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Abstract. Both intensional and extensional background knowledge have
previously been used in inductive problems to complement the training
set used for a task. In this research, we propose to explore the useful-
ness, for inductive learning, of a new kind of intensional background
knowledge: the inter-relationships or conditional probability distribu-
tions between subsets of attributes. Such information could be mined
from publicly available knowledge sources but including only some of
the attributes involved in the inductive task at hand. The purpose of our
work is to show how this information can be useful in inductive tasks,
and under what circumstances. We will consider injection of background
knowledge into Bayesian Networks and explore its effectiveness on train-
ing sets of different sizes. We show that this additional knowledge not
only improves the estimate of classification accuracy it also reduces the
variance in the accuracy of the model.
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1 Introduction

While standard machine learning acquires knowledge from instances of the learn-
ing problem, there has always been interest in a more cognitively plausible sce-
nario in which learning - besides the training instances - utilizes also background
knowledge relevant for the problem. In many inductive problems, the training
set, which is a set of labeled samples, could be complemented using intensional or
extensional background knowledge in order to improve the learning performance
[11, 19]. In Inductive Logic Programming, intensional background knowledge is
provided in the form of a theory expressed in logical form. In Semi-Supervised
Learning, the extensional background knowledge is provided in the form of un-
labeled data.
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In this research, we propose to explore a different type of intensional back-
ground knowledge. In many domains, there exist publicly available very large,
and related, data sets, for example from demographics and statistical surveys.
This sort of information is ubiquitous: it is published by many national govern-
ments [2, 3, 5]; international organizations [1, 6, 4]; and private companies. Such
data sets may not have exactly the same attributes as the data set we are study-
ing. However, using an intensionalising process [13], we can derive intensional
background knowledge, in the form of distributions, from this extensional back-
ground knowledge, given as collections of instances. A question that we consider
here is whether it is possible to use such information to improve the performance
of learning methods in machine learning problems.

Let us consider a simple medical example. Suppose we are learning from
data a model for the prediction of heart attacks in patients. The data used in
the inductive learning of this model may include attributes describing sleep dis-
turbance, as a disease outcome, and stress, as a disease, but does not include
enough instances to relate these attributes in a statistically significant way. There
exists, independently of the data used in model building, a large medical survey
that describes quantitatively sleep disturbance in patients who experience car-
diac problems or stress. This set could be used in learning a better predictive
model, capturing the important relationship between sleep disturbance, stress,
and a heart attack, if we can integrate the data from the medical study with the
data we are using in learning the predictive model.

The big challenge in this research is how such background knowledge can be
integrated with the existing data sets. Bayesian learning is a natural candidate
as it draws on distributional data for its assessment of the probabilities of an
instance belonging to different classes of the concept. In Bayesian Networks the
attribute inter-relationships are encoded into a network structure. We propose
here to replace parts of this structure, some of the conditional probability dis-
tributions, with more accurate alternatives, which are available as background
knowledge contained in large public data sets, e.g. statistical surveys.

The paper is structured as follows: In Section 2, Bayesian learning is reviewed
with a simple example. Section 3 discusses how background knowledge is added
to the network. In Section 4 experimental results are provided. Section 5 contains
discussion and future work.

2 Learning and classification using Bayesian Networks

In a Bayesian network [17, 16], there is a structure which encodes a set of con-
ditional independence assumptions between attributes; a node is conditionally
independent of its non-descendants given its parents. Also, there are conditional
probability distributions capturing each attribute’s dependency on others, typ-
ically represented by multi-dimensional tables. Together, these define the joint
probability distribution of the attributes and class. With such a distribution,
we can use Bayes rule to do inference, i.e. determine the probability of some
unobserved variable. There exist many different ways of building Bayesian net-
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works from training data [7]. We used the software package BN predictor [9,
10] to build the network and used a maximum likelihood estimator (frequency
counts) to construct the tables. To build these tables, we need the number of
training samples for each permutation of attribute value that is involved in the
conditional probabilities. These are normalized to give probabilities.

As a simple medical example, consider the diabetes diagnosis problem [12],
whose network is given in figure 1. In the following equations, the terms A, N,
M, I, G, D represent Age, Number of pregnancy, Mass, Insulin, Glucose and
Diabetes, respectively. We need the posterior probability of the class Diabetes
P (D|A,N,M, I,G)given the other attributes. From Bayes rule we can rewrite this
as in equation 1.

P (D|A,N,M, I,G) =
P (A,N,M, I,G,D)

P (A,N,M, I,G)
(1)

To classify a new example S = (Ai, Ni,Mi, Ii, Gi), given by values for all at-
tributes except the class diabetes, we chose the class with the highest posterior
probability, as in equation 2

Argmax
D∈(Y es,No)

P (D|Ai, Ni,Mi, Ii, Gi) = Argmax
D∈(Y es,No)

P (Ai, Ni,Mi, Ii, Gi, D) (2)

Using a Bayesian network, we can construct the joint probability by simply
multiplying a few independent terms as in equation 3. From figure 1, the arrows
indicate which conditional probabilities must represented by tables. For example,
there are 3 arrows going from the mass, age and # pregnacies nodes to that of
the class. This accounts for the P (D|M,A,N)term in the equation. There is a single
arrow going from diabetes to insulin accounting for the term P (I|D). Continuing
this process for every arrow will produce equation 3.

P (A,N,M, I,G,D) = P (A)P (N)(M |A,N)P (D|M,A,N)P (I|D)P (G|I,D) (3)

Fig. 1. A Bayesian network for diabetes diagnosis
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The probabilities in equation 3 which do not include a term for class D , like
P (M |A,N) , have no effect on the result of equation 2. For a single sample from
the test set, all the attributes except the class are defined. Thus any terms in
the joint probability that do not include a term for the class are identical. They
can be safely ignored for classification.

3 Injecting Public Knowledge into a Network

Normally, we obtain the conditional probability distributions which we use in
Bayesian Network inference from the training set. If we do not have enough
training data samples, our estimates of the true distribution will be poor and
the result will not be an accurate classifier. These distributions are independent
from each other, so it could be possible to improve the performance even by
replacement of a few of them with accurate alternatives, which we could find
from statistical surveys.

We propose improving Bayesian networks by replacing some of the condi-
tional probability distributions - represented in the form of tables and corre-
sponding to the edges of the network - with their accurate alternatives which
are available as background knowledge.

For example, in the Bayesian Network for diabetes diagnosis presented in
section 2, suppose we have an accurate distribution of insulin given the diabetes,
P (I|D), from a large demographic survey. If we use this accurate distribution,
instead of the one which is extracted from the limited training set, together
with other distributions, which are extracted for other nodes of the network
from small training set, and we apply them in formula 1, the performance of the
Bayesian Network should improve.

4 Experiments

The ideal process to test this approach is to use real data along with some
statistical surveys which could provide us with accurate conditional probability
distributions that occur in our network. But if we are to experimentally inves-
tigate the usefulness of our approach, we need to be sure that the distributions
that we use as background knowledge are accurately representing the real distri-
bution of our data. Otherwise, they may negatively impact our results. In order
to avoid such situations we simulate the problem as explained below.

Due to the imperfections of Bayesian Network constructors, it is probable
that the extracted network for a data set contains some incorrect attribute de-
pendencies. If we replace a conditional probability distribution, which is ex-
tracted based on such relations, the result may not be a significantly better
classifier. Such situations would also negatively bias any conclusions about the
reliability and usefulness of our method. In order to avoid this problem, related
to a lack of sufficient real-world knowledge, in our second experiment we use an
artificial data set for which we know the correct attribute independencies.
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4.1 Experimental setup

For the purpose of our experiments, we have made some simplifying assumptions
about the sizes of the datasets used. These assumptions are parameters of the
experiments and can be easily changed. In particular, we assume that a large
data set, which is a representative sample of the ”huge” dataset (the whole
universe of interest), exists. We model our approach by using a large real data
set (or a large generated artificial data set) to supply us with highly accurate
conditional probability distributions for the attributes involved in a Bayesian
Network classifier, trained on a much smaller sample of a huge dataset. In this
manner we simulate having the relevant information available from statistical
surveys. For this purpose a real or artificial data set with 20,000 instances,
which represents the universe of interest, is considered a huge data set. In each
experiment we sample a large data set from this huge data set, containing 50%,
10,000 samples. Some of the conditional probability distributions are extracted
using this large data set. Since these distributions are extracted from a large
sets of instances, they are similar to what is available from statistical surveys.
A part of the huge data set, 10%, 2,000 samples, is held out as testing set in
each experiment. A very small subset of the huge data set is sampled as the
training set. In these experiments 0.5%, 100 instances, of the huge data set are
sampled as a training set. In many real world learning problems we only have
such small training data sets. Using this small training set we build all conditional
probability distributions, which are not very accurate, for all the nodes in the
Bayesian Network.

Fig. 2. Experimental setup.

What we want to show is the effect of replacing these inaccurate conditional
probability distributions, extracted from the small training set, with accurate al-
ternatives, which in real problems might be available, for example from statistical
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surveys. For concluding that the replacement of a selected set of distributions
makes a better classifier we run a set of experiments. In each experiment the
large data set as well as the training and testing sets are sampled again from the
huge data set. Then the classifier is trained using the small training set. More
specifically, potentially inaccurate conditional probability distributions are built
from the training set. Instead of using statistical surveys to extract accurate
distributions, we use the distributions which were obtained from the large data
set. Then we replace the selected set of distributions with accurate alternatives
and compute the performance of the new modified classifier. We run several
experiments with the same replacements and then we use paired t-test to see
whether these sets of replacements make a significantly better classifier or not.
Our experiments show that replacing more distributions results in a more accu-
rate classifier unless a distribution is not extracted based on correct attribute
dependencies. The Letter data set from the UCI machine learning repository [8]
is used as the real data set. In addition, an artificial data set from the heart
attack domain is used in a second experiment.

4.2 Experiments with the Letter data set

In these experiments we will see the effect of replacing the conditional probability
distributions on a real data set. The objective of classifiers on the letter data
set is to identify each of a large number of black-and-white rectangular pixel
displays as one of the 26 capital letters in the English alphabet. The character
images were based on 20 different fonts and each letter within these 20 fonts was
randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was
converted into 16 primitive numerical attributes. All these numerical attributes
contain statistical moments and edge counts, in the box containing the letter,
which were then scaled to fit into a range of integer values from 0 through 15.
For example y-bar is the mean of y of ’on’ pixels in the box; xy2br is the mean
of x × y × y; and xegvy is the correlation of x-edge with y. See [14], where the
dataset was introduced, for details.

In these experiments we converted 26 classes to two classes by dividing the
letters into two groups of the first and the second 13 letters in the English al-
phabet. This binarization of the letter recognition task makes it hard, as there
are no obvious differences between the letters in the first and second half of the
alphabet. Using the Bayesian Network constructor package discussed in [10], the
network, which is shown in figure 3, is extracted. In this network all 16 attributes,
which are nodes of the network, are shown as rectangles. Conditional dependen-
cies are represented by arrows. Arrows represent the parent-child relationship,
with a parent in the start and a child in the end of an arrow. Each node in
the network is conditionally dependent on its parents. For Bayesian inference we
only need to extract the conditional probability distribution of the nodes which
have at least one incoming arrow from the class node. In this network we need
to extract these distributions for nodes y-bar, xegvy and xy2br.

Figure 4 shows an example of how the difference between the accuracy of the
unmodified model and of the modified model - in which the conditional proba-
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Fig. 3. Bayesian Network extracted for Letter data set.

bility distribution of attribute xy2br is replaced with the accurate alternative -
changes with respect to the size of the training set. The greatest difference be-
tween the accuracy of both the modified and unmodified models appears when
the size of the training set is very small. In order to focus on the effectiveness of
our approach, we use small training sets, 0.5% of huge data set.

Fig. 4. Accuracy against size of training set for real data.

Next we want to show that replacements of the conditional probability distri-
butions with accurate alternatives make significantly better classifiers. We run
several experiments, as explained in the experimental setup subsection, all with
the same replacements. The accuracies of these experiments on the modified
models are compared with unmodified ones, using the paired t-test, to show
that those specific replacements made a significantly better classifier. Figure 5
illustrates an example of the normal distributions for the accuracies of the un-
modified and modified models, in which the conditional probability distribution
of attribute xy2br is replaced with the accurate alternative. The bold curve rep-
resents the normal distribution for the accuracies of the unmodified model in
different experiments. In all cases, as in the example of figure 5, the variance
of the accuracies of the modified model is smaller than that of the unmodified
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model. This means that when we replace a conditional probability distribution
in a Bayesian Network with an accurate alternative, the new model tends to be
more robust when sampling new data sets for training and testing.

Fig. 5. Distribution of accuracies for unmodified (bold curve) and modified model.

We have tested the effect of replacement of different permutations of condi-
tional probability distributions in the letter data set. In the extracted network
for the letter data set we only have 3 conditional probability distributions, so
the number of permutations is 3! = 6. Table 1 shows the results for different
sets of distribution replacements. For each set of replacements it tells whether
the modified model is significantly better than the unmodified one or not. These
results are obtained using the paired t-test with 95% confidence interval.

Table 1. Accuracy for different replacements in the Bayesian Network on the letter
data set as well as the results of the t-test for 20 different experiments.

experiment no y-bar xy2br xegvy y-bar y-bar Xy2br y-bar
change xy2br xegvy xegvy xy2br xegvy

Average of 61.7 66.1 72.3 61.4 72.9 64.3 71.4 72.7
the accuracy

V arianceofaccuracy 4.36 10.62 -0.338 11.163 2.583 9.663 11.015

T − Testresult : ESS ESS NSS ESS VSS ESS ESS

* ESS- extremely statistically significant * VSS- Very statistically significant * NSS-
Not statistically significant * SS- Statistically Significant

Replacing the conditional probability distribution of y-bar or xy2br leads to
a significantly better classifier. But, when we replace xegvy with the accurate
alternative we obtain a less accurate classifier. One reason is that, according to
attribute evaluators (such as information gain and chi square), this attribute
has less effect on the results of classification than the other two. The attribute
evaluators ranked attributes xy2br, y-bar and xegvy, which are nodes of our
network, as 1, 2 and 3, respectively. The effectiveness of replacement of the
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conditional probability distribution of an attribute is directly related to the
correctness of all its conditional dependencies. Therefore, another reason for
this negative result is that the conditional dependencies of attribute xegvy may
not extracted correctly. This problem is investigated in subsequent experiments
and also discussed in more detail in the discussion section.

4.3 Experiments with the artificial data set

In these experiments, we want to show the effect of the accuracy of the ex-
tracted conditional dependencies on the accuracy of modified classifiers using
our approach. The data set, used in these experiments, is generated using a
heart attack data generator (which we designed ourselves) which generates data
samples with 21 different attributes including the class. The objective of clas-
sifiers on this data set is heart attack diagnosis. The attributes are partitioned

Fig. 6. Bayesian Network extracted for Heart attack data set.

into 4 groups: conditions, concept, outcomes and contexts. The data generator
uses conditional probability distributions between attributes which are extracted
from statistical surveys and the medical science literature. The data generator is
used to generate a data set of 20,000 samples. The class attribute, heart attack,
could be positive or negative.

The first part of this experiment consists of extracting the Bayesian Network
or in other words the conditional independence between attributes. Since we
know the exact conditional dependencies, used for data generation, we have
manually defined the ”true” network. But the relation between stress and sleep
disturbance in this network, which is shown with the bold arrow in figure 6,
is omitted on purpose, while in the data generation process sleep disturbance
is conditionally dependant on stress. This is done in order to find out what the
effect of replacement of a conditional probability distribution, which is extracted
based on wrong conditional dependencies in the network, would be. Figure 6
shows the Bayesian Network which is used in this experiment.



10 Farid Seifi, Chris Drummond, Nathalie Japkowicz and Stan Matwin

Again, to focus the effect of replacement of conditional probability distri-
butions, we use a very small training data set. Figure 7 shows the difference in
the accuracy of the unmodified model with the modified one—in which the upper
body discomfort distribution (Upbd) is replaced by a more accurate distribution—
as a function of different training set sizes.

Fig. 7. Accuracy against size of training set for artificial data.

Now we want to show that the replacement of conditional probability distri-
butions, which are in the form of tables, makes significantly better classifiers. For
this purpose we run several experiments as explained in the experiment setup
subsection. For each individual replacement, for example changing table Chest
Pain (Chestp), the accuracies of different experiments on the modified model are
compared with the unmodified ones, using paired t-test, to find out whether the
modified model is significantly better than the unmodified one or not. Table 2
contains the results for different distribution replacements. For each replacement,
we mentioned whether the result is significantly better or not. These results are
obtained using the paired t-test with 95% confidence interval. This table contains
the results of replacing just one conditional probability distribution in each test.
Each column has a header which indicates the name of the attribute whose con-
ditional distribution is replaced. The modified models in six different cases out of
eight are extremely statistically significant. In one case, it is statistically signifi-
cant. In another case, when the conditional dependence of the sleep disturbance
attribute is removed, it is not statistically significant. Incomplete dependencies
of this attribute on others were intentionally used here to show what the effect
of using incomplete or wrong dependencies would be.

The results of these experiments again show that the variance in the accu-
racy of the modified model is smaller than the variance in the accuracy of the
unmodified model.

5 Discussion and Future Work

Replacement of conditional probability distributions of attributes which are ex-
tracted according to wrong or incomplete dependencies or have a weak relation
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Table 2. Accuracy for different replacements in the Bayesian Network on the heart
attack data set as well as the results of the t-test for 20 different experiments.

experiment no Chstp Upbd Shrtb Swetg Dizns Nasa Slepd Wkns
change

Average of 89.5 89.9 90.4 90.2 90.1 90.2 89.9 89.6 90.4
the accuracy

V arianceofaccuracy 0.445 0.945 0.6625 0.64 0.725 0.45 0.1025 0.925

T − Testresult : SS ESS ESS ESS ESS ESS NSS ESS

with the class, may impact negatively on the classification result. Suppose that
we replace such a distribution with an accurate alternative and that we use the
replaced distribution along with other attribute distributions to classify a given
instance. If, using accurate conditional probability distribution, the two condi-
tional probabilities of belonging to each class are close to each other, the effect
of replacing the distribution on the joint probabilities is weak. But when condi-
tional probabilities obtained from replaced distributions of such faulty attributes
are far apart, they have a larger impact on the Bayesian classification results,
and since the conditional distributions involving these attributes are incorrect,
there is a negative impact on the results.

One solution for such conditional probability distributions, which we pro-
pose as future work, could be to assign a weight for each attribute based on its
real effect on classification. Then, during classification, the difference between
the values which belong to each attribute’s conditional probability distribution
could be smoothened based on the weight of the attribute which it belongs to. A
similar approach has been used to improve the accuracy of Naive Bayes by weak-
ening its attribute independence assumptions in Lazy Bayesian Rules [20], Tree
Augmented Naive Bayes [15] and Averaged One-Dependence Estimators [18]. If
we consider a small weight for problematic attributes of this kind, their effect
on classification results would be reduced and therefore better results would be
obtained. This solution would require a good strategy to measure these weights.

Another result that we experienced in these tests was that the variance of
the accuracy of any modified classifier is smaller than the variance of unmodified
model. This means that the modified classifiers tend to be more robust with
respect to learning and testing with different data sets sampled from the same
domain. Testing the result of the modified classifiers on different types of drifts
in the data sets and finding which of the modified and unmodified models are
more robust in case of different types of changes in the data, such as concept
drifts or population drifts, is also proposed as future work.

6 Conclusion

In this study we propose a practical method for improving Bayesian classifiers
by using background knowledge from large, publicly available datasets existing
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independently of the training data set. We present a method which manipulates
the Bayesian Network’s conditional probability distributions, given in the form
of tables, based on background knowledge. The idea is tested on a real and
an artificial data set. The results show that such changes produce significantly
better classifiers than normal Bayesian Network classifiers.
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