statement by Brocard177 that 

£m+i = 2 pXn—Xm-i, ym+1 = 2pym-y«-i, 

give the relations between three consecutive sets of solutions of x2—Ay2 = l} 
where p, q give the least solutions. Also theorems giving p and q in terms 
of the convergents found near the middle of the period of the continued 
fraction for VZ. If the period has an odd number of terms, A is a sum 
of two relatively prime squares, but not conversely. He treated values 
of A, b for which the solution x=by+l, y=2b/(A-b2) of z2-Ay2 = 1 is 
integral. He noted cases when integral solutions can be derived from two 
sets of fractional solutions. 

Several197 solved the problem to find the polygons the number x(x—3)/2 
of whose diagonals is a square, by treating (2z;-l)2~8w2 = l. 

Hichaud198 found the least solution of x2-~Ny2~ — 1 for #= 1549. 
He noted corrections to Legendre’s88 table for #=823 and 809. 

J- Vivante199 treated Dx2—Z=y2 (cf. binary quadratic forms). 
E. Lucas200 gave periods of the continued fraction for Vn, when n is a 

quadratic function. 
Several201 solved z2-19?/2=81. 
J. Perott202 reviewed various classic papers on t2—Du2 = —1 and proved 

lf/giS a prime of t5le form lfin+9, t2-2qu2= -1 is solvable if and only 
i <r~D _i (mocj. g) • while, if q is a prime 16n+l, the condition 2Ca“1)/4 = 1 
[mod q) is necessary, but not sufficient. If q is a prime 8n+5, *2 - 2q*u2 = -1 
is ways solvable; but, if q is a prime 8n+l, a necessary condition is that, 
m the decomposition g=c2+2d2, d be divisible by 8. This condition is 
sufficient if 5 is of the form 16m+9, but not if g = 16m+l. 
. , * J'a^0 Proved that x2—Ay2— — 1 is solvable if A = ai<z2 • * -an} where n 
f * * *, are distinct primes =1 (mod 4) and if at most one of 

^ei\ es symbols (at/a,) is + 1 for i<j. He gave theorems on the 
case A. — * •an. 

^ . Knirr204 gave in detail the Indian30 cyclic method to solve z2 — cx2=sl, 
?■», u ^ a simplification. This method is said to be much shorter than 

y continued fractions. He tabulated the least solutions for c^l52. 
* * developed any real number x0 into a continued fraction 

X*~a°7^Xl> Xl==ai*~V^2, * * *, where an is chosen so that xn—an 
^^gween "1,2 and +1/2. Minnigerode159 had shown that the de- 

cf.whi^p.97. 

* spteaes, 1887, 1. 
Qoest. Ediie. Times, 48, 1888 48 

t. *****•> 102, 1888* 185-223/ 
105, 1889, 160-9. 

Acta Math., ~ cs? = 1,18. Jahresberich Oberrealschule, 1889, 34 pp. 
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velopment is periodic if x0 is a root of a quadratic equation with integral 
coefficients. The necessary and sufficient condition for the solvability 
of x2—Dy2= —1 is that 

VZ)=(a0; ah a2, • • •, ar, —«i, — a2) • • •, — ar; ah a2, • • •)• 

G. Chrystal206 gave an exposition of x2—Cy2 = db# convenient for English 
readers. _ 

F. Tano207 proved by developing Va2±4 into a continued fraction that 
a2— (a2+4:)y2~ —1 is solvable in integers when a is any odd integer, while 
s2—(a2—4)#2=s — 1 is impossible except when a = 3. There are infinitely 
many integral solutions of x2—kz2—dta if a is any odd integer and k a sum 
of two squares. To prove that there are infinitely many integral solutions of 

x2~\~y2~\~z2 = u2+v2+w2+N, 

where N is any integer, we add the two equations 

x2— (a2+4)y2 = aJ x\ — {a2~^)y\^ — (2a —5) 

if N is odd; but, if N is even, we first change the second members to — at 4. 
By multiplying x2—a2y2—4y2=zha by ul—ah2^4wJ = l for i=l, 2, •••, 
in turn, we find that there is an infinitude of integral solutions of 

* *+i 

)• 
G. Frattini208 noted that, if x0, y0 is the fundamental solution of 

x2—(a2+l)y2 — —Ny viz., a solution with 0<y0^ VN, then all its solutions 
are given by 

x+y^a2+l = (dzXo+y0^a2+l) (a+ ^a2+l)n, 

where n ranges over the values 0, 2, 4, • • while all solutions of 
x2— (a2+T)y2 = +N are given by the same formula where n ranges over the 
positive odd integers. 

Frattini209 proved that, if K, H (B<^n) form a solution of 
x2-{a2—l)y2=N, every solution in positive integers is given by 

x+yVa2-1 = (K+HVa2— 1)(a+ ^a2— l)m, m=0, 1, 2, • ••. 

Let a2—Dft2= 1, p+0. Multiplying x2—Dy2—N by ft2, we get 

(px)2-(a2-l)y2=Np2, 

whose solutions are derived from one by the preceding formula, viz., 

x+yJD= (JC+ff Vz>)(«+/S Voj m, m—0, 1, 2, 

When N is changed to —i\7, the same formulas hold if we replace X by =bi£, 
where, in the final formula, H < VF(a+l)/2Z). Tchebychef sm first result 
is a corollary. 

Algebra, 2,1889, 450-60; ed. 2, 2, 1900, 478-66. 
807 Bull, des Sc. Math., (2), 14,1, 1890, 215-8. 
808 Periodico di Mat., 6, 1891, 85-90. 
109 Ibid., 169-180. 
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Frattini210 reduced the solution of x2—Dy2=N to the solution of one 
of the equations x2—Dy2=Npx7 where p=2m+T—7i>0, m2 being the largest 
square <D-m2+n. Let x7y be a solution of the given equation such that 
y^4N/p. Then x^(m+l)y. Let x~{m+l)y—hf whence 0. Then 
our equation becomes a quadratic for y; the radical in the root y must be 
an integer k. Thus 

A(m+l)±i v-DW=Np. 
P 

The sign before k must be plus. Hence if y^ V]\r/p, and if k, h give positive 
integral solutions of x2—Dy2=Np, positive integral solutions of x2—Dy2~N 
are given by 

x+y^D=f(k+h^D), f={m+l+^D)lP. 

Applying this result to the new equation, we conclude that, if fiS VA, posi- 
tive integral solutions of the proposed equation are given by 

x+y*fD~f2(k'+hrJ5), 

kr7 hf being positive integral solutions of x2—Dy2=Np2. The reciprocal of/ 
is m+1— Thus we finally reach an equation x2—Dy2—Npx with 
a solution y exceeding ^N^Jp, and hence a solution of the proposed equa¬ 
tion. 

Frattini211 used similarly x2—Dy2=N(—ri)x, \ = 1, 2, *•*, to solve 
x2—Dy2=N, and applied the two methods to x2—Dy2 = —N. He212 deduced 
the theorem of Tchebyehef.131 

Frattini213 supplemented and interpreted geometrically the theorem of 
Tchebyehef. From Frattini209 we derive the result: If 0, qlf q2y •«• are* 
values of y in successive positive integral solutions of x2—Dy2— 1, the series 
0, (jiVF, q2 *>[N, • • • separate the positive integral solutions of x2—Dy2~N 
in such a way that the number of solutions, in which y equals or exceeds 
any number of that series and is less than the following, is constant. The 
geometric interpretation is that the vectors of the successive solutions of 
x2—Dy2~l divide the angle between the positive tc-axis and the line of 
slope 11 *4d into consecutive angles each of which contains an equal number 
of points with integral coordinates satisfying x2—Dy2~N. Again, if 1, 
Pi, V2, • • * are the values of x, the series 0, VA(pi+l)/2Z), VA(p2+l)/2A 
• • * separate the solutions of x2—Dy2~ —N as before; for interpretation, 
use the y-axis instead of the x-axis. 

C. A. Roberts214 gave only the denominators of the continued fractions 
for Vp, where p is a prime 4n+1^10501 (thus giving what corresponds 
only to the first line of each entry in the table by Degen,101 and not the least 
solution of x2—py2 = zh 1). The introduction to the table is by A. Martin. 

210 Periodic© di Mat., 7, 1892, 7-15. 
511 Ibid., 49-54, 88-92,119-22. 
212 Ibid., 123-124,172-7. 
m Atti Reale Accad. Lincei, Rendieonti, (5), 1,1892, Sem. 1, 51-7; Sem. 2, 85-91. 
214 Math. Magazine, 2,1892,105-120. 
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E. Lemoine215 proved that all positive solutions of x2+l = 2y2 are given 
by xn=Nzn-i+Ntn, yn=N 2n, where Nn~ia+NJ> is the nth term of the series 
Ui—a, u2 = b) • • ♦, un = 2un-i+un-2, so that 

JV2n_1=2^-H(2w1_4)22n_5+(2rT4)22n_7+' ’ '+(>-l)2’ 

iV2„ = 22»-2+ ( 2nj“ 3 ) 22"~4+ ( 2n “ 3 ) 22n_6+ • • -+(llZl)22+l- 

If x, y is a solution of x2+l = 2y2, then x+2y, x+y is a solution of x2—1 = 2y2 
and the same holds if the equations are interchanged. 

G. B. Mathews,216 employing the fundamental solution (T, U) of 
t2~Du2=<r2j and the notation of hyperbolic functions, put 

4> = cosh-1 (Tja) =sinh-1 (U^D/a). 

Then the general solution is T„= <r cosh n<f>, Un = {<rj^D) sinh ruj>. 
K. Schwering217 started with Jacobi’s elliptic function x=sin amn, the 

function inverse to 

and an “odd” integral complex number rj=a+bi, where a is odd and b 
even, so that q=a2+b2 is odd. Then 

sin am (yu) = =fc 
xq+alx<t~*+a2x<lr~*-\-\-ajc 

l+aiX4+a2x8H-b a,#4”1 

x</>(x4) 

x(^4)f 
If t) is a complex prime of the form +k+Z+{+k!+2)iy then <#>(x4), on which 
depends the division of the lemniscate by 17, is factorable into 

<£(x4) = F2— tjZ2. 

Let g be a primitive root of the prime q} so that gv^i (mod 77). Taking 
x = 1, we get odd complex integral solutions t, u of t2—rju2=2i(—l)indcl+i) 
By squaring t+^qu we get complex integral solutions of T2—r]U2=l. 

H. Weber218 employed the modular equation (an algebraic equation in u 
and v of degree 24 in each) which holds between the two elliptic functions 
u =/(<*>), t>=/(23co), to deduce the identity X2M—Y2N—1, 

2X= (B — l)(J5—4)(B2—4B+2), ilf=B3-5£2+8£~5, 

2F=(B—3)(B3—6J52+10J5—6), N=B3-5B2+4JB-1. 

Squaring X^M+YV/V, we get x+y VI), where x2—Dy2= 1, D=MN. 
C. E. Bickmore219 computed (for a committee of which A. Cayley was 

chairman) a table, extending Degen’s101 and showing, for 1001 1500, 
the least solutions of y2=ax2—l when a is not of the form t2+l (in the 
contrary case, y=t, x= 1, give a solution), and, when the latter is not solv- 

m Jomal de Sc. Math, e AsU. (ed., Teixeira), 11,1892, 68-76, 115. 
218 Theory of Numbers, 1892, 93. 
217 Jour, fiir Math., 110, 1892, 63-4 (112, 1893, 37-8). 
418 Math. Annalen, 43, 1893,185-196. 
218 Report British Assoc, for 1893,1894, 73-120; Cayley’s Coll. Math. Papers, 13,1897, 430- 

467. Errata by Cunningham.288* 308 
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able, the least solutions of y2 = ax2+1. From a solution of the former we 
get the solution yi = 2y2+l, xx — 2xy of y2i = axl + l. 

A. Hurwitz220 proved that the positive relatively prime solutions of 
u2—Dv2 = m, where | m | < 2 VS, are given by the fractions u/v approxi¬ 
mating to V5, where ujv and r/s are said to form a pair of fractions approxi¬ 
mating to a; if a; lies between them and if su—rv~ 1. 

A. H. Bell221 found a special solution of x2 = Ny2+1 by setting 

x— — 1+Nym/n, 

whence y = 2mnj(m2N—n2) and asked when the denominator is unity. 
He treated the case N = 94 and x2—61y2= —1. 

Emma Bortolotti222 noted that a root of a quadratic equation with dis¬ 
criminant A and having as coefficients polynomials in x can be developed 
into a periodic continued fraction whose elements are linear functions 
of x if and only if Av?—v2~l is solvable in polynomials u, v in x. If A is 
of odd degree in x} the latter equation is evidently impossible. 

A. Meyer223 noted that if t2—Du2 — l has a fundamental solution T, U, 
in which V is relatively prime to a divisor D1 of D, it has solutions in which 
u is congruent modulo Dx to an arbitrarily given number. 

G. Speckmann224 employed the identity 

(na?±mY-{ —) (ax)2 = m2, 

for ra=l, and called the resulting solutions of PelTs equation regular if 
x=l and irregular if x2 is a divisor > 1 of n2a?dtz2nm. To solve x2—Dy2 = M 

(M#square), he sought a square rj2 such that M+v2 is a square £2; then 
a solution is x=£+kri2, y^y, if D-l+2k£+k2ri2. 

G. Frattini225 discussed the solution of x2—Ay2 — 1, where A is a poly¬ 
nomial in u, especially when A is of degree 2 or 4. 

Ch. de la Vall6e Poussin226 indicated the advantage in using continued 
fractions in which all but the first quotient are negative integers. 

G. Speckmann227 noted that the fundamental solutions T, U of t2—Du2 — 1 
are T=z+2, (7=1, if D = x2+4x+3; T=2x+3, (7=2, if D=x2+3x+2; 
etc. He noted identities like 

{no?+m)3 — (n3a6 -f'3mn2a3+3m2n) a3=m3. 

A. Palmstrom228 gave many recursion formulas and relations between 
sets of solutions of (a+2)z2— (a—2)?/2 = 4. If xh yx are the least positive 

220 Math. Annalen, 44, 1894, 425-7. 
221 Amer. Math. Monthly, 1, 1894, 53-4, 92-4, 169, 239-240. 
222 Rendiconti Circolo Mat. Palermo, 9,1895, 136-149. 
223 Jour, fur Math., 114, 1895, 240. 
224 Ueber unbest. Gleichungen, Leipzig and Dresden, 1895. 
225 Giornale di Mat., 33, 1895, 371-8; 34, 1896, 98-109. 
228 Annales Soe. Sc. Bruxelles, 19, 1895, 111. 
227 Archiv Math. Phys., (2), 13, 1895, 327-333; 14, 1896, 443-5. 
228 Bergens Museums Aarbog for 1896, Bergen, 1897, No. 14, 11 pp. (French). 
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solutions of x2—Ay2= — 1, then 

(4xf+4)(fx),_4fl3(S)*“4’ 
so that y/yh x\xx have the same properties as the above x, y, where now 
a=4#i+2. If xx is the least positive integer for which x2—Ay2 = 1, we see 
that, by taking a=4xl—2, the solutions of odd rank have the same proper¬ 
ties as the solutions of x2~Ay2-— 1. 

C. Stormer229 quoted the known result that, if a, b are the least positive 
solutions of x2—Ay2 = —1, other solutions are given by 

Z2n+l + y2n+l VA = (d + b VZ)2n+1, _ 

and solutions of x2—Ay2=+l are given by ^2n+2/2n VA = (a+&VZ)s». He 
proved that 

a—ft = 2 tan-1 —, aJr(3 = 2 tan”1 —, a=tan”1——, /?=tan”1——. 
z2n Vin X2n-1 Z2n+1 

Stormer230 noted that if x2—Dy2= dtl (D>0) has positive integral solu¬ 
tions and yx is the least y, either there is no solution y such that eveiy 
prime divisor of y divides also D, or there is only one such solution, viz., yx. 

A. Thue231 proved that in x2—Dy2=m the least positive y is ^=v4m, 
where v is a positive number for which u2—Dv2 = l, provided D is not a 
square and u> 1. 

A. Boutin232 tabulated the periods of continued fractions for Vra, 

200, and when n is one of 30 special quadratic functions of a parameter 
[cf. Stem109]. He233 gave the complete solution of y2— (m2—l)x2 = l, with 
details when m=2. 

H. Brocard234 gave references to problems depending on x2—2y2=dtzl. 
E. de Jonqui&res235 proved by the use of binary quadratic forms that 

(a2—A)x2—42/2 = dbl is not solvable if a+3, that (a2—l)x2—4?/2 = =tl is 
not solvable [error for —1], that (a+l)x2—ay2 = l (a>0) has the least 
solutions z=4a+l, 2/ = 4a+3, that (wa2dbl)x2—my2 = del has the least 
solutions z = 4ma2dbl, t/ = 4ma3±3a, and gave long expressions for solutions 
of (ma2±A)x2—my2 = ± 1 (a and m odd). The method employed is similar 
to that of Gauss (Disq. Arith., art. 195), but with the variation (inspired 
by Legendre) that he omitted from the period of neighboring reduced 
forms those having the middle term zero. He applied (pp. 1077-81, 1177) 
Gauss7 method of reduction to (ma2+4)x2—my2 = 1. He gave (p. 1837) 
values of D for which t2—Du2- —1 is solvable in integers: D-a2(n2~\-l), 
D=4n2+4?i+5, where a is a divisor of any term of odd rank in the recurr¬ 
ing series having G, 1, 2n as initial terms and having 2n, 1 as the scale of 
relation. It is not solvable if D=a2(n2+1), n a multiple of a. 

229 Nyt Tidsskrift for Math., 7, B, 1896, 49. 
230 Videnskabs-Selskabets Skrifter, Christiania, 1897, No. 2, 48 pp. Cf. Stormer.274 
281 Archiv for Math, og Naturvidenskab, 19, 1897, No. 4. 
282 Mathesis, (2), 7,1897, 8-13. 
238 Ibid., (2), 8,1898, 159-161. 
284 Ibid., 112-3. 
286 Comptes Rendus Paris, 126, 1898, 863-871, 991-7 (correction, 132, 1901, 750, and Finter- 

mSdiaire des math., 8, 1901, 108). 
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De Jonquieres236 noted that a solution of t2—Du2 — — 1 or — m2 can be 
found from two similar transformations of a quadratic form (A, B, C) into 
(a, b, c) or its inverse (— a, b, — c). 

It. W. D. Christie237 found the least solution of x2—10Zy2 = l. 
G. Ricalde238 stated that if x = l, xh x2, • • •; y=0, ylf y2, * • * are the 

integral solutions of x2—Ay2~l (A not a square), 2(x2n-f 1) is a square t2 
and y2n is a multiple of t; if 2(x27l+1—1) is a square for one value of n, it is 
a square &2 for every n, and y2n+1 is a multiple of &, and one has the solutions 
of u2—At?- — 1. A. Palmstrom (pp. 210-11) noted that the first statement 
follows from 

x2n+y2n VI = Oi+2/i VI)2” = (i»+VI)2, x2n=xl+Ayl = 2xt-l, 
y2n = 2xnyn. 

As to the second statement, Palmstrom proved that I (xi^Fl) are 
squares, whence 2(x2n+i~1) is a square for every n if fbr one n. If ni7 tu 
are the least solutions of u2—Av2= — 1, 

^2n+l+2/2n+l (Wi + y! VZ)4n+2 = (wn+l + ^n+l VZ)2 _ 

= 2n*+i+l+2wn+it;n+i VA, 

so that 2(rr2n+x—1) is a square. But the latter may be true when 

u2—Av2= —1 
is impossible. 

A. Goulard239 proved that, if m is odd, 2(xmp—1) is a square if and only 
if 2(xp—1) is a square. The latter is not a square if p is even, while, for 
p odd, it is a square if and only if v^—Av1— —1 is solvable. 

A. Cunningham and R. W. D. Christie240 each noted that X2—pY2 = l 
becomes x2~py2=ZJr2 under the transformation X=x2dbl, Y=xy. Then 
if p is a prime, it is of the form 8n+3 or 8n—1 according as the upper or 
lower sign holds. By choosing values of x, y, we get solutions of the 
proposed equation. 

C. de Polignac241 proved that if t1} ux are the least positive solutions of 
<2—jDu2=1, where D is positive and not a square, and tn) un any other 
solutions, there exists a linear substitution xx= (QiX+Si)/(PiX+Ri) whose 
nth power xn = (Qnx+Sn)j(Pnx+Rn) gives tn = Qn, u*=PB/wi. 

G. Ricalde242 gave the identities solving x2—Ay2—l: 

(k2n±l)2-n(k2n±2)k2 = l, (8n+25)2 - (4n2+25n+39)42 = 1, 

{8[n3+(n+l)a J+1}2—[(2n+1)2+4] {4[n3+ (ft+1) 3X7l2+ (^+1)2]}2 = 1, 

as well as those due to Euler.65 He and others243 made minor remarks on 
the linear relations between three successive solutions of x2—ai/2= ±1. 

236 Comptes Rendus Paris, 127, 1898, 596-601, 694-700. Slightly different from Gauss.93 
237 Math. Quest. Educ. Times, 70,1899, 51. 
238 L’interm&liaire des math., 6,1899, 75. 
939 Ibid., 7, 1900, 93. 
340 Math. Quest. Educ. Times, 73, 1900,115-7. 
941 Ibid., 75,1901, 67-8. 
949 L’interm^diaire des math., 8, 1901, 256. The third identity lacked the first exponent 2. 
943 Ibid., 59, 286-7. 
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A. Boutin244 noted that, if A is a properly chosen quadratic function of m, 
x2—Ay2— ±1 are solved completely by an infinitude of polynomials in ?n, 
which satisfy certain differential equations of order two. Thus for 

y2 — (m2+l)z2=l, y2 — (m2+l)x2= —1, 

the recurring series 

x0 = O, a?i = l, •••, xn — 2mxn-i+%n-2; yi = m, •••, yn = 2myn-1+yn-2 

for even indices solve the first equation, and for odd indices the second. 
As functions of m, xn and yn satisfy the differential equations 

(mH1)£+3m^_(n2“1K=0’ (w2+1)«+wlf“n2^=0- 

Similar remarks are made for A = 25m2—14m+2 and for x2—Ay2 — 1, 
A — m2—l, ma2+2, m(ma2+l). 

J. Romero245 noted that (ny2Azx)2 — (n2y2zL2nx+A)y2- ±1 if 

x2—Ay2= ±1. 

A. S: Werebrusow noted that in x2—Ay2 — zkl, A may have the form 
a2/m2-\-2bmJrc if b2—a2c= ±1. 

A. Holm246 employed the (n+l)th divisor Dn when VC is converted 
into a continued fraction the length of whose period is c. Let pCi qc be the 
fundamental solution of x2—Cy2=1. From one solution pn, <?« of 
z2—C2/2=(—l)n-Dn we get all the solutions by use of 

a:-2/VC= ± (p„a/C) (pc-gc VC) ™ 
where, if c is even, m ranges over all integers, positive, negative or zero; 
while, if c is odd, m ranges over only the even integers. 

H. Weber247 treated t2—Dw2=dt4 from the standpoint of quadratic 
numbers where t and u are integers. 

Necessary or sufficient conditions that x2—Dy2= — 1 be solvable have 
been noted.248 

E. B. Escott asked and A. S. Werebrusow249 replied for what values of 
a, by • • • is [a, 6, • • •, a]/[6, c, ••*,&] integral (cf. Dirichlet’s Zahlentheorie 
p. 49). 

P F. Teilhet250 stated and several proved that if 0 is a root of t2—3/32 = l, 
and /34=0, then 6/32+1 is not a square. Hence n{n-\-l){n+2) =3A2 is 
impossible. 

P. von Schaewen251 m&de Ax2+Bx+C a square in the following cases 
(in which D=B2—4AC): (i) A=n2Ai, D = m2Dh Ai+Z>i= □ ==g2, since 

244 L’intermediaire des math., 9, 1902, 60-62. 
245 Ibid'., p. 182. 
246 Proc. Edinburgh Math. Soc., 21,1902-3, 163-180. 
247 Archiv Math. Phys., (3), 4, 1903, 201; Algebra, I, 1895, 395-400; ed. 2, 1898, 438-443. 
248 L’intermgdiaire des math., 10, 1903, 102, 224; 11, 1904, 156-8, 242; 12, 1905, 53-6, 

249-250; 13, 1906, 243-7 (Werebrusow’s results are erroneous). 
249 Ibid., 10, 1903, 98; 11, 1904, 154-6. 
™IHd., 11, 1904. 68-9, 182-4. 
261 Zeitschr. Math. Naturw. Unterricht, 34, 1903, 325-34. Progr. Gym. Glogau, 1906. 
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is of Euler’s form P*+QR. (ii) C+D=D. (iii) -AD= □. (iv) 
-CD= □. (v) One of A(l-D), C(l-D), D(l-A), D(l-C) a square, 
and the generalizations to D = m?Du Ail—DJ = □ =q2 (etc.), since then 

(mq\ ( B+m\f B—m\ 

R. W. D. Christie252 noted that, if ad—bc~±l, a2+b2 — P, x2+l=Py 
is satisfied by 

x=nP+Q, y = n2P+2nQ+c2+d2, doQ^ac+bd. 

The problem is now to choose a, 6, c, d to make y = □. He and others 
(p. 87) solved x2—149y2—1 without using continued fractions. He and 
E. B. Escott (p. 119) gave the identity 

{k(4n2a2T4na+4?i2+1) + (2nazPa+2n) }2+l 

= j (2na T1)2+ (2ri)2} {(2kn+1)2+ (2hna ^Fk-jr a)2}2. 

Christie253 noted that if p»/g» is a convergent to VI), where D is a prime 
4ra+l, then q2n+i=zql+ql+i [of. Euler,72 end]. 

G. Frattini,254 employing a positive integer D and positive rational 
numbers E, F, defined the index of E+F^D to be the maximum number 
of such factors into which it can be decomposed. If one solution a, @ of 
x2—Dy2 = 1 is known, all solutions of x2—Dy2=N are given by 

x+y^D= (cc+p-'JD)k(x'±y/ Vd), 

where the index of the particular solution x', y' does not exceed half the 
index of the solution of the Pell equation. But we may regard as known 
the solutions whose indices do not exceed a given limit (depending only on 
a finite number of trials). 

Frattini255 extended the preceding results to the algebraic case in which 
Dy Ny x, y are polynomials in a parameter a. Finally, he proved that, if 
I) is a positive integer or a polynomial of even degree in a, x2—Dy2 — 1 is 
solvable if and only if VZ) is developable into a simple periodic continued 
fraction such that 

V5= («!, o2, • • •, a„, c+ V5), 

where the a' s and c are integers if D is integral, otherwise polynomials in a. 
A. Cunningham256 gave the least solutions of both r2—Du2 = ± 1, D < 100, 

from Degen's101 table, but checked by Legendre's88; also further (multiple) 
solutions for D^20; also the least odd solutions of r2—Du2 = ±2, ±8, ±16 
for D<500, and D = ±4 for D<1000 (computed from data in Degen's 
table). He noted three errors in the table by Bickmore.219 

Cunningham and Christie257 showed how to find an infinitude of integers 

252 Math. Quest. Educ. Times, (2), 6,1904, 98-101. 
mEduc. Times, 57,1904, 41. 
264 Periodico di Mat., 19, 1904,1-15. 
mIbid.} 57-73. a. Frattini,283 H. E. Heine, Jour, fiir Math,, 48, 1854, 256-8. 
256 Quadratic Partitions, 1904, 260-6. 
457 Math. Quest. Educ. Times, (2), 7,1905, 79-80. 



Chap. XII] Pell Equation, ax2+bx+c = CL 395 

Xn having the same Y in Xl~~PnY2= —1. They and A. H. Bell258 solved 
x2—19y2= —3 without using the usual convergents. 

Cunningham259 used known solutions of y2—Dx2= — 1 to factor numbers 
of the form y2+1. 

A. Aubry260 give a history and exposition of the Pell equation. 
J. Schroder261 noted that if PJQa (a = l, 2, • • •) are the convergents to 

1+- - 
X^k+k+---, 

holds only for k — 2. P. Epstein (p. 310) noted that this result for ft = 2 is 
a case of the known relation between the general solution of x2—Dy2=zk 1 
and its least solution. It is also a case of the following theorem. If 
D = a2-\-b, and b is a divisor of 2a, while Zk/Nk are the convergents to V35, 
then _ 

(VD-a)‘= (-1 y-'bim(Nk'lD-Zk). 

Several writers262 discussed the p’s for which x2 — (y2—l)p2 = 1 is. solvable. 
A. H. Holmes263 noted that 41 is the least prime y for which 

7x2~m = t/2. 

A. Holm264 noted that, if p, q give a particular solution of x2—Cy2= ±D, 
and r, s one of x2—Cy2— 1, all positive solutions of the former are given by 

x—2/Vc=±(p—5VC)(r—sVC)n, ?i = 0, ±1, ±2, ••• 

R. W. D. Christie265 noted that if we set x=cos 0, y=sin 0, 

X2 = cos 2d=2x2—l, X3 = cos 30=4 cos3 0—3 cos 0 = 4z3 —3x, • • •, 

F2 = sin 2d = 2xy> 73=sin 30= (4 cos2 0 — 1) sin d = 4x2y—y, •••, 

which give the successive sets of solutions of X*—PF«=1 if Xi=z, Fi = p 
is the first set [cf. Wallis,48 Euler65]. This was verified for any n. 

Christie266 proved that, if pn, qn are any convergents of p*—2g£= dtl, 

2 tan" dbtan-1—— =~~2 tan"1-^- ± tan"1——. 
Qn+1 Pin+l 4 Pn+l P2n+1 

Christie267 noted that successive solutions of X2—pF2=1 are given by 

X^n-f-l — 2xXn Xn—1, Yn+l = 2iXYn Y n— lj 

the initial solutions being 1, 0; x, y. From a solution of x2—601p2= — 1, 
one of X2—601F2=1 is found (pp. 54-5). 

268 Math. Quest. Educ. Times, (2), 8, 1905, 28-30, 58. 
289 Ibid., 83; Mess. Math., 35,1905-6,166-185. He noted (p. 183) eight errata in Degen’s101 

table and various errata in Legendre’s88 tables of 1798 and 1830, including A =397 
(cf. A. G6rardin, Pinterm6d. des math., 24, 1917, 57-8). 

260 Mathesis, (3), 5, 1905, 233. 
261 Archiv Math. Phys., (3), 9, 1905, 206-7. 
262 L'interm6diaire des math., 13, 1906, 93, 229-230; 14, 1907,136. 
283 Amer. Math. Monthly, 13, 1906, 191 (148-9 for erroneous solution). 
264 Math. Quest. Educ. Times, (2), 10, 1906, 29. 
268 Ibid., (2), 9, 1906, 111. 
268 Ibid., 52-3. 
287 Ibid., (2), 11, 1907, 39. Cf. p. 96. 
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A. Auric268 developed into a continued fraction the root of any quadratic 
equation of discriminant A; it is a question of factoring t±2, where t, u 
give the least solution of t2— Aw2=4. 

B. Niewenglowski269 noted that x2—ay2= — 1 is solvable if and only 
if the least positive integral solutions of x2—ay2=+l are pf the form 
x — 1+2u2, y = 2uv. The latter represents an hyperbola; if P and Pi are 
points on it with integral coordinates, the line through P parallel to the 
tangent at Pi cuts the hyperbola in a new point with integral coordinates. 

A. Cunningham270 gave tests for the divisibility of solutions of 

by a prime. 
The existence of a fundamental solution of Pell’s equation is a corollary 

to Dirichlet’s theorem on the units in any algebraic field. For the case of 
a quadratic field, reference may be made to J. Sommer’s271 text. 

“ E. A. Majol ”272 gave eight values, 75,78, 321, • • •, of A for which there 
is a common prime divisor 4m+3 of A and y in the fundamental solution of 
x2-*Ay2—1. 

A. Boutin273 gave the period of the continued fraction for V2 for many 
forms of A, chiefly quadratic functions of a, and for various such s 
listed the least solutions of x2—Ay2=±l. He listed the values of N, 
0<Ar<1023, for which x2—Ny2~ —1 is solvable, a necessary and sufficient 
condition for which is that there be an odd number of terms in the period 
of incomplete quotients in the development of VA. 

*C. Stormer274 gave a simple proof of his230 theorem and applied it to 
solve the following problem: Given the primes p1 • • *, pn, find all positive 
integers A for which N(N+h) is divisible by no prime other than pi, • * *, p* 
when h=1 or 2. This is solved by the theorem that, if a = l or 4, all posi¬ 
tive integral solutions x of x2—1 = api1* • -p*“ occur among the fundamental 
solutions of the equations x2—Dty2 = l(i=ly ••*, v)y where Pi, • • •, Dy 
are all the values of ap[l • • •p** when e1} •••,€* take independently the 
values 1, 2. 

G. Fonten.4275 proved that, if a, b give the least positive solutions of 
x2—ky2=1, all solutions are given by x+y — (a+6 V&)n; the proof is 
essentially the classic proof, but follows the proof by Mile. J. Borry (ibid,, 
13,1907, 316). 

A. Chatelet276 proved by an elementary formulation of the classic method 
of solution by continued fractions that, if k is not a square, x2—ky2 — l is 
always solvable. 

”* Bull. Soc. Math, de France, 35, 1907, 121-5. 
289 Ibid., 126-131; Wiadomosci Mat. Warsaw, 12, 1908,1-26 (Polish). 
870 Report British Assoc, for 1907, 462-3. Cf. Cunningham.281 
871 Vorlesungen iiber Zahlentheorie, 1907, 98-107, 113, 338-45, 355-8; French transl. of 

revised text by A. L6vy, 1911,103-113,119, 351-7, 370-3. 
878 L’interm6diaire des math., 15,1908,142-3. 
878 Assoc, frang. av. sc., 37,1908, 18-26. 
874 Nyt Tidsskrift for Mat., 19, B, 1908,1-7; Fortschritte der Math., 39,1908, 246. 
875 Bull. math. 416mentaires, 14,1908-9, 209-212. 
876 Ibid., 307-331. 
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R. W. D. Christie277 expressed the solutions of x2—5y2 — ±4 in terms of 
fifth roots of unity. He and others278 obtained a double infinitude of frac¬ 
tional solutions of x2—py2 = l from one integral solution: 

(XY n(py-y+2\2 , 2py~p±l 
\z) ^ \ (p+l)z / ' p+1 

E. B. Escott and A. Cunningham279 factored u8i in tl—2ul = ( — l)n. 
Christie and Cunningham280 proved that, if pl~2ql = ±1, 

(PnPn+i)2+(2qnqn+i)2 = qln+i) PnPn+i-2qnqn+i = ±l. 

Cunningham281 applied his270 method to factor % in tJ—2t£ = l, and 
gave further examples of the factorization of solutions of Pell equations. 

Cunningham282 noted relations between the solutions of x2—3y2= —2, 
z2—Sw2=1, in connection with the factorization of (a6+2766)/(a2+362). 

G. Frattini283 proved that if D and N are polynomials in a, and D is 
of even degree, and if x2—Dy2 — l has a known solution in polynomials 
in a, then all solutions of x2—Dy2 ~ N can be found from one. 

G. FontenA84 noted that, if a, b give the least positive solution of 
x2—ky2 = 1, 

xn — 2axn—i xn—2} yn=2cjyn_i y-n—2* 

A. L6vy285 gave another proof of the result proved by FontenA275 
A. G6rardin286 noted that, if tl—dul-1, 

U^n—^Untn — tiU^n-x + Uit^n-li tn = 2t}tn-.1 — £n_2, -^L-1.-lit1 = {~ll \ — 1 
Ui Ui \Ui / 

tn t]tn—\~\~d%L\Lln—x, Un ti'll/U\tn—1, ^2» ^ in~\~dunJ 

tn—ltn+1== in~i~dUi. 

Each ujjux is a composite integer. For fl—dgl= — 1, 

fn = (4/o + 2)/n_i —fn-2 ~ (2/o + l)/rt-l+2d/ 

Qn = (2/ 0 + 1) Qn—1 + 2/o^o/n-l* 

G. Ascoli287 gave an elementary treatment of ax2+bx+c=y2. 
F. Ferrari288 cited known results leading to a practical method to find 

all integral solutions of x2—Dy2= zbl in the solvable cases. 
W. Kluge289 proved that for the integral solutions of 

_°xl - 2kxnyn-yl=(-l)np_ 

277 Math. Quest. Educ. Times, (2), 13, 1908, 35-6. 
278 im, (2), 14, 1908, 56. 
™Ibid., 105-6. 
280 Ibid., (2), 15, 1909, 74-75. 
281 Ibid., 95-6; (2), 17, 1910, 64^5. 
282 Ibid., (2), 17, 1910, 110-2. 
288 Atti del IV congresso internaz. dei mat., 2,1909, 178-182. Cf. Frattini.265 
284 Bull. math. 416mentaires, 15, 1909-10, 65. 
286 Ibid., 66. 
288 Sphinx-Oedipe, 5, 1910, 17-29. 
287 Suppl. al Periodico di Mat., 14, 1910-11, 33-8. 
288 Ibid., 69-75. 
289 Verhandlungen der Versammlung deutscher Philologen und Schulmfinner, Leipeic, 51, 

1911,135-7. Unterrichtsblatter Math. Naturwiss., Berlin, 19,1913, 9-11. 
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A. Auric268 developed into a continued fraction the root of any quadratic 
equation of discriminant A; it is a question of factoring tzb2, where t, u 
give the least solution of £2—Aw2=4. 

B. Niewenglowski269 noted that x2—ay2= — 1 is solvable if and only 
if the least positive integral solutions of z2—ay2= +1 are of the form 
x = l+2u2, y—2uv. The latter represents an hyperbola; if P and Pi are 
points on it with integral coordinates, the line through P parallel to the 
tangent at Px cuts the hyperbola in a new point with integral coordinates. 

A. Cunningham270 gave tests for the divisibility of solutions of 

r2—Dz^ = zfcl 
by a prime. 

The existence of a fundamental solution of Pell’s equation is a corollary 
to Dirichlet’s theorem on the units in any algebraic field. For the case of 
a quadratic field, reference may be made to J. Sommer’s271 text. 

“ E. A. Majol ’,272 gave eight values, 75, 78, 321, • • •, of A for which there 
is a common prime divisor 4m+3 of A and y in the fundamental solution of 
x2—Ay2—l. 

A. Boutin273 gave the period of the continued fraction for VZ for many 
forms of A, chiefly quadratic functions of a, and for various such A1 s 
listed the least solutions of x2—Ay2=dil. He fisted the values of N, 
0< IV <1023, for which x2—Ny2= —1 is solvable, a necessary and sufficient 
condition for which is that there be an odd number of terms in the period 
of incomplete quotients in the development of V3V. 

*C. Stormer274 gave a simple proof of his230 theorem and applied it to 
solve the following problem: Given the primes px •••,£»> find all positive 
integers N for which N(N+h) is divisible by no prime other than px> * • *, pn 
when h=l or 2. This is solved by the theorem that, if a = l or 4, all posi¬ 
tive integral solutions x of x2—l = aps1l- • occur among the fundamental 
solutions of the equations x2—Diy2 —1(£=1, • • •, v), where Dx, • • •, A 
are all the values of ap? • • -p*nn when ex, • • •, en take independently the 
values 1, 2. 

G. Fonten#575 proved that, if a, b give the least positive solutions of 
x2—ky2=l, all solutions are given by x+y (a+b ^)n; the proof is 
essentially the classic proof, but follows the proof by Mile. J. Borry (ibid., 
13,1907, 316). 

A. Chatelet276 proved by an elementary formulation of the classic method 
of solution by continued fractions that, if A; is not a square, x2—ky2~l is 
always solvable. 

268 Bull. See. Math, de France, 35, 1907, 121-5. 
189 Tbid.t 126-131; Wiadomosci Mat. Warsaw, 12,1908,1-26 (Polish). 
270 Report British Assoc, for 1907, 462-3. Cf, Cunningham.281 
271 Vorlesungen iiber Zahlentheorie, 1907, 98-107, 113, 338-45, 355-8; French transl. of 

revised text by A. L6vy, 1911, 103-113, 119, 351-7, 370-3. 
272 L’interm&liaire des math., 15,1908, 142-3. 
273 Assoc. fran<j. av. sc., 37,1908, 18-26. 
274 Nyt Tidsskrift for Mat., 19, B, 1908, 1-7; Fortschritte der Math., 39, 1908, 246. 
875 Bull. math. 61<§mentaires, 14,1908-9, 209-212. 
879 Ibid., 307-331. 
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R. W. D. Christie277 expressed the solutions of x2—5y2~zk4 in terms of 
fifth roots of unity. He and others278 obtained a double infinitude of frac¬ 
tional solutions of x2—py2 — 1 from one integral solution: 

(zY-nf vy-y+2Y 
\z) P\ (p+1)* / -h 

_2 py-p+1 
(p+l> / p+1 

E. B. Escott and A. Cunningham279 factored in 2ul = (- 
Christie and Cunningham280 proved that, if pi—2ql = ±1, 

(VnPn+i)2+(2qnqn+1)2 = qln+h pnpn+1-2qnqn+1 = ±1. 

■1)«. 

Cunningham281 applied his270 method to factor v66 in rf-2yft = l, and 
gave further examples of the factorization of solutions of Pell equations. 

Cunningham282 noted relations between the solutions of x2—Sy2 = —2, 
22—3w2=l, in connection with the factorization of (a6+27fc6)/(a2+3b2). 

G. Frattini283 proved that if D and N are polynomials in a, and D is 
of even degree, and if x2—Dy2=l has a known solution in polynomials 
in a, then all solutions of x2—Dy2=N can be found from one. 

G. Fonten6284 noted that, if a, b give the least positive solution of 
x2—ky2 = 1, 

xn=2axn-i—Xn-2, yn = 2ayn-1-yn^ 

A. IAvy285 gave another proof of the result proved by Fontene.275 
A. G6rardin286 noted that, if %—dul— 1, 

«2n=2«X = f1M1!„_1+M1f!.n_1, = —■^=±i= f-V-1, 
Ui Ui \Ui J 

tn titn— Un ^i^n—lj ^2n— t>n~\~dunj 

tn—ltn+l = tn~\~dUi. 

Each uk[ui is a composite integer. For fl—dgl — — 1, 

fn = (4/o + 2)/n_l fn—2 = (2/o + l)fn-l+2df 

<7« = (2/o + l)^n-l+2/o^o/n-l» 

G. Ascoli287 gave an elementary treatment of ax2+bx+c=y2. 
F. Ferrari288 cited known results leading to a practical method to find 

all integral solutions of x2—Dy2—± 1 in the solvable cases. 
W. Kluge289 proved that for the integral solutions of 

*xl—2kxnyn ~yl— (-1 )np 

277 Math. Quest. Educ. Times, (2), 13, 1908, 35-6. 
278 Ibid., (2), 14, 1908, 56. 
279 Ibid, 105-6. 
280 Ibid., (2), 15, 1909, 74-75. 
281 Ibid., 95-6; (2), 17, 1910, 64-5. 
282 Ibid., (2), 17, 1910, 110-2. 
288 Atti del IV congresso internaz. dei mat., 2, 1909, 178-182. Cf. Frattini.265 
284 Bull. math. <$16mentaires, 15, 1909-10, 65. 
286 Ibid., 66. 
288 Sphinx-Oedipe, 5,1910, 17-29. 
287 Suppl. al Periodico di Mat., 14, 1910-11, 33-8. 
288 Ibid., 69-75. 
289 Verhandlungen der Versammlung deutscher Philologen und Schulmfinner, Leipeic, 51, 

1911,135-7. Unterrichtsblatter Math. Naturwiss., Berlin, 19,1913, 9-11. 
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the relations yn+1=xn, xn+1=2kxn+xn-.1 hold. To apply to tl—Dul = (—l)n, 
when D=/c2+l, make the substitution tn = kun+vn; then un, vn satisfy the 
initial equation with p = -1. Hence un+1 = 2kun+un-i, tn+1 = 2ktn+tn-i> 

A. Cunningham290 discussed the values of D for which 

(a6±l)2~(a±6)2=0 (mod (24D)2), 

where a, b are of the form 2Dn-\-l and Dx2zky2 = ab. 
H. B. Mathieu291 asked if (m2—l)x2+l=y2 has solutions not given by 

*i=0, z2 = l, •••, xn+1 = 2mXn—Xn-i; • • •, yn+i=2myn-yn-i- 

E. Dubouis292 stated that there are no others in view of Fonten6,275 the 
exposition by Legendre being insufficient. All the solutions can be found293 
by applying Gauss, Disq. Arith., art. 200. 

it. Fueter294 noted that Dirichlet108 gave sufficient, but not necessary, 
conditions that x2—my2= —4 be solvable for certain positive integers m not 
squares. When m= 1 (mod 8), x and y are even and the problem reduces to 
x2—my2= —1; a necessary, but not sufficient, condition that it be solvable is 
that in the domain defined by -V—m there be an even number of classes in 
every genus. 

A. Cunningham295 wrote t', vx and rXJ vx for the xth. solutions of 
t'*—2i/*= -1, t2 2$=1, and noted that E. Lucas (Ch. XVII of Vol. I of 
this History) proved that every prime p divides some vXf where x= (p —l)/ft 
when p=8w± 1, x = (p+l)jn when p = 8o>db3, and n — 2m. It is here 
proved that, if n=4m, 8m, 16m or 32m, then p = 8o>+l = a2+&2==c2+2d2 
with 6=4/3, d = 25, and the number of factors 2 of n is given. If n = 6m 
either p=8wi:l = 3aj'-bl, p = G2-\-QH2, or p = 8o>db3 = 3a/ — 1, p = 2G2-\-3H2. 

St. Bohmcek296 proved that if t is a semiprimary prime in the domain 
R defined by a fourth root of unity and if the norm of tt is =1 (mod 8), 
?2“7r7?2=2, £= l have the solutions 

'P-Tl __ T2+Tt T4+Tt T4—T\ 

?-(l-i)rr1’ ?1= 2 i/ir ’ Vl = ~2 

so that £, 7] are odd, fi and tji integral numbers in R. Here T=US2$f 
Tx=n$2a+i, where ST is the lemniscate function defined (p. 680) in terms of 
Jacobi’s theta functions. But £2—x^2 = i or 2i is not solvable in integral 
numbers with £, 17 odd in the second case. If 7r is semiprimary, f2—7n?2=4, 
£1 — W\ = have odd solutions £, 77 in R only if x =s 1 (mod X4), tt +1 (mod X8), 

where X = l-H. There are similar theorems for t?—wr}2 = l, 2, i or 2i, 
when the norm of x is not =1 (mod 8). Application is made (pp. 719—725) 
to %1—py2=dzl, —2, ±4, where p is a rational odd prime, use being made 
of cyclotomic functions. 

E. E. Whitford4 gave an extended history of Pell’s equation and (pp. 
98-112) extended the tables of Degen101 and Bickmore219 by listing for 

a#0 L’intenn^diaire des math., 18,1911, 166-7. 
M1 Ibid., 220. 
™IUd., 19,1912,47. 
*M L’mterm&Iiaire des math., 19,1912, 72. 
tu Jahresber. d. Deutschen Math-Vereinigung, 20,1911, 45-46. 
** British Assoc. Report for 1912, 412-8. 
m Sitzungsber. Akad. Wiss. Wien. (Math.), 121, Ha, 1912, 701-7. 



Chap. XII] Pell Equation, ax2+bx+c = □. 399 

1500<A^1700 the least solutions of x2—Ay2= — l, when solvable, and 
always those of x2—Ay2~ +1. He noted (pp. 154-5) that the former is 
solvable for 38 of the 110 composite numbers A = a2-f-62 between 1501 and 
2000. Finally (pp. 162-190) he tabulated for 1500 <A ^2012 the period 
and auxiliary numbers for the continued fraction for VZ [corresponding to 
the first two lines in Degen’s table]. 

R. Remak297 modified Dedekind’s141 proof of the existence of solutions 
of x2—Dy2 = 1 and obtained upper limits on the least positive solutions: 

x<(ff+i)2<,3+l, ysCs'+i)2"3, ?=[V4D]. 
Known methods of solving y2 —2z2= — 1 have been recalled.298 
Th. Got299 simplified the proofs by A. Meyer150. 
M. Simon300 noted that Brahmegupta’s first rule shows that he knew 

how to solve all equations (a) 4(\2T2)32+l==y2 and (b) (X2±2)x2+1 = y2. 
The identity (X2±2)X2 = (\2dbl)2—1 gives x—\ y=X2±l for (b) and x=X/2, 
2/=X2-FI for (a). But if X is odd, and a solution a, p of (a) is found, it 
becomes (/32—t)x2ja2+l=y2, which is satisfied if x = 2a/3, whence the solu¬ 
tion is s=X(X2=Fl), y = 2(X2=Fl)2-l. 

G. M6trod301 noted that in u2—2^=1, v^2a, a>l, and v+(2a)‘. In 
w2—3^= 1, v=2l only for t*= 0, 2; v is not a power of an odd prime, and 
v+ (2a) *, where a is an odd prime. In u2—pv2 = l, where p is an odd prime, 
cases are noted in which v=2l or a*, where a is an odd prime 

E. E. Whitford302 extended Cayley’s137 table from D = 1000 to D = 1997, 
but gave the solution of both x2—Dy2 = —4 and x2—Dy2— +4 when they 
are solvable. He noted the application to finding the fundamental unit e 
(least unit >1) of the domain defined by V5; the least positive solutions 
of x2—Dy2=1 do not determine € when one of the equations x2—Dy2 = — 1, 
4 or —4 is solvable. 

O. Perron303 obtains by use of continued fractions the limits 

x<2(b+l)4(f&+l)l, i/<2(6+l)3(-|6+l)!, 1-26(6+1)-4, 6-[V!>l 
for the least positive solutions of x2—Dy2 — l. Remak297 had given larger 
limits. Cf. Schmitz,308 Schur.314 

T. Ono304 stated that, if x2—5i/2=4, 

x—y^5 11 1 
2 x xxi xxix2~ ’ 

Xi = x2—2, x2 = x?—2, 

• Infinite series involving successive solutions of this and x2—Dy2~p2 
have been treated.305 

“V. G. Tariste ”306 noted relations between successive x’s or y’s for 
which mx2-\-nx-\-p—y2. 

897 Jour, fiir Math., 143, 1913, 250-4. Cf. Kronecker,110 Perron.303 
298 L’interm^diaire des math., 20, 1913, 254-6. 
899 Annales Fac. Sc. Toulouse, (3), 5, 1913, 94-8. 
800 Archiv Math. Phys., (3), 20, 1913, 280-1. 
801 Sphinx-Oedipe, 8, 1913,137-8. 
808 Annals of Math., 15, 1913^, 157-160. 
808 Jour, fiir Math., 144, 1914, 71-73. 
804 L’interm&liaire des math., 20, 1913, 224. 
805 Ibid., 21,1914, 37-38, 47-48; 22, 1915, 21-23, 277-8. 
808 Ibid., 22,1915, 125-6. 
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A. S. Werebrasow307 stated erroneous conditions involving V=a?+6? 
for the solvability of x2—Ny2 = —1. 

Thekla Schmitz308 proved that, for the least positive solutions of 
x2—Dy2=l, x+y^D<2eu>, where e is the base of natural logarithms. 

A. Cunningham309 described and noted errata in various tables on the 
Pell equation: Euler,72 Legendre,88 Degen,101 Cayley,137 and Bickmore.219 

ELveliovitchi310 gave an elementary method of solving §x2+l-y2* 
We may take x=2u, y=ou—v, 2v—w. Then x=5w+2r, t/ = 12w+5r, 
r2=6to2+l. Hence if (xx=0, yi = l), y*), ••• are the solutions 
arranged in order of increasing magnitude, x^-i = 5xi+2yi, yi+i — lZxi+oyi. 
The same method is said to apply to ax2-\-l=y2 if a=4Ji+2, 4u+l = □. 

A. G4rardin311 applied the remark of Hart174 on Ay2—1 = □, A=r2+s2. 
To treat similarly x2—Ay2=2, set A=a2—2b2, Azy=o?—2p2, and solve the 
system of equations 

(bcL—afi)2—Afi2— ±6, (2bp—aa)2—Aa2= ±26. 

Thus, if A = 151 = 132—2 • 32, we get 0=7, a=59, y = 3383, which leads to 
Legendre’s solution of x2—l51y2 = l. For x2—Ay2 — —4, set A = a2+62, 
y=z2+f and solve the system 

(bz—at)2—At2=±26, (bt+az)2 -Az2==F26. 

Thus, if A=32+102, we get the least solution <=3, z=4. An error for 
A=397 in Legendre’s88 table is noted. He announced an extension in MS. 
to 3000 of the table by Whitford.302 

M. Cassin312 gave relations between successive solutions of $2=3i/2+L 
Several313 gave relations between successive solutions of 22—Dx2—Azl 

or c, and of ua?~-vy2=w. 
*J. Schur314 obtained closer limits than had Remak,297 Perron,803 and 

Schmitz.808 
On x*-3j/*=l, see papers 100 of Ch. I; 12, 24, 29, 33, 51 of Ch. V; 94 

of Ch. VII; 230 of Ch. XXI. On 2x2±l= □, see papers 112-129 of Ch. 
IV; 92 of Ch. XXIH. For ax2-{-by2=c or ax2-\-bxy-\-cy2—k, see Ch. XIII. 
On 5x*±4= □, see Wasteels72 of Vol. I, p. 405. On the application to fac¬ 
toring, see Vol. I, p. 368. For “Pell equations of higher order,” see papers 
313-23 of Ch. XXI, 19-25 of Ch. XXIII, and Ch. XXVI. Pell equations 
occur incidentally in the following papers: 56, 70,107, 152, 178, 185, 187, 
189,196, 202, 204, 210, 219, 223, 227 of Ch. I; 135 of Ch. IV; 41, 109 of 
Ch. V; 138,193 of Ch. VI; 66 of Ch. XV; 55 of Ch. XVI; 21 of Ch. XVII; 
270-4 of Ch. XXI; 111, 250 of Ch. XXII; 95, 99, 163 of Ch. XXIII. 

m L’mtermMiaire des math.., 22,1915, 202-3; 23,1916, 56 for admission of errors. 
m AicMv Math. PhyB., (3), 24,1916, 87-9. a. Perron.10* 
m Mess. Math., 46,1916, 49-69. 
n* Soc. Math, de France, Comptes Rendus Stances, 1916, 30-1. 
m Sphinx-Oedipe, 12, June 15, 1917, 1-3; l’enseignement math., 19, 1917, 316-8; Finter- 

mSdiaire des math., 24, 1917, 57-58. 
m L’mtennMiaire des math., 25,1918, 28, 93. 

83-87; 26, 1919, 51-54. 
,u Gottingen Nachrichten, 1918, 30-6 



CHAPTER XIII. 

FURTHER SINGLE EQUATIONS OF THE SECOND DEGREE. 

Equation linear in one unknown. 

Brahmegupta1 (bom 598 A.D.) solved axy=bx+cy+d. Let e be an 
arbitrary number and set q = (ad+bc) Ie. To the greatest and least of e, q 
add the least and greatest of by c, and divide the sums by a. We get the 
values of xy y (that of x on adding to c and vice versa). Thus, if 
xy = Zx+4y+90, take 6 = 17, whence g = 6, y = 17+3, 2 = 6+4. Another 
method is to give a special value to one of the unknowns. 

BMscara2 (born 1114) gave a like rule for a = l, but added e and q 
to (or subtracted them from) b and c in either order, and gave both geom¬ 
etric and algebraic proofs of the rule. Thus for xy — 4x+Sy+2} take 
e = 1, whence q=14; adding 4, 3 to 1,14 in both orders, we get 17, 5 and 4, 
18 as sets of values of x, y; taking 6 = 2, we get 5, 11 and 10, 6. The same 
example was treated in § 209, p. 269, by assigning any value as 5 to y 
and deducing x = 17. 

On axy+bx+cy+d = 0 see Wezel86, and papers 121-141 (on optic for¬ 
mula) of Ch. XXIII; also, Bervi61 of Yol. I, p. 451; and *P. von Schaewen.20 

L. Euler3 noted that 4mn—m—n is never a square since 

a2+1 = (4n—1) (4m—1) 

is impossible; also 4pmn—m—n is not a square if m is of the form 4n2q—n. 
Euler4 proved that no number of the form 4mn—m—n or 8mn—3m—3n 

can be a square, and many such propositions. 
Euler5 stated without proof that Amnz—m—n — □ is impossible. This 

arises from the fact that the divisors of mx2+y2 are of the form 4anz+l, so 
that d=4mz—1 is not a divisor, whence dw+m+y2. He6 treated similarly 
the case m—1, and proved that 4mn—w—na4= □. 

P. B4dos7 erred in his proof that 4mn—m—1 + □. 
Several8 proved that Amn—m—nis never a square or triangular number. 
S. Gunther9 solved y2—ax2 = bz by use of the continued fraction 

j£_ a a a 

2u—2u—2u-•. 

1 Brahme-Bphut'a-sidd’Mnta, Ch. 18 (Algebra), §§61-64. Algebra, with arith. and mensura¬ 
tion, from the Sanscrit of Brahmegupta and BMscara, transl. by Colebrooke, 1S17, 
pp. 361-2. 

2 Vfja-ganita, §§ 212-4; Colebrooke,1 pp. 270-2. 
ia Zeitschrift fur d. Realschulwesen, 38, 1913,141-6. 
8 Corresp. Math. Phys., (ed., Fuss), 1, 1843, 191, 202 (180, 259, 260); letters to Goldbach, 

Jan. 19, and Feb., 1743. 
4 Comm. Acad. Petrop., 14, 1744-6, 151; Comm. Arith., I, 48-49; Op. Om., (1), II, 220. 
5 Opera postuma, 1, 1862, 220 (about 1778). 
6 Corresp. Math. Phys., (ed., Fuss), 1, 1843, 114-7; letter to Goldbach, Mar. 6, 1742. 
7 Nouv. Ann. Math., 11, 1852, 278 (Euler’s correct proof, p. 279). 
8 Math. Quest. Educ. Times, 70, 1899, 73. 
9 Jour, de Math., (3), 2,1876, 331-340. 
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Let Qi be the denominator of its ith convergent. Then 

Qln ~ (2,uQn__i — aQn-2)2 — O'Qn—l) 2uQn— 1 ClQn—2 ^ Qn> 

Hence a solution \sy — Qn,x = Qn-i, bz = Q2n, the last being used to determine 
u and n: 

Q2»=(2n3fl)M2n+(2n^1)w2’‘-2(M2-a) + - • •+^^J)(M2-a)n=0(m°db). 

If b is odd, set k~(2p—1)6; then (*) is divisible by & if p<k, and we may 
take 2n=ic—l. If & is even, divide x and y by a power of 2. 

P. Mansion10 gave a short proof of the preceding Ql—aQLi =Q2n. 
S. RSalis11 noted that, if a, 0, y is one solution of ax2-\-bxy+cy2 = hz, a 

second is given by (h+a—c)a+(jb+2c)l3, y = (2a+b)a+(h--a+c)f}, 
since 

ax2+bxy+cy2^h(Po?+QaP+RfP) + (a+b+c)2(aa2+baP+cjP), 

P = a/i+2a(a+&—c) ~\~b2, Q = bh^2(&b^4tcic-\~bc)} 

B — ch+2c(b+c—a) +b2. 

If, for c=1, we solve the initial equation for y, the radical will be a rational 
number u if u2—Dx2—Ahz, Z)=&2—4a, which was treated (ibid,, p. Ill) 
and if D>0 by Gunther.9 

A. H. Holmes12 proved that 96a;—%y+21 = □ is impossible in integers. 
On ax2-|-bx+c-Ky see Desmarest.87 

Solution of x2—y2=g. 

Diophantus, II, 11, took £=60, x=yJrS, 3 being a number ^ V60, 
whence y —17/2. 

Leonardo Pisano13 took a square a2<g and set (x+a)2=x2+g, which 
determines x. He gave a second method. Let g be odd, £=2n+l. Since 
l-j-34-h(2n—l)=n2, we may take y=n, whence n2+g~ (n+1)2. He 
treated separately the cases g=2k, g—Ak. 

R. Descartes14 noted that 62 — 32 = 33, 1182—102 = 243; (ax)2—x2=:x2 if 
x=a2—1. 

J. L. Lagrange15 concluded from his general theory of binary quadratic 
forms / that every integer is of the form y2—z2. This16 is not true of the 
double of an odd prime, and Lagrange’s argument is conclusive only when 
the discriminant of / is not a square. 

S. Canterzani17 treated x2~\-A — □, by deciding whether or not A is a 
sum of differences of consecutive squares. First, let A be even. The sum 
of 2if consecutive differences 2/t+l, 2/i+3, • • • is 4//t+4/2 and hence =j=A 

10 Jour, de Math., (3), 2,1876, 341. 
11 Nouv. Corresp. Math., 6,1880, 348-350. 
" Amer. Math. Monthly, 18,1911, 70. 
18 La Practica Geometriae, 1220. Scritti di L. Pisano, Rome, 2, 1862, 216-8. 
14 Oeuvres, X, 302, posthumous MS. Cf. papers 23-26 of Ch. XX. 
16 Nouv. mdm. Acad. Sc. Berlin, annee 1773; Oeuvres, III, 714. 
18 L’interm&iiaire des math., 18, 1911, 33. 
17 Memorie dell’Istituto Nazionale Italiano, Classe di Fis. e Mat., Bologna, 2, II, 1810,445-76. 
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if A is not a multiple of 4. For A = 4B, the sum equals A if h = Bjf— 
then x2+A = (h+2f)2 for z = /i. Next, let A =25+1. The sum of 2/4-1 
consecutive differences 2h+l, ••• is (2/4-l)(2/i 4-2/4-1), which can be 
made equal to A by choice of h, whence x2—A~h2 if 

x~ B+f+l 
2/4-1 +/. 

T. Clowes18 noted that the difference of the squares of x+1 and x — 1 
equals the difference of the squares of a-\-b and a—b if x = ab. 

L. Poinsot19 stated that any integer N, not the double of an odd integer, 
can be represented as a difference of two squares and in as many ways n 
as N can be expressed as a product of two factors both odd and relatively 
prime or both even and with no common factor >2. If N has k distinct 
prime factors, n = 2*-1. 

P. Volpicelli20 took g — 2’thr--hlJ where the h’s are distinct primes. 
As known, the number of decompositions of g into two factors is 

v-Hv4-l)(a+l) * • • (t4-1) 

or v+\ according as at least one of the exponents ju, a, • • •, r is odd or all 
are even. Hence, in the respective cases, the number of decompositions 
into two distinct even factors, i. e., the number of solutions of x2—y2 — g, is 

vi “Km—1) (a 4-1) • • • (r+1) 

or vx—i, if ju>0. For ju = 0, the number of solutions is v or v — J, respec¬ 
tively. 

E. P. L. Claude21 noted that any odd integer =(=1 is a difference of 
two squares since ab is the difference of the squares of (ad=6)/2, while the 
double of an odd integer is not. Every integer which is a difference of two 
squares is such as many times as there are different combinations 2, 3, • • •, n 
at a time of its n prime factors. 

G. C. Gerono22 stated only known results. 
L. Lorenz23 concluded from 

i z <T2~n2= Z Z 
m, »=—oo m=l »=1 

that the number of solutions of m2—n2=N is double the number of divi¬ 
sors of N or JV/4 according as N is odd or is divisible by 4; none if N/2 
is odd. 

G. H. Hopkins24 noted that in x2—1/2= (2<xx• • *<zn)2, where ah * * •, a„ 
are primes, x or y has (3n—l)/2 integral values. 

18 The Ladies, and Gentlemen’s Diary (ed., M. Nash), New York, 3, 1822, 53-4. 
19 Comptes Rendus Paris, 28, 1849, 582. 
80 Atti Accad. Pont. Nuovi Lincei, 6, 1852-3, 91-103; Annali di Sc. Mat. e Fis., 6,1855, 

120-8; Comptes Rendus Paris, 40,1855, i 150; Nouv. Ann. Math., 14, 1855, 314. 
81 Nouv. Ann. Math., (2), 2, 1863, 88-90. 
88 JM., 90-92. 
83 Tidsskrift for Math., (3), 1, 1871,113-4. 
84 Math. Quest. Educ. Times, 16, 1872, 46-7. 
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A. Sykora25 repeated Claude’s21 first remark. 
L. P. da Motta Pegado,26 A. Z. Candido,26 T. H. Miller,27 G. Bisconcini,28 

and H. E. Hansen29 stated known results. 
u H. Rifoctitlee ”30 noted that every integer N is the quotient of two 

differences of two squares. For, N=2(a2—b2) or a2—b2 according as 
A- 2 (mod 4) or not. Then apply formula (11) of Euler,66 Ch. XII, for e = 1. 

W. Sierpinski31 proved that the number r(n) of distinct representations 
of a positive integer n as a difference of two squares is twice the difference 
between the number of even and odd divisors of n. Also 

♦(*)* £ WeTd^2], 
w>° L 2 JL 2 J »>o 

where [t] is the greatest integer If B(n) is the number of divisors of n} 
*/2 */« 

*(*) = 2 £ m-2 £ 6(2k)+2 £ e(k), 

S. Guzel32 proved that 

*/4 

z *>0 
lim — £ {t(&) — 0(&) I 
m=co 

£M&)-0(&)} 
*=i Vn 

*A. L. Bartelds32® discussed z2—y2~g. 
For solutions of x2— l~g, see Stormer274 of Ch. XII. Cf. Gill.84 

Solution op ax2+bxy+cy2 = dz2. 

Diophantus, IV, 10, desired two cubes the ratio of whose sum to the 
sum of their sides is a square. Taking s and 2—s as the sides, we must 
have 4—6s+3s2= □, say (2—4s)2, whence s = 10/13. 

Diophantus, IV, 11,12, solved x2zkys=xzhy. Take x—rz, y=sz. Then 
(r3zhs3)/(r±s) is to be a square. For the upper signs he found (as in IV, 
10) that r=5, s=8, 2 = 1/7. For the lower signs, take r=s+l, so that 
3s2+3s+l = □, say (l-2s)2, whence s = 7, 2 = 1/13. 

In these three problems, Diophantus made no use of the fact that 
(z?±:yi)l(x±y) =s2=Fxy+y2. But, in V, 7, he made x2+xJrl the square of 
x-2 for 2=3/5, whence 32+3-5+52=D. 

C. G. Bachet in his comments solved similarly f—p2 or 3p2} where 
f=x2±Lxy+y2. * Fermat (Oeuvres, III, 249) remarked that we can solve 
/=a, where a is the product of a square by one or more primes of the 
form 3n+l or 3. 

L. Euler33 proved that if fx2+gxy+hy2 = tz2 is solvable for t~h, it is 
solvable for t—kl, where l~p2~\~gpq-f-jhg2. We have only to multiply the 

“ Archiv Math. Phys., 61,1877, 446-7. 
54 Jonial de Sc. Math, e Ast., 1,1878,150-5,171-2. 
17 I*roc. Edinburgh Math. Soc., 9, 1890-1, 23-5. 
M Periodico di Mat., 23,1908, 21. 
** L’enseignement math., 18, 1916, 48-55. 

2 ^!nlerm6d^e <*es math., 11,1904, 25-6. Proof, 8,1901, 238-40, by continued fractions. 
» Matematyczne, Warsaw, 11, 1907, Suppl., 89-110. 

iOtd.j 111—y# 

Wistamdig Tijdschrift, 13,1916-7, 207-9. 
°Pera postuma, 1,1862, 209-211 (about 1771). 



Chap. XIII] Solution of ax2+bxy+cy2 = dz2. 405 

given equation by l and note that the product of fx2+gxy+hy2 by l is of 
that same form. 

C. Gill34 solved x2—y2=bc by setting x+y = b cot A/2. Next, 

x2+axy+by2=z2 
is satisfied by 

z+x = y cot A/2, z—x=(ax+by) tan A/2. 

Eliminate z. The resulting equation gives x/y, whence 

y = t (sin A+a sin2 A/2), x=t (cos2 A/2—6 sin2 A/2). 

Take t=m2+n2, sin A = 2mnjt. Then 

x~m2—bn2, y = 2mn+an2, z = m2-\-amn+bn2. 

G. L. Dirichlet35 proved that Az2+2Bzy+Cy2=x2 is solvable in integers, 
with x prime to 2D, if the left member is a form of determinant D of the 
principal genus. 

J. Neuberg36 noted that x2—xy+y2=z2 holds if 

x = 2pq—q2} y = p2—q2} z = p2-pq+q2. 

T. Pepin37 gave special methods to obtain a particular solution of 
ax2+2hxy+cy2 = z2. Given one solution x~a} z — y, to find all, 
eliminate D = b2—ac between 

az2 = (ax+by)2~ Dy2, ay2 = (aa+6j3)2—D(32, 

and write p/q for the irreducible fraction equal to (J3z—yy)/(l3x—ay). 
Hence 

q(Pz-yy) =p((3x-ay), p(fiz+yy) = q (a/3x+day+2b fry). 

Conversely, these imply the initial quadratic equation. Hence jix, ny, juz 
equal quadratic functions of p, q. It is shown that /x is a factor of 2D/32. 

A. Desboves38 noted that by specializing his159 formulas we find that the 
complete solution in integers of X2+bY2JrdXY=Z2 is 

X = q2—bp2, Y = dp2+2pq, Z = q2+bp2+dpq, 

where (as below) =b is to be inserted before the second members. For the 
case d=Q, the ordinary method is to factor Z2—X2 and get 

X = aq2—(3p2, Y=2pqf Z = aq2+Pp2 (5 = ap). 

For each pair of factors a, (3 of 6, the latter equations give all the solutions. 
It is inexact to say with A. M. Legendre39 and others that the general 
solution includes as many particular formulas as there are ways to decom¬ 
pose b into two relatively prime factors. The complete solution in integers 
of X2+Y2=cZ2 for c~m2+n2 (the only solvable case in view of a theorem 

M Application of the angular analysis to the solution of indeter. problems of the second 
degree, New York, 1848, 15-17. 

« Zahlentheorie, § 155, § 158, 1863; ed. 2, 1871; ed. 3, 1879; ed. 4, 1894. 
86 Nouv. Corresp. Math., 1, 1874r-5, 197-8. Cf. papers 112a, 124, 125 of Ch. V, and 72 of 

Ch. IV. Cf. J. Bertrand, Traits 416m. d’algebre, 1851, 222-4. 
87 Atti Accad. Pont. Nuovi Lincei, 32, 1878-9, 89-97. 
88 Nouv. Ann. Math., (2), 18, 1879, 269; proofs, (3), 5, 1886, 226-33. 
89 Th6orie des nombres, ed. 2, 1808, 29. 
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W. Sierpinski31 proved that the number r(n) of distinct representations 
of a positive integer n as a difference of two squares is twice the difference 
between the number of even and odd divisors of n. Also 

where [t] is the greatest integer ^ t. If 6(n) is the number of divisors of n, 
* x/2 x/4 1 

^)=2Z B(k)-2 E 6(2k) +2 E BQc), lim-E {r(k)-6(k)\=0. 
*>0 *>0 £>0 m=oo 171 k=l 

S. Guzel32 proved that 

i E|r©-S®) <A 
n k=i -VTi 
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sum of their sides is a square. Taking s and 2—s as the sides, we must 
have 4—6s+3s2= □, say (2—4s)2, whence s = 10/13. 

Diophantus, IV, 11,12, solved xz±y3=xzky- Take x=rz, y=sz. . Then 
(r3±s3)/(r±s) is to be a square. For the upper signs he found (as in IV, 
10) that r=5, s=8, 2 = 1/7. For the lower signs, take r=$+l> so that 
3$H-3$+l= □j say (l—2s)2, whence s=7, 2=1/13. 

In these three problems, Diophantus made no use of the fact that 
(&±tf)l(x±y) =x2^fxy+y\ But, in V, 7, he made x2+x+l the square of 
x~2 for £=3/5, whence 32+3*5+52= □. 

C. G. Bachet in his comments solved similarly /=p2 or 3jp2, where 
f=x2±.xy+y2.. Fermat (Oeuvres, ni, 249) remarked that we can solve 
/=a, where a is the product of a square by one or more primes of the 
form 3n+l or 3. 

L. Euler33 proved that if fx2-\~gxy-\~hy2=tz2 is solvable for it is 
solvable for £=H, where l=p2-\-gpq 4-/fa?2. We have only to multiply the 

“ Archiv Math. Phys., 61,1877, 446-7. 

x» 1878» 150-5,171-2. 
Proc. ikiinburgU Math. Soc., 9,1890-1,23-5. 

"Penotheo di Mat., 23,1908, 21. 
”L»ei»eignemeiit math., 18, 1916, 48-55. 
« ma&‘» xx» 1904» 26-6. Proof, 8, 1901, 238-40, by continued fractions. 
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given equation by l and note that the product of fx2+gxy+hy2 by l is of 
that same form. 

C. Gill34 solved x2—y2=bc by setting x+y-b cot A/2. Next, 

x2+axy+by2=z2 
is satisfied by 

z+x=y cot .4/2, z—x~ (ax+by) tan A/2. 

Eliminate z. The resulting equation gives x/y, whence 

y = t (sin A+a sin2 A/2), x = t (cos2 A\2—b sin2 A/2). 

Take t=m2+n2, sin A = 2mn/L Then 

x-m2—bn2, y = 2mn+cm2, z=m2+amn+bn2. 

G. L. Dirichlet35 proved that Az2+2Bzy+Cy2=x2 is solvable in integers, 
with x prime to 2D, if the left member is a form of determinant D of the 
principal genus. 

J. Neuberg36 noted that x2—xy+y2=z2 holds if 

x = 2pq—q2y y = V2~q2, z = p2-pq+q2. 

T. Pepin37 gave special methods to obtain a particular solution of 
ax2+2bxy+cy2=z2. Given one solution x = a, y~(3, z = y, to find all, 
eliminate D~b2—ac between 

az2= (ax+by)2—Dy2, ay2 = (aa+b[3)2—D/32, 

and write pjq for the irreducible fraction equal to ((3z—yy) / {fix—ay). 
Hence 

y) =p({3x-ay), p(pz+yy) =q(apx+aay+2bpy). 

Conversely, these imply the initial quadratic equation. Hence jux, ny, fiz 
equal quadratic functions of p, q. It is shown that jjl is a factor of 2D/32. 

A. Desboves38 noted that by specializing his159 formulas we find that the 
complete solution in integers of X2+bY2+dXY—Z2 is 

X = q2—bp2, Y=dp2+2pq} Z~q2+bp2+dpqy 

where (as below) is to be inserted before the second members. For the 
case d=0, the ordinary method is to factor Z2~X2 and get 

X = aq2—Pp2, Y=2pq, Z = aq2+Pp2 (b = a(3). 

For each pair of factors a, (3 of 6, the latter equations give all the solutions. 
It is inexact to say with A. M. Legendre39 and others that the general 
solution includes as many particular formulas as there are ways to decom¬ 
pose b into two relatively prime factors. The complete solution in integers 
of X2+Y2=cZ2 for c = m2+n2 (the only solvable case in view of a theorem 

u Application of the angular analysis to the solution of indeter. problems of the second 
degree, New York, 1848, 15-17. 

85 Zahlentheorie, § 155, § 158, 1863; ed. 2, 1871; ed. 3, 1879; ed. 4, 1894. 
86 Nouv. Corresp. Math., 1, i874-5, 197-8. Cf. papers 112a, 124, 125 of Ch. V, and 72 of 

Ch. IV. Cf. J. Bertrand, Traits 616m. d’algebre, 1851, 222-4. 
87 Atti Accad. Pont. Nuovi Lincei, 32, 1878-9, 89-97. 
88 Nouv. Ann. Math., (2), 18, 1879, 269; proofs, (3), 5, 1886, 226-33. 
88 Th6orie des nombres, ed. 2, 1808, 29. 
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of Legendre) is 

X= (eg2—p2)m, Y= p2n—2cpq+cnq2y Z=p2—2npq+cq2y 

obtained from x=m, y~n, z = l. The complete integral solution of 

aX2+bY2+dXY=cZ2 (c=a+b+d) 
is found from x=y=z*=l to be 

X--6p2+cg2, Y~(b+d)p2+cq2-2cpq, Z= -bp2-cq2+(d+2b)pq. 

By changing the notation of the parameters, this becomes 

X=q2—bcp2} Y = (q+cp)2-acp2y Z= (q+bp)2+b(a+d)p2+dpq. 

J. Neuberg and G. B. Mathews40 proved that the general rational 
solution of x2-\~xy-j-y2=z2 is x = p2—q2y y~2pqJr(f} z~p2-\-pqJrq2- A. 
Cunmngham41 deduced \x+y = t2~Zu\ §x = 2tu from (ix+y)2+Z(ix)2=z\ 

9. J* de 1& Vallde Poussin42 proved that a necessary and sufficient 
condition for integral solutions of ax2+2bxy+cy2=mz2y where m is prime 
to 2(b2—ac), and the g. c. d. of a, 26, c is unity, is that m be representable 
by a form of determinant b2—ac and of the same genus as ax2-{-2bxy+cy2. 

E. S6s43 found the complete solution of 

x2+bxy+y2=z2 or y(bx+y) =z2—x2 

by setting y—X(z—z), X(6rc+y) —z+x. Eliminating y, we get 

z=h ,_X2-X6+l_p 
X2-l qy 

where p[q is a fraction in its lowest terms. Hence 

z = ypy y=\j±(p~q). 

The same method applies to ax2-\- bxy+cy2=z2, a or c a square. 
A. Gerardm44 found a general solution of aX2+bXY+cY2=hZ2, given 

one soluton a, 0, 7, by setting X~a+mx, Y=j3+my, Z = y. Then m is 
determined rationally and 

X - cay2—2c@xy—(aa+6/3) x2, Y=af3x2—2aaxy—(ba-srcfi)y2) 

Z=ayx2-3rbyxy-\’ cyy2. 

granted that ah2+bh+c=m2y replaced h by h+x, m by 
J , ound x rationally, and hence obtained a solution of ay2-\-byz+cz2=v*: 

V=h.p+ah+b-2mf, z=f-a, v=mP-(2ah+b)f+ma. 

mlYe* l—d2=y2 for d and made the radical 
y means of a Pell equation. L. Valroff47 made the substitution 

_X 
—---- 2Y ’ y~S’_ 

See papers 36,171. Cf. papers 68,69 of Ch. IV. 

"ZmIkSmS a^d' Bel«i<Jue. 53. 1895-6, No. 3, 43-54. 

20*1913 144 7, mu, 74-6. ' 
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and noted that the resulting equation in d has real roots if 

which is a consequence of 2X2+2Y2=R2+S2. 

Solution of ax2+by2~c. 

L. Euler48 noted that 

(dap2+bpq2) (abr2+aps2) = ab (apr =fc Pqs)2+&P (o^ps =F bqr)2. 

He49 noted that, if m2=abn2+l, then ax2—by2 — af2~bg2 for 

x *>la+y V& = (/ ^la+g^lb) (m+n ^Iab)x. 

C. F. Kausler50 treated the solution of m'x2+n'y2=Ny where N = 4A+1, 
m'=4m+l, n'=4n+2. Thus x = 2X+l, y = 2Y, whence 

(4m+1)X(X+1) +2(2n+1) Y2 = A - m = 2J3. 

Let B > 4m+1 and set B = (4m+1)D+E. Then 

m *(*+i) „n , (2n+i)r»-g 
2 ’ 4m+l 

Since (2ti+1)£—F=(4m+1)2 has the sohitions 

tf=pF+/i(4m+l), 2 = gjB+/x(2n+l), 

the question is whether t= □ = Y2. If so, we test (li) by the table of pronic 
numbers X(X+1) in Nova Acta, XIV, 253. A similar treatment is given 
for the case m/=4m—1, n' — An+\. 

C. F. Gauss51 solved mx2Jrny2—A by the method of exclusions. 
F. Arndt52 noted that, if /, h are given relatively prime integers, the least 

solutions of fp2-hq2=zkk, = 1 or 2, can be found, without using continued 
fractions, by means of the least solutions of x2—fhy2 = 1, given in Table X 
of Legendre’s Thiorie des nombres (errata noted, p. 246). We have only 
to take x==Fl+2/p2/A;, y = 2pq/k. He gave a table of the least roots of 
pQ2~pfe'2=l or 2 for 3^pp'=i 1003. 

S. R6alis53 solved (n+4)a;2—ra/2=4 by formulas simpler than those 
given by the usual method of employing a Pell equation. If a, p give a 
solution, then 

x = %[m(n+2)a+np2, y = |[(n+4)a+ (n+2)/3] 

give a second solution. We thus get an infinitude of sets of solutions 
(1> 1), (l+7i, 3+n), • * *, which are said to give all. Replacing x by 2u+l, 
y by 2v+l, we get (n+4)(u2+u) =n(v2+v). Hence the above work solves 
the problem to find an infinitude of pairs of triangular numbers whose 
ratio is n : ti+4. 

48 Opera postuma, 1,1862, 490 (about 1769). 
49 Ibid., 215 (about 1774). 
60 Nova Acta Acad. Petrop., 15, ad annos 1799-1802, 164r-9. 
51 Disquisitiones Arith., art. 323; Werke, 1,1863, 391; German transl. by Maser, 377-383. 
“ Archiv Math. Phys., 12,1849, 211-276. 
M Nouv. Ann. Math., (3), 2,1883, 535-542. 
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D. Hilbert54 remarked that the proof that a proposed diophantine 
equation is not solvable in rational numbers is often made by showing that 
the corresponding congruence with respect to a prime or prime power 
modulus is impossible. For the case of a quadratic equation in two variables 
it fo.lows conversely that the possibility of solving the congruence for 
every prime power modulus implies the possibility of solving the equation. 
For, the known cr terion for the solvability of a ternary quadratic dio¬ 
phantine equation leads to the result: If m,n are any integers, the equation 
mx2-\-ny2=1 is solvable for rational numbers x, y, if the congruence 
mx~-\-ny2^ 1 (mod pe) is solvable in integers x, y for every prime p and 
positive integer e. There is no immediate extension to higher equations, 
since 

2/2+7(a:2+l)(x2-2)2(^+2)2=0 
is irreducible and has no rational solution, while the corresponding con¬ 
gruence modulo p* is solvable whatever be the prime p and positive integer 
e. Again, £4+13i2+81 is an irreducible function which becomes reducible 
modulo pe for every prime p and integer e. 

Several writers65 found all solutions of x(x+l)/2 = y(y+l)l3 by means 
of 2u2-322=-1. 

On Mx2— Ny2= ±1 or 4, see Legendre,88 Jacobi,112 Weber,218 Palm- 
strom,228 and de Jonquidres235 of Ch. XII. 

On x2+qy2~m see Comacchia4 of Ch. XXIII. 
On ax2-\~cy2=n, see Euler56 and Nasimoff.68 

Solution of ax2-\-bxy-\-cy2z=k» 

L. Euler5' noted that the problem to find the minimum of Ax2~\~2Bxy 
*or integral values 4=0 of x} y presents no difficulty if B2—AC^0 

and hence is here treated for B2—AC positive and not a square. Then 
the proposed form may be reduced to mx2—ny2y where m and n are positive 
integers whose ratio is not a square. If m = l, it can be given the value 
umty by Pell s^theorem. If n= I, it can be given the value — 1. 

If mx-—ny-=k for x = a, y = h, it has an infinitude of solutions. For, 
it p -mnq2 = 1 (in an infinitude of ways, since mnA □), then 

This holds if 
mx2—ny2 = (mar—rib2) (p2—mnq2)k. 

x '$m±y -4 = (a 4i±& 4) (p±g 4mf, 
so that we get x, y as rational functions of a, b, p, q. 

The problem to make mx-—ny- a minimum corresponds to finding the 
ra lonal fraction xjy giving the closest approximation to ^njm. Develop 

e ^r into a periodic continued fraction and take the convergent ob- 
amed by continuing to the largest quotient. Thus, for 7x2—13y2, the COn- 

ll Gottingen Nachrichten (Math.), 1897, 52-54. 
w LmtOTn6diaire des math., 22, 1915, 239, 255-260. 

" 18’ 17i?\218^ Comm. Arith. I, 570; Opera Omnia, (I), HI, 
3!0. On the incompleteness of Euler’s methods, see Smith1*® of Ch. XII. 
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tinned fraction for V91/7 has the quotients 1, 2, 1, 3, 9, 3, 1, 2, 2 (with the 
period marked). Since 

1+I I 1.15 
~2+l+3 11’ 

£=15, y = 11, give the minimum 2 of 7x2—13y2. 
Given (p. 577) the solution x = a, y = b of 

f^=Ax2—2Bxy+Cy2 = c (k^B2—AC>0, □), 

to find an infinitude of solutions, use the solution of 

(p == p2 2Hpg+A Cg2 = l, 

corresponding to the Pell problem p=Bq+^kq2+1. Now Af has the 
factors Ax—By±y^Jk, and <j> the factors p—Bqdzq^k. Hence we use 

(1) Ax~By+y'fic=(Aa—Bb±b 'fic)(p—Bqdzq^k)n, 

for any of the four combinations of signs. To find the minimum of / for 
integral x} y, develop the root (Bzt ilk)/A into a continued fraction and 
proceed as above. 

G. L. Dirichlet57 noted that in addition to the infinite set (1) of solu¬ 
tions there may exist further similar sets of solutions. Given any positive 
number <r, we can find one and only one solution x, y of set (1) for which 

a < Ax+( —B) y a 0+q ^k), 

where t, q give any positive solution of t2—kq2=1. All solutions of these 
inequalities can be found by a finite number of trials. Hence we find the 
initial solutions a, b defining the various sets (1). 

A. M. Legendre58 discussed the integral solutions of 

(2) Ly2+Myz+Nz2= dzH. 

After preliminary transformations, we may assume that z is prime to y 
and H. Distinguish the cases in which the roots of Lt2+Mt+N=0 are 
imaginary, real or equal. First, let 4£N—M2=B>0. Set x = 2Ly+Mz. 
Then x2+Bz2 = C=4JjH. Give to z the successive values 0,1, • • -, [VC/5] 
and see whether the resulting value of C—Bz2 is a square x2 and then 
whether the resulting x makes Mz^x a multiple of 2L. Second, let 
4Ll\T—ikf2= —B, B positive and not a square. If develop a root 
of Lx2+Mx+N=0 into a continued fraction; if one of the complete 
quotients (§ i[B+I) fD has D=H, at least one of the equations (2) is solvable. 
But if H>| V§, we may set y=nz+Hu where n^\H. Thus if Ln2+Mn 
+N is not a multiple fH of H for some value of n between — and 
(2) is impossible; while if such a multiple is found, the equation reduces to 
fz2+gzu+hu2=zkl for g = 2nL+M, h=LH. See Lagrange76*85 of Ch. XII. 

E. F. A. Minding59 noted that, if A^b2—acis positive and not a square, 
and if V2, we can decide whether or not ax2+2bxy+cy2~zkH is 

67 Bericht Akad. Wise. Berlin, 1841, 280; Werke, I, 628-9. 
68 Th6orie des nombres, 1798, 99-122 (77-98); ed. 2, 1808, 88-110 (68-87); ed. 3, 1830, 

I, 104-129 (81-103); transl. by Maser, 1,105-131 (81-105). 
69 Jour. fUr Math., 7, 1831, 140-2. 



solvable in integers by developing a root of av2+2bv+c = Q into a continued 
fraction, admitting negative terms. 

H. Scheffler60 treated ax2—2bxy—cy2 = k. We may take x, y relatively 
prime. Let D = b2+ac be positive and not a square. Set a~QQ, b=P0} 
c = Develop the root x/y-K-( V5+P0)IQo into a continued fraction 
and let the quotients be a0, au • • •. Set 

D—Pl 
P n=:Q'n—lQn—l P n—lj Qn~ * 

sin—1 

Take Q'Q = k and seek all integers P'Qj numerically ^ft/2, such that D-P * 
s divisible by ft. For each such existing P'0) develop Z' = (V5+Po)/ft 

into a continued fraction. There is no solution unless we can assign a 
common period Pr=P', Qr=Q', (r+s even) of the two developments. By 
use of such a common period or a repetition of that period, he obtained a 
process for finding all relatively prime solutions x, y. 

C. L. A. Kunze61 treated £3±yz=xdzy in four cases. 
J. J. Nejedli62 assumed that D-b2+ac>0 in 

ax2 = 2 bxy+cy2+ft. 

Set x=>a0y+yi. We get a similar equation, apart from the sign of ft, 

(3) Qiy2=2Piyyi+ayl—ft, P1=aa0-5, Q1 = c-aal+2a0b. 

Taking a0 to be the greatest integer in r= (6+ VZ>)/a and repeating the 
process on (3), we can solve the given equation. The process is equivalent 
to the development of r into a continued fraction. 

S. Realis63 noted the identity f{x, y) =f(a, /3)/2(A, B), where 

fix, y) =ax2+bxy+cy2, 

x=(aa+bp)A2+2c0AB-c*B2, y= — a($A2+2aaAB + (ba+cfi)B2. 

Given the solution f(a, /3) —h, we get another solution of fix, y)=h if (as 
is not always the case) solutions of f(A, P) = ±1 can be found. In par¬ 
ticular, from solutions /(a, /3) = ±1, /(A, B) — ±1, we get new solutions of 
Six, y) = ±1. 

J. J. Sylvester64 proved uhat fy2+2gxy—2fx2= ±1 is solvable in integers 
if A~2pjrg'1 is a prime and / is odd. Since u2—Av2=1 is solvable, set 
w+l = crp2, u—l=Aaq2, where p, q are relatively prime. Then 

p2—Ag2 = 2/<7==Fl or =fc2, 

the upper signs being excluded by the form 8n+3 of A. If p2—Aq2*=l, 
v=2pq, we write p, q for u, v and ph qi for p, q and see in like manner that 
pi —Aql = 1 or — 2. Finally, we reach tt2—A4>2 — —2, where tt and <t> are odd. 
Since every prime divisor of ++2 is known to have the form r2+2s2, 

60 Jour, fur Math., 45,1853, 349-369. 
61 Ueber einige Aufg. Dioph. Analysis, Weimar, 1862. 
82 Ein Beitrag zur Auflosung unbest. quad. Gl., Progr. Laibach, 1874. 
83 Nouv. Corresp. Math., 6, 1880, 342-350. 
84 Math. Quest. Educ. Times, 34, 1881, 21-2. 



7r±V—2 = (0+/V=lS)(y+x >P2)2. By the coefficients of V—2, 

=t 1 =/(2/2 - 2a;2) +2gxy. 

S. Roberts used reduced quadratic forms and results of A. Gopel. 
E. Ces&ro65 proved that the number of sets of positive integral solutions of 

Ax2+Bxy+Cy2=n CA>0, C>0) 

is 7r/(25)—R/52 in mean, where $2=4AC—B2. 
S. Rialis66 noted that if a, 0 is a solution of x2+nxy—ny2 = 1 then 

x~(n+l)a—n0, y = (n+2)a—(n+l)0 is a solution. From the evident 
solution 1, 0, we get the solution n+1, n+2. Using y — n+2, and solving 
the initial equation we get o;=n+l and the new value x = ~n2—3n—l. 
Applying the formula to the latter we get a fourth solution, etc. The ath 
set xa, ya of solutions of this series is given, as well as recursion formulae. 

R4alis67 noted that mx2— (m-}-nzkl)xy-i-ny2 = h has the solution 

(4) x = (m~n)a—(m—n±l)j8, y~(m—nTl)a~ (m—ri)0, 

if a, 0 is one solution. Starting from this set (4), we get again the first 
set a, 0. Evidently (4) hold also for an equation derived from the given 
one by increasing m and n by the same number; also for 

(2m=F l)a;2—2 (■m+n)xy+ (2n=F 1 )y2=h. 

For x2~(n+2)xy+ny2 = lj the solution 1, 0 gives the solution n — 1, n. 
For y=7i, we have x = n~~l, n2+n+l, and hence find an infinitude of 
solutions. There is treated the equation obtained from the last by changing 
the sign of the constant term, and 

x2~2(n+l)xy+(2n—l)y2 = l or —2. 

Recursion formulae are given for the integral solutions of a;2—Axy+By2 = h 
when A —2 is divisible by A —B—1. 

*P. S. Nasimoff68 gave an exposition of Jacobi’s series for elliptic func¬ 
tions and application to the number of solutions of ax2+bxy+cy2*=nj in 
particular for a;2+16y2 = n, 4x2+4Lxy+3y2~n, ax2+cy2 = n (a, c odd). 

F. J. Studnicka69 noted that if pk and qk are the numerator and de¬ 
nominator of the kth convergent for the continued fraction 

1 1 1 

a-\-CL-\-CbA" * * * 

5n = P»+i = an+(ni 1)an-2+(”'22)an-4-f-, 

( — 1) n = p„_l qn — Pnffn-l = ?n-2« n ~ 3n-l. 

Using g„=agn_l+g„_2, we get 

aqn-tqn-i+ql-2-ql-i= (-1)” 

and hence the solutions of axy+x2—y2 = ± 1. Cf. Kluge289 of Ch. XII. 

“ M4m. Soc. R. Sc. de Li4ge, (2), 10, 1883, No. 6, 197-9. 
M Nouv. Ann. Math., (3), 2, 1883, 494-7. 
67 Ibid., (3), 3, 1884, 305-15. Errata, p. 448. 
68 Application of elliptic functions to the theory of numbers, Moscow, 1885, Ch. 1. French 

r4sum4 in Annales sc. de T4cole normale sup4r., (3), 5, 1888, 23-31. 
68 Prag Sitzungsber. (Math. Nat.), 1888, 92-95. 
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* Eerval70 gave an infinitude of solutions of each of the equations 

(2a2—2a—l)s2—4(a2—l)zy+(2a2+2a — 1 )y2 = 1, 
(a2—a—1) x2 — (2a2—3) zy+(a2+a+1) y2 = 1. 

A. Hurwitz71 called r/s and ujv a pair of approximating fractions for a 
number between them if ws—vr = l. If 0<m<2^D and if at least one of 
A, C is positive, and D=B2—AC>0, every pair of integral solutions of 
Au2+2BuvJrCv2 — m is such that u/v is an approximating fraction to one 
of the roots of Ax2+2Bx+C = 0. If both A and C are negative, we get 
the same result by assuming also that v2> -A/(2-\[D—m). 

H. Beheffler72 made successive additions to get p, 22p, 33p, • * * and then 
a table of values for pn2+pin\. The aim is to solve ax2+bxy+cy2=q. 

R. W. D. Christie73 solved x2+xy—y2= ±1 by use of continued fractions. 
Cf. J. Wasteels72 of Vol. I, p. 405, of this History. 

A. Cunningham and Christie74 solved y2—avy—av2"l. 
A. L6vy75 recalled the special case of Dirichlet’s theorem on the units 

of an algebraic field, that if (a, b) is the least positive solution + (1, 0) of 
x2+xy—ky2—1, where k is a positive integer, every solution (u, v) is given by 

w+yo? = (a+boj)tt, co2—a>—k = 0. 

Several writers76 solved x2+xy+y2 = 1. 
C. Ruggeri77 used the series with the recursion formula 2„+i=z»+z»-i 

to solve ax2—bxy+cy2 = k} when b2—4ac = 5m2. 
See papers 88, 89; also Leslie90 of Ch. XII. 

Solution of Ax2+2Bxy+Cy2+2Dx+2Ey+F=0. 

L. Euler78 noted that if Ax2+2Bxy+Cy2+2Dx+2EyA-F=0 has the set 
of solutions x^=a,y~b, and if A—B2—AC>0, so that p2 = Ag2+1 is solvable, 
a second set of solutions is 

x = a(p+Bq) +bCq+Eq+ (p — 1) (BE—CD)/A, 

y = b (p—Bq) — aAq—Dq+(p — 1) (BD—AE)/A. 

J. L. Lagrange79 showed how to find the rational and integral solutions of 

(1) ax2+pxy+yy2+$x+ey+£ = 0. 

Solving it algebraically for x in terms of y, we get 

2ax+py+8 = ±t, t2=By2+2fy+g,_ 

70 Jour, de math. sp4c., 1889, 94, 141. 
71 Math.. Annalen, 44, 1894, 425-7. 
72 Vermischte Math. Schriften, Part II, Die Quadratische Zerfallung der Zahlen durch 

Differenzreihen, Braunschweig, 1897, 28-59. 
73 Math. Quest. Educ. Times, 73,1900, 71. 
M Ibid., (2), 10,1906, 24-25. 
75 Bull, de math. 414m., 15,1909-10,113-5. Cf. J. Sommer, Vorlesungen liber Zahlentheorie, 

1907, 100-7; French transl. by L4vy, 1911, 103-113. 
76 Amer. Math. Monthly, 15, 1908, 44. 
77 Periodico di Mat., 25, 1910, 266-276. 
78 Novi Comm. Acad. Petrop., 11,1765 (1759), 28; Comm. Arith., I, 317; Op. Om., (1), III, 76. 
78 M4m. Acad. Berlin, 23, anne4 1767, 1769, 272; Oeuvres, II, 377-381, 509-522. Cf. his 

simplifications in his additions to Euler’s Algebra, 2, 1774, 554, 595-607; Oeuvres de 
Lagrange, VII, 113, 140-7; Euler’s Opera Omnia, (1), I, 593, 615-22. Cf. Smith.88 
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where B=p2—4ay) f*=p8—2a€, g = 82~4al;. Set A =f2—Bg. Then 

Bydrf— rbu, u2 = 

±U—f ff(rb^—/) 

y B ’ 2a 2aB 

Hence the rational solutions of (1) follow from the rational solutions of 
u2=A+Bt2. The latter depend on the integral solutions of Ar2=p2—Bq2, 
discussed by Lagrange.110 

To obtain the integral solutions of (1), it is necessary that not only 
u and t be integers, but also that dzu—f be a multiple mB of B, and that 
dct—8—pm be a multiple of 2a. If B is negative, u2—Bt2=A has only a 
finite number of integral solutions, which can be found by trial. This 
is not true when B is positive, as will be assumed henceforth. We may set 
u-crp, t=aq, where p, q are relatively prime. By Lagrange75 of Ch. XII, 
the solutions of p2_—Bq2=Ala2 are given by 

p+qTlB = (a+b<B)J, J=(X+y 
whence __ 

p=a£+Bb<p, q=at+b$; 2%, 2 VI>=(X+7VB)’*±(X-FVB)». 

Here a, 6, X, Y are given integers for which X2—BY2=±il. We may 
restrict attention to the case X2—£72=+l, to which the contrary case is 
easily reduced. The problem is now to choose positive integral values of 
the exponent n for which the resulting values of x, y are integers, viz., for 
which ±o-p—/ is a multiple of B, and dzaq-~8—fi(dzcrp—f )/B is a multiple 
of 2a. These two questions are special cases of the general question of 
the divisibility of 

(2) F+Gp+Hq=F+P(X+Y<B)*+Q(X-Y<BY 

by JK=rmr"11 • • •, where r, rx, • • • are distinct primes. It is easily shown that 
(X±7 V5)p—1 is divisible by r, where p=2r if £ is divisible by r, p=r± 1 
if is divisible by r, and p-r if r=2. Then (X±7^B)e—1 is 
divisible by rm for e=rm~1p. Hence if n=Jce+N, (2) is divisible by rw if 
and only if rm divides the function obtained from (2) by replacing n by N, 
so that we need only test the values <e of n. Similarly we need only test 
the divisibility of (2) by r1?1 for nCrT^pi. Suppose that the test succeeds 
for n=N and for n=Ni, etc., in the respective cases. Then determine n 
so that it shall have the remainder N when divided by rm-1p, the remainder 
Ni when divided by rT^pi, etc. We saw that also a second expression 
Fi+Gip+Hiq had to be divisible by a certain number Rx. The conditions 
on n are similar to those just stated. Hence the method leads to all the 
(infinitude of) integral solutions of (2) when it is solvable. 

Lagrange80 multiplied (1) by 4a and set 

ti=2ax+/3?/+5, a — @2—4ay, b=i38—2ae, c = 62— 

We get u2=ay2+2by+c. Multiply by a and write t=ay+b, R=b2—ac. 
Hence t2—au2=R. Assume that it has a known solution t=P, u = Q. 

80 Miscellanea TaurmCnsia, 4,1766-9; Oeuvres, 1, 725*31. 
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Then (1) has the solution 

(3) </ = 
P-b 

a 9 
Q-s Py 
2a 2a 

Since we may change the sign of P or Q, we get four solutions. If 
R = AmBn‘ • ■, where A, B, • • • are expressible in a single way in the form 
P2~aQ2, it is known that R is expressible in this form in exactly |tt 
ways when x=(m+l)(n+l) • • • is even, and in (x+l)/2 ways when w 
is odd. If a is negative there is only a finite number of solutions of 
t2~au2=R, since t2—au2 = 1 is not solvable, so that the number of factors 
A, B, • • • is limited. But if a is positive, let p, q be the least solution of 
p2—aq2 = 1; then every solution is given by 

rm—sm , , r r\ 
V =.2~ 9 =~2^" ^r=?,+9,Va' s=p-q^a) 

for m=l, 2, 3, • • • Then 

E = (P2-aQ2)(p,2-aO 
if 
(4) Px=Ppr ±.aQqf, Qx = Pqf±Qp'. 

If we employ as P, Q the various sets corresponding to the factors > 1 of 
the form t2—au2 of P and take m=l, 2, 3, • * •, we get by (4) ail the rational 
solutions of P\—aQ\—R. Returning to (3), Lagrange proved that, if 
the values (3) of x, y which correspond to the case ra=0 are integers, there is 
an infinitude of values of m (the multiples of an assigned number depending 
only on a and a) for which the solutions x, y are integers. 

L. Euler81 gave two methods of finding the general rational solution of 

f(x, y) =Ax2+2Bxy+Cy2+2Dx+2Ey+F = 0, 

given one solution £=a, y~b. In f(x, y) —/(a, b) = 0, set 

2(xy- ab) = (x-a)(y+b) + {x+a) (y-b), -r = 
y-b q 

We get 
(x+a) (.Ap+Bq) + (y+b) (.Bp+Cq) +2Dp+2Eq = 0. 

Eliminating y by the second of the preceding pair of equations, we get 

cox = — at—26 (Bp2+Cpq) — 2 Dp2—2 Epq, 

coy — bt—2 a{Bq2+Apq) — 2 Dpq—2Pg2, 

oj=Ap2+2Bpq+Cq2, t=Ap2 - Cg2, 

and hence obtain, when p, q are rational, the most general rational solution 
of the proposed equation. Integral solutions may be obtained from values 
of p, q making co = ± 1 or ±2. 

Eor the second method, set 

k-B2—AC3 N~(BD—AE)/k, P~Ax+By+D, Q=y+N. 
Then 

Af(x, 2/) = (P+QVfc)(P-QVfc)-$, 8=D2—AF—N2k> 

81 Novi Comm. Acad. Petrop., 18, 1773, 185; Comm. Arith., 1,549-55; Op. Om., (1), III, 297. 
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Let G and H be the values of P and Q for x=a, y~b. Then 

(P+Q Vfc) (P-Q^Jc) = (G+H-tic)(G-H Vfc). 
Equate the first factor on the left to the second factor on the right and 
vice versa. Thus 

y—b-2N, 
2BQ>+N) 

*=«+--- 

Or, use the Pell equation s2—Ar2 = 1, having an infinitude of solutions if k 
is neither negative nor a square, and set 

P+Q Vfc = (G+H V&)($+r Vjfc)n. 

By equating the terms free of Vfc, we get rational expressions for x, y. 
Euler82 treated the solution in integers of 

(5) oat+px+y^W+ijy+d, 

given one solution x = a, y=b. Denote the roots of z2=2sz—1 by 

p~s+ Vs2—1, q=s— Vs2—1. 

Make the substitution 

(6) 
f a 8 

x=Tapn+Tjn-2-*’ 
y=-~pn— 
y -rtq 2? 

Since pq= 1, the members of (5) equal respectively 

/32 
f%pin+g\*n+2fg+y— 

4a’ 
/2P2n+S'Vn—2/3+0 — 

These are equal if 

(7) 

For n=0, let x = a, y=b. Then (6) gives 

4f 

^-ST4r+'-* 

(8) f+ff = 
2aa+P 

f-g= 
2 Vf ’ 

and the resulting value of (f+g)2—(f—g)2 reduces to (7) since (5) holds for 
x=a, y=b. Hence the values of/, g from (8) lead to solutions (6) of (5) 
provided s, in the expressions for p and q, is such that the resulting x, y 
are rational. For n = 1, the expressions for x, y become, in view of (8), 

z=as+ 
Ks-1) 

2a 
-&fr+|, y=bs ?K«-1) 

2f 

s2— 1 

tot 

Then s2=l+o:fr2, a solvable Pell equation if at is positive and not a square. 
Hence if the latter is solved and we set p, g=s±rV«r and define /, p by 
(8), then, for any integer n, (6) gives a solution, which is proved rational 
as follows. Call x', y' the values obtained from (6) by changing nton+1) 
xN, y” those by changing n to n+2. Then 

x" = 2$x' (»—1), y"=2sy'—y+j (s-1). 

w M&n. Acad. Sc. St. Petersb., 4, 1811 (1778), 3; Comm. Arith., II, 263. 
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Since the values given by n=0 and n = 1 are rational, those given by any n 
are rational. Euler stated that if we employ only even values of n, we 
obtain integral values for x, y. Cayley152 gave a generalization to several 
variables. 

A. M. Legendre83 reduced ay2+byz+cz2+dy+fz+g = 0 to 

(9) ay\+byiZi+cz\=AD, D = 62~4ac>0, —A = a/2—bdf + cd2+gD, 

by setting y—(yi+ot)ID, z = (zi+fS)/D, a = 2cd —fb, j3 = 2af—bd. If (9) 
has a solution, it has an infinitude of solutions given by 

(10) y^yF+SG, Zi***F+SQ, P+<?VD-(*+tf VO)-*, 

where <J>, ^ give the least solution of <£2~jD^2 = 1. It is a question of 
the values of n for which y and z are integers. Since 

F=<f>n, G^n4>n~l$, <f>2==l (mod D), 

we see that the expressions for y, z are integers if and only if 

(ft = 2m) (aJry)4>+25ipm^ (/3+€)0+2f^m=O (mod D), 

(n = 2w+l) (mod D). 

In either case the resulting values of n are said to be of the form V+Dk 
[[denied by Dujardin84], where k is arbitrary, so that there is an infinitude 
of values n. It remains to solve the problem: if F and G are given by 
(103) and if 02~D^2 = 1, find all values of n such that \F+fxG+v is divisible 
by a prime not dividing D\p, For this, the method of Lagrange79 is given. 

Dujardin84 agreed with the statements in the preceding paper down to 
the erroneous one that the values of n are of the form V+Dk. But the 
quantities 8, f are divisible by D and the conditions marked (n = 2m) and 
Qn=2m+1) are satisfied only if the coefficients of the unknowns are relatively 
prime. Hence a+y, £+e must be divisible by D if n is even, and y<f>+a, 
e<£-f 0 if n is odd; then the conditions cited are satisfied for all values of m. 
The correct conclusion is therefore that n varies according to an arithmetical 
progression of difference 2 (not D). The latter result is said to follow also 
from the law of recurrence between three consecutive solutions of (9), 
which leads also to the following rule. Given two consecutive solutions 
y'i, z\ (i=1, 2) of (9); then if no one of the systems y'i+a^i+p (i= 1, 2) is 
divisible by D, there is no solution in integers; but if one of the latter 
systems is divisible by D, then to every system of the same parity as it 
there corresponds a solution of the proposed equation. 

C. F. Gauss85 treated the integral solutions of 

(11) ax2+2bxy+cy2+2dx+2ey+f*=0. 
Set 

a b d 
A~ bee , a = b2—ac, j3 = be~cd, y = bd—ae. 

d e f 

83 ThSorie des nombres, 1798, 451-7; ed. 3, 1830, II, 105-112, No. 439. 
M Comptes Rendus Paris, 119, 1894, 843, 934. Reprinted, Sphinx-Oedipe, 4, 1909, 45-7. 
“ Disquisitiones Arithmeticae, 1801, arts. 216-221; Werke, I, 1863, 215. German transl. by 

H. Maser, 1889, pp. 205-211. 
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By the substitution p = ax+P, q = «2/+Tj we get ap2+2bpq+cq2 = <xA. The 
theory of binary quadratic forms leads to all representations of aA by the 
form (a, b7 c). From the resulting sets of values of x, y, discard those which 
are not integral [cf. Smith88]. 

To find (art. 300) the rational solutions of (11), set x — t/v) y = u[v, and 
find the integral solutions of the resulting equation which is of the form 
considered by Gauss.147 

J. L. Wezel86 reduced ax2+cxy+dx+ey+C~ 0 to x$i = k by a linear 
substitution, and treated equations solvable rationally for one variable. 
For ax2+by2+2cxy+C = 0, we solve (p. 40) for x and find no trouble unless 
B=c2—ab is positive and =|= □. The latter case is treated elegantly by 
continued fractions. Develop the root r = (V5~c)/a of az2+2cz+b=0. 
Let Q = ( Vj5+x)/C be the complete quotient with denominator C, and 
Po/qo, p/q the convergents immediately preceding this. Then 

2 = (ap+cq)2 = q2B+aC (pq0 -p0q), ap2+2cpq+bq2 = ±C, 

since is irrational. For ox2+by2-{-cxy+dx+ey+C=0, we set 

x = (xr+2 bd—ce) /D, y = (y7 ^+ 2ae — cd) /D, 

where D = c2—4a6, and get an equation of the form last treated: 

ax'2+by,2+cx'y'+(ae2—cde+bd2) D+CD2 = 0. 

E. Desmarest87 noted that the substitution X=xja reduces the solution 
of aX2+bX+c~Ky to the problem to find multiples z of a satisfying an 
equation of type fx^x2-\-qx~\-r ~Py. To solve a particular equation of the 
latter type, he would employ two auxiliary doubly-entry tables, a com¬ 
plicated method based upon the functions 

0P2N-2=fnN2~fnN + l, 0P2N-l=fnN2+fnN+l 

and the fact that their products by fn are also of the form fx, where 
x = fnN—n—q and fnN+n, respectively. One of the auxiliary tables has the 
headings/n, oPi, qPi, • • • and in the body of the table are entered the values 
for successive K’s of the roots R and remainders p defined, for example, 
when N=2K+1, by use of 

o P2N=R2+p, R = (2K+2)n+qK-q-l, p=A(K+l)2, A^r-q2. 

Troublesome methods are indicated (pp. 42, 43) by means of which the 
square R2 nearest to the given P enables us to find the entry in the body of 
the table which will yield the desired value of n such that the heading of the 
column of the entry will for this n be the value of y (or a known multiple 
of y). The example Z2+31X+241 =PF is treated (pp. 24-25, 301-2) 
for all primes P < 1000; but he knew (p. 104) that it can be transformed by 
X=x—15 into x2+x+l — Py} which is proved to be solvable if and only 
if the prime P is 3 or 3g+l. 

86 Annales Acad. Leodiensis, Li&ge, 1821-2, 1-48. 
87 Th^orie des nombres. Traits de Fanalyse ind£termin<5e du second degr<$ k deux inconnues 

. . ., Paris, 1852, 4-126. 
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To solve (pp. 127-221) F+2dX+2eY+f=0, where F=aX2+2hXY+cY2, 
A~b2—oc+0, it is transformed as usual into F = M, which is treated as 
usual by the theory of binary quadratic forms. If A = 0, it is transformed 
into u2-{-r = Py, which is of the type first treated.. In each case there is a 
discussion as to which of the solutions are integral. 

H. J. S. Smith88 noted that Euler’s81’82 methods are incomplete for the 
reasons noted in Ch. XII, Smith.139 He modified Gauss’86 method by em¬ 
ploying the g.c.d. 8 of a, p, y, and employing the new variables X = p/5, 
F = g/5. ^ Thus aX2+2bXY+cY2=o!Af, where «' = «/$, A'=A/6. Then if 
Xn, Yn is any representation of a'A' by (a, b, c), we separate the integral 
from the fractional solutions x, y by separating (by Lagrange’s method) 
those values of Xn, Yn which satisfy the congruences Xn—/3/5=0, 
Yn—yj8=Q (mod a') from those which do not, and obtain a finite number 
of formulas exhibiting all integral solutions. 

G. Wertheim89 treated (1) as had Lagrange,79 and by reducing it to 
ax2+2bxy+cy2—M and then applying the theory of binary quadratic 
forms. 

C. de Comberousse90 treated (1) for the case 7 = 0, whence y = QjL} 
where Q is a quadratic and L a linear function of x. Thus L must divide 
a certain constant N, whence set L = d, d any divisor of N. 

Rautenberg91 reduced the solution of an equation of degree two in 
two variables to Bx2+Cx+D=D and gave other known results. 

R. Marcolongo,92 G. B. Mathews,93 P. Bachmann,94 and E. Cahen95 
treated (1). 

Focke96 gave the usual application of quadratic forms to our problem. 
E. de Jonquieres97 showed by detailed examples that the methods of 

Lagrange (continued fractions) and Gauss (period of reduced forms) for 
solving indeterminate equations of the second degree are less different 
than they seem, since they employ the same auxiliary quantities, and rest 
on the development of practically the same ideas. 

G. Bisconcini98 noted that x~y — 2 is the only positive integral solution 
of xy=x+yy and # = 0,1, y = 0} 1, the only integral solutions of x2+y2=*x+y. 

J. Westlund" proved that x2+y2= (2x—1)/3 is impossible in integers. 
C. Ciamberlini100 stated that (x+y) (x+y+l) +2y = a has a single posi¬ 

tive integral solution if a is a positive integer. 
T. Pepin101 used the method of Gauss.85 

88 British Assoc. Report, 1861, 313; Coll. Math. Papers, 1, 1894, 200-2. 
89 Elemente der Zahlentheorie, 1887, 226-236, 369-374. 
90 Alg&bre sup6rieure, 1, 1887, 185-191. 
91 Ueber dioph. Gl. 2 Gr., Progr. K. Gymn., Marienburg, 1887. 
« Giomale di Mat., 25, 1887,161; 26, 1888, 65. 
98 Theory of Numbers, 1892, 257-261. 
94 Arith. der Quad. Formen, 1898, 224-231. 
95 E14m. de la thAorie des nombres, 1900, 286-299. 

96 Uber die Auflosung d. dioph. Gleich. mit Hilfe der Zahlentheorie, Progr. Magdeburg, 1895. 
97 Comptes Rendus Paris, 127, 1898, 694-700. 
98 Periodico di Mat., 22, 1907, 121-2. 
99 Amer. Math. Monthly, 14,1907, 61. 
100Suppl. al Periodico di Mat., 11, 1908, 104-5. 
101 Mem. Pont. Accad. Nuovi Lincei, 29, 1911, 319-327. 
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U. Fomari102 treated (x — l)(x—2)+y(2x+y—l) = 2m. 
W. A. Wijthoff103 solved (x+y+l)2 = 9xy. 
M. Rignaux1030 stated a complete solution of (11), with ac<b2} by recur¬ 

ring series. 
For +r(z+l) = iy(y+l) see paper 55. For 3x(x+l)=y(yJrl), see 

Euler79 of Ch. I. T. L. Pistor107 of Ch. XII gave Gauss'85 method. On 
ax2-a'x~by2-Uy, see Gill107 of Ch. I. 

ax2+by2+cz2 =0 (except x2+y2 = 2z2). 

For x2+y2 = 2z2, here excluded, see squares in arithmetical progression 
(Ch. XIV). 

Diophantus, II, 20, proposed to find three squares such that 

(1) y2—x2 : z2~y2=a : 6, 

where a : b is a given ratio. He took a/5 = 1/3, y-x+1, whence 

z2=x2+8x+4l. 

Take z=x+3, whence £=5/2. In IV, 45, he took a/b = 3, z2 = 4, y = 2+2, 
whence f*2 = 3Z2+12t+9 = (3--5t)2, if f = 21/11. 

Alkarkhi104 (beginning of eleventh century) solved x2—y2=2(y2—z2) by 
taking y—z+1, x=z+2, whence 2 = 1/2. 

Leonardo Pisano105 first treated (1) for several special cases. For 
5 = a+1, take x — 2a— 1, y = 2a+l, z = 2a+3; then y2—x2 = 8a, z2—y2-=8b. 
In general, if integers 5, k, n can be found such that 

£(5+i) = &a, fl(h+a+j) = 55, 
»=i j—i 

then y2—x2 = 8ka, z2—y2 = 8kb for 

£ = 25+1, y = 27l—j—2<z—1— 1, 2 = 25+2a+27i+l. 

The conditions for the above sums are 

5+l+5+a = 25, (5+a)?i+?'i(?2+l)/2 = /b5, 
or 

a±l=n|+a^_ 

2 2(5—n) 

These fractions must equal integers, as in the case for the values a = 11, 
5=43, n = 16, 5 = 8, 5 = 2, used by Leonardo. A. Genocchi106 remarked 
that Leonardo's method consists essentially in separating a progression 
h+1, 5+2, • • *, h+ra+n into two parts such that the sum of the first m 
terms is ka and the sum of the last n terms is 55, whence 

mn(m+n) „ 2amn+an2—bm2 
25 = -r-^--, 25+1 =-r-. 

bra—an bra—an 

102II Pitagora, 19, 1913, 57-60. 
103 Wiskundige Opgaven, 11, 1912-4, 192-5. 
1030 L’interm&diaire des math., 26, 1919, 9. 
104 Extrait du Fakhri, French transl. by F. Woepcke, 1853, 116. 
106 Tre Scritti, 103-112. Scritti, 2, 1862, 275-9 (Opuscoli). Cf. Ch. XVT. 
106 Annali di Sc. Mat. e Fis., 6, 1855, 351-2 (misprint of sign before bm1 in the fraction for 

2A+1). 
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Since a, b are relatively prime, we can make bm-~an = l in an infinitude of 
ways. Then x = 2h+l, y = 2(h+m) + l, z-2(h+m+n) + l. 

F. Woepcke107 gave an analogous interpretation of Leonardo’s method 
and wondered why Leonardo preferred this ingenious method to the more 
natural one [of Diophantus] of substituting x~y+m, z — y—n, and thus 
finding x, y, z as rational functions of m, n, a, b. The last method and other 
simple ones were used by C. L. A. Kunze.108 

For a different presentation of Leonardo’s method and a proof of the 
equivalence of the problem with that of concordant forms, see Genocchi87 
of Ch. XVI. 

Matsunago,109 in the first half of the eighteenth century, noted that 
rx2jry2 — z2 has the solution x — 2mn, y~rm2—n2, z~rm2+n2. If k~l — t2, 
kx2—ly2=z2 has the solution y — a+tP, z — l(3—at, provided x2~a2+ll32, 
which is of the preceding type. Again, (k2+l2)x2—y2=z2 for 

x=c, y=kadzlb, z^loFf-kb, a2-\-&2 = c2. 

J. L. Lagrange110 treated the solution of 

(2) Ar2=p2-Bq2 

in integers. The cases A = □, B = □ are easily treated (pp. 381-2) by the 
methods of Diophantus. In (2) let p, q, r be integers, p and q relatively 
prime, while A and B are integers neither a square nor divisible by a square, 
and (as may be assumed) | A | > | B | . A necessary condition is that 
there exist an integer a such that a2—B is divisible by A. This is shown 
by multiplying (2) by pl-Bql, using 

(3) = {pp^BqqxY-Bipq^qpx)2, 

and taking Ml—£Pi=±l, whence Ar2{p\—Bq\) =^a2—B. We may .also 
take | a | < | A |/2, since also (juAia)2 —B is divisible by A. When such 
an a exists, AAi = or—B, set «i = juiAiio:, the integer jui and the sign 
being chosen so that | otx | < | A11/2. Then al-B is divisible by 
call the quotient A2. In this maimer we get a series of decreasing integers 
\A |, | Ai |, | A2 |, * • *, and hence get | An | ^ \B | . It suffices to stop 

when An is of the form a2C, where C has no square factor and | C | ^ | B | . 
Multiply together the equations 

AAi = a2—B, • • •, An-.iAn = a^_i—B 

and use (3). ^ Hence AA\• • ‘Al^iAn — P2—BQ2. Multiply by (2). We get 
CqlBr\, where q i=A A x • • • A n_xar. Hence 

(4) Brl-pl-Cql 

Conversely if (4) is solvable, (2) is solvable. Treating (4) as we did (2), 
we get Crl=pl—Dql, etc. Since | A |, | B |, | C |, • • • form a decreas¬ 
ing series, we finally get a term ±1. If it be —1, we proceed and get 
+ 1- The resulting equation Vz2—x2—y2 is easily solved in integers. Let 

* 107 Jour, de Math., 20, 1855, 59. 
108 Ueber einige Aufg. Dioph. Analysis, Weimar, 1862, 14-15. 
i°9 y. Mikami, Abb. Gesch. Math. Wiss., 30, 1912, 231-2. 
110 M&n. Acad. Berlin, 23, annde 1767, 1769, 385-406; Oeuvres, II, 384r-399. 
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M be the g.c.d. of V and x+y and set V=MN, x+y = Mp. Then z2 = p<r, 
x—y=N<r, where cr is an integer. If l is the g.c.d. of p and <r, we have 
p = Zra2, cr = In2, whence 

z = Imn, x = l(Mm2+Nn2) j2, y = l(Mm2—Nn2) /2. 

We may set Z=2, since we may multiply x, y, z by 2/Z. 
L. Euler111 stated that the general solution of ax2+@y2~yz2 is given by 

x *Ja±y V—0 = (/ 'Vaip V^8) (p ^an±q V—(3n)2, 

if one solution a/2+/3p2==Y/&2 is given; the solution by taking n=l is not 
general. Again, by taking x=fp+j3gq, y = gp—afq, we get az2+/3y2=yh2R, 
where R=p2jraf3q2 is the square of r2Jraf3s2 for p~r2—a(3s2, q — 2rs. Again, 
if we multiply the initial equation by h2 and af2+Pg2 = yh2 by z2 and sub¬ 
tract, we get 

a(hx+fz) ^(gz+hy) 

gz—hy hx-fz 

Set each fraction equal to pjq and equate the two values of z; we get y/x. 
To obtain another solution, set F~al3q2—p2, G = 2pq, H = a(3q2Jrp2, whence 
H2 = F2+a(3G2. Multiply the latter by yh2=af2+Pg2. The product of the 
right members leads to the solution 

z = hH, x=fF+(3gG, y=gF~afG. 

A necessary condition for fx2+gy2=hz2 is that —fg be a quadratic residue 
of h. 

Euler1110 made ax2+cy2 a square by use of 

x ^a+y V—c= (p'Ja+q V-c)2. 

Euler112 considered the rational solutions of 

(5) fx2+gy2=hz2. 

If, for f and g fixed, the equation is solvable when h — h1} h2 and h3} then it 
is solvable when h—h^hz. He stated (p. 558) the elegant empirical 
theorem that if (5) is solvable when h=hi it is solvable also when 
h~hizk4:nfg, provided the latter is a prime.113 

If (5) be solvable, then (p. 566) — fg is a quadratic residue of h. For, 
since x, y may be taken relatively prime, we can determine p, q so that 
py—qx = 1. Then 

(fx2+gy2) (fp2+gq2) = t2+fg (t =fpx+gqy) 

is divisible by h. 

111 Opera postuma, 1, 1862, 205-211 (about 1769-1771). 
1110 Algebra, St. Petersburg, 2, 1770, §§181-7; Lyon, 2, 1774, pp. 219-26; Opera Omnia, 

(1), I, 425-9. Cf. Euler8 and Lagrange83 of Ch. XX. 
1U Opusc. anal., I, 1783 (1772), 211; Comm. Arith., I, 556-569. 
113 A. M. Legendre, M4m. Acad. Sc. Paris, 1785, 523, stated that this theorem is true, but 

omitted the proof (not easy) as it was necessary to separate cases. He stated the 
generalization: If fxzzkgyi=hz* is solvable then fx2±gyi=cz2 is solvable if c=h-\-fgn 
is a prime and if n is such that the two members of the quadratic equation are congruent 
modulo 8. 
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If (5) be solvable, also fx2+gy2 = hiz2 is solvable when hi is & certain 
integer <h. For, k=t2+fg is divisible by h for some integer t<h/2; call 
the quotient hi. Then 

f(tx±gy)2+g(ty^fx)2~ (t2+fg)(fx2+gy2) = khz2=h2hxz2, 

so that fX2+gY2 = hiZ2 is solvable. It is not shown that hx<h. In case 
a set of decreasing values h, hh h2, • • • eventually contains / or g> we can 
determine x,y (p. 569, § 62). 

A. M. Legendre114 proved [Legendre87 of Ch. XII] that, if each of the 
positive integers a, 6, c has no square factor and if no two of them have a 
common factor, then ax2+by2=cz2 has integral solutions not all zero if and 
only if there exist three integers X, ju, v such that 

a\2-{-6 cy.2—b cv2—a 
__ a > 6 

are all integers. 
Legendre115 explained the method of Lagrange110 to solve (2), modified 

by use of a principle employed elsewhere by Lagrange76 of Ch. XII. The 
present method is essentially due to Lagrange.1150 We may take A and B 
positive, since otherwise 

x2—Ay2~ —Bz2 or x2+Ay2=Bz2 (A>0, £>0). 

In the second write Bz=*z', AB=A', whence z'2—A'y2 = Bx2. The second 
is obtained from the first by the transpositions of two terms. Consider 
therefore x2—By2=Az2, A>B>0, where y is prime to A and x, while A 
and B have no square factors. Set x = ay—Ay'. Then 

( ^y2~ 2 ayyr+Ay'2=z\ 

The first coefficient must be an integer, say A'k2, where A' has no square 
factor. By changing a by a multiple of A, we may take a between -A/2 
and A/2. Multiply the resulting equation by A'k2 and set kz = z', 
A'k2y-cxy' = x'; we get x'2-By'2=A'z'2, A'<A. If A'>£, we repeat the 
process. Finally we get a similar equation with one coefficient unity and 
hence easily solved. While this method is not the simplest one for solving 
the proposed equation, it is a very luminous one. 

C. F. Gauss116 proved by use of ternary quadratic forms the theorem of 
Legendre114 that, if no two of a, b, c have a common factor and if each is 
neither zero nor divisible by a square, then ax2+by2+cz2 = 0 has integral 
solutions not all zero if and only if —6c, — ac, — ab are quadratic residues of 
a, b, c, respectively, and a, b, c are not all of the same sign. If a, 6, c are 

m M&n. Acad. Sc. Paris, 1785, 512-3; ThSorie des nombres, 1798, 49; ed. 2, 1808, 41; 
ed. 3,1830,1, 47; German transl. by Maser, I, 49. 

116 Th6orie des nombres, 1798, 36-41; ed. 2, 1808, 28-32; ed. 3, 1830,1, 33-39. (Maser, I, 
36-39.) For his remark on a?-\-lyyi=zt see Legendre.89 

n6fl Addition V to Euler’s Algebra, 2, 1774, 538-55; Euler’s Opera Omnia, (1), I, 586-94; 
OeuvTes de Lagrange, VII, 102-14. 

118 Disquisitiones Arith., arts. 294r-8; Werke, 1,1863, 349. German transl. by Maser, pp. 
335-343. 
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arbitrary integers, let a2, (32, y2 be the largest squares dividing be, ac, ah, 
respectively, and set aa = (3yA, (3b = ayB, yc = a(3C; then the former equa¬ 
tion is solvable if and only if AX2+BX2+CZ2 = 0 is solvable, and the latter 
falls under the above theorem since A, B, C are relatively prime in pairs and 
have no square factors. For, bcla2=BC is an integer without square 
factor, so that B} C are relatively prime and without square factors. 

E. F. A. Minding117 considered x2 = Ay2-srBz2, where A, B are without 
square factors. Let / be the g.c.d. of A ~af and B = bf. The equation is 
solvable if and only if A, B, —ab are quadratic residues of B, A, /, re¬ 
spectively. 

A. Genocchi118 treated the equation az2Jrbx2— (a+b)y2, equivalent to (1), 
by the methods of Lagrange and Paoli91 of Ch. XII. 

G. L. Dirichlet119 treated ax2+by2+cz2~ 0, where a, b, c are relatively 
prime in pairs. If u, v, w are given relatively prime solutions, we can deduce 
all solutions. Since au, bv, cw are relatively prime and au, for example, is 
even, we can find integers l (even), m and n such that aulA-bvm-\-cwn— 1. 
Set al2+bm2+cn2 = h. Then u' = 2l—hu, v' = 2m — hv, w' = 2n—hw are solu¬ 
tions, congruent to u, v, w, respectively, modulo 2. Hence, in 

2u" ~vwr ~wv', 2v" — wu,—uw', 2w" ~uvf—vur, 

u"} */', w" are integers. If x, y, z are any integers, 

(6) t—au'x+bv'y+cw'zj t! — aux+bvy+cwz, tu=u"x+v"y+w"z 

are integers and (mod 2). It is shown that, conversely, if i, t'} t" 
are any integers for which t—t' is even, 

, 2x=ut+u't/—2bcu"t", 2y-vt+v't/—2cav"tny 

tb) 2z = wt+wft'-2abw"t"3 

so that x, y, z are integers. Multiply the latter equations by ax, by} cz, 
add, and use (6). We get 

ax2+by2+cz2 — tt' — abet"2. 

Hence if x, y, z are solutions of the initial equation, then t, t', t", defined by 
(6), are integers for which t=t' (mod 2) and tt' — abet"2. Conversely, if 
tj t', t" are integers satisfying the last two conditions, the values of x, y, z 
given by (6') are integral solutions. Further, by use of the above relations 
he proved the following extension of Legendre’s114 theorem: If no two of 
a, b, c have a common factor and are not zero, ax2+by2+cz2 — 0 is solvable 
in relatively prime integers if and only if —be, —ca, —ab are quadratic 
residues of a, b, c, respectively, and the latter are not all of the same sign; 
further, if — 6c=A2 (mod a), —ca=B- (mod b), —ab=C2 (mod c), there 
exist relatively prime solutions for which 

Az=by (mod a), Bx=cz (mod b), Cy^ax (mod c). 

117 Anfangsgriinde der Hoheren Arith., 1832, 84. 
Annali di Sc. Mat. e Fis., 6, 1855, 186-194, 348. 

119 Zahlentheorie, §§ 156-7, 1863; ed. 2, 1871; ed. 3, 1879; ed. 4, 1894. 
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J. Plana120 stated that all integral solutions of x2—79y2 = IOI22 are given by 

x — a- 927p2+- 4572g2+3126pg, 
a. 

y = a• 74p2+- 414g2+ 462pg, 
CL 

z = ct- 65p2-i 270g2+ 30pq, 

for a = 2 or 1, where p, q are arbitrary integers. 
G. Cantor121 considered the solution in integers of F = 0, where F is 

any ternary quadratic form. A formal solution (<£, \p, x) is one for which 
F(4>, x)=0 identically in x} y, where <£,*•• are binary quadratic forms in 
x, y. In particular, let F be 

[aaV'3=aX2+a'Y2+a"Z2. 

Let the greatest common divisor of the three coefficients of <£, and those for 
f and x be relatively prime in pairs; then the formal solution (</>, yp, x) 
is primitive, and we can find integers w’s for which 

w\p^anx, wx^—a'yp (mod a) 

w'x=a<f>, w'<t>^—a"x (mod a') 
w"<p=af\p, w"\p=—a4> (mod a")> 

identically in x, y. By the two congruences in the first line, 

(w2+a'a")^xs=0 (mod a). 

Then w2-\-a'ar^0 if a is odd, or when a is even if 1p, x are properly primitive. 
The solution (<£, yp, x) is said to pertain to the combination {w, w\ w") if 

ir2+aV/=0 (mod a), w/2Aaa/;=Q (mod a7), w//2+aa'=0 (mod a")« 

The number of possible sets of roots is 2u+\ where a? is the number of distinct 
odd prime factors of the determinant D= — aa'a" of the primary form 
pza'a"], while 77=0, 1 or 2, according as D/4 is not integral, an odd or even 
integer. Then, if — a'a", —a"a, —aaf are quadratic residues of a, a', a", 
respectively, there is a primitive solution (0, x) of [aaV'] = 0 pertaining 
to any chosen one of the 2a+] combinations {w, w', w”}, and [aaV'i^O 
has exactly <7-2w+1J systems of primitive solutions, where a=2 if D=0 
(mod 4), while <r = 4 in all other cases. 

L. Calzolari122 treated (7) u2 = Ax2+By2 by setting (8) u=Yx+Xy. 
The discriminant of the resulting quadratic in x, y is to be a square, whence 

(9) AX2+BY2-AB=U2. 

EliminateXbetween the latter and (8), using (7). We get U2y2 = (uY-Ax)2, 

0-0) Ax=Yu±Uy, By=XuTUx. 

Thus from a set of solutions of (9), we get one of (7), viz., that given by (8) 

120 Memorie R. Accad. Torino, (2), 20, 1863, 107, footnote. 
121 De Aequat. secundi Gradus indet., Diss. Berlin, 1867. 
m Giornale di Mat., 7, 1869, 177-192. 
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and 

(11) 
x_XY±U 

y A-Y2’ 

and conversely. Expressed geometrically, (7) is a cone with the vertex at 
the origin, and (8) is a plane through the vertex. The intersections are two 
lines whose projections on the xy-plane are given by (11). If XQ, YQ} UQ 
is a particular solution of (9), and if u0, x0, y0 are the values given by (8) 
and (10), the general solution is 

X = X0—x0t, Y=Y0+yQt, U = U0—uQt. 

Calzolari123 stated a theorem, which not only decides like Legendre’s114 
the possibility or impossibility of integral solutions of 

(12) u2 = Ax2dzBy2 (A, B without square factors), 

but determines the general solution without recourse to the process of 
Lagrange. We may set A — al~\-\-a2m, B = b\-\-b&» (m^4, n^4). 
Set Xi = a#, yi=bly. Then 

(13) «2 = I>i±E2/i- 
<=1 i=1 

Let pi, • • •, pm, qi, • • *, qn be arbitrary integers. We may set 

Xi^u-p^q+Pi, Vi^u-p^q+qi, p = 2pi, q = 2qi- 

Then (13) becomes u— XXiTXyi+K = 0, where 

Ku = (p±q) (SXiiSpi) - '2pixcF'2q$i. 

In the former give to Xi, yi their values. Then 

u~p±:q-\-Jc, (mdcn—l)k = K, 

(14) Xi = pi+k, Vi = qi+k} u=p±q+k. 

Substitute these values (14) into the two expressions for K. Thus 

(15) (p±g)2—Sp-TSg- = (m±n- l)k2. 

For fc = 0, values pi} q{ satisfying (15) give xi} yi from (14) which satisfy (13). 
Set a = 2ai; 5 = 26;. Then, for & = 0, xd = '2xi=Xpi~p, by — q,u — ax±.by. 
Substitute this u into (12); we get a quadratic for x/y. Hence (12) is 
solvable if and only if c=Ab2zkBd2zFAB=D, and the general solution is 
x = ab±c, y = d~—A, u = Ab^ac, where the signs of a, b are ambiguous. 

S. R6alis124 stated that, if A, B, C are relatively prime and without 
square factors, and if a, /3, y give one solution of Ax2+By2+Cz2 = 0, the 
general solution is 

x = a{-Aa2+Bb2+Cc2)-2d(Bpb+Cyc), 

y=p( Ad2-Bb2+Cc2)~2b(Aaa+Cyc), 

z = y{ Ad2+Bb2-Cc2)-2c(Aaa+Bpb), 

where d, b, c are arbitrary. 

123 Giomale di Mat., 8, 1870, 28-34. 
Nouv. Correep. Math., 4, 1878, 369-71. 
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S. Roberts125 treated the solution of x2~2Py2=-z2 or ±2z2, when each 
prime factor of P is of the form Sm+1. If P have one of the forms 

(8a±l)2+16(2/3+l)2, (8ft±3)2+8(2Z+l)2, (8ft- 1)2~8(2Q2, 

(8ft—3)2—8(2Z-f-l)2, 

the equations 

2Py2 = (8wdb3)2+ (8t>±3)2, 2P^2 = 16w2+2(8i>±3)2, 2Py2 = 4:U2-2(8v±l)2, 

are solvable. If, moreover, P is a prime of one of those forms or an odd 
power of it, x2-2Py2 = 2 is solvable. There are three more such triples of 
equations leading to analogous conclusions. 

T. Pepin126 proved Legendre's criterion as quoted by Gauss.116 
G. Heppel127 treated d2 = 2a2+b2 by setting b = d-2f, whence 

d=f-\-a2l(2f). 

Thus a is even, a=2q. Hence express 2q2 as a product fh and take d~h+f, 
b~h —f, a = 2q. 

P. Goldscheider128 expressed in terms of one solution the general solution 
of ax2+by2+cz2 = 0 which satisfies the final congruences of Dirichlet.119 
He proved that there exists such a solution for which also kx-\-k'y+k"z 
is relatively prime to a given odd integer s, if ft, ft', ft" are given integers 
whose g.c.d. is prime to s. 

G. de Longchamps129 wrote x2 = y2-\-pz2 in the form 

(x+y)l($z)=zl(x-y)=t. 

Hence i must divide z. Set z = 2\t. Thus x=\(pt2-f-1), y = \(pt2 — 1), 
where X and t are arbitrary. For nx2=y2+(n-l)z2, see de Longchamps.162 

P. Bachmann130 gave a clear exposition of our subject. 
R. P. Paranjpye131 proved that all integral solutions of x2—z2—2y2 are 

z=fc(\2+2M2), y = ±2k\p, z = ±ft(\2-2ju2), 

where X, /x are relatively prime. Since y is even, x=Fz = 2ftX2, a;±z = 4ft/x2. 
A. S. Werebrusow132 noted that, if a2-D/32=ma2, a second set of solutions 

of X2—DY2~mZ2 is given by 

X+Y<D=(a+p^)(xA^p-yf, D = V-ac. 

A. Cunningham,133 to solve x2Jry2=Az2, used the known solutions 
Y = (t2+Au2)d, Z=2tu/d, x=>(t2—Au2)/d, of Y2—AZ2=x2, where d = l or 2, 
and solutions of ^—Av2— — 1. Then (Y2—AZ2)(r2—Av2) = — x2> whence 
y — rY^AvZj z=rZ^vY give the general solutions. A. Holm (p. 70) 

mProc. London Math. Soc., 11, 1879-80, 83-87. 
136 Atti Accad. Pont. Nuovi Lincei, 32, 1878-9, 88. 
1,7 Math. Quest. Educ. Times, 38, 1883, 56. 
128 Das Reziprozitatsgesetz der achten Potenzreste, Progr., Berlin, 1889, 8. 
129 El Progreso Mat., 4, 1894, 46; Jour, de math. 616m., 18, 1894, 5. 
130 Arith. der Quad. Formen, 1898, 198-224, 231. 
131 Math. Quest. Educ. Times, 75, 1901, 119. Cf. papers 109, 116 of Ch. XVI. 
m Mem. Sc. Univ. Moscow, 23; rinterm6diaire des math., 9, 1902, 187. 
133 Math. Quest. Educ. Times, (2), 9, 1906, 69-70. 
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noted that A = a2+b2, whence (x+bz)/(az+y) = (az—y)l{x—bz)^mln (say), 
which determine x : y : 2. 

P. F. Teilhet134 stated that x2+y2 = (m2+n2)z2 implies 

z=K(A2+B2), x = mK(A2-B2)±2nKAB, y=nK{A2—B2) =F2 mKAB. 

F. Ferrari135 noted the solution, with K=l, given by Teilhet.134 
A. G^rardin136 stated that the general solution of x2Jr2y2—Z\ is 

x = 2l2—m2~n2+2m(3n—41), y=4l2+2n2 — 2m2—2Z(3n — m). 

G&rardin137 noted the identities 

{(V-qW-qy2+2bqy}2+Vq{2b(y-b)}2={(p+q)b2+qy2-2bqy\2, 
(m2+n2) (mnx2—2z2)2+2 mn {mnx2+2s:2—2 xz (m+n) j2 

— {(m+n) (mnx2Jr2z2) — 4 mnxz}2, 

another similar to the last and several for x2+Sy2=z2. 
A. Thue138 discussed the possibility of Ax2+By2=Cz2, where x, y, z 

are relatively prime in pairs and z^y^x>0. We can determine integers 
p, q, r without a common factor such that px+qy = rz, with p2, q2, r2 all 
<32. Then 

(Bp2+Aq2)x2-2Bprxz-\-(Br2— Cq2)z2 = 0, 
{Bp2-\-Aq2)y2—2 Aqryz+(Ar2—Cp2)z2 = 0. 

Hence 
ax = Cq2—Br2, by = Cp2—Ar2, cz = Bp2+Aq2, 

az+2Bpr = cx, bz+2Aqr = cy, 

where a, b, c are integers. Let U be the greatest of | A | , | B | , | C | . 
By the last five equations, | c | < 6£7, \ a \ < 12U, \b\ < 12U. But 
a, b, —c satisfy the initial linear and quadratic equation. Thus the possi¬ 
bility of the latter can be decided by a finite number of trials. 

L. Aubry139 proved that if pA2~B2jrrC2, where B and C are prime to A, 
then pX2= Y2+rZ2 for X^2 V^/3 if r>0, and X< aP? if r<0; if B and C 
are prime to p, then also Y=Ba, Z=Ca (mod p). 

Several writers140 solved 13a;2+17t/2=2302s. 
C. Alasia141 solved x2—79?/2 = IOI22 [Plana120] by several classic methods. 
G. Bonfantini142 noted that the evident sufficient condition for integral 

solutions of x2Jry2 — mz2 is that m be a sum of two squares. To prove that 
the condition is necessary, consider integers h, pi} q{ such that 

^l—l + Pl, l + pl — kikly p2 = 5lZCi + Pl, 1 + P3 = fe^2i PZ~Q2^2'A P2j * * •• 

By induction, ftOT = 0*+(0m+pi0,n)2, where 

01 = 1, 02 = 01<?1, * * *, 0i = 0i_l#f-l + 0*-2, 
_01=0, 02=1, *'•, 0t=0»-lg»-l+0*-2 (i — 3, • • •, m). 

134 L’interm6diaire des math., 12, 1905, 81. 
136 Suppl. al Periodico di Mat., 12, 1908-9, 34-5. 
136 Assoc. franQ., 1908, 17. To make109 m=0 replace l by Z+2m, n by 
137 Sphinx-Oedipe, 1907-8, 109-110. 
138 Skrifter Videnskapsselskapet, Kristiania, 1, 1911, No. 4, p. 18. 
139 Sphinx-Oedipe, 8, 1913, 150 (error in his 7, 1912, 81-2. 
14° Wiskundige Opgaven, 11, 1912-4, 281-6. 
141 Giornale di Mat., 53, 1915, 292-302. 
142 Suppl. al Periodico di Mat., 18, 1915, 81-6. For 2, ibid., 17, 1914, 8^5. 
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M. Weill143 obtained solutions # = a+X5, 2/ = 6+X'5, 2 = 1+5, of 

x2+y2=(a2+b2)z2 

by finding 5 rationally in terms of a, b, X, X'. Again, ax2+by2 = (a+b)z2 
has solutions of the form z = l+X5, v = l+X'5, 2 = 1 + 5. To one of these 
two is reduced the solution of ax2+by2=z2 when a+b or ab is a square. 

E. Cahen144 noted that Weill’s formulas do not give all solutions and 
showed how to find all solutions of x2+y2=5z2. 

E. Turri&re145 noted that, if a, b, c are the sides of a triangle two of whose 
medians are perpendicular, then o2+52=5c2, whose solutions are expressed 
rationally in two parameters. 

A. Desboves38 gave all solutions of x2+y2 = (m2+n2)z2. Cf. papers 133-5, 
142-5 above; Catalan63 of Ch. VII; G. F. Malfatti19 of Ch. VIII; papers 
191, 252, 294, 307, 311 of Ch. XII; and 225 of Ch. XXII. 

E. Hoppe29 of Ch. V solved p2~3q2=r2; Euler109 of Ch. XXII solved 
a2+3£2 = □. 

Further single quadratic equations in three or more unknowns. 

Bhfiscara146 (bom 1114) found four distinct numbers whose sum equals 
the sum of their squares. Take as the numbers y, 2y, 3y, 4y. Then 
10y = 30y2,2/= 1/3. 

C. F. Gauss147 considered the solution in integers of 

(1) f=ax2+aixl+a2xl+2bxiX2+2biXX2-\-2b2xxi = 0. 

If o=0, x is determined rationally in terms of xX} x2; to obtain integral 
solutions, multiply the three x’s by the denominator of x. Next, let a 4=0. 
We derive the equivalent equation 

L2—A 2Xi +2B#i#2—A1X2 = 0, L—ax+62^1+b \x2, 

A2 ~ b2—cedi, B = ob—= —aa2> 

If +2 = 0, B =}=0, we can give arbitrary values to x2 and L and determine 
x and Xi rationally. If A2=E = 0, either +1 is not a square and x2 — L = 0 
or Ai—k2 and L = ±kx2. Finally, let a2 4=0, +2 4=0. Then 

A2L2—(A 2Xi~ Bx2)2Jr D ax22 = 0, 

where D is the determinant of /, whence Da=B2—AXA2. If Z)=0, we have 
linear factors. If Z>4:0, criteria for solvability were given by Gauss.116 

Given one solution a, <*1, a2 of /=0, we can transform / into a like form 
with o=0 (treated above). In fact, determine integers /3, • ♦ *, 72 so that 

a(/3iY2—/32Yi)+«i(^2Y—/3y2)+a2(l3y1 — 0i7) =1. 

Then the desired transformation is 

X = ay+&/1+72/2, xx = aiy+Piyi+Viy2, x2 = a2y+023/1+722/2. 

143 Nouv. Ann. Math., (4), 16, 1916, 351-5. 
144 Ibid., (4), 17, 1917, 463-5. 
148 L’enseignement math., 18, 1916, 89-90. 
146 Vija-ganita, § 119; Colebrooke,1 p. 200. 
147Disq. Arith., 1801, art. 299; Werke, I, 1863, 358; German transl., Maser, 344-6. 
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Aida Ammei,148 just after 1807, noted that xl+2xl-\-hnxl — y2 has 
the solution 

Xi= -al+J^ra2r, 

and that xl+3x22+Gxl+ 

x1 

xr=2a1ar, y='£ja), 
Z /=1 

+in(n+l)xl—y2 has the solution 

xr = 2aiar) 
f r(r+l) , 

y=2r,—2— r* 

G. Libri149 noted that ax2+by2+cz2+d = 0 is solvable if a'x2+bfy2Jrc'z2 = 0 
is, where a', bf, c' are any three of a, 6, c, d. For example, if 

an2+br2+cm2 = 0, 

we get a solution x = np+q, y = rp+s, z = mp+t, where p is found rationally 
in terms of the indeterminates q, s, t. If an2, br2, cm2 are relatively prime 
integers and if no one of a, b, c is divisible by 4, we can assign the value ±1 
to the denominator of the fraction for p and hence get integral solutions 
x, y, z. 

Every integer can be expressed in the form F=x2+41u2 — ll%z2 since 
F —0 is solvable. Likewise for 2Zx2-\-y2—lZz2 and ax2+5z2—2y2, where a 
is a prime =3, 13, 27, 37 (mod 40). 

A. Cauchy150 treated the homogeneous equation F{x, yy z) =0 of degree 
N, with the given set of integral solutions a, b, c. Let x, y, z be another set. 
The ratios of u, v, w are determined by au+bv-\-cw=Q, xu+y''+zw = 0. 
Then 
" F(wx, wy, — ux —vy) =0, F(wa, wb, —ua—vb)~0. 

Set y/x=p, b/a=P. Then 

Fx=F(w, wp, —u—vp) = 0, F2=F(w, wP, —u—vP) — 0. 

Let </>, x, $ be the partial derivatives of F{x, y, z) with respect to x, y, z. 
Then 

X(t>+yx+z\f'=NF(x, y, z), a4>{a, b, c)+bx+z^ = 0. 

Thus au-\-bv+cw=0 is satisfied by 

(2) u = 4>(a, b, c)+br—cn, v — xAcm—ar, w = \p~{-an~bm, 

for m, n, r arbitrary integers. If the latter can be chosen to make F1 = F2 
for a rational p(p^P), we get the new solution x :y : z=w : wp : —u—vp 
of E=0. 

To apply (pp. 292-301) this general method to 

F(x, Vy z)=Ax2+By2+Cz2+Dyz+Ezx+Fxy, 

note that the condition F1=F2 now gives p=P or 

p= —P+£(Ev+Du)w—Fw2—2Cuv'][a, a=Bw2—Dvw+Cv2. 

Replace P by its value b/a and use au+bv+cw=0, F(a, b, c)= 0. Thus 
y/x=p = ap/(bci), where (3 = Cu2—Ewu+Aw2, y—Av2—Fuv+Bu2. Then all 

Ma Y. Mikami, Abh. Gesch. Math. Wiss., 30, 1912, 248. See papers 59, 66 of Ch. IX. 
149 Memoria sopra la teoria dei niimeri, Firenze, 1820, 10-14. 
160 Exercices de math4matiques, Paris, 1826; Oeuvres, (2), VI, 286. 
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solutions of Fix, y, z)= 0 are given by ax[a = byl^ = cz/y, where a, /3, y 
have been defined and u, v, w are given by (2). In particular, x = a/a, 
2/ = /3/6, z=y/c are solutions. 

To apply this method for N=3, we remove the factor p—P from F1—F2 
and have a quadratic in p, whose discriminant is to be made a perfect 
square if new rational solutions exist. To avoid treating this quadratic, 
Cauchy287 of Ch. XXI gave a method independent of the above. 

G. Poletti151 treated the general equation of degree two in three un¬ 
knowns. First, for solution in rational numbers, solve for one unknown u 
in terms of the other two v, w. Since the radical Z is to be rational, a 
quadratic function of v, w is to be a square Z2. Solve the latter for v; 
a new radical Y is to be rational, whence 

aw2+2@w+y+rZ2~ Y2. 

Solving this for w, we see that a radical X is to be rational: 

(F) X2=AY2+BZ2+C. 

Hence the rational solution of the initial equation is equivalent to that of 
(F) , where A, B,C are given integers. This in turn is evidently equivalent 
to the solution in relatively prime integers of 

(G) x2 = Ay2+Bz2+Ct2. 

Set 7r—x2—Ay2 and call <f> the g.c.d. of x, y; $ that of z, t. The quotient 
7r! of 7T by tffy2 is an integer. Thus the problem reduces to 

(H) x? - Ay\ = x^2, Bz\+Ct\ = irl(j>2, 

where xi=x/<f> and yi=yl4> are relatively prime, and likewise also z1} tx. 
From Legendre’s theory of the quadratic forms of divisors of x\—Ay\\ 
we get xi as a quadratic function of two parameters y', z', and as one of 
2/i, z\; then by the composition of quadratic forms, we get xx, yx as functions 
of the four parameters y', z', yr, z[. To get the linear forms 4A^+bi of 
the divisors use Legendre’s text. By (H2) these must divide p2+BC<r2, 
whose divisors are of certain linear forms 4BC£i+/3i. Equate each of the 
latter to AA£+bi and solve for integers £, For each such set of solutions, 
we can tell by a theorem of Legendre whether or not (H2) is solvable in 
integers. There is a similar discussion of the solution of (F) in integers. 

A. Cayley152 treated the generalization of Euler’s82 equation (5), viz., 

(3) 4>{x, y)=ax2+px+y--{y2--'r)y---0=<t>{a, 6). 

This is a special case of 

(4) (abcfgh) (x'y'z')2 = (abcfgh) (xyz)2, 

where the second member denotes ax2-\-by2+cz2+2fyz+2gxz+2hxy. It is 
assumed that the latter has a linear automorph (transformation into itself), 
which may be taken to be such that z'=z. For z' = z = l,h=0, (4) becomes 
(3). We can find a solution of (4) by Hermite’s method: set x' = 2£—x, 

151 Memorie Accad. Sc. Torino, 31, 1827, 409-49. Cf. Atti della Society Ital. delle Scienze 
residente in Modena, Vol. 19. 

152 Nouv. Ann. Math., 16, 1857, 161-5; Coll. Math. Papers, III, 205-8. 
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yf = 2y-y, z' = 2f-z, 

ax+hy+gz = a£+hy+g£—qCy+qF£, C = ab—h2, 

hx-j-by-j-fz = htj-j-by +/f -\-qC%—qG£, F = gh—a/, 

gx +fy+cz = g£ +fy+c{—qF£+qGri, G =fh - bg, 

where q is arbitrary. Multiply these by £, y, f and add. Thus 

(abcfgli) (£17 f) (xyz) = (abcfgh)(£y{)2, 

so that we get (4). Using the multipliers C, F} G, we get z= £*. Then the 
first two equations readily give 

(l+q2C)x' = (l+2qh-q2C)x+2qby+2(qf+q2G), 

(l+q*C)y' = (l~2qh-q2C)y-2qax+2(-qg+q2F), 

which satisfy (4) identically with zf -z = 1. Taking h=0, we get values 
making ax2+2gx+c+by2+2fy identically equal to the same function of 
x'j y'. To pass to formulas exactly equivalent to Euler’s, set 

(1 — q2ab)/(l+q2ab) =s = ^1—abr2. 

H. J. S. Smith153 stated criteria for the solvability of (1) in integers, 
whether the coefficients are real integers or complex integers p+qi. It 
suffices to consider the case in which the coefficients a, • • •, b2 of / have no 
common divisor, while / is an indefinite form of determinant =f= 0. Let Q be 
the g.c.d. of the nine two-rowed minors of the determinant Q2A of /. Let 
QF be the contra variant (62—aia2)x2-{-of /. Let 0, A, IS be the quo¬ 
tients of ft, A, ftA by the greatest squares contained in them respectively. 
Let 03 be any odd prime dividing ft, but not A; 5 one dividing A but not 
ft; 0 one dividing both I!, A. Then /=0 is solvable in integers 4=0 if and 
only if 

(?)-(?)■ (!)-(£)■ (=?)-«)(?> 
where the symbols in the left members are those of Legendre, and those 
in the right members are generic characters of / (Eisenstein, Jour, fur 
Math., 35, p. 125). This theorem is a generalization of the criteria for the 
solvability of ax2+alxl-\-a2xl~0. 

A. Meyer154 proved the preceding theorem for forms of odd determinant. 
P. Bachmann155 proved that, if F is a ternary quadratic form, all solu¬ 

tions of p2—F(q, q'y q") =2*5, in which p is divisible by 8, are obtained 
by a definite rule from any one solution and all solutions of 

t2-F(u, u', u") = l. 

The left member repeats under multiplication. 
S. R4alis156 stated that all integral solutions of x2+ny2 — u2+nv2 are 

given by (cf. G^rardin167) 

x = a2+nfi2—ny2, y = (y-a)2-\-n(y—p)2—y2, 

u = a2+n(a—y)2—n(a—fi)2 v = ^2+n(^—y)2—(a—0)2. 

163 Proc. Roy. Soc. London, 13, 1864,110-1; Coll. Math. Papers, 1, 1894, 410-1. 
164 Jour, fiir Math., 98, 1885, 177-9. 
153 Jour, fur Math., 71, 1870, 299-303. 
m Nouv. Ann. Math., (2), 18,1879, 508. 
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E. Ces&ro157 found various sets of solutions of 

z>2—v(x+y+z) +xy+yz+zx=2w2. 

R6alis stated and Rochetti158 proved that 

2 (xy+yz+zx) — (x2-\-y2+z2) =4 n2 

has an infinitude of solutions. Solving for z) we are to make xy—n2=D, 
whence tf+c? is to be expressed as a product of two factors. Or, choose 
p, q3 r, s so that ft=prigs; then four solutions are 

a;=p2+q2, y=r2+s2} z-(pdzs)2+(g±r)2. 

A. Desboves159 gave the complete solution in integers of the general 
homogeneous quadratic equation in n variables, when one solution x, y, 

* • • is given. Regard mx, my, • • • as the same solution as x} y, • •. First, 
let n = 3: 
(5) aX2+bY2+cZ2+dXY+eXZ+fYZ=0. 

Let X = px, Y = py+p, Z = pz+q. Then (5) gives p as a rational function 
of p, q, x, y, z, so that 

X=-(bp2+cq2+fpq)x, 

(6) F = (dx+bp+/2)p2—cyq2+ {ex+2cz)pq, 

Z = — bzp2+(ex +/p+cz) g2 + (dx+2by)pq. 

This is the general solution of (5), since we can find p, g such that (6) 
becomes any assigned solution. A convenient modification (pp. 233-5) 
of the method of Gauss147 leads to (6). Special cases of (6) have been 
noted above (Desboves38). 

For any n, set X=px+r, Y=py+p, •••in the proposed equation 
F(X, Yj • • *) = 0. We get p and then 

X=Mr—Nx, Y=Mp—Ny, Z = Mq—Nz) * •, 

,r „, N ,, dF x dF x 
N = F(r} p, #, •••), M=x—+p—+*••• 

The results are no more general than those for the case r = 0. 
A. Meyer160 gave criteria for the solvability in integers of 

(7) ax2+by2+cz2+du2=0, 

where a, b, c, d are integers not zero without square factors and such that 
no three have a common factor. Write (a, b) for the positive g.c.d. of 
a, 6, and set 

a = (a, b) (a, c) (a, d)a, 6 = (6, a) (6, c) (b, d)ft 

c = (c, a) (c, b) (c, d)7, d = (d, a) (d, b) (d, c) 5. 

Then necessary conditions for the solvability of (7) in integers not all zero 
are (I) a, • • •, d are not all of the same sign, and (II) — (a, c) (a, d) (b, c) (b, d)y8 
is a quadratic residue of (a, b), with five similar conditions derived by per¬ 
muting the letters. Again, (7) is solvable if and only if conditions (I) 

157 Nouv. Corresp. Math., 6, 1880, 273. 
158 Mathesis, (1), 1,1881, 165. 
169 Nouv. Ann. Math., (3), 3,1884, 225-39. 
190 Vierteljahrsschrift Naturforsch. Gesell. Zurich, 29,1884, 209-222. 
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and (II) hold and either abcd^2, 3, 5, 6, 7 (mod 8); or abodes 1 and 
a+b+c+d=0 (mod 8); or abed(mod 8) and, if a and b are even and 
c and d odd, either \abcd=3, 5, 7 (mod 8), or \abcd=l (mod 8) and 

a b (cd)2—l f j 

2+2+c+c^“—2- ^m°d 8^* 

He gave necessary and sufficient conditions for integral solutions of /=0, 
where / is any quaternary quadratic form. Finally, 

ax2+by2+cz2+du2+ev2=0 

is solvable in integers not all zero if the coefficients are odd and not all of 
the same sign. 

H. Minkowski161 defined an invariant D in terms of the prime factors 
of the determinant of the quadratic form and proved that zero can be 
represented rationally by every indefinite quadratic form in 5 or more 
variables, by one in 4 variables if D is not divisible by the square of a prime, 
by one in 3 variables if D = l, and by one in two variables if D = — 1. 

G. de Longchamps162 would solve x22\i='£\sy2i by choosing integers 
x, aij • • •, an for which 2X^ = 2x2\i<Xi (for example, by taking a1} • * •, 
ce„_2 arbitrary even integers and choosing an-i so that 2 is divis¬ 
ible by \n, and taking an to be the quotient) and then finding yh * • *, yn 
from x—yi=a{. Application is made to nx2=y2+(n — l)z2 and to 

x2—xy+y2=z2. 

The discriminant of the latter equation in x is y2—4(y2—z2), which must 
be a square k2; whence a solution is z = 7, y=5, k = ll, x=8. 

P. Bachmann163 proved Meyer’s160 theorems. 
A. Meyer164 discussed the solution of p2—tiF(q, q', q”)=e [cf. Bach¬ 

mann155]. For this and the next paper, see the chapter on quadratic forms. 
G. Humbert165 treated the integral solutions of x2—4yz—4:tu=A. 
Anonymous writers166 stated that x2+y2—z2=2u2 has the solutions 

x~2ak(c2—ak), y-c2(c2—4afc), z= {c2—2a(a+6)}2—2a2(a2 —262), 

u—2ac(c2—ah), k^a+2b. 

Or we may compare the known solutions of y2—z2 = h2, x2+h2 — 2u2 and 
take h = a2—b2=2m2—l2; hence an infinitude of solutions can be found 
from one. 

A. G6rardin167 stated that x2+hy2=z2+ht2 has the solutions (R6alis156) 

x=m2+n2-\- hp2—2m (n+hp), y = n2+hp2—m2, 

z = m2+n2—hp2+2 n (hp—m), t=m2+hp2—n2+2 p (n—m); 

x=n2+hp2—hm2, y=n2+hp2+hm2—2 m(n+hp), 

z=n2—hp2+hm2+2hn(p—m), t=hp2+hm2—n2+2p(n — hm). 

161 Jour, fiir Math., 106, 1800, 14. Gesamm. Abhandl., I, 227. 
162 El Progreso Mat., 4, 1894, 40-7; Jour, de math. 614m., 18, 1894, 5. 
1M Arith. der Quad. Formen, 1898, 259-266, 553. 
1M Jour, fiir Math., 116, 1896, 321. 
166 Jour, de Math., (5), 9,1903, 43. 
168 Sphinx-Oedipe, 1907-8, 30, 95-6. 
167 Ibid., 107-9. 
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F. Ferrari168 noted that the solution of xl+Aix\-\-\-Anxl~xl+i 
reduces to the solution of Xx2=xl+1. 

O. Degel169 noted that, if x} y, z, s are homogeneous coordinates, the 
surface 

x2+my2+nz2+2ayz+2bxyJr2cxz = s2 

can be represented on a plane (Clebsch, Jour, fur Math., 65, 1866, 380) by 

-px—a, |2 = P2/> ?3 = pz, f4 = ps ~ O'. 

Take £4-0 as the plane and set ps = <x in the initial equation. We get cr 
rationally. Hence px, •••, ps are expressed as homogeneous quadratic 
functions of £2, By the same method he170 treated 

x2+y2+z2—2yz—22£—2 xy = s2 
and found 

p£= (u+2)(w+t;), py=uv, pz = 2u, ps — 2v—u2. 

Several writers (pp. 164-6) gave solutions. 
A. Gerardin171 found m from (lH-wa)2+(l+m6)2—(7nc)2 = 2, whence 

(c2+2a5+a2—b2)2+(c2+2ab+52—a2)2 — {2c(a+b) }2 = 2(a2+52-c2)2. 

He noted (p. 22) the identity 

(g2 —P) 2Jc{g2—%fg)2+(/2—2fg)2=2 (J2 —fg4- #2)2 * 
Also/2— /p-fp2 = fc2 for/=p2+2p^~3^2, p = 4pg, k = p2+3q2. 

Gerardin172 gave solutions of cases of 

a;2+2(6i/+C2)a;+m2/2+2a2/2+?i22= □. 

0. Degel173 stated that all solutions of llx2 = y2—322—w2+2w2+2s2+10£2 
are given by p£ = A+2a£, py — A-{-2bB, pz — A+2cB, pw = A +2dB} 
pu — AJr2eB, ps — A+2/J3, pi —A, where a, • • *, / are distinct and +0, and 

A = lla2-62+3c2+d2-2e2-2/2, £= -lla+&-3c-d+2e+2/. 

“V. G. Tariste”174 noted that, if aXl • • •, an is one set of integral solu¬ 
tions of mxx\-\-\-mnxl=0, all solutions are given by 

Xk-M | — ak^miOLi +2ak^miaiai J, 

where the a! are any rational numbers and M is such that the x’s are 
integers. Gerardin (pp. 136-7) remarked that this result follows by taking 
Xi- ai+ma'i (i = l, • • *, k). 

L. Aubry175 discussed the integral solutions of xxyx-\-\-xnyn — 0. 
W. Mantel176 treated xy+xz+yz~N. 
For x2+y2 = 2a2-\-2b2, see papers 83-87 of Ch. V. 
On S (x2i +Xi) = g, see Bachetla of Ch. VIII. On 2x?—Sy/=g, see Tano207 

of Ch. XII, On xi+Zy1=u2+3vt, see papers 201 and 211 of Ch. XXII. 

168 Suppl. al Periodico di Mat., 11, 1908, 129-131. 
169 L’intermddiaire des math., 15,1908,151-2. 

Ibid., 16,1909,167. 
171 Sphinx-Oedipe, 6, 1911, 74-5. 
171 L’interm4diaire des math., 18, 1911, 202-3. 



CHAPTER XIV. 

SQUARES IN ARITHMETICAL OR GEOMETRICAL PROGRESSION. 

Three squares in arithmetical progression, x2+z2=2y2. 

This topic is closely connected with congruent numbers, Ch. XVI, 
especially papers 41, 67, 68, 120, 14L It may be stated in terms of tri¬ 
angular numbers (Ch. I179). 

Diophantus, III, 9, used three special squares in A. P. (see Ch. XV). 
Jordanus Nemorarius1 in the thirteenth century found that 

r = b2—c2/2, v = b2+bc+c2/2, q = b2+2bc+c2/2 

make v2—r2 = q2 — v2 = 263c-j- 362c2+be2. Here b is any integer, c any even 
integer. In his notations, set a = 5+c, d=a+b, h = ac, k = bc, e = ad, f= bd. 
Then e = h+k+f, and a solution is v = (h+f)/2, r=f—v, q = e—v. 

Regiomontanus,2 or Johann Muller (1436-1476), proposed in letters the 
problems: Find 3 squares in A. P., the sum of whose integral roots is 214; 
find 3 squares in A. P., the least being >20000; find 3 squares in harmonical 
progression. 

F. Vieta3 took A2, (A+B)2 and (D—A)2 as the squares. Hence 
T)2_O D2 

(D—A)2 = A2+4:AB+2B2j A = 

Hence we may take D2—2R2, D2+2B2+2BD and D2+2B2+4BD as the 
sides of the three squares. 

Fermat4 proposed to St. Croix, Sept., 1636, that he find three squares in 
A. P. the common difference being a square. 

Fermat5 knew a rule for finding three numbers whose squares are in 
A. P. Apparently the numbers were r2—2s2, r2+2rs+2s2, r2+4rs+2s2. 
Replacing r by p — q and s by q, we obtain Frenicle’s set p2—2pq — q2, 
p2+q2, p2+2pq—q2. To derive the latter, Frenicle6 noted that the squares 
of a—6, c, a+b are in A. P. if a2+b2 = c2, and took a = p2—q2, b = 2pq, 
c = p2+q2. 

L. Euler7 deduced from the solution y = l of l+x2-2yA the solution 
?/= 13, etc. Cf. Cunningham79 of Ch. XX. 

To find three integers the sum of any two of which is a square and whose 
squares are in A. P., “ Amicus ” 8 took 2a262±(a4 — b4), a4+64 as the 

1 Elementa Arithmetica decern libris, demostrationibus Jacobi Fabri Stapulensis, Paris, 1496, 
1514, Book 6, Theorem 12. 

2 C. T. de Murr, Memorabilia Bibl. publ. Norimbergensium, Para I, 1786, 145, 159, 201. 
Cf. M. Cantor, Geschichte der Math., II, 1892, 241, 263. 

3 Zetetica, 1591, V, 2; Opera Math., 1646, 76. Same by J. Prestet, Elemens des Math., ou 
Principes . . ., Paris, 1675, 326. 

4 Oeuvres, II, 65; III, 287. 
6 Oeuvres, II, 234; letter from Frenicle to Fermat, Sept. 6,1641 (tables by Frenicle, p. 237). 
• Triangles rectangles en nombres, prop. XI. Full reference in Ch. IV.62 
7 Algebra, 2,1770, Ch. 9, Art. 140; French transl., 2,1774, p. 167; Opera Omnia, (1), 1,402. 
* Ladies’ Diary, 1795, 38, Quest. 974; Leybourn’s Math. Quest, from L. D., 3, 1817, 297. 
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numbers. Their squares are in A. P. and their sums by twos will be squares 
if 2a2+262= □ , which is known to hold if a, & = 2m?irk(m2—n2). The same 
problem was treated by A. Cunningham and F. Phillips.9 A. E. Jones10 
started with any three numbers 

x = -m2-\-2mn+n23 y — m2+n2, z — m2+2mn—n2 

whose squares are in A. P., and called P, Q, R the values obtained from them 
by replacing m by x2, n by z2. Then P, Q, R are the desired numbers since 

P+Q — 2z2 (x2+z2) = 4z2y2, P+R=Ax2z21 Q+R = 2x2(x2+z2)~4tx2y2. 

C. Campbell11 treated the similar problem to find three numbers x, y, z 
the difference of any two of which is a square and whose squares are in A. P. 
Let x—y=m2, x—z~n2, y—z — p2. Then n2—p2=m2. Take n-\-p=ms, 
n—p — m/s. Since x2Jrz2~2y2 gives x3 we get y and z in terms of m, n. 

J. Cunliffe12 treated the problem to find 3 squares in A. P. such that the 
sum of each and its root shall be a square. 

J. Wright120 found three squares x2, y2, z2 in harmonical progression 
such that each exceeds its root by a square. If a, b = 2rs± (r2—s2),c—r2+s2, 
a2Jrb2~2c2 and the squares of x=n2/d, y = bn2/(cd), z — bn2/(ad) are in har¬ 
monical progression. For d~m(2n—m), x2—x = □. Also, y2—y= □ if 
b2n2—bed = □ = (bn—pm)2, which holds if m = 2bn(c—p)j(bc —p2). Then 
z2—z = □ if (6e—p2)2—4ap(6—p)(c—p) = □ == (6c+2ap—p2)2, which gives 
p = 26c/(6+c—a). 

J. Ivory126 found two sets a2, 62, c2 and aJ, b\, cl of three squares in A. P. 
having the same sum. The conditions are a2-fc2 = 262 = 26? = al+cl, or 
462= 2(a±c)2 = S(ai±Ci)2. Hence we require a square which is a sum of two 
squares in two ways. The least numbers are obtained from 

252 = 72 + 242 = 152 + 202. 

To find three numbers whose sum is 117 and whose squares are in 
A. P., S. Jones13 took x, 5x} 7x as the numbers, whence x=9. S. Ryley took 
2m?2.±(m2—n2), m2+n2 as the numbers. Then (n+2m)2 = 117+3m2 = □ 
for m=3; the resulting numbers 9, 45, 63 are said to give the only solution 
in positive integers. 

R. Adrain14 used the squares u2—y~(u—p)2, u2, u2+y — (u+q)2, whence 
2pu—y = p2, y~2qu=q2. Solving, we get w=(p2-fg2)/(2(p—g)}. There 
results Frenicle’s5 solution. 

J. Surtees15 noted that (a—ri)2, a2+n2, (a+n)2 are in A. P. and 
a2+n2==D if a~r2—l, n = 2r. 

J. R. Young16 found three squares in A. P. such that the roots increased 

9 Math. Quest. Educ. Times, 24,1913, 107. 
10 Math. Quest, and Solutions, 5,1918, 62-3. 
n The Gentleman’s Diary, or Math. Repository, London, No. 65, 1805, 40-1, Quest. 873. 
n Math. Repository (ed., Leybourn), London, 3,1804, 97-106, Prob. 7. 
Ua New Series of Math. Repository (ed., T. Leybourn), 1, 1806, I, 99. 
™IUd., 121-3. 
w The Gentleman’s Math. Companion, London, 2, No. 9, 1806, 15-17. 
14 The Math. Correspondent, New York, 2,1807, 14. 
16 Ladies’ Diary, 1811, 39, Quest. 1217; Leyboum’s Math. Quest. L. D., 4, 1817, 139. 
16 Algebra, 1816; Amer. ed., 1832, 333-4 (329-31). 
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by 2 give squares, the sum of the first and third of which is also a square. 
Take q = l in Frenicle’s set; we get p2+2p—l, p2+l, p2—2p—1. Hence 
the conditions are p2+3= □, 2p2+2 = □. Set p-m+1, and let the second 
equal (nm+2)2, whence m = 4 (1 — n) [ (n2—2). Then 

(?>2+3)(w2-2)2/4 = 7i4-2^+2n2~4^+4 = (n2~n+|)2 

if n = 5/4, whence p = 23/7. 
To find three squares in A. P. such that any root plus unity is a square, 

H. Clay17 took x2, a2x2, b2x2 as the squares. Set a;+l = (r+l)2. Then 
ax+l = (sr+l)2 determines r. Then ta+l = □ if a certain quartic in s 
is a square, which is the case if $ = (2pq—4b)l(q2—l). Finally, choose a 
and b so that 1, a2, b2 are in A. P. A. B. Evans18 took a = 5, b-7 and 
proceeded similarly. S. Bills19 employed the numbers a, b = 2pqdz(p2~q2); 
c = p2+q2, whose squares are in A. P., and took ax[y2, bxjy2, cx/y2 as the 
roots of the required three squares. Then ax+y2= (r+y)2, bx+y2 = (s+y)2 
determine x, y. Then cx+y2 = □ if a quartic in r is a square, which is the 
case if r = s(a+b—c)/(2b). W. J. Miller19 called the numbers x, y, z and 
set £+l = m2, y+l—n2j 2+1 =p2, m+n = r(n+p), m—n~s(n—p), whence 

m n _ p __1 

r—s+2rs r+s 2—r+s~~k' 

Then x2+z2 = 2y2 reduces to k2=f(r, s), which is solved. D. T. Griffiths20 
took x2— 1, y2— 1, z2— 1 as the numbers. Their squares are in A. P. if 
z2+y2—2 = a(y2+z2—2), y2—z2 = a(x2—y2). Taking a = 1/2 (the value when 
the squares are 1, 52, 72), and eliminating z} we get 5x2—y2 = 4:. This holds 
if x=5, y —11, whence 2 = 13. 

To find three squares in A. P. such that each less its root is a square, 
Smyth21 took a2x2, b2x2, c2x2, p = l/a, etc. Then x2—px, ••• are made 
squares in the usual way. “ Epsilon ” used the numbers 1/X, a/X, b/X, 
where X=2x—x2 and where 1, a2, b2 are in A. P. Now 1/X2—1/X= □. 
Again, t2—t= □ if t= (k-\-l)2/(4:kl). It is shown that a/X and b/X are of 
the latter form if 

1__{4a5— (ab—a—6)2}2_ 

X Sab(ab+b—a)(ab+a-b)(a+b-aby 

To find three squares in harmonical progression the sum of whose roots 
is a given biquadrate d4, “ Epsilon ” 22 took a, c = 2mn=b (m2—n2) and 
b=m2+n2. Then the squares of h/a, h/b, h/c are in harmonical progression; 
equating their sum to d4, we get h. 

A. Guibert23 noted that the common difference of 3 squares in A. P. 
is a multiple of 24, and similar theorems. The general solution in positive 
relatively prime integers of a2+c2=2b2 is stated to be 

17 The Gentleman’s Math. Companion, London, 5, No. 25, 1822, 151-4. 
18 Math. Quest. Educ. Times, 16, 1872, 27-28. 
19 Ibid., 11,1869, 88-91. 

63,1895,46-7. 
21 The Gentleman’s Math. Companion, London, 5, No. 26,1823, 214r-8. 
22 The Gentleman’s Math. Companion, London, 5, No. 28, 1825, 365-6. 
23 Nouv. Ann. Math., (2), 1, 1862, 213-9. 
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a = db (p2—q2-2pq), b-p2~\-q2, c-p2—q2+2pq, 

where p, q are relatively prime and one even. Extending the A. P., he 
proved that the nth term is a square if q = l, 2p-n—2, or q = 2, p~n—2. 

“ Civis ” 24 proved that the common difference of three rational squares 
in A. P. is never 17. For, if so, 4a6(a2—b2) = 17<?2. Put a-r2, b-s2, 
r2~s2 = 8v2, whence 7 = 21?+!, s = 2v2—l. Put u = q/(8rsv). Then 17n2—1 
= 4v4, which is impossible in view of the formula for z in the known solu¬ 
tion of 17n2— l=z2. A. Martin25 noted that the theorem is evident for 
integers since a multiple of 4 cannot equal 17. 

To find26 three squares in A. P. such that each exceeds its root by a 
square, employ Frenicle’s numbers (say l, m, n), and take lx, mx, nx as 
the roots of the required squares. Then l2x2— lx=D, etc., are solved as 
in Ch. XVIII. 

D. Andr627 noted that, if three squares are in A.P., 

2y2=x2+z2, ^2=(^2~^) “^"(^2^) ~a2+c2> x = a+c, z = a-c. 

G. R. Perkins28 treated the problems 1 [2]: Find three squares in A. P. 
such that each less [plus] its roots is a square. Take the numbers to be 
the squares of £±|, where 4£=;r+ar1, 4:r} = y+y~1, 4f=3+z”\ 
and the signs are + or — according as the problem is 1 or 2. Then each 
square db its root is a square. The squares are in A. P. if 

,+£±i—, r+,±i.sS±l), 
P p-f-l 

These give ?, rj, f and n=2m(p-\-l)/N, where N^=2p(2p+1). The desired 
numbers are the squares of £zh§ = m/a, m/b, m[c, where 

(2p2-l)a = (2p2+2p+l)b = (2p2+4p+l)c = V. 

It remains to make x, y, z rational, using 4£=x+ar1, etc. 
that m2^rtm be a square for t=a, b, c. Now 

mrT am = (mPr k)2 if 
k2 

m_±(2ifc-a)' 

This requires 

Then m^bm— □ if k2—b(2k~a) = □, say (k—l)2, whence k is a rational 
function of 1. Then k2~c{2k — aj=-D if [=(«+&—c)/2. For Prob. 1, 
P>2; if p = 3, m/a, • • •, m/c are quotients of numbers of 14 digits [cf. Hart5 
of Ch. XVIII]. Three times as many digits are involved in the answer by 
D. Kirkwood,29 wTho started with x2, 25x2, 49rc2. For Prob. 2, the use of 
P = 1 gives the answers due to Williams6 of Ch. XVIII. 

2i The Lady’s and Gentleman’s Diary, London, 1866, 56-7, Quest. 2041. 
“ Math. Quest. Educ. Times, 52,1890, 87. 
26 Ibid., 14, 1871, 54. A Collection of Diophantine Problems by J. Matteson, pub. by A. 

Martin, Washington, D. C., 1888, § 10, pp. 14-16. 
27 Nouv. Ann. Math., (2), 10, 1871, 295-7. 
28 The Analyst, 1, 1874, 101-5. 
29 Stoddard and Henkle, University Algebra, N. Y., 1861, p. 494. 
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A. Cunningham30 investigated the sets of three numbers < 10000 whose 
squares are in A. P. the ratio of the greatest to the least being as great (or as 
small) as possible. 

W. A. Whitworth31 noted that if three squares without a common factor 
are in A. P., the middle one is =1, 25 or 49 (mod 120) and each of the others 
is =1 or 49 (mod 240). 

J. Neuberg32 and J. Deprez33 investigated “ autom^dian ” triangles, 
viz., those whose medians are proportional to the sides a, b, c. If a>b>c, 
the condition is a2+c2 = 2b2. 

G. Bisconcini34 noted that, if A is the common difference of three 
squares x\ in A. P., then x\—zl = A, x\—x\~2A. By the latter, Xi, 
X3= (2A=FX2)/(2X). Thus X = 2a2, A=2a1a2) Xi = ai~a2, Xz~ai+a2. By 
the first condition, x\ = a\-\-a\. It is stated [incorrectly35] that ai = r2 —s2, 
a2=2rs, whence A = 4rs (r2—s2), which he called a number of Fibonacci. 

C. Botto35 noted the incompleteness of the solution by Bisconcini. To 
obtain all relatively prime solutions of x2+y2 = 2z2, note that x and y are odd, 
and set p — (x+y)l2, q~(x—y)/2. Then p2+q2=z2. Since p and q are 
relatively prime, p, q=u2—v2, 2uv, and z=u2+v2. The same substitution 
reduces x2—y2 = 2z2 to 2pq=z2, whence p, q = a2, 2b2 and z = 2ab. 

G. M6trod36 noted that u2—2v2= —x2 has the solutions 

u=un(a2+2b2)+4.vnab, v=2unab+vn(a2+2b2), un—2vl— —1. 

E. Turriere37 noted that the sides of an autom^dian triangle are 

a=\(l+22 — 22), &=X(l+i2), c = X(l —2i—^2). 

A. G4rardin38 noted that for the automedian triangle with the sides 
31, 41, 49, the sum of the sides is a square 121. J. Rose39 noted that by 
Turri&re’s formula, a-\-b+c = \(3 — t2) becomes a square by choice of X. 

R. Goormaghtigh40 restricted the last problem to relatively prime integral 
sides, whence these are the absolute values of a2—/32±2af3, a2+/32. The 
perimeter is a square if a2+/32+4aj3 = w!, whence a+2@ = v, v2 = 3(32+u2. 
Thus @ = pq, v=(Sp2+q2)l2. 

See papers 15, 35, 62 of Ch. XV; 20 of Ch. XVII; 5, 8, 16 of Ch. 
XVIII; 7, 8, 48, 49, 57, 114, 143 of Ch. XIX; 11 of Ch. XXII. On 
x2+l = 2y2, see papers 112-129 of Ch. IV; 154, 188, 215, 234, 298 of Ch. 
XII; 92 of Ch. XXIII. 

Papers without novelty on x2+22=2?/2. 

A. Boutin, Jour, de math. 416m., (4), 4 [19], 1895,12 [Vieta3]. 
Plakhowo, ibid., (5), 21, 1897, 95 [Frenicle5]._ 

30 Math. Quest. Educ. Times, 71, 1899, 56. 
«Ibid., 72,1900, 98. 
32 Mathesis, 9, 1889, 261—4; (3), 1, 1901, 280. 
33 Mathesis, (3), 3, 1903, 196-200, 226-30, 245-8. 
34 Periodico di Mat., 24, 1909, 157-70. 
35 Ibid., 232-4. 
33 Sphinx-Oedipe, 8, 1913, 130-1. 
37 L’enseignement math., 18, 1916, 87-8. 
38 L’interm6diaire des math., 23, 1916, 173. 
89 Ibid., 24,1917, 20-22. 
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H. S. Vandiver, Amer. Math. Monthly, 9, 1902, 79-80; others, 7, 1900, 82-3, 112-3. 
A. Gerardin, Sphinx-Oedipe, 1906-7, 95, 161-2 [Vieta,3 bibliography!]. 
F. Ferrari, Suppl. al Periodico di Mat., 11, 1908, 77-8 [Frenicle5]. 
A. Gerardin, Assoc, frang., 1908,15-17 [bibliography]. 
A. Tafelmacher, l’interm^diaire des math., 15, 1908, 102, 259. 
Welsch, ibid., 16, 1909, 19, 156 [no novelty in authors cited]. 
A. Martin, Amer. Math. Monthly, 25,1918, 124. 
E. Balder, Recherche . . . Triangles Rectangles en Nombres Entiers, 1916, 212-7. 

Four squares in arithmetical progression. 

Fermat41 proposed the problem to Frenicle May (?), 1640 and stated 
(Fermat11 of Ch. XV) that it is impossible. Euler109 of Ch. XXII, P. 
Barlow,42 and M. Collins43 proved the problem is impossible. 

B. Bronwin and J. Furnass43" took relatively prime squares x2, y2, z2, w2. 
By y2~x2—z2—y2~w2—z2, we must have y+x = 2ab, y—x — 2cd, z-\-y = 2ac, 
z—y~2bd, w-\-z=2bc, w—z = 2ad. By the two values of y and those of z, 
(a+d)6= (a—d)c, (c+d)a=b(c—d). But the g.c.d. of the four numbers 
ad=d, cdtd is 1 or 2. Hence aJrd= dc, a—d~5b, c-\-d— eb, c—d—ea, 5 = 1 
or 2, € = 1 or 2. These are inconsistent since a is prime to d. 

A. Genocchi44 proved the impossibility of 4 squares in A. P. and the 
following generalization (of the case p = 2). The four expressions x^F (p+1)y 
and x=f(p — l)y are not all squares if p is a prime 8mdb3 such that p-j-1 and 
p — 1 admit no prime divisor 4m+l, and x, y are relatively prime. 

Several writers45 failed to find a solution. 
L. Aubry46 proved by descent the impossibility of 4 squares in A. P. 
E. Turriere47 gave a proof. 

Numbers in arithmetical progression all but one being squares. 

A. Guibert48 noted that if A2, B2, C, D2 (all but C being squares) are 
in A. Pv they are the products by a square of a similar progression of odd 
integers relatively prime by twos. From the conditions A2+C = 2B2, 
B2-\-D2~2C, eliminate C. Then D2=3B2—2A2. The known method of 
solution gives 

A=2p2—2pq—q2, 6 = 2p2+g2, d=2p2+4pg—g2. 

A. Cunningham49 found five integers in A. P., four being squares. If 
tf2, w2, X, y2, z2 are in A. P., t;2+3z2= (2y)2, 3tf+z2— (2w)2, which require that 
the five numbers be equal (Collins,43 pp. 17-23). Next, let all but the fourth 

41 Oeuvres, II, 195. 
42 Theory of Numbers, 1811, 257. 
43 A Tract on the possible and impossible cases of quadratic duplicate equalities ...» Dublin, 

1858, 16. Abstract in British Assoc. Reports for 1855, 1856, Trans, of Sections, 4. 
The Ladies’ and Gentleman’s Diary, London, 1857, 92-6. 

434 The Gentleman’s Diary, or Math. Repository, London, No. 73,1813, 42-43. 
44 Comptes Rendus Paris, 78, 1874, 433-5. 
43 Amer. Math. Monthly, 5, 1898, 180. 
48 Sphinx-Oedipe, 6,1911, 1-2. 
47 L’enseignement math., 19,1917, 240-1. 
48 Nouv. Ann. Math., (2), 1, 1862, 249-252. Cf. Pocklington83 of Ch. 
49 Math. Quest. Educ. Times, (2), 9, 1906, 107-8. 
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be squares, the first three being y2, w2, x2. As known, v, x = t2—u2zsr2tui 
w~t2-\-u2. Since the common difference of these squares is 5 = 4tu(t2—u2)y 
the fifth number is w2+Sh=z2. This has an infinitude of solutions t, u, z 
derivable in succession from the minimum solution. From the solution 
72,132,172, 409, 232, there are deduced two solutions in much larger integers. 

Squares in geometrical progression. 

Beha-Eddin50 (1547-1622) included (as Prob. 6) among the 7 problems 
remaining unsolved from former times: Find 3 squares in G. P. whose sum 
is a square. Nesselmann noted that the problem is impossible since 
x2+x2y2+x2yA= □ has no rational solution [Adrain,113 Anderson,114 Genoc- 
chi,119 Pocklington138 of Ch. XXII]. 

To find three squares in G. P. and three numbers in A. P. such that the 
three sums of corresponding terms are squares, W. Saint51 took a2, a2x2, 
a2x* as the squares in G. P. and 2a+l, as2+a+1, 2ax2+l as the numbers 
in A. P. It suffices to make a2£2+ax2+a+l = □ = (ax+x/2)2, say, whence 
a = \x2—1. Others took x2, 4x2, 16x2 and either 1, 4x+l, 8z-f 1 or 2ax+a2, 
8ao?+4a2, 14arr+7a2. 

W. Wright52 found three squares x2} a2x2} a*x2 in G. P. each plus its root 
being a square. Thus x2-\rx = □, x2-\~xla = □, x2+xja2= □, which are 
satisfied in the usual way (Ch. XVIII). 

To find three squares in G. P. each less its root being a square, J. Ander¬ 
son53 took x2, xy, y2 as the roots and x2—l — {p—x)2y y2—l = (q—y)2, which 
give x, y. Then x2y2—xy— □ leads to a quartic in p which is solved as usual. 
Isaac Newton (l. c.) took {r2/(2r—1)}2, r2, (2r-l)2 as the numbers. The 
first of the three conditions is satisfied identically. Take r2—r = n2r2, 
whence r = 1/(1 — n2). Then (2r—l)2—(2r—1) = □ if 2n2+2=D. Set 
n = m+1. Then 2n2+2 = (sm+2)2 determines m. 

S. Ward54 found three squares x2, 4x2} 16x2 in G. P., such that if any one 
of them is increased by its root, the sum is a square. Take x2-\-x = p2x2. 
The remaining two conditions become 2p2+2 = □, p2+3= □, which hold16 
if p = 23/7. _ 

60 Essenz der Rechenkunst von Mohammed Beha-eddin ben Alhossain aus Amul, arabisch 
u. deutsch von G. H. F. Nesselmann, Berlin, 1843, p. 56. French transl. by A. Marre, 
Nouv. Ann. Math., 5, 1846, 313. 

61 The Diary Companion, Suppl. to Ladies’ Diary,'London, 1806, 36-37. 
62 The Gentleman’s Math. Companion, 5, No. 24, 1821, 41-44. 
**Ibid., 5, No. 27, 1824, 274-7. 
M J. R. Young’s Algebra, Amer. ed., 1832, 341. 





CHAPTER XV. 

TWO OR MORE LINEAR FUNCTIONS MADE SQUARES. 

Diophantus, II, 12, solved £+2= □, £-f3 = □ (the first instance of 
a “ double equality ”) by resolving the difference of the two linear functions 
into two factors in a suitable manner; here he took 4 and 1/4. Take the 
square of half the difference of the two factors and equate it to the smaller 
expression, whence 225/64 = a?+2. Or equate the square of half the sum 
of the actors to the greater expression. To solve without using a double 
equation, take x = y2—2 and make x-\-3 — y2-\~l a square, say by equating 
it to (2/—4)2, whence y —15/8. 

Diophantus II, 13 relates to 9—£ = □, 21—£ = □; while II, 14 relates 
to x—n~ □, x—m= □. 

Diophantus, III, 5, 6, required three numbers such that their sum is 
a square and the sum of any pair exceeds the third by a square. Hence 
the sum of the three squares is a square, as for 4, 9, 36. 

Diophantus, III, 7, 8, required three numbers whose sum and sums by 
pairs are squares. Let the sum of all three be (£+l)2, the sum of the first 
and second be £2, the sum of the second and third be (re— l)2. Then the 
sum of the first and third is 6z+l and equals 121 if £ = 20. 

Diophantus III, 9 relates to three numbers in arithmetical progression 
whose sums by pairs are squares. Since x2, (s-f-1)2, (re—8)2 are in A.P. 
if re=31/10, we seek three numbers whose sums by twos are the numbers 
961, 1681, 2401 just found. 

Diophantus III, 10 relates to three numbers such that the sum of any 
pair of them added to a given number a gives a square, and such that the 
sum of the three added to a gives a square. For a-3, take the sum of the 
first two to be £2-f4z+l> the sum of the last two to be £2+6£-f6, and the 
sum of all three to be £2-f8£+13. Then the numbers are 2£+7, £2+2£—6, 
4z+12. The sum 6z+22 of the first, third, and a, is the square 100 if 
£ = 13. In III, 11, a is negative. 

Diophantus, III, 18 and IV, 35, noted that his method does not make 
ax+b and cx-j-d squares if a : c is not the ratio of two squares.1 

Diophantus, IV, 14, made £+1, y+1, £+2/+1, x—y+l squares. 
Diophantus, IV, 22, found three numbers in G. P., the difference of 

any two being a square. In V, 1 [2], he found three numbers in G. P. 
such that each less [plus] the same given number is a square. 

Diophantus, IV, 45, made 8£+4 and 6£+4 squares by subtraction. 
Diophantus, V, 12, 14, treated the problems to divide unity into 2 or 

3 parts such that, if the same given number is added to each part, the sums 
will be squares [see Chs. VI, VII]. 

1 Cf. G. H. F. Nesselmann, Algebra der Griechen, 1842, 335-40. Cf. 86 of Ch. XIX. 
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Brahmegupta2 (bom 598 A.D.) made ax-\-1 and for 4-1 both squares, 
viz., of (3a+&)/(a — b) and (a+36)/(a—b), by taking x = S(a+b)[(a~b)2. 

He made (§§ 80-81, p. 369) x+y, x—y, xy-\-1 all squares by taking 

whence 

2 a2 . 
x=Tr(°'+&)> 

2a2. , 2y=_(a- 
-&2), 

xy+1 = 
(2 a4-54)2 

58 ' 

He made (§§ 82-85, pp. 370-1) x+a and x+b squares by taking 

whence 

x+b = 

To make ax+b a square (§§ 86-87, pp. 371-2), put it equal to an arbi¬ 
trarily assumed square and solve the equation for x. 

Bhascara3 (born 1114 A.D ) made 3y+l and 5y+l squares by equating 
the first to (3n+l)2, whence 52/4-1 = 15n2+10n+l = □ for n-2 or 18. 

Alkarkhi4 (beginning of eleventh century) solved x+10 = y2, x-\-15—z2 
by setting 2=2/4-2/3in2/24-5==22; also, x4- 3 = y2,x4- 5 = z2 by taking z4- y=4, 
-0 = 1/2. 

G. Gosselin5 found three numbers (13/9, 133/9, 253/9) in A. P. which 
become squares when increased by 4; three numbers (1/9, 15/9, 48/9) 
whose sum is a square, the first a square, and the sum of the first and either 
of the other two is a square; four numbers (25, 16, 12, 11) whose sum is a 
square, while the excess of the first over the second, second over third, 
third over fourth are squares. 

Rafael Bombelli6 required three numbers, the sum of any two of which 
increased by 6 and the sum of all three increased by 6 are squares. He 
gave 384/s, 55ys, 1449/100. He found (p. 458) a number which added to 
4 and to 6 makes two squares. 

F. Vieta7 generalized the method of Diophantus III, 10 [11]. If the 
numbers are x, y, z, let 

x+y = (A+B)2—a, yJrz = {A+B)2—ai x+y+z=(A+G)2 — a. 
Then 

x = 2AG+G2-2AD-D2, z=2AG+G*-2AB-B\ 

x+z+a = 4AG+2G2~2AB-B2-2AD-D2= □, 
say F2, by choice of a rational A. 

2 Brahme-spliut/a-sidd’hanta, Ch. 18 (Algebra), §§78-79. Algebra, with arith. and mensura¬ 
tion, from the Sanscrit of Brahmegupta and BhAscara, transl. by Colebrooke, 1817, 
pp. 368-9. 

2 Vija-gan'ita, § 197; Colebrooke,2 p. 259. 
4 Extrait du Fakbri, French transl. by F. Woepcke, Paris, 1853, 86, 101. 
5 De Arte magna, seu de occulta parte numeroram, Paris, 1577, 74r-5. 
6 I/algebra opera, Bologna, 1579, 496. 
7 Zetetica, 1591, V, 4[5], Francisci Vietae opera mathematica, ed. Francisci k Schooten, 

Lugd. Bat., 1646, p. 77. 
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C. G. Bachet8 treated ax4-fr= □, ax+c= □, by finding two rational 
squares whose difference equals b—c. To solve 8x4-4= □, 6x4-4=113, 
take the double 4 of the side 2 of the common square 4, and the difference 
2x of the left members, and one fourth of 2x. Then the square of J(fx4-4) 
equals 8x4-4 and the square of §(fx —4) equals 6x4*4. By either condit!on, 
x = 112. Next, let the constant terms be distinct squares, as in 10x+9 = □, 
5x4-4= □. Seek two numbers (5 and 1) whose sum is double the root 3 
of the larger square and whose difference is double the root 2 of the smaller 
square. Take one of these numbers 1 and 5 as one of two factors whose 
product gives the difference 5x4-5 of the given functions. From x4-1 and 5, 
we get 

(^)2=10a:+9’ (^)2 = 5x+4, a; = 28. 

But the factors 5x4-5, 1 give }|(5x4-6)}2> 10x4-9. Next, for 65 —6x= □, 
65—24x= □, multiply the first by 4 and we have a problem of the first type. 
For 16—x=D, 16 —5x= □, seek two squares whose difference is the 
quadruple of x. Take 4—N as the side of the larger square. Then 
(4—N)2—4{ 16 — (4—N)2} =16—40Y4-5Y2 is the smaller square, say 
(4—7Y)2, whence N = 4/11. Thus the squares are (40/11)2 and (16/11)2, 
one fourth of whose difference gives x = 336/121. [Bachet here used the 
same letter for x and N and put 4—6Y erroneously for 4—7N.2 

Fermat,9 commenting on Diophantus III, 10 and V, 30, desired four 
numbers such that the sum of any pair increased by a given number a 
gives a square. Let a = 15. The three squares 9, 1/100, 529/225 are such 
that the sum of any pair increased by 15 gives a square (as found by 
Diophantus, Y, 30, who took 9 as one square and solved x24-24=0, 
y24-24 = □, x2+y2Jr 15 = □). Take as the four numbers 

x2—15, 6x+9, ix+ihst 

(the last three being of the form 2nx+n2). Then three of the conditions 
are satisfied identically. The remaining three conditions are 

¥x+(ft)2=□, Wx+mys, f|x4-(¥)2=n, 

a “ triple equation ” in which each constant term is a square. To treat10 
such a problem, x4-4 = □, 2x4-4 = □, 5x44= □, replace x by an expression, 
like x°+4x, which if increased by 4 gives a square. Then it remains only 
to solve the “ double equation ” 2x2+8x4-4= □, 5x24-20x4-4= □, from one 
solution x = c of which we can deduce a second, by replacing x by x-\-c. 
Fermat11 later explained this method in detail. It is stated (§§ 9-11) 
that the method fails for 

(1) ax4-l= □, 6x4-1 = □, (a+b)x+l= D. 

8Diophanti Alexandrini Arith., 1621, 435-9. Comment on Diop., VI, 24 (p. 177 above). 
• Oeuvres, I, 292, 326-7; French transl., Ill, 242, 263-4. 
10 Oeuvres, 1,334-5; III, 269-270. Comment on Diophantus VI, 24. For further examples, 

Fermat91-100 of Ch. XIX. 
11J. de Billy, Inventum Novum, Toulouse, 1670, Part II, §§1-28; German transl. by P. 

von Schaewen, Berlin, 1910; Oeuvres de Fermat, III, 360-374 (p. 329 for 2x+12= □, 
2x4-5-□). 
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Thus, if a = 2, 6 = 3, we substitute 2z2-\-2x for x to satisfy the first identically; 
then the other two become 6z2+6a;+l = □, 10z2+10:c+l = □, one solution 
being x= — 1; but this makes the unknown 2x2-f-2x zero [von Schaewen81]. 
Although the method fails for a = 5, 6 = 16, x = 3 is a solution. For 
a= 1, 6 = 2, there is no solution, whence four squares (the firstJ)eing taken 
as unity) cannot be in A. P. 

M. Petrus12 found three squares A2, B2, C2 such that the difference of 
any two is a square and the difference of the sides of any two is a square. 
He first gave a process to find four numbers p, s, t, q such that p2+s2, 
t2-\-q2 and pstq are squares, while p/s>t/q, solutions being 112, 15, 35, 12 
and 364, 27, 84, 13. From the former he derived the answer to the first 
problem: 

A = 26633678, B = 29316722, C=40606322. 

In general, we have the answer13 

f= (pt-sq)2+(pq-st)2, ^,^ = (j>t+sq)2±(pq+sty, 

since 

C+A = &(pt+sq)2, C-A=4:(pq+st)2, B+A~4(pt-sq)2, 

B - A=4(pq - st)2, C—B = 16ptsq, C+13 = 4(p2+s2) (fi+q2). 

Renaldini14 (1615-1698) treated Petrus’12 initial problem (in Part II) 
and (in Sec. 1 of Part III) duplicate and triplicate equalities. 

J. Prestet15 treated the problem of Diophantus III, 7. Let the sum of 
the first and third be x2, that of the first and second y2, that of all three z2. 
Then the numbers are x2Jt~y2—z2, z2—x2, z2—y2. The sum of the last two is 
not easily made a square. Since 2 = 1/25+49/25, set x = z/5. Then the 
sum of the last two is 49z2/25—y2 = (a~7z/5)2 if 2 = 5(a2+p2)/14. But the 
numbers obtained this way are larger than those of Diophantus and Vieta. 

For Diophantus III, 9, he used (p. 326) z, z-\-d, z+2d, with 2z-\-d~y2, 
2z+3d=x2, which give z and d. To avoid fractions, multiply the numbers 
by 4. Hence the numbers are 3y2~-x2, y2+x2, —y2+3x2. It remains to 
make the sum 2y2-\-2x2 of the first and third a square. Express 2 as a sum 
of two squares, the smaller between 1/2 and 1. By Diophantus II, 10, 
the root of the smaller is (c2—2c~ l)/(c2+l). By trial, 9 is the first integer 
c giving a fraction (31/41) >3/4. Thus 2(312+492) =822. Hence z2 = 2401, 
2/2=961. He gave also a less special solution. He treated (p. 329) 
analogously Diophantus III, 10. 

J. Ozanam16 found two numbers, such that each when increased by a 
square (say unity) gives a square, and such that their sum and their dif¬ 
ference increased by another square (say t2—x2+2a;+1) shall give squares. 
The required numbers are taken to be 168£2 and 120Z2. Then the final 

“ Arithmeticae Rationalis Mengoli Petri, Bononiae, 1674, 1st Pref. Cf. Euler.28 
13 Reconstructed from the author’s inadequate notes on Petrus. 
14 Caroli Renaldinii Mathematum Analyticae Artis Pars Tertia, 1684; reviewed in Acta 

Eruditorum, 1685, p. 178. 
15 Elemens des Math, ou Principes Generaux . . ., Paris, 1675, 325. 
18 Letter, Oct., 13, 1676, to de Billy, Bull. Bibl. Storia Sc. Mat. e Fis., 12, 1879, 517. 
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conditions are satisfied since 168+120+1 = 172, 168 —120+1 =72. To 
make 16822+1 and 120i2+1 squares, we have a double equality, satisfied 
by z = -1648825564/1242622079. 

G. W. Leibniz17 discussed the problem to find three numbers the sum 
and difference of every pair of which are squares. 

M. Rolle18 found four numbers the difference of any two of which is 
a square, and the sum of any two of the first three is a square: 

+ = y2Q+2 ly16z4—6y12z8—6y8zl 2+21 yAzl8Jrz2Q, 

B = 10y2z18—24y6zl 4+60yl0z10—24yl +10y18z2, 

C = 6y2z18+24y6zu - 92y10z10+2tyuz*+6y18z2, D = A+B+C. 

For y = 1, 2 = 2, + = 2399057, £ = 2288168, (7 = 1873432, £ = 6560657. 
T. F. de Lagny19 solved 4rr+6 = y2, 9z+13 = 22 by a “ new method.” 

Eliminating x, we have 9^/4—1/2=z2. Hence 9y2—2 = □, say the square 
of 3y—a. Thus y is found in terms of a. 

P. Halcke20 divided 6 into two parts such that each increased by 6 
gives a square, and made 6+x, 12—£ both squares. 

Mal6zieux21 proposed the first problem of Fermat.9 It is a question of 
finding three equal sums of two squares. 

The problem to find three numbers the sum and difference of any two 
of which are squares received at the time of its proposal no comment 
except the mere statement by C. Bumpkin22 that 1873432, 2399057, 2288168 
furnish an answer. 

J. Landen23 took as the numbers 

x=h(fY+gi+fi+1); v, z=K/V-04-/4+i)±2/y. 

Then xzky, x±z, y—z are squares. It remains to make 

E=SY~ 94+1=y+« 
a square. Set g=f+r. Then E =□ if 

..(Z+r)4-/4 r. , 2/v (f-spyy 
1+ /4-i l14>-i+ (/4-i)2 /’ 

which gives r and hence p=/(/8+6/4—3)/(l+6/4—3/®). The case /= 2 
gives Bumpkin’s22 answer. Or we may take f2g2+1, f2+g2, %fg as the 
numbers, whence xztz, y±z are squares. For the preceding value of g it 
is verified that f2g2zt (g2+f2)+l are squares, whence their product E is a 
square. Or we may make E = (/4—1) (gr4—1) a square by equating it to 
(/4—1)2(02+1)2, whence g=f2!V2-/4. Set/=l-d; then 2—/4 becomes a 

17 MS. dated Apr. 1, 1676, in Bibliothek Hannover. D. Mahnke, Bibliotheca Math., (3), 
13, 1912-3, 39. Cf. Euler 28 

18 Journal des Savans, Aug. 31,1682; Sphinx-Oedipe, 1906-7, 61-2. Cf. Coccoz,74 Rignaux.89 
19 Nouv. Elemens d’Axith. et d’Algebre, Paris, 1697, 451-5. 
20 Deliciae Math., Oder Math. Sinnen-Confect, Hamburg, 1719, 235. 
21 Elements de Geom6trie de M. le Due de Bourgogne, par de Mal6zieux, 1722; Sphinx-Oedipe, 

1906-7, 4-5, 45. 
22 Ladies’ Diary, 1750, p. 21, Quest. 311. Cf. Euler.28 
23 C. Hutton’s Diarian Miscellany, extracted from Ladies’ Diary, 3, 1775, 398-401, Appendix. 

Leybourn’s Math. Quest, proposed in Ladies’ Diary, 2, 1817, 19-22. Cf. Euler.28 
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quartic in d which is the square of 1+2d—5d2 for <2 = 12/13. C. Wildbore’s 
solution is the same as Landen’s second with/=a/6, g—x/y. C. Hutton 
took 4x, 4+a;2, l+4a;2 as the numbers. Then 5a;2+5 and 3a;2 — 3 are to be 
squares. The product 15a;4 —15 is a square for x = 2, and for x=z—2 
becomes a quartic in z which is made a square by the usual method. He 
obtained Bumpkin’s22 answer. T. Leyboum24 took x+y=u2, x+z = i?9 
yJrz=w2; it remains to make u2—v2, v2—w2, u2—w2 squares, which is known26 
(Lowry650 of Ch. XIX) to be the case if 

u-(m2+7i2)(r2+$2), v = 2mn (r2—s2)+2rs (m2—n2) w = 2mn(r2+s2), 

77Z=r4+6r2s2+s4, n = 4rs(r2—s2). 

P. Cheluccii26 treated Diophantus III, 7. From x+y+z=r2> x+y-s2, 
x-\-z = t2, yJrz = v2 follow x = t2—r2+s2, y=r2—t2, z=r2—s2, 2r2-t2--s2 = v2. 
Set t=r—m, s—r—n. Then r= (y2+m2+n2)/(2m+2n). 

L. Euler27 treated the problem to make a;+a, x+6, x+c all squares. 
Set x = z2—a, z — pjq, b — a~m, c—a~n. Then p2+mq2 and p2Jrnq2 are 
to be squares.* This is impossible if m= — n=/2 or 2f2, and if m = 1, n=2. 
Several solutions are found when m = 2, n = 6. In §§ 213-8, pp. 264-271 
(Opera, 446-9), he made a;+a, a;+6 squares, also a+a;, a—a;. 

Euler28 treated the problem to make x^y} Xzkzy ydzz all squares. Let 
y-x — p2, z~x—q2, and p2+r2 = q2y whence y—z=r2, y+z = 2x—p2—q2. 
Equate the last sum to t2, whence 2x — t2Jrp2Jrq2. It remains to make 
x+y = t2+q2 and x-\-z = t2+p2 both squares. To satisfy p2+r2 = q2y take 
p = a2—b2, r=2ab, # = a2+62. To make t2+q2 and t2Jtp2 squares, viz., 
Z2+a4+64±2a262= □, it suffices to make tf2+a4+64 = c2+d2, 2a2b2 — 2cd, 
which are satisfied if a=fh, b = gk, c=f2g2, d = h2k2, and 

(2) t2=U*-k4){g4-h4). 

By means of a table of values of m4—n4 for m^l5, 9, n<m, he found 
the solutions 5202= (34-24)(94-74) and 9752= (34-24)(ll4-24) of (2) 
and hence 

a;=434657, y = 420968, z = 150568, 

a; = 2843458, y = 2040642, z = 1761858. 

J. L. Lagrange29 treated a+6a; = Z2, c+dx — u2 by eliminating x; thus 

(dt)2 = dbu2+ {ad—6c) d, 

the second member being made a square in the usual way. To make 

ax+by~t2} cx+dy=u2, hx+ky = s2, 

24 Math. Quest, proposed in Ladies’ Diary, 2, 1817, 19-22. 
25 New Series of Math. Repository (ed., T. Leyboum), 3, 1814,1,163, Quest. 310. 
26 Institutiones analyticae, Viennae, 1761, 135. 
27 Algebra, St. Petersburg, 2, 1770, §223; French transl., Lyon, 2, 1774, pp. 281-5. Opera 

omnia, (1), I, 454-6. Cf. Haentzschel163 of Ch. XXII and paper 82 below. 
* Euler’s further discussion will be given under concordant forms, Ch. XVI. 
28 Algebra, 2,1770, §235; 2,1774, pp. 314-9. Opera Omnia, (1), I, 470-3. Same problem 

in papers 12,14,17,18, 22,23, 24, 30, 33, 34, 57, 74, 85, 89. See papers 40-45 of Ch. 
XIX. 

29 Addition VI, arts. 62-63, to Euler’s Algebra, 2, 1774, 557-561. Euler’s Opera Omnia, 
(1), I, 595-7. Oeuvres de Lagrange, VII, 115-7. 
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eliminate x and y, and choose z = u[t so that 

ak — bh2 ck—dh_^ 

ad—cb ad — cb 

In the “ Repository solution of the problem to find three numbers the sum 
and difference of any two of which are squares/’30 lzt5x—2x2rF2x5Jr5xAdzX5 
are taken as the square roots of the sum and difference of the first and second 
numbers, while 1 ± 3z+6#2 T6z3—3x4=Fz5 are taken as the square roots 
of the sum and difference of the first and third numbers. Hence the three 
numbers are determined. Here x is any square. Taking x = 9, we get 
numbers 4387539232, etc., of ten digits each. 

C. Hutton31 noted that y+1 = □ if y = 4x2—4ar. Then iy+1 — (2ax — l)2 
gives x. 

Euler32 solved the problem to make z — a2v, • • •, z—d2v squares, where 
a2, • • •, d2 are four given squares, by investigating a quadrilateral the sines 
of whose angles p, q, r, s are ax, • • •, dx, where a, • • ♦, d are given numbers. 
Let A, • • •, D be their cosines. Since sin (p+g)-f sin (r+s) =0, etc., we 
get aB-rbA+cD-j-dC = 0 and two similar relations obtained by inter¬ 
changing b, c, and B, C; or b, d and B, D. Hence we get the ratios of 
A, • • •, D as cubic functions a, • • •, h of a, • • •, d. Thus A —ay, • • *, 
D - hy. Then a2x2+a2y2 = 1, b2x2+ft2y2 — 1, and we find that x2 = vjz, y2 — 1 \z, 
where 

v- (a+5+c+d)(a+b—c—d)(b—a-\-c—d)(a+c~b — d), 

z-A(bc—ad) (ac — bd) (ab — cd). 
Hence 

to a 
sm p = a\j~, cos p — —j=, z — a2v = a2, 

z <z 
Euler33 required three numbers x, y, z such that the sum and difference 

of any two are squares. Let x>y>z and set 

(3) x = p2+q2 = r2+$2, 2/ = 2p#, z = 2rs. 

Then Xzby = (pzkq)2, x=kz = (r=ts)2. Also p2+$2==r2-f s2 if 

(4) p = ac+bd, q = ad — bc, r — ad+bc, s = ac — bd. 

Thus x— (a2+b2)(c2+d2). It remains to make 

y+z=^cd(a2—b2), y—z — &ab{d2—c2) 

both squares. Their product is a square if 

cd{d2—c2) = n2ab{a2—b2). 

Take d = a. Then a2 = {n2bz—c*)j(n2b—c). Take a=frdbc, and take b equal 

to the numerator of the resulting fraction for bjc. Thus 

b = 2zFn2, c = 2n2=Fl, a=n2 dbl. 

30 The Diarian Repository, or Math. Register ... by a Society of Mathematicians, London. 
1774, 522-3. Cf. Euler.2* 

81 Miscellanea Math., London, 1775, 110. 
82 M6m. Acad. Sc. St. Petersb., 5, anno 1812, 1815 (1780), 73; Comm. Arith., II, 380-5. 
88 Ibid., 6, 1813-4 (1780), 54; Comm. Arith., II, 392-5. Cf. Euler.28 

30 
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It remains to make y—z a square. Since d = a, 

ab(d2-c2)=3n2(n2±l)(2^n2)2. 

Choose the lower signs. Then 3(n2—1) is the square of (n+l)flg if 

3f—p' 
Multiply the resulting values of a, b, c by (3gr2—/2)2; we get 

a=d=W, b, c=/<=F2/y+V, 

p=8/y(/4+9<,4), q^-iP-Qg4)2, 

r =/8+30/y+81<?8, s = 16/y. 

For f=g=l, we get p—q=5, r = 7, s= 1, whence x = y = 50, 3=14. From 
one solution x, y, z, we get (§ 15) a second solution 

v y2+z2-x- x-+z2-y2 „ x2+y--z2 
(5) Z=---, 7=---, 2=---. 

In the “ additamentum ” (§ 16), Euler treated the problem to find 
three squares x2, y2, z2 whose differences are squares. Using (3) and (4), 
we have 

x2—y2~(fp2—q2)2, x2—z2=(r2—s2)2, y2 —z2 = 4(p2q2—r2s2), 

the last being a square if abcd(a2—b2) (d2—c2) = □. This is satisfied if 

a=d=n2d=1, 5 = 2n2=Fl, c=n2zF 2. 

From one solution we get a second by (5). 
E. Waring34 noted that, in the problem to find three numbers the sum 

and difference of any two of which are squares, four of the conditions are 
satisfied if we employ either of Landen’s23 notations for the numbers or 
the notation aW+lty2, 2dbxy, o2y2+52x2, but gave no discussion. He 
recalled Rolle’s18 values A, B, C. 

Euler35 treated the problem to find four positive numbers in arith¬ 
metical progression such that the sum of any two is a square: 

A+B=p2, A+C = q2, A+D=B+C=r2, B+D = $2, C+D = t\ 

Hence all are expressible in terms of p, qy r, subject to two conditions 

2 r2 = p2-H2 = g2+s2. 

Thus r= GO =x2-\-y2. We get 2r2= 03 and satisfy 2r2 = p2+£2 by taking 

P = =t (x2-y2) ~2xy, t = d= (x2-y2) +2tiy, 

the first term being positive, whence p<t. Similarly, we satisfy 2r2 = q2+s2 
by taking r=xl+y2i and 

g=±(a:?-2/?)-2x12/i, s = ±(x\-yl)-2xJy1 (q<s). 

Then x2+y2=x\+y\ is satisfied by taking 

x=fz+1, Xi=fz — 1, y=z-f, j/i=2+/, 

as may be done without loss of generality by removing a common square 

34 Meditationes Algebraicae, ed. 3, 1782, 328. 
35 Posthumous paper, 1781, Comm. Arith., II, 617-25; Opera postuma, 1, 1862, 119-127. 

Reprinted, Sphinx-Oedipe, 4, 1909, 33-42. 
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factor from our numbers. Then A, B, C, D are all positive if p2+q2>r2, 
a condition expressed in terms of / and 2 and treated at length by Euler. 
For 2 = 4,/=7/2, we drop the factor 1/2 and get £ = 30, £x = 26, y = l, t/i = 15, 
p = 839, q = 329, r = 901; multiplying the resulting A, • • •, D by 4, we get 
the integral solutions 

722, 432 242, 2 814 962, 3 246 482. 

J. Leslie36 made 2+1 = 11], v+l = n, 2+i>+l = given □ b}r setting 
z — x2 — 1, v=y2—l. 

P. Cossali37 made F-hx+n2 and F+fx squares by taking F=(y+ri)2, 

F+fx= (y+ri)2+^ (y2+2yn) = (py-n)2, 

thus finding y. Next, if (ad — be)/(a—c) is a square r2, ax+5 and cx+d are 
made squares. Set C£+d = (y+r)2; for the resulting x, 

ax+b — ^ (y2+%ry)+r2=(py—r)2. 

If (be — ad) Ic is a square q2, set cx+d=y2; then ax+b = y2a/e+q2 can be 
made the square of q—ky. To make (pp. 145-6) #+£ = □, H—x= □, 
according to L. Pisano, we have only to express 2H as a sum of two squares. 

To find three numbers in geometrical progression the difference of 
any two of which is a square, R. Nicholson38 took nx, n2$, n3x as the 
numbers. Since the ratios of their differences are 1 1 : n, take n = v2, 
v2Jrl — □ = (v-\-s)2. For the resulting v,n—1 is a square. Taking £ to be a 
square, we get an answer. J. Cunliffe took na4, na2b2, rib4 as the numbers, 
where n = a2 — b2; the single condition a2+62=D is satisfied if 6 = r2—s2, 
a-2rs. 

To find three numbers in geometrical progression whose sum is a square, 
several39 took x2, nx2, n2x2, 1+n+n2= □ = (ne — l)2. 

To find40 three numbers the difference of any two being a square, 
take x—y — 16t>2, x—z = 25v2, y—z — 9v2, where v and z are arbitrary; or take 
5£2, £2, 62+£2, where 4£2 — b2 — (2x—ri)2 gives x; or take (£+l)2, 2£+l, 4£, 
where 2x — l — □. 

J. Cunliffe41 made x — y, etc., and x+y—z, etc., squares. Take 

x+y—z — a2, £+2—y — b2, y-\-z—x = c2. 

Equate x — y — \(b2 — c2) to e2,x—z — \(a2 — cr) to d2. Then 

y—z = %(a2—b2) — d2 — e2 

must be a square, whence d — 2rs(m2+n2), e = 2rs(2mri). Set 

(a+5)r = 2$(d+e), (a — b)s—r(d — e), 
which give 

a= (m2+n2)(r2+2s2) —2mn(r2 — 2s2), b=2mn(r2-\-2s2) — (m2+n2)(r2—2s2). 

38 Trans. Roy. Soc. Edinb., 2, 1790, 193, Prob. IV. 
37 Origine, Trasporto in Italia . . . Algebra, 1, 1797, 105-7. 
38 The Gentleman’s Diary, or Math. Repository, 179S, No. 58; Davis’ ed., 3, 1814, 290. 
39 The Gentleman’s Math. Companion, London, 1, No. 2, 1799, 18. 
40 Ibid., 21. 
41 The Gentleman’s Diary, or Math. Repository, London, No. 61, 1801, 43, Quest. 806. 
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Take c = 2mn (r2+2s2) — (m2—n2) (r2—2s2). Then c2 = b2 — 2e2 gives 

: m = 12r2s2—r4—4s4 : 8s4 —2r4. 

Cunliffe42 treated the last problem and Prob. 8: Divide n into four parts 
the difference of any two parts being a square. Also Prob. 9: Find four 
numbers whose sum and sums by twos are squares. 

R. Adrain43 made two or three linear functions rational squares as had 
Lagrange.29 

Several44 found two numbers such that if unity be added to each and to 
their sum and difference, the sums are squares. The numbers x2±2x 
answer the first two conditions. Then 4z+l = □ = p2, 2x2+l = □. Take 
p — r+1. Then 16 (2r2+l) = (r2+4)2 if r = — 8, whence the numbers are 120, 
168. 

S. Johnson45 found integers x, y, z, v such that their sum and the sum of 
any two are squares and 2(v+x+y) = □. Set x+y+z+v^a2, x+z-b2, 
y+z—c2, x+y=d\ Thus 2z = b2+c2—d2. Then v-{-x = a2—y—z~a2—c2, 
v+y = a2—b2, v+z = a2—d2 must be squares. Set a2—c2 = e2, a2—d2 =/2, 
c~rp —/, e—sp+d, Then c2+e2=d2-f/2 gives p = (2r/—2sd)/(r2+s2). To 
•obtain integers, take/ = (n2—m2)(r2+s2), d — 2mn(r2-\-s2). Then 

e— (r2—s2) • 2mn + (n2—m2) • 2rs, c = (r2 —s2) (n2—m2) — 2ft7n • 2rs. 

By a2 = d2+f2, a= (n2+m2)(r2+s2). Thus a2—fc2 = □ if b-(n2+wf)*2rs. 
Finally, 

2(v+x+2/) = 2a2+d2—62—c2 = 7i4(r2+s2)2+■ * * 

= jtt2(r2+s2)^+ra2(V2+s2)J 

if n : m=2rs(r2+s2)2: $6—r2s4+s2r4—r6. 
Johnson46 used the same methods to find x, y, z, v whose sum is a 

square and difference of any two is a square. J. Cunliffe took y—x = c2, 
v-y — b2, v—z — a2, v+x+y+z=n; it remains to make x—y~b2—c2, 
x—z = a2—c2, y—z = a2—b2 squares. Hence we desire three squares a2, b2, c2 
the difference of any two of which is a square. This is stated to be true if 
a2 = 485809, 52=451584, c2=462400. 

The problem46® to find three numbers in A. P., the sum of any two of 
which exceeds the remaining one by a square, reduces to x2+z2 = 2y2 (Ch. 
XIV). 

J. Cunliffe465 found two rational numbers (x2+n and y2+n) such that 
each and their sum and their difference exceed a given number n by squares. 
The condition x2+y2+n= □ = (r-fy)2 gives x in terms of y, y, n. Then 
x2-y2—n=[I[ = {n~v2’-y2)2j(4^) if n2—2nv2 = □ — (rv—n)2, which deter¬ 
mines v. 

45 The Math. Repository (ed., Leybourn), London, 3, 1804, 97-106. 
"The Math. Correspondent, New York, 1, 1804, 237-241; 2, 1807, 7-11. 
"Ladies’ Diary, 1804, pp. 38-9, Quest. 1111; Leybourn’s Math. Quest. L. D., 4, 1817, 23. 
a The Gentleman’s Math. Companion, London, 2, No. 8, 1805, 46-8. 
“Ibid., 2, No. 9,1806,35-6. 
46a New Series of Math. Repository (ed., Leybourn), 1, 1806,1, 7-10. 

Ibid., 2, 1809,1, 9-11. 
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C. F. Kausler47 treated the problem to divide a given number a into n 
parts such that the sum of any n — 1 parts shall be a square. [The treat¬ 
ment by Diophantus, V, 17, of the case n = 4 was given in Ch. VIII.] 
The treatment for n is similar to that for his first case n = 5. Then, by 
addition, the sum of the 5 squares si, • • •, s* is 4a. First, find a square P2 
approximately equal to 4a/5, say 

Art 1 9w 

P2=5+25^ 20ag2+l = □ = (l—mz)2, 

Since every number is a sum of 5 squares, set 

4a=g\-\-+gl, P=^=?.-+p s.^i+a.x. 

Thus ai — M—giNt Since 2s? = 4a, we get x=—2S^ai/Sa?. Thus, if 
a=21, the nearest square root of 20a is m=21, whence z — 2, M=41, N = 10. 
Since 4a =1+9+25+49, l = (9+16)/25, the g’s are 3/5, 4/5, 3, 5, 7, the 
a’s are 35, 33, 11, -9, -29, and x = 1676/16785. 

To find48 three numbers x, vx, v2x in geometrical progression such 
that each increased by a given number n is a square. From x+n = c2, 
tu;+tt = (d+c)2, we get x, v. In the resulting value of v2x+n, put c2—n=r2; 
then 

<34+4d3c+2<32(2c2+r2) +4r2dc+r2c2= □ = (d2—2rd—rc)2 

gives d. The desired numbers are r2, \r2—n, (\r2 — ri)2jr2, where 
r = (n —s2)/(2s) makes r2+n= □ =c2. 

Several49 found four integers whose sum is a2 and excess of the sum of any 
three over the fourth is a square b2, c2, d2 or e2. Hence 52+c2+d2+e2 = 2a2, 
which determines a rationally if we take c = p—a, d = q—a. 

To find49® two numbers (v2—n and w2—n) whose difference is a square 
and such that if each and their sum be increased by the same number n 
there result squares, we have to make v2—w2 and v2+w2—n squares and 
hence a certain quartic function a square. 

J. Winward50 found N integers whose sum is a square m2 and sum of any 
N—1 of them is a square. Take (2m—n)n, (2m—2n)(2n), (2m—3n)(3n), 
• • •, {2m—(N—l)n}(N—l)n as the first N—l numbers, and m2 less their 
sum as the Vth. Then m2 exceeds the jth number (j<N) by (m—jri)2. 
Equating the excess of m2 over the Vth number to (nr)2, we get m in terms 
of n, r. 

Several51 solved z-\-a2= □, z[n+a2= □ by known methods. 
To find52 four integers whose differences are squares, let x = 2Imn, 

y-l(m2—n2). Then five of the differences of u, u+x2, u+x2+y2, 

47 M^m. Acad. Sc. St. P6tersbourg, 1, 1809, 271-282. 
48 The Gentleman’s Math. Companion, London, 2, No. 13, 1810, 264-5. 
49 The Gentleman’s Diary, or Math. Repository, London, No. 71,1811, 35, Quest. 963. For 

3 numbers, Gentleman’s Math. Companion, 5, No. 29, 1826, 362-4. 
49a New Series of Math. Repository (ed., Leybourn), 3,1814,1, 105-8. 
50 The Gentleman’s Math. Companion, London, 5, No. 25, 1822, 141-2. 
51 Ladies’ Diary, 1823, 35-36, Quest. 1390. 
° The Gentleman’s Math. Companion, London, 5, No. 26, 1823, 202-4. 
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uAiPrrf+n2)2 are squares. It remains to make (Z2ra2-f n2)2 — l2(m2+n2)2— □. 
Take 1=2. Then 3(4m4—n4) = D. From the case m=n = \) we get the 
new solution m=37, n = 23 by Euler’s67 method of Ch. XXII. 

W. Wright53 found three numbers v2 — l, x2—l, y2—1 whose sum is a 
square, each plus unity is a square, and the sum of the roots of the latter 
squares is a square. Take vi+x2+y2—3= (v+p)2, v+x+y = q2. 

To find three numbers such that the sum of the first and second and 
difference of first and third are squares, the sum of whose roots shall be 
a square and equal to the sum of the required three numbers, F. N. Bene¬ 
dict54 took the latter to be a2x2—x2, x2, (52+a2—l)x2. Then axAbx = cx2 
determines x, where c=2a2+52—1. Finally, c = □ = (b—m)2 gives 6. 

Several55 found three numbers x2— 1, y2— 1, z2—1 in arithmetical pro¬ 
gression, whose sum is a square and each plus unity is a square. Use the 
known solution x, z= ±(m2—n2)+2mn; y = m2+n2 of x2+z2 = 2y2. To 
make x2+y2+z2~3 = 3(m2+ft2)2—3= □, take n = 1 and solve 3m2+6 = □ 
as usual. 

W. Wright56 found three integers x, y> z, double the difference of any two 
being a square, also double the difference of the sum of any two and the 
third. First, solve n(a2—b2) — p2, n(c2—b2)=q2. Since p2 — q2 = n(a2 —c2), 
take aJrc=(p+q)t/(m), a—c = (p—q)v/t} which give a, c. Then p2—q2= □ 
if p=2tvn(d2+e2)> q = 2tm-2de. For brevity, set r = t2+nv2, s = t2—nv2. 
Then a=r(d2+e2)+2des, c = s(d2+e2)+2der. Then n(c2—b2) = q2 or 
c2—q2/n= □, becomes a quartic in d, which is satisfied if d = 2rse/(At2v2n—s2). 
The case n = 1/2 leads to a solution of the initial problem. Set 
2(x+y—z) = a2, 2(y+z—x)=b2, 2(x+z—y) = c2, which give x, y, 2. Then 
the init al three conditions require that J(c2 — 62), • • • be squares. 

J. R. Young57 treated Diophantus III, 7, 9 somewhat as had Prestet.15 
To make (pp. 347-51) xd=p, xdbs, all squares, take x+y=u2, x-\-z = v2, 
y+z = w2. Then x~y = v2—w2, x—z = u2 — w2 are squares if u = ae+bd, 
v=ad-\-bCj w2 = 4:dbcd. Then y—z = (a2—b2)(c2—d2). For a = 9, 5 = 4 c — 81, 
d=49, we get Euler’s28 first answer, believed to give the smallest possible 
numbers. Or we may make a2—62= □ by taking a = m2+n2, b = 2mn and 
similarly for c2—d2. Other methods are based on the choice 

u2=(a2-H)2)(c2-fd2), v=aczkbd, w = adzthc. 

He (p. 345) treated Diophantus IV, 14. 
F. T. Poselger58 treated A = D, B =□ for the case in which A— B is 

factorable into pq (cf. Diophantus IIr 12). We may set 

A, B = [(y2p±q)/(2y)J 
since 

_(y2P+q)2-(y2p - g)2 = 4y2pq.___ 

MThe Gentleman’s Math. Companion, London, 5, No. 28, 1825, 369-71. 
M The Math. Diary, New York, 1, 1825, 27. 
“ The Gentleman’s Math. Companion, London, 5, No. 29. 1826. 361-2. 
“ Ibid., 5, No. 30, 1827, 574-5. 
57 Algebra, 1816. American edition by S. Ward, 1832, 324-6, 335-6. 
H Abh. Akad. Wise. Berlin (Math.), 1832, 1. 
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S. Ryley59 found three numbers whose sum, sum of any two, and dif¬ 
ference of any two plus unity are squares. Take x+y^a2, x+z~b2, 
y+z — 1. The remaining conditions reduce to 

2a2+2h2+2 — n2, a2 - b2-f1 = r\ 

Then 45° = n•—2r2 = (n—rm)2 if n = r(m2+2)/(2m). Take r = 2m. Then 
4a2==n2+2r2—4= □ if m2+12= □ = ($ —m)2, say. Several used the num¬ 
bers 2x2Jr2y2 — %, 2x2~2y2+h 2y2-2x2Jr%, which satisfy five of the condi¬ 
tions. To satisfy 4^c2—4y2+l = v2} take x+y = v+l, 4(x—y)—v — l. For 
the resulting x, y, 16(2x2+2y2+%) = 17v2+30v+25 = (av—5)2, by choice of v. 

Fr. Buchner60 solved x+1 = p2, x —1 = #2 by setting p-fg = m, p — q = 2/vi, 
and sim larly for x+a — p2, x~b = q2. 

T. Baker61 found four numbers p2 —s, q2~s, r2—s, s such that the sum 
of any two is a square, the difference of any two increased by a square r2 
(which is to be found) is a square, and the sum of ail four diminished by r2 
is a square. Set 2s = r2 — t. We need only make p2-K, q2+t, r2+t, 
A=p2—q2+r2, B~p2+q2—r2+t squares. Equate the first three to the 
squares of p+t/x, q+t/y, r+t/z respectively, thus finding p, q, r. Then 
A - \p — v(q+r) )2 determines t, and B— □ holds if 

(x2+yzY 

x2—yz ^2x(y+z)(xi+y2z2Y 

S. Jones62 found four positive integers x, y, z, y+z—x half of whose sum 
is a square, the sum of any two is a square, the difference of any two in¬ 
creased by a given square e2 is a square, and the sum of the four diminished 
by e2 is a square. Take x-\-y = a2, x+z = b2, y+z = c2, 2y+z—x = d2, 
y+2z—x=e2j whence a2+-e2 = b2+d2 = 2c2, which are satisfied if 

{2pv^(p2-v2)}c_ , j_ {2pdz(p2 —1)}c 

’ p2+v2 ’ b> d p2+l 

Then all further conditions are satisfied if b2—c2+e2 = □, i. e., 

/=ra2p4+4n2p3v+2ra2p V — WpvP+m2 = □, m = p2 -f-2p -1, n = p2+l. 

Now / is the square of mp2—2n2pvlm+mv2 if v=2m2pln2. 
T. Baker63 found five integers p2 — t, q2 — t, r2—t, s2 — t, t the sum of any 

two of which is a square. Set 2t-p2jrq2—m2. We need only make 

r2+m2-— q2f r2+?n2—p2, s2+m2—q2, s2+m2~p2, A =r2-\~s2-\-m2 — p2 — q2 

squares. Equate the first four to the squares of 

r+x(m—q)} r+z(m—p), s+y(m—q), s+w(m—p), 

respectively. The resulting relations serve to express r/m, s/m, p/m, q/m 
rationally in terms of x, y, z, w. The condition A = □ is satisfied by making 
special assumptions. 

89 Ladles’ Diary, 1836, 34-5, Quest. 1586. 
60 Beitrag zur Aufl6s. Unbest. Aufg. 2 Gr., Progr. Elbing, 1838. 
81 The Gentleman’s Diary, or Math. Repository, London, 1838, 88-9, Quest. 1360. 
82 Ibid., 86-8. 
*lbid., 1839, 33-5, Quest. 1385. 
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C. Gill64 found five numbers the sum of every three being a square. He 
used trigonometry. 

To find three integers in geometrical progression, such that each plus 
unity is a square, Judge Scott65 took x2—1, 2x(x2 — 1), 4x2(x2—1). It remains 
only to satisfy 2x(x2 —1) + 1= □ =p2; take 2x+2 = p±l, x2—a^pTl. 
A. Martin used x, xy, xy2 and took y = a2x+2a. Then xy-\- 1 = D, 
xy2+l = (l+2a2x)2 if z = (4a—4)/a, and rc+1 = 62 gives a. D. S. Hart 
used x, xy, xy2 with x=m2+2m. 

A. Emmerich,66 to solve 4a;+5~u2, 5x+4 = i»2, eliminated x to show 
that u — 3a, u == 3/3, 5a2—4/32 = l, every solution of which is given by 

2i3±aV5 = (2±V5)2n+1. 

To find67 three integers in arithmetical progression such that the sum 
of every two is a square. To find68 two numbers such that if unity .be 
added to each of them or to their sum or to their difference, the resulting 
sums are all squares. 

A. Martin69 found three numbers the sum of any two of which is a 
square and the sum of the resulting three squares is a square. Set x+y = p2> 
etc. The condition p2-\-q2-\-r2 — w2 is satisfied if 

p=z2st(u2+v2), q — 2uv{s2—i2), r—(s2 — t2) (u2 — v2), w = (s2+t2)(u2+v2). 

Several70 solved a2+x — y2, a2+x/p = z2 by use of 

y2—pz2 = o?~ pa2 = (am±.pan)2—p(amdzan)2, m°—pri1 = 1. 

H. Brocard71 discussed three numbers in geometrical progression, each 
plus unity a square. 

P. W. Flood72 found three numbers, the first two being squares, the 
sum of all and the sum of any two being squares. Take 16a:2, 9x2, y2 — l0xy. 
It remains to satisfy 9a:2—10xy+y2= □, 16x2—10xy-\-y2= □; eliminate x2. 

R. W. D. Christie73 solved x4-1 = a2, y-f-1 = 52, xJry+l = c2, x—y+l = d2. 
Take e — g1—h2, f = 2gh, a = g2+h2. Then 

a2 = e2+/2, b2 = 2e/+1 = □ = (1+2^)2 

if g=i(hztr), where r2 = 5fr2-f4 is solved by continued fractions. 
Coccoz74 noted that the sum and difference of any two of the three 

numbers 2399057, 2288168 and 1873432 are squares, and gave a general 
solution depending on a function of degree 20 [Rolle18]. 

M Application of the angular anal, to indeter. prob. degree 2, N. Y., 1848, p. 60. 
85 Math. Quest. Educ. Times, 14, 1871, 95-6. 
88 Mathesis, 10, 1890,174-5. 
87 Amer. Math. Monthly, 1, 1894, 96, 136, 169. 
88 Ibid., 280, 325. 
89 Math. Quest. Educ. Times, 61, 1894, 115-6. 
70 Ibid., 65,1896,115. 
71 Nouv. Ann. Math., (3), 15, 1896, 288-290. 
73 Math. Quest. Educ. Times, 68, 1898, 53. 
78 Ibid., 69,1898, 38. 
74 L’illustration, July 20, 1901. Cf. G&rardin,*5 Euler.28 
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To find75 three integers the difference of every two of which is a square. 
Likewise76 for four integers. To make77 x+y+z, x+y} y+z, z+x all 
squares. 

Several78 solved Sx+1 = □, 7z+l = □. 
A. Cunningham79 found integers xu • • •, xr such that, if a given number 

N be added to their sum s or to the sum of any r — 1 of them, the results 
are squares. From s+N = a2, s—xf+N = <r?, we get xi-<r2—<r\ (i = l, 
Then the initial condition can be written 

(r — tya'+N — al-ov = tr?d- 

We may assign any values to cr, <x6, • • •, <rr such that the left member is 
positive and hence a sum of four squares. 

A. Gerardin80 treated the problem to find a number N which can be 
separated into four parts such that the sum of any two parts is a square. 
We need only use a number N which is a sum of two squares in three ways. 
Or we may employ the formula for N = (a2+b2)(m2+p2) as a sum of two 
squares and take m=f2—g2, n = 2fg, whence 

{a(/2~^)±26/5r}a+{6(/^^)=F2a/^}2^ {a(/2+^2)}2+{6(/2+^2) 

P. von Schaewen81 remarked that the triple equality (1) is not solvable 
by the method of Fermat or by any known method and proved that there 
is a solution x =1=0 if and only if a2(z2 —l)2+4b2z2 = □ has a solution other than 
2 = 0, z = l. For de Billy’s case a = 2, b = 3, the condition is (z2 — l)2-f 9z2 = □, 
which has no rational solutions other than 2 = 0, 2 = 1, as proved by Euler144 
of Ch. XXII. Thus the triple equation has only the solution z = 0. 

E. Haentzschel82 treated the following problem. Given e1} e2, e2, find 
a rational number $ such that s — e1} s—e2, s—e3 shall be rational squares. 
Their product v2/4 must be a square. The relation 

_ 4 (s—6l) (s _ ej}) (s—e3) 

is satisfied if s is Weierstrass’ function p(u) and v = p'(u). Hence the 
problem is to find a rational value of p(u) such that also p'(u) is rational. 
The solution is effected by means of the relation between p(2u) and p(u), 
and shown to be equivalent to that by Euler27 for his case of rational ei, 
e2, e3 [cf. Haentzschel156 of Ch. V]. Here is treated at length the case 
e1=—e2y 63=4zh3V—3. 

H. C. Pocklington83 noted that the first, second, fifth and tenth terms 
of an arithmetical progression are not all squares, unless the first is zero or 
all are equal. 

76Amer. Math. Monthly, 9, 1902, 113, 230. 
76 Ibid., 10,1903, 206-7. 
77 lUd.y 141-3. 
78 Math. Quest. Educ. Times, 8, 1905, 79-80. 
79 Ibid., (2), 9, 1906, 30-1. 
80 Sphinx-Oedipe, 1907-8, 10-12. 
81 Bibliotheca Math., (3), 9, 1908-9, 289-300. 
82 Jahresbericht d. Deutschen Math.-Vereinigung, 22,1913, 278-284. 
83 Proc. Cambridge Phil. Soc., 17, 1914, 117. 
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E. Haentzschel, A. Korselt, and P. von Schaewen84 treated the problem 
to find 3 numbers in arithmetical progression the sum of any two of which 
is a square (Diophantus III, 9). 

A. GSrardin85 noted further cases of Euler’s relation (2): 

139202 = (74 - 34) (174 -1), 629852 = (144 - 54) (184 -1), 

35672 = (54 - 44) (214 - 204), 20402 = (24 -1) (234 - 74), 

78002 = (94 - 74) (114 - 24), 2308802 = (174 — 94) (294 - ll4). 

He and A. Cunningham86 noted solutions of 

P(x+y)+Qx=n, P(x+2/)+q2/=q. 

E. Turriere87 obtained a second solution from one of ax+a'=U, 
bx+b'=D. 

H. R. Katnick88 noted that Zzhn can be made squares if n is even. 
M. Rignaux89 gave Rolle’s18 solution in factored form, and also 

A =n(81p8±36p6g2+38pV±4pY+g8), 

£= 16p2g2(9p4+g4)(81p8—2p4g4+98), C=32p4qi(27pi+qi) (3p4+g4). 

In terms of any given solution are expressed two new solutions. 
On linear functions made squares, see Genocchi44 of Ch. XIV. 

*• Jahresber. d. Deutschen Math.-Vcreinigung, 24,1-915, 467-471; 25, 1916, 138-9, 139-145, 
351-9. 

85 L’mterm&iiaire des math., 22, 1915, 230-1 (50-1) 
66 Ibid., 75,233-5. 
87 L’enseignement math., IS, 1916, 423-4. 
88 Amer. Math. Monthly, 24, 1917, 339-40. 
89 L'mtermgdiaire des math., 25, 1918, 129. 



CHAPTER XVI. 

TWO QUADRATIC FUNCTIONS OF ONE OR TWO UNKNOWNS 
MADE SQUARES. 

Congruent numbers k; x2±/c=D both solvable. 

Diophantus, III, 22, found solutions of (xi-fx2-\-Xz+x^2zkXi=n [see 
Ch. VI] and, in V, 9, found solutions of In each 
case he began with the fact that in any right triangle having the hypotenuse 
h and legs a, b, the numbers h2dz2ab are squares. 

An anonymous Arab manuscript,1 written before 972, contains the 
problem [of congruent numbers]: Given an integer k, to find a square x2 
such that x2dok are both squares. The most convenient artifice to solve 
this problem is stated to be the theorem that if x2-\-y2~z2, then 
z2±2xy— (xdcy)2. [Hence 2xy is a congruent number if x, y are the legs 
of a right triangle.] It is stated that, if the triangle is primitive and if 
x2±& are squares, the final digits of these squares are 1 or 9, with the express 
statement that the digit is not 5 [squares of odd numbers end in 1, 5 or 9]. 
An example is given: Using the primitive right triangle with the sides 3, 4, 
we get 2x?/ = 24, 52+ 24 = 72, 52 — 24=12. A table gives the expression of the 
odd numbers 3, • • •, 19 in various ways as sums of two relatively prime 
parts a, b; also the sides 2ab, a2±h2 of a right triangle, and k = 2(2ab) (a2—b2) ; 
finally, u and v in z2-srk = u2, z2—k — v2, where z is the corresponding hypote¬ 
nuse. The table has 34 such k’s. Woepcke noted that if we delete their 
square factors, we get the following 30 “ primitive congruent numbers ”: 

5 34 210 429 2730 
6 65 221 546 3570 

14 70 231 1155 4290 
15 110 286 1254 5610 
21 154 330 1785 7854 
30 190 390 1995 10374. 

Woepcke remarked (p. 352) that there is no indication that the Arabs 
knew Diophantus prior to the translation by Aboul Waf& (f 998), but they 
may well have derived the problem of congruent numbers from the Hindus 
who were early acquainted with the indeterminate analysis of Diophantus. 

Mohammed Ben Alhocain,2 in an Arab manuscript of the tenth century, 
stated that the principal object of the theory of rational right triangles is 
to find a square which when increased or diminished by a certain number k 
becomes a square. He proved geometrically Diophantus’ result that if 
x2+y2=z2 then z2dz2xy = (x±y)2, so that z2 is the required square. Again, 

1 Imperial Library of Paris. French transl. by F. Woepcke, Atti Accad. Pont. Nuovi Lincei, 
14, 1860-1, 250-9 (Recherches sur plusieurs ouv. Leonardo Pise, 1st part, III). Some 
of the resuits in the MS. were cited by Woepcke, Annali di Mat., 3, 1860, 206. 

2 French transl. by F. Woepcke, Atti Accad. Pont. Nuovi Lincei, 14, 1860-1, 350-3. 

459 



460 History of the Theory of Numbers* [Chap. XVI 

start with any two numbers a, b and take k = db(a+b)l(a—b). Then 

[ a2+b2 

L2(a-6) 

a+b ab l2 

~2~^a—bj ' 

Or we may form the right triangle with the legs a2—62, 2ab and take as k 
the double of their product. 

Alkarkhi3 (beginning of the eleventh century), to make £+£2 and £—£2 
squares, began by solving the system y+x2 = □, y-x2= □ . Set y=2®+l, 
so that y+x2=U. Then y-—x2 = 2x-\-l—x2 will be the square of 1—a? if 
x^=2. Then £2=4, y = 5 and £=4/5 [since the initial system is satisfied if 
£2/£=x2/?/]. The method is stated to be useful in the solution of x2+rnx = □, 
x2—nx= □. Although this problem does not belong directly to the present 
subject, it has been inserted here in view of the use by Leonardo of the 
same method. 

Leonardo Pisano4 mentioned about 1220 the problem, which had been 
proposed to him by Johann Panormitanus of Palermo, to find a square 
which when either increased or decreased by 5 gives a square. He stated 
that the answer is the square of 3+J+-J- for, its square increased 
by 5 gives the square of 4^? and decreased by 5 gives the square of 
2+l+i He said that he would treat such questions in a work to 
be entitled “ liber quadratorum.” The latter,5 dated 1225, opened with 
a bare mention of this special problem, but later6 took up the general 
problem: To find a number which added to a square and subtracted from 
the same square gives squares; or, what is equivalent, to find three squares 
xl, %l, x\ and a number (congruum) y such that 

x<> y ~Xi} x2Jry — xz. 

Since any square is the sum of consecutive odd numbers 1,3, • * •, beginning 
with unity, y must equal the sum of those odd numbers which enter the 
sum for xl and not in x\, and again those in x\ and not in x\. He proposed 
to determine y so that the number of consecutive odd numbers whose sum is 
xi—Xi shall bear to the number making up x\—xi a given ratio a/b. Let first 

(D 2<“±$ 
b a—b 

To treat together7 the two cases separated by Leonardo, let s and t represent 
a and b when a+5 is even, but represent 2a and 2b when a+b is odd. Set 

£2) m — sia — b), n = t(a—b), u = np, 

_p = s(q+&), q = t(a-ffr), v = mq,_ 

* Extrait du Fakim, French transl. by F. Woepcke, Paris, 1853, (28), p. 85; same in (27), 
pp.111-2. 

4 At the beginning of his Opuseoli, published by B. Boncompagni in Tre Scritti Inediti di L. 
Pisano, Rome, 1854, 2, and in Scritti di L. Pisano, Rome, 2, 1862, 227. 

fi Tre Scritti, 55, seq. Scritti, II, 253-283. B. Boncompagni, Comptes Rendus Paris, 40, 
1855, 779, and R. B. McClenon, Amer. Math. Monthly, 26, 1919, 1-8, gave a summary 
of the topics treated in the liber quadratorum. Cf. O. Terquem, Annali di Sc. Mat. 
Fis.,7, 1856, 140-7; Nouv. Ann. Math., 15, 1856, Bull. Bibl. Hist., 63-71. Xylander 
wrongly said that Leonardo borrowed from Diophantus (cf. Libri,24 II, 41). 

8 Invenire nurnerum, Tre Scritti, p. 83; Scritti, II, 265. 
7 A. Genocchi, Note analitiche sopra Tre Scritti ...» Annali di Science Mat. e Fis., 6, 

1855, 275-8. Cf. Leonardo106 of Ch. XIII. 
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all of which, are even. By (1), $(a—b)<t(a+b), whence m<q. Now 
v~mq is the sum of m consecutive odd numbers 

(3) q-(m-1), •••, q-3, £-1, g+1, 9+3, •••, q+(m~ 1). 

Similarly, u=np is the sum of n consecutive odd numbers equidistant 
by twos from p. Thus the numbers of terms in the sums for v and u have 
the ratio m : n = s : t~a : b. There are (q—m)/2 odd numbers <q~m; 
their sum zx is (g—m)2/4. The sum z2 of the odd numbers <q+m is 
(g+w)2/4. Between q—m and q+m lie the ra consecutive odd numbers (3), 
so that their sum is v. But 

m+n~ (s+t)(a — b) = (a+b) (s—t) — p—q, q+m — p—n. 

Thus the n odd numbers between p—n and p+n, whose sum is u, are the 
n odd numbers which follow q+m, Finally, the sum z% of the odd numbers 
<p+n is (p+n)2/4. Hence zx+v = z2, z2+u — zz} while zx, z2, z% are squares; 
further, 

v~mq — st(a—b) (a+b) ~np = u. 

Thus the proposed problem is solved by taking8 

y = v = u, x2i=z i, xl=z2) xl~zz. 

Next, if the inequality sign in (1) is reversed, we have only to inter¬ 
change m and q in the definitions (2), which were used only to obtain 
q+m=p—n, v=u. As the latter hold also now, the preceding discussion 
holds for the present case also. The case a : b = a+b : a—b is shown to 
be impossible in integers.9 

Leonardo10 gave several numerical examples. For a=5, 6 = 3, then 
2/=240, «i=7, £2 = 17, £3=23. For a=3 or 2, 6 = 1, then 2/= 24, £i = l, 
£2 = 5, £3 = 7. For a = 5, 6 = 2, then y-840, £i=l, £2==29, £3 = 41. For 
a=7, 6 = 5, then y=840, £1 = 23, £2 = 37, £3=47. Note11 that 24 is the least 
congruent number for which the three squares x\ are integers; but with 
fractions, we can find smaller as shown later. 

For, Leonardo12 proved that if a and 6 are relatively prime and if a+6 

is even then a6(a+6)(a—6) is divisible by 24 and stated13 that a similar 
proof holds if a and 6 are not relatively prime. He proved also that, if 
one of a and 6 is even and the other odd, 2a*26(a+6) (a—6) is divisible by 24. 
Thus he was able to state14 that any congruent number is a multiple of 24. 

The product15 of 24 by any square h2 is a congruent number and the 
corresponding squares are the products of those for 24 by h2. We also get 
congruent numbers by multiplying 24 by a sum of squares l2+22+32H- 

8 B. Boneompagni, Annali di Sc. Mat. e Fie., 6, 1855, 135, quoted Leonardo’s solution to be 
j/=4a6(a2—ft2), x2=a2Jrb2i x2, xi~2db±(b2—a2). But this corresponds only to the 
case s=2a, t =26. 

9 Tre Scritti, 96; Scritti, II, 271. Genocchi,7 pp. 292-3. 
10 Tre Scritti, 88-92; Scritti, II, 268-70. Genocchi,7 pp. 278-9. 
11 Tre Scritti, 90-93; Scritti, II, 269-270. Genocchi,7 pp. 280-1. 
12 Si duo numeric Tre Scritti, 80; Scritti, II, 264. 
1S Tre Scritti, 82; Scritti, II, 265. 
14 Tre Scritti, 92; Scritti, II, 270. Genocchi,7 pp. 273-4. 
15 Quotiens enirn 24, Tre Scritti, 93; Scritti, II, 270. Genocchi,7 p. 283, p. 254. 
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or 12+32+5H-or A2+(2A)2+(3A)24-. For example, 

24(l2+32+52)=840. 

To find16 a congruent number whose fifth part is a square, take a=5 
and determine b so that b, a+b, a — b are all squares, say g2, A2, A2, respec¬ 
tively. Then 5-g2+kr. Either g — 1, A = 2, whereas <z+6 = 5+l is not a 
square, or <7 = 2, k = 1, whence 4ab(a2 —b2) —720 is the desired congruent 
number. Returning to the earher problem to make rr2±5 both squares, 
and using the values a=5, 6=4, just found, we have s = 10, f = 8, and, 
by (2), m=10, 5 = 72, whence 22=(82/2)2, rr2 = 41. Since 720 = 5 *122, we 
reduce the numbers in the ratio 1 : 12 and get the solution a:=41/12. 

Leonardo17 affirmed that no square can be a congruent number. This 
proposition is of special historical importance since it implies that the 
area of a rational right triangle is never a square and that the difference of 
two biquadrates is not a square. Leonardo stated without proof18 the 
lemma that if a congruent number were a square there would exist integers 
a, b for which a : b=aJrb : a—b (proved impossible earlier). 

Leonardo19 noted that many numbers are not congruent; but any 
number is a congruent if the quotient of any congruent number by it is a 
square. A number is congruent if it equals one of the four numbers a, b, 
a+b, a—6, and if the remaining three are squares. For example, 16, 9, 
16+9 are squares, so that 16—9 = 7 is a congruent number. To make 
x2zLx both squares, let He a congruent number and g2 — k =/2, g2+k — h2; 
then we have the solution x = g2/k since 

To make X2±.mX both squares, wre set X=mx and are led to the preceding 
problem, whence X = mg2jk. Leonardo considered the example with k =.24, 
g = 5. Cf. Alkarkhi,3 and Ch. XVIII. 

Luca Paciuolo20 reproduced part of Leonardo’s Liber Quadratorum; he 
gave as the first five “ congruente ” numbers 24, 120, 336, 720, 1320, their 
corresponding squares (“ congruo ”21) being 52, 132, 252, 412 612. From 
n and n+1 he derived the congruent number 2n(n+l) {2(n+n+l)}, the cor¬ 
responding square being {n2+(n+l)2}2. He made x2±b. fractional squares 
for 6 = 5, 7, 13; and solved x2+10 = □, x2 — 11 = □. He gave a table of 52 
congruent numbers, of which only22 14 are primitive, the latter being all 
in the table in the Arab MS.1 (viz., the first six and 65, 70, 154, 210, 231, 
330, 390, 546); the Arab had the advantage of excluding values a, b not 

18 Volo invenire, Tre Scritti, 95; Scritti, II, 271. Genocchi,7 p. 288. 
17 Tre Scritti, 98; Scritti, II, 272. Cf. Ch. XXII. 
18 For a proof, with a historical discussion, see Genocchi,7 pp. 293-310 (pp. 131-2). Cf. F. 

Woepcke, Jour, de Math., 20,1855,56; extract in Comptes Rendus Paris, 40, 1855,781. 
19 Tre Scritti, 98; Scritti, II, 272. Genocchi,7 pp. 310-3, 345-6. 
20 Luce de Burgo, Summa de arithmetica geometria, Venice, 1494: ed. 2. Toscolano, 1523, 

ff. 14-18. 
21 Thus interchanging Leonardo’s two terms. Cf. Bibl.Math., (3), 3,1902,144. Also noted 

by Boncompagni.8 
22 F. Woepcke, Annali di Mat., 3,1860,206; Atti Accad. Pont. Nuovi Lincei, 14,1860-1, 259. 
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relatively prime. The dependence of the work of Paciuolo upon that of 
Leonardo was pointed out in detail by B. Boncompagni23 and by G. Libri.24 

F. Ghaligai25 also borrowed [Libri,24 III, 145] from Leonardo; he gave 
52+ 24 = 72, 52—24 = 1, stating that 24 is the least congruent number. 
To find another, start with 1 and 3; add and double the sum, getting 8; 
multiply by 3—1, getting 16; multiply by 1X3, getting 48; its double 96 
is a congruent number; in fact, 14-32 = 10 and 102 —96 = 22, 102 + 96 = 142. 

F. Feliciano26 gave the same congruent numbers and rule as had 
Paciuolo.20 He gave z2 = 6§ as the solution of a:2dh6= □. 

P. Forcadel de Beziers27 employed right triangles with one leg less by 
unity than the hypotenuse h, citing h = 5, 13, 25, 41, 61. Their squares are 
“ congrus ” numbers, the corresponding “ congruens ” being 24, 120, 336, 
720, 1320 [double the products of the two legs]. He gave,28 for n — 1, 2, 3, 
4, 5, the congrus (4n2+l)2 and corresponding congruens 8w(4n2 —1). 

N. Tartaglia29 quoted two rules of Leonardo, as given by Luca Paciuolo, 
for forming congruent numbers, one rule by use of two consecutive numbers, 
the other by use of30 (a2+52)2db4a&(u2—b2) = □. 

G. Gosselin30 treated (f. 75 verso) the problem: Given a square 100, 
to find the congruent number. Separate the double 20 of the side into two 
parts 2L and 20—2L whose product equals the product of two other 
numbers of difference 20, say L, 20+L. Thus L = 4 and 8X12=4X24 
is the required congruent number 96. Conversely, given a congruent 
number, to find the square (f. 77, verso). ‘This is the problem which 
Luca, Pisano, Tartaglia, Cardan and Forcadelus found so difficult, in investi¬ 
gating which they consumed not a little oil; nevertheless they did not 
succeed and it remained unsolved up to the present; let us now explain 
that difficult thing.” Given the congruent number 96, to find the square Q 
such that 96+Q is the required square. Hence the sum 192 4-Qof the latter 
and 96 must be a square. Thus the difference of two squares is 96=4 
•24 = 6*16=8*12. But §(8+12) = 10 is excluded since 100 + 192+Q, while 
§(4+24) = 14 and 142 = 192+Q gives Q = 4, yielding the answer 96+Q = 100. 

Beha-Eddin32 (1547-1622) listed, among the seven problems remaining 
unsolved from former times, as Prob. 2 that to make s2+10 and a;2—10 
both squares. As noted by Nesselmann, it is impossible._ 

28 Annali di Sc. Mat. e Fis., 6, 1855, 135-154. 
« Hist. Sc. Math, en Italie, ed. 2, Halle, 1865, II, 39; III, 137-140, 265-271. 
25 Summa de Arithmetica, Florence, 1521, f. 60; Practica d'arithmetica, Florence, 1552, 

1548, f. 61, left. 
28 Librodi Arithmetica & Geometria speculatiua & praticale: Francesco Feliciano . . . Inti- 

tulato Scala Grimaldelli, Venice, 1526, etc., Verona, 1563, etc., ff. 3-5 (unnumbered 
pages 7, 8). 

27 L’arithmeticqve, I, 1556, Paris, ff. 8, 9. 
28 The related right triangle has the sides 4n, 4n2—1, 4n2+l. 
29 La Seconds Parte del General Trattato di numeri et misure, Venice, 1556, ff. 143-6. 
50 The final factor, given as a+b, was corrected by the translator, G. Gosselin, 1578, 91. 
81 De Arte magna, seu de occulta parte num., Paris, 1577. 
82 Essenz der Rechenkunst von Mohammed Beha-eddin ben Alhossain aus Amul, arabisch u. 

deutsch von G. H. F. Nesselmann, Berlin, 1843, p. 55. French transl. by Aristide Marre: 
Khelasat al Hisab, ou Essence du Calcul de Beha-eddin Mohammed ben al-Hosain al- 
Aamouli, Nouv. Ann. Math., 5, 1846, 313; ed. 2, corrected and with new notes, Rome, 
1864. 
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Fermat2 of Ch. XXII proved that the difference of two biquadrates is 
never a square. Hence no congruent number is a square. 

L. Euler33 noted (as had Leonardo) that p2±5g2 are both squares for 
p = 41, #=12; p2db7q2 both squares for p = 337, £ = 120. He made p2±aq2 
squares also for a = 6, 14, 15, 30. The method is that used by him76 for 
concordant numbers. 

P. Cossali34 undertook to reconstruct Leonardo’s Liber Quadratorum, 
then believed to be lost. A sufficient (adverse) report will be found under 
Genocchi,35 Woepcke36 and Boncompagni.37 

A. Genocchi35 stated that Cossali34 was wrong in believing that 
Leonardo’s method of making x2±a both squares is only special. While 
indirect, it is general and succeeds when the problem is solvable. In fact, 
it coincides exactly with the formulas obtained by Euler76 after complicated 
calculations. This coincidence escaped Cossali, who filled many pages 
with useless calculations without discovering the general solution. 

F. Woepcke36 noted that of the [26 distinct] congruent numbers in the 
table of 29 lines by Cossali,34 p. 126, only 12 are primitive, including all but 
65 and 154 of those noted under Luca Paciuolo.20 

B. Boncompagni37 disagreed with the explanation by Cossali,34 p. 132, 
of Leonardo’s method. The latter had remarked that h will be a con¬ 
gruent number if its quotient by a given congruent number hi is a 
square q2. According to Cossali’s interpretation, q is rational only when 
(h1+2)(2hi+2)(3/ii+4) is a rational square; while a more plausible inter¬ 
pretation leads always to a rational q. 

“ L. Pisanus ” 38 made n2±13 and n2 all rational squares. Since 

{d2+(d+l)2 \ {(d+l)2+(d+2)2}±4(d+l)2 

are the squares of 2d2+4<3+3 and 2d2+4<3+l, take <3=2 and we get 
13-25±36= □. In (a2+52)2±4a&(a2-&2) = (a2±2a&-62)2, take a = ct2, 
h=s2. Then 

(c2i4+s4)2±4cf-s2(d2+s2)(ci2-s2) = □. 

Take c=13, t2=25, s2=36. But (13*25)2—362 is the product of the squares 
found before. Hence (c2Z4+s4)2/ {4/2s2(c2Z4—$4)} is the required square n2. 

J. Hartley39 took a;2+13 = (x+y)27 x2 — 13 = (x—yz)2, and from the two 
rational values of x got y2= 13(z—l)/{z(z+l)}. The latter is a square for 
2=(ra+«2)/(2rs) if r2+s2= 13, 2r$=D. Take r=-3-gt, s = 2-«. Then 
r2+s2 = 13 gives *= (4-6£)/(g2+l). Take g = 2, whence r = l/5, 8 = 18/5, 

33 Algebra, 2, 1770, § 226; French transl., Lyon, 2, 1774, p. 291; "Opera Omnia, (1), I, 459- 
u Origine, trasporto in Italia, primi progressi in essa dell’algebra, 1, 1797, 115-172. Cf. G- 

Libri, Histoire dea Sc. Math, en Italie, ed. 2, III, 1865, 139, 140, 265. 
** Comptes Rendua Paris, 40,1855, 775-8. 
“ Atti Aecad. Pont. Nuovi Iincei, 14, 1860-1, 259. 
87 Annali di Sc. Mat. e Fis., 6, 1855,149-151. 
38 Ladies’ Diary, 1803, p. 41, Quest. 1099; and Prize Prob. 1118, 1804, pp. 44-6; Leybourn’s 

Math. Quest. L. D., 4, 1817, 10-11, 31-33. The Prize problem stated that there are 
rational squares x2, y~ such that x2±13 are squares, and 13y2 is the area of a right triangle 
whose sides are integers; 13 is a sum of two squares, double the product of whose roots 
is a square, and if the latter square be added to and subtracted from 13 the results 
are squares. 

89 The Diary Companion, Supplement to the Ladies’ Diary, London, 1803, 45. 
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and 2rs= □. Thus x = 106921/D, z2+13 = (127729/D)2, z2-13 = (80929/D)2, 
D = 19380. 

P. Barlow40 proved by descent that 1 and 2 are not congruent numbers. 
J. Cunliffe41 noted that if, when n is given, a rational v can be found for 

which n+v1 and n—v2 are rational squares, we can deduce a rational x 
for which x2+n and x2—n are rational squares. Take (a+b)2 and (a—b)2 
as the latter. Then x2=a2+b2} n—2ab. To satisfy the former, take 
a = (p2—q2)/(2r), b = pq/r. Then (p2—q2)pq = nr2. Take p — nyq = v2. Then 
n2—1>4= □, which holds if ndbt;2 are squares. Application is made to the 
case n=13 by expressing 13 as a sum of two rational squares in two ways. 

“ Umbra ”42 noted that x2+n = a2} x2—n — b2 can be solved if 

n^^+d2)!*2, &-d2=U. 

For, 2x2=a2+b2 is known to hold if a, b = (2pqdzp2=Fq2)/r, x—(p2+q2)/r. 
Then n = f (a?—b2) = &pq {p2—q2) Jr2. Taking p = c2, #=d2, we have 

r2=4cW(c2-d2), 

whence r is rational since c2—d2= □. Similarly, z2±tt = □ are solvable if 
n= (c2—d2)/s2, c2+d2 = □, or if n is double the sum of two squares the 
double of whose difference is a square. 

A. Genocchi43 noted that the problem to make x2-khq2 both squares is 
equivalent to the single equation x*—h2q* = □. By the direct, but laborious, 
method of Fermat (on Diophantus VI, 26), used by Lagrange (see papers 
37-41, 54 of Ch. XXII), Genocchi treated the example h = 5 far enough 
to reach the special solution due to Leonardo.4 The direct solution of 
x2dch=[2 leads to 4mn(m2-~n2)—hg2 or the problem to form a rational 
right triangle with a given area. The absence of a treatment of the latter 
leaves an evident lacuna in Diophantus VI, 6-11 (V, 8 deduced a new solu¬ 
tion from one). The method by Euler33 is identical with that of Leonardo. 

Genocchi (pp. 206-9) proved that an integer yis of the form 4mn(m2-~n2) 
in only a finite number of ways. To two solutions x of x2dby= □, each x 
a sum of two squares, correspond distinct values of y. From one solution 
(pp. 251-3) of x2zhk = □, we readily get others. Cf. Young134 of Ch. XIX. 

Genocchi44 proved that r4+4s4, 2r4+2s4, r4—s4 are congruent numbers; 
also r4+6r2$2+$4 and zfc(r4—6r2$2-}-$4) if one of the integers r, s is even and 
the other odd. No prime 8m+3 is a congruent number. 

Genocchi45 proved that the double of a prime Sk+5 is not a congruent 
number. 

Matthew Collins46 proved that the only congruent numbers <20 are 
5, 6, 7, 13, 14, 15; that a prime a==4n+3 is not a congruent number if, 

<0 Theory of Numbers, London, 1811, 109, 114. 
41’T. Leybourn’s Math. Quest, from Ladies’ Diary, 3, 1817, 368-71. 
** The Gentleman's Math. Companion, London, 4, No. 21, 1818, 750-2. 
43 Annali di Sc. Mat. e Fis., 6, 1855, 129-134, 291-2. 
44 Ibid,, 313-7. Cf. Genocchi.63 
45II Cimento, Rivista di Sc. Let ed Arti, Torino, 6, 1855, 677-9. Genocchi,7 p. 299 for the 

number 10. 
46 A Tract on the possible and impossible cases of quadratic duplicate equalities . . ., Dublin, 

1858, 60 pp. Abstr. in British Assoc. Reports for 1855, 1856, II, 2-5; and in The Lady’s 
and Gentleman’s Diary, London, 1857, 92-6. 
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for m<a/2, to2-2 is not divisible by a (examples: 0 = 11, 19, 43). To 
treat x*±5y2=0, we add and subtract and get 2x‘=z-+w2, 10y2=z2-w2. 
Set z — z +w/, w=z'—wr, where zf, w' are relatively prime. Thus 

z'2-\rw'2~x2} 

whence z' = m2—n2, wf = 2mn, x~m2+n2, and z'w' = 5y2l2j whence y = 2y', 
mn(m2 -~n2) = 5yf . If n is divisible by 5, n — 5q2} m — p2, m-\-n — r2} 
m—n—s2, leading to a pair like the initial equations, so that this case is 
excluded. If m ~ op1, we get n = q2} m±n~r2, s2, whence 5p2-\-q2=r2, 
5p2—q2 = s2. As the latter are satisfied by p — 1, q — 2, whence m== 5, n=4, 
we get the solution [Leonardo’s] a; *41, ?/= 12, z=49, w=31. In general, 
given a solution of 

0£2+fa/2===n22, abx2—y2= ±nw2, 
then X ==n(z4~\~w4)/2, Y=2xyzw make 

4(Z2±a&72) =n2(t±:v)2, t=z4-w4, v = 2 zw2, 

and hence give a solution of X2+abY2= □, X2~abY2= □. For example, 
if a = 5, b=n — l, we have 5x2±y2= □, holding for x = l, y=2, whence 
X=41, 7=12 satisfy Z2±572=D. 

F. Woepcke47 found 12 congruent numbers associated with the given 
one 2xy9 where x2+y2=z2} viz., zx, zy, x2~y2, z2+x2, z2+y2, 4xy(x2-y2), (ZzizX \2 

+(z^x)2, ±2z2^(x+y^F2z)2, (x-y±2z)2-2z2. 

In fact, z=a2—b2, y — 2ab. In 2xy replace a by z and b by x and drop the 
square factor 4 {z2—x2) = 4y2; we get xz — a4—b4. But if we replace b by y, 
we get yz. In a4—b4, take a~x7b~y, and drop the square factor x2-\-y2 — z2; 
we get x2—y2. Double the product of the latter by the congruent number 
2xy is a congruent number; etc. He computed the above 12 functions for 
each right triangle in the Arab manuscript.1 

Woepcke48 treated the problem, proposed to him by Boncompagni: 
Given a congruent number k, to find a congruent number K such that 
the product kK of the two is another congruent number. If k is formed from 
a, b} where 2a2-&2 = c2, then 

a&(a2-62) • ac(a2—c2) = 6c• a2(b2c2—a4). 
If & is formed from two numbers of ratio r, where 

r4-2r2-8r+9=w2 
and K is formed from two numbers of the ratio 

= — (r—l)2dbtp 

P 2(r—1) ’ 

then kK is a congruent number formed from two numbers of the ratio 
<r= (—r2+3±wj)/2. For, then 

(r r)(p~))~,r~? 9_P=4^'4P9(P2_92)' 

47 I860, 206-15. Same in Atti Accad. Pont. Nuovi Lincei, 14, 1860-1. 
259-67. 9 

41 Annali di Mat., 4,1861, 247-55. 
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Like results hold if we take (cf. Lucas51) 

9 r4—20r3 — 2r2+20r+9 = w2, 

_ r2—4r—lzi=w _ 2(2r+l) 

p~2(r-l){2r+l)’ -3r2+2r+3±u>‘ 

If kK is a congruent number and hence equal to 4a^{cr—^)p2Iq2, we may set 

k = 2X(2a/3), jK7 = X(cr — /32), X's XX V/p2. 

Thus if also K and hence K' is a congruent number, then k is the double 
of a leg of a right triangle whose second leg is a congruent number. 

If kK=Ki is a relation between three congruent numbers, the last 
formulas show that cr = 2X/3 and a-L = 2Xa are solutions of the system 

<r4+<£<r2 = t//2, <rt — <jxr \ = \p2, 

where <£=4XX', \l/ = \k. Conversely, if one of these equations can be 
solved, kK' and hence kK is a congruent number. 

To find congruent numbers K, Xi such that kK—Ku where k is a given 
congruent number, take as Kx in turn the 12 types in the earlier paper,47 
each type multiplied by an arbitrary rational square. Give Kx the form 
4ap(oL2—p2)p2lq2} and equate the latter to kK. Hence 

4a/3 16pW \4af3 

so that the leg a2—p2 of a rational triangle is a congruent number and the 
other leg 2a$ is kj2. But this solves kK = Kx for K. 

G. Le Secq. Destournelles49 proved the impossibility in integers of the 
pair 

x2+y2=z2y x2—y2=u2. 

The equation obtained by adding these may be written 

The terms on the right may be assumed relatively prime. 

z+u z — u ar — fi2 

— -2~—• 

Thus 

or vice versa, where a, /? are odd relatively prime integers. Substituting 
either set into 2y2 — z2—u2, we get 

y2 = a/3(a2—/32), a = m2, /3-n2, m4—7i4 = □. 

Thus m2±n2 = 2k2> 212, so that 

k2+l2 = m2, k2—l2-n2. 

But these are like the initial equations with k<x, l<y. 
A. Genocchi50 stated that x2±h are not both rational squares when h 

is a prime 8m4* 3 or the product of two such primes, or the double of a 
prime 8m+5, or the double of the product of two such primes. 

49 Congr&a Sc. de France, Rodez, 40,1, 1874, 167-182; Jornal de Math, e Ast., 3, 1881. 
60 Comptes Rendus Paris, 78, 1874, 433-5. Reprinted, Sphinx-Oedipe, 4, 1909, 161-3. 
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E. Lucas51 noted that o is a congruent number if and only if x4—a2yA=z2 
is solvable; then a^=0, ±1 (mod 5) if xy is not divisible by 5. A congruent 
number does not end in 2, 3, 7 or 8 when y is not divisible by 5. We are 
led to congruent numbers by the problem to find three squares in arith¬ 
metical progression whose common difference is the product of a by a 
square. The equations (pp. 184-6) 

(4) x2—by2 ~u2, x2Jr by2 — v2 

were studied, but not completely solved, by Leonardo,4,16 Paciuolo,20 Euler,33 
Collins,46 and Genocchi,7 p. 289. We may assume that x, y, u, v are rela¬ 
tively prime, so that x and v are odd, y even. Hence in view of the first 
equation we may set 

x—u=10r2, x+u—2s2, y=2rs (r, s relatively prime). 

By the second equation (4), (5r2+3s2)2—8s4=t>2, whence 

5r2+3s2dbt?=2p4, 5r2+3s2rFv=4#4, s = pq. 

Adding the first two of these we get 

(p2—q2) (p2—2(f) = 5r2. 

Since the factors on the left are relatively prime, we find after considering 
residues modulo 5 that the only two admissible cases are p2—g2= db5gf2, 
p2—2q2 = ±h2. For the upper sign, the evident solution p = 3, q-2, 
g=h=l} leads to Leonardo's solution a;=41, = 12, u = 31, t>=49 of (4). 
For the lower sign, we get the system q2—bg2 = p2, q2+bg2 = h2} like (4); 
hence from one solution we get the second: 

X=u2x2+biPy2, U=u2x2—bipy2, V=uA—2x4, Y=2 xyuv, 

which differ only in form from the formulas by Genocchi. Lucas solved 
(pp. 191-3) the equation to which Woepcke48 was led: 

9a4~ 20a36- 2a262+20a63+964=c2. 

This may be written d2+44a262 = 9c2, where d=9a2—10ab—%2. Thus 

3 cdzd=2p2, 3c^¥d=22 q2, db = pq. 

Set b=mq, p—ma. From p2—llg2=dbd we get a quadratic for m with 
a rational root if 13a2q2db (a4+11 q4) —z2. For the upper sign, 

(2a2+13#2)2—4z2= 125g4. 

If we take the factors of the left member to be r4 and 125s4, and add, we get 

(r2—13s2)2—4a2 = 44s4. 

Call the factors of the left member ±2a4, =F22t>4; adding, we get 

13aVzb (-u4+1 Iv4) = r2, 

which is like the initial quartic, but with smaller values of the unknowns. 
A like result is proved in the remaining admissible cases. The system52 
x2dzby2— □ is treated (pp. 180-4) by the method used for the generalization 
given in the next paper. From Leonardo's solution x = b, y=2, is deduced 
12012d=6 • 1402 = 12492, 11512. 

81 Bull. Bibl. Storia Sc. Mat., 10,1877, 170-193. 
“ Also in Nouv. Ann. Math., (2), 15, 1876, 466-70. 
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Lucas53 noted that if there exist relatively prime solutions of 

x2—Ay2 = u2, x2+Ay2~v2, 

then A is of the form Xm(X2—m2)- For, by addition, 

where X, /x are relatively prime and one is even. Hence 

u, v = X2—/i2±2Xju, y = 2, A = X/x(X2—ju2). 

^ = X2+m2, 

He next showed how to derive a second solution from one, given that 
A is a congruent number resolved into its prime factors. If a, /? are two 
integers whose product is A, the second equation gives 

v+x = 2ae2, v—x=2/3f2, y = 2ef. 

Substitute the resulting v, x into the first given equation; then 

(ae2—3/3/2)2—u2=8/32/4. 

The two factors of the left member equal ±2/3fc4, where /3i/32=& 
gh =/. For the upper sign, we add and get 

CV+/3 sh2) (fr02+2ftft*) = ae2. 

The two factors equal aip2 and a2g2, where aia2 = a, pq = e. Taking 
ai==a2=/?i=l, we have a system like the proposed. Hence a solution 
x, y, u, v leads to the second solution 

X = u2x2—Av2y2, Y=2xyuv, V = u2x2+Av2y2, U = u4—2xA. 

For the lower sign above, we obtain a complicated set of formulas giving 
a new solution from one. The formulas are said to give all solutions when 
A = 6 and for the problem x2db (x+2) = □ of Beha-Eddin.32 By combining 
Lucas’ result (ibid., p. 433) with the results of Fermat and Genocehi,45 
Lucas concluded (p. 514) that xy(x2—y2)—Az2 has no rational solution if 
A = 1, 2, p, 2q, where p and q are primes of the respective forms Sn+S, 
8n+5. 

S. Gunther54 treated x2+a=y2, x2~~a—z2 by setting 

x—y = m(z—x), x+y=—(z+x), 

which determine y and z in terms of x and m. Substituting these into one 
of the proposed equations, we get x as a function of m: 

^q(m2 4-1)2 

4m—4m3 * 

Set m=ap2. Then x is rational if 1—a2p4 = □. Hence we seek among the 
rational solutions of 1—a2£2=ij2 those values of £ which are squares. If 
such exist, a is a congruent number, otherwise not. We can not go further 
with the general solution of the system since the character of a decides 
whether or not such a biquadratic root of the Pell equation exists. 

w Nouv. Ann. Math., (2), 17, 1878, 446. 
M Prag Sitzungsberichte, 1878, 289-94. 
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S. Roberts55 proved the known result that if x2dcPy2 are squares then 
ztPy2 is of the form tab(a2— b2), where Z = 4 or 1 according as a, b are of 
different or like parity. He stated that the values of P which are primes 
or the doubles of primes are all obtained by the rule of Leonardo which 
makes three of a, b, squares, and carried further the analysis of 
Genocchi.43 Inadmissible values of P are primes 8ft+3 or doubles of 
primes 8ft-f 5. He proved that various classes of primes P are excluded, 
all being such that x2 — 2Py2 = — 1 has no solution. 

A. Desboves56 started with a congruent number Xjlt(X2 — m2)> changed X 
to x2, jjl to y2, absorbed the factor x2y2 into the term F2 of X2=FaY2~0, 
and obtained the congruent number x4 — y4. Since a4+d4 = b4+c4 is solvable 
and hence also 

(a4 - b4) (d4 - b4) = (ad)4 - (be)4, 

we can find an infinitude of numbers which are differences of two bi¬ 
quadrates and whose product is such a difference, and hence an infinitude 
of solutions of Boncompagni’s48 problem to find two congruent numbers 
whose product is a congruent number. 

A. Genocchi57 proved that the following numbers are not congruent: 
a prime 8ft+3 or the product of two such primes; the double of a prime 
8ft+5 or the double of the product of two such primes. 

Genocchi58 stated his44 results and that no congruent number is a 
product of a square by a prime 8m-f 3, or by double a prime 8m+5, or by 
a product of two primes 8m+3, or by double the product of two primes 
8m-f 5. 

G. Heppel59 found a such that 1012-fa= (101+ft)2, 1012—a = (101 — 02 
by taking Z=ft+c, whence 2ft2 = 202c-2ftc-c2. Since c is a factor of 2ft2, 
but not of ft, c = 4. Thus ft = 18, a=3960. 

M. Jenkins60 found an integer a for which (m2+7t2)2=tu = (ftdtZ)2* Then 
a=2ftZ, (m2+7i2)2 = ft2-H2. One solution of the latter is h = m2—n2i t — 2mn. 

G. B. Mathews61 discussed x2±a= □. From x2+a= (x+m)2, we get x. 
Then x2—a=A7/(4m2), where N=a2—6am2+m4. Set j\T= (a—m2ft/Z)2. 
Then m2=/a, /=2Z(ft-3Z)/(ft2-Z2). Take a=/62, where b is arbitrary. 
Then m=fb and x is found. 

R. Aiyar62 noted that, if A2dL4B are squares, A and B are expressible 
in one and but one way in the forms A = \(m2-{-n2), B^\2mn(m2~~n2), 
where m and n are relatively prime and one is even. 

A. Cunningham and R. W. D. Christie63 solved x2-y2 = y2—w2 = czz, 
where c is given, as c = 65, by use of x2—2y2= ~w2. [Hence y2—cz2 = w2> 
y2jrcz2~x2.~]_ _ 

“Proc. Lond. Math. Soc., 11, 1879-80, 35-44. 
56 Assoc, fran$., 9, 1880, 242. 
87 Memorie di Mat. e Fis. Soc. Ital. Sc., (3), 4, 1882, No. 3. 
68 Nouv. Ann. Math., (3), 2, 1883, 309-10. 
69 Math. Quest. Educ. Times, 40, 1884, 119. 
mIUd., 41, 1884, 65-6. 
81 Ibid., 107-8. 
62 Math. Quest. Educ. Times, 65,1896, 100. 
63 Math. Quest. Educ. Times, (2), 13,1908, 77-9. 
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G. Bisconeini64 determined the numbers A=4rs(r2—s2) which are 
products of powers of three primes. If 2 and 3 are the only prime factors 
of A, then A=24. 

R. D. Carmichael65 proved that the system q2+n2 = m2, m2+7i2=p2 has 
no positive integral solutions [whence m2-\-n2 = p2, m2—n2=g2]. 

H. B. Mathieu66 asked if x2JrA—u2, x2~A = vl are completely solved 
by the identity 

{(a±b)2+b2}2±4ab(a±b)(a±2b) = (a2+262±4a&)2. 

L. Aubry67 replied that all solutions of 2x2=u2Jrv1 are given by 

u, v=l(r2±2rs—s2); x = l(r2+s2); A =4Z2rs(r2~s2). 

The case Z=l, r = a=b&, s — b, gives the above identity, which with 

{(a±h)2+b2}2=F4:ab(a±:b)(a±2b) = (a2~252)2 

give all relatively prime solutions. [Cf. Ch. XIV.] 
G. M6trod68 treated x2+y = u2, x2—y = v2. For ui=a2—b2, etc., 

ul+v l = x2. 

Hence ('Wi+^i)2 + — ^i)2=2x2; u, v=a2—b2zk2ab, y=4:db(a2—b2). 
J. Maurin and A. Cunningham69 noted that from one solution of 

x2—ny2~z2, x2+ny2=:t2, we get a second solution X=xi+n2y49 Y=2xyzt. 
A. G6rardin70 listed the values <1000 of h for which £2dbfy/2 = □ for 

s<3722. He noted (pp. 57-9) the solutions 

* = 16/s+24/y+p8, p=4M4/4-p4), k=4f4+ g4; 

f*+ WY+9*, 2/ = 2M/4-p4), h = 2f4+2g4. 

L. Bastien71 listed the 25 values <100 of h for which £2±%2 are not 
squares, and stated (besides Genocchi’s50 results) the following cases of im¬ 
possibility: h the double of a prime 16m+9; h a prime 8m+l=g2+k29 
with g+k a quadratic non-residue of h (as for 17, 73, 89, 97). 

T. Ono72 noted that x2dz5y2 are squares for £ = 41, y —12 [Leonardo4] 
and £ = 3344161, y = 1494696. 

G. Candido73 noted that, from two sets of solutions (xi} yt) of the system 
x2±uy2= □, we get a third set by Euler's identity 

(xlXt±Luyly2)2+uixiyt^fuyiXz)2 = {x\+uy\) (zl+uyl). 

E. Turri&re74 noted that if £, y9 z are the rational coordinates of a point 
M on the quartic space curve x2+a=y29 £2+6=z2, the osculating plane at 
M is 

(b—a)xzX - byzY+azzZ=ab(b - a)9 

64 Periodico di Mat., 24, 1909, 157-170. 
68 Amer. Math. Monthly, 20, 1913, 213-6. 
66 L’interm&liaire des math., 20, 1913, 2. 
67 Ibid., 211-2. Practically same by Welsch, 212-3. 
68 Sphinx-Oedipe, 8, 1913, 130-1. 
69 L’interm&liaire des math., 21, 1914, 20-21, 176-8. 
70 Ibid., 22, 1915, 52-3. 
71 Ibid., 231-2. 
72 Ibid., 117. 
78 Ibid., 23, 1916, 111-2. 
74 L’enseignement math., 17, 1915, 315-324. 



and meets the curve at a new point Mi whose coordinates are rational and 
easily found. Thus if we employ Leonardo’s solution x=41/12, y=49/12, 
z — 31/12 when a=5, b = — 5, we obtain in succession an infinitude of rational 
solutions. Or we may find the points with rational coordinates, on the 
hyperbola y2—x2=a, by setting x+y—u, y—x — a/u, and identifying their 
abscissas with those of the analogous points x — (v2—b)/(2v), y = (v2+b)/(2v) 
on z2~~ x2=b,' obtaining the condition uv (u—v) = av—bu. The tangent at 
a rational point (u, v) meets the cubic at a new rational point. Finally, 
x2-\-a—y2, x2-~-a—zl have the solutions y, z—x (cos 0±sin 0); x2=a/sin29; 
hence the rational solutions are given by those rational values of tan 0/2 for 
which sin 20 is a rational square; there are none if a = l or 2. 

For congruent numbers of order n, see papers 200-1, 210, 222 of Gh. 
XXIII, and 320 of Ch. XXII. 

Concordant forms: x2+my2, x2+ny2 both squares. 

Related Problems. 

Diophantus, II, 15, required x, m, n such that x2Jrm and x2-\-n are 
squares, given the sum w+n. He took m=4x+4, n=6x+9, m+n=20, 
whence x=7/10. In II, 16, (x+2)2—m and (x+2)2—n are squares if 
^=*4%+n = 2x+3; for m+n=20, rc = 13/6. The same problems occur 
in III, 23, 24. 

Diophantus, II, 17, required x, m, n such that x2-{-m and x2Jtn are 
squares, given the ratio w/n. He took x = 3, m/n=3, n = (y+3)2- 9. The 
condition is 32+3{(t/+3)2~9} = 3y2+l%+9 = □, say (2t/-3)2, whence 
y=30. 

Certain Arab writers1,2 of the tenth century treated the special problem 
to make x-+k and x2—k both squares, taking k as given, unlike Diophantus. 

Rafael Bombelli7j divided 40 into two parts (30 and 10) such that if 
each be subtracted from the same square (30J) the remainders are squares. 

L. Euler7 treated the problem, equivalent to Diophantus II, 17: If a 
and b are given integers, find 2, p, q, r, 5 such that 

(1) p2Jrazq2=r2, p2+hzq2 = $2. 

Eliminating 2, we get p2= (br2—as2)/(6—a). Since the latter is a square for 
set r~s+(b—a)t. Then p2=s2+2bst+b(b-a)t2. Set p = s+tx/y. 

Equate to t the numerator of the resulting fraction for t/s. Thus 

t=2xy—2by2) s = b(b~a)y2-x2, p=(x-by)2-aby\ 

r = (b—a)(2xy—by2)—x2J Q2z=4xy^(b—a)y—x2(by^x). 
Simplifications arise if we set x=v+by; then 

p — tf—aby2, q2z=4:vy(v+ay) (v+by). 

Thus we take t; and y arbitrary, and choose q2 to be the greatest square 
iactor of the final expression. It is shown (§ 230) that p2+q2 and p2+Sq2 
are not both squares. Cf. Euler33 

75 L’AIgebra Opera, Bologna, 1579, 461. 

w Algebra, St. Petersburg, 2, 1770, §§225-230; French transl., Lyon, 2, 1774, pp. 286-302: 
Opera omnia, (1), I, 456-464. Cf. Euler” of Ch. XV. 
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Euler77 called x2+my2 and x2+ny2 concordant forms if they can both be 
made squares by choice of integers x, y each not zero; otherwise, discordant 
forms. He treated the problem: Given an integer m, to find all integers n 
for which the two forms are concordant. Set m= /zv, where one factor may 
be unity. Then x2+my2 = (jj.p2+vq2)2 if x = db (up2—vq2), y = 2pq. To make 
x2+ny2=w2, we must take n=(w2—x2) / (4p2g2), where x has the preceding 
value. Then both factors wdtzx must be even. Set p2q2=r2$2, where 2r2 
divides w+x, and 2s2 divides w—x, the respective quotients being / and g. 
Then n =fg. Hence we consider x, r, s as known and seek /, g such that 
fr2—gs2=x. The latter is satisfied by f=hs2dz<rx, g-hr2ztpx, where p/<r 

is the convergent preceding r2/s2 for the continued fraction for the latter. 
A table (§ 10) gives the values of p, a for r2^122, s2^r2. For m = 1, Euler 
found (§ 12) those values numerically < 100 of n which result from small 
values of r, s. It is known that x2zky2 are discordant; also x2+y2} x2+2y2. 
Proof is given (§§15-19) that x2+y2y x2+3y2 are discordant; also (§§20-23, 
§ 31) that x2+y2=z2, x2+Ay2 = v2 are impossible. Hence 

z2-~y2=x2, z2+Zy2 = v2 

and v2—Ay2=x2, v2—3y2=z2 are discordant. But x2+y2, x2-\-7y2 are squares 
for a; = 3, 2/=4. In papers 109, 110, 113-4 of Ch. XVI it is noted that 
x2dzy2 and x2db4y2 are not both squares; also, x2±y2 and x2=F3y2. 

Euler78 satisfied x2+my2= □ as in the last paper,77 and noted that then 
x2+ny2=(yp2— vq2+2Mp2<f)2 if n = M2p2q2+M(yp2—vq2), where M is arbi¬ 
trary. If M=N+v\p2y n = (iVp2+ ?) (iV#2+jjl) . 

Euler79 noted that x2+aby2 is a square for f(op2—6g2), y~2Xpq\ 
that x2+edy2 = □ for x = tj (cr2—ds2), y=2??rs. Hence set 

tpq=rjrs=tr)fghJc, p = vfd, 5 = ^, $ = #• 

By the values of a;, 

^ = £ JWHW 
h2 v f??a/2+d&2‘ 

Set (9= frj. Hence must 6(6cJ2+bk2)(6af2+dk2) — □. But this condition 
was not discussed. 

Euler80 had previously treated the more special problem to find all 
integers N such that A2+jB2 and A2+NB2 are both squares for AB^O. 
Take A=x2—y2, B~ 2xy. Then 

A2+B2= (x2+y2)2, A2+NB2 = (x2-y2)2+4:Nx2y2=:z2. 

The last gives for N an expression which is an integer if z=x2+2ax2y2±y2. 
According as the upper or lower sign is chosen, we have 

N = (ax2+1) (ay2+1) or (ax2 -1) (ay2+1) +1. 

To investigate the rational a’a for which the first N is integral, when x and 
y are integral, set a = a/(q2s2), x=pq, y=rs, where a is an integer, while p, 

77 M4m. Acad. Sc. St. Petersb., 8, 1817-8 (1780), 3; Comm. Arith., II, 406. 
78 Opera postuma, 1, 1862, 253 (about 1769). 
79 Ibid., 256 (about 1782). 
80 Nova Acta Acad. Petrop., 11, 1793 (1777), 78; Comm. Arith.; II, 190-7. 



etc., may become unity. Then, if a = s = 1, we have N = (p2+l)(r2+g2)/g2. 
If p=7, g = 5, q2 divides p2+l, and N=2r2+50. If a=—1, s — 1, then 
j¥=(p2~l)(r2~g2)/g2 and g2 divides p2—1 if p = 3, g=2, etc. A list is 
given of the resulting N’s numerically <100; those ^50 and >0 are 7,10, 
11, 17, 20, 22, 23, 24, 27, 30, 31, 34, 41, 42, 45, 49, 50. But the problem is 
not proved impossible for the omitted values of A. 

Euler81 made a2x2Jrb2y2 and ahj2+b2x2 both squares by taking 

ax_p2—q2 ay __r2 — s2 

by 2pq ’ bx 2rs 

By division, we get x2jy2. Hence it suffices to make the quotient of 
pq(p2—qz) by rs(r2—$2) a square, a problem* which had been frequently 
treated, but not completely solved. The first of three special methods is 
to take s=g, r=p+q\ then we are to make (p—g)/(p+2g) = □, which is 
the case if p=u2+2t2, q^u2—t2; the resulting solution is 

a~Ztu, & = 2(u2-£2), x = i(2u2+i2)} y = u(u2+2t2). 

To obtain the general solution, we may take s=q without loss of generality, 
since it is only a question of ratios. Then 

n_p(p2-g2)_ n , p3-^ 
r(r2—g2) ’ 9 p—rvr' 

Set p=rv. Then = □ = (v—z)2 if 

(n+2z)iP—z(2n+z)v+n(z2— 1) =0. 

From a given solution 0, y, we get a second solution 

v,_z(z+2n) 

2 z+n 
z’~2vr-z. 

Thus v—0, z-1 leads to the second solution 

, _ l+2n ; __ 3 n 

2+?i ’ 2-\-n 

Replace n by t2ju2; we get the above special solution. He investigated the 
third solution 0", 2", and also started with y=0, 2 = — 1; z-0, i>=±l; 
v — co. Further, he treated the general condition for ti=4 and n= 1/4. 
In conclusion, he found a, * • •, d such that 

a2b2+c2d2j a2c?+b2d2, a2d2+b2c2 

are all squares. For/=t2—3u2, g = 2tu, we have 

p+Zf^h*, h = t2+Zu\ 

Then a solution is a=2g, 6 = 2fc, c=/+g, d=f-g, and the three quartics 
are the squares of/2+7g2, 2(/2=F/g+2g2). 

C. F. Degen82 treated r2+mp2==p2, x2-\-ny2 ==q2. We may set 

p = a(mt-\-nu), g = a'(n£+??m). 

81 M&n. Acad. Sc. St. PStersbourg, 11, 1830 (1780), 12; Comm. Arith., II, 425-37. 
* Euler,87 Beq., and Euler77 of Ch. IV, Petrus12 and Euler33 of Ch. XV, Euler18*19 of Ch. 

XVIII, Euler283 of Ch. XXII. 
82 M&n. presents acad. sc. St. Pdtersbourg par divers savans, 1, 1831 (1823), 29-38. 
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To avoid fractions set a = 2; then y2~4(m+ri)(t2—u2). Set m+n-fg, 
t2—u2=4fgz2. Hence t=fz2+g, u=fz2-gi y=>4fgz, and we obtain “our 
fundamental solution ” 

|p+4»m-(/¥-*)*. 

Let k2 be the maximum square dividing mn = k2L, and set 

X = 4gk$, ±A ~—^9- 

Then £2+L=A2; Now fg±.2kA must be a square f2z2} say B2. Thus 
y = 4gB. Hence to exhibit the simplest solution, set83 m+n=fg=k2L, and 
let <f> be any factor of L such that £2+L=A2 is satisfied [identically] by 

2^ = ■7 2A=—■+(/). 
9 9 

Let B=kC. Then fg^h2kA = B2 becomes 

L±i(f+*)“c,‘ 
If the latter can be solved, we have x = (Lj4>—<£)/2, y — C, since x :y=% : C. 
It is proved (p. 33) that x2+my2 and x2+ny2 are concordant if 

(m+l)(n+l) = □ =P2, 

since they equal (mn+2m+l)2 and {mn+2n+l)2 for x=mn— 1, s/ = 2P; 
also, if m+n=2Q2, since they equal (3m+n)2 and (3n+w)2 for x~m—n, 
y=AQ. 

M. Collins46 proved that x2+y2= □, x2+ay2~ □ are impossible for 
l<a<20, except for a = 7, 10, 11, 17; also, x2—y2— □, x2—ay2= □ for 
1 < a < 13, except a = 7, 11. If we know solutions of 

x2-\-o/y2=nz2, y2+bx2 = nw2, 

then X-x2w2—y2z2 and Y=2xyzw are solutions of 

X2+Y2= □, X2+a6F2= □. 

C. H. Brooks and S. Watson84 found that x2+y2 and x2+Ay2 can be 
simultaneously squares only for the following 41 positive integers A ^100: 
1, 7, 10, 11, 17, 20, 22, 23, 24, 27, 30, 31, 34, 41, 42, 45, 49, 50, 52, 57, 58, 
59, 60, 61, 68, 71, 72, 74, 76, 77, 79, 82, 85, 86, 90, 92, 93, 94, 97, 99, 100. 
Set x/y = v, t^+1 = (t;+7t)2, v2JrA = (i>—?m)2. The two rational values of v 
give n2=(A+p)/(p2+p), where p may be any positive or negative integer 
or fraction for which A is integral. 

S. Bills85 gave a theorem said to include all the theorems by Collins.48 
The equations x2+Ay2= □, x2+jBy2= □, cited as (F), are satisfied if 

A B 
x = mp2-q2 = nr2-s2. y = 2pq = 2 rs. 

m n ™ 
In view of the latter, take p =fg, q^hk,r =fh, s=gk. Then the former holds 

88 But the author had previously set mn=fcaL. 
84 The Lady’s and Gentleman’s Diary, London, 1857, 61-3, Quest. 1911. 
85 The Lady’s and Gentleman’s Diary, 1861, 82-4. 
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if (Fi) mg2—nh'=Nk2j m~lAb?—rrlBg2 — A/2, or if (F2) mf2+n~~lBk2=Nh2, 
nP+rrr'Ak2 = Ng2. Hence the solution of (F) can be derived from the 
solution of (Fi) or (F2). Giving suitable values to m, n, N, A, B, we can 
readily derive all of Collins’ formulas from (Ft) and (F2). 

A. Genocchi86 stated that x2+h and x2+k are not both squares if (i) 
6 = 1, k a prime or square of a prime 8m±3 provided the odd prime factors 
of fc—1 are all of the form 4n+3; (ii) h—2, k a prime 8m+3 or double of a 
prime 8m+5, provided the odd prime factors of k—2 are all of the form 
8n+7; (iii) h a prime 8ra±3, k a prime 8m+7, provided the odd prime 
factors of h—k are all of the form 4n+3 and quadratic non-residues of k; 
(iv) h a prime 8m+3, fc=62, provided the odd prime factors of h—l are all 
of the form 4n+3; (v) h a prime, k = hp, where h and p are primes one of the 
form 8m+3 and the Other of the form 8m+7, provided the prime factors 
of p — 1 other than 2 and h are all of the form 4n+3 and quadratic non-resi¬ 
dues of h. 

A. Genocchi87 treated (1) by the method of Diophantus: Set r^mx+p, 
s=nx—p. Then bzq2=(r2—p2)bla, so that the second equation (1) becomes 

t(rnx+py-fia=(m-Py-p\ 

p being given in the problem of Diophantus II, 17. In Euler’s76 problem, p 
is unknown; the first of the preceding equations determines p in terms of 
m, 7i, x; then azq2=amnx2(m+n)j(an+bm). By setting n — bl,x — 2(m+al), 
we get formulas derived from Euler’s by changing p, Z, m into —p, y, v. 
Genocchi noted that the present problem is equivalent to that of solving 
y2—x2 : z2—y2=a : b, treated fully by Leonardo Pisano.6 For, (1) gives 
r2 p2 : s2~p2=a : b, and conversely, if we set r2—p2=azq2. Genocchi 
proved (pp. 9-23) that the system z2+a= □, x2Jr&=□ is impossible in 
rational numbers for a=1 and b a prime 8&d=3 such that 6 — 1 has no prime 
divisor 4Z+1 (as 6=3, 5, 13, 19, 29, 37, 43); for a=2 and 6 a prime Sk+d 
such that evdry divisor of 6—2 is of the form 8Z+7 (as 6 = 163, 331, 449); 
a=2, 6=2A, A a prime Sk+5 such that A —1 has no odd prime divisor not 
of the form 8Z+7 (as A = 5, 29, 197, 317); a—A, b — AB, where A, B are 
primes, one of the form Sk+7 and the other 8&+3, such that A is a quadratic 
residue of B when A-Sk+7} B~1 has no odd prime divisor 4Z+1 not a 
quadratic residue of A, and, in case A=8&+3, (B —1)/2 is divisible by A if 
a quadratic residue of A (as A=3, B-7; A = 7,B = 3or 19; A = 11,B = 23); 
a a prime 8fc+3, every odd prime divisor of a—1 being of the form 4Z+3, 
6 = a2; a-1, 6= ±8 or the negative of a prime Sk±.Z or the square of a 
prime Sk±3, no prime divisor of 6—1 being of the form 4Z+1 in the third 
case. 

The following three papers relate to the system t2+u2 - 2v2, t2+2u2 = 3w2. 
E. Lucas88 treated the equivalent system 2v2—u2 = t2, 2v2+u2 — 3w2 and 

showed how to get new solutions from one. [Cf. Pepin.90] 

M Comptes Rendus Paris, 78,1874, 433-5. 
*7 Memorie di Mat. e Fis. Soc. ItaHana Sc., (3), 4, 1882, No. 3. 
88 Nouv. Ann. Math., (2), 16,1877, 409-416. 
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G. C. Gerono89 took t= 1, without loss of generality. Since u is odd, 
w=2&+l, the first condition gives v2=k-+(k+1)2. He proved that also 
v = m2+(m+1)2. Using the [unproved] theorem of de Jonqui&res26 of 
Ch. XVII, we get v = 5 (excluded) or 1. 

T. Pepin90 noted that Lucas88 did not treat all possible cases, whereas 
the omitted cases add new solutions. By using a somewhat different 
method, we get all solutions by a single set of formulas. We may limit to 
relatively prime solutions t, u and take v and w positive. By the first 
equation, 

t+u 
= a2—4b2, 

t — u 

~2~ 

= 4ab, z> = a2+4b2, 

for a, b relatively prime, a odd. By the second given condition, 

t+u^2 = {l+^^2){c+d^^2y, w — ci+2dr. 

Comparing the values of t and of u, we get equations equivalent to 

a2+4ob—4b2 = c2+2cd—2d2, 4ab = 3 cd. 

Thus a=a\ b = 3/3/q c=a(3, d=4Xju. Inserting these into the difference of 
the two preceding equations, we get a quadratic giving 

ix /3X± V(3/32—4\2)(2X2—3/32) 

a ' 2(9/32—8X2) 

Since the radical must be rational, 3/?2—4X2= zhy2, 2X2—3/32 = zfc52. The 
upper signs are excluded modulo 3. Hence 2X2=y2+52, 3/32 = 72+252, 
a pair like the given pair. Hence a solution v, w, t, u leads to a second solu¬ 
tion 

Vi=za2v2-\-36}x2w2, Wi = a2w2~\-Z2}x2v2, ti, Ui = (av^FGpw)2 —72p2w2i 

where n : a = vw±tu : 2(9w2—8tri). Starting from v=w = t=u = l, we get 
jx/a — 0 or 1, the second giving =37, 1^=33, =47, Ui=23; etc. It is 
proved that we get all solutions in this way. 

To find91 two squares whose sum is double a square and difference is 10 
times a square, take x, y=2pq±(p2~q2). Then x2+y2 = 2(p2+q2)2, 
x2—y2 — 8pq{p2~q2) —10(12m2)2 if p = 5m, g=4ra. 

J. H. Drummond and W. F. King92 proved that 2x2~ y2= □, 2y2—x2= □ 
imply x2=y\ 

A. G6rardin93 noted that x2+ny2 and nx2+y2 are squares if 

n = (a2+/32)2-~l, 

or n—7, x=3, y — 1, or n = 17, rc=8, y-1. 
Several writers94 gave solutions of the last problem. 
It. Goormaghtigh95 made Sx2+Py2 and Sy2+Px2 both squares. 
L. Aubry95a proved that 2y2+u2 and 3y2-f^2 are not both squares. 

89 Nouv. Ann. Math., (2), 17, 1878, 381-3. 
90 Atti Accad. Pont. Nuovi Lincei, 32, 1878-9, 281-292. 
91 Math. Quest. Educ. Times, 63, 1895, 64. 
« Amer. Math. Monthly, 6, 1899, 47-8,151-5. 
93 L’interm&liaire des math., 22,1915, 128. 
«Ibid., 23,1916, 63-4, 205-7. 
*Ibid., 184-5. 
9«* Ibid., 26, 1919, 84-5. For tt * 1, Bignaux.»‘ 
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x2+y and x+y2 both squares. 

Diophantus, II, 21, took y=2x+l. Then 22+p= □. Let 

x+y2 ss 422+5a;+1 

be the square of 2x—2. Then 2 = 3/13. 
Alkarkhi96 (beginning of eleventh century), after repeating this solution, 

added the condition 22+ y2= □, taking x = 3z, y=4z. 
Rafael Bombelli97 set 2/==4(2+1). Let 2+p2^1622+332+16 be the 

square of 42—6. Then 2 = 20/81. 
W. Emerson98 treated the problem. 
L. Euler" set x2-\-y = (p—x)2, y2+x=(q~y)2, whence 

2gp2-g2 2pq2-p2 

ipq — l ’ y 4:pq— 1 ’ 

Euler had first inserted the value of y from x2+y~p2 into y2+x, obtaining 
(p2—22)2+2= □, which he stated would be difficult to solve. 

R. Adrain100 noted that Euler’s last condition is satisfied if we take 
2=4p222. Again, for p+x = v, it becomes 

i^iy—22)2+2 = y4—4t^2+4i?222 +2= {vlJr2vx)2 if 2 = 8^2, f 

The equivalent problem x2~y~ □, y2—x~n was solved101 as by Euler." 
J. W. West102 noted that Euler’s" condition is satisfied if p2—x2=yj 

x = 2y+1. Solve the quadratic in 2 obtained by eliminating y. 
C. A. Laisant,103 after recalling Euler’s" solution in rational numbers, 

remarked that the system is evidently impossible in positive integers, since 
in 

y = (z-x)x+(z—x)z, x=(t—y)y+(t—y)t, z> 2, t>y, 

y>2 by the first equation and x>y by the second. Similarly for negative 
solutions. 

A. Auric104 noted that Euler’s solution is not general, since his problem 
is equivalent to the solution in integers of the homogeneous system 
x2+uy=z2, ux+y2=t2, which can be solved for 2, y after giving arbitrary 
values to 2, t, u (by factoring z2—t2). 

L. Aubry105 and G. Quijano106 proved the impossibility of integral solu¬ 
tions. 

* Extrait du Fakhrf, French tranal. by F. Woepcke, Paris, 1853, 88-9. 
97 L’algebra opera, Bologna, 1579, 467. 
98 A Treatise of Algebra, London, 1764, 1808, p. 239. 
99 Algebra, 2, 1770, art. 239; French transl., Lyon, 2,1774,335-6. Opera Omnia, (1), 1,482. 
100 The Math. Correspondent, New York, 2, 1807, 11-13. 
101 The Ladies’ and Gentlemen’s Diary (ed., M. Nash), N. Y., 2, 1821, 45. 
102 Math. Quest. Educ. Times, 67, 1897, 64. 
108 Nouv. Ann. Math., (4), 15, 1915, 106-8. 
104 Ibid., 280-1. 
105 L’interm&iiaire des math., 22, 1915, 67, simpler on p. 226. 
109 Ibid., 23,1916, 87-8. 
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X2+y2 — l AND X2 — y2 — l BOTH SQUARES. 

BhAscara107 (born 1114) gave sets of values of x, y for which x2zky2—l 
are both squares: 

y = ~~2a~’ x=\+l’ x='h,+a’ y=l’ a:=8a4+1» y=8a3. 

BMscara108 treated this problem and the similar one on x2dzy2+l, as 
being due to an ancient author. To find two squares whose sum and 
difference increased by unity are squares, call the desired squares [p2=]4tk2 
and Qc2=]5fc2—1, the latter being a square for k = 1 or 37. For decrease 
by unity, use 4Jc2 and 5&2+l, a square for k=4 or 72. 

Having chosen the coefficient 4, the other coefficient (5) is to be deter¬ 
mined so that when 4 is added or subtracted we get a square. Thus 2-4 
is the difference of two squares. Taking 2 as the difference of their roots, 
we get the roots to be 1 and 3, whence 5—4+i2=32—4. Similarly, taking 
36 as the first coefficient, we must make 72 a difference of two squares. 
Taking 6 as the difference of their roots, we get 45 as the second coefficient; 
taking 4, we get 85. 

J. Cunliffe1080 solved £2=§(c2+d2)+l, y2=ii(c2—d2) by taking c = d+n, 
y=m, whence n = 2d/ (2r2 — 1) by the second condition. Take d — s (2r2—1), 
x=te+l. The first condition is satisfied if (4r4+l —Z2)$=2£. For £=2r2, 
we get Bhdscara’s final answer. 

E. Clere109 treated the same pair x2+y2 — l =z2, x2-~y2—l=u2. By 
subtraction, 2y2=z2—u2. Let y = pq and set z+u~2q2, z—u = p2 [thus 
limiting to integral solutions]. Substituting the resulting values of z, u 
into the proposed first equation, we get 4£2=4+4g4+p4, which is a square 
if p=q2. Thus we have the special solution 

z = l+g4/2, y = <?} z = q2+q4/2, u=q2-qAj2. 

A. Genocchi110 proved that all rational solutions are given by 

„ 2m r l+r ,_g~(y4+4g4) r 
y- l ’ X~ l ’ - 2r 2’ 

where p, q are relatively prime integers, q odd; r an integral divisor of 
g2{pA+\q4) and rz=g (mod 2). We may give any rational values to g, p, 
q} r and, without loss of generality, replace r by gr. Then y — ^pqr/d^ 
x—{p4+kq4+r2)ld, where d=p4+4g4—r2. If we set r — 2q2, p — 1, we get 
y=S(f, x=8g4+l; if we set r = p2—2q2, p=—1/2, we get also the first set 
by BMscara. 

107 LlMvati (arith.), §§ 59-61. Algebra, with arith. and mensuration, from the Sanscrit of 
Brahmegupta and BMscara, transl. by Colebrooke, London, 1817, p. 27. Lilawati or 
a treatise on arith. and geom. by Bhascara Acharya, transl. by John Taylor, Bombay, 
1816, 35. 

108 Vija-ganita (algebra), § 194; Colebrooke,107 pp. 257-9. 
i°8o New Series Math. Repository (ed., T. Leybourn), 2, 1809,1, 199. 
109 Nouv. Ann. Math., 9, 1850, 116-8. 
110 76uf., 10, 1851, 80-85. 
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T. Pepin111 found that all rational solutions are given by 

dx = m2p+n2q, dy = 4mnst, dz - 2mn{$2+2t2), du = 2mn(s2—2t2), 

where d — m2p—n2q, while m, n are relatively prime, also s, t. Further, 
s4+4£4 = pg. To obtain integral solutions, take 

p = 1, d = dbl, m+ V5 n = (2+ V5)fc. 

Various writers112 gave solutions. 
J. H. Drummond113 took x2Jry2+l = (ra+1)2, x2—y2+l = (m—l)2, 

m — 2n2, whence x = 2n2, y=2n. 
E. B. Escott114 asked if x2+y2~ 1, rc2—2/2+l are squares when xy =j=0, 

a: 4=2/, for integral values other than x = 13, y = 11; in other words, if 
4mn(m2—n2)+l = D (mn=j=0, m=j=n) has a solution other than m = 3, n=2. 
Several replies115 show there is an infinitude of solutions. 

R. P. Paranjpye116 gave BMscara’s107 third solution. Suppose in 
2y2=z2—t2 that the common factor of y, z, t is a square. Since the difference 
of two squares is divisible by 8, we may set z+t~ 4£2, z — t=2r)2, y-2%r}. 
Then x2=l—y2+'z2=4:^+yA+l, Assume that ??4 = 4J2, whence £ = 2p2) 
^7 = 2 p. 

x2+2fxy+hy2, x2+2gxy+ky2 both squares. 

Beha-Eddin32 listed as the last of seven problems remaining unsolved 
from former times that to make x2dz(x+2) both squares. His translator, 
Nesselmann (pp. 72-3), discussed the problem. 

A. Marre117 found only the solution x— —17/16 and concluded that 
the problem is impossible in positive integers. 

A. Genocchi118 called the squares (p+q)2 and (p — q)2, whence x2 = p2+q2, 
x+2 — 2pq. By eliminating x, (4p2 —l)g2—8pg— (p2—4) =0. By taking 
the first or third coefficient zero, we get x== —2, —17/16, 34/15. 

E. Lucas119 solved completely the corresponding homogeneous equations 

x2-j-xy+2y2=u2, x2—xy—2y2 = v2, 

where x, y, u, v may be assumed relatively prime. Adding, we see that the 
sum of the squares of (uzhv)/2 is x2, whence 

%(u+v)=r2—s2, ^{u-'v)—2rs, x — r2+s2. 

Substitute the resulting values of u, v, x into the equation obtained by 
subtracting the proposed equations, we get 2y2-\-xy=- 4rs(r2 — s2), whence 
y~i(—x±t), where 

(1) (r2+s2)2+32r$(r2-$2) =t2. 

m Nouv. Aim. Math., (2), 14,1875, 63. 
112 Math. Visitor, 2,1887, 66-70. 
113 Amer. Math. Monthly, 9,1902, 232. 
114 L’intermSdiaire des math., 12, 1905, 76. 
314 Ibid., 207-211; 13, 1906, 25. Cf. Zerr™ of Ch. XIX. 

Jour. Indian Math. Club, Madras, 1, 1909, 188-9. 
Nouv. Ann. Math., 5, 1846, 323. 

m Annali di Sc. Mat. e Fis., 6,1855, 132, 303-4. 
Nouv. Ann. Math., (2), 15, 1876, 359-365. Same in Bull. Bibl. Storia Sc. Mat., 10, 1877, 

186-191. 
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Hence the product of r2+16r$—s2±t is 252r2s2; call the factors d~14(3p)2, 
±2g2 and add and subtract. Thus 

r2+16rs—s2 = ±(63p2-f£2), rs~pq. 

For the upper sign, one solution of (1) leads to two new solutions: 

R = m (r2+s2), S—nt, T=63n2 (r2+s2) — m2t2, 

n=4rs (r2—s2), (r2+s2) ± (r4+s4—6rV), 

so that the proposed pair has the solutions 

x=r2+s2, 4y=—r2—s2±t, u, v~r2—s2zF2rs. 

For the lower sign, the problem is reduced to the earlier case. 
A. G6rardin120 used the known solution of u2+v2 = 2x2: 

u = 2m2—Z2, v = 2m2+l2—4Zm, x~2m2jrl2—2lm. 

It remains to make Su2—7x2^(x+4y)2 a square: 

• 4m4+Z4—S8l2m2+56Zm3+28Z3m = □ = (2m2- 14mZ-Z2)2. 

Then a:=34, y = 15, ^=46, v=14 [Genocchi]. It is stated that we have 
also y- — 32. 

L. Euler121 solved x2+2fxy+hy2=P2, x2+2gxy+Jcy2=Q2. Subtract and 
set P—Q = (f~g)y, whence PJrQ^2xJry(Ji—k)j(f—g). Squaring and 
adding, we get 2P2+2Q2; equating to the value obtained by adding the 
proposed equations, we get 

* :y = U~gy~2(h+k)(f--g)2+(h--k)2 : 4(f-g)(f2-g2-h+k). 

N. Fuss122 made f^x2+2axy+y2 and /2=r2+2bxy +y2 both squares, say 
p2 and q2. Then p2—g2 = 2(a—b)xy. Hence x=4(a+b), y = (a—b)2—4 is a 
particular solution since 

/i = [(a-6)(3a+&) -4]2, /. = [(a-6)(36+a) -4]2. 

To find n such that x2dz2nxy+y2 are squares, say (p±g)2, we have 

x2+y2=lP2+<f, my—pq. 

Set p = axy, q=n/a. Then n2~a2(x24~y2) —ct4x2y2. 

A. S. Werebrusow123 reduced the system 

ax2+2a!xy-\-a"y2—u2, px2+2f}'xy-{-p/ry2=v2 

to au4+2bu2v2-\~cvi=z2} a=l3'2—^rr, b = aPf'+oi"p—2a/l3f, c=af2 — aa". 
H. B. Mathieu124 gave the solutions x=15, y= — 8; a: = 1768, p=2415, 

of x2-\-y2= □, x2+xy-\-y2~ □ . L. Aubry125 gave a general discussion. 
Adrain,113 Genocchi,119 etc., of Ch. XXII proved that x2zkxy-\-y2 are 

not both squares. 

120 SpHnx-Oedipe, 1906-7, 162; Assoc, frang., 1908, 17. 
121 Opera postuma, I, 1862, 254 (about 1777). Nova Acta Acad. Petrop., 13, 1795-6 (1778), 

45; Comm. Arith., II, 292. 
122 M6m. Acad. Sc. St. PStersbourg, 9, 1824 (1820), 151-160. 
122 Math. Soc. Moscow, 26,1098, 497-543; Fortschritte, 39, 1908, 259. 
124 L’interm&liaire des math., 17, 1910, 219. 
125 Ibid., 283-5. 
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Two FUNCTIONS OF ONE UNKNOWN MADE SQUARES. 

C. G. Bachet126 treated the double equality 

42V2+32V—1 = □, 42V2+42V --1 = □, 

by factoring the difference N into f and 42V, where 42V is the double of 
V42V2, and equating the squares of J(42VrFf) to the given left members? 
whence, in either case, f2V = 65/64. If the second equation is changed to 
42V2—Ar“l = □, use the factors 1 and 42V. 

For 2V2—12= □, W~12 = D, use the factors N and 2V—13/2 of the 
difference, so that their sum shall contain the double of V2V2. 

For 4N2—2V—4= □, 42V2+152V=D, use the factors 4 and 42V+1 of 
the difference. 

For A72—61442V+1048576= □, 2V+64= □, first multiply the latter by 
16384. 

Fermat127 treated many double and triple equalities. 
J. L. Lagrange128 considered briefly the system 

(1) a-j-bxjrcx2=n, aA^x+yx2~ □. 

If a+bf+cp = g2, the general solution of the first is 

x= (fm2~2gm+b+cf)/(m2~- c). 

Then the product of the second quadratic by (m2—c)2 is a quartic function 
of m. There is no known rule to make the latter a square. If a = a = 0, 
set rr = l/y; we are led to the simple problem 5y+c = □, /ft/+7= □. 

R. Adrain129 treated ax2+b = □, cx2+d= □, given ar2+5 = e2, by setting 
x — r+y. Then a£2+5 = e2+2an/+a?/2== (zy — e)2 determines y rationally 
in z. For this value of y, the second condition becomes Q= □, where Q is 
a quartic in z; but no treatment is given. Next, consider (1) for the case 
in which c and y are squares; by multiplication by squares, we may assume 
that the coefficients of x2 are equal and proceed as in the following example. 
For x2-x+7=A2, x2-7x+l =B2, we have 6x+6=A2-B2. Take 

2z+2=A+B, 3 = A-B. 

Inserting z+5/2 for A in the first given equation, we get a?=1/8. 
Several130 solved 1—82= □, x—4x2+4=D by inserting x=(l—a2)/8 

into the second condition. Two answers are 

x=19740/177241, 72165/578888. 

W. Welmin130a employed the elliptic function $(X) obtained by the in¬ 
version of the integral 

(2) =^—=. 
Jo yl(ax2+b)(cx2+d) 

m Diophanti Alexandrini Arith., 1621, 439-440. Comment on Diop. VI, 24 (p. 177 above). 
127 Oeuvres, III, 329-376, French transl. of J. de Billy’s Inventum Novum. See de Billy65 of 

Ch. IV; Fermat9"11 and Ozanam16 of Ch. XV; Fermat373 of Ch. XXI; Fermat40 of Ch. 
XXII. 

m Additions to Euler’s Algebra, 2, 1774, 557-9. Euler’s Opera Omnia, (1), I, 596; Oeuvres 
de Lagrange, VII, 115-7. Extracts by Cossali,37 108-113. 

129 The Math. Correspondent, New York, 1, 1804, 238-240. 
130 Math. Miscellany, Flushing, N. Y., 1, 1836, 67-72. 
130a Annales Univ. Warsaw, 1913, 1—17 (in Russian). 
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If X be chosen so that {a<£2(X)+5)1/2 and {c<j>2(\)+d}112 take rational 
values, rational solutions of the pair of equations ax2+b~n, cx2+d = □, 
are Xi — (f>(\), x% = <£(2X), x3 = 0(X+2X), ••*. In order that there be an in¬ 
finity of solutions, it is necessary that the integral (2) have an irrational 
ratio to the same integral extended from x to oo. 

M. Rignaux131 proved that 2z/2+l and 3y2-\-l are both squares only when 
y=0. 

Miscellaneous pairs of quadratic functions made squares. 

Diophantus, II, 31, made xydz(x-\-y) squares. Since 22+32zb2-2*3 is 
a square, take xy = (22+32)a;2, x+y = 2 -2 -3a;2, whence y - 13a:, 14a: = 12a:2. 

Paul Halcke132 gave three ways of solving the problem. 
L. Aubry, Welsch and E. Fauquembergue133 proved that the problem is 

impossible in integers. 
Diophantus, II, 26, found two numbers (12a:2 and 7a:2) such that the 

square (16a:2) of their sum minus either number gives a square. Hence 
19a:2 = 4a:. 

This problem was treated by J. H. Rahn and J. Pell,134 and the latter 
treated (p. 102) the corresponding problem (Diophantus, III, 3) for three 
numbers. 

BMscara135 made 7y2-{-Sz2 and 7y2—8z2+l both squares. Treating the 
first by the method of the “ affected square ” (Ch. XII) with Sz2 as the 
additive quantity and 2z as the least root, we get 7(2z)2+8z2= (6z)2. For 
y — 2z, the second expression becomes 20z2+l and is a square for z — 2 or 36. 

W. Emerson136 made xy+x and xy+y squares. 
Fr. Buchner137 made xy—x and xy—y squares by taking y = p2x+1. 

Then xy—y = (px—m)2 if x— (m2+l)/(2mp —p2Jrl). 
S. Tebay138 made x2+cxy+y2dza squares. Let x2+cxy+y2+a — (y+p)2 

determine y. Then x2+cxy+y2—a=D if x*-\--{x2—cpx-\-q)2) which 
gives x. 

Several139 proved that P+Q = R2, P2+Q2=S2 imply that P3+Q3 is a 
sum of two squares: 

P3+Q3=E2{i(>S+P~Q)2+i(^-P+Q)2l. 

Also PQ is divisible by 12. To find140 all integral solutions P, Q, set 
Q=Pqjp. Then P+Q—R2 gives P, while P2+Q2=s2P2 if p2+q2 = p2s2 and 
hence if p = m2—n2, q — 2mn. 

131 L’interm&iiaire des math., 25, 1918, 94-5. 
132 Deliciae Mathematicae, oder Math. Sinnen-Confect, Hamburg, 1719, 245-6. 
133 L’interm&iiaire des math., 18, 1911, 71-2, 285-6; 20, 1913, 249. 
134Rahn,e Algebra, Zurich, 1659, 110. An Introduction to Algebra, transl. by T. Brancker 

. . . augmented by D. P[ell], London, 1668, 100. 
136 Vija-ganita, § 187; Colebrooke,107 p. 252. 
138 A Treatise of Algebra, London, 1764, 1808, p. 379. 
137 Beitrag zur Aufl. unbest. Aufg. 2 Gr., Progr. Elbing, 1838. 
138 Math. Quest. Educ. Times, 44, 1886, 62-3. 
139 Ibid., 54, 1891, 38. 
140 Ibid., 60, 1894, 128. Cf. Teilhet339 of Ch. XXI. 
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A. C. L. Wilkinson141 made 2y2—z2 and 2z2—y2+l squares x2 and u2. 
Put x~a+b} z = a—b. Then x2+z2=2y2 gives a2+b2=y2; a, y-h{m2zPn2)) 
6 = 2kmn. Take m=9, n=7. Then w2=193(2&)2+l. By the continued 
fraction for VI93, ^=6224323426849, A; = 224018302020. 

A. G6rardin and R. Goormaghtigh142 treated 

(y—x)2+x=A2, (y—x)2—y=B2. 

Add and set t-x—y, then 2t2+t=A2+B2, an easy problem. 

141 Jour. Indian Math. Club, 2, 1910, 193. 
142 L’mtermSdiaire des math., 22, 1915, 193; 24, 1917, 84-5. 



CHAPTER XVII. 

SYSTEMS OF TWO EQUATIONS OF DEGREE TWO. 

TWO QUADRATIC EQUATIONS IN TWO UNKNOWNS. 

Beha-Eddin1 (1547-1622) included (as Prob. 3) among the 7 problems 
remaining unsolved from former times that to make x2+y = 10, y2+x=5. 
Nesselmann noted that there is no rational solution. Marre /p. 323) 
noted that it leads to x4—20x2+x-t-95=0, having no rational solution. 

Cataldi2 required x, y when x2 4* y2 and xy/(x — y)2 have given values, 
and treated separately the case in which the values are 20 and 1. 

Fermat3 treated the problem to find in how many ways a given number 
m is the difference of two numbers whose product is a square. If m=2kpaqb, 
where p and q are odd primes, the number of ways is 2ab+a+b. If there 
is a third odd prime r with the exponent c, the number of ways is 
4abc+2ab+2ac+2bc+a+b+c; etc. 

If4 x2+y=y2+x, x2+y2= □, then x=y or x = l—y. For the latter, 
x2+y2 = (ry~ l)2 gives y. 

A. Martin5 found the rational solutions of x+y-x2+y2= □ by setting 
x = az, y = bz, z = (a+b)/(a2+b2), where a2+52=D, the last being satisfied 
in the usual way. M. Brierley6 took y=rx and found x= (r+l)/(r2+l). 
Then take r=3/4, whence r2+l = □. 

J. Hammond,7 to divide a product N of two unknown primes x, y into 
two parts Py Q, each > 1, such that PQ^ — 1 (mod N)y tabulated for each m 
(1 <m^l5) all solutions n, P, Q, N, x, y of P+Q^N, PQ+l — mN, 
whence P=m+Uy Q = m+n1, N=2m+n+ni, nni~m2—l. 

Problems of Heron and Planude; generalizations. 

Heron of Alexandria8 (first century B.C.) treated the two problems: 
(I) Find two rectangles such that the area of the first is three times the 

area of the second [and the perimeter of the second is three times the 
perimeter of the first]. It is stated that the sides of the first are 33*2=54 
and 54—1=53; those of the second, 3(53+54)—3 = 318 and 3; the areas 
are 2862 and 954 [semi-perimeters 107, 321]. 

1 Essenz der Rechenkunst von Mohammed Beha-eddin ben Alhossain aua Amul, arabiach u. 
deutech von G. H. F. Nesselmann, Berlin, 1843, p. 55. French transl. by A. Marre, 
Nouv. Ann. Math., 5, 1846, 313. Cf. Genocchi, Annali di Sc. Mat. e Fis., 6, 1855, 297. 

5 Nuova Algebra Proportionale, Bologna, 1619, 51 pp. (chiefly on cubes and cube roots, 
pp. 42-43). 

* Oeuvres, II, 216; letter from Fermat to Mersenne, Dec. 25, 1640. 
* The Gentleman’s Math. Companion, London, 4, No. 20, 1817, 643-4. 
6 Math. Quest. Educ. Times, 62, 1895, 70. 
* Tbid.t 67,1897,72. 
7 Math. Quest, and Solutions, 1, 1916,18-19. 
“Liber Geeponicus (ed., F. Hultsch), 218-9. H. Schone, Heronis Opera, III, Leipaig, 1903. 
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(II) Find two rectangles of equal perimeters such that the area of the 
second is 4 times the area of the first. The sum of two sides of the first 
rectangle is taken to be 43 —1 = 63, and one side 4 — 1 =3, so that the other 
is 63—3 = 60. For the second rectangle one side is 42 —1 = 15 and the other 
63 — 15 = 48. The areas are 180, 720. 

Pappus of Alexandria9 (end of third century) discussed the simpler 
(determinate) problem: Given a parallelogram, find a second whose sides 
have a given ratio to the sides of the first, while the areas have a given ratio. 

Maximus Planude10 (about 1260-1310) discussed the problem to find 
two rectangles of equal perimeters such that them areas have a given 
ratio 6:1. The solution is given in words; expressed algebraically, it 
states that the sides of one are 6 — 1 and 63—6, those of the other 62—1 
and 63—62. 

G. Valla 1 applied the last rule for 6 = 3, 4. 
M. Cantor12 noted that the general [but see Zeuthen15] solution of 

Planude’s problem is as follows: sides of first a and 6(6+l)a, sides of second 
(6+1) a and 62a. 

P. Tannery13 discussed the generalization of Heron’s two problems: 

(1) a(x+y) ~u+Vj xy = buv, 

and stated that the general solution, obtained by setting a = pq, a26 —l=rs, 
/36 = mn, is 

u — apq, v = a(x+y)—u, x~abu+ccq2ur, y = abu+Pms. 

For a = 6, Heron gave x = 2a3, y = 2a3 — 1, u — a, v — 2a(2a3 — 1) ,* for a — 1, 

(2) z = 62—1, 2/ = 62(6-l), w = 6-1, *; = 6(62-l). 

* Ad. Steen14 discussed the rational solutions of Planude’s problem. 
H. G. Zeuthen15 noted that, to obtain Heron’s solution of (1) for a = 6, 

it suffices to assume that u = a, whence by the first equation v is a multiple 
za of a. Then 2+2/ = 1+2, xy = a3z. Eliminating 2, we get 

(x — a3) (y — a3) = a3 (a3—1), 

which holds if x—a3=a3 — l, y—a3 = a3. Next, for a = 1, try v = bx, y-b2u. 
Then the first equation (1) gives (6 — l)x = (62 — 1 )u, which is satisfied by (2). 
If we replace the common factor 6 — 1 in (2) by a, we get Cantor’s solution, 
which is however not the general one. If we use v/x — m in place of the 
earlier v/x = b, we get y = mbu by (12) and find that the general solution of 

9 Sammlung, Buch III, Pappus ausgabe (ed., Hultsch), Berlin, 1875, 1877, 1878, 126. Cf. 
M. Cantor, Geschichte Math., ed. 3, 1, 1907, 454. 

10 Computation (Rechenbuch, Livre de Calcul). Greek text by C. I. Gerhardt, Halle, 1865, 
pp. 46, 47. German transl. (inadequate) by H. Waeschke, Halle, 1878. M. Cantor, 
Geschichte Math., ed. 3, 1, 1907, 513. 

11 De Expetendis et fugiendis rebus opus, Aldus, 1501, Liber IV (=Aiithmeticae, III), Cap. 13, 
12 Die Romischen Agrimensoren, 1875, 62-3, 194-5. 
13 L'Arith. des Grecs dans H4ron d’Alexandrie, M&n. soc. sc. phys. et nat. Bordeaux, (2), 4, 

1882 192 
14 Tidsskrift for Math., (5), II, 139-147. 
15 Bibliotheca Math., (3), 8,1907-8, 118-120, 127-9. 
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(1) for a — b is 
x _ y _ u _ v 

mb —l mb(m — 1) m—1 m{mb — l)' 

G. Lemaire16 and E. B. Escott17 gave the solution 

cb2 c r 

C’ 1+6’ 1+6’ cb 
of Planude’s problem. It becomes (2) for c=b2 — 1. Escott gave two 
particular solutions of the problem to find two parallelopipeds with equal 
sums of sides, equal surfaces, and with volumes in a given ratio q: 

x+y+z^a+b+c, xy+yz+zx = ab+bc+ca, xyz = qabc. 

See papers 438-440 of Ch. XXI. 
U. Bini18 gave two solutions in integers of the last problem and nine 

sets of solutions of Planude’s problem, each involving a parameter. He 
rationalized the discriminant of the quadratic with the roots x, y, satisfying 
(1) for a = 1. 

System x = 2y2—l, x2=2z2~l. 

Fermat19 stated that x = 7 is the only integral solution, excluding of 
course the evident solution x — d=l. Cf. pp. 56,57 of Vol. I of this History. 

E. Lucas20 wrote x = 2y2 — w2, w=±l. Then x2 — (2y2+w2)2 —2(2yw)2. 
Multiply the latter by — 1 = l2—2 * l2. Thus x2 = 2r2—s2, where 

r = 2y2-\~w2—2yw, s=2y2-{-w2—4yw. 

In view of the proposed second condition, set s = ± 1, whence x2 = 2r2—s2 
becomes 

Also r==(2/±l)2-f-2/2, since tp=±l. Thus r and r2 are sums of squares of 
consecutive integers and hence r = 5, x = 7, by papers 26-30. 

T. Pepin21 treated 2y2(y2 — l) ~z2—l, obtained by eliminating x. For y 
odd, y = ajS, zdzi—2a2h, z^l — S^k, whencea2p2 — 1 = Shk, dhl = a2h~4/32£, 
so that 

(a2±4fc) (/32T h) =4M. 

Thus a2dt4:k-mh, p2zFh — 4aik, where m, n are integers making mn — 1. If 
m = n= -fl, the lower sign is excluded and the upper gives 2h = j32+a2, 
8& = j32—a2, whence a2/32 —1 =Shk becomes ai—2y2 = l, y= {a2—/32)/2. The 
case m—n= —1 leads to the same relation. This Pell equation has no 
integral solutions except a = =fc 1, y = 0. Next, let y be even, y = 2u. Then 

z2 = (2u)4+ (4^2 _ 1)2j z =^+4^ ± (4^2 -1)=/2- 4g2, zb4 u* = 4fg, 

18 L’intermSdiaire des math., 14, 1907, 287. 
"Ibid., 15, 1908, 11-13. 
18Ibid., 15, 1908, 14-18. 
19 Oeuvres, II, 434, 441; letters to Carcavi, Aug., 1659, Sept., 1659. Cf. C. Henry, Bull. 

Bibl. Storia Sc. Mat. e Fis., 12, 1879, 700; 17, 1884, 342, 879, letter from Carcavi to 
Huygens, Sept. 13, 1659 (extract from letter from Fermat). 

20 Nouv. Ann. Math., (2), 18, 1879, 75-6. His u, x, y are replaced by x, y, w. 
21 Atti Accad. Pont. Nuovi Lincei, 36, 1882-3, 23-33. 
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f, g relatively prime integers; the upper sign is excluded by use of modulus 4. 
Restricting to positive integers, we have u = a@, f=a2, g = (32. Thus 
(a2+2/32)2 = 1 + 2 (2/32)2, the discussion of which as a Pell equation leads to the 
condition m4—2n4=±l. The upper sign is excluded as it leads to 
l+c4=d2. For the lower sign, m2—n2 — 1, as noted in his next paper (ibid., 
p. 35). 

A. Genocchi22 treated z2 = y4+(y2 — l)2, obtained by eliminating x. For 
y odd, y2—l = (f2—g2)/2, y2==fg, where /, g are odd and relatively prime. 
Thus /=m2, g = n2 and 2(ra4+l) = (m2+n2)2, whence m2 = n2 = 1, x — 1, by 
known theorems on 2r4+2s4 = □. For y even, y2 — l =/2—g2, y2 = 2fg, where 
/, g are relatively prime, and / is even. Thus / = 2a2, g = (32 and p2 = 1+8a4, 
where p = 2cr+/32. Hence pda 1 = 2m4, pT 1 = 4n4. Thus m4-F1 = 2n4, which 
is impossible unless m2 = l, whence x= — 1 or 7. 

Genocchi23 cited his43 paper of Ch. XYI in which he proved that 
2r4+2s4=l=n, whence p4+o-4=j=2D, so that Pepin’s21 condition m4+l = 2(n2)2 
requires m2 = 1. 

S. R6alis24 gave a discussion quite similar to that by Genocchi.22 
E. Turriere25 treated the system x — 2y2—1, x2 = 2z2—l. 

A number and its square both sums of two consecutive squares. 

E. de Jonquieres26 gave a proof, valid only when y is a prime, that y 
and y2 are both sums of two consecutive squares only when y~b. Like 
errors invalidate his27 result that if a number and its square are both 
expressible in the form x2+t(x+1)2, then t= 1, 2, 4, 5, 7, or 9. Cf. Lucas,20 
and papers 89, 90 of Ch. XVI. 

T. Pepin28 reduced the problem to a certain quartic which he did not 
solve completely. If y = P2+P2l} all decompositions of y2 into a sum of 
two relatively prime squares are given by y2= (P2—Pi)2+(2PPi)2. Taking 
2PPi and ±(P2—Pi) as consecutive integers, de Jonquieres assumed that 
P and Pi must be consecutive. While this condition is necessary if y 
is a power of a prime or the double of such a power, it is in general not 
necessary. 

E. Catalan29 asked for numbers 2x expressible as a sum of squares of 
two consecutive odd numbers, while (2a:)2 is a sum of squares of two con¬ 
secutive even numbers, citing the case 2a: = 10. G. C. Gerono30 proved that 
2x = 10 is the only solution of the equivalent system 

a: = 42/2+l, x2 = z2+(z+i)2t 

22 Nouv. Ann. Math., (3), 2, 1883, 306-10. 
M Bull. Bibl. Storia Sc. Mat., 16, 1883, 211-2. 
24 Ibid., p. 213. Reproduced, Sphinx-Oedipe, 4, 1909, 175-6. 
85 L'enseignement math., 19, 1917, 243-4. 
26 Nouv. Ann. Math., (2), 17,1878,219-20,241-7,289-310; (2), 18,1879, 464-5. Cf. Meyl30 

of Ch. IV. 
27 Ibid., (2), 17, 1878, 419-24, 433-46. Cf. Assoc. fran<;. av. sc., 7, 1878, 40-49. 
28 Atti Accad. Pont. Nuovi Lincei, 32,1878-9, 295-8. 
29 Nouv. Ann. Math., (2), 17, 1878, 518. 
80 Ibid., 521. 



Chap. XVII] MISCELLANEOUS SYSTEMS OF TWO EQUATIONS. 489 

E. Lionnet31 stated that 1 and 5 are the only sums of squares of two 
consecutive integers whose product is a sum of such squares; 1 and 5 are 
the only primes x, y, each a sum of squares of two consecutive integers, 
such that x2 and y2 are such sums of squares. Similarly, 1, 13 and their 
biquadrates are sums of squares of consecutive integers. Cf. Lionnet314 of 
Ch. XXII. 

Miscellaneous systems of two equations. 

Bh4scara30 of Ch. XII gave a solution of the system x2+y2+xy=*z2, 
(x+y)z+l = D. On systems of two equations involving sums of squares, 
see papers 108, 176 of Ch. VI; 97, 259 of Ch. VII. 

“Umbra” 32 found numbers ax, bx, cx, • • • whose sum added to or sub¬ 
tracted from the sum of their squares gives a square. Set s = a+b+c-\-. 
Choose a, b, • • • so that the sum of their squares is a square q2 (by setting 
q — a+m and finding a). Hence q2x2±sx are to be squares. Take t = s/q2. 
Then x2zktx are to be squares. Determine x by x2+tx = (k—x)2. Then 
x2—tx = □ if k2—2kt — t2 = □ = (n —k)2, which gives k. 

R. F. Muirhead,33 to find pairs of quadratic equations x2—px-\-q~ 0, 
x2—qx+p = 0, all of whose roots are integers SO, found all integral solutions 
SO of a+/3 = a'i8/, Set r = (a-l)(j8-l), r' = (a'-l)G8'-l), 
whence r+r' = 2. It is shown that a + 0. Hence either r = 0, r' = 2, ar = 2, 
/3' = 3, a = l, (3 = 5, or r = 2, r' = 0, or r = r' = l, a = a =^ — (3r = 2. He solved 
also the pairs (3±a = a'(3'} (3' — a' = af3. 

A. Cunningham34 solved Si = S2 = Sz, where 

Si = 500 (N; - N2i+1) +r(N-Ni+1), 

by multiplying by 2-103 and setting ay = 10W/+r. Thus 
2 2 2 2 2 2 

a2 — a2 a3 — a$ . 

But if four integral squares are in A. P., they are known to be equal. 
M. Rignaux35 gave integral solutions of the two systems 

xy+zt= □, xz—yt— □; xy+zt = xz —yt = u*. 

A. Boutin36 proved that x2 — 2t/2 = 1, y2—3z2= 1 imply y2 = 4. 

31 Nouv. Ann. Math., (2), 20, 1881, 514. 
32 The Gentleman’s Math. Companion, London, 4, No. 20, 1817, 673-5. 
33 Math. Quest. Educ. Times, 70, 1899, 84-6. 
34 Ibid., (2), 10, 1906, 29. 
35 L’interm^diaire des math., 25, 1918, 113-5. 
26 Ibid., 26, 1919, 123. 





CHAPTER XVIII. 

THREE OR MORE QUADRATIC FUNCTIONS OF ONE OR TWO 
UNKNOWNS MADE SQUARES. 

arx'+dx, b2x2Jrex, • • • made squares. 

J. Cunliff e1 took v2-\~mv= (d—v)2, whence v — d2/(2d-\-m). Then 

v2-\-nv= □ 
if d2+2dn+mn — (g—d)2, which gives d. Then v2+pv= □ if 

(q2 —mn)2+4p(q+n)(q2—mn)+4mp(g+n)2= □ = (q2—2pq—mri)2} 

whence q~(p—m—n)/2. 
W. Wright2 equated the numerators and denominators of the two values 

of d given by d2+2dn+mn = (q—d)2 and d2+2dp+mp = (t—d)2. Thus 
q2—mn = t2—pmy n+q — p+t. By divisiony q+t= ~m. Hence 

q = (p—m—ri)l 2. 

A. B. Evans3 made k2x2—kx a square for k~a, b, c. From 

a2x2—ax=(a — m) 2x2 

we get x. Then b2x2—bx= □, c2x2—cx= □ if 

a2b2c2—abc2d = y2j a2b2c2—ab2cd=z2, d~2am—m2. 

Subtract and set bc(2a—m) =y-\-z, m(ab — ac)-y—z. Substitute the re¬ 
sulting y into a2b2c2—abc2d = y2; we get 

4 abc(ab—bc+ac) 
VY) = - 

4ab2c— (ab+bc — ac)2’ 

J. Matteson4 solved d2+2dn+mn = A2, d2+2dp+mp = B2 by taking 
2d+'m = A+B) n—p = A—B. Inserting the resulting value of A into the 
first of the initial equations, we get d rationally. An equal value of d is 
obtained by use of B. It is stated that if m, n, p be any three of the numbers 
2016, 3000, 3696, 4056 (or any three of certain 13 numbers of 6 or 7 digits), 
the six expressions v2±mv, tfztpv are all squares when y = 652. 

D. S. Hart5 found three squares such that each increased by its root shall 
be a square. Let ax, bxy cx be the roots. Take a2x24-ax = m2x2. For the 
resulting value of x, b2x2+bx and c2x2-\-cx are squares if orb2 — cdb+abm2 
and a2c2 — a?c-\-acm2 are squares. Since this is the case when m — a, set 
m=a+n. Multiply the resulting expressions by c2 and b2 respectively. 
Then shall 

abc2n2+2a2bc2n+a2b2c2 = □ —A2} ab2cn2Jr2a2b2cn-{-a2b2c2 — B2. 

1 The Math. Repository (ed., Leybourn), London, 3, 1804, 97. The Gentleman’s Math. 
Companion, London, 3, No. 14, 1811, 300-2. Same in Math. Quest. Educ. Times, 
14, 1871, 54; 24, 1876, 28. 

3 The Gentleman’s Math. Companion, 5, No. 24, 1821, 59-60; 5, No. 26, 1823, 214. 
3 Math. Quest. Educ. Times, 14, 1871, 55-6. 
4 The Analyst, Des Moines, 2, 1875, 46-9. 
6 Ibid., 3, 1876, 81-3. 
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Factoring the difference, we set a(c—b)n=A—B, 2abc+bcn=A+B. In¬ 
sert the resulting value of A into the equation involving A2. We find that 

n = 4 abc(ab+ac~bc) I {(ac+bc—ab)2—4a6c21. 

__{(ac+be—ab)2—4afrc2}2_ 

8 abc(ac -f 6c—a6) (ac+a6— be) (ac—ab—be) * 

The initial squares will be in A. P. if we take 

a = 2r$ —r2+s2, 6 = r2+s2, c = 2rs+r2—s2; 

whence a = l, 6 = 5, c = 7 if r = 2, s = l. Then x = 151321/7863240, a result 
found by J. D. Williams6 by starting with the squares x2, 25x2, 49x2. For 
r=4, a = 3, we get a =17, 6 = 25, c=31, x = —X, where 

X= (864571)2/11011044931800, 

and hence a solution of a2X2—aX= □, • • •, c2X2—cX=D [Perkins28 of 
Ch. XIV]. 

Hart7 made k2x2+kx= □ for k = ar, br, •••. Divide by k2 and set 
a = l/a', Then x2+ax, x2+bx, ••• are to be squares. Set x—z2. 
Then z2+a, z2+6, • • • are to be squares. Suppose that z2 is a sum of two 
squares in the required number of ways: z2 = m2+n2 = p2+q2— * * *, and 
set a — 2mn, 6 = 2pg, • • •. Then z2-{-a = (m+ri)2, z2+b = (p+q)2, 

J. Matteson8 gave the solutions by Hart5'7 with amplifications. 
G. B. M. Zerr9 solved the system x2+y2=z2+w2 = □, x2—w2=z2—y2~d, 

also the system 

(m2+n2) 2x2 ± (m2 -\-n2)x= □, (m2—n2) 2x2dz (m2—n2)x= □, 

4m2n2x2±:2mnx = □. 

P. von Schaewen10 made 4a;2—2x, 4x2+3x, Ax2+5x all squares. Setting 
x = l/(4a?i), we are to make 1 —2a;i, l+3a;i, l+5xi all squares [von 
Schaewen81 of Ch. XV]. 

On three squares which increased or decreased by their roots give 
squares, see papers 12, 12a, 21, 26, 52-54 of Ch. XIV. For two squares, 
papers 3, 19 of Ch. XVI; 32 of Ch. XVII. 

Three linear and quadratic functions of two unknowns made 

SQUARES. 

Brahmegupta2 of Ch. XV made x+y, x—y and xy+1 all squares. 
To find two numbers whose product is a square and product plus the 

square of either is a square, J. Hampson11 took b2a and a as the numbers. 
It remains to make 62+l = □ = (6—c)2, say, which gives 6. R. Mallock 

8 Algebra, Boston, 1840, 413. 
7 Math. Quest. Educ. Times, 39, 1883, 47-9. 
8 Collection of Diophantine Problems with Solutions (ed., A. Martin), Washington, D. C., 

1888, pp. 10-20. 
8 Amer. Math. Monthly, 15, 1908, 17-18. Erroneous solution in J. D. Williams’ Algebra, 

1832, 419. 
10 Archiv Math. Phys., (3), 17, 1911, 249-250. 
n Ladies Diary, 1763, p. 34, Quest. 491; Leybourn’s Math. Quest. L. D., 2, 1817, 209. 
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took two perpendicular segments AC and CD; let CB be the altitude of 
triangle ACD. Then AB and DB measure the required numbers. 

T. Thompson12 divided a given square a2 into two parts 

r2 — 2r$2 $2+2r2s 

4rs+l ’ 4r$+l ’ 

such that each plus the square of the other is a square. Take s = r+l. 
Then the sum of fractions is a2 if 2r+l = GT1, whence r= (1 —a)/(2a). 

J. Whitley13 took x2+y = (x+v)2, y2-\-x — (y~\-z)2, which give x, y in 
terms of v} z [Euler99 of Ch. XVI]. Take v=l—z. Then x-\-y = a2 gives 
z = (a—l)/(2a). 

J. Cunhffe14 found two numbers whose sum increased or decreased by 
their difference or difference of their squares give squares. He took x and 
1—2 as the numbers. Since either difference is 1 — 22, 2—2x and 2x are 
to be squares. Take 2a? = 4n2, n = $—1/2. Then 

2—22 = 1+4$—4s2 = □ = (2r$-1)2 
gives $. 

W. Wright and Winward15 took x and y as the numbers required in the 
last problem. Then 2x} 2y> 2+2/db (x2—y2) are to be squares. Set x+y ” P, 
x—y = q. Then pdbq and p±pq are to be squares. Take p+pg = n2. 
Then p—pq = □ if 1 —#2= □ = (1 —rq)2, whence g = 2r/(r2+l). Set 

n = ra(r+l)/(r2+l). 

Then pdtq = □ if (r2+l)(m2dr2r) = □. Nowr2+l=D if r — (v2—l)/(2v). 
Take v = 2, whence r = 3/4. Take m-P/2. Then m2zk2r= □ if P2±6 = □. 
Set P2+6 = (3P—P)2, which gives P. Set R = t+2. Then P2—6 = □ 
if 4H-h9i4= □ = (2+-36i+3st2)2, whence t-47/6. B. Gompertz took 
x+y=pk2, 1+2—y-l/p and by a long discussion obtained the preceding 
numerical answer. 

“Jesuiticus” 16 imposed the further condition that x+y= □* Thus 
2+y=r2, 2x=p2, 2y = q2} ljrx—y = m2, 1—2+y = n2, whence p2+£2 = 2r2, 
m2+n2=2. Take p — m, q—n, whence r=l. Then m2+n2=2 if 

m, n= (u2—tf±2uv)l(u2Jrv2). 

Several17 solved easily the problem to find two positive rational numbers 
such that each and the sum $ of their squares exceed their product by 
squares, and the problem when $ is replaced by Vs. 

Four quadratic functions of two unknowns made squares. 

L. Euler18 made ABztA, ABdzB all squares. Set A—xjZj B~y/z; 
then xy±.xz} xy±.yz are to be squares. Since a2+62±2a6= □ , set 

xy = a2+b2=c2+d2, xz=2 cd, yz = 2 ab. 

n Tile Gentleman’s Diary, or Math. Repository, No. 55, 1795. A. Davis’ ed., London, 3, 
1814,229-30. 

uIUd., No. 68, 1808, 36-7, Quest. 917. 
14 Ladies’ Diary, 1810, p. 40, Quest. 1203; Leybourn’s M. Quest. L. D., 4, 1817, 122-4. 
16 The Gentleman’s Math. Companion, London, 3, No. 16, 1813, 421-4. 
ia Ladies’ Diary, 1839, 41-42, Quest. 1638. 
17 Math. Quest. Educ. Times, 5, 1866, 60-1. 
18 Novi Comm. Acad. Petrop., 19, 1774,112; Comm. Arith., II, 53-63; Op. Om., (1), III, 338. 
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Then 
2 4 abed x __2cd _a24rb2 y _c24rd2 

Z a2+b2’ z z2 2ah 3 z 2cd 3 

The problem to choose a, •••, d so that a2-\-b2 = c2+d2 and so that the 
expression for z2 shall be a square was treated by Euler in §§ 3-17. In 
§ 18, he began by setting (in accord with the above) 

. a2+&2 c2+d2 

2ab ’ 2cd ' 

Then Arbi = (a±6)2/(2ab), B± 1 = (c±d)2/(2cd). Hence the conditions are 

c2+d2 a2+&2_n 

4 abed ’ 4abcd 

Make the numerators the squares of r2+$2 and p2+q2 by setting 

a = p2—q2, b = 2pq] c = r2—s2, d — 2rs. 

To make the common denominator a square, we have the condition 

pq(p2—q2)+rs(r2—s2) = □, 

which, is satisfied if we have two rational right triangles the ratio of whose 
areas is a square [cf. Euler81 of Ch. XVI]. The above ratio is a/jS for 
p = 3a, q = 2p—a, r = 3/5, s = 2a-~l3 and for seven similar sets. The case 
a~9, (3—4 gives p = 27, q= — 1, r= 12, $ = 14. By a table (p. 60) of values 
of xy(x2—y2), we get right triangles of equal areas 2-3*5*7 for x = 5, y~2; 
z = 6, y = l; x=8, y = 7] also two of equal area for 

r = p = m2+mn+n2, q — m2—n2, s = n2+2mn. 

Euler19 made the four expressions AB±AzbB all squares. Set A =xfz, 
B — yjz. Then xy±z(x+y) and xy±z(x—y) shall be squares. This‘will 
be the case if 

xy = a2-\-b — c2+d2, z(xJry) = 2ab, z(x—y)=2cd, 
whence 

ab-\-cd ab—cd . a2b2—c2d2 
x==—_—t y= ., z2 = «rrr- 

z z az4rb 
Since xy shall be a sum of two squares in two ways, set 

a = pr+qs, b = ps—qr, c = pr—qs, d=ps-\~qr. 
Then 

_2r$(p2—q2) 2pq(r2—s2) 9 4 pqrs (p2 — q2) (r2—$2) 

z 3 V z 3 Z (p2+<f)(r2+s2) 

19 Novi Comm. Acad. Petrop., 15, 1770, 29; M4m., 11, 1830 (1780), 31; Comm. Arith., I, 
414; II, 438. The simpler solution here reproduced is given in the second of these two 
papers, and is practically the same as that in Euler’s posthumous paper, Comm. Arith., 
II, 580-7; Opera postuma, 1, 1862, 137-9. In two letters to Lagrange (Oeuvres, XIV, 
214, 219), Jan. and March, 1770, Euler (Opera postuma, 1,1862, 573-4) gave discussions 
occurring in the first and third of these papers. On the related problem to find p, q, r, s 
such that Xpgrs(p4—s4)^—r4) - □, see Euler, Opera postuma, I, 487-490 (about 1766). 
The second letter is quoted in F intermediate des math., 21, 1914, 129-131, and in 
Sphinx-Oedipe, 7, 1912, 57-8. First paper in Opera Omnia, (1), III, 148. 
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The final expression is a square if and only if 

pqffi—q4) -rs(r4~s4) = □. 

By special assumptions, Euler was led to the values 

p=(a+p)(a+2p), q = p( Zp-a), r = 4/3 (a+2/3), s = a2+4or/3-/32. 

Then 
p2+g2 = (a:2+/32)Vj r2-\-s2 — (p-\-q)v} v=a2+6a:/3+13/32, 

r+s = (a+/3) (a+7/3), r—s = (3/3+a:)(3/3—a), p — q — s. 

The condition is thus (a:+3/3)(a+7/3)(a2+/32) = □, which is treated by the 
usual methods. From a = 2, j8 = 1 and a= —17, /• = 7, we get the solutions 

13-292 5-292 132-532 37-132-532 

8-92 ’ 32-112’ 3-4-7-592’ 3-7-42-52*192’ 

Euler20 made x+y±x2, x+y±y2 all squares. Replace x, y by xjz, yjz. 
Then (2+?/)z±22, (2+?/)z±2/2 are to be squares. This will be the case if 

22 = 2 AB, y2=2 CD, (x+y)z=A2+B2 = C2+D\ 

The final equality holds if 

A = ac-\-bd, B — ad—bc, C=ad-\-bc, D=ac—bd. 

The first two conditions hold if x=Af, y-Cg, 2B=Ap, 2D = Cg2. By the 
latter, 

a _ 2c+df2 a 2d+cg2 

b~~2d—cf2’ b~2c—dg2’ 
which are equal if 

d 
•®=(4+/4)(4+ff4). 

C • 4+/V 

Hence the problem will be solved if we make R=U. Set g = l. Since 
R — □ for /= 1 (which makes x = y), we take /= 1+1 Then R is the square 
of 5+2£+13£2/5 if £ = 60/11. Dropping the common factor 13 in x, y, we 
get 

2 = 4-11 -71, 2/ = 4*37 *61, 
5-372-612 

2-49-31 ‘ 

20 M6m. Acad. Sc. St. P6tersbourg, 11, 1830 (1780), 46; Comm. Arith., II, 447. 





CHAPTER XIX. 

SYSTEMS OF THREE OR MORE EQUATIONS OF DEGREE TWO IN 
THREE OR MORE UNKNOWNS. 

x2+y2, x2+z2, y2+z2 all squares. 

Paul Halcke1 gave the solution 2=44, ?;=240, 2=117. 
N. Saunderson2 satisfied x2+z2 — □ by expressing z2 as a product of two 

factors aw and z2j(aw) and taking half their difference as x. Similarly for 
y2+z2 = □. Take a2+b2=c2. Then 

x=±l{aw~£)’ y=4ibw-Q’ 

x2+y2 = -gc2w2—z2-{- 
cV 

4a262u>2‘ 

Equate the sum of the last two terms to zero. Hence w = cz!(2ab). To 
obtain integers, let z=4abc. Then 2=a(462—c2), y=b(4a2~c2). For a=3, 
6 = 4, we get 2 = 117,2/= 44, 2 = 240. 

L. Euler3 made the last two sums squares by taking 

x p2—l y 1 

z 2p ’ z 2q 

Then the first sum will be a square if 

tf2(p2-l)2+p2(42-l)2=D. 

First, let g —1 =p+l. Then must 2p4+8p3+6p2—4p+4 = □. Since 4 is 
a square, the condition is satisfied in the usual manner if p= —24. Next, 
q — l=2(p+l) leads to the solution p =48/31, and q—l=4(p —1)/3 to 
p = 2/13. For 

ff+l = (p+l)(<+l)/(p+0, 

both (p+1)2 and (p —l)2 may be cancelled and the condition becomes 

^2p4+2^(^+l)p3+2i2p2+(^+l)2)p2+(^2~l)2P2+2^2+l)p+^2=D, 

say the square of tp2+(t2+l)p—t. Hence p = —4t/(t2+l), where t is arbi¬ 
trary. If 2 = a, y = 6, z = c is one solution of our problem, x~ab, y = bc, 
z=ac is another. 

Euler4 made A2, S—B2, • • • squares, where S=A2JrB2-\-. Thus 
S is to be expressed as a El in several ways, the most general way being 

£=H2+ '(/5 -1)2+2.fyl2 
f2+1 J B = 

2fx—(f2—l)y 

f2+1 ’ 

if S=x2+y2 is one way. For three numbers A=x, B, C, take as C the 

1 Deliciae Mathematicae, Oder Math. Sinnen-Confect, Hamburg, 1719, 265. 
5 The Elements of Algebra, 2, 1740, 429-431. 
s Algebra, 2, 1770, art. 238; French transl., 2, 1774, pp. 327-335. Opera Omnia, (1), I, 

477-82. Cf. Fuss96 and Schwering150 of Ch. V. 
4 Novi Comm. Acad. Petrop., 17, 1772, 24; Comm. Arith., I, 467; Op. Omnia, (1), III, 201. 
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function derived from B by replacing / by (/+!)/(/— 1), viz., 

(f-l)x-2fy 

P+l - 
Then x2+B2+C2 = S -x2-\-y2 gives x/y — 8/(/2 — l)/(/2+l)2. Take y equal 
to the denominator and multiply all the numbers by/2+l. Hence 

A=8/(/4-l), B = (1 —Z2) (/4 “** 14/2 4-1), <7 = 2/ (3/4 —10/2+3). 

For /=2, we get 240, 117, 44. E. B. Escott5 also gave the last solution. 
Euler6 set x2 = 4mnpq, y = mp—nq, z = np —mq. Then 

x2jry2 = (mp+nq)2j x2+z2 = (np+m#)2. 

For 2/ = 2(ra2—n2)r$, 2 = (m2—n2) (r2—s2), we get 

y2+z2 — (m2~ n2)2(r2+s2)2, p = 2mrs—n(r2~s2), q = 2nrs—m(r2—s2). 

The resulting expression for z2/4 is a quartic function of r which is the 
square of mnr2~(m2+n2)rs+mns2 if r=4mn, s = m2+n2. Then 

a; = 2mn(3m2—n2) (3n2—m2), y = 8mn (m4—n4), 

z = (m2—n2) (m2—4mn+n2) (m2+4mn+n2), 

which, apart from signs, equal the products of n6 by Euler’s4 values when 
f—m/n. The simplest solution arises from m—2, n — l: x=44, y=240, 
2 = 117, whence x2+y2) etc., are the squares of 244, 125, 267. 

From the sum of the roots of three squares, the sum of any two of 
which is a square, subtract the area of a right triangle; the remainder is a 
square which if decreased by the sides of the triangle yields remainders 
which are squares in arithmetical progression. L. Blakeley7 took 4Ax, 
117a:, 240a: as the roots of the required squares, the sum of 442, 1172, 2402 
by twos being known to be squares; also let 3y, 4y, by be the sides of the 
right triangle of area 6y2. Then 401 x—6y2=Q=a2. Also, a2—3y=b2, 
a2—4y = c2, a2~5y = d2. Take y = r2—2dr. Then 

c2 = (d-r)2, 62 = d2-4dr+2r2, a2=d2- 10dr+5r2. 

The product of the last two is a square if d = r/6. Then d2 = r2/36, 
c2 = 25r2/36, b2=49r2/36 are in A. P. 

P. Barlow8 noted that the first part of this question is satisfied if the 
roots of the squares are 5752/48,4852/44 and 2 (from J. Boimycastle’s Algebra, 
p. 148). Next, we need a square which if diminished by each side of a 
right triangle the remainders are three squares in A. P., whence the sides 
of the triangle are in A. P., and hence proportional to 3, 4, 5. Let the 
squares be (a2+2ab—b2)2, (a2+b2)2, (b2-f-2ab—a2)2, with the common dif¬ 
ference 5=4ab(a2—b2). Thus let 35, 45, 55 be the sides. Then 

(b2+2ab—a2)2+55= □ = (b2-4ab-a2)2 

if 8a3b—8b3a = 12a2b2, i. e., (2a—2b)(a+b) =3ab, which holds if a —2b. 

5 L’interm4diaire des math., 8, 1901,103-4. 
6 Posth. paper, Comm. Arith., 2, 1849, 650; Opera postuma, 1, 1862, 103-4. 
7 Ladies’ Diary, 1805, p. 43, Quest. 1131; Leybourn’s Math. Quest. L. D., 4, 1817, 45-6. 
8 The Diary Companion, Supplement to Ladies’ Diary, London, 1805, 45-6. 
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J. Cunliffe9 set x2+y2= (x+y—a)2} x2+z2 — (x+z — b)2. 
suiting two values of x we get 

(a2—d2)y—ad(a—d) 

2dy+a2—2da 
d = a—b. 

From the re- 

Then y2+z2 = □ if 4d2y4+4d(a2—2ad)yzH-\~a2d2(a—d)2= □. Let it be 
the square of 2dy2-f(a2—2ad)y—ad(a—d). Then 

2ad(2ad - d2) 2 a(a - b) (a2 - b2) 

y~(a+dy(a-d)+4ad! 4a3+63-4a2& ' 

“Calculator” 10 first solved x2+y2 = a2, x2-\-z2-b2. Take b = rv—a, 
z=y—sv; then a2—y2 = b2~~z2 gives v = (2ra—2sy)j(r2~s2), whence b} z are 
known. To satisfy x2-f-y2 = a2 take 

a=(r2—s2)(m2+n2)} y = (r2—s2) (2mri), x = (r2—s2) (m2—n2). 

Then z = (r2+s2) -2mn“-2rs(m2+n2). Then y2-\-z2 becomes a quartic in m 
which is equated to the square of m2—mn(r2+s2) /(rs) — n2, whence 
m : n=4rs : r2+s2. Taking ?z = r2+s2, we have 

x=(s2—t2) (r4—14r2s2 -f s4), y = 8rs(r4—s4), z = 2rs(3r2—s2) (r2 — 3s2), 

which equal the products of s6 by Euler’s4 values for f=r/$. Cf. Euler.6 

S. Ward11 took x2+y2 = a2, x2-j-z2 = (m-j-n)2, y2+z2 = (m—n)2. Then 

4x2 = 2a2+8mn, 4y2=2a2—8mn, 4z2=4m2 ~j~4n2—2 a2. 

Let 2a2 = m2+16n2. Then the first two expressions are squares and the 
third becomes 3m2 — 12n2 = □. Take m = ftp, 3p2—12 =/2(p—2)2. Thus 

P=2(/z3"’ (/2-3)2aV = 10/4-36/2+90. 

Set /=1+#. The quartic is the square of 8—2y+iq2 if 5 = —16/3. Then 
2 = 240, y = 44, z —117, which appear to be the least numbers. 

W. Lenhart12 took x= (p2 — l)/(2p), y = 2q/(q2 — l), z = 1. Then 

x2+y2=D 
if 

(p2—1)2(^2 —l)2+16p2g2= □ = {(p-—1) (^2—1) +8 }2, 

provided p2+<f = 5 = 1+4. As usual, 

(s2+l)p = s2+4s— 1, (s2+l)? = 2(s2-s-l), 

s=t=lor3. For s = 2, p = 11/5, 5 = 2/5. 
C. Gill13 obtained Euler’s6 result by setting 

b = a cos A+z sin A, y—z cos A— a sin A 

and c, x to be the analogous functions of B. Then a2-\-z2 = b24-y2—c2+x2. 

9 New Series Math. Repository (ed., Leybourn), London, 1, 1806, II, 39. Also in- Math. 
Repository, 3, 1804, 5. 

10 The Gentleman’s Math. Companion, London, 4, No. 19, 1816, 626-7. Same with altered 
lettering, S. Bills, The Mathematician, London, 3, 1850, 200-1. 

u J. R. Young’s Algebra, Amer. ed., 1832, 338-9. 
12 Math. Miscellany, 2, 1839, 132. Reproduced in Math. Magazine, 2, 1898, 215-6; Sphinx- 

Oedipe, 8,1913, 84. 
13 Application of Angular Analysis . . ., N. Y., 1848; Reproduced in Math. Quest. Educ. 

Times, 17, 1872, 82-3. 
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Take A+£=90°. Then x2+y2~a2 if 2 = 2a sin 2A. Take cotJA =r/s, 
a = (r2+s2)3. 

C. L. A. Kunze7 * * * * * * 14 set x=2mn, y=m2—n2,z = m2ajb—n2bfa. Then 

x2+yi = (m2+ri2y, 

Take a, b to be legs of a rational right triangle with hypotenuse h, and 
set n=mh/(2b). Then y2+z2 = hVja2. Multiplying the resulting x, y, z 
by 4 ab2lm2, we get 

x=4abh, y = a(4b2—hr), z==b{4a2-h2). 

The last solution was obtained also by taking 

£=2 mn, y=mn2—m, z~nm2—n. 

Then the first two conditions are satisfied, while 

y2-\~z2=m2n2(m2-\-n2—4) +m2+n2 = □ 
if w?.2+n2=4. Take m = 2ajh, n—2b/h, a2+b2~h2, and multiply x, y, z 
by h3j2. We get the former solution. 

Judge Scott15 took x2+y2=(y—m)2, x2+z2= (z—n)2, which determine 
y, z. Take m/s = (p2~-q2)/(p2+q2), n/s = 2pq/(p2-\-q2)} whence m2+n2=s2. 
Then ?/2+z2=n if s2z4-4m%2+wW= □ =s2a:4, say, whence x — sj2. 
Take s-Wpq(p4~q4). We get Euler's6 answer. The latter was ob¬ 
tained also by A. Martin {ibid.), who satisfied u2—y2—w2—z2 by taking 
w=a(r2—s2), y = b(r2—s2), w = a(r2+s2) — 2brs, z~b(r2-{-s2) —2ars. Then 
u2—y2 = D =x2' if a=p2+q2, b — 2pq. There remains the condition 
y2+z2= □. Divide by 4r2s2 and take m = (r2+s2)/(rs). Then a quartic 
in p is to be a square, say (p2—mpq—q2)2, whence p/g=4/m. 
^ C. Chabanel18 used the devices of Diophantus for a similar problem. 

7 = a2-j32, 5 = 20$, 71 = 75, Si = 72, z2 = 8apT, 

3=y/*-7A y = S/t—Bit. 
Then x2+z2={ylt+yit)2, y2+z2=(d/t+ht)2. Since 4T7i=45§i=22, 

*2+y2='£~+{7l+$)t>-z*, 

which is a square for f=z/(a4-/34) since 72+S2 = (a2+^2)2 and 

7?+5? = (a"-/34)2. 

Multiplying the initial x, y, z by 2(a2+jS2) V2^/3, we get 

X2+F2 = p2, F2+F2=92, Z2+X2=r2 ' 
for 

X, 2= (a2-^)[(a2+/32)22F16^2], F=8«/3(<*4-/34), 

F, r=2a/3[(a2+J82)2=F4(a2-J82)2], p=(a2+^)3, 

where the upper signs give X, F. For a=2, )3 = 1, we get Halcke’s1 solution. 

14 Ueber einige Aufg. Dioph. analysis, Weimar, 1862, pp. 7-9. 
18 Math. Quest, Educ. Times, 17, 1872, 82-3. Cf. Martin20. 
18 Nouv. Ann. Math., (2), 13, 1874, 289-292. 
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J. Neuberg17 satisfied Euler’s3 condition p2+q2—4:+l/p2+l/q2=w2 by 
the special values w = 2/(pq), p2+g2=4. The latter holds if 

_ 4rs _2(r2—s2) 
V r2_|_s2» 2 rt-\-s2 

Hence x2+y2 = f2, y2+z2~£2, z2+x2~r)2 for 

x = Srs(r'—sA); £ = (r2+s2)3; y, f = (r2—s2) !(r2+s2)2:if::16r2521; 

^ —2rs{(r2+$2)2T4(r2--s2)2}. 

C. Leudesdorf18 solved the equivalent system 2 (u2+v2—w2)=*x2, 
2(u2+w2—v2)=y2j 2{v2Jtw2—u2) ~z2 by use of trigonometric functions (cf. 
Gill13). G. Heppel repeated Neuberg’s17 solution. 

J. Matteson19 obtained Euler’s4 result by the method of Euler.3 
A. Martin20 varied Scott’s15 method by making the first two terms of the 

quartic in x cancel (giving x — 2mn/s), instead of the last two. 
K. Schwering21 proceeded as had Neuberg17 with X, ju in place of p, q. 

To connect the result with elliptic functions, set R(p) =p4+l+p2p, 

p = #2+l/g2—4, 

u=I'j§p)’ p=m' 
Then p is a well-known elliptic function. By the addition theorem, 

, , , ,A _H'aW0>)+'K»W(v) 
tiu+v) l-y(u)^(v) • 

Hence if \p{u) and yp’(v) are rational, also ^(2w), i^(3w), • • •, ypr(2v), • • • 
are rational. Thus one solution p, q yields an infinitude of solutions. The 
relation of the same problem to Abel’s theorem is considered on p. 11. 

Several writers22 gave solutions. 
* F. Ferrari23 gave an infinitude of solutions. 
R. F. Davis24 gave Neuberg’s17 solution. 
A. Martin240 gave another derivation of Euler’s6 result. 
H. Olson246 proved that, if x2+y2-u2, x2+z2~v2, y2+z2 = w2, the product 

xyzuvw is divisible by 34-44-52. 
M. Rignaux24c stated that all solutions of x2+y2= □, etc., are given by 

x = 2mnpq, y=mn{p2—q2), z = pq(m2—n2), y2+z2 = □, 

and noted four solutions, involving parameters, of the final condition. 

17 Nouv. Corresp. Math., 1, 1874-5, 199-202. 
18 Math. Quest. Educ. Times, 34, 1881, 95-6. 
“Collection of Diophantine Problems . . ., ed., Martin, Washington, D. C., 1888, 21. 
20 Math. Magazine, 2, 1898, 214r-5. 
21 Geom. Aufgaben mit rationalen Losungen, Progr., Diiren, 1898, 9. 
22 Amer. Math. Monthly, 6, 1899, 123-5; Math. Quest. Educ. Times, 68, 1898, 104; (2), 11, 

1907, 26-7. 
23 Suppl. al Periodico di Mat., 14, 1910-11, 138-140. 
24 Math. Quests., and Solutions, 2,1916, 24-25; Math. Mag., 2, 1898, 215. 
Ua Amer. Math. Monthly, 25, 1918, 305-6. 
246 Ibid., 304-5. 
24c L’intermddiaire des math., 25, 1918,127. 
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The preceding problem is evidently equivalent to that of finding a 
rectangular parallelopiped whose edges and diagonals of faces are all 
rational. If we add the condition that also a diagonal of the solid shall be 
rational, we have a problem which H. Brocard25 attempted to prove im¬ 
possible by means of the terminal digits. P. Tannery26 noted that the 
proof is insufficient since it supposes that the numbers in question are 
relatively prime in pairs. 

V. M. Spunar27 noted that the last problem is impossible. 
^ A. Mukhopadhyay28 proved it impossible [if the edges be relatively 

prime integers]. The solutions of x2+y2=d are known to be x—2k, 
y ~k2 —l. Similarly, y = 2l} z = Z2—l; z = 2my x = m2—l. Then 

x2+y2+z2~x2+(l2+1)2=D 

requires x~2ny Z2+l=n2—1, whereas n2—Z2 = 2 has no integral solutions. 
M. Rignaux29 remarked that the problem is difficult and not yet solved. 

He satisfied three of the conditions, but not the fourth. 
A. Transon30 stated falsely that a tetrahedron with six integral edges 

cannot have among its solid angles a tri-rectangular trieder, and stated 
that one can find, in an infinitude of ways a tretahedron OABC with 
integral values of the three edges meeting at 0, and of the areas of the four 
faces, while the three face angles at 0 are right angles. C. Chabanel31 
and C. Moreau31 gave the solution 

OA = 4xyz} OB = 2y(x2+y2-z2), OC=2x(x2+y2-z2), 

area ABC—2xy(x2+y2—z2)(x2-\-y2-\-z2). 

Four squares whose sums by threes are squares. 

L. Euler32 applied his4 method to A=xy B, C and the following Z), but 
was led to a condition difficult to treat and abandoned that method. Next, 
take A=y, B and C as in Euler,4 and D= {2px — (p2—l)y}/(p2+l). Then 

Bi+C2=x2+y2—2gxy, 

Since S=x2+y2, the condition S = y2+B2+C2+D2 gives y2+D2-2gxy = 0. 
Inserting the value of D, we get 

4 V'x~ = 2g(p2+l)2xy — (p2 — l)2?/2— (p2+l)V+4p(p2—l)xy, 

4.p*x/y = g(p2+l)2+2p(p2-l)±(p2+l)E, R2 = g2(p2+1)2+4gp(p2-1)-4p\ 

Take R=gp2+2p+g. Then p — —g, 4:gx/y=2(giJrl) or 4. Using the 

25 L’intennediaire des math., 2, 1895, 174-5. 
28 Ibid., 3, 1896, 227. 
27 Amer. Math. Monthly, 24, 1917, 393. 
28 Math. Quest. Educ. Times, 41, 1884, 60. 
29 L’interm&liaire des math., 26, 1919, 55-57. 
30 Nouv. Ann. Math., (2), 13, 1874, 64; correction, 200. 
81 Ibid., 340-3. 

”N0™<^?m‘c,Acad‘ Petr°P-< 17> 1772,24; Comm. Arith., 1,467-72; Opera Omnia, (1), 
III, 203. Second method reproduced by Martin, Math. Mag., 2, 1898, 217-8. 
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latter value 4 and dropping the common factor x, we get 

A=0, B = 
2/~g(/2~ 1) 

P+1 ’ 

r P-i-%fg 
P+1 ’ D=-g, 

V(P-1) 
9 (/.+ l)f 

Using the former value and taking y=2g, g = mjn, and multiplying A, ■ 
D by (/2+l)n4, we get 

A = 2mn3(/2+l), B = 2f(mi+ni) —2mn3(p—l), 

C = (/2—1) (m4+n4) — Afmn3, D=2m3w(/2+l). 

In his second method (§§ 56-60), Euler denoted the squares by a2, x-, 
y2, z2. Let a, a be two numbers for which ct?+a?=Ai. Let 

The first two lead to a single condition and the last two to a single one: 

a2(y2+z2) =a2(y2+x2) +2 aAvx, a2(v2+x2) = a2(y2+z2) —2aAyz. 

By adding these two equations, we get z=avxl(ay). The first of the two 
becomes 

a2x2(v2—y2) - 2aAvxy2+a2v2y2—a2y4. 

ax Avy± V# „ , . 2 
— =—;-—> R = a^+a2y\ 
y v2-y2 __ 

To make VjR rational, set v=y(l+$), ^lR~y2(A+2a2s/A-\-as2). Of the 
resulting two solutions, one is complicated, while the other (given by 
x/y = 1) is 

v = a(A2—2a2), x = y = 2aaA, z = a(A2—2a2). 

To obtain a simpler solution in which the numbers are distinct, take two 
numbers 6, (3 such that b2Jrfi2 — B2, and set av2 = (3M, ay2 — bM. Then 
^R-BM. But ap/(ab) must be the square of v/y; take it to be m2/n2. 
Thus 

v m x_Abm±aBn z _am x 

y n} y apn—abn’ y an y 

Taking a = 21, <x = 20, 6 = 35, 0 = 12, we get A = 29, £ = 37, m = 3, n = 5. 
For the lower sign, x/y~ 3/8. Hence i>=168, a; = 105, y—280, 2 = 60. 
Finally, he noted the solution 

v=4fg( f+g) (3f-g)k, y=4fg( f-g) (3\f+g)k, x = lk} z = 2fgl, 

k=df2+g2, l=(f2-g2)W2-g2)> 

M. S. O'Riordan33 developed the idea underlying Euler's first solution. 
Let S=A2+B2+C2+D2, S-A2^a2, • • •, 5-D2= a2. To obtain a number 

33 The Gentleman’s Math. Companion, London, 2, No. 12, 1809, 185-7; Math. Repository 
(ed., Leybourn), New Series, 6, II, 1835,1-4. Reproduced in Math. Magazine, 2,1898, 

218-9. 
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S which is a sum of two squares in four ways, employ 

T= (a2+62)(c2+d2) =El+Fl, 5± =ac±6d, F^ad^Fbc, 

5= T(e2+f2) = (eE.+kfF^+ifF^-keF*)2, &2 = 1. 

Hence /S=A2+a2 = B2+/32 = C2+Y2 = ^2+52 if 

A = eE+-fF+, B = eF-—fE-, C=eE--JF-> D = eE++fF+, 

a = eF++fE+, 0 = eE-+fF-, y = eF_+fE-, 8 = eF+-fE+. 

It remains to satisfy the condition 5 = 2A2 or, if we prefer, A2+D2=72—52, 
viz., 

(A +5)2+ (A —D)2 = 2(7+5) (t-5), (e5+)2+ (/5+)2 = 2 efE-F-. 

Divide by /2 and set —fw. Thus 

w2 (ac+6d)2+ (ad—be)2 = 2w (ac — 6d) (ad+6c). 

The roots w are rational if the discriminant 

(ac-6d)2(ad+6c)2-(ac+6d)2(ad-6c)2 = 4a6cd(a2-62)(c2-d2) 

is a square. Take a-mb, c=nd, mn=r(n—1). Then shall 

r(n+l)(m+7i—r)(rn—n —r) = □. 

Take n=2r. Then shall 2r2—3r = □, as is the case for r = 3s2/ (2s2—1). For 
s= 1, we get Euler's solution 168, 105, 280, 60. Removing the restriction 
n — 2r, let (nr+n—r)k = (nr—n—r)l. Then shall n(n+l)(n— l)e= □, 
e—(l+k)l(l—k). Take n — e+x. There results the answer a = Z+&, 
b = l-k, c=(Z2+F)2, d=4dk(l2—k2). 

B. Gompertz34 employed x2, y2, z2, w2, 

(y2+z2-p2)/(2p), w=(y2+z2-q2)/(2q). 

Then x2+y2A-z2 and w2+y2+z2 are squares. Also, x2+w2+z2 and x2JrW2+y2 
are squares if 

Si— (y2+z2)2(p2Jrq2) + (p2+q2—4:j2)p2q2 = □ 

for j — y and j - z. Take p = (q2—r2) / (2r), y = (q2+r2) / (4r). Then 

p2+q2—Ay2 

and fy= □. Set z = ty, pq/y2 = b. Then/,= □ if (1+Z2)2+62(1-Z2) - 
Set t — l+v. The condition becomes v*-\-- □ = (2+Av±tP)2 and holds 
if A = 2—62/2, ^=±62/4—1. For q—2, r—1, we get Scott's38 solution. 

C. Gill35 treated the problem to find n squares the sum of any n — 1 of 
which is a square. He36 gave elsewhere his solution for n = 5 and remarked 
that the smallest numbers given by his formulas are so very large as to 
discourage any attempt to compute them. For n = 3, see Gill.13 The 
method was adapted to the case n=4 by S. Bills.37 If z2, y2, x2, w2 are the 
required squares, their sum shall equal 

a2+z2 = b2+y2=c2+£2 = d2+zc2. 

u The Gentleman’s Math. Companion, 2, No. 12, 1809,182-4. Reproduced (essentially) by 
A. Martin, Math. Mag., 2, 1898, 216. 

“ Application of the angular analysis . . ., New York, 1848, 69-76. 
M The Lady’s and Gentleman’s Diary, London, 1850, 53-5, Quest. 1797. 
” Math. Quest. Educ. Times, 16, 1872, 108-110. 
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Take 
b = a cos A +z sin A, y = a sin A — 2 cos A, 

and c, X] d, w corresponding functions of angles B, <7. It remains only to 
satisfy y2+x2+w2 = a2, viz., 

a2(2 sin2 A — 1) — azZ sin 2A+z2X cos2 A— 0. 

The discriminant must be a square, whence 

k2 = 22 cos 2A+22 cos (A—B). 

Take C—A+B—90°. Then /c2 = sin 2A - sin 2B. Take sin 2A = tan B/2. 
Then &=sin 4A/(l+sin 2A). The case cot A/2 = 2 leads to the solution 
[due to Euler,32 § 58]: 

2 = 186120, y = 23838, a: = 102120, w = 32571. 

Bills gave also 280, 105, 60, 168 and 1120, 3465, 1980, 672. 
Judge Scott38 found 639604, 3456000, 3750000, 832797 [due to Euler,32 

§ 55]. 
S. Tebay39 gave the solution x2} • • •, u2, where 

x = (s2 — l)(s2—9) (s2+3), 2/=45(s~1)(s+3)(s2+3), 

2=4s (s+1) (s — 3) (s2+3), u = 2s (s2—1) (s2—9). 

A. Martin39® gave a complete solution by the method of Tebay.39 

Three squares whose differences are squares. 

Under Euler28 of Ch. XV are cited various papers on the related problem 
to make xd=y, x±.z, y±.z all squares. 

L. Euler40 made the differences of x2, y2, z2 squares by taking 

s_p2+l y j£+1 
2 p2-r 2 q2-r 

whence x2—z2 and y2—z2 are squares. Also x2~y2=U if 

P = (vY-i)(q2-y2) = B. 

Each factor will be a square if 

__a2+&2 q_c2+d2 

^ 2ab ’ p 2cd 

The product of the latter must be a square q2. Take a, b~fdzg; cyd — h±:k. 
Then must (/4-04)(/t4-&4) = □ [cf. Euler28 of Ch. XV.] 

J. Cunliffe40® treated the problem. 
‘ ‘ Calculator5} 41 took 

x — (r2+s2) (m2+n2), y = (r;+s2) (w2—n2)y z — 4 rsmn — (r2 — s2) (m2 — n2). 

Then x2—y2 and x2—z2 are the squares of 2mn(r2+s2) and 

2rs (m2—n2) + 2mn (r2—s2). 

38 Math. Quest. Educ. Times, 16,1872, p. 108. 
89 Ibid., 68, 1898, 103-4. 
™*Ibid., 24, 1913, 81-2. 
40 Algebra, 2,1770, §§236-7; 2, 1774, pp. 320-7; Opera Omnia, (1), I, 473-7. 
400 The Math. Repository (ed., Leybourn), London, 3, 1804, 5-10. 
41 The Gentleman’s Math. Companion, London, 3, No. 14, 1811, 334-6. 
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For g= (r2—s2)/(rs), 

^. -- g = m4+2qm?n—6m2n2—2qmnz+ft4 = (m2—qmn+ft2)2, 
1xT S 

if mjn — (g2+8) / (4g) 

z2~y2 _z—y_A 

(z+y)2 z+y~~ B’ 

Or we may use 

A = r2n2—r2m2+2rsmn: B = $2m2—s2ft2+2rsmn. 

Take B — {tn—sm)2 to get m. Then A=r2n2 if r = 4te2/(Z2—3s2). He42 
later used the same £, but took 2 = 2raft(r2+s2), a= (r2+s2)(m2 — n2), whence 
x2—z2 — a2. Set b = a—rv, y — z+sv; then a2-f z2 = b2+y2 gives v in terms 
of a, r, s, Finally, y2—z2 = □ if a quartic in m is the square of (say) 
m2—mn(r2—s2) /(rs) + ft2, whence 

m : ft = 7^+6r2s2+s4 : 4rs(r2 — s2). 

J. Cunliffe43 obtained Calculator’s41 first result by the same method. 
S. Ward44 discussed Euler’s40 final condition. Set /=f'g, h — h'k, 

(r-i)(r-i)=(r~i)2(^2-i)2, 

which reduces to//4//i/2=//4—2. The latter is a square if f2= (r2+2s2)/(2r$), 
andr2+2s2= □ if r = t2 —2, s = 2t The value for/’2 is a square if t(t2—2) = □. 
Taking t = 2, we get x/z=—41/9, p/z = 185/153. Or we may treat P= □ 
by setting q — mp and treating (ra2p4—l)(ra2—1) — □ by the usual method 
for quartics, one solution p = 1 being known. 

W. Lenhart45 took the roots of the three squares to be 

x2Jry2 v2+w2 

x2—y2i v2—w2’ 

The square of either the first or the second exceeds unity by a square. 
Hence it remains only to make the difference of their squares a square, 
viz., (vx+wy)(vx—wy)(vy+wx)(vy—v>x) = n. Take v~ty-\-x, w — tx — y, 
whence vy-\~wx — t{vx—wy). Then shall t(yx-\-wy)(vy—wx) = □, which 
holds if 

x2—y2+2txy= □, y2—x2+2xylt = □. 

The second condition is satisfied if x = 2y/t. Then the first becomes 
4+3i2=D = (2—pt)2, say, whence we get t and x=p2—3, y = 2p, 
v~ (p2+l)2+8, w = 2(p2—3)p. Or we may take x2—y2~\~2txy= (x — py)2, 
whence x = p2 +1, y = 2(p+t). Then t2(y2—x2Jr2xyji) = (ty—r)2 if 

Then 

t2x2+4 t2x = — Art2, 4 ptx=r2—4 ptr. 

r = x2-4x t r2 _r2_(p2-3)2 

4 ’ 4p(r+a;) px2 16p 

Dividing the values of x and y by d= (p2+l)/(8p) and those of v and w 

42 The Gentleman’s Math. Companion, London, 4, No. 19, 1816, 628-31. 
** Ibid., 5, No. 26, 1823, 262-4. 
44 J. R. Young’s Algebra, Amer. ed., 1832, 339-341. 
48 Math. Miscellany, 2, 1839, 129-132; French transl., Sphinx-Oedipe, 8, 1913, 83-4. 
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by d/2, we have 

x — 8p, y=zp2+9, w = 8p(p2—9), y=p4+2p2+81 =n(p2±4p+9). 

Three squares, sum of any two less third a square. 

L. Euler46 gave four methods to solve 

(1) y2+z2 —x2 = p2, x2+z2—y2 = q2, x2+y2—z2=r\ 

(i) Let s~x2+y2Jr-z2. Since s = p2+2x2, etc., s must be expressible in 
three ways in the form a2+2&2, whence s must have at least three prime 
factors of that form. Take m = ac6z2bdyn — bc:jradyu = mf^z2ngi v — nf^mg. 
Then 

m2+2n2= (a2+2b2) (c2+2d2), (m2+2n2)(/2+2^2) =u2+2v2. 

Take u2+2v2 = s. By using the four combinations of signs, we get four sets 
of values of u, v. As we need only three sets, omit that given by both 
lower signs. Set 

/2\ P’ 2 —f{ac+2bd) zk2g(bc—ad), r=^f(ac—2bd)+2g(bc+ad)y 

^ x} y—f(bc—ad)zFg(ac+2bd)) z=f(bc-srad)—g(ac—2bd)y 

where the upper signs give p and x. Compute x2+y2+z2 and compare 
with the earlier expression u2+2v2 for 5; we get 

Ff2+Gg2-\-2Cfg = 0, F={b2-a2)c2+(a2-Ab2)d2-2abcd, 

W (?= (a2—452)c2+4(52 — a2)d2+4a&cd, (7= - (bc+ad)(ac-2bd). 

Taking F — 0, we get c : d — 2b—a :b-~a or — a—26 : 6+a, and also 
/ : g= —G : 2C. The same solution results also from (7=0. 

(ii) By (3),/ : g = - (C ± V) : F, where 

V2 = C2—FG = (a2—2&2) 2Q, 

Q = c4+8mc3d—4c2d2—16mcd3+4d4, m - - „ 
a2—2d2 

Let Q be the square of c2—4mcd+2d2. Then c : d=2m2+l : 2m. 
(iii) Use p, q, x, y given by (2), but take 

r=f(ac—2j3d)+2p(/3c-fad), z=/(/3c+ad) —g(ac~2pd)f 

where a, 0 are such that a2+2/32=a2+262. Hence we now get new values 
for F,G, C in (3). For F=0, we get 

c : d = — a—26 : ($+a or —a+26:/3—a. 

He deduced the following simple solution of the problem: Start with any 
two integers m and n, m odd, and set 

s = m2+2n2, t—m2—2n2, u = 2 mny 

or take sy ty u such that s2 = t2+2u2; we have the solution 

x — $(s+u)p — 2t2cry y = s(s-\-u)pJt-2t2cry z = stp+2t<T2y 

p = stp+4t(s-{-u)cry q-stp'i~4:t(S’-u)cry r = scrp—4d2(ry 

where p = 3s+4w, <r = sJr2u. 

46 Posth. paper, Comm. Arith., II, 603-16; Opera postuma, 1,1862,105-118. French transl. 
in Sphinx-Oedipe, 1906-7,163-83. 
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(iv) The first two equations (1) are satisfied if z = mn(A — B), y+x = 2m2A, 
y—x — 2n2B, p~mn(A-\-B)} q = mn(a2—2ab — b2), where A = a(a+b)y and 
B = b(a—b). The third equation (1) becomes 

2m4A2+2n4B2 —m2n2{A —B)2 — r2. 

Set m=f+g, n=f-g, r = (A+B)f2+4:(A-B)fg-(A+B)g\ Then 

/ : g = B2—A2 :2AB. 

A. M. Legendre47 noted that the last two conditions (1) are evidently 
satisfied if 

x = r2+s2y y=r2+rs—$2, z = r2 — rs~ s2. 

Then the first condition becomes r4 —4r2s2+s4 = □. Set r = s(2+<£) and 
make the quartic function of <f> the square of 1+8<t>+a<f>2. The case a = l 
gives <f>~ —23/4, r = 15, $ = 4, whence £ = 241, y — 269, 2 = 149, which is 
apparently the least solution. 

J. Cunliffe48 noted that (1) give x2 — J(g2+r2), etc., whence 

r2 = 2x2—q2 = 2 y2—p2. 

Hence, if we set x — y+pv, q — p+<rvy we get v = (2<rp—4p?/)/ (2p2—<r2). To 
satisfy 2t/2—p2=r2, set 

y — D(m2+n2), p=D(n2—m2+2mn), r = D(m2—n2+2mn), D = 2p2—cr2. 

The resulting value of f (P2+<Z2) will equal the square of 

2 = -^(V+4p3o-+2po-3+<r4)-n2(2p2-2p<r+(T2), 

where A = 2p2+2p<r+<r2, if 

m : n = 4pV2+4pV+2p<r3 : 4p4+4p3<r+2p<r3+2pV2+cr4. 

Taking p = <r = l, he obtained, as his least answer, 3 = 149, y = 269, 2 = 241. 
D. S. Hart49 noted that (1) are equivalent to 2r2+2g2 = □, 2r2+2p2= □, 

2^2+2p2=D. The first is satisfied if r = p2—2cr2y g=p2+4po-+2<r2. Set 
p = Z+r, a = p2+2po-+2cr2. Then the last two conditions of the problem 
become 2Z2+4rZ+4r2= □, 2Z2+4rZ+4a2= □. Equating the latter to 
(2a—It)2, we get l in terms of t, r, a. Then the former becomes a quartic 
in L S. Bills satisfied the first two of Hart’s conditions by taking 

P2—Q2+2PQ _R2-S2-\-2RS 

q P2—Q2—2PQ r’ V R2-Si-2RS'r' 

The third condition leads to a quartic. 
G. B. M. Zerr50 took x2z2y y2z2 and z2 as the squares and set 

(A) z2+y2—1 = (t-\-u)2y x2—y2+l = (t—u)2. 

Since x2 = t2+u2y take t = n(p2—q2), u~2npq, whence x = n(p2Jr<f). Take 

47 Th4orie des nombres, 1798, 461-2; ed. 2, 1808, 434; ed. 3, 1830, II, 127; German transl. 
by Maser, 2,1893,124. 

48 The Gentleman’s Diaiy, London, No. 62,1802, 41-2, Quest. 823. Math. Repository (ed., 
Leybourn), 3, 1804, 97. 

48 Math. Quest. Educ. Times, 20, 1874, 84-6. 
60 Amer. Math. Monthly, 10, 1903, 207-8. Cf. papers 114-5 of Ch. XVI. 
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y = 2mn — l. Then the first condition (A) is satisfied if 

n — m/z, z=m2—pq(p2 — q2). 

There remains the condition 

(y2—x2+l)z2 = 2mi+2 p2q2(p2—q2)2 —rri2 (;p2 + q2)2 = □, 

which is satisfied if m = p2—q2t p4+#4—4p2<?2= (p2 —2rg2)2, whence 

p2 = i22(4r2-l)/(r-l). 

For r =13, p = 15g/4 and the numbers are proportional to Legendre’s. 

Further sets of three or more linear functions of three or more 

SQUARES MADE SQUARES. 

Leonardo Pisano,81 to make x2+y2, x2+y2+z2, x2+y2-\-z2+w2, • • • all 
squares, took the first square x2 to be 9. Then the second, y2, is the sum 
16 of all odd numbers 1, 3, 5, 7 preceding 9, whence 9+16= □ =25. As 
the third square take the sum 144 of all odd numbers < 25 whence 
144+25= □ = 169. As the fourth square take 1+3H-h 167 = 7056 
whence 7056+169= □ =7225. As the fifth square take 

1+3+ • • -+7223 = 13046444. 

Leonardo noted (p. 279) that, since 7225 is the square of 85, not a prime, 
we can get several values for the fifth square. Besides that given above 
we may take the sum of all odd numbers ^ 7225/5—5 — 1 and get the 
square 7202, or the sum of all odd ^ 7225/25 — 25 — 1 and get 1322. A. 
Genocchi52 noted that a fourth solution was omitted, viz., the sum 2042 
of all odd < 7225/17-17-1. 

F. Feliciano83 gave only 9, 16, 144. 
N. Tartaglia54 obtained 25, 144, 7056 by Leonardo’s method. 
J. de Billy55 found the squares 9, 1/100, (23/15)2 such that if 15 is added 

to the sum of any two of them there results a square. [Due to Diophantus, 
V, 30; cf. Fermat9 of Ch. XV.] 

L. Euler,46 p. 604, stated that it is not possible to find four squares 
such that if each be subtracted from the sum of the remaining three the 
difference is always a square. 

H. Faure56 proved the last theorem by use of the lemma that 
2x2+2y2+2xy—z2 is impossible in integers. 

Euler57 noted five sets of solutions, like p=89, q —191, r = 329, of 

p2+q2 — 2z2y p2+r2 = 2y2, q2+r2 — 2x2. 

61 Scritti, H, 254, note on margin; 279. . Tre Scritti, 57,112. 
“ Annali di Sc. Mat. e Fis., 6, 1855, 355-6. 
“ Libro di Arith . . . Scala Grimaldelli, Venice, 1526, f. 5. 
M La Seconda Parte Gen. Trattato Numeri et Misure, Venice, 1556, f. 142 left. 
“Diophantvs Geometria, Pari8, 1660, 117-8. 
“ Nouv. Ann. Math., 16, 1857, 342-4. 
87 Opera postuma, 1, 1862, 25+60 (about 1782). 
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To make x2-\-y2+2z2, x2-\-z2-\-2y2, y2~{-z2Jr2x2 all squares, A. M. 
Legendre58 set y=*x+2p, z=x+2q. Then x2-\-y2+2z2=;4:(x+f)2 for 
(2/— 2q)x~p2Jr2q2—}2. Equating this to the value found similarly 
from x2+z2+2y2= □, he was led to the values 

x=7p2-30pq-\-7q2, 2/ = 23p2-14pg-h7^, z = 7p2-14pq-\-23q2. 

Substitute these into y2+z2+2x2 and set plq —1 + 0. Then shall 

i+2e+2d2+e*+^e*=n. 
256 

The particular solution 0 = 208 gives x = 18719, y- 62609, 2 = 18929. 
T. Pepin59 noted that also 0= — 1 and —2 (whence x~y = 7, 2 = 23; 

x = y=z = l) and applied his first formulas (Ch. XXII157) with aq=0, 
x2 = — 1, x3= —2 and found 0 = —8/15, whence x :y : 2 = 77 : 77 : 253. 

C. Gill and W. Wright60 made x2Jry2-\-z2+v2} x2-\-y2—z2-\-v2i x2—y2 
Jrz2+vl, y2+z2—x2+v* squares. To satisfy the second and third conditions, 
take 2vx — y2~z2, say 2v = y+z, x~y~~z. The fourth condition holds if 
y2+10yzJrz2= □ = (y —p)2, which gives y. Clearing of denominators, we 
now have 

y = 2p2 — 2z2y v = 9 z2+2 pz+p2, x~ 2 p2—4p2—22z2. 

Then the first condition leads to a quartic in p; equating it to (3p2—2pz+d)27 
we get d- — 2322/3. 

To find four squares the double of whose sum is a square, and double 
the difference between the sum of any three and the fourth is a square, 
they took (x+y)2, (x~~y)2, v2, z2. Then two conditions are satisfied if 
v-\-z—4x, v—z—y, and the solution follows readily. 

The solutions of the system 2x2-\-2y2—3z2= □, etc., and the system 
x2+2(y2—z2) = □, etc., offer no special interest. 

To find three numbers such that the square of each plus the product 
of the same number and the sum or difference of the remaining two gives a 
square, several61 used the numbers a2, b2, c2. Then the conditions reduce 
to a2+52+c2 = □, a2+c2—b2= □, a2+52—c2 = □. To satisfy the first two, 
take b2 = 2ac. Equate the third to (cn—a)2. Take n — —3/4. 

A. Gerardin62 treated the system N = Ph2—k2 (P=n+1, n+2, • • *, 
n+a). 

E. Fauquembergue63 made the four functions z2±/w/2, u2zLhy2 squares. 
H. Holden63® showed that 

A=aX2-\rPy2+yz27 B=ay2+(3z2—yx2, Cz=az2+@%2—yy2 

68 Theorie des nombres, 1798,460-1; ed. 2,1808, 433-4; ed. 3,1830, II, 125; German transl. 
by Maser, II, 122. J. Cunliffe, New Series of Math. Repository (ed., T. Leybourn), 
1, 1806, I, 189-191, used the same method with 2p — 2q, — 2p replaced by m} n, and 
obtained an equivalent result. 

” Atti Accad. Pont. Nuovi Lincei, 30, 1870-7, 219-20. 
80 The Gentleman’s Math. Companion, London, 5, No. 30, 1827, 579-83. 
61 Ladies’ Diary, 1833, 38-39, Quest. 1547. 
82 L’interm&iiaire des math., 23, 1916, 88-93. He gave 139 examples. 
«/bid., 24, 1917, 38-9. 
63d Messenger of Math., 48,1918, 77-87, 166-179. 
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can usually be made squares by values of x, y, z which are rational functions 
of a parameter k whenever the auxiliary equation Pyp2Jryaq2 = a(3r2 can be 
similarly solved. For, if rational functions pi, qh n of k satisfy the latter, 
a linear relation piX-4-Qiy+nz = 0 implies A = □. Similarly, if rational 
functions p2, Q2, r2 of m satisfy the auxiliary equation, then r2x+p2y-\-q2z=0 
implies 2?= □. Solving the two linear equations, we obtain x, y, z as 
quadratic functions of m and k. For these values, C becomes a quartic 
function of m whose first and last coefficients are squares of functions of k, 
so that C can be made a square. For « = /3 = 2, 7 = 1, we have the problem 
of a rational triangle with rational medians. Euler’s46 equations (1) are 
treated by this method and by a related method. In the second paper he 
used the method to make px2-\-q2y2—pz2, py2jrq2z2—pw2, pz24-q2w2—px2, 
pw24~q2x2—py2 all squares. 

On 2x2+2y2—z2 — □, etc., see triangles with rational medians, Ch. V. 

Quadratic forms in x and y, x and z, y and z, made squares. 

J. Cunliffe64 found rational numbers x, y, z such that 

(4) x2—xy+y2, x2—xz+z2, y2—yz+z2 

are squares, by equating the first and second to the squares of 4a—x, 
4b—x, whence 

16a2—y2 16b2—z2 
% ~-—— —__ 

8a—y 8b—z 

Equate the denominators. Thus p = 5a—36, 2 = 55—3a. Then 

y2—yz+z2= (7a—rib)2 

if a : b = n2—49 : 14n —94. J. Whitley equated the first two functions (4) 
to the squares of x—ny and x—mz; hence take 

x—(n2—l)(m2—l), y — (m2—l)(2n — l), z= (n2—l)(2m—1). 

Set p = 2n—l} q — n2 — 1, v~n2—n+1. Then v2 = p2—pq-\-q2. Equating 

y2—yz+z2 = p2m4—2pqm3+(4g2 -\-pq—2 p2)m2 + (2p#—4g2) m+v2 

to the square of pmr-qmri-v, we get m rationally. 
To find rational numbers such that65 

(5) x2+xy+y2, x2+xz+z2, y2+yz+z2 

are squares, equate the first and second to the squares of z-f-y—m and 
x-4-z—n. We get x and z in terms of y. The third condition leads to a 
quartic in y, which is made a square as usual. 

Lowry650 made a=x2JraxyJrby2, @^x2+aixz+biz2, y —y2+a2yz.4rb2z2 
squares. Set r=n(ain+2m), s = m2—bin2, p~u(au+2v), cr == v1—bu2. Take 
y/x = p/<r, zjx=r/s. Thenaa-2/x2 = (v2JrOMV+bu2)2. Similarly,(3= □. Since 

M The Gentleman’s Math. Companion, London, 3, No. 14, 1811, 310-11. 
66 Ibid., 4, No. 21, 1818, 747-60; J. Cunliffe, Leybourn’s Math. Repository, New Ser., 2, 

1809,1, 93-5. Cf. Ch. V.113 
660 New Series of Math. Repository (ed., T. Leybourn), 3, 1814,1, 153-164. 
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z/y = rcrl(sp), 7=0 if 
(6) s2p2+(hrspa+hor2<r2=[J, 

or b±rW-h*—\-ku4=n, k s b2r2—aa2brs+aV. This quartic is made a 
square in a special way for special values of m and n for which k=D. For 
the case 6i/6= □ — d2, make <r—s by taking u — dn, v = m. Then (1) be¬ 
comes p2Jra2rp-\-b2r2= □ = (p—re/t)2, if 2et-\-a2t2 = rln, e2 —b2t2 = p/n> which 
are linear in m and n. 

An anonymous writer656 gave an elegant solution for the case 
5 = 6i = 52 = 1. Take x = nR, y = m2—n2, z = nS, where R — an^z2m, 
S — 02tt+2m. Then 

a = (m2±amn+7Z2)2, 7 = (ra2+02 rrm+n2)2, p — n2(R2+aiRS+S2). 

Also, p = n2(p2+a1pq+q~)2 if R = p2~q2, S = a1q2+2pq. Comparing the two 
expressions for R and the two for S, we get m and n as fractions whose 
common denominator is 2(a2zFa), which may be omitted since x, y, z are 
homogeneous in m and n. For a = 02, use the lower sign. 

J. Whitley and W. Rutherford66 equated pW+xy+y2 and p2z2+xz+x2 
to the squares of px+y — a and pz+x — b, finding x and y in terms of z. 
Then p2y2+yz+z2 — □ if a quartic in z is a square. 

W. Lenhart67 took x~abc, y — bdf, z — cfn in (5). By Lagrange's Addi¬ 
tion, §90, to Euler's Algebra (Lagrange63 of Ch. XX), the resulting func¬ 
tions are squares if 

p2~q2~ac, pl — ql = ab, pl—ql^bd, 

2 pq+tf = df, 2piqi-\-ql =/n, 2p2q2 Aql = cn. 

To solve the equations in the first column, set p+q = a, p—q — c, 2p+q = d/r, 
q—rf. From the two values for 2p and the two for q, we get c = a—2rf, 
d — r(2a—rf). Similarly, by the equations in the second column, b = a—2sfy 
n = s(2a—sf). By the two in the third column, 2p2 = d+b — tc—n/t, 
2q2 = d—b = 2n/t. Eliminating t, we get (M-\-b)(d — b) =Anc. Inserting 
the earlier values of c, d, 6, n, we get 

{(6r+l)«— (2s+3r2)/} {(2r—l)a+(2s-r2)/} = 8s(a—2rf)(a~isf)- 

The final factor will occur also on the left if 2$-{-3r2 = !$(6r+l). Then 

a = 12r3 (5—r) + 5r2, / = 12?’2 -{- (3 — 2r) — 2r — 1. 

Next, for (4), equate the last two functions to A2 and B2. Their differences 
are equal if AJrB~2(xJry—z), A—B = %(x — y). Insert the resulting value 
of B into y2—yz+z2=B2. Thus z = (3a;2+1 Oxy+3y2) / {8 (a;+2/)}. Finally, 
x2—xy+y2 — □ if x = p2—q2, y = 2pq—q2, 

T. Strong (p. 301) equated (x+y)2—Axy, (x+z)2—Bxz, (y+z)2—Dyz 
to the squares of x+y—a, x+z — b} y+z—c. By the first two we get y 
and z in terms of x. Then the third condition states that two quadratic 
functions of x are equal. We may equate the constant terms or the coeffi¬ 
cients of x2 and get x rationally. 

666 New Series of the Math. Repository (ed., T. Leybourn), 3, 1814, I, 151-3. Slightly 
modified solution by A. Martin, The Analyst, Des Moines, 5, 1878, 124-5. 

M Ladies’ Diary, 1834, 37-8, Quest. 1560. 
67 Math. Miscellany, Flushing, N. Y., 1, 1836, 299-301. 



Chap. XIX] xy+a, xz+a, yz+a All Squares. 513 

N. Vernon (p. 302) equated the first and second functions (5) to the 
squares of (r2—xy)/(2r), and (s2—xz)/'(2s). Then x+y = (r2+xy)/(2r), etc., 
which give x, y in terms of z. Then the third function becomes a quartic 
in z which is made a square as usual. 

D. S. Hart68 noted that x2+xy+y2 — □ if x-m2—n2y y*=2mn+n2. 
Then£2+£2+z2= □ if z~x(2pq+q2)/(p2 —q2). Takera = 2, n — 1, p=r+\q. 
Then y2+yz+z2 = □ if r — 7q/+ p — 9g/4. Hence an answer is 195, 325, 264. 

A. Martin and A. B. Evans69 took x2+axy+y2 = (mx—y)2 to get xjy. 
Then x2+axz+z2 and y2+ayz+z2 are made squares by known methods. 

Several writers70 made the functions (5) squares. R. F. Davis71 noted 
the solutions 7, 8, —15 and 435, 4669, 1656. 

N. G. S. Aiyar72 solved x2+xy+y2=c2, etc., by geometry, algebra and 
trigonometry, without attention to rational values. 

A. G4rardin73 assumed that a solution of a2+a$+/32==A2 is known and 
sought a solution of 

x2+clx+ol2—B2, x+f$x+P2 = C2y 

by setting B~x+u or B~a—xpjq, or x~t—a—{I, obtaining a quartic 
function of t which is made a square in three ways. There is found a solu¬ 
tion in positive integers by functions of the sixth degree. 

E. Turri&re74 considered the system 

Ax2+Bxy+Cy2 = □, Dy2+Eyz+Fz2 = □, Gz2+Hzx+Ix2 — □, 

under the assumption that each has a set of rational solutions, say x0, yQ 
for the first. Solving the first with y—yQ = Z(x—x0), where Z is a parameter, 
we get x and y rationally in terms of Z. Similarly, z/y is rational in 
X=(z—Zi)/(y—yx), and x/z in Y=(x-‘X1)l(y—y2). The condition that 
the product of the values of y/x, z/y, x)z be unity is of the sixth degree in 
X, F, Z. The problem is thus reduced to finding the rational points on a 
certain sextic surface. 

M. Rignaux,74a to treat the last system, would use a solution x — xQ,y=yQ 
of the first equation, where Xq, yo are quadratic functions of two param¬ 
eters m, n; likewise a solution x = xh z=Zi of the third equation in terms of 
parameters p, q. Hence take x = x0x1} y=yoXh z=2oZi. The given second 
equation becomes a quartic in m, n and is solvable in known special cases. 

xy+a, xz+a, yz+a all squares. 

Diophantus, III, 12, 13 and IV, 20, asked for three numbers such that 
the product of any two increased by a given number a shall be a square. 
For a = 12, he found 2, 2, 1/8; for a =—10, complicated fractions; for 
a= 1, x, x+2, 4z+4. In V, 27, the numbers themselves are to be squares. 

68 Math. Quest. Educ. Times, 20, 1874, 59-60. 
Ibid., 21, 1874, 45-6. 

70 The Math. Visitor, 1, 1880, 105-6,129-30; Amer. Math. Monthly, 1, 1894, 208 for (4). 
71 Math. Quest. Educ. Times, 11, 1907, 25. 
72 Jour, of Indian Math. Club, 2, 1910, 24-25. 
73 Nouv. Ann. Math., (4), 16, 1916, 62-74. 
74 Ibid., (4), 18, 1918, 43-49. For such a system, see Ch. V, p. 223. 
74a L’interm&iiaire des math., 25, 1918, 132-3. 
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F. Vieta73 generalized the method of Diophantus III, 12 [13]. Let A 
be the second number. Then the first is (B2—a)/A, and the third is 
(.D2~a)[A. Hence must 

B2-a D2 — a , 

A ' A +a_D' 

We can make jB2 —a=F2, D2—a = G2 in an infinitude of ways. Then 
F2G2+aA2 is to be a square, say (FG—HA)2. Hence A = 2HFGj(H2—a). 

C. G. Bachet76, who doubted that Diophantus had a general solution, 
used the canon: Subtract the given number from each of two squares and 
divide the remainders by the difference of the roots of these squares; 
then the quotients and the difference of the roots are three numbers giving 
a solution. For a = 6', take iV+3 and 2iA+3 as the roots of the squares; 
then N, -A+6+3/A7 and 4A’+12+3/A’ give a solution. 

De Sluse77 took an arbitrary square b2 and set d~b2 — a, xy = x2+%xb+df 
whence xy+a = (x+5)2. Similarly, we can set 2 = 2c2/e2+25c/e+d/2, whence 
22+a = (xc/e+b)2. Let yz-\-a be the square of (c2+c&)/e+5+d/2. Thus 

2b2c t dc2_b2c2 | 2dc 

e e2 e2 e 

When b2 is replaced by d+a, this reduces to 2 = c/e, so that the required 
numbers are 2, 2+2b+d/x, 42+4b+d/x. For a negative, a = —A, call the 
numbers x} y^x+A/x, z = xb2lc2+A/x. Then xy—A=x2, xz—A—x2b2/c2, 
yz—A = (2&/C+A/2)2 if b[c = 2. 

N. Saunderson78 (blind from infancy) gave the solution 

r2~a s2—a ^ ^ . 
x =-, y =-, 2 = r—s or 2x+2 n—(r—s), 

r —s r—s 

where r and s exceed Va and r>s. For a = 1, a solution is 

2, y = orx+2ct} 2 = 022+2/3, a—jS = dbl. 

V. Ricatti79 treated the problem. 
L. Euler79a set xy+a=p2, z=x-\-y±2p, whence 22+a = (xzLp)2, 

2/2+a= (?/d=p)2. For a = 12, p=4, then x=y — 2, z —12. For a = 12, p = 5, 
then 2 = 1, ?/= 13, 2 = 4 or 24. In art. 231, he noted that for a = l the 
general solution is 

2 = (p2-l)/z, y = (q2-l)lz, z= {(p2-l)(<?2~l)-r2}/(2r). 

Euler80 treated AB -1 = p2, AC-1 = q2, BC-1 = r2. Thus 

A2£2C2 = £(r2+l), Z = (p2+l)(g2+l) = m2+n2, m = p#d=l, n = p^qy 

A2B2C2 = (mr+n)2 + (nr—nz)2. 

7BZetetica, 1591, V, 7[8], Francisci Vietae Opera mathematica, ed. Francisci k Schooten, 
Lugd. Bat., 1646, 78. 

76 Diophanti Alex., 1621, 149, 215. 
77 Renati Francisci Slusii, Mesolabura, accessit pars altera de analysi et miscellanea, Leodii 

Eburonum, 1668, 177-8. 
78 The Elements of Algebra, 2, 1740, 390-5. 
79 Institutiones analyticae a Vincentio Riccato, Bononiae, I, 1765, 64. 
790 Algebra, 2, 1770, art. 232 (end of art. 233); 2, 1774, p. 305 (pp. 310-1); Opera Omnia, 

(1), I, 465 (468). 
80 Posth. paper, Comm. Arith., II, 577-9; Opera postuma, 1, 1862, 129-131. 
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Set —ABC~mr+n+t(nr—m). Then, for d-n(t2 — l)+2raZ, 

dr = m(Z2—1) — 2nt, d2(r2+l) = (m2+n2)(t2 + l)2, dABC = (m2+n2)(t2+1) 

A=d/(Z2+1), d£ = (p2+l)(Z2+l), dC=(q2+l)(t2+l). 

To obtain integral solutions, set B= (p2-fl)/A, C= (£2+l)/A. Then 

jBC — 1 = (m2+n2 — A2) I A2 

is a square if A=n = p — q. Then B = A-\-C+2q. It remains to make 
<?2+l divisible by A, which requires that A = EL If A = 5, q = 5ud=2, then 
C = 5u2zL4uA-1} B = 5u2+14uA~10 or 5w2+6^+2. Among other ways of 
obtaining integral solutions, take AB = 1 +p2, (AC — 1)(BC — 1) = (mC+l)2, 
whence C= (A+J5+2m)/Q, where Q=AB—m2. Then 

AC -1 = (A +m)2/Q, BC-1 = (.B+m)2IQ. 

Hence we set Q = n2, whence m2+n2 = p2+l. Take m = ap+a, n = ap — a, 
where a2+a2 = l; for example, a= (f2-g2)l(f2+g2), a = 2fglif+g2)* Then 

C = {AH-jBd=2(u.p-f'Q') }f(ocp—&)2. 

For/=1,^ = 0,C = A+R±2p. For/=2p, 0 = 1, C=(A+Blff±2p/1(/1+2) 
where /i = 4p2+1. Next, we take f =fh g = 2p. In this way Euler obtained 
C = (A-\~B)M2±2pMN, where (M, N) = ( 1, 1), (4p2+l, 4p2-h3), * * * are 
given by a recurring series with the scale of relation 4p2+2, — 1; he gave 
the general terms. 

J. Leslie81 made xy+1, xz+l, yz-\-l squares by factoring (cf. Buchner83). 
P. Cossali82 gave the result due to Saunderson.78 
Fr. Buchner83 treated xy+1 = p2, xz+1 — q2, yz+1 = r2. Then 

z = = y = m(p — l)=l(r—l), z = n(q-l) = ^p. 

Thus p, q} r and hence also x, y, z are functions of m, n, Z. 
A. B. Evans,84 to make xy — 1, etc., squares, took x — a2A-b2, y = c2+d2, 

z = e2+f2, E — bc—ad, F = be—af, G — de — cf. Then xy—E2, xz — F2, yz—G2 
are squares. Take e = a+c, /=6+d. Then F=E, G=—E. It remains 
only to make E = dbl. 

E. Bahier85 noted the answer a— 1, a, 4a—1 and gave de Sluse’s77 values 
with x = l and Saunderson7s7S with the second z. 

Problems related to the last one. 

Diophantus, III, 17, 18 [19], treated the problem (which evidently 
reduces to the last one): to find three numbers such that the product of 
any two increased [diminished] by the sum of those two gives a square.86 

81 Trans. Roy. Soc. Edinb., 2, 1790, 209, Prob. XII. 
82 Origine, Trasporto in Italia . . . Algebra, 1, 1797, 102. 
83 Beitrag zur Auflos. unbest. Aufg. 2 Gr., Prog. Elbing, 1838, p. 9. 
84 Math. Quest. Educ. Times, 14, 1871, 75-6; 29, 1878, 90-1. 
85 Recherche M6thodique et Propri<St6s des Triangles Rectangles en Nombres Entiers, Paris, 

1916,198-9. 
88 In Diophantus IV, 38, 40, the results are to be given numbers, instead of squares. His 

condition that each number must be 1 less than a square is not necessary, as noted by 
Stevin, Les Oeuvres math, de Simon Stevin . . . par A. Girard, 1625, 589; 1634, 148. 
Thus if the numbers are 14, 23, 39, an answer is 4, 2, 7. 
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Take y and 42/4*3 as two of the numbers, which each increased by unity 
have a ratio which is a square 1/4. From 

2/(4t/+3)+2/+42/4-3= □ = (2y-3)2, 

we get y = 3/10. For the numbers 3/10, 42/10, x, the conditions are 

By the usual method (Ch. XV), rc = 7/10. Cf. Nesselmann,93a pp. 142-4. 
N. Saunderson87 found three numbers a, b, c such that the product of any 

two increased by t times their sum is a square. Since (a+t)(b+t) =n2-H2, 
express n2-\-t2 as a product of two factors, say n+r, n—s, each >t Then 
c=a+b+tzL2n and 

v2_L42 <j2 I £2 

a--1 b =-L c = r—s—t or 2a+2b+2t-(r-~s — t). 
r — s r—s 

When 2 = 1, take r—$ = 1, whence a-r2, b = s2, c = 0 or 2a+2b+2. 
The same numbers are such that the product of any two increased by t 

times the third is a square (Diophantus, III, 14). 
P. Cossali82 noted that if the product of any two of x~, z2, 

2{a;24z2+(z—x)2\ be increased by (z—x)2 times the sum of the two or by 
(z—x)2 times the third, we get a square. On adding 2(z—x)2 to each of 
these three numbers, we get three numbers such that the product of any 
two diminished by (z—x)2 times either their sum or the third gives a square. 

Diophantus88, V, 3 [4], required three numbers such that any one of 
them or the product of any two of them increased [diminished] by a given 
number a is a square. He quoted from his Porisms that if x-\-a = m2, 
y+a=n2, xy+a=D, then m and n are consecutive numbers.89 Thus if 
a=5 we take x = (z+3)2—5, y= (z4~4)2—5 as two of the required numbers, 
and 2(x+y) — l =4z24-28z+29 as the third. We are to make 

4z2+28z+34=D, 

say (2z—6)2. Hence z = 1/26. 
For Y, 4, Diophantus took a = 6, a:=z24-6 and y— (z4-l)24-6 as two of 

the numbers, and 2(x+y)—l as the third. The latter less 6 is 

4js24-4z4- 19 = (2z—6)2 
if z=17/28. 

Diophantus’ method shows that xy+a, xz+a, yz+a, x+a, y+a are all 
squares if x = m2—a, y = (m+1)2—a, z — (2m+l)2—4a. To make also 
z+a=D, say (2m—r)2, we have m = (r2+3a— 1)/{4(1 +r)}. 

Fermat (Oeuvres, III, 250) gave a solution for the case a = l. In 

2/=5T^a:+M) z=fftib+ii, 
the constant terms increased by unity give squares; further, xy+1, xz-j-1, 
yz+l are squares. The “ triple equation ” x~\-l = □, y4-1 = □, z+1 = □ is 
readily solved since the constant terms are squares (Ch. XV). 

87 The Elements of Algebra, 2, 1740, 399-405; French transl., Sphinx-Oedipe, 1908-9, 3-9. 
89 But this is incorrect; m— n = =fcl is a sufficient but not necessary condition for xy+a = □. 

In fact, by* eliminating x} y, we get w2^2—a(w2-f n2 — 1) -j-a2 = □. While this is satisfied 
if m2+n2—1 =2mn, whence m =ndbl, it can be satisfied as usual by setting m =n=fcl +^. 
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Product of any two of four or five numbers increased by unity a 

SQUARE. 

Diophantus, IV, 21, required four numbers such that the product of 
any two increased by unity is a square. He took x, 2+2, 42+4 as the 
first three (by IV, 20), and (3z+l)2—l as the product of the first and 
fourth. Thus the fourth is 9x+6. The product of the second and fourth, 
increased by unity, is 922+242+13; let it equal (32—4)2, whence 2 = 1/16. 
The remaining conditions are now satisfied. 

Rafael Bombelli90 treated the problem for four numbers. 
Fermat91 took 1, 3, 8 as the first three numbers. The conditions on the 

fourth number x are 2+1 = □, 32+1 = □, 82+1 = □. His method 
(Fermat10,11 of Ch. XV) of solving a “triple equation” gives 2= 120. 

L. Euler92 gave the solution a, 5, c=a+5+2Z, d=4Z(Z+a)(Z+5), where 
a5+1 = l2, and noted the cases 3,8,1,120 and 3,8,21,2080. He extended the 
question to five numbers, by seeking z such that l+az, • • *, 1+dz are all 
squares. Denote the product of these four sums by P = 1+pz+qz2+r23+$z4, 
where therefore p = a+5+c+d, •••, seabed. Let P be the square of 
1+\pz+gz2, where g = ql2—p2/8. Then 

r+sz = pg+g2z, z = (r-pg)[ (g2 - s). 

For brevity set a+b+1 =/, d/4 = k. Then 

&==/Z2+Za5, P — 2/+4&, 

g=(a+5+c)d+(a+5)c+a5=8/&+/2—1, s=4a5&(/+Z). 

Now ft=/(a5+l)+Za5, 4&2=4Zb/+4fta5(/+Z). Hence 

1+g+s = (2ft+/ )2= ip2, 0=-*(!+«). 

The denominator g2—s of z is fortunately the square of ($ —1)/2. Thus 

_4r+2p(l+s) 

and P is a square. Euler stated that each factor l+az, etc., is then a 
square. Taking a = l, 5 = 3, we have 1=2, c = 8, d = 120, p = 132, g = 1475, 
r=4224, $ = 2880, 2 = 777480/28792, and the ten expressions ab+1, •••, 
dz+1 are the squares of 

2, 3, 11, 5, 19, 31, 3259 3309 10079 
2 8 7 9"; 2 8 7 9? 2^ 7 9 • 

To obtain smaller (but fractional) numbers, set a = 1/2, 5 = 5/2. Then 

c = 6, d=48, 2=44880/128881. 

A. M. Legendre93 verified Euler’s preceding assertion that 1+az, etc., 
are squares by noting that a, b, c, d are the roots of 

I4—pf3+g£2—r£+s=0 

90 L’algebra opera, Bologna, 1579, p. 543. 
91 Oeuvres, III, 251. 
92 Opusc. anal., 1, 1783, 329; Comm. Arith., II, 45. Results stated in a letter to Lagrange, 

Sept. 24,1773 (Oeuvres, XIV, 235-40); Euler's Opera postuma, 1, 1862, 584-5. 
93 Th^orie des nombres, ed. 3, 2, 1830, 142-4; Maser’s transl., 2, 1893, 138. 
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and showing that when is replaced by its value from the preceding 
equation, (s — l)2(£s+l) becomes (2£2 — p£ —5 — l)2. 

C. 0. Boije af Gennas91 gave the solution 

r, s(rs+2), ($+l)(rs+r+2), 4(r$+l)(r$+r4d)(rs2+rs+2s+l). 

For r = l, $ = 2, we get 1, 8, 15, 528. 

J. Knirr95 took as the four numbers 

n, a2n+2a, 52n+25, p2n+2p. 

The product of the second and third, increased by unity, is 

[cLbn-\~(u-j-5) }2-}- {1 -}-4u5 — (cL-\-b)2} 

and is a square if the final part is zero, whence 5 = a± 1. The product of 
the second and fourth, increased by unity, is then the square of l+pq if 

p{q2 — ahi2—2an) = 2a2n+4a — 2q. 

The coefficient of p is unity if g = an+l. G, H, F. Nesselmann95a took 
b=a+1, p = a+2. 

C. C. Cross96 gave the set due to Boije94 with r, s replaced by m, n— 1. 
He and others failed to find five such numbers. He97 later took the fifth, 
number to equal the first one m, the only new condition being m2+l = □, 
for example, m—(k2-~l)[(2k). 

M. A. Gruber98 noted a special case of Euler’s92 five numbers. 
A. Gerardin" obtained special solutions by recurring series. 
Fermat100 treated the problem to find four numbers such that the product 

of any two increased by the sum of those two gives a square. He made 
use of three squares such that the product of any two increased by the sum 
of the same two gives a square. Stating that there is an infinitude of such 
sets of three squares, he cited 4, 3504384/d, 2019241/d, where d = 203401. 
However, he actually used the squares 25/9, 64/9, 196/9, of Diophantus V, 5, 
which have the additional property that the product of any two increased 
by the third gives a square. Taking these three squares as three of our 
numbers and x as the fourth, we are to satisfv 

This “ triple equation ” with squares as constant terms is readily solved. 
T. L. Heath101 found x to be the ratio of two numbers each of 21 digits. 

L. Euler102 gave a more general treatment of the latter problem. Let 
A, B, C, D denote the numbers increased by unity. Then AB — 1, * • *, 
CD — 1 are to be squares. Take AB = p2+1, 

C* 
A -\~B -\~2(ap-\-o''} 

(<ap—a)2 ’ ~(Pp-b)~ ’ 
a2-ba2 = 62+j82 = 1* 

94 Nouv. Ann. Math., (2), 19, 1880, 278-9; E. Lucas, Throne des nombres, 1891, 129. 
95 Die Auflosung der Gleichung z-—cx- = 1, 18. Jahresbericht Oberrealschule, 1889, 31. 
9Sa Zeitschr. Math. Phys., Hist .-lit. Abt., 37, 1892, 167. 
96 Amer. Math. Monthly, 5, 1S9S, 301-2. 
97 Ibid., 6, 1899, 85-87. 
98 Ibid., 122-3. 
99 L’interm6diaire des math., 23, 1916, 14-15. 
100 Oeuvres, III, 242-3. Aspecial case of our main problem since xy+x+y = (x-f l)(y+l) — 1. 
101 Diophantus of Alexandria, ed. 2, 1910, p. 163. 
102 Posth. paper, Comm. Arith., II, 579-582; Opera postuma, 1, 1862, 131-4. 
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Then five of the conditions are satisfied. There remains CD — 1 = □. 
Replacing A-\-B by its value (A2+p2+l)/A, we see that the condition 
becomes A4+2A3AH—• + (p2+l)2 = □, where & = (a+6)p+o:+/3. The 
quartic is the square of A2-\-Ak—p2 — 1 if 

A{/c2-4(p2+l)-4(ap+a)(6p+ft + (ap~a)2(0p-5)2}=4^(p2+l). 

This solution is of course not general. For instance, if a = l5 = 0, <z = 1, 
5= — 1, then the preceding A is zero, whereas we may obtain solutions as 
follows. We have, in this case, C = A+J3+2p, D = A+B — 2p. Then 

C7)-l = (A+15)2-4p2-l = n==g2, (A-R)2 = g2~3=D = (g-r)2. 

Thus g= (r2+3)/(2r). Also A+B = 2p+s if p = (g2+l — s2)/(4s). Set r = 2, 
s = 15/4. Then g = 7/4, p=—2/3, A = (7= 13/12, 13=4/3, Z) = 15/4. For 
r=2, $=7/2, we get 

A=ffr, 7? = ftf, C=inb 7) = f. 

For 6= —<x, /3 = —cej Euler found C, Z) = (a(A+J5)±(4a+2) }/(4a) and noted 
that all the resulting solutions are fractional. He cited the solution 
A=7) = l, B = 2, C~5, and asked if there are other integral solutions. 

Product of any two of four numbers increased by n a square. 

C. G. Bachet103 proposed the problem and took n = 3. From (V+2)2 
and (A+6)2 subtract 3 and divide the remainders by the difference 4 of 
the roots of the squares; we get 

a = fA2+N+ i b = iV2+3A+- 

As the third number, he took 

c = 2(a+5)-4 = A2+81V+13. 

Hence by a general canon, a5 + 3, ac+3, 5c+3 are squares. Take the fourth 
number to be d = 4. Then ad-A3 and 6d+3 are squares. Finally, 

cd+3 = (2A—10)2 if iV = 5/8. 

He gave also a second method of solution. 
Fermat104 remarked that it is easy to deduce a solution from 

Diophantus88 V, 3. As three of the numbers take solutions xh x2, x2 of 
the latter problem. As the fourth number, take x+1. We then have a 
“triple equation” x;£+£;+n = □, whose constant terms Xi+n are squares, 
and hence easily solved (Ch. XV). 

P. Iacobo de Billy105 took n = 4, R as the first number, and R+2, 
2R+2, 372+2 as the roots of the squares obtained when R is one factor. 
Thus the remaining ■ three numbers are 72+4, 472+8, 9#+12. Then 
(124-4) (972+12)+4 is the square of 372 — 8 if 72 = 1/8. The other two condi¬ 
tions are seen to be satisfied. 

N. Saunderson87 (p. 398) took any number a> Vn, subtracted 4a2 — 3n 
from any larger square 52, and called d the quotient obtained on dividing 

m Dioph. Alex., 1621, 150. 
104 Oeuvres, III, 254. 
108 Diophantvs Geometria, Paris, 1660, 100. 
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the remainder by 4a+25. Then an answer is given by 

d, e=(a2—n)ld, f=d+e+2a, g = 3eJrfJr2a. 

Thus for n = 3, take a = 2, b = 3. Then d = 1/7, e = 7, /=78/7, g=253/7. 
L. Euler106 called the numbers A, B, C, D. Set AB = p2—n. Equate 

the product of AC+n and BC+n to (Cx+n)2', then 
n(A-\~B — 2x) 

x2—AB 3 
AC+n = 

n(A —.r)2 

z2-A£ 

Hence (z2—AB)[n is to be a square t/2, whence 

C—(A+B—2x)ly2, x2—ny2 = p2—n. 
Similarly, 

D = (A+jB—2^)/22, v2—nz2 = p2—n. 

In CD+n= □, replace A+B by (A2+p2—n)/A. Hence 

Ai—2 A3 (x+v) + 2 A2 (p2—n) + A 2ny2z2+4 A 2xv — 2 A (p2—n) (x+v) + (p2—ft)2 

is to be a square. It can be made the square of A2—A(xJrv) — (p2—n) by 
choice of a rational A. To simplify the formulae, Euler took v = —x, 
z = y. Then the condition becomes 

(A2—p2+n)2+nA2y2(y2 — 4) = □ 
and is satisfied if y = 2. It remains only to satisfy p2=x2~3n. Set 
p = z — t. Thena: = (^H-3w)/(2Q, p = (3n—t2)/(2t). To secure homogeneity, 
set Xj p = (3nu2dz t2) /(2tu). Then 

AB = (nu2 -12) (9 nu* -12)/(4 t2u2), 

Jimt-t?) g^nu2-#) n(f±3g)2u2-(f=Fg)2t2 

2 gtu 3 2ftu 3 3 Sfgtu 

To find four numbers such that the product of any two increased by the 
sum of the four is a square, we have only to take mA, *•*, mD, where 
m = (A+B+C+E>)ln, while A, * • •, D, n are the numbers given by the 
preceding solution. Euler gave two solutions in integers: 15, 175, 310, 
475 and 36, 96, 264, 504. Since n may be negative, we obtain four numbers 
the product of any two of which decreased by the sum of the four is a 
square. A solution in integers is 8, 24, 44, 80. 

E. Bahier,85 pp. 199-208, employed the numbers of Saunderson,78 
taking his two values of z as two of the four numbers. There remains 
only the condition (r+s)2—3a = □, which is satisfied by expressing 3a as a 
difference of two squares. 

Other products of numbers in pairs increased by linear functions 
made squares. 

J. Collins107 made the six functions zy±v, xzzkv, yz±.v squares, where 
v—x+y+z^ Take xy±v = (£±$)2, xzzLv = (r±<?)2, yzdzv= (pztn)2, and (1) 
±v=ts~rq — pn. Then xy==t2-\~s2,xz — r2Jrq2,yz=p2Jrn2. Take t~ (a2— b2)g} 

106 Comm. Arith., II, 582-5 (posth. paper); Opera postuma, 1, 1862, 134-7; Algebra, 2, 
1770, arts. 233-4; 2, 1774, pp. 306-14; Opera Omnia, (1), I, 465-9. 

107 The Gentleman’s Math. Companion, London, 2, No. 10, 1807r 66-7. 
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s = 2abg, r=(a2—c2)g, q — 2acg, p~{d2 — oF)g, n-2adg. Then 

_ g (a2+b2) (a2+c2) __g (a2+d2) (a2-fb2) _g(a2+c2) (a2+d2) 

Z~ a?+d? ’ V~ a2+c2 ’ 2_ a2+b2 
To satisfy (1), take a=f2+fh+h2, b=f2—h2, c = 2fk+h2, d=f2+2fh. For 
four numbers, see Euler.106 

J. Cunliffe108 made xy+z, etc., squares by taking y—x = 2n, z — n2. 
Then xy+z = (z+ri)2, while xz+y and yz+x are linear functions of x and 
may be equated to squares. S. Jones took y — z — 1, z = x—4. “J. B.” 
took y — t2x — v2, z = v2x, whence xy-\-z — t2x2. Then xz+y = (yx—r)2 gives x. 
From yz+x—D, we get a quartic in r which is solved as usual. 

W. Wright109 took xy—a — p2, yz — b = q2 and made p2+a and q2+b 
squares. Then xz — c—U if O/y2—c= □, which is easily satisfied. 

Cunliffe110 took xy+z = A2, xz+y = B2. Thus {y+z)(x+l) =A2+B2. 
Hence set y+z = a2+b2, x+l — c2+d2, A — ac+bd, B = ad—bc. Also, 
{y—z)(x — \) =A2—B2. Hence take y—z=A — B, x—1 =A+B. By the 
two values of x, we get b in terms of a, c, d. To get integral values of 
by equate the denominator c — d to unity. 

D. S. Hart111 made xy+z} etc., and xy+x+y, etc., all squares by taking 
z = n2y y=(n+1)2, z — +n2+n+l). 

E. N. Barisien112 treated the system 

xz — y = t2, (.z+a)x — y = u2, (z+b)x~y = v\ 

Subtract the first from the other two. Thus 

ax = u2—t2, bx = v2 — t2, av2~bu2 = (a—b)t2. 

Set v—t+h, u — t+l. Discarding the denominator 2ha—2lb, we have 

t = bl2—ah2, u = bl2+ah2 — 2alh, v = ah2+bl2~2blh, x = 4dh(h — l)(bl—ah). 

Then y, 2 can be found from Az—y = B. Set B =Ap+r, z = q+p; then 
y = Aq — r. [Take g = — ah/l, f= — l2ja]. Then 

x=4pg(a+g)(b+g)y u=f(g2+2ag+ab), v=f(g2+2bg+ab)> 

t =f(g2 -ab), z = g, y =f2 {3g4 -f-4</3 (a+b)+6abg2 - a2b2). 

He113 elsewhere merely stated the latter solution. 
“ V. G. Tariste ”114 treated the case a = 1, b = 2 of the last problem. Then 

v2+t2 — 2u2, whose general solution is u — \{A2+B2); v, t=\(A2—B2±2AB). 
Several writers115 made xy+z, yz+x, xz+y all squares (Diophantus 

III, 14). 
E. Bahier,85 pp. 208-212, made xy — v,xz — v,yz — v squares the sum of two 

of which equals the third. 

108 The Gentleman’s Math. Companion, London, 3, No. 17, 1814, 463-6. 
109 Ibid., 467-8. 
™ Ibid., 5,'No. 27, 1824, 349-53. 
111 Math. Quest. Educ. Times, 28, 1878, 67-8. 
112 Sphinx-Oedipe, 1907-8, 180-1. 
113 Mathesis, (3), 9, 1909, 154-5. 
114 L’interm^diaire des math., 19, 1912, 38-9. 
115Zeitschr. Math. Phvs.. Hist.-lit. Abt.. 37. 1892. 138: Math. Que t. Educ. Times, 25.1914. 
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Further equations whose quadratic terms are sums of products. 

Bhascara116 (bom 1114) treated the problem to make w+2, x+2, y+2, 
z-f-2 the squares of numbers in A. P., and wx+18, xy+18, yz+18 all 
squares, such that the sum of the roots of the seven squares when increased 
by 11 gives 131 Since 18/2 is the square of 3, the roots of the first four 
squares are y, y+3, y+6, y+9. Then the roots of wo; 4-18, etc., are found 
to be y2+3y—2, 2/2+92/+16, y2+15y+52. The sum of the roots plus 11 
gives 32/2+3B/+95 = 132, y = 2. 

Diophantus, IV, 16, solved z(z+y)=a, y(x+z) = b, x(y+z)—c, when 
a — 35, 6 = 32, c = 27, by assuming that x = 15fz, y —20fz, whence 2 = 5. 

Rallier des Ourmes117 obtained 2xz = a-\-c—b, etc., by elimination from 
Diophantus’ equations. From yz = m, xz = n, xy = p follows y— ^pmjn, etc. 
For a=24, 6 = 45, c=49, we get m= 10, n —14, p = 35, whence x~7, y = 5, 
2 = 2. He gave also a solution by listing the pairs of complementary factors 
of the smallest two, 24 and 45, of the three given numbers: 

24 = 1-24 = 2-12 = 3-8=4-6, 45 = 1-45 = 3*15 = 5-9. 

From each list select a pair of factors with a common sum, as 2*12, 5*9, 
and select by trial one of a pair as one unknown and the cofactor as the sum 
of the other two unknowns. 

To find n numbers, given the product of each by the sum of all the others, 
list the pairs of cofactors of each of the smallest n—1 of the n given num¬ 
bers and select those pairs, one from each list, which have the same sum 
(the sum of the unknowns). The smallest cofactor of each pair is one of 
the smallest n—1 of the unknowns and their sum subtracted from the 
total sum gives the largest unknown. For n = 5, use 180 =4*45, 294 = 7 • 42, 
418 = 11*38, 444 = 12*37; the unknowns are 4, 7, 11, 12, 

15 = 49 —(4+7+11+12). 

S. Jones118 took x(y-\-z) = a2x2} y(x+z) =62, z = ax-\-b, which give x, y, z. 
Then z(x-\-y) = □ if a2+2a—1 = □ = (a—n)2 and a2 — 2a+3=CU. The 
latter becomes a quartic in n which is a square if n— —2/3. 

L. Euler119 developed a method to make various functions simultaneously 
equal to squares. The method will be explained for his problem (§§ 31-34): 
Given an integer n, find integers x, y, z such that xy+n, xz+n, yz+n, 
xy-\~xz+yz+n are all squares. For any set of solutions of 

/== x2+y2+z2 - 2xy - 2xz - 2yz - 4n = 0 
and for any function P, P2—/ is a square. Taking P — x-\-y—z, we find 
that 4:(xy-j-n) is a square. Taking P = x~y-\-z, we find that 4(xz-pn) is 
a square. Similarly, yz-j-n is a square. Taking P=x+y+2, we find that 
^(xy+xz+yz+n) is a square. Now/=0 if z = x+y+2v, where tf^xy-pn. 
To satisfy the latter take any integer for v and take x and y to be any pair of 

118 Vija-ganita, §§ 143-4. Algebra with arith . . . from Sanskrit ... of Bhdscara, transl. 
by Colebrooke, 1817, 218-9. 

117 M&n. de Math4matique et de Physique, Paris, 5, 1768, 479-84. 
118 The Gentleman’s Math. Companion, London, 3, No. 15, 1812, 348-9. 
119 Novi Comm. Acad. Petrop., 6, 1756-7, 85-114; Comm. Arith., I, 245-259; Opera 

Omnia, (1), II, 399-427. French transl., Sphinx-Oedipe, 8, 1913, 97-109. 
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integers whose product is n — v2. Then 

xy+n = v2, xz+n = (x+v)2, yz-\-n= (y-\-v)2, xy+xz+yz+n=(x-\-y+v)2, 

the right members being the reduced values of P2/4, for the respective P’s. 
To solve an interesting related problem (§§ 35-39), take 

/=x2+y2+z2 — 2 xy — 2 yz—2 xz—2a(x+y+z) — b = 0 

and P—x-\-y±:Z±.a for the four combinations of signs. Then 

4:(xy+xz+yz) +4 a(x+y-\-z) +a2-\-b, 4i(xy-\-xz+yz) +a2+&, 

F=4xy+4:a(x-{-y)-\-a2+b, ixy+^az+tf+b, 

and the expression obtained from the last two by permuting the variables, 
are all squares. Now/=0ifz = £+2/+adbt>, provided x and y make F = v2. 
The latter is the case if x+a and y-\-a are two numbers whose product is 
(v2—6-j-3a2)/4. In particular, if a = l, b=— 1, we see how to find three 
numbers x, y, z such that 

xy+z} xz+y} yz+x, xy+x+y, xz+x+z, yz+y+z, 

c=xy~\~xz-\-yz, a-\~x-\-y-\-z 

are all squares. The simplest solution is x = l, y = 4c, z = 12. 
which also the numbers themselves are squares are 

9. 
G4j 

25 AO . 2 5 
9 > 

6 4 
“IT; 

19fi 
9 • 

Solutions in 

Euler120 asked for numbers p, q, r, • • • such that the product of each by 
the sum of the remaining numbers is a square. Hence if S be their sum, 
p(S — p),q(S — q), • • • are to be squares. Take p(S—p) =f2p2, etc. Hence 
the desired numbers are 

S 

i+rj 
Take/= a/a, etc. 

-A—|—L_+ 
l+g- 

For three numbers, let them be 

0ab-aft)2 (ap—ab)2 

...4 

[d = (a2+or) (52+/32) 
a2+cr d ’ d 

The sum of the last two is 1 —4aabf3/d. The sum of all three is therefore 
unity if a2(52+/?2) =4ace&/?, whence a : a = 46/3 : 62+/?2- Taking a=-4b(3 
and multiplying the initial numbers by d, we get the solution 

1652/32(62+/32), /?2(352 - /32)2, 62(3/32 - b2)2. 

For four numbers, Euler gave the solutions (I, 2, 2, 5), (1, 10, 34, 125), 
(5, 9, 26, 90), (5, 32, 61, 512) and solutions involving two parameters. For 
five numbers, he gave 2, 40, 45, 58, 145. 

Euler121 gave a special method of treating the last problem. Select any 
number, like >S = 130, which is in several ways a sum of two parts whose 
product is a square, viz., 

P= 2, 5, 13, 26, 32, 40, 49, 65, 

S~p = 128, 125, 117, 104, 98, 90, 81, 65. 

120 Novi Comm. Acad. Petrop., 17, 1772, 24; Comm. Arith., 1,459-66; Op. Om., (1), III, 188. 
121 Opera postuma, 1, 1862, 260 (about 1769). 
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Selected values of p give an answer if their sum is 130, as for 2, 5, 26, 32, 
65, and 2,13, 26, 40, 49. 

Euler122 found a, 6, c, d so that ab—cd, ac—bd, be— ad are squares. Call 
the first two expressions x2, yz, and solve for b, c. Take 2x = a+d+v, 
2 y = a+d—v. Then 

, (a+d)2±2(a — d)v+v2 . , fa2 — 6ad+d2 — v2!2 

b’C-4^5)-■ fc-^-L —J- 

For v~d~S, a = 24, we get 6 = 21, c = 13. 
S. Tebay123 found four positive integers ai, ••*,04 such that aia2+asGU, 

aia3+a2a4, aia4+a2a3, are squares. 
A. Gerardin1230 made xy+zt and xz—yt squares by several methods. 

Squares increased by linear functions made squares. 

Let <r=XiJrX2+x3. Diophantus, II, 35, and Bombelli124 made xl+c 
a square for £=1, 2, 3. Diophantus, II, 36, made each x\ — a a square. 
Diophantus, V, 9, made each x\±.<r a square. Diophantus, III, 1, made 
each <t Xi a square by taking Xi = x, x2 = 2x, a = 5x2, 5 = (2/5)2+(ll/5)2, 
£3=2x/5, whence x = 17/25. J. Whitley125 took xi — x, x2 — nx, Xz = mxi 
<x—x[~a~x2, which gives x. Then 1+a2—n2 and 1+a2—m2 are to be 
squares, which is the case if |n2 = a = m. 

Diophantus, IV, 17, made X\-\-x2-\~Xz) x\-\-x2l x\-\-x3i x3~\~Xi all squares 
by taking x2~ix} Xi = x — 1, 16x2+x3 = (4x+l)2, whence x3 = 8x+l. Then 

£?+Z2 = 0+l)2, Xi+x2+2;3 = 13x = □ =169 y2> 

xl+rra = 132 • 8V+13 • 17y2 = □ = (13 • 8y+l)2, 
whence y = 55/52, x = 13y2. 

Fermat126 suggested that a more elegant solution is obtained by setting 
Xi=x, x2 = 2x+l, x3 = 4x+3, whence 

^i+x2+x3=7x+4= □, x3+Xi = 16x2+25x+9 = □, 

a “ double equation ” with squares as constant terms. He stated that a 
similar device will solve the analogous problem in four or a greater number 
of unknowns. 

J. Anderson127 took Xi+x2 = (p-Xi)2, x2+x3 = (g~x2)2, x3+Xi = (r—x3)2, 
which give xh x2) x3. In Xxi, equate the coefficient of r2 to zero, whence 
2=1/4. Other writers gave essentially Diophantus’ solution. 

S. Ward128 took x2 = l~2xl3 (1~2xi)2+x3=A2, 1-Xx+x* = £2. Then 
A2—B2~4xl—3xx. Take A+B=2xu A—B = 2xi—3/2, whence B = 3/4, 
Xi = x3+7/16. Then 16(x3+x0 = (4Xz—pjq)2 determines x3. 

m M<§m. Acad. Sc. St. Petersb., 5, anno 1812, 1815 (1780), 73 (§21); Comm. Arith., II, 
385-91. 

123 Math. Quest. Educ. Times, 52,1890, 117. 
ma L’intermediaire des math., 26,1919, 17-18. 
m L'algebra opera di R. Bombelli, Bologna, 1579, 485. 
m Ladies' Diary, 1807, 37, Q. 1155; Leybourn’s Math. Quest. L. D., 4,1817, 72-3. 
m Oeuvres, I, 301; French transl., Ill, 249. 
127 The Gentleman's Math. Companion, London, 5, No. 26, 1823, 204-7. 
128 J. R. Young’s Algebra, Amer. ed., 1832, 337-8. 
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Diophantus, II, 34, made x2—y, y2—z, z2—x squares. In IY, 18, these 
and x+y+z are made squares. 

T. Strong129 made x2~-y, x2—z} y2—x, y2—z all squares. Take 

x2—y = (x — ay)2, x2~z = (x—bz)2, y2—x — (y—cx)2. 

Hence x, y} z are rational functions of a, b, c. Equate the resulting expres¬ 
sion for y2—z to (e — l/h)2. We get b rationally in terms of e, a, c. For 
a = l, c = e = 2, we get a: = 5/4, y = 3/2, 2 = 14/9. 

Ricatti130 found three numbers such that if the square of each be added 
to the remaining two the sums are squares. He used the numbers x, 2x, 1. 

R. Adrain131 took 

x2+y+z = (m—x)2, y2+x+z = (n—y)2, z2+x+y = (r—z)2, 

and solved the resulting system of three linear equations for x, y, z. 
To make s+x2, s+y2, s+z2 squares, where s = x+y+z, “A.B.L.” 132 

equated them to (#+i/)2, (y+t)2} (z+k)2 and solved algebraically the result¬ 
ing linear equations. “Epsilon” took y+z-1/4:. Then 

x+l+(i-y)2={l-y+p)2 

gives x, and x+l+y2= □ if ip = q2+2pq—2qy, which gives y. W. Wright 
took 0 — l)r, (rc—l)r and (y—l)ras the numbers, and r2 as their sum, whence 
r=v+x-{-y—3. The conditions become v2—2v+2= □ = (p—v)2, etc., which 
determine v, x} y. 

H. J. Anderson133 found n numbers whose sum s exceeds the square of 
each by a square. Express $=z2+2/2 as a sum of two squares x,z+y,2} 
x"2jry,,2y * • •, in n ways (Euler, Algebra, II, § 219) by taking x' — ary — b'x, 
y' = a'x+b'y, x" = a"y-b"x, yn = a,,x-\-b,,y) • • •, where 

. _2mn_ m2-n2 2 pq y, 

m2-\-n2J m2+n2) p>Jr<fJ p2+q2’ 

Take x, x'} x", • • • as the required numbers. Their sum s is of the form 
Ax+By. Thus s = x2+y2 if ABy —4?/2-M2 = □. For n=4, C. Farquhar 
used the numbers w, wx, wy, wz. Set cr = l-|-x+yA-z. Then w<r—w2 = □ 
=x2w2 gives <j. Then take 

2x = y2, x2+l—z2- {l+p(x—z)}2, 

which determines 2. 
J. R. Young134 found three squares x\ and a number a such that x]±:a 

are all squares. Take x^rrii+n2, a = 2mlni, nii^rl — s2, n,- = 2r»•$,•, whence 
x^r'i+s*. It remains to make the values 4riSi(r; —$?) of a equal. Take 
ri = r2 = 7-3 = r. Thus Si(r2—s•) are to be equal. The values for i = l and 2 
are equal if r2=s?+SiS2+S2* Thus 4r2 —3sl is to be a square. Hence take 

129 Amer. Jour. Sc. and Arts (ed., Silliman), 1, 1818, 426-7. 
130 Institutiones analyticae a Vincentio Riccato, Bonomae, 1, 1765, 64. 
131 The Math. Correspondent, New York, 2] 1807, 13-14. 
132 The Gentleman’s Math. Companion, London, 5, No. 25, 1822, 125-30. 
133 Math. Diary, New York, 1, 1825, 151-4. ' 
134 Algebra, 1816. S. Ward’s Amer. ed., 1832, 346-7. A like discussion for two squares 

had been given by J. Cunliffe, New Series of Math. Repository (ed., T. Leybourn), 
1, 1806, I, 221-2. 
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^=/2+3gr2, s2 = 4/g. For/=2, g-l, $i=— 5 or —3, r = 7, s2=8. We may 
take as s3 the second value —3, whence a = 3360, $i = 74, rc2=T13, £3=58. 

A. B. Evans135 found n numbers such that a2i+ai+ !=□ (t=T, •• •» 
n—1), a2+oi = □. All but the last condition are satisfied if ar — m2Jr 2mar-i 
(r=2, • • •, n), whence 

art = A-\-2n~lmn~lah A — m2+2m3+22m44-|-2rt~2mn. 

Then a2+ai= (2n“1mn~1ai+p)2 gives ai. D. S. Hart took m = l. 

Square of each of three numbers plus product of remaining two 

A SQUARE. 

L. Euler136 found solutions of x2+yz~p2, y2+^z — q2} z2+%y — Then 
p2—q2=(x—y)(x+y—z). Set p—q—x—y, p+q=x+y—z, whence 

p=x — ^z. 

Then x'+yz-p2 gives z=4(x+y)- The third condition becomes 

l$(x+y)2+xy^n, 

say136a (4£+4p+$)2. Then (x—8s) (y—8s) =65s2. Hence set x—8s — 5ts/u, 
y—8s=13us/t, and to avoid fractions take s = tu. Thus x = 8£u+5£2, 
y = 8tuA-l3u2. He stated that the same solution is found if we start by 
taking x = (yz~s2)l(2s), the resulting numbers being s(8t+s), t(t—8s), 
4($2-H2). 

To give another method, set x = a2+2b, y = b2+2a, z~ab(ab— 4). The 
first two conditions are satisfied and the third becomes 

a464— (8a3-2)63+17a262+4a6+2a3= □, 

which is not discussed. But he noted the solutions x, y} z = 33,185, 608 and 
297, 377, 320. Nesselmann,95® p. 141, treated this quartic with a = —1/p. ’ 

J. Lynn137 took 1, x — 1, 4x as the numbers. Then two of the conditions 
are satisfied and the third is (4x)2+x—1- □ = (4x±a)2, say, which deter¬ 
mines x. 

S. Ward138 took x = mz, y = nz, m+n = 1 /4. Then the first two expressions 
are squares. The third is a square if 1+\n—n2== □, say (1—cn)2, which 
gives n. 

J. H. Drummond139 took to2, mw2, nw2 as the numbers. Then l+??in, 
m2+n, m+n2 are to be squares. Taking it remains to make 
l-f-mn— □, say (1—pm)2, which gives m. 

W. Wright140 made a—x2Jr4yz, fi = y2jr4:zx, y-z2+4xy and x+y+z 
squares. Takex—y+z. Then /3 and y are squares. Take 

'Lx-2yA~2z-An2. 

135 Math. Quest. Educ. Times, 20, 1874, 86-7. 
138 Opera postuma, 1, 1862, 258-9 (about 1782). 
13fia J. Cunliffe, New Series of Math. Repository (ed., T. Ley bourn), 2, 1809, I, 172—3, chose 

it equal to {4ry — 4x)2 to obtain x rationally in terms of y, r. We may give any de¬ 
sired value to x + y z. 

137 C. Hutton’s Miscellanea Mathematica, London, 1775, 236-7. 
138 J. R. Young's Algebra, Amer. ed., 1832, 336. 
139 Amer. Math. Monthly, 9, 1902, 232. Misprint of m2x2 for mx2. 
140 The Gentleman’s Math. Companion, London, 3, No. 15,1812, 346-7. 
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Then \a = u*Jr2u2z—z2 = (mz—u2)2 if z — 2/w2(m+1)/(m2+1) • S. Jones took 
13= (2z—y)2 and found 2(n2~an)k, 2(aJrri)k, 2k2, where k = a2+n2. 

W. Wallace14041 made a=xy+z2, p^xz+y2, y — yz+x2, and a1^+pU2+y112 
squares by taking a = (2y+z)2, p = (2z+y)2, whence x = 4(y+z). Then 7 = r2 
if yz = H{r±4:(y+z)}. Equate the factors to ym/n and znjm. We get y, z 
and hence x as rational functions of m, n, r. Omitting the common 
denominator, we have x = 4(m2+n2)r, y = (8wm+n2)r, z= (m2~8mri)r. 
Then a, p, 7 equal the squares of (m2+8mn+2n2)r, (2m2—8mn-t-n2)r, 
(4m2 -f-mn—4n2)r. The sum (7m2+mn—n2)r of these is a square if r equals 
the first factor or the quotient of it by any square. 

Miscellaneous Systems of Equations of Degree Two. 

Diophantus, III, 2, made s2-f#; (i = l, 2, 3) rational squares, where 
s~x 1+22+23. In Diophantus, III, 3, s2—Xi (z — 1, 2, 3) are made squares. 
T. Brancker141 treated the latter problem. A. G6rardin142 gave several 
integral solutions of the last two problems. 

Diophantus, III, 4, made Xi—$2 (i = 1, 2, 3) rational squares. 
To find Xi, x2j • - • such that 

s2+Xi = Pi, s2—Xi = q2iy 

where s = 2Xi, “Comes”143 noted that since p2, s2, q2 are squares in arith¬ 
metical progression we may use the known values 

Pi=$(m2i —n2+2mlni) / (m2+n2), = s(n2—m-+2mm*) / (m2 +n]). 

Then $ = Xxi gives s. For Diophantus’ solution, see the first page of Ch. VI. 
A. G6rardin and R. Goormaghtigh144 made s2—x\ (i — 1, 2, 3) squares; 

also s2—(s—Xi); also s2— ($ —x^ (i=l, 2, 3, 4), where $=a;H-j-£4. 
The latter145 made (i = 1, •••, n) squares, also s2—(s—x%), where 
s=o:i+ • • • +xn- 

Leonardo Pisano146 treated cases of x\+xi4-Yxn=y\, y\+x\=yl, 
yl+xl=yl, ••■,yl-i+x2n = yl 

J. Cunliffe147 made <r-\-Xi (i = 1, 2, 3) squares, where a =x\+x22+xl. 
S. Ryley148 made a=x2+yz+y2, P — x2+yz+z2, 7=y2+yz+z2 squares. 

Take a —a2, P — b2. Then y2—z2 = a2—b2. Hence take (a+b)r=(y+z)s, 
(1a — b)s = (y—z)r, which give a, b in terms of y, z. Now 7 = □ if 

t/ = 2rs (m2+2 mn), z = 2rs (n2—m2). 

Then a2—yz—y2 becomes a function of r, s, m, n of degree 4 in n, which will 

n°a New series of Math. Repository (ed., T. Leybourn), 3, 1814, I, 21-23. 
141 An Introduction to Algebra, transl. out of the High-Dutch by T. Brancker, much altered 

and augmented by D. P[ell], London, 1668, 102-4. 
142 L’interm&iiaire des math., 22, 1915, 197-8. 
143 The Gentleman’s Math. Companion, London, 4, No. 21, 1818, 752-7. 
144 L’interm&liaire des math., 22, 1915, 220-1, 244; 23, 1916, 136-141, 155-7, 209-11; 24, 

1917,13-14. 
145 Nouv. Ann. Math., (4), 16, 1916, 401-26. 
146 Scritti di L. Pisano, 2, 1862, 279-83. Cf. F. Woepcke, Jour, de Math., 20, 1855, 61-62; 

A. Genocchi, Annali Sc. Mat. Fis., 6, 1855, 193-205, 357-9. 
147 Math. Repository (ed., Leybourn), London, 3, 1804, 97-106. 
148 The Gentleman’s Math. Companion, London, 1, No. 8, 1805, 42-4. 
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equal the square of 

x = n\r2 - s2) +?m(2r4—4s2r2 - 2s4) /(r2 - s2) - 2s2m2 
if m : n = s-+r2 : 2s2~2r2. 

To make ci=x2+y2~\-s, (3 = x2+z2+s) y = y2-\-z2+s squares, where 
s=xy+xz+yz, S. Ryley149 took y = 1, 2 = 3. Then 

<*= □, p = x2+4:x+12=(x+n)2 

if £ = (12—tt2)/(2n—4), and 7(2n—4)2= (4—14n)2 if n— —16, whence 

x :y :z = 61 : 9 : 27. 

J. Cunliffe took x = 3z, y-n—z. Then 7= (n+2)2. Make /3 = a2, by choice 
ofn. Then 1622a = a4—10aV+153^4 = □ if a = 192/3. Ortake<* = (m-3^)2, 
z—T2—ly whence n=2(3r+l). Then (3= □ if r = 5/3, whence 

x : y : 2=4 : 32 : 12. 

“Limenus” took <x=a2, j8 = 62, 7 = c2. Then x2+c2=y2+b2 = z2+a2. Hence 
take a number (m2+ml)(n2+nl)(q2+q2l) which is a sum of two squares in 
three ways, whence 

x — mn iq+mnqi—rrhnq+rriinqi, 

while y (or z) is the similar expression with only the second (or first) term 
negative. Set v=m/mh r = n\nu s = q/q,. Then {x+y+z)2+x2 = a2+b2 be¬ 
comes /v2—4(r+$)y —/+4rs+4, where / = (r2—1) (s2—1). Thus the square 
of fv 2rs 2s is known; equate the root to/+2rs+2+C and take C- —2 

to cancel the terms in s4, s3. Hence 2rs= -1, v = (2r2-3r-l)/(2r2+r-1). 
Take q = —n1} q1 = 2nJ m — 2n2—Znni~n\. Then 

x = 4 nAJtn\—nbil, y=4n4—4:nznx+n2n\—4nn\—n\y 

2= -“4n4+8n3ni+n27ii+2nn?+nt. 
The least positive numbers found are 19, 13, 2. 

To make r+^+r2+2^-2^+2^f, etc., squares, W. Wright150 put 
%—x-\-yy rj=x-\~z, Z=yJrz and noted that the problem is reduced to the 
preceding one, for which he took y = px, z=3x, and found p so that 
pH-4p+12=(p-r)2; finally, 4p+13= □ if r = 16. Others equated the first 
fimction (H-*+r)*-4*r to (£-H)2, whence f = 2£-2,7, or to (2£-f/2)2, 
whence £=i?+f/2. Then the difference of the other two initial functions 
factors. 

J. Cunliffe151 made x2-\-y2+a(x+y), x2+z2+b(x+z), y2+z2+c{y+z) 
squares by taking x=rv, y = sv, z = tv, where r2+s2 = e2, r2+22=/2, s2+t2 = g2. 
Take m = a(r+s)je2, n = b{r+t)//2, p = c(s+t)lg\ Then the quotients of the 
initial functions by e2,/2, g2 are i?+mv, tf+nv. v2+pv, which are made squares 
(Cunliffe1 of Ch. XVIII). 

D. S. Hart152 equated the same initial functions to the squares of x-{-y} 
x+z,y+z. Then aix+y) —2xyy etc., determine x, y} z rationally in terms 
of a, b} c. 

Gentleman’s Math. Companion, London, 2, No. 9, 1806, 31-35. 
mIbd.} 5, No. 29, 1826, 502-6. 

l^4^9* Same by J. Matteson, The Analyst, Des Moines, 2, 1875, 

m Math. Quest. Educ. Times, 17, 1872, 37. 



Chap. XIX] Systems of Equations of Degree Two. 529 

W. Wright153 noted that $x—yz = m2, sy—xz=n2, sz—xy=r2, s = x+y+zy 
lead to the problem (x+yy = m2+n2, (a;+z)2 = m2+r2, (;y+z)2 — n2+r2 at 
the beginning of this Chapter. 

S. Jones154 made a — sx+yzy jQ = sz+yx, y — sy+zx squares, where 
s=x+y+z, by taking y = a—x, a = b2, y = c2, whence x= (a2+b2 — c2)/(2a), 
etc., and /?= □. 

J. R. Young155 found four numbers whose sum is a square and such 
that if unity be added to the product of the sum by any one of them there 
results a square. Let the numbers be xdzl, x±.y. It suffices to make 
Ax, Ax2±Axy+l squares. Take 2 = 4 and set 65 —16y = m2, 65 + 1Qy~n2. 
Then w2+n2==130, which holds if m = 3, n = ll. 

W. Wright and others found156 four numbers v, x, y, z whose sum is a 
square n2 and such that vn2Jr 1= □, etc. Equate vn2+1, xn2+1, yn2+1, 
zn2+1 to the squares of 1+s, 1+r, 1+#, 1+p. By addition, s2+2s+l = ?i4 
if r2+q2+p2+2r+2q+2p = 1. The latter is solved for r after taking 

— p — lm—1. Several solvers used the numbers xdzl, xdhy. 
To make x2+y2+S, x2Jrz2-\-S, y2+z2+S squares, where 

S = 2 xy+2 xz+2 yz, 

W. Wright157 noted that the functions factor, being a(b+c), b(a+c), c(a+b), 
where a-x+y, b = x+z, c = y+z. Take b=na, c=ma, n(m+l)~n2%2, 
m(n+l) = (n£ —p)2. We get m and n. Then m+n = N/D, where N and 
D are quadratic in £. Take N = (p?+<z)2 to get £. Then D = □ becomes a 
quartic in q. C. Holt noted that one condition is satisfied if the numbers 
are 5n—m, m—An, An. Baines wrote s=x+y+z] thus $2 —z2, $2 — y2, 
s2—x2 are to be squares, say of (s+z)/m, (s+y)ln, ($+x)lr. We get x, y, z. 
To satisfy Xx = s, take r=3, n= —37/36, m = 25/21. 

To find three numbers double the sum of any two less the third being 
a square, double the sum of any two of their squares less the square of the 
third being a square, while the last three squares have the same property, 
W. Wright158 used the numbers x, y, x+y- Then all but the first three 
conditions are satisfied. Take x+y = a2j Ax Ary — (2a—p)2. For the result¬ 
ing x, a, Ay+x= □ if p4+54p2y+9y2= □ = (3y—v)2, which gives y. 

To make159 2(v+x+y+z) = □ =4a2, a=2(x+y-5rz)2—2v*= □, etc., 
note that a—Aa2(x+y+z — v). Hence take x+y+z—v = Ab2, etc. The con¬ 
dition a2 = 62+c2+d2+e2 is satisfied by taking a = e+r and finding e. 

Several160 discussed the problem to make a+b, b+c, b —c, a+2b+c+d 
and ar+bc+bd+cd squares, (a+b)(b—c) =b+c, and b2—c2 = 1. 

158 The Gentleman’s Math. Companion, London, 3, No. 17, 1814, 462-4. 
™IM., 3, No. 18,1815, 317-8. 
165 Algebra, 1816. Amer. ed. by S. Ward, 1832, 331. 
154 The Gentleman’s Math. Companion, London, 5, No. 26, 1823, 240-2. 
167 Ibid., 5, No. 29, 1826, 500-2. 
u8Ibid., 5, No. 30, 1827, 575-6. 
169 Ibid., 558. 
180 Math. Miscellany, Flushing, N. Y., 1, 1836, 154-5. 
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J. Matteson161 found four squares such that fifteen linear or quadratic 
functions of the squares or their roots shall be squares. 

A. Martin and H. W. Draughon162 found three integers such that the 
square of the sum of any two less the square of the third is a square. 

A. Gdrardin163 treated x2—(y—z)2 = a, y2 — (x—z)2 = b} z2 — (x—y)2~c- 
Set y=z+u, x = z+u+w, z = w+h. Then c-hr} a=rs, b — hs, where 
r~h+2w,$ = r+2u. 

Rational Orthogonal Substitutions. 

L. Euler164 stated that he had a general solution of the problem to find 
16 integers arranged in a square such that the sum of the squares of the 
numbers in each row or column or either diagonal are all equal, while the 
sum of the products of corresponding numbers in any two rows or columns 
is zero. The example given is the following: 

68 -29 41 -37 

-17 31 79 32 

59 28 -23 61 

-11 -77 8 49. 

Euler165 treated orthogonal substitutions on ?i = 3, 4, 5 variables, i. e., 
linear substitutions leaving unaltered the sum of the squares of the variables. 
He expressed the coefficients in terms of trigonometric functions. For 
7i=3, he noted the rational solution 

p2+g2—r2—s2 2gr+2ps 2qs—2pr 

2qr—2ps p2—q2+r2—s2 2pq-\-2rs 

2 qs+2 pr 2 rs—2 pq p2~~q2—r2-\- s2, 

each entry being divided by p2+q2+r&+s2. For n = 4 he gave two similar 
rational solutions of which the second is 

ap+bq4-cr-\-ds ar ~bs~~cp-\-dq -as — br+cq-\~dp aq — bp+cs — dr 

~aq4-bp-\-cs—dr a$-j-&r+cg+dp ar~bs-\-cp—dq ap-4-bq—cr—ds 

ar+bs—cp—dq —ap-\-bq—cr-\-d$ aq+bp-^-cs+dr as—br—cq-i'dp 

~as-\-br—cq-\-dp ~aq—bp-\-cs-\rdr ~ap-\-bq-\-cr—ds arJrbs~\-cp4rdq, 

in which the sum of the products of corresponding numbers in any two 
rows or columns is zero, while the sum of the squares of the numbers in 
any row or column is <r= (a2+624-c2+d2)(p2-fg2-fr24-s2). For his164 former 
problem, we require also that the sum of the squares of the numbers in 

m Math. Quest. Educ. Times, 18, 1873, 35-7. Same in his Collection of Diophantine Prob¬ 
lems with Solutions (ed., A. Martin), Washington, D. C., 1888, 22-4. 

lt2 Amer. Math. Monthly, 1, 1894, 361-2. 
143 Sphinx-Oedipe, 8,1913, 30-1. 
164 Opera postuma, 1, 1862, 576-7, letter to Lagrange, Mar. 20, 1770. Quoted by Legendre, 

Theorie des nombres, 2,1830, 144; Maser’s German transl., II, 140. 
185 Novi Comm. Acad. Petrop., 15, 1770, 75; Comm. Arith., I, 427-443. 
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either diagonal shall be <r, viz., 

(ac+bd)(pr-\-qs) =0, (ab+cd) (p#+rs) + (ad+bc) (;ps+qr) = 0. 

He gave two special cases, one of which is his161 above solution. 
G. R. Perkins160 employed as the numbers of the first row of his square 

pp+gg+rr'+ss', pr'-{-qs'-rp'-sq', ps'-qr'+rq'-sP', pq'-qp'-rs' -fsr', 

-pq'+qp'—rs'+sr’, -ps'+qr' -\-rqf-sp', pr'+qs'+rp' + sq', pp'i-qq'-rrf—ss', 
~pr'+qs'+rp'—sqpp'-qq'-hrrf-ssf, -pq'—qp'+rs'+sr', ps'+qr’+rq’+sp', 

ps'+qr'-rq'—sp', —pq'—qp'—rs'—sr', —pp+gg'-frr'-ss', pr'—qs’ + rp'—sq' 

those whose sum of squares equals (p2+#2+r2+s2)(p'2+• •.). By writing 
in reverse order the functions of the first row and changing the signs of 
r, s in the first two terms and the signs of p, q in the last two terms, we get 
the entries in the second row. We derive the third row from the first, 
and fourth from the second, by moving each term one place to the right or 
left without crossing the middle vertical column, and changing the signs of 
q, s or those of p, r according as the term is moved to the right or left. 
Two of the various possible such squares are given. Of the conditions re¬ 
quired by Euler,164 all are now satisfied except those relating to the two 
diagonals. Take s=0. The latter conditions become 

VV = # V, p(pV - r's') = r (p V - q'r'). 

By further specializations, he obtained the solution 

42+2# -11+4# 24- # 2-8# 

— 18+8# —16+ # 24+4# 38+2# 

11+4# 42-2# - 2-8# 24+ # 

16+ # —18 — 8# —38+2# 21—4#. 

C. Avery167 proceeded as had Perkins, without describing the process to 
choose the signs, and obtained the solution 

48+4 3 —44+33 51—23 -7-63 

—47+6 3 21+2g 64+3g 12+43 
44+3g 00

 I 7-6g 51+23 
—21+2 q -47+6# -12+43 64-3 3. 

The case # = 5 yields Euler's184 answer. 
V. A. Lebesgue188 gave orthogonal substitutions in 3 variables in trigo¬ 

nometric form. He189 quoted Euler's184-5 solution of the problem of 16 
integers. 

L. Bastien170 took four integers a, 0, y,8 such that *0/(y8) is the square 
of r/s, where r, s are relatively prime integers. Write 

x = r(82-y2), y = s(a y-08), t = r(ay-08), u = s(/32-<x2). 

168 Math. Miscellany, New York, 2, 1839, 102-5. 
™ Ibid., 101. 
188 Nouv. Ann. Math., 9, 1850, 46-51. 
™Ibid., 15, 1856, 403-7. 
170 Sphinx-Oedipe, 7, 1912, 12. 
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Then a solution of Euler’s164 problem is 

ax+Py 

~2$y—yt—8u 

fix+ay+28t 

—yu—ht 

—&x+ay—28t 

yu—St 

ax—fiy 

—2j8y+yt—8u 

2ay+yu+8t 

{Sx+ay 

yt-j- 8u 

ax+(3y+2yt 

yt—8u 

~ax+l3y — 2yt 

2ayJryu — U 

fix—ay, 

the sum of the squares of the numbers in any row, column or diagonal being 
(a2+/32) (x2+y2) + (72+62) (fi+u2). 

Fuss95 of Ch. V made p2+s2, q2+s2, r2+s2 squares with pq+pr+qr — s2. 

Papers not available for report. 

S. Gunther, Ziele u. Resultate d. neueren Math. Hist. Forschung, Erlangen, 1876, 50-53. 
J. Favaro, Notize storico-critiche sulla costruzione delle equazioni, Mod6ne, 1878. 
G. de Longchamps, Jour, de math. 616m., 1882, 192; 28,1894, 5. 
Ferrent, ibid., (2), 3, 1884, 121, 155, 169, 193, 217, 241; 1885, 3, 170-1. 
J. Nov&k, Ueber unbest. Gl. 2 Grades mit 2 Unbek., Progr. Budweis, 1890. 



CHAPTER XX. 
QUADRATIC FORM MADE AN ATH POWER. 

Binary Quadratic Form Made a Cube. 

Diophantus, VI, 19, to find a right triangle the sum of whose area x 
and hypotenuse & is a square and perimeter is a cube, took 2 and x as the 
legs and h+x = 25, noting that the square 25 when increased by 2 becomes 
the cube of 3. Then h2 = x2+22 gives re = 621/50. 

Jordanus35 of Ch. XII noted that rc(rc+l) is never a cube. 
C. G. Bachet1 noted that from 52+2 = 33 we can find other [rational] 

numbers x making x2+2 a cube. Let x = 5—N. To make 27 — 10N+N2 
the cube of 3 —z, equate the second term —27z of its cube to — ION, whence 
z=10N/27. We now get N. In VI, 20, we have 17 = 23+32 and seek a 
cube which increased by 17 gives a square; take N—2 and 3+Z as the sides 
of the cube and square, and equate the second terms 12V and 6t of the 
expansions, whence N = 10, t = 20. 

Fermat2 stated that he could give a rigorous proof that 25 is the only 
integral square which is less than a cube by 2. 

Fermat3 stated elsewhere this result on 25 and the fact that 4 and 121 
are the only integral squares which when increased by 4 give a cube. 

L. Euler4 proved that £3+l=D has no [positive] rational solution 
except x—2. To show that, for a and b relatively prime, a?b-\-b4 = □ 
only when a—2, 5 = 1, set a+b~c. The condition becomes bcg—D, 
gf=c2 — 3&C+362. First, let c be not divisible by 3. Then 6, c, g are rela¬ 
tively prime and hence each is a square. Set <7= (5m/n—c)2 and solve for 
6/c. If m is not divisible by 3, c = db (m2 — 3n2), b = d= (2mn—3n2). For the 
lower sign, c is not a square. Hence c = m2—3n2= □ = (m—np/q)2, 
mln=(p2+3q2)l(2pq). Then 5/n2 = (x/(pg), (r = p2—3pg+3g2. Thus 
pqG= □, so that the method of descent applies. Next, for m = 3k, 
b : c = n2—2&n : n2 — 3k2. As before, 

c = n2—3ic2= (n—kplq)2, bjn2= (p2+3<?2—4pg')/(3g2+P2). 

Hence (3g2+p2)(p—q)(p—3g) = □. Let p—q-t, p—3q = u. Then 

tu(3t2—Stu+u2) = □ 

and the method of descent applies. Finally, let c = 3d. Then 

5d(62-36d+3d2) = D 

is of the initial type with the former 5, c replaced by d, b. Since b is prime 
to 3, the descent applies. It is stated that a like proof shows that xz — 1 + □. 

1 Diophanti Alex. Arith., 1621, 423-5. 
2 Oeuvres, I, 333-4; French transl., Ill, 269. 
* Oeuvres, II, 345,434, letters to Digby, Aug., 1657, and to Carcavi, Aug., 1659. E, Braasinne, 

Precis des Oeuvres math, de P. Fermat et de TArith. de Diophante, M6m. Acad. Sc. 
Toulouse, (4), 3, 1853, 122, 164. 

* Comm. Acad. Petrop., 10,1738, 145; Comm. Arith. Coll., I, 33-34; Opera Omnia, (1), II, 
56-58. Proof republished by E. Waring, Medit. Algebr., ed. 3,1782, 374-5. 
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Euler5 applied to £3+l = □ his144 method of Ch. XXII to make a cubic 
or a quartic a square, finding no solutions except 0, — 1, 2, and stated that 
there are no others. Cf. Euler157 of Ch. XXI. 

Euler,6 to make ax2+cy2 a cube, assumed that 

x Va+y c = (p Va-f q V^c)3, 

whence x~apz—Zcpq2, y = 3ap2q—cq3. For Fermat’s case x2Jr2, we have 
(Art. 193) a==l, c = 2,2/ = =tl, whence g(3p2—2(f) = ±1, and q divides unity. 
Taking g = l, we have 3p2 —2 = ±1, whence p2 = l, z2 = 25. A like proof is 
given (Art. 192) of Fermat’s result that 4 and 121 are the only integral 
squares which when increased by 4 give a cube. But (Arts. 195-6) for 
2a:2—5 the method leads to no solution, whereas the solution x=4 exists 
and the above assumption is shown to fail. 

A. M. Legendre7 treated Fermat’s problems as had Euler.6 
Y. A. Lebesgue8 proved that x2—7 = y3 is impossible. For, if y is even, 

x is odd and a:2 = 8n+l+ (2y)3+7; while, if y is odd, £2-j-l = (y-f-2)(2 is 
impossible since the prime divisors oi Q = (y —1)2+3 are of the form 4n+3. 

L. Ottinger9 noted that x2—y2—^rzz has the general solution 

{4m3±3mr(2ra=br) }2— {(mdbr)(4w2db2wr+r2) }2= :F(2wrdtr2)3. 

T. Pepin10 criticized Euler’s6 proofs, noting that there may exist sets 
of formulas for x and y other than the set deduced by Euler’s assumption. 
He proved Fermat’s2’3 assertions. He studied the solution of x2+cn2a=zz 
for c-1, 2, 3, 4, 7, n being 1 or an odd prime, and z being odd if c = 7, and 
proved that the following are not cubes: £2+l (£>0); £2+3; 4£2+7; 
s2+9; z2+n2 if n=108Z+/c(& = 23, 35, 59, 71, 95), or n = 83, 263, 407, or if 
n is a prime 12Z+7^ with 7<rc<1350; x2+2n2 if n is a prime 24Z+5 or 
24Z+7; £2+3n2 if n is a prime 6Z-J-5 or its square; £2-b5. Also, £2-)-92 = z3 
only for x = ±46, £2+72=z3 only for £=±524; £2+ll2 = z3 only for £2 = 4. 

H. Brocard11 and others gave various solutions of £3+17=y2. 
G. C. Gerono12 proved that x3 = y24~ 17 is impossible in integers by use of 

(x+2) {(£ —l)2-j-3} —y24r52 and the divisors of a sum of two squares. 
E. de Jonquieres13 proved that x3+a=y2 is impossible in integers if 

a = c3—4, | c | = 1, 3, 7 (mod 8), or ^c3-4‘, j c [=3, 5, 7 (mod 8), t> 1, or 
0 = ^-1, c=2(2d+l), and hence if a= -3, -5, 7, -9, 11, -17, 23, -43, 
61; also for a = 4, 6, 14, 16 if x 4=0. 

F. Proth14 stated and E. Lucas14 proved that £2+3=2/3 is impossible 
since y=r2+3s2, while x2-3=y3 holds only for £ = 2, y=l.__ 

6 Algebra, 2, 1770, Ch. 8, Art. 121; French transl., 2,1774, pp. 135-152; Opera Omnia, (1), 

IX 478 M<5m" ACad* SC‘ St‘ P4tersbourS’ 11» 1830 (1780), 69; Comm. Arith. Coll., 

6 Algebra. II, Ch. 12, Arts. 187-196. Opera Omnia, (1), I, 429-434. 
7 Th4orie des nombres, ed. 3, II, 1830, Art. 336, p. 12. 
8 Nouv. Ann. Math., (2), 8, 1869, 452-6, 559. 
8 Archiv Math. Phys., 49, 1869, 211. 
10 Jour, de Math., (3), 1, 1875, 318—9, 345-358. Details in Pepin.71 
11 Nouv. Corresp. Math., 3, 1877, 25, 49; 4, 1878, 50. Cf. Escott87 Brocard." 
u Nouv. Ann. Math., (2), 16, 1877, 325-6. 
13 Ibid., (2), 17, 1878, 374-380, 514-5. 
14 Nouv. Corresp. Math., 4,1878,121, 224. 
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T. Pepin15 applied de Jonquieres’13 method to obtain the generalization 
that x2Jca~y2 is impossible if a is of the form c3 — 4a52, where h and c are odd, 
while b has no divisor 4Z+3, and c^l, 3, 7 (mod 8) if a = l, 3, 5, 7 (mod 
8) if a>l. Also if a = 8(2d-j-l)3 — b2, and b is prime to 3 and does not have 
two factors (equal or distinct) of the form 4Z+3; for example, a = —17 or 
47. Also, if a = 8c3 — 2b2, where c = 4/c+1 and b is an odd number not having 
two equal or distinct prime factors of the forms 87+5 or SZ+7; for example, 
a = 6, —10,118, —58. Also, if a = 8c3+262, c = 4A+3, and b is odd and with¬ 
out two prime factors 8Z+3 or 87+5. Also in several analogous cases. 

E. Catalan16 noted that some, but not all, solutions of x2+3y2 = z3 are 

x = i(a+l3)(a — 2(3)((3 — 2a), y = %a$(a — 0), z — or — a$ + fi~. 

S. Bialis17 gave identities showing solutions of xs+k = if if k — b~(85 — 3a2), 
62(5-3a2), 5(3a2+6)2, 4a2(a2+l). Given one solution az+k = (3‘~, another 
follows from the identity, obtained by Euler's5 process, 

(9a*-8a(32y 3 = ( 
\ 4p- j +p a y -Si33 ) ■ 

R6alis18 stated that, if z2 — Zaz — a3+/32 = 0 has integral roots, 

x*+U*+iy-~((3+iy}z = y2 

has integral solutions x — a—z, y = (3—z; for example, if «~a2, d :JLa;i; 

a = 2, j3 = ±1; a = 32, (3 = db64. If 

8/+3a+6a+l==n, 
-~o?+l32 = y2has integral solutions other than x~a, y ~(t (7. (’h. XX I.*ntJ 

T. Pepin19 proved there is one and only one square which becomes an 
odd [Pepin33] cube on adding 2, 13, 47, 49, 74, 121, 140, 191, 193, 201,500, 
589, 767, 769, 866 or 868. No square >0 added to 1, 3, 5, 27, 50, 171, or 
475 becomes an odd cube. The only solutions of r+Il =+ are ,r 4, 58; 
the only solution of x2+l9~yz is ?/ = 7. If a is one of the primes 11, 17, 
29, 37, 47, 83, 96, 107, 181, 197, 233, 359, 421, 509, 757, 827, there is a 
single square which becomes an odd cube on adding I la2. If a < 1000 and 
a is of one of the linear forms 387+3, 13, 15, 21, 27, 29, 31,33, 37 and a | 29, 
89,173, 281, 331, 569, 953, no square increased by 19a2 is an odd cube. Also, 
similar theorems. 

Pepin20 gave sixteen special theorems on r+/~+, proved only under 
the assumption that x is even and z odd. 

Pepin21 proved that x2+n=M3 if n~5, 0, 10, 12, 14, • •98; 4/’ f ri j z' 
if n = 7, 15, 39, 47, 55, 63, 71, 79; x2+44~& only for .r’ 81; and gave 
several theorems on x2+ll^2 = z3 [all provided z is odd, Pepin34 ]. 

18 Annales Soc. Sc. Bruxelles, 6, 1881-2, 86-100. 
14 M&n. Soc. Sc. Lidge, (2), 10, 1883, No. 1, p, 10. 
17 Nouv. Ann. Math., (3), 2 ,1883, 289-207. 

II nIUd.f 334^5. Proof of first, by R Fauquembergue, (8), 4, IK8f», 879; of Us 
Brocard, (3), 10, 1891, p. 7* of Kxercieo*. 

19 Mem. Pont. Accad. Nuovi Linrei, 8, 1892, 41 72; Extract, Sphmx-Oedmc l\ms 9 m 9 
Cf. Pepin.78 ' * 

20Comptes Rendus Paris, 119, 1894, 397-9; correction*. 120, 1893, 494 tIVi»mlsl 
27 Ibid., 120, 1895, 1254-6. 11 
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E. Fauquembergue22 gave an insufficient proof that xz+2^y2 if x + —1. 
C. Stormer23 solved x2—y2=zz by means of the identity 

{x(x2+Zy2) }2-{y(y2+3x2) }2={x2-y2)\ 

A. Goulard24 proved that x2—l=z3 only for x2 = 9, since #2—l=8w3 has 
no solution except when w = 0 or 1 [Legendre,81 of Ch. I]. T. Pepin (pp. 
283-5) reduced the question to uz+xz = 2yz which holds only for u = x 
([Legendre, Th^orie des nombres, ed. 2, 1808, 347]. 

E. de Jonquieres25 treated z2—a2=y3. For a = 3, E. B. Escott26 noted 
the solutions y~ —2, 0, 3, 6, 40 and stated that there are no others <1155. 

Concerning Fermat’s assertion that 25 is the only square which in¬ 
creased by 2 gives a cube, H. Delannoy27 remarked that Euler’s6 proof is 
incomplete since if applied to re2+47 ~zz it yields x = 500 but not the solution 
x —13. P. Tannery28 replied that the proof as given by Legendre7 depends 
on the fact that every divisor of z2+2 is of the form p2+2q2, while not 
every divisor of z2+47 is of the form p2+47q2. I. Ivanoff (p. 47) explained 
the difference by the fact that in the domain #(+L^2) of the complex 
integers depending on ~f-2 the introduction of ideals is superfluous, but 
not for #(+—47). E. Landau29 supplemented Ivanoff’s remark by noting 
that a second circumstance is necessary to justify Euler’s conclusion that 
(x+ V—2)(x— +^2) = i3 implies that z±+^2 are cubes in #(V—2), viz., 
that, in #(+^2), =bl are the only units (complex integers dividing unity). 
From the superfluity of the introduction of ideals, we can conclude only 
that, if a product of two relatively prime complex integers is a cube, each 
of the two factors is a product of a cube by a unit. For R( +2), the intro¬ 
duction of ideals is unnecessary, but (x+ V2)(z— +2) = tz does not imply 
that x± V2 are cubes of integers <x+/3+2. Cf. Euler183 of Ch. XXI. 

A. Boutin30 stated that xz—7y2-l for z = l, 2, 4, 22, but for no other 
values <196. Other writers31 stated that any new solution has at least 
1400 digits in y. 

E. Fauquembergue32 noted that px2+mxy+qy2 = zz for 

x=p{ f - 3 pqfg2 - mpqgz), y = p2g {3rafa+(m2 - pq)g2}, 

z=p(f2+mfg+pqg2). 

T. Pepin33 remarked that all the theorems in his19-21 papers on insolvable 
equations x2+cy2~zz were subject to the restriction that z is odd. The 
enunciation of this restriction is necessary if c = 8Z or 8Z+7 since in these 

72 Mathesis, (2), 6, 1896, 191. Criticized by L. Aubry, Pin termed, des math., 18, 1911, 204. 
23 L’mterm6diaire des math., 2,1895, 309. 
24 Ibid., 3, 1896, 135. 
“ Ibid.,.6, 1899, 91-5; 5, 1898, 257 (a-3). Cf. Descartes,14 Ch. XIII; Tait,25 Ch. XXI. 
»Ibid., 7, 1900,135. 
"Ibid., 5, 1898, 221-2. 
28 Ibid., 6, 1899, 48. 
29 Ibid., 8,1901,145-7. 
30 Ibid., 8, 1901, 278. 
81 Ibid., 11, 1904, 44 (9, 1902, 109, 183-5). 
»Ibid., 9,1902, 311-2. 

83 Ann. Soc. Sc. Bruxelles, 27, II, 1902-3, 121-170. Extract in Sphinx-Oedipe, 5, 1910, 
10-13 (of numfro special), 42-6. 
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two cases z can be even without x and y being even. That the solution of 
the equation is effected by different formulas according as z is even or odd 
is shown by the case c=47. Then all relatively prime solutions in which 
z is odd are 

z =/2+W, x =/( p - Ulg2), y~g(SP~ 47^2), 

where / and g are relatively prime and one even. All solutions of 
x +47y2=(2u)z, where u is odd, are 

x = 13/3+6Qf2g —168/02 -144#3, 

y =/3 -12pg - 24fg2 +lfy», u = ?>P+2fg+16^, 

with similar expressions when z = 4u, 8u, I6it, etc. The cases c = 35, 
c=499 are treated (p. 142, p. 155) 

Pepin34 noted that 2xz=*3y2—l has the solution rc = 61, y = 389, but left 
undecided the question of an infinitude of solutions. One of two methods 
is based on the theorem that all relatively prime solutions of 2xz-3y2—z2 
are given by 

x=p—3g2j y=fA+3gB or 3fA-15gB, z=fA+9gB or -5fA+27gB, 

where A =P+9g2, B =P+g2. It remains to find /, g such that z = =h 1. 
G. de Longchamps35 stated that px2+qy2 = zz always has integral solu¬ 

tions. [In fact, a solution is x = at, y~(3t} z = t^pa2~{~q(32.2 
H. Brocard38 listed the known values of a for which xz—y2 = a is impos¬ 

sible and the values for which there is a single solution. 
E. B. Eseott,37 A. Cunningham and E. F. Davis38 treated x2 —17 = y3. 
A. S. Werebrusow39 expressed Euler’s6 solution of x2+cy2 = zz in terms 

of a=~2p, P~-p2+3cq\ 
Several40 solved x2-{-3y2 = 4zz completely by use of identities. 
U. Bini41 gave a solution of x2+3y2 = z3 involving two parameters. 
An anonymous writer42 noted that 17y2~l—2x3 has no solution with 

l<?/=55. 
A. Cunningham43 gave a tentative method to solve xz = y2+a. Choose 

a modulus m, preferably 103 or 104, and find the values Cm of x for which 
x3—a is a quadratic residue of m. By use of various m’s we finally get 
the possible linear forms of x. Application is made to a= —17, a= —127. 

Several44 solved x2+x-±:l =yz. 
Welsch46 applied the theory of binary quadratic forms to justify 

Legendre’s7 determination by use of V-3 of all solutions of x2+3y2^zz. 

** Nouv. Ann. Math., (4), 3, 1903, 422-8. ~ - — — 
36 L’interm^diaire des math., 9, 1902, 115. 

10, 1903,284. 
37 Ibid., 12, 1905, 43-45. Amer. Math. Monthly, 26, 1919, 239-41. Cf. Brocard U*B6 
38 Math. Quest. Educ. Times, (2), 8, 1905, 53-4. Cf. Cunningham.*3 
” L’interm^diaiie dee math., 10, 1903, 152. Cf. E. B. Eseott, 11, 1904, 101-2 
« JWd., 14, 1907, 168; 18, 1911, 279. 
"JWd., 14, 1907, 192. 
43 Sphinx-Oedipe, 1906-7, 79. 
43 Math. Quest. Educ. Times, (2), 14, 1908, 106-8. 
44 L’interm&liaire des math., 15, 1908, 244; 10, 1009, 201: 17, 1910, 126 : 23. 1916 4 
48 Ibid., 17,1910, 179-180. 
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E. B. Escott46 noted that, if yz — 2x2 — 1 is solvable, y = 24n2 — 1 or 2n2 — 1. 
L. Aubry47 proved that x2+l+22k = yz is impossible. If x is odd, x2+22fc 

is a sum of two relatively prime squares, so that the factors of y3—1 are 
s=l (mod 4). Thus y —1 = 1, which gives y2+y+1 = 3 (mod 4). If x — 2nz, 
where z is odd, 

22n {(2*~")2+z21 = {y -1) (y2+</+1). 

Since y2-\~y+l is odd, its prime factors are of the form 42+1. Thus 
y—1 is divisible by 22* and hence by 4. Again, y2+y+1^3 (mod 4). 

L. Aubry and E. Fauquembergue48 proved that 2x2—l=yz has no 
solutions other than x = 0, y~ —1; £= ±1, y = l; x = ±78, y = 23. 

A. Gerardin49, to make G=x2+xy+y2 a cube, assumed that 

(1 ■+ mx)2+ (1+rnx) {my) + {my)2 = (1 +mf )3, 

/3m2 + (3/2— G) m= -3f+2x+y, 

and took —3/+2x+y=0. Then / and m are expressed in terms of x, y. 
To make the result symmetrical, set y = qf3, x = p+ql3. Hence 

X2+XF+Y2 = Z3 
for 

X=g3+3pg2-p3, Y= —3pg(p+g), Z=p2+P5+g2, 

a result obtained otherwise by A. Desboves.50 
Gerardin51 treated aX2+bXY+cY2 = hZz, given one solution a, fi, 7* 

After substituting X^a+mx, Y = (3+my, Z = y-\~mf, equate the coefficients 
of the first powers of m (by choice of /); thus m is determined rationally. 

L. Aubry52 proved that 25 is the only square which increased by 2 gives 
a cube [Fermat2]. He53 proved that x2+a—y3 is impossible for a = 4A2-\-Bz 
if B = 1 (mod 4) and A is not divisible by the square of a prime 4n —1 
dividing B, or by 3 if B is not divisible by 3, or by 33 if B is divisible by 3. 
Hence it is impossible for a = 17. 

E. Landau54 proved that z3+2 ~y2 has only a finite number of solutions 
by means of Thue’s result that a3+3a20+6a02+2/33 = l has only a finite 
number of solutions (Thue9 of Ch. XXIII), and Landau’s29 discussion above. 

H. Brocard55 gave eight sets of solutions of %2—yz = 17. 
L. J. Mordell56 investigated y2—k~xz by elementary methods, by the 

theory of ideals, and by the arithmetical theory of binary cubic forms. 
In particular, he listed the values of k between -100 and 100 for which 
he believed there is an infinitude of solutions. 

46 Amer. Math. Monthly, 16, 1909, 96. 
47 Sphinx-Oedipe, 6,1911, 26-27; stated by F. Proth, Nouv. Corresp. Math., 4, 1878, 64, 223. 
48 Sphinx-Oedipe, 6,1911,103-4; 8,1913,170-1 (122-3 for E. B. Escott’s proof that a solution 

y>23 has more than 256 digits). 
49 Assoc. fran<?. av. sc., 40, 1911, 10-12. 
80 Nouv. Ann. Math., (2), 18, 1879, 269, formula (8) with a =5 = 1. 
51 Bull. Soc. Philomathique, (10), 3, 1911, 222-5. 
52 Sphinx-Oedipe, 7, 1912, 84. 
83 L,interm4diaire des math., 19, 1912, 231-3. 
M75id., 20, 1913,154. 
88 Ibid., 62-3. Cf. Brocard.11 
86 Proc. London Math. Soc., (2), 13, 1914, 60-80. 
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A. G6rardin67 summarized the known results on x3 — k — z2; he noted 
the solutions 23 — 4 = 22, 53—4 = 112, contrary to de Jonqui&res’13 assertion 
that only one solution exists. Given one solution x0, z0) Gdrardin deduced 
(ibid., 163-5) the second solution [R6alis17] 

x= {3xI/(2zo)}2—2xq. 

Set x0 = 2p, where p is a prime. Then z0=p>, 2p’, 3pj, 6pJ‘ (j = 0, 1, 2). 
There result twelve integral values of Jc for which the given equation is 
solvable. For k = (2p — l)2(9p2—2p+l), the solutions include x = 2p, 
2p—1, 2~4p, 4p2—2p, (12p2-6p+l)2-4p+l. 

L. Bastien58 listed the values 3, 5, 6, 9, 10, 12, 14, 16, 17, * • •, 99 of 
A<100 for which qz—k2 = n is impossible, the values n = l, 2, 8, 13, 29, • • •, 
81 for which there is a single solution, and the values for which there are 
more than one solution. 

CrussoP noted cases when xz-\-k = y2 has 7, 9, 34 and 41 solutions. 
A. G6rardin (ibid., p. 16) noted cases when it has 21 solutions. 

A. G&rardin60 proved that all solutions of x2+3y2=zz are given by 

(az - 9a/?2)2+3 (3<*2/? - 3/33)2 = (a2+3/?2)3. 

T. Hayashi61 proved that y2+l +z3 for 2/4=0; y2 — l+zz for p2=(= 0, 1, 9. 
A. Cunningham62 proved that, if p is prime, xz—p2 = 2 • 106 has the single 

solution x = 129, p = 383. 
L. J. Mordell62a noted that no equation x2+a = yz has an infinitude of 

integral solutions. 
For 2x2+2x+lZ=yz, see paper 161 of Ch. I. On 2762+l = 4c3, see 

Kronecker23 of Ch. XXI. 

Binary Quadratic Form Made an nra Power. 

J. L. Lagrange63 noted that the rath power of f=x2+axy+by2 can be 
expressed in the same form F=X2+aXY+bY2 by employing the factors 
x+cty, x+Py of/ and taking X+aY to be the expansion of (x+ay)m. The 
resulting values of X, Y make F an rath power. 

L. Euler64 stated that he used this method for f=x2+ny2 in the first 
edition of his algebra.6 

Euler65 noted that, if N=a2+rib2, Nx is of the form x2-\-ny2, and asked 
for the least x =1=0 or least p+0 for which Nx=x2+ny2. Let 

(a+bV^n)X=A+B V— n, a = cos <£, b^n=^ sin <£. 

87 Sphinx-Oedipe, 8, 1913, 146-9. 
Ibid., 9, 1914,16-16. 

MJWd., 43-44. 
•° L’interm^di&ire des math., 21, 1914, 129. 
“ Nouv. Ann. Math., (4), 16, 1916, 150-6. 
“Math. Quest, and Solutions (3), 3, 1917, 74. 
“•London Math. Soc. Records of Proceedings, Nov. 14,1918. 
“ Addition IX to Euler's Algebra, Lyon, 2,1774,636-644; Euler's Opera Omnia, (1), 1,1911, 

638-643; Oeuvres de Lagrange, VII, 164-170. For Lagrange, M<kn. Acad. 
Sc. Berlin, 23, ann6e 1767; Oeuvres, II, 622-4. 

“Opera postuma, I, 1862, 571-3, letter to Lagrange, Jan., 1770; Oeuvres do Lagrange. 
XIV, 216. 

“ Nova Acta Acad. Petrop., 9, 1791 (1777), 3; Comm. Arith., II, 174-182. 



Then 

a+6 V—n= 'IN (cos <j>+i sin <j>), A=N’'l2c osM, B= {N^ sin X^J/VZ 

Hence B is a minimum =j= 0 for a rational value of X approximately equal 
to irk[<f>, where k is an integer. 

Euler66 made x2+7 a biquadrate. For x = (7p2—q2)l(2pq), it is the 
square of ($2+7p2)/(2pg). To make the latter a square, take q — pz, whence 
we are to make 22(7-j-z2) = □. Since an evident solution is 2 = 1, set 
z~l+yt We get l§+20y-\-6y2+2y2, which is the square of 4+£>y/2 for 
y = 1/8. 

A. M. Legendre67 treated Ly2-{-MyzJrNz2~bP) where P is a product of 
powers of several variables, in particular, xk. 

G. L. Dirichlet68 recalled that if l is an odd prime not dividing a and if 
52—ae2 = l it is known that d2—ae2—ln holds for the numbers d, e given by 
d-fe ■Va=(5+€ Va)n. It is proved that d, e are relatively prime. If also 
(%—ael=kln, where dh ei are relatively prime, and k is odd and prime to al, 
we can find solutions of t2—au2 = k such that 

(dike'fa) (tzku'fa) = di+ei 'fa 

for a suitable choice of signs. Application is made to show that, if P, Q 
are relatively prime, the most general manner of making P2-5Q2 a fifth 
power, odd and not divisible by 5, is to set 

P+Q^5 = (ikf±iV-V5)5(f±wV5), f2—5«2 = 1, 

where M, N are relatively prime, one even and M not divisible by 5. If 
P, Q are relatively prime, both odd, and Q is divisible by 5, the most general 
way to make P2—5Q2 — 4zb is to set 

5)5/16, 

where <£, ^ are relatively prime, both odd, and is prime to 5. 
Cauchy’s papers on the representation of pk or 4pk} where p is a prime, 

by x2-\-ny2 will be considered under binary quadratic forms. Luce127 of 
Ch. XII discussed x2—ny2 = zi. 

F. Landry69 obtained a new kind of continued fraction from 

A = a2-f r, >5=a+ 
T 

VZ+a 
r_ _r_ 

a+2a+2a+-*-. 

If mjn is a convergent of order u, m2—An2—(— l)urtt. Hence to solve 
x2~Ay2=zm, take as z any integer for which A~a2—z. 

V. A. Lebesgue70 recalled the fact that, if a is an odd prime and A is 
an odd integer dividing t2+a, but not divisible by a, A^^x^ay2 holds for 
an infinitude of values ju, when x, y are relatively prime. The least p is 

“Algebra, St. Petersburg, 2, 1770, § 160; French transl., Lyon, 2, 1774, pp. 191-3; Opera 
Omnia, (1), I, 413. 

67 Th6orie des nombres, 1798, 435-40; ed. 2, 1808, 374-9; ed. 3, 1830, II, 43-49; German 
transl. by Maser, II, 43-50. 

68 Jour, fur Math., 3, 1828, 354; Werke, I, 21. 
69 Cinquteme m4moire sur la th6orie’des nombres, Paris, July, 1856. 
70 Jour, de Math., (2), 6, 1861, 239-240. 
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said to be even if A is a quadratic non-residue of a or if A=4n+3, a = 4ft+l. 
When jtt = 2p, y is odd. Then A"—z = p2, A"+£ = ag2, where p2 and aq2 
are relatively prime. Hence 2A" = p2+aq2 and v is a minimum. 

L. Ottinger71 tabulated solutions of x2—y2=zn, n — 2} 3, 4, and gave the 
identity 

J(4m2=h2mr+r2)2—8m4}2— {4m(m±:r) (2m2dt2??2r+r2) }2 = (2mr±r2)4. 

T. Pepin72 proved that, if c is positive and such that there is a single 
class of positive odd quadratic forms of determinant — c (as for c= 1, 2, 3, 
4, 7), the most general manner of solving x2+cy2 — zm) where x, y are to be 
relatively prime integers and z odd, is to set 

(p+gV-c)m = P+Q V-^c, x = ±P} y = dtQy z = p2+cq2, 

where p, q are any relatively prime integers for which z is odd. Hence we 
can justify the method of Euler for c = l or 2. Next (pp. 333-8), let n be 
a positive integer such that all the quadratic forms of determinant — n are 
distributed into various genera each composed of a single class; then all 
relatively prime solutions of x2+ny2=z2m+1, with z odd, are obtained from 

(1) ztxzky V—n = (p+# V—n)2ro+1, 

where p, q are relatively prime. But for x2+ny2=z2m, z odd, we use (1) 
with the exponent m, and employ the complete solution 

af+bg2 

k ’ 

af2 — bg2 

p=~k~’ 
(*“ 1, 2) 

of p2+nq2=z2, where for a, b are to be taken all the decompositions of n 
into two relatively prime factors, except that when k~ 2, n = 8Z, the two 
factors shall have 2 as their g.c.d. For ax2Jrcy2=zm, a> 1, c> 1 (pp. 
339-343), when ac is one of the numbers for which the number of classes of 
quadratic forms of determinant —ac equals the number of genera, there is 
no solution in integers +0 if m is even; while if m is odd we get all relatively 
prime solutions with z odd from 

± ^laxzt ’^cy— ( Vap+ ^—cq)m, z*=ap2+cq2, 

where p, q are relatively prime. Thus 2z2+3 and 2+3y2 can not equal 
cubes. 

Pepin15 proved that x5+a is not a square if a = 32(2d+l)5—562, where b 
is prime to 10 and has no prime factor 20Z+11. If <2 = 0, 5=1, 3, then 
a=27, —13. 

M. d’Ocagne78 solved x2—ky2=zn in positive integers by use of 

<t>(a, 0, n) = 

n Archiv Math. Phys., 49, 1869, 211-222. 
7* Jour, de Math., (3), 1, 1875, 325. Results for m ®3 cited under Pepin.10 
71 Comptea Rendus Paris, 99, 1884, 1112. 
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A solution involving an arbitrary positive integer a is 

x — a<f>(2a, k—a2, ri) + (k — a2)(j>(2a, k—a2, n — 1), y = <j>(2a, k — a2, n), 

z-dz(k—a2) for n even; z= — (k—a2), a> Vfc, for n odd. 
M. Weill74 repeated Euler’s6 method for ax2+cy2=zn. 
T. Pepin75 proved that, if the number of classes of quadratic forms of 

determinant — c is relatively prime to n, all relatively prime integral solu¬ 
tions of x2+cy2=zn are given by 

dzXzky ^~—c= (p+g>f—c)n, z = p2+cq2. 

For n=3, the solvability depends upon whether or not the triplication of a 
quadratic form gives the principal class. 

H. S. Vandiver76 found an infinitude of, but not all, solutions of 
x2+bxy-\-cy2=zn. 

G. Candido77 employed Lucas’ functions Un, Vn: 

Vn= (p+ ^gy+(p- ^qY, (AVny-(.tf—q)Ul = q\ 

Change q to p2—g. Thus x2—qy2=zn has the solution x — \Vn, y= Un, 
z=j)2—q. 

A. Cunningham78 noted that y2+y+l=xn is impossible if n> 3, 
2tt<2*108. R. W. D. Christie stated that x must be of the form a2+a+l 
and inferred that n+4, 5, n+3 unless a = 2. 

Cunningham79 noted that the only solution of J(g2+1) =P4 with 
q< 1600000 is q=239, p = 13. Christie obtained this solution by making 
special assumptions. Cf. Stormer137-9 of Ch. VI; Euler7 of Ch. XIV; Euler53 
and Pepin58 of Ch. XXII. 

TJ. Bini80 stated that the method of Desboves142 of Ch. XXIII [cf. 
Lagrange63] does not lead to the determination of the form of the solutions 
of x2JraxyJrby2=zn for every integer n. 

A. S. Werebrusow81 gave polynomials X, Y of degree n in x, y making 

AX2+2BXY+CY2~ (ax2+2bxy+cy2)n. 

E. B. Escott82 noted that solutions of X2—DY2=4Xn are given by 

(an+/3n)2—J2=4(a:2—Dy2Y, «, jS-asiyV5. 

But not all solutions are so obtained.83 
O. Degel84 treated the homogeneous equation obtained from the last 

one by replacing X, 7, Z by Xijxi (i = 1, 2, 3). The section C by x2 = 0 

74 Nouv. Ann. Math., (3), 4, 1885,189. 
76 Mem. Accad. Pont. Nuovi Iincei, 8, 1892, 41-72. 
76 Amer. Math. Monthly, 9,1902,112. 
77 Giornale di Mat., 43,1905, 93-6. Cf. Candido.*7 
78 Math. Quest. Educ. Times, (2), 8, 1905, 69-70. 
79 Ibid., 9, 1906, 23-24; 14,1908, 77. 
80 L’interm&iiaire des math., 14, 1907, 246. 

Ibid., 15, 1908, 153; Mat. Sbomik, 22. 
82 L’mterm&haire des math., 15, 1908,153. 
** Ibid., 17, 1910, 2, 137-8, 229-30. 
ulUd., 17, 1910, 253-5. 
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lies on the cone x\x\~2—Axn3 — 0, which every plane x3 = 11X4 cuts in two lines 
having Xi= db2 Vj?£4. We get rational coordinates of the general point 
P on C by taking p to be a square if n is odd. For example, let 71 = 2m. 
The general point on the line joining P=(2/zw, 0, 11, 1) and (p, 1, 0, 0) is 
(2nm+f>V) 5, v, 1) = (x), which is on the surface if 8 = ipfiml(D—p2) and gives 
rational solutions x{. The same problem was treated by others.86 

F. Ferrari86 made f=x2+axy+by2 an nth power. Letf=(x+ay) (x+@y)- 
A sufficient condition is x+ay= (r+as)n. The latter becomes linear in a 
by use of ct2—aa+b = 0. Hence we get x, y as polynomials in r, s, a, b. 

G. Candido87 used Lucas’ uky vk satisfying 

dvkY-(^-qjul = qk 

to show that for p = 2X+aju, q^W+ajiX+bfi2, an infinitude of solutions of 
x2+axy+by2=zk is given by 2x = vk—apLUk, y=*nuk, z = q. The explicit 
formulas are given in the cases k — 2, 3, 4 and for a = 0 or 5=0. 

F. Ferrari88 used, as had Lagrange, the expansion of (ai+fo2 Va n to 
find A’s such that Ah+ctAh — (a\-\-aa%)k. 

E. Swift89 proved that the number n(n — 3)/2 of diagonals of an n-gon 
is not a biquadrate. 

By Thue211 of Ch. XXVI, x2—h2 = kyn (n>2) has only a finite number 
of solutions. On l+y2^xn, see Lebesgue68 of Ch. VI. On l+2y2 = 3*, see 
Fauquembergue158 of Ch. XXIII. On l±4rrn= □, see papers 7, 8, 169 of 
Ch. XXVI. 

axx\-]-hanxl MADE A CUBE OR HIGHER POWER. 

S. R6alis90 noted that u21u2 = a(uiX2 — vxi)2+P(u1y2--vyi)2+y(uiZ2 —vzx)2 

if 
Ui = ax2+l3y2+yz2i, v = 2 (aXyX2+pyiy2+yz 1 z2). 

J. Neuberg91 took x2=xi, y2—yh 22= —zy in the preceding result to get 

ax2+/3y2+yz2 = (ax*+0Vi+72i)3, — = —= oLx\+f$y\ — 3y z2l} 
%i Vi 

f = 3*tJ+3pyt-yzl 

E. N. Barisien92 noted that any sixth power is the sum of two squares 
diminished by a third: 

n6= {(n+2)(n2—2n—2) }2+ (4n(n+l) }2— (2(n+l)(n+2) }2. 

86 L’interm^diaire des math., 18, 1911, 35. 
80 Periodico di Mat., 25, 1909-10, 59-66. Cf. Lagrange.08 
07 Ibid., 27, 1912, 265-8. Cf. Candido.77 
88 Ibid., 28, 1913, 71-8. 
89 Amer. Math. Monthly, 23, 1916, 261-2. 
90 Nouv. Corresp. Math., 4, 1878, 325. 
91 Mathesis, 1, 1881, 74. 
92 Le matematiche pure ed applicate, 2, 1902, 35-36. 
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An identity (p. 253) shows that 4 times the cube of any even integer is a 
SJ less a SI. 

G. de Longehamps93 noted that ax2+fhf+yz2+M2=u2 for 

7=\ = *P+Pg- - 3 yi- -Z5k\ -=*- = ZaP+ZPg--yi* - 5k2, 
j y i fc 

U = aP+pg°-+yi*-5k2. 
The case 5 — t = 0 gives Neuberg’s result. 

An anonymous writer94 noted the solution x = 3, y = 12. z= 11, u = 2 of 
z2+2/2-zW. 

J.^ Rose95 noted the solution x=4v2, y=4u3, z = 4t^(i’—1), u=2v, and a 
solution with j/=s+l. Mehmed-Nadir gave the solution 

s = 6(a2+69)(y-62). a,y = §{(fli!±l)(a2+62)2±464}; « = a2+62; 

and noted that the same x, u, with F=a(a2+62)2, Z=2ab%a2+b2), satisfy 
x2+Y2+Z2=u5. 

V. G. Tariste,m stated that all sets of solutions of 'x2+y2—z2 = u5 are 
given by seven sets of formulas like ^ = 4a, z = 25, u5—x2 = 4a/3; y, z = a=L/3. 

F. L. Griffin and G. B. M. Zerr96a discussed • • • -\-xl = y4. 
W. H. L. Janssen van Raay97 solved x*=x2-\-y2-\-z2. 
G. Candido98 found a solution of 'Zx2i—yp by expanding II(aJ+jSj). 
R. D. Carmichael" gave a four-parameter solution of x2+ay2-\-bz2*=w4. 

93 L’intermddiaire des math., 10, 1903, 111-2. 
94 Ibid., 14, 1907, 244. 
96 Ibid., 15, 1908, 46. 
96 Ibid., 19, 1912, 38. 
Ma Amer. Math. Monthly, 17, 1910, 147-8. 
97 Wlskundige Opgaven, 12,1915, 209-11. 
98 Periodico di Mat., 30, 1915, 45-47. 
99 Diophantine Analysis, New York, 1915, 46. 



CHAPTER XXI. 

EQUATIONS OF DEGREE THREE. 

Impossibility of x3+y^—zz. 

According to Ben Alhocain a defective proof was proposed before 972 
by the Arab Alkhodjandi.1 

The Arab Beha-Eddin2 (1547-1622) listed among the problems remaining 
unsolved from former times that to divide a cube into two cubes. 

Fermat3 stated that it is impossible to decompose a cube into two cubes. 
Fermat proposed the problem to find two cubes whose sum is a cube to 

Sainte-Croix Sept., 1636 (Oeuvres de Fermat, II, 65; III, 287), to Frenicle 
May(?), 1640 (Oeuvres, II, 195), to the mathematicians of England and 
Holland Aug. 15, 1657 (Oeuvres, II, 346; III, 313). Oddly enough, 
Frans van Schooten4 proposed Feb. 17, 1657, the same problem to Fermat. 
Fermat5 insisted that the problem is impossible. 

Frenicle6 proposed the equivalent problem to find r central hexagons, 
with consecutive sides, whose sum is a cube. By a central hexagon of n 
sides he meant the number 

#n= 1+6+2-6+3-6+*. • + (?! —l)6=n3—(ft — 1)3. 

The sum of Hn, Hn-h • • *, Hn-r+1 is thus a cube z3 if and only if 

nz= (n—r)z+zz. 

J. Kersey6a stated that J. Wallis proved that no rational cube equals a 
sum of two rational cubes, but gave no reference. 

L. Euler7 stated Aug. 4,1753 that he had proved the problem impossible. 
Euler8 gave the following proof, incomplete at one point. We may 

assume that x and y are relatively prime and both odd. Set x+y = 2p, 
x—y = 2q. Then we are to prove that 2p(p2+3g2) is not a cube. Suppose 
that it is a cube. First, let p be not divisible by 3. Then p/4 and p2+3g2 

XF. Woepcke, Atti Accad. Pont. Nuovi Lincei, 14, 1860-1, 301. 
* Essenz der Rechenkunst von Mohammed Beha-eddin ben Alhossain aus Amul, arabisck u. 

deutsch von G. H. F. Nesselmann, Berlin, 1843, p. 55. French transl. by A. Marre, 
Nouv. Ann. Math., 5,1846,313, Prob. 4; ed. 2, Rome, 1864. Cf. A. Genocchi, Annali di 
Sc. Mat. e Fis., 6, 1855, 301, 304. 

’Observation 2 on Diophantus (quoted in full in Ch. XXVI on Fermat's last theorem). 
Oeuvres de Fermat, I, 291; III, 241. The problem was sent (1637?) by Fermat to 
Mersenne to be proposed to St. Croix; cF. P. Tannery, Bull, des sc. math., (2), 7, 1883, 
8, 121-3. 

4 Correspondance of Huygens, No. 378, Oeuvres completes de Chr. Huygens, 2, 1889, 17; 
Oeuvres de Fermat, 3, p. 558. 

8 Oeuvres, II, 376, 433, letter to Digby, Apr. 7, 1658, to Carcavi, Aug. 1659. 
8 Solutio duorum problematum . . . 1657 Dost]; Oeuvres de Fermat, III, 605, 008. 

The Elements of Algebra, London, Book III, 1674, 73. 
7 Corresp. Math. Phys. (ed., Fuss), 1,1843, 618. Also stated in Novi Comm. Acad. Petrop., 

8,1760-1,105; Comm. Arith. Coll., I, 287, 296; Opera Omnia, (1), II, 557, 574. 
«Algebra, 2, 1770, Ch. 15, art. 243, pp. 509-16; French transl., 2, 1774, pp. 343-51; Opera 

Omnia, (1), I, 484-9. Reproduced by A. M. Legendre, Th^orie des nombres, 1798, 
407-8; ed. 3, 1830, II, 7; transl. by Maser, II, 9. 

545 
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are relatively prime integers, so that each is a cube. Since p2+3q2 is a cube, 
he stated without rigorous proof (cf. Ch. 12, Arts. 188-191) that it is the 
cube of a number t2Jr%u2 of like form and that p-fgV—3 is the cube of 
t-\-u V—3. [Cf. papers 6, 10, 27-29, 72 of Ch. XX; also 30, 36 and 183 
below.] 

Hence p — tif—Qu2), q — 3u(t2~u2). But also p/4 shall be a cube. The 
same is true of the product 2p of 2it+Su, t—Zu, which are relatively 
prime since p and hence t is not divisible by 3. Thus the last two are cubes, 
P and gzj whence 2t=P+gz. Thus we have two cubes/3, g3, much smaller 
than x3, p3, whose sum is a cube 21. A similar method of descent is used in 
the remaining case p — 3r, when the product of the relatively prime numbers 
9r/4 and 3r2+g2 is a cube. As before, r = Zu(t2—u2). Since 

c Qm pa. 

«(*+*)(<-«) 

is a cube and is the product of three relatively prime factors, each factor is 
a cube: t-\-u—p, t—u = g3, so that/3—g3 is a cube 2u. 

J. A. Euler9 noted that, if p3+g3+r3 = 0 is possible, x = p% V = q2r, 
z = r2p satisfy xjy+y/z+zlx = 0 or xh+y^x+z^y = 0. In attempting to prove 
the latter impossible, he stated that yx is divisible by z} but admitted in a 
note that one can only conclude that the denominator of the irreducible 
fraction equal to yfz is a divisor of xy. For v=xy/z, we get x/y+vjx+y/v = 0, 
v<x. Continuing, we get solutions in smaller integers. 

L. Euler10 noted that p3-f^3 = r3 implies AB{A+B) = 1 for A =p2/((?r), 
B = q2l(pr). Set A = aB. Then J53a(a+l) = l, whereas a(a+l) is not a 
cube. 

N. Fuss I11 noted that o3 = 63+c3 implies that 
a6—453^ _ (63 — c3)2. Conversely, a6—4d3 = □ im¬ 
plies a3 = p2Jrpq3 (since the square root of A2 — dB2 
is of the form p2 — dq2), whence p = r3, p+$3 —cube. 

J. Glenie12 constructed on a given right line 
* ' BC as base a triangle ABC such that AB3+AC3 

=BC3. Through the mid point G of BC draw a 
perpendicular GH to it and take 

GH-BC 
3^5 

GF=BC 
V5-31 

2V3l’ 24 

Draw the circle HBC; let it cut the parallel FA to 
BC at A. Without proof he stated that ABC is the required triangle. 

To make AB3+ACS = 2BC3 or 3BC3 (Probs. 2, 3), take 

GH=BC'lif, GF=BC-iM, or GH=%BC, GF=iBC. 
He treated the corresponding three problems on the difference of cubes. 

9 L. Euler’s Opera postuma, I, 1862, 230-1 (about 1767). 
10 Ibid., 236-7 (about 1769). 
11 Ibid., 242 (about 1778). 
12 The Antecedental Calculus . . . and the Constructions of Some Problems, London, 1793, 

16 pp., p. 13. 
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A. G. Kastner13 checked the construction by use of trigonometric 
functions and logarithmic tables. 

I. K. Hagner14 set a = BC, b — GH, c-GF. Then 

QR = ^t, FA1 = FR ■ HF = (b—c) . 
4 6 K 7 46 

Having GA2, we see that BA and AC are 

f a/4 bc+a2±ia^~, 

BA>+AC>= { (^~3^+4a»6 J Vi^2. 
Equating this to a3, and writing 46c+a2 = (a+2/)2, which gives c = (a+/)//6, 
we get 

3a2(a+/)(a-f 2/) 

4{2a2+(a+/)(a4-2/)|* 

By the expression for BAy we must have 6>c, whence /<a(0.29* • • ). 
The value /=a/4 gives Glenie’s solution. Taking /=(& —3/2)a, we see 
that the expression for 62 is the square of {3 — 6fc ■+• 5k2/2} a/ (4h2 — 6/c+6) if 
& = 24/23, whence 6 = db5a/38. If in Euler's8 equation 2p(p2+3^2) = 23, we 
set 2p=r2, we obtain whence 

rz 2V4—r3 
2, ?/ = — db-p=~ 

2 2V3r 

and see why the cubic equation is solved by use of a curve of order 2. For 
r=3/2, we get Glenie’s case. 

C. F. Hauber15 proved Glenie’s construction and solved 

£3+t/3=- a3, x-\-y = — a 
q n 

for x, y and discussed their geometric constructibility, but made no dis¬ 
cussion as to rationality. 

J. W. Becker16 gave a construction simpler than Glenie’s, as he avoided 
irrationals. Take a circle of radius 772 = 152, lay off RG = 124, RF— 279, 
draw perpendiculars FA and BC to IR to cut the circle at the vertices 
A, B, C of the required triangle (see above figure). For Prob. 2, take 
712 = 639, 72G = 198, 72F = 550. For Prob. 3, take 172 = 5, 72<? = 1, /2F = 4. 
In general, let the sum of the cubes of the sides equal e times the cube of 
the base a. Denote the sum of the sides by as, the difference by ad. Thus 

a3(§s+§d)3+a3Qs-£-d)3=a3e, 
y 6$ 

He asked if s can be chosen to make d rational, stating it to be impossible 

13 Archiv der reinen u. angewandten Math, (ed., Hindenburg), 1, 1795, 352 -G, 481-7 
“Ibid., 2,1798,448-457. 
“ Ibid., pp. 458-70. 
“ Ibid., 471-80. 
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if 6 = 1. For 6 = 2, take s~2, whence d = Q and the triangle is equilateral. 
No general discussion was given. 

C. F. Kausler17 gave a complex and inconclusive argument to show that 
xzzky5 is not a cube. His first theorem is that x—y and x2+xy+y2 are not 
both cubes; the proof rests on Euler's8 lemma about p2+3g2 a cube. 

C. F. Gauss18 proved by descent that xz+yz+zz- 0 is impossible in 
integers, using an imaginary cube root of unity. 

P. Barlow19 gave an erroneous proof [Barlow15 of Ch. XXVI]. 
A. M. Legendre20 proved that the even one of z, y, z is divisible by 3 

and then by descent that xz+yz- (2m3nu)z is impossible, where u is not 
divisible by 2 or 3. 

Schopis21 undertook a proof of the impossibility of 

(z+2/)3—£3 = cube, 

in integers. If the equation holds, then t/3Q = cube, Q = z2, where 

Solving for y, we get 

q=*4+-+i. r y 

Zx±.x Vl2z3-- 3 

2(z3-l) ‘ 

Thus 12s3-“3='io2. The quotient of w2+3 by 12 must be an integer, 
whence w — 6n+3, and 

z3 = 3?i2+3n+l. 

He stated that the second member is a cube only when n = 0 or — 1, whence 
25 = 1, and the denominator of y would be zero. 

L. Calzolari22 attempted to prove the equation impossible. 
L. Kronecker23 noted that the theorem that r3+s3 = l has no rational 

solutions with rs={=0 is equivalent to the fact that 4a3+2762= —1 has no 
rational solutions other than a = — 1, 6 = rbl/3. The latter are the only 
values of the coefficients of a cubic xz+ax+b = 0 with rational coefficients 
and discriminant unity. 

G. Lame24 noted that, if x and y are relatively prime, xz-\-yz is the product 
of two relatively prime factors 8, q, where 8 is B=x-\-y or 3D according as D 
is not or is divisible by 3, and q is of the form A2+3B2. Then if a sum of 
two cubes is a cube, we transpose the single even cube and get xz-j-yz = (2z)3, 

17 Nova Acta Acad. Petrop., 13, ad annoB 1795-6 (1802), 245-54. 
18 Werke, II, 1863, 387-390, posthumous MS. Quoted, Nouv. Corresp. Math., 4, 1878,136. 
19 Theory of Numbers, London, 1811, 132-140. 
20 M6m. Acad. Roy. Sc. de lTnstitut de France, 6, ann£e 1823,41, §49 (=Suppl. 2 to Th£orie 

des nombres, ed. 2,1808). ThSorie des nombres, ed. 3,1830, art. 653, pp. 357-60; Ger¬ 
man transl. by Maser, II, 348. 

21 Einige Satze aus der unbestim. Analytik, Progr. Gumbinnen, 1825. Repeated in Zeitschr. 
Math. Naturw. Unterricht, 23, 1892, 269-270. 

22Tentativo per dimostrare il teorema di Fermat . . ., Ferrara, 1855; Extract by D. 
Gambioli, Periodico di Mat., 16, 1901, 155-8. 

23 Jour, fur Math., 56, 1859,188; Werke, 1,121. 
24 Comptes Rendus Paris, 61, 1865, 921-4, 961-5. Extract in Sphinx-Oedipe, 4,1909, 43-4. 
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whence 5 and q must be cubes. It is stated that (cf. Euler8) 

q = (a2+362)3 = A2+3R2, A = a(d2 - 962), B = 36 (62 - a2). 
In 

,2, „R2_(A+By+u~By_(w+Ay+(zB-Ay 
^ (A+B) + (A-B) 18B 

5 = 2A or 18jB, according as x+y is not or is divisible by 3. But a and 36 
are relatively prime and not both odd. Hence 5 is a cube only if a = 4&3, 
a—3b = iz, a+3b=jz; or 6 = 4&3, b—a^i\ b+a=j\ in the respective cases. 
In either case, jz+iz=(2k)z and i, j, k are smaller than x, y, 2. He noted 
numerical results like 

(73 + 23) (83 — 73) = 393, (43s—363) (543 — 53) = (123+1)3 = (103+ 93)3. 

P. G. Tait25 noted that xz+yz=zz implies 

(xz +Zz)zyz+(a;3 — yz)hz = (zz+yz)zxz 

and said that this leads easily to a proof of the impossibility of integral 
solutions of the former equation. Every cube is a difference of two squares 
of which one is divisible by 9 since 

_ j^fo+l) J |~s(& —1) J2 

T. Pepin26 proved the impossibility of xz+yz — zz. 
S. Giinther27 showed how the square root occurring in the solution 

x, y of xz+yz = a?, x+y=z, can be replaced by a cube root which is “ abso¬ 
lutely irreducible.” 

J. J. Sylvester28 gave a proof of the impossibility. 
R. Perrin29 showed how one (hypothetical) set of integral solutions of 

a3+63+c3 = 0 leads to a new set of integral solutions. 
Schuhmacher30 stated that Euler8 erred in affirming that p+q^^^3 

must be the cube of £+« V—3, since it might be ax(£+cm)3, where a3 = l. 
He argued that the first of Euler’s two cases may be dispensed with. 

J. Sommer31 proved Hummer’s63 result (Ch. XXVI) that xz+yz=zz 
is not solvable in integral numbers of the domain defined by a cube root 
of unity. 

H. Krey32 made the impossibility proof by use of the theory of quadratic 
forms. Set f(x, y) *=x2—xy+y2. Then 2f is an improperly primitive form 
of determinant —3 and of class number 1. We can represent properly by/ 
any positive odd number, not divisible by 3, all of whose prime factors p 
have —3 as a quadratic residue. If (u, v) is a representation of m, and 
(u', v') of m'j then 

(uu'+vv'—uv', uu'+vv' — vu') 

25 Proc. Roy. Soc. Edinburgh, 7, 1869-70, 144 (in full). 
24 Jour, de Math., (2), 15, 1870, 225-6. 
27 Sitzungsber. Bohm. Ges. Wiss., Prag, 1878, 112-9. 
28 Amer. Jour. Math., 2, 1879, 393; Coll. Math. Papers, 3, 1909, 350. 
22 Bull. Math. Soc. France, 13, 1884r-5, 194-7. Reprinted, Sphinx-Oedipe, 4, 1909, 187-9. 
80 ZeitBchrift Math. Naturw. Unterricht, 25, 1894, 350. 
81 Vorlesungen liber Zahlentheorie, 1907, 184-7. 
82 Math. NaturwiBS. Blatter, 6, 1909, 179-180. 



is a representation of mm!. Taking u' — v, v' = u, we get m2=f(2uv—u2, 
2uv—vP). First, if x+y is not divisible by 3, it is relatively prime to 
f^ix+yY—dxy, so that it and / are cubes* By the above, 

mz=f(uz — u2v+uvui tf—utf+uh). 

When this is taken as /, the sum uz+vz of the arguments is a cube (corre¬ 
sponding to x+y). Thus the method of descent applies. The case in 
which x+y is a multiple of 3 leads by a like argument to a descent. 

P. Bachmann33 amplified the proofs by Euler8 and Legendre.20 
R. Fueter34 proved that if Z3+r)z+£z = 0 is solvable by numbers 4=0 of 

an imaginary quadratic domain &(Vm), where m<0, m^2 (mod 3), then 
the class number of k is divisible by 3. It is solvable in the real domain 
ft(V-3ra) if and only if solvable in ft(Vm). In particular, Rummer’s 
result that it is not solvable in k(*+-3) is a consequence of the fact that it 
is not solvable in rational numbers. To give a direct proof, let a3+p3=z3, 
a, j3=^(xd=yV^3)f where x, y, z are integers distinct from 0, and set a3, 
/33 = K^±FV^3)j23 = X. Then 

If m and n are integers prime to 3, the domain defined by a cube root of 
mz+21nz has its class number a multiple of 3, and 2£3 = 0 is solvable. 

W. Burnside35 discussed the solution of xz+yz+zz~ 0 in quadratic 
domains. 

R. D. Carmichael36 gave a series of lemmas leading to a proof of the fact, 
stated by Euler,8 that p2+3q2 = sz (p, q relatively prime, s odd) implies that 
s is of the form t2+3u2, etc. 

Further proofs by Holden80; also Komeck,149 Stockhaus231, and Rychlik232 
of Ch. XXVI. 

Two Equal Sums of Two Cubes. 

Diophantus, V, 19, mentioned without details the theorem in the Porisms 
that the difference of two cubes is always a sum of two cubes (cf. p. 607). 

P. Bungus37 remarked that while a square is often the sum of two 
squares, a cube is first composed of three cubes, citing 63 = 33+43+53. 

F. Vieta38 required two cubes whose sum equals the difference Bz — D3 
of two given cubes (.B>D). Call B—A the side of the first required cube 
and B2A/D2—D the side of the second. Thus (BZ+DZ)A~3DZB and hence 

xz+yz~Bz~Dz, 
B(BZ—2DZ) 

Bz+Dz 3 

D(2BZ—DZ) 

Bz+Dz ’ 

*z Niedere Zahlentheorie, 2, 1910, 454-8. 
“ Sitzungsber. Akad. Wiss. Heidelberg (Math.), 4, A, 1913, No. 25. 
* Proc. London Math. Soc., (2), 14, 1914, 1. 
* Diophantine Analysis, 1915, 67-70. 
87 Numerorum Mysteria, 1591, 1618, 463; Pars Altera, 65. 
” Zetetica, 1591, IV, 18r-20; Opera Mathematica, ed. by Frans van Schooten, Lugd. Batav., 

1646, 74-75. A wrong sign in (2) is corrected on p. 554. 
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Using the same sides for (2); sides A~~D, D2A/B2—B for (3), he got 

B(B3+2D3) 

£3-D3 ’ 

D(2£3-D3) 

y= 

y~- 

D(2B3+D3) 

B3—D3 ; 

B(2D3-B3) 

B3+D3 “ 

(2) x3—y3 = B3+D3, x = 

(3) x3-y3 = B*-D\ x= B3+L>3 

C. G. Bachet,39 in his commentary on Diophantus IV, 2 (to solve 
x~y = g, x3—y3 = h), gave Vieta’s results (l)-(3). He was able to express 
the difference of two given cubes as a sum of two positive cubes only when 
the greater of the given cubes exceeds the double of the smaller. 

A. Girard39a noted that, if D3>%B3 in (1), we first apply (3) repeatedly 
until we obtain two cubes the smaller of which is less than one-half the 
larger, and then use (1). 

Fermat40 noted that in the case Bz < 2D3, expressly excluded by Bachet, 
we can make B3—D3 a sum of two positive cubes. Let, for example, 
£ = 5, D = 4. By Vieta’s formula (3), we get 

53-43=(W)3-(*)3. 
Of the new cubes, the first exceeds the double of the second. Hence their 
difference is a sum of two cubes by (1). Thus 53-43 is the sum of two posi¬ 
tive cubes, “ which would doubtless astonish Bachet.” Further, if we 
employ the three formulas in succession, and repeat the operations in¬ 
definitely, we obtain an infinitude of pairs of cubes satisfying the same 
conditions; for, from the two cubes whose sum equals the difference of the 
given cubes, we can find by (2) two new cubes whose difference equals 
the sum of our two cubes and hence equals the difference of the two original 
cubes; from this new difference of two cubes we pass to a sum of two cubes, 
and so on indefinitely. The condition B3<2D3 imposed by Bachet on (3) 
is not necessary; being given the cubes 8 and 1, we can find two new cubes 
with the same difference. Bachet would doubtless say that this is impos¬ 
sible. Nevertheless I have found that41 

(JiW)3-(iiW)3 = 8~l. 

Further, after what precedes, I solve happily the problem (not known by 
Bachet): To separate the sum of two cubes into two new cubes, and indeed 
in an infinitude of ways. Thus to find two cubes whose sum is 8+1, 
I first seek by (2) two cubes 8000/343 and 4913/343 whose difference is 8+1. 
As the double of the smaller exceeds the larger, we apply (3) and afterwards 
(1) and obtain the solution. If we wish a second solution, we apply (2), 
etc.” 

Fermat42 proposed as a new problem to Brouneker, Wallis and Frenicle: 
Given a number composed of two cubes, to divide it into two other cubes. 

Diophanti Alex. Arith., 1621, 179-182, 324. 
390 L’arith. de Simon Stevin . . . annotations par A. Girard, Leide, 1625, 635; les Oeuvres 

Math, de Simon Stevin de Bruges par A. Girard, 1634,159. 
40 Oeuvres, I, 297-9; French transl., III, 246-8. 
41 By (1), 8—1 = (4/3)3-f-(5/3)3. Then apply (2) for B=5/3, Z>=4/3. 
4J Oeuvres, II, 344, 376; letters from Fermat to Digby, Aug. 15, 1657; Apr. 7, 1658. 
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He would be content if Brouncker would divide 8+1 into two other rational 
cubes. 

Without indicating his method, Frenicle43 gave the solutions 

93+103 = p+12«, 93+153 = 23+163, 15s+333 = 23 + 343, 

163+333 = 93+343, 193+243 = 103+273. 

J. Wallis44 gave 22 additional solutions 

273 + 303 = 33 + 363, (4§)3+(7§)3 = l3+83, 

“ If these do not suffice, I will furnish as many as he wishes; and so easily 
that in an hour I would promise a hundred . . ..” Letter XXVI contains 
Frenicle’s reply; he points out that all of Wallis’ solutions were obtained 
from the known solutions by simple multiplication or division. “ You 
should therefore not be astonished that he agrees so readily to furnish a 
hundred such combinations in an hour; what is easier than to multiply or 
divide small numbers? Indeed, it would be still easier to indicate the 
divisions, not making the reductions, unless he wished to disguise more 
his artificial solutions.” Frenicle added that it would have been easy to 
give essentially new solutions and then cited 13 such (Oeuvres de Fermat, 
III, 535). Wallis (p. 538, letter XXVIII) claimed that Frenicle had 
been guilty of the same fault. 

Wallis (p. 599, letter XLIV, June 30, 1658) was not more fortunate45 
in regard to Fermat’s problem to express 9 as the sum of two positive cubes; 
he expressed 9 as the difference of the cubes of 20/7 and 17/7, and said that 
the method to employ to express 9 as the sum of two cubes would be to 
find in a table of cubes two whose sum is 9 times a cube! Vieta and Bachet 
had found no difficulty in expressing jB3+D3 as a difference of two cubes, 
but had not attacked the more difficult problem x3+y2 = B3JrD3. 

J. Prestet46 treated the problem to find two cubes whose sum equals the 
difference of two given cubes (even when the smaller exceeds one-half the 
greater), using first (3) and then (1). To find two cubes whose difference 
is the sum £3+D3 of two given cubes, solve (2), then z3+v3=x3—y3, and 
then t3 —/3=23+y3. To find two cubes whose difference is B3~D3} solve 
(1) and then z3 — tf = x3-\-y3. 

L. Euler47 noted that there exist integral solutions of 

(4) a*+B3+C3 = D\ 

Euler48 derived Vieta’s formula (2) and noted that it does not give all 
the solutions. For £ = 4, D = 3, we have 37y = 465, 37a; = 472, whereas 

43 Commercium Epistolicum de Wallis, letter X, Brouncker to Wallis, Oct. 13, 1657; French 
transl. in Oeuvres de Fermat, 111, 419-420. 

u Commercium, letter XVI, Wallis to Digby, Nov., 1657. Oeuvres de Fermat, III, 436. 
45 Cf. Frenicle, letter to Digby, Oeuvres de Fermat, III, 605, 609. 
46 Nouveaux elemens des math., Paris, 2, 1689, 260-1. 
47 Corresp. Math. Phys. (ed., Fuss), 1, 1843, 618, Aug. 4, 1753. 
48 Novi Comm. Acad. Petrop., 6, 1756-7, 155; Comm. Arith., I, 193; Op. Om, (1), II, 428. 

Reproduced without reference by E. Waring, Meditationes Algebr., ed. 3, 1782, 325. 
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there exists the simpler solution x = 6, y = 5. To treat (4), he set 

(5) A=p+q, B = p—q, C = r~s, D = r+s. 

Thus 

(6) p (p2+3g2) = s (s2+3r2). 

Taking 

p = ax+3by, q = bx—ay, s = 3cy — dx, r = dy-bcx, 

we have 

p2+3g2 = p (x2+3y2), s2+3r12 = y (x2+3 if), p = a2+• 3 b2, y = d2-f 3 c2. 

Hence our equation becomes p(ax+3by) =y(3cy—dx), whence 

x = — 3 nbp+3ncy, y = nap+ndy. 

Writing X, p = 3ac±3forF:ad+3&d, we get 

A~riky—np2, B = nyy+n(32, C = ny2—ri\(3, D==?iy2-\-npP. 

The abbreviatons p, y, X, p were not used by Euler; but their introduction49 
enables us to point out the identity which underlies his solution. In 

A3+J33+C3—D3 = ?z3(73-/33) (X3 •-fp3 -3py(X+p) } 

= nz (y3 — /33) (X+p) (X2—Xp+p2 — 3py), 

it is the final factor which vanishes, and this in view of the identity 

1S7=(3&c-ad)2+3(ac+6d)==(^t)2+3(^)2, 

which in turn follows from 

(a+b V—3)(d+c V—3) = ad—3bc-\-(ac-\-bd) V—3. 

Euler noted (p. 206) that we may solve similarly hr — \p} where 
Tr = mp2+nq2) P = w2r2+?w2, while l, X are any linear functions of p, q} r, s, 
by setting 

p^nfx+gy, q — mfy—gx, r = ?ikx+ky, s = mhy — kx. 
Then 

x = (g2+mnf2) (nx2+my2), p = (k2~{-mnh2) (nx2-{-my2). 

Hence xjy is ratonal. 
Euler80 treated (4) by setting, without loss of generality, 

A = (m — n)p+q2, B — (?nJrri)p—q2, 

C = p2 — (m+n)q, D-p2+(ni—n)q. 

Then (A+B)(A2—AB-\~B2) — (D — C)(D2+DC+C2) becomes, after division 
by 2m(p3—g3), m2+3n2 = 3pg. Thus m=3k, where pq = n2+3k2. But he 
had proved in the same paper that every divisor of n2-f 3&2, in which n 
and k are relatively prime, is of like form. Thus 

p = a2+Sb2, q — c2+3d2, m = 3(5c±ad), 

while n is ac^Sbd or its negative. 

49 L. E. Dickson, Amer. Math. Monthly, 18, 1911, 110-111. 
so Novi Comm. Acad. Petrop., 8, annees 1760-1, 1763, 105; Comm. Arith., I, 287; Opera 

Omnia, (1), II, 556. 
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Euler51 deduced Vieta’s formula (2) and noted that in (6) the second 
factors have a common divisor of like form t2+3u2. From 

(7) p2+3 q2 = (f2+3g2) (t2+3u2), s2+3r2 = (/i2+3fc2)(£2+3u2), 

he concluded that 

(8) p=ft+3gu, q = gt~fu9 s = ht+3ku, r~kt—hu. 

Inserting the values of p, s and (7) into (6) and deleting the common 
factor t2+3u2, we obtain t/u rationally. To avoid fractions, take u equal 
to the denominator. Thus 

(9) u=f(f2+3g2)-h(h2+3k2), t = 3k(h2+3k2) — 3g(f2+3g2). ' 

For/, g, h, k arbitrary, formulae (5), (8), (9) give the general solution of (4). 
Special cases are 

73+143+173 = 203, ll3+153+273=293, l3+63+83 = 93, 33+43+53 = 63. 

W. Emerson52 repeated Vieta’s discussion and treated the problem to 
find three cubes whose sum is both a cube and a square. Cf. Hill84 of Ch. 
XXIII. 

J. P. Gruson53 gave (1). 
S. Jones54 deduced (1) and (2). 
J. R. Young55 passed from (4) to (6) as had Euler. Set p = m2, s = n2. 

Then (6) becomes 

3n6+9r2n2—3m6 = 9m2g2 = (c~3m)2, if r = ~—. 
6cn 

Take m-1, n — 2, c — 3d and drop the common denominator 4d. Hence 

(d2+16d-21)3+(16c(-d2+21)34-(2d2~4d+42)3=(2d2+4d+42)3. 

He also solved (4) by taking56 A = m—1, B = n2—p, C = n+p, D = m+1, 
whence 9m2 = Cn2p2+3(n6 — 1 ) = (q—3np)2) say. Hence 

np, m= {52=F3(n6—l)}/(6g). 

Multiplying the resulting values of A, • • •, D by 6nq, we get 

A, D = n{q2^F6q+3(n«-l)}; B, C~^q2+6nzq±3(n«-l). 

F. T. Poselger57 treated the transformation of a sum or difference of 
two cubes into a difference or sum of two positive cubes. 

J. P. M. Binet58 expressed Euler’s48 solution of 

(10) xz+yz=zz+uz 

81 Algebra, 2, 1770, arts. 245, 248; French transl., 2, 1774, pp. 351, 360. Opera Omnia, (1), 
I, 490-7. 

“ A Treatise of Algebra, London, 1764, 1808, 382-4. 
63 Enthiillte Zaubereyen und Geheimnisse der Arith., Berlin, 1796,125-8, and Zusatz at end 

of TheH I. 
w The Gentleman’s Diary, or Math. Repository, London, No. 90, 1830, 38-9. 
65 Algebra, 1816, S. Ward’s edition, 1832, 351-2. Reproduced, Math. Mag., 2, 1895, 154-5. 
M Reproduced, Math. Mag., 2, 1898, 254. 
87 Akad. Wiss. Berlin Math. Abhandl., 1832, 27-31. 
68 Comptes Rendus Paris, 12, 1841, 248-50. Reprinted, Sphinx-Oedipe, 4, 1909, 29-30. 



in the explicit form 

x = p2 — <rp', y = a'p' -p2, z = paf — p'2, u = p,2 — pa, 

P =/2+3<?2, p' =/'2+3</'2, cr, a' =ff'+3gg'± (3 /*' - 3fg). 

He stated that we may set/' = 1, <7' = 0 without loss of generality and hence 
express the general solution of (10) in the form 

(11) x = k2 — l, y~ —/c2+m, z — km- 1, u=—kl+1, 

where & = a2+352, l = a—3b, m = a+35. We may take a = m/3, = —Z/3 as 
new parameters in place of a, b, and get 

z = 3/3+9 £2, y = Sa-§t2, 2 = 9crf-l, tt = 9#+l, 

where £=&/3 = a2+/32—a(3. The case a' = /?= 1 gives 33+43+53 = 63. 
* V. Bouniakowsky59 treated (4). 
C. Richaud60 noted that in (z+1)3—x3~yz+z3f y+z is of the form 

£2+3w2, whence 2x= — 1, 2y — s+v, 2z = s — v, where 

From one solution of the last equation we get the second solution 

'S-\rl)t+2sv ,_2^+(s+l)y 
6 — i j V — . 

$— 1 s — 1 

Hence from one solution a, b = d—1, c, d of (4), by replacing x, y, z by 
d~~l, c, a, and hence t, s, v by 2d—1, c+a, c—a, respectively, we get 
another solution: 

,,a(a+c)-c-2d+l D (a+c)(c+d-a-l)+d ^ „ 
Jx | , j | - —1, 

a+c— 1 a+c—1 

c(a+c) —a+2d — T (a+c)(c+d—a)+d — 1 

C~ a+c —1 ’ ~ a+c—1 ’ 

since A — l(s—v'), C=|($+i»')> D = %(t'+1). Thus the solution 3, 5, 4; 6 
leads to 1, 8, 6; 9 and —8, 50, 29; 53. 

H. Grassmann61 reduced (10) to 

^(a3 — 63) =bd2 — ac2, 

by setting x — a+c, y = a~c, z = b — d, u~b+d, and stated that a/b must be 
a square, whence a = ma2, b = m/32, 

|m2(a:6—/36) = (/3d+ac) (0 d — ac). 

Giving artibrary integral values to a, /3, m, and expressing the left member 
as a product pg, we get d, c from /3d±:ac — p, q. 

C. Hermite62 derived Binet’s solution (11) of (10) from a general property 
of cubic surfaces. Let co be an imaginary cube root of unity. The lines 

69 Memoirs Imper. Acad. Sc., St. Petersburg, 6, 1865, 142 (In Russian). 
60 Atti Accad. Pont. Nuovi Lincei, 19, 1865-6, 183-6. 
61 Archiv Math. Phys., 49, 1869, 49; Werke, 2, pt. I, 1904, 242-3. Error indicated by *A. 

Hurwitz, Jahresber. d. Deutschen Math.-Vcreinigung, 27, 1918, 55-56. 
63 Nouv. Ann. Math., (2), 11, 5872, 5-8; Oeuvres, III, 115-7. 
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x = o), y = u2z and £ = co2, y = o>z lie on the surface (10) with u = l. 
these generators meets the line 

x = az+b, y = pz+q 
if 

Each of 

co — 6_ q co2 —6 _ q 

a co2—p’ a co —p’ 

whence p = 6, g= (l+6+62)/a, and the ^-coordinates of the points of inter¬ 
section are respectively 

co — b co2 — b 

The third root of {az+by+{pz+q)z-zz+l is 

(l+6+62)2-a3(l-6) 

2 a(l—a3—6s) 

Then also x and y are rational in a, b. To obtain simpler formulas, replace 
a by 1/a, b by 6/a. Then 

(12) sx = r(a+2b) — 1, sy = r2~a—2b, sz = r2—a+b, 

where r = a2+a6+62, $ = a3 — 63 — 1. Passing to the homogeneous equation 
(10) and changing 6 to 26, a to a—6, we get (11) with x} y, z, u replaced by 

-V, X, -u. 
Several63 expressed 8+27 and 1+8 as sums of two new rational cubes. 

G. Korneck64 stated that all integral solutions are obtained by taking 
positive and negative integers m, t, / in 

x—6mHfA-t(tdzm)r^3t(t^m)f2, y = 6mHf—t(t±m)r — 

z— — 6i3??2/+w(w±j5)r+3m(m+i)/2} u — 

where r = m4+m2t2+14. 
E. Catalan65 noted that (4) is satisfied identically by 

A = (2x-1) (2z3 - 6x2 -1), JB = (rc+l)(5a^~9x2+3x —1), 

C = 3a;(:r+l)(:c2—£+1), D — Zx(2x— l)(z2—$+1). 

S. R6alis66 proposed a problem which was solved by P. Sondat;67 if ay /?, 
Y, 8 is one set of solutions of a^+p3+u3+y3 = 0, another set is 

u = aA—B, v = /3A~-B, x = yA+B, y=8A+B, 

A=a+/S+y+8, jB = cx2+j82 — y2 — 82. 

The new set yields similarly the given set, apart from a common factor. 
G. Brunei68 treated, for n an odd prime, the equation 

(13) CC1+X2 == 

yi 
0 

2/2 • 

yi • 

• • Vn-l 0 
■ • yn-2 y n—1 \=f(yi, ■ ■ *, 2/n-l)> 

V* 2/3 • 0 2/1 

« Math. Quest. Educ. Times, 16, 1872, 95-6; 17, 1872, 84. 
64 Auflosung x3+^3+23=w3 in ganzen Z., Progr. Kempen, 1873. 
65 Nouv. Corresp. Math., 4, 1878, 352nt, 371-3. a. Catalan.*23 
M Nouv. Ann. Math., (2), 17, 1878, 526; Nouv. Corresp. Math., 4, 1878, 350. 
67 Nouv. Ann. Math., (2), 18, 1879, 378. 
68 M&n. Soc. Sc. Phys. et Nat. de Bordeaux, (3), 2,1886, 129-141. 
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the determinant being yl+yl if n = 3, and y\ if n = 2. Proceeding as had 
Hermite62 and considering the intersections of (13) with the general line 
in space of n dimensions 

yi=aiXi+biX2 (i = 1, • • n — 1), 

it is shown that the coordinates of any point on (13) are expressed rationally 
as functions of n — 1 parameters ah ♦, an-\\ 

= Xz — A — l, 2/i = Ui(l — S) + (an_i —a;__i)(l — A) 

(f = 1, • • •, 1), 

where a0 = 0, bi = —an~i, 6t = ax_i—a„_i (i = 2, • • •, n —1), 

A=/(ai, • • *, a„_i), B=f(jbi, • • 6«-i). 
V. Schlegel69 treated a:i+a2-|-a3 = a4 by setting 

ai+a2 = m2(a4 —a3), m2aia2+a4a3=P2“#2> 

a4-fa3+??i(ai"-a2) = n(p—g), a4+a3—m(ai — a2) = 

These become, for ai+a2 = x, ai—a2—y, a4+a3 —'W, a4—a3 = i>, 

x — m2v, ??i2(a;2 — y2) + w2—i;2=4(p2—g2), 

w+wz2/ = n(p—g), u—my = ^~^. 

The last two give w, t/; the second of the four becomes 

Z(p+q) _mx-\-v 

mx—v p—q ' 

Equate each member to r. We thus get x and v in terms of p, q, r, m. 
By x = m% 

„_3(p+g)(m3+l) 

f (p-9)(ma-l) ‘ 

For any m, we can choose pdbg to make r rational; then the are rational. 
A. Martin70 gave Vie ta’s. derivation of (1) with B = r, D = —s, and with 

jB = p, D = g. 
C. Moreau71 gave the ten numbers <100,000 which are sums of two 

positive cubes in two ways. 
A. S. Werebrusow72 gave the formula 

where M2+MN+N2 = 3m2<^, co3 = 1 [Teilhet78]. 
K. Schwering73 stated that the general solution of (10) is 

(14) x = ma-n2, y= -mfi+n2, z = na—m2, u= —n(3+m2, 
where 
(15) a2+a(3+p2=Zmn._ 

«» El Progreso Mat., 4, 1894, 169-171. 
70 Math. Magazine, 2, 1895, 153-4; Amer. Math. Monthly, 9, 1902, 79. 
71 L’interm&iiaire des math., 5, 1898, 66 [253; 4, 1897, 286]. 
72 Ibid., 9, 1902, 164-5; 11, 1904, 96, 289. Math. Soc. Moscow, 25, 1905, 417-437. 
73 Archiv Math. Phys., (3), 2, 1902, 280-4. 
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To get Binet’s58 solution, set m — 1, n = a2+Zb2, a, iS = azF36. By (14), 

xZJry3—z2~u3= (m3—n3) (a — /3) (a2+a/3+ft --3 mn). 

H. Kuhne74 expressed the preceding solution in terms of three inde¬ 
pendent parameters by replacing a by 3pr, /3 by 3qr, m by p~+pq+q2, 
n by 3r2, whence (15) is satisfied identically. Thus 

x = 3 spr—9r4, y= —3sqrJr 9 r4, z = 9pr3—s2, u= — 9 qr3+s2, 

where s=p2-\-pq+q2, satisfy (10) identically. Not only do any p, q, r 
lead to a solution a, ft m, n of (15), but conversely, by multiplying them by 
a common factor, we can make n/3 a square, necessarily r2, and then 
p=a/(Zr), q = P/(3r). 

D. Mirimanoff75 wrote (10), with u~l, in the form 

(x — 1) (x — o>) (x—co2) +y3=23. 

Set y — u(x cS) -j~v(x — co2), 2 = 'Wco2(x — co)+z;co(a: —co2), and divide by 
(x—co) (x — a?2). We get 

Dx = 1+3(c*>2—l)^v2+3(co-“l)w2t;, Z) — 1 +3(1 — co)ic^+3(l — oY)u2v. 

Hence we get all solutions (except x=oo, or) by giving all values to u, v. 
Real solutions result if and only if u+v, co2u+uv, <x>u-\~o)2v are real, i. e., 
if u and v are conjugate. Writing b, a, —a~b for these three sums, we 
obtain Hermite’s solution (12). 

A. Holm76 derived (2) by the tangent method. Set x — X+B, y = Y—D 
and take Y=XB2jD2. Then X=0 or ZBD3j{B3—D3). The latter gives (2). 

H. Kuhne77 discussed diophantine equations such that the n variables 
are expressible rationally in n — l parameters. His74 solution of (10) is an 
example of the method. 

P. F. Teilhet78 remarked that the solution by Werebrusow72 is not the 
general one and stated that all solutions of (10) with 4 (x — u) =3 (z—y) are 
obtained by equating the two expressions 

^21m2+n2±2mny^^21m2—n2::Fl6mny 

or by equating the two 

^ 3m2+ 7n2± 2mn y ^ ^ 3m2—7n216mn y 

where m, n are both even or both odd. 

A. G6rardin79 derived (2) from 

x—B y2~Dy-JrD2 
-— ---- nyt 

y+D x2+Bx+B2 

by setting x = B+mh, y = h—D, and equating to zero the constant term of 
the quadratic for h. Thus m = D2/B2} /i = 3jB3D/(B3—D3). Similarly for (1). 

74 Archiv Math. Phya., (3), 4, 1903, 180. Cf. Fujiwara.85 
75 Nouv. Ann. Math., (4), 3, 1903, 17-21. 
76 Proc. Edinburgh Math. Soc., 22, 1903-4, 43. 
77 Math. Naturwiss. Blatter, 1, 1904, 16-20, 29-33, 45-58. Cf. Kuhne189, Ch. XXIII. 
78 L’interm&liaire dea math., 11, 1904, 31. 
79 Sphinx-Oedipe, 1906-7, 90-93, (52); Pinterm&liaire dea math., 16, 1909, 85. 
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H. Holden80 obtained all integral solutions a, b, c, d of 

a(a2+pb2) =c(c?+pd2)} 

for such values of p that any factor of a or c, not of the form Z2+pm2, is 
a factor of both. This is true if there is a single properly primitive class 
of quadratic forms of determinant —p and if, when there are improperly 
primitive classes, the highest power of 2 which divides l2+pm2 has an even 
exponent. The conditions hold for p = l, ±2, 3, —5, —13, —29, —53, 
— 61. For p = 3, we have the equivalent equation 

(a+fc)3+(a-5)3 = (c+d)3+(c-d)3 

and hence the complete solution of (10). He proved that there is no integral 
solution of the initial equation with a = 6 and hence none of xz=y3+z3. 

J. Jandasek81 gave the identity 

(3u3+3 u2v+2 uv2+^)3= (3 u2v+2 urP+iF)3+(uv1)3+(3 uz+3u2v+2uv2)z. 

K. Petr82 noted that Euler’s48 solution of xz+y3-\~zz — u3 may be written 
in the form 
x:y:u:—z 

=A2E+2BC-BD:-A2E+BC+BD:B2E+2AC-AD:-B2E+AC+AD, 

where C, D are arbitrary and ABE2 = C2—CD+D2. It is thus not essen¬ 
tially different from Binet’s solution. 

Binet’s58 solution is claimed83 to be not general. 
R. Norrie84 treated (4) by taking A=rxi+\ B = rx2+n, C=rx3—/x, 

D=rxo+X. Thus ar3+3iSr2+37r = 0, where a=xl—x3l—xl—xl, 

(3 — \xl—Xxf—yxl-j-px s, 7=\2x0—\2Xi—p2x 2—ix2Xz. 

We may make 7 = 0 by choice of xQ. Then ar3+3/3r2 = 0 for r = —3/3/a. 
The resulting values of A} B, C} D in terms of zi, x2, x3, X, p are of high 
degree and much more complicated than the complete solution by Euler48 
and Binet.58 

M. Fujiwara85 showed that the formulas by Sehwering73 and Kiihne74 
can be deduced by simple substitutions from formula (11) of Euler and 
Binet. 

A. G6rardin86 gave the identities 

(g^fgy+m*^ w±wy+(<m 
(7a2—16a/3—3/32)3 + (14a2+4a/3+6/32)3 

= (14a2-4a/3+6jS2)3+ (7a2+16a/3-3/32)3, 
and one similar to the latter. 

80 Messenger Math., 36, 1906-7,189-192. 
81 Casopis, Prag, 39, 1910, 94H5. 
82 Ibid., 40, 1911, 99-102. In the Fortschritte report the sign before AD in u is wrong. 
88 L'interm&liaire des math., 18,1911, 265-6; 19, 1912, 116. 
“University of St. Andrews 500th Anniversary, Mem. Vol., Edinburgh, 1911, 50-1. 
86 Tdhoku Math. Jour., 1, 1911, 77-8; Archiv Math. Phys., (3), 19, 1912, 369. 
88 L’interm&liaire des math., 19, 1912, 7. Cf. pp. 116-8 for references. He gave the first 

in Assoc. fran$. av. sc., 40, 1911, 12. 



G. Osborn87 gave Young's55 identity and 

(x2 — 7xy+63?/2)3+ (8a;2—20xy—42y2)3 + (6#2+•20xy—56y2)3 

= (9a:2—7xy+7y2)z. 
J* W. Nicholson,88 using one solution of mz — nz-\-pz-\~Tz7 found that 

(?mj-bx)3« (ny ~bx)z + (:py~ax)z+(ry+ax)3 

holds if x : y~m2b-n2b-p2a+r2a : mb2-nb2-pa2-ra2. 
J. E. A. Steggall89, to solve xz—uz — yz — v3, took x—u — p, x-\-u~q, 

y+v = r. Then (6) implies p2+Sq2 = ns, s2+3r2 = w, whence 

(3gr)2= (ns-p2)(}ip—s2) = (ps-fik)2, 
^+s^2kps tf-hp)* 

* ps~k2 ' ^ “ ps-k2 * 

Since ps—k2~3t2} we get p-j-#= {s2+p(32—&) }/(31), etc. Hence 

^ = L2+pz(Zt—k) _p4+pL(3t~k) 

6iIp2 ’ V~ 6tp* 

zc-&-P*@t+k) _p4-pL(3t+k) 
6tp2 ’ v &p2 ’ 

where L = k2+3t2, is the most general rational solution. 
R. D. Carmichael90 obtained a rational solution, involving four para¬ 

meters, of 

z3+yz+s3—3 xyz = v.3-f* v3+w3—3 uvw, 

by employing the factor x-\~y-\-z of the left member. Taking z=w~ 0, 
he deduced formulae (11) of Euler and Binet, which he proved to give the 
general solution. 

T. Hayashi91 noted that C. Shiraishi published in his book of 1826 the 
solutions91® (attributed to Gokai Ampon) of x3+y3+z3 = u3\ 

u=y-\~ 1, z = 3a“, a: = 6a2±3a+l, ?/ = 9a3+6a2-f*3a or 9a3—6a2+3a — 1. 

Replacing a by a[p and passing to the homogeneous form, we get 

x = 6a2/3 -f 3a/32+/33, y = 9a3+6a2£+3a02, z = Za% u~y+p3; 
and in like manner 

x = 6a2/3—Zap2+/?3, u — 9a3—6a2£+Zaj32, 2 = 3o$2, y=u-{33. 

Further, S. Baba, Mathematics, vol. 2, 1830, gave the solution 

z = (a6~4 )a, y = 6a3+a6—4j z = a6-6a3-4, w=(a6-f-8)a 

of (10); S. Kaneko, Mathematics, vol. 2, 1845, gave the first solution of 
Frenicle.43 Kawakita, in Algebraic Solutions, vol. 2, compiled from a 

87 Math. Gazette, 7, 1913-4, 361. 
88 Amer. Math. Monthly, 22, 1915, 224-5. 
89 Proc. Edinburgh Math. Soc., 34, 1915-6, 11-17. 
90 Diophantine Analysis, New York, 1915, 63-65. 
91 T6hoku Math. Jour,, 10, 1916, 15-27 (in Japanese). 
9U For a briefer account, see D. E. Smith and Y. Mikami, A History of Japanese Mathe¬ 

matics, Chicago, 1914, 233-5. 
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manuscript by Baba, solved (10) by setting 

x-a+b, y = a—b, z — bc, u — d—bc, 2a34-6a&2 — d3+3&cd2 —3b2c2d = Q. 

Take a = c2d/2. Then 12be = d (4 — c6). Take c3 = a, a2—4 = 0, and multiply 
the resulting values of z, ?/, 2, w by 12c/d; we get 

x = 6ct—(3, y — ^a+p, z=—pc, u = 12c-{-(3c (a = cz, /3 = a2 — 4). 

M. Weill92 noted that if yi} Zi, Ui give two solutions of (10), we can 
evidently find 5 rationally so that •••, Ui+hu<i is a solution. 
Given only one solution, we obtain a new solution + pt, yi+\t, Zi+ntj 
Ui+vt, if At2+3Bt-\-3C=0, where 

A = p5+X3-m3-v3, B = p2Zi+X2?/i-p2Zi - C-pxl+\yl—nzl-vul 

We may choose X, • • *, p to make C = 0 or A = 0 and get t rationally. 
For three consecutive cubes whose sum is a cube, see papers 245-267. 
For minor results on our subject, see Schier67 of Ch. XXIII. 

Three equal sums of two cubes. 

Fermat’s40 method of solution was given above. 
W. Lenhart93 found four integers the sum of any two of which is a cube. 

Three of the conditions are satisfied if x, mz — x, nz—x, rz~x be taken as 
the numbers. The remaining conditions require that m3+n3 — 2x} m3+r* 
—2x, nz+rz—2x be cubes, say s3, a3, 63. Eliminating x, we have 

(1) rz+sz = az+nz==bz+mz- 

By his186 table of numbers expressible as a sum of two cubes, 

46969=(w+w*- (W+(wy=(■a)3. 

Rejecting the common denominator, we get integers (one of 24 digits and 
three of 22 digits) solving the initial problem. 

A. B. Evans94 obtained the last result otherwise. By Euler,61 for 
/=7,0 = & = 14, fc=16, 

10433+29893 = 11403+29763 = 73 • 33 • 26 • 13 • 3613. 

Now 13-3613 = 413 —283 can be expressed as a sum of two cubes by the 
usual method. The final answer involves numbers of 22 and 24 digits. 

J. Matteson95 obtained Lenhart’s result by the method of Evans. 
H. Broeard96 noted that the sum of any two of the numbers 20012!, 

— 15916-2-, 19291 J, —20020! is a cube. E. B. Escott97 noted that 6044, 
7780, —1948, —6052 have this property. 

E. Fauquembergue98 gave an erroneous solution of (1) with 5 parameters. 

92 Nouv. Ann. Math., (4), 17, 1917, 41-46. 
93 Math. Miscellany, New York, 1, 1836,155-6. 
94 Math. Quest. Educ. Times, 15, 1871, 91-2. His factor 23 should be 2®. 
96 Collection Dioph. Problems, pub. by A. Martin, Washington, D. C., 1888, 1-4. 
96 L’interm&iiaire des math., 8, 1901, 183-4. 
97 Ibid., 9, 1902, 16. 
99 im, 9, 1902, 155; 10, 1903, 82 (Sphinx-Oedipe, 1906-7, 80, 125). 
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A. S. Werebrusow" gave the solution72 

= F toiA2)3 = (- N^utfy+iN^ut2)3, 

in which M2+MN+N2 = 3co2<£i/', co3 = l. He100 noted that 

(2) xz+y3 = x\+y\=x\+yl 
holds for 

x\y—xh)i xyt—xiy2 
^2 ~ j 2/2 —-, 

xy—x&i xy~xiyi 

and the values derived from the latter by interchanging xh y\. He101 
used this result to get the general solution of (2). 

Fauquembergue102 remarked that the last formula follows from the 
identity 

(2/* - yz) (z2iy-x2yi)3+(x2 —xl) (ylx - y2x 1)3 = (x3yl - yzx\) (xy-xiyi)z, 

due to A. Desboves103, by taking tf+y^^xl+yl and dividing the result by 
the product of (xy—x^i)3 by xz—x\=y\ — yz. 

A. Gerardin104 stated that the least solution of (2) in integers >1 is 
probably x = 560, y = 70, Xi = 552, yi = 198, rr2 = 525, y% = 315. 

Fauquembergue105 noted that if Cauchy’s287 formulas are applied to 
xz+yz = 19z3, which has the solution a: = 3, y~ — 2, 2 = 1, we get 

19=(D3+m=(f)3+(i)3=m )3+my=mny+1» 
so that 19-3635103 is a sum of two positive integral cubes in various ways. 

Solution of 2(ar5-fz3) =yz+tz. 

R. Amsler106 noted the solution a:=n„+i, z = t;n, y = un+un+i, t = vn+Vn+1, 
where un and vn are the nth coefficients of the developments of 

(1—3a:—3a:2—x3)-1, (1+3a:+3a:2 - a3)"1. 

A. G6rardin107 noted the identities 

(a3+3b3)3+(a3 - 363)3 = 2 {(a3)3+(3a&2)3}, 

(a2+4a£-02)3-f(/32+4^-a2)3 = 2 {(<*+$)*-(a~/3)6}. 

Gerardin108 gave several solutions, as 

a: = 2a(a3—c3), y = c{<?—4a3), z = b(2a3+c3), t = d(2az+c?), 2(a3+63) =c3+d3. 

99 L’intermSdiaire des math., 9, 1902, 164; 11, 1904, 288; Matem. Shorn. (Math. Soc. 
Moscow), 25, 1905, 417-37. 

100 L’intermddiaire des math., 12,1905, 268; 25,1918,139, for numerical examples in which 
Zt and y% are integers. 

101 Matem. Shorn. (Math. Soc. Moscow), 27, 1909, 146-169. 
101 L’intermMiaire des math., 14, 1907, 69. 
104 Nouv. Ann. Math., (2), 18, 1879, 407. Special case of Desboves.302 
104 L’interm&Uaire des math., 15, 1908, 182; Sphinx-Oedipe, 1906-7, 80, 128. 
109 Sphinx-Oedipe, 1906-7, 125. 
104 Nouv. Ann. Math., (4), 7, 1907, 335. Proof by L. Chanzy, (4), 16,1916, 282-5; same in 

Sphinx-Oedipe, 9, JL914, 93-4. 
107 Sphinx-Oedipe, 1910,179. 
108 Ibid., 9, 1914, 143-4; Nouv. Ann. Math., (4), 16, 1916, 285-7, where Y, Z should be 

interchanged. 
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Relations between five or more cubes. 

To divide a given cube k3 into n (n> 2) positive cubes, J. Whitley109 
took a, k—v, vk2/a2—a, dv, ev, • • • as the roots of the required cubes. Then 

3 ka3(k?~a3) 

V~k*+a*(.<P+er,-\-1)' 

S. Ryley took a, v—a, k—a2v/k2, dv, ev, • * • as the roots; then 

Zk3a(k3-a3)~v{kG(l-\-d3+e3-\-) —a6}. 

F. Elefanti110 noted that 
93 = 1+63+83j 133= 1+53+73+123; i03 = 43+63+73+93 + 143, 

and that 28s is a sum of 9 cubes, also of 11 cubes; etc. For the second 
relation see Bouniakowsky54 of Ch. VIII. 

Y. Hirano111 noted that 

(a3+36c3)3+(36c3 dh 53)3 4- (a3 db 63)3+(d= %abc)3 
= (36c3)3+(a3)3+ (b3)3+(a3 dh 63+36c3)3. 

A. Martin112 noted that the sum of the cubes of rm, q—rm, sm, piq, 
• • • , pn-.zq will equal the cube of sm-{-qr2/s2 by choice of m\q. Also, 

l3+23+43 -f 123 -f- 243 = 253, l3+23+523+2163 = 2173. 

S. R£alis113 noted that z?H-1-z‘} = z3 if 

Zi, z3 = ±3a/3(a — /3)+y3; z2, z4= ±3a/3(a-3/3)±6/33-73. 

This is not the general solution since 2zt = 0. 
E. Catalan114 noted that x3 = 6(a; — l)2+(x —2)3+2 gives 

a:3 (x3—2)3 + (2—rr)3 (x3+1)3+(2x3 — 1)3 — (a;3+1)3 = 6 (a; — 1)2 (a;3+1)3. 

Taking a: = 7/4 or a; = l+6(a/6)3, we get a solution of X3+Y3-\-Z3 = S3+Tz 
in positive integers. If we multiply each term by 27(a;6—a;3+l)3a;9, combine 
the third and fourth terms and replace x3 by x, we get 

(2a; —l)3(2a? —6a;2—l)34-(5a;3—9x2+3a; —l)3(a;+l)3+27a;3(a;2—a;+l)30r+l)3 
-27x3(2x-l)3(x2-x+l)3. 

D. S. Hart115 found cubes whose sum is a cube by taking 13H-\-n3 = S 
and seeking by trial to make S — (s-fm)3-j-s3 a sum of cubes. 

S. Tebay116 noted that, if x=aah y = aa2, z = aa3, 2u3 — n, 

(1) x3Jry3-\-z3 = 2u3 

becomes a"3 = n~12a?. First, solve al+al = nr3+s3 by setting 

2u3r3+s3 = (ur~\-t)3-\-(ur — t)3 = 2 u^+Surt2, 

««Ladies’ Diary, 1832, 41-2, Quest. 1536. 
110Quar. Jour. Math., 4, 1861, 339. 
111 Easy Solution of Math. Problems, 1863. Cf. Hayashi, Tdhoku Math. Jour., 10, 1916,18. 
112 Math. Quest. Educ. Times, 21, 1874, 104. 
111 Nouv. Corresp. Math., 4, 1878, 350-2. 
™Ibid., 352-4,371-3. 
115 Math. Quest. Educ. Times, 23, 1875, 82-3; Math. Magazine, 1, 1882-4, 173-6. 
118 Math. Quest. Educ. Times, 38, 1883, 101-3. 
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whence s3 — 6urZ2. Take Z = 3n3, r ~ 4.u2mz, whence s — §umn2. Hence solu¬ 
tions are ah a2=4w3??z3±3?i3. Next, for a3 —p—s, our initial equation 
becomes 

s-^.g8 | 3ps2 
n n n 4+S)' if 

3 nrzs 

nrz — s3 

Special sets of five cubes whose sum is a cube have been noted.117 
A. Martin118 noted that the sum of the cubes of p-j-£, p—q, r—p, 5 is 

the cube of r+p if p = -6-$3/(r2—q2); that of a+b—c, a-fc — fr, b+c~a, y is 
the cube of a+fr+c if yz — 2A.abc} whence take a = 3p3, b — Zqz, c-rz or take 
y~2a, c=a2/(3Z>); the sum of the cubes of pa+nZ, qa—nt, ra—nt, nt is of 
the form saz+R and is a cube if 5=p3+g3+r3 is a cube and if R — Q, which 
determines ^ Next, he gave Whitley's109 result. 

Finally, given that pf-j-bp* is a cube, to find n+1 cubes whose sum 
is a cube. If n is odd, take x, pi—x, p2—x, p3-b#, p^—x, p5+#, • • •, pn+x 
as the roots of the desired cubes, where 

%=(p~i+pt—pl+pl-P»)/(pH-b pn)- 

If n is even, take x, pi+x, p2—x} p3+£, Pi—x, • • •, p^+x, pn—x as the 
roots, and (Z-fa;)3 as the sum of their cubes, where 

x—(t2 pl+pl—pt+pl-bp*) / (pH-\-pn—Z). 

Martin119 found cubes whose sum is a cube bz by selecting bz between 
n3 and &=l3d b nz and seeking by trial to express S—bz as a sum of 
distinct cubes n3. Also by seeking to express pz—qz as a sum of distinct 
cubes +23. He tabulated the values of S for n^342. 

R. W. D. Christie120 gave 14 cases like 43 = l+l+23+33+33 of a cube 
equal to a sum of five cubes. 

Ed. Collignon121 noted that there is no positive integral solution of 

(p = 3 or 4). 

A. Gerardin122 gave numerical examples of equal sums of three cubes. 
A. S. Werebrusow123 noted that (1) holds if 

x u-\-v, y—u—v, u — arm3, v — bn3, z — —Qmn2, ab ~ 6. 

From two sets of solutions a third set is derived. 
A. G4rardinU4 gave, besides two more complicated identities of like type, 

(6of/3)3 + (9a2 -f /32—a/3)3+(9or—/32+a/3) 3== (9or2—/32—3-f-(9ct2+/32-|-o;/5 )3. 

G6rardin125 discussed a3+63+/ic3= (q+6)3+faP. For a=pm, c = d+m, 

317 Amer. Math. Monthly, 2, 1895, 329-331. 
118 Math. Magazine, 2, 1895, 156-160. 

U9 {£“*•» 185~190- Two examples, Martin88 of Ch. XXIII. 
Math. Quest. Educ. Times, (2), 4, 1903, 71. 

m Sphinx-Oedipe, 1906-7, 129-133. 
122 Ibid., 120-4. 

m Math. Soe. Moscow, 26, 1908, 622-4. 
m Assoc. Iran?., 38, 1909, 143-5. 
12B Sphinx-Oedipe, 5, 1910, 178. 
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it becomes 
hm2+3(dh--bp2)m~\-3(hd2 — pb2) — 0. 

To make the 'constant term zero, set h~b2, p = d2; then, for b = x3, 

(3d6-3d3o;3)3+ (x6y+(3d4x2-2dx*y - (3d6-3d3o;3+a;6)3+ (do;5)3. 

By annulling the coefficient of m, he obtained 

(3p)3-f (p2+3)3+p(p2+3)(p+3)3=(p2+3p+3)3+p(p2+3)p3. 

Again, 

(a;2 — Qy2)3+(6a;2 — 17 xy)3+ (8a;2—3 6a:y+54 y2)3 

= (9a;2—36a;y+48y2)3 -f- (36?/2 —17xy)3. 

E. Barbette126 employed the first method of Martin119 to show that 

33+43+53 = 63, l+63+83 = 93 = l+33+43+53+83, 

33+43+53+83+103 = 123 = 03+83+103, 

l+53+63+73+83+103=133 = 53+73+93+103, 

23+33+53+73+83+93+103 = 143 

are the only sets of distinct cubes ^103 whose sum is a cube. 
R. Norrie84 would find n cubes whose sum is a cube by taking 

(ro;i+X)3+(ro;2*“X)3+(ra;3+M)3+(^a;4—ja)34- 

+ (rxn-i+py+(rxn-py= (rx0y, 

(ra;i+X)3+(ra;2+iu)3+(ra;3-ju)3H-b(^n~i+p)3+(ra;n~p)3= (ra;0+X)3, 

according as n is even or odd. 
A. G6rardin127 noted that the sum of the cubes of a; — 1, x, x+1, 2f— 1, 2/, 

2/+1 is of the form 3t(t2—2q) if t=x+2f, q = 3fx — 1. 
R. D. Carmichael128 noted that (1) has the special solution 

£ = p3d=6cr3, p = p3-F6er3, 2 = — 6pcr2, U = p3, 

and obtained a set of solutions of x3+y3+z3+u3 = 3t3 involving five param¬ 
eters. A special solution of x3+2y3+%%z = tz is x, t = 2n3zFm3, y~mz, 
z = 2mn2. 

The double of a cube may be a sum of four cubes.129 
A. G6rardin130 derived a solution of x^+y^+z^ — hv3 from a given solution, 

and deduced a solution of 

A+B+C=X+Y+Z, A3+B3+C3=X3+Y3+Z3. 

M. Weill131 derived a third solution x~Xi+Mx2—^i), * • * from two given 
solutions of x3~y3+z3Jrtz+u3) likewise for ax3-\-byz+czz+di3~0. 

E. Faucuembergue132 treated xz+yz+z? — 4u3 by setting x = 2a, y = 46+1, 
2 = 4c-1, 25 —2c+1 =/, b+c = g. Then 2a3+3/2gr+4p3 = w3, which is satis- 

128 Les sommes de p-i5mes pin usances distinctes dgales & une p-i6me puissance, Liege, 1910, 
105-132. 

127 L’intermiSdiaire des math., 19,1912, 136. 
128 Amer. Math. Monthly, 20, 1913, 304-6. 
129 L’interm6diaire des math., 21, 1914, 144, 188-190; 22, 1915, 60. 

22, 1915, 130-2 (error for h=2); 23,1916, 107-110. 
181 Nouv. Aud. Math., (4), 17, 1917, 46, 51-53. 
182 L’interm6diaire des math., 24,1917, 40. 
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fied if a=6, /= 1, g=9, u=15, giving 123+173+193=4-153. This contra¬ 
dicts the statement by E. Turriere133 that x3+y3+z3~ntz is impossible if 
n=4 or 5 (mod 9). 

A. S. Werebrusow134 gave two equal sums of four cubes. 

Sum of three cubes made a square. 

Y. Bouniakowsky135 used fx(x+b)dx to get the identity 

(#+b)2(2x — b)+63=x2(2x+36). 

Set 2x—b = (x+b)X3, 2x+36 = m2- Then 

X3+F3=Z2, X = 

Multiply by (8—X3)3. Thus 

3X 

s-x3’ Y= 

2—X3 

8-x3’ 

X3+l 

8—X*' 

(3X)3+(2—X3)3+ (X3+1)3 = [3(X3+1) ]2. 

E. Catalan,136 by use of the toroid, obtained the identity 

(a4+2a63)3+(64+2a36)3+(3a262)3= (a6+7a3&3+&6)2, 

which gives an infinitude of, but not all, solutions of xz+y3+z3 = u2. 
E. Lucas137 deduced from formulas of Cauchy287 the generalization 

A(Aa*+2Bab*y+B(BV+2Aa?by+A2B2(3a262)3 = (A2a6+7ABa363+J5266)2 

of Catalan’s136 identity. 
A. Desboves138 gave a new proof of the last identity. 
A. S. Werebrusow139 derived from one solution a, b} c} d the second solution 

(a+ax)z+(b—ax)3+• (c+%)3 = (d+&r)2, 
2d6 = 3(a2-b2)a-{-3c2, x~ 82—d(aA-b)a2—Sc. 

We may start from the solution (n2)3= (n3)2. 
A. G4rardin140 gave the identities 

(9x4+8w3x)3+(4w4)3+ (4 uzxY = (8u6+36uV+27x6)2, 

{a4—8a63 (c3+d3)}3 + (ct)3 -f(df)3 = {a6+20a353 (c3+d?) — 866 (c3+d3)2)2, 

where t=4a36+464 (c3+d3). 
G^rardin141 tabulated solutions of xZJry&-\-zz — u2. 

Binary Cubic Form made a Cube. 

Fermat142 solved Axz+Bx2+Cx+D=zz if D = dz by setting 

z = d+Cx/( 3d2), 

or if A = a3 by setting z = ax+BI($a2)} while if both D ~dz and A =a3 there 

133 L’enseignement math., 18, 1916, 421. 
134 L’interm&Iiaire des math., 25, 1918, 75-6. 
133 Bull. Ac. Sc. St. PStersbourg, Phys. Math., 11, 1853, 72. 
136 Bull. Acad. Roy. de Belgique, (2), 22, 1866, 29; Melanges Math., 1868, 58; Nouv. 

Corresp. Math., 1, 1874r-5, 153, foot-note. 
137 Bull. Bibl. Storia Sc. Mat. Fia., 10, 1877, 176. 
138 Nouv. Ann. Math., (2), 18, 1879, 409. 
135 L’interm&liaire des math., 15, 1908, 136-7. 
140 Sphinx-Oedipe, 8, 1913, 29. 
141 L’interm&iiaire des math., 23, 1916, 9-10. 
142 J. de Billy’s Inventum novum, III, §§ 27-30, Oeuvres de Fermat, III, 386-8. 
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are three ways of solving. Thus, for xs+2x2+4x+l =23, 2 = 3+1 gives 
3 = 1, z=3+2/3 gives 3 = —19/72, z=l+4x gives 3 = -90/37, and each of 
these primitive solutions furnishes new solutions as above. Cases when 
the preceding methods fail are noted in § 30; there is no rational solution 
z+0 of l+33 + 332 +43s = z3 or of xz—332±33dbl = 2?; for 

33+232+33+l =z3, 

z~ 1+3 gives 3 = 0, while z = x+2/3 gives the only primitive solution [von 
Schaewen150 noted the additional primitive solutions x = — 1, x = —1/2]. 

L. Euler,143 after reproducing (§§ 147-151) essentially Fermat’s methods, 
treated the new case in which a particular solution x~h, z = k, is known. 
Taking x — h+y7 we get a cubic whose constant term is a cube. Since 
4+x2 = z3 for 3 = 2 or 3 = 11, we may apply the last method, or set 
3= (2+2y)/(l—y) and get (8+8y2)(l — y) = w3 or set 3= (2+ lly)/(l-±y). 

L. Euler144 proved that py3ztp2x3 — z3 is impossible if p is a prime. For, 
z = pA, whence p2A3:=Fpx3 — y3. Then y = pB, whence p2B3 = pA3^Fx3. Then 
x = pC, etc., and x, y, z are divisible by an indefinitely large power of p. 

W. L. Krafft145 would make x3+ny3 the cube of p3+ny3+n2r3 — Znpqr by 
setting 

x+y Vn= {p+q'^n+T Vn2)3, 

which determines 3, y, subject to the condition p2r+pq2+nqr2 = 0, whence 

V = ^ {- q-+ "V—4ngr3 J. 

To make the radical rational, set y = s2, $6 — 4nr3 = t2, whence take s3+£ = 2/3, 
s3—t — 2ng3. Then $3=/3+ny3, which is like the initial equation, but in 
smaller numbers. 

P. Paoli146 treated a-\-b3x3 = y3 by setting y = bx-\-m, solving the quadratic 
in 3 and making the radical rational. Thus 12am—3m4 is to be a square, 
which he accomplished by trying values of m< Mia. A like method was 
stated to apply to a+bx-{-c3x3 = y3. 

D. M. Sensenig147 treated without novelty ax3+bx2+cx+d = y3, when 
a or d is a cube. 

A. Desboves148 stated that if T-cZ3 and F = cZ2, where T and F are 
binary forms of the third and fourth degrees in X and Y, are such that 
T=0 and F=0 are solvable in integers, one can determine a solution 
(X, F, Z) of one of the equations knowing a solution (x, y, z) of an equation 
of the same degree by formulas giving X, Y, Z as cubic functions of 3, y, z, 
in case of T = cZ3, and, in case of F = cZ2, by functions of degree four in x, y 
and of degree eight in z. 

1{* Algebra, St. Petersburg, 2, 1770, Ch. 10, §§ 147-161; French transl., Lyon, 2, 1774, pp. 177- 
195; Opera Omnia, (1), I, 406-414. 

144 Opera postuma, I, 1862, 217 (about 1775). 
145 Ibid., 234. 
146 Opuscula analytica, Liburni, 1780, 128-130. 
147 The Analyst, Des Moines, 3, 1876, 104. 
148 Comptes Rendus Paris, 90, 1880, 1069. Cf. Desboves159 of Ch. XXII. 
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E. Landau, A. Boutin, P. Tannery, and A. S. Werebrusow149 considered 
xz-sr3x2y-\-^xy2+2yz~l or s3. 

P. von Schaewen150 treated Axz+Bx2y+Cxy2+Dyz=zz. If A = az,B = 0, 
we have 

(z—ax) (z2+axz+a2x2) = y2(Cx+Dy), 

which is satisfied if m(z-ax) =ny, n(z2-\-) ^m(CxJrDy)y. Eliminating 
z, we get 

x 1 
- = {Cm2 - 3 }, E = C2m4+12a2Dmzn ~ 6aCm2n2 - 3 aW. 

We can always make E a square. Next, if A = a3, 5 + 0, we replace 
ax+By[{3a2) by Xi and y by 3a2yi and are led to the first case. Finally, 
if neither A nor D is a cube, but x = p, y — q, z~r is a known solution, 
set qx=py+s to obtain a cubic in which the coefficient of yz is r3. For 
Fermat’s example, xz+2x2y+3xy2+yz=zz, set X=x+y, x~ Y. Then 

Xz—X Y2-\~ Yz = z3, E=m4+12m3n+6m2n2—3 n4. 

Many solutions are found: (x, y, z) = ( 1, — 1, 1), (3, -7, -1), (1, —2, 1), 
(6, —13, 5), etc., whereas Fermat’s method gave the primitive solution 
2 = 19,2/= —45. 

J. von Sz. Nagy151 noted that a principle of Poincare’s15 of Ch. XXIII 
enables us to transform the cubic curve f^azxz+pxy2+qyz — zz~0 without 
double points, treated by von Schaewen, by the birational transformation 

x===pm2—3an2zhrm, y — Qa2mn, z = a(pm2JrSan2dzrm) 

into the quartic curve p2m4 + 12a2qm3n—6apm2n2—3a2n4—r2m2 — 0, and con¬ 
versely the last into /=0 by 

m-y~, n~y(z—ax), zhr = 3a(z—ax)2+6a2(z — ax)x—py2. 

To pass to the non-homogeneous form, use x/y} z[y, n/m, r/m. 
E. Haentzschel,152 starting from a given solution x = h, y = k, of 

yz = a o23+3 a ix2-+3 a 2x+a 3 =/(x), 

derived a second solution by applying the substitution 

x— (fit a>ih2 2a2h a%) /t, T=2+-(Zo^2d~2tti/i'+(Z2j 
giving 

where C2 and C3 are the quadratic and cubic covariants of f(x), and choosing 
t so that 3C2(h)t+Cz(h) =0. We may begin with the identity 

4 Cl(x) + Cl(x)=Df(x), 

where D is the discriminant of /, set v— — C3//, ^=4s3+Z); then 

149 L’interm^diaire des math., 8, 1901, 147, 309 ; 9, 1902, 111, 283; 10, 1903, 108; 13, 1906, 
196-7. 

150 Jahresbericht d. Deutschen Math.-Vereinigung, 18, 1909, 7-14. 
151 Ibid., 401-2. 
utIbid., 22, 1913, 319-29. 
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Given a pair of values v, s satisfying y2 = 4s3+D, we can find new pairs by 
use of the addition theorem for the elliptic function p(u). Only such a 
value v is useful for which the cubic equation153 v= —C3If has a rational 
root x. The simplest case Z>= □ is treated at length and illustrated for 
19 yz = x3+zz. 

L. Holzer treated154 (x+y)(x2+y2) =4:Czz. J. de Billy155 (p. 41) treated 
(x+y)(x2+y2) =23. 

Candido179 of Ch. XXIII made the product of a linear and a quadratic 
factor a cube. 

Binary Cubic Form made a Square. 

J. de Billy165 treated many problems/= □, where / is a cubic or quartic 
in one or more variables with numerical coefficients. 

Fermat156 treated 20a;3+5x2+40z+16=22. For 2 = 4+5a;, a; = l. To 
deduce a second solution, set x = l+y. Then 

202/3+65y2+1102/+81 = (9+^)2 for 2/ = Z^* 

From the latter, we get a third solution. 
L. Euler157 made F ^f2+bx+cx2+dxz — □ by setting F — (/+px)2, where 

2/p = 6, whence x = (p2 —c)/d, or by setting F~(f+px-\-qx2)2 and choosing 
p and q to make the terms in x and a;2 cancel, whence 

j> = bl(2f), q= (c—pi)l(2f), x=(d—2pq)jq2. 

But it often happens that neither of these two methods leads to a value 4= =t/ 
of x, as for example for/2+da;3, and then we resort to trial. For 3+x3 = □, 
set x = 1+2/ to obtain 44-Yyz. But for l+xz, x = 2+2/ gives 9+12y 
+6y2+y3 and neither of the two methods leads to a value of x other than 
0, 2, — 1; in fact, l+xz~ □ only when a; = 0, 2, —1. 

Euler144 of Ch. XXII applied to cubics his method to make a quartic 
a square. 

W. L. Krafft,158 given ma?+n=b2, made mxz+n = z2 by setting x-a+y, 
z = b+3ma2y/(2b)^zi or z = zi+py2 and in the latter case requiring that the 
terms y2 shall cancel. A. J. Lexell treated the case n = k2 by setting x = ay, 
whence (b2—k2)yz = z2—k2, and taking {bdzk)y2=z±k, (b^Ffyy^z^k. 

L. Euler159 noted that 1+2 —zz — □ for 2=11/9. 
Krafft160 made xz+nyz a square for relatively prime integers x, y, by 

setting 

x~\-yay ^n— (p+ayq^n+a2yr^ln2)2 (7 = 0, 1, 2; <+ = 1). 

m Treated by Haentzschel, Sitzungsber. Berlin Math. Gesell., 10, 1910, 20. 
1M Monatshefte Math. Phys., 26, 1*915, 289. 
168 Diophanti Redivivi, Lvgdvni, 1670, Pars Posterior. 
168 J. de Billy’s Inventum novum . . ., Oeuvres de Fermat, III, 385. 
157 Algebra, St. Petersburg, 2,1770, Ch. 8, §§ 112-127; French transl., Lyon, 2,1774, pp. 135- 

152; Opera Omnia, (1), 1, 1911, 388-396. Reproduced, Sphinx-Oedipe, 1908-9, 49-57. 
188 Euler’s Opera postuma, 1, 1862, 211-2 (about 1770). 
™Ibid., 217. 

Ibid., 232-4. 
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Thus x = p2+2nqr, y~2pq+nr2, 0 = 2pr+q2, which holds if p~2a2, r= —62, 
q = 2a6. The product of the three factors is the square of p3+n^+n2r3 
— 3 npqr. 

J. L. Lagrange161 proved that r3—Asz = q2 for 

(1) r = 4^3~Aw3), s= -u(8t3+Au*), q = St6+20Atzu\-A2u\ 

He took a cube root a of unity and set 

p = t+ua ^A+xar^A2, p2 — T+Ua VZ+Xa2>/A2. 
Thus 

T=t2+2Aux, U=Ax2+2tu, X = w2+2ta. 

Then the factor r—as^lA of the given cubic function will be of the form 
V2 if r — T, s~ — U, X = 0. Substituting the value x— —u2/(2t) from X=0 
into the first two conditions, we get 

$ = 
Au4 

IF —2tu. 

In the product P = t2JrAuz—3Atux-f-A2x3 of the expressions p in which a 
takes its three values, we insert the above value of x and obtain q. To 
avoid fractions multiply r and s by At2, and q by St\ 

Euler162 noted that this product P may be made equal to any power. 
Lagrange163 extended the method from a3= 1 to a3—aar+fra—c = 0, with 

the roots au, a2j a:3. Then 
3 

F(x, y, z)== JJ^(xA-aiy+alz)—x5A-ox2yA-(a2-’2b)x2zA‘bxy2+(ab — dc)xyz 

+ (62—2ac) xz2+cyz+acy2z+bcyz2+cV 

is such that its product by F(xh yh Zi) is F(X, F, Z), where 

X-\~olY A-o?Z=(xA-oty-\-CL2z) (ri+a:?/i+Q'22i). 

In particular, the square of F(z, y, z) is F(X, Y, Z), where 

X = x2+2 cyz+acz2, Y—2 xy—2 byz + (c—ab) 22, 

Z — 2xzA~y2Jr2ayz+(a2 — b)z2. 

We may make Z = 0 by choice of x rational in y, z. Hence 

X3+aX2F+6XF2+cF3 = 72 

has solutions involving the parameters y, 2, with V = F(x, yy 2). The same 
method leads to solutions of F{X, F, Z) = Vm. 

A. M. Legendre164 made Z — 0 by taking y — (u—a)z, 2x= (6—u^z. 
Then replacing u by ujv, we see that X, F, V are proportional to 

X~ui-2bu22jr-{'Scuvs-h(b2—Aac)viJ F= —A.v{uz~ au2v-\~buv2—cvP), 
V = u6—2 au5v+5buAv2—20 cuztf—5 (b2—4ac) w¥ 

_ — (8a2c—2ab2—Abc)uv>— (63—4a6c+8c2)^6. 

161 Mem. Acad. R. Sc. Berlin, 23, annee 1767, 1769; Oeuvres, II, 532. 
162 Opera postuma, 1, 1862, 571-3; letter to Lagrange, Jan., 1770, Oeuvres, XIV, 216. 
163 Addition IX to Euler’s Algebra, 2, 1774, 644-9 [misprint of sign in X, § 92]]. Oeuvres de 

Lagrange, VII, 170-9. Euler’s Opera Omnia, (1), I, 643-50. 
1M ThSorie des nombres, ed. 3, II, 1830, § 465, p. 139. German transl. by Maser, 2,1893,133. 



Chap. XXI] Binary Cubic Form Made a Square. 571 

A. Desboves165 gave for a==6 = 0 this result with v replaced by v/2. 
He166 reduced ax3+bys = cz2 to Lagrange’s161 case by multiplication by a2&. 
H. Brocard167 noted that xz-\-(2a-\-l)(x~l) = y2 has the special solution 

3 = (a+l)2+2(a+l) —1, 2/=(o+l)3-f3(a+l)2-l. 

R. F. Davis168 made 8a;3—8z+16 the square of px2+x—4, obtaining a 
quadratic for x with rational roots if 8p3 —8p+16= □. Hence solutions 
like p = 0, dbl, 2 lead to new solutions x. 

G. de Rocquigny169 proposed for solution x3—x±l ~y2. H. Brocard170 

noted that for the upper sign it has solutions x~0, 1, 3, 5. E. B. Escoti171 

noted that for the lower sign it is impossible as shown by use of modulus 3. 
L. C. Walker172 reproduced Lagrange’s163 work, applying it to x3+ay3 = z2. 
The least positive integral solution173 of re3 —66?/3 = □ has x = 25. 
L. Aubry174 found restrictions on possible solutions of xz+x2+2xJrl = □. 
A. G&rardin175 assumed that x0, y0} z0 is a known solution of 

ax3+bx2y-\-cxy2+dy3 = z2 

and took x=x0-{~mf, y = yo~\~'mg) z~z0+mh. There results a quadratic 
equation Amr+Bm+C = 0. He took in turn 

A = 0, jB = 0, <7=0, R2-4AC=D. 

L. J. Mordell176 wrote the proposed cubic in the form 

(2) g2 = 47i3 - g2ha2 - gsa3, 

which is the syzygy connecting the seminvariants a, 

h — b2—ac, g2 — ae —Abd+3c2, gz — ace+Zbcd—ad2—b2e —c3, 

and g = a2d—b3jr3bh of the quartic 

/=ax4+Abx3y.-\-$cx2y2+Adxy3+ey4. 

Given integral solutions of (2) in which a is odd and prime to h, we can 
find integers a, * • •, e such that / has the invariants g2 and <73, and b is 
prime to a. Conversely, every such quartic yields a solution of (2) with 
a odd and prime to h. Hence to find all solutions (with y odd and prime 
to x) of 
(3) z2 = 4z3 - g2xy2 - gzy\ 

take a representative / of each class of binary quartics with the invariants 
02, 03; apply to /a suitable linear substitution (pqrt) of determinant unity 
to obtain a quartic /' having a' odd and prime to b'; then # = /&', y = a\ 

145 Comptes Rendus Paris, 87, 1878, 161. 
164 Nouv. Ann. Math., (2), 18, 1879, 398. 
147 Nouv. Corresp. Math., 3, 1877, 23-24. 
148 Proc. Edinb. Math. Soc., 13, 1894-5, 179-80. 
148 L’interm^diaire des math., 9, 1902, 203. 
170 Ibid., 10, 1903, 131. 
171 Ibid., 132. 
178 Amer. Math. Monthly, 10, 1903, 49-50. 
178 Math. Quest. Educ. Times, (2), 14, 1908, 29. 
174I/interm6diaire des math., 18, 1911, 276-7. 
175 Sphinx-Oedipe, 8, 1913, 161. 
174 Quar. Jour. Math., 45, 1913-4, 170-186. 
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viz., y=f(p, q), x = H(p, q), H being the Hessian of /. Thus the complete 
solution of (3), in relatively prime integers x, y, is given by a finite number 
of pairs of quartic forms in two parameters p, q. In particular, five such 
pairs of quartics give all solutions of z2 = xZJryz in which y is odd and prime 
to x. 

R. F. Davis177 noted that if x = p is a solution of axz+bx+c2 = □, two 
further solutions are the rational roots of (apx — 5)2 = 4ac2(x+p). 

E. Fauquembergue178 proved that x2 — (y-f-l)(2/2+4) has no integral 
solutions except (x, y) — (2, 0) and (10, 4), since p2q2 — l = p4i—qi implies 

A. Gerardin179 proposed that special cubics be made squares. He and 
L. Aubry180 gave a partial solution for 2xz+x2-\-l = □. 

E. Haentzschel180® made use of Weierstrass’ ^-function to study 

II (&fr+l) = □, h=hi+h, 
i=1 

where Ih and h are rational or conjugate complex numbers. As an ex¬ 
ample he treated Euler’s157 problem x3+1 = □. 

For a^+a;2+a;+l = □ see pp. 54-58 of Yol. I of this History. 
For f— □, where / is a certain cubic, see papers 154-6 of Ch. V, 82 of 

Ch. XY, and 163 of Ch. XXII. 

Numbers the sum of two rational cubes: xz+yz — Azz. 

Fermat40 indicated a process to get an infinitude of solutions from one. 
J. Prestet181 employed Fermat’s process to get the solution 

X=z(2 yzjrxz), Y= — y(2xz+yz), Z=z(xz-yz). 

J. L. Lagrange161 reduced the problem, by means of his theory of poly¬ 
nomials which repeat under multiplication, to the solution of tu2+t2v=Auv2. 
Setting u=ft, v~fgt, and dividing by f2gtz} we get 

Set 1 = 1//-l/fir. Then h(h2 — l2) — 4A. Set l = kk. Then 4A/(1-A;2) is hz, 
so that 2A2(1—k2) is the cube of 2Ajh. But he did not complete the dis¬ 
cussion. 

L. Euler182 proved that y = x if A = 2. 
L. Euler183 proved the impossibility of xz+yz = 4:Zz and that the problem 

is equivalent to the impossibility of l+2xz= □ in rational numbers, :c+0. 
To discuss x3+y3 = wz3, set£ = a+&, y = a—b, z = 2v. Then a(a2+362) =4mA 

177 Math. Quest. Educ. Times, (2), 24, 1913, 67-8. 
178 L’mtermSdiaire des math., 21, 1914, 81-3. 
179 Ibid., 22, 1915,104,128. 
180 Ibid., 23, 1916,132-3. 
1800 Sitzungsber. Berlin Math. Gesell., 16, 1917, 85-92. 
181 Nouveaux elemens des Math., Paris, 2, 1689, 260-1. Cf. Lucas, Amer. Jour. Math., 2, 

1879,178; Cauchy,287 end. 
182 Algebra, 2, 1770, Art. 247; French transl., 2, 1774, pp. 355-60; Opera Omnia, (1), I, 491. 
188 Opera postuma, 1,1862, 243-4 (about 1782). 
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Take 

a = v (p2 “ (p2 - g2), w = r (p2+3g2). 

Then a2+362== (p2+3g2)3, a = 4nr3. Hence take p = a/3, p+3g = 2/3<?3, 
p~3q = 2yh?) af$y = n, fgh = r. Substituting the resulting values of p, q 
into p~cip, we get afz-^gz+yh3. If the latter be solvable, the proposed 
equation is solvable. He noted (pp. 244-5) that 162—3-232= (1 — 3*22)3, 
whereas 16+23 V3+ (1+2 V3)3. In general, x2—ny2=(p2—nq2y implies 

x+y^=(f±g^n)(p±q'y^n)\ f-ng2 = 1, 

but not the relation with the first factor omitted. 
A. M. Legendre184 proved that, for A =2, every set of integral solutions 

has z= ±?/, while for A = 2m, m> 1, x — —y, and observed that, for A ^±3 
or ±4 (mod 9), z must be divisible by 3. He stated that the equation is 
impossible for A =3, 5, 6, whereas for A = 6 it has the solutions185 x = 37, 
2/ = 17,s = 21. 

On geometrical aspects of the problem, see Glenie,12 Becker.16 
Wm. Lenhart186 gave a table of 11 pages expressing 2581 integers 

< 100000 as a sum of the cubes of two positive rational numbers. Formulas 
used in the construction of the table were deduced as follows from 

x3+yz=(x+y)Q, Q=x2-xy+y2. 

First, let x+y = a3, x> y, where a is even. For j— 1, 2, 3, • • •, take x = s+j, 
y — s —j, 2s = a3. Then 

<A> 

the successive values of 3j2 being computed by their differences. For a 
odd, take x = s +j, y^s-(j-l); the new right member is s2+s+ 3j2—3j+1. 
Similarly for x+y— a'a? or 9a'a3. Next, let Q = m3. Then 

x+y==(xlmy+(y/my} 
whence 

(«±»y +((»+l)?Jl3')1, (».+n+1) [(2»+l)„-(„-!)„!, 
\ m / \ m / 

with three similar formulas. Euler’s6 solution (Ch. NX) of Q = ?nz 
quoted. Finally, let Q = m'm5; then 

(am?+a'x 

m 

am2+a'y 

m 
+af(x+y) \F, 

is 

F = a2mz+aa'(x+y) +af2m'} 

from which is derived four similar formulas whose right members have 

1MTh6orie dea nombres, Paris, 179S, 409; Mdm. Acad. R. Sc. de l'lnstitut de France, 6, 
annde 1823, 1827, §51, p. 47 (=pp. 29-31 of Suppl. 2 to ed. 2, ISOS, of ThSorie des 
nombres). This Supplement is reproduced in Sphinx-Oedipe, 4, 1909, 97-128; errata, 
5, 1910, 112. Thdorie des nombres, ed. 3, 2, 1830, 9. 

186 G. Lam6, Comptes Rendus Paris, 61, 1865, 924. 
186 Math. Miscellany, Flushing, N. Y., 1, 1836, 114-12S, Suppl. 1-16 (tables). 
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the factor F. In the continuation (pp. 330-6), it is noted that 

if Q — mfmz. If also x-\-y = a3, we may simplify this formula. To apply to 
(A), divide each member by az and set ($2+3j2)/m3 = ra'; hence 

(s'(s+i)+r'm3Y , (j)—rfmz 
\ am 

- = s'(3r,2m3+6r's'j+snm'). 

G. L. Dirichlet187 proved by descent the impossibility of xzzkyz~Azz* 
Hence xz±yz = 2nzz is impossible, having been proved by Euler for n = 0, 
n=1. 

J. P. Kulik188 tabulated the odd numbers to 12097 (to 18907) which 
are differences (sums) of two cubes, and gave the cubes. 

J. J. Sylvester189 stated that there are no solutions for A =2, 3. He190 
proposed the question: If p and q are primes of the respective forms 
18Z+5 and 18Z+11, it is impossible to decompose p, q2} 2p, 4q, 4p2, 2q2 
into a sum of two rational cubes. 

C. A. Laisant191 proved that az~bz = 10nH-bl0n* is impossible if 
k = 3, 4 or 5. 

Moret-Blanc192 stated that a3 — bz = h-10n is impossible if h = l, 2 or 8. 
T. Pepin193 proved that, if p and q are primes of the respective forms 

18Z+5 and 18Z+11, the equation is impossible when A =p, p2, q, q2, 2p, 2q2, 
4p2j 4q, 9p, 9q} 9p2, 9q2, 5p2, 5q, 25p, 25q2. If the sum or difference of two 
numbers is a cube, their product is expressible algebraically as the sum of 
two cubes. Hence the double of a triangular number is a sum of two 
rational cubes. Since a prime 6m+1 is of the form A2+3£2, it is a sujm 
of two rational cubes if one of the three numbers 2A, 3BdbA is a cube, or 
if 2B or AzhB is the triple of a cube. 

Pepin194 proved that Euler’s and Legendre’s use of numbers a+b V—3 
is legitimate and hence showed that the equation is impossible for A = 14, 
21, 38, 39, 57, 76, 196, and stated that it is impossible for 31, 93, 95, 190. 

E. Lucas195 noted that a solution x, y, z yields the solution 

, X=x9—y9jr3x3yz (2x3+y3), Y ^y9—x9+^xzyz{2yzA'^), 

Z = 3 xyz(x5+xzyzAy6). 

For A =9, we get 919, —271, 438, and in general all solutions with z 
even (not given by Prestet, Euler, Legendre). For A = 7, we get198 73, 

m Werke, II, Anhang, 352-3. 
181 Tafeln der Quadrat- und Kubik-Zahlen aller Zahlen bis Hundert Tausend ...» Leipzig, 

1848. 
189 Annali di Sc. Mat. e Fis., 7, 1856, 398; Math. Papers, II, 63. 
190 Nouv. Ann. Math., (2), 6, 1867, p. 96. 
191 Ibid., (2), 8, 1869, 315. J. Joffroy stated that a3—65=fc*10n is impossible. 
195 Ibid., (2), 9,1870, 480. 
193 Jour, de Math., (2), 15,1870, 217-236; Extract, Sphinx-Oedipe, 4,1909,27-8. Proof for 

P> P2, Q> <f by Hurwitz,312 p. 220. 
198 Jour, de Math., (3), 1, 1875, 363-372. 
196 Bull. Bibl. Storia Sc. Mat., 10, 1877, 174-6. Nouv. Corresp. Math., 2, 1876, 222. 
198 Stated by Lucas, Nouv. Ann. Math., (2), 15, 1876, 83. 
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— 17, 38, and all solutions with z even. This solution is simpler than 
Fermat’s41 1265, -1256, 183. 

S. R6alis197 noted that, from the solution 1, 2, 1 of xz+yz = 9zz, Prestet’s 
formulas give the solution 17, —20, —7, from which the new formulas 

X=2x2—4xy+9yz~ 9z2, Y— 2y2 —xy-\-9xz — 18z2, Z~2x2—Axz—yz-\~z2 

give 3*919, —3*271, 3 *438 and hence the solution by Lucas.195 For A =7, 
an analogous second set of formulas was given by Realis. 

Lucas198 noted that integral solutions exist if and only if A is of the form 
ab(a-\-b)lc3, where a, b, c are integers. For, if x} y, z are solutions, a = x3, 
b=y* give ab(a+b) =A(xyz)z. The converse is true by the identity 

(2) ^3 ~2/3 ^x2y 3a;2/2T+fj/3 ~ +Qy2x+%^2]3 
= xy(x+y) *3z(x2Jrxy+y2)z. 

For x = l} y = 2, we get 173+373 = 6*213, contrary to Legendre.184 
Lucas199 proved Sylvester’s theorem that the equation is impossible 

for A — p, 2p} 4#, q2, 4p2, 2q2, where p and q are primes 18Z+5, 18Z+11, 
respectively. Combining this result with that of Lucas,198 we see that 
xy(z+y) =Azz is impossible in rational numbers (excluding zero and equal 
values) if A—p, 2p, 4#, 4p2, q2, 2q2} 1, 2, 3, 4, 18, 36. 

A. Desboves200 derived the identity (2) by Lucas from Lagrange’s163 
theory of polynomials which repeat under multiplication. 

J. J. Sylvester201 proved that pq, p2q2, pp2, qql are not sums of two rational 
cubes if p, pi are primes 18Z+5 and q, qx primes 18Z+11. These with 
p, P2} <fj their products by 9, and 2p, 4q, ip2, 2q2, give all known types 
not resolvable into a sum or difference of two rational cubes. He an¬ 
nounced the theorem that if p, \p, <f> are primes of the respective forms 
18n+l, + 7, + 13, while each is not of the form/2+27<72 and hence does 
not have 2 as a cubic residue, then no one of the numbers 2p, 4p, 2p2, 4p2, 
2tp, 4ip2, 2(j>2 is a sum of two rational cubes. If v is a prime 6n+1 not 
having 3 as a cubic residue, then neither 3v nor Sv2 is a sum of two cubes. 
By all of these results, we know whether or not any number ^ 100 (except 
perhaps 66) is a sum of two rational cubes. Proofs of the above theorems 
rest on the linear form of the divisors of xz—3£-f-l. He stated the em¬ 
pirical theorem that every prime 18n±l or else its triple is expressible in 
the form202 £3—3xy2diyz* 

A. Desboves203 gave two proofs of Lucas’ identity (2) and noted that 
the replacement of x by xz and y by yz yields Lucas’ (1). He showed, that 

i” Nouv. Ann. Math., (2), 17, 1878, 454-7. 
Ibid., 425-6. Cf. Candido179 of Ch. XXIII. 

199 Ibid., 507-14. This and his198 preceding paper are duplicated in Amer. Jour. Math., 2, 
1879, 182-4. 

900 Comptes Rendus Paris, 87, 1878, 159. 
201 Comptes Rendus Paris, 90, 1880, 289,1105 (correction); Amer. Jour. Math., 2, 1879, 280, 

389-393. Coll. Math. Papers, 3, 1909, 430, 437; 312, 347-9. 
202 A. M. Sawin, Annals of Math., 1, 1884-5, 58-63, noted that x and y are relatively prime 

integers if and only if n is an integer. 
203 Nouv. Ann. Math., (2), 18, 1879, 400, 491; (3), 5, 1886, 577. 
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xz+yz — Azz has integral solutions if A=xy(x-\-y), #3+2/3> 2x6+6y2, x(yz—x)f 
or xz—yz—3xy(x+2y), and hence if A = 6, 7, 9, 12, 15, 17, 19, 20, 22, 26, 
28, 30, 37. 

E. Catalan204 noted that xy(x+y) = z3 is impossible in view of the 
identity (2) and the impossibility of r3+$3 = f. Lucas’198 paper implies this 
result. 

E. Lucas205 proved certain and stated others of the preceding theorems 
by Sylvester201 and Pepin,193 and remarked that, if xz — 3:n/2+?/3 = 3Az3 has 
solutions, then200 

[2x3—3 x2y - 3 xy2+2 yz~]3+Qs3+3 x2y — Qxy2+= A [3 z (x2 — xy+y2) ]3, 

the divisors of the resulting A*s being of the form 18ra=hl. In the third 
paper he cited cases (A a prime 18/1+13, A a square of a prime 18n+7, etc.) 
in which xZJtyZz=Azz can be completely solved by the method of tangents 
and secants, citing Sylvester’s theory of residuation. 

T. Pepin207 proved (p. 110) Sylvester’s201 theorem on 2p, 4p, 2^, etc., 
and remarked (p. 75) that the first three are covered by the method used 
by Pepin194 for 2*7, 2-19, 4-19. He proved (p. 109) the results stated by 
Sylvester201 on the 16 types pq, * * *, 2q2, as well as the theorem (pp. 113-4): 
If 

P = (9m+4)2+3(9n±4)2, (9?u+2)2+3(9?w±2)2, 

<£ = (9m+l)2+3(9n±l)2, ?-m2+27(3n±l)2 

are primes, no one of the numbers 

18(P, f, 4>\ ?~), 36(p, cf>, f, p2, P, f2) 

is a sum of two rational cubes. 
C. Henry208 proved that any number of the form A =/12—9#12 and its 

double are expressible as sums of two cubes: 

~A/6+3p6B J } ^Af*-Z9«B J 
2A -D pc 

if B-f12—gl2} C=/12+3p12. 
H. Delannoy209 proved by descent that xZJryz = Azz is impossible. 
The problem #3+?/3 = 203* 105489 has been treated.210 
T. R. Bends211 misquoted Lucas’ (2), whence his criticism is invalid. 
K. Schwering212 put the equation into the form 

204 Nouv. Corresp. Math., 5, 1S79, 91. 
205 Bull. Soc. Math. France, 8, 1879-80, 173-182; Comptes Rendus Paris, 90, 1880, 855-7; 

Nouv. Ann. Math., (2), 19, 1880, 200-11. Related results from these papers are quoted 
under Lucas70 of Ch. XXV. 

200 Sylvester, Comptes Rendus Paris, 90,1SS0, 347 (Coll. Math. Papers, III, 432), had stated 
that there exist solutions in functions of degree 9. 

207 Atti Accad. Pont. Nuovi Lincei, 34, 1880-1, 73-131. 
208 Nouv. Ann. Math., (2), 20, 1881, 418-20. The right member of his formula (3) is A, in 

error for 2A. 
209 Jour. math. Sldmentaires, (5), 1 (annfie 21), 1897, 58-9. 
210 Amer. Math. Monthly, 5, 1898, 181. 

211 Ofver diophantiska ekvationen xn+yn=znt Diss., Upsala, 1901, 15-18. 
212 Archiv Math. Phys., (3), 2, 1902, 285. 
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and found an infinity of solutions from one by treating 

1 +xz — (m+n)3 = (1 —m3) (x -—a) (x—0) {x—y) 

by his method238 for x3+y3=z2 to obtain (y3+1)* and y as functions of 
a~(3. 

A. S. Werebrusow213 discussed the form of numbers A expressible as the 
sum of two rational cubes. Elsewhere he214 took 

x+y^A&l, x2—xy+y2=AiZi, A=AoAi, z=z&i, 

whence A i is of the form (s, t)=$2-\-$t+t2, and Zi = (a, b). Then 

zl = (M, N), M=a3+3a25-53, N= -a3+3a&2+Z>3, 

Aizl — (s, t)(My N)j x*=(s+t)M+sN, y=tM+(s+t)N, 

with similar formulas derived by interchanging s and t or M and N. Further 
treatment was given for z\— 1, Ai — 1, 3 or 7. 

A. Cunningham216 discussed x?—yz=17zzf obtaining integral solutions 
with z = 7. From the solution 2 = 18,2/=* —1, z-7 of xz+yz = 17z3, Prestet’s 
formula leads to positive integral solutions smaller than those given by 
Lucas’ (1). 

R. W. D. Christie216 noted results due to Desboves.203 
Christie217 noted that, if p = a2—6ab2—3a2b—b3, X3—pY3 — 1 has the 

solution 
a?—3ab2—b3 a2+a6+52 

3ab(a+b) ’ y~3ab(a+b) ’ 

and hence also X— 1/x, Y= —y\x. 
A. Cunningham218 treated xz+yz-Czz for x, y relatively prime by setting 

x+y=X, x2-xy+y2=Y} z=£Z. 

The g. c. d. of X, Y is 1 or 3. Let C be prime to 3. Then XY = C£ZZZ, 

X = Cf3, Y=Z3; or r=3f', X=9Cr'3, F=3JZ3. 

Since Zz is a factor of Y and is prime to 3, Z=A2+3jB2. Hence Zz=A?+3J5b 
But, for y even, F = (x—§y)2+3(iy)2- Hence, if Y=Zzy x — iy=zkAh 
iy = ±:Blt If F=3Z3, x-iy = ±Wh iy = ±Ax. For y odd, 

There is treated also the case CfeO (mod 3). 
T. Hayashi219 concluded from the impossibility of rational solutions of 

xz+y* = 3zz that 4a(a+j8)(a'+2/3)/6 is never a cube. 
R. D. Carmichael220 noted that, if A = 2m, we may take x, y, z odd and 

proved that one of the variables must be zero, except for the trivial solution 
x — y=z which occurs if m — 1. 

213 Matem. Sbom. (Math. Soc. Moscow), 23,1902, 761-3. 
114 L’interm6diaire des math., 9, 1902, 300-3. 
*“ Math. Quest. Educ. Times, (2), 2,1902, 38 [48], 73. 
*“ Ibid., (2), 3, 1903, 100-110. 
tl7 Ibid., (2), 13, 1908, 90. Cf. Desboves.203 
213 Ibid., 27-30. 
“»Nouv. Aim. Math., (4), 10, 1910, 83-6. 
220 Diophantine Analysis, 1915, 70-72. 
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J. G. van der Corput221 applied quadratic forms to prove the impossi¬ 
bility of x3^y3 — pmz3 if p is a prime s=2 or 5 (mod 9). 

B. Delaunay222 stated that, if p is an integer not a cube, px3+y3 = 1 has 
no integral solutions if the fundamental unit u of the domain defined by 
r= is not of the form Br-j-C, but has the single solution x=B, y = C, if 
it be of that form. Here u is Dirichlet’s ar2-j-&r+c, where a, fr, c are integers 
not of like sign, whose powers, with positive and negative exponents, give 
all the units ar2+/3r-f 7, where a, j8, 7 are integers. 

M. Weill223 used the identity 

2 [ u3 — 9uv- -fc (3^—3u2v)}3 = 2 (u3 — 9uv2) (u2+3V2)3 

to show that, if one solution of x3-j-y3~Az3 is known, a second is 

X = /33+6a/32+3cr9/3 - a3, F = a3-f- 6a2/3+3a/32 —/33, Z = 3xyz(a2+aj3+P2), 

where a=x3, fi~y3, and to obtain solutions when A =3c2+3c+l. 
W. S. Baer224 proved that n can be represented in the form n = 4> M + 0(v) > 

where 4>{x) = ax3-\-yx, with u, v, a, 7 integers and u> J, v>£, if and only if 
nisaproduct of two integers: n = kl, whereft>2£, l = al'+y, l' <k2~3k£-\-3%2, 
V being integral and 4V — k2 the triple of a square. Then u and v will be 
relatively prime if and only if the g. c. d. of k and V is 1 or 3, and in the 
latter case V is not divisible by 32. The theorem can be extended to cubics 
$ = AX3-\~BX2-\-CX-\-D} where A, • • *, D are integers and B is divisible 
by 3A, since X—x—Bj{3A) transforms h) into <f>. In particular, 
let a = 1, 7 = 0, f = 0. Then n is representable as a sum of two positive 
cubes if and only if n is a product of two positive integers k and l such that 
l<k2 and Al—k2 is the triple of a square; the cubes will be relatively prime 
if and only if the g. c. d. of k and l is 1 or 3, and in the latter case l is not 
not divisible by 32. 

If h is a positive integer, and p is a prime or unity, u3-\-vi = hpv has only 
a limited number of relatively prime positive solutions, and the remaining 
solutions are readily deduced. But u3-b^3 = w2 has an infinitude of positive 
solutions of which u and v are relatively prime. 

L. Varchon2240 proved that x3 — y3 — 2a5b is impossible in integers +0; 
Moret-Blanc’s192 result is a corollary. 

M. Rignaux2246 derived (1), (2) and analogous identities from a common 
source. 

Sum or difference of two cubes a square. 

L. Euler225 noted that :c3+2/3=CI] for x — pz/r, y — qz/vj s=r3/(p3+$s)* 
To obtain integers, set r = n(p3+g3); then 

__x = n2p(p3-fg3), y-n2q(p3+qz)-__ 

221 Nieuw Archief voor Wiskunde, (2), 11, 1915, 64-8. 
222 Comptes Rendus Paris, 162, 1916, 150-1. 
223 Nouv. Ann. Math., (4), 17, 1917, 54-9. 
224 Tdhoku Math. Jour., 12, 1917, 181-9. 
2244 Nouv. Ann. Math., (4), 18, 1918, 356-8. 
2246 L’intermediaire des math., 25, 1918, 140-2. 
225 Novi Comm. Acad. Petrop., 6, ad annos 1756-7, 1761, 181; Comm. Arith. Coll., 1, 1849. 

207; Opera Omnir, (1), II, 454. 
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To obtain relatively prime integers x, y, when p, q are integers, we must 
employ fractional values for n. To obviate this, Euler gave a second 
method. The factors x+y, x2—xyJry2 have the g.c.d. 1 or 3. In the first 
case, he put the second factor equal to the square of p2—pq-\-q2 and stated 
that zLx = p2—2pqy dt y = p-—q2. The upper sign-is excluded since 

x+y = 3p2 — (p+<7)2=!= □. 

For the lower sign, x+y = (p-\-q)2 — 3p2 = □ if 

p — 2mn, q = 3m2—2mn+n2, 

x = 4??m(3m2—3mn-{~ri2), y=(m~ri) (3m—n)(3m2Jrn2). 

In the second case, x2~xy+y2 = 3(p2~pq+q2)2, (x+y)/3=D. As the 
three subcases lead to equivalent results, consider the case 

x = 2p2 —2 pq—q2, y = p2~ 4 pq+q2} (x+y)/3=p2-2pq=U. 

The last condition is satisfied if p = 2m2y q = m2—n2, whence 

x = 3m4+6m2n2—?z4, y—— 3 m4+Grn+i2+n4. 

Euler226 noted the examples l+23 = 32, 83-73 = 132, 373+ll3 = 2282, 
653 + 563 = 6712, 713 — 233 = 5882, 743 - 473 = 5492. 

Several227 found that the difference of 73 and 83 is a square by considering 
x3, Or+1)3, and, by use of tables of cubes, found that this pair and 73, 143 
give the least solutions. 

C. H. Fuchs228 discussed xz+yz = az2. Let xy y, z have no common 
factor, a no square factor. If x or y is even, set x+y=py x—y~q. Then 
p(p2+3q2) =4az2. If p is not a multiple of 3, 

p = at2, p2+3 q2=4/3w2, ap = a. 

Since /S is a divisor of p2+3g2, it is of that form. Thus 4/3 = ju2+3p2. Also 
u = £2+3t}2. By use of V—3, he got 

(1) p = m(£2 — 3V0 — 6p£*7, q=v (£2—3t72) +2^77. 

The case p=3P is similar. For xy odd, set 2p=x+y, 2q~x—y. One 
of the three cases has p = 2p', a odd. Then p — 2at2, p2+3q2=pu2. He 
again got (1). 

R. Hoppe229 obtained the general solution of xz+yz = z2 in relatively 
prime integers by setting pq~z2y p=x+y, q=(x +y)(x—2y)+3y2, where 
p and q have the greatest common factor 1 or 3. In the first case all solu¬ 
tions are given by 

62x=a(az —863), 62y=+b(az+¥)y 6sz = a6+20az¥—Sbtt, 

where a is odd, and 6 = 3 or 1 according as 3 is or is not a divisor of a+b. 
Second, if p, q have the factor 3, the solutions are [Euler225] 

ri2x = a4+6a2b2—364, i72i/ = 3&4+6a2b2—a4, 773z = 6a5(a4+3&4), 

*" Opera postuma, 1, 1862, 241. 
nT Ladies’ Diary, 1812, 35, Quest. 1227; Leybourn's M. Quest. L. D., 4, 1817, 149. 
828 De Formula xt+y3—az*, Diss. Vratislaviae, 1847, 33 pp. 
829 Zeitschrift Math. Phys., 4, 1859, 304-5. 
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where a is not divisible by 3, while 17 = 2 or 1 according as a, b are both 
odd or not both odd. 

C. Richaud230 solved (x+l)z—xz-y2 for x and made the radical rational. 
Thus (2?/)2—1 = 3r2, whence £ = 0, y — 1; x = 7, y = lZ; x = 104, y = 181; etc. 
The same solutions were given by Moret-Blanc,231 who remarked that 
z3+(z+1)3 = 2/2 only for z = 0, 1 (cf. E. Lucas, Mathesis, 1887, 200). 

W. J. Greenfield232 gave numerical solutions of xz —y3= □. 
M. Weill233 noted that (-3a2)3+(a3+4)3 = (l+a3)(o;3-8)2. 
P. F. Teilhet234 gave the solutions 65, 56, 671; 5985, 5896, 647569. 
E. Fauquembergue236 reproduced Euler’s225 formulas with p~n, q=m. 

Replacing p by 0 —a, q by -a, we obtain the formulas of Axel Thue235 
for tf+y2~z2} who noted that, if 2is not divisible by 3, then x2-xy+y2-B2. 
Thus, for relatively prime p and q, px = q(B~{-x—y), qy = p(B—x+y), since 
the product of the second factors is xy. Eliminating J3, we get 

»/y= (92-2p3)/(p2-2pg). 

In case the numerator and denominator have a common factor, it is 3, and 
p—2g=3pi; set qi=q+2p1; we get 

* : y=q\—2piqi : p?—2pi<?i. 
Hence in every case we may set 

s = =*= 2V0)> y = =t (P2~ 2 pq), B = -F (p2-pq+(f) • 

Now x+y must be a square, A2. Hence (q—2p)2 —3p2 = ±A2, so that the 
lower sign is excluded. From 2pq = (p—q)2—A2, we get 

2 pa=0(p-9+A), qf3=a(.p-q-A), |=£±M, 

where a, 0 are relatively prime. Any common factor of the numerator 
and denominator divides 6. If it be 3, we reduce to a like fraction as above. 
If it be 2, then /3 and hence p and y are even; but we may assume that if 
either x or y is even, x is even. Thus in every case we may set 

p= ±032+2a/3), g = ±( 200-2**), 

x = 4a(a3 ~/33), y = P(p+8o?). 

It follows that X6+F3=22 is impossible in integers if 2 is not divisible by 
3. For, if^the preceding x or y be a square, a = k2, a3—/33 = /i2, 0r /3 = &I, 
j83+8a3 = /i?, respectively; in either case, X?+Yi=2? in smaller integers. 

Multiplying x and a by a/A, y and /3 by a/B, we see that —22 
has the integral solutions 

x=4a{Ac?-BfP), y=/3(R/33+8Aa3), z = B2^-20ABa^-SA2a\ 

230 Atti Ac. Pont. Nuovi Lincei, 19, 1865-6, 185. 
231 Nouv. Ann. Math., (3), 1, 1882, 364; cf. (2), 20, 1881, 515; Pintermgdiaire des math., 

9,1902, 329; 10, 1903,133. 
232 Math. Quest. Educ. Times, 23, 1875, 85-6. 
233 Nouv. Ann. Math., (3), 4, 1885, 184. Cf. G<§rardin.242 
2341/intermSdiarre des math., 3, 1896, 246. 
238 Ibid., 4, 1897, 110-12. Cf. the remarks, 112-15. 
238 Ibid., 5, 1898, 95; Det Kgl. Norske Videnskabera Selskabs Skrifter, 1896, No. 7. 



Chap. XXI] SUM OR DIFFERENCE OF TWO CUBES A SQUARE. 581 

“ Alauda',237 noted that nx2 = t/3+23 if x = 3n,y- 2n, z=n. E. Fauquem- 
bergue (ibid., 6, 1899, 131) gave [Euler226] 

a5{6(a2+352) }2= (6a&+a2—352)3+ (6a6—a2+352)3. 

K. Schwering238 obtained an infinity of solutions by means of the rela¬ 
tion between Abel's theorem and certain diophantine equations, first 
indicated by Jacobi148 of Ch. XXII. Set 

xz +1 - (mx+n)2 s (x-on) (x-a2) (x—az). 

By the coefficients of x2 and x, 

—m_ q:i+q:2+q:3 

2 n ai<X2 + CLiCLz + Ct2dz 

Substitute for m, n their values from mai+n= (al+l)* for 1, 2. Thus 

_#1^2 ~-4(ai-f-o^)_ 

0:10:2(0:1+0:2) +2+2 ^(oii+l) (0:2+1) 

Hence we get ma3+n and thus (aij+l)*. Take 01=0:2 = 0:. Then 

a4—8o r-3 a6+20a:3 —8 

°*~4a3+4' aZ+ 8(c?+t)^+i: 

By eliminating 03, we get the desired solution 

(o:3 — 8) 3a*+64 (o3+1)3 = (o:6+20a3 — 8)2. 

The corresponding Abel theorem is here 2dot7 ^(a* + 1)2=0. 
A. S. Werebrusow239 gave Euler's225 final solution. 
F. de Helguero240 solved (x—y)t=z2, where t=x2Jrxy+y2. Set d-3 or 

1, according as t is or is not divisible by 3. Then x—y = da2, t=d/32. Thus 
d/32 has one of the three representations by x2+xy+y2. It remains to 
make d(x—y) = □. According as d = 3 or 1, this reduces to u2—v2~w2 or 
u2-3t>2=l. 

F. Pegorier241 discussed (rr+1)3—rc3= □. 
A. G6rardin242 noted that one solution of a3+/S3=72 implies a second since 

(a3+4/33)3 — (3a2/3)3= (a3+/S3)(a3-~8/S3)2. 

W. H. L. Janssen van Raay243 discussed the solution of x3+y3=z2. 
Cashmore244 gave the first solution due to Hoppe.229 
See Bouniakowsky,136 Mordell,176 and Baer224; also Catalan122" and 

Tafelmacher160 of Ch. XXVI._ 

337 L’intermSdiaire des math., 5, 1898, 75-6. 
338 Archiv Math. Phys., (3), 2, 1902, 285-8. 
339 L’interm&liaire des math., 11,1904, 153. 
330 Giornale di Mat., 47, 1909, 362-4. 
331 Bull, de math. 414m., 14, 1908-9, 51-52. 
333 L’mterm4diaire des math., 18, 1911, 201-2. Cf. WeiU.338 
348 Wiskundige Opgaven, 12,1915, 67-71 (Dutch). 
344 L,interm4diaire des math., 23, 1916, 224. 
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Sum of cubes of numbers in arithmetical progression a cube. 

L. Euler245 treated the problem to find three consecutive numbers 
z — 1, x, x+1, the sum 3£3+6£ of whose cubes is a cube. Since £=4 gives 
a solution, set x = 4+2/. Then 63~f-1502/+362/2+32/3 is to be the cube of a 
number, say 6 +/y. The coefficients of y are equal if 108/= 150, and then 
1871?/=—7452, rr = 32/1871. Or we may take 3£3+6£ = 27£323, whence 
x2(1823-2) =4, and I823 — 2 is to be a square. Since this is the case for 
2 = 1, set 2 = 1+?;; the cubic in v is the square of 4+27y/4 if v= —15/32. 

J. R. Young2*6 required that the sum of the cubes of a — a/x, a, a+a/x 
be a cube. Hence, as by Euler, 3+6/z2 is to be a cube. To make x2=2nd, 
take x-2nq, whence n = 2q2. Then 3n3+3 = 24#6+3 is to be a cube, which 
is true if g= 1. 

C. Pagliani247 treated the problem to find 1000 consecutive numbers 
the sum of whose cubes is a cube. The sum of the cubes of £+1, * * •, x+m 
is s = ra(?/+l)(y2+2y+m2)/8 for y = 2x+m. Let m = 8n3. Then 5 will be 
the cube of n(y+4?i2) if y = 0 or 

3 (4n2 — 1)2/ = 2(32n6 - 24?i4+1). 

Writing v for 2n, we see that this is equivalent to saying that 

(£+l)3+(£+2)3+ . . • + (£+y3)3= {rs+^y^u+l) }3 

if 6£=02-l)2~303+l). Then x is integral if v is not divisible by 3. 
The cases v=2, 4, 10 give 

(1) 33+43-f53 = 63, 63 + 73+.*-+693 = 1803, 11343+ • • • -f21333 = 168303. 

W. Lenhart248 treated the problem of m consecutive cubes whose sum 
is a cube. First, let m = 2n. The sum of the cubes of s+1, • • *, s+n, s, 
s —1, •••, s-n-irl is a— (2s+l)(?252+?zs+n3). Set n~4n\ and divide <r 
by (2n!)3; we get 

s3+fs2-f-(32?i?+1) +Sn[ = (s+2ti?)3, 

if 3s = Sn\—4n? — 1. To make s an integer >1, take n 1 prime to 3. For 
ni = l, the roots of the 8 cubes are 2, 1, 3, 0, 4, —1, 5, —2, leading to (li). 
For 1 — 2 or 5 we get (12), (13). Again, we can equate <r to the cube of 
?i+s(2n2+l)/(3n) by choice of s in terms of n. Second, let m = 2n-f 1. 
Then 

2 = a-f(s—n)3 = msz+ism (m2 — 1). 

Since X is a cube for s = 1/2, set s = l/2+t and take Thus 

~3 = ^+^(m?+2)i+^2+Z3= (Jmf+Z)*, 

if t~ {m\~2m\—2)/6, whence s = (m\ —1)2/6. Again, let 2 = phnzsz. Then, 

244 Algebra, 2, 1770, art. 249; French transl., 2, 1774, p. 365. Opera Omnia, (1), I, 497-8. 
M Algebra, 1816; Amer. ed., 1832, 332. 
347 Annales de math, (ed., Gergonne), 20, 1829-30, 382-4. 
248 Math. Miscellany, New York, 2, 1839, 127-132; French transl., Sphinx-Oedipe, 8, 1913, 
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for p = l+r, 
1 _p3m2 — If 3 m2r I2 

4s2~ m2~~l l1+2(m2-l) 1 

if r = f(4—m2)/(m2—1), whence s = 4(m2 — l)2/ {18m2-f9 ~ (m2— l)2}. 
V. A. Lebesgue249 stated that, if x and r are positive integers, 

(2) £3+0r+r)3+(£+2r)H-h [_x+(n — 1) r J = (x+nr)3 

is impossible except for n = 3, x = 3r. If we write 

(3) s = 2r+(n —l)r, <r = s2+(n-2 —l)r2, 

we obtain for the left member of (2) the expression ns<r/8. He considered 
it a difficult problem to make the latter a cube, and remarked that it was 
impossible for n = 2 by Euler’s3 theorem. 

A. Genocchi250 treated the last problem ns<rl&=yz. Set $=rt, 2y-rz. 
Then nt(t2+n2—l)=zz. Following Fermat’s method,143 set t = l+u, 
z—ti-\~pu, and equate the terms of the first degree in u. Hence 

(4) 
n2+2 

p=^r- 
3n(l~p2) 

p3 —n 

The cases n = 3, r = 107; n = 4, r -1; n = 5, r = 13, give respectively 

(5) 1493+ 2563 + 3633 = 4083, 113+123+133+143 = 203, 

(6) 2303+2433+2563+2693+2823 = 4403. 

B. Boncompagni251 proposed for solution the same problem (2) and 

(7) r*+(r+r)3H-l)rj = r*. 

V. Bouniakowsky252 noted the particular solution r0 = 2, ar0 = —n+2, 
v0-n, of (7), and that this solution leads to the second solution 

r = r0 = 2, x-xo+u, v = v0+pu, 

where p and u are given by (4), and thus derived (5), etc. Starting from 
the latter, we obtain new solutions. For n = 3, nstr/S is the cube of vxv2 if 

3(r+r) = t>?, (x-\-r)2+2r2 = v\. 

The general solution of the second equation is known to be 

x+r = =fc (p3 - 6p#2), r = db (3 p2q—2 q3), v2 = p2+2q2. 

Taking the upper signs, we see by the first condition that 

p = 3p', *>i = 3w;, 3p/:i~2p'q2 = wz. 

From the evident solution p'=q = w = 1, we get p = vx = 3, q = 1, etc. In (2), 
he set r=Xr and noted that the rational cubic for X has no rational root 
when n <8 except for n = 3, and stated that (li) is the only solution in 
positive cubes. 

(1), 5, 1862, 328. 

■ "°im, 329. 
swNouv. Ann. Math., (2), 3, 1864, 176; Zeitschr. Math. Phye., 9, 1864, 284. 
w Bull. Acad. Sc. St. Pdtersbourg, 8, 1865, 163-170. 



584 History of the Theory of Numbers. [Chap. XXI 

A. Genocchi253 treated (7), i. e.; to make nsa a cube. Set 

m—n2— 1, s = n2s 

Then 

= *>2c'3 g_|_r V —?ft = (p_j_g V —m)3. 

Set 

r = §(3p2—mq2), ft V3 = p(p2 —3mq2). 

ftp = 8t/3, p+g ^3m = (s"+%r" ^3 m)3. 

From the resulting rational expressions for p, q we get 

fts,/[s,/2+(ft2~l)r,/2] = 8y'3, 

which is of the same form as the initial equation ns<r = 8v*. Hence one 
solution r", s”, v' leads to a second solution r, s, v, etc. But not all solutions 
are so obtained. More convenient formulae are obtained by setting 
r=g+z, 2v — h+pz9 where r=g9 2v—h is one set of solutions. 

L. Matthiessen254 noted the particular solutions of (7): 

ft = 2p+3, x — —2p — 1, r = 2, v = 2p-j~3; 

n-2p+4, x — — p —1, r= 1, v= p+2. 

Also that 3511203 is a sum of k positive cubes for k = 3, 4, 5, 6, 7, 8. 
A. B. Evans255 noted that the sum of the cubes of the first ft3 integers 

is a cube only if ft=l, since (ft3+l)/2 is not a cube if ft>l [Euler182 on 
x3±p3 = 2z3]. 

D. S. Hart256 took 2ft—1 consecutive integers, x being the middle one. 
The sum of their cubes is (2ft — l)a;3-f (2ft3 —3ft2+ft)x. For 2ft—l = p3, the 
sum is a cube if s=£3+i(p6~l);r is a cube. Take x-l+y, 8s= (2p+p2)3; 
we get y and x = (p2—1)2/6. For 2ft cubes, add the term (x+ft)3. The 
answer is now a: = {(p2—l)2—3} /6. 

A. Martin257 noted that the sum of the cubes of x, x+1, • • *, rc+ft3 — 1 
is a cube if z= (ft4—3ft3—2ft2+4)/6. 

Hart258 expressed the difference of 13-|—* -j-n3 and (S-\-m)3--Sz as a 
sum of cubes by trial. 

S. Rialis259 stated that z\-\-\-zl= (5n+3)zz has a solution with 
zh • • •, zn in arithmetical progression, and solutions with z = 1, n 4=2. 

A. Martin260 proved that l3+23+ * • • +ft3 is not a cube if n> 1, since 
n(ft-fl)/2+p3. For, (2ft+l)2 = 8p3-fl is of the form x3+l= □, which 
holds (Euler157) only if o:==0, —1, 2. He listed (p. 188) sets of 20, 25 and 
64 consecutive cubes whose sum is a cube, besides known cases. 

283 Annali di Mat., 7, 1865, 151-8; Atti Accad. Pont. Nuovi Lincei, 19, 1865-6, 43—50. 
French transl., Jour, de Math., (2), 11,1866, 179; Sphinx-Oedipe, 4, 1909, 73-8. Ac¬ 
count by M. Cantor, Zeitschr. Math. Phys., 11, 1866, 248-251. 

884 Zeitschr. Math. Phys., 13, 1868, 348-350. 
m Math. Quest. Educ. Times, 14, 1871, 32-33. 

Ibid., 15, 1871, 24-6 (Math. Magazine, 1, 1884, 173-6). 
257 Ibid, p. 26. Same by J. Matteson, Collection of Dioph. Problems, 1888, Probs. 4, 5. 
268 Math. Quest. Educ. Times, 23, 1875, 82-83. 
m Nouv. Corresp. Math., 6, 1880, 525-6. 
280 Math. Magazine, 2, 1895, 159. 
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E. B. Escott261 proved that, for 2^n^5, 

fcn+(7b+l)nH— ‘ + (Jc+m)n=(k+m+l)n 

has only the following integral solutions: (li) and 

32+42 = 52, (-2)3+(-l)3+03+l3H-+53 = 63. 

L. Matthiessen262 noted that if fractional values of x, v are allowed in 
(7), we may set r= 1. Write u = 2x+n—2, v — pu+n/2. The usual form 
of (7) becomes a quadratic in u\ 

(n — Sp3)u2+3n(l — 4p2)w+n3+2n—6n2p = 0. 

Evident solutions are obtained by equating to zero the first or third coeffi¬ 
cient. In the second case, integers x are found only for n = 2, n — 4. 

F. Hromddko263 noted that x = 3 is the only positive integral solution of 
x3+(x+l)3+(z+2)3 = (r+3)3 [Lebesgue249]. 

E. Grigorief264 obtained the special solutions 

152 +523+ 893H-+3483=4953, 763+4773+8783+-f-28833 = 30163, 

4353+5063+5773+6483+7193+7903 = 11553. 

“ L. N. Machaut5,265 treated (2) by setting x[r = u and obtaining a cubic 
for u with a real positive root (u = 3) only for n = 3, leading to (li). 

J. N. Vischers266 proved Lebesgue’s249 first result when n = 3. 
L. Aubry267 proved that 3, 4, 5 are the only three consecutive integers 

the sum of whose cubes is a cube. 

Sum of cubes of numbers in arithmetical progression a square. 

To find five integers in A. P. the sum of whose cubes is a square (or 
sum of squares is a cube), J. Stevenson268 used nx—2x, nx—x, nx, nx+x, 
nx+2x, the sum of whose cubes 5n3x3+3$nx3 will equal m2x2 by choice of x 
(or sum of squares 5n2x2+10z2 = m3x3 by choice of x). Several solved both 
questions simultaneously by using x2, 2x2, 3x2, 4x2, 5x2, whose sum of cubes 
is (15x3)2 and sum of squares is 55x4 = a3x3, if rc = a3/55; take a —55. 

Several269 made the sum n2(2n2 — l) of the cubes of the first n odd integers 
a square by using Euler’s83 solutions (Ch. XII) n — 1, 5, 29, • • • of 2n2 — 1 = □. 

A. Genocchi253 discussed the rational solutions of 

(1) xz+(x+r)3+{x+:2r)3 ^H-\-(x+nr~~r)3 = y2. 

In view of (3) of Lebesgue249 the problem is riser = &y2. Set 2y — nst. Solving 
<r = 2nst2 for s, we see that n2t4 — (?i2 — l)r2= □ = (nt2—rp)2. Hence 

dr = 2npt2, ds — 2n(n2 — 1 )tr or 2npH2, 

281 L’interm^diaire des math., 5, 1898, 254-6; 7, 1900, 141. 
282 Zeitsch. Math. Naturw. Unterricht, 33, 1902, 372-5. 
288 IMd.r 34, 1903, 258. 
264 L’mtermldiaire des math., 9, 1902, 319. 
286 Ibid., 15, 1908,163-4. 
288 Wiskundig Tijdschrift, 5, 1908, 65. 
287 Sphinx-Oedipe, 6, 1911, 142-3. 
288 The Gentleman’s Diary, or Math. Repository, London, 1814, 36-7, Quest. 1010. 
289 Ladies’ Diary, 1832, 36, Quest. 1529. 
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where d=n2—l+p2. The general solution thus involves the rational 
parameters p, t 

E. Catalan270 stated that, if r = 1, integral solutions of (1) are 

n = kb2y, 
(a2-kb2)y-f-1 abuy 

(a4+M>4)Y2- %u2=:1> 

where k — l or 2, while a, b are relatively prime integers. For example, 
if a=5, b = l, we may take 7 = 313, u = 7850 (in place of 1850 in Table X in 
Legendre’s Theorie des nombres), whence n = 626, £ = 3600. 

Catalan,271 in treating the integral solutions of (1) for r = l, wrote 
a = 2ns, /3 = er, where s, or are given by Lebesgue’s249 (3) for r = l. The 
problem is then to make the square 16y2 of an integer. Since sn is 
even, y will then be an integer. But his separation into two cases lacks 
generality and his solution is incomplete. His272 later discussion leads to the 
following result: Take any two relatively prime integers p, qy one even, and 
express pqj2 as a product of a square uf2 by a number 6 without a square 
factor; then if 

(p2-\-q2)y2—4:dv2 = 1 

has integral solutions 7, v, we have 

2z= (g~p)7+l, 2(x+n-l) = (q+p) 7-I, y = (u'vd y)2. 

M. Cantor273 reported on Catalan’s271,2 discussion of the preceding equa¬ 
tion a$ = 16y2, where a and /3 are integers divisible by 4 for which 1 
are squares, and obtained two sets of solutions, in which p and q are rela¬ 
tively prime integers, one an odd square and the other either half of an even 
square or an even square. In the first case, (p2+q2)y2—u2 = 1 yields integers 
7, u, and then y2 — 2pq{yujA)2. In the second case, if (p2+q2)y2—2w2 = 1 
has integral solutions 7, w, then y2=pq(yw/2)2. In each case, n=py, 

2x = (q~p)y+l. 

C. Richaud274 treated (1) for r = l, viz., l2~k2=y2, where 2k = x(x — l)y 
21= (x+ri)(x-\-n—l). Certain, but not all, solutions arise from l = a?+b2; 
kj y = 2ab, a1—b2. Eliminating xy y, we get a quartic equation. For 
k = 2aby it becomes 

m2—(4i4+l)n2= — 1, m = 2(a+6), nt=a—b, 

with an infinitude of solutions m = 2t2, n = 1; m = 32i6-\~6t2y n = 16^-h 1 ,* etc. 
Note that the sum of the numbers x, x+l, * • *, x-fn—1 is a square, (a—5)2. 
For a general r, (1) becomes nsa = Sy2 by Lebesgue’s249 (3). For275 ns/2 = ab2, 
<r/4 = aa2, y = aab, he eliminated s and discussed at length the resulting 

270 Bull. Acad. Roy. de Belgique, (2), 22, 1866, 339-40. 
271 Atti Accad. Pont. Nuovi Lincei, 20, 1860-7, 1-4; Nouv. Ann. Math., (2), 6, 1867, 63-67; 

Melanges Math., 1868, 99-103. 
m Atti Accad. Pont. Nuovi Lincei, 20, 1866-7, 77; Nouv. Ann. Math., (2), 6, 1867, 276-8; 

Melanges Math., 1868, 248-251. 
57J Zeitschr. Math. Phys., 12,1867, 170-2. 
574 Atti Accad. Pont. Nuovi Lincei, 20, 1866-7, 91-110. 
171 In the alternative case ns/4=ab3, cr/2=aa2, y = aab, not treated, there are two misprints 

for 4. 
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equation, for the case a = l, whence the sum of x, x+r, • • •, x+(n — l)r 
is b2. In the most interesting case a = l, r — 2, the eliminant becomes 
a2— (74+l)tt2 = — 1 for b = nt. It has an infinitude of solutions (a, n) = (J2, 1), 
(476+372, 474+l), etc. Taking t~ 1, we have x = 1 and the following result: 
While the sum of n consecutive odd numbers 1,3, * ■ • is always a square n2, 
the sum of the cubes of the same n odd numbers will be the square of an 
when a2 — 2n2 = —1. Examples are (a, n) = (1, 1), (7, 5), (41, 29), (239,169). 

E. Lucas273a stated that the sum of the cubes of five consecutive integers 
is a square only when the middle number is 2, 3, 98 or 120. The sum of 
two consecutive cubes is a square only for the cubes 1 and 8. 

G. R Perkins’276 solution of (1) differs only in notation from Genocchi’s253. 
E. Lucas277 asked when the sum of 7 consecutive cubes is a square. 
Several278 found that the sum of the cubes of the first n odd integers is 

a square if 2n2 — 1 = □, n = 1, 5, 29, 
M. A. Gruber279 attempted to show that a sum of cubes of n consecutive 

integers is a square only for l3+23+ * • • -f n3= (H-b^)2* 
A. Cunningham280 desired a sum of successive odd cubes equal to a 

square. The sum Sr of the successive odd cubes 1, 33, •♦*, (2r —l)3 is 
r2(2r2— 1) and is a square if r = 5. Next, 

(2p-fT)3-}- • —b(2r —l)3 = 8r“8p= (r2 — p2)(2r2+2p2—1) 

is a square z2 if, upon setting x = 2r2, y = 2p2, 

(2x — l)2—(2y — l)2 — 2(2z)2. 

Solutions are found by making special assumptions. 
W. A. Whitworth281 expressed V2 as a continued fraction, took a conver¬ 

gent N/D, with D odd, and got 

13 -{- 33 4-b(2D —1)3 = N2D2. 

Cunningham282 asked for a sum of successive cubes 

Sm, n — (ft+l)3 + (tt + 2)3+ * ■ * -f-m3 

equal to the product of a square by q. Since 

Sm, o = l3+23+ • • • +m3 = T2, r, = Ww + l), Sm, n = Smt o~Snt 0, 

we set Tm~£Tn and see that Sm, n+q is a square if ({2—1 )/q is a square. 
For each such J, we test Tm = %Tn by a table of triangular numbers (de 
Joncourt’s, 1772) and find suitable pairs m, n. Solutions are found for 
<7 = 2, •••,11. 

M. A. Gruber283 noted that n = 1 and n = 5 are the only cases in which 

l3+33+53+ • - - + (2n-l)3= □, (2/i —1)3= □. 

2750 Recherches sur Tanalyse indcterminee, Moulins, 1873, 92. Extract from Bull. Soc. 
d’Emulation du D6partement de FAllier, 12, 1873, 532. 

276 The Analyst, De& Moines, 1, 1874, 40. 
277 Nouv. Corresp. Math., 2, 1876, 95. 
278 Math. Quest. Educ. Times, 53, 1890, 55. Cf. Brocard92 of Ch. XXIII. 
279 Amer. Math. Monthly, 2, 1895, 197-8. 
280 Math. Quest. Educ. Times, 72, 1900, 45-46 (error); 73, 1900, 132-3. 
™ Ibid., 72, 1900, 46. 
wibid., 75, 1901, 87-88. 
383 Amer. Math. Monthly, 7, 1900, 176. 
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L. Matthiessen284 discussed (1) in three ways. One way is to multiply 
(7), the corresponding equation with the right number by z3, where 
vhz=y2. Thus, for 113+12s+133+143 = 203, take z = 5, whence y = 1000. 

H. Brocard, “ E. A. Majol,” and F. Ferrari285 discussed a sum of three 
consecutive cubes equal to a sum of two squares. 

L. Aubry286 treated (y~ky+yz+(y+k)z=3y(y2+2kz)—u2. First, let 
y = 2a2, y2+2k2 — 6b2j w = 6a6. Then 2a4 = 362—Jc2, which is satisfied if 

a = q2—3p2, b = q*++18 p2q2+12pzq+9p4, 

k = qA+12p^+l 8 p2q2+3 6pzq+9 p4. 

Second, let y = 6a2, y2+2k2 = 262, u = 6a5. Then 18a4 = 62 — k2, which holds if 

a = 2 pq, b = rpAjr sq4, k — rpi —sq*, 

(r, s) = (72, 1) or (9, 8). For p = q~l, the second set gives 

233+243+253 = 2042, 

which occurs in a manuscript of Lucas’. Or we may set y = 3a2 or a2. 

Homogeneous cubic equation F(x7 yy z) =0. 

A. Cauchy287 derived a second solution from a given solution a, b, c. 
Let 4>(x, yf z), ^ be the first partial derivatives of F(x, y, z) with respect 
to x, ?/, z, respectively. Then F=0 for 

(1) x : y : z~as-~ta : bs — tfi : cs—iy, 

where, if u — 4>(a} b, c), v = x(a, 5, c), 6, c), the parameters a, ft 7 
satisfy ua+i$+107 = 0, while 

S = F(a, f3, 7), 2 = a<£(<* /3, 7)+&x(a, ft 7)+^^ ft ?)• 

We may take «, /?, 7 = 0, w, —0; —w, 0, u; or v, —iq 0. In each case one 
of the terms (1) is very simple. He showed that we may take such a 
simple value and obtain the following solution 

a2x b2y c2z 

(2) F(0, w, -v)~ F{-w, 0, u)~F(v, -u, 0)' 

These become 

= V -= 2 

w a(Bbz-Ccz) b(Ccz—Aaz) c(Aaz-Bbz) 
for the case 
(4) F=Aa:3-fJB2/3+Cz3-}-Aa;2/z = 0. 

If a, 6, c and a', 5', c' are two given sets of solutions of F = 0, where F 
is any ternary cubic form, Cauchy obtained a third set by expanding 

F(as—ia'y bs — tb', cs — tc') =0 

ss*Zeit8chr. Math. Naturw. Unterricht, 37, 1906, 190-3. 
285 L’interm&liaire des math., 15, 1908, 41-43. 
288 Sphinx-Oedipe, 8, 1913, 28-9. a. Lucas880 of Ch. XXIII. 
287 Exercices de math^matiques, Paris, 1826, 233-260; Oeuvres de Cauchy, (2), 6, 1887, 302. 

For a less effective method, see Cauchy150 of Ch. XIII. 
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and obtaining stL - 0, where L is a linear function of s, t, which is zero for 

s — a<t>(a! bf, c')+bx(a', b', c')+cip(af, b', c‘), 

t = a'4>(a, b, c)+bfx(a; b, c)+c'\p(a} b, c). 

Then the resulting third set of solutions of F = 0 is 

(5) x : y : z~as~ ta' : bs—tbf : cs — tc'. 

By (3) for A = B = 1, C=—a3 — b\ K = 0, c-1, we see that 

x = a(a3+2b3), y= —5(63-f2a3), z = a? — W 

satisfy x3+2/3 = (a3+63)23 [Prestet181]. 
For geometrical interpretations of Cauchy’s results, see Lucas.296 
A. M. Legendre283 deduced from one solution of x2+ay2 = bz3 the second 

solution 
X—x(x3+2 ay2) Y— —y(2x2+ay2), Z = z(x3 — ay3). 

Given X, Y, Z, the determination of x, y, z depends on a quartic equation. 
J. J. Sylvester289 stated that (4) can be transformed into 

A'u*+B'v*+C'w*+Kuvu} {A'BfCr = ABC), 

where uvw is a factor of z, provided (i) the ratio of two of the coefficients 
A, B, C is a cube, (ii) the “ determinant ” 27ABC+K3 has no positive 
prime factor 6Z+1, and (iii) if 2m and 2n are the highest powers of 2 dividing 
ABC and K, respectively, then either m is of the form 3&=bl or, if not, m 
exceeds 3n. If a, /5, y give one solution of (4) and if we set 

F = Ao?j G=Bj33, H—Cy3, x = F2G+G2H+H2F-2FGH, 

W y=FCP+GH2+HF* - 3 FGH} z = cfi y(F2+G2+H2 -FG-FH- GH), 

then xz+yz-\-ABCzz+Kxyz—0. For the case A=B — 1, C a prime, and 
27C+K3 positive and not divisible by a prime 6&+1, he290 gave a process 
to obtain all integral solutions of (4) from one initial solution P — (e, gy i). 
The process is to apply to P repetitions of transformation (6) and the trans¬ 
formation, depending also upon P, from one system l, m, n to the system 

X = 3g?n(gl—em)+3 Cin (il—en)+K (gil2—e-lm), 

ju = 3 Cin(im—gl) +3 el(em—gl) +K(eim2—g2lm), 

v~3 el(en—il) +3 gm {gn—im) + K (egn2—i-lm), 

or to the system obtained by interchanging e and g. 
Sylvester291 stated that F=#3+?/3+23+6:cyz = 0 is not solvable in in¬ 

tegers; likewise for 2F=27nxyz when 27n2—8n+4 is a prime; and for 
4F=27nxyz when 27n2—36n+16 is a prime. Set M3—27A = A3Ai where Ai 
has no cubic factor. If Aj is even and contains no factor of the form 
jf2+3<72, and if A is a prime, x3+y3+Az3 = Mxyz has no integral solution 

888 Th6orie des nombres, ed. 3, 2, 1830, US'-?; Maser’s transl., 2, 1893, 110-4. 
889 London, Edinburgh, Dublin Phil. Mag., 31, 1847, 189-191, 293-6 for corrected theorems; 

Coll. Math. Papers, 1, 1904, 107-13. 
«° Phil. Mag., 31, 1847, 467-471; Coll. Math. Papers, I, 114-S. 
891 Annali di Sc. Mat. e Fis., 7, 1856, 398-400; Math. Papers, II, 63-4. 
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except when —M/A is the square of an integer. Likewise if A is of the 
form p3tflsbl, where p is a prime. Also without the assumption that Ai is 
even, provided it has no factor f2+3g2, while A-23u,±1; or A/2 is a prime 
qi±4, and M/9 is an integer; or A/4 is a prime qi±2, and M/18 is an 
integer; or A is a prime and A, B are of the respective forms qn±.2, qndz6} 
or gn±4, qn±:3, or qndz3, gn. 

E. Lucas292 stated Cauchy’s results on the cubic (4) as follows: (i) If 
a, 5, c is one set of integral solutions, another set x, y, z is given by 

a+f+c = °’ Aa?x+Bb2y+Cc2z = 0. 

(ii) If a, b} c and a', b', c' are two distinct sets of solutions, then 

x y z 
a b c 
af V cr 

= 0, A aa’%+Bbb'y+Ccc'z = 0 

give a third set. But (i) and (ii) do not yield all solutions. Lucas293 had 
stated as exercises these results without relation to Cauchy. They were 
verified by Moret-Blanc,294 and restated by A. G6rardin.295 

Lucas296 stated the generalizations to any homogeneous cubic Fix, y} z) 
= 0. 1°. The tangent at a point mi with rational coordinates Xi> yi, Zi, 
and on F = 0, cuts the cubic at a rational point my i. e., 

F=0, 
dF , dF , dF A 
—h y-—\-z — = 0 

dxi dy i dzi 

determine x} y, z rationally. The point m is distinct from mi unless the 
tangent is parallel to an asymptote or passes through a point of inflexion. 
2°. The secant through two rational points on the cubic cuts the 
cubic in a rational point (in general distinct from mh m2). 3°. The conic 
through five rational points on a cubic cuts it in a sixth rational point. 

S. R6alis297 obtained a second solution (quadratic in a, ft 7) of 
xz+2y3+3z3=*§xyz from one solution a, ft 7. 

B^alis298 noted that all integral solutions except x=y=z of 

^+2/3+23 = Zxyz 
are given by 

x=(a — 6)3+(a — c)3, y= (5—c)3+(6—a)3, z = (c —a)3-f(c—b)s. 

If a, ft 7 is one set of solutions of 

A^+£2/3+Cz3 = (A+B+Oxyz, 
another set is g;ven by 

(A+B+0)(a2-/37)+3(Bft+C72)-3*(BP+Cy), 

Bull. Bibl. Storia Sc. Mat., 10, 1877, 175; Amer. Jour. Math., 2, 1879, 178. 
*“ Nouv. Ann. Math., (2), 14, 1875, 526. 
™ Ibid., (2), 20, 1881, 201. 
2M Sphinx-Oedipe, 5, 1910, 90. 
**Nouv. Ann. Math., (2), 17, 1878, 507-9; Amer. Jour. Math., 2, 1879, 180. 
257 Nouv. Corresp. Math., 4, 1878, 346-52. 
298 Ibid., 5, 1879, 8-11. 
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and values of y, z derived by permuting the triples of letters cyclically. 
All solutions of xz+yz+zz = x2y+y2z+z2x are given. 

A. Desboves299 proved that if x, y, z is one set of solutions of 
Axz+Byz+Czz — Q, a second set of solutions is given by 

X=x(Axz+2Byz), Y = —y(2Axz+Byz), Z = z(Axz~~Byz). 

For A = 1 this result is due to Legendre.288 
J. J. Sylvester300 called the intersection of the tangent at a point P on a 

cubic with the cubic the tangential of P. He proved for A = B-C-1 
that (3) gives the tangential to (4) at the point (a, b, c) and that the point 
on the cubic collinear with (a, b, c) and (a', b', c') has the coordinates 

(7) bca,2—b'cfa2} cab^-c'aV, abcr2-a'b'c2. 

A. Desboves301 noted that Cauchy’s formula (5) becomes, for (4), 

x = Wbb' 0ab' - ba')+3 Cccf (ac' ~ca')~K (,a W - a%c), 

with similar expressions for y, z. Since a, 6, c and a', 6', c' satisfy (4), we 
can express A, B as linear functions of C, K. Substitute the resulting value 
of B into x, etc. We get (7). This result, which is simpler than, but 
equivalent to, Cauchy’s (5), had been found otherwise by Sylvester,300 
whose published announcement without proof was limited to the case 
A~B~C = 1, and, for K — 0, but A, B, C arbitrary, by Desboves302 and by 
P. Sondat.303 From the fact that (7) satisfy Axz+Byz+Czz = Q, we have 
the identity 

(bzc,s—bf3cz) {a~b'cf—a,2bc)z+ (cza'3—c'3az) (Wa'c' — b,2ac)z 
+ (azbn - a,sbz) (c2arV - cf2ab)z s 0. 

This leads to solutions of the system of equations [cf. Bini*38]] 

tf+y^+^^xl+yl+zl, xyz — xiyiZi or x+y+z-Xi+Vi+^i- 

Desboves304 simplified Cauchy’s proofs of (2) and (5), gave also a direct 
& proof of (2), and showed that a2 divides F(0, w, —v), etc., a fact seemingly 

overlooked by Cauchy. Hence we may take x = F(0, w, ~v)/a2, etc., 
obtaining polynomials of degree 4 for x, y, z. As new results, he proved 
that if one solution of F=0 is given we can reduce its complete solution to 
that of a biquadratic equation. He sought an F such that the latter is 
A%i+Br}* = C£2) where C = A+B, the only biquadratic hitherto solved com¬ 
pletely. The resulting F is 

A C (x+y)z2+2Cy2z — (x—y) (x2+y2). 

He obtained the solution of f(x, y)+czz=0, with coefficients of special type, 
given solutions m, n of the cubic f(x, y) =0. 

A. Holm805 noted that the tangent to a cubic at a rational point, not an 
inflexion point, cuts the cubic in a new rational point. In case there is a 

298 Nouv. Ann. Math., (2), 18, 1879, 404. Same by R. Norrie.84 
800 Amer. Jour. Math., 3, 1880, 61-6; Coll. Papers, 3, 1909, 354-7. 
801 Nouv. Ann. Math., (2), 20, 1881, 173-5; (3), 5, 1886, 563-5. 
802 im, (2), 18, 1879, 407-8. 
808 Ibid., (2), 19, 1880, 459. 
8« Ibid., (3), 5, 1886, 545-579. 
806 Proc. Edinburgh Math. Soc., 22, 1903-4, 40. 
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rational asymptote, the line parallel to it and through a rational point cuts 
it again in a rational point. 

A. S. Werebrusow306 obtained solutions of (4) with K=0 from one 
solution. 

B. Levi307 considered a cubic equation with rational coefficients which 
corresponds to a cubic curve C of genus unity (transformable birationally 
into a straight line) and determined points on C by use of an elliptic param¬ 
eter. By a configuration of rational points on C is meant the set of all 
rational points deduced from one or more rational points by the operations 
of finding the tangential point to a given point and finding the third inter¬ 
section with C of the secant joining two points of the set. There are 
theorems on the number of points in a finite configuration of such rational 
points (cf. Hurwitz312). There is a discussion of the cubic 

xz2—y(y~x) (y—kx) =0 

into which any cubic with a rational point can be transformed birationally. 
A. Thue308 considered Ax3+Byz~Czz in which x, y, z are relatively prime 

in pairs and z=^y^x>0. We can find integers p, q, r, without a common 
factor and numerically < V§i, such that px+qy = rz. Hence 

ax ~ C<f—Br3, by=Arz — Cp3, cz=Aqz—Bp3, 

where a, b, c are integers. Hence Aax+Bby — Ccz, From this and the 
former linear relation we get the ratios of x, y, z. He introduced further 
numbers and deduced many relations with the aim to obtain limits for 
a, b, c, etc. 

L. Chanzy309 applied Lucas’296 three methods to the equation 

y3+px2+qx+ry+s = 0. 

The tangent at {x\, yi) meets the cubic at the point with the ordinate 

The line joining the known points (xl9 yi), (x2, y2) meets the cubic in the 
point with the ordinate 

2/3= -p 2/2, 
while xz follows from {xz-x^{y2-y^} = (yz-yi)(x2-xi). 

L. J. Mordell310 considered a ternary cubic form F(x, y, z). Given one 
set of solutions, we can find a linear unitary substitution which transforms 
F=*= 0 into $i£‘2+2£2£-f >S3 = 0, where Sj is a function of degree j of 77, f. 
Its discriminant f=Sl—S1S3 is a binary quartic whose invariants are 

806 Matem. Shorn. (Math. Soc. Moscow), 27, 1909, 211-227. 
807 Atti IV Coiigresso Intemaz. Mat., Roma, 2, 1909, 173-7. Supplement to his four papers, 

Atti R. Accad. Sc. Torino, 41, 1906, 739-64; 43, 1908, 99-120, 413-434, 672-681. 
,oa Skrifter Videnskapeselsk. Kristiania (Math.), 1, 1911, No. 4, pp. 19-21; 2, 1911, No. 15, 

7 pp. The related No. 20 is considered under Thue178 of Ch. XXIII. 
808 Sphinx-Oedipe, 8,1913, 166-7. 
810 Quar. Jour. Math., 45, 1913-4, 181-6, 
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numerical multiples of the invariants S and T of F. If $i = 6??+cf, / is a 
square for y = c, f = —b. Thus (Mordell162 of Ch. XXII) if we find176 all 
rational solutions of 

f = 4:Sz+mSs-27 T, 

we can deduce all the rational solutions of F =0. The method is applied 
in detail to the canonical cubic x3+yz+zz+6mxyz = 0. 

W. H. L. Janssen van Raay311 solved ylz+z/x+x/y — 3 in integers by 
reducing it to az+bz+c? = 3abc. 

A. Hurwitz312 proved (p. 226) that a curve (4) with integral coefficients 
has either no rational point or an infinity of rational points if A, B, C are 
not zero and relatively prime in pairs, while no one of them is divisible by 
a square of a prime, and at most one of them is =bl. Next, if A — B = 1, 
C =4= db 1, and C is not divisible by a square of a prime, the curve has either 
1, 2 or an infinity of rational points. Finally, if A=B=C=1, X+1,—3, 
—5, the curve has 3 or an infinity of rational points. There is a discussion 
of cubic curves without a double point (genus 1), the coefficients of whose 
equation belong to an algebraic field. A rational point is one whose coor¬ 
dinates are proportional to three numbers of the field. By use of an elliptic 
parameter, there are found all complete sets of a finite number of rational 
points, such that the line joining any two (distinct or identical) meets the 
curve in a point of the set. The most general cubic curves with exactly 
one or exactly four rational points are determined. Cf. Levi.307 

M. Weill,1ma starting with one solution a, b, c of Aoc?+Byz+Czi — 0, wrote 
£=a+X$, y — b-\~y8, z=c+8, and equated to zero the coefficient A\a2 
+B\,b2+C(? of 35, and hence found 5 rationally, thus obtaining the second 
solution (3) due to Cauchy. Given two sets of solutions a, b, c and a', 6', c', 
he wrote x = a+5a', etc., found 5 rationally, and obtained Desboves’301 
special case of Cauchy's (5). 

Ternary Cubic Form made a Constant. 

J. L. Lagrange183 determined cubic forms F(x, y, z) whose product by 
F(X, 7, Z) is of that form. Cf. Libri84*85 of Ch. XXV. 

G. L. Dirichlet313 employed the roots a, /3, y of a cubic equation with 
integral coefficients and without rational roots. Let Fix, y, z) denote the 
product of x+ay+cPz by the similar functions of £ and y. First, let a 
single root a be real. If T, U, V form a fundamental solution of 
F(T, XJj V) = 1, and X, 7, Z form one solution of Fix, y, z)~m, an infinite 
set of solutions of the latter is given by the development of 

xAay^oPz^ (X+a7Aa2Z)(T-}-aU-{‘Oi2V)n. 

One solution of any set can be found by a finite number of trials. But if all 
three roots are real, it is stated that there exist two fundamental solutions 
from which all can be found by multiplication and powering. 

*u Wiskundige Opgaven, 12,1915, 206-8. 
m Vierteljarhschrift d. Naturfor. Gesell. Zurich, 62, 1917, 207-29. 

Nouv. Ann. Math., (4), 17,1917, 47-51. 
»• Bericht Akad. Wiss. Berlin, 1841, 280-5; Werke, I, 625-32. 
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G. Eisenstein314 proved that, if p is a prime 3w-fl, 27(xp~M-\-x+l) 
can be expressed in the form 

4> = uz+pp i yz+pp*#3—3 puyz, 

where y-v+wp^ z = v+wp2, and u, v, w are polynomials in a; with real 
coefficients, while p2+p+l = 0, and ph p2 are the primary complex prime 
factors of p. The product of two forms 3> is of like form. When $ = 1 
has real integral solutions other than u=l, y = z = 0, an infinitude of solu¬ 
tions can be derived from one, as by Pell’s equation. 

C. Souillart315 and E. Mathieu315 proved that the product of two forms 

x y z 
C ~ z3+y3+z3 — 3xyz = — y z x 

z x y 

is of the same form and stated that a like theorem holds for cyclic deter¬ 
minants of order n. This was proved for C by J. Petersen.316 

E. Meissel317 wrote (z, y, z) for xZjtAy3+A2^-ZAxyzJ where A is posi¬ 
tive and not a cube. Let 03= 1 and x, y, z be integral solutions of 
(x, y, z) = l. Let 

(x+eyp+8*zp2)(a+ebp+8*cp2) = 1, p= VI. 

By the product of this for the three values of 0, we get (x, y, z) (a, b, c) = 1. 
By the three equations which follow from the above, 

a=x2—Ayz, b — Az2—xy, c = y~—xz, 

which give a second solution of (x, y, z) = 1. An nth solution follows from 
(x+6yp+d2zp2)n. Solutions of (x} y, z) = 1 are found for each A <82. 

G. B. Mathews318 proved that if the integer m can be represented by 

F(x} y, z) —xz+ny3+nV — 3nxyz, 

it can be represented in an infinity of ways. F(x} y, z) = l has integral 
solutions and all solutions can be derived from a single fundamental solution 

17, f by use of 

£*+??jfe2+?jfc£2= (£+*?£+f£2)*, t= Vn. 
H. W. Lloyd Tanner319 wrote 4>{x, y> z) for the norm of x+yd+z62, 

where 03+3&0—6 = 0, and called u-j-vS+wd2 a unit if 4>(u, v, w) — 1. He 
obtained a correspondence between the units and the proper automorphs 
of <f>, i. e., linear transformations of <f> into itself, and investigated improper 
and associated automorphs. 

H. S. Vandiver320 noted that the circulant (cyclic determinant) of order 
n is a product of n linear factors 

ai+a)ka2+c*)2fca3H-bwn~~kan (k = 0,1, • • *, n —1), 

314 Jour, fur Math., 28, 1844, 289-303. 
315 Nouv. Ann. Math., 17,1858,192-4; 19,1860,320-2. Cf. Math. Quest. Educ. Times, 63, 

1895, 35-6. 
««Tidsskrift for Math., 1872, 57. 
31T Beitrag zur Pell’schen Gleichung hoherer Grade, Progr., Kiel, 1891. 
m Broc- London Math. Soc., 21, 1891, 280-7. On F=0, see Maillet140 of Ch. XXIII. 
™lbid.t 27, 1895-6, 187-199. 
320 Amer. Math. Monthly, 9,1902, 96-8. 
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where a? is a primitive nth root of unity. The product of two circulants of 
order n is such a circulant. This is used to prove that 

z3+ayz+a2zz—3 axyz = vn 

has an infinitude of integral solutions for every pair of integers n, a. 
R. D. Carmichael321 proved that every prime 4=3 is representable in 

one and but one way by f=x3+y3+z3—3xyz, where x, y, z are ^0. All 
positive integers are representable by / with x, y, z each ^0, with the sole 
exception of the integers divisible by 3, but not by 9. A prime 6n+l can 
be represented in one and but one way by / with at least one variable 
negative. 

A. Cunningham322 considered primes of the preceding form /. Take 
2/=x+ft z=x+y. Then f=AB, A= 3x+/?+7, B=P2~Py+y2. If B = l, 
then j3=7 = =tl, /= 3a;±2. Since any prime p>3 is of the last form, we 
get positive integers z, y such that / represents p. Next, let A = l; if B 
is prime it is of the forms 6w+l=A;2+3f!. 

E. Turrtere323 noted that the above form / represents the rational 
number n when x=n, y=n+l/S,z-n—1/3. If n^= 1 (mod 3), it represents 
n when x=y=(n—1)/3, z = (n+2)f3. 

Miscellaneous Single Diophantine equations of degree three. 

Bh£scara323a noted that the sum of the cubes of y, 2y} 3y, Ay equals the 
sum of their squares if lOQy3 = 3Ch/2, whence t/ = 3/10. 

T. Robinson3236 found two cubes x3, t^x3 and a square m2x2 in arithmetical 
progression, since 2v3x3=x3+m2x2 determines x rationally. 

A. J. Lexell323c noted that, if a cubic equation has rational roots, its 
discriminant is a square. 

J. L. Lagrange324 employed the “ tangent method ” to determine new 
solutions of the cubic equation /(x, y)= 0 from one set of solutions p, q. 
Set x~p+t, y~q+uf and take 

^+V“0, Assfip’q)- 

Substituting the resulting expression for u into /(p+£, g+w) = 0, we may 
delete the factor t2 and thus express t, and hence u, as a rational function 
of the partial derivatives of A. Cf. Lagrange252 of Ch. XXII. 

To express l2+23 as a sum of another square and cube, J. Cunliffe325 
took 9=(2—x)3, v=21x2—6x— 1, whence x=253/441. J. Whitley took 
9=x3-f(3—nx)2, whence 2x+w2= V24n-fn4, which equals 5+pq—q2 if 

821 Bull. Amer. Math. Soc., 22, 1915, 111-7. Cf. Carmichael.90 
822 Math. Quest, and Solutions, 1,1916,14-15. 
m L’enseignement math., 18,1916, 417-20. 
823<* Vfja-ganita, § 119. Algebra . . . from Sanscrit of Brahmegupta and BhAscara, transl. 

by Colebrooke, 1817, 200. 
mb The Gentleman's Diary, or Math. Repository, London, No. 25, 1765; Davis' ed., 2,1814, 

98. 
**Se Euler's Opera postuma, 1, 1862, 504WJ (about 1770). 
m Nouv. m£m. acad. Berlin, ann6e 1777,1779, 153; Oeuvres, IV, 396. 
m The Gentleman’s Math. Companion, London, 2, No. 13,1810, 220-1. 
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n~l+q and 25+lOpq+(p2 —10)q2—2p<f+qA = (5+pq—q2)2. The last holds 
if 10p=28, g = —51/60, whence a; = 15/16. Cf. Gdrardin.346 

W. Lenhart326 discussed 2(z%+Xi) = 2(^+2/,-)? where t = l, ••*, n. 
Assign any values to xit yi (i = 3, • * •, n). Then seek numbers (in his205 

table of sums of two cubes) t=xl+xl, t'—yl+yl, such that 

yi+y*—xi-X2+=t—1\ 

where f depends on the chosen values of xiy yi} 3. For n = 2, he found 
Zi = 5, 2:2 = 6,2/1 = 7,2/2 = 1* For n>2 he took / = /' and found 

(12, 5, 1; 11, 8, 2), (14, 13, 11, 8; 17, 12, 5, 3), 

(21, 14, 10, 4, 1; 20, 17, 5, 3, 2). 

B. Peirce (ibid.) took Xi—aiX+bi} yi = aiX+bn^i+i and found that the 
condition gives 

rc= {Sat-(6^+i-b-) }/{2a-(5»—bn-i+i)}. 

It. Hoppe327 considered the rational solutions of xz+y*—x—y. Set 
2/=x(l—w)/(l+u). Then x and y are rational in u if uj(l+3/w.2) = D. 
If u is a solution, 

w— {2(1+3^) I2 

l+3ttM 1—3m2 J 

is a second solution, etc. The nth such solution is found. 
C. Hermite328 noted the solution x=a(a5—c2), y = a3 — b-c, z*=b(c2 — ab)} 

u~a2c—b* of 
(1) x2y+y2z+z2u+u2x = 0. 

J. Joffroy329 stated that a2—6s = 7-1071 is impossible. A. Morel gave an 
erroneous extension to a2—b3=f= 10nH-j-10n. 

S. RSalis330 gave long cubic functions x, y, z} w of a, 0, y for which 

£3+yz+23 = (a3+jS3+■73) w2. 

R6alis331 obtained as solutions of (1): 

Z = 3(a2-a£+02), 2/= -<*2+3a$-5/32, 

z = — 3a2 -f- 9a$—9/32, u = a2—aj3+3/32, 

as well as formulas of the third and fourth degrees. 
T. Pepin332 noted that a surface of degree m is osculated at an arbitrary 

point of a given surface only when there is a positive integer n satisfying 

m3+6m2+llm=3(n+l)(n+2), 

and proved that 1, 5, 20 are the only integral values <675 of m. E. de 
Jonqui&res333 used the discriminant of the quadratic in n to show that 

32a Math. Miscellany, New York, 2, 1839, 96-7; Extract, Sphinx-Oedipe, 8, 1913, 93-4. 
a2T Zeitschr. Math. Phys., 4,1859, 359-61. 
*2* Nouv. Ann. Math., (2), 6, 1867, 95. 
m Nouv. Ann. Math., (2), 10, 1871, 95-6, 288. 
330 Nouv. Corresp. Math., 4,1878, 346-52. 
m Nouv. Ann. Math., (2), 18, 1879, 301-4. 
“ Jour, de Math., (3), 7,1881, 71-108. 
333 Atti Accad. Pont. Nuovi Lincei, 37,1883-4, 183-8. 
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either m=5t, whence m=5, n=9, or m=20, n = 58, if m < 300; or m=25&-f-1, 
whence ra = l, n = l, if m<1000. 

R6alis333a noted that the double of any square, as well as the triple of 
the square of any even number >2, equals the excess of a sum of two 
squares over a sum of two cubes. 

M. Weill334 noted that (1) has the solution x = pA, y = hpz—1, z — px} 
u= —hpy, where A~ph2+l; also, x=HA2f y — —AB, z = H2A, u = hHB, 
where H = hz—p, B = pzh+Sph2—ft5+1. The last solution is based on the 
identity Az-hHz = {l+h5)B. 

H. S. Vandiver and W. F. King335 proved the impossibility of 

x2y+xz2=y2z. 

G. Bisconcini338 noted that xz~yz = {x+y)2 has the single solution x = l, 
y—0, in integers; a:3+2/3=a;2+2/2 has only the solutions x = l, y~0 or 1; 
(x—yY-xy or x2+y2 has various solutions. 

References337 on cubic equations with integral roots are in place. 
A. Cunningham338 noted that one method of solving x?+yz=z2+u2 is 

to make x+y and x2—xy+y2 both sums of two squares. 
A. G6rardin339 satisfied 2xz~2y2 by taking 

(1+mx)3+(my)z+(jnz)3—{mot)2 — (m/3)2 = (1 + -farm+gm2)2 
and equating the coefficients of m2 (thus determining g), so that m is found 
rationally. Another method is to take 0=0. 

R. Norrie84 noted that from one set ah • • •, a« of solutions not all zero 
of a homogeneous cubic equation in Xh • • *, Xn we can in general deduce 
further sets by substituting Xi=rxi+a,i (i = l, ri), thus deriving 
arz+&r2+yr=0. Since y is linear, we can make 7 = 0 by choice say of xn 
in terms of xi, * • *, xn-i* Then take r— —p/a. The method is applied to 
bx(x2—b2) = u2+and to 

PiV }H-h ixnVzn+xy{x-y) =X23. 

As to this method see Lagrange324 and the related method of Cauchy287 
and Lucas.296 

A. Cunningham and E. B. Escott340 made xy(x+y)+l a cube, where 
l=x—y or 2x+2y; also xyd=2(x+y) is made a cube. 

Welsch341 noted that 1, 2, 3 are the only three positive integers whose 
sum equals their product. For n integers see papers 150-2 of Ch. XXIII. 

A solution342 of 2x2i — 2y2i~'2u] is xi} yi=\{u\±Ui)- This and other 
solutions are found by decompositions of uz=x2—y2. 

ma Nouv. Ann. Math., (3), 2, 1883, 295-6. 
834 Nouv. Ann. Math., (3), 4, 1885, 184-8. 
335 Amer. Math. Monthly, 9, 1902, 293-4; 10,1903, 22. Cf. Euler0; also Hurwitz212 of Ch. 

XXVI. 
338 Periodico di Mat., 22, 1907, 125-9. 
132 L’interm&iiaire des math., 15,1908, 47-8,152, 239; 16,1909, 208. 
838 /&id., 18,1911, 210-3. 
830 Bull. Soc. Philomathique, (10), 3, 1911, 226-233. Cf. paper 285 above. 
840 L’interm&liaire des math., 19,1912, 164-5, 273. 
841 Ibid., 69. 
842 Ibid., 20,1913, 190, 239-40. 



598 History of the Theory of Numbers. [Chap. XXI 

L. Aubry343 noted solutions, involving two parameters, of 

xyz — (z2+y2+z2) w+4io3 = 0. 

Special solutions (p. 207) are given for 6 = 7, 61, 2281, 99905 of 

b2x+by+z — (x+y+z)z. 

L. Aubry344 treated xZJrX+yz-\-y = zz+z by setting x+y — 2uf x—y — 2v, 
z = pu, whence 2(u2+Svl+l) = p(p2u2+\), which is solved as a Pell equa¬ 
tion in u} v. 

E. B. Escott345 treated the preceding problem by setting y=x+d, 
z=x+b, x = k{b~d), and found eight sets of solutions. Next, for 

x?+x+yz+y+zz+z = a3+u, 

set y=x+d, z—e— x, a=x+b, d=b+ke. The discriminant of the resulting 
equation for x must be a square, 9s2. Thus k=Sn—l. For n=0, 

2x = e—b, 2y=b~e, 2z-2a = b~\-e. 

For n = 1, we get the solution (in which p is a rational parameter) 

4x = 2e—B—p, Sy ——16e—R~\~ p, = 2c~\~R~\~ p^ 

8a = 16e—R-\-p, = (2l62-}~4)/p. 

He gave (pp. 126-7) solutions of each of the equations xz±xy+yz = z2, 
x?±x2y2+yz = z2. L. Aubry (p. 47) reduced x?—xy+yz=z2 to a Pell equa¬ 
tion by setting \{x±.y)—v, u. 

A. G6rardin346 noted that, if a3—63=/2—g2, then 

(l+7?wr)3—(ra6)3 = (1+m/)2— (mg)2 

becomes a quadratic equation for m. By equating to zero one of the three 
coefficients, we find new solutions of xz—yz = F2—G2. Cf. Cunliffe325; also 
R6alis17,18 of Ch. XX. 

P. Bachmann347 solved ft3 — (p? -fp2+pi)k = 2plpipz in positive integers. 
We may assume that Pi^hiki (i = 1, 2, 3), where / = 1 or 2. 
Multiplying the given equation by fkl, we get 

(/2^^-^)(/2^-^) = (fhjcl+hj*)*. 

The factors on the left are equated to ns\ and nsl respectively, by use of 
solutions of x2—h2 = ns2. 

Cashmere348 stated erroneously that x?+yz = u2+t? for 

x, y = 2(a2+b2±2eh±2fg), u==4(az--ab2+2beg+$bfh)} 

v = 4:(bz—a2b~\- 2 aeg+6afh). 

R. Goormaghtigh349 solved ^3+2rc+7/3 = □. 
T. Hayashi350 proved that x2y+y2z+z? = 0 is impossible in integers +0. 

348 L’mtermSdiaire des math., 20,1913, 95. 
344 Sphinx-Oedipe, 8, 1913, 46-7. Cf. Lenhart»» 
345 Ibid., 123-4. 
346 Ibid., 14. 
847 ArcMv Math. Phys., (3), 24, 1915, 89-90. 
848 L’interm&liaire des math., 23, 1916, 224. 
849 Ibid., 200-1. 
880 Nouv. Ann. Math., (4), 16, 1916, 161-5. 
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E. Maillet350* discussed y3—y—&(?i?—x), where c is rational. For each 
value of c there is only a finite number of integral solutions. 

Solutions3506 have been found for the equation in binomial coefficients 

(“tO+CVM"?1)’ «3-«+»3-”=«>3-»- 
The sum of the first n odd cubes can350c be expressed as a sum of seven 

squares +0. Special solutions of x3+y3+2?=k(x+y+z) are noted (p. 155). 
On l(mp2+nq2) =\(mr2+ns2), where l, X are linear functions of p, q, r, s, 

see papers 48, 51, 55, 80, 89. On tu2+t2v=Auv2) see Lagrange, p. 572. On 
4>(u)+<t>{v) =g, see Baer.224 

On 3(1—32) =Ay2, see Tweedie74 of Ch. IV. 
On x+a/x=y2, see Leibniz64 and Terquem70 of Ch. XXII. On equations 

of degree three involving products of consecutive numbers, see papers 28,32, 
56, 58, 59, and 63 of Ch. XXIII. On xy(x+y)=A#i, see Euler10, Lucas199, 
Catalan,204 and Hayashi219; also Lucas150 of Ch. I. Chuquet34 of Ch. XII 
expressed 20 as a sum of three positive rational cubes; on the general topic, 
see papers 404-29; also Ch. XXV, end. On x2+y2+z2=kxyz, see the 
papers cited under Hurwitz174 of Ch. XXIII. 

Systems of equations of degree three in two unknowns. 

Diophantus, IV, 29, 30, made xydt (x+y) cubes. Take y—x2 —x. Then 
the condition with the upper sign is satisfied and that for the lower sign 
requires a;3—2x2 = cube = Qx)3, say, whence x = 16/7. 

Bombelli851 treated the same problem. 
Bhascara852 noted that the sum and difference of 4y2 and by2 are squares 

and their product 20?/4 is a cube, (ICty)3, if y = 50. The sum of the cubes of 
y2 and 2y2 is 9y6, a square, and the sum 5yi of their squares is a cube, (5y)3, 
if 2/= 25. Under BMscara30 of Ch. XII is given his solution of x—y= □, 
x2+y2—z3, and of y2+z3 — □, y+z~ □. 

L. Euler363 discussed x+y—D, x2+y2=p3. Hence take p=a2+b2, 
x-a(a2—3b2), y=b(Za2—b2). Then x+y=(a—b)Qf Q = a2-h4ab+b2. Set 
a—5=c2. Then Q = 662+66c2+c4=(c2+36//gr)2 if blc2 = 2g(g-~f)l(3f2-2g2). 
Then x and y will be positive if b=*2g(g—f )j c?—3f2—2g2. The latter is 
satisfied if/=11, g = 1, c=19, or if /= —3, g = 1, c = 5, whence 5 = 8, a=33, 
z = 29601, y=25624. For three numbers he gave only results: 

35 + 9 + 5 = 72, 352 +92 + 52 = ll3; 67+9+5 = 92, 672+92+52 = 193. 

[But the last sum equals 5-919 + 193.] 
W. Spicer,354 to find two squares whose sum is a square and difference a 

cube, took a = $x2+ix? and b = %x2—as the squares with the sum x2 

Nouv. Aim. Math., (4), 18,1918, 289-292. 
,5°* Zeitschrift Math. Naturw. Unterricht, 50,1919, 95-6. 
i60c L’intermddiaire des math., 26, 1919, 77-8,109-10. 
W1 L’algebra opera di Rafael Bombelli, Bologna, 1579, 553. 
*“ Vlja-ganita, §§ 121-2. Colebrooke,823* 201-2. 
aM Opera postuma, 1, 1862, 255-6 (about 1782). 
m Ladies’ Diary, 1766, 33-4, Quest. 536; C. Hutton’s Diarian Miscellany, 3,1775, 220; Ley- 

bourn’s M. Quest. L. D., 2,1817,251. 
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and difference x3. Choose the squares 

4n2 (1-w2)2 

C (1 + nY d (l+«2)2 

with the sum 1 and set a=cx2, 5 = dx2, either of which gives x. 
J. Leslie356 made x+y and xz+yz squares, by division. 
W. Cole356 made x—y, x2—y2, x3—y3 all squares by taking x — y — a2> 

x+y—m2a?, whence xz—yz = □ if 3m4+l- □, which holds if m-2. 3. 
Young took m = 2 initially. 

J. Saul357 made x+y = s2, x2+y2 = v1 and xz+yz a square. By elimination 
of y from the first two equations, s4—2s2x+2x2=*;2. Let v = s2—rx. Then 
x = s2(2—2r)/(2—r2). Then x2—xy+y2=D if r4—6r3+14r2 — 12r+4== □, 
say (r2—3r+5/2)2, whence r = 3/4. 

To divide368 a given square a2 into two parts such that the difference of 
their squares and the difference of their cubes are both squares, an anonym¬ 
ous solver called b2 the difference of the parts, whence the difference of 
their squares is (ab)2. The quotient of the difference of their cubes by b2 
is to be a square, whence 3a4+b4=D. Put a — bx, x=2—z. Then 
3x4+l=49H-b324 is the square of 7 -482/74-12 • 51s2/49 by choice of z. 

J. Whitley369 found two positive fractions such that each plus the square 
of the other is a square, while the difference of their squares or their cubes 
is a square. Let the fractions be (l±4r2)/8, whose sum and difference are 
squares. The difference of their cubes is a square if 3+16^= □= a2. 
Let v=§~z, §a=1 —z+2z2. Hence z—\~v. B. Gompertz took x~az and 
y-iz as the fractions, where a=(l+£2)/2. Then x2—y2^ □. Take 
x+y2—p2z2, y+x2~q2z2. We get two values of z which are equal if 
as(q—a) =t(p—t), q+a=s(p+t). These give p and q. Then xz—yz — (rz)2 
gives zf which equals the earlier value of z if cs (ars—t2) (a—si) = □, where 
c = l/(o*-*). Take 2=3, s=l. Hence x = 5/32, y = 3/32. 

S. Jones360 made x+y=a2, x2+y2=D = (bx—y)2 by choice of x, y. 
Then x3+y3=D if 64-253+2b24-26+l = 0 = (&2-&+J)2, whence 
W. Wright took a=l, proceeded similarly, and found y from 

(1 —2/)2+y2= □ = (1 -my)2. 

Then 1—Zy+Zy2 = □ if m4—6m3+14m2—12m+4 = □ = (m2—3m—2)2, 
whence m=8/3, y=15/23. 

Lowry360® eliminated x~a2—y from x2+y2 and x2~xy+y2 and equated 
the resulting expressions to the squares of a2~yrl$ and a2—ye/(sw); the 
conditions hold if w~l, 4r=3s, e=5s/4. J. Cunliffe took x — R2~S2, 
y~2RS, x2—xy+y2=(R2—RS+S2)2, whence R = 4tS; then the desired 
numbers are a2xj{x+y), ah/Kx+ij). 

“•Trane. Roy. Soc. Edinburgh, 2,1790, 211. 
m Ladies’ Diary, 1787, 36-7, Quest. 853; Ley bourn’s M. Quest. L. D., 3, 1817, 155-6. 
157 The Gentleman’s Diary, or Math. Repository, No. 55, 1795; Davis’ ed.f 3, 1814, 235. 

Ibid., No. 56,1796; Davis’ ed., 3,1814, 249. 
“•The Gentleman’s Math. Companion, London, 2, No. 12, 1809, 169-71. 
™ Ibid., 3, No. 18,1815, 323-4. 
ma New Series of Math. Repository (ed., T. Leybourn), 3, 1814, I, 169-172. 
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To find two integers the difference of whose squares is a cuoe and the 
difference of whose cubes is a square, J. R. Ambler361 took x3+2 and x3—2 
as the numbers, the difference of whose squares is (2x)3. The difference of 
the cubes is a square if 3x6+4 = □ = (2x3—2)2, x = 2. J. Davey used the 
numbers x, y and set x2—y2=zz) x+y—n2z} which give x, y in terms of 2. 
Then xz—yz — □ if 3^8+22 = □ = (rn4—z)2, which gives z. 

W. Snip362 made x2+y2 and xz+yz squares by t king x — (m2 —n2)y, 
y = 2mnv. Then xz+yz = a2b2v2 determines v rationally. 

J. Anderson363 made x+y a square and x—y, x2+y2 cubes by setting 
x+yi= (p±gt)3. Thenx—y = p3—Zp2q—Spq2+q3 = (q—p)zUp = Sq. Hence 
x = 18g3, t/=26g3, x+y = □ if g=ll. Ashcroft used the numbers (x4±x3)/2 
whose sum is x4 and difference is x3. Their sum of squares is (4x8+ 4x6)/8, 
which is a cube if 4x2+4 = 53, x = 11/2. 

S. Ward363a took y—x+Y, 7=8r3, x-Yz. Then (x2+y2)/Y2 equals 
2z2+2z+l, which is the cube of 1+22/3 if 2 = 9/4. Then x+y=44T*3 = □ 
if r=11. 

Several364 found two integers whose sum is a square and difference a 
cube, while if each number be doubled the new sum is a cube and difference 
a square. Take x+y=4a6, x—y-856. 

To make x—y, x2—y2} x?—yz rational squares [Cole356], J. Whitley365 
used the numbers x-2z2+2v2, y — 2z2—2v2) then shall 

x2+xy+y2—4:(Zz4+vi) = □, 

which is true if z = v or z = 2v. H. Godfiay took x = m2+n2, y = 2mn; then 
x2+xy+y2— (m2+mn+5n2/2)2 if n= —4m/7. 

Several366 solved x+y= □, x2+y2= □, x2+yz—xz+y2. 
Several367 found two numbers the difference of whose squares is a cube 

and difference of cubes a square. 
H. W. Cur j el368 found two numbers x, y whose sum and difference are 

squares, sum of squares a cube, and sum of cubes a square. By the first 
and last conditions, x2—xy+y2 — □, which holds if x — z(2mn—n2), 
y—z (m2—n2). Then y ±x are squares if m=9, n=4, 2 = □, whence x = 562, 
y=652. Then x2+ y2=736l22. Thus take 2=73614. 

P. F. Teilhet369 stated that all pairs of numbers whose sum and sum of 
squares are squares are (A2—B2)M2N and 2ABM2N, where A and B are 
relatively prime and not both even, N=A2—B2+2AB, and where M2N is 
an integer. He asked when also the sum of their cubes is a square, as for 
345,184. 

881 Ladies’ Diary, 1816, 38-9, Quest. 1291; Leybourn’s M. Quest. L. D., 4, 1817, 221-3. 
868 The Gentleman’s Math. Companion, LondoD, 4, No. 20, 1817, 659-60. 
™Ibid., 4, No. 21,1818, 719-21. 
aesa Young’s Algebra, Amer. ed., 1832, 342-3. 
884 Ladies’ Diary, 1821, 32-5, Quest. 1362. 
886 The Lady’s and Gentleman’s Diary, London, 1849, 49-50, Quest. 1779. 
888 Math. Visitor, 1, 1880,100-1, 126. 
887 Amer. Math. Monthly, 1, 1894, 95-6, 325. 
888 Math. Quest. Educ. Times, 62, 1895, 51-2. 
888 L’interm&liaire des math., 10,1903, 124. Cf. papers 139-40 of Ch. XVI. 
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A. S. Werebrusow370 found an infinitude of solutions of the last question. 
Teilhet371 gave a more general treatment of the problem. 

A. G6rardin372 treated the system x3+hyz~a3+hb3, x+hy~a+hb, and 
found many solutions, such as 

x, a = (9m2—1)a2^ISmap—3/32; y} 6 = (9m2-~l)a2±6ap+3p2; fc = 3m. 

In l’interm&liaire des mathdmaticiens are disfcussed the problems: 

P(x+y) +Qx=z3, P(s+y) +Qy ** w>, 22, 1915,145-6. 

fo-aO’+x-s*’, (y—x¥—y~wp, 3, 196; 23, 1916, 68-9; 24, 1917, 85-6. 

(x+2/)8+a;=o2, (x-j-y)3+y=&3, 23, 1916,141-2. 

x^-hy3^ □, = □, 22,1915, 53, 232; 24, 1917, 39. 

x3+y3=a3-53, 26, 1919, 145. 

Systems of equations of degree three in three unknowns. 

Diophantus, IV, 6 found that x2+z2 is a square and yz+z2 a cube for 
y = 16/7, x=Zy,z=4y. In IV, 7, 8, he found that x2+z2 is a cube and yz+z2 
a square for z=5, y=5, z = 10 and for 2=40, y = 20, 2=80. 

J. de Billy propos d the problem to find three numbers such that if their 
product is subtracted from any one of the numbers or from the difference 
of any two or from the product of the second by the first or third or from 
the square of the second, there results always a square. He expressed his 
belief that 3/8, 1, 5/8 is the only solution. 

Fermat373 replied that [if the numbers are denoted by A, 1, 1 — A] the 
problem reduces to the double equal ty 

A2-A+l = □, A2—3A+1 = □, 

which has an infinitude of solutions. In addition to de Billy's solution 
A =3/8, Fermat gave A = 10416/51865. 

Malezieux374 proposed the problem to find three rational numbers in 
A. P. such that one obtains a square by adding to their product either the 
difference of the s uares of any two of them or the sum of the three differ¬ 
ences of the three numbers. 

E. Fauquembergue375 gave the solution 1/31, 25/589, 1/19. 
J. Ozanam376 asked for three numbers in G. P. such that one obtains 

squares by adding to their product the square of each number, and such 
that if these fractional squares are reduced to their simplest forms the sums 
by twos of the square roots of the numerators are three cubes in G. P. 

“J. Hob"377 solved the first part, saying the entire problem is impos¬ 
sible. 

370 L’mtermediaire des math., 10, 1903, 319-20. 
377 Ibid., 11, 1904,167-70. 
373 Sphinx-Oedipe, 5,1910, 1-12. 
379 Oeuvres, II, 437, letter to de Billy, Aug. 26, 1659. 
374 Unedited letter to de Billy, Sept. 6, 1675. Cf. P. Tannery, Finterm6diaire des math., 3, 

1896, 37. Elements de Geometric de M. le Due de Bourgogne, par de Mal6zieux, 1722. 
378I/interm6diaire des math., 6, 1899, 115-6. 
376 Unedited letter to de Billy, June 25, 1676. Cf. P. Tannery, Fintermediate des math., 

3, 1896, 57; C. Heniy, Bull. Bibl. Storia Sc. Mat. e Fis., 12, 1879, 517. 
377 L’interm&liaire des math., 4, 1897, 253. 
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E. Fauquembergue378 called the numbers xjy, x, xy. Then 

(1) x?+x2y2, tf+x2, x?+x2ly2 

are made squares by removing the factors x2, and making the product 
(x+y2)(x+l)(x+ljy2) a square by Fermat’s156 method. Setting y—a/p, 
we get x=N/(4:a4p4), where 

N=(a2+ap+p2)(a2+ap-p2)(a2~ap+p2)(~a2+al3+p2). 

Then (1) are the squares of 

N(a4+a2$2-p4) N(a4-a2j32+P4) N(-~a4+a2(32+(34) 

8a*p« ’ 8 a6/?6 ’ 8a*F 

These fractions are said to be arithmetically irreducible. The sums by 
twos of the numerators are 2Na4, 2Na2p2, 2Np4, which are in G. P., but are 
not made cubes as required. 

L. Euler379 desired three rational numbers whose sum, product and sum 
of products by twos are all squares. Denote the numbers by nx, ny, nz. 
Then 

xyz(x+y+z) = □ ^^(x+y+z)2, z = vi(x+y)/(xy-- tf). 

Then n3xyz= □ requires n=m2xy(x+y) (xy—i?). By the sum of products 
by twos, 

w+ifeM,.o. 
xy—i? 

Set xy—x?=u2, x = tv. Then the preceding condition becomes 

i^(<2+l)2+uV(3t2+2)+u<(«2+l) = □ =[«2(t2+l)+s«2]2, 

a2 t2+l-s2 

m2"2s(«2+1)-3P-2' 

Set s = t—r and multiply numerator and denominator by t2+l— s2. Thus 

4rt4-2(3r2+3r-l)«3+(2ril+3r2+2r-3)t2-2(3r-l)(r+l)« 

+ 2(r-l)(r+l)2 = Q2, 

v 2rt—r2+l iP+v2 i?{x-\-y) 

u~ Q ’ x~tv’ y~~HT’ Z * 

Rational values of t are found from r = l, 3/2, 3, 9* The simplest numbers 
derived from r=3/2, t=60/19, are 705600/d, 196/4157, 361/557, where 
d- 2315449. The corresponding integral solutions are 705600d, 109172d, 
1500677d. Euler380 had expressed his belief that these give the least integers. 

E. Fauquembergue381 used a simpler method and obtained 

4a264(a2+62), (a4-64)2, 4a462(a2+52), 

whose product is a square, sum is (a2+62)4, and sum of products by twos is 
4a252(a2+b2)2(a4+b4)2. For a - 2, b = 1, we get 80, 225, 320. 

878 L’interm6diaire des math., 5, 1898, 86-7. 
879 Novi Comm. Acad. Petrop., 8, 1769-1, 64; Comm. Arith., I, 239; Op. Om., (1), II, 519. 
880 Corresp. Math. Phys. (ed., Fuse), 1, 1843, 631, Aug. 23, 1755. 
881 L’interm^diaire des math., 6, 1899, 95-96. 
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To find3810 three integers whose sum and sums by twos are cubes, take 

x+y+z=(b+n)z, x+y = bz, x+z = cz. 
Then 

y+z = 2(h+n)z-bz~(?==(b+2n)z if b= ~(c3+6n3)/(6n2). 

J. Cunliffe382 noted that x+y—z — a3, xJrz~y = ¥, y+z—x—c* imply 
x+y+z=a?+bz+c?, which has been made a cube by many writers. 

Several3820 found three squares in A. P. the sum of whose square roots 
is a cube by using the know expressions v(2pqdbq2oFp2), v(p2+q2) for the 
roots, and equating their sum vk, where k=p2+4:pq+q2, to szk3. 

J. Anderson383 made xyz+1, xy+1, xz+1 and yz+1 all squares by equat¬ 
ing the last two to (pz— l)2 and (qz~l)2, whence x = p2z—2p, y=q2z~~2q. 
Then the first two will be the squares of 1+2pqz and pqz—p—q if 
2 = 4+2(p+g)/(pg) and p = #+1, respectively. 

To find three numbers whose sum is a cube and the sum of any two a 
square, J. Foster384 took x+y=m2a2, x+z=m2b2, y+z=m2cl, x+y+z~d3mz, 
whence m = (<x2+52+c2)/(2d3). Many solvers used the numbers 2(x2+y2 
—z2), 2(x2+z2—y2), 2(z2+y2-~x2), whose sums by twos are squares. To 
satisfy 2(x2-hy2-j-z2) =8p6, take y2—4p6—n2 = (cn—2pz)2, which determines 
n, and take z = 2mn/(m2+l), whence n2—z2 = □ —%2. 

W. Lenhart386 found that the sum, and sum of any two of, 1982015, 
2759617 and 44286264 are cubes; they are the excesses of 3663 over the 
cubes in 

1683+3593+3613 = 2 • 3663. 

S. Bills386 obtained the same result from 
,,2_1 r3_0„3 

x>+(z+iy+(t-iy=2{z+vy, z*+—*=++. 
v bv 

The root z involves the square root of 6VX3—3t>4—18t>2+9 which is equated to 
6v(x+2a)(x—a)2. For the resulting value of x, 6v(x+2a) = □ if 

vi+6vl+16azv-d = □ = (y+3)2, 

whence v=3/(4a3). Take a—\. Several writers887 solved the same problem. 
To find three integers in arithmetical progression whose common 

difference is a cube, the sum of any two less the third is a square, and the 
sum of the roots of the resulting squares is a square, S. Bills388 took x2—y3, 
x2, x2Jryz as the numbers. To make x2dtz2y3 squares, take x=uy, whence 
u2^z2y are known to be squares iiu — t(p2+q2), y = 2pqt2{p2—q2). It remains 
to make 2£(p2+4pg+$2)pg(p2—q2) a square, say of 2pq(p2+£pq+q2) (p2—q2)r, 
thus finding t. Other solvers used the numbers x2zFxy+y2, x2+y2 in A. P. 

New Series of Math. Repository (ed., T. Ley bourn), 2, 1809,1, 31-33. 
382 The Gentleman’s Math. Companion, London, 3, No. 14, 1811, 282-3. 
382(1 New Series of Math. Repository (ed., T. Ley bourn), 3, 1814,1,111-5. 
m The Gentleman’s Math. Companion, London, 5, No. 26, 1823, 238-9. 
384 Ladies’ Diary, 1826, 35-6, Quest. 1434. 
385 Math. Miscellany, New York, 1, 1836, 123. 
386 Math. Quest. Educ. Times, 12,1869, 80. 
387 Math. Visitor, 2, 1887, 84-8. 
388 Math. Quest. Educ. Times, 12, 1869, 91-2. 
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and took x = 2mn, y=m2—n2. Then shall m2+4mn+n2 = □, say (ra+pn)2, 
which gives m/n. Take p = 3/2. Then xy is a cube if ft = 300. 

J. Matteson389 solved the last problem and that with the final condition 
replaced by the following: The sum of the roots of the squares is an eighth 
power, the squares being a seventh, a fifth and a fourth power, and the 
arithmetical mean of the required numbers a square. 

To find three positive integers whose sum, sum of squares, and sum of 
cubes, are squares, A. B. Evans390 took ax, ay, az, where a—x+y+z, and 
set a^+^+z3) ~a2(x—y+z)2, whence y2+y(x+z) —3xz=0. The radical 
in y is rational if x2+14xz+z2 = □ = (zm/n—x)2, which holds if x = m2—n2, 
z=2ran+14n2. In the resulting expression for 2a2, set m=p—8n and 
equate to the square of p2—16pn—83n2. Thus pin—1332/83. Then 
ax=412095790665, etc. Several solvers used lbmx, 1 bmy, 8m(x+y), whose 
sum of cubes is divisible by their sum. Thus a linear and two quadratic 
functions are to be squares, which is true if ra=d2/{23(x+?/) }• 

D. S. Hart391 divided unity into three positive parts whose sum of squares 
and sum of cubes are squares by taking x/s, y/s, z/s as the parts, where 
s=x+y+z. The conditions are satisfied if $ = □, 2x2= □, 2x3= □, which 
is the preceding problem. He392 found three numbers whose sum and sum 
of squares are cubes, and sum of cubes a square. Let ax3, bx\ cx3 be the 
numbers. Their sum of cubes will equal (x5)2 if x = 2a3. To make 2a 
and 2a2 cubes, equate their product to (a+6—c)3; the roots of the resulting 
quadratic for a are rational if 64+263c—96V+65c3—7c4 = □. Set b=2c+d. 
The new quartic is a square if d=35c/9 or 116c/315. 

To find three integers whose sum, product and sum of squares are all 
squares, S. Tebay393 used the numbers xy, x(x+y), 2/(x+y), while A. B. 
Evans used xa2, ya2, xya2, with x=y+1. 

D. S. Hart394 found three numbers, say ax, bx, cx, such that if the sum of 
their cubes be added to or subtracted from the square of each, the sums 
and remainders are squares. Set d=a3+63+c3. Then a2x2+dx3= □ =e2x2, 
a2x2—dx3 = □ =/2x2 give x= (e2—a2)/d= (a2—f*)/d. Similarly, b2x2dzdx3 = g2x2, 
h2x2 give x—{g2~b2)[d = (62~h2)/d, while c2x2±dx3 = A;2x2, Z2x2 give 

x = (P-c2)/d=(c2-Z2)/d. 

By the numerators of x, e2=2a2 ~f2, g2=2b2—h2, k2~2c2~l2. The first is 
satisfied if a = P2+Q2, /= 2PQ—P2+Q2. As in Diophantus V, 8, take three 
right triangles of equal area, with the hypotenuses 49+9, 49+25, 49+64. 
For P = 7, Q = 3, we get a = 58, f-2. Similarly, P=7, Q = 5 give 6 = 74, 
6=46; P=8, Q — 7 give c = 113, Z=97. Hence we get ax, etc. 

Problems solved in the American Mathematical Monthly: Three num¬ 
bers the sum of whose cubes is a square and sum of squares a cube (1, 1894, 
363). Three integers the sum of any two of which is a cube (p. 208, p. 279). 

189 Collection of Diophantine Problems, Washington (ed., Martin), 1888, pp. 5-7. 
890 Math Quest. Educ. Times, 17, 1872, 30-1. 
891 Ibid., 21, 1874, 100-1. 
891 Ibid., 26, 1876, 102. 
898 Ibid., 23, 1875, 31. 
898 Math. Visitor 2, 1882, 17-18. 
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Three integers whose sum is a cube and sum of any two less the third a 
cube (2, 1895, 86-7). Three positive integers the product of the first by 
the sum of the other two a square and sum of their cubes a square395 (p. 196). 
Four positive integers each less double the cube of their sum a cube (7, 
1900, 49-50). Three positive integers whose sum, sum of squares, and sum 
of cubes, are all squares (9, 1902, 145-6), or all cubes (24, 1917, 240). 

R. F. Davis and others396 made XH-Y2+Z2, Y3+X2+Z2, Z3+X2+Y2 
all squares. Take X=2(l — y), 7=2(1+?/), Z=2(l—y2). Then the first 
two equal the squares of 2(2rFy+?/2). The third is a square if y = +4/3. 

A. Martin397 solved A2+B2+C2 = □, A3+B3+C3=D3. As the solutions 
of the latter he employed the products of a by the values given by Young.56 
Take n2+2 — (n—r)2. Then XA2= □ becomes a quartic for q whose solu¬ 
tion, found as usual, is a very long expression for q. Take r=3, whence 
n=7/6. Then q^a/p, where a = 81420385, /3 = 11290752. Take a=6£2. 
Then A, B, C are integers each of 17 digits: 

A = 11868013975030087, 15 = 16269106368215226, C = 88837226814909894. 

M. Rignaux398 noted a solution of the last problem involving parameters 
m, 7i, g such that m2+2n2= □; in his numerical example, A and C are 
negative, while A, B, C contain only 6 or 7 digits. 

P. Tannery and H. Brocard399 noted that 3, 4, 5 yield by multiplication 

54+72+90=63, 543+723+903 = 1083. 

E. B. Escott400 gave numbers without common factor: 

3+4—6=l3, 33+43 — 63 = —53; 

36+37—46 = 33, 363+373-463= -33. 

H. Brocard401 gave 9+15-16 = 23, 93+153-163 = 23 and 24+2-18 = 23, 
243+23-183=203. 

A. Gfrardin402 noted that, if x+y+z, Xx2 and Xx3 are all cubes, x, y, z 
are in neither geometrical nor arithmetical progression. He and others403 
noted special sets of integral solutions of x+y+z=c2, £2+?/2+z2=&3; also 
values making s3—x—y, s3~y—z, s3~x—z all squares or all cubes, where 
s=x+y+z (ibid., 23,1916, 5-6); s3—x, s3—y, sz~z all squares (pp. 157-9); 
xyz+x2, xyz+y2, xyz+z2 all squares (24, 1917, 37-8); s2—x—y, s2-y—z, 
s2—x—z all cubes (22, 1915, 220). 

S9S Also, Math. Quest. Educ. Times, 24, 1913, 63-4. 
m Math. Quest. Educ. Times, 64, 1896, 26. 
397 Math. Magazine, 2,1898, 254r-5. 
898 L’interm&liaire des math., 24, 1917, 79-80. He corrected a misprint in a citation of 

Martin’s solution, correctly quoted in 7,1900, 162. 
m L’interm&iiaire des math., 6, 1899, 190. 
8®°7Wd.,7, 1900,141. 

10,1903, 14. 
408 Sphinx-Oedipe, 9, 1914, 38-9. 
m L’interm&iiaire des math., 22, 1915, 172; 23, 1916, 93. 
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TO FIND n NUMBERS THE CUBE OF WHOSE SUM INCREASED (OR DIMINISHED) 

BY ANY ONE OF THEM GIVES A CUBE. 

Diophantus, Y, 18 [19], required three numbers xt- such that, if $ de¬ 
notes their sum, $3+x* [s3.—xi] are cubes. Set Xi = (a?—1)s3 [xi = (1 —aj)s3]. 
Since 2xt-=$, we have (2a<—3)$2 = 1 [= — 1], For the first problem, 
2a* — 3 = □, take ai = m+l, a2 = 2—m, a3 = 2; then 

2a3—3 = 9m2—9m+14 = (3m—4)2, 

if m = 2/15; thus $ = 5/18. For the second problem, 3 —2a^= □, a^cl, 
Diophantus took the square to be 2|, whence 2a* = f = 162/216. Hence 
we have to express 162 as the sum of three cubes. Now 162 = 125+64—27. 
By the theorem in the “ Porisms,” the difference of two cubes is always a 
sum of two cubes. Having thus the three cubes [not given by Diophantus] 
and 2|s2 = 1, whence s = 2/3, we obtain the numbers x». Cf. Bachet.404 

Diophantus, V, 20, required three numbers x{ of sum s, such that Xi—s* 
are cubes. Set Xj=(a;+l)s3. Then 2a?+3 is to be a square l/$2. Let 
ai-mf a2=3—m, a3 = l. Then 9m2—27m+31 = □ = (3m—7)2, say, whence 
m = 6/5, s=5/17. 

C. G. Bachet404 believed that Diophantus had found by accident the 
square 2\ which 3 exceeds by a number expressible as a sum of three cubes 
<1, and stated that he could not solve the problem if 2 \ be replaced by 2-J. 
He completed the computation omitted by Diophantus. [By Vieta’s38 
formula (1)], 64-37 is the sum of the cubes of 40/91 and 303/91. Thus 
162/216 is the sum of the cubes 125/216, 203/(913-27), 1013/(913-8). Sub¬ 
tracting them from unity and multiplying the remainders by $3 = (2/3)3, 
we obtain the answers 91/272, etc., which Bachet expressed as fractions with 
a common denominator, but with the common factor 27 in all terms.415 
The reduced denominator is 549353259 = 913 • 272. 

A. Girard39® noted that we may employ Bachet’s value 2f since 
3—2%=162/93 is a sum of three cubes. Or we may employ 2^-f which 3 
exceeds by the sum 440/1000 of the cubes 216/1000, 216/1000 and 8/1000; 
the resulting solution of Diophantus V, 19 is 49/256, 49/256, 62/256 [since 
s3—Xi=(3/8)3, s3-x3 = (l/8)3]. 

Fermat405 would not admit that Diophantus was led to 2 J by chance 
and remarked that it is not difficult to rediscover his method. “ Take 
x—1 as the side of the required square between 2 and 3. Then 3—(x— l)2 
is to be the sum of three cubes. Take as sides of two of the cubes linear 
functions of x such that, if the sum of their cubes be subtracted from 
2+2x—x2, the result contains only two terms in x of consecutive degrees. 
This can be done in an infinitude of ways. Take 1—x/3 and 1+x as the 
sides of two of the cubes; then the result mentioned is 

Equating this to — cV, we have x=117/(27c3—26). We are to choose 

404 Diophanti Alex. Arith., 1621, 324. 
406 Oeuvres, III, 258-9. 
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c so that 1—#/3>0. Since the third cube is negative, we apply406 the 
Porism. Here Bachet was again embarrassed; he confessed that he could 
express the difference of two given cubes as a sum of two cubes only when 
the greater of the given cubes exceeded the double of the smaller.” 

Ludolph van Ceulen407 (1540-1610), at the end of his Dutch work on the 
circle, proposed 100 problems the 68th and 69th of which are to find three 
and four numbers such that if each be subtracted from the cube of their 
sum the remainders are cubes. For three numbers his solution, communi¬ 
cated in letters, is the one published by van Schooten,408 his successor at 
the University of Leyden. After learning van Ceulen's method, N. Huberti 
obtained answers for four numbers, quoted by van Schooten: 

867160/C, 787400/C, 13527640/D, 14087528/D 

(<7=4657463, D = 125751501); 

12172736/fc, 11296152/fc, 9112168/A;, 4724776/A; (k = 64481201); 

and the further answer for three numbers: 

15817815000/C, 9568152000/C, 8925120000/C (C=86526834967). 

Frans van Schooten408 first found three cubes such that on subtracting 
them from 43, the sum of the remainders is a square. Let the roots of 
the cubes be N—1, 4—AT, 2. Subtracting their cubes from 64, we get 
65—3iV+3A72—N3, 48 JV—12N2+N3 and 56. Equate their sum 

1214-45N-9N2 
to (11+N)2; hence iV = 23/10. Thus the above remainders equal 

a=61803/1000, b = 59087/1000, 56. 

Now let the three desired numbers be cm3, 5n3, 56n3 and their sum 4n, 
whence n=20/133. Hence the answer is 

494424/D, 472696/D, 448000/D (D=2352637). 

Their sum is 80/133, whose cube diminished by the three numbers gives 
as remainders the cubes of 26/133, 34/133, 40/133. 

J. H. Rahn and J. Pell409 treated Diophantus V, 18, 19, 20 at length. 
Pell's solution differs little from van Schooten's, except in using (11+miV)2 
in place of (11+AT)2, and is given in Wallis' Algebra, Engl, ed., 1685, p. 219, 
with van Schooten's answer. 

J. Kersey410 employed, for Diophantus V, 19, ai = 53/144, a2 = 27/144, 
fl3 =» 16/144, whence 3 — Sa* = (247/144)2, s = 144/247; thus the desired num- 

406 To secure Diophantus’ value (z~l)2=2|, we must take z=5/2 or —1/2, whence 
27c3=364/5 or -8-26, so that c is irrational. Hence Fermat’s process is not general, 
although it leads to a solution by setting c=5/3, whence z = 13/11, and the sides of 
the cubes are 20/33, 72/33, -65/33, as noted by Heath, “ Diophantus,” ed. 2, 214. 

407 Van den Circkel, 1596, 1615. Latin transl. by W. SneUius, 1619. Cf. Bull. Bibl. Storia 
Sc. Mat. e Fis., 1, 1868, 141-156. 

408 Exercitationvm Math., 1657, Liber V, Sect. 13, 434-6. Reproduced by C. Hutton, The 
Diarian Miscellany, London, 1, 1775, 138-9. 

408 Rahn’s Algebra, Zurich, 1659. An Introduction to Algebra, transl. out of the High-Dutch 
by T. Brancker, much altered and augmented by D. P[elll, London, 1668, 105-131. 
a. Wallis’Algebra, Ch. 59. 

410 The Elements of Algebra, London, Book III, 1674, 111-4, 104^5. 
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bers are the ratios of 2837107, 2966301, 2981888 to 15069223. Or we may 
take ax = 103/(9-23), 02 = 12/(9*23), a3 = l/9, whence s = 9 *23/1053, giving 
xi = 7777016/43243551, etc. Or, ax=41/64, a2 = 39/64, a3 = 3/63, 

s = 8 -16/185, xi = 1545784/6331625. 

Or, oi=67/88, o2=87/88, o3 = 22/88, s=176/221, Zi = 3045672/10793861. 
For four numbers, take ai, • • *, a4 to be the ratios of 4684, 4836, 3485, 
3315 to 1360. Then 2(64—a<) = t2, t-16027/1360; the desired numbers 
are Xi = (16—c^)$3, s=2x» = l/i. His411 solution of V, 18 is the same as in 
Diophantus. 

The answer of van Schooten408 was given without details in the Ladies' 
Diary, 1717, Question 51. J. Hampson412 gave without details the smaller 
answer to Diophantus, V, 19: 13851/D, 19467/D, 18954/D, where D=85184. 
He413 also stated two answers to Diophantus V, 18: ratios of 23625, 1538 
and 18577 to 157464; ratios of 18954, 4184 and 271 to 132651. 

J. Landen414 took zy, zx, zv as the numbers in Diophantus V, 20, and 
p2z as their sum, and zs, zr, zq as the roots of the cubes, finding the answer 
341/D, 854/D, 250/D, where D=4913; no details were given. 

The “ Repository solution ”415 is a repetition of that by Diophantus as 
completed by Bachet,404 leading to 162707336/d, 134953209/d, 68574961/d, 
where d=549353259. It is also noted that 37 is the sum of the cubes of 
18/7 and 19/7, whence 5 = 2/3 and a new answer is 68256/A;, 67229/k, 31213/A:, 
where k = 250047. 

For Diophantus V, 18, J. Bennett416 took nx as one number and 5 as 
the sum of the three. Let s3+rw; = (s+a;)3, whence x = JV4n — 3s2—3s/2. 
Taking n/s2=21, 31, 57, we get ns=63s3, 124s3, 342s3, which will be the 
desired numbers if their sum is s, i. e., if s= 1/23. J. Ryley417 used the 
numbers x, y, a—x—y; then a3+a:=a3s3, a?+y = aW give x, y. Let 
a?-{-a—x—y=mV. Then a2/=l, /=m3+n3+s3—3. Take n = 2—r, 
s = 1+r, /= (2vm—3r)2, which gives r in terms of m, v. 

T. Leyboum418 noted that Diophantus V, 18 is satisfied by taking 
(a3—(c3—w6)^3 as the numbers, if u2v is their sum. The 
latter requires F=a3i~b3+F~3u6 = □. Take a=p+q, b=r—p, c=s. 
Then F = 3(^+r)p2+3(g2--r2)p+33+r3+s8—3w6. Take 3(q+r)=n2; then 
F= (m—np)2 determines p rationally. By trial, he found that F= (23)2 if 
a=4, 5 = 5, c = 7, u= 1. For Diophantus Y, 20, he419 took (as+^6)v8, • • 
(c8+^6)^ as the numbers and u2v as their sum. Then 
_(?=q3+53+c3+3^6= □._ 

411 The Elements of Algebra, London, Book III, 1674,101. 
412 Ladies’ Diary, 1747, 27, Quest. 275. 
412 Ibid., 1748, 27, Quest. 288. 
414 Ladies’ Diary, 1749, 26, Quest. 304; C. Hutton’s Diarian Miscellany, 2, 1775, 270; Ley- 

bourn’s Math. Quest, proposed in Ladies’ Diary, 2, 1817, 7-9. 
415 The Diarian Repository; or, Math. Register . . . Collection of Math. Quest, from 

Ladies’ Diary, by a Society of Mathematicians, London, 1774, 81-2. 
418 Ladies’ Diary, 1805, 43-4, Quest. 1132; Leyboum’s M. Quest. L. D., 4, 1817, 46-7. 
417 The Diary Companion, Supplement to Ladies’ Diary, London, 1805, 46-7. 
4I< Leyboum’s Math. Quest, proposed in Ladies’ Diary, 1, 1817, 405-7. 
419 im, 2,1817,7-9. 
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By trial, (? = 372 if a-5, 6 = 8, c = 9, u — 1. Setting b = 3q2—a, we see that 
G becomes a quadratic in a, and G= (m—3qa)2 determines a rationally. 

M. Noble420 gave a note on the history of Diophantus V, 19, citing 
papers reported on above. He noted that one solution leads to an infinitude. 
For, if 3— 2(4 = a2, then 3 — X(ai+gix)z = (a+fx)2) provided 

—3Ax-~Wz2 — Cxz = 2afx-\-f2x2f A = 2a-^, £ = 2aa^, C = 

We may take 3A+2a/=G, x = (—f2~3B)jC. He also gave the following 
solution. Let x, y, z be the desired numbers and $ their sum. Then 
z = s3—a3, y — sz—bz, z = sz—d. Thus 

(1) $=3s3—a3—63—c3. 

Take $=u2v, a = (p+q)v} b = (u2~q)v, c=(u2-~p)v. Then (1) requires that 

u2 = utF) F~Eu2+3(u4~p2)q~3(p+u2)q2==n} E = u4JrZpu2 — 3p2* 

Set E = (u2+pmjn)2. We get p and hence 

E = iku2)2, k = (3n2+3?nn—m2) / (3n2+m2). 

Equating F to the square of uzh-\-qrle, we get q. Then evidently 
pfn 

V^ekvFTrq} (P+?)3)^ •*> z= {u6-(u2-p)3\^~ 

Wm. Lenhart421 found n numbers Xi such that if each be added to the 
cube of their sum s the sum shall be a cube a\. Thus s+nsz = Sat Take 
s = 1/r. Then r2+n==2(raa)3. But in another paper, Lenhart62 of Ch. 
XXV, he showed how to express a number (here r2+n) as a sum of cubes. 
Again, to find n numbers Xi such that if each be subtracted from the cube 
of their sum s the remainder shall be a cube /?;, we have tis3—s = 2/3^. Take 
$=r/£. Then r(nr2—t2) = 2(#h-)3. If r—t, the problem is to find n cubes, 
each <1, whose sum is n— 1. It was discussed in the paper cited. Here 
let t>r, t being prime to r. The following tentative process was used. 
From nr2 subtract in turn the terms of a decreasing series of squares prime 
to r and beginning with the first square <nr2 and ending with the square 
just >r2; Multiply each remainder by r and seek (as in the paper cited) a 
separation of the product into cubes (#h)3. For 4, take r = 12, £=19; 
2580=a+6, a = 1241=93+83, 6 = 1339 = 23+113. Using his table of sums 
of two cubes, he found various answers for 3 and one for n = 5. 

S. Bills,422 to find (1 —a*)s3, s=Xxif would solve n—a\-al~k2 
by taking arbitrary values for fc, a4, • • •, a„ and using the theorem that any 
number is a sum of three rational squares. Similarly,423 to find Xi= s3, 
we have Xa\—n~ljs2) set X = l/s and assign arbitrary values to a3, • * «n 
and solve a\+a\+d=K2, where d~a\-\-\-al—n. Put 

a2=i—v; 

then X2—9^ = 27/4+d=^. Taking X+3v=/, K—3v=g, we get K and v. 

m Leybourn’s Math. Quest, proposed in Ladies’ Diary, 1, 1817, 52-62. 
421 Math. Miscellany, New York, 1, 1836, 263-7. 
m Math. Quest. Educ. Times, 22, 1875, 71. 
423 Ibid., 24, 1876, 52-3. 
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A. B. Evans424 found three positive numbers whose sum is unity such 
that each plus unity is a cube. Take as the numbers. Then 
z32a\ = 4. Set p = s+a3, 4:r* = al+al—s3. Eliminating the a% we get 

^ = I(p3-3p!!s+3ps2+4r3) = (r+g;) , if zp- 

Then x = (4r3~s3)/(4r4+2rs3). For r = 9, s = 5, the condition a?+fl2 = 3041 
is satisfied if ai = 1404/133, a2 = 1637/133. Cf. papers 426, 428. 

D. S. Hart425 found N (N ^5) numbers such that if each be subtracted 
from the cube of their sum s the remainder is a cube. For 3 numbers 
x, y, 2, let $3—x=mz, s3—y~nz, sz—z~p3. Then m3+n3+p3 = 3s3—s, 
which is satisfied if 

p=irf, y=if, 
These give answers involving the least numbers found to date. For N=4, 
m3+n3+p3+g3 = 4s3—s, which is satisfied if 5 = 5/9, m = 3/27, n=5/27, 
p = 6/27, g= 13/27; the desired numbers are the ratios of 3348, 3250, 3159, 
1178 to 273. For N=5, take 3 = J, and m, • • *, r to be the ratios of 1, 3, 4, 
5, 8 to 18. 

R. Davis426 divided unity into three parts such that each increased by 
unity is a cube. He and D. S. Hart (p. 133) treated Diophantus V, 20. 

S. Tebay,427 to make az—Xi a cube where a = 2xi, and hence naz—a a 
sum of n cubes, would express n—ar2 as a sum of n cubes, the roots of 
three of which are ra—s, m—t, Let H—n+m3 be the negative of 
the sum of the remaining cubes. Then ar2=H-\-Sst(2m—s—t). Equate 
the last product to 9rW, thus determining t. Then 

cr2(3r2s+1)2 = 9r2(s2-2ms+!#r2)2, 24r2(3wr2+l)s = 9 Hr6 -4. 

Hence s and t are found rationally in terms of r, m, H. He428 expressed 2 
as a sum of three rational cubes. But 3s3—5 = 2 if s=l. Hence, as by 
Hart,425 we have three numbers whose sum is unity and such that unity 
exceeds each by a cube. He tested eleven sums of three cubes by the 
method of Hart,425 but found no answer in quite so small numbers as Hart’s, 
his smallest answer being 13/49, 17/64, 351/(49*64), with the sum 9/14. 

A. Holm429 treated Diophantus V, 19 by starting with Diophantus’ 
formula 

my-ay-^HD’ 
To find positive solutions of 3 — 2a\ = □, take ai = 5/6, a2=■§—x, 03 = — J +x. 
Then 

+Lx-1-x^n=(-z-+rxy> if 
36r+7 

12r2+6’ 

424 Math. Quest. Educ. Times, 25, 1876, 31. Cf. Strong®1 and Lenhart62 of Ch. XXV. 
428 Ibid., 26,1876, 66-8. 
«® Math. Visitor, 1, 1880, 107. 
427 Math. Quest. Educ. Times, 38, 1883, 81-2. 
428 Ibid., 101-3. 
429 Math. Quest. Educ. Times, (2), 9, 1906, 98. 
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To make the cubes positive take J<x<f. This is the case if r = ll/2, 
whence x = 5/9. Thus the ratios of 351, 832,833 to 3136 answer Diophantus* 
problem. 

A. Gdrardin, R. Goormaghtigh. and others discussed in l’interm4diaire des math^maticiena 
the following problems in which s is the sum of the unknowns: 

sz—x and s3—y cubes, 22,1915, 222; 23, 1916, 142-4, 210-1. 
s3—x, s3—?/, s3—z all cubes or all biquadrates, 22, 1915, 245; 23, 1916, 4-5. 
s3—z, s3—y, s3—2, s3—t all cubes or all squares, 23,1916, 28-9, 52-3. 
8s—xi, • • •, s3—xi, all cubes or all squares, 100-1. 
s3—xi, * • •, sa—xn all cubes or all squares, n odd =5, 24, 1917, 114-5. 

Systems of equations of degree three in four or more unknowns. 

Alkarkhi430 (beginning of eleventh century) solved x2—y3=z2, x2-hy3 = t2 
by setting x~2y, z = my} t—ny, whence ?/=4—m2=w2—4, m2+n2 = 8; take 
m2=4/25, 7i2 = 196/25. He treated various similar problems. 

J. Ozanam431 asked for four numbers such that one obtains a square by 
adding to the product of the first three the product of any two of the four. 

W. Wright432 found four numbers the product of any three added to 
unity being a square. Substitute the value of z from xpz+l = (pz+l)2 
into vyz+l and vxz+1. The results are squares if 

F — p2—2vyp+vxy2 = (p — q)2, 

which determines p, and G = p2—2vxp+vx2y= □. The latter leads to a 
quartic in q which is equated to the square of q2—2vxq+2i?xy — vxy2+2vx2y 
—2v2x2, thus determining q. Then vxy+l=n2 determines x. J. Baines 
took wxy+1 = a2, wxz+l = b2, wyz+l^c2, which determine w, x, y in terms 
of z. Take (52~l)(c2--l) = l=z. Then xyz+l = (a2~l)2+l = (41/9)2 if 
a=7/3. 

J. Anderson433 found n numbers whose sum is a square such that the 
square of each exceeds the cube of their sum by a square. Let the numbers 
be s2x», where 2x,=1. Then shall x2 —s2 = □ = ($p»— x»)2, say, whence 
Zi=$(Pi+l)/(2p*). W. Watson used the numbers x{s3 with the sum s2. 
Then x-—1 = □ = (X*—m»)2 gives x»*. The condition on the sum gives s. 

Several434 found four numbers x, x+p, x+2y, x+3y in arithmetical 
progression whose sum $ of squares is a square and sum p of the product 
of the extremes and the product of the means is a cube. Take y=vx. 
Then s= □ if 4+12v+14v2= (rv—2)2, which gives v. Take r=4. Then 
t>=14, p—478x2, which is a cube if x=478. 

S. Ward435 found four numbers a, 6, c, x such that the product of any 
three added to unity shall be a square. Set m=ab, n=ac} p — bc, and let 
mx+1 = (1 — rx)2, wrhence x = (2r+m)/r2. Then shall 

r2(nx+1) = r2+2m~\-mn=A2, r2 (px+1) = r2-f 2rp+mp=B-. 

430 Extrait du Fakhri, French transl. by F. Woepcke, Paris, 1853,134. 
431 Letter to de Billy, May 9, 1676; Bull. Bibl. Storia Sc. Mat., 12, 1879, 517. 
432 The Gentleman’s Math. Companion, London^ 5, No. 24,1821, 47-8. 
433 Ibid., 5, No. 27, 1824, 266-8. 
434 The Math. Diary, New York, 1, 1825, 55-6. 
435 Amer. edition of J. R. Young’s Algebra, 1832, 343-5. 
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Thus A2—B2~(2r+m)(n—p). Take A+B = 2r+m, A—B = n—p) which 
give A. Hence r2+2rn+mn=A2 gives 

__ a2bc—\(ab+ac—be)2 

ah—ac—bc 

Taking any values of a, b, c which satisfy a6c+1 = □ , we get an answer. 
For example, a = |, 6 = 2, c=3 give Young’s answer a; = 16016/25. 

On four integers the sum of any two of which is a cube, see Lenhart,93 etc. 
A. Genocchi436 noted that early arithmeticians knew that £ = 3, y = 4, 

z — 5, $ = 6 satisfy xy — 2s, x2-j-y2 = z2, x3-j~y3-hzs = s3, and proved that this 
is the only integral solution. If the third condition is replaced by 
x3+y3~j-z3=sn£) where n>l and t is an unknown integer, he proved that 
either 6 = 1, a — 3, n — 2, m — 1, Z = 3 or m = 3, t — 1, or 6 = 1, a = 2, n = 3, 
m = Z=l, or 6 = 1, a = 2, n = 2, ra = 2, Z = 3 or m = 1, 2 = 6. 

P. W. Flood437 noted that the six cubes 

(i)3, (iy, (A)3, (i)3, (t^s)3, (tw)3j 

of which the sum of the first three is 1/8 and the sum of the last three is 1/8, 
are such that on adding any one to the square of the sum of the remaining 
five we obtain a square. 

U. Bini438 considered xyz-uvw with Zx2 = Zu2 or Zx3 — Zu3, and Zx = Zu, 
Zxz = Zu3, the second pair being equivalent to Zx = Zx', xyz=x'y'z'. 

L. E. Dickson439 showed how to obtain all sets of integral solutions of 
the last pair of equations, as well as of the pair440 

xyz=x'y/z/, xy+xz+yz = x'y'+xf zf+y'zr, 

which express the condition that two rectangular parallelopipeds shall have 
integral edges, equal volumes and equal surfaces. Cf. papers 16-18 of 
Ch. XYII. 

A. G6rardin441 noted that d3—£2, d3—y2, d3—z2, d3 — t2 are all squares, 
where d=x-\-y—z — t, if £ = 65, y=488, 2=481, £= 7. 

G6rardin442 gave three sets of solutions of x3-\-y3+z3 = t3+u3+^f xyz = tuv, 
including the solution 

x_ 

P2 pq 
= pz+2qz, y_J± 

pq q2 -qz-2pz, 
z v 
-i=^=P3-~g3. 
q2 p2 

The same pair of equations and Zx = Zt have the solution 

x__t 

v~q 
=pq-r2, 

y^u 

qr 
qr-~p2, 

z _ v _ 

T p ^ 

438 Atti Accad. Pont. Nuovi Lincei, 19, 1865-6, 49; Annali di Mat., 7, 1865, 157; French 
transl., Jour, de Math., (2), 11, 1866, 185-7. 

437 Math. Quest. Educ. Times, 70,1899, 52. 
438 L’mterm&liaire des math., 16, 1909, 41-3, 112. Cf. Desboves302; also Sphinx-Oedipe, 

8,1913, 140, and Ch. XXIV. 
439 Messenger Math., 39, 1909-10, 86-7. 
mIbid., and Amer. Math. Monthly, 16, 1909, 107-114. 
441 L’interm&iiaire des math., 23,1916, 76. 
442 Nouv. Ann. Math., (4), 15, 1915, 564-6. 





CHAPTER XXII. 
EQUATIONS OF DEGREE FOUR. 

Sum or difference of two biquadrates never a square; area of a 

RATIONAL RIGHT TRIANGLE NEVER A SQUARE. 

Leonardo Pisano1 recognized the fact, but gave an incomplete proof, 
that no square is a congruent number (i. e., z2+y2 and x2—y2 are not both 
squares), while the latter is the area of a rational right triangle. Four 
centuries later, Fermat2 stated and proved the result thus implied by- 
Leonardo : no right triangle with rational sides equals a square with a rational 
side. The occasion was the twentieth of Bachet’s problems inserted at the 
end of Book VI of Diophantus: to find a right triangle whose area is a 
given number A. The necessary and sufficient condition given by Bachet 
was that (2A)2-\-K4=D for a suitable K. For, this condition implies 
that 2A/K and K are legs of a right triangle of area A; while, conversely, if 
K and H are legs of a right triangle of area A, they are proportional to K2 
and 2A, which are therefore legs of a right triangle. He quoted two condi¬ 
tions given by F. Vieta, Zetetica, 1591, IV, 16, of which the first is that the 
area increased by some biquadrate should be a biquadrate, and expressed 
doubt as to the necessity of the conditions. 

Fermat’s proof is of especial interest as it illustrates in detail his method 
of infinite descent and as it presents the only instance of a detailed proof 
left by him. In the left column is given a translation of Fermat’s account 
and in the right column proofs3 of the statements. 

“ If the area of a right triangle 
were a square, there would be two 
biquadrates whose difference is a 
square, and hence two squares whose 
sum and difference are squares. 
Thus there would be a square equal 
to the sum of a square and the 
double of a square, such that the 
sum of the two component squares 

If the sides have a common 
factor, the area has a square factor 
which may be removed. Since we 
may therefore assume that the sides 
x, y, z are relatively prime, we may 
apply the rule of Diophantus and 
set x = 2mn, y — m2—n2, where m and 
n are relatively prime integers not 
both odd. Then mn(m2—n2) shall 

1 Tre Scritti, 1854, 98; Scritti, 2, 1862, 272. See Leonardo17 of Ch. XVI. 
2 Fermat’s marginal notes in his copy of Bachet’s edition of Diophantus’ Arithmetica; 

Oeuvres de Fermat, Paris, 1, 1891, 340; 3, 1896, 271. 
3 Cf. H. G. Zeuthen, Geschichte der Math, in XVI and XVII Jahrhundert, 1903, 163. In 

the elaboration of Fermat’s proof by A. M. Legendre, Th^orie des nombres, 1798, 401-4; 
ed. 2,1808, 340-3, use is made of the theory of quadratic forms to show that £=r2+2s2; 
while P. Bachmann, Niedere Zahlentheorie, 2,1910, 451-4, employed the uniqueness of 
factorization of the integral algebraic numbers V—2. Both completed the final 
step in the proof by comparing the areas of the initial and new triangles. H. Dutordoir, 
Annales de la Soci6t6 Sc. de Bruxelles, 17, 1892-3, I, 49, announced in eight lines that 
he could fill in an elementary manner the gaps left in this proof by Fermat. For the 
elaboration used in the text, see L. E. Dickson, Bull. Amer. Math. Soc., (2), 17, 1911, 
531-2. 
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is a square. But if a square is the 
sum of a square and the double of 
a square, its root is likewise the 
sum of a square and the double of 
a square, which I can easily prove. 
It follows that this root is the sum 
of the two legs of a right triangle, 
one of the squares forming the base 
and the double of the other square 
the height. This right triangle will 
therefore be formed from two squares 
whose sum and difference are squares. 
But4 both of these squares can be 
shown to be smaller than the squares 
of which it was assumed that the 
sum and difference are squares. 
Similarly, we would have smaller 
and smaller integers satisfying the 
same conditions. But this is im¬ 
possible, since there is not an infini¬ 
tude of positive integers smaller 
than a given one. The margin is 
too narrow for the complete demon¬ 
stration and all its developments.” 

be a square, whence m = a2, n~b2} 
a4—64= □, where a and b are rela¬ 
tively prime, one even and the other 
odd. Thus a2+b2 and a2—b2 are 
relatively prime. Hence a2+b2~£2, 
a?—b2=7]2, £ and 77 being odd in¬ 
tegers. Also £2 = 7?2+2£>2. Set 

e=(£-H)/2, /«(*-*)/2. 
Then e and / are integers and 
e/=52/2. A common factor of e and 
/ would divide £, 77, b2 and a2. Hence 
e and / are relatively prime. We 
may take e odd (changing if neces¬ 
sary the sign of 77). Thus e — r2, 
f — 2s2, 2rs = b, where r and s are 
integers. Hence £ = e-f/=r2H-2s2, 
77=7-2—2s2. Also a2 = 62+772=r4+4s4- 
The right triangle with the legs r2 

and 2s2 has the area r2s2. It is there¬ 
fore formed (in the sense of Diophan- 
tus, as above) from two squares 

and ni~b\, its sides being 
2mini and m\ztnl. Thus 2miUx = 2a2, 
m\—n\=r2. By m1n1 — s2, we get 
dibits, a factor of b~2rs. Hence5 

ai and 61 are each less than b and 
hence less than a. 

Fermat’s® observations on Diophantus II, 8 and V, 32 includes the 
statements that the sum of two biquadrates is never a biquadrate or a 
square. 

Fermat had proposed, Sept., 1636, to Sainte-Croix that he find a right 
triangle whose area is a square (Oeuvres, II, 65; III, 287); to Frenicle, 
May (?), 1640, (Oeuvres, II, 195); to Wallis, Apr. 7, 1658 (Oeuvres, II, 
376). Fermat stated that the problem is impossible in a letter to Pascal, 
Sept. 25, 1654 (Oeuvres, II, 313). The attempted7 proof by J. Wallis, 
June 30, 1658 (Oeuvres de Fermat, III, 599) goes no further than a proof 
of the rule of Diophantus for the sides of a right triangle. Fermat referred 
in a letter to Carcavi, Aug., 1659 (Oeuvres, II, 431-6, see 436) to proofs by 
the 1 descente ind6finie ” which he had sent to Carcavi and Frenicle con- 

4 As translated by Heath, Diophantus of Alex., ed. 2, 1910, 8 Or, by a\ +b\^a\ +b$ = a. 
293-5. Tannery (Oeuvres de Fermat, III, 272) gave the 
incorrect reading: But the sum of these two squares ^ 
be shown to be smaller than that of the first two of which 
it was assumed that the sum and difference are squares. 

6 Oeuvres, I, 291, 327; III, 241, 264. 
7 Criticized by Frenicle, Oeuvres de Fermat, III, 606, 609. 
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ceming negative theorems, and cited in the same letter the theorem under 
discussion. 

Frenicle de Bessy8 (fl765) gave a proof, published posthumously, the 
principle of which is doubtless due to Fermat in view of the letters just 
cited. It suffices to prove it for a primitive right triangle. Denote the 
sides by 2mn, m2±n2. If the area is a square, the odd leg m2—n2 is a square 
l2 and the even leg 2mn the double of a square. Thus we have a second 
primitive triangle whose hypotenuse is m, odd leg l and even leg n. Since 
mn is a square and m is relatively prime to n, m and n are both squares. 
Denote the sides of the second triangle by 2ef, e2±/2, where e and/ are rela¬ 
tively prime. Since n = 2ef is a square, one of the numbers e, / is an odd 
square and the other the double of a square. Let e = r2, /=2s2. Also 
e2+/2=m is a square a2. Thus a, e, / are the sides of a third primitive right 
triangle whose area is the square r2s2. Its sides are less than the corre¬ 
sponding sides of the second triangle: 

a<a2 = m, f<2ef=n, e<(e+f)(e—f)=l. 

The sides of the second are less than the corresponding sides of the first: 
m < m2+n2, n < 2mn, l<l2 — m2—n2. Hence from the first primitive triangle 
with a square area we have derived another primitive triangle (the third9) 
with a square area and with smaller sides. 

G. Wertheim10 reproduced the last proof in slightly modified form. 
Frenicle proved in like manner (p. 175) that no right triangle has each 

leg a square and hence the area of a right triangle is never the double of a 
square. He concluded (p. 178) that no square is the sum of two biquadrates 
and that x4—4:Z4 = y2 is impossible in integers. 

Fermat had proposed to St. Croix Sept., 1636 that he find two bi¬ 
quadrates whose sum is a biquadrate (Oeuvres, II, 65; III, 287), to Frenicle, 
May (?), 1640 (II, 195). 

G. W. Leibniz11 proved, in a manuscript dated Dec. 29, 1678, that the 
area of a primitive right triangle with integral sides is not a square. The 
sides are x2doy2,2xy, one being even. Then if x2—y2 and xy are both squares, 
x and y are both squares; also x+y and x—y (since a common factor 2 
would make x2—y2 even, contrary to the above). But y, x—y, x, x+y are 
not all squares. For, if so, the last three give squares in arithmetical 
progression whose common difference is a square, “ which is absurd.” Fur¬ 
ther, if x2—y2=xy} then (y+x)y= □, (x—y)x= □, and each of the four fac¬ 
tors would be a square, just disproved. He noted several corollaries. In 
view of the triangle formed from x and 1, (x — l)a;(£+l) is not a square. 
The difference of two biquadrates is not a square. For, if tf—w4— □, the 

8 Traits des Triangles Rectangles en Nombres, Paris, 1676, 101-6; Mem. Acad. Sc. Paris, 
5, 1666-1699; 6d. Paris, 5, 1729, 174; Recuil de plusieurs traitez de math6matique de 
l’Acad. Roy. Sc. Paris, 1676. 

9 Identical with Fermat’s second triangle. 
10 Zeitschrift Math. Phys., 44, 1899, Hist. Lit. Abt., 4r-7. 
u Math. Schriften (ed., C. I. Gerhardt), 7, 1863, 120-5. In a fragment, dated July, 1679, 

Leibniz merely stated that the problem is impossible; see L. Couturat, Opuscules et 
fragments in&litis de Leibniz, Paris, 1903, 578. 
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area of the triangle formed from v2 and w2 would be a square. Again, 

xly-ylx + D by (x2~y2)xy + □. 

J. Ozanam12 stated that x4dty4^z4. For, a4—b4 is the area of the right 
triangle whose sides are the ratios of 2a2b2y a4—b4y a4+b4 to ab, and is not a 
square “ as proved by Messieurs de FAcad. Roy. Sc. and also by R. P- 
de Billy.” 

L. Euler13 proved that a4Jrb4^D if ab=(=0. For, if (a?)2+(b2)2~ D, 
where a and b are relatively prime, then a2 = p2~q2, b2 = 2pq, where p and q 
are relatively prime, one even and the other odd. By p2—q2 — □, p is odd, 
whence q is even. By p(2q)=b2, p and 2q are squares. By p2 = a2+#2, 
we get p==m2+n2, q=2mn, m and n relatively prime. Since 2q~ □, 
mn~ □ and m=x2, n = y2. Thus x4+y4 is a square p, and x, y are less than 
a, b. By a similar proof, a4—b4 =}= □ unless b = 0 or b = a. 

E. Waring14 and A. M. Legendre15 reproduced literally these proofs by 
Euler. 

C. F. Kausler16 treated x4-\-y4=z4 by use of the lemma that x2zhy2 are 
not both squares. Equating x = 2PQ, y = P2 — Q2 (from x2+y2- □, V 
relatively prime) to xy y=p2+q2, p2~q2 or to (p2+#2)/2, (p2 —q2)/2y in either 
order, where p and q are relatively prime, and odd in the latter case, we 
are led to a contradiction. Now x4 = z4—y4 requires z2+y2, z2 — y2 — m4n4, 1 
or m3n4, w, • • * (19 cases); 7 cases are excluded by the lemma, others by 
z2+y2>z2~y2 or (z2—y2)z>z2+y2. Finally, if z2-py2-mzy z2—y2=mn4, then 
2z2=m(m2+n4), while m = 2 is easily excluded. Thus [a prime factor of3 
m is a factor of z and hence of y. 

P. Barlow17 noted that, if the area xyj2 of a right triangle (x, yy z) were 
a square w2y then z2do4w2=(x^ty)2, whereas it was proved by descent 
(p. 109) that x2+y2 and x2—y2 are not both squares. Also (p. 119), 
x4-\-y4 =|= O. 

J. Homer18 noted that if x[ydzy[x=^ □, where xy y are relatively prime, 
then x = m2, y=n2y m4zLn4 — □, contrary to a known result. 

Schopis19 proved x4+y4 — z2 impossible, using the impossibility of 
x4—y4=202. Next (pp. 6-10), x4+y4~2z2 is impossible; likewise (p. 11) 
x4—y4=z2. 

A. M. Legendre20 stated that the above3 proof that the area of a right 
triangle is not a square shows that a4—644= □ if a + h, fr=f=0. [But in 

12 Journal des S$avans, 1680, p. 85. 
13 Comm. Acad. Petrop., 10, 1747 (1738), 125-34; Comm. Arith., I, 24-34; Opera omnia, 

(1), II, 38. Same proofs in Euler’s Algebra, 2, Ch. 13, arts. 202-8, St. Petersburg, 
1770, p. 418; French transl., Lyon, 2,1774, pp. 242-54; Opera omnia, (1), 1, 1911, 437; 
Sphimx-Oedipe, 1908-9, 59-64. 

14 Meditationes Algebraicae, Cambridge, ed. 3, 1782, 371-2. 
1£ Th6orie des nombres, Paris, 1798, 404; ed. 2, 1808, 343; ed. 3, 1830, II, 5; German 

transl. by Maser, 2, 1893, 5. 
16 Nova Acta Acad. Petrop., 13, ad annos 1795-6 (1827), Mem., 237-44. 
17 Theory of Numbers, 1811, 121 (cf. 144). 
18 The Gentleman’s Diary, or the Math. Repository, London, No. 80, 1820, 37. 
39 Einige Satze aus der unbestimmten Analytik, Progr. Gumbinnen, 1825. 
20 ThSorie des nombres, ed. 3, 2,1830, § 325, p. 4, Cor. (Maser, II, p. 4). 
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that proof it was known that a and b are not both odd, a criticism due to 
A. Genocchi21]. 

J. A. Grunert22 reproduced Euler’s proof that a4-f64=j=c2. 
O. Terquem23 proved by descent that x4zky4 = z2 is impossible. 
J. Bertrand23® proved that x4+y4^z2 somewhat as had Euler. 
P. Volpicelli24 proved that no congruent number is a square. For, if 

pq(p2—q2) = ar, then hr = (pzq+pg3)2 = a4+4p V, (a4 ~4pV)2 — h4 — (2apq)4} 
whereas a difference of two biquadrates is not a square. 

V. A. Lebesgue25 proved the impossibility of x4-j-y4 — z2 by descent. It 
suffices to treat (2°p)4+?/4 = z2, where p, y, z are all odd, and y, z are rela¬ 
tively prime. The factors z±y2 of (2*p)4 have no common factor other 
than 2. Hence 

z±y2~2t4, zzFy2 = 2u~1u4) p = tu, ±:y2 = i4-24a-2u4. 

The lower sign is inadmissible. Hence i4—y2 = 24<t~2u4. Thus 

t2±y = 2v4, t2:=Fy = 24a~*z4, vz^u, t2 = v4+(2a'1z)\ 

T. Pepin26 proved the impossibility of x4—y4-z2 in integers +0. 
W. L. A. Tafelmacher27 proved the impossibility of x4+y4 — z4. 
D. Gambioli28 proved that x4 — y4=z2 is impossible in integers 4=0. 
T. R. Bendz29 proved by descent from #4+4y4=z2 that the area of a 

right triangle is not a square. 
L. Kronecker30 amplified Euler’s13 proof. 
G. B. M. Zerr31 employed unproved assumptions in an attempt to prove 

that the area of no right triangle is a square. 
A. Bang32 noted that relatively prime solutions of x4—z4=y4 imply 

x2+z2 = 2y\, Xzkz~2yi2, xlzz = 22yt, y = 2yxy2yz. 

Thus y\—y\-ty\} so that 

2/1+2/2 = 214, yi±yl = 2ul, yizFyl = 28ulJ yz = 2uiu2uz. 

Hence — i46 = 214i46, so that 

u\+u\ — 2v\*, ul-\-ut = 2vl6, u1±ul-2v\6J ui^rul-2llv1^ 

and uz = viv2vzv±. By the third and fourth, u\+u\~ 2vf+22lv\2. Then by 
the second, 
_(^)4 — (tfl4=(W,_ 

21 Annali di Sc. Mat. e Fis., 6, 1855, 316, foot-note. His like criticism of the proof by Ter¬ 
quem23 is not valid. 

22 Klugers Math. Worterbuch, 5, 1831, 1143. 
23 Nouv. Ann. Math., 5, 1846, 71-4. 
230 Traite 616m. d’alglbre, 1851, 224-7. 
34 Atti Accad. Pont. Nuovi Lincei, 6, 1852-3, 89-90. 
26 Exercices d'analyse num6r., 1859, 83-4; Introd. & la th6orie des nombres, 1862, 71-3. 
26 Atti Accad. Pont. Nuovi Lincei, 36, 1882-3, 35-36. 
27 Anales de la Universidad de Chile, 84, 1893, 307-320. 
28 Periodico di Mat., 16, 1901, 149-150. 

28 Ofver diophantiska ekvationen xn-\-yn=zn, Diss. Upsala, 1901, 5-9. 
30 Vorlesungen fiber Zahlentheorie, 1, 1901, 35-8. 
81 Amer. Math. Monthly, 9, 1902, 202. 
82 Nyt Tidsskrift for Matematik, 16, B, 1905, 35-36. 
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like the proposed equation, but with < Vs. Rychlik232 of Ch. XXVI 
gave a proof. 

J. Sommer33 reproduced Euler’s13 proof of the impossibility of 
24+?/4=js2 in integers and Hilbert’s153 proof (Ch. XXVI) of its impossibility 
in complex integers a-{-hi. 

A. Bottari34 proved x4+y4=z2 impossible by use of an unnecessarily 
complicated set of solutions of x2-\~y2=z2. 

F. Nutzhom35 gave a complicated proof of the impossibility of x4+2/4 = 24. 
R. D. Carmichael36 gave a new proof that neither of the equations 

m4—4n4 = dz£2 is possible in integers each ={=0. Hence the system 
'p2~2q2 = km2, p2+2#2= db&n2 is impossible in integers each +0. Thus the 
area of a right triangle is not the double of a square. Hence m4+n4 = a2 
is impossible in integers each 4=0. 

Solution of 2x4~y4 = □; right triangle whose hypotenuse and sum 
of LEGS ARE squares; x2+y2=B4, x+y = A2. Also, x4-2y4=n, 

z4+8w4 = □. 

Fermat37 proposed to St. Martin and Frenicle, May 31,1643, the problem 
to find a rational right triangle whose hypotenuse and the sum of whose 
legs are squares. Fermat38 affirmed that the smallest such triangle with 
rational sides is that with the sides39 

(1) 4 687 298 610 289, 4 565 486 027 761, 1 061 652 293 520. 

Fermat’s40 method consists in forming the right triangle from 2+1, 2; its 
sides are 2x2+2x-{-l, 22+1, 2x2+2x. The first and the sum 2z2+4x+l of 
the last two shall be squares. By the usual method of Diophantus, we get 
x~ —12/7. The triangle is therefore formed from —5/7, —12/7. Employ¬ 
ing 5, 12 instead, we get41 (169, -119, 120). When a negative result is 
obtained it is in accord with a general procedure of Fermat to repeat the 
operation and to form the triangle from 2+5, 12. Its sides are (x+5)2±122 
and 24(a;+5). Hence 22+102+169 and 22+342+1 are to be squares, say 
a2 and fc2/169. Then b2- a2=16822+57362. Taking 

5—<2 = 142, 6+a = 122+2868/7, 

we get a= —2+1434/7. Comparing its square with the earlier a2, we get 

__ 1343 1525 2048075 

__X 7-2938 ~ 20566 '_ 

53 Vorlesungen fiber Zahlentheorie, 1907,176-193. French transl. by A. Levy, 1911,184-199. 
34 Periodico di Mat., 23, 1908, 109. 
35 Nyt Tidsskrift for Mat., 23, B, 1912, 33-38. 
M Amer. Math. Monthly, 20, 1913, 213-21. 
37 Oeuvres, II, 259-63. 
38 Oeuvres, I, 336; III, 270, observation on Bachet’s comment on Diophantus VI, 24. Also, 

Oeuvres, II, 261 (259, 263), letter to Mersenne, Aug. 1, 1643. 
39 Cited by Frenicle, M&n. Acad. Sc., 5,1666-99; 6d. Paris, 1729, 56-71. Since his numerical 

search was fruitless, he doubtless learned of Fermat’s solution from Mersenne. 
40 Inventum Novum, 1, 25, 45; III, 32; Oeuvres, HI, 340, 353, 388. 
41 Whence the hypotenuse and leg difference of (169, 119, 120) are squares. 
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The ratio of x+5 to 12 is that of 2150905 to 246792. The triangle formed 
from these is (1). He noted that the problem is equivalent to that to find 
two numbers whose sum is a square and sum of squares is a biquadrate. 

Fermat42 noted that in the right triangle (156, 1517, 1525) the square 
of the difference of the legs exceeds the double of the square of the least leg 
by a square. Without giving details he added that this triangle serves to 
fhid a right triangle whose hypotenuse is a square and whose least side 
differs from the other two by squares. 

Frenicle43 gave details on the last problem. An analysis followed by 
numerical trials led him to the triangle, formed from 5 = 156 and a = 1517, 
having the sides 

2a5 = 473304, a2 ~62 = 2276953, a2+52 = 2325625 = 15252. 

The least side differs from the other two by the squares of 1343 and 1361. 
As remarked by A. Genocchi44 these results imply that 2x4~y4~ □ has the 
solution x =1525, y = 1343 [Lagrange,54 Euler55 (third memoir), Lebesgue56]. 

E. Torricelli45 proposed the problem to find a right triangle with integral 
sides whose hypotenuse, sum of legs and sum of hypotenuse and larger leg 
are all squares. E. Lucas46 stated that this problem was proposed by 
Fermat and that its solution depends on x4—2y4 = z2. In fact, Fermat46a 
proposed the problem to Torricelli. An attempt to trace its origin has 
been made by E. Turri&re.466 Cf. *M. Cipolla.46c 

J. Ozanam47 treated the problem of Fermat37 by the method essentially 
the same as employed by L. Euler.48 If the legs are x, y, then x+y is to 
be a square and x2+y2 a biquadrate. In this form the problem was proposed 
by Leibniz. Euler made x2+y2 a square (p2+#2)2 by taking x = p2—q2, 
y — 2pq. Then p2+q2 is a square for p = r2—$2} q = 2rs, whence 

x2+y2= (r2+s2)4. 
It remains to make 

x+y== r4+4r3$—6r2s2—4rs3+s4 

a square. It will be the square of r2—2r$+s2 if r = 3$/2. Taking r = 3, 
$=2, we obtain a negative value —119 for x. Setting r = 3s/2+Z, we get 

16(z+2/) =$4+37 ‘8sH+51'&sH2+l60st*+l6t4, 

which is the square of s2+14Sst —4£2 if $/t = 84/1343. Taking s = 84, we get 
r = 1469 and x} y as in (1). 

42 Oeuvres, II, 265-6, letter to Carcavi, 1644. 
43 Methode pour trouver la solution des probl&mes par les exclusions, Ouvrasos de math., 

Paris, 1693; M&n. Acad. R. Sc. Paris, 5, 1666-99 [1676]; <§d. 1729, 81-5. 
44 Atti R. Accad. Sc. Torino, 11, 1876, 811-29. 
45 G. Loria, l’interm^diaire des math., 24, 1917, 97-8. Cf. 25, 1918, 83. 
" Bull. Bibl. Storia Sc. Mat. Fis., 10, 1877, 289. 
48a Letter from Mersenne to Torricelli, Dec. 25,1643, Bull. Bibl. Storia Sc. Mat. Fis., 8,1875, 

411; Oeuvres de Fermat, 4,1912, 82-3 (cf. p. 88). 
486L’enseignement math., 20, 1919, 245-268. 
<6e Atti Accad. Gioenia sc. nat. Catania, (5), 11, 1919, No. 11. 
47 Nouv. elemene algebre, Amsterdam, 2, 1749, 480-1. 
48 Algebra, 2, 1770, art. 240, pp. 503-5; French transl., 2, 1774, p. 336; Opera Omnia, (1), 

I, 483-4. 
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Euler49 noted that x4—2y4 = (p2—2q2)2 for y2 = 2pq, x2-p2+2q2. The 
latter holds if zkp = r2-2s2, q^2rs. Then 2pq = y2= ±4rs(r2-2s2). Set 
r-t2} s = u2. For the upper sign, P—2u4 = □, whereas t and u are smaller 
than x, y. Hence take the lower sign. Thus a solution of 2u4—t4 = □ 

yields a solution of z4-2y4=D. For t=u=l, we get x = 3, y = 2. Then 
for e=3, w = 2, we get x = 113, y =84. Again, u=l3, t = l gives x = 57123, 
y — 6214. Lebesgue56 (end) noted that this solution is incomplete. 

Euler50 treated z+y= □, x2+y2*= (z2+l)4 by taking a=z4-6z2+l, 
2/~423-425. Then x+y is the product of the two factors z2+(2dz2*j2)z-l, 
which he equated to (z+p±q V2)2. By the rational and the irrational parts, 
we get 

Pg g±^2ga-l 

1-9’ ? 1+9 ’ 
Thus 2=13 gives p = 18 or -113/7, g = -13 gives p=21 or 113/6. 

Euler51 reduced (2) to (7) by setting w=2++y4, whence 24+8(av)4 = »*. 
Conversely, let 24+8p4=r?; then 8p4 = (r+g2)(r-32), so that 2 and r are 
odd. First, let r+g2=2a, r—q- = 4fi, where a is odd. Then pi = a0, and 
a, 0 are relatively prime; whence oc=s\ 0 = t?, p=st. By subtraction, and 
cancellation of 2, q2=s4-2ti. Second, let r-q2=2a, r+q2=i0, where at is 
odd. Proceeding as before, we get q2 = 2t4-s4. While in the second case 
only we obtained (2), the reduction can always be made since /4+8p4 = 62 
implies 2xi—yi=z2 for 

x=f3+2fg2-gh, y=f*-4fg*+gh, 2 =/6 +fV - Gfgh+24/V -8g6. 

In quoting this solution, Lebesgue,55 p. 74, gave f*g incorrectly for fg2 in x. 
Euler52 noted that x+y=B2, x2+y2=A4 imply (x-y)2=2A4-B*. The 

latter is the square of ++2£ij-|2 if A2=?+v2, B2 = (£+r))2-2ri2. Taking 
ti=2abcd, we have A=a2b2+c2d? if $**a*b2—<?<P, and B = a?c2-Zb2cP if 
£+tj=a2c2+262d2. The two values of £+17 are equal if 

a _bc±r 

d~c2-b2 
d_ bc^r 

a~2b2+c2’ 
r2 = 264—c4. 

Hence 2+4 B4 is a rational square if 264—c4 is. Taking b=c = l, we have 
a=3, d=2, £=5, 77 = 12, + = 13, J3 = l, 2 134-1=2392; since B<A; x 
and y are not both positive. Taking 6=13, c=l, we have r=239, 
<x/d= -3/2 or 113/84. For a=3, d= -2, then |= 1517,17= -156, A = 1525, 
£=—1343, which53 do not yield positive x, y. For a = 113, d=84, then 
+=2165017, B= —2372159, and we obtain very large solutions. [Tn fact, 
Fermat’s (1). Sincea;-j/ = ,2+2^-f,x+j/=£2,weha.vex=2l=v,y = ¥-v2- 
Thus x, y are the legs of the right triangle formed from £, 17. Here 
1=2150905, 17 =246792, as in Fermat’s solution.]] 

“Algebra, II, art. 211; Preach tranal., pp. 260-3; Opera Omnia, (1), I, 444-5. 
“Opera postuma, 1, 1862, 491 (about 1774). 
81 Opera postuma, 1,1862, 221-2 (about 1780). 
“ °P«“- anal., 1, 1783 (1773), 329; Comm. Aritb., II, 47. 
“ Th® method of Euler, Algebra, 2, art. 140, to make 2x*-l a square does not give all solu¬ 

tions since. 1525/1343 is omitted (remarked by Lebesgue84). E. Fauquemberguo, 
1 mterm&iiaire des math., 5, 1898, 94, claimed to prove that x — l, x = 13 are the only 
integral solutions. 
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J. L. Lagrange54 discussed Fermat’s37 problem at length. From 
p+q-y2, p2+q2=x4, he derived, after setting z = p — q, 

(2) 2x4-y*=z2. 

The problem reduces to the solution of (2) since we have 

(3) P = i(yi+z), ? = !(2/2-z)- 
Lagrange was evidently not acquainted with Euler’s52 paper of 1773 in 
which he derived (2) and obtained four sets of solutions A—x, B=y; 
indeed, Lagrange omitted the set 1525, 1343, in his citation of Euler. 
Given any integers x, y for which 2x4—y4= □, Lagrange gave a method to 
obtain smaller integral solutions; then by reversing the process and starting 
with x—y=l, he concluded that all pairs of larger solutions can be found 
in the order of their magnitude. While Euler’s simpler procedure appears 
to give all the solutions in this manner, he did not prove that this is the case. 

We may assume that x and y are relatively prime. A simple argument 
shows that x, y, z are all odd. By (2), 

(z-\-y2)2 — (2x2)2— (z—y2)2= (2x2+z—y2)(2x2—z+y2). 

Denote these (even) factors by 2mp, 2mq,where p and q are relatively prime. 
Then pq must be a square. Hence, replacing p, q by p2f q2, 

2x2 -\-z—y2 = 2 mp2, 2x2—z-\-y2 = 2mq2, z+y2 = %mpq. 

Eliminating z from the first two, by means of the third, we get 

x2—y2 = mp(p - q), x2+y2 = mq(p+q). 

Thus ?n = l or 2, since m is a divisor of 2x2 and 2y2. If m = 2, set p+q = q', 
q—p = p'‘ Whether w = l or 2, we obtain equations of the form 

(4) x2-y2 = p(p-q), x2+y2 = q(p+q). 

Thus p is odd. Set (x+y) Ip — 2m/n, where n is odd and prime to m. Then 
x+y—2ms, p~ns, where s is an integer. By (4i), x—y = 2nt, p — q — imt, 
where t is an integer prime to s. Thus 

(5) x = ms+nt} y = ms—nt} p = ns, q—ns—Amt. 

Then the product of (42) by (s2—%t2)jn2 gives 

s4+8«4 = w2, M=3s<+-(s2-8i2). 
n 

Since m and n are relatively prime we therefore have 

(6) m=(u—3st)Jl, n—(s2—812)/l (1 an integer). 

If m=0, then s/t = zhl, n2=l, x2—y2~l. Hence if (2) has a set of relatively 
prime solutions x, y not both of numerical value unity, then by (5) the 
greater of x, y exceeds the greater of the corresponding solutions s, t of 

(7) s4+8i4=w2, 

and s, t are relatively prime and not both of absolute value unity. Con¬ 
versely, from relatively prime solutions s, t, we obtain by (6) and (5) rela¬ 
tively prime solutions x, y of (2). 

64 Nouv. M4m. Acad. Sc. Berlin, annde 1777 [1779], 140; Oeuvres, 4, 1869, 377-98. 
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Let s, t be relatively prime solutions of (7). Then s is odd and 

u+s2 = 2fxa, ^-s2 = 2pp, 8Z4=4p2<op, 

where co and p are relatively prime. Thus ju divides t2. Also s2=/i(w—p). 
Hence p=l, co — 2q4, p=r4, or cc — q4, p = 2r4, whence 

u = 2q4+r4, $2 = 2g4—r4; or u = q4+2r4, s2 = q4-2r4. 

Conversely, if 2q4—r4 = s2 or g4—2r4 —s2 and we set t = qr, we have solutions 
sy t of (7). If 5 and t are relatively prime and numerically distinct from 
unity, the same is true of q and r, while the greater of s, t exceeds the greater 
of q, r. The first of these two equations is of type (2). 

Applying to the second, q4—2r4 = $2, a discussion entirely similar to that 
just used, Lagrange obtained 

5=8n4—p4, g2 = 8n4+p4; or s = n4-8p4, q2~n4+8p\ 

The former becomes the latter if we interchange n with p and change the 
sign of s. The solution of q4—2r4 — s2 is therefore reduced to that of 
q2=n4+8p4, of type (7), by setting r = 2pn, s = n4—8p4. Further, q and r 
exceed n and p. 

The method leads to all solutions not only of (2) but also of (7) and of 
g4—2r4 = □. Starting with the evident solutions 5 = 2 = 1, = ±3 of (7), 
we deduce the solutions r=2st = 2, q = u=±3, k = 7, of q4~2r4 = k2; and, 
by (6), (5), solutions of (2): m=0, n= -1, 1 = 7, x=y=z = l, or m== — 6, 
n— ~7, 2 = 1, 2 = 13, y= 1, 2=239. For r—2, q~3, 5 = 7, we deduce the 
solutions 5 = 7, t = qr = 6, w = 113 of (7); from 13, 1, 239, we get the solutions 
5=239, 2= 13, u=57123 of (7). Starting again with one of the latter sets, 
we obtain new sets of solutions of (2) and q4—2r4= □. In this manner, 
the sets of solutions of (2) in order of magnitude are (,x, y, 2) = (1, 1, 1), 
(13, 1, 239), (1525, 1343, 2750257), (2165017, 2372159, 1560590745759), 

*• The corresponding sets (3) are p, g=l, 0; 120, -119; 2276953, 
—473304; and the last two numbers (1). Lagrange therefore proved 
Fermat’s assertion that (1) gives the sides of the least right triangle whose 
hypotenuse and sum of legs are squares. But Lagrange evidently merely 
transcribed the statement by Fermat, without making a numerical veri¬ 
fication, as the value 15* • *9 of z given by Lagrange (pp. 142, 150, 151; 
Oeuvres, 380, 393-4) is erroneous £Genocchi44], the correct value being the 
difference 350* • *1 of the last two numbers (1). 

Three of Euler’s55 posthumous papers of 1780 relate to Fermat’s37 
problem. In the first paper we find a slight modification of his48 discussion. 
Taking 5 = 2, r=3-\-v, we get 

x+y = 14* 148*;+102t>2+20*A+V4= (1+ 74v-^)2, 

if v= 1343/42. Thus p = 1385 *1553, q = 168-1469, yielding Fermat’s solu¬ 
tion (1). 

Euler, in the second paper, employed his48 notations, and obtained 
x+y = A2-2B2, where A =r2+2r5-52, B = 2r5. Taking A = t2+2u2, B = 2tu, 

65 Acad- Sc. St. P6tersbourg, 9,1819-20, 3; 10,1821-22, 3; 11,1830, 1: Comm. Arith., 
H, 397, 403, 421. ’ 



Chap. XXII] 2s4—2/4==D; SYSTEM X+y = A2, X2+y2~B*. 625 

we have A2—2B2 = (t2 — 2w2)2. Noting that a solution involving fractions 
may be replaced by an integral solution, he took s = 1, whence r=tu. 
Equating the two expressions for A, we get 

t2u2+2tu-l = t2+2u2. 

For u-1, t- 3/2. The latter leads to the second value u= —13, which in 
turn gives t= —113/84. Then u—301993/1343, etc. Euler stated that 
it is easy to see that the pairs of adjacent values of u, t give all sets of 
rational solutions. From the formulas for the sum of the roots of a quad¬ 
ratic equation, we see that 

u'+u- 
21 

2-F’ 
t'+t~ 

2 u' 

l~u Ta 

if u, ty u'y tf are consecutive terms of the series. 
Euler, in the third paper, set AjB = (1+x)j(l — x) in 2Ai—B* = □. Thus 

1+12x+6z2+l2tf+x4= (1+Qx+x2)2 - 32s2 = □. 

In accord with his143 general method, he set l+6a:+x2='k(p2-\-8q2)f x=\pq. 
Cf. Euler,143 end. 

V. A. Lebesgue66 gave a method simpler than Lagrange’s (whose article 
he had apparently not seen) to obtain from given solutions of (2) a smaller 
set of solutions. Since p2+q2=x4, we may set p=2mn, q~m2—n2y 
x2=m2+n2, where n is even since p+q is a square y2. By the third relation, 
m—r2—s2, n = 2rs, £=r2+$2, where one of the integers r, $ is even and the 
other odd. Changing the sign of y if necessary, we may assume that, of 
the factors r2+2rs—s2dby of 8r2$2 (in view of p+Q^y2), the one with the 
upper sign is divisible by 2 but not by 4. For r odd we may therefore set 

t u 
r2+2rs—$2+2/ = 2-r2 r2+2r$—2/ = 4-s2, 

u t 

where u, t are odd and relatively prime. Multiplying the sum by \ut, we get 

(8) r2(t2—ut) — 2rsut+s2(2u2+ut) = 0. 

For 8 odd, the right members are obtained by interchanging r, s, and the 
new sum is derived from (8) by replacing r/s by —s/r, and £by ~t. By (8) 

- (t2—ut) = utzt ^ut(2u2—t2). 

Since ut and 2u2—t2 are relatively prime, each is a square or the negative 
of a square. But t and u are odd, and t2~2u2 is of the form 8&—1 and not 
a square. Hence, taking u and t positive, we may set u =p} t=g2,2fi~gA = h\ 
Then 

A = 2f+g\ B=fg=Fh. 
s q B 

If Xy y do not have a common square factor, r, a are relatively prime and 
<rr=fA, as=gB, where a is prime to / and g. Then y = r2t/u—2s2ult and 

a2y=g2A2-2fB2y a 2x2=fA2+g2B\ a4z = C2-2(fA2-g2B2)2y 

“ Jour, de Math., 18,1853, 73-86. Reprinted, Sphinx-Oedipe, 6, 1911, 133-8. 
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where C —f2A2+2fgAB — g2B2—g2A2+2pB2. Now / divides r, g divides $, 
while r and $ are < Vi. Hence each set of integral solutions of (2) with 
x2 4= 1 leads to a set of smaller solutions. For /=13, y = l, /i=±239, we 
get A = 3 113, 5=-2-113 or 3-84; for the first, <r = 113, r = 39, s=~2, 
£=1525, y = —1343; for the second, <r = 3, r = 13-113, $ = 84, £=2165017, 
y=-2372159. 

Lebesgue noted that x4dt2my4—z2 has integral solutions only when 
m=4ndb3 and then may be made to depend upon (2); likewise, 2mx4—yA—z2 
only when ra=4n+l. But £4±y4 = 2mz2 is impossible in integers. All of 
these cases except £4±8y4=z2 and 8x4—y4~z2 had been treated by Euler, 
Algebra 2, Ch. 13, whose49 solution of xA—2yA~z2 is incomplete (Art. 211). 

E. Lucas57 gave a complete solution of xA ~2yA — ±:z2 and x^+Sy4 —z2, 
based on the complete solution of u2+vl=y4. He46 obtained the usual 
results concerning Fermat’s37 problem. 

T. Pepin58 treated 2a;4—1 = □ by his157 final method. He59 remarked 
that Lebesgue56 merely stated, but did not prove, that his formulas lead to all 
solutions of (2) under a given limit. Pepin obtained the same solutions 
by a simpler method proved complete. ' If x, y, z are relatively prime by 
pairs, 

a; = p2+<?2, ±z±y2t = (1+i)(p+qi)4, 

where p} q are relatively prime and q may be taken even. Then 

±y2 = (p2—g2+2pq)2—8p2g2, rfcz = p4-, 

the lower sign being excluded by use of modulus 8. Thus 

± (p2~q2+2pq) zky = 2r2, db (p2—q2+2pq) =Fy = 4s2, rs = pq, 

r, s being relatively prime. By the last, p=Xjx, q — hk, r=\h, s=}ik, where 
X, y, h, k are integers relatively prime by pairs, k alone being even. From 
p2—q2+2pq=r2+2s2 (the lower sign having been excluded by modulus 4), 
k2(2y2+h2) — 2\yhk+X2(/t2—p2) = 0, whence 

k_nh±: V2m4—h4 h \kdcz V\4—2k4 

X" 2 n2+h2 } /*“ X2+&2 * 

Thus m, h form a solution of (2), while X4—2fc2= □. The above is valid if 
r>l, whence g =4=0. Thus any solution except £=y=z= 1 leads to a 
solution x’—y, y'~h, z' = VV-X4, in smaller numbers, and given by 

£=XV+h2k2} ± y=XV - 2m2*2, d=z=y2 - 8 \hk (XV - h2k2), 

where 2yA~hA=t2, kl\=(yh±t)[(2y2+h2), from whose numerator and de¬ 
nominator common factors are to be suppressed. We can therefore com¬ 
pute the successive sets of solutions of (2) starting with £=y=z = l. 

87 Recherches sur l’analyse ind6termin4e, Moulins, 1873, 25-32. Extract from Bull. Soci6t4 

d’Emulation Dept, de l’Allier, 12,1873,467-72. Same in Bull. Bibl. Storia Sc. Mat. Fis.f 
10, 1877, 239-45. 

11 Atti Accad. Pont. Nuovi Lincei, 30, 1876-7, 220-2. 
68 Ibid., 36, 1882-3, 37-40. 
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S. R^alis60 noted that if a4—2p4 — y2, then x4—2y4~z2 for 

x = 3(339a3+392j33) +8a0(216a+211£) +7y(113a:+96i8), 

y=4(147a3 - 226/53) - 27<*0(5<x+64/3)+7y(m*+llZp). 

For a = 7 = l, 0 = 0, * : y *.2 = 113 : 84 : 7967. Fora^S, 0 = 2, T = 7, 

s=57123, y=6214, 2 = 3262580153. 

A. G4rardin61 treated the last problem, assuming that also a second 
solution A4—2J54=C2 is known. Set 

(ct+Au)4—2 (0+Bu)4 = (7-— Su+Cu2)2. 
Then 

{4(A3a~2JB3^)+2C>Sf)w2+ {6(AV-2B202) ->82-2tC}u 

+4Aa3 ~8R|S3+2'y£=0. 

Equating to zero the coefficient of tt2, we get S and u. Taking A = 3, 
R= —2, (7= —7, we obtain R4alis’ solution. Starting with 34—2 • 24 = 72, set 

(:Z+mx)4—2(2+my)4= {7+f(27a;--16i/)m+pm2}2 

and annul the coefficient of m2; we get 0 and m in terms of x, y and hence 
a solution of the sixth degree. Modifying the last method, we again get 
R4alis’ solution. „ * 

A. Cunningham62 noted that the solution of (2) by'Lebesgu#6 and Lucas57 

appears to be complete and to indicate that the only integral solutions of 
x2—2t/4 = — 1 are (1, 1) and (239, 13). But Euler’s53 solution of (2) yields 
only half the solutions. 

L. C. Walker83 quoted Fermat’s last two integers (1), whose sum is a 
square and sum of squares is a biquadrate. 

ax4 + by4 MADE A SQUARE OR MULTIPLE OF A SQUARE. 

The cases x4±:y4, 2x4—y4, x4—2y4, x4JrZy4 have been treated above. 
For x4—h2y4} see Congruent Numbers in Ch. XVI, especially papers 43, 54. 

G. W. Leibniz64 treated before 1678 the problem to find an integer x such 
that x+afx—y2, where a is a given integer and y is to be rational. Set 
a=bc, x — bz, where c and 2 are relatively prime integers. Set y = v/w, a 
fraction in its lowest terms. Then bz2+c —ziPjw2, so that 2 is divisible by w2. 
Similarly, since cw2jz is an integer v*—bzw2, w2 is divisible by 2. Hence 
2=w2 and &w4+c=tA Since c is the product of v^zw2 V&, it exceeds each 
of the factors and hence their difference, whence c2>46w?4. The resulting 
tentative process to solve x+a/x=y2 is to express a as a product be of two 
integers, choose an integer w such that 4bw4<c2 and test the value x = bw2 
(or what is equivalent, see if bufi+c is a square). 

•° Nouv. Corresp. Math., 6, 1880, 478-9. 
81 Sphinx-Oedipe, 6,1911, 87-8. 
“ Math. Quest. Educ. Times, (2), 14,1908, 70-8. 
88 Amer. Math. Monthly, 11, 1904, 39. 
84 Math. Schriften (ed., C. I. Gerhardt), 7,1863, 114-9. 
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L. Euler66 proved that 2a4db2&4 is not a square if a^b by means of the 
fact that x4=Fy4 is not a square. Likewise for 4x4zky4, x4~4y4, ±(4x4~~2y4). 
[Cf. Frenicle,9 Bendz,29 Carmichael.38] He proved that neither ma4zkwi*b4 
nor its double is a square. Also66 that a4+264+ □ if &+0. 

Euler67 treated a+ex4= □, supposing known one solution: a-^eht—k2. 
Set z=h+y. Then 

a+ex4 = k2+4:ehzy+§eh2y2+4e%3+ey4 

will be the square of k+2eh?y/k+eh2(k2+2a)y2/k* if 

y=4hk2(2a - k2)/(Zk4 - 4a2). 

By use of the substitution x = ft(l+y)/(l— y), a+ex4 becomes a quartic 
having both the constant term and the coefficient of y4 squares, and hence 
is more readily made a square. 

J. L. Lagrange68 proved that if s4-{-aft—u2 a second set of solutions of 
x4Jray4~z2 is given by 

x=s4—at4j y=2$tu, z=u4+4:as4#. 

To deduce this result, Lagrange made assumptions which he recognized 
were not necessary ones. Assume that z=m2+an2. Then the given 
equation is satisfied if y2=2mn, x2=m2~ an2. The latter holds if m=p2+aq2, 
n~2pq, x~p2—aq2. The resulting expression for y2 is a square if p = s2, 
g==f2, p2-\-aq2~u2> From the second solution, one deduces similarly a 
third, etc. But not all sets are necessarily obtained in this way. He 
remarked that the simplest and most general method for such equations 
is perhaps that by factors in his Addition IX to Euler's Algebra (Lagrange163 
of Ch. XXI). 

A. E. Kramer69 treated px4—y4=z2, where p is an odd prime, and x, y 
are relatively prime. Let p =n2+m2. Then 

(y2+7nx2)(y2~ mx2) = (nx2+z)(nx2—z). 

He took m=r2. First, let one of y, r be odd and the other even, so that x is 
even. Set y2+r2x2=a&, nx2+z = ac, where 6, c are relatively prime. Then 
the long equation gives y2-r2x2=dc} nz2-~z=db. Then a, b, c, d are odd 
and a, d are relatively prime. Since a=na—r2d, (3^r2a~\~nd have no 
common factor except possibly p, while ba — c/3, we have a = sc, p = sb, 
where s=±l or ±p. Let e be the g. c. d. of d and p-f-rx; h that of a/s and 
V~~rx' Since p2~r2x2==da/s, we get y+rx = ef, y~rx—ghf d~eg, afs~fh, 
where/, g are relatively prime, as also e> h. Substituting the values of y, rx, 

« Comm Acad. Petrop., 10,1747 (1738), 125; Comm. Arith., I, 28; Opera Omnia, (1), H,47\ 
Algebra, St. Petersburg, 2, 1770, arts. 209-10; French transl., Lyon, 2, 1774, 254-263. 
Opera Omnia, (1), 1,442-3. ' ' ' 

M '^8 ^Sebra is the shorter. The latter was reproduced by A. M. Legendre, 
Thtone des nombres, 1798, p. 405; Maser, II, 7; E. Waring, Medit. Algebr., ed. 3, 1782, 

"Algebra, St Petersburg, 2, 1770, Arts. 138-9; French transl., 2, 1774, pp. 162-7; Opera 
Umnia, (1), I, 400-2. 

“Nouv. M&a. Acad. Sc. Berlin, annfe 1777, 1779, 151; Oeuvres, IV, 395. Reproduced 
by E. Waring, Meditationes Algebraicae, ed. 3, 1782, 371. 

" quibusdam aequationibus indeter. quarti gradus, Diss., Berlin, 1839. 
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d, a, given by the last four equations, into y2+r2x2=ap/s, we get 

J|0-2^y) — (p+r4)/<?j 

2 nr 
= sfi+^gi. 

Denote the quantity in brackets by A. Evidently s is not negative. Ac¬ 
cording as $ is unity or the prime p, we get 2A2—f4+pg4c or ^+p/4. Con¬ 
versely, any solution of one of the latter equations leads to a solution of the 
proposed equation with p~n2+r4, since/, g, A determine x, y, z. 

Next, let y, r be both even or both odd. The only modification needed 
in the above case is to divide y2zkr2x2, nx2zkz, ydzrx by 2, and use d/2—eg. 
The result is B2 = sf4+Ag4p/s, where 

nrB=~^?i2/2 - 4^r2g2 ^ — (p+r^fg. 

For s = l, we have B2=:f4+Apg4, which implies 

B^f 
2 

=pb4, 9 = be. 

Hence the initial equation is reduced to a similar one p64—c4=±d2, where 
c, b are relatively prime. It thus remains to consider c4—pb4 = d2. First, 
let one of c, d be even and the other odd. Then c2±d=pe4, c2=Fd=/i4, 
b = eh, whence h4+pe4=2c2. Next, let c and d be both odd or both even. 
Then (c2±d)/2=4pt4 or pv4, (c2zFd)/2 — u4 or Au4. Then c2=w4+4pv4 or 
c2—Au4+pv4, which is reduced to the former type by multiplication by 4. 

0. Terquem70 proved that neither x4-\-%y4 nor x4doAy4 nor x4—8y4 is a 
square if 2/4=0, and that zdzl/z is not a square. 

* J. Bertrand71 treated ax4Jrby4 = □. 
C. G. Sucksdorff72 treated 2mxi±2ny4~2pz2 for x, y, z odd, positive and 

relatively prime. It suffices to treat eight cases having n=p=0, m—4ju+0, 
1, 2, 3; four with the minus sign having m=p=0, n—Aji+0, 1, 2, 3; four 
having m=n = Q, p = 2^+0, 1. First, 24ilx4+y4-z2. The factors zd=2^2 
must be a4, /?4, where a(3—y. By subtraction, 22fl+1x2=a4~(34. Hence 

<*+0 = 2 u2, a-p = 2v2, a2+p2 = 2t\ 

Eliminating a, 0, we get w4+t4=Z2, of the given type. A like method of 
descent applies to 24m+1£4+2/4=22, whence 

Zzky2=2a4, zzFy2 = 24/34, zhy2=ai—804 

(lower sign excluded since the sum of two odd squares is not divisible by 8); 
thus 804=a4—y2, ct2±:y — 2y4, cP^y—Ah4, whence a2 = y4 + 254. For 

24fi+1x4—y4—z2 

reference is made to Euler's67 treatment of a+^4=D, where —y4 is taken 
as a; various solutions result. The impossibility of 24m+2£4+2/4=z2 follows 

70 Nouv. Ann. Math., 5, 1846, 75-78. 
71 Trait6 616m. d’algfcbre, Paris, 1850, 244. 
72 Disquisitio au et quatemis aequatio 2*^db2ny4*=2*23 solutione gaudeat in intcgris. . . . 

Helsingfors, 1851, 16 pp. 



as for the first equation. Next, x4—24*+ly4—z2 implies 

z2dbz = 2<*4, s2:Fz = 24/34, 

whence x2 = a*+8/34, x=ba2 = 2y4, xzFa2~484, d=a2 = y4—284. For the upper 
sign we have an equation like the proposed. For the lower sign, there are 
solutions, as <*=7 = 6 = 1. The impossibility of x4—24M+iy4=z2 (t~0 or 2) 
follows from £2±z = 2a4, x2zFz~2z+t04, x2 — a4-\-22+tp4. The impossibility of 
x4+y4=22*+1z2, x=ry, follows from (x4—y4)2=24M+2z4—4zy. 

Lebesgue’s56 results concerning the equations in the last paper have 
been quoted. Cf. Schopis19 on x4+y4 =f=2z2. 

E. Lucas73 listed and treated the solvable equations 

(1) az4Jrby4 = cz2, 

in which 2 and 3 are the only primes dividing a, b or c, viz., (a, b} c) = 
(1, -1, 24), (1, -2, ±1), (1, 2, 3), (1, 3, 1), (1, -6,1), (1, 8,1), (1, 9, 1), 
(1, -12, 1), (1, 18, 1), (1, 24, 1), (1, ±36, 1), (1, -54, 1), (1, -72, 1), 
(1, 216, 1), (3, -1, 2), (3, -2, 1), (4, -1, 3), (4, -3, 1), (9, -1, 8), 
(9, -8, 1), (27, -2, 1). 

T. Pepin74 stated that there is no rational solution of px4—36y4—z2 if p 
is a prime of the form a2+962, and many such theorems with 36 replaced 
by new numbers, usually by the discriminant of the quadratic form for p. 

Lucas stated and Moret-Blanc75 proved that x-1, y—0 and 2 = 3, 2/ = 2 

are the only integral solutions ^0 of x4—5y4 — l. 
Lucas750 proved that either of 4^—u4=3w4, §v4—u4 — %w4 implies 

u4=A — w4. 

Pepin76 noted that necessary conditions for relatively prime integral 
solutions of Au2=Bx4+Cy4 are that AB, AC and —BC be quadratic 
residues of C, B, A, respectively, and that —BC3 be a biquadratic residue of 
A, He proved that u2=3y4—2x4 is completely solved by the repeated 
application of 

z=\y-3y=\2f+2fj2g2, u=x2 — 12\yfg (X2/2—2y?g2), 

where X, y, /, g are integers relatively prime in pairs such that 

g : X=/ju± : ^P+2/j2. 

The same analysis gives the complete solution of x4—6y4=z2 and 

x4+2Ay4~z2. 

He treated other rare cases in which the complete solution is found: 
x4Jr7y4~Su2 and 7z4—2y4 — 5u2, with the respective auxiliaries x4+28t/4 = z2 
and x4—350y4=z2. 

13 Recherches sur l’analyse ind^terminee, Moulins, 1873; extract from Bull. Soc. d’Emula- 
tion du D4partement de V AHier, 12, 1873, 441-532. Bull. Bibl. Storia Sc. Mat. Fifl., 
10, 1877, 239-58. 

7< Comptes Rendus Paris, 78, 1874, 144-8; 88, 1879, 1255; 91,1880, 100 (reprinted, Sphinx- 
Oedipe, 5, 1910, 56-7); 94, 1882,122-4. 

*Nouv. Ann. Math., (2), 14, 1875, 526; 20, 1881, 203-5. 
Nouv. Ann. Math. (2), 16,1877,415. 

» Atti Accad. Pont. Nuovi Iincei, 31,1877-8, 397-427. 



A. Desboves77 employed the identity 

(2) (y2+2yx—x2)4+ (2x+y) x2y (2y+2x)4 = (x4+y4+10x2y2+4xys-\-12x?y)2f 

and that obtained by changing x to x2 and y to y4, to show that 

(3) x4j\-ay4~z2 

is solvable in integers if a is of the form (2x+y)x2y or 2x2+y4. By changing 
x to x+y in (2) and making other simple transformations, he78 proved 
that (3) is solvable in integers if a— —x2(x2+y2), dty2—xl, — x(x+l), 
y(y±2x2), x2(2x+y4), y4—2x2, — 2xy(x2-y2){x4+y4—6x2y2) with z = 0 in 
the last case; and, by other identities, if a= —8(xs+ys), —x(V+4), —z8—4. 
If (1) has solutions x, y, z, then Fermat's method conveniently applied leads 
to the new solution79 

(4) X=#(4a2£8—3cV), Y—y (4J)2y8—3cV), Z ~ z[4c4z8—3 (ax4—by4)4], 

of different type from Lagrange's solution when a—c=1. For the examples 
of Lucas73 not under Lagrange's case and for which (4) do not give all solu¬ 
tions, we have (a+b)c a square, say v2. Using fractional values, we may 
set y=1. Then ac(x4—l)+v2=c2z2. Setting x = (t+l)/(t— 1), we get an 
equation for which Fermat's method is applicable. If x, y, z is a solution 
of (1), then80 

Xi=2ax4—cz2, yi - 2 xyz, zx=e2z4+4c.ax4(cz2—ax4) 

is a solution of x4Jrabc2y4~z2. The latter becomes x4-\-u(ui—u)y4==z2 for 
ac=u, (a+fyc-t?. Hence (1) is solvable if a=c=l, b=u(v2—u), as shown 
also by the identity 

(5) (2u-‘V2)4+u(n2—u)(2v)4= (^—4u2+4uif)2. 

E. Lucas81 obtained from one solution of 'Kx4+py4 = (X+ p)z2 the two 
solutions 

X == 4cppn2x2y2z2—mV, Y—Ykpm2x2y2z2—nV, 

Z — (4p prfx^z2+mV+^pmnxyzv)2+1 6Xpm2n2x22/2z V, 

where p=X+p, v—\x4—fiy4, m = zt4Xp2 p2z4—2 pxyzv, n = v2—4\px2y2z2. 
Since the proposed equation is satisfied if x~y—z~ ±1, we obtain two new 
solutions. Thus Zx4—2y4=z2 has the solutions 

33, 13, 1871; 28577, 8843, 1410140689. 

If (1) has the solution (xQ, y0, z0)> it may be written in the form 

X(!;)+M(£) =(X+M)(j)’ X=ax°’ M=b2/5’ x-bt=cz°- 
He stated that his formulas above solve completely twenty equations of 

77 Comptes Rendus Paris, 87, 1878, 159-161. Reproduced, with pp. 321-2, 522, 598, in 
Sphiny-Oedipe, 4, 1909, 163-8. 

78 Comptes Rendus Par's, 87, 1878, 321-2. 
78 Ibid., 522; correction, 599. Reproduced in Desboves’ Questions d’alg&bre, ed. 4, 1892. 

Cf. Desboves.153 
80 Ibid., 598. 
* Nouv. Ann. Math., (2), 18, 1879, 67-74. In Lucas’ expression for Z the coefficient 4 of 

the final term should be 16. If we adopt his change of signs in m, we must alter a sign 
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type (1) in which a, b, c contain only the prime factors 2 and 3 [erroneous 
for 4s4—3y4=z2, Desboves91]. 

Desboves82 again gave (2) and, by replacing y by v—x and then x2 by u, 
deduced (5). He noted that (3) is solvable in the further cases a =s(y2—s), 
—xy2(x+y), —s(s+y2), —s2y2(s2—y2)2. He again (ibid., p. 440) gave (4). 
He noted (ibid., p. 436-7) that (1) has the solutions 

X — 3<zs4—by*, Y=4 aa?y, Z = ax*-\-by* 

if c=81a3#6—14a2hsV+ahV, and gave a simpler derivation of Lagrange's 
solution of (3). For as4+hy4=cz4, see Desboves.262 

Solutions of &+y* — 17z2 are 1, 2, 1 and 13, 2, 41, neither of which can 
be obtained (ibid., p. 495) from a solution x, y, z by the formulas (4). 

T. Pepin83 gave the complete solution of 7s4~5y4=2z2 in integers. 
Then84 X=z, Y~xy, Z = (7x*+5y*)/2 give all the solutions of X4+35F4=Z2 
in which F is odd; while those with F even are all obtained by the method 
of descent. 

S. Itealis85 noted that x*—Zy*=lZz2 has the solution 

s = 76<^+96a2j3+135a/J2+156j33+i3Y(19a+120), 

y—52a3+28a2j3 — 96aj52~ 57j33+13Y(16a-+-19/3), 

if a4—3j34=1372, and asked for the value of z. 
Pepin86 noted that in Euler's144 method of making a quartic V=P2+QR 

a square, not only a rational root of E=0 or Q=0 or $=0 or T=0 leads 
to an infinity of solutions of F= □, but this may be true of further roots. 
The latter happens for 11s4—7y*=z2, whence V=ll—7 £*=P2JrQR, P — 2£, 
Q = ll+7£2, E = l—£2. The complete solution is obtained by descent to 
two irreducible solutions 1,1, 2 and 2,1,13 by four sets of formulas, among 
them being an infinity of solutions which escape the methods of Fermat 
and Euler. To obtain (pp. 42-48) the complete solution of z*+20y4=z2, 
that of 5n4—m4=4£2 is found by descent. From one set of solutions x, y, z 
of (1) for c—a+b is derived,87 by special assumptions, the new solutions 

X—X2s2—bcyfy2, Y=\2y2—acy?x2, Z=Y2—AaXyzy (X2s2+bcy?y2), 

where y : \=sy±z : ax2—bz2. 
Pepin88 obtained by descent all solutions of 13s4—lly4=2z2 and all of 

8s4—3y*~5z2> whereas Euler's144 method to make 40£4—15 = □ does not 
give all solutions. 

A. Desboves89 proved that, if (s, y, z) and (s', yf, z') are solutions of (1), 
a new solution is given by 

/gx s'X=s2*2—hey V, y'Y=y*\2—acx2n2, 

xfiz'2Z ~ [(s2X2+hcyV)2'+2hsyy,2XjLi J+4ahs2y2s/V/x2, 

“ Nouv. Ann. Math., (2), 18,1879, 434. 
“Jour, de Math., (3), 5,1879, 405-24. 
"Ibid., (5), 1,1895,351-8. 
“ Nouv. Corresp. Math., 6,1880, 479. 
86 Atti Accad. Pont. Nuovi Iincei, 36, 1882-3, 49-67. 
87 Ibid., 67-70. a. Lucas.81 
“ Ibid., 38,1884-5, 20-42. 
* Comptes Rendus Paris, 104, 1887, 846-7. 
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where X=ax2x'2—by2y'2, y=xyz'+zx'y'. For a+b~c, we may set 

rc'=2/'=2' = l 

and deduce his159 and Pepin’s87 formulas. For a=c = l, x'=z'~ 1, y'~0, 
we get Lagrange’s formula. He announced the empirical result that the 
complete solution of (1) in integers is given by as many systems (6) as 
(1) has primitive solutions (x'y y', z'). For 8x4~3y4=5z2) Pepin’s ten 
systems reduce to the two systems (6) with (x'y y'y zr) = (1, 1, 1), (2, 1, 5). 
For90 the case c=a+b, set x=y—z=l in (6) and drop the accents; we get 

X = a(a—b)x*—b (3 a+b)xy2—2 bcyz, 

while Y is derived from X by interchanging a, b and xy y. He gave another 
set of formulas of like degree. By finding a relation 

EXW+GYY-2LXYxy-H(X2y2+Y2x2) =0 

such that Y/X is a function of y, xy involving only the irrationality 
(axi+by4)1}2y he obtained the quadratic formulas 

X= -0a~b)2x2+4bcy2y Y^£2c2-(a-b)2lfcy+2c(a-b)zy 

Z = 4 b(a—b)xy\Aacx2+(a—b)2y22+[2c2 — (a—b)2X(a “ b)2x2+4bcy2^, 

and stated that a like discussion may be made for 

ax4+by4+dx2y2—cz2y c=a+b+d. 

Desboves91 noted that, if (1) is solved completely by (6) when (x'y y', z') 
is replaced by (x'iy y'iy z\) for i = l, 2, 3, in succession, then anyone of these 
solutions is called primitive if one does not get it when one determines all 
solutions given by the other two and continues the calculations with them. 

Desboves92 stated that we can find, by a single system of formulas (not 
given), the complete solution of ax^—by4—2z2 when a and b are consecutive 
primes 8n+7 and 8n+5 or 8n+5 and 8n+3. 

T. Pepin93 treated x4+2k -7y4 — z2 for k = 2a and 4a+3. He94 gave a 
detailed discussion of 

5x4-3y4=222, 5x4-2t/4 = 3z2, 3x4+5y4=8z2, 8x4-5y4=3zl 

E. B. Escott95 noted that if in x4+y4 = az2 we set x—zkjl we obtain a 
quadratic for z2 which will be rational if (al)4—(2a)2 (ky)4 = (ami2)2, so that 
the problem reduces to the pair of equations p2dt2aq2— □ (Ch. XVI). 

Axel Thue96 proved that x4—2my4= 1 has no integral solutions. 
Escott97 solved 4A4+1=J32C by noting that the left member has the 

factors 2A2±2A+1, whence (2A±1)2+1=0 (mod £2). 
A. G6rardin98 noted that if (a, py y) and (A, B, C) are two solutions of (1), 

x ~a+Au, y=p+Buy z — y+Su+Cu2 give a new solution provided a certain 

90 Comptes Rendus Paris, 104, 1887, p. 1832. 
91 Ibid., 1602-3. 
99 Assoc. fran$. av. sc., 16, 1887,1, 175 (in full). 
93 Mem. Acc. Pont. Nuovi Lincei, 4, 1888, 227. 
ulbid., 9,1, 1893, 247-284. 
96 L’intermidiaire des math., 7,1900, 199 (reply to 3, 1896, 130). 
96 Archiv for Math, og Naturvidenskab, 25, 1903, No. 3. 
97 L’interm&liaire des math., 12, 1905,155-6. 
M Bull. Soc. Philomathique, (10), 3, 1911, 234-6; Sphinx-Oedipe, 6, 1911, 101-2. 
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quadratic equation in u is satisfied. Equating to zero the coefficient of u2 
by choice of S, we get u rationally. He deduced R6alis585 result. 

A. Cunningham" listed all a4+b4=me? <107, 1+y4~mc2, y<1000. 
E. Fauquembergue100 proved Lucas573 result that 3, 1, 2 is the only set 

of solutions of x4—y4=5z4. 
W. Mantel101 proved by descent that xA+2ny*+z2 unless n=3 (mod 4). 
H. C. Pocklington102 proved by descent the impossibility of 

x4—py4=z2, x4—p2y4—z2J x4—y4 — pz2, x4Jr2y4—z2) 

where p is a prime 8m+3, and indicated (p. 119) the solution of 

2a;4—2/4 = dbz2. 

It. D. Carmichael103 treated tf+my4=nz2. If there is a solution, there is 
an integer p such that np2=s4+mt4. Hence we are led to the equation 

(7) x4+my4 - Cs4+mf)z2. 

A special solution, other than the evident one x=s, y = t, z = l, is obtained 
by setting z=p2+mq2. Then (7) is satisfied if 

x2=s2(p2—mq2) + 2mf?pq, y2~t2 (p2—rruf) — 2 s2pq. 

A solution of this double equation is found by the method of Fermat: 

x = sp—2s (s8—m2tB), y = tp+2t(s*—m2t*), z = p2+16ms4i4(s4-~mt1)2, 

p= ($4+mti)2+4ms4tl. 

By the method of infinite descent, he proved (pp. 19-21) that there is 
no set of integers, all different from zero, satisfying either of the equations 
x4—4t/4=±z2. Hence the area of no rational right triangle is the double 
of a square; this implies that x4+y4=z2 has no integral solutions all different 
from zero. 

A. Gerardin104 explained three methods to obtain the complete solution 
of ax4+by4=cz2, given one solution. 

A. Auric105 solved ax4Jrby4~cd2z2 by eliminating z between it and the 
auxiliary equation mx2+ny2 — cdz and making the discriminant of the 
elimmant a square. 

M. Rignaux106 obtained an infinitude of solutions of x4—y4 = az2} given 
one solution. *E. Haentzschel106® discussed (1). 

ax4+by4+dx2y2 made a square. 

L. Euler107 noted that in making F=x4Jrkx2y2Jry4 a square there is a 
lack of generality in assuming that F is the square of x2+y2p[q or 

99 L’mterm&Iiaire des math., 18, 1911, 45-6. 
100 L’mterm&liaire des math., 19, 1912, 281-3. 
101 Wiskundige Opgaven, 11,1912-4, 491-5. 
mProc. Cambridge Phil. Soc., 17, 1914, 110. 
103 Diophantine Analysis, 1915, 77-79. 

L’interm&iiaire des math., 22, 1915, 149-161. 
106 Ibid., 23, 1916, 7-8. 
106 Ibid., 24, 1917, 14. 
106a Sitzungsber. Berlin Math. Gesell., 16, 1917, 9-16. 
107 Nova Acta Acad. Petrop., 10, ad annum 1792, 1797 (1777), 27; Comm. Arith., II, 183. 
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x*+xyp/q±y2. By a certain device he was led to the case k =/s2+2 Vl +fy2 
in which F is the square of y2+x2 V1+/2/2. For l</< 100, he gave the least 
integer y for which the radical is rational. For half of the positive values 
of k < 100 and for 30 negative values numerically < 100, tables show values 
of x : y for which F is a square. 

Euler108 resumed the solution of x^+mx^+y^—z2. The resulting frac¬ 
tion for m can be given an integral form by use of a rational number a for 
which z = ax2y2—{x2±:y2). Then mzk2 — (ax2T-2)(ay2—2). We may set 
x—pq, y~rs, a — bj(p2r2), where p, q are relatively prime, likewise r, s. Then 

mdt 2 = (6g2=F2r2)(6s2~2p2)/(pV2). 

Set bs2—2p2—cr2, bs2+er2 = 2n, bc—\. Then n2-pA—\y2, where y2 is the 
largest square dividing n2—p4. Thus m— (Xg2=F2n)/p2. Conversely, for 
assigned values of p, n, q, the integer x=pq and the largest square y2 dividing 
7i2—p4 are solutions of the proposed equation with the preceding value of m. 
In fact, 

x4—q4{n2—'\y2)y mx2y2=q2y2 (Kq2 =F 2n), z2~(y2zFq2n)2. 

Euler gave tables of solutions with a slightly changed notation. In con¬ 
clusion (p. 498), he gave a more elegant method for the case m=Xf2±a, 
where a2—4=X/32. Then s = y-2f, z = j32rfc2a:f2 are solutions. Starting 
with two sets of solutions a, (3 and 2, 0 of the Pell equation, he derived the 
solution 

A=gn+hn, B={gn-hn)!^K, 
a-HSA/x , a-pJk 

g=—2—, 2~~• 

Since gh = l, A2—X£2=4. Thus for m=X/2±A (/ arbitrary), we get the 
solutions x—B, y = 2f of the quartic equation. 

Euler109 proved that m4+14m2n2+n4 is not a square if m and n are 
relatively prime and m is even and n odd (excluding m—0, n = 1), or if m 
and n are both odd (excluding m—n— 1). The question was reduced to 
one on a2+3j32=D. By setting x=m2—n2, y=2mn, we see that x2+y2 
and x2+4y2 are not both squares for x odd, y even =j=0. Another corollary 
is that p(p+q)(p+2q)(p+3q) ={= □, so that four squares cannot be in arith¬ 
metical progression. Another corollary is p4“-p2g2+g4#= □ if p2+g24=0, 
and is derived by setting p = m-\-n, q — m—n for p and q odd, and p+q — m, 
p—q=n when one of p, q is even and the other odd. 

Euler110 elsewhere stated that x4—x2+l^D if x2^l or 0. This was 
proved by the editor of the 1810 English edition, p. 112, by showing in 
the Appendix that p2—q2 and p2+3g2 are not both squares. 

C. F. Kausler111 wrote z—xjy in Euler’s107 quartic F. The problem is 
now to make z4+kz2+1 = □, or as a generalization f2+bZ+eZ2—P2, Z=z2. 

1MM4m. Acad. Sc. St. Petersb., 7, armies 1815-6, 1820 (1782), p. 10; Comm. Arith., 
II, 492. For misprints and errata see Cunningham.1*® 

109 M6m. Acad. Sc. St. P6tersbourg, 8, ann6es 1817-18 (1780), 3; Comm. Arith., II, 411-13. 
Same results by V. A. Lebesgue, Nouv. Ann. Math., (2), 2, 1863, 68-77. 

Algebra, 2,1770, art. 142; 2, 1774, p. 169; Opera Omnia, (1), I, 403. 
111 Nova Acta Acad. Petrop., 13, ad annos 1795-6, M&n., pp. 205-36. 
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Thus Z(b+eZ) =P2— /2. For a suitably chosen rational A, we may set 

b+eZ=A(P+f), Z=(P—f)/A. 

Eliminating P, we get Z = (2fA-h)/(e-A2). In our case, e=/=l, b=k, 
whence Z~ (k—2A)/(A2—1) is to be a square z2. Thus -2A=mp2, 
A2—l=?ng2. Of the solutions of the latter Pell equation, those are to be 
selected which satisfy the first equation (a “ solution ” which he admitted 
was imperfect). By eliminating m and setting 2A —a, p/q = 2n, we get 
fc=a+(a2—4)n2, the case treated by Euler108 at the end of his second paper. 
Kausler treated at length (pp. 219-236) the problem to make k integral 
by choice of rational values of a, n. 

N. Fuss112 required integers m such that xiA'rnx2y2A-yi=:z2. Set 

m—2=a(3, m+2=y5. 

Then z2 — (x2+y2)2 = apx2y2, z2 — (x2—y2)2~ySx2y2. For x = pq, y—rs, we have 

z +x2+y2 = aq2$2, z —x2—y2 = fiph2, 

z+x2—y2 = yp2$2} z—x2+y2 = 8q2r2. 

Eliminating z and replacing x, y by their values, we get three linear equa¬ 
tions between a, 0, 7, 8, which give 

aq2—2r2 * as2 — 2p2 aq2s2—2p2q2—2r2$2 
5=^—, p=-—-, 

of which the last may be replaced by 7$ = a$+4. If p=r-1, then 
75= (aq2—2)(as2—2), and a, q, s may be given any values; as the values 
of mClOO we get 2, 8, 12, 16, 17, 22, 23, 26, 31, • • •, 94. 

R. Adrain113 proved by descent that x*+x2y2+y*^ □. He and T. 
Strong (p. 151) also noted that (x2-\~y2)2 —x2y2 = a2 requires that a2+^22/2== D 
and a2—Zx2y2=D~(x2—y2)2, whereas a2+q2 and a2—3q2 are not both 
squares (Euler’s Algebra, Second English transl., II, 481). H. J. Anderson114 

noted that we may take x and y positive and relatively prime. If x and y 
are both odd, xi-\-x2y2+yi = 8n+3 ={= □. Hence we may take x even, y odd. 
Thus (x2+y2)2—x2y2 is an odd square, whence x2+y2=p2+q2, xy = 2pq. 
By an argument like that in Euler’s Algebra, II, Art. 230, we conclude that 
r2—s2 and r2—4s2 are odd squares, where s is even, and r, 5 are divisors of 
x, y} and similarly that t2—u2 and i2—4u2 are odd squares, where u is even, 
and if u are divisors of r, s. Finally, we would reach odd squares t?—w2 
and v2—4i02, where no longer has divisors. Hence the problem is 
impossible. 

A. M. Legendre115 found only two solutions of m4—4m2n2+n4=p2, viz., 
(m, n, p) = (15, 4, 191), (442, 161, 364807). The complete solution, includ¬ 
ing (2, 1,1), was given by E. Lucas.116 

m M&n. Acad. Sc. St. PStersbourg, 9, 1824 (1820), 159. 
113 The Math. Diary, New York, 1, 1825, 147-150. Cf. Genocchi119 and Pocklington138; 

also Beha-Eddin60 of Ch. XIV and Kausler19 of Ch. XXVI. 
114 Ibid., 150-1. 
118 TMorie des nombres, ed. 3, 2, 1830, 127; Maser, II, 124. See Legendre47 of Ch. XIX. 
118 Recherches sur Fanalyse indeterminee, Moulins sur Allier, 1873, p. 67. Bull. Bibl. Storia 

Sc. Mat. Fis., 10, 1877, 291-2. 
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V. A. Lebesgue117 noted that if x4+ax2y2+by4-z2 has the solution x-r, 
y=s, z—p, it has also the solution 

x=r4—bs4, y = 2 prs, z=p4—(a2~ 46) r4s4. 

A. Desboves118 remarked that this generalization of the result by 
Lagrange68 for a=0 is insignificant since it is made by replacing his initial 
identity (the following for d = 0) by 

(u2—btf)2+d(u2—bv1) (2 uv+diF) +b(2uv+dv2)2 = (u2+duv+bvi)2, 

which Lagrange gave in his addition IX to Euler’s algebra (French transl., 
2, 1774, 640). 

A. Genocchi119 proved by descent that x4+x2y2+y4 + □. 
T. Pepin120 treated #4+8a;2+l = □. 
E. Lucas121 deduced two solutions (X, F, Z) from a given solution 

(x, y, 2) of 
xi-2(a+2f2)xy-+(a2+b*)y1=z\ 

For brevity, set 

A=4/4+4a/2—62, n—z2jr4f2x2y2, 

m = — bxyz ±/Qc4 — (a2+b2) y4"], a = (A n2x2y2+m2z2) //, 

j3=4m2x2^2—n2z2, y=4m2x2y2+n2z2. 
Then 

X ~ 16amnxyz@+b(16m2x2y2z2--l32y, Y=2ya, Z—Ay4—4a4. 

A. Desboves122 noted that if x, y, z satisfy ax4+by4+dx2y2 - cz2, then 

X-ax4—by4, Y—2 xyz, Z = c2z4 + (4ab — d2)x4y4 

satisfy X4-Yabc2Y4JrcdX2Y2=Z2; while123 

X=x(4bcy4z2—q2), Y = y(4acx4z2—q2), Z=z{4fx4y4q2 — (c2z4—fx4y4)2} 

satisfy the initial equation if q=ax4—by4, /=d2—4a6. Cf. Desboves.90 
T. Pepin124 treated ax4+2bx2y2+cy4—n2, a necessary condition for which 

is that the quadratic form (a, b, c) represent n2. If one such representation 
is known, all are given by quadratic functions of two parameters. But in 
returning to our quartic we are led again to the problem to make a quartic 
a square. 

Moret-Blanc125 found solutions of x4—5x2y2+5y4= □ and 

(xs+y*)/(x+y) = n 
by Euler’s method. 

S. R6alis126 proved that 2y4—2y2+l~ □ only for y = 0, 2. 

117 Jour, de Math., 18, 1853, 84; Nouv. Ann. Math., (2), 11, 1872, 83-6. 
n8 Comptes Rendua Paris, 87, 1878, 925. 
119 Annali di Sc. Mat. e Fis., 6, 1855, 302. Cf. Adrain.113 
m Atti Accad. Pont. Nuovi Lincei, 30,1876-7, 222-4. Cf. Euler, Algebra 2, Ch. 9, Art. 144. 
141 Nouv. Ann. Math., (2), 18, 1879, 73. 
™IHd.t (2), 18, 1879, 384; for a=c = l, p. 437. Verification, (2), 19, 1880, 461-2. 
^ Ibid., (2), 18, 1879, 440; implied, Comptes Rendus Paris, 87, 1878, 522. 
m Atti Accad. Pont. Nuovi Lincei, 32, 1878^9, 79-128. 
m Nouv. Am. Math., (2), 20, 1881, 150-5. 
m Bull. Bibl. Storia Sc. Mat. Fis., 16, 1883, 213; reproduced, Sphinx-0edipe, 4,1909, 175-6. 

See papers 19-25 of Ch. XVII. 
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E. Fauquembergue127 gave the general solution of (x2+y2) (2x2—y2) =2z2. 
A. G6rardin128 gave x, y, 2 = 3/, 4/, 5J2 and hj2, 2/i/3, 5h2/36. 

x4+4x2+l = y2 is impossible in rational numbers.129 Cf. Pietrocola.131 
T. Pepin130 treated x4—8x2y2~b8y4=z2 by the method of descent appli¬ 

cable only if y is even; then x=Xs~8Y8, y = 2XYZ, z~Z4—82X4Y4. For 
y odd the equation is reduced to the pair pq=rs, p2—4g2+4pg+8s2—r2=0, 
to which the method of descent is applicable. There exist only six sets of 
solutions x, y, z, each 4=0, with y< 1010. 

C. Pietrocola131 discussed the equivalent equations 

x^+4:hx2y2+{2h^l)2yi=z2) (x2+2hy2+z)(x2+2hy2-~z) = (4/t—l)y4. 

From one solution he derived another and proved the equation impossible 
if h=l. The last result had been proposed as a problem by P. Tannery.132 

A. S. Werebrusow133 listed many values of m between —100 and +100 
for which xi+mx2y2+y4=z2 is impossible, and stated that it is impossible for 
m positive or for m=8ft+3 negative if m+2 and m—2 are primes. 

A. G6rardin134 noted that the last statement fails for m=99. 
Gleizes and H. B. Mathieu135 gave special expressions for m for which the 

equation is solvable. 
A. Cunningham136 noted that the equation is solvable for m=60, 99, 

—72, —96, contrary to Werebrusow,133 and for m=91, —90, contrary to 
Euler108 (p. 495, p. 498); and corrected various misprints on pp. 496-8 of 
Euler’s paper. 

L. Aubry137 stated that Werebrusow’s133 theorem is true for a positive 
m=1, 5 or 7 (mod 8), and a negative m= — (8fc+5), but false for a positive 
m=8/c+3. Aubry (pp. 57-9) treated x4+bx^y2+c?/4 = dz2, given 

d — p4+bp2q2+cq4, 

by setting x2=p2u~cq2v, yz = q2u+(bq2+p2)v and deducing an equation of 
the initial form, whence one solution leads to two new solutions. 

H. C. Pocklington138 proved that x4-x2y2-\-y4, x4+14x2y2+y4 are neither 
squares if x+y. If N is not of the form 8n±3 and is not divisible by any 
prime 4n+l, and at the same time AT4 is an odd power of an odd prime 
(including unity), then (x2-\-y2)2zFNx2y2 —z2 is impossible in integers. For 
N = 1 and the upper signs, we see that x4+x2y2+y4—z2 is impossible. Also 
x4—14x2y2+y4=z2 is impossible. There is a list of values of n<100 for 
which x4±nx2y2+y4=z2 is impossible. The complete solution is given of 

x4—4x2y2+y4=z2. 

m L’interm&Uaire des math., 4, 1897, 70. 
JWd., 16,1909,175. 

m Ibid., 1897, 20, 83, 203, 229; 1898, 89, 128; 1900, 87-90; 1903, 158; 1905,109. 
130 Mem. Accad. Pont. Nuovi Iincei, 14, 1898, 71-85. 
131 Giomale di mat., 36,1898, 77-80. 
m L’mterm6diaire des math., 1897, 20, 30, 203. 
mIbid., 15,1908, 52, 282 (corrections); Mat. Sbomik, Moscow, 26, 1908, 599-617. 
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Cases in which axA+dx2y2JrbyA = □ is impossible were noted by 
Lebesgue,30, 87 Genocchi85,93 and Pepin98 of Ch. XXVI; by Desboves188 of 
this Chapter. Solvable cases by Pepin132 of Ch. I, Haentzschel143 of Ch. V. 

Quartic function made a square. 

Fermat139 sought rational values of x for which 

(1) f(x)=a+bx+cx2+dxz+exi 

shall equal the square of a rational number, where a, • • *, e are integers. 
The case in which a or e is the square of an integer is quite simple. For 
a=a2, the first three terms of fix) are identical with those of the square of 

“+2^+2* L(< 
jiy 
4a2/ 

Comparing the terms with the factor or5, we obtain 

8cr[7> (4a2c — b2) — 8a4d] 

* = 64a8e-(4a2c-62)2 ' 

Hence from a particular solution /(£)=a2, we may obtain new solutions 
since f(Z+x) =a2+bx-\-j-ex4 falls under the last case. 

The same special cases were treated similarly by L. Euler140 and 
A. M. Legendre.141 

T. F. de Lagny142 made x4—10xz+26x2—7x+9 the square of x2—5x+3 
for £=23/5. 

L. Euler143 treated in a posthumous paper the equation 

a2xi+2abx3y+cx2y2+2bdxy3+d2y4 = □. 

Set c—b2—2ad=mn. Then 

(2) (ax2^bxy+dy2)2+mnx2y2—z2. 
This is satisfied if 

ax2+bxy+dy2==\(mp2--- nq2), xy = 2\pq, z = \(mp2+nq2). 

Admitting fractional solutions, we may set y = l. Then 

4\2ap2q2+2 b\pq+d=X (mp2—nq2). 

For a fixed X, let p and q be given solutions. Let p' be the second root of 
this quadratic in p, whence 

p' = —p—2 bq/ (4Xag2—m). 

Then pf, q' are corresponding values if 

q'~ —q—2bp'l(4:'\apf2+ri). 

Diophanti Alexandrini Arith. Libri Sex . . . Doctrinae Analyticae Inventum Novum; 
Collectum k J. de Billy ex varijs Epistolis quaa ad eum . . . misifc P. de Fermat, p. 30. 
French transl., Oeuvres de Fermat, 3, 1896, 377-388 (the term x* is omitted on p. 388, 
§ 31). 

M0 Algebra, 2,1770, Ch. 9, Nos. 128-137; French transl., Lyon, 2, 1774, pp. 153-162. Opera 
Omnia, (1), 1, 1911, 396-400. Sphinx-Oedipe, 1908-9, 67-78. 

141 Th6orie des nombres, 1798, 458-9; ed. 3, 2, 1830, 123; Maser, II, 120. 
141 Nouv. Elemens d’Arith. et d’Alg., Paris, 1697, 496. 
ltt M&m. Acad. Sc. St. Petersb., 11, 1830 [1780], 1; Comm. Arith., II, 418. 
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From p', q'} we get p", q"} etc. Any two consecutive terms of p, qy p', q'9 
p", * • * yield a solution with y = 1. Proceeding in the reverse order, we 
obtain a sequence q, p, qh ph q2, • • any two consecutive terms of which 
yield a solution. 

To obtain an initial pair of solutions, set y — 1 and let the quartic be 
the square of ax2+bx—d or of ax2—bx — d; then 

4 bd b2—2ad—c 

X~~ h2~2ad—c °r 4a5 ‘ 

To treat aC4,:£/?=□, where adb/3 is a square a2, set C=(l+z)/(l— x). 
Then 

aW+^a^fyxP+GaW+^a^Ffyx+a2 =* □, 

which is of the above type. Euler treated in detail the cases 

2A4-£4=D, 3A4+JB4= □, |A4-P4=D. 

Euler144 treated V=A+Bx+Cx2+Dx?'{-Ex4=n. If V can be given 
the form P2+QRy where 

P = a+bx+cx2} Q~d+ex+fx2} R = g+hx+ix2y 

then V=(P+Qy)2, where 2Py+Qy2—R = 0. The latter is also quadratic 
in x, viz., Sx2-\-Tx+U = 0. From initial solutions x, y, we obtain145 
x'~ —x—T/S; then from xT we get yr — — y-~2PrIQr, etc. As in the pre¬ 
ceding paper, we thus obtain two series of solutions of V= □. 

If, for E=0, V =/2 for x=a, we may take 

P=f, Q=x—a, R=B+C(x+a)+D(x2+ax+a2). 

For a general V, let V -j2 for x = a. When x is replaced by a+t, let 
V become p+cd+pt2+ytz+8i*. Then V=P2+QR for 

p=f+ff Q-*1, R=P~+yt+StK 

Euler148 gave ten values of x for which 

a2+2abx + (62+d2 ~/2) x2'+ 2dex?+eV=z2, 
including 

x—(—ddt=f)le, z = a+bx; x= —a/(hdzf), z — x(ex+d). 

G. Libri147 treated a2xl-\-bx?+cx2+dx+e=z2 with all coefficients positive 
(since we may replace x by Xi-\-h). Multiply by 4a2 and set 

2 az = 2 a2x2+bx+v. 
Thus 
(3) (4 a2v+b2—4a2e)#2+(2 bv—4a2d)rr4- v2—4a2c = 0. 

144 M6m. Acad. Sc. St. Petersb., 11, 1830 [1780], 69; Comm. Arith., II, 474. a. Pepin.88 
145 This method of solving any equation quadratic in * and in y was given by Euler also in 

M&n. Acad. Sc. St. Petersb., 11, 1830, 59; Comm. Arith., II, 467. For applications to 
rational quadrilaterals, see Rummer,133 and Schwering150 of Ch. V. Cf. papers 55, 143, 
148, 155; also Pepin140 of Ch. IV, Guntsche91-152 of Ch. V. On the relation of elliptic 
functions to an equation quadratic in x and in y, see G. Frobenius, Jour, fur Math., 106, 
1890,125-188. 

148 Opera postuma, 1, 1862, 266 (about 1782). 
147 Jour, fur Math., 9,1832, 282. 
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A positive v cannot surpass a certain number L which makes every coefficient 
in (3) positive; hence we have only to try 0 = 0, 1, • • *, L —1. If v— —t, 
where 0 <t<x, let s be the least t for which 4a2(Z+c) >62 and substitute 
s+w for — win (3); we get an equation like Ax2+Bx+4:a2e = (s+w)2 with all 
coefficients positive, whereas x2>t2— (s+w)2; hence the only cases to try 
are v= —1, * • •, — (s —1). Finally, if v= —u, 0<u>x, let r be the re¬ 
mainder <x on dividing u by x and n the quotient. Set 

4aV = [2a2x2+(b—n) x—rj. 

By 22>a¥, we have b>n and need only try n= 1, • • •, 6—1. 
C. G. J. Jacobi148 stated that the analysis of Euler144-*5 to find an infinitude 

of rational values of x, given one, making the quartic f(x) a square is the 
same as that of Euler’s149 (earlier) solution of the transcendental equation 

(4) I%)= 7111(2), 

For the latter, Euler used a chain of n equations f(p, q) = 0, f(q, r)= 0, 
f(r} s) =0, • • •, where 

f(p, <l) =a+2j3(p+q)+y(p2+q2)+28pq+2epq(p+q)+£p2q2 

is symmetrical in p and q} whereas in the diophantine problem Euler’s 
canonical equation Qy2+2Py—R=Sx2+Tx+ZJ*=0 is not symmetric in 
x, y, as pointed out by L. Schlesinger,150 who discussed at length Jacobi’s 
above remark. The latter had been discussed by T. Pepin.151 Jacobi 
observed that the analysis of the multiplication of elliptic integrals (4) 
gives an infinitude of rational y’s for which also V/5/) is rational, if a rational 

" x makes V/(s) rational, and drew from the theory of abelian integrals the 
conclusion152: If f(x) is of the fifth or sixth degree and if one rational value 
of x makes V/(aO rational, there exist an infinitude of x’s of the form 
a+b Vc, with a, b, c rational, for which V/fe) = «'+&' Vc, with a\ b' rational; 
and the extension to f(x) of degree 2n+l or 2n+2 and x’s satisfying an 
equation of degree n with rational coefficients. J. Ptaszycki153 remarked 
that the last theorem follows at once from the representation of a rational 
function by means of polynomials which enter in the development into a 
continued fraction of the square root of this function. The generalization 
of Jacobi’s theorem has been considered by J. von Sz. Nagy.154 

The problem to make a quartic a rational square was proposed in 1865 
as a prize subject by the Accad. Nuovi Iincei of Rome. 

L. Calzolari155 wrote a+bv+^+dtf+eif-w2 in the form 

4ew2 = a'+2b'v-rc'i?JrQ2, Q^2ev*+dv+k, 

ar—4ae—k2, b' = 2b e—dk, c'=4ce—d2. 

148 Jour, fur Math., 13, 1834, 353-5; Werke, II, 51-5. 
149 Institutiones Calculi Integrals, 1, 1763, Ch. 6, Prob. 83, § 642. 
160 Jahresber. d. Deutschen Math.-Vereinig., 17,1908, 63 (with history of f(x) = □). 
m Atti Accad. Pont. Nuovi Lincei, 30, 1876-7, 224-37. 
“ia Jacobi, Jour, fur Math., 32,1846, 220; Werke, II, 135; Schwering^ of Ch. XXI. 

Jahreeber. d. Deutschen Math.-Vereinig., 18,1909,1-3. 
164 JUd.t 4-7. Cf. Nagy18 of Ch. XXIII. 
155 Giornale di Mat., 7, 1869, 317-50. 
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Bet Q=y[x, 2w—z/x, c'v+b'—ujx. Then 

u2=Ax2+By2+Cz2, A = b,2—a'c', J5= ~c', C=c'e, 

which can be given the form Ai(u2 —,x2) ~Bi(y2—z2) by choice of k. The 
solutions for u, x, y, z are evident. Substitute these in the quadratic in 
u, x, y obtained by eliminating v between Q — y/x, c'v+b'—u/x. For 
example, if vi—2 = w2, then w2*=(v2+k2)—2kvi—k2—2. Set tf+k^u/x, 
v=yjx, w—zjx. Then 

u2 = {k2+2)x2+2ky2+z2J u2—z2 = 2 (9x2—Ay2) 

for k = —4. It has the solutions 

u, z = i(ayzLP8); 12x, 8y = 2(3y±a8. 

Substitute these in ux = kx2+y2 (obtained by eliminating v). Thus 

Lo?+Map+NfP = 0, 

with coefficients quadratic in y, 5. Taking L=0 we get four sets of solu¬ 
tions a, ft y, 5; likewise four from N = 0. 

S. Bills156 made f=x4+4^+8x2+7x+6^= □ by noting that /=4 for 
x= —1 and setting/=Q2, Q=x2+2x+k, where k is chosen so that Q — =t2 
for x= —1. 

T. Pepin157 made use of the notations of Euler,140 viz., (1) and 

6(x) —f+gx+hx2, F(z) =/(z) - 62(z) = a ~f2~\-\~(e-h2)^. 

Pepin took Xi, x2, x3 arbitrary but distinct, and determined /, g, h, x by 

(5) e(xd-*iJf&d, 4=1, (t-1,2,3). 

Then xu x2, x3, x are the roots of F(z) = 0. Hence if xi, x2, x3 are three 
solutions of f(x) = □, then/, g} h are rational and a: is a new solution. Next, 
let x3—xi; then F'(x\) = 0, and (5) for t=3 is to be replaced by the deriva¬ 
tive of (5) for i= 1. Finally, for xi~x2=xz, we use (5) for i=l and its 
first and second derivatives, and so obtain a second solution from a first. 
Then the preceding case gives a third solution and (5) a fourth solution. 

Pepin158 noted that if a quartic f{x) can be transformed into a square 
by replacing # by a rational function, then F^y2—f(x) = 0 is a unicursal 
curve and hence has three double points, whence the partial derivatives of 
F with respect to x and y vanish, showing that / has a double root. The 
problem is then to make the remaining quadratic factor a square. The 
problem to make a product of two binary quadratic forms a square is 
treated by means of a congruence. Conditions are given in order that a 
reciprocal quartic shall never be a rational square for a rational value of the 
variable. 

A. Desboves159 noted that if x, y7 z is a set of solutions of 

_aX*+bY4+dX2 Y2 +/X3 Y+gX Yz = cZ2, 

158 Math. Quest. Educ. Times, 22, 1875, 91-2. 
U7 Atti Accad. Pont. Nuovi lincei, 30, 1876-7, 211-37. 
188 Atti Accad. Pont. Nouvi Lincei, 32,1878-9, 166-202. 
w Comptes Rendus Paris, 88, 1879, 638-40, 762 (correction). Cf. Desboves1" of Ch. XXL 
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formulas can be found giving in general four sets of solutions. In 

consider axA, etc., as coefficients; we thus have an equation of the first type 
having now aH-Vg — c (an artifice due to Lucas81 for d=f=g = 0). 
After dividing such an equation by c and setting X= (p+a;)/(p+1), we get 
an equation in p to which Fermat's method applies. The explicit formulas 
for the two sets of solutions are very long (each furnishing two sets by 
changing the sign of z). 

F. Romero160 proved that x4-\-xz+x2+x — l = y2 has no positive integral 
solutions. For, y is odd and the equation becomes 

x(x+l)(x2+l)~2{m2+(m+l)2}. 

Thus #=4n+2, and 4n+3 would divide the sum of the squares of two rela¬ 
tively prime integers. 

E. Lucas161 discussed f(x) = y2, where f(x) is a quartic with rational 
coefficients. Set y<j>(x) =F(x), where <j>—xv+a\X‘p~"l-\- • • • with rational a’s, 
while F is of degree p+2. Then F2=f<f>2 is an equation of degree 2p+4 in 
which enter 2p+3 unknowns besides x. If we know 2p+3 sets of rational 
solutions Xi, yi of y2 =/(#), no two of which differ merely in the sign of y, 
and determine the coefficients in y<f> = F so that it shall be satisfied by these 
2p+3 sets, these coefficients will be rational. Then F2 =f<j>2 will furnish a 
new rational x which leads to a new set of rational solutions of y2~f(x). 
We may take two or more of the Xi equal; if x2—x\, we replace 

_F2(x2)^f(x2)<f>2(x2) 

by the derivative of ± V/($i) =F(xi)l<j>(xi). Taking all of the x{ equal, we 
see that one solution of f(x)=y2 leads to an infinite sequence of solutions. 
(Cf. Pepin.158) If f(x) has a rational root a, we may take 

F=*(z—a)4>j+i(x). 

If/has a rational quadratic factor q(x), we may take F—q\pp and apply the 
above method to 2p+l sets of solutions. 

L. J. Mordell162 assumed that we have one solution of f=z2, where f 
is a binary quartic with the invariants g2} gz. Then we can transform / 
into a quartic with leading coefficient z2. The syzygy between its semin- 
variants (cf. Mordell176 of Ch. XXI) is g2 = 4/i3—g2hz*—q&*. Thus p/z3, hjz2 
give rational solutions of 

t2=4s3-g2s-g3. 

It is shown that the knowledge of all rational solutions of the latter leads 
to all rational solutions of /=z2. 

E. Haentzschel163 treated y2 =/(x) = aoX4-j-\-a^ First, let fix) — 0 
have a rational root r and apply the substitution 

_x=r+|/'(r)/(s-Q, f=f"(r)/24._ 

wo Nouv. Ann. Math., (2), 18, 1879, 328. 
181 Nouv. Corresp. Math., 5, 1879, 183-6. 

Quar. Jour. Math., 45, 1913-4, 178-181. 
183 Jour, for Math., 144, 1914, 275-283. 
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We obtain Weierstrass’ normal form 

(6) v1 = 4s3 - g2s- gz=4 (s- e i) (s - e2) (s - ez), 

where g2} gz are the invariants of /; also y= ±lf'(r)v/(s—t)2. Euler27 of 
Ch. XV discussed the problem to find $ such that $—e* are squares for 
i=1,2,3 (whence their product gives ?^/4), but evidently restricted attention 
to the case in which each e* is rational. Haentzschel showed how, from three 
primitive solutions of (6), to find four infinite sets of solutions by means of 
Weierstrass ^-function. 

Removing the assumption of a rational rcot r, but assuming one solution 
Xq, y0 of f—y2, he applied a certain linear fractional transformation giving a 
quartic whose leading coefficient is a square. 

G. Humbert164 stated that all the methods which have been proposed to 
deduce rational solutions of ax4-{-\-e~z2 from one or more initial solu¬ 
tions are identical at bottom, and gave the method in geometrical and 
analytic form. 

On x4±x2y+x2y2±:xy3+y4 = □, see papers 63-66 of Ch. II, Vol. I. On 
xy(x2—y2)=Az2, see papers 11,18; also Congruent Numbers in Ch. XVI. 

For other special quartics made squares, see papers 101 of Ch. I; 21, 
92-4, 96-7, 109,138-40 of Ch. IV; and 9, 72, 73, 77,92,133 of Ch. V; and 
various papers of Chs. XIV-XX. 

A4+B4=C4+D\ 

L. Euler165 took A=p+q, D=p~qy C~r+s, B=r~s and derived 

(1) pq(p2+q2) =rs(r2+s2). 

Set p~ax, q—by, r=kx, s=y. Then 

yyx2=(tf~a*h)/(aV-k). 

If k=ab, x — 1, then y = dta, C = dbA, B = TZ). Set therefore k = ab( 1 +z). 
Then y2/x2=a2QI (62—1 —z)2, where 

Q= (62-1)2+ (&2_ i) (3&2-l)z+Zh2(b2-2)z2+b2(fi2-4:y-5V. 

Let Q be the square of 62— 1 -hfz+gz2 and choose /, g to make the terms in 
z, z2 agree. Thus 

362 —1 _354—1852—1 52(52 —4) —2fg 

J 2 ’ 9 8(62—1) ’ z~ V+g* • 

Then x : y — b2—l—z : a(b2—l+fz+gz2). As examples, Euler took 5 = 2, 
5=3, and found the solution 

A=2219449, B = -555617, C = 1584749, D=2061283, 

and an erroneous166 one replaced in his next paper by 

4 = 12231, £=2903, C = 10381, £ = 10203. 

184 L’interm&liaire des math., 25, 1918, 18-20. 
m Novi Comm. Acad. Petrop., 17, 1772, 64; Comm. Arith., I, 473; Op. Om., (1), III, 211. 
196 This error was also noted in l’intermSdiaire des math., 2,1895, 6, 394; 7,1900, 86; Mathe- 

sis, 1889, 241-2. 
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Euler167 treated a4—64=c4—d4 by setting 

(a2+62)p = (c2—d?)q, (a2—b2)q=(c2+d?)p. 

Multiply the first by p, the second by q, add and subtract. Let g2—p2=$2. 
Then 

(2) b2s2 = a2(p2Jrq2) — 2c2pq, 2d2pq = ah2—b2(p2+q2). 

In (2i) take 6$ = a(g—p)+2p{a—c)x, whence 

a : c = 2px2+q : 2px2+2(q—p)x—q. 

Taking a and c equal to these expressions, and multiplying (22) by s?/(2pqJ} 
we find that 

&s2 = <f(q—p)2~4q(q—p) (q2+p2) a:+2 (q2—p2) 2x2 

+2(q2—6pq+p2)(p2+q2)x2+8p(q—p)(p2+q2)x3+4p2(q—p)2x4, 

which is readily made a square since the first and last coefficients are squares. 
For p = 3, g=5, we have s = 4 and 

(3) d2^-85a; - 206z2+102x3+9a;4. 

If we seek to make three terms of d2 identical with those of the square of 
5l2 — l7x+ax2 or of a+17z+3z2, we find that c4=a4. But 

a?+2(xpx-hvx2+286x3+€2xi=z2, ft4-52~Y = □ = f2, 

for z=a+ftr, x- — (5dbf)/e; also for x= —a/(jS±f). For the 
special form (3) we therefore get x= —15, 11/3, 1/18 or 5/22, each leading 
to a permutation of the same values 

a = 542, 6 = 359, c=514, d=103. 

Euler168 treated the following generalization of (1): 

pg(mp2+ng2) —rs(mr2+ns2). 

Set q=ra, s=p6. Then p2 : r2—na?—mb : nbz—ma. Set 

a = 6(l+2), a = w62/(n62—m), /? = a—l. 
Then 

p2 :r2 — C : 1—jfc, C=1+3az+3a22+«23. 

We may make C(l—fts) = □ by the usual methods for quartics. But we 
obtain much simpler solutions by making C/QL—ft*) = (1+dz)2, viz., 

3a—2d+j3+(3a+20d—d2)^H“(aHhiSd2)22=0. 
Taking 2d=3a+ft we get 2= — 3/(4a+4j8d2), p/r=l+dz. 

For ra=n=1, 6 = 3, we get a=9/8, £=1/8, d=7/4, z= —96/193, 
p/r=25/193, and obtain the solution p=25, r=193, g=291, s = 75 of (1), 

“7 M6m. Acad. Sc. St. Petersb., 11, 1830 (1780), 49; Comm. Axith., II, 450. Euler wrote 
c*+d* in his second equation and c2—d2 in his third. His further formulas require that 
d2 be replaced by —d2, which would invalidate the conclusions. In the present report, 
d* has been replaced by — d2 at the outset, so that the remaining developments become 
correct as they stood. 

us Nova Acta Acad. Petrop., 13, ad annos 1795-6, 1802 (1778), 45; Comm. Axith., II, 281. 
To conform with the notations of Euler’s first paper, the interchange of a with p, b 
with 5, c with r, d with s has been made. Also, Opera postuma, 1,1862, 246-9 (about 
1777). 
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whence 
(4) 1584+ 594=1334+1344. 

For m=n=l, b=f/g, we get a—pKf—g2). In the resulting fraction 
for p/r, take p to be the product of the numerator by g. We obtain the 
solution of (1). 

P = q(P+92)( —/4+18/V—g4), r^2g(4f+fY+WY+96)> 
W q = 2/(/6+ 10/V+/V+4^6), s—f(f2+g2) (—/4+18/V—g4) • 

The case/=2, 0=1 gives p=275, 0=928, r = 626, s=55G, whence 

23794+274=7294+5774. 

From one set of solutions of (1) we obtain the second set 

p' = p+q+r+s, q'=p~rq—r—s, r'=p—q+r—s, s'=p—q—r+s. 

A. Desboves169 noted that 12034+764=11764+6534. 
Desboves170 wrote slq = m in (1) and obtained p3+pq2—m3q2r—mr3 = 0. 

Regard m as a parameter. From the solution p = m, q—r — 1, we derive 
by Cauchy’s formula the new solution 

p=2ra(m6+10m4+ra24-4), g= (m2+l)(~m4+18m2 — l), 

r = 2 (4m6+m4+10m2+1). 

Replace m by f/g. The resulting solution is not new, as supposed by 
Desboves,171 but172 is Euler’s (5). For/=l, <7=3, we get (4). For/=l, 
0=2, we get Desboves’169 numbers. 

A. Cunningham173 discussed the solution of the problem and proved the 
impossibility of x4+?/4=£4+4i?4. 

R. Norrie,174 starting with an evident solution of (1) took p = px^—s, 
r~ pX2~q; thus 

(qxf—sxl) p3+dqs (x\—£?) p2 + {(02+3s2) qx i—(Zq2+s2) sa?2} p = 0. 

After making the coefficient of p zero by choice of x2/xi, we have only to 
take — p equal to the ratio of the coefficient of p2 to that of p3. After reduc¬ 
tions, we obtain Euler’s (5). The same method applies also to 

X(pXi4-u)44-p(pX2'i“6)4=X(pa;i-f*c)4d-/x(p^2“f”d)4, Xa4*-bp&4:=:Xc4-j-pd4. 

A. S. Werebrusow175 gave 2394+74=2274+1574 and Euler’s solution (4). 
T. Hayashi176 reduced the problem to the solution of 3ui-\-vi=w2, from 

one solution of which we obtain an infinitude (Desboves77). 
F. Ferrari177 expressed (42+52)(72+82)(42+152)(132+202) as a sum of two 

squares in eight ways and noted that the squares are biquadrates in two 
cases, giving Euler’s (4). 

«»Nouv. Corresp. Math., 5, 1879, 279. 
170 Assoc. fran$., 9, 1880, 239-242. 
171 Nouv. Corresp. Math., 6, 1880, 32. 
171 Noted by E. Fauquembergue, Mathesis, 9, 1889, 241-2; reproduced in Sphinx-Oedipe, 5, 

1910, 93-±. 
m Messenger Math., 38,1908-9, 83-9. 
174 University of St. Andrews 500th Anniversary Mem. Vol., Edinburgh, 1911, 60-1 
176 L’interm&iiaire des math., 20, 1913, 197; 19, 1912, 205. 
174 The T6hoku Math. Jour., 1, 1912, 143-5. 
177 Periodico di Mat., 28,1913, 78. 
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E. Fauquembergue178 gave the identity 

(2a2 - 15a0 - 402)4-f (4a2+15a0 - 202)4 = (4a2+9a0-f 402)4+s2, 
$ = 4a4 -f 132a2 (3+17a202-f 132a/33+404, 

while by Fermat’s method we may make s = □ in an infinitude of ways, 
e. g., <2 = 8, 0=25. 

A. S. Werebrusow179 gave 2924+1934=2564+2574. 
J. E. A. Steggall180 treated xn—un"yn—vn by setting 

Xa; = l+ab, Xy = l+ac, \u = an~1Jrb, Xv=an_1+c, 

which determine a, 5, c, X in terms of x, y, u, v. He discussed only the case 
n = 4, whence 

4a(l +a4) +6(6+c)a2 = (b+c) (62+c2). 

This is satisfied if 5-fc=2a(l-K), and 

4 {(1+a4) (1+i)+a2( 1+0 2(2—2^—^2)} = (1+i)2(6—c)2. 

A particular value making the left member a square is 

8(l+a2)2(l-18a2+a4) 

(1+14a2-f a4)2-f 64a2(l-f a2)2’ 

whence we derive one of Euler’s tentative solutions. The smallest set of 
integral solutions is said to be (4). 

M. Rignaux181 recalled [Euler168] that (1) is unaltered by the substitution 

p==P-\-Q~{-R-{-S, q=PJrQ—R—S, t=P—Q-j~R—S, s=P—Q—R-j~S. 

He obtained (p. 128, pp. 133-4) various solutions of (1). 
A. G6rardin181° noted that (1) has the solution 

p — a7-fa5—2a3+a, q = 3a2, r=a6—2a4+a2+l, s = 3a5, 

which is simpler than Euler’s solution (5). 

A4+hB4~C4+hD4. 

E. Grigorief182 noted that 

194+5 • 2814=4174+5 • 1174, 744+5 • 1014 = 1474 + 5 • 634, 

the latter being erroneous. He183 found an infinitude of solutions when 
h=2, the least having eleven digits (from u=33, t>=13), by making special 
assumptions leading to the condition 3u4~2v4=w2. 

A. S. Werebrusow184 gave 1394-f 2 • 344= 614+2 • 1164. 
A. G6rardin185 treated a4+hb4~c4+hd4 by setting a—c=m, d—b=x, 

178 L’interm&Liaire des matli., 21, 1914, 17 (18-19, bibliography). 
779 Ibid., 18. 
180 Proc. Edinburgh Math. Soc., 34, 1916-6, 15-17. 
181 L’interm&liaire des math., 25, 1918, 27-28. 

24, 1917, 51. 
181 L’interm6diaire des math., 9, 1902, 322; 10, 1903, 245. 
188 Ibid., 14, 1907, 18^-6. 
wibid., 17, 1910, 127. 
188 Sphinx-Oedipe, 6, 1911, 6-7, 11-13. Cf. Nome.174 
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a+c=p(d+b); thus 

2(2 rap8—kx)b2+2x(2mp3—hx)b+(mp3x2— hx3 — 2 c2pm—2cm2p) = 0. 

Equate to zero the coefficient of b2. Then that of b is zero, and we obtain 
ra and h rationally in terms of p3 c, x. In the special cases p~cx and 
c=x=1, the resulting identities are simple. He gave solutions of the 
systems formed by x4-\~mx2y2+y4=a2 and various other quartics. 

G6rardin186 gave solutions of a4+hh4=c4+hd4 for 26 numerical values of 
hj and noted the solution a=2p2, c=2p; 5, d~p-Fl; h~2p3(p2—l). 

Sum of three biquadrates never a biquadrate. 

L. Euler165* 167 stated that this theorem was hardly to be doubted, though 
not yet proved. Again he168 stated “ It has seemed to many Geometers 
that this theorem (xn+yn =f=zn, n>2) may be generalized. Just as there do 
not exist two cubes whose sum or difference is a cube, it is certain that it is 
impossible to exhibit three biquadrates whose sum is a biquadrate, but that 
at least four biquadrates are needed if their sum is to be a biquadrate, 
although no one has been able up to the present to assign four such bi- 
quadrates. In the same manner it would seem to be impossible to 
exhibit four fifth powers whose sum is a fifth power, and similarly for higher 
powers.” 

Euler187 noted that abc(a+b+c) = 1 has the rational solutions 4, 1/3, 
1/6, and abcd(a+b+c+d) = 1 the solutions 4/3, 3/2, —1/3, —3/2. Hence 
we cannot infer the impossibility of p4+q4+r4=s4 by setting a=p3/qr$, 
b — <flprs, c=7*lpqs; nor that of p5+g,5+r5+s5 = i5 by setting a=p4/qrst, • * 
d=s4/pqrt. 

A. Desboves188 expressed doubt as to the theorem and proved the im¬ 
possibility of p4 db6p2g2—7^= □ in connection with a study of 

X4+Y4-Z4=2T2, 
which has the solutions 

X=x2:Fy2, Y=x2zty2, Z=2xy, T—x4—y4. 

L. Aubry189 proved that the fourth power of an integer ^1040 is not 
a sum of three biquadrates. 

A. S. Werebrusow189a showed that no solution can be found by making 
each term a biquadrate in Euler's identity 

(a2+62+c2+d2)2=(a2+62-c2-d2)2+(2oc+26d)2+(2ad-26c)2. 

Sum of four or more biquadrates a biquadrate. 

L. Euler190 remarked that it seemed possible to assign four biquadrates 
whose sum is a biquadrate, but that he had found no example, whereas he 

188 Sphinx-Oedipe, 8,1913,13. 
187 Opera postuma, 1, 1862, 235-7 (about 1769). Cf. Euler.3" 
188 Nouv. Corresp. Math., 6, 1880, 32. Cf. Sphinx-Oedipe, 8, 1913, 27. 
189 Sphinx-Oedipe, 7,1912, 45-6. Stated, l’intenn^d. des math., 19, 1912, 48. 

L’intermediaire des math. 21,1914,161. 
180 Corresp. Math. Phys. (ed., Fuss), 1, 1843, 618 (623), Aug. 4, 1753. See preceding topic. 
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could give five biquadrates with a biquadrate as sum. He167 again re¬ 
marked that he was trying to find four such biquadrates. 

Euler191 gave an incomplete discussion of the “ difficult ” problem to 
find four biquadrates whose sum is a biquadrate. Evidently 

A4+B4+C4+D4=E4 

for 
A2- (p2+q2-\~r2—s2)/n, B2 = 2ps/n, C2 = 2qs/n, 

D2 = 2 rs /n, E2 = (p2+q2+r2+s2) /n. 

These five functions are to be made squares. This will be true of the first 
and last if 
(1) (p2+q2+r2)/n=a2+b2, s2jn=2ah. 

Then s2 = 2abn = □ if 2n = a/3, a = af2, h=fig2, whence s=afflg. Next, 

~=4pfg = 4x2, ^=4gfg=4y2, ^-=4rfg=4z2, 
To To To 

if p = x2/ (fg), q=y2l(Jg), r = z2/(Jg). Substitute these values into (1 x); we get 

x4+y4+z4 = %ab(a2+b2). 

But no discussion of this final condition is given. 
D. S. Hart192 employed the sum 

O-=ibi5-f W+in3 - -bn 

of n consecutive biquadrates l4, • • •, n4, and 

($+m)4 = s4+<r-M-,<r, £=(s+m)4—$4. 

Thus ($+m)4 can be expressed as a sum of biquadrates if a—i is. Evi¬ 
dently n >8. For n = 9, s = 14, m = 1, cr—i = 3124=l4+24+34+54+74, 
yielding 
(2) 44+64+84+94+144 = 154. 

For ft = 20, s=30, m=4, 344 is the sum of the fourth powers of 1, 3, 4, 5, 9, 
10, 11, 12, 14, 15, 16, 17, 18, 19, 30. 

A. Martin193 gave (2). 
A. Martin194 started with the identity 

(1+4m4)4 = 14+ (2m)4+96(m2)4+ (4m3)4 + (4m4)4. 

But 96 = 34+24—l4. Hence the new right member has six positive bi- 
quadrates and the term — (m2)4. For m=2, the latter cancels (2m)4 and 
we get 

l4 + 84+124 +324+ 644 = 654, 

which was communicated to him by D. S. Hart. For m=3, 

3254—A+1084+3244, 
where 

A = l+64+184+274—94 = 284+104+84+74=264+204+104 +844-34, 

191 Opera postuma, 1, 1862, 216-7 (about 1772). 
1M Math. Quest. Educ. Times, 14, 1871, 86-7. 
1M Ibid., 20, 1873, 55. I/interm&Iiaire des math., 1, 1894, 26. 
1M Math. Magazine, 2, 1896, 173-184. 



so that we get 6 or 7 biquadrates whose sum is a biquadrate. Multiplying 
(2) by 24 and by 54 and eliminating 304, we see that 754 is the sum of the 
fourth powers of 8, 12, 16, 18, 20, 28, 40, 45, 70. Finally, he tabulated the 
values of $=14+ • —(-nA for ?i 2=285 to use in seeking by trial to express 
S—b* as a sum of distinct biquadrates 2=n4. Example in Martin,68 Ch. 
XXIII. 

E. Fauquembergue195 gave the identity 

(4z4+2/4)4 = (4x4—y4)4+ (4o%)4+ (4a:3?/)4+ (2 xyz)4+ (2a:?/3)4, 

which becomes 54 = 34 +44 +44 +24+ 24 for x = y = l. 
C. B. Haldeman196 noted that ai+¥+(a+by^2(a2+ab+b2)2 [Proth227]. 

Hence on adding d4-f e4, the sum will be a biquadrate if a?-\-ab-{-b2 = de and 
d?+e2~ □. To satisfy the latter, take 6=(d4—4z4)/(4dz2); then the former 
condition gives 

<= Vd4-424~35V. 

Take t-d2—z2, whence d2=§(352+ 5z2). Since 6=2 makes d rational, set 
6=?/+2, and take d=2z+sy[t, whence we find y and then 6, d. Or we 
may take d =2, 2 = 1, whence Z = Vl2 - 352; set 6 = z;+l, * = sv/£+3, whence 
we gett> and 

(3) S(2s2±12si~6f“)4+2(4s2T12^)4+ (3s2+9*2)4 = (5s2+15*2)4. 

Or, finally, take d=9, 6=4, a2+a6+62=4-37 since 2(4*37)2+94+44 = 154. 
Since 5 = 6 gives a rational value for a, set 5 = 6+r. Then 

(2o+6)2=592—3&2= — 3r2—36r+484= (7+22)', 

by choice of r rationally in s, t. Hence the sum of the fourth powers of 
8s2+40sZ-24£2, 6s2-44$Z-18*2, 14s2-4s*-42*2, 9s2-{-27£2, 4s2+12t2 equals 
(15s2-f45£2) .4 For 5 = 1, t=0, we get (2), which is believed to be the solution 
in least integers. 

For six biquadrates, add e4-}-/4 to each member of his239 identity (1) and 
take 3(3a2+£2)2 = e/. It remains to make e2+/2= □, say the square of 
1201(3a2-H2)/140, whence e = 7(3a2+£2)/20. Or we may take the sum of 
three of the six to be 

(4) Qa,b= (2a)4+(a+6)4 + (a—6)4=2 (3a2+62)2 

and the others to be the fourth powers of 6, 12, 13 or 26, 27, 42 and the 
sum of the six to be 154 or 454. 

For seven biquadrates, take Qa, b+d4+e4+(2g)4+g* = (3#, 3a2+62 = de, 
whence d2+e2=8gr2, which holds if e=+7d, g=-5d/2. Take d = y+a, 
6 = r?//£+2a. Then y — 2a(7t2—2rt) /(r2 — 712) and we have an answer. Or 
use Qa,b+Qdt c+34 = 54, which is satisfied if 3a2-h62=4, 3d2+e2 = 16; taking 
5=2—as it, 6 = 4 — dvjz, we get a, 5 in terms of s, t, and d, e in terms of v, z. 
Next, Qo, 6+Qd, e+24+14 = 34 if 3a2+62=4 = 3d2+e2 (like preceding case). 

m L’interm&iiaire des math., 5, 1898, 33. ~~ 
194 Math. Magazine, 2, 1904, 288-296. The editor Martin noted (p. 349 and in his 1900 

paper below) that this MS. had been long in the editor’s hands. 
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To find a sum of n biquadrates equal to a biquadrate for n = 9,10,11,12, 
multiply (3) by a suitable biquadrate and eliminate one biquadrate by 
use of one of the earlier results. Finally, given 

24+64+84+24+74+124 = 134, 2 + 6 = 8, 

we can find a, b so that 24+64+84 = a4+b4 +(a+6)4 = 2 (a2+a&+b2)2. Thus 
a2+a&+52 = 22 + 2*6 + 62 = 52, a = §(— b— V208 — 362). Set 5 = 2/+6, 

208—362 = — 3y2 — 362/+100 = (l0+^)2, 

whence we get y, b, a. Take $ = 2, t-1. Then 7y = —76, 7b =—34, 
7a=58 and 

(¥-)4+(¥)4+(¥)4+24+74+124 = 134. 

A. Martin197 employed methods admittedly similar to Haldeman’s, 
whose manuscript was in his hands, but found many new sets of biquadrates 
whose sum is a biquadrate. For 5 biquadrates, take 

Qa, 6 + 2/4 + 
which reduces to 2e(3a2+52) = y(y2~e2). First, take y~2e; then 

which for e = 2($2+3£2) leads to Haldeman’s (3). For y — 3e, we get a 
result equivalent to the last. The next solvable case is y — 8e, giving 

(12s2+120$£—3622)4+ (36s2+24s£— 10822)4+(16$2+48£2)4 

+ (24s2—96s£—72t2)4+ (63s2 +189£2)4 = (65s2+195£2)4. 

For 2/ = 13e, we get a similar formula. Next, let 

Qx, 1/+w4+24 = s4, 3 x2+y2 = wz. 

The first becomes w2Jrz2 = s2} whence take 2 = 2pq} w = p2—q2, s — p2-\-q2. 
The case p = 2, g = 1, leads to (3). Omitting the discussions found to be 
unfruitful, let p = r+2g, x = t+2q2. Then 

y2 — W2 _ 3^2 — 2gr3+12#2r2—3 t2+A} A = 22 q*r —12 q2t. 

Take A = 0, whence £= llgr/6. Set y = qrm/n. We get q in terms of m, n, 
whence 

(88n*a+2304n4)4+2 {(44n2±24mn)a+1152n4} 4+ (48n2/3)4 

+ (/32-576n4)4= (/32 + 576ti4)4, a' = 12m2-237i2, /3 = 12m2+25n2. 

In the Congress paper, on the contrary, he took t— —4# and found the special 
solution 24+134+324 + 344 + 844 = 854. For n biquadrates, 71 = 6, 7, 8, 11, 
he took 

Qa. &+24+74+124= 134, Qa. &+24+44+54+84= 94, 

Qa, &+Qc, d+54 + 64= 94, Qa, 5+Qc, d+Qe, /+74+l44 = 214, 
and found other sets by combination. 

197 Deux. CongrSs Internat. Math., 1900, Paris, 1902, 239-248. Reproduced with additions 
in Math. Mag., 2, 1910, 324-352. 
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E. Barbette198 used the final method of Martin194 to show that (2) is 
the only sum of distinct biquadrates ^144 equal to a biquadrate, and that 

45+55+65+75+95+ll5 = 125 

is the only sum of distinct fifth powers ^ll5 equal to a fifth power. 
R. Norrie199 found (in confirmation of Euler’s190 conjecture) 

(5) 3534 = 304+1204 + 2724+ 3154, 

by a series of special assumptions which lead to this single result. Next 

(P. 77), 
(u2+t?y = (w2-&Y+ (2m>)4+ (x+yY+ (x—yY+ (2y)A 

provided [see (4)] 
2 uv(u2 — v*) = z2+3y2. 

To solve the latter, set u—rxrj-2} v=l, x—rx2+3, y—rxz+1. Hence 

2^1^+ (12z2 —x\—3^3)r2+ (22xi—6z2 — 6x3)r=0. 

Equate the coefficient of r to zero. Then the equation gives r. For 6 
biquadrates (p. 80), use 

(X4+74)4= (X4- 74)4+(2XP)4+8X474(X8- 78), 

Xs — 78=2 (2xy)4 (z8 -j-16ys) (X4 + 74), X=x4+4 y\ 7=z4-4y4. 

From the latter, 

X2r+S- F^3-2(2x2/)4(x8+1%8)(X4+ 74) (X8+78) *. .(X2r+2+F2r+2), 

the second member being double the sum of 2r+2 biquadrates. Hence 
(X2r^2+ 72r+2)4 equals a sum of 2H*2+2 biquadrates. Returning to the 6 
biquadrate case, take x = uz, y = 2tf, whence a;8+162/8 equals the value of 

{63(b4—3c4) }4-{- {c3(c4—3b4) }4+ {25c(54—c4) }4(64+c4) 

+C “ (64+c4)4 

for b~u2, c=2tP. Thus we get a biquadrate expressible simultaneously 
as a sum of 6, 8 or 10 biquadrates. The sum of two of these biquadrates 
has the factor u8+16^, which as before can be replaced by the sum of four 
rational biquadrates. In this way we can assign a biquadrate which is a 
sum of any even number >4 of biquadrates. 

For 7 biquadrates (p. 84), take t—{x4+yA+^)j^ in 

(i+l)4-y~l)4+8«+8^ 

and set x=p2—q2, y~2pq+q2, z=2pq+p2. We get a relation between 
biquadrates, one with the coefficient 2, for which we substitute the sum of 
three rational biquadrates given by Gerardin’s208 (3). Again, 

{(s2+3y2)2+4z4}4- {(s2+3^)2-4z4}4+ (2zy {(s*+3y*)4+ (2^)4j {T+ (2yy) f 

where T- {x+y)4+(x--yy. But for any r^2, we can express T (in one 
of its two occurrences) as a sum of r biquadrates and hence obtain a bi- 

188 Les sommes de p-iemes puissances distinctes 6gales k une p-i&me puissance, Li&ge, 1910, 
133-146. 

188 University of St. Andrews 500th Anniversary Memorial Vol., Edinburgh, 1911, 89. 
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quadrate expressed as a sum of r+5 biquadrates. In fact, 

{6c3(r+2S)}4+(2c4S-54r)4={6c3(r~2S)}4+(2c4S+64r)4+(26cr)% 

where r = c8—68, 2 = 3t+a£H-\~%t 

Equal sums of biquadrates. 

A. Martin200 tabulated various sets of numbers having equal sums of 
fourth powers, as 1, 2, 9 and 3, 7, 8; 1, 9,10 and 5, 6,11; 1,11,12 and 4, 9, 
13; 1, 5, 8, 10 and 3, 11. 

C. B. Haldeman201 noted that the sums Qa, & and Qdt e of three biquadrates 
are equal if 3a2-h&2 = 3d2+e2. Taking e = b — v, we get b, e rationally in 
terms of a, d, v and see that 

(4avY+ (3a2 - 3d2 - 2av -1^)4+ (3a2 -3d2+2av - ^)4 

is unaltered by the interchange of a and d. For a = 1, d = v=2, we get 

84 + 94+174 = 34+134+164. 

Next, let 

whence &2=2V2/(4$2), M2 = d4—s4—12a2s2. Taking 

N—d2—2p2s2/ (3 q2), d = v+daq/p, 

we get a and d rationally. Or take N=d2—s2, whence d2=6a2+$2, set 
a = 2s+y and solve as usual. Again, 

Qa^+l^Qd.e+S* if 3a2+&2 = 7, 3d2+e2=3. 

Take a = l+z, d=\+y and solve as usual. Finally, to find a sum of four 
biquadrates equal to a sum of three, employ his239 identity (1) and equate 
the left member to Qm, n. The resulting condition, 3(3a2+^)2 = 3m2+n2 
is satisfied if 

A. Cunningham202 noted that XA+ F4+a^+24=X}+z}+2/J+2j follows by 
combining a solution of each of X4+F4=Xj+Fj, x*=x\-{-y\+z\. 
Again, xi+y*+2u\ = x\+y\+2u4‘ follows from 

£4+2/4+z4 = 2tt4, x\+y\+z\ = 2u\. 

(solved, Cunningham240) with u=A2-t-W2, Ui=Al+3B2u AB=AiBh whence 
Z=Zl. 

A. S. Werebrusow203 gave an incorrect proof of the impossibility of 
£4+2/4+z4=3u4 in relatively prime integers. 

200 Math. Magazine, 2, 1896, 183. 
201 Ibid., 2, 1904, 286-8. For the notation Q, see Haldeman196 (4). 
202 Messenger Math., 38, 1908-9, 103-4. 
203 L’interm&liaire des math., 15, 1908, 281. Cf. 16, 1909, 55, 208; 17, 1910, 279. 
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F. Ferrari204 noted the identity 

(a2+2 ac—26c —62)44- (62 — 26a — 2 ac—c2)4+(c2+2ab+26c—a2)4 

= 2(a2-h62+c2—ab+ac+bc)\ 
while TJ. Bird (ibid.) gave the identity 

[a(d+c)-6(c-3d)]4+[2(6c-ad)]4+[a(d-c)-6(c-3d)]4 
-[a(d-c)±6(c+3d)]4+[2(6c+ad)]4+Ca(d+c)+6(c-3d)]4, 

with the plus sign. A. Gdrardin (ibid., 19, 1912, 254) stated that the sign 
should be minus and gave other such identities. Welsch (ibid., 132, 184) 
gave another method of correcting the signs: retain the plus sign, but change 
the final term of the first member to — b(c+Sd). 

A. Cunningham205 found numbers expressible in several ways in the 
form x44~yi-\-z4 by use of x4+yi^2u2—z4, u—x2-\-xy+y2, z—x+y, and 
expressing this u in the form A2+3J32 in several ways. 

E. Miot206 stated that [The case b=c of Ferrari’s204 identity] 

(1) (4pg)4+ (3p2+2pg-Y)4+ (Zp2-2pq-q2)4 = 2(3p2+$2)4 

and noted cases when a sum of three squares equals a sum of three bi¬ 
quadrates and a sum of three eighth powers. Welsch207 stated that Miot’s 
solution is erroneous and noted that 

2a2 = (m2—2/2)2+ (^2 —^2)2+ (y2—^2)2 = (w4 — t;4) 2+ (w4—^4)2+ —^4)2 

always implies that 
2 a4 = 2 (x2 - y2)4 = 2(u4 - p4)4. 

A. Gerardin208 noted cases of two equal sums of three biquadrates and 
gave four methods of finding particular solutions of 

(2) x4+y4=z4+u4+v4, 

the fourth leading to the solution 

x = 128p9+p<f, y, z = 64p8# =F I2p4q*—g9, u = 3pq*, v = 12Sp9—2pq8. 

[It is expressed by the next identity with h=l,l=q, and p replaced by 2p.J 
He gave 16 identities which follow by a change of variable from 

(p9-4pCT)4+ (6ph2iy+h(pH+3hp4ls~4h2l9)4 

= (p9+2ph2l8)4+h(p8l - 3 kp4l5 - 4h2l9)4. 
In conclusion, he gave 

(3) (p2-$2)4+ (2 pq+q2)4+ (2 pq+p2)4 = 2 (p2+pq+q2)4. 

A. Martin209 gave (1) and (3). 
E. Miot210 noted the solution 37, 17; 35, 26, 3 of (2). 

204 L’intermediaire des math., 16, 1909, 83. 
*<* Math. Quest. Educ. Times, (2), 14, 1908, 83-4. Same in Mess. Math., 38,1908-9, 101-2. 
206 L’intermddiaire des math., 17, 1910, 214. 
207 Ibid., 18,1911, 64. 

208 Assoc, frany., 39, 1910, 1, 44-55. Same in Sphinx-Oedipe, 5, 1910, 180-6: 6, 1911, 3-6; 
8,1913,119. ’ 

209 Math. Magazine, 2,1910, 351. 
210 L’interm&iiaire des math., 18, 1911, 27-28. 
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R. Nome211 gave several methods to solve 

(4) x4+y4-)-z4 = u4+v4-)rw4. 

First, take x=rxi+a, y—rxo+b, z = rxz-\-c, u — rxi—a, v=rx2+c, w — rx5+b. 
We obtain a cubic in r whose constant term is zero. The coefficient of r 
will be zero if xz~x2+2xxa3/(63—c3). Then —r is the ratio of the coefficient 
of r2 to that of r3. Second, he noted that 

\x2yl(xt+2yt) }4+ {xiy\(x\-2y$) }4+ {2xiy\x\y2\4 

equals identically the sum derived by interchanging the subscripts 1, 2. 
Replacing si, yh x2, y* by their reciprocals and multiplying each root 
by (xiyix2y2)4, we obtain a new integral function which is added to the 
former. Hence 

{x2yl(x\+2y\) }4+ {xxy\{x\-2yt} }4+ {xly^^xt) }4+ [x\yi(y\-2x\)4 

is unaltered by the interchange of the subscripts 1, 2. Multiplying 

{x\+2yX)4 - (a* -2y\)4 - (2afo0<^(2xiyt)4 

by the identity derived by interchanging the subscripts, we get two equal 
sums of five biquadrates. The third method is really Haldeman’s201 
remark that Qy,x=Qv, «* if 3y2+x2=3v2+u2. The general solution of the 
latter is stated to be 

x, u= {(3\2dh 1)t; + (3X2T1)yj/(2X), 

where X is arbitrary. Again, x4+y4+ (x+y)4 is unaltered when x is replaced 
by (3x—5y) /7 and y by (5x+Sy) /7. Changing the sign of y and subtracting 
the new identity from the former, we get 

(7x+7y)4+ (3x-+5y)4+ (8a:-3y)4+(5® - Sy)4 

= (7x-7y)4+(3x-5y)4+(Sx+3yy+(5x+Sy)4. 

Finally there is given the identity, in which r = /x2c8—X258, 

X {5c3(Xjut+2y?vx4) )4+m(2n*vc4x4 — \2b4r)4 

= X [bcz(\fjLT — 2^vX4) }4+jjl(2y}vc4x4+x2b4r)4 + v{2\fdbcrx)4. 

If we replace vx4 by 2\zr1viXii--'Z\zt]K'y4i, we get a solution of 
r-f-2 s + 2 

(Xi = Mi, X2 = M2) • 
t=i »=i 

In the last, Norrie made the restrictions that s — r, m-vi, whence Xt=M*. 
A. G6rardin212 noted the identity 

(x4-2y4)4+ (2 x*y)4+ {3xf)4= (x4+2 y4)4+ (2xy*)4+ (xy*)4. 

E. N. Barisien213 noted the identity (1). 
G^rardin214 quoted his208 solutions of (2) involving two parameters with 

x=z+u and noted that (3) is simpler than Ferrari’s204 formula, which fol¬ 
lows by taking aJrc=p) 6+c= —q. 

211 University of St. Andrews 500th Anniversary, Edinburgh, 1911, 62-75. 
112 Bull. Soc. Philomathique, (10), 3, 1911, 236. 
“ Nouv. Ann. Math., (4), 11, 1911, 280-2. 
814 L'interm&liaire des math., 18, 1911, 200-1, 287-8. 
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“V. G. Tariste”215 noted that (3) is derived from Bini’s204 formula by 
equating to zero one of the six biquadrates. 

0. Birck216 stated that (3), viz./ 

x = — y=p2+pq-j-q2} z = p2—q2, u = q2+2pq, v= —p2~2pq7 

gives the most general solution of x+y=z+u+v=0 with either (2) or 
x2+y2=z2+u2+tP. He noted that 

74+284=34+204-f-264, 514+764=54+424+784. 

A. S. Werebrusow217 gave equal sums of three biquadrates involving 
many parameters and derived GSrardin's204 formulas by specialization. 
He218 gave 374+384=264+424+254 and eight more such sets. 

E. Fauquembergue219 gave the identity 

[2 (a2—/32) ]4+[/3 (4a—5/3) ]4 + (2a2—5a/3+2£2)4 = (2a:2—4aji3+3yS2)4+r2, 

where v=4a4—4a3/3+1 Zccff1—36a$3+24/34, and found five sets making □, 
all giving trivial solutions of (2). A. Tafelmacher220 drew the same con¬ 
clusion from a complete study of the identity derived by replacing a by 

L. Bastien221 stated a solution of -\~xt-yi-]-byi, n^2t 
Tfi ~3: 

Xi = pz(p4pV—8rp4), z2 = P3(p8o-+8rp4), Xi = %vp2iLzTCLi (f = 3, •••,?&), 

yi=p3(p4p4<r+8rp4), t/2 = J'3(pV-8r/i4), y^Svp^T^i (f = 3, 

7 “ ^8“P8J 05 + * * * -*  

ft. D. Carmichael222 noted that £4+p4+4z4 = f4 has the special solution 
xy t— p4:Jr2(T4, y=2pzo-, z = 2pcr3. Solutions involving two parameters are 
given for x4+ay4+azi=f and x4+?/4+a24=o^ if 2 or 8. Also, 

(&2—2&)4+(2&~-l)4+(&2“-l)4 = 2(A;2—-&+1)4, 

the case p = ky q = — 1, of (3). By Cunningham,173 x4+y4—4^+J4. 
A. S. Werebrusow223 tabulated all solutions, each ^50, of (4). 
E. Miot224 gave a solution of (4) involving a parameter; likewise for 

two equal sums of 4 or 5 biquadrates. 
Werebrusow225 noted that 

(a+x)4+(6+a;)4+(c-a:)4=(a~a:)4+(5~x)4+(c+x)4 
for 

a=pv+(s+Zt)U, b= (3s2t+lSst2+l$P)v+3tU, 

_c=(p+18*3>+(s+3*)H, x=3tV,_ 

m L’interm6diaire des math., 19, 1912, 183-4. 
218 Ibid., 255. 
217 Ibid., 20,1913, 105-6. 
218 Ibid., 58; error in fourth set, p. 301. 
™Ibid., 245. 
“°7bid., 21, 1914,59-62. 
m Sphinx-Oedipe, 8,1913,154r-5. 
223 Amer. Math. Monthly, 20,1913, 306-7. 
m L’intermddiaire des math., 21,1914, 153-5. 
^Ibid., 155-6. 
m Ibid., 23,1916, 223. Math. Sboraik. 
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where 

p=s3+9s2m8s£2, s3+12$22+Zbsi2+3b^=P2+Q2, (P2+QV= U2+V2. 

Relations involving both biquadrates and squares. 

Diophantus, V, 32, treated a^+^+z4^ by setting v—x2—k. Then 
x2 = (k2—yi—zi)l(2k). Take &=?/2+z2. Then x2 — y2z2l(y2+z2). Hence 
p2+z2 equals a square w2. For y = 3, z=4, we get &=25, a:=12/5. Dio- 
phantus' method thus leads to the identity (cf. Fauquembergue235) 

(yz)A+ (yw)4+ (zwYss (w4—y2z2)2, w2=y2+z2. 

Taking y — ab, z~bc, w = ac} we get [Norrie,211 p. 91] 

a4+ b4+c4 == (a2— b2+c2)2, a2b2+bV=a2c2. 

E. Waring226 reproduced Diophantus’ argument with k eliminated. 
F. Proth227 recalled that any prime N of the form 6x+1 is expressible in 

the form N~a2+b2+ab. Thus 2N=u2+b2+(a+b)2. By multiplication, 
22V2=a4+b4+(a+b)4, whence 

2(a2+ab+b2)2=a4+64+(a+b)4. 

It is stated that if N is of the form 6x+l, whether prime or not, 2N2 is a 
sum of three biquadrates [incorrect, Kempner42 of Ch.XXV, Diss., p. 44]. 
If N is expressible in two ways in the form a2+b2+ab, as 

91 = 52+62+5 • 6 = l+92+l -9, 

we get a number expressible as a sum of three biquadrates in two ways: 

2.912 = 54+ 64+ll4 = l4+94+104. 

S. Rgalis228 noted that z{+zt+zt = 3z2 if 

Zi = 5s+2a/3(2a2+5jS2) +9a2/32, z2 = 5s+2ap(5a2+2p2) +9a2p2, 

z, = 5s+16a/3 (a2+/32) +27a2/32, z = t {25t*+72a2p2(a+0)2}> 

where s=a4+04, t=a2ft2. 
G. Dostor229 gave the identity 

(a+b+c—d)4+(a+b—c+d)4+(a —h+c+d)4+(—a+b+c+d)4 

=4(a2+52+c2+d2)2+16[(a6—cd)2+(oc—6d)2+(ad—bc)2]. 

S. R6alis230 noted that v4+x4+y4=2z2 is satisfied if 

x = 2057a3—2541a2#+2787ajS2—391/33, 

y = 391 a8 - 2787a2/3-f2541a/32-2057jS3, 

t;= (2a+2/3) (391 a2—730aj(3+391 j32), 

whence for a=l, /3=0 or 1, 

464+1214+234=2 • 104672, 264+2394+2394=2 • 571232. 

** Meditationes Algebraicae, 1770, 194; ed. 3,1782, 325. 
m Nouv. Corresp. Math., 4, 1878, 179-181. 
**Ibid., 350. 
*» Archiv Math. Phys., 60, 1877, 445. 
**°Nouv. Corresp. Math., 6, 1880, 238-9. Misquoted, C. A. Laisant, Alg^bre, 1895, 221-2, 
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From a given solution is deduced a second by long formulas, whence 

l4+34+104=2*712, 74+74+124 = 2 • 1132, l4+l4 +24 = 2 - 32. 

A. Martin231 gave 9 biquadrates, 7204, • • •, 31204, whose sum is a square. 
Martin232, assuming that the sum of the fourth powers of x, x — ay, 

x~by, x—cy, is a square, obtained x/y = a/j3, where a and 0 are polynomials 

in a, b, c, and took x — a}y — i3. By the same method, he233 elsewhere found 
1994 + 2714+ 3434+5594 = 3441622. 

Martin and R. J. Adcock234 repeated the solution by Diophantus and 
stated that Diophantus’ result 124+154+204=4812 gives the least solution 
in integers. 

E. Fauquembergue235 noted that, if a2+(32 = y2, 

(a/3)4+ (/3y)4+ {yaY = (a4+a2/32+/34)2, 

(2a2/373)4+(2a/3V)4+C(ai!-/32)74]4+[2a)3(a4+74)]4=C712-4a;2A2(a4+^4)2J- 

These two formulas were given also by A. Martin.236 To find n biquadrates 
whose sum is a square, the latter took their roots to be x, x—ay, x—by, 
x—cy, piy, pn-iV- Then shall 

4x*-4(a+b+c)x3y+6(2a2)xy-4(2a3)xys+(2a4+ Sptjy4= □, 

say the square of 2x2—Ta-xy+i(62a2—(2a)3}y2. Thus xjy is determined. 
E. B. Escott237 noted that 

(m2+mn+n2)4 — (mn)4-(mn+n2)4 = [m(m+ri) {m2+mn+2n2) ]2. 

E. Fauquembergue238 gave identities including 

(a4+264)4 = (a4 - 264)4+ (2a36)4-f (8a266)2 

= (2a2fr2)4+ (2a36)4+ (a8-4a4t4-4&8)2. 

C. B. Haldeman239 found four biquadrates whose sum is a square: 

(2a)4+(a+b)4+(a-6)4+d4==2(3a2+&2)2+d4=52. 

Take s~d?+v, 3a?-j-b2 = vg. Then v, b2, s are determined rationally 
terms of d, g, a. Take g=2, a = 3/7. Then 62=4d2/7-27/49. Since b 
rational for d = 1, take d - y+1 and equate b to ry/t+1 /7, thus determining y. 
Then 

& = - (7r*-56rf+4*)/(7fc), (*h*-2rt+4P)lk, &=7r2-4*2. 

For 1, £=0, we get 24+44 + 64+ 74 = 632. Next, let the sum of the initial 
biquadrates equal 2s2. The condition is evidently satisfied if 

4t> 4v 

231 Annals of Math., 5, 1889-90, 112-3. 
232 Ibid., 6, 1891-2, 73. 
333 Amer. Math. Monthly, 1,1894, 401-2. 
2W Ibid., 279-80. 
735 Uinterm&iiaire des math., 1, 1894, 167 [6, 1899, 1863- 
234 Math. Magazine, 2, 1898, 210-1. 
137 L’interm^diaire des math., 6, 1899, 51. 
235 Ibid., 7, 1900, 412. 
239 Math. Magazine, 2, 1904, 285-6. 

.a-a 
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Take d?=2v, 3a2+b2=(t+b)2. Thus b, d, v are found rationally in terms 
of a, t, whence 

(1) (4aty+(3a2+2at - *2)4+(3a2 - 2at - *2)4+ (6a2+2£2)4 = 2 {3 (3a2-f *2)2}2. 

For a = l, t—2, we get 34+ 54 +84+144 = 2-1472. 
A. Cunningham240, to solve x4+y4+z?=2u2n, took as u any number of 

the form a2+3£2, whence u2n is of the form A2+3J32 and a solution is 
x—B—A, y=B4-A, z-2B. 

A. G&rardin241 noted that (l+^)4+(wy)4+(raz)4 = (l+2?rca02 if 

m2(x4+y4+z4) +4??ix3+2a;2 = 0. 

Its discriminant must be a square, say (2Sx)2, whence x4—y4—z4=2S2. Set 
S—zUy y2+kz2~x2. Then ky2-hi(h2—l)z2=U2. Hence the problem re¬ 
duces to a “ double equation,” that of making the two binary quadratics 
squares. 

E. N. Barisien242 noted the identity 

(2s2+a2)4+ (2s2-a2)4+ (4 ax)4 = (4z4+12aV+a4)2+(4^4 - 12a2s2+a4)2. 

Mehmed-Nadir243 gave two special sets of solutions of 

|(^4+2/4+24) — u2Jt^+u^—p2. 

A. Cunningham and E. Miot244 obtained solutions by use of the identity 

x4+y4+ (x+y)A=2(x2+xy+y2)2. 

A. G6rardin245 solved X4+ Y4+Z4=A2+B2 by use of the identity 

($a+qb)2+ (qa)2+(2pb)2 = (pa-qb)2+ (qa+2bp)2, 

setting q=a/2, p - 2bg2. It remains to solve ab( f2+2g2) = X2. For a=b = 1, 
we may take f~m2~2n2, X=m2+2n2, g=2mn. He noted (ibid., p. 90) that 

(a2+/52)4 - (a2- 02) 4 - (2o£)4=2 {2ap(«2 - 02)}2. 

R. Nome,199 pp. 90-92, would derive a second solution of 

xj+...+xi=x2 
from one solution ajd-ba4=a2 by setting Xi=rxi+ai, X—rty+rx+a, 
and making the coefficients of r and r2 zero by choice of y, x. To obtain an 
explicit solution when n>4, take t=x2+xy+y2 in (£2+z4)2=^+(z2)4+2£2z4, 
whence 2t2=x4+y4+(x+y)4- But x4+y* can be expressed as a sum of r 
biquadrates P, if r >2 [Norrie,199 end]. Hence 

{(x2+zy+y2)2+z4}2= (x2+xy+y2)4+(z2)4+ {z(x+y) }4+XXzPi)4. 
*=sl 

E. N. Barisien245a wrote Proth’s227 identity in the form 

a4+b4+(a4*b)4 s (a2+ab+b2)2+a262+a2(a+6)2 +- b2 (a+6)2. 

840 Messenger Math., 38, 1908-9, 101, 103. 
841 Bull. Soc. Philomathique, (10), 3, 1911, 239-240. 
wNouv. Ann. Math., (4), 11, 1911, 280-2. 
w L’interm&iiaire des math., 18, 1911, 217. 
844 Jhid., 19, 1912, 70-71. 
846 Sphinx-Oedipe, 6, 1911, 21-22. 
84541 Mathesis, (4), 4, 1914, 13. 
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R. D. Carmichael246 showed that one solution of x4+ay4+bz4~ □ leads 
to a second. 

E. N. Barisien247 noted that (a2+62)(c2+d2)(a2c2+62d2) equals 

{db^d2) P+ \cd(a2±b2) }2+(a2c2+52d2)2. 

Let N' be derived from N by interchanging c and d. Then NN* is a sum 
of nine squares in four ways, in two of which two of the nine squares are 
biquadrates. 

See papers 178, 188, 206-7, 219-20, 287-8, 292; also G^rardin, p. 38; 
Lucas88* of Ch. XXIII. 

Miscellaneous single equations op degree pour. 

C. Wolf248 treated x2y2+x2+y2=D. First, make x2y2+x2= □ , i.e., 
y2+l=tP=(t—y)2, whence y = (t2~I)/2l Since x2y2+x2=x2vlf it remains to 
make x2t?+y2— □, say (z—vx)2; we thus obtain x. 

L. Euler249 made P = (p2—q2) (q2—r2) a biquadrate by setting p=a+b+2c, 
q=a+b, r=a—b, whence P=16a6c(a+6+c). Consider therefore 

xyz(x+y+z)=s4. 
Take s4 = (x+y+z)2p2. Thus 

I>2=(a:+y)p2, D(x+p+2) =xp(^+p), D$2=xyp(x+y), D-zy—p1- 

Set x—nq2} y^nr2, nqr—p—k(q2+r2) and eliminate p. Thus 

s2 __n{—nqr+k(q2+r2)}__ 

k{—2nqrJrk{(fJrr2)} 

For n=2fc, F=2(q—r)2[(q2+r2—4gr). As Euler omitted the factor 2, it is 
not sufficient to make the denominator a square. Next, let n—k* Then 
F=(q2+r2—qr) / ($—r)2. Equate the numerator to the square of q+rf/g. 
Thus q : r~g2 —f2: g2Jr2fg. Or we may begin by taking p-2xy/(z+y)} 
whence $2=2xy (x+y)2l(x—y)2; take x — 2q2, q=r2 to make 2xy — □. 

Euler250 treated (p2+l)2+(g2+l)2= □ by setting 

p2+l = £2—y2, q2+l=z2xy, p=x—z. 

Thus 2zx=z2+y2+l. Take y = 2z. Then q2 = 10z2+l, which is satisfied 
by (*, q) = (2/3, 7/3), (2/9, 11/9), (6, 19). 

Euler251 treated Ll= □, where L-A+Bz+Cz2, l=a+bz+cz2. Take 
LI=pH2. Then L—p2ly which can be solved if one solution is known. 

J. L. Lagrange252 treated the more general problem to solve 

Ffa, y)=f(x)+s(x)y+cy2=0, 

where / is of the fourth degree and s of the second. If F(p, g) = 0, set 

448 Diophantine Analysis, 1915, 44. 
447 Nouv. Ann. Math., (4), 16, 1916, 390-1. 
448 Elements Matheseos TJniversae, Halae, 1, 1742, 380. 
449 Opera postuma, 1, 1862, 239 (about 1769). Extract in Bull. Soc. Philomathique, (10), 3, 

1911, 240-3. Cf. Euler,187 Geiardin,** Kommerell.270 
450 Opera postuma, 1,1862, 215-6 (about 1774). 
mIbid., 218-9 (about 1777). 
*“ Nouv. M6m. Acad. Sc. Berlin, ann6e 1777, 1779; Oeuvres, IV, 397. 
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z=p+t, y = q+te. After dividing by t, we obtain B+Cz+tQ=0, where Q 
is quadratic in t and z, while B and C are constants. From the solution 
t=0, z=—BIC of this cubic, we obtain a second by the tangent method. 

Euler263 treated as two separate problems the solution of 

V * —2 x2y2—2 x2z2—2y2z2dz2(x2vi+y2vi+z2tP) = 0, 

Then 
x2y2^z2tf = \(x2+y2--z2div2i)2i 

The left members will be squares if 

xy __p2±r2 

zv 2pr 7 
whence 

x2jry2—z2zizvl _zv(p2zFr2) 

2 2pr , 

(1) 

(2) 

x2z2zFt/V= |(x2+z2—y2dzv1)2. 

xz_q2dzs2 

yv 2qs 7 

x2+z2—y2zkvi _yv(q2zF$2) 

2 2 qs 

From (1) we obtain x2/v2 and y2jz2 by multiplication and division. Hence 
we have values a, b, c, d for which x~at, v=bt, y=cu, z~ du. Then (2) give 

(a?zbb2)t2+ (c2—d?)u2=2mbdtui (a2zkb2)t2~ (c2—d2)u2=2nbctu, 

p2=Fr2 
***— n— . 

2pr 2qs 

By subtraction, we get t/u. Hence we take 

i=c?—d2, u=b(md—nc) 

and obtain x, y} v, z. Changing the sign of n, we obtain a second set of 
solutions. Rational solutions result only when the product of the right 
members of (1) is a rational square. For the upper signs, take p=2fg, 
r —p—g2} q—2hk, s = /i2—k2. Then the condition is 

fg(P-g2)-hk(h2-k2) = n. 

It is the square of 3mnfg(f-g) for 

h = g, k—f—gy /=2m2~n2, g = m2+n\ 

See Euler81 of Ch. XVI. 
Euler254 used the preceding V+=F to find x2, • • •, v2 such that 

a^x2y2—z2v2, p^z2x2—y2v*, ^=y2z2—x2vl 

shall be squares. We have 

F+4a = (x2+y2-z2+vi)2, F+40= (x^-y^tf)2, 

F+47=(2/2+22-x2+v2)2. 

Hence we seek solutions of F=0. Solving the latter for x2 we get 

i?+2T, T2=y2(z2 -t?) -zV. 

Now z2—u2 = □ for 2 = 5, v=3, whence T2=1 6t/2—225 = (4y—Q2 if 

y=*(225+t2)l(8t). 

g2=Fs2 

*» Acta Acad. Petrop., 2, II, 1781 (1778), 85; Comm. Arith., II, 366; Op. Om., (1), III, 429. 
3W Opera postuma, 1,1862, 257-8 (about 1782). For sums, instead of differences, see Euler*1 

of Ch. XVI. 



Taking £=5, we get — 25/4, T=20, x=39/4. Multiplying the unknowns 
by 4, we get the solution 2 = 39, y — 25, z = 20, t>=12. Or we may solve 
F=0 for ?;2 and get v2~2S—x2—y2~z2, S2=x2y2+x2z2-\-y2z2. Set S~xy+te. 
Then 

z=2 txy/ky S=2t/(22+?/2+£2) /&, Jc=x2+y2—£2. 

Then v2 is a complicated function of degree 6 and was not treated. A 
solution is said to result from £=185/153. For £=13/3, 2=5, y=4, we get 
the above solution x = 39, etc. 

C. F. Kausler255 treated the problem to find all rational numbers 2, y 
for which N=(x2~l)(y2—1) is an integer. Set y—p/q, where p and q are 
relatively prime integers. The numerator and denominator of the resulting 
fraction for 22 are (N—l)q2+p2=mP2 and p2—q2 = mQ2. For m = 1, the 
latter gives p = (A2-\-B2)ld, q=(A2—B2)/d, where A, B are relatively prime, 
one even or both odd according as d=1 or 2. The first condition then gives 
N which is an integer for d—1 if P±l2AB is divisible by (A2—B2)2. For 
m> 1, p+q—mQ, m or Q2, the last two yielding (as far as numbers <100) 
only the same values of N as above. For p+q=mQ, then p—q = Q and, 
dropping the common factor Q/2 in p, g, we have p = m+l, g = m—1, m 
even, A=m(P2—4)/(m—l)2. Then PrF2=JR(m—l)2, whence 

A = mP[(m-l)2P±4]. 

G. Eisenstein256 considered a binary cubic whose coefficients are variables. 
Its discriminant D is a quartic in these four variables. Given one solution 
of D=constant, we can find an infinitude of solutions by means of the 
formulas for the coefficients of the cubic obtained by a linear transformation 
of determinant unity. 

V. A. Lebesgue257 noted that 

a^+bV+c2^- 26cwV - 2acv2P-2ab?u2=s2 
is satisfied identically by 

£=2 (by2 ~cz2), u=y (cz2—ax2), v~z (ax2—by2), 

with s the product of the binomials, and by 

t=x(cy2—bz2), u=y(az2—cx2), v=z(bx2—ay2). 

Several258 found two numbers whose sum equals the difference of their 
fourth powers. Let the numbers be (n±l)2. Then 2= (4rt2+4)~1/3 is 
rational if n=±l. Hence set n=m+l. Then 2=A~1/3, N~(pm+2)3 if 
p = 2/3,972 = 9/2. 

E. Lucas259 stated that the difference of two consecutive cubes is never 
a biquadrate. Moret-Blanc75 noted that 322+32+l 4=z4 since 4z4—1+3£2. 

D. S. Hart260 found rational numbers a, b, 2 for which 

424+4a23+4&24-a&=0. 

245 Nova Acta Acad. Petrop., 15, ad annos 1799-1802, 1806, 116-45. 
256 Jour, fur Math., 27, 1844, 76. 
257 Comptes Rendus Paris, 59,1864, 1069. 
268 Math. Quest. Educ. Times, 2, 1865, 77; cf. (2), 4, 1903, 68-9. 
348 Recherckes sur l’andyse inddterminde73,1873, 92; extract in Mathesis, 8,1888, 21. 
340 Math. Quest. Educ. Times, 24, 1876, 35-36. 
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Take (2x2+ax)2~(ax--b)2. We get x rationally and a condition on a, by 
which is solved for a. Take b= —m2/2, whence a follows rationally. 

A. Desboves261 gave identities yielding an infinitude of solutions of 
axs+by3=cv4 for certain values of c. He262 noted that aX4+bY4^cZz for 

X=x(3 ax4—bby4), Y=yibax4—3 by4), Z=ax4+by4, 

c = 81a2a^—158aforV+81&V> 

and gave long formulas yielding solutions of aX4+bY4=cZ4 when c is 
represented by a certain form of degree 20. Further, X4—Y4~cZ4 is 
solvable when c is of one of the forms 

zy(x2+4cy2), ic8+4t/8, 2xy(x2—y2) (x4+y4—6x2y2). 

S. R^alis263 gave various quartic equations not having a rational root, as 

x4-2o^x2+4a^x+a4+^2 = 0, 04=0, 04=±4o:2; 

(x2+2ax+2p2)2+2^2x2=5(a^+p2x2+2ap2x-M, 0+0 (mod 5). 

Several264 solved x3+y3 = (x—y)4. Set x+y=u, x—y—z. Then 

4z4-~3u22—u3, Sz2=u(3+r), r2= 16^+9. 

Set r2 = (8i±3)2. Hence there are two types of solutions. 
It. W. D. Christie266 made 12a5c(<z+6+c) a square, but not a biquadrate 

as claimed. A. G^rardin266 noted that it is a biquadrate for (a, b, c) = (1, 2, 
6), (3, 4, 9), etc. 

E. Grigorief267 noted that ll4 = 123+173 +203. P. F. Teilhet268 gave 
cases of x4=y\+y\+y\ for x=3, 10, 17, 20, 29, 36, 43, 55, 62. He269 noted 
that 

74=123+122+ 232 = 83 + 402+172 = 53+402+ 262, 

84=143+ 342+142=123 +482 +82=three such sums. 

K. Kommerell270 gave as the positive integral solutions of 

xyz(x+y-z)=t2, 

x=iT~ia(d2y1-e2zi)) y=ad?yh z = ae2zh t^adey^U, 

where yh zx ,are without square factors, d2yx is relatively prime to e2zi, and 
T2—4t/iZi U2=a2(d2y i—e2Zi)2. 

A. Hurwitz271 proved that xPy+ifz+ztx^O is impossible since 

u7+v7+w7 = 0 
is impossible. 

» Nouv. Ann Math., (2), 18, 1879, 408. 
*» Ibid., 440-4. 

Ibid., (3), 2,1883, 370; 4, 1885, 376, 427-31; Matlicsis, 7, 1887, 96; Jour, de math. sp£c., 
1888, 90 (and questions 66, 67). Reprinted, C. A. Laisant’s Alg&bre, 1895, 224r-6. 

261 Zeitschr. Math. Naturw. Unterricht, 20, 1889, 264^5. 
*“ Educ. Times, 49, 1896. 
** Bull. Soc. Philomathique, (10), 3, 1911, 244. 
**T L’interm^diaire des math., 9, 1902, 319, 
™*Ibid., 10, 1903, 170-1. 
™Ibid., 11, 1904, 18. 

273 Math. Naturw. Mitteilungen, Stuttgart, (2), 7, 1905, 74-8. Cf. Brehm,*5 Euler**; 
also papers 12, 22 of Ch. V. 

871 Math. Annalen, 65, 1908, 428-30. Generalization, Hurwitz,*12 Ch. XXVI. 
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F. L. Griffin and G. B. M. Zerr272 made a sum of n squares a biquadrate. 
A. G&ardin278 noted that s4 is divisible by s3, where 

«»»W4)*+(^+W-(?f4+3f)n. 
For/=l, the quotient is —4175. E. Fauquembergue noted also that 

54+34—64=59(53+33~63), 54+64—74=240 (5s+63—7s). 

A. Cunningham274 expressed numbers in the form (x?+y6)/(x2+y2) in 
several ways. 

A. Cunningham275 found certain types of solutions of 

/(*, 2/)+/(*', y')=s(f, i»)+«(r, V), /(*, v) •& n) - 

and (pp. 111-2) of s(x, y)-s(x9 z), 6^2/= □, ?/+z. He276 gave various 
criteria for the solvability of ztN=x\—2y\=z*—2y\) 1 (mod 8). 
He discussed (p. 108) qiqiqi — □, where qr—x*r+yi. He277 proved the 
existence of an infinitude of integral solutions of F(x, y) =F(x', yf) for each 
ajk, where 

F(x, y)~ax*+4ax?y+kxzy2+4iaxy3+ayi. 

If (k+10a)l(k—6a) is a rational square, F(x, y) is a product of two factors. 
If (pp. 94—95) either of (2a=F25+c)(12a—2c) is of the form —a2—/32, 

<j>(x, y)^ax?+ba?y+cx2y2+bxy$+ay*== <j>(x', y’) 

is usually solvable in integers. Certain numbers (pp. 39-40) can be 
expressed simultaneously in the forms 

x\-yi 
n2 

zl+xl 23+y& zi+yi+zl 
*i-Vi " "*+<*' "T3 *+y*’ XT4 

and Ar;/3, A;/3, A;/3, Al/3, where N[ = (rci3—2/i3)/(^i - y,), etc. He278 con¬ 
sidered numbers expressible in two or four of the forms db(r4—2y2), 
zk(x2—2yi). He279 showed that certain binary quartic functions of four 
pairs of variables are equal for an infinite of set of values, by use of the 
above276 $(£, rj). 

He280 solved Ni+Nt-Nz+N*, where iVr=(a;*—yl)l(xr—yr)* 
He281 gave a method to solve z?y—xy*~a. 
H. B. Mathieu282 noted that each triangular number which is a square 

yields a solution of x?+y2=z\ Thus, A49=352 gives 

Aj, — A?8=493, 498+11762=354. 

372 Amer. Math. Monthlv, 17, 1910,147-8. 
378 Sphinx-Oedipe, 1906-7, 159-160. 
374 Mess. Math., 39,1909-10, 97-128; 40, 1910-11, 1-36. 
375 Math. Quest. Educ. Times, (2), 16, 1909, 75. 
376 Ibid., (2), 17, 1910, 66-7. 
377 Ibid., (2), 19, 1911, 27-28. 
*7S 7Ktf.f (2), 22, 1912, 40-41, 107-9 ; 23, 1913, 62-6. 
879 IUd., (2), 21, 1912, 89-90, 103-4. 
380 Ibid., (2), 26, 1914, 60. 
311 Ibid., (2), 27, 1915, 74H>. 
333 L,interm6diaire des math., 19, 1912,129. 
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L. Aubry and H. Brocard283 solved 2x2y2+l=x2+y2+z2 for y = 4. 
Aubry284 gave a solution involving three parameters of 

yiyl+ylyl+y\y\-y^ymyi=0. 
Brehm285 solved xyz(x+y—z)=t2 in integers. Set tq=xyp, where p and 

q are relatively prime integers. Then the equation gives s(x+y—z) =rp2x, 
ys=rq2z, where r and s are relatively prime integers. Hence x, y, t are 
expressed in terms of t 

E. Swift286 proved that x4—2/4=23 is impossible for x prime to y. 
It. D. Carmichael287 noted that if x0, y0y u0, v0 give a solution of 

zi+ay*=u2+bvt, 

we can deduce a second solution [after performing the operations]: 

x—x$—ayl+bv20, y = 2xQyQu^ bv20), v=Ax\u\v 0. 

F. L. Carmichael288 obtained the solution 

x~ul+bvl—ab2vl—abh22, y—2bv2 (m2+2mn—(6+ah2+abz)n2}, 
u = u\—bv\+ay\—abw\y v=2uiVi+2ayiWi, 

where 
ui = u]—bv\—ab2v 2—abzv\, Vi=2u2v2, yi = 2b2v22i Wi=2bv\} 

u2=m2+(6+o52+o58)n2, v2=2mn+2n2; 

also two simpler solutions, as well as solutions when a/6= □, a = 0 or 6 = 0. 
L. Bastien and L. Aubry289 found the general solution of 

X2 __ (y2 _ # 

Several290 treated x*-yi=a?-\- bz. 
A. G4rardin291 discussed x2+y2+z2=kxyz2. 
A. Cunningham292 treated a2+52 = c4+2d2, for b and c given. 
L. Aubry2920 solved (x2~y2)(x2+2y2) *=x2—2y2. 
G6rardin167 of Ch. IV solved xi+6x2y2+y4=a4+6a2£2+jS4. On equa¬ 

tions quadratic in x and in y, see note 145. On pq(mp2+nq2) = rs(mr2+ns2), 
see papers 168,170, 174, 181. 

To FIND n NUMBERS WHOSE SUM IS A SQUARE AND SUM OF SQUARES IS A 

BIQUADRATE. 

For the case n=2, see papers 37-63. 
G. W. Leibniz298 considered the case n=3. 

*** L’interm&iiaire des math., 19, 1912, 157-9, 3 (for special solutions). 
384 Ibid., 20, 1913, 95. 
** Math. Naturw. Mitt., (2), 15, 1913, 20-21. a. Kommerell.270 
IM Amer. Math. Monthly, 22, 1915, 70-1. 
387 Diophantine Analysis, 1915, 40-8. 
188 Amer. Math. Monthly, 23, 1916, 321-9. 
t8a L’interm&liaire des math., 23, 1916, 36-8. 
M0 JMd., 123-4; 24, 1917, 66, 88, 133-4. 
191 Ibid., 24, 1917, 32. 
"“Ibid., 143-4. 

Ibid., 26, 1919, 150-2. 
*M MS. in Bibliothek Hannover, about 1676. Cf. D. Mahnke, Bibliotheca Math., (3), 13, 

1912-3, 39. J. Wallis, Opera Math., 3,1699,618, quoted a letter from Leibniz to Olden¬ 
burg, Oct. 26, 1674, in which this problem is mentioned (Bull. Bibl. Storia Sc. Mat. e 
Fis., 12, 1879, 519). 
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L. Euler294 required four positive integers whose sum and sum of squares 
are-biquadrates. He took them to be £ = a2+62+c2—d2, y=2ad, z—2bd, 
t>=2cd. Then 2£2= (2a2)2. Set a=p2+q2+r2—s2, b=2ps, c ~ 2qs, d=2r$. 
Then 2a2 = (2p2)2. It remains to make 2x= D2. Take p=s—g+fr. Then 

Viz = 2q2—3 qr—2 qs++5 rs+2s2, 

which for q~r+t will be the square of 3r/2 —u if 

(£+3s+3ti)r= u2—2t2+2ts—2s2. 

For q=r=2, s=9, p = 10, we get £=409, y —24, 2 = 160, t;=32, Xx—54, 
lx2-21i. Euler gave a similar treatment of the problem in five integers. 

Euler55 (first paper of 1780) treated the problem for n=3, 4, 5 and 
obtained the sets 8, 49, 64; 320, 400, 961; 16, 48,104,193; 32, 32, 88,137; 
16, 16, 32, 72, 89; 64, 152, 409; 17424, 108864, 580993, the last two sets 
having also the sum a biquadrate. 

J. Cunliffe294a took x2, 2xy, 2y2 as the n—3 numbers, the sum of their 
squares being (x2+2y2)2. Their sum is the square of ry—x if y=2r+2, 
x=r2—2. For r=t>—3, x2+2y2=(v2—6v~9)2if ^=28/5. 

Walmond and Mason295 wrote x4 for the biquadrate. Take r= V4s-5, 
2r—l and x2—2 as the n=3 numbers, their sum being (£+l)2if r—3 = 1, 
whence £=21/4. For n=4, take r=V6a?—6, £—2, £—1, £2—1, whose 
sum = (£+l)2 if r—4 = 1, £=31/6. For n—5, take r= ^4x—12, x+1, £—1, 
2£—1, £2—3, whose sum = (£+2)2 if r~4=4, £=19. 

S. Bills296 employed the identity of Aida59 of Ch. IX: 

uf H-h'uJ =(«;?+••• + vl)2, Ui = v\H— • + t£_i — vl, 
Ui=2vnVi-i (i = 2, ---jn), 

vU-h -bs2)2, t?i=£?H-hxLi -a:2, 

=2£n£i__i (t=2, • • •, n). 
The remaining condition -h^«= □ becomes a quartic in xn which 
is equated to the square of £2+2£„_i£n+£?-f-h*£-i* Hence 

£n = r—§£»-i, 
where r=£XH-b£n~2. 

A. B. Evans297 used the numbers x, aiy, * • •, an~iy and wrote 

w=a24-hctn-i, t>=a2H-haLi- 

Take x=a2—py. Then £2+(ui+v)t/2=a4 determines y rationally. Hence 
a^(a\+v+p2)^x+(a,x-{ m)y]= (a?+pax+5)2, b=pyiJrv—%p2J determines ax 
rationally. 

D. S. Hart298 used the numbers px2—ax, px2+ax, • • •, Nx2—Zx, Nx2-\-Zx 
and, if n is odd, Sx2. Equating the sum of their squares to (xm/n)4, we get £2. 

,M Opera postuma, 1, 1862, 255 (about 1782). 
^New Series of Math. Repository (ed., T. Leyboum, 3, 1814,1, 79-80. 
m Ladies’ Diary, 1827, 36-7, Quest. 1452. Reference was made to ♦F&ussac, Bull, des Sc. 

Math., HI, 276. 
w Math. Quest. Educ. Times, 18, 1873, 104-5. 
M Ibid., 22,1875,69-71. 
™Ibid., 24,1876, 55-57. 



Examples for n=4, • • *, n=7 are deduced. To proceed otherwise when 
n=3, employ the numbers 2rap, 2rp, m2+r2—p2. Their sum is the square 
of m—r+p if ra= (p2—2rp)/r. Then the sum of their squares equals 
(m2+r2~bp2)2 and is a biquadrate if 

r2(ra2+?*2+p2) =p4H— • =(p2—2rp+r2)2, 

whence p=4r, ra=8r, and the desired numbers are 64r2, 8r2, 49r2. A. 
Martin employed 2a<$(i = 1, • • •, n—1), a?H-baLi —s2 as the n numbers 
and wrote m=a2-{-bfln-i* Then shall 

2oiS+2?72s4-a2--b * * • ~bu2_i — s2=A2, Gi-b • * *~bfln—i"bs2=J52. 

Take s~A—B, 2ai+2m—2$~A+B. Then either of the preceding equa¬ 
tions gives oi. 

R. Goormaghtigh299 discussed (x+y+z)2=x2+y2+z2=MA. 

Miscellaneous systems of equations of degree four. 

Diophantus, V, 5, found three squares such that the product of any two 
added either to the sum of the same two or to the remaining one gives a 
square (cf. Fermat100 of Ch. XIX). 

J. Prestet300 found three squares such that the product of any two added 
to the product of a given square a2 by either the sum of those two or the 
remaining one gives a square. For a=3, he found 25, 64, 196. 

Beha-Eddin801 (1547-1622) included, among seven problems remaining 
unsolved from former times, 

Prob. 1: £+2/= 10, (x+xl12)(t/+y1/2) = given; 

Prob. 5: x+y-10, -+-=rc. 
y x 

Fermat302 noted that xA—y4 is a cube and x—y = 1 if x = 13/22, y = —9/22, 
while positive solutions can be found by setting x=z+13/22, y=z—9/22. 

L. Euler303 required three numbers x, y, z such that k=x2y2+x2+y2, 
x2z2+x2+z2, y2z2+y2-\-z2, x^+z2, x2z2+y2, y2z2+x2} s^zx^+xW+yW, s+x2 
+y2+z2 shall be all squares. He took z2=x2Ay2+l+2^Ik. For y=x+l 
we have k = w2, z2=4w, where w=x2+x+1. Now □ = (t—x)2 for 
x = (t2 — 1)l(2t+l). Then the solutions are 

^2-l _f+2t _2t2+2t+2 

2^+1’ ^ 2t+V 2i~bl 

Euler304 treated the three problems to make (i) AB and AC squares; 
(ii) BC a square; (iii) B and C squares, where 

A=x2+y2, B = t2x2-\-u2y2, C=u2x2+t2y2. 

888 L’intenn6diaire des math., 25, 1918, 17-18. 
800 Elemens des Math., Paris, 1675, 331. 
801 Essenz der Rechenkunst von Mohammed Beha-eddin ben Alhossain aus Amul, arabisch 

u. deutsch von G. H. F. Nesselmann, Berlin, 1843, 55-6. French transl. by A. Marre, 
Nouv. Ann. Math., 5,1846, 313. Cf. A. Genocchi, Annali di Sc. Mat. e Fis., 6,1855,297. 

808 Oeuvres, I, 300-1; French transl., Ill, 248-9. Observation on Diophantus, IV, 12. 
808 Novi Comm. Acad. Petrop., 6, 1756, 85; Comm. Arith., I, 258; Op. Om., (1), II, 426. 
804 Novi Comm. Acad. Petrop., 20,1775 (1773), 48; Comm. Arith., 1,444; Op. Om., (1), III, 4jo. 



It suffices to treat the case in which x and y are relatively prime, also t 
and u. For problem305 (i), AB is the square of Axy(p2+q2) if 

i~xy(p2—q2) +2 y^pq, v =£p(p2—g2) —2 x2pq. 

Then C is found to have the factor A, so that AC = □ if 

4 p2q2x*—4pg(p2—q2)x?y+(p4 — 6p2g2+q4)x2y2+4pg (p2—q^xy*+4p2gV=Q2* 

Taking Q = 2pgx2—(p2—g2)£P“2pgp2+op2, we have 

a (a—4pg)p2—2a(p2—g2)£p+4pg(a:—pg)x2 = 0. 

For a=4pg, we obtain the solution 

s=2(p2-g2), p=3pg, * = 3(p4+p2g2+g4), u=(p2-g2)2. 

For a=pg, we obtain a similar solution. For a = =F2p2, we get 

z=p(p±2g), ^=p(2pdbg)(p2db2pg+3g2), 

P = g(2p±g), g(p±2g)(g2±2pg+3p2). 

For problem (ii)r BC is a square if £=3, p=5, £=11, w=45, or if 

x=3n4+QmV—m4, y — 3m4 + 6m2?i2 — ?i4, t~mx, u=ny. 

For problem (iii), we apply the last solution with m2+n2 = □. 
Euler306 required four numbers the four elementary symmetric functions 

of which are squares. For the numbers Mab, Mbc, Med, Mda the conditions 
reduce to 

abed= □, 6d(a2+c2)+ac(&+d)2 = □, M = (ab+bc+cd+da)//2* 

Finding the second condition impossible if bjd=2or 3, Euler took b/d~p2/q2. 
Then must p2g2(a2+c2)+ac(p2-f g2)2 be a square, say that of pqa+cm/n. 
Thus ajc is found, and we readily form the condition that ac and hence 
abed shall be a square. By trial Euler found the two solutions807 a=64, 
5=9, d=4, c=49 or 289, M = 1469 or 4589; also one of another type: 
a=16, b=b, e=5, d=4,jf = 3, M=21. He discussed at length the problem 
to find b, d such that the initial second condition can be satisfied by choice 
of a, c. 

Euler308 treated x2+y2+z2= □, x2y2Jrx2z2+y2# — □. The first is satis¬ 
fied if x=p2+g2—r2, y—2pr, z = 2gr. The second then becomes 

(1) (p2+g2)(p2+g2~r2)2+4p2g2r2= □. 

Set n—{p—r)jq and eliminate r. Then shall 

(p2_|_g2) {2np+(l~n2)g}2+4p2(p~ng)2= □ = jft2. 

Set R = (1 —n2)q2+2npq+ap2. The terms in p2g2 cancel if 

2(1 —n2)a = 1 +2n2+n4. 

aw F. van Schooten had proposed to find rational sides of a triangle given the base o, altitude 
h and ratio m :n of the other sides (mz, m). Thus b=2mnxy, a = (to* —ns) (s* -f-y1), 
z2=(xs+y*) [(mdbn)2xi-|- (m.=F7i)3j/J]j falling under problem (i). The simplest solution 
is x=3, y=5, to =28, n=17, n=33, & =28. 

306 Novi Comm. Acad. Petrop., 17, 1772, 24; Comm. Arith., I, 450; Op. Om., (1), in, 172. 
807 Reproduced by A. G6rardin, Pintermddiaire des math., 16, 1909, 105-6. 
*°» Acta Acad. Petrop., 3,1, 1782 (1779), 30; Comm. Arith., II, 457; Op. Om., (1), III, 453. 
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From the linear relation between p4 and p3g, we get 

p : q = 8n(l—n2) : 5 —10n2+n4. 

J. A. Euler309 treated his father’s308 problem. Multiply 

(p2-l)2+4p2=(p2+l)2 

by 4q2 and the like identity in q by (p2+l)2 and add. Thus 

(32-l)2(p2+l)2+452(p2-l)2+16pY = (p2+l)2(32+l)2. 

Hence we have three squares whose sum is a square. The sum of their 
products by twos is 4q2 times 

(q2 - l)2(p2+l)4+16pY(p2~ l)2. 

This is to be made a square. Set A = (p2+1)2, J3 = 4p(p2 — 1). Then 
(q2—l)2A2+q2B2 is to be a square, say (Aq2+v)2. Then q2 = (A2—tP)[d, 
where d^2A2~B2+2Av. Take v*=A2—B2. Then d is the square of 
A+v. Now A2—B2 = (p4 — 6p2+1)2. Hence 

B 4p(p2—l) _ 2p 

^ A+v 2p4—4p2+2 p2 —T 

Hence, after multiplication by (p2—l)2, we have the solution 

x = (6p2 - p4— 1) (p2+1), p=4p(p2—l)2, z = 8p2(p2—1), 

2x2 = (p2+1)6, Zx2y2=16p2(p2 - l)2[(p2 -1)4+ 16p4]2. 

For p = 2, we get 35, 72, 96. Next (p. 47) let x~am, y~bm, z — cn, where 
a2+b2=c2, m~ 2pq, n~p2—q2. Then 

'Zx2=c2(p2+g2)2, Zx2y2 = m2[4a252p2g2+c4(p2—£2)2]. 

The latter is the square of m(a4+bi) if p=a, g=5. Then 

x=2a2bj y = 2ab2f z=c(a2—b2) (a2+b2=cP) 

is a solution. It may be obtained by using his father’s notations and 
assuming that p2+q2 = c2. Then the condition (1) becomes 

c2 (c2—r2)2+4p2g2r2 = □, 

which is satisfied if r — cp/q, since the left member becomes c2(pi+q4)2/q4. 
The problem8090 to find four integers whose sum is a biquadrate and sum 

of any two a square reduces to finding a biquadrate n4 which is a sum of 
two squares in three ways. Take as n a product of two or more primes 
4Jc+l. 

J. Cunliffe809* noted that the problem to find three positive integers 
whose sum is a square and sums by twos are biquadrates is evidently 
equivalent to that to find three biquadrates half of whose sum is a square 
and the sum of aDy two exceeds the remaining one. Half the sum of the 
fourth powers of m+n+svy m+rv} n+t’(r+s) is A2+2Bv-\— • +aV, where 

*08 Acta Acad. Petrop., pro anno 1779, I, 1782, M&n., pp. 40-48. 
Ma New Series of Math. Repository (ed., T. Leybourn), 1, 1806,1, 59-61. 
** Ibid.j 2, 1809,1, 178-9. If we wave the condition that the numbers be positive, we may 

use the biquadrates m4, n4, (m+n)A, half of whose sum is (w^-bmn-f n*)*. 



KJt xxioxujxx ux xja.ui ur x'i ujMLBJtixvo. Lv^nAr. iwviJi 

A=m2+mn+n2, B = s(m+n)3+m3r+n8(r+$), a=r2+rs+s2. Equate it to 
the square of A+vB/A^av* to get v rationally. 

Several310 found 7 numbers in arithmetical progression the sum of whose 
cubes is a biquadrate. Let nx~3x, nx—2x, • • *, nx+Zx be the numbers. 
Equating the sum of their cubes 7nzxZJr$Anxz to we get x. Or use 
x, • • •, 7x} the sum of whose cubes is 784x3. 

To find a rectangular parallelopiped whose edges, sum of edges, and 
sum of faces, are rational squares, several311 took x2, y2, z2 as the adjacent 
edges, and x2+y2+z2 = (x+y~z)2y whence z—xy/(x+y)- Then 

S=2x2y2+2x2z2+2 y2z2 = □ 
if x2+xy-{-y2~ □ = (rx~y)2, which gives x/y. C. Wilder took S=Am2y2z2 
[printed S = 4m2], and x2=myz (2—a2) /(2o). Then 

'Zx2=x2+ (2m2—l)y2z2jx2 = □ 
if 

1 = □ = 
a(62+l) 

m~6(2+a2)* 

Eliminating m from the assumed expression for x2, we get y in terms of x, 
z, a, 6, which are arbitrary. [The solution is false as it satisfies neither 
of the proposed equations, but only the combination of them which was 
employed.] 

To find three positive integers the sum of any two of which is a square 
and double the sum of all three is a biquadrate, R. MafFett and D. Robarts312 
took a2, b2, & as the sums by pairs. Then shall o2+62+c2 be a biquadrate. 
Take o=3(p2+r2), 6=4(p2—r2), c=8pr. Then 2a2 = (5p2+5r2)2, which 
equals (25r2)2 for p = 2r. 

To find two integers whose sum, sum of squares, and sum of cubes, 
are all squares, and sum of biquadrates is a cube, J. Whitley313 used the 
numbers x=2r$, y—r2—s2, whence x2—xy+y2= □ if r=4s. Call X, Y the 
products of x, y by 23 = 8+15. Then X=23*8s2, Y =15 -23s2 satisfy the 
first three conditions. Also X4+F4=233te8, where 2=23(84+154), will be 
a cube if s=£. C. Gill used x—bsmA,y=b cos A with the sum a2. Then 

x?+y*=a262(l —sin A cos A) =c2 

if c=a6(l—§ sin A), cot \A =4, whence x—85/17, p = 156/17. By their 
sum, 6 = 17a2/23. The fourth condition is satisfied if o=232* 54721. 

E. Lucas313® proved that 2v2—u2—wi, 2t^+u2=3z2 imply 

u2—vl—w2—z2=^l. 

E. lionnet814 desired a number N which, as well as its biquadrate, is 
the sum of the squares of two consecutive integers. J. Lissengon wrote 

810 The Gentleman’s Diary, or Math. Repository, London, No. 76, 1816, 39, Quest. 1043. 
m The Math. Diary, New York, 1, 1825, 125-7. 

Ladies1 Diary, 1833, 35, Quest. 1542. 
813 The Lady’s and Gentleman’s Diary, London, 1854, 52-3, Quest. 1857. 
8Ua Nouv. Ann. Math., (2), 16,1877, 414. 
814 Nouv. Ann. Math., (2), 19,1880,472-3. Repeated in Zeifcschr. Math. Naturw. Unterricht, 

12,1881,268. 
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N=0?+(a+1)2, whence 

N4 = A2+B2, A = — 4a4—8a3+4a+l, R = -8a3-12a2~4a. 

Then 1 = A —P gives a(a+l)2(a—2) =0. The only answer, given by a = 2, 
is AT-13, 134 = 1192+1202. 

L. Bastien315 solved the system y2+z2+t2 — 2x2, y4+z4+t4 = 2x4 by 
eliminating x. Thus y2+z2 — t2=±2yzj y:=Fz=±L Let y — z+t. Sub¬ 
stitute this value of y in the first equation. We get zt = (z+t+x) (z+t—x). 
Hence set z = ab, t = cd, z+t+z^ac, z-\-t—x~bd, 2b—c = hd, b—2c — ha. 
The solution is now evident. 

A. Gerardin316 gave special cases in which sA—x, s4—y, s4—z are all 
squares or all cubes, where s—x+y+z. 

L. Aubry317 proved the impossibility of the system 

<74+9/3g= □, 9/4+3/g3=D. 

Gerardin318 solved the system x4+x2y2—a2j y4+x2y2 = b2, x-\-y — c2. M. 
Rignaux319 noted that a = ax, b = (3y} whence the system reduces to 

x2+y2 — a 2 = f32, x+y = c2 
and is easily solved. 

E. Fauquembergue320 discussed the system xA—hy4 = □, x4+hy4 = □. 
A. Gerardin321 discussed the system 2P4 = ZU4, PQR= V VW. 
A. Cunningham322 solved X4—Z-A2, X4+Z=B2 by taking any odd 

integer a and any even integer /3 and setting X=a2+P2- 
Euler,254 and Euler81 of Ch. XVI, made x2y2zFz2v?, xh^yW, y2z2zFx2t? 

squares. Petrus12 of Ch. XV made p2+s2, t2+q2, pstq squares. Woepcke48 
of Ch. XVI treated <r4+<£<r2=<r?+0cr;= □. Gerardin185 of Ch. XXII 
treated x4~\-mx2y2Jryi~a2 with other quartics. 

315 Sphinx-Oedipe, 8, 1913, 173. 
316 L,interm4diaire des math., 23, 1916, 150, 169. R. Goormaghtigh and A. Colucci gave 

solutions, 24, 1917, 134-5. 
™Ibid., 23, 1916, 129-131. 
815 Ibid., 122-3. 
318 Ibid., 24, 1917, 65-6. 
320 JWd., 39. 
321 Ibid., 100-1. 
322 Math. Quest, and Sol., 4, 1917, 4-5. 





CHAPTER XXIII. 

EQUATIONS OF DEGREE n. 

Solution of /= const., where / is a binary form. 

J. L. Lagrange1 noted that, in seeking integral solutions of 

A =P2n+CP~1zH-b Kun, 

where A, • • *, K are given integers, we may take u relatively prime to A, 
and thus find integers 0, y such that t=ud—Ay. Inserting the value of t, 
we see that Bdn+Cdn~'1+ • • • +K must be divisible by A. If such an 
integer 6 exists, the proposed equation reduces, after division by A, to 

F(u, y) = Pun+Qun~~lyH-\-Vyn — l, 

where P, • • •, V are given integers. Set u/y=x, F(x, 1) =z. Then ljyn=z. 
The problem of solving P= 1 in integers reduces to the examination of the 
real values a oi x for which z is zero or a minimum (whence dz/dx=0). 
For such an a, Lagrange employed the continued fraction for a and two 
series of convergents and proved that u/y must equal one of these conver¬ 
gent s IIL, whence «=dtZ, y = zhL. While a root of 2=0 may lead to an 
infinitude of solutions, a root of dzjdx — 0 furnishes only a limited number. 

A. M. Legendre2 reproduced this method of Lagrange’s, developing 
into a continued fraction each real root of F(x} 1) =0 and also the real part 
of each imaginary root and forming their various convergents p[q. The 
least of the F(p} q) is the minimum of F(u} y) for integral values u, y. In 
case the minimum is ±1, we have a solution of F(u, y) — =bl and hence a 
solution of the initial equation A=Btn-\-. 

H. Poincare3 noted that the problem reduces to the case of the repre¬ 
sentation of a number N by a form in which the leading coefficient is unity: 
xm+Ax^~Ly-1-. We first solve the congruence £m—-=0 (mod 
N) and then determine by Hermite’s method whether or not two decompos¬ 
able forms in m variables are equivalent under m-ary linear transformation. 

G. Comacchia4 gave a method of solving in integers 

(i) 
A=0 

when C0 and Cn are positive and a root x0>P/2 of the corresponding con¬ 
gruence XChXn~h^0 (mod P) is known. Take y0 such that x0yQ^zhl 
(mod P). Apply the g.c.d. process to P, x0, and let xly x2, • • •, xm= 1 be the 
remainders. Let yh • • *, ym — 1 be the corresponding remainders from P, y0. 
Then if (1) has relatively prime integral solutions a, b such that 2db<P, 
this solution is one of the above pairs xiy ym+i-i or is a pair obtained 

1 M6m. Acad. Berlin, 24, ann<§e 1768,1770,236; Oeuvres, Ii, 662, 675. For n =2, Lagrange78 
of Ch. XII. 

* Th.6orie des nombres, 1798, 169-180; ed. 3, 1830,1, 179; German transl.. Maser, 1,179. 
* Comptes Rendus Paris, 92, 1881, 777. Cf. PoincarA24 
4 Giomale di Mat., 46, 1908, 33-90. 
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similarly from another root of the congruence. The process is simplified, 
applied to x2+qy2~m and compared with the method of binary quadratic 
forms. 

Conditions for an infinitude of solutions of f(x, y)= 0. 

C. Runge5 considered an irreducible polynomial f(x} y) with integral 
coefficients (i. e., not a product of such polynomials), and the algebraic 
function y defined by f(x, y) = 0. By one system of conjugate developments 
of y according to descending powers of £ is meant those obtained from a 
single development by replacing the single algebraic number, in terms of 
which all the coefficients are expressed rationally, by its conjugate values 
and the fractional power of x by all its values. He proved that if the 
various developments of y foim more than one system of conjugates there 
is only a finite number of integral values of x for which f(x, y) =0 is satisfied 
by rational values of y. Also that /= 0 has an infinitude of pairs of integral 
solutions x, y only when x, y become infinite simultaneously and when the 
developments according to descending powers of one of these variables 
form a single system of conjugate developments. Hence necessary (but 
not sufficient) conditions for an infinitude of pairs of integral solutions 
Xj y of f(x, y)— 0 are: (i) If / is of degree m in x and n in y, the coefficients 
of xm and yn are constants a, b. (ii) The algebraic function y defined by 
fix, y)— 0 becomes infinite with x with the order of xmln. If cxfy* is a 
term of /, then np+mcr^mn. (iii) The sum of the terms for which 

np+mcr=mn 
must be expressible in the form 

03 = 1,2, 
P 

where U(u—d^) is a power of an irreducible function of u. 
A. Boutin6 raised the question as to the types of equations such that, 

if Xi, yi (t=r&—1, n—2) are two sets of integral solutions, m 

(1) Xn = aXn-l+Pxn-2, 2/n = <2?/ft-l+$/n-2 

are also solutions. E. Maillefc7 treated the properties of one or two recurring 
series xn+p=*otiXn+p-i-l-\-apXn with rational (or integral) coefficients and 
proved that the only equations F(x, y) =0, where F is without a rational 
divisor, with an infinitude of integral solutions given by a formula of 
recurrence (1) of the second order are either linear, quadratic 

Ax2+Bxy+Cy2±H=0, 

or (tv'y—t'vz)p—(vu'x—uv'y) q(tu'— 

where p, q are relatively prime integers. If we consider rational solutions, 
we obtain an analogous result. 

E. Maillet8 proved theorems concerning arithmetically irreducible equa¬ 
tions 
(2)_F(xy y) = <f>n(x, y)+<f>n-i(x, y)-1-h<fto=0,__ 

8 Jour, fur Math., 100, 1887, 425-35. 
6 L’interm&liaire des math., 1, 1894, 20-21. 
7M&n. Acad. Sc. Toulouse, (9), 7, 1895, 182-213. 
* Comptes Rendus Paris, 128, 1899,1383; Jour, de Math., (5), 6, 1900, 261-77. 
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where fa is homogeneous and of degree j. (I) Let fa(x} y) be arithmetically 
reducible; let Ci be a simple real root of <j>n( 1, c) = 0of degree X; let ^*(1, c) 
be an irreducible factor of </>„, of degree k (k<n) and with the root ci. 
Then F—0 has, on the infinite branch whose asymptote has Ci as angular 
coefficient, an infinitude of solutions only if one of the <£*(1, Ci), i—n—1, 
* • *, n—k, is not zero. (II) There exists no irreducible equation F(x, y) = 0 
with integral coefficients having an infinitude of integral solutions on an 
infinite branch of F = 0 such that the angular coefficient of the asymptote 
is rational and not zero, if this coefficient is a simple root of fa(l, c) =0. 
If the real angular coefficients of the asymptotes of F=0 are all rational, not 
zero and distinct, then F=0 has only a finite number of integral solutions. 
By amplifying the case k = 2, he obtains a complicated third theorem; also 
one on F(x, y} z) =0. 

A. Thue9 proved that, if U(x, y) is an irreducible homogeneous poly¬ 
nomial with integral coefficients and c is a given constant, U(p, q)=c has 
only a finite number of positive integral solutions p, q, when the degree of 
U exceeds 2. 

A. Thue10 considered homogeneous integral functions P{x} y)} Q(x, y)9 
R(Xj y) of degrees p, q, r, with integral coefficients, P(x, y) being irreducible. 
If p > q, p >2, P — Q does not have an infinitude of pairs of integral solutions 
x, y. If p>q>r, p<g-fr, P+Q+R- 0 is not satisfied by an infinitude of 
pairs of relatively prime integers x, y. 

E. Maillet11 completed a lacuna in the proof by Thue9 and gave the 
following generalization of his theorem. Let <£t- be a homogeneous poly¬ 
nomial of degree i in x, y. While the coefficients of <£0, * * •, fa need not 
be rational, let fa (r > s) have integral coefficients and contain a term in xr 
and one in yr. If 

fa(x, y) — fa(x, y)-<fa-i(x, y)-<£o = 0 

is irreducible, it has an infinitude of integral solutions x, y only when $ 
exceeds a specified quantity depending on the reducibility of fa—0. When 
fa is irreducible, this quantity is rx—2 or n—1, according as r=2ri or 
r=2r!+l. 

Maillet11 a gave a practical method to find an upper limit to the absolute 
values of the integral solutions x, y of an equation of type (2), subject to 
certain conditions on fa which imply that (2) has only a finite number of 
integral solutions. 

Rational points on the plane cueve f(x, y, z)=0. 

D. Hilbert and A. Hurwitz12 treated homogeneous polynomials/(^i, x2, x3) 
of degree n with integral coefficients such that the curve /=0 is of genus 
(or deficiency, geschlecht) zero. In view of results by M. Noether,13 we 

9 Jour, fiir Math., 135, 1909, 303^. Cf. Maillet.11 
10 Skrifter Videnskaps. Kristiania (Math.), 1, 1911, No. 3 (German). 
11 Nouv# Ann. Math., (4), 16, 1916, 338-345. 

JUd., (4), 18, 1918, 281-92. 
“Acta Math., 14, 1890-1, 217-24. 
“ Math. Annalen, 23, 1884, 311-358. 



can decide by rational operations whether or not /=0 is of genus zero and 
if so we can find by rational operations ft—1 linearly independent ternary 
forms <j>i of degree ft—2 with integral coefficients such that for arbitrary 
parameters X* the curve /=0 is cut by the curve 

Xl<£l+ * * * +\n-i<£n_i = 0 

in 71—2 points varying with the parameters Xt*. Set 

$i — X»i<£l+* * •+Xtn-l^>n-l (^=1, 2, 3), 

where the X^- are arbitrary parameters. Transform /=0 by 

Vi : y% : 2/3 = $i : $2 : $3. 

The result is g(yh y2,2/3) = 0, where 0 is an irreducible form of degree n—2 
in the y1 s with integral coefficients. Now give to the parameters X# such 
integral values that g remains irreducible. Since our transformation is 
birational, every rational point on/=0 corresponds to a rational point on 
0 = 0 and conversely. Hence the initial problem is reduced to the equation 
0=0 also of genus zero, but of lower degree by two units. Ultimately we 
reach an equation of degree 1 or 2. For a linear equation l(uh u2y ft3) =0, 
we can evidently find three linear functions of the homogeneous param¬ 
eter tilU such that u\ : u2 : uz=ui : : co3 gives all rational solutions of 
1=0 when th t2 take all integral values. By applying the inverses of our 
transformations, we get the initial/=0 and solutions x1 : x2 : x3 = pi : pi ' pzf 
where the p» are forms of degree n in th t2. The only missing solutions are 
those, finite in number and found rationally, which correspond to rational 
singular points of /=0, where our transformations cease to be birational. 
Second, if we reached a quadratic equation, it can be transformed rationally 
into aiu\+a2u\+azu\ = 0, the a’s without square factors and relatively 
prime in pairs. It has integral solutions if and only if the a’s are not all 
of like sign and if — a2az, — azai, —aia2 are quadratic residues of c&i, a2i a3, 
respectively (papers 114, 116, 119 of Ch. XIII). When these conditions 
are satisfied, the conic has rational points and can be transformed bira- 
tionally into a straight line; we proceed as before. 

M. Noether14 had earlier proved that a rational curve can be trans¬ 
formed birationally into a straight line or conic; a curve of order 2n with 
a (2n—l)-fold point is counted as curve of odd order. 

H. Poincard15 proved the above result that any unicursal curve with 
rational coefficients is equivalent to a conic or a straight line, two curves 
being called equivalent if one can be transformed into the other by a 
birational transformation with rational coefficients. A curve /= 0 of genus 
1 (bicursal curve) with rational coefficients is equivalent to a curve of 
order p (ps3) if and only if f=0 has a rational group of p points, i. e., a 
set of p points such that every elementary symmetric function of their 
coordinates is rational. 

14 Math. Annalen, 3, 1871, 170. 
15 Jour, de Math., (5), 7, 1901, 161-233. For a special case, von Sz. Nagy151 of Ch. XXI. 
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J. von 'Sz. Nagy16 proved that any curve of genus 2 with rational coeffi¬ 
cients is equivalent in general to a quartic curve and contains an infinitude 
of rational groups of two points. 

J. von Sz. Nagy17 cited the known fact that a curve Cl of order n and 
genus p > 1 has in general no birational automorphs besides identity, and 
never more than 84(p—1), and concluded that we can derive at most a 
finite number of rational points from one. The birational automorphs 
of non-hyperelliptic and hyperelliptic curves are discussed. An example 
shows that from a rational point we do not in general obtain all other rational 
points by means of the birational automorphs of the curve. 

J. von Sz. Nagy18 wrote Qn for the g.c.d. of n and 2p—2 and proved that 
a curve Cl of order n and genus p contains infinitely many rational groups of 
hQn points if h is an integer for which hQn>p—1; it is equivalent to a 
curve Ci for m>p+l if and only if it contains a rational group of m non- 
singular points. In particular, they are equivalent if m is a multiple of Qn, 
and hence if m=2p—2, p>2, and the curves are not hyperelliptic. 

E. Maillet18a considered a polynomial/^, y) of degree n>2, irreducible, 
with integral coefficients, and such that the curve/=0 is unicursal (of genus 
0). If there are at least n~3 simple rational points, there is an infinitude 
corresponding to the rational values of a parameter t, and x=f2(t)/fi(t), 

where the /, are polynomials with integral coefficients having 
no common divisor, of degrees n^n, one being of degree n (cf. papers 12, 
15). The curve has an infinite number of points with integral coordinates 
only when /. is a constant or of one of the forms a(Mt+N)n, with a, M, N 
integers, or a(Aft2+A^+P)n/2, where n is even and AT2—4MP is positive and 
not a square, while a, M, N, P are integers. There are extensions to cer¬ 
tain equations f(x, y) = 0 of genus > 0 and to certain unicursal surfaces. 

For cubic curves of genus unity, see Levi307 and Hurwitz312 of Ch. XXI. 

Equations formed from linear functions. 

For related papers, see Lagrange,142 Rados194°; papers 313-23 of Ch. 
XXI; and Ch. XX. 

G. L. Dirichlet19 stated a theorem, which he regarded as remarkable for 
its simplicity and importance: if an equation 

(1) s*+a$n”H-1-0$+^=0 

with integral coefficients has no rational divisor and if at least one of its 
roots <Xj 13j •••, co is real, and if we set 

=x+a2/+ • * * 

then the indeterminate equation 

(2) _F(x, y, -g)s0(oO0(fl)---0(0)) = 1_ 

16 Math. Naturw. Berichte aus Ungarn, 26, 1908 (1913), 186 (168-195). 
17 Jahresbericht d. Deutschen Math.-Vereinigung, 21, 1912, 183-191. 
18 Math. Annalen, 73,1913, 230-240, 600. 
I8a Comptes Rendus Paris, 168, 1919, 217-20; Jour. Ecole Polyt., (2), 20, 1919, 115-56. 
19 Comptes Rendus Paris, 10, 1840, 285-8; Werke, I, 619-623. 
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has an infinity of integral solutions. Application is made to functions 
considered by Lagrange142 which repeat under multiplication. If such a 
function can take a given value, it takes the same value for an infinitude of 
sets of values of x, * * •, z, under the assumption that the algebraic equation 
to which the function owes its origin has no rational divisor, but has at 
least one real root. 

G. Iibri20 stated that the conditions imposed on (1) that there be a 
real root and no rational factor are not necessary, it sufficing to have h = ±1. 

J. liouville21 proved Libri’s theorem false. For, if (1) is $2-f-l = 0, 
then (2) is (z+yi) (x—yi) =x2+y2~ 1, with only a finite number of integral 
solutions. 

Dirichlet22 noted that his theorem remains true if (1) has only imaginary 
roots, provided n> 2. The problem is that of the units of an algebraic 
domain. 

P. Bachmann23 treated the solution of N= 1, where N is the norm of the 
general algebraic number determined by a root of an equation of degree n. 

H. Poincar^24 noted that, for F defined by (2) by means of any equation 
(1), the problem to find integers j8,- such that F(l3h • • •, /3n) shall equal any 
given integer N reduces to the problem to form all complex ideals of norm N* 
In the solution of the latter one considers the congruences $n+<x$n“1+ * • • =0 
(mod fi), ji any divisor of A. 

E. Meissel25 considered the product, extended over the roots of 0s =1, 

V=(x, y, z, u, v) =n(x+6yp+e2zp2+e3up3+eivp4)) P= VJ. 

By the reciprocal solution of 7=1 is meant 1/7= 

5a= 
dV 

5Ae= 
BV 

5 Ad= 
dV 

5 Ac— 

(a, 6, c, d, e) — 1, where 

dV dV 
5Ab = 

dx’ ~~ dy’ dz’ du’ ~~ dv' 

For 2^A^7, he gave two primary solutions 7i = l, 72 = 1, accompanied 
by their reciprocal solutions. He stated that two primary solutions always 
exist and deduced the solutions 777£. He conjectured that, if p is a 
prime, the corresponding Pell equation of degree p has J(p —1) primary 
solutions. 

A. Thue26 considered a homogeneous polynomial F(xh • • *, xn) of degree 
ft—1 such that F—0 can be given the form 

(3) P1P2 * * • Pn—1 = Q1Q2 • • * Qn— If 
where Pi, Q» are linear functions of xh • • •, xn with integral coefficients. Set 

(4) O'lPi — a2Qi, &2P2 =: clzQz, • • •, an_iPn__i=diQn—1, 

where the ats are any integers without common divisor. Then (4) if 
independent give Xi-kAi (i — 1, • • *, n), where A* is a homogeneous poly- 

J0 Comptes Rendus Paris, 10, 1840, 311-4, 383. 
J1 Ibid., 381-2. Ball, dee Sc. Math., (2), 32,1, 1908, 48-55. 
21 Bericht Akad. Wiss. Berlin, 1842, 95; 1846, 103-7; Werke, I, 638-644. 
23 De unitatum complexarum theoria., Diss., Berlin, 1864. 
34 Comptes Rendus Paris, 92, 1881, 777-9; Bull. Soc. Math. France, 13, 1885, 162-194. 
25 Beitrag zur Pell’schen Gleichung hoherer Grade, Progr., Kiel, 1891. 
26 Det Kgl. Norske VidenskaJbers Selskabs Skrifter, 1896, No. 7 (German). 
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nomial of degree n—1 in aly • • • , an-i. Finally we choose k to make these 
x’s integers. 

If F=0 can be given the form (3), every set of integral solutions of 
Pi-0} Qj-Q (i, j=l, •• •, 71—1) is evidently a solution of F = 0. Con¬ 
versely, if a certain number of integral solutions of Pi ~Qj — 0 satisfy 
F=0, then F~ 0 can be given the form (3). In fact, if a polynomial 
P(xu * * •, xn) of degree m always vanishes simultaneously with the products 
(7=p1...pp? y =Ql.. .Qq 0f 1^3,3. functions of x1} • • xn, such that 

not all the values for which any two are zero make a third zero, then 
F^AU+BVj where A and B are polynomials in xx, • • •, x„. 

A. Palmstrom27 extended the preceding method to the equation 

P11 P12 * * * Pi n—1 

(5) P21 P22 *** P 2 n-1 =q 

P n-1 1 P n—1 2 * * * Pn-1 n-1 

where the P’s are linear homogeneous functions of Xi, * • •, x„. For every 
set of integral x’s satisfying (5) there exist n—1 relatively prime integers 
ai, • * *, an_i satisfying 

(6) aiP*i+a2P»2+ • • • +an-iP» »-i = 0 (i=1, • * *, n—1), 

and conversely. From the latter, Xi/xn-Ai/An, so that we may set Xj=kA; 
0 = 1, • * *, n) and choose k to make the x’s integral. Here the a3s have 
any values for which Ah • • A„ are not all zero. In case the A’s are all 
identically zero, so that only p of the equations (6) are independent, we 
can assign arbitrary values to n—p—1 of the x’s and determine the remain¬ 
ing x’s by p linear equations. He130 gave a detailed example. 

G. Metrod27® found the number of ways to decompose a given number 
into a product of n factors (including unity). 

Product Pn of n consecutive integers not an exact power. 

Chr. Goldbach28 argued that a P3 is not a square since its root would be 
a multiple of m and a divisor of whence m = l or 2. 

J. Liouville29 proved by use of Bertrand’s postulate [V°l* I> Ch. XVIII] 
that m{m+1) * * -(m+n—1) is not a square or higher power if at least one 
factor 77i, • * *, 77z-f-7i—1 is a prime, or if n>m-5. The latter was proved 
similarly by E. Mathieu,30 who verified the theorem for any n when m^lOO. 
In particular, ml is not an exact power, a fact proved in the same way by 
W. E. Heal.31 

Mile. A. D.32 proved that a P3 is not an exact power. 

27 Skrifter Udgivne af Videnskabsselskabet, Christiania, 1900 (1899), Math.-Naturw. K3., 

No. 7 (German). 
i7a L’interm^diaire des math., 26, 1919, 158-4. Cf. Minetola192"3 of Ch. HI, and CesAro20 of 

Ch. IX; also Index to Vol. I (under “Number,” including n=xY). 
28 Corresp. Math. Phys. (ed., Fuss), 2, 1843, 210, letter to D. Bernoulli, July 23, 1724. 
49 Jour, de Math., (2), 2, 1857, 277. a. Moreau.50 
*° Nouv. Ann. Math., 17, 1858, 235-6. 
31 Math. Magazine, 1, 1882-4, 208-9. 
** Nouv. Ann. Math., 16,1857, 288-290. Proposed by Faure, p. 183. 



G. C. Gerono33 proved that P4 + n by setting (m+l)(m+4)=2p, 
whence (m+2)(m+3) =2(p+l), while p(p+l) =(= □. “P. A. G ”34 gave a 
proof by use of 

m(m+l)(m+2)(m+3)+l= {m(m+3)+l}2. 

Gerono35 proved that Pg, Pg or P7 is not a square. 
V. A. Lebesgue36 proved that Pg is not a square or cube. 
A. Guibert37 proved that, if 8^n^l7, P» + D, while P6 or P9 or a 

product of any three integers in arithmetical progression is not a cube. 
A. B. Evans38 and G. W. Hill39 proved that P6* □. 
D. Andr640 proved that, if 7i>l, Pn^yn or yn±l. 
A. B. Evans41 proved that P6, P6 or P7 is not a square. 
H. Bourget42 proved that P64= □. 
R. Bricard43 proved that P8 =f= □ by use of a Pell equation. 
L. Aubry44 proved that P4 is not a cube by treating the case in which 

a single one of the four numbers is divisible by 3 and the case in which two 
are divisible by 3, necessarily the first and fourth, and examining in the 
second case the residues modulo 9 of the four numbers. 

T. Hayashi45 proved that P2 or P4 is not a square or cube, Ps+x”, w=^2. 
Also (p. 166), y{y+l){2y+l) ^xn, 2. 

S. Narumi46 proved that x(x+l) • • • (x+n) = □ +0 is impossible if 
ft ^202. 

T. Hayashi47 proved that P5 4= □. 

Further properties of products of consecutive integers. 

J. Liouville48 proved that, if p is a prime >5, 

(p—1)!+1 =t=p™, J^£zl^!j2+1+:p» 

Berton40 verified that P=a(a+h)(a+2h)(a+3h) +p4 since 

P= (a2+3 ah+h2Y~h\ p4+ft4=j= □. 

Hence the area VP of an inscriptible quadrilateral whose sides are in arith¬ 
metical progression is not a square. 

“ Nouv. Ann. Math., 16, 1857, 393-1. 
“Ibid., 17, 1858, 98. 
36 Ibid., 19, 1860, 38-42. 
“ Ibid., 112-5, 135-6. 
17 Ibid., 213 [400]; (2), 1, 1862, 102-9. 
!! J?® &nd Gentleman’s Diary, London, 1870, 88-9, Quest. 2106. 
59 The Analyst, Des Moines, Iowa, 1, 1874, 28-29 
40 Nouv. Ann. Math., (2), 10,1871, 207-8. 
41 Math. Quest. Educ. Times, 27, 1877, 30; 44,1886, 65-9. 
48 Jour, de math. 414m., 1881, 66. 
tt L’mterm4diaire des math., 17, 1910, 139-40. 
44 Sphinx-Oedipe, 8, 1913, 136. 
41 Nouv. Ann. Math., (4), 16, 1916, 155-8. 
46 T6hoku Math. Jour., 11,1917, 128-142. 
47 Nouv. Ann. Math., (4), 18, 1918,18-21. 
41 Jour, de Math., (2), 1, 1856, 351. 
49 Nouv. Ann. Math., 18, 1859, 191. 
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C. Moreau50 repeated the first remark by Liouville.29 
H. Brocard51 asked for values of x making 1+xl a square. He52 sugges¬ 

ted that the only solutions are 4, 5, 7. 
E. Lucas53 noted that the product P of the first n primes is not of the 

form apdzbp, where a and b are positive integers and p> 1, P> 2. 
E. Lionnet54 stated that no product 1 • 3 • 5 • • • of'consecutive odd numbers 

is a square or higher power. Moret-Blane55 proved the last statement by 
Bertrand’s postulate. 

Moret-Blanc56 solved y(y+l)(y+2)-x(x+l), proposed by Lionnet. 
Adding 1 to the product by 4, we are to make 4y3+12y2+8y+l = □, say 
(my—l)2. The discriminant of the quadratic in y is to be rational. Thus 
m=2n, 7i4—6n2—4n+l = Q, which holds for n- 3. Thus solutions are 
l-2-3 = 2-3, 5-6*7 = 14-15. G. G Gerono (p. 432) noted that, since 
2z+l = 2ny—1, the initial equation becomes y2—(n2—3)y+n+2 = 0 and 
proved that n—3. 

E. Lionnet proposed and Moret-Blanc57 solved the problem to find N 
such that both N and N/2 are products of two consecutive integers, the 
smaller factor of N/2 being a product x{x+l) of two consecutive integers. 
Thus 

2(x2+x)(x2+x+l) =y2+y, 8rc4+16^+16x2+8x+l = (2y+l)2. 

Euler’s process to deduce new solutions from x — 1 leads only to # = 0 or 
fractional values. 

E. Lemoine58 asked if the product of three consecutive numbers (besides 
2, 3, 4) is of the form pz?, where p is a prime. H. Brocard (p. 304) noted 
that the problem reduces to y3—y=px3, took y—p and concluded that 
£=2, y =3. Several replies (p. 369) show readily that 2, 3, 4 is the only 
solution. 

E. B. Escott59 proved that #(2+4)(z+6) 4= 
G. de Rocquigny60 proposed for solution 

x(x+l) •. • (a+5) =y(y+l)(2/+2). 

E. B. Escott61 noted the solutions x — 1 or — 6, y=8, besides the evident 
solutions x=0, —1, • • •, —5. P. F. Teilhet62 proved that these are the 
only solutions by noting that the left member becomes (z—4)z(z-h2) for 
z = (x+l)(s+4).___ 

60 Nouv. Ann. Math., (2), 11, 1872,172. 
“ Nouv. Corresp. Math., 2, 1876, 287; Nouv. Ann. Math., (3), 4, 1885, 391. 
« Mathesis, 7, 1887, 280. 
» Nouv. Corresp. Math., 4r 1878, 123; Throne des nombrea, 1891, 351, Ex. 4. Proof by P. 

Bachmann, Niedere Zahlentheorie, X, 1902, 44-6. 
M Nouv. Ann. Math., (2), 20, 1881, 515. 
“ Ibid., (3), 1, 1882, 362. Invalid objection by G. C. Gerono, p. 520. 
M Nouv. Ahn. Math., (2), 20, 1881, 431-2. Same, Zeitschr. Math. Naturw. Unterricht, 13, 

1882, 451. 
67 Nouv. Ann. Math., (2), 20, 1881, 375. 
M L'interm&iiaire des math., 2, 1895,15. 
MJm, 7, 1900,211-3. 
80 Ibid., 9, 1902, 203. 
81 Ibid., 10, 1903, 132. 
it io inne ito_o 



P. F. Teilhet63 stated for m=3 and several proved that, if m is a prime, 
n{n+\){nJr2)—mA2 is impossible. 

A. GSrardin64 remarked that if 1+xl — y2 has solutions other than 
s=4, 5, 7; i/ = 5, 11, 71, then y has at least 20 digits. 

Sum of tith powers an nra power. 

Euler (Ch. XXII, paper 187 and the one preceding it) expressed his 
belief that no sum of four fifth powers is a fifth power. 

E. Collins65 noted that if A = 1 +nJrn2-\-\-nk~l is divisible by a prime 
p, then p=l (mod A;), since nk- (n—1)A+1. Henceforth, let this A be a 
prime. Then, if A is any integer not divisible by N, Aq is congruent to a 
power of n modulo A, where q= (N—l)/k, since Aq is a root of xk^l 
(mod A), and its roots are powers of n. Hence if a?H-f-al — Aqf while 
ai, • * •, an are not divisible by the prime A, the difference of some two 
of the af is divisible by A. For example, if n = 2, A; = 3, then A=7, q — 2, 
whence if a sum of two squares (each prime to 7) is a square, their difference 
is divisible by 7. Again, let A = 1+5+52=31; then q = 10 and, if a sum of 
five tenth powers (not divisible by 31) be a tenth power, a difference of 
two of the powers is divisible by 31. He verified that q>n except when 
k=2, or A;=3, n=2. He conjectured that a sum of n numbers each an cth 
power is not an eth power if n<e. 

F. Paulet66 announced that no nth power is a sum of nth powers if n > 2. 
A committee reported adversely, citing the known formula 63 = 33+43+53. 

0. Schier67 made an erroneous discussion of xn+yn+zn=un. First, let 
n be an odd prime. Then x-hy+z—u+nd. Subtract its nth power from 
the given equation. The new left member has the factor y+z which is 
said to be divisible by the factor n of the new right member. This admitted, 
the given equation would be impossible for n a prime >3 and hence for 
any n>3. Only special sets of solutions are found for n = 3 and n=2. 

A. Martin68 found by tentative methods (Hart115 and Martin119 of Ch. 
XXI) 

45+55+65+75+95+ll5 = 125, 55+105+115+165+195+295 = 305, 
100 

2D fc®—Is—63—ll3—213—43s = 2943, l3 +33+43+53+83 = 93, 
*=1 

100 

£ Jfc4 -14 — 24 — 34 —44 — 84—104—144 — 244 — 424 — 72< = 2124. 
*=I 

Barbette198 of Ch. XXII noted that the first result is the only one in¬ 
volving fifth powers each ^125. 

Martin69 would by trial express ln+2nd-(~xn —bn as a sum of distinct 
nth powers each ^xn. For n = 5, x = 11, 6 = 12, we get his68 first result. 

M L’mterm&Liaire des math., 11, 1904, 68, 182-4. 
« Nouv. Ann. Math., (4), 6, 1906, 223. 
65 M4m. Acad. Sc. St. PStersbourg, 8, annees 1817 et 1818, 1822, 242-6. 
66 Comptes Rendus Paris, 12, 1841, 120, 211. 
87 Sitzungsber. Akad. Wiss. Wien (Math.), 82, II, 1881, 883-892. 
48 Bull. Phil. Soc. Wash., 10, 1887, 107; in Smithsonian Miscel. Coll., 33, 1888. 
88 Math. Quest. Educ. Times, 50t, 1889, 74r-5. 
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Martin and G. B. M. Zerr70 multiplied the numbers 4, 5, • • •, 12 in the 
formula just cited by 424 and obtained six numbers whose sum is a fifth 
power 425 and sum of fifth powers is a fifth power. 

Martin71 multiplied his68 first formula by 25 and replaced the new third 
term 125 by its value to get a formula for 246. There is an analogous longer 
formula for 506. Again, 

l64-26 +46 + 56 + 66 +76 + 96-fl26 

+136+156+166+186 +206+216 +226+236 = 286. 

Martin72 found sets of fifth powers whose sum is a fifth power. 
G. de Rocquigny73 proposed for solution (x—r) mJrxm+ m=ym. 

H. Brocard74 noted x=4, r= 1, y=6 [m=3], and E. B. Escott74 noted 
x=ly r~2, y=3, for m any odd number. Cf. Gelin,93 also Escott261 of 
Ch. XXI, and Bottari190 of Ch. XXV. 

A. Martin76 found sixth powers whose sum is a sixth power by the tenta¬ 
tive method of expressing p6—q6 as a sum of distinct sixth powers #=g6, 
or S—W as a sum of sixth powers where S—16H-f-n6. By each 
method he found his71 example, also that the sum of the sixth powers of 
I, 1, 2, 5, 9, 11, 12, 13, 15, 18, 21, 22, 23, 24 is 296 [false] and that of 1, 2, 
2, 4, 5, 6, 8, 9, 10, 12, 14,15, 18, 19, 27, 33, 49 is 506 (each with one repeated 
term). By combining these, he found eleven new sets of 29,31 (seven), 32, 
46, 47. He tabulated the values of n6 and 16H-hn6 for 228. 

C. Bianca76 noted that $ = a?H-\-apn+1 is a pth power if 

oi : a2 : • • • : an+i = bn : bn~lc : bn~2cd : bn~3cd2 : • • • : bcdn'~2: cdn~\ 

where bp+cp=dp. For, if ai = kbn, • • •, then $ = (Mn)p. 
A. Martin77 reported on sums of nth powers equal to an nth power. 
* N. Agronomof78 proved that ^m+1H-f-^*m+1~6is solvable in integers 

if Jc = 4n+l and n=m. He proved the identity 

2i - 2a+ ■••+(-1 )2w+122m+2 = 0, 
where denotes the sum of the (2m+l)-th powers of all the sums of 
2m+2 parameters taken j at a time. A. Filippov78® gave an account in 
French of this paper, with details for the case m=2. 

70 Math. Quest. Educ. Times, 55, 1891, 118. 
71 Quar. Jour. Math., 26, 1893, 225-7. 
71 Math. Papers Internat. Congress of 1893 at Chicago, 1896, 168-174. Republished, 

Math. Mag., 2, 1898, 201-8, with the following corrections: In Ex. 18, p. 173, insert 16s; 
on p. 169, fourth line up, delete one 3s; on p. 174, delete the final equation. In Part III 
(combining earlier sets) he added a new set of n fifth powers for n -17, 21,24, 26, 28, 36, 
42, 48, 52, 63, 67, 72 and three sets for n =33. 

73 L’interm^diaire des math., 9, 1902, 203. 
7< Ibid., 10, 1903, 131-3. 
78 Math. Mag., 2, 1904, 265-271. 
78II Pitagora, Palermo, 13,1906-7, 65-6. 
77 Proc. Fifth Intern. Congress of Math., 1912,1, 431-7. 
78 Izv. Fis. Mat. Obs. Kazan (Bull. Soc. Phys. Math. Kasan), 1914,1915. 
780 Tdhoku Math. Jour., 15,1919, 135-40. 
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TWO EQUAL SUMS OF 71TH POWERS. 

A. Desboves79 noted that u*~}-tf = s5-\-wb has the complex solution 

Uj v — 2xyzk (x2—2y2); s, w = 2xy=L (x2+2y2) . 

J. W. Nicholson80 recalled that, if s = ai-\-\-am, 

5ll = 2(s-a1)«-S(s-a1~a2)-+-(-l)wS(ai+a2)«+(-l)OTSor. 

Thus ll"=9”+8"+5»-6»~3»--2* for n =2 or 1 [Euler2, Ch. XXIV]; 
etc. 

Several writers81 determined the signs so that 

lndb2n±3n± • • •rh(2n+1)n = ln±3nit5n±- • -dz(2n+2~l)n. 

A. de Farkas82 proved it is impossible to find two different sets Xi and 
yi such that for a and q are arbitrary 

fe+a)n+fe+a?)n+(^3+ag2)nH-- (yi+a)n+(y2+aq)nA-. 

N. Agronomof83 argued the existence of integral solutions of the equation 

-hyp9) ^=2p-3} p>4. 

But, as shown by Filippov780 for the case p = 5, h=g~ 4, the method leads 
only to the trivial solution X\ — = —xh x2= —x4, yi = —y3, y2 = —y4- 

C. B. Haldeman830 gave special rational solutions of s3 = s4 and s8=Sn, 
where s* denotes a sum of n fifth powers. 

On z*+v*=y*+un, see Steggall180 of Ch. XXII. 

Miscellaneous results on sums of like powers. 

J. Hill84 noted that the sum of the cubes of z2/2, 2z2/3, 5z2/6 is a sixth 
power x6. Of. Emerson52 of Ch. XXI. 

L. Euler85 stated that no sum of three biquadrates is divisible by 5 or 29, 
which alone are exceptional. Cf. Gegenbauer126 of Ch. XXVI. 

E. Elliott86 noted that 15+• •-+ri5= □ if F=K2n2+2n-l) = □ and 
took n=x+1. Then 9F=6a;2+18s+9 = □ = (ax—3)2 determines x. The 
anonymous proposer solved F=a2 for n; the radical must be a rational 
number 3c. Take a^p+q, c=p-q. Then p2-10pq+q2 = l, whence 
24g2+l = □, whose solution is known. 

G. Iibri87 expressed as a trigonometric sum the number of sets of solu¬ 
tions of Xi~\-hc“+l = 0 (mod p), where p is a prime an+1 [Iibri147]. 
Cf. pp. 224r-5 of Vol. I of this History. 

79 Assoc, fran$., 9, 1880, 242-4. 
80 Amer. Math. Monthly, 9, 1902, 187, 211. 
81 Math. Quest. Educat. Times, (2), 13, 1908, 110-111. 
82 L’interm^diaire des math., 20, 1913, 79-80. 
88 T6hoku Math. Jour., 10, 1916, 211. 
830 Amer. Math. Monthly, 25, 1918, 399-402. 
84 Ladies’ Diary, 1737, Quest. 192; Leyboum’s Math. Quest. L. D., 1, 1817, 254-5. Cf. 

Math. Quest. Educ. Times, 66, 1897, 120. 
85 Opera postuma, 1, 1862, 186 (between 1775 and 1779). 
“Ladies’ Diary, 1796, 40-1, Quest. 992; Leybourn’s M. Quest. L. D., 3, 1817, 296-7. 
87 M&n. divers savants aead. sc. de l’lnstitut de France (math.), 5, 1838, 61-63. 



Chap. XXIII] Sums of Like Powers. 685 

V. Bouniakowsky88 obtained the identity 

(1 OX2+#)5 + (1 OX2—a:)5+8 (1 OX2)5 = (103\5+10\x~)2 

from /{(x-fa)4 — (x—a)4}dx by setting a = 10X2. 
E. Lucas88a stated that the sum of the cubes of the first n (odd) integers 

is never a cube, fifth or eighth power (cube, fourth or fifth power). The 
sum of the cubes of three consecutive integers is never a square, cube or 
fifth power, except for l3+23+33 = 62, 33+43+53 = 63 [correction, Aubry286 
of Ch. XXI]. The sum of the first n biquadrates is never a square, cube 
or fifth power. The sum of the first n fifth powers is never a cube, fourth 
or fifth power. 

E. Lucas89 asked for what values of n the sum of the fifth powers of 
the first n odd numbers is a square. The problem reduces to 

x4—5x2y2+7y4=3z2, 

whose complete solution was given by L. Aubry.90 
Lucas91 asked for what ris the sum of the fifth or seventh powers of 1, 

• • •, n is a square. H. Brocard91 noted that the sum of the fifth powers is 
\n2{n+l)% where t— (2n2+2n—1)/3. To make t = y2, we have 

(2n+l)2 = 6s/2+3, 

which must have 9 as its final digit, whence y~iQmzkl. He noted the 
special solutions y—n—1; 2/= 11, n= 13. Cf. Moret-Blanc,95 Fortey." 

H. Brocard92 noted that the sum n2(2n2—1) of the cubes of the first n 
odd numbers is a square for ft = 1,5,29,169,985, • • •. As to Lucas'88® theorem 
that the sum s of the squares of the first n odd numbers is not a square, cube 
or fifth power, he stated that this is evident since $ = (2n — 1) (2ri) (2n+l)/6. 
Lucas (p. 247-8) noted that this proof would require extensive develop¬ 
ments; if p is a product of three consecutive numbers, p/6 is not a square 
if the first of the three numbers is odd, and also if it be even except for 
2 • 3 • 4/6 = 22, 48 • 49 • 50/6 = 1402. 

Abb6 Gelin93 proved that (x—l)2n+x2n+(x+l)2n=y2n is impossible 
and that the sum of like even powers of 9 or 12 consecutive integers is never 
an exact power (stated for 9 by Lucas, p. 248). The proof is by use of 
various properties of 2(AQ, obtained by adding the digits of AT, then adding 
the digits of this sum, etc., until there results a sum with a single digit. 

E. Lucas stated and H. Brocard, Radicke and E. Ceskro94 proved that 

{l5—35-f 55-(4a:— l)s}/{ 1—3+5-(4a?-1)} 

88 Bull. Acad. Sc. St. P6tersbourg (Phys.-Math.), 11,1853,65-74. Extract in Sphinx-Oedipe, 
5, 1910, 14-16. 

88a Recherches sur Fanalyse indeterminee, Moulins, 1873, 91-2. Extract from Bull. Soc. 
d’Emulation du Departement de FAllier, 12, 1873, 531-2. 

89 Nouv. Corresp. Math., 2, 1876, 95. 
90 L'interm^diaire des math., 18, 1911, 60-62. Cf. 16, 1909, 283. 
91 Nouv. Corresp. Math., 3,1877,119-120. Cf. 4, 1878, 167. 
nIbid., 3,1877, 166-7. 
93 Ibid.) 388-390 (extract from Les Mondes, July 14, 1877). 
“Ibid., 5, 1879, 112, 213-5; 6, 1880, 467. 
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is always a square, but never a biquadrate. 
Moret-Blanc95 found the x’s for which (Lucas91) 

Hence (3u2—1)/2 = ^ or (3u~2v)2—6(v--u)2=l, whose solutions are given 
by the convergents of odd rank in the continued fraction for 

E. Catalan96 noted that, if p is an odd prime and j is an odd integer 
the sum of the §(p — l)th powers of j integers relatively prime to p 

is not divisible by p. 
A. Berger97 proved that, if 5, m, n, gu • • •, g8 are positive integers, and 

yp{n) is the number of positive integral solutions of giX™-\-b^? = n, 

^(1)+...+m 
»=« n*!m 

r(i+i/m)* 
r(i+s/m)' 

L. Gegenbauer98 proved a generalization of Catalan’s96 theorem. If X 
is one of the numbers 2, 3, 4, and if p is a prime =1 (mod X), and r an 
integer prime to X and <plft, where t is the largest integer ^(X+l)/2, 
then the sum of the (p —1)/Xth powers of r integers relatively prime to p 
is not divisible by p. 

H. Fortey" found that 15H-bn5=D for n = l, 13, 133, 1321, •••, 
by use of 3y2—2x2= 1. Cf. Moret-Blanc.95 

E. Lemoine100 said that A is decomposed into maximum nth powers 
if A = a?H-ba”, where al, a2, aj, • • • are the largest nth powers ^A, 
A— a", A—a"—an2i • • •, respectively. Similarly, consider the decomposition 
A = ax—al+al-zboj, where cti is the least integer ^ and Ri the 
remainder ai— A, a2 is the least integer ^^jRi and R2 the remainder, as 

the least integer is %[r2, etc., and call yp the least number requiring p 
powers. Then, for n = 2, yi=1, 72 = 3, T3 = 6 = 32~22+l2, Yp-h= iYp+1- 
For n=3, he101 gave elsewhere the possible forms of the final power a*. 

L. Aubry102 proved that — l3-b33—53H-b(4n—l)3 is never a square, 
cube or biquadrate. 

Welsch and E. Miot103 noted cases in which an+(a+l)n+ • • * + (a-t-&)n 
is of the form Z2—m2 and hence is a sum of consecutive odd numbers of 
which the least is 2m+l. 

C. Bisman104 noted that a sum of like even powers of n2+4 numbers 
can be expressed as the algebraic sum of n2+5 squares of which only one 
is taken negatively. 

*Nouv. Ann. Math., (2), 20, 1881, 212. 
* M&n. Soc. R. Sc. de LiSge, (2), 13, 1880, 291. Cf. Gegenbauer.9* 

87 Ofversigt K. Vetenskaps-Akad. Fdrhand., Stockholm, 43, 1886, 356-66. 
98 Sitzungsber. Akad. Wiss. Wien (Math.), 95, II, 1887, 838-842. 
99 Math. Quest. Educ. Times, 48, 1888, 30-31. 
100 Assoc, frang., 25, 1896, II, 73-7. For n =2, see papers 20, 21 of Ch. IX. 
101 L’interm&liaire des math., 1, 1894, 232. 
102 Sphinx-Oedipe, 6, 1911, 38-9. E. Lucas, Nouv. Corresp. Math., 5, 1879, 112, had asked 

for solutions. 
1M L,interm6diaire des math., 20, 1913, 47-48. 
104 Mathesis, (4), 3, 1913, 257-9. 



Chap. XXIII] Product of Factors (x+l)/x. 687 

T. Suzuki105 noted that there are at least (p—2) (p —l)*-2 solutions of 

a?H-h<n-0 (mo dp), 

if two of the a’s are primitive roots of the prime p. Also there are solutions 
if ai is a primitive root and if not every a*s= 1 (mod p) for t=2, • • -, n. 

Rational solutions of xv—yx. 

L. Euler106 set y~tx and deduced xl~l — t. The graph is composed of 
y—Xj a branch asymptotic to the positive x and y axes, and an infinity of 
isolated points. Among the rational solutions are (x, y) — (2, 4), (32/22, 
33/23), (48/33, 44/34). 

D. Bernoulli107 noted that, for x+y, the only integral solution is 2, 4; 
but that there is an infinitude of rational solutions. 

J. van Hengel108 remarked that rH*”>(r+n)r if r and n are positive 
integers either one ^3. Thus if ab=ba, it remains to treat the cases a — 1 
or 2. If a=2, b >4, whence 6 = 2+n, we apply the above remark. 

* C. Herbst109 noted that 2, 4 give the only solution in integers. 
* A. Flechsenhaar110 and R. Schimmack111 discussed the rational solu¬ 

tions. 
A. M. Nesbitt112 and E. J. Moulton113 discussed the graph of xv=yx. 
A. Tanturri114 proved that 2, 4 give the only solution in integers. 

Product of factors (x+1)/x equal to such a fraction. 

Fermat115 proposed the problem to find in how many ways (n+l)/n can 
be expressed as a product of k such fractions, citing the case n=8, k=10, as 
suitable to be proposed to all mathematicians of his time. Tannery noted 
that of the decompositions of 9/8 the difference of the factors is least and 
greatest in respectively 

908988878685 84 838281 9+1 92+l 94+l 9m+l 9s12 

89 88 87*86*85 *8i*83 *82 81 *80' 9 92 94 9m *9512-1‘ 

V. Bouniakowksy116 noted that an irreducible fraction a/b less than 
unity can be expressed in an infinitude of ways as a product of fractions 
of the form x/(x+l). We may often find fewer than the b—a fractions 

106 T6hoku Math. Jour., 5, 1914, 48-53. Cf. papers 265-6 of Ch. XXVI. 
106 Introductio in analysin infin., lib. 2, cap. 21, §519; French transl. by J. B. L&bey, 2, 

1797 and 1835, 297. 
107 Corresp. Math. Phys. (ed., Fuss), 2, 1843, 262; letter to Goldbach, June 29,1728. 
10t Beweis des Satzes, das untfcr alien reellen positiven ganzen Zahlen nur das Zahlen Paar 4 

und 2 ftir a und b der Gleichung g°=!l>6 geniigt, Progr. Emmerich, 1888. 
10* Unterrichtsbl. fiir Math., 15, 1909, 62-3. 
110 Ibid., 17, 1911, 70-3. 
111Ibid., 18, 1912,34-5. 
m Math. Quest. Educ. Times, (2), 23,1913, 77-8. 
118 Amer. Math. Monthly, 23, 19i6, 233. 
U4 Periodico di Mat., 30,1915, 186-7. 
115 Oeuvres, I, 397. Quoted by Tannery, Pinterm&iiaire des math., 9, 1902,170-1. 
118 M&n. Acad. Sc. St. P6tersbourg (Sc. Math. Phys.), (6), 3, 1844, 1-16. 



used in 

whence 

a a+1 i 
fl+1 cir-f-2 

a__p u 

b q u+ V 

aq 

bp—aq 

Consider the case bp—aq=l and let p~a, q—P be the least solutions. 
Then 

a __ a ap 

b~JaP+r 
Proceed similarly with a/p. Many numerical examples are given. 

A. Padoa117 noted the equivalence of 

(x-n)(y-n)=n(n+1). 

Hence if n is given we obtain all couples x, y by finding all pairs of positive 
integers whose product is n(n+l), and adding n to each factor. 

J. E. A. Steggall118 found positive integral solutions of 

(1) s+l_y+l g+1 

x y z ’ 

by noting that xy must be divisible by £+2/4-1 = a, and hence £(£+1) by a. 
Hence for any integer x, determine a factor a>x+l of £(£+1); then 
y — a—x—l} while z=x—b where &=x(x+l)/a. T. W. Chaundy (pp. 74-5) 
deduced (x—z)(y—z) =2(2+1) and set z~pq, x—z~piq, where p, pi are 
relatively prime. Hence y~z*=pq1} piqi=pq+l. 

G. Ascoli and P. Niewenglowski119 gave solutions of (1). 
A. M. Legendre120 evaluated, up to w -1229, 

2 4 6 10 w—1 

3*5*7*11 ST‘ 

~ 1,11 
Optic formula —i—generalization. 

x y a 

An anonymous writer121 noted that, if three regular polygons of x, y, z 
sides fill the space about a point, then l/x+l/2/+l/z=l/2. If there are 
four regular polygons of x, y, z, 2 sides, then l/x+l/y+2/z^l. The 
number of solutions is found, also for 5 or 6 polygons. 

117 L’mterm&iiaire des math., 10,1903, 30-31. 
118 Math. Quest. Educ. Times, (2), 20, 1911, 50-1. 
119 Supplem. al Periodico di Mat., 14,1911, 101-4, 116-7. 
110 Throne des nombres, ed. 2,1808; ed. 3,1830. Table IX. 
m Ladies’ Diary, 1785, 40-1, Quest. 829; Leyboum’s M. Quest. L. D., 2, 1817, 132-3. 



Chap. XXIII] Optic Fobmuia l/a;+l/t/=l/a; ueneralizaticw. uoc 

D. Andr6122 deduced x—a-d} y—a=e, where de — a2y the pair of divisors 
d=e~ ~a of a2 being excluded. Ziige123 gave x — a+p2, ?/=a+<?2, where 
pq~a. F. Schilling124 noted that Ziige’s solution is incomplete and gave 
that due to Andr6 with a geometrical interpretation of the optic formula. 

A. Thorin125 asked if l/a = l/ai+l/a2 has integral solutions besides 

a—mn, ai = m(n+l), a2 = mn(n+l). 

A. Palmstrom, J. Sadier, and C. Moreau126 each gave the solution 

a=\mn, ai=\m(m+n)} a2 = Xn(m+n), 

and noted that 

i=I+. 
0/ (L\ 

(i) 

has the special solution 

a=X«i • • • an, CLi=Xson, 

•+- an 

* j &n — \S(Xn 
* *<*» 

Dujardin127 stated that, if n=2, all solutions are given by 

<z2 ==n-|-X, ai=a+~ (X a divisor of a2), 
X 

while (1) may be written Aan=a(Ban-\-C), where A = a1* • *an-1, and 5, C 
are integral functions of ah •**, an_! [with C=A]. Then Ba=A— AC/X, 
where \—Ban+C. Hence give to au • • *, a„_i any values and choose a 
divisor X of AC. Take as B and a two integers whose product is A —AC/X. 
If X—C is divisible by By we get a solution. 

M. Lagoutinsky128 stated that if n = 3 the complete solution of (1) is 
given by formulas involving 13 parameters. 

V. V. Bobynin129 discussed the expressing of fractions in the form 21 /xt 
in the papyrus of Akhmim (Achmlm), about the seventh century, and in 
the Liber Abbaci of Leonardo Pisano. 

A. Palmstrom130 treated, as an example of a more general type,27 

_1 

Xi x2 xn 
which may be written in the form 

—x2 xz 0 0 
—x2 0 Xi 0 
—x2 0 0 xs 

©
 o

 o
 

=0. 

1 h
 o
 

o
 

o
 

* Xn 

Xi—X2 Xi Xi Xi • Xl 

m Nouv. Ann. Math., (2), 10,1871, 298. 
m Zeitschrift Math. Naturw. Untemcht, 26,1895, 
134 Ibid., 491t-3. 
m L’interm4diaire des math., 2, 1895, p. 3. 
149 Ibid., 299-302. 

15-16. 

Ibid., 3,1896, 14. 
Ibid., 4, 1897, 175. 

»• Abh. Geschiehte Math., IX, l-13*(Suppl. Zeitsch. Math. PhyB., 44, 1899). 
130 Skrifter Udgivne af Videnskabsselskabet, Christiania, 1900 (1899), Math.-Naturw. K3., 

No. 7 (German). I/interm&iiaire des math., 5, 1898, 81-3. 



For integral solutions Xi there exist relatively prime integers a* satisfying 

QiX2-\-<iiZi+i = 0 (i=2, • • *, n—1), 'X^-pa^Xi-A" * * •+&«—i£i=0, 
and conversely. Hence 

Xi=k(ii* • '(in— i, Xj=kcii' * •an~i(ai+ * • • +an—i)/c&/_i, 

k being chosen to make the x’s integers. 
M. Lagoutinsky131 treated (1) for the case in which a, ai, • • • have no 

common divisor. Call their l.c.m. A, and set A/a=k, Thus 
k ~ Hence we take k\, * • *, kn to be any integers without a common 
divisor and find the l.c.m. A of these k/s and k = Zki. Then the solution 
is a-A/k, ai=A/ki. 

Ziige132 solved axy+bx+cy+d—0 by multiplying by a. Thus ax+c—Py 
ay+b=Q} where bc—ad—PQ. For integral solutions, select the factors 
Py Q so that P^Cy Q=b (mod a). For the special case xy=a(x+y), the 
result by Andr6122 follows. 

P. Whitworth133 noted that each divisor of N2= (x—N)(y—N) yields a 
solution of lfx+ljy^l/N. 

P. Ziihlke134 gave, for l/z+l/2/-2/m, 2x—m=p, 2y—m-q, pq—m2. If 
m is odd the resulting x, y are integers. 

E. S6s135 noted that the general solution of l/a,*=l/zi+ljx2 is 

x=kyiyit xi=kyi{yx+y>d> xi=ky2{yi+y^t 

where yh y2 are any relatively prime integers. Calling such a solution 
irreducible if k—l, and setting £=p?1 • * where pi, * • •, p, are distinct 
primes, we find that there are 2*“1 essentially distinct irreducible solutions 
belonging to a given x, with x2, Xi counted the same as xi, Xi) in all, 

Hs(i+2o‘)+i} 
essentially distinct solutions belonging to x. For the complete solution of 

(2) l=!+...+!, 
X Xl Xn 

2n~l parameters y{ are introduced. 
S6s136 noted that, if the a’s are given integers, 

(3) - —ai I 

Z Zi 
* + 

On 

Zn 
has (not the only) solutions z=ax} Zi~a{xi} if (2) holds. The complete 
solution in positive integers, with g.c.d. unity, is obtained for (3). The 
method is similar to that for the case n=2. Set Zi~ZZi, z2=ZZ2, where 
Zi, Z% are relatively prime. Then 

2 = /7 f— 
&lZ2-\~CL2Z\ 

m L’interm&Jiaire des math., 7,1900,198. 
Ardhiv Math. Phys., (2), 17, 1900, 329-32. 
Math. Quest. Educ. Times, 75,1901, 85. 
Archiv Math. Phys., (3), 8, 1905, 88. 

m Zeitschrift Math. Naturw. Unterricht, 36, 1905, 97. 
M Ibid., 37, 1906,186-190. 



Chap. XXXII] Single Equations op Degree n>4. 691 

Let f~p/q, where p, q are relatively prime. Thus Z is a multiple zlq of q 
and z=zlp, Zi—zlqZi, z2-z1qZ2. 

A. Flechsenhaar137 and E. Schulte discussed 1/a+l/b-l/c. E. S6s 
(p. 113) treated (2). W. Hofmann138 discussed the integral solutions of 

1+1 = 1 l_l=asl_l 

a~b c’ a b b c 

G. Lemaire139 transformed given decompositions 21// of 9/10 into others. 
R. Janculescu140 noted that in l/x+l/y=l/z, z will be integral only when 

the g.c.d. d of x and y is a multiple of x/d+y/d. 
D. Biddle141 solved each of l/(a±6)+l/(c=fco) ~ 1/a. 

Miscellaneous single equations of degree n>4. 

J. L. Lagrange142 noted that, if a is a fixed nth root of unity, the product 
of two functions of the type_ _ 

p ~ t+ua tIA +za2 t/AH-{-za**1 VArt“1 

is of like form. Hence if we replace a by the different nth roots of unity 
and form the product of the functions so obtained from p, we obtain a 
rational function P of /, u, • • *, z, A such that the product of two functions 
of type P is a third function of type P. We can find P by eliminating a 
between 

o)n-~A = 0, £+no?+a;co2+ • • •+2a)n_1 = l[; 

then P is the term free of l in the eliminant. For example, if n=2, 
P=t2—Au2. An application is to the solution of 

(1) rn—Asn~qm. 

We seek to express each factor r—asALtn as an rath power pm, where an~l, 
and p is the above linear function. Then 

pm = T+ Ua %A +Xa2*(A1H-b Zan~~1 'lA1'~l. 

Hence r = 2T, $= — U, X=0, ••*, Z=0. Thus (1) is solvable by this 
method if X=0, • • *, Z=0 are solvable. Although only n—2 equations 
in n variables, they do not always have rational solutions. For details on 
the case n=3, ra=2, and Lagrange’s extension of the method in his addition 
IX to Euler’s Algebra where an=1 is replaced by any equation of degree n, 
see papers 161-6 of Ch. XXI; also Ch. XX. 

Lagrange143 treated the problem to make y—plq an integer when 
p = a+bx-{-, q—alJrblx-\-are polynomials in x. By eliminating x, 

1,7 Unterrichtsbiatter Math., 16, 1910, 41, 41-2. 
"'Ibid., 17,1911,14-15. 
1,9 L’interm6diaire des math., 18, 1911, 214-6. 
140 Mathesis, (4), 3, 1913,119-120. 
141 Math. Quest. Educat. Times, (2), 25,1914, 61-3. 
149 M6m. Acad. R. Sc. Berlin, 23, ann<$e 1767, 1769; Oeuvres, H, 527-532. Exposition by 

A. Desboves, Nouv. Ann. Math., (2), 18,1879, 265-79; applications, 398-410, 433-444, 
481-499; also by R. D. Carmichael, Diophantine Analysis, New York, 1915, 35-63. 
Cf. Dirichlet19; also LibriM.« of Ch. XXV. 

149 Addition IV to Euler’s Algebra, 2, 1774, 527-533. Oeuvres de Lagrange, VII, 95-8. 
Euler’s Opera Omnia, (1), I, 579. 



we get 0=*A+Bp+Cq+Dp2-\-. Replacing p by qy, we see that A 
must be divisible by q. Hence we take for q the various factors of A in 
turn and solve q~alJrblx-\-for rational z’s. A special treatment is 
necessary when q reduces to the constant a1. G. Libri144 eliminated x 
between the congruences q^Q (mod q) and obtained Dh0 (mod q), 
where D is a function of the coefficients of p} q. Next, seek the integral 
solutions of q~d for each divisor d of D in turn, and then solve y — vlq* 
As another method he suggested (p. 317) the use of series. 

A. J. Lexell144a found values of p, q, r, s for which 

Mv2+s2Xq2+r2) _ 

pqrs (p2—s2) (q2—r2) 

L. Euler145 treated tW+Aa%2s2= □, where 

r=ax2+2bxy + cy2, s=av*+2bvz+cz2. 

To make s have the factor r, set 

2=agx+ (f+bg)y, v = (/- bg)x - cgy. 

Then sjr =/2 + (ac—b2)g2 s t. The proposed equation becomes 

v*z2+AtxY= □, 

which is of type (2) of Euler143, Ch. XXII. The case 6=0 was treated in 
more detail. 

G. Libri146 treated anxn-\~bxn~l-\--j-q=zn with all coefficients positive. 
Set z — ax+e, whence 2n“1(mn~1e~6)H-b(en—q)-0. Seek the least e 
for which all the coefficients are positive and the greatest e for which they 
are all negative. For each integer e within these limits, seek the positive 
integral solutions x. If the coefficients in the given equation are not all 
positive, set x=A+y and choose A so that the coefficients of the resulting 
equation will all be positive. 

libri147 investigated the integral solutions ^0 of y, *..)=0 for 
which x<a, y<b, * • •, where a, 6, • • • are given positive integers. Set 

X~x(x — l)(x—2) • * .(*-a+l), F=y(y-1) - --(y—6+1), • • •. 

Let F—0 be the result of eliminating x} y, • • • between <j>—0, X~0, F=0, 
' * *• If the equation of condition F=0 is satisfied, take the equation, say 
Xi(x) =0, in one variable, preceding the final stage of elimination. Then if 
X2 is the g.c.d. of Xi and X, all possible integral values of x occur among the 
roots of X2 = 0; similarly for the other variables. The same method applies 
to a congruence ^=0 (mod a). For a a prime p, X=xp—z (mod p)}Y=zyp—y 
(mod p). Since 

2Jctt . . 21ct 
-H sm — 
m m, )• =1 or 0, 

144 Jour, far Math., 9, 1832, 74-75. 
lua Euler’s Opera postuma, 1, 1862,487-90 (about 1766). 
144 M4m. Acad. Sc. St. Petersb., 9, 1819 [1780], 14; Comm. Arith., II, 414. 
146 Memoria sopra la teoria dei numeri, Firenze, 1820, 24 pp. 
147 M4morie sur la throne des nombres, M6m. divers Savants*Acad. Sc. de l’lnstitut de France 

(Math. Phys.), 5, 1838 (presented 1825), 1-75. 
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according as n is divisible by m or not, the number of roots of <£==0 (mod m) is 

IJ ± "jr cos 2k^x’y’ 
miX) y, ... = 0 7l-=0 m 

When applied to <f>=x2+c, this formula leads to Gauss7 results on trigo¬ 
nometric sums. Again, x2+Ay2+B^= 0 (mod p) has pdzl sets of solutions. 

libri148 noted that the number of sets of positive integral solutions of 
y, * • •) = 0 and the number of sets in which x, y, • • • take the values 

1, • • •, tt—l are approximately 

*» Vt •••— 1 *i V\ •••= i 

respectively. To apply the method of the preceding paper to the linear 
congruence <t>=Ax—1^=0 (mod p), A not divisible by p, we use rr^—lsO, 
or (Ax)*"1 — 1. Since the division of the latter by <j> is exact, we get x=A*-2. 
Next, for <f>=x2+qx+r=0 (mod 2p+l = prime), we divide x2p—l by <f> and 
require that the remainder be divisible by 2p+l. Thus the conditions for 
two roots a, P [neither zero] are 

P2p-a2p 

ft—a 
®0, (mod 2p+l), 

which by use of symmetric functions can be expressed in terms of q and r. 
For the case x2—s^0 (mod 2p+l), the first condition is satisfied and the 
second reduces to sp —1^0. For £2-f-x+l=0 (mod 6p+l), the first condi¬ 
tion is equivalent to (—3)3p=l. 

Y. Bouniakowsky149 noted that there is an infinitude of solutions of 

xmXn+ymYn=zmZn, 

where m, n are relatively prime. Determine a, p so that ma—np~ 1. Let 
a and b be arbitrary and c=a+6. Then a solution is 

z=<za, y=b% z=c% F=aV, Z = a!V. 

New solutions follow from the integral form of 

ama/anfi+bma'lbnfi'=cma"/cnfi 

Similarly, if p, q, r, • • • are without a common factor, we may solve 

<=i 

by use of = 0, pazLqPzk • • ■ =1, replacing at by a?****'", throwing 
negative powers into the denominator and clearing of fractions. 

G. C. Gerono160 noted that if r is the radius of the circle inscribed in a 
triangle with sides a, 6, c and area A and if x = a/r, y=b/r, z—c/r, Heron7s 
formula for A, and A=§ pr, where p is the perimeter, give 

(y+z-x)(x+z~y)(x+y~z)==4:(x+y+z). 

Call the factors 2X, 27, 2Z, respectively. Let x, y, z be positive integers. 

“8 Mem. Accad. Sc. di Torino, 28, 1824, 272-9; Jour, fur Math., 9, 1832, 59. 
Bull. Acad. Sc. St. PStersbourg, 6,1848, 200-2. Cf. Hurwitz’* of Ch. XXVI. 

uo Nouv. Ann. Math., 17, 1858, 360. 



Then X, 7, Z are positive integers for which XYZ=X+Y+Z. If X is the 
largest of X, 7, Z} thenX77<3X, 77 = 2 or 1. We may take 7=2, 7 = 1. 
Then z = 5, y=4, x~3. See the next two papers, and 341 of Ch. XXI. 

Housel151 proved that the sum of n distinct positive integers equals their 
product only when the integers are 1, 2, 3. 

J. Murent152 discussed the positive integral solutions (a1; *, an) of 

• • • -{-xnz=XiX2' • -xn (n>l). 

One solution is (n, 2, 1, • • 1). Always at least two aJs exceed unity. If 
n>2, at least one a is unity; call i the index of a solution (alf • * -, aiy 1, 
• • 1) with ai>l, * • ♦, a,*>l. Then 2if =n, thenai = * • • = a* = 2. 
If n=5 = 23—3, there is a single solution (2, 2, 2, 1, 1) of index 3, while the 
only remaining solutions are (3, 3, 1, 1, 1) and (5, 2, 1, 1, 1) of index 2. 

P. di San Robert153 noted that F(x, y, z) =0 can be solved by use of the 
slide rule only if reducible to X(x) + Y^y) =7(2), a necessary and sufficient 
condition for which is 

d2 log 

dxdy *”~dx'dy' 

S. R6alis154 noted that 

c _ (tt»+fl)[(fl+1)—1 -a"-1] 
m—1 

is not an mth power, being between am and (a+l)m, and that mQ is not 
divisible by (a+1)"—am. 

E. Lucas155 noted that xk+x+k=y2 is impossible if k is odd. 
S. R6alis156 noted that, if xy 4=0, 6xy(Sx4-{~y4) 4= 2? or 4z3. The impossi¬ 

bility (p. 524—5) of 

z3+2/6 = 92:+7or 72;+5, X)o;! = 9rr+8 

is easily verified by use of remainders modulo 9 or 7. M. Roehetti156® 
expressed 

3(a3+^+73)2 ( (a+py+ (^+7)3+ (y + a)B} 

as a sum of three cubes. 
A. Markoff157 gave complicated formulas for all positive integral 

solutions of x2+y2+z2 = 3xyz. 
E. Fauquembergue158 proved that l+3-f324-|-3n=y2 only when 

n=0, 1, 4, by using the powers of a+b to treat 3n+1 = l+2y2. 

151 Nouv. Ann. Math., (2), 1, 1862, 67-69. 
mIbid., (2), 4,1865, 116-20. 
1M Atti della R. Accad. Sc. Torino, 2, 1866-7, 454-5. 
164 Nouv. Ann. Math., (2), 12, 1873, 450-1. 
m Nouv. Corresp. Math., 4, 1878, 122, 224. 
m Nouv. Ann. Math., (2), 17, 1878, 468. 
1540 Ibid., (2), 19, 1880,459. 
187 Math. Annalen, 17,1880, 396. Cf. Hurwitz.174 
ua Mathesis, (2), 4, 1894, 169-170. 
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G. Cordone159 investigated polynomials U, V in x which satisfy 

Po(z)U*+P1(x)U~-1V+ • • • = B(a?) 

identically in x, where the Pi(x) are polynomials in x. 
E. Maillet160 considered recurring series u<>, uh • • • of rational terms with 

the generating equation/(a?) ~xq+aiX*~l-\-\-aq — 0 and law of recurrence 

(2) un+q+aiun+q- H-haqun = 0, 
where ah • • *, aq are rational. An algebraic equation with rational coeffi¬ 
cients is irreducible if and only if all the recurring series of rational terms 
having the equation as their generating equation admit the corresponding 
law of recurrence as an irreducible law. To apply this to diophantine 
equations, let 

Un+q—l Un+q—2 * Un 

A,(n) = Un+q Un+q—1 • un+1 

Un+2q—2 Un+2q— 1 * * Un+q—1 

become F(un, un+i, • • •, un+q~i) when un+iQ-2, * • *, un+q are expressed in 
terms of un+q~h • • •, un by means of (2). It is known that the law (2) 
is reducible if and only if A5(0) =0. Hence F(uq, • • •, t^-i) - 0 has rational 
solutions if and only if fix) =0 is reducible. If u0, • • *, uq-i give a rational 
solution, the same argument shows that un, • • •, un+q-x give a rational 
solution for n arbitrary. We get all the rational solutions by taking in 
turn all the maximum divisors %{x) =rH-be*, with rational coefficients, 
of f(x), i. e., a divisor not dividing any other divisor of f(x), and forming all 
the recurring series of rational terms having x0&) =0 as generating equation 
and any rational numbers as the first t terms uQ, u1} • * *, ut-i. Among the 
recurring series which together give all the rational solutions of F=0, 
those which give only a finite number of solutions are the ones whose 
generating functions are divisors 6(x), with rational coefficients, of f(x), 
such that 6(x) = 0 has as its roots only distinct roots of unity. For example, 
let g = 3 and fix) —x3—y. Then 

F(u0) Ui, U2)=y2ui+yui+v%--3yuoUiU2. 

Let y be the cube of a rational number 5, so that / is reducible. The 
maximum divisors are x—d and #2+&c+52. To the first correspond the 
solutions u0, 8u0: $2«0, where u0 is any rational number. To the second 
correspond u0j uh — 5(ui-Hi/0), where u0 and ux are any rational numbers. 
If y is not the cube of a rational number, there is no rational solution of 
F=Q. Let (2) be an irreducible law for u0} ux, • • • and let ag== ±1. Then 
Aff(0) =g-(=0, F(un, • • Wn+5-i) = ±g, so that we have rational solutions of 
the latter. There are similar results for integral solutions when the a’s are 
integral. 

D. Hilbert161 treated the diophantine equation D = ±l, where 

_D = x2r2VL{U-tk¥ (i=1, - ■ n; k = i+1, _ 
Giomale di Mat., 33,1895, 106, 218. 

180 Assoc. frang. av. sc., 24, II, 1895, 233-42. 
161 Gottingen Nachrichten (Math.), 1897, 48-52. Cf. Eisenstein*54 of Ch. XXII for n—3< 



is the discriminant of x0 tn+x1tn~H-h^n = 0, with undetermined coeffi¬ 
cients, and roots t1} * • *, tn. By use of £i = 0, • • •, xn-2 = 0, it is readily 
proved that dtl has rational solutions. The main theorem is: For 
n>3, D = dbl is not solvable in integers; the only equations with integral 
coefficients and with the discriminant dbl are Q s (ut-\-v)(uH+tP) = 0 and 
the cubic where u, ul, v, v1 are any integers for 
which uv1—u1v=±:l. The proof employs the theorem162 that the dis¬ 
criminant of an algebraic domain is always distinct from ±1 and the lemma 
(here proved by use of ideals): If an equation with integral coefficients is 
irreducible in the domain of rational numbers, its discriminant is an integer 
divisible by the discriminant of the domain determined by a root of the 
equation. 

C. Stormer163 noted that, if A, B, Nj are positive integers, 

AMI1- • -MZ-Bm-• -^=±1 or ±2 

has only a finite number of sets (if any) of integral solutions Xi9 y/, and 
that these can be found by solving a finite number of Pell equations. 

E. Fauquembergue164 noted that 3z2=4has no solutions with 
y} z relatively prime, since (x+zz)z—(x—z!iy~(2yz)z gives x=zz, y—z\ 
On x2~zt—4yz, see Fuss11 of Ch. XXI. 

G. B. Mathews165 noted that xy(x+y) —zn has no solution if n=3m, 
while if n = 3m±l the general solution is (Xn£, Xwt/, X3f), where (£, 17, f) is 
the unique solution in which x/y equals a given irreducible fraction, and 
the g.c.d. of x and y is not divisible by an nth power. 

A. Cunningham166 solved in integers NiN3=N2Na, where Nr—zt+4yU 
also 

NtNsNs-- -N2r+i_Na 

NoN2Ni - • -N2r Nb• 

He solved MiM3 = M2Mi, where Mr=(Zr+3zyl)l(x2r+3y2r)- 

S. 0. Satunovsky167 discussed the solution in integers of 

ax^+aix™-1-)-b amn = byn, b = zka/cm. 

P. F. Teilhet168 gave, for m=l, recurring series leading to all (an infini¬ 
tude of) solutions of x2m—y2m~xmym—l and asked if there are solutions 
when m> 1 other than x=y — l. 

* H. Kiihne169 noted that if the system of n functions o;,= fc (£0> • * * > £n~i) 

is equivalent to the system of n functions f,•=/,(£<), • • •, xn-i), the coeffi¬ 
cients of the 4>’s and f’s belonging to the same domain, there exists between 
the x3s and the f's a connection (Yerkniipfung) and these connections 
have the group property. This concept leads to a process of solving all 

m Minkowski, Geometrie der Zahlen, 1896, 130. 
«* Comptes Rendus Paris, 127, 1898, 752. 
1W L’interm&iiaire des math., 5, 1898, 106-7. 
185 Math. Quest. Educ. Times, 73, 1900, 37. For 2=1, Euler10 of Ch. XXI. 
™Ibid., 75, 1901, 43; (2), 1, 1902, 26-7, 38-9. 
187 Zap. mat. otd. obsc., Odessa, 20,1902, 1-21 (Russian). 
m I/interm&iiaire des math., 9,1902, 318. 
18# Math. Naturw. Blatter, 1, 1904,16-20, 29-33, 45-58. 
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diopbaatine equations in n unknowns such that all the unknowns are 
expressible rationally in n—1 parameters. An instance is the method of 
solving x3+y3+z3+v? = Q used by Schwering73 and Kuhne74 of Ch. XVT 

A. Cunningham170 found solutions of 

(3) (aH-»*)(Z3+r*)-«,+i|* 
by expressing n=(x3+y3)/(x+y) in the form £2+3u2 in one of the three 
ways: (§x—y)2+3(Jx)2 for x even, (x—5j/)2+3(fi/)2 for y even, 

(£±»)‘+, 
and by expressing N = (X3+F3)/(X+ Y) in the form T2+3272. Then 

nN=A2+W2, A = tT=FSuU, B~tU±uT. 

But A2+3B2 is expressible in the form (£34V)/(£+i?) in one of three ways. 
Hence (3) is reduced to (x+y)(X+Y) =£+i/. R. W. D. Christie171 noted 
the special solution 

(1+n3) {(2n-l)3+(n-2)3} = (n2+2n-2)3+(2n2-2n-l)3. 

He172 noted that 103+302 = (38+72) (32+42). CHmningham noted that 

A*+B2= ¥) (c2+d2) 

is satisfied if A —A2, a —a2, Al—a^clrbd, B=M=tbc. 
*P. S. Frolov173 found the least solution of (4) for s=l. 
A. Hurwitz174 discussed the positive integral solutions xh - • •, xn of 

(4) xU-Vxl^xxxx2 • • -xn, 3, 

where x is an integer. If £=0r, Xi, • * *, xn) is a solution, then evidently 
£' = (x, x[, x2y ••*, xn) is a solution when x'1+Xi=xx2' • -xn. Similarly, 
£"=(£, x2, xZj xn) is a solution when x2+x2^xx1xz- • -zn. Call 
these solutions £', £", • • •, £(n) “ neighbors ” to {. Build the neighbors to 
each of these, etc. Then all such solutions are said to be “ derived ” 
from £. Call f a “ fundamental ” solution if no one of its n neighbors 
has a smaller sum a?H-\-xn. It is proved that £ is a fundamental 
solution if and only if 2x\^xxt• • -xn for i=l, • • *, n; that every solution is 
either a fundamental solution or can be derived from another one; that 
there is no positive integral solution of (4) when £ is a given integer >n; 
that all positive integral solutions with x~n can be derived from 
Xl= • • • =£n = l (the case n=3 being due to Markoff157). If n^5 and if 
x, x1} • ••, xn form a fundamental solution of (4) with * • • =xn, the 
last 7i—2—& of the x/s have the value unity, where k is determined by 
2*^n<2*+1. 

E. B. Escott176 cited two numerical equations x7+rz?+sx?+tx+k=0 
with rational roots [see Ch. XXIV63]. “Charbonier” (18, 1911, 62-3) 
employed the roots a, b, -a~-b, cy d, e, —c—d—e._ 

no Math. Quest. Educ. Times, (2), 5, 1904, 76. [Cf. 27, 1915,17-18.] 
mibid., 100. 
™lbid., (2), 6, 1904, 115. 
m Vest, opytn. fijziki (Spacinski’s Bote Math.), Odessa, 1906, Nos. 419-20, pp. 243-55. 
iw Archiv Math. Phys., (3), 11,1907, 185-96. a. papers 173, 186,194,195a. 
17» L’interm&Jiaire des math., 16,1909, 242. 



E. N. Barisien176 noted that x=f(ri), y=4>(n) give solutions (but not 
necessarily all solutions) of the equation F(z, y) =0 obtained by eliminating 
n. Similarly when x, y, z are functions of n, m. A. Cunningham177 gave 
the least solution 3, 4, 5, and the general solution of 

(a;4+y4+24)2==2(a:8+2/8+28). 

E. B. Escott1770 noted that, if X=x2+1, 

(x?+x2+2x+i)(xz—x2+2x—l)=Xz~X—l. 

A. Thue178 considered solutions x, y} z, relatively prime in pairs, of 

Axn+Byn+Czn—xyzTJ(x, y, 2) =0, 

where U is a homogeneous polynomial of degree n—3 whose coefficients, 
as well as A, B, C, are integers. Let n be odd. Let p, q, r be integers, not 
all zero, such that px+qy+rz=0. Then 

(Arn-Cp*)zn+(Brn—Cqn)yn=xyEh Ei=rnzU —-{(px)n+(qy)"+(«)"), 
xy 

with two similar equations derived by permuting x, y, z and p, qf r. Then 

ax=Brn—Cqn, by = Cpn~ Arn, cz=Aqn-Bpn. 

Hence Aax+Bby+Ccz~ 0, so that we have a second linear relation. Also 
ay^—bx^^Ei, with two similar equations. Let u be the greatest of 
x, y, z numerically; X the greatest of p, q, r; l of A, B} C; m the greatest of 
the coefficients of U, and 5=|(n-2)(n—l)m+(2n"1+l)L He proved the 
following theorems. If ABC 4=0, n =^3, and if p} q, r can be found such that 
\n~1'<u/(l8), then a — b = c~0. If our given function of degree n is irre¬ 
ducible, we can determine a function K^l8 of A, B, C and the coefficients 
of U, such that no numbers p, q, r exist for which Xn”1< ujK. If 

Axn+Byn+Czn = 0 

has relatively prime solutions and if n is odd and >1, there do not exist 
solutions p, g, r not all zero of px+qy+rz — 0 for which \n~~1<ul {(2n-1+1)£2}* 

G. Candido179 considered a polynomial/(x, y) with the factors L—x+ay 
and 4>(x, y), where ais rational. Set x+ay=zn, <£=A. Then/(x, y) =Azn 
has the solutions 

x== -^vn(j)j g), p = Jjmft(p, q), z — \+ajj.} p = 2X+or/i, g=X2+c*X/z, 

where nk, vk satisfy (%vk)2 — (|p2—q)ul ~ qk. Similarly, if / has the factor 
Q=x2-f $xy+yz2, where £, 7 are rational, take it as zn. Each method is 
applied in detail to solve LQ=Az3; in the particular case x^+y3=Az3y the 
solutions are those obtained by Lucas198 of Ch. XXI. 

A. Cunningham180 proved that if 4x3—yz = 3x2yz2 in positive integers, 
then z=y, 2 = 1. He discussed (p. 28) xs+y5 = t2+u2, a necessary and 

178 Sphinx-Oedipe, 5, 1910,76-77. ~~ ~ 
177 Math. Quest. Educ. Times, (2), 15,1909, 49; (2), 18, 1910, 101-2. 
m* Ibid., (2), 17, 1910,57. 
178 Skrifter Videnskapsselsk. Kristiania (Math.), 2, 1911, No. 20. 
m Periodico di Mat., 27, 1912, 265-273. 
180 Math. Quest. Educat. Times, (2), 22, 1912, 69-70. 
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sufficient condition181 being that x+y and N = (%*+y*)!(x+y) be 123. 
Since N^(x2-~3xy+y2)2+5xy(x--y)2, set x = %2, y = 5V2 and make x+y = [23. 
E. Miot182 tookx*-\-y*~2kpqr2, where pis a prime 4n+l, whence 2kp=s2+t2, 
and multiplied the initial equation by qs. L. Aubry obtained an infinitude 
of solutions by setting 

x—l = an, y—l — bn, i-l — cn-\-dn2, u—l = en+fn2. 

“ V. G. Tariste ”m noted that, if x, y, z are < 10, 

xn+yn+zn+xyz = lOOrc+lOy+z 

holds only for n=3 and then x, y, z are the digits of 370, 407 or 952. A. H. 
Holmes184 obtained special solutions with n=1 or 2 by assuming that 
yz —100 or xz —10. 

A. Cunningham185 noted that every prime p=Xn — Yn, with n = 12m+7, 
can be expressed in the forms (&±y*)/(xzky). Cf. Cunningham.187 

G. Frobenius186 proved that x2-\~y2-{-z2=kxyz is solvable in positive 
integers only for k—3 and k — 1, while the latter case reduces to the former 
by the substitution x=3X, y=3Y, z=3Z. Cf. Hurwitz.174 

Cunningham187 noted that, if n > 3, Xn — Yn~x2Jrxy-\-y2 has an infinitude 
of positive integral solutions. He noted (24, 1913, 85-6) cases when 
xz—yz or x7—y7 is expressible in the form Q2+1. He expressed (26,1914,50) 
the product of two numbers of type x2-\-x+l and (27, 1915, 102) the 
product of three such factors in the form A2+3B2 in several ways. 

T. Kojima188 proved that if a rational function of several variables 
with integral coefficients equals an nth power for all integral values of the 
variables, it is an exact nth power. 

H. Brocard183 stated that x~y=1 is the only integral solution of 
xx+yv=x+y, and that xx+yv=xy has no positive integral solution. These 
problems were proposed by G. W. Leibniz.190 

A. Cunningham191 gave several solutions of n(£?-hr,-+l) =z3. 
E. Fauquembergue192 noted that the only solutions of (4x4—1) (4x — l) — y2 

in integers are z=0, 1, 2; =fcy=l, 3, 21. 
M. Bignaux193 gave two identities xejt-y6=z6-i~w2. 
W. Mantel194 proved that x2+y2+z2=x%y2t2 is impossible in integers; 

that, if n=2, 6, 9, 11, 12, x\-\-• •#» has no positive integral 
solutions, and gave the least solutions for n=3 (3, 3, 3), n=4 (2, 2, 2, 2), 

181 Republished, l’interm^diaire dee math., 19, 1912, 227-8. 
189 JWd., 119-120. 
188 Ibid., 133. 
184 Amer. Math. Monthly, 18, 1911, 69-70. 
185 L’interm&liaire des math., 20,1913, 3. Proof by Aubry, p. 120; by Welsch, p. 184. 
186 Sitzungsber. Akad. Wiss. Berlin, 1913, 458-87. 
187 Math. Quest. Educ. Times, 23,1913, 31-32. 
188 Tdhoku Math. Jour., 8, 1915, 24. 
189 L’interm£diaire des math., 22, 1915, 61-2; 21, 1914,101. 
190 Opera omnia (ed., L. Dutens), III, 85-6; letter to Oldenbourg, June 21, 1677. 
191 L’interm&iiaire des math., 23,1916, 41-2. 
lw Ibid., 24, 1917,41-42. 
198 Ibid., 25,1918, 7. For a^+y8=z»+t^, see G&ardin88 of Ch. XXI. 
194 Wiskundige Opgaven, 12,1917, 305-9. 



tt=5 (1, 1, 3, 3, 4), ?i=7, 8, 10. He stated and L. de Jong proved that the 
g.c.d. of solutions x, y, z of x2+y2+z2=xyz is 3, and listed seven sets of 
solutions. Cf. Hurwitz174. 

G. Rados194a proved that if a polynomial Fix) of degree n with integral 
coefficients decomposes with respect to every prime modulus into n linear 
factors with integral coefficients, then F(x) decomposes algebraically into 
n linear factors with integral coefficients. 

A. Korselt1946 argued that, if fix, y) is a homogeneous function of degree 
d> 1 with no multiple root, f(x, y) — zn is solvable in relatively prime 
integral rational functions x, y, z of any parameters if and only if d=2, n 
any, or d=3, n = 2. 

“ V. G. Tariste” stated and R. Goormaghtigh195 proved that xv—y*=x—y 
has only the integral solutions x = y+l = 1, 2, 3. 

M. Rignaux1950 proved by the theory of quadratic forms that 

a2+b2+c2 = Kabc 

holds, when c= 1, only for K= 3. Cf. Hurwitz174. 
F. Irwin1956 gave a method to find the integral solutions of 

axr~bxy~\~y—c= 0. 

For (xn—l)l(x — l) = □, see Landau, p. 57 of Vol. I of this History. 
On pr(p2—r2) : qs(q2—s2), see papers 67-77 of Ch. IV, Euler81 of Ch. 

XVI, Euler18-19 of Ch. XVIII and Euler253 of Ch. XXII. 
For k2+4kfiv= □, where &=(m2+ 1)(^+1), see Haentzschel144 of Ch. V. 
By Hilbert54 of Ch. XIII an equation /= 0 may have no rational solu¬ 

tion, while /= 0 (mod pe) is solvable when p is any prime. From one solu¬ 
tion of F(x, y> z) = 0, Cauchy150 of Ch. XIII found another. For 

= □, see Euler28 and Gerardin85 of Ch. XV, Ward44 of Ch. 
XIX. On fix) = □ see Jacobi,152 etc., of Ch. XXII. Brunei68 of Ch. XXI 
solved xni+xn2 = F, where F is a cyclic determinant of order n. Euler187 of 
Ch. XXII noted rational solutions of abcd(a+b+c+d) = 1. 

Miscellaneous systems of equations of degree n>4. 

C. Gill and T. Beverley196 found numbers whose sum is a 4nth power 
and such that if the square of each be added to their sum there results a 
square. Take px2n, qx2n, * • • as the numbers and x4n as their sum. The 
final conditions give p2+l = □, q2+1 = □, r2+l = □, • which hold if 

_y2—x2n __ax2n—y2la _bx2n—y2/b 

P 2yxn 5 ^ 2yxn ’ r~ 2yxn ’ 

To make p+q-\-=x2n, take y=(a+b-1-l)/(2a:n), 1/o+l/^H-= 1- 
J. Liouville197 stated that, if there be a finite number of sets of positive 

1940 Math. <?s termes. 6rtesito (Hungarian Acad, of Sc.), 35. 1917, 20-30. 
194b Archiv Math. Phys., 27, 1918, 181-3. 
1SS L’intennddiaire des math., 25, 1918, 30, 95. 
1M<1 Ibid., 131-2. 
““ Amer. Math. Monthly, 26, 1919, 270-1. 
198 The Gentleman’s Math. Companion, London, 5, No. 28, 1825, 367-9. 
18T Jour, de Math., (2), 4, 1859, 271-2. Cf. Gegenbauer,202 
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integral solutions of f(xh • • *, x(l)=0, • • -, F(xh • • •, xj =0, and we set 
Xi—dihi in all possible ways and write tj = +1 or —1 according as dx - • 
is a product of an even or odd number of primes (equal or distinct), then 
217 is the number of sets of solutions of the given equations in which each 
Xi is a square. 

H. Delorme198 noted that the system x2m=ay2n-{-1, x2p+1=by2q+1+c is 
insolvable if a+1 and c are divisible by 3, while b is not [since impossible 
modulo 3]. 

A. B. Evans199 found four integers (ax5, • • •, dx5) whose sum is a sixth 
power and the sum of any three a fifth power. Take a+b+c+d—x. 
Then the conditions are x—a=p5, • • -,x—d—s5. Thus x = i(P5+Sf5+rS+s5) 
is an integer if p = 3m, q=Zm+l, r=3m+2, s=3m+3, and then a, h, c, d 
are also integers. 

A. Desboves200 called a a congruent number of order m if the system 

x2m~\-ay2m=u2, x2m—ay2m~v2 

has integral solutions. For m—2, the quotient of the expression found 
for a by 16 is xy(x2—y2)(x4—6x2y2+y4)j2. Taking x=2, y — 1, the latter 
becomes —21. The least congruent number of order 2 is 21. A. G^rardin201 
remarked that it seems more logical to call a a congruent number of order m 
if xmzLaym= □ hold simultaneously. Cf. papers 210, 222, and Ch. XVI. 

L. Gegenbauer202 considered a set of positive integral solutions xt, • • •, s® 
of the system of equations fi(xh ■ * *, £„) =0, * • -, fr(x 1, • • *, xM) =0, and 
any divisor 5® of x°k, and called the product 5? • • * S® a divisor-product 
belonging to the set x\, • • •, re®. Let %(%) be a function for which 
x(%y)~x(z)x(y) for all values x, y satisfying a definite condition. Let 
X(n) = 2x(d), where d ranges over all divisors of n. Then 

VX(x\)--X(xl) = Zx(Zl--0, 
where on the left the summation extends over those sets of solutions x\, 
• • •, xl which satisfy the condition mentioned, while on the right the summa¬ 
tion extends over all the divisor-products belonging to these sets of solutions. 
If we take x(rc) = +1 or — 1, according as x is a product of an even or odd 
number of primes (equal or distinct) and note that 2x(d) = +l or 0, 
according as n is a square or not, we obtain the theorem stated by liouville.197 
Other special cases are obtained by taking xfc) to be the number 4>k(x) of 
sets of k integers <x and prime to x, or ju(x) of Yol. I, Ch. 19, and noting 
that 2<f>k(d) =n*, 2ju(d) =0 if 7i>l. 

Several writers203 found two integers whose sum, difference and difference 
of squares are all twelfth powers (square, cube and biquadrate). Else¬ 
where204 was added the condition that the product of the nine roots of these 
powers shall be a square, cube and biquadrate. __ 

188 Nouv. Ann. Math., (2), 1,1862, 455-7. 
188 Math. Quest. Educ. Times, 25, 1876, 76. 
*«*> Nouv. Ann. Math., (2), 18, 1879, 490. 
801 L’interm^diaire des math., 22, 1915,101. 
808 Sitzungsber. Akad. Wiss. Wien (Math.), 95, II, 1887, 606-9. 
808 Amer. Math. Monthly, 2,1895,128-9. 
804 Math. Quest. Educ. Times, 60,1894, 37-38. 



Vi' XJUUU ALUUVIVt JC VUUJDJCiAO. I_VjHA£'. jCWViAJL 

G. B. M. Zerr205 found six positive integers x» such that each diminished 
by -f(sH-hz6)5 becomes a fifth power. 

Several206 found three numbers in arithmetical progression whose sum 
is a sixth power. 

E. Swift207 proved that x=0, y=1250a6 give the only integral solution of 

^2+2/2=0, i(x2+y2)=zz, xy = 2x?, 2(x+y)+~-- = □, 
x+y 

(x4+y*)(x2+y2)~(x5+y*) 4tf+y* = □. 

A. Cunningham208 discussed x2n+y2n+z2n=u4n+tfn+w*n (n = l, 2) by 
use of the identity a4+64+(o+6)4=2(a2+a6+62)2. Employ the usual 
solution of n2-}~^=w23 and set x~u2—v2—uv, y=2uv, z=x+y. Then 

u*+tfi+w*=2C2, C=w4+uV+u4) 2 C2=x4+y4+z4, 

u4+vi+w4=2C=x2+y2+z2. 

He209 expressed two special sextics and two octics in the form Y2—qxZ2, 
where 7, Z are functions of x, and g = 17, 13, 19, 2. 

A. G6rardin210 discussed the solution of xm+Ayv xm~Ayv—g2. 
Thus 2xm~PAg2, so that x is a sum of two squares. 

G&rardin211 treated the system s6—l=4yz, 8y3n—l~xt, by taking as 
Xy t the factors 2yn—1, Ay2n+2yn+l in either order, or t = 1, or, fort/= 2, 
x~2k~l or 22*+2*+l where n—k—1. 

E. N. Barisien212 noted that jc12=t*+$3~p=u2—tf—w2 for r=9t/4, 
s=xiA 9xyz^ t=8x?y+9?/4, where u, v, w are sextic functions of x, y. 

A. Cunningham213 noted that if Nm—xm—ym) and m} n are primes both 
of the form 4&±1, we can set simultaneously. 
He and R. F. Davis214 proved that we can express (£14+£7+l)/(x2+x+i) 
in the forms A2+3£2 and C2+7D2. 

Cunningham215 investigated N=<j>(x, y) = <f>(x', y') = - *, where 

<f>(x, y) =x^ynzkx<tym 

and x, y are relatively prime integers. 
A. G6rardin216 gave solutions of the system 

2 (x3+^)=23+w3+a3, 2(x2+y2)4 = (v*--z2)4~\-(v1-~u2)4+(u2 —z2)4. 

L. Aubry217 made P(xA-y)+Qx and P{x+y)+Qy both nth powers. 

506 Amer. Math. Monthly, 5, 1898, 114. 
8,1901,48-9. 

107 Ibid., 15, 1908, 110-1. Problem proposed by J. D. Williams in 1832. 
108 Math. Quest. Educ. Times, (2), 14,1908, 66-7 (reprinted, Mess. Math., 38,1908-9,102-3). 
509 Ibid., (2), 16, 1909, 105-6. 
no Assoc, franc, av. sc., 37,1908, 15-17. 
111 Sphinx-Oedipe, 6,1911, 141-2. 
111 L’interm&liaire des math., 19, 1912,194. Cf. Gerardin88 of Ch. XXI. 
*“ Math. Quest. Educ. Times, (2), 23,1913, 21-22. 
mIbid., (2), 23, 1913, 86-8. 
m Mess. Math., 44,1914-5, 37-47. 
*“ L’interm4diaire des math., 21, 1914, 143-4; 24, 1917,111-2. 
nT Ibid., 23, 1916, 33-4. Cf. Sphinx-Oedipe, 10, 1915, 26-27. 
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A. G6rardin218 noted cases in which s5~x, s5—y, s5 —z are squares, where 
8=x+y+z; $n—x, • • •, «sn—/ are all cubes, where s=x+y+2+£, for 

x,2 = =F(27p9+144p3)-108p6-63, 2/ = 216p6+l, * = 126 (s = l). 

He noted (pp. 197-8) cases when Psn+Qxm+Rym-\-, P8n+Qxm+Rzm+ 
• • •, • • • are all pth powers, where s = x+y+ • * •. 

G6rardin219 gave the general solution of his problem to make s±x, 
$±2/, • • •, all pth powers, where s=x+iH-]-a. 

R. Goormaghtigh220 gave solutions of x+y+z-s, s2—x2~Ap) s2—y2—Bp) 
s2—z2 = Cp, where p is 2 or any odd integer. He221 stated that, for 
A < 1000000, A = l+x-\-\-xm = 1+H-byn holds only for 

31 = l+5+52= l+2+22+23+24, 8191 = 1+2+ • • ■ +212=1+90+902, 

in addition to evident solutions if x or y is negative. 
Despujols222 took = (a2+b2) n~1 in the identity 

(a2+&2)(<£?+02)±^= {(adbb) 0i+ (bTa)^}2, 2(a#i+h<£2)(6<fo— afa), 

to obtain a congruent number201 h of order n. He stated that every con¬ 
gruent number of order n is of the form 202Xju, where 02(X2+/x2) =xny and 
conversely. 

On xlxlxlztx]— □ (t=l, 2, 3) see p. 174, p. 186. 

Papers not available for report. 

P. Lackerbauer, Lehrsatze und Aufgaben liber Gleichheiten als Beitrag zur hoheren un- 
bestimmetn Analysis, Progr. Miinnerstadt, 1834. 

G. A. Longoni, Sui problemi di analisi indeterminata, Monza, 1840. 
C. F. Meyer, Ein diophantische Problem, Progr. Potsdam, 1867. 
Poeschko, Auflosungsmethode unbestimmter Gl., Progr. St. P6lten, 1869. 
J. Slavik, Solution of indeter. equations (Czech), Progr. Koniggratz, 1877. 
F. M. Costa Lobo, Resolution des equations indeterminees, Coimbra, 1885. 
C. Alasia, Elementi della teoria generale delle equazioni . . . e delle equazioni indetermi- 

nante, Napoli, 1891. 
A. Zinna, L’analisi diofantea, Trapani, 1900. 
H. Zuschlag, Diophantische Gleich., Berlin, 1908. 
J. Edaljii, Note on indeterminate equations, Jour. Indian Math. Soc., 3, 1911, 115. 
H. Verhagen, An equation in three unknowns, Nieuw Tijdschrift voor Wiskunde, 3,1915-6, 

307-14. 

818 L’intermediaire des math., 23, 1916, 169-170. 
819 Ibid., 207-8. 
888 Ibid., 24, 1917, 23-24. 
881 Ibid.t 88 (p. 153, correction). 
888Ibid26, 1919,14-15. 





CHAPTER XXIV. 

SETS OF INTEGERS WITH EQUAL SUMS OF LIKE POWERS. 

If t = %(a+b+c), a, b, c and t—a, t—b, t—c have the same sum and same 
sum of squares; this double property shall be denoted by 

(1) a, b, c^t—a, t—b, t—c, £=f(a+6+c). 

The separation of two sets of numbers by the symbol = shall denote that 
they have the same sum of kth powers for k = l, • • •, n. 

Chr. Goldbach1 noted that 

g:+/?+5, a+7+5, /2+Y+5, 8=a:+8, /3+8, y+8, a+j8+y+$. 

L. Euler2 remarked that a, b, c, a+b+c^a+b, a+c, b+c. This is the 
case 8=0 of Goldbach’s result, but it implies the latter since (Frolov7) each 
number may be increased by any constant 8. 

If2° N be chosen so that N, N—ai, • • •, N—at have the same sum as 
n, n+ai, • • • , n+at, then the sum of the squares of the former numbers 
equals that of the latter. 

E. Prouhet3 noted that 1, 27 can be separated into three sets, 
two of which are 1, 6, 8, 12, 14,16, 20, 22, 27 and 2, 4, 9, 10, 15, 17, 21, 23, 
25, such that the sum and sum of squares of the numbers in any set are 
the same as for the other sets. As a generalization, it is stated that there 
are nm numbers separable into n sets each of n””1 terms such that the sum 
of the kth. powers of the terms is the same for all the sets when k<m. 

F. Pollock4 noted the fact, equivalent to (1), that 

p, p-\-a, p+2a+Zn=p—n, p+a+2n, p+2a-h2n. 

F. Proth5 noted that 

a2+db+b2, c2+cd+d2, (a+c)2+(a+c)(b+d) + (b+d)2 

and the numbers derived by interchanging b and c have the same sum and 
sum of squares. 

E. Ces&ro6 proved that if a, • • •, k form a rearrangement of 1, • • 9 
and 

a, b, c, d—d, c, f, q <7, h, k, g, 

then a—2, 6=4, c=9, d=5, e=l, /=6, g-S, h — 3, k = 7. Note that the 
three sets of four numbers each may be placed on the sides of a triangle, 
with a, d, g at the vertices. 

1 Corresp. Math. Phys. (ed., Fuss), 1, 1843, 526, letter to Euler, July 18, 1750. 
* Ibid., 549, letter to Goldbach, Sept. 4,1751. Special case by Nicholson80 of Ch. XXIII. 
Sa New Series of Math. Repository (ed., T. Ley bourn), 3, 1814,1, 75-77. 
* Comptes Rendus Paris, 33, 1851, 225. 
4 Phil. Trans. Roy. Soc. London, 151,1861, 414. 
* Nouv. Corresp. Math., 4, 1878, 377-8. 
* Ibid., 293-5. Question by F. Proth. 
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M. Frolov7 noted that 2a* = 26*, 2a? = 26?, k = 1, • • *, ft, imply 

2(a+A)fc = 2(6+/i)*, 2(a+a0* = 2(6+60*. 

For n=2 there must be at least 3 terms a; for ft=3, at least 4. For ft=3, 
the least terms are stated incorrectly70 to be 1, 5, 8,12 and 2, 3,10, 11. For 
ft = 3, there are examples when the a’s and 6’s together give 1, 2, •«• , 2m. 

J. W. Nicholson8 noted the identities 

3<z+36, 2a+46, a, 6=3a+46, a+36, 2a+6i 

5a+106, 4a+116, 3a+56, 2a+86, 3a+36, 2a+66, a, 6 

= 5o+116, 4a+66, 3a+106, 3a+86, a+56, 2a+36, 2a+5, 

there being one more term on the left than on the right. But for ft=l, 
* • *, 5, the sum of the ftth powers of the ten numbers a±32, a±24, a±18, 
a+10, adb4 equals the sum of the ftth powers of the ten a=b30, a-t2S, 
a±16, a±8, adt6. 

A. Martin9 noted the special case of (1): 

* a, 6, 2a+26 = a+26, 2a+6. 
Also, 

P, ?, 2p+2g, Zp+3q=3p+2q, 2p+3q, p+q; 

a+6+c, a+6—c, a—6+c, —a+6+c=2a, 26, 2c. 

R. W. D. Christie10 noted that, if t — e+f+g+h, 

s+e, s+f, s+gf $+h, s—t^s—e, $— /, s—g, s—h, s+t. 

[Since we may reduce each term by s, we obtain an evident identity.]] 
A. Cunningham11 noted that x+y, 6, c=x, y} 6+c if xy=bc. Next, if 

a, by c^Xy y, z, then 
a, by c+Jcz, kc=Xy y, z+kcy kz. 

Similarly a solution in two sets of n numbers yields one in two sets of n+1 
numbers. J. H. Taylor noted that if ai+a3+ • * • +a2r—i==U2+&4+ * * * +a2r, 
then 

ai+1, a2, a3+l, a4, • • •, a2r —ai, a2+l, 03, ^4+1, * * *> <i2r+l* 
If 6iH-f-62r=2r(ft—r)~r, then 

6i, * • *, 62r, ft=6i+l, * * •, 62r+l, ft—2r. 

H. M. Taylor noted the generalization of (1): 
2 2 

ah • • •> o» —£—ai> • • *, t—an> f=— (ai+ • • • +an). 
ft 

R. W. D. Christie noted that ab+cd, 6c, ad^bc+ady aby cd, and 

ft—1, ft—2, ft+3, ft—4, ft+5, ft+6, ft—7 

___=ft+l, ft+2, ft—3, ft+4, ft—5, ft—6, ft+7. 

7 Bull. Soc. Math. France, 17, 1888-9, 69-83; 20, 1892, 69-84. The second was reprinted 
in Sphinx-Oedipe, 4,1909, 81-89. 

7a On the proof-sheets Escott noted that 5, 1, 4, 8 =L 2, 2, 7, 7 has smaller terms. It is de¬ 
rived from 3,-1, 2, 6 ~ 0,0, 5, 5 of Escott68 by increasing each term by 2. 

* Amer. Math. Monthly, 1, 1894, 187. 
• Math. Magazine, 2, 1898, 212-3, 220. 
10 Math. Quest. Educ. Times, (2), 2, 1902, 40. His condition s=a4*64-c4*d is unnecessary. 
nIbid., (2), 4, 1903, 98-100. 
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A. Gdrardin12 noted that xz^yz+zz — (a+l)3+(?/—2)3+(2+l)3 is equiva¬ 
lent to As+Az=(2/ — l)2, where Az=a;(£+l)/2. He took Ax=l, 3, 6, 10, 15, 

* * * in turn and found the possible z’s ^100 by use of a table of triangular 
numbers. He found 13 solutions like 

13+153+123=23+103+163, 1 + 15 + 12 = 2+10+16. 

The sum of the squares of 1,15,12 exceeds that of 2,10,16 by 10. Consider 
two of our 13 solutions for which the ratio of the excesses mentioned is a 
square m2; multiply the numbers of the first solution by m and add to the 
second solution; in this way we get 

2, 4, 20, 22, 33 = 1, 6, 16, 26, 32; 
1,4, 12, 13, 20 = 2, 3, 10, 16, 19; 

3, 4, 15, 20, 23, 26 = 2, 5, 17, 18, 22, 27; 
2, 6, 30, 46, 53, 73 =3, 4, 34, 44, 51, 74; 
2, 6, 44, 58, 63, 91 =1, 8, 40, 60, 65, 90. 

Others follow by adding two of these. From 2+2/+2=a+2+y—4+2+2, 
he got 

1, 19, 23, 24, 32, 48 = 3, 15, 20, 25, 40, 44. 

G6rardin13 noted that 14, 23, 25, 138 = 7, 26, 30, 137, 

1, 9+3, 3<?+2, 40+4 = 2, g+1, 3<7+4, 4^+3, 

2, 12, 15, 35, 38, 48 = 3, 8, 20, 30, 42, 47, 

while x+h, y+pjZ^x, y, z+h+p is impossible. [The last fact is a case of 
BastienV8 evident theorem.] 

H. B. Mathieu14 noted that 

l, l—m—an, l+(a — l)m—n = l—m—n, l—an, l+(a~l)m. 

U. Bini15 gave a+b, c, d=c+d, a, b if ab = cd. [Cunningham.11] 
E. B. Escott16 showed how to find all solutions of 

(2) Xyi} ]C x • = Zy2i} 
<=i i=i 

for n=3. Set rct=X+>8, yi=Yi+S, where 3&=£i+£2+£3* But, if %Xi 
is not divisible by 3, take S = 2xi} 3a;t- = Xt+&, 32/»= F,+£. Thus 

SX,=0 = SFt-. 

Using these to eliminate X3 and Yz from SXiX2 = SFiF2, we get 

(3) X?+X A+Xj = Yt+Y1Y2+Yl 

Hence the problem reduces to solving (3). To find all its solutions, let 
N be any number all of whose prime factors are of the form 6rz+l or 3, 
besides square factors common to Xi, X2, Yx, F2. Then represent N in all 
ways in the form x2+xy+y2. 

12 Sphinx-Oedipe, 1906-7, 120-4. 
18 Ibid., 1907-8, 27, 94-5. Also, a case of (1). 
14 L’interm&liaire des math., 14, 1907, 201. All the solutions, ibid., 50, 200-3, by the other 

writers are special cases of (1). 
15 Ibid., 227. His other solution is equivalent to (1). 
“Ibid., 15,1908, 109-111. 
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A. G6rardin17 noted that 

1, m+3, 2m—2, 4m+2, 5m—3, 6m—1 

=2, m—1, 2m+3, 4m—3, 5m+l, 6m—2, 

a;, x+3, £+5, £+6, £+9, £+10, £+12, £+15 

— £+1, £+2, £+4, £+7, £+8, £+11, £+13, £+14, 

also the result due to G. Tarry: 

e, a+36, 2a—6—c, 4a+56—3c, 5a+6—4c, 6a+46—5c 

=6+c, a—6, 2a+46—c, 4a—3c, 5a+56—4c, 6a+36—5c. 

G^rardin18 noted that 62+a6—a2, a2+2a6—462, 462 and 462 have the 
same sum and sum of cubes as a2+a6 — 62, 462 + 2a6—a2, 62 and 62. 

G. Tarry19 gave 

6, a—36+2c, 2a+26—5c, 2a+46—7c, 3a—66+c, 3a—46—c, 4a—6—6c, 
4a+46—11c, 5a—96,6a+56 —16c, 8a—116—4c, 9a+36—20c, 10a—106—9c, 
10a—56—14c, 11a—26—19c, lla-21c, 12a-106-13c, 12a-86-15c, 
13a—36—22c, 14a-76-20c 

=c, a+36—4c, 2a—56+2c, 2a-36, 3a+26-7c, 3a+46-9c, 4a-76, 
4a—26—5c, 5a+56—14c, 6a—106—c, 8a+46—19c, 9a—116—6c, 
10a—46—15c, 10a+6—20c, lla-106-llc, lla-86-13c, 12a-36-20c, 
12a—6—22c, 13a-96-16c, 14a-66-21c. 

Welsch20 stated that the general solution of (2) is 

z»~i=§(a-X+X), a„=f(a-X—X), 2/n-i=§(a-r+M), yn=i(a—Y—n), 

with Xi, yf (i= 1, • • •, n—2) arbitrary, where 

X=Zxf, Y=EVi, X2-+=(2a-X-7)(X-7)-2X;++2El/o. 
i=l <=1 t=l 

and X, y, are of the same parity as a— X, a —F. E. B. Escott (pp. 213-4) 
noted that one can proceed as he16 had done for n = 3. 

H. B. Mathieu21 asked if the general solution is 

2$u—uv+st, st+tv, su—2uv+tv=$t—uv, 2$u—2uv+$t+tVj su+tv. 
Numerical solutions not of this type were cited in reply.22 

A. G6rardin23 noted three cases of (1) in which c = 2a+26 = £ [Martin9]], 
and that 4p2—3mp, 3m2+4mp—4p2 have the same sum and sum of cubes 
as 6m2—3mp, 2p2+4mp —6m2, 3m2—2p2. 

# U. Bini24 set y,=£.+ra in (2), whence 2ra=0. By the latter, rm is 
eliminated from the quadratic equation, which is then treated as a quadratic 
for ri. Next, let 

(4)_ xn+yn+zn=un+vn+wn (n—ly 2, 4), 

17 Sphinx-Oedipe, 1908-9, 96; errata, 144. 
“Ibid., 4,1909,44. 
19Ibid., 176. 

80 L’interm&Iiaire des math., 16, 1909, 89-90. For n=3, ibid.. 15. 1908, 280-1. 
81 Ibid., 16,1909,219-220. 
88 Ibid., 17, 1910, 72, 165. 
88 Assoc. fran$. ay. sc., 38, 1909, 143-5. 
84 Mathesis, (3), 9, 1909, 113-8; same method in Periodico di Mat., 25,1910, 119-128. 
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where x, y, z are not a permutation of u, v, w. Then x+y+z-0 and the 
equation given by n=4 is a consequence of the others. Replacing z by 
—x—y and w by ~u—v, we get 

x2+xy+y2=u2+uv+tr5. 

Let Xi, yij Ui, vx be one solution; the general solution is 

x^PxXx+P&i, y^Piyi+Ptyt, w=Pi^i+P2W2, t>=Pit>i+P2t>2, 

Pi=ul+u2v2+vi- x\—x2y2—y\, 

P2 = 2xix2+2yiy2—2u\U2—2t>ii;2 +^12/2+^22/1—UiV2—u2Vi, 

where x2, y2, u2, v2 are arbitrary. Various special solutions of (4) are given. 
A. G^rardin25 noted that 

(/-2#+(4;-#+(3f7~5/)*= (4/-3^)fc+(2*/-5/)*+(/+?)* (*« 1, 2, 4). 

He26 gave 2d+3s, Ad+2x, d=d+2x, 4d+3z, 2d. 
Welsch27 stated that the general solution of (2) is 

n—3 n—3 

xn—2 = — 'jj Xi+t+BD—AC, yn—i = - 2 3/*+i+-Ai5—CD, 

zn_i==H-AR, xn = t-CD, yn-^t+BD, yn = t-AC, 

with x^ yi (i=l, ••*, n—3) arbitrary [false if n>3, since in TUx] = 2?/• 
only the terms free of the x’s and y’s cancel]. 

E. N. Barisien28 gave the relations involving 1, • • •, 32: 

1, 8, 10, 15, 20, 21, 27, 30=4, 5, 11, 14, 17, 24, 26, 31 

= 2, 7, 9, 16, 19, 22, 28, 29=3, 6, 12, 13, 18, 23, 25, 32. 

C. Bisman29 gave six relations like the last, a numerical example of 
2a*=25* (k—1, • * *, n) for each n^9, and three identities of the type 

a—b, a—2c, a+6+ c, a+26—c=a+26, a+c, a—6—c, a+6—2c. 

L. Aubry30 treated 2zl-=2w,-, - 2u\ (i=l, 2, 3) by setting £»=l+t/»n, 
tii=l+«;*n, whence 22/*== 2t>*. The cubic equation holds if 

n = 3(2^~2^)/(2^-2^). 

E. B. Escott31 applied his16 method to the last problem. 
A. de Farkas82 noted that, if 2$, 2z2, 2a? and r3+3rH-b(w—l)xm 

equal the analogous sums involving y’s, then si+a, x2+a+d, • • •, xm+a 
+ (m—l)d have the same sum and sum of cubes as 2/1+a, • • • [false]. 

G. Tarry33 stated that the first 2n(2a+l) integers can be separated into 
two sets each of 2n~1(2a+l) integers having the same sum of tth powers for 
2 = 1, • • •, n. For a = l, n = 3, the first set is 1, 3, 7, 8, 9, 11, 14, 16, 17, 18, 
22, 24._ 

“Assoc. fran$. av. sc., 39,1, 1910, 44; Sphinx-Oedipe, 5, 1910,182. 
“Sphinx-dedipe, 5, 1910, 177. 
87 L’interm4diaire des math., 18, 1911, 60 (for n-3), 205. 
88 Mathesis, (4), 1, 1911, 69. 
89 Ibid., 205-8, 264. 
*° L'interm6diaire des math., 19, 1912, 156-7. E. Miot (p. 3) gave two numerical solutions. 
81 Ibid., 263-4. 
88 Ibid., 182. His remark on p. 131 is the case n-2 of Frolov's7 first result. 
»Ibid., 200. 
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Tarry34 gave (1) and noted that, for x arbitrary, 

ci, 6, • ■ *, h — p, q, • • •, t 
imply 

a, • • *, h, p+x, • • *, • • •, i+xn=p, •••,«, a+z, • • •, ft+z. 

By use of this lemma he found 

6a—36—8c, 5a—9c, 4a—46—3c, 2a+26—5c, a—26+c, 6 

==6a—26—9c, 5a—46 —5c, 4a+6—8c, 2a—36, a+26—3c, c. 

H. B. Mathieu35 gave as the general solution of (2), for n—S, 

Z±(a6+ac), Z(l— 6d)+ga6zFac, Z(cd-f*l):T::a6—gac. 

L. Aubry (p. 234) noted that x+y+z^u+v+w implies xyz = uvw. 
0. Birck36 noted that, if x+y+0=0, 

(ix—ky)n+ (iy—kz)n+(iz —kx)n = (iy—kx)n+(iz —ky)n -|** (fz —kz)n, 

n = 0, 1, 2, 4. 
“ V. G. Tariste ”37 noted that 

(23n+57Z) *+ (40n—6Z) e+ (17n—63£)e 

= (23n - 57Z)e+(40n+6Z) e+ (17n+63Z)«, 
e=2, 4. 

Further such cases were given by E. B. Escott and A. G5rardin.38 
E. Miot39 stated that any 2n(2a-fT) numbers in arithmetical progression 

can be separated into two equal sets having the same sum of tth powers 
for t=1, * • n, if a>0, n>l; while 2=1, * * *, n—1 if a=0. Hence, if in 
Tarry’s33 example we replace x by a+(z —l)r, we get 

a, a+2r, a-f 6r, • • •, a+23r = a+r, a+3r, • • •, a+22r. 

Tarry40 noted that the number of terms in each member of the equations 
deduced in his34 lemma is 2k—d, if k is the number of terms in each member 
of the given equations, while x is expressible in d ways as a difference of 
two numbers belonging to the same member. Given 

1, 5, 10, 16, 27, 28, 38, 39=2, 3, 13, 14, 25, 31, 36, 40, 
take 

z=ll = 16-5 = 27-16 = 38-27 = 39-28 = 13-2 = 14-3 = 25-14 = 36-25. 

Thusd=8, 

1, 5, 10, 24, 28, 42, 47, 51 = 2, 3, 12, 21, 31, 40, 49, 50. 

E. Miot (p. 85) noted that 

1+n, 2+n, 10+n, 12+n, 20+n, 21+n 

____=n, 5+n, 6+n, 16+ft, 17+n, 22+n. 

34 L5mterm4diaire des math., 19, 1912, 219-221. Cf. Tarry.46 
15 Ibid., 225. 
36 Ibid., 19,1912, 252-5. Cf. Birck218 of Ch. XXII. 
17 Ibid., 129; cf. 201, 250. 
48 Ibid., 21, 1914, 126-9. 
88 Ibid., 20,1913, 64-5. Generalization of Tarry.88 
40 Ibid., 68-70. 



Chap. XXIV] INTEGERS WITH EQUAL SUMS OF LlKE POWERS. 711 

0. Birck (p. 182) took x+y+z = 0 and 

%=ix—ky, rj — iy—kz, £ = iz—kx, ir = iy—kx, n = iz—ky, p = ix—kz. 

Then 

n+£, n<—£, n+m n — r\, n+f, n-~f==7i+7r, n —tt, ti+k, ft —/c, ft+p, ft—p. 

0. Birck41 noted that 

£4+7?4+r*=7i-4+k4+p4, $+?7+r=:^+K+Pj v~~ £=/£—7r4:0 
for 

f> ^=^‘—§(^±2/); ir=i+H£=ty); p = k±x, 

subject to the condition hz —iZJr(k — \i)x2—\iy2 — 0. From one solution 
(i, k, x, y) of the latter he derived two or more new solutions. 

A. G^rardin42 noted that 

p(p+a+b), p2+2p(a+b)4-2ab, p(a+b)+2ab 

= ap, bp, p2+p(a+2b)+2ab, p2+p{2a+b)+2ab. 

E. B. Escott43 noted that (4), for n — 2, 4, has the solutions 

x=m2+mn+3n2, y— 2m2—4mn~n2, z — 3m2—2n2, 

u = 3m2—mn+n2, v=—m2+4mn+2n2, w= -2m2~\-3n2, 

where m, n are odd, and gave two analogous solutions. Gdrardin gave 
(ibid.) a process to obtain solutions. 

Crussol44 treated the last problem with the restriction y+z=v+w. 
The equations can be written in the form 

(x+pn)k+(y+pm)k+(z—pm)k = (x —pn)k+(y—pm)k+(z+pm)k, k = 2, 4, 

where m, n are relatively prime. Thus 

xn = m(z—y), 4p2n2(n2—m2) = 3ft2 (z+y)2+(ft2—4m2) (z—y)2. 

Set s = 3cr-~/32(n2 —4m2). Then the solution is 

p = 3a2+/52(n2—4m2), z-j-y = ns+2acp(n2—4m2), z—y — ns — 6 a fin2. 

Crussol45 noted that the system 

k = 2,4,6, 
is equivalent to x2-\-y2=z2+t2 and 

6(a2-b2) = y2+t2-x2-z2, 10 (a2+b2) =y2+t2+x2+z2. 

Set x — aq—fip, y = ap-\-pq, z = aq+pp, t = ap—Pq. Thus 

3 (cl2 — b2) = (a2-(32)(p2-q2), 5(a2+b2) = (<*2+/32) (p2+q2), 

a2-j-f$2 = 5(y2+82), a = 28-j-y, fi — 2y — 8, a = yp+8q, b = yq—8p, 

3(y2-82)(p2-q2)=2y8(2p+q)(p-2q). 

The discriminant of this quadratic in y, 8 must be a square. The first of 

41 L’intermediaire des math., 20, 1913, 273-7. 
42 Sphinx-Oedipe, 8, 1913, 134; correction, 157. 
42 Ibid., 141-2. Cf. papers 206-7 of Ch. XXII. 
“Ibid., 175-6. 
46 Ibid., 189. 
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three special solutions is 2, 16, 21, 25; 5, 14, 23, 24, given by p = 6 = 3, 
5=2, y=5. 

G. Tarry46 republished his34 results and noted that 

Ai, ■ ■ •, At~Bu ■ • •, Bk, A,+A*_,=26=2? ,•+!?*_,• (i= 1, •••,&) 

imply Ah • • •, Ak2=lBi, • • •, 2?*, as shown by subtracting hfrom every term 

of the given equations. A. Aubry concluded that 

A, B, C, -A, —B, —C=A', B', C', -A', -B', -C' 
if 

A =ab-baf}+boL—3a@, B = —cib+aP+ab+ZaP, C =2ap+2ab, 

A'=a6+cs/S—6a+3a/3, B' = —ab+af3—ab—3ap, C'=2ap—2ab, 

since 2A3=2A'2, 2A4=2A'\ Take a-1, ot = 2, 6=3, 0=4 and add 32 to 
every term; thus 

1, 12, 21, 43, 52, 63 = 3, 7, 28, 36, 57, 61. 

Aubry noted that Aj^+x, Bi+y^Ai, Bh x+y if Aix+Biy=xy. Hence set 
Ai=ab, Bi = cd, x=ca, y = ba, a = a+d. Thus, if A, J5=£, i?, f, then 
A = ahJrbdJircd, B = a&+ac+cd, whence 

A2~AB+B2 = (a*+ad+d?)(b2+bc+ci) 

But a2+ad“bd2 has besides 3 only prime factors of the form 6ft+l. If 
A2-AB+B*2is divisible by 3, A+B = 3h and A, B=A—h, B-h, 2h. 
Hence A, B=£, 77, f is solvable if and only if A2—AB+B2 is a multiple of 
3 or has at least two prime factors 6&+1. 

Crussol47 solved a, b, c, d^=a1} bi, Ci, di. After adding a suitable constant 
to each term we have a+b+c+d=0. Set 

A = a-{-b~ —c—d, Ai = ai+6i= —ci—di, 

2 B=a-h, 2B1~a1-b1, 2C=c-d, 2C1=c1-dl. 
Then 

A2+(B+Q2+(B-C)2=Ai+(B1+Ci)2+(B1-Ci)2, 

il(B+C)(B-C)«il1(B1+C1)(JBi-C,1)- 
The general solution of the latter is A=\px, B-\-C*=yqy, B—C~vrz, 
At=*iirx, Bi-\-Ci = irpy, Bi—Ci = \qz. Then the former condition becomes 
ex2=fy2+gz2,^ where e = /i2r2-X2p2, f^^q2-^, g = vlr2-\2q2. From the 
evident solutions (x, y, z) = (v, X, //) and (q, r, p), we get the general solution 

x = v(a2f+pg), y=\(a2/—$2g)2ya0g, z = y{o?f-$2g) -2Xa/3/. 

L. Bastien48 proved the impossibility of xl9 • • •, xn=yl9 • • •, yn when the 
x s do not form a permutation of the y’s. For, the elementary symmetric 
functions of the x’s equal those of the y’s, so that the iris are the roots of 
the same equation of degree n as the y’s. 

* Sphinx-Oedipe, num&ro special, June, 1913, 18-23; l’enseignement math., 16, 1914, 18-27 
(prepared for press by Aubry after Tarry's death). 

44 /fid ^ special case — p. 134. 



Chap. XXIV] INTEGERS WITH EQUAL SUMS OF LlKE POWERS. Y1«J 

E. N. Barisien49 noted that 1, 5, 9, 11,15, 16 and 3, 4, 8, 10, 14, 18 and 
2, 6, 7, 10, 14, 18 and 1, 5, 9, 12, 13, 17 have the same sum and sum of 
squares; also that 

3, 4, 8, 11, 15, 16 = 2, 6, 7, 12, 13, 17. 

A. Aubry60 gave known and new solutions of 2a = 2a, 2a2 = 2a2, and 
proved the impossibility of x, y == t, u, v. 

N. Agronomof61 noted the case a+c+3=25 of (1). 
A. G^rardin52 gave a solution of 2 A = 2Xy 2A3 = 2X3: 

A = 2p2—9pq+6g2, £ = 2pg, C=pq, X= -p2+9pg-12g2, 

Y=2p2—10pg+12g2, Z~p2—5pq+6q2. 

N. Agronomof53 gave an 8 parameter solution of 

txki = ty- 1,2,3). 
*«1 t=l 

For any solution of this system, wre have 

tixt+zy+ty^tiyi+zy+tzi (*“1, 2, 3, 4), 
<=1 t=l t=l <=1 

z being arbitrary. Proceeding similarly, we can solve 

= (v=2“-i; *-l, • .-,n). 
t=l t=l 

By specializing the solution first cited, he obtained solutions of 

(fc=l, 2, 3; s=l or 2 or 3). 
i=l t=l 

A. Filippov53® stated that the specialized solutions just mentioned are 
trivial since they reduce to Xi=yi or yi=0. 

A. G6rardin54 noted that 2x = 2a, 2x2 = 2a2 if a = 3, 6 = 2, c=l, 

x — { ^2+2iAi;-f-3i^)/-Z>, y=(3v?+8v>v+6t?)ID9 

z=(2u2+8uv+^)/D, D=u2-jr3uv+3vz. 

R. Goormaghtigh55 solved the same system by setting 

x-Pg+Qp, y = Ph+Qq, z = P(k+l+in—g—h)+Qr, 

a-Pk+Qp, b=Pl+Qq, 

Then the equation obtained by eliminating z between the proposed equations 
determines P/Q as follows: 

P=p(k-g)+q(l~h)+r(g+h~-k--l)9 

Q^g2+h2+gh+kl+lm+mk-(g+h)(k+l+™). 

4#Mathesis, (4), 3,1913, 69. 
80 Annaes Sc. Acad. Polyt. do Porto, 9, 1914,141-151. 
51 Suppl. al Periodico di Mat., 19,1915, 20. 
“Nouv. Ann. Math., (4), 15, 1915, 564; Tintenn^diaire des math., 22, 1915, 130-2 (cor¬ 

rection for h= 2); 23, 1916, 107-10. Cf. papers 130, 302, 438-40, 442 of Ch. XXI. 
“ T6hoku Math. Jour., 10, 1916, 207-14. 
s*a Ibid., 15,1919, 143. 
44 I/interm&iiaire des math., 24,1917, 55 (correction, p. 153). 
uIbid., 25, 1918,20-21. 
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An Equivalent Problem in the Theory of Logarithms. 

The system of equations 2a*=26* (7c = 1, * * •, n) which we have been 
considering is equivalent to the system 2ai = 26i, 'Ea1a2 = 2b1b2, *•*, 
2aia2 * * • o» = 26i62 • • • 6ft. Consider the equation having the roots <q, a2, 
• • * and that having the roots 61, b2, • • •• Thus our problem is equivalent 
to the following: Find two equations of the same degree each having all 
its roots integral and the first n coefficients of the one equal to the corre¬ 
sponding coefficients in the other. 

The latter problem occurs in the investigation of rapidly converging 
series convenient for the computation of logarithms. In the familiar series 

log— = 2 M(k+ikz+iJc5-{-), k — -, 
n m+n 

take, for example, m-x2, n = (x—l)(x+l). Then log (x+1) differs from 
2 log x—log (x—1) by a series in 7c=l/(2o:2—1). In general, we desire 
that m and n shall be polynomials in x whose roots are all integers such 
that k becomes a fraction whose numerator is a constant. We may remove 
the second terms of the polynomials by a linear substitution. 

J. B. J. Delambre56 took m—x^-j-px+q, n~xZJrpx~q, and assumed 
that m=0 has the roots a, 6, —a—6, and n=0 the roots —a, —6, a+b, 
whence p= — a2—a&—62, q = a2b+ab2. For a=6 = l, we have the formulas 
m, n~x3—3x±2, ascribed to Bor da. 

J. E. T. Lavem&de57 gave an extensive treatment of such polynomials, 
chiefly of degrees 3 and 4, and noted the examples 

m=x2(x+5)2=x4+ 10x3+25x2, n= (x —l)(x+2)(x+3)(x+6) 36; 
m='x2(x—7)2(x+7)2,n=(x—3)(x+3)(x —5)(x+5)(x—8)(x+8)=?w —14400; 
m, n= (x±2)(*±4)(xdblO)(x=T=7)(x=F9) =x5 - 125x3+3004x±5040. 

S. F. Lacroix58 quoted the preceding results and the following, attributed 
to Haros: 

m=x2(x-5)(x-f5), n= (x—3)(x+3)(x—4)(x-{-4) =w+144. 

John Muller59 had made only the following contribution to our subject: 

log (d+l)2 = log d+log (d+2)+log- 
d?+2d-\-l 

d?+2d ’ 

log (d+3)2=log (<2+l)2+log (d+4) -log d log q, g = 

The latter is applied when d= 14 to find log 17, knowing log 15, log 18 and 
log 14. Then q = 2025/2023. Taking a = 2024, x = l, we have q=(a+x)/ 
(a—x), a series for the logarithm of which is found by subtracting the 

88 J. C. de Borda’s Tables trigonom4triques d4cimales ou Tables des logarithmes . . . revues, 
augments et publi4es par Delambre, Paris, an IX (1800-1). Introduction. 

87 Notice des travaux de l’Acad. du Gard, 1807, 179-192: Annales de Math, (ed., Gergonne), 
1,1810-11,18-51, 78-100. See Allman.6° 

88 Trait6 du Calcul Diff. . . . Int., ed. 2,1, 1810, 49-52. 
89 Trait6 analytique des sections coniques, fluxions et fluentes . . Paris, 1760, 112. This 

topic does not occur in the earlier English edition, A Math. Treatise: containing a 
System of Conic Sections; with the Doctrine of Fluxions and Fluents . . ., London, 1736. 
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[If in the second formula 
If in the first we take 

d=x—l, we obtain the example m=x\ n=x*-1 given before the report 

onDelambre.66] _ , _ rR liL £ ,, 
W. Allman60 gave the result quoted under Delambre56 and the first two 

series for log (1—x/a) from that for log (1 +x/a). 
we take d=x-2, we obtain Borda’s56 result. 

-x2f n — x2" 

results cited under Lavemede. , . , , , 
T. Knight61 started with x^(x+ri) {x/(x+ri)\, changed x into x+n 

in the fraction and multiplied by such a fraction as will restore equality: 

x+n' xjx+n+n') 
x=(x+n) 'x+n+n, ‘ (x+n)(x+n'Y 

In the final fraction change x into x+n" and restore equality by annexing 

the new factor 
x(x+n+n')(x+n+n")(x+n'+n") 

(x+ri)(z+n')(x+n,f)(x+n+nf+n") 

The expanded numerator has its first three terms the same as the corre¬ 
sponding terms of the expanded denominator, and also the fourth terms 
alike if n”=n+n'. The rest of the paper is on the case n = n' ~nn = * * • 
= — 1, and gives the general factor explicitly. 

Secr6tan62 noted that 
(x:Fl)(r=F5)(r±7)(a;±8)(a;::F9) =rr6 — 110x3+2C29x=F2520. 

E. B. Escott63 spoke of a<>xn+aixn~~l+ * • * and a$xn + • * * as having 
exactly their first r terms alike if a0 — ar0, * • •, ar-i = ar-.i,ar + ar. * lie readily 
proved theorem (I): If / and g are two polynomials in x having exactly 
their first r terms alike, then f(x) -g(x+d) and g(x) •f(x+d) have exactly 
their first r+1 terms alike. Starting with f=x — a} g = x, and taking 
d = —b, we see that (x—a)(x — b) and x(x — a — b) have two terms alike. 
Taking the latter as / and g, and d= —c, we see that (Knight) 

(a;—a)(x—b)(x—c)(x—a — b—c)j rc(x —a — 6)(a;—a —c)(x —6 —c) 

have three terms alike. Proceeding similarly, we obtain theorem (II): 
If we form the equation whose roots are the sums of alf • * *, a„ taken 1, 3, 
5, * • • at a time, and that whose roots are the sums of the a’s taken 2, 4, (5, 
• * • at a time, we obtain two functions of degree 2n~l having exactly their 
first n terms alike. For special a’s common factors occur and may be 
removed. Thus, if n=4 and if the a’s are a, 6, a+b, a+26, four of the eight 
roots will be common and the remaining ones are 0, a+36, 2a+6, 3a+46, 
and a, &, 2a+46, 3a+3&, If in (I) we take g = P(x)zzx(x+d) {x+2d) * * * 
{x+(n—l)d} and f=P+c, and remove the common factor P/x, we obtain 
two functions (.P+c)(x+nd) and (x+nd)P+cx of degree n+1 with exactly 
their first n+1 terms alike. Again, taking g = P(x) -P(x+a) and f^g+c 
in (I), and removing the common factor g/{x(x+a)}, we get 

_(x+nd)(x+a+nd) (g+c), (x+nd) (x+a+nd)g+cx(x+a), 

60 Trans. Roy. Irish Acad., 6, 1797, 391-434. — 
81 Phil. Trans. Roy. Soc. London, 1817, 217-33. 
62 Comptes Rendus Paris, 44, 1857, 1276-9. 
M Quar. Jour. Math., 41, 1910, 141-167. 



716 History of the Theory of Numbers. [Chap. XXIV 

having all terms alike except the last two in each. Taking n=2 or 3 
and making suitable assumptions, we find that these functions have two 
common linear factors (pp. 148-50, with changed notations). Besides 
employing roots in three or more arithmetical progressions, leading to a 
solution of degree 7 (p. 152), various special methods are used. 

Escott, after reading the proof-sheets of this chapter, pointed out its 
relation to the derivation of formulas for the computation of t: 

a b 
tan-1 —;—btan-1 ——J 

x-j-a 
• • * = tan*"1 V_ 

X1 

where X is a real polynomial in x whose degree equals the number of frac¬ 
tions in the left member. Since 

tan-1log 
y 2i 

y+ai 
y-ai’ 

it suffices to have (x+a+ai)(x+p+bi) • • • =X+pf. Of the polynomials 
m, n in the above problem on logarithms, we may employ here those con¬ 
taining only odd powers of x and a constant term. If in Delambre’s56 ex¬ 
ample we replace a by —ai and b by —bi, we have 

(x+ai) (x+bi) (x—ai—bi) =a3+ (a2+ab+b2)x+ab(a+b)i, 

tan""1 -+tan“1 -- 
X ’X 

'tan' tan“ 
ab(a+b) 

x?+(a?+ab+b2)x' 

By the former we have a product of factors like x2+a2 expressed as a sum 
of two squares (cf. note 13, p. 382 of Vol. I of this History). Escott noted 
that his63 general results include as special cases GoldbachV and Euler’s2 
formulas, the first identity by Nicholson8, the two formulas by J. H. Tay¬ 
lor,11 as well as the following (after reducing each term by such a constant 
that the sum of the terms in either member becomes zero16): G6rardin’s13 
2, * • *, 47, G6rardin,17*42 Tarry,17 Miot,40 and Aubry.46 

In Sphinx-Oedipe, 10, 1915, 30, occur two examples of two sets of five 
numbers having equal sums of Mh powers for & = 1, * • *, 4, the numbers 
being functions of six parameters. 



CHAPTER XXV. 
WARING’S PROBLEM AND RELATED RESULTS* 

Waking’s problem. 

E. Waring1 stated that every integer is a sum of at most 9 [positive 
integral] cubes, <dso a sum of at most 19 biquadrates, etc. Every integer N 
of the proper form is a sum of a finite number of terms t = axm+bxn+cxr-\- 
(N being a multiple of 3 if Z=3a;4+6^3+24). Cf. Maillet.14 

J. A. Euler2 stated that, to express every positive integer as a sum of 
positive nth powers, at least T~v+2n—2 terms are necessary, where v 
is the largest integer <(3/2)\ For n=2, 3, 4, 5, 6, 7, 8, T=4, 9, 19, 37, 
73, 143, 279 [cf. Vacca18]. 

A. R. Zomow,3 at the suggestion of C. G. J. Jacobi, constructed a table 
of the least number of positive cubes composing each number ^3000. 
The number of cubes was stated to be 8 except for 23. ^7Jot numbers 
>454, ^6 for numbers >2183. The finaFstatement and the second for 
239j[wfelch requires 9 cubes), are^erroneous. Corrections were made by Z. 
BaseJ who c^^Ted^a"table extending to 12000 and communicated it to 
Jacobi.4 The largest number within the limits for which 7 cubes are 
required is 8042; for 8 cubes, 454. Jacobi considered the problem to find 
all the decompositions of a given number into the least number of cubes. He 
tabulated the numbers < 12000 which are sums of two cubes and those 
which are sums of three cubes. 

C. A. Bretschneider5 constructed at Jacobi’s suggestion, a table giving 
all the decompositions of numbers ^4100 into a sum of biquadrates, and a 
companion table showing the numbers which equal the sum of a given 
number of biquadrates but not fewer. For 79, 159, 239, 319, 399, 379 and 
559, it is necessary to use 19 biquadrates; for the remaining numbers, at 
most 18. As far as 4096=46, he verified that 37 fifth powers are needed, 
and 73 sixth powers. He repeated Euler’s2 statement. 

J. Liouville6 was the first to prove that every positive integer is the sum 
of a fixed number A4 of biquadrates, in fact, of at most 53. He first proved 
that the product of any square by 6 is a sum of 12 biquadrates, in view of 

6n2 = {\(x±:y±:Z±:t)}4, 2 n— 2s2. 
_4_8___ 

* A. J. Kempner read critically the reports in this chapter and compared them with the 
original papers except for 2, 6, 38&, 44a, 54, 60-62,64, 69, 72, which were not accessible 
to him. The statements concerning incorrect results in papers 6a, 13 and 17 are made 
on his authority. 

1 Meditationes algebraicae, Cambridge, 1770, 204r-5; ed. 3, 1782, 349-350. 
*L. Euler’s Opera postuma, 1, 1862, 203-4 (about 1772). 
* Jour, fur Math., 14, 1835, 276-280. 
4 Jour, fur Math., 42, 1851, 41-69; Jacobi, Werke, VI, 322-354, and 429-431 for corrections 

of the Journal article. 
* Jour, fur Math., 46, 1853, 1-28. 
* In his lectures at the College de France; printed in V. A. Lebesgue’s Exercices d’Analyse 

Num6rique, Paris, 1859, 112-5. Cf. E. Maillet, Bull. Soc. Math. France, 23, 1895, 
bottom of p. 45. 
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But any number is of the form 6p+r, r = 0, • * *, 5, while p is a sum 
n\-\-\-n\ of four squares. By the earlier remark, 6p is a sum of 48 
biquadrates. Hence A74^48+5. 

E. Lucas6® gave the identity 

(1) XjY (i,j =1, •••,4; i<j). 

[It becomes Liouville’s6 identity for xi=x+y, x2=x—y, xz =z+2, 
Lucas also gave the incorrect identity 

lQixl+xl+xl+xl)3^ ]l(zi±£2)6. 
12 

Assuming that every integer is a sum of nine cubes, he stated incorrectly 
that it follows that every integer is a sum of at most 26 sixth powers. 

Lucas7 noted the identities 

24:(x2+y*+z2)2 = 2(x+y+zy+2j2(x+y-zy+j^(2x)\ 

10 (x2+y2+z*+uy = J^(x+yy+J2&~y)6+4Ylx6, 
6 8 4 

the second being erroneous [Fleck23], since the left member exceeds the 
right by 60 (x2y2z2+x2yhL2+x2zhc2+y2z2v?). 

S. E£alis8 proved that 47 biquadrates are sufficient by using the result 
that any integer is a sum of 4 squares, one of which is arbitrary (under 
certain restrictions) and hence may be chosen a biquadrate. 

E. Lucas9 reduced the number to 45 as follows. Let k—Qp-\-r. If 
p = 8A+j (j = l, 2, 3, 5 or 6), p is a S3, and, by (1), k a sum of 3*12+5 
biquadrates. If p—8h or 8A+4, p —27 is a S3; then 

jfc = 6^+6^+6ttI+2*34+r, 

so that at most 3*12+2+5 biquadrates are needed. Finally, if p=8A+7, 
p—14 is a S3, so that 

&=67ii+6n2+6ft3+34+3+r, N4^3* 12+4+5. 

Lucas10 obtained the lower value 41. Since 8h+j (j~l, 2, 3, 5, 
or 6) is a S3, 48A+6/ is a sum of 36 biquadrates. By subtracting at most 
five of the biquadrates l4, 24, 34 from any given number, we obtain one of 
these numbers 48h+t (2=6, 12, 18, 30, 36). By the tables our theorem is 
true for numbers ^=5*34. 

E. Maillet11 proved that every positive integer is a sum of 21 or fewer 
cubes =0, five or more of which are 0 or 1. He employed the identity 

ZX f (<*+£/)3+ (oc-Xj)z} = Saiof+xl+xl+xl) 
j=1 

to conclude that 6a(cr+m) is a sum of at most six positive cubes if 0 
and if m is a sum of three squares, i. e., if m4=4*(8n+7). Under the similar 
conditions on m', 6A = 6a(a2+m)+6a'(a,2+w/) is a sum of at most twelve 

60 Nouv. Corresp. Math., 2, 1876,101. 
7 Jour, de math. 616m. et sp6c., 1, 1877, 126-7, Probs. 38, 39. Quoted by C. A. Laisant, 

Recueil de probl6mes de math., alg6bre, 1895, 125. 
* Nouv. Corresp. Math., 4, 1878, 209-210. 
*J6id., 323-5. 
19 Nouv. Ann. Math., (2), 17, 1878, 536-7. 
11 Assoc, frang. av. sc., 24, II, 1895, 242-7. 
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positive cubes. For a and a! odd and relatively prime and for every 
Af such that a<a'< a2/8, 8aa', it is shown that there exist positive 
integers m and mf satisfying the earlier conditions and also am+am' 
Hence every integral multiple 6A of 6, for which 

6(a3+a'3) +48aa'^6A ^6(as+a'*) + 6<*'3, a<af<a2j8} 

with a, a! odd and relatively prime, is a sum of at most twelve positive cubes. 
Taking <2=7—2, af = 7, we see that the intervals obtained by varying 7 

overlap if 7 exceeds a finite limit and is odd. Hence every multiple of 6 
exceeding a certain finite limit is a sum of at most twelve positive cubes, 
whence iV3^12-f-5 (at least five cubes being 0 or 1). 

G. Oltramare12 proved that any positive cube is the sum of 9 smaller 
cubes ^0. Any number N is the sum a2+b2+c2+d2 of four squares. Then 
8a;3+6^ is the sum 5 of the cubes of zdba, xdob, xzhc, x±:d. For N odd, 
N~2x+l, we have AT3 = l3+s. For Ni = 2kN, where N is odd, we multiply 
the last formula by 23fc. 

G. B. Mathews13 argued that there is a considerable probability that 
all sufficiently large integers are expressible as sums of p-j-1 pth powers, 
at least for some positive integers p. According to Kempner42, this is not 
true when p is 6 or any power of 2. 

E. Maillet14 proved that if <f>(x) =ax5+ai%4-\— • +u5 equals a positive 
integer for every integer then every integer n exceeding a certain func¬ 
tion of a, • • *, a5 is the sum of a limited number N of positive numbers <f>(x) 
and a limited number of units, where N is at most 6, 12, 96, 192 when <j> is 
of degree 2, 3, 4, 5, respectively. For each function <j>{x)} the number of 
representations of n obtained increases indefinitely with n. 

E. Lemoine15 stated that every integer equals p+s, where s is a cube or 
a sum of distinct cubes, while p is one of the 24 numbers 0—6,8 —17, 27—33. 

L. Ripert16 proved this statement. 
R. D. von Stemeck17 gave a table showing the number of cubes needed for 

the representation of all numbers ^40000. From 8042 on, six cubes suffice. 
He stated incorrectly [[Fleck20] that 3Jc* is not the sum of three cubes un¬ 
less they are equal. He conjectured incorrectly [[Kempner42] that always 
about ten of any thousand consecutive numbers are sums of two cubes. 

G. Vacca,18 after citing Euler’s statement, noted that 2n*v —1 is the 
sum of v—1 numbers each 2n and 2n—1 units. [[Thus, for n = 2, 7 is the 
sum of 4, 1,1, 1, but not a sum of fewer than 4 squares; for n = 3, 23 is the 
sum of 8, 8 and seven units, but not a sum of fewer than 9 positive cubes; 
for 7i—4, 79 is the sum of 16, 16,16,16 and 15 units, but not a sum of fewer 
than 19 biquadrates.] 

“ L'mtenn&Uaire des math., 2, 1895, 30. 
Messenger of Math., 25, 1895-6, 69. 

14 Jour, de Math., (5), 2, 1896, 363-380; Bull. Soc. Math. France, 23, 1895, 40-49. Cf. 
papers 68, 72, 73, 117, 181-2 of Ch. I. 

“Nouv. Ann. Math., (3), 17, 1898, 196. 
uIbid., (3), 19, 1900, 335-6. 
17 Sitzungsber. Akad. Wiss. Wien (Math.), 112, Ha, 1903, 1627-66. 
18 L'interm&iiaire des math., 11, 1904, 292-3. 
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E. Maillet19 erroneously concluded that there is an infinitude of integers 
not a sum of fewer than 128 eighth powers >0. 

A. Fleck20 noted that in the proof by, Lucas10 it suffices to subtract at 
most three biquadrates unless the given number is 48m+2, 2 = 10, 11, 26, 
27, 42, 43. For 2=10, subtract l4+34; we get 6A, where A=4(2m—3) is 
a SI unless 2m—3^7 (mod 8), i. e., m=l+4/*. In the latter case, 

48m+10 - 54 - 34=6 • 4(8/i - 27) 

is a sum of 36 biquadrates since 4(8^—27) is a S3. Treating similarly the 
remaining 2’s, he concluded that iV4^i39. He found that Aa^il3 by 
employing Maillet’s11 result and the formula, following from (mod 6), 

6A+r=6N+r*—6k=r3+6/* = r3+Jjr8. 
12 

E. Landau21 proved that every definite integral rational function of x 
of degree n with rational coefficients is a sum of 8 squares of integral 
rational functions with rational coefficients, and gave references to related 
problems. 

A. Fleck22 proved that the square (cube) of every definite integral 
rational function of x with rational coefficients is a sum of a finite deter¬ 
minable maximum number, independent of the degree and coefficients of 
the function, of fourth powers (sixth powers) of integral rational functions 
of degree ^1 with rational coefficients, i. e., linear functions and constants. 

Fleck23 remarked that Maillet’s14 limit 192 for Ns can easily be reduced 
by about 36, but that the new limit is still far above the ideal limit 37 
suggested by tables. To show that N6 is finite, he used the identity 

60(a2+62+c2+d2)3 = E(«+^+c)6+E(a+&-c)6+2i;(a+6)6 

+2£(a-&)*+362>8- 
6 4 

Hence 60n3 is a sum of 184 sixth powers. Thus if m is any integer, 60m 
is the sum of at most 184A3 sixth powers. Since any integer is of the form 
60m+r, r=0,1, • * 59, we have A6^184A3+59. 

E. Landau24 lowered the limit for A4 to 38. Setting Xi=x3 in (1), we 
see that 6n2 is a sum of 11 biquadrates if n is representable in the form 
xl+xl+2xl, which is true if n is any odd number m. Hence 6m2 and 
6*16 m2 are sums of 11 biquadrates. As above, 8k+j (j = 1, 2, 3, 5 or 6) 
is a sum of three squares at least one of which is odd. Hence 6 times such 
a number is a sum of 11+12+12 biquadrates. By arguments of the type 
used by Fleck,20 we get A4^38. Except for numbers 48n+2, 2 = 11, 27, 43, 
he proved that 37 biquadrates suffice. For these cases, A. Wieferich25 
showed that 37 suffice. Hence A4^37. 

19 Aiinali di Mat,, (3), 12, 1905, 173, note. Error admitted in l’interm^diaire des math., 20, 
1913, 202. 

*° Sitzungsber. Berlin Math. Gesell., 5, 1906, 2-9. 
» Math. Annalen, 62, 1906, 272-281. 
*Ibid., 64, 1907, 567-572. 
** Ibid., 561-6. To N—192 must be added the number of units. 
u Rendiconti Circolo Mat. Palermo, 23,1907, 91-6. 
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E. Maillet26 proposed the following generalization of Waring’s problem: 
Can k be taken sufficiently large that there shall be integral solutions of 

b?-Nu •••, tx?=Na, 
J=1 j=l j=l 

where fti, • • *, na have given values, and Nh • • •, Na any values satisfying 
suitable conditions? For a=2, ni=2, n2 = 1, &=4, there is always a 
solution (Cauchy, Ch. VIII, p. 284) if i\Tx is odd and N* is odd and 

V3Ar1-2 —l<Ar2< 

E. Maillet27 proved Waring’s theorem for eighth powers, but gave no 
explicit limit for 2V8. He proved in an elementary way that there is an 
infinitude of numbers each not a sum of n or fewer nth powers. 

A. Hurwitz28 proved that every integer is the sum of at most 

37(6-4+60 • 12+48+6*8) +5039=36119 

8th powers, in view of 37 and the identity 

5040(as+62+c2+d2)4=6E(2a)8+60i;(a±5)8 

+ y^(2gdb5=fcc)8+6y!(a=b5d=cdbd)8. 
48 8 

In general, if there exists an identity (in a, b, c, d) 

p(a2+62+c2+d2)»=2p,(ajO+/3,h+7<c4- 8»d)2*, 
<=1 

where p, pi, • • *, pt- are positive integers and ai, • • *, 8r are integers, then 

Nin ^Nn(j>l-\-hPr) +P ~ 1, 

so that Nin would be finite if Nn is. He proved by use of the gamma 
function that there is an infinitude of positive integers each not the sum of 
n or fewer nth powers. 

J. Schur29 found the identity which proves Nio finite: 

22680(a2+62+c2+d2)6=92:(2a)10+180i;(a±5)10 

+E(2a±&±c)w+9i;(a±5icd=d)10. 
48 8 

A. Wieferich80 proved that Nz=9 [except for a limited set of integers 
arising from a case81 overlooked]. The proof consists in showing that any 
positive integer is the sum of three cubes together with &=6a8+6am, where 
0<A and m~x\+x\+x\<A2. For, by Maillet,11 k is then a sum of 6 
positive cubes. 

88 L'mtenn&iiaire des math., 15, 1908,196, and Maillet.*7 
87 Bull. Soc. Math, de Prance, 36, 1908, 69-77; Comptes Rendus Paris, 145, 1907, 1399. 
88 Math. Annalen, 65,1908, 424-7. 
88 Math. Annalen, 66,1909,105 (in a paper published by Landau.) 
80 Math. Annalen, 66,1909, 95-101. 
81 The case **4 in 10648< (0.4)52v~*. Attention was called to this gap in the proof by P. 

Bachmann, Niedere Zahlentheorie, 2,1910,344, who indicated in his Zus&tze, pp. 477—8, 
a long method of treating the omitted case, but himself made certain errors. The latter 
were incorporated in the unsuccessful attempt by B. JLejneek (Math. Ann., 70,1911, 
454-6) to fill the gap. The gap in Wieferich’s proof was filled by Kempner." 
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E. Landau32 proved that every integer z exceeding a fixed value is the 
sum of at most 8 positive cubes. He proved that there exists a prime p 
not dividing z such that 8p9 z < 12p9'and such that p2(p — 1) is not divisible 
by 3. Hence 03=z (mod pz) has positive integral solutions £<p3. In 
z=/33+pWJ set M=6p6+Mi. Then 

7p2 <pzM <12p6, p6<2lfi<6p6. 

By the paper of Wieferich,30 we can find an integer y, 0^=7 <96, such that 
Mi—73 = 6m, where m~x\-\-xl+x25. For z sufficiently large, m<p6, so 
that 0^:r;<p3, and 

2=£3+p3(6p6+Mi) = £3-f~(p7)3+§Vz($*+x\+xl+3%), 

z = /33+(P7)3+Z) {(p3+^i)3+ (p3-xt)z}. 
*=i 

A. Wieferich33 proved that iV5~59, A7=3806. He gave a table showing 
the least number of fifth powers required to represent each number 1, * * *, 
3011. 

D. Hilbert34 proved Waring’s assertion that every positive integer z 
is the sum of at most Nm positive rath powers, where Nm is a finite number, 
not determined, depending upon ra but not upon z. He first proved, by 
use of a five-fold integral (a 25-fold integral in the first paper,) the lemma 
(stated by Hurwitz,28 who was unable to prove it) that there exists for every 
m (and r = 5) an identity in the z’s 

(xi-f-hXr)m = J^pA(alhXi-i-harhXr)2m, 
h 

where the aih are integers and the pk are positive rational numbers. It is a 
simple step to prove Waring’s theorem for powers whose exponents are 
2kj k=^2. The case of any exponent is derived from this by an elemen¬ 
tary, but long, discussion (not using calculus). 

F. Hausdorff35 proved Hilbert’s lemma by use of integrals involving 
exponentials, the method being more suitable for computing the a’s and 
p’s. 

E. Stridsberg36 proved easily that Waring’s theorem for pth powers 
would follow if it were shown that, if B is any real number, every positive 
integer can be written as 2pxPj, where the P’s are integers ^0 
and px is a positive rational number depending only on p. He noted 
that Hausdorff’s elegant modification of Hilbert’s proof can be reduced to 
an elementary study of binomial coefficients. Using symbolic powers of h, 
let h2*1 denote (2p)!/p! for all even integers 2p^0, and ft2M+1 = 0 for all odd 
integers 2p+l ^1. A theorem of Hausdorff’s becomes the simple one that, 
if f(x) is any polynomial which is never negative for a real value of x, then 

” Math. Annalen, 66, 1909, 102-5; Landau, Handbueh der Lehre von der Verteilung der 
Frimzahlen, 1, 1909, 555-9. Cf. Landau.89 

83 Math. Annalen, 67, 1909, 61-75. 
84 Gottingen Nachr., 1909, 17-36; Math. Ann., 67, 1909, 281-300. 
« Math. Annalen, 67, 1909, 301-5. a. Hurwitz.44 
88 Axkiv for Mat., Astr., Fysik, 6,1910-11, No. 32, No. 39. French r£sum£ in Math. Annalen, 

72, 1912,145-152. 
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f(x+h)>0 for x real [cf. Hurwitz44], since 

being true for f(x+h) Hilbert’s lemma is proved by use of 

QiiXi-\-bhxr)m=hm(z l H-b£r)m/2, 

whence follows Hurwitz’s theorem that Waring’s theorem is true for n~2m 
if true for n=m. Finally, he simplified the second (elementary) part of 
Hilbert’s proof of Waring’s theorem. 

A. Boutin37 gave the identities 

]Cri=(£±2/±zdbn)4= l§2xyzv,j 23±(dba;idh* • •dkxn)n=nl2nXi- • -xn, 
B 2* 

the exterior sign being the product of the n interior signs. 
P. Bachmann38 gave an exposition of several of the preceding papers. 
A. Fleck380 and W. Wolff386 proved that every definite quartic function 

of x with rational coefficients is a sum of five squares of rational integral 
functions with rational coefficients. 

E. Landau39 gave a new elementary proof that all numbers exceeding a 
certain limit and prime to 10 (or to the product of any two primes of the 
form Zm + 2) are sums of at most 8 positive cubes. He here avoided the 
theory of the distribution of primes used in his32 former proof. 

J. Kirrschdk40 generalized Iiouville’s6 identity (1) to give 

2 (aoifcUidr * * * dba*)4=2* ^ ^ ^ (Go4“ * * * "I"GJ*)2, 

where on the left occur all possible combinations of signs and all sets of £+1 

of the 3&+1 variables a0, • • •, as*. For m^Z, there is no identity 

2 (aoiaidh • • • dba*)2w=C(aJ+ • • • m. 
A. G6rardin41 noted that (a^+92/3)3 is the sum of the cubes of y*, 

61/3, Sy3, Zx*y, 3xy2, 6xy2. Also (a^+S?/3)3 is the sum of the cubes of x3, 
Zy3, Zxy2, 2x2y, x^y. L. Rouve remarked that the former is the sum of the 
cubes of x3, Z&y, 9y3, Zxy2, 6xy2. 

A. J. Kempner42 considered the number C(k, n) of the positive integers 
^=k which are sums of n or fewer positive nth powers, and the superior 
limit S of C(k, n)Ik for k = 00. He proved that S< 1 jn\, whereas Hurwitz28 

and Maillet27 had proved merely that S<1. It follows that there is an 
infinitude of positive integers of each of the forms 9l, 9Z+1, • • •, 91+S, such 
that each is not a sum of fewer than four positive cubes. There is an 
infinitude of positive integers each not a sum of fewer than nine sixth 

17 L’interm&iiaire des math., 17,1910, 122-3, 236-7. See papers 66-68 below. 
M Niedere Zahlentheorie, 2,1910, 328-48. 
«• Archiv Math. Phys., (3), 10, 1906, 23-38; (3), 16,1910, 275-6. 
186 Vierteljahrsschrift Naturf. Gesell. Zurich, 56,1911,110-24. 
” Archiv Math. Phys., (3), 18,1911, 248-252. 
40JWd., 242-3. 
" Sphinx-Oedipe, 6, 1911, 19, 95. 
41 tlber das Waringsche Problem und einige Verallgemeineruiigen, Dlss., Gottingen, 1912. 

Extract in Math. Annalen, 72,1912,387. 
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powers, and an infinitude each not a sum of fewer than 2q+2 powers, with 
the exponent 2qf for g>l. He lowered the known limit for Ne to 970 by 
use of the identity 

120(a2+62+c2+d2)3 = i:(ai6±c±d)6+8i:(a±6)6+E(2a)6, 
S 12 4 

for c=d and for d — 0, and the fact that every number is of one of the forms 
a2+b2+kc2 for Jc=1,2. For the determination of upper limits for N& and Nu 
from known limits for Nq and Nr, he gave identities expressing l(a2Jrb2JrC2)n 
as a sum of (2n)th powers, for n = 6 and 7, where l is a suitably chosen 
integer. 

R. Remak43 noted that Stridsberg36 used integrals in a single place and 
applied the result proved by them only for the special case in which 
}{a)=g-(u). For this case Remak gave an elementary proof by use of the 
fact that a quadratic form in n variables is definite if the determinant of the 
part involving the first v variables (suitably chosen) is positive for v = l, 2, 

* * •, n. Hence the proof of Waring’s theorem is reduced to algebraic pro¬ 
cesses. 

A. Hurwitz44 gave a new elementary proof of the theorem, used by 
Hausdorff,35 Stridsberg36 and Remak,43 that if the real polynomial 

f(x)=c0+CiX-\-b c2nx2n, 

not identically zero, is ^0 for every real x, then 

/(*)+^/"(*)+|j/(4>(2) + • • 

is positive for every real x; likewise for f(x)+f(x)-\-\-fi2n)(x). 
L. Orlando44* amplified Hurwitz’s44 proof. 
G. Frobenius45 also gave an algebraic proof of Waring’s theorem by 

altering Stridsberg’s proof at the point where he had used integrals. 
E. Schmidt46 used Minkowski’s convex point sets in space of q dimen¬ 

sions to give a more luminous exposition of Hilbert’s first lemma. 
G. Loria47 remarked that if 'Waring’s minimum 19 for N* could be 

lowered to 16 [overlooking the facts noted by J. A. Euler], one would hope 
for a proof that every number is a sum of n2 exact nth powers. 

E. Landau48 pointed out errors in the same journal on sums of cubes. 
W. S. Baer49 proved that every integer ^23-1014 is a sum of 8 or fewer 

positive cubes, likewise every odd number >175 396 368 704, and every 
number =8 (mod 16). The following numbers are sums of 7 or fewer posi¬ 
tive cubes: every number 2744s (s odd), all sufficiently large multiples of 
16 or 27, all sufficiently large numbers =0, 8,16, 24, 28, 36, 44, 48, 56, 64 

« Math. Annalen, 72, 1912, 153-6. 
44 Ibid., 73,1912, i73-h. Cf. Orlando44*. For a generalization see G. Pdlya, Jour, fiir Math., 

145, 1915, 233. 
ua Atti della R. Accad. Lincei, Rendiconti, 22,1,1913, 213-5. 
41 Sitzungsber. Akad. Wiss. Berlin, 1912, 666-70. 
" Math. Annalen, 74, 1913, 271-1. 
471/enseignement math., 15, 1913, 200-1. 
u L’interm&Liaire des math., 20, 1913, 177, 179. 
49 Beitrage zum Waringschen Problem, Diss., Gottingen, 1913, 74 pp. 
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(mod 72). He reduced the limit for N* to 478, that for Nb to 58 and gave 
a simpler proof that N^37. For k=2744, it is shown by elementary 
methods that every number ss& (mod 2k) is a sum of 7 or fewer positive 
cubes; hence if C^x) denotes the number of positive integers which are 
decomposable into 7 or fewer positive cubes, 

1 Cv(t\ 
(2) — < —— for all sufficiently large x. 

z/c x 
His transcendental methods enabled him to replace l [(2k) by 13/72. He60 
later gave a direct elementary proof of the last result (2) for £*=4096 by 
noting that the integers ku, where u is positive and odd, can be decom¬ 
posed into 7 positive cubes all of whose 7 bases exceed any assigned positive 
number g for every u exceeding a limit depending upon g. 

E. Stridsberg51 gave a brief elementary proof of Hurwitz’s lemma [Hil¬ 
bert84] without the use of integrals (Remak,43 Frobenius46) or the gamma 
function. The proof is admitted to be otherwise essentially the same as 
his86 former proof. 

G. H. Hardy and S. Ramanujan52 proved that the logarithm of the 
number of ways n is a sum of rth powers of positive integers (rearrangements 
of the same powers not being counted as distinct) is asymptotic to 

(r+1) I ;r(;+1) •r(;+i)}r/<r+1>«1,(m). 
where f denotes the Riemann zeta function, and P the gamma function. 

Hardy and J. E. Littlewood52a made use of the theory of analytic func¬ 
tions (cf. Ch. Ill221) to prove that every positive integer, which exceeds a 
certain number depending on k alone, is a sum of at most k * 2*~1+1 posi¬ 
tive kth powers; for example, a sum of at most 33 biquadrates. The 
transcendental method leads not only to a proof of the existence of repre¬ 
sentations, but also to asymptotic formulas for their number. They since 
communicated to the author the improved result that at most (&—2)2*~1+5 
positive kth powers are necessary; this gives 9 cubes, 21 biquadrates, 53 
fifth powers, 133 sixth powers, etc. 

Numbers expressible as sums of unlike powers. 

D. Andr^68 proved that every even integer is the sum pf a cube +0 and 
three squares (since every 8n+3 is a 00). In general, if s is odd, every 
even integer >7* is the sum of an 5th power =(=0 and three squares each +0. 

G. de Rocquigny64 noted that every integer except 1, 2, 3, 4, 5, 7, 8, 
10, 11, 18 is a sum of three cubes and three squares. He55 stated many 

51 Arkiv for Mat., Astr., Fysik, 11, 1916-7, No. 25, pp. 35-9. His second paper with the 
same title, ibid., 13, 1919, No. 25, deals at length (pp. 31-70) with definite and semi- 
definite polynomials in x and incidentally with their occurrence in the literature on 
Waring’s problem. 

“ Proc. London Math. Soc., (2), 16,1917, 130. 
“*Quar. Jour. Math., 48, 1919, 272 seq. 
“Nouv. Ann. Math., (2), 10, 1871, 185-7. 
M Travaux Sc. de FUniv. Rennes, 3,1904, 42. 
“ L’interm&liaire des math., 10, 1903, 109, 212; 11, 1904, 31, 56, 81, 99, 149, 171, 214. 



theorems like the following: Every integer >36 is a sum of four squares and 
four biquadrates each =j=0; every integer > 14 is a sum of four squares and 
four cubes =4=0. 

P. F. Teilhet56 verified that every integer up to 600, except 23, is a sum 
of two squares and two positive or zero cubes. 

G. Lemaire57 noted that 3, 6, 7, 11, 15, 19, 22, 23 are not sums of any 
number of powers of distinct numbers. 

G. Rabinovitch58 proved that every number >23 is expressible in one 
of the forms am~\~bn} am+6n+cp, • • •, where a, 6, • • * are distinct, and m, 
n, p, • • • exceed unity. 

A. Gerardin59 proved the theorems due to Andre.53 

Every number a sum of three rational cubes. 

S. Ryley60 solved a=x3+y3+z3 by taking x = p+q, y=p—q} z=m—2p. 
Then 

3 6 p2q2 = 6ap — 6pm3+36p2(m—p)2 

will, for p = av2jG, equal the square of av—av2(m—av216) if m3 = 2av(m—av2j6). 
Let m—dv. Then v=QadjD, where D = 3d3+a2. Hence 

_ (9d6—30a2d3+a4) D -f 7 2a4d3 30a2d3-9d6-a4 6ad2D-12a3d? 

X QadD2 ’ y~ QadD ’ Z~ D2 

Reference is made to a less simple method in Leed’s Correspondent, Quest. 
211. 

T. Strong61 showed how to express any number a as sum of three or more 
rational cubes. Take x} p—x, m—p, r, s, • * • as the roots of the cubes. 
Thus 

(3p2—6pz)2 = 9p2(p — 2m)2+12ap-~12p(m3+r3+s3H-). 

The right member will be the square of 3p(p~2m)+2c if 

p = c2/(3a), c(2m~p) =m3+r3+s3H-. 

Set c=mn, r = mr', $=ms'f • • •. The second condition gives 

Gan 
m~-;-;-. 

3a2+n3+r,3+s'3+ • • • 
Hence giving any rational values to n, r\ s', • • *, we get rational values for 
x=m~cl(3p), m, p, r, $, * • Since we can in particular express 4 as a 
sum of three positive cubes, we can divide unity into three positive parts 
such that if each be increased by unity the sum is a cube [Evans,424 Davis,426 
and Tebay428 of Ch. XXI]. 

Wm. Lenhart,62 to express A as a sum of three cubes, selected any cube 
r3 and from Ar3 subtracted a cube s3 chosen by trial such that the difference 

88 L’intennediaire des math., 11,1904, 16-17. 
67 Ibid., 19,1912, 218. 
w Ibid., 20,1913, 157. 
M Ibid., 22, 1915, 207. 
60 Ladies’ Diary, 1825, 35, Quest. 1420. 
61 Amer. Jour. Arts, Sc. (ed., Silliman), 31, 1837, 156-8. 
M Math. Miscellany, Flushing, N. Y., 1, 1836, 122-8. 



Chap. XXV] Sum of Three Rational Cubes. 727 

is a number t found in his186 table (Ch. XXI) of numbers expressible as a 
sum of two positive rational cubes. Or, let Arz+s?=t-az+lP. Then A 
is the sum of the cubes of ax, bx, cx if c=p—a and 

1 H-c3 p3—3p2a+3pa2 , , / , pa2 V Zi*A$ ____=---+r»-^r+_^, 
Hence 

ax = 
a(r*A—a3) 

rd ’ 
bx= 

b(fA-4) 

rd ’ 

s(2r8A+«8) 

rd , 
d~rsA+2sz. 

As an application, 2 and 4 are expressed as sums of three positive rational 
cubes. The same table is used tentatively to express n+1 or n—1 as a sum 
of n cubes each >1 or each <1, with examples when n=4, 5, 6. 

Several63 expressed any number n as the sum of three rational cubes. 
Let their roots be (lztz)/(2x), (or2—l)/ar. The sum of their cubes is n if 

s2= 1 — 4ax2+4a2xi—-fa3z6+-fm3. 

Assuming that z==l—2aa:2+-|nx3, we get x~6an/(n2-{-3az). 

Evert positive number a sum of four positive rational cubes, etc. 

G. Libri64 noted that if m, n, r are solutions of axz+byz+czz=0, then 
aXz+bYz+cZz=d is solvable for d arbitrary. Set X=mp+g} Y=np+s, 
Z=rp+L The new equation lacks p3 and will lack p2 and hence determine 
p rationally in terms of a, t, if we take q= — (bn2s+cr2t)/(am2). 

If A is a multiple of 24, it is a sum of four cubes [not necessarily positive]: 

■A = («-p)*+(-p-3«)*+2(p+g)*, g==bl, 

Next, let A=24z+6, 0<5<24. If b is one of the numbers 1, 3, 5, 7, 8, 9, 
11,13,15, 16, 17,19, 21, 23, bz—b is a multiple 24u of 24, whence A—IP+s, 
where s = 2A(x—u) is a sum of four cubes, so that A is a sum of five cubes. 
If b is not one of the above numbers, 5±1 is one of them. Hence every 
integer is a sum of six cubes one of which is 0 or 1. If 

we have the identity in r, a, t, 

/^(rr-a-n(^)3+(^l/)3+(^^ 
(1) 

d SKr+s+ty+rt—st—t2} * 

Every integer is the algebraic sum of 17 biquadrates, taken positively or 
negatively. The proof, similar to the above for cubes, follows from 

“ Math. Quest. Educ. Times, 13, 1870, 63-4. 
64 Memoria sopra la teoria dei numeri, Firenze, 1820,17-23. 
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Again, if p = —1—5/480, 

B = 30(p+2)4+2(p—2)4—20(p+l)4—12(p+3)4. 

These two quartic forms repeat under multiplication. 
libri65 proved that any positive rational number m equals the sum of 

four positive rational cubes. In the identity 

/m+6#3 V (65s V ( ( m V 
\ 6g2 ) +\ 6q2 ) \6gV \6gV ’ 

sum of fou 

(2) V 6 f ) 1 \ 6g2 / V6gV V6g2 

we can reduce the right member to a sum of four positive cubes. In 

(8) . ,1- 263V , „(2c?-V' 

take a=(7W+6g3)/(6§2), 6=m/(6g2). Then the sum of the first and third 
terms in (2) is a sum a3-f/33 of two positive cubes if (m+6^)8>2w8, where 

_m+6g3 {(m-bGg8)3—2m3} 

a 6g2 {{m+Q(f)z+mz} ' 

Now use (3) for a=a, 6=m/(Gg2). Then a3 — {ra/(6g2)}3 is a sum of two 
cubes each positive if 

(m+Gg3)3 {(m+Gg3)3—2m3}3 > 2m3 {(m+6g3)3+m8}3, 

which implies the preceding inequality and can be satisfied. Formula 
(1) is here repeated. It is stated that 3x4+y4-z4’-3u4 represents all 
rational numbers. 

P. Tardy66 gave the generalization to n factors of 4a6 = (a+6)2—(a—6)2 
and 

24a6c = (a+6+c)3—(a+6—c)3—(a—6+c)3+(a—b—c)3. 

This formula had been given by C. F. Gauss.67 
E. Rebout68 noted that, in this formula, also 24a6c is a cube if a=3, 

6=4, c=6. 
Y. A. Lebesgue69 remarked that every positive rational number is a sum 

of four positive rational cubes: 

(4) n = J {(2- d)*+a*(b- l)*+6»(c- p’+c3}, 

where m3 is a rational cube lying between n/6 and nj 12, while 

a=l+6m3/n, 6 = 2—3/(a3+l), c=2—3/(63+l). 

® Jour. fur Math., 9, 1832, 288-292; M4m. pr4sent4s pars divers Savants Acad. R. Sc. 
l’Institut de France (Math. Phys.), 5, 1838, 71-5. In Comptes Rendus Paris, 10, 1840, 
313, Libri stated he had proved the theorem in his book, *M6moires de Math, et de 
Phys., Florence, 1829, 152-168. 

“ Annali di Sc. Mat. Fis., 2,1851, 287; cf. Nouv. Ann. Math., 2, 1843, 454. Cf. Boutin.37 
87 Werke, H, 1863, 387. Cf. H. Brocard, Nouv. Corresp. Math., 4,1878,136-8. 
M Nouv. Ann. Math., (2), 16, 1877, 272-3. 
89 Exercices d’analyse num4rique, Paris, 1859, 147-151. 
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E. Lucas70 remarked that Lebesgue69 appears not to have guessed 
what seems to have led Euler to obtain formula (4), viz., the problem to 
express a number as a sum of two cubes. Any positive rational number N 
is expressible in an infinitude of ways as a product or quotient of two sums 
of two positive rational cubes. To prove the former (which corresponds 
to Euler’s theorem), employ the identities 

(6LM+L2—3M2)3+ (fiLM—L2+3M2)Z = 2232LM(L2+3M2)2y 

CL+M)z+ (L-M)z= 2L(L2+SM2). 

Divide their product (member by member) by (L2+3M2)3. Hence 2332L2M 
is expressed as a product of two sums of two cubes. Take L = Bbz, 
M=2A"’33M_2Aa3. We get a decomposition of N=2*3*AB2, and we can 
choose az/bz to make all the cubes positive. As a corollary, E. Fauquem- 
bergue700 proved that the quadruple and square of 4p6+27#6 are sums of 
two cubes, a problem proposed by Lucas. 

G. Oltramare71 noted that every integer is a sum of five integral cubes. 
R. Norrie72 gave the identity 

fc2(d+2x)V (c2(d-2z)V (2c*x-VdV (2 c4x+Vd\* 

,2d ) \ 2d / ~ \ 2bed ) \ 2bcd ) ’ 
d~c*-b\ 

He expressed (p. 58), 5, 17 and 41 as sums of five integral cubes, not all 
positive. Other solutions had been given by A. Cunningham.73 

70 Nouv. Ann. Math., (2), 19, 18S0, 89-91; Bull. Soc. Math. France, 8, 1879-80,180-2. No 
reference is made to Euler’s writings. The author of this History has found no formula 
like (2) or (4) in Euler’s papers or books. Nor did Libri65 or Lebesgue69 imply that 
such a formula is due to Euler. The fact that Lebesgue spoke of (3) as the trans¬ 
formation of Euler may have led Lucas to infer too hastily that also (2) is due to Euler. 

700 Nouv. Ann. Math., (2), 19, 1880, 430. 
71 L’intermddiaire des math., 1, 1894, 25. Cf. 165-6, 244; 2, 1895, 325. 
n University of St. Andrews 500th Anniversary Mem. Vol., 1911, 68. 
78 Math. Quest. Educ. Times, (2), 4, 1903, 49. 





CHAPTER XXVI. 
FERMAT’S LAST THEOREM, axT+by* = ez\ AND THE CON¬ 

GRUENCE xn+yn=zn (mod p)* 

For proofs of the impossibility of xn+yn=zn for n—3, 4, see Chs. 
XXI, XXII. 

Leo Hebreus,1 or Lewi ben Gerson (1288-1344), proved that 3m=tl+2n 
if m>2, by showing that 3m=hl has an odd prime factor. The problem 
had been proposed to him by Philipp von Vitry in the following form: All 
powers of 2 and 3 differ by more than unity except the pairs 1 and 2, 2 and 3, 
3 and 4, 8 and 9. 

Fermat,2 commenting about 1637 on Diophantus II, 8 (to solve 
x2+y2 = a2), stated that “it is impossible to separate a cube into two cubes, 
or a biquadrate into two biquadrates, or in general any power higher than 
the second into two powers of like degree; I have discovered a truly remark¬ 
able proof which this margin is too small to contain.” This theorem is 
known as Fermat's last theorem. 

Claude Jaquemet3 (1651-1729), in a manuscript in the Bibliothdque 
Nationale de Paris and first attributed to Nicolas Malebranche4 (1638-1715), 
attempted to prove Fermat's last theorem. In az=xzjry* we may suppose 
x, y relatively prime. The quotient of xzjry* by x+y is 

Q=a*-*—yx^+y^x^-dz^2”1. 

Then x-\-y and Q have no common divisor d other than factors of z. For, it 
would divide 

Q-ix^+yz3^2) = —2yxr-2+tf*xr*-ip*”1. 

Adding 2yxz~2jr2y2xz~3, we get 3y2xz~3-. Finally, we get zy*~x. But 
y is not divisible by d since x, y are relatively prime; hence z is. Similarly, 
x—y and (xz—yz)/(x—y) have no common divisor not a factor of z. 

Suppose that a, x, y are relatively prime integers for which a9=xz+yzs 
z odd. As just proved, at most one of the powers is divisible by z. First 
let xz and yz be not divisible by z. Let xz=pzqz, yz=rBsz, where r and 3 
are relatively prime, also p and q. Then a—pq=r£, a—rs—pz. Thus the 
divisor p—r of pz—rz divides pq—rs. Dividing the latter by p—r, we get 
the remainder pq—ps or rq—rs, neither zero, and “ by continuing this 
process to infinity, we get no new remainders, so that p—r is not a divisor 
of pq-rs” As pointed out by E. Lucas4a the last conclusion is wrong; 

* H. S. Vandiver read critically the proof-sheets of this chapter and believes that the reports 
are accurate. Both he and the author compared the reports with the original papers 

when available 
1 Cf. J. Carlebach, jbiss. Heidelberg, Berlin, 1909, 62-4. 
* Oeuvres, I, 291; French transl., Ill, 241. Diophanti Alexandrini Arith. libri sex, ed., S. 

Fermat, Tolosae, 1670, 61. Prfcis des Oeuvres math, de P. Fermat, par E. Brassinne, 
M6m. Acad. Sc. Toulouse, (4), 3, 1853, 53. 

* Cf. A. Marre, Bull. Bibl. Storia Sc. Mat. Fis., 12,1879, 886-894. 
‘ Cf. C. Henry, ibid., 565-8. , , , t , . 
*« Ibid., 568. Since he omitted the factor p before q-t, take k to be a multiple of p. 
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take any integer k and set p(q—8)=k(p—r). Then pq—rs = (p—r) (s+k). 
The second case in which a* and x* are not divisible by z differs from the 
preceding only as to signs. 

L. Euler’s5 theorems on the linear forms of the divisors of amztbm are 
cited under Euler5*6 of Ch. XVI of Yol. I of this History. 

Lagrange’s142 method for rn—Asn = qm is given in Ch. XXIII. 
A. J. Lexell6 considered a5+65=c5. Set z+y—o?, r—y=65. Then 

Since the factors are relatively prime, x=p2, x?—4z*=q\ Hence 

pi°—<2r2=4r5s5, p5+g=2r5, p5—q=2$5, p5=r5+s6. 

N. Fuss V noted that, if l=t4xn=D is possible in rational numbers, 
rn+pn=qn would be possible in integers. To reduce the former to integers, 
set x^pq/r2; then r2nd=4pngn= □, say the square of rn+2v, where v is 
prime to r. Then dtpnqn=v(rn+v), whence v—pn, rn+v~qn. 

L. Euler8 multiplied an+bn=cn by 4an and added 62n. Thus 

(2an+bn)2=Aancn+b2n = □. 

Euler9 noted that he had failed in attempts to prove xn+yn=zn im¬ 
possible if >2. 

C. F. Kausler10 proved that x6+y*=z6 is impossible in integers. For, 
if possible, set x=mn, where m is a prime. Of the forty cases, all are imme¬ 
diately excluded except two: 

zi+z2y2+y4 ~ m6n6 or mn6, z2—y2 — l or m6. 

For the second alternatives, eliminate z2. Then 

3y4+3y2m5+m10=mn6, 

and m is a factor of Zy4. If y is divisible by m, z is, and x, y, z have a 
common factor. There remains the case m=3; then z-\-y, z—y are 3s, 1 
or 34, 3 or 33, 32, cases readily excluded. The first alternative is excluded 
by the lemma: There are no integers y, z for which 

z4+zY+y*== (z2-y*Y+3z2y2 = □. 

Sophie Germain11 (1776-1831) stated in her first letter to Gauss, Nov. 
21, 1804, that she could prove that xn+yn~zn is impossible if n=p—1, 

5 Comm. Aiith., I, 50-6, 269; II, 533-5. 
“Euler’s Opera postuma, 1, 1862, 231-2 (about 1768). 
'Ibid., 241 (about 1778). Cf. Euler.* 
•Ibid., 242 (about 1782). 
9 Ibid., 687; letter to Lagrange, March 23, 1775. Corresp. Math. Phys. (ed., P. H. Fuss), 

1,1843, 618, 623, letters to Goldbach, Aug. 4,1753, May 17,1755. Novi Comm. Acad. 
Petrop., 8, 1760-1, 105; Comm. Arith. Coll., I, 296. 

10 Nova Acta Acad. Sc. Petrop., 15, 1806, ad annos 1799-1802, 146-155. 
11 The first and third letters were published in Oeuvres philosophiques de S. Germain, Paris, 

1879,298. Cinq lettres de Sophie Germain h C. F. Gauss, publtees par B. Boncompagni, 
Berlin, 1880, 24 pp. Reproduced in Archiv Math. Phys., 65, 1880, Litt. Bericht 259, 
pp. 27-31; 66, 1881, Litt. Bericht 261, pp. 3-10. Reviewed, with Gauss,1* by S. Gun¬ 
ther, Zeitschr. Math. Phys., 26,1881, Hist.-Lit. Abt., pp. 19-26; Italian transl., Bull. 
BibL Storia Sc. Mat. e Fis., 15, 1882,174-9. 
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where p is a prime 8&+7. In her12 fourth letter, Feb. 20, 1807, she stated 
that if the sum of the nth powers of any two numbers is of the form W+nf2, 
the sum of these two numbers is of that form. Gauss13 replied, April 30, 
1807, that this is false, as shown by 15n+8n = h2+llf2, whereas 

15+8=j=z2+ll</2. 

C. F. Gauss14 gave a sketch of a proof of the impossibility of a5+65+c5=0 
and noted that the method is not applicable to seventh powers. 

P. Barlow15 proved that if n is a prime and xn—yn—zn is solvable in 
integers prime in pairs, then one of the four sets of conditions 

x—y~rn nn~lrn rn rn 
X — Z — Sn Sn Tln~~1Sn Sn 

y+z=tn tn tn nn~Hn 

must hold. For, (xn—yn)/(x—y) is not divisible by a factor ^=n of x—y, 
and if divisible by n, the quotient is prime to x—y and to n. Hence zn is 
divisible by x—y, and, if n is a factor of x—y, by n(x—y), while the quotient 
is prime to n and to x—y. In the first case, x—y=rn. In the second case, 
n(x—y) = rn = nnr\, x—y- 

His attempt to prove xn—yn~zn impossible if n>2 involves the error 
(cf. Smith,79 Talbot84) that a sum of fractions in their lowest terms is not 
an integer if the denominator of each fraction has a factor not dividing 
all the remaining denominators. 

N. H. Abel16 stated that, if n is a prime >2, an=bn+cn is impossible 
in integers when one or more of the numbers a, b, e, a+6, a+c, b—c, 
allm, bllm, c1/m are primes [[cf. Talbot77, de Jonqui&res117]. If the equation 
is possible, then a, b, c have factors x, y, z, respectively, such that either 
[cf. Barlow15] 

2 a=xn+yn+zn, 2b~xn+yn—zn, 2 c—xn+zn—yn; 
2 a=un'~1xn+yn+zn, 2b=nn~1xn-{-yn—zn, 2c—nn~lxnJrzn—yn\ 
2a = nn~1(a;n+Vn)+2n, 2 b=nn~1(xn+yn) -zn, 2c=nn-1(xn-yn)+zn; 

or values derived from the second set by permuting a, b, and x, y, and 
changing the signs of c and z; or values derived from the third set by 
replacing abyb,b by —c, c by a, x by y, y by —z, and z by x. Thus 2a 
must have one of the three forms listed, where x, y, z have no common 
factor. Finally, 2a^9n+5rt+4n; the least one of a, b, c cannot be less than 

/2. The editor, L. Sylow, remarked p. 338 that these theorems 
appear to contain some inaccuracies. 

u Published by E. Schering, Abh. Gesell. Wiss. Gottingen, 22,1877, 31-32. 
18 Lettera inedita di C. F. Gauss a Sofia Germain, publicata da B. Boncompagni, Firenze, 

1879. Reproduced in Archiv Math. Phys., 65, 1880, Litt. Benefit 257, pp. 5-9. 
14 Werke, II, 1863, 390-1, poath. paper. 
15 Appendix to English transl. of Euler’s Algebra. Proof “completed” by Barlow m Jour. 

Nat. Phil. Chem. and Arts (ed., Nicholson), 27, 1810, 193, and reproduced in Barlow’s 
Theory of Numbers, London, 1811, 160-9. 

m Oeuvres, 1839, 264-5; nouv. 6d., 2, 1881, 254-5; letter to Holmboe, Aug. 3, 1823. 
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A. M. Legendre17 remarked that the French Academy of Sciences had 
offered one of its prizes for a proof of Fermat’s last theorem, but without 
awarding the prize. He considered xn+-yn+-zn —0 for n a prime >2 and 
for relatively prime integers x, y} z each + 0. He noted (§§ 3, 4) that 
x+y+z is divisible by n, and its nth power by (x+y)(y+z)(z+x)t by a 
proof criticized and completed by Catalan.91 Let 

<t>(y, 2)=2/n”1~yn~2z+yn~zz2-Yz^1 

be the quotient of yn+zn by y+z. Then (§ 7) y+z and <j> have the g.c.d. 
n or are relatively prime according as a; is or is not divisible by n. 

First, let x be divisible by n. Then (§§ 8, 10) 

y+-z=-an, 4>(y, z)-nan, x= —aa, 

(1) n 
z+-x—bn, <j>0, s) =£n, y=-bp, 

x+y=cn, 4>(x, y) =yn, -cy, 

where a is an integer divisible by n, and each prime factor of or, 0 or y is 
of the form 2fcn+l. Each prime factor of a is of the form 2tn2+l (§ 11), 
and x, assumed divisible by n, is divisible by n2 (§ 13), both results being 
credited to Sophie Germain in the foot-note to § 22. 

Second, let no one of the numbers x} y, z be divisible by n. Methods 
applicable only in the special cases n = 3, 5, 7, 11, but not to n = 13, etc., 
are given in §§ 14-20. To Sophie Germain is credited the proof (§§ 21-22) 
that, if n is an odd prime < 100, 

(2) zn+yn+zn=0 

has no integral solutions each prime to n. This proof is called “ very 
ingenious, quite simple, and of an almost absolute generality.” As noted 
above, y+z is prime to 4>(y, z), and their product equals (—x)n; hence we 
may set 

y+z=an, 4>(yfz)=an} x = —aot, 

(3) z+s=6n, <f>(z,x)=pn, p = -6/9, 

x+-y=cn, <f>(x, y) =yn, -cy, 
whence 
(4) 2x=bn+-cn—any 2y — an+cn—bn, 22=an+6n—cn. 

Theorem. If there exists an odd prime p such that 

(5) £n+v”+fn=0 (mod p) 

has no set of integral solutions £, rj, $*, each not divisible by p, and such that 
n is not the residue of the nth power of any integer modulo p, then (2) 
has no integral solutions each prime to n. 

For, if x, y, z are integers satisfying (2), they satisfy congruence (5), 
so that one of them, say x is divisible by p. Then, by (4), 

6n+cn+(—o)n=0 (mod p). 

17 Sur quelques objets d'&nalyse ind4termin£e et particuli&rement but le th£ordme de Fermat, 
M6m. Acad. R. Sc. de rinstitut de France, 6, ann£e 1823, Paris, 1827, 1-60. Same, 
except as to paging, ThSorie des nombres, ed. 2, 1808, second supplement, Sept., 1825, 
1-40 (reproduced in Sphinx-Oedipe, 4,1909, 97-128; errata, 5,1910,112). 
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Hence a, b, or c is divisible by p. But if b were divisible by p, then, by (3), 
y — — bp would be divisible by p, and hence by (2) also z would be divisible 
by p, whereas x, y} z have no common factor. Similarly, c is not divisible 
by p. Hence 

a==0, zs=o, 2s -y, i4>{y,z)^nyn~1 (modp). 

Thus, by (3), yn^yn-\ an^nyn~K Hence nyn=an (mod p). By the 
final equation (3), y is prime to p. Hence we can determine an integer yi 
such that 771 ss 1 (mod p). Thus ns (ay0 n (mod p), contrary to hypothesis. 

The theorem applies if n = 7> p — 29, since the residues of the seventh 
powers modulo 29 are ±1, ±12, no two of which differ by unity, and no 
one of which is congruent to 7. Similarly, for each odd prime n < 100, S. 
Germain gave a p for which the theorem applies. 

The condition that n shall not be a residue of an nth power requires 
that p be of the form mn+1, where evidently m is even. Legendre proved 
(§§ 23-28) that m must be prime to 3 and that both conditions in the 
theorem hold if p — mn+1 is a prime and m—2, 4, 8, 10, 14, 16 (but over¬ 
looked the exceptional character of n=3 when m = 14, 16; cf. Dickson195). 
He concluded that (1) has no solutions prime to n for n an odd prime < 197. 

He proved18 (§§ 38-47) that x5+y5+z5=0 has no integral solutions and 
that if solutions of (2) exist for n=7, 11, 13 or 17, they involve a great 
number of digits (§§ 29-37). 

Schopis19 argued that, if x5—y5 — w5, where xyw is prime to 5, then 

x—y—u5, 
and 

x4+xzy H-\-y4=u20+5u15y+10u10y2-f10u5y*+5t/4 

is a fifth power, say (u4+z)5. Thus 

5yA — z(5un+10u12z+10u8z2+5u4z3+zi), A =n15+2n102/+2n52/2+t/3. 

Thus z is divisible by 5 and the second member by 25. Thus A is divisible 
by 5, which is seen to be impossible. 

G. L. Dirichlet20 proved that there are no relatively prime integers 
x, y such that x5±y5=2m5nAz5, m and n being positive integers, 2, 
and A not divisible by 2, 5 or a prime 10&+1- With the same restrictions 
on Ay the theorem holds also if n — 0, m^O, and 2mA = 3, 4, 9, 12, 13, 16, 
21, or 22 (mod 25). If n>0, w=t=2, and if A is not divisible by 2, 5 or a 
prime 10&+1, there exist no relatively prime integers x, y such that 
x5±y5=5nAzs. The last shows that xs±y5=z5 is impossible in integers 
(since one of the unknowns, say z} must be divisible by 5); the proof is 
analogous in the two cases z even and z odd, whereas Legendre18 employed 
two methods. 

18 This proof was reproduced in Legendre’s Throne dea nombres, ed. 3, II, 1830, arts. 654— 
663, pp. 361-8; German transl. by H. Maser, 1893, 2, pp. 352-9. If z is the unknown 
divisible by 5, the proof for the case z even is like Dirichlet’s,20 while that for z odd is 
by a special analysis. 

19 Einige Satze Unbest. Analytik, Progr. Gumbinnen, 1825, 12-15. 
80 Jour, fur Math., 3, 1828, 354-375; Werke I, 21-46. Read at the Paris Acad. Sb., July 11 

and Nov. 14, 1825 and printed privately, Werke, I, 1-20. Cf. Lebesgue.37 
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A. M. Legendre21 stated that the discussion of (2), at least for special 
exponents n, can be facilitated by a consideration of the cubic equation 
whose roots are x, y, z\ for integral ro'ots, the discriminant must be a perfect 
square. He was not entitled to conclude that x+y+z and xyz are divisible 
by n2, as he had not proved that one of the unknowns is divisible by n. 

V. Bouniakowsky22 argued that if xn+ym+zm~ 0, where m is a prime 
and X) y, z are integers with no common factor, and if N is chosen so that 
m=<£(2V)““l (which is possible for each prime m<31, except m=13), 
then xyz(xy+x2+yz) is divisible by N. But he used Euler’s theorem 
3*(jsr>sl (mod N) which is valid only when x is prime to N. 

Dirichlet23 proved by descent that (2) is impossible in integers for n=14, 
also the impossibility of 

tu—u14=2W • 71+nw14. 

G. Iibri24 considered the number Nt of sets of positive solutions <n 
of z?+y*+1=0 (mod n), for a prime n~Sp+l. The equation for the 
three periods of nth roots of unity is found in the form 

Comparing this with the known cubic, we get N2=n±a—2, where 

4n=a2+2762 

[Pepin109]. Since a is comprised between zero and r= (4n—27)1/2, we have 
N^n—r—2. Hence N* increases indefinitely with n, and from a certain 
limit on, a^+^+l^O (mod n) is always solvable with neither x nor y 
divisible by n. Having N2, we can find the number of positive solutions <n 
of x3+yi+uz+1^=0 (mod n). 

If n is a prime 8m~h 1, so that n=a2+1662 in a single way, the same 
method of proof shows that the number of solutions of £4+2/4+1=0 (mod n) 
is n±6a—3, which increases with n. It is stated that one can prove 
[Pellet,128, 244 Dickson199, Comaechia,217 Mantel277] that a limit to the prime 
p can be assigned such that, after passing it, the number of solutions of 
xn+yn+l=0 (mod p) will always increase. Hence it is futile to try to 
prove un+vn=zn impossible by trying to show that one of the unknowns is 
divisible by an infinitude of primes. 

E. E. Kummer25 considered a^x+p2x=z2x, where X is a prime, and x, y, z 
are relatively prime by pairs. We may take y even. The third of four 
possible cases is 

z+y=u2x, z~y=v?x, z±z=2p2x, z=F^=22X*,~1X2^“Vx, 

This is the only possibility if X-8n+l, or if 2X+1 is a prime. If the initial 
equation is solvable in integers, so is r2x+s2x=2g2x. As auxiliary to the 

n Th6orie des nombrea, ed. 3, H, 1830, art. 451, pp. 120-2; German transl., Maser, II, pp. 
118-120. 

“ M&n. Acad. Sc. St. PStersbourg (Math.), (6), 1, 1831, 150-2. 
** Jour, fur Math., 9,1832,390-3; Werke, 1,189-194. Reproduced by Gambioli,171 pp. 164-7. 
* Jour, fur Math., 9,1832, 270-5. 
* Jour, fur Math., 17,1837, 203-9. 
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proofs, it is shown26 that if 

(a±6)”-1Tn(a±6)"-3a6+^^(a±6)"-W=F • • • 

and adtb have a common factor, it divides the last term ±n(abyn~iy /2, and 
hence is the prime n if a and b are relatively prime. Since the coefficients 
n, n(n—3)/2, • • • are divisible by n, the exponent of the highest power of n 
dividing anzLbn exceeds by unity that in a±b. 

F. Paulet27 attempted to prove Fermat's last theorem, but concluded 
without proof that a=/3 in acr=@s, where 

a = bmx2— (p —q)a, =ar+ (p—q)c+8. 

In his second proof he equated corresponding summands of equal sums. 
G. Lamd28 proved that x7~{~y7+z7~0 is impossible in relatively prime 

integers. One of the unknowns, say x, is divisible by 7 (Legendre17). 
It is shown that x+y+z~7AP, P=fxvp, where y, v, p, 7 are relatively 
prime integers such that 

z+y=76jj7=a) z+x=v7=b, x+y=p7=c. 

He made use of the lemma (pp. 197-8) that [Bouniakowsky34] 

(x+y+z)I ^7(x+y)(z+x)(z+y) = A = □. 

Thus A must be a square B2. Then 

Sa=27J32P, Sa2+Sa6=J5A a&c=76P7, 32a4+102a262=24P14. 

Eliminating a, b, c, we get an equation whose solution is shown to depend 
upon the impossible equation 

U*~ 3 • 7iU4V4+2W8=IT4. 

For simplifications of this proof, see Lebesgue80 and Genocchi.85 
A. Cauchy29 reported on Lamp's preceding paper and stated that his 

lemma is obtained by taking n=7in the generalization that (x+y) n—xn—yn 
is algebraically divisible not only by nxy(x+y) but also (if ti>3) by 
q=x2+xy+y2, and if n=6&+1 by g2. 

V. A. Lebesgue30 simplified Lamp's28 proof by use of the lemma that 

p2=g4 - 22o3 • 74^2r!+24o+477r4 

is impossible in odd integers p, q, r, relatively prime in pairs, r+0, if a is 
a positive integer. 

Lebesgue31 proved that if Xn-{-Yn—Zn is impossible in integers, then 
s2n+2/2n=z2 is impossible. 

* Also in Nouv. Ann. Math., 7, 1848, 239, 307-8. 
» Corresp. Math, (ed., A. Quetelet), 11, 1839, 307-313. 
« Comptes Rendus Paris, 9,1839, 45-6; Jour, de Math., 5, 1840,195-211. M6m. pr&ent& 

divers savants Acad. Sc. de PInsfcitufc de France, 8, 1843, 421-437. 
« Comptes Rendus Paris, 9, 1839, 359-363; Jour, de Math., 5, 1840, 211-5. Oeuvres de 

Cauchy, (1), IV, 499-504. 
*• Jour, de Math., 5, 1840, 276-9, 348-9 (removal of obscurity in proof of lemma). 
«Ibid., 184-5. 
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J. Iiouville32 noted that if un+vn=wn is impossible in integers not zero, 
then z2n—y2n=2xn is impossible. 

Cauchy33 expressed (x+y)n~xn—yn in terms of x2+xy+y2 and xy(x+y) 
for n odd ^13. 

V. Bouniakowsky34 proved for 2, .3, 4, 5, 6, 7 that 

"VZ+'VB-fl 
is impossible if R is rational and the radicals irrational. For m=7 set 
C— (AB)117. We get R7—A—B = 7RC(R2—C)2, which implies the lemma 
of Lam.628 (Cauchy29). For, by setting A=a7, B = b7,R^a+b, C~ab,we get 

(a+b)7 - a7- b7=7ab(a+b) (a2+ab+b2)\ 

E. E. Kummer35 submitted to Dirichlet about 1843 the manuscript 
giving what he then believed to be a complete proof of Fermat’s last theorem. 
Dirichlet declared that the proof would be correct if it were shown not 
only that every number a0+aicH-box-i«A“l (where a is a primitive 
Xth root of unity and the a1 s are ordinary integers) is always a product of 
indecomposable numbers of that form, as shown by Kummer, but also 
that this were possible in only one way, which is unfortunately apparently 
not the case. 

Frizon36 announced a uniform process applicable to prime exponents 
=i31. 

V. A. Lebesgue37 supplemented Dirichlet’s20 results by proving that, 
if A has no prime factor 10ra+l and no factor which is a fifth power, 
x?+y5z=AB5u5 is impossible in integers if A is a multiple of 5, or if A = ±2, 
±3, ±4, ±6, ±8, ±9, ±11, or ±12 (mod 25). A like treatment is 
apparently not applicable to the remaining cases A = ±l, ±7 (mod 25). 
The equation x1Q=by10=Az? is impossible if A has no prime factor 10m+l. 
As auxiliary propositions, a2=64+5062c2+125c4 is impossible, while 

a2=64+1052c2+5c4, 

which can be reduced by descent to the case in which b and c are odd, is 
impossible if c=5-2i-^2. 

E. Catalan38 expressed his belief that xm—yn = l holds only for 32 — 23 = 1. 
S. M. Drach39 argued that xn+yn=zn is impossible in integers if 

n=2?n+l>l. For, by Euler’s Algebra, 2, Ch. 12, 

Y=cmqn+2A Z=am'pn+ZAx'pn-2iq2iam~ici 

satisfy aZ2—c 72= (ap2—cq2)n if ii=Q). Take a—z, Z=zm, c=y, Y~ym. 

» Jour, de Math., 5,1840, 360. 
« Exercices d’analyse et de phys. math., 2, 1841, 137-144; Oeuvres, (2), XII, 157-166. 
« M4m. Acad. Sc. St. P&ersbourg (Math.), (6), 2, 1841, 471-492. Extract in Bull. St. 

Peters., VIII, 1-2. 
“ K. Hensel, Gedachtnisrede auf E. E. Kummer, Abh. Gesch. Math. Wiss., 29, 1910, 22. 

[Cf. the less technical address by Hensel, E. E. Kummer und der grosse Fermatsche 
Satz, Marburger Akademische Reden, 1910, No. 23.]) 

* Comptes Rendus Paris, 16, 1843, 501-2. 
*7 Jour, de Math., 8,1843, 49-70. 
"Jour. fQr Math., 27, 1844, 192. Nouv. Ann. Math., 1, 1842, 520; (2), 7, 1868, 240 (re- 

peatfcd by E. Iionnet). For n=2, Lebesgue88 of Ch. VI. 
,f -London, Edinburgh, Dublin Phil. Mag., 27,1845, 286-9. 
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The11 
zn—yn—xn ~ (zp2-yq2)”, x = zp--yq\ 

Then Z[zm and Y/ym give 

2zn/2, 2y’'*={p-Jz+qJy)''±{pJz-q^y)n- 

From the sum and difference of the resulting values of j> <z±q 'fy, 

E^{(2»/24-j,n/2)l/n_(2n/2_yn/2)W»} - j( ) + ( )J. 

9 u/ 
Developing the difference of the two members by the binomial theorem, 
we get a series in y/z with every coefficient negative if n> L Next, the 
case n~2m is treated at length. 

C. G. J. Jacobi40 gave a table of the values of mf for which 
(mod p), where pis a prime ^103, 0 102, and q is a primitive root of p. 

O. Terquem41 proved the theorem of Lebesgue31 and the corollary of 
Liouville32. 

A. Yachette42 noted that xm—yn= (xy)p is impossible in integers. For 
p=mn, set z—(xy)n and take n = m. Thus xm—ym^zm is impossible if z 
is a power of xy. 

J. Mention43 proved the formula [cf. Kummcr25]: 

(6) aw+6n= (a+b)n—nab(a+b) a2?;2 (a+5) n~*-. 

Y. A. Lebesgue44 obtained (6) by applying Waring’s formula to the 
quadratic equation with roots a, b. Applying it to the cubic with the roots 
oty P, y, we get (a+p+y)n. For n = 7, the latter result is said to have Imh*u 
employed [in papers 28-30] to prove the impossibility of x1+y7^z1 by a 
method simpler than that for exponents 3 and 5. 

G. Lam^45 claimed to have proved that, if n is an odd prime, xn+yn^z* 
is not satisfied by complex integers 

(?) ao+OirH- 

where r is an imaginary nth root of unity and the afB are integers. 
J. Liouville46 pointed out the lacuna in Lamp's proof that he had not 

shown that a complex integer is decomposable into complex primes in a 
single manner. 

Lam6 (p. 352) admitted the lacuna and believed (on the basis of exten¬ 
sive tables of factorizations) that it could be filled; he affirmed (pp. 560-572) 
that the ordinary laws for integers hold for complex integers when n*5. 

40 Jour, for Math., 30, 1846, 181-2; Werke, VI, 272M. — ™— 
41 Nouv. Ann. Math., 6, 1846, 70-73. 
“Ibid., 68-70. 

" Nouv. Ann. Math., 6, 1847, 309 (proposed, 2, 1843, 327; 18, 1859, 172, 249), 
44Ibid., 427-431. 
46 Comptes Rendus Paris, 24, 1847, 310-5. 
“Ibid., 315-6. 
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Lam6 stated (p. 888) that Fermat’s equation is impossible for a series of 
exponents including n=5, 11, 13. 

Lam£47 presented his arguments in two long memoirs. 
O. Terquem48 suggested a subscription to Lam6 for his45 proof (!) 

declaring it the greatest discovery of the century in the mathematical world. 
E. E. Kummer49 pointed out the falsity of Lamp’s45 assumption that 

every complex integer can be decomposed into primes in a single way. 
L. Wantzel50 proved that Euclid’s g.c.d. process holds for complex 

integers a+b*f^i [already proved by C. F. Gauss51] and for complex 
integers formed from an imaginary cube root of unity, and stated that a 
like result holds for complex integers (7), with n arbitrary, since the norm 
(or modulus) of (7) is <1 when a0, • • •, a^i are between 0 and 1 [erroneous, 
Cauchy52]. 

A. Cauchy52 showed that the final statement by Wantzel50 is false for 
n=7 and for any prime n=4m+l=17. He pointed out lacuna in the 
proposed proof by Lam£45 of Fermat’s last theorem. He defined the 
factorial of (7) to be its product by the complex members obtained from it 
by replacing r by the remaining primitive nth roots of unity, and obtained 
upper limits for such factorials [norms]. He53 proved that any common 
factor of Mh~Arh+B and Mk divides Af0 if A and B are relatively prime. 

Cauchy54 attempted to prove the false theorem that the norm of the 
remainder obtained on dividing one complex number (7) by another can 
always be made less than the norm of the divisor. He concluded (falsely) 
that a product of complex integers (7) can be decomposed into complex 
primes in a single manner, and that the other laws of divisibility of integers 
hold for these complex integers. 

Cauchy55 noted (erroneous) conclusions which follow from the assump¬ 
tion that his preceding theorems hold for a given number n; in particular, 
errors relating to the factors A+r*B of An+Bn. He promised to discuss 
later the objections which can be raised against proofs in his preceding 
paper. 

Cauchy56 further developed the subject and admitted at the end of his 
final paper that his54 basal theorem is false, failing for n=23. 

Cauchy57 obtained results most of which are included in Kummer’s 
general theory. In the fifth paper, p. 181 (Oeuvres, p. 364), he stated that 
an+bn+cn=0 is impossible in relatively prime integers not divisible by 

" Jour, de Math., 12, 1847,137-171, 172-184. 
« Nouv. Ann. Math., 6, 1847, 132-4. 
4* Comptes RenduB Paris, 24, 1847, 892-900; Jour, de Math., 12,1847,136. 
40 Comptes Rendus Paris, 24,1847, 430-4. 
11 Comm. Soc. Sc. Gotting. Recentiores, 7,1832, § 46; Werke, II, 1863,117. German transl. 

by H. Maser, Gauss’ Untersuchungen tiber hdhere Arith., 1889, 556. 
M Comptes Rendus Paris, 24, 1847, 469-481; Oeuvres, (1), X, 240-254. 
w Ibid., 347-8; Oeuvres, (1), X, 224-6. 
“Ibid., 516-528; Oeuvres, (1), X, 254r-268. 
"Ibid., 578-584; Oeuvres, (1), X, 268-275. 
"Ibid., 633-6, 661-6, 996-9, 1022-30; Oeuvres, (1), X, 276-285, 296-308. 
«Ibid., 25, 1847, 37, 46, 93,132, 177, 242, 285; Oeuvres, (1), X, 324r651, 354-371. 
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the odd prime ri if 
l+2n""4+3n"”4H-b CtT 

is not divisible by n jj. e., if the Bemoullian number J5(n_3)/2 is not divisible 
by ri], or if a certain number a (p. 359) is prime to n. Cf. Genocchi,64 
Kummer.65 

E. E. Kummer58 proved that xx—yx~zx is impossible for the series59 
of real primes X for which (A) the number of non-equivalent ideal complex 
numbers formed from an imaginary Xth root a of unity is not divisible by 
X and (B) every complex unit E(a), which is congruent modulo X to a 
rational integer, equals the Xth power of another complex unit. These two 
conditions are satisfied if X = 3, 5, 7, but probably not for X=37. 

G. L. Dirichlet60 noted that Kummer’s condition (A) relates to a theory 
closely analogous to the fact that a number m for which D is a quadratic 
residue is not always represented by z^—Dy2, but by one of several quadratic 
forms, and similarly for the forms in X—l variables defined by norms of 
complex integers based on a. 

Kummer61 proved that, for the domain defined by an imaginary Xth 
root a of unity, where X is an odd prime, the number of classes of ideals is 
the product H=hih2 of the two integers 

a P 
hl (2X)M~-7 A’ 

where n = (X—1)/2, and P, D, A are defined as follows. Let $ be a primitive 
root of 0K~1 = 1, and g a primitive root of X. Then 

P= ]*[ <£(/32j* J), </>($) = l+gift+gifP+ • ■ 
i 

where gi is the least positive residue of gi modulo X. 

•+0X_2/SX-2, 

Next, 

(1 —a)(l —a 

is a complex unit (a divisor of 1). Then, if lx denotes the real part of log x} 

Hoc) le(a°) • • fe(<0 

D — 
le(aa) U{a°2) • - ZefcO . 
Hof-2) fe(aO • • 

58 Berichte Akad. Wiss. Berlin, 1847,132-9. 
69 “I prove that it is impossible for an infinitude of primes X, but do not know for just which 

X’s the assumptions hold.” That these X’s are infinite in number was believed, but not 
proved, by Kummer. He called the remaining primes exceptional (as 37, etc.). The 
same statements were made in 1847 in letters to Kronecker (Kummer,35 pp. 75, 84), 
In his VorlesuDgen fiber Zablentheorie, 1, 1901, 23, Kronecker stated that Kummer 
proved the impossibility of =z* for an infinitude of primes X and at first believed 
that his proof applied to nearly all X’s, but later believed the contrary. Kummer,*5 p. 
32, is elsewhere quoted as believing it probable that there are approximately as many 
regular primes as irregular (exceptional) primes. A. Wieferich, Taschenbuch fur 
Mathematiker u. Physiker, Leipzig, 2, 1911, 108-111, stated that Kummer proved 
Fermat’s last theorem for an infinite series of exponents. 

*« Berichte Akad. Wiss. Berlin, 1847,130-141; Werke, II, 254-5. 
* Berichte Akad. Wiss. Berlin, 1847, 305-319. Same in Jour, ffir Math., 40,1850, 93-138; 

■Tour, d* Math.. 16* 1851. 454-498. 
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Let €i(a), •••, €M_i(a) be units such that products of powers of them 
multiplied by dbam give all the units. Then 

hi(a) • • * U^iia) 
A=. 

It is shown that hi is divisible by X if and only if X divides the numerator 
of one of the first (X—3)/2 Bemoullian numbers Hi = 1/6, H2 = l/30, •••; 
while if h2 is divisible by X also hi is, but not conversely. He proved that 
if X is not a divisor of H, condition (B) of Kummer58 is satisfied. Hence if 
X is an odd prime not dividing the numerator of any one of the first (X—3)/2 
Bemoullian numbers, xx+yx=zx is impossible in integers. 

The French Academy of Sciences62 offered as a prize a gold medal of 
value 3000 francs for a proof of Fermat's last theorem. After several 
postponements of the date fixed for the award, the prize was finally (C. R., 
44, 1857, 158) awarded to Kummer for his investigations on complex 
numbers, though he had not been a competitor. 

Kummer63 proved by use of prime ideals that, if X is an odd prime not 
dividing the numerator of any one of the first (X—3)/2 Bemoullian numbers, 
wx+t>x+tox=0 has no solution in integers, nor in complex integers 

&o4"#i<*”i“<Z2a2-f“ * * * *b&x— 
where a is an imaginary X-th root of unity. Thus there is no solution for 
X<100, except perhaps for X = 37, 59, 67. This proof has been given in 
modem form, by use of Dedekind's ideals, by Hilbert.153 

A. Genocchi64 proved that, if n is an odd prime, 

—2H(n_3)/2=l+2n"4+ • —b^~2— ^ (mod n) 

and noted that this, in connection with a statement by Cauchy,67 shows that 
xn+yn+zn = 0 is impossible in integers not divisible by the odd prime n 
when n is not a divisor of the numerator of the Bemoullian number H(n-3)/2, 
the last one of the Bemoullian numbers in Kummer's condition. * 

Kummer65 noted that his assumption that Bn is not divisible by X for 
n= (X—3)/2 (as well as for smaller n's) corresponds to Cauchy's57 condition 

lx~*+2x~4+ • • • +(^r)X 4+0 (mod X). 

If not both B(x—3)y2 and JBCx_5>/2 are divisible by X, one of the solutions x} y, z 
of £x+2/x=zx must be divisible by X. Proof by Kummer,76 pp. 61-5. 

62 Comptes Rendus Paris, 29, 1849, 23; 30, 1850, 263-4; 35, 1852, 919-20. There were five 
competing memoirs for the prize proposed for 1850 ana eleven for the postponed prize 
for 1853; but none were deemed worthy of the prize. Cf. Nouv. Ann. Math., 8, 1849, 
362-3 and, for bibliography, 363-4; 9, 1850, 386-7. 

“Jour. fur Math., 40, 1850, 130-8 (93); Jour, de Math., 16, 1851, 488-98. Reproduced by 
Gambioli,171 pp. 169-176. 

MAnnali di Sc. Mat. e Fis., 3, 1852, 400-1. Summary in Jour, fur Math., 99, 1886, 316. 
This congruence is a special case of one proved by Cauchy, M&n. Acad. Sc. Paris, 17, 
1840, 265; Oeuvres, (1), III, p. 17. 

* Letter to L. Kronecker, Jan. 2,1852, Kummer,” p. 91. 
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H. Wronski66 pretended that the impossibility of xn+yn—zn, n>2, 
follows from his67 results on zn—Nvn=Mun. 

F. Landry68 proved Legendre’s17 statement for p = mn+1, m = 10 and 
14, when n>3, noting-that (147dbl)/(14dbl) are primes. 

Landry69 employed two primes <£ and 0=2Z<£+1, and an integer e 
belonging to the exponent <£ modulo 0. The congruence l+es± 6*^0 
(mod 0) can be reduced to 1+€dt€2s= 0 unless x=<£ or x=0, whence 2<£se±1. 
By use of the substitutions € = «rI, e—el1*, etc., we can reduce l-f«+e*sO 
to a similar congruence with z replaced by the integral residues modulo <£ of 

1 z—1 1 z 
z> 1~e> 7> ~T~> T~,’ r~T- 

Excluding z = 1 or 2, these six expressions are incongraent modulo <£ unless 
<j> is of the form 6Z+1 and then they reduce to two for two special values 
of z. If all three relations 1 + e —€x=0, 1 — e+c*=o, 1 —e—ez=0 are im¬ 
possible for a single one of the above six values, then 1 + c—€*==0 is im¬ 
possible for all six. 

For Landry’s third memoir (on primitive roots), see Vol. I, p. 119, 
p. 190 of this History; for his fifth memoir (on continued fractions), see 
Landry69 of Ch. XX above. 

Landry70 recurred to the exception arising if 2*==fcl (mod 6), where 6 
is a prime 2k<f>n+l, n a prime >2. For <£=5, 7, 11, 13, 17, 19, he found 
all the cases in which 2*=Fl has such a factor 8. For example, if <£ = 11, 
only when n=31, 0=683. Aside from these exceptions, l+«±e*s0 does 
not hold for 2 = <£ or 2=0 when <£^19; nor for 2=2, J, —1, or 2 = 3, 1—3, 
i, etc., except for a few special values of 8. 

Landry71 proved that, if 8 is a prime 2&<£n+l(n>3), l+€±€*=0 
(mod 8) are each impossible for <£ = 5, 7, 11,13,17,19, aside from the excep¬ 
tions for <£ = 11, 13, 17 noted by Landry,70 and the new exceptions, aris¬ 
ing for <£ = 19: 0 = 761, n = 5, A;=4; 0 = 647, ft=17, k = 1; 0=419, n = ll, 
k=1. 

H. E. Heine71® considered Pm—DQm—ly where P} Q, D are polynomials 
in x. 

L. Calzolari72 noted that any given numbers x, y, z can be expressed in 
the form x = v-\~w, y = u+w, z=u+v+w [since we may take u=z—x, 

w Writable science nautique des marges, Paris, 1853,23. Quoted in rinterm&Liaire des math., 
23, 1916, 231-4, and by Guimaraes.27* 

67 R6forme du savoir humain, 1847, 242. See p. 210 of Vol. 1 of this History. 
68 Premier m^moire snr la throne des nombres. Demonstration d’un principe de Legendre 

relatif au th6or6me de Fermat, Paris, Feb. 1853, 10 pp. 
•• Deuxikme m^morie sur la tMorie des nombres. Thdorlme de Fermat, Paris, July, 1853, 

16 pp. 
70 Quatrteme m&norie but la th^orie des nombres. Th6or£me de Fermat, Paris, Feb. 1855, 

27 pp. 
71 Sbri&me m6morie sur la thdorie des nombres. Tb^orfcme de Fermat, 3e livre, Paris, Nov. 

1856, 24 pp. 
710 Jour, fttr Math., 48, 1854, 256-9. 
72 Tentativo per dimostrare il teorema di Fermat . . . x*-\-yn~zn, Ferrara, 1855. Extract 

by D. Gambioli,171 158-161. 
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v=z-y, w=x+y—z~\- Let xn+yn=z”, and set x=z—u, y-z-v. Then 

z”-n(u+v)z"-1+ (”) (m2+^)2“-2-+(—1)*(«*+»“) =0. 

Hence un+vnis divisible by z. Similarly, a=un+(v~u)n is divisible by a;, 
and p-vn+(u—v)n by y. His argument that Fermat's equation is im¬ 
possible if ft is odd and >3 is unsatisfactory. By Cotes' theorem, 

un+vn = (w+v)n(w2—2ttt; cos Xx/n+v2), 

where X = l, 3, 5, • • •, n—2. The Xth quadratic function has the factors 

u+vdz2^luv cos Xx/(2n). 

But un+vn has the factor z=u+v+w, whence 

w = 2 ^luv cos Xx/ (2n). 

Similarly, since a is divisible by x=u+(v—u)+w, and 0 by y = v+(u-v)+w, 

w=2tIu(v—u) cos^, w = 2 Vv(u—v) cos 
2n 

whereas the one is real and the other imaginary. He also claimed that the 
first w is symmetrical in u, v, while the third w is not. He made also the 
error of assuming that an even factor of a product of an odd by an even 
number must divide the latter. 

J. A. Grunert73 proved that, if n> 1, there are no positive integral values 
satisfying xn+yn=zn unless x>n, y>n, simultaneously. Set z-x+u and 
apply the binomial theorem; hence yn>nxn~lu. 

L. Calzolari74 considered a triangle whose sides are integral solutions of 
xn+yn—zn, n odd > 1. Thus z2-=x2—axy+y2^P2 for a suitable value of a. 
It is stated that the polynomial Pn^xn+yn is divisible by P2, the polynomial 
quotient Pn_2 is divisible by P2, etc., and finally the symmetric quotient 
P^x+y equals z, which is impossible. If n~2m} P™=Pn, a=0, m=l. 

G. C. Gerono76 considered the integers x, y for which ax—bv=l for 
primes a, b. If a>2, then 6 = 2, a=2n+l, and x=l, y—n when n> 1, with 
also x=2, y=3 when n — 1. If a=2, then b—2n—1, x=nf y=1. 

E. E. Kummer76 proved that for any relatively prime integral solutions 
of P+yx=P, where X is any odd prime, and xyz is prime to X, 

(8) B^^Piix, y)=0 (mod X) (i=3, 5, • • X-2), 

where B, is the jth. Bemoullian number and P,*(x, y) is the homogeneous 
polynomial of degree i for which 

/ d* log (x+evy) \ = P<{x, y) 

V dv* (rc+t/)* ‘ 

He proved that Fermat's equation is impossible in integers for odd 
prime exponents which satisfy the following three conditions: 

n Archiv Math. Phys., 26,1856, 119-120. Wrong reference by Lind,341 p. 54. 
74 Annali di Sc. Mat. e Pis., 8, 1857, 339-345. 
n Nouv. Ann. Math., 16, 1857, 394-8. 
79 Abh. Akad. Wiss. Berlin (Math.), for 1857,1858, 41-74. Extract in Monatsb. Akad. Wiss. 

Berlin, 1857, 275-82. 
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(i) The factor hi of the class number H is divisible by X, but not by X2. 
(ii) For /i, g, e(a) defined as by Kummer61, and for the integer v < (X—1)/2 

such that B,^0 (mod X), there exists an ideal with respect to which as 
modulus the unit 

E,(a) — II e(at,k)‘r~21'' 
k=0 

is not congruent to a Xth power, whence the second factor h2 of H is not 
divisible by X. 

(iii) The Bemoullian number ByX is not divisible by X3. 
All three conditions are satisfied when X = 37, 59, 67, the values <100 

for which he had not previously proved Fermat's theorem. [But Kummer 
(pp. 46-50) repeatedly used an earlier7641 congruence involving logarithms 
which is not true in all cases, as noted by F. Mertens.766 The remark that 
this error vitiates also the present paper, and two further criticisms 
were made by H. S. Vandiver.7645 First, Kummer (p. 42, bottom) relied 
on his paper in Jour, de Math., 16, 1851, 473, where he reduced hi modulo 
X, but not modulo Xn, n> 1, as now needed. Second, Kummer (p. 53) 
employed a decomposition of SPr(a) which holds only when it contains only 
ideals of the first degree. Although the theorem on p. 61 is really subject 
to this restriction, it is applied (p. 67) to ideals 0r(a) which are not proved 
to be of the first degree. Kummer,7641 p. 120, had given the different de¬ 
composition when there occur ideals not all of the first degree.] 

H. F. Talbot77 proved (I) If n is odd >1, an=bn+cn is impossible in 
integers if a is a prime [Abel16]; (II) If n is any integer > 1, and if an=bn—cn 
is possible when a is a prime, then b—c = l. For (I), (&-fc)n>&n+c*=an, 
b+c>a; b<a, c<a, b+c<2a. Hence b+c is not divisible by the prime a, 
contrary to the given equation. Similarly for (II). Generalizations are 
given. If a is a prime and m<n, am—bn+cn is impossible if n is odd, while 
am=bn—cn is impossible if b—c>l. 

K. Thomas78 attempted to prove Fermat's last theorem. 
H. J. S. Smith79 gave numerous references on Fermat’s last theorem, 

noted that Barlow’’s16 proof was erroneous, and reproduced the proof by 
Kummer63 for regular primes. 

A. Vachette80 proved (6) and concluded that, if a, b are integers and n 
is a prime >2, (a-\-b)n—an—bn is divisible by nab(a+b), and gave several 
expressions for the quotient. Set 

Ak= (x+ljx)k—xk—l/xk, a=x+llx. 

Then A6n+7 is proved divisible by (a2—l)2 [Cauchy29]. There are proofs 
(pp. 264-5) of (6) by induction on n and by Waring’s formula. 

F. Paulet81 gave an erroneous proof of Fermat’s last theorem. 

7ia Kummer, Jour, fur Math., 44, 1852, 134 (error, p. 133). 
» Sitzimgsber. Akad. Wiss. Wien (Math.), 126,1917, Ila, 1337-43. 
7#e Proc. National Acad. Sc., April, 1920. 
77 Trans. Roy. Soc. Edinburgh, 21, 1857, 403-6. 
71 Das Pythagoraische Dreieck und die Ungerade Zahl, Berlin, 1859, Ch. 10. 
79 Report British Assoc, for 1860, 148-152,* Coll. Math. Papers, I, 131-7. 
MNniiv. Arm. Mat* 20. 1861. 160-6. 
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L. Calzolari82 attempted a proof, starting as before.74 
P. G. Tait83 stated that if xm~ym+zm has integral solutions when m is 

an odd prime, then 1, z^O (mod m). 
H. F. Talbot84 noted that Barlow15 made the same error in his proof of the 

impossibility of xn—yn=*zn as for the case n=3 (p. 139), where he stated 
that, if r, $, t are relatively prime in pairs, 

sr tr st 

since each fraction is in its lowest terms and each denominator has a factor 
not common with the other denominators, and hence the algebraic sum of 
the fractions is not an integer (by the false Cor. 2, Art. 13). On the con¬ 
trary, we have 

_L + -L + _L=2 
2*3 3-5 2*5 

A. Genocchi85 abbreviated Lamp’s28 proof for n=7. Let x, y, z be roots 
of tf—pip+qv—pq+r^ 0. Then x,+yI+zI—0 is equivalent to 

p7—7r (p4—p2q+q2) + 7pr2 = 0. 

After excluding the trivial case p = 0, we may change q to p% r to pzr, 
and get 7r2—7r(l—q+q2) = — 1. The radical in the expression for the root 
r must be rational. Thus (1—g+g2)2/4—1/7 is a square. Set 2q—l = sjt 
Then 

72(s4+6s2^)-7^=(7w)2. 

Proof of the impossibility of the latter is not given. 
Gaudin86 attempted to prove that, if n is an odd prime, (x+h)n—xn=zn 

is impossible in rational numbers. Treating x/h as a new variable, we are 
led to the case h=l. To avoid the author's complicated formulas, take 
n=5. Then 

(x+iy—xh = hx(x+l) {;r(z+l)4-l}+l 

is of the form 10$+1. Since z5 is of that form, z = 10s+1 and 

z5 = 5 • 10s {10$[10$(10s • 2s+l+2) +2]+1}+1, 

which is said never to equal the first expression. His remaining two argu¬ 
ments are trivial. 

I. Todhunter87 proved Cauchy's29 theorem and that, if q=x2+xy+y2, 
b=*xy(x+y), 

(x+y)2m+x2m+y2m_qm ^ (w-r-l)(m-r-2) • • *(m-3r+l) 

2m (2r)I 3 ' 

" Ann&Ii di Mat., 6, 1864, 280-6. 
“ Proc. Roy. Soc. Edinburgh, 5, 1863-4, 181. 
84 Trans. Roy. Soc. Edinburgh, 23, 1864, 45-52. 
“ Annali di Mat., 6, 1864, 287-8. 
“ Compte8 Rendus Paris, 59, 1864, 1036-8. 
87 Theory of Equations, 1861,173-6; ed. 2,1867, 189; 1888,185, 188-9. 
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(x+y)2m+1—x2m+1—y2m+1 

2m+l 
^ (m—r—l)(m—r—2) • • •(m—Zr) 

6+2--1 
—3-—IT O^Lt 

summed for r—1, 2, •. The first formula had been given earlier.88 
Housel89 proved Catalan's38 empirical theorem that two consecutive 

integers, other than 8 and 9, can not be exact powers [with exponents >1]. 
E. Catalan90 stated this theorem and those given under Catalan.1220 
Catalan91 set -p-x+y+z, P=pn—xn—yn—zn and proved that the 

quotient Q of P by (x+y) (y+z)(z+x) is (for n odd >3) 

p^+Hxp^+H2p^+ • - - +i7n-3 
+ yn~3+Hi(x2, z2)yn~5+H2(x2, z2)yn“7H-b#(»-3)/2(£2, z2) 

+ xn-z+Hi(y2> z2)xn-*+H2(y2, z2)xn~7A-b-H^^^iy2, z2), 

where Hi=p, H2 = '2x2+2xy, Hz = 'Lx?+'Zx2y+xyz) • • •, 

Hq(x, z) —xt+zx^+z^*"2^-b-z*. 

If n is a prime the coefficients of P and Q are divisible by n. Also, 

Q~n^X x2-!!*--^n(V+Z)(X+y^’ 

where 4> is a polynomial in x, y, z with integral coefficients. 
G. C. Gerono92 proved that, if x or y is a prime, xm~yn+1 holds in 

positive integers >1 only when x=n=3, y — m—2. See Carmichael.228 
A. Genocchi93 stated that x4+6x2y2~y4/7=z2 is impossible in integers. 

Hence x7+y7+z7=0 is not satisfied by values of x, y, z which are roots of a 
cubic equation with rational coefficients, a generalization of Lamp's28 
theorem. 

E. Laporte94 would deduce Fermat's last theorem from the fact that the 
series of powers higher than the second are formed by the summation of 
terms of arithmetical progressions preceded by extraneous terms. 

Moret-Blanc95 proved that the only positive integral solutions of 

x*=y*+l 

are y=0; y = l, x = 2; y=2, x=3. A. J. F. Meyl96 showed that the only 
positive integral solutions of (x-\-l)v=xv+1-\-l are s = 0, x=y = l, x=y=2. 

88 N. M. Ferrers and J. S. Jackson, Solutions of the Cambridge Senate-House Problems for 
1848-1851, pp. 83-85. 

89 Catalan’s Melanges Math., Li&ge, ed. 1, 1868, 42-48, 348-9. 
90 Ibid., 40-1; Revue de Instruction publique en Belgique, 17, 1870, 137; Nouv. Corresp. 

Math., 3,1877, 434. Proofs by Soons.17* 
91 Melanges Math., ed. 1,1868, No. 47,196-202; M4m. Soc. Sc. Li&ge, (2), 12,1885,179-185, 

403. (Cited in Bull, des sc. math, astr., (2), 6,1,1882, 224.) 
98 Nouv. Ann. Math., (2), 9, 1870, 469-471; 10, 1871, 204-6. 
93 Comptes Rendus Paris, 78, 1874, 435. Proof, 82, 1876, 910-3. 
94 Petit essai but quelquea m4thodes probables de Fermat, Bordeaux, 1874. Reprinted in 

Sphinx-Oedipe, 4,1909, 49-70. 
» Nouv. Ann. Math., (2), 15, 1876, 44-6. 
96 Ibid., 545-7. 
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F. Lukas97 set y-x—a, z=x—b, a<b> in yn+zn~xn} n>2. Hence 

l) (a+^)a;n"’1 “*"(2)(a2+^2)xn~2-h(—l)n(an+6n)=0. 

Let wi, •••yWn be its roots, all positive. Then 

2wi=n(a+b), - XtOi = a2+b2+2nab=integer, 
n 

which are said to be impossible if n>2. This error was noted in Jahrbuch 
Fortschritte der Math., 7, 1875, 100. 

T. Pepin98 proved that x7+y7+z7—0 is not satisfied by integers not 
divisible by 7, by use of the fact that u2=xi+7zy4 has no integral solutions 
with y+0 (proved by descent). He proved (pp. 743-7) that the first 
equation has no solution in which one of the unknowns is divisible by 7. 

J. W. L. Glaisher99 expressed Cauchy's29 theorem in a new form. Let 
n be odd and set s=c—5, y — a—c. Then 

(x+y)n-xn—yn = (b--c)n+(c—a)n+(a—b)nz=En. 

Then En is algebraically divisible by Ez = Zxy(x+y). If n=6mdtl, En is 
divisible by E2=2(x2+xy+y2). If n=6m+l, En is divisible by Ei=\El. 

Glaisher100 expressed (x+y)n—xn~yny for n odd ^13, in terms of 
0=x2+xy+y2 and y=xy(x+y). [Earlier by Cauchy.33”] 

T. Muir101 noted that xy y, —x—y are the roots of w*—Pw+y=0. 
Hence by Waring's formula for the sum of like powers of the roots, 

(z-f2/)2m+1—x2m+1—t/2m+1 i 

2m+l 
= pm~iy+ 

(m—2) (m—3) 

1-2-3 
/Sm“V 

(m—3) • • • (m- 

1-2-3-4-5 
'3. ^«“775+ . 

He gave a similar formula for (x+y)2m+x2m+y2m. For three variables, set 

0 = 2 x2+2xy, y=z2x2y+2xyz, d=xyz(x+y+z). 

Then xf y, z, —x—y—z are the roots of w*—fho2+yw—5 = 0. Thus 

(x-\-y-\"Z)2m'^rl—x2m'^rl—2/2m+1 —22m+1 

= S(-l)^-^2m+1)-(;+s+<~1)! (-PYyW, 
rlsl 

summed for all integral solutions ^0 of 2r+3s+4£ = 2m+l. Since s>0t 
the sum has the factor 7 = i((z+2/+2)3— x3—y3—2s}. 

Glaisher102 noted that Newton's identities give a recursion formula 
for Xi-\-ba£, extended Cauchy's theorem to negative exponents, and 
gave recursion formulas for and factors of the sum of the pth powers of all 
the quantities rfcaidt • • • dban in which r of the signs are negative. 

87 Archiv Math. Phys., 58, 1876,109-112. 
88 Comptes Rendua Paris, 82,1876, 676-9. 
88 Quar. Jour. Math., 15,1878, 365-6. 
100 Messenger Math., 8,1878-9, 47, 53. 
101 Quar. Jour. Math., 16,1879, 9-14. 
108 Ibid., 89-98. 
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A. Desboves103 noted that aXm+bYm = cZn has integral solutions if 
and only if c is of the form axm+bym; we can find a function c of a, b and 
as many parameters as one pleases such that integral solutions exist. 
Next, let n=m. Then we can find a, b, c so that there are two sets of 
solutions and these determine a :b : c. There exists such an equation 
with three sets of solutions if and only if 

Pn+Qm+Rm= Um+Vm+Tm) PQR = UVT 

have integral solutions =j=0. We can solve X4m—a2Yim=Z2 if 

(x+yi)im— (x—yi)im 

2% 

viz., by X=x2+y2} 7=1. 
A. E. Pellet104 considered, for p a prime, the congruence 

Atm+Bun+C=0 (mod p), ABC^O (mod p). 

Let d be the g.c.d. of m, p—1; di that of n, p — 1. Set x^tm. Then x must 
satisfy the two congruences 

z(z<*~ 1)/-i—!)—0, (Ax+C) [ { - |.. j -1 J~0 (mod p). 

Conversely, to each of the fi common roots of the latter two congruences 
correspond ddi sets of solutions of the proposed congruence, which therefore 
has uddi sets of solutions. For m=n=2, the two congruences have at 
least one common root, since the second is not z(p~1)/2+l=0, being of 
higher degree. Hence At2+Bu2+C=0 (mod p) is solvable (Lagrange,9 
etc., of Ch. VIII). 

R. Iiouville105 claimed that Xn+Yn=Zn is impossible if n>l and X, Y, 
Z are polynomials in a variable L Set a~X/Z. Then 

a11 ldct 

is a polynomial in 
second integral, 

a/1—an=Y/Z. Since dUjdt is the argument of the 

4(1 )=-41)1(1) 
must be the product of Y by a polynomial A. Hence 

, , ZJF»-Jd (Y\ 

A+ X'-1 dt\z) 
=0. 

Thus X—‘ divides Z*d(Y/Z). 

dP 
*r»-i 

dt Z* ’ 

Call the quotient B and set P—YjZ. 

—~ ~r (1 —_Pn) <«-» '» = BZ*~3. 
dt 

Then 

But in the latter, the left member is infinite for a root of Pn = l, while the 

1M Nouv. Ann. Math., (2), 18,1879, 481-9. 
104 Comptes Rendus Paris, 88,1879, 417-8. 
106 Comptes Rendus Paris, 89,1879,1108-10. 
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E^Netto3!^1 reim’Ils This argument was called insufficient by 

whf^i ^orkiiie1<)7 modified the last proof. Let Z be a polynomial in t 

lat+AT- ^ e?ree m ^snot less than the degrees of X and 7. Then one of the 
pri+* , degreesay Y. Let m-~\ (X^O) be the degree of X. Differ- 
n. _ ^/^)n+{ZIX)n+1=0 with respect to t. Then, since 7, 7 have 
no common factor, 

XY'—YX*ZX'-XZ' 
Zn~l y»-i 

r ^unc^on* As the degrees of the numerators are^2ra—X —1 
n at of the denominators is we have 

2m-X-l —w(n— 1) ^0, m(3—n) ^X+l, n< 3. 

^^bure10sseparated into two classes the primes p=2&n+l. Into 
e rurst class, piit the p’s such that the algebraic sum of any three residues 

° t+K *>CTers m°dulo p cannot be a multiple of p. Into the second class, 
pu tne p s for which the algebraic sum of three residues is a multiple of p. 

is claimed that all the p’s in the first class are divisors of one of the integers 
satisfying xw-ft/n=2«; so that every p is a divisor of xy y or z, or is in the 

C^fs‘ ®e&ce if the first class is infinite, the equation is impossible. 
■n • class is not finite when the second is infinite [correction by 
repm109J. 

,, Eepin109 noted that Libri24 long ago pronounced judgment on an 
attempted proof like Lef6bure’s.108 To prove Iibri’s assertion on 

a^+^+lsO (mod p=3/H-l), 

Pepin showed (by use of Gauss, Disq. Arith., art. 338, on the equation for 
he three periods of roots of unity) that the number of sets of solutions of 
he congruence in positive integers <p is p+L—8, where L is determined 

Si*?*-*8* (mod 3). Hence 7 and 13 are the only primes 
oh+1 which cannot divide a sum of three cubes without dividing one of 
them. 

. Schierno claimed to prove xn+yn=zn impossible in relatively prime 
integers if n is an odd prime. We have x-\-y=z (mod n). Expand by the 
binomial theorem 

(x+y)n=(z+nk)n, 

cancel xn+yn with zn, and divide by the factor n. Thus 

xY(xn~4+yn~t) H-=z*-hik-\- 

Hence also the left member must be divisible by n. It is stated that this 
visibility depends on that of the factors xy and x+y occurring in every 

J&hrbuch Fortechritte Math., 11, 1879,138. 

tS?***™. 1880> 303-4 (Math. Soc., Moscow, 10, 1882, 54-6). 
io» tS?*’ 1880» 1406-7. 
no Reprinted, Sphinx-Oedipe, 4,1909, 30-32. 

ottwngsber. Akad. Wiss. Wien (Math.), 81, II, 1880, 392-8. 
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term. Hence n divides x or y. For, if x+y and hence z is divisible by n, 
set x-z+nk—y in the initial equation; the result is said to hold only if y 
is a multiple of n. 

F. Fabre111 proposed the question of the divisibility of (x+y)n~xn—yn 
by x2+xy+y2 and M. Dupuy proved (ibid., 1881, 282-3) that n must be 
of the form 6a dtl. 

If112 (Xa)2n+1 = 2a2n+1 is true for n— 1 it is true for any n, since 

(a+b) (a+c)(6+c)=0. 

A. E. Pellet stated and Moret-Blanc113 proved that At*+Bu2+C=0 
(mod 7) is solvable if ABC is prime to 7. 

E. Ces&ro114 proved that if \p(n) is the number of sets of positive integral 
solutions of Axa+ByP=n, where A and B are positive integers, 

nlfa+ll0 ni a_ 

^(1) + • • • +*(*) = jpqpR J0 ^ -****• 

The ratio of yp(n) to the number of solutions of xa-\-yfi=n is A~llaB~llfi, 
in mean. Hence, for a=0=1, \p(n) =n[(AB), in mean. For a=0=2, 
\p(n) =7t/(4 VZP), in mean. The mean of the sum of the pth powers of 
all the positive integral values which x can take in xk+yk=n is found 
(p. 229). 

C. M. Piuma115 noted that, if no one of the coefficients A, B, C is divisible 
by the prime m=pq+l, then Axp+Byq+C=0 (mod m) has integral 
solutions if and only if Az+Bzi+C^O (mod m) has solutions for which 

Zi=y9 are solvable for x, y, i. e., if 

z(z«—1) =0, 21(2^—1) = 0 (mod m) 

are solvable. Thus the initial congruence has solutions if and only if 
P==0 (mod m), where P is the resultant of the equations corresponding to 
the last two and Az+Bzi+C—0, so that P is a product of (p+l)(g+l) 
linear factors. 

For £=2, there are solutions if C-f A or C—A is divisible by m, or if 
any one of the products —PC, — B(C+A), —B(C—A) is a quadratic 
residue of m. In particular, Ax?+By2+Cz=Q (mod 7) is solvable if no 
one of the coefficients is divisible by 7. Of. Pellet.118 

E. Catalan, P. Mansion and de Tilly116 gave adverse reports on two 
manuscripts submitted for the prize offered for 1883 by the Belgian Academy 
(p. 101) for a proof of Fermat’s last theorem. 

E. de Jonqui&res117 proved that in an+bn~cn, n> 1, the greater of a, b 
is composite. Set c=a+k, b>a. Then, by the binomial theorem, 

m Jour, de math. 616mentaire de Longchamps et de Bourget, 1880, No. 273, p. 528. 
m Math. Quest. Educ. Times, 36, 1881, 105. 
ll* Nouv. Ann. Math., (3), 1, 1882, 335, 475-6. 

M6m. Soc. R. Sc. de Li&ge, (2), 10,1883, No. 6,195-7, 224. 
118 Annali di Mat., (2), 11, 1882-3, 237-245. 

Bull. Acad. R. Belgique, (3), 6, ann<5e 52, 1883, 814-9, 820-3, 823-32. 
117 Atti Accad. Pont. Nuovi Lincei, 37,1883-4, 146-9. Reprinted in Sphinx-Oedipe, 5, 1910, 

29-32. Proof by S. Roberts, Math. Quest. Educ. Times, 47,1887, 56-58; H. W. Curjel, 
71,1899, 100. 
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&* = (a+&)n~an is divisible by k. But if k^b, cn^(a+b)n>an+bn. 
Hence bn is divisible by an integer k, k>l, k<b. Similarly, if a is a prime 
<5, then c 6 = 1. He118 stated th^t if an+&n==cn and a or b is a prime, 
the least of the two is a prime and the greater is composite and differs 
from c by unity. 

G. Heppel119 proved that, if n is a prime >3, (x+y)n—xn—yn is divisible 
by mcy(x+y) (x2-{-xy+2/2) and found the coefficients of the general term of 
the quotient. 

P. A. MacMahon120 employed his generalization of Waring’s formula in 
Proc. Lond. Math. Soc., 15, 1883—4, p. 20, to prove the identity 

S(x, y)+S(y, x) = 2(—1)»+iL+6 (x2+xy+y2)a{xy(x+y))h, 

summed for the integral solutions of 2a+36=n, where 

S(x if> -(a:+2y)xB+ Vn+1(x-y) (x+y)n._ , , . „ 
S( ' V) (x-y)(x+2y)(2x+y)-{2y(-x+y) ~x l' 

He gave a similar identity for three variables. The right member of the 
initial identity becomes 5xy(x+y)(xi+xy+y2)2 if n=7 [cf. Cauchy29]. 

E. Catalan121 stated that if p is an odd prime, 

(x+y)p— x»—yp^pxy(x+y)P1! 

where P is a polynomial with integral coefficients, holds only if p=7 and 
P=i?+xy+y2. He122 proved this by taking a: = y = 1. Thus 2p-1~l=pN2, 
where AT is an integer. Set t= (p-l)/2. Since 2'-l and 2‘+l are rela¬ 
tively prime, having the difference 2, one of them is a square. The first 
is of the form 4n+3 and is not a square. Hence 2‘+l=M*. Thus the 
factors ilf+1, M— 1 of 2‘ are powers of 2 and their difference is 2. Hence 
M—1=2, so that p=7, N*= 3 or p=3, N=l. 

Catalan122* stated the empirical theorems: (I) (x+l)*—x*=l is im¬ 
possible in integers except for x=0 or 1. (H) xv—yx= 1 is impossible ex¬ 
cept for x=l, y=0 or x=3, y=2. (Ill) x*—l =P, where p and P are 
primes, is satisfied only by x=2, p=3, P=7. (IV) xn-l=P2 is impos¬ 
sible if P is a prime. (V) x?—l=pm, for p a prime, is satisfied only by 
x—3, p=2, m=3; a:=2, p=3, m— 1. (VI) xp—qv—\, where p and q are 
primes, is impossible except when x~y=3, p=q=2. (VII) xs+y>=jp, 
where p is a prime, is impossible except when x=2, y=l, p = 3. (VHI) 
xn= {(2n~2—1)1}/2"—2 is impossible except when n=3, x=l. Cf. 
Gegenbauer.133 

G. B. Mathews122 proved for special primes p that x*+y*=zp is impos¬ 
sible if no one of x, y, z is a multiple of p. The method was suggested by 

m Comptes Rendus Paris, 98, 1884, 863-4. Extract in Oeuvres de Fermat, IV, 154-5. 
n* Math. Quest. Educ. Times, 40, 1884, 124. 
uo Messenger Math., 14, 1884-5, 8-11. 
m Nouv. Ann. Math., (3), 3,1884, 351 (Jour, de math., sp£c., 1883, 240). 
“Ibid., (3), 4, 1885, 520-4. 

M6m. Soc. R. Sc. Udge, (2), 12,1885, 42-3 (earlier in Catalan*0). 
m Messenger Math., 15, 1885-6, 68-74. 
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Gauss’ remarks for p = 3 (Werke, 2,1863,387-391). Since z^x+y (mod p), 

D=(xJry)J>-xp—yp^0 (modp2), D=pxy{x+y)<f>(x, y). 

The equivalent congruence xyz<j>(xy y) =0 (mod p) is proved insolvable for 
p = 3, 5, 11, 17 unless at least one of the three unknowns is divisible by p. 
The method leaves in doubt the case p—Zn+1 since the factor x2+xy+y2 
of has real roots. 

E. Catalan124 stated 16 theorems on an+bn — cny n a prime >3. If a is 
a prime, then a=l (mod n); ans=1 (mod nb); every prime factor of c—a 
divides a—1; a+b and c—a are relatively prime; also 2a—1 and 26+1; 

rib*”1 ^kan ^n(b+1)n_1 ; 

a and b exceed n; an —1 is divisible by nb(b+l)(b2+b+l). Next, no one 
of a+b, c—a, c—b is a prime. If a+6 = c?, c—a — bnly c—6=a?, then c is 
divisible by n. The [of Mathews123] is 

H1x*-s+H2x>-4y+.. .+Hnr3, J?i=^[(P^1)±1]’ 

the sign being plus if A; is even. 
Catalan126 stated the same theorems. Also, if an+bn=cn, where a, 6, c 

are relatively prime in pairs, and a+b is divisible by n, it is divisible by 
n””1; if a+b is divisible by a prime p+n, it is divisible by pn; if a+b is 
divisible by a power >nn~l of n, it is divisible by n2n_1; if a+b is divisible 
by a power >pn of a prime p +n, it is divisible by p2n. 

L. Gegenbauer128 proved that 17, 29 and 41 are the only primes p=4/x+l 
not dividing a sum of three biquadrates prime to p. Cf. Euler83 of Ch. 
XXIII. 

C. de Polignac127 proved that an—2*==hl is impossible unless a=3, 
n—1 or 2. 

A. E. Pellet128 found by use of inequalities in the theory of roots of 
unity that xq+yq=zq (mod p), where p is a prime qo)+1, has solutions 
x, y, z each not divisible by p for every o> exceeding a certain limit (not 
specified) for which gco+l is a prime [Libri24]. 

P. Mansion129 considered xn+yn=zn, where x, y, z are relatively prime, 
x <y <z, n an odd prime. By de Jonqui&res,117 y is composite. It is proved 
here that z is composite. The proof that x is composite is erroneous, as 
later admitted. 

M. Martone130 attempted to prove Fermat’s last theorem. 

124 Bull. Acad. Roy. Sc. Belgique, (3), 12,1886, 498-500. Reproduced in Oeuvres de Fermat, 
IV, 156-7. 

**M6m. Soc. R. Sc. Ltege, (2), 13, 1886, 387-397 (=Melanges Math., 2, 1887, 387-397). 
Proofs of some of these theorems by Lind,241 pp. 30-31, 41-43, and by S. Roberts, Math. 
Quest. Educ. Times, 47, 1887, 56-8. 

m Sitzungsber. Akad. Wiss. Wien (Math.), 95, II, 1887, 842. 
127 Math. Quest. Educ. Times, 46, 1887,109-110. 
128 Bull. Soc. Math, de France, 15, 1886-7, 80-93. 
229 Bull. Acad. Roy. Sc. Belgique, (3), 13, 1887, 16-17 (correction, p. 225). 
130 Dimostrazione di un celebre teorema del Fermat, Catanzaro, 1887, 21 pp. Napoli, 1888. 

Nota ad una dimostr. . . ., Napoli, 1888 (attempt to complete the proof in the former 
DaDer). 
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F. Borletti131 proved that, if n is a prime >2, xn+yn=zn has no positive 
integral solutions if z is a prime, and x2n—y2n=z2n has no integral solution if 
one of the unknowns is a prime; xndtzyn = 2an is impossible if n>l, and x, y 
are odd and relatively prime. 

E. Lucas132 proved Cauchy’s29 result. Set q=a2+ab+b2, 

r = ab(a+b), Sn = (aJrb)nJr(~a)nJr( — b)n. 

Then Sn+z^qSn+i+rSn- Hence, by Waring’s formula, Sn is divisible by 
q^r if n = 6m+l; by q> and not by r, if n = 6m+2; by r, and not by q, if 
n=6m+3; by q2, and not by r, if n=6m+4; by qr if n=6m+5; by neither 
q nor r if n=6m. As a generalization, if p is a prime, 

(1+aH-sH-[-xp~2)n—l—xn—x2n-x(ip~2)n 

is divisible by Q=1+xA-if n is odd and prime to p, and by Q2 if 
n=2p+l. For p arbitrary, let <j>(x)=Q be the equation for the primitive 
pth roots of unity. Then without details it is stated that 

l<f>(x)-xx\n-<l>(xn) 

is divisible by <f>(x) for n odd and prime to p. [Apparently the term xXn 
should be added, and X taken to be the degree of which degree is the 
number of integers <p and prime to p.] 

L. Gegenbauer133 proved that, if a is a positive integer with at least one 
odd factor >1, and q is a prime, x*+ya=qn has positive integral solutions 
only when g=2, n=aa+1, x—y — 2°, or a=g=3, n=2+3a, x = 2*3°, y~3a. 
Hence 32 is the only power of an odd prime representable as a sum of the 
ath powers of two relatively prime integers. A special case of this gives 
the seventh empirical theorem of Catalan.122" It is proved that if q is a 
prime, xa+1—qn = l is possible only for x = 2, n = 1, a+1 a prime, or x = 3, 
a=l, q=2, n=3. Hence a prime other than 2n — l is not followed by a 
power, while 32 is the only power followed by a power of a prime. These 
imply the third, fourth, fifth and sixth empirical theorems of Catalan. 

A. Hieke134 attempted to prove xp+yp=zp impossible if p is an odd 
prime >3. He proved and used (6). From an equation of degree 
t~(p—l)/2 in a quantity m admitted to be doubtless irrational, he drew 
(p. 241) the meaningless conclusion “ that m* has the factor p, and m the 
factor p1/e, and indeed for all values of ra.” 

D. Varisco135 failed to prove Fermat’s last theorem since he concluded 
(p. 375) that there is a unique set of solutions <ri = 0, etc., of 

\i~<xi — 2ud) \idi—ad=rj, cr—\ — 2udi, <ridi~\d = T], 

whereas the four equations are linearly dependent and have further sets 
of solutions. The fault seemed irreparable to O. Landsberg.136 

in Reale 1st. Lombardo, Rendiconti, (2), 20, 1887, 222-4. 
m Assoc, frang. av. sc., 1888, II, 29-31; ThSorie des nombres, 1891, 276. 
1,1 Sitzungsber. Akad. Wiss. Wien (Math.), 97, Ha, 1888, 271-6. 
1M Zeitschrift Math. Phys., 34, 1889, 238-248. Errors noted by a “reader,” 37, 1892, 57, 

and Rothholz.140 
Giomale di Mat., 27,1889, 371-380. 

28, 1890,52. 
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A. Rieke137 again attempted to prove xv+yp=zp impossible, but again 
confused (pp. 251-2) algebraic and arithmetical divisibility, even for 
p = 3 (p. 253). 

E. Lucas138 proved (p. 267, p. 275) the theorem of Cauchy,29 and (p. 370- 
1) the formulas (1), (3), (4) of Legendre17, with the aim to show that, when 
x, y} z are relatively prime in pairs, no one of them is a prime or a power of a 
prime [cf. Markoff157]. He proved (p. 341) the first result due to Jaquemet.3 

D. Mirimanoff139 found in terms of the units a necessary and sufficient 
condition that the second factor [Kummer61] of the class number be divisible 
by X. He treated in detail the case X == 37. 

J. Rothholz140 used the theorem of Kummer25 on the divisors of an±6n 
to show (?) that x2nzLy2n=z2n has no integral solutions if n is a prime 4&+3 
or if one of the numbers z, y, z is a prime and n is an odd prime; xn+yn=zn 
is impossible if x, y or z is a power of a prime, the prime not being s= 1 
(mod n), while n is an odd prime; xn+yn — (2p)n is impossible if n and p 
are odd primes; xnzkyn=zn is impossible if x, y or z has one of the values 
1, • • •, 202. The history of the theorem is discussed at length. On p. 29 
are pointed out two errors in the proof by Rieke.134 

*W. L. A. Tafelmacher141 proved Abel's formulas and congruencial 
corollaries from them. In the second paper he proved that Fermat's 
equation is impossible for n = S, 5, 11, 17, 23, 29 and, in case x+y—z^0 
(mod ft4) for n = 7, 13, 19, 31 [but with proofs valid only when no one of 
x, y, z is divisible by n, since the argument pp. 273-8 does not suffice to 
exclude the case in which one of these numbers is divisible by n]. 

H. Teege142 proved that x5-f2/5=l has no rational solutions by setting 
z+y=p/g, x/y=t, t+ljt^z, (qlp)h=s. Then 

x*—x?y-\-by4=s{x+y)\ (s—1 )z2+ (4s+l)z+4s+l = 0. 

Since z is rational, (4$-f-l)2—4($—l)(4s+l) =m2. Set m—5ju. Then 
4$+l = 5/A Let p = bja, where a and b are relatively prime. Thus 

4g5+p5 = 5p562/a2. 

Hence a2 divides 5p5. The impossibility of this equation is proved by 
considering the cases a divisible or not divisible by 5. 

H. W. Curjel143 proved that if xg—yi=l and x, y are primes, then z is a 
prime, t is a power of 2, and x or y equals 2. 

Several144 proved by use of cube roots of unity the known result that, 
if n is odd and not a multiple of 3, (x+y)n—xn—yn is divisible by x2+xy+y2. 

S. Levanen145 discussed rr5+2/5=2mz5, for x, y, z without common factor, 

137 Zeitschr. Math. Phys., 36, 1891, 249-254. Error indicated in 37, 1892, 57, 64. 
133 ThSorie dee nombres, 1891. References in Introduction, p. xxix, where it is stated falsely 

that Kummer proved Fermat's theorem for all even exponents. 
Jour, fiir Math., 109, 1892, 82-88. 

140 Beitrage zum Fermatschen Lehrsatz. Diss. (Giessen), Berlin, 1892. 
141 Anales de la Universidad de Chile, Santiago, 82, 1892, 271-300, 415-37. Report from 

Lind,*41 p. 50. 
143 Zeitschr. Math. Naturw. Unterricht, 24, 1893, 272-3. 
143 Math. Quest. Educ. Times, 58, 1893, 25 (quest, by J. J. Sylvester). 
144 Ibid,, 112. 
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and m not divisible by 5 (since xs+y*=zl is impossible by Legendre18). 
By the residues of z5, x5+yB modulo 25, we see that m is not in the set 
2, 4, 7, 9, 12, • • •, 2n+[(?i—1)/2]. For z divisible by 5, we have z = 5trf 
x-\-y—2m5Hs. Proceeding as did Legendre, we find that the equation is 
impossible. 

D. Mirimanoff146 proved by use of ideals that x?7+yZ7+zZ7 = 0 is impossible 
in integers. 

H. Dutordoir147 expressed his belief that an+bn=cn is impossible in 
integers if n is a rational number other than 1 and 2. The fact that it is 
impossible when n= 1/2 and one of a, b, c is not a perfect square is a case of 
the impossibility of 

Vo+ Vb = Vc+ Vd, 

when c is different from a and b, and one of the four numbers a, • • •, d is 
not a square (Euclid, Elements, X, 42). 

A. S. Bang148 pointed out errors in various elementary proofs of special 
cases of Fermat’s last theorem. 

G. Komeck149 claimed to prove Fermat’s last theorem by means of the 
Lemma: If n and k are relatively prime (n odd) and divisible by no square 
>1, then in every solution in integers of nx2Jrky2=zn, x is divisible by n. 
E. Picard and H. Poincar4150 pointed out the falsity of this Lemma by 
citing the examples n=3, k = l, x — y = z=4:, and n~5, k = 3, x = 1, y=3, 
2=2. The Jahrbuch Fortschritte der Math., 25, 1893, 296, pointed out 
that § 3 of Komeck’s paper shows a lack of knowledge of the nature of 
algebraic numbers. 

Malvy151 noted that, if a is a primitive root of a prime p = 2n+l, and if 
in (mod p) we give to y the values 1, 2, • • 2n_1, we obtain for 
h as many even as odd values. If in a4fl+2+l=ah we give to y the values 
1, • • •, 2n~2, we obtain a even and /3 odd values for h, while if p = 17, a = 3 
or p=257, o=5, we have a=/3. 

E. Wendt152 proved that if n and p=mn+l are odd primes, 
rn+$n+£n=0 (mod p) 

has only solutions in which r, sort is divisible by p if and only if p is not a 
divisor of 

■ (D (?) - c.*i) 
1 (r) - 

Or) (”) (?) 1 
Jour. fQr Math., Ill, 1893, 26-30. 

147 Ann. Soc. Sc. Bruxelles, 17,1,1893, 81. Cf. Maillet.888 
148 Nyt Tidsskrift for Math., 4, i893, l05-7. 
149 Archiv Math. Phys., (2), 13,1894 (1895); 1-9. He noted, pp. 263-7, that the Lemma fails 

for n=3, k=1, and so gave a separate proof of the impossibility of z*= z*. 
160 Comptes Rendus Paris, 118,1894, 841. 
m L,interm4diaire des math., 1,1894, 152; 7, 1900, 193 (repeated). 
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which is the resultant of xm=l, (s+l)m=l. For, if we multiply the con¬ 
gruence by a>n, where gj£=1, we obtain a congruence of the form x+1=y 
(mod p), where x and y are nth powers, so that their mth powers are con¬ 
gruent to unity. 

He proved Legendre's17 result concerning the cases m=2, 4, 8, 16. If 
m=2*nk can be chosen so that mn+1 is a prime not dividing t>my where v 

is not divisible by the prime n, then an = bn+cn (n>2) is not solvable in 
integers all prime to n. If mn+1 is a prime dividing neither Dm nor nm—l, 
the same conclusion holds. [This result differs only in form from that 
by Sophie Germain17]. 

D. Hilbert153 gave a simplification of Hummer's63 proof of Fermat's 
theorem for regular prime exponents, and a proof that is im¬ 
possible in complex integers a+hi. 

G. B. Mathews154 noted that, if p is an odd prime, and x, y, z are solutions 
of xp+yp-\-zp—0, it is possible to choose & in an infinitude of ways such 
that kp+l = q is a prime not a factor of x, y, z, or yp—zpj etc., and such 
that k is not divisible by 3. Then, since xp, yp} zp are distinct roots of 
(mod q), their sum is divisible by q. Let r = e2wilk and P*=n(rtt-f-rfl4*r7), 
where the product extends over all triples of roots rtt, /, f1 of xk — l. Then 
Pjfc= where uk is a positive integer. Thus *4=0 (mod q) if and only 
if three roots of £*=1 (mod q) have a sum divisible by q. Hence if it 
could be proved that for a given p there is an infinitude of primes kp+1 
for which *4=0 (mod q) is not satisfied, Fermat's theorem would follow 
[Libri24]. 

E. de Jonqui&res155 noted that, if n>2, it is not possible to express 
c and b as algebraic functions of p, q such that cn—bn becomes (pq)n 
identically, and stated that this does not imply the impossibility of integral 
solutions. 

G. Speckmann156 discussed Tx—DUx = mx. 
V. Markoff157 noted that Lucas'138 proof of Abel's18 theorem that 

an = 6n-j-cn (n an odd prime) is impossible when a, b or c is a prime is in¬ 
complete as the case a=5+1 is not treated. He asked if (x+l)n=xn+yn 
is impossible. 

P. Worms de Romilly168 stated that ap+bp=*cp, p a prime >2, implies 

c=x+y+z, b=x+z, a-x+y, 
x = f M{P+Q)p^q-+\ y=p—pp (®+i)—2 = Q==qp(u+i)) 

Mpv+1qu+1 = 2'V-1, 2 "“a*=P+Q, 

p and q odd and relatively prime, q>l, and u, v, 8, p, a integers ^0. [Since 
c—5=i/ is a power of p, Fermat's equation is impossible by Abel's16 result.] 

m Jahresbericht d. Deutschen Math.-Vereinigung, 4, 1894-5, 517-25. French transl., 
Annales Fac. Sc. Toulouse, [(3), 1, 1909;] (3), 2,1910,448; (3), 3,1911, for errata, table 
of contents, and notes by Th. Got on the literature concerning Fermat's last theorem. 

164 Messenger Math., 24, 1894-5, 97-99. Reprinted, Oeuvres de Fermat, IV, 159-61. 
155 Comptes Rendus Paris, 120,1895,1139-43 (minor error, 1236). 
186 IJeber unbestimmte Gleichungen, 1895. 
157 L'interm&iiaire des math., 2, 1895, 23; repeated, 8, 1901, 305-6. 
188 Ibid., 2,1895, 281-2; repeated, 11,1904, 185-6. 
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If m is a prime 6/c+T, (a+l)m“1=l, c*m-1=1 (mod ra2) do not hold simul¬ 
taneously. If m is a prime, the integers u, not divisible by m, which satisfy 

m—um'= 1 (mod m2) 

are of the form u=am—1. 
P. F. Teilhet159 found A for which xn—Ayn = l by taking x=yn+1, or, 

when n is even, x = yn — 1. H. Brocard (pp. 116-7) found special solutions 
when n = 3, n = 5. T. Pepin (pp. 281-3) noted that we may apply to 
xn—Ayn the method of Lagrange in his Additions to Euler’s Algebra to 
find the minima of any homogeneous polynomial in x, y. 

W. L. A. Tafelmacher160 treated xZJry*—z2 and proved x6+t/6=26 to be 
impossible. 

H. Tarry161 mentioned a mechanical device of double-entry tables for 
solving indeterminate equations, in particular, xm-\-ym=zn. 

F. Lucas162 used Cauchy’s29 theorem to prove that, if x, y are relatively 
prime and m is an odd prime, when x-\-y is prime to m it is prime to 

Q=(xm+ym)l(x+y)) 

but when x+y is divisible by m, m(x+y) is prime to Q/m. From this he 
deduced Legendre’s formulas (1) and (3). 

Axel Thue163 noted that, if L, M, N are functions of x such that 
Ln—Mn=Nn for all values of x, where n>2, then aL=bM=cN, where 
a, b, c are constants. If An—Bn — Cn, then 

o? = 1. 

If pn—gn=rn, then x3—7/3=23(p§r)n for 

x=pZn-\-3p2nqn—6pnq2n-\-q3n, 

y — pZn~^p2nqn-\-3pnq2n-j-^n} z = Z(p2n~pnqn-\-q2n). 

E. Maillet164 considered, for a, 6, c, x} y, z integers not divisible by the 
odd prime X, the equation 

ax?+by*=csF. 

A necessary condition for solutions is that the congruence 

a+b7}xt=-c(a+(3rj)xt (mod Xm) 

have a solution 7? such that 0<t?<X, a+j^+O (mod X), where ac^=a, 
$c=b (mod X). This is applied to show that xXjryx=zx is impossible for 
X = 197, hence extending Legendre’s limit to X<223. By the method of 
Kummer it is shown that, if X is a prime > 3, 

xxt+ykt+zkt=0 

is impossible in complex integers, formed from a Xth root of unity, relatively 
prime by twos and prime to X, if Xt-1 is the highest power of X dividing the 

169 L’intermediaixe des math., 3, 1896, 116. 
180 Anales de la Universidad de Chile, 97, 1897, 63-80. 
181 Assoc. franQ. av. sc., 26, 1897,1, 177 (five lines). 
162 Bull. Soc. Math. France, 25, 1897, 33-35. Extract in Sphinx-Oedipe, 4, 1909, 190. 
163 Archiv for Math, og Natur., Kristiania, 19,1897, No. 4, pp. 9-15. 

Assoc. fran$. av. sc., 26, 1897, II, 156-168. 
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number of classes of these complex integers, and hence for a value of t 
exceeding a certain limit depending on X. He165 later proposed the problem 
that the last theorem be proved without the restriction that x, y, z are 
prime to X. 

I. P. Gram’s166 paper was not available for report. 
E. Maillet167 applied Rummer’s methods to xK+yx~czx, where X is a 

regular prime. The equation is impossible in integers if c — \. It is im¬ 
possible in real relatively prime integers not divisible by X if c~A\*y 
s=k\Jt~(3^l, /3 = 0 or 1, when A = 1 or rj1* • where n, • * r* are distinct 
primes +X, belonging to exponents fly •••,/*• modulo X such that 

I+...+Is^3 
in particular, HA-r\x, n+1 (mod X). For r a prime and b < X, the equation 
with c=rb is impossible in real integers if — 1+2X (mod X2), where 
t has at least one of the values 1, *-*,X — l; orif X=5, 7, 17, r*^4 (mod X2); 
or if X = 11, rb=5 or 47 (mod ll2); or if X=13, rh^17 (mod 132). Finally, 
x7+y7=cz7 is impossible in real integers for c a prime of one of the forms 
49A)±3, rb4, ±5, 6, —8, dt9, dblO, —15, dbl6, —22, ±23 or ±24. 

H. J. Woodall168 noted that xm+ym—l is divisible by xy if y = xm—l 
(jn even) or if x=2, y = 2W~*1 (m odd). 

T. R,. Bendz169 stated that xn+yn = zn has integral solutions if and only 
if a2=4/Sn+l has rational solutions [Euler8], as follows from 

He proved Abel’s16 formulas, also x+y^z (mod 3) and (p. 30) 

(x+y)n~xn—yn=0 (mod n3), 

when no one of x, y, z is divisible by n. 
F. Lindemann170 attempted to prove that xn~ynJrzn is impossible if 

n is an odd prime. He later (p. 495) recognized the error in the computa¬ 
tion, but stated that his work gives the first proof of Abel’s10 statement 
that if x, y, z are 4= 0 and relatively prime in pairs 

2x=pn+qn+rn, 2y = pn+qn—rn, 2 z = pn — qn+rn 

if no one of xy yy z is divisible by ny while, if z is divisible by n, 

2xy 2y=pn+qndbnn~1rnf 2z=pn — qn+nn~lrn. 

If x+y+z is divisible by nxy then, in (2), a=i3s-y=l (mod n*”1). 
D. Gambioli171 proved de Jonqui&res’117 theorems, and the fact that in 

xn+yn=zn (n> 1), z is composite if n has an odd factor, or if x and y arc 

m Congr&j interbat. des math., 1900, Paris, 1902, 426-7. ~~ 
1M Forhandlingar Skandinaviska Naturforskare, Gotheborg, 1898, 182. 
197 Comptes Rendus Paris, 129, 1899, 198-9. Proofs in Acta Math., 24, 1901, 247-256. 
188 Math. Quest. Educ. Times, 73, 1900, 67. 

1880fver diophantiska ekvationen xn-j-yn~zn, Diss., Upsala, 1901, 34 pp. 
170 Sitzungsber. Akad. Wiss. Mimchen (Math.), 31, 1901, 185-202. 
171 Periodic© di Mat., 16, 1901, 145-192. 
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composite; but erred in his proof that the least unknown is composite. 
Ho gave abstracts of the papers by Calzolari,72 Dirichlet,23 Kummer,63 and 
Legendre,17 a list (191-2) of references on Bemoullian numbers and ideal 
complex numbers, and (189-191) a short proof of the impossibility of 
x5+y*=z5. In an appendix (ibid., 17, 1902, 48-50) he quoted Kummer49 
and Liouville46 on the insufficiency of the proofs by Lam6,45 and Cauchy.54r_56 

Soons172 proved theorems stated by Catalan.90 
P. Stackel173 proved AbePs theorem as given by Lindemann.170 
G. Candido174 proved a theorem of Catalan.121 
* D. Gambioli’s175 paper was not available for report. 
P. Whitworth176 noted that if 21/a;=0, Xx = l, then Xxn=xn+yn+zn 

equals a series in xyz. 
P. V. Velmine177 (W. P. Welmin) proved that, if m, n, k are integers > 1, 

there exist rational integral functions u, v, w of a variable which satisfy 
um+vn=wk only for the cases umdtzv2=w2, u*+i?=w2, dzvt+tf^w2 (when 
the solution is easy), and u6+i?*=uP, the complicated formulas for whose 
solution are not proved to give all solutions. Cf. Korselt.282 

D. Mirimanoff178 studied P(x) =* (x+l)z—£z—1 where l is a prime >3. 
Since it is unaltered when a; is replaced by — 1— x, a root a of P(x) = 0 
implies the roots 

(9) a, 1/a, -l-a, — l/(l+a), —1 — 1/or, -a/(l+a), 

all of which are distinct unless a=0 or —1 or a2+a+l=0. Now P has 
the factors z(x+l) and x2+x+l. Set 

ix(x+i) (x2+x+iy’ 

where c=l if Z+l (mod 3), e=2 if Z=1 (mod 3). Then E(x) =0 has only 
distinct imaginary roots which fall into sets of six. Thus E(x) — Tlej(x), 
where each ej(x) is of the form x*+l+Z(x*+x)+t(x*+x2) + (2t—K>)x?, 
where t is real. If E(x) has a factor which is irreducible in the domain of 
rational numbers* the factor is a product of certain of the e3(x). 

A. S. Werebrusow179 denoted uP+uv—v1 by (u, v). Then x5-[ y5=Az° 
becomes 

(x+y)(x2—xy+y2, x2—2xy+y2)=Az5. 

This decomposes into two equations, one being the second factor equated 
to A\z\, the other being x+y^A&l, where AoAi — A, z^i=z, and zi is a 
product of primes 5n+l. Multiplying (u, v) by 1 = 92 — 5 - 42 and its powers, 

1W Mathesis, (3), 2, 1902, 109. 
17» Acta Math., 27, 1903, 125-8. 
174 La formula di Waring e sue notevoli applicazioni, Lecce, 1903, 20. 
178II Pitagora, 10,1903-4, 11-13, 41-43. 
17a Math. Quest. Educ. Times, (2), 4, 1903, 43. 
177 Mat. Sbomik (Math. Soc. Moscow), 24, 1903-4, 633-61, in answer to problem proposed 

by V. P. Ermakov, 20, 1898, 293-8. Cf. Jahrbuch Fortschritte Math., 29, 1898, 139; 
35, 1904, 217. 

178 Nouv. Ann. Math., (4), 3, 1903, 385-97. 
179 L'intermSdiaire des math., 11,1904, 95-96; Math. Soc. Moscow (Mat. Sbomik), 25,1905, 

466-473 (Russian). Cf. Jahrbuch Fortschritte Math., 36, 1905, 277-8. 
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we conclude that for each power we get six representations of a prime by 
(u, v); but only three representations of 5. A composite number has 2P 
representations if p is the number of its distinct prime factors 5ndbl. 

Take Zi=(a, b). We get u, v such that z\ = (u, v) by using 

(a, b)(or, r) = (a<r+&r, &a*+ar+6r). 
Then 
(10) £r—y)2 = vs+(u+v)t, (x+y)2~ (4:U-~v)$+ (v--3u)t. 

The product of the square root of the last sum by ($, t) gives Az\, so that 
we have the general form of A. Taking x+y arbitrary, we get x—y and 
then s, t by (10)-. 

Mirimanoff180 considered 
(11) xx+2/x+*x=0 

for the case in which no one of the integral solutions x} y, z is divisible 
by the odd prime X. By use of Rummer’s congruences (8), he proved 
that (11) is impossible in integers prime to X if at least one of the Bemoul- 
lian numbers* By-1} By-2, B^ is not divisible by X, where 

p = (X-l)/2; 

also, for every X<257. In terms of Rummer’s Pi(t) = P»( 1, t), he defined 
the polynomials 

(12) *,.«) = (1+0^0 = £ (-1 )«*«** (t*2, 3, • • •, X—1) 
*=l 

modulo X. Thus Rummer’s criterion (8) is equivalent to the following. 
If (11) has solutions prime to X, each of the six ratios t~xlyy • • •, zjx satisfies 
the congruences 

(13) <£x—1 (i)=0, P(x— — 0 (mod X) (t = 3, 5, • • •, X—2). 

An equivalent criterion not involving Bemoullian numbers is that each 
of the six ratios satisfies the congruences 

(14) 0x_i(O=O, 0x_i(O$<(Os0 (mod X) (i = 2, 3, • v). 

E. Maillet181 proved by Rummer’s methods that xa+ya = aza (a >2) has 
no real integral solutions + 0 if a is divisible by 4; or if a is even and divisible 
by a prime 4n+3; or if 2<a^l00, a+37, 59, 67, 74; or if a has no prime 
factor >17. Likewise for xa+ya=:baza if a is divisible by 4 and b is not; 
or if a is of the form 4n+2 and has a prime factor X = 4ft+3 such that b is 
not divisible by Xx_1; or if a=piJ b<p, p being a prime ^5 not exceptional in 
the sense of Rummer; or if a = 31, &=*2 or 4, 2. Probably the second 
equation is impossible in integers +0 if b = 1 or 2, a >2 or a >3, respectively. 

R. Sauer182 proved that xn = yn+zn, n>2, does not hold if x or y or z 
is a power of a prime. 

U. Bini183 noted that, if x+y+z = 0 and ft = 2m+l, s=xk+yk+zk is 
divisible by xyz. If l/s+l/2/+l/g = 0 and & = 3/i+2, s is divisible by 

180 Jour, fur Math., 128, 1905, 45-68. 
* If By-i or Bv-2 is not divisible by X, the conclusion was drawn by Rummer.78 
181 Annali di mat., (3), 12, 1906, 145-178. Abstracts in Comptes Rendus Paris, 140, 1905, 

1229; M&n. Acad. Sc. Inscr. Toulouse, (10), 5, 1905, 132-3. 
183 Eine polynomische VeraUgemeinerung des Fermatschen Satzes, Biss., Giessen, 1905. 



762 History of the Theory of Numbers. [Chap. XXYI 

x+y+z, and xnyn'+xnzn+ynzn is divisible by (xyz)z if n^5. Proofs184 
have been given of the first result and the fact that, if x+y+z = 0, $ is a 
function of xyz and xy+xz+yz. 

* G. Comacchia385 treated the congruence xn+yn^zn (mod p). 
P. A. MacMahon186 noted that the integral solutions of xn~ayn=z 

may be obtained by the development of alln into a continued fraction. 
F. Lindemann187 again170 proved Abel's formulas and, after treating at 

great length each of the three cases, concluded that Fermat's equation is 
impossible in integers. A. Fleck188 pointed out a serious error and various 
minor errors. I. I. Iwanov189 noted errors, also in Lindemann's170 first 
proof, where in (67) the modulus n6 should be ns. 

A. Bottari190 proved that if x, y, z are positive integers in arithmetical 
progression such that xn+yn=zn, then either n = l and x^y/2—z/Z or 
n=2 and x/3=y/4=z/5. If x, y, z, t are positive integers in arithmetical 
progression such that xn+yn+zn = tn, then n= 3, x/3=2//4==z/5 = £/6. Cf. 
Cattaneo.192 

J. Sommer191 omitted the restriction that n is a regular prime in stating 
that Kummer proved that xn+yn=zn, for n>2, is not solvable in complex 
integers based on an nth root of unity. He gave the proof for n=3 and 
n=4. 

P. Cattaneo192 gave a brief proof of the results of Bottari,190 but included 
the false solutionn=l,x =y/2=zj3 = tf4. 

A. S. Werebrusow193 failed in his proof of Fermat's last theorem, the 
error being indicated by L. E. Dickson and others (ibid., pp. 174-7). 

Werebrusow194 stated that (x+y+z)n—xn—yn—zn has, for n odd, the 
factor n(x+y) (x+z) (y+z). While this is true for n an odd prime, it fails 
for n=9, x~y=z~l (ibid., 16, 1909, 79-80). 

L. E. Dickson195 noted that, if a is a common root of the congruences 

(15) zm=l, (z+l)m=l (mod p) 

of Wendt,152 the numbers (9) are common roots and are distinct if 2m—1 
is not divisible by p. They are the roots of a sextic in z which is unaltered 
when z is replaced by 1/z or by —1—z. The sextic must divide zm—1 
modulo p. Set x-z+l/z, m~2p. The sextic becomes 

C(x) =£3+3a;2+j&c+2/3--5. 

From —l/zM=0 we get f(x2) =0, where /(w) is of degree §/x—1 or (/x —1)/2 

1W L'interm^diaire dea math., 13, 1906, 142; 14, 1907, 22-23, 36-39, 92-95, 258. 
1M Sulla Congruenza xn+yn=zn (mod p), Tempio (Tortu), 1907, 18 pp. 
186 Proc. London Math. Soc., (2), 5, 1907, 45-58. For z — =fcl, G. Cornacchia, Rivista di 

fisica, mat. sc. nat., Pavia, 8, II, 1907, 221-230. 
187 Sitzungsber. Akad. Wiss. Miinchen (Math.), 37, 1907, 287-352. 
188 Archiv Math. Phys., (3), 15, 1909, 108-111. 
189 Kagana Bote, 1910, No. 507, 69-70. 
190 Periodico di Mat., 22,1907, 156-168. 
191 Vorlesungen fiber Zahlentheorie, 1907, 184. Revised French ed. by A. IAvy, 1911, 192. 
198 Periodico di Mat., 23, 1908, 219-20. 
198 L’mterm&liaire des math., 15, 1908, 79-81. 
194 IMd., p. 125. Case n=3, in Education math., 1889, p. 16. 
lfil XiT^lL ZO\ OO 1AAO i A Oft 
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according as p is even or odd. Thus f(x2) must be divisible by 

8(x) = C(x) C(-x) = x«+(2(3-9)x*+ (p2 - 12p+3Q)x2 - (2p - 5)2. 

Hence ju^7. For p = 7, f(x2) =xe—5x4+6x2—l must be congruent to S(x)} 
whence p=2. For ju = 8, f(x2) —x6—6a;4+10a;2—4, whence p = 17, contrary 
to n> 1. The cases /x = 10, 11, 13 are readily treated. The conclusion is 
that, if n and p = mn+1 are odd primes, m being prime to 3 and m^26, 
the congruence Jn+i?n+fn=0 (mod p) has no integral solutions each 
prime to p, except for n== 3, m = 10, 14, 20, 22, 26; n=5, m=26; 71=31, 
m=22. A direct examination of (15) was made for m=28, 32, 40, 56,.64. 
By use of these results and the theorem of S. Germain,17 it was shown that 
Fermat’s equation is impossible in integers prime to n for every odd prime 
exponent ft <1700. 

Dickson196 proved the last theorem for n<7000 by extending the range 
of the m’s to include all values <74, as well as 76 and 128. 

Dickson197 factored certain numbers mw—1 for use in the last paper. 
Dickson198 discussed the following problem: Given an odd prime n, to 

find the odd prime moduli p for which zn+2/n+zns=0 (mod p) has no solu¬ 
tions each prime to p. We may take p=mn+1, where m is not divisible 
by 3, since otherwise such solutions are evident. The general results are 
applied to the cases n=3, 5, 7. For n = 3, the only values of p are 7 and 13 
[cf. Pepin109]. For n = 5, p = ll, 41, 71, 101 [verified up to 1000 by 
Legendre17]. For n = 7, p = 29, 71, 113, 491. 

Dickson199 proved, by use of Jacobi’s functions of roots of unity, that 
if e and p are odd primes such that 

pi=(e~l)2(e-2)2+6e-2, 

then xe+ye+ze=0 (mod p) has integral solutions x, y, z, each prime to p. 
In particular this establishes the conjecture by Libri.24 Also, x*+y*=z4 
(mod p) has solutions prime to p for every prime p=4/+l exceeding 17 
[and different200 from 41]. 

P. Wolfskehl201 bequeathed to the K. Gesellschaft der Wissenschaften 
zu Gottingen one hundred thousand marks to be offered as a prize for 
a complete proof of Fermat’s last theorem. It may be noted that 
Wolfskehl202 was the author of a paper on the related subject of the class 
number for complex numbers formed of eleventh or thirteenth roots of unity. 

198 Quar. Jour. Math., 40, 1908, 27-45. The omitted value n=6857 was later shown in MS. 
to 1)0 excluded 

197 Amer. Math. Monthly, 15, 1908, 217-222. See p. 370 of Vol. I of this History; also, A. 
Cunningham, Messenger of Math., 45, 1915, 49-75. 

198 Jour, fur Math., 135, 1909, 134^141. 
199 Ibid., 135, 1909, 181-8. Cf. Pellet,128- Hurwitz,213 Cornacchia,317 and Schur.283 
200 On p. 188, line 11, it is stated that for / even and <14, p=4f+1 is a prime only when 

/=4, p = 17, thus overlooking/=10, p=41. The fact that ar44-^=1 (mod 41) has no 
solutions each prime to 41 was communicated to the author by A. L. Dixon. 

201 Gottingen Nachrichten, 1908, Geschaftliche Mitt., 103. Cf. Jahresbericht d. Deutschen 
Math.-Vereinigung, 17, 1908, Mitteilungen u. Nachrichten, 111-3. Fermat’s Oeuvres, 
IV, 166. Math. Annalen, 66, 1909, 143. 

202 Jour, fur Math., 99, 1886, 173-8. 
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No mention will be made here of numerous203 recent false proofs204 of 
Fermat's last theorem, published mostly as pamphlets. Errors in some 
of these have been noted by A. Fleck,205 B. Lind241 (p. 48), J. Neuberg,206 and 
D. Mirimanoff.207 

E. Schonbaum208 gave a historical introduction to and exposition of the 
elements of the theory of algebraic numbers; also Hummer's proof, in 
simplified form, of Fermat's last theorem for the case of regular primes. 

* A. Turtschaninov209 proved and slightly generalized Abel's16 theorem 
* F. Ferrari210 discussed the infinitude of solutions of each of 

xndtyn=zn+1, x2n+1d=2/2n+1=22«. 

A. Thue211 stated that there are no [not an infinite number of] integral solu¬ 
tions of any of the equations, with n>2, h and k given positive integers, 

xn+(x+k)n=yn, x2—h2 = kyn, (x+h)z+xz=kyn, (x+h)i—xi=ky\ 

These results are consequences of the theorem (pp. 27-30) that, if r>2 
and a, i>, c are any positive integers, c 4=0, there is not an infinitude of pairs 
of positive integral solutions p, q of bpr—aqr — c. 

A. Hurwitz212 proved that, if m and n are positive integers not both 
even, xmyn+ymzn+zmxn = 0 has integral solutions 4=0 if and only if 

has such solutions, where iNm2-mn+n2. Cf. Bounia- 
kowsky,149 Ch. XXIII. 

Hurwitz,213 after citing Dickson's199 proof by cyclotomy, gave an ele¬ 
mentary, but long, proof that, if a, b, c are integers +0 and e is an odd prime, 

axeJrbyeJrCze=Q (mod p) 

has A sets of solutions x, y, z each not divisible by the prime p, where 

>p+l — (e — 1) (e—2) Vp —0? = 0, lor 3). 
p-1 

Hence A >0 when p exceeds a limit depending on e. 
A. Wieferich214 proved that if xp+yp+zp — 0 is possible in integers 

prime to p, where p is an odd prime, then 2P~1 — 1 is divisible by p2. He 
deduced this criterion from the conditions (13) derived by Mirimanoff180 

203 According to W. Lietzmann, Der Pythagoreische Lehrsatz, mit einem Ausblick auf das 
Fermatsche Problem, Leipzig, 1912, 63, more than a thousand false proofs were published 
during the first three years after the announcement of the large prize. 

204 Titles in Jahrbuch Fortschritte Math., 39, 1908, 261-2; 40, 1909, 258-261; 41, 1910, 248- 
250; 42, 1911, 237-9; 43, 1912, 254, 274-7; 44, 1913, 248-50. 

206 Archiv. Math. Phys., (3), 14, 1909, 284-6, 370-3; 15, 1909, 108-111; 16, 1910, 105-9, 
372-5; 17, 1911, 108-9, 370-4; 18, 1911, 105-9, 204-6; 25, 1916-7, 267-8. 

208 Mathesis, (3), 8,1908, 243. 
207 Comptes Rendus Paris, 157,1913, 491; error of E. Fabry, 156,1913, 1814-6. L’enseigne- 

ment math., 11, 1909,126-9. 
208 Casopis, Prag, 37, 1908, 384-506 (Bohemian). 
209 Spaczinsld Bote, 1908, No. 454, 194-200 (Russian). 
210 Suppl. al Periodico di Mat., 11, 1908, 40-2. 
2U Skrifter Videnskabs-Selskabet Christiania (Math.), 1908, No. 3, p. 33. 
212 Math. Annalen, 65,1908, 428-30. Case m -=2, n = 1 by Euler9 and Vandiver,"6 Ch. XXI. 

Jour, fur Math., 136, 1909, 272-292. 
214 Ibid., 293-302. For outline of proof, see Dickson,288 182-3. 
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from Kummer’s criterion. Shorter proofs have since been given by 
Mirimanoff223 and Frobenius.228 

P. Mulder215 noted that if n is an odd prime and an+bn is divisible by n, 
it is divisible by n2. Proof as by Kummer.25 

Chr. Pies216 argued that a2n+62n = c2n (n>l) is impossible in integers 
by considering the two factors of a2n whose difference is 2bn} but assumed 
that every prime factor of 2bn divides b. 

G. Comacchia217 employed the theory of roots of unity to investigate 
the number of sets of solutions of xn+yn^l (mod p), where p is a prime 
of the form nk+1. There are proper solutions for n=3 if p#7, 13; for 
n=4, if p+5, 13, 17, 41; forn=6, if p#7, 13,19, 43, 61, 97, 157, 277; for 
n=8, if , #17,41,113; for n any odd prime if p> (n—2)2n(n—l)+2(n+3). 
For p a prime nh+1, xn+yn+zn=0 (mod p) has proper solutions for n== 4 
if p*5, 17, 29, 41 [Gegenbauer126]; for n«6, if p*13, 61, 97, 157, 277, 
31, 223, 7, 67, 79, 139; forn=8 if p#l7, 41, 113, 89, 233, 137, 761. He 
proved a theorem like that of Dickson,199 but with a limit 

p>(e-2)2e(e-l)+2(e+3) 

which is larger than Dickson’s if e>3. 
A. Flechsenhaar218 considered, for n a prime > 3, 

(16) xn+yn—zn=0 (mod n2) 

for x, y, z prime to n. We may set x<nf y<n, x+y=z. Multiply (16) 
by pi and pi in turn, where piasl, p2t/=1 (mod n). Hence the solvability 
of (16) implies that of 

(17) l+6n — (b+l)n=0, cn+l —(c+l)wseO (mod n2), 

where b=p2x, cs p^, whence bc=1 (mod n). These conditions continue to 
hold after b is replaced by b—n, and c by c—n. We get 

l+(n—t— l)n— (n—f)n5=0, t—bovc. 

Since these have the form of (17), it is stated that (n—6—1) (n—c—1)^1, 
whence 6+c+l=0 (mod n), by a false analogy, as no proof had been given 
that, for every pair of solutions 6, c of (17), we have 6cs=l. 

Admitting 6+c+l=0, bc^=l, 6#c, we have n=6m+l. Solutions b, c 
then exist and are tabulated for n a prime ^307. But (p. 274) for n a 
prime 6m—1, (16) has no solutions prime to n. 

J. Nemeth219 noted that xk+yk=zk, xl+yl=zl have no common sets of 
positive solutions if k,l are distinct positive integers. 

J. Kleiber220 stated that if n is an odd prime, x, y, z are relatively prime, 
and y, z not divisible by n, xn+yn=zn implies that 

z+cfy=(P+€^)B ({=0, 1, • • •, n 1; €n = l), 

which readily give y—0. But he had assumed that the laws of factorization 
of integers hold for numbers involving €, had not specified the kind of 

816 Wiskundige Opgaven, Amsterdam, 10, 1909, 273-4. 
Math. Naturw. Blatter, 6, 1909, 61-3. 

117 Gioraale di mat., 47, 1909, 219-268. See Comacchia188 and the references under Libri.*4 
n* Zeitschr. Math. Naturw. Unterricht, 40,1909, 265-275. 

Math. 4s Phys. Lapok, Budapest, 18, 1909, 229-230 (Hungarian), 
“° Zeitsch. Math. Naturw. Unterricht, 40,1909, 45-47. 
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quantity whose Tith power is x+ey, and in giving the quantity the notation 
p+eq had not specified the nature of p and q. 

Welsch221 repeated a proof due to Catalan.121 
D. Mirimanoff222 considered the relation of F=xl-\-yl-\-zl = 0 to cubic 

congruences. Let x} y, z be the roots of tz — SiZ2+s2Z—§3=0. Thus 
F=<j>(s1} s2, S3), where <£isa polynomial of degree l with integral coefficients. 
We have Si^O (mod Z). Let x, y} z be prime to Z. By Legendre,17 s{~F 
is divisible by l(x+y) (x+z) (y+z) — Z(sis2—s3); call the quotient P(sh s2, s3). 
Since SiS2-$z is prime to Z, and since is divisible by ll, F=0 gives 
P( 0, s2, s3)=0 (mod Z). Hence if F=0 has solutions prime to Z, 

Z3+s2Z—s3==0 (mod Z), 

subject to Ps0, has three roots. For Z=3, then P=1 and F=0 is im¬ 
possible in integers prime to Z = 3. For Z=5, P= —s2; but if $2^0, the 
discriminant of the cubic congruence is —27si, a quadratic non-residue of Z, 
so that it does not have three roots. The same argument applies to Z = ll. 
For Z=17, the discriminant is a residue and there are three roots or no root; 
the first case is excluded by the fourth criterion of Cailler (ibid., 10, 1908, 
4$6; see p. 255 of Vol. I of this History) for cubic congruences. The method 
fails for Z=3m+1, since we may now have s2=0. 

Mirimanoff223 employed Euler's expression for 1—2P”2+3J>“2-dtyp~2 
as a polynomial in y to obtain a short proof of the final congruence used 
by Wieferich to prove his criterion that 2p~1~ 1 (mod p2). 

B. Lind224 proved that x2+yz=z6 is impossible in integers. If xn+yn=zn 
is impossible, so are Z2n—X2 =4Yn and s(2$+l) = Z2n. The last equation 
implies $=Zf, 2s+l = f2n, tit2 = t, whence t2—1 *2(#)n, a case of Liouville's32 
equation. For a simpler proof, see Kempner.281 

J. Westlund225 noted that, if n is an odd prime, 

xn+yn=(x+y-y)n+yn=(x+y)n-n(x+y)n~1y-]- 

is divisible by n2 if by n. Hence xn+yn=nzn is impossible if z is prime to n. 
It. D. Carmichael226 proved that, if p and q are primes, pm—qn=l 

only for m=l, q=2, p = 2n-fl; m=g = 2, n = p = 3; n=l, p = 2, q-2m—l. 
A. Fleck227 distinguished cases A and B according as none or one (say x) 

of the integral solutions + 0 of xp+yp+zp=0 is divisible by the odd prime p. 
Set $=aH-y-fz. Then 

(A) y+z=ap, z+x = bp, x+y = cp, s=—abcpzGM, 
(B) y+z=p2p~1ap, z+x = bp, x+y = cp, $= ~abcp2GM. 

He considered the six quantities 

y2+yz+ z2 = GJ, x2~yz = GJh 
z2+zx+x2=GK, y2—zx = GKh 
x2+xy+y2=GL, z2—xy = GLly_ 

m I/interm&liaire des math., 16, 1909, 14-15. 
m L’enseignement math., 11, 1909, 49-51. 
*** Ibid., 11, 1909, 455-9. Summary by Dickson,*88 p. 183. 
m Archiv Math. Phys., (3), 15, 1909, 368-9. 
m Amer. Math. Monthly, 16, 1909, 3-4. 
** Ibid., 38-9. Special cases by G. B. M. Zerr, 15, 1908, 237. See Gerono.” 
m Sitzungsber. Berlin Math. Gesell., 8, 1909, 133-148, with Archiv Math. Phys., 15, 1909. 



Chap. XXVI] Fermat’s Last Theorem. 767 

and proved that (i) s has no factor other than a divisor of G in common 
with one of these six expressions; (ii) any two of the six have no common 
factor other than a divisor of G, so that J, * • *, Li are relatively prime in 
pairs; (iii) J, • • •, Li are products of primes of the form 6p.p •+■1; (iv) 
xzP==yZv == 23j) (mod GJKLJ iK1L1). 

G. Frobenius228 gave a simple proof of the criterion of Wieferich,214 
using Mirimanoff’s180 formulation of Kummer’s criterion to show that 

r, 8=0 

is congruent modulo X, for every 0, dbl, to both 

c — 4>p— i(l), t .c) 

whence c=0 (mod X), so that 2X_1 = 1 (mod X2). 
A. G^rardin229 gave a brief history and extensive bibliography of the 

subject. He conjectured that Fermat’s last theorem could be proved by 

showing that the difference or the sum of two nth powers (a > 2) is always 
comprised between two consecutive nth powers. 

P. Bachmann230 gave an account of results obtained by elementary 
methods, chiefly those by Abel,16 Legendre,17 Wendt,,162 and Dickson.m w 
The remark (p. 461) that all primes < 100 are regular was corrected on 
p. 480. 

H. Stockhaus231 gave a lengthy exposition of known methods for expo¬ 
nents 3, 5, 7, with suggestions of doubtful value on the general ease. 

* K. Rychlik232 gave a proof for exponents 3, 4, 5. 
* Ed. Barbette233 proved some inequalities. 
F. Bernstein234 proved Fermat’s theorem under assumptions milder 

than those of Hummer.76 The second case (that in which one of the three 
numbers is divisible by the prime exponent l) is proved by means of the 
assumption that the class number of the field k(Z) of the Pth roots of unity 

is divisible by Z, but not by Z2; and again by means of the assumption that 
k{Z) contains no class belonging to the exponent l\ while the class mimln-r of 
W+r1) is prime to Z, where fz = l. The first ease (that in which the 
three numbers are prime to Z) is proved from the assumptions (i) that tin* 
second factor h2 of the class number of Zc(f) is divisible by /, and (ii) if la 
the highest power of Z dividing h2, then in the 44 TdiklasHeitkoiiH‘rM of the 
Znh degree every ideal of &(f), whose Zth power is a principal ideal in k( ‘f), 
is itself a principal ideal. [See Vandiver’s296 criticisms.] 

*«Sit^g8ber. Akad. Wias. Berlin, 1909, 1222-4. Reprints in Jour, ftir Math., tar, \\M 

228Historique du dernier thdordme de Fermat, TouIouho, 1910, 12 pp. Kxirm-f m Km*** 

“■ «*— - ... & *.. 
“Beitrag zum Beweis des Fermatschen Satzca, Leipzig, KUO. W im 
“Caaopuj, Prag, 39, 1910, 65-86, 185-195, 305-317 (Bohemia,,). 

dernier th4or6me de Fermat, Paris, 1910, 19 pp. 
*** Gottingen Nachrichten, 1910, 482-488, 507-516, 
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Ph. Furtwangler235 proved, in extension of Hummer's76 work, that if 
ck1+/3z+'vz==0, where a, ft y are numbers, prime to L = (f—1), of the field 
&(?), fI==l, and if a=a, 0=5, y^c (mod L), where a, b, c are rational, and 
if k(f) contains no ideal belonging* to the exponent 2/-f 1 modulo L, then, 
if x, y are any two of a, ft c, 

r d2/+1 log (s+ep2/) 1 ^ 

J»«=o L d^+l 
=0 (mod Z). 

By Mirimanoff,180 this congruence can not hold when j=1, 2, 3 or 4. Hence 
if Jc(t) does not contain ideals belonging to each of the exponents 3, 5, 7,11, 
Fermat's equation is impossible in numbers prime to Z in &(f). The same 
conclusion holds if the class number H is at most divisible by Z3. 

E. Hecke238 proved that xl+yl+zl-0 is impossible in integers z, y, z, 
each not divisible by the odd prime Z, if the first factor hi of the class number 
H of the field defined by an Zth root of unity is divisible by Z, but not by Z2. 

D. Mirimanoff,237 making use of his180 criterion, proved that if 
xp+yp+zp —0 has solutions prime to p, each of the six ratios xjy, ♦ • • is a 
root t of 

where <*i, • • •, a^i are the roots +1 of zm=l. For ra=2 or 3, at least two 
of the six ratios are incongruent, so that our congruence, being of degree 
<2, is an identity; taking t= — 1 and applying 

Ri 

V i=i 1 - ’CLi 
(mod p), 

we get q(m) =0. Besides Wieferich's q(2) =0, we have q(3) =0. Thus the 
initial equation is impossible in integers prime to p for all prime exponents 
p such that either q(2) or q(3) is not divisible by p; in particular, for all 
prime exponents of the form 2a3&±l or ±2a±36. 

G. Frobenius238 proved the last two criteria and deduced (13) from (8) 
more simply than had Mirimanoff.180 Set 62n = (—•l)n~1i?n, 62n+1=Q, 
51= —^ so that the Bemoullian numbers are given symbolically by 
(&+l)tt—&tt=0 (n>l). Set 

F(z, y)=T,(y) (x-iy, 
reO \r / 

10*—y), 

mxGm(x)=G(x, mb)—G(0, mb) 

mF{x) =Fix, — (F(0, mb) —mpq}(x—l)p~1. 

♦An ideal Q, prime to L = (f—1), is said to belong to the exponent n modulo L if Ql is a 
principal ideal (*) such that <sri (mod Ln), while there exists no unit 17 in the field fc(f) 
such that i}K=r* (mod LnH), where rr and r% are rational numbers. 

iU Gottingen Nachrichten, 1910, 554-562. 
2M Ibid.t 420-4. 
m Comptes Rendus Paris, 150,1910, 204-6. Reproduced.246 
288 Sitzungsber. Akad. Wiss. Berlin, i910, 200-8. 
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Then 

F(*)(*«-l)+!g ^~-=(z—l)pzGm(x), 

from which the results of the paper follow. The six ratios of the three 
solutions prime to p of Fermat's equation satisfy the congruence Gm(:r) = 0 
(mod p) of degree m-2. Hence, if m=2 or 3, Gm vanishes identically. 
But (rm(l) = (1 -'7np~1)jp. 

A. Fleck239 proved, as an extension of his227 theorem (iii), that the 
prime factors of Jh Ku Li are of the form 6pp2+l. Hence /, • • •, Lx are all 
of the form 6pp2+1. For any prime factor j of the form 6jup-f 1 of J, 

(&)<*== 1 (mod j), where t=1 in case A, t=p in case B. A like 
result is said to hold for the prime factors of K or L. 

E. Dubouis240 defined, in honor of Sophie Germain, a “ sophien '' of a 
prime n to be a prime 0, necessarily of the form kn+1, for which xn^yn+1 
(mod 6) is impossible in integers prime to 0. He stated that Pepin109 
proved that the sophiens of n are finite in number, whereas Pepin proved 
this only for n== 3. If the resultant of a* = l, (a+l)fc = l is not divisible 
by 0, then 6 is a sophien of n [Wendt152]. 

B. Lind241 gave an exposition of various papers dealing with Fermat's 
last theorem without the use of complex integers or ideals, but unfortunately 
interpolated careless remarks of his own. Of the results claimed by Lind 
to be novel, equations (19)-(26) are correct, but long known, while (27) 
is not proved, viz., that x+y—z^Q (mod 9) if xn+yn=zn, it being proved 
only for modulus 3. This error gave rise to later errors in his inequalities 
(p. 32) and his equations (95), (1066). His attempt (pp. 61-5) to prove by 
use of congruences Fermat's last theorem contains several serious errors 
besides the dependence on (27). The bibliography is quite extensive. 

J. Joffroy242 noted that, if F=z37+?/37—237 = 0 for integers x<y<z, then 
z>P-fl = 1919191. For, xZ7—x=Pm, P = 2-3-5-7-13-19-37; so that 

FJrPm1=x-\-y—z, mi>0. 

T. Hayashi243 proved that if, for n an odd prime, xn+yn=nzn> or if 
xn+yn=zn for z divisible by n, then 60+&H-L6«^0 (mod n2), where 
8=(n—1)/2, and the 6's are the coefficients of the polynomial Y satisfying 
the identity 

4|zr =Y2-(-iynZ\ 

where 
_60^'+61^1+ •••+&., Z=c^l+---+c,-1,_ 

m Sitzungsber. Berlin Math. Gesell., 9, 1910, 50-3 (with Archiv Math. Phys., 16, 1910). 
840 L’interm^diaire des math., 17,1910, 103-4. 
ia Abh. Geschichte Math. Wise., 26, II, 1910, 23-65. Reviewed adversely by A. Fleck, 

Archiv Math. Phys., (3), 16, 1910, 107-9; 18, 1911, 107-8. 
“Nouv. Ann. Math., (4), 11, 1911, 282-3. Reproduced, Oeuvres de Fermat, IV, 165-6. 
448 Jour. Indian Math. Soc., Madras, 3, 1911, 16-22; 111-4. Same in Science Reports of 

T6hoku University, 1, 1913, 43-50, 51-54. 
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while 
v = hy* - & i -b (■-1) ■8 bsX*, 

x^Coxy^-CixZy*-2-]-K —l)*”1 <V-iZ* 

are such that n2— ( — l)an(a:f)2 has as divisors only 2 and numbers of the 
form r2— (—l)ant2. The initial equations are both impossible if n — 5 or 13. 

A. E. Pellet244 considered for a prime p — hn+1, having gr as a primitive 
root, the number hN3 of times that 

gin+gjn+gkn=0 (mod p) (i, j, k = 0, 1, • • fc-1). 

By use of the equation for the n periods of the pth roots of unity it is shown 
that pN3 has the limits A2db V(p-A)3, whence [error245] the inferior limit 
is positive if h>mjn. Hence in that case, zn-f*2/n+l=0 (mod p) has 
solutions prime to p. Cf. Xibri.24 

D. Mirimanoff246 reproduced his237 paper and used his first formula to 
obtain results concerning q(5) and q(7). Also he proved that 4>p-i(t) is 
divisible by p not only when t is one of the six ratios T = x/y, • • •, but also 
for t= —r and t= — r2. Finally, he proved Sylvester's formula for q(m) 
[Vol. I, Ch. IV of this History]. 

A. Thue247 proved that, if n is a prime >3, and e is an imaginary Tith 
root of unity, and each jB* is an integer numerically ^K> 0, 

I Bd+b„+ ■ ■ • I 

if not every £» =0. 

1 {(2n-3)K}^l2t 

Next, for R an integer, let PQ~Rn} where 

P= E Q = 2S,6‘, I A,-1 &s, | Bi I3T. 
i=0 

Then for a suitably chosen k and integers /;, gt such that 

|/<|<2{fc[(2n-3)rj/»+l}, |^|<2{i[(2»-3)S^+l}, 

we have P/R — —B/A, where A = 2/^*, jB = 20xe\ It is stated that applica¬ 
tion can be made to Fermat's equation 

an—cn—bn = IL(c—€*&). 

If an+&n=cn for relatively prime integers (p. 15), we can find positive 
integers p, q, r, each < V3c, such that paJrqb=rc. Hence 

(ar) n+ (hr)n = {pa+qb)n, 

whence qn—rn is divisible by a. 
Thue248 proved that if yn=xn4-1, n>3, the most general solution of 

An+Bn=(c0+c1yA-bcn-i2/n“1)n, 

where A, B and each c are integral functions of xy is 

fn+(fx)n=(fy)n 

where / is an arbitrary integral function of x. 

2M L’interm6diaire des math., 18, 1911, 81-2. 
a45 This deduction fails if n—5, h=20. 

Jour, fur Math., 139, 1911, 309-324. 
u7 Skrifter Videnskapsselskapet I Kristiania (Math.), 1, 1911, No. 4. 

Jbid., 2,1911, No. 12, 13 pp. For his paper, ibid., No. 20, see178 Ch. XXIII. 
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* D. N. Ranucci wrote a pamphlet, Risoluzione deU’equazione 

xn—Ayn = ±1, 

con una nuova dimostrazione dell’ ultimo teorema di Fermat, Roma, 
1911, 23 pp. 

F. Mercier2480 noted that we may take x<y<z if n>l, whence 

xn~zn—yn = (z—y) {zn~l+yzn~2 + • • •)>(z—y) nyn~l > nyn~l, 

nix< {xjy)n~l<1, n<x. This lemma, instead of helping him to prove Fer¬ 
mat’s last theorem, led him to commit the error of saying that 3n-{-yn = zn 
is solvable when n is any integer > 1 because it is solvable when n — 2. 

Ph. Furtwangler249 proved by use of Eisenstein’s law of reciprocity for 
residues of Zth powers, where l is an odd prime, that every integral divisor 
r of Xi satisfies 
(18) rMsl (modZ2) 

if xh x2, xz are relatively prime solutions 4=0 of a;j!+a;j[+:rl = 0 and x{ is 
prime to Z. Since one of the x’s is divisible by 2, we have the criterion 
of Wieferich. Next, every factor r of x{±:xk satisfies (18) if x{+xk and 
Xi~Xk are prime to Z. Since one of the x’s is divisible by 3 unless all three 
are congruent modulo 3, it follows from the two theorems that, if the x’s 
are all prime to Z, (18) holds for r = 3, which is the criterion of Mirimanoff. 

S. Bohnicek250 proved that integral numbers of the domain of the 2nth 
roots of unity do not satisfy Fermat’s equation with the exponent 2n~1, 
n>2. 

H. Berliner251 considered xp = yp~\~zp for x, y, z not divisible by the prime 
p>2. In Abel’s formulas 2x = ap+63}+cp, •••, we may take a>b>c. 
Then a = 6+c=h2fcep, where 2k is the highest power of 2 dividing abc, while 
ep is an odd multiple of 3. For every p, a<3(6+c); for p^5, a<36; for 
p^31, a<31/5(6+c); for p^37, a<32/96. If pS5, 6>3p; if p^37, 
6>6p+l. 

L. Carlini252 proved that xn+yn = zn (n>2) is not satisfied by three binary 
forms in uy v, identically in the variables u, v. Hence a like result holds 
for polynomials in one or more variables. 

J. Plemelj253 proved x?+y5-\-z5=0 impossible in R( V5) more simply than 
had Dirichlet.20 

* B. Bernstein254 gave some properties of numbers satisfying a;n+2/n = zn. 
The latter is proved impossible under certain assumptions on x, y, z. 

R. D. Carmichael255 proved that, if xp+yp+zp = 0 has integral solutions 
each not divisible by the odd prime p, there exists a positive integer 
s< (p —1)/2 such that 

(s+I^hs^+I (mod p3). 

8480 M6m. Soc. Nat. Sc. Nat. et Math, de Cherbourg, 38, 1911-12, 729-44. Cf. Granert.73 
849 Sitzungs. Akad. Wiss. Wien (Math.), 121, Ila, 1912, 589-592. 
840 Ibid., 727-742. 
851 Archiv Math. Phys., (3), 19, 1912, 60-3. 
858 Periodico di Mat., 27, 1912, 83-8. 
888 Monatshefte Math. Phys., 23, 1912, 305-8. 
854 Math. Unterr., 1912, No. 3, 111-5; No. 4, 150-1 (Russian). 
866 Bull. Amer. Math. Soc., 19, 1912-3, 233-6. 
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We may (pp. 402-3) replace this condition by the simpler one264 

(s+l)ps5P+l (mod p3), 

as noted by G. D. Birkhoff. The test fails for p = 6n+l since the con¬ 
gruence has a root. He255° stated that x*+y6 =f= □ • 

N. AUiston266 noted that xr+yr=zm has integral solutions if r, m are 
relatively prime positive integers. R. Nome (pp. 33-4) treated the same 
problem. 

R. Niewiadomski257 considered dn-zn—zn—yn. If d» = 0 for n an odd 
prime, then d2n+i is divisible by (x+y)(z—z)(z—y). He gave linear rela¬ 
tions between dn+1, dn, dn-i and expressions for dn when di^O (mod nk) 
and when d2 = 0. G. M6trod (pp. 215-6) treated the latter case. 

E. Landau268 noted that the assumptions 

xp-'—yv-1—! (mod p2), x+y=mp, 

where p is an odd number > 1 not dividing m, lead to a contradiction. In 
fact, 

l~xv~1^(mp--y)p~'1^-~(p~-l)mpyp~2+l (mod p2) 

requires that p divide (p—Vjmy*"2 and hence also m. 
E. Miot259 gave a false expression for the g.c.d. of 2*—1, 3Z—1. 
H. Kapferer280 proved Fermat's theorem for the exponents 6 and 10 by 

showing by descent that t2= (z2dby2)2—(yz)2 is impossible. 
H. C. Pocklington281 noted that x2n+y2n=z2 is impossible for all values 

of n for which xn+yn=zn is impossible. For, if the former has solutions, 
it has solutions with x prime to y and with y even. Thus xn-u2—p2, 
yn=2uv. Hence u+v=an, u—v—fin and uy v equal 2n~lyny 8n in some 
order. Thus an±/3n = (2-y)n. 

J. E. Rowe282 proved that if xn+yn=zn, where x, y, n are odd, then x+y 
is divisible by 2n [evident since the quotient of xn+yn by x+y is composed 
of n terms and hence is odd]. From this main theorem II' we obtain his 
theorem V by changing the sign of y. 

Ph. Maennchen263 reported on the history of the theorem. Several 
(p. 294) proved that 2n+l is an exact power only for 28+l=32. 

W. Meissner264 proved that xp+yp=zp is impossible in integers not 
divisible by the odd prime p if there exists no integer v<p for which 

(v+l)J,~tPssl (mod p3), 1 (mod p) 

[cf. Carmichael265]; also if p=3*2m±l or 3*±2m; also if p, but not p2, is a 

*»° Bull. Amer. Math. Soc., 20, 1913, 80. ~~~ 
**« Math. Quest. Educ. Times, new series, 23, 1913, 17-18. 
m I/interm&liaire des math., 20, 1913, 76, 98-100. 
™Ibid., 206. 
«<* Ibid., 112. Error noted pp. 183-4, 228. 
M0 Archiv Math. PhyB., (3), 21, 1913, 143-6. 
961 Proc, Cambridge Phil. Soc., 17, 1913, 119-120. 
m Johns Hopkins University Circular, July, 1913, No. 7, 35-40,* abstract in Bull. Amer. 

Math. Soc., 20, 1913, 68-69. 
** Zeitschr. Math. Naturw. Unterricht, 45, 1914, 81-93. 
*•* Sitzungsber. Berlin Math. Gesell., 13,1914,101-104. See Vol. I, Ch. IV,39 of this History. 
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divisor of a number of one of these four forms; and if p2 divides one of the 
four forms, provided k and m are divisible by p. 

The congruence 5X+7V+11*==0 (mod 13) was solved by several writers.265 
T. Suzuki266 found the 12 sets of solutions of 5*-f 8*4-11*^=0 (mod 13). 
L. Aubry267 noted that, if m is prime to n, xm+ym—zn has the solution 

x = Aua, y — Aub, z — Av} where nv—mu = l, am+bm=A. For m = 3, n=2, 
he gave a solution involving two parameters. 

A. G6rardin267° gave integral solutions of xz—y2~zn for 2^n^8. 
H. S. Vandiver268 wrote q(r) for (rp”1—l)/p and proved that if 

xp+yp+zp = ® 

is satisfied by integers not divisible by the prime p, then 

Q(S)(f—l)(t+2)(t+i)=0 (mod p) 

is satisfied by each of the six values t-xfy, • • *, z/y, and either g(2)s=0 
(mod p3), g(3)=0 (mod p), or else g(2) =g(3)=g(5)=0 (mod p) and, if 
p=2 (mod 3), g(7)=0 (mod p). 

E. Swift269 proved that neither of x6zty6 is a square. 
H. S. Vandiver270 proved that if xp+yp+zp = 0 is satisfied in integers 

prime to p, then g(5) = 0 (mod p) and 1 + 1+-bl/Dp/5] = 0 
(mod p). 

G. Frobenius271 proved that, if Fermat's equation has integral solutions 
each prime to the prime exponent p, then q(m) is divisible by p for ra=ll 
and m=17, and, in case p=5 (mod 6), also for m = 7, 13, 19. Moreover, 

dlm+hy-'-h*-'} r 
1 p-l j 

vanishes identically modulo p for m ^22 and m=24, 26. Here the symbolic 
power hx is to be replaced by the Bemoullian number &x. 

J. G. van der Corput272 proved the impossibility of x6+y5=Az5 for A = 1 
and other values. 

R. Guimaraes273 gave a bibliography and discussed the history of 
Fermat's last theorem, including Wronski's66 pretentions. 

N. Alliston274 proved that Fermat's theorem for odd exponents implies 
that 54n+2+c4n+2= □ is impossible if n>0. 

Math. Quest. Educ. Times, new series, 26, 1914,101-3. 
T6hoku Math. Jour., 5, 1914, 48-53. Further report in Ch. XXIII.105 

267 L’interm^diaire des math., 21, 1914,19-20. 
Sphinx-Oedipe, 9, 1914, 136-9. For 7J-10a=35, ibid., 6, 1911, 91. 

*8 Trans. Amer. Math. Soc., 15, 1914, 202-4. 
*• Amer. Math. Monthly, 21, 1914, 238-9; 23, 1916, 261. 
870 Jour, fur Math., 144, 1914, 314-8. 
871 Sitzungsber. Akad. Wiss. Berlin, 1914, 653-81. 
878 Nieuw Archief voor Wiskunde, 11, 1915, 68-75. 
873 Revista de la Sociedad Mat. Espanola, 5, 1915, No. 42, pp. 33-45. There is a great 

number of confusing misprints. Both Crelle’s Journal ana Comptes Rendus Paris are 
cited as C.r., the second being once cited as Cr., Berlin! 

874 Math. Quest. Educ. Times, new series, 29, 1916, 21. 
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P. Montel275 proved that if m, n, p are integers for which 1/m+l/n+l/p 
<1, it is impossible to find three integral functions of a variable such that 
xm+yn+zp — 0; in particular, xm+yn+zm^0 if m>3. 

P. Kokott276 proved that xn~{-yll-{-zu = 0 is impossible in integers prime 
to 11, using residues modulo 11 of symmetric functions of x, y, z. 

W. Mantel277 proved that if n>3 and p are primes, xn+yn+zn=Q 
(mod p) is impossible in integers prime to p unless p — (6kn—w—3)/(n—3). 

E. T. Bell stated and F. Irwin278 proved that if xn—yn is a prime 2®r+l 
for r a prime >2 and n>2, then n = 3, x = 2, y — 1. 

A. G6rardin279 proved that 10^+1 — zn is impossible in integers if n>l. 
H. H. Mitchell280 treated the solution of cxKjrl—dyK in a Galois field. 
A. J. Kempner281 gave a simple proof that a2n—1 =26n has only the 

integral solutions a=dbl, 6 = 0 [Liouville,32 Lind224]. 
A. Korselt282 proved, without using integrals as had It. Liouville,105 that 

xm+yn-\~zr=0 is not solvable in relatively prime integral rational functions 
of a variable t if each exponent exceeds 2 or if one exponent is 2 and the 
others exceed 3, the case282® x?-\-y5+z2=*0 not being decided. In all the 
remaining cases, the initial equation is solvable Cf. Velmine,177 Montel.275 

* J. Schur283 gave a simpler proof of Dickson’s199 theorem. 
L. Aubry284 proved that a-10fc-fl =|=zn if 0<a<10, &>1, and n is a 

prime >1. 
E. Maillet285 considered amJrbm—cm for m—n/p, where n, p are relatively 

prime positive integers and p>l. It has integral solutions each 4= 0 if 
and only if 

| 7 7717 ti m n 
0>2 fliTV2 Oi — C2 C\ 

has integral solutions each +0 such that ah bh Ci are prime to p and rela¬ 
tively prime in pairs, while a2, 62, c2 are relatively prime in pairs and have 
no prime factors other than those of p. The last equation can be given a 
similar form in a\, b\, c}, a\, bl, cl, which are relatively prime in pairs, while 
any prime factor X of al, b\ or c\ is a divisor of p such, that m^l/(X— 1). 
In particular, if — where \i is the least prime factor of p, Fermat’s 
equation with the exponent m is equivalent to one with the exponent n. 
This is also the case if one of a2, b2, c2, a\, b\, c\ is an exact pth power and 
hence if p has at most two distinct prime factors. Corresponding results 
hold for cTlJrbTrUt = cn\ with any fractional exponents, and with a, 6, c rela¬ 
tively prime in pairs. 

275 Annales sc. l’€coIe norm, sup., (3), 33, 1916, 290-9. 
276 Archiv Math. Phys., (3), 24, 1916, 90-1. 
277 Wiskundige Opgaven, 12, 1916, 213-4. 
278 Amer. Math. Monthly, 23, 1916, 394. 
279 L’interm&iiaire des math., 23, 1916, 214-5; Sphinx-Oedipe, 1917. 
280 Trans. Amer. Math. Soc., 17, 1916, 164-177; Annals of Math., 18, 1917, 120-131. 
281 Archiv Math. Phys., (3), 25, 1916-7, 242-3. 
282 Ibid., 89-93. 
”** This equation is satisfied by the fundamental invariants of the icosaeder group, ibid., 27, 

1918, 181-3. 
283 Jahresber. d. Deutschen Math-Vereinigung, 25, 1916, 114r-7. 
284 I/interm4diaire des math., 24, 1917, 16-17. 
585 Bull. Soc. Math. France, 45,1917, 26-36. 
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For reports on qu— ('up~1 — l)/p, see Ch. IV of Vol. I of his History. 
There are additional notes by * E. Haentzschel286 on 2P~1=1 (mod p2), 
p = 1093, and H. E. Hensen287 on the computation of qu. 

L. E. Dickson288 gave an account of the history of Fermat’s last theorem 
and the origin and nature of the theory of algebraic numbers. 

F. Pollaczek289 proved that, if xv-\-yv+zp — 0 has integral solutions prime 
to p, then qu is divisible by p if u ^31 for all primes p except a finite number; 
also, x2-\-xy-\-y2^0 (mod p) is impossible. 

W. Richter290 proved Korselt’s282 result for the special case m — n — r. 
There exist rational integral functions x, y,zoit satisfying f^xn+yn+zn~0 
if and only if the genus \(n — l){n~2)— d—r of the curve is zero, where d 
is the number of double points and r the number of cusps. But d=r=0 
since dfjdx — 0, etc., hold only for x = y = z = 0. Hence n — 1 or 2. 

H. S. Vandiver291 gave an expression for the residue modulo Xn of Hum¬ 
mer’s61 first factor hi of the number of classes of ideals in the domain 
defined by a Xth root of unity. In terms of Bernoulli numbers we can 
infer necessary and sufficient conditions that hi be divisible by any given 
power of X. He292 stated that if xp-\-yv-\-zv = 0 holds for integers not 
divisible by the prime p, then 23p“1=l (mod p2) for p^l (mod 11), and 
that the Bernoulli number Ba is divisible by p2 for $=(Zp+1)/2, t=p —4, 
p —6, p—8, p — 10. 

A. Arwin293 gave a method to solve (z+l)p—xp = 1 (mod p2), p a prime. 
Vandiver294 derived from one source the theorems of Furtwangler249 and 

the criterion of Kummer76 for solutions prime to p of xpJryp~ zv. 
P. Bachmann295 gave an almost complete reproduction of the papers 

by Abel,16 Legendre,17 Dirichlet,20 Kummer,61 Wendt,152 Mirimanoff,180* 246 
Dickson,195~6, 199 Wieferich,214 Frobenius,228< 238 and Furtwangler.249 

Vandiver296 employed the first factors hi and k of the class numbers of 
the fields of the pnth and pn_1th roots of unity respectively, and the value 
of ki = hi/k due to J. Westlund,297 and proved that ki is divisible by p if 
and only if at least one of the first (p —3)/2 Bernoulli numbers is divisible 
by p. Bernstein’s234 first assumption in his second case therefore implies 
that p — l is a regular prime (so that his result forms no extension over 
Kummer61), while the assumptions in his first case do not as claimed in¬ 
clude those of Kummer.76 It is shown that 101, 103, 131, 149, 157 are 
the only irregular primes between 100 and 167. 

286 Jahresber. d. Deutschen Math.-Vereinigung, 25, 1916, 284. 
287 L’enseignement math., 19, 1917, 295-301. 
288 Annals of Math., (2), 18, 1917, 161-87. 
283 Sitzungsber. Akad. Wiss. Wien (Math.) 126, Ila, 1917, 45-59. 
290 Archiv Math. Phys., (3), 26, 1917, 206-7. 
291 Bull. Amer. Math. Soc., 25, 1919, 458-61. 
282 Ibid., 24, 1918, 472. 
293 Acta Math., 42, 1919, 173-190. 
294 Annals of Math., 21, 1919, 73-80. 
295 Das Fermat Problem, Verein Wiss. Verleger, W. de Gruyter & Co., Berlin and Leipzig, 

1919, 160 pp. 
298 Proc. National Acad. Sc., May, 1920. 
297 Trans. Amer. Math. Soc., 4, 1903, 201-212. 



776 History of the Theory of Numbers. [Chap. XXVI 

The Encyclopedic des sc. math., I, 3, p. 473, cited the criteria q(2)=0, 
g(3)s=0 (mod p), without stating that the unknowns are prime to p. 

On u*+iP=kp% where h is a prime, see Baer224 of Ch. XXI. Thue236 of 
Ch. XXI proved that x6+y* #=28, also that x?+y* =M2 if z is not divisible by 3. 

References (all included in the present account) on Fermat’s last theorem occur in the fol¬ 
lowing places: Nouv. Corresp. Math., 5,1879,90; Zeitschrift Math.-naturw. Unterricht, 23,1892, 
417-8; Ball’s Math. Recreations and Essays, 1892,27-30; ed. 4,1905, 37-40; Pintermediate des 
math., 2, 1895, 26, 117-8, 359, 427; 12, 1905, 11-12; 13, 1906, 99; 14,1907, 258; 15,1908, 
217; 17, 1910, 34, 278; 18, 1911, 255. 
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For classification of Diophantine equations, see Table of Contents. 

Abel’s theorem, 501,581 
Abelian integral, 641 
Abrade, 42, 348 
Additive, 41-3, 346-8 
Affected square, 348 
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9,761-5, 767-8, 770-1, 775 
(see class, norm, unit) 
-, conjugate develop¬ 

ments of, 674 
Analytic functions, 162, 725 
Apocalyptic, 5 
Apocopation, 137 
Approximating fractions, 390, 

412 
Approximation, 93-9, 361, 

378 
— to fractions, 47, 50, 93, 96, 

98 
-square roots, 341-2, 

346-7, 350-1, 354-6, 378, 
390,408 

Arithmetical progression, 1, 
2, 6, 36, 47, 82, 107, 316, 
124, 128, 143, 286, 322, 
419, 440-1, 443-4, 446, 
450, 452, 454, 456-8, 522, 
582-8, 595, 602, 604-5, 
612, 670, 680-1, 702, 710, 
716, 762, 181 (see rational, 
squares, sum) 
-, sum of terms of, equal 

to an, 112, 118, 127, 130, 
161, 166 

— series of order n, 18 
Astronomy, 41, 61-2 
Asymptotic, 162, 172, 246, 

249, 253, 255-7, 272-3, 
318, 725 (see limit, mean) 

Augment. 41 
Automedian, 205, 439 
Automorph, 248, 297, 430, 

594, 677 

Bachet’s theorem, 275 
Ballots, 154 
Bemoullian function, 153 
— numbers, 127, 161, 741-2, 

744-5, 761, 768, 773, 775 
Bertrand’s postulate, 679-681 
Bessel’s functions, 256 
Bible, 5 
Bicursal curve, 676 
Bilinear form, 268 
Binomial coefficient, 4, 5, 7, 

9, 18, 20, 39, 106-7, 114, 
126, 127, 144-7, 149, 155, 

164, 599 (see figurate, tri¬ 
angle of Pascal) 
-, every number a sum 

of, 144 
Bipartition, 153 
Biquadrate, 437, 717 (see 

difference, sum of squares) 
Biquadrates, relationj be¬ 

tween, 564 647-657, 663 
-and squares, 489, 

646-8,656-660, 665 
—, sum of 2, not a square, 

615-620 
-three, 38, 684, 753 
—, two equal sums of two, 

644-7 
Biquadratic residue, 370, 630 
Birational transformation, 

568, 592, 676 
Bonds, 149 
— between atoms, 131 

Cattle problem, 342-5 
Cecis (see Coeci) 
Chessboard, 162,245 
Chinese problem of remain¬ 

ders, 57-64 
Circle (see rational) 
Circulating function, 115, 

117, 119, 161 
Circulator, 119-121, 159 
Class number, 550, 741, 745, 

755, 763, 767-8, 775 
Coeci rule, 79-81 (see virgins) 
Colonne, 6 
Combinations, 114, 124, 128, 

132-3, 144, 154-5, 163 
Combinatory analysis, 36, 

141, 145. 151, 161-2 (see 
partition) 

Complex number, 95, 97, 
119, 121-2, 125, 162, 168, 
170, 201, 231, 234, 237, 
239-242,247-9, 254-5,274, 
283, 287, 289, 296-7, 315, 
371, 373-4,376,389,397-8, 
411, 431, 548, 572, 594, 
620, 678, 684, 692, 716, 
725, 740, 757 

Composite, 12, 15, 28, 229, 
376 

Composition, 145, 147, 149, 
151, 157 (see product) 

— into squares, 296, 305 
— of two forms s* — ey8, 

346-8. 355 
Concordant forms, 472-7 
Configuration, 149, 592 
Congruence, 19, 33, 87, 408, 

673, 678, 684, 687, 692-3, 
700, 758, 761, 766, 771-2, 
775 (see lineor, quadratic) 

— xn + ir + zn 3 0, 734, 

799 

736,750,753,756-7,762-5, 
769, 770, 774 

— 1 + r 3 g», 739, 743, 756 
— Ai™ + Bu» -f Cvi s 0, 

749, 751, 764, 773-4 
Congruent number, 174, 435, 

459-472, 615 
-of order n, 472, 701-3 
— to a sum, every number, 

86, 87 
Continuant, 183, 244, 254, 

381 
Continued fraction, 19, 21, 

32, 47-49, 51-54, 68, 72, 
75, 93-94, 99, 149, 182, 
198, 219, 233, 237-8, 240, 
242-4, 250,267-8,295,344, 
350-3, 355-8, 361, 364-5, 
367-372, 374-401,408-412, 
417-8, 473, 540, 587, 641, 
673,686, 762 
-, bracket notation in, 

49, 149, 240, 357 
-, negative, 379, 381 
Contravariant, 431 
Co variant, 120, 133,161, 568 
Cremona transformation, 85, 

320 
Cube, 6, 8, 23, 25, 28, 33, 35, 

38, 177-180, 187, 246, 
251-2, 255-7 (see differ¬ 
ence, every, numbers, sum) 

— not a sum of 2 cubes, 
545-550 

— of sum of n numbers plus 
any one a cube, 607-12 

Cubes, equal sums of, 550- 
562 

—, relations between, 562-6, 
613 

Cubic equation, 220, 545- 
613, 661 (see discriminant) 

— form, binary, 538,575,662 
-made a cube, 566-9 
-a square, 569- 

572, 640 
-, ternary, 588-595, 695 
— function made square, 457 
— residues, 575 
Cuttaca, 42, 58 
Cyclic method, 63, 346-8, 

349, 386 
Cyclotomy, 243, 251, 295, 

370-2, 376, 398, 736, 750, 
753-4,763, 765, 769, 770 

Decomposition into maxi¬ 
mum squares, 309, 310 

-triangular numbers, 
32 

-powers, 686 
Definite polynomial, 720,722, 

723-4 
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Denumerant, 123. 134-5 
Derivatives of Arbogast, 120, 

129, 133, 158 
Descent, indefinite, 228, 256, 

276, 353, 465, 533, 546, 
548, 550, 574, 576, 615-9, 
632, 634, 636-8, 738, 748 

Determinant, 75, 76, 82-84, 
89-93, 95, 121, 125, 244, 
291,314,416, 556,594,679, 
689, 695, 741-2, 756 

Diagonal number, 342 
Diametral number, 167, 170, 

342 
Difference of 2 squares, 402- 

5, 420, 426, 535, 549 
-biquadrates not a 

square, 615-20 
Differences of order n, 13,14, 

15, 117, 124, 231-2, 366 
-three squares, 446, 450, 

452, 454, 505 
-two biquadrates, pro¬ 

duct of two, equal to third, 
470 
-a square 

505 
-cubes, 535, 549, 578- 

581, 607, 662 
Differential operator, 134, 

154, 162 
Digits, 20, 27, 33,38,52,138, 

166, 309, 310, 379, 459, 
685, 699 

Discordant forms, 473 
Discriminant of cubic, 548, 

595, 662, 736 
— equal unity, 695-6 
Distributions, 145, 162-3 
Divisor with odd conjugate, 

130 
—product, 701 
Divulsions, 101 
Dodecahedral, 16, 23 
Double equalities, 80,443,445 

Elementary divisor, 83, 90 
Elliptic function, 25,113,146, 

209, 220, 224, 235, 246-7, 
249, 250, 262, 265, 285, 
293, 295-6, 301, 305, 309, 
310, 315-8, 333, 378, 389, 
411, 457, 482, 501, 569, 
572, 640-1, 644 

— integral, 482, 641 
— parameter, 592-3 
Epicycloid, 254 
Equation linear in 1 un¬ 

known, 401 j 690-1, 700 
— quadratic m x and in y. 

474, 625, 639-642 
— with like first n coefficients, 

714-6 
-polynomial coefficients, 

695, 743 (see Pell) 
— xm yn — zl with x, y, z 

polynomials, 760, 774-5 
— u* - v* = 1, 731, 738, 

744, 747, 752-5, 766 

Subject Index. 

— axm -f- byn — cz1, 698, 737- 
8, 749,754-5,757-9,761-2, 
764, 766, 769, 771-6 

— xv = y*, 687 
— 1/Xx + . . . + lhn = 

l/a, 688-691 
Equivalent, 91, 96, 677 
Euclid’s g.c.d. process, 45-49, 

52, 53, 61, 93, 95, 352 
Every number a sum of cer¬ 

tain numbers, 14, 22-5, 30, 
144, 160. 429, 717, 719 (see 
binomial, congruent, figur- 
ate, geometrical, polygonal, 
pyramidal, sum of squares, 
triangular, Waring) 
-four positive 

rational cubes, 727-9 
-nine cubes, 

23, 717-725 
-three rational 

cubes, 726-7 
-represented by a2 4- 

2/T- + 372 + 6<52, 263, 270 
-3^4 jd — z4 — 

3u\ 728 
— odd number represented 

by 2x2 -f T/2 + z2, 260, 264 
Exceptional prime, 741 

Factorial, 9, 124, 126, 143, 
*32, 679-682, 722 

Factoring, 395-7, 763 
Factors of (x + y)n — xn — 

yn, 737-8, 745-8, 751-5, 
760-1 

Farey numbers, 149 
Fermat’s theorem, 55, 171, 

238, 251, 281 
Fermat’s last theorem xn -f- 

yn 4= zn, 731-775 (see alge¬ 
braic, Bernouillian, class, 
congruence, equation, fac¬ 
tors, polynomial, regular) 
-,n « 3, 545-550,767 
-n = 4, 615-620, 

757, 761 
-} n = 5, 732-3, 735, 

738, 755, 760-1, 771, 773 
-}n=6,732,758,772- 

3, 776 
-f n = 7, 663, 737, 

739, 746-8, 761 
-, n = 10, 772 
-, 7i = 11, 774 
-, 7i = 14, 736 
-n = 37, 745, 755-6, 

769 
-, n ~ 59, n — 67, 

745 
-,7i even, 736-7, 754- 

5, 765, 772-3 
-, n fractional, 738, 

756, 774 
-xryf z polynomials, 

749, 750, 757, 760, 770-1, 
774, 775 
-, criterion of Kum- 

mer, 744,761,785,767, 775 

-Mirimanoff, 
761, 768-9, 771 

-Wieferieh, 764, 
766-8, 771, 775-6 

Feuerbach’s circles, 201 
Figurate number, 5, 7-9, 13, 

14,17, 18, 22,23, 29, 33-5, 
39 
-, every number a sum 

of, 13 
-generalized, 9 
Finite number of solutions, 

674- 5, 764 
Fourth power (see biquad¬ 

rate) 

Gamma function, 95, 97,721, 
725 

Generating function, 76, 137, 
139, 148, 152-3, 157, 160 
(101-164, implicitly) 

Genus of curve, 169, 592-3, 
675- 7, 775 

Geometrical methods, 55-6, 
64, 66, 68, 73, 87, 95, 98, 
166, 174-5, 219, 255, 274, 
297, 318, 341,388,396, 425, 
434,471, 513,542-3, 546-7, 
555-7, 576 590-3, 596, 642, 
644, 675-6, 687 (see genus, 
lattice, tangent) 

— progression, 105, 441, 
443, 451, 453, 456, 602-3 
-, every number a sum 

of terms of a, 105, 110, 112, 
164 

Girard’s theorem, 228 
Gitter (see lattice) 
Gnomon, 1 
Gonal (see polygonal) 
Greatest common divisor, 

50, 51, 73, 74, 313, 772 (see 
Euclid) 

Group, 696, 774 

Harmonical progression, 435- 
7 

Heptagonal, 2, 6, 10, 28 
Hermitian form, 289 
Heron angle, 199 
— parallelogram, 207 
—, problem of, 485-7 
— triangle, 191 
Hexagon, central, 545 
Hexagonal, 2, 6, 8, 18, 19, 

20, 25, 31, 38, 39 
Hexahedral, 16 
Hyperbolic function, 389 
Hyperelliptic curve, 677 

Icosahedral, 16, 23 
Ideals (see algebraic) 
Indices, 305-6, 357, 394 
Infinite products, 13, 28, 31, 

101-5, 113-6, 137, 140-1, 
146, 148-9, 163, 234, 245, 
313 317 

— series, 13, 16, 19, 20, 24, 
26, 31, 33, 71, 98, 101-6, 
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235-6, 240, 243, 245, 254, 
262, 265, 277, 283, 285, 
292, 297, 305, 313.. 333, 
337-8, 380, 399, 403, 411, 
562, 714-6 

Integration, 51, 256, 266, 
566, 685, 722-3, 749, 751 

Invariant, 92,433,571,592-3, 
643-4 

Inverse tangent, 395, 716 
Irrational, 93-99 
Irreducible, 674, 695 
Isobaric function, 132 

Jacobi symbol (see Legendre) 
Julian period, 61, 62 

Knots, 144 

Latin square, 154 
Lattice, 51, 52, 66, 68, 87, 

95, 98, 160, 162, 168, 236, 
241, 245, 257, 724 

Legendre-Jacobi symbol 
(m/n), 248, 253, 263-4, 
305, 308-9, 312-4, 325-7, 
370, 372, 386, 431 

Lemniscate, 389, 398 
Like powers, relations be¬ 

tween, 585, 648, 682-6, 
705-716 

Limit, 97, 155, 158, 254,272, 
377, 399,400,404,675,686, 
723 

Linear congruence in one 
unknown, 47, 52, 54-64, 
693 
-f improper or 

imaginary solutions of, 55 
-in several unknowns, 

86-88 
— congruences in n un¬ 

knowns, 83, 88-93, 423-4, 
426 

— difference equation, 107- 
111, 115, 158, 368 

— differential equation, 144, 
393 

Linear equation in 2 un¬ 
knowns, 41-71, 91 
-, number of 

solutions, 50-1, 64-71, 130 
-in 3 unknowns, 52, 55, 

71-73 
-f number of 

solutions, 121, 126, 128, 
130, 132, 141,145, 152, 160 
(101-164, implicitly) 

-in n unknowns, 41, 43, 
73-77, 133, 143, 161 
-f number of 

solutions, 109, 114, 119, 
122, 125-7, 130-1, 134, 
140, 142, 155-6, 164 

Linear equations, system of, 
in 2 unknowns, 66-8 

-]n n unknowns, 
73, 77-86, 150, 342 (see 
multipartite) 
-, number 

of solutions, 106, 123, 144, 
149 
-, fun¬ 

damental solution, 75-6, 
83-4 
-f irreduc¬ 

ible solution, 85 
— form, 93-99 
— forms, system of, 84-86, 

90, 93-98 
-, sum of powers of, 95, 

96 
— functions made squares, 

440, 443-458 
-, product of, 677-9 
— inequality, 52, 135, 153, 

156, 161 
Logarithms, 714-6,741,744-5 
Lucas’ un, vn, 542-3, 698 

Magic square, 6, 118, 134, 
154, 156, 163 

Malfatti’s circles, 197 
Matrix, 82-85,90,91,95,134, 

139, 153 
—, augmented, 83, 84, 90 
—, rank of, 84, 90, 91, 95 
Mean value, 28, 32,140, 234, 

246, 311, 411, 751 (see 
asymptotic) 

Minimum, 94-99, 288, 364, 
374, 408, 540, 673 

Mobius’ function jx, 701 
Modul of Dedekina, 92 
Modular equation, 389 
— system, 85, 91 
Multipartite, 123, 145, 147, 

150-2, 160-2, 163 

Node, 139 
Norm, 283,296,373,398,570, 

593-4, 677-8, 740 
Number and its square sums 

of 2 consecutive squares, 
477, 488-9,. 670 

Number of divisors, 67, 129, 
139,142,162,235-6,238-9, 
242-3, 248, 250, 265, 297, 
313, 403-4 

-Fibonacci, 439 
-form 4ab (a2 — 62), 459 
_ — — —, quotient a 

square, 474, 494-5, 661 
-sets of k integers < x 

and prime to x, 701 
-solutions of ui . . . Uk 

= n, 157, 403, 679 
-Axa + Byb = n, 

751 . _ 
Numbers a sum of 2 rational 

cubes, 572-8, 729 
-cubic functions, 

578 
_unlike powers, 

725-6 

Oblique triangle, 214-6 (see 
rational) 
-, automedian, 205, 439 
-, linear relation between 

angles of, 213-4 
-, rational angle-bisec¬ 

tors, 209-213 
-medians, 202-9,212, 

428 
Octahedral, 16, 23 
Optic formula 1 jx + ljy = 

1 /a, 688-691 
Orthogonal substitutions, 

530-2 

Pack of cards, 157 
Parallelogram, rational sides 

and diagonals, 205-6 
—, Heron, 207 
—s, ratio of areas given, 

486 
Parallelopiped, 267, 487, 502, 

613, 670 
Partition, 101-164, 250, 270 

(see bipartition, circulating, 
circulator, combinations, 
combinatory, composition, 
distributions, generating, 
multipartite, permutation, 
separations, symmetric, 
variations, wave) 

— compound, 123, 141 
— conjugate, 121, 124, 136, 

139, 154, 163 
—, double, 123 
—, graph of, 118, 134, 137, 

139, 141, 142, 147, 151-4, 
158,160 

— into squares, 296 
—, modulo M,SS 
—, new definition of, 161 
—, perfect, 143, 145 
—, regularized, 139, 141-2, 

152 
—, self-conjugate, 136-7, 141 
Pell equation, 341—400 
-, upper limits for solu¬ 

tions, 399, 400 
-in polynomials, 389, 

390, 393-4, 397, 743 
Pentagon inscribed in circle, 

202 221 
Pentagonal, 1, 2, 5, 6, 8, 10, 

11,13,16,18-20,22,23,25, 
26, 28, 29, 31, 33-35, 37, 
113, 147 

Permutation of letters, 114, 
131, 147, 155, 157, 162 

Pile of bullets, 25 
Planude, problem of, 485-7 
Polygon, 56, 147, 386, 543, 

688 
—, rational inscribed, 221 
Polygonal divisors, 32 
— number, 1—7,9—22,24,28 

39, 117, 147 ^ „ 
-, central, 5, 10, 12, 16 
-equal square, 3, 10, 11, 

13, 38 
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-, number of ways a. 3, 
7,11 

-of second order, 5, 10 
-, sum of powers of, 30,34 
— numbers, g.c.d. of two, 36 
-of m sides, every num¬ 

ber a sum of m, 6, 12-14, 
16-18, 29-32, 309 
-, sum of, 2, 5,19, 20, 22, 

25, 26, 28, 29, 34,35, 37 
— residues, 33 
Polyhedral, 16, 17, 24 
Polynomial in a -\-b and 

ab equal to an + bn, 737, 
739, 745 (see equation) 

Primes, 11, 36, 148, 234, 252, 
260-1, 264, 266, 396, 681 

—, sum of two, 282 289 
Prize, 312, 641,734, 742, 751, 

763 
Probability, 28, 158, 214 
Product of 2 forms a like 

form, 431, 470, 570, 594-5, 
678, 691, 697, 727-8 

-consecutive integers, 
9, 56, 393, 679-682 

-factors (x + l)jx, 687-8 
Products by twos plus n 

made squares, 513-520 
Pronic, 5, 6, 232-3, 350, 407 
Pulverizer, 41-44, 59, 348 
Pyramid, rational, 221-4 
Pyramidal number, 1-5, 7, 9, 

10,14,16-18, 20,25,30,34 
-, central, 5 
-, every number a sum 

of, 14, 23, 30 
-, not a cube, 25, 34 
Pyramidi-pyramidal, 7 

Quadratic congruence, 19, 
279, 280, 282-8, 295-7, 
299-303, 325-7, 384, 408, 
693, 749 

— equation in x, y, 412, 485 
(see equation) 

-in n 3 unknowns, 
419-434 

Quadratic form, binary, 11, 
17, 26, 94, 184, 233, 236, 
239, 242, 247, 254, 260-3, 
265, 269, 273-4, 331, 356, 
359, 362, 364-5, 367, 370, 
372,374r*9,381,386,391-2, 
398, 401-2, 404-6, 408, 
410-1, 417-8, 430, 507, 
536-7, 541-2, 549, 553-4, 
559, 578-9, 619, 637, 657, 
697, 699, 707, 712, 733, 
741, 760 (see composition) 
-, ternary, 17,260,264-5, 

272-3,282,287,291,294-5, 
379, 422, 424, 429, 430-1 

-in n ^ 4 variables, 
263, 288, 308, 311, 313, 
330, 332, 335-7, 387, 431, 
433, 543, 724 (see every) 

— function = cube, 28, 
533-9 

-= power, 533-544,662, 
764 

-= square, 10, 13, 19, 
341-401, 404-7, 438, 445, 
459-532 
-- constant, 407-412 
— residue, 231, 241, 253, 279, 

282, 284, 287, 292, 296, 
299,301,325-6, 365,370-1, 
378, 421-4, 432, 476, 630, 
751, 766 

Quadrilateral, 201, 211, 216- 
221, 223, 255, 449, 680 

Quartic equation, 465, 485, 
615-671 

— form a square, 567, 632, 
627-644, 732, 746-8 
-, 571 
Quaternion, 297 
Quotity, 119 

Rational group of points, 
676-7 

Rational oblique triangle, 
191-214, 220, 668 
-, circumscribed circle, 

191, 195-6, 200-1, 211 
— — —, escribed circles, 

195, 200-1, 213 
-, Feuerbach’s circles, 

201 
— — —, inscribed circle, 

194- 7, 200-1, 208, 211, 
215, 693 
-, isosceles, 201, 211 
-, Malfatti’s circles, 

197 
— — —f perimeter, 193, 

195- 7, 199, 200-1, 212 
— — —, rational angle- 

bisectors, 210-3 
-medians, 207-9, 

212-3, 511 
-, sides in arithmetical 

progression, 192, 196-9, 
200-1, 214-5 

Rectangles, ratio of area 
given, 485-7 

Recurring series, 36, 75, 110, 
366, 391, 674, 695-6 

Reduced multiplier, 41 
Regular prime, 741, 745, 757, 

759, 762, 767, 775 
Remainders, 57 
Representation by squares, 

296, 305 
Right triangle, 165-190, 273, 

459, 463 
-, area given, 465, 615 
-not a square, 462, 

615-620 
-formed from 2 num¬ 

bers, 166 
-, primitive, 166, 459 
-, problems involving 

area of, 166, 175-181, 
498, 533, 617, 634 

-sides, but not 
area, 184-8, 620-7 

-, product of sides divis¬ 
ible by sixty, 171 
-, rational angle-bisec¬ 

tors, 188-9 
— triangles, areas in given 

ratio, 174, 474, 494-5 
-, number of, with given 

side, 172 
-, of equal area, 172-4, 

525 
-hypotenuses, 225 
-, tables of, 189, 190 
-with given difference 

or sum of legs, 181-4 
Roots of unity (see cyclot- 

omy) 

Satin, 87, 245 
Seminvariant, 124, 142, 571, 

643 
Separations, 151, 156, 161 
Series of L. Pisano, 170 
Slide rule, 694 
Sophien, 769 
Spherical triangle, rational, 

224 
Square, 1-4, 7, 8, 12, 16, 20, 

26, 27, 31, 32, 176 (see 
decomposition, differences, 
every, number, sum) 

— roots (see approximation) 
Squares in arithmetical pro¬ 

gression, 186,435-440,443, 
446, 489, 492, 498, 527, 
604, 617, 635 

-geometrical progres¬ 
sion, 441 

—, sum of two less third a 
square, 507-9 

—. sums by twos squares, 
497-502, 529 

—, linear functions of, made 
squares, 502-511 

Sum and difference of two 
squares not squares, 618 

— of any 2 of 4 integers a 
cube, 561 

-consecutive integers, 
139, 159, 160,162 

-cubes of numbers in 
arithmetical progression a 
cube, 582-5, 685 
-a square, 

585-8, 685 
-2 cubes a square, 572, 

578-581, 587, 600, 752, 
758 

-3 cubes a square, 566, 
605-6 

— — — — a gum of 2 
squares, 588 

-n cubes less g a square, 
607-612 

-divisors, 19, 24, 31, 
125, 140, 244, 246, 250, 
264, 266, 269, 285, 289, 
296,305-317,329-339 
-m m-gonal numbers 

(see polygonal) 
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-2 squares, 11, 15, 23, 
27, 32, 33, 36-38, 68, 
225-257, 308, 317, 321, 
322,345,348-9,359,364-5, 
372,373-4,383,385-7,394, 
399,400,405,407,533,703, 
716 
-a square, 23,190, 

446, 466, 483, 497, 527, 
601-2, 613 (see right tri¬ 
angle) 
-<#, 234, 236, 

249, 253r-7 
-3 squares, 11, 15, 17, 

21, 23, 233, 244, 259-274, 
276, 278-9, 282, 322, 335, 
350, 385, 605, 718, 720 
-a square, 222, 

249, 260-2, 265-9, 271-4, 
443, 456, 502-5, 668-9 
-a sum of two, 

244, 267-8, 272-274, 384, 
434 
-271-3 
-4 squares, 6,15, 18, 24, 

33, 233, 250, 261, 267, 270, 
273, 275-303, 307-8, 310, 
312,314,316-7,320-2,329, 
330, 339, 428, 529, 649, 
666, 718-9 

-with given alge¬ 
braic sum of roots, 25, 278 
-9, 284, 289, 291-4, 319 
-n squares, 17, 22, 

25-27, 32, 37, 253, 273-5, 
305-323,329,331-2,334-5, 
339, 453, 544, 585, 660, 
664, 705-712, 720 
-a square, 318-323, 

425, 434, 509, 612 
-power of, 319, 

321-2 
-squares a biquadrate, 

620-7, 665-7, 670 
Summation over divisors, 

329-339 
Sums of 2 squares, two equal, 

206, 225-7, 229, 232-3, 
237,245, 248, 252-4,256-7, 
268, 273, 283, 345, 347, 
426-8, 436, 447, 450, 452, 
455, 457, 492, 49^-5, 497, 
499, 500, 504, 525 

— — — —, quotient of, 
252-3 
-3 squares, two equal, 

260,264,267-9,270-4,284, 
299 
-, product of two, 

a sum of 3 squares, 263, 
267-271, 273 
--—not a sum 

of 3 squares, 261 
-4 squares, two equal, 

277-8, 284, 291-2, 298-9, 
303 
-, product of two, 

a sum of 4 scuares, 277, 
281, 283, 291, 293, 298, 
302-3, 530-1 
-n squares, product of 

two, 285, 318, 323 
-, quotient of two, 

314 
Symbols, prw, 1, 3; Prm, 2, 4; 

Ar, A(r), ^ A' 6; A_m, 16; 
III, 0, B, 0, 6;/% 7; 
(£), 7; [«], 54; 0(x), 255; 
(a/b) of Legendre and 
Jacobi, 366, 370; (a, b, 
. . . ) and {a, b, ... } 
in continued fractions, 49, 
357; (o/6)<, 370; 705; 
q(m), 768 

Symbolic, 30, 154, 722, 768, 
773 

Symmetric function, 101,122, 
144-5, 154, 160 

Syzygy, 76, 161, 571, 643 

Table, 2, 12, 15, 20, 34, 38, 
51, 104-5, 117, 125, 127-9, 
133, 136, 141, 144, 155, 
163, 179, 183, 189, 190, 
192, 195-6, 198-200, 219, 
225, 232-3, 236-7, 241, 
251-2, 257, 271, 274-5, 
290, 297, 353-358, 363, 
366, 368-370, 373, 375, 
377, 379, 380, 386, 388, 
389,391, 394,396,398-400, 
407, 435, 448, 459, 462, 
464, 471, 473, 485, 494, 
538-9, 541, 564, 573-4, 
634-5, 650, 653, 656, 683, 
688, 717, 719, 739, 722 

T’ai-yen rule, 57, 59, 60 
Tangent method, 174, 558, 

576, 590-2, 595, 661 
Tangential, 591-2 
Tetradecagonal, 5 
Tetragone, 7 
Tetrahedral, 4, 7, 23, 25, 36 
Tetrahedron, 502 
—, rational, 220, 222-4 
Theta functions, 113, 254, 

273-4, 300, 303, 314, 316, 
378, 398 

Toroid, 566 
Transversion, 137 
Triangle (see oblique, ra¬ 

tional, right) 
— of Pascal, 4, 9 
-Tartaglia, 36 
Triangular number, 1-39, 

103, 130, 152, 248, 260, 
276, 289, 292, 342-4, 401, 
407, 435, 574, 587, 664, 707 

-equal to a difference of 
biquadrates, 35 

-cubes, 36, 
37 

— — — — a pentagonal 
number, 18, 19, 22, 33, 35 
-a square, 3, 7, 10, 

13, 16, 26, 27, 31, 32, 38 
-of a trian¬ 

gular number, 27, 36, 37 
-not a biquadrate, 8,10, 

17, 22, 25, 36 
-a cube, 10,17,25, 33 
— numbers, consecutive, 2, 

27, 30, 33, 38 
-, difference of, 9, 24, 26, 

33-35 
-, product of, 12, 29, 

31, 33-36, 38 
-, sum of squares of, 5, 

12, 23, 26, 27, 33 
-, sum of two, 2, 9, 11, 

12,15,24, 26,27,30-32,34, 
36-38 

-three, 6, 11-13, 
15-18, 20, 24, 26, 28, 29, 
31, 33-35, 37, 38 

-four, 19,20,23-26, 
32 
-n, 4, 19, 22-24, 

28, 30, 32, 34-37, 130 
— — — — certain and 

squares, 2, 5, 12,15, 20, 23, 
26, 36-38 
-gives 

every number, 11, 15, 23, 
24, 26 

Triangular-pyramid, 2, 4, 9 
Trianguh-pyramidal, 7 
Triangulo-triangular, 7 
Trigone, 7 
Trihedral angle, rational, 221, 

224, 502 
Triple equation, 445 

Unicursal curve, 642, 676-7 
— surface, 677 
Unit, 396, 399, 412, 536, 578, 

594, 741-2, 755 

Variations, 140, 154 
Virgins. 79, 106, 123 (see 

Coeci) 

Waring’s problem, 717-725 
Wave, 119, 121, 124-5, 135, 

155 159 
Wilson’s theorem, 56-7, 232, 

243, 255 
Weierstrass’ normal form of 

quartic, 224, 644 
Wunder Zahl 666, 5, 6 

Zeta function, 725 


