
INTRODUCTION TO 

Operations Research 

Techniques 





Second Edition 

Hans G. Daellenbach • John A. George • Donald C. McNickle 

University of Canterbury, Christchurch, New Zealand 

ALLYN AND BACON, INC. 
Boston London Sydney Toronto 



!p j 5-1* 

Copyright © 1983, 1978 by Allyn and Bacon, Inc., 

7 Wells Avenue, Newton, Massachusetts 02159. 

All rights reserved. 

No part of the material protected by this copyright notice may 
be reproduced or utilized in any form or by any means, 
electronic or mechanical, including photocopying, recording, 
or by any information storage and retrieval system, without 

written permission from the copyright owner. 

Library of Congress Cataloging in Publication Data 

Daellenbach, Hans G. 
Introduction to operations research techniques. 

Includes bibliographical references and index. 
1. Operations research. I. George, John A. 

II. McNickle, D. C. III. Title. 
T57.6.D3 1983 658.4'034 82-16303 
ISBN 0-205-07718-8 

0-205-07974-1 (International) 

Printed in the United States of America. 

10 9 8 7 6 5 4 3 2 88 87 86 85 



CONTENTS 

Preface xv 

1 METHODOLOGY OF OPERATIONS RESEARCH 1 

1-1 The Phases of an Operations Research Project 2 
1-2 Formulation of the Problem 3 
1-3 The Components of a Decision Problem 4 
1-4 State of Environment 5 
1-5 On Systems 6 

1-6 The Systems Approach of Operations Research 7 
1-7 Some Further Implications of the Systems Approach 
1-8 Should the Project Continue? lD 
1-9 An Abbreviated Case Study 10 
1-10 The Construction of a Mathematical Model 14 
1-11 The Measure of Effectiveness 15 
1-12 Multiple Objectives 18 
1-13 Discounting of Future Costs and Benefits 20 
1-14 Utility Measures 21 
1-15 Models as Approximations 21 
1-16 Deriving a Solution to the Model 23 
1-17 Sensitivity Analysis 24 
1-18 Testing the Solution for Performance 24 
1-19 Implementation of the Solution 25 
1-20 Controlling and Maintaining the Solution 27 

Exercises 28 
References 31 

9 

Part One DETERMINISTIC MODELS 

H) LINEAR PROGRAMMING—INTRODUCTION AND 
L APPLICATIONS 34 

2-1 The Problem 34 
2-2 Decision Variables 35 

UNIVERSITY LIBRARIES 
CARNEGlE'MELt.ON UNIVERSITY 

PITTSBURGH, PENNSYLVANIA 15213 
V 



VI Contents 

2-3 Objective Function 36 
2-4 Constraints 38 
2-5 The Feasible Region 40 
2-6 Graphical Solution 41 
2-7 Mathematical Summary 42 
2-8 Slack Variables 43 
2-9 Sensitivity Analysis 44 
2-10 Solution by Computer 48 
2-11 An Expanded Version of the Power Plant Capacity Problem 50 
2-12 A Production Scheduling Problem 52 
2-13 Corporate Planning Model 56 
2-14 Advertising Media Selection—An Example of Goal Programming 63 

2- 15 Some Further Applications 69 
Exercises 70 
References 84 

3 THE SIMPLEX METHOD _86 

3- 1 Extreme Points 86 
3-2 General Ideas of the Simplex Method 89 
3-3 Simultaneous Equation Approach to the Simplex Method 90 

3-4 The Variable Entering the Basis 92 
3-5 The Variable Leaving the Basis 93 
3-6 The Simplex Tableau 95 
3-7 Iterations of the Simplex Method 95 
3-8 Initial Basic Feasible Solution and Artificial Variables 97 

3-9 The Big M Method 98 
3-10 The Two-Phase Method 100 
3-11 Alternative Optimal Solutions 102 
3-12 Degeneracy 103 
3- 13 Computer Codes and the Simplex Method 104 

Exercises 105 
References 109 

4 DUALITY OF LINEAR PROGRAMMING_110 

4- 1 The Dual Problem 110 
4-2 More on Duality Relations 112 
4-3 Duality Theorems 115 
4-4 Further Interpretation of the Dual Problem 117 
4-5 The Dual Variables, (zy — c}) Values, and the Simplex Multipliers 118 

4-6 Dual Simplex Method 120 
Exercises 124 
References 127 



__ Contents vii 

r SENSITIVITY AND POSTOPTIMAL ANALYSIS OF LINEAR 
J PROGRAMMING 128 

5-1 Postoptimal Analysis of Objective Function Coefficients 128 
5-2 Parametric Programming of Objective Functions 131 
5-3 Postoptimal Analysis of RHS Parameters 134 
5-4 Profitability of Changing the RHS 138 

*5-5 RHS Changes that Create Infeasibility 139 
5-6 Parametric Programming of the RHS 140 
5-7 Postoptimal Analysis of LHS Coefficients and Addition of New 

Variables 142 

5-8 Computer Codes and Postoptimal Analysis 144 
Exercises 145 
References 151 

> TRANSPORTATION AND ASSIGNMENT PROBLEMS_152 

6-1 Formulating the Transportation Problem 152 
6-2 Transportation Problem in General Terms 155 
6-3 The Transportation Tableau and an Initial Basic Feasible Solution 157 
6-4 Network Flows Associated with a Basis Change 158 
6-5 The Stepping-Stone Algorithm 162 
6-6 Degeneracy 165 
6-7 Duality and the uv Method 165 

6-8 Allocation over Time—A Regular Time/Overtime Problem 168 
*6-9 The Transshipment Problem 171 
6-10 The Assignment Problem 173 
6-11 The Hungarian Method 175 

Exercises 178 
References 185 

7 NETWORK FLOW PROBLEMS_ 

7-1 The Maximum Flow Problem 186 
7-2 The Labeling Technique 189 
7-3 Labeling of Nodes 190 

7-4 Diagrammatic Solution by Use of the Labeling Technique 192 
7-5 The Max Flow/Min Cut Theorem 195 
7-6 An Application of the Maximum Flow Problem 195 

*7-7 Extensions to Maximum Flow and Transportation Problems 197 
Exercises 198 
References 199 



Contents 

8 PROTECT PLANNING AND SCHEDULING TECHNIQUES 

8-1 Network Event Representation 201 
8-2 Earliest Project Completion Time 204 
8-3 The Critical Path 209 
8-4 Actual Project Planning and Control Through CPM 212 

8-5 Program Evaluation and Review Technique—PERT 214 

8-6 The Critical Path Method Cost Model 217 

Exercises 220 
References 231 

DETERMINISTIC DYNAMIC PROGRAMMING_ 

1-1 A Somewhat Disguised Routing Problem 232 
>-2 Solution of Routing Problem by Stages 234 
)-3 Review and Implications of Computational Process 237 
)-4 A Rental Decision Problem 240 
)-5 Dynamic Programming Formulation of the Rental Problem 242 
)-6 Evaluation of Recursive Relation for Rental Problem 243 

1-7 Computational Aspects 247 
1-8 A Resource Allocation Problem 247 
1-9 An Equipment Replacement Model 252 
1-10 Alternative Formulation of Replacement Problem—A Regeneration 

Model 255 
1-11 Two or More State Variables 258 
1-12 Continuous State Variables 259 
1-13 Some Further Applications 260 

Exercises 261 
References 269 

Part two STOCHASTIC MODELS 

1 A ELEMENTS OF PROBABILITY AND STOCHASTIC 
1U PROCESSES__ 

10-1 Rules of Probability 272 
10-2 Bayes’s Theorem 275 
10-3 Random Variables 276 
10-4 Expected Values and Variances of Random Variables 
10-5 Discrete Probability Distributions 281 



Contents ix 

10-6 Continuous Probability Distributions 283 
10-7 Distributions of Functions of Random Variables 287 
10-8 Stochastic Processes 290 
10-9 Poisson Processes 290 

Exercises 293 
References 295 

11 BAYESIAN DECISION ANALYSIS___ 297 

11-1 Setting Up a Decision Problem 297 
11-2 Expected Monetary Value Decision Criteria 299 
11-3 The Expected Value of Perfect Information 301 
11-4 Decision Trees 302 
11-5 Experimentation for Decision Making 303 
11-6 The Expected Value of Sample Information 306 
11-7 Utility Functions 306 
11-8 Decision Making with Continuous Prior Distributions 309 
11-9 EVPI for a Normal Prior Distribution 311 
11-10 Revision of Continuous Prior Distributions 313 
il-11 Concluding Remarks 315 

Exercises 316 
References 319 

12 INVENTORY CONTROL 320 

12-1 Structure of Inventory Systems 321 
12-2 Functions of Inventories 322 
12-3 Costs Associated with Inventory Decisions 324 
12-4 Demand 328 

12-5 A Simple Demand-Forecasting Method 329 
12-6 Overview of Models Discussed 332 
12-7 Economic Order Quantity Models 332 
12-8 Economic Order Quantity Model for Quantity Discounts 337 
12-9 Single-Cycle Stochastic Inventory Control Models 338 
12-10 Safety Stocks for the Lost-Sales Case 341 
12-11 The (Q, r) Model 343 
12-12 (s, S) Policies 346 
12-13 Practical Stock Control—Which Model to Use? 347 
12-14 The Dynamic Economic Order Quantity Model 352 

12-15 The Silver-Meal Heuristic for Variable Demand Patterns 357 
12-16 Some Further Considerations 359 

Exercises 3 59 
References 364 



X Contents 

1L MARKOV CHAINS___ 565 

13-1 Transition Matrix 365 
13-2 n-Step Transition Probabilities 368 
13-3 Classification of Finite Markov Chains 370 
13-4 Limiting State Probabilities 371 

*13-5 Matrix Method for Computing Limiting State Probability Vector 372 
13-6 Interpretation of Limiting State Probabilities 373 

*13-7 Transient Behavior of Finite Markov Chains 374 
13-8 Fitting a Markov Chain Model 376 
13-9 A Share-of-the-Market Model 377 
13-10 Markov Chains with Rewards 379 
13-11 A Failure Model 380 

*13-12 A Group Replacement Model—Analysis of the Transient Behavior 383 

Exercises 386 
References 390 

H STOCHASTIC DYNAMIC PROGRAMMING AND 
MARKOVIAN DECISION PROCESSES_ 591 

14-1 Dynamic Programming with Stochastic State Space 392 
14-2 A Forest Stand Management Program with Probabilistic Tree 

Growth 394 
14-3 Optimization over an Unbounded Planning Horizon 399 

14-4 Functional Equations 401 
14-5 Markovian Decision Processes 403 
14-6 Approximation in Policy Space with Discounting 406 
14-7 Solution of Inventory Control Problem for Discounting 408 
14-8 Average Gain per Period 411 
14-9 Approximation in Policy Space for Average Cost per Period 413 

14-10 Solution for Average Gain per Period 414 
14-11 Linear Programming Formulation of Markovian Decision 

Processes 416 
Exercises 418 
References 424 

1 5 INTRODUCTION TO WAITING LINES_426 

15-1 General Structure of Waiting Lines 427 
15-2 Arrival Time Distribution 429 
15-3 Service Time Distributions 431 



Contents xi 

15-4 Queueing Model Nomenclature 432 
15-5 The Most Basic Waiting Line Model, M|M|1 432 
15-6 The Balance Equation Method 433 
15-7 Examples of M|M|1 437 
15-8 Multiple Channel Models, M|M|S 439 
15-9 A Case Study of an M|M|S System 441 
15-10 The Effects of Pooling 443 
15-11 Other Markovian Models 444 
15-12 Queueing Tables and Graphs 447 
15-13 Nonexponential Arrival and Service Distributions 447 

*15-14 Markovian Networks 449 
Exercises 453 
References 456 

16. SIMULATION 458 

16-1 Simulation of an Inventory System 459 
16-2 Structure of Simulation Models 465 
16-3 Random Numbers and Other Variates 468 
16-4 Stochastic Simulation by Computer 472 
16-5 Example Using Event Incrementation 474 

*16-6 Activity Cycle Diagrams 479 
16-7 Tactical Consideration and Validation of Stochastic Simulation 484 
16-8 Simulation Computer Languages 485 
16-9 Concluding Remarks 488 

Exercises 489 
References 496 

Part Three ADVANCED TECHNIQUES 

EXTENSIONS TO LINEAR PROGRAMMING 500 

17-1 Lower-Bounded Variables 500 
17-2 Upper-Bounded Variables 501 
17-3 Revised Simplex Method 504 
17-4 Separable Programming 508 
17-5 The \-Formulation of the Approximating Problem 511 
17-6 Analysis of the Solution of the X-Formulation 515 

Exercises 516 
References 517 



xii Contents 

18 INTEGER PROGRAMMING___519 

18-1 A Simple Integer Problem 519 
18-2 Assembly-Line Balancing Problem 520 
18-3 The Fixed-Charge Problem 522 
18-4 Further Applications 523 
18-5 Introduction to Solving Integer Programming Problems 524 
18-6 General Structure of Integer Programming Techniques 524 
18-7 A Branch and Bound Algorithm 527 
18-8 Example of Branch and Bound Algorithm 530 

*18-9 Cutting-Plane Technique 530 
18-10 General Comments 535 
18-11 A Plant Upgrading Problem 535 
18-12 Solution to the Plant Upgrading Problem 539 

18-13 Sensitivity Analysis 540 
Exercises 542 
References 547 

1 n CLASSICAL OPTIMIZATION METHODS WITH 
1V APPLICATIONS TO INVENTORY CONTROL_549 

19-1 Optimization of Differentiable Functions of One Variable 549 
19-2 A Constant-Cycle Inventory Replenishment Model with Random 

Demand 552 
19-3 Convex and Concave Functions in One Variable 554 
19-4 Differentiable Functions of Two Variables 557 
19-5 A Two-Variable Example: The (Q, r) Inventory Model 558 
19-6 Convex and Concave Functions of Several Variables 560 
19-7 Constrained Optimization and Lagrange Multipliers 561 
19- 8 Interpretation of Lagrange Multipliers 566 

Exercises 567 
References 570 

n UNCONSTRAINED NONLINEAR PROGRAMMING 
ZU METHODS___571 

20- 1 Univariate Optimization Methods 572 
20-2 Golden Section Search Method 573 
20-3 Newton’s Method (Univariate) 576 
20-4 Multivariate Unconstrained Optimization: An Example Problem 579 
20-5 General Structure of Nonlinear Programming Algorithms 580 

20-6 Gradient Methods for Unconstrained Optimization 581 



Contents xiii 

20-7 Newton’s Method (Multivariate) 584 
20-8 Quasi-Newton Methods 587 

Exercises 588 
References 589 

21 CONSTRAINED NONLINEAR PROGRAMMING _590 

21-1 An Example of a Nonlinear Programming Problem 591 
21-2 The Kuhn-Tucker Conditions 591 
21-3 Sufficient Conditions for Maximum to Constrained Problem 595 
21-4 Quadratic Programming 597 
21-5 The Reduced Gradient Method 600 
21-6 Reduced Gradient Method Criteria 605 
21-7 Penalty Methods 606 
21-8 Penalty Methods Applied to Problem (21-2) 610 
21-9 Advanced Nonlinear Programming 611 

Exercises 611 
References 612 , 

MULTIPLE-OBJECTIVE DECISION MAKING 615 

22-1 Some Actual Multiple-Objective Decision Problems 616 
22-2 An Overview of Multiple-Objective Decision Techniques 617 
22-3 The Simplex Method for Preemptive Goal Programming 619 
22-4 Minsum and Minmax Multiple-Objective Linear Programming 623 
22-5 An Application to Multiple-Use Land Management 627 
22-6 Efficient Solution Methods and Interactive Approaches 632 
22-7 Decision Analysis Under Uncertainty with Multiattribute 

Outcomes 635 

22-8 Multiattribute Utility Functions—Additive Utilities 636 
22-9 Mutual Utility Independence 638 
22-10 Decision Evaluation with Multiattribute Utility Functions 641 

Exercises 643 
References 645 

2 3 HEURISTIC PROBLEM SOLVING 647 

23-1 Ill-Structured Problems 648 
23-2 Heuristics—The Human Approach to Problem Solving 648 
23-3 Satisficing 650 



XIV Contents 

23-4 Heuristic Solution Strategies 651 
23-5 Processing n Jobs Through Two Machines 653 
23-6 Depot Location Problem 655 
23-7 Middle Earth Weed Processing 658 
23-8 The Traveling Salesman Problem 662 

Exercises 666 
References 671 

APPENDIXES 

INTRODUCTION TO VECTORS AND SIMULTANEOUS 
EQUATIONS, PLUS A MATRIX ALGEBRA APPROACH TO 
LINEAR PROGRAMMING ___ 673 

A-l Vectors 673 
A-2 Manipulation of Vectors 674 
A-3 Special Vectors 677 
A-4 Representing a Vector as a Linear Combination of Other Vectors 678 
A-5 Linear Independence, Spanning Set, and Basis 680 
A-6 Matrices 682 
A-7 Linear Simultaneous Equations 684 
A-8 Numerical Solution of Simultaneous Equations 687 

*A-9 Linear Programming in Matrix Notation 689 
Exercises 690 
References 691 

TABLES 692 

Areas under a Standard Normal Curve 693 
The Unit Normal Loss Integral N(z) 694 

C ABSTRACTS, JOURNALS, AND CASE BOOKS_695 

Operations Research Abstracts 695 
Selected Technical and Professional Journals in Operations Research in 

English 695 
Case Books in Operations Research 697 
Index 699 



PREFACE 

This text is a survey of the most important quantitative tools and techniques used by 
operations researchers in addition to the indispensible bag of statistical tools of data 
analysis. We make no pretense of providing a complete treatment of any of them. 
However, our objectives go beyond giving simply a broad appreciation. We hope that 
intensive study of this text will give the reader a sufficiently solid working knowledge 
of what we consider the core tools (those covered in Parts One and Two) to use them 
with some degree of confidence. We also see our text as a springboard to the study 
of more advanced specialized texts, either practical or theoretical. For each model or 
technique four questions were foremost in our minds: What are its assumptions? How 
is a real-life problem translated to fit into it? What are the basic ideas underlying its 
solution method? What are its strengths and weaknesses? 

The text is divided into three parts, preceded by what may well be the most 
important chapter of the text—a fairly detailed and practical review of the basics of 
the operations research methodology. Part One studies deterministic models and tech¬ 
niques, mainly linear programming, some of its variations, and various types of net¬ 
works, including dynamic programming. Part Two covers predominantly stochastic 
models and techniques. Part Three is devoted to some of the more advanced extensions 
of tools covered in Parts One and Two (particularly mathematical programming), as 
well as a brief incursion into some of the newer areas of operations research—multiple- 
objective decision making and heuristic methods. 

We have attempted to keep the mathematical prerequisites to a minimum. Parts 
One and Two require no calculus, but assume that the reader has been exposed to 
the material taught in elementary college algebra and introductory probability and 
statistics courses, courses commonly required of students in business administration, 
economics, engineering, and computer science. Chapters 3-7, 13, 14, 17, 18, 20, 
21, and 22 use some linear algebra—the ideas underlying manipulation of systems 
of linear equations. The only matrix algebra—some matrix and vector multiplication 
in Chapter 13 (Markov Chains) and Chapter 17 (Extensions to Linear Programming) 
is covered in Appendix A on linear algebra. Chapters 19-21 and 23 use elementary 
concepts of differential calculus, such as first- and second-order derivatives, partial 
derivatives, and gradients. Part Two is introduced by a brief review of probability and 
stochastic processes. Starred sections either require a higher level of mathematical 
maturity or make cross reference to chapters that are normally not considered a 

XV 



xvi Preface 

prerequisite for the material covered in that chapter. The starred sections cover optional 

material and can be skipped without loss of continuity. Part Three, except for Chapters 

22 and 23, is at a more advanced level than the first two parts by virtue of the very 

nature of the subject treated. 
The text is suited for introductory and intermediate courses in operations research 

at a junior, senior, or first-year-graduate level in almost any field, but especially 

business, economics, computer science, engineering, and forestry, as well as math¬ 

ematics, where its stress on practical modeling will be particularly useful. 

Whenever possible, the various chapters or sets of chapters have been made self- 

contained in the sense that they do not rely on any material covered earlier (except 

for some starred sections). Naturally, the basic philosophy and methodology of op¬ 

erations research expounded in Chapter 1 forms the framework within which all 

modeling is done. The precedence relations among chapters are shown in the table 

following. 

Chapter precedence and prerequisites 

Chapter 2 3 

Precedence and prerequisites 

4 9 10 11 12 13 19 20 A* M* C* 

2 Linear programming X 

3 The simplex method X X 

4 Duality X X X 

5 Sensitivity analysis X X X X 

6 Transportation and assignment problems X X X X 

7 Networks X X 

8 Project planning 
9 Deterministic dynamic programming X 

10 Probability 
11 Bayesian decision analysis X 

12 Inventory control X 

13 Markov chains X X X 

14 Stochastic dynamic programming X X X 

15 Waiting lines X X 

16 Simulation X 

17 Extensions to linear programming X X X X 

18 Integer programming X X X 

19 Classical optimization X X 

20 Unconstrained nonlinear programming X XXX 

21 Constrained nonlinear programming X X X X X 

22 Multi-objective decision making X X X X 

23 Heuristic problem solving = X 

*A = basic linear algebra; M = vectors, matrices, matrix inverse; C = differential calculus. 



Preface xvii 

The instructor has considerable scope in choosing the collection and sequence 
of topics. Following are some suggested sequences: 

• Deterministic models: Part I 
• Stochastic models: Part II 
• Introduction to linear programming and networks: Chapters 2-7 
• Introduction to mathematical programming: Chapters 3-5, 17, 18, 21, 22 
• Introduction to operations research: Chapters 1-3, 7-9, 11-13, 15, 16, 22, 23 

The text contains more material than can be covered adequately in a sequence of 
courses covering a full academic year, except at a graduate level. 

ACKNOWLEDGMENTS 

Thanks to all the undergraduate and graduate students and instructors who used the 
first edition, as well as the reviewers who have contributed to this new edition by 
suggesting improvements in coverage and presentation of the material. Chapter 23 on 
Heuristic Problem Solving has been adapted from Chapter 16 of the first edition, 
written by John Rodgers. 
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CHAPTER ONE 

Methodology of 
Operations Research 

What is operations research? The name, which reflects its first applications, is of little 

help in explaining what the field is all about. There is not even total agreement on 

the name. The British use operational research, while large sections in the business 

community refer to it as management science. A product of World War II, operations 

research was first used for the analysis of and research into the conduct of military 

operations. The term “research” itself is somewhat misleading. It is not scientific 

research, with its connotation of advancing fundamental knowledge in some science. 

In fact, there is no generally accepted definition for operations research. The view 

taken in this text is that it is a scientific approach to the analysis of many kinds of 

complex decision-making problems—economic, engineering, or environmental—as 

encountered by individuals and organizations of all types, be they profit making or 

nonprofit, private or governmental. Often the problem studied involves the design 

and/or the operation of systems or parts of systems. The aim is the evaluation of 

probable consequences of decision choices, usually under conditions requiring the 

allocation of scarce resources—funds, manpower, time, or raw materials. The objective 

is to improve the effectiveness of the system as a whole, with emphasis on the last 

three words. We shall return to this point. 

The concept of a system—an interrelated set of parts making up a coherent whole 

that is more than just the sum of its parts—is central to operations research. The 

system concept applies to most organized human activities: the business activities of 

an individual; the running of a company, a hospital, or a law enforcement agency; 

or the operation of man-machine systems, such as all or part of a manufacturing 

plant, a network of power stations, or a port. Implicit in this view of operations research 

is the notion that systems may be operated in many different ways and that the “best” 

way may not be obvious or necessarily unique. The process of finding a best way is 

called optimization. Thus most operations research projects involve the optimization 
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of some operation of a system, such as minimizing production costs, maximizing 

profits, maximizing the capacity of a flow (of goods or information) through a network, 

or minimizing the cost of achieving certain technical properties for some engineering 

entity or operation. In contrast to mathematics, physical sciences, or economics, 

operations research is thus a prescriptive discipline. 

In this chapter we will explore how operations research projects are dealt with. 

We will demonstrate some of the philosophy underlying operations research. As you 

read through these pages, you will become increasingly aware of the fact that the 

complexities of reality call for great flexibility in how operations research projects are 

tackled. There exists no one correct approach. The “best” approaches to be followed 

depend not only on the nature of the problem and the amount of time and funds 

available, but also on the training and personality of the operations researcher. There¬ 

fore, all we can do is to highlight the most important aspects of the methodology, give 

some illustrations, and point out the various pitfalls that will invariably crop up along 

the crooked way to the successful completion of a project. 

While writing this chapter we found that it is not really possible to discuss the 

methodology of operations research without assuming at least some familiarity with 

operations research techniques. Thus, should we expose you to the most basic op¬ 

erations research techniques first? On the other hand, it does not make much sense 

to study individual techniques without a framework of methodology and the philosophy 

of operations research. Discussing techniques in a “vacuum” tends to convey a com¬ 

pletely wrong picture of the true nature of operations research. We chose to consider 

methodology first, accepting the risk that some concepts will remain fuzzy on first 

reading. In fact, Chapter 1 should be studied again when you have become familiar 

with some of the techniques in the following chapters. 

1-1 THE PHASES OF AN OPERATIONS RESEARCH PROJECT 

Any operations research project that has a happy ending goes through five major steps 

or phases: 

1. formulating the problem; 

2. constructing a mathematical model to represent the operation studied; 

3. deriving a solution to the model; 

4. testing the model and evaluating the solution; 

5. implementing and maintaining the solution. 

No single phase can be labeled as the most crucial element in the success or 

failure of an operations research project. But what distinguishes operations research 

from related disciplines is the formal construction of mathematical models, consisting 

of functions, equations and inequalities, and the techniques available to find optimal 

solutions to such models. Furthermore, while it is possible to give some general 

guidelines and advice on how to tackle the other three phases, actual practice is the 

only truly effective teacher. This is the main reason why the remaining chapters of 

this text are devoted almost exclusively to phases two and three. 

Although the phases are normally initiated in sequential order, they do not 
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necessarily terminate in the same order. In fact, each phase usually continues until 

the project is successfully implemented. All phases overlap subsequent as well as 

preceding phases. For example, the successful formulation of the problem depends 

on having at least tentatively considered each of the other four phases. Why? Inter¬ 

relationships between various aspects of the operation may suggest a form of model, 

which in turn may dictate what data are needed for problem formulation, testing, and 

implementation. The complexity of the solution to a model may call for additional 

simplifications to be introduced into the model. The form of the solution used must 

be suitable for implementation. Testing the model and consideration of the imple¬ 

mentation may reveal obstacles that lead to a reformulation of the original problem. 

So, even if we must discuss each phase separately, it should be borne in mind that 
they overlap. 

As pointed out earlier, the objective of an operations research project is to improve 

the effectiveness of the system as a whole. This improvement can, however, only be 

secured if the solution to the problem is fully implemented. Securing the implemen¬ 

tation of the solution is thus the prime concern underlying the first four phases. All 

measures that enhance the chances of implementation have to be initiated and planned 
for from the very outset of the project. 

During all phases, it is crucial to record for future reference all assumptions made 

(e.g., the basis for all simplifications introduced into the model) and all data used, 

including their sources. This point cannot be stressed enough. As a project progresses 

through its various phases, it invariably will undergo minor and major revisions and 

corrections. Assumptions, simplifications, and shortcuts introduced earlier are easily 

forgotten unless they have been documented. It is also a prerequisite to establish 

effective maintenance procedures for the solution. 

Most operations research projects are the fruit of a team effort where team mem¬ 

bers complement each other with specialized knowledge. The composition of the team 

may change as the project progresses. However, the team should include at least one 

person intimately involved with the operation being studied, to provide the necessary 

physical and technical know-how about the operation. This person will serve not only 

as the liaison between the operations research team and the sponsor of the project, 

but also as a sounding board for the other members of the team. His or her participation 

throughout the project will improve the chances of successful implementation. 

Although there are numerous possibilities for using operations research techniques 

for small projects that can be completed within a few days, many projects may require 

a few months or even several years to reach a successful conclusion. The total man¬ 

power invested may easily be a multiple of the total elapsed time. The sponsor of a 

project should be made aware from the outset of these realities. He or she should be 

warned that unforeseen factors (such as incomplete or incorrect data, or unexpectedly 

complex relationships) can result in deadlines being overshot. 

1-2 FORMULATION OF THE PROBLEM 

The formulation of the problem is a sequential process—the initial and often tentative 

formulation goes through a series of progressive reformulations and refinements as the 



4 Chapter 1 Methodology of Operations Research 

project proceeds and as deeper insight into the problem is obtained. It is in this phase 

that the ultimate success or failure of a project usually has its roots! 

What is a problem? For a problem to exist: 

1. There must be an individual or a group of individuals—referred to as the 

decision maker(s}—who has a felt-needs to be satisfied or objectives and goals 

to be achieved. 
2. The decision maker must have at least two alternative courses of action available 

that achieve the objectives or have a significant probability of achieving them. 

3. There must be some doubt as to which course of action is best in terms of 

achieving the decision maker’s objectives. 

4. There is an environment within which the problem to be solved is relevant. 

In short, a decision maker is said to have a problem if he or she wants something 

within a real context, has alternative ways of obtaining it, and is in doubt as to which 

alternative is best in terms of the objectives. The components of a problem are thus: 

(1) the decision maker, (2) the objectives, (3) the alternative courses of action, and 

(4) the environment. To formulate the problem, we first have to identify these com¬ 

ponents. 

1-3 THE COMPONENTS OF A DECISION PROBLEM 

The decision maker is the individual or group who has control over the choice of 

actions to be taken. In many instances, there are several levels of decision makers: 

those who actually make the day-to-day decisions for the operation studied, those who 

have the power to initiate and change policies governing how decisions are to be 

made, and those who have delegated the power of decision making. The operations 

researcher should have a thorough understanding of the span of control vested in each 

level. This is important in order to define the scope of a project—those aspects of the 

decision problem that can be changed and those that are “off limits. Organization 

charts help to provide part of the information, but a complete picture can be obtained 

only by interviewing and questioning the people within an organization. 

A decision maker may have several often conflicting objectives. Some objectives 

are acquisitive—there is something to be achieved, e.g., maximizing some desirable 

attribute, such as profits or output, or minimizing an undesirable consequence, such 

as high costs or environmental deterioration. Others are retentive, such as keeping a 

given share of the market or maintaining a certain degree of customer goodwill. 

Retentive objectives may be hidden or implicit in the policies currently pursued. 

The alternative courses of action or decision choices are given by those aspects 

of the system that are controllable by the decision maker. In contrast, the environment 

consists of the uncontrollable aspects, such as the available financial resources, man¬ 

power, and machine capacity; costs and returns associated with decision choices; and 

those aspects that are external to the system, e.g., demand and supply patterns, legal 

constraints, and possible countermeasures that can be taken by competitors. 

The distinction between controllable and uncontrollable aspects may not be clear- 
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cut or may even be somewhat arbitrary. For instance, the decision maker may consider 

the demand for a product or service as uncontrollable (as part of the environment) in 

spite of the fact that if the firm chooses, it can affect the volume and pattern of demand 

in various ways, such as by granting quantity discounts and engaging in promotional 

activities. C. W. Churchman, in The Systems Approach (Dell, 1968), asks the fol¬ 

lowing two questions: “Can I [the decision maker] do anything about it?” and “Does 

it matter relative to my objectives?” If the answer to both questions is yes, this particular 

aspect is part of the decision choice relevant to the problem. If the answer to the first 

is no but to the second is yes, then this aspect is part of the environment. If the answer 

to both questions is no, then this aspect is not relevant to the problem. 

Analysis of the environment will reveal whether the data base, such as detailed 

records for sales or demand and cost factors, is adequate for proceeding with the 

project. If it is not, then procedures for collecting the required data must be initiated 

without further delay so that later, when solutions are to be computed and tested, the 
project is not jeopardized by missing or bad data. 

1-4 STATE OF ENVIRONMENT 

Most decision problems involve some element of uncertainty. Not all aspects of the 

current or the future environment in which the decision has to be made may be 

known exactly. In many problems, the effects of uncertainty may be so small that 

they can be ignored for purposes of analysis. We then talk about decision making 

under certainty. Each action leads to one and only one known outcome, as depicted 

in Figure 1-1. This does not necessarily mean that such problems are easy to solve. 

Consider the problem of the traveling salesperson who has to visit a number of cities 

and would like to find an itinerary that minimizes the total distance traveled. The¬ 

oretically, problems of this sort can be solved by enumerating all possible itineraries 

(actions). From a practical point of view, such enumeration may not be economically 

feasible. If there are only ten cities, the number of possible itineraries is 3,628,800 

For twenty cities, it is 2,432,902,008,176,640,000—clearly an impossible task. More 
powerful methods of evaluation are needed. 

If a given action may lead to one of a number of possible outcomes, as, shown 

in Figure 1-1, depending on which future event occurs or which state of the envi¬ 

ronment is true, and if the outcome is only known after the action has been taken, 

then we are dealing with decision making under uncertainty. Decision problems under 

uncertainty may be graduated further according to the degree of uncertainty. If it is 

possible to specify a probability distribution over the outcomes for each action, the 

problem is classified as a decision problem under risk, whereas the label decision making 

under uncertainty is then reserved for those problems for which no objective infor¬ 

mation about the likelihood of the various outcomes is available. For example, from 

past experience, a newspaper vendor may have a fair idea of the chances of selling 

more than 50, 60, or 70 copies of the Saturday edition of the local paper. Thus, she 

faces a decision problem under risk. On the other hand, a firm contemplating whether 

or not to finance a given research project, which, if successful, may lead to development 
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Figure 1-1. Decision making under certainty and uncertainty. 

Present Future 

Action Outcome 
Decision making 
under certainty 

Data 

Decision making 
under uncertainty 

of a new product, usually will have no hard information about the chances of success, 

but only the subjective judgment of the possibly biased researchers. Chapter 11 will 

introduce you to some elementary approaches to analyzing problems of this nature. 

Similarly, in situations where two or more competitors try to outguess the op¬ 

ponents, little or nothing may be known about the likelihood or the various strategies 

that the competitors may take. Game theory, a subject not covered in this text, is an 

attempt to deal with such problems. (See J. D. Williams, The Compleat Strategyst, 

McGraw-Hill, 1965.) 

Although interesting in theory, in practice these fine distinctions are not really 

helpful. The boundary between objective and subjective judgments is rather fuzzy. 

The method finally chosen by the operations researcher will depend on many other 

elements, including the time and amount of funds available to complete the project 

or the accuracy required, rather than on the classification of the problem. 

1-5 ON SYSTEMS 

For the actual identification of the components of a problem, a systems approach is 

used. But first, what is a system? A system is a set of interrelated parts or subsystems, 

each one of which is in charge of some mission or task, with the following properties: 

1. Each part contributes toward the objectives of the system. These contributions 

are measurable in terms of the objectives of the system as a whole. 
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2. Each parts effectiveness depends on the contributions of at least one other 
part; i.e., no part has an independent effect on the system. 

3. Every possible subgroup of parts has properties 1 and 2. Hence, the parts 
cannot be organized into independent subsystems. 

4. The system has an outside—an environment—which gives inputs into the 
system and receives outputs from the system. What is considered part of the 
system and what lies outside of it (the boundary of the system) depends on the 
analyst’s purpose for studying the system. 

Consider a manufacturing firm organized along functional lines: procurement 
of raw materials, production, marketing, finance, and personnel. In response to com¬ 
petitive pressures, the marketing department proposes to increase the length of the 
guarantee period offered on one of the products sold. The operations research group 
is asked to investigate this proposal. What is an appropriate choice for the system to 
be studied, its boundary, and its environment? Marketing itself consists of distribution, 
sales, and customer service. A change in the guarantee period is expected to increase 
sales. It will also increase guarantee costs incurred by customer service. Therefore, 
as a first choice, the system studied could be confined to sales and customer service 
(System 1), with all other operations of the firm, the customer population, and com¬ 
petitive firms in the industry forming the system’s environment. The objective of 
System 1 is to find the guarantee period that maximizes the difference between sales 
revenues and guarantee costs. 

System 1 views product quality as part of the environment. Product quality will 
affect both sales and guarantee costs. Hence, the system studied could be enlarged to 
include production. The objective of this larger system—System 2—is to find the 
optimal combination of product quality and guarantee period so as to maximize profits. 
Product quality is affected by the quality of the raw materials used, which are part of 
the environment of System 2. The system studied could thus be enlarged further to 
also include procurement, yielding System 3. System 3 could be extended to include 
other products of the firm if sales of these products are affected by changes in the 
guarantee period of the first product, yielding System 4. And so on it goes, with the 
universe as the ultimate system. 

We thus see a hierarchy of systems. Each system is embedded in some larger 
system, as depicted in Figure 1-2. Viewed in this framework, the distinction between 
optimization (dealing with the system as a whole) and suboptimization (dealing with 
only part of a system) becomes academic. All optimization is in fact suboptimization. 

1-6 THE SYSTEMS APPROACH OF OPERATIONS RESEARCH 

Most projects start with an orientation period which involves visits to the facilities, 
interviews with the personnel involved, and, very early in the project, establishing 
lines of communication and procedural rules for obtaining the various bits and pieces 
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Figure 1-2. Hierarchy of systems. 

of information and data needed during the formulation of the problem. At this stage 

the operations researcher would seek answers to the following questions: 

1. How does the sponsor or client of the project see the nature of the problem? 

How did the problem arise? Is it generally agreed to be important and why? 

Is it the “rear problem? Will the probable benefits justify the probable costs 

of undertaking the project? 
2. What resources in terms of manpower, funds, and computer facilities are 

available to tackle the problem? How much time is available for completion 

of the project? 
3. What is the system for which the sponsor has direct responsibility? What 

subsystems and parts exist, and what are their missions? What interactions take 

place between them? Who are the decision makers? This information is best 

presented on charts depicting the flow of documents and materials. These 

charts will show where decisions are being made and where they could be 

made. 
4. What is the wider system that encompasses the system under study? What are 

the links between the system and the wider system? This will define the en¬ 

vironment. 
5. What are the objectives of the wider system? What are the objectives of the 

system being reviewed? Are they compatible? 

6. What actions are available to control the system? What constraints restrict the 

choice of actions? How do the actions available affect the wider system? The 

aim is to identify effects that may impair the performance of other subsystems 

of the wider system, thus avoiding unnecessary suboptimization. Should new 

actions be developed? 
7. How can the contribution of each action be measured in terms of the objectives 

of the system? What data and information must be collected to measure these 

contributions? Where are they available? Who should collect them? How 

reliable are the data? 
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The answers to some questions may invalidate answers to earlier questions and 
therefore necessitate their restatement. The whole process is an iterative one, requiring 
several partial or complete passes through the questions. 

The boundary of the system and the components of the problem are delineated 
in steps 3 through 6. Given the complexity of systems behavior, the description of the 
system appropriate for a project will never be complete, and we should not aim to 
make it so. We stop when we have discovered enough about the system to be able 
to predict all significant consequences of the actions available to control the system. 
The difficulty lies in judging at which point an effect can be regarded as insignificant 
and hence can be safely ignored in the analysis. In general, the larger the portion of 
the wider system explicitly included in the analysis, the more expensive the project 
will be in terms of manpower and funds. But also the benefits that can be gained 
from the implementation of the findings will usually be greater. Thus, there exists a 
strategic problem of balancing the additional costs of enlarging the system with the 
additional benefits derived from it. The determination of the scope of a project therefore 
becomes an integral part of the project itself. Finding this proper balance is largely 
a matter of educated guess and experience, rather than of science. 

1-7 SOME FURTHER IMPLICATIONS OF THE SYSTEMS 
APPROACH 

Analysis of the environment of a decision problem is usually done on the basis of past 
records. Take for instance the problem of identifying and determining the relevant 
cost factors and demand characteristics for a production and inventory control problem. 
Most of the relevant cost factors are obtained either from cost accounting data or by 
actual observation on the production floor. Similarly, the demand for the various 
products is extracted from past sales records. These records and the observations made 
on the production floor reflect the present organizational structure and the present 
mode of operation. 

The parameters extracted from these data are then used to derive new “optimal” 
policies for the system. These new policies may involve changes in the mode of 
operation. But any parameters extracted from data prior to these changes may become 
out of date and may not be valid for the new mode of operation. For instance, under 
the current mode of operation, stock runouts may occur quite regularly. Suppose the 
proposed mode of operation promises to reduce such shortages to a small fraction of 
the present rate. As a result, total sales will increase. Parameters derived from past 
sales records, without appropriate adjustments for lost sales, therefore, underestimate 
demand. Thus, it is clear that the values of all environmental parameters relevant 
for the derivation of “optimal” policies are those that reflect the proposed mode 
of operation once the project has been implemented and not the current mode 
of operation. 

There is a further trap for novice operations researchers who look to the accounting 
system for readily available cost data. It often comes as a surprise to them that the 
costs as recorded by accountants are rarely in the form required for an operations 



research project. The purpose of financial accounting is to provide evaluations of the 
financial standing and performance of an organization, such as are needed for a 
financial report to the stockholders. Similarly, cost accounting records are geared to 
monitor the average cost performance of a particular operation. These costs are usually 
based on a total concept, including overhead costs that are often arbitrarily allocated 
to the various operations, e.g., on the basis of direct labor costs. Furthermore, some 
costs relevant for decision making are never recorded. All costs related to lost oppor¬ 
tunities (aptly named opportunity costs), such as profits lost because of stock shortages, 

never appear in accounting records. 

1-8 SHOULD THE PROJECT CONTINUE? 

As the formulation of the problem progresses, the operations researcher will have fairly 
definite ideas about the form of the mathematical model contemplated for the problem. 
Before plunging fully into the next phase, he or she should pause and attempt to 
evaluate the economic feasibility of the project. The operations researcher should 
estimate the total manpower and funds required to complete the project, including 
the costs of implementation. Approximate potential benefits should be evaluated as 
well. Then, all the information should be submitted to the sponsor of the project, who, 
on the basis of such information, will decide whether the project should be continued 
or abandoned. More ambitious and innovative projects have to be treated like research 
and development projects. Before a decision can be made as to whether such a project 
is worthwhile, some expenditures have to be made, similar to the initial research 
expenditures in new product development. Final judgment may have to be postponed 
until the project has gone well into the actual mathematical modeling phase. 

1-9 AN ABBREVIATED CASE STUDY 

The manager of the lubricating oil division of a large oil company approaches the 
supervisor of the company's operations research section with a request for a preliminary 
study of the division's inventory control system. As a first step, the operations researcher 
assigned to the project arranges for a guided tour of the offices, plant, and warehouse 
of the lubricating oil division. A talk with the division manager reveals some of the 
reasons why the study was requested. The main reason is a statement in the company 
auditors' report that inventories seem excessively high—a remark passed on by the 
company comptroller to the vice-president of manufacturing, the immediate boss of 
the division manager and the person in charge of the whole refinery complex where 

the division facilities are located. 
Physically, the division consists of five parts: 

1. A lubricating oil mixing plant, where various base oils stocked in tanks outside 
the plant are mixed in large vats of different sizes. 

2. A filling plant, where the finished lubricating oils are packed into containers 

of various sizes. 
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3. The finished goods warehouse, where the filled containers for over 800 products 

are stored until they are shipped by rail or truck to customers. 

4. A reconditioning plant, where drums returned from customers are cleaned and 
made ready for reuse. 

5. An office, where customer orders are processed. 

The tour is followed up over the next two weeks by a more thorough analysis of 

the various tasks performed in the division, including a detailed study of the current 

inventory replenishment procedures. Leaving out most technological aspects (which 

in practice are important), the following picture emerges. The customers of the division 

consist of about 500 company-owned regional wholesale distributors, who sell to 

company-owned service stations and other retailers, and a small number of large 

industrial firms and governmental institutions that purchase on a wholesale basis. The 

warehouse also serves as the wholesale distribution center for the region in which it 
is located. 

Wholesale orders are always executed in a four-day cycle. Wholesale orders 

received on day n are processed in the offices on the same day. Each order usually 

covers an assortment of different products in various containers. The entire order is 

assembled for shipment during day n + 3 and is shipped early on day n + 4. Retail 

orders are executed on the same day that they are received. They amount to only 
about 10 percent of total sales. 

Inventory records, kept on magnetic discs, are updated whenever an inventory 

transaction occurs. The computer system automatically flags any product for which 

the current inventory position (current inventory equals stock on hand plus outstanding 

replenishments less goods sold but not yet shipped) falls below a specified critical level 

called tne reorder point. A clerk reviews the current inventory positions daily and 

issues a replenishment request for each product flagged. On the average, about 30 

replenishment requests are issued every working day. The reorder points and order 

quantities are reviewed annually. They are set to an equivalent of one and of six weeks' 

average sales, respectively, resulting in an average inventory turnover of about 8f times 
per year (52 weeks/6 weeks). 

The replenishment request is forwarded on the same day to the foreman of the 

mixing plant, who prepares a batch specification sheet, listing the exact quantities of 

base oils and additives to be mixed. The batch is scheduled for mixing by day n + 

2. Prior to releasing a batch for filling, a laboratory technician tests it. If it fails the 

test, it is upgraded appropriately. When a batch has passed the test, it is released for 
filling. 

A second copy of the inventory replenishment request is forwarded to the foreman 

of the filling plant, who orders the required number of empty containers to be delivered 

to the plant on day n + 2. Drums come from the reconditioning plant, other containers 

from the stock of empty containers. Once the release notice from the operator of the 

mixing plant is received, the foreman schedules a filling run for day n + 2 or day 

^ "i" T Therefore, the replenishment is added to the stock no later than day n + 3. 

The replenishment lead time, i.e., the time between placement of a replenishment 

request and receipt of the goods, is thus less than the 4 days available to execute a 
wholesale customer order. 



According to the foreman of the warehouse, floor space is presently at a premium. 

In fact, the foreman estimates that the division needs an additional 4000 square feet 

of space. 
The description of the problem has already answered some of the questions listed 

in Section 1-6, particularly those in step 1 concerning the nature of the problem, 

how it arose, and its importance. The rigidity of the current replenishment rules is 

a good indicator that more flexible rules could generate substantial savings. 

The answers to steps 3 and 4 are best tackled jointly. Essentially the lubricating 

oil division forms the first part of a complex inventory system whereby inventories are 

kept at several different levels and in different forms: base oils in storage tanks, oil 

additives in small bulk quantities; empty containers and packaged finished goods in 

the warehouse; finished goods by a large number of company-owned wholesale dis¬ 

tributors; and finally, finished goods by an even larger number of company-owned 

retail outlets. See Figure 1-3. 

Figure 1-3. Multi-stage inventory system. 

The span of control of the decision maker covers levels 1 and 2, whereas levels 

3 and 4 are controlled by the marketing department. After some discussions, it is 

agreed that this first project should not go beyond the division managers span of 

control. In order to assure that the project can be completed within a reasonable 

length of time (one to two years), it is further restricted to packaged finished goods 

only. The decision on extending the project to include inventories at level 1 is post¬ 

poned for the present time. The packaged goods operation of level 2 becomes the 

system, whereas levels 1, 3, and 4 are part of the wider system or the environment. 

The analyst is aware that this choice ignores significant interactions. For instance, 

shortages of base oils, additives, or empty containers could seriously disrupt the re¬ 

plenishment of packaged goods, which in turn could affect levels 3 and 4. 

There are three levels of decision makers involved: the vice-president of manu¬ 

facturing, whose approval is required for any nonroutine expenditures and who has 

delegated the day-to-day management of the division to the division manager; the 
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division manager, who is in charge of introducing any operational changes subject 

to the approval of the vice-president of manufacturing; and the inventory clerk, who 

actually makes the decisions on inventory control according to the policy laid down 

by the division manager. Clearly, the inventory clerk has little say in any policy 

matters. The crucial person and prime decision maker is the division manager. 

What are the manager's objectives? They include the acquisitive objective of (1) 

minimizing operation costs, and the retentive objectives of (2) maintaining the smooth 

operation of the division, (3) maintaining prompt service to the marketing department, 

(4) avoiding shortages, and (5) keeping the levels of inventory within the available 

space limits. None of these objectives seems to be in conflict with the principal 

objective of the wider system—profit maximization. Further probing for hidden ob¬ 

jectives reveals that the division manager will not implement any recommendation 

to shorten or lengthen the present 4-day cycle to execute wholesale customer orders. 

This time period was established as a result of a recent lengthy study by the company's 

department of methods and procedures and has been very satisfactory. 

With these restrictions, the controllable aspects of the problem are reduced to 

(1) the time of placing an inventory replenishment, and (2) the amount of inventory 

replenishments for each product. Analysis of the production process and the nature 

of the products points to additional aspects that are controllable within the scope of 

the project, and that opens up the possibility of developing new alternative courses 

of action. Most lubricating oils are packaged in 3 or 4 different size containers. Should 

some or all sizes be replenished jointly whenever the inventory of one size has to be 

replenished, or should they all be replenished individually? A second set of possibilities 

is given by the fact that the replenishment lead time is shorter than the 4-day cycle 

for executing wholesale orders. This means that there actually exists the possibility of 

mixing and filling a product and then shipping it directly to wholesale customers, 

bypassing the inventory stage. Finished goods are then handled only once rather than 

twice. (Why?) Under what conditions is this course of action advantageous? (The 
answer to this second question is left as exercise 19.11 in Chapter 19.) 

Finally, the data needed to evaluate the effectiveness of each action in terms of 

the objectives of the system consists of: (1) the technological aspects of the mixing, 

filling, and warehousing operations; (2) the costs associated with each operation as a 

function of changes in the controllable aspects; (3) the technological constraints on 

the controllable aspects, such as the minimum and maximum feasible batch sizes for 

mixing oils, and (4) the demand pattern for the products. Some information, partic¬ 

ularly the cost factors, has to be obtained from cost accounting data. Other inputs, 

such as the time needed for mixing or filling, may be obtained only by actual obser¬ 

vation of the operations. Annual sales summaries, by product, are compiled period¬ 

ically. More detailed demand data can be extracted from sales records or taken directly 

from the original customer orders. Although the latter source is more representative 

of the demand pattern than past sales records, the effort of collecting information for 

more than 800 products would be staggering. Individual sales records, on the other 
hand, are stored in readily accessible form on magnetic tapes. 

This analysis largely completes the formulation of the problem. We shall pick 

up the thread later on as we proceed through the remaining phases of operations 
research. 



1-10 CONSTRUCTION OF A MATHEMATICAL MODEL 

Mathematical models are the essence of the operations research approach to problem 
solving. As is true for any model, a mathematical model is a partial representation 
of some entity of reality, such as a process, an operation, or a system. The kinds of 
models of interest to operations researchers are those that allow manipulation of the 
entity modeled. The manipulation is aimed at answering certain questions about this 
entity, e.g., “What is the effect of a change in some aspect or some property of this 
entity in terms of its effectiveness toward achieving some set of objectives? The 
purpose of a model is to explain, predict, or control the behavior of the entity modeled. 

There are certain qualities a “good” model should have. According to J. C. D. 
Little (“Models and Managers: Concepts of a Decision Calculus,” Management Sci¬ 

ence, April, 1970, pp. B466—85), a model should be 

• Simple. Simple models are more easily understood by the decision maker, who 
is often mathematically untrained. Hence, only those aspects that have a signif¬ 
icant effect on the performance of the system should be included. 

• Robust. It should be difficult for the model to give bad answers, particularly 

answers that are outside the previous range of experience. 

• Easy to manipulate. 
• Adaptive. It should be easy to update the solution to a model in response to 

changes in the values of the input parameters. Given that we live in a rapidly 
evolving world, even the structure of the model itself should be easily adaptable. 

• Complete. All important aspects should be included in the model. 
• Easy to communicate with. The user should be able to change inputs easily 

and to obtain answers quickly. 

In a mathematical model, the controllable properties of the entity modeled usually 
take the form of decision variables whose values can be chosen by the decision maker 
from a specified set of values. The uncontrollable aspects are represented by uncon¬ 
trollable variables, such as random variables, or by parameters and constants, such 
as the parameters of a probability distribution or technological and cost constants. The 
contribution of each decision variable toward the decision maker s objectives is ex¬ 
pressed by a functional relationship called the measure of effectiveness. Other tech¬ 
nological and behavioral relationships between the variables give rise to constraints, 
which may also be in the form of functions, equations, or inequalities. 

A mathematical model is called deterministic if it represents a problem of decision 
making under certainty. It is termed probabilistic or stochastic if it deals with a problem 
of decision making under uncertainty (or risk) and the probabilities of the alternative 

states of nature are known. 
A mathematical model is a general purpose model if any problem that satisfies 

certain assumptions as to the form of the decision variables and the nature °f the 
functional relationships between them can be cast into the structure of this mode . 
It is a special purpose model if its structure is peculiar to a given problem. Most models 
and the associated solution methods discussed in this text are general purpose models. 

With most general purpose models we associate one or several specialized tech- 
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niques to find the optimal solution. For this reason, general purpose models are often 
referred to simply as techniques. Many problems can be solved by several techniques, 
each offering certain advantages. Familiarity with all essential features of the various 
techniques is a must, therefore, in order to choose the technique that best fits the 
special aspects of the problem studied. 

Consider the inventory control problem in the preceding section. The time of 
placing an inventory replenishment—one of the controllable aspects—is equivalent 
to specifying a critical number of the inventory level which, whenever the inventory 
falls below this number, triggers the initiation of an inventory replenishment. This 
is simply the reorder point. Let r{ denote this number for product i. Similarly, the 
second controllable aspect is the inventory replenishment quantity Qf. These are our 
decision variables. 

The demand for each product is one of the uncontrollable variables. It fluctuates 
randomly and is expressed in the form of a random variable. Let X, denote the random 
variable for the daily demand. Its probability distribution may be approximated by a 
theoretical probability distribution, such as the normal distribution defined by its two 
parameters the mean daily demand and the variance of the daily demand. Or we 
may approximate it by using the empirical frequency distribution derived directly from 
past sales data. Other uncontrollable aspects give rise to: cost factors cik (the cost factor 
of type k for product i), such as the product value for product i; or technological 
coefficients wik, such as the amount of warehouse space required for product i. 

1-11 THE MEASURE OF EFFECTIVENESS 

With each alternative course of action or value of the decision variables we associate 
an outcome, described by one or several attributes. The attributes of interest to the 
analyst are those which can be used to express the response or performance of the 
system in terms of the decision maker's objectives, or those which are needed to verify 
if constraints imposed on the decision choices are satisfied. The objectives and con¬ 
straints thus determine which attributes are relevant for evaluating alternative courses 
of action. In the case study, three of the attributes associated with each alternative 
inventory replenishment policy are the average inventory level, the maximum inven¬ 
tory level, and the average number of replenishments per year. 

There is often a one-to-one correspondence between objectives and attributes. 
For instance, the problem may be to get by car from point A to point B in a city. If 
the objective is to get from A to B in minimum time, then “time from A to B" 
completely measures the achievement of this objective. On the other hand, the ob¬ 
jective in the case study to “minimize total annual operating costs" requires that several 
attributes be measured for each inventory replenishment policy. There are also in¬ 
stances where no suitable set of attributes can be defined to evaluate the performance. 
A case in point is the objective of an emergency ambulance system to “deliver patients 
to the treatment center in the best possible condition under the circumstances." In 

. such cases, we may have to substitute proxy attributes, “Response time," defined as 
the time between receipt of a call for an ambulance and the arrival of the ambulance 
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t the scene, has been used as a suitable proxy attribute for studies of emergency 

mbulance systems. 
J The attributes are used as input into measures of effectiveness that evaluate the 
response of the system in terms of each of the decision maker s objectives to an 
alternative course of action. For a single objective the measure of effectiveness to be 
optimized is usually referred to as the objective function. As the name indicates, the 
objective function may be expressed in numerical form as a function. It is not essential, 
though, that the function be numerical. A better-worse or nonnumerical ranking of 
each alternative action may often suffice to identify the best decision. Unless the 
problem is a one-shot deal, the measure of effectiveness is defined for some specific 

interval of time or a specific planning horizon, e.g., one year. 
If the number of alternative actions is sufficiently small, the measure of effec¬ 

tiveness may be expressed in the form of a payoff table or payoff matrix. The entries 
in the table represent the numerical value of the outcomes (payoffs) for each com¬ 
bination of event sjt j = 1, . . ., J, and action ajt i = 1, . . ., I. Thus, the table has 

one row for each action and one column for each event. 

Events, sf 

1 2 3 . 
1 hi hi rn ■ ■ 
2 hi hi hi ■ ■ 
3 hi hi hi ■ 

Actions, a, • 

J 

ri/ 

hj 

hj 

l pn rn r/3 • • ■ hj\ 

A decision problem under certainty has only one column, since there is only 
one possible event or outcome for each action. For a decision problem under un¬ 
certainty, there will be two or more alternative events. With each event s;. we may 

associate a probability pp where^^ Ps = P\ + Pi + • • • + Pj = U Under certain 

conditions, the worth of each action at (remember that this may be a strategy) can 
then be expressed as the expected value of the payoffs over all possible events: 

J 

= E, (payoff) = ^ rtj p, 
i= i 

Expected outcome 
of action a- 

If the decision maker wants to achieve several objectives simultaneously as well 
as possible—the multiple objective case—the measure of effectiveness may need to 
be expressed not simply as a single number for each action, but as a set of numbers 
(or a vector), one number for each objective measured. For instance, if the objectives 
are to minimize costs of production (k = 1) and to minimize down-time of the 
production facilities (k = 2), then the performance of alternative action i (perhaps 
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determined by a particular size of a production run) in terms of the two objectives is 
expressed as the two-tuple (ra, ri2) for a decision problem under certainty. 

If the number of alternative courses of action is large or even infinite—such as 
for continuous decision variables—the measure of effectiveness is more conveniently 
expressed in analytical form as a functional relationship of the decision variables. 

Say that the objective of the division manager in our inventory problem is to 
minimize operating costs and that we use one year as the base period. The measure 
of effectiveness has to cover only those costs that change if the values of the decision 
variables change. All those costs that remain constant regardless of what values the 
decision variables assume are irrelevant for the problem. 

What types of costs are incurred in an inventory operation? There are material 
costs, labor costs, machine costs, financial charges, and overhead. To determine which 
of these costs are relevant, we have to study how each is affected by changes in the 
decision variables. To simplify the discussion let us consider changes in the order 
quantity only. A change in the order quantity of product i will affect its average 
inventory level and the number of replenishments that have to be made per year to 
satisfy a given annual demand of, say, R, units. 

To determine the average inventory level, assume that a replenishment is issued 
for product i whenever its inventory has been reduced to zero. Such a policy is feasible 
if replenishments are instantaneous (i.e., the replenishment lead time is zero) or if 
the time available to execute a customer order is longer than the replenishment lead 
time. In either case, no shortages can occur. If we ignore retail sales, the second 
condition is satisfied for our example. Just prior to a replenishment, the inventory 
level is therefore zero, and just after a replenishment it is Q(. Assuming that demand 
occurs at a constant rate (which is not true here), inventories will reduce as the straight 
line shown in Figure 1-4. The time between replenishments will be a fraction of 
Q;/R; of a year. (Explain why!) From Figure 1-4 it follows immediately that the 
average inventory is QJ 2. 

Figure 1-4. Inventory level over time for batch replenishments. 
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Inventories tie up funds, a scarce resource. The cost of investing funds in in¬ 
ventories is the opportunity cost equal to the return that the company could earn on 
an investment of equal risk. Let Cl stand for this cost, expressed as a fraction per dollar 
invested per year. Let V; be the value per unit (a drum, a carton of cans) of product 
i once it is on the warehouse floor. V, is assumed to be constant regardless of the size 
of Q Then V,Q,/2 is the average inventory investment for product i, and 

(1-1) C.V&/2 

is the annual cost of holding this product in inventory. There might be other costs 
of similar nature associated with holding goods in inventory, such as insurance, 
warehouse space rental, and pilferage. If so, cx would be adjusted appropriate y. 

The number of inventory replenishments per year required to satisfy a demand 
of size R; if each replenishment is of size Q, is equal to the ratio R, /Q,- Every time 
a replenishment is made, two types of costs are incurred: a fixed cost independent of 
the replenishment size Q, which covers clerical costs and equipment set-up costs (on 
mixers and filling machines, including cleaning costs); and variable costs, such as the 
cost of raw materials, additives, and containers used, variable equipment operating 
costs, and handling costs of storing the goods in inventory. The variable costs are 
usually proportional to the replenishment size. Let V, denote the total variable cost 
per unit. (This is obviously the same as the value per unit of the goods on the warehouse 
floor) Let c2 be the fixed cost per replenishment. Then for each replenishment for 
product i, a cost of c2, + V,Q, is incurred. For a total of RJQ, replenishments per 

year, the annual fixed and variable replenishment costs are 

(1-2) (c2, + V,Qi)R,/Qj = (c2,Ri/Q,) + VA 

As expected, the annual product cost V,R,. is a constant. It is not affected by changes 

in the decision variable Q,, and therefore can be considered irrelevant. . _ 
The relevant total annual cost for product i, denoted by T;(Q,) (a function of L2J, 

is equal to the sum of expressions (1-1) and (1-2), excluding V;R,. 

(1-3) T,(Q,) = c,V,Q,/2 + (c2,R;/Q,) 

The relevant total annual cost for all products (say there are N of them) is given 

by expression (1-3) summed over all N products. 

(1-4) T(Q„Q2, ...,Qn) = IT,(Q,) 

Ignoring any costs associated with the reorder points r;, expression (1-4) is the 
measure of effectiveness for this simplified version of our inventory control problem. 
The decision maker’s objective is to find those values of Q„Q2, . . ., QN that minimize 

expression (1-4). 

1-12 MULTIPLE OBJECTIVES 

A decision maker may wish to achieve several objectives by the action chosen. Expres- 
sion (1-4) represents the measure of effectiveness of one objective associated with the 
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problem, namely minimizing operating costs. How can we deal with several objectives, 
such as maximizing profits and maximizing sales, which may be in partial conflict 
with each other? Maximizing profits may imply sacrificing some sales, while maxi¬ 
mizing sales may imply reduced profits. 

A commonly used approach to modeling such conflicts is to determine the most 
important objective and set minimal performance targets on all other objectives. For 
instance, we could decide that maximizing profits is the most important objective and 
substitute for the objective a ‘ maximize sales” constraint specifying that sales cannot 
drop below a certain level or minimum share of the market. 

If the objectives can be measured in comparable units, then we may be able to 
construct trade-off functions that translate all objectives into some common measure, 
such as costs and returns, or into units of the most important objective. A trade-off 
function shows how much successive changes in one objective are worth in terms of 
another objective. For instance, how much each successive 1-percent decrease in sales 
is worth in terms of successive increments in profits. (For a more detailed analysis of 
this approach, the reader is referred to.Churchman et al., Introduction to Operations 
Research.) 

Retentive objectives naturally lend themselves to being expressed in the form of 
surrogate constraints on the decision variables. For instance, the retentive objective 
of keeping inventory levels within the available warehouse space would be expressed 
as a constraint on the Q, values as follows: if each unit of product i requires an area 
of w, square feet of warehouse space and warehouse space is allocated proportionately 
to the maximum inventory level (Q, in our case), then each product requires an area 
of wQ: square feet. The total area required for all N products cannot exceed the 
presently available space of W square feet, or 

(!-5) 'JNw,Q, 
i=1 

Although surrogate constraints are derived by policy decisions and are thus not 
absolute but relative constraints, they are treated from a mathematical point of view 
in exactly the same way as those representing physical conditions. However, in the 
analysis of the optimal solution, the operations researcher has to examine carefully 
how changes in these constraints, reflecting alternative policy decisions, affect the 
solution. 

Sometimes the various objectives can be expressed in the form of target levels 
to be achieved as closely as possible. If the objectives are highly conflicting, it may 
not be possible to reach each target level exactly. In such instances, the decision maker 
may wish to choose an objective function that minimizes an appropriately weighted 
sum of the deviations from the target levels. In other instances, the objectives may 
be ranked in order of priority. The solution procedure would then attempt to satisfy 
the objectives in that order. No attempt to satisfy any lower order objective would be 
made until all higher order objectives had been reached. Such approaches have been 
formalized in what has become known as goal programming. Section 2-14 of Chapter 
2 gives a simple example of goal programming where all relationships are linear. 

The need to deal effectively with multiple objectives in a complex environment, 
particularly with noncommensurable objectives, has given rise to a new branch of 
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operations research—multiple-objective decision making. This is the topic of Chapter 

22. 

1-13 DISCOUNTING OF FUTURE COSTS AND BENEFITS 

As pointed out in Section 1-11, the measure of effectiveness may represent net benefits 
accrued over some specific time interval or planning horizon. Two alternative courses 
of action, then, may differ not only in terms of the total net benefits but also in terms 
of the pattern over time of these benefits. Which action is preferred? To deal with 
such aspects, we use the same approach as in the appraisal of investment projects or 
capital budgeting. For simplicity, assume that the benefits are measured in monetary 
terms. Funds received today can be put to productive use and therefore will be worth 
more than the same amount of funds received some time in the future. The difference 
in total monetary value is equal to the return that can be earned on these funds over 
this time interval. To render costs incurred and benefits received in different time 
periods comparable, all costs and benefits are expressed in terms of their value at a 
common point in time, usually the present. In other words, they are discounted to 
the present. The measure of effectiveness then expresses the present value of the stream 

of costs and benefits over time. 
Let us briefly review some of the principles of discounting. If $1 invested now 

has a value of $(1 + r) one period from now, where r is the rate of return (e.g., 
interest), then $1 received in one period’s time has a present value now of; 

(1-6) « = 1/(1 + r) 

a is called the discount factor and r the discount rate. From expression (1-6) and the 
fact that r > 0, it follows that 0 < a =£l. If r = 0, then a = 1, i.e., future funds 

are not discounted. , 
R dollars received one period from now have a present value ot an. n dollars 

received two periods from now have to be discounted for two periods. Discounting 
for one period reduces their value to aR, and discounting this amount for a second 
period gives a present value of a2R. In general, R dollars received k periods from now 

have a present value of a*R. 
Consider now the stream of funds R0, R„ R2, . . ., Rn, where R, represents the 

costs incurred or benefits received at the end of the ith period. The present value of 

this stream of funds, discounted at the factor a, is 

(1-7) S„ = Ro + aR, + a2R2 + . . . + a"-'R„_, + a"R„ = J a‘R, 
i = 0 

If R, = R over all future periods, that is, if the planning horizon is unbounded, 

the present value of this infinite stream of funds becomes 

(1-8) S = £ a'R = R/(l - a) 
i = 0 

for 0 < a < 1. 
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1-14 UTILITY MEASURES 

The worth of an action in terms of the decision maker’s objectives can often adequately 
be expressed in dollars and cents. Hence, profits or costs become the natural choice 
for the measure of effectiveness. For many decision problems in business and industry, 
particularly those of a day-to-day nature with outcomes within the normal range of 
experience of the decision maker, a decision based on maximizing profits (or mini¬ 
mizing costs) will properly reflect the preference ordering. For strategic and nonre¬ 
current decisions or decisions with highly uncertain and extreme outcomes (say large 
profits or losses), other factors, such as the decision maker’s financial ability to over¬ 
come large losses or the personal likes or dislikes of engaging in risky situations, may 
influence what decision is considered “best. ” 

Decisions to carry insurance qr to buy lottery tickets are clearly not based on a 
criterion of maximizing monetary returns. Otherwise, insurance companies and lottery 
organizers could not covet their operating costs and make profits at the same time. 
Should we infer that such decisions are not made on a rational basis? Far from it! It 
simply means that there are situations where monetary values do not measure the true 
worth of a given outcome. The true worth reflects personal, social, and financial 
elements. What kind of risks is the decision maker willing to assume in general and 
for the particular situation in question? How does society view certain risk decisions? 
What is the size of the monetary outcome in relation to the decision maker’s total 
wealth? A loss of $20,000 may spell financial ruin for a small, one-person firm, while 
it may have few or no serious consequences for a giant corporation. 

Furthermore, for many decision problems, especially in the public sector, the 
outcomes cannot be measured in monetary terms without introducing questionable 
value judgments. For instance, what is the monetary value of safety, recreation, scenic 
beauty, or equity? To measure the worth of actions with qualitative outcomes, we 
need some method of quantification of personal value judgments. 

In 1944, Von Neumann and Morgenstern, a mathematician and an economist, 
proposed an index designed to quantify the true but personal worth of an outcome 
to a decision maker, valid for a particular decision situation. They called it utility— 
not to be confused with the concept of the same name used by nineteenth-century 
economists. In Chapter 11 we will see how to go about constructing utility functions 
that reflect a decision maker s evaluation of the personal worth of an outcome and 
will demonstrate the use of such functions for decision making. 

1-15 MODELS AS APPROXIMATIONS 

An operations researcher is confronted with conflicting modeling goals. On the one 
hand, the model should be sufficiently simple to remain tractable, and on the other 
hand, it should be elaborate enough to be a close representation of reality. Simplicity 
in a model can be achieved only by making suitable approximations. Striking a proper 
balance between detail and simplicity is a delicate matter of weighing the cost of 
constructing the model, collecting the required data, and implementing and operating 
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the model against the expected benefits that can be gained from its implementation. 
These are all increasing functions of the sophistication and complexity of the model, 

though rarely quantifiable in practice. 
What type of approximations can be made? 

• Omitting variables: Often variables that have relatively small effects or that tend 
to behave like other variables can be omitted. For instance, inventories for goods- 
in-process are often ignored if production lead times are short. To determine 
whether a variable has a significant effect on the measure of effectiveness, the 
operations researcher will have recourse to various statistical techniques and tests, 
such as correlation and regression analysis, analysis of variance and covariance, 
and tests of significance. Knowledge of these techniques, their capabilities and 
limitations, is part of the required bag of tools of any operations researcher. We 
refer the reader to a statistics text, such as G. W. Snedecor and W. G. Cochran, 
Statistical Methods (Iowa State University Press, 1967). 

• Aggregating variables: In inventory models covering thousands of different prod¬ 
ucts, low usage items are dealt with completely or partially in groups, using an 
average group cost for some of the cost factors. Similarly, in large corporate 
models depicting an entire organization, activities are grouped and expressed as 

a common standard activity. 
• Changing the nature of variables: Variables may be treated as constants. For 

instance, an average is substituted for a random variable. Discrete variables are 
treated as continuous and vice versa to simplify the solution procedure. 

• Approximating the relationship between variables: The true functional rela¬ 
tionship between variables is approximated by a form that is simpler to manip¬ 
ulate, such as in substituting linear or quadratic functions for nonlinear functions. 

• Omitting constraints: Constraints may be ignored initially and only those vio¬ 

lated by the solution introduced subsequently. 
• Disaggregating the entity modeled: One single model that covers the entire 

system may be highly complex and difficult to solve. Such a problem may be 
broken into smaller and partially self-contained submodels. For example, each 
level in a multilevel inventory system may be modeled separately. 

Let us briefly hint at the various approximations made in the inventory problem 
that led to expression (1-4). The products are sold in discrete units. We treated them 
as continuous and would simply round the solution to the nearest integer. The daily 
demand is a random variable—we treated the demand rate as a constant. This is 
justified since individual sales are in small lots of a few packages per customer and 
tend to occur at a fairly even trickle. We assumed that mixing and filling set-up costs 
are independent of the sequence in which products are produced, which in fact is not 
true, although the cost differences due to sequence are small. If we build separate 
models to determine the replenishment quantities and reorder points, then we use a 
multiple-model approach. Again, this may be justified since a positive reorder point 
is only required to allow retail sales to be executed immediately during the replen¬ 
ishment lead time. However, retail sales are a small portion of total sales. 
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1-16 DERIVING A SOLUTION TO THE MODEL 

Once the problem has been formulated mathematically, a solution has to be derived. 

The solution may be found by the basic economic principles of marginal analysis for 

the case of increasing marginal costs and decreasing marginal returns. The value of 

the decision variable is increased until marginal costs are equal to marginal returns. 

This principle is easily extended to discrete decision variables. The decision variable 

is increased until the incremental cost is not covered any more by the incremental 

return achieved. The mathematical basis for marginal analysis is part of classical 

calculus (see Chapter 19). For instance, disregarding the constraint (1-5), the optimal 

values of Q„ Q2, . . ., QN that minimize the measure of effectiveness (1-4) can be 

obtained by the use of differential calculus. We set the derivative of (1-4) equal to 

zero and solve for each Q,. This yields the well-known economic order quantity (EOQ) 
formula 

(i-9) q; = Vmfljcyiy ; = i,2,...,n 

More often than not, the optimal solution to a model has to be computed by 

numeric methods. The most powerful numeric methods are based on an algorithm— 

a set of logical and mathematical operations performed in a specific sequence. The 

algorithm is applied to a given initial solution to the problem, to derive a new and 

ideally better solution. The sequence of operations that lead to the new solution is 

called an iteration. The new solution is now substituted as the starting point, and the 

process is repeated until certain conditions—referred to as stopping rules—are satisfied, 

indicating that an optimal solution has been reached with the desired degree of 

accuracy, or that no feasible or bounded solution exists to the problem. 

For an algorithm to be a practical solution method, the algorithm has to have 

certain properties: (1) each successive solution has to be an improvement over the 

preceding one; (2) successive solutions have to converge to the optimal solution; (3) 

convergence arbitrarily close to the optimal solution has to occur in a finite number 

of iterations; and (4) the computational requirements at each iteration have to be 

sufficiently small to remain economically feasible. 

Numeric methods invariably require access to high-speed electronic computers. 

In fact, it was the availability of more and more sophisticated computers that made 

the development and use of algorithmic methods possible. A major portion of any 

operations research text is usually devoted to a detailed study of algorithmic techniques. 
This book is no exception. 

Many models are solved using heuristically derived decision rules to find “good” 

policies rather than the “best” policy (see Chapter 23). At other times the performance 

of specific decision rules is evaluated by simulation (Chapter 16). Finally, many 

decision problems simply involve the comparison of a relatively small number of 

possible courses of action. Complete enumeration may then be the most efficient 

solution method. Sequential decision problems under uncertainty, where each action 

represents a strategy, are often solved by decision trees—a simple but effective evaluation 
method (Chapter 11). 



1-17 SENSITIVITY ANALYSIS 

The systematic evaluation of the response of the optimal solution to changes in input 

data is referred to as sensitivity analysis. It is a highly valuable and important part of 

evaluating the optimal solution and should always be performed on all crucial input 

data. The three main uses of sensitivity analysis are 

1. To determine the accuracy required for input data for the model. 

2. To establish control ranges for changes in input parameters and constants over 

which the present optimal solution remains near-optimal. 

3. To evaluate the marginal value of scarce resources. 

For example, it would be very valuable to find out how sensitive the EOQ developed 

for our case study is to errors or deviations in the various input parameters. (We will 

perform this analysis in Chapter 12, Section 12-7.) This would indicate how much 

effort should be spent on developing accurate forecasts for the demand or accurate 

set-up costs for production runs. 
Some operations research techniques, especially linear programming (Chapter 

2), provide a certain amount of sensitivity analysis either as a by-product of the 

algorithmic computations or with little additional effort. For other problems, sensitivity 

analysis requires solving the model from scratch for various combinations of input 

parameters. 

1-18 TESTING THE SOLUTION FOR PERFORMANCE 

The purpose of an operations research project is to improve the performance of the 

system. Before deciding whether to implement the proposed solution or shelve it, 

usually the decision maker will want convincing proof that the proposed solution 

performs better than the present rules. Demonstrating such superiority may help more 

in having the solution accepted than in gaining full understanding of how the model 

works in all its complexities. 
When testing the solution, the operations researcher wants to ascertain (1) that 

the decision rules derived from the optimal solution perform as expected and (2) what 

the expected net benefits of implementing the solution will be. 

A solution may be tested retrospectively (against past observed behavior) or pro¬ 

spectively (against future behavior). In either case the test has to entail a detailed 

comparison of the "actual” performance of the optimal solution derived from the 

model, as if it were implemented, with the actual performance of present decision 

rules based on the same set of data. For instance, the test could consist of running 

both sets of rules in parallel over a length of time, such as a year. The actual operations 

would be based on the present decision rules; the new decision rules would be simulated 

(see Chapter 16) on paper alongside the old ones. This would permit a very realistic 

evaluation, but would also result in an unreasonably long delay before any conclusions 

could be drawn. For this reason, testing is usually done by simulation alone and is 

performed separately for each set of decision rules on the same data. Testing may be 

restricted to a random sample of observations. 
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Here are some rules for valid testing: 

1. The evaluation of the proposed solution has to be based on observations of 

actual (simulated) performance. It is invalid to simply substitute the optimal 

values of the decision variables associated with the data used into the measure 

of effectiveness, such as expression (1-3) with the Q obtained from (1-9) for 

actual data. The latter would be a meaningless test since it reflects an idealized 
and simplified reality. 

2. The test should be independent of how the optimal solution was derived. For 

instance, a test against past demand data, that also served to estimate the various 

input parameters of the model used to derive the optimal solution will not 

yield an independent test. Since the model supposedly optimizes the perform¬ 

ance, it should perform better than the present decision rules for these demand 

data. Either some data have to be set aside specifically for the test and not used 

to derive the optimal solution, or new data have to be generated artificially on 

the basis of projected behavior of the system, such as the projected demand 
distribution. 

3. The data used should be “representative” of future behavior, i.e., they should 

cover the entire range of behavior likely to be observed in the future. 

4. Tests should cover a sufficiently long time interval to allow for evaluation of 

not only a point estimate but also the variability of the outcome. 

The difference in average benefits for the present and proposed sets of rules 

derived from the tests is adjusted for any difference in the cost of applying and 

maintaining the two sets of rules. This yields an average'net benefit. The present value 

of this average net benefit over the projected lifetime of the project is finally compared 

with any further costs projected for the project, such as costs of initial data collection, 

further model refinements, and implementation—a process similar to the evaluation 

of investment proposals. Note that at this point only future costs are relevant. All costs 

incurred so far are sunk costs and no longer relevant to whether or not the project 
should be completed. 

Operations research projects are usually high risk investments. Even if testing 

turns out to be favorable, unforeseen snags during implementation or further refine¬ 

ments of the model tend to cause cost overruns, whereas benefits may be highly 

variable. This calls for relatively high discount rates on the order of 20 to 100 percent. 

Furthermore, full benefits will not be realized from the very beginning, but only after 

a transition period that may easily extend over several months. It is essential that the 

decision maker be made aware of this fact or else he or she might decide to scrap 

implementation long before the project has reached its full potential. 

1-19 IMPLEMENTATION OF THE SOLUTION 

Implementation of an operations research project is putting the tested solution to work. 

This means translating the mathematical solution into a set of easily understood 

operating procedures or decision rules for each of the persons involved in using and 



applying the solution; training these people in the proper use of the rules; planning 

and executing the transition from the present to the desired mode of operations; 

instituting controls to maintain and update the solution; and, finally, checking the 

initial performance periodically until the new mode of operation has become routine. 

Full implementation of all the recommendations of an operations research project 

is rare. It is more useful to talk about the degree of implementation achieved. The 

objective of the operations researcher is to achieve a sufficiently high degree of im¬ 

plementation to capture the major portion of the potential benefits that can be derived 

from the solution. 
Problems of implementation can be reduced to three basic factors: 

1. Those relating to the task of implementation, such as the complexity of the 

solution, the sensitivity of the solution to implementation, the degree of de¬ 

viation of the solution from current practice. The greater any of these are, the 

greater the problems that have to be overcome. 

2. Those relating to the individuals using the solution, such as the personalities 

of the users, their motivation and pride in the job (does the proposed solution 

restrict their freedom of action, reduce their importance, transform a chal¬ 

lenging job that requires years of experience to one of merely feeding data into 

a computer program?); their ages (routine becomes more entrenched with age, 

and change is more difficult to accept); the users’ backgrounds, levels of ed¬ 

ucation, and the importance of the activities related to the solution in the 

framework of their total jobs (the less important the solution activities are, the 

less attention they receive). 
3. Those relating to the environment, such as the support given to the solution 

by higher echelons in the hierarchy and organizational implications of the 

solution (does one department become more dependent on another?); or po¬ 

tentially threatening implications to employees (labor-replacement through 

automation) or customers. 

Generally, the operations researcher pays full attention to the first factor, which 

is a question of technology. The tendency is to neglect the human factors (2 and 3), 

which are qualitative in nature and evade the formal treatment that can be given to 

the technological factors of implementation. It should come as no surprise that ne¬ 

glecting the human constraints in a system can easily lead to a “solution ’ that in fact 

is a solution on paper only, and is not workable in practice. From this point of view, 

implementation can be viewed as a problem of relaxing the human constraints versus 

adjusting the technical solution. The human constraints may be relaxed in a number 

of ways. Individuals that could become obstacles to proper implementation may be 

replaced or transferred to other equally attractive jobs. Proper training or soliciting 

active participation in the project may increase their understanding of the solution. 

The technical solution can be adjusted by simplifying the solution policy (for instance, 

by the use of close quick-and-dirty rules). 
The literature on implementation is unanimous on one point—that implemen¬ 

tation and continued use of a solution is almost guaranteed if the sponsor and the 

ultimate user(s) “own” the research results. The users will develop a feeling of own- 
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ership if they can contribute to the project in a meaningful way with their experience 
and detailed knowledge of the operations. 

Planning for implementation has to start with the formulation of the problem 

and the groundwork laid throughout all other phases. It is not sufficient to start 

planning this phase once the model has been completed and tested. Planning includes 

technical aspects, such as preparing the proper data base and data collection procedures 

needed for implementation and continued maintenance, deciding what to do with 

bad data, preparing detailed instruction manuals, and preparing any special forms and 

tools needed for use of the solution. The actual process of changing from the present 

mode of operation to the new solution requires a detailed timetable of the various 

activities to be undertaken, their sequence and precedence relationships, and their 

assignment to the people or department best equipped to execute them. 

For large projects or projects that cover a large number of identical activities 

(such as an inventory control project), the solution may have to be implemented in 

stages rather than as a whole in order to avoid straining the resources and facilities 

available. For instance, although an inventory control project may promise to reduce 

the average inventory investment by a substantial percentage, implementing the model 

for all products simultaneously will often result in an initial increase in the total 

inventory (why?), straining limited warehouse capacity. Gradual introduction of the 
new rules may avoid such a situation. 

1-20 CONTROLLING AND MAINTAINING THE SOLUTION 

The environment in which most organizations operate is constantly undergoing 

change. Such change may be quantitative (environmental parameters or relationships 

change in magnitude only) or structural (the form or nature of environmental param¬ 

eters or relationships changes). In the first case, the form of the operations research 

solution usually remains valid. Only the values of the decision variables may have to 

be adjusted to reflect quantitative changes in the environment. For example, the value 

of the products stored in inventory may change, calling for a corresponding adjustment 

in the economic order quantities. In the second case, the form of the solution may 

not be valid any longer, necessitating a reformulation of the model. For instance (in 

terms of the example in Section 1-9), introduction of new mixing and filling equipment 

may result in substantial savings in production set-up costs if all container sizes of the 

same oil are replenished jointly, whereas the present solution may be based on separate 

replenishments for each container size. 

Procedures have to be set up to monitor such quantitative and qualitative changes 

in the environment, and corrective action must be undertaken when such changes 

become significant. A change is considered significant if the improvement in the 

benefits that can be gained by adjusting the solution exceeds the cost of making the 
adjustment. 

Establishing controls over the solution consists of: 

1. Listing for each variable, parameter, constraint or relationship—for those that 

are explicitly included in the model as well as for those that have been excluded 



as insignificant—the range of values for which the present solution remains 

optimal or near-optimal and the type of qualitative change which invalidates 

the current form of the solution. 
2. Specifying in detail how each variable and parameter has to be measured, 

which relationships have to be checked, and the occasion and frequency of 

such controls and checks. 
3. Determining who is responsible for each item to be controlled and who has 

to be notified if significant changes are detected. 

4. Specifying in detail how the solution has to be adjusted for significant quan¬ 

titative changes and what action has to be taken to deal with qualitative changes 

in the environment. 

The job of the operations researcher is not finished once the solution has been 

implemented. In order to assure that the implementation does not deteriorate after 

a while, the actual performance of the solution (including control procedures) must 

be carefully checked and the actual benefits achieved compared to those projected 

initially. Significant deviations have to be examined and adjustments made. Training 

of all people involved may have to be followed up. Only then can the success of the 

project be judged. 

EXERCISES 

1.1 The marketing department of a firm proposes to introduce a new item to its product 

line. The product would be made by the firm’s own facilities. Analyze how such a 

decision might affect the performance of each of the other departments (parts) of the 

firm (system)? Do the same type of analysis for a decision to adjust the price of a product 

in response to a general price increase by the competition. 

1.2 Identify the components of both the system and the wider system for the following 

decision problems: 

(a) Assigning the course grade to each student in a quantitative methods class, 

(b) Buying a second-hand car, 

(c) Designing a new advertising campaign. 

1.3 The production department of a firm is considering changing from a batch method of 

replenishing inventories to a continuous production process whereby stocks are replen¬ 

ished at a constant rate equal to the average sales rate. Define the system and the wider 

system, and trace all significant effects of that change on other parts of the wider system, 

including procurement of raw materials, warehousing, and marketing. 

1.4 Trace the effects of each of the following proposed changes on the remaining parts of 

the system (shown in parentheses): 

(a) Conversion of a number of downtown streets into one-way streets (public transport, 

fire department, traffic police, municipal refuse collection, street cleaning, and 

business community). 

(b) Toughening of university entrance standards (university system, high school system, 

state finances, and public employment agencies). 

(c) Introduction of laws on compulsory wearing of seat belts for all car occupants aged 
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6 or over under penalty of stiff fines and loss of insurance coverage (traffic police 
and court system; also consider transition problems of introducing laws). 

1.5 A small bakery produces a whole meal bread, which it sells to local supermarkets at a 
contractually fixed price of 40 cents per loaf. Fixed costs associated with the operation 
amount to $2000 per month. Each baker hired has a salary of $600 per month and can 
produce 8000 loaves of bread in that time. The cost of the ingredients depends on the 
output; it is 20 cents a loaf for a monthly output of 12,000 loaves or less; 18 cents for 
a monthly output of more than 12,000, but at most 20,000; 16 cents for more than 
20,000 and at most 40,000; and 15 cents for more than 40,000. 

(a) Construct a mathematical model for the difference between total monthly revenue 
and total monthly cost as a function of output and number of bakers. 

(b) Construct a mathematical model for the break-even point for 4 bakers. 
(c) Contrast your models with the real-life operation of such a small bakery. What 

approximations did you make in these models? 

1.6 A typical sequence of a New Zealand freezing works’ daily output of boned meat appears 
as follows: 

Day of week M Tu W Th F M Tu W Th F 

Tons 50 54 49 47 49 52 51 46 49 53 

No processing is done on the weekends. Boned meat is immediately packed for shipment 
and then frozen and stored in the company’s cold storage warehouse. All sales are to 
overseas customers and are made in large shipments by refrigerator ships. Over the past 
several months, shipments of the company’s entire stock in the warehouse have been 
made on the following dates: Jan. 13, Feb. 11, March 12, April 10, and May 10. 
Payments to farmers are due immediately after killing. Payments for shipments are 
received after loading. Build a mathematical model that approximates the company’s 
investment in frozen meat. Show how you derived the model. Justify why your model 
is a suitable representation of the real system. 

1.7 When a model is tested, the following deficiencies may be discovered: 
(a) The model may include irrelevant factors. 
(b) It may exclude relevant factors. 
(c) Constants or parameters may be evaluated incorrectly. 
(d) Functional relationships may be misrepresented. 

Consider the case study discussed in Section 1-9 and the simplified model given in 
Section 1-11, and give examples for each of these deficiencies. 

1.8 Discuss the apparent contradiction that if at the start of an operations research project 
all costs and potential benefits were known accurately, the project would not be un¬ 
dertaken at all, whereas if the total costs and potential benefits could only be ascertained 
after the model was tested for performance (but prior to implementation), the correct 
decision may have been to implement the model. What implications does this have for 
the evaluation of operations research projects? 

1.9 From the working definition of operations research given at the beginning of this chapter 
it follows that the operations researcher should take a systems approach and incorporate 
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into a model all aspects that are affected by changes in the values of the decision variables 
or that limit or affect in any other way the optimal values of the decision variables. On 
the other hand, in real life the approach often used by operations researchers to model 
a complex problem is to build a series of separate models that may be only very loosely 
connected with one another. (Effects are only considered in one direction, while any 
feedbacks are ignored.) Each subproblem is then solved separately or in a given sequence. 

Discuss this apparent contradiction. 

1.10 The following argument between A and B was overhead at a meeting of a “University 

Committee to Save Energy.” 
A: Clearly, every light turned off means some electricity saved. Hence, the task of this 

committee is to educate all members of the university community and, in particular, 
all staff to turn off lights whenever they are the last to leave a room, a corridor, or 

a lecture hall. 
B: Admittedly, a policy of turning off lights may generate immediate power savings. 

But the greater frequency of turning lights on and off will burn the bulbs out sooner 
and result in higher lamp replacement costs. Furthermore, dark corridors and lecture 
halls may increase the incidence of accidents, imposing higher costs on society as 
a whole. An optimal energy policy cannot restrict itself to considering only ways of 

reducing power consumption. 
Discuss, appraise, and criticize the viewpoints taken by A and B. 

1.11 Discuss the apparent contradiction between the sequence of the five phases of an op¬ 
erations research project [(1) formulation of problem, (2) construction of model, 
(3) derivation of solution, (4) testing of model, and (5) implementation of solution] and 
the following statement, attributed to C. W. Churchman: “Implementation is the first 

phase of an O.R. project.” 

1.12 Discuss the following humorous or sarcastic statements made by well-known operations 
researchers. Find a practical example from everyday life that demonstrates the truth or 

fallacy of each. 
(a) “Building a better mousetrap is hot enough.” (Solve problems that are relevant.) 
(b) “Don’t go around looking for problems to fit a solution.” (R. E. Machol, Interfaces, 

May 1974.) 
(c) “Steer clear of sacred cow zones.” (Don’t suggest solutions that infringe on vested 

interests.) (P. Rivett, Concepts of Operational Research, Watts, 1968.) 
(d) “Don’t ever try to teach a sponsor or client something until you have learned 

something from him.” 
(e) “Never do a project for free.” (R. L. Ackoff, Operations Research, March-April 

1960.) 
(f) “Don’t let the Mathematics come in the way of Common Sense.” (The 

Gozinto-Woolsey Principle.) 
(g) “Models are for managers, not mathematicians.” (Konczal’s Theorem, /. Systems 

Management, No. 12, 1975.) 
(h) “Look for hidden agendas.” (Is the project ritualistic to confirm some preconceived 

strategy?) (H. N. Shycon, Interfaces, Nov. . 1976.) 
(i) “Don’t undertake a management science project unless there is a clear and present 

need, one recognized by management.” (Go for demand pull rather than technology 
push.) (H. N. Shycon, Interfaces, Nov. 1976.) 

(j) “Use quick-and-dirtys.” (G. Woolsey & H. S. Swanson, A Quick and Dirty Manual, 

Harper and Row, 1975.) 
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CHAPTER TWO 

Linear Programming— 
Introduction and 

Applications 

Linear programming, or LP as it is called for short, is one of the most important tools 
used in operations research. Linear programming is a mathematical structure, in¬ 
volving particular mathematical assumptions, that can be solved using a standard 
solution technique called the simplex method. Any problem that satisfies the assump¬ 
tions of this structure can be formulated as a linear program and solved by the simplex 
method. It is thus a general purpose model. 

THE PROBLEM 

Consider the following example, simplified for expository purposes. The management 
of a coal-fired electric power generating plant is studying the plant's operational setup 
in order to comply with the latest emission standards under the air pollution control 
laws. For the plant in question, maximum emission rates are 

• maximum sulfur oxide emission: 3000 parts per million (PPM), 
• maximum particulate emission (smoke): 12 kilograms/hour (kg/hr). 

Coal is brought to the plant by railroad and dumped onto stockpiles near the 
plant. From there it is carried by a conveyor belt to the pulverizer unit, where it is 
pulverized and fed directly into the combustion chamber at the desired rate. The heat 
produced in the combustion chamber is used to make steam to drive the turbines. 
Two types of coal are used: grade A, which is a hard and clean-burning coal with a 
low sulfur content—fairly expensive though; and grade B, which is a cheap, relatively 
soft and smoky coal with a high sulfur content, as shown in Table 2-1. 
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Table 2-1. Emission of pollutants 

Sulfur Oxides Particulate 
Coal in Flue Gases (emission/ton) 

A 1800 PPM 0.5 kg 
B 3800 PPM 1.0 kg 

The thermal value in terms of steam produced is higher for coal A than for coal 
B, namely 24,000 pounds per ton for A against 20,000 pounds per ton for B. Since 
coal A is a hard coal, the pulverizer unit can handle at most 16 tons of coal A per 
hour, whereas it can pulverize up to 24 tons of coal B per hour. The conveyor loading 
system has a capacity of 20 tons per hour regardless of which coal is loaded. 

Here is one of several questions management wants to have answered: Given the 
limits on emission of pollutants and the grades of coal available, what is the maximum 
possible output of electricity of the plant? The answer will enable management to 
determine the margin of safety available to meet peak demands for power. 

2-2 DECISION VARIABLES 

In the short run, the plant facilities are fixed. The only aspect of the problem that is 
controllable and that can be used to affect the output of the plant is the amount of 
each type of coal to be burned. Thus the decision variables of the problem are 

• the amount of coal A used per hour, denoted by x,, 
• the amount of coal B used per hour, denoted by x2. 

In linear programming we often refer to the controllable aspects of a decision 
problem as activities. Hence x, and x2 represent the activity levels of burning coal A 
and coal B, respectively. 

LP ASSUMPTION 1: DIVISIBILITY 

Ail variables can assume any real value. 

Some activities in the real world can be varied in an almost continuous manner, 
i-e., they are infinitely divisible. For instance, the amount of coal burned per hour 
can be adjusted to any value, integer, or fraction, within reasonable limits. However, 
many real activities can only occur in integer values, such as the number of truck 
trips needed to haul a certain cargo from one location to another. 

If the real activity is not infinitely divisible but the normal activity level is a large 
number in terms of its units of measurement, then the assumption of divisibility may 
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serve as a convenient approximation. This usually means that the solution value for 
the activity is in the tens or larger. Fractional values of the solution are simply rounded 
to the nearest integer. However, if the normal activity level is relatively small, say less 
than 10, a solution technique is needed that guarantees an integer solution. This is 
not the case for linear programming. The more advanced techniques, called integer 

programming, form the topic of Chapter 18. 

LP ASSUMPTION 2: NONNEGATIVITY CONDITIONS 

All variables are nonnegative. 

This assumption reflects the nature of most activities in the real world, where 
it rarely makes sense within an economic or engineering context to talk about negative 
activity levels. In our example, negative activity levels would represent a reversal of 
the process of generating electricity, i.e., converting electricity back into coal. How¬ 
ever, this assumption is not a loss of generality. Any number—positive, zero, or 
negative—can be expressed as the algebraic difference of two nonnegative numbers. 
If an activity can occur at negative as well as at positive levels, such as buying or 
selling marketable securities, we introduce two decision variables for this activity, x+ 
for nonnegative levels, and x~ for nonpositive levels. Their difference x = x+ -x 
represents the actual level of the activity. By this trick both x+ and x are restricted 

to be nonnegative. 

2-3 OBJECTIVE FUNCTION 

Management’s objective is to maximize the output of electricity of the plant. Since 
electricity is produced through steam and there is a direct relationship between steam 
produced and output of electricity, maximizing electricity output is equivalent to 
maximizing steam output. Therefore, management’s objective can be reformulated 
as “Find the combination of fuels that maximizes steam output.” 

How much steam is produced for any arbitrary amount of coal used? A simple 
and systematic way of determining this is shown in Table 2-2. 

Table 2-2. Construction of objective function 

Steam (in lb/ton Steam Produced 
Coal of fuel used) Fuel Used/Hour (in lb/hour) 

A 24,000 x, 24,000x, 
B 20,000 x2 20,000x2 

Total amount of steam/hour = 24,000x, + 20,000x2 
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It is rather cumbersome to write numbers that are in the thousands. Let us 
therefore scale this sum by a factor of 1000; i.e., rather than quoting the steam 
produced in pounds, we express it in units of 1000 pounds. Hence coal A produces 
24 units and coal B 20 units of steam per ton of fuel. In terms of these new units, 
the total amount of steam produced per hour is 

(2-1) 24*j -f 20x2 = z 

The left-hand side of expression (2-1) is called the objective function, and z is 
the value of the objective function. The coefficients of the decision variables are 
referred to as objective function coefficients. The problem calls for finding values of 

and x2 that maximize the value of z. Figure 2-1 depicts the objective function for 
arbitrary values of z in the form of contour lines of equal output. 

Notice that in two-dimensional Euclidean space any given value of z yields a 
straight line for the objective function. As the value of z changes, this straight line 
moves parallel to itself. The objective function is thus seen to be linear. 

LP ASSUMPTION 3: LINEARITY 

All relationships between variables are linear. In linear programming this implies: 

1. Proportional it}' of contributions. The individual contribution of each var¬ 
iable is strictly proportional to its value, and the factor of proportionality 
is constant over the entire range of values that the variable can assume.' 

2. Additivity of contributions. The total contribution of all variables is equal 
to the sum of the individual contributions regardless of the values of the 

Figure 2-1. Objective function. 
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A relationship such as z = (5x, + 3xt2 + 2x2) or z = (24x, + 20x2 for x, ~s5 
and 10 + 22x, + 20x2for x, > 5) would violate the condition of proportionality, 
whereas z = (24*, for x2 = 0, 20x2 for x, = 0, and 22x, + 18x2for x, > 0 and 

x, > 0) would violate additivity. * . 
Assumption 3 implies constant returns to scale and precludes economies or dis¬ 

economies of scale. In practice this assumption may not hold exactly, particularly tor 
very small or very large values of the activity levels. However, if it holds approximately 
within the normal range of the solution values, we may use the linear programming 
model as a convenient and powerful approximation. This assumption also excludes 
fixed charges which are incurred for positive activity levels but not for zero levels. Note 
that it is sometimes possible to approximate diseconomies of scale by the use ot several 

variables, as will be discussed in Section 17-4. 

2-4 CONSTRAINTS 

In addition to the nonnegativity conditions, the activity levels are restricted by various 

constraints which may be of physical, economic, or legal nature. 

Constraint on particulate emission 

The maximum amount of smoke that the plant is allowed to emit per hour is limited 
to 12 kg. According to Table 2-1, each ton of coal A produces 0.5 kg of smoke, and 
each ton of coal B produces 1 kg of smoke. If the plant burns x, tons of coa A and 
x2 tons of coal B, the total amount of smoke emitted from both coals is equal to 

0.5x, + x2 (kg/hr) 

This sum cannot exceed 12 kg/hr. We thus have the following inequality constraint: 

(2-2) 0.5x, + x2«s 12 

The coefficients of the variables on the left-hand side of the inequality sign are 
referred to as the left-hand-side (LHS) coefficients. The constant to the right of the 
inequality sign is the right-hand-side (RHS) parameter. Figure 2-2 depicts this con¬ 

straint graphically. r . . . . . ,, 
Taken by itself, the smoke constraint restricts the values of the decision variables 

to those combinations of x, and x2 that are on the line 0.5x, + x2 = 12 or to the 
left and below that line. Such an area is called a closed half-space closed because 

it includes all of its boundaries. , 
We note again that the individual contribution of each variable is strictly pro¬ 

portional to its value and that the total contribution toward smoke emission is equal 
to the sum of the individual contributions. Hence the constraint satisfies the as¬ 

sumption of linearity as required by Assumption 3. 
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Figure 2-2. Smoke constraint. 

X2 

Constraint on loading facilities 

The conveyor system transporting coal from the stockpiles to the pulverizer has an 
hourly capacity of 20 tons. The total number of tons loaded per hour is equal to the 
sum of the two decision variables.Therefore, the loading constraint reads 

(2-3) X, + x2 =£ 20 

You should show this constraint graphically. 

Constraint on pulverizer unit 

The maximum pulverizer capacity is 16 tons per hour for coal A or 24 tons per hour 
for coal B. In other words, it takes ^ of an hour to pulverize one ton of coal A and 
a of an hour to pulverize one ton of coal B. If the solution calls for a combination 
of both coals, the amount of time taken to pulverize a mixture of x, tons of coal A 
and x2 tons of coal B is (re) x, + (a) x2. Only those combinations of x, and x2 which 
require at most 1 hour of time are admissible. Hence, the pulverizer constraint reads 

(2-4) ix, + ^x2 =£ 1 

Note how we overcame the difficulty introduced by different maximum rates. 
We translated these rates into length of time needed per ton and expressed the constraint 
m terms of time rather than capacity. 

Constraint on sulfur oxide emission 

The maximum sulfur oxide emission is not to exceed 3000 PPM at any time. Given 
that the two coals are burned simultaneously, we assume that the combination of x, 
tons of coal A and x2 tons of coal B per hour is fed into the combustion chamber as 
a homogeneous mixture. x,/(x, + x2) of the mixture is coal A with a sulfur oxide 
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Figure 2-3. The feasible region. 

emission rate of 1800 PPM, and x2/(x, + x2) of it is coal B with an emission rate of 
3800 PPM. The emission rate of the mixture is equal to the weighted average ot the 
individual emission rates, where the fractions of each coal used serve as weights. 1 his 

weighted average cannot exceed 3000 PPM: 

weighted average emission rate 3000 PPM 

or 

1800 
x, + x; 

+ 3800 
X1 + X2 

3000 

Multiplying both sides of the inequality by (x, + x2) and rearranging terms, we get 

the sulfur constraint: 

(2-5) 1200x, - 800x2s= 0 

All four constraints are shown simultaneously in Figure 2-3. 

2-5 THE FEASIBLE REGION 

To be an admissible solution, a combination of activity levels must satisfy simulta¬ 
neously all constraints, including the nonnegativity conditions. Such a solution is 
called a feasible solution to the problem. The set of all feasible solutions forms the 
feasible region. A solution that does not fall in this region is an infeasible solution. 
Figure 2-3 shows all four constraints and the nonnegativity conditions on the same 
graph. Inspection of the arrows shows that only those combinations of activity levels 
that are in the shaded area or its boundary sahsfy all constraints simultaneously. 1 his 

area therefore forms the feasible region. 



Section 2-6 Graphical Sal,,h™ 

space, the feasible regiof Is^iveTby the’inte^f rePresents a closed half- 
that the feasible region does not depend on theohi ° r^CSe. C*0Sec* ^alf-spaces. Note 
property of most operations reseS ideh Sf 6 funCtl0n- This is an interesting 
method and the properties of the optSIXfiolT lmP°rtant effects on the soluti<m 

fc„ thi'ilT r/izs'.urK' in Tprt *h' ^ 
will never be limiting on the values of the ^ ^ fromL1further consideration, ft 
constraint in our problem? ° * C dec*s*on variables. Is there a redundant 

of variables, it is seldom prableto WentUVwh'eth'1'''1' °f constraints and hundreds 
Fortunate!,, the simples m ^ slio! , ” "0t" Constraint * «tadant 

whether die formulation contains r^undant^onstrainh°^ranlS "* ***** rf 

2-6 GRAPHICAL SOLUTION 

of Figure 2-3° F^re M^Tlfe011 “t^0’p" infFigure 24 onto the graph 
240 and * = 360 both have a selent la £^ur.Jin? fcE 3 Steam outPut * * - 
the contour line for z = 480 has no noint in m S msicJe feasible region, whereas 

our objective is to maximize the steam output ofTbT'l ^the feasible region- Since 
contour line for z that contains at least one feasible P We^ant find the highest 

by z = 408 passing through point AZlZZ* ^ bne glVen 
amount beyond 408, the resulting line Oac Z « increased by an infinitesimal 

6. A combination of 12 tons of cS* A°and^ ^ T ^ Z 3S X| = 12 and *2 = 
steam output of the plant within the nhwirt/TH “? ® perhour maximizes the 
decision variables. Verify that this solution^ ^ T restrictions imposed on the 

It seems intuitively obvious that thP °rresponds to a value of z = 408. 

boundary of the feasible region either^ aS $°lut!°n wil1 always occur at the 
one of the edges, and thus amin at an ft ?°mt (extreme Point) or all along 

9, it is the slope of the objective functionAat'de^1"'’ T Sbab See in Section 2- 
optimal solution actually occurs. rmines where on the boundary the 

you changePthe grTphfi^ function, how would 

the minimum-cost solution to pmduce a steaf TZ Say w Want to find 
and the cost per ton is $18 for coal A and $1 5 f Utput,°£at least 216 units per hour, 

SaXt 



okapi., 2 linm, P^amming-Inl^cliCT and Applied 

Figure 2-4. Optimal solution. 
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2-7 MATHEMATICAL SUMMARY 

Let us now summarize the problem in mathematical form. 
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Objective function: 

Determine values for xx and x2 that 

maximize z — 24xj + 20x2 

Constraints: 
subject to 0.5xj + x2 sc 12 (smoke) 

*i + x2 ^ 20 (loading) 

(2-6) 
1V1 + kh. ^ 1 (pulverizer) 

1200x, - 800x2 =* 0 (sulfur) 

Nonnegativity conditions: 

xx ^ 0, x2 ^ 0 

In general, if we denote x- as the value of the ;th activity or variable, atj as the 
LHS coefficient of variable j in constraint i, 6. as the RHS parameter of the ith 
constraint, and cj as the objective function coefficient-of the ;th variable, then the 
structure of a linear program is as follows: 

Determine values for j = 1, 2, . . ., n, that 

maximize z == ^ cj xj 
i 

(2-7) subject to a,-,-xy [*£ or = or 3=] b„ i = 1, 2, . . m 
i 

and 0, j = 1, 2, . . n 

where n is the number of variables, m is the number of constraints, and the constraints 
may be equalities or inequalities of the type « or s=. 

2-8 SLACK VARIABLES 

For any given feasible solution, the difference between the LHS and the RHS of a 
constraint is called the amount of slack (for =£ inequalities) or surplus (for 3* ine¬ 
qualities). It is often convenient to show this difference explicitly by introducing an 
additional variable into each constraint. These variables are called slack or surplus 
variables. For convenience, we shall use the term slack variables for bofh. They are 
subject to the same assumptions of divisibility and nonnegativity as the decision 
variables. Each constraint is then converted to an equality. 

Let xi+2 be the slack variable for the ith constraint in our example. Introducing 
them into our constraints, we get the following four equalities: 

(2-2A) 0.5xj + x2 + x, =12 (smoke) 

(2-3A) T + x2 + x4 = 20 (loading) 

1 -i'r .‘TTT5* 



44 Chapter 2 Linear Programming—Introduction and Applications _ 

(2-4A) &x, + kh + *; =1 (pulverizer) 

(2-5A) 1200x, - 800x2 - x6 = 0 (sulfur) 

Why is the slack variable for the sulfur constraint (2-5A) subtracted from the LHS 

rather than added, as for the other three constraints? 
The slack variables can often be interpreted as unused resources or unused capacity 

for a given solution. For instance, x3 is the amount of unused smoke emission capacity 
and x4 the amount of unused loading capacity. What is the interpretation for x5? 
Because of the way the sulfur constraint was obtained, there is no simple interpretation 
for x6. For resource constraints, each such equality says that the amount of resources 
or capacity used by the activities plus the unused amount of resources or capacity is 
equal to the total available amount of resources or capacity. 

If a slack variable is equal to zero in a feasible solution, the corresponding 
constraint is binding. If a slack variable is positive, the corresponding constraint is not 
binding, or slack. By substituting the values of the decision variables into each con¬ 

straint, verify that we have for the optimal solution: 

Constraint Smoke Loading Pulverizer Sulfur 

Amount of slack 0 2 0 9600 
Status of constraint binding slack binding slack 

2-9 SENSITIVITY ANALYSIS 

Let us next consider some “what if” questions. We mentioned earlier that the slope 
of the objective function determines where the optimal solution occurs. The slope of 
the objective function is determined by the objective function coefficients. What 
happens if the value of one of the objective function coefficients changes? 

Assume that the thermal value of coal A is equivalent to 32,000 pounds of steam 
rather than 24,000, with all other coefficients remaining at their previous values. The 

objective function changes to 

(2-8) maximize 32x, + 20x2 

This new objective function is shown in Figure 2-5 as the broken line for the 
optimal value of z. The optimal original objective function (2-1) is shown as dotted. 
The maximal value of (2-8) occurs at point B. 

A change in the value of an objective function coefficient—with all other objective 
function coefficients remaining unchanged—causes a change in the slope of the 
objective function. If the change in the slope is sufficiently large, the optimal solution 

shifts to another extreme point of the feasible region. 
Let us study this effect more closely. What is the largest possible value of die 

original objective function coefficient of x,, denoted by cv before the optimal solution 
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Figure 2-5. Alternative objective function. 

x2 

shifts from point A to point B? From Figure 2-5 we see that, as c, is increased, the 
slope of the maximal value of the objective function gets closer and closer to the slope 
of the boundary of the pulverizer constraint and will ultimately coincide with the 
pulverizer constraint. At that value of c„ any point along the line from A to B is 
optimal; i.e., we obtain alternative optimal solutions, all with the same value of z. 
(Note that in many real-life problems alternative optimal solutions may occur natu¬ 
rally.) If Cj is increased slightly more, the optimal solution will occur only at point 
B. Thus, provided c, is no greater than the value needed to make the objective function 
parallel to the pulverizer constraint, the optimal solution will remain at A. The 
objective function and pulverizer constraint are parallel when their slopes are the 
same. This implies that the ratio of the coefficients for the lines is the same. So we 
require that 

_£i_ 
1/16 

20 
1/24 

480 
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This yields c, = 30. For an increase in c, beyond 30, the optimal solution will shift 
from A to B. For cx = 30 the objective function 30x, + 20x2 assumes its maximal 
value of 480 for any point along the line from A to B, including both A and B. By 
an analogous reasoning it follows that if c, is decreased to 10—all other coefficients 
and parameters remaining unchanged—the objective function will be parallel to the 
smoke constraint (2-2). A decrease of c, below 10 will cause a shift of the optimal 

solution from point A to point C. (See Figure 2-5.) 
The conclusion we can draw from this exercise is that, all other things remaining 

the same, the solution xx - 12 and x2 = 6 remains optimal for any value of the 
objective function coefficient for xx in the range 10 =£ c, =£ 30. Can you determine 

the range on c2? 
Let us next see how the optimal solution is affected by a change in the RHS 

parameter of a constraint. To motivate this analysis assume that management is 
contemplating the installation of emission control equipment that would reduce smoke 
by 20 percent. This would allow the legal emission standards to be met by an un¬ 
controlled emission of smoke from the combustion chamber of up to 15 kg/hr. How 
much would this be worth per hour in increased steam output? 

Assume first that the maximum permissible smoke emission is increased from 
12 kg to 13 kg/hr, all other coefficients and parameters remaining the same. This 
causes a parallel upward shift in the smoke constraint, as shown in Figure 2-6. Since 
this constraint forms part of the boundary of the feasible region, the feasible region 
is enlarged by the dark shaded area. In this enlarged feasible region, z = 408 is no 
longer the optimal value of the objective function—the best value is now at point D. 
So the optimal solution shifts from A to D. This change occurs because originally the 
smoke constraint is binding at point A. The new optimal values of the decision 
variables are x, = 11 and x2 = 7.5. The decrease in x, causes a reduction in steam 
output of 24 units, whereas the increase in x2 increases output by 30 units. The net 
increase is 6. The new maximal value of z is thus 408 + 6 = 414. 

The change in the optimal value of the objective function for a unit change in 
the RHS parameter of a constraint is called the shadow price or imputed value of the 
constraint. The shadow price of the smoke constraint (2-2) is 6. 

What happens if the maximum smoke emission is further relaxed to 14, 15, 16, 
and 17 kg/hr? The dotted lines in Figure 2-6 show how the smoke constraint shifts 
upward, adding an additional area to the feasible region for each such shift up to a 
maximum of 16. You should confirm that the resulting changes in the decision 
variables increase the maximal value of the objective function by 6 units for each unit 

increase in the RHS parameter. 
For an increase of the RHS beyond 16, the smoke constraint becomes redundant. 

The optimal solution is now restricted by the pulverizer and sulfur constraints (as well 
as by the loading constraint). Hence, for values of the RHS parameter of the smoke 
constraint larger than 16, the shadow price of that constraint is zero. 

Our original question asked for the increase in steam output for a change in the 
permissible smoke level from 12 to 15 kg/hr. This will be 3 x 6 or 18 units of 

steam/hr. 
What is the shadow price of a constraint that is not binding in the optimal 
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Figure 2-6. Sensitivity analysis for RHS parameters. 

X2 

solution? Clearly, if a portion of a resource remains unused—the corresponding slack 
variable is positive—additional amounts of that resource have no value. They would 
only increase the amount of slack. Hence, the shadow price of such a constraint is 
zero. Find the shadow prices for the remaining constraints. 

Observe the interesting complementarity between the value of the shadow price 
of a constraint and the slack variable associated with the same constraint: 

Status of Value of Value of 
constraint shadow price slack variable 

binding (usually) positive zero 
not binding zero (usually) positive 

We hedge somewhat by saying “usually positive/' We shall see in Chapter 4 that a 
more accurate statement is “nonnegative/' 

Shadow prices provide management with valuable information about the benefits 
that can be gained by relaxing constraints. If these benefits exceed the costs incurred 
for relaxing a given constraint, then such changes are attractive. 
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You are now ready to do parts (c) through (e) of exercises 2.1 to 2.4. 

2-10 SOLUTION BY COMPUTER 

The graphical solution is only possible if the number of decision variables does not 
exceed 2 (3?). Problems with more decision variables have to be solved mathematically 
by the simplex method. This method is developed in detail in Chapter 3. The com¬ 
putations of the simplex method are very time-consuming. Even small problems of 
5 to 10 variables and constraints take hours to be solved on a desk calculator. Real 
problems, however, have hundreds or thousands of constraints and variables. Access 

to computers is thus a necessity. 
Because of its iterative nature, the simplex method can easily be programmed 

for a computer. Any problem that has the general structure of expressions (2-7) and 
satisfies the three assumptions of linear programming can be solved with the aid of 
such general purpose linear programming computer codes. 

Before we discuss the input into these computer codes, let us represent the general 
form of a linear program, as it is shown by expressions (2-7), in the form of a table 
that has one row for each constraint plus an additional row for the objective function, 
and one column for each variable plus an additional column for the RHS. At the 
intersection of each constraint row and variable column, we insert the corresponding 
LHS coefficient. In the bottom row we insert the corresponding objective function 
coefficients, and in the last column we show the RHS parameters and the type of 
constraint (*£ or = or 3*). This table is commonly referred to as the linear program 
in detached coefficient form. Instead of indicating the type of relationship in the column 
for the RHS, it is often convenient to add additional columns for the slack variables. 
Each constraint is then implied as an equality. This has been done in Table 2-3 for 

the original power plant capacity problem. 

Table 2-3. Linear program in detached coefficient form 

Variable 

Constraint *i X2 *3 *4 V *6 
RHS 

(2-2 A)- - 0.5 1 1 0 0 0 12 

(2-3A) 1 
1 
16 

1 
i 

24 

0 1 0 0 20 

(2-4A) 0 0 1 0 1 

(2-5A) 1200 -800 0 0 0 -1 0 

Obj. function 24 20 0 0 0 0 maximize 

This table contains all of the input data needed for most LP computer codes. 
Therefore, the computer has to be told the size of the table (i.e., the number of 
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decision plus slack variables and the number of constraints); the value of each entry 
in the table, usually identified by its row name and column name; and whether the 
objective function is to be minimized or maximized. 

Rows and columns are usually identified by mnemonic names, i;e., words or 
abbreviations that immediately suggest what activity or constraint is being referred to. 
This avoids a lengthy translation process if the numbers of variables and constraints 
are large. For our example we could use the following names. 

Constraint (2-2A): SMOKE Variable x,: ACOAL 

(2-3A): LOAD x2: BCOAL 

(2-4A): PULVER x3: SMOKSL 

(2-5A): SULFUR x4: LOADSL 

xs: PULVSL 

x6: SULFSL 

We have solved this problem using the simple LP code “LPGOGO,” described in 
Chapter 5 of Daellenbach and Bell, User’s Guide to Linear Programming (see Ref¬ 
erences). This code typically requires that each nonzero entry of Table 2-3 be specified 
on a separate card. Figure 2-7 shows the printout of the optimal solution. The code 
first reproduces the input data. This is a useful feature, since it allow? us to check 
whether the problem actually solved was the one we intended to solve! 

Small rounding errors may occur when the data are read into the computer as 
well as during the computations of the simplex method. As a consequence the optimal 
solution printed may contain small rounding errors, as is the case here. 

In addition to the optimal values of the variables and the objective function, 
LPGOGO also provides a considerable amount of information useful for sensitivity 
analysis. In particular, the shadow price of each constraint is shown under the heading 
“IMPUTED VALUE.” The range of the RHS parameter over which each shadow 
price is valid, all other inputs remaining unchanged, is shown under the headings 
“DECREASE” and “INCREASE.” For instance, the shadow price of 6.0 of the 
SMOKE constraint is valid for a decrease of up to 4 kg and an increase of up to 4 kg 
from the original value of 12 kg/hr, confirming our earlier results obtained graphically. 
On the other hand, the shadow price of the PULVER constraint is only valid for a 
decrease of up to \ hour or an increase of up to g hour. The effect of changes in RHS 
parameters on the variables, however, is not shown. 

The printout also provides sensitivity analysis with respect to the objective function 
coefficients of variables that have a zero value in the optimal solution. The numbers 
listed under the heading “DELTAJ” represent the change in the value of the objective 
function if the corresponding variable—which at present has a zero value—-were forced 
to a value of one. Alternatively, the negative of the DELTAJ value is the amount by 
which the objective function coefficient of the corresponding variable would have to 
increase to make this variable a candidate to enter alternative optimal solutions. 

In our example only the slack variables have nonzero DELTAJ values. Therefore, 
let us look at an expanded version of the power generating capacity problem. 
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2-11 AN EXPANDED VERSION OF THE POWER PLANT 
CAPACITY PROBLEM 

The plant is offered a third type of fuel, grade C coal, that results in a sulfur oxide 
emission rate of 2000 PPM, a smoke emission rate of 0.8 kg/ton of fuel burnt, and 
requires ^ hour each of pulverizer and loader capacity per ton. Its thermal value is 
the equivalent of 21,000 lb of steam per ton of fuel. Would it be advantageous for 

the plant to use this fuel? 
Let us reformulate the problem with this third coal. Let x3 be the number of tons 
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per hour of coal C used. Then 

maximize 24xj + 20x2 + 2 lx3 

subjectto O.Sxj + x2 + 0.8x, ^12 

x, + Xi 4~ 

I6*i + Ax, + 

1200xj - 800x2 + 1000x3 ^ 0 

Xj ^ 0, x2 ^ 0, x3 ^ 0 

(smoke) 

(loading) 

(pulverizer) 

(sulfur) 

Figure 2-8 reproduces the computer printout of the optimal solution for this 
expanded version. Note that we have again converted all constraints to equalities by 
introducing slack variables. The listing of the input data has been omitted, the optimal 
solution is unchanged. Under the present conditions, it is not advantageous to use 
coal C. In fact, according to the DELTAJ value of variable CCOAL (x3), the objective 
function would change by - 0.6, a decrease from 408 to 407.4 units of steam, if 
x* = 1. Alternatively, the thermal value of coal C would need to be!600 lbs/ton 
greater or the objective function coefficient of x3 would need to be 21.6 rather than 
21 (larger by the negative of —0.6) before variable x3 could assume positive values 
in alternative optimal solutions. 

Figure 2-8. Expanded version of power plant capacity problem. 

SOLUTION OPTIMAL AFTER 
MAXIMAL OBJECTIVE = 

VARIABLE STATUS OP 
ACOAL BASIC 
BCOAL BASIC 
ACOAL BASIC 
BCOAL BASIC 
CCOAL 
SMOKSL 
LOADSL BASIC 
PULVSL 
SULFSL BASIC 

CONSTRAINT STATUS 
SMOKE BINDNG 
LOAD SLACK 
PULVER BINDNG 
SULFUR SLACK 

ER 7 ITERATIONS 
407.999512 

OPTIMAL VALUE D 
12.00000 
6.00000 
0.0 
0.0 
2.00001 
0.0 

9599.99609 

IMPUTED VALUE 
6.00000 
0.0 

335.99976 
0.00000 

DELTAJ 
-0.0 
-0.0 
-0.60001 
-6.00000 
-0.0 

-335.99976 
0.0 

DECREASE 
4.00000 
2.00001 
0.25000 

OPEN 

INCREASE 
4.00000 

dPEN 
4.16667 

9599.99609 

There was really no need to solve the expanded version of the problem to get this 
result. The shadow prices of the original problem give us all the required information. 
Let us arbitrarily decide to use one ton of coal C and determine its effect on the 
objective function. Setting x3 = 1 is equivalent to reducing the RHS parameters of 
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the four constraints of the original problem as follows: 

0.5x, + x2 (12 - 0.8) or 11.2 (smoke) 

+ x2 (20 - 1) or 19 (loading) 

i£xi + £ x2 *£ (1.0 - 1/20) or 19/20 (pulverizer 

1200x, - 800x2 2= (0 - 1000) or - 1000 (sulfur) 

The loading constraint and the sulfur constraint are both slack, and their shadow 
prices are therefore zero. But 1/20 hour of pulverizer capacity reduction results in a 
decrease of 1/20 X 336, or 16.8, in the value of the objective function, and a reduction 
of 0.8 kg of the maximum smoke emission decreases the value of the objective function 
by 0.8 x 6, or 4.8. The total decrease of the objective function value is equal to the 
sum of 16.8 plus 4.8, or 21.6 units of steam. On the other hand, the additional steam 
output gained per hour by burning one ton of coal C is only 21 units. The net loss 
in steam output is thus 0.6 units, confirming our earlier finding. 

Try your hand now with exercises 2.5 and 2.6. 

2-12 A PRODUCTION SCHEDULING PROBLEM 

A metal processing plant receives an order to produce 10,000 casings. The contract 
specifies a sale price of $4.85 per casing. The products design engineer proposes four 
alternative designs for the casings, resulting in different machine time usages and 
material costs. The material costs differ because of varying amounts of wastage. 

Table 2-4. Input data for casing production 

Production 
Design 

Machine Time (in minutes) 
Material 

Cost 
Rejects 

Produced Cutting Forming Welding Finishing 

i 0.40 0.70 1.00 0.50 $3,355 3% 

2 0.80 1.00 0.40 0.30 $4,150 1% 

3 0.35 0.60 1.20 0.75 $3,005 4% 

4 0.70 0.80 0.60 0.55 $3,705 1% 

Cost/minute $0.20 $0.30 $0.15 $0.10 

The customer wants to receive delivery within one month of signing of the contract. 
On the basis of the present production commitments, the production manager forecasts 
that the plant has excess capacities of 90 hours of cutting machine time, 140 hours 
of forming machine time, 154 hours of welding time, and 120 hours of finishing 
time. The production engineer’s problem is to determine which designs to use so as 
to guarantee delivery within the contractual arrangement. 
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What should we use as the firm’s objective? The usual objective in problems of 
this sort is the maximization of profits. In this example the relevant measure of profit 
is given as the difference between gross revenues and all variable costs. 

What aspects provide the decision variables? The production manager is given 
four designs that each yield exactly the same end product from the user’s point of 
view. The choice thus boils down to which combination of designs to use—in par¬ 
ticular, how many casings of each design to produce. Let xy denote the number of 
casings of design / produced. This choice cannot be arbitrary. In order for the company 
to guarantee delivery on the due date, the machine usages have to be within the 
predicted excess capacities. Furthermore, the total number of good casings produced 
has to be equal to 10,000. 

Total output constraint 

From past experience, it is possible to predict the average fraction of defectives resulting 
from each product design. This is shown in the last column of Table 2-4. To satisfy 
the output requirement, only good casings can be counted. So if x, casings of design 
1 are scheduled, and on the average 3 percent defectives are produced or 97 percent 
are expected to be good casings, then 0.97x, is the number of good casings of design 
1 obtained. Using the same reasoning for all four designs we require that 

[expected total number of good casings produced] = [number of good casings required] 

I--1 

(2-10) 0.97x, + 0.99x2 + 0.96x, + 0.98x4 = 10,000 

(Note that in practice it might be advisable to add some small safety margin.) 

Machine time constraints 

The machine time used for each operation cannot be more than the excess time 
available within the delivery period. For instance, each unit of design 1 requires 0.4 
minutes of cutting time, so x, units require 0.4X[ minutes. For all four designs, the 
amount of cutting time needed is 

0.4x, + 0.8x2 f 0.35x, + 0.7x4 

The amount of cutting time available is 90 hours, or 5400 minutes. Thus, we get the 
following relation: 

Cutting time constraint: 

(2-11) 0.4x, + 0.8x2 + 0.35x, 

Similarly, for the other three operations: 

Forming time constraint: 

(2-12) 0.7xj + 1.0x2 + 0.6x? 

+ 0. 74x4 *£ 5400 

+ 0.8x4« 8400 
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Welding time constraint: 

(2-13) l.Ox, + 0.4x2 + 1.20x, + 0.6x4 *£ 9240 

Finishing time constraint: 

(2-14) 0.5x, + 0.3x2 + 0.75x3 + 0.55x4*s7200 

To determine the profits we need the unit costs. These are made up of the variable 
machine cost for each operation and the material cost. Table 2-5 shows the detailed 

components for each design. 

Table 2-5. Unit profits rounded to j cent 

Design i 2 3 4 

Costs: Materials $3,355 $4,150 $3,005 $3,705 

Cutting time 0.08 0.16 0.07 0.14 

Forming time 0.21 0.30 0.18 0.24 

Welding time 0.15 0.06 0.18 0.09 

Finishing time 0.05 0.03 0.075 0.055 

Total unit cost 3.845 4.700 3.510 4.230 

Total profits are given by total revenues minus total costs: 

4.85(10,000) - 3.845x, - 4.7x2 - 3.51x, - 4.23x4 

Substituting the left-hand side of expression (2-10) for 10,000, we get 

4.85(0.97x1 + 0.99x2 + 0.96x, + 0.98x4) - 3.845x, - 4.7x2 - 3.51 x3 - 4.23x4 

Collecting terms and rounding to the nearest \ cent, we finally obtain the 

Objective function: 

(2-15) maximize 0.86x, + 0.1x2 + 1.145x3 + 0.5 25x4 

Nonnegativity conditions: 

' Xj 2= 0, ;=1,2,3,4 

We have solved this problem using the LP code LPGOGO. Figure 2-9 reproduces 
the computer printout of the optimal solution. Note that for the computer solution 
we introduced slack variables for the machine time constraints, which were all ^ 
inequalities. With this change the problem has 8 variables and 5 equality constraints. 
Constraints and variables are given mnemonic names that are self-explanatory. 

The optimal solution provides that approximately 476 units of design 1, 4776 
units of design 3, 5054 units of design 4, and no units of design 2 are produced at 
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Figure 2-9. Computer printout of optimal solution to production scheduling problem. 

SOLUTION OPTIMAL AFTER 7 ITERATIONS ; 
MAXIMAL OBJECTIVE = 8531.603325 

VARIABLE STATUS OPTIMAL VALUE DELTAJ 
DE SI BASIC 476.00950 0.00000 
DES2 0.00000 -0.19559 
DE S3 BASIC 4776.24703 0.00000 i 

DES4 BASIC 5054.15677 0.00000 1 
CUTS L 0.00000 -1.11188 
FORMS L BASIC 1157.71971 0.00000 
WELDSL 0.00000 -1.63985 
FINSL BASIC 600.02375 0.00000 

CONSTRAINT STATUS IMPUTED VALUE DECREASE Increase 
OUTPUT BINDNG -1.26247 31.80952 437.13043 
CUT BINDNG 1.11188 505.22613 33.40000 
FORM SLACK 0.00000 1157.71971 OPEN 
WELD BINDNG 1.63985 700.62718 160.91185 
FINISH SLACK 0.00000 600.02375 ! OPEN 

a total profit of $8531.60. All available cutting and welding machine time is used up, 
whereas there still remain about 1158 minutes of forming machine time and 600 
minutes of finishing machine time. 

From the imputed value (our shadow prices for the constraints), we can infer 
that, at the margin, additional cutting machine time has a value of $1.11 per minute, 
and additional welding time is valued at $1.64 per minute. These shadow prices are 
valid for increases of, respectively, 33 and 61 minutes only. For instance, if 60 more 
minutes of welding machine time were available, profits would increase by 60 X 

$1.64, or $98.40. Such information may be highly useful for deciding whether or not 
to schedule overtime and on which machines. 

How are profits affected if the total output of good parts has to be increased by 
100 units? The answer to this question is supplied by the shadow price of the total 
output constraint. For a unit increase in the RHS of constraint (2-10), profits change 
by $-1.26. In other words, total profit decreases by $1.26. For a 100-unit increase 
in output, this amounts to a decrease in profits of 100($1.26), or $126) The reason 
lor this rather unexpected result is that such an increase would force a proportionately 
larger shift from more profitable designs, such as design 3, to less profitable designs, 
such as 1 and 4. 

Given the small number of units using design 1 required in the optimal solution, 
the production manager may not wish to use design 1 at all. The unit costs may only 
be valid if sufficiently large quantities of a design are produced. Under these circum¬ 
stances, the manager would eliminate designs 1 and 2 and only use designs 3 and 4. 
Solving the problem again, he or she will discover that with the present excess machine 
times, no feasible solution exists. In fact, at least 33.4 minutes of overtime on the 
cutting machine is needed to produce 10,000 good units using designs 3 and 4 only. 
If this additional cutting time can be arranged, the optimal solution calls for 5092 
units of design 3 and 5216 of design 4, at a total profit of $8568.74 less the overtime 
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cost of the additional cutting time. Ignoring the cost of overtime, this is $37.14 higher 

than the original maximum profit. Note that this number is equal to 33.4 times the 

imputed value of CUT constraint = (33.4) ($1.11188). 

2-13 CORPORATE PLANNING MODEL 

Forest Industries Corporation has just signed contracts for the clear-felling of two large 

forest tracts of second-growth radiata pines. The harvested trees will supply the firm s 

sawmill and chipboard plant. Some of the logging output is also available for export. 

Figure 2-10 depicts the materials flow schematically. 

All trees harvested are cut on location into sections 20 feet long (about 6 meters), 

referred to as first cuts, second cuts, third cuts, etc. On the basis of a detailed survey 

of each forest, the firm’s chief forester estimated the average composition of each 

forest’s total output, as shown in Table 2-6. 

Table 2-6. Composition of logging output 

Log Cuts Forest 1 Forest 2 

first and second 42% 46% 

third and fourth 40% 41% 

fifth and over 18% 13% 
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The average daily output is 128 HC for forest 1 and 192 HC for forest 2 (1 HC = 
100 cubic feet = 2.832 cubic meters). 

The log cuts are sorted and loaded onto logging trucks for transportation to either 
the sawmill or the chipboard plant, the two facilities being at different locations. 
Transportation costs from forest 1 amount to $4 per HC to the sawmill and $7 per 
HC to the chipboard plant. From forest 2 the costs are $3 and $$, respectively. 
Handling costs at the two plants depend on the type of log cuts, as shown in Table 
2-7. 

Table 2-7. Handling costs per HC at plants 

Log Cuts Sawmill Chipboard Plant 

first and second $2.50 $1.20 
third and fourth $3.50 $1.50 
fifth and over $5.00 $2.00 

At the sawmill, logs are sawn into three grades of finished products: clear grade, 
dressing grade, and construction grade. A substantial fraction of the incoming volume 
of wood ends up as scraps and sawdust. Table 2-8 shows the average log conversion 
factors at the sawmill, as well as the average processing rates. Excluding breakdowns, 
the productive capacity at the mill averages 360 minutes per day. 

Table 2-8. Log conversion factors at sawmill 

Log Cuts 
Sawn Timber 
(MBF/HC*) 

Scraps 
(HC/HC) 

Sawdust 
(HC/HC) 

Processing 
Time per HC 

first and second 0.72 0.26 0.14 1.8 
third and fourth 0.66 0.30 0.15 2.6 
fifth and over 0.54 0.39 0.16 3.9 

* 1 MBF = 1000 board feet s 2.36 cubic meters 

From sample logs processed at the sawmill, average yields for each grade of sawn 
timber were determined. They are summarized in Table 2-9. 

Table 2.9. Sawn timber yields by grades 

Clear Dressing Construction 

Log Cuts Forest 1 Forest 2 Forest 1 Forest 2 Forest 1 Forest 2 

first and second 35% 28% 48% 42% 17% 30% 
third and fourth 10% 3% 18% 9% 72% 88% 
fifth and over 0 0 5% 0 95% 100% 
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The ex-mill wholesale price per MBF is $150 for clear grades, $110 for dressing 
grades, and $80 for construction grades. Scraps at the sawmill are transferred by truck 
to the chipboard plant for chipping. The transportation cost is $4 per HC. Sawdust 
is used as fuel in the mill’s drying kiln and saves $12 in other fuel costs per HC. 

At the chipboard plant, logs and scraps are chipped. The chips are then mixed 
with additives and glues, filled into 4' by 8' forms (about 1.2 by 2.4 meters) and then 
compressed into boards of various thicknesses. The whole process is highly automated. 
Each HC of wood yields 0.76 M| of chipboard or an equivalent (1 M| = 1000 
square feet of f inch thickness =1.77 cubic meters). The plant can produce up to 
112 M| of chipboard per day. Chipboard prices ex-factory are $105 per M|. 

In the light of predicted demand and desired stock levels, certain minimum daily 
output rates of finished products are set by Forest Industries’ management for a given 
planning period. These are 36 MBF of clear grades, 40 MBF of dressing grades, 48 
MBF of construction grades, and 96 M | of chipboards. Export prices valid during 
the same planning period are $95 per HC for first and second cuts and $88 per HC 
for third and fourth cuts. Fifth or higher cuts are not exported. 

What is the optimal daily operating policy during the planning period in question? 
This problem deals with the operation of an entire firm. Admittedly, these op¬ 

erations are considered only in their most essential aspects, with most of the details 
ignored. For instance, the final products are lumped into a small number of sawn 
timber grades. Similarly, only the most important operation at the sawmill, namely 
the actual sawing of the logs, is represented. No doubt, for real applications consid¬ 
erably more detail would normally be included; but even then, some aggregation 
would still have to be made to keep the problem at a manageable size. 

Our approach to formulating this problem as a linear program is to divide the 
operations into sequential phases whereby the outputs of one phase become inputs 
into subsequent phases. For each phase we construct a submodel, and then we tie 
these submodels together appropriately to form a single model. In this example, there 
are four logical phases: a log supply phase, the operation of the sawmill, the operations 
of the chipboard plant, and finally the finished product distribution phase which in 
our case boils down to a specification of minimum daily outputs. 

Since we shall at the end solve this problem by computer, we will use mnemonic 
labels for the constraints and mnemonic names for the variables from the outset. 

Supply phase 

The output for each type of log cut at each forest can be allocated either to the sawmill, 
to the chipboard plant, to export orders, or to any combination of these uses. This 
is depicted schematically in Figure 2-11. Each allocation of a cut to a given use 
requires a separate decision variable. The decision variables will thus have the inter¬ 
pretation of “cut i from forest / allocated to use k.” Let Li/ SAW, Li/CH, and 
Li/EXP denote the number of HC per day of cut i from forest / allocated to the 
sawmill, to the chipboard plant, and to export, respectively; i = 1 refers to first and 
second cuts, i - 2 refers to third and fourth cuts, and i = 3 refers to fifth and higher 
cuts 

Consider cuts i = 1 at forest 1. According to Table 2-6, the average daily output 
of first and second cuts is 42 percent of 128 HC, or 53.76. If L11SAW, L11CH, and 



L11EXP are the amounts per day allocated to the three uses, then their total has to 
equal 53.76 HC, assuming that the firm does not wish to stockpile any output at the 
forests. This yields the following availability constraint: 

(L1F1AV) L11SAW + L11CH + L11EXP = 53.76 

If Forest Industries would consider stockpiling some logs at the forests for use in 
later planning periods, then (L1F1AV) would be expressed as a ^ inequality. We get 
a similar constraint for each of the other types of cuts at each forest: 

(L2F1AV) L21SAW + L21CH + L21EXP = 51.20 

(L3F1AV) L31SAW + L31CH =23.04 

(L1F2AV) L12SAW + L12CH + L12EXP = 88.32 

(L2F2AV) L22SAW + L22CH + L22EXP = 78.72 

(L3F2AV) L32.SAW + L32CH = 24.96 

Note that log cuts i = 3 are not exported. 
The Li/SAW variables now become the input into the next phase. 

Sawmill phase 

At the sawmill, log cuts are converted to three grades of timber, scraps, and sawdust. 
Consider first the production of sawn timber. According to Table 2-8, only a portion 
of each log cut ends up as sawn timber. For instance, one HC of log cuts i = 1 from 
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forest 1 yields 0.72 MBF of sawn timber, of which, according to Table 2-9, 35 percent 
becomes clear grades, 48 percent dressing grades, and 17 percent construction grades. 
So one HC of log cuts i = 1 from forest 1 yields 0.72 times 0.35, or 0.252 MBF of 

clear grades. Similarly, 

1 HC of cuts i = 2 from 

forest 1 
yields 0.66(0.10) = 0.066 
MBF of clear grades. 

Multiplying these coefficients by the daily number of HC of each type of cut 
brought to the sawmill gives the average daily output of clear grades. Letting CLEAR 
denote the number of MBF of clear grades produced per day, we obtain 

0.252 L11SAW + 0.066 L21SAW + 0.2016 L12SAW 
+ 0.0198 L22SAW = CLEAR 

Expressed in the usual linear programming form, we have the following constraint, 

labeled (CLPROD): 

(CLPRQD) 0.252 L11SAW + 0.066 L21SAW + 0.2016 L12SAW 
+ 0.0198 L22SAW - CLEAR = 0 

Such a constraint is referred to as a material balance equation or an input-output 
relation. Verify the following input-output relations for the production of dressing 

and construction grades: 

(DRPROD) 0.3456 L11SAW + 0.1188 L21SAW + 0.027 L31SAW 
+ 0.3024 L12SAW + 0.0594 L22SAW - DRESS = 0 

(COPROD) 0.1224 L11SAW + 0.4752L21SAW + 0.513L31SAW 
+ 0.216 L12SAW + 0.5808 L22SAW + 0.54 L32SAW - CONST = 0 

Similar input-output relations are obtained for the production of scraps and 

sawdust (using the data in Table 2-8): 

(SCPROD) 0.26 LI 1 SAW + 0.3L21SAW + 0.39L31SAW + 0.26L12SAW 
+ 0.3 L22SAW + 0.39 L32 SAW - SCRAP = 0 

(SDPROD) 0.14L11SAW + 0.15L21SAW + 0.16L31SAW 
+ 0.14L12SAW + 0.15 L22SAW 
+ 0.16 L32SAW - SDUST = 0 

Finally, the sawmill time required to process the amounts of the various log cuts 
must not exceed the average productive capacity of 360 minutes per day. Multiplying 
the processing times per HC for each type of cut by the log input into the sawmill 
and summing, we obtain 

(SAWCAP) 1.8 L11SAW + 2.6 L21SAW + 3.9L31SAW 
+ 1.8 L12SAW + 2.6 L22SAW + 3.9 L32SAW =£ 360 

cuts i = 1 from 
forest 2 
0.72 (0.28) = 0.2016 

cuts i = 2 from 
forest 2 
0.66(0.3) = 0.0198 
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This completes the submodel for the sawmill operation. The variable for SCRAP 
becomes an input into the chipboard plant phase. The variables for CLEAR, DRESS, 
and CONST become inputs into the finished products distribution phase. 

Chipboard plant phase 

The inputs into this phase consist of the various amounts of log cuts allocated from 
each forest and the scraps transferred from the sawmill. Each HC of input yields 0.76 
M| of chipboard. We therefore obtain the following input-output relation: 

(CBPROD) 0.76 (L11CH + L21CH + L31CH + L12CH + L22CH 
+ L32CH + SCRAP) - CBOARD = 0 

The output of chipboard is restricted to at most 112 M| per day. Thus, 

(CBCAP) CBOARD 112 

The variable CBOARD becomes another input into the last phase. 

Finished products distribution phase 

For this example, the finished products distribution phase takes the simplified form 
of lower bounds to the decision variables: 

(CLMIN) CLEAR s* 31 

(DRMIN) DRESS 36 

(COMIN) CONST s= 48 

(CBMIN) CBOARD 96 

All that is left is to formulate the objective function. The objective is to maximize 
the difference between revenues and variable costs, loosely referred to as the gross 
profit. Revenues are generated from sales of sawn timber and chipboard. Costs are 
incurred from the transportation and handling of the log cuts and scraps; costs are 
reduced by burning sawdust. All other costs are assumed to be fixed and not affected 
by the allocation of logs to the various uses or by the mix in the final products. Such 
an assumption is clearly true for the logging operation and, in the short! run, may be 
a good approximation for the costs of the sawmill and chipboard plants. The objective 
function is 

maximize 150 CLEAR + 110 DRESS + 80 CONST + 105 CBOARD 
+ 95 LI 1EXP + 88 L21EXP + 95 L12EXP + 88 L22feXP 
+ 12 SDUST - 4 SCRAP - 6.5 LI 1SAW - 7.5 L21SAW 
- 9 L31 SAW - 5.5 L12SAW - 6.5 L22SAW - 8 L3^SAW 
- 8.2L11CH - 8.5L21CH -9L31CH -6.2L12Ctf 
- 6.5L22CH - 7L32CH 

The coefficients for Lj/SAW and Li/CH are obtained by adding the handling costs 
shown in Table 2-7 to the transportation costs. 
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Figure 2-12. Computer printout of optimal solution for Forest Industries Corporation. 

SOLUTION OPTIMAL AFTER 26 ITERATIONS 
MAXIMAL OBJECTIVE = 27865.577036 

VARIABLE STATUS OPTIMAL VALUE DELTAJ 
LliliS AW BASIC 53.76000 0.00000 
L21SAW BASIC 8.96336 0.00000 
L31SAW 0.00000 -12.52445 
L12 SAW BASIC 88.32000 0.00000 
L22 SAW BASIC 31.13510 0.00000 
L32 SAW 0.00000 -13.30764 
LliliCH 0.00000 -14.01491 
L21CH 0.00000 -2.00000 
L31CH BASIC 23.04000 0.00000 
L12CH 0.00000 -11.75055 
L22CH BASIC 29.34545 0.00000 
L32CH BASIC 24.96000 0.00000 
LITE XP 0.00000 -5.31491 
L21EXP BASIC 42.23664 0.00000 
L12EXP 0.00000 -5.05055 
L22EXP BASIC 18.23944 0.00000 
CLEAR BASIC 32.56089 0.00000 
DRESS BASIC 48.20170 0.00000 
CONST BASIC 48.00000 0.00000 
SCRAP BASIC 48.97034 0.00000 
SDUST BASIC 25.90597 0.00000 
CBOARD BASIC 96.00000 0.00000 

(SAWCAP) SAWSL 0.00000 -4.81000 
(CBCAP) CBSL BASIC 16.00000 0.00000 
(CLMIN) CLXS BASIC 0.56089 0.00000 
(DRMIN) DRXS BASIC 12.20170 0.00000 
(COMIN) COXS 0.00000 -38.03030 
(CBMIN) CBXS 0.00000 -19.34211 . 

CONSTRAINT STATUS IMPUTED VALUE DECREASE INCREASE 
L1F1AV BINDNG 100.31491 4.83829 3.38418 
L2F1AV BINDNG 88.00000 42.23664 OPEN 
L3F1AV BINDNG 85.50000 18.23944 29.34545 
L1F2AV BINDNG 100.05055 5.26770 5.08635 
L2F2AV BINDNG 88.00000 18.23944 OPEN 
L3F2AV BINDNG 87.50000 18.23944 29.34545 
CLP ROD BINDNG -150.00000 OPEN 0.56089 
DRPROD BINDNG -110.00000 OPEN 12.20170 
COPROD BINDNG -118.03030 3.28787 0.94653 
SC PROD BINDNG -90.50000 29.34545 18.23944 
SDPROD BINDNG -12.00000 OPEN 25.90597 
SAWCAP BINDNG 4.81000 4.23722 17.98917 
CBPROD BINDNG -124.34211 22.30254 13.86198 
CBCAP SLACK -0.00000 16.00000 OPEN 
CLMIN SLACK -0.00000 OPEN 0.56089 
DRMIN SLACK -0.00000 OPEN 12.20170 
COMIN BINDNG -38.03030 3.28787 0.94653 
CBMIN BINDNG -19.34211 22.30254 13.86198 

This completes the formulation of this problem. We have a total of 18 constraints 
and 22 decision variables. (A real corporate model may easily have several hundred 
constraints with several thousand variables.) 

Figure 2-12 reproduces the computer printout for the optimal solution. All con¬ 
straints have been converted to equalities by adding or subtracting slack variables. In 
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the printout, we have flagged each slack variable with its corresponding constraint 
label. 

The daily gross profit for the optimal solution amounts to $27,865.60. The 
optimal mode of operation provides for meeting the minimum requirements for con¬ 
struction grades and chipboard, with a small excess for clear grades and a substantial 
excess for dressing grades. The sawmill is used to full capacity, but the chipboard plant 
has some unused capacity left. Export sales amount to slightly more than 60HC per 
day, all of which come from third and fourth log cuts. 

The output allows for some interesting sensitivity analysis. Under what conditions 
would it become profitable to have some of the first and second log cuts exported? 
From the DELTA] values for the variables L11EXP and L12EXP we see that the 
export prices ex-forest for the first and second cuts would have to increase from $95 
by at least $5.32 and $5.05 to reach $100.32 and $100.05. At that point, these 
variables could enter alternative optimal solutions. 

The shadow prices (imputed values) for the log cuts availability constraints LiF/AV 
provide management with information as to the increase in gross profit for additional 
output. For instance, each additional HC per day of first and second cuts from forest 
1 increases gross profit by $100.32 (= imputed value for L1F1AV). Additional sawmill 
capacity has a value of $4.81 per minute (= imputed value for SAWCAP). On the 
other hand, increases in the minimum daily requirements for construction grades and 
chipboard would have a detrimental effect on gross profit. Each additional Mf of 
chipboard produces a loss of $19.34 (= imputed value for CBMIN). Hence, it would 
be a bad move to launch a sales promotion for chipboard now. In fact, lowering the 
minimum daily requirement from the present 96 Mf to 73.7 (= 96 less the entry of 
22.3 shown under DECREASE for the CBMIN constraint), and optimally allocating 
to other uses the log cuts thus freed, increases gross profits by 22.3 X $19.34 or 
$431.28. (Note that the imputed values for input-output relations do not lend them¬ 
selves to an easy interpretation.) 

2-14 ADVERTISING MEDIA SELECTION— 
AN EXAMPLE OF GOAL PROGRAMMING 

A firm is the distributor of a seasonal, packaged product for a given region that covers 
a large metropolitan area. The product is especially appealing to persons with children. 
The manufacturer of the product has offered to participate in a preseason price discount 
promotion, and the firm is planning to launch an advertising campaign. Full-page 
color advertisements in the supplements to the Sunday editions of the two major daily 
newspapers are planned. The advertising message and copy have been prepared. The 
only point that remains to be settled is the media schedule, i.e., the number of 
consecutive insertions in each newspaper. 

Ideally, one would like to relate this to the profit that can be generated by each 
insertion. However, it is extremely difficult to measure the profits of a media schedule. 

, In practice, therefore, one uses surrogate measures that have been shown to positively 
correlate with profits. Examples of such measures include the reach of the media 
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schedule (defined as the fraction of people in a given customer population exposed 
at least once to the advertisement) and the frequency of the schedule (defined as the 
average number of exposures among population members who have been reached at 
least once). One may also wish to appeal to different segments of the population to 
a different degree. Let us assume that, for our problem, reach is the most appropriate 
criterion and that we want to differentiate between a primary group of all persons with 
at least one child of elementary school age (goal 1), and a secondary group that covers 
all elementary families with an annual income of over $8000 (goal 2). 

Data about the reach of the Sunday supplements for various population groups 
can be obtained from the newspapers. For instance, for newspaper X and the primary 
group, they indicate the following average fraction of the people in the group reached 

as a function of the number of insertions: 

Number of insertions x 1 2 3 4 5 6 

Cumulative fraction y 0.54 0.66 0.75 0.83 0.87 0.89 

Unfortunately, this is a nonlinear relationship with a significant drop-off of increased 
reach after four insertions. The same picture holds true for the secondary group reach 
in newspaper X. Hence, it seems uneconomical to exceed four insertions in newspaper 
X. Over the first four insertions, we may approximate the above relationship fairly 

closely by the equation 

y = 0.49 + 0.08x for 1 < x ^ 4 

Applying this procedure to similar data (not shown) on reach for the other media 
group combinations, we obtain the following equations: 

Newspaper Group Equation 

X primary 0.49 + 0.08x 

Y primary 0.47 + 0.12x 

X secondary 0.44 + 0.12x 

Y secondary 0.37 + 0.09x 

For newspaper Y the drop-off occurs after five insertions. 
Estimates indicate that the two newspapers share the primary group evenly, but 

newspaper X has 60 percent of the secondary group. Management would like to reach 
at least 80 percent of the primary group (goal 1) and 70 percent of the secondary group 
(goal 2). Furthermore, they want to keep the past tradition of having at least twice as 
many insertions in X as in Y (goal 3). Newspaper X charges $3000 per insertion; 
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newspaper Y, which uses a lower quality paper, charges only $2000 per insertion. 
Management has allocated an advertising campaign budget of $16,000 (budget con¬ 
straint). 

The problem as it stands now is ill-defined. We have several objectives or goals 
that management would like to achieve. Most of them are somewhat arbitrary policy 
decisions, such as the two acquisitive goals (1 and 2) and the retentive goal (3). Others, 
such as the allowable budget and the maximum number of insertions, are stated as 
upper limits but really do not have the character of firm physical constraints. We have 
seen in Section 1-12 that one way to deal with multiple goals is to select the most 
important one as the basis for the objective function and express the others as surrogate 
constraints. Suppose management considers reach as the most important objective to 
be maximized subject to achieving goal 3, the budget allocation, and the upper limits 
on the number of insertions. 

Our decision variables are the number of insertions in newspaper X and newspaper 
Y, denoted by x, and x2, respectively. Note that we now allow these variables to assume 
any real values within their range. This may be a more questionable approximation 
than the fitting of equations for reach. The reach achieved for each group is calculated 
as the weighted average of the reach for each newspaper. Using the four equations 
listed earlier, the weighted average reach is 

0.5(0.49 + 0.08xj) + 0.5(0.47 + 0.12x2) = 0.48 + 0.04x, + 0.06x2 

for the primary group, and 

0.6(0.44 + 0.12*,) + 0.4(0.37 + 0.09x2) = 0.412 + 0.072x, + 0.036x2 

for the secondary group. If management assigns equal importance to the reach for 
each group, then we could define the objective as maximizing the average total reach, 
given as the sum of the reach for both groups divided by 2: 

maximize \ [(0.48 + 0.04x, + 0.06x2) + (0.412 + 0.072 x, + 0.036x2)] 

Collecting terms and dropping the constant (as it does not affect the optimal values 
of the decision variables), we obtain 

(2-16) maximize 0.056;^ + 0.048x2 

Note that this implies that goals 1 and 2 are commensurable in the sense that it is 
possible to quantify a trade-off function between them, which in this instance has a 
simple linear form. 

To ensure that at least twice as many insertions are made in newspaper X as in 
Y, we restrict the decision variables to 

(2-17) x,s=2x2 or x, - 2x2 s* 0 (goal 3) 

while the budget allocation imposes that 

(2-18) 3000x} + 2000x2 < 16,000 (budget constraint) 
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Figure 2-13. Media selection problem. 

X2 

and Xj and x2 are restricted to 

(2-19) 0 ^ Xj ^ 4 (limit on insertions) 

(2-20) 0 ^ x2 ^ 5 

Figure 2-13 shows the feasible region for this problem. The optimal solution occurs 
at point A and calls for 4 insertions in newspaper X and 2 in newspaper Y. All funds 
allocated are used up, and the desired relationship between the number of insertions 
in each newspaper is maintained. Verify that the total average reach is 0.766 or 76.6 

percent. 
A more detailed analysis shows that the reach for the primary group is 76 percent, 
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or 4 percentage points below the desired level of 80 percent, while the reach for the 
secondary group is 77.2 percent, or 7.2 percentage points above the desired level. This 
does not correspond to the desired goals that management initially set out to achieve. 
The overachievement in the secondary group may not really compensate for the 
underachievement in the primary group. The acquisitive (and presumably more im¬ 
portant) goals were not achieved completely, while the retentive (and presumably less 
important) goals were achieved completely, largely because they were expressed in the 
form of constraints. It would be useful to formulate the problem in such a manner 
that the character of objectives is explicitly retained for all goals. It is exactly this that 
a variation of linear programming, called weighted-sum goal programming, attempts 
to achieve. 

In goal programming, each objective or goal is expressed in equality form by 
introducing slack variables that represent the deviations from the goal. Let s~ denote 
an underachievement of the goal i and let s, + denote an overachievement. Retaining 
the budget constraint (2-18) in its present form, the three goals of our problem can 
then be expressed as follows: 

(2-21) 0.04x, + 0.06x2 + s~ - s,f = 0.32 (goal 1) 

(2-22) 0.072x, + 0.036x2 + s2 " - s2+ = 0.288 ! (goal 2) 

(2-23) x, — 2x2 + s, “ - s,+ = 0 (goal 3) 

where all s,+ and s~ are restricted to nonnegative values. 

Management would like to achieve each of the three objectives as closely as 
possible, subject to constraints (2-18) through (2-20). It is at this point that certain 
difficulties of interpretation arise. What is meant by “achieve each objective as closely 
as possible”? Does it mean to minimize the weighted sum of the deviations? What 
should be the proper weights? Taking this interpretation, let a~ and a* be the weights 
for goal i. Then our objective function is 

(2-24) minimize al~si ~ + £Z,+s,+ + a2~s2~ + a2+ s2 + + a^sf + cz,+s,+ 

(Note that the simplex method will guarantee that of each pair (s,~ and s,+) only 
one variable may be positive, since if both were positive the total value of the objective 
function could be decreased by reducing both variables by an amount equal to the 
smaller of the two.) Say we decide that we only want to penalize underachievement. 
Setting c2,+ = 0 and a~ = 1, for each i, the objective function becomes 

(2-25) minimize l(s,~ + s2' + s3~) + 0(s,+ + s2+ + s3+) 

Figure 2-14 shows the new feasible region for the two original variables x, and x2 as 
the shaded area CDFAB. We also show one goal line for each objective, representing 
all solutions for which the corresponding objective is satisfied without any deviation. 
(Note that our problem now has more than two variables. In Figure 2-14 only the 
solution space for the original variables x, and x2 is shown explicitly. The values of 
all other variables can be inferred implicitly from the deviation of solutions from the 
goal lines.) The optimal solution with a value of z* = 0.04 occurs again at point 
A, for which only goal 3 is satisfied without deviation. We thus see that the first 
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Figure 2-14. Media selection by goal programming. 

formulation corresponds to a goal programming formulation with equal penalties for 
underachievements of all three objectives. Had we assigned different penalties to 
deviations from the three goals, different solutions might become optimal. For in¬ 
stance, had we given a{~ a value of 80cj3~, with cr;+ = 0, all i, and any value for a2 , 
then any point along the line from H to A would be optimal. 

No doubt, it is extremely difficult to derive an objective function such as expres¬ 
sion (2-24), where the penalties attached to underachievement and overachievement 
of goals properly represent the preferences of the decision maker. In fact, it is only 
possible if the objectives are commensurable. In most applications, some of the ob¬ 
jectives may lack any common basis for comparison or trade-offs among them. Clearly 
this is the case here. Although two of the goals may be commensurable as to reach, 
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it would be rather hard to find a trade-off function between them and the third goal. 
An alternative approach that avoids the necessity of constructing trade-off func¬ 

tions between objectives is to rank the objectives in priority ordering. The solution 
procedure would then attempt to first satisfy the objective with the highest priority as 
closely as possible, while completely ignoring all lower ranking objectives. If the 
highest ranking objective has been achieved, then the second highest ranking one is 
satisfied as closely as possible without, however, impairing the achievement level of 
the highest ranking one. The same steps are followed for each of the lower ranking 
objectives in descending order of priority. The procedure usually terminates as soon 
as one of the objectives cannot be satisfied completely. This approach is called pre¬ 
emptive goal programming. 

For our example, say that management gives the highest priority to achieving 
the desired reach for the primary group (goal 1), the second ranking to achieving the 
desired reach for the secondary group (goal 2), and the lowest priority to the relationship 
between the number of insertions in X and Y (goal 3). Referring back to Figure 2-14, 
goal 1 is satisfied completely for any solution of x, and x2 along the heavy line from 
point E to H. We can now proceed to satisfy the second ranking objective as closely 
as possible without impairing the achievement level for the first objective. Hence only 
solutions on the line from E to H may be considered. Goal 2 is completely satisfied 
at the intersection of the goal lines for goal 1 and goal 2, point G. Finally, we can 
turn to the third ranking objective. No improvements can be made on goal 3 without 
impairing the achievement level of the two higher ranking goals. Hence the optimal 
solution for this priority ranking is given at point G, which calls for 2 insertions in 
newspaper X and 4 in newspaper Y (with sf = 6 and all other s~ and s,+ = 0) at 
a cost of $14,000. This is $2000 below the budget allocation. We shall pick up this 
discussion again in Chapter 22. 

2-15 SOME FURTHER APPLICATIONS 

rhe list of possible applications for linear programming is enormous. It ranges from 
allocation of scarce resources for various end uses to the determination of the optimal 
phasing pattern for traffic lights along city streets. 

1. Allocation of scarce resources. The decision variables are given by the various 
activities that consume the resources, such as products to manufacture. Each 
scarce resource gives rise to a constraint. The objective consists of maximizing 
total output or of minimizing total costs subject to achieving some specified 
output. 

2. Smoothing problems. This term refers to scheduling overtime of production 
or manpower to satisfy seasonal demands for products or services. The level 
of and changes in manpower in each period, the number of idle employees 
or the amount of overtime, the size of the production during regular time and 
overtime in each period, and the size of the inventory carried forward to each 
succeeding period give rise to decision variables. The material balance or 
input-output relations between levels of manpower of consecutive periods and 
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similar relations between production, inventories, and demand form con¬ 
straints. The objective is usually to minimize total production costs, including 
costs for training manpower, severance pay, and inventory carrying costs. 

3. Distribution problems. A firm may operate a number of plants supplying a 
number of different regional marketing centers. The decision variables are 
given by the amount produced by each plant to be shipped to each marketing 
center. The production capacities at the plants, the demand requirements at 
the marketing centers, and any possible limitations on shared transportation 

facilities give rise to constraints. 
4. Blending problems. Various raw materials of different chemical or physical 

properties have to be blended for final products. The amounts of each raw 
material used for each final product constitute the decision variables. The 
amounts of the raw materials available, the amounts of the final products 
required, the limitations as to the composition of the final products, and their 
required properties all give rise to constraints. A possible objective is minimizing 

the cost of the raw materials used. 
5. Diet and feed-mix problems. These are special forms of blending problems 

where the output usually consists of a single blend or mix. If some of the inputs 
are only available in limited quantities and are shared by a number of different 
mixes, the formulation may cover several mixes at the same time. 

6. Trim problems. Given quantities of goods of different shapes to be cut from 
a material that comes in various sizes, a number of possible efficient patterns 
are considered. How much of each pattern should be cut? The numbers of 
each pattern cut represent the decision variables. The constraints are given by 
the required quantities and by the amount of material of each size available. 
The objective may be to minimize the cost of the material used or the amount 

of waste produced. 
7. Planning problems. Planning the operation of a whole organization or firm 

is another application. The Forest Industries example discussed in Section 2- 

13 belongs in this category. 

In the business world, few problems occur in one of these pure forms; rather, 
the problems exhibit characteristics of several different types of basic linear program¬ 

ming models. 

EXERCISES 

2.1 A furniture manufacturer produces two types of desks: Standard and Executive. These 
desks are sold to an office furniture wholesaler, and for all practical purposes there is 
an unlimited market for any mix of these desks, at least within the manufacturer’s 
production capacity. Each desk has to go through four basic operations: cutting the 
lumber, joining the pieces, prefinishing, and final finishing. Each unit of the Standard 
desk produced takes 48 minutes of cutting time, 2 hours of joining, 40 minutes of 
prefinishing, and 5 hours and 20 minutes of final finishing time. Each unit of the 
Executive desk requires 72 minutes of cutting, 3 hours of joining, 2 hours of prefinishing, 
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and 4 hours of final finishing time. The daily capacity for each operation amounts to 
16 hours of cutting, 30 hours of joining, 16 hours of prefinishing, and 64 hours of final 
finishing time. The profit per unit produced is $40 for the Standard desk and $50 for 
the Executive desk. What product mix is optimal? 

(a) Formulate this problem as a linear program maximizing daily profit, and show each 
constraint graphically. Show the objective function for z = $400 abd z = $600. 
Are there any redundant constraints? Which ones? 

(b) Find the optimal solution graphically. What is the amount of slack for each con- 
straint? 

(c) Find the shadow price for each constraint graphically and interpret its meaning. 
(d) Determine individually for each objective function coefficient the range of values 

for which the present solution remains optimal. 

(e) The firm receives a request to produce 1 unit per day of a third type of desk style 
called the Economy desk, which requires 30 minutes of cutting, 90 minutes of 
joining, 30 minutes of prefinishing, and 3 hours of finishing time. The profit would 
amount to $20 per unit. Should the firm offer to make one unit of the Economy 
per day? Why or why not? 

2.2 A chicken feed manufacturer wants to find the lowest-cost mix for a high-protein formula 
that contains 90 grams of nutrient A, 48 grams of nutrient B, 20 grams of nutrient C, 
and 1.5 grams of vitamin X for each kilogram of feed. He can mix the formula from 
two ingredients and a filler. Ingredient 1 contains 100 grams of nutrient A, 80 grams 
of nutrient B, 40 grams of nutrient C, and 10 grams of vitamin X, and costs 40 cents 
per kilogram. Ingredient 2 contains 200 grams of A, 150 grams of B, 20 grams of C, 
none of vitamin X, and costs 60 cents per kilogram. 

(a) Formulate this problem as a linear program minimizing cost per kilogram of mix. 

Note that you do not need a variable for the filler. The amount of filler that has 

to be added can be determined once the optimal mix of ingredients 1 and 2 has 
been found. Show each constraint graphically, and show the objective function for 
z = 24 cents and z = 36 cents. Are there any redundant constraints? Which ones? 

(b) Find the optimal solution that minimizes the cost of the mix. What is the amount 
of slack for each constraint? How much filler has to be added? 

(c) Find the shadow price for each constraint graphically and interpret its meaning. 
(d) Determine individually for each objective function coefficient the range of values 

for which the present solution remains optimal. 

(e) The firm receives a call from a supplier offering a third ingredient that contains 120 
grams of A, 100 grams of B, 20 grams of C, and no X per kilogram, at a cost of 50 
cents per kilogram. Should they buy any of it for use in this formula? Why or why 
not? 

2.3 A firm produces three types of refined chemicals: A, B, and C. At least 4 tons of A, 

2 tons of B, and 1 ton of C have to be produced per day. The inputs used are compounds 
X and Y. Each ton of X yields \ ton of A, \ ton of B„ and £ ton of C. Each ton of Y 
yields 3 ton of A, ton of B, and ^ ton of C. Compound X costs $250 per ton, 
compound Y $400 per ton. The cost of processing is $250 per ton of X and $200 per 
ton of Y. Amounts produced in excess of the daily requirements have no value, as the 
products undergo chemical changes if not used immediately. The problem is to find 
the mix with minimum cost input. 

(a) Formulate this problem as a linear program with the objective of minimizing total 
daily costs. Show each constraint graphically and the objective function for z = 
$6000 and z = $12,000. 
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(b) Find the optimal solution graphically. What is the amount of excess produced for 

each chemical? 
(c) The daily requirement for C is increased to 1.25 tons. By how much does the daily 

cost increase? The daily requirement for B is increased to 2.25 tons. By how much 
does the daily cost increase? The requirement for A is reduced by \ ton. By how 

much does the daily cost change? 
(d) Determine for each individual compound the range of prices for which the present 

solution remains optimal. 1 rA 1 . r 
(e) The firm receives an offer for a third compound that yields 5 ton ot A, 2 ton ot 

B, and f0 ton of C at a price of $300 per ton and a processing cost of $300 per ton. 

Should the firm accept this offer? Why or why not? 

2.4 The Playsafe Insurance Company of Knockville, ME, or PICKME for short, has idle 
funds of 20 million dollars available for short-term and long-term investments. Gov¬ 
ernment regulations require that no more than 80 percent of all investments be long 
term, that no more than 40 percent be invested at short term, and that the ratio of long¬ 
term to short-term investments not exceed 3 to 1. Long-term investments currently yield 
15 percent annually, while the annual rate for short-term investments is 10 percent. 
(a) Formulate this problem as a linear program with the objective of maximizing the 

weighted return. Formulate it in terms of what fraction of the funds to invest in 
each investment, rather than in dollar amounts. Show all constraints graphically, 
shade in the feasible region, and show the objective function for three values (one 

for 9 percent, one for 15 percent, and the optimal one). 
(b) Find the optimal solution graphically. Which constraints are slack? What is the 

amount of slack? Are any constraints redundant? What is the annual revenue from 

the funds available for investment? 
(c) Find the shadow prices of all constraints and interpret their meaning. 
(d) For each objective function coefficient, find the range for which the current solution 

remains optimal. 
(e) How does the solution change if no more than 20 percent of total funds can be 

invested short-term? 

2.5 A fiberglass boat manufacturer produces four different models that have to go through 
three different operations: molding, assembly, and finishing. The table given contains 

all pertinent information. 

Model 
Molding 
(hrs/unit) 

Assembly 
hrs/unit) 

Finishing 
(hrs/unit) 

Molding 
Compound 

(gal/unit) 
Profit 

($/unit) 

1 2.8 5 10 200 160 

2 2.1 3 7.5 200 124 

3 4 6 12 280 212 

4 3 4 3 220 170 

Capacity/wk 48 hr 96 hr 160 hr 4800 gal 

Sales forecasts project that on the average not more than 8 units of model 4 should be 
produced per week. Except for this restriction, demand would be sufficient to absorb 
any amount produced. The objective is to maximize profits. This problem was solved 



FIBERGLASS BOAT MANUFACTURE PROBLEM 
__5 9 1 
MOLD 48.000000 
ASSEMB 96.000000 FINISH 160.000000 
MCC 480.000000 
DEMM4 

Ml 
8.000000 

160.000000 
M2 120.000000 
M3 212.000000 
M4 170.000000 
MSLACK 0.000000 
ASLACK 0.000000 
FSLACK 0.000000 
CSLACK 0.000000 

MOLD 
M4SLK 0.000000 
Ml 2.800000 

MOLD M2 2.100000 
MOLD M3 4.000000 
MOLD M4 3.000000 
MOLD MSLACK 1.000000 
ASSEMB Ml 5.000000 
ASSEMB M2 3.000000 
ASSEMB M3 6.000000 
ASSEMB M4 4.000000 
ASSEMB ASLACK 1.000000 
FINISH Ml 10.000000 
FINISH M2 7.500000 
FINISH M3 12.000000 
FINISH M4 3.000000 
FINISH FSLACK 1.000000 
MCC Ml 20.000000 
MCC M2 20.000000 
MCC M3 28.000000 
MCC M4 22.000000 
MCC CSLACK 1.000000 
DEMM4 M4 1.000000 
DEMM4 
SOLVE 

M4SLK 1.000000 
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SOLUTION OPTIMAL AFTER 
MAXIMAL OBJECTIVE = 

VARIABLE 
Ml 
M2 
M3 
M4 
MSLACK 
ASLACK 
FSLACK 
CSLACK 
M4SLK 

STATUS 

BASIC 

BASIC 

BASIC 

BASIC 
BASIC 

.6 ITERATIONS 
2740.740741 

CONSTRAINT STATUS 
MOLD 
ASSEMB 
FINISH 
MCC 
DEMM4 

OPTIMAL VALUE 
0.00000 

20.74074 
0.00000 
1.48148 
0.00000 

27.85185 
0.00000 

32.59259 
6.51852 

IMPUTED VALUE 
56.48148 
0.00000 
0.18519 
0.00000 
0.00000 

DELTAJ 
0.00000 
0.00000 

-16,14815 
0.00000 

”56.48148 
0.00000 

”0.18519 
0.00000 
0.00000 

DECREASE 
3.20000 

27.85185 
50.28571 
32.59259 
6.51852 

INCREASE 
5.02857 

OPEN 
11.42857 
OPEN 
OPEN 

by LPGOGO. The printout is shown above. The status of the constraints has been left 
blank. 

(a) What is the optimal production mix? Which resources are binding? How much 
slack is available for the other constraints? 

(b) The firm receives a request to produce 1 unit of model 1 every 4 weeks (= \ unit 
per week). Should the firm accept this offer? Why or why not? If yes, by how much 
would profits increase? If no, by how much would profits decrease? 
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(c) One of the workers at the finishing operation has enrolled in a course and will only 
be able to work 40 hours/week rather than 48. No wages will be paid while he is 
off work. This means that the available capacity of the finishing operation is reduced 
accordingly. Should the firm try to make up the lost production time by overtime 
from other workers if the workers at the finishing operation earn $2/hour and overtime 
is paid at 2 times regular pay? (Note that the profit figures include labor cost at 
regular time. Assume regular pay per worker covers 48 hours/week.) Give details of 

your reasoning. 
(d) The firm is approached about producing 1 unit of a new model per week. This 

model requires 2 hours of molding, 3 hours of assembly, 4 hours of finishing time, 
and 180 gallons of molding compound. What is the minimum price (exclusive of 
material) that the firm should quote if it wants to make a profit of $100 per unit 

produced? 
2.6 A firm produces three products: A, B, and C. The three products share four machines, 

X, Y, S, and T, for their production process. Product A goes through three operations 
using machines X, S, and T. Product B goes through two operations using only either 
machines X and S or machines Y and T. Product C can be produced using either 
machines X and S or machines Y, S, and T. The time requirement in minutes per unit 
produced for each production option on each machine and the variable production cost 

per minute for each machine are summarized in the table below. 

Product Process X 
Time (in minutes/unit on 

Y S 
machine) 

T Mnemonic 

A i 10 6 3 A 

B i 8 10 B1 

2 6 9 B2 

C 1 8 16 Cl 

2 10 3 8 C2 

Variable production 
cost/minute ($) 0.40 0.50 0.24 0.30 

Each machine has a daily production capacity of 480 minutes. The minimum daily 
requirements for the three products are 36 for A, 45 for B, and 10 for C. The objective 
is to determine a production setup that minimizes the total variable production cost. 
This problem was solved using LPGOGO. The printout follows. The status of constraints 

has been left blank. 
(a) How many units of each product are produced by each process? 

(b) Which machines have unused capacity and how much? 
(c) It is possible to have \ hour of overtime per day on machine X. What effect would 

this have on the total cost of the output? 
(d) If the daily requirement for product A decreased to 30 units, what effect would this 

have on the total cost of the output? 
(e) What can you say about the effect on the total cost of an increase in the demand 

for C from 10 to 12 units per day? 



PRODUCT 
7 

CAPX 
CAPY 
CAPS 
CAPT 
DEMA 
DEMB 
DEMC 

SCHEDULING 
9 1 

CAPX 
CAPX 
CAPX 
CAPX 
CAPY 
CAPY 
CAPY 
CAPS 
CAPS 
CAPS 
CAPS 
CAPS 
CAPT 
CAPT 
CAPT 
CAPT 
DEMA 
DEMB 
DEMB 
DEMC 
DEMC 
SOLVE 

A 
Bl 
B2 
Cl 
C2 
XSLACK 
YSLACK 
SSLACK 
TSLACK 
A 
Bl 
Cl 
XSLACK 
B2 
C2 
YSLACK 
A 
Bl 
Cl 
C2 
SSLACK 
A 
B2 
C2 
TSLACK 
A 
Bl 
B2 
Cl 
C2 

1 PROBLEM 

480.000000 
480.000000 
480.000000 
480.000000 
36.000000 
45.000000 
10.000000 
-6.340000 
-5.600000 
-5.700000 
-7.040000 
-8.120000 

0.000000 
0.000000 
0.000000 
0.000000 

10.000000 
8.000000 
8.000000 
1.000000 
6.000000 

10.000000 
1.000000 
6.000000 

10.000000 
16.000000 
3.000000 
1.000000 
3.000000 
9.000000 
8.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 
1.000000 

SOLUTION OPTIMAL AFTER 
MAXIMAL OBJECTIVE = 

VARIABLE STATUS OP 
A 
Bl 
B2 
Cl 
C2 
XSLACK 
YSLACK 
SSLACK 
TSLACK 

BASIC 
BASIC 
BASIC 
BASIC 

BASIC 
BASIC 
BASIC 

CONSTRAINT STATUS 
CAPX 
CAPY 
CAPS 
CAPT 
DEMA 
DEMB 
DEMC 

‘ER 8 ITERATIONS 
-554.640000 

OPTIMAL VALUE D 
36.00000 
5.00000 

40.00000 
10.00000 
0,00000 
0.00000 

240.00000 
54.00000 
12.00000 

IMPUTED VALUE 
0.01250 
0.00000 
0.00000 
0,00000 

-6.46500 
-5.70000 
-7.14000 

DELTAJ 
0.00000 
0.00000 
0.00000 
0.00000 

-0.98000 
-0.01250 

0.00000 
0.00000 
0.00000 

DECREASE 
10.66667 

240.00000 
54.00000 
12.00000 
8.30769 

40.00000 
10.00000 

INCREASE 
43.20000 
OPEN 
OPEN 
OPEN 

0.84211 
1.33333 
1.33333 

(f) The firm has received a request to produce 5 units of product D per day. Each unit 
of D would require: 2 minutes on machine X, 12 minutes on machine Y, and 6 
minutes on machine S. The net profit per unit of D is $0.25. Should the firm make 
this product? Show why or why not! 
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2.7 You are organizing a party and have the following amounts of liquor available as 
brainkillers: 48 fl. oz. of bourbon, 72 fl. oz. of vodka, 64 fl. oz. of white vermouth, 
72 fl. oz. of red vermouth, 24 fl. oz. of brandy, and 18 fl. oz. of coffee liqueur. You 
contemplate mixing the following drinkis: Chauncies, Black Russians, Sweet Italians. 
Molotov Cocktails (Russian Martinis), and bourbon on the rocks. A Chauncy consists 
of \ bourbon and 5 red vermouth. A Black Russian consists of 4 vodka and 4 coffee 
liqueur. A Sweet Italian contains \ brandy, \ red vermouth, and 4 white vermouth. 
Molotov Cocktails are a mixture of f vodka and \ white vermouth. Finally, bourbon 
on the rocks consists of just bourbon. Each drink contains 4 fl. oz. Your objective is 
to mix the ingredients in such a way that the largest number of drinks can be made. 
However, you feel that at least twice as marly Molotov Cocktails as Black Russians have 

to be mixed to provide a balanced selection. Formulate as an LP. 

2.8 The Western Paper Company operates a cardboard plant in Seattle. The plant has been 
operating at 75 percent capacity, producing 2700 tons per month at a total cost of $77.33 
per ton. Included in the total cost per ton is the cost of wastepaper—the major raw 
material. For each 100 tons of product, 80 tons of wastepaper are required. Up to 1440 
tons per month of wastepaper can be purchased locally for $18.75 per ton. Additional 
wastepaper may be purchased through brokers at $27.50 per ton delivered at the plant. 
Of the present total monthly costs at the plant, $59,400 is estimated to be fixed regardless 
of production level. The remainder, with the exception of the cost of wastepaper, varies 
in proportion to output. The company has another plant in Oregon that has been 
operating at 60 percent capacity, producing 3600 tons per month at a total cost per ton 
of $85. Local wastepaper costs $20 per ton and is limited to 4000 tons per month. 
Additional wastepaper can be obtained through brokers at $27.50 per ton delivered at 
the plant. Of the present operating costs, $108,000 per month is regarded as fixed cost. 
The total production is to continue at the present rate of 6300 tons per month. Formulate 
a linear program to rninimize the total cost where the optimal solution may involve 
shifting part of the scheduled 6300 tons/month from one of the plants to the other. 

2.9 Market Research Surveys wants to conduct home interviews in Nogoodtown, satisfying 
certain average quota requirements for each of three target populations. Calls can be 
made during the daytime at a cost of $2 per call or in the evening at a cost of $3 per 
call. Unfortunately only a fraction of the calls are successful, i.e., find someone at 
home and willing to cooperate. The table gives the relevant data. Because of employment 
conditions, the total number of evening calls cannot exceed 40 percent of the total 
number of day calls. The objective is to minimize the total cost of the calls. Formulate 

this problem as a linear program. 

Population 
Calls 
Quota 

Fraction of Successful Calls 

Daytime Evening 

Single persons 100 0.1 0.4 

Married couples without children 100 0.4 0.5 

Married couples with children 200 0.7 0.8 



Exercises 11 

1.10 A farmer wishes to determine the best selection of stock for his farm, his objective being 
to maximize the profit after sale of the animals at the end of the period. The alternatives 
available are Merino sheep, Romney sheep, Southdown sheep, Hereford cattle, and 
Jersey cattle. The farmer has calculated that each Merino would require 1 acre of land 
and would cost $1.50 in extra feed, treatment, etc. The purchase price is $6, and the 
farmer estimates that the selling price at the end of the period will be $10. Tor Romneys, 
the corresponding figures are 1 acre, $1.75, $4.25, $9.00; for Southdowns: 1 acre, $1, 
$3, $6; for Herefords: 4 acres, $15, $30, $60; for Jerseys: 6 acres, $12, ^28, $58. The 
size of the farm is 400 acres, and the farmer has $3800 with which to purchase and 
maintain the stock. Formulate this problem as a linear program maximizing profits. 

2.11 A paper company has received the following order for stationery: 

Type A B C D 

No. of reams ordered 4000 8000 3000 5000 

In order to facilitate cutting, it is customary that the actual amount supplied may exceed 

the order by up to 5 percent. Any excess beyond 5 percent becomes wastage. The 
stationery can be cut from paper rolls of 3 widths by one of two or three patterns, 
resulting in waste (or trim) as shown in the table. 

Type 

24” Width 30" Width 
(weight 1 ton) (weight 1.25 tons) 

36" Width 
(weight 1.5 tons) Weight 

#1 #2 #1 #2 #1 #2 #3 
- ^JJer I'JUU 

reams) 

A 36 — _ 6 — 16 24 25.5 
B — 24 40 12 — 12 _ 28.1 
C — 6 — — 27 16 32 16.8 
D — 6 24 30 14 10 29.1 

Waste per roll 8.2% 5% 10% 5.6% 8.8% 5.2% 6.6% 

Formulate this problem as a linear program. 
(a) Minimize total wastage. 

(b) Minimize the total cost of the rolls used given that the 24" width has a cost of $30, 
the 30" width costs $34, and the 36" width costs $37 per roll. 

2.12 A firrq would like to find the least-cost production schedule for a seasonal product. The 
demand is 2000 units in May, 4000 in June, 6000 in July, 6000 in August, and 2000 
in September. The product cannot be kept in storage for more than 2 months; e.g., if 
produced in April, it has to be sold by the end of June. The work force of seasonal 
workers has to be hired at the beginning of the season (early April) and kept until the 
close of the season (end of September). Initial training costs per worker amount to $200. 
Each worker can produce 400 units a month on regular time and, if desired, up to an 
additional 100 units on overtime. Each worker costs $800 per month for regular time 
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work. Overtime is paid at 1.5 times the regular rate. Units produced are available for 
sale that same month. Each unit put into storage incurs a handling cost of $0.50. The 
cost of holding one unit in storage amounts to $0.40 per month carried forward. 
Formulate this problem as a linear program minimizing the sum of all costs. 

2.13 A firm produces two products, S and T, which have to go through two manufacturing 
operations. The first operation is performed at either machine center 1 or 2, and the 
second at either machine center 3 or 4. Operation times for each machine center per 
unit produced, machine center capacities, and machine center costs per minute are 
shown in the table. Daily requirements are 600 units for product S and 300 units for 
product T. The objective is to find a production schedule that minimizes total machine 

center production costs. Formulate this problem as a linear program. 

Machine Centers 1 2 3 4 

Product S 10 6 16 12 minutes 

Product T 20 8 12 10 minutes 

Capacity 4800 3600 6000 6000 minutes 

Cost/minute 30 50 30 50 cents 

2.14 A sawmill can obtain three qualities of radiata pines that differ mainly in terms of 
diameter. Three products are made from these logs: grade A 1 x 4, grade A 2 x 4, 
and grade B 2 x 4. Any scraps produced are sold to a wood chipping mill. The table 
gives the yield conversion table, production rates, log supply, and lumber demand 
positions. Scraps are sold to the chipping mill at $40 per HC. The sawmill works 10 
hours per day at most. The hourly cost is $20. Grade A 2 x 4 can be broken down 
to grade A 1 x 4 by an additional cutting operation performed on a special saw at a 
rate of 5 MBF per hour and at a cost of $5.00 per hour. Under present market conditions 
any excess lumber produced has to be sold at a loss of $5 per MBF. Formulate this 

problem as a linear program minimizing total daily costs. 

Log 
Type 

Price 
per 
HC 

Sawmill 
Hours (in 

hours/MBF) 

Yield in MBF/HC 

Scraps in 
HC/HC 

Maximum 
Daily 

Supply 
Grade A Grade A Grade B 
1x4 2x4 2x4 

1 $120 0.04 0.15 0.50 0.30 0.10 100 HC 

2 $110 0.05 0.20 0.30 0.40 0.15 80 HC 

3 $ 90 0.06 0.20 0.10 0.60 0.20 50 HC 

Daily demand in MBF 60 50 75 0 

(MBF denotes units of 1000 board feet; HC denotes units of 100 cubic ft.) 

2.15 During the construction of a reservoir dam, large quantities of aggregate suitable for 
concrete mixing have to be transported from some or all of four deposit sites to the 
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concrete mixing plant at the dam. The table shows estimated quantities and costs to 
produce and transport aggregate from the deposit sites to the mixing plant. Three 

Deposit Site Quantity (m3) Cost/m3 

River-dredge material A 8000 $3.20 
River-dredge material B 16000 $4! 50 
Island aggregate C 8000 $2.80 
River bar aggregate D 6000 $4.00 

aggregate blends with the following limits on the aggregate used, and costs of cement, 
fly ash, and additives, have to be produced in the quantities shown. The objective is 
to find the blends that minimize the total cost of transportation and mixing. Formulate 
as a linear program. 

Blend Specified Limits Cost/m5 Requirement (mr 

1 (A + B) 50%, C & 
2 (A + fi) ss 60%, C 5= 
3 A 2* 20%, (C + D) > 

10%, D is limitless 
10, (C + D) (A 
2(A + B) 

+ B) 

$4.80 
$4.20 

$5.40 

bUOO 
15,000 

8000 

2.16 The administrative planner of a large city hospital wants to determine the number of 

orderlies to be hired for the coming 2-month period based on the following estimates 
for requirements in terms of ward-hours. 

Period Jan/Feb March/Apr May/June July/Aug Sep/Oct Nov/Dec 

Hours 8000 7600 7200 7000 8000 9000 

During the first 2 months, an orderly hired will receive training requiring 90 hours of 

the time of an experienced orderly, who will have that much less time available to do 

normal duties. Each trainee is able to do 160 hours of productive work during the first 
2 months of service. Each experienced orderly can put in an average of 320 hours of 
work during a 2-month period. As of the beginning of January the hospital will have 
28 experienced orderlies on staff. This includes those who have just completed their 
2-month training period. At the end of each 2-month period, approximately 10 percent 
of the experienced orderlies quit their jobs. Only 80 percent of the trainees complete 
their training. The others quit during training, and on the average receive about 50 

percent of the training and put in an equal traction of productive work. No orderlies 
are laid off. It is desired to have at least 30 experienced orderlies by the beginning of 
next January. An experienced orderly costs the hospital $2200 and a trainee $1800 for 
a 2-month period. Formulate a linear programming problem minimizing total costs. 



80 Chapter 2 Linear Programming—Introduction and Applications_ 

Note that only the optimal decision for the first period will be implemented and that 
the problem must be solved again for a new interval of 6 periods prior to next period's 

decision. Can you explain why? 

2.17 A firm has been contracted to manufacture two types of industrial components. The 
contract calls for certain quantities each year for the next 5 years. There is no prospect 

of production after that. The contracted quantities are 

Year 1 2 3 4 5 

Demand type A 4000 15,000 12,000 20,000 8000 
Demand type B 6000 20,000 15,000 10,000 2000 

A special machine is required to handle both kinds of components at a certain stage in 
manufacture. One machine will handle 3000 Type A components or 2000 Type B 
components a year, or any proportional combination of them. These machines can be 
either purchased or rented. The cost of buying the machine is $120,000 in year 1 and 
will increase $6000 each year thereafter. Each year of its life the machine loses $12,000 
of its valiie, except in the first year, when the loss is $20,000. Machines purchased can 
be sold at their salvage value at the end of each year. Machines can be rented for either 
a 1-year, 2-year, or 5-year term at rental charges starting at $28,000, $25,000, or $24,000 

per year, respectively. Each year the rental charges will increase by $2000, except that 
machines already on hire stay at their original charge until their rental period expires. 
All expenditures are assumed to occur at the beginning of each year, when machines 
can be rented or purchased. The firm wishes to minimize the net cost of acquiring or 
renting these machines. Assume the firm's discount factor is a = 0.9 per annum. 
Formulate the problem as a linear program, and carefully note any assumptions you 
make. Can linear programming really solve this problem satisfactorily? (See Section 1- 

13 for a review of the principles of discounting.) 

2.18 Consider the production scheduling example discussed in Section 2-12. Note that for 
an output of 10,000 casings the shadow price for the total output constraint (2-10) is 

negative. This indicates that it would be desirable to reduce the required total output 

somewhat. 
(a) Indicate what will happen to the value of the shadow price as the total output 

requirement is gradually reduced. 
(b) How would you reformulate the problem so as to find the optimal total output? 

2.19 Pineapple Delight, Inc., uses fruit grown on its own plantations as input into its plants. 
For the coming year, the crop is estimated at 120,000 metric tons (one metric ton = 
1000 kilograms) of skinned fruit. Pineapple products are differentiated by the various 
ways of cutting the fruit. The secret of successful marketing is to find imaginative ways 
of using the offcuts. Pineapple Delight, in addition to selling the conventional premium 
cuts, outsells its more conservative competitors by marketing such novel products as 
“Spears Delight" (C), “Wafers Delight" (D), “Passion Fruit-Pineapple Delight" (E), 
and “Crush Delight" (F). The table shows the skinned fruit weight required per can, 
the amount of offcuts produced, and the selling price. All offcuts have to be processed. 
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Note that “Passion Fruit-Pineapple Delight” (E) requires the addition of passion fruit 
at a cost of $0.10 per can. The objective is to determine the product mix that maximizes 
sales revenue. Formulate as an LP. 

Premium Products Offcut Products 

Maximum demand 
A B C D E F 

(1000 cans) 50,000 20,000 30,000 40,000 10,000 unlimited 
Selling price/can $0.80 $0.92 $0.72 $0.52 $0.62 $0.30 
Skinned fruit/can 1.2 kg 1.4 kg 0.9 kg 0.75 kg 0.6 kg 0.6 kg 
Offcuts for use in C 0 0.4 kg 0 0 0 0 
Offcuts for use in D, E, F 0.4 kg 0.2 kg 0.10 kg 0 0 0 
Offcuts suitable for F only 0 0 0.05 kg 0.05 kg 0 0 

2.20 The construction of an 11-mile stretch of interstate highway alignment requires cutting 
and filling as shown in the profile on page 82. Fill can also be obtained from three 
borrow pits. The hauling costs are a function of distance and grade and therefore vary 
with both location and direction of haul. The availabilities of earth and the requirements 
for fill are shown in units of thousand m!. The hauling costs are shown in $/m3. Excess 
cut has to be discarded at a cost shown in the discard cost row in $/m3. The unit cost 
of transporting earth from an origin to a destination is obtained by addling the section 
hauling costs for all sections between the origin and the destination plus the smaller of 
the section costs at the origin and the destination. For instance, the cost of hauling 
earth from section 2 to section 6 is [2.0 + 1.7 +1.5 + min (2.1, 2.8)] = 7.3 $/m!. 
The objective is to find a fill hauling plan that minimizes the sum of hauling and 
discarding costs. Formulate as a linear program. 

2.21 A coal mine has installed a briquetting plant to increase the revenue from low grade 
coals, particularly small material (so-called slack). At each pit, coal i,S brought to a 
screening plant where slack and coal between j and 1 inch (“smalls”) are separated from 
the more-than-1-inch material (+ 1"). All coals are then washed to extract stones, etc. 
Slack is sold to power plants. Washed smalls and + 1" material are sold to commercial 
and domestic markets. The coal mine operates two pits, with the characteristics shown 
in the table. The briquetting plant requires an annual input of 50,000 tons of washed 
coals: slack, smalls, or + 1". The cost of processing 1 ton of washed coal at the briquetting 
plant is $1.2. The weighted average sulfur content cannot exceed 1.4 percent and the 
weighted average ash content has to be no more than 15 percent. Briquettes are sold 
mainly on the domestic market at a price of $13/ton. The total market for smalls, + 1", 
and briquettes is limited and cannot absorb more than 120,000 tons annually. There 
is no limit on slack sales. The entire pit output has to be disposed of. The objective is 
to find the best allocation of coals to the briquetting plant so as to maximize total 
revenue. Formulate this problem as a linear program. 
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Pit A Pit B 

Output of unwashed coal 50,000 tons 80,000 tons 
Percentage of slack 20% 30% 

smalls 30% 40% 
+ i" 50% 30% 

Weight loss by washing 
slack 10% : 10% 
smalls 20% 15% 
+ 1" 15% 20% 

Sulfur content of washed coal 
slack 1.0% 1.8% 
smalls 0.9% 1.7% 
+ i" 0.7% 1.6% 

Ash content of washed coal 
slack 9% 18% 
smalls 8% 14% 
+ 1" 6% 12% 

Transportation cost to briquetting plant $2.4/ton $ 1.2/ton (washed) 
Production cost at pit $4/ton $4.5/ton (unwashed) 
Revenue (washed) slack $7/ton $6.5/ton 

smalls $ 10/ton $9/ton 
4 1" $ 12/ton $ 10/ton 

2.22 (Goal programming problem—graphical) The superintendent of a country hospital is 

reviewing the staffing needs of the wards for nursing care. Because the hospital is being 

financed by public funds, the superintendent feels the obligation to keep running costs 
low while providing a good but not extravagant service. The service quality depends 
largely on the number of nurses employed. Past experience indicates that for this hospital 
at least 100 trained nurses are needed to provide satisfactory service. As a public hospital, 
there is also the social obligation to provide training for student nurses, with the teaching 
role falling largely on the trained nursing staff. In terms of meeting the workload, two 
student nurses are equivalent to one trained nurse. Good practice also indicates that the 
ideal ratio of trained nurses to student nurses is about 4 to 3. The current budget 
allocates $ 124,000/month for nursing staff. Trained nurses get $ 1200/rponth, while 
student nurses cost the hospital $800/month in pay, food and lodging, and teaching 
expenses. The student nurses home has accommodations for 60 people. 

(a) Formulate a mathematical expression for each of the four relationships mentioned 
in the problem, and represent them graphically. Which ones would you consider 
to be constraints, and which ones have more the character of goals? Verify that the 
lowest-cost solution in terms of providing a satisfactory service is to hire only trained 
nurses. ‘ 

(b) Consider the restriction of places at the student nurses home as the only hard 
constraint, while all other relationships are goals (not necessarily the best interpre¬ 
tation for this problem). Introduce slack (and surplus) variables for each goal. Form 
a goal objective function giving equal weight to positive and negative deviations 
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from the ideal trained nurses/student nurses ratio, to underachievements (only) in 
the satisfactory workload goal, and to overruns (only) of the budget goal. In terms 
of the graph in (a), shade in the feasible region. Find the optimal solution. (Hint: 

Evaluate all intersections of goal lines and select the best.) 

(c) Assume now that the ideal ratio of trained nurses to student nurses has highest 
priority, the satisfactory service level second priority, and the budget goal third 

priority. What is the optimal solution now? 

2.23 (Goal programming formulation) A publisher has 4500 spare man-machine hours avail¬ 
able in the printing department and 4000 spare man-machine hours available in the 
binding department. Four books eligible for reprinting require the following time in 

each department per book produced. 

Book 123 4 

Printing dept, (hr) 0.1 0.3 0.8 0.4 

Binding dept, (hr) 0.2 0.1 0.1 0.3 

The profit on each book is $1 on Book 1; $1 on Book 2; $4 on Book 3; and $3 on Book 
4. The publisher’s primary aim is to reprint all of the books, if possible, in the following 
quantities: 6000 for Book 1, 2000 for Book 2, 2000 for Book 3, and 5000 for Book 4. 
The publisher would prefer not to deviate from any of these quantities by more than 
10 percent. The second aim is to use as much binding capacity as possible, since other 
uses for it are difficult to find. The third aim is to maximize profits. Formulate this 

problem, and indicate carefully the procedure you would follow in solving it. 
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The Simplex Method 

In Chapter 2, we solved linear programming problems graphically with only two 
decision variables. Real-life problems may have hundreds or even thousands of var¬ 
iables and constraints. We therefore need an efficient solution technique that is easily 
programmed for electronic computers. In this chapter we will derive an algebraic 
solution technique, the simplex method, developed in 1947 by the U.S. mathematician 

George B. Dantzig. 
The simplex method exploits the fact that an optimal solution has to occur at 

an extreme point of the feasible region. Thus, we need to show that with each extreme 
point we associate a particular form of an algebraic solution, called a basic feasible 
solution. The central idea of the simplex method is to move from one basic feasible 
solution to another, improving the objective function value at each move until the 
optimal solution has been found. We will first develop the steps of the simplex 
algorithm. Then we will show how to find a basic feasible solution (if one exists) to 

start the algorithm. 
If you are not familiar with the concepts of systems of linear equations, you should 

study first the short introduction to linear algebra in Appendix A. 

3-1 EXTREME POINTS 

In the following sections we shall work with a simplified version of the power generating 
problem studied in Chapter 2. Only the two constraints that are binding at the optimal 
solution, namely the smoke and pulverizer constraints, will be retained. The optimal 
solution to both problems will thus be the same. The reduced problem in two decision 
variables xx and x2 is then to find values for x; and x2 which 

maximize 24x, + 20x2 

subject to 0.5x, + x2 ^ 12 (smoke) 

(3-1) j^Xj +- ax2«S 1 ■ (pulverizer) 

x}^ 0, x2 ^ 0 
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Figure 3-1 represents the constraints and nonnegativity conditions for this prob¬ 
lem. In Section 2-6 we pointed out that if a linear program has a finite optimal 
solution, at least one extreme point of the feasible region will be optimal. What does 
this mean algebraically? Let us convert the two constraints of problem (3-1) to equalities 
by introducing the two slack variables x, and x5 (we retain the subscripts used in Section 
2-8), namely 

0.5*! + x2 + x, =12 

16^1 24^2 "t” X^ 1 

Each extreme point of the feasible region can be generated by setting two ap¬ 
propriately chosen variables equal to zero and solving (3-2) for the remaining two. 

Figure? 3-1. Graphical representation of problem (3-1). 

X2 
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For example, the optimal extreme point (xj = 12, x2 = 6), labeled C in Figure 3-1, 

is obtained by setting x3 = 0, x5 = 0 and solving in (3-2) for x± and x2. The extreme 

point B in Figure 3-1 is obtained by setting x2= 0 and x5 = 0 and solving for xx and 

x3. Verify that the solution is xx = 16, x3 = 4. 
The choice of which variables to set equal to zero is not arbitrary. Not every 

such choice yields a feasible solution. For example, setting = 0 and x5 = 0, we 

get the solution x2 = 24, x3 = -12, which corresponds to point E in Figure 3-1. 

This solution is not feasible since one of the variables is negative; hence it is not an 

extreme point of the feasible region. However, every solution obtained by this pro¬ 

cedure that is a feasible solution is an extreme point and vice versa. 

Finding the values of the variables associated with these extreme points is easier 

with some manipulation of the equations in (3-2). For extreme point C, we write the 

first equation in terms of xx but not x2, and the second in terms of x2but not x}. We 

leave it to you to verify that eliminating x2 from the first equation and xx from the 

second gives 

Xj - x3 4- 24x5 = 12 

x2 4- fx3 - 12x5 = 6 

When equations have been transformed in this way we say that they are in canonical 
form. From these equations we can immediately read off the values of the variables 

at extreme point C by simply setting x3 = x5 = 0. The first equation then yields 

Xj = 12 and the second x2 = 6. Similarly, the values of the variables at extreme point 

B can be read from the following equations by setting x2 = x5 = 0: 

Xj 4- |x2 4- 16x5 = 16 

|x2 + x3 - 8x5 = 4 

This gives Xj = 16 and x3 = 4. These equations were obtained from (3-2) by eliminating 

x3 from the first equation and xx from the second equation. And, of course, the 

equations in (3-2) themselves give extreme point A by setting xx = x2 = 0. This yields 

x3 = 12 and x5 = 1. 
Extreme points are thus directly related to the algebraic structure of solving 

equations using only a subset of the variables. Consider a linear program with m 
constraints, which are converted to equalities by the introduction of slack variables 

where needed, and a total of n (decision and slack) variables. Without loss of generality, 

we shall assume that the resulting equations are consistent, i.e., that at least one 

feasible solution exists and that there are no redundant equations. The subset of 

variables that forms an extreme point is found by setting (n - m) variables equal to 

zero; the remaining m variables and m equations yield a unique solution. We call a 

solution with (n - m) variables set to zero a basic solution. The m variables not set 

to zero are the basic variables. We will refer to the set of basic variables as the basis, 
although this terminology is not strictly correct mathematically. The other (n - m) 
variables that are set equal to zero are the nonbasic variables. A basic solution in 

which all variables are also nonnegative is termed a basic feasible solution. There is 

thus an exact equivalence between basic feasible solutions and extreme points. 
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ALGEBRAIC FORM OF OPTIMAL SOLUTION 

The extreme points of the feasible region of a linear program correspond to the 

basic feasible solutions of the constraint equations. If a linear program has a 

finite optimal solution, then at least one optimal solution is a basic feasible 

The fact that the optimal solution is a basic (feasible) solution has some interesting 

practical consequences in regard to the form of the solution. Suppose we want to find 

the optimal activity levels for k activities (other than slack activities) subject to m 

resource constraints, and k > m. The optimal solution will never have more than m 

of the k activities at positive levels and may have fewer if any slack variables are 

positive. This property is not intuitively obvious and is sometimes viewed as a dis¬ 

advantage by decision makers with little mathematical training. 

3-2 GENERAL IDEAS OF THE SIMPLEX METHOD 

The general idea of the simplex method is to search through the basic feasible solutions 

(or extreme points) by moving from one basic feasible solution to an adjacent one 

having a better objective function value. This process continues until no further 

improvement can be obtained. At that point, an optimal solution has been found. To 

achieve this change of basic feasible solutions, we need to know: 

1. How to find a basic feasible solution adjacent to the previous one. 

2. How to ensure that this new basic solution is feasible and hence is an extreme 

point. 

3. How to make sure that the new solution is better than the previous one. 

We will only discuss the simplex method for a maximization problem. This is 

not really a loss of generality, since any minimization problem can be converted 

readily into a maximization problem by reversing the signs of the coefficients in the 

objective function. 

For example, 

minimize z = 2xl + 3x2 

gives the same solution as 

maximize (- z) = — 2x} - 3x2 

So we can transform a minimizing problem to a maximizing problem using 

minimize z = — maximize (— z) 

Hence, the same method can handle both maximization and minimization prob- 
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lems. In a two-dimensional representation, the reversing of signs leaves the slope of 

the objective function unchanged but reverses the direction of movement when the 

function increases in value. The value of the objective function now increases for 

movements toward the origin rather than away from the origin. 

3-3 SIMULTANEOUS EQUATION APPROACH TO THE 
SIMPLEX METHOD 

Consider again the equations in (3-2). They represent extreme point A with 

Xj = 0, x2 = 0, x3 = 12, and x5 = 1. The slack variables x3 and x5 are the basic 

variables, while the two decision variables (xl and x2) are nonbasic variables at zero. 

This is a natural initial basic solution for our algorithm. It says “do nothing/' It has 

an objective function value of z = 0. Also, the two constraint equations are already 

in canonical form. 
Let us now also include the objective function in this set of equations. Treating 

z as a variable, we rewrite the objective functions by transferring all variables to the 

left-hand side. Its RHS value is set equal to the value of z at that basic feasible solution. 

In this manner, the three equations are in canonical form, and the values of the basic 

variables and z can be read off directly, as shown by equations (3-4): 

0.5xx + x2 + x3 =12 

(3-4) 16^\ 24 X2 + X5 — 1 

z - 24xj - 20x2 = 0 

We now ask ourselves if this solution is optimal. To find the answer, we use the 

equivalent question, “Can the value of the objective function z be increased by 

increasing the value of any of the nonbasic variables?'' Note that it is not possible to 

change the solution other than by increasing nonbasic variables, because the solution 

in terms of the basic variables is unique. If we set Xj = 1, z increases by 24. If we 

set x2 = 1, z increases by 20. By increasing the value of either x1 or x2, we can increase 

z, and the solution (x3 = 12, x5 = 1, and xl = x2 = 0) is not optimal. Thus, there 

may exist extreme points with a higher value of z. 

We cannot jump straight to the optimal extreme point—the one with the highest 

z value—because we do not know which point it is. Instead, the simplex method 

proceeds in small steps by moving to an extreme point adjacent to the current one 

but with a higher z value. Such an adjacent point can be found by replacing one of 

the basic variables (x3or x5) with one of the nonbasic variables (xt or x2); in other words, 

by changing the basis. We first choose the nonbasic variable to become the new basic 

variable, or to enter the basis. Then we find which of the old basic variables it 

replaces—or the variable to leave the basis. A logical choice for the variable to enter 

the basis is the one that gives the greatest per unit increase in z, i.e., the variable with 

the most negative coefficient in the objective function equation in canonical form. 

In our case, this is xx with a coefficient of - 24. 
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Since each unit of x, increases z by 24, we should increase x, as much as possible. 
The largest value x, can assume depends on what happens to the values of the other 
variables. In fact, only variables currently in the basis will change as x, increases, since 
all other nonbasic variables will be kept at zero. Using equations (3-4), we can write 
x, in terms of x, and x5: 

= (12 - x,)/0.5 or x, = 12 - 0.5xx 

x,=(l-x5)/^ or x5 = 1 - jV, 

Verify that as x, increases, both x, and x5 decrease. Since neither x, or x5 is permitted 
to become negative, xx must not increase beyond the value that first reduces one of 
them to zero. By equations (3-5), the largest value Xj may assume is 

(3-6) Xj = minimum (12/0.5, 1/^) = 16 

At this point x5 = 0, while x, = 4. So X5 leaves the basis to become a nonbasic variable. 
The new solution is a basic solution because only m{ = 2) variables are nonnegative. 
It is a basic feasible solution because all variables remain nonnegative. 'This solution 
corresponds to extreme point B in Figure 3-1, with xl = 16, x, = 4, and x2 = x5 = 
0. Note that this point is indeed adjacent to point A. By increasing X[ from 0 to 16, 
we move along the edge from point A to point B. 

The next task is to find the set of equations in canonical form for this new 
solution, with x: and x, as the new basis and with x2 and x5 as the nonbasic variables. 
Starting with equations (3-4), we divide the second equation by r. We then eliminate 
Xj from the first equation by subtracting 0.5 times the new second equation from the 
first equation. The new objective function is found by subtracting - 24 times the new 
second equation from the old objective function equation. These operations result in 
the following set of equations: 

fx2 + x, - 8x5 = 4 

(3-7) Xj + fx2 + 16x5 = 16 

z - 4x2 + 384x5 = 384 

We can now read off the values of the basic variables as x, = 16 and x3 = 4. 
The new value of z = 384 corresponds to the increase of Xj to 16; i.e., an increase 
in z of 24 for each unit increase in Xj gives 24(16) = 384. This completes the first 
iteration of the simplex algorithm. 

We are now in a position analogous to the beginning of iteration 1. We again 
have a basic feasible solution in canonical form (with a higher z value, though) and 
can repeat the whole process. So, we start a second iteration by asking again whether 
the z value can be further increased by increasing any of the nonbasic variables. Verify 
from equations (3-7) that a unit increase in x2 increases z by 4, while a unit increase 
in x5 reduces z by 384. Hence the extreme point corresponding to (3-7) is not optimal, 
since the z value may be further increased if x2 enters the basis. Clearly we would not 
wish to increase x5, because then the objective function would decrease in value. 
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Which of the currently basic variables, xx and x3, is to leave the basis? Using the 

same logic as for the first iteration, we have 

x2 = (4 - x,)/f or X, = 4 - |x2 

x2 = (16-x,)/f or x, = 16 - fx2 

The largest value x2 may assume then is 

(3-9) x2 = minimum(4/|, 16 / §) = 6 

Thus, x3 leaves the basis. 
The final operations of iteration 2 involve finding the canonical form associated 

with the new basis so that we may determine the values of the new basic variables and 

of z. This is achieved by dividing the first equation of (3-7) by §, subtracting \ times 

this new equation from the second equation, and subtracting -4 times the new first 

equation from the objective function equation: 

X2 + | “ .12X5 = 6 

(3-10) ' + 24x5 = 12 

z + 6x3 + 336x5 = 408 

Verify that by setting x3 = x5 = 0, we find x1 = 12, x2 = 6, and z = 408. z increases 

from 384 by 6(4). 
We now start iteration 3. Checking first for a nonbasic variable that will increase 

z, we see that there is none. The objective function value cannot be improved any 

further, so we have reached the optimal extreme point. The simplex method thus 

terminates after two iterations. Let us now formalize the rules used at various points 

in the above operations. 

3-4 THE VARIABLE ENTERING THE BASIS 

To find the variable to enter the basis, we examine the coefficient of each nonbasic 

variable in the z row—the objective function expressed in canonical form correspond¬ 

ing to the current basis. These coefficients are often referred to as the reduced objective 

function coefficients, or the reduced cost coefficients. What is their meaning? 

Each coefficient measures the difference between the contribution toward the z 

value of a unit of that nonbasic variable and the contribution from the same quantities 

of the resources used via the current basic variables. Let us explain this using an 

example from the equations in canonical form in (3-7). Recall that 1 unit of x2 

(burning 1 ton of coal B) produces c2 = 20 units of steam while consuming 1 kilogram 

of smoke emission capacity and^ hour of pulverizer capacity. What proportion of the 

basic variables use the same amount of resources as 1 unit of x2? To answer this we 

set x2 = 1 in equations (3-7) with x5 = 0. For the first equation to hold true, x3 

(smoke emission slack) is reduced by § (= 7J, and for the second equation to hold 

true, xx (burning of coal A) is reduced by \ (= 72). We see that burning 1 ton of coal 

B is equivalent, in terms of the resources used, to having y1 = \ of smoke emission 
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slack plus burning 7, = f ton of coal A. We might think of this combination of the 

basic variables as 1 ton of “synthetic coal B.” (Verify that this is also correct for the 

original problem in the form of (3-4) by setting xl = (16 - 7,), x2 = 1, x, = (4 - 
7,), and x5 = 0.) Let z2 denote the contribution toward steam output of 1 ton of 

“synthetic coal B” (in terms of the basic variables x, and x,). It is 

(3-11) z2 = c,7, + c,72 = (0)| + (24)| = 16 

By tradition, we subtract the original objective function coefficient from this 'equiv¬ 

alent resource use” contribution; i.e., the reduced objective function coefficient is 

given as z2 — c2 = 16 - 20 = -4. This is the coefficient of x2 in the trans¬ 

formed z row of equations (3-7). It is the decrease in value of the objective function 

for a unit increase in the variable. 

The above reasoning is couched in terms of the use of scarce resources. However, 

it can be generalized to any type of activity variable and any type of constraint. The 

reduced objective function coefficient (zy - cy) always represents the reduction in the 

objective function that results from one unit of the variable x} replacing the equivalent 

amount of the constraints used by the basic variables. This even holds true for the 

reduced objective function coefficients of the basic variables. The equivalent resource 

use of a basic variable is the basic variable itself. Hence zy = cj, resulting in a reduced 

objective function coefficient of zero. 

If the direct contribution c} exceeds the indirect contribution z/? i.e, if (z - c;) 

< 0, then introducing x} into the basis will increase the objective function value. If 

more than one nonbasic variable has (zy - cy) < 0, then a common criterion is to 

choose the one that yields the largest per unit improvement in the objective function. 

What if there is no (z; — cj) < 0? Then no further improvement is possible, and we 

have reached the optimal basic feasible solution. Thus the reduced objective function 

coefficients tell us whether the current solution can be further improved or whether 

it is optimal. 

SIMPLEX CRITERION 1: VARIABLE ENTERING BASIS 

The variable to enter the basis is the one that has the most negative (z; — cy) 

OPTIMALITY CRITERION 

A basic feasible solution is optimal if all (zy — cy) ^ 0 for the nonbasic variables. 

3-5 THE VARIABLE LEAVING THE BASIS 

We will now examine what happens to the values of current basic variables when we 

introduce x2 into the basis. In the preceding section, we observed that a unit increase 
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in x2 in expressions (3-7) resulted in a simultaneous decrease in x3 of yl = §, and in 

of y2 = f • Similarly, an increase of x2 = 0 in (3-7) will cause x3 and xY to decrease 

proportionately, i.e., 

^3 = 4 -7i8 = 4 -fe 

Xj = 16 — 720 = 16 - f 0 

As 0 increases, xx or x3 will ultimately be driven to zero. Any further increase in 8 

will cause one or the other or both of these variables to become negative. Such a 

solution is not feasible. Hence, the largest value of 0 that x2 may assume (while still 

maintaining feasibility) is the smaller of the two ratios 4/^ and 16/'y2- In our case this 
is 

0 = minimum (4/f, 16/f) = 6 

If either or 72 had been negative or zero, then that ratio could have been ignored. 

The corresponding basic variable would either increase in value or remain unchanged 

as x2 increased. Generalizing these observations, we get the next important rule of the 

simplex method. 

SIMPLEX CRITERION 2: VARIABLE LEAVING BASIS 

Given the 7,’$ for the nonbasic variable entering the basis, the variable leaving 

is the one that satisfies 

A . . (value of basis variable xj - n 
0 = minimum —r---.■: L tor all 7. > 0 

(corresponding 7,) 

0 is the value of the new basic variable x, in the new solution. 

If there are no positive 7/s, 0 can be increased without bound because none of 

the variables in the present basis will go to zero. As 0 increases, so does the value of 

the objective function; and since 0 can be increased without bound, the objective 

function also goes to infinity. This is called an unbounded solution. 

CRITERION FOR UNBOUNDED SOLUTION 

If, for some (zf - c-) < 0, all 7, values are nonpositive, the linear programming 

problem has no finite optimal solution. 

Given the interpretation of the reduced objective function coefficients (zy - cy), 

it also follows that the new value of the objective function increases to z - 0 (zy - c;). 
[Remember that (zy - cy) < 0.] 
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3-6 THE SIMPLEX TABLEAU 

The computations of the simplex method are most conveniently performed in a tableau 
structure known as the simplex tableau. For the reduced version of the power generating 
problem (3-1), the simplex tableau for the initial basic solution of slack variables is 
shown in Table 3-1. This table does no more than set the coefficients of the equations 
(3-4) in a convenient form. 

The first two rows are header rows for reference purposes only. The top row has 
the values of the objective function coefficients cy for each variable xp and the second 
row indicates to which variable each column refers. The cy column on the extreme 
left contains the objective function coefficients for the basic variables. These coeffi¬ 
cients are required to find the z;- values. The variables that form the basis are listed 
in the second column. The columns under the variable names give the coefficients 
in the canonical form. The column labeled “Solution” contains the values of the 
basic variables. The (zy - c;) row of the table corresponds to the z row of (3-4). Using 
logic similar to that used in equation (3-11), zy can be calculated by multiplying each 
element in the xy column by the corresponding element in the c- column and summing 
over all rows, e.g., z, = (0.5)(0) + (re)(0). For all subsequent discussions, when we 
refer to the rows of the simplex tableau, the two header rows at the top will be ignored. 
For example, in Table 3-1, row 1 is the x3 row. 

Variable out 

Table 3-1. Initial simplex tableau 

cl 
24 20 0 0 Ratio 

c, 
Basis Solution *1 *2 *3 X- 

0 *3 12 0.5 1 1 0 il=24 
0.5 

0 *5 1 ® 1 
24 0 1 

1716 = 16 

Z- — c 
n j 

0 -24 -20 0 0 

f Variable in 

3-7 ITERATIONS OF THE SIMPLEX METHOD 

We are now ready for the first iteration of the simplex method. By simplex criterion 
1 , the nonbasic variable xx enters the basis because it has the most negative (zs - c;.) 
value, as shown by the arrow below (zx - c,) in Table 3-1. 

The values of the basic variables are the corresponding elements in the solution 
column, and the 7, coefficients of xx are the elements in column xv To find the 
variable leaving the basis, we compute the ratio of these two numbers for all 7, > 0, 
as shown in the last column of Table 3-1. By simplex criterion 2, x5 leaves the basis 
because it has the smallest value of this ratio. The new basis is (x3, Xj). 

Our next task is to transform this tableau into the canonical form corresponding 
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to the new basis. We will define the pivot row as the row of the variable leaving the 

basis, which becomes the row of the new basic variable. This is row 2 in Table 3-1. 

We will define the pivot column as the column associated with the variable entering 

the basis—in our case column in Table 3-1. The pivot element is defined as the 

element that is in both the pivot row and the pivot column. In our case, it is the 

fraction r, shown circled in Table 3-1. 
To get the tableau into the new canonical form, we must transform the pivot 

column so that the pivot element equals 1 and all other column elements are zero. 

This is achieved by the following rules. 

NSFORMA 

T The pivot row is transformed by dividing it by the pivot element. 

2. All other rows, including the (zj - cy) row, are transformed as follows: 
if y, is the element in both die pivot column and row i, then row i is 
transformed by subtracting y. times the transformed pivot row from 

■■■■I 
■■ 

You should confirm that these rules are the same as the transformation operations 

used in Section 3-3. 
Table 3-2 gives the second and third simplex tableaux, which correspond to 

equations (3-7) and (3-10). The application of the simplex criteria confirms the cal¬ 

culations shown in Section 3-3. You may wish to refer back to Sections 3-3 through 

3-5 to strengthen your understanding of the data in Table 3-2 and the reasons for the 

simplex criteria. 
From the solution column we can read off the basic feasible solution x2 = 6, 

Xj = 12, with the nonbasic variables x^ and x5 equal to zero and a value of z = 408. 

Table 3-2. Second and third simplex tableaux 

24 20 0 0 Ratio 

Basis Solution 

1 S 0 16 

- ci 384 0 -4 f 0 384 

0 1 5-12 
1 0 -1 24 

i 
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By the optimality criterion, we also have reached the optimal solution, since no 
(Zj — Cj) values are negative. 

3-8 INITIAL BASIC FEASIBLE SOLUTION AND ARTIFICIAL 
VARIABLES 

How do we find an initial basic feasible solution to start the simplex method iterations? 
Most linear programming problems do not have an initial solution of nonnegative 
slack variables in canonical form. Some constraints may be equality constraints or 
larger-than-or-equal-to constraints. The original (or “do nothing”) solution is no 

longer feasible. In such a case, there is no guarantee that a feasible solution even 
exists the constraints may be inconsistent. What is needed is a systematic and efficient 
method to generate an initial basic feasible solution. 

One of the outstanding features of the simplex method is that the method itself 
can be used to generate its own initial feasible basis (provided one exists) or else to 
indicate that the problem has no feasible solution. 

To initiate the simplex method, we use the trick of artificially creating a set of 
equations in canonical form. We do this by introducing into each constraint not 
containing a slack variable with a +1 LHS coefficient a so-called artificial variable 

that does have such a property. The new problem thus created is called the augmented 

problem. Geometrically, we are expanding the feasible region to include the origin 
of the space. Therefore, we are sure that the augmented problem is feasible. 

Let us illustrate this idea with the original power generating problem as sum¬ 
marized below: 

maximize 24xj + 20x2 

subject to 0.5*! + x2 + x3 =12 

(5-12) Xl+ X2 + x4 =20 

16-Xj + 3*2 + X; =1 

1200X] - 800x2 — x6 = 0 

*1, *2> *3. *4 , X5, X6 2* 0 

There are four equations, so we need four basic variables. The slack variables 
x3, x4, and x5 can be used as the basic variables for the first three equations. But since 
the sulfur constraint is a ^ inequality, its slack variable has the wrong sign. (Note that 
in this example we could obtain an initial basis by multiplying this constraint 
by - 1. However, for demonstration purposes, we will not do that here.) 

We now augment the original problem by adding the artificial variable x7 to the 
fourth constraint: 

0.5xj + x2 + x3 =12 

*i + *2 + x4 = 20 

ii*i + bx2 + x5 =1 

1200X! - 800x2 -x6 + x7 = 0 

x„ . . ,,x7 3= 0 

(3-13) 
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The variables (x„ x4, x„ x7) form an initial basis to equations (3-13). The artificial 
variable x7 has no meaning in terms of the original linear program (3-12). So, although 
we have an initial basic feasible solution to the augmented problem, the solution is 
not a basic feasible solution of the original problem, since x7 is not a part of that 
problem. Our first task is to construct, from the initial solution to the augmented 
problem, a basic feasible solution to the original problem by removing all artificial 
variables from the basis. This then becomes our “initial basic feasible solution” from 
which we find an optimal solution to the original problem. We will consider two 
methods of doing this—the big M method and the two-phase method. The big M 
method is attractive because it is a simple extension of the simplex method developed 
so far. However, most large-scale computer programs use the two-phase method. 

3-9 THE BIG M METHOD 

The idea of the big M method is very simple. We give the augmented problem 
the same objective function as the original problem, except that we penalize each 
artificial variable heavily with a large negative objective function coefficient, say an 
amount - M (hence the name of the method). So any basic feasible solution that 
includes artificial variables is most unattractive. In the process of reaching the optimal 
solution to the augmented problem, the simplex method will remove the artificial 
variables from the basis if at all possible. The big M method just uses the inherent 
logic of linear programming and the simplex method to provide an optimal solution 
to the augmented problem that is also optimal for the original problem. 

What if the optimal solution to the augmented problem has artificial variables 
at a nonzero level? We must argue that the simplex method would have excluded 
these variables if it could. Since it cannot exclude them, there is no feasible solution 
to the augmented problem that is also feasible for the original problem. That simply 
means that there is no feasible solution to the original problem because its feasible 
region is completely contained in the feasible region of the augmented problem. 

We have then the following two criteria. 

BIG M METHOD CRITERION: OPTIMALITY 

T^Hc optimal solution to the augmented problem is optimal to the original 
problem if there are no artificial variables with nonzero value in the optimal 

BIG M METHOD CRITERION: NO FEASIBLE SOLUTION 

If any artificial variable is in the basis with nonzero value at the optimal solution 
>f the augmented problem, then the original problem has no feasible solution. 
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Table 3-3 The big M method for problem (3-14) 

ci 24 20 0 0 0 0 -M Katio 

ci Basis Solution 
*i *2 *3 *4 x5 *6 xi xu 7, 

0 *3 12 1 
2 1 1 0 0 0 0 24 

0 *4 20 1 1 0 1 0 0 0 20 
0 *5 1 m 

1 
24 0 0 1 0 0 16 

-M X1 0 
dU> -800 0 0 0 -1 1 0 

0 (-1200M (800M 0 0 0 M 0 
Z} - Cj -24)1 -20) 

0 *3 12 0 (D 1 0 0 l 
2400 

1 
“2400 9 

0 *4 20 0 5 
~3 0 1 0 1 

1200 
1 

—1200 12 
0 x5 1 0 1 

n 0 0 1 
1 _1_ 12 

19200 19200 
24 *1 0 1 2 

“3 0 0 0 
1 

“ 1200 
1 

1200 

Zj-Cj 0 0 - 36 t 0 0 0 
1 

-50 » + M 

20 x2 9 0 1 3 
4 0 0 

1 
3200 

1 
~ 3200 28800 

0 *4 5 0 0 
5 

“4 1 Oj 
1 

3200 
1 

“3200 16000 
0 • *5 

l 
4 0 0 

1 
0 1 

Gsm) 

1 

38400 
9600 

24 *1 6 1 0 
1 
2 0 0 1600 

1 
1600 

Zj-Cj 324 0 0 27 0 0 
-&T 850+ M 

20 *2 6 0 1 
3 
2 0 -12 0 0 

0 *4 2 0 0 
1 

“2 1 -12 0 0 

0 *6 9600 0 0 - 2400 0 38400 1 -1 
24 *1 12 1 0 -1 0 24 0 0 

zrci 408 0 0 6 0 u M 

So to solve equations (3-13), we give an objective function coefficient of —M to 

x7, whereas all other variables have the original coefficients shown in (3-12). Thus we 

have the linear program 

(3-14) maximize 24xj + 20x2 - Mx7 

subject to the constraint set (3-13) 

Table 3-3 lists the sequence of tableaux for solving problem (3-14). The top row 

reflects the augmented objective function with c7 = -M. Before we can begin the 

computations, we need to find the (z} - cj) row using the method outline in Section 

3-6. Since c7 = — M is the only nonzero objective function coefficient of the basic 

variables, we find the (z; ~ c}) row by subtracting M times the row x7 from the negative 

of the Cj row. We thus get the top tableau in canonical form, 
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At the first iteration, the choice of x, to enter the basis is determined by 
the - 1200M part of (z, - c,), since that completely dominates the term -24. By 
coincidence, x7 is removed immediately—that need not have been the case because 
it is the ratio (x, / y) that determines the variable to leave the basis. The rest of the 
iterations are not affected by the penalty cost, except that the penalty prevents x- from 
entering the basis again. In fact, the x7 column could be removed from the tableau 

after the first iteration without altering the outcome. 
The big M method may lead to difficulties when used on a computer. The first 

difficulty is that if M is very large, the non-M part of each (z/ — cf (i.e., the part that 
is not a multiple of M) may get lost because of the machine’s finite precision. Naturally, 
(z - c) could be computed from first principles at each iteration, but this would be 
extravagant in computing time. On the other hand, if M is too small, wrong answers 
may arise through the non-M part of (z, — cf negating the effect of the penalty cost. 
Unfortunately, the best value for M will vary from problem to problem. 

3-10 THE TWO-PHASE METHOD 

The two-phase method avoids the weakness of the big M method by distinguishing 
the two phases implicit in it. We saw that the big M method simultaneously seeks a 
feasible solution to the original problem and an optimal solution to the original 
problem. In the two-phase method, we first try to find an initial basic feasible solution 
to the original problem in phase 1. If no feasible solution exists, phase 1 indicates this 
right away. Phase 2 starts with this initial basic feasible solution and finds the optimal 
solution to the original problem. So we use the simplex method to find its own starting 

solution as well as to find an optimal solution. 
In the two-phase method we remove the artificial variables from the basis in the 

following way. In phase 1 we introduce a separate objective function, often referred 
to as the infeasibility form, which gives each artificial variable an objective function 
coefficient of — 1 and each true variable a coefficient of 0. By maximizing the in¬ 
feasibility form, we endeavor to force the artificial variables to leave the basis. If a 
feasible solution exists for the original problem, the maximum value of the infeasibility 
form is zero. If phase 1 terminates with basic artificial variables at a positive value, 
no feasible solution exists for the original problem. (It is possible, though, to have 
basic artificial variables with a value of zero at the end of phase 1. These will not be 
permitted to assume positive values in the phase 2 optimization.) 

TWO-PHASE METHOD CRITERION: 
NO FEASIBLE SOLUTION 

If phase 1 terminates with positive-valued basic artificial variables, then there 
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For our example, the phase 1 problem consists of 

(3-15) 
maximize 0xj + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 - x7 

subject to the constraint set (3-13) 

Table 3-4. Phase 1 of two-phase method 

First Simplex Tableau 

c; 24 20 0 0 0 0 0 Ratio 

si 0 0 0 0 0 0 -1 

si Basis Solution *i *2 *3 *4 *3 *6 *7 xh, 

0 0 *3 12 1 
2 1 1 0 0 0 0 24 

0 0 *4 20 1 1 0 1 0 0 0 20 
0 0 *3 1 1 

m 
1 

23 0 0 1 0 0 16 
«- 0 -1 *7 0 0200) -800 0 0 0 -1 1 0 

zrci 0 -24 -20 0 0 0 0 0 

z-cj 0 - 12001 800 0 0 0 1 0 

Second Simplex Tableau 

0 

0 

0 

24 

0 

0 

0 

0 

*3 

*4 

*5 

*1 

12 

20 

1 

0 

0 

0 

0 

1 

4 
3 

5 
3 

1 
n 
2 

“3 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 
2400 

1 
1200 

1 

19200 
1 

~ 1200 

_ 1 
2400 

1 
1200 

_ 1 

19200 
1 

1200 

Z- — C- 
J 1 

0 0 -36 0 0 0 
1 

~ 50 
1 

50 

Z-C. 1 1 
0 0 0 0 0 0 0 l 

The simplex tableaux for phase 1 are shown in Table 3-4. Again, our first task 
is to transform the objective function of phase 1 into canonical form. We denote 
(Zj - c) values of the infeasibility form by {z} - c). The value of (zj - c;.) is found 
by subtracting the x7 row from the negative of the c; row (show as the second row of 
the top tableau). During the phase 1 computations, we find it useful to carry the 
(zj - Cj) values of the original objective function along in the usual manner, except 
that these values are not used to decide which variables should enter the basis. 

At the first iteration, variable x, enters the basis and drives out x7. The canonical 
form for the new basis (x„ x4, x„ xj is shown in the second tableau. The infeasibility 
form has a value of zero, and no negative (z;- — cf values remain. Phase 1 has 
terminated in a basic feasible solution to the original problem in one iteration. 
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As an interesting footnote, let us point out that x, is a basic variable at a zero 
value. Such a solution is called a degenerate solution. We shall discuss this further 

in Section 3-12. 
Once phase 1 has yielded a basic feasible solution to the original linear program, 

we reinstate the original objective function and ignore the artificial variables in all 

subsequent computations. 
If we carry the original objective function along during the phase 1 computations, 

phase 2 can start immediately because the original linear program is in canonical 
form. Otherwise the (z; - c) row has to be computed in the manner described in 
Section 3-4. For reasons that will become clear in Chapter 5, it is also advantageous 
to carry the columns for the artificial variables along in the usual manner during the 
phase 2 computations, except that the artificial variables will never be allowed to 

become positive again. 
The phase 2 tableaux are the same as the last three in Table 3-4 except for the 

(z7 - c7) values. The optimality condition is satisfied at the third tableau with the 
optimal solution of Xj = 12, x2 = 6, x? = 0, x4 = 2, x5 = 0, x6 = 9600, z = 408. 
The reader may find it instructive to trace the sequence of solutions of phase 1 and 

phase 2 on Figure 2-3 in Chapter 2. 

3-11 ALTERNATIVE OPTIMAL SOLUTIONS 

When the objective function is parallel to the edge of a constraint, the optimal solution 
is not unique. We illustrated this point in Section 2-9. This condition can be identified 

as follows. 

ALTERNATIVE OPTIMAL SOLUTIONS 

If at the optimal tableau one or more of the nonbasic variables has {zf - c;) = 0, 
then each one of them is a candidate to enter alternative optimal bases. f f! i 

This is intuitively reasonable because a (z;- — cj) value of zero means that it is 
neither beneficial nor detrimental to have that variable in the basis—the value of the 
objective function will not change. The alternative optimal basic solutions can be 
found by evaluating each basis formed by all combinations of variables with (z7 — Cy) 
values of zero at the optimal solution. Note that in the case of degenerate solutions, 
a different basic solution need not result in different values of the variables and a 
different extreme point. Furthermore, any convex combinations (linear combinations 
with proportions summing to 1) of the alternative optimal basic solutions will yield 
an optimal nonbasic solution. The set of all convex combinations is the edge of the 
feasible region along which the objective function lies. (Section A-4 of Appendix A 
discusses convex combinations.) Table 3-5 illustrates the example of Section 2-9 with 



Section 3-12 Degeneracy 103 

Table 3-5. Alternative optimal solutions 

ci 
30 20 0 0 0 0 .— 

ci Basis Solution *i *2 *5 x4 x5 
*6 x7 

«- 20 *2 6 0 1 © 0 -12 0 0 
0 

*4 2 0 0 
1 
2 1 -12 0 0 

0 *6 9600 0 0 -2400 0 38400 1 -1 
30 *1 12 1 0 -1 0 24 0 0 

h ~ ci 
480 0 0 Of 0 480 0 

. !. 
— 

0 4 0 
2 
3 1 0 -8 0 0 

0 x4 4 0 
1 
3 0 1 -16 0 0 

0 *6 19200 0 1600 0 0 19200 1 -1 
30 

*1 16 1 
2 
3 0 0 16 0 0 

Zj - Cj 480 0 0 0 0 480 0 _ — 

the objective function 

maximize 30xj + 20x2 

The simplex method arrives at an optimal basis of (x2, x4, x6, Xj) with 

(z3 ~ c3) = 0. Introducing x3 into the basis, we get the alternative optimal basis of 
(x„ x4, X6, X,). 

Not only are these two basic solutions optimal, i.e., 

X! = 12, x2 = 6, x3 = 0, x4 = 2, x5 = 0, x6 = 9600 

and 

xj = 16, x2 = 0, x3 = 4, x4 = 4, I5 = 0, x6 = 19,200 

but so are all the points on the line segment between these two solutions, i.e., 

(3-16) ^ = (1 - \)xj + KXj, 0 < \ < 1 

These are optimal solutions (though not basic), all with the same value of the objective 
function of z = 480. 

3-12 DEGENERACY 

When one or more basic variables has a value of zero (as xt did at the end of phase 

1 in Table 3-4), the basic solution is called a degenerate solution. Theoretically, this 
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may spell trouble for the simplex method. To prove the convergence of the simplex 
method in a finite number of iterations, we must assume that the value of the objective 
function increases at each iteration. When this occurs, each basis in the sequence 
traced out by the simplex method has a unique value of z, and so no basis can appear 
more than once. Since there is only a finite number of basic feasible solutions, the 
simplex method converges to the optimal solution in a finite number of iterations. 

However, when a variable enters a basic solution at a zero value, the value of 
the objective function does not change at that iteration. If this occurs a number of 
times in sequence, it is conceivable that a previous basis will reappear. If we then 
follow exactly the same sequence of computations and selection rules as we did when 
this basis was encountered for the first time, we are caught in a circle without exit. 

This is known as cycling. 
Although degeneracy is fairly common, the danger of cycling seems to be neg¬ 

ligible and is usually ignored. However, there are a number of ways to prevent cycling. 
The most satisfactory and sophisticated way is a special version of the simplex method 
called the lexicographic form of the simplex method. (See M. Simmonard, Linear 
Programming, pp. 63-66.) Another method used to prevent cycling is to remove the 
degeneracy. This can be done by perturbing the degenerate variable (i.e., by giving 
it a very small nonzero value). If the perturbation is very small, the effect on the 
optimal solution is also small, although it may rise substantially over many iterations. 
This is a danger. Computer codes by the very nature of their computational system 
accumulate rounding errors during the arithmetic operations from iteration to iteration 
and thus automatically introduce minute perturbations. Thus, in practice, cycling can 
usually be ignored. Most of the examples of cycling reported in the literature are 
mathematical fabrications designed to illustrate the problem. 

The authors have encountered a practical problem in which degeneracy has 
created difficulties. The original problem had many zero RHS parameters. While it 
is not clear that cycling occurred, perturbing the variables greatly improved the con¬ 
vergence of the problem. In this situation, the computer will not do its own perturbing. 

3-13 COMPUTER CODES AND THE SIMPLEX METHOD 

Most commercial linear programming computer codes do not use the full tableau 
simplex method as described in this chapter. Instead they work with the revised simplex 
method in which less data are updated at each iteration. With this method, it is also 
possible to periodically (after a predetermined number of iterations) rid the current 
solution of many of the rounding errors accumulated during the updating operations. 

We will study the revised simplex method in Chapter 17. 
The accuracy of the final solution depends also on the various tolerances built 

into the computer code or specified by the user at data input time. At various points 
in the computations of the simplex method, checks are made on certain entries in the 
tableau, such as the {z, - c) values and the pivot column, to determine if they are 
equal to zero. Errors may be introduced by the manner in which the computer stores 
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and manipulates decimal numbers. Therefore, for all practical purposes, entries with 
small deviations from zero, such a plus or minus 10“6, are taken to be equal to zero. 
These limits are referred to as tolerances. 

Choosing the tolerances is not always easy. Tighter (smaller) tolerances are more 
difficult to satisfy and may let through computer errors, i.e., allow zero elements to 
be treated as nonzero. For example, the authors have experienced cases where too 
tight a tolerance for the optimality condition of the infeasibility form resulted in 
problems being diagnosed wrongly as having no feasible solution. By loosening this 
tolerance, we resolved the difficulty and produced a feasible solution. Alternatively, 
loose tolerances may treat genuinely nonzero data as zero. 

The accuracy of the final answer can also be improved by proper scaling of the 
input data. Extremely large and extremely small numbers in the same problem should 
be avoided whenever possible, since their simultaneous presence increases the danger 
of large error accumulation. By suitable elementary row-and-column operations on 
the input data, we can eliminate some of these variations. This procedure, called 
scaling, was used on the objective function of the power generating problem. Rather 
than specify the objective function coefficients in pounds, we used urjits of 1000 
pounds. This is equivalent to multiplying the objective function by i4. The combined 
effect of scaling is often confusing. Fortunately, the better computer codes have options 
for internal scaling and unsealing before the results are printed. 

EXERCISES 

3.1 Graph the constraint set in solution space: 

2xi + 4x, =£ 8 

x, - x2 1 

x„ x2 2* 0 

Find the basic solutions that correspond to each of the extreme points of the feasible 
region. Remember to add slack variables. 

3.2 For the constraint set 

2x, + 4x2 + x, s? 8 

3x, + 2x2 + 6x, =? 6 

XnX2, x, 5= 0 

find all the basic solutions. Which ones are basic feasible solutions? 

3.3 For each of the equation sets below, graph the feasible region. Show that the corner 
points correspond to the basic feasible solutions. 
(a) x, + x2^4 

2x, + 3x2 9 
x,, x2 & 0 
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(b) x, + x2 4 

x, + 2x2 2= 6 

x„ x2 2= 0 

(c) Xj + x2 « 4 

x,- x2«0 

*1’ ^ 0 

3.4 Using the constraint set of exercise 3.2 and the objective function 

maximize z = Sxx + 6xz + 4x3 + 2x4 

construct the simplex tableau for the basis (x1? x2). 

3.5 For the problem 

minimize z = 2xx + 9x2 — 4x3 

subject to 2xx + 3x2 + 4x3 ^ 12 

x, + 6x2 - 4x3 ^ 4 

*l> X2 238 0 

set up the initial tableau and solve. 

3.6 Solve the following problems by the simplex method: 

(a) maximize z = 4xj + 5x2 

subject to 2xx + 3x2 ^ 6 

2xl + 2x2 ^ 5 

Xj, x2 ^ 0 

(b) minimize z = xx — 2x2 

subject to 4xj + 2x2 ^ 6 

-X! + X2^0 

x1?x2^0 

3.7 An insurance company has $100,000 of idle funds to invest and a choice of two different 
investments of unequal risk—investment type X and investment type Y. X yields an 
annual return of 10 percent and Y yields an annual return of 15 percent. The investor s 
choice is limited because government restrictions require that at least 25 percent of the 
funds be invested in X. Company policy demands that the ratio of the funds invested 

in Y to the funds invested in X should be no more than 1.5:1. How should the company 
apportion its funds? Formulate this problem. Solve it by the simplex method. 

3.8 Solve the problem in exercise 3.7 with the annual yield on X at 15 percent. Find an 

alternative optimal basic solution and two optimal nonbasic solutions. 

3.9 (a) Solve this problem by the two-phase method: 

minimize z = 2xj + 9x2 - 4x3 

subject to 2xx + 3x2 + 4x3 ^ 8 

xx + 6x2 — 4x3 ^ 24 

x2> x3^0 
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3.10 

(b) What is the maximum value of the RHS parameter of the second constraint that 
will yield a feasible solution? Explain how you reached this value. 

Solve the following problems using either the big M or the two-phase method: 

(a) maximize z - 

subject to 

(b) minimize z = 

subject to 

4xj + 5x2 

2xj + 3x2 ^ 6 

3xj + x2 5s 3 

X\> X2 ^ 0 

- 2x2 

4xl + 2x2 ^ 6 

2xj + 3x2 - 1 

0 

3.11 Using the optimal tableau of exercise 3.10 (a), replace the objective function with 

maximize z = 6xx + 9x2 

Hint: You need only work out new (z. — c )'s. 
(a) Find the optimal solution. 

(b) Find the alternative optimal basic feasible solution. 
(c) Find two nonbasic optimal solutions. 

3.12 Show by the two-phase method that the following problem has no feasibly solution: 

maximize z = 4xj + 5x2 

subject to 2xx + 4x2 ^ 8 

+ 3x2 s* 9 

x1? x2 ^ 0 

3,. 13 Show by the simplex method that the following problem has an unbounded solution: 

maximize z = 2xj + x2 

subject to xl - x2 ^ 1 

“Xj + x2 ^ 1 

x1? x2 s*0 

3.14 Consider the following linear programming problem: 

maximize z = cxxx + c2x2 + c3x3 

subject to 

x? 4- x, + 

xi> xs ^ 0 

The optimal tableau follows: 
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<7 Cl C2 C4 c5 

ci Basis Solution *1 *2 *3 x4 *5 

C3 *3 

3 
2 1 0 1 1 

2 
1 

“2 

C2 *2 
2 

1 
2 1 0 -1 2 

*i ~ ci 
20 3 0 0 0 4 

(a) Find the values of 

- r- r - 

<*n <*12 <*13 , and h\ 

*21. 1 ,an. .<*2 3, IAJ 

(b) Find the values of c1? c2, c3, and c5. 

3.15 The following is a tableau of the simplex method for a linear programming problem. 
Find the second best basic feasible solution, that is, the basic solution that differs from 
the optimal one and also gives a value of z nearest to the optimal value. Write out the 

tableau in full. 

c; 1 4 5 10 0 0 0 

ci Basis Solution *1 *2 *3 *4 *5 *6 *7 

i X] 2 1 0 0 1 -3 1 3 

4 
5 

*2 

*3 

3 
1 

0 
0 

1 
0 

0 
1 

2 
2 

1 
2 

1 
0 

-2 
2 

h ~ c> 
19 0 0 0 9 11 5 5 

3.16 Suppose (x*, x2\ . . . .,x*) is an optimal basic solution to the linear program 

maximize z = ^ cyx. 

subject to ^aijxj ~ K 1 ~ 
7 = 1 

Xj2* o, 7=1,.. .,n 

Will this solution still be optimal for the problems with the following objective functions? 

Give reasons. X is a scalar. 
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(a) maximize z = cfx. 
j= i 

(b) maximize z = + \)X) 
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CHAPTER FOUR 

Duality of 
Linear Programming 

One of the interesting features of linear programming is duality. For every linear 

programming problem, there is a twin linear programming problem that has a special 

and unique relationship to the first one. These two problems stand as pairs, or duals 

Not only is duality a rather nice theoretical relationship; it has also proved to be 

of immense value in devising other operations research techniques. Furthermore, 

duality has a useful economic interpretation and is widely used in economic theory. 

Besides being of theoretical interest, duality is at the core of sensitivity analysis in 

linear programming. That, however, is the topic of Chapter 5. Chapter 4 assumes 

that you have a thorough grasp of Chapter 3. 

4-1 THE DUAL PROBLEM 

The power generating problem was viewed in Chapter 2 as a problem of allocating 

scarce resources. Let us now look at this problem from an entirely different angle. 

The county council, which is the largest customer of the power generating plant, is 

considering making an offer to purchase the plant. In order to make such an offer, 

the council needs to determine fair prices for the existing plant resources. For our 

purpose these resources can be viewed as the available loading capacity, the available 

pulverizer capacity, and the available capacity to emit smoke. (We shall neglect the 

“capacity” to emit sulfur for the moment and reintroduce it later on.) 
Theoretically, the prices of resources are not necessarily related to their average 

or marginal costs, but rather to the revenues that they can produce. Economists tell 

us that as long as the price offered for a resource is less than the marginal revenue 
product of the resource, i.e., the revenue produced by the last unit of the resource 
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employed, the firm has no incentive to sell any of this resource. The marginal revenue 
products can also be viewed as the prices the firm should be willing to pay for additional 
amounts of scarce resources. In linear programming, these prices or marginal revenue 
products are called imputed values or shadow prices—imputed because they are not 
actual costs or prices, but the prices or values that can be inferred from the particular 
productive system in question. 

The problem of finding these prices turns out to be another linear program. In 
our example, the resources are used to produce steam. Hence, rather than express the 
prices in monetary units, we shall express them in terms of steam equivalents. Fur¬ 
thermore, since the original resource allocation problem is on a per-hour basis, the 
prices of the resources will be on the basis of per-hour use. Let 

• Wj be the steam that can be produced by using up 1 kg of smoke emission 
capacity, 

• w2 be the steam that can be produced by 1 ton of loading capacity, 
• W3 be the steam that can be produced by 1 hour of pulverizer capacity. 

The objective of the problem is to find prices w2, and w3 that minimize the 
council s total cost of acquiring the resources presently owned by the firm. The cost 
of acquiring the smoke capacity is 12Wj (= quantity available X price); the cost of 
the loading capacity is 20w2; and the cost of the pulverizer capacity is lw3. So the 
objective function is as follows: 

(4-1) minimize 12wj + 20w2 + w3 

The prices that the firm will accept depend on what the resources can do for the 
firm. The firm will insist on prices that give a return that is at least equal to the return 
produced by each of the two activities in which the resources are used, namely, 
burning coal A and burning coal B. 

In burning 1 ton of coal A, the firm produces 24 units of steam. The resources 
required to burn 1 ton of coal A are 0.5 kg/hr of smoke emission capacity, 1 ton of 
loading capacity, and r hr of pulverizer capacity. At the prices wly w2, and w3, the 
council will pay 0.5^ 4- w2 + per hour for these resources. However, since the 
firm can already make 24 units of steam from 1 ton of coal A, the council must be 
willing to pay (per hour) at least 24 units of steam for these resources for the firm to 
find their offer acceptable, i.e., 

(4-2) 0,5iVj + w2 + ^w3 52 24 

Similarly, for coal B, 

(4-3) Wj + w2 + 2*w3 ^ 20 

The prices must also be nonnegative: 

(4-4) w1,w2,w3 ^ 0 

Let us write out this linear program again and compare it with problem (2-6) of 
Chapter 2 (without the sulfur constraint): 
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New problem (pricing of resources): 

minimize Z = 12w( + 20w2 + w3 
subject to 0.5wj + w2 + rw3 ^ 24 

(4-5) w, + w2 4- aw3 ^ 20 

w,,w2,w3 5= 0 

Original problem (allocation of re- 

sources): 

maximize z = 24xl + 20x2 

subject to 0.5x,+ x2 12 

(4-6) x, + x2 20 

rex, + jjx2 ^ 1 

Xi, X23= 0 

How are the problems (4-5) and (4-6) related? 

DUALITY RELATION 1 (DR1) 

1. Each constraint in one problem is associated with a variable in the other 

and vice versa. 
2. The LHS coefficients of each constraint of one problem are the same as 

the LHS coefficients of the corresponding variable of the other problem. 
3. The RHS parameters of one problem are the objective function coefficients 

of the corresponding variables in the other problem and vice versa. 
4. One problem is a minimizing problem with 2* constraints and nonnegative 

variables, and the other is a maximizing problem with « constraints and 

nonnegative variables. 

Each problem is called the dual of the other problem. The relationship between 
them is two-way: what applies from problem (4-5) to problem (4-6) also applies from 
(4-6) to (4-5). Some algebraic manipulations are needed to show this for part 4 of 
DR1. In the terminology of linear programming, we call one problem the primal and 
the other the dual. It does not matter which problem is called the primal and which 
is called the dual. Normally, the problem we formulate first is referred to as the 
primal, the other becomes the dual. In this case, problem (4-6) is the primal, and 
problem (4-5) is the dual. (Note our convention of denoting the value of the dual 
objective function by a capital Z and the value of the primal objective function by 

a lowercase z.) 

4-2 MORE ON DUALITY RELATIONS 

Let us define standard form problems as follows: 

1. A standard form maximizing problem is a linear program with all constraints 

as ^ inequalities and nonnegative variables. 
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2. A standard form minimizing problem is a linear program with all constraints 
as 5= inequalities and nonnegative variables. 

The dual of a standard form maximizing problem is a standard form minimizing 
problem and vice versa. This is part 4 of DR1. If the primal is not in standard form, 
neither is the dual. Deviations from the standard form could mean that a problem 
has both and *£ constraints or equality constraints and/or some nonpositive or 
unrestricted variables. Fortunately, any nonstandard problem can be converted to a 
standard form problem by some simple algebraic manipulations. 

We will use the concept of the standard form to develop rules for finding the 
dual of a nonstandard primal. The fact that all linear programming problems have 
a standard form equivalent also means that statements about duality in terms of 
standard form problems are completely general. Let us demonstrate these ideas with 
the original problem (2-6) from Chapter 2. 

Original primal: 

maximize z = 24x, + 20x2 

subject to 0.5xj + *2 55 12 

*i + *2 « 20 

iB*l + 
21*2 ^ 1 

1200x, ~ 800x2 ^ 0 

A\ 0 

This problem is not in standard form. The sulfur constraint is a ^ inequality. 
However, the problem can easily be converted to a standard form by multiplying the 
sulfur constraint through by - 1. 

Standardized primal: 

maximize z - 24xj + 20*2 

subject to 0.5xj + *2 /A
 

NJ
 

(wL 

x, + *2 20 (w2. 

16*1 + 2V2 ^ 1 (w,; 

-1200jc, + 800x2 ^ -0 (w4; 

xux2 ^ 0 

associated dual variable 

The dual associated with this standardized primal is as follows. 
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Standardized dual: 

minimize Z = 12w, + 20 w2 + w3 — 0w4 

subject to 0.5\Vj + w2 + — 1200w4 ^24 

w, 4- w2 + 5w, + 800w4 3= 20 

w„ w2, w„ w4 0 

Compare now the original primal with the standardized dual. Properties 2 and 
3 of DR1 are not satisfied for those coefficients associated with the sulfur constraint 
and w4. The standardized dual is thus not the proper dual of the original problem. 
The proper dual can, however, easily be obtained by reversing the standardization 
operation used to get the standardized primal. We multiply the coefficients of w4 
through by - 1 and define a new variable w4 which is the negative of w4. This yields 

the following dual. 

Dual of the original primal: 

minimize Z = 12wj + 20w2 + w, + 0w4 

subject to 0.5w, + w2 + + 1200w43524 

(4_8) w, + w2 + f4w3 - 800w4 3* 20 
w1; w2, w3 ^ 0 

w4 0 

We now see that properties 2 and 3 of DR 1 are satisfied. But we also note that 
the new dual variable w4 is restricted to be nonpositive (since w4 was nonnegative). 
There is no need to go through the process of first standardizing, then finding te 
dual, and finally unscrambling the dual. Instead, we can go directly to the dual by 

using the following duality relationship. 

Si 

f of the 4rieqb^(o&iisfrlint ;ni i 

* / be nonpositive and vice versa. ;f/^/ f / / f j/ / /:/,,fj S i S it i i (j i 

What is the nature of the dual if the primal has equality constraints? In order 
to find out, we resort to the following trick for each such constraint. We replace the 
equality by two inequalities of opposite direction, i.e., one is a ^ inequality, the other 
a 3= inequality. The LHS coefficients and the RHS parameter are the same as in the 
original constraint. Since both have to be satisfied simultaneously, the feasible region 
will be identical to the original constraint. We have just seen how to handle a problem 
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with mixed inequality constraints. The dual will have two dual variables, say w + and 

wi > one °f which is restricted to be nonnegative and the other to be nonpositive. 
Both variables have, however, exactly the same coefficients in the dual. We now undo 
the trick of substituting two inequality constraints for the equality constraint. We 
define a new variable w: that can assume both nonnegative and nonpositive values, 
i.e., one that is unrestricted in sign, where w, = (w,+ - w~). So wf replaces w,.+ if 
Wj assumes a nonnegative value, and replaces w~ if w, assumes a nonpositive value. 
Again, we can avoid actually using this trick by applying the next duality relation. 

DUALITY RELATION 3 (DR3) 

If a constraint in the one problem is a strict equality, then the corresponding 
variable in the other problem has no sign restriction and vice versa. 

Table 4-1 demonstrates the duality relations DR1 through DR3 in general terms. 

Table 4-1. Primal and dual in general form 
—■ 1 ■ -. —".... ...... i 

Primal Dual 

maximize z = Y cx minimize Z =V? hw 
subject to 

^i = i 1 1 
subject to 

/A
 

implies DR1 W, 2* 0 

A=1 V; * k implies DR2 

o
 

V/ 

A-■= implies DR3 vv3 unrestricted 

unrestricted implies DR3 X.i a-'w =c> 
o

 

V/ implies DR2 

o
' 

w
 

W
 

o
 

A\ 
x" implies DR1 

4-3 DUALITY THEOREMS 

So far we have only considered relationships between the structures of the primal and 
the dual. There are also relationships between the solutions of the problems. 

Consider solutions of the primal and the dual taken at random, e.g., (x'„ x'2) = 
(10, 4) and (w',, w'2, w\, w'4) = (6,1,640,-0.01). From expressions (4-7) and 



(4-8), the objective function values are 

z' = 24(10) + 20(4) = 320 

3nd Z' = 12(6) + 20(1) + 1(640) + 0( -0.01) = 732 

We notice that z' < Z'. Does this relationship hold true in general? Is it still true in 
particular for the optimal objective function values of the primal and the ^l? In 
Chapter 3 we found that the optimal solution to the primal is (x,, x2) - (1/, o). 1 ne 
optimal solution to the dual is K, w2*. w,*, w4*)= (6,0,336,0) (You may wish to 
confirm this result using the simplex method on the dual; we will establish the answer 
by other methods shortly.) The objective function values of these optimal solutions 

are: 

= 24(12) + 20(6) = 408 

3nd z* = 12(6) + 20(0) + 1(336) + 0(0) = 408 

We notice that z* = Z*. In addition, since z* is the maximal value of the primal 
objective'function, all feasible solutions to the primal yield z' * ^.Similarly, since 
Z* is the minimal value of the dual, all feasible solutions to the dual yield Z 5* Z . 

Hence, z' ^ z* = Z* =£ Z'. 
We have just illustrated two theorems of duality. In stating these theorems we 

define the primal to be a standard form maximizing problem and the dual to be a 
standard form minimizing problem. Section 4-2 showed that there is no loss in 

generality with this assumption. 

duality 

unction value of any feasible solution to the primal will be less 

DUALITY- RELATION 5: DUALITY' THEOREM (D 

If the primal and the dual both have feasible solutions, then both have fim 

optimal solutions, and the optimal values of the obj r 
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DUALITY RELATION 6; COMPLEMENTARY 
SLACKNESS THEOREM (DR6) 

If a constraint of either problem is slack at any optimal solution to that problem, 
then in the other problem the variable associated with that constraint is zero at 
every optimal solution. If a variable of cither problem at an optimal solution 
is nonzero, then in the other problem the constraint associated with that variable 
is binding at every optimal solution. 

This theorem says that an abundant resource (slack constraint) has a zero price, and 
a resource with a nonzero price is scarce (binding constraint). 

Let us now apply the complementary slackness theorem (DR6): 

Optimal primal solution: Optimal dual solution: 

xx = 12 > 0 implies constraint 1 binding 
x2 = 6 > 0 implies constraint 2 bincjing 
constraint 2 is slack implies w2 = 0 
constraint 4 is slack implies w4 = 0 

With this information, problem (4-8) is now reduced to 

minimize Z = 12w, + 

subject to 0.5w, + RW, = 24 

w, II 

H
S 

+
 20 

A\ sT 0 

The two constraints define a unique solution wy = 6, w3 = 336, and Z* = 408, 
as stated previously. 

4-4 FURTHER INTERPRETATION OF THE DUAL PROBLEM 

We have already noted in Section 4-2 that there is a close relationship between the 
primal constraints and the dual variables. In fact, we interpreted the dual variables 
in problem (4-5) as the imputed values (i.e., the marginal revenue product, where 
the constraint refers to a resource) of each of the primal constraints. This concept can 
be generalized and applied to other primal problems. 
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INTERPRETATION OF THE OPTIMAL VALUES 
OF DUAL VARIABLES 

The optimal value of a dual variable associated with a particular primal constraint 
gives the marginal change (increase, if positive, or decrease, if negative) in t e 
optimal value of the primal objective function for a marginal increase in the 

RHS parameter of that constraint. 

Note that this does not mean that we can always find an intuitively appealing inter 
pretation of the dual variable. The dual variable w4 associated with the sulfur constraint 
is an example. The manner in which the constraint was constructed renders an 

appealing interpretation impossible. 

4-5 THE DUAL VARIABLES, {z-c) VALUES, AND THE SIMPLEX 
MULTIPLIERS 

In Section 3-4 we saw that each z,- represents the contribution to the objective function 
of the equivalent resource use (in terms of the basic variables) of one unit of x,. This 
is true for any basis. However, at the optimal basis, the value of zy is the optimal 

valuation the system imputes to one unit of xy, . 
In particular, let us consider variable x3—the slack variable of constraint 1. n 

the optimal tableau, z-j is the optimal contribution (or valuation) of a unit of x^. But 
a unit of x5 is simply a unit of smoke emission capacity. So Z3 is the valuation imputed 
to one unit of smoke emission capacity. However, in the dual problem, we have 
already defined the optimal value of a unit of smoke emission capacity as wv The 
optimal value of wq and the valuation of z? in the optimal simplex tableau are thus 
equivalent. The same reasoning applies to w2 and z4, w3 and z5, and vv4 and z7. We 
choose z7 rather than z6 to determine the value of w4 because x6 represents the negative 

of a unit of the RHS constraint 4, and so z6 is the negative of w4. 
Hence, we can find the optimal values of the dual variables from the final simplex 

tableau as follows. 

the lue of the dual variable as¬ 

sociated with that constraint. 

Since the c- values of the slack and artificial variables in the primal objective 
function are all zero, the zj values are equal to the (zy-c;.) values. From the optimal 
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simplex tableau for the primal problem in Table 3-4, we can read off the optimal 
values of the dual variables in problem (4-8) as w, = z, = 6, w2 = z4 = 0, w3 = 
z5 ~ 336, and w4 — z7 = 0. This analysis also indicates how the numbers shown 
under the heading IMPUTED VALUE of the computer printout (Figure 2-7) in Chapter 
2 were derived. 

Consider now the optimal z. value of a variable other than a slack or an artificial 
variable. The optimal valuation of one unit of x, ( = burning 1 ton of coal A) is the 
sum of the values of the individual resources involved in burning 1 ton of coal A (0.5 
kg of smoke emission, 1 ton of loading capacity, ^ hr of pulverizer capacity, and 1200 
units of sulfur emission). This valuation is z, = 24 in the optimal tableau. We know 
that kg of smoke emission is valued at w1? 1 ton of loading capacity at w2 1 hour 
of pulverizer capacity at w3, and 1 unit of sulfur emission; at w4. So 
the optimal valuation of the individual resources is 0.5w, + lw, + ikw + 
1200w4 = 0.5(6) + 1(0) + re (336) + 1200(0) = 24. Thus we have the relationship 

Zj = 0.5wj -I- lw2 + rew3 + 1200w4 

Verify that z2 = lw, + lw2 +J, w, -800w4 

Let us compare these results with the dual problem (4-8). Using the relationships 
we have just established, we see that the value of the LHS of the first constraint of 
(4-8) at the optimal solution is z,. In general, z, is the value of the left-hand side 
of the /'th dual constraint. Since the RHS parameter of the jth dual constraint 
is Cj, the optimal values of the slack variables of the dual give us the optimal 
(■zrci) values. Furthermore, for all basic variables at the primal optimum, 
(zi~ci) =0- Therefore, the slack variables of the dual constraints associated with the 
optimal base primal variables are zero and these constraints are binding. But this is 
just one of the complementary slackness conditions. 

Can the dual equations be used to provide the {z-c) values for nonoptimal 
primal tableaux? Let us apply the complementary slackness conditions for the basis 
(x3, x4, x5, X,) shown in the second tableau ofTable 3-4 in Chapter 3. We can conclude 
that the first dual constraint is binding because x, is basic. Normally, the comple¬ 
mentary slackness conditions is that x, > 0. However, in the case of a degenerate 
solution, it is sufficient that Xj is basic. Similarly, w, = w2 = w, = 0 because the first 
three primal constraints are slack. The dual problem (4-8) thus reduces to 1200w4 = 
24, or w4 = In the second equation of (4-8), we obtain a value of the left-hand 
side of - 800(5;,) = -16, which is also the value of z2 in Table 3-4. The difference 
between the left-hand-side value and the RHS parameter of ( — 16 — 2(1) = — 36 is 
the (z2 - c2) value in Table 3-4. We again see that the value of the left-hand side of 
the dual constraint is the z, value of the corresponding primal variable, and the RHS 
parameter is cy Thus, the difference between the value of the left-hand side and the 
RHS parameter is (zy - cy). However, the w,’s are an infeasible solution to the dual. 
Rather than refer to the w’s as dual variables in this context, we call them simplex 
multipliers. It is only at the optimal solution, with all z; 2= cp that simplex multipliers 
become feasible and, at the same time, become the optimal values for the dual 
variables. The primal objective function value in Table 3-4 is z = 0. The simplex 
multiplier value w4 = 50 makes Z = 0 in problem (4-8). Thus the objective function 
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value of the primal solution equals the value of the dual objective function for the 

corresponding simplex multipliers. 
To summarize, for any basic feasible solution of the primal, the simplex mul¬ 

tipliers are found by applying the complementary slackness conditions to the dual, 
i.e., by setting Zj = c- for all basic variables. All the other (zj — cy) values can then 
be computed by substituting the simplex multipliers into the dual constraints. 

4-6 DUAL SIMPLEX METHOD 

In the simplex method, we start with a feasible basic solution in which all xy 3* 0. 
Usually this solution will not be optimal; i.e., some (z, - c) < 0. At each iteration, 
we proceed toward optimality while maintaining feasibility. When a basic feasible 
solution with all (z- - c) 3* 0 is reached, we have an optimal solution. In terms of 
the primal-dual relationships of Section 4-5, the simplex method starts with a prima - 
feasible/dual-infeasible solution. It works toward a primal-feasible/dual-feasible solu¬ 

tion. Such a solution is optimal. . . 
At times situations occur where the initial solution is primal-inteasible/dual- 

feasible; i.e., some x, < 0, but all (z, ~ c) 3* 0. The dual simplex method handles 
this situation by maintaining dual feasibility [i.e., all (zy - cy) 3= 0], while working 
toward primal feasibility (i.e., all x; 3 0). Let us immediately stress that this is a 
method to solve the primal problem. It is not merely the use of the simplex method 
to solve the dual problem—although that is how we will derive the principles of the 
dual simplex method. (Note that the two-phase method can also be used to solve a 
problem starting at any primal-infeasible solution. For the two-phase method, though, 
it does not matter whether the current tableau is dual-feasible or dual-infeasible. We 

leave it to you to verify this fact.) , , . , ,, 
Consider again problem (4-6). With slack variables added, the primal problem 

is 

maximize z = 24xj + 20x2 

subject to 0.5X[ + x2 + x3 =12 

(4-9) *i + x2 + x4 = 20 

iV, + + x5 = 1 
Xj 3= 0, / = 1, ... ,5 

The corresponding dual problem (with slack variables included) is 

minimize Z = 12iVj + 20 w2 + w3 

subject to 0.5w, + w2 + — w4 =24 

(4-10) w, + w2 + 2>3 - w5 = 20 
w.-s* 0, i = 1, ... ,5 

Let (x3, x5, x,) be the initial basis to the primal problem (4-9). Solving (4-9) for 
the basic variables, we get Xj = 20, x3 = 2, x5 = -j, with x2 — x4— 0. This solution 
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is not feasible. The corresponding dual solution is given by the simplex multipliers 
derived from the complementary slackness conditions. If x? and x5 are nonzero (con¬ 
straints 1 and 3 of the primal are slack) it implies that Wj — = 0, while x2 0 
implies that w4 0 (constraint 1 of the dual is binding). Using these values, we find 
from problem (4-10) the solution w2 = 24 and w5 = 4. Since all w.'s® 0,'this is a 
feasible solution to the dual problem. Both problems have an objective function value 
of z = Z = 480. 

Tables 4-2 and 4-3 give the first tableaux to the primal and dual problems, 
respectively. These were obtained from the canonical forms for the basic solutions 
(xj, x5, x^ for the primal, and (w5, wz) for the dual. 

Table 4-2. Tableau for basis (x„ x5, x,) to primal problem (4-9) 

c/ 24 20 0 0 0 

ci Basis Solution 
*1 *2 *3 *4 *5 

0 
*3 2 0 1 

2 1 1 
2 0 

0 *5 
1 
4 0 Q) 0 1 

“IB 1 
24 

*1 20 1 i 0 1 0 

zi ~ ci 480 0 41 0 24 0 

Ratio: (Zj - C,.)/«,. 4/(-4$) m-k) 

Table 4-3 Tableau for basis (w5, wj fo dual problem (4-10) 

C, -12 1 O
 

-1 0 0 Ratio 

C, Basis Solution w, w2 w4 w5 "VYf 
0 4 1 

2 0 (m) -1 1 4/(A) 
-20 w2 24 1 

2 1 T 
IB -1 0 24/(r) 

Z,- C, -480 0 -it 20 0 

Note that since (4-10) is a minimizing problem, it has been converted to a maximizing 
problem by multiplying all objective function coefficients by — 1. Hence, the objective 
function value is shown as Z = -480 rather than 480. 

Let us now compare in detail the primal and dual tableaux in Tables 4-2 and 
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4-3. From our discussion in Section 4-5, we can establish the following relationships: 

Primal to dual: 

(z, - C,) / (z, - C,) = WA values of 

for primal I \ dual 

decision j (z2 - c2) = w51 slack 

variables v ' variables 

Zj values / \ values of 

for primal j 1 dual 

slack ) z,= w2) decision 

variables ( £5 = ) variables 

Dual to primal: 

Zf values ( Z4 = x, ) values of 

for dual primal 

slack Z5 = x2 decision 

variables 
V ' variables 

(Zf - Q / \ values of 

for dual (Z, - C,) = x, primal 

decision ) (Z2 — C2) — x4 j ' slack 

variables ((Z, - C,) = x5 ) variables 

Verify these values in Tables 4-2 and 4-3. There is also a correspondence between 

the columns of coefficients in Table 4-2 and the rows in Table 4-3. Ignoring the 

columns of coefficents of basic variables, the relationships between primal and dual 

variables yield: 

From Table 4-2 From Table 4-3 

column x2 = (5, ~k 1) row w5 = (-5, IS, - 1) 
d k -i) 
(-i 5) 
Ik is) 

column x4 = (-2, - re> 1) <-> row w2 = 

row x, = (l - 1) <-> column w, = 

row x, = (- 28, - re) <-> column w, = 

row X, = (1, 1) <-> column w4 = (-1, - 1) 

We thus see that the relevant coefficients of the columns of one problem are the 

negatives of the corresponding rows of the Qther problem and vice versa. 

The next step is to take advantage of these correspondences and find for the 

primal tableau a set of rules that is equivalent to the normal rules of the simplex 

method applied to the dual problem. The resulting algorithm is the dual simplex 

method. Let us solve the dual problem (4-10) by the normal simplex method. The 

result is shown in Table 4-4. 
For the dual problem, simplex criterion 1 determines the dual variable to enter 

the basis. It selects the variable wf that has the most negative (Zf - Q value In Table 

4-3, this is w3 with a coefficient of The equivalent rule for the dual simplex 

method applied to the primal problem determines the primal variable to leave the 

basis. By analogy to the above rule, it selects the variable that has the most negative 

value. Applied to Table 4-2, this rule selects x5with a value of -i, i.e, the same 

number as above. . . . . , 
For the dual problem, simplex criterion 2 determines the variable leaving the 

basis as the one with the smallest ratio (wj/'yf) for all 7, > 0, that ratio becoming the 

pivot element. 
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Table 4-4. Second and third tableaux for dual problem (4-10) 

c, -12 -20 -1 

.. . i. 

0 { 0 

c, Basis Solution w, w2 w4 w5 

-1 192 -24 0 1 -48 48 
-20 w2 12 © 1 0 2X -3 

Z, - C, -432 -4 f 0 0 8 . ..... ! 12 

-1 w, 336 0 12 1 -24 12 
-12 w, 6 1 1 

2 0 1 3 
“2 

Z, - C, -408 0 2 0 12 
_,i ..... 

6 

In Table 4-3, this rule selects the smaller of 4/ £ and 24/ An equivalent rule 
for the dual simplex method determines the primal variable to enter the basis as the 
one with the largest ratio (zy - cy)/a, for all a, < 0, where a, is the coefficient of 
variable x, in the row of the variable leaving the basis (pivot row). Applied to Table 
4-2, this rule indicates variable x2, and results in the same pivot element, Thus 
at the first iteration the dual simplex criteria select xs as the variable to leave the 
primal basis and x2 as the variable to enter it. The second tableau of the dual simplex 
method is derived from Table 4-2 by applying the usual simplex tableau transformation 
rules. The result is shown in the top tableau of Table 4-5. 

Table 4-5. Dual simplex tableaux for problem (4-9) 

ci 24 20 0 

i 

0 0 

Ci Basis Solution *i *2 *3 *4 *5 

0 
*3 -4 0 0 1 24 

20 
*2 12 0 1 0 -48 

24 
*1 8 1 0 0 -2 48 

zi ~ ci 432 0 0 0 12 T 192 

0 
*4 2 0 0 1 

“2 1 -12 
20 

*2 6 0 1 3 
2 0 -12 

24 
*1 12 1 0 -1 0 24 

Zj - c. 408 0 0 6 0 336 

Let us now formally state the dual simplex criteria. 
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///////,; ././VV / / //^V'/ 
/ ;:jiiy .y|4jti0ri isSodated' with a. basis is optimal ifallx,^ 0. ff f ;f -J /;• / / // / 

7 H^p"M^S>hididdi^fe basfeb the- one with the maximum ratio farf /, 
7 $$i$i<i/< A/fbirbxfJ »s ^ tableau coefficient of variable ^ If the pivot row, fr 

What happens if we cannot find an a; < 0 when we apply simplex criterion 2? 
Clearly the algorithm cannot continue, and no further progress toward feasibility is 

possible. Thus we have discovered an infeasible primal problem. 

/ /T^d problem is infeasible if all a; s* 0, where oi; is the tableau coefficient of ^ ■ j 

7 i7^?Md77ih"f»e,irtv6t:«3Wif / / / /////: .v///- 7 /' / / /V / 7 /'//'/ / 

Let us apply these rules to the second dual simplex tableau—the top tableau of 
Table 4-5. By the dual simplex criterion 1, x,leaves the basis, and, by the dual simplex 
criterion 2, x4 enters the basis. Applying the normal simplex transformation rules, we 
derive the third dual simplex tableau—the bottom tableau of Table 4-5. This tableau 
has all x, 5* 0, so the solution is primal-feasible. Also all (z; - c-) 5= 0, so the solution 

is dual-feasible and primal-optimal. 
Note that each dual simplex iteration reduces the objective function value and 

that all (Zj ~ Cj) values remain nonnegative, implying dual feasibility throughout. 
An example of infeasibility can be found in exercise 4.12. 

EXERCISES 

4.1 (a) Convert the following linear program into standard form: 

maximize z — 3xx + 4x2 + x5 
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subject to x, + 3x2 + 2x3 & 10 

6x, + 2x2 + x3 « 30 

x, + x2 + x, = 5 

x,,x2, x, 5= 0 

(b) Write (i) the dual of the linear program in (a), and (ii) the dual of the standard form 

of the linear program in (a). Show that these two dual problems are equivalent. 

4.2 (a) Find the dual of the following problem: 

maximize z = 4x, + 6x2 + 10x, + 12x4 

subject to x, + 3x2 + 2x, + 4x4 ^ 5 

x, + x2 + 5x, + 3x4 =s 15 

x„ . . .,x4 >0 

(b) Graph the dual, and, using DR6 (Complementary Slackness Theorem), find the 

solution of the primal. Check your answer using DR5 (Duality Theorem). Show 

that your solution to the primal is an extreme point to that problem. 

4.3 For each of the following problems, write out the dual (not the standard form dual). 

(a) maximize z = 4x, + 2x2 + x, 

subject to X, + x2 + X, 8 

2xj -x2 + 3x3 12 
w

 
o

 

(b) maximize z = 4*j 4- 2*2 4- 3*3 

subject to *! 4- 2*2 4- 2*3 ^ 1 

-2*, — *2 4- *, = — 

A\ 4T 

x1 

h
' 

(c) minimize Z = 2*j 4- 9*2 — 4*3 

subject to 2*! 4- 3*2 4- 4*3 ^ 12 

*! 4- 6*2 - 4*3 ^ 4 

X\, x2 ^ 0, x? unrestricted in sign. 

(d) maximize z = 3x} - Zx2 

subject to Xj 4- x2^5 

Xl ~ *2^1 

*2=4 

*1, *2 25 0 

4.4 For each of the problems in exercise 4.3, find: 
(a) The standard form primal. 
(b) The standard form dual. 

4.5 Reconcile the duals and standard form duals of exercises 4.3 and 4.4. 

4.6 For the problem in exericse 4.3 (c), solve the dual graphically, and, using that solution, 
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find the optimal primal solution. Use the quickest check you know to verify the optimality 

of the primal solution. 

4.7 Give the interpretations of the optimal values of w2 and w, of the power generating 

problem, summarized in Table 3-3. 

4.8 For the problem in exercise 4.3(b), after making the changes necessary to solve it by 

the big M method, we have the following optimal tableau. 

r • ■- 

ci 
4 2 3 0 -M 

ci 
Basis Solution X2 *3 *4 *3 

3 *3 

18 
7 0 3 

7 1 
2 
5 

1 
“5 

4 *1 

14 
7 1 

4 
5 0 1 

5 
2 
5 

z; - c, 22 0 3 0 2 1 + M 

(a) Using this tableau, write down (i) the optimal values of the variables and z, and 

(ii) the optimal values of the dual variables. 

(b) Interpret w„ the first dual variable. 

4.9 Solve the following by the dual simplex method: 

minimize z = 3x[ + 2x2 

subject to x, + x2s= 10 

2x, + x2 > 14 

x„ x23= 0 

4.10 Solve the following by the dual simplex method: 

minimize z = 2xj + x2 

subject to x, + x2 S' 15 

x, - x2 « 1 

x„ x2> 0 

4.11 Solve the following by the dual simplex method: 

maximize z = x, - x2 — 2x, 

subject to 2x, + x2 - x, = 8 

x, — 3x2 *£ 3 

*i> x2> x, 2* 0 

4.12 For the problem in exercise 4.10, use the dual simplex method to show that there is 

no feasible solution if a third constraint, 2xj + x2 7, is added. 
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Sensitivity and 
Postoptimal Analysis 

of Linear Programming 

One of the outstanding features of linear programming is the ease with which we can 
analyze the response of the optimal solution to changes in the input data. Since we 
assume that the input data to linear programming models can be specified with 
certainty and this may often not be true, there is a need for systematic exploration of 

the solution space around the optimum. 
This chapter deals with the mechanical aspects of postoptimal analysis. This 

includes analyzing the sensitivity of the current optimal solution to changes in the 
input data, as well as finding the new optimal solution to changes in both the input 
data and the model itself. We will analyze how the optimal solution responds to 
changes in the objective function coefficients, the RHS parameters, the LHS coef¬ 

ficients, and the addition of new variables. 
Before proceeding, you may wish to refer back to Chapter 2, Section 2-9, where 

the concepts of sensitivity analysis are introduced graphically. This chapter also as¬ 
sumes that you have a thorough grasp of the material in Chapters 3 and 4. The starred 
Section 5-5 should only be attempted with Section 4-6 as background. 

5-1 POSTOPTIMAL ANALYSIS OF OBJECTIVE FUNCTION 
COEFFICIENTS 

Most queries of postoptimal analysis can be answered readily on the basis of the 
information contained in the optimal simplex tableau. For this analysis, we shall again 
use the original power generating problem, whose initial and final simplex tableaux 

are summarized in Table 5-1. 

128 
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Table 5-1. Initial and final simplex tableaux 

Objective 

Function (c.) 24 20 0 0 0 0 0 

Cj Basis Solution *1 *2 *4 x5 *6 *7 

Initial Tableau 

0 x3 12 1 
2 1 1 0 0 0 0 

0 x4 20 l 1 0 1 0 0 0 
0 x5 1 1 

IB 
1 

23 0 0 1 0 0 
0 x7 0 1200 - 800 0 0 0 -1 1 

Z- ~ C- ] ) 0 -24 -20 0 0 0 0 0 

Final Tableau 

20 x2 6 0 1 3 
2 <s 0 -12 0 0 

0 x4 2 0 0 1 
"2 1 -12 0 0 

0 x6 9600 0 0 -2400 0 38400 1 -1 

24 x, 12 1 0 -1 0 24 0 0 

zj ~ ci 
408 0 0 6 0 336 0 0 

A change in the coefficients of the objective function is equivalent to a change 
in the slope of the objective function line (or hyperplane in more than two dimensions). 
If the slope is tilted sufficiently in one direction or another, the optimal solution may 
shift to another extreme point of the feasible region. Changes in the objective function 
coefficients may thus affect the optimality of the current solution. However, these 
changes can never affect the feasibility of this solution. In terms of the optimal simplex 
tableau, this means that only the (zy - c) values are affected. 

The most common test of sensitivity of the objective function involves finding 
the range of values within which each objective function coefficient can lie without 
affecting the optimality of the solution. We perform this analysis for one objective 
function coefficient at a time, allowing only that particular coefficient to change; all 
other input coefficients and parameters must remain unchanged. 

Consider c3. A change is c3 in the optimal tableau of Table 5-1 does not alter 
any of the cy values associated with the basic variables because x3 is nonbasic. So none 
of the Zj values are changed, nor are any of the (zy - c) values, except (z, - c3) 
through the change in cv Hence, provided the change in c3 does not violate 
(z, - c3) 3= 0, the present solution remains optimal. Since z3 = 6, (z3 - c3) 3= 0 if 
c3 6. The range for c3 is thus —00 =£ c3 6. 

Next consider c,. This time the corresponding variable, x„ is basic. A change 
in c, will potentially affect all the z, and, hence, (z; - c) values, except those for 
basic variables. (These are always zero.) Let us find the range of c, that keeps (zy - c) 
28 0 for all nonbasic variables [except (z7 - e7), since x7 is an artificial variable! 
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From Table 5-1 we see that as c, changes, z, changes also: 

z, = 20(|) + 0(-i) + 0(-2400) + c,(-l) = 30 - c, 

For (z, - Cj) 5= 0, we need 

(30 - c,) - 0 3* 0 

As c, changes, zs becomes 

z5 = 20( — 12) + 0( — 12) + 0(38400) + c,(24) = -240 + 24c, 

For (z5 - c5) 3* 0, we need 

(24c, - 240) - 0 2= 0 

or ci 10 

For the current solution to remain optimal, c, has to satisfy both of these conditions, 
i.e., (z; — c;.) has to be nonnegative for all nonbasic variables. This will be so if c, 

lies in the range 

This case was studied graphically in Section 2-9. 
Here is the interpretation of expression (5-1): provided that the steam output of 

coal A falls within the range of 10,000 to 30,000 lb/ton, with all other coefficients 
or parameters unchanged, the solution in Table 5-1 remains optimal. This range is 
very large. It is unlikely that the steam output would ever go beyond it. Since there 
could have been measurement errors when this coefficient was determined (or slight 
variation from load to load), it is useful to know the range of acceptable variations. 

You should verify that similar analysis yields the following ranges for the re¬ 

maining objective function coefficients, each taken alone. 

16 ssc2ss 48 

- CO sc C4 52 12 

^ -00*5^336 

Looking at these ranges, we conclude that the optimal solution is very insensitive 
to realistic changes in any one of the cj coefficients—a comforting thought! 

Next let us look at simultaneous changes in more than one objective function 
coefficient. The engineers discovered a substantial error in the measurement of the 
steam produced by both coal A and coal B. The true coefficients are cx = 28 and 
c2 = 18. Is the current solution in Table 5-1 still optimal? 

It is not possible to use the ranges of values found for each coefficient individually. 
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We can, however, use similar reasoning. Since x, and x2 are both basic variables, 

some of the (zf - cfj values for nonbasic variables may change. 

For the new values of c, and c2, we obtain 

z3 = 18® + 0(-!)+ 0(-2400) + 28(-l) = -1 

and z3 - c3 = -1 

z5 = 18 (-12) + 0( -12) + 0(38400) + 28(24) = 456 

and z5 - cs = 456 

z = 18(6) + 0(2) + 0(9600) + 28(12) = 444 

Since one of the new (z,- - cf) values is negative, namely (z3 — c3) = — 1, the 

basis of Table 5-1 is no longer optimal. To find the new optimal solution, we insert 

the new c; and (z; - cf) values and then apply the simplex method. The resulting 

tableau, with x3 replacing x2 in the basis, is shown in Table 5-2. This is the new 

optimal solution: x, = 16, x2 = 0, x3 = 4, x4 = 4, x5 = 0, x6 = 19200, and 
z = 448. 

Table 5-2. Solution of postoptimal change to objective function 

New Cj 28 18 0 0 0 0 0 

ci Basis Solution *i *2 *3 *4 *5 *6 *7 

0 *3 4 0 2 
3 1 0 -8 0 0 

0 *4 4 0 1 
3 0 1 -16 0 0 

0 *6 19200 0 1600 0 0 19200 1 -1 
28 *1 16 1 2 

3 0 0 16 0 0 

Z- — c 
) 1 448 0 2 

3 0 0 448 0 0 

5-2 PARAMETRIC PROGRAMMING OF OBJECTIVE FUNCTIONS 

In parametric programming of the objective function we let some or all objective 

function coefficients change continuously over some range and trace the sequence of 
optimal solutions so obtained. 

For example, if we consider the problem of independently varying Cj from zero 

to oo, we find that one form of the objective function involving the parameter 0 is as 
follows: 

(5-3) maximize z = (24 + 240)xj + 20x2, - 1 s= 0 oo 

Had we varied c, and c2 together, the objective function would have been 
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(5-4) maximize z = (24 + 240)*, + (20 + 2O0)x2, 1 0 00 

The coefficients in front of 0 can be varied to suit the particular needs of the analysis. 
Let us perform some parametric programming using expression (5-3). Starting 

at the tableau in Table 5-1, we find the optimal basic solution for 0 = -1. Then 
we increase 0 to infinity, noting the changes of basis and the values of 0 at which they 
occur. The sequences of simplex tableaux are given in Table 5-3. (We omitted x7 
from the table because, being an artificial variable, it adds nothing to the analysis.) 

We can trace these solutions on Figure 5-1. When 0 = — 1 the objective function 
line is horizontal, so the optimal solution occurs at point A and remains there as long 
as 0 =£ . At 0 =£ ~l2, which implies c, = 10, the basis changes. The optimal 
solution occurs at point B for — ^ ^ 0 ^ J • Another change of basis occurs at 0 — j, 
or c, = 30. The optimal solution remains now at point C, because at that basis 
0 can then be increased indefinitely. Table 5-4 lists the set of optimal solutions. For 
example, if ct = 45, the optimal solution is x, = 16, x3 = 4, x4 = 4, x6 = 19200. 

Figure 5-1. Parametric programming on c,. 
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Table 5-4. Results of the parametric programming on c, 

-i«e« ~h 

V/ 
<x> 
V/ 1 8 V/ 
<x> 
V/ 

-—<l-^r 

Variable 0 =£ Cj *£ 10 10 « c, « 30 30 *£ c, oo 

*i 6 12 16 

X2 
9 6 0 

h 0 0 4 

*4 5 2 4 

*5 

i 
4 0 0 

*6 0 9600 19200 

5-3 POSTOPTIMAL ANALYSIS OF RHS PARAMETERS 

Now let us study the response of the optimal solution to changes in an RHS parameter. 

Consider the pulverizer constraint 

(5-5) 8*1 + 21*2 + *5 = h 
Currently b3 = 1. Figure 5-2 shows that for this value the optimal basic solution is 
Xj = 12, x2 = 6, x4 = 2, x6 = 9600, with x3 = x5 = 0. As we increase b3, the 
optimal solution changes—in fact it “slides down” the smoke constraint. As long as 
b3 sg 1J, the increase in b3 does not affect which variables are in the basis. The same 
two constraints form the corner point. This condition indicates that, while the values 
of the basic variables have changed, the basis has not. Similarly, a decrease of b3 
below 1 does not alter the final basis as long as b3 3* 0.75. The values of the basic 
variables for different values of b3 are given in Table 5-5. As b3 increases, x2 and x4 
decrease in value. At b3 = lg, x4 becomes zero. Any further increase in b3 causes x4 
to become negative, and the basis is no longer feasible. It does not represent an extreme 
point of the feasible region. Thus, for b3 > lg, the optimal basis changes. The same 

is true for b3 < 0.75. 
Let us now analyze these changes. First, we set b3 = 1 + A. The pulverizer 

constraint now reads 

(5-6) 8*1 T 24*2 + *5 = 1 T A 

Table 5-5. Values of basic variables for values of c, 

Basic 
Solution 

Value of Pulverizer Capacity (b3) 

.7 .75 .8 .9 1 1.1 1J 1.2 

x\ 4.8 6 7.2 9.6 12 14.4 16 16.8 

xi 
9.6 9 8.4 7.2 6 4.8 4 3.6 

XA 5.6 5 4.4 3.2 2 0.8 0 -0.4 

X6 
-1920 0 1920 5760 9600 13440 16000 17280 
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Figure 5-2. Sensitivity analysis of pulverizer capacity (b3). 

X2 

What is the effect of this change on the optimal basic variables? We could answer this 
question if we knew the canonical form of the equations for the optimal basis in terms 
of A. One way of finding these equations is to rework the transformation formulas. 
There is an easier way though. We note that equation (5-6) is binding at the optimai 
tableau, i.e., 

(5-7) ^ + f-Ax2 = 1 + A 

However, equation (5-7) is the same as r xx + + x5 = 1, with x5 = - A. Thus 
we can analyze the change of the RHS parameter by analyzing a change of the 
corresponding slack variable. (If the equation has no positive slack variable, the artificial 
vaiiable has the same effect.) This is done directly with the equations in canonical 
form for the optimal basis. We write them from the final tableau of Table 5-1 as 



- X, + 24x5 = 12 

+ 6x, + 336*5 = 408 

Setting xs = - A with x, = 0, we find the values of the basic variables are 

x2 = 6 - 12A x4 = 2 - 12A 

X(. = 9600 + 38400A x, = 12 + 24A z = 408 + 336A 

Since a change in the RHS parameter does not affect the (z, - c) values, the present 

basis is optimal as long as it remains feasible. , c ... 
What values of A will give a feasible solution to equations (5-9)? By definition, 

they must satisfy the nonegativity conditions on all variables 

x2 = 6 - 12A3= 0 or A«s& = § 

x4 = 2-12A3=0 or A=£j| = g 

(5-10) = %00 + 38400A 3*0 or 

x, = 12 + 24A>0 or A> -a = -f 

Let A~ be the maximum decrease in b3 and A+ be the maximum increase in b3 

for the solution to still be feasible, i.e., (b3 - A") ^ b3 (b3 + A+). Then 

A“ = minimum (;, 5) = \ 

^ A+ = minimum (j, j) = \ 

Since the existing value of the RHS parameter b3 is 1, it can lie anywhere between 
| and l (all other parameters unchanged) and the corresponding solution will still be 

feasible and optimal. 
Using the optimal tableau directly, we can formalize this procedure. We get the 

following rules for determining the range within which each RHS parameter can be 
varied individually without violating the feasibility of the current optimal basis, all 

other input data remaining unchanged. 
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RANGES FOR RHS PARAMETERS 

In the optimal simplex tableau, let ft denote the ith element in the “solution" 
column, and let y, be the ith element of the column corresponding to the slack 
or artificial variable for constraint k. Then 

(5-12) f maximum increase in RHS) _ j minimum (- 0,./y() for all 7,. < 0) 
' [parameter of constraint k j j + 00 if all 7. ss 0 ' | 

(5-13) Jmaximum decrease in RHS) = f minimum (ft/y,) for all 7, > 01 
[parameter of constraint k J j + oo if all y, =s 0 ' j 

You should verify that if all yf > 0, then the range for the RHS parameter is 
open from above. Whereas if all 7, =s 0, then this range is open from below. Table 
5-6 shows the ranges derived from the optimal simplex tableau in Table 5-1. 

Table 5-6. Ranges on RHS parameters at optimal solution 

Constraint 
Original 
RHS 

Maximum 
Decrease 

Maximum 
Increase Range 

Smoke 12 4 4 8 to 16 
Loading 20 2 +00 18 to +00 

Pulverizer 1 
1 
4 4 tO 6 

Sulfur 0 + 00 9600 - 00 to 9600 

We can use equations (5-9) in a different way. They allow us to determine the 
new values of the basic variables for a change in the RHS parameter bi within its 
permissible range. For example, assume that the pulverizer capacity can be increased 
by 10 percent, i.e., the pulverizer rate for coal A increases to 17.6 tons per hour, and 
the rate for coal B increases to 26.4 tons per hour. The pulverizer constraint changes 
to 

or, in terms of the previous rates (multiplying through by 1.1), it is 

re*i + sx2s£l.l 

This change is within the permissible range. So with A = 0.1, equations (5-9) give 
the new solution 

x2 = 6 - (12)(0.1) =4.8 x4 = 2 -(12)(0.1) =0.S 

x6 = 9600 + (38400) (0.1) = 13440 x, = 12 + (24) (0.1) = 14.4 

z = 408 + (336) (0.1) =441.6 x, = 0 x5 = 0 



138 Chapter 5 Sensitivity and Postoptimal Analysis of Linear Programming 

The ranges of values developed in Table 5-6 do not apply to changes of more 
than one RHS parameter at a time. In theory the required analysis is a direct extension 
of the one-by-one analysis, although in practice it becomes cumbersome without 

matrix algebra to make more than two changes at the same time. 
Let us consider increases in the RHS parameters of all the constraints, i.e., 

b, = 12 + At, b2= 20 + A2, bj = 1 + A„ and b4 = 0 + A4. Using the slack and 
artificial variables of these constraints, with x, = - A,, x4 = - A2, x, - - A, and 

x7 — A4, we obtain the new solution from equations (5-8): 

x2 = 6 + 2^! 12 A, 

x4 = 2 - 2A1 ~t" A2 12 A, 

(5-14) x6 = 9600 - 2400A, + 38400A, - A4 

x, = 12 - Aj + 24A, 

z = 408 + 6A! + 336Aj 

So, for example, if the pulverizer capacity is increased by 10 percent and the smoke 
emission restriction is reduced to 11 kg/hr, we have At = -1, A, = 0.1, and A2 = 
A4 = 0. From equations (5-14), the new solution is x2 = 3.3, x4 — 1.3, x6 — 15840, 
x _ i5 4; anj z - 435.6. You will notice that the coefficients of the A,, A2, A„ 

and A4 in (5-14) are the coefficients of the x3, x4, x5, and x7 columns in the optimal 
tableau. So the effect of changes in the RHS parameters on the values of the variables 

can be worked out directly from the tableau. 
The previous analysis breaks down if we wish to consider changes in an RHS 

parameter beyond the permissible range over which the current basis remains feasible 
and, therefore, optimal. Section 5-5 deals with changes of this sort. However, only 
students who are familiar with the dual simplex method (Section 4-6) should attempt 

it. 

5-4 PROFITABILITY OF CHANGING THE RHS 

An analysis of the RHS is not complete without considering the profitability of chang¬ 
ing the RHS. We have discussed how to find the new solution for a change in the 
RHS. But is the change worth making? In the final analysis, this is the fundamental 

question. Section 2-9 introduced this topic. 
Let us return to the problem of increasing pulverizer capacity by 10 percent, as 

discussed in Section 5-3. Recall from Sections 4-4 and 4-5 that the dual variable 
associated with a constraint represents the change in the value of the objective function 
for a unit increase in the RHS of that constraint. This holds true, of course, only 
while the current basis remains feasible. From Table 5-1 we see that the dual variable 
associated with the pulverizer constraint (= z;- of the corresponding slack variable) has 
a value of 336 units of steam per hour. Hence, a 10 percent increase in pulverizer 
capacity results in 0.1 (336), or an increase in the steam output of 33.6, units per 

Let us assume that the increased pulverizer capacity can be obtained at a capital 
, cost of $75,000 per annum. Also, we assume that a unit of steam (1000 lb) will return 
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an average profit of $1.5 (equal to the difference between the revenue and the variable 
cost of production of the extra steam produced). Assume that there are 2500 hours 
per annum when the additional steam can be used. Since the capital cost of the 
additional pulverizing capacity can only be recovered over 2500 hours, the capital 
cost per hour is $75,000/2500, or $30. Let us compare this with the profit per hour 
that this capacity will generate. Each hour the additional pulverizer capacity is used, 
it will generate 33.6 units of steam. A unit of steam returns $1.5 profit, so 33.6 units 
return $50.4 profit. Thus, the incremental hourly capital cost of $30 is less than the 
incremental hourly profit of $50.4. By installing the extra capacity, the company 
increases its annual profit by (50.4 - 30)(2500) = $51,000. 

*5-5 RHS CHANGES THAT CREATE INFEASIBILITY 

When the change in the RHS parameters is too great for the existing basic solution 
to remain feasible, we need to find a new optimal feasible basis. Although the solution 
column of the optimal tableau changes under a change in the RHS parameters, the 
(z;. - c) values do not change. They retain their nonnegative values. Where a change 
m the RHS parameters causes the optimal basic solution to become infeasible (yet 
with (z.- - Cy) 3s 0 for all /’), the dual simplex method is required to find the new 
optimal basis. 

Let us assume that the pulverizer capacity is increased by 20 percent. The pul¬ 
verizer constraint becomes 

lVi + kh 1.2 
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Setting A = 0.2 in equations (5-9), we get x2 - 3.6, x4 — 0.4, x6 17280, 
^ = 16.8, and z = 475.2. Since x4< 0, this solution is infeasible. In Table 5-7, we 
take this infeasible basic solution and use the dual simplex method to find the new 
optimal feasible basis. Dual simplex criterion 1 chooses x4to leave the basis, and 
criterion 2 selects x, to enter. The next dual simplex tableau is optimal. The new 
hourly steam output is 470.4 —an increase of 62.4 units over the solution in Table 
5-1. We now use 17.6 tons of coal A and 2.4 tons of coal B per hour. Previously, 
the loading capacity was slack; now it is binding, while the smoke emission restriction 
has become slack. It should be noted that when we change the basis in Table 5-7, 
the values of the dual variables also change. For this reason, we must be careful in 
using the dual variables for interpreting the profitability of a change in the RHS when 

the change causes infeasibility. 

5-6 PARAMETRIC PROGRAMMING OF THE RHS 

In parametric programming of the RHS, we let some or all of the RHS parameters 
change continuously over a range from 0 to + °°. The computations are done using 
the dual simplex method. However, the principles of the process involved can easily 
be grasped conceptually from a graphical demonstration. If we alter the RHS parameter 
of the pulverizer constraint by adding a parameter 6, varying continuously from -1 

to + 00, the problem to be solved, as a function of 0, is then 

maximize 24x, + 20x2 

(5-15) subjectto 0.5xj + x2 ^12 

x, + x2 *£ 20 

UX1 + flX2 « 1 + 0 

1200x1 - 800x2 3* 0 

x„ x2 > 0 

- 1 =S 0 < +oo 

Figure 5-3 traces the optimal solution as 0 increases. We note that the optimal basis 
changes at points A, B, C, and D. Unlike parametric programming of the objective 
function, parametric programming of the RHS causes the optimal solution to change 
continually along the path ABCD until the constraint becomes redundant at point 
D. Between each change of basis, the optimal solution changes linearly; but at a 
change of basis, the linear relationship (the slope of the line along the path of the 

optimal solution) itself changes. 
Let us look at an example. What is the optimal solution for 0 = 0 (point t)? 

From the table in Figure 5-3, we see that the solution lies on a straight line between 
points B and C. If we denote by 0B and 0cthe values of 0 at B and C, then E is 
r(1 + e) - (1 + 0B)]/[(1 + 0C) - (1 + eB)]= (0 - 0B)/(0c- 0B) of the way from 
B to C. For 0 = 0, 0B= -1, 0C= 6, we obtain (0 - 0B)/(0C - 0B) - (?V(n) - 5- 
We find the solution at 0 = 0 by adding to the solution at point B 5 of the difference 
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between the solutions at B and C . This solution is 

*1 = 6 + 1(16 - 6) = 12 *2 = 9 + f(4 - 9) = 6 
X, = 0+ f(0-0) = 0 x4 = 5 + |(0 - 5) = 2 

x5 = 0 + f (0 - 0) = 0 x6 = 0 + |(16,000 - 0) = 9600 

and z = 324 + § (464 — 324) — 408 

which is the optimal solution to the original problem. 

If you are familiar with the dual simplex method, you should verify the table in 
Figure 5-3 by finding the sequence of dual simplex tableaux. (See exercise 5.9.) 

Figure 5-3. Sequence of solutions for equations (5-15). 

25 

Point x\ X2 x% X4 xs *6 e z 

A 0 0 12 20 0 0 -1 0 
B 6 9 0 5 0 0 -1/4 324 
C 16 4 0 0 0 16000 1/6 464 
D 20 0 2 0 0 24000 1/4 480 
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5-7 POSTOPTIMAL ANALYSIS OF LHS COEFFICIENTS AND 
ADDITION OF NEW VARIABLES 

The computational difficulty associated with changes in LHS coefficients depends on 
whether the change is in a basic or a nonbasic variable. For a basic variable, a change 
means that potentially we have affected all the coefficients in the canonical form 
equations. This is because the arithmetic of the simplex transformations depends on 
the LHS coefficients of the basic variables. An analysis of this case is beyond the scope 

of this text. • 11 .i 
When the changes in the LHS coefficients involve a nonbasic variable, the 

postoptimal analysis is somewhat simpler. It is convenient to view the variable as 
totally new, with new coefficients, and to eliminate the old variable from the problem. 
This is, of course, formally identical to the problem of adding a genuinely new variable 
(such as another type of coal in our example). Since both of these cases are of interest 

to us, we deal with them together. 
As we consider the addition of a new variable, we ask the question: Is the old 

optimal basis still optimal with the new variable present, or should the new variable 
enter the basis? In technical terms, we are asking whether the (z; — c;) value of the 

new variable is negative. , 
We saw in Section 4-5 that the z, values at the optimal simplex tableau can be 

derived from the optimal values of the dual variables. Thus, the Zj value for the 
new variable (in terms of the current basis) can be computed in this manner. If the 
(z. - c ) value so derived is nonnegative, the current basis remains optimal. If the 
(J, - c.j value is negative, the new variable becomes a candidate to enter the basis. 

1 To illustrate this idea, consider the expanded version of the power generating 
problem in Section 2-11, where management is offered the possibility of an additional 
activity—namely, the burning of coal C. The coefficients in the smoke, loading, 
pulverizer, and sulfur constraints are 0.8, 1, a, and 1000, respectively. We will call 
the new variable x8. The objective function coefficient is c8 = 21. Using the constraint 
coefficients and the w, values in the optimal simplex tableau in Table 5-1, we obtain 

z8 = 0.8w, + lw2 + + 1000w4 = 0.8(6) + 1(0) + a (3 36) + 1000(0) = 21.6 

and (z8 - c8) = 21.6 - 21 = 0.6 > 0. Therefore, x8 is not eligible to enter the basis. 
The current basis is still optimal. There is no need to proceed any further with the 

Let us next assume that 24 tons of coal C can be pulverized per hour. (Had x8 
been an existing variable, this change would be a change in an LHS coefficient.) We 
call this new variable x9, and it has the LHS coefficients 0.8, 1, a, and 1000, with 
c9 = 21. Using the same analysis as we did previously, we obtain 

z9 = 0.8(6) + 1(0) + 2^(336) + 1000(0) = 18.8 

Thus (z9 - c9) = ( 18.8 - 21) = - 2.2 < 0. The current basis is no longer optimal. 

Variable x9 is a candidate to enter the basis. 
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We now want to find the revised optimal tableau for this new basis that includes 
the variable x9. We can do this using equations (5-8). In their original form, the 
constraint equations are 

\xx + x2 + x, + 0.8x9 = 12 

(5-16) x\+ xi + *4 + x, = 20 

+ 21*2 + X; + ix, = 1 

1200xj - 800x2 -x6 + 1000x9 = 0 

If we transfer the x9 terms to the RHS, we have the equations in the same form as they 
appear in equations (5-14), with A, = - 0.8x„ A2= -x9, A, = ( - ^)x9, and A4 = 
1000x9. (These give the changes in the resources available for the original variables 
if x9 units of coal C are burned.) The RHS terms of (5-14) give the RHS’s of the 
canonical form equations. Thus, in our case, the RHS’s of the canonical form equa¬ 
tions are 

(5-17) 6 + |A, - 12A, = 6 + (f)(-0.8x9) - 12(-^x9) = 6 - 0.7x9 

2 - iA, + A2 - 12A, = 2 - ®(- 0.8x9) - x9 - 12(-A4x9) = 2 - 0.1x9 

9600 - 2400A, + 38400A, - A4 = 9600 - 2400 (-0.8x9) + 38400( - ±x9) -(-lOOO)x, 

= 9600 + 1320x9 

12 - A, + 24A, = 12 -(- 0.8x9) + 24(-A4x9) = 12 - 0.2x9 

Combining equations (5-8) with the RHS’s in (5-16), we get the following canonical 
form equations (with the x9 transferred to the LHS): 

x2 "h 2*3 12x5 + 0.7x, = 6 

jx, + x4- 12x5 + 0.1x9 = 2 

- 2400x, + 38400x5 + x6 -x7 - 1320 x9 = 9600 

*i ~ *3 + 24x5 + 0.2x, = 12 

From equations (5-18) and the value of (z9 - c9) = -2.2, we form the new 
simplex tableau for the current basis (x2, x4, x6, x,), but with x9 included as a nonbasic 
variable. Table 5-8 gives this tableau and the new optimal tableau, with x9 replacing 
x2 in the basis. 

blow let us consider another issue. For what range of values of the pulverizer 
coefficient in variable x9 does the current basis of Table 5-1 remain optimal? The 
requirement is that (z9 — c9) 2s 0. Let a denote the pulverizer coefficient. Then, by 
the principle discussed earlier, 

z9 = 0.8(6) + 1(0) + a(336) + 1000(0) = 4.8 + 336a 
and 

(z9 - c9) = 4.8 + 336a - 21 = 336a - 16.2 

As long as 336a 3= 16.2, or as long as a 3* 16.2/336 (or about 0.048), (z9 - c9) 3= 0. 
Interpreted another way, Table 5-1 gives the optimal solution as long as no more than 
1/a = 20.74 tons of coal C can be pulverized per hour. 
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Table 5-8. Inserting the new variable x, __ 

ci 
24 20 21 

ci Basis Solution *i *2 *5 x4 *5 *6 x1 *9 

*2 
6 0 1 

3 
2 0 -12 0 0 

7 
10 

Xa 2 0 0 
1 

”2 1 -12 0 0 
1 
10 

4 

Xft 9600 0 0 -2400 0 38400 1 -1 -1320 

24 *1 
12 1 0 -1 0 24 0 0 10 

z, - c, 6 336 0 0 
22 
10 

21 
60 

7 0 
10 

7 
-1 

15 

7 
-5 

0 
-120 

7 
-72 

0 0 l 

0 

0 
*4 

Xc 

8 
7 

146400 

7 

0 

0 

T 
13200 

7 

~T 
3000 

7 

0 

0 

7 
110400 

7 

0 

1 

0 

-1 

0 

0 

24 

6 

*1 

72 
7 1 

-2 

7 

-10 

7 0 
192 

7 0 0 0 

7. — C n i 
426f 0 

22 

7 

75 
7 0 

2088 
7 0 0 0 

5-8 COMPUTER CODES AND POSTOPTIMAL ANALYSIS 

Most commercially available linear programming computer codes provide, as a routine 
procedure, a large portion of the sensitivity analysis that can be determined from the 

optimal simplex tableau. The computer codes give 

• optimal dual variables or shadow prices, 
• individual ranges on RHS parameters for which the corresponding dual variables 

remain unchanged, 
• variable to leave and variable to enter the basis for each RHS change beyond 

these ranges, 
• (z- - cy) values for nonbasic variables, 
• individual ranges on cy for basic variables, 
• variable to enter for changes beyond these ranges on each cr 

They may also allow the user to specify a series of different right-hand sides 
and/or objective functions which are solved in sequence, usually using the previous 
optimal solution as the new initial solution. As a rule, this reduces the additional 
computations required. Some computer codes can perform parametric programming 

with respect to both the objective function and the RHS. 
Most computer codes also allow the solution to be saved on disc or magnetic 

tape and provide restart procedures, at which point new variables or constraints can 

be added and old variables or constraints can be deleted. 
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5.1 (a) Verify that c2 in the power generating problem must lie in the range 16 c =s 48 
for the final tableau in Table 5-1 to give the optimal solution. 

(b) Verify that blt the RHS parameter of the smoke constraint, must lie in the range 
8 bj 16 for the basis (x2, x4, x6, x,) to give the optimal basic feasible solution 

(c) From Figure 5-3, find the optimal solution when b} = 
(d) A device is marketed to reduce the sulfur oxide content of the gases by 10 percent. 

How much extra steam can be generated? 
(e) A newly available coal (very hard, and low in pollutants) is contemplated. It has a 

smoke emission rate of j kg/ton. The pulverizer can handle 12 tons of it per hour. 
The new coal has a sulfur content of 1500 PPM. Like all other coals, it uses loader 
capacity. It produces 30,000 lb of steam/ton. Should it be used? 

5.2 For the problem in exercise 4.3(b) and the tableau in exercise 4.8: 
(a) What is the optimal solution if the RHS is changed to bx = 15 and b2 = 5? Find the 

change in the objective function using the values of the dual variables. 
(b) For what value of c, is the original optimal solution still optimal? 
(c) Consider a new variable x6, with a]6 = -1, a26 = 3 and c6 = 2. If the introduction 

ot the new variable could improve the solution, find the new optimal tableau. 

^ cabil'et ma^er has recently taken over an enterprise making luxury mahogany desks 
The only constraints he has are on the capacity of the plant (in machine hours) and on 
the availability of mahogany, which is delivered weekly by a regular supplier. The table 
summarizes the data for each week for four possible types of desks. 

Desk Type i 2 3 4 Availability 

Machine i 3 4 3 1000 hours 
Mahogany (m2) 4 2 6 8 2500 m2 
Profit/desk ($) 20 20 50 40 

The cabinet maker sets the problem up as a linear program to maximize proht. 
1 he number (in hundreds) of type / desks to be produced is Xj. 

maximize z = 2x, + 2x2 + 5x, + 4x4 (profit in $1000) 

subject to x, + 3x2 + 4x, + 3x4 10 (plant capacity in 100 hours) 

4x, + 2x2 + 6x, + 8x4 25 (mahogany in 100 m2) 

x, s=0, / = 1, . . ., 4 

The optimal tableau is as shown. Starting at this optimal solution, consider the following 
questions separately. 

(a) Perform parametric programming of the profit values of desk type 3, 0 ^ 0 ^ oo 
(b) A major customer insists that 100 desks of type 2 be delivered each week for 4 weeks 

What is the optimal production for each of those weeks, and what is the weekly profit? 
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(c) A shipping delay forces the regular supplier to reduce weekly mahogany supplies to 
2000 m2. What is now the optimal production schedule and profit? However, another 
source is willing to supply her with up to 1000 m2 at $6/m2 instead of the normal 
prices she pays of $4/m2. How much should she buy at this price? Why? 

(d) The cabinet maker is considering another type of desk that uses 4 hours of machine 
time and only 2 m2 of mahogany. It would yield a profit of $36 per desk. Should she 

produce it? 

= 

ci 
2 2 5 4 0 0 

ci Basis Solution *i *2 *3 
x4 *5 *6 

2 x. 4 1 -1 0 1.4 -0.6 0.4 

5 
1 

*3 
1.5 1 1 0.4 0.4 -0.1 

z> ~ c> 
15.5 0 1 0 0.8 O

 
o
o

 

0.3 

5.4 A firm can produce four products in its factory. It takes only one day to produce a unit 
of each product, but production is limited by floor space in the factory and the amount 
of labor available. The relevant data are given in the table. 

Product i 2 3 4 Availability 

Floor area, m2/unit 10 30 80 40 900 m2 

Labor/unit 2 1 1 3 80 workers 

Variable cost/unit 20 30 45 58 

Sales revenue/unit 30 50 85 90 

The following linear program is formulated, where x, is the daily production of 

product /: 

maximizes = xx 4- 2x2 4- 4x3 4* 3.2x4 

subject to 4* 3x2 4- 8x3 4- 4x4 ^ 90 

lxx + x2 4- x3 4- 3x4 ^ 80 

0, 

(profit in units of $10) 

(factory space in units of 10 m ^ 

(labor) 

for all j 



The optimal tableau is as shown. 
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<7 1 2 4 3.2 

-;-.. .. 

0 0 

ci Basis Solution *1 *2 h *4 *5 *6 

1 
*1 10 1 -1 -4 0 3 

5 
4 
5 

3.2 
*4 20 0 1 3 1 2 

5 
1 

""5 

z, - C, 74 0 1 
5 

8 
5 0 17 

25', 
4 

25 

(a) A raw material used in products 1 and 3 is very unstable in price. At the moment, 
it costs $100 a ton. Product 1 uses 33 of a ton, and product 3 uses ^ of a ton. The 

cost of the raw material is included in the variable costs shown above. What is the 
price range of this raw material for which the present solution is still optimal? 

(b) What are the optimal values of the dual variables of this problem? Interpret these 
variables. What is the range of RHS values in which these variables' va)ues hold? 

(c) The firm can increase its effective floor space to 1000 m2 by renting a new conveyor 
and stacking system. The machine costs $50 a day to rent and operate. Should it be 
rented? If so, what is the new production schedule? 

5.5 A farmer has just bought an unstocked farm of 1040 acres, all in pasture. He has a 

working capital of $10,400 to spend on stocking the farm. He can buy breeding ewes, 

wethers, or beef breeding cattle. The current market price, his estimate of annual profit 
per animal, and the number of acres required per animal are given in the table. 

Market Price 
per Animal 

Acres per 
Animal 

Annual Profit 
per Animal 

Ewes $ 7.00 1.0 $12.00 
Wethers $10.00 0.5 $ 7.00 
Cattle $100.00 3.0 $40.00 

He uses a linear programming model to determine how he should stock his farm 
if he is to maximize profit in the first year. The initial tableau and final tableau of 
the computations are shown. Respectively, x4 and x5are variables representing unused 
land and capital. 
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c) 
12 7 40 0 0 

cf Basis Solution *1 *2 *3 x4 *5 

Initial Tableau 

■El ■EH mm 1 0 

IBI tm ESI 1 

-c: 
-12 -i -40 0 0 

Final Tableau 

12 X! 800 1 i -3.077 1.538 -0.077 

7 *2 480 0 i 12.154 -1.077 0.154 

h ~ ci 
12,960 0 0 8.154 10.923 0.154 

(a) If the portion of the profit from ewes and wethers due to the sale of wool is $4.00 
in each case, by what percentage can the assumed price of wool drop before cattle 

should be stocked? 
(b) The farmer can borrow up to $7800 at 10 percent interest to use either as further 

working capital or to purchase more land. An additional 104 acres of farm land is 
for sale, and the cost of buying this land and getting it ready for use is $50 per acre. 
What action should the farmer take? What will his optimal stocking policy be now? 

(c) Another possible way of increasing the productivity of the farm is through the ap¬ 
plication of more fertilizer. Fertilizer costing $6 per acre will increase the carrying 
capacity of the land for ewes, wethers, and cattle to 0.6, 0.33, and 2.0 acres per 
animal, respectively. Assuming that not all the farm needs to be fertilized and as¬ 
suming that animals can be separated on these different portions of the farm, how 
many acres (if any) should be fertilized? What will the optimal stocking policy be 

now? (The $6/acre fertilizer cost must be paid from working capital.) 

5.6 Consider the linear program 

maximize z— 3xj + 2x2 + 2x3 

subject to' %! + x2 4* x3 ^ 10 

2xj + x2 4* 2x3 ^ 15 

2xj + 3x2 + x3 ^20 

X!,X2,X3 2* 0 

The initial and optimal tableaux are shown. 
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ci 3 2 2 0 

■ : i 

0 0 

ci Basis Solution 
*1 *2 *4 *5 *6 

0 x4 10 1 1 1 1 0 0 
0 

*5 15 2 1 2 0 1 0 
0 

*6 20 2 3 1 0 0 1 

- C, 0 -3 -2 -2 0 0 i 0 

0 
*4 

5, 
4' 0 0 1 

4 1 
1 
4 

1 
— 4 

3 *1 
25 
T 1 0 5 

4 0 3 
4 

1 
4 

2 5 
2 0 1 

1 
~2 0 

1 
2 

1 
2 

— h ~ ci 
95 
T 0 0 3 

4 0 4 \ 

(a) What are the optimal values of xlf xv x?, and z? Which constraints ate binding at 
the optimal solution? 

(b) For what range of values of cx does this optimum hold? Derive the optimal tableau 
for Cj = 2. 

(c) Find the optimal solution if the RHS parameters b2 and bt are changed to 16 and 24, 
respectively. 

(d) What is the value of the dual variable of tjae second constraint? What dpes it mean? 
For what range of values of b2 does it hold? 

5.7 A publisher has 4500 spare man-machine hours available in the printing department and 

4000 spare man-machine hours available in the binding department. Four books eligible 
for reprinting require the following time in each department per book produced. 

Book 1 2 3 4 

Printing dept, (hr) 0.1 0.3 0.8 0.4 
Binding dept, (hr) 0.2 0.1 0.1 0.3 

The profit on each book is as follows: book 1, $1; book 2, $1; book 3, $4; book 4, $3. 
Let xy be production of book j measured in thousands. We get 

maximize z = x, + x2 + 4x, + 3x4 

subject to x, + 3x2 + 8x, + 4x4« 45 

2x, + x2 4 x, + 3x4 «£ 40 

Xj > 0, 

(profit in $1000’s) 

(printing dept, in 100’s hr) 

(binding dept, in 100’s hr) 

for all j 

The optimal tableau is shown. Consider each of the following eventualities separately. 
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ci 
1 1 4 3 0 0 

ci 
Basis Solution *1 *2 *4 *5 *6 

1 *i 5 1 -1 -4 0 
3 

“5 
4 
5 

3 *4 
10 0 1 3 1 

2 
5 

1 
“5 

z. — c 
n j 

35 0 1 1 0 3 
5 

1 
5 

(a) The marketing department considers the solution to be unreasonable. They think that 
at most 5000 copies of book 4 could be sold at that price. In order to sell 10,000 
copies, the price would need to fall by $2 per copy. Analyze the implications of these 
observations, and find the most profitable solution in light of them. (Do not answer 

by resolving the system with an additional constraint.) 
(b) The manager is disappointed that book 2 is not suggested for reprinting. She wants 

to know what would be the effect on the production of books 1 and 4 and on the 

profit if 2000 copies of book 2 were produced. 
(c) As an alternative approach to getting book 2 published, the manager suggests that it 

be bound by another firm which would charge $0.5 a copy more than it would cost 

the publishers to bind it themselves. Would this make book 2 a profitable proposition? 

If so, what is the new production schedule? 
(d) Another approach to publishing book 2 is to change its price. Perform parametric 

programming of cv Vary c2 in the range from 0 to ». Assuming that it costs $6 a copy 
to produce book 2, give an overall production schedule for the various selling prices 

of that book. 

5.8 A firm blends five different special-purpose cleaning fluids, code-named 401, 402, 403, 
404, 405. Two basic ingredients are used in manufacture, both of which are in scarce 

supply (see table). 

Fluid 401 402 403 404 405 Availability/wk 

Ingredient 1 (liters) 0.1 0.3 0.2 0.6 0.9 240 

Ingredient 2 (liters) 0.2 0.1 0.1 0.2 0.1 90 

Profit ($/liter) 1 3 2.25 6.25 8 

These cleaners are exclusive to this firm, and the market is limited. It is estimated 

that 2000 liters of 401, or 1000 liters of 402, or 1000 liters of 403, or 400 liters of 404, 
or 250 liters of 405 (or any proportional combination) would satisfy the market each week. 
The problem is to be solved by linear programming with profits being maximized. By 
using the simplex method, we reach the following tableau. The units are 100 liters 
(production activities and market constraint), 10 liters (input constraints), and 100 dollars. 
x6 is the slack variable for ingredient 1, x7 is the slack variable for ingredient 2, and x8 

is the slack variable for the market. 
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-——-—. ..... 1 

Ci 1 3 2j 6? 8 0 0 0 

Ci Basis Solution *i *2 *3 *4 *6 x7 *8 

3 
*2 2 3 1 0 0 -5 1 2 -2 

2| *3 3 5 0 1 0 -6 -1 3 0 

6| *4 2 -3 0 0 1 6 0 
•...!■ 

-2 1 

- ci 
101 
4 

1 
2 0 0 0 1 3 

4 
1 
4 

1 
4 

Starting at this solution, the firm wishes to consider the effect of a number of 
alterations. 

(a) Another cleaning liquid using 0.8 liter of ingredient 1 and 0.1 liter of ingredient 3 
(not in scarce supply) could be made. This cleaner belongs to a different market with 
unlimited demand, and gives $7.00 profit per liter. What will be the optimal pro¬ 
duction scheme with this alternative available? 

(b) Another supplier suggests that she could obtain more of either ingredient 1 or ingre¬ 

dient 2 or both, up to an aggregate limit of 15 liters per week. The cost would be 
$7 per liter for ingredient 1 and $1 per liter for ingredient 2. Should any more be 
obtained? How much? What will the new solution be? 

(c) What is the price range of cleaning fluid 402 that will ensure that the present solution 
is optimal? What is your reaction to the result? 

5.9 Find the dual simplex tableaux for the parametric programming of the RHS given in 
Section 5-6. 

REFERENCES 

Most of the references to Chapters 3 and 4 cover sensitivity analysis. In particular, G. 
Hadley gives a complete but terse exposition in Sections 11-2 through 11-6, and L. w! 
Swanson presents a more readable but less complete analysis in Chapter 5. 



CHAPTER SIX 

Transportation and 
Assignment Problems 

A number of important operations research problems can be viewed as networks of 

nodes connected by links. For example, if we want to find the shortest road distance 

between two points in a city, we can represent the major crossroads as nodes and the 

road connection between crossroads as the link. Another example deals with sending 

messages between points A and B through a network of transmission centers. Each 

center represents a node. They are connected by transmission links with limited 

transmission capacity. What is the maximum volume of messages that can be sent 

from A to B? Although each of these networks is derived from a meaningful problem, 

in general a network is a totally abstract mathematical concept. Chapters 6 through 

9 study such networks. We will see how we may exploit their special structure to 

efficiently solve certain classes of operations research problems. 
This chapter concentrates on the transportation (or distribution) problem and one 

of its special variants—the assignment problem. A commodity is available at a number 

of sources and is required at a number of destinations where it is needed for distribution 

to local customers. Sources and destinations are the nodes, while the flow of goods 

between sources and destinations is represented by the links of the network. With each 

link we associate a transportation cost. We want to find the least-cost transportation 

schedule from sources to destinations—a problem that can be solved by linear pro¬ 

gramming. We will show, however, that the special network structure leads to sim¬ 

plifications in the simplex method that result in a computationally much more efficient 

algorithm. 

FORMULATING THE TRANSPORTATION PROBLEM 

Although the transportation problem gets its name from a particular application, it 

should be viewed simply as a problem with a specific mathematical structure. A great 
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variety of seemingly unrelated problems also exhibit this particular mathematical 
structure. 

Let us now consider a classical transportation problem. A New Zealand carpet 
manufacturer produces the same type of carpet in two factories. The carpet is sold 
through five regional distribution warehouses. The corresponding network is depicted 
in Figure 6-1. Each factory has a given availability of carpet. This can be viewed 
either as actual goods ready for shipment or as available production capacity. Each 
warehouse has given demands for the goods. The numbers attached to the links 
between factories and warehouses represent the lowest cost of transporting one unit 
of the commodity (one roll of carpet) from a given factory to a given warehouse. The 
problem is to determine a transportation schedule, from the two factories to the five 
warehouses, that has the lowest possible transportation cost. The solution, though, 
must meet the demand at each warehouse and must not ship away from any factory 
more than is available. 

Table 6-1 reproduces the costs of transporting one unit of the commodity from 
factory Fi to warehouse W,. We assume that the total transportation cost from a factory 
to a warehouse is directly proportional to the quantity shipped. This is the usual 
linearity assumption of linear programming. 

The decision variables of the problem are the quantities of the commodity shipped 
from each factory to each warehouse. Let x„ be the quantity shipped from factory Fi 
to warehouse W/. We shall first formulate this problem as a linear program. 

Figure 6-1. Graph of transportation problem. 

Availabilities Factories Unit Transportation Warehouses 

50 

55 

Demands 

Auckland 30 

Rotorua 10 

Wellington 25 

Christchurch 20 

Dunedin 20 
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Table 6-1. Unit transportation costs in dollars 

Objective function: 

The objective is to minimize total transportation costs. From Table 6-1 we obtain the 

function 

minimize z = 24xu + 24x12 + 5xn + 20x14 + 20 x15 + 30 x21 

+ 24x22 + 20x23 + 2x24 + '18x25 

Constraints: 

The supply situation at factory FI (or the flow out of node FI) is shown in Figure 
6-2. The total amount shipped from factory FI to all the warehouses must be no more 

than the amount available at the factory: 

(6-2) xu + x12 + xH + x14 + x15 *s 50 (availability constraint) 

Similarly, for factory F2, 

(6-3) % + *22 + % + *24 + *25 55 55 

Figure 6-2. Availability at factory FI. 

Available Shipped 
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The demand situation at warehouse W1 is depicted in Figure 6-3. The total 
amount shipped to warehouse W1 from all the factories (or the flow into Wl) must 
be no less than the amount required at the warehouse: 

(6'4) xn+x2I 30 (demand constraint) 

Similarly, for the other warehouses, 

*12 "b *22 3 

*13 + *23 ^ 25 

(6-5) x14 + x24 s* 20 

*15 + *25 3 20 

Finally we have the usual nonnegativity conditions: 

(6-6) xtj 3* 0, for all i and j 

Equations (6-1) through (6-6) show the linear programming formulation of the trans¬ 
portation problem. 

In Table 6-2 we show the linear program in detached coefficient form (without 
slack variables). We notice that all the LHS coefficients are unity and that they have 
a special horizontal and diagonal structure. Each activity has only two nonzero coef¬ 
ficients, one in the row associated with its factory and one in the row associated with 
its warehouse. 

Table 6-2. Transportation problem in detached coefficient form 

*11 *H *» *H *15 *21 *22 x2j X24 X-L- RHS 

u. i i i n 

Figure 6-3. Requirements at warehouse Wl. 

Shipped Required 

*11 

Jwi) 30 

*21 

*j» 
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6-2 TRANSPORTATION PROBLEM IN GENERAL TERMS 

Until now we have talked about factories and warehouses. Since the importance of 

the structure is mathematical, an identical analysis holds for sources and destinations 
of quite different sorts. If a particular problem can be thought of as the allocation of 

something from sources to destinations (in any sense of the words), then it is probably 

a transportation problem. For instance, the sources might be production capacity per 

period; the destinations, sales requirements per period; and the problem, the allocation 

of production capacity over time. A sure way to identify a transportation problem is 

to look at the structure of the associated linear program in detached coefficient form. 

Often a transportation problem has an imbalance between the total amount 

available at the sources and the total demanded by the destinations. There exists a 

feasible solution to the transportation problem only if the amount available at the 

sources is at least as much as the amount required by the destinations. However, in 

order to use the special solution technique to be discussed, the amount available at 

the sources must equal the ariiount required by the destinations, and equality must 

hold for all the availability and demand constraints. When the availability is greater 

than requirements, we add a dummy warehouse or a destination whose demand for 

the commodity is equal to the difference between the quantity available from the 

sources and the quantity required by the real destinations. Transportation costs to the 

dummy destination are zero from all sources. This restores the assumption that total 

availability equals total demand. Units shipped from a source to a dummy destination 

are interpreted as slack capacity at that source. (Exercise 6.2 requires the use of dummy 

warehouses.) When requirements are greater than availability, we introduce a dummy 

source. However, in this case, a more appropriate optimization criterion is usually 

the maximization of the difference between total revenues and total costs of production 

and transportation. 
Let us write out the transportation problem in general terms for m sources and 

n destinations, assuming total demand equals total supply. Let c„ be the unit trans¬ 

portation cost from source i to destination a, the quantity available at source i, and 

bj the quantity required at destination j. Then the problem is to 

minimize z = ^ ^ c^Xy 
i=u=l 

n 

subject to ^ Xlj = a„ i = 1, . . . , m (availability constraints) 

/=i 
m 

(6-7) ^ Xy = bj, j = \, ... ,n (demand constraints) 

i=l 

xtj 3= 0, for all i and j 

There are m times n variables and m + n constraints. Since, by assumption, 

Xfli = one of the constraints of (6-7) is redundant. Therefore, a basis for this 

linear program has only (m + n - 1) basic variables. Although the optimal solution 
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to problem (6-7) could be found by the simplex method, there are computationally 
more efficient methods that exploit the special structure of the transportation problem. 
We will discuss one such method—the stepping-stone algorithm—which is a stream¬ 
lined version of the simplex method. 

In the next section, we will show how any feasible solution (and ip particular a 
basic feasible solution) to the transportation problem can be displayed efficiently in 
a tableau similar to Table 6-1. We will also demonstrate a simple way of finding an 
initial basic feasible solution. Section 6-4 studies the network structure corresponding 
to a change from one basic feasible solution to an adjacent one, while Section 6-5 
formalizes the insight gained and develops the stepping-stone algorithm. 

6-3 THE TRANSPORTATION TABLEAU AND AN INITIAL BASIC 
FEASIBLE SOLUTION 

With each combination of source i and destination y, we have associated a variable 
xijt denoting the amount shipped from source i to destination y. The values of the 
*,/s can thus be displayed as the cells in a tableau where the rows refer to sources and 
the columns refer to destinations. Table 6-3 shows the tableau for our example. For 
convenience, we add an additional column displaying the amount available ai at each 
source, and an additional row giving the requirements bj at each destination. The 
availability constraints can be generated simply by adding the x~s in each row and 
setting the sum equal to the corresponding a,, value. The demand constraints are found 
by summing the xjs in each column and equating the sum to the corresponding bj 
value. 

Table 6-3. Transportation tableau 

W2 W3 W4 W5 Availability 

FI 
*12 *13 *14 *» ai 

F2 *21 *22 Hi *24 Hi <*2 

k 

Any set of values that satisfies all availability and all demand constraints is a 
feasible solution. As we have seen, a feasible solution is also a basic solution if no 
more than (m + n - 1) variables are positive. 
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How do we find an initial basic feasible solution from which to start the iterations 
of the stepping-stone algorithm? One of the simplest ways is called the northwest comer 
rule. We start at the top left-hand cell, the northwest corner, and proceed down and 
to the right, in that order of preference, allocating as much as possible to each cell 
until the bt requirement is satisfied but no a, availability is violated. Starting at cell 
x = 1, j = 1, we find that the most that cell can take is minimum (bu ax) = 
minimum (30, 50) = 30. The first column is now satisfied, leaving [ax - bx) = 
(50 - 30) still to be allocated from FI. We now proceed to the second column. 
Here xu = minimum {b2, ax - bx) = minimum (10, 50 - 30) = 10, leaving 
(dj — bY - b2) = (50 - 40) = 10 still to be allocated from FI. The third column 
gives x„ = minimum (25, 50 - 40) = 10. The availability at FI is now exhausted, 
so we proceed down column 3 to row 2: x25 = minimum (25 - 10, 55) = 15; 
x24 = minimum (20, 55 - 15) = 20; and % = 20. All other xj;.’s are nonbasic and, 
thus, set equal to zero. Their cells are left blank. The resulting basis is shown in 

Table 6-4. 

Table 6-4. Initial basis by northwest corner rule 

W1 W2 W3 W4 W5 ai 

FI 30 10 10 50 

F2 15 20 20 55 

30 10 25 20 20 

The method used guarantees that the initial solution is feasible. The basic var¬ 
iables are xu, x12, x13, x2„ x24, and x25. As required, there are (m + n - 1), or 6, 

basic variables. 
Other more sophisticated and efficient methods for finding an initial basic feasible 

solution take into account the values of the cost coefficients, and so tend to give a 
better initial solution than the northwest corner rule. A method called column min¬ 
imization is introduced in Section 6-8. 

6-4 NETWORK FLOWS ASSOCIATED WITH A BASIS CHANGE 

The key to the transportation technique is the way the transportation network responds 
to a unit reallocation in the shipping schedule. Figure 6-4 depicts the network asso¬ 
ciated with the initial basic feasible solution found by the northwest corner rule in 
Table 6-4. The basic variables are represented by the solid lines and the nonbasic 
variables by the broken lines. The sum of the flows from each source exactly matches 
the availability, while the sum of the flows into each destination exactly matches the 
demand. Let us now decide to ship one unit along a link not used in this solution— 
for instance, from F2 to W2. The reason for exploring such reallocations is to test if 
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Figure 6-4. A feasible transportation schedule. 

Availabilities* Demands 

they yield any cost savings. In order to maintain feasibility, we must adjust some of 
the existing flows. There is only one choice: decrease the flow from FI to W2 by one 
unit, increase the flow from FI to W3 by one unit, and finally decrease the flow from 
F2 to W3 by one unit. The new solution is shown in Figure 6-5. It again exactly 
balances availabilities at all sources and demands at all destinations. A crucial result 

Figure 6-5. Adjusted transportation flows. 
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now emerges. The set of existing links that are adjusted, together with the new link, 
forms a loop in the network. This is depicted in Figure 6-5 by the solid and the broken 
heavy lines. The adjustment pattern is characterized by an alternating sequence of 
subtracting and adding one unit to the flows in the loop. A similar adjustment pattern 
results for the reallocation of additional units to the link from F2 to Wl. 

How much can we allocate to a nonbasic link? To maintain feasibility, the 
reallocation must stop when one of the existing flows, which is decreasing through 
this reallocation, is reduced to zero. In our example, the maximum amount that can 
be allocated from F2 to W2 is the smaller of the two decreasing flows from FI to W2 
and F2 to W3, i.e., the flow of 10 units from FI to W2. 

Not only can we find the value of a particular basic solution using the network 
structure; we will show that we can also infer from it all the other information contained 
in the simplex tableau for that basic solution. Consider the simplex tableau corre¬ 
sponding to the same basis (xn, x12, x13, x23, x24, x25), as shown in Table 6-5. (This 
tableau was obtained by applying the simplex transformation rules to expressions (6- 
1) through (6-6), where all inequalities have been converted to equalities—the usual 
form of the balanced transportation problem.) We do not show how this table was 
derived because we are only interested in using its structure. Note that the tableau 
elements for the LHS coefficients are either +1, - 1, or 0. Compare the coefficients 
in the x22 column with the loop of heavy arrows in Figure 6-5. This loop depicts the 
change in flows associated with x22 entering the basis. In the simplex tableau, there 

Table 6-5. Simplex tableau for basis (xn, x12, x13, xZ3, xZ4, x23)__ 

c.. 24 24 5 20 20 30 24 20 2 18 

Basis Solution xn 

24 xn 30 1 

24 x12 10 0 
5 x„ 10 0 

20 x2, 15 0 
2 x24 20 0 

18 xz;_20 0 

*,7 - c, 1710 0 

X]2 x13 X14 X15 X21 XZ2 X;. x24 X.; 

0 0 0 0 
10 0 0 
0 1 11 
0 0 -1-1 
0 0 10 
0 0 0 1 

0 0 -33 -17 

1 0 0 0 
0 10 0 

-1-10 0 
1110 
0 0 0 1 
0 0 0 0 

9 15 0 0 

0 
0 
0 
0 
0 
1 

0 

is a 4-1 coefficient associated with each basic variable that has a decreasing flow in 
the network and a -1 with each one that has an increasing flow. Those with a 0 
coefficient are not affected by the change of basis (i.e., are not in the loop of heavy 
arrows). Furthermore, consider the basic variables in the order implied by a pass 
through the loop, starting with a basic variable next to x22 (the variables being increased) 
i.e., in the sequence x12, x13, x3, or its reverse. The pattern of tableau coefficients for 
this sequence alternates +1, -1, + 1. Verify that a similar pattern holds for all 
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columns of nonbasic variables. Hence, we can infer the simplex tableau entries for 
the LHS coefficients directly from the network. 

Consider now the (z,y - ci;) values. From Chapter 3 you recall that the z/s can 
be obtained by multiplying each coefficient in column / with the c; value of the basic 
variable associated with that row and summing these products. Applying this rule to 
x22, we get 

zn = (°)cii + (1)^12 + (-l)Ci? + (l)c23 + (0)c24 + (0)c25 = c12 - c„ + c23 

Hence, 

(z22 c22) = c12- C] 5 + c23 — c22 = 24 - 5 + 20 24 = 15 

In terms of the network representation, this corresponds to adding and subtracting cr’s 
around the loop, starting with the arrow next in line after x22. This has an intuitively 
appealing interpretation. As we introduce one unit from F2 to W2, we save $24 in 
not sending one unit from FI to W2, incur a cost of $5 for an extra unit from FI to 
W3, save $20 in moving one unit less from F2 to W3, and incur the cost of the unit 
going from F2 to W2. Thus, (z22 - c22) is the net savings in cost for each unit of x22. 
If (z22 - c22) is positive, then x22 should enter the basis. 

So we see that all the entries of the simplex tableau for a given basis can be 
inferred from the corresponding network representation. We can thus dp away with 
the regular simplex tableau. Rather than use a diagrammatic representation like Figure 
6-5, we go to a more efficient tableau structure. In fact, the representation of Table 
6-3, along with some additional information, will do well. In each cell of that tableau, 
we store the corresponding cv value in the top left-hand corner box. The values of the 
basic variables are inserted in a circle in the center of the cell. The (zr - cr) values 
for the nonbasic variables are displayed in a box at the bottom left-hand corner of the 
cell. Table 6-6 gives the full tableau for the initial solution of Table 6-4. 

We can also display in the transportation tableau the loop structure of the network 
representation for each possible basis change. In Table 6-6 we show the loop for x22 

and the + 1 and - 1 coefficients associated with each basic variable involved in the 
loop. The loops can be found as follows. 

Table 6-6. First transportation tableau 

W1 WZ W3 W4 W5 

24 

FI 

24 I +1 

fa 
JJ -1 

fa 

20 20 

30 24 

F2 

20 
X 

15 
© 

+ 1 

-33 

© 
18 

50 
17 

55 

30 10 25 20 20 
Total cost 

1710 
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Step 1 Locate the nearest cell with a circle (denoting a basic variable) in the same 
column as the nonbasic variable being considered. Go to Step 2. 

Step 2 If the original nonbasic variable is in the same row as the basic variable 
located in the previous step (Step 1 or 3), find it and go to Step 4. Otherwise, 
find the nearest circled cell in the row and go to Step 3. If there is no such 
cell, return to the previous step (Step 1 or 3), find the next nearest circled 

cell at that step, and return to Step 2. 
Step 3 Locate the nearest circled cell in the column of the cell found in Step 2 

and go to Step 2. If no such cell exists, return to Step 2, find the next 
nearest circled cell, and return to Step 3. 

Step 4 Draw lines between the adjacent cells in the loop. Cells reached by Steps 
1 or 3 get a + 1 coefficient assigned to them; those reached by Step 2 get 

a -1 coefficient. 

If ties for the “nearest” cell occur, the choice is arbitrary. With the + 1 and - 1 
coefficients so generated, the (z9 — ciy) s can be evaluated. Verify the values for all 

other nonbasic variables. 
The next section formalizes these findings and develops the stepping-stone al¬ 

gorithm. 

6-5 THE STEPPING-STONE ALGORITHM 

Starting with the basic feasible solution recorded in Table 6-6, we evaluate the 
fo. - Cjj) values for all cells corresponding to nonbasic variables. Then we look for 

the cell that gives the greatest net saving per unit. 

CRITERION 1: VARIABLE TO ENTER THE BASIS 

The variable x„ to enter the basis is the nonbasic variable with the maximum 

value of (z,j - c9) for all (ziy - c,;) > 0. 

By analogy to the simplex method, if no (z,y - c,y) > 0 exists, the optimal solution 

has been found. 

OPTIMALITY CRITERION 

The solution associated with a given basis is optimal if all (z9 ~ cjy) *£ 0. 

In Section 6-4 we showed that the maximum value of the variable entering 
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the basis is the minimum of the values of those flows that decrease as a result. 
This flow gives the variable leaving the basis. (Verify that the same conclusion 
is reached from the simplex tableau in Table 6-5.) For x22 entering the basis, 
x22 = minimum (xl2, x23) = minimum (10, 15) = 10. Thus, x12 leaves the 
basis. 

CRITERION 2: VARIABLE TO LEAVE THE BASIS 

The variable .yto leave the basis is the one with the smallest x,y value for all 
xi} with +1 coefficients in the loop for the variable to enter the basis. 

The network representation for a basis change studied in the previous section 
provides us also with the transformation rules to determine the values of the 
new basic variables. A basic variable with a + 1 coefficient decreases by an 
amount xs(, while a variable with a — 1 coefficient increases by xs(. Basic variables 
not in the loop do not change. (Verify that the simplex tableau transformation 
rules result in the same adjustments when applied to Table 6-5.) 

NEW BASIC FEASIBLE SOLUTION 

(1) V 
(6-8) (2) V 

(3) x- 

(4) V 
•V- + V 

for all Xy with +1 coefficients in the x.( loop 

for all Xy with — 1 coefficients in the x<( loop 

for all Xy with 0 coefficients for the xu loop 

If there is a tie among variables to satisfy criterion 2, any of the tied variables 
may be chosen to leave the basis. However, at the next tableau all the other variables 
in the tie will be basic at value zero, or degenerate. We shall have more to say about 
this in Section 6-6. 

Now that we have developed all of the criteria of the stepping-stone algorithm 
and applied them to Table 6-6, we can write the next solution down (as in Table 6- 
7) and apply the algorithm again. We first compute the {zu - c,v) values. Criterion 
1 chooses x21 to enter the basis—it is the only nonbasic variable with a positive 
(zii ~ ci/) value. In the loop for x21, the basic variables with + 1 coefficients—those 
which decrease in value—are xuand x23. The minimum (x,„ x23) = x23 = 5. Thus, 
x23 leaves the basis. The new solution is displayed in the second tableau of Table 6- 
7. Having found the (z,y - c,y) values for this tableau, we discover that all 
(zij ~ Cy) < 0. The last solution is the optimal solution, with a cost of 1515. The 
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optimal schedule is 

FltoWl 25 units F2toWl 5 units 
FltoW3 25 units F2toW2 10 units 

F2 to W4 20 units 
F2 to W5 20 units 

You may have noticed that all the variables have integer values in all the solutions. 
An important feature of the transportation problem is that all solutions are in integers 
provided the initial demand and availability parameters are in integers. We can see 
that this is so because, first, the northwest corner rule will give an initial integer 
solution for integer a’s and bjs. Further, the stepping-stone rules for finding the new 
basic feasible solution merely add and subtract the values of the variables. Hence, 
every solution after the first is also an integer solution. We shall see in Chaptprl8 that 
in normal linear programming problems, an integer solution cannosually be achieved 

without considerable effort. 
Until recently, most computer codes for solving transportation problems did not 

use the stepping-stone algorithm. The codes were based on a minimal cost flow 
network algorithm, called the out-of-kilter algorithm, developed by D. Fulkerson. 
(See L. Ford and D. Fulkerson, Flows in Networks, Princeton University Press, 1962.) 

Table 6-7. Second and third transportation tableaux 
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However, recent work by Glover et al. and also some work by Bradley et al. have 
shown that it is possible to devise very efficient versions of the stepping-stone algorithm. 

6-6 DEGENERACY 

Degeneracy is a frequent occurrence in the transportation problem. During the search 
for an initial basic feasible solution, degeneracy occurs when the allocation to a given 
cell satisfies both the unfilled requirement of the column and the remaining availability 
of a row, except for the very last cell. Unless one appropriate cell is given a zero value 
and made basic, the resulting set of variables will not form a basis. Not many sets of 
(m + n - 1) variables will form a basis. There must be at least one basic variable 
in every row and one in every column, and it must not be possible to form loops 
consisting only of basic variables. The simplest way of choosing the degenerate variable 
while finding an initial basic solution is to leave open either the row or the column 
with an amount of zero still to be allocated from it. This ensures that some cell in 
an appropriate position is rendered basic with zero value. This case is illustrated in 
Table 6-8, where we have slightly altered the previous problem. 

In Table 6-8, when the allocation is made to x12, both row 1 and column 2 are 
satisfied. We leave row 1 open, with 0 to be assigned. Thus, xn = minimum 
(0, 15) = 0. (We could have left column 2 open, in which case x22 would equal zero, 
with x12basic. The choice is arbitrary.) 

As is true for the simplex method, degeneracy may cause the stepping-stone 
algorithm to go from iteration to iteration without any improvement of the objective 
function. Occasionally, degeneracy may cause cycling among the same set of basic 
feasible solutions. To prevent cycling, we could allocate to each degenerate cell (if 
there is more than one) an infinitesimal amount, ek, with magnitude e, > e2> 

. . . . With this convention, we can again apply the stepping-stone algorithm in 
the usual manner. Once the optimal solution has been found, the values of all 
degenerate cells are set equal to zero. In practice, it is not usual to perturb the solution 
in this way. 

Table 6-8. Initial basis with degeneracy 

W1 W2 W3 W4 W5 at 

FI 30 20 0 50 

F2 15 20 20 55 

h 30 20 15 20 20 

6-7 DUALITY AND THE uv METHOD 

The dual of a transportation problem has a particularly interesting structure that is 
useful for deriving a quick method of finding the {ztj - ct]) values of the primal 
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transportation problems. The method is known as the uv method (or MODI method). 
Let us derive the dual of our transportation problem using Table 6-2, but with 

equality constraints. First, we define a dual variable for each constraint of the primal. 
In the primal, there is an availability constraint for each factory, Fi, and a demand 
constraint for each warehouse, Wj. We will find it useful to distinguish between these 
two types of constraints. So, we define u; to be the dual variable associated with the 
availability constraint of Fi, and v; to be the dual variable associated with the demand 
constraint of WTable 6-9 shows, in detached coefficient form, the result of applying 
the duality relations of Sections 4-1 and 4-2. All u,and vy are unrestricted in sign. 

Table 6-9. Dual transportation problem in detached coefficient form 

Dual Variable 

Primal 
Variable 

Uj u2 V, v2 V, v4 V, RHS 

*n 

*12 

*13 

*14 

*15 

*21 
*22 
*23 

*24 

*25 

11 *= 24 
1 1 24 
1 1 ^5 
1 1 « 20 
1 1 < 20 

11 *£30 
11 *= 24 
1 1 « 20 
1 1*2 
1 1 « 18 

Objective 
Function 

50 55 30 10 25 20 20 maximize 

We can see that each dual constraint contains exactly two variables—the ones 
for the source and the destination of the associated primal activity. For example, the 

dual constraint associated with x23 is u2 + v, *£ 20. 
This structure permits us to effectively use the simplex multipliers (developed in 

Section 4-5) for finding all of the {z^ - ci}) values. You will recall that we first solve 
the dual for the simplex multipliers by applying the complementary slackness theorem. 
For example, for the basic solution of Table 6-6, the complementary slackness con¬ 

ditions give us the following set of equations: 

+ Vj = 24 

+ V2 = 24 

+ V3 
= 5 

u2 + V3 
= 20 

u2 + v4 = 2 

u2 

+
 

II o
o

 

Note that all ut and vt are present in this set of equations because a basis must have 
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a variable in every row and column of the tableau. Also, there are seven variables 
(m + n), but only six equations (m + n — 1) because of the redundancy noted in 
Section 6-2. We can solve equations (6-9) recursively as soon as one of the variables 
has been given an arbitrary value. Let us follow the usual tradition of setting iq equal 
to zero. We immediately obtain v, = 24, v2 = 24, and v, = 5. From v3 = 5, we 
obtain u2 = 15; then v4 = - 13 and v5 = 3. 

It is now easy to write the (z, - cv) values for the nonbasic variables. For example, 
z22 is the value of the left-hand side of the dual constraint associated with x22 (i.e., 
zn~ u2 + v2 = 15 + 24), and c22 is the right-hand side of that constraint 
(i.e., c22 = 24). So, 

(^22 — ^22) = u2 + v2 — c22 = 15 + 24 — 24 = 15 

In general, we have 

SIMPLEX MULTIPLIERS FOR THE 
TRANSPORTATION PROBLEM 

These calculations can be performed much more compactly by incorporating the 
u, and Vy values into the tableau format. Table 6-10 repeats Table 6-6 using the uv 
method. It is unnecessary to write out the dual constraints, since the relationships are 
so simple. We start by entering ur = 0 into the u, column, and calculate the appropriate 
Vy values from basic variables in the first row, using u.t v• — c, for f e variables 
Starting from the left, the first basic variable in the first row is x,„ v, = cu- 
u, = 24 - 0 = 24. The next is x12, so v2 = c12 - u, = 24 - 0 = 24; and then x13— 
giving v, -cn- u, = 5. We now use the columns of the v values, which we have 
just determined to calculate further u, values. There are no further basic variables in 
column 1 and column 2, so no additional ut values can be found by using them. In 
column 3, however, x2, is basic, so we have u2 = c23 - v3 = 20 - 5 = 15. We do 
not know any more vy values, so we now look at the rows for the u, values we have 
just calculated in our case, row 2. The procedure we used for row 1 is repeated for 
row 2, and so on, until all u, and v;- have been calculated. 

To find the (z,y - c,y) values of the nonbasic variables, we use the equations 
(6-10). 

Returning to the question of duality, we find that the simplex multipliers become 
the optimal dual solution at the optimal primal tableau. The perceptive reader may 
be uneasy because the values are relative and not absolute. With a little more thought, 
we realize that not one of the a, or values can be changed on its own (since 
tai = Sby), but always must be accompanied by a change in at least one of the other 
RHS parameters. It is not hard to show that the net effect of the two (or more) changes 
is absolute. You are asked to consider this sort of postoptimal analysis in exercise 6.3. 

1 
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Table 6-10. First transportation tableau—uv method 

mm — HH HOI m 
m m ■ ■1 H m m 

FI E9 ■a ■ 50 0 

■ IB ■ IB 
Eil m | ■ mm S ■i mi ■m 

F2 1 1 i 1 
■ 
B d 1 3 15 

h 30 10 25 .20 20 1710 

■ 24 24 5 - -13 3 

6-8 ALLOCATION OVER TIME—A REGULAR 
TIME/OVERTIME PROBLEM 

A manufacturer has orders for one of its products for the next four months as follows: 

Month 12 3 4 

Units ordered 5000 8000 12000 7000 

Each month the manufacturer can produce 6000 units in regular time and 3000 
units in overtime. The unit cost of production is $10 in regular time and $15 in 
overtime. Inventory costs from one month to the next are $2 per unit. The manu¬ 
facturer wishes to schedule production in regular time and overtime to meet the 
demand, minimizing total cost. No back ordering is permitted. 

Let us formulate this problem as a linear program. We define 

» rr to be regular time production in month i to meet demand in month j, and 
• qtj to be overtime production in month i to meet demand in month j. 

In both cases the variables are defined only for j 5= i. 
The cost of producton is 

il(10r,+ 15c/„) 
i=l M 

1 [2(i - + fy)l 
>=1 /=*' 

The inventory cost is 
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So, the objective function is 

minimize z = ^ ^ [(10 + 2(/ - % + (15 + 2(; - i))qiy] 
*'=l M 

There are three sets of contraints: production capacity regular time, production 
capacity overtime, and demand requirements—one constraint of each type for each 
month. 

Production capacity regular time month i is 

6000 

Production capacity overtime month i is 

1^^ 3000 
j = i 

Demand requirements month j is 

2 (r9 + q„) > D; 
1=1 

where D; is the number of units ordered for month j. 

The problem almost has the transportation structure; only the absence of variables 
rij and <7ii for j < i precludes it. If we could introduce these variables, but at the same 
time make sure that they would never appear in the optimal solution, then we could 
make the transportation structure complete without violating the original problem. 
This can be achieved easily by arbitrarily assigning to these variables extremely large 
objective function coefficients, say +°°. 

Using this trick, we can now cast the problem into the format of the transportation 
tableau, as shown in Table 6-11. Our sources are regular-time capacity and overtime 
capacity in each of the months—the source of the production. Our destinations are 
orders to be filled in each of the months—the destination of the production. We also 
include a dummy destination called “slack,” which has a “demand” equal to the 
excess production capacity over the four-month period, i.e., 36000 -! 32000 = 
4000. We assume that the slack capacity is costless. In this problem our allocation 
is not over space, as in the previous problem, but over time. The inadmissible activities 
(those with +oo) are represented by crossed out cells in Table 6-11. A feasible solution 
exists only if the accumulated production capacity is at least as great as the accumulated 
demand at each month. 

For this problem we find the initial basic feasible solution by a rule called column 
minimization. Starting in column 1, the cells to be allocated are chosen not by the 
downward-and-to-the-right rule as in the northwest corner rule, but by ascending 
order of cost value. First, the cell with the lowest cost in column 1, i.e., xu (since 
cn = 10), is filled as much as possible: minimum (6000, 5000) = 5000. If the column 
is not satisfied, the next lowest cost is chosen, and the procedure is repeated until the 
column is fully allocated. The same procedure is followed for column 2, i.e., min- 
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imum (ci2, all i) = cu = 10. So, x32 = minimum (6000, 8000) - 6000. The column 

is not satisfied. The next lowest ci2 is cn — 12, so 

xl2 = minimum (6000 — 5000, 8000 — 6000) = 1000 

Still column 2 is not satisfied. The next lowest ci2 is c42 = 15, so 

x42 = minimum (3000, 1000) = 1000 

When column 2 is finished, we start column 3, and so on. In column 3, neither x13 
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n°r % can be allocated anything because rows 1 and 3 are already completely used. 
We have described the column minimization method because when it is used 

on a simple regular time/overtime problem like this, it always gives the optimal solution 
immediately—as we see from the (ztJ - c,y) values in Table 6-11. The minimum cost 
schedule is achieved by producing at full regular-time capacity every month, and full 
overtime capacity in months 2 and 3, but only 1000 units in overtime in months 1 
and 4. 

The regular time/overtime problem with back ordering involving a late delivery 
penalty is considered in exercise 6.9. 

*6-9 THE TRANSSHIPMENT PROBLEM 

A company has two factories, two warehouses, and three stores. Each month the 
company ships its production to the two warehouses, where goods are redistributed 
to the three stores. Figure 6-6 gives the configuration with factory capacities, store 
requirements, and the unit shipping costs. Initially, we assume that the warehouses 
have unlimited capacity. We wish to minimize distribution costs. 

We can solve this as a simple 2x3 transportation problem by using the fun¬ 
damental principle for deriving the ci} values—they are the least costs from the sources 
to destinations. By inspection we can verify that the least cost from FI to SI is 

Figure 6-6. Two-stage transportation problem. 

I 



172 Chapter 6 Transportation and Assignment Problems____ 

minimum (10 + 3, 5 + 2) = 7, i.e., from FI to W2 to SI. Hence, we obtain Table 

6-12. 

Table 6-12. Least costs from factories to stores 

SI S2 S3 

FI 
F2 

7 via W2 
9 via W2 

6 via W2 
8 via W2 

11 via W2 
12 via Wl 

The optimal tableau is shown in Table 6-13. 

Table 6r13. Optimal two-stage tableau 

Si S2 S3 

FI 7 

20 
3 

30 

11 

-1 
50 

F2 9 

0 

8 

10 

12 

90 100 

20 40 90 

Let us now alter this problem. First, we assume that W1 is rather small, with 
a maximum handling capacity of 50 units per month. The optimal solution in Table 
6-13 with x23 = 90 is no longer feasible. Second, we assume that W2 has some direct 
sales of 30 units per month, and we accordingly increase the capacities of the two 

sources. Figure 6-7 depicts the new situation. 
The previous solution method cannot handle intermediate nodes with capacity 

limits or demands of their own. We want to reformulate the problem so that the 
sources are FI, F2, Wl, and W2, while the destinations are Wl, W2, SI, S2, and 
S3. Nodes such as Wl and W2, which are both sources and destinations, are referred 

to as transshipment nodes. 
Transshipment nodes have both availabilities and demands. What values do we 

give to their a{ and b;. parameters? The most Wl may receive is its handling capacity 
of 50 units. If the warehouse receives less, some of its capacity remains unused. Also, 
we must assume that every unit it receives is sent on. If we introduce a dummy link 
from the Wl node back to itself (which represents the unused capacity), then the total 
demand of Wl can be viewed as what it sends on plus its unused capacity, or its total 
capacity. So in this case, bf = 50. Since the dummy link represents unused capacity, 
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Figure 6-7. Revised two-stage transportation problem. 

its unit cost is obviously zero. We depict the dummy link with a broken-line arrow 
in Figure 6-7. The availability at W1 is again restricted by its handling capacity, hence 
its a, = 50 also. 

W2 has no upper handling capacity. However, we can arbitrarily introduce a 
handling capacity. All we have to ensure is that this capacity is sufficiently large so 
as to never be restrictive on the optimal solution. Setting the handling capacity equal 
to the total supply of 180 units is one way of guaranteeing this. Hence its = 180. 
The dummy link to itself has zero cost and represents unused capacity. However, at 
most 150 units can leave W2, because W2 has a true destination demand of 30 units. 
Thus, its a, value is only 150. 

With these tricks we can now construct the transportation tableau shown in Table 
6-14 for the revised problem. Each inadmissible cell involving shipments from factories 
directly to stores or from one warehouse to the other is shown as a crossed cell, 
equivalent to an infinitely large cost. 

The feasible solution shown in Table 6-14 sends 50 units from FI through W1 
to SI and S2; 10 units from FI, and 120 units from F2 through W2 to W2 (itself), 
S2, and S3. The 50 units in the W2/W2 cell constitute the amount of capacity at W2 
that is unused. (Find the optimal solution.) 

This last example involves most of the concepts of the transshipment problem, 
which is a transportation problem that allows a shipment from source to destination 
through other sources and destinations. 

6-10 THE ASSIGNMENT PROBLEM 

Consider the problem of assigning M candidates to N jobs, such as M young lawyers 
to N different legal cases, or M mechanics to N repair jobs (in both instances involving 
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Table 6-14. Revised two-stage transportation 

Destinations ■ 
W1 W2 SI S2 m 

Sources 

FI 3 
50 

3 
10 XX ̂ X 60 

F2 3 
4 

3 
120 X X X 120 

W1 0 

11 X 3 

20 

7 

30 

4 

8 
50 

W2 X 0 

50 

2 

-5 

1 

10 

6 

90 150 

m 40 90 

roughly equal amounts of work). Let denote the suitability of the ith candidate to 
handle the yth job. The problem consists of assigning the candidates to the various 
jobs so as to achieve a maximum overall suitability. Problems of this sort are known 
as assignment problems. As was true for the transportation problem, several problems 

quite different in nature exhibit the same mathematical structure. 
A transport manager of a small manufacturing firm is reviewing the existing 

composition of the firm’s fleet of trucks and delivery vehicles. Some section supervisors 
have been complaining about the inappropriate size of the vehicles assigned to them, 
while another supervisor who currently has no vehicle would like to have one assigned. 
Funds are tight, so there is no possibility of getting additional or different vehicles in 
the foreseeable future. The next best alternative, therefore, is to see whether a reas¬ 
signment of vehicles will be beneficial to the firm as a whole in terms of reducing 
overall transport costs. After considerable investigation, the firm s cost analyst produces 
Table 6-15, which shows the annual cost (in thousands of dollars) of assigning vehicle 
i = 1, 2, 3 to section/ = A, B, C, D. Since there are three vehicles and four sections, 
one of the sections will have to go without, unless vehicles are shared. The cost of 
having no vehicle is also shown in Table 6-15 as row 4. The manager would like to 
find the vehicle assignment that minimizes the firm’s total cost. 

Viewing each vehicle i as a source with availability a, = 1 and viewing each 
section / as a destination with demand b, = 1, you will immediately recognize that 
this is a transportation problem with the special property that all RHS parameters are 
equal to 1. Therefore, the optimal solution to an assignment problem has the same 
feature as solutions to the transportation problem, namely that all decision variables 
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Table 6-15. Annual transport cost ($1000’s) 

Assigned to Section A B C D 

Vehicle 1 6 4 1 5 
Vehicle 2 10 6 3 8 
Vehicle 3 7 6 4 5 
(None) 4 9 10 3 8 

are integers in this case either 0 or 1. Each vehicle is thus assigned to one and only 
one section and is not shared. In our example, this is fortunate, since for operational 
reasons the sharing of vehicles is inconvenient. 

6-11 THE HUNGARIAN METHOD 

The best-known solution technique for the assignment problem is the Hungarian 
method. It can be derived from the special structure of the dual of the assignment 
problem and the following theorem proved by Hungarian mathematician Konig in 
1916 (hence the name of the method): 

If the elements of a matrix are divided into two classes by property R, then the minimum 
number of lines drawn through rows or columns needed to cover all elements with 
property R is equal to the maximum number of elements with the property R where no 
two such elements appear in the same row or column. 

Using the same notation as for the dual to the transportation problem in Section 
6-7, the dual of the assignment problem can be stated as follows: 

maximize z = ^ u, + ^ v. 
• i 

(6-11) subject to u; + VjClj, for all i, j 

Uj, Vj unrestricted in sign 

U' *<S< assoc*a^ whh a ‘candidate” (or “row”) constraint and each v- with a 
job (or column ) constraint. These variables are unrestricted in sign because the 

primal constraints are equalities. By the complementary slackness theorems (DR6 of 
Chapter 4), the following relations will hold at the optimal solution to the primal 
problem: 

u, + Vj = c,y, for all xtj = 1 

u,. + Vj =£ c-j, for all xtj = 0 

(6-12) 

(6-13) 
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In the search for the optimal u, and v, values, the algorithm uses the property: 

MATRIX REDUCTION PROPER 

Given a cost matrix (eJ. if we replace each element cu by the reduced-c 

element 

where u, and v, are arbitrary constants, this wi 

assignme 

This result can be established by showing that the (z,,- - c,y) values do not change 
under a transformation such as expression (6-14). We leave it to you to use the logic 
of Section 6-7 to prove this property. However, some thought should convince 
you that it is true. Consider a given row. If each element in row i is replaced by 
(c — u,), the relative costs remain unchanged. Since an assignment must be made 
in that row, the optimal assignment will not change except that its total cost will be 

reduced by^u.ngarian methoci uses the matrix reduction property to reduce the original 

cost matrix until the elements associated with the optimal assignment are all zero and 
all other elements are nonnegative. Thus u, and v; are created that satisfy expressions 

(6-12) and (6-13). . , 
At each iteration the Hungarian method reduces the matrix so that there is at 

least one zero in every row and column. Konig’s theorem is used to test whether we 
have found the optimal solution. The set with the property R is the set of zero elements 
in the reduced-cost matrix. The minimum number of lines using this theorem de¬ 
termines the maximum number of rows that can be assigned to columns using the 
zero elements. If the minimum number of lines needed to cover all zeros is equal to 
M = N, then an optimal (not necessarily unique) assignment has been found. Konig’s 
theorem establishes that the assignment exists. The assignment is optimal because all 
other elements of the reduced-cost matrix are nonnegative. If this reduced-cost matrix 
does not yield an optimal assignment, we use a scheme to create new zero elements 
not covered by the existing lines at the expense of only those existing zero elements 
covered by both a row and a column line. Thus, the new reduced-cost matrix will 

require more lines to cover all the zeros. 
At the optimal solution, the sum of the constants subtracted from a particular 

row or column gives the corresponding optimal u, or vj value. A reduced-cost matrix 
that requires M = N lines to cover the zeros cannot be further reduced by subtracting 
constants without violating expressions (6-13). This fact confirms the optimality of the 

solution. The cost is equal to 

z = 2«.- + 
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HUNGARIAN METHOD FOR THE ASSIGNMENT PROBLEM 

Step 1 In each row, subtract the smallest cost from all elements in the row, 
i.e., for row i find 

cf = ca ~ minimum cip for all i 

Step 2 In each column of the new matrix^"}, subtract the smallest cost 
from all elements in the column, i.e., for column; find 

c// = cf ~ minimum tf, for all / 

Step 3 Find the minimum number n of lines through rows and columns 

needed to cover all zero reduced-cost elements in matrix {c)*'}. If 
n = N = ,Yf, stop—an optimal assignment can be found using only 
zero reduced-cost elements. Otherwise, increase ktok+ 1. 

Step 4 Find the smallest uncrossed element hk in matrix {Cif}; subtract hk 
from all uncrossed rows and add it to all elements of crossed columns. 
Return to step 3, 

We now demonstrate this algorithm on the problem in Table 6-15. 

Iteration 1: 

Step 1 Original matrix 
6 4 15 

10 6 3 8 
7 6 4 5 
9 10 3 8 

Step 2 New matrix 
5 3 0 4 
7 3 0 5 
3 2 0 1 
6 7 0 5 

-3 -2 0 -1 
Step 3 New matrix 

2 1 (j) 3 
4 10 4 

-6-0-()-0- 

3 5 0 4 

-1 
-3 
-4 
-3 

smallest row elements (shown 
negative to indicate opera¬ 
tion); sum = 11 

smallest column elements; 
sum = 11 + 6 = 17 

n = 2 < 4 = N ; hence, no 
optimal assignment can be 
found yet 
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Iteration 2: 

Step 4 
2 1 0 
4 1 0 
0 0 0 
3 5 0 

+ 1 

Step 3 New matrix 
1 0 
3 0 

-0-(l— 

2 

0 
0 

Iteration 3: 

Step 4 
1 0 0 
3 0 0 

0 0 1 
2 4_0 

+ 1 +1 
Step 3 

-©-0-0- 
—2-®-0- 
-0-1-2- 

i i -dj> 

Vj +3+1 -2 

3 
4 
0 
4 

2 
3 
4 
3 

2 
3 

0 
3 

—t- 
-2- 

♦ 

-2- 

+ 1 

-1 
-1 

-1 

-1 
-1 

-1 

Ui 

+ 3 
+ 5 
+ 4 

+ 5 

smallest uncrossed element is 

ft2= 1; 
sum =17 + 3 — 1 = 19 

n = 3 < 4 = N; hence, no 

optimal assignment 

smallest uncrossed element is 

*3= 1; 
sum = 19 4- 1 = 20 

n = 4 = N ; hence, an op¬ 

timal assignment exists with 

a cost of 20 

The optimal assignment is as follows: vehicle 1 to section A, vehicle 2 to section B, 
vehicle 3 to section D, and no vehicle to section C. The associated u{ and v;- values 
are shown at the margins of the last matrix. Verify that relations in expressions (6-12) 

through (6-15) are satisfied. f 
In the above example, the number of candidates equals the number ot ]obs. 11 

more candidates are available than jobs, we introduce dummy jobs with a zero suit¬ 
ability score. If there are fewer candidates than jobs, additional dummy candidates 
are introduced having identical rows of suitability scores, such as the cost of not 
executing the job. Finally, if the problem is to maximize the sum of suitability scores, 
we can again obtain the standard problem by simply subtracting each ctj from the 
maximum ciy in the table and then minimizing the sum of the resulting scores. 

EXERCISES 

6.1 A manufacturer has three factories, one each in cities A, B, and C, and four warehouses 
located in cities 1, 2, 3, and 4. The table gives the monthly production capacities of 
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the factories, the monthly requirements at the warehouses, and the per unit transpor- 
tation costs. Solve this transportation problem. 

Factories 

Warehouses 

Availability 1 2 3 4 

A 2 3 6 2 5000 
B 4 6 1 7 10000 
C 9 8 3 9 15000 

Demand 4000 10,000 8000 8000 

6.2 Solve problem 6.1 with the amount available at factory A changed to 10,000. 

6.3 Consider the transportation tableau. 

Factories 

Warehouses 

i 2 3 4 Dummy 

i 
wm n 

■ on B 
B 

2 n B 
B 

2 

■ n 
■ 

B 
fl 

fl 

■ 
B 
B 

3 

i 

fl 

B 
6 

175 

fl 

fl 

B 
B 25 200 

■■ 
mS=SSSSm 

BBi 175 75 

(a) Find the optimal solution. 

(b) Write schedules for the production manager and the distribution manager. 
^ind new optimum for c34 = 3. Do not start from scratch. 

(d) Using the optimal dual variables, find the change in minimum cost if warehouse 
4 requires 50 additional units. 

6.4 Three factories are operated by the Link Manufacturing Company of Hamilton, New 

Zealand. Currently, the products manufactured are shipped to three different ware¬ 
houses. The locations and the capacities of these warehouses are as follows- Auckland 
1200 units, Wellington 800 units, and Christchurch 1000 units. The capacity of each 
factory, together with the freight cost per unit from each factory to each warehouse is 
given in the table. ’ 
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Factory Capacity Freight Cost to Cost/Unit 

i 
(Hamilton) 

Auckland $5 

400 units Wellington 
Christchurch 

$6 

$7 

2 Auckland $4 

(Gisborne) 800 units Wellington 
Christchurch 

$7 

$7 

3 Auckland $8 

(Nelson) 1400 units Wellington 
Christchurch 

$6 
$6 

(a) Formulate this problem as a transportation problem. 
(b) Give an initial feasible solution using the northwest corner rule. 
(c) Starting with the solution of (b), iterate to an optimal solution using the stepping- 

stone algorithm. 
(d) State the optimal simplex tableau corresponding to your solution of (c). (Note: This 

should be done directly, without any computations.) 

(e) What happens to the optimal solution of (c) if we add $fc to each unit cost in the 

first column of the transportation tableau? 
(f) Find all alternative optimal basic solutions in the optimal tableau of part (c). Do 

these solutions really represent alternative optimal shipping routes? 
6.5 A nationwide retailing organization, Bargains Inc., is running a special line of shirts. 

Three suppliers have bid for the job, the first offering to supply up to 200,000 shirts at 
$3 each; the second up to 150,000 at $3.50 each; and the third, 150,000 at $3.20 each. 

The company has five warehouses that service the retailing stores. These warehouses 
estimate requirements of 40,000, 70,000, 60,000, 100,000, and 50,000 shirts, respec¬ 
tively. Bargains Inc. will pay freight from the suppliers to their own warehouses. Freight 
costs (in $100’sj per 1000 shirts are given in the table. The company wants to know 
how many shirts to buy from each supplier and the shipping schedule from suppliers 

to warehouses. The objective is to minimize total cost. 

From 
Supplier 

To Warehouse 

1 2 3 4 5 

i 4 2 7 2 1.5 

2 3 6 1 2.5 3 

3 3.5 3 4 1.5 1 

6 6 Set up the following network as a transportation problem showing transshipment through 
all nodes. The amount available at each node is indicated. A negative value indicates 
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a requirement at that node. The following table indicates the cost per unit of shipping 
between the nodes. 

~40 

A manufacturer can normally product 450 units of product X in a month. But with 
special arrangements, at a cost of $1.50 for each additional unit, the capacity can be 
increased to 600 units a month. Demands for the next four months are 200, 800, 600, 
and 400 units, respectively. The company stores and distributes its product from its 
warehouse some distance away. Transport from the factory to the warehouse presents 
a problem because the manufacturer has only one suitable truck that can deliver up to 
300 units a month at a cost of $2 per unit. An identical vehicle is available for hire for 
any portion of the month. However, costs are $2.50 per unit when this truck is used. 
Inventory cost is $1.00 per unit per month, and inventory on hand at the beginning 

of month 1 is 100 units. Formulate this problem as a transportation problem to minimize 
cost. Construct the initial tableau. ’ ' 

A medical research center is planning to conduct an important 5-day experiment. The 
experiment uses a large number of a special type of container which must be thoroughly 
cleaned after each day’s use. Since the cleaning process is intricate and costly, an 
industrial cleaner has contracted to do it. To have a container ready for the next day, 
the cleaning charge is $3 per container. A slower process taking a day longer costs $2 
per container. The price of a new container is $10, and these containers are available 
on demand. They do pot need cleaning. The research center estimates that it needs 
3000, 2500, 4000, 2000, and 2500 containers for days 1 through 5, respectively. Each 
day approximately 10 percent of these containers will be broken. The medical research 
center wishes to minimize the cost of purchasing and cleaning the containers. Set up 
the problem as a transportation problem. Perform the first iteration. 

Solve the regular time/overtime problem of Section 6-8 with the following extension. 
Back ordering (i.e., postponement of delivery) is permitted for two months. The cost 
of back ordering (administration and loss of goodwill) for one month is $1 per unit, and 
for two months is $5 per unit. Does the column minimization method produce the 
optimal solution at the initial basic feasible solution? 

The officials of a young farmers club need catering staff for a 2-day anniversary function. 
They need the equivalent of 8 workdays on Saturday and 6 on Sunday. They approach 
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two catering outfits: “Homestyle” (A), and “Country Club" (B). A can spare a total of 
5 workdays for the weekend given its present workload, and B can supply 12 workdays. 
A would charge $80/workday on Saturday and $160 on Sunday. B would charge $75 
on Saturday, but $140 on Sunday. How many workdays should the club officials contract 

for from each catering outfit on each of the two days? 
(a) Show that this problem can be formulated as a transportation problem by defining 

the unit cost array. 
(b) Using the northwest corner rule, find an initial feasible solution. 
(c) Using the stepping-stone algorithm, find the optimal solution. What is its cost? 

*6.11 Purair Petrochemicals produces 10 different liquid chemicals. All are produced by a 
batch process that takes at most one day. Purair has 6 bulk tanks of different sizes 
available for intermediate storage of 6 of these products. The problem is to decide which 
of the 10 products should be assigned to the 6 bulk tanks. The current production 
system is as follows: If a product is not stored in a tank, then each day when orders are 
received, a batch is produced for direct shipment to the customer(s). Some of these 
batches obviously may be small, and so this procedure may be quite costly in terms of 
production set-up costs. If a product is kept in intermediate storage in a tank, then 
customer orders are satisfied by drawing from the tank. Whenever the tank is depleted, 
a new batch is produced to fill it. Demand and cost data are as shown. There are 250 
working days per year. Each dollar invested in stocks for one year incurs a holding cost 
penalty of 24 percent. Total annual cost per product covers: (a) average total annual 
batch set-up costs to satisfy customer demands for products not kept in tanks; and (b) 
sum of average total annual batch set-up costs to replenish for products kept in tanks. 
The 6 tanks have the following capacities: 60, 150, 150, 150, 300, and 400 barrels. 

Product i 2 3 4 '5 ^ 6 7 8 9 10 

Value/barrel ($) 20 8 12 15 9 15 10 16 18 25 

Annual demand in 

barrels 800 1600 5000 4000 1200 3600 2000 6000 500 1000 

Number of days/year 

with positive de¬ 
mand 100 120 200 80 150 240 60 160 125 40 

Set-up cost/batch ($) 12 20 16 40 8 15 20 10 6 24 

(a) Formulate this problem as a transportation problem. What aspect represents the 
sources, what aspect represents the destinations, and what are the availabilities and 
the demands? What are the unit costs? Find the unit cost matrix. (Hint: See Section 

1-11 for some help in finding the unit costs.) 

(b) Find an initial feasible solution using the northwest corner rule, and then compute 

the optimal assignments of tanks to products. 

6.12 The table gives a firm’s production capacity and orders for a special product. Costs are 
$15/unit on regular time, $20/unit on overtime, and $l/unit/month for inventory. Set 
up the first transportation tableau. Is it optimal? If not, give the next tableau. 
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Month Production Capacities Orders 

March Regular time 3000, overtime 1000 
April Regular time 3000, overtime 1000 5000 
May Regular time 2000, overtime 1000 2000 
June Regular time 2000, overtime 1000 6000 

6.13 For the problem in Exercise 6.12, assume that the warehouse facilities are limited so 
that at most 3000 units can be inventoried (i.e, held over to a subsequent month) at 
any time. 

(a) Express this situation diagrammatically as a transshipment problem. 
(b) Set up the first transshipment tableau. 

(c) If the first tableau is not optimal, find the second. 

6.14 A carpet manufacturer has 2 factories, A and B, which have monthly outputs of 2000 

and 3000 carpets, respectively. The carpets are made in 2 colors—red and blue. There 
is no additional time or cost involved in switching from production of one color to the 
other. Orders are as follows for deliveries in the next 3 months: 

Month 1 2 3 

Red 1000 3000 5000 
Blue 1000 4000 2000 

Inventory on hand includes 3000 red and 0 blue carpets. Inventory required at the end 
of three months is 1000 red and 1000 blue. At factory A, the marginal cost of production 
of red is constant at $10; the marginal cost of production of blue is $8 (month 1), $9 

(month 2), and $10 (month 3). At factory B, the marginal cost of production is $12 for 
red and $10 for blue in all months. It costs $1 per carpet held from one month to the 
next. As warehouse space is only available at factory A, there is a handling cost of $1 
per unit produced at factory B inventoried at factory A. What is the least-cost production 
schedule for each factory in each month? 

6.15 A manufacturer of complex electronic equipment has just received a sizable contract 
and plans to subcontract part of the job. He has solicited bids for 6 subcontracts from 
4 firms. Each job is sufficiently large that any one firm can take on only 1 job. The 
table below shows the bids and the cost estimates (in $1000's) for doing the jobs internally. 
Note that no more than 2 jobs can be performed internally. 

Job 1 2 3 4 5 6 

Firm 1 48 72 36 52 50 65 
2 44 67 41 53 48 64 
3 46 69 40 55 45 68 
4 43 73 37 51 44 62 

Internal 50 65 35 50 46 63 
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(a) How do you complete this table so that the problem can be solved by the Hungarian 

method? 
(b) Solve the problem by the Hungarian method, minimizing total costs. 

6.16 The chief detective of the city's investigation bureau is assigned 5 new cases. At present 
she has 6 detectives who have not been assigned to investigations yet. The cases require 
different amounts of experience, and the detectives available have different suitabilities. 

The chief is able to assign the suitability indices shown on a scale from 0 to 10. Assign 

the detectives to jobs so as to maximize the total suitability score. 

Job 1 2 3 4 5 

A 6 8 2 4 0 

B 7 9 1 3 5 

c 0 0 6 5 4 
Detective p 0 2 4 5 6 

E 3 5 5 6 6 

F 4 4 5 7 5 

6.17 An engineering company has the problem of assigning the day's jobs to various machines. 
Most machines can do most of the jobs, but with differing efficiencies. Also to be 
considered is the set-up cost of each machine for each job; this varies according to what 
the machine was previously set up to do and the job to which it is now assigned. With 
the data detailed in the table, the company wishes to minimize the total cost of today s 
work. (The tasks that the machines were previously set up to do are implicit in the table 

of set-up costs.) Find the optimal job assignment. 

Cost of each job on each machine in $ 100's 

Job 1 2 3 4 5 6 

i 8 4 10 2 1 6 

2 6 6 12 4 3 5 

3 2 4 8 1 1 4 
Machine ^ 10 8 15 6 2 3 

5 5 7 20 4 4 1 

6 8 2 10 4 2 4 

Set-up cost of each machine for each job in 100's 

Job 1 2 3 4 5 6 

1 1.0 0.5 1.5 0.8 0 0.1 

2 1.0 0.8 1.0 0.5 0.1 0.2 

3 0 1.0 2.5 1.5 1.0 0.5 
Machine ^ 

1.5 1.5 0 2.0 1.0 1.0 

5 2.0 1.0 1.0 1.0 0.5 0.5 

6 0.5 0.8 0 0.4 0.5 1.0 

Machine 
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Network Flow Problems 

The transportation problem of the preceding chapter can be viewed as a special case 

of a network flow problem. This chapter will look at another network flow problem. 

A commodity, available at a given node called a source, is required at another node 

called a sink. It can be routed from the source node to the sink node via a number 

of possible paths consisting of a sequence of links. Several paths may share the same 

link. Each link may have an upper carrying, or flow, capacity. We would like to tind 

the maximum total flow through the network from the source to the sink—hence the 

name maximum flow problem. 
This problem can be formulated as a linear program. However, as was the case 

for the transportation problem, the particular network structure of a maximum flow 

problem can be exploited to develop a much more efficient solution method called 

either the labeling technique or the Ford-Fulkerson maximum flow algorithm (in honor 

of its inventors). 

7-1 THE MAXIMUM FLOW PROBLEM 

A diagram such as the one in Figure 7-1 is called a graph. It consists of a series of 

points called nodes (also referred to as vertices) joined by links (also referred to as lines, 

arcs, edges, or branches). If we associate each link with a distance, a cost, or a capacity, 

we call the graph a network. The networks of particular interest to us now are those 

that have a flow of goods, information, or signals through the links. 
Let us introduce some definitions and notations that we will need as we go along. 

• a link (or line) joining nodes i and / is written (i, j). With each link we associate 

a flow from i to j, or both; , ,. , r 
• a link is directed if the flow is limited to a given direction. A directed link from 

i to j is written (»->/). When a link (i, j) can have a flow in either direction, it 

can be thought of as the two directed links (i—>j) and (/-»*); 

186 
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Figure 7-1. Example of a network. 

• a source is a node such that all links connected to it are directed avyay from it; 

• a sink is a node such that all the links connected to it are directed toward it; 

• a path between two nodes i and j is a set of connected links (i, p), (p, q)f 
(t> u), (u, j) such that any node is passed through only once. 

In the network in Figure 7-1, an arrow on a link indicates the direction of possible 

flow, and the number beside the arrow gives the capacity limit of that flow. The nodes 

are numbered with 1 as the source and 5 as the sink. A path through this network 

may be represented as: (l-»2), (2—>4), (4->5). 

The network in Figure 7-1 could represent the following problem. An oil company 

has pipelines across a country from its unloading port (node 1) to its rehnery (node 

5). There are three pumping stations along the pipelines (nodes 2, 3, and 4). Between 

nodes 3 and 4 the flow can go in either direction at different capacities. The numbers 

attached to each link in Figure 7-1 are the capacities for each section of the pipeline 

in units of 1000 barrels per hour. The company wants to know the maximum amount 

of oil it can pump hourly through the links from the unloading port to the refinery. 

We will first consider formulating the maximum flow problem in general terms. 

The decision variables are the amount of flow through each section of the pipeline 

network, or each link. Let x- be the flow through link (i—>y), with node i = 1 denoting 

the source and / = N denoting the sink. If is the capacity limit in (i—»/), then 

(7-1) 0 =£ djj 

We assume that no flow is lost within the network. This is called the assumption 

of a conservation of flow. So for all nodes other than the source and sink, the flow 

into node i [ = 2* xki for all k connected to i by a link (k-*i)] must equal the flow out 

of node i [ = 2r xir for all r connected to i by a link (i->r)]: 

(7-2) X**, = i = 2, . . N - 1 
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The objective is to maximize the flow from source to sink. But this is the same 

as maximizing the total flow out of the source (or into the sink), i.e., 

(7-3) maximize z = ^ x,„ |or ^ x^j 

Expressions (7-1), (7-2), and (7-3) represent a linear program. The problem 

associated with Figure 7-1 in linear programming form has 7 decision variables, 3 

constraints, and 7 upper-bound restrictions. The problem can be solved by the simplex 

method, but the labeling technique is a much more efficient solution technique for 

this type of problem. Although based on an iterative algorithm, the approach has no 

analogy with the simplex method. 
The above example is a one-source/one-sink problem. There is no difficulty in 

handling multiple sources and multiple sinks. A more complex problem can be 

converted into a simple problem by linking all sources back to a super-source and 

linking all sinks forward to a super-sink. The flow from the super-source to each source 

gives the total flow fropi that source, and the flow from each sink to the supersink 

gives the total flow into that sink, 
We will assume that all links can have a flow in either direction. If a flow exists 

in both directions, the actual flow is the difference of the two opposing flows, or the 

net flow (x. - Xy,). A flow direction that is not permitted is given a capacity limit of 

zero. 
Let us now consider the network with a flow going through it. We define the 

excess capacity g,, from i to j of link (i—>_/) as the difference between the capacity limit 

d and the actual net flow (x,7 - xyj) in that direction: 

(7-4) gij = dtj - x„. + x7„ for all i and / 

The excess capacity is the greatest feasible increase in xtj in the link (i-»/). Using 

the idea that a positive excess capacity in a link means that more flow can go through 

that link, we obtain the following result for the whole network. 

CRITERION 1: INCREASING THE FLOW 

IN A NETWORK 

Given a flow through the network, the 

a path from source to sink with a positiv 

... flow can be increased if there exists 

;e excess capacity in every link in the 
total 

Let us assume a flow of zero in the network of Figure 7-2, i.e., x,7 = 0 for all 

i and /. Consider the path (1—*>2), (2->4), (4-»5), with excess capacities gu = 9, 

g24 = 10, and g45 = 5, respectively. It is thus possible to increase the flow through 

the network. By what amount can the flow be increased? The largest amount by which 

the flow can be increased using a path cannot exceed the smallest excess capacity of 

any link on that path. In our example, this is the minimum (9, 10, 5) = 5. 
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A simple extension of the idea of criterion 1 gives us a criterion to identify the 
optimality of a flow. 

CRITERION 2: OPTIMALITY OF FLOW IN A NETWORK 

If no path exists from source to sink with positive excess capacities in even link, 
then the solution is optimal. 

7-2 THE LABELING TECHNIQUE 

The purpose of the labeling technique is to find at each iteration a path from source 

to sink with a positive excess capacity in every link of the path. The iterations continue 
until no such path exists. 

Consider a path from the source to some node /. We will define the excess 

capacity of the path as the minimum of the excess capacities of the links; in the path. 

Also, we will call a path from the source to node j a feasible path if it has a positive 
excess capacity. 

The operations of the labeling technique have two purposes. The first is to keep 

track of a feasible path (if one exists) from the source to each node of the network, 

until a feasible path is found from the source to the sink. The second purpose is to 

record the excess capacity of the feasible path to each node. Not all feasible paths are 

considered at each iteration—it is sufficient to keep track of one such path to each 
node in the network. 

Figure 7-2. First iteration of labeling technique. 

(9, 1) (9, 2) 
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Consider Figure 7-2, which is the network of Figure 7-1 with an initial flow of 

zero. A feasible path exists from the source (node 1) to node 2. This path has an excess 

capacity of 9. So at node 2 we store two numbers: the excess capacity of the feasible 

path up to that point (9), and the previous node in the path (1). These are the labels 

at node 2. In terms of notation, the excess capacity of the path to node / is 8; and the 

previous node in the path is *yy. Node 2 is thus labeled (82, y2) = (9, 1). We continue 

by attempting to label all nodes / where there are links (1 ->/). We do not label a node 

if g = 0, since a feasible path does not exist even though the link exists. Thus, node 

3 is labeled (8„ 7,) = (6, 1). 
To proceed in extending the feasible paths, we take one of the labeled nodes 

and try to label the unlabeled nodes away from it, using the same principles. The 

convention is to take the nodes in numerical order. Thus, starting at node 2, there 

is a link to node 4 with positive excess capacity. Hence, there is a feasible path to 

node 4 via node 2. This path has an excess capacity of either the excess capacity of 

the path up to node 2 (S2 = 9) or the excess capacity of the link (2-*4) (g24 = 10), 

whichever is smaller. So 84 = minimum (S2 = 9, g24 = 10) = 9, and the previous 

node is 74 = 2. No more nodes can be labeled from node 2, so we take the next 

lowest numbered node that has been labeled (i.e., node 3), and label from it. 

From node 3, node 4 cannot be labeled, even though g34 > 0, because node 4 

has already been labeled from node 2. We can, however, label node 5 (the sink) from 

node 3. Its excess capacity is 85 = minimum (8, = 6, g55 = 9) = 6, and hence 

75 = 3. 
Having labeled the sink, we need label no further. We have found a feasible 

path from source to sink, with an excess capacity of 85 = 6. We use the 7,’s to trace 

the feasible path. At node 5, we come from node ys = 3. At node 3, we come from 

node 73 = 1. The path is thus (l->3), (3—>5). Now we can update the flow solution. 

The new flows are x1? = x13 + 85 = 0 + 6, and = x35 + 85 = 0 + 6. Note 

that the technique is designed to give the incremental increase in flow along a feasible 

path. All links not on the feasible path have no change in their flow. The total flow 

in the network increases to 2 = z + 85 = 0 4- 6 = 6. So the flows in the updated 

solution are 

X[2 = 0 x24 = 0 X35 — 6 x45 — 0 

6 x34 = 0 x43 — 0 

We will now express in general terms the method derived. 

7-3 LABELING OF NODES 

Node j is labeled with two numbers: 

(7-5) (8;, 7;) 

where 8y is the excess capacity of a feasible path from the source to node j and 7, is 

the previous node on that path. 



Figure 7-3. Flow chart of labeling technique. 
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If node i immediately precedes j on the feasible path, then 7, - i, and 5, will 

be given by 

(7-6) 8= minimum (8„ gv) 

The logic of the labeling technique is given in the flow chart of Figure 7-3. Some 

further explanation is needed concerning some of the eight steps involved. 

Step 1 Any flow will suffice for initiating the algorithm. Often it will be most 

convenient to use a zero flow. 

Step 2 Each iteration always starts at the source. 
Step 4 Only unlabeled nodes can be labeled at this step. Previously labeled nodes 

are ignored. ... , r 
Step 6 Once the sink has been labeled, one iteration is complete except tor 

updating the data of the solution. The increase in flow is 8N, the capacity 

of the feasible path generated. The feasible path is found by tracing back 

from 7N = Ho 7* = r, 7, = p, etc., until the source is reached. The new 

values of the solution and the new excess capacities |i; are given by: 

(7-7) 

(i) If link (!—»/") is a member of the feasible path, then 

X,j = xij + — Xn 

= 8ij ~ $0 = Sa + 

(ii) If link (!->/) is not a member of the feasible path, then 

(7-8) ** = *,y Bv = Bn 

(iii) The total flow in the network is 

(7-9) * = * + 8n 

This new flow is used as the flow for the next iteration of the procedure. 

So we return to step 2. 
Steps 7 When a node has been used to label other nodes, it is eliminated from 

and 8 further consideration. The next node chosen from which to label subse¬ 

quent nodes must itself be labeled, and it is to be the lowest numbered 

node not yet used. If all labeled nodes have been used up and the sink 

has not been labeled, the optimality criterion has been fulfilled. The total 

flow at the end of the previous iteration is the maximum flow for the 

network. 

7-4 DIAGRAMATIC SOLUTION BY USE OF THE 
LABELING TECHNIQUE 

We now continue the solution of the pipeline problem. In the previous section, we 

reached step 6 and updated the x/s. Before we can start the second iteration, we also 
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need to update the excess capacities of all links, gi;. By expression (7-7) we get = 

l r?- f31.- 0 + 6-6, etc., while by expression (7-8), g]2 =9 = 0 
etc. Figure 7-4 gives the whole set of new excess capacities. 

Figure 7-4. Second iteration. 

We perform the search directly on Figure 7-4 to find a new feasible path at the 
second iteration. Verify the steps below. 

Step 2 
Step 3 

Step 4 
Steps 5, 7, 8 
Step 3 
Step 4 
Steps 5, 7, 8 
Step 3 

Step 4 
Step 5 
Step 6 

i = 1 

node / = 2 with gl2 = 9 unlabeled 
node j = 3 with g13 = 0 unlabeled 
(8* 72) = (9, 1) 
i = 2 
node j = 4 with g24 = 10 unlabeled 

(8* Yt) = (9, 2), using expression (7-6) 
i = 4 

node / = 3 with g43 = 5 unlabeled 
node 7=5 with g45 = 5 unlabeled 

(8s, 7s) = (5, 4), using expression (7-6) 
sink labeled 

The increase in the flow is S5 = 5, and the feasible path is (1—2), 

V415)' Fr°m exPressions (7-7), (7-8), and (7-9), we obtain: 
*12 = 0 + 85 = 5 *24 = 0 + 8; = 5 = 6 

*43 “ 0 

*42 ~ 0 

*13= 6 0 
£45 = 0 + 5- = 5 z — 6 + 85=11 

The updated excess capacities are given in Figure 7-5. 



The third iteration yields the feasible path (l->2), (2->4), (4-*3), (3-*5), with 

§5 = 3. By (7-7), (7-8), and (7-9), the new flows are 

x12 = 8 x24 = 8 xJ5 = 9 x4, — 5 

xn = 6 x,4 = 0 *4,= 3 2=11 + 5,-14 

At the fourth iteration, we see from Figure 7-6 that we can label nodes 2, 3, and 

4, but not the sink. So another feasible path through this network does not exist. 1 he 

above solution is thus the optimal flow. 
We have calculated the flows at each iteration to help us see the progression 

toward the optimum. However, this is not necessary. It is possible to calculate the 

Figure 7-6. Final iteration. 

(1,1) (1,2) 
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optimal net flows in each link directly from the original capacity limits (the d- values) 

and from the final excess capacities (the gtj values). Using equation (7-4), we can write 
the value of the net flows as 

(x,'i ~ xj) ~ dtj ~ gljy for all i and j 

7-5 THE MAX FLOW/MIN CUT THEOREM 

We can establish that this solution is optimal by use of the Max Flow/Min Cut 

theorem. A cut in a network is defined as a collection of directed links siich that every 

directed path from source to sink contains at least one link in the cut. The capacity 

value of a cut is the sum of the capacities of the links in the cut. The minimum cut 
is the cut with the smallest capacity value. 

MAX FLOW/MIN CUT THEOREM 

The maximum flow in a network equals the capacity value of the minimum 

This theorem is conceptually reasonable. Since the flow in every path from source 

to sink must go through one of the links in the minimum cut, the maximum flow 

can be no more than the capacity value of the minimum cut. Conversely, if the flow 

were less than the capacity value of the minimum cut, it could be increased until it 
reached that value. 

In the pipeline problem, the minimum cut is the pair of links (3-* 5) and (4-»5). 

All paths from source to sink contain one or the other of these two links, the capacity 

value of the cut is d3S 4- d45 = 9 + 5 = 14, and so the maximum flow is 14. 

7-6 AN APPLICATION OF THE MAXIMUM FLOW PROBLEM 

A number of uses have been found for the maximum flow idea in addition to the 

pipeline type of problem we introduced in Section 7-1. It has been used in transport 

studies to maximize the traffic through a transport network such as a railroad or a 

highway system. These studies usually include a time dimension, so a node is defined 

as a physical position (e.g., railway station, highway interchange) at a particular time. 

The links between the nodes then represent a traffic flow over space and time. 

For example, a traffic engineer is studying the road links between two cities at 

morning peak traffic, 7:00 A.M. to 9:00 A.M. During that period, workers travel from 

the satellite city 1 to city 3. Two routes exist, one direct and one through an interchange 

at city 2. Figure 7-7 gives the physical network. The traffic engineer wishes to find 
the maximum flow from city 1 to city 3 over this peak period. 
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Figure 7-7. Highway network from city 1 to city 3. 

Data are available for maximum traffic capacity over a 30-minute interval for 

each link. City 1 to city 2 has 2000 units of capacity; city 1 to city 3 has 5000 units 

of capacity; and city 2 to city 3 has 3000 units of capacity. The average trip times are 

as follows: city 1 to city 2 requires 60 minutes; city 1 to city 3 requires 60 minutes; 

and city 2 to city 3 requires 30 minutes. Vehicles that cannot enter a link because 

its capacity is used up will queue. For simplicity it is assumed that any number of 

vehicles can queue at city 1 or city 2. 
Figure 7-8 shows a network, with traffic flow graphed in 30-minute periods. Node 

O is a super-source, and node D is a super-sink. Each of the other nodes is designated 

z/, where i is the city and / is the time. Each link represents either a trip from one 

city to another or a 30-minute wait at a city. We define only those links that enable 

a worker to leave city 1 no earlier than 7:00 A.M. and arrive at city 3 no later than 

Figure 7-8. Timelspace network for highway flow. 



Section 7-7 Extensions to Maximum Flow and Transportation Problems 197 

9:00 A.M. The flow into D is the maximum possible flow into city 3 within the time 
restriction. The capacities on the links are given in thousands of units per 30 minutes. 

Further applications of maximum flow in a network include calls being routed 
in a telephone network, cargo flows in a particular transport node or in a complex of 
nodes, and flows in electrical circuits. 

*7-7 EXTENSIONS TO MAXIMUM FLOW AND 
TRANSPORTATION PROBLEMS 

The network flow problem can be extended to include a cost per unit flow in each 
link. The minimum cost flow problem entails finding the system of flows that will 

Figure 7-9. Network-flow version of the transportation problem. 



198 Chapter 1 Network Flow Problems__ 

send a certain flow from source to sink. A generalization of this problem places upper 
and lower bounds on the flows in each link, and finds the minimum-cost feasible 
flow. The solution method that solves this general problem is known as the out-of- 
kilter algorithm, which is an extension of the labeling technique of this chapter. 

We can formulate the transportation problem of Chapter 6 as a minimum-cost 
flow problem with upper and lower bounds on the links. Figure 7-9 shows the trans¬ 
portation problem of Figure 6-1 as a minimum-cost flow problem. 

The sources are linked back to a super-source (SO), and the sinks are linked 
forward to a super-sink (SI). The vector (U, L, c) associated with each link gives the 
upper bound, lower bound, and unit cost, respectively, for that link. The links from 
Fi to Wj have as their upper bound the maximum amount available at Fi; their lower 
bound is zero; and the costs are the unit transport costs on this route. All this infor¬ 
mation comes from Figure 6-1. The links from SO to Fi have as their upper bound 
the amount available at Fi; the lower bound is zero to allow for all destinations to 
require less than the sources have available. This link has no cost. The link from Wj 
to SI has upper and lower bounds equal to the amount required at Wi. The upper 
bound could be given a higher value if more than the minimum required was ac¬ 
ceptable. Again the cost for the link is zero. It is the upper and lower bounds on the 
links that force a feasible flow through the system when we minimize cost. 

The particular advantage of this formulation is that it allows genuine capacity 
bounds on the links. For example, there may be an upper limit on the number of 
units that can be sent from a particular source to a particular destination. The upper 
limit will then become the U value for that link. A transportation problem with such 

capacity limits is called a capacitated transportation problem. 

EXERCISES 

7.1 Using the labeling technique, find the maximum flow in the following network. 

7.2 Draw the network with the following capacity limits, and find the maximum flowfrom 

node 1 to nodes 6 and 7 in the network: dn = 40, d„ = 30, d14 = 40, d2, = 20, 
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7.7 

4 = 25, 4 = 20, 4 = 10, 4 = 20, 4 = 25, 4 

4 = 30. 
15, d43 = 15, 4 = 30, 

7.3. 

7.4. 

7-5. 

7.6 

Beginning at Figure 7-6, find the maximum flow for each of the following changes 
considered separately. ’ 
(a) d35 increases from 9 to 11. 

(b) du increases from 6 to 8, and d45 increases from 5 to 9. 

(c) A new link from 1 to 4 is opened, with a capacity limit dM = 6, and 4 increases 
from 5 to 9. 

Draw the network with the following capacity limits: 

iu7 2_M1?: 30’ d» 7 8> = 15’ 4 = 16,4 = 8,4 = 10,4 = 10,4 = 
o, 4 - 25. Assuming the following initial flow, find the optimal flow through each 
link and the overall optimal flow: x,2 = 25, x,3 = 10, x23 = 6, x24 = 8, x„ = 3, x„ = 
8, x34 = 10, x35 = 6, x46 = 18, and z = 35. 26 

Draw the network with the following capacity limits: dn = 4, 4 = 2, dl6 = 2, d23 = 

c’ j26u= 3’ = ^36 = 4 = 4 = 4, 4 = 5. Using the labeling method, 
find the maximum flow from source (1) to sink (7) starting with the following flow: 
X\2 ~ *23 = *34 = *47 ~ 2. 

The following are the excess capacities of a network at its optimal flow s„ = 0 s = 

!°, §»= 0, ft, = 20, g = 0, g = 15, g24 = 10, ft2 = 10, g34 = 5, g4)’=2120, 
&5 = 0, = 15, g45 ■■= 10, g54 = 15. 
(a) What is the optimal flow? 

(b) If the capacity limit 4 is raised from 20 to 25, what is the new optimal flow? 

The following are the nonzero capacity limits and optimal excess capacities of a network' 
4 = 20, 4 = 20. 4 10, 4 10, 4 = 10, 4 = 15, 4 = 10, 4 = 15, 
4 = 10, 4 = 5, 4 = 15, 4 = 5, 4 = 30;ft, = 5," g21 = 20, ft3 = 15, ft, = 15; 

“ /’ = 15’ fti = 10> *« = 5> As = 5. ft2 = 15, ft, = 10, gS4 = 10, 
§62 ~ 15, ft; — 5. 
(a) Write down the optimal flow in each link, indicating the direction of that flow. What 

is the total flow? 

(b) Write down the minimum cut. 

(c) If 4 is increased from 15 to 25, derive the new optimal tableau. 
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Project Planning 
and Scheduling 

Techniques 

Research and development projects usually consist of a number of interrelated tasks 

or activities. Certain tasks can be executed simultaneously. Some tasks can only be 

started after other tasks have been completed, i.e., precedence relationships exist 

between the various tasks. Each task takes a given time to complete, and tasks may 

require scarce resources, such as manpower or funds. We may be interested in finding 

the earliest time that the project can be completed with the resources available. Other 

planning and scheduling problems such as construction projects, periodic overhaul 

or maintenance of large installations, most capital expenditure projects, or the intro¬ 

duction of new products or procedures all require a coordinated plan that involves 

sequencing of interrelated ordered tasks and deployment of limited resources. 

In the late 1950s, a number of closely related approaches based on network 

analysis were developed to deal with such problems. This chapter gives a brief survey 

of the two best known techniques, the critical path method (or CPM) and the program 

evaluation and review technique (or PERT). Both have proven themselves not only 

as tools for planning but also as tools for controlling the execution of the plans. 

Section 8-5 requires some elementary knowledge of random variables and their 

probability distributions, as reviewed in Chapter 10, Sections 10-4 and 10-6. 

8-1 NETWORK EVENT REPRESENTATION 

Let us digress to the abbreviated case study discussed in Section 1-9 of Chapter 1. 

The problem there deals with an inventory control project. After a two-week orientation 

period, the operations researcher begins working out a detailed project proposal for 

201 
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an integrated inventory control and demand forecasting system. Figure 8-1 lists all 

tasks and the order in which they have to be undertaken to complete the project. For 

instance, task C (formulate a mathematical model for the proposed inventory control 

system, or ICS) can only start when task A (detailed analysis of environment for 

proposed ICS) has been completed. Task H (formulate forecasting model) can only 

start after detailed analyses of the environment for the proposed inventory control 

system and of the demand data sources (tasks A and G) have been completed. Similarly, 

the computation of the control limits for the products stored in inventory (task Q) can 

start only if both the input forms for the ICS program have been filled in (task N) and 

the demand forecasting base file, from which the ICS program obtains demand fore¬ 

casts, has been created (task P). Table 8-1 lists the precedence relations and the 

durations of the tasks. 

Table 8-1. Tasks for inventory control 

project 

Tasks Precedence Duration (wk) 

A _ 3 

B A 12 

c A 4 

D C 10 

E C 2 

F D, E 3 

G — 2 

H A, G 4 

I G 3 

J H 16 

K H 2 

L J,K 2 

M F, L 2 

N B, M 2 

0 I, M 1 

P 0 2 

Q N, P 3 

Assume that we can draw on sufficient resources to have any number of tasks 

executed simultaneously. If the project is given the go-ahead, what is the earliest 

project completion date? This is one of the questions we would like to answer. 

For small problems, the answer can easily be found by enumerating all possible 

sequences of tasks. In our example, there are 14 different sequences. The project is 

only completed when the sequence with the longest time has been completed. 

The critical path method (CPM) efficiently finds the longest time sequence. In 

Figure 8-1, we use blocks (or nodes) to represent each activity. The arrows between 

the nodes indicate the precedence relations. Although this flow chart could be used 

directly to perform the computations of CPM, there are certain advantages in reversing 
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this convention and drawing a network in which directed lines or links represent tasks 
and nodes indicate the precedence relationships. With each link we associate a number 
that represents the duration of the task. Since each link starts at a node and ends at 
a node, nodes also represent the event of starting or completing a task. Therefore 
nodes are often referred to as events. 

Figure 8-2 depicts the network associated with the tasks listed in Table 8-1. The 
npdes are numbered consecutively in such a manner that each link always leads from 
a lower order node to a higher order node. Node 1 represents the start of the project. 

rl T. , er Und?,r each ink ls the durahon of the corresponding task. The length 
ot the link is usually not drawn in proportion to the duration of the tasks 

In this representation each task is uniquely defined by the two nodes where the 
corresponding link starts and ends. For instance, task A can be denoted by (1, 2). The 
duration of task A is denoted by tn. In general, a task is identified by nodes (i, /) and 
its duration is denoted by t If the problem is solved on a computer, this is a convenient 
way to specify tasks and task durations. 

Our network shows several links as broken lines. They are introduced to avoid 
ambiguities in the network logic or to allow proper representation of precedence 
relations. Consider, for instance, the sequence of tasks, C, D, E, and F as shown in 
Figure 8-1 Tasks D and E both follow C, and F requires both D and E to be 
completed. This ordering could be represented as shown in Figure 8-3. Tasks D and 

both start and end at the same nodes. If tasks are referred to by the starting and 
ending nodes, then both would be denoted by (5, 7). To avoid this, we introduce a 
dummy task with a zero duration that leads to a new node. In Figure 8-2 the dummy 
task gives rise to link CE (connecting tasks C and E), which leads from node 5 to 

*?ode j ,Task E V 111611 ,started from this new node 6. Each task is again uniquely 
defined by two node numbers. The same reasoning leads to the introduction of dummy 

I The dUvmy ta$k could Precede task D rather than task E, or it could follow 
rat er than precede either task D or task E. (However, whenever possible the dummy 
task should precede a task that gives rise to it; otherwise, the computations of free 
float, described in Section 8-3, are less straightforward.) 

A somewhat different situation gives rise to the remaining four dummy tasks. For 
instance, the dummy tasks AM and GH are required because task H has both A and 
G as predecessors, whereas tasks B and C depend only on task A but not bn task G, 

Figure 8-3. An ambiguous representation of tasks. 

D 

i 
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and task I requires only task G but not task A. The dependence of task H on tasks A 

and G is indicated by the dummy tasks AH and GH. Explain why dummy tasks MN 

and MO are needed. . , . , ,1 
In terms of this network, the earliest project completion date is equivalent to the 

longest path through the network. 

8-2 EARLIEST PROJECT COMPLETION TIME 

Assume that we are able to determine that the earliest finish times for tasks N and P 

are the end of week 29 and the end of week 30, respectively. Thus, the earliest time 

at which all tasks prior to node 16 are finished is the end of week 30—the latest ot 

the two earliest finish times. Only at that time can task Q be started. The earliest start 

time of a task is therefore defined to be equal to the earliest time of the node where 

the task starts, i.e., the latest of the earliest finish times of all preceding tasks. In our 

case, this is the end of week 30. The duration of task Q is 3; hence we find that its 

earliest finish time is the end of week 33. Task Q being the last task to be performed, 

the end of week 33 is also the earliest completion time of the entire project. 

In fact, we do not yet know the earliest finish times of tasks N and P. They could 

be determined if we knew the earliest times of nodes 13 and 15. These inTurn could 

be found if we had the earliest finish times of the preceding tasks, etc. This gives us 

the idea for an algorithm. We begin at the starting node and systematically evaluate 

the earliest times for each node until we reach the final node. 
For this evaluation, it is convenient to divide each node circle into three parts, 

as shown in Figure 8-4. Initially we are only interested in the ETy portion. Here we 

insert the earliest time (ET) that node j can be reached. At least that many periods 

(weeks in our case) must elapse after the beginning of the project before any task 

following node j can be started. The earliest time thus refers to the end of period tir 

Figure 8-4. Use of node circles in computations. 
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EARLIEST TIME (ETy) OF NODE ; 

ETj is equal to the latest of the earliest finish times for all tasks preceding node 

ET;. = maximum (EFjw, for all ik) 

where (ik> j) is a task ending at node; and EFJ is the earliest finish time of task 

EARLIEST FINISH TIME OF TASK (i, j) 

Let tj be the duration of task (i, j). Then the earliest finish time of task (i, ;) 

EE, - EX,. + t, 

The complete evaluation for our project is shown in Figure 8-5 If the nodes 

have been properly numbered, i.e., no higher numbered node leads to a lower num- 

bered node, then the nodes can be evaluated in numerical order. The evaluation uses 
the tollowing simple algorithm. 

ALGORITHM FOR EVALUATING EARLIEST 

PROJECT COMPLETION TIME 

2. Go to next higher numbered node. Evaluate earliest finish times of all 

tasks that end at that node. Find the earliest time for that node using 
expression (8-1). 

3. If any nodes have not been evaluated, return to step 2; otherwise, stop. 

You should now test your understanding of this algorithm. Using Figure 8-2 

^Figure t^timCS °f 311 n°deS’ 3nd Verif}'the results with the solution shown 

It is usually convenient to have only one terminal node. If the original problem 

has more than one terminal node, simply introduce dummy tasks leading to a single 

terminal node. Then the earliest time of the last node evaluated gives the earliest 
project completion time. 





8-3 THE CRITICAL PATH 

We now have a method for finding the earliest project completion time. Our next 

problem is to find which path of tasks has the longest completion time. Any delay in 

these tasks will delay the earliest project completion time. Thus, the tasks on this path 

are the critical ones and this path is referred to as a critical path of the network. 

Ihere may be several paths that have the same longest completion time. Each such 
path is a critical path. 

How can we identify a critical path? Consider node 13 in Figure 8- 5. The earliest 

.me all tasks preceding it can be finished is ETn = 27. (Remember that it denotes 

the end of a period. This is also the earliest start time for task N. However, since task 

N takes only 2 weeks and the earliest time of node 16 is ET16 = 30, task N can be 

delayed by at least one week without delaying the completion time of the entire project. 

The latest start time for task N is the end of week 28. If any tasks preceding task N 

are delayed such that the start time for tasks from node 13 is later than the end of 

“ Project completion time is also delayed. In other words, the latest time 
(LT) all tasks preceding node 13 can be finished without delaying the whole project 
is the end of week 28. 

On the other hand, task P can be started at the earliest by the end pf week 28— 

the earliest time of node 15. Given that task P takes 2 weeks to complete and the 

earliest time of node 16 is 30, the latest start time of task P is also the end of week 

28. Ihere is no leeway. Unless all tasks preceding node 15 are finished by this time 

ae project completion will be delayed. In other words, the latest start time of task P 

path S3me 3S C 63 ^ dme °f n°de 15' This pr°perty hoIds for a]1 tasks on a critical 

A task for which the latest start time is equal to the earliest time of its starting 

nodc *, a cntical hsk. Each path from the start node to the end node of the 



Set LT, = ET„ where I is the terminal node. 

Go to the first lower mi 

tasks that begin at that i 

expression (8-?). 

If the starting node ha 

step 2. 

ide. Evaluate latest start times of all 

1 the latest time for that node using 

abiated stoD: otherwise, return to 

These computations are also shown in Figure 8-5 in the right-hand-side portion of 

the node circles (labeled LT, in Figure 8-4). Verify the results! 
_ _ , <i , >r .1 _ _1 ~ ^ t-U nn/iM \x/rm r. I . — .L/l^ ij‘ We can now identify the critical path by the nodes with til. 

nodes 1 —» 2 - 48 - 10-► 11-> 12 - 14-> 15-> 1617 

tasks A dummy H J L M dummy O P Q 

This path is identified by the heavy solid and broken lines in Figure 8-5. 
Any task not on the critical path can be delayed, within limits If we consider 

each task by itself (neglecting any interactions with preceding or,su°s^ue;nt,tafS!’ 
then the difference between the earliest time of the node from which the task starts 

and its latest start time is the largest amount by which the task can be dely^d ,wit, 0L'; 
affecting the earliest completion time of the project. This difference is called the total 
slack or total float (TF), of the task. Thus, critical tasks have zero total Hoat. 



TOTAL FLOAT OF TASK 

For example, the noncritical task B = (2, 13) has 

TF2,b = ls,h ET2 = (28 

If task B is delayed by more than 13 weeks, then the earliest completion time of the 
entire project will be delayed. 

Delaying one task may however, affect the amount by which subsequent tasks 

can be delayed, since the float along a segment of the network is shared by all the 

tasks along that segment. For example, tasks C, D, and F all share the same float of 

7 }"e lar§f amount by which a task may be delayed without affecting the earliest 
start time of all subsequent tasks is called free slack, or free float (FF). Free float is 

the amount of float available when all other tasks take place at their earliest times. 

, thn n°ncriJlcal taskT3 may be delayed by up to 12 weeks without affecting 

A t Nj f ^eefl.oat ls,tl1lus U- °n the other hand, the noncritical task G cannot be 
delayed at al without delaying any of the subsequent tasks. Free float can never exceed 

total float Along any segment of the network where all tasks have the same total float 

only the last task has a positive free float. For example, of tasks C, D, and F which 

ave the same total float of 5, only F has a free float, and its free float is 5. 

Again, for task B = 

EF2, n = 21 (3 + 12) 

Both free float and total float are useful for planning decisions. The planner has 

some choice as to when to start tasks with float. This may allow the planner to schedule 

such tasks in a manner that reduces the amount of manpower needed. For instance, 

tasks E and K are similar in nature and thus require the same professional training. 

Both could be started after week 7. Since both have float, they can be scheduled in 

such a manner that the same person can do both tasks consecutively. 
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8-4 ACTUAL PROJECT PLANNING AND CONTROL 
THROUGH CPM 

The computations for finding the critical path and the total and free floats are so 

simple that projects with up to a few hundred tasks can still be worked by hand. Any 

self-contained segments of the network that have only a beginning and an ending node 

in common with other parts can be analyzed separately. If only the final results oft is 

analysis are inserted into the total project structure, the whole segment can be regarded 

as a single task. Using this trick, a complex network can be broken into a number ot 

smaller networks, each of which is analyzed for its critical paths. 
Larger projects are best analyzed by computer, and most computer manufacturers 

provide computer programs to analyze critical path networks. These programs can 

handle projects with several thousand tasks and automatically keep track of the amount 

of various resources required during the project. Some programs a low the input to 

be in the form of Figure 8-1; tasks are attached to nodes rather than to links, eliminating 

the translation process. The program may contain a calendar covering up to 25 years, 

which includes all official holidays. All start and finish dates are assigned by the 

program to their projected calendar dates. The program may also allow special work 

and shift patterns to be specified. . 1 

The practical use of CPM is twofold. It is a tool for detailed planning and 

scheduling of projects made up of a large number of interconnected tasks. However, 

it is also a highly useful aid in continuously measuring the actual progress ot the 

project according to the plan. This control allows management to predict delays or 

to pinpoint situations that could lead to delays—often well ahead of their actual 

occurrence. Corrective action can thus be taken early enough to counteract some ot 

the consequences of late project completion. Furthermore, by using the current prog¬ 

ress status as the starting point, management can work out the new projected critical 

path and the earliest completion time in light of the latest information. 

Continuous control is more effectively achieved if we redraw the CPM networ 

as a schedule graph. On this graph, the horizontal projection of all links is drawn to 

a time scale representing task duration. We also have to fix the starting dates or 

noncritical tasks. Figure 8-6 shows a possible schedule graph for our example. Actual 

task times are drawn as solid lines, and float times are shown as dotted lines, lasks 

that require the same professional training are scheduled, as far as possible, in such 

a manner that the same person can perform them. For example, task H (formulate 

forecasting model) is followed by task C (formulate inventory control model). The 

former is on the critical path; the latter has considerable float. 

As the project progresses, we continuously monitor the actual execution by mar - 

ing the progress of each task on the schedule graph. When we observe or predict any 

irregularities, such as late starts or excessive task durations, we can immediately e- 

termine whether they will cause a delay in project completion. 
For large projects, this control is best done directly by computer. Some CPM 

computer programs are specifically Resigned for control purposes—the current sta us 

of a project is kept on a random access disk file. Progress on task completions, any 

new estimates of task durations for tasks not yet started or completed, or other changes 
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in the project can be fed into the computer at any time. The prograrn can also be 

instructed to provide a new status report, to flag present and predicted delays in task 

completions, and to update the critical path and float times. 

8-5 PROGRAM EVALUATION AND REVIEW 
TECHNIQUE—PERT 

Although PERT was developed concurrently with and independently of CPM, it can 

be viewed as an extension of CPM that deals with uncertainties in the task durations 

PERT attempts not only to determine the expected length of the critical path, but 

also to obtain some measure of the variability of the earliest project completion time. 

We say attempt because PERT does not fully succeed in this objective. 

In PERT task durations are assumed to be independent random variables, each 

with expected value L and variance a2 Thus, any path through the network represents 

a sum of independent random variables. In particular, the length of the critical path 

as determined by CPM is such a random variable with 

(8-7) expected value p = ^ ttj 
all (i, j) on 

critical path 

and 

(8_8) variance <r2 = ^ 
all (i, ;*) on 

critical path 

Expression (8-8) follows from the fact that the variance of the sum of independent 

random variables is equal to the sum of the variances of the random variables, (bee 

Section 10-4 of Chapter 10.) , f 
Traditionally, PERT assumes that the individual tasks follow a particular torm 

of the beta distribution, which lends itself to an intuitively appealing interpretation 

for the task duration, as shown in Figure 8-7. ... 
The operations researcher may be hard pressed to determine the actual distribution 

of task durations. On the other hand, management may be less reluctant to summarize 

Figure 8-7. Beta distribution and task duration. 

Task duration 



215 Section 8-5 Program Evaluation and Review Technique_PERT 

the distributions by the minimum, maximum, and most likely duration times Using 

the transformation shown in Section 10-6 for the beta distribution, the three estimates 

yield the following values for the expected task duration and its variance: 

(8-9) f;y = 3 [2m + i (a + b)\ 

= g(i ~ a)}2 

Consider a simple example. The heavy-duty diesel motor of the emergency power 

generating plant of a factory needs an extensive overhaul job. At the same time the 

concrete base, which is cracked, also has to be replaced. Management plans to have 

this job performed during the annual vacation of the factory when the factory closes 

tor 15 working days. Management would like to know whether the overhaul can be 
completed in this time. Table 8-2 lists the various tasks 

Table 8-2. Diesel motor overhaul (all times shown in days) 

Task 
Mode 

Precedence m 
Minimum 

a 
Maximum 

b 

_i_. . 

, ta <T2. 

A. Dismantle motor _ 2 2 2 2 o 
B. Overhaul motor A 7 6 14 8 

16 
9 

C. Rebuild motor base and cure A 9 8 10 9 
1 
9 

D. Test and adjust motor B 2.5 2 6 3 4 
9 

E. Mount motor on base C, D 2 2 2 ; 2 
j_ 

0 

The ty and a 2 values are found using expressions (8-9). Note that if the minimum 

and the maximum times are equal, there is no variability in the task duration and 

hence the variance is zero. This is the case for tasks A and E. For task B, we obtain 

h = \[2m + \(a + b)} = |[2(7) + §(6 + 14)] = f = 8 

<rl = (l(b - a))2 = [J(14 - 6)]2 = (t)2 = V6 

The t„ values so computed are now used as input in finding the critical path in 

the same manner as for CPM. Since the ttj values are estimates of expected values 

the duration of the critical path is also an estimate of an expected value. For our 

simple problem, the critical path can be found by inspection. The path consists of 

tasks A, B, D, E. By expressions (8-7) and (8-8), we find the following statistics for 

the expected length of the critical path and its variance, or standard deviation: 

Expected length of critical path = 2 + 8 + 3+ 2 = 15 days1 

Variance of duration =0+f+|+0=f 

Standard deviation = If = 1.49 days 
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Thus, the expected length of the critical path is just equal to the closing peno . 

The length of any path in the network and, in particular, the length of the critica 

path is the sum of random variables. It may be useful to know its probability distri¬ 

bution. From probability theory we know that no matter what the form of the individual 

probability distributions, the probability distribution of a sum of independent random 

variables is approximately normal for a sufficiently large number of variables If the 

individual distributions are not highly skewed and none of the tasks dominates the 

length, this property holds approximately for as few as n = 10 tasks. (If the individua 

distributions are close to normal, it holds for even smaller numbers.) Therefore, we 

can use the normal distribution to make probability statements about the duration ot 

Y PFor demonstration purposes, let us assume that for our problem the normal 

distribution is a sufficiently good approximation. We can then state that with prob¬ 

ability 0.9099 the duration of the critical path does not exceed 17 days, and that with 

probability 0.9778 the duration does not exceed 18 days, as shown in Figure 8-8. 

Since the expected earliest project completion time is equal to the length of the critica 

path, it is easy to fall into the trap of concluding that the probability of an earliest 

project completion time of no more than 17 days is 0.9099. This would be a fallacy! 

Let us see why. i . 
Although noncritical tasks will not affect the expected earliest project completion 

time they may affect its variability. Tasks with a small amount of slack but large 

variability may have a significant probability that the length of the paths on which 

they lie turns out to be longer than the critical path. PERT simply ignores these effects 

and, therefore, tends to underestimate the variability of the earliest pro|ect comp etion 

time Unfortunately, no analytic methods exist to deal with this problem. Simulation 

is the only way to derive the empirical distribution of the earliest project completion 

time. (Refer to Chapter 16 on simulation.) 
In our example, a probability statement about the length of the critical path is 

practically equivalent to a statement about the earliest project completion time. Ihe 

reason for this is the small variance of the only noncritical task task C. 

Figure 8-8. Probability of length of critical path. 

z = 2.01 
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• k-rf6 the variability °f the earliest project completion time depends on the 
variabihty of all tasks on the critical path, as well as of tasks on “near” or “close-to- 

entical paths any action that can reduce the variance of these tasks reduces the 
variability of the earliest project completion time and therefore increases the probability 
ot meeting project target dates. 

8-6 THE CRITICAL PATH METHOD COST MODEL 

The cost of completing a project can usually be divided into the costs directly related 
to the individual tasks, such as manpower and equipment applied to the task, and the 
costs related to the duration of the project as a whole, such as managerial services and 
other overhead items. Most tasks can be expedited if more resources are applied to 
them. Figure 8-9 illustrates such relationships. In simplest form, they are linear 

Direct costs are lowest for a task duration at a normal level, b„. Any slow-down 
beyond this level does not produce further cost savings. The duration Cannot be cut 
below the crash level, atj. If costs are linear, they can be expressed as (c- - 

where c,y is the intercept for ty = 0 and v,y represents the increase in direct costs for 
a unit reduction in the task duration. Our objective is to find a schedule of task 
durations that minimizes total direct and indirect costs. 

For small problems, the following heuristic reasoning will usually find the optimal 
schedule. We start out with an initial schedule using normal duration times for all 
tasks, which yields, in some sense, the maximum length critical path. We now attempt 
to stepwise reduce the total project duration by expediting one or more of the critical 
tasks. As critical tasks are shortened, the float of parallel noncritical tasks decreases 
and ultimately vanishes They also become critical. Therefore, further decreases in 
the earliest project completion time may entail reducing several critical tasks on parallel 
critical paths simultaneously. Any critical task or combination of parallel; critical tasks 

Figure 8-9. Costs associated with a project. 

Task duration 
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is a candidate for being expedited when the combined rate of increase of direct costs 

as measured by their vtj components is less than the rate of savings on indirect costs. 

At each stepwise reduction or iteration, the critical task or combination of critical tasks 

with the smallest total rate of increase of direct costs is chosen as the candidate tor 

expediting. At least one candidate task is shortened to its crash level, av, m each 

iteration unless a noncritical task becomes critical on a parallel path prior to reaching 

this level. For small projects, these computations are best done on a schedule graph. 

Consider the data shown in Table 8-3. Indirect project costs are $500 per week 

Part (a) of Figure 8-10 shows the schedule graph of the critical path for normal task 

durations t- = b... Its length is 11 weeks. The total cost is given by the sum of the 

direct costs,% - over a11 tasks and the indired red costs 
amount to $500 multiplied by the length of the critical path, or $5500. The direct 

cost for task A is 3200 - 8(300) = $800. Verify that direct costs for the remaining 

tasks are $600, $1000, and $100. The total for normal task duration is thus $80UU. 

Table 8-3. CPM cost project 

Task Precedence 

Normal Time Crash Time Direct Costs 

A 
B 
C 
D 

B 
A, C 

8 weeks 

4 
2 
3 

4 weeks 

3 
1 
2 

3200 300 
1000 100 

1800 400 
700 200 

We now find the task on the critical path with the lowest rate of increase of direct 

costs v... This is task D, with v, = $200. Since this is less than the weekly rate of 

indirect project costs, task D is expedited, in this case to its crash time of a„ • 

Direct costs go up by $200, and indirect costs go down by $500. The new critical 

path has a length of 10 weeks and a total cost of $7700. This is shown in part (b) of 

Figure 8-10. At the second iteration, task A is expedited by 2 weeks At that point 

the total float for tasks B and C has been reduced to zero, and they become critical 

tasks. The new critical path of length 8 is shown in part (c). We now study tasks on 

parallel critical paths for simultaneous time reductions. Tasks A and B have a rate of 

increase of direct costs of $300 + $100, or $400, which is less than the rate of indirect 

project costs. The maximum reduction possible is 1 week, at which point task B 

reaches its crash time. The new critical path of 8 weeks is shown in part (d). No 

further time reduction can be made now without increasing total costs. Why. 1 he 

optimal project duration is thus 8 weeks at a cost of $7200. 
Although this method is fairly effective for small problems, it becomes cumber¬ 

some for even moderate-size problems of several dozen tasks, and at that point an 

optimal solution can no longer be guaranteed. Linear programming is one possible 

means to solve some problems. 



Figure 8-10. Iterations of CPM cost model. 

Week 

J 

Critical path for normal times 

; Total cost $8000 
{ Task D has lowest vy = 
I 200 <500 and is a 

\ candidate for expediting. 

% 

l First iteration: 

! Task D reduced to ay = 2; 
: new total cost $7700 

: Task A now has lowest 

] vy = 300 <500 

; and is a candidate for 
\ expediting. 

' Second iteration: 
* , 
j Task A reduced to ty = 6; B 

, and C now become critical. 
’ New total cost $7300 

< Tasks A and B together 
& have sum of vy of 

S 300+ 100 <500 and 
* are candidates for 

expediting, 
i ■ 

Third iteration: 

. Task B reduced to ay — 3, 

■ task A reduced to ty = 5. 
\ New total cost $7200 
' No combinations o£ tasks 
] on critical paths have rates 
; of direct costs totalling less 
; than 500. Minimum cost 
5 schedule reached. 
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EXERCISES 

The maintenance job described in the table has to be performed periodically on the 

heat exchangers in a refinery. All durations are in hours. 

Precedence Duration (hr) 

A Dismantle pipe connections 
B Dismantle header, closure, and floating head front 

C Remove tube bundle 

D Clean bolts 
E Clean header and floating head front 

F Clean tube bundle 

G Clean shell 
H Replace tube bundle 
I Prepare shell pressure test 
J Prepare tube pressure test and reassemble _ 

A 
B 
B 
B 
C 
C 

F,G 
D, E, H 

I 

(a) Draw a CPM network. Introduce dummy tasks as needed. 
(b) Find the earliest and latest times for each node. Identify the critical path. What is 

its length? 
(c) Find the total float and the free float for each task. 

(d) Draw a schedule graph. 

The brain trust of Creative Toys has just come up with the idea for a new plastic toy. 
Can it be ready for Christmas sales? It is July now. Working from past experience, the 

assistant manager breaks the project into the tasks listed in the table. 

Initial market survey 
Detailed design of toys and dies 

Cost and demand analysis 
Manufacture of dies 
Procurement of materials for toy 

Trial manufacture 
Planning of sales promotion 
Retooling of injection molding machines 

Training of labor 
Production run 
Distribution to wholesalers 
Distribution to retailers 
Advertising campaign “watch for” 
Advertising campaign “hard sell” 

Precedence Duration (wk) 

A 

B 
B 
B 
D 

C,F 
F 
F 

C, E, H, I 

G, J 
K 
G 

L, M 
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(a) Draw a CPM network. Introduce dummy tasks as needed. 

(b) Find the earliest and latest times for each node. Identify the critical path. What is 
its length? If it is now July 10, when is the project completion date? 

(c) Find the total float and the free float for each task. 
(d) Draw a schedule graph. 

A firm has developed a new product and wants its prerelease marketing champaign to be 
started on August 20. The individual tasks are as listed in the table. 

Task Precedence Duration (wk) 

A Preparing and approval of project plan and budget 1 
B Training of servicepeople A 8 c Training of salespeople A 4 
D Sales promotion to distributors c 4 
E TV and radio advertising brief A 4 
F TV and radio contract negotiating with agent E 1 
G TV film making F 8 
H Radio script taping and approval F 4 
i Approval of TV film from management G 3 
j Press and household advertising brief A 2 
K Advertising contract negotiations j 1 
L Advertising illustrations and text making K 4 
M Printing of above L 4 
N Distribution of product to distributors D 2 
0 Distribution of product to retailers N 4 
P Press conference B, 0, I, H, M 0 

(a) Draw a CPM network, and determine the critical path. When will the press con¬ 
ference be held, at the earliest? 

(b) Determine the amount of total float and free float for each task. 

A toy factory is making kites. The activities have to be performed in 
order given in the table. 

the precedence 

Task Precedence Duration (min) 

A Cut plastic to shape of kite 3 
B Make wooden frame _ , 15 
C Punch holes and attach rivets A 5 
D 
E 

Paste on picture transfers 

Put string through holes in plastic so plastic is 
A 2 

attached to frame C, B 3 
F 
G 

Attach tail to kite 

Stick warning message (“Do not fly near power 
C, B 2 

lines”) across kite D, E 1 
H Fold kite up for dispatch F, G 1 
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(a) Draw a CPM network. 
(b) Find the critical path. What is its length? 

(c) Draw a schedule graph. 

8.5 A catering service has accepted a contract for a three-course dinner for 100 people. The 
manager wants to know at what time the kitchen staff must be called for duty. The 
minutes required for the various tasks and the immediately preceding tasks are as shown 

in the table. 

Task Precedence Duration (min) 

A Prepare chicken for roasting — 10 

B Prepare pastry for apple pudding — 15 

C Prepare potatoes, carrots, and marrows — 30 

D Wrap cutlery in paper napkins — 15 

E Put chicken in oven to roast A 50 

F Open tins of apples and put on pastry B 5 

G Make meringue topping for pudding B 15 

H Prepare vegetables and put in steamers C 25 
5 
5 

5 

I Put pudding in oven to cook F, G 

J 
K 

Make thickening for gravy 
Remove vegetables from steamers and put in bain- 

marie 

A 

H 

L Heat milk in one steamer for custard I, K 10 

M Remove pudding from oven and place in warmer I 5 

N Make custard and place in jugs L 10 

0 Remove roast from oven and make gravy E, J 10 

P Make soup in steamer using vegetable water K 20 

Q Set tables D 20 

R Attend to dinner guests M, N, 0, P, Q 120 

S Wash plates, cutlery, pots, and pans R 60 

T Clean tables R 10 

(a) Draw a CPM network. 
(b) Find the earliest and latest times for each node. Identify the critical path. What is 

its length? 
(c) Find the total float and the free float for each task. 
(d) Draw a schedule graph for tasks A through R. What is the minimum number 

of people who must work in the kitchen to prepare the meal in the minimum 

time? 

8.6 Consider the manufacture of a machine that consists of three subassemblies and is 
produced on order. Each subassembly is processed and assembled individually, and 
then the whole product is assembled. The various tasks have the precedence relations 

and task durations shown in the table. 
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8.7 

Task Precedence Duration (days) 

A Produce subassembly X 3 
B Produce subassembly Y A 3 
C Produce subassembly Z _ 1 
D Assemble X A 4 
E Assemble Z C, D 2 
F Assemble Y B, D 1 
G Finish assembly D, E, F 2 

(a) What is the minimum delivery lead time needed to complete 1 unit of the machine? 

Which tasks are critical? What are the amounts of total and free float for each task? 
(b) The production engineer hopes to cut the delivery lead time by 2 days by rearranging 

subassemblies of tasks C and D. This would reduce the duration of task D from 4 
to 2 days, but would increase the duration of task C by 3 days. Since the latter has 
sufficient float, increasing its duration will not interfere. Is the engineer correct? 
Why or why not? 

Listed in the table are the activities and sequencing requirements necessary for the 
completion of a research report. 

Activity Description Precedence Duration (wk) 

A Literature search 6 
B Formulation of hypothesis _ 5 
C Preliminary feasibility study B 2 
D Formal proposal C 2 
E Field analysis A, D 2 
F Progress report D 1 
G Formal research A, D 6 
H Data collection E 5 
I Data analysis G, H 6 
J Conclusions I 2 
K Rough draft G 4 
L Final copy J, K 3 
M Preparation of oral presentation L 1 

(a) Draw a CPM network for this project. 
(b) Find the critical path. What is its length? 
(c) Find the total float and the free float for each task. 
(d) Draw a schedule graph. 

(e) Tasks A, B, C, D, F, G, J, K, L, and M require similar professional training; so 
do tasks E, H, and I. Redraw the schedule graph so that only two people are 
needed to perform the project. 
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8.8 Cosmetics, Inc. has decided to market a revolutionary new product for the consumer 
market. The problems of how to plan and control the various phases of this project- 
sales promotion, the training of salespeople, pricing, packaging, advertising, and man¬ 
ufacturing—are obvious to the management of this firm. They have asked you to guide 
them through this difficult venture using CPM, since time is of the essence. The first 
firm to market this type of product will reap substantial profits and will enhance its 
image by marketing such a revolutionary product. A list of the tasks, with the expected 

time duration for each, is given in the table in terms of weeks. 

Task Precedence Time (wk) 

Manufacturing Activities i 

A Study equipment requirements none 2 
i 

B Select supplier of equipment A 2 

c Study manufacturing procedures B 2 

D Study quality control procedures C 2 

E Study purchasing and inventory rules B 2 

F Receive and install equipment B 7 

G Place order for raw materials E 1 

H Manufacture from raw materials for test and first 

production runs G 3 
i 

I Receive containers and packaging supplies P 2 

j Have personnel available for first production run F 0 

K Run manufacturing test D, J, H, I, T 2 

L Run first production K 6 

Marketing Activities 

M Price product B, S 1 
3 N Do artwork for advertising M 

0 Send out advertising material and packaging or- 
N 

i 

ders to suppliers 2 

P Produce advertising and packaging materials 0 4 
i 

Q Hold sales meeting K, S 2 

1 R Training salespeople Q 

Accounting Activities 

S Determine cost of the new product B 1 

T Determine cost of the new product inventory s 2 

(a) Draw a CPM network for the problem. 
(b) Identify the critical path, and determine its length. 
(c) What happens to the critical path if activity S takes 2 weeks instead of 1 week? 
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8.9 Consider the construction project for a boiler house, described in the table. 

Task Precedence Duration (days) 

A Construct floor slabs 8 
B Erect boiler house frame A 21 
c Construct chimney base A 3 
D Erect precast chimney C 6 
E Construct boiler bases A 6 
F Position boilers E * 2 
G Construct pump bases A 4 
H Construct oil tank piers A 3 
I Position oil tanks H 1 
J Construct oil line trenches A 5 
K Position pumps G 1 
L Install roof decking B, D, F 8 
M Erect structures for chimney flue and vent D 3 
N Erect flue headers D, F 3 
0 Brick out and fit burners D, F 6 
P Fit boiler mountings and controls F 2 
Q Install oil lines F, I, J 10 
R Install water pipe system F, K, L 25 
S Test pipe system R 2 
T Install plant wiring M, 0, P, Q, S 20 
U Commission boiler house N, T 1 

(a) Draw a CPM network. Find the critical path. What is its length? 

(b) The suppliers require the following delivery lead times: boilers, 90 days; burners, 
105 days; oil tank, 60 days; pumps, 72 days. If construction is planned to begin (task 
A) on July 12, at what date do these various units have to be ordered at the latest 
so as not to cause any delay in the completion of the project? 

(c) Find the amounts of total float and free float for each activity. 
(d) The following jobs require the same skills: 

(1) Concreting skills: A, C, D, E, G, H, J 
(2) Carpentry skills: B, L 

(3) Technical installations: F, I, K, Q, R, S 
(4) Masonry skills: D, M, N, O 
(5) Electrical wiring: P, T 

Plan a schedule graph such that tasks requring similar skills have minimum overlap 
without causing any delay in project completion time. 
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8.10 A promoter is organizing a sports meeting. The task sequence and the most likely 
minimum and maximum durations of the tasks in days are as shown in the tab e. 

— Task Precedence Mode Minimum Maximum 

A Prepare draft program — 7 3 11 

B Send to sports organizations and 
21 14 28 wait for comments A 

c Obtain promoters A 14 11 17 

D Prepare and sign documents for 

stadium hire A, C 2 2 L 

E Redraft program and request 

entries B 2 8 

F Enlist officials D, E> 14 10 21 

G Arrange accommodations for 

touring teams E 4 3 5 

H Prepare detailed program E, F 4 8 

I Make last-minute arrangements G, H 2 1 4 

(a) Find the expected task durations and their variances. 
(b) Draw a network, and find the critical path. What is the expected length of the 

critical path, and what is its variance? 
(c) What is the probability that the length of the critical path does not exceed 56 

days = 8 weeks? 

8.11 A passenger-freight vessel is nearing the Golden Gate to berth in San Francisco. The 
activities listed in the table have to be performed before it can sail for Acapulco. All 

times are in hours. 

Activity Precedence Mode Minimum Maximum 

A Get towed to berth — 2 11 
1 

ll Z4 

B Disembark passengers A 1 2 2 

c Unload cargo A 4 3 8 

D Carry out safety inspection B, C I2 1 li 

E Refuel ship D 3 3 4 

F Load cargo C 5 4 10 

G Board passengers E, F 2 1 4 

H Order tug E, F 3 ll h 

I Leave port G, H 2j 2 31 

(a) For this PERT network, find the expected task durations and the variances of each 

task duration. 
(b) Draw a network, and find the critical path. What is the expected length or the 

critical path, and what is its variance? 
(c) What is the probability that the length of the critical path does not exceed 12 hours? 

17 hours? 
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8.12 A sociologist plans a questionnaire survey consisting of the tasks described in the table 
All times shown in days. 

Task Precedence Mode 

_ . ; 

Minimum Maximum 

A Designing questionnaire 5 4 6 
B 

C 
Sampling design 

Testing questionnaire and refine- 
—- 12 8 16 

D 
ments A 5 4 12 

Recruiting interviewers B 3 1 
2 

5 
2 E Training interviewers D, A 2 

F Allocating areas B 5 4 
Li 

6 
G Conducting interviews C, E, F 14 10 18 
H Evaluating results G 20 18 34 

(a) For this PERT network, find the expected task durations, tijf and the variances of 
task durations, a].. 

(b) Draw a network for this project, and find the critical path. What is the expected 
length of the critical path and its variance? 

(c) What is the probability that the length of the critical path does not exceed 60 days? 

8.13 A publisher has just signed a contract for the publication of a book. What is the earliest 
date that the book can be ready for distribution? The tasks in the table are involved 
with time estimates given in weeks. 

A 
B 
C 
D 
E 
F 
G 
H 
I 

J 

Task Precedence Mode Minimum Maximum 

Appraisal of book by reviewers 
Initial pricing of book 

Assessment of marketability 
Revisions by author 
Editing of final draft 
Typesetting of text 
Plates for artwork 

Designing and printing of jacket 
Printing and binding of book 
Inspection and final assembly 

— 8 4 10 
— 2 2 2 

A, B 2 1 3 
A 6 4 12 

C, D 4 3 5 
E 3 3 3 
E 4 3 5 

C, D 6 4 9 
F, G 8 6 16 
I, H 1 1 1 

(a) For this PERT network, find the expected task durations, tm and the variances of 
task durations, o~. 

(b) Draw a network, and find the critical path. What is the expected length of the 
critical path, and what is its variance? 

(c) What is the probability that the length of the critical path does not exceed 32 weeks? 
36 weeks? 
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8.14 Holiday Prefabs Inc. assembles prefabricated vacation houses in its factory and transports 
them to the site, where they are attached to foundations. Each transaction covers the 

tasks listed in the table. Indirect project labor costs amount to $100 per day. 

Time (days) Direct Labor Costs 

Task 1 Precedence Normal Crash Normal Crash 

A Inspection of site, preparation 

of plans 3 2 $180 $230 

B Leveling of foundation site, 
$240 $360 building of foundations A 4 2 

C Construction of wall panels, 

floors, and roof, and 

assembly A 5 2 $800 $950 

D Transportation to site and 
1 $200 $200 positioning on foundations C 1 

E Attaching prefab to 
foundations, and final 
installations B, D 4 2 $220 $350 

(a) From the cost figures for normal and crash durations, determine the coefficients of 

the equations of (c, - tvvi;) for each task. 
(b) Find the critical path for normal task duration and the total labor cost associated 

with the project. . , , , 
(c) Using the method described in Section 8-6, determine the least-cost schedule and 

the associated project duration. 
(d) What is the total project cost for a minimum project completion time? 

8.15 Consider the pipeline laying project described in the table, where the tasks for the 

various sections are overlapping. All costs are in thousands of dollars. 

Task Precedence 

Duration (days) 

Normal Crash 

Direct Costs ($) 

c# va 

A Install pump 1 — 12 10 48 2 

B Dig trench section 1 — 4 3 15 3 

C Lay pipe section 1 A, B 6 3 
1 

48 4 

1 
3 

D Fill trench section 1 c 2 4 

E Dig trench section 2 B 6 4 21 

F Lay pipe section 2 c, E 8 5 64 4 
1 

G Fill trench section 2 D, F 3 2 6 

H Install transmission pump — 14 10 48 2 
3 

I Dig trench section 3 E, H 4 3 15 

J Lay pipe section 3 F, H, I 6 3 48 4 

1 
3 
A 

K Fill trench section 3 G, J 2 1 4 

L Dig trench section 4 I 4 3 15 

M 
N 

Lay pipe section 4 
Fill trench section 4 

J, L 
K, M 

6 
2 

3 
1 

48 
4 

4 
1 
2 

O Connect pipe to terminal M 3 2 12 
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(a) Determine the critical path for normal task duration, and draw a schedule graph. 
Allow all tasks to start at their earliest start times. 

(b) The indirect costs amount to $6000 per week. Use the scheme explained in Section 
8-6 to find the least-cost schedule. What is the total cost reduction achieved and 

what is the decrease in project completion time? (Hint: The costs for sections 1, 3, 
and 4 are exactly the same; therefore, any time reductions can be made on all three 
sections in one iteration.) 

8.16 The Sweetpeas Farmers’ Cooperative is preparing for the coming season’s bumper crop 
of peas. Unless the crop is processed within 4 weeks, part of it will have to be used as 
animal feed. In fact, fixed costs and product losses amount to $800/day during harvesting 
and processing of peas, but are only $250 during the remaining periods. Preparation 
and processing of the crop consists of the activities enumerated in the table. 

Duration (days) Direct Costs ($) 

Task Precedence Normal Crash cu 
A Inspect pea plots, estimate 

B 

crop size, arrange options, 
order cans and bags 12 8 1800 50 

Prepare machinery for 
harvesting and processing — 10 7 3000 80 

C Order cans (delivery lead 

D 
time) 

Order plastic bags (delivery 
A 14 12 1500 100 

lead time) A 21 16 1320 60 
E Hire picking and processing 

staff A 10 6 3200 200 
F Harvest first batch of peas B, E 2 2 2000 o 
G Harvest balance of peas F 21 14 30,000 600 
H Process first batch of peas F,C 3 3 3000 0 
I Process balance of peas* into 

J 
cans and frozen goods 

Arrange contracts for sale of 
D, H 28 21 40,000 400 

K 
canned and frozen peas 

Service, clean, and repair 
A 60 50 9000 50 

harvesting machinery G 14 10 4000 80 
L Clean, service, and repair 

M 
processing machinery 

Compile cost and revenue 
I 10 8 3000 100 

data, prepare profit 
statement for season J, K, L 20 14 3400 

i 
70 

‘Harvesting and processing can occur simultaneously with a minimum lag of 2 days. 

(a) Find the critical path for normal task duration, and draw a schedule graph allowing 
all tasks to be started at their earliest time. If the harvest (task F) is to start on July 
15, on what day does the earliest task have to be started? 



230 Chapter 8 Project Planning and Scheduling Techniques _ 

(b) Use the scheme explained in Section 8-6 to find the lowest cost of reducing the 
total time for harvesting and processing peas to 28 days. Any task that is part o 
harvesting and processing or that overlaps with it is eligible for reduction if feasible. 

(c) Find the minimum-cost completion-time for the entire project. 

8.17 The Primalscream Counseling Institute is preparing a revolutionary therapy _workshop- 
Being a cost-conscious leader, the manager of the institute has recourse to CPM (does 
not stand for consciousness-promoting method). The tasks are as shown in the table. 

Indirect costs amount to $ 500/week. 

Duration (wk) Direct Costs ($) 

Precedence Normal Crash c.j v* 

A Workshop research — 12 9 4200 200 

B Potential customer groups 

canvassed — 7 5 3000 400 

C Workshop design A 10 7 2600 200 

D Preparation of advertising 

brochure A 4 3 1000 100 

E Preparation of workshop 
material, training of 

course leaders C 11 6 3400 300 

F 

G 

Mailing of workshop 
advertising 

Processing of applications 

B, D 
F 

8 

7 

6 

5 

1400 
1000 

100 
100 

400 
H Therapy workshop E,G 3 2 1300 

(a) Determine the critical path for normal task duration, and draw a schedule graph 

allowing all tasks to start at their earliest start time. , . 
(b) Use the scheme explained in Section 8-6 to find the least-cost schedule. What is 

the total cost reduction achieved, and what is the decrease in project completion 

time? 

REFERENCES 

Burman, P. J. Precedence Networks for Project Planning and Control. London: McGraw-Hill, 
1972. A voluminous 350-page text that covers most aspects of CPM from bar charting, 
project budgeting, use of computers, project control, to implementation with real-hte type 

examples. 
Elmaghraby Salah E. “The Theory of Networks and Management Science: Part II,” Man¬ 

agement Science, Vol. 17, Oct. 1970. An expository treatment of activity networks re¬ 
viewing CPM, PERT, and some generalizations, where activities may not necessarily be 
executed, i.e., may be probabilistic: generalized activity networks (or GAN) and graphical 

evaluation and review technique (or GERT). 



References 231 

Horowitz ). Critical Path Scheduling. New York: Ronald Press, 1967. A detailed and complete 
development of CPM and PERT and extensions at an elementary level. 

Kaufrnann, A., and G. Desbazeille The Critical Path Method. New York: Gordon and Breach, 

1969. As is the case for all of Kaufmann’s books, this short text is concise, to the point 
and well organized More than a third is devoted to advanced approaches for cost min¬ 
imization. Although it is at a higher level mathematically than most CPM texts it is very 
practical, with excellent realistic examples. * 

Kdley J. “Critical-Path Planning and Scheduling: Mathematical Basis,” Operations Research, 

a ?’ Ma/t'ne J?61' CriHcal path least-cost linear Programming model that takes 
advantage of the problem s special structure to derive a solution algorithm more efficient 
than the simplex method. 

Siemens, Nicola, “A Simple CPM Time-Cost Tradeoff Algorithm,” Management Science, 
Vol. 17, Feb. 1971. A simple algorithm ideally suited for hand computations is explained 
with an example. 

Thornley, Gad, Critical Path Analysis in Practice. London: Tavistock, 1968 (paperback). This 

short text contains a collection of excellent papers on various aspects of project control 
including implementation, communication, and training. 

Van f!yke' R- “Monte Carlo Methods and the PERT Problem,” Operations Research, Vol. 

7’VT'i • ’ , ' USCS simulation to determine a critical index (equal to probability) 
that a task is on the critical path. 7 

Weisf Jerome E) and Ferdinand K. Levy. A Management Guide to PERT/CPM. Englewood 

1969 (paperback)' A trough discussion at an elementary level 
or riLKl, OrM, and various extensions. 



Deterministic 
Dynamic 

Programming 

In contrast to linear programming, dynamic programming is not a mathematical mode 

with which we can associate an algorithm that can be programmed once and for all 

to solve all problems satisfying the assumptions of the model. Rather, dynamic P_ 

gramming'is a computational method. It allows us to break up a complex problem 

into a sequence of easier subproblems by means of a recursive relation, which can e 

evaluated by stages. If you have never encountered this type of reasoning, yovi may 

find the mathematical notation somewhat strange, even confusing, and many ot t 

basic concepts difficult to grasp. For this reason learning about dynamic Programming 

can be slow. It is only by studying a number of typical examples of different types that 

you will become accustomed to viewing a problem m terms of a recursive solutio 

technique rather than a mathematical model. This is what we propose to do m this 

chapter. Here we deal only with deterministic problems; Chapter 14 studies stochastic 

problems. 

A SOMEWHAT DISGUISED ROUTING PROBLEM 

An electric power supply company considers upgrading one of its power transmission 

lines that serves a number of communities. A preliminary analysis indicates that four 

transformer stations will be able to economically supply all communities involved 

However, each transformer station could be placed at a number of alternative sites. 

A detailed survey of the area also suggests alternative possible routes oyer which the 

transmission line could be taken. Figure 9-1 shows the network of possible transformer 

sites represented by circles, and the alternative routes of the transmission line, depicted 
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9-2 

by links between circles. The number attached to each link gives the construction 

cost of each section of the transmission line, and the number in each circle is the cos 

($100 000) of the transformer station and the additions to the feeder lines squired 

for that site Which route and set of transformer sites has the lowest total cost. For 

this simple example, it would be an easy matter to find the cheapest route by enum¬ 

erating all possible combinations of links. Check that there are 52 different routes. 

For larger problems, complete enumeration requires an exorbitant number of com¬ 

putations. Dynamic programming reduces this computational effort through a stream¬ 

lined partial enumeration scheme. Dynamic programming systematically discards any 

combination of links that can be identified as worse than some other combination. 

SOLUTION OF ROUTING PROBLEM BY STAGES 

The construction of the transmission line can be viewed as a multi-stage process in 

which each of the four stages involves the choice of a transformer site and the trans¬ 

mission line section to connect it with the preceding transformer (or the origin, in the 

case of the first section). Similarly, if we are to restrict our attention to only asub- 

problem—for example, the continuation of the transmission line from site B-the 

problem again can be viewed as a multi-stage process with a structure analogous to 

that of the original problem. Each stage involves the choice of a transformation si 

and the associated transmission line section. In this instance only three stages remain 

to be completed. The same observation can be made not only for all other sites ot the 

first transformer station, but also for the second and third transformer station, except 

that fewer stages are left to be completed. 

This suggests an efficient line of attack for finding the optimal route. Let us say 

that by some means we are able to find that the minimum cost of completing the line 

to the best site for station 4 from each of the three alternative sites for station 1 is 67 

for site B, 72 for site C, and 75 for site D. (The transformer cost for station 1 is already 

included.) It is now a simple matter to find the minimum cost from the origin . 

From A we have the following choices: 

Cost of Minimum Cost of 
Total Cost 

Route Line Section Completing Line 

From A to B 
From A to C 
From A to D 

15 
20 

8 

67 
72 
75 

82 
92 
83 

The lowest cost is achieved by running the section from A to B and then con¬ 

tinuing on the best route from there. Thus, we could find the optimal route from the 

origin A to station 4 if we knew the optimal route to station 4 from each of the sites 

for station 1. Unfortunately, we do not have this information. However, we observe 

earlier that the problem of completing the line from each site for station 1 is also a 
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multi-stage process. Hence, we could use the same trick as before if we knew the 
immmum cost of completing the line from each of the sites for station 2, and so on 

These: 16 provide us with the basic idea underlying dynamic ptogramming.' 
Starting with only one stage to be completed, we find the minimum cost of completing 
. e hne for each site of station 3. Then, working backward stage by stage, we evaluate 

e mimmum cost of completing the line from each site of the preceding station until 

, Ve re,aCfted,the ongm ^ and found the overall minimum-cost solution. For each 
site we ask the hypothetical question: “If we were to complete the line from this site 
with n stages left to go, what would be the best site to go to?” At each node we thus 
carry forward only the minimal-cost combination from that node on, eliminating all 
other combinations from further consideration. It is this feature that so drastically 
reduces the number of enumerations. Note, though, that we have to answer the 
hypothetical question separately from each site at each stage, as we do not know at 

problem™^^ CV3 U3tl°n whlch sites wil1 be on the optimal route for the whole 

Figure 9-2 shows the evaluation for the entire network. Note that we number 
the stages backward, starting at the end (i.e., in reverse order of the stations), so that 

le stage number gives the number of stages left to be completed. We start out by 
recordmg the cost of each of the two possible sites for station 4, which is at the end 

° thp DTh“e costs inserted in the square boxes above the circles depicting 
sites P and R We now evaluate the best decision for each site of station 3 (i e at 
stage 1, or with one stage left to be completed). What is the best decision for site I? 

Choice 
Cost of Station 

at Site I 
Cost of 

Line Section 
Cost at 

Last Site Total 

Route I to P 
Route I to R 

12 
18 

13 
11 

33 
37 

The best decision at site I is a line to site P, at a cost of 33. These computations are 
shown in the box attached to circle I. The best site to go to next is indicated by the 

n I iHe P nght-band corner of the box. We now proceed to evaluate each of 
the other three sites at that stage. Verify the computations in Figure 9-2 for all sites 
ot station 3 (stage 1). 

By now, Rowing the optimal route from each site at stage 1, we can go back 
another step and find the best decision for each site at stage 2, or with two stages left 
to be completed, as shown in Figure 9-2. Proceeding in this manner, stage by stage 
we finally evaluate the minimum cost for the origin A. Verify the calculations. 

The optimal route from the origin A can be found easily by back-tracking the 
sequence of best decisions, given the best decision at site A. The optimal route leads 
us from site A to site B (as indicated by the letter B shown above the box attached to 
circle A) from site B to site F, from site F to site J, and on to site P at a total cost 
ot oT There is no solution that has a lower cost. Although such is not the case here 
a problem may have two or more alternative optimal routes having the same minimum 
cost. 
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The approach used to solve this problem contains most basic aspects of dynamic 
programming and the structurally related theory of optimal control, which will not 
be studied m this text. Solving problems by these two techniques consists of taking 
a particular process in stages from a given initial position to a desired ending position 

passing through a sequence of alternative intermediate positions 

to a7IeL?^ti0n^thf a,t7natiue transforn?er si^, in our example-are referred 
o as states. The attributes of each state, or the state description, must contain all 

information relevant for future decisions about the. process from that state on The 
slate description can be viewed as reflecting the cumulative effect of all decisions that 

rCeWantmtnd7ri7t0 7 7 ^ State'!n 0Ur examPle’the otlly Piece °f'information 
relevant to deciding how to continue the route is the current site position. Many 

state descriptton6 ^ t0 SCVeral d‘StinCt elements of the process for a complete 

that SITSt3te 3t 6lCh St!f’ 3 deCfion has t0 be made- Any sequence Of decisions 
that leads the process from the initial state to the desired state is called a policy in 

M theCo^lTSan<1 “ in 0Pli,Ml COntr°1 ,he0ry' Th' “ *° 
Note that in our example we started at the states where we wanted to end, i.e 

sites P and R, rather than at the beginning, the origin A. Then we worked backward’ 
shige by stage, until we reached the beginning. This particular formulation is called 
the backward solution. For each state at stage n, we found the optimal immediate 
decision for leaving that state, given n stages left to go. We also could have solved the 
problem by working forward, resulting in the forward solution. We then reword the 
crucial question to be answered at each state as, “If we were to reach state i after 

H jtages, whic;h would be the best state to come from?” Note: this implies 
that the state description now reflects all relevant aspects of the position in which the 
process ends after completing n stages, rather than those aspects of the position in 
which it starts, with n stages remaining. It is then convenient to number the stages 

l^°ntglCf 0rJrl S7rtlng- fr°im the beginninS Position rather than the ending 
position. It is clear that the optimal route (or routes, if alternative optima exist) will 
be the same for the forward and backward solutions 

We now suggest that you stop reading and solve this problem anew, using a 

fl ?n aPIfThi PraW ,the network on a sheet of PaPer, renumbering the 
stages. Use 0 for node A, 1 for nodes B, C, and D, etc. Once you have evaluated the 
optimal policy for both end nodes, (P and R), the overall optimal policy for the 
problem can be determined by taking the best of the two policies. 

9-3 REVIEW AND IMPLICATIONS OF COMPUTATIONAL 
PROCESS 

We shall now look at this problem in more general terms, using the backward solution. 
Let be the state of the process with n stages remaining. A route from the initial state 
to the final state consists of a sequence of decisions. Each decision involves defining 
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a link between two states at consecutive stages. A policy can thus be described by a 

sequence of pairs of states (in, i„-i), (L-i- *--2)- • ; ;> lo)- 1 eac lIJ , ’ ’ 
we associate a cost U, the cost of the one-step transition from state k to state /.In our 
example this includes the cost of the transformer station at state (site) k plus the cost 
of the transmission line from state k to state /. For an N-stage process, the cost of each 

feasible policy is the sum of N variables, 

2 in-in - 1 (9-1) 

where consecutive pairs of states are properly linked together^ We wish to find the 
optimal policy. In our example, this is the least-cost policy. In terms of expression 
(9-1), this is a minimization problem involving N variables—one variable for each 

stage of the process. 

DECOMPOSITION OF PROBLEM 

Dynamic programming decomposes an N-variable problem sequentially into N 

stages, where each stage involves optimization over one variable only. 

Consider the truncated problem of being in state s with n < N stages left to go. 
We have seen that this new problem has the same structure as the original prob em 
With this new problem we can associate an optimal subpolicy. Let /„(s) be the cost 
of this optimal subpolicy. We wish to stress that fjs) is already the result of a min¬ 
imization operation, not merely the cost of an arbitrary subpolicy. This optimal 
subpolicy depends on both the number of stages left to go as indicated by the subscript 
n) and the state the process is in at that point (as indicated by the argument). We refer 
to s as the state variable. In our example, for s = P and s = R and n = 0 stages left 
to go, fo(P) = 13 and f0(R) =11. From this we can determine /,(*). tor instance, 

for s = I: 

fj(I) = minimum [tlM + folk)} = minimum [20 + 13, 26 + 11] = 33 
i:j = P.R 

In general, 

(9-2) fj(s) = minimum [t, i0 + f0(!'o)J- ^or s 
to 

Using the f^s) 
same principle, 
expression. 

evaluated in this fashion, we then proceed to find f/s), etc., by the 
The generalization of expression (9-2) for stage n yields the following 
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ELATIONS OF E 

minimum [t,. + f 

At each stage, this recursive relation has to be evaluated for all values of the state 
variable. The recursive relations are based on the following principle, coined by the 
inventor of dynamic programming, United States mathematician Richard Bellman 

The. proof of this principle is found by contradiction. If the remaining decisions 
are not an optimal subpolicy, then the whole policy (of which the remaining decisions 
are a part) cannot be optimal. The principle of optimality contains the necessary 
condition which a problem must satisfy for it to be decomposable by dynamic pro- 
gramming. J F 

1111111111111111 

INDEPENDENCE OF PRECEDING DECISION 

The measure of effectiveness of a given subpolicy from any state depends only 
on the state the process is in and the number of stages remaining, but not on 

The current state at any stage has to be a sufficient summary of all aspects of the 
current condition of the process that are relevant for future decisions or for the future 
performance of the process. The optimal subpolicy is then independent of the decisions 
made prior to reaching this state. In terms of the backward solution, this property 
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implies that to find the optimal subpolicy from the current state, we only have to 
worry about decisions to be taken at the current and subsequent stages and can ignore 
decisions taken at all stages prior to reaching the current state^This allows us to 
effectively separate “past” and “future” decisions at each stage However, this is not 
the same as asserting that the decisions taken at each stage are independent of all ot er 
stages. Clearly, the best decision in the current state depends on the best decisions 
at subsequent stages. On the other hand, if the best current decision also depended 
on decisions of preceding stages, the N-variable problem could not be decomposed 
into N one-variable problems unless the effect of these prior decisions could be 

summarized uniquely in the state description. 
Note that these properties imply only that the overall measure of effectiveness 

to be optimized can be decomposed into n stages. Beyond this, there are no assumptions 
or restrictions on the particular mathematical form taken by the measure of effec¬ 
tiveness or by the state and decision variables. The functional relationships may e 
linear or nonlinear, and the variable may assume any real value or may be restricted 
to discrete values only. Dynamic programming always finds the overall optimum. 
Hand in hand with this, however, goes the fact that dynamic programming is not a 
mathematical model like linear programming, with which we can associate a com¬ 
putational algorithm and which can be programmed once and for all to solve all 
problems satisfying the assumptions of the model. Rather, dynamic programming is 
a computational method for solving certain problems that have a particular structure. 
So each problem usually requires its own tailor-made computer program that solves 

the problem by using this computational method. 
Although dynamic programming solves problems in a sequential manner, not 

every multi-stage decision problem can be formulated by dynamic programming, nor 
is dynamic programming restricted to a priori multi-stage decision problems In fact, 
many problems that do not involve a sequence of decisions can, by some trick, be 
converted to multi-stage decision problems. Hence, dynamic programming seldom 
reduces to rote, but leaves ample room for ingenuity and imagination. I hus, as a 
tool, dynamic programming is rather deceptive. A problem may look simple once 1 

has been formulated, but prior to formulation it often looks forbidding. 

9-4 A RENTAL DECISION PROBLEM 

Problems that involve decisions to be made at specific points in time are natural multi¬ 
stage processes, and hence they are usually ideal for dynamic-programming ormu- 
lations. Consider the following rental equipment problem . 

A highway construction firm rents certain of its specialized earth-moving equip¬ 
ment from a leasing company as needed during the various phases of a construction 

- job. Equipment has to be rented for full weeks, and it can only be obtained at the 
beginning of a week and released at the end of a week. Assume that the beginning 
of a week coincides with the end of the preceding week. The rental cost per wee is 
$200. Each time a unit is rented, there is a preparation and transport charge ot $1 
by the leasing company. Each time a unit is returned to the leasing company, there 
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is a servicing, cleaning and transport charge of $150. No units will be required after 
6 weeks. Therefore, all units are released at the beginning of week 7. The number 
of units required during any time period of 1 week cannot be predicted exactly, since 
the requirement depends on a variety of factors, such as the weather and soil conditions 
If, during any week, the construction firm has fewer units on hand than the number 
required, (i.e„ the company is short), it has to farm out the excess work to a local 
contractor at a cost of $400 per unit short per week or any part of a week Table 
9-1 shows the average number short for various possible numbers of units rented 
uring each week of the planning horizon. Fractions denote units required for less 

than a full week. This information implies that in no week will more than 4 units be 
required, since no work is farmed out if 4 units are rented. Given that the firm has 

. umts on hand initially, what is the rental policy that minimizes the total cost 
incurred over the entire 6 weeks? 

Table 9-1. Rental equipment problem: average number short 

Number of Units 
Rented/During Week n 

z„ 

0 
1 
2 
3 
4 

1.2 
0.4 

0 
0 
0 

Average Number Short 
K(z) 

n = 1 n = 2 n = 3 n — = 5 ji - 6 

2.0 0.2 0.5 2.2 2.0 
1.0 0 0 1.2 1.0 
0.3 0 0 0.4 0.2 
0 0 0 0.1 0 
0 0 0 0 0 

What comprises a rental policy? It can be defined either in terms of the number 
o renta units on hand during each week or in terms of the change in the number 
of rental umts on hand from week to week. Let us assume that the decision as to 
whether to increase or decrease the number of rental units on hand during a particular 
week is made at the beginning of that week. Thus, we define the decision variable 

• x„ > 0 as the number of additional units hired at the beginning of week n, and 
• x„ < 0 as the number of units released at the beginning of week n. 

At the beginning of week n, prior to any change, we start out with yn rental units. 
bo the number of units on hand during week n (and consequently at the end of the 
week) is 

<9”4) * = y„ + *„ 
> f nSinCeA1S nUmbIf,r of units carried forward to period n from period n - 1 
it follows that y„ - z„_v Eliminating yn in equation (9-4) we have 

(9"5> 

with z0 = yl = 3, as stated earlier. 

+ 
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The cost of a rental decision during period n consists of 

Cost in Cost of hiring 
4- 

Rental + 
Cost of 
i i i 

period or releasing units 
1 1 

“I 

cost [being short 

120x„ 
- 150x„ 

for x„ 3s 0 
for x„ < 0 

+ 200z„ + 400Rn(zn) (9-6) C„(xn, z„) = 

(Do you understand why the coefficient of x„ in the bottom part of the first term of 

M'S for each of the first 6 periods. AUhe tegmmng 

of period 7, all units are returned. Hence, x7 - z6, implying z7 , a 

simplifies to 

(9-7) C7(x7 = -z6, z7 = 0) = 1 50z6 

The total cost over all 7 periods is given as the sum 
7 

(9-8) 2 
n -1 

We wish to determine values for x„, n = 1,2, . . ., 7, so as to minimize (9-8). 

9-5 DYNAMIC PROGRAMMING FORMULATION OF THE 
RENTAL PROBLEM 

Let us solve this problem using a forward formulation. The first task is to determine 

1. What aspects of the problem represent the stages? 
2. What are the decision variables at each stage? 
3. What aspects uniquely define the state variable? 
4. How is the new state defined in terms of the current state and the decision 

taken at that state—or the state transformation function? 

Since a decision must be made at the beginning of each of 7 periods, the periods 
,nmp tup St,pes n = 1 2 . . ., 7. For a forward formulation, we number the 

stages in the chronological’sequence of the periods. We have already seen that the 
change in the number of units rented, x„, is the decision variable at each stage penod)^ 
The choice of the state variable is often the most difficult part of a formulation, 
inventory-type problems that involve carrying stocks of goods over time, the number 
of units on hand usually gives a complete description of the state of the process, 
summarizes in one number all of the past history and is all that must be known to 
continue the process into the future. The number of rental units is a type of stocb. 
For a forward formulation, the state description refers to the position in which the 

process ends up after the decision is made at stagen. Hence>the ending J°_veL 
in our case, the number of rental units on hand at the end of a period z„ is t 
correct choice of state variable. Since the number of units on hand annot be negative, 
and since more than 4 units are never needed in any period, z„ - U, i, Z, }, or , 
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k'L.Vr1.1 TH? initicalState ‘S given as zo = 3 and the desired final state as 
j7 T j r VCn , value of the state variable at the Preceding stage (z ,) is uniauelv 
defined for each value of the decision variable. By equation (9-5), the" state transfer- 
mation function is thus 

(9-9) 1 = z„ - xn, n = 1, . . 7 

Note that any dynamic programming problem with discrete outcomes can be 

represented as a network, as in Figure 9-2. We suggest that you now take a break and 

draw the network associated with this problem. The nodes are given by the values of 
zn, while the links represent the values of x . 

h f ready t0 f0rmulate the rec"ursive relation dynamic programming. 
It states that the optimum cost to reach state z„ after n transitions is given by the 

minimum, over all feasible values of the decision variable x„, of the sum of the 

immediate cost ini period n and the cost of the optimal policy for state zn , resulting 
from zn and the choice of xn. If we let B 

(9-10) f0(Z(j) = o, for all z0 (we only need z0 = 3) 

then 

(9-H) f„(zn) = minimum [Cn(xn, zn) + £_.(*„ - x„)], for all z„, all n 3= 1 

9-6 EVALUATION OF RECURSIVE RELATION FOR RENTAL 
PROBLEM 

To evaluate the recursive relation, we need two tables at each stage n. The first one 

referred to here as table 1 contains the fn_x{zn_,) values determined at fee preceding 

Siol <9 tTf’ - i t0. J6 f teble 2> ^USCd t0 find usin§the recursive relation (9-11). For n - 1, table 1 consists of the single number f0(za = 3) = 0 

Determining table 2 for /fe) is also trivial. Since * = 3, it follows by equation 

' x\ can assume only one value for each value of zx namely x1 = z — 3 

and (9-11) simplifies to /fo) = C.fe,, z,). The value of ffa) must be determined for 
aJl viable values of zv 

Often the range of values of the state variable for which the recursive relation has 

to be evaluated cannot be inferred exactly from the problem. This is the case for most 

inventory control problems. We then make a first educated guess and subsequently 

alter it as necessary during the computations. For our example, however, the exact 

range can be inferred from the shortage data in Table 9-1. As stated earlier z = 0 
1, 3, and 4. ’ " 

Table 9-2 shows the evaluation of ^(z.) (this is table 2 for n = 1). Let us show 

ow me cost for Zj — 0 is obtained, z, = 0 implies that x, = - 3. From Table 9-1, 

KiUi - fe - 1.2. Hence, by expression (9-6), we have 

C,(-3, 0) = 150( — 3) + 200(0) + 400(1.2) = 930 
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Table 9-2. Table 2 for n = 1 

(1) 
*1 

(2) (3) 
C^z,, x,) jfci) 

0 -3 930 930 

1 -2 660 660 

2 -1 550 550 

3 0 600 600 

4 + 1 920 920 

For n = 2 table 1 is formed of columns (1) and (4) of Table 9-2. It is convenient 

to include additional columns in table 2 for this and later stages, as is shown in Table 

9-3, which displays the computations for stages 2 and 3. 

Table 9-3. Table 2 for n - 2 and 3 

(1) 
n z„ 

(2) 
xn 

(3) 
C„(z„, x„) z„_, 

(4) 
= z„ - x„ 

(5) 

f„-l(Zn-l) 

(6) 
Total 

(7) 

/>„) 

? 0 -4 1400 4 920 2320 
L V 

-3 1250 3 boo 1850 

-2 1100 2 550 1650 

-1 950 1 660 1610 1610 

0 800 0 930 1730 

1 -3 1050 4 920 1970 

-2 900 3 600 1500 

-1 750 2 550 1300 

0 600 1 660 1260 1260 

i 720 0 930 1650 

2 -2 820 4 920 1740 
L 

_ i 670 3 600 1270 

0 520 2 550 1070 1070 

1 640 1 660 1300 

2 760 0 930 1690 

7 -1 750 4 920 1670 
j 

0 600 3 600 1200 1200 

1 720 2 550 1270 

2 840 1 660 1500 

3 960 0 930 1890 

4 0 800 4 920 1720 
T 

1 920 3 600 1520 1520 

2 1040 2 550 1590 

3 1160 1 660 1820 

4 1280 0 930 2210 
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r fJ° ^lustrate s°me of the calculations in Table 9-3, let us outline how the value 
tor t2{z2 - 0) was determined. By equation (9-9), x2 can assume values of -4 -3 

in 2; - 1, and °> ^Ijing values for z, of 4, 3, 2, 1, and 0, respectively, as shown 

(9 6)° NexfS eanfi H TTSleoV; Fu°ruach We find C**» *>’ usin* expression (9 6). Next, we find in Table 9-2 (which is now table 1 for n = 2) the value of f(z ) 
associated with each choice of x2 (repeated in column 5 of Table 9-3); and we find 

the sum of corresponding pairs of C2(x2, z2) and ffa) (columns 3 and 5), shown in 

column 6. By the recursive relation (9-11), f2(Zl = 1) is the minimum of the values 
in column 6, i.e., 1610—the value for x2 = — 1. 

, J5e sa^e computations are done for each of the other 4 states at stage 2. Columns 

1 and 7 of Table 9-3 for n = 2 now form table 1 for the computations at stage n = 

n 
(1) 
zn 

(2) (3) 

c,(z*> *„) 
(4) 

Zn-1 ~ Zn ~ Xn 

(5) 

/n-l^-l) 
(6) 

Total 
(7) 

3 0 -4 680 4 1520 2200 
-3 530 3 1200 1730 
~ 2 380 2 1070 1450 1450 
-1 230 1 1260 1490 

0 , 80 0 1610 1690 

1 -3 650 4 1520 2170 
-2 500 3 1200 1700 
-1 350 2 1070 1420 1420 

0 200 1 1260 1460 
1 320 0 1610 1930 

2 -2 700 4 1520 2220 
-1 550 3 1200 1750 

0 400 2 1070 1470 1470 
1 520 1 1260 1780 
2 640 0 1610 22^0 

3 -1 750 4 1520 2270 
0 600 3 1200 1800 
1 720 2 1070 1790 1790 
2 840 1 1260 2100 
3 960 0 1610 2570 

4 0 800 4 1520 2320 
1 920 3 1200 2120 
2 1040 2 1070 2110 2110 
3 1160 1 1260 2420 

===== 
3 1280 0 1610 2890 

i. 



246 Chapter 9 Deterministic Dynamic Programming_____ 

3. There is never any need to explicitly write out table 1. Table 9-3 also contains the 

computations for n = 3. 
As you can see, the number of computations even for a simplified problem like 

this one becomes enormous. For space reasons, we will not show the detailed table 

2 computations for stages 4 through 6. It is imperative, though, that you construct 

these tables yourself. So that you may verify the correctness of your work, we summarize 

Table 9-4. f„{z„) evaluated for all 7 stages 

Stage 

rn'' nr 

zn f,W 
Optimal 

*n 
Implied 

i 0 930 -3 3 

1 660 -2 3 

—> 2 550 -1 3 

3 600 0 3 

4 920 1 3 

2 0 1610 -1 1 

1 1260 0 1 

—> 2 1070, 0 2 

3 1200 0 3 

4 1520 1 3 

3 0 1450 -2 2 

-* 1 1420 -1 -> 2 

2 1470 0 2 

3 1790 1 2 

4 2110 2 2 

4 0 1650 0 0 

1 1620 0 1 

2 1870 0 2 

3 2190 1 2 

4 2510 2 2 

5 0 2530 0 0 

-> 1 2300 0 1 

2 2300 1 1 

3 2500 2 1 

4 2780 3 1 

6 0 3250 -1 1 

1 2900 0 -» 1 

2 2780 0 2 

3 3020 1 2 

4 3340 2 2 

7 0 3050 -1 '•V i 
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in Table 9-4 the f„(z„) values and the corresponding optimal x„ values for all 7 stages 
Since all units are to be returned at the beginning of week 7, z7 = 0 is the only value 
of the state variable that has to be evaluated at the last stage. The minimum cost of 
he optimal rental policy is seen to be f7(z7 = 0) = 3050. We can nOw back-track 

through this table to find the optimal policy. The last line in Table 9-4 indicates that 
the optimal x7 = - 1 Equation (9-9) implies that z6 = 1. We now go to the panel 
tor n - b, and hnd the optimal decision associated with z6 = 1. This is x = 0. 
Again, equation (9-9) implies that z, = 1, and from the panel for n = 5 and z, = 
l we find the optimal x5 = 0. Continuing in this fashion, as shown by the arrows in 
I able 9-4, we find that the optimal policy is 

__ Week 1 2 3 4 5 6 7 

Number of units rented 2 2 111] 0 
Change from previous week —1 0 —1 0 0 0 —1 

This example also could be solved using the backward solution. It goes without 
saying that the optimal solution would be the same. 

9-7 COMPUTATIONAL ASPECTS 

As was true for linear programming, few real-life dynamic programming problems are 
ever solved by hand. Although dynamic programming, in comparison with complete 
enumeration, tremendously reduces the number of evaluations, the computational 
e ort is sti very large. Therefore, the analyst usually writes a computer program to 
perform the computations. 

Figure 9-3 shows a flow chart of the sequence of computations for the rental 
pioblem, which could serve as a basis for such a computer program. The evaluation 
of the recursive relation for all types of problems has basically the same nested structure 
ot an outer loop on the stages, a middle loop on the values of the state variable and 
an inner loop on the values of the decision variable. It is mainly the cost, or return 
junction, and the determination of the state transformation function in the heavy- 
lined box that will change from problem to problem. 

9-8 A RESOURCE ALLOCATION PROBLEM 

A firm operates three factories located on the same river. All three factories discharge 
their industrial waste water into the river with little or no processing. As a result, the 
water quality of the river has suffered severely. Under pressure from government and 
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various citizens groups, the management of the three factories decides to implement 
a joint plan for waste water treatment, so as to upgrade the water quality of the river 
to a standard that would permit the river to purify itself prior to reaching a main 
recreational area. A water pollution expert is called in. Her analysis indicates that the 
total biological oxygen demand on the river water by all three factories combined 
should not exceed 1.6 parts per million (PPM). 

Each factory can process waste water either by primary treatment only, by primary 
and secondary treatment, or by primary, secondary, and tertiary treatment, each 
method reducing the oxygen demand of the treated effluent to progressively lower 
levels. Table 9-5 lists the oxygen demand by each factory for the various degrees of 
waste water treatment and lists the cost of the installations. 

Table 9-5. Oxygen demand and installation costs 

Highest 
Degree of 

Treatment 

Oxygen Demand 
(PPM xj 

Installation 
Costs ($1000 s) 

n = 1 
Factory 
n = 2 n = 3 

Factory 
n = 1 n = 2 n = 3 

7 = 0: none 1.2 0.8 1.6 0 0 
7=1: primary 0.6 0.6 1.0 80 40 
7 = 2: secondary 0.2 0.4 0.6 140 80 
7 = 3: tertiary 0 0 0 170 140 

Management wants to determine the degree of treatment at each factory such 
that the sum of the oxygen demand by all three factories does not exceed 1.6 PPM, 
minimizing the combined cost for all installations. 

This problem, a version of allocating a scarce resource to a number of competing 
uses, goes under the descriptive name of the knap-sack problem (or the fly-away-kit 
problem). The scarce resource to be allocated is the river’s capacity to support a certain 
amount of oxygen demand. It is to be allocated in an optimal fashion to one or several 
uses or activities (in our case, to the natural biological purification of partially treated 
effluent from each factory). 

Our first task in solving this problem by dynamic programming is to identify the 
decision variables, the stages, the state variable, and the state transformation function. 
The highest degree of treatment to be used in each factory is the natural choice for 
the decision variable. Recall that we associate a decision variable with each stage 
Hence each fkctory represents a stage. Note that this problem is not really a multi¬ 
stage decision process. All three decisions have to be made at the same time. The 
stage concept—the uses of the resource—is introduced artificially. The amount of the 
scarce resource left to be allocated at each stage serves as the state variable. By the 
principle of optimality, the formulation implies the following type of reasoning: If 
there is an amount s of the resource left to be allocated to the nth, (n — l)th, 



second and first use (or factory, in our case), and we allocate an amount x • to the 
nth use, then the balance of the resource (s - x„y) is to be allocated optimally to the 
remaining n - 1 uses, (s - x„y) is thus the state transformation function from stage. 

n to stage n - 1. , 
Starting with n = 1 (only one factory left), we find the optimal use of an amount 

s of the resource left. We do this for every possible value of s. Knowing the optimal 
use for the first factory, we next find the optimal allocation over two stages l.e., over 
the second and first factories, for each value of s. Finally, we find the optimal allocation 

over three stages for s = 1.6. 
We now translate this reasoning into mathematics, 

cost of optimally allocating an amount s of the resource 
is the cost, and xnj is the oxygen demand of alternative j 

Let f„(s) be the minimum 
to the first n factories. If cnj 
for factory n, then 

(9-12) f,(s) = minimum c,; 
i 

and 

(9-13) fn(s) = minimum [cnj + f„_,(s - xnJ)], 
i 

V* 

Note that by defining f0(s) = 0, for all s, we can use expression (9-13) also for 
n = 1. The condition xnJ =£ s guarantees that the minimum is chosen only over those 
alternatives that have an oxygen demand not exceeding the amount left to be allocated. 
The state variable ranges over the values 0 to 1.6. Since all oxygen demands are 
multiples of 0.2, f„{s) has to be evaluated only for s = 0, 0.2, 0.4, . .,1.4, and 1.6. 
Table 9-6 shows the computations. The evaluation for n = 1 is trivial. The minimuin 
is always obtained for the lowest degree of treatment feasible for the given value of 
s. At stage 3, we need to evaluate f,(s) only for s = 1.6. However, it is interesting to 
perform some sensitivity analysis with respect to the maximum oxygen demand, which 

is the reason for computing f3($) for all values of s. 

Table 9-6. Evaluation of the water pollution project 



(1) (2) (3) (4) (5) (6) (7) (8) (9) n 8 j 3/ °nj s~xm L i(s~V Total f„(s) 

2 0 3 0 140 0 170 310 310 
0.2 3 0 140 0.2 140 280 280 
0.4 3 0 140 0.4 140 280 

0.6 
2 0.4 80 0 170 250 250 
3 0 140 0.6 80 220- 
2 0.4 80 0.2 140 220 

0.8 
i 0.6 40 0 170 210 210 
3 0 140 0.8 80 220 
2 0.4 80 0.4 140 220 
1 0.6 40 0.2 140 180 

-►1.0 
0 0.8 0 0 170 170 170 
3 0 140 1.0 80 220 
2 0.4 80 0.6 80 160 
i 0.6 40 0.4 140 180 

1.2 
-> 0 0.8 0 -►0.2 140 140 140 

3 0 140 1.2 0 140 
2 0.4 80 0.8 80 160 
1 0.6 40 0.6 80 120 120 

1.4 
0 0.8 0 0.4 140 140 
3 0 140 1.4 0 140 
2 0.4 80 1.0 80 160 
1 0.6 40 0.8 80 120 

1.6 
0 0.8 0 0.6 80 80 80 
3 0 140 1.6 0 140 
2 0.4 80 1.2 0 80 
1 0.6 40 1.0 80 120 80 
0 0.8 0 0.8 80 80 

3 0 3 0 220 0 310 530 530 
0.2 3 0 220 0.2 280 500 500 
0.4 3 0 220 0.4 250 470 470 
0.6 3 0 220 0.6 210 430 430 

0.8 
2 0.6 150 0 310 460 
3 0 220 0.8 170 390 390 

1.0 
2 0.6 150 0.2 280 430 
3 0 . 220 1.0 140 360 360 
2 0.6 150 0.4 250 400 

1.2 
1 1.0 100 0 310 410 
3 0 220 1.2 120 340 340 
2 0.6 150 0.6 - 210 360 

1.4 
1 1.0 100 0.2 280 380 
3 0 220 1.4 80 300 300 
2 0.6 150 0.8 170 320 
1 1.0 100 0.4 250 350 

1.6 
0 1.6 0 0 310 310 
3 0 220 1.6 80 300 

—•> 2 0.6 150 -►1.0 140 290 290 
i 1.0 100 0.6 210 310 
0 1.6 0 0 310 310 
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The optimal solution is shown by the arrows in Table 9-6. For a maximum 
permissible oxygen demand level of s = 1.6, the optimal solution calls for factory 3 
to install j = 2, 8x primary and secondary waste water treatment; for factory 2 to mstal 
j = 0, or no treatment whatsoever; and for factory 1 to install j = 2, or primary and 

secondary treatment. The total cost is $290,000. 
Figure 9-4 depicts the cost increase as the maximum permissible oxygen demand 

is decreased. An initial tightening of 0.2 PPM down to 1.4 PPM is relatively cheap; 

thereafter, the cost increases by about $30,000 per 0.2 PPM. 

Figure 9-4. Sensitivity of optimal solution to tightening of the effluent standards. 

9-9 AN EQUIPMENT REPLACEMENT MODEL 

As a piece of equipment, such as a machine, a truck, or an airplane, ages, its efficiency 
decreases, whereas operating and maintenance costs increase. Therefore, there comes 
a time when it becomes more economical to replace the equipment with a new, 
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similar piece. What is the optimal time of replacement? This section deals with this 
question. 

Pick-up trucks are subjected to a lot of beating. They age fast. Past records of a 
cartage contractor show the following pattern of operating and maintenance costs, 
opportunity costs of down-time (= lost revenue), and resale or salvage value for a 
given model, in dollars. 

Year of operation i 2 3 4 5 6 

Operating and maintenance costs 8000 8200 9000 8400 9400 8800 
Opportunity cost for down-time 1000 1100 1600 1200 2000 1600 
End-of-year salvage value 14,000 12,000 11,000 8000 7000 5000 

No truck was ever used for more than 6 years. The maintenance costs reflect 
major overhauls at the beginning of the third and fifth years. A new truck has a cost 
of $18,000. When should this model be replaced? 

Let us initially look at this problem over an arbitrarily chosen planning horizon 
of 9 years. We start out with a new truck, and we will sell whatever truck we have 
on hand at the end of the ninth year. Starting with the second year, the owner must 
make a decision at the beginning of each year. The alternatives are to (1) keep the 
truck for at least another year, or (2) replace the truck with a new one of the same 
model. (Although models and prices change slightly over the years, such changes are 
assumed not to affect the relative operating characteristics to any major degree. The 
same operating data are thus assumed to be valid over the entire 9 years.) 

The decision process is depicted graphically in Figure 9-5. The numbers in the 
circles denote the age of the truck prior to making a decision. We start out with a 
truck of age 0 (new). After 1 year, that truck is age 1 (1 year old). At that point, either 
we can keep it (top branch) and end up with a truck of age 2 at the end qf year 2, or 
we can trade it in for a new truck (bottom branch) and have a truck of age 1 at the 
end of year 2, and so on. No truck is kept for more than 6 years. The numbers attached 
to the branches are the total net annual cost associated with the corresponding action. 
All branches leading to a one-year-old truck in years 2 through 9 are obtained as 

(purchase price of new truck) - (salvage value of truck replaced) 

+ (sum of operating, maintenance, and down-time costs for new truck) 

For instance, branches leading from a 3-year-old truck to a 1-year-old truck have a 
cost of ($18,000 — $11,000) + ($8000 + $1000) = $16,000. The negative numbers 
shown at the end of the planning horizon are the cash inflows from salvage values 
of the truck. 

The diagram immediately suggests that each year represent a stage and the age 
of the truck on hand at the end of a year serve as the state variable. Stage 16 represents 
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the action of selling the truck on hand at the end of year 9. The objective is to 
determine a policy that minimizes total costs over the planning horizon. 

We shall use a forward formulation. Let fn{s) be the total minimum cost through 
period n if the truck on hand at the end of period n is of age s. Let cs be the sum of 
all operating, maintenance, and down-time costs during a truck’s sth year of operation. 
Let p be the purchase price of new truck, and let bs be the salvage value of a truck 
of age s. Then 

/id) = c, 

(9-14) fn{s) = cs + /^(s - 1), for s > 1 1 < n =£ 9 

fn(1) = minimum [(p - b) + c, + /^(s)], 1 < n 9 
S 

Finally, let fl0 be the minimum cost, given that the truck is sold at the end of 
year 9: 

(9-15) fw = minimum [f9(s) - bs} 
S 

Note that only for fn(l), n = 1, . . ., 9, and fl0 does the evaluation of expressions 
(9-14) and (9-15) involve any minimization. All other terms of fn(s),s > 1, are obtained 
by a simple addition of two numbers. 

For a small problem like this, the diagram might as well be directly used for the 
evaluation of the forward solution. The number shown immediately above each circle 
in Figure 9-5 is fn(s) for n ^ 9, and /jofor n = 10. You should check these computa¬ 
tions to test your understanding. 

The heavy lines leading to the bottom row of circles (age 1) indicate the optimal 
action. The optimal action for stage 10 is to sell a truck of age 3. A heavy line leads 
from state 3 of stage 9 (end of year 9) to the end point. This implies that this truck 
was age 1 at stage 7 (end of year 7). The heavy line leading from state 3 of stage 6 
to state 1 at stage 7 indicates that a truck replacement occurred at the end of year 6. 
Tracing the optimal policy back to the initial point in this manner, we see that the 
first truck was replaced at the end of year 3. So for a 9-year horizon the optimal policy 
is to replace the truck every three years. 

9-10 ALTERNATIVE FORMULATION OF REPLACEMENT 
PROBLEM—A REGENERATION MODEL 

Each time a replacement occurs, the process of aging starts anew. The owner also has 
to decide again how long the new truck should be kept until that truck in turn is 
replaced. In other words, at each replacement the process regenerates itself. The 
replacement is a regeneration point. The time between replacements is the regeneration 
period. Viewed from this angle, the replacement problem changes to one of finding 
the optimal sequence of regeneration periods. 

Figure 9-6 shows the network of all possible regeneration periods for each year 
in the 9-year planning horizon. Each branch leaving a regeneration point represents 
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one of the feasible regeneration periods. Since we wish to use a backward formulation 

we have now relabeled the nodes in reverse chronological order, with n being the 
number of periods remaining until the end of the planning horizon 

Note how Figures 9-5 and 9-6 differ. In Figure 9-5, each year we could either 

keep a truck for another year or replace it. In Figure 9-6, we start with a new truck 

at each regeneration point. Hence there is no need to introduce a state variable for 

the age of the truck. In Figure 9-5, transitions are restricted to states in consecutive 

stages only In Figure 9-6, we allow transitions from stage n to any stage (n - k), where 

k denotes the length of a regeneration period. In our case, k may assume values 1 
2, . . 6. ’ 

Each regeneration period has a regeneration cost c„, where i and j are two 

consecutive regeneration points, j < i. c,y covers the purchase price of the new 

truck obtained at the beginning of year i, all operating costs during years i 
through (] + 1) (remember reverse chronological ordering), less the salvage value of 

a truck of age (i - /). Let us also discount the cash stream. Then cr is the present 

value of the net cost at the beginning of year i. In the notation of Section 9-9, we find 

^'16) cn = p + 2a-cs - a‘~ibi_J 
s=l 

where <xm is the discount factor over m years, 0 < a =£ 1. (See Section 1-13 for a 

review of discounting.) We assume operating costs are assessed as of the beginning 
ot a year. 6 

Let fn denote the present value of the cost of an optimal regeneration policy over 

the remaining n years to the end of the planning horizon, starting with a new truck 

at the beginning of year n . From the relationships implied in Figure 9-6, we may 

derive the following recursive relations for this regeneration model: 

(9-17) fn = minimum [c„>n4 + a*fj, for n = 1, 2, . . ,,N 
k 

Expression (9-17) embodies a special version of the principle of optimality. 

Namely, no matter what length k for the initial regeneration period is chosen at stage 

n the policy over the remaining (n - k) stages must constitute an optimal subpolicy 
of regeneration periods. 

Table 9-7 shows the evaluation of expression (9-17) over all 9 stages for an annual 

discount factor of a = 0.9. The row labeled shows the regeneration costs. For 
instance, the cost for k = 2 is obtained as follows: 

c„,„-2 = 18,000 + (8000 + 1000) + 0.9(8200 + 1100) - 0.92(12,000) = 25,650 

Each of the remaining 9 rows shows the total of cnn_k + a%_k, for all feasible k. 
The numbers in parentheses give the next stage, (n - k). The minimum in each row 

is /„ and is shown in boldface. The optimal replacement policy over an n = 9 year 

planning horizon is to keep the initial truck for k — 6 years and then replace it with 

a new one. Note that discounting tends to lengthen the optimal replacement period. 

Replacement problems, like many other regeneration problems, frequently form 

part of an unspecified but potentially long sequence of regeneration decisions. At the 
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Table 9-7. Evaluation of recursive relation for regeneration problem 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

Cn,„-k 
14,400 25,650 35,937 45,706 54,301 61,918 

n = 1 14,400(0) 

n — 2 27,360(1) 25,650(0) 

n = 3 37,485(2) 37,314(1) 35,937(0) 

n = 4 46,743(3) 46,427(2) 46,435(1) 45,706(0) 

n = 5 55,535(4) 54,759(3) 54,636(2) 55,153(1) 54,301(0) 

n = 6 63,271(5) 62,672(4) 62,135(3) 62,535(2) 62,804(1) 61,918(0) 

n = 7 70,126(6) 69,634(5) 69,257(4) 69,284(3) 69,447(2) 69,571(1) 

n = 8 76,731(7) 75,804(6) 75,522(5) 75,694(4) 75,521(3) 75,549(2) 

n = 9 82,369(8) 81,748(7) 81,075(6) 81,333(5) 81,290(4) 81,016(3) 

time of problem analysis only the initial decision will be implemented. The problem 
will be analyzed anew by the end of the initial regeneration period. The choice of a 
finite planning horizon is only an approximation for computational convenience. 
Hence, we want to make sure that the planning horizon chosen does not cause the 
initial decision to be adversely affected. In our example, it turns out that 9 years is 
just sufficient—8 years would be too short. Verify that the initial regeneration period 
of 6 years remains optimal as the planning horizon is lengthened to 10, 11, and 12 

years. 
What is the minimum length planning horizon needed? We shall not attempt 

to answer this question. Instead, we shall outline a method for finding an upper bound 
to this length. We established an optimal regeneration period for N = 9 of k* - 6. 
This in itself does not mean much since k = 6 was also optimal at stage 6 but not 
optimal at stages 7 and 8. However, as you already verified, k = 6 remains optimal 
as we lengthen the planning horizon N to 10, 11, and 12. For N = 12, a k= 6 
implies exactly 2 equal-length regeneration periods. We can thus assert that, were we 
to increase N to 18, the optimal policy over the 12-year problem would be an optimal 
subpolicy after the initial regeneration period of k* = 6. But this is true for any N 
that is a multiple of 6. Hence, k = 6 must be the optimal policy as N goes to infinity. 

This yields the following procedure to determine the initial optimal decision. 
Using a backward formulation, we determine the optimal regeneration period k for 
consecutively larger values of N. As N goes to (N + 1), the optimal policy over N 
periods becomes the input for the (N + l)-year problem. In terms of Table 9-7 this 
means we simply add another row. We stop as soon as we reach a value of N that is 
equal to 2k\ where k* is the optimal initial regeneration period over the N-period 
planning horizon, k* is then the optimal regeneration period at the beginning of the 

unbounded planning horizon. 

*9-11 TWO OR MORE STATE VARIABLES 

Sometimes more than one state variable is needed to provide a complete description 
of the state of a process. For instance, in the rental equipment problem, the firm may 
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require equipment at more than one location. Equipment rented may be transferred 
horn one location to another at a certain cost. Rather than have only one state variable 
tor the total number of pieces rented, we introduce a separate state variable for each 
location. Similarly, the firm may rent more than one type of equipment, and costs 
may depend on the combination of equipment rented. Again, a separate state variable 
would be introduced for each type of equipment. In fact, most dynamic programming 
problems need more than one state variable. 

There is no conceptual difficulty in having more than one state variable. However 
there are severe computational limitations on the viable number of state variables’ 
Let us look at the number of computations required to evaluate the recursive relation 
tor more than one state variable. Assume that each state variable can tgke on 100 
different values. Then, for two state variables there are 1002 state combinations. This 
may not pose any problems other than increasing the computational time by 100-fold. 
For three state variables, the number of combinations at each stage is 1003 (or 1 
million), resulting in a 10,000-fold increase in computational time. For example, if 
a one-state variable problem takes one second of computation time on a1 computer 
an equivalent three-state variable problem would take close to three hours. Since the 
number of decision variables of each stage may also increase to two or more as the 
number of state variables increases, the computational effort per state variable com¬ 
bination may increase manifold, compounding this problem even more. Furthermore, 

i nn33 rr)Un| °r cornPu*er memory needed at each stage is now also at least two times 
J00 °™y/» and fn-1 are stored). Therefore, for more than two state variables to 
be handled by internal memory alone, the number of states for each variable has to 
be drastically reduced. It is hardly ever feasible to go beyond three state variables. This 
explosion of the computational effort and the memory requirement has been aptly 
named the curse of dimensionality of dynamic programming. A number of special 
techniques and approximation procedures have been devised to overcome some aspects 
of dimensionality. Most are structure specific, i.e., they are only suitable if the problem 
has a certain mathematical form. They also will not find the global optimum unless 
the one-stage cost functions are U-shaped. For a more extensive discussion, see the 
texts listed in the references for this chapter. 

*9-12 CONTINUOUS STATE VARIABLES 

So far we have discussed the case where the state and decision variables assume only 
a finite set of discrete values. In fact, dynamic programming is admirably suited for 
discrete problems. If the state and decision variables may assume any real value a 
number of difficulties appear, and the temptation is great to make an arbitrary discrete 
approximation. For many applications, this is adequate. If the state variable is left 
real-valued, the usual approach to the problem is to evaluate the state variable for a 
discrete set of values only—a so-called finite grid. 

Usually, state transitions will not necessarily be made only to values of the state 
variable that have been evaluated at the preceding stage. Hence, if fn , is heeded for 
other values of the state variable, interpolation (usually linear) between the two adjacent 
grid points is used. Note again that no global optimum can be guaranteed then, since 
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the global optimum may have been missed by the choice of an initial grid that was 
too coarse. This is, however, less a shortcoming of dynamic programming than a 

failure caused by an inadequate approximation. 

9-13 SOME FURTHER APPLICATIONS 

Dynamic programming has been used to solve a most diverse collection of problems. 
We will briefly highlight a few problems with deterministic state transitions. 

1. Resource allocation (knapsack-type problems): A limited amount of a re¬ 
source—e.g., funds, space, carrying capacity, water—is available for allocation 
to several different projects or uses that all can be undertaken at several discrete 
levels of intensity. The objective is to maximize the total benefits over all 
project allocations. (Stage: each use type or project type; state: amount of 
unused resource left to be allocated over remaining uses; decision: level of 
intensity of each use.) The allocation of salespeople to sales regions is an 

example. , 
2. Production scheduling over time: A production facility with limited capacity 

has to be scheduled over time. The objective is to meet specified demands per 
period over a given planning horizon so as to minimize total production and 
inventory costs. (Stage: each period; state: inventory level; decision: amount to 

produce each period.) f 
3. Assortment (or trim) problems: A product is required for use in a number ot 

sizes widths, or strengths. It is produced or can be procured only in a limited 
number of standard sizes yt, where i = 1, 2, . . ., I. If the product is required 
at a size x other than one of the standard sizes yif then it has to be supplied 
from the next larger (wider, stronger) standard size, resulting in wastage. The 
problem is to find an assortment of N < I standard sizes so as to minimize the 
wastage or the total cost of satisfying the given requirement combination. 
(Stage: one for each standard size used; state: length (or width or strength) of 
a standard size; decision: length (or width or strength) of the next smaller 

standard size used.) 
4. Multi-stage processing operations: A product has to be processed in a prescribed 

sequence through a number of machines, each performing varying amounts 
of processing. For instance, a rolling mill consists of N independent stands, 
each stand reducing a strip of metal by a certain amount. The processing speed 
of a stand is a decreasing function of the amount of reduction. The objective 
is to maximize the overall processing rate of the mill. (Stage: each machine, 
state: amount of processing left to be done, e.g., input gauge of stand; decision: 
amount of processing done, e.g.? output gauge of stand.) Other examples of 
this type occur in the management of biologically renewable resources, such 
as fisheries and forests. For instance, in forest management, each stand of trees 
can be subjected to a number of possible operations over time, such as thinning, 
pruning, selective logging, and clear-felling. The amount and the value of the 
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wood depends on the intensity and timing of these operations. The objective 

is to maximize the value of the forest stand. (Stage: age of trees; state: volume 

ot wood standing; decision: intensity of operation, e.g., thinning.) 

5. Control of chemical processes: A product has to go through a sequence of 

chemical reactions. The objective is to minimize the cost of the final product. 

(Stage: each reaction; state: composition or quality of entering material; deci¬ 
sion: amount of catalyst or temperature, etc.) 

EXERCISES 

9.1 Consider the network shown in the illustration, where the numbers attached to the links 
are the distances between two points. 

(a) Using the backward solution of dynamic programming, find the shortest path from 
point 1 to point 14. 

(b) Using the forward solution of dynamic programming, find the shortest path from 
point 1 to point 14. 

9.2 A firm has just developed a new product. Management figures that it has about three 
months before its main competitor will have a similar product on the market, and, 
t erefore, wishes to contact as many potential customers as possible. The territory to 
be covered is divided into five sales areas. For each sales area, the incremental number 
of customers that can be contacted by the 1st, 2nd, 3rd, etc., salesperson within the 
three-month period is as follows. 
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Sales Area 

1 
2 
3 

Number of Salespeople 4 

Assigned to the Area 5 
6 
7 
8 

1 2 3 4 5 

31 36 40 28 32 

31 33 36 25 30 

30 31 32 24 29 

28 24 29 22 27 

25 20 25 12 18 

20 14 18 8 12 

12 9 10 0 6 

8 0 0 0 0 

(a) The firm has ten salespeople trained for this promotion. Formulate the recursive 
relation of dynamic programming. Find the optimal assignment of salespeople to 
each sales area so as to maximize the number of potential customers contacted. 

(b) How many additional customers could be contacted if the firm trained one additional 

salesperson? two additional salespeople? 
(c) Is there any conceptual difference in the dynamic programming formulation between 

a forward and a backward solution for this problem? 

9.3 A weather monitoring station is supplied once a month by air drop. The plane making 
the air drop has an excess weight capacity for nonessential items of W kg. Each month 
the weather station radios its needs for various nonessential items and assigns utility 

values for the first, second, . . ., feth unit of the item included in the shipment. On 

a particular occasion, the list is as shown in the table. 

Item 

Incremental Utility for Units 
- Weight per 

1st 2nd 3rd 4th 5th Unit (kg) 

1 12 8 4 0 0 2 

2 15 5 1 0 0 3 

3 6 6 5 4 2 1 

4 8 5 2 1 0 1 

5 20 10 0 0 0 4 

The total excess weight capacity is W = 10 kg. Formulate the recursive relation of 
dynamic programming maximizing total utility, and use it to evaluate the optimal 

solution. 

9.4 A firm is planning its advertising budget. Three different media are considered: television, 
glossy periodicals, and store promotions. The advertising agency comes up with the 
following proposals listed. The total amount of advertising funds available for the cam¬ 
paign is $40,000. The problem is to find the optimal combination of advertising media. 

This problem can be solved by dynamic programming. 



Television ads: 

Number of time slots taken 
Total cost 

Total number of potential customers 
reached (in 1000's) 

Glossy periodicals: 

Number of ad sequences 
Total cost 

Total number of potential customers 
reached (in 1000?s) 

Store promotions: 

Number of displays 
Total cost 

Total number of potential customers 
reached (in 1000’s) 
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i i 

1 2 3 
$20,000 $30,000 $40,000 

180 280 320 

12 3 4 
$10,000 $20,000 $30,000 $40,000 

120 190 250 300 

12 3 4 
$10,000 $20,000 $30,000 $40,000 

_80 160 240 310 

(a) What do you use as the stage, and what is the state variable? Formulate the recursive 

relation of dynamic programming. Clearly define in fall detail all notations used. 
(b) Solve the problem. Let the state variable assume only discrete values in multiples 

of 10,000. What is the optimal program? 

9.5 A manufacturer can produce a limited number of units using his work force at regular¬ 

time wages and additional units employing labor at overtime rates. Because1 of variations 
in the cost of raw materials, unit costs over the next 6 months vary as shown in the 

table. Inventory-holding costs amount to $1/month. Inventories cannot exceed 3 units. 
We initially have 2 units on hand and do not want any inventories at the end of the 
6-month cycle. Formulate the recursive relations of dynamic programming, and use 
them to evaluate the optimal solution. Use a backward formulation. 

Period i 2 3 4 5 6 

Regular cost/unit 6 7 6 9 6 6 
capacity 2 5 2 4 2 7 

Overtime cost/unit 8 9 8 11 9 9 
capacity 3 2 1 1 2 3 

Demand 2 6 4 5 1 10 

9.6 A product is produced by a batch process. The set-up cost per batch amounts to $10. 
The variable production cost is $8 for the first unit produced, $6 for the second, $4 for 
the third, and $3 for each additional unit. The maximum production capacity per week 
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is 6 units. The product can be stored in inventory at a cost of $2 per week. The beginning 
inventory is zero, and no inventory is wanted at the end of the planning horizon. 
(a) If the demand over the next 8 weeks is 2, 1, 2, 3, 0, 1, 3, and 3, formulate the 

recursive relation of dynamic programming, and find the optimal solution using a 

backward formulation, i.e., starting at the end of the planning horizon 
(b) If the demand is I unit per week over the next 8 weeks, formulate the recursive 

relation of dynamic programming using a forward formulation, and find the optimal 

solution. . . j . 
(c) If there is also a handling cost of $1 for each unit put into inventory, how does this 

change the form of the recursive relation for (a)? You do not have to solve the 

problem again—merely reformulate it. 

9.7 The price of one of the raw materials needed in the manufacturing process of a firm 
is subject to fairly regular seasonal fluctuations. The prices predicted and the amounts 

required for the coming 6 months are 

_Month 1_2_3_4_5_6 

Price/unit $11,000 $13,000 $18,000 $19,000 $19,000 $21,000 
Requirement 2 4 4 4 4 2 

Material purchased in a given month can be used in the production process of the same 

month or stored for later use. The maximum storage capacity is 8 units. Material carried 
forward in inventory for one period incurs a holding cost of $2000 per unit. Each 
purchase requires a trip by a specialized vehicle at a cost of $3000 per purchase, regardless 
of the amount procured. Beginning inventory and ending inventory are zero. Formulate 
the recursive relations of dynamic programming minimizing total cost, and find the 

optimal purchasing and storage policy. 

9.8 An electronic monitoring device consists of N components that work in series. Each 
must function for the device to function as a whole. Each component is subject to 
random failure, causing the device to fail. The reliability of the device can be improved 
by installing more than one unit of a component. If this component fails, one of the 
spare units is automatically switched into the circuit to take its place. The number of 
units installed for each component is restricted by the total cost of the device. Consider 

the simple example for N = 4 in the table. 

Component i 2 3 4 

Probability of 
no failure for 
0 spare unit 0.7 0.9 0.8 0.6 

1 spare unit 0.85 0.96 0.9 0.8 

2 spare units 0.97 0.99 0.98 0.95 

Cost/unit $100 $300 $100 $200 
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9.9 

Assume that 1 unit of each component has been included. If $600 of additional 
funds are available for spare units, how many spare units of each component should 
be included in the device so as to maximize the probability that the device will not fail? 
Formulate the recursive relations of dynamic programming, and find the optimal so- 
lution Hint: The probability that the device will not fail is equal to the product of the 
probabilities of each component not failing. For example, if no spare units are included 
or components 1, 2, and 3, and 1 spare unit is included for component 4, the probability 

of no failure is (0.7) (0 9) (0.8) (0.8). Let denote the maximum probability of no 
tailure it s dollars are allocated for spares for the first n components. 

Consider the network m the illustration. The numbers attached to each branch represent 
the throughput capacity of that branch in the direction of the arrow. The problem is 
to find thesingle route from either point 1 or point 2 to point 9 that has the maximum 
capacity. The capacity of any route is given by the branch on the route that has the 
lowest capacity. 

(a) Let c.. denote the capacity from node i to node ;. Formulate the recursive relations 

ot dynamic programming for a backward solution, i.e., starting at node 9 and 
working backward. Define stage, state, and decision. 

(b) Using your recursive relations, solve the problem. What nodes are on the optimal 
route, and what is the capacity of that route? 

9.10 Consider a 4-stand rolling mill. Each stand reduces a metal strip of gauge y to gauge 
x, x « y. Steel is transported from stand to stand in a negligible amount of time. 
Keteeding the steel into the same stand would take a significant amount of time. Thus 
reducing stands are operated in sequence. The throughput rate of a stand with the input 
gauge set at y and output gauge set at x is f(y, x). The table gives t(y, x) for various 
feasible reductions. The input gauge on the initial stand is fixed at 8. The throughput 
rate of the mill is equal to the lowest throughput rate of any stand used. Note that a 
stand can be used just to transport the strip at maximum speed (= 1) to the next stand 
wUhout performing any reduction. The objective of running the mill is to maximize 

e total throughput rate by optimally selecting the reduction performed on each of the 
tour stands. 
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y X=1 x = 2 x = 3 x = 4 x= 5 x - 6 

i 1 

2 0.75 1 

3 0.68 0.81 1 

4 0.52 0.71 0.82 1 

5 0.45 0.62 0.73 0.9 i 

6 0.39 0.5 0.67 0.84 0.92 i 

7 0.34 0.47 0.58 0.78 0.82 0.94 

8 0.3 0.32 0.49 0.63 0.79 0.86 

(a) Formulate the recursive relation of dynamic programming in general terms for an 

input gauge of size y and a final output gauge of size x with N stands^ _ 
(b) Find the optimal reduction on each of the four stands for the above data for y - 

8 and x = 7, 6, 5, 4, 3, 2, 1. (Note that some solutions can be found by inspection.) 

9 11 A plastic coating firm sells paper rolls laminated on one side with plastic foil. These 
rolls are used mainly for bag manufacture and for other wrapping material that has to 
be moisture-proof. The rolls are sold in 9 different widths, with annual demands as 

follows: 

Roll width x 10 12 13 18 24 30 36 48 60 Inches 

Demand 200 400 240 600 480 250 320 160 80 Rolls 

The plastic foil used for laminating has to be at least as wide as the paper rolls. Plastic 

foil is available in 8 different widths at the following costs: 

Foil width y 12 15 21 24 32 36 48 60 Inches 

Cost/roll 14 17 22 24 28 30 36 42 Dollars 

(a) 

9.12 

It is inconvenient to stock more than 3 different foil widths. Which foil width sizes 
should be procured to minimize total costs? Formulate this problem by dynamic 

programming, and use the recursive relations to find the optimal solution. 
(b) What is the cost reduction if the number of foil widths procured is increased to 

(Hint: Determine first a table listing the cost of using a foil width y to laminate all 

paper rolls of width x ^ y.) 

As seen in Section 9-2, some types of shortest-path problems can be solved using 
dynamic programming. The condition is that the points must be able to be grouped 
into sets, such that each path from the start to the end node has to go through exactly 
one point in each set. The sets can then be numbered as stages. With each stage we 
also associate a state variable (= a possible location at that stage). There are shortes - 
path problems where the points cannot be grouped into such sets. Consider for instance 
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the problem illustrated. The numbers attached to the arrows represent the distances 

SnStC0?neCK IfcW6J lr0p the notion of staSes> then the principle of 
s^tmahty can still be applied to find the shortest path for sequential problems of this 

(a) Formulate a recursive expression for this problem where t„ is the distance from i 

(b) Use the recursive expression from part (a) to find the shorest path from 1 to 8 What 
is the minimum distance? 

9.13 A machine in a production plant is inspected annually and is either overhauled or 

replaced. The cost of an overhaul and the scrap value of the machine are related to its 
age as shown in the table. (All figures are in units of $1000.) A machine oif age 4 cannot 
be overhauled any more and has to be replaced. A new machine costs c0 = 20. The 
current machine is 3 years old and could be replaced immediately if desired The 
remaining life of the plant is 4 years, at the end of which time the machine in use will 
be scrapped. 

Age (k) 1 2 3 4 

Overhaul cost (cj 739 
Scrap value (bk) 10 5 2 0 

(a) Formulate in general terms (using letter symbols) the recursive relations of dynamic 
... Programming for a backward solution. Define stage, state, and decisions 
(b) Evaluate the recursive relations to find the optimal replacement policy. 

9.14 Consider the tabulated costs associated with operating and maintaining a machine The 

cost of a new machine is $1200. The present machine is 3 years old. Using a 12-year 
planning horizon, formulate the recursive relations of dynamic programming and find 
the east-cost replacement policy. How is the initial decision affected by the age of the 
machine in year 12? 

Operating year 1 2 3 4 5 6 7 8 9 

Operating costs/year 200 200 210 240 280 350 450 600 800 
Salvage value 

(end of year) 900 750 600 450 300 200 100 50 0 



The Electricity Board of No-Growth County recently installed a substation serving a 
new housing development under construction. The present substation is of size 1. This 
substation will be able to serve the requirements of the area during the coming 3 years 
(years 1 2, and 3) but will have to be replaced by the beginning of year 4 at the latest. 
One replacement choice is a substation of size 2 that would be able to meet the 
requirements through the end of year 6, and then would have to be replaced by a larger 
substation of size 3, which is large enough to meet the final requirements expected in 
year 8 and thereafter. A substation of size 3 could obviously also meet the smaller 
tequirements of the first years and could be purchased instead of a size 2. The tab e 
gives the operation costs R,(/') and the purchase and installation costs Cf(/) for a substation 
of size / in year i (all in $10,000’s). The problem consists of determining the optimal 

replacement pattern over the 8 years. 

Year i 1 

Initial cost if bought 
beginning of i 
for size 2 
for size 3 

B 9 10 11 — — — 
10 12 14 16 16 16 16 

Operating costs 
for size 1 
for size 2 
for size 3 

10 11 00 
11 12 13 

(a) Formulate this problem in general terms by dynamic programming using a forward 
formulation. Show the recursive relation of dynamic programming for year 1 and 

(b) Evaluate the recursive relation in table form for years 1 through 8. What is the 

optimal replacement policy? 

Solve exercise 9.13 as a regeneration problem. 

Solve exercise 9.14 as a regeneration problem. 
Two-state-variables problem. Consider exercise 9.3. Assume that there is not only a 
maximum excess weight limit but also a limit on the excess space, S. The amount ot 

space required per unit for the five item is 

Item 1 2 3 4 5 

Space (cu ft) 1 2 1 2 3 

Assume that for a given flight the excess space is S = 5 and the excess weight is 
W = 6. Formulate the recursive relations of dynamic programming, maximizing tota 
utility, and use it to evaluate the optimal solution. 
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9.19 A product is manufactured by a continuous production process. Each month the pro¬ 

duction engineer has to set the rate of production. Changes in the rate of production 
result in a so-called smoothing cost. If is the rate of production in period t - 1 

15 fe “te production in period t, then the smoothing cost is equal to 

' ! a f'"1!' °ther C°SjS lnvoIv^d are a cost of ch Per unit carried in inventory from one 
period to the next, and a variable unit production cost which depends on the rate of 
production as follows. 

Rate of production xt ^ 6 7 ^ xt ^ 8 xt ^ 9 

Cost per unit c, c2 c 

The demand in period t is d,. All demand has to be met. The beginning inventory and 

£ubitrarynVent0ry ^ ^ The preSent production rate is *• The final rate can be 

(a) Formulate this problem as a dynamic programming problem using a backward 
formulation. bhow the recursive relations for t = 1, 1 < t < N, and t = N 

(b) If cs = 4, ch = 2, c, = 5 c, = 4, c, = 6, and if the demand over a 6-month planning 
horizon is rf, = 6 A — Q A — in j n i ^ ® 

u4 — horizon is d6 = 6, d3 = 8, 

^ = 7, what is the optimal production plan? 
10, 4 = 7, d2 = 8, dl - 6, and 
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PART TWO 

Stochastic Models 



CHAPTER TEN 

Elements of 
Probability and 

Stochastic Processes 

Many problems in operations research contain elements that we cannot control or 
predict. For example, in an inventory system serving a number of customers, we could 
probably predict the daily demand for a particular item with great accuracy if we kep 
records of the stock levels and the usages of each customer. Unless the inventory is 
very specialized, however, this will be an expensive and time-consuming process It 
is not that the demand is actually unpredictable, but rather than the model of t 
system would be too large if we attempted to set it up exactly. Our usual response to 
these problems is to assume that the uncontrollable inputs are generated by some kind 
of probabilistic process. For example, we assume that there is a fixed chance or 
probability of a certain level of daily demand. In our model the actual demand is 
then selected by the outcome of some experiment having these probabilities. Part 2 
of this text looks at models with probabilistic elements. This chapter is intended to 
give a rather brief review of the types of probabilistic structures that will be used. 

10-1 RULES OF PROBABILITY 

Any experiment whose outcome depends on chance is called a random experiment 
Any possible outcome of a random experiment that cannot be decomposed into more 
basic components is called an elementary event. The collection of all possible ele¬ 
mentary events of a random experiment represents the sample space S. For instance 
rolling two dice is a random experiment with elementary events: [the number of dots 
on the first die is i, the number of dots on the second die is ]}. Since both i and j may 

272 
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eventT ^ ^ ^ mtegers from 1 to 6’the samPle space has 6 X 6, or 36, elementary 

Let A be any outcome or event of a random experiment. A consists of one or 
several elementary events. A is thus a subset of S. 

Define A as the set of all elementary events of S not in A. A and A are mutually 

exc uswe, and^their union is equal to S. Hence, it follows from axioms 2 and 3 that 

In many experiments each elementary event is equally likely. For instance, each 

ahT,MryfeVe7 °Lrollmg tv','° dl“ 18 eclually Lkely, assuming that the dice are 
absolutely fair. Let the event A = [the sum of the dots is 6], Then P(A) is obtained 

as the ratio of the number of elementary events favorable to A (of which there are 5) 

over the total number of elementary events, or P(A) = 5/36. Similarly, let the event 

11 [tV?Um °ftherdots is 51- Verify that P(B) = 4/36. A U B is the event [the sum 
of the dots is either 5 or 6], It is the union of events A and B. Since events A and B 

aie mutually exclusive, we have, by axiom 3: P(A U B) - P(A) + P(B) = 9/36 
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What is the probability that the sum of the dots on the two dice is 6 and at the 

same time that each die has an even number of dots? If we let even A = [the sum 

of the dots is 6] and C = [each die shows an even number of dots], then we are 

a k ng for the probability of the joint event that both A and C occur referred to as 

Se Tntersection of A and C, of the 36 satisfy both A and C simultaneously are 

considered. Verify that 2 out of the 36 elementary events have both properties, hence 

P'A what is the probability that the sum of the dots on the two dice is 6 (event A), 

given that both dice show an even number of dots (event C)? This probability refers 

to the occurrence of event A, subject this time, however to the 

C has occurred. Such a probability is appropriately called a conditional 

and is denoted by P(A|C)—read as probability of A given C—where C stands for the 

condition. Note that the condition of event C excludes all those elementary even s 

where either one die or the other or both dice show an odd number of dots. Thus 

the essence of conditional probabilities is that we define a new sample space, which 

is a subset of the original sample space and which contains only those elementary 

events that satisfy the condition C. 

For our example, expression (10-2) yields 

P(A|C) = || = 2/9 

Expression (10-3) tells us how to find the probability of the intersection of two 

dependent e^ e^ ^ statistlcany independent of event C, then the probability of A is not 

affected by whether event C has occurred or not, i.e., 

P(A|C) = P(A|C) = P(A) 

It follows that if two events A and C are independent, expression (10-3) simplifies 

(10-4) P(A nC) = P(A)P(C) (Multiplication rule) 

For instance, referring to one die as the first die and to the othei: as the second 

die the event D = [the first die shows an even number of dots] and the event ii 
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[the second die shows an even number of dots] are clearly independent. The outcome 

Hence6 btaO^ mflUenCe ^ outcomt of the other. Each has a probability of i 

P(C) = P(D D E) = P(D)P(E) = (|)(i) = \ 

as we have seen earlier. 

The concepts of mutually exclusive events and independent events are often 

confused especially since the nonmathematical meaning of “independence” has to 

o with the absence of any relationships or common elements, a property that we use 

here to characterize mutually exclusive events. In order to prove that two events are 

independent, we must verify that expression (10-4) holds. Absence or presence of 

common elements is not enough, as we can see from this example. Let F = fthe 

number of dots shown on the die is divisible by three], and G = [the number of dots 

shown on the die is divisible by two]. Obviously F occurs if we roll a 3 or a 6 and 

G occurs if we roll a 2, 4, or a 6. So P(F) = $ and P(C) = J. Are F and G independent? 

Intuition might lead us to say that they are not, since the event of rolling a 6 leads 

P^G)!^™ BUt m th'S C3Se intuition would be wronI> since P(F fl'C) = [ = 

10-2 BAYES’S THEOREM 

Suppose we have a number of possible hypotheses, A„ A2, . . ., An, to account for 

a particular phenomenon, and suppose we can test these hypotheses by means of the 

outcome of an experiment, B. The relationship between our probabilistic beliefs about 

the hypotheses after the experiment (the posterior probabilities) and those before the 

experiment (the prior probabilities) is given by Bayes’s Theorem. Formally, let A 

A2, . . ., An be mutually exclusive events whose union is the sample space S of 

an experiment. Let B be an arbitrary event of S such that P(B) £ 0. Then 

RAJB)'wf by(l0-2) 

nSB»!%%"nA£hy ^n s>u n “ 

Using (10-3) to express P(A,. n B) as P(B|A,)P(A,.), we get 

BAYES’S 
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In (10-5) we have expressed the posterior probability of A, given B in terms of 
,he prior probabilities of A„ A„ . . A together with the probaWIrtres of B g e„ 
A, B given A2, and so on. Note as an aid to remembering 10-5) that the expression 

in the numerator always occurs as one of the terms in the denominator. 

10-3 RANDOM VARIABLES 

Often we are interested in the probabilistic behavior of some variable (usually nu¬ 
merically valued) associated with events, rather than in the events themselves. Let us 
associate with each elementary event in S a real number x. Thrs correspondence need 

not be unique, i.e., several elementary events may map into the same value x. Th 
mapping of the elementary events onto the real line is called a random variable 
denoted by X. We usually use capital letters to denote the random variable and sma 

letters to denote particular values of the random variable. 

Example 1. Let X denote the sum of the dots on the faces up when two dice 
are rolled. X can assume values 2, 3, . . ., 12. Only one elementary event of the 
experiment maps into the number 2; however, two map into 3, three in o , e c. 

P We now redefine the three axioms of probability in terms of random variables. 
Define F(x) = P(X =£ x) as the probability distribution function of the random variab e 

X. Then 

This follows immediately if we let event A = [X^d],B- 

C = A U B = [X *£ b], and use axiom 3. 

b], and event 
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If the random variable X assumes only discrete values X], x 
probability distribution function is given by * 2’ 

. then the 

P(X^xk) = F(xt) = %p(Xi), 
i=l 

*=1,2,.. 

where p(x,) is the probability that X = x, The function p(x,) is called the probability 
unction Clearly p(x,) - 1. Try to find the probability function for the random 

variable the sum of the dots on both dice.” 

If the random variable X is continuous (i.e., can assume any value in a given 
interval) and its distribution function can be differentiated, then 

P(X =£ d) = F(a) = f(x)dx 

where f(x) - dF(x)/dx is called the probability density function. f(x) dx is the (ap- 
proximate) probability that the random variable assumes a value between x and 
X + dx provided that dx is very small. Again, fZx f(x) dx = 1. Figure 10-1 depicts 
some of these concepts. 

Figure 10-1. Probability distribution and density functions for a continuous random variable. 

Random variables may be vector-valued. For example, Z = (X, Y) is & bivariate 
random variable. The distribution function of Z, or the joint distribution function of 

j. 31?l *S ^ Is a; Y ^ ~ P(a> by If X and Y are both continuous, the joint 
distribution function is obtained by integrating the joint density function fix, y) over 
both variables: 

(a fb 

f(x, y) dydx F(a, b) = 
— 00 — 00 
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Each of the variables X and Y can be considered as a random variable by itself. 

The distribution of X or of Y alone, regardless of what value the other random variable 
__ rnsiroinrtl distribution of X or of Y. Its density function is defined 
assumes, is 

as 

gM = fx, y) dy for X or h(y) - fix, y) dx for Y 

Any two continuous random variables X and Y are said to be independent if their 

joint density function can be factorized into the product of the marginal densities, 

i.e., 

(10-6) f(x> y) = s(x)h(y) 

We can determine the distribution of one of the random variables conditional 

on a fixed value of the other. The conditional density function of, say, X given 

Y = y is defined as 

(10-7) g(*l y) = y)/ftM 

Note that there may well be a different conditional density function for each possible 

value of Y 
Va UCIt°is left to the reader to define the joint, marginal, and conditional probability 

functions when X and Y are discrete random variables. 

10-4 EXPECTED VALUES AND VARIANCES OF RANDOM 
VARIABLES 

Often it is convenient to summarize the information contained in a probability 

distribution by a few summary measures. The two most important ones are the expected 
value and the variance of the random variable. The expected value, denoted y 

E(X) = (x, is an indication of where the center of mass of the random variable is 

located. It is defined by 

(10-8) E(X) = y x, p(xt) for discrete random variables 

and 

(10-9) E(X) = xf{x) dx for continuous random variables 

Thus for a discrete random variable, E(X) is seen to be the weighted sum of all 

values that the random variable can assume, with the probabilities serving as weights. 

The variance, denoted by VAR(X) = a2, is an indication of how dispersed the 

mass of the random variable is around its expected value \x. It is defined by 

(10-10) VAR(X) = £ (x, - Mx,) for discrete random variables 

i = l 
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and 

(10-11) VAR(X) = (x-\i)2f(x)dx for continuous random variables 
J-oo 

The square root of the variance is called the standard deviation, denoted by <j. 

Example 2. Let X denote again the sum of the dots when rolling two dice 
1 hen, as you can verify, 6 

11 12 

1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

E(X) 2(1/36) 4- 3 (2/36) 4- 4(3/36) 4- 5(4/36) 4- 6(5/36) 4- 7(6/36) 4- 8(5/36) 

4- 9(4/36) 4 10(3/36) 4- 11(2/36) 4 12(1/36) =7 

VAR(X) = (2 - 7)2(l/36) 4 (3 - 7)2(2/36) 4 (4 - 7)2(3/36) 4 (5 -7)2(4/36) 

+ (6 - 7)2 (5/36) 4 (7 - 7)2 (6/36) 4 (8 - 7)2(5/36) 

+ (9 - 7)2 (4/36) 4 (10 — 7)2 (3/36) 4 (11 - 7)2 2/36) 
4- (12 -7)2 (1/36) = 5f 

cr = V5f= 2.415 

• ,0ther. muefsures of location are the mode (value of X for the highest point 
in the probability or probability density function) and the median (value of X that 

divides the function into two equal parts, i.e., the number M such that P(X ss M) = 
r(X ^ M) = 5). ' 



3. If Y = £)_, Xy, where the X;. form a set of mutually independent random 

variables, then 

(10- VAR( 

Using these properties, we may rewrite VAR(X) as follows. Let Y - (X p)2- 

Then, by the definition of E(X), 

VAR(X) = E(Y) = E(X - p)2 = E(X2 - 2pX + p2) _ 
= E(X2) - E(2pX) + E(p2) by expression (10-14) 

= E(X2) - 2pE(X) + p2 by (10-12) 

But p = E(X), hence 

(10-18) VAR(X) = E(X2) - [E(X)]2 

This is computationally a more efficient formula for the variance than expression 

(10-10) or (10-11). 

Example 3. (a) Let X denote the random variable for monthly sales (in units 
sold) for a given product. Assume that X has the following probability function: 

x, 12 3 4 

tix) 0.4 0.3 0.2 0.1 

Verify that E(X) = 2 and VAR(X) = 1. 
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Each unit s°W brings in a revenue of $4.00. Let Y denote the revenue in dollars 

fl!ne?eMny1^1V/v°dUCVnelm0nth; Y = 4X is also a random variable. If c = 4, 
-= ^(l)1 - °162 E Y ~ X = 8> and b>' (10-15) VAR(Y) = 42 VAR(X) 

n K k-iwidlr I10"’ Salf °VerT6 Tnths- Each month’s sales follows the same 
probability distnbution as for (a). Let X,be the random variable for sales in month i, 
and let Y be sales over 6 months. Y = 2f=1X,. Then the expected sales over 6 month 

E(Y) = £ E(X,.) = 12 by (10-14) 

and the variance of sales over 6 months is 

VAR(Y) = £ VAR(X,) = 6 by (10-17) 
i=l 

assuming sales in consecutive months are independent. 

10-5 DISCRETE PROBABILITY DISTRIBUTIONS 

Uniform Distribution 

A random variable X which takes any one of a finite number of values (say 1 2 

form eqUa Pr°babl lty’ has 3 nmform distribution. Its probability function has the 

(10-19) M ^ * = 1, 2,. 

with 

(10-20) E(X) = 

(10-21) VAR(X) = 

Geometric Distribution 

An experiment consisting of a sequence of independent trials is called a sequence of 
Bernoulli trials if each trial has only two outcomes, such as success or failure, and 
the probability of success, p is constant from trial to trial. If the random variable X 
is the number of trials until the first success in a sequence of Bernoulli trials then 

ias a geometric distribution, with its probability function given by 
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(10-22) 

with 

(10-23) 

(10-24) 

p(x) = p{\- pY \ x - 1, 2, 

E(X) = - 

1 - P 
VAR(X) = —r* 

Binomial Distribution 
The random variable X denoting the number of successes in n Bernoulli trials has a 

binomial distribution, with a probability function given by 

n! 
(10-25) P(x) = 

x\ (n - x)! 
px{\-p)n'x, x = 0,1, . . .,n 

with 

(10-26) E(x) = nP 

(10-27) VAR(X) = tip {\ — P) 

Binomial distributions are important for attribute sampling, where p is the prob¬ 

ability that a particular individual in a population has that attribute. 

As n gets large, binomial probabilities can be approximated by areas under a normal 

probaS function! with n - n/, and - P). For np > and 
n(l _ p) > 5? the normal approximation is usually considered satisfactory. It p ^ 

0.01, the Poisson distribution provides a good approximation for n 3s 50. 

Poisson Distribution 
A random variable has a Poisson distribution with parameter \t if its probability 

function is defined by 

(10-28) 

with 

(10-29) 

(10-30) 

pM = 
(Xi) *e -\t 

x! 
x = 0, 1, 2, . . . 

E(X) = \t 

VAR(X) = \t 

Consider a sequence of events that occur over time. If the rate at which events 

occur per unit time, is constant, then the random variable representing the number 

of events over a length of time t has a Poisson distribution. . 
The Poisson distribution is particularly suitable for depicting the random behavior 

of individual events that occur relatively infrequently within the time span considered, 

such as the demand for individual spare parts or the number of individual arrivals at 

a service counter. For \t > 20, the normal distribution provides a good approximation, 

except at the extreme tails. 
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10-6 CONTINUOUS PROBABILITY DISTRIBUTIONS 

Uniform (Rectangular) Distribution 

A random variable X defined over the interval from a 

distribution if its density function has the form 
to b has a uniform probability 

(10-31) 

with 

for a =£ x b 

otherwise 

(10-32) E(X) = - 

(10*33) VAR(X) = —~ a)2 

Exponential (Negative Exponential) Distribution 

A random variable X defined for all nonnegative values has an exponential probability 
distribution if its density function has the form 7 

(10-34) 

with 

for x 2* 0 
0 otherwise 

(]°-35) ' E(X) = y\ 

(]°-?6) VAR(X) = l/X2 

(10-37) F(x) = 1 - 

The exponential distribution is often used to depict the random behavior of the time 
interval between the occurrence of two consecutive events, such as the time between 
two consecutive arrivals or the time to the next breakdown of a machine This dis¬ 
tribution has the often overlooked implication that the probability of, say, a breakdown 
occurring within the next 20 hours of operation does not depend oh when the last 
breakdown occurred. 

Normal Distribution 

The normal distribution is the most important probability distribution. For numerous 
random phenomena, the value of the random variable is the cumulative result of a 
large number of individually small random effects. Such phenomena tend to follow 
a normal distribution. Furthermore, the limiting form of a number of other distri¬ 
butions (binomial, Poisson, gamma, chi-square) is normal. The normal distribution 
is completely determined by two parameters, the expected value or mean u and the 
vanance a of the random variable. Its density function has the form 
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(10-38) f(x) = 
ctV2it 

for 

This expression cannot be integrated analytically. However, any normal random^var¬ 
iable X with mean \l and variance cr2can be expressed mtermsofthestandardize 
normal random variable Z with mean 0 and variance for which extensive tables 

exist. We use the transformation x = p. + za, so z - (x ^ )/(T- 

(10-39) P(X^d) = PZ 
a - p. 

The Central Limit Theorem 

As well as describing the limiting behavior of a number of theoretical probability 
distributions, the normal distribution provides an approximation for the distribution 

of sums of almost any kind of random variables. If X„. — > » nepC" ^ 
random variables, then, provided n is sufficiently large, Y - X, + *2 +_• _ + 
will be approximately normally distributed, with (i - 2,_, l^and a i=i x> 
where (JLx.and o£. are the mean and the variance of the random variable X2, respectively. 

That is, as n becomes large, 

(10-40) 

where Z is a standard normal random variable. If the individual distributionsarenot 
highly skewed and if none of the random variables dominates all others m terms of 
the relative size of its parameters, the normal approximation may already be satisfactory 

for the sum of as few as n = 10 random variables. 
This is one version of the famous central limit theoremL Another version asserts 

that the distribution of the average value (or sample mean) x - In o n in e_ 
pendent observations x(l!, Y2’, X1-5'1, . . ., x^on an arbitrarily distributedl random var¬ 
iable X also tends to be normally distributed as n gets large, with parameters 

^ A*lfthe probability distributions considered up to now are distributions that result 
from particular kinds of probabilistic experiments. There are a number of other prob¬ 
ability1^distributions that are used largely because the shapes of their density functions 
or the values of their parameters approximate those that have been observed for some 

particular process. 

Log Normal Distribution 

If a random variable X is such that U = log^X is normally distributed with mean (i 

and variance (T2, then X has a log normal distribution with 

(10-41) E(X) = ^ 

(10-42) VAR(X) = [E(X)]V- 1) 
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Figure 10-2. Log normal distribution. 

285 

fix) 

1 he distributions of a number of positive random variables that usually take values 
clustered about the mean, but may also take very high values, have been approximated 
by the log normal distribution. Some examples of these are the heights of annual 
floods on a river, the sizes of a particular species of insect, and the distribution of 
incomes in a certain population. From the central limit theorem, we can also see that 
if a random variable is the product of a large number of independent positive random 
variables, then the random variable s distribution will tend toward a log normal dis¬ 
tribution. 

Gamma Distribution 

I he gamma distribution depends on two nonnegative parameters, a and b. Its prob¬ 
ability density function is given by 

(10-43) 

where T(a) 

(10-44) 

(10-45) 

f(x) = <T(a) 

10 

\„-bx 

f V *dt is the gamma function. 

for x > 0 

otherwise 

For a integer, T(a) =(a D! 

E(X) = £ 

VAR(X) = £ 
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This means that we can find a gamma distribution with the same mean and variance 
as those of any positive random variable. Therefore, gamma distributions are frequently 

used as an approximating family of distributions. . . . ., 
For a = 1, the gamma distribution reduces to an exponential distribution with 

parameter X = b. .... 
For large a, the gamma distribution approaches a normal distribution. 

Beta Distribution 

The beta distribution depends on two nonnegative parameters, a and (3. Its probability 

density function is given by 

for 0 < x < 1 
(10-46) f(x) = 

_ X)3-1 

r(a)ro) 
o otherwise 

where T(s) is the gamma function (see gamma distribution) and 

(10-47) E(X> = ^ 

I10'48) VAR(X) = („ + B’(cf + P +D 

The finite range and the skewed distribution of a beta-distributed random variable 
have led to their common use in representing task durations in PERT models. For 

the models in Chapter 8, we use the following transformation: 

T = a + (b - a)X 

with 

E(T) = a + {b - a) 
\a + P/ 

aB 
VAR(T) - (b - -)-(a + Wa + p+T) 

The mode of the distribution of T occurs at 

_ a(P ~!) + b(a ~ ^ 
m ~ (a + P - 2) 

Setting a = 3 + V2 and (3 = 3 - V2, the expected value and the variance of 

T simplify to 

a + b + (a + &- 2)m a + b + 4m 

--6 

VAR(T) - 

which are the expressions used in Section 8-5. 

a - b 
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Laplace Distribution 

The Laplace distribution is a symmetric exponential distribution specified by its mean 
p. and variance cr2. Its probability density function is given by 

(10‘49) f(x) =for all x 

Figure 10-3. Laplace distribution, 

fix) 

It is mainly used as a simple approximation to the demand distribution in inventory 
control models with <r2 = p,. 

10-7 DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES 

In operations research, we quite often deal with functions of random variables, such 
as benefit or cost functions that involve random variables or sums of random variables. 

Let Y = g(X) be a single-valued function of a discrete random variable. Then 

P(Y = y,.) = P(Y =g(Xi)) = p{Xi) 

and 

(10-5°) Ew = mx)) = 2g(x)fi(Xi) 
all t 

(10-51) VAR(Y) = VAR(g(X)) = £ [g(xt) - E(g(X))]2p(x) 
all i 

Example 4. Let X be the random variable for the monthly demand with prob¬ 
ability function p(x), as listed in Example 3(a). Assume that at the beginning of a 
given month there are 2 units left for sale. New units will only become available at 
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the beginning of next month. If more than 2 units are demanded, some sales will be 
lost. What is the probability distribution of lost sales for that month? If Y denotes lost 

JO for X ^ 2 with p(Y = 0) = p(X = 1) + p(X =2) 
Y = g(X) = jx _ 2 for X = x > 2 with p(Y = x - 2) = p(x) 

The expected value of lost sales is 

E(Y) = 0(p(X = 1) + p(X =2)) + (3 - 2) p(X = 3) + (4 - 2) p(X = 4) 

= 0(0.4 + 0.3) + 1(0.2) + 2(0.1) = 0.4 unit 

Similarly, for continuous random variables, if X has a density function f{ x), then 

y = g(X) has the density function 

|<ty(y)| 
(10-52) h(y) = My))- dy 

where x = i|/(y) is the unique inverse function of y - g(x). All other properties can 

now be obtained from My). 

Example 5. Let Y = a + bX. Then the inverse function is given by X = 

(Y — a)lb with derivative 1/M The density function of Y becomes 

h{y) = f({y - a)lb) ' (10-53) 

If X is normally distributed with mean p and variance cr2, for example, then 
1 [y - {a + bix)~|2| , 

1 ."I1- be J |1 

rV2^ \b 
My) = 

a 
(from 10-53) 

which we see is also the density function of a normal random variable, with mean 

E(Y) = a + and variance VAR(Y) = MVAR(X). 
Next we consider the distribution of a sum of independent random variables, 

often referred to as the convolution of their probability distributions. We shall dem¬ 
onstrate the concept by looking at the sum of two independent random variables. The 
generalization follows immediately by repeated application of the same argument. 

Let X and Y be two discrete random variables with probability functions p{x) and 
Ky) for x = 0, 1, 2, . . ., and y = 0, 1, 2, . . . . Let Z = X + Y, and let h{z)_be 

the probability function. Then Z can assume values z — U, 1, L,, . . . . i 
both X = 0 and Y = 0. Given that X and Y are independent, the probability that 
they are both 0 and hence Z = 0 is h(0) = piOW) by expression (10-2). Similarly, 
Z = 1 if X= 0 and Y = 1, or if X = 1 and Y = 0. Hence, h{l) = p(0)r{\) + 

p{\)r(0) by expression (10-6). Using the same principle, we get 

(10-54) h{z) = p(x)r{z - x), z- 0, 1, 2, 

For two independent continuous random variables with density functions f{x) 

and r(y), the density function of Z = X + Y is 
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(10-55) h(z) = f(x)r(z - x)dx 

Example 6. Consider again the demand distribution 
is the demand distribution over two months, assuming sales 
are independent? 

in Example 3(a). What 
on consecutive months 

Then 
Let X, be the demand for month 1 and X2 for month 2, and let Z = X, + X2. 

p(Z - 2) ■- p(Xl = l)p(X2 = 2 - 1) = (0.4)(0.4) = 0.16 

P(Z = 3) = p(X, = l)p(X2 = 3 - 1) + tfX, = 2)p(X2 = 3-2) 

= (0.4X0.3) + (0.3)(0.4) =0.24 

p(Z = 4) = p(X, = l)p(X2 = 4 - 1).+ p(X, = 2)p(X2 =4-3) 

+ tfX, = 3 )p(X2 = 4-3) 

= (0.4)(0.2) + (0.3)(0.3) + (0.2)(0.4) = 0.25 

p(Z = 5) = p(X, = 1 )p{X2 = 5 - 1) + p{Xl = l)p(X2 = 5-2) 

+ tfX, = 3)p(X2 = 5 - 3) + p(X, = 4)p(X2 = 5-4) 

= 0.04 + 0.06 -I- 0.06 + 0.04 = 0.20, etc. 

6) 0.10, p(Z 7) 0.04, p(Z — 8) — 0.01 and, as required, Verify that p(Z 
their sum is 1. 

It is not easy to find closed formulas for the convolution of probability distributions 
from expressions (10-54) and (10-55). Usually this will involve either probability 
generating functions or Laplace transformations, both of which are beyond the im¬ 
mediate needs of this book. However, for particular random variables there are a 
number of useful results that we shall quote without proof in Table 10-1 These results 
can all be extended to more than two random variables 

Table 10-1. Convolutions of some probability distributions 

Distributions of X and Y Distribution ofZ = X + Y 

X normal with parameters jix and a2 
Y normal with parameters jxy and a2 

X binomial with parameters nx and p 
Y binomial with parameters n and p 

normal with parameters |ix + jx and a2 + 

binomial with parameters n = nx + n and p 

X Poisson with parameter \x 
Y Poisson with parameter \ 

Poisson with parameter \ + \ 

X and Y both exponential with parameter \ gamma with a — 2 and b = \ (also known as 
an Erlang-2 distribution) 
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10-8 STOCHASTIC PROCESSES 

In many applications of probability models, we are actually concerned with a sequence 
of random variables. Suppose we consider the replacement of hghtbulbs in a building, 
for example. We could look either at the sequence of times between replacements, 
mat the Ldom variables giving the numbers of bulbs replaced up to tune • Because 
of its probabilistic behavior, any such sequence of random variables is called a st 
chastic process. (The name comes from a Greek word that can, perhaps significant y, 
betranskted as ‘‘proceeding by guesswork”!) To order the sequence of random vari¬ 
ables we require an index set, which almost always refers in some way to time. We 
may consider this index set to be continuous, so that we talk about the random variable 
occurring at time f, say X(t). Or we may consider the index set to be discrete, so that 

we talk of the nth random variable from a sequence . . . X»-i, K, ",V’ , , 
either case, we presume that, at a particular time, X is a random variable that takes 
values governed by some probability distribution. For example, {X„} the sequenc 
of times between the nth and (n + l)th bulb replacement (n - 0, 1,2, . ) isa 
continuous-valued stochastic process with a discrete index set; while N(t), t - U] 
the number of bulbs replaced by time t—is a discrete-valued process with a continuous 
index set. Notice that since each stochastic process is concerned withthe behavior of 
particular random variables, it is often possible to define several different stochastic 

processes ™ ^ physical proCesses considered in operations research 

commonly have to involve many simplifying assumptions to the point that the models 

will (at lean "to some extenti depend on its: entire past history. So, strictly 

speaking, we shoulder e^ndidonal 

process in the"past.’Such conditional distributions are usually far too complex math¬ 
ematically to be of any practical use. The second reasonisthedifficulty such de¬ 
pendence7 will cause when we come to estimate the probability distribution of Xn+,. 
Normally we would base this estimate on the frequencies of similar types of events 
in the past history of the process. However, each possible past history of X } may 
generate a different conditional distribution for Xn+1, none of which (except the one 
that actually occurred) we have ever seen! In order to get enough values to estimate 
the distribution of X„+1, we must assume that the dependence of X on its past values 
is very limited. If the stochastic process is discrete-valued, we usually assume that X„ 
depends at most on the value of X„_, Such a process is called a Markov chum I the 
process takes continuous values, even this may be too much, so we usually as ume 
that X is independent of all past values. With the additional assumption that all the 

X„’s have the same distribution, we call this process a renewal process. 

10-9 POISSON PROCESSES 

An important subclass of renewal processes in which the random variables have an 
even stronger independence property is the subclass where X„ has a negative exponenti 
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istri ution. We shall make extensive use of such Poisson processes in Chapter 15 
when we look at some waiting-line models. Consider a sequence of events in time 

of ,rr\Crld be the arnval of customers at a service facility or the receipt 
of calls at a telephone exchange. X„ is the time between the (n - l)th and nth 
event and N, is the total number of events that have occurred by time i. We will 
formally define the process in terms of the distribution of N {X} n = 0 1 2 

of t Thatls t0 bC 3 P°!SSOn PT0Cm if N' HaS 3 P°isSOn distribution for any value 

(10-56) P(N( = n) = e -X.M: 
n! ’ » = 0,1,2, 

X. is called the rate of the process. 

pv, Expresfon (1°-56) imPlies> ^ fact, that the distribution of the times between 
events must be negative exponential. Assume that we start observing the process 
immediately after an event, which we will say occurred at time 0. The probability 

(10-56> W1 haVC Had n° CVentS ^ bme f i$ givCn by the first term of expression 

(10-57) P(no event in (0, if) = e — e~xt 

But 

(10-58) P(no event in (0, t)) = P(next event occurs after t) 

= P(time between two successive events exceeds f) 

since we assumed we had an event at time 0. 

Now the distribution function of the time between two successive events, X„, is 

P(X„ t) = P(time between two successive events does not exceed t) 

So from expression (10-58) we see that 

P(no event in (0, f)) + P(Xn *£ t) = 1 

P(X„ « f) = 1 - P(no event in (0, ()) = 1 - e~M by (10-57) 

The probability density function of X„ is 

d. (10-59) 
dt 

P(X„ f) = \e~ 

As we claimed, this is a negative exponential distribution. 

,|here ’*.a further property of a Poisson process that makes it very useful for 
modeling. This is the lack of memory property. In other words, at any instant of time 
the. future behavior of the process does not depend on what happened in the past. Let 
us find the conditional probability that the first event occurs in the interval (t t + 
h), given that no events occurred up to time f. This is 
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P(first event in (t, t + h) and no event in (0, t)) 

P(no event in (0, t)) 

ft + h 

\e~Xxdx 

1 _ e-M«+« _ (1 - Q _ 

by (10-2) 

by (10-5/ 

This is again a negative exponential distribution, depending only on the length h of 

the interval and independent of the time f since the last event. 

PROPER! OF STATIONARY AND LACK OF MEMORY 

the probability of an event occurring m any inter 

of time h does not depend on the starting point of the intern or onthespec 
history of events preceding it, but depends only on the length h of the mterv 

So in addition to the renewal process property that we need not consider the 
times of events before the last event, we now have the stronger property that, in 
predicting the future, we need not consider the time since the last event Among 
continuous-valued renewal processes, this latter property is unique to *e Poisson 
process. Another interpretation of this property is that the Poisson process is he ordy 
process for which the instantaneous rate at which events occur is a constant, . 
Consider again a very short time interval of length h. What is the probabihty of exactly 

one event in (0, h)? By the second term of expression (10-56) we obtain 

P(exactly one event in h) = ^he kh 

For a very small h, e^h is very close to 1 (= A Hence, for a very small h, we get 

the approximation 

(10-60) P(exactly one event in h) = \h 

From expression (10-56), it also follows that for a very small value oih, the probabihty 
of observing more than one event in h is almost zero, since these terms contain higher 

order powers of h that are negligible when h is very small. We 
when h is sufficiently small, no more than one event can occur. Only the terms for 

no event and for one event are thus significant, and 

(10-61) P(no event in h) = 1 - P(exactly one event in h) 
v s l - \hy for a very small value ot h 

Expressions (10-60) and (10-61) can, in fact, be used to define a Poisson process. We 

shall use this definition extensively in Chapter 15. 



EXERCISES 

10.1 

10.2 

10.3 

10.' 

Consider an urn that coptains five balls numbered 0 1 nmami , , 
0 and 3 are black; the other three balls are white ’ ’ ’ ’ * *“* numbered 

(a) You draw a ball at random from the urn and record its number. It is then replaced 
a d a second ball is drawn at random from the urn and its number recorded’ 
Define the sample space for this experiment. recorded. 

(b) rhanVVbWPhra0tbabi!i!y “r ^ ^ °f the nUmbelS iS ' = 6, 
C - 6 pKfab,lI!y °f event B = tthe sum is at least 6]? even u - [the sum is no more than 5]? J 

^ba[ ls P.(the su,m is at kast 6 and at least one ball is black)? 
(d) What is the conditional probability that the sum is at least 6, given that at least 

one ball drawn is black? First use the definition (10-2) and then verify the result 
directly from the reduced sample space y reSUJt 

(e) What is the probability that at least one ball is black, given that the sum is at least 

(f) Consider the drawing of each ball as a separate experiment. Let event A = [first 

ev^K find Pfcf h = rC°i nliS black]' Are A and B “dependent 
M tI.Ti T P(C)’ Where C, = A 0 B’ usin§ Ae multiplication rule 

12 bat at bfacT with°Ut repl“b F“d the probability that 

Itl T XlZ C°nS'derSLSubmitting 3 bid as a subcontractor for a large computer 
system. It is known that three major computer manufacturers, A, B, and C compete 

pr *denTofnXY7'T been ^contractor for A a^d BThe 
nf IT 1XYZ estimartes that A has a 15 percent chance and B a 30 percent chance 

g 'ng tbe contract. If A gets the contract, XYZ has an 80 percent chance of being 
the subcontractor, whereas if B gets the contraH- YY7’ u • i m ^ 

(a) Should XYZ prepare a bid? Why? 

(b) Find the conditional probability that XYZ is chosen as subcontractor, given that 
rt is known that either A or B has been given the contract. 

“irr1 p,obal'ili', ,hat a eot ,he ™in *** <>»< xvz« 

Suppose that 5 percent of all men and 0.25 percent of all women are colorblind A 

person is chosen at random from a population consisting of equal numbers of men 

SonTmal? “ ^ t0 * What is ^ probabi^ thatT 

A binomial model has been proposed to measure the effect of a series of three insertions 
rfa newspaper advertisement. Tire events A, B, and C are presumed to be independT 

A = [individual does not see the first insertion] 
B - [individual does not see the second insertion] 
C = [individual does not see the third insertion] 

assumptions:'"^1*31 ^ ^ °f Sedng 3 particular insertion' Undcr these 

(a) Calculate the probability that an individual does not see any of the insertions. 
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(b) Find a suitable binomial model for calculating the mean and the variance of he 
W number of persons in a large population of size N who have been exposed to the 

advertisement (i.e., have seen at least one of the insertions). 

The random variables (X, Y) have a joint probability function 

Pi*, y) = C(j) 
x+y 

x = 0, 1, 2 = 0, 1, 2, 

(a) Find the value of C. 
(b) Find the marginal distribution of X. 
(c) Find the conditional distribution of X, given Y - 1. 
(d) Are X and Y independent? Give a reason for your answer. 

Note that the sum of the series ^fex*'1 is 1/(1 - x)2. 

10.6 Consider a random variable that assumes the value 1 with PT°^bil^nd the expend 
the value 0 with probability (1 - p) (known as a Bernoulli variable). Find the expected 
value and the variance and standard deviation of this variable. (Note that a binomial 

(b) Show^ from expretmnaO-54), that the sum of a Bernoulli variable and a binomial 

random variable with parameters n and p is also binomial. 

10 7 A product has the following probability density function for its daily sales: fix) - 
10.7 A Pr°dJc;oh5axSfor 0s;xsS y;nd f(x} = O elsewhere (a triangular distribution). 

(a) Find P(X *£ 10), P(X > 10). 

(b) Find E(X) and VAR(X). 
Note: Integration is required. 

10 8 The monthly demand for a given spare part has a normal distribution. Chances are 
50 percent that the demand is at most 200, and for approximately 9 out of 10 months 

sales He between 140 and 260 units. . . 
(a) Determine the two parameters of the corresponding normal distribut . 

(b) What is the probability that monthly sales exceed 280? 

in 0 Consider the following weekly demand distribution: 

x 0 1 2 3 4 5 6 1_8_ 

p(x) 0.10 0.20 0.25 0.20 0.12 0.06 0.04 0.02 0.01 

10.10 

e stock on hand at the beginning of a given week is 4. 
Find the probability distribution for the amount short. 
If each u£it sold brings in a profit of $2.50, find the expected value of profits lost 

through shortages. 
insider the probability distribution of exercise 10.9. Assuming that sales in consec- 
2 weeks are independent, find the probability distribution of sales over a 2-week 
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10.11 

10.12 

10.13 

10.14 

Consider the distribution given in exercise 10.7. Assume that stocks on hand at the 
beginning of the day amount to 15. 

(a) Determine the probability density function of lost sales. 

(b) If each unit brings in a profit of $3, what is the expected value of the daily profits 
lost through shortages? 

Find the approximate probability distribution for sales over 30 days for the distribution 
defined m exercise 10.7. Assume that each day has the same distribution and that sales 
between days are independent. 

Prove that the geometrically distributed random variable X has a lack of memory 
j^operty similar to that of a Poisson process. That is, if s and t are two positive integers, 
then P(X > s + f|X > f) = P(X > s). Can you explain from expression (10-60) why 
this is not surprising? 7 

The times in minutes at which events occur in a sample from a Poisson process are 
as follows: 1, 6.3, 8, 9.2, 15, 16.1, 19, 19.2, 19.8, 20. 

(a) What would you estimate to be the rate of the process? 

(b) What is the mean number of events that will occur in any 5-minute period? 
(c) Roughly, does this sample appear to you to actually come from a Poisson process? 

Why or why not? 

(d) If no event has occurred in the last 4 minutes, what is the mean time until the 
next event? 
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CHAPTER ELEVEN 

Bayesian 
Decision Analysis 

As we saw in Chapter 1, most decision problems involve some elements of uncertainty. 
1 tns uncertainty may arise from a lack of information about the environment in which 

e problem is set or about the effects of any action we may take. The converse of this 
statement is also true. Almost all probability models are set up as an aid to some 
decision-making process. In decision analysis, the trend has been to incorporate prob¬ 
ability models into the actual formulation of the decision problem. Provided we have 
an easily quantified decision criterion and are prepared to assign probability distri¬ 
butions to the elements of uncertainty, complex decision problems can be solved using 
the ideas of conditional probability and Bayes’s Theorem, discussed in Section 10-1 
and 10-2 of Chapter 10. 

The title decision analysis” has been used to cover a range of methods, from 
t e most precise mathematical techniques to highly subjective, intuitive procedures 
tor which no formal foundation is available. The papers in the two special journal 
issues hsted in the references at the end of this chapter indicate the variety of approaches 
possible. Here we can cover only a small set of what might be termed the conventional 
techniques for decision problems. 

11-1 SETTING UP A DECISION PROBLEM 

Consider this example. The Air Pollution Control Agency has given a pulp milling 
hrm two years to reduce its emissions of air pollutants. As research contractor to the 
Association of Pulp Mills, the firm has already started some preliminary research 
(financed by association members) on an air pollution control device. This device 
it successfully developed, promises to reduce the emission of chemicals and particles 
to a point below the maximum levels set by the control agency when the mills are 
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operated at below 90 percent of full capacity. The research plans prepared by the 
director of research indicate that it will take another 18 months to determine whether 
or not such a device can be developed, with most of the crucial tests occurring toward 
the end of this period. If the research is successful, the devices could easily be installed 
in all of the firm’s pulp mills within the remaining 6 months before the deadline set 
by the control agency. However, the director of research cannot guarantee that the 
device will be developed successfully. In fact, she estimates that chances of success 
are about 60 percent. If the results of the tests at the end of the 18-month period are 
negative, she plans to abandon the project. 

In view of the state of the research project and the deadline to clean up, the firm 
has essentially two available alternatives. It can start the necessary steps to convert the 
operations of all its pulp mills to a new process that has a substantially lower emission 
of pollution-contributing chemicals and solid particles. This conversion would take 
about 2 years and would therefore have to be started immediately. The new process 
would permit the firm to meet the standards imposed when operating its mills at 80 
percent of full capacity without the pollution control device, and at full capacity with 
the device. The other alternative is to take a wait-and-see attitude in which the hrm 
would wait for the results of the research project. If the research was successful, the 
devices could be installed within the 2-year limit. However, if the research was a 
failure, then the firm would have to undertake a crash effort to convert all facilities 
to the new process as fast as possible. Until then, the mills could operate at only 40 

percent of full capacity. , f 
These alternatives have the following consequences on the net present value ot 

earnings of the company over a 10-year planning ho.izon: If convetston to the new 

process is undertaken right now, earnings of the firm would amount to $24,000,0 
if the device becomes available in time, and $11,000,000 if the device cannot be 
developed. If the wait-and-see alternative is chosen, the firm would have earnings of 

$32,000,000 if the device becomes available in time (despite the r^ctl°" inf , e 
maximum level of operations), but it would incur a loss of about $2 000,000 if the 
device does not materialize. What course of action should the firm choose. 

The firm has two actions available to it: 

= Wait 18 months to see if the pollution control device is successful 

A2 = Start conversion to the new process immediately 

The amount the firm will earn under each action depends on whether or not the 
pollution control device is developed successfully. Since the firm cannot control this, 
we will refer to the outcomes of the research as states of nature, or events. We label 

them 

• Ef. device is developed successfully, 
• E2: device is not developed successfully. 

Using the research director’s estimate of the chances of success, we can put a 
probability distribution on these events: P(E,) = 0.6 and P(E2) = 0.4. Since we know 
what the earnings of the firm will be if either action is taken, we can represent the 

set of possible outcomes as a payoff table (see Table 11-1). 
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Table 11-1. Payoff table for the pulp mill ($1,000,000’s) 
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Event Ej Event E2 

Action Aj 32 -2 
Action A2 ' 24 11 

There are a number of decision criteria that the firm can use in deciding which 

action to take. Which one they select depends very much on their objective. Suppose 

the firm wishes to take the action that offers the highest possible payoff regardless of 

which event may occur, called the maximax criterion. From Table 11-1 the highest 

possible payoff of $32,000,000 occurs if the firm takes action A, and event E, occurs 

Un the other hand, they may prefer to protect themselves against serious financial 

losses and use a more conservative criterion, such as the maximin criterion In that 

case they would determine for each action the lowest possible payoff that can occur, 

and then select the action that maximizes the lowest possible payoff. From Table 

ci r non“t Possible payoff for action A, is -$2,000,000, while for action A, it 
is $11,000,000. Hence, the maximin criterion leads to the choice of action A2. 

11-2 EXPECTED MONETARY VALUE DECISION CRITERIA 

Note that neither of the decision criteria considered so far has taken into account the 

probability that each event will occur. In fact, if we are very confident that the device 

will be developed successfully, we will want to select action A„ since this action now 

otters us a very high chance of earning $8,000,000 ($32,000,000 - $24 000 000) 

more than would the selection of action A2. On the other hand, if we are’sure that 

event E2 will occur the profit of $11,000,000 produced by action A2 is clearly pref¬ 

erable to the loss of $2,000,000 resulting from action A,. What we have done in these 

two cases is to attach weights to the two events and to select in each case the action 

that gave us the highest weighted average payoff, or expected monetary value (EMV). 
It seems natural to use the probabilities of the events as the weights and, therefore 

to use as our decision variable the expected values of the payoffs under each action! 

Using the research director’s probability distribution, the EMV of action A for 

example, is EMV(Aj) = 32(0.6) + (-2)(0.4) = $18,400,000. ” 

EXPECTED MONETARY VALUE DECISION CRITERION 

The best action is the one with the highest expected monetary value. 

Table 11-2 shows the EMV for each 
we select action A2. 

action. Thus, under the EMV criterion, 



Table 11-2. The EMV’s for the pulp mill ($1,000,OOP’s) 

‘ Event e" Event E2 EMV(A,) 

Action Al 
Action A2 
Probability 

An alternative approach to expected monetary value decision criteria is based on 

the concept of opportunity loss, or regret. For each action-event pair, the opportunity 

loss is defined to be the difference between what the payoff could have been it we had 

chosen the optimal action for that event and what the payoff actually was. Formally, 

we can derive an opportunity loss table from a payoff table as follows. 

1. For each event, identify the best possible payoff value. 

2. For each action, subtract the actual payoff from this best possible value. 1 hese 

are the opportunity losses. 

For instance, let us assume that E, occurs. Then the best possible payoff of 

$32,000,000 occurs if action A, is taken. So if the firm actually takes action A, and 

event E, occurs, no opportunity loss is incurred. If action A2 is taken and event j 

the opportu„"ioss is ($32,000,000 - $24,000,000) - $8,000,000. The 

complete opportunity loss table is given in Table 11-3. 

Table 11-3. The opportunity loss table for pulp mill 

1 Event E, Event E2 EOL(A,) 

Action A, 0 13 5.2 
Action A2 8 0 4.8 

Probability 0.6 0.4 

Thus the EOL’s for the two actions the firm can take are EOL(A,) - 0(0.6) + 

13(0.4) = $5,200,000 and EOL(A2) = 8(0.6) + 0(0.4) = $4,800,000. Under Ae 

EOL criterion, we again select action A2. It is not just a coincidence that the E 

and the EOL decision criteria both lead to the selection of action A2. Note(that the 

size of the difference between the two expected monetary values ($18,o00,UUU 
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$18,400,000 - $400,000) is exactly the same as the size of the difference between 

the expected opportunity losses ($4,800,000 - $5,200,000 = -$400,000), so that 

t e margmby which we choose action A2 is the same in either case. In fact, the EMV 

and the EOL decision criteria will always lead to the selection of the same action 
and by the same margin. ? 

Let us suppose that we can determine for sure whether or not the pollution 

control device would be developed successfully prior to making our decision. If we 

know that the device will be developed, obviously we choose action A, and wait for 

the device to be completed. This will lead to earnings of $32,000,000. If the device 

cannot be produced we should start conversion to the new process immediately for 

a payoff of $11 000,000. Thus, under perfect information our payoff table simplifies 

to lable 11-4 Before we are told whether the device will be developed successfully 

the research director’s estimates, or prior probabilities, are our best guide as to what 

the outcome of the research project will be. Using these estimates, we can calculate 

tne expected payoff under perfect information (EPPI) as EPPI = 3210 61 + llffl 41 

= $23,600,000. Comparing Table 11-2 and Table 11-3, we see that for each event 

(i.e., column), the payoffs and the opportunity losses corresponding to each action 

always sum to a constant: 32 for the first column and 11 for the second. This is simply 

i-;sefcnce of tlle definition of opportunity loss. As a result, the EOL and the 
EMV of any action will also always add to a constant. In fact, they add exactly to the 
expected payoff under perfect information. 

Table 11-4. The payoff table under perfect information 

Event E; Event E2 EPPI 

Payoff 32 ii 23.6 
Probability 0.6 0.4 

11-3 THE EXPECTED VALUE OF PERFECT INFORMATION 

There is another way to look at opportunity loss, and that is in terms of the value of 
information We have seen that if we had perfect information about the outcome of 

the 'csearch program prior to making a decision, we could, on the average, expect 

to earn $23 600,°00. At least that would be the average earnings if a large number 

of identical firms were faced with this decision. Without this information, the average 

earnings would be $18,800,000. The increase in earnings of $4,800,000 is the average 

* ^ “*e firm °f receiving this information. Note that this is exactly equal to the 
tLUL or the optimal decision. 

We also can determine the expected value of perfect information (EVPI) directly 

rom the opportunity loss table. If, after obtaining the perfect information, the firm 

knows that event E, will occur, then this information is worth $8,000,000 to them. 

Information that E2 will occur has no value, since A2 is still the optimal action. Thus, 
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prior to receiving that information, we have EVPI = 8(0.6) + 0(0.4) = $4,800,000. 

To summarize, we have the following relationships. 

RELATIONSHIPS BETWEEN THE EXPECTED VALUES 

(114) EPPI = EMV(A) + EOL(A„), for any action A; 

(11-2) EPPI = EMV(A') + EOL(A’). where A* is the optimal action 

(11-3) EVPI = EPPI - EMV(A*) 

(11-4) EVPI - EOL(A*) by expression (11-2) 

Usually, perfect information is not available. We have to settle for imperfect 
information obtained by sampling or experimentation. We will consider the value o 
this information in Section 11-5. Knowledge of the value of perfect information gives 
us a guide as to whether such experimentation will be worthwhile in the first place. 

11-4 DECISION TREES 

So far we have only considered the effects of a single action and a single set of events. 
Because of this, the outcomes of the decision problem could conveniently be repre¬ 
sented in the form of a payoff table. Many decision problems, however, involve a 
sequence of actions and events. For these problems, a tree diagram, or decision tree, 
is a very useful way of representing the situation. A decision tree is simply a chron- 

- ological record—starting at the initial action or event—of all possible sequences o 
actions and events leading to the final outcomes. Under the EMV decision criterion 
we shall see that a simple process of “rolling back” the tree, commencing at the final 
outcomes (as we did in dynamic programming evaluations in Chapter 9), eventually 

determines the optimal decision strategy. , 
In Figure 11-1, the payoff table given in Table 11-2 has been redrawn as a 

decision tree. From node 1 there are four paths leading to the final outcomes. Node 
1 is a decision node, denoted by a square. At this point, we must choose one ot the 
two paths (actions), A, or A2. Nodes 2 and 3, however, are chance nodes, denoted by 
circles from which the paths are determined by chance. For each chance node, we 
can determine the expected payoff over the branches at that node For ‘^ance at 
node 2 our expected payoff is $18,400,000, while at node 3 it is $18,800,000. Under 
the EMV criterion, we will choose the path leading to node 3, or action A2. bince 
action A, is not optimal, that path has been blocked off. Thus the procedure for 
rolling back the decision tree is as follows: Starting from the final outcomes, we work 
our way backward through the tree, retaining at each chance node the expected payoff 
at that node, and retaining at each decision node the action with the highest E 

at that node. 
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Figure 11-1. The payoff table represented as a decision tree. 

Outcome 
*1 

11-5 EXPERIMENTATION FOR DECISION MAKING 

While we have been busy looking at trees, there has been a further development back 
at the pulp mill. The research director has suggested that the firm engage the services 
of l.t.R. short for Industrial Ecology Research—to carry out a feasibility study of 
the proposed pollution control device. This would involve building a highly simplified 
small-scale version of the proposed device, and then performing certain crude tests 
with the unit which would provide some indication as to the technical and economic 
feasibility of the approach used. Since this study could not be very extensive because 

ot the time pressure to produce a report, the appraisal of the device by I.E.R. would 
on y e tentative. The research consultants would simply report either that the appraisal 
was positive (which means the development of the device is likely to be successful) 
or that the appraisal was negative (which means the development is likely to be 
unsuccessful). I.E.R. has served as a consultant to the pulp industry on several oc¬ 
casions, and their appraisals have been fairly accurate. There is a chance, though 
that their appraisal may be incorrect—a fact that is openly admitted by I.E R The 
cost of obtaining an appraisal amounts to $500,000. Should the firm hire I E R’s 
services or not? 

We can now expand the decision tree of Figure 11-1 to include this additional 
ophon. This is done in Figure 11-2. The initial decision is now whether or not to 
hire I.E.R. It no appraisal is obtained, the remainder of the branches are identical 
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to the original decision tree of Figure 11-1. Hiring I.E.R. leads to chance node 2 
with either a positive or a negative appraisal; the decision nodes 4 and 5 again have 

the same form as in the original decision tree. 
Before the research director can make a recommendation for a decision strategy, 

she needs some additional information about I.E.R.’s track record in making apprais¬ 
als Checking through the pulp industry’s information file, she finds a number of cases 
involving proposed inventions or technological advances where I.E.R. served as a 
consultant. Obviously, only projects ultimately undertaken provide any useful infor¬ 
mation on I.E.R.’s record. The file contains 15 projects that either were brought to 
a successful conclusion or, after vain efforts, were finally abandoned as failures. 
I E R’s appraisal was positive in 7 out of the 10 cases in which the projects terminated 
successfully. On the other hand, only 1 of the 5 abandoned projects had received a 
positive appraisal. Assuming that I.E.R. goes about the pulp mil appraisal in a similar. 
manner the records of the 10 successful and the 5 unsuccessful projects give a guide 
as to whether I.E.R. will correctly indicate the outcome. If the pollution control 
device is successfully developed (event Ej, the estimate of the conditional probability 
that I.E.R.’s appraisal was positive (P) is P(P|E,) = ft. The estimated probability of 
a negative appraisal (N) given eventual success is P(N|E,) - io; Similarly, lfthe device 
is eventually a failure, the estimated conditional probabilities are P(r|li2) — 5 an 

P(N'nLv if the firm does decide to hire I.E.R., they will know the result of the 
appraisal before deciding which pollution control program to adopt, and the additional 
information contained in the appraisal will obviously change the research director s 
estimate of the chances of success. She will need to revise her prior P™abihty of 
success, P(E,) = 0.6, to produce a set of posterior probabilities, Pltylr) and 

P(E,|N), conditioned on the result of the appraisal. These are the probabilities needed 
to evaluate those paths in the expanded decision tree that follow from the decision 
to hire I.E.R. The revision can be carried out by Bayes’s Theorem. (See Section 10- 

2 of Chapter 10.) 
, , P(PnE,) P(P|E1)P(E1) 

tv r? n\ _ x__L_ —--—-—-:-. __. P(Ej|P) = PlPlE.jPlE,) + P(P|E2)P(E2 

(0.7)(0.6) 

(0.7)(0.6) + (0.2X0.4) 
= 0.84 

Similarly, 
_P(N|E,)P(E,) 

P(El'N) " P(N|E!)P(Ej) + P(N|E2)P(E2) 

_(0.3X0.6)_= Q % 
~ (0.3)(0.6) + (0.8X0.4) 

Since E. and E, are mutually exclusive events, the remaining posterior probabili¬ 
ties are P(E2|P) = 1 - 0.84 = 0.16 and P(E2|N) = 1 - 0.36 = 0.64. The re¬ 
search director’s estimate of the probability that the appraisal is positive is Hr) 
P(P|E1)P(E1) + P(P|E2)P(E2) = 0.5. These probabilities have been attached to the 

appropriate branches of the tree in Figure 11-2. 



Figure 11-2. The complete decision tree for the pulp firm. 

Outcome 
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The tree now can be rolled back, retaining the EMV of the optimal action at 

each decision node. For example, let us suppose that I.E.R’s appraisal is positive and 

we then choose action A,. This leads us to node 6 ' 
value of action A1( given a positive appraisal, E(AjP), is 52(0 ) ( • ) 

$26,560,000. Since this exceeds E(A2|P) = $21,920,000 E(A,|P) is the expected 

payoff that goes back to node 4, and the path from node 4 to node 7 is blocked off 

In a similar fashion, the paths from node 5 to node 8 and from node3tonod"^ 

are blocked off. Finally, since the EMV after deducting I.E.R. s fee ($20,620,000) 

still exceeds that EMV without an appraisal, the path from node 1 to node 3 is blocked 

off. Since only the paths to node 6 and node 9 remain, the optimal decision strategy 

under the EMV decision criterion can be read directly from the decision tree-_ 

pulp milling firm should hire I.E.R. If their appraisal is negative, the firm should 

start conversion to the new process immediately . If, however, the appraisal is positive, 

the firm should risk waiting to see if the pollution control device is successfu . 

11-6 THE EXPECTED VALUE OF SAMPLE INFORMATION 

The difference between the expected payoff if I.E.R. is hired and the expected payoff 

without an appraisal is ($21,120,000 - $18,800,000) = $2,320,000 This is the 

expected value of sample information (EVSI) for this problem. Imperfect information 

is usually obtained by experiment, as in this case, or by sampling. The EVSI tells us 

something about the “worthwhileness” of this sampling. Since the EVSI considerably 

exceeds I.E.R.’s fee, it is clear that even under the limitations; of the-expected^monetary 

value decision criterion, the appraisal is worthwhile. Note that $2,320,000 

$4,800,000. As we might expect, the EVSI cannot exceed the EVFI. 

11-7 UTILITY FUNCTIONS 

The expected monetary value decision criterion usually works well where the decision 

must be taken repeatedly and the risks are not very large. Under these conditions, we 

should be able to continue operating even if we make the wrong decision at some 

stage; and in the long run, the average return should tend toward the EMV of thj- 

chosen action. Many people, however, are averse to risk, especially when the ns 

could be catastrophic to them. So their decisions tend to avoid actions that involve 

high risks. In Section 1-14 of Chapter 1, we noted that the decision to buy insurance 

is obviously not based on maximizing EMV Conservative management at the Pu p 

milling firm may well place much more emphasis on the potential loss of $2,000,00U 

if the pollution control device is not developed than on the potential profit of 

$32 000,000 that may result if the device is installed. The EMV criterion provides 

us with a means of scaling monetary values to incorporate the probabilities of the 

various outcomes. We may wish to expand this scaling to also include some assessment 

of the subjective value of the particular outcomes to the decision maker, Since these 

values are to be used in situations involving risk, we use a similar (but simplified) risk 

model—a Tcfctcticc lottcvy—to determine them. 



1 Snf ^?nSCOnf ler 3 de?i0n Pu?blem in which the best P°ssible outcome is a return 
l>ol SoUOO and the worst possible outcome is a loss of $4000. Since $6000 is the 

,m0St fcannbne°UtCOme^ WC a utUlty of l> or ^($6000) = 1. Similarly, the 
loss of $4000 is assigned a utility of zero, or U(-$4000) = 0. Notice that since we 
intend to scale all the monetary values, these utility values can be assigned arbitrarily 
We couid talce U($6000) = 0, U(-$4000) = -1, or U($6000) = 100, U(-$4000) 

l U f d^erminf the utility of intermediate monetary values, we define the reference 
lottery for this problem as either 

* accept a fixed amount of $C, or 

• take part m a lottery, denoted as Up), where the probability of winning $6000 
is p and the probability of losing $4000 is (1 - p). 

The expected value of the lottery is E[L(p)\ = ($6000)(p) + (-$4000)(1 - p) If 

$C is very much less than E[L(p)}, most decision makers will prefer the lottery over 
he certainty of receiving $C. As we increase $C, however, we reach a point where 

the certain payoff starts to become more attractive to the decision maker. At the point 
where the switch occurs the decision maker is indifferent between receiving $C for 
certain or participating in the lottery L(p). This value of $C is the decision maker’s 
Krtamty equivalent of the lottery. At this point, we should be able to equate the 
expected utility of the lottery to the decision maker with his or her utility value for 
the certain payoff. Let us suppose that careful questioning reveals that the decision 
maker finds the lottery with p - 0.5 and a certain payoff of $0 to be equally attractive. 

U($0) = [U($6000)](0.5) + [U( -$4000)](0.5) = (1)(0.5) +(0)(0.5) =0.5 

Thus, the utility of $0 is 0.5. 

, A J° clete™lnf more utiIity values> we could change the probability of the lottery 
p. Many people, however, find it difficult to assess the value of lotteries in which the 
outcomes are not equally likely. The following five-point assessment procedure is 

THE FIVE-POINT ASSESSMENT PROCEDURE 

1. Find the value of the best possible outcome, x,, and the worst possil 
outcome, a.,. Set Utxj = 0 and Utx,) = 1. 

2. Determine the decision maker’s certainty equivalent, x0for a lott 

WK0- 0 5^^" * ” 0(x°-s) = ^W-5) 
3. Find certainty equivalents, x„,, using a lottery L(0.5) involving outcorr 

arid .To,js hf’Pg L(0.5),involving outcomes xn.? and xn Th 

A utility function now can be fitted through the five points (x0, 0), (x02„ 0.25), 
*o.5> 6-5), (x0 75 , 0 . 75), (x„ 1.0), either by hand or, if a particular functionalform for 
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the utility function can be specified, by using statistical curve-fitting methods. For the 
above example, our decision maker eventually admits to having certainty equivalents 
of -$2100 for a lottery with p = 0.5 between - $4000 and $0, and $2500 for a 
lottery between $0 and $6000. This utility function is sketched in Figure 11-3. 

In the decision tree procedure, we rolled back the tree by replacing each event 
node by the expected payoff at that node. Thus, we implicitly assumed that the 
decision maker was indifferent between receiving the expected payoff and taking part 
in the lottery represented by that node. With utility numbers, we now know exact 
certainty equivalents for similar kinds of lotteries, also calculated as expected va ues. 
We should be able to improve our expected value decision criterion (in the sense o 
more closely representing the decision maker’s preferences) if we select the action that 
has the maximum expected utility rather than the one that has the maximum expected 

monetary value. 

Figure 11-3. Three utility functions. 
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After erfensiw consideration, the management of the pulp milling firm has come 
up with the follqwing utility values: U( -$2,000,000) = 0 U($ll 000 0001 - 0 3 

U($24,000,000) = 0.9, and U($32,000,000) = i. Without the hE.Reappraisal ^the 

nXK? - n'l f1:i0n ^ is 1(0-6) + °(°-4) = °-6- and that of A2 is 0.9(0.6) + 
immediat 1 ' ^ ^am’ °Pt'ma^ achon is to start conversion to the new process 

Up to now we have presumed that our decision makers were risk-averse. Given 
a choice between accepting the expected value of a lottery and taking part in the 
lottery these decision makers will always prefer the certainty of the expected value 
over the risk of the lottery. Equivalently, we can say that the utility of the expected 
value of the lottery must be greater than the expected utility of the lottery. What does 
this mean in terms of utility functions? For two possible outcomes x and x' and a 
lottery L{p) between them, we must have 

U[xp + x'(l - p)} > pU(x) + (1 - p)U(x') 

This implies of course, that the utility function must be concave. (You can find a 
discussion of concave and convex functions in Chapter 19.) If the decision maker is 
risk-prone, or a risk taker, on the other hand, he or she will prefer the lottery to the 
expected value of the lottery. It is left to the reader to show that this implies a convex 
utility function. Finally, we may encounter a risk-neutral decision maker, who has 
a straight-line utility function such as that shown in Figure 11-3. Since this is simply 
a linear transformation of the monetary values, the EMV and expected utility decisions 
will be identical. 

It is important to note that utility functions can also be constructed for problems 
in which the outcomes are not expressed in monetary terms. Provided the decision 
maker is prepared to take part in the reference lottery, this procedure will produce 
utility functions for any numerically scaled set of outcomes. 

11-8 DECISION MAKING WITH CONTINUOUS PRIOR 
DISTRIBUTIONS 

A month has gone by since the pulp milling firm hired I.E.R. Because the consultants’ 
appraisal was positive, the firm decided to wait and see if the pollution control device 
will be successful. Research on the device has been proceeding well—so well, in fact 
that the research director is now completely sure that the device can be developed’ 
The question is whether it will be done in time. The work so far has revealed a number 
of technical problems with the construction of the device and with the formulation 
and large-scale manufacture of the chemical catalysts required. These problems still 
have to be solved. Using the Program Evaluation and Review Technique—PERT— 
studied m Section 8-5 of Chapter 8, the research director now estimates the critical 
path tor the development program to have a mean length of 29 months and a standard 
deviation of 2 months. If the development program is going to take too long, it may 
be better, considering the anticipated life of the mills, to abandon the pollution device 
and convert to the new process immediately (action A2). If this is done, the cost of 
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the pollution control program will amount to $22,000,000 over the life of the mills. 
On the other hand, if the firm adheres to the development program (action Ad, the 
pollution control costs will increase by $2,000,000 for every extra 3 months that the 
program takes. The director decides that, over the region of interest, the total cost can 
be reasonably approximated by a linear function of the form (2 + 5X) (expressed in 
millions of dollars), where X is the program length. What should the firm do now? 
From Figure 11-4 we can see that if the development time exceeds 30 months, 
immediate abandonment of the pollution control device is preferable. We will see 
that because the cost functions in this problem are linear, we can use the mean 
development time as a certainty equivalent in an EMV decision. 

Figure 11-4. Break-even analysis for the pulp mill. 

Let us consider a general decision problem in which the possible events are given 
by values of a continuous-valued random variable, X. We have two actions, A, and 

A2, with linear cost or loss functions of the form 

(11-5) C(Aj) = m,X + d, . C(A2) = m2X + d2 

We assume that 0 =£ m2 < m, and 0 « d, < d2. The break-even point is the value 

of X, denoted as x*, at which C(A,) = C(A2). Hence, 

* d2 - dj 
(11-6) miX* + d, = m2x* + d2 or x =^7^ 

Under the EMV decision criterion, we prefer action Aj if the expected cost of A„ 
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E[C(A,)], is less ^ than the expected cost of A2, E[C(A2)]. Now if E[C(Aj)] < 
E[C(A2)], then E(m,X + df) < E(m2X + d2) from expression (11-5); and so 
m,E(X) + d,< m2E(X) + d2 from expression (10-13) of Chapter 10. Solving for E(X), 
we get 

E(X)< ^2^ J = x®, from expression (11-6) 

In other words, we prefer action A, if the mean value of X, E(X), is less than the 
break-even point Similarly, we can show that A2 is preferable if E(X) is greater than 
x . In general, then, provided the cost functions are linear, the action with the lower 

cost at the mean of the prior distribution is the optimal action under the EMV criterion. 
The cost functions for the pulp milling firm are 

C(Aj) ~ 2 H- fX 

C(A2) = 22 

so that 

* 22 - 2 
X “ T-rT = ^ months 

Since E(X) = 29 months is less than x*, we prefer action A,. 

Note that we did not have to make any assumptions about the form of the 
distribution of X. Linear cost functions, however, are a necessary assumption for the 
use of the mean as a certainty equivalent. If any of the cost functions are not linear, 
the density function (and hence the expected cost of the action) must be calculated 
horn the probability density function of X, using the method outlined in Section 10- 

1 f Lhapteri10- An alternative approach, in this case, would be to assume that only 
a unite number of discrete events could occur, and to approximate the event distri¬ 
bution by a discrete distribution. The expected cost of each action can then be 
calculated as in Section 11-2. 

11-9 EVPI FOR A NORMAL PRIOR DISTRIBUTION 

Even when the cost functions are all linear, the value of information in a decision 
problem with a continuous prior distribution will depend on the exact form of the 
distribution. Because of this, the use of a discrete approximation to the prior distri¬ 
bution may be a computationally much simpler method of determining the EVPI 
than the integral expression (11-8), that we consider below. In one case, however— 
when the prior distribution is considered to be normal—the EVPI can be found 
directly from tables of the unit normal loss integral. 

In Section 11-3 we showed that the EVPI was exactly the expected opportunity 
loss of the optimal action. Let us find the opportunity losses for the pulp milling firrn 
if it takes action A,. If the development program takes less than 30 months, the 
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opportunity loss will be zero, since A, is indeed the best possible action. From the 
break-even point on, the opportunity loss is the difference between the cost of action 
A, and the cost of action A2. In Figure 11-5 we have plotted the opportunity loss of 
action A, against the length of the development program. Superimposed on the hgure 
is the probability density function, /(*), for the program length. From expression (11- 

5) we have 

(11-8) 

EOL(A,) (C(A,) - C(A2))f(x) dx 

CO 

= (ml - m2) xf(x)dx + (d, d2) f{x) dx 

If we substitute for (d, - d2) from expression (11-6), we get 

(11-9) EVPI = EOIXA,) = (m, - m2) 

~ 0 0 0 

xf(x) dx - x* 

:x* X = 

f(x) dx 

■x* -* 

The expression in square brackets in expression (11-9) can be evaluated analyt¬ 
ically only for certain prior distributions. Often we can assume, however, that because 
of the central limit theorem (see Section 10-6 of Chapter 10) the prior distribution is 
approximately normal, with mean E(X) = |x and variance <r2. It turns out that after 
some calculus operations have been performed, (11-9) can be expressed as 

(11-10) EVPI = (m, - m2)(jN{z*) 

where z* = (x* - |jl)/cx and N(z*) is the value of the unit normal loss integral at 

z*. (Values of N(z) are listed in the Appendix.) 

Figure 11-5. The opportunity loss for A! and the prior density function. 
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Note that the EVP/ increases with the standard deviation of the prior distribution 
in expression (11-10). The greater the uncertainty (i.e., the standard deviation) the 
more valuable the perfect information becomes. 

.I E,' R' has aPProached the firm again. With their greater experience of PERT/ 
CPM, the consultants claim that they should be able to determine the development 
time exactly. How much, on the average, is this information worth? Assuming the 
critical path length is normally distributed with a mean jjl = 29 months and a standard 
deviation <r = 2 months, we get z* = l From Table 2 of Appendix B Ml) = 
0.1978. Therefore, the EVP/ is (|)(2)(0.1978) = $263,733. The firm should not pay 
more than this amount to find out exactly how long the program will take. 

3n example of the discrete approximation method, we can also calculate the 
EVP/ by assuming that the program takes an integral number of months and using 
areas under the normal distribution as approximate probabilities. 

_Month 30 31 32 33 34 35 36 37 

Opportunity loss 0 j 1 if 2| 3 3| 4^ 

Probability_0-191 0.150 0.092 0.044 0.016 0.004 0.001 0 

For example, the area under the normal distribution between months 33 and 34 is 
approximately 0.016, and we have taken the opportunity loss at the middle of month 
33 (Zj million dollars) to represent the average opportunity loss over the month For 

the discrete approximation, the EVP/is (1X0.150) 4- (1X0.092) 4- . . . = $264,666. 
This is close enough to the exact value for most purposes. 

11-10 REVISION OF CONTINUOUS PRIOR DISTRIBUTIONS 

The concept of the revision of prior probabilities to include information gained by 
experimentation or by sampling, which we considered in Section 11-5, can be extended 
to the case of continuous prior distributions. The effect of such information is to 
produce a posterior event distribution, possibly with a different mean and with a 
reduced variance reflecting the reduction of uncertainty brought about by the addi¬ 
tional information. Provided we can model the uncertainty in the information by 
means of a probability distribution, Bayes’s Theorem can be used to find the posterior 
event distribution, conditional on the value of the new information. Algebraically, 
if f(x) is the probability density function of the prior distribution, and if h(y\x) is the 
conditional density of the sample or experimental results, then, as in Section 11-5, 
we require the posterior distribution, g(x\y). From expression (10-7) of Chapter 10,’ 
this can be expressed as 

Mf) = f(x) Ky\x) / f(x) h(y\x) dx (11-11) 



When both the prior distribution, f(x), and the sampling distribution, h{y\x), are 

normal, it can be shown from expression (11-11) that the posterior distribution is also 

normal with mean and variance as follows: 

(11-13) 
,0-Q + v\) ^ 

^ and cr2 are the parameters of f(x), and (x, and a( are the parameters of h(y\x). The 

proof of this is rather long, so we shall omit it. 
The most obvious example of this type of revision is where the sample information 

has been obtained by means of a random survey on a population with normal prior 

distribution. u 
A small manufacturing company has a new seasonal novelty item that it would 

like to add to its product line. The fixed cost of setting up full-scale production of the 

item is estimated to be $8000, with a variable cost of $5 per unit produced. The 

company believes that it can sell the item for $7.50 through each of its 80 retail 

outlets Total sales of similar items in past years have averaged 3300 units (p,0), with 

a standard deviation of 200 units (ct0). Should the company go ahead with produc¬ 

tion or not? The two cost functions for cost of production and for revenue are C, - 

$8000 + ($5)X and C2 = ($7.5)X. Since the break-even point (equal to sale of 3200 

units) is less than the mean of the prior distribution, the answer seems to be to go 

ahead. However, the company finds the situation a little too close for comfort. It 

decides to conduct a small survey of 10 of the retail outlets. The survey shows a mean 

anticipated demand of 38 units per outlet and a standard deviation of 4 units. Hence, 

the estimates from the sample survey of the mean and the standard deviation over all 

80 outlets are ^ = 80(38) = 3040 and a? = 80(42) = 1280. The mean of the 

posterior distribution is 

_ (1280X3300) + (40000X3040) _ f^Ql.12) 

(1280 + 40000) 

and its variance is 

, / 1280 

az “ \40000 + 1280 

Since the posterior mean is considerably less than the break-even point, obviously the 

company would be unwise to introduce the product. 
This example illustrates the effect of the revision formulas (11-12) and (IT 3). 

We have said that to some extent the variances of the prior and the sampling distri¬ 

butions measure the degree of uncertainty about the information that they contain. 

In fact, the reciprocal of the variance is sometimes called the information content ot 

the distribution. We can see that the mean of the posterior distribution is a weighted 

average of p,0 and |x„ with weights that depend upon the relative sizes of the variances. 

Because the sample information in the example appears to have a much lower degree 

(40000) = 1240.3 from (11-13) 
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of uncertainty, the mean of the posterior distribution comes out much closer to p,, 

than to p0. Similarly , the high quality of the sample information Causes a considerable 
reduction in the variance of the posterior distribution. 

On sales of X units, the net return to the company is $[(7.5 — 5)X — 8000], 

The expected net return, based on the posterior distribution with E(X) = p2, would 

E(2.5X - 8000) = 2.5E(X) - 8000 = -$380 

if the company decided to market the item. (Notice again that when the cost functions 

are linear, calculation of the expected return requires only the mean of the event 

^ JhL EVPI’ calculated the prior distribution, is 
$(2_5)(200)N(2) - $98.90. On the basis of this, the company could have decided— 

perfectly reasonably—that the sampling exercise was not likely to produce any useful 

improvement, and so they could have gone ahead with the item for an expected net 

loss of $380. Because the prior distribution turned out to be poor, the EVPI obviously 

§ood §uide to the actual value of sampling. We must remember that the 

EVPI, the EMV, and the EOL are expected values based on the prior distribution. 

They can only tell us when the prior distribution is reasonably accurate what the long- 

run expectations will be. An unreliable prior distribution will give an unreliable EVPI. 

11-11 CONCLUDING REMARKS 

In this chapter we have had space to lay out only the very bare bones of decision 

making under conditions of uncertainty. In the last twenty years, decision analysis 

has become a very important part of operations research methodology. A great deal 

has been learned about formal models for decision processes. Something much more 

difficult, however, that we have not considered is the subjective aspect of decision 
making. 

Traditionally, we define probabilities in terms of the long-run relative frequencies 

of events. In the determination of EMV’s, however, we considered events that may 

occur once at most, if at all. Regardless of how much we may prefer the traditional 

definition, the numbers used in the EMV calculations usually will have to be derived 

from at least one individual s intuitive beliefs about the future course of events. The 

determination of such subjective probability distributions poses special problems. A 

good discussion of methods for solving these problems can be found in Chapter 12 
of the book by Holloway listed in the references. 

The simple but extremely powerful—device of utility functions, considered in 

Section 11-7, allows us to scale outcomes in an almost unlimited fashion to reflect 

the decision maker’s preferences. Unfortunately, the assessment of such utility func¬ 

tions is not an easy task. The attitudes that individuals exhibit toward risk are often 

extremely complex. Chapter 5 of Schlaifer, 1969 (see references) sets out some of the 

problems and gives some of the mathematical theory behind various types of utility 
functions that can be used. 

The process of revision of prior probabilities, which we considered in Sections 

11-5 and 11-10, should also be extended to include any kind of available information 
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in the posterior distribution. How precisely this process is carried out depends on the 

intuition and the experience of each individual decision maker. Chapter 10 of Raitta 

discusses some related philosophical issues. 

EXERCISES 

11.1 An oil company is considering an offshore drilling venture. A preliminary geological 
survey indicates that the rock formations off the coast are generally favorable to oil and 
gas deposits. From past information on similar rock formations, the exploration de¬ 
partment comes up with the following estimates, where L denotes large deposits and 

S denotes small deposits: P(L) = 0.1, P(S) = 0.9. The firm has two actions available: 

to start explorations or not to explore. Explorations will cost $800,000. If large oi 
deposits are found, the company expects to make a profit of $15,800,000, less the 
exploration costs. If small deposits are discovered, the project will have to be abandoned 

as unprofitable for production. 
(a) Set up a payoff table for the problem, and find the action with the maximum 

expected payoff. , , 
(b) Assume that the firm can somehow procure perfect information about the rock 

formations at a cost of $980,000. Should the firm obtain perfect information at 

this cost? 

11.2 A firm sells a certain electronic control instrument. Part of the manufacturing process 
for these instruments involves an alignment of the instrument’s reading device under 
simulated operation conditions. The instruments are then shipped to the customers 
plants for installation. Unfortunately, the reading device sometimes gets out of align¬ 
ment during transport. In fact, past experience shows that this happens in about 10 
percent of all shipments. The firm has three possible actions that it can take. It can 
go ahead and install the instrument as it is unloaded from the trucks. If the instrument 
is still aligned, everything is fine, and the transaction is completed. However, if the 
instrument is out of alignment, the cost of correcting things after installation amounts 
to $10,000. The second action is always to send out during installation an engineer 
who will make another alignment of the instrument, regardless of its actual condition. 
This operation has a cost of $800. The third action that the firm can take is to make 
a simple field check of the equipment prior to installation at a cost of $200. Then 
if the instrument is found to be properly adjusted, it can be installed as is. If it « found 
to be out of adjustment, the engineer can be called in (at an additional cost of $800) 

to make an adjustment during installation. 
(a) Set up a payoff table, and find the action with the lowest expected costs. 

(b) What is the EVPI? 
11.3 A recording company is approached by a new rock band to make an album. On the 

basis of a preliminary audition, management feels that such an album has only a 40 
percent chance of being a success. However, the company would hate to make a wrong 
decision and reject the taping of an album on an erroneous basis. A success for such 
an album means a profit of $50,000, and a failure results in a loss of $40,000. 

(a) What is the prior EVPI? 
(b) Management decides to do additional analysis. In particular, they decide to let a 

consumer test panel rate the group. Past experience for other groups who were 
reviewed by such panels provides the following information as to the reliability of 

the ratings: 
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__Album Successful Album Not Successful 

Panel rated group favorably 6 1 
Panel rated group unfavorably 2 3 

Based on this past experience, what is the EVSI? 
(c) The test panel for this group rates the group favorably. Should the firm now 

proceed with taping the album or should it decline? 

11.4 Consider exercise 11.1. The same firm decides to obtain some additional information. 
They wonder whether they should hire a well-known mining expert for $100,000 to 
perform a preliminary quick-and-dirty oil sniffing survey. The expert would report the 
survey results using one of the following statements: statement N, no large oil deposits 
likely; statement Y, large oil deposits likely; statement X, oil sniff inconclusive. The 
expert's surveys are obviously not always correct. Looking over his past performance, 
we get the following table. The table entries indicate the percentage of cases in which 
his report was N, Y, or X, given that subsequent explorations turned up L or S: 

1 
N 

Prediction 
Y X 

Actual results ^ 20% 60% 20% 
S 80% 10% 10% 

(a) Determine the probabilities of the prediction, P(N), P(Y), P(X). 

(b) Determine the posterior probabilities if the prediction is (i) N, (ii) Y, (iii) X. 
(c) Set up a decision tree to decide if the firm should start exploration.? 

11 * 5 Consider exercise 11.2. However, assume this time that the simple field check is not 
entirely foolproof. In fact, if the device is still properly adjusted after unloading, the 
chances are 1 out of 20 that the field check will show (erroneously) that the instrument 
is out of adjustment. On the other hand, if the instrument is out of adjustment after 
the transport, chances are 1 out of 10 that the field check will show (erroneously) that 
the instrument is properly adjusted. 

(a) Find the posterior probabilities of the instrument being properly adjusted and of 
its being out of adjustment, given the results of the field check. 

(b) Set up a decision tree for the problem to find the action that minimizes the expected 
cost of installing the instrument. 

11.6 A large chemical company maintains an in-service program to update the technical 
skills of its middle managers. In the past, the company has sent all qualified personnel 
to a four-week course that costs the company $1000 per student. An alternative scheme 
is being contemplated. The company proposes sending all students to a very intensive 
five-day screening program that costs $200 per student. Those who pass will be sent 
to an advanced course at a cost of $600 per student. Those who fail will be enrolled 
in the regular $1000-per-student course. Based on the caliber of people now in middle 
management positions, the initial estimate of the proportion of students who will fail 
the screening course is given by the following distribution: 



318 Chapter 11 Bayesian Decision Analysis 

Proportion failing 0.3 0.4 0.5 0.6 

Probability 0.2 0.5 0.2 0.1 

Because of the uncertainty and subjectivity involved in the estimate of the distribution 

above, the company also decides to send a random sample of 6 middle managers 

through the two-day screening program. Of the 6 students, 2 pass the course. 

(a) Find cost functions for the actions the company can take, and determine the break¬ 

even point in terms of the proportion of students who fail. 

(b) Based on the prior distribution, which scheme should the company adopt? 

(c) (Requires binomial probabilities) Taking the sample information into account, 

revise the prior distribution of the proportion failing. What should the company 

do now? 
11.7 The recording company considered in exercise 11.3 has had a string of failures recently 

and cannot afford another. They have a certainty equivalent of $0 for a lottery with 

p — 0.5 between a profit of $50,000 and a loss of $40,000. Using the maximum 

expected utility criterion and the posterior distribution, determine whether or not they 

should make the album. 

11.8 The management of the pulp milling firm considered in Sections 11-1 and 11-5 has 

shown itself to be uniformly risk-averse. 

(a) Accurately sketch the graph of its utility function, using the utility values 

U(-$2,500,000) = 0, U($11,000,000) = 0.5, U($24,000,000) = 0.9, and 

U($32,000,000) = 1. 

(b) Redraw the complete decision tree given in Figure 11-2 so that the outcomes are 

now in terms of utility values. The extra utility values required can be read from 

the graph. 
(c) Now, using the expected utility decision criterion, reevaluate the pulp milling 

firm’s decision strategy. 

11.9 (Exercise 11.6 continued) Suppose that instead of 2 out of a random sample of 6 middle 

managers, the chemical company had found that 10 out of a random sample of 30 

middle managers passed the course. 

(a) Explain qualitatively what you would expect the posterior distribution to look like, 

and what you would now expect the decision to be. 

(b) If you are unsure of your answer to (a), carry out the revision of the prior distri¬ 

bution, using either binomial tables or the normal approximation to the binomial 

distribution, to determine the conditional probabilities of the sample result. 

11.10 (Exercise 11.9 continued) Assume that the prior distribution of the portion failing the 

screening program was actually considered to be normally distributed, with the same 

mean and variance as the discrete distribution in exercise 11.6. Use the normal revision 

formulas in expressions (11-12) and (11-13) to determine the parameters of an ap¬ 

proximate normal posterior distribution, and calculate the approximate EVPI. 

11.11 Let us assume that the prior distribution of the research director in Section 11-8 for 

the length of the development program was actually a uniform distribution, with a 

mean of 31 months and a standard deviation'of 2 months. 

(a) Should the pulp milling firm continue the development program? 

(b) If the firm still continues the development program, find the expected cost of the- 

pollution control program. 

(c) Calculate the EVPI directly from expression (11-9). 

(d) Compare the answer to (c) with the EVPI based on a normal prior distribution 

with the same parameters. 
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11.12 (Requires calculus) The cost of production for the small manufacturing firm considered 

in Section 11-10 turns out not to be linear after all. The firm only has enough materials 
on hand to make 3400 units. If sales exceed 3400 units, the company will have to buy 
fresh materials that will cost $1 more per unit. 
(a) Draw the new cost function. 

(b) Calculate the expected cost. Since the cost function is no longer linear, this must 
be done directly. However, with a little thought it can be done from normal loss 

tables. Note that N(z) = /* (x - z)f(x) dx, where f(x) is the standard normal density 
function. 

(c) Compare the expected cost with the expected return, using the manufacturer’s 
prior distribution. Should the firm produce the item? 
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CHAPTER TWELVE 

Inventory 
Control 

For many organizations, both private and public, inventories are a major investment. 

Some military organizations stock over 600,000 different parts and items. Large de¬ 

partment stores deal in up to 150,000 items. Medium-sized manufacturing outfits 

may stock thousands of individual components or subassemblies needed as input into 

their own products, in addition to spare parts for discontinued models and supplies 

and spare parts for their own manufacturing equipment. 

Inventories occur in all forms and for the most diverse purposes. We usually 

think of inventories as goods for sale, raw materials for production, partially finished 

goods held for later production stages, supplies and spare parts. But livestock held for 

fattening, cash in the till or in bank accounts, marketable securities, water in reservoirs, 

blood in bloodbanks, and personnel who need special training all have similar char¬ 

acteristics. They are all held to meet some future demands, either from external 

customers or from internal users; and they are controllable within limits, with some 

costs increasing and other costs decreasing as the inventory increases. 

The fundamental questions in inventory control are when to order and how much 

to order. In other words, when should the inventory for a given item be replenished 

and by how much? This chapter looks at methods and models useful in answering 

these two questions under a variety of premises. As you study the models, it is important 

to keep firmly in mind that the potential annual savings per item is usually small— 

often only a few dollars. Therefore, sophisticated models may yield smaller net savings 

than simple ones because of higher operating costs. What renders inventory control 

successful is the pooling of thousands of individually small savings on a large number 

of items. For this reason, we will take a pragmatic approach and discuss only those 

models that have found widespread use in practice. 

320 
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Before discussing techniques, we need to study the nature of inventories and 
inventory systems and the relevant components of their environments. To put you 
m\o the right frame of mind and to refresh some terminology, we suggest that you 
read the case Study in Section 1-9 again. 

12-1 STRUCTURE OF INVENTORY SYSTEMS 

Inventory control systems fall into two broad categories: distribution merchandising 
systems and manufacturing systems. In a distribution system, the same product is 
stocked at various echelons along the path between where it is “produced”—interpreted 
in its widest sense—and where it is “consumed.” As depicted in Figure 12-1, the 
product passes from the manufacturer, to the wholesaler, to the retailer, and finally 
to the ultimate consumer. Each echelon and even each outfit on the same echelon 
may be an independent legal entity—a separate decision maker—or some or all levels 
may be controlled by the same organization, as in the lubricating oil case study. 

The best inventory policy for each storage point depends on the policy followed 
at other echelons. Serious distortions in stocking patterns and delayed reaction to 
changes in usage at the consumer level may occur if these interactions are ignored. 
In particular, both manufacturers and wholesalers may wish to let their inventory 
replenishment system be driven by the final demand at the retail level, rather than 
by direct response to the ordering pattern of the next lower level. 

Manufacturing processes exhibit another type of multilevel inventory structure. 
Starting with raw materials and supplies, the process may result in inventories of 

Level 1 

Figure 12-1. Multi-echelon inventory structure in distribution systems. 

Raw materials 
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Level 2 
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components, subassemblies, and partially finished goods at several intermediate levels, 
before reaching the final finished goods stage. This is depicted in Figure 12-2. 1 he 
need for inventories at intermediate levels will largely depend on the degree of co¬ 
ordination in production at consecutive levels. Again, the best policy cannot be 
determined independently. 

Figure 12-2. Multi-level inventory structure for manufacturing. 

Raw 
materials 

Supplies Parts & components j ( Subassemblies J 
/ V / 

In the relevant literature, most inventory models that find “optimal” policies 
restrict themselves to single-stage inventory replenishments. So far, the complexity of 
multistage systems has precluded practical optimization over several levels. Heuristic 
rules are used to coordinate “good” policies. Any benefits gained are more the result 
of tighter control and coordination, rather than optimization. Discussion of control 
policies for multistage systems is beyond the scope of this text. 

12-2 FUNCTIONS OF INVENTORIES 

In order to properly understand the reasons for keeping inventories, it is useful to study 
briefly the functions that inventories serve. 

Decoupling of multilevel manufacturing or distribution systems 

Inventories are created to achieve a certain degree of independence between consec¬ 
utive stages in the manufacturing process or between consecutive echelons in distn- 
bution systems. As a rule, modern production technology requires that whenever 
equipment changes over to the production of a different product, it has to be set up 
for the new product. These setups may take from a few minutes (for changing labels 
and resetting scales in a filling operation) to several days or weeks (for rearranging 
assembly lines), during which time no production occurs. Hence, in order to keep 
such equipment downtime within reasonable limits, relatively large production runs 
are made. Similarly, in order to make efficient use of transport, handling, and in¬ 
spection facilities, the amounts of goods transferred between successive stages in a 
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Figure 12-3. Cycle inventory behavior over time. 

distribution system must also be in sufficiently large batches. In all cases, the batch 
sizes may be far in excess of immediate demand, resulting in so-called cycle inventories. 

Figure 12-3 depicts the behavior pattern over time of cycle inventories. After 
each replenishment, inventories rise sharply and then are gradually depleted as in¬ 
dividual customer demands are satisfied, resulting in a typical saw-tooth pattern. 

If demand occurs in individual units or in small amounts relative to the replen¬ 
ishment quantity Q, the inventory depletion over time can be approximated by a 
constant rate R equal to the average demand per period (e.g., per month or per year). 

his is depicted by the gray lines in Figure 12-3. The time between replenishments— 
the replenishment cycle—is equal to 1/R periods (e.g., years), while the average cycle 
inventory during each replenishment cycle is equal to half the replenishment size 
or jQ. 

Anticipation of demand or smoothing of production 

Demand and supply of products may be seasonally out of phase, as is the case for 
many agricultural products; or demand may be subject to large seasonal fluctuations, 
while production capacity remains constant (except for costly overtime). In either case,' 
if demand is to be satisfied, it may be necessary to accumulate stocks in response to 
supply or in anticipation of peak demands, thereby creating anticipation inventories. 

Stocks held or purchased in anticipation of price increases also fall into this class. 

Goods-in-process or goods-in-transit 

Goods passing through the production process—such as goods on the assembly line 
or temporarily waiting between processing stations, or goods en route from one echelon 
to another in a distribution system—give rise to pipeline inventories, in a narrow sense. 
The size of such inventories depends to some extent on the processing time for 
manufactured goods and on the in-transit time in distribution systems. 
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Protection against uncertainty in demand and uncertainty in 
replenishment lead times 

If replenishment lead times—the elapsed time between placing a replenishment and 
receiving the goods in stock—and demands during these lead times are both known 
with certainty, then cycle inventory replenishments can be timed such that the goods 
arrive in stock at the exact time that the last unit is withdrawn. The critical inventory 
level, or reorder point, that triggers a replenishment is equal to the lead-time demand. 
If the replenishment is placed earlier, some units in stock will never be used; if placed 
later, sortie customer may go unsatisfied until the new stock arrives. (Note that if the 
inventory is not reviewed after each stock transaction, the lead time should also include 
the time between reviews because replenishments are only initiated at those review 
points and not in between. In fact, for some models the time between reviews becomes 
a decision variable. On the other hand, the portion of the delivery time offered to 
customers that is in excess of the actual time required for the delivery can be subtracted 
from the replenishment lead time, such as in the lubricating oil case study. We always 
assume that the lead time includes these adjustments.) 

For many products, the demand is subject to some degree of uncertainty. Sim¬ 
ilarly, replenishment lead times may fluctuate unpredictably. In that case, deman 
during the lead time can no longer be predicted exactly, and it becomes impossible 
to time replenishments such that idle stock or stock shortages do not occur. Stoc 
shortages are usually more costly than idle stock. Hence, it may be desirable to carry 
some additional inventory—a safety stock—as protection against some (but not nec¬ 
essarily all) shortages. This safety stock is maintained by initiating a replenishment 
when the inventory level is still larger than the average demand during the lead time; 
i.e., the reorder point covers the average lead-time demand plus the safety stock. 

’ Thus, the control policy is to initiate a replenishment of size Q, whenever the 
inventory ’position falls below the reorder point r. The inventory position is defined 
as the stock on hand plus any outstanding replenishments. For a transaction reporting 
system the inventory position is updated after each stock transaction, while for a 
periodic review system it is updated at each review point. Figure 12-4 shows the actual 
and the approximated average inventory patterns. The horizontal band under the cycle 
stock pattern represents the safety stock. Note that the cycles now vary in length. 

This chapter studies some of the most basic control models for cycle inventories 
and safety stocks. Policies for anticipation inventories under certainty can be deter¬ 
mined by linear programming or by transportation-type models—the subjects of Chap¬ 
ters 2 and 6. For short production processes, pipeline inventories are often small, and 
therefore little or no attempt is made to control them. For lengthy production processes, 
their control should be integrated into the cycle inventory policy. 

12-3 COSTS ASSOCIATED WITH INVENTORY DECISIONS 

The next two sections will analyze the components that affect inventory control 
decisions. At this point, it may be useful to briefly review Section 1-7, which discusses 
the conditions of relevance for environmental parameters. 
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Figure 12-4. Safety stocks. 

Replenishment initiated 

^Replenishment received 

Most inventory decisions are based on the assumed overall organizational goal 
of profit maximization or cost minimization. Exceptions to this would be so-called 
hospital stocks. These are items, such as hospital equipment, for which full supplies 
are vital. Shortages may have serious consequences to which it may be difficult to 
attach a dollar figure. Vital spare parts also fall into this category. 

What costs are relevant for inventory control? 

Unit cost of product (V) 

Inventories represent an investment of funds. In most instances, the value of this 
investment can be measured by historical costs. In a distribution system, the product 
unit cost covers primarily the purchase cost, but may also cover transportation re¬ 
ceiving, inspection, and handling costs that vary with the size of the replenishment. 
For manufactured goods, product unit cost includes costs of raw materials and supplies 
variable production costs such as labor and machine costs, plus variable inspection 
and handling costs. (Note that in a world of steady inflation, historical costs may 
considerably undervalue the inventory investment. In such cases, replacement costs 
may be more relevant for decision making.) 

The product unit cost may vary as a function of the replenishment quantity, i.e., 
V = f(Q)- This may be due to economies (or diseconomies) of scale—the production 
process becomes more efficient (or requires expensive overtime) as output increases— 
or may simply reflect the pricing policy of the supplier who offers quantity discounts. 

It a supplier offers quantity discounts, the unit price decreases in steps—so-called price 

breaks as the quantity purchased increases, as shown in part (a) of Figure 12-5. The 
discount may apply to all units purchased or to only those units purchased in excess 
of a price break. In the first instance, the total purchase cost consists of discontinuous 
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Figure 12-5. Quantity discounts. 

(*) ^ Total cost for 

^ Price breaks ^ 

linear segments with progressively smaller slopes, as shown by the solid line in part 
(b) of Figure 12-5. In the second case, the total purchase price is a continuous piecewise 
linear function, as depicted by the broken line in part (b). 

) 

Inventory holding or carrying costs (cj 

Funds invested in inventories are not available to earn a return in some other in¬ 
vestment opportunity. Hence, inventories should be penalized by a cost equal to the 
return that could have been obtained on the best alternative investment opportunity 
foregone. Although in theory this concept sounds fine, in practice it is not operationa 
because the best alternative investment opportunity foregone changes almost contin¬ 
uously. The opportunity cost is therefore measured either as the desired rate of return 
for investments of comparable risk—usually a policy decision by top management— 
or as the average cost of capital of the organization. For governmental or public 
agencies and institutions, this cost may be equal to the cost of loan capital. 

Other charges that may be relevant to carrying inventories include storage space 
costs, insurance costs, pilferage and breakage costs, and taxes assessed on average 
inventories. Each of these costs is relevant only if it varies in proportion to the size 
of the inventory. For instance, if the organization owns its warehouse and has no 
alternative use for unused storage space, this cost is not relevant to inventory decisions. 
On the other hand, an organization might not carry enough insurance to cover the 
entire inventory. It thus implicitly carries self-insurance on the other portion. The 
cost of self-insurance is then a relevant charge. 
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In general, total inventory holding and carrying costs vary proportionately with 
the size of inventories. For a given product, these costs are a constant dollar penalty 
per unit stocked. However, since most costs (except for storage space) tend to vary in 
proportion to the value of inventories, inventory holding costs are traditionally ex¬ 
pressed as a fraction c, per dollar invested per year (i.e., $/$/year). The per unit cost 
is thus c,V. 

Replenishment set-up or order costs (c2) 

Whenever a replenishment is initiated, certain fixed costs are incurred that do not 
depend on the size of the replenishment. These fixed changes include: production 
set-up or change-over costs; any clerical costs for processing a replenishment; and costs 
tor transporting, receiving, and inspecting the goods (if the costs do not vary with the 
replenishment quantity) The set-up cost in manufacturing processes should cover not 
just direct labor costs of the people involved in the machine setup (including fringe 
benefits dependent on wages, excluding most overhead costs), but also the opportunity 
cost of the learning effect experienced at the beginning of a new production run, when 
the production rate has not reached the full rated capacity or when scrap and reject 
rates are still higher than normal. 

Stockout or shortage costs (c3) 

The nature of shortage costs depends to some extent on what happens when a shortage 
occurs. In the backorder case, sales are not lost. Either customers are willing to wait 
jantil the goods are supplied at a later date, or they do not even know that a shortage 
has occurred. In the first case, the shortage cost is largely intangible and difficult to 
assess in monetary terms. It represents the potential decrease in sales that may result 
from the bad image conveyed and the loss of goodwill. Furthermore, the longer it 
takes to make up any shortages, the larger will be the goodwill lost. Hence, such 
shortage costs may need to be expressed as functions of the time short. If shortages 
do not cause a delay in delivery, the shortage cost consists of the increased expenses 
ot expediting a regular production run or of making a special run. This usually means 
tearing down existing production runs and rescheduling them later. Occasionally it 
may be possible to obtain the goods needed from another supply point, at extra 
transport or acquisition costs. Therefore, depending on the circumstances, the shortage 
costs may be (1) fixed per shortage, independent of the amount short, or (2) a function 
(usually assumed to be linear) of either the amount short or the amount and time 
short. 

In the lost-sales case, customers are not willing to wait for a late delivery. The 
sales in question are lost. The shortage cost consists partly of the immediate profit 
foregone, and partly of the intangible effect of the loss of goodwill. This opportunity 
cost is usually assumed to be linear in the amount short. 

In real systems, both cases may occur for the same product. Some sales are lost 
outright, and an ever-increasing part of the back-ordered demand is canceled as the 
shortage period increases. 
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Costs of operating the inventory control system 

The costs of operating the inventory control system will depend to a large extent on 
the complexity of the model used, but they do not enter into the cost function of the 
optimal inventory policy. For alternative models, estimates of these costs should e 
contrasted to projected savings as early as possible in the analysis. Only then will it 
be possible to evaluate which model yields the best control policy in terms of the 
difference between projected savings and projected operating costs. 

Most computer manufacturers have developed integrated inventory control and 
forecasting packages, which can be purchased. Before developing its own system, an 
organization should carefully study whether one of these packages will do the trick 
Not only does adoption of such a package considerably speed up implementation, but 
it also gives assurance of continued maintenance and updating of the system. Careful 
study of this chapter will enable you to make an informed judgment about such 

packages. 

12-4 DEMAND 

The purpose of holding inventories is to satisfy demands in the not-too-distant future 
for the items stocked. (Items that have no demand—so-called dead stocks—or items 
that are very slow moving (except for “hospital” stocks) should be disposed of by some 
means, either by reducing the price sufficiently to create a demand, or by stripping 
the stock of any useful components, or by selling the stock as scrap.) Hence, it is 
important to forecast demand over a planning horizon of sufficient length to allow 
proper stock control. The planning horizon used has to cover at least one complete 
replenishment cycle, including the replenishment lead time. For fast-moving items, 
this may be a few days or weeks; for slower-moving but active items, the forecast may 
have to be extended to a year or more. Demand forecasting is thus an integral part 
of any inventory control system. - , 

For some products (particularly supplies and components stocked by the hrm tor 
internal use in a manufacturing process), the demand over the required planning 
horizon can be determined accurately from the production schedules. However, tor 
products sold to external customers, the demand will in most instances fluctuate 
randomly over time and may also be seasonal. If the product is sold in lots of ones, 
twos, or threes, to a large number of customers, and if its use is not subject to climatic 
variations, the demand may only exhibit small fluctuations around a fairly constant 
rate over time. In such instances, it is usually adequate to approximate the demand 
by a constant rate. The approximate control model may then be deterministic. 

Demand fluctuations tend to be substantial if a product’s use is affected by climatic 
conditions, or if the number of customers is relatively small, or if customer demands 
are not in individual units but are in lots of widely varying sizes. Unfortunately, 
lumpiness of customer orders and the presence of serial correlation usually make it 
very difficult and costly to model the random process(es) generating such demands. 
Serial correlation is particularly serious if there are, among the users, a few regu ar 
customers with very large orders. (Why?) Furthermore, unless the product is extremely 
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important as a source of revenue, the additional benefits captured by sophisticated 
forecasting and control models rarely justify the increased costs incurred and the need 
tor more highly trained people to operate such systems. It is because of this generally 
unfavorable cost-benefit balance that, in practice, demand distributions are approxi¬ 
mated by a normal, Poisson, or Laplace probability distribution. The normal distri¬ 
bution is particularly suitable for relatively long lead times, while the Poisson 
distribution is often a good approximation for slow-moving items with single-unit 
demands such as spare parts. 

Except for products newly introduced into the market, demand from external 
customers is usually forecasted on the basis of past data. What data are available for 
this purpose? Most hrms keep accurate records only on actual usage or sales, the point 
of sale being the delivery. Sales may differ from actual demand in terms of volume 
and pattern. Requests that could not be met are usually recorded incompletely or not 
at all. bales may thus underestimate demand, particularly for larger orders. When 
stocks are low, some firms may ration the remaining stock to many customers. When 
the goods arrive, back-ordered demands are likely to be shipped all at once. These 
problems are serious only if stockouts occur frequently. In such cases, it may be 
necessary to institute procedures for recording actual demands rather than sales—at 
least tor the more important revenue-producing items. The introduction of tighter 
inventory control should reduce the incidence of stockouts, and consequently sales 
become a oetter (though never perfect) data base for demand. There always remains 
though, the question of how valid past records are for predicting future demand in 
an often turbulent environment, with rapidly changing tastes and technology 

12-5 A SIMPLE DEMAND-FORECASTING METHOD 

The characteristics of an inventory control system impose extra requirements on the 
methods that can be used to forecast demand. As well as being accurate and responsive 
to changes in demand, the method must allow the forecasts to be updated frequently 
and quickly. The large number of items in many inventory systems means that the 
updating method must be numerically simple, and it must be based on two or three 
numbers, which are all we can afford to record for each item. 

One such approach is based on the notion of exponential smoothing. Consider 

Vth ^n^nthly dem,ands for a Particular item, such as those given in column 2 
o table 12-1 At month n, we form a new smoothed estimate Sn of the demand by 
taking a weighted average of that month’s demand Xn and the smoothed estimate 
calculated in the previous month: 

(12'1) S„= «X„+ (1 - a)S„_, 

a is a number between 0 and 1 and is called the smoothing constant. 

n Formida implies that the smoothed estimate is a linear combination of 
all the past demands, with coefficients that decrease geometrically with the age of the 
observations. If we substitute in (12-1) for S„_„ then for S„_2,S„_3, . . ., we get 

(12-2) Sn = o:X„ + a(l - a)X„_! + a(l - a)2Xn_2 + . . . 



We hope that the effect on our forecasts of using a small value for a will be to remove 
or reduce the effects of random fluctuations in past demands. Note that if a is large, 
however, the most recent months are given more weight and thus have a stronger 
influence on the smoothed estimate. Hence, if demand changes fast, the average wi 
also adjust more quickly. In practice, it has been found that a smoothing constant of 
0.05 to 0.3 is most satisfactory. For our data and a choice of a - 0.1, we get the 
smoothed estimates shown in column 3 of Table 12-1. 

Assume that we start with an initial smoothed estimate of 175.6. This estimate 
could have been carried forward from previous calculations using exponential smooth¬ 
ing or it could simply be the average monthly demand during the last year 
Given that the demand in month 1 is 169, the new smoothed estimate for mont 
is 0 1(169) + 0.9(175.6) = 174.9. Similarly, the new smoothed estimate for month 
2 is 0.1(180) + 0.9(174.9) = 175.4. Note that only two pieces of data are needed 

to update the estimate. , ,. , 
If there is no steady change, or trend, in the data, then the new smoothed estimate 

computed after observing the demand for month n can be used as the forecast tor t e 
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demand in month n + 1 and later. If the demand is steadily increasing or decreasing 

oweyer the smoothed estimated—being a convex combination of past demands— 
will lag behind the demand experienced in the most recent months. 

We can a linear trend model of the form Xk= a + bk by double smoothing. 
i e smoothed estimates, Sn, are smoothed again, using an exponential formula like 

U/-1), to produce doubly smoothed estimates, S(„2). 

(12-3) S® = aS„ + (l -a)S®, 

If the assumption of a linear trend model is correct, it can be shown that estimators 
with good statistical properties for a and b are 

(12-4) a„ = 2S„ - S® bn = ~~(Sn - S<2)) 

The computations for (12-4) are shown in columns 5 and 6 of Table 12-1 For 

instance, the current estimates of the level a, and the slope b, in month 1 are ’ 

ax = 2(174.9) - 175.6 = 174.3 b, = 0.1(174.9 - 175.6)/0.9 = -0.07 

The demand forecast in month n + k, Fn+i, is given by 

The forecast for the next month (k = 1) is shown in column 7 of Table 12-1. 

To start forecasting we need initial estimates of the smoothed and the doubly 

smoothed estimates. If estimates of a and b from old data on this or a similar item 

are available, they can be used in (12-4) to solve for S0 and S®. If no old data are 

available we can start forecasting by initially setting the smoothing constant a equal 

to 1 so that no initial values are required. We then decrease a gradually to the desired 

level, say over the next six months. One method of choosing the smoothing constant 

is to simulate the forecasting process with existing data and to choose the value of a 

c\^n7t>VeS ^ <beSt” !°re,CastS' A measure of this is the ratio of the smoothed error 
bMER„ to.themean absolute deviation MAD„. We take the forecasting error in month 

n, t to be the difference between the forecast and the observed demand in month 

n. The smoothed error is produced by smoothing these errors with an exponential 

smoothing formula like (12-1), while the mean absolute deviation is produced by 
smoothing the absolute values of the errors: 

E„ = F - X 

SMER,, = aE„ + (1 - a)SMER . 
(12-6) 

MAD„ = a|Ej + (1 - a)MADn_, 

TRACK„ = SMER„/MAD„ 

Columns 8-11 

ofTable 12-1 

When the forecasting system is behaving well, positive and negative errors will 

tend to cancel out in SMER„, and hence TRACK„ will be small. As soon as the 
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system goes out of control, errors will have consistently large negative or large positive 
values, and TRACK,, will become near to + 1 or - 1. In an automatic forecasting 

system, TRACK can be used to monitor the system’s performance. It |1RAUK| be¬ 

comes too large, say consistently greater than 0.3, it is probable either that the deman 

pattern has suddenly changed or that the forecasts are hot responding fast enough to 

recent values of demand. Corrective action may have to be taken at that time. A 

completely automatic response is to use the current value of |TRACK| as the smoothing 

constant in equations (12-1), (12-3), and (12-4). As the forecasts start to consistently 

under- or overestimate demand, |TRACK| will rise so that the fo«ca^epend more 

on current demand. When the forecasts are back “on track,” |TRACK| will fall to 

allow greater smoothing of random fluctuations in demand. 

12-6 OVERVIEW OF MODELS DISCUSSED 

The models discussed in the following sections fall into three groups: 

• stationary models with deterministic demands (Sections 12-7 and 12-8), 

• stationary models with stochastic demands (Sections 12-9 through 12-12), and 

• dynamic models with deterministic demands (Sections 12-14 and 12-15^ 

Section 12-13 discusses some guidelines as to which stationary model to use under 

various operating conditions. , , , 
Most stationary demand models result in cost expressions that can be solved by 

the classical optimization techniques of differential calculus. These techniques are 

discussed in the advanced part of the text (Chapter 19) and assume a working knowledge 

of the most basic rules of differentiation and simple integration. If you possess this 

background, you may find it helpful to study parts of Chapter 19, as referred to over 

the next few sections, along with this chapter. 

12-7 ECONOMIC ORDER QUANTITY MODELS 

In Chapter 1, Section 1-11, you were introduced to the most basic inventory control 

model—namely, the economic order quantity model (also given various other names, 

such as EOQ model, economic batch size model, Wilson lot size, square root formula, 

etc.). Let us briefly review that model again. 
The EOQ model deals only with the replenishment of cycle inventories. Demand 

is assumed to occur at a constant rate R over time. As depicted in Figure 12-3, 

whenever stocks are depleted to zero, a batch of size Q instantly replenishes stocks to 

the level Q. No shortages can occur. The total cost over a given planning horizon 

is equal to the sum of inventory holding costs, replenishment set-up or order costs, 

and the product cost. Let the planning horizon be one year. Hence, R refers to the 

annual demand, VR is the annual product cost, and the holding cost is assessed on 

the average inventory investment, V(JQ). The number of replenishments per year is 

R/Q. The total annual cost T(Q) is therefore 



Section 12-7 Economic Order Quantity Models 

(12-7) 

inventory 

holding cost 

t(Q) 

replenishment 

set-up cost 
product 

cost 

The 'erm VR l! a constant. It is not aBected by changes in Q and can therefore 

^ dropped from express1on (12-7) figure 12-6 shows the remaining two component, 
ot (12-7) and their sum for the set of parameters listed in the box adjacent to the graph. 

Figure 12-6. Cost faction for EOQ model. 

spy/ 
Data used 

R = 1200 
V =8 

ci =0.18 
c 2 = 24 

Set-up cost 
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The value of Q that minimizes the total cost (12-7) can be determined by the 

use of elementary calculus (refer to Section 19-1). Alternatively, we note from Figure 

12-6 that the minimum cost occurs at the point where the annual holding costs are 

equal to the annual replenishment set-up costs, i.e., where 

(12-8) ' c,VQ/2 = c2R/Q 

This is a property of the EOQ model. Rearranging terms and solving for Q yields the 

well-known 

EOQ FORMULA 

Q“ = V2Rc:/c,V 

The optimal policy is to replenish stock by an amount Q whenever inventories 

have been depleted to zero. If R is the annual demand, then each replenishment cycle 

has a length (in years) of 

(12-10) L= Q*/R = V2c2/ClVR 

Substituting Q" into expression (12-7) and simplifying, we find that the theoretical 

cost of the optimal replenishment policy becomes 

T(Q* 

(12-11) 

- L ; ______ 

= ^,VV2Rc2/c,V + c2R/V2Rc,/c,V = 2VcyRc2!2 

V7e.VRc, 

Consider the following example. The annual demand for a special-purpose lu¬ 

brication oil amounts to 1200 gallons per year. Demand occurs at a fairly even rate 

throughout the year. The product is stocked in cartons containing 24 quart cans (6 

gallons). The value of the oil, including package material, is $8 per gallon. The oil 

is mixed and filled in batches. Each setup for a mixing and filling run involves one 

hour of labor cost at $8 (including fringe benefits). Solvents required to clean the 

mixing vat after use have a value of $5. The first gallon of product feeding through 

the lines between the mixing vat and the filling machine has to be discarded because 

of possible contamination from the previous run. The oil lost has a value of about 

$7. Clerical costs of a replenishment amount to $4. Management estimates that any 

inventory investment has an opportunity cost of 18 percent, which includes the cost 

of self-insurance. Unused warehouse space has no value. What is the optimal order 

Given that the demand rate is fairly even, the EOQ model seems suitable. From 

the data given above, verify that the cost and demand parameters are as shown in the 

box adjacent to Figure 12-6. Then, by (12-9) we have 

Q* = V2( 1200)24/0.18(8) = 200 gallons 
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The optimal policy is therefore to replenish inventory in batches of 200 gallons The 

time between replenishments is L* = 200/1200 years, or 2 months. From (12-11) 

we find that the theoretical total annual cost (without the product cost) is 

T(200) = V2(0.18)8(1200)24 = $288 

Note that 200 gallons is not a multiple of 6 gallons. Hence, the actual replen¬ 

ishment quantity may need to be rounded up to 204 gallons (plus one gallon discarded) 

or rounded down to 198 gallons (plus one gallon discarded). Verify that in either case 

1 fan i|ehCa rUal C°St dlfference 1S ,ess than 6 cents. In fact, even a deviation 
of 10 gallons will increase costs by 2.5 percent at most. The cost function is thus very 

Hat around the optimum. From these observations we conclude that the potential 

inefficient USmS m°deI ^ ^ Sma11, unless the Previous policy was highly 

How sensitive is the theoretical minimum cost to changes or errors in the input 

parameters? Consider errors in the demand. When the EOQ model is implemented 

the value of R used is based on the forecast of the expected demand for the coming 

year. Let R denote this forecast. Being a forecast, R might differ from the true but 

unknown demand R. By how much would the theoretical incurred costs be off if the 

forecast were in error by a factor of k, i.e., if R = kR? Using R = kR in formula 
(JZ-Vj, we get an optimal” order quantity of 

(12"12) 0 = VZRcj/cjV = V2kRc2/C]V = Q*Vk 

The true annual cost of 0, given that the true demand is R, is 

T(0) = k,V0 + c2R/§ = iClVQ*VT + czR/Q*Vk 

= VqVRc,/ 2(Vk + l/Vk) 

Multiplying by 2V k / 2\/k and then simplifying, we get 

(12-13) T( 0) = \^2c^VRe2(k + l)/2Vk = T(Q*)(k + l)/2V~k 

Thus the answer to our question is that the true theoretical cost will be off by 

a factor of (k + 1)/2VT. This result depends only on the relative error and not on 

he actual values of R and R (k + \)/2Vk = 10=1, and its value will be 

r?riV?\A f°r f1 v*lues °f k * 1, as is to be expected. Figure 12-7 shows 
(k + 1)/2V k as a function of k. 

, that the forecast overestimated the true demand by 44 percent i e k = 
1.44. Then v ’ ’ 

and 

0 = Q*Vk = 1.2Q* 

(k + l)/2Vl = (1.44 + l)/2Vl.44 = 1.0167 



Chapter 12 Inventory Control__ 

Figure 12-7. Error factor ofEOQ model. 

The theoretical cost using 0 will be only 1.67 percent larger than the minimum cost 

using O* On the other hand, underestimating the demand by 44 percent (i.e., k - 

0.56, resulting in § = V0^6Q* = 0.75Q*) causes the theoretical cost to be larger 

by 4 23 percent. Overestimation is thus less costly than underestimation. From this 

analysis we may infer that the EOQ model is not very sensitive to fairly large errors 

in the demand forecast and therefore does not require a high forecasting accuracy. 

The previous model assumes that the entire replenishment arrives in stock as one 

lot In a manufacturing process, it may take several days or even weeks to complete 

a production run. The goods may thus be added to inventory in small quantities (e.g., 

daily lots) until the production run has been completed. During this time, withdrawals 

from stock for sale and internal usage will continue. Figure 12-8 shows the approx- 

imated inventory behavior over time. 
During the interval over which production occurs, inventories increase at a daily 

rate ofb — a, where b is the daily production rate and a = R/250 is the daily demand 

rate based on 250 working days per year. Once production has been completed, 

inventories are depleted at a daily rate a. Obviously b > a. (Why?) For a replenishment 

of size Q, production takes Qfb days. During this time, a quantity a(Qlb) is sold. 

Therefore, the maximum inventory level reached at the completion of the production 

run is not Q, but 

(12-14) Q - a{Qfb) = Q(1 - alb) 

The average inventory is half of (12-14). With this small change, the total relevant 



co5s)aiSCOSt of replenishing inventory periodically by an amount Q (excluding product 

(12~15) T(Q) = iC]VQ(l - db) + c2RIQ 

By the same analysis as we used for the simple EOQ model, the optimal re¬ 
plenishment batch is now 

(12-16) Q* = V2c2R/c,V(1 - alb) 

■ ,1 extensi°n to basic EOQ model that has been reported on at length 
in the literature involves planning for systematic shortages to occur at the end of each 
replenishment cycle Although it is conceivable that a firm might get away with this 
practice for a limited time customers are bound to react negatively, affecting sales. 
If the users are internal to the organization, they will carry larger safety stock. In either 
case, the potential long-term losses are likely to outweigh any long-term benefits. That 
extension of the EOQ model is thus mainly an exercise in academic trivia. 

12-8 ECONOMIC ORDER QUANTITY MODEL FOR 
QUANTITY DISCOUNTS 

In the cost function for the EOQ model-expression (12-7Mhe product cost shows 
up as a constant and therefore can be ignored. If a supplier offers quantity discounts 
this is no longer true. Assume that quantity discounts apply to all units purchased in 
a batch. Then the total purchase cost is a discontinuous function of linear segments 
as shown by the solid line in Figure 12-5, part (b). All other cost parameters remain 
the same as for the basic EOQ model. For the two-price-break case shown in Figure 

the total annual cost expression is 
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This is depicted in Figure 12-9 for the parameters shown in the box adjacent to that 

figure For each purchase price, the base for the annual set-up and holding costs is 

given by the total annual purchase cost, RV, Hence the general cost shape of Figure 

12-6 repeats itself on each purchase cost base. The segment for which each set is valid 

is shown by the solid lines. . . . , 
For a given purchase price, the optimal value of Q is therefore again given by 

formula (12-9). However, this value of Q may not fall into the proper range for its 

price V. and consequently may not be valid. For instance, the optimal value of 0 tor 

price V'0 (denoted by Q*0) falls into its proper range, whereas the corresponding values 

Q* and Q, for the prices V! and V2, respectively, fall outside of their proper ranges. 

Furthermore, from the graph of the total annual cost, it follows that the minimum 

cost may also occur at a price break B, This is in fact the case for our example The 

shape of the total cost curve suggests the following procedure for finding the optimal 

value Q* for I price breaks (I + 1 prices). 

riMAL REPLENI 

PRICE BREAKS 

liiklisai 

Using (12-9), compute Q' for each \ „ 

If B^ Q: < Bj+1, save Q‘; otherwise, discard it. 

Find the highest value of i = i for which Q, was 

set Q* = Q,” and stop. If i < f, 

(a) compute T(Q’), and 

(b) compute T(Bj for all i > i. : 
From the values of T(Q) computed in (a) and (b) of 
„ II rr*it ■ * 1 SS ‘ I 1- „ 4-V» A J-ii 

itep 2, find the from tne values ui jm — —r ----- 
lowest value. The optimal Q* is then equal to the corresponding 0 

Applying this procedure to the problem represented in Figure 12-9, we get 

Step 1 i = 0: Qo = 333. Q is inside its range and hence is saved, 
i = 1: Q* = 354. Q is outside its range and hence is discarded, 

i = 2: Qj = 358. Q is outside its range and hence is discarded. 

Step 2 i = 0, and 
(a) T(Q: = 333) = $22,320 
(b) T(Bj = 500) = $19,920, T(B2 = 1200) = $19,943. 

Step 3 T(B, = 500) is the minimum cost; hence Q* = 500. 

12-9 SINGLE-CYCLE STOCHASTIC INVENTORY CONTROL 
MODELS 

The model discussed in this section is the simplest inventory control model for sto¬ 

chastic demands. It answers the question “What is the optimal beginning inventory 
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Figure 12-9. Total annual costs for quantity discount model. 

339 

T(Q) 

Data used 

R = 2400 

cx = .24 

c2 = $50 

^0 = $9 

V\ = $8 

V2 = $7.80 

Bl = 500 

b2 = 1200 

to meet a random demand during a single period?” All stocks are sold or used during 

the period, or else they are disposed of at the end of the period at a loss, say, as scrap 

or as special below-cost bargains. A rather wide variety of real-world problems fit this 

model. There are repetitive decisions such as the newsboy problem (how many copies 

ot a newspaper to stock) and the Christmas tree problem (how many Christmas trees 

to stock). As a matter of fact, the model is often referred to as the newsboy or Christmas 

tree problem. There are also many production or stocking decisions about perishable 

goods such as hot meals in a cafeteria. There are nonrepetitive decisions, such as the 

number of spare parts to order when buying special-purpose equipment and the size 
of production runs for fad items with a limited season. 

Mt. McKinley Airlines operates five 8-seater Skylark airplanes for its scenic flights 

from Anchorage, Alaska. These planes will be replaced by newer models within two 

years. Skylark has just notified Mt. McKinley Airlines that it will make a final pro¬ 

duction run of ring gears for planes of this type and has asked the airline to place an 

order for that spare part. Given the unusual flying conditions under which the airplanes 

are operated by Mt. McKinley Airlines, these ring gears are subject to random wear. 

Over the past eight years, an average of 2 gears had to be replaced annualy. Skylark 

quotes a price of $900 per ring gear ordered now, whereas any subsequent orders will 

require special setups at a cost of $1600 per gear, with a delivery lead time of at least 

rTfnn ?earS left in Stock at the end of the ^ years wil1 have only a scrap value 
ot $100. The loss in net revenues when a plane is grounded for lack of replacement 

gears amounts to $1200 per week. How many gears should the airline order? 
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In Section 19-2 we solve such a problem by formulating a function for the 

expected total cost. In this section, however, we will apply marginal analysis to find 

the optimal replenishment size. 
There are two types of costs involved in such a problem: the cost of ordering too 

many units and thus having units left over—referred to as the overage cost, c —and 

the cost of not ordering enough units and being short—referred to as the underage 

cost, cu. For our example, the overage cost is the difference between the price of the 

gears for the regular production run now and the scrap value two years from now, or 

($900 - $100) = $800 per unit. (Holding costs could possibly be added.) The 

underage cost is the sum of the special set-up cost and the 2-week loss in net revenues, 

or ($1600 + $2400) = $4000 per unit. . 
In marginal analysis, we consider increasing our replenishment quantity one unit 

at a time, starting with a base of zero. For each additional unit, the probability of 

incurring the overage cost increases, while the probability of saving the underage cost 

decreases. Hence, for each additional unit, the expected incremental overage cost 

incurred increases while the expected incremental underage cost saved decreases. We 

reason that as long as the former is smaller than the latter, it pays to increase the 

replenishment quantity. , 
Let x denote the random variable for the number of units required (or demanded), 

and let P(x < k) denote the probability that fewer than k units are needed, or that the 

kth Unit is not needed. Then the expected incremental overage cost incurred for adding 

the kth unit is c0P(x < k), while the expected incremental underage cost saved is 

cuP(x 3= k). It pays to increase the order quantity as long as 

(12-18) C0P(x < k) < cuP(x 3= k) 

We stop as soon as 

(12-19) C0P(x < k + 1) 3= C„P(x 3= k + 1) 

Substituting P(x 3* k) = 1 - P(x < k) in (12-18) and (12-19), rearranging terms, and 

combining both relationships, we derive the following conditions for the optimal value 

of* = k*. 

/// " YcMitM^^ // // 
/;Y(///////> /r n/,//; /; Y 

1 / / / / / / / // /lf 

If (12-20) is satisfied as an equality, then both k* and k* + 1 are optimal. 

For products with infrequent, individual, random demands or usages (such as 

spare parts), the Poisson distribution is often a good approximation for the demand 

probability distribution (see Section 10-5). This distribution is defined by a single 
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parameter, Xf, where X is the average rate per period and t is the number of periods 
For our example, X = 2 and t = 2; hence, Xf = 4. The first few terms of the 
corresponding Poisson distribution are as follows. 

0 3 5 7 10 

m o.oi8 
p(x < k) 0 

0.073 
0.018 

0.147 
0.091 

0.195 
0.238 

0.196 
0.433 

0.156 
0.629 

0.104 
0.785 

0.060 
0.889 

0.030 
0.949 

0.013 
0.979 

0.008 
0.992 

The ratio of costs in expression (12-20) is 4000/(800 + 4000) = 0 8333 This 

^breVhC iValUf * T 6 3nd f + 1 = 7‘ Hence’ if no Parts are c^rently in 
stock the optimal replenishment is k” = 6. It is 2 larger than the average demand 
over the two-year period. The safety stock is thus 2. (Verify that, in fact, the expected 
mcremental overage cost becomes larger than the expected incremental underage cost 

This model can easily be generalized to continuous random variables. The “in¬ 
crements (equal to 1 in the previous example) can then be made arbitrarily small. 

r ? iS be ?°flble t0 satisfy exPressions (12-18) and (12-19) as equalities. 
Let F(S) denote die probability distribution function for the random variable x with 
density function f(x i.e F(S) = P(x * S) = J*f(x) dx. Then, the optimal replen¬ 
ishment quantity S is obtained from 

(12-21) F(S*) 
cn + c 

(This is the formula derived in Section 19-2.) 

For goods ordered for resale—such as fashion garments—profit maximization is 
he relevant criterion, rather than cost minimization. This has no effect, though, on 

the validity of the conditions (12-20) and (12-21). We simply redefine the overage 
and underage costs. The overage cost is the loss incurred in disposing of the goods 
at the end of the season, while the underage cost is the profit foregone on lost sales 
opportunities. 

12-10 SAFETY STOCKS FOR THE LOST-SALES CASE 

The EOQ model is often used as an approximation to find optimal replenishment 
quantities even where demand is not strictly deterministic but in fact exhibits a rea¬ 
sonably small degree of randomness. If the replenishment lead time is positive, some 
safety stock may be needed. The situation we face is the one shown in Figure 12-4 
excep that shortages result in lost sales. Let Q again be determined by the EOO 
model. How much safety stock should be carried? Or, equivalently, since the safety 
stock is a function of the reorder point r, what is the optimal value of r? 

If we initially restrict our analysis to a single replenishment cycle, finding the 
optimal reorder point is almost identical to finding the optimal replenishment quantity 
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in the single-cycle model of the previous section. In both cases, we want to find the 

optimal amount of stock to have on hand at the beginning of a specified time mterva , 

which now covers only the replenishment lead time. The difference is that now any 

goods left unsold at the end of the lead time will be carried forward to the next cycle. 

This simply means that the overage cost includes only the cost of holding a unit m 

stock over a replenishment cycle of length L, i.e., c0 = c,VL. The underage cost is 

still given by the shortage cost on lost sales, i.e., cu = c,. Hence, the optimal reorder 
point r* can be derived from conditions (12-20) or (12-21). 

In each cycle, this process repeats itself, unchanged. Thus, r* is the optima 

reorder point for each cycle. By tradition, overage and underage costs are expressed 

on an annual basis. This is easily achieved by multiplying each cost by the average 

number of cycles per year, namely 1/L, or R/Q. Hence c - ci^> ” °3 
This will not affect the value of the ratio in (12-20) or (12-21). With this change, we 

get the following procedure for finding a nearly optimal inventory replenishment 

policy for the lost-sales case under demand uncertainty and assuming demand is 

continuous. 

?f ■ / ifepill PhM ory|:2rand ^ j 
?; // //////d¥a|uafe'|i/^?y / /////'/:7 Nil/; fj / / / / /' 
/ f /1 ^4^2 Mvdif/Ji Cl i-fl / / /// //.//// / / ; / f j-j i 
.. f 1 * • • *  • ' JL/ :: , r\ , ■ • i ■■ rr* * .y  '■  f / . j " J:. :   *  t 

■T2-22) F(r*) = 
c- 

c,V + c, 

f(x) is the probability density’ function 

For discrete demands, conditions (12-20) with r* = k* are substituted for (12-22). 

(The backorder case is briefly discussed at the end of Section 12-11. Expression 

(12-29) should be used in place of condition (12-22).) 
Continuing our first example in Section 12-7, assume that the weekly demand 

is normally distributed with mean p = 1200/52 - 23 and standard devrationcj 

6. The lead time is 4 weeks. The unit shortage cost is estimated at c, - *4.8U. All 

other parameters remain unchanged. 

Step 1 

Step 2 

By (12-9), Q* = 200, and RIQ* = 1200/200 = 6. 
By the properties of the normal distribution for independent random var¬ 

iables the lead-time distribution is also normally distributed, with mean 

4p = 92 and standard deviation <jV4 = 6V4 = 12. The ratio of con¬ 

dition (12-22) is 

(4.8)6 

(0.18)8 + (4.8)6 
0.9524 
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From the tables of the normal distribution (Table 1 in Appendix B) we 
find that P(lead-time demand ^ r*) = F(r") = 0.9524 corresponds to a 
z-value of approximately 1.67. Hence r* = 92 + 1 67(12) = 112 04 or 
about 112. 

The nearly optimal policy is thus to initiate a replenishment of size 200 whenever 
the inventory level, including any replenishments outstanding, has been reduced to 
112 or below. 

In this approach, we made a number of simplifications. First, we ignored the 
fact that some demand may be lost, and hence the number of cycles per year is less 
than R/Q Note, though that if the amount of shortages is small, the effect on r due 
to the slight y smaller R/Q ratio may be negligible. In this model, shortages will in 
tact be small if shortage costs are significantly larger than holding costs. Second we 
assumed that the lead time is constant. (For variable lead times, f(x) must be found 
as the marginal demand distribution from the joint probability distribution of the 
demand and the lead time, as shown in Section 10-3.) Finally, we considered only 
the ettect ot Q on the reorder point r, but not any possible effects of r on Q. 

The effect of Q on r works via the ratio R/Q in (12-22). As Q increases, this 
ratio decreases, and hence r decreases somewhat. However, if c3 is very large, it may 
be advantageous to reduce the number of times shortages may occur This'can be 
achieved by increasing Q and thereby reducing R/Q. It is this feedback loop that is 
ignored in the above approximation. This point will be taken up in the next section. 

12-11 THE {Q, r) MODEL 

We shall now explicitly recognize the major mutual interactions between Q and r 
1 he objective is to minimize the sum of the inventory holding costs, the replenishment 
set-up costs, and the shortage costs. The inventory holding costs are assessed on the 
average inventory level. This consists of the average cycle inventory, Q/2, plus the 
average safety stock. The latter is approximated by the average inventory level at the 
end of the replenishment lead time. The safety stock is thus equal to r less the expected 
lead-time demand met from stocks. Let the demand during the lead time be denoted 
by the continuous random variable x, subject to the probability density function fix). 

1 hen tor the lost-sales case, the ending inventory just prior to the arrival of the 
replenishment is 

J(r, x) = 

The expected safety stock is therefore 

r — x 

'0 
for x ^ r 
for x > r 

(12-23) I(r, x)f(x)dx 
o 

(r - x)f(x) dx 
Jo 

The shortage cost is assessed on the average amount short. At the end of each 
cycle, the amount short is 

0 for x ^ r 

x — r for x > r 
J(r, x) = 



The expected amount short in each cycle is therefore 

(12-24) J{r, X) f{x) dx = (x- r) f(x) dx 
Jo 

The expected annual amount short is obtained by multiplying (12-24) by the number 

of cycles per year. Assuming again that the expected annual amount short is very small 

in comparison to the total demand, the number of cycles can be approximated by 

R/Q. We now have all components. The (approximate) expected total annual cost 

is 

(12-25) 

T(Q, r) = CjVjjQ + Jo (r - *)f(*) 

+ c2(R/Q) 

+ cJR/Q) “ (x - r)f(x)dx 

(expected holding costs) 

(expected replenishment 

set-up cost) 

(expected shortage cost) 

The optimal values of Q and r can be found by using the methods of differential 

calculus, as shown in Section 19-5. This yields the following conditions: condition 

(12-26) for Q* in terms of r", and condition (12-27) for the value of the distribution 

function of x at r* in terms of Q*. 

(12-26) q* =J^2R(c2 + c, (x - r*)f(x)dx)^yc,V 

P(„_wq'lL 
(12-27) n j ClV + c3(R/Q*) 

An interesting result emerges. Note that expression (12-27) is identical to expres¬ 

sion (12-22). But expression (12-26) will, as expected, yield a slightly larger value for 

Q* than the simple EOQ formula (12-9). 
To find the optimal values of Q" and r*, we use an algorithm for successive 

approximations. 
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e is chosen arbitrarily small. In most cases £ « e «£ 1 suffices. This algorithm usually 
converges in two or three iterations. 

Let us apply this algorithm to the example in the previous section. For a normally 

distributed random variable, expression (12-24}—needed in (12-26)—can be expressed 

m terms of the standard normal loss function N(Z) (Table 2 of Appendix B), i.e., 

02-28) J (x- r)f(x)dx = (rN^-2-i^ 

We set e = 0.5. 

Iteration 1: 

Step 0 Q0 = 200 from Section 12-7. 

Step 1 r0 - 112.04 from Section 12-10 
/ \ /_. . X 

Step 3 N| ro ~ M- 

(T 
N 

112.04 - 92 

12 = N(1.67) = 0.01967, and 

Qi = 

Mz(JU)[24 + (4.8)12(0.01967)1 

V 

Iteration 2: 

Step 1 F(r,) = 

0.18(8) 

4.8(1200/204.67) 

= 204.67. 

0.18(8) + 4.8(1200/204.67) 

r, = 92 + 1.66(12) = 111.92. 

Step 2 |Q, - Q0| = 1200 - 204.67| = 4.67 > 0.5. 

Step 3 N(1.66) = 0.02015, and Q2 = 204.78. 

Iteration 3: 

0.9513 implies z = 1.66 and 

Step 1 F(r2) = 0.9513 implies r2 = 111.92. 

Step 2 |Q2 - Q,| = 0.11 <0.5, and |r2 — r,| = 0 < 0.5. 

Hence Q* = 204.78 and r* = 111.92. 

The policy is io replenish inventory by Q* s 205 whenever inventories (including 

replenishments on order) fall to r* =s 112 or less. The policy for the (Q, r) model is 

thus only marginally different from the one in the preceding section. In fact, the 

theoretical cost difference is less than 8 cents, or less than 0.03 percent. Similar results 

hold in most cases. No wonder this and other sophisitcated models are put aside in 

favor of the simple approximate two-phase model in the previous section. 

Needless to say, the (Q, r) model can also be formulated for the backorder case. 

Since the inventory at the end of the lead time may now also be negative, the average 

inventory is slightly smaller. Expression (12-23) becomes /”(r - x)f(x) dx. With this 

change Q* is again given by expression (12-26), but r* is now determined from 

(12-29) F(r*) = c*(R/C*) ~ civ 
^ c,(R/Q*) 

which will always yield a slightly lower reorder point than expression (12-27). 



12-12 (s, S) POLICIES 

In the preceding section, we selected a commonly used, albeit arbitrary, inventory 

policy. It was defined by two decision variables, Q and r, for which we determined 

“optimal” values. However, the policy chosen may not be the best one for the cost 

structure used so far, namely that of a fixed cost per replenishment, with holding costs 

linear in the average inventory level and shortage costs linear in the amount short. 

Does there exist a policy that is optimal for that cost structure? 
Indeed, there does. It is called an (s, S) policy. The reorder point is s and the 

order-up-to-level, or the reorder level is S. If i is the inventory level and q the replen¬ 

ishment quantity, the replenishment rules for an (s, S) policy are as follows: 

• if i < s, set q = S — i, 

• if i 2* s, set q = 0. 

As long as the inventory level i is between s and S, inclusive, no replenishment is 

initiated Once the inventory level i falls below the reorder point s, the inventory 

position is brought up to S. The formal proof that the optimal (s S) po icy has a cost 

that is no larger than the cost of any other policy is rather involved. We shall give 

only an intuitive graphical demonstration for the single-period case. 

Consider Figure 12-10. The U-shaped curve represents the sum of the expected 

inventory holding and inventory shortage cost K(i) over the period, expressed as a 

function of the beginning inventory level i. It has its minimum value of K(S) at -V 

Hence, we would never wish to have more than S units on hand at the beginning of 

a period. For i < S, K(i) increases as i decreases. If i decreases sufficiently, the 

difference K(i) - K(S) will exceed the fixed set-up cost c2 of replenishing inventory. 

So, it will become advantageous to incur the cost c2 and replenish inventories y an 

amount q. The total cost is then c2 + K(i + q). Since c2 is a constant, it is clear that 

c + K(i + q) assumes its minimum when i + q = S. Hence, the optimal replen¬ 

ishment would raise the inventory to the level S. Let i = s denote the point where 

K(s) = c2 + K(S). Then it follows that the optimal replenishment policy has the torm 

• if i < s, K(i) > c2 + K(S): replenish stocks up to S; 

• if i 2= s, K(i) c2 + K(S): do not replenish. 

Note that if all sales transactions are in individual units only and if inventory is 

reviewed after each transaction (transaction reporting), then s = r and S = s + Q, 

and the (s, S) and (Q, r) policies are identical. However, if transactions are lumpy or 

if the inventory is reviewed at discrete points in time, then the (s, S) model results 

in replenishment quantities S - i, which may be different for each replenishment. 

This is often considered one of the policy’s major drawbacks, since it may lead to 

errors in requisitions or in production specifications. . . 
Unfortunately, the computational effort involved in deriving the optimal (s b) 

pair is prohibitive. In practice, approximations to the (s, S)I values are used such as 

s = r* from expression (12-22) and S = s + Q* from the EOQ formula (12-9). For 

the example of Section 12-10, this approximation rounded to the nearest integer yields 
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Figure 12-10. Cost structure for the (s,S) policy. 

Cost 

s - 112 and S - 112 + 200 = 312, while the optimal (s, S) pair is (112 317) The 

theoretical cost difference is about 8 cents, or less than 0.03 percent. Sources for more 

accurate approximations are listed in the references to this chapter. In Chapter 14 
the optimal (s> S) policy for a discrete-variable case is computed. 

12-13 PRACTICAL STOCK CONTROL—WHICH MODEL TO USE? 

As pointed out earlier, the potential savings that can be achieved by the use of 

mathematical inventory control models are relatively small on an individual item 

basis, while the cost of such control models (including demand forecasting) may be 

relatively high for a (Q, r) or (s, S) type model. For slow-moving or low-value items, 

the net benefits of a sophisticated inventory control model may, in fact, be negative. 

On the other hand, for expensive or high-volume items, management may not consider 

the control offered by a computerized system to be tight enough. Furthermore, any 

item that is still in the fast-growth phase of its life cycle or that has reached the stage 

of rapid decline in its demand needs a type of tight control that is usually beyond a 

mechanical system. Therefore, it is important to identify the suitable level and the 
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type of control for each item stocked. This can best be achieved by classifying goods 

along some appropriate criterion. 
A classification by usage-value has achieved widespread acceptance largely be¬ 

cause of its simplicity. A close examination of actual inventory systems reveals that 

most of these systems exhibit a typical regularity: about 20 percent of the items account 

for about 80 percent of the annual dollar volume of sales. Figure 12-11 illustrates 

typical curves for distributions by annual dollar usage-value of industrial and consumer 

goods. . , , 
This curve is obtained as follows. Compute for each item i the product V,K„ 

where V is value and R, is its annual demand or sales. Rank these products in 

descending order. Starting with the largest V& product, compute the cumulative 

subtotals, and express them as percentages of the overall annual dollar volume over 

all items. Finally, plot these cumulative percentages as a function of the rank of each 

item. It is usually convenient to also express the rank of each item as a percentage 

mark of the total number of items, as shown in Figure 12-11. 

Experience indicates that it is desirable to classify the items on the basis of the 

distribution by usage-value into at least three groups, referred to as the A-B-C clas¬ 

sification. The exact percentage breakdown appropriate for a given firm will vary any¬ 

where between 10-30-60 and 5-10-85. These figures indicate that the first 5 to 10 

percent of the items (as ranked by their distribution by usage-value) are designated as 

A items, accounting for about 50 percent of the total sales volume; the next 10 to 30 

percent of the ranked items (accounting for about 40 percent of the total sales volume) 

are designated as B items; while the remaining 60 to 85 percent of all items (accounting 

for the remaining 10 percent of the total sales volume) form the C class of items. 

High-profit items, regardless of their ranking, may be included in the A group. 

The degree of control exercised over each item is tailored according to its A-B- 

C classification. Class A items should receive the highest degree of individual attention. 

Tight control is justified by the special position of Class A items in terms of the overall 

operation of the organization. Since they cover no more than 10 percent of all items, 

the cost of the extra effort involved in tight control is kept within strict limits. Here 

are some accepted guidelines: 

1. Demand is forecasted for each item individually. Forecasts obtained from a 

computerized system are reviewed regularly and adjusted manually in the light 

of information directly obtained from the sales force or from the users. Prob- 

ability distributions of daily demand for large physical volume items are either 

based on the empirically observed distribution over the most recent six or twelve 

months or approximated by normal distributions. The demand distribution for 

high-value/low-physical-volume items is approximated by a Poisson or a La¬ 

place distribution. 
2. Considerable efforts are made to keep tight control over replenishment lead 

times. For instance, for goods produced internally, progress over the manu¬ 

facturing stages is monitored, and corrective action is taken if necessary. For 

goods procured externally, firm commitments are obtained from suppliers. If 
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Figure 12-11. Distribution of dollar usage-value. 

Industrial goods 

A B 

A B C 

Consumer goods 

such steps are not possible, lead-time distributions are determined from past 
experience. 

3. Cost factors needed as input into mathematical models are determined indi¬ 

vidually for each item and are updated whenever significant changes occur 
(see Section 1-20). 
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4. Transaction reporting (or at least daily updating of inventory records) is used 

to trigger replenishments, based on a (Q, r) or an approximate (s, S) model. 

The replenishment decisions of the models are reviewed routinely before being 

acted upon. 
5. Since stock control is tight, safety stocks can be kept relatively small, thus 

providing considerable savings in inventory investments. Any shortages will 

usually give rise to direct intervention to expedite production or supply. Un¬ 

avoidable delays will be communicated to the customers or users. 

At the other end of the control scale are the C items. These represent the largest 

number of items. Because of their relative unimportance, the objective of inventory 

management here is to obtain adequate control inexpensively. Hence: 

1. Demand forecasts are, in most instances, simple extrapolations of last year’s 

usage. The only exceptions are new items and items that have experienced a 

rapid drop-off in demand over the last year. For the latter, it is important to 

guard against overstocking so as to avoid accumulation of dead stocks. Such 

items should be flagged as soon as a significant slowdown in movement is 

observed. No demand probability distributions are estimated. 

2. Shortages may have consequences as serious as those of higher usage-value 

items. For instance, stockouts of inexpensive trim or washers for machines 

may cause serious production disruptions and unnecessary build-up of partially 

finished stock. Hence, fairly large safety stocks are kept to ensure that shortages 

are very small. For fast-moving items, rather than determine minimum-cost 

safety stock levels on the basis of actual shortage costs, firms set safety stocks 

by specifying a so-called service level. This level is expressed either in terms 

of the average number of years N without stockouts (say, on the average, one 

stockout every N = 5 years, which for a particular item i is equivalent to one 

stockout every N(Rj/Q,) replenishments) or else in terms of the average fraction 

of demand met between replenishments (say, 99 percent). Given an assumed 

(conservative) probability distribution for usage of item i during a (conservative) 

estimate for the replenishment lead time, each of these statements yields a 

reorder point by solving the following expression for r;. 

(12-30) P(demand for item i *£ r,) = 0 = service level 

where 

i - (Q,/m 
or (fraction of demand satisfied) 

For a particular Laplace distribution, which is defined by a single parameter 

|XI? that represents both the mean and the variance of the demandfor item i 

during the lead time, the reorder point is rx = |x, + = ^, + fcVV,-. By the 

properties for the Laplace distribution shown in Section 10-6 of Chapter 10, 

expression (12-30) becomes 

(12-31) P(x,-« r() = P(x; * + fcV^) = p = 1 - ie~kVT foik^O 
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Solving (12-31) for k, we get 

k = (l/V2)loge 1 
.2(1 - p) 

Ifp - 1 - (Qj/NRJ, (12-32) simplifies to k = (1/ V2) log, (NRJ 2Q.). 

n practice, N is likely to be the same for all C items or restricted to a few 

values for individual subgroups. Two-way tables for K as a function of R. and 
Q{ can be constructed easily for the various values of N. 

3. C items are often group-controlled. The items are classified into subgroups 

with similar cost characteristics. For each group, average values of the product 

value V and the replenishment set-up cost c2 are determined. The EOQ formula 
(12-9) is then simplified to 

(12-33) Q, = Vr’VIc/Vc, for each item! 

where the term V2c2/Vc, is the same for all items in the subgroup. 

4. Often no individual stock records are maintained. Adequate control is achieved 

by using a physical two-bin system. The second bin contains a quantity equal 

to the reorder point rt for item i. Stock withdrawals are always made from the 

first bin as long as any units remain in it. Emptying the first bin automatically 

triggers an inventory replenishment. The second bin may in fact be sealed by 

a tag in the form of a replenishment order card, completely filled in except 

for the date. When the second bin is opened, this card is then used to initiate 

the replenishment. When the replenishment arrives, bin 2 is filled first with 

the new stock, and the balance (plus any old stock carried forward) is then put 

into bin 1. [fa physical two-bin system is impractical, C items may be reviewed 

only once a month, at which time a decision is made as to whether or not to 

place a replenishment. In this case, the lead time has to be increased accord¬ 
ingly. 

5. For slow-moving items, the replenishment rules are even more streamlined. 

Replenishment quantities may be set equal to either 6, 12, or 18 months of 

average demand, based on the annual usage-value of each item—the lower 

the usage-value, the longer the average interval between replenishments. Good 

break points are set on a sampling basis and reviewed about once a year. 

6. Slow-moving C items are always potential candidates to be dropped from the 

product lines. For a discussion of the relevant issues for abandonment decisions, 

we refer you to the excellent text by Peterson and Silver, listed in the references. 

The control of B items follows lines similar to the control of A items, except that 

management and control by exception replaces the continuous individual attention 

given to A items. As a rule, B items are controlled individually by computerized 

forecasting and replenishment models. Transaction reporting may be replaced by 

periodic but frequent automatic review—say daily or weekly. The normal, Poisson, 

or Laplace distributions are used as approximations for the lead-time demand, de¬ 

pending on whether the item is fast-moving or slow-moving. A shortage cost model 

such as the one in section 12-10 may be used for fixing reorder levels. For the lower 
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usage-value B items, a service-level approach may be used instead. Cost parameters 

are updated at least once a year. 

12-14 THE DYNAMIC ECONOMIC ORDER QUANTITY MODEL 

So far, we have assumed that the demand, although possibly a random variable, 

remained stable over a sufficient length of time—several months for fast-moving items, 

a year or more for slow-moving items. It is clear that the static EOQ formula will not 

give the optimal replenishment policy if demand is seasonal or is subject to predictable 

variations resulting from planned changes in production that uses these items as input. 

The optimal replenishment quantities will then also vary over time. 
The best-known deterministic model for dealing with demand that varies over 

time is the dynamic economic order quantity model, developed by T. M. Whitin and 

H. M. Wagner in 1958. Although the formal model is based on a dynamic program¬ 

ming formulation (see Chapter 9), the resulting solution method can be developed 

without recourse to dynamic programming. As for the static EOQ model, the total 

cost is given by the sum of replenishment set-up costs and inventory holding costs. 

The set-up costs are fixed regardless of the replenishment size, and the holding costs 

are linear in the inventory level and are usually assessed on the amount of inventory 

in carried forward from period n to period n + 1. No shortages are allowed. The 

demand is known with certainty, but it varies over time. Let dn denote the demand 

in period n = 1,2, . . ., N, where N is the planning horizon. Let qn be the replen¬ 

ishment (e.g., a production run) during period n. Any replenishment in period n is 

available to meet the demand for the same and for later periods. Let c2 denote, as 

usual, the fixed set-up cost, while ch denotes the holding cost per unit per period. The 

periods are assumed to be sufficiently short so that no more than one replenishment 

will ever occur in the same period. With these assumptions, the inventory behavior 

over time is described by the following equation: 

or 

ending inventory beginning inventory 
J- 

replenishment demand in 

in period n j in period n 
1 

in period n period n 

<1, 

Since all demand has to be met, qn > maximum (0, dn - 

n is 

(12-35) C„(i„, qn) 
if<7„>0 . 
if<7„ = 0) 

+ <V, 

The cost in period 

The total cost over the entire planning horizon is found by summing (12-35) over all 

N periods: 

Tn = 5 c„(in, qn) 
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subject to (12-34). We may assume without loss of generality that both i0 and L are 
zero. It i0 > 0, then we chronologically allocate all goods available at the start of the 
planning horizon to the demand for the first few periods, and adjust the d values 
accordingly (i.e., set them equal to zero or to the unsatisfied balance). Similarly, if 
zN is fixed at a positive level, that amount is simply added to dN. 

The objective is to find a replenishment sequence that minimizes T,,. This is a 
problem of finding the optimal values of N variables. Fortunately, the search of the 
optimal sequence of qn’s can be simplified by taking advantage of the following two 
properties: 

. Consider two consecutive periods, n - 1 and n. Assume that it is optimal to 
replenish stocks in period n i.e., qn > 0. Then clearly no stocks should be 
carried forward from period n - 1 to period n, since any demand satisfied 
from stocks carried forward can also be met by increasing the replenishment 
in period n (qn) by the amount of such stocks. This increase in q would not 
add any costs in period n but would reduce holding costs in previous periods 
on the units not carried forward to period n. 

Conversely, assume now that it is optimal not to replenish stocks in period 

’ -1'J ’ V , demand has to be met from stock carried forward to 
period n. Hence, the amount carried forward to period n (*„_,) has to be at 
least: equal to dn, given that all demand must be met. These two observations 
lead to the following property. 

Bh!hS| 
PROPERTY 1 OF DYNAMIC EOQ MODE 
OPTIMAL REPLENISHMENT QUANTIT 

The optimal replenishment quantity in any period a 
d over an integral number of periods, i.e., 

»+.» or Hi 
llllllililllllllillll 

iiltltilillilt 

From this property, we can also conclude that if demand for period 
; > n is satisfied from the replenishment in period n, then the demands for 
all periods from n to j - 1 will also be satisfied by the same replenishment- 
otherwise, we would violate property 1. Furthermore, there will be a strict 
limit on how far into the future the demand will be covered by the replenish¬ 
ment in period n. Eventually, the cost of carrying inventory from period n 
to some period j in the future will exceed the set-up cost c2 for a new replen¬ 
ishment in period j to meet the demand for that period. Thus, property 1 and 
the form of the cost structure will restrict drastically the number of values for 
q„ that need to be evaluated at each period. 

2. Consider now a subinterval covering the first m periods of the planning horizon. 
The second property is as follows. 
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or a subinterval covering the first m periods, the lowest m-period cost 

is achieved by a replenishment in period n m, then it will never be 

eiptlitial to shtisfy the demand for a later M by a re 

Naturally, the demand for periods beyond m could and will often also 

be met by a replenishment in a period later than n. We give only an informal 

proof of this property. When evaluating the best decision for period m, we 

determined (by assumption) that it is less costly to replenish stocks in period 

n to meet the demand for periods n, n + 1, . . ., m, rather than to replenish 

in an earlier period, say n - 1. Adding the demand for a later period—say 

m + l—will increase holding costs for a replenishment in period n - 1 even 

more than for a replenishment in period n. Hence, it can never be optimal. 

Property 2 allows us to separate the planning horizon for computational pur¬ 

poses into independent subintervals. 

Using these two properties, we can derive an algorithm for finding the optimal 

sequence of replenishments. The algorithm proceeds by considering longer and longer 

subintervals. So we start with an interval of only the first period. Next we solve the 

problem for the first two periods, etc., until finally we have solved the problem tor 

the entire interval of N periods. When evaluating a subinterval, we always work on 

the assumption that the ending inventory in that subinterval is zero. Once period N 

has been evaluated, the optimal replenishment policy can be found by backtracking 

through the computations. 

llliilliilllllill 
7 EOQ MODEL ALGORITHM 

$tepM Sfcf£i 
;:T r ... f / f / J i 

/ / /. /minimum fjft1 
? ? i * .f / /' ; * f ) ;• £ £ n*&k**M: ^ 0 i i- x 

where Km{qk) is the cost of a replenishment in period k to meet the 

demand for periods k, k + 1, . . ., m, on the assumption that 

Step 3 If k > n, set n =* k; otherwise, leave n as before. 
Step 4 If m = N, stop. Trace the optimal replenishment policy. Otherwise 

i j jih&Ms® 
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(Note: If you have already covered the material in Chapter 9, you will recognize 
expression (12-36) in step 2 as relating to a regeneration problem.) 

It is step 3 that separates the planning horizon into subintervals. The computations 
are best performed by using a format as for the 12-period example solved in Table 
12-2. I he demand for each period is listed in the second header row. We assume a 
beginning and an ending inventory of zero. The set-up cost c2 is $250, while the unit 
holding cost ch for each period is $1. The first few iterations are as follows. 

Sup 1 q - d, - 170; T, = c2 = 250. The value for Tl is entered into Table 
12-2 in column m - 1 and row k = 1. The row for ^ = 1 refers to a 
replenishment in period 1. We set n = 1 and enter it in the column labeled 
n in row k = 1. Finally, we set m = 2. 

Step 2 m is now equal to 2. Step 2 determines whether it is cheaper to replenish 
in period 1 (k = 1) to meet the demand in periods m = 1 and 2 or to 
replenish again in period 2 (k = 2) to meet the demand in period m = 
2. Hence, expression (12-36) becomes 

k 1; c2 + cAd2 + T0 — 250 + 80 + 0 
£ = 2: c2 + T, = 250 + 250 330 

The minimum is obtained for k = 1. Considering the first two periods 
only, it is cheapest to replenish in period 1 only. Column m = 2 shows 
the two costs in the rows for k = 1 and k = 2, respectively. The starred 
entry denotes the lowest cost in this column. 

Step 3 k = n = 1, so we proceed to step 4. 
Step 4 m is increased to 3 and we return to step 2. 

Table 12-2. Dynamic EOQ model: example 
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Step 2 Rather than use expression (12-36), we can take a shortcut by using the 

entries in column 2 to find the sum oiKm{qk) + Tk_1 directly. If we replenis 

in period k = 1, then we add to entry 330 (= the cost to the end of period 

2, the entry in column m = 2 and row k = 1) the holding cost of 

2cjdj = 2(120) incurred for carrying 120 units from period 1 to period 3 

(2 periods). This gives the entry in column m = 3 and row k = 1. Similarly, 

if we replenish in period k = 2, we add to the entry 500 in column m — 

2 and row k = 2 the cost of holding 120 units from period 2 to period 3. 

This gives 620, the entry in column m = 3 and row k = 2. Finally, the 

entry in row & = 3 implies a new replenishment in period 3 at a cost of 

250, to be added to the lowest cost through period k - 1 = 2, given by 

the starred entry 330. Hence, that total is 580. The lowest cost is still 

achieved for k = 1, which is shown starred. 

Steps 3 and 4 There is no change in n, and m is increased to 4. 

Verify the computations for step 2 shown in column m = 4. The minimum is 

now achieved for k = 3. So considering the first 4 periods only, the best decision for 

period 4 is to replenish in period 3. As we now reach step 3, we find that k - 3 > 

n = 1, and we can set n = 3. The consequence of this is that for m = 5 we do not 

have to consider the possibility of replenishing in any period earlier than period 3; 

i.e., we only explore the costs for k = 3, 4, or 5. This follows from property 2. The 

planning horizon now has been separated into two subintervals: one covering perio s 

1 and 2 and another covering periods 3 through 12. This is indicated in Table 12- 

by the horizontal line under row k = 2. For practice, you should complete the 

computations for the remaining periods. Note that another planning horizon sepa¬ 

ration occurs in period 6, where we have the special case k = m. A separation occurs 

again in period m = 10, where n increases to 9, and so forth. Note also that tor 

periods 11 and 12 we get alternative optimal decisions. . 
Once m = 12 has been evaluated, we can trace the optimal sequence ot decision 

back through the table. For period 12, the minimum cost occurs for a replenishment 

either in period k = 11 or in period k = 10, the two starred entries in column m= 

12. If we pursue the option of k = 11, this implies a production of qn = (a„ + an) 

- (90 + 70). We now have the subinterval over the first 10 periods left. For period 

10 the minimum cost occurs for a replenishment in period k = 9. This implies 

q = (60 + 90) and leaves a reduced subinterval of the first 8 periods. For period 8, 

the minimum cost occurs for k = 6 with q6 = (200 + 150 + 30), leaving the rst 

5 periods. For period 5, the minimum cost occurs for period 3 w:ith - (12U' + 

40 + 100). Finally we have an initial replenishment in period 1 of c/, - (I/O + 80). 

Summarizing, we get the following replenishment sequence: 

Period 13 6 

1, 2 3, 4, 5 6, 7, 8 9, 10 11, 12 
250 260 380 150 160 

Demand for period 

Amount 
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Verify *at alternative option for k = 10 has replenishments in periods 10 
o, 3, and 1. In either case, the total cost is $1940. 

In practice, demand forecasts for the distant future will be relatively unreliable, 
he separation of the planning horizon into independent subintervals can thus be 

used to advantage to truncate the computations. Since we are really only interested 
m the optimal initial decision, there is no need to continue the computations once 
a separation point has been found. A new optimization is performed when the inventory 
ievel has been depleted to the lead-time demand. This reduces the computational 

evaluating ^period ^4 ° ^ 6Xample’ W6 W°uld have stopped the computations after 

Unfortunately, the dynamic EOQ model has not found any widespread accep- 
tance in practice. This is probably because of its somewhat greater computational 
ettort. Also, the more complex reasoning behind the derivation of its algorithm in 
comparison with several simple approximate replenishment rules—such as the Silver- 

EOQ model!C’ d‘SCUSSed the n6Xt section~has discouraged the use of the dynamic 

c JF°r iCw,Parifn; ,Using the.same cost and demand parameters, the EOQ formula 

u ■ i ? C‘V r_i ^ yiC'ds ^ = 224' This re9uires about 6 replacements. 
If we simulate the use of the EOQ policy for the 12 months and charge holding costs 

°n c°j ?°°dl Camed forward to a new period rather than on the average inventory 
we hnd that the total annual cost incurred exceeds $2500.) 

12-1 patternsER'MEAL heuristic for variable demand 

In contrast to the dynamic EOQ model, the Silver-Meal heuristic does not guarantee 
an op imal policy. However, extensive tests have indicated that in most instances the 
overall cost difference is less than 1 percent. In fact, the heuristic often gives the 
optimal initial decision Its attraction lies in the intuitively simple reasoning of its 
derivation and in the relatively small computational effort-although in many cases 
the effort is not significantly less than for the truncated dynamic EOQ model. 

he basic idea of the Silver-Meal heuristic is to minimize the average cost per 
period for each replenishment As in the dynamic EOQ model, a replenishment 
covers the demand for an integral number of consecutive periods. For a replenishment 
that covers n periods, the total cost is the sum of set-up and holding costs- 

(12-37) K{n) - c2 + chd2 + 2chd, + 3cftd4 + 

The average cost per period is 

(12’38) A(n) = K(n)/n 

+ (n ~ 1 )chdn 

The Silver-Meal heuristic assumes that A(n) first decreases and then increases for 
increasing values of „ i.e., is U-shaped. The heuristic computes A(„) for 3*" 
values of n until for the first time increasing 

(12-39) A(n + 1) > A(n) 
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The associated value of n = n* 

periods that the replenishment 
beginning of period 1 is equal to 

for which this condition occurs is the number of 
should cover. The replenishment to arrive at the 

n* 

(12-40) <h = 2d’ 
n = 1 

Table 12-3 contains the computations for the Silver-Meal heuristic for the ex¬ 
ample used in the previous section. For each m considered, t e incremen a cos is 
eoual to c, if it is the first period in a replenishment cycle, and (n i )chdm it it is 
Se n* period in a replenishment cycle. So that we can compare the Silver-Meal 
heuristic3 with the dynamic EOQ model, the computations are executed over ail U 
periods'" Hence^every time the condition (1W9) is satisfied—asj mdrcated by dr 
horizontal line-a new replenishment eycle starts and we repeat thei £nod n + 1 
in which the condition occurred. (Note that we stop in period 2 before (12-39 

r i Hnu/pvpr for anv d > 160/3 a new replenishment cycle would begin with 
SSirSTiSl S 0^112 'periods isP$1950, o, $10 higher than for the 

dynamic EOQ model—a small difference indeed. 
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/17 ^ ,°nfe W°ulc °bvious,yAst°P computations in period 3, when condition 
( 39) satisfied for the first time. A new set of computations is initiated when the 
inventory position is reduced to the (known) lead-time demand. 

dPmanS/mpIf6 3S ^ Silcer'M?al,heUristic is’ its aPPl>cation is only justified if the 
demand variations are sufficiently large. 

12-16 SOME FURTHER CONSIDERATIONS 

The text by R. Peterson and E A. Silver (listed in the bibliography), which we highly 

recommend as a reference book on inventory control, contains almost 800 pages. This 

chapter, therefore, can only scrape the surface of the important topic of inventory 

control. There are many aspects that we have not touched upon, such as the optimal 

time between reviews for periodic review systems, group discounts rather than indi¬ 

vidual quantity discounts, joint replenishments for products sharing part of the set-up 

costs stocking versus not stocking an item, approaches to perishable goods or to items 

with a limited shelf life, and control policies for multi-echelon merchandising and 

ning)U 30 Unn^ s^sterns (inc^uding the important topic of material requirement plan- 

Chapters 9, 14 and 19 of this text contain additional inventory control models, 

bection 19-/ shows how constraints on certain resources, such as funds or warehouse 

space applied to all items or to groups of items, can be handled by so-called Langrange 

multipliers. This concept is similar to the shadow prices in linear programming The 

Langrange multiplier models seem to be of limited practical usefulness, though Not 

only are they computationally demanding, but they also assume that the scarce resource 

is infinitely divisible, which may not be the case. For instance, warehouse space may 

e allocated in discrete pallet areas only. This condition cannot be handled by Lagrange 

mu tiphers, while a marginal analysis that computes the incremental cost of succes- 

Tsfiy be apphecf16 Wareh°USe SpaCe allocated to each product by a full pallet area can 

EXERCISES 

12.1 Sales for a given product over the last six months have shown the following trend: 

Month 

Sales 

-5 -4 -3 -2 -1 

520 550 540 565 590 ' 600 

Management would like to use exponential smoothing to forecast the demand. 
(a) Starting with an initial estimate for the average demand of 500 units, a slope of 

10, and a smoothing constant of 0.2, update the parameters using the six months’ 
data given. Find a forecast for the demand in months 1, 2, and 3. 

(b) The demand over the next six months turns out as follows: 
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Month_1_2_3_4_5_6 

Demand 580 610 620 660 640 680 

12.2 

12.3 

12.4 

12.5 

>1 

Continue updating this system, and find the forecast for months 7, 8, and 9. 

Consider again the first six months’ data shown in exercise 12.1. No initial estimates 

(a) From these data, find an initial intercept and a slope, and then apply them to the 

entire twelve months’ data. Use a smoothing constant of 0.1. 

(b) Get started on the first six months’ data in the following manner Give the hrst 

month’s sales a weight of 1 (i.e., this is the initial estimate 

second month’s sales a weight of 0.5; the third, 0.3; the fourth, 0 2; and then 

continue with a weight of 0.1. Use the exponential smoothing formulas to update 

both the average and the trend. Continue with the second six months data. Which 

method performs better when there is a trend in the data? 

For the EOQ model discussed in Section 12-7, find the optimal val^of2and *e 

minimum annual cost for c, = 0.24, c2 = 200, V = 20, and R = 3600. What ,s the 

length of each replenishment cycle? 

A public utility has a large capital expansion program over the next few years, with 

demands for funds fairly constant at 4.8 million dollars per year. The treasurer plans 

to raise the funds by floating several bond issues at equally spaced intervals over the 

life of the program. She expects that the bond market for her company s bonds will 

be stable at an interest cost of 12 percent per year. Each issue will cost ^company 

$200 000 in fixed issuing costs plus 0.5 percent on the size of each issue. What is the 

optimal size of each bond issue and the optimal time between issues? 

A liquid is mixed in heated mixing vessels and then filled into cans on an automatic 

filling machine. Preparing a mixing batch requires 2 hours of an °P«ators time> 

including the time needed to clean the vessel between batches. The cost of the cleaning 

solvent used is $8.00 per batch. The cost of the ingredient mixed is $1.80 per gallon. 

The cost of the power consumed for the mixing operation is $0.40 per batch. During 

the actual mixing operation, which takes 2 hours, no operator attendance is needed 

At the end of the mixing, | gallon of product is tested chemically. The test takes 30 

minutes of a laboratory technician’s time. About 10 percent of all hatches fail the test 

the first time. A failed batch is upgraded, involving an average of 24 minutes ol an 

operator’s time. An upgraded batch is retested. Reports show that no batch has faded 

the test more than once during the last 5 years. The liquid is then pumped to the 

filling machine. The first 2 gallons of product have to be discarded for possible con¬ 

tamination from the previous product filled. Preparation of a filling run takes 48 

minutes The product is filled at a rate of 2500 gallons/hour. Two machine operators 

are in attendance during both the setup and the filling time. Power costs are negligible. 

Labor costs, including fringe benefits of 25 percent, amount to $12.50/hour. Company 

overhead is spread over all operations at a rate of 20 percent on direct labor costs. The 

cost of the cans is $0.19 per gallon filled. The annual demand for the product is 

40,000 gallons. The opportunity cost on capital invested is 24 percent. Insurance 

inventory taxes, and other indirect costs amount to another 2 Pe/fnt,on va 7 
the product in stock. Evaluate the various cost parameters needed for the LCy model 

and find the optimal replenishment policy, its cost, and the length of the replenishment 

cycle. 



Exercises 361 

12.6 

12.7 

12.8 

12.9 

12.10 

A manufacturer assembles pumps from parts purchased from subcontractors For a 
particular type of pump, it takes one technician 8 hours to set up the assembly ltoe 

nrntcti "P ^ the subc°”*actors *e day bSe a new 
produchon run starts This requires a 2-hour trip by a truck and a driver; a tmck with 

andTh* 1S '■'0Sted jat $3?,per h°Ur' F°Ur PeoPIe are “volved in the actual assembly 
and they can produce 12 pumps per day. The value of the finished pumps is $108 

$8h Bo°thr y ,C0 ;e ^hnician is 512, while the people on the assembly line get 
$8. Both rates include 20 percent fringe benefits. Direct overhead amounts to 10 
percent of labor cost; company overhead is allocated at 15 percent of labor cost The 

The°annual demandT'to^65? P6rCent N° °ther boldin§ co^ are incurld. 
Ihe "“d f°r Hat Parhcular PumP is 800. There are 250 working davs ner zz&zr*rep,enishment ^md ik~ 

Assume that the set-up cost for the EOQ model is erroneously estimated to be c2 rather 

(a) Find an expression that shows by how much the actual incurred cost deviates from 

'TTm C°f associated with the ^ue value of the set-up cost, c, 
(b) For the data used in the example in Section 12-7 and a value of 6, == 32 what 

is the deviation in percentage and in dollar value? 

A manufacturer procures n different products from the same supplier. This manufac- 
urer periodically replenishes all n products at the same time, and sends a truck to the 

supplier to take delivery for all products at a cost of c2 dollars per trip. Other ordering 
costs are negligible The capacity of the truck used is such that no more than one trip 
has to be made for the entire order. The value of product i is V, and the holding cost 

(a) !ind f gCneral eXp,reSS10n for the total aunual holding and ordering cost, and show 
that this cost can be expressed as a function of one decision variable only. (Hint- 
The proportion of the total annual requirement ordered for each replenishment 
IS the same for all products.) 

(b) Find the value of the decision variable that minimizes total annual costs, and 
express each Q, in terms of the optimal value of the decision variable 

(c) tor n = 3 products, with c, = 0.2, c2 = 120, V, = 10, V = 6 V = 20 

1 ~ f00’ \= 24°’ Rl = 1500’ bnd tbe optimal order quantities and the total 
annual cost. How many times is inventory replenished per year? 

date*6-t! ” ^Ctl°4nn12R8’ fi cJnhe T'!™' Q and the annual cost for the following 
V - 0 sn r i ’ R,7 80°; and the Price breaks V0 = 10 for Q < 160 
V, = 9.80 for 160 =£ Q < 240, and V2 = 9.75 for Q s* 240. 

(Advanced) Consider the example in Section 12-8. Assume now that the quantity 
discounts do not apply to the total amount Q purchased at one time, but only to 
incremental amounts; i.e., the purchase cost is 

• C(Q = V0Q for Q < B„ 

• C(Q) = V0B, + V,(Q - B,) for B, =s Q < B2, 
• C(Q) - V0B, 4- V;(B2 - B,) + V2(Q - B2) for Q & B2. 

All other aspects remain unchanged. 

(a) Find the new total annual cost as a function of Q. Sketch it graphically. 
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(b) Find a procedure to determine the optimal value of Q in general terms. 
(c) Apply this procedure to determine the optimal Q for the data given in the examp . 

12 11 A product is mixed in batches. There are 3 mixers available, each with different 
capacities and different costs. The annual demand amounts to 12,000 gallons, and 

the inventory holding cost per dollar invested per year is $0.20. 

Minimum batch 200 gal 
Maximum batch 1000 gal 

Set-up costs $30 
Variable cost of product_$l-zu 

800 gal 
3000 gal 
$48 

$1.19 

2400 gal 
6000 gal 

$64 per batch 
$1.18 

(a) Find the total annual cost as a function of the batch size Q. Note the similarity 

with the quantity discount model. 
(b) Find the optimal batch size and the minimum annual cost. 

A supermarket is offered cases of Kiwi fruit-the latest import from New Zealand. 
Each case costs $12.00 and is packed into 30 punnets, which are sold for $1 each. 

Past experience indicates that the store would be able to sell the fruit within one week, 

according to the following distribution: 

Number of cases 1_2_3_4_5_6_7 

Probability 0.10 0.15 0.20 0.25 0.15 0.10 0.05 

Fruit not sold by the end of the week is sold on special for $0.25/punnet. How many 

cases should the supermarket buy? 

PG&E is considering placing an order for a set of two generators from an overseas 
suppher his customary alsoto place orders for certain of the more expensive spare 

parts at the same time the main order is submitted. Past experience indicates that the 
breakdown probabilities for a particular spare part over the liet.meof ^ genera or 

are 0 7 0 2 and 0.1 for 0, 1, and 2 breakdowns, respectively. Spare parts ordere 
with the generators cost $2000, whereas spare parts ordered mdivaduallylateronare 

estimated to cost $10,000, since they have to be produced by a special product° 
setup Furthermore, if a breakdown occurs and no spare parts are available for im¬ 
mediate replacement, there is an additional shortage cost of $8000. Unused parts; have 
no value aithe end of the generators' productive life. How many spare parts should 

PG&E order now? 

A caterer is preparing a fruit punch for a company ball. The cost of the punch 
ingredients amount to $2.50 per quart. Any punch not consumedwinh^eobe 

thrown away at the end of the evening. Each glass of punch is sold for $1. There are 
6 glasses to the quart. The catering manager estimates that chances are 3 out of 4 tha 
safes will be between 200 and 300 glasses. How much of the punch should be prepared. 

(Assume sales are normally distributed.) 
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12.15 

12.16 

1 he weekly demand for a slow-moving part has a Poisson distribution with mean 2 

The" S h!s a roSTrf^t"1 FVerrS’ 1° replenishment lead time is 12 weeks.' 
e part lias a cost ot $8/umt Fixed replenishment costs amount to $20. Annual 

0 ding costs are 25 percent of the value invested in stock. It is estimated that shortages 

To of SFf "j Immfediat® '°f °f profit about $5 and an intangible opportunity 
cost of $1, for loss of goodwill. Using a two-phase model, find the optimal replem 
shment policy. (Note that for a lead time of 12 weeks, the normal distribution smes 

as a good approximation for the actual demand distribution ) 

J£vtime of only 1 week’using the **■“ 

o i 
7 or more 

M 0.135 0.271 0.271 0.181 0.090 0.036 0.012 0.004 

12 17 Wh17fndlf°? 8iVe,n rdUi emanates from hv0 different s°urces: wholesale and retail. 
Wholesale demand has to be satisfied within 5 days after receipt of an order from the 
customer whereas retail demand has to be satisfied instantly, or else is lost. The fixed 

o cUP-?20O Pr°dUCf " bat,chf °f SiZe QiSC>= $40°' Inventory bolding cost amounts 
to ch - $20 per unit stored for one year. Holding costs are assessed on the average 

T? 7' 7‘n> "?• 83 6S °u lr!eanS f°re8oin8 a Profit of c, = $50 per unit lost. Daily 
wholesale demand is norma ly distributed with mean ft, = 24 and standard deviation 

' _ !™lle d£“ y retad sales are normal with mean (x2 = 8 and standard deviation 

below a le l CUn!nt 7 f° pr,oduce a batch of size Q whenever inventory falls 
below a level r. The replenishment lead time is only 4 days. There are N = 360 days 
per year. Use a two-phase model to find the optimal replenishment policy. Why is the 
two-phase model a very good approximation in this instance? 

1118 theVi6 (Q’ ^ m°del °f oC1en 1241 t0 find the optimal replenishment policy for the data given m exercise 12.15. F y 

12-19 Vi *he r) m°del °^Sectlon 12-11 t0 find the optimal replishment policy for the 
data given in exercise 12.16. F y 

For a service leve! of no more than 1 stockout every 2 years, find the optimal replen¬ 
ishment quantity and the associated reorder point for the data shown in exercise 12.15. 

For a service level of 99 percent, find the corresponding replenishment policy for the 
data given m exercise 12.16. v y 

Redo exercise 12.21 using a Laplace distribution instead of a Poisson distribution. 

The requirements for a given product are as follows: 

12.20 

12.21 

12.22 

12.23 

Month 2 7 10 11 12 

Demand 50 10 20 60 90 10 5 10 70 100 120 40 

is $300 FiS AId T T11 7 St0uk f°r °ne m°nth- The cost of 3 Production setup 
$500. rind the optimal replenishment policy using the dynamic EOQ model. 

The requirements in lots of 100 for a component used in various assemblies over the 
coming 16 weeks are as follows: 
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Week | 2 ; 4 5 6 7 8 9 10 11 12 13 14 IS 16 

Amount 12 18 25 10 2 2 2 16 20 2 2 4 10 25 25 1 

12.25 

12.26 

The fixed cost of a replenishment run, regardless of size, is $280. The cost of carry ing 

lots of 100 units in stock for one year is $130. Use the dynamic Q mo e o n 

the optimal replenishment policy. 

Redo exercise 12.23 using the Silver-Meal heuristic. 

Redo exercise 12.24 using the Silver-Meal heuristic. 
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Markov Chains 

denenl mll n 'process in whlch the ^ure probabilistic behavior of the process 
depends only on the present state is called a Markov chain. In this chapter we find 
t at the long-run behavior of a Markov chain—unlike that of most stochastic pro 
cesses—can quite easily be studied. For this reason, Markov chains are often used as 
approximations of quite complex physical processes, even when it is clear that their 
behavior may depend on more than just the present state, or that they really cannot 
fc>e represented as being in one of a finite number of states. 

This chapter assumes that you are familiar with the concepts of matrices vectors 
and systems of linear equations. If you have any doubts about these topics 
you review Sections A-6 A-7, and A-8 of Appendix A. Basic probability conceptfare 

rh^e'pmcSr 1W a"d °f '-Action 

13-1 TRANSITION MATRIX 

A regional water board plans to build a reservoir for flood control and irrigation 
purposes on one of the rivers under its jurisdiction. The proposed maximum capacity 
of the reservoir is 4 million cubic meters or, for short, 4 units of water Befom 

Cut^r ■,he boarf wishes ,o ha“ *■ 

probaWtylSutoi^ ^ ^ ^ Mowing discrete 

Weekly water flow in units 2 3 4 5 
of one million cubic meters 

Probability 0.3 04 Q2 Q1 

365 
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The board considers acceptance of water contracts for irrigation using 2 units of 
water per week. Furthermore, to maintain minimum water quality ' 
Team of the reservoir, at least 1 unit of water per week will have to be released ov 
the spillway. So, the total weekly target release is 3 units. If the reservoir level plus 
the water inflow is less than that, any shortages are at the expense of irrigation. If the 
reservoir is full, any further inflow is immediately released over the spillway. The 
reservoir level cannot be reduced below 1 unit of water. , 

The two most basic concepts of the behavior of such a system are the state 

the system and the state transitions that the system may undergo The state of a sys em 

represents1 all those aspects that completely describe the “position” of the system at 

any of toe and that are relevant for the future behavior of the system. In 

physical systems the state space can often be specified in terms of the values of one 

or severa/variables, referred to as state variables. Note the analogy to^na™c Pro¬ 
gramming. For the reservoir problem, the variable that completely defines the state 

of the system is the reservoir level at the beginning (or end) of a week. If s denotes 

this variable then the state space covers all real numbers between 1 and 4 units of 

In view of the fairl, etude form of the weekly w,.e, mb. dm. we 
shall approximate the state space by the discrete values s - 1, 2, 3, and 4 In tact, 

in this chapter we will discuss only processes with a finite discrete state space. 

As time passes, the system may move from a given state to another state, i.e 

it may undergo a transition from one state to another. Say we observe our reserv 

at the beginning of each week. Then, from one week to the next depending on the 

water inflow (a random variable) and the water releases (a coni^Tst^’ and 

reservoir level may rise, fall, or remain the same. Figure^ ^ Each circle 
possible transitions in the form of a transition diagram for this example. Each circle 

denotes a state, and the arrows represent possible transitions^ Note that for completeness 

no change in the water level is depicted as a transition back to the same state. For 

instance if the reservoir is in state 1 (i.e., contains 1 unit of water) at the beginni g 

of a week, the water inflow during the week is 5 units of'water ;and th<S1totel outflow 

to satisfy the target release is 3, then the reservoir will move to state 3 (i.e i 

contain 3 units of water) by the end of the week (= beginning of next week). If the 

water inflow is 4, the system will move to state 2. If the water inflow is 3 the reservoir 

will remain in state 1. However, the reservoir will also remain in state 1 if the water 

Figure 13-1. Transition diagram for reservoir system. 
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Y,?niS wly \ai!u C0nsequentlry’1the target release cannot be satisfied completely. 
You should verify the meaning of all other arrows. Again, we shall restrict our dis¬ 
cussion in this chapter to processes in which transition occurs at discrete points in 
time. In our example, this means that, strictly speaking, the inflow and the outflow 
occur simultaneously at an instant of time either at the beginning or at the end of 
each week. However, this results in the same end-of-week reservoir levels as if inflows 
and outflows occurred at constant rates throughout the week. Chapter 15 looks at 
processes in which a transition can occur at any instant of time. 

■ S efh P?“ible transition from state s = i to state s'= j, we associate a 
probability ^ called a one-step transition probability. If no transition can occur from 
state i to state; p - 0. On the other hand, if the system, when it is in state i, can 

ZnZbvJ ? 7/rthe, fXt tranf.iti0n’ P-’ = 1 With this convention, transition 
probabihbes can be defined from each state i to each state ;. For a system with r states, 
the ptj values can be arranged as an (r x r) matrix, called a transition matrix- 

Pn Pn - plr 

(13-1) P= • 

Each row represents the one-step transition probability distribution over all states, 
from this it follows immediately that the row sums of P are equal to 1- 

<13-2) 5>„ = i, >n 
/ 

matrix^ matnX Wltb e'ements 0 55 P-^ h whose row sums are 1, is called a stochastic 

For our reservoir system, the one-step transition probabilities can be determined 
trom the probability distribution of the weekly water inflows and the target release 
For instance the one-step transition probabilities for state 1 (= row 1) are obtained 
as follows. (Referring back to Figure 13-1 will be helpful at this point) 

Water Inflow Probability Water Outflow New State; p 

From state 1, no transition is possible to state 4, and the sum pu + p„ + p 
P14 “ 1 as reclulred' By the same reasoning, we obtain the other elements in P.' 
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0.7 0.2 0.1 0 (row 1) 

0.3 0.4 0.2 0.1 (row 2) 

0 0.3 0.4 0.3 (row 3) 

0 0 0.3 0.7 (row 4) 

(col. 1) (col. 2) (col. 3) (col. 4) 

If we observe the system in state i at the beginning of any week, then the ith row 

of the transition matrix P represents the probability distribution over the states at the 

beginning of the next week. The same transition matrix completely describes the 

probabilistic behavior of the system for all future one-step transitions. The probabilistic 

behavior of such a system over time is called a Markov chain with stationary transition 

probabilities—stationary because P remains constant over time. 

Note that the future (probabilistic) behavior of this system depends only on the 

current state of the system and not on how it entered this state. Knowledge of the past 

history of the process does not alter the probability of any future transition. This lack 

of memory is known as the Markovian assumption. 

/i/flf/l/W/If / Ml // / /■/ / ////////; 

?////'/'/////■ ///////'Iffftf////•//'//// /7,7 / /////// 

Again, note the analogy to dynamic programming. 

13-2 n-STEP TRANSITION PROBABILITIES 

Suppose the system is in state 2 (i.e., the reservoir has 2 units of water) at the beginning 

of a week, and we would like to know the probability of finding the system in each 

of the 4 states after 16 weeks, or 16 transitions. We call these the state probabilities 

after 16 transitions. 
Let p\n) denote the probability of finding the system in state j after n transitions, 

given that the initial state is i. (Note that n is not a power.) The term p^ is called an 

n-step transition probability. Clearly, by definition, ft" = P„, the one-step 

transition probability. In 2 transitions, the process can move from state i to state k in 

the first transition, and then on to state j in the second transition. The probabihty ot 

this is pll]pk: Since state k can be any one of r states, there are r mutually exclusive 

ways of doing this. Hence, pf is equal to the sum of their probabilities: 

(13-4) Pf = ^P\l% i,j=\,...,r 
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Repeated use of the same reasoning allows us to build up the n-step transition 
probabilities, pf, for n = 3, 4, . . . , as follows: 

(13-5) Pf ~ 2l)Pkp i,j = 1, . . r 

Let us look at expression (13-4) more carefully. The values of the pff ( = p.) for 
all k are the elements of row i in the transition matrix P. Similarly, the'*, values are 
the elements of column j in P. Thus, each pf is the result of multiplying the vector 
ot transition probabilities given by row i in P by the vector of transition probabilities 
given by column j in P Hence, the/f values are the elements of a stochastic matrix 
that is obtained by multiplying the transition matrix by itself. In other words, the 
matrix of the two-step transition probabilities is simply equal to PP = P2 By analogy 
from expression (13-5) we find that the matrix of the three-step transition probabilities 
with elements pf is given by P2P = F. In general, the matrix of the n-step transition 
probabilities, pf, is equal to 

(13-6) pn-l p _ p„ 

Each row i of P" represents the state probability distribution after n transitions 
given that the process starts out in state i. 

Applying this to the reservoir problem, we get 

If the process starts out in state 2 as assumed, then the state probability distribution 
after 16 weeks is given by row 2 of P16. So the probability is 0.205 of finding the 
process in state s = 1 after 16 weeks, 0.201 for s = 2, 0.265 for s = 3, and 0.329 
for s = 4, given that we begin in state 2. 
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13-3 CLASSIFICATION OF FINITE MARKOV CHAINS 

Before we study the long-run behavior of finite Markov chains, it is helpful to classify 

them according to the general structure of the transition matrix. 
State j is said to be accessible from state i if it is possible to go from state i to state 

/ in a sufficiently large number of transitions. Mathematically, this means that i<"> > 0 for some n. Two states i and j are said to communicate if / is accessible from 

i and if i is accessible from j, i.e„ it is possible to go from state «to / and back to ! 

after a sufficiently large number of transitions. Communication is a class prope l- 

If state i communicates with j and with k, then / also communicates with k Thu^ 

all states that communicate with i also communicate among themselves. Let us clarity 

these concepts with a few examples. 

1 

P 
*> 3 

P, = 2 

In the process of matrix P„ states 1 and 2 are both accessible from states 3 and 

4 but not vice versa. States 1 and 2 can be reached from state 3 in one transition 

whereas from state 4 they can only be reached in n = 2 transitions. States 1 and 

communicate with each other, and so do states 3 and 4. Each set forms a class of 

communicating states. Note, however, that once the process has made a transition 

to either state 1 or state 2, it cannot return to state 3 or 4. The process has been 

absorbed in the set of states 1 and 2. Such a set of states is called an ergodic set, and 

the states that belong to it are called ergodic states; states 3 and 4 are called transien 
states. No matter where the process starts out, it will sooner or later end up in the 

ergodic set. If we are only interested in the long-run behavior of the chain, we can 

forget about the transient states. In fact, higher powers of P, will still have zeros in 

the upper right-hand portion, whereas the probabilities in the lower right-hand portion 

will get smaller and smaller. r ^ i • 
It is possible for a process to have more than one ergodic set of states^For a chain 

of this sort, it may be interesting to know the probability with which the process is 

absorbed in each of the ergodic sets, given that it starts out in a transient state 

In P„ the process will be absorbed, sooner or later, in either state 1 or state L 

and then will never leave that state again. This can be seen from the one-step transition 

probabilities pn and p22, which are both equal to 1, with all other pXj and p2j zero. 

A state that has this property is called an absorbing state. 

1 2 3 
1 
2 

1 
2 0 

1 3 
2 3 0 

1 1 1 
4 4 6 

0 0 
1 4 

. 1 2 3 . 

0.2 0.5 0.3 

0.1 0.2 0.7 

0.6 0.3 0.1 

4 1 2 3 4 

0 1 1 0 0 0 1 
o 2 0 1 0 0 
i 
3 P 2 = "3 

1 2 0 s 
1 3 

3 4 4 0 i i 3 2 
1 
6 

1 2 3 4 
1 0 0 0.7 0.3 

1 n 2 0 0 0.4 0.6 
L 

p4 - 3 0.2 0.8 0 0 
4 0.6 0.4 0 0 
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• jIn f,” a’1i states communicate and form a single ergodic set. Such a chain is called 
irreducible. The states in P4 also communicate with one another, and thus also form 

a single ergodic set. However, note that if the process is in state 1 or 2 it will always 

move to either state 3 or state 4; similarly, if it is in state 3 or 4, it will move back 

to state 1 or 2. Thus, if the process starts out in state 1 or 2, after every odd number 

0 uTSiti0T 14 W1 be in State 3 0r 4’ and after every even numt>er of transitions it 
will be back in state 1 or 2. Such a chain is called cyclic. The states in P4 can be 

divided into two cyclic sets, namely (1, 2) and (3, 4). The process can Only return to 

either set after d - 2 transitions. The number, d, of transitions needed for returning 

is known as the period. Note that the period is equal to the number of cyclic sets. The 
long-run behavior of such a chain will remain cyclic. 

A chain that is not cyclic is called aperiodic. A Markov chain that is irreducible 

and aperiodic is called regular. Which of the four transition matrices belongs to a 
regular chain? & 

B-4 LIMITING STATE PROBABILITIES 

Consider again in the three matrices P2, P4, and P'6 in Section 13-2; in particular 
compare the columns. The differences in the elements of a given column become 
smaller as n increases. In other words, all elements of a given column tend toward 
a common limit as n increases. Since this is true for each column, it follows that all 
rows tend to the same limiting row vector. Does this imply that the state probability 
distribution approaches a common limiting distribution as n increases, irrespective of 
the initial state in which the process started? The answer is yes for all regular Markov 
chains This is not the case for cyclic chains, or for chains with transient states or 

chain) er§°dlC SetS 'altll0Llgh each of these may be analyzed individually as a regular 

THEOREM: LIMITING BEHAVIOR OF REGULAR MARKOV CHAINS 

If P is the transition matrix of a regular Markov chain, then P" approaches a 
unique limiting matrix II with all rows equal to ir = fir., tt- tt] as n 
tends to infinity. ’ r 

The common row vector it represents the limiting state probability distribution 
or the steady-state probability distribution that the process approaches regardless of 
the initial state. 

How do 7 find these limiting state probabilities? From the preceding theorem 
it tollows that for n arbitrarily large, 

p(n] _ p(n+ 1) _ ^ for all / 
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Using this result in expression (13-5), we obtain 

(13-7) ^ = I ^ (V fora11' 
k 

Expressed in matrix notation, (13-7) is equivalent to 

(13-8) ir = ttP 

The limiting state probabilities are thus the solution of the system of linear equations, 

such that the row sum of ir is 1, i.e., 

(13-9) 2>;=1 
i 

With condition (13-9), we have r + 1 linear equations in r unknowns. To solve 

for the unknowns, we may discard any one of the r linear equations obtained from 

(13-8), but never (13-9). . 11 
Let us now find the limiting state probabilities for the reservoir problem. Ihe 

five equations are 

II O
 

3
 + 0. 3 TT2 

TT2 = 0. 2tt j + 0.4tt2 + 0.3tt3 

(13-10) ^3 = O.Itti + 0.2Tr2 + 0.4tt, + 0.3tt4 

tt4 = 0. 1tt2 + OJ-it, + 0.7tt4 

1 = + + ^3 + tt4 

Discarding any one of the first four equations and solving the remaining ones, 

we obtain 

1 _ 1 _ i_ „ = L 
TL = 5 *2 - 5 ^ " 15 4 3 

In many applications of finite Markov chains, the limiting state probabilities are 

the only quantities of interest. 

*13.5 MATRIX METHOD FOR COMPUTING LIMITING STATE 
PROBABILITY VECTOR 

For chains with large numbers of states, we can transform (13-8) and (13-9) into a 

matrix expression that can be solved by a numerical method. If we take the transpose 

nf hnth sides of (13-8) (we denote the transpose of vector x by x ), it becomes 

Note that the transpose of the product of two matrices is the product, in reversed 

order, of their transposes. (13-11) can be rearranged as 

(P' - I)ir' = 0 

where 0 is a column vector of zeros. 
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To incorporate (13-9), we replace the last row of (P' - I) by a row of ones to 
give a matrix we shall call A, and we replace the last element of the column vector 
0 by a one. 

We now have a system of linear equations of the form 

Ax = b 

where b = [0, 0, . . 0, 1]' and where the column vector x is the transpose of the 
required steady state probability distribution. We can solve for x by a method such 
as that of Gaussian elimination, given in Section A-8 of Appendix A. 

For the reservoir problem, you should check that 

-0.3 0.3 0 0 “ 0 
0.2 -0.6 0.3 0 0 
0.1 0.2 -0.6 0.3 b = 

0 
1111 1 

13-6 INTERPRETATION OF LIMITING STATE PROBABILITIES 

What do limiting state probabilities mean? 

INTERPRETATION OF LIMITING STATE PROBABILITIES 

Limiting state probabilities represent the probabilities of finding the system in 
each state at the beginning (or end) of a transition, after a sufficiently large 
number of transitions have occurred for the memory of the initial state to be 
more or less lost. 

There is a second, even more useful, interpretation. Instead of predicting the 
state ot the process at a random point in time in the more distant future, we look at 
the process over a large number of transitions in the future. Define a dichotqmous 
random variable that assumes the value 1 if the process occupies state i (or makes a 
transition to state i), and otherwise assumes the value 0. In the steady state, these two 
values are assumed with probabilities tt, and 1 - respectively. We would like to 
know the expected value of this random variable over k transitions, once the process 
is approximately in steady state. For one transition, this is lir + 0(1 - >n) = tt 
summing over k transitions, we obtain ' - /> 

$■*,=bi, 
n - ] 

The fraction of transitions that the process occupies state i is 

(13-13) = W 
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In the reservoir problem, we therefore expect that in the long run the reservoir 

will start, or end, with a level of 

1 2 3 4 units of water 

20% 20% 26|% 33j% of all weeks 

Often, in practice, the number of transitions needed for these approximations 

to be useful is not very large, particularly if the transition matrix is relatively well 

balanced, i.e., the matrix does not contain large concentrations of zeros in the lower 

left-hand and upper right-hand corners. Also, the larger the number of states and/or 

the smaller the tendency of the process to move significantly away from the current 

state, the larger the number of transitions needed to approach a steady-state situation. 

Yet another interpretation is in terms of the mean number of transitions between 

leaving state i and returning to state i for the first time, or the mean recurrence time 

m . If the process enters state i on a fraction tt, of transitions, then we can see that, 

on the average, there should be about 1/ir, transitions between each such entry. 

7/7777 / n/ff 

f {-IpF state i.{ >' / / / / / y fj-j / / / / / y/ if"?V/ / / /// / / / / /■ / / / / // / /. 

*13_7 TRANSIENT BEHAVIOR OF FINITE MARKOV CHAINS 

Frequently, we want to know how long it will take for the Markov chain to reach a 

particular state for the first time, given that it started in some other state. Such first- 

passage time probabilities can be determined iteratively from the n-step transition 
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probabilities. Let /*"> be the probability that the process first enters 
step, given that the initial state is i. Of course, 

state / at the nth 

f™ = P ■ 1 1) rij 

^ Process 1S in state / at the nth step, either this is the first time it has entered 
t is state or else it first entered state j at some previous transition (say the kth transition) 

3f ii fu retUrilM t0 1ate j after further n ~ k transitions. Adding up the probabilities 
oi all the possible paths, we get 

or 

< = /?> +1 fwr 
*=i 

(13-14) fin) = ^ for n = 2, 3, 4, . . . 
*=1 

Thus, we can calculate ff, then and so on iteratively. 

If only the mean time until the first entry to a particular state is desired, it can 

be found directly First, consider a regular Markov chain. For convenience, we relabel 

the states so that the particular state of interest is state r. Let n„ be the expected number 

ot visits the process makes to state j before its first visit to state r. Then n.. must satisfy 
me ennatmm J 

nij ~ + E Piknkp i,j = 1, • • ., r - 1 
*=1 

where S9 = 1 if r = j, and 0 otherwise. If we write the transition matrix P in the form 

where r is a column vector and s is a row vector, then the system of r - 1 sets (each 

of r - 1 equations in r - 1 unknowns, represented by (13-15)) cdn be written in 
matrix notation as 

0^~16) N = I + QN or (I - Q)N = I 

Since each column of N appears in only one set of equations, (13-16) can be solved 

by r - 1 applications of the Gauss-Jordan method. The total mean time to the first 

entry to state r from state i, m„ is given by the sum of the elements of the ith row 

ot N If we multiply (13-16) on the right by the sum vector, [1, 1, . . ., 1]', we can 

see that these mean times can be found directly by solving the system of equations 

(13-17) (I _ Q)m =i 

where m = (mlr, m2.. mr_I>r)\ Note that (13-16) and (13-17) also can be used 

to calculate mean times to absorption in state r, if state r is the only absorbing state 

m the chain. These formulas can be applied to chains with more than one absorbing 

state by forming a new chain in which all the absorbing states are lumped together. 
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For example, the mean times to absorption in state 3 for a Markov chain whose 

transition matrix is 

1 2 3 

P = 
i r i i 
1 2 4 4 

2 5 5 3 
3 L o 0 1 _ 

and hence Q - 

are found by solving the system of equations 

1-4 -1 
1 - 

1 ’ 1 " 
1 _ 1 

You can verify that m13 — 11/3 and m23 10/3. 

(from 13-17) 

13-8 FITTING A MARKOV CHAIN MODEL 

Once we have decided that a Markov chain is an appropriate model for a particular 

process, there are two questions that have to be answered. These are 

1. What are the states of the Markov chain? 
2. What are the transition probabilities for these states? 

If we are lucky, the process will have only a few discrete physical states, which 
can be used directly. However, this is often not the case. To produce a manageable 
model whose transition probabilities we can reasonably estimate, we must keep the 
number of states fairly small. The addition of one new state Jo an m-statechain 
involves the estimation of 2m + 1 additional transition probabilities. States that are 
rarely visited often can be lumped together into one state without too much loss ot 
accuracy. The Markovian assumption, however, requires that the state space be large 
enough so that the present state of the process contains all the information that is ot 
value in predicting the future behavior of the process. Let us consider transitions from 
state i to state j at time n. If the estimates of p„ are found to differ significantly say 
for two different subclasses of values of the state occupied at time n , 1 W1 
probably be necessary to split state i into two substates reflecting these subclasses. Such 
an incremental lumping and splitting process, although statistically crude, is the way 
many chains are fitted in practice. We expand or contract the state space until we 
reach an acceptable trade-off between manageability and detail. 

Once we have decided that the process does appear to behave as a Markov chain 
and the states have been determined, estimating the transition probabilities is relatively 
easy. After n transitions, let N» be the number of transitions from state i to state 
j that have occurred. N/n) is the number of times the processleft state l. Then an 

estimator with good statistical properties for ptj is given by NJn)/ Nt{n). 
Markov chain models tend to be very specific to the problem being considered. 

For some problems, setting up the chain is all that is required. In others, we require 
the steady state distribution or the time-dependent behavior of the chain. In the 
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remainder of this chapter, we will look at three problems that illustrate a few of the 
kinds or analysis that can be carried out. 

13-9 A SHARE-OF-THE-MARKET MODEL 

Over the last few months, a firm has experienced a decreasing share of the market 
attributed largely to the entry of a newcomer into the field. Last year the firm managed 
to capture about 40 percent of the total market. Before deciding on the best coun- 
erstrategy, management would like to have some indication of how this trend is likely 

to affect, its share of the market over time. Maybe the decline is only temporary, and 
the hrm s sales will recover without active intervention. 

This situation can be studied by a brand-share or brand-switching model. The 
purchasing pattern of a typical customer for this product can be viewed as a Markov 
chain. Suppose interviewers are stationed at a number of randomly selected super¬ 
markets that carry all the competitive brands of this product. Each customer who buys 

°n® brLands 15 asked for the name of brand previously purchased. Let us say 
lu Lr i SUchi observatlons are made- What we have done is to sample randomly from 
the Markov chains of 400 customers. Provided that this sampling has been done fairly 
however the results can be used as estimates of the average customer transition 
probabilities., We get the following pattern for two consecutive purchases, where brand 
A is our hrm s brand and brand X represents the products of all competitors combined. 

Present Purchase 

Previous Purchase Brand A Brand X Total 

Brand A 117 108 225 
Brand X 35 140 175 

We can now set up a two-state Markov chain model for the average customer 

brand X”tC 1 den°teS “customer bu>'s brand A” and state 2 denotes “customer buys 

The method of the previous section can be used to estimate the transition prob¬ 
abilities. Of the 225 customers who were in state 1 previously, 117 (or 52 percent) 
stayed in state 1, whereas 108 customers (or 48 percent) moved to state 2. Similarly, 
of those who were in state 2, 20 percent moved to state 1 and 80 percent stayed in 
state L. Uur estimate of the transition matrix associated with this process is 

P = 0.52 0.48 
0.20 0.80 

The state probabilities after n transitions can be used to predict the firm’s share 
o the market, since the fraction of customers who buy brand A is exactly the same 
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as the probability that a randomly selected customer turns out to be a brand A 

purchaser. We can use last year’s split in the market share between brand A and its 

competitors as the initial state distribution. Denoting the initial state distribution by 

the vector tt(0) = [<>, tt(20)], then for a 40 percent share of the market for brand A we 

have 

IT 
.(0) _ [0.4, 0.6] 

You recall that each row i of P" represents the state probability distribution if the 

process starts out in state i. With ir(0) as the initial state distribution, the state prob¬ 

abilities after n transitions are given by 

(13-18) *<n) = ^ 

For our problem, ir(n) behaves as follows: 

n = 0 1 2 3 
6 

0.4 0.328 
0.6 0.672 

0.305 0.2976 0.2952 0.2945 0.2942 
0.695 0.7024 0.7048 0.7055 0.7058 

7 

0.2942 
0.7058 

Thus, the firm’s share of the market will ultimately decline to 29 percent if no 

counteraction is undertaken to reverse the trend. 

A more sophisticated study of individual customer purchase patterns finds that 

the brand of product purchased next can be shown to depend significantly on the types 

of the last two purchases. If we judge that we have to model this effect, it will be 

necessary to double the size of the state space. Consider the following sequence of 

purchases: AAXAXXXAAXAAAA. The first two purchases are a set of two consecutive 

purchases of brand A, denoted by AA. The next set is formed by droppmgthe first 

purchase and adding the third-the customer switches to the sequence AX. The third 

set consists of the third and fourth purchases, the sequence XA. This is followed by 

AX XX etc Viewing each possible sequence of two consecutive purchases as a state, 

we get the four states AA, AX, XA, and XX. Notice that in this model the steady-state 

probabilities for states AX and XA will always be equal. These probabilities represent 

the rate of switching from one brand to the other. Unless these rates cancel each 

other, the process cannot be in steady state. The form of the transition matrix for the 

more sophisticated model will be 

AA AX XA XX 

AA '1 - u 

AX 

xa| 
XX 

0 
w 
0 

0 1 - v v 

1 — w 0 0 
0 y l - y 

The limiting share of the market for brand A can be found by adding the steady-state 

probabilities for states AA and XA. Both have A as the second purchase. 
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13-10 MARKOV CHAINS WITH REWARDS 

Let us continue with our analysis of the reservoir problem. We are interested in finding 

the net benefit that could be gained by operating the reservoir as outlined—namely 

aving a target release of 3 units, 1 of which is used to maintain minimum downstream 

water quality and the remainder for irrigation. The weekly return from 2 units of water 

tor irrigation m terms of additional agricultural output is $5000, with a loss of $3000 

if the irrigation target of 2 units is missed, i.e., if only 1 unit is available. The reservoir 

would also be available for recreational purposes for the residents of the area. Assuming 

that the transportation cost of getting to the reservoir is a measure of its recreational 

value, the regional water board figures that, given the attendance rates projected the 

reservoir would be able to generate the following dollar equivalents for recreational 

Reservoir level in units at the beginning of a week 1 2 3 

Weekly recreational benefits in dollars 0 1000 6000 

4 

2000 

Finally, if the downstream water flow exceeds 2 units per week, flood risks are incurred 
with expected damages of $5000. ’ 

With each state and each possible water flow, we can associate the weekly benefits 

and costs shown in Table 13-1 in units of $1000. These costs are used to find the 

expected value of the weekly net benefits for each state, as the sum of the total net 

benefits for a given water inflow times the probability of that water inflow. For instance 

for state 1 it is equal to (-3X0.3) + (5X0.7) = 2.6 thousand dollars. 

Table 13-1. Weekly benefits and costs of reservoir operating policy in $1000’s 

Water Flow 

Irrigation Recreational 
State Amount 

Prob¬ 

ability Benefits Benefits 

Total Expected 

Flood Net Net 

Damages Benefits Benefits 

1 2 0.3 -3 

3 or more 0.7 5 
-3 

5 
2.6 

all levels 5 6.0 

3 all levels 11 11.0 

4 or less 0.9 

5 0.1 
6.5 

Let us denote the expected weekly net benefits associated with state i by c.. Given 

the long-run average fraction of transitions that the process is in each state (starts out 
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in each state}—the limiting state probabilities tt—the long-run average benefits or 

returns, g, are given by 

(13-19) * = 2 C;TT 

The tt, serve as weights. c. .. 
For the proposed reservoir operating policy, the long-run average net benefits per 

week are 

g — j(2.6) + 5(6.0) + b(1 1.0) + 1(6.5) = $6820 

In downstream areas, this policy has a risk of flooding that is equal to the product 

of the probability of being in state 4 and experiencing a water inflow of 5, or 

(1/3) (0.1) = 1/30. In view of this danger, the water board wishes to consider the 

alternative policy of increasing the minimum water release over the spillway to 2 u™ts 

whenever the reservoir level at the beginning of a week is at its maximum of 4. No 

change in policy would occur for the other 3 states. This would tend to keep the 

reservoir level away from its maximum and, hence, reduce the risk of flooding. Lhec 

iViat under this alternative policy the transition matrix becomes 

0.7 0.2 0.1 0 

0.3 0.4 0.2 0.1 

0 0.3 0.4 0.3 

0 0.3 0.4 0.3 

Only the last row changes. The limiting state probabilities for this alternative policy 

are 

w, = 0.3 tt2 = 0.3 it, = 0.25 u4 = 0.15 

The risk of flooding is reduced to (0.15) (0.1) = 0.015, less than half of the first 

policy. The net benefits and costs associated with each state are exactly the same as 

shown in Table 13-1. Therefore, the long-run average benefits per week become 

g = 0.3 (2.6) + 0.3 (6.0) + 0.25(11.0) +0.15(6.5) =$6305 

or $515 less than under the first policy. Apparently the gain obtained by reducing the 

risk of flooding is more than offset by smaller benefits from irrigation and recreation. 

If the maximum reservoir level is allowed to become a decision variable, the 

same analysis could be made for different maximuin reservoir levels, such as 3 5 

and 6, and the one with the highest expected total benefits would be recommende 

as the best choice. 

13-11 A FAILURE MODEL 

A control device contains N parallel circuits, all of which have to function for the 

device as a whole to operate properly. Each circuit is subject to random failure. 1 he 



failure rate increases with the age of the circuit units. Past records of 122 units give 
the following survival function: 

Number of weeks used 
Number of units surviving 
Fraction of surviving units fail¬ 

ing during following week 

0 1 2 3 
122 122 116 109 

0 0.05 0.06 0.10 

4 5 6 7 
98 78 39 0 

0.20 0.50 : 1.0 

Any circuit unit that fails is replaced by the beginning of the following week No 

unit survives to age 7 weeks. For this reason, all 6-week-old units are replaced au¬ 

tomatically. The failure and replacement pattern of each circuit, considered individ¬ 

ually over time, can be modeled as a Markov chain. Each week represents a transition. 

The age (in weeks) of the circuit unit is the state of the process. The states are thus 

U, 1, 2, 3, 4, and 5. A unit of age 6 is replaced and becomes a unit of age 0. The 

transition probabilities can be determined from the survival function. For instance 

all new units survive to age 1 so p0l = 1 and p0j = 0, for all j * 1. A fraction of 

U.U5 of 1-week-old units will fail during the second week of use. Failure means that 

the unit is replaced at the beginning of the next period, and the process moves to state 

U. Hence pm - 0.05. Any 1-week-old unit that does not fail survives to age 2. Hence 

^12 Z \ ~ ^10 = anc* t|ransition probabilities to all other states are 0, i.e., 
Pu - 0, j *0, 2. Continuing in this manner, we obtain the transition matrix' 

shown. Since no unit is used for more than 6 weeks (even those that survive to age 
6), equals one. 

Age 0 1 2 3 4 5 
0 f 1 0 0 o o" 
1 0.05 0 0.95 0 0 0 

(13-20) P= 2 0.06 0 0 0.94 0 0 
3 0.10 0 0 0 0.9 0 
4 0.20 0 0 0 0 0.8 
5 L 0 0 0 0 0 

We may wish to find the answer to a number of questions about the operating 

characteristics of this process. How often, on the average, does the device fail? What 

is the average rate of replacement of units? If each failure costs $8 and each circuit 

unit replaced costs $6 when replaced individually, would a policy of forced individual 

replacement at an earlier age (say after 4 or even 3 weeks) lower the average weekly 
cost? Let us now answer these questions. 

What is the percentage of weeks, in the long run, that the device fails? This is 

the same as the probability that the device fails in any week. This probability is equal 

to (1 - probability that the device works). The device works only if all circuits work 

Since each circuit is independent, the probability that the device works is the product 

ot the probabilities that each circuit works. For instance, if there are N = 3 circuits 

(one ot age 0, one of age 1, and one of age 3), then Pfdevice works) = (1) (0.95) (0.9). 
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However, what we want is not the probability for a certain age combination of the 
circuit units, but the long-run probability, once the process has approached sufficiently 
close to the steady state. At that point, the age of each circuit unit is known only in 
terms of probability. Thus, before we can find the long-run probability that the device 
works, we need to know the long-run age distribution of the circuits. 

Let us first consider one circuit unit only. The long-run age distribution of an 
individual unit is given by the steady-state probabilities of the Markov process associated 
with its failure and replacement pattern. For the transition matrix (13-20), we hnd 

the following steady-state probabilities: 

TT, = 0.189 tt, = 0.189 tt2 = 0.180 tt, = 0.169 TT. = 0.152 tt5 = 0.121 

By the mean recurrence time interpretation of tt0, the average life of each circuit 
unit is 1/tt0 = 5.29 weeks. Each tt, represents the probability that at the beginning 
of a week the circuit unit is of age i. For each age, we know the probability of failure 
during the following week of use. Let us denote these by b. Then the probability that 

an individual unit fails is 

(B-21) 
P(unit fails) = ^ P(unit is of a§e 0 P(unit fails 1 a§e ^ 

= X Tt-h 

Using the data of our example, we obtain 

P(unit fails) = (0.189) (0) + (0.189) (0.05) + (0.180)(0.06) 
+ (0.169) (0.1) + (0.152) (0.2) + (0.121)(0.5) =0.128 

The probability that the circuit works is 1 - P(unit fails) - 0.872 
In the steady state, each circuit unit has the same probability of failure. Hence, 

for three circuit units, the probability that the device fails is 

(13-22) 

P(device fails) = 1 - P(device works) 
= 1 - [1 - P(unit fails)]3 
= 1 -(0.872)? = 0.337 

Thus we conclude that, on the average, the device fails in 33.7 percent of all weeks. 
Let us next find the long-run average rate of replacement of units, remembering 

that the average long-run behavior of each circuit unit is the same. Each time the 
process moves to state 0, the circuit unit is replaced, regardless of whether it tailed 
or not. Using a version of the long-run frequency interpretation of the steady-state 
probabilities, tt can be taken as the fraction of units replaced, on the average each 
week. If there are N units, then tt units are replaced, on the average, each week, fior 

N = 3, this is (0.189) (3) = 0.567 unit. . 
What is the average cost per week of the present policy? This cost is the sum of 

the expected cost of failure of the device plus the expected cost of the number of units 

replaced per week: 
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Total average cost per week 

- expected cost of failure + expected cost of units replaced 

= (cost of failure) P(device fails) 

+ (cost of units replaced) (expected number of units replaced) 

= $8 (0.337) + $6 (0.567) = $6.10 

nf f To/nSTr the last ?UeS,tion’ we Perform this analysis for each alternative policy 
of forced replacement of individual units. For a forced replacement after 4 weeks of 
use, we drop state 5 and ad,ust the transition probabilities for state 4 accordingly 

tb.t IhC Steauyut,at.e probabLi]itries are 17 = t°-215- 0.215,0.205,0.192, 0.1731. (Note 
3t theseprobab.hties^nbe found by dividing the original steady-state probabilities 

Si n A77 W VS thlS?) By exPression 03-21), the probability that a circuit unit 
fells is 0.077, and by expression (13-22) the probability that the device fails is 0.214 

teas!?of um,s replacd is 0 64!-io"s-ran - «■ <■»; 

$8 (0.214) + $6 (0.645) = $5.58 

The analogous computations for forced replacement of individual units after 3 
weeks yield a long-run average cost per week of $5.85. Therefore, forced replacement 

of individual units after 4 weeks is the optimal policy. 

’13' TOANTIIENT BF1Mvior ,ent model-analysis of the 

In group replacement, all units are replaced at specific regular time intervals, regardless 
ot their age; between group replacements, individual units are replaced as they fail 
.Such a scheme becomes attractive if it costs less to replace units in groups than 
individually. Assume that for the problem we discussed in Section 13-11 it costs 

C| ~ JJ3 pe[.unit for §roup ^Placements, and c2 = $6 for individual replacements. 
Fach time a group replacement occurs, all units start out in state 0 (new) Then 

we a low the process to go over n transitions, at which point all units are again replaced 
and the process starts back in state 0 for each unit. Thus, the process for each unit 
is periodically interrupted and brought back to the beginning. It never reaches a steady 
state. So we are only interested in the transient behavior of the process 

For this analysis, we do not provide for individual forced replacements of units, 
but we let each unit potentially go to the end of its productive life, which in this case 



Let us start out by finding the total expected cost over n transitions (n weeks), 

if a group replacement occurs every n transitions. This cost is made up ° 
cost of starting with a complement of N new units, the cost of replaci g 
fail prior to the next group replacement, and the cost of the device failing. 

The cost of the initial group replacement is c,N. For the second term, we need 
the expected number of individual replacements at failure between group replace¬ 
ments PUnits failing just prior to a scheduled group replacement will not bereplac 
individually In the previous section, we interpreted the steady-state probabi ity 
state 0 as the fraction of units that are replaced each week. Here, we use the state 
probability for state 0 for the same purpose. We can interpret this probability as the 
average friction of units that failed in the preceding week. To find the expected fraction 
of unfts that fail over the n - 1 weeks between group replacements, we need to urn 
“he s«e probabilities fo, state 0 over all n - 1 brt. staging w,.h n=„ on 

, 1 TaVilp 13-2 lists the state probabilities for n — 1, 2, 3, t, ana 
'replacement periods. Strictly, the nth row of Table 13-2 should be calculated using 

Innby n transition matrix m the formula f 
c J p „u j.„ mw<! of Table 13-2 can be found from ir - it r, wnere r is 

gfrSi by (13-23) and ir(0> = [1,0,0,0,0,0,0], The < column of Table 13-2 gives the 
expected fraction of units that fail in weeks 1, 2, 3, 4 and 5 after group replacement 
and the final column of the table gives the accumulated expected fractionthrough 
week n. The expected number of units that fail, where there are N units in total, for 

nn interval of n weeks between group replacements is 

N 2 ^ 

Table 13-2. State probabilities for individual replacement at failure 
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For N = 3, we get the following expected number of individual replacements 

at failure, and the associated cost for group replacements every n = 2, 3, 4, and 5 
weeks: 

Group replacement interval, n 2 3 

.... ! .... 

4 5 

Fraction replaced at failure through week n - 1 0 0.05 0.107 0.1988 
Total expected number replaced individually 

Expected cost of individual replacements at 
0 0.15 0.321 0.5964 

$6.00/unit $0 $0.90 $1.93 $3.58 

The failure probability for the device is now different from week to week. Let us 

consider first the probability of failure of an individual unit in the kth week. This is 
given by 7r|f, so by (13-22) we get 

Week n 1 2 3 4 5 

P (unit fails) = 0 0.05 0.057 0.0918 0.1664 
P (device fails) = 1 - (1 - tt^)" 

Expected cost of failure at $8/failure 
0 0.1426 0.1614 0.2509 0.4207 

$0 $1.14 $1.29 $2.01 $3.37 

We now have all the ingredients needed to find the optimal lengh of the group 

replacement interval n. Table 13-3 contains the computations. 

Table 13-3. Cost computations for group replacements 

n = 2 3 4 5 

Cost of initial group replacement $9.00 $9.00 $9.00 $9.00 
Cost of individual replacements at failure 0 0.90 1.93 3.58 
Cost of failure k = 2 1.14 1.14 1.14 1.14 

k = 3 1.29 1.29 1.29 
k = 4 2.01 2.01 
k = 5 3.37 

Total costs for n weeks $10.14 $12.33 $15.37 $20.39 

Average cost per week $5.07 $4.11 $3.84 $4.08 

Thus, the lowest average cost per week is obtained for group replacements every 

4 weeks. This is lower than the best forced individual replacement policy and therefore 
is the optimal replacement policy. 
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EXERCISES 

13.1 A delicate precision instrument has a component that is subject to random failure. In 
fact, if the instrument is operating properly at a given moment m time, then with 
probability 0.1 it will fail within the next 10-minute period. If the component tails, 
it can be replaced by a new one—an operation that also takes 10 minutes. The present 
supplier of replacement components does not guarantee that all replacement com¬ 
ponents are in proper working condition. The present quality standards are such t rat 
about 1 percent of the components supplied are defective. However, this can be 
discovered only after the defective component has been installed. If the component 
is defective, the instrument has to go through a new replacement operation. Assume 

that when a failure occurs, it always occurs at the end of a 10-mmute period. 

(a) Find the transition matrix associated with this process. 
(b) Given that it was working properly initially, what is the probability that the in¬ 

strument is not in proper working condition after 30 minutes? after 60 minutes? 
(c) Find the steady-state probabilities. For what fraction of time is the instrument 

being repaired? . 
(d) Assume that each replacement component has a cost of 30 cents, and that the 

opportunity cost in terms of lost profit during the time the instrument is not working 

is $10.80 per hour. What is the average cost per 10-minute period? 

13.2 A local craft shop selling wall carpets to tourists can produce one carpet per day. The 
craftsman never produces a carpet that is identical to any that are still m the shop 

unsold. For this reason, the choice of carpets increases with the number of unsold 
carpets, and the selection also increases the chances of selling carpets. Past experience 
shows that if only one carpet is on hand, chances are 1 out of 3 that the carpet will 

be sold. If two carpets are available, chances are \ that at least one is sold, and 4 t at 
both are sold. For three carpets, chances are f that at least one is sold, 3 that at east 
two are sold, and \ that all three are sold. If at the beginning of the day three carpets 
remain unsold, the craftsman takes a day off; i.e., he does not make a carpet that day, 

but just tries to sell. _ , .. 
(a) Define the states of this process, and find the associated transition probabilities. 

(b) What is the average fraction of evenings that he will have only the carpet produced 
during that day on hand and none other? What is the fraction of days that he takes 

a day off from production? 
(c) What is the average inventory level of carpets at the end of a day? 
(d) If each carpet brings in $40 net, what is the average daily net profit? 

13.3 The market for a product is shared by 4 brands. The table gives the present share-of- 
the-market distribution and the percentage of people who switch from each brand to 

the other brands for consecutive purchases. 

To Brand 
Market 
Share 1 2 3 4 

1 60 8 20 12 40% 

2 15 40 25 20 20% 
From Brand 

3 25 16 50 9 30% 

4 28 12 20 40 10% 
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(a) If, on the average, 1 purchase is made every 2 months, predict the distribution of 
the share of the market after 6 months. 

(b) What is the long-run average share of the market for each brand if present pur- 
chasing patterns are not altered? 

13.4 A machine shop operates two identical machines, which are supervised by one operator. 
Each machine requires the operator’s attention at random points in time. The prob¬ 
ability that the machine requires service in a period of 5 minutes is p - 0.4. The 
operator is able to service a machine in 5 minutes. Let us approximate this situation 
by assuming that a machine requires service always at the beginning of a 5-minute 
period. 

(a) Construct a transition diagram for this problem, and find the transition matrix 
associated with it. 

(b) If both machines are operating properly at 8 A.M., find the state probabilities after 
5 minutes, 10 minutes, and 40 minutes. 

(c) Find the steady-state probabilities for this process. What is the long-run probability 
that the operator is idle for a 5-minute period? For what fraction of 5-minute 

periods is the operator busy? What is the long-run average number of machines 
that require service within any 5-minute period? 

(d) Assume that the opportunity cost in terms of lost production, if a machine is down 
or being serviced for a 5-minute period, is $5. What is the long-run average 
opportunity cost for an 8-hour shift (96 5-minute periods)? 

13.5 Markov chains are frequently used as models of disease processes. A nonfatal tropical 

disease takes three weeks to run its course. The chance of a healthy individual con¬ 
tracting the disease m any week is 0.1. Two drugs are available to shorten the length 
of the disease. The first drug can be used only during week 1, and it cures 50 percent 
of the patients immediately. The second drug must be used in week 2, when the cure 
rate is also 50 percent. 

(a) What fraction of the population is infected at any time if no drugs are available? 
(b) If both drugs are used when appropriate, what fraction of the infected population 

will have the length of the disease reduced by drugs? 

(c) The cost of the drug program per week for each individual in the entire population 
is $5. If the cosl of each week of work lost through the disease is assessed at $50, 
will the program pay for itself? 

13.6 Some electronic components are found to have a negative exponentially distributed 
lifetime, with a mean of 10 hours. Components are inspected every 10 hours, at which 
time those that have failed since the last inspection are replaced. Any component that 
reaches 30 hours is replaced whether or not it has failed. (Consult Section 10-9.) 
(a) Explain why the replacement process can be modeled as a Markov chain, and find 

the transition matrix for the state of the component in a particular site. 
(b) Write down the failure distribution for the components. 

(c) If the forced replacement takes place at 40 hours instead of at 30 hours, the number 
of components replaced at each inspection clearly will be reduced. Calculate what 
the percentage reduction will be. Note that this can be done without finding the 
actual number of replacements. 

13.7 An independent taxi operator works in the area of San Francisco and Oakland. In San 
Francisco, chances are 3 out of 5 that the next rider wants to make a trip within San 
Francisco, and 2 out of 5 that the rider wants to go to Oakland. In Oakland, 1 out 
of 4 riders want to go to San Francisco, and 3 out of 4 want a trip within Oakland. 
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(a) Find the transition matrix associated with this process. What aspect of the problem 

represents the states, and what aspect is a transition? 
(b) If the driver starts out in San Francisco, what is the probability of finding her m 

San Francisco after 4 trips? in Oakland aftei; 4 trips? 
(c) What is the long-run average fraction of calls that have the taxi go from 

• San Francisco to San Francisco, 

• San Francisco to Oakland, 
• Oakland to Oakland, 
• Oakland to San Francisco? 

(d) If a trip within San Francisco produces, on the average, an intake of $7, a trip 
from San Francisco to Oakland $8, a trip within Oakland $3, and a trip from 
Oakland to San Francisco $6, what is the long-run average intake per call? 

(e) The present method of attracting customers is to cruise until someone hails the 
taxi. The driver experiments with a different approach—namely, always returning 

to the main bus terminal in each city after a call. She finds that with this approach, 
50 percent of all calls involve trips from San Francisco to Oakland and 40 percent 
of all calls in Oakland involve trips to San Francisco. What is her optimal policy 
given that she is willing to allow any combination of the two approaches in each 

city? 

13.8 The operational efficiency of a machine producing parts tends to deteriorate randomly 
from a condition of (1) properly adjusted to (2) slightly out of adjustment, and from 
that condition to (3) completely out of adjustment. The condition of the machine can 
be ascertained only at the end of each one-hour period, on the basis of the number 
of defective parts produced during the preceding hour. If the machine was proper y 
adjusted in the preceding hour, the rate of defective parts is 1 percent; if it was slightly 

out of adjustment, the rate is 5 percent; and if it was completely out of adjustment, 
the rate is 20 percent. Past experience indicates that if the machine is found to be 
properly adjusted at the end of a one-hour period, the probability is 0.1 that at the end 
of the next one-hour period it is found to be slightly out of adjustment. If it is slightly 
out of adjustment, the probability that the machine is found to be completely out of 
adjustment by the end of the next hour is 0.25. Once completely out of adjustment, 
it will remain in that condition. Each hour, 100 parts are produced by the machine. 
At the beginning of any hour, the machine can be properly adjusted by an operation 
that takes 12 minutes and thus reduces the output of the machine during the coming 
hour by 20 percent. Defective parts have to be reworked on a different machine at a 
cost of $2.50 per part. Each part produced brings in a net revenue (gross revenue less 

cost of material) of $2. 
(a) Find the transition matrix for this process, if the machine is adjusted whenever 

it is found that the rate of defective parts produced during the preceding hour is 

20 percent. . 
(b) Find the steady-state probabilities for this mode of operation, and determine the 

long-run average total number of parts and the long-run average number of defective 
parts produced per hour. What is the long-run average gross profit per hour (net 

revenue less cost of reworking defective parts)? 
(c) Find the optimal policy for adjusting the machine. 

13.9 Past records indicate that the survival function for lightbulbs of traffic lights has the 

following pattern: 



Age, n, of bulbs in months 
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0 , I 2 3 4 5 

Number surviving to age n 1000 950 874 769 615 0 

(a) If each hghtbulb is replaced after failure, find the transition matrix associated with 

this process. Assume that a replacement during the month is equivalent to a 
replacement at the end of the month. 

(b) Determine the steady-state probabilities. What is the long-run average length of 
time that a bulb is used prior to being replaced? If an intersection has 40 bulbs 
how many bulbs fail on the average per month? If an individual replacement has 
a cost of $2, what is the long-run average cost per month? 

13.10 Consider the survival function of exercise 13.9. 

(a) Assume now that all bulbs-regardless of age—are replaced every 3 months and 
that individual bulbs are replaced at failure, including those that fail during the 

month prior to a scheduled group replacement. On the basis of the transition 
matrix for the failure pattern of an individual bulb, determine the number of bulbs 
that are replaced at failure between group replacements. Note that failures in the 
month just prior to a group replacement are replaced also at failure. If group 
replacements cost $0.20 per bulb plus a $5.00 fixed cost per intersection, find the 
average cost per month for this policy. 

(b) Find the least-cost group replacement policy. Is its average monthly cost lower 
than that of a policy of individual replacements at failure only? 

13.11 Past records of a department store indicate that 20 percent of all new charge account 
customers become delinquent in the following month. Of all charge accounts delin¬ 
quent for 1 month, 50 percent become fully paid during the next month, 30 percent 
remain delinquent by 1 month, and 20 percent become delinquent for 2 months' 
purchases Of the 2-month delinquent group, 10 percent become fully paid, 20 percent 
pay partially and become delinquent by 1 month, 30 percent remain delinquent by 

2 months, and 40 percent become delinquent by 3 months. Any charge account that 
is delinquent for 3 months is canceled. 

(a) Find the transition matrix for this process. What type of Markov chain is it? 

(b) During a given month, 100 new charge accounts are opened. What percentage 
of those accounts will have their charge account canceled after 4 months? after 6 
months? 

(c) What is the mean time before a new charge account is canceled? 

13.12 An investor bought shares of a certain speculative stock at $38, and has given orders 
to a broker to sell the stock as soon as its price rises to $40 or above or falls to $37 or 

below From observations about this stock over the last few weeks, the investor estimates 

re,*6 Pr°bablllty a Price rise of $1 is 0.5 and that the probability of a price decline 
ot $1 is 0.2 for each day. 

(a) Find the transition matrix for this process. Which states are transient states, and 
which are absorbing? 

(b) What is the probability that the broker sells the stock within 4 days? What is the 
expected net gam, or loss, per share when the broker sells within these 4 days if 
“mg conditions are met or at the current price at the end of the fourth day? 

(c) What is the mean time before the broker sells the stock? 

13.13 For the lightbulbs considered in exercise 13.9, use equation (13-14) to find the prob- 
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ability that a particular bulb is first replaced (a) after exactly 2 months and (b) after 
exactly 3 months. You can check your answers directly from the survival function. 
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CHAPTER FOURTEEN 

Stochastic Dynamic 
Programming and 

Markovian Decision 
Processes 

This chapter again picks up the theme of dynamic programming. This time, however 

we allow random phenomena to enter the picture. We shall first generalize the 

recursive relation of dynamic programming to cater to state transformations that are 
subject to probability' distributions dependent upon the decision taken. 

The focus of attention changes somewhat in the second part of the chapter. With 

tie exception of Markov chains, the decision models discussed so far all have covered 

either a single period or a finite planning horizon of several periods. The distant future 

was ignored. This approach implicitly assumes that current decisions are independent 

ot future events and of decisions beyond the planning horizon. Undoubtedly this 

assumption applies to some one-shot or limited-time decision problems. However 

much more decision making has to be viewed as an integral part of a never-ending 

sequence of actions, in which current decisions leave some imprint on the future and 

future decisions may influence what is the best course of action now. We will thus 

look at a class of sequential decision models in which the unboundedness of the 

planning horizon is explicitly incorporated into the analysis. In particular, we will 

study how an extension of dynamic programming can be used to solve decision 

problems whose probabilistic behavior can be described by Markov chains; 

391 
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14-1 DYNAMIC PROGRAMMING WITH STOCHASTIC STATE 

SPACE 

Consider the network in Figure 14-1. The problem consists of getting from state 1 to 
state 8 or 9 at the lowest cost. As in the routing problem in Section 9-1, the states 
can be partitioned into four sets. Each route from state 1 to state 8 or 9 has to go 
through one state at each of the four sets labeled 0, 1, 2, and 3. In each state of sets 
1 2 and 3, one of two possible actions can be taken—action A or action B, each 
leading to a new state with a certain probability. We can thus look at this problem 
again as a sequential decision process with three stages. In contrast to the analysis of 
deterministic sequential decision problems in Chapter 9 (where the new state resulting 
from a decision is known with certainty), in this problem the new state resulting from 
a decision is known only in terms of probability. The new state variable 1S therefore 
a random variable. For instance, if we take decision A at state 5 (at a cost of 5), then 
with probability 0.3 we will go to state 8, and with probability 0.7 we will go to state 
9. In other words, the random variable for the new state assumes either the value 8 
or the value 9. If we reach state 8, a cost of 2 is incurred, whereas if we reach state 
9 a cost of 10 is incurred. The cost associated with the new state is therefore also a 
random variable. For this reason, the criterion for optimization usually applied is 
minimization of the expected cost (or maximization of the expected return). 

To solve this problem, we start again at the end and, working backward, evaluate 
each state at each stage until we reach the known starting position. For each state and 
each action, we compute the expected cost over all states that can be reached for t is 
action in a procedure similar to that used for the evaluation of decision trees in 
Chapter 11. The expected costs are the numbers shown above the small circles denoting 
the action in Figure 14-1. Adding the immediate cost for a given action to the 
corresponding expected cost over all future states, we obtain the total cost associated 
with each action. The action with the minimum total cost is the optimal action at 
each state. The minimum expected cost and the corresponding action are shown in 
the rectangles above each of the large circles denoting the states. For instance, given 
that the costs in states 8 and 9 are 2 and 10, respectively, the expected cost from state 

5 to the end is 

5 + (0.3)2 + (0.7)10 = 12.6 foractionA 

8 + (0.6)2 + (0.4)10 = 13.2 for action B 

Action A has the lower expected cost, so it is the optimal action u at state 5, denoted 

as u*(5) = A. Verify the other computations. 
The recursive relation is now 

(14-1) fn{in) = minimum 
all uel. 

2 ft,.--1 (“)/»- 
for all in, all 1 

where f0(i0) = c*, for all i0; c„ is given; fu,„ denotes the cost of taking action u in state 
iB; p i (U) is the probability of going from state i„ to state i„_, if action u is taken 

in state in; and In is the set of all possible actions in state in. 
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What is the meaning and form of an optimal solution to a dynamic programming 
problem with a stochastic state space? Once the supposedly known (chronological) 
starting point has been evaluated, we know the minimum expected cost. Furthermore, 
we also know the optimal initial decision or action. However, in contrast to a deter¬ 
ministic dynamic programming problem, for the stochastic state space we cannot tell 
with certainty what the subsequent decisions will be, since these depend on t 
outcome of random events. The optimal decision rules are of the form if the state 
resulting from a decision is . . ., then take action . . . .” In other words, we have a 
strategy of conditional actions, one for each state at each stage; hence our notation 
u"(i) showing the dependence on state i„. Only the initial decision can be imple¬ 
mented. For instance, in the present example the optimal action at state 1 is action 
B. This decision is the only one that can be implemented. Only when we have 
observed the outcome of a random event (i.e., when we know which state at stage 
has resulted from this decision) can we implement the next decision at stage L 

One further point has to be stressed. As was true for decision trees stochastic 
dynamic programming problems can only be solved by the backward solution. 
Why7 This is immediately clear if we consider the chronological sequence of events. 
At the beginning of a period (or transition), the process is in a given known state At 
this point, an action is taken that leads to one of several future states—each state 
reached with a known probability. We cannot choose which particular state we will 
reach. The backward solution maintains this chronological sequence of a decision 
followed by a random event. In a forward solution, we would ask ourselves what the 
best path is to reach a given state; i.e., the state reached by a random event is arbitrarily 
fixed, which is a contradiction. This difficulty is not present in deterministic problems. 

The presence of randomness in a sequential decision problem does not necessari y 
result in a stochastic state space. If the randomness is contained within each stage, 
the state space remains deterministic. For instance, this is the case if the single-stage 
cost or return is a function involving random elements that do not carry over into the 
state transformation. In most instances, we can deal with this type of randomness by 
computing expected values of the single-stage cost or return tu ,v The recursive relations 
are then identical to those of Chapter 9. Hence, the methods of that chapter apply. 

Only the interpretation of fn changes; it is now an expected value a so* 

(As a footnote, remember the rental equipment problem of Chapter 9. the cost 
of being short is a function of the number of units short. The latter usually cannot 
be predicted accurately. All we might know are probability distributions for the number 
of units needed in each week. So the shortage cost, as for inventory problems is a 
random variable which is a function of the number of units on hand, for which we 
can determine expected values. This is, in fact, how the R„(z„) values were found.) 

14-2 A FOREST STAND MANAGEMENT PROGRAM WITH 
PROBABILISTIC TREE GROWTH 

Ten years ago, the Green County Council had ten acres of county land planted with 
radiata pines. At year 6, about half of the trees were thinned and sold as Christmas 
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trees. The trees are now 10 years old, and the council would like to determine the 

best management program. A stand management program is a timetable for thinning 

the forest and pruning the trees. Properly done, such operations can considerably 

increase the value of the remaining trees at clear-felling age, and at the same time 

these operations may provide some income prior to clear-felling. The best program 

is the one that maximizes the present value of the net revenues over the life of the 

s and. Let us see how dynamic programming is currently used to help develop such 

stand management programs. To allow hand computations, though, we will simplify 
the problem to thinning only. p 7 

The forest industry has developed growth tables for commercial tree species as 

a function of stand density soil quality, etc. From these tables, we can extract the 

growth information applicable to the council’s forest. Since the area is prone to 

repeated drought conditions, the growth is probabilistic, but otherwise fairly uniform. 

able 14-1 summarizes the growth in terms of volume (e.g., in cubic meters) over 

each b-year mterval during the fast growth rate of this species. For instance, if at age 

10 the stand has a volume of 200, then at age 16 the probability distribution of the 

stand volume is given by the column headed “200.” Subtracting 200 from each entry 
in the column gives the increase in volume. 7 

Table 14-1. 

Probability 

0.4 
0.4 
0.2 

Growth table for 6-year intervals from age 10 to age 28 

_Volume at Beginning of Interval After Thinning 

100 130 200 250 300 350 400 450 500 55Q 600 

200 300 350 400 450 500 550 600 650 700 750 
300 400 450 500 550 600 650 700 750 800 850 
350 450 500 550 600 650 700 750 800 850 900 
"" --- - i_ 

The council’s forester has been advised that at most 3 thinnings should be con¬ 

templated, to occur at ages 10, 16, and 22. The forest will be clear-felled at age 28 

and the trees will be used for pulp production. For a stand volume of 350 or more' 

at least 20 percent should be thinned at each thinning age. Never mote than 50 

percent of the trees should be taken out in any thinning. To reduce the computational 

ettort, we will assume that a thinning will always be in integral multiples of 50 units 
or zero (unless restricted otherwise). . ; 

There is, at this point in time, little information available about the net price 

that thinned or clear-felled wood will fetch in 6, 12, or 18 years. Under such con¬ 

ditions we usually assume that the price relationships between the goods and services 

involved will be the same as those now. Thus, we can use the current prices and 

current inflation-free rate of return as input into our calculations. Currently, each 

thinning or clear-felling operation incurs a fixed cost of $400. The net revenues per 

unit of pulp wood are given in Table 14-2. The desired inflation-free rate of return 

is 4 percent. The annual discount factor is thus a = 1/1.04. Over a 6-year interval 
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the discount factor is a6, or approximately 0.8. (See Section 1-13 for a short review 

of discounting.) 

Table 14-2. Net revenues from thinning and clearfelling 

Age of Trees 

Volume Taken 10 16 22 28 

Less than 150 $9 $12 $15 $20 

150 to 299 $10 $14 $18 $24 

300 or more $10.5 $15 $20 $26 

We now have all information needed to formulate the problem by dynamic 

programming. The stages are given by the 3 thinning ages: 

Age 

Stage n 

10 16 22 28 

3 2 10 

The growth over each 6-year interval depends on the volume at the beginning of the 

interval after all thinning has been done. We will use the volume v as the state 

variable. The amount of thinning, x„, is our decision variable. Given the volume v 

at the beginning of a 6-year interval, prior to thinning and given the volume ot 

thinning x„, the state transformation is a random variable as a function ot v„ xn, 

i.e., 

(14-2) vn_j = g(vn - xn) with probability p„ fori = 1,2,3 

These are the entries in Table 14-1. The initial state v, is given as 200 units. 

We would like to find the thinning strategy, starting at age 10, that will maximize 

the present value of all revenues generated over the remaining 18 years from clear- 

felling. Let fn(vn) denote the present value of the optimal strategy over the remaining 

n stages for an incoming stand volume of vn. Then 

(14-3) 

fn(vJ = maximum 
0, for x„ = 0 

-400 + Rn(x„), for xn > 0 

+ 0.82ft/„-ite(v„ “ *»)] for n = 1,2,3 

where f0(v0) and R„(x„) are obtained from the cost information shown earlier and where 

X represents the set of feasible thinnings. 
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Table 14-3 shows the evaluation of expression (14-3). The top portion for n = 0 

lists the revenue less the fixed cost for clear-felling at age 28. For instance, for a final 

of 300 units> Table 14‘2 gives a net revenue per unit of 26; hence, 
300) ~ 400 + (300) 26 = $7400. In this example, the range of values for each 

Table 14-3. Solution of forest stand management problem 

4400 
5600 
7400 
8700 

10,000 

11,300 
12,600 
13,900 
15,200 
16,500 

17,800 
19,100 
20,400 
21,700 

(4) 
‘ i[g,(v„ - xj] 

10,496 
9456 

8416 

10,496 
9806 

9516 
9676 

10,496 

10,496 

9456 
8416 

11,536 
10,496 

9456 

12,576 
11,536 
10,496 

9456 

12,576 
11,536 
10,496 

10.556 
10,716 

11.596 
11,756 
11,616 

12,636 
12,796 
12,656 

13,676 
13,836 
13,696 
13.556 

14,876 
14,736 
14.596 

10,716 

11,756 

12,796 

13,836 

14,876 
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(2) 
Xn 

(3) 

R.W 
(4) 

«Zp,Ug,(K-xJ 
1 

(5) (6) 
Total f„(v„) 

150 2300 13,616 15,916 

200 3200 12,576 15,776 

250 4100 11,536 15,636 

300 5600 10,496 16,096 16,096 

150 2300 14,656 16,956 

200 3200 13,616 16,816 

250 4100 12,576 16,676 

300 5600 11,536 17,136 17,136 

150 2300 15,696 
200 3200 14,656 
250 4100 13,616 
300 5600 12,576 
350 6600 11,536 

17,996 
17,856 
17,716 
18,176 18,176 

18,136 

2 200 

250 

300 

0 0 9737.60 

50 200 9168.00 

100 800 7766.40 

0 0 10,569.60 

50 200 9737.60 
100_800_9168.00 

0 0 11,430.40 

50 200 10,569.60 

100 800 9737.60 
150 1700 9168.00 

9737.60 9737.60 

9368.00 
8566.40_ 

10.569.60 10,569.60 

9937.60 

9968.00_ 

11,430.40 11,430.40 

10.769.60 
10.537.60 
10,868.00 

100 
150 

800 
1700 

10,569.60 
9737.60 

11.369.60 
11.437.60 11,437.60 

100 800 11,430.40 12,230.40 

150 1700 10,569.60 12,269.60 12,269.60 

200 2400 9737.60 12,137.60 

100 800 12,320.00 13,120.00 

150 1700 11,430.40 13,130.40 13,130.40 

200 2400 10,569.60 12,969.60 

100 800 13,152.00 13,952.00 

150 1700 12,320.00 14,020.00 14,020.00 

200 2400 11,430.40 13,830.00 

250 3100 10,569.60 13,669.60 

0 
50 

500 

10,104.96 10,104.96 10,104.96 

9684.86 9734.86 
8603.78 9103.78 

n 0 
50 

100 
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state variable v for n ■- 1,2,3, can easily be determined from the set of feasible 
thmnm§s for each vn, given that we start out with v5 = 200. Let us demonstrate how 
/,(350) was determined. By the thinning restrictions 0.2v, ^ x, 0 5v, x can onlv 
assume the values 100 and 150. 13,(100) = -400 + (100)15 = $1100, while 

5^ -r400 + 150)1? = $2300' ForX| = 100’ v> “ *1 = 250, so by Table 
14-1, g(250) can assume values 400, 500, and 550, with probabilities 0.4, 0.4 and 
U.2, respectively. Thus the entry in column 4 is 

0-8 ^Pifoig, (2 50)] = 0.8[0.4(10,000) + 0.4( 12,600) + 0.2(13,900)] =$9456 

Similarly, for x, = 150, the entry in column 4 is $8416. Adding entries in columns 
3 and 4 in each row, we get the entries in column 5. Since the entry for x, = 150 

‘S th^ ar8er °ne’ ft350) = j>10>716; the corresponding optimal decision x,*(v,) is 
*i (350) - 150 (shown in boldface). For n = 3, only v, = 200 has to be evaluated, 
from this we see that the maximum expected present value is $10,104 96 and the 
initial optimal decision x?(200) is to do no thinning at age 10. This is the only decision 
that can be implemented at this stage. Before we can implement a decision for the 
next stage, we first have to await the random growth that will occur between years 10 
and 16. y 

14 3 hS™ 0VER AN UNB0UNDED PLANNING 

When dealing with decision problems that have no well-defined terminal point but 
go on indefinitely over the foreseeable future, we have several options. 

1. We may consider a finite planning horizon, and select terminal conditions 
that the system has to satisfy (for deterministic problems) or penalize deviations 
horn desired terminal conditions (for stochastic problems). For instance, in an 
inventory model, the terminal condition consists of the inventory level desired 
at the end of the planning horizon. This approach is particularly suitable for 
problems subject to seasonal cycles in which the carry-over from one cycle to 
the next is small. 

2. We may choose a planning horizon long enough so that the optimal current 
decisions are not affected by reasonable changes in events and decisions toward 
the end of the planning horizon. The exact length required is best determined 
by sensitivity analysis. The period may only cover a few months if we are 
dealing with routine decisions, but may cover 10 to 20 years for strategic 
decisions, such as those dealing with capital investments. Since information 
about the future behavior of the system becomes less and less reliable as we 
project into the more distant future, this approach has considerable appeal. 
Only the current optimal decision would ever be implemented. The problem 
would be reoptimized for each later decision, at which time better information 
about the more distant future would probably be available. For each optimi¬ 
zation, the planning horizon has the same form constant length as shown in 
Figure 14-2. 

3. We may build a model for an unbounded planning horizon. 
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Figure 14-2. Rolling planning horizon of constant length. 

New period 
added 

Once we let the planning horizon become unbounded, 
restrictive assumptions about the behavior of the system studied 

we have to introduce 

wmmmmm till.itiitiii 

■fiHI o 

We assume that the environment in w 
'/the d^isii^ fh 

)F STATIONARITY 

•hich the decisions have to be made and 
remain stationary over time. ma 

For instance, for an inventory control problem, this implies that either the 
demand (in the deterministic case) or the demand probability distribution (in the 
stochastic case) is identical in each period, and that all costs associated with a given 
decision and the set of possible decisions available in each period remain the same. 
This is analogous to the assumption of stationarity already encountered for Markov 
chains in Chapter 13. Note that in a narrow sense this assumption excludes seasonal 
variations even if they are identical from year to year. Admittedly, few real-life processes 
remain stationary for any extended length of time. Nevertheless, this assumption may 
be a suitable approximation to reality for many problems, such as routine day-to-day 
decisions in a slowly changing environment, or long-term, recurrent strategic deci¬ 
sions. In the first instance, the potential increase in benefits of a nonstationary analysis 
usually will not justify the higher cost of data collection. This is the case for most 
inventory problems covering hundreds or thousands of products, each generating on y 
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small savings. In the second instance, uncertainty about events and alternative courses 
of action in the more distant future and the fact that they have a small irnpact on the 
present (because of discounting of future benefits and costs) may justify the assumption 
of stationanty and may result in better current decisions than those obtained by ignoring 
the distant and uncertain future altogether. We shall see this shortly. 

• ‘^S °r'ri/0CUS S^*^S ^10m a an infinite planning horizon, the optimization 
criteria of the finite case have to be altered or adapted appropriately. Since the sum 
ot a stream of finite returns or costs per period may become infinitely large as the 
number of periods considered goes to infinity, we may look at either 

• the present value of a infinite stream of returns or costs, or 
• the average return or average cost per period. 

In the finite period case, the optimal policy or strategy depends on both the state 
occupied by the system and the number of periods (or stages) remaining. For an 
unbounded planning horizon, the number of periods remaining stays thfe same from 
period to period. Therefore, the optimal policy no longer is dependent on the number 
of periods remaining, but becomes uniquely a function of the state of the system. 

STATIONARY POLICIES 

A stationary policy has the property that whenever the process returns to a given 
state, the same decision is taken; i.e., the decision taken in each period depends 
only on that current state of the system. 

14-4 FUNCTIONAL EQUATIONS 

Consider the following dynamic inventory problem. The stock level of a given product 
is reviewed at the beginning of each week, and a decision is made as to whether or 
not to schedule a production run. Goods from a production run will be available for 
sale in the same period. Total costs are made up of the cost of holding goods in 
inventory, the fixed and variable production costs, and the opportunity cost on sales 
lost because of insufficient stocks. The demand during each period is a random variable 
with known probability distribution. The problem is to find an optimal inventory and 
production policy so as to minimize the present value of the total expected costs over 
a finite planning horizon of N periods. 

We first introduce some symbols. The periods are numbered consecutively from 
end to beginning. The last period in the planning horizon is period 1, and the first 
period is period N. Let 

zn denote the beginning inventory with n periods left to go to the end of 
the planning horizon; 
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x denote the amount produced in the nth-to-last period, xneXn, where Xn 

is the set of all feasible production levels; 
d denote the demand in the nth-to-last period, subject to a known prob¬ 

ability distribution with terms p„{dn); 
ch denote the holding cost per period per unit carried forward from the 

preceding period; 
cs denote the shortage cost per unit short; 
k(xn) denote the production cost to produce x„ units in period n, kJO) - 0, 

kjxj 3= a for xn > 0, where a represents the fixed cost; 

a denote the discount factor per period. 

The cost C (z , x ) in the nth-to-last period, given a beginning inventory of zn 
and a production of x"„, is equal to the sum of production cost, inventory holding 

cost, and expected shortage cost: 

(14-4) Cn(zn, xj = kn{xn) + Zn^h’ 

o, 
for zn > 0 
for z„ ^ 0 + Cs X (d« “ zn ~ Xn) PnW 

dn>zn + xn 

where d — zn — xn is the amount of lost sales with probability p„ (dj. Note that for 
simplicity holding costs are assessed on the beginning inventory. This has no effect 
on the optimal policy, but reduces the computational effort somewhat. Inventories 

in two consecutive periods are related by 

z n — 1 

zn + x„ - dn, for d„ < (zn + x„) 
0, otherwise 

The expected total cost is given by the present value of the C„{z„, xn) terms 
summed over all N periods. For the dynamic programming formulation, let the 
periods denote the stages. The state of the process is given by the beginning inventory 
level z„. Then by the principle of optimality, the present value of the minimum 
expected total cost fn{zn) of starting with an inventory level of size z„and n periods left 
to go the end of the planning horizon is given by the following recursive relations: 

(14-5) fn(zn) = minimum 
x„eXn 

dJPnW ,, all z,„ n 2= 1 

where f0(z0) = C0(z0), for all z0, is given. For instance, C0(z0) could reflect the cost 
of ending up with an inventory of z0 at the end of the planning horizon. This cost 
might include a penalty for deviating from a given target ending inventory of z. 

Suppose that the planning horizon becomes unbounded. Then by the assumption 

of stationarity, 

Cn{zn, x„) = C{z, x) 

PSd„) = P(d) 
Xn = X, for all n 

(14-6) 
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After each period the decision maker again faces an unbounded planning ho¬ 
rizon. The number of stages left to go therefore remains infinitely large, and the 
subscript n on f and z may be dropped also. Substituting the terms (14-6) into (14-5) 
the recursive relation for the minimum discounted expected cost over all future periods 
becomes K 

(14-7) f(z) = minimum 
xeX 

C(z, x) + f(z + x - d) p(d) , 
d J 

for all z 

Expression (14-7) is the present value of the minimum cost over all future periods 
starting in state z. It is equal to the minimum, over all possible decisions, of two cost 
terms. The first term is the cost in the current period. The second is the present value 
one period from now, of the expected present value of the minimum1 cost over all 
tuture periods, discounted for one period. 

Note that the same value of the state variable z may appear in f on both sides 
of the equal sign. A relation of the form (14-7) is called a functional or extremal 
equation. The set of functional equations (14-7) states what optimization condition 
/ has to satisfy for all values of the state variable z. 

■ -^.immediately clear that the conventional approach of dynamic program¬ 
ming tor finding the optimal policy—namely, to evaluate the recursive relation stage 
by stage starting with the last stage in the planning horizon-cannot be used any 
longer. There is no last period in the planning horizon. The two best-known com¬ 
putational procedures for finding the optimal strategy go under the names approxi¬ 
mation in function space and approximation in policy space. We shall study only the 
latter. But before doing this, let us first look at the probabilistic structure of expression 

14-5 MARKOVIAN DECISION PROCESSES 

Suppose the demand distribution for a given product to be controlled by the 
inventory model in the preceding section is as follows: 

Weekly demand, d 0 1 2 3 4 or more 

Probability, p(d) 0.4 0.3 0.2 0.1 0 

Recall that any demand not met in a period is lost. Let us arbitrarily decide that 
the maximum inventory level cannot exceed 5. Therefore, the state variable in 
(14-/) that stands for the beginning inventory (carried forward from the preceding 
week) can assume value 0, 1, 2, 3, 4, or 5. A stationary inventory policy or strategy 
consists of a replenishment decision—a value of x— for each value of the state variable 
Given that the maximum inventory cannot exceed 5, we have the choice of decisions 
in each state, as shown. 
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State z Choices for x 

0 0,1,2,3,4,5 

1 0,1,2,3,4 

2 0,1,2,3 

3 0,1,2 

4 0,1 
5 0 

For instance, (4, 3, 0, 0, 0, 0) would be a possible policy. It says that whenever 
the state of the system (beginning inventory) is 0 or 1, the state is instantaneously 
increased to 4, whereas no change (no replenishment) is made if the state of the system 

is 2 or more. (In Section 12-12, this was called an (s, S) policy.) 
During the week, a random demand d occurs with probability p(d). It affects the 

inventory level carried forward to the next period. In the terminology for Markov 
chains we say that, given the decision x, the state of the system undergoes a transition 
from state i to state j = i + x~ d with probability Pij(x) = p(d)- The transition 
probabilities, pJx), are seen to be a function of both the probability distribution o 

the demand and the particular decision chosen in state i. For any given strategy (i.e., 
a decision for each state), the probabilistic behavior of the system is that of a Markov 

With each state i and each decision x, we also associate a one-period cost c,(x). 
Table 14-4 lists the transition probabilities and the associated cost for each state and 
each decision. The former are based on p{d), and the latter are based on the assumption 
that (a) the unit holding cost per period is c* = $1; (b) the production cost is 
k (x) = $3 for x > 0 and 0 otherwise; and (c) the unit shortage cost is cs - $20. for 
instance, the first row in Table 14-4 refers to a beginning inventory of i = 0 and a 
production of x = 0. In this case, no goods are available to meet the demand, and 
the entire demand is lost. The inventory level at the beginning of the next period is 
j = 0, with probability poa (0) = 1 and all other transition probabilities equal to 0. 
No costs are incurred for carrying goods in inventory [column (a) is 0] and for re¬ 
plenishing inventory [column (b) is 0], Shortage costs are found as the expected value 

of the amount short times the shortage cost per unit: 

E (shortage cost) = $20 ^ {d- i- x)p{d) 
■ d>i 4- x 

= $20 [(1 -0)0.3 + (2 -0)0.2 + (3 -0)0.1] =$20 

The total cost co(0) = 0 + 0 + 20 = $20. Consider another row, e.g., row 8, with 
a beginning inventory of i = 1 and a production of x = 1. If demand is d - 0, then 
the new inventory is; = i + x - 0, or / = 2. This demand occurs with probabihty 
0 4 so pn( 1) = 0.4. If demand is d= 1, then; = i + x - 1 or; - 1 with probability 
o’. 3*, so pu{ 1) = 0.3. If demand is d= 2 or d = 3, then the new inventory is /= 0. 
These demands occur with probabilities 0.2 and 0.1, so £i0(l) = 0.2 4- 0.1 — 0.3. 
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Table 14-4. Transition probabilities and costs for inventory control problem 

405 

Transition Probabilities, pt(x) Costs 

Row i X /=o 7=1 ; = 2 7=3 7 = 4 7 = 5 (a) (b) (c) 
- Total 

c.W 
i 0 0 1 0 0 0 0 0 0 0 20 20 2 1 0.6 0.4 0 0 0 0 0 3 8 11 
3 2 0.3 0.3 0.4 0 0 0 0 3 2 5 
4 3 0.1 0.2 0.3 0.4 0 0 0 3 0 3 
5 4 0 0.1 0.2 0.3 0.4 0 0 3 0 3 
6 5 0 0 0.1 0.2 0.3 0.4 0 3 0 3 

7 1 0 0.6 0.4 0 0 0 0 1 0 1 8 9 
8 1 0.3 0.3 0.4 0 0 0 1 3 2 6 
9 2 0.1 0.2 0.3 0.4 0 0 1 3 0 4 

10 3 0 0.1 0.2 0.3 0.4 0 1 3 0 4 
11 4 0 0 0.1 Cj.2 0.3 0.4 1 3 ' 0 4 

12 2 0 0.3 0.3 0.4 0 0 0 2 0 2 4 
13 1 0.1 0.2 0.3 0.4 0 0 2 3 0 5 
14 2 0 0.1 0.2 0.3 0.4 0 2 3 0 5 
15 3 0 0 0.1 0.2 0.3 0.4 2 3 i 0 5 

16 3 0 0.1 0.2 0.3 0.4 0 0 3 0 0 3 
17 1 p 0.1 0.2 0.3 0.4 0 3 3 0 6 
18 2 0 0 0.1 0.2 0.3 0.4 3 3 ‘ 0 6 

19 4 0 0 0.1 0.2 0.3 0.4 0 4 0 0 4 
20 1 0 0 0.1 0.2 0.3 0.4 4 3 0 7 
21 5 0 0 0 0.1 0.2 0.3 0.4 5 0 0 5 

All other transition probabilities are again 0. One unit is carried forward to the 
current period at a cost of $1— column (a). Inventory is replenished at a cost of $3— 
column (b). finally, shortage costs are incurred when demand exceeds i 4- x = 2. w ~ mivu uviuanu WALU.U3 t \ A, — L. 

' - - 2) (0.1) = $2. The total cost c,(l) amounts to 
b(l + 3 + 2) = $6. To test your understanding, verify some of the other rows! 

For the policy (4, 3, 0, 0, 0, 0), the corresponding transition matrix P and the 
vector of one-period costs (cf) is constructed from Table 14-4 by taking, for each i, the 
row of transition probabilities associated with the decision x taken in state i. So 
take rows 5, 10, 12, 16, 19, and 21. 

we 

P = 

0 0.1 0.2 0.3 0.4 0 
0 0.1 0.2 0.3 0.4 0 

0.3 0.3 0.4 0 0 0 
0.1 0.2 0.3 0.4 0 0 

0 0.1 0.2 0.3 0.4 0 
0 0 0.1 0.2 0.3 0.4 

c0(4) 3 
c,(3) 4 

and c2( 0) 
c,(0) 

= 
4 
3 

c4(0) 4 
- Lc5(0)J 5 

(14-8) 
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State 5 is a transient state, whereas the remaining states form an ergodic subset. 

Since each policy generates a transition matrix and a vector of costs, selecting the 

optimal policy is equivalent to finding the optimal combination of transition probability 

rows and their related costs. This can be seen by rewriting expression (14-7) in terms 

of our new notation as 

(14-9) ft = minimum 
xeX 

where f, stands for the present value of the cost of following an optimal policy over 

all future periods, starting the process in state i. Such a problem is known as a 

Markovian decision process. 
In this example, x is a numerical variable. There are many applications in which 

the set of actions cannot be expressed numerically. For instance, in a maintenance 

problem, the decisions may be “do nothing,” “inspect and replace only if needed, 

grid “replace without inspection/ If each possible action is numbered from 1 to Mt, 
where M, is the number of possible actions in state i, then x stands for this number. 

However,' the numerical value x has no significance in itself. 

c, M + for all 

14-6 APPROXIMATION IN POLICY SPACE WITH DISCOUNTING 

How can the optimal values of x and the minimum ft be determined for all i? The 

boot strap operation which follows does the trick. 

Guess an initial policy 1 

state i a decision x = x'"-, 

1: INITIAL POLICY 

by the superscript k = 0 by choosing for 

For instance, we could decide to use in each state that decision x which minimizes 

the one-period cost c,(x). 
Having decided on the policy k, we associate with each decision x, the transition 

probabilities p./x,1*’) and the one-period cost c,(xf). With these we can find the 

discounted cost using policy k over all future periods, starting in state i, 

is our next step. (For the first time through, k = 0.) 

for all i. This 
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Equations (14-10) arise from the following reasoning: If the process starts out 
in state ; usmg pohcy k, it first incurs the cost associated with this policy in state i 
[ cixi )J and then moves to state y by the beginning of the next period. One period 
trom now, the present value of the cost from state y over all future periods is fih. This 
cost is weighted by the probability of going from state i to state y using policy k The 
sum ot all these terms is then discounted by one period. 

The term f should not be confused with /) of expression (14-9). Except at the 
ast iteration when we have found the optimal policy, f;b is not the minimum cost 
but simply the present value of the cost associated with the (arbitrary) policy k. 

Step 2 implies that we commit ourselves to using policy k for all future periods 
and want to know the cost of starting it in each state. We now have some second 
aoug its We decide to postpone the use of this policy by one period and at the same 

time try to find a better policy for the current period. 

STEP 3: POLICY IMPROVEMENT ROUTINE 

Determine a new policy k + 1 by finding for each i the decision x/that will 

(14-11) minimize 4x) + a Ip^ f*-\ 

Expression (14-11) arises from a reasoning similar to that behind (14-10), 
If the minimum is obtained for several decisions, the choice forx'*+l1 is arbitrary 

except if x' ' is one of them, in which casex;*+" = x)*'1. This avoids cycling of the 
iterative scheme. 

Now we examine the new policy k + 1. If x,u'+" = x)*' for all states, then we 
have a policy that satisfies expression (14-9) with ft = £*’ = which is what we 
were looking for. On the other hand, if policy k + 1 differs from policy k in at least 
one state, we reason that if policy k + 1 is better for the first period, surely it is also 
better for all subsequent periods! Fortunately, it can be shown that this is so Since 
the trick worked this time, we go back to step'2 for a new iteration of this algorithm. 

STEP 4: STOPPING RULE 

If.*, 1 = x*, for all i. the optimal policy has been found, and the fL'1 are 
the minimum expected discounted costs of starting in state i. If the new policy 
k + 1 differs from the previous one in at least one state, increase the count k 
by one and go back to step 2, 
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The better the initial choice in step 1, the faster the algorithm finds the optimal 

solution. Often, technical knowledge about the system modeled may indicate what 

is a good initial policy. , L « ■ • „ 
For a maximization problem the only change needed is to substitute maximize 

for “minimize” in expression (14-11). 

If the number of possible decisions in each state i is finite, then the number ot 

possible combinations of decisions or the number of possible different policies is also 

finite In step 2, expression (14-10) results in a unique solution for the f) values for 

each policy. By step 3, each new policy is at least as good as the preceding one; and 

by step 4, no policy can repeat itself without terminating the algorithm. Therefore, 

this method will converge to the optimal solution in a finite number of iterations. 

This advantage has to be paid for, however, by a large amount of computation. 

If there are r different states, then step 2 involves solving a system of r linear equations 

in r unknowns. For practically all real-life problems, this job has to be done by 

computers. However, in contrast to n-stage dynamic programming problems, this 

algorithm can be programmed for computers as a general-purpose code for a standard 

input format that can solve all Markovian decision processes. 

14-7 SOLUTION OF INVENTORY CONTROL PROBLEM FOR 
DISCOUNTING 

To apply this algorithm, it is always helpful to first set up a table listing the transition 

probabilities and the expected costs for each action in each state, as we did in Table 

14-4. Let us use a discount factor of a = 0.99 per week (this corresponds to an annual 

interest rate of about 60 percent). 

First iteration: 

Step 1 Initial policy = (x(00) = 4, x(,0) = 3, xf = 0, xf = 0, xl40> - 0, xf - 0) 

with transition probabilities and costs as shown in the transition matrix and 

the cost vector (14-8). 

Step 2 Solve the following set of linear equations: 

ff = 3 + 0.99(0.1 ff + 0.2 ff + 0.3 ff + 0.4/f) 

ff = 4 + 0.99(0. ir + 0.2 ff + 0.3/f + 0.4/f) 

ff = 4 + 0.99(0.3/f + 0.3 ff + 0.4/f) 

ff = 3 + 0.99(0. Iff + 0.2 ff + 0.3/f + 0.4/f) 

ff = 4 + 0.99(0. Iff + 0.2 ff + 0.3/f + 0.4/f) 

ff = 5 + 0.99(0. Iff + 0.2 ff + 0.3/f + 0.4ff) 

The solution is 

ff = 364.6, ff = 365.6, ff = 365.7, ff = 364.3, /f = 365.6, ff = 367.4 

Step 3 Find a new action for each state using expression (14-11). This is shown 

in Table 14-5. 
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Table 14-5. Policy improvement routine for iteration 1 

State Action 
i x c/x) + a 2 p,£x)f Minimum 

for x 

0 20 + 0.99 [(1)364.6] 
1 11 + 0.99 [(0.6)364.6 
2 5 + 0.99 [(0.3)364.6 
3 3 + 0.99 [(0.1)364.6 
4 3 + 0.99 [(0.1)365.6 
5 3 + 0.99 [(0.1)365.7 

0 9 + 0.99 [(0.6)364.6 
1 6 + 0.99 [(0.3)364.6 
2 4 + 0.99 [(0.1)364.6 
3 4 + 0.99 [(0.1)365.6 
4 4 + 0.99 [(0.1)365.7 

0 4 + 0.99 [(0.3)364.6 
1 5 + 0.99 [(0.1)364.6 
2 5 + 0.99 [(0.1)365.6 
3 5 + 0.99 [(0.1)365.7 

0 3 + 0.99 [(0.1)364.6 
1 6 + 0.99 [(0.1)365.6 
2 6 + 0.99 [(0.1)365.7 

0 4 + 0.99 [(0.1)365.6 
1 7 + 0.99[(0.1)365.7 

0 5 + 0.99 [(0.1)365.7 

+ (0.4)365.6] 
+ (0.3)365.6 + 
+ (0.2)365.6 + 
+ (0.2)365.7 + 
+ (0.2)364.3 + 

+ (0.4)365.6] 
+ (0.3)365.6 + 
+ (0.2)365.6 + 
+ (0.2)365.7 + 
+ (0.2)364.3 + 

+ (0.3)365.6 + 
+ (0.2)365.6 + 
+ (0.2)365.7 + 
+ (0.2)364.3 + 

+ (0.2)365.6 + 
+ (0.2)365.7 + 
+ (0.2)364.3 + 

+ (0.2)365.7 + 
+ (0.2)364.3 + 

+ (0.2)364.3 + 

(0.4)365.7] 
(0.3)365.7 + 
(0.3)364.3 + 
(0.3)365.6 + 

(0.4)365.7] 
(0.3)365.7 + 
(0.3)364.3 + 
(0.3)365.6 + 

(0.4)365.7] 
(0.3)365.7 + 
(0.3)364.3 + 
(0.3)365.6 + 

(0.3)365.7 + 
(0.3)364.3 + 
(0.3)365.6 + 

(0.3)364.3 + 
(0.3)365.6 + 

(0.3)365.6 + 

(0.4)364.3] 
(0.4)365.6] 
(0.4)367.4] 

(0.4)364.3] 
(0.4)365.6] 
(0.4)367.4] 

(0.4)364.3] 
(0.4)365.6] 
(0.4)367.4] 

(0.4)364.3] 
(0.4)365.6] 
(0.4)367.4] 

(0.4)365.6] 
(0.4)367.4] 

(0.4)367.4] 

= 380.9 
= 372.3 
= 366.6 
= 364.3 
= 364.6 
= 365.4; 

tl V
>J

 

- 370.3 
= 367.6 
= 365.3 
= 365.6 
= 366.4 

r-l 

II 

= 365.7 
= 366.3 ’ 
= 366.6 
= 367.4 ; 

o
 

II 

= 364.3 
= 367.6 
= 368.4 

o
 II 

= 365.6 1 
= 369.4 ! 

o
 II 

= 367.4 

o
 II 

Step 4 From the last column of Table 14-5, we find the new policy 

(x<» = 3, x™ = 2, x™ = 0, x™ = 0, x™ = 0, x™ = 0) 

Going back to Table 14-4, we find the new transition probabilities and costs 
associated with this policy; 

(14-12) 

0.1 0.2 0.3 0.4 0 0 " 3' 
0.1 0.2 0.3 0.4 0 0 4 
0.3 0.3 0.4 0 0 0 4 
0.1 0.2 0.3 0.4 0 0 and 

3 
0 0.1 0.2 0.3 0.4 0 4 

.0 0 0.1 0.2 0.3 0.4 5 

This policy is different from the previous one, so we go through another iteration. 
Note that now both states 4 and 5 are transient states. 

Second iteration: 

Step 2 Solve the following set of linear equations: 

/o(1) = 3 + 0.99(0. 1/™ + 0.2 /™ + 0.3 /™ + 0.4/™) 

/(1) = 4 4- 0.99(0. l/r0(!) + 0.2/™ 4- 0.3/™ + 0.4/™) 

/(1) = 4 4- 0.99(0.3/™ + 0.3/™ + 0.4/™) 

/™ = 3 4- 0.99(0.1/™ + 0.2/™ 4- 0.3/™ + 0.4/™) 

/™ = 4 4- 0.99(0.1/™ + 0.2/™ 4- 0.3/™ + 0.4/™) 

/™ = 5 4- 0.99(0.l/2™ + 0.2/™ + 0.3/™ + 0.4/™) 
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The solution is 

f<» = 356.0, = 357.0, f® = 357.2, f® = 356.0, f® = 357.3, f® = 359.2 

Step 3 Find a new action for each state using expression (14-11), as shown in 

Table 14-6. 

Table 14-6. Policy improvement routine for iteration 

State Action 
i x 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0 

c,(x) + a 2 

20 + 0.99 
11 + 0.99 

5 + 0.99 
3 + 0.99 
3 + 0.99 

+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 

4 + 0.99 
5 + 0.99 

+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 
+ 0.99 

5 + 0.99 

1(1)356.0] 
[(0.6)356.0 
[(0.3)356.0 
[(0.1)356.0 

1.1) 357.0 
1.1) 357.2 
1.6)356.0 
1.3) 356.0 
1.1) 356.0 
1.1) 357.0 
1.1) 357.2 
3.3) 356.0 
1.1) 356.0 
3.1) 357.0 
3.1) 357.2 
3.1) 356.0 
3.1) 357.0 
0.1)357.2 
0.1)357.0 
0.1)357.2 
0.1)357.2 

+ (0.4)357.0] 
4- (0.3)357.0 
+ (0.2)357.0 
+ (0.2)357.2 
+ (0.2)356.0 
+ (0.4)357.0] 
4- (0.3)357.0 
4- (0.2)357.0 
+ (0.2)357.2 
4- (0.2)356.0 
+ (0.3)357.0 
4- (0.2)357.0 
+ (0.2)357.2 
+ (0.2)356.0 
+ (0.2)357.0 
+ (0.2)357.2 
4- (0.2)356.0 
+ (0.2)357.2 
+ (0.2)356.0 
+ (0.2)356.0 

4- (0.4)357.2] 
4- (0.3)357.2 4- (0.4)356.0] 
+ (0.3)356.0 4- (0.4)357.3] 
+ (0.3)357.3 + (0.4)359.2] 

+ (0.4)357.2] 
4- (0.3)357.2 4- 

+ (0.3)356.0 + 
4- (0.3)357.3 + 
+ (0.4)357.2] 
+ (0.3)357.2 4- 

+ (0.3)356.0 4- 

+ (0.3)357.3 + 
4- (0.3)357.2 + 
4- (0.3)356.0 4- 

+ (0.3)357.3 4- 

+ (0.3)356.0 + 
4- (0.3)357.3 + 
4- (0.3)357.3 4- 

(0.4)356.0] 
(0.4)357.3] 
(0.4)359.2] 

(0.4)356.0] 
(0.4)357.3] 
(0.4)359.2] 
(0.4)356.0] 
(0.4)357.3] 
(0.4)359.2] 
(0.4)357.3] 
(0.4)359.2] 
(0.4)359.2] 

Minimum 
for x 

372.5 
363.8 
358.2 
356.0 
356.3 
357.2 

x = 3 

361.8 
359.2 
357.0 
357.3 
358.2 

x = 2 

357.2 
358.0 
358.3 
359.2 

x = 0 

356.0 
357.3 
360.2 

x = 0 

357.3 
361.2 

x = 0 

359.2 x = 0 

Step 4 The new policy implied by Table 14-6 is 

(x® = 3( xp> = 2, x® = 0, x® = 0, x® = 0, x® = 0) 

It is the same as the policy at the end of the preceding iteration and therefore 

is the optimal policy. The minimum discounted costs are those found in 

step 3 of this iteration, i.e., f0 = 356.0, = 357.0, fa = 357.2, fa = 356.0, 

fa= 357.3, and fa= 359.2. 

The algorithm converges on the optimal solution in two iterations. The policy 

found says: Replenish inventory to a level of 3 whenever it has been reduced to 1 or 

less, and do nothing otherwise—an (s, S) policy as the initial policy. It can be shown 

that for inventory control problems with fixed inventory replenishment costs, linear 

holding costs, and constant per unit shortage cost—as is the case here—the optimal 

policy always has the form of an (s, S) policy. 
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How does the optimal policy change as a function of the discount rate a? Sen¬ 
sitivity analysis, with respect to the discount rate, often provides useful insight to the 
decision maker. In this particular case, the present policy remains optimal for all a 
0 «£ a *£ 1. ’ 

14-8 AVERAGE GAIN PER PERIOD 

For routine day-to-day or month-to-month decisions, the appropriate discount factor 
per period may be close to 1. Then, the discounted gain over all future periods tends 
to become extremely large. Furthermore, the discounting procedure implies a long¬ 
term behavioral pattern, whereas the stationary assumptions may have been introduced 
as a convenient approximation of the short-term or intermediate-term behavior of the 
system. Thus, we may not be interested in the discounted gain over all future periods, 
but only in the average gain per (short) period or the total gain for a limited interval 
of perhaps one year, where the effect of discounting may be negligible. Maximizing 
average gain (or minimizing average cost) then becomes the more appropriate criterion 
to use. 

As we have seen in Section 13-10, with each Markov chain containing only one 
ergodic subset of states, we can associate the unique long-run average benefit (or cost) 
per period given by expression (13-19), i.e., 

s = E <yir, 
i 

Here, c; is the one-period benefit (or cost) of starting the process in state i, and the 
ir, are the steady-state probabilities associated with the transition matrix P. In this 
chapter, we study systems that can be governed by any one of a number of alternative 
policies, each defining its own Markov chain and resulting in a unique long-run 
average benefit (or cost) per period. 

Suppose we operate the inventory system discussed in Section 14-5 under a given 
(arbitrary) policy for n periods. Let v,(n) be the undiscounted expected cost of this 
policy over n periods, given that the process starts out in state i (i.e., with an initial 
inventory of i). These costs satisfy the following recursive relation: 

(14-13) vf(n) = c,{x) + ~ *)> for all i, n = 1, 2, . . . 
; | 

The reasoning used to obtain expression (14-13) is analogous to that used for 
expression (14-10). If the process starts out in state i, it first incurs the cost c,(x) 
associated with using a given policy, and then moves to state / with probability pr( x). 
ITie cost over the remaining n - 1 periods onward from state j is v (n - 1). Againj 
we take the expected value over all possible states j. ’ 

As we have seen, in the steady state, the long-run average cost per period is g and 
is independent of the initial state i. Thus, in the steady state, the average long-run 
cost over n periods is ng. On the other hand, for n finite, the cost over n periods, 
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v.(n), depends on the initial state i. Let n now be sufficiently large, and consider the 

difference between these two terms, denoted by Vf. 

(14-14) v; = v,(n) — ng 

For n sufficiently large, v, represents the transient effect of the initial state on the 
cost of the process. The difference of the transient effects for two different initial states, 
v. - v., can be given the following economic interpretation. By (14-14), v,(n) = 

ng + Vjj and we have for n sufficiently large 

(14-15) v,(n) - v/n) = [ng + v,] - [ng + v,] = v, - v, 

v. — v- represents the difference in the total cost of starting the process in state 
i rather than state j. This is the amount that a rational person should be willing to 
pay (if v, < vf) or receive (if v, > vf) for being able to start the process in state i rather 

than in state j. . 
The Vj values turn out to be useful quantities in our search for the optimal policy. 

But first, let us see how we can determine their values. Substituting ng + v, for v,(n) 

in (14-13), we obtain 

ng + v; =c,(x) + XTv(x)[(” - 1 )§ + vj\ 
1 

^14'16^ =Cj(x) + (n - 1 )g'2JPifx) + 
i j 

But ^ ptj{x) = 1, and so (14-16) becomes 

ng + v,. = c,-(x) +{n — \)g + 
i 

Canceling equal terms on both sides, we finally derive 

(14-17) g + v,. = c,.( x) + X Pi! x)vn for a11 * 
i 

The term n conveniently drops from (14-16). For n sufficiently large, the v; are 
independent of n. Thus, g and the v, are the solution to a system of r linear equations 
in r + 1 variables, where r is the number of states. These equations will not have a 
unique solution. We need to set the value of one variable in order to solve for the 
other r variables uniquely. It is easily shown that if (vj, v2, . . ., vT, g) is a solution 
to (14-17), so is [(v, + b), (v2 + b), . . ., (vr + b), g) for any scalar b. Clearly, the 
differences v, - vj will then remain undisturbed for any b. So we might set b equal 
to any one of the v,. values, say v0, and solve for the remaining v, in terms of v0; i.e., 
the solution values are v, = Vj — v0, for all i. Therefore, we shall refer to them as 
relative values. Note that this approach implies that we simply set v0 = 0 to get a 
solution to the relative values. We shall now drop the separate notation, and simply 

use v,. for the relative values. 
Let us find the long-run average cost and the relative values for the policy (4, 

3, 0, 0, 0, 0) used earlier with the transition matrix P and the one-period costs cfx) 
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given by expression (14-8). By expression (14-17), they are the solution to the following 
system of six equations in seven unknowns: 

g + vo = ? + Ov0 + 0.1 v, + 0.2v2 + 0.3v, + 0.4v4 + 0v5 

g + v, = 4 + 0vo 4- 0.1 v, + 0.2v2 + 0.3v, + 0.4v4 + 0v5 

(14-18) 8 + v2 = 4 + 0.3vo + 0.3v, + 0.4v2 + 0v, + 0v4 + 0vs 

g + v3 = 3 + 0. lv0 + 0.2vj + 0.3v2 + 0.4v, + 0v4 + 0v5 

8 + v4 = 4 4- Ov0 + O.lv, + 0.2v2 + 0.3v, + 0.4v4 + 0v5 

g + v5 = 5 + Ov0 + 0v, + 0.1 v2 + 0.2v, + 0.3v4 + 0.4v5 

Setting v0 = 0, we obtain 

8 = vo = 0-0, v, = 1.0, v2 = 1.08, v, = -0.213, v4 = 1.0, v; = 2.856 

14-9 APPROXIMATION IN POLICY SPACE FOR AVERAGE COST 
PER PERIOD 

To determine the optimal policy that minimizes the average cost per period, we shall 

again use a bootstrap operation analogous to the one developed for discounting. 

STEP 1: INITIAL POLICY 

Guess an initial policy (labeled by the superscript k = 0) by choosing for each 
state i a decision x = 

STEP 2: POLICY EVALUATION ROUTINE 

Determine for policy k the expected cost g and the relative values v(, for all 

that are the solution to the system of linear equations 

(.14-19) gk + v/' = C,{.v,*j 4- for all t 

by setting one of the relative values, v„ equal to zero. 

At this time we again decide to determine a new policy, k + 1, for the first 
period, followed by policy k in all periods thereafter. To derive the appropriate expres¬ 
sions for this optimization, we will again revert to an n-period case first. If we were 
to determine the optimal policy in the first period, given that we would use policy k 
in the remaining n — 1 periods, we would find for each state i the action x, that would 

(14-20) minimize C,W + X Pti(x)vi(n -1) 
i 
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where v(n - 1) is the cost for policy k over the remaining n - 1 periods. For 

n sufficiently large, we may now again approximate (14-20) by substituting 

(n - Eg1'1'1 + vf' for v/n - 1): 

(14-21) minimize c,(x) + ^py(x)[(n - l)g|i-1 + v*] 

i 

But, 2 p,(x){n - l)gk] is a constant and does not affect the minimization. We are 

left with c,{x) + 2yp,;(x)vf. As for the policy evaluation routine, the resulting expres¬ 

sion is independent of n. We now see that the relative values v, hold the key to the 

oolicy improvement routine. 

STEP 3: POLICY IMPROVEMENT ROUTINE 

Determine a new policy k -b 1 by finding for each i the decision a*. — a* that 

(14-22) minimize e,i x) 4- pj xiv,* 

If x,h is one of several for which the minimum in (14-22) is obtained, 

xa + n _ x<i.i js retained as the best decision in state i to avoid cycling. 

STEP 4: STOPPING RULE 

If x'V = x\ki, for all r, the optimal policy has been found, and gi is the 

minimum average cost per period. If the new policy k 4-1 differs from the 

previous one in at least one state, increase the count k by one and go back to 

Each new policy produced by the policy improvement routine has an average 

cost per period that is at most as high as for the previous policy. As for a < 1, this 

algorithm converges to the optimal policy in a finite number of iterations. 

For a maximization problem, we substitute maximize for minimize in (14-22). 

14-10 SOLUTION FOR AVERAGE GAIN PER PERIOD 

Table 14-4 contains all information needed for the algorithm in Section 14-9. 

First iteration: 

Step I Initial policy = (x(00) = 4, x[D) = 3, x(20) = 0, x*30) = 0, x™ = 0, x(50) = 0), 

with transition probabilities and costs as shown by expressions (14-8). 



__ Section 14-10 Solution for Averaage Gain per Period 415 

Step 2 Solve the set of linear equations (14-18) whose solution is s(0) = 3 652 

Vo1 = 0,v'0) = 1.0,v<0) = 1.08, v<°> = -0.213, v<°> = 1.0, v<50) = 2^856^ 

Step 3 Find a new action for each state using (14-22). The computations are shown 
in Table 14-7. 

Table 14-7. Policy improvement routine for iteration 1 

State 

i 
Action 

X C,M + 
i 

1 

Minimum 

for x 

0 0 20 + (1 )0 20 
1 11 + (0.6)0 + (0.4) 1 __ 11.4 
2 5 + (0.3)0 + (0.3) 1 + (0.4) 1.08 = 5.732 
3 3 + (0.1)0 + (0.2) 1 + (0.3) 1.08 + (0.4X- -0.213) 3.439 x = 3 
4 3 + (0.1)1 + (0.2) 1.08 + (0.3)( -0.213) + (0.4) 1 = 3.652 
5 3 + (0.1)1.08 + (0.2)(- -0.213) + (0.3) 1 + (0.4) 2.856 — 4.508 

1 0 9 + (0.6)0 + (0.4) 1 __ 9.4 
1 6 + (0.3)0 + (0.3) 1 + (0.4) 1.08 = 6.732 
2 4 + (0.1)0 + (0.2) 1 + (0.3) 1.08 + (0.4)(- -0.213) = 4.439 x — 2 
3 4 + (0.1)1 + (0.2) 1.08 + (0.3)( - -0.213) + (0.4) 1 = 4.652! 
4 4 + (0.1)1.08 + (0.2X- -0.213) + (0.3) 1 + (0.4) 2.856 = 5.508 

2 0 4 + (0.3)0 + (0.3) 1 + (0.4) 1.08 = 4.732 x = 0 
1 5 + (0.1)0 + (0.2) 1 + (0.3) 1.08 + (0.4)(- -0.213) — 5.43^ 
2 5 + (0.1)1 + (0.2) 1.08 + (0.3)(- -0.213) + (0.4) 1 =2 5.652 
3 5 + (0.1)1.08 + (0.2)(- -0.213) + (0.3) 1 + (0.4) 2.856 = 6.508’ 

3 0 3 + (0.1)0 + (0.2) 1 + (0.3) 1.08 + (0.4)(- -0.213) = 3.439 x = 0 
1 6 + (0.1)1 + (0.2) 1.08 + (0.3)(- -0.213) + (0.4) 1 6.652 
2 6 + (0.1)1.08 + (0.2)(- -0.213) + (0.3) 1 + (0.4) 2.856 = 7.508 

4 0 4 + (0.1)1 + (0.2) 1.08 + (0.3)(- -0.213) + (0.4) 1 = 4.652’ x = 0 
1 7 + (0.1)1.08 + (0.2)( — •0.213) + (0.3) 1 + (0.4) 2.856 = 8.508 

5 0 5 + (0.1)1.08 + (0.2)( — ■0.213) + (0.3) 1 + (0.4) 2.856 = 6.508 
i X = 0 

Step 4 The new policy from Table 14-7 is(x(,]) = 3, x\l) = 2, x(20 = 0, x)1' = 0, 

*4° = 0, x)11 = 0). This policy is different from the initial policy, and 

hence we go through another iteration. The transition matrix and costs for 

the new policy are given by expressions (14-12) in Section 14-7. 

Second iteration: 

Step 2 Solve the set of simultaneous equations obtained from (14-19). (For con¬ 
venience, superscripts are deleted.) 

§ + v0 = 3 + 0.1 v0 + 0.2v, + 0.3v2 + 0.4v, 

g + Vj = 4 + 0. lv0 + 0.2vj + 0.3v2 + 0.4v, 

g + v2 = 4 + 0.3vo + 0.3 v, + 0.4v2 

g + v3 = 3 + 0. lv0 + 0.2v, + 0.3v2 + 0.4v, 

g + v4 = 4 + 0.1 v, + 0.2v2 + 0.3v, + 0.4v4 

g + v5 = 5 + 0. lv2 + 0.2v, + 0.3v4 + 0.4v5 
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Setting v0 = 0, the solution is 

s(1) = = 3.567, v'1' = 0, v™ : = i, v(2» = 1.222, v«'> = 0, v. (1) 
4 

= 1.296, v! :d = -- 3.241 

Step 3 Find a new action for each state using (14- 22), as ; shown in Table 14-8. 

Table 14-8. Policy improvement routine for iteration 2 

State 
i 

Action 
X 

c,(x) + a 2 Hx)fi]) 
) 

Minimum 
for x 

0 20 + (1 )0 = 20 

1 11 + (0.6)0 + (0.4)1 = 11.4 

2 5 + (0.3)0 + (0.3)1 + (0.4)1.222 = 5.789 
3 

3 3 + (0.1)0 + (0.2)1 + (0.3)1.222 + (0.4)0 
296 

= 3.567 X = 

4 3 + (0.1)1 + (0.2)1.222 + (0.3)0 + (0.4)1. = 3.863 

5 3 + (0.1)1.222 + (0.2)0 + (0.3)1.296 + (0.4)3. 241 = 4.807 

i 0 9 + (0.6)0 + (0.4)1 = 9.4 

1 6 + (0.3)0 + (0.3)1 + (0.4)1.222 — 6.789 

2 4 + (0.1)0 + (0.2)1 + (0.3)1.222 + (0.4)0 = 4.567 X = 2 

3 4 + (0.1)1 + (0.2)1.222 + (0.3)0 + (0.4)1. 296 = 4.863 

4 4 + (0.1)1.222 + (0.2)0 + (0.3)1.296 + (0.4)3. 241 = 5.807 

0 
2 0 4 + (0.3)0 + (0.3)1 + (0.4)1.222 = 4.789 X = 

1 5 + (0.1)0 + (0.2)1 + (0.3)1.222 + (0.4)0 — 5.567 

2 5 + (0.1)1 + (0.2)1.222 + (0.3)0 + (0.4)1. 296 — 5.863 

3 5 + (0.1)1.222 + (0.2)0 + (0.3)1.296 + (0.4)3. ,241 — 6.807 

3 0 3 + (0.1)0 + (0.2)1 + (0.3)1.222 + (0.4)0 — 3.567 X = 0 

1 6 + (0.1)1 + (0.2)1.222 + (0.3)0 + (0.4)1, ,296 — 6.863 

2 6 + (0.1)1.222 + (0.2)0 + (0.3)1.296 + (0.4)3, .241 — 7.807 

4 0 4 + (0.1)1 + (0.2)1.222 + (0.3)0 + (0.4)1 .296 — 4.863 X = 0 

1 7 + (0.1)1.222 + (0.2)0 + (0.3)1.296 + (0.4)3 .241 — 8.807 

5 0 5 + (0.1)1.222 + (0.2)0 + (0.3)1.296 + (0.4)3 .241 — 6.807 X = 0 

Step 4 The new policy from Table 14-8 is the same as after iteration 1, and is thus 

optimal. The minimum average cost per period is g = 3.567. 

The optimal policy turns out to have the same (s, S) form as for a < 1. 

*14-11 LINEAR PROGRAMMING FORMULATION OF 
MARKOVIAN DECISION PROCESSES 

Numerical solutions to Markovian decision processes for the present-value or the 

average-cost per-period formulation can be obtained by linear programming. Consider 
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expression (14-9) again: 

f, minimum 
xex 

i 

The term being the minimum discounted expected cost, it must be hue that 

(14-23) fi^4x) + a^p^x)^, for all x £ X, i = 1,2,. . ., r 

For each i there is at least one x for which strict equality holds in (14-23) Rearranging 
(14-23), we obtain 5 s 

(14-24) ft - fy,(x)£ ^ c,.(x), for all x E X, i = 1, 2, . . r 
j 

In the dynamic programming formulation, the /) are constants. We now allow 

them to become variables. Let y, be the variable denoting the expected discounted 

cost over all future periods, starting in state i. Then (14-24) becomes 

(14-25) y. - a£;>..(x)y,=Sc,.(x), forallxGX, i = 1, 2, . . ., r 

where, for each i, equality holds for at least one value of x. There are 2, M, constraints 

in r variables, where AT is the number of possible actions in state i. Note that in this 

formulation nothing is known about the sign of the y; values. Hence, they are un¬ 
restricted in sign. 

For linear programming, we need an objective function. It can be shown that 

the values of (14-9) are equal to the optimal y, values obtained by using the following 
objective function: 

(14-26) maximize ^ qjyj 

where q: > 0, for all i. For instance, we could set all q, = 1. Alternatively, by selecting 

the values ot c/, such that 2$, = 1, each qt can be interpreted as the probability of 
starting the process in state i. 

To identify the optimal policy, all we have to do is to observe those constraints 

that are satisfied as an equality for each state i. The x associated with this constraint 
is the optimal action for that state i. 

In this formulation, the number of constraints, SjM,., is usually very much larger 

than the number of variables. Since the computational effort required to solve a linear 

program is much more sensitive to the number of constraints than to the number of 

variables, it seems natural to solve the dual of (14-25) and (14-26). The dual has only 

r constraints in 2,M, variables. We leave it to you to formulate the dual. 

Table 14-9 shows the structure of the primal problem in detached coefficient 

form and its optimal solution for a = 0.99. Obviously, the optimal values of the 

variables y,., i = 0, 1, 2, 3, 4, 5, coincide with the optimal ft values obtained in 
Section 14-7. 
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Table 14-9. Primal 

form 

State x y0 

Stochastic Dynamic Programming and Markovian Decision Processes_ 

problem of linear program for Markovian decision process in detached coefficient 

Constraint Optimal 
y y2 y? y4 y. c(x) Status Decision 

■: 20 Slack 

_ 0.4a s 11 Slack 
- 0.3a - 0.4a « 5 Slack 
- 0.2a - 0.3a - 0.4a « 3 Binding x = 3 
- 0.1a - 0.2a - 0.3a - 0.4a « 3 Slack 

- 0.1a - 0.2a - 0.3a - 0.4a 3 Slack_ 

1 - 0.4a « 9 Slack 
1 - 0.3a - 0.4a « 6 Slack 
1 - 0.2a - 0.3a - 0.4a « 4 Binding x = 2 
1 - 0.1a - 0.2a - 0.3a - 0.4a « 4 Slack 

- 0.1a - 0.2a - 0.3a - 0.4a 4 Slack_ 

- 0.3a 1 - 0.4a « 4 Binding x = 0 
- 0.2a 1 - 0.3a - 0.4a « 5 Slack 
- 0.1a 1 - 0.2a - 0.3a - 0.4a « 5 Slack 

1 - 0.1a - 0.2a - 0.3a - 0.4a « 5 Slack _ 

- 0.2a - 0.3a 1 - 0.4a « 3 Binding x = 0 
- 0.1a - 0.2a 1 - 0.3a - 0.4a « 6 Slack 

- 0.1a 1 - 0.2a - 0.3a - 0.4a « 6 Slack_ 

-0.1a -0.2a - 0.3a 1 - 0.4a « 4 Binding x = 0 
- 0.1a - 0.2a 1 - 0.3a - 0.4a « 7 Slack_ 

- 0 la - 0.2a - 0.3a 1 - 0.4a « 5 Binding x = 0 

Maximize 

Optimal 
solution for 

1 . - 0.1a - 0.2a 
- 0.1a 

- 0.3a 
- 0.2a 

- 0.4a 
- 0.3a 

- 0.3a 
- 0.1a 

- 0.3a 
- 0.2a 
- 0.1a 

1 - 0.4a 
1 - 0.3a 
1 - 0.2a 
1 - 0.1a 

- 0.4a 
- 0.3a 
- 0.2a 

- 0.4a 
- 0.3a 

- 0.1a - 0.2a 
- 0.1a 

- 0.3a 
- 0.2a 
- 0.1a 

1 - 0.4a 
1 - 0.3a 
1 - 0.2a 

- 0.4a 
- 0.3a 

- 0.1a - 0.2a 
- 0.1a 

- 0.3a 
- 0.2a 

1 - 0.4a 
1 - 0.3a 

- 0.1a - 0.2a - 0.3a 

1 1 1 1 1 

356.0 357.0 357.2 356.0 357.3 

EXERCISES 

Using the stochastic inventory control model formulated in Section 14-4, find the 

optimal production policy over a 6-month planning horizon for the following data: 

c = Cj = $4, kn{xn) = $4, xn > 0, for all n (i.e., the production cost consists only 

of a set-up cost that is constant), and pn(dn) as shown. Because of storage restrictions, 

no more than 6 units can be kept in inventory from one period to the next. The 

beginning inventory is 2. 

d = 0 0.5 0.2 0.4 0.5 0.2 0.2 
n 

d = 1 0.3 0.3 0.2 0.5 0.3 0.3 
n 

d = 2 0.2 0..4 0.2 0 0.3 0.3 

d = 3 0 0.1 0.2 0 0.2 0.2 
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14.2 A stockbroker speculating on the forward market has signed an agreement to deliver 

a certain stock at a price of $49 per share on Friday. She does not hold any of this 

Monday> b;]t wi]\ have to buy it prior to the due date, the present price is 

7°; 1 he Pri1c7per1shai;e changes randoml>' from day to day. Her subjective estimates 
ot the probability distribution of price changes are as shown. The broker would like 

t0,iLy,tJL , S at tHe l0WCSt p0SS‘ble price- 0nce she has made her purchase, she 
will hold the shares until Friday evening when she makes the delivery. She would like 
to find the optimal purchasing strategy, given that the last price change observed was 
a decrease. Formulate the recursive relations of dynamic programming so as to max- 
imize her expected gain or to minimize her expected loss. Hint: Let the state variable 
be giventya combination of current price and price change on the preceding day- 

day o?+1 49? + den°teS 3 CUrrCnt PdCe °f $49 and 3 Pdce Chan§e the Precedin§ 

Change of price from day n + 1 to n - 1 0 

Probability if price decreased 
from day n ton- 1 0.4 0.4 

Probability otherwise 0.3 0 35 

14.3 A machine is subject to random failure. If a failure occurs, the machine has to be 

replaced with a new one by the beginning of the following year. The operating efficiency 
of the machine also decreases with time. Consider the data given. If a failure occurs, 
an additional cost of $200 is incurred. A new machine costs $800. Solve this problem 
by dynamic programming for an 8-year planning horizon. Formulate the recursive 
relations in general terms first. The current machine on hand has had one year of 
use. Whatever machine is on hand at the end of the planning horizon is sold, provided 
it has not failed. 

Year of operation i 2 3 4 

-1_ 

5, 6 

Probability of failure 0 0.1 0.2 0.3 0.4 0 5 
Operating costs 

Salvage value if machine is sold 
$100 $110 $140 $170 $210 $260 

prior to failure $600 $500 $350 $200 $100 
, L. 

$50 

14.4 Using the stochastic inventory model formulated in Section 14-4, find the optimal 

policy over a 10-week planning horizon for the given demand distribution for each 
week. 

Weekly demand d 0 1 2 

P(d) 0.7 0.2 0.1 

The following cost factors are also given: ch = $0.2/unit/week; c, = S1.0; k (x ) = 
$3 for > 0 and $0 for xn = 0, for all n. Observing the optimal value of xn for large 
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n, would you expect x„ to change any further as n is increased beyond 10? (In other 

words, has the solution become stable?) 

*14.5 A product is subject to the following demand distribution: 

Daily demand x_0_1_2_3___ 

jjr) 0.50 0.30 0.10 0.05 0.03 0.02 

The product can be produced the same day a customer orders it. The production set- 
up cost is Cj = $4 per setup, regardless of the size of the production run. Cost of 
keeping a unit in inventory for one day amounts to c2 = $0.10. Each time the product 
is handled, a handling cost of c, = $0.50 per unit is incurred. Customer demand can 

be satisfied either from inventory (the product is then handled twice) or by a specia 
production run directly from the production floor (the product is then handled only 
once). Consider the following inventory/production policy: If demand x on a given 
day is equal to P(i) or larger, given that the inventory level at the beginning of the day 
is i, then the demand is satisfied by a special production run, and the inventory remains 
at i. If x < P(i), the demand is met from inventory if possible. Whenever inventory 

is insufficient to satisfy the demand—x > i, but x < P(i)—then a production run is 
scheduled to replenish inventories to the level S(i). The production run is thus equal 
(•0 giyj _ i + x, S(i) — i is added to inventory, and x is shipped directly from the 

production floor. 
(a) Formulate the recursive relations of dynamic programming. Note that only one 

state variable, but two decision variables are needed. 
(b) Solve the problem for a 10-day planning horizon. The optimal S will be less than 

6, and the optimal P(i) will be less than or equal to S(i) + 1, for all i. What is 

the optimal policy with 10 days left to the end of the planning horizon? 

14.6 Each month the management of a small chain of service stations has to make a decision 
as to the promotion campaign for the coming month. If sales in the current month 

are high, three possible actions are available. (1) Management can decide to continue 
the current promotion for next month; then, with probability 0.4, sales in the next 
month will be high and will generate a net revenue of $8000, and with probability 
0.6, sales will be low and will generate a net revenue of $4000. The costs incurred 
for continuing the present promotion amount to $1000. (2) Management can offer a 
new free gift; then, with probability 0.8, sales in the month will be high and will 
generate a net revenue of $7000, and with probability 0.2, sales will be low and will 
generate a net revenue of $3000. The cost of this action is $2500. (3) Management 
can undertake no promotion; then, with probability 0.25, sales will be high with a 

revenue of $10,000, and with probability 0.75, sales will be low with a revenue of 
$5000. No costs are incurred then. If sales in the current month are low, two possible 
actions are available. (1) Management can decide to offer a new gift; then, with 
probability 0.5, sales will be high with a revenue of $6000, and with probability 0.5, 
sales will be low with a revenue of $2000. The cost of this action is $2500. (2) 
Management can decide to copy the main competitor's promotional campaign; then, 
with probability 0.4, sales will be high with a revenue of $7000, and with probability 
0.6, sales will be low with a revenue of $3000. The cost of this action is $1000. 
(a) Construct a table similar to Table 14-4 showing columns for the current state, the 
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decision, the transition probabilities, and the expected gross profit of the action 

(difference between expected net revenue and costs). 

(b) For an initial policy of continuing the current promotion if sales are high and 

offering a new free gift if sales are low, find the present value of gross profits for 
each state for a discount factor of a = 0.9. 

(c) Use the four-step algorithm for approximation in policy space to find the optimal 

policy for a discount factor of 0.9. Note that this is a maximization problem! 

(d) Determine the sensitivity of the optimal policy to 0 S a < 1. 

14.7 An automobile manufacturer makes a decision once each year about whether to 

introduce a new model and, if so, what kind of stylistic changes to make. Developing 

a new model has a cost of 10 million dollars, whereas making minor changes in the 

current model has a cost of 2 million dollars. The manufacturer always has the option 

of not making any changes at all. Expected net revenues (= sales proceeds less variable 

production costs) for next year depend on whether the current model is achieving high 
sales or low sales, as follows: 

Action 
Current 

Sales 

P(Sales Next Year) 

1 

Net Revenue Next Year 

P(high) P(low) High Sales Low Sales 

New model high 0.8 0.2 16 6 
low 0.5 0.5 16 6 

Minor changes high 0.5 0.5 12 0 
low 0.4 0.6 12 o 

No changes high 0.5 0.5 10 o 
low 0.1 0.9 10 

!' 
0 

(a) Construct a table similar to Table 14-4. This table should contain all information 

needed to use the algorithm of approximation in policy space. 

(b) Starting with a policy of no changes, regardless of the level of current sales find 

the optimal policy maximizing profits, using a discount factor of a * 0.75. 

14.8 A machine goes through several stages of deterioration that can be classified as 0 

(properly adjusted), 1, 2, and 3 (inoperative). The state of the machine can be inferred 

with certainty from the number of defectives produced during the preceding day. At 

u r"? ofeach day> a decision has to be made as to whether or not the machine 
should be adjusted If the machine is not adjusted, then the probability that its state 

ot deterioration will progress to the next higher one is as follows' 

State i as of end of day 

Probability of state i + 1 as of end of next day 0.1 0.2 0 3 

Once in state 3, the machine will remain there. If the machine is adjusted at the 

beginning of the day, its pattern of deterioration is the same as if it were in state 0 

1 otal operating costs, including losses on defective parts, are as shown. 



422 Chapter 14 Stochastic Dynamic Programming and Markovian Decision Processes 

State as of end of next day 

Operating cost next day in dollars 

0 12 3 

10 12 15 30 

The cost of an adjustment (including loss of production) is $8. 
(a) Construct a table similar to Table 14-4, containing all information needed for the 

algorithm for approximation in policy space. 
(b) Use the algorithm for approximation in policy space to find the optimal policy tor 

a discount factor 0.99. 

14.9 Consider a simplified car replacement problem. Toystar, the latest cheap import to 
hit the domestic market, has a fairly limited useful life (as the manufacturer admits), 
but it is also the cheapest car on the market. The manufacturer surprisingly supplied 

us with the operation statistics shown. A broken down car is only reP‘ace“ | e 
beginning of next year and has no salvage value. A new Toystar costs 54000. At the 
beginning of each year, a decision has to be made whether to replace the car with a 

new one or keep it for another year. .. 
(a) Construct a table similar to Table 14-4 of the text. Make sure that it contains a 

information needed to apply the algorithm for approximation in policy space. 

(b) For a discount factor of 0.8, determine the optimal policy that minimizes the 

discounted cost over all future periods. 

Age of car at beginning of year 0 1 2 3 

P(breakdown beyond repair during next year of 
0.1 0.2 

3000 

0.4 
1000 

1 
0 

operation) 
Salvage value of car in operating condition ($) 

Operating cost during next year ($) 1000 2000 2000 3000 

14.10 Consider the water reservoir example in Sections 13-1 and 13-10. This can be viewed 
as a Markovian decision process, where for each state the size of the target release 
represents the decision variable. Indicate why the algorithm for approximation in policy 
space may result in an optimal policy that is nonoptimal for practical or technical 

reasons. 
14.11 A reservoir is used to generate electric power for a small factory with a constant power 

demand equivalent to 4 units of water. The decision variables are the target releases 
to be scheduled for each reservoir level. If the target release cannot be met or is less 
than 4 units of water, power has to be purchased from a public utility at a cost ot 
$5000 for the first unit and $6000 for the second unit of water. If more water is 

available than is needed, excess power can be sold on a firm basis at a price 
per unit of water. Use the water inflow pattern of the example in Section 13-1. Ihe 
reservoir has a maximum capacity of 4 and can be emptied completely. Construct a 
table similar to Table 14-4 that contains all information needed to apply the algorithm 
for approximation in policy space. The objective is to minimize (costs revenues). 

You do not have to solve the problem. 



2 The emergency treatment station at a hospital has the policy of having two surgeons 
on duty at all times. Studying the records of the station, the chief medical officer 
notices that at times one surgeon would be able to handle all emergency calls whereas 

withthThtlmfS tHl' nUmber °f emergencies is more than the two surgebns can cope 
w. h. Therefore he wants to investigate this problem to determine an optimal staffing 

on 7t!0r U urn Some Prractica exPerimentation with the number of surgeons 
on duty yields the following information as to the probabilistic behavior of the system: 

(~ * pr°bablhty of finding; cases to be treated at the end of a one-hour 
period, if t cases were waiting for treatment at the beginning of the period and s 
surgeons were on duty for i; j = 0, 1, . . K and s = 1 2 c J^T n u 

intan^bl" 0n dL1AhaS 3 fiXCd C°St 0U d°llarS and an houfiy cost of c dollars3 The 
tangible cost of having a patient waiting for treatment at the end of each one-hour 

14r4ffi1iTSeSSed ^ ar°Uft b„C°nstruct’ ,in general terms, a table similar to Table 
4-4 that (given numbers for K, S, p(i, j | ,), a, c, and b) could be completed to 

IndS t* 3 , mforl?ahon "efed t0 use fhe algorithm for approximation in policy space 
ndicate why such a model may not sufficiently represent the true situation. X 

1 Consider exercise 14.6. 

(3) IZ POlliCty HSte(l UndCl(b) °f CXerCiSe H-6’ find the average retufn per period 
and the relative values. Assume that sales in the current period are low. How 

sXs? W°U 3 ^ ^ WOrth t0 management t0 start out from a Position of high current 

(b) Using the algorithm for approximation in policy space for the average return per 
period, hnd the optimal policy. 

usinl'fr ‘I6 ‘"I1 Pr°blem inexercise 13-7 of Chapter 13. Find the optimal policy 

trip, hi J XraC™iTErc“«in P°‘iCy SPaCe' m“”'iZinS M“rn Per 

Find the optimal policy for exercise 14.7 that maximizes the average return per period, 

per^pedod°Ptlmal replaCement policy for exerc'se 14.9 that minimizes the average cost 

^ate^hfo^rf r)0dUfht8h pr,eC1Sl°n parts can be in any of three states of adjustment: 
!e ’ f /e’ pr0duced,ls °-T state 2, fraction of rejects produced is 0.2; 

state 3, fraction of rejects produced is 0.4. A reject causes a loss of 10 cents a piece 

The machine produces 1000 parts a day. At the end of any given day, the state of 

7 C3n bC readdy identified' Adjustments are made during 
the night so that no production time is lost. Adjustments can be made either by a 

^ 4ChnlCln u by the Head °Perat0r °f tHe machine- Adjustment times and cost per hour are as follows: 

State of Machine Hired Technician 

Cost per hour 

0.5 hour 

1 hour 

2 hours 

20 dollars 

Head Operator 

0.5 hour 

1.5 hours 

3 hours 

10 dollars 
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If no adjustment is performed on the machine, then the following transition proba- 

bilities hold: 

To state 1 

From state 1: no adjustment 0.7 

2: no adjustment 0 

3: no adjustment 0 

From any state: Hired technician 0.9 

Head operator 0.8 

(a) Set up a table that contains all information needed to solve this problem using the 

policy evaluation and improvement routines. 

(b) Find the optimal policy minimizing average cost per day. 

14 19 Consider exercise 14.4. Assume that the maximum inventory is restricted to 3 units. 

Construct a table similar to Table 14-4, containing all information needed to apply 

the algorithm for approximation in policy space. Find the optimal solution for the 

average cost per period criterion. 

14.20 Consider exercise 14.5. Construct a table containing all information needed to apply 

the algorithm for approximation in policy space. Assume that the maximum inyen ory 

will not exceed 3 units. Find the optimal policy for the average cost per period criterion. 

14.21 Formulate the linear program associated with exercise 14.9. 

14.22 Formulate the linear program associated with exercise 14.8. If you have access to a 

computer, solve the linear program and interpret the optimal solution. 

14.23 Formulate the linear program associated with exercise 14 7 Note that this is a max- 

nroKlrn Therefore. exDressions (14-23) through (14-26) have to be adjusted 

accordingly. 
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CHAPTER FIFTEEN 

Introduction to 
Waiting Lines 

Waiting lines or queues are everyday occurrences familiar to all of us. We experience 
them in our daily lives in one form or another—waiting at a bus stop or elevator, 
queueing at the cafeteria or ticket office, waiting in shops or at a gasoline station. 
Queues also occur extensively within an economic, industrial, or social context, 
sharing the common features of people or objects arriving at a service facility requiring 

some service and the ensuing delays when the service facility is occupied. 
Although the number of potential uses of waiting line or queueing theory is very 

large, two major types of situations give rise to successful economic applications^ he 
first deals with the case where an organization controls a sufficiently large number ot 
similar or identical service facilities, such as gasoline pumps, bank tellers, machine 
operators or repair crews (for looms and knitting machines in a textile factory, mac me 
tools in a machine shop, copying machines in a geograpical area), or telephone 
exchanges. In fact, the first applications of queueing theory dealt with the operation 
of telephone exchanges. Although queueing theory may offer only small economic 
incentives for each facility by itself, the pooling of large numbers of individually small 
gains makes such applications economically worthwhile. The second type ot appli¬ 
cation deals with the planning and design of single facilities involving large capital 
investments, such as the purchase and operation of port facilities or a computer 
installation. In particular, the design of communication and computer systems is an 
area where extensive use is made of queueing theory. Here the objects are messages 

or pieces of information. , 
In contrast to most other operations research tools, waiting line models have no 

general pattern of optimization. Waiting line theory is concerned mainly with deter¬ 
mining, for a given service facility, certain crucial characteristics of a proposed mode 
of operation, such as average waiting times, average queue length, and average idle 
time of the facility. These operating characteristics serve as input into the decision- 
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making process aboutthe facility studied-a process that often reduces to the economic 

“he r 7/ yma!I,number of P°ssibIe facilities and operating modes, with the 
best solution found by enumeration. 

Most real-life applications of waiting line theory are highly complex. Many defy 
any formal analytic treatment-simulation is the only approach with any hope of 
capturing their essential features. In other cases, the tools of waiting line theory only 
serve as a first approximation to provide some quantitative information about the 

my compIex Ration. Even so, the level of mathematics required 
tc analyze such problems goes well beyond the scope of this text. The models discussed 
he e are, therefore, a far ery from the complexities encountered in reality and are 
only intended to give some qualitative insights into waiting line phenomena. 

arrivak^ndT aSpe,Cts °f the Wait‘"g Iine models> such as the times between 
arrivals and the length of service required, are not fixed but instead are drawn from 
particular probability distributions. Thus, we will make a lot of use of the material 
n Chapter 10 on probability, expected values, and stochastic processes. In particular 

the negative exponential distribution is used in most theoretical models for which the 
operating characteristics have been determined. Even for theoretical models that can 
be described quite simply, the derivation of formulas for these characteristics is often 
very complex, if in fact, formulas have been determined at all. For this reason 
certain results will have to be stated without proof, whereas others are derived by 
heuristic reasoning. Before proceeding, you should review the relevant material in 
Chapter 10, especially Section 10-9 on Poisson processes. 

15-1 GENERAL STRUCTURE OF WAITING LINES 

The physical structure of waiting lines consists of three components: 

• one or several sources of arrivals, 
• queues, and 

• a service facility consisting of one or several parts. 

Table 15-1. Examples of waiting line phenomena 

Source of Arrivals Nature of Service Requested Service Facility 

population of customers 
aircraft 
ships at sea 
telephones 
cars 

machines on shop floor 
mechanics on shop floor 
inventory withdrawals 

sales transaction 
landing or takeoff 
unloading or loading 

telephone connection 
crossing 
repairs 
tools or parts 

inventory replenishment 

shop attendant(s) 
runway(s) 
port dock(s) 

telephone exchange 
ferry 

operators or mechanics 
attendants at tool crib 
supplier 
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Figure 15-1. Waiting line structure. 

Timing 
mechanism 

Service 

Queues facility 

The queues and service facility together are referred to as the system. Table 15-1 lists 

3 maTonginate from one or several sources or pools of potential c',storJ}^ 
referred to as the calling populations. We assume that each source has a well-defined 
aS pattern over time It may be helpful to visualize that each source ,s equipped 
(figuratively speaking) with an arrival timing mechanism, which releases units w 
a known pattern of interarrival times—the times between two consecutive arrivals 
Arrivals may be uniformly spaced over time (i.e., the interarnval times are constan ) 
or randomly spaced over time with a known interarnval time probability distribution 

A calling population may be inexhaustible, in the sense that the number of potent 
customers in the source is assumed to be always very much larger than the numb* 
of units in the system, or a calling population may be sufficiently limited in that 
the arrival pattern varies as a function of that size. The number of te ephones serviced 
by a telephone exchange is an example of an inexhaustible source (under most con¬ 
ditions), whereas the number of machines on a factory floor is an example of a firm 
source In the first instance, the call rate will hardly be affected by the number of 
telephones busy at any given moment in time, so we may be able to assume t e 
interarrival times form a renewal process. In the second case, however, every machine 
that requires the attention of an operator, i.e., enters the queueing system, may 
significantly reduce the rate of arrivals, and every machine that has been serviced 
i.e., departs from the system, may again significantly increase the rate of arrivals, 
the number of units being served or waiting for service tends to be a relatively smal 
fraction of the total calling population, an unlimited source model may be a satisfactory 

aPThe service facility may consist of one or several stations or channels. They may 
operate either in parallel, in which case an arrival has to go through one channe 
only before being discharged from the system, or they may operate in series in which 
case an arrival has to go through several channels in sequence before being discharged. 
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The service times at each channel may be constant or random with a known service 
time distribution. 

There may be no queue, one queue, or several queues. Queues do not have to 
be physical in nature, as the queue in front of a bank teller, but may consist of 
geographically separated units awaiting service, such as equipment operated at different 
locations that requires some service. The manner in which units are taken from the 
queue is called the queue discipline. It may, for example, be on a first-come-first- 
served basis, random, or subject to service priorities, as for instance in an emergency 
c inic. We shall only look at the first scheme. It may also be possible to switch queues, 
and the choice of which queue to join may be open to an arrival. Furthermore, the 
maximum queue length may be unlimited or finite. In the latter case, units arriving 
when the queue is full immediately depart, i.e., are lost to the system. Finally, 
potential arrivals may balk if the queue length becomes excessive and decide not to 
join or arrivals may join the queue and subsequently renege, i.e., become impatient 
and leave before being served. In either case, they are lost to the system. The variety 
of possible waiting line configurations seems almost unlimited. 

The waiting line problems of interest to us are those that have either random 
mterarnval times or random service times, or both. In this case, queues of random 
lengths will occur. If no units are waiting most of the time, then the service facility 
will tend to be idle for a large portion of the time. If there are costs associated with 
idle service channels, then this is undesirable. On the other hand, if the service facility 
is busy and queues exist most of the time, arrivals will frequently have to wait prior 
to service. If the waiting times are long, this may again result in tangible or intangible 
costs, such as lost production time (mechanics waiting for parts or tools, machines 
down), deterioration of certain attributes of arrivals (cement trucks or banana boats 
waiting to be unloaded, patients waiting for surgery), or loss of goodwill (customers 
becoming impatient). The problem in waiting line models is to determine a system 
such that the sum of all costs associated with operating the system is minimized. 

The controllable aspects of queueing systems are 

• arrival rate (e.g., by choosing quality of parts that may fail or require service); 
• number of service facilities; 

• service times, both in terms of average length and service time variations; 
• maximum queue length (e.g., by providing a certain number of spaces, say, in 

a parking lot); and 
• priority rules and queue discipline. 

15-2 ARRIVAL TIME DISTRIBUTION 

We shall consider models where arrivals and services occur only in single or individual 
units, rather than in groups of several units (called bulk arrivals or bulk fervice). 

The simplest waiting line models assume that the number of arrivals occurring 
within any interval of time, t, follows a Poisson distribution with parameter kt, where 
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Xt is the average number of arrivals in the interval of time t. (Recall that for the 

Poisson distribution, Xt is also equal to the variance.) If n denotes the number of 

arrivals in the interval t, then the probability functon pin) is given by 

15-1 
W.-h 

Pin) = -^~e n = 0, 1, 2, . . . 

This arrival process is called Poisson input. X represents the arrival rate. A Poisson 

input implies certain behavioristic assumptions that may look somewhat unrealistic, 

but the process still models many practical situations surprisingly well. 
The lack of memory property of the Poisson process means that we are assuming 

not only that interarrival times are independent of one another or the state ot t e 

system but also that the probability of an arrival in an interval of time h does not 

depend on the starting point of the interval or on the history of arrivals preceding 1 , 

but only on the length of the interval. _ . r „ . , , 
From expression (10-60) and (10-61) in Chapter 10, it follows that for h very 

small, 

(15-2) 
P (exactly ope arrival in h) = Xh 

P (no arrival ink) sz 1 — Xh 

As we saw in Chapter 10, expression (15-1) also implies that the probability 

density function of the time between arrivals is 

a(t) = Xe~ t;*0 

i.e., a negative exponential distribution with parameter X. The mean interarrival time 

and the standard deviation of the interarrival times are both 1/X. 
To verify that the Poisson input is a satisfactory representation ot a particular real- 

life arrival process, we would gather data on a large number of interarrival times, or 

on the number of arrivals in a large number of equal time intervals, and compare one 

or the other of the empirical distributions observed with the corresponding theoretical 

distribution, usually by performing a goodness of fit test. . . m 
Let us demonstrate the second approach with the following example. A h 

operates a 10-ton crane truck on a job contracting basis. Arrivals into the system are 

given by job requests. Data are gathered over a 100-day period and are compiled into 

a frequency table as shown in the first two columns of Table 15-2. Does the daily 

number of job requests or arrivals have a Poisson distribution? 
We want to test the null hypothesis that the distribution is Poisson with a mean 

of X. To test this, we first determine an estimate of the daily arrival rate, which turns 

out to be 1.4 job requests per day. This is used as the value of X in the Poisson 

probability function (15-1), and the theoretical frequencies of this distribution usua v 

obtained from tables—are compared with the observed frequencies using a chi-square 

goodness of fit test. The computations leading up to this test are shown in the last 

three columns of Table 15-2. , . r . . n t 
The observed chi-square value corresponds to a level of significance of about . . 

This means that the hypothesis of a Poisson distribution is not rejected for all smaller 
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Table 15-2. Chi-square test for arrival process 

Frequencies 

Arrivals in an 
8-hour Day 

Observed 
F. 

Theoretical 

f, 

i = 0 
1 
2 
3 
4 
5 
6 
7 

Number of classes = 5 

Number of degrees of freedom = number of classes 
estimated parameters - 1 = 5 - 1 - 1 = 3 

P(chi-square > 4.51) > 0.2 

(p.-m 
28 24.7 0.44 
35 34.5 0.01 
20 24.1 0.70 

8 11.3 0.96 

6) 4.0) 

»r 
0.2 ( ™ 

2.40 

i) o.i; 
100 100 tTT 

number of 

Note that small classes with a frequency of less than 5 should be lumped together to give 

frequencies for all classes of at least 5. This reduces the effective number of classes 
avaiiabie to 5. 

levels of significance. This strongly suggests that we can safely approximate the arrival 
process by a Poisson input. 

We could assume that the arrival process forms a renewal process other than a 

Poisson process. Analysis of waiting line problems then becomes much mpre difficult, 

however. We shall postpone further discussion of this possibility to Section 15-13. 

15-3 SERVICE TIME DISTRIBUTIONS 

Most simple waiting line models also assume that service times have a negative 
exponential distribution with parameter p,, i.e., 

s(t) = pur-*, f» 0 

Hence, for h very small, 

^ ^ P (one service completion in h) = \xh 

P (no service completion in h) = 1 -p.fr 

The property of lack of memory has some revealing consequences If a unit 

arrives at the service facility (when the queue is empty) and finds the service facility 

busy, the probability that this unit has to wait a length of time of at least fr is independent 
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oi how long the current service has been in progress. In fact, the residual service time 

distribution is also negative exponential with parameter p. ^ , 
What is the expected waiting time for a unit that joins the queue and hnds n 

units ahead of it (n — 1 in the queue and 1 unit in the service facility)? Since each 

unit takes, on the average, a length of time 1/p., the total expected time needed to 

process n units is n/p, and by independence of the service times, the standard deviation 

is Vn/p. Since the total waiting time is equal to the sum of n random variables, all 

with identical negative exponential distributions, its probability distribution is given 

by the convolution of n negative exponential distributions, and hence has a gamma 

distribution with parameters (n, p), i.e., 

(15-4) 
pV'e" 

(n - 1)! ’ 
t 2* 0 

We shall again postpone further discussion of service time distributions other 

than the negative exponential to Section 15-13. 

15-4 QUEUEING MODEL NOMENCLATURE 

The literature of queueing theory tends to use a standardized terminology, consisting 

of four symbols separated by vertical bars to describe the most basic types of models: 

I|F|S|N 

where I designates the input process, F the service time distribution S the number 

of service channels in parallel, and N the number of customers allowed in the system. 

The standard symbols are 

M = negative exponential time distribution (M stands for Markovian) 

D = deterministic or constant times 

E„ = Erlang distribution ot order n (see Section 15-13) 

Cl = general independent interarrival time distribution 

G = general service time distribution 

For instance, a waiting line model that has Poisson input, constant service times, 

and 1 service channel is denoted by M|D|1|«. When N is infinite, the three-symbol 

notation M|D|1 is often used. 

15-5 THE MOST BASIC WAITING LINE MODEL, M|M|1 

Mathematically speaking, the simplest waiting line model assumes that arrivals join 

a queue that is unlimited in size, wait in line until their turn for service comes on 

a first-come-first-served basis, and then enter a service facility consisting of a single 

channel. t . , ,. 
The input process is assumed to be Poisson, i.e., interarrival times have a negative 

exponential distribution with parameter and the service channel has service times 

that also follow a negative exponential distribution with parameter \l. 



_.___Section 15-6 The Balance Equation Method 433 

As was the case with Markov chains, in waiting line models we are often interested 
only in the long-run operating characteristics of such systems, i.e., when the system 
is in statistical equilibrium or in steady state. The time interval needed to approach 
the steady state sufficiently closely—the so-called transient behavior of the process_ 

13 lgn°rfd- however, it should be realized that many systems never reach a steady 
state. This is the case for processes that are periodically interrupted (e.g., daily) before 
they approach a steady state and then are restarted, usually with empty queues, such 
as a bank teller service, or systems whose input distribution does not remain stationary 
but changes over time, such as the traffic flow at a toll bridge during various times 
ot the day . In such cases, we study the transient behavior of the system. However, this 
requires a level of mathematics far beyond the scope of this text. 

At any moment in time, the state of this waiting line process is completely 
described by the number of units in the system. For an M|M|1 process, this is the 

nu1mbe.r of | ln the 9ueue plus the number in the service channel—the latter is 
either 0 or 1. Thus, the state of the process can assume values 0 (service facility idle 
no units in queue), 1 (service facility busy, no units in the queue), 2, 3, . n units 
(service facility busy, n - 1 units in the queue). 

In contrast to the type of processes discussed in Chapter 13, in queueing systems 
a trans^on. fr°m one state to another can occur at any moment in time and not only 
at specified evenly spaced points in time. However, the process will nevertheless 
approach a steady state that is independent of its starting position or state. 

Let these steady-state probabilities be denoted by P„, n = 0, 1, 2, . . ., where 
the subscript refers to the number of units in the system. As we have seen, for a 
Poisson input and a negative exponential service time, the probabilities that an arrival 
occurs or a service is completed in an interval of length h do not depend on the history 
of the system before the start of the interval. Hence, the probability of a transition 
from a given state to another state in the interval h does not depend on hqw long the 
system occupied that state. All the information needed to describe the system’s future 
behavior is contained in that state specification. For this reason, queues such as MlMll 
are sometimes called Markovian. For such systems, if we look at the process in the 
steady state at two randomly chosen moments in time, separated by a short interval 
of time h, then it must be true that the probabilities of finding the process in the 
various states remain unchanged—by the very definition of the steady state. But this 
requires that, for each state, the probability of being in that state and leaving it dur¬ 
ing ft exactly balances the probability of being in other states and entering that state 
during ft. 

15-6 THE BALANCE EQUATION METHOD 

Recall from Section 10-9 that for a sufficiently small interval of length ft, no more 
than 1 amval and no more than 1 service completion can occur. Similarly, the 
probability of observing an arrival and a service completion in the same interval given 
by p.\ft is approximately zero for ft very small, since it also involves a higher order 
term ot ft. This leaves only the 4 compound events associated with each state for 
n > 1, shown in Table 15-3. 



Table 15-3. Events of state transitions 

Events Probability 

(1) There are n units in the system p„ 

and 1 arrival occurs in h \h 

(2) There are n units in the system Pn 

and 1 service is completed in h |x/i 

(3) There are n - 1 units in the system P„-1 

and 1 arrival occurs in h \h 

(4) There are n + 1 units in the system Pn+i 

and 1 service is completed in h |ji/i 

For n = 0, only events 1 and 4 are possible. Figure 15-2 shows a transition 

diagram for these events. 
In terms of the events shown in Table 15-3, we have tor n ^ 1 

p /being in state n and\ = p jbeing in state n - 1 or n + 1] 

l leaving it J yand entering state n / 

P(event 1) + P(event 2) = P(event 3) + P(event4) 

This yields the following equation known as a steady state balance equation: 

(15-5) P„Xfc + P„^ = Pn-1 xh + Pn+i^h 

In terms of Figure 15-2, the left-hand side of (15-5) is obtained by adding the 

products of the probabilities of state n and the probabilities on the arrows leaving state 

n whereas the right-hand side is the sum of the products of the probabilities of the 

states where arrows entering state n originate and the probabilities on these arrows. 

For n = 0, we equate the probabilities of event 1 and event 4 of Table 13-5: 

(15-6) P0\h = Pl[ih 

Consider now the first few terms of (15-5): 

P,X./i + P,|jJi = P0kh + P2M^ 

(15-7) P2\h + P2\x-h = Px\h + P,p/i 

P^kh + P,p/i = P 2kh + P4p./i 

Figure 15-2. Transition diagram for 
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Using (15-6), we can substitute P^h for P0kh in the first equation of (15-7): 

P = P^h + P2iih 

Canceling equal terms and dividing through by h, we get 

P,\ = P2ix. 

This result can now be substituted into the second equation of (15-7). Continuing 
in this fashion, we get 

P2k = P,p 

P,k = P4p 

Starting with (15-6), it thus follows that P, = (X/u)P„ P =* 
(X/p,)2P0, P3 = (X/p,)P2 = (X/|x)3P0, and so on. In general, 

(15’8) PB = (A/p)»P0, 1 

Using the information thatI„Pn = 1 or £7=o(X/|x)"P(l = 
1/(1 — X/p) for 0 < X/|x < 1, we find 

1, and that 2" 

(AMP, = 

o (X/|x)n = 

/\\ - X/p, 

X 

P 

all n 3= 0 (geometric distribution) 

The term X/p, is known as the utilization factor or traffic intensity. It is also equal 
to the probability that the service channel is busy. Because the arrival process is 
Poisson (15-10) is also the distribution of the number of units that an arriving customer 
wi nnd in the system in steady state. Hence, X/|x is also the probability that an arrival 
will have to wait. You should note, however, that this equality of the arriving cus¬ 
tomer s and the steady-state distribution does not usually hold for non-Pois$on arrivals. 

From the derivation of expression (15-9), we see that the arrival rate'X has to be 
srna ler than the service rate jx. This is intuitively obvious. If the arrival rate is equal 
to or larger than the service rate, the queue tends to become longer and longer. The 
piocess never reaches a statistical equilibrium, and the above analysis doe$ not apply. 

Given the steady-state distribution, we can derive a number of important system 
operating characteristics that may be needed as inputs into the measures of effectiveness 
of the system. 

Pn = = 1 

or 

(15-9) 

and (15-8) simplifies to 

(1.5-10) 

P„ = 1 - 

P„ = l-) (l-- 
P/ \ P 
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1. The average number of units in the system (including the one in service), 

denoted by L: 

oo x 

(15-11) L=2nP„=2 

X/fx 

1 - X./)JL 

(since 2"=1 n(X/n-)"-1is the derivative of 2“= 1(A./pOn - (?v/ix)/[l Xl\i] 
2. The average number of units waiting in the queue, denoted by Lq: 

L,= £(n-l)P„= tnK- XPn 

= L -(1-P0 
W 

1 - X/|JL 

3. The average time the system is idle and average busy time of the service facility. 
An alternative interpretation for the steady state probabilities is that they rep¬ 
resent the average fraction of time that the system is in each state. Hence, 
p = 1 — X/[i is the average fraction of time that no unit is in the system or 
the average idle time, and P(system is busy)= 1 - P0 = Xl\x is the average 
fraction of time that there is at least 1 unit in the system or the average busy 

time of the facility. ,, ... T,. . ,, 
4. The average time spent in the system by an arrival, denoted by W. 1 his is the 

sum of the expected waiting time, W„, and the expected service time. So 

(15-13) W = W, + ^ 

Littles formula gives a very useful relationship between L and W that holds for 
a wide class of arrival and service processes, as well as Poisson input and exponential 
service times. Consider an arrival that is just leaving the system after service. On the 
average, it has spent a time W in the system. Left behind in the system are an average 
of L customers, who arrived at intervals which averaged 1/X. But in steady state, these 

two average times must be equal; so W = L(l/\), or 

Note that this relationship also holds for multiserver queues. (Why?) 

Since L = L, + (X/ji) and W = W, + (1/jt), we also have 

(15-15) Lq=XWq 

(15-15) can be obtained directly by an argument such as the one used for (15-14), if 

we consider an arrival who is just about to enter service. 
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Substituting (15-11) into (15-14) and solving for W, we obtain 

(15-16) W = —L- 
JJL - X 

(15-17) w=w-i = —A_ 
P- m-(m- - X) 

The operating characteristics of queueing systems tend to be highly sensitive to 
changes in the utilization factor and rise steeply as this factor approaches 1, as can 
be seen from Table 15-4. It is important that both X and jjl be estimated with a 
sufficiently high degree of accuracy. 

Table 15-4. Sensitivity of operating characteristics to utilization factor for M|M|1 models 

X/p* 
0,2 0-6 0.7 0.8 0.9 0.95 0.98 0.99 

L 0.25 0.667 

W 1.25 1.667 
1.0 1.5 2.333 4.0 9.0 19.0 49.0 99.0 

24)15 3.333 5.0 10.0 20.0 50.0 100.0 

timeUmm8 ^ ^ ‘S tHe fate of arrival Per average service time- and W is in units of average service 

15-7 EXAMPLES OF M|M|1 

Let us return to the firm operating a 10-ton crane truck on a job contracting basis 
We shall use 1 day as our basic time unit. From the data of Table 15-2, we conclude 
that the input process is Poisson, with a mean arrival rate of X = 1.4 per day. The 
average service time amounts to 4 hours or \ of an 8-hour day, and we assume that 
the service time distribution is approximately negative exponential with a mean service 
rate of p = 2 per day. The M|M|1 model applies, an4 we obtain the following 
operating characteristics: 

Utilization factor = 

Average idle time = 

L = 

P (crane busy) = — = 1.4/2 =07 
P- 

Po = 1 = 0.3 or 30% of the time 

X/p 0.7 
1 - X/p — j _ o 7 — 2.33 jobs in the system 

(X/p)2 0.72 

1 - X/p 1 - 0.7 = 1.63 jobs waiting 

™ - ^ ^ _ 2-14 = 1-67 days in the system 

^ = 'p(p-x) = *^(p67) = 1.17 days waiting time 

P (more than job waiting for service) = P (more than 2 jobs in the system) 

= Pfnss 3) = 1 - P0 - P, - P2 = 1 - 0.3 - (0.7)0.3 - (0.7)20.3 = 0.343 
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Therefore, about one-third of the time, the crane is more than 1 job behind. 
Assume now that customers with job requests do not wait if there is already 

another job request ahead of them waiting for service. Hence, the maximum number 
of units in the system will never be more than 2. This particular type of balking is 
equivalent to the case where the maximum queue length is limited to a finite number. 
In the finite queue case, expressions (15-10) and (15-9) have to be adjusted accordingly. 

Now, 2nP„ = 1 only covers the terms for n = 0,1, and 2, i.e., 

Ils Po= 1 

Since ^*=0(X/p)n = 1 

Pn = 

(X/p)*+'/[l -(X/p)], this yields 

1 1 - (N/»x) 

2-w 1 - (X/p)3 
= 0.457 

Note that here we do not need X < p any longer. 
From the result of this expression, we note that if customers balk when there is 

already another job waiting, the average idle time of the crane increases from 3 
percent to almost 46 percent. Furthermore, a certain fraction of jobs will be lost. 
Customers balk if the system is in state 2. The fraction of time the system is in state 

2 is 

p2 = ^j2po = o.72(0.457) = 0.224 

This is also the fraction of jobs lost. On the average, almost 1 out of 4 job requests 

In general, if the length of the queue is limited to N - 1 places, then 

1 ~ (X/p) 

P. = 
1 - (X/p) 

1 

iN+1 
— for X i=- fx 

O^n^N 

l N+ 1 
for X = 

The average number of jobs in the system, as well as the average number of jobs 

waiting, can be computed from the definition of expected values. 

L = y nP„ and Lq = ^ (n - 1)P„ 
„=i "=‘ 

To find W, we use the same reasoning as for expression (15-14), except that 
arrivals can join the queue only when there are fewer than N jobs in the system. Thus, 

the average arrival rate is X(1 — PN)- Hence, L = WX(1 — PN), and 

W = 
X(1 - PN) 
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Verify that for our example L = 0.76, Lq = 0.22, and W = 0.65. All are 
substantially lower than the corresponding result for the unlimited queue case. 

Limiting the queue length or having arrivals balk or renege has the following 
consequences: average idle time increases, average queue length and average waiting 
time decrease, and a portion of the customers will be lost. It is usually possible to 
assign costs and benefits to each of these effects. If the queue length is a controllable 
variable, then the optimal queue length can be determined. 

15-8 MULTIPLE CHANNEL MODELS, M\M\S 

Assume now that the service facility consists of S channels operating in parallel, each 
having an exponentially distributed service time with mean 1/jjl. The arrival process 
is Poisson with rate X. Arrivals join a single queue and enter the first available service 
channel on a nrst-come-first-served basis. 

As long as the number of units in the system, n, is less than S, an arrival 
immediately enters an idle service channel. Since each channel services units at a 
rate p., the average service rate is np.. A queue starts building up only when the 
number of units in the system exceeds S. At that point, all service channels are busy 
and the average service rate attains its maximum S|x. If the queue length is unlimited’ 
such a system can reach a steady state only if the arrival rate is less than the maximum 
service rate, i.e., X < Sp,. For a finite queue length, where customers bypass the 
system once the queue is full, this restriction is not needed. 

Since this is a Markovian system, we can again find the steady-state probabilities 
by the balance equation method. Figure 15-3 allows us to derive the following equa- 
tions: 

kp0 = p.p, 

(X + p,)Pj = XP0 + 2pT2, etc. 

or, in general, 

(15-18) (X +np.)Pn = XP„_, +(n + l)pP„+1, 0 <n*£ S - 1 

(X + Sp,)P„ = XPn_, + Sp,Pn+1, n^S 

Figure 15-3. Transition diagram for M\M\S. 

M 2p (S-l)p S(i S/x Six Sfx 
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Again, as you will find with most simple balance equation models, we can cancel 

out terms in (15-18) to give 

' (AM" 

n! 

P = < 

• P„ for n < S 
ii 0 

for n ^ S S!S"-s 0 

Using the property that £:_0 P„ = 1, we must have 

n = 1 n = 0 

or 

a 5-19) p« = 
W/n'.] + [()v/ix)s/S!(l - A/S|X>] 

All service channels are busy when n 5* S. Using the results of (15-19), we find 
that the average fraction of time all service channels are busy or the probability that 

an arrival will have to wait is 

(15-20) 
~ (X/|jl)s n 

P(naS)-EP. = S|(i-'MSrtP» 
n = S 

and the average number of service channels busy is 

s-i 

(15-21) E(channels busy) = ^ nP„ + S ^ P„ - 
P 

It is independent of S. 
The average number of units waiting in the queue is 

A/p. 
(15-22) Lq = l (n-S)Pn = ^”^S){^r^Ij = ssilT^O^)] 

n = S+ 1 

(A/p) ,s+i 

,12 0 

Note that (15-22) can be expressed in terms of (15-20) as 

A/Sp 
(15-23) Lo (1-A/Sp) 

P(n 5s S) 

which is essentially the same as (15-12). 
The average number of units in the system is equal to the average number waiting 

in the queue plus the average number in service: 

A 
L = L + - 

q P 
(15-24) 
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To find the average time in the system, W, and the average waiting time in the 
queue, W„, we use the same reasoning as for the single channel model, i.e., kW = 
L. From expression (15-24) we obtain 

(15-25) w = t-tf+I=w +I 
A. X |X (X 

The last part of expression (15-25) follows from the fact that the average service time 
per unit is 1/|jl. 

15-9 A CASE STUDY OF AN M\M\S SYSTEM 

In large factories, most tools for use by mechanics on the factory floor are stored in 
one or several tool cribs. How many clerks should attend the counter pf such a tool 
crib? This is a classic application of a multiple-channel queueing system. The service 
facility consists of the counter of the tool crib where one or several clerks attend to 
mechanics requesting tools. The clerks represent service channels, working inde¬ 
pendently and in parallel. The mechanics on the factory floor form the source of 
arrivals. Although their number is finite, it is sufficiently large that the fraction of 
mechanics waiting for service or being served represents a negligible portion of the 
total population. If their number were relatively small, such that the arrival rate would 
vary as a function of the number of mechanics at the tool crib, the mode! of the 
preceding section would not be suitable. 

In the particular study on which this example is based (G. Brigham, “On a 
Congestion Problem in an Aircraft Factory,” Operations Research, Nov. 1955), a 
sample of service times was measured with a stopwatch by an observer stationed at the 
counter. An electrical device was used to record arrival times of mechanics at the 
counter. The average time between arrivals was found to be 35 seconds, corresponding 
to an arrival rate of X = 60/35 = 1.71 per minute. The average service time amounted 
to 50 seconds, yielding a service rate of |x = 1.2 per minute. The interarrival time 
and service time distributions found on this basis were compared to the corresponding 
negative exponential distributions by means of a chi-square goodness of fit test, and 
the associated null hypotheses were accepted. 

Assuming an unlimited queue length, we need at least 2 clerks for the steady 
state analysis of the preceding section to apply. (Why?) For S = 2, we find the 
following operating statistics: 

Pn = 

° 2.U (1-71/1.2)"/n! + ((1.71/1.2)2/2l(l -1.71/2(1.2))) “ 0,167 

[by expression (15-19)] 

i.e., the fraction of time both clerks are idle is 1/6. 

P(both clerks busy) = P (n 3= 2) 
(1.71/1,2)2 

21(1 - 1.71/2(1.2)) 
0.167 = 0.595 

[by expression (15-20)] 
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i.e., the fraction of time both clerks are busy is 59.5 percent. The average number 

of clerks busy or the average number of mechanics being serviced is 

E(channels busy) = 1.71/1.2 = 1.43 [by expression (15-21)] 

The average number of mechanics being serviced or waiting for service is 

L = q 595 = 2.92 [by expressions (15-22) and (15-24)] 

from which we find the average time in the system as 

W = - = = 1 70 minutes or 102 seconds [by expression (15-25)] 
k 1.71 

On the average, a mechanic requesting a tool will wait in the queue 

W = W - - = 102 - 50 = 52 seconds 
* ^ 

For a working day of 7Vi hours or 450 minutes, on the average 450k mechanics 

request tools at the counter. Hence the average total waiting time in the queue by all 

arrivals is 

(number of arrivals) (52) = ((1.71) (450)) 52 = 770(52) seconds = 11.12 hours/day 

whereas the total service time amounts to (number of arrivals) times (1/p.) seconds 

or 770(50)/3600 = 10.69 hours/day. If two clerks are at the counter, working a total 

of 15 hours per day, the total idle time is 15 - 10.69 = 4.31 hours. 
Verify some of the operating characteristics for S = 3 and S - 4 clerks, sum¬ 

marized in Table 15-5. , , 
For each additional server, the idle time increases by 7. 5 hours. On the other 

hand the number of mechanics in the system and their waiting time both decrease. 

Idle time of the servers and waiting time for the mechanics are both costly to the hrm. 

Table 15-5. Operating characteristics for S = 2, 3, and 4 servers 

Operating Characteristic _S = 2_ 

P(all clerks busy) 
L 

w. ... 
Daily waiting time 
Daily clerk time 
Daily service time 
Daily idle time 

Daily cost of clerk time at $8/hr 
Daily cost of waiting time at $ 16/hr 
Total daily cost 

0.167 0.229 
0.595 0.210 
2.92 1.615 

52 sec 6.67 sec 
11.12 hr 1.43 hr 
15.0 hr 22.5 hr 
10.69 hr 10.69 hr 
4.31 hr 11.81 hr 

$120.00 $180.00 
$177.92 $ 22.88 
$297.92 $202.88 

S = 4 

0.239 
0.064 
1.460 
1.23 sec 
0.26 hr 

30.0 hr 
10.69 hr 
19.31 hr 

$240.00 
$ 4.16 
$244.16 
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The cost of the servers is monotonically increasing, and the cost of waiting time is 

monotonically decreasing, as the number of servers increases. Their total will therefore 

have a unique minimum for some number (or adjacent numbers) of servers. 

Assume that the hourly rate including fringe benefits is $8 for clerks and $16 for 
mechanics. Then the total expected cost is lowest for S = 3 clerks. 

15-10 THE EFFECTS OF POOLING 

One benefit of the study of theoretical models of queues is that, even though the 

models we can handle are rather limited, they may indicate some general principles 

that hold true in most situations. One of these is the reduction in average waiting 

times that can be achieved by pooling, i.e., combining a number of independent 

service facilities, each of which provides the same type of service, into one central 
location. 

Consider this example. Two departments in a hospital each have a one-person 

diagnostic lab attached to them, providing a large but similar range of tests. At each 

lab, requests for tests arrive as a Poisson process'with rate K. Although a particular 

type of test always takes about the same time, the wide range of tests means that a 

negative exponential distribution for test times is reasonably acceptable. Building 

alterations have given an opportunity to combine the two labs into one which would 

handle the tests for both departments. We have been asked to comment on the benefits 

of this move. Obviously one major consideration is the waiting time before a test can 

be started. Will combining the two labs change this, and if so, by how much? 

As we have set them up, each of the labs can be modeled as an MlAfll queue 

with arrival rate X.. If the two labs are combined, requests for tests will arrive at a rate 

l\. 8inee the separate arrival processes were independent, this process will also be 

Poisson So we can model the pooled lab as an M|M|2 queue with arrival rate 2\. 

In lable 15-6, we compare the average delay for a test at either of the jabs with the 
case when the facilities are pooled. We assume that 1/p, = 1 hour. 

Table 15-6. W? for the separate and combined labs 

\/\x 

0.1 
0.2 
0.4 

0.8 
0.9 

Unpooled: M|M|1 (arrival rate X) 

0.11 
0.25 

0.67 

4.00 

9.00 

Pooled: M|M|2 (arrival rate 2X) 

0.01 
0.04 

0.19 

1.78 

4.26 

Clearly the combined lab will provide much better service. Whether or not this 

improvement will be enough to persuade the two department heads to relinquish 
control of their own labs is, of course, another question! 
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Usually you will find that pooling of similar service facilities considerably reduces 
average delay, regardless of the type of interarrival and service distributions. Although 
we must often take into account factors such as location, travel time for customers 
and customer preferences, any one of which can upset this inequality, the genera 

rule is that big facilities are more efficient than little ones. 

15-11 OTHER MARKOVIAN MODELS 

For any Markovian queueing system, we can use the balance equation method to 

write down the steady-state queue length equations. Although we must always presume 

that service times and interarrival times follow negative exponential distributions, we 

can allow the parameters of these distributions to depend on the number of customers 

in the system. For example, we might assume that servers provide a faster rate ot 

service when they see more customers in the queue, either by increasing their own 

rate or by calling in extra servers, or that the arrival rate of customers depends on the 

number of customers in the queue. Let us consider a system whose transition diagram 

is given in Figure 15-4. Here both the arrival and service rates are state dependent. 

The balance equations are 

KP o = 

(\1 + IXj)?! = fX2P2 + \0Po 

(15-26) 

(\jvj_l T m _ 1 )Pj\j - 1 ” - 2^N - 2 

We can cancel out terms in (15-26) and solve the equations. The general solution is 

(15-27) P„ = 
K-X- 
F'nlb.-l • ' ' F-l 

2P0, 1 < n =£ N 

There are two special cases of the system depicted in Figure 15-4 which are worth 

mentioning. One of these is the class of models in which the pool of potential 

customers is finite, sometimes referred to as machine repair problems. So far, the 

Figure 15-4. A state-dependent service and arrival rate model. 
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calling population has been assumed to be infinitely large, so that the input process 

did not depend on the number of units in the system. For many industrialapplications, 

the calling population is so small that this assumption is no longer reasonable. For 

instance, it may consist of a limited number of machines on a factory floor, each of 

which may break down. A breakdown represents an arrival, while a repair completion 

represents a departure. Once a machine has been repaired, it reenters the pool of 

potential arrivals. Therefore, each arrival decreases the rate of arrivals, and each 
departure increases the rate of arrivals. 

Let us assume that an operator is in charge of 4 identical machines. On the basis 

ot the hrst tew hours of operation for a new production run (after the operator has 

become thoroughly familiar with the process), the production engineer estimates that 

on the average each machine halts and requires the operator’s attention about 6 times 

per hour, and that the operator takes, on the average, 2 minutes to service a machine 

Both the mterarrival and service time patterns seem to follow approximately negative 

exponential distributions. Can one operator properly handle 4 machines, or is the 
total machine down time excessively large? 

Expressing the arrival rates and service rates for each machine on an hourly basis 

we o tain X = 6, p, = 60/2 = 30. The state of the system refers to the number 

ot machines requiring attention, so that, in terms of the general model in Figure 

15-4, we have N = 4, X0 = 4X , X, = 3X, X2 = 2X, X, = X, and (x1 = p, = £ = 
pH=|x. 1 ^ 

From (15-27), we can find the following steady-state results: 

4! / XV 
p- = ~-H- Eo> for n= 1,2, 3,4 

so that 
(4 - n)!\p. 

Po = 
1 

1 4!/M , 4!/M2 , 4!/^V 4l/xu 
+TiU +oifc 

Since X/p, - 0. 2, P0 - 0.398. The operator is thus idle about 40 percent of the time 

waiting tor machines to require service. From this result, we can find P , the fraction 
or time that n machines require service: " 

P, =|o. 2 (0.398) = 0.319 P2 = 0.191 P, = 0.077 P4= 0.015 

The average number of machines being serviced or waiting for service is 

L = t< = 0.990 
n = 1 

We note that the average arrival rate per hour is not X, but 

N - f np) = X(N - L) 
n = 1 / 

By analogy with the infinite calling population case, L = X(N- L)W. Hence, 

(15-28) I; X(N •_ n)P„ = X 
n = 0 



the average downtime per machine per service request is 

L 0.99 _AAC 

X(N - L) 6(4 - 0.99) 
= 0.0548 hours 

or about 3.3 minutes per service request. During 1 hour of operation, the average 

number of arrivals is 6(4 - 0.99) = 18.06 [by expression (15-28)]. Hence, the total 

downtime per hour for all 4 machines taken together is 18.06 (0.0548) - 0.99 hours 

or 59.4 minutes. Of this time, 18.06W, = 18.06[0.0548 - (1/30)] = 0.388 hour, 

or 23.3 minutes, is spent waiting for service. So, on the average, a fraction 

(0.388/4) = 0.097, or 9.7 percent, of the productive capacity of all machines is lost 

as downtime waiting for the operator. 

Another special case of the system in Figure 15-4 has considerable application 

in the design of telephone systems. Consider this situation. Incoming calls (customers) 

arrive as a Poisson process at a telephone exchange that has a total of S lines (servers) 

available. The distribution of the length of calls is approximately negative exponential, 

with mean 1/p.. , , , . . 
If calls are permitted to wait (blocked calls delayed), an M|M|S model is appro¬ 

priate, so by (15-21) the expected number of lines in use is X/p, the average number 

of calls waiting is given by (15-22), and the probability that a call will have to wait 

is given by (15-20). In this context, (15-20) is known as the Erlang-C formula, after 

the Danish mathematician who first published this work in 1917. 

What if calls that do not find a line available are cleared from the system (blocked 

calls cleared)? Only as many calls as we have lines (S) are permitted in the system, 

so an appropriate model is M|M|S|S. In terms of Figure 15-4, we have N = b, 

X = X, |x„ = np, for n = 0, 1, 2, . . ., S. So from (15-27) 

Since this depends only on the ratio X/p, a 
is expressed in units called erlangs. Thus 

X/p is often called the offered load and 

an 
P = — 

" nil 

The fraction of calls which will be cleared is given by the well-known Erlang-B 
formula, sometimes written as B(S, a). Any call that arrives when all S lines are busy 

will be cleared. The fraction of time when this is so, and hence the fraction ot calls 

lost, is 

(15-29) B(S, a) = Ps 

Surprisingly, (15-29) can be shown to hold for any call length distribution. 
What about more general Markovian systems? Provided the system has a finite 

number of states, there is always the possibility of solving the balance equations 

numerically. As an example of this, note that if we replace the first equation in (15- 

26) with the equation SS-oPn = 1, the entire system of equations can be written in 



matrix form as 
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~K (*■! + n-i) — |X2 
- X, (X2 + p,2) - p,, 

~K-2 (K-l + Pw-l) “M-x 
_ ^N-l H-N 

We could now apply the technique of Gaussian elimination (see Appendix A) 
to find the solution to this system. What if the number of states is infinite? Probably 

the best thing to do is to consider an approximate model on which you have imposed 

a finite but very large waiting space. Provided the original system does tend to some 

steady-state distribution, the differences between its state probabilities and those of the 
finite approximation should be very small. 

15-12 QUEUEING TABLES AND GRAPHS 

The computations of operating characteristics are often extremely time-consuming 

Since they all depend on a small number of parameters, X, jjl, S, and N, a number 

of extensive tables and graphs have been published for the most commonly used 

operating characteristics. These are some of the important ones: 

Hiftier, F. S and 0. S. Yu. Queueing Tables and Graphs. Amsterdam: Elsevier/North- 
Holland, 1979. 

Peck L. G and R N. Hazelwood. Finite Queueing Tables. New York: Wiley, 1958. 
Lists Pn for M|M|S queues with finite calling population. 

Bowman, E H., and R. B. Fetter, Ed. Analysis of Industrial Operations. Homewood Ill • 
Irwin, 1959. ’ 

(1) Graphs of |xWq versus X/fx for M|M|S queues. 

(2) Graphs of optimum number of machines assigned to a service crew as a function of 
machine down cost and labor cost. 

Bhat’l972N TW° MeaSUrCS °f Describing 2ueue Behavior,” Operations Research, March-April 

Most queueing systems are periodically interrupted and then started anew, usually with 
empty queues. In order to determine whether a steady-state analysis can adequately describe 
the behavior of the system during the major portion of its operation, one should know 
how fast the system approaches the steady state. Bhat gives extensive tables that show the 
transient behavior of the system as a function of the number of arrivals. 

15-13 NONEXPONENTIAL ARRIVAL AND SERVICE 
DISTRIBUTIONS 

We have seen that Poisson arrivals and negative exponential service time distributions 

give rise to relatively simple balance equations for the steady-state probabilities. For 
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other distributions, where the probability of a transition depends on the length of time 
that the system occupies a given state, the expressions become much more complicated. 
Yet there are many real-life situations where both the interarrival time and the service 
time distributions are appreciably different from the exponential. 

Although considerable progress has been made in describing the probabilistic 
behavior of waiting line systems with arbitrary distributions, relatively simple expres¬ 
sions for the operating characteristics have been derived only for M|G|1 systems. 

For Poisson input and arbitrary service time distribution, with mean s and variance 
we find for infinite calling populations 

Po=l \s 

Although the probabilities of the other states are not geometrically distributed, there 
is a formula for the mean number of customers in the queue. 

iisii 
THE POLLACZEK-KHINCHIN FORMULA 

. +, Ml \s < 1 15-30) L,- 2(1; 

The other operating characteristics can be found from 

L = Lq + \s L = \W W, = W - s 

The Pollaczek-Khinchin formula suggests another basic principle that holds for most 
systems. Note that for a fixed average service time s, queue length and waiting times 
increase as the variance of the service time increases. Thus, the performance of the 
system can be improved by reducing the variance of the service time. If the variance 
of the service time can be reduced to zero, i.e., an M|D|1 system, then service times 
become a constant and the operating characteristics are minimized, with 

, (M2 
* 2(1 - \s) 

Note that this is half as large as for the equivalent M|M|1 system. 
Although there is no result like (15-30) for arbitrary input processes, there are 

a number of bounds on the operating characteristics available If the service time 
distribution has mean s and variance of, and if the interarrival distribution has mean 
a and variance cr], then for any GI|G|1 queue 

W ^ + fora>s (Kingman’s bound) 
> q 2(a - s) 

Bounds on the other characteristics follow from Lq = Wqla and W = W, + s. 
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Expression (15-31) suggests the important principle that for most queues the 
mean delay can also be reduced by reducing the variance of the interarrival time 
distribution. 

One method that allows us to approximate other distributions while retaining the 
balance equation solution is the method of stages, in which we approximate distri- 
butions by compound systems of negative exponentially distributed stages For ex¬ 
ample, suppose we require a service distribution with mean l/(x and variance Mku}. 

1 his can be produced by assuming that the distribution consists of k exponential stages 
each with mean 1%, i.e., an Erlang-k distribution. ’ 

The state of the system now represents the number of service stages that must 
be completed in order to service all the customers in the system. Thus, state nk + 
; means that there are n + 1 customers in the system and that the customer in service 
has completed k - ; + 1 service stages. Each stage of service completed decreases 
the state variable by one, whereas the arrival of a customer increases the state variable 
by k. 

Suppose the service time consists of three exponentially distributed stages. Tran¬ 
sitions from one state to another are again independent of the length of time a given 
state has been occupied. The steady-state balance equations can be obtained from 
pgure I5'5 ln the usual manner. Of course, the resulting state probabilities, P0, P„ 

c’. ' ' ’ W‘ l Ie rt0 the number of service sta§es required. The probability distribution 
ot the number of customers can easily be obtained from them. The probability of 1 
customer m the system is P, + P2 + P3, the probability of 2 customers in the system 
is P. + P5 + .. ' . - an° so °n- Formulas have been derived for the queue length 
distributions for M|Ejl and EjM|l queues, but more complex stage models will 
usually have to be solved by the numerical method, which we outlined in Section 
13-11. further details of the method of stages can be found in Chapter 4 of Kleinrock 
Volume 1, listed in the references. ’ 

Figure 15-5. Transition diagram for an MjJEjl cjueue. 

*15-14 MARKOVIAN NETWORKS 

Many of the queueing situations we would like to model actually involve a network 
ot nodes around which customers travel, rather than a single service facility. The 
output of one of these nodes may form part or all of the input to the next node. If 
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we consider a model of a large computer system, for example, )obs (requests for service) 
are entered from a number of terminals and stored on disk until they can be handled 
by the central processor. Each job may receive a fixed amount of processing and then 
be returned to the disk unit or some output device such as a hneprinter. Jobs may 
generate requests for data to be read from magnetic tape, or for other programs to be 
loaded into the central processor. , 

Volume 2 of Kleinrock (listed in the references) looks at a number of probabilistic 
models that have been used to study specific parts of this problem There are, however 
very few models that are available for studying the behavior of a queueing network 
as a whole The difficulty is that the stream of customers leaving a particular service 
facility usually cannot be represented as a simple stochastic process. As a result, when 
this stream arrives at the next service facility, we find that we have no formulas 
available to determine its queueing behavior. The output from this node will be yet 

more complicated, and so forth. , 
There is, however, a class of Markovian queueing networks for which steady-state 

queue length’distributions can be found relatively easily. We have a network of service 

facilities for which 

(15-32) 

All external input streams are Poisson. 
Service time distributions at each node are exponential. 
On leaving a node, there is a fixed probability that 
a customer will travel to another particular node. 
There is unlimited waiting space at each node. 

Such a system is an example of a Jackson network. 
In the example drawn in Figure 15-6, external traffic arrives at each ot nodes 

(1) and (2) as Poisson streams with rates -y, and y2, respectively. On leaving (I), a 
customer goes to node (3) with probability p or to (2) with probability (1 - p) - q. 

Node (3) receives all the output from (2). A fraction r of the customers who leave 
node ( 3) go to (2). A fraction s = 1 - r leave the network entirely. The service rates 

at node (i) is |x(, i 1,2,3. . . 
Let us calculate the rate, at which arrivals occur at each of the nodes. Obviously 

= y<j since the only input to node (1) is the external Poisson process. Now 

[input rate to (2)] = (/[output rate from (1)] + r [output rate from (3)] + y2 

Figure 15-6. A simple Jackson network. 
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[input rate to (3)] = p [output rate from (l)j + [output rate from (2)] 

So, in steady state, ! 

X> = 'Yi X2 = qX, + rX, + y2 = p\{ + \2 

These are called traffic equations. 

In general’ if w.e ^ve a system of N nodes and if r„ is the probability that a 

nr r6' f ° n°de/ °n le3Vi?g n°de f and 1 " hjis the probability that he 
H tHe netW°rk permanently> the rates of flow into each node, 

(15-33) 
\ = y, + f Vj* 

;'=i 

or X = 7 + \R 

where X = (X„ . . ., XN), 7 = (yJf . , «yN); and R = 

lN 1 •NN 

In our example, 7 = (7,, 72> 0) and R 
0 q p 
0 0 1 

0 r 0 
. We can again solve this 

system of linear equations by a technique such as Gaussian elimination (see Appen- 

So far we have only used the concept of conservation of flow in the network. It 

urns out, however, that we can write down the joint steady-state queue length dis- 

mxb 'iT/l - V ^ ' N’ ji bC tHe probability that the "umber of customers at 

1 _ .An] /An 
MW \fW 

Theorem. For any network satisfying the conditions (15-32), 

05-34) pim,.iN) = (i-A,)W“('1 

V h/W \ vj\th 
provided X/p,, \2/p2, . . XN/p,N < 1. 

it Pri?°fil,hiS rCSult requires rather complex notation, so we will omit 
fnrl f eaSlIy cbeck,that ltcappe^rs correct by writing down the balance equations 

fo! them P C netW°rk 3nd venfymg that the appropriate form of (15-34) is a solution 

Note that (15-34) can be written as 

p(Kk2,...,kN) = pi(k1)p2(k2)...pN(kN) 
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where PIk) is the queue length probability distribution of an M|M| 1 queue with arrival 

rate V and service rate |x, We thus see that in steady state the queue lengths are 

independent. However, it is not true that each node is an M|M|1 queue, as internal 

flows in the network may not be Poisson. Thus, the steps required to determine the 

joint queue length distribution for a network satisfying the conditions (15-iZ) are 

1. Set up the routing matrix R. 

2. Solve the traffic equations A. = 7 + X.R. 

3. Check that \ < p;, i = h ■ ■ ■, N. 

Then the joint steady-state queue length distribution is given by (15-34). 

In our example, provided 7, < (ij, (7i0 “ Ps) + h)1* < Pz’ ("Yi + < P'3’ 

P{K K *,) = 

{'-Mi'-MM 
If the network has no external input or output streams and if it contains a finite 

number of K customers, then the rate at which customers arrive at a node will depend 

on the service rates of the nodes that feed it and the routing matrix. In this case, tor 

any possible state (*„ k2, . . .,*„)> {^ + k + ■ ■ ■ + K = K), 

(15-35) P(K K ■ ■ ■- *n) = C(x1)h(x2)h- • -(xn)*n 

where x„ x2, . . ., xN are the solutions of the traffic equations, 

(15-36) PT, = 1 IW,, for i = i,. . ., N 

and where C is a normalizing constant such that the sum of the probabilities over all 

possible states is 1. Note that the system of equations (15-36) is not well determined. 

One of the x/s must be given some arbitrary value to solve the system. 

Conditions (15-32) can be weakened slightly and yet still lead to an easily cal¬ 

culated joint queue length distribution. The possibilities include multiple servers at 

some nodes, state-dependent service rates, and state-dependent external arrival rates. 

Details of some of these can be found in Kleinrock. . 
Although the class of queueing networks for which solutions are known is rattier 

limited, it may well be worth trying what you feel is the “nearest” Jackson network 

model The only alternative to an approximate analytic approach, namely simulation 

of large (more than 10-node) networks, can be very expensive, especially if some ot 

the distributions involved are not exponential. Experience indicates that it is often tar 

too expensive to run the simulation long enough to find joint distributions such as 

that of (15-34). Often, all that can be produced at reasonable cost is an average queue 

length at each node. Manipulating the parameters of an appropriate Jackson network 

model may give as much information with less effort, with greater speed, and at tar 

lower cost. 
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EXERCISES 

15.1 A coal mine operates its own barge loading port, which consists of one berth with 
automatic railroad unloading facilities. 

(a) Past records of barge arrivals over a 200-day interval show the following: 

Number of arrivals per day 0 1 2 3 4 S a 

Number of days 18 61 60 37 16 

For what levels of significance would you accept the hypothesis that the input 

enonS,?1^01^50'2 D° ^ that the Poisson aPP™imation is good enough? What is the average arrival rate per day? 5 

(b) frequendef ^ ^ °CCUpancy times for bar§es show *e following cumulative 

Fraction of working day 

15.2 

15.3 

15.4 

0-1 0-2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Number of 

shorter occupancy times 24 42 53 63 75 85 90 94 98 100 

The average berth occupancy time is about one-third of a working day. For what 
evels of significance would you accept the hypothesis that the occupancy times 

are approximately exponentially distributed with mean 1/3? What is your conclu- 
sion? H,nt; To determine the theoretical frequencies for the negative exponential 
lsjibution with parameter p. - 1/3, use the property that P(a t <b) = 

function * ^ ^ ^ °f ^ C3n be °btained from tables of the exponential 

Consider exercise 15.1 again. Assuming that the average daily arrival rate is 2, and 

.IToTrZd1IT" “,he ,imes for loadin® barse!",h ■ 
(a) Determine the steady state probabilities for this queueing system. 
(bj What fraction of time is the berth empty? busy? 

(c) What is the average number of barges waiting to be loaded? 
(d) What is the average waiting time per barge arrival? 

The mine management of exercise 15.1 considers installing new rail unloading facilities 
that would accelerate the barge loading process. Two types of facilities are considered- 

nSn “ST3®L g£ l°ading time °f °'25 workln§ day and a da% operating cost 
ot 8800, and the other with an average loading time of 0.2 working day and a daily 
operating cost of $1000. The present system has a daily operating cost of $700 and 
the cost of barge waiting and servicing time is $500 per day/ Determine the operating 
c aracteristics required to compute operating costs for each of the three systems (the 
present one and the two new alternatives). Which installation has the lowest total daily 

A car wash at a busy shopping center finds the following arrival frequencies of cars 
requesting service per hour. Test if the arrival pattern is Poisson. 
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No. of arrivals 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

15.5 

15.6 

15.7 

15.8 

15.9 

Frequency 1 3 5 14 20 41 68 73 77 65 52 29 20 18 6 5 3 

The car wash has only a single lane, and the next car cannot go into the wash until 
the car in front is completely finished. Because of various types of service reques s 
service times vary substantially. Although extremely short service times do not occur 
he assumption of negative exponentially distributed service times seems adequate. On 
the average,10 cars'can be served per hour, while the car arrwa pattern follows the 

data of oroblem 15.4. Define a suitable queueing model and hnd 
t?*,7W*h idle) and avenge number of hour, ea, wash ia ,dle m a 10-hou, da,. 

(b) Average number of cars waiting to be washed. 
(c Total average waiting time of all customers arriving in a 10-hour day. 

Assume now that the car wash has a capacity of only 6 cars including the car being 

washed. Cars arriving when the system is full are lost. Reformulate the model 

SVcar wash idle) and number of hours in a 10-hour day car wash idle. 

(b) Average number of cars lost in a 10-hour day. 

(c) Average number of cars in the system. 
(d) The probability of finding more than 2 cars in the system. 
(e The net profit per 10-hour day, if each car brings in an average revenue of $5, 

the fixed cost of operating the facility is $10/hour, and the variable cost when the 

facility is washing a car is $ 16/hour. 

A downtown car service station has facilities for a maximum of 4 cars being 
or waiting for service on its premises. Past experience indicates that no potential 
customers join the queue once these 4 places are filled. The arrival rate of customers 

is 24 per hour during off-peak hours, and the input process is approximately Poisson. 

The service times are exponential with a mean of 3 minutes. 

(a) Find the steady-state probabilities for this system. 

(b) What is the average idle time of the attendant? 
(c) What is the fraction of customers lost? If the average profit per customer is $0.80, 

what is the lost profit per hour? What is the average waiting time of an arrival? 

An office has two inward telephone lines. One erlang of Poisson traffic attempts to use 

the lines, and the mean length of a call has been found to be 3 minutes. 
(a) If blocked calls are delayed and call lengths are exponential, what is the probability 

that neither of the lines are busy? ... , , . , , . • . 
(b) If blocked calls are cleared, what fraction of calls will be lost, and what is the 

probability that neither of the lines is busy? How would your answer change it we 

found that the standard deviation of call length were 2 minutes? 

A small repair shop has been found to have the following characteristics. The shop 
iTnot accept any new work when there are 3 jobs in the shop. Of the 2 workers 
in the shop, one takes an average of half a day for each repair ;and the oAer takes an 
average of a third of a day. The same worker who started a )ob will finish it, and the 
faster worker gets called on first. Requests for service arrive at a rate of 4 per day. 

distributions are negative exponential. , , f 
(a) Draw a transition diagram and write down the balance equations for the s 

the svstem (you will need at least five states). 
(b) Express the balance equations in a suitable matrix form of the type x - a 

could be solved by Gaussian elimination. 
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15.10 

15.11 

15.12 

Consider the example in Section 15-11. Determine the average number of machines 
down, the average downtime per service call, the total average downtime per hour for 

machines with 3, 4, and 5 machines supervised by one operator. If the firm operates 
60 machines of this type, if each operator has a cost per hour of $6, and if the lost 
profit per hour of downtime per machine is $20, what is the optimal number of 
machines supervised by each operator? P ■ ° 

iTS TT f? 3 riVCr,dam 'T System at an average rate of 4 per hour. Each lock 
deals with traffic m only one direction to reduce the danger of collisions. The arrival 
p ttern is approximately Poisson. The time to enter a barge into the lock, raise the 

disputed w fo ’ 3 I' ' W3ter !eVe‘in the lock is approximately normally 
distributed, with a mean of 10 minutes and a standard deviation of 3 minutes. 

(a) Find the average fraction of time the lock is busy 

(b) Find the average number of barges waiting to be raised and the average waiting 
time per service request. 6 B 

(c) If, by redesigning the water valve system, we can reduce the standard deviation of 

service times to 1 minute, by how much will this reduce average waiting time per 
service request? & F 

(d) If the standard deviation of the arrival time were 1 minute, how would this tend 
to change your answer to (b)? 

Consider the service station problem in exercise 15.7. Assume now that customers balk 
fo ., re use to join the queue) in the following manner: All customers join if fewer 

ofnnt2 Tl aref‘n the !frvlfStatl0n- 1(2 cars are in the service Nation, only 75 percent 
potential customers decide to join. If 3 cars are in the service station, only 50 percent 

join and if 4 cars are in the station, no additional customers join. Arrival and service 
distributions are otherwise unchanged. 

(a) Construct a transition diagram for this system and attach transition rates to each 
arrow. 

(b) staTeiVperobaebilitiesbalanCe °" ^ °f thiS diagram' Find the Steady- 

(c) What 'S T a,Verage ‘dle time °f the attendant? What is the average number of 
customers lost? 7 

(d) What is the average number of customers waiting for service? What is the average 
waiting time per customer? ® 

An operator supervises 2 identical machines. Each has an arrival rate of X per hour 

with negative exponential interarrival times. Service times follow an Erlang distribution 
with k - l phases and a mean service time of l/p,. 

^ arrow™0* 3 tranSiti°n diagram for this system and attach transition rates to each 

(b) Derive the state balance equations on the basis of this diagram for X = 1 and 
fx — 2. Find the steady-state probabilities. 

S Sf3* 'S T aVCrage idle time of the operator? What is the busy time? 

h l wlTT nUmber °f machineS down ( = bein§ serviced or waiting for 
service)? What is the average arrival rate? What is the average downtime per service 
request. What is the average total downtime per hour for both machines? 

Consider again problem,15 5. A more careful study shows that the service time is 
approximately normally distributed with a mean of 6 minutes and a standard deviation 
of 2 minutes. Answer questions (a), (b), and (c) under this new condition. What effect 
will this new condition have on the length of an average idle period? 

15.13 

15.14 
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15.15 A firm finds that it is running 2 separate service facilities, each operated by a si g 
repairperson. Requests for work arrive at a rate of 3 per hour at one facility and at 2.5 
Jr hour at the other. The mean service time at both places is 15 minutes. No new 

work is accepted after 4 p.m. Friday, and any work remaining then has to be done on 
overtime rates at an additional cost of $10 per hour per person. Assuming exponential 

distributions and steady state. 
fat Calculate the expected additional overtime cost each week. 
(b) The firm calculates that it will incur an extra cost of $10 per week for traveling 

if the 2 facilities are pooled. Considering any overtime reduction that may occur, 

should the firm pool the facilities? 

15 16 A simple queueing network consists of 3 nodes. External Poisson streams arrive at 
nodeTl and II with parameters y.and respectively. A fraction p of the customers 
leaving Hob the queue at II, while q = (1 - #>) go to III. A fraction r of the customers 

leaving II go to I while s = (1 - r) go to III. The service time at node . is negative 

exDonential with mean 11^, and there is a single server at each node. 

(a) Set up the traffic equations for the network and solve them so as to find the steady- 
state queue length distributions. What extra conditions on the network do we need. 

(b) Write down an expression for the average number of customers in the system in 

steady state. 

15.17 Consider a three-node network around which customers must travel cyclically. T e 

service time at node i is negative exponentially distributed with mean \l\x„ i , ,■ ■ 
If there is only one customer in the system, set up balance equations to calculate the 
fraction of time he or she spends at each node, and solve them. Check that your 

ancwpr asrees with that given by the use of (15-35). 
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Simulation 

To simulate is to duplicate the dynamic behavior of some aspect of a system, real or 

nrooosed by substituting the properties of another system for the essential properties 

SXtt™ SXA. operations research w« usually »£ 
ematical model to represent the properties of the system simu ated. This descrip 

mathematical model is then used to trace step by step how the system respond to 

various inputs provided to the model. Simulations are thus input-output models. Thi 

means that simulations are “run,” rather than solved. 
Through simulation, the operations researcher has at his or her dlsPos^ la 'f 

oratory technique for observation and experimentation, which has long been part 

the scLnhfic methods in the physical, medical, and biological sciences. On a conn 

outer the viability of proposed policies for operating a system can be explored and 

compared with relative ease. Practical evaluations would take years to accomPhs J 
real-life observations and would be very costly. Simulation often provides the only 

nractical vehicle for experimentation with real or proposed systems. 
P The basic concepte involved in simulation may look deceptively simple. However, 

putting them into practice to obtain valid and reliable results is far from simple. 

Performing simulations is extremely time-consuming. Therefore, for all practical pur 

noses simulations are always performed on computers. 
P Nowhere in applied operations research does the systems approach appear as 

naturally as in simulation. Much of the discussion in Chapter 1 on systems and mode 

building within a systems framework is therefore directly applicable to this chapter 

Before embarking into this chapter, you may want to review the relevant sections of 

Chapter 1 in particular Sections 1-5 and 1-6. When we discuss validation of simu¬ 

lation studies in Section 16-7, it may also be helpful to refer to the sections on testing 

and sensitivity analysis, Sections 1-17 and 1-18. . A11 
In one short chapter, we cannot do justice to a subject as vast as simulatiom A 

we can do is to introduce the basic aspects and demonstrate them with some simple 

examples. For a detailed treatment, we refer you to the reference listed at the en 

of this chapter, particularly the excellent text by Shannon (1975). 

458 
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16-1 SIMULATION OF AN INVENTORY SYSTEM 

The basic principles of simulation will be explored initially by simulating the per¬ 
formance of a proposed inventory control model. As discussed in Chapter 1 such a 

ZtT H 6 ?3rt °f tCSting the theoretical model as to its suitability before 
nn-sciW m§ °lts “implementation. In order to provide some appreciation of the realism 
possible m simulation in contrast to the simplifications and approximations needed 

“*lhei& "inven,0,y COMro1 mo«Pres'nted 

TV A wJ°1“ale distributor proposes to use that model for all major products stocked 

h3S the fo low^ ^ Whenever the inventory position (i inVentory 
on hand plus any replenishments outstanding) fells to or below a reorder point r Z 
replemshment of size Q is placed. Before implementing this model, the wholesaler 

mchi test! How?31" h0WKWel1 It.Perf?rmS in practice’ Simulation is the tool for sucn a test! How do we go about this task? 

n, Wte ,Selfct a ^ndom sample of an appropriate size from the population of all 
produc s to be controlled by the (Q, r) model. For each product i in the sample we 
assemble all input data needed. These are then used to compute the optimaTcontml 
parameters Q,. and r. Next, we construct a simulation model for the inventory behavior 
over turn Once we are satisfied that the simulation model properly reflects the system’s 
dynamic behavior, we simulate the operation of the inventory for each productm the 
random sample based on its control parameters Q; and r. This will allow us to collect 
performance statistics on average annual costs, on the fraction of lost sales, and on 

f Z (T£XTSd mftereSt Fin/Hy’ We extrapoIate these statistics to obtain esti- 
by the (Q^r) modd * Perf°rmanCe for the popu,ation of all products to be controlled 

Let ^ now go through these steps for a particular product in the sample. From 
P.,, ^fCOrds, of customer orders, the daily demand is seen to be a random variable 
with the following empirical distribution: 

_0 1 2 3 ^ 5 6 7 8 9 10 li 12 13 

Frequency 0.26 0.14 0.12 0.10 0.08 0.07 0.06 005^04 0.03 0.02 0.01 O^oToOl 

The daily demand distribution is extremely skewed, having an average of 3 2 
units per day and a standard deviation of 3.2. Similarly, past records indicate that the 

rar aTlfwT heeaf ll,me averages aboutf10 workin8 days, but, in fact, is a random 
variable with the following approximate frequency distribution: 

Lead time 7 8 9 10 11 12 13 H 

Frequency 0.07 0.12 0.18 0.25 0.20 0.10 0.05 0.03 
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These data could be used to derive the lead-time demand distribution, f(x) 
required in the (Q, r) model. However, in order to reduce both the cost of data 
collection and the cost of computations, the wholesaler decides to approximate the 
lead-time demand distribution in the model by a normal distribution based on t 
average lead time of 10 days. Assuming that demands on consecutive days are in e- 
pendent, this gives a lead-time demand distribution with a mean of 10(3 2) 32 an 
a standard deviation of 3.2 (VTO) = 10. (See Section 0-7 of Chapter 100 Although 
it is true that for a lead time that is sufficiently long the lead-time demand distribution 
will be approximately normal, no matter what the shape of the daily demand distri¬ 
bution for highly skewed distributions a lead time of 10 days results in a rather crude 

approximation, particularly at the tails of the distribution. 
From the daily demand distribution we can also estimate the average annim 

demand R. For 250 working days per year, R is 250(3.2) - 800. Other data needed 
are as follows. The value of the product is $10 per unit, the annual invejj)n' holding 
cost per dollar invested is $0.20, the inventory replenishment cost is $4. 50 per re¬ 
plenishment, and the shortage cost is $1.50 per unit short. With these simplifications 
the (Q, r) model yields the following optimal control parameters: Q - 6U and 
r* = 48 with a theoretical total expected annual cost of $157.20. 

The next step in our task is to build a simulation model of the inventory system. 
We are interested in its cost performance over time. Since costs of an inventory system 
depend on the amount of stocks on hand, the number of replenishments, and the 
amount of shortages, it is these aspects that we want to observe over time. The model 
should thus describe in detail how the inventory on hand for a given product changes 
each day in response to incoming customer orders and to shipments received from 
suppliers and what conditions trigger the placement of an inventory replenishment. 
This system description will consist of simple material balance equations that keep 
track of the amount of stock on hand over time and the amount of goods on order 

from suppliers over time. Conditions that trigger certain actions are expressed in the 
form of “if then ...” statements. We also have to supply the model with a 
sequence of customer orders over time as well as a sequence of replenishment lead 
times. Alternatively, we could build into the model mechanisms that generate these 
sequences from some other source of data. . 

This model could take the form of a detailed flow chart. We have done this in 
Figure 16-1 for our example. To construct this flow chart, we may have to split what 
in the real world looks like a single operation or a single decision point into a number 
of more detailed intermediate steps, which, in the simulation, are followed in a rigid 
sequence. The reverse may also happen—a sequence of real-life operations may be 
combined into a single step. Similarly, we may have to introduce steps that have no 

real counterparts. .. . . f 
In our case, the daily control procedure starts with the processing of inventory 

replenishments received on that day (usually received in the morning) and the pro¬ 
cessing of incoming customer orders for the day. The updated inventory file hsting 
all stock levels and outstanding replenishments, is then reviewed. If the stock level 1 

plus the outstanding replenishments y for a product have been reduced by sales; to t e 
reorder point r, or below, a replenishment of size Q is scheduled. Translating 
sequence of steps into the diagram of Figure 16-1, we arbitrarily assume that replen- 



Figure 16-1. Flow diagram of inventory system 
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ishments received are added to the inventory prior to the processing of incoming 
customer orders (points 2 and 3). These are processed next (points 4 5 and 6) and 
finally a decision as to whether or not to replenish inventory is made (points 7 and 
8). Since we do not wish to keep track of each individual customer order, all incoming 

customer orders for the day are processed at the same time (point 4). 
In order to trace the events in detail over simulated time, two files or records 

have to be kept and updated: an on-hand inventory file and an outstanding replenish¬ 
ment file. If we are given a beginning on-hand inventory balance of size i, a hie o 
outstanding replenishments with their due dates, and a sequence of daily demands- 
one number for each day—then we can simulate exactly what will happen in this 
system over time. On the basis of such a flow chart, a computer program can be 
written to perform the actual simulation. Performance statistics for a simulation run 
are compiled from the information recorded in the on-hand inventory file the out¬ 
standing replenishment file, and auxiliary files specifically created to collect status 
reports on the system. An example of an auxiliary file is the file of lost demand 

Let us now simulate this system. Suppose that over a 100-day sequence, dai y 
demands are those shown in column 3 of Table 16-1. We have a beginning inventory 
of i = 60 (as shown in the on-hand inventory file of columns 1 and 4), and we assume 
that there are no replenishments outstanding, i.e., y = 0 (as shown in the replen¬ 
ishment file of columns 6 through 9). Starting on day n = 1 at point 1 in the flow 
diagram of Figure 16-1, we leave point 2 via the No branch. Since x = 3 is less han 
i = 60, we proceed from point 4 via point 5 to point 7. The on-hand inventory, 
i = 57, is larger than the reorder point, r = 48, and we advance to 9. At point 9, 
the simulated time is advanced by one day, and we start a new cycle for day n - Z 
from point 1. Verify that this same path repeats itself through day n - 6. Un day 
n = 7, we branch out from point 7 to point 8, since the sum of the on-hand inventory 

Table 16-1. Simulation of inventory system 
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plus the outstanding replenishments (= 47) is less than the reorder point r = 48_ 

Therefore, a replenishment of size Q = 60 is placed on day 7 (point 8). Let us assume 

that this replenishment will be received on the morning of day 15 and is available to 

satisfy demand on that day^ Skipping to day n = 15, the process takes tile Yes branch 

from point 2 and the on-hand inventory available is updated from 15 to 75 After 

3 ,a“ ded"cled fcr llf ty ending on-hand inventory is shown as 72. 

on day 93 “ P'0CeSS h'°U8h fc' Some addition111 daVs- Observe what happens 

The cost of this particular simulation run is obtained as follows: 

Ordering cost: 6 replenishments at $4.50 <r77 nn 

Shortage cost: 6 units short at $ 1.50 

Holding cost: Average daily ending inventory 47.55 costed for 100 out of 

250 working days per year at an annual rate of (0.2)($10.00) Q4 

$74 04 
Extrapolated to an annual basis (of 250 working days) $185 10 

The extrapolated annual cost of this simulation differs substantially from the 

theoretical cost. Let us emphasize that this does not mean that something went wrong 

fn/thi S1 nn f10n' ^ l\°n]y °nC tna ’ 3nd CVen 3 short one- The exact results obtained 
tor this 100-day simulation run are unique to the particular sequence of daily demands 

and replenishment lead times used. Had we used a different set of demands, we would 

have found a different set of results. But, if the simulation properly reflects the real- 

world processes, and if the input data are representative of the real world, then these 

results are also representative of the type of answers usually experienced in the real 

world. However, to be ab e to draw a valid conclusion, we usually need many more 
runs covering a sufficient length of time. 

Let us now look more formally into the structure of simulation models. 

$38.04 
$74.04 

$185.10 

16-2 STRUCTURE OF SIMULATION MODELS 

A simulation model describes the dynamic behavior of a system over time In the 

terminology of simulation a system is composed of entities-^omponcnts or things 

whose behavior ,s traced through the system. Entities may belong to various types or 

c asses such as people, machines, goods, or documents in the system. They may be 

abstract, such as pieces of information or signals. Entities have identifying ^attributes 
such as their size or their service needs, that characterize their behavior in the system! 

he entities of a given class will usually have the same set of attributes—but their 

attribute values will not necessarily be identical-and will tend to follow similar 

ehavior patterns over time. Entities sharing some temporary attributes or some pur- 

pose at given stages in the simulation may belong to sets or files, which may also have 

attributes, such as capacity For instance, a queue of people waiting at a service 

counter represents a file. There may only be room for at most N people in front of 
me counter. 

^ ,Sim^3ted time advances, new entities may be created and existing entities 
canceled, entities may change their file membership, leave a file, enter a file. Entities 
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may engage in activities, either singly or jointly with other entities During the course 

of the activity, entities jointly engaged in it are bound to one another. For instance 

a machine operator (entity 1) may set up a machine (entity 2) for a new ]ob. During 

the setup (activity), the two entities are bound together. They cannot engage indivd- 

uallyt oLr activities at the same time. Once the machine has been set up the 

operator and machine entities separate again. In simulation, activities are defined by 

their starting time and their finishing time. Activities may change the attributes of 

entities Similarly, when entities change file membership some of their attributes 

may change. At any given point in time, the system simulated has a given configu¬ 

ration defined by the ongoing activities of entities, the file membership of entities, 

and entity and file attributes. This is the state of the system. Any change in the state 

of the system is an event. The sequence of events occurring represents the dynamic 

behavior of the system. f 
The components of a simulation model are therefore 

1. Entities and their attributes; 

2. Files of entities and their attributes; 

3. Activities of entities; 
4. Events or changes in the state of the system. 

To fix ideas, consider the simulation of 2 car ferries between 2 ferry terminals 

A and B, as shown in Figure 16-2. Cars represent one class of entities, their length 

and weight being some of their attributes. The 2 ferries form another class of entities, 

with deck space and traveling speed as their attributes^ The 2 docks represent files 

they contain entities (cars) sharing a purpose (namely, the intent to cross by ferry) a 

all having the temporary attributes of waiting. The docks have attributes, such as t e 

parking space. Arriving at one terminal and leaving from another are activities. Ferries 

and cars engage jointly in the activity of crossing from A to B and vice versa. During 

this activity, the ferry and the cars it carries are bound together. The state of the system 

is described by the number of cars waiting at each dock for a crossing; the status ot 

each ferry, i.e., whether it is loading or unloading at a given dock and the number 

of cars currently on the ferry, or whether it is crossing and the direction of crossing 

and the number of cars it carries; and the events already scheduled to occur The 

dynamic phenomena of the system are given by the arrival pattern of cars at each 

dock- how cars proceed from the dock to the ferry and vice versa; and the operating 

Dock at A 

Cars depart 

Figure 16-2. Car ferry system. 

Ferry 

Cars arrive 

Dock at B 

Cars arrive 

Cars depart 
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ltTt?!1? ferdes’ SUCh^S traveling speed' which may be a Unction of their 
load, and the berthing process. These give rise to events, such as arrivals of cars at 

docks the departure and berthing of ferries, the loading and unloading of cars 

,, - n \ invelJory simulation, one class of entities consists of the daily demands 

f; leintthe ***** of interest to us. Another class of entihes is given 

the on hS T ’ a ^ °,f $iZf 3nd lead time- We mai"tain hies: 
the on-hand inventory file and the replenishment file. The first one is in the form 

of a simple counter, since we do not keep track of individual units of products in stock 

We also introduce additional counters needed to measure the system’s performance' 

These counters are the amount of lost demand, the inventory level accumulator 

needed to compute the average inventory level, and the replenishment counter (none 

of which are shown explicitly in the flow diagram of Figure 16-1). The events are the 

occurrence of the darly demand and the placing and the receiptof repSmel 

Events may be imposed on the simulation from outside, i e they are specified 

demand ^ ^ ^ 3nalySt' The timetable of the ferries'or the daily 
demands in the inventory simulation are possible examples. Such events are referred 

Llf'TT T te,matively’ events ma>' be seated by the simulation model 
tself without explicit outside intervention. They are called endogenous events. They 

are a cons^uenee either of an exogenous event or of another endogenous event. The 

..tart of unloading a ferry is a consequence of its berthing, the berthing is a consequence 

of its departure on the opposite terminal, and so on The placing of an inventory 

.eplenishment is a consequence of a daily demand depleting stocks below the reordel 

If all events including the creation of new entities and their attributes, are either 

exogenous inpu s into the simulation or deterministic consequences of other events, 

h?, simulation is deterministic. For instance, if the sequence of daily demands 

• d |ead times to be used in the inventory simulation are both actually experienced 
inputs taken from the accounting records of the firm, and hence the twQP types of 

determ,"to1!5 °f P 3CU? 3 ruePlenishment and receiving a replenishment are 
deterministic consequences then the simulation is deterministic. There ate a number 

of important applications where deterministic simulations are a useful tool of analysis 

Simulations of the output mix of a refinery, as a function of the input characteristics 

of the crude oils and the instrument settings of the various processing Units in the 

refinery, are^deterministic Many corporate financial planning models translate fore¬ 

cast by product by period into production schedules, purchasing schedules for raw 

SSilTrfbrflP0S1t°nS’ VTbj and fixed Production costs, and, ultimately, 
3th detailed cash flows by period and profit-and-loss statements. These models are 

deterministic simulations. The effects of uncertain aspects in the system are explored 

by considering various deterministic scenarios for possible demand forecasts and other 

random factors. Another example is the simulation of rail operations. For instance 

traffic flow in a given network of railroad lines is simulated for various fixed departure 

timetables of trains at terminal points or important transfer stations in the network 

exartlv thTT slmuIatlon-thefame set of exogenous inputs will always result in 
actly the same sequence of endogenous events and hence the same simulation 
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A larger portion of simulations deal with systems that are subject to random 
phenomena. If these are modeled in the simulation, we have a stochastic simulation 
or Monte Carlo simulation. A stochastic simulation model has certain features that 
allow endogenous events to be generated internally by randomization devices, he 
randomness may be in terms of the timing of events (including the creation of new 
entities), in terms of initial attribute values of these entities or changes in attributes 
at later stages in the simulation, or in terms of both. For instance, rather than specify 
a sequence of demands and lead times, we use as input the probability distribution 

of daily demands and the probability distribution of lead times, and generate random 
demands and random lead times during the simulation. Similarly, the arrival times 
and characteristics of the cars may be generated internally in a simulation of a ferry 
system, using probability distributions derived from past actual observations of car 
arrivals. The randomization in a stochastic simulation is achieved with the help of 
pseudorandom numbers. Different sequences of random numbers will generate dif¬ 
ferent sequences of endogenous events for the same set of probability distributions and 
exogenous events. Hence, the simulation output will also differ from simulation to 

simulation. 

16-3 RANDOM NUMBERS AND OTHER VARIATES 

What are random numbers? They are lists of the digits from 0 to 9 that appear to be 
drawn as completely independent random samples from a uniformly distributed ran¬ 
dom variable that can assume integer values 0 through 9. Table 16-2 is a short list 

of 5-digit random numbers. ,, 
The most popular methods used to generate random numbers are the additive 

and multiplicative congruential methods. The multiplicative congruential method 
finds the nth random number rn, consisting of k digits, from the (n - l)th random 

number rn-1 by using the recurrence relation: 

(16-1) rn m prn_x (modulo m) 

where p and m are positive integers, p < m, m - 1 is a fc-digit number, and modulo 
m means that rnis the remainder when prn_i is divided by m. Therefore, rn and Prn-\ 
differ by an integer multiple of m. The first random number r0, or the seed, is specified 
as an input. This method will generate a sequence of fc-digit random numbers with 
period h < m at which point the number r0 occurs again, and hence the sequence 

repeats itself. 

Table 16-2. Uniform pseudorandom numbers 

59210 33177 29451 67204 65736 
79603 75509 41442 90224 50486 
98778 18247 75067 91908 97245 
27816 54589 46761 16070 73746 
00107 21323 95397 91528 89117 

86395 57187 13396 01194 

65290 65118 62067 04552 

01432 36600 71223 29188 

48897 84507 97626 25579 

16541 61308 91074 83879 

28069 
19342 
51333 
78945 
03065 
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Consider an example. Suppose p = 37, m = 100, and r 

is a 2-digit number, this will yield 2-digit random numbers: 
53. Since m -- 1 

ri - ^(modulo m) - (37)(53)(modulo 100) = 1961 (modulo 100) =61 

h = (37)(61)(modulo 100) = 2257 (modulo 1Q0) = 57 

r, = (37)(57)(modulo 100) = 2109 (modulo 100) = 09 

and A*. *qutnot continues »(33, 21, 77, 49, 13, 81, 97, 89, , . You may wish 
to verily that the period is 20. Note that the low order digit is far from random 
repeating the sequence 3, 1, 7, 9. Therefore, great care has?o be taken in the iZl 
parameters used. There are certain principles that help in the proper choice of r. and 
p tor any given value of m, so as to maximize the period h. 

Clearly, the methods commonly used to generate random numbers are not ran- 
om processes, since the sequence of numbers generated is completely determined 

by the input data used for the method—hence the term pseudorandom numbers 
It is convenient to express these uniform random numbers in the form of a 

fraction between 0 and 1 with a desired degree of precision of 6-digits. This is achieved 
by dividing r by m i.e., un = r im is a uniformly distributed random decimal fraction 
between 0 and 1 with at most k significant digits after the decimal point. 

Most computer systems provide random number generator subroutines in their 
software packages that will generate uniform random decimal fractions between 0 and 

. I hus, you will hardly ever have to write a computer subroutine to do this. 

„„ vh n fk basis of e uniform random decimal fractions, we can generate random 
variates (observations from a statistical population) for any probability distribution. 

is can be seen from Figure 16-3, which shows the cumulative distribution function 
of some random variable. With each value of the random variable on the x axis we 
associate a value of the cumulative distribution function on the y axis. The cumulative 
distribution function is a transformation of the values of the random variable onto the 
interval [0, 1], In fact, it can be regarded as the transformation of the random variable 
o a uniformly distributed random variable on the [0, 1] interval. By taking the inverse 

transformation, we can therefore generate random variates for any desired probability 
d^tributiom For example, for the distribution depicted in Figure 16-3, the fraction 
u. />4o produces the value x0 of the random variable. 

This inverse transformation can sometimes be done analytically, such as for the 
uniform triangular, ox negative exponential distribution. For instance, for the negative 
exponential distribution with density function fix) = A*"*, x 3= 0, the cumulative 
distribution function is 

(16-2) Fix0) Xe kx dx = 1 — e~kxo 

from which we obtain the inverse transform 

(16-3) x - ~l0ged ~ F(*o)) 

where l0ge is the natural logarithm. Hence, if un is a uniform random decimal fraction 
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Figure 16-3. Use of uniform random decimal fractions to generate variates from any arbitrary 

distribution. 

y 

XQ 

between 0 and 1, then the exponential variate associated with u„ is 

x„ = 
-logjl - tO 

(16-4) 

Random variates from Erlang distributions of order k or gamma distributions 
with parameter a = k integer (Section 10-6) can be obtained as the sum of* exponential 
variates. Random variates from a normal distribution can be j?enenated by taking 
advantage of the central limit theorem (see Section 10-6) which states that for large 
samples the sample mean x is approximately normally distributed, regardless oft e 
distribution from which the observations were obtained. Thus to generate a normal 
random variate or deviate, we simply compute the average of a number of uniform 
random decimal fractions, usually 12. Since a uniformly distributed random variable 
over the range [0, 1] has a mean of J and a variance of B, the sum of 12 such variables 
has a mean of 12(4) = 6 and a variance of 12(4) = !• Hence, we obtain the random 

variate z from a standard normal distribution N(0, 1) as 

= 2 “n “ 6 (16-5) 
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1 his is the approach used by some computer subroutines that generate approx- 
mate normal random vanates from N(0, 1). The value of z generated by (16-5) can 

*T be USed t0 °btain 3 normaI random variate with mean p and standard deviation 

(16-6) X = jX + zcr 

If no algebraic expressions exist or if we are dealing with discrete variables it is 
a ways possible to use a tabular method. Let x - 1 and x be two consecutive v’alues 
of a discrete random variable X, and let F(x - 1) = P(X « x - 1) and F(x) = 

HX 5 x) be ™ cor^esP°nding values of the cumulative distribution function. Given 

rtrmma:dT deCimu f[3Cti0n ° * u < l> the associated random variate is 
found as that value x such that F(x - 1) « « < F(x). Thus, with each value of x 
we associate a range of uniform random decimal fractions of size P(X = x) If F(x) 

“ TC ? Wl‘h, 7 ,0 * siBni,fica"‘ diSits a#" decimal point, wo me uniform 
random dec,mo fractions with i significant digits. The range of u for each „ is 

I jl", ]. where for x = 0, F(x - 1) = [I (specified as t zeros). 
Consider the daily demand distribution listed in Section 16-1. Table 16-3 lists the 
correspondence between the values x and the ranges of 2-digit uniform random decimal 
fiactions. Now, refer to the table of pseudorandom numbers. Table 16-2. The first 

1 dlglts.ot tl1ie table yield a random decimal fraction u, = 0.59. From table 16 3 

6 CureSPOn<1nn|1Varia!e has 3 value of = 3- The second set of 2 digits 
Table 16-2 yields u2 - 0.21, with which we associate a value of x2 = 0. Continuing 

m this fashion, we find u§ 

n = 3 4 5 6 7 

u„ 0.03 0.31 0.77 0.29 0.45 

0 1 6 1 2 

Table 16-3. Tabular method of inverse transformation 

Daily 
Demand, x 

Relative Cumulative Associated Range of 
Frequency Frequency, F(x) Values for u 

0 0.26 
1 0.14 
2 0.12 
3 0.10 
4 0.08 
5 0.07 
6 0.06 
7 0.05 
8 0.04 
9 0.03 

10 0.02 
11 0.01 
12 0.01 
13 0.01 

0.26 0.00 to 0.25 
0.40 0.26 0.39 
0.52 0.40 0.51 
0.62 0.52 0.61 
0.70 0.62 0.69 
0.77 0.70 0.76 
0.83 0.77 0.82 
0.88 0.83 0.87 
0.92 0.88 0.91 
0.95 0.92 0.94 
0.97 0.95 0.96 
0.98 0.97 
0.99 0.98 
1.00 0.99 
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These are the demands for the first seven periods shown in Table 16-1. The 
eighth 2-digit set is used to generate a lead-time variate of 8 from the lead-time 
distribution. The next 16 sets are again used to generate daily demand variates, etc 
Check your understanding of the tabular method by verifying the demands and lea 

timCSF!o,TcontmuouS random variable with a finite range, we select a suitable grid 

of values covering its range: x0, x„ x2, . . x„, . . xN. For each,gr\ , 
find F( x ) The range of uniform random decimal fractions associated with the interv 
? <r ss * 1 is (F(x ,) Fix) ~ 10-*] for fc-digit random numbers. The exact 
value of x associated with a ^iven value of u is found by interpolation (usually linear) 

between x„_] and xn, as 

. vU-F(x..,)- IQ'* 

(16-7) X = Xn_! + (x„ - *„-i) f(Xb) _ 

(For a fine grid size, we may wish to approximate x simply by the midpoint of each 

intemh) random variabies with an infinite range, tails are truncated at a point where 

the probability of the random variable falling outside the finite range becomes smaller 

than 10”‘. (This approximation is also used for discrete random variables.) 
For hand simulations, we may need to generate normally distributed random 

variates. There exist tables for standardized random normal variates (see the text by 
Shannon, listed in the references). Alternatively, we can apply the tabular method, 
using the standard normal distribution (Table 1 of Appendix B) and expressionjl6- 
6). Since most tables of the standard normal distribution only show F(U - Z - z), 

we replace u by , 
fu-0.5, for 0.5 with z 5=0 
0.5 - u for u^ 0.05 with z (V (16-8) u' = 

16-4 STOCHASTIC SIMULATION BY COMPUTER 

For a deterministic simulation of the inventory system, where daily demands and lead 
times are exogenous events and are specified in detail as input data to the simulatio , 
the flow diagram of Figure 16-1 is all we need to trace the course of events. In a 
stochastic simulation, daily demands and lead times are endogenous events generated 
from their probability distributions. Prior to the creation of each endogenous event, 
a value of a random variate is determined. This operation consists of three steps. 

1. Using the uniform random number seed, rn_„ from the preceding compu¬ 

tation, generate a new r„. , 
2. Convert r into a uniform random decimal traction, un. 

3. Transform u„ into a random variate for the distribution specified (as input). 

Steps one and two are usually combined into one subroutine as part of most 
computer systems’ software packages. Figure 16-4 is a flow diagram of these three 
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Figure 16-4. Flow diagram for generating a random variate. 

steps, where the uniform random number, r„, becomes the seed for the (n + l)th 
random number generated. v ; 

This portion is added to the flow diagram in Figure 16-1 just prior to box 4 to 
generate a daily demand and just following box 8 to generate a lead time (which is 
also recorded in the replenishment file for later use). This expanded flow diagram of 
the events for day n serves as the basis for writing a computer program. 

table 16-1 is actually a modified computer printout of an inventory simulation 
program, written in FORTRAN, and listed in the excellent text by R C Meier et al 
As we saw in Section 16-1, the results of this simulation over 100 wbA ng dim 
extrapolated to an annual basis of 250 working days yield a cost of $185.10) The same 
problem simulated over 1000 days yields the following summary statistics, 

Total demand 3124 units 
Average inventory 47.23 units 
Number of replenishments 52 

Demand satisfied 
Total cost 

Average annual cost 

99.2% 

$646.40 
$161.60 

This differs from the theoretical expected annual cost of $157.20 by only $4.40 
a small difference considering the approximations made in the theoretical model’ 
Without simulation, this fact could not have been established. 

ppneraWl °Utco,meTT°fstochastic simulations depends on a large number of randomly 
g e ted events. Hence, a prion, such simulation results are random variables and 
each simulation run represents one observation on this random variable. For instance 

l erent sequences of random numbers yield the following average annual costs (all 
based on simulation runs over 1000 working days): 

154.70 154.80 161.00 
Mean = 161.30 

161.60 162.10 163.20 165.90 167.00 

Standard deviation = 4.50 
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On the basis of these 8 observations, we obtain an estimate th^verage^annual 

costs of $161.30. The standard error of this estimate amounts to $4.50/V8 - 
(= o/voi) It can be shown that as the length of the simulation run (the number of 

periods covered) becomes large, the distribution of simulation results approaches a 

normal distribution. Hence, we may apply standard statistical tools for small sampk 
methods to analyze simulation results. For instance, the sample o S ob e a s 

yields a 99 percent confidence interval for the average annual cost of $ • 

$166 90, which covers the theoretical cost of $157.20. If the two were substantially 

different, the analyst should attempt to discover the reason and if necessary, ad,ust 

the model. Analysis of simulation results should always include a measure of the 

variability of the estimates obtained. , i 
The standard error of the statistics derived from a simulation tends to beco 

smaller as the run length (in our case, the number of days) is increased. Therefore, 

the reliability of simulation results can be increased either by lengthening indlvl^a 

simulation runs or by increasing the number of runs (i.e., the sample size) In^h 

instances the marginal increase in reliability gained drops off rapidly as these two 

parameters are increased. A simulation project should always include at least a minima 

of sensitivity analysis with respect to the best length of the simulation runs. 

16-5 EXAMPLE USING EVENT INCREMENTATION 

In the inventory example, simulated time was advanced by equal time increments of 

one working day. All events are considered in the same predetermined sequence each 

day of the simulation. Each day may have one or all of three types of events considered 

in this sequence: receipt of replenishments, execution ofcustomer orders and P 

ment of replenishments. All events are assumed to occur at a given point in time 

during the period. Replenishments are received at the beginning of each day, customer 

orders are executed by the end of the day, and replenishments are placed at the end 

of a day. This method of keeping simulated time is referred to as fixed time incre¬ 
mentation. It is suitable if some events occur in most periods or if the exact time at 

which an event occurs within each period does not significantly affect the performance 

°f ^TherTairmany dynamic phenomena where the exact time atwhich the various 

events occur is a crucial element of an operation’s performance. This is the case for 

waiting line problems, or for problems where most periods have no events. Rat 

than advance simulated time by a constant (often small) time increment, we can 

advance simulated time, after processing each event, to the scheduled time of the 

next most imminent event in the simulation. This type of keeping time is called event- 

step incrementation or variable time incrementation. occorri 
9 Consider the following simple assembly line problem. A product is to be assem¬ 

bled on a two-station assembly line, with task A performed at the first station followed 

by task B at the second station. Each task completes about half of the assembly )o , 

and each consists of a series of individual steps or operations. After completing ta 

A the operator at station 1 places the partially assembled product on a gravity conveyor 
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belt on which it rolls to station 2. Once the operator there has completed the assembly, 

the finished product is placed on a cart which is periodically taken away to the stock 

location. The engineer in charge of methods and procedures establishes the following 

standard times. 

Average Standard Probability 
Time Deviation Distribution 

Task A 35 seconds 6 seconds normal 
Task B 38 seconds 5 seconds normal 
Conveyor belt time 6 seconds zero constant 

We wish to simulate the performance of this assembly line using event-step 

incrementation. How do we go about this? The first task is to identify those components 

of the system needed to measure its performance. 

Entities are given by assemblies in process. We wish to keep track of each one 

individually as it passes through the system. These entities are created at the first 

station. They leave the system once they have passed through the second station. 

Their attributes are the times taken for each task. Each entity engages consecutively 

in three activities: task A, transport from station 1 to the end of the conveyor belt, 

and task B. There is one file, namely the units that have accumulated at the end of 

the conveyor belt, waiting for task B, called the in-process file. Each activity results 

in two events: the start of the activity and the end of the activity. 

For a simulation using fixed time incrementation, like the inventory simulation, 

we created a flow chart that processed all events that could happen during each time 

period (in our case, a day) in a prescribed fixed sequence. Each time the simulation 

had checked out all possible events and reached the bottom of the flow chart, simulated 

time was advanced by one period and the simulation returned to the first event at the 

beginning of the flow chart, until a specified number of periods had been simulated. 

For simulations using event-step incrementation, it is more convenient to use a multi- 

path cyclic structure. At each cycle, the simulation goes through the following three 

phases. Phase A discovers the next most imminent event to occur in the simulation. 

Ties may be broken according to some suitable rules of priority. In phase B, the 

simulation completes or starts any activities arising unconditionally from the event 

just identified. In phase C, the simulation checks whether or not certain conditions 

are satisfied that allow any other activities to be started or completed. In practice, this 

search can be restricted to those activities that follow conditionally from the events 

processed in the preceding B phase. The simulation then returns to a new phase A. 

Phase A is facilitated by the introduction of a new type of master file—the file of 
scheduled events—-which is a complete listing of all events scheduled but not yet 

executed at a given point in simulated time. Our example has six possible events, the 

start and end of each activity. However, some events are always a direct consequence 

of some other events. For instance, the start of activities “task A” and “transport” on 

the conveyor belt both follow unconditionally from the event “task A completed.” 
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They are thus both part of the B phase for this event, and therefore do not need to 
be shown explicitly in the file of scheduled events. Similarly, the start of activity “task 
B” can only occur if either station 2 is idle and an entity ends the activity “transport” 
or activity “task B” ends and an entity is waiting at the end of the conveyor belt, i.e., 
the “in-process” file is not empty. These two conditions are discovered in the C phases 
following the two events “end of conveyor belt reached” and “task B completed.” 
Hence, only the three events referring to the end of activities will ever appear in the 

file of scheduled events. 
For each of these events, a separate event path is created, as shown in the flow 

diagram of Figure 16-5. Boxes 1 and 2 refer to the A phase, where the next most 
imminent event is removed from the file of scheduled events. Box 3 is the switch that 
directs each cycle of the simulation to the event path corresponding to the last event 
identified in the A phase. Boxes 4, 5, and 6 are the B phase for event “task A 
completed.” This event path has no C phase. Box 7 is the B phase for the event “task 
B completed,” while box 8 and its “Yes” and “No” branches represent the C phase. 
Identify the B phase and C phase for the event path starting at Box 11. 

Note how along each path, new events are scheduled to occur at some time in 
the future and are entered into the file of scheduled events. 

Suppose that the simulation has been in progress for some time and that simulated 
time is at t = 817 seconds after the start of the simulation. Twenty-two entities have 
already been completely assembled. The state of the system at time t = 817 is as 

follows: 

• Entity 24 has been in station 1 (task A) for 31 seconds, with 13 seconds of activity 

left to go. 
• Entity 23 has just started task B at station 2, with 30 seconds of activity left to 

go- 
• The conveyor belt is empty. 

The file of scheduled events corresponding to this state of the system at t = 817 

is as follows: 

Event Time Entity Event Type 

830 24 completion of task A 
847 23 completion of task B 

We have just left block 14 at the bottom of the event path, starting at block 11 
in the flow chart. We will now start a new cycle with phase A. At block 1 we search 
the file of scheduled events for the first event scheduled to occur at or after simulated 
time t = 817 seconds. This is entity 24, completing task A at time 830. This event 
is removed from the file. The current simulated time is updated to t = 830 at block 
2. This completes phase A. We now proceed to phase B. The switch at block 3 directs 
us to block 4. Entity 24 leaves station 1 and enters the conveyor belt (block 5). Since 
the time taken to roll to the end of the conveyor belt is 6 seconds, entity 24 will reach 



Figure 16-5. Flow chart for event-step incrementation. 
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the end of the conveyor belt at time 836, and We enter a new event into the file of 
scheduled events. The following is the file of scheduled events at t = 830 (first). 

Event Time Entity Event Type 

847 23 completion of task B 
836 24 end of conveyor belt reached 

There is another B phase activity to be processed—station 1 has not yet started 

a new assembly. Therefore, we create a new entity (entity 25) at block 6 that starts 

task A at t = 830. We now need to generate a time for the length of task A for entity 

25. This means generating a random deviate from a normal distribution with mean 

|jl = 36 and standard deviation a = 6. We use the approach suggested at the end 

of Section 16-3, rounding all times to the nearest second. Starting at the beginning 

of Table 16-2, we obtain a 4-digit random decimal fraction u = 0.5921. By (16-8), 
we substitute u' = u — 0.5 = 0.0921. Verify from the table of the normal distribution 

that this yields a z-value of z = +0.23 (rounded). Hence, by (16-6) we get a task A 

time of x = jjl + ot = 35 + 0.23(6) = 36.38 or, rounded to the nearest second, 

36. This leads to the next entry in the file of scheduled events at t = 830 (second). 

Event Time Entity Event Type 

847 23 completion of task B 

836 24 end of conveyor belt reached 

866 25 completion of task A 

We are now ready for a new phase A, so we go back to block 1 at simulated time 
t = 830. The next event (in time) removed from the file is entity 24, reaching the 
end of the conveyor belt at 836 seconds. We update current simulated time to t = 
836 (block 2), and we are directed from block 3 to block 11. Station 2 is busy working 
on entity 23 (block 12), and we proceed to block 13, where entity 24 is entered into 
the file of partially assembled products waiting to be processed by station 2. Given 
that the in-process file was empty just prior to this time, entity 24 is the only entry 
in this file. Thus, the in-process file at t = 836 appears as 

End of Belt Time Entity 

836 24 

At the next pass, we remove entity 23 from the file of scheduled events, update 
current simulated time to t = 847, cancel entity 23 at block 7, proceed from block 
8 to 10, where we remove entity 24 from the in-process file, start a new task B on 



o vo vo 
rr\ Tf- rr\ \o 
OO OO OO OO 

VO C\| LT\ 
r- r- o 
OO OO O 

cr\ 

O' 



480 Chapter 16 Simulation 

entity 24, and enter a new event time for completion of task B on entity 24 into the 
file of scheduled events. Verify the results for some additional events, as shown in 

Table 16-4. 
This process is repeated until the simulated time has reached the time set for the 

end of the simulation run. The statistics collected at strategic points during the sim¬ 
ulation, such as at the start or completion of an operation and when entities are created 
or canceled, are then summarized and analyzed. 

In a computer program, blocks 1 to 3 form the main program, and each sequence 
of blocks starting at 4, 7, and 11 forms one or more subroutines. 

*16-6 ACTIVITY CYCLE DIAGRAMS 

Activity or entity cycle diagrams are simple, yet effective, representations of the struc¬ 
ture of a simulation model and the dynamic behavior of the entities in it. They 
facilitate a clearer understanding of the interactions between the various entities in 
the system, provide an excellent vehicle for communication with the client of a 
simulation project, and can be used as a basis for a computer program. 

Consider again the assembly line problem of the preceding section. Here we 
identified one class of entities—namely, assemblies. Each “assembly” entity is created 
by station 1 at the beginning of activity “task A.” At the end of this activity, the entity 
is discharged onto the conveyor belt, i.e., it immediately engages in a new activity, 
“transport.” After completing that activity, it may wait in a queue (the “in-process” 
file). As soon as station 2 becomes available, the assembly entity that has been in the 
queue longest engages together with station 2 in the activity “task B.” At the end of 
that activity, the entity disappears—in technical terms, it is canceled. Instead of 
assuming that a new assembly entity is created at the beginning of “task A” and is 
canceled at the end of “task B,” we could equally well assume that there exists an 
infinitely large pool of such entities waiting out in the “world” to enter station 1 and 
that after being discharged from station 2, these entities return again to that pool. 
Hence, each ASSEMBLY entity starts in the WORLD pool and passes through a 
cycle of activities and queues to finally rejoin the WORLD. This is depicted in Figure 
16-6. Such a loop is called an activity cycle. Note that a rectangle denotes an activity, 
a circle denotes a queue, and two circles joined (a large infinity sign) denotes an 
infinitely large pool of entities. 

For activities TASK A and TASK B, we need the presence of both an ASSEMBLY 
and either station 1 or station 2. It is helpful to view each of these also as an entity. 
The situation is different for the activity TRANSPORT. Since several ASSEMBLIES 
may occupy the conveyor belt simultaneously, this activity simply has the character 
of retaining each ASSEMBLY for a given length of time before it can proceed to the 
IN-PROCESS queue. Hence, no entity class is needed for the conveyor belt. 

So we now have an entity class STATION 1, which contains only one entity. 
It also has its own activity cycle. This cycle happens to be very simple: After completion 
of TASK A, this entity immediately returns to start a new TASK A, as shown in part 

(a) of Figure 16-7. 
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Figure 16-6. Activity cycle for assembly entities. 

The entity class STATION 2 also has only one member. It can only engage in 
activity TASK B if there is an assembly entity waiting in the queue IN-PROCESS. 
Hence, entity STATION 2 may sometimes be idle. Its activity cycle therefore includes 
the queue IDLE, as shown in part (b) of Figure 16-7. 

Figure 16-7. Activity cycles for station 1 and 2. 

(STATION 1) (STATION 2) 

TASK A 

We can now join these individual activity cycles together. This is done in Figure 
16-8. It is convenient to differentiate the activity cycles for different entity classes by 
different colored lines. The complete diagram immediately reveals the interrelation¬ 
ships among various entity classes. We see that the entity ASSEMBLY leaves the 
WORLD and is bound with entity STATION 1 for activity TASK A. After TASK A, 
it engages in activity TRANSPORT, after which it enters queue IN-PROCESS where 
it may have to wait for entity STATION 2 to become available, whereupon it is bound 
with that entity in activity TASK B and finally returns to the WORLD. Since there 
is only one entity STATION 1, no two assemblies can be engaged in TASK A at the 
same time. The same is true for TASK B. 

This diagram could be used as a basis for a hand simulation, using the three- 
phase approach presented in the previous section. Its main usefulness is, however, as 
a display device for communication purposes. 
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Figure 16-8. Activity cycle diagram for assembly line problem. 

To demonstrate the power of this device, consider the somewhat more compli¬ 
cated example for the operation of a small port, depicted in Figure 16-9. The WORLD 
is the source of SHIP entities. They arrive at the port at random times. This is achieved 
by letting each ship join with the single entity INPUT for activity COMES, which 
takes a length of time determined by some specified probability distribution. To enter 
the port basin, the ship must pass through a single lock. If the entity LOCK is already 
occupied by another SHIP, then the arrival has to wait at the queue OUTSIDE. 
When the entity LOCK becomes available, it joins any SHIP waiting in OUTSIDE 
for the activity ENTER. The SHIP is now in the port basin. A ship on a domestic 
journey, not requiring customs clearance, will enter the queue BASIN, and if a TUG 
and a DOCK (both separate entities) are available, it will BERTH (an activity jointly 
engaged by SHIP, TUG, and DOCK). Once at the dock, the TUG becomes FREE 
again (a queue), while the SHIP engages in activity UNLOAD AND LOAD. The 
SHIP can leave the dock unaided. It may again have to wait in a queue INSIDE for 
the LOCK to become available, at which point it LEAVES (an activity jointly engaged 
in with LOCK) and returns to the WORLD. A ship on an international journey has 
to go through customs clearance. Hence, after ENTER it WAITS for CUSTOMS 
officers to BOARD. If a TUG and a DOCK are available, the SHIP proceeds to 
BERTH-ALSO, releasing the TUG. Clearance may take longer than that, so the 
SHIP and CUSTOMS officers engage in the activity CLEAR, after which they sep¬ 
arate. CUSTOMS officers become IDLE, while the SHIP now joins the other ship 
path to UNLOAD AND LOAD. Note the form of the activity cycle for TUG and 
DOCK. The number in brackets behind the entity name indicates how many entities 

of that class there are. 
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16-7 TACTICAL CONSIDERATION AND VALIDATION OF 
STOCHASTIC SIMULATION 

When simulating dynamic phenomena we are usually interested mainly in their long- 
run or average behavior after the process has reached a steady state. For Markov 
processes (Chapter 13), we saw that this steady state was independent of the initial 
state of the process and could be approached as closely as desired by letting the process 

go over a sufficiently large number of transitions. 
The same ideas can be applied in stochastic simulation, provided the structure 

of the system simulated is such that it approaches a steady state. For instance, for the 
inventory system simulated in Section 16-1, the steady state implies that if we were 
to observe the state of the system repeatedly at random points in time, after a large 
number of days we would expect to have observed each inventory position in the range 
[48, 108] about equally often. In other words, as the length of the simulation run 
increases, the effects of the initial conditions under which the simulation was started 

are washed out. 
The speed at which this happens may also be affected by the choice of the initial 

conditions. Therefore, care should be taken to choose initial conditions that are 
representative for the steady state. Starting a system at an empty state, i.e., with no 
initial workload, empty queues, etc., may be a rather unfortunate choice, except for 
dynamic phenomena, where the empty state is a natural occurrence at the beginning 
of every period, such as waiting line situations that go through a daily cycle. For our 
inventory system, any initial inventory level between the maximum inventory and the 

reorder point is a representative initial choice. 
A convenient way to remove any bias in the simulation results due to the initial 

conditions chosen is to exclude the initial portion of each simulation run from the 
analysis and begin accumulating operating statistics only after this initial period. 
Alternatively, the ending conditions of each run can be used as the initial conditions 

of the next run. 
Many simulation projects involve comparison of several different modes of op¬ 

eration. For example, we want to compare the present inventory policy with the 
proposed policy, and determine the difference in average annual costs and other 
operating statistics. In such instances, it is advantageous to use the same sequence of 
random events, e.g., the same sequence of daily demands and production lead times. 
Although corresponding runs are no longer independent, this approach reduces the 
variability of the differences observed. It is a common practice in statistical inference. 
Corresponding runs are all started with the same initial conditions. 

As we saw in Section 16-4, the outcome of a stochastic simulation run represents 
one observation on a random variable. If we wish to get sufficiently reliable estimates 
(in terms of small standard errors), we need either simulation runs covering a long 
period of simulated time or a large number of smaller simulation runs. There exist 
a number of techniques to improve the efficiency of estimators from simulation, known 
as variance reducing techniques. Although even a cursory discussion of this topic goes 
beyond the scope of this text, let us at least attempt to impart some of the flavor of 
one of them referred to as the antithetic variate method. 

Suppose that the simulation involves generating daily demands from a given 
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probability distribution. Rather than generating a total of n independently generated 
demands, we generate two sequences of nil demands that exhibit a high negative 
correlation. This can easily be achieved by using, for the first sequence, the actual 
random decimal fractions, u„, generated; and for the second sequence, (1 - u ) 
which are also random decimal fractions. Clearly, whenever u„ produces a demand 
value above the mean, (1 - uj produces a value below the mean and vice versa As 
a consequence, the average demand over both sequences tends to be closer to the 
expected value of the demand than that of a single sequence of n independently 
generated demands, thus reducing the variability of the simulation results. 

Most of these variance reducing techniques were developed for simulations in 
the physical sciences. The complexity of systems encountered in operations research 
problems renders their use much more difficult. The improvements gained may often 
not justify the additional modeling and programming costs incurred. Improvements 
in reliability of similar magnitude may sometimes be achieved more cheaply by 
increasing either the length of each simulation run or the number of runs. 

As we have seen, simulation models usually comprise a number of separate parts 
(or subroutines) representing the various subsystems of the process simulated. Each 
ot these should be tested separately. However, once these parts have been put together 
as one interacting package, the model as a whole has to be tested. This validation 
consists of two steps. 

We first determine whether the logical connections between the various parts are 
correct. This is best done by running the whole simulation model over a number of 
events, suitably chosen to test the various paths through the simulation logic. The 
events chosen should include exceptional and extreme circumstances. For a computer 
simulation, intermediate status reports are printed out at various crucial points in the 
simulation such as all decision forks along each path. These status reports are then 
carefully checked against the results obtained by duplicating the simulation by hand. 
(Once the internal logic has been checked, these intermediate status report printouts 
are eliminated from the program.) 

The second step is to test whether the model as a whole can properly reproduce 
the real-world process. This validation is considerably more difficult. If the simulation 
describes an existing real-life process, it can presumably be tested against past data 
and its performance compared to the results actually experienced. Many simulation 
models, however, describe hypothetical or planned future systems for which no past 
performance data are available. In such instances, the operations researcher has no 
alternative but to carefully perform the first step of the validation process and then 
make a value judgment about the reasonableness of the results obtained. The operations 
researcher will constantly be on the watch for possible anomalies or counterintuitive 
and unusual results, and attempt to find reasonable or satisfactory explanations for 
any discrepancies until he or she has gained a sufficient degree of confidence in the 
correctness of the model as a whole 

16-8 SIMULATION COMPUTER LANGUAGES 

Simulation and computers go hand in hand. Practically all simulations are executed 
with the aid of high-speed electronic computers. It is for this reason that we deliberately 
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represented the logic of simulation processes by computer language-type flow charts. 
Simulation studies have given rise to a number of specially designed general purpose 
simulation packages and simulation languages that ease and speed up the writing of 
simulation computer programs. No matter whether you translate these flow charts into 
a computer program yourself or have it done by an experienced computer programmer, 
it is essential that you be familiar with the basic world view and essential properties, 
advantages, and drawbacks of these simulation languages. All we can do here, though, 

is to give some pointers. 
It goes without saying that the conventional computer languages, such as FOR¬ 

TRAN, BASIC, ALGOL, PASCAL, COBOL, and others, may often be the most 
convenient or the only languages available. They are flexible, there is no additional 
learning cost, and no special (and often costly) processing system is needed. Execution 
time is usually faster than for simulation languages. On the other hand, simulation 
languages provide a number of facilities that are used in all simulations, such as 
random variate generators for many theoretical probability distributions and any desired 
empirical distribution, automatic updating of files of entities, automatic collection of 
various statistics, routines to read in inputs, routines to print out status reports and 
summary statistics, and the crucial timing routine to update simulated time. These 
parts usually constitute the major portion of the programming effort. With simulation 
packages and languages, all that requires programming is the actual logic of the 

simulation process itself. The remaining parts are done for you. 
One of the easiest, though by no means the least powerful, simulation packages 

is the General Purpose Systems Simulator (GPSS), developed and maintained by IBM 
for most of its advanced computer systems. Little or no computer programming knowl¬ 
edge is required for GPSS. The first step is to construct a flow chart of the simulation 
process using the block types and symbols provided by GPSS. Each block type asks 
for the execution of a given operation, action, or process. The names chosen for the 
block types are descriptive of the operations. For instance, the block called GEN¬ 
ERATE creates entities (called transactions in GPSS) spaced according to a specified 
interarrival time. ENTER allows an entity to occupy space (for example, in a service 
facility). The block QUEUE holds an entity until it can proceed to the next block. 
ADVANCE represents an operation that takes a (random) time. PICK sends an entity 
to one of a number of blocks with specified probability, and so on. Certain blocks 
perform the function of accumulating operating statistics. Once the complete block 
diagram has been drawn, a separate card is punched for each block. These, together 
with control cards and data cards, such as empirical probability distributions, form 
the input deck. Simulated time is advanced by event-step incrementation—the time 
unit used by GPSS is implied by the input data. By the very choice of block types, 
the world view implied by GPSS seems to be particularly efficient at simulating waiting 

line problems. 
On the other extreme of the scale is SIMSCRIPT, a proper programming language 

with great flexibility and generality. Although the programming statements resemble 
English in sentence structure, familiarity with FORTRAN and its logic is essential. 
In SIMSCRIPT, the simulation process is defined in terms of events, entities, sets of 
entities, and attributes of entities and of sets. Entities may be permanent, such as the 
ferries in the ferry system example, or temporary, such as the cars wanting to use the 
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ferry, created at one point and erased or destroyed at another. Sets are files where 
entities can be stored. Sets may belong to entities; for instance, the load of cars 
transported by the ferries belongs to a given entity—namely, the ferry. SIMSCRIPT 
provides facilities for searching these sets and for removing entities with certain attri¬ 
butes from them. For each event type that changes the status of the system, a separate 
event routine is written. Thus, SIMSCRIPT is an event-oriented language. SIM¬ 
SCRIPT provides its own event-step incrementation timing routine. 

There are a number of other simulation languages with similar features. One of 
the most recent ones, SLAM (see Pritsker, 1979), is also based on FORTRAN. 
SIMULA, based on ALGOL, is included in the software packages of advanced Bur¬ 
roughs computer systems. 

Between these two extremes are a number of simulation packages consisting of 
collections of subroutines that can be used in conjunction with a programming lan¬ 
guage, such as FORTRAN or ALGOL. These subroutine facilitate file handling, file 
search to remove entities with specified attributes, generation of random variates from 
specified distributions, scheduling of future events, updating of simulated time, as 
well as collection of statistics. Examples of such packages are GASP, SIMON, and 
SPURT. 

More recently, a number of interactive computer simulation systems have been 
developed, such as APL GPSS by IBM, NPGS by Heidorn (both based on the GPSS 
system), CAPS/EGSL, by A. T. Clementson of the University of Birmingham, and 
DRAFT by S. Mathewson from the Imperial College of Science and Technology, 
London. The last two use a representation of the problem by means of activity cycle 
diagrams. These systems allow the user to input the problem structure and run data 
interactively on a computer console in a question-and-answer format. Illegal config¬ 
urations are flagged for possible alterations. The computer version of the model, input 
data, and output statistics can be saved on disk and updated for future use. Such 
systems can reduce weeks or even months of programming effort to a few sessions on 
a computer console. 

DYNAMO is one of the few simulation languages that are capable of simulating 
continuous processes. This language is best known in conjunction with J. W. 
Forrester’s Industrial Dynamics (MIT Press, 1961). Events are not considered indi¬ 
vidually, as for all discrete simulation languages, but in the aggregate. In industrial 
dynamics, the basic components of a system are levels of variables (or stocks) and rates 
of flow (or rates of change of levels). Levels may represent stocks of resources, inven¬ 
tories, numbers of people, amounts of information, levels of feeling, levels of activities. 
Any activity, movement of material or of information, or any decision function in the 
system that affects level variables gives rise to rates of flow. 

DYNAMO is best suited for dynamic systems that involve feedback loops. A 
production-inventory-sales system, where the rate of production varies inversely with 
the inventory level, is an example of a feedback loop. The interrelationships among 
various level variables and rates of flow are expressed mathematically in the form of 
difference equations representing time lags of various lengths. Given initial starting 
conditions, DYNAMO obtains, for each time period, numerical solutions to each 
difference equation in the sequential order specified by the user. Thus, simulated time 
is incremented by a constant amount at each iteration. DYNAMO includes facilities 



for the more common types of functional relations, such as exponential, logarithmic, 
trigonometric, as well as user-specified step and ramp functions. The language has 
a close resemblance to FORTRAN. One of the special features of DYNAMO is the 
option to produce plots of the values of the various variables over simulated time. 

DYNAMO has been particularly successful in simulating systems covering the 
economy or an industry of a region or country. It was used to simulate the various 
scenarios for the world’s economic, social, and ecological development reported in 
Limits to Growth (D. H. Meadows and associates, London, Potomac Associates, 

An excellent summary of most major simulation languages, including some 
guidelines for selecting the most appropriate one for the problem at hand, is given in 

Chapter 3 of Shannon. 

16-9 CONCLUDING REMARKS 

Nowhere in applied operations research does the concept of system come forth as 
naturally as in simulation. Whereas for mathematical optimization tools the com¬ 
plexities of the real world leave the operations researcher little choice but to make 
abstractions, approximations, and simplifications in the models, no such limitations 
need to hamper a simulation model. The mathematical complexities of simulation 
seldom go beyond simple numeric computations or logical operations. Hence much 
more detail and more interactions among the various parts of a system can be taken 
into account. As a result, simulation models may be fairly true representations of the 
real world. This is one of the great attractions of simulation over mathematical op¬ 

timization techniques. 
But hand in hand with this advantage go two potentially crippling handicaps. 

Simulation is not an a priori optimizing tool, but rather a tool of analysis, often used 
for evaluating the performance of decisions derived by other means. Each simulation 
run just traces through the effects of decision rules that are specified in full detail as 
part of the input. Attempts at optimization have to be made by a slow process of trial 
and error. All we can usually strive for is “good” decision rules rather than optimal 
ones, and even this may be fairly costly in terms of computer time. 

In order to be successful, simulation models have to incorporate a large amount 
of detail. As a consequence, the effort that goes into building a simulation model is 
usually much larger than for comparable optimization models. Thus, simulation 

projects turn out to be rather expensive projects. 
The uses for simulation are almost unlimited. Some of the better known appli¬ 

cations cover such diverse fields as: 

• waiting lines—evaluation of alternative proposed facilities or evaluation of alter¬ 

native modes of operations of existing facilities. 
. job shop scheduling—evaluation of alternative dispatch rules and forecasting of 

workloads at each machine center. Workload forecasts may be used to initiate 

corrective action to eliminate potential bottlenecks. 
• operation of process plants—the entire operation of a process plant, such as a 

refinery, is simulated, unit by unit, to determine output composition as a function 
of input mix and instrument setting (deterministic). 
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• company-wide planning models and budget simulations—using the conventional 
accounting structure, balance sheets, income statements, and cash budgets are 
projected over time (deterministic). 

• evaluation of PERT networks to determine more representative completion time 
distributions, 

• evaluation of complex facility location and distribution systems. 
• transport systems operation, such as ocean or river shipping, railroad systems, 

and airline scheduling. 

• simulation of economic sectors of a region or a whole economy to explore various 
industrial and economic development policies. 

• simulation of energy use and production systems on a national or international 
level. 

• operational gaming. Simulation that allows human intervention is a valuable 
training tool for all sorts of skills. Business games, mock-up jet airliner cockpits, 
and simulated space flights are some of the more glamorous applications. 

With minor exceptions, such as operational gaming, simulation is best used as 
a means of last resort only—when all else fails. Mathematical tools are, as a rule, 
much more efficient for evaluating and optimizing a system's performance. Only if 
mathematical optimization techniques cannot adequately reproduce the complexities 
of a real system should the operations researcher take refuge in simulation. The 
apparent simplicity of simulation is deceptive and may lead the unsuspecting analyst 
into a quagmire that may prove expensive if not disastrous. Before a simulation project 
is embarked upon, the objectives of the analysis and the likely outcomes should be 
clearly spelled out and rough cost estimates obtained. Properly used, simulation can 
be an effective tool in the hands of an experienced operations researcher. 

EXERCISES 

16.1 (Deterministic) Use the flow diagram in Figure 16-1 to simulate the performance of 
an inventory control system, using the same cost parameters as in Section 16-1, for 
the sequence of daily demands listed below and a sequence of lead times of 11, 8, 10, 
13, 7, 9, 14, 10, 9, 11, 10. The beginning inventory is 54, and no replenishments 
are outstanding. Compute the average inventory level and the total cost over the 100- 
day run. Only days with a positive demand are listed. 

Day i 3 4 5 7 9 10 14 15 18 20 21 22 23 24 25 27 28 30 
Demand 1 4 8 2 1 6 3 7 4 2 5 1 3 2 i i ii 12 4 

Day 31 32 36 37 39 40 42 43 46 47 48 50 51 52 54 55 56 58 59 60 
Demand 3 4 1 12 1 1 6 2 4 5 9 4 11 12 8 12 3 i 6 2 

Day 62 64 65 67 68 69 71 74 75 76 78 79 80 81 83 84 85 87 89 90 
Demand 2 3 10 4 1 11 6 2 5 3 13 1 1 8 2 10 1 3 8 6 

Day 91 92 93 95 96 97 98 99 100 
Demand 5 4 2 11 3 7 6 8 1 
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16.2 Consider the following container port operation. The port has two berths. Each berth 
has one container crane. Each crane can only work one ship at a time. Ships arrive 
at the port and wait for a tug to pilot them to a berth if one is free. There is only one 
tug. Once a ship has docked, it will be unloaded by a crane. The containers are lifted 
off the ship and placed directly onto flatdeck railwagons, of which there is an unlimited 
supply. Once all containers have been removed, the ship is loaded with new containers, 
also brought to the dock by rail. The number of containers to be unloaded and loaded 
varies from ship to ship. Loaded ships clear their berth with the help of the tug. Identify 
the components of this system in terms of entities, files, attributes of entities and hies, 

activities, and their associated events. 
16.3 (Deterministic) A soft drink manufacturer forecasts the following demand pattern over 

the coming 12-month period (in 1000 gallons): 

Month i 2 3 4 3 6 7 8 9 10 11 12 

Demand 2500 1800 2000 2800 3500 4800 5600 6000 4500 3200 1200 3600 

The manufacturing facilities can be operated with one or two shifts, with or without 
overtime. The following are the maximum output capacities and associated costs: 

One Shift Two Shifts 

Production Setup No Overtime With Overtime No Overtime With Overtime 

Maximum output 
Costs ($1000?s) 

2000 2500 
120 165 

4000 5000 
200 280 

Goods produced in each period can be used to satisfy the demand in that period or 
any subsequent periods. Any goods carried forward to later periods incur a storage cost 
of $100 per 1000 gallons stored per month. An increase in the number of shifts results 
in a “hiring and training” cost of $18,000, while a decrease from two to one shifts 
costs the firm $20,000 in severance pay. At the beginning of the planning horizon 
there are no goods in stock, and in the preceding period the firm was operating with 
only one shift. Overtime cost is proportional to amount used. 
(a) Simulate this operation, assuming that the plant is always operated at the maximum 

regular capacity for each production setup. Two shifts are used from periods 5 
through 10 only, and overtime is used as necessary. What is the cost of this 

schedule? 
(b) By trial and error, determine what you consider is the optimal production schedule 

and its cost through simulation. Regular production may be at less than full 
capacity, but at full capacity cost. 

16 4 (Deterministic) Consider the operation of a single-track railway line, connecting stations 
A to B, B to C, C to D, D to E. No more than one train can be on the track between 
adjacent stations. A new train may enter a track segment only when the previous train 
has cleared it. Trains may cross only at stations C and D; station B does not have 
sufficient siding for two trains. Hence, no train may enter the track from C to B it 
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there is already a train traveling from A to B, However, a second train may enter the 
track from A to B if there is already a train traveling from B to C. The same rules hold 
also in the opposite direction. The sidings at each station are not considered part of 
the track between adjacent stations. No more than 3 trains can be in each of station 
C and D simultaneously. The travel and switching times in minutes for regular and 
express trains are as follows: 

Travel Times 

— 

Switching Times 

A-B B-C C-D D-E E-D D-C C-B B-A B C D 

Regular 20 12 30 16 24 28 14 18 10 30 20 
Express 15 8 15 12 16 24 10 14 0 5 5 

The timetable provides the following departure times: at A in the direction of E regular 
at 8:00, express at 10:00, regular at 10:20; at E in the direction of A, express at 9:10 
regular at 9:30, regular at 11:00. Simulate this operation using event incrementation 
tor the 4-hour period from 8 A.M. to 12 A.M. At 8 A.M., there is one regular train at 
station D ready to depart toward A. 

16.5 Using the short list of random numbers in Table 16-2, generate 10 random variates 
tor the following frequency distribution. 

Value x 012345678 

Frequency 0.156 0.234 0.208 0.161 0.095 0.064 0.036 0.028 0.018 

16.6 Starting in row 2 of the list of random numbers in Table 16-2, generate for each 
distribution 10 random variates from 3-digit random numbers for 
(a) A uniform distribution with limts b = 8, a = 3. 

(b) A negative exponential distribution with parameter X = 10. 

(c) A normal distribution with mean p = 100 and standard deviation cr = 20. 

16.7 Using the demand distribution and lead-time distribution listed in Section 16-1, sim¬ 
ulate the behavior of the inventory system depicted in Figure 16-1 over a 40-day period 

C°S* Parame*er an(^ starting inventory. To obtain random numbers, read 
Table 16-2 backward, starting with the last digit (which gives 56030 978 . . .). Find 
the average inventory and the total cost over this period. 

16.8 PERT network: Consider the PERT problem discussed in Section 8-5 of Chapter 8. 
Rather than using the beta distribution, assume that the duration of each task follows 
a normal distribution with parameters as shown in Table 8-2. Simulate the project 
completion time using stochastic simulation. To determine random deviates accurate 

^a use ^-digit random numbers in Table 16-2, starting at the beginning 
of the table Simulate 12 separate project completion times, and determine the average 
and standard deviation of the project completion time and compare it with the the¬ 
oretical results found in Section 8-5. 
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16 9 A firm wishes to investigate the profitability of an expansion project. Consumer tests 
on samples of the project made at a small test plant have given favorable results. From 
these tests and other market surveys, it is estimated that the potential sales ot the 
product should range between 40 to 100 in about 9 out of 10 quarters within 3 years 
of its introduction. One of the alternatives considered involves the construction of a 
plant with a capacity of 100 tons per quarter at a cost of $400,000. Such a plant would 
be in operation within 1 year of the decision to go ahead with the expansion project. 
Since the product can only be stored for very short periods, production would follow 
actual sales very closely. Hence, any potential sales above 100 tons per quarter would 
be lost. The fixed production cost per quarter is estimated at $30,000, while the variable 
production costs per ton of products produced are highly nonlinear, as follows: 

for 0 *£ 1 50, $(100 - q) per ton 
50 «q=£ 80, $50 per ton 
80 =£q=s 100, $0.625qperton 

Sales predictions are as follows: 

Operating Year Sales Range Sales Price/Ton 

i 20 to 60 tons per quarter $880 

2 30 to 90 tons per quarter $890 

From 3 on 40 to 100 tons per quarter $900 

All ranges are quoted with odds of 9 out of 10, and actual sales are assumed to be 
approximately normally distributed. (Note that sales cannot be negative.) Management 
would like to determine by simulation the distribution of the cumulative net cash now 
over the first 5 years of operating the plant (after its construction). Round sales figures 

to nearest ton. . , 
(a) Using 3-digit random numbers and starting in row 1 of Table 16-2, simulate the 

cash flow quarter by quarter over a 5-year period. What is the net cash flow? 
(b) (Large amount of work) Redo the simulation for another 9 runs, continuing in 

Table 16-2 where you left off in (a). Once you reach the end of Table 16-2, just 
wrap around to the start again. Find the average net cash flow and the standard 

deviation of the net cash flow. . 
(c) (Requires access to computers) Write a computer program to perform this simulation. 

Make 100 runs, each over a 10-year period, discounting the quarterly cash flows 
at a rate of 3 percent per quarter. Construct a frequency histogram of the net 
discounted cash flows containing about 10 class intervals. (If you need a refresher 
on discounting, read Section 1-13 of Chapter 1.) What conclusion do you reach 
about the profitability of the project, assuming that 10 years is the productive life 

of the plant? 

16.10 Using the flow chart of Figure 16-5, simulate the two-station assembly line for the 
following sequence of time durations of 20 assemblies and a conveyor belt time of 6 

seconds. 
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Assembly i 2 3 4 5 6 7 8 9 10 

Time 
task A 33 38 40 42 36 32 30 35 33 37 
task B 36 35 33 38 40 44 40 41 37 39 

Assembly 11 12 13 14 15 16 17 18 19 20 

Time 
task A 35 34 30 37 31 32 40 42 35 38 
task B 44 42 37 40 41 36 38 35 38 40 

Both stations are empty at the start, and the operator at station 1 is just ready to start 
task A for the first assembly. What is the elapsed time to complete all assemblies on 
both stations? What is the largest number of assemblies waiting on the conveyor belt 
at any given time? What is the total idle time of the operator at station 2? 

16.11 (a) Using the flow chart of Figure 16-5, simulate the two-station assembly line for a 
time interval of 10 minutes, starting out with empty stations with the operator at 
station 1 ready to begin task A on the first assembly. Generate task duration times 
(rounded to the nearest full second) using the task-time probability distribution 
given in Section 16-5. Use 2-digit random numbers to generate the random variates 
required, and start at the beginning of Table 16-2. Determine the number of 
assemblies completed, the maximum number of assemblies waiting on the conveyor 
belt, and the total idle time of the operator at station 2. 

(b) The assembly operations can be regrouped in such a way that the average time for 
task A is increased to 36 seconds and the average time for task B decreases to 37 
seconds, without affecting the standard deviations of the tasks. Redo (a) for this 
change in data, and compare the two modes of operations. Which one gives a 
more even work flow? 

16.12 Canal A is connected to the lower level Canal B by a lock. Boats enter from Canal 
A into the lock, the gates are closed, the water level is lowered to the level of Canal 
B, the gates toward Canal B are opened, and the boats leave, at which point any boats 
in Canal B wanting to be raised to Canal A enter the lock, the gates are closed, the 
water level is raised to the level of Canal A, the gates are opened, the boats leave,’and 
so on. The lock has a capacity of 4 boats only. It takes 4 minutes to lower or raise the 
water level. Only 1 boat may enter the lock at a time, and a boat takes 1 minute to 
be moored. However, all boats leave the lock one after the other. The time needed 
for all boats to leave the lock is 2 minutes (regardless of the number of boats). Boats 
arrive at the lock in Canal A at a rate of 12 per hour, and in Canal B at a rate of 15 
per hour. Arrivals in both canals follow a Poisson distribution. The current mode of 
operation during the busy hours, for which the above arrival rates hold, is to fill or 
empty the lock whenever 4 boats have been moored inside the lock. At 11 A. M., the 
system is in the following state: The lock gates are open to traffic from Canal A. Three 
boats are already moored in the lock, and the next arrival from A is scheduled to arrive 
at the lock at 11:02. Five boats are currently waiting in Canal B to go through the lock 
to A. The next boat arrival is scheduled at 11:04. Simulate this system until 11:30. 
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Keep enough detail to determine the number of boats passing through the lock in each 
direction, the average time boats spend at the lock between arrival and departure in 
each direction, and the number of times the lock has been raised and lowered. Use 
the following sequence of 2-digit random numbers to generate the arrivals: 56 03 
09 78 38 47 01 98 03 16 14 56 17 11 98 82 51 97 93 04. 

16.13 (Deterministic) Consider a queueing system that has two service facilities in sequence 
with an unlimited queue in front of the first facility, but no queue between the two 

facilities. . 
(a) identify the phase A, B, and C events. Develop a flow chart similar to Figure 

1.6-5. f . . 
(b) Use this flow chart to simulate the processing of the following sequence ot arrivals: 

Arrival 1 2 3 4 5 

Arrival time 01 02 05 12 14 

Service time on facility 1 2 5 3 6 4 

Service time on facility 2 4 4 1 8 3 

16.14 A job shop has three work centers: X, Y, Z. Each job has to go through some or all 
centers in a prescribed unique sequence. A work center can only work on one job at 
a time. The next job can enter a work center immediately after the previous job has 

been processed. The current state of the system is as follows: 

Jobs currently 
in the system: 

Sequence of centers 
left to be entered 

1 2 3 4 5 6 7 8 9 10 

Z Z X XY XYZ XZ YXZ Y YZ Y 

Work center X is currently processing job 1; the scheduled release time from the 
center is at simulated time 124 minutes. Work center Y is currently processing job 
2 with a scheduled release time at 180 minutes. Jobs are processed by each center on 
a first-come basis. The current priority at center X is job 1, 3, 4, 5, 6, and at center 
Y, 2, 7, 8, 9, 10. Note that center Z is currently idle. Processing times in minutes 

at each work center are normally distributed as follows: 

Work center XYZ 

Mean 120 200 180 minutes 
Standard deviation 40 40 60 minutes 

New jobs enter the system at the beginning of each day, at which time they are added 
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to the file of jobs waiting for processing at each center. Current simulated time is 
t = 100 minutes. 

Wentify the phase A, B, and C events and draw a flow chart similar to Figure 

(b) Simulate the system with the data given until simulated time t = 480 minutes 
Use the short list of random numbers given in Table 16-2, starting at the beginning! 
Use 4-digit random digits and round results to the nearest positive minute. 

16.15 (Deterministic, lengthy) A job shop has three work centers, A, B, and C. Each job has 
to go through some or all centers in a given sequence. A work center can only work 
on one job at a time. A job only vacates a work center when all operations to be done 
at that center have been completed. The present work load in terms of partially 
completed jobs and jobs on the order list, is as shown in the table. In the last column, 
the letters identify the work center, the numbers following it identify the processing 
times. The work must be done in the sequence of work center shown. Simulate the 
processing of these jobs, usjng the following rules for determining priority of jobs 
waiting at work center. 
(a) The first to arrive at the work center is the first processed. 
(b) At each station, take first the job ready for processing with the least amount of 

slack, where slack is determined as 
(due date) - (total processing time left on job) - (simulated time) 

Draw a flow diagram first. For each rule, find the earliest time that job 20 is completed, 
find the average lateness of jobs, the total idle time on each center, and compare the 
two rules in terms of these characteristics. 

Job 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Date Received Date Due 

01 05 
01 04 
01 06 
03 10 
03 10 
04 20 
06 20 
06 10 
08 16 
10 24 
10 20 
12 26 
15 30 
15 36 
18 30 
20 36 
20 40 
24 32 
24 40 
25 38 

Sequence 
Work Center-Processing Time 

C-2 
B-l, C-l 
A-2, C-2 
A-2, C-2 
A-2, C-2 
B-2, A-6, B-3 
A-l, C-3, B-5 
B-2 
B-4 
C-2 
C-2, A-2 
B-2, A-3, C-4 
A-2, C-4, A-l 
B-4 
A-5, C-2 
B-2, C-6 
B-4, A-6 
C-2 
B-5, A-l, C-4 
A-4, B-4 

r i 
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6.16 Draw two activity cycle diagrams for the problem in exercise 16.2, one for the move¬ 
ment of ships and one for the unloading and loading operations. The latter contains 

the detail for the load and unload activity of the former. 

16.17 Draw an activity cycle diagram for the problem in exercise 16.13. Introduce additional 

activities and a queue for blocking phase. 

16.18 Draw an activity cycle diagram for the problem in exercise 16.12. Let each successive 
mooring be a separate activity and switch arrivals to appropriate one. 

16.19 Air-Couriers Inc. operates a 24-hour parcel pick-up service for air freight delivery to 
East Coast cities. Customers make pick-up requests by phone to a dispatcher, who hlls 
in a pick-up order and then assigns the request to the first available driver. After 
completing a pickup, the driver fills in a pick-up report, which he or she files with 
the dispatcher, and then waits for a new assignment. A dispatcher will interrupt 

assigning a job to a driver to take customer phone calls and only continues with the 
job assignment after having prepared the pick-up order. There are two dispatchers who 
alternate taking customer calls, except when a call comes in while a dispatcher is still 
engaged with the previous call taken. The number of incoming phone lines is suffi¬ 
ciently large so that no customer ever gets a busy signal. All pick-up orders are available 
to both dispatchers for assignment to drivers. Past records for a particular office show 

that 

• The average rate of pick-up requests is 24 per hour and follows a Poisson process. 
• The time required to receive a pick-up request and fill in the pick-up order is normal 

with mean 120 seconds and standard deviation 20. 
• The time to make a job assignment is a constant 60 seconds. 
• The time to make a pickup and file the pick-up report is normal with mean 1500 

seconds and standard deviation 400. 

• The number of drivers is 16. 

(a) Identify entity classes, files, and activities, and list all entities jointly engaged in 

each activity. Identify the phase A, B, and C events. 
(b) Assume that at 11 A.M. the system is in the following state: (1) no pending requests; 

(2) dispatcher 1 idle; (3) dispatcher 2 processing a pick-up request with 80 seconds 
to go; (4) next pick-up request to be received at 100 seconds after 11 A.M.; (5) 
drivers 1, 2, 3, and 4 idle; (6) busy drivers and pick-up completion times (including 
filing a pick-up report) in seconds after 11 A.M. are as follows: 5—240, 6—1250, 
7_680, 8—560, 9—1650, 10—960, 11—180, 12—1140, 13—1370, 14—510, 
15_870, 16—1410. Simulate this system for 1 hour. Use 4-digit random numbers 

starting in line 1 of Table 16-2. If you reach the end of the list, use the table in 
reverse order. Round all times to the nearest 10 seconds. Collect statistics on the 
total idle time of dispatchers and drivers and on the total time pick-up orders wait 
in the office until assignment to a driver. Generate all activity times at the start 

of each activity only. 
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CHAPTER 

Extensions to 
Linear Programming 

Chapter 3 developed the rudiments of the simplex method. We will now explore some 

of the refinements that extend its usefulness and increase its efficiency. We have 

already discussed one extension in Chapter 4—the dual simplex method. Our first 

topic in this chapter is how to deal with bounded variables more efficiently. Next, we 

develop the revised simplex method. Its compact form is particularly suitable for com¬ 

puter implementation. Finally, we show how certain nonlinear problems can be 

approximated by piecewise linear systems and solved by separable programming. 

We will use the power generating problem of Chapter 2 for the first two topics. 

It may be helpful to briefly review the mathematical summary of that problem in 

Section 2-7. 

17-1 LOWER-BOUNDED VARIABLES 

The simplex method uses an implicit lower bound of zero on all variables. This is 

achieved by having all nonbasic variables with a value zero and all basic variables 

nonnegative. The nonnegativity of basic variables is maintained by the rules for the 

vector to leave the basis. When we have a variable xy with a lower bound Lp we could 

introduce a constraint xy » L;, We can avoid this by defining a new variable y■] that 

represents the amount by which xy exceeds its lower bound L-, i.e., 

(17-1) y, = x, - Lj, y, » 0 

v. is substituted for x( in all constraints and in the objective function. This changes 

the RHS of all constraints from b, to b, - avL, and gives the objective function an 

initial value of z0 = cyLy. 

500 
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Most commercial computer codes for linear programming automatically do these 
variable transformations and unscramble them again before displaying the optimal 
solution. 

17-2 UPPER-BOUNDED VARIABLES 

Consider problem (3-1), but with the additional constraints that the mining capacity 
for coal A is limited to Ul = 15 tons and the capacity for coal B is limited to U2 = 
10 tons per hour. The new problem is now 

maximize z = 24xj + 20x2 

subject to 0.5x, + x2=sl2 

(17-2) + 1 

0 x, =s 15 

0=sx2=s 10 

The last two constraints are the upper bounds on Xj and x2. We would like to 
solve this problem by the simplex method without explicitly including these two upper 
bounds. Unfortunately, a simple transformation of the variables is not enough. Some 
changes to the simplex method rules are needed also. 

Let us define the variables 

(17-3) x\ = 15 - x,, where 0 =£ x[ 15 

(17-4) x2 = 10 - x2, where 0 =£ x2 =£ 10 

If Xj is at its lower bound, then xj is at its upper bound, and vice versa. Note also 
that the LHS coefficients of xj are the negative of the LHS coefficients of x- The 
upper-bounding routine takes advantage of these two properties to eliminate the upper- 
bound constraints on the variables. It uses xy as a nonbasic variable when x• — 0, and 
uses xj as a nonbasic variable when x. is at its upper bound. When the value of the 
variable lies between these limits, either xy or xj may be basic. 

Table 17-1 shows the initial simplex tableau for problem (17-2) without the 
upper-bound constraints (see Table 3-1). It implies that all variables are at their lower 
bound. By simplex criterion 1, x, enters the basis. Simplex criterion 2 determines both 
the variable to leave the basis and the value of the new basic variable. Here the ratio 
minimum is assumed for Xj = 16. However, we observe that this violates its upper- 
bound restriction. So we set X| to its upper bound of Uj = 15. But now the simplex 
transformation rules do not drive x5 to zero. A value of x, = 15 implies current basic 
variables of 

(17-5) x} = 12 - (0.5)(15) =4.5 x5 = 1 - (f6)(15) = f6 
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Table 17-1. First tableau with upper bounding 

ci 
24 Ratio 

ci 
Basis *1 *2 *3 

xs XH 

o x, 1 1 24 

0 
3 

*5 
1 

1 
15 

1 
24 1 16 

*/ " ci 
0 -24 -20 0 0 

t 

Transforming Table 17-1 to correspond to this solution would result in a tableau that 
is not in canonical form. By substituting the x] column by xj, with all coefficients 
reversed in sign, we can generate a new tableau in canonical form that corresponds 
to the solution (17-5), with xl = 15 implicitly. Since Xj = 15 — x1; we get 
xj = 0. Hence, x[ has the usual property of a nonbasic variable. Making this substi¬ 
tution, we get the second simplex tableau, as shown in Table 17-2. The value of z 

is 24x’ = 24(15) = 360. 

Table 17-2. Second tableau with upper bounding 

ci 
-24 20 0 0 Ratio 

ci 
Basis Solution *; *2 *3 *5 xhi 

0 X, 4.5 -0.5 1 1 0 4.5 

0 
? 

*5 

i 
re 

i 
~re 

1 
24 0 1 1.5 

z. — c n i 
360 24 -20 0 0 

f 

At the next iteration, x2 is the variable selected to enter the basis. The minimum 
ratio value is assumed for x2 = 1.5. Since this is below U2 = 10, x2 enters the basis 
at that value, with x5 leaving it. The third tableau is shown in Table 17-3. 

At the third iteration, xj is chosen to enter the basis. This means that xj will 
increase from 0 (or, equivalently, Xj will decrease from 15). As X[ increases, there are 
three ways that the solution must be kept feasible, each creating a limit on the value 

of xj: 

1. x, 3s 0; this is assured by simplex criterion 2 for the variable leaving the basis. 

2. xj *£ U, = 15. 
3 Xi u2 = 10, since a negative y, value increases the value of x, (see Section 

3-5). 

Let us look at the effect of setting xj = 0. Using the equations in canonical 
form implied by Table 17-3, x, = 3 - 6 and x2 = 1.5 + 1.50. For feasibility, we 
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When we read the solution of Table 17-4, we must remember that x, = 15 - x\ 

= 15-3 = 12. Using this result, we see that Table 17-4 is substantially the same 

as the final tableau in Table 3-2. 
For completeness, we need to clarify the action to be taken from the criterion 

for the value of the nonbasic variable that is being increased. If the minimum of 

(17-6) is 

1. (3, replace the current basic variable by the nonbasic variable being increased, 

as in the normal simplex method. 
2. Ujr replace the nonbasic variable being increased, xfx'), by x-(xj). The cor- 

1 responding column of the tableau must be multiplied by - 1. The up¬ 

dated values of the variables are 

x. = x, - Ufyf, for all basic variables 

(17’?) xf = U,.(orx; = U) 

where 7, is the coefficient in row x, and column xf. 

3. 5, set the basic variable to its upper bound; i.e., replace xk{x’k) by x[ (xk). 

The corresponding column is multiplied by — 1. The nonbasic variable 
being increased (xy) enters the basis in place of xk(x'k). The new values of 

the variables are 

xk - Uk(or x'k = Uk) 
(17-8) xf = x, - 87,, for the current basic variables other than xk(x'k) 

*/ = 8 
with 7i defined as for (17-7). 

In cases (2) and (3), the objective function value is updated to 

* = 1 cp*p 
P= 1 

*17-3 REVISED SIMPLEX METHOD 

Large linear programming problems contain huge amounts of data, and they require 

tens of thousands of calculations at each iteration. Using the full simplex tableau 

method, we find many of the data are irrelevant at any given iteration. In particular, 

the only nonbasic variable of interest at an iteration is the one that is to enter the 

basis. Similarly, a problem with many columns and few rows requires much updating 

of nonbasic columns, which may not be needed until many iterations later, if ever. 

The revised simplex method substantially reduces avoidable data storage and com¬ 

putational effort. The underlying simplex logic remains the same. 
The principles underlying the revised simplex method are more easily explained 

and more readily understood if we use matrix algebra. If you are not at ease with 

matrix algebra, you may wish to skip this section. At this point, it may also be advisable 

to briefly study Section A-9 of Appendix A, which presents the essentials of linear 

programming in matrix form. 
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We can write a linear program as 

maximize z = : cx 

subject to t 
7=1 

V/= b, all X} 3= 0 

or Ax= b, all x 0 

Thus at a particular basic solution, we have a matrix B in which each column 
represents a vector of the coefficients of a basic variable (or basic vector). The corre¬ 
sponding vector of basic variables is denoted as xB. Since all nonbasic variables are 
zero, the basic solution is 

(17-9) = 

where a/s are basic vectors. 

The coefficients of xj in canonical form (call them vector y) are the coefficients 
of a- expressed as a linear combination of the set of basic vectors. (The correct usage 
of the term “basis” is the set of basic vectors.) Thus, 

(17-10) ay = By y = 1 = 
i 

where the a/s are basic vectors. 

The entries in the full simplex tableau are the vector xB in the “Solution” column, 
the vectors y; for each nonbasic vector in the Xj columns, an identity matrix for the 
basic vectors, and the (zy - c;) values. Let us perform a matrix inverse manipulation 
on both (17-9) and (17-10). (The inverse of B exists by the definition of a basis; the 
basic vectors are linearly independent.) 

U^-U) xB = B-Ib and yf = B~'ay 

b and the a/s are the RHS and LHS vectors of the original linear program. Thus, if 
we know B"1 at each iteration, we need not store xB or the y/s. Similarly, if cB are 
the objective function coefficients of the basic variables, we recall from the way we 
define z, in Section 3-4 that zy = cByy, or, using equation (17-11), 

<17-12) ^ = cB(B-,ay) = (cBB-1)a> 

Again, cB and a are original data, so zy can be calculated using B-1. Hence, all 
information needed at each iteration is contained in the original data and the basis 
inverse. However, for convenience, we also store xB and c„B_1. Since B1 usually 
has many fewer columns than the full simplex tableau, fewer computations are needed 
to update B"1 at each iteration. The revised simplex method efficiently exploits these 
features. 

The B~‘ matrix is already a part of the full simplex tableau. It is the set of 
columns in the tableau that corresponds to the initial basis of the first tableau—i.e., 
the positive slack variables and the artificial variables. (There would be a problem with 
the order of the columns of B"1 if the original basic vectors were not in normal order 
for an identity matrix. However, we could simply reshuffle the columns to correspond 
with the proper order.) Hence, the B_1 matrix was updated and carried along in the 
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full simplex tableau. So in the revised simplex method, it can be updated using the 

same simplex transformation rules. 
Let us now illustrate the revised simplex method using the reduced power gen¬ 

erating problem—problem (3-1). For later reference, it is useful to show this problem 

in detached coefficient form, including the slack variables x3 and x5, as in Table 

17-5. 

Table 17-5. Reduced power generating problem in detached coefficient form 

*2 *3 *5 RHS 

Smoke 0.5 1 
1 
& 

1 0 12 

Pulverizer 
1 
m 0 1 1 

Obj. function 24 20 0 0 maximize 

"he initial basis is 

B = (a3> a$) = j 
'i o’ 
0 1 

so 

B1 = 
1 0 
0 1 

This allows us to compute the following information from the original data in Table 

17-5. 

xB = l M = B 1 b = 

cbB-'=(0,0) 

’i o' '12' ’12’ 
_0 1_ 1 1 

1 0 
0 1 

z = cBxB = (0, 0) 

= (0,0) 

= 0 

We store these data in the tableau shown in Table 17-6. In addition, we have 

a spare column in which to put the of the variable to enter the basis, which we 

have yet to determine. 
Let us now use equation (17-12) to find the (Zj — c;)s. We apply this equation 

to each of the nonbasic variables, using the original information in Table 17-5: 

z, = (0, 0) 

= (0, 0) 

0.5 

re J 

23 J 

= 0, 

= 0, 

so (z, - c,) = - 24 

so (z2 — c2) = - 20 
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Table 17-6. Initial revised simplex tableau 

c„ B~' * 0 0 0^ 74 LT ^ 

*3 1 o 12 

J- 
X- 0 

=4= 

1 
U* y 

of the vector 
entering the basis 

We now use simplex criterion 1, i.e., minimum [(z;. - c) < 0]. This gives us 
x\ en^er basis. To determine the variable to leave the basis and to update the 
tableau, we require y^ We find this by equation (17-11), using the original data in 
Table 17-5: 

i
-

 
o

 

i
_

 -
1

 

p
 

_
1

 i 
p

 

_
i

 

0 1 J 
-C

2 

_
i

 k J 
The rule for the variable to leave the basis is found from the last two columns 

of Table 17-6. For each positive element in the yy vector, we find the minimum 
(Wy;/) ratio. In this case, we see it is the minimum (12/0.5, 1/&), or 16. Thus x5 
leaves the basis. You should check that these calculations are equivalent to those of 
the first simplex iteration in Section 3-6, Using the regular simplex transformation 
rules, with ^ as the pivot element (circled), we get the new revised simplex tableau 
of Table 17-7. The yj column and (;zj - c) square are left blank until the new variable 
to enter has been determined. 

Table 17-7. Second revised simplex tableau 

0 384 384 -4 

*3 1 -8 4 ® 
*1 0 16 16 2 

3 

^..v---' 
Updated at 
iteration 1 

Determined at 
iteration 2 

At the second iteration, we find the (z, - c) values by equation (17-12) and the 
original data: 

(*2 - <h) = (0, 384) 
1 

a J 
20 = -4 (z5 - c5) = (0, 384) - 0 = 384 

The variable to enter is thus x2. We insert (z2 - c2) into the empty top right-hand 
square of Table 17-7, and calculate y2 for this basis, using equation (17-11): 
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y2 B 1 -8 1 1 2 
3 

0 16 k J 2 
_ 3 J 

This is now entered into the y; column in Table 17-7. When the variabie-to-leave 
criterion is applied, we find x3 leaves the basis. Pivoting on the circled element (j), 
we derive the third revised simplex tableau, shown in Table 17-8. 

Table 17-8. Third revised simplex tableau 

(optimal) 

6 336 408 

*2 

3 
2 -12 6 

*1 
-1 24 12 

The new (z; Cj) are 

(z, - c3) = (6, 336) -0 = 6 (z5 — c5) = (6, 336) - 0 = 336 

Since all (z,- - c) 5= 0, this tableau is optimal. 
The revised simplex method has another important aspect besides the advantages 

of less storage and often less computations. When the solution is performed by com¬ 
puter, there is always the problem of the precision of the computed data. At each 
iteration, the rounding and truncation errors are compounded. After many iterations, 
the table elements may be significantly in error. This affects the (zy - c) values and 
the ratio for the variable to leave. As a consequence, the wrong variable could be 
chosen to enter or to leave the basis. We can keep these errors within reasonable 
bounds by finding the basis inverse B1 from scratch at any particular iteration. There 
are trade-offs to be considered in doing this. A matrix inversion is a lengthy process 
and is prone to computer errors also. Normally in a commercial computer code, a 
reinversion is performed every so many iterations—e.g., every 50 iterations. It is also 
standard practice to reinvert when the optimality criterion is satisfied. Special pro¬ 
cedures for storing and updating B or B_1 that take into account the sparsity of the 
matrices (the proportion of nonzero elements) help to reduce errors, speed up rein¬ 

versions, and also further reduce storage needs. 

17-4 SEPARABLE PROGRAMMING 

Consider a problem with a nonlinear objective function and nonlinear constraints of 
the following form: Find values xx, x2, . . x„ that 

maximize 1 iw 
/= 1 

subject to ^ &/*,) « 
/=! 

Xj 5= 0 

for i = 1, . . m 

j = 1, • • -, n 

(17-13) 
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This is called a separable programming problem because the objective function 
and the constraints are all separable functions. A function h in the variables x„ 
xlt . . xn is separable if it can be expressed as the sum of n functions in one variable 
each: 

h(x., x2, n) = Hx\) + h2(x2) + • • • + hn(xn) 

The function h(xu x2) — - x\ + x, + x2 is separable since h(xu x2) = 
/i,(x,) + h2{x2), with hfa) = x( + x, and h2(x2) = x2 - x\. But /i(x„ x2) = 

x\ ~ x2 + x\x2 is n°t a separable function. However, we can make this function 
separable by a suitable transformation of variables: Let y = (x, + x 
x, + x2 + 2xjX2. 'Then the term x,x2 = 2(y2 ~ 
by the system: 

H(xi> x2> y) = 2*i - 

so y2 = 
x2 - x2), and h(xv x2) can be replaced 

<2 - H + & 
subject to y - x, - x2 = 0 

Many nonseparable functions can be transformed into a separable system. You 
should consult more advanced texts for further examples. 

To solve problem (17-13) by the simplex method, we first have to approximate 
each nonlinear function by a suitable linearization. The resulting set of linear objective 
function and linear constraints is referred to as the approximating problem. It is this 
problem that is solved by a suitably modified version of the simplex method. 

Consider the following problem: A cabinet maker is asked by a jeweller to build 
two display boxes, with lids made from a special shatterproof and breakproof transparent 
material. Only 8 square feet of the material is in stock at present, and no more can 
be procured within the time available to build the boxes. Figure 17-1 shows the 
dimensions of the two boxes. For box 1, the length has to be 1 foot, whereas the 
width and height are to be of equal but unspecified size x,. For box 2, the height has 
to be 1 foot, whereas the width and length are to be of equal but unspecified size x2. 
The dimensions x, and x2 are to be chosen so as to satisfy the material constraint on 
the lids of the two boxes. The lid of box 1 requires (length) (width) = lx, square feet 

Figure 17-1. Display box manufacturing problem. 

Box 2 

Lid 



510 Chapter 17 Extensions to Linear Programming 

of the material, and the lid of box 2 requires (length) (width) = x2x2 = x2 square feet 
of the material. The sum of these cannot exceed the amount available, i.e., 

X! + X2 « 8 

The cost for material and labor is $0.5 per square foot of the outside of each box. 
For box 1, four of the sides are equal to lx, square feet, and two sides are equal to 
x\. The total outside area is thus2x( + 4x,. Similarly, for box 2, four of the sides are 
equal to lx2 square feet, and two sides are equal tox2, summing to 2x2 + 4x2. The 
charge to the customer is proportional to the sum of the three dimensions of the 
boxes, i.e., width + length + height ($2 per foot for box 1, and $2.5 per foot for 

box 2). 

The profit for each box is 

box 1; 2(x, + x, + 1) - 0.5(2x( + 4x,) = 2x, — x( + 2 

box 2: 2. 5(x2 + x2 + 1) - 0. 5(2x2 + 4x2) = 3x2 - x22 + 2.5 

Total profits for both boxes are 

2x, - x2 + 3x2 - x2 + 4.5 

The objective is to determine the dimensions x, and x2 so as to maximize profits, 
subject to the constraint on the material available. Thus, we get the following nonlinear 
programming problem, where the constant has been dropped from the objective 

function: 

maximize z = f(xu x2) = 2x, + 3x2 - x] - x\ 

(17-14) subject to g,(x,, x2) = x, + x|s£ 8 

x„ x2 5= 0 

These functions are separable as follows: 

(17-15) f{xu x2) = /j(x,) + f2(x2) 

where /j(x,) = 2x, - x,and f2( x2) = 3x2 - x2, and 

(17-16) g,(x„ x2) = gu(x,) + gl2(x2) 

where gn(x,) = x, and gI2(x2) = x2. 
Our first task is to estimate some lower and upper bounds on the feasible values 

of x, and x2. This limits the computations involved in linearization. These estimates 
need not be very accurate, but should be on the conservative side. An examination 
of g,(x„ x2) 8 shows that x, will lie in the range 0 x, =S 8, and x2 will lie in the 

range 0 =£ x2 =£ 3. 
Let us linearize ftx,) and gu(x,) over each of the intervals 0 x, ^ 2, 

2 x, =£ 4, 4 =£ x, =s 6, 6 =£ x, =£ 8, and f2(x2) and gn(x2) over each of the intervals 

0 =s x2 *£ 1, 1 x2 ^ 2, 2 x2 3. 
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We define p, to be the number of intervals for variable xp so p, = 4 and p2 = 
3. The points dividing each of the variables into intervals are called grid points. So, 
for example, the grid points for x, are 0, 2, 4, 6, 8. Let us define xkl to be the grid 
point at the right-hand end of the &th interval for x,. Similarly, let xk2 be the grid 
point at the right-hand end of the kth interval for x2. These are shown in columns 
1 and 5 of Table 17-9. The length of the 7th interval is (x*, - xlk_Vj] ) = Ax*, for x„ 
and Ax*2 = (xk2 - x(k_l)2) for x2, shown in columns 2 and 6 of Table 17-9. Selecting 
a good set of grid points for each variable is largely a matter of experience and the 
analyst’s understanding of the nature of the nonlinearities. 

Table 17-9. Data for linearization of problem (17-14) 

(1) (2) (3) (4) 
*oi =0 /o, = 0 &11 = 0 
*n = 2 Ax,, = 2 fn= 0 gm = 2 
*21 ~ 4 A*2i = 2 f2, = — 8 g21, = 4 
*3i — ^ Ax,, = 2 fi\= ~ 24 = 6 
*4i ~ 8 Ax41 = 2 1 = — 48 gni = 8 

(5) (6) (7) (8) 

*02 ~ 0 /i)2 = 0 #012 = 0 

*12 — 1 A*12 = 1 f\2 = 2 gm = 1 
*22 = 2 A*22 = 1 fn= 2 g212 = 4 
*32 = 3 AxJ2 =1 4=0 gm = 9 

Looking at function f,(x,), let us define fkl = f( xkl) as the value of f{ at the grid 
point x*,. For f2(x2), fk2 = f2(xk2). These are shown in columns 3 and 7 of Table 17- 
9. Similarly, we define gku — gu(xkl) and gkl2 = gl2(xk2), as shown in columns 4 
and 8. 

We call the functions of linear segments the approximating functions. To dis¬ 
tinguish between the original and the approximating function, we shall denote the 
approximating function of f2 by fp Figures 17-2 and 17-3 show the original functions 
and the approximating functions. We now express the original nonlinear programming 
problem in terms of the approximating functions as follows: 

maximize 
i= i 

(17-17) subject to ^ gj/x,) 8 
7=1 

*;^0, ;=1,2 

This is the approximating problem that we will manipulate into a form that can be 
solved by a version of the simplex method. 

17-5 THE X-FORMULATION OF THE APPROXIMATING PROBLEM 

We will now look at the problem of formulating the approximating problem explicitly. 
To do this, we will view the values of a variable in the approximating problem in 
terms of proportions of the grid points of the variable. Let us consider a value of x, 



Figure 17-2. Linearization of /*,(*,) and g]](x]). 

that lies in the kth interval; i.e.,x(Jt_1}1 ^ x{ ^ xkl. Since xx lies on the line segment 

between x{k_in and xkl9 it can be expressed as 

(17-18) = XX(j^_ Di + (1 — X)x^ 

where 0 ^ X ^ 1. The terms X and (1 - X) give the proportions (or weights) of the 
grid points defining the kth interval So, for example, if xY = 5 (it lies in the third 

interval), then x1 = \x2X + |x31 [i.e., 5 = |(4) + i(6)]. 
More generally, xx = 5 can be expressed in terms of all the grid points of xlt by 

giving a zero weight to all those grid points other than xlx and x31: 

Xj = 5 = Ox01 + 0xn + I%2\ + 5*31 + 0*41 

Since a given interval is defined by only two grid points, at most two grid points 
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Figure 17-3. Linearization of f2(x2) and g,2(x2). 

can have positive (and nonzero) weights, and those two will always be adjacent. If x, 
has the exact value of the grid point, there will be only one nonzero weight. For 
example, x1 = 2 = Ox01 + lxn + 0x21 + 0x31 + 0x41. 

We will now generalize this result. Let \uj be the weight given to the uth grid 
point of xjt (u = 0, . . ., pj). Each \uj must satisfy 0 =£ A.s= 1; and, since the weights 
represent proportions of the end points of an interval, we have SjL0 \uj = 1, provided 
that no more than two weights can be nonzero and they must be adjacent. Then by 
analogy to (17-18), if xj is in the kth interval, 

(17-19) xj \k-\)jx{k-\)j + Kjxkj 
with V/ 1 

V/ 
o

 

0 ^ \ ^ 1 

and II 

/<
: 

+
 i 

By including all the other grid points and giving them zero weights, we obtain 

(17-20) 

^
1

 

ii 

pi 
with 2 k = i 

u = 0 

Kj35 0 
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and the usual proviso that for each j, at most two \uj can be positive and then only 
if they are adjacent, i.e., for grid points k - 1 and k. The condition \uj *£ 1 is made 

redundant by the constraint 

2A;= 1 

What is the value of f [approximating function of ff xy)] for xj defined by (17-20)? 

We will look again at x, = 5. The value of f,(x,) at x, = 5 is 

fixf) = fi(5) = 2/21 + ifn = K —8) + K —24) 16 

You can check this on Figure 17-2. As with Xj, we can write /j(Xj) at Xj 5, using 

Table 17-9, as 

fi(5) = Of01 + 0f„ + jf21 + 2/51 + °/ti 
= 0(0) + 0(0) + s(-8) + l-24) + 0( — 48) = 16 

This result suggests that, in general terms, for xj in the kth interval, 

(17-21) 

together with the conditions on A.u;- given in (17-20). 
Analogous equations can be derived to express the constraint approximating 

functions ^(x^ and g12(x2): 

6 
(17-22) gyix) = X 

u = 0 

with the conditions on \uj given in (17-20). 
In expressions (17-20), (17-21), and (17-22), we have derived the k-formulation 

of the approximating problem (17-17). It is summarized as follows: 

maximize ^ ^ Kjfuri 
;=1 \u-o ' 

subject to 

(17-23) 

lK= 1, 7=1-2 
6 = 0 

\uj >0, all u and j 

with the condition that at most two kul can be nonzero for each /, and then only if 

they are adjacent. 
The data in Table 17-9 enable us to write (17-23) in full: 
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(17-24) 

maximize O\01 + 0\u - 8\21 - 24X,, - 48\41 + 0A,2 + 2\u + 2X22 + 0\32 

subject to 0\01 + 2X„ + 4\21 + 6\31 + 8X,, + 0\,2 + 1\12 + 4\22 + 9\32 8 

K\ + + X21 + \31 + \41 = l 
\>2 + ^12 + X22 + \32 = 1 

Ki ^ 0> all u and / 

with the special condition that at most two \uj can be nonzero for each j, and then 
only if they are adjacent. 

Problem (17-24) is a linear programming problem with the \uj as variables. The 
only snag is the special condition on the variables. However, by superimposing special 
housekeeping rules on the simplex method that restrict entry of variables into the 
basis, we can solve the X-formulation by that powerful algorithm. The major disad¬ 
vantage of separable programming is that it may expand considerably the number of 
variables and constraints in the original nonlinear program. In our case, problem 
(17-14) had two variables (x, and x2) and one constraint, while problem (17-24) has 
nine variables and three constraints. The last two constraints are in a form that can 
be handled by a generalized upper-bounding technique incorporated in most advanced 
linear programming computer codes. 

17-6 ANALYSIS OF THE SOLUTION OF THE X-FORMULATION 

When we solve problem (17-24), we obtain four alternative optimal basic solutions 
shown in Table 17-10. 

The values of the Xj variables can be found from these solutions by equation 
(17-20) and Table 17-9. Solution 1 is x, = 0, x2 = 1; solution 2 is x3 = 0, x2 = 2; 
solution 3 is X| 2, x2 — 1; and solution 4 is X| = 2, x2 — 2. In every case, 
fi( x,) = 0 and f2( x2) = 2 , so the objective function value of the approximating problem 
is 2. These are not the only optimal solutions; every convex combination of them is 
also optimal to the approximating problem. 

In terms of the original problem (17-14), we can show that the four solutions in 
Table 17-10 also give z = 2. However, these solutions are not optimal. The optimal 
solution to (17-14) is x, = 1, x2 = |, and z = 3 i 

Thus, we face a difficulty with separable programming. There is no reason, in 
general, to believe that the optimum of the approximating problem is the optimum_ 
or even a good approximation of the optimum—for the original problem. The accuracy 
depends on how the variables were segmented. Usually, finer intervals give greater 
accuracy, but they also lead to a larger approximating problem. Some computer codes 
avoid this problem to some extent by making the intervals smaller as the algorithm 
nears the optimal solution. 
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Table 17-10. Optimal solutions to problem (17-24)_ 

Solution 1 Solution 2 Solution 3 Solution 4 

\i 1 
\n 0 
\2I 0 

K 0 
K 0 

\02 0 
\,12 1 
^ 0 
K o 

1 0 0 
o 1 1 
ooo 
ooo 
ooo 

ooo 
0 1 o 
1 0 1 
0 0 0 

Separable programming solves certain types of nonlinear problems. As we shall 
see in Chapters 19, 20, and particularly 21, all nonlinear programming techniques 
share one weakness—namely, they cannot guarantee to find the overall (or global) 
optimum, unless the objective function and the feasible region satisfy certain properties. 
For separable programming with an objective function to be maximized, the objective 
function has to exhibit decreasing or constant returns to scale. For constraints referring 
to resource use, incremental amounts of each variable must require increasing or 
constant resource use. This is the case for our example. Hence, the solution found 
is the global optimum. Section 21-3 states these conditions rigorously. 

In fact, if a separable programming problem satisfies the properties for a global 
optimum, then it can be linearized as demonstrated and we can solve it directly by 
the simplex method without imposing restrictions on the variables to enter the basis. 

EXERCISES 

17.1 Reformulate exercise 2.2, with the constraint on vitamin X as a lower bound on the 

appropriate decision variable. 

17.2 Reformulate the media selection problem of Section 2-14, given by expressions (2-19) 
through (2-23), replacing (2-22) and (2-23) by upper bounds on the variables. Solve 

using the upper-bounded simplex method. 

17.3 Reformulate exercise 2.4 with upper-bounded variables, and solve using the upper- 

bounded simplex method. 

17.4 Solve the problem in exercise 3.10(a), with an upper bound on x, of 2. Use the big 

M method. 

17.5 ISolve this problem using the upper-bounding algorithm: 

maximize z = + Sx2 + \xi 

subject to 2xj + 3x2 + x3^9 

2xj + lx2 + 2x3 ^ 9 

1 « x1« 4 0^x2^l x3^0 
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Find also the alternative optimal basic solution. 

1? 6 Consider exercise 3.6. Use the revised simplex method to solve: 
(a) The problem of part (a). 
(b) The problem of part (b). 

17.7 Consider exercise 3.10. Use the revised simplex method for the big M formulation to 
solve: 

(a) The problem of part (a). 
(b) The problem of part (b). 

17.8 Consider the problem 

maximize f(x) = - 2x\ - (x2 - 3)2 

subject to 2x, + x2« 4 

x„ x2 3= 0 

Set up the a pproximating problem using the X-formulation of separable programming 
Use the grid points 6' 

x, = (0, i i 1, 2) x2 = (0, i | 2, 3, 4) 

17.9 Set up the following as a separable programming problem: 

maximizez = (x, - 3)(x, - 15)2 - (x2 - 4)(x2 - 8) 

subject to x] + x22=s25 

x, + 2x2 3= 2 

x„x2& 0 

17.10 Set up the following problem as a separable programming problem using the X-for- 
mulation: 

maximize f(x) = 16x, + 20xz - 4x,x2- x2 - x2 

subject to x2 + 4x2 16 

<*1*1 + a2x2 58 3 

*1, *2 3= 0 

17.11 

where a\ = L <*z = l, 
a\ ~ 4>a2 ~ 2y 

ifXj ^ 2, x2 ^ l] 
ifXj <2, x2> \l 

Justify briefly your choice of grid points. 

Set up the following problem as a separable programming problem using the X-for¬ 
mulation: 

maximize f(x) = 6x - 4x2 + 

subject to x2 — 6x ^ 5, x $= 0 
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CHAPTER EIGHTEEN 

Integer Programming 

In hnear programming, we assume that all variables are continuous. If the variables 
measure quantities (such as time, liquids, or funds), this is an accurate representation 
lithe variables refer to discrete commodities (machines, people) and the solution gives 
toe variables large values, rounding to the nearest integer may be close to optimal 
However, if the optimal value is small, rounding it to the nearest integer may be far 
from optimal. 

Techniques for solving linear programs with integer restrictions on some or all 
variables are called integer programming techniques. Before we deal with these, let us 
go through a few examples of how integer programming arises. 

18-1 A SIMPLE INTEGER PROBLEM 

A university has received a grant of $2.5 million for purchasing new computer equip¬ 
ment It is impossible for the university to supplement this sum from any other source, 
feasibility studies indicate that only two machines are suitable. The setup of the 
university is such that any number of either type of machine or any combination of 
them would be quite acceptable. Benchmark tests have enabled the university to 
evaluate the load capacity in units of “average jobs” per hour for the two types of 
machines. r 

Computer Cost ($ million) Capacity (per hr) 

1 1.4 28 jobs 
2 0.6 11 jobs 

The university wishes to maximize its potential job capacity. Clearly, the machines 
can be purchased only in whole units. 

519 
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Let x, be the number of type 1 computers, and let x2 be the number of type 2 
computers. The job capacity per hour (in average jobs) is 28x, + llx2. This is to be 

maximized. Hence, the objective is 

maximize z = 28xj + 1 lx2 

subject to the finance constraint, nonnegativity conditions, and integrality constraints 

14xt + 6x2^25 (units $100,000) (finance constraint) 

(18-1) X!,x2^0 (nonnegativity conditions) 

Xj, x2 integers (integrality) 

Although problem (18-1) has the structure of an ordinary linear programming 
problem, it must be solved by integer programming because of the small solution 
values of the variables. We will discuss the actual solution to this problem later. 

The structure of integer programming allows some interesting twists in the for¬ 
mulations, such as the introduction of zero-one variables, i.e., variables restricted to 
the values 0 and 1. These can be ordinary decision variables, as in the assembly line 
balancing problem, or “dummy” variables especially introduced to permit logical 
statements to be formulated as linear constraints, as in the fixed charge problem. 

18-2 ASSEMBLY-LINE BALANCING PROBLEM 

An assembly line consisting of a collection of work stations has to perform a series of 
jobs in order to assemble a product. At each work station, one or more of the jobs 
may be performed. Normally, there are some restrictions on the order in which jobs 
may be done; these are called precedence relations. There is also a limit on the time 
a product can stay at any particular work station. Consider an example of a product 
with 5 jobs The decision involved allocating each job to a work station so that the 
number of work stations is minimized. Table 18-1 gives the jobs, any precedence 

relations that exist, and the time needed to complete each job. 
Job i is either done at station j or not done at station /. This is an either/or 

situation that fits in well with 0-1 variables. 

f 1 if i is done at station } 

10 if i is not done at station j 

Table 18-1. Data for assembly-line balancing 

Job i Time p, (min) 

1 
2 
3 
4 
5 

6 
5 
7 
6 
5 

Precedence 

3 
2, 4 
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Let us assume that there are 4 stations (this is certainly an upper limit) Suppose 
the maximum time at each work station is 12 minutes. So we obtain the following 
time constraint on each solution: 

(18"2) /=1, ...,4 
1 = 1 

(i.e., the time taken for jobs assigned to station j must be less than 12 minutes) 
Equations (18-2) expand to 

6x„ + 5x2, + 7% + 6x41 + 5xsl =£ 12 

nQ7, 6xn + 5x22 + 7x32 + 6x42 + 5x52 « 12 
(18-5) 

6xb + 5x23 + 7x33 + 6x43 + 5x53 12 

6xh + 5x24 + 7x34 + 6xm + 5x54 12 

Next, we must handle precedence relations between jobs. By saying that job 3 
must be done before job 4, we mean that job 3 must be performed either at the same 
station as job 4 or at a prior station. Job i has been done at or before station k 

vi '",= 15yv7 ’ u has "ot been done if , AT,y = 0. At station k, if 
fr.Wy-.jVttcn job 4 cannot be done unless job 3 has been done because 

u'7i *4/ ~n 1 °n y lf S'=1 *3' = b For tbe precedence relations to be satisfied, this must 
hold at all stations. So we obtain 

(18-4) X *4/ ^ ^ xy> 
j=i j=l 

*= 1, . . .,4 

If neither job is done by station k, expression (18-4) holds trivially (i.e., 0 0) and 
it also holds if both jobs have been done (i.e., 1 ^ 1). 

The precedence relations for job 5 are 

(18-5) /=i ;= i 

i xv 
j= i 

* = 1.4 

It is also necessary to ensure that each job is done once and only 

<18-6> jU-l. i-l.5 
j=l 

once; 

The objective is to find the minimum number of stations to set up. This is 
achieved by allocating a lower “cost” to job i done at station 1 than for job i done at 
station 2, etc. By minimizing these costs, we force the jobs to the earliest possible 
work stations. The costs are arbitrary. We will give a cost of j to xr (= job i done at 
station j). Thus we obtain '' 

(18-7) minimize z = £ xa + 2 £ xj2 + 3 £ xi3 + 4 £ xl4 
1=1 «=1 i=l /=1 
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The collection of equations (18-3) through (18-7), together with the nonnegativity and 

integrality conditions on the variables 

(18-8) x,y 52 0 and integer-valued for all i and j 

make up the integer program for this problem. We do not need to put an upper limit 

of 1 on each xiy; equation (18-6) does that implicitly. 

18-3 THE FIXED-CHARGE PROBLEM 

A firm can produce 5 products on a production line that goes through 3 different 
departments. Product j requires atj man-hours in department i. Department i has M, 
man-hours per month available. A unit of product j makes a gross profit of $cy (i.e., 
selling price less variable cost = $cy). However, it costs $Fy to set up the production 
line for producing a run of product j. The firm wants to schedule monthly production 

so as to maximize profits. , . . 
Where a fixed cost is incurred if, and only if, some variable is positive, an ordinary 

linear programming formulation does not work. In linear programming, we assume 
that all costs are variable costs (i.e., proportional to the magnitude of the variable), 

whereas here there is both a fixed cost and a variable cost. 
Let Xj be the size of the production run of product j. The profit from producing 

Xj is 

(18-9) 
fcyxy-Fy for Xj > 0] 

' [o for xy = oj 

We define variables 

(18-10) 
for Xj > 0 

for xy = 0. 

/= 1, .... 5 

;= 1, .... 5 

Using (18-10), expressions (18-9) can be written 

(18-11) Pj = - FA) i= I- ■ • •’5 

Since the objective is to maximize profits, it follows directly from (18-11) that the 

objective function is 
5 

(18-12) maximize z = ^ (cyxy - Fy8y) 
;=i 

The man-hour production constraints are 

(18-13) ^ atjXj =£ M„ i =1,2,3 
;=i 

Equations (18-10) must be written in linear constraint form in order to fit the 
constraints into the integer programming structure. We do this by finding an upper 
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J™1* °n *T~say V—which we know to be above any possible value of x. Then using 
(18-10), we form the constraints 

xi*ub> /=!,..., 5 

and integer-valuedJ, ’’ 

Equations (18-12) through (18-15) are the integer programming formulation. 
Together they ensure that bj = 0 only when x, 0 and x} 3= 0 simultaneously (i.e. 
xt ~ ^ 1 he 8; variables are referred to as dummy variables or logical variables. They 
are merely an aid to formulating the problem and are not decision variables. 

(18-14) 

(18-15) 
Xj 3® 0 

0=S8,.S£ 1 

18-4 FURTHER APPLICATIONS 

Integer programming has been used to solve a variety of problems. The following is 
a list of some further applications. 

1. Capital budgeting problem: allocating limited funds to various investment 
projects to maximize the discounted net return. 

2. Covering problem: given a set of elements and various feasible groupings of 
these elements, assigning each element to a group so that all elements are 
covered. An example is the loading and arranging of items in delivery trucks 
in such 3 way that all items are delivered at minimum cost. 

3. Location problems: choosing between various alternative sites for the location 
of a factory, warehouse, or store to minimize transport cost, to maximize 
revenue, etc. 

h Knapsack problem: choosing between items to pack into a limited space, to 
gef as much “value” into the space as possible. There are a host of problems 
that fit this structure; some are seemingly quite different. 

5. Matching problem: selecting items to match from different groups so that as 
many matching sets as possible are formed, e.g., selecting gears, bearings, and 
shafts from batches of each of them, to form matching sets that conform to 
certain precision tolerances. 

6. Sequencing problems: sequencing a number of jobs on a machine to minimize 
the set-up cost or the time taken. (The enumeration of all possibilities, heuristic 
approaches, or dynamic programming—where applicable—are often better 
than integer programming.) 

7. Traveling salesman problem: choosing an optimal route (e.g., minimum cost 
or distance) for a traveling salesman. (Heuristic methods are usually more 
tractable.) 

8. Scheduling problems: determining schedules and timetables for vehicles, ma¬ 
chines, school classes, etc. (Again, heuristic approaches are often better for 
large problems.) 
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18-5 INTRODUCTION TO SOLVING INTEGER PROGRAMMING 
PROBLEMS 

Consider again problem (18-1): 

maximize z = 28xt + 11 x2 

subject to 14xj + 6x2 *£ 25 

Xi,X23= 0 

The integer programming solution is 

x, = 0 x2 = 4 z = 44 

The linear programming solution is 

Xl = 25/14 x2 = 0 z = 50 

These solutions appear in graph form in Figure 18-1. 
Let us try rounding the linear programming solution to the nearest integer so¬ 

lution: i.e., x, = 2, x2 = 0, z = 56. This yields a solution that is noHeasible^ Trying 

the nearest feasible integer solution, we obtain xY - \,x2- I), z ims time> 

Figure 18-1. Graphical solution to problem (18-1). 

X2 
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however the solution is well below the optimal integer solution. This case demon¬ 
strates that seeking the integer programming optimum by rounding the linear pro¬ 
gramming optimum (even in simple examples) may be unreliable. As the integer 
programming problem gets larger, such a naive technique is quite useless. We need 
techniques that systematically work to the optimal integer solution. 

18-6 GENERAL STRUCTURE OF INTEGER PROGRAMMING 
TECHNIQUES 

Several techniques using different concepts are employed to solve integer programming 
problems. It is possible to summarize their basic approaches and their variations under 
three principles: separation, relaxation, and fathoming. 

Consider the problem 

i = l, . . ., m 

all j 

Xj integer-valued for some of the j 

We have not assumed that all the variables take integer values. We call a problem 
a mixed-integer problem when it has both integer and continuous variables. A problem 
where variables all have integer restrictions is called an all-integer problem. 

Let P be a maximization problem involving integer restriction, either a mixed- 
integer problem or an all-integer problem. Let F(P) be the set of feasible solutions to 
the problem P, i.e., the set of solutions that satisfies the inequalities and the integer 
restrictions. 

It is sometimes convenient to solve a problem through a series of smaller sub¬ 
problems of the original. A valid separation of the problem into subproblems should 
satisfy the following principle. 

PRINCIPLE OF SEPARATION 

P is separated into the subproblems, or descendants, P„ P2, . . ., P if; 
51. Every feasible solution to P is a feasible solution of one and only one 

of the descendants. 

52. Every feasible solution of every descendant is a feasible solution to P. 

Separation can occur in a number of ways. The following example illustrates the 
most useful form of separation for our purposes. 

maximize z = ZciXj 

(18-16) 
subject to X =£ bo 

Xj 5* 0, 
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Consider problem (18-1) again as problem P: 

maximizes = 28x, + llx2 

(P) subject to 14xj + 6x2=s25 
xux1'3z 0 and integer-valued 

This can be separated into the two descendants: 

maximize zx - 28x, + 11 x2 

(Pi) 
subject to 14x, + 6 x2 ^ 25 

x2^2 

x„ x2 ^ 0 and integer-valued 

and 

(Pz) 

maximize z2 

subject to 

= 28x, 

14x, 

+ llx2 

+ 6x2 =£ 25 

x2>3 

Xi, X2 3= 0 and integer-valued 

We have separated P around the interval 2 < x2 < 3. 

P1 is the feasible region of P for x2 $ 2, and P2 is the feasible region of P for 
x2 5= 3. Since the region 2 < x2 < 3 contains no integer values, it can be excluded 

from consideration. . . . , 
We can show that P, Pt, and P2 satisfy SI and S2. SI is satisfied because every 

integer solution of P belongs to exactly one of P, and P2. S2 is satisfied because there 

are no integer solutions to Px and P2 that are not solutions of P. 
Of course, there is nothing special about the interval 2 < x2 < 3. Any other 

interval that excludes no integer solutions (such as 0 < xt < 1, or 4 < x2 < 5) will 

do just as well. 
The problem P is relaxed by removing or weakening softie of its constraints or 

restrictions. We call a relaxation of P the problem PR. The most common use of 
relaxation in integer programming is to drop the integrality requirement, although 

other forms of relaxation are also used. 
Relaxation requires that the following conditions be satisfied. 

When a problem P is relaxed to a problem PR, every' feasible solution to the 
problem P must be a feasible solution to the problem PR. This leads to three 

Rl. If there is no feasible solution to PR, there is no feasible solution to P. 
R2. The maximum value of PR is no less than the maximum value of P. 
R3. If an optimal solution of PR is a feasible solution of P, it is an optimal 
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Finally, we have fathomed a problem when the problem needs no further analysis 
in the quest for the integer programming solution. The principle of fathoming gives 
three different ways in which a problem is fathomed. The importance of the second 
case will become clear in the next section. 

PRINCIPLE OF FATHOMING 

We say a problem P is fathomed when any of the following three conditions are 

FI. P has no feasible solution. 

F2. P has no solution that has an objective function value better than some 
predetermined value z*. 

F3. An analysis of P reveals the optimal solution. 

The integer programming techniques for solving expression (18-16) vary. Nearly 
all relax the original problem by removing the integer restriction; some fathom it 
without separating it into descendants, and others fathom totally through the descen¬ 
dants We will study how integer programming uses these principles by looking at two 
entirely different solution techniques: the first is a simple version of branch and bound 

algorithms, and the second is Gomorys cutting plane algorithm. For ease of exposition, 
we will always deal with a maximizing problem. 

18-7 A BRANCH AND BOUND ALGORITHM 

A branch and bound algorithm solves the integer programming problem by a com¬ 
bination of relaxation and separation. Fathoming is done through the descendants of 
the original integer programming problem. The original integer program and its 
descendants that are generated by the branch and bound procedure are relaxed to 
linear programs for solution. If a particular descendant is not fathomed when its linear 
programming solution is found, it is separated (or branched) into two new descendants. 
If it is fathomed at the linear programming solution, then that branch is terminated 
We have not fathomed the original problem until we have fathomed all of the des¬ 
cendants. The optimal solution to the original integer programming problem is the 
greatest of the optimal solutions of the descendant problems. 

The collection of unfathomed problems is called the reserve or candidate list. 

Each time a problem is chosen for fathoming from the reserve, we start a new iteration 
of the branch and bound algorithm, and the problem chosen is referred to as the 
candidate problem, or CP. At the first iteration, the reserve contains only the original 
integer programming problem, which is thus the initial candidate problem. 

Let us assume that at each iteration of the algorithm we know that the objective 
function value of the optimal solution to the integer programming problem is at least 
as great as some specified value. This value is a lower bound on the optimal integer 
programming solution. If, while solving a candidate problem, we find a feasible integer 
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solution with an objective function value higher than the previously greatest known 
lower bound, then we can update the greatest known lower bound to this new value 
. e integer programming solution that supplies this new greatest known lower bound 
is called the incumbent. Conversely, if the optimal objective function value of the 
candidate problem solved at an iteration is less than that of the incumbent, this 
candidate problem can be discarded from further consideration—it has been fathomed. 
Let CPR be the problem created by relaxing the integer restrictions on CP. 

BRANCH AND BOUND FATHOMING 

If CPR is a relaxation of CP, then CP is fathomed when: 

FC1. The analysis of CPKreveals that CP has no feasible solution. (See Rl.) 
FC2. The analysis of CPR reveals that CP has no feasible solution better than 

the incumbent. (See R2.) 

FC3. The analysis of CPR reveals the optimal solution to CP. (See R3.) 

18-2 
The branch and bound algorithm is summarized in the flow chart of Figure 

18-8 EXAMPLE OF BRANCH AND BOUND ALGORITHM 

Let us solve problem (18-1) by the branch and bound algorithm. Figure 18-3 shows 
the progression of candidate problems as they are created and solved. Each rectangle 
represents the solution to a problem. A branch is created when separation generates 
new descendent problems, and a branch is terminated when the fathoming criteria 
are satisfied by a problem. The order in which the problems have been extracted and 
solved from the reserve is given by the problem numbers in Figure 18-3. 

Implicit in Figure 18-3 is a rule for the order of entering descendant problems 
, into l:he reserve, and also a rule for choosing the candidate problem from the reserve. 

When two new descendants are created, the problem with xk *£ K is first entered at 
the top of the candidate list. Then the problem with K + 1 is entered ahead of 
it. Candidates are chosen from the top downward. This means that the latter problem 
is always solved prior to the former. In terms of Figure 18-3, the right-hand branch 
just created is always chosen first (this means that there are never'any right-hand 
branches in the reserve); then the left-hand branches are chosen, starting from the last 
one created. 

For our problem, when the reserve is empty, all the branches have been ter¬ 
minated; and the incumbent has the solution z = 44, Xj = 0, x2 = 4. This is the 
optimal solution. 

Figure 18-4 depicts graphically the sequence of problems created by the branch 
and bound algorithm. The solution of problem i is shown as SOLN(i). 
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Figure 18-3. Solution to problem (18-1) by branch and bound. 

Problem 1 

More sophisticated branch and bound algorithms carefully choose the variable 
around which to separate and the candidate problem to be solved at each iteration. 
These choices can have a significant influence on the number of descendants created 
and the order in which they are solved. These conditions, in turn, influence the way 
each branch is terminated and, thus, the time the algorithm takes to reach the optimal 

solution. . 
Some algorithms take special account of 0—1 variables. An all 0—1 problem can 

usually be solved more quickly by specialized branch and bound algorithms that 

specifically take advantage of the 0-1 property. 

*18-9 CUTTING-PLANE TECHNIQUE 

The branch and bound technique does not persist in the fathoming of a particular 
problem. If it cannot fathom the problem, it separates it into descendants. 

The technique we come to now is at the opposite extreme. It never separates, 
but always persists in fathoming a problem until the solution is found. As with branch 
and bound, the initial step is to relax the integer programming problem to a linear 
program by removing the integer restrictions. The relaxed problem is then solved. If 
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Figure 18-4. Branch and bound for problem (18-1). 

531 

X2 

this does not fathom the integer programming problem, then the relaxation is modified; 
it is in fact tightened by the addition of a new constraint. The integer restrictions are 
never formally reimposed, but they are embodied in new constraints added to the 
continuous problem. The principle behind this technique is illustrated in Figure 
18-5. 



532 Chapter 18 Integer Programming__ 

Figure 18-5. Convex hull of the feasible solution to problem (18-1). 

If we solve the problem with dashed constraint lines instead of the one with the 
black constraint line, we obtain the optimal integer solution as the optimal solution 
of an ordinary linear programming problem (with continuous variables). 

We can see some interesting things about this new problem: 

(i) Every integer solution of the old problem is a solution of the new one. 
(ii) Every corner point of this problem (and hence every basic feasible solution) 

is ah integer solution. 

The feasible region of the new problem is the convex hull of the integer solutions 
of problem (18-1). It is the smallest linear programming feasible region to contain all 
the integer solutions. For solution purposes, it is not necessary to obtain the linear 
program that has property (ii); it is sufficient to obtain a linear program that has the 

optimal integer solution as its optimal continuous solution. 
The solution techniques called cutting-plane techniques add constraints that cut 

away some of the feasible region, but never cut away a feasible integer solution. The 
objective is to start at the optimal linear programming solution and create a new linear 
program with a smaller feasible region. If the new linear program does not have an 
integer solution as its optimum, the process is continued until a linear program is 
reached whose optimal solution is an integer solution. This process is a series of 
relaxations of the integer programming problems, each relaxation being more restrictive 
than the previous one. By principle R3, the integer solution obtained by this technique 

is optimal to the integer program. 
R. E. Gomory (“An Algorithm for Integer Solutions to Linear Programming, 

Princeton-IBM Mathematics Research Project, Technical Report No. 1, Nov. 1958) 
is responsible for a type of cut that guarantees that the process will terminate, in 
theory, at the optimal solution in a finite number of stages. To illustrate Gomory’s 
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reasoning for the all-integer problem, we will derive the cut equations for the relaxation 
of problem (18-1) where x3 is the slack variable in the finance constraint, i.e., for 

maximize z = 28x, + llx2 + Ox, 

(18-17) subject to 14xj + 6x2 + x, = 25 

x1; x2, x, 5* 0 

The optimal linear programming solution is x, = 25/14. So x, is the basic 
variable, with x2 and x, nonbasic. We reason that, if the optimal linear programming 
solution is not integer, then at least one of the nonbasic variables at the optimal linear 
programming solution must become a positive integer at the optimal integer program¬ 
ming solution. Let us copsider the change in the basic solution if some of the nonbasic 
variables are allowed to assume positive values. In other words, what is the new value 
of xi> if least one of x2 and x3 is allowed to assume a positive integer value? The 
constraint in canonical form at the optimal basis is 

V 4- lv 4- lv — 25 
A1 ' 14a2 ~ 14a3 ~ 14 

or 

(18-18) *i = S + n(-*2) + n(-*,) 

Let us separate each coefficient and parameter on the right-hand side of (18-18) 
into its integer and its positive fractional parts. For instance, a coefficient of 2.7 is 
separated into +2 and +0.7, whereas -2.7 is separated into -3 and +0.3. Thus 
(18-18) becomes 

*. = (1 + H) + (0 + f4)(-x2) + (0 + i)(-x,) 
or 

(18-19) X1 = (1 ~ 0x2 - Ox,) + (jj - £x2 - EjX,) 

Now, we want to derive from (18-19) a condition that must be met by all solutions 
(x,, x2, x,) that are integer. Whenever x2 and x, are integer, the first bracket on the 
right-hand side of (18-19) is an integer since, by construction, the parameters and 
coefficients in it are integer. We are left with the term 

(18'2°) (H - - iix,) 

which must also be integer for x, to be integer. It is the integrality of (18-20) that 
determines the Gomory cut. For (18-20) to be integer, it cannot be positive, since the 
only positive term n is by definition fractional—i.e., less than one. 

So (x1? x2, x3) can be integer only if 

H — hX2 llx3 ^ 0 
or 

(18-21) -11*2 - 11*3 + X4 = - H 

This is the first Gomory cut with x4 as its slack variable. Using the constraint of 
problem (18-17) to substitute for x3 in (18-21), we see that this constraint is equivalent 
to x^ 1. 

The whole reasoning holds for any feasible integer solution. Thus, no integer 
solutions are excluded by the cut. On the other hand, the old linear programming 



optimum is not satisfied by the cut. From (18-21), we see that the left-hand side is 
always zero at the old linear programming optimum (since the nonbasic variables are 
zero), whereas the right-hand side is by definition always a negative fraction. In fact, 
the cut always excludes the fractional part of the variable around which it was con¬ 

structed—in this case, x,. . f 
Note carefully that the coefficients on the left-hand side of (18-18) are the coei- 

ficients of (- x) for each nonbasic variable x;- Had there been more than one constraint 
in (18-17), there would be an expression like (18-21) for each noninteger basic variable. 
Gomory’s procedure takes only one of the noninteger basic variables at the optimal 
linear programming solution and derives a cut constraint. The choice is arbitrary. In 

this case, is the only eligible variable. 
With the new constraint included, the canonical form for the basic solution 

(Xi, x4) is 

14*2 14*3 T *4 

Table 18-2. Dual simplex tableaux for Comory cuts 
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Table 18-2 shows the dual simplex tableau for this problem and the new optimal 
hnear programming solution x, = 1, x2 = (The second Gomory cut in the second 
tableau is added later.) This is point A in Figure 18-5. This solution is not all integer; 
hence we introduce another Gomory cut. We take a noninteger basic variable (in this 
case, x2 = -s); taking the positive fractional part of each coefficient in the x, row we 
generate the second Gomory cut: 

(^"22) 6 -6*3 “6*4^0 

Using the equations x, = 25 - 14x, - 6x2 and x4 = 1 - x,, expression (18-22) 
becomes 3x, + x2 =£ 4. With (18-22) added, the new linear program is solved by the 
dual simplex method in Table 18-2. The solution in the last tableau is x, = 0, x2 = 
4, x, - 1, and x4 == 1. This solution is integer and thus optimal. ’ 2 

The hnear program with both cuts added is, in fact, the convex hull of the integer 
solutions; the optimal solution is point B in Figure 18-5. 

18-10 GENERAL COMMENTS 

The branch and bound algorithm and the cutting-plane technique represent extremes 
of the separation-relaxation-fathoming principles. Many techniques fall somewhere 
in between. 

Figure 18-6 is the flow chart for the general procedure. Particular techniques 
omit certain stages, or treat certain stages in different ways. 

For example, the branch and bound algorithm described earlier never persists 
in fathoming the same candidate problem (i.e., never pursues the Yes branch at the 
question Persist? ), whereas the cutting-plane procedure always persists. 

18-11 A PLANT UPGRADING PROBLEM 

A manufacturer of electrical wire is reviewing its machinery. Some of the present 
machines are nearly worn out or obsolete, so that running costs are becoming un¬ 
acceptably high. At the same time, a shift in technology has caused an expansion in 
demand for the type of wire this manufacturer produces. The present plant cannot 
meet the demand projected for the near future. Figure 18-7 demonstrates the product 
How and the types of machines now installed. Covered wire can be made by either 
of two different processes. The first process produces the copper wire of the desired 
diameter on one machine and covers it on a separate machine. The second process 
uses a single machine to produce the wire and to cover it. While the second process 

eferable because it involves less handling and less wastage, there is a demand for 
ucovered wire—hence, some wire-reducing facilities for bare wire are essential. 
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Table 18-3. Machine options and data 

Wire-Reducing 

Machines 

Existing New 

Type 1 Type 2 

Coating Machines 

Upgrade 
Existing Existing 

Combined 

Machines 

New 

Machine option i 2 3 4 5 

Capital cost ($1000’s) 0 200 0 100 500 

Running cost per hour ($) 5 7 8 8 12 
per annum ($1000’s) 3° 50 80 100 140 

Rate of production 

Wire size 1 (meters/hours) 1000 1500 1200 1600 1600 
Wire size 2 (meters/hours) 800 1400 1000 1300 1200 

Waste percent of product 2% 2% 3% 3% 3% 
Cost of waste ($ per 1000m) 30 30 50 50 50 

The manufacturer has various options, including retaining and modifying some 
existing machines and purchasing new machines. Table 18-3 outlines these options, 
along with the cost and the production data for each of the alternatives. More than 
one machine may be purchased for options 2 and 5. None of the new or old machines 
have any resale value. 

What the production engineer must do is present a recommended configuration 
of the plant to meet the projected demand. She has a number of qualitative consid¬ 
erations in the decision. For example, she sees a need to bring in as many new 
machines as management will permit—although there will be uncertainty about the 
capital budget until management has carefully studied the “best” alternatives. The 
engineer also wishes to have the plant as compatible as possible, for both ease of 
maintenance and for availability of spare parts. To help with her decision, she wants 
to know the lowest capital-cost configuration and the lowest running-cost configura¬ 
tion. These will be used as benchmarks for other configurations that more closely fit 
her qualitative criteria. 

Any configuration of machines recommended has to be capable of meeting the 
projected annual demand for the final products. Therefore, a decision has to involve 
not only what configuration of machines to get, but also which product to produce 
on what machine. Hence, we have variables for the number of each type of machine 
and variables for the amount of each wire size produced on each machine. Let M,. 
be the number of machines of option i, and let xtj be the proportion of annual machine 
time on machines of option i to produce wire size j (i = 1, . . ., 5 and j = 1, 2). 
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Note that x may be larger than 1, since more than one machine of option i may be 
needed to produce wire of size j. If we assume a 6000-hour year, then the machines 
of option i spend 6000x,y hours per year producing wire size /. 

The first objective function we consider is to minimize the capital cost of the 

machines: 

(18-23) minimize OMj + 200M2 + 0M3 + 100M4 + 500M5 (CAPCST) 

The second objective function looks at total running costs. Each machine has a 
running cost of a form similar to the fixed charge problem. For example, machines 
of option 1 have a running cost for a 6000-hour year, made up as three parts: a fixed 
running cost of $30,0001^; a variable running cost of ($5)(6000)(xn + x12) = 
$30,000(xn + x12); and the cost of waste. The cost of waste for wire 1 is 
($30X0.02X6000)j = $3600xn, and the cost of waste for wire 2 is 
($30)(0.02)(0.8)(6000)x12 = 2880x12. This gives a total running cost in $1000 s ot 
30M, + 33.6xu + 32.88x12. Similar calculations for the other machines yield a 

running cost objective function of 

(18-24) 

minimize 30Mt + 33.6 x„ + 32.88x12 + 50M2 + 47.4x21 + 47.04x22 
+ 80M, +58.8x31 + 57x32 + 100M4 + 62.4x41 
+ 59.7x42 + 140M, + 86.4x51 + 82.8x52 (RUNCST) 

Production is constrained to meet projected sales demand, which is given in 
Table 18-4. The total demand for bare wire of size 1 consists of the actual sales 
demand for bare wire plus the wire to be coated using machines of option 3 and 4; 

i.e., 

3000 + (1200x31 + 1600x41) 
6000 

1000 
= 3000 + 7200x„ + 9600 x41 kilometers 

Table 18-4. Projected sales demand (in kilometers, 1 kil- 

nmeter = 1000 meters) _ 

Bare Wire Covered Wire 

Size 1 Size 2 Size 1 Size 2 

3000 2000 14,000 10,000 

This demand has to be met by output from machines of options 1 and 2. This 
output is equal to (6000/1000)(1000xn + 1500x21). Because of waste of 2 percent on 
these machines, only 98 percent of this output is available. Hence, 

0.98(6000/1000)( 1000x,, + 1500x21) s* 3000 + 7200x„ + 9600x41 

Expressed in the usual constraint form, the production constraint for bare wire of size 

1 is 

(18-25) 5880x„ + 8820xzl - 7200x„ - 9600x41s* 3000 (BARE1) 
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Verify that tor bare wire of size 2 the production constraint is 

(18-26) 4704x12 + 8232x22 - 6000x32 - 7800x423= 2000 (BARE2) 

while for covered wire of sizes 1 and 2 we get 

(18-27) 6984x31 + 9312x41 + 9312x51s= 14000 (COVRD1) 

(18-28) 5820x32 + 7566x42 + 6984xS23= 10000 (COVRD2) 

Next, we have to make certain that the number of machines available for each 
option provides a production capacity that covers the production needs. The number 
of machines must be an integer (but not necessarily 0-1). Hence the number of 
machines of type i must be at least as large as the sum of the proportions of time that 
that type machine is required for the production of all wire sizes: 

M,.;*xa+x,2, i=l, 5 

or 

(18‘29) *.i + *n - Mfss 0, i = 1, . . ., 5 (MATCHi) 

Finally, we must consider the restrictions of the machine options. Only two 
machines of option 1 are available, so 

(18-30) M,as 2 (REST1) 

Options 3 and 4 are mutually exclusive and only one machine exists, so 

(18-31) M3+M4=sl (REST34) 

We require, of course, that all variables be nonnegative and the M’s be integer-valued. 

18-12 SOLUTION TO THE PLANT UPGRADING PROBLEM 

The plant upgrading problem of the previous section was solved separately for each 
objective function, using Burrough s TEMPO mathematical programming system. 
The problem has 11 constraints and 15 nonslack variables, of which 5 are integer 
variables. For the CAPCST function, 12 nodes were considered, and 2 integer so¬ 
lutions were found before the algorithm terminated. The algorithm took longer to 
solve for the RUNOST function. Here, it searched 21 nodes, and also found 2 integer 
solutions before it terminated. 

The branch and bound algorithm has the unfortunate feature that the solution 
of similar problems may take substantially different amounts of computational effort. 
Thus, it is very difficult to predict the time it will take to solve a problem. In a real 
version of the plant upgrading problem that the authors solved, the algorithm did not 
terminate in a “reasonable” time. This is fairly common in integer programming. In 
such cases, the incumbent solution is taken to be optimal. In fact, even if this is not 
true, it will probably be close enough. Most good branch and bound algorithms allow 
the user to alter the way the nodes are selected. An experienced user can thus increase 
the probability that the optimal node is found early in the branch and bound sequence. 
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From Table 18-5 we see that the capital-cost solution has a 10.4 percent higher 
running cost than the running-cost solution, while the running-cost solution has a 
15.4 percent higher capital cost than the capital-cost solution. The machine config¬ 
urations of the two solutions are also substantially different. The capital-cost solution 
requires the purchase of 1 wire-reducing machine and 2 combined machines. Under 
the running-cost solution, we dispose of 1 of the existing wire-reducing machines and 

the coating machine, and we purchase 3 combined machines. 
In Figures 18-8 and 18-9, we have the production flow implied by the solution 

of Table 18-5. Here we notice that the running-cost solution is simpler to schedule, 
has less waste, is more modern, and uses fewer types of machines. However, the 
capital-cost solution has more room for expansion without incurring extra capital cost. 

Table 18-5. Optimal solutions in computer output form_ 

Capital-Cost Solution Running-Cost Solution 

Nanie Status Activity Input Cost Status_Activity Input Cost 

18-13 SENSITIVITY ANALYSIS 

In Chapter 5 we discovered the wealth of information the optimal simplex tableau 
provides for sensitivity analysis. Since integer programming is so akin to linear pro¬ 
gramming, you may ask: What can we say about the sensitivity of the solution in the 
integer programming situation? The short answer is that we can say very little of 
practical value. The reason is simply that integer programming involves discrete jumps 

from solution to solution, rather than a continuous change. 
If we have used branch and bound as our solution technique (as the case usually 

will be), we can say almost nothing analytically about sensitivity analysis. The best 



Figure 18-8. Product flow for capital cost solution. 

Size 1 waste 

Size 1 bare 
Size 2 bare 

Size 2 waste 

Size 1 waste 

Size 1 coated 

Size 2 coated 

Size 2 waste 

Slack capacity: 2327 hours on type 2 wire-reducing machine 

888 hours on combined machine 

we can do is to ask the branch and bound algorithm to find the K best solutions to 
the problem. (See H. Wagner, Principles of Operations Researchy 2nd ed., Prentice- 
Hall, New York, 1975, pp. 498-499 for a discussion.) By applying changes of param¬ 
eters and coefficients to these solutions, we can gain useful but not necessarily con¬ 
clusive information. There seems to be no easy way of finding the new optimum when 
the constraint set is relaxed. The only option is to rerun the branch and bound 
algorithm using the old integer programming optimum as the new incumbent. When 
a constraint is tightened, it may be necessary to repeat the whole procedure from 
scratch. 

Figure 18-9. Product flow for running cost solution. 

Size 1 waste 

Size 1 bare 
Size 2 bare 

Size 2 waste 

Size 1 waste 

Size 1 coated 

Size 2 coated 

Size 2 waste 

Slack capacity: 388 hours on type 1 wire-reducing machine 
388 hours on combined machines 

433 
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If Gomory’s cutting-plane algorithm is being used, ranging of the objective func¬ 
tion coefficients can be performed to a limited extent. We can be confident of the 
complete accuracy of the cost-ranging only if the linear programming constraints 
derived by the cutting plane are the convex hull of the integer programming problem. 
Remember, it is likely that the Gomory cutting-plane algorithm will have cut away 
only enough of the feasible region to reveal the optimal integer solution. If this is so, 
any cost-ranging based on the optimal integer programming tableau underestimates 

the true cost ranges. (Explain why this is so.) 
Sensitivity analysis of the RHS parameters is no more satisfactory. An important 

article by R. E. Gomory and W. J. Baumol (“Integer Programming and Pricing,” 
Econometrica, Vol. 28, 1960) developed a scheme for finding shadow prices at the 
optimal integer solution. These prices result from a modification of the optimal linear 
programming dual variables by correcting for each of the Gomory cuts. Unfortunately, 
the scheme is far from foolproof, and the prices are not easy to interpret. If we relax 
a slack constraint in linear programming, there is no effect on the optimal solution. 
This is not necessarily true in integer programming, where a constraint may be slack 
only because of the integer condition on the variable. In linear programming, any 
change in the solution as the RHS parameter changes is continuous; in integer pro¬ 
gramming, there is no change in the solution until a superior integer solution becomes 

feasible. Then, the change is a discrete jump. 
Using either technique, we can state bounds on the changes in objective function 

value for a change in an RHS parameter. These bounds come from the optimal linear 
programming tableau. We can determine with ease the change in the linear pro¬ 
gramming optimal objective function value for a change in the RHS, and we know 
that the integer programming optimum can have no better value than the linear 
programming optimum. So the difference between the new linear programming value 
and the old integer programming value of the objective function is an upper bound 
on the change in the integer programming value for a relaxation of the RHS, and a 
lower bound on the change in the integer programming value for a tightening of the 
RHS that renders the old integer programming optimum infeasible. 

EXERCISES 

18.1 Formulate the river pollution problem of Section 9-8 as an integer programming 

problem. 

18.2 A firm has a job to perform that involves 4 job-steps. The table below gives the number 
of days each job-step takes, the number of workers required each day for each job- 
step, and any precedence relationships between job-steps (e.g., job-step 1 must be 
done before job-step 3). The employees work in gangs for each job-step; therefore, the 
stated labor requirements and completion times cannot be altered, except that job-step 
2 can be performed by either a fast or a slow method. Job-step 2(a) gives the data for 
the fast method, and 2(b) gives the data for the slow method. It is not possible to mix 

the two methods. 
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Job-Step Predecessor Completion Time Labor 

i _ 5 5 
4 2(a) — 5 

2(b) — 6 3 
3 i 2 7 
4 3 5 2 

Once started, a job-step must be completed without a break. The firm wishes to 
minimize the time taken to complete the whole job, with the restriction that only 10 
workers are available for the first 10 days, and 8 workers are available after that. 
Formulate the problem as an integer programming problem. 

18.3 Show how the following shaded region can be formulated in an integer programming 
problem. 

X2 

18.4 Formulate the following as a constraint set for an integer program. 

X2 

f 
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18.5 Show how each of the following situations can be formulated as part of an integer 

programming problem. 
(a) In blending one of its products, a blending company uses 10 different ingredients. 

For certain reasons, the mixture can contain no more than 5 of the ingredients 
at once, x. is the quantity of ingredient j. The x?s are continuous variables. 

(b) The same blending company has 3 different mixing vessels; the mixing of the 
product is to be done in only one of them. Vessel 1 mixes 2000 liters a day, vessel 
2 mixes 3000 liters, and vessel 3 mixes 2500 liters. It costs $500, $800, and $600 
per day, respectively, to use vessels 1-3. Show the relevant parts of the constraint 

set and objective function. 
(c) In a formulation, only one of the following sets of equations can hold at a time. 

i=ku...,k 

/=! 

i=kj, . . fc, 

h i 

18.6 A company produces three products that require 1 machine-hour, 1.5 machine-hours, 
and 2 machine-hours, respectively. There is a limit of 2000 machine-hours per week. 
The table in this exercise gives the cost structure for production runs of various lengths. 

Selling prices per unit are $15, $40, and $60, respectively. Formulate the problem 

as an integer programming problem. 

Fixed 
Set-up 

Cost ($) 

Variable Cost ($ per unit) 

1-100 
Units 

101-500 
Units 

Over 500 
Units 

Product 1 100 10 8 5 

Product 2 50 20 18 , 15 

Product 3 200 40 30 20 

18.7 State highway planners are trying to determine the optimal locations of bridges to cross 
a lake. They have limited their choices to five possible locations: 1, 2, 3, 4, and 5. 
The problem has been formulated as a linear programming problem to maximize 
transportation values, with variables BI bounded between zero and one. In other words, 
if B( = 1, that implies a bridge is located over route i; = 0 implies no bridge. The 
planners first evaluated what seemed to be a reasonable solution, and obtained Bj = 
0? B2 = 1, B3 = 0, B4 = 0, and B5 = 1, with value 600. Next, they solved the problem 
as a linear program, and obtained a solution value of 700, with Bj = 0.3, B2 — 0.9, 
B = 0, B4 = 0, and B5 = 0.7. Since the planners must have an integer solution, they 
fixed B2 = 0 and solved again, obtaining value 550, with Bt = 0.8, B2 = 0, B3 = 0, 

B4 = 0.3, and B5 = 1. 
(a) Have the planners determined the optimal solution yet? Why or why not? 
(b) Can you make any statements about which bridges are certain to be established 

and which are certain not to be established? 
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18.8 A company is preparing its 5-year plan for a period commencing a year from now 
Fart ot the plan involves investment in the expansion of facilities. Four projects present 
themselves as viable. The company wishes to know which of the projects to implement 
in the 5-year period and when to start each of them. The object is to maximize 
discounted net return from these projects for the 5-year period and the 3 years following. 

or the 5 years, the company is budgeting the following amounts each year from 

^AAn|A?pera,tl0ns: year ^ $200,000; year 2, $100,000; year 3, $250,000; year 4 
$100,000; and year 5, $200,000. Any amount unused in a period is accumulated for 
later periods. In addition to this, a quarter of the positive net return from any of these 

pro]ects (once implemented) is available to finance other projects. The table in this 
exercise shows the expected net returns for the years after each of the projects is 
commenced. Any implemented project that requires funds after the 5-year planning 
period must get the funds from amounts accumulated from the budget of the 5-year 
planning period and from funds created by other projects. By their nature, projects 
L and 3 cannot both be implemented, since project 3 is a larger-scale version of project 

r a A™” afe t l£ pro° em as an >nteger programming problem. Use a discount rate 
of 0.9. 

Year 1 Year 2 Year 3 Year 4 Onward 

Project 1 
Project 2 
Project 3 
Project 4 

- 100,000 
- 50,000 

-300,000 
-400,000 

0 

-150,000 
- 100,000 

100,000 

100,000 
20,000 

100,000 

200,000 

200,000 
100,000 
400,000 
400,000 

18.9 The ABC Furniture Store has to make 5 deliveries to customers in rural areas in an 
afternoon. The weights of the deliveries are as follows: customer 1, 50 kg; customer 
2, 150 kg; customer 3, 250 kg; customer 4, 500 kg; and customer 5, 1000 kg. The 
company’s 4 vans vary in carrying capacity as follows: van A, 250 kg; van B 750 kg- 
van C l 250 kg; and van D, 1250 kg. If van A is used, it costs $100 per run regardless 
of the load. Similarly, van B costs $150, and vans C and D each cost $200 per run 

Due to the distance, customers 3 and 4 cannot both receive deliveries from the same 
van. 

(a) Formulate the problem of allocating deliveries to each of the vans as a minimum- 
cost integer program. 

(b) Change the formulation if no more than 2 deliveries per van can be made. 
(This is an example of the covering problem.) 

18.10 Solve problem (18-1) in the text using the opposite order for entering candidate prob¬ 
lems to that used in Section 18-8; i.e., place the newly created descendant with 
x* 3= K + 1 on top first, then xt « K on top of that, and again choose the candidate 
problem from the top. 

18.11 Solve the problem 

maximizes = 10x1 + 3x2 

subject to Sxl + 2x2 ^ 17 

x, x2 52 0 and integer-valued 



546 Chapter 18 Integer Programming 

(a) By the branch and bound algorithm. 
(b) By Gomory’s cutting-plane algorithm. 

18.12 Using the branch and bound algorithm, find the optimum to problem (18-1) of the 
text when the grant is increased to $3.3 million. The optimum to problem (lo-l) can 

be used as the initial incumbent. Choose the xk^ K + 1 problem first. 

18.13 Repeat exercise 18.12, choosing the candidate problem, xk ^ K, first. 

18.14 Solve the problem in exercise 18.12 using Gomory’s cutting-plane algorithm. 

18.15 Solve by the branch and bound algorithm (using a graph, or otherwise): 

maximize z = 4x} + 4x2 

subject to Xj 4- 2x2 ^ 6 

8xt + 3x2 ^ 24 

18xt + 14x2 ^ 63 

Xj x2^ 0 and integer-valued 

18.16 Solve the problem of exercise 18.15“ assuming that only xx is to be integer. 

18.17 Solve the following problem by the branch and bound algorithm. Use a graph to find 

the solution to the descendant problems. 

maximize z = 8xj + 4x2 

subject to Xj + 4x2 ^ 19 

12xt + 5x2 ^ 45 

5x1 + x2 ^ 16 

Xj x2 ^ 0 and integer-valued 

Construct a graph of the form of Figure 18-4, and a tree of the form of Figure 18-3. 

18.18 The optimal simplex tableau to the problem in exercise 18.15 is as shown. Create a 
Gomory cut for each of the variables. (Note: We can assume that x4, x„ and x6 are 
restricted to being integers also. Why?) Show on a graph the original problem and 
each of the cuts, and show the new optimum with each cut added. Which ot the cuts 

would normally be chosen? Perform the dual simplex method on this cut. 

c; 
4 4 0 0 0 

ci 
Basis Solution *1 x2 *3 

x4 *5 

4 

0 

*2 

x4 

45 

22 
57 

22 

0 

0 

1 

0 

9 

11 
29 

11 

0 

l 

1 

22 
13 

22 
1 

4 *1 
21 

11 
1 0 

7 

“IT 0 
1 

IT 

zi - ci 

174 

11 
0 0 

8 
11 

0 
2 

11 
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18.19 Solve by the branch and bound algorithm: 

maximize z = 4^ + 4x2 

subject to 3x, + 5x2=sl5 

8X[ + 3x2 « 24 

18X[ + 14x2 =s 63 

18.20 

*i. x2 55 0 and integer-valued 

The optimal simplex tableau for the problem in exercise 18.19 
the Gomory cut for each variable. Show these constraints on a 
Perform the dual simplex method on the cut for * 

is as shown. Write out 
graph of the problem. 

ci 4 4 0 0 0 

ci Basis Solution *i *2 *3 *4 

0 
*5 2.226 0 0 1.871 1.548 1 

4 
*1 2.419 1 0 -0.097 0.161 0 

4 
*2 1.548 0 1 0.258 -0.097 0 

===== Zl ~ °i 15.871 0 0 0.645 0.258 0 
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There are two excellent journal articles that survey integer programming. Both are pitched 

at a fairly advanced level. 

Balinski M. L. “Integer Programming: Methods, Uses, Computation,” Management Science, 
Vol 12 Nov 1965. Despite its age, this article is still a very important reference in integer 
programming literature. A thorough reading of the article requires good mathematics and 
some knowledge of integer programming. However, pages 274-275 give a valuable resume 

of the success (or otherwise) qf integer programming applications. There is a comprehensive 

list of references up to 1965. 
Geoffrion A. M., and R. E. Marsten. “Integer Programming Algorithms—A Survey,” Man¬ 

agement Science, Vol. 18, May 1972. An excellent survey of integer techniques. The 
approach used in this article greatly influenced our own treatment in this chapter. 
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19-1 w™eZ\™m1°eF differen™ble functions 

Let /'be a function in the variable x defined over the interval a < r < h lA, * j 
as [a, ]), with first and second order derivatives, and let fix) be the value 0f°the 
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function evaluated at the point x. Suppose f assumes an extreme value—a maximum 

oTmiZum-* the point x0 in the interval [«, b]. Let x be any other points in 

[a, b}. 

LOCAL: 

■ The function f has a local or relative maximum at x 

for all x in some P*i°hhnrhood of x, in the interval [a, b) (i.e., there exts 

The function f has 

If expression (19-1) holds with strict inequality, i.e., f(x) < f(x0), then x0 is 
a „Fo, a minimum of f. the inequality in exp,ess,on (19-1) ,s ,e- 

versed, i.e., 

f{x) > f(x0) 

The function f in Figure 19-1 has local maxima at x0, x„ and a, with x, being the 

global maximum; x„ x2, and b are local minima, with x2 being the ™mmu™' 
Maxima correspond to the hilltops. The global maximum is the highest hilltop in the 
range considered. All other hilltops are local maxima. Minima correspond to the 
valley floors. The global minimum is the lowest of all the valley floors, whereas all 

other valley floors represent local minima in the range considere . • tio 
Consider again the definition of a maximum m expression (19-1) m conjunction 

with Figure 19-1. As we move from left to right toward the hilltop at x0, we are going 
uphill §In geometric terms, the slope of the hillside looking toward x0 is P0Sltlve ™ 
points to the left of x0. If we proceed to the right past the hilltop jtxo,wearegog 
downhill i e. the slope is now negative for pomts to the right of x0. As g P 
x the slope has to change from positive to negative. At the hilltop itself the slope is 
horizontal or zero. In mathematical terms, the slope of a function f is given by its first 
derivative, denoted by df(x)ldx = f'(x). Therefore, at x0 the derivative must be zero 
Any ooint at which f'(x) = 0 is called a stationary point. Analogous reasoning shows 
that if the function f assumes a local or a global minimum at a point x0, its deriva iv 

is also equal to zero at x0. 
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Unfortunately, the function also has a stationary point at which is an inflection 

point of f. A stationary point is therefore not a sufficient condition for an extreme 
value of f. The sufficient condition for a stationary point to yield an extreme value 
of f can be obtained by examining the Taylor expansion of f around x0 for h small: 

(19-3) f(x0 + h) = f(x0) + hf'(x0) + yf"(*o) + R2 

where f'(x0) is the first derivative evaluated by x0, f"(x0) is the second derivative 
evaluated at x0, and, for h small, the remainder term R2 is less, in absolute value, 
than the term containing f"( xt). 

At the stationary point x0, the term containing f'(x) is zero, and A2 is positive for 
all values of h, negative or positive. Hence, f(x0 + h) will be less than fix,) if 
f”(xo) < 0 and larger than f(x0) if f"{x0) > 0. 
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Let us view this in terms of our previous picture in Figure 19-1 of approaching 

the hilltop from the left of x0 and going past it—assuming the hilltop is, mathematically 

speaking, “well behaved” (which in lay language means round and smooth). As we 

approach from the left, the slope, which is positive on that side, becomes less and less 

steep until it reaches zero at x0. To the right of x0, the slope becomes negative and 

becomes steeper and steeper. Mathematically speaking, the slope is decreasing as we 

go through x0 from left to right. 
This situation is just reversed at the valley floor—the slope is increasing as we 

go from left to right through x0. The rate of change of the slope corresponds to the 

second derivative of the function f If the slope is decreasing, f'{x) < 0, and if the 

slope is increasing, f'(x) > 0. 

If f"( Xq) = 0, we find the first of the higher order derivatives of /'which is nonzero 

at x0. If the order of this derivative is odd, f has an inflection point at x0. If the order 

of this derivative is even, this derivative is substituted for f (x0) in the sufficient 

condition above. 
You will have noticed that neither the necessary nor the sufficient conditions 

allow us to determine whether a stationary point yields a local or a global extreme 

value of the function f. This has to be determined by evaluating the function at all 

relevant stationary points as well as at the end points a and b of the interval on x. 

The following section will apply these conditions to determine the optimal pro¬ 

duction quantity for a one-period inventory model with a random demand. 

19-2 A CONSTANT-CYCLE INVENTORY REPLENISHMENT 
MODEL WITH RANDOM DEMAND 

A meat processing firm prepares a batch of spicy sausages every Wednesday for sale 

by butchers and supermarkets prior to the weekend. The sausages are sold by weight. 

Any sausages not sold by the weekend are sold to a petfood manufacturer on Monday. 

The petfood manufacturer accepts any amount of old sausages. The gross profit (i.e., 

wholesale price less manufacturing costs) is cu dollars per kilogram of fresh sausages 

sold. The gross loss per kg on sales to the petfood manufacturer (i.e., manufacturing 

cost less proceeds) amounts to c0 dollars. The weekly demand for spicy sausages is a 

random variable with a probability density function h(x), x ^ 0. The objective is to 

determine the size of the weekly batch, denoted by S, which maximizes the expected 

total net profit (i.e., gross profit less losses). 
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The net profit depends on the demand—a continuous random variable. Hence, 
the net profit it is a function of a continuous random variable and is, therefore, a 
random variable itself. The form of the net profit depends on whether sales are larger 
or smaller than S. If the weekly demand x exceeds S, the entire batch is sold fresh 
at a net profit of coS, or 

'Tr(x) = cuSf for all x^S 

If the weekly demand is less than S, an amount x is sold fresh at a gross profit of c x, 

and an amount (S - x) is sold old at a loss of co(S - x), or 

'TT(x) = cux ~ c0(S — x), for all x < S 

The expected value of the function it of the continuous random variable x is 
equal to /0+o° it(x)h(x) dx. Hence, for any given value of S, the expected net profit is 

(19-4) T(S) = | [c0x - c0(S - x)]h(x) dx + j c„ Sh(x) dx 

f ^ value °f S for which expression (19-4) attains a maximum, we need 
T (S) = 0. For this operation we have recourse to the following formula for differ¬ 
entiating an integral whose limits of integration are functions. Let 

rk(y) 

F(y) = f{x,y)dx 
Jg(y) 

(19-5) 

We apply expression (19-5) separately for each of the two integrals in'expression 
(19-4). For the first integral, let y = S, x = x; then k(y) = S, g(y) = 0, f(x, y) = 
M _ c0(S - x)]h{x), and dF(y)/dy becomes 

(19-6) 
-cjh(x) dx + [cuS - c0(S - SMS) dS/dS 

~[cS0)-co(S-0)}h(0)d0/dS 

The last term of (19-6) is zero, since dO/dS = 0. Canceling all zero terms, we get 

(19-7) -c0 h(x)dx + cuSh(S) 

Verify that the derivative of the second integral is 

(19-8) c„ h(x)dx - cuSh(S) 

Adding expressions (19-7) and (19-8) yields 

(19-9) T'(S) = -c0 h(x)dx + c f h(x)dx 
Jo Js 
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Setting expression (19-9) equal to zero, we see that the optimal batch size S* has to 

satisfy 

(19-10) cl h(x) dx = c0 j h(x)dx 

Js.h{x) dx is the probability that demand exceeds S* or that the marginal unit produced 
is sold. Hence, the left-hand side of (19-10) is the expected profit from selling the 
marginal unit produced by regular sales, and the right-hand side represents the expected 
loss from selling the marginal unit produced to the pet food manufacturer. At the 
optimum, these two must be equal. This is precisely the basic principle in economics 
that the optimal output equates marginal revenue and marginal cost—the reasoning 

we applied in Section 12-9 for this type problem. 

Using the property that 

h(x) dx + h{x) dx = 1 
.o Js 

and rearranging (19-10), we obtain again condition (12-21) of Section 12-9: 

(19-11) h{x)dx = 

At the optimum, the probability that the weekly demand is at most S* is equal 
to the ratio of gross profit over gross profit plus loss per unit. 

Let c„ = $0.50, c„ = $0.10, and let the weekly demand be normally distributed 

with a mean of 800 and a standard deviation of 100. Then 

C.. 0.50 n 

c + c 0.50 + 0.10 
= 0.833 

and from Table 1 of the normal distribution in Appendix B we find that 

P(weekly demand =£ S*) = 0.833 

implies S* = 800 + 0.97(100) = 897. The optimum weekly batch is thus almost 

900 kg. 
To determine whether or not this solution represents a maximum, we verify that 

the sufficient conditions for a maximum, i.e., T"(S) < 0, are satisfied. From (19-9) 

we obtain the second derivative as 

T"(S) = -(cB + c0)h(S) 

In this case, there is no need to evaluate T"(S) at S*. Since h(S) > 0 for all values 
of S for a normal probability density function, and cu and c0 are both positive, T"(S) 
is negative for all S. Hence, condition (19-11) yields the optimum S*, which maxi¬ 

mizes (19-4). 

19-3 CONVEX AND CONCAVE FUNCTIONS IN ONE VARIABLE 

The function f of the variable x is convex if the straight line between any two arbitrary 
points on its graphs falls on or above the graph of the function, as depicted in Figure 
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Figure ,19-2. Convex functions. 

■I9-2(a). The function is strictly convex if the straight line between any two points is 
always above the graph of the function. 

Consider the line segment between the values of the function f on its graph for 
any two points, x, and x2. The value of this line segment at the point x, xl ^ x ^ x , 
is given by a linear combination of fix,) and f{x2). Let the proportion of the interval 
[xly x2] from xx to x be X. Then 

x — x 
x = r"_ ' or * = (l - x)*, + \x2 

*2 X1 

with 0 =£ X 1, by definition. The value of the line segment at x is 

f(xi) + k[f(x2) - /"(x,)] = (1 - k)f(x,) + \ f(x2) 1 

For a convex function, the value at the point x of the line segment joining any two 
points x, and x2 on the graph of f will never be less than f(x). We will use this 
property as our mathematical definition of convexity. 

For instance, f(x) = x2 is convex, but f(x) = R/x is not convex fdr all values 
oi x. However, if f(x) = RJx is only defined for nonnegative values of x for a particular 
problem, then it is also convex. Suppose f(x) represents the number of production 
batches, as a function of the size x of the production batches, needed to meet an 
annual demand of size R. Clearly, x cannot be negative. Therefore, it may often be 
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useful to say that a function is convex between two points x, and x2, disregarding its 

shape outside this range. 
A function f is said to be concave if the line segment joining any two points x, 

and x2 on the graph of /"is never above f(x). f is concave if the inequality in (19-12) 

is reversed—in other words, if -f is convex. A linear function is both convex and 

concave. 
Consider the shape of the convex function in Figure 19-2(a). It is first decreasing 

at a decreasing rate (or at most at a constant rate), and then increasing at an increasing 

rate (or at least at a constant rate). The rate of change of the slope of the function is 

therefore everywhere positive (or at least nonnegative). However, the rate of change 

of the slope of the function is equal to its second derivative. Therefore, for differentiable 

functions 

(19-13) if f"’(x) 3* 0, for all x, f is convex 

By analogous reasoning we find that 

(19-14) if f"( x) 0, for all x, f is concave 

Note the strong analogy between these two properties and the sufficient conditions 

for an extremum of f. 
In economic terms, if f is a cost function, then expression (19-13) corresponds 

to the case of increasing marginal cost, and if f is a profit function, then expression 

(19-14) implies decreasing marginal return. 
The graphical representation of convex and concave functions reveals that these 

functions can have one Stationary point at most, if one exists. The implications of this 

property in terms of finding the global optimum of a function are evident. 

// /V /// / // / / f| /T:M| //i^ca^#prtqtKrtist- ; jjj ) 
■ / / // 

0^'#% / ^ /7 7 / 7 / 7 / / / (7/7 / / / / /j 
f i £ | / fj if / / / / end point!, / j i * § I J f / 7 f /; 7 y f./ 7 7 7 7 / / <7 / f 7 / /, / 

f //1? / / / /// //;Ii {iii 
iff/:/ li i i /il.?/)f ;’|?v 1/7 ’ /// ?/;/ i / i:. 

The sum of convex (concave) functions is also convex (concave), i.e., if /j, 

f2, . . ., fn are convex (concave) functions in x, then the function defined by 

(19-15) f(x) = '£aif(x), for all a,. > 0 j 
, i 

is also convex (concave). This is a very useful property, since it allows us to determine 
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whether a function consisting of the sum of several parts is convex or concave by 
considering each part separately. 

Let us now apply these concepts to the sausage example in Section 19-2. The 
total expected net profit to be maximized is 

*S C 

(19-16) T(S) = [cux - c0(S - x)} h(x) dx + cuSh(x)dx 
Js 

with a stationary point defined by (19-10). Does this stationary point yield a global 

maximum? To answer this question we determine whether the function, T is concave 

in S. Since we are dealing with a differentiable function, we use expression (19-14). 

To demonstrate the use of the property summarized by expression (19-15), let us 

separate T into the two parts, multiplied by nonnegative constants cu and c0: 

(19-17) T,(S) = | xh(x) dx + j Sh(x) dx 

and 

(19-18) T2(S) = £-(S-x)&(x)<k 

Then, since h(x) 3= 0 for all probability distributions, we find from (19-17) 

(19-19) T"(S) = -A(sj«0, for all S 2* 0 

and from (19-18) 

(19-20) T"(S) = - h(S) ^ 0, forall S ^ 0 

Therefore, each part of T is concave, and for cuf co ^ 0, their sum is also concave. 

S* obtained from expression (19-11) is the global maximum. 

19-4 DIFFERENTIABLE FUNCTIONS OF TWO VARIABLES 

Optimization of functions of two decision variables warrants separate discussion not 

only because there are many practical applications, but also because the principles 

of classical optimization for several decision variables can best be demonstrated in 

terms of the two-variable case. Let f be a function in the variables x ajld y defined 

over some region R. The function f has a maximum at (x0, y0) if 

(19-21) f(x0, y0) ^ f(x, y), for all x, yin some neighborhood of(x0, y0) 

This maximum will be a global maximum if expression (19-21) holds for all values 

(xt y) in R. It is a local maximum if (19-21) holds for all values aropnd a neigh¬ 

borhood of (x0, y0). Geometrically, a maximum corresponds to a hilltop—this time 

viewed in three dimensions. For a minimum, the inequality in (19-21) js reversed. 

As in the one-variable case, the necessary condition for f to have an extreme 

value at (x0, y0) is that (x{), y0) be a stationary point, unless the maximum occurs on 
the boundary of R. 
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— ■■■■■ 

■ ■Hi 
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(19-22) 

where f = d 

fy- 0 at(x„ 

■■■■■■ ssB&mSMM 
Wmmmrn 

From the Taylor expansion of f around (x0, y0), we obtain the sufficient conditions 

for a maximum or a minimum. 

Sim ■WIWW11B 

a maximum 

For functions in n > 2 variables, the necessary conditions require that the partials of 

f with respect to each variable be equated to zero, and the sufficient conditions 

generalize to the evaluation of the (n X n) Hesian matrix at the stationary point 

considered. For further details see the text by Teichroew, pp. 547-548, listed among 

the references to this chapter. 

19-5 A TWO-VARIABLE EXAMPLE: THE (Q, r) INVENTORY MODEL 

In Section 12-11 we developed the total cost function for the (Q, r) model for the 

lost-sales case [expression (12-25)], where Q is the replenishment quantity and r the 

reorder point: 

fr R *°° 
(19-26) T(Q,r) = CjV IQ + I (r - x)f(x) dx + ^ |^2 + c, | (x - r)f(x) dx 



From the necessary conditions (19-22), the minimum of expression (19-26) is 
found by setting the partials of T(Q,r) equal to zero: 

(19-27) dT/dQ = jqV _ q5 c2 + c3 (x - r)f(x) dx = 0 

(19-28) dT/dr = c,V f' f(x) dx ~ ~c} J" f(x) dx = 0 

where we used formula (19-5) to obtain (19-28). Solving (19-27) for Q and (19-28) 

for r, we get expressions (12-26) and (12-27); namely, Q* as a function ofr\ and the 

value of the distribution function at r* as a function of Q*: 

foe 11/2 

(19-29) Q* = 2R(c2 + c} J' (x - r*)f(x) dx)/c,V = G(r) 

;i9-30) F(r*) = c, CiV + c. 

No further simplication is possible. How can we find the optimal values of Q 

j r,fem these exPressions? Fiiure 19-3 depicts the shape of the two functions G(r) 
and H(Q). Verify that as r -» oo, G(r) [2Rc2/ClV],/2, while for r =' 0, G(r) = 

[2R(c2 + c3p,)/cjV]I/2 - Q, where p, is the expected lead-time demand. Similarly, as 

* > (O ^ h which implies that r * while for Q —* oo, H(Q) —* 0, implying 

The tW° functions thus intersect each other. Expressions (19-29) and 
(19-30) represent the point of intersection. The optimal values of Q and r can thus 

be approximated to any degree of accuracy desired by successive substitutions. One 

such approach is the algorithm for the (Q, r) model presented in Section 12-11. The 

dashed line depicts the progress of these successive approximations. 

Figure 19-3. Successive approximations for (Q, r) model. 
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This simple example demonstrates how the necessary conditions for stationary 

points of functions in more than one variable may easily result in expressions too 

complex to be solved by analytic methods. It is for such reasons that methods of 

classical optimization are often impractical from a computational point of view. Un¬ 

fortunately, the tremendous advances in more powerful methods have so far not 

produced any general method for finding the global optimum of any arbitrary function 

in several variables. Some methods work better for some type of mathematical struc¬ 

tures, some better for others, as we shall see in Chapters 20 and 21. 

19-6 CONVEX AND CONCAVE FUNCTIONS OF SEVERAL 
VARIABLES 

A cereal bowl represents a typical example of a convex function in two variables. The 

definition of convexity for functions in two or more variables is a generalization of 

expression (19-12). 

CONVEX FUNCTIONS IN SEVERAL VARIABLES 

A function f of the variables x, y, . . ., and z is convex if and only if for any 

two points (x,, y,.z,) and (x2, y2, . . ., z2) and all X, 0 « X « 1, 

(19-31) /"(11 - X)x, + Xx2, (1 - X) y, + Xy2-- (1 - X)z, + Xz2) 
« (1 - X)f(xj, y,-- z,) + X/K, y,.zjt. 

For differentiable functions of two variables, expression (19-31) is equivalent to 

(19-32) 0, 0, and 0 

For concave functions, the inequality in (19-31) is reversed, and (19-32) becomes 

(19-33) 0, f„* 0, and fj„ - {Q2»0 

[For differentiable functions of more than two variables, (19-32) and (19-33) 

generalize to the (n X n) Hessian matrix, being positive semidefinite for convexity 

and negative semidefinite for concavity. See the text by Teichroew, p. 547, listed in 

the references to this chapter.] 
Let us now apply this to the problem in the preceding section. If T is convex in 

Q and r, then any stationary point found will yield a global minimum. From expres¬ 

sions (19-27) and (19-28) we obtain 

c2 + c, | (x - r)f(x) dx 

T„ = Mc,V + (R/Q)c3] 
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f00 

TQr = (WQ% f(x) dx 

Although Tqq and Tn are nonnegative for Q ^ 0 and r ^ 0, we cannot show that 

^qq Trr ~ (^Qr)2 ^ 0 f°r all probability distributions. Hence, we cannot conclude that 
T is convex in Q and r. 

19-7 CONSTRAINED OPTIMIZATION AND LAGRANGE 
MULTIPLIERS 

So far items stocked in inventory were always optimized individually. This approach 

is only permissible as long as there are no interactions among the items, such as 

limited production facilities, limited warehouse space, or necessity for joint ordering 

of groups of items. If such restrictions are present, then interdependent iteins will have 

to be considered jointly. Some of these restrictions can be handled with tjie approach 
discussed next. 

Consider the case where items compete for a limited amount of funds for inventory 

investments. The average inventory investment for all n items stocked is not to exceed 

an amount F. F could be a function of the firm's total short-term funds available and/ 

or a fraction of total yearly purchases. The latter would have the effect of forcing the 

overall inventory turnover to be at least equal to a certain size. If Q. is the inventory 

replenishment quantity, and if V(. is the cost in the warehouse per unit of’item i, then 

it must be true that the average inventory investment, V.Q./2, summed over all n 
items, cannot exceed F, i.e.,' 

(19-34) 

Let R; denote the annual demand for item i. Let cx denote the annual holding 

cost per dollar invested in inventory and c2f the fixed cost incurred whenever item i 
is ordered. By analogy with the EOQ model of expression (12-7) in Section 12-7, the 
total annual cost for all n items is 

(19-35) T(Q1? Q2, . . QJ = t la' + f c,V, 

min- The objective is to find optimal order quantities, Q,*, Q2*, . . Qn*, that 

imize expression (19-35) subject to the investment constraint (19-34). 

Generalizing the principles of Section (19-4) to the n-variable case, the uncon¬ 

strained optimum is obtained by setting all first order partial derivatives of (19-35) 

equal to zero and solving the equations obtained for the n variables: 

(19-36) dT/dQt = -JWQ,2 + CjVj/2 = 0, i = 1, 2, 

The unconstrained optimal Q* have the familiar EOQ form: 

(19-37) Ql* = V2R.c2j/c1Vi, i = 1, 2, . . ., n 
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We now require that the solutions to expression (19-37) also satisfy constraint 
(19-34). How should we approach this constrained optimization problem? We do not 
know a priori whether or not the constraint is binding at the optimal solution. The 
first step is therefore to find out whether or not this is the case. 

CONSTRAINED OPTIMIZATION: STEP 1 

I / MU Ifif' optimal values for the decision variables, ignoring the conStraiut.. If f 
’; 10y iatisfjf te :f»rat«aSnt/ the constraintis riot active ahd the optimal ■ 
! I Id Md edrisfrafii^d problem is the SaWf If fhe optimal solution to the 

fstramed prohlemj If, the constraint i j i'/ //./f //////, 

If the original constraint is in the form of an equation from the outset, rather 

than an inequality, step 1 can be skipped. 

CONSTRAINED OPTIMIZATION: STEP 2 

'-m i * i * L * - _3 A 11 ol i > of fVwa rvrsf The constraint is binding and will hold as an equality at the of 
Hence, solve the problem with the constraint in the form of an ei 

optimal solution. 

To motivate the solution method for minimizing a function subject to an equality 
constraint, we revert to a two-variable case. We want to minimize the function fin 
x and y, subject to the equality constraint gix, y) = b. In Figure 19-4 we show contour 
lines for the objective function. Eash line traces all combinations of x and y that yield 
the same value of f. The curve for g(x, y) = b shows all combinations of x and y that 
satisfy the constraint as an equality. The optimal solution to the constrained problem 
occurs at the point (x0, y0), where a contour line just touches g(x, y) = b. This is the 
lowest value f can assume while still satisfying the constraint. At (x0, y0), the slopes 

of f and g coincide. 
The change in f for marginal changes in x and y is given by the total differential 

df = fxdx + fy dy 

Along a contour line, df - 0. So we find that 

dy/dx = -fxlfy 

By the same reasoning we also find that 

dy/dx = ~gjgy 

At the point (x0, y0) these two slopes are equal, i.e., 

fjfy = gjgy 
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Figure 19-4. Constrained minimization of f(x,y) subject to g(x,y) = h. 

Common tangent 

or, rearranging terms, 

(19’38) fM = f?!gy 

Let the common ratio of expression (19-38) be equal to X. Hence the optimal 
values of x and y satisfy the following two equations: 

(19‘39) i - A& = 0 fy - Ag, = 0 

as well as the constraint g(x, y) = b. Letting X become a variable, we can now take 
advantage of this property and use it to find the optimal constrained values for x and 
y the new variable X by solving the three simultaneous equations: 

(19-40) fx - kgx = 0 fy- \gy = 0 g(x, y) = b 

It turns out that exactly the same set of equations can be generated by considering 
the unconstrained minimization of the following augmented objective function: 

(19-41) 
L(x, y, X) = f(x, y) + \(b - g(x, y)) 

original constraint 
function 

known as the Lagrangian function. X is called a Lagrange multiplier. The Lagrangian 
function for one constraint has one variable more than the original function_the 
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price we must pay for being able to apply methods of classical optimization to such 

problems. 
The stationary points of expression (19-41) are denned by 

(19-42) dLldx = fx - Xgx = 0 dL/dy = fy- Xgy = 0 dl/dX = b - g{x, y) = 0 

which is exactly the same as the set of equations (19-40). (The reader is referred to 

more advanced texts for the sufficient conditions.) 
We are now equipped to perform step 2 of constrained optimization. Combining 

(19-35) and (19-34), we obtain the Lagrangian function: 

(19-43) L(Q„ Q2,. . ., Q„, X) = t M + 5QftvJ + x F " 

and the following necessary conditions for an optimum: 

(19-44) dL/dQ = -Rfii/Qt + k,V, - §XV, = 0, i = 1, 2-,n 

(19-45) dL/dX = F - sJVQi = 0 
i=l 

Solving each equation (19-44) for Q;, we obtain 

(19-«) ." 

where X* is the value of X, such that the Q;* of (19-46) satisfy (19-45). Viewing 
(19-46) as functions of X, and substituting them into (19-34), we see that 

(19-47) F - ^V^/V/c, - X)]1/2 
i=l 

is a monotonic decreasing function of X. Hence there is a unique value X < 0, such 

that expressions (19-44) are satisfied. We can thus find the constrained optimal solution 

by setting (19-47) equal to zero and solving for X = X*. This in turn allows us to find 

all Qt* from (19-46). 
Table 19-1 gives the data for an example involving n = 3 items. The holding 

cost per dollar invested per year is cx = 0.2, and the average investment should not 

exceed $28,000. 

Table 19-1. Data for constrained 

example 

Item la 2 3 

R, 2000 8000 4000 
V, $200 $100 $40 

c2, $150 $200 $100 
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Step 1 The unconstrained optimal order quantities are 

Qi* = V"2(2000)( 150)/(0.2)200 = 122.5, or about 122 

Q2* = V2(8000)(200)/(0.2)100 = 400.0 ; 

Qi* = 2(4000)( 100)/(0.2)40 = 316.2, or about 316 

The average investment required amounts to 

j[ 122(200) + 400(100) + 316(40)] = $38,520 

Since this violates the upper limit of $28,000, we go to step 2. 

Step 2 From (19-47) we find that the optimal X* is the solution to | 

1 
2 

2(2000)(150) ' 

\200(0.2 - X*), 

1/2 

+ 1001 
2(8000)(200) \1/2 

100(0.2-X*)/ +4° 

^2(4000)(100) \1/2' 

,40(0.2 - X*)/ 
28,000 

which yields X* - -0.1795. Inserting this result into expression (19-46), we obtain 
the constrained optimal order quantities as 

Q>* = V"2(2000)(150)/200(0.2 + 0.1795) = 88.91, or about 89 

Qz = V2(8000)(200)/100(0.2 + 0.1795) = 290.38, or about 290 

Q,* = V2(4000)(100)/40(0.2 + 0.1795) = 229.57, or abouf 230 

Verify that these values exactly use up the entire $28,000 available. The total 
annual cost of the constrained optimum is $24,491, versus $15,430 for the uncon¬ 
strained optimum. Therefore, the limit imposed on the average inventory investment 
costs the firm $9061 per year in the form of higher inventory operating costs. 

In this example, the Lagrange multiplier could be determined analytically. There 
are many problems where the optimal value of X has to be found by a search method. 
A systematic approach, easily programmed for computers, is to select two initial values 
for X, X0 and X,, such that the constraint holds as a < inequality for X0, and as 
a > inequality for \l. The next guess for X is X2 = j(X0 4- Xx). If X2 forces tjie constraint 
to hold as >, X3 = §(X0 + l^X otherwise, X, = j(X2 +X,). In this fashion the optimal 
X can be approximated as closely as desired. More sophisticated search procedures 
will be discussed in Chapter 20. I 

In theory tliis method can be extended to several constraints, The Lagrangian 
function would include one Lagrange multiplier for each constraint. Since it is not 
known a priori which constraints are binding at the optimal solution,1 all possible 
combinations of binding and slack constraints have to be evaluated. For two constraints 
that means solving up to four problems: the unconstrained problem, two problems 
with one constraint only, and a fourth with both constraints binding. For k constraints, 
up to 2* problems have to be evaluated. Adding to this the disadvantage of the increased 
number of variables, the method of Lagrange multipliers is hardly a practical solution 
method for problems with more than two constraints. ; 
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19-8 INTERPRETATION OF LAGRANGE MULTIPLIERS 

Assume now that the amount of funds is not limited, but that there is an additional 
inventory investment cost of a dollars for every dollar invested per year, assessed on 
the average inventory investment. Added to the total annual cost in (19-35), this gives 

(19-48) T(Q„Q2, • ■ -,QJ = t |c, + f(ClV, + V,a) 

The optimal order quantities are now 

(19-49) Q,* = 
2R,.c2i 

V,.(c, + a) 
for all i 

Comparing (19-49) with expression (19-46) obtained from the Lagrangian function, 
we see that if we set a = -A.*, the two formulas result in exactly the same optimal 

order quantities. The Lagrange multiplier is thus a penalty on a resource use. 

INTERPRETATION OF OPTIMAL LAGRANGE MULTIPLIERS 

The optimal value of the Lagrange multiplier represents the marginal value or 

shadow price of the scarce resource. 

\* is a function of the amount of the scarce resource b. It will change as b 

changes. Figure 19-5 depicts how - X behaves as a function of the amount of funds 

Figure 19-5. Marginal cost of funds for inventory investment. 
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available for inventory investment. When funds reach a value of $38,520, the con¬ 

straint just ceases to be binding, and the optimal X = 0 from there on. (Why?) 

EXERCISES 

19.1 Consider the EOQ model developed in Section 12-7, expression (12-7). Find the 
necessary and sufficient conditions for that model, and verify the square-root formula. 

19.2 A product is produced by a process consisting of several operations that have to be 
performed on the batch as a whole. At the end of the production process, all units 
produced are added to finished inventories all at the same time as one biitch. The total 
length of time to produce a batch of size B is as follows: v wB. The holding cost 
per dollar invested per year is c]y and the average value of the in-process inventory is 
V2 dollars per unit, while finished goods have a value of Vj dollars per unit. The 
production set-up cost is c2 dollars per setup. Demand is evenly distributed over the 
whole year and amounts to R units per year. 

(a) Find an expression for the total annual relevant cost, consisting of set-up costs and 
holding costs on finished goods and goods in process. It may help to draw a graph 
depicting how stocks for both goods in process and finished goods behave over 
time. 

(b) What is the optimal value of B? 

(c) For Vj = 12, V2 = 10, Cl = 0.24, c2 = 120, R = 2400, v = 30 days, w = 0.2 
days, N = 360 days per year, find the optimal value of B. ■ 

(d) Is the total cost expression convex? 

19.3 Consider the following waiting line problem. Ships arrive at a port at a (ate of X ships 
per day. Unloading and loading of ships can be done at a rate of p, ships per day. 
Then (as shown in Chapter 15), the average time a ship is in port waiting and being 
unloaded is l/(p, - X) days. The cost for unloading a ship is \xc{ at the rate |jl. The 
cost of a ship in port is c2 dollars per day. 

(a) Find an expression for the total cost per ship unloaded as a function of p, and X. 
(b) Find an expression for the optimal rate p,* of unloading ships so as to minimize 

total cost per ship. 

(c) Let X = 8, Cj = $2000, c2 = 8000. Find the optimal p,, and verify if the sufficient 
conditions are satisfied. 

(d) Show whether or not the total cost function is convex or concave. 

19.4 A machine produces parts at a constant rate of 360 units per hour. The rate of defectives 
produced depends on the length of time t between adjustments of the machine as 
follows: 144f, where f = 1 is one hour. Defective parts have to be reworked on a 
different machine at a cost of $2 per unit. Whenever an adjustment is made, the 
output of the machine is temporarily stopped. The opportunity cost of the lost pro¬ 
duction amounts to $32. The objective is to determine the length of time between 
successive adjustments so as to minimize the total cost. 

(a) Find an expression for the total cost as a function of the time between successive 
adjustments. 

(b) Find the optimal length of time between successive adjustments, the check whether 
the sufficient conditions are satisfied. 

(c) Determine whether the cost function is convex or concave. : 
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19 5 For the model discussed in Section 19-2, find the optimal value of S for the following 
data: c, = $3, c2 = $7, h(x) = 0.02 - 0.0002x for x =£ 100 and 0 for x > 100 (i.e., 
a triangular distribution). Verity that the sufficient conditions are satisfied at the op- 

timum. 

19.6 A manufacturer of seasonal fashion clothing would like to determine the size of the 
production run for a given item which is subject to a random demand. Only one run 
will be made for the entire season. Any goods not sold by the end of the season are 
essentially worthless, and therefore the production cost kx incurred is not recovered. 
If the demand exceeds the production run, then the manufacturer suffers an opportunity 
cost for lost sales of k2 dollars per unit short. The probability density function of the 

demand is h(r), where r denotes demand. 
(a) Find a general expression for the sum of expected lost production cost and expected 

opportunity costs on lost sales if a run of size Q is made at the beginning of the 

season. 
(b) Find an expression to determine the optimal value of Q that minimizes the total 

expected costs. Compare the expression derived with condition (19-11) obtained 
for maximizing profits. Verify that the sufficient conditions are satisfied for all 
positive cost factors. Find the optimal value of Q for k2 = $9.50, k2 = $30, and 

h(r) normal with mean 400 and standard deviation 80. 

*19.7 A product is replenished once at the beginning of each month. Monthly demand x 
is random with a probability density function h(x). If demand exceeds stocks, a shortage 
cost is incurred which is proportional both to the amount short and the length of time 
short. The shortage cost per unit short per month is c2. Holding costs are assessed on 
the average inventory on hand at the end of the month, and amount to c, per unit 
per month. We want to find the optimal beginning inventory level each month that 

minimizes the sum of the expected holding and expected shortage costs. 
(a) Let S be the beginning inventory level. Find an expression for the expected monthly 

cost as a function of S. To properly assess shortage costs, it may help to draw a 

diagram for the possible inventory behaviors over the one-month period. 

(b) Find the necessary and sufficient conditions for a minimum. 

(c) Determine whether the cost function is convex. 

19 8 Find the (approximate) total expected annual cost for the (Q, r) model in Section 19- 
5 for the backorder case (i.e., sales are not lost, but filled after receipt of a replen¬ 
ishment). Find expressions to determine the optimal values of Q and r. Construct the 
graph corresponding to Figure 19-3. Find the optimal values of Q and r for the cost 

and demand parameters used in Section 12-11. 

19.9 A subcontractor has to supply a given part at a rate of 20 units per day. One day s 
supply is brought to the customer every morning. The subcontractor produces these 
parts in batches of Q units at a rate of 50 units per day. It costs him $7.50 to hold one 
unit in stock for one month. The contract provides for a late delivery penalty of $2 
per part per day late. Each time a production batch is started, there is a production 
set-up cost of $4000. The objective is to find the optimal batch size Q* and the optimal 
amount Z* of late deliveries each replenishment cycle. Assume a month has 20 working 

(a) Find an expression for the sum of annual production set-up costs, inventory holding 

costs, and late delivery penalties as a function of Q and Z. 
(b) Determine the optimal values of Q and Z, and check whether the sufficient 

conditions for a minimum are satisfied. 
(c) Determine whether the total cost function is convex or concave. 
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19.10 Consider the one-period (s, S) model discussed in Section 12-12. Let the holding cost 
for each unit left in stock at the end of the period be — $2; let the shortage cost per 
unit short be c, = $8; let the fixed set-up cost be c2 = $24; and let the demand 
distribution be negative exponential with a mean demand per period of 10. 
(a) Find K(i), and determine the value i = S for which K(r') is a minimum. 
(b) Determine s. 

(c) If i = 6, what is the optimal q? 

*19.11 Lube Oil Inc. can meet daily customer demands either from stock or by scheduling 
a special production run. The latter option is chosen when the total demand on that 
day is sufficiently large, i.e., larger than a cutoff point Z. Inventories ate replenished 
by an amount Q whenever stocks are reduced to zero. The daily demand is a random 
variable with density function f(x). Each production run for inventory replenishment 
or for direct shipment to customers incurs a set-up cost of c2 dollars. Holding costs 
amount to Cj per dollar invested per year. Products added to inventory inciur a handling 
cost of c4 dollars per unit. There are N = 250 working days per year. The product 
value is V per unit. 

(a) Find an expression for the total expected annual cost of this operating policy, 
covering inventory holding, production setup for both inventory replenishments 
and direct shipments to customers, and stock handling costs. 

(b) Find expressions for the optimal values of Q and Z. How would yon solve them? 

(c) For c, = 0.2, V = $20, c2 = $10, c4 = $0.20, and f(x) = \<r^ith \ = 0.1 

(negative exponential with mean 10), use the results of (b) to find the optimal 
values of Q and Z to full integer values. 

(d) Show that the total cost expression is not convex for all types of demand distri- 
butions. 

19.12 For the problem discussed in Section 19-7, find the optimal order quantities Q, and 

the unconstrained and constrained minimum cost for the following data: cx = 6.24, 
average inventory investment limit $30,000, and R, = 8000, R, = 6000' V, = $120* 
V2 = $200, c21 = $80, c22 = $50. 

19.13 A firm stocks different items in the same warehouse. Item i requires at Square feet of 

warehouse space per unit. The total warehouse space available is A square feet. All 
IV items are replenished independently in batches of size Q;. Holding Costs assessed 
on the average inventory level amount to cx dollars per dollar invested per year. The 
value of item i is V, dollars per unit. The fixed ordering costs is c2i per batch ordered 
for item i, and the annual demand for item i is R 

(a) Find an expression for the annual total inventory holding and ordering costs for 
all N items. If each item is allotted a space in the warehouse required to store Q., 
what is the total amount of warehouse space needed? 

(b) Given that the warehouse space available is A, form the Lagrangian function and 
determine expressions to find the optimal order quantities Q,*. 

(c) Use A = 2000 sq ft, cx = 0.2, and the following data to find the optimal Q* and 
the minimum cost. What is the cost of the warehouse restriction? 

i = 1 2 3 

R, 12,000 5,000 2,000 
V, $20 $40 $50 
C2, $160 $200 $100 
at in sq. ft. 1 2 4 
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19.14 A firm produces N products on the same machine. Total productive capacity of the 
machine is 250 days per year. Each product is produced in batches of size Q;. For 
every batch of product i produced, the set-up time amounts to ax days. The product 
is produced at a rate bx per day. Let R, be the annual demand, V,. the product value 
per unit, cl the holding cost per dollar invested per year, and c2i the fixed set-up cost 

per batch for product i. 
(a) Find a general expression for the total annual cost and express the constraints on 

the production capacity mathematically. 
(b) Find expressions that, given data, would allow you to determine the optimal 

constrained batch sizes Q,. 
(c) Using common sense, discuss why this model is only a suitable approximation if 

the number of products N is relatively large, and why it could not be implemented 

if N were small—say, 2, 3, or 4. 

19.15 Machine I produces a certain item at a uniform rate of 960 for a 480-minute day, 
machine II at a uniform rate of 1440 per day. The item has a market value of $2 each 
and can be sold immediately after manufacture. Adjustment of the machines are 
critical, and the number of defective parts produced is dependent on the number of 
adjustments made per day. Past experience shows that the number of defective parts 
produced by machine I is 256/N, where N is the number of adjustments made on 
machine I; similarly, for machine II it is 125/M, where M is the number of adjustments 
made on machine II. Each part produced has a material cost of $0.80, regardless of 
whether the part is salable or defective. Defective parts cannot be sold. Each adjustment 
has a cost of $4 for machine I and $6 for machine II. Each adjustment takes 10 
minutes, during which time no production occurs. A fractional number of adjustments 
per day simply means that the days are not necessarily started with an adjustment, but 
that an adjustment is made after 960/N or 1440/M parts produced. However, because 
of manpower restrictions no more than 6 adjustments can be made daily. The firm 

wishes to maximize daily profits. How should it operate the two machines? 
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CHAPTER TWENTY 

Unconstrained Nonlinear 
Programming Methods 

Nonlinear programming techniques are mathematically advanced and ‘conceptually 
difficult. They require some fluency in differential calculus and linear algebra. They 
also contain design features to handle complexities, such as nonlinear objective func¬ 
tions that do not have a unique minimum and feasible regions that hdve nonlinear 
boundaries or that are nonconvex. No general “best” technique has yet been identified, 
although some avenues have emerged as more promising than others. Rather, the 
field abounds with many different techniques to cope with particular mathematical 
structures. All modern techniques use a numerical algorithm to find the “optimal” 
solution. Often, these algorithms have a structure similar to that of the simplex 
method. 

It is not possible for us to present even the promising techniques in detail because 
of their mathematical sophistication. We have chosen to introduce somf of the basic 
concepts and building blocks underlying most of the modern algorithms and dem¬ 
onstrate them by simple versions of the techniques. Whether an algorithm proves to 
be efficient ultimately depends on the computer time needed to reach an accurate 
solution. This is not simply a matter of the number of iterations needed, but also of 
the ease of data handling and the computational effort at each iteration—crucial 
aspects that we shall not be able to discuss. 

This chapter is the first of two dealing with this topic. We begin with the optim¬ 
ization of one-dimensional (or univariate) functions. Such an algorithm is an integral 
part of most nonlinear techniques. Sections 20-4 to 20-8 look at three’ multivariate 
unconstrained nonlinear techniques that form the basis of the constrained nonlinear 
programming algorithms covered in the next chapter. In Section 20-5, we outline the 
framework on which most nonlinear algorithms are built. 

571 
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20-1 UNIVARIATE OPTIMIZATION METHODS 

Let x be the decision variable and f(x) the objective function of the problem. Univariate 

(or one-variable or one-dimensional) optimization methods solve the problem 

(20-1) maximize (or minimize) f(x) 
x x 

We will assume that f(x) is unimodal, i.e., has only one turning point. The 
techniques can be used on other functions but in that case may converge to a local 

optimum. 
For demonstration purposes, consider the following simple example. A machine 

produces parts at a constant rate of 120 per hour. Each part produces a net revenue 
(sales price less material cost) of $6. The rate of defective parts produced per hour is 
proportional to the length of time x between machine adjustments, i.e., 27x, where 
x = 1 is one hour. Defective parts have to be reworked on a different machine at a 
cost of $4 per part. Whenever an adjustment is made, the machine is temporarily 
stopped for one minute, the time needed to produce 2 parts. The profit per hour is 
equal to the number of parts produced times the net revenue per part less the cost of 
reworking defective parts: f(x) = (120 - 2/x)6 - (27x)4 = 720 - (12/x) - 108x. 
The objective is to determine the length of time between adjustments so as to maximize 
profit. Let us assume that at least one adjustment has to be made per hour, hence the 
decision variable x is restricted to the interval [0, 1]. We can now state the optimization 

problem as 

(20-2) maximize/"(x) = 720 — (12/x) — 108x 
0=£xs£l 

At x = 0, fix) = -oo, and at x = 1, fix) = 600. Although this problem is 
simple enough to solve by calculus, we will use it to illustrate univariate methods. 
You should verify that the optimal adjustment interval is x* = V12/108 = 1/3. The 
maximum profit per hour is f{x*) = $648. 

Univariate methods fall into twp major groups—interval elimination methods and 
function approximation methods. The basic idea behind interval elimination methods 
is to reduce the solution space that contains the optimal value of x to smaller and 
smaller intervals. For our example, the original solution space is the interval [0, 1], 
At each iteration, some part of the current interval will be identified as not containing 
tlje optimum. That part is eliminated and the search continues over the reduced 
interval. As a rule, an interval elimination method does not pinpoint the optimum 
exactly; it provides an “acceptably small” interval in which the optimum lies. The 
function values at the end points of the interval (and in some cases a point within it) 
give estimates of the value of the optimum. There is a tradeoff in accuracy and 
computation time which depends on the acceptable size of the final interval. Methods 
such as block search, Fibonacci search, and golden section search are interval elimi- 
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nation methods. Fibonacci search is the most efficient, but it requires that the number 
of iterations be specified in advance. Golden section, which we consider in the next 
section, is a version of Fibonacci which allows the size of the final interval to be 
specified instead. ! 

Function approximation methods iterate to the optimal value of x by approxi¬ 
mating the function at each iteration by a function of a simple form, e.g., a quadratic 
or a cubic. The optimum of the approximating function is found analytically. These 
methods then use information about the true function at the optimum of the ap¬ 
proximating function to update the approximation. By repeating the procedure the 
methods will converge on an optimum to the original function. Methods of this type 
vary according to the type of data they require and the type of approximation they 
make. Powell’s quadratic interpolation algorithm, for example, uses the function value 
at three values of the variable to find a quadratic approximation. Newtons method, 

introduced in Section 20-3, uses the first and second derivatives at a single point to 
generate a quadratic approximation. 

In the choice of a univariate search method, the nature of the function (e.g., 
whether or not it is differentiable or unimodal) and the relative size of the initial and 
final interval are important considerations. It is not surprising that many general- 
purpose methods are hybrid techniques designed to overcome the weaknesses—slow¬ 
ness or even lack of convergence—of each of the pure techniques. 

20-2 GOLDEN SECTION SEARCH METHOD 

As we shall see shortly, the key to the golden section search is in the number t that 
satisfies t2 = t + 1. This number is equal to j(l + VT) = 1.61803^9. . . . We 
use t because it generates a highly efficient interval elimination procedure. 

Let the end points of the interval at the start of iteration k be dk) and b(k). The 
golden section method finds two new points, xf and xf, which exhibit the relation¬ 
ships shown in Figure 20-1. Mathematically, these relationships allow us to express 
x.f} in the form 

(#*> - a[k)) = t2L = T2(xf - a(k)) 

or 

(20-3) s
 

II +
 1 

C
l 

By symmetry, 

II 1 

j
i

 

1 
c
l.

 

We now use these points to eliminate the part of the interval from dk) to h{k), 

which cannot contain the optimal value of x. Only the remaining portioh is retained 
for the next iteration. If/fxj*') > f{x(k)), then, assuming that f is unimodal, the optimal 
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Figure 20-1. Golden section search. 

f 

the best function value is then used as an approximation to the maximum. By choosing 
s sufficiently small, we can obtain a high degree of accuracy. 

It turns out that we do not have to use equation (20-3) beyond the first iteration. 
From Figure 20-1 you can see that iixf is the point with the largest function value, 
it will become x(2*+ 1} at iteration k +1. This follows because the distance 
(xf - a{k)) is in the same proportion to {xf - aik)) as the distance 
{xf - a[k)) is to (Uk) - a{k)). Similarly, if xf replaces dk) as the new end point, then 
xf+1) equals xf. 
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Let us now apply this algorithm to problem (20-2), starting with an interval of 
[am = 0, bm = 1] and e = 0.01. 

Iteration 1: 

Step 1 x'1) = 0 + (1 - 0)/( 1.61803 39)2 = 0.382 1 
41’ = 1 - (0.382 - 0) = 0.618 
k = 2 

Iteration 2: 

Step 2 f(x[l>) = f{0.382) = 720 - (12/0.382) - 108(0.382) = 647'33 

f^i) = ftO.618) = 720 - (12/0.618) - 108(0.618) = 633'.84 

Since f (x)1’) > f(x(]]), 

d2) = 0 and b{2) = 0.618 

x<2) = 0 + (0.618 - 0.382) = 0.236 and x<2) = 0.382 

Step 3 b{2) - a{2) = 0.618 - 0 > s = 0.01 
| 

Hence, k = 3; return to step 2. 
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The algorithm continues as shown in Table 20-1, until the remaining interval 
is less than 0.01. At iteration 11, the maximum function value is obtained at 
x'/1’ = 0.334368, where the profit is /'(x,1,)) = $647.9997, as compared to the true 
optimum profit of $648.00. You should note that rounding errors may be compounded 
by this algorithm. It is important either to keep sufficient significant digits or to restart 
with a step 1 computation on the remaining interval every so many iterations. 

Table 20-1. Golden section method 

k a<» bik) b{t) _ aik) x[k) r(k) 
a2 ftxf) nn 

1 0 1 1' 0.381966 0.618034 647.3313 633.8359 

2 0 0.618034 0.618034 0.236068 0.381966 643.6718 647.3313 

3 0.236068 0.618034 0.381966 0.381966 0.472136 647.3313 643.5929 

4 0.236068 0.472136 0.236068 0.326238 0.381966 647.9833 647.3313 

5 0.236068 0.381966 0.145898 0.291796 0.326238 647.3614 647.9833 

6 0.291796 0.381966 0.090170 0.326238 0.347524 647.9833 647.9374 

7 0.291796 0.347524 0.055728 0.313082 0.326238 647.8585 647.9833 

8 0.313082 0.347524 0.034442 0.326238 0.334368 647.9833 647.9997 

9 0.326238 0.347524 0.021286 0.334368 0.339394 647.9997 647.9883 

10 0.326238 0.339394 0.013156 0.331264 0.334368 647.9986 647.9997 

11 0.331264 0.339394 0.008130 0.334368 0.336290 647.9997 647.9972 

20-3 NEWTON’S METHOD (UNIVARIATE) 

Newton’s method (or the Newton-Raphson method, as it is sometimes called) requires 
the objective function f{x) to have an unconstrained maximum in the range we are 
considering and to have both first and second derivatives. We have chosen to study 
Newton’s method in depth because it is easily extended to the multivariate case and, 
in one form or another, becomes a central part of many nonlinear programming 
algorithms. Newton’s method is often viewed as a way of finding the roots of a function. 
However, we wish to interpret it as a series of quadratic approximations of f. Consider 
the first three terms of a Taylor’s series expansion of the function f at point at 

iteration k. 

(20-4) F( x) = f{ xw) + f'((x - x<*>) + if'i x<»)( x - x^)2 

The function F(x) is a quadratic approximation to f(x) and has the same first and 
second derivatives at x!i}. We can maximize F(x) directly. If we are close to the 
maximum of f(x), the curve of F(x) will approximate the curve of the true function 
at the maximum. Hence by maximizing the approximating function F(x), we ap¬ 
proximately maximize f(x). Figure 20-2 illustrates this. The maximum of (20-4) occurs 
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Figure 20-2. Newton's method for maximizing f(x). 

Quadratic approximation 
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F'(x) = f'(&) + ffUk))(x - x<*>) = 0 

5) x = xf« - [f\x{k))lf\x{k))] 

At each iteration k, the optimum x of the quadratic approximation becomes the 
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point we use to construct the next quadratic approximation. Thus, we set x(k+1; — x 
in (20-5) to obtain Newton’s iterative equation. 

NEWTON’S ITERATIVE EQUATION 

(20-6) r*"'1 = x!t> - [f'(x,h)/f"(xilf)j 

The procedure is terminated when the change in the estimated optimum is less 

than some small number e, i.e., when |x,i+l) — x^k}\< e. 
Let us now apply Newton’s method to problem (20-2). We begin the first iteration 

by arbitrarily setting x = 0.250. The first and second derivatives of fix) are 

(20-7) f'(x) = (12/x2) - 108 f"(x) = -24/x3 

At x01 = 0.25, f'(xm) = 84 and f"(x(1)) = - 1536. So 

F(x) = 576 + 468x - 768x2 

and 

x(2> = xll) - f(x(1>)/fU(1)) = 0.25 - (84)/( — 1536) = 0.305 

We illustrate this iteration in Figure 20-2. x(2) becomes the starting point for iteration 
2. Table 20-2 shows that at the third iteration |x<t+1) - x®| < 0.01. 

Table 20-2. Newton’s method for problem (20-2) 

k x(k) f(x<«) f'Uk)) x“+1) /■(x<*+1>) 

1 0.25 84.00 - 1536.00 0.305 Ml.11 

2 0.305 21.00 - 845.89 0.330 647.996 

3 0.330 2.19 - 667.84 0.333 648.00 

Within a region of the optimum, Newton’s method converges very quickly. 
Unfortunately it does not always converge. It may diverge or wander without con¬ 
verging if the function is badly behaved, or it may find the minimum rather than the 
maximum. By using a few iterations of an interval elimination algorithm, such as 
golden section, before applying Newton’s method, we can usually prevent the method 
from misbehaving. 

Another weakness of Newton’s method is that it requires knowledge of the second 
derivative of the function. Second derivatives may not always exist or may be com¬ 
putationally expensive to evaluate, as in the multivariate case discussed in the next 
section. Quasi-Newton methods overcome these difficulties by estimating the values 
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of second derivatives. These are then modified on the basis of the information we 
gain about the first derivatives at each additional point. 

20-4 MULTIVARIATE UNCONSTRAINED OPTIMIZATION- AN 
EXAMPLE PROBLEM 

In the remaining sections of this chapter, we will formalize and extend tjhe ideas used 
in the one-variable optimization techniques to the multi-variable or multivariate case. 
For this purpose we will use the following simple example. A manufacturer makes 
three products. The sales volume of each product is dependent on its price, and in 
one case, product 3, sales volume is also dependent on the price of another product. 
The marketing division estimates the following relationship between rfionthly sales 
volume Xj (thousands of units) and unit price p. for each product: 

(20-8) Xj = 10 - pl 

(20-9) x2 = 16 - p2 \ 

(20-10) = 6 - |p, + \p2 

The variable costs for the three products are $6, $7, and $ 10 per unit,j respectively. 
The manufacturer wishes to find the monthly sales schedule that will maximize profits. 
Total profit for each product is equal to total revenue minus total variable cost for the 
product. For product 1, total revenue is ^ = pxxx. From (20-8), pl = (10 - x1( so 
Bi = P\x\ = 10x, - x\. Total variable cost for product 1 is V, = 6x,. So the total 
profit for product 1 is 

TTi = Ri - V; = 10x, - - 6x, = 4xj - x\ 

Verify from (20-9) that for product 2 the total revenue amounts to R2 = p2x2 = 
16x2 x2, and the total variable cost V2 = 7x2, with the difference of » 

tt2 = R2 - V2 = 16x2 - x22 - 7x2 = 9x2 - x22 

Product 3 presents a new problem, since x3 depends on p2 as well as p3. Total 
revenue is R3 = p3x3 = 2(6 — x3 + jp2)x3. Using p2 = 16 — x2 from expressions (20- 
9), we obtain 

R3 = 2(6 - x3 + J(16 - x2))x3 = 20x3 - 2x^ - |x2x3 ; 

Variable cost is V3 = 10x3. Hence, total profit for product 3 is 

tt3 = R3 - V3 = 20x3 - 2x2 - fx2x3 - 10x3 = 10x3 - 2x2 - fx2x3 

Summing tt,, -rr2, and tt3, we obtain the total profit function: 

(20-11) fix) = f(*i, x2, x3) = 4x, — x\ + 9x2 — x2 + 10x3 — 2x2 — 2x2x3 
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We want to find values for xv x2, and x, that maximize expression (20-11). Before 
studying specific techniques, let us look at the general structure of mathematical 

programming algorithms. 

20-5 GENERAL STRUCTURE OF NONLINEAR PROGRAMMING 
ALGORITHMS 

For several of the solution techniques developed in earlier chapters, we have, without 
stating so explicitly, used a variation of the following general algorithmic structure. 

GENERAL STRUCTURE OF NONUNEAR PROGRAMMING 
ALGORITHMS 

Step 1 Initiate the algorithm at a solution, denoted by 

in.....i—.. 

Step 2 Find a direction of movement away from the current solution which 
improves the value of the objective function 

Step 3 Determine how far to move away from the current solution in the 
direction of improvement of the objective function, or, in other 

words, find a step size. 

Step 4 Repeat steps 2 and 3 using always the last solution found in 3 until 
no further direction of improvement of the objective function can 
be found or until the improvement in the objective function is less 
than a specified amount. The last solution found is then used as the 

optimal solution x* = (xt, x2, . . ., x„). 

Most techniques that follow this structure differ in their way of handling steps 2 

and 3. 
The direction of movement from a solution is given by a direction vector d. An 

example of such a direction vector is depicted graphically in Figure 20-3. The direction 
vector, d = [dlf d2] (in two-dimensional space), is the vector that allows us to generate 
all points along a ray emanating from the current solution, x = (x1? x2), in the desired 
direction. This ray is defined in terms of the direction vector d and scalar 0 as the set 

x = (x1( x2) such that 

(20-12) x = x + 0d, for all 0 < 0 < co 

In Figure 20-3, (x + 0d) is the line from x in the direction d. The iterative equation 
of an algorithm at iteration k with step size 6,kl is thus 

(20-13) X(*+1) = x<« + e<*>d<» 
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Figure 20-3. Direction vector. 

X2 

Let us illustrate how this structure applies to Newton’s method equation (20-6) 
where x = x. This equation finds the new solution x = #+1) = xw - (f'(x'k>)/f" 
{xm). xiki represents the current solution x at iteration k. The direction is given by -f' 
(x®)//1' (xw), while the step size is 0W = 1. In Newton’s method, the'direction of 
movement and the step size are both determined by equation (20-6). In the methods 
studied next, these two operations will normally be separated. Starting at the point 
xw, we will first find the direction vector d®, and then determine the step size 0W to 
find the new solution x<t+1). 

20-6 GRADIENT METHODS FOR UNCONSTRAINED 
OPTIMIZATION 

Gradient methods choose the gradient vector at a solution x as the direction of move¬ 
ment at step 2 of our general algorithmic structure. The gradient vector g = 

(<?i> §i> ■ ■ •> 8,J at a point x is the vector whose components (directional numbers) 
are the first partial derivatives of f evaluated at the point x, i.e., 

g = (df/dX\, df/dx2, . . ., dfldxn) evaluated at x 

The gradient vector gives the greatest rate of increase in the value of tlie objective 
in the immediate vicinity of a point. It is, therefore, the locally best direction of 
movement. Geometrically, the gradient vector is the vector at right angles to the 
tangent plane at x, as shown in Figure 20-4 for point x(1). This technique rs also called 
the method of steepest ascent. A “best” choice for the step size in the gradient direction 
is to move to the point that gives the largest value of the objective function in that 
direction. 

Figure 20-4 graphically depicts the progression toward the optimal solution along 
gradient vectors starting from an arbitrary point xf1’. This technique finds a solution 



that is arbitrarily close to the optimal solution (or a local optimum if several optima 

exist) in a finite number of moves. 
Let us now apply these ideas to the problem formulated in Section 20-4, namely 

maximize f( x) = 4x, - x] + 9x2 - x\ + 10x3 - 2x\ - 2*2*3 

The first partial derivatives of f(x) are 

(20-14) dfldx, = 4 - 2x, df/dx2 = 9 - lx2 - \x, dfldx, = 10 - 4x, - |x2 

Assume an initial point of x(1) = (1, 2, 2). Substituting these values for the 
variables into the three partials of (20-14), we find the gradient vector at x(1): 

dfldx, = 4 - 2(1) = 2 dfldx2 = 9 - 2(2) - |(2) = 4 

(20'15) dfldx, = 10 - 4(2) - |(2) - 1 

Hence, 

(20-16) g(1> = (2, 4, 1) 

The next problem is to find a step size in the direction of the gradient vector at 
x(1>. If we choose the largest improvement of the objective function in the direction 
of the gradient vector as our criterion, then we want to find a step size 0 that yields 

the point x<2) defined by 

(20-17) f(x(2)) = maximum f(xm + 0g(1)) 
Ossecoo 

where (x(1) + 0g'1:', 0 «£ 0 < 0°) is the line from x(1) in the direction of g(1>. Expression 
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(20-17) can be solved either by using classical methods of calculus, if that is com¬ 
putationally viable, or by using a univariate search technique on 0. dur example is 
simple enough for the use of calculus. Since x(1) = (1, 2, 2) and g(1) = (2 4 1) the 
line x(1) + 0g(1), 0 ^ 0 < °°, is given by 

(20-18) (1 4- 20, 2 + 40, 2 + 0), 0 ^ 0 < co 

and (20-17) becomes 

f(xl2]) = maximum f( 1 + 20, 2 + 40, 2 + 0) 
O<0<* ’ 7 

Using the functional relationship (20-11) with x, = 1 + 20, x2 = 2 + 40, and x, = 
2 + 0, this is equivalent to 

maximize 4(1 + 20) - (1 + 20)2 + 9(2 + 40) - (2 + 40)2 ; 

+ 10(2 + 0) - 2(2 + 0)2 - \(2 + 40) (2 + 0) 

= maximize (27 + 210 - 2402) 
O=S0<x ; 7 

The maximum occurs when (21 - 480) = 0, i.e., 0 = 7/16. By (20-18), with 
0 = 7/16, we find that x(2) = (1, 2, 2) + 7/16(2, 4,1) = (30/16, 15/4) 39/16). 

These steps are now repeated starting with the new solution x<2). Theoretically 
we would terminate the algorithm when a solution x(*> has been reached for which 
dfldXj = 0, for all j. In practice the algorithm is made to terminate when (he difference 
between consecutive solutions x(*+1) and x(*> is arbitrarily small. This ’can be done 
either in absolute terms, e.g., as |xj/+1) — x**;,| < e , for all/, or in relative terms, e.g., 
as Ixj — */1 < P| +1)|, for all/. This procedure will find a solution th$t is arbitrarily 
close to the optimum, assuming that the technique does converge. If you m interested 
in learning more about convergence and the rate of convergence, we suggest you 
consult a text such as D. C. Luenberger, listed in the references. 

Let us now express this method in the form of an algorithm. 

METHOD OF STEEPEST ASCENT 

Step 1 Select an initial solution x'1’ = (x;l;, xi11, .... x‘l!). Set k * 1 
Step 2 Evaluate the gradient vector g*; = (dfkxu . . .,'df/dx„) at point x*. 
Step 3 Find the step size 0:4‘ as the solution to maximize f{x‘k) + 0#). 

Step 4 Find a new solution x‘s+1: = x!h + 0'*'^*'', If |x)*T,i - < g, 
arbitrarily small, all j, set x3 == x“+l! and fix3) = /(x*^11) and stop. 
Otherwise, return to step 2 with k -* k + 1. 

Using this algorithm, verify the results over the first few iterations for the above 
example, as shown in Table 20-3. We used e = 0.05 to terminate the algorithm. 
x(,) = (1.9967, 3.9849, 2.0003) is used as the “optimal” solution with a function 



20-7 NEWTON'S METHOD (MULTIVARIATE) 

We saw in Section 20-3 that Newton’s method for the univariate problem is a quadratic 
approximation to the function. At each successive point a new approximation is made, 
and the point x, at which the optimum of that approximation occurs, becomes the 
next solution in the algorithm. Precisely the same logic is true in the multivariate 
case. Figure 20-5 illustrates this procedure geometrically. The true function is rep¬ 
resented by the continuous contour lines. At the initial solution x(1), the quadratic 
approximation is shown by the dotted contours. The point x at which the optimum 
of the approximating function occurs becomes the next solution x(2); this solution is 
used for a new quadratic approximating function which assumes its optimum at x(3); 

and so on. 
The convergence rate of Newton’s method when x(*} is still a considerable distance 

from the optimal solution may often be rather slow. It is possible to speed up con¬ 
vergence by introducing an additional computational step. Instead of using the qua¬ 
dratic approximating function to determine the next solution x(*+1), we could use that 
solution only to define a direction vector, and then search the true function in that 
direction to determine the best step size by using a univariate search method. This 
is shown in Figure 20-5 by the extension of the direction vector to x. It is, though, 
not possible to state with confidence that the reduction in the number of iterations 
achieved will justify the extra computational effort. As a compromise, the search for 
the “best” step size could be limited to one or two iterations of the univariate search 
method. We shall not pursue this modification any further. 
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Figure 20-5. Newton's method. 

At iteration k, the initial terms of the multivariate version ofTaylqr’s expansion 
of the solution x(*} are used as the quadratic approximating function: 

(20-19) F(x) = f(x<«) + 2 (x, - f)-f + 5 2 2 (JCy - xf'Xx, - a 
i °xi y=i /=i 

where a/73xy and af/dx^x, are evaluated at x(*>. The optimum x of equation (20-19) 
is obtained from the following conditions: 

: d2f 

dXjdx, 

NEWTON’S METHOD EQUATIONS 

for; = 1, . 
(20-20) 

n 

If the function to be optimized is quadratic, then Newton’s method is simply the 
solution of that function using the necessary conditions for an optimum of classical 
calculus, as discussed in Chapter 19. This is so because the approximation function 
(20-19) to a quadratic is the quadratic itself. If the function fis not quadratic, although 
nearly so, then Newton’s method should also converge very quickly to an optimum. 
It turns out that most functions near an unconstrained optimum are approximately 
quadratic. Therefore, Newton’s method converges very quickly as we get near the 
optimal value of x. 
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We will now demonstrate the use of Newton’s method on a nonquadratic func¬ 

tion. Consider the problem of maximizing 

(20-21) fix) = - X? + 4*! - 2x1 + 2x2 - (x,x2)5'2 

The first and second derivatives are 

dfldx, = - 2x, + 4 - fx"2 xf dfldx2 = -4x2 4 2 - \xf x"2 

dlf!dx\ = -2 -Kxr1/2xr2) aW2 = -4 -K2hxa) 

d2fldx xdx2 = d1fldx2dxi = — fx{/2x)/2 

We arbitrarily choose as the initial solution x(1) = (2, 0.5). Verify that the approxi¬ 

mating function (20-19) is 

F(x) = 3.75 4 (x, - 2)( —0.75) + (x2 - 0.5)(-3) 4 '{(x, - 2)2( -2.1875) 

4 2(x, - 2)(x2 - 0.5)(-2.25) 4 (x2 - 0.5)2(-7)] 

or 

F(x) = —0.75 + 4.75xj + Sx2 ~ 1.0938x5 ~ ?-5x2 ~ 2.25xjX2 

By conditions (20-20), we get 

dFIdx1 = 4.75 - 2.1875xj - 2.25xz = 0 

dF/dx2 = 5 - 2.25^ - lx2 = 0 

Their solution is xY — 2.1463, x2 = 0.0244. Thus xf2) = (2.1463, 0.0244). Three 
further iterations are given in Table 20-4. With a tolerance of 8 = 0.01, the method 
terminates after 4 iterations at the solution x = (1.9505, 0.1307). The small values 
of the first derivatives confirm that this solution is nearly optimal, since the first 

derivatives are zero at optimality. 
We can get further insight into Newton’s method by rearranging expressions (20- 

20) as follows: 

Table 20-4. Newtons method for problem (20-21) 

Iteration k x(k) m dfldx, d2f/dxj dlfldxfix2 x(*4l) 

i 2 
0.5 

3.75 -0.75 
-3 

-2.1875 
-7 

-2.25 2.1463 
0.0244 

2 IBjn n§l - 2.0020 
-19.1009 

-0.5148 1.9786 
0.1985 

3 1.9786 
0.1985 

4.0716 -0.1438 
-0.6538 

- 2.0471 
- 8.6854 

-1.4100 1.9579 
0.1266 

4 1.9579 
0.1266 

4.0960 -0.0103 
0.0318 

- 2.0241 
- 9.7756 

-1.1200 1.9505 
0.1307 



For Newton’s method, atj = -(tffldx^x). Equations (20-23) find a solution x that 
by equation (20-13) implies a direction vector dJ) = (x - x®) and 0 = 1. It is of 
particular importance that this direction vector is a linear transformation of the gradient 
vector—the right-hand side of equations (20-23) shows the df/dx, values! 

The direction vector in the steepest ascent method is ak/of this form. Using 
x( +D = x<*> + 0(«g<« we can show that this is equivalent to (20-23) with a- = 0 
i * jy and with a, = 1/0W. lJ 

The effect or the system of equations (20-23) is to swivel the gradient vector 
around when atj * 0 and to change its length when a„ =* 1. The realization that 
Newton’s method performs such a transformation has led to other methods that trans¬ 
form the gradient vector differently and overcome some of the weaknesses of Newton’s 
method. Among these are the conjugate direction methods, which select the new 
direction vector by means of the concept of conjugate directions for a quadratic 
function. These methods can be applied to nonquadratic functions. (Versions of 
conjugate direction methods also exist that avojd the explicit evaluation of derivatives 
See the text by R. C. Brent (1973), listed in the references.) The major strengths of 
conjugate direction methods are their small data needs and their computational ef- 
ficiency. 

A major weakness of Newtons method is that it requires all first and second 
derivatives at each iteration. The second derivatives, in particular, may not exist or 
else may be computationally expensive to determine. The quasi-Newtcjn methods, 
discussed in the next section, attempt to remedy this problem. They alsb fall in the 
structure of equations (20-23). 

20-8 QUASI-NEWTON METHODS 

Perhaps the most sophisticated nonlinear unconstrained techniques are the quasi:New- 
ton or variable metric methods. They sidestep the need to compute, at each iteration, 
the values of second order partial derivatives. This sidestepping is achieved by ap¬ 
proximating their values on the basis of the first derivatives. These approximations are 
updated at each iteration. It is the updating procedure that distinguishes''the various 
methods. 

In most cases, the initial estimate of the second derivatives is arbitrary except for 
the requirement that it define a direction that improves the objective value of the 
solution. Often the first iteration is identical to the first iteration of the steepest ascent 
method. This implicitly assumes that d2f/drf = 1 and d1fldxjdxi - 0. The 
updating procedures then produce at each iteration increasingly more accurate esti¬ 
mates of the second derivatives. For a quadratic objective function in n variables, the 
true second derivatives are found after n iterations. Hence at the final step,’ the 
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optimum is reached by a simple pure Newton method iteration. For nonquadratic 

functions, more than n iterations may be needed. 
Another important feature of most quasi-Newton methods is that they ensure that 

for a maximizing problem the direction of search is always an ascent direction. This 
feature overcomes the method’s inherent problems of converging to a turning point 
(other than a maximum) or failing to converge altogether. 

The details of the quasi-Newton methods are well beyond the scope and math¬ 
ematics of this text. For our purposes, it is sufficient to outline the general ideas 

underlying such methods. 
Many of the most successful nonlinear programming methods have a quasi- 

Newton algorithm at their core. Unfortunately, for large problems the data requirement - 
of quasi-Newton methods becomes a serious handicap. The smaller data needs of 
conjugate direction methods render them more attractive. 

EXERCISES 

20.1 Using the initial point x(1) = 0.5 and a stopping criterion of e = 0.01, find the optimal 

solution to each of the following functions by golden section search. 

(a) Maximize f(x) = - 5x2 + 6x + 5 in the interval 0 =s x 1. 
(b) Maximize f(x) = - 2x4 4- 2x + 1 in the interval 0 « x « 2. 
(c) Maximize fix) = 4x3 - 7x2 + 14x + 6 in the interval 0 x =s 1. 

(d) Minimize fix) = lx1 - xm + 1 in the interval 0 x =£ 1. 
(e) Maximize fix) = 4x3 - 7x2 - 4x + 6 in the interval 0 x 2. 

(f) Minimize f(x) = ex - x in the interval 0 « x 1. 

20.2 Solve the problems in exercise 20.1 using Newton’s method. Ignore the interval re- 

strictions. 

20.3 Perform two iterations of the method of steepest ascent for each of the following problems. 

Illustrate the progress of the method. 
(a) Maximize f{x) = lxx - 2x2 + xxx2 - x22 + xx x2. Commence at x(1) = (1, 0). The 

optimum is (2, 1). 
(b) Maximize f(x) = -x\ + 9x2 - 5x2 + 20x2. Commence at x(1) = (1, 1). 

(c) Repeat (b) commencing at x(1) = (-1, 1)- 
(d) Maximize f(x) = -x[ + 8xj - 10x2 - x2 + 2x2. Commence at x( = (0, 0). The 

local optima are at (0, 1) and (5, 1). The global optimum is (5, 1). 

20.4 Find the first two iterations of the method of steepest ascent for the following functions, 

starting at (0, 0) in each case. 
(a) Maximize f(x) = 16xj + 20x2 - 4x}x2 - x2 - x2. 

(b) Maximize f(x) = - 2x\ - (3 - x2)2. 
(c) Maximize f(x) = 6x} + 8x2 - x2 - x\. 
(d) Maximize f{x) = -(1 - 2x})2 - (2 - 3x2)2 - x^. 

20.5 Use Newton's method to solve the problems of exercise 20.3 with the same starting 

points. 

20.6 Solve exercise 20.3 using the modification to Newton's method in which a line search 
is performed at each iteration. Thus x(*+1) = x(/f) + 0("}(x - x(*}), where x is the optimum 

of the quadratic approximation at the fcth iteration. 
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CHAPTER TWENTY-ONE 

Constrained Nonlinear 
Programming 

We now come to constrained nonlinear programming. The decision variables x = 
(X|, x2, . . xn) have to satisfy m constraints of the form g,{x) =£ b,. The general 
form of a nonlinear programming problem can be written as: Find values x = 

(x„ x2, . . x„) so as to 

maximize f{x) = f(x,, x2, . . ., xj 

(21-1) subject to g,{x)^b,, i = 1, . . m 

x>0 

As for unconstrained nonlinear programming, there is yet no single technique 
that has proved itself generally superior for most nonlinear constrained optimization 
problems. In this chapter, we will study simple versions of some currently used 
techniques, each suitable for solving a specific form of problem (21-1). We will again 
skip over the refinements that render these techniques computationally efficient. 

We start out by generalizing the Lagrangian conditions of Chapter 19 to form 
the famous Kuhn-Tucker conditions. We use these in Section 21-4 to develop a 
technique for the quadratic programming problem. That problem assumes that fix) 
is a quadratic and concave function, that the constraints g,(x) are linear, and that the 
variables are restricted to being nonnegative. In Sections 21-5 and 21-6, we develop 
the reduced gradient method, which handles both linear and nonlinear constraints. 
For problems with linear constraints, it is currently one of the most powerful techniques 
available. In Sections 21-7 and 21-8, we adopt a quite different solution strategy. 
Rather than solve the original problem, we deal with an equivalent unconstrained 
problem. Terms are added to the objective function that penalize any solution that 
is not feasible—hence their name penalty methods. It is this idea of penalty functions 
that has led to some of the modern nonlinear programming techniques, such as the 
augmented Lagrangian method touched upon in Section 21-9. 
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21-1 AN EXAMPLE OF A NONLINEAR PROGRAMMING PROBLEM 

Let us impose some restrictions on the unconstrained problem of Section 20-4. Pro¬ 
duction is limited by available machine time and manpower. Each month 1000 
machine-hours and 2000 man-hours are available. Product 1 uses 0.4 machine-hour 
and 0.2 man-hour per unit, product 2 uses 0.2 machine-hour and 0.4 n)an-hour per 
unit, and product 3 uses 0.1 hour of each per unit. 

The new problem is to maximize the profits, as given by expression (20-11), 
subject to the constraints on monthly machine time and man-hours: 

maximize f(x„ x2, *,) = 4x, - xj + 9x2 - x22 + 10*, — 2x\ - \x2x, 

subject to 4x, + 2x2 + xi =£ 10 (machine time) 

2x, + 4x2 + x, 20 (man-hours) 

xi 3* 0, x2 2s 0, x} 3= 0 (nonnegativity conditions) 

We shall use this problem to illustrate the techniques discussed in the following 
sections. 

21-2 THE KUHN-TUCKER CONDITIONS 

The Lagrangian conditions in Section 19-7 are necessary conditions for an optimum 
of a function, subject to equality constraints and the variables unrestricted in sign. 
Generalized to inequality constraints and nonnegative variables, they are known as 
the Kuhn-Tucker conditions, after their founders H. W. Kuhn and A. W. Tucker 
(“Nonlinear Programming," Proceedings Second Berkeley Symposium on Mathematical 
Statistics and Probability, University of California Press, Berkeley, Cal., 1951), 

Consider again the general nonlinear programming problem (21-1). So that the 
x 55 0 constraints are seen as just another set of constraints, we will rewrite x, 3= 0 as 

(21‘5) &»+/(*) = -Xj^O = bm+/, j = 1, . . ., n 

Problem (21-1) then becomes ! 

(21-4) 
maximize f(x) 

subject to g,.(x) ss b,., i = 1, . . ., m + n 

Expanding the ideas of Section 19-7, we can write the Lagrangian junction for 
problem (21-4) as 

L(xA) = f(x) + Y\[b, - &(x)] 
i=l 

(21-5) 
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where there is an X,[Z>, - g,(x)] term for each constraint. For example, problem 

(21-2) written in the form of (21-4) is 

maximize fix) = 4x, - x] + 9x2- x] + 10x, - 2x] - jx2x, 

subject to g,(x) = 4x, + 2x2 + x, =£ 10 = 

g2{x) = 2xj + 4x2 + x3 ^ 20 = b2 

(21-6) n _ l 
g, (*)=-*, 

&(*) = 

«£ 0 = b3 

^ 0 = b4 

,« 0 = b* 

The Lagrangian function for problem (21-6) is 

L(x, X) = 4x, — X| + 9x2 — x2 + lOx, — 2x, — |x2x3 

+ X,(10 - 4x, - 2x2 + X2(20 2xj - 4x2 x3) 

+ X3(xj) + A4(x2) + A.5(x5) 

So far we have not considered the effect of the inequalities on the constraints. To do 
this, let us initially ignore all but the first constraint of problem (21-6). Now the 

Lagrangian function is 

L(x, Xj) = 4xj — Xj + 9x2 — x2 + 10x3 — 2x, — 2*2*3 + X,(10 — 4x, — 2x2 — x3) 

If the constraint is slack at a maximum, the necessary conditions for a stationary point 

are those of the unconstrained case; namely, 

dfldx, = 4 - 2x, = 0 df/dx2 = 9 - 2x2 - ix, = 0 

af/ax, = 10 - 4x, - ix2 = 0 gj(x) = 4x, + 2x2 + X, < 10 

If the constraint is binding at the maximum, the necessary conditions are those for 
the Lagrangian problem with an equality constraint: 

aL/ax, = 4 — 2x, — 4\, — 0 dLldx2 = 9 - 2x2 2\, = 0 

aL/ax, = io 4x, — x, = o aL/ax, = 10 — 4x, — 2x, — x, — 0 

Since a priori we do not know which case applies, we need necessary conditions 
that cover both cases. In Section 19-7, we defined X as the marginal change of f with 
respect to b. For a maximization problem subject to an inequality constraint of the 
form g,(x) =S £>lf a marginal increase in bx enlarges the feasible region. If the constraint 
is binding, the maximal value of f increases or, at worst, is unchanged, and if the 
constraint is slack, (remains unchanged. In the first instance, g,(x) = bi and X, 0; 
in the second instance, g^x) < bx and X, = 0. These conditions can be combined 

to Xjb, - g,(x)] = 0 and X, 3= 0, or 
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(21-10) X,(10 - 4x, - 2x2 - x3) = 0, X,3=0 

At the maximum, L must have a stationary point with respect to x, i.e., 
dL/dx, = 0, as we have in the first three equations of (21-9). Furthermore, the 
stationary point must be feasible, i.e., b, - g3(x) 3= 0, or J 

(21-11) 10 - 4x, - 2x2 - x3 3* 0 

The five expressions—the first three of (21-9), plus (21-10), and (21-11)—combine 
to give us the Kuhn-Tucker conditions: 

dL/dx, = df/dxl - X^dg/dx,) = 4 — 2x, — 4\, 0 

dL/dxz = dfldx2 - X^dgJdxJ = 9 - 2x2 - Jx3 - 2X, = d 

(21-12) 0L/dx, = df/dXj - \idgjdxj = 10 - jx2 - 4x, - = 0 

dL/dX1 = b2- gj(x) = 10 - 4xj - 2x2 - x3 3= 0 

X,(aL/3X,) = X,[b, - g,(x)] = X,(10 - 4x, - 2x2 - x3) = 0, ; X, 3= 0 

Using exactly the same principles, we can expand (21-12) to deal with the whole of 
problem (21-6). From the Lagrangian function (21-7), the Kuhn Tucker conditions 
are ; 

dL/dxj = 4 - 2x, - 4X, - 2X2 + X, = 0 

dh/dx2 = 9 - 2x2 - \x2 - 2X, - 4X2 + X4 = 0 

dL/dx3 = 10 - \x2 - 4x3 - X, - X2 + X, = 0 

dL/dX, = 10 - 4x, - 2x2 - x3 3= 0 

dL/dX2 = 20 - 2x, - 4x2 - x3 3= 0 

(21-13) dL/dX3 = x, > 0 dL/dX4 = x2 3= 0 

dL/aX5 = x3 3= 0 | 

X,(aL/aXj) = X2( 10 - 4X[ - 2x2 - x3) = 0 

X2(aL/aX2) = X2(20 - 2x, - 4x2 - Xj) = 0 ! 

x3(au/ax3) = x3X[ = o x4(aivax4) = x4x2 = o 

x5(aL/ax5) = x5x3 = 0 x,, . . ., x5 s* o 

We can modify (21-13) to eliminate the need to write the nonnegativity conditions 
explicitly as constraints. For example, from the first equation of (21-13), -X, = 
4 — 2x, - 4X, — 2X2. Hence X, 3= 0, X3X[ = 0, together with the first equation of 
(21-13) can be replaced by the two conditions 
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(21-14) 

dUdx, = 4 - 2x, - 4X, - 2X2 « 0 

x^dL/dx,) = x,(4 — 2x, — 4X, — 2X2) = 0 

where L is the Lagrangian function (21-7) without the last three terms. 
Thus we have the following Kuhn-Tucker conditions. 

'///?///// /!//////' 
jjjif w ///' / i 
i j ppf ftieidohti&ipH maximization problem fl 1-1) and the Lagrangian j 

L(x,X) = fa) + Z ~ 

the necessary conditions for an optimum are 

dL/dXj = dfldXj - \.\dgJdXj) «= 0 

xjdL/dXj) = 0 ‘ .^>0j 
aL/aXj =.. 

\,{dL/ax,) = o 

(There is a further condition known as the constraint qualifications which must be 
satisfied before the Kuhn-Tucker conditions hold. For a discussion of this see W. I. 
Zangwell, Non-linear Programming, Prentice-Hall, Englewood Cliffs, N.J., 1969, 

pages 39-40.) 
The astute reader may have noticed not only the similarity between the definition 

of X and the dual variables of linear programming in Chapter 4, but also the similarity 
between the second and fifth set of equations in (21-15) and complementary slackness 

in Chapter 4. 
In the derivation of the Kuhn-Tucker conditions above, we dealt with a standard 

maximization problem subject to a (=£) constraint. For the standard minimization 
problem subject to a (5=) constraint, the direction of the inequalities of the first and 
fourth conditions in (21-15) is reversed. If we deviate from either of these two standard 
forms, there will be other changes. For example, for a maximization problem subject 
to a (Ss) constraint, in addition to the reversal of the direction of the fourth condition 
in (21-15), the sign of the corresponding Lagrangian multiplier is also reversed. What 
are the changes to (21-15) when the constraint is an equality? 

The Kuhn-Tucker conditions for problem (21-2) can be written as a set of linear 
equations with simple nonlinear restrictions on the variables. We leave it to you to 
verify that (21-16) are the Kuhn-Tucker conditions. (x4 and x5 are the slack variables 
of the gx and g2 constraints, respectively, and the v, are the slack variables of the 

dL/dXj constraints.) 



Section 21 -3 Sufficient Conditions for Maximum to Constrained Problem 595 

2*i + 4A., + 2A2 - v, =4 

2*2 + © *3 +2\, + 4A2 — v2 : =9 

(2) *2 + 4x3 + A, + A2 v3 = 10 

(21-16) 4x, + 2*2 + *3 + x4 = 10 

2*i + 4x2 + *3 + *5 = 20 

*/55 0, ally; vy2*0, j= 1,2,3; A, ^ 0, i = 1,2 

*,v, = 0 *2v2 = 0 *,v, = 0 A,*4 = 0 A2*5 *= 0 

21-3 SUFFICIENT CONDITIONS FOR MAXIMUM TO 
CONSTRAINED PROBLEM 

The Kuhn-Tucker conditions are necessary conditions for an optimum. To guarantee 
that these conditions give the global optimum, we need to develop some sufficient 
conditions that ensure that the problem has a unique point at which the Kuhn-Tucker 
conditions hold, and that this point is a maximum. 

First, we need an objective function that has a single stationary point that is a 
maximum. From Figure 19-2(b) we see that this will occur if the function is concave. 
So, the first part of our sufficient conditions is to require that f be a concave function. 

This is not enough. We must also place conditions on the feasible region. For 
instance, Figure 21-l(a) illustrates the case where a concave objective function does 
not yield a unique optimum. Point x(A> is the global maximum and x(B) is a local 
maximum. The local maximum exists because not all the points on the line segment 
between x(A) and x(B) are feasible solutions. We can establish fairly easily from the 
definition of a concave function that if all the points on this line segment are feasible, 
then x(B> cannot be a local optimum. If we let x be any point on the line segment 
between x(A) and xfB>, then, by definition, x = (1 - A)x'A' + Ax(B), 0 =S A =S 1. Also, 
from expression (19-31), we can show that if the objective function is concave, 

Figure 21-1. Concave function over various feasible regions. 

Feasible region Feasible region 
not convex x2 convex 
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f(x) » (1 - \)f(x(A)) + Xf(x(B)) 
global maximum. So, 

But we know that f{xw) 

+ \f(x(B)) 

), because x,? 

hence, f(k) 2= f(x(B)). The importance of this result is that if, for all A., x is a feasible 
solution to the constraints, there is no neighborhood around x™ where f(x) =£ 
f(x(B)) for all feasible x, i.e., x(B> is not a local maximum. So if we extend the 
feasible region to include the line segment between x'A; l], the local optimum 

disappears. To ensure that the constraint set does not create local optima, we require 
that any point on the line segment between any pair of feasible points also be feasible. 
This is the case in Figure 21-l(b). A set with this property is called a convex set (not 

to be confused with a convex function). 

jOHVff |1E 

A set is a convex set it, tor any two members of the set x 
on the line segment between them (i.e.. 

*■! 
Mill ■ 

■ 
iigjgl 

What can we say about the constraint functions that will ensure that the feasible 
region is a convex set? Figure 21-l(b) shows that if the constraint function g is a 
convex function, then g(x) =£ b describes a convex set. Similarly, if g is a concave 
function, then g{x) 2= b describes a convex set. If g(x) = b, the feasible region is a 
convex set if and only if g is a linear function. Verify this for yourself. Where there 
is more than one constraint, the feasible region is a convex set if each constraint 
describes a convex set. (The intersection of convex sets is a convex set.) So the feasible 

region of g(x) 0 is a convex set if g is a convex function. (Since a linear VX ^ - -----^ 

function is both a concave function and a convex function, the nonnegativity con- 
ditions on the variables yield convex sets.) 

We can now state sufficient conditions for the Kuhn-Tucker conditions to give 

a global optimum. 

/ / / I jtf 1 
fChin-M^idr;;c|>p|itidil&; tb Mi probleu 

' )) (j'/jfy'1' 
subject to g,ix) =£ b:, x 

ufficient conditions for a global optimum if f is a concave function 
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It is reasonably straightforward to develop sufficiency conditions for a general con¬ 
strained maximization problem. 

A weak form of these conditions states that if the function is concave in the region 
of a solution that satisfies the Kuhn-Tucker conditions, then the point is a local 
maximum. For practical purposes, concavity of a function is usually expressed in 
terms of the second partial derivatives. 

21-4 QUADRATIC PROGRAMMING 

Quadratic programming looks at the problem of solving a quadratic objective function 
subject to linear constraints. Depending on the technique used, restrictions on the 
nature of the quadratic function are sometimes imposed. We will consider an algorithm 
suggested by P. Wolfe. This algorithm is restricted to the case of maximizing a concave 
function. 

Equations (21-16) are the Kuhn-Tucker conditions for problem (21-2), which is 
a quadratic programming problem. These conditions form a set of linear equations, 
except for a nonlinear restriction on the variables. Since the quadratic function is 
concave, the Kuhn-Tucker conditions are both necessary and sufficient. So the solution 
to equations (21-16) will be optimal. 

In solving (21-16) all we seek is a feasible solution. It is a system of linear 
simultaneous equations without an objective function; so we can use the simplex 
method purely to find this feasible solution. Since a feasible solution cannot generally 
be found by inspection, we introduce artificial variables and use the two-phase method. 
We can tell there is a feasible solution to (21-16) provided there is a feasible solution 
to the constraints of the original quadratic program. It is convenient to first seek a 
feasible solution to the original constraints (given by the fourth and fifth equations of 
(21-16)), and then, starting with that solution, use the two-phase method on the whole 
system (21-16). Thus, if there is no feasible solution to the constraint set, there is no 
need to solve the Kuhn-Tucker equations. 

A natural initial basis to choose for the original constraints is (x4, x5), so x4 = 10 
and x; = 20. We now add artificial variables (u„ u2, u3) to the first thfee equations 
of (21-16). The resulting linear program to be solved is shown in Tab;le 21-1. The 
initial basic solution fqr the full problem is 

u, = 4 u2 - 9 u3 - 10 x4 = 10 x; = 20 

At this basic solution, we have the initial tableau shown in Table 21-2.’ 

Table 21-1. Linear program for solving quadratic program 

maximize ct> = - U, - Uj -t u. 
subject to 
2xj 

2x2 + ix3 
+ 4\j + 2\2 — Vj + u, =4 
+ 2\j + 4A.2 — v2 + u2 =9 

+ 2*2 + 4x? + X, 4- \2 ~ v, + u. = 10 
4xj + 2x2 + x5 + x4 = 10 
2xj + 4x2 + x3 + X, = 20 
xj&0, 5; v;, u, >0, j = 1, 2, 3; >*
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Applying the simplex method criterion for the variable to enter the basis gives 
either Xj or X2. However, to enter either of these into the basis would violate the 
restrictions, x4Xj = 0 and x5X2 = 0. So neither of them is permitted to enter. The 
next best vector is x3 which is allowed to enter the basis. Vector u3 leaves the basis. 
The second tableau of Table 21-2 gives the solution after the first iteration. The 
optimal solution is reached after four iterations. It is shown in tableau 5 as 

x, = 0.4103 x2 = 3.2308 x3 = 1.8974 x5 = 4.3590 X, = 0.795 

x4 = \2 = Vj = v2 = v3 = i/j = u2 = t/3 = 0 a) = 0 

The optimal value of the original objective function to (21-2) is z = 28.82054. 
The values of and X2 are, of course, the imputed values of constraints 1 and 2, 
respectively. 

Wolfe's algorithm is suitable for solving any quadratic program with a concave 
objective function and a linear constraint set. (However, to guarantee the convergence 
of the algorithm to a finite maximum, the objective function must be strictly concave. 

See the text by D. G. Luenberger listed in the references, pp. 114-111) 
This general quadratic program can be written 

maximize z 2 \cjxj + I 
/= i \ k= 

AWi) 

subject to 
n 

2V, = K 
i= 1 

i = 1, • • ., m 

Xj s* 0, ;= l •• ., n 

We can apply the Kuhn-Tucker conditions in the same manner as we dijd for problem 
(21-2): There exist X1? . . ., Xm unrestricted in sign, such that ' 

n m 

C, + 2 2 H a.jK = -vy =£ 0, 
*=1 i=l 

7 = 1,.. ., n 

(21-17) _C
r*

 

1 

ja
 

jh
 ii 

V.0
 

i = I • • ., m 

Xj^O x,v,= 0. 7=1,.- ., n 

There are several other quadratic programming algorithms. The references at the 
end of this chapter give sources for some of the better known ones. Among those, 
Beales algorithm is particularly important because of its computational strength. In 
addition, Beale’s algorithm can be applied to a nonconcave objective function. When 
this is the case, we cannot be sure that the solution obtained is the global optimum; 
it could be a local optimum or even a saddle point. 

There are two areas of application for quadratic programming that are of some 
interest. Quadratic programming is used in multiple regression where there are ine¬ 
quality constraints on some of the coefficients. This is particularly useful in econo¬ 
metric models where simultaneous equation systems are being estimated. The objective 
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function of the quadratic program is the minimization of the squared deviations from 
the mean used in least squares estimates. The quadratic programming constraints are 
any linear constraints that exist on the coefficients. Thus, the quadratic programming 
optimum is the set of constrained least squares estimates of the coefficients. 

A second area of application is in goal programming (see Section 2-14 for a 
simple example). In goal programming, the objective may be to minimize the weighted 
sum of deviations from target levels for one or several partially or completely conflicting 
objectives. Rather than penalize deviations linearly, one approach suggested in the 
literature is to have the penalty proportional to the square of the deviations. This leads 

to a quadratic programming problem. 

21-5 THE REDUCED GRADIENT METHOD 

The reduced gradient method is another technique designed by P. Wolfe, this time 

to solve the problem 

maximize z = f{xu . . ., xn) 

n 

(21-18) subject to ^ = bit i = 1, . . ., m 

>= i 

xyS=0, j = 1, . . ., n 

where f{xlt . . ., xj is a differentiable function. When f is concave, any optimum 
to (21-18) is a global optimum. However, the reduced gradient method can be used 
to solve (21-18) for any differentiable f, provided a local optimum is an acceptable 

solution. 
This method is a generalization of the simplex method. At each iteration, it 

linearizes the true objective function. However, while it uses the ideas of basic variables 
and nonbasic variables, it does not restrict itself to basic solutions because the optimum 
to (21-18) need not be a basic solution. In the simplex method, we choose only one 
nonbasic variable to change and drive it to its largest feasible value. In contrast, the 
reduced gradient method generally alters a number of nonbasic variables simultane¬ 
ously in some chosen search direction. The simplex type tableau is used to store the 
relationships between nonbasic and basic variables and also to maintain the feasibility 
of the solution. Like most nonlinear techniques, the reduced gradient method proceeds 
in the direction of search as long as the true objective function is increasing and the 
solution remains feasible. A line search is conducted to find the maximum value of 
the function in that direction. The direction of search is a projection of an uncon¬ 
strained search direction onto the constraints. We will use the steepest ascent direc¬ 
tion—the gradient vector—whose linearization is the tangent line. However, there is 
no reason why a different unconstrained direction vector could not be used. Sophis¬ 
ticated versions of the reduced gradient method use directions defined by such tech¬ 
niques as quasi-Newton methods. The method of projecting the unconstrained 
direction onto the constraints is based on the simplex method relationships between 
basic and nonbasic variables. 
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Let us go back to problem (21-2). Adding slack variables, we obtain 

maximize z = f(x) = 4x, - x\ + 9x2 - x\ + 10x3 - 2x* - |x2x, 

(21-19) 
subject to 4x, + 2x2 + x, + x4 =10 

2x, + 4x2 + x3 + x5 = 20 

*i> x2, x„ x4, x5 s* U 

Any basic solution to (21-19) is sufficient to initiate the reduced gradient method. 
In this case, the obvious basic solution is x4 = 10, x5 = 20 with x„ x2, x, equal to 
zero. We now substitute a linearization for the actual objective function, using its 
tangent at this solution. Thus, the cy values are given by cj = df/dXj evaluated at x(1>. 
The first derivatives are 

(21-20) dfldx^ = 4 - 2xj dfldx2 = 9 - 2x2 - |x, dfldx3 = 10 - 4x, - |x2 

Evaluating these at x(i), we obtain the tangent plane 

(21-21) z = 4x, + 9x2 + 10x3 + 0x4 + 0x5 

Table 21-3 gives the first tableau with the basis (x4, x5), the solution x(1) = 
(0, 0, 0, 10, 20), and the objective function (21-21). The \z] - c;) values are calculated 
as they were in Chapter 3. For example (*i - c.) = (0X4) + : (0X2) - 4 
= -4. 

Table 21-3. First reduced gradient method tableau 

(1) xd) z = 0 0 0 0 10 20: 

^(x0>) = 9 
4 9 10 0 0 

ci Basis Solution 
*1 *2 *3 *4 

0 *4 10 4 2 1 1 0 
0 *5 20 2 4 1 0 1 

z. — e. 
i ) 

-4 -9 -10 0 0 

In the reduced gradient method, we alter all nonbasic variables that have negative 
(Zj - Cj)* These variables are changed simultaneously in the proportions given by 
the [ - \Zj - c;)] values. The basic variables are altered by applying the simplex method 
rules. This will assure that the new solution satisfies the constraints. Let x^andx^ 
denote the vectors of basic and nonbasic variables at iteration k. We will denote the 
direction of movements of nonbasic variables by the reduced gradient vector. It 
is an ascent direction because (zy - c}) < 0 gives an increase in the objective function. 
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Using equation (20-13), we have for the nonbasic variables 

(21-22) x(R'+1) = x(R'} + 

At the first iteration, r(R} = -(zl - cu z2 ~ c2, z3 - c3) = (4, 9, 10) for the vector 
of nonbasic variables xcR} = (x}, x2, x3). 

Next, we find the impact on the basic variables of a movement 0 in the direction 
r(R}. From the equations in canonical form in Table 21-3, we observe that 

(21-23) x4 = 10 - 4xj - 2x2 - x3 x5 = 20 - 2xl - 4x2 - x3 

We now increase the nonbasic variables to (x(R} + 0r(R}), or xx = (0 4- 40), 
x2 = (0 + 90), and x3 = (0 + 100). Putting these values into (21-23) gives us the 
change in the basic variables: 

x4 = 10 - 4(0 + 40) - 2 (0 + 90) - (0 + 100) = 10 - 440 

(21-24) x5 = 20 - 2 (0 + 40) - 4 (0 + 96) - (0 + 100) = 20 - 540 

Taking (21-22) and (21-24) together, we get the direction of movement r(1) from x(1> 
for both basic and nonbasic variables. It is r® = (4, 9, 10, -44, -54). For x = 
x<D + 0r<» to be a feasible solution in the direction r(1), we require that 

X! = 40 ^ 0 x2 = 90 > 0 x, = 100 & 0 

^21‘25^ x4 = 10 - 440 ^ 0 x5 = 20 - 540 ^0 

Verify that these conditions reduce to 0 «£ 0 =£ 0.22727. If we denote the maximum 
feasible distance in the direction r(1) by s, then at the first iteration e = 0.22727. 

For a nonlinear objective function, the solution at the maximum feasible distance 
might not be the best solution in that direction. So we conduct a line search in the 
direction r(1) up to 0 = e, i.e., we find 0(1) to maximize f(xm + 0r(1)), and the new 

O=S0=Se 

solution becomes x<2) = x(1> + 0(1)r(,). Applied to our example, we have 

maximize f(x{]) + 0r(1)) = 
4(40) - (40)2 + 9(90) (90)2 + 10(100) - 2(1O0)2 - §(90X100) = 1970 - 34202 

This yields 0 = 0.28801, which is larger than s = 0.22727, so 0(1) = e = 0.22727. 

Hence, 

X(2) = (0, 0, 0, 10, 20) + 0.22727(4, 9, 10, -44, -54) 

= (0.9091, 2.0454, 2.2727, 0, 7.7274) 

and f(x{2)) = 27.1073 is the corresponding objective function value. 
Since more than two variables in x<2> are nonzero, this is not a basic solution. 

For the purpose of the simplex structure, we choose m (in our case, two) of the 
nonzero variables to be basic. These are normally the m variables with the largest 
solution values. In our case, we choose x5 = 7.7274 and x3 = 2.2727. All other 
variables are “nonbasic.” However, we divide the nonbasic variables into two sets: the 
nonzero variables, called superbasic, denoted by x^, and the zero variables, simply 
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referred to as nonbasic, denoted by x^. In our case, x, and x2 are the superbasic 
variables, while x4 is nonbasic. The first tableau of Table 21-4 gives the next tableau 
with x, replacing x4. Since only one variable is changed in the basis, the usual simplex 
transformation rules can be used. The cy values are the gradient coefficients at x<2). 

Table 21-4. Additional reduced gradient tableaux 

(2) x(2> 27.1073 0.9091 2.0454 2.2727 0 7.7274 

"J
5

 

I! 

2.1818 3.7729 -0.1135 0 0 

ci Basis Solution X\ *2 *4 *5 

-0.1135 *3 2.2727 4 2 1 r 0 
X; 7.7274 -2 2 0 -i 1 

z. — C- n, j -2.6358 -4 0 -0.1135 0 

Final Tableau 

(6) x(6) 28.8204 0.4105 3.2304 1.8971 o; 4.3602 

<7 
3.1790 1.5096 0.7964 o; 0 

1.59065 1 0.5 0.5 0 

0 0 -1 -2; 1 

z,. - Cj 0.0023 0 -0.0011 0.7954 0 

(7) x(7) 28.8205 0.4102 3.2309 1.8972 0 4.3584 

For the second iteration, we refine the concept of the reduced gradient. The 
vector is now the vector of superbasic and nonbasic variables. Thus, the reduced 
gradient vector is defined as rjf = (rR1, rR2, . . .), where 

-(Zj-Cj) for Xj e xs 
- (Zj - c;.) for Xj e xN and (z,- - c;) < 0 

0 forxyexN and (z,-- cy) s* 0 

We define rjf this way because it permits us to increase or decrease the superbasic 
variables. Since these are positive, by definition, a decrease is permissible. However, 
only an increase in the nonbasic variables is, permitted since they are at their lower 
bound. Again r(R' is an ascent direction because for every superbasic or nonbasic 
variable, the direction of change improves the objective function. 

For the second iteration of our problem, we start with rR' = (2.635S, 4, 0.1135) 
for = (x,, x2, x5). The new solution to the basic variables at a distance 0 in the 

(21-26) 
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direction is then 

x3 = 2.2727 - 4(2.63586) - 2(46) - 1 (0.11356) = 2.2727 - 18.65676 

x5 = 7.7274 - (-2X2.63586) - 2(40) -(-1X0.11350) = 7.7274 - 2.61490 

So the new direction vector is r<2) = (2.6358, 4, — 18.6567, 0.1135, — 2.6149) 
and e = minimum [x/( —r,)] for r{ < 0. For this iteration, e = minimum 
(2.2727/18.6567, 7.7274/2.6149) = 0.1218. We must now perform a line search 
for 0 ^ 0 =£ 0.1218, i.e., find 0<2> thatmaximizes f(x<2) + 0r<2>). This occurs at 0 = 

0.01684. Since 0.01684 < e, the value of 0<2) = 0.01684. The new solution is 

x<?> = x© + 0©r© = (0.9535, 2.1128, 1.9585, 0.0019, 7.6834) 

with f{x{i)) = 27.3007. Continuing this process, we get 

r© = (-5.4974, 12.3376, -0.788, -1.8976, -37.5678) 

with e = 0.001, 0 = 0.0963, and 0<?) = 0.001. 

x(4) = (0.948, 2.1251, 1.9577, 0, 7.6458) f{xm) = 27.3348 

r© = (-5.438, 11.2654, -0.7788,0, -33.4068) 

with e = 0.17433, 0 = 0.0984, and 6(4) = 0.0984. 

x(5) = (0.4128, 3.2339, 1.881, 0,4.3578) f(xiS)) = 28.82 

r© = (-0.009, -0.0137, 0.0633, 0, 0.0093) 

with e = 45.87, 0 = 0.2549, and 0(5) = 0.2549. 
These lead to the final tableau in Table 21-4, which uses 

r(6) = (-0.0023, 0.00406, 0.00108, 0, -0.01488) 

with e = 178.48, 6 = 0.1226, and 0(6) = 0.1226. 
We terminate the iterations when some stopping rule tolerance is satisfied. Two 

possible criteria are |xf - #-1)| < 7, or |rj < y2, all j, where 7, or y2 is chosen ar¬ 
bitrarily small. The reduced gradient method would terminate at x(7) for either 7, = 
0.01 or 72= 0.01. In fact, we know that the true optimum is x* = (0.4102, 3.2308, 
1.8974, 0, 4.3590) and z* = 28.8205. So solution x<7> is very close to optimal. 

As in the ordinary simplex method, we have some information for sensitivity 
analysis. In particular, (z4 - c4) gives the imputed value of the first constraint, and 
(z5 — c5) gives the imputed value of the second constraint. Since the objective function 
is nonlinear, these must be strictly interpreted as marginal values. 

The reduced gradient method has been generalized by Abadie and Carpentier 
(1970, see references) to deal with nonlinear constraints—called the generalized re¬ 

duced gradient method or GRG. 
Sophisticated and highly efficient computer codes have been developed for the 

reduced gradient method (e.g., MINOS by B. A. Murtagh and M. A. Saunders, 
“Large-Scale Linearly Constrained Optimization,” Mathematical Programming, Vol. 
14, 1978, pp. 41-72). 
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RGM CRITERION 5; FINDING 

The solution on which the next tableau is based, is found from x'*! by 
x':*"1 = x'ki + where 01* solves maximize \f(x'k> + 0r‘i:)L 
1.mm...»§li...Hi... 

RGM CRITERION 6: NEW BASIS 

The basis for tableau (k + 1} is chosen by taking the m largest components of 
x‘*+l: as the basic variables, where the basis is of dimension m. 

RGM CRITERION 7: TERMINATION OF THE ALGORITHM 

ie algorithm terminates when [maximum jrj] < y, where y > 0, but very 

21-7 PENALTY METHODS 

In this section and the next, we introduce an approach to nonlinear programming 
quite different from the reduced gradient method. Two similar approaches, penalty 

methods and barrier methods (also called sequential unconstrained maximization tech¬ 

niques, or SUMT), provide a means of reformulating a constrained nonlinear pro¬ 
gramming problem as an unconstrained problem. The resulting unconstrained 
problem is solved sequentially by an ordinary unconstrained technique, such as a 
gradient method. 

Penalty methods take the objective function and add to it a penalty function— 
a function that penalizes solutions that do not belong to the feasible region. Barrier 
methods add a barrier function that creates a barrier against movement from feasible 
points to infeasible points by making points near the boundary of the feasible region 
carry a heavy penalty. 

The details of the two methods are basically similar. We will discuss only penalty 
methods. 

Consider the following simple one-variable problem of the form (21-4): 

maximize f(x) = lOx — x2 

(21-27) subjectto gj(x) = 2x ^ 4 = b{ 

g2(x) = - x ^ 0 = b2 

We want to replace the constraint 2x ^ 4 by a term in the objective function 
that penalizes any value of x that violates this constraint and thus turn (21-27) into 
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Figure 21-2. P(x) for problem (21-27). 

P(x) 

an unconstrained problem. We need a function of the general form 

Pitt 
= 0 if 2x^4 
<0 if 2x > 4 

(be., gi(x) <bY) 

(i.e.,gl{x)4bl) 

A possible specific form for this function is 

PjW = (maximum [0, 2x - 4])2 

Similarly, for - x ^ 0 (i.e., g2(x) ^ fe2), we derive the function 

P2(x) = “ (maximum [0, - x])2 

Adding these to the objective function, we obtain 

maximize C(x) = f(x) + P^x) + P2(x) 

or 

(21-28) maximize C(x) = f(x) 4- P(x) 

where P(x) = - S2=1 (maximum [0, (gfx) — bt)})2. P is the penalty function. The 
construction of this function for problem (21-27) is shown in Figure 21-2, 

Any x that violates the constraints of (21-27) is penalized in problem (21-28). 
However, problem (21-28) is not exactly equivalent to (21-27) because it does not 
place infinite penalty on infeasible points. In many cases this penalty is insufficient 
to stop an infeasible point from being optimal to (21-28). In fact, frorh Figure 21-2, 
we see that the penalty function of (21-28) gives very little penalty to a large range of 
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infeasible points. Clearly, the penalty should be as severe as possible to make the 
unconstrained problem closely approximate the constrained problem. Rather than 
define a totally different form of penalty function, we can control the severity of the 
penalty by a parameter X and change (21-28) to 

(21-29) maximize C (x, X) = f(x) + - P(x) 
X 

As \ decreases, the effect of P on C increases proportionately, and infeasible points 
become less desirable. In general: 

PENALTY FU1 

such that 

10P(x) 100p(x) 
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Verify that this form satisfies condition (21-30). 
Sometimes it is possible to solve expressions like (21-29) analytically and give the 

solution x that results as X —> 0. More usually the problem is solved by using a 
sequence of \{k)> i.e., X(1), X(2), X(3), .... Xw, . . . , where X(^+1)<X(*} and 
lim^X^ = 0. This gives us the sequence of problems of the form 

(21-32) maximize C(x, X(k)) = f(x) + -jjjP(x) 

and the resultant sequence of solutions x(]), x(2), . . ., x{k\ .... 
To illustrate this idea, we used the sequence 

X(D = 1? X(2) = 0tl> X(3j = o.Oi, X(4)= 0.001, . . . 

on problem (21-27). The sequence of (l/X(fe))P(x) functions is shown in Figure 21-3, 
and the C(x, X(k)) functions are shown in Figure 21-4. The point x(0) in Figure 21-4 
is the solution to maximize f(x). Clearly, the sequence x(1), x(2^, x(3), ... is 

Figure 21-4. C(x, \(k)) = f(x) + (l/\(k))P(x) for problem (21-27). 
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converging to the optimum x* = 2. When the optimum is on the boundary of the 
feasible region, the nature of the penalty methods gives convergence from outside the 
feasible region, because, as the penalty becomes more severe, the optimal solutions 
to (21-32) get closer to feasibility. 

21-8 PENALTY METHODS APPLIED TO PROBLEM (21-2) 

Let us now set up and solve problem (21-2) by penalty methods, using equations 
(21-6). Applying the form of the penalty function defined in (21-31), we reduce this 
problem to the unconstrained approximating problem 

maximize C(x, \) = (4x, - x\ + 9x2 - x\ + 10x3 - 2x^ - \x2 x?) 
X 

+ ^ [ - (maximum [0, (4xj + 2x2 + x3 - 10)])2 
X 

(21-33) -(maximum [0, (2x} + 4x2 + x3 - 20)])2 

- (maximum [0, - xj)2 - (maximum [0, - x2])2 

- (maximum [0, - x3])2] 

To find the solution to (21-33) for a small X, we again use a sequence of \{k) 

values. Table 21-5 shows how the solution converges as \{k) is decreased successively. 

Table 21-5. Sequence of solutions of problem (21-33)—Penalty methods 

x<*> X* xf X® C(x,\<«) 

1 0.4856 3.2671 1.9021 28.9710 

0.1 0.4179 3.2349 1.8981 28.8362 

0.01 0.4111 3.2309 1.8977 28.8221 

0.001 0.4103 3.2308 1.8974 28.8206 

0.0001 0.4103 3.2308 1.8974 28.8205 

0.00001 0.4102 3.2308 1.8975 28.8205 

True optimum 0.4102 3.2308 1.8975 28.8205 

When the problem is solved using a sequence of X(*°the search for xf*+])is initiated 
at x{k\ since that should be fairly close, particularly when k is large. Such a procedure 
reduces considerably the time required at each iteration to find the new optimal point. 
Table 21-5 indicates that the optimum has been reached for X(*)= 0.00001. 

Clearly, we could have started immediately with a small X, say X = 0.00001, 
instead of using the sequence of \{k)shown. However, functions of the form (21-32) 
tend to become ill-behaved or awkwardly shaped for X very small, and hence converge 
very slowly, unless a good initial solution can be guessed. For example, the optimal 
solution for the sequence of six X-values in Table 21-5 was found by fewer than 300 
iterations in total. Using X = 0.00001 directly, the search procedure converged to 
the same solution in approximately 8000 iterations. 
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21-9 ADVANCED NONLINEAR PROGRAMMING 

Current general nonlinear programming follows three lines of attack, the first is the 
direct methods approach, which seeks to solve the problem itself by techniques such 
as the reduced gradient method. There has been a recent leap forward in the application 
of direct methods to problems with nonlinear constraints. It involves using the La- 
grangian function in place of the objective function. When we solve the Lagrangian 
over the constraint set, using a method such as the generalized reduced gradient 
method, we include information on the curvature of the constraints in'the objective 
function. This has led to considerable improvement in computational efficiency. 

The second approach involves penalty methods. In particular, the augmented 
Lagrangian method solves the Lagrangian function with an additional quadratic pen¬ 
alty. This has proved to be considerably superior to simple penalty methods. It elim¬ 
inates the awkward shape that the function has near the optimum when a simple 
penalty is applied. ! 

We have not introduced at all the basics of the third approach. These methods 
approximate one problem with another problem that has a ready solution technique, 
e.g., an approximation by a quadratic programming problem. At each iteration, the 
solution to the approximating problem is used to define a better approximating problem 
until the solutions of the approximating problems converge. Recursive Quadratic pro¬ 
gramming is the most modern and efficient of these methods. 

At their most sophisticated levels, these three approaches seem to be coming 
together. Perhaps a technique will be invented that combines aspects of all three 
approaches. 

EXERCISES 

21.1 The production possibilities of a firm are described by the following inequalities in 
which xj denotes the output of product i: 

X, + x2 =£ 80 2x, + x2 S£ 120 x, + 3x2 s£ 200 

The demand equations are 

x, = 100 - 2p, and x2 = 300 - 3p2 

where p; = price of good i. Average variable costs per unit are $5 for good 1 and $10 
for good 2. Formulate this problem. 

21.2 A manufacturing company has planned two new products to take up the slack in their 
production program. They have to decide the selling price, monthly production, and 
monthly promotional expenses for both of the products. The market analysts predict 
the following relationships among monthly sales, price, and promotional expenditure. 

x, = 10 - 4p, + 2c„ x2 = 15 - jpj - 3p2 + c2 

where xj is monthly sales in thousands of units for product /, is selling price per unit 
in dollars for product/, and cj is monthly promotional expenses in thousands of dollars 
for product j. \ 

Only $7,000 a month is available to spend on promotion. Other expenses are 
$3, and $5 per unit, respectively. Product 1 uses 0.2 hour of production capacity per 
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unit, and product 2 uses 0.3 hour per unit. Production capacity is limited to 1000 

hours per month. 
Set up this problem to find the values of the variables that give maximum total 

profit per month. 

21.3 Using Wolfe’s quadratic programming algorithm, find the first two iterations for the 

problems 

(a) maximize f(\) = 7x} — 2x\ 4- XjX2 — x\ 

subject to Xj 4- x2 ^ 2 2xl 4- 4x2 ^ 6 xux2^0 

(b) maximize f{x) = lxx — 2x* 4- XjX2 - x2 

subject to Xj ^ 1 Xj 4- x2 > 1 xu x2 > 0 

21.4 Find the first two iterations of Wolfe’s quadratic programming algorithm for exercise 

21.1. 

21.5 Apply the Kuhn-Tucker conditions to the following problems, and set out the first 

tableau of Wolfe’s algorithm. Perform the first iteration. 

(a) maximize f(x) = 16xj 4- 2Gx2 - 4xjX2 - x\- x\ 

subject to Xj 4- x2 22 2 3xt 4- 5x2 ^ 15, xp x2^0 

(b) maximize f(x) = 3xt 4- 4x2 - x] - x] 

subject to 8xj4-4x2^16 3x1 + 5x2^15 xlyx2^0 

21.6 Find the first three tableaux of the reduced gradient method for the following problem. 

Start with the solution x(1)= (0, 3). 

maximize f(x) = -x] - 2x\ 

subject to 4xj 4- x2 ^ 6 Xj 4- x2 = 3 x1? x2 > 0 

21.7 Find the first five tableaux of the reduced gradient method for the problems in exercise 

21.5. Start with x(1)= (2, 0). 

21.8 Find the first two reduced gradient method tableaux for the problem in exercise 21.1. 

21.9 Set up the following problem for solution by penalty methods: 

(a) Exercise 21.3(a). 
(b) Exercise 21.3(b). ' 

21.10 Set up the following problem by penalty methods: 

minimize 5xJ - 10xj - 10x2log10x2 

subject to x\ 4- 2x2^4, xlf x2^0 

(Assume 0 log10 0 = 0.) 
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Multiple-Objective 
Decision Making 

In today’s complex organizational environment, a decision maker is often faced with 
different and conflicting objectives. Rarely will the same decision alternative simul¬ 
taneously optimize all of them. Therefore, the “best” decision must be a compromise. 
What is considered “best” may be influenced by intangible factors, by personal attitudes 
and values of the decision maker. Some of these factors may not lend themselves to 
being expressed adequately in mathematical form. Although we shall continue to refer 
to some solutions as “optimal” in the sense of representing a maximum oj" a minimum 
to the objective function chosen, we also need to remind ourselves that this solution 
is a compromise between conflicting and often only partially modeled objectives. For 
these reasons, the major value of multiple-objective decision making techniques is in 
helping the decision maker to explore the solution space. This exploratidn will enable 
the decision maker to gain valuable insight into how the various objectives affect one 
another and how different emphasis given to the objectives affects the “optimal” 
solution. 

In Chapter 1, we briefly discussed some ways of dealing with multiple objectives 
(Section 1-12). The most commonly used method is to convert all but one of the 
objectives into surrogate constraints. This approach is suitable if one objective can be 
clearly identified as more important, while the remaining objectives have the character 
of targets to be achieved. Sensitivity analysis is used to explore the effects of tightening 
and loosening the targets. This chapter studies a number of formal approaches that 
explicitly recognize the multiple-objective structure of the problem. But first, let us 
briefly sketch two actual problems where such techniques have been applied with 
some degree of success. 

615 
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22-1 SOME ACTUAL MULTIPLE-OBJECTIVE DECISION PROBLEMS 

Multiple land use 

The Federal Land Policy and Management Act, passed by the 94th U.S. Congress 
in 1976, gives the following mandate to the Bureau of Land Management (BLM) for 
the management of the approximately 473 million acres of federally owned land under 

its jurisdiction: 

• that the management be on the basis of multiple use and sustained yield; 
• that the lands be managed in a manner that will 

(a) protect the quality of scientific, scenic, historical, ecological, environmental, 
air and atmospheric, water resource, and archaeological values; 

(b) where appropriate, preserve and protect certain public lands in their natural 

condition; 
(c) provide food and habitat for fish, wildlife, and domestic animals; 
(d) provide for outdoor recreation and human occupancy and use. 

Many of these objectives are in direct conflict with one another. For some tracts 
of land, the BLM will be under fire from different pressure groups to have their vested 
interests prevail. These groups include farm lobbies who want more grazing land, 
mining companies who want prospecting rights, and conservation groups who want 
to keep some areas in their natural state. How does the BLM resolve these conflicts? 

Assume that a BLM district officer has to develop a multiple-use land program 
for an area which at present is used largely for grazing. There are also coal deposits 
of economic significance. The area’s recreational value is mainly for big game hunting 
and four-wheel-drive vehicle use. Roughly, the BLM’s current procedure consists of 
first compiling a detailed inventory of the area’s topography, soils, vegetation, and 
other physical features and a description of existing use for each tract in the area. This 
is followed by an assessment of the unlimited potential of each tract for each possible 
use, without regard to any other uses. Independently of this, a socioeconomic profile 
is compiled that provides relevant information on attitudes of current and prospective 
users of the area, on special interest groups, and on economic factors relating to the 
importance of natural resources. Armed with these two basic documents, the area 
manager has to develop a compromise solution that reflects both the best intrinsic use 
of the various tracts and the relevant socioeconomic factors. This is a very difficult 
task of integration and resolution of conflicting objectives. 

A pilot study by F. K. Martinson at the University of Colorado implemented by 
the BLM in 1977 on a trial basis demonstrates the feasibility of using a multiple- 
objective linear programming approach to help the area manager with his or her 
decisions. We shall pick up this problem again in Section 22-5. 

Mexico City airport development 

In 1971, the Ministry of Public Works of Mexico (MPW) was asked by the Mexican 
presidential office to make recommendations for the future development of airport 
facilities for Mexico City. Growth in the volume of air traffic, combined with difficult 
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operating conditions at the existing airport at Texcoco, lent considerable urgency to 
providing a development strategy over the next thirty years. The Texcoco airport is 
sandwiched between the remains of Lake Texcoco to the east and the sprawling Mexico 
City metropolis to the west. Upgrading Texcoco on the former lakebed or by dis¬ 
placement of the population would make construction very expensive. The ensuing 
overcrowding would further aggravate the problem of noise, the danger of landing or 
takeoff accidents with potentially numerous casualties, and the disruption of air services 
because of the frequent need for leveling and resurfacing of the runways situated on 
the soft former lakebed. The advantage of upgrading Texcoco was proximity to the 
city. The alternative site at Zumpango, in an undeveloped rural area 25 miles to the 
north of the city, did not suffer from any of the problems of Texcoco, but would 
increase travel times to and from the city. 

Based on a consensus of the directors of the MPW, a partial list of objectives 
included 

• minimizing total construction, maintenance, and operating costs; 
• minimizing access time to the airport; 
• maximizing the operating safety; 
• minimizing the effect of air traffic noise pollution; 
• minimizing social disruption to the population; 
• raising the air traffic capacity of the airport. 

There were many uncertainties associated with any decision. One such uncertainty 
was the future growth of air traffic. 

How should the MPW go about developing a strategy that is “best'” in terms of 
social, economic, and political criteria? To help in this analysis, two American experts 
in modern decision analysis, Professor R. de Neufville and Dr. K. L. Keeney (1976), 
were called in. Together with the senior staff of the MPW, they applied decision 
analysis based on multiattribute utility functions. Sections 22-7 to 22-9 summarize 
this approach for a simple two-attribute decision problem. 

22-2 AN OVERVIEW OF MULTIPLE-OBJECTIVE DECISION 
TECHNIQUES 

Before studying this section, we ask you to review, in Section 1-11, the distinction 
made between objectives and the attributes associated with an alternative course of 
action. 

In the late sixties and through the seventies, there occurred a virtual explosion 
of different approaches to deal with multiple-objective decision problerns. These ap¬ 
proaches can be grouped roughly into weighting methods, sequential elimination meth¬ 
ods, and interactive solution methods (for different classifications, see MacCrimmon 
in Cochrane and Zeleny, 1973, or Starr and Zeleny, 1977). 

Weighting methods are undoubtedly the most widely applied techniques. They 
assume that the decision maker is able to define tradeoff relations between attributes. 
This allows aggregation of the attribute values associated with an alternative into a 
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single number or index which reflects the alternative s overall desirability. The alter¬ 
natives can then be ranked in terms of this desirability index. You have already 
encountered one such technique in Section 2-14, namely weighted-sum goal pro¬ 
gramming, which can be solved as a regular linear program. Decision analysis using 
multiattribute utility functions—an extension of the approach discussed in Section 
11-7_is also a weighting method and is studied is Sections 22-7 to 22-10. 

In contrast to weighting methods, sequential elimination methods do not allow 
tradeoffs between attributes or objectives. Some methods rank objectives in terms of 
their priority. Optimization begins by considering the highest priority objective first. 
Ties are broken by sequentially comparing lower priority objectives in descending 
order of priority. Preemptive goal programming is one such approach and is discussed 

in Section 22-3. . 
Other sequential elimination methods are based on the idea of solution domi¬ 

nance. Let r k denote the performance of alternative i in terms of objective (or attribute) 
k, i = 1, 2,'. . . , land k = 1, 2, . . ., K. The vector^ = (r,„ ri2, . . ., rj measures 
the achievement levels of alternative i over all K objectives. Assume for simplicity 
that we want to maximize all objectives. Then dominance is defined as follows. 

DOMINANCE OF MULTIPLE-OBJECTIVE SOLUTIONS 

An alternative i is dominated if there exists at least one other alternative, e, such 

(22-1) r,t rei for all k and r» < rek for at least one k 

A dominated alternative is thus inferior to some other alternative for at least one 
objective and no better for all other objectives. An alternative that is not dominated 
by any other alternative is called nondominated or efficient. 

Figure 22-1 demonstrates the concept of dominance for the two-objective max¬ 
imization case. Each axis measures the performance toward one objective. The per¬ 
formance vector r; = (rM, ri2) can be depicted as a point in this performance space. 
All alternatives denoted by empty circles are dominated by at least one alternative 
shown by a solid circle. Note that nondominated alternatives form the northeast 
boundary in the performance space. This boundary or the set of nondominated al¬ 

ternatives is called the efficient frontier. 
Efficient solution methods find all or a specified subset of solutions on the efficient 

frontier. The actual choice of which alternative course of action to take is then left 
up to the intuitive judgment of the decision maker—no easy task in most cases. Section 
22-6 looks at efficient solutions in a linear programming framework. 

Interactive solution methods are designed to find the decision maker s most 
preferred solution through a dialogue, usually by means of an interactive computer 
program. The dialogue begins by presenting the decision maker with a feasible solution 
to the problem. Next, he or she is asked to provide tradeoff information for small 



local deviations from this initial solution. These tradeoffs are the input in an algo¬ 
rithm—usually a mathematical program—to find a new and better feasible solution. 
This new solution is again submitted to the decision maker to solicit new tradeoffs. 
The process stops when the decision maker no longer wishes to revise the tradeoff 
relations. At this point (assuming the functions are well behaved), the preferred solution 
has been located. The papers by Geoffrion (1972) and Zionts (1976) listed in the 
references present examples of this approach. 

As will become obvious over the following sections, this grouping (as well as 
other classifications) is by no means exhaustive, nor are the groups trply mutually 
exclusive. For instance, several efficient solution methods use a sequence of weights 
on the objective functions to find all efficient solutions, thus combining concepts of 
the first two groups. 

22-3 THE SIMPLEX METHOD FOR PREEMPTIVE GOAL 
PROGRAMMING 

In this section, we show how the simplex method can be adapted to find optimal 
solutions to preemptive goal programming problems. We shall use the| media mix 
problem of Section 2-14. Please read it again now. 

The problem involves three goals. Let our objectives be to minimize the following 
deviation from each goal target: 

(22-2) minimize z^ = sj~ + sf (goal 1 deviations) 

(22-3) minimize z® = s2~ + s£ (goal 2 deviations) 

(22-4) minimize ^3) = 2s2 + $3+ (goal 3 deviations) 

where $,■ denotes underachievement and sf+ denotes overachievement of goal i. We 



620 Chapter 22 Multiple-Objective Decision Making 

view an underachievement of goal 3 as being twice as undesirable as an overachieve¬ 
ment. These objectives are subject to the following constraints: 

(22-5) 

3000x, 

*i 

0.04x, 

0.072xj 

*i 

2000x2 ^ 16000 (budget) 

^4 (insertions in X) 

x2^5 (insertion in Y) 

0.06x2 + sf - $j+ = 0.32 (goal 1) 

0.036x2 + $2~ - s2+ = 0.288 (goal 2) 

2x2 + s3~ - $3+ =0 (goal 3) 

0, for all;; s~,$,+ ^0, for all i 

In preemptive programming, each goal is assigned a priority level k, denoted by Pk, 
k = 1, 2, 3, . . . . The lower the value of k, the higher the priority assigned. Several 
goals may have the same priority level. A goal with a higher priority level is always 
given absolute preference over all goals with lower priority levels. We shall assign the 
highest priority Pt to goal 1 (desired reach on primary group), the next priority P2 to 
goal 2 (desired reach on secondary group), and the lowest priority P3 to goal 3 (number 
of insertions in X and Y). This priority structure is usually expressed mathematically 

by the following short-hand notation: 

(22-6) minimize P^Sj + s,+) + P2(s2 + s2+) + P3(2s, + s3+) 

which replaces the individual objective functions (22-2) to (22-4). Pt denotes the 
priority weight, Pt »> P2 »> Pv The weights Pk are not given any specific 
numerical values, and hence do not imply any tradeoffs between goals. They only 
indicate the priority level of each goal. On the other hand, any weights assigned to 
individual goals within the same priority level reflect tradeoff relations, as in the 
weighted-sum goal programming approach. To solve such a problem, we have each 
priority level give rise to a separate objective function. In our example, expressions 
(22-2) to (22-4) correspond to the three individual priority level objective functions. 
We first find the optimal solution for the highest priority level, ignoring any lower 
priority level objective functions. If there are any alternative optimal solutions, these 
become the feasible region for the next highest priority level. We continue in this 
fashion until either all individual priority level objective functions have been optimized 
or a unique optimal solution has been found for some priority level. At that point, 
no further improvements on lower priority level goals can be achieved. 

Let us now apply this procedure to the media mix problem. Using the simplex 
method for maximizing the objective function in Chapter 3, we first find the optima! 
solution to objective function (22-2). Note that we maximize the negative of (22-2), 
as shown in tableau 1 of Table 22-1. The superscripts on the (z,- Cjfk> rows 
identify the priority level solved at that iteration. The optimal solution is reached in 
three iterations, as shown in tableau 3 (tableau 2 is not shown). The solution occurs 

at point E in Figure 2-14 of Chapter 2. 
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Remember that any nonbasic variables with (z.- — cl) = 0 indicate the existence 
of alternative optimal solutions, x,, x2, x5, s2+, ana s,+ have zero (zy — elf values. 
Hence, alternative optimal solutions exist. They are given by the heavy line from E 
to H in Figure 2-14. This is the set of feasible solutions to all lower priority level 
objective functions. We now proceed to optimize the second-level objective function 

(22-3). 
In order to remain within the reduced feasible region, we only retain the current 

basic variables and those nonbasic variables with zero (zy - cy) values for objective 

function 22-2. 

SIMPLEX CRITERION FOR ELIMINATION OF VARIABLES 
IN PREEMPTIVE GOAL PROGRAMMING 

If iz, - e,V > 0 for am \ariablc x, at an optimal solution to priority k goals, 
that* variable is excluded from entering any basis for priority € goals where 

Applying this rule for ( > 1, we block off the columns for sj“ and s,+ in tableau 
4 of Table 22-1. The (z, - c/’ row is now no longer needed. We now add to tableau 
3 a new row with the (zy - c/)121 values for the permissible variables in objective 
function (22-3). The (zy - c),2> values, evaluated at the solution of tableau 3, are 
obtained by the rules of postoptimal analysis (see Section 5-1). For example, 

(Z; - Cj2' = 

2500(0) + 1.5(0) + 1(0) + (— 1.5)(0) + 0.072( — 1) + 3.5(0) - 0 = -0.072 

The objective function value of zf2) at this basic solution is -0.072. From the 
(z. - c )'21 row, we see that the solution of tableau 3 is not optimal. At iteration 4, 
the optimal solution for (22-3) is reached. It corresponds to point G in Figure 2-14. 
Of the three remaining nonbasic variables, sf has a \ zj — cy)u) value of zero, indicating 
alternative optima for the first and second priority level goals. The columns for 

s; and s2+ are now also blocked off. 
Next we introduce the third priority level objective function (22-4). The 

(z - c)(,) row for the further reduced set of permissible variables is added to tableau 
4. All (z — c.f* are nonnegative. Hence, the solution of tableau 4 is optimal. 
Furthermore, no alternative optima exist anymore. The final optimal solution is x, = 

2, x2 = 4, and sf = 6. 
Note that preemptive goal programming relies heavily on the existence of alter¬ 

native optimal solutions to achieve any of the lower priority goals. Fortunately, the 
presence of the goal constraints containing the deviational variables seems to favor 

this. 
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22-4 MINSUM AND MINMAX MULTIPLE-OBJECTIVE LINEAR 
PROGRAMMING 

Let us now look at the media mix problem of Section 2-14 in its original form of 
maximizing the reach of each population group. (For simplicity, we drop the third 
goal.) Mathematically, the problem can be stated as 

(22-7) 
maximize 0.04x, + 0.06x2 (goal 1) 

maximize 0.072x, 4- 0.036x2 (goal 2) 

subject to JK
 /A
 

4
^

 

(number of insertions in X) 

(22-8) x2«5 (number of insertions in Y) 

3000xx + 2000x2 ^ 16,000 (budget) 

*1, *2^0 

Except by some rather fortunate coincidence, the maxima of the two objective 
functions will not be obtained for the same values of the decision variables. As shown 
in Figure 22-2, the maximum of goal 1 is 0.38 and occurs at point fc, while the 
maximum of goal 2 is 0.36 and occurs at point A. (Note that these maxima are in 
fact larger by 0.48 and 0.412, respectively—the constants we dropped when we for¬ 
mulated the original objective function in Section 2-14.) No feasible solution will 
exceed these maxima, and they cannot be achieved for both goals simultaneously. In 
fact, these maxima could be viewed as the “ideal” solution or as desirable targets to 
aim for. 

Any feasible solution will have to be a compromise. The difference sk between 
each target and the actually achieved goal level represents the amount of undera¬ 
chievement for goal L No overachievement is possible. As for goal programming, 
each objective function of (22-7) can be expressed as a target constraint: 

(22-9) 
0.04xj + 0.06x2 + Sj =: 0.38 

0.072X! + 0.036x2 + s2 ~ 0.36 

(goal 1) 

(goal 2) 

The optimizing criterion is to minimize some suitable metric for the distance from 
the ideal solution. 

Each deviational variable is expressed in the same units as the corresponding 
goal. The units of measurement may thus be different from goal to goal. Most decision 
makers would have difficulties in specifying tradeoffs between goals measured in 
different units. They would find it easier to consider tradeoffs in terms of percentage 
deviations from the targets. This is readily accomplished by redefining each deviational 
variable as the fractional deviation vk from its target Tk: 

(22-10) v* = sk/Tk T,v, kvk or 
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Figure 22-2. Media selection problem. 

X2 

(1 — v,) (100 percent) represents the percentage goal achievement. With this change 
of variables, expressions (22-9) can now be rewritten as 

O.CWxj + 0.06x2 + 0.38V, = 0.38 (goal 1) 
(22-11) 

0.072XJ + 0.036x2 + 0.36v2 = 0.36 (goal 2) 

Note that this formulation is based on the assumption that all targets are positive 
but finite, i.e., 0 < Tk < for all k. Although this is usually a reasonable assumption, 
it may happen that some Tk value is zero. In such a case, a different normalizing 
constant has to be used. 
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The most general form of matrix is the Euclidean distance: 

(22-12) 

up 

where wk is the weight or penalty given to deviations from goal k. The criterion is to 
minimize this distance metric. Except for p - 1 and p = ooy this i$ a nonlinear 
programming problem. For p = 1, (22-12) simplifies to the weighted sum of fractional 
deviations from the targets. This is the MINSUM formulation. For our example, 
setting p = 1 yields the following linear program: 

minimize wlvl + w2v2 

subject to 

x2^5 

(22-13) 3000xj + 2000x2 ^ 16,000 

0.04x} + 0.06x2 + 0.38V! = 0.38 (goal 1) 

0.072XJ + 0.036x2 + 0.36v2 = 0.36 (goal 2) 

xltx27vuv2^0 

The optimal solution will occur at an extreme point of the feasible region to the 
original constraints (22-8). On the basis of Figure 22-2, verify that Talkie 22-2 sum¬ 
marizes the response of the optimal solution to various weight combinations (wx, w2). 
(Hint: The ratio 3000/2000 is equal to the negative of the budget constraint slope.) 

Table 22-2. Optimal solutions to MINSUM formulations of the media mix problem 

Optimal Value of Achievement of Point in 
Weight *1 *2 V1 V2 Goal 1 Goal 2 Figure 22-2 

w, > (3000/2000)w2 2 5 0 KB mmm 90% ; E 
w,« (3000/2000)w2 4 2 0.2632 EH ■n 100% A 

Note that a potentially minor change in weights may cause the optimal solution 
to change quite abruptly by jumping to an adjacent extreme point of the feasible 
region. This feature holds for all MINSUM formulations. It goes contrary to what 
intuition would indicate. A decision maker would expect the optimal solution to 
respond gradually to repeated small changes in the weight structure. 

We can overcome this shortcoming by letting p in (22-12) become infinitely 
large, i.e., £ —» The largest deviation will now dominate all other deviations. 
Hence, we can find the optimal solution associated with minimizing (22-12) by 
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minimizing the maximum weighted deviation of any goal achievement from the ideal 
solution. The problem is then transformed into the following linear program: 

minimize v 

subject to xl ^ 4 

x2^5 

(22-14) 3000*! + 2000x2 ^ 16000 

0.04^+ 0.06x2 + (0.38/iVj)v^ 0.38 

0.072XJ + 0.036x2 + (0.36/w2)v ^ 0.36 

xu x2? 0 

This is the MINMAX formulation. Note that we replaced the individual deviation 
variables with a single deviation variable v, which measures the largest fractional 
deviation of any goal achievement from the ideal. This explains why the equality 
constraints for the goals in (22-11) had to be converted to ^ constraints. 

At the optimal solution, at least one of the goal constraints is satisfied as a strict 
equality, while all remaining goal constraints may have slack. The goal constraint for 
which equality holds is the one with the largest deviation from its target. We wish to 
minimize this maximum deviation, hence the name MINMAX. 

In order Jo allow deviations from the target to be weighted differently, we also 
incorporate the weights directly into the goal constraints. The deviational variable is 
thereby redefined as the largest weighted fractional deviation, which differs from the 
unweighted fractional deviation by a factor equal to the corresponding weight. 

(goal 1) 

(goal 2) 

Table 22-3. Optimal solutions to MINMAX formulation of the media mix problem 

Weight 
Wj w2 *1 

Optimal Value of 

*2 V 
Achievement of 

Goal 1 Goal 2 

i 0 2 5 0.1 100% 90% 

10 1 2.073 4.890 0.0963 99.04% 90.37% 

1 1 2.551 4.174 0.0725 92.75% 92.75 % 

1 10 3.583 2.625 0.2083 79.17% 97.92% 

0 1 4 2 0.2632 73.68% 100% 

Table 22-3 shows the optimal solution for a number of relative weight assignments 
on the two goals. Note now that the optimal solution, except in the degenerate case 
where one of the weights is set to zero, does not occur at an extreme point of the 
feasible region to the original constraints (22-8), but occurs somewhere on the boundary 
between extreme points. The higher a given weight assigned to a goal, the closer the 
percentage achievement level is to its maximum. This is a general feature of MINMAX 
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formulations. As a result, the optimal solution responds gradually and smoothly to 
changes in the weights. The MINMAX formulation also tends to give a more equitable 
distribution to the percentage goal achievements than the MINSUM formulation. 

The major attraction of both the MINSUM and the MINMA^ formulations 
comes from their simplicity and the fact that the original multiple-objective problem 
is converted into a conventional linear program. The optimal solution can thus be 
found by the simplex method. Furthermore, the problem can be subjected to the 
powerful machinery of postoptimal analysis available for linear programming. 

The next section shows how the MINMAX approach can be used to analyze the 
multiple-use land management problem outlined earlier. 

22-5 AN APPLICATION TO MULTIPLE-USE LAND MANAGEMENT 

Consider again the land use management problem outlined in Section 22-1. We will 
now show how multiple-objective linear programming based on a MINMAX for¬ 
mulation can be used to help the area manager perform the difficult task of reconciling 
conflicting objectives. To cut the problem down to text book size, consider a small 
area consisting of two tracts. Tract A covers 1200 acres; tract B, 5400 acres. The 
boundaries of each tract were chosen in such a manner that the land contained in 
each is homogeneous in terms of its potential uses. In our case, the potential uses are 
(numbered 1 to 5) as follows: 

Tract A Tract B 

Sheep grazing (1) Sheep grazing (1) 
Open cast coal mining (2) Wildlife management (3) 
Wildlife management (3) Watershed management (4) 
Watershed management (4) Four-wheel-drive vehicle use (5) 

Some of these uses are compatible, others not. It is obvious that the same acre 
cannot be used in the same time interval for sheep grazing and coal mining, but sheep 
grazing and wildlife management may be pursued side by side. The BLM considers 
sound watershed management policies as an integral part of both grazing and mining, 
so as to reduce the impact of these activities on sedimentation in adjoining rivers. 
This implies that our activity watershed management as defined earlier assumes the 
absence of grazing or mining. In other words, these three uses are also mutually and 
collectively incompatible. Finally, open cast mining and wildlife management are 
also considered incompatible uses. 

Land is allocated to a given use with a view to procuring certain desirable outputs 
or limiting certain undesirable consequences. Maximizing desirable outputs and min¬ 
imizing undesirable ones are the objectives of the land use plan. Land Used for sheep 
grazing produces as primary output animal feed, measured in stocking rates (say, 
animals fattened per year). Open cast coal mining produces coal, measured in tons. 
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Wildlife management enhances the habitat for big game, hunted for recreation. How 
could we measure a qualitative output that may mean different things to different 
users? We could use a surrogate measure, such as the number of recreation person- 
days that an area may attract. This would be difficult to estimate and also depend 
highly on the exact location of each acre. Instead, it may be more useful to measure 
recreation along an arbitrary relative scale, ranging from - 5 to +5, where + 5 
indicates the largest positive or most desirable impact that can be achieved, - 5 the 
largest negative or most undesirable impact, and 0 a neutral or no impact. Experience 
indicates that decision makers are quite capable of making such subjective value 
judgments and that this approach is effective in capturing the relative importance of 
intangible outputs of this sort. This is the approach used for the output of wildlife 
management. Watershed management reduces sedimentation in the catchment rivers 
and lakes. If the areas are highly homogeneous as to sediment yield, it may be possible 
to express this yield in terms of tons of sediment increase or decrease per year, as 
compared to the status quo. Alternatively, the effect on sediment yield could again 
be expressed along a relative scale from - 5 to +5, similar to the effect of recreation, 
with + 5 representing the most positive impact (largest reduction in sediment yield). 
Finally, four-wheel-drive vehicle use is also a recreational activity. Assuming that it 
is commensurable with recreation from hunting, the recreational output of both uses 
is best expressed along the same relative scale. 

Each land use also implies inputs or outputs of funds. Grazing produces rental 
income, mining produces royalties, wildlife management produces hunting fees offset 
by rangers' salaries, four-wheel-drive vehicle use requires funds for bridge and river 
ford construction and maintenance, etc., and watershed management requires con¬ 
struction funds for river course alterations and afforestation. 

There are secondary or indirect outputs for some land uses. For instance, mining 
not only produces coal, but also destroys the scenic value of the area and hence has 
a negative impact on recreation even in adjoining tracts. This negative effect reduces 
the recreational output of the area as a whole. In fact, it might result in a total negative 
recreational output. This impact occurs whether or not a tract is promoted for rec¬ 
reation. On the other hand, the negative effect of grazing on the recreational output 
of wildlife management and, similarly, the negative effect of wildlife management on 
the output of grazing will occur only if these uses exist together on the same acre. 
Hence, our formulation will have to reflect this. 

Table 22-4 lists the primary and secondary outputs per acre for each basic land 
use. We assume they are identical for both tracts. For instance, one acre of land will 
allow three sheep to be fattened per year (= primary output), while reducing the 
recreational output by 1 (= secondary output of grazing) and generating rental income 
of $300 over the planning horizon. Expressing all outputs on a per acre basis implies 
constant returns to scale. Although the outputs from grazing and mining may be 
approximately linear, linearity is unlikely to hold true over the entire range of acreage 
allocated for wildlife management, four-wheel-drive vehicle use, and watershed man¬ 
agement. Allocations up to some threshold may result in a zero output. Above that 
level, the output may initially increase more than proportionately, settling ultimately 
to some constant rate (increasing marginal returns followed by constant marginal 
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Table 22-4. Primary and secondary outputs of each land use per acre 

Output Grazing Mining 
Wildlife 

Management 
Watershed ; 

Management 

Four-Wheel- 
Drive 

Vehicle 

Animal-years 3 0 -0.5 0 0 
Coal (1000 tons) 0 4 0 o : 0 
Recreation impact -1 -5 2 0 3 
Sediment impact 
Present value of funds 

-1 -3 1 5 -3 

($1000) 0.3 1 0.02 -0.05 -0.04 

returns). Furthermore, the various areas allocated to each use need to be largely 
contiguous for the desired effects to occur. It is thus important that once the optimal 
solution has been found, the validity of the output coefficients be verified. If necessary, 
coefficients should be adjusted appropriately, and the problem resolved. 

We are now ready to formulate the problem mathematically. The acreages in 
each tract allocated to the four uses are our decision variables. However, to properly 
account for the mutual reduction in output if grazing and wildlife management occur 
jointly on the same acre, we introduce a combined use “grazing-cum-wildlife man¬ 
agement.” These three uses thus become mutually exclusive in addition to the in¬ 
compatibility restrictions discussed earlier. 

Consider first tract A. The incompatibility restriction for grazing (variable 
AGRAZE), grazing-cum-wildlife management (AGRWLD), coal mining (AMINE), 
and watershed management (AWATER) forbids the allocation of the same acre to all 
four uses. However, each use can be pursued on a separate part of tract A. Hence, 
the sum of the acreages allocated to them cannot exceed the available acreage: 

(TRACTA1) AGRAZE + AGRWLD + AMINE + AWATER ^1200 

Similarly, grazing, mining, and wildlife management (AWILD) are'incompatible: 

(TRACTA2) AGRAZE + AGRWLD + AMINE + AWILD ^ 1200 

For tract B, the incompatibility occurs between grazing (BGRAZE and BGRWLD) 
and watershed management (BWATER): 

(TRACTB1) BGRAZE + BGRWLD + BWATER ^ 5400 

and between grazing and wildlife management (BWILD): 

(TRACTB2) BGRAZE + BGRWLD + BWILD ^ 5400 

All uses are also individually restricted by the upper limit of the acreage in each 
tract. There is, though, no need to insert upper bounds for those variables that already 
appear in the above incompatibility constraints. This leaves only the upper bound on 
four-wheel-drive vehicle use: 

(TRACTB3) B4 WHEEL ^ 5400 



630 Chapter 22 Multiple-Objective Decision Making 

The objectives of the land use plan are to maximize grazing output, maximize 
coal recovered, maximize recreational value, maximize sediment reduction, and 
maximize funds generated. Each row in Table 22-4 contains the numerical data 
needed to formulate one of these five objective functions. Consider grazing. Each acre 
of tract A or tract B allocated to grazing allows 3 animals to be fattened per year, 
while the same acre allocated jointly to wildlife management reduces this output by 
0.5. Hence, the grazing objective function is 

(OBJGRAZE) maximize 3 AGRAZE + (3 - 0.5) AGRWLD 
+ 3 BGRAZE + (3 - 0.5) BGRWLD 

Similarly, for the other four objective functions, 

(OBJCOAL) maximize 
(OBJRECR) maximize 

(OBJSEDMT) maximize 

(OBJFUNDS) maximize 

4 AMINE 
(2 - 1) AGRWLD - 5 AMINE + 2 AWILD 
+ (2 - 1) BGRWLD + 2 BWILD + 3 B4WHEEL 
-1 AGRAZE + (1 - 1) AGRWLD - 3 AMINE 
+ 1 AWILD + 5 AWATER - 1 BGRAZE 
+ (1 - 1) BGRWLD + 1 BWILD 
+ 5 BWATER - 3 B4WHEEL 
0.3 AGRAZE + (0.3 + 0.02) AGRWLD + 1 AMINE 
+ 0.02 AWILD - 0.05 AWATER + 0.3 BGRAZE 
+ (0.3 + 0.02) BGRWLD + 0.02 BWILD 
- 0.05 BWATER - 0.04 B4WHEEL 

Restricting all decision variables to nonnegative values completes the formulation 
of the problem as a multiple-objective linear program. 

For the MINMAX formulation, we have to find first the target value for each 
objective. Solving the five single-objective linear programs (the optimal solutions can 
actually be found by inspection for this simple example), we get 

Objective OBJGRAZE OBJCOAL OBJRECR OBJSEDMT OBJFUNDS 
Target value 19,800 4800 29,400 39,600 2928 

The individual objective optima are used to generate the target constraints: 

(MAXGRAZE) 

(MAXCOAL) 
(MAXRECR) 

(MAXSEDMT) 

(MAXFUNDS) 

3 AGRAZE + 2.5 AGRWLD + 3 BGRAZE + 2.5 BGRWLD 
+ (19800Av,)v 5* 19800 
4 AMINE + (4800/w2) v 5= 4800 
AGRWLD - 5 AMINE + 2 AWILD + BRGWLD 
+ 2 BWILD + 3 B4WHEEL + (29400/w,)v s* 29400 
-AGRAZE - 3 AMINE + AWILD + 5 AWATER 
- BGRAZE + BWILD + 5 BWATER - 3 B4WHEEL 
+ (39600/w4)v 39600 
0.3 AGRAZE + 0.32 AGRWLD + AMINE + 0.02 AWILD 
- 0.05 AWATER + 0.3 BGRAZE + 0.32 BGRWLD 
+ 0.02 BWILD - 0.05 BWATER - 0.04 B4WHEEL 
+ (2928/ws)v 2928 
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where wk are the weights assigned to each objective. The objective function of the 
MINMAX problem is the minimization of the maximum deviation, given by 

(OBJMINMAX) minimize v 

subject to the cross-compatibility and target constraints. Table 22-5 summarizes the 
optimal solution for various weight structures on the five objectives. 

Table 22-5. Land-use solution for various objective weights 

Case Objective Weight 
Percent 

Achievement Land Use Tract A; Tract B 

i animal years 1 36.8 sheep grazing 0 2911 (2911) 
coal (1000 tons) i 36.8 coal mining 441 — 

recreation i 36.8 wildlife mgt 759 5400 (2911) 
sediment i 36.8 watershed mgt 759 2489 
funds ($1000) i 41.9 four-wheel-drive — 1202 

2 animal years 10 89.6 sheep grazing 510 5400 
coal (1000 tons) ] 0 coal mining 0 _ 

recreation 1 4.7 wildlife mgt * 690 0 
sediment 1 -4.5 watershed mgt 690 0 
funds ($1000) 1 59.9 four-wheel-drive — 0 

3 ; animal years 1 27.3 sheep grazing 0 1799 
coal (1000 tons) 10 92.7 coal mining 1113 — 

recreation 1 27.3 wildlife mgt 87 3601 
sediment 1 27.3 watershed mgt 87 3601 
funds ($1000) 1 49.8 four-wheel-drive — 2067 

4 animal years 1 19.6 sheep grazing 0 1549 (1549) 
coal (1000 tons) 1 12.3 coal mining 147 — 
recreation 10 91.2 wildlife mgt 1053 5400 (1549) 
sediment 1 12.3 watershed mgt 0 3319 
funds ($1000) 1 12.3 four-wheel-drive — 5400 

5 animal years 1 3.9 sheep grazing 0 260 
coal (1000 tons) l 18.4 coal mining 221 — 
recreation l 37.9 wildlife mgt 979 5140 
sediment 10 90.4 watershed mgt 979 5140 
funds ($1000) 1 3.9 four-wheel-drive — 0 

6 animal years 1 58.0 sheep grazing 0 4596 (4596) 
coal (1000 tons) 1 100.0 coal mining 1200 — 
recreation 1 2.1 wildlife mgt 0 5400 (4596) 
sediment 1 2.1 watershed mgt 0 804 
funds ($1000) 10 90.2 four-wheel-drive — : 135 

7 animal years 1 14.9 sheep grazing 894 (894) 287 (287) 
coal (1000 tons) 1 25.5 coal mining 306 : — 
recreation 2 57.5 wildlife mgt 894 (894) 5400 (287) 
sediment 2 57.5 watershed mgt 0 5113 
funds ($1000) 1 14.9 four-wheel-drive — 2337 
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An equal weight structure gives a well-balanced percentage achievement for all 
objectives, whereas emphasis on one objective only may have quite serious effects on 
the achievement of other objectives. For instance, emphasis on grazing even produces 
a negative result on sedimentation. Surprisingly, emphasis on coal mining, given the 
size of tract A, still produces a fair balance among the various objectives. Experi¬ 
mentation with various weight structures will allow the planning officer to explore 
which sacrifices in the achievement of some objectives produces good compromise 
solutions. 

22-6 EFFICIENT SOLUTION METHODS AND INTERACTIVE 
APPROACHES 

Without externalizing the decision maker’s tradeoff relations between various goals, 
the best an operations researcher can do is to present the decision maker with all 
efficient solutions to the problem. It is then up to the decision maker to select, on 
an intuitive basis, the most preferred from among all efficient solutions. Consider the 
general form of a multiple-objective linear programming problem: 

maximize zx — ^ c\ft 
j 

maximize z2 = ^ c2jx}- 

(22-15) 

maximize zK = ^ cKJ x- 
j 

subject to 

(22-16) =,or ^)bi7 i= 1,2, . . ., m 
j 

Xj ^ 0, for all j 

From the geometry of linear programming, it follows that efficient solutions can 
lie only on the boundary of the feasible region, either at an extreme point, along an 
edge between two adjacent extreme points, or on a face between several adjacent 
extreme points. The number of efficient solutions is thus infinitely large. However, 
it also follows that any efficient solution not corresponding to an extreme point can 
be expressed as a linear combination of efficient solutions at two or more adjacent 
extreme points. (See Ecker, 1980, for complete specifications.) Therefore, in order 
to identify all efficient solutions of a multiple objective linear program, all we need 
is to find all efficient extreme point solutions. 

Consider again the media mix problem, as given by expressions (22-7) and (22-8). 
Table 22-6 lists the objective function values of all basic feasible solutions as shown 
in Figure 22-3. Solutions for points B, C, and D are all dominated by solutions at 
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Solution Point Goal 1 Goal 2 .Dominated by 

A 0.28 0.36 __ 
B 0.16 0.288 A, E 
C 0 0 A, E 
D 0.3 0.18 E 
E 0.38 0.324 — 
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The set of all efficient extreme point solutions is a subset of all basic feasible 
solutions. Therefore, finding all efficient extreme point solutions is computationally 
almost as demanding as finding all basic feasible solutions. It can be shown that if 
x* = (a*, x2, . . ., xn) represents an efficient extreme point solution to problem (22- 
15) and (22-16), then there exists a set of positive weights w* = (w*, w2, . . ., w£), 
with 

(22-17) Yi wk= 1 and w* > 0, for all fe 
*=1 

such that x is the solution of the following equivalent single-objective linear program¬ 
ming problem: 

K n 

(22-18) maximize z = 2 Vy 
*=1 j=1 

subject to (22-16) and (22-17). This property serves as the basis for a number of 
algorithms to find all efficient extreme point solutions. 

Geometrically, expression (22-18) represents a hyperplane (n-dimensional plane) 
touching the boundary of the feasible region. As the weights change, it is tilted into 
a new position (its n-dimensional slope changes). If it is tilted sufficiently, another 
extreme point becomes optimal. If it is rotated through all feasible weight combina¬ 
tions, it will go sequentially through all efficient extreme points. Figure 22-3 depicts 
this property for the media mix problem. For [wl = 1, w2 = 0] the weighted-sum 
objective function w^c^Xj + w2Sc2/x;. coincides with the goal 1 line. As w1 decreases 
and w2 increases, the weighted-sum objective function tilts forward, until at 
[Wj = 0, w2 = 1] it coincides with the goal 2 line. Any weight structure of 
(wj ^ 9/34, w2 = 1 - wt) generates the efficient extreme point solution at point A, 
while (wt ^ 9/34, = 1 -w}) yields the point E solution. 

Unfortunately, finding all efficient extreme point solutions of real-life problems 
is still largely beyond the computational capability of the current generation of com¬ 
puters. The only possible exceptions are the so-called bicriterion problems—i.e., prob¬ 
lems with only two objective functions—for which several special algorithms have 
been devised (see Cohon, 1979). There are, though, two even more basic objections 
to this solution philosophy. First, the number of efficient extreme point solutions that 
exist for even a small problem is usually very large. Second, the “preferred” solution 
may in fact be an efficient nonbasic solution. Few decision makers will thus be able 
to identify the most preferred efficient extreme point or the set of efficient extreme 
points that contain the preferred solution. 

There is, therefore, the need either to present the decision maker only with a 
sufficiently small subset of all efficient extreme points—generated so as to include the 
decision maker s most preferred solution(s)—or to search for the most preferred so¬ 
lution^) interactively. 

One such approach is Steuer’s interval criterion weight method (Steuer, 1976). 
From property (22-17) it follows that a decision maker’s preferred solution implies a 
given weight structure w. (Assume for simplicity that the preferred solution is an 
extreme point solution.) If the decision maker were able to specify this weight structure, 
the preferred solution could be found by solving problem (21-18). Steuer takes the 



Section 22-1 Decision Analysis Under Uncertainty with Multiattribute Outcomes 635 

premise that, although the decision maker cannot specify the exact weight structure, 
he or she will at least be capable of specifying for each objective k an interval, (lk, hk), 
which most likely contains the true weight wk. If these intervals are sufficiently small, 
this will reduce the number of efficient extreme points to be found to a small fraction 
of the total. Steuer adapts this method for interactive use (1977). He starts out by 
presenting the decision maker with a small sample of efficient extreme points, evenly 
distributed over the solution space corresponding to the intervals on the weights and 
specified as initial input. The decision maker is then asked to indicate which of the 
efficient extreme points is the most attractive one. Steuer uses this response to shift 
and contract the weight intervals, which are then used to generate a hew sample of 
evenly spaced efficient extreme points. This interactive process continues until the 
decision maker signals that the most preferred solution has been fouhd or asks that 
all efficient extreme points associated with the most recent set of weight intervals be 
generated. (For several other interactive methods, see the references at the end of this 
chapter.) 

22-7 DECISION ANALYSIS UNDER UNCERTAINTY WITH 
MULTIATTRIBUTE OUTCOMES 

In Sections 1-14 and 11-7, we studied how utility functions can be used to measure 
the true worth of a course of actions. In this and the next three sections, we will 
explore how this approach, under certain assumptions, can be extended to analyze 
multiobjective decision problems under uncertainty. Before proceeding, read Sections 
1-14 and 11-7 again. 

To set the stage, imagine that you are the director of a sea search and rescue 
service. Your job is to decide how best to commit the resources available to the service. 
You consider yourself accountable to the sponsors of the service and to the public at 
large not only for the number of people rescued, but also for the cost of the service 
and the safety of your air search crews. You thus identify three partially conflicting 
objectives: 

1. Maximize the number of people in distress rescued. 
2. Minimize the cost of the service. 
3. Maximize the safety of the search crews. 

At this point, you may wish to reflect on the moral implications of tradeoffs 
between these objectives, particularly those involving tradeoffs between lives saved 
versus costs. Although such tradeoffs may be abhorrent to most people, there is no 
way to avoid them. Any decision made by the director as to which search strategy to 
follow implies them. 

As now stated, the first objective is not really operational. A mission may fail to 
rescue the people in distress for reasons beyond the control of the service, such as the 
weather or actions taken by the people on the missing craft. As a consequence, it is 
difficult to directly attribute success or failure to the activities of tjie service. In 
situations of this sort, we usually look for a suitable proxy measure. Clearly, the longer 
a missing boat becomes overdue, the smaller are the chances of a successful rescue. 
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Also, the more intensive the search, the more likely it is to locate the craft quickly 

if it is still in the search area. The intensity of a search is controllable. The number 

of days a missing craft is overdue is thus a suitable proxy attribute for the first objective. 

The total cost of a rescue mission serves as the attribute for the second objective. 

The third objective is difficult to assess. Conforming to current practice, we may 

assume that it is translated into operating conditions for the search aircraft, such as 

whether or not the weather situation permits flying, maximum flying times, and 

minimum rest periods between flights for the crews. In other words, the third objective 

takes the form of constraints, which leaves only two objectives. 

The service has two aircraft available on a permanent basis. The operating costs 

of these amount to $10,000 for each day of flying. A third aircraft can be hired at a 

day’s notice at a cost of $20,000 per day. 

Committing aircraft to a rescue mission takes the form of a strategy. For instance, 

if no sighting by commercial aircraft occurs on the first day after a missing-boat report 

is received, one search aircraft may be assigned on the second day. If no sighting is 

made then, a second aircraft may be committed. A mission is usually abandoned 

officially after 5 days of unsuccessful search. Each strategy leads to one of several 

possible outcomes, defined by the two attributes, xx for the number of days the missing 

craft is overdue and x2 for the cumulative cost of the search mission. We wish to 

measure the relative worth of each outcome [xl9 x2] in terms of a single index, its 

utility. The “preferred” strategy is the one that maximizes the expected utility. 

22-8 MULTIATTRIBUTE UTILITY FUNCTIONS—ADDITIVE 
UTILITIES 

We now wish to fit a utility function that reflects the director’s assessment of the true 

worth of any strategy. What simplifying assumptions on the shape of such functions 

do we have to make so that a method can be applied that is no more difficult than 

the five-point assessment procedure discussed in Section 11-7? 

The strongest reasonable simplification is to assume that the utility of a K-attribute 

outcome is equal to the weighted sum of K independently and individually derived 

single-attribute utilities. The weights reflect the decision maker’s relative ranking of 

the varipus objectives. If uk(xk) is the utility function of attribute k and wk the weight 

assigned to objective k, the utility of the multiattribute outcome [xl7 x2, . . ., xK] is 

as follows. 

ADDITIVE UTILITY FUNCTIONS 
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Let us assume that this assumption holds for the search and rescue problem. 
First, we have to derive the two single-attribute utility functions. It'seems fairly 
plausible that the director is risk averse. This fixes the general shape of the functions. 
Also, the larger each attribute value, the less preferred the outcome. If is thus con¬ 
venient to assign the utility 0 to the most preferred and the utility -1 to the least 
preferred outcome. Past experience indicates that. Xj varies over the range from 0 to 
20, while a range from 0 to 100 thousand covers x2. A further three utility assessments 
based on indifference statements, say, using reference lotteries, usually suffice so that 
we can fit a curve through the five points obtained. Figure 22-4 shojws, for each 
attribute, a typical five-point assessment and the corresponding utility function ob¬ 
tained by fitting a curve of the form b(l - ecx) through them. The curve for the first 
utility function is 

(22-20) (l-e0 09*.) 

and for the second it is 

(22-21) «« = 5^2 d 

Next we need weights. If the decision maker is not able to provide the relative 
importance of each objective directly, the values of the weights or scaling constants 
can be inferred from a single indifference statement. Assume w{ > % Then the 
decision maker is asked to specify a value of x,, so that he or she is indifferent between 
the following two outcomes: [xt at specified value, x2 at its most preferred value] and 
[x{ at its most preferred value, x2 at its least preferred value]. Say the answer is 

Xj = 11. Hence 

u(x{ = 11, x2 = 0) = u{Xl = 0,x2 = 100) 

w j i/ j (11) + w2u2(0) = WiUj(O) + w2u2{ 100) 

Figure 22-4. Fitted single-attribute utility functions based on five-point assessment procedure. 

Days overdue 

x\ 

Cumulative cost 

0 O 30 
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Evaluating u,(x,) and u2(x2) from (22-20) and (22-21), we get 

-0.3349w, +0=0+ (-l)w2 

Also, 
W] + w2 — 1 

Solving the last two equations yields w, = 0.75, w2= 0.25. The utility function for 
the additive utility case is 

(22-22) u(Xj, x2) = 
0.75 

5.05 (1 
_ Oo.no9, ■ 0.25 

0.492 
(1 - e° 00S) 

Verify that, as desired, u(0,0) = 0 and u(20, 100) = - 1. 
What behavioral assumptions are embodied by additive utility functions? The 

contribution of each attribute toward the total utility of an outcome is only a function 
of its own value. It is in no way affected by the values of any other attributes. 
Furthermore, the decision maker is willing to trade off equal amounts of weighted 
utilities between attributes. 

22-9 MUTUAL UTILITY INDEPENDENCE 

Somewhat less restrictive assumptions go under the name of mutual utility inde¬ 
pendence. An attribute is utility independent of all other attributes if the preference 
ranking of a set of values for this attribute remains constant, in relative terms, for all 
possible combination of values of the other attributes. Attributes are mutually utility 
independent if each attribute is utility independent of all other attributes. For the two- 
attribute case this means that, if x2 is utility independent of x2, the basic shape of the 
(conditional) utility function of x, remains the same for all values of x2, only its scale 
may change. For instance, the difference in utility of a craft being overdue by 14 days 
rather than 7 may be 0.2 when the cost of the mission is 0, but 0.25 when the cost 
is $70,000, or larger by 20 percent. For x, to be utility independent of x2, the same 
scaling relationship must hold for all changes in x„ as x2 increases from 0 to $70,000. 
However, for other increases in x2, the scaling factor might be different. This property 
is depicted in Figure 22-5. The shaded shape is the utility function under mutual 
utility independence. For comparison, the broken lines indicate the shape of the 
corresponding additive utility function (though not scaled to -1). Study the graph 
carefully. 

What functional relationship does mutual utility independence imply? Consider 
the outcome [x£, x*]. Its utility is shown in the graph as the sum A + B + C. A is 
equal to fc,u,(x*); B is equal to k2u2{x2). If x, is utility independent of x2, then C 
represents the change (increase or decrease) in utility of x*, as x2 shifts from 0 to 
x2. Let f2(x2 )fc,iti(xp denote this change, with f2(x*) being the change factor. Then 
the utility of [x*, x2] takes the form 
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(22-23) x2*) = Ku\(x\) + kui(h) + fiih) Ku\(x\) ; 

By an analogous reasoning, if x2 is utility independent of xl9 then C measures also 
the change in utility of x*2, as xx shifts from 0 to x*. Let fY(x*) denote the corresponding 
change factor. Then 

(22-24) u(x*, x*) = ^(x*) + k2u2(x2) + f\(xi)k2u2(x2) 

For mutual utility independence, expressions (22-23) and (22-24) must be equal. They 
are equal if f2{xl)klul(x*) = /j(x*) k2u2 (x2) or, rearranging terms, if 

(22-25) f2(h)ik2u2^ 

Solving for ^(x*) and f2(x2) in (22-25), we get 

(22-26) /i(x*) = Mi«i(0 and /z(*z) = hku2 (xi) 

Substituting ^(xj into (22-24) or f2(x2) into (22-23), we get the algebraip condition for 
mutual utility independence. 
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The scaling constants, k[7 kl7 and k^7 can be inferred from two indifference 
statements. First, let us arbitrarily set u(0, 0) = 0 and i/(20, 100) = - 1. Next, we 
solicit the same type of indifference statement as for the additive utility case. There, 
we found that [x{ = 11, x2 = 0] was indifferent to [xx = 0, x2 = 100]. Given 
1^(11) = — 0.3349 and u2(100) = - 1, we get again 

(22-28) (-0.3349)*! = (-1)*2 or k2 = 0.3349*! 

In the second indifference statement, we ask for an outcome [xp x2] which is 
indifferent to a 50-50 reference lottery involving the most preferred and the least 
preferred outcomes, i.e., [0, 0] and [20, 100]. We shall make this choice easier for 
the decision maker by fixing x{ to its -0.5 individual utility level—namely, xL= 14. 
Assume the answer is [xx = 14, x2 = 70]. From the lottery, it follows that 
i/(14, 70) = -0.5. We can now evaluate (22-27) for this outcome, using (22-28): 

u(14, 70) = *^(14) + 0.3349*^(70) + ^(0.3349*0 *,u(14)u(70) = -0.5 

By (22-20) and (22-21), Ul(14) = -0.5001 and u2(70) = -0.6568. Substituting 
these values into u(14, 70), collecting terms, and solving for *, in terms of kl7 we find 

K- 

(22-29) k, = (-0.5 + 0.7201^/0.11^ 

Finally, substituting (22-28) and (22-29) into (22-27), we find ki from evaluating 
u(20, 100) = - 1: 

u(20, 100) = 

U- 1) + 0.3349fc,(-1) + *,(0.3349*,) (-D(-l) = -1 

Solving for kl7 we get the values of the three scaling constants: 

*! = 0.609 k2 = 0.204 *3 = -1.502 

The joint utility function for Xj and x2 under mutual utility independence is therefore 
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As an interesting side point, note that if k3 = 0, mutual utility independence 
reduces to a purely additive form, with the scaling constants kx and k2 summing to 
one. Additive utility functions are thus a special case of mutual utility independence. 

Life becomes extremely difficult if we abandon the assumption of mutual utility 
independence. For instance, if xx is utility independent of x2, but not vice versa, the 
utility function is still defined by expression (22-23). But now the factor f2{x2) has to 
be determined for all values of x2. Ascertaining f2{x2) empirically may |e beyond the 
cognitive abilities of the decision maker. Most applications of multiattribute utility 
functions, therefore, are based on the assumptions of additivity or of mutual utility 
independence. 

How can we verify whether attribute xx is mutually utility independent of attribute 
x2? The procedure is surprisingly simple. Each point in the positive quadrant in Figure 
22-6 represents an outcome over two attributes. Fixing x2 at a given value x2—for 
instance, 80 thousand—we ask the decision maker to identify the value of xx = x* 
such that he or she is indifferent between a 50-50 reference lottery involving the worst 
and the best outcome for xx (xt = 20 and xx = 0 in our case). For out problem, we 
expect the answer to be x* = 14. We then repeat this indifference assessment for a 
different value of x2 = x£—say, zero. If the new value of x* coincides with the 
previously identified one, then xx is utility independent of x2. The values of x2 should 
be chosen such that they fall into the normal range of experience of the decision 
maker, but are nevertheless sufficiently apart. 

This process is repeated for x2, with xx fixed first at some value x[ and then at 
x". If the indifference point, x2 , is identical for each case, then x2 is also utility 
independent of Xj. (See Keeney, 1972, for an example.) 

Figure 22-6. Assessment of utility independence. 

22-10 DECISION EVALUATION WITH MULTIATTRIBUTE 
UTILITY FUNCTIONS 

We now have the necessary machinery to determine the preferred strategy for a 
particular impending search and rescue mission. A report has just comfe in that radio 
contact was lost five days ago with a 36-foot sloop headed toward area X. Area X had 
been suffering rough weather at that time. From past experience and the search pattern 
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followed under each strategy considered, conditional probabilities of locating the 
missing craft by the end of search day n, provided it is in the search area, can be 
estimated. Table 22-7 summarizes them for five contemplated search strategies. The 
tapering off of the probability gains as n increases reflects the fact that the initial search 
is concentrated on the most likely location of the craft. 

Table 22-7. Conditional probabilities pm of locating missing craft by end of day n for strategy i 

Search Day n 

i Strategy Description i 1 3 4 5 

i commercial airliners only 0.10 0.16 0.2 0.23 0.25 
2 1 search aircraft each day 0.30 0.50 0.64 0.75 0.80 
3 1 aircraft on day 1, 2 thereafter 0.30 0.68 0.90 0.98 0.98 
4 2 aircraft each day 0.50 0.80 0.95 0.99 0.99 
5 2 aircraft on day 1, 3 thereafter 0.50 0.92 0.99 0.99 0.99 

The preferred search strategy is the one that maximizes expected utility. Since 
the official search is abandoned after at most five days, the mission may fail. Let us 
arbitrarily assign this outcome a (dis)utility of - 1, regardless of the cumulative cost 
of the mission. This is equivalent to setting this outcome equal to {xl = 20, 
x2 = 100). Table 22-8 lists the cumulative costs x2 for each strategy as a function of 
the number of days of search. 

Table 22-8. Cumulative search costs cm (in thousand dollars) for strategy i for n days 

Strategy i 

Days of Search n Needed 

1 2 3 4 5 

i 0 0 0 0 0 
2 10 20 30 40 
3 10 30 50 70 — 

4 20 40 60 80 — 

5 20 60 100 — — 

We can now compute the expected utility value of each strategy. Note that xx = 
5 4- n. For instance, for strategy 2 we use the following inputs, based on expression 
(22-30): 

Days of Search n 1 2 3 4 5 Abandoned 

[6, 10] [7, 20] [8, 30] [9, 40] [10, 50] [20, 100] 
-0.1055 -0.1459 -0.1901 -0.2365 -0.3148 -1 

0.30 0.20 0.14 0.11 0.05 0.20 

[*i> 

u[*i, x2\n} 

Pin 
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The expected utility of strategy 2 is equal to the sum of the products a(x]y x2\n)p2n. 
Applied to all five strategies, we get the following results: 

Strategy 1 2 3 4 5 

Expected utility -0.7781 -0.3283 -0.1923 -0.1823 -0.1978 

Strategy 4 maximizes expected utility and hence is the preferred strategy according to 
this type of analysis. 

In a real-life application to a search and rescue service, additional attributes, such 
as the number of people missing, their experience, the type of craft, anti the weather 
conditions would be included. Utility assessments might be obtained from a panel of 
experts, rather than the director alone. Tables for the probabilities pin fpr most likely 
search areas would be determined a priori. The actual evaluation of alternative search 
strategies could be made using an interactive computer program, allowing quick 
evaluation of many strategies. 

EXERCISES 

22.1 Solve the goal programming problem of exercise 2.22 with priorities defined in part 
(c), using the simplex method for preemptive goal programming. 

22.2 Solve the following problems by the simplex method for preemptive goal programming: 

minimize P^sf + s*) + P2s2 4- P3s3- 

subject to 4jq + 2x2 + - s* = 10 (goal 1) 

jq - x2 + s2^ - s2 = 0 (goal 2) 

x, + s3~ - s3+ = 2 (§oal 3) 

all variables ^ 0 

22.3 Green County wants to maximize total employment and maximize tofol net revenue 
with the following regional development proposal. Logging in forest A will provide 
employment for 3 persons, generate net revenue of $12,000 and require 0.8 bulldozer 
and 0.6 truck per hectare logged per year. For logging in forest B, the corresponding 
figures are 6 persons, $5000, 0.4 bulldozer, and 0.9 truck. The county his 4 bulldozers 
and 6 trucks. No more than 6 hectares can be logged per year in each forest. 
(a) Formulate the problem as a multiple-objective linear program. 
(b) Find the MINSUM solutions graphically for all weight combination^. 
(c) Formulate the MINMAX problem. Using an LP computer code, fiqd the optimal 

solution for the following weights: 

w, 1 10 1 10 

w2 0 1 1 10 1 
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22.4 Consider the investment problem of exercise 2.4, where the objective was to maximize 
returns. Assume now that the firm also has the objective of minimizing a measure of 
risk for the total investment. For simplicity, we use as a measure of risk the size of the 
range of the returns, which is 2% on short-term investments and 5% on long-term 
investments. The total risk is simply equal to the weighted sum of the individual risks. 
We also impose the restriction that at least half of the funds available have to be invested 
in long-terms funds. Reformulate this problem as a multiple objective linear program. 
(a) Find the MINSUM solution graphically and determine for what values of the weights 

given to the two objectives the various possible solutions are optimal. 
(b) Formulate the MINMAX problenq. Without doing any calculations, indicate the 

edge(s) where the MINMAX solution is likely to be for the following weight com¬ 
binations: 

w1 1 10 1 10 

-w2 0 1 1 10 1 

22.5 Find all efficient solutions for 
(a) The problem in exercise 22.3. 
(b) The problem in exercise 22.4. 

22.6 The graduate admissions committee of a prominent business school wants to streamline 
its admissions policy for the Ph.D. program. This policy is currently plagued by serious 
inconsistencies. The following factors are deemed important for admissions: the can¬ 
didate’s undergraduate gradepoint average, the quality of the institution where the un¬ 
dergraduate degree was obtained, the score in the graduate school of business admission 
test, and recommendations. Consider the first two attributes only. No candidate is 
considered if his or her gradepoint average is below 3. A consensus opinion of the 
committee as a whole indicates indifference between a 50-50 lottery involving a 
gradepoint average of 3 and 4, or a gradepoint average of 3.7 for certain; a 50-50 lottery 
of 3 and 3.7, or 3.5 for certain; and a 50-50 lottery of 3.7 and 4, or 3.9 for certain. 
Universities were ranked on a scale from 0 to 10, with 10 being the best. The committee 
agreed that a value of 1/10 of this scale would be a good measure for the utility attached 
to a degree from any institution ranked. 

(a) Define individual utility functions for each of these two attributes over the range 
[0, 1], with 1 being the most preferred outcome. Use a utility function of the form 
(x - a)2 for the gradepoint average. 

(b) The committee also agrees that they would be indifferent between two applicants 
with the follovying scores: 

• applicant A: [gradepoint average 4, university rank 0] = [4, 0], and 
• applicant B: [gradepoint average 3.333, university rank 10] = [3.333, 10]. 

Find the two-attribute utility function associated with this statement under the 
assumption of additive utilities. 

(c) Find the two-attribute utility function for mutual utility independence, given the 
statement of indifference in (b) and the following additional statement of indifference 
between two applicants: 

• applicant A: [gradepoint average 3.7, university rank 7.5] = [3.7, 7.5], and 
• applicant B: a 50-50 lottery of [3, 0], and [4, 10]. 
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(d) There are four late applicants with the following scores: A: [3.3, 9]; B: [3.5, 6]; C: 
[3.9, 5]; and D: [4, 3]. Using the two-attribute utility function derived under (c), 
which two applicants should be accepted? 

(e) Is the assumption of mutual utility independence a reasonable approximation for 
this problem? Why or why not? 
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Heuristic 
Problem Solving 

The student of operations research who has mastered the techniques discussed in the 
previous chapters and has acquired, even if only partially, the skills of problem iden¬ 
tification, model construction, and so on, may feel sufficiently well equipped to enter 
the battle of real-world problem solving. However, on entering that formidable arena, 
he or she will inevitably encounter many problems that cannot be solved by any of 
the techniques carried in the tool kit of problem-solving methods. Heuristic approaches 
may often be the only alternative. Heuristic problem solving is not a solution method 
in the sense that the simplex method of linear programming is, but father it is a 
philosophy of, or strategy for, seeking out a method or methods that m!ight produce 
a solution to a particular problem. 

Heuristic problem solving involves inventing a set of rules that will aid in the 
discovery of one or more satisfactory solutions to a specific problem. The emphasis 
is on satisfactory—there is no guarantee of optimality. These rules are referred to as 
heuristics (derived from the Greek word heuriskein meaning to discover). In many 
instances, the use of heuristics may reduce the problem space sufficiently so that an 
analytical procedure or simulation may be applied; sometimes, the heuristics used 
may be, by themselves, sufficient to produce an acceptable feasible solution. 

Whereas analytical procedures are based on deductive reasoning supported by 
mathematical proofs and known properties, heuristic methods are based on inductive 
inferences related to human characteristics of problem solving, such as creativity, 
insight, intuition, and learning. A particular heuristic is followed because it promises, 
intuitively or from experience, to help in the search for an acceptable solution, and 
if in the process a better rule is discovered, then the old one is discarded. So while 
heuristic problem solving involves the use of currently accepted rules, it may also 
involve a search for even better rules to replace them. : 

Why adopt a heuristic approach to solving a particular problem? Wq have noted 
that many real-world problems are not amenable to direct analytical solution by known 

647 
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mathematical techniques. But even where it is theoretically possible to apply such 
methods, if the problem is very large, the task of doing so may be impracticable. A 
large class of■ combinatorial problems (such as facility location, traveling salesman, 
and production scheduling problems) fall into this category. 

23-1 ILL-STRUCTURED PROBLEMS 

Problems for which no practicable analytic or algorithmic solution technique has been 
yet devised are often referred to as ill structured. An ill-structured problem (ISP) is 
a residual concept. We can only define what it is not. A problem is an ISP if it is not 
a well-structured problem (WSP). In operations research, a WSP possesses the fol¬ 
lowing general descriptive characteristics in varying degrees: 

1. Any knowledge relevant to the problem can be represented in an acceptable 

model. 
2. An acceptable model should encompass all attainable (feasible) solutions. 
3. There exist definite criteria for judging the feasibility and optimality of any 

solution. 
4. There exists a programmable method for finding the optimal solution. 
5. The solution method involves only an economically practicable amount of 

computation. 
6. All information required by the acceptable model should be available at an 

economically practicable effort of data-gathering. 

The boundary between ISPs and WSPs is vague and fluid. As advances in op¬ 
erations research methodology proceed, new and more sophisticated solution tech¬ 
niques in association with more powerful computers will convert ISPs to WSPs. But 
considering the state of the art at any given time, certain problems, such as simple 
linear optimization problems, can definitely be said to be well structured while certain 
other problems are obvious candidates for the label ill structured, such as many 
combinatorial problems and chess games. Many of the problems confronting opera¬ 
tions researchers fall into neither of these clearly identified groups. 

Bred in an analytical mold, operations researchers have been all too ready to treat 
such problems as WSPs—an assumption here, a trim there, bend a few facts, overlook 
a few others, and any fuzzy problem can be made to look respectable. However, 
models constructed using such an approach can hardly be expected to perform well. 
Rather than mutilate a problem until it conforms to a model for which an efficient 
solution technique exists, a more acceptable line of attack is to modify the solution 
procedure to fit the problem. It is in such situations that heuristic approaches are 

effective. 

23-2 HEURISTICS—THE HUMAN APPROACH TO PROBLEM 
SOLVING 

It is obvious that human problem-solving abilities, such as perception, insight, crea¬ 
tivity, and learning, are involved at all phases of an operations research project in 
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overcoming the inevitable problems that arise as such projects progress. However, our 
current concern is confined to phase three of the five project phases discussed in 
Section 1-1 of Chapter 1—namely, deriving a solution to the model. 
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Many operations research projects involve the application of a standard solution 
method. As such, the major task of the operations researcher is to construct an 
acceptable model that is amenable to solution by a known optimizing technique for 
which efficient computer programs may be available. In a sense, the solution method 
can be viewed as a black box which, given the correct input, will produce the required 
output. In contrast, a heuristic approach might involve a process such as that shown 
in Figure 23-1. Where are human problem-solving capabilities applicable in this 
process? First, in order to devise the initial rules of search, there must be some 
perception of the structure of the problem. This perception may come through insight 
(sudden discovery) or learning (accumulation of experience). In the process of applying 
the rules, additional information relating to the structure of the problem may be 
learned, which allows more efficient use of the rules or even a complete redefinition 
of the search rules. When a search fails to produce either a solution or additional 
information which may be used to restructure the search procedure, then even such 
a failure is useful.' Given a decision to try again from the beginning, that avenue of 
search can be eliminated. In this way, the search for a solution method is narrowed. 

Heuristic problem-solving behavior is most easily observed in the playing of games 
or the solving of puzzles. Battleships and chess are classical examples; Mastermind 
is another. In Mastermind, a game controller selects a color combination of marbles 
placed in four to six positions (depending on the degree of difficulty of the game). 
The player has to guess which color marble is in which position in as few trials as 
possible. After each guess the controller responds by informing the player of how 
many correct colors in their correct positions and how many correct colors not in their 
correct positions the player has scored, without revealing which colors and positions 
are involved. The player then uses this information to prepare the next guess. Most 
players will, after a few games, develop a detailed set of rules, or heuristics, on how 
to exploit the cumulative information obtained over all trials of a game. A good player 
will use these heuristics to gradually reduce the feasible color-position combinations 
to fewer and fewer possibilities. Although the correct color-position combination could 
be found analytically by solving a set of simultaneous linear equations formed from 
a certain number of trials, the human player using heuristics usually requires far fewer 

trials. 

23-3 SATISFICING 

It has been strongly implied throughout the discussion—but until now not explicitly 
stated—that heuristic problem-solving methods are strongly associated with satisficing, 
as opposed to optimizing, behavior. Heuristic methods do not normally guarantee 
optimal solutions. This is not necessarily a disadvantage. Many problems with ill- 
structured characteristics do not have optimal solutions in the strict sense. Such 
problems are essentially solved when one or more acceptable solutions have been 
identified. In fact, goal satisficing often describes human choice behavior more ac¬ 
curately than does goal optimizing. In business organizations, goal satisficing is likely 
to be most prevalent at the higher levels of management. It is there where goal 
conflicts, calling for tradeoffs between opposing goals, are usually most evident. 
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Two important features of satisficing-type problems should be noted. The first 
concerns the flexible nature of satisficing behavior: What is regarded as satisfactory 
at one point in time may become unsatisfactory when new information comes to light, 
and vice versa. For example, a manager may regard certain levels of profit, market 
share, and capital growth as satisfactory. But if it can be pointed out that all these 
objectives can be substantially and simultaneously increased, the previously acceptable 
levels may become unsatisfactory. Alternatively, if it can be adequately Remonstrated 
that the goal levels cannot be simultaneously achieved, the manager will lower his 
or her aspiration level so that it becomes easier to find satisfactory solutions. 

The second feature of satisficing behavior is of greater consequence. 'The decision 
maker may require that an acceptable solution possess some ill-definecj set of non- 
quantifiable attributes—nonquantifiable at least in the sense that objective measure¬ 
ment is not attainable by a practicable amount of effort. For example, in a developing 
country, there may be a set of potential projects of which the government may be 
able to undertake a small subset. Some of the required attributes of the final selection 
might be that the chosen projects should not be unduly disruptive to cultural orga¬ 
nization and activity, that they should result in an acceptable pattern of income 
distribution, and that they should be seen to contribute substantially to regional 
development. Rather than attempt to define explicit tradeoff relations among various 
attributes (which could be used to find the “optimal” solution), the decision maker 
chooses from several alternative solutions, each possessing the preferred characteristics 
in varying degrees. 

23-4 HEURISTIC SOLUTION STRATEGIES 

Most heuristic problem-solving procedures belong to one or a mixture of four general 
strategies. Let us look briefly at each in turn. 

Solution-building strategies 

In this approach, we attempt to construct a complete solution, one element at a time, 
according to a set of definite rules. The job sequencing problem in Section 23-5 is 
solved by a solution-building strategy, which for this problem finds the optimal so¬ 
lution. 

Break-make strategies 

Here we “break” a complex problem into a number of smaller subproblems. Each 
subproblem is solved individually or in some hierarchical sequence, where the output 
of a lower order subproblem is used as input into the next higher order problem, or 
vice versa, depending on the most appropriate order of solution. The solution to the 
whole problem is “made” by integrating the solutions to the subproblems into a 
consistent overall solution. Consider, for instance, the case study in Section 1-9. 
There the problem involves finding an optimal inventory policy for the entire operation 
of the lubrication oil division. It might be broken down into a number of sjibproblems: 
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determining filled stock replenishment sizes, determining filled stock reorder points, 
and, finally, finding empty container replenishment rules. They would be solved in 
sequence. The results of the subproblem for the filled stock replenishment sizes 
(namely, the number of replenishments per year = number of times shortages may 
occur) is used as input into the determination of reorder points for each product. 
Similarly, the size and pattern of filled stock replenishments is used as input for finding 
good empty container replenishment rules. Interactions in only one direction are taken 

into account for finding an overall solution. 

Solution-modification strategies 

An initial solution is modified by applying a specified sequence of heuristics aimed 
at improving the acceptability of the solution. The initial solution may have been 
built up by using a solution-building or break-make strategy, or it may have been 
obtained by an approximation method, such as the use of a standard optimizing 
technique on a simplified model of the problem. It may be that the starting solution 
is infeasible and the heuristic modification rules are designed to achieve feasibility 
and hence acceptability. The facility location solution method described in Section 

23-6 is an example of this approach. 

Search-learning strategies 

Search-learning involves a directed search of the solution space. As new information 
is unearthed during the search, it is used to guide the search in new directions. The 
solution procedure for solving Battleships, chess, or Mastermind falls into this group 
of strategies because the outcome of each trial is used to guide the player in eliminating 
portions of the solution space and formulating trials that will provide further infor¬ 
mation needed to find the solution. The second phase of the traveling salesman 
solution method in Section 23-8 is also of this form. 

A particular heuristic program may involve a combination of two or more of 
these strategies. For instance, the solution-building or the break-make strategy may 
provide an initial solution, which is then improved upon by a mixture of the solution- 
modification and search-learning strategies. 

When using a solution-modification or search-learning strategy, we should care¬ 
fully spell out all conditions for which the procedure should be terminated as successful 
or abandoned as a failure. For instance, if the procedure involves finding a feasible 
solution, it is terminated once such a solution has been identified, or it is abandoned 
if after k trials or m minutes of computer time no feasible solution has been generated. 
Sometimes, it may be desirable to have an interactive computer program that allows 
the analyst to intervene and redirect the search or terminate the procedure at will or 
at certain points in the search. 

Many heuristic procedures incorporate optimizing methods for some of their 
phases. For instance, some of the subproblems created in the break-make strategy 
might be solved by an optimizing technique, such as linear programming. Also, 
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simulation methods may form part of a heuristic procedure. For instance, a simulation 
model may be used to test the acceptability of a heuristically derived solution. Alter¬ 
natively, heuristic rules may be used in conjunction with simulation td speed up the 
search for good solutions to complex decision problems. 

Heuristic procedures, like simulation models, tend to be very problem-specific, 
in contrast to, say, linear programming, which can be applied to any1 problem that 
satisfies the fairly general assumptions of the model. However, the analyst should 
avoid devising a procedure that is parameter-specific. A procedure shduld not be so 
narrow that its effectiveness in finding acceptable solutions depends on particular or 
a limited range of parameter values. Should these parameters change (say, over time), 
the procedure becomes useless. Furthermore, the ability to test the sensitivity of the 
solution to changes in these parameters is lost. 

23-5 PROCESSING n JOBS THROUGH TWO MACHINES 

The following 7 jobs have to be processed through 2 machines in the same sequence— 
a milling machine (A) and a lathe (B)—with processing times A( and in minutes 
as shown: 

Job 1 2 3 4 5 6 7 ;_ 

A; 30 50 60 60 20 120 70 (milling) 
B, 60 60 50 30 40 100 80 (lathing) 

All jobs are due for delivery by the end of the day. Is it possible to process all jobs 
within the time available—namely, 480 minutes? If so, what is the best sequence of 
processing the jobs? 

Since the total processing time on machine A is 410 minutes and on machine 
B is 420 minutes, a sequence may exist that allows us to meet the deadline. In a 
simple example of this sort, it could be found by trial and error. If we can find the 
minimum elapse time required to process all jobs through both machines, then we 
can answer both questions simultaneously. To demonstrate the type of mental processes 
involved in discovering heuristics, we shall now derive a solution-building strategy to 
find a sequence, which (as we shall not prove, though) in fact is the minimum elapsed- 
time sequence. 

Consider first some very simple sequencing problems. Say we only look at jobs 
1 and 2. The possible sequences are 1-2 and 2-1. Note that both jobs Have the same 
time on the second machine—machine B. Figure 23-2 depicts the Gantt chart—a 
schedule graph—associated with each sequence. The total elapsed time for each 
sequence is given by the sum of processing and idle time of the second diachine. The 
sequence 1-2 has the shorter total elapsed time. Observe that this Sequence has 
A1 < A2. Consider now a second set of 2 jobs, namely jobs 3 and 4. Note that both 
have the same time on the first machine—machine A. Verify that the sequence 4-3 
has the shorter total elapsed time. Observe that this sequence has B4 < j35. We invite 
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Figure 23-2. Gantt charts for two-job!two-machine case. 

I 1 I I I I I I I I I l I I I I I 1 I I I I 
0 50 100 150 200 minutes 

you to evaluate additional 2-job sequences, e.g., jobs 1 and 3, 4 and 5, 5 and 6, and 
6 and 7. Do you discover some patterns? These observations for 2 jobs seem to suggest 
that if the shortest processing time occurs on machine A, the corresponding job is 
scheduled first, while if the shortest processing time occurs on machine B, the cor¬ 
responding job is scheduled last. Although we reached these conclusions for the 2-job 
case only, we could use them as a basis of a heuristic program for sequencing n jobs 

through 2 machines. 

SEQUENCING ALGORITHM FOR n JOBS ON TWO MACHINES 

Step 1 Find the smallest processing time in the combined list of processing 
times on both machines for the remaining jobs, i.e., find i = r with 

(23-1) Mr = minimum (A,, A;, . . ., A,„ B,, B;, . . ., B„) 

Ties are broken arbitrarily. 
Step 2 If M, = Ar, then schedule job r as the Mi job. Increase k to 

If M, - B„ then schedule job r as the in - /)th job. Increase j to 

Step 3 Remove Arand B, from the combined list. 
Step 4 If combined list is empty , stop; otherwise, return to step 1. 

This procedure constructs a complete solution in n iterations. It is an example 
of a solution-building strategy. Although we derived this procedure using heuristic 
problem solving, it turns out that the solution found is in fact the optimal solution, 
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as shown by S. M. Johnson (“Optimal Two- and Three-Stage Production Schedule 
with Setup Times Included,” Naval Logistics Quarterly, March 1954). 

Let us now apply Johnson's algorithm to our example. The circled numbers 
underneath Ar or Br indicate the sequence. Job 5 has the shortest processing time of 
20. It is on machine A. Hence job 5 is scheduled first. Job 1 on machine A and job 
4 on machine B have the next shortest times of 30. Hence job 1 is second, while job 
4 is seventh. Verify the other results. 

Job 1 2 3 4 5 6 7 

A 30 so 60 60 20 |120 70 

® © © 
B. 60 60 50 30 40 100 80 

© © ;® 

The sequence of processing is thus jobs 5-1-2-7-6-3-4. Verify that the total 
elapsed time is 470 minutes. Machine B is idle for the initial 20 minutes and for 30 
minutes after job 7, or a total of 50 minutes. ’ 

Unfortunately, extending this heuristic procedure to the m machine/n job case 
does not yield the minimum elapsed-time sequence any more (except for a rather 
trivial case discussed by Johnson). However, the basic idea of processing jobs on the 
first few machines in order of increasing machine times will often give “good” solutions. 

23-6 DEPOT LOCATION PROBLEM 

In a merchandising distribution system, goods are shipped from a factory to a number 
of regional warehouses or depots from which they are distributed to individual cus¬ 
tomers (e.g., to retailers or directly to households), as depicted in figure 12-1 of 
Chapter 12. The costs of physical distribution have been estimated to average about 
20 percent of the final product cost. These costs may be reduced somewhat if a firm 
locates its depots judiciously. Considerable efforts have been made to develop optim¬ 
izing models for finding both the number of depots and their best location. Some use 
integer programming to find the best combination of depots from a preselected list 
of feasible sites (called the feasible set approach). The sheer size of such problems 
makes them difficult to solve. Others are based on selecting best sites in a Cartesian 
coordinate space. Since each depot may be sited anywhere, it is referred to as the 
infinite set approach. We will now discuss one such model, which is based on a 
heuristic solution-modification strategy. 

To simplify matters somewhat, assume that there are only local distribution costs. 
The situation could, for instance, deal with siting service centers. The location of 
each customer j is given by the coordinates (xjf y;), / = 1, 2, . . ., n. Each customer 
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receives goods from one depot only—the nearest depot. The “customers” may in fact 

be the center of gravity of suitably chosen small local areas, such as city or town 

districts. Similarly, the location of each depot i is given by (xi? £•), i = 1, 2, . . ., 

N. The local distribution cost is proportional to the volume of goods wj delivered and 

the straight-line distance dtj from depot i to customer /, i.e., cjw}dijy where c;. is the 

unit-volume unit-distance cost applicable to customer /. (dtj could conceivably be 

adjusted by a factor a to account for the fact that actual road distance will on the 

average be a times dsay, 1.2 d^) dtj is defined as the Euclidean distance 

(23-2) dv= [(*,-- x/ +(?,.- y)T 

The total delivery cost from all N depots is 

(23-3) T(N) =11 cjWjdfi, 
'= 1 7 ~ 1 

where 8i;. = 1 if customer j is served from depot i and 0 otherwise. If there are no 

throughput constraints on the depot, then for a given N the problem consists of finding 

N depot locations so as to minimize T(N). The optimal number N of depots is usually 

found by enumeration or search. 

To motivate the solution procedure for the N-depot case, let us first consider the 

case of one depot only. We shall thus drop the subscript i. We want to find location 

(£*, f*) that minimizes 

(23-4) T = j t,V, 

where d{j is defined by (23-2). (Note that 8.;. is now not needed.) Since x and j> can 

assume any real numbers, we use the methods of classical optimization (Chapter 19, 

Section 19-4) to find their optimum values. Taking partial derivatives of (23-4) with 

respect to x and f and setting them equal to zero, we get 

(23-5) dT/dx = ^ CjWj(x - x)ldtj = 0 dT/df = ^ CjWj{ y - y)ldtj = 0 
i i 

Solving for x and % 

1 ciwix,ld,i 
(23-6) r = -2--— and 

lc,wildu 

Expressions (23-6) cannot be evaluated for x* and $*, since they involve the 
distances dtj. These can only be determined if we know i* and f*. We can apply our 

usual trick for such situations and find x* and by successive approximations. We 

start out with an initial guess of the depot location of (x(0), f0)), find the d,j0) distances 

implied by this choice, and insert them into (23-6) to obtain a new guess for the depot 

location (x(1), )>(1)). Using this new guess, we find again the associated d^ values, 

which in turn are inserted into (23-6) to get (x(2), f2)). This process continues until 
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the difference in the coordinates of the depot location becomes sufficiently small. 
Usually, five or six iterations are sufficient. Given that T is convex in x and y, this 
procedure will converge to the global optimum. Convergence, though, is never com¬ 
plete, hence the arbitrary stopping rule. Note that each iteration has the form of a 
solution-modification step. 

Given the ease of the solution-modification procedure for the 1-depot case, why 
not adapt it to the N-depot case? Taking partial derivatives of T(N) in (23-3) with 
respect to each xfand % i = 1, 2, . . ., N, setting them equal to zero* and solving 
for xx and yf, we get 

(23-7) x, = 

2 wAH 
j_ 

2ciwNda 
y> = 

2 WAH- 
1 _ 

2 ciwNd., ’ 

i = 1,2, . . ,,N 

Now, both dt) and 80 are unknown. Given any set of depot locations, we need some 
criterion for assigning customers to depots. If the cj;’s only depend on / and not on 
the depot location, then the most logical one is to assign customers to the nearest 
depot. The heuristic solution-modification algorithm is now as follows. 

HEURISTIC DEPOT LOCATION ALGORITHM 

Step 1 Select N initial depot locations, defined bv (r ", y i = ), 

Step 2 Assign each customer/, j - 1, 2, . . ., n, to the nearest depot. Set 
df = 1 for the corresponding combination of i and j, leaving all 
other 8,‘ at zero. Find the corresponding df. 

Step 3 Increase kto k + 1. 

Step 4 Find xf and f\k\ i ~ 1, 2, . . ., N, using expressions (23-7) with 
dk- '■ and 8^ G 

Oil-. _ j < e an(j _ ptk- l)| < £) for a|] wj1ere e 

y,k', for all i, and stop; 

Step 5 If lx 

is arbitrarily small, set x“ ~ and yf 

There is no guarantee that this procedure will converge to the optimal depot 
locations. In fact, the final depot locations found at step 5 may be different for different 
initial choices of (xf\ y|01). For this reason, the algorithm is usually applied to a 
number of different initial locations. Each final solution found is costed put, and the 
one with the lowest cost is selected as the “best” solution. Computer riin times for 
this procedure are relatively small, allowing easily 100 different initial locations to be 
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tried. Experience with this algorithm also indicates that the cost function (23-3) is 
fairly shallow in the region of this best solution. Hence, the decision makers may be 
presented with not just one, but several, of the better solutions. 

Finally, to find the “best” number N of depots, the search process is repeated 
for different values of N, taking into account also the fixed operating costs of running 

the depots. 
This basic model has been extended to deal with trunking costs from the factory 

to the depots, several factories, and nonlinear operating costs for the depots as a 
function of depot throughput. The interested reader is encouraged to consult the text 
by Eilon, Christofides, and Watson-Gandy listed in the references. The next section 
will demonstrate this procedure for a “practical” example. 

23-7 MIDDLE EARTH WEED PROCESSING 

After the War of the Rings (J. R. R. Tolkien, The Lord of the Rings, Allen & Unwin, 
1968), when life had settled back to normal, agricultural scientists found that the 
legendary tobacco of Middle Earth could also be grown in other lands outside the 
Shire. Demand for Shireweed—as it had become known—was high and was expected 
to remain so, owing to the discovery that it had no injurious effects on health. In fact, 
it was beneficial—as evidenced by the longevity of hobbits. Somehow though, growers 
outside the Shire never got the knack of processing their own weed properly. After 
harvest, one could see long columns of pack animals carrying the leaves in big bundles 
to the Shire for skillful processing by the hobbits. Although the roads were fairly safe 
for traveling by then, the leaves suffered from the long and costly journey, resulting 
in an inferior product. The hobbits also began charging high prices for processing the 
weed, which did not contribute to neighborly harmony. The cry arose that local 
processing plants should be established at various places in Middle Earth, supervised 
by experts from the Shire. So, by Royal decree the Weed Processing Corporation 
(WPC) was established and was made responsible for setting up processing plants and 

processing the weed. 
The WPC contracted researchers at the University of Middle Earth to investigate 

the problem of determining the number, size, and location for the proposed new weed 
processing plants. The terms of reference were not only that the operation should keep 
overall weed transport and processing costs as low as possible, but also that a view 
should be kept of “certain political considerations.” For instance, the people of Es- 
garoth in Mirkwood were crying for regional development, while the inhabitants of 
Hobbiton in the Shire were not at all sure that they wanted a large factory in their 
village. “It will foul the air and pollute the stream” was the theme of many letters to 
the Hobbiton Times. 

The research group (operations researchers, agricultural economists, traffic en¬ 
gineers—the usual type) gathered the following data: 

1. The expected leaf production w. per year for each of the 22 growing regions 
j (Table 23-1). 
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2. Transport cost per bundle per mile for each growing region cy These varied 
with the pack animals used and the traveling speed, which depended on the 
terrain of the region (Table 23-1). 

3. The cost of operating a plant as a function of its throughput. It was found that 
these costs could safely be approximated by f + vW, where f ijs the fixed 
operating cost, v is the variable cost per bundle, and W is the plant throughput, 
also in bundles. 

4. A detailed map of Middle Earth, showing for each region the coordinates of 
its center of gravity in terms of weed production (Figure 23-3), summarized 
in Table 23-1. 

Table 23-1. Input data for Shireweed processing plants location problem 

i Name of Region 

Production 
(bundles) 

w. 

Transport Cost 
(bundle/mi) 

ci 

Coordinates 
(units of 10 mi) 

i Forlindon 200 0.1 4: 32 
2 Ered Luin 300 0.1 9 1 34 
3 Amor 800 0.1 20: 34 
4 Shire 1800 0.1 13 : 30 
5 Harlindon 900 0.1 7 ■ 27 
6 Minhiriath 700 0.1 15 24 
7 Enedhwaith 500 0.1 20 ; 24 
8 Dunland 500 0.2 22 ' 24 
9 Rhudaur 400 0.2 22 : 28 

10 Hithaiglin 1000 0.2 28 ; 27 
11 Mirkwood 300 0.3 32 : 28 
12 Brown Lands 100 0.1 35 20 
13 Wold 200 0.2 29 ; 23 
14 Rohan 900 0.1 30 ' 19 
15 Erednimrais 1200 0.1 18 : 15 
16 Anfalas 700 0.2 21 ! 12 
17 Lebennin 800 0.2 31 ! 11 
18 Anorien 600 0.1 34 15 
19 Ithilien 500 0.1 36 ! 12 
20 Gorgoroth 0 0.2 39 17 
21 Nurn 100 0.2 42 : 13 
22 South Gondor 100 0.1 34 : 8 

After several weeks of controversy over whether to use a feasible s’et or infinite 
set approach, the latter won out when it was discovered that the last integer program 
to be solved on the University’s MORDOR MACH III computer had aborted after 
22 days. (Note that for this example the flow of goods is reversed—from the customers 
to the depots, rather than the other way round.) An initial trial run was made with 
three processing plants. Their initial sites were the centers of gravity of region 4 (Shire), 
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Figure 23-3. Map of Middle Earth. 

1 (4, 32) 
2 (9, 34) 
3 (20,34) 
4 (13, 30) 
5 (7, 27) 
6 (15,24) 
7 (20,24) 
8 (22,24) 
9 (22,28) 

10 (28, 27) 
11 (32,28) 
12 (35,20) 
13 (29, 23) 
14 (30, 19) 
15 (18, 15) 
16 (21, 12) 
17 (31, 11) 
18 (34, 15) 
19 (36, 12) 

20 (39, 17) 
21 (42, 13) 
22 (34,8) 

region 14 (Rohan), and region 19 (Ithilien). Allocating each region to the closest plant, 

we get the following initial assignments: 

Plant at Region 4 Region 14 Region 19 

Assignments 1, 2, 3, 5, 6, 7, 9 8, 10, 11, 12, 13, 14, 15, 16 17, 18, 19, 20, 21, 22 

(Note that the Shire was left out—the researchers realized that the hobbits preferred 
to process their own weed in their backyard curing holes. “It loses all flavor when 
processed in bulk” was a common dictum.) 

Table 23-2 shows the results of the first five iterations. Let us briefly outline the 
first iteration. Using the initial assignment of regions to plants, expression (23-2) yields 
the distances d.y0) shown under iteration 0. At the first iteration, these distances and 
the corresponding 8j;0) values are used in expression (23-7) to find new coordinates 
(x^1}, y(/}) for i = 1, 2, 3. These are shown at the bottom portion for iteration 1. 
From these new plant locations, we can, for each /, first compute the distances 
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df, all i, find the closest plant i, and then set 8'T = 1 for the corresponding i. This 
new assignment is shown under iteration 1, together with the corresponding distances. 
This process repeats itself until the coordinates of the plant locations converge. For 
our example, we stopped the computations when the differences in coordinates become 
smaller than 3. This yields the solution shown as iteration 5, with a total transport 
cost of 89,442 gold coins and plant throughputs of 2900, 5000, and 2300 bundles, 
respectively. Note how the total cost only decreases significantly at the first three 
iterations. The cost decrease at the fifth iteration is less than 0.4 percent. At the fifth 
iteration, plant 1 is located on the boundary of regions 4 and 5, plant 2 on the 
boundary of regions 8 and 13, and plant 3 close to the centre of gravity of region 17. 
Postscript. The research team of the University of Middle Earth made 10 runs with 
different starting locations for N = 3, 4, and 5 plants, as well as a few special runs 
for which certain towns, like Hobbiton, were ruled out as possible sites, and a few 
other runs for which one or two sites, such as a plant in Esgaroth, were selected and 
kept fixed throughout the computations. The best 2 runs for each N and the more 
promising special runs were fully documented in the final report, which was presented 

to the WPC. A decision is still pending. 

23-8 THE TRAVELING SALESMAN PROBLEM 

A traveling salesman has to visit each of N cities. The objective is to find a tour that 
minimizes the distance traveled or minimizes the cost of the tour if costs are not 
proportional to distance. This problem has so far resisted all attempts to find a solution 
method that guarantees an optimum and remains efficient even for reasonably small 
problems. Very small problems of up to 15 cities can be solved optimally by Little’s 
branch and bound algorithm (J. D. C. Little et al., “An Algorithm for the Traveling 
Salesman Problem,” Operations Research, 1963, pp. 972-989). Integer programming 
can handle slightly larger problems. Realistic-size problems of 40 or more cities have 
to be solved approximately by heuristic methods. Some of the better known methods 
are the ones by S. Lin and B. W. Kernighan (“An Effective Heuristic Algorithm for 
the Traveling Salesman Problem,” Operations Research, Vol. 21, No. 2, March—April 
1973, pp. 498-516), and N. Christofides et al. (“Exact Algorithms for the Vehicle 
Routing Problem,” Math. Programming, Vol. 20, No. 3, 1980, pp. 255-282). 

We will now develop a simple set of heuristics based on the geometry of the 
problem. As shown by J. P. Norback and R. F. Love (“Geometric Approaches to 
Solving the Traveling Salesman Problem,” Management Science, July 1977, pp. 
1208-1223), these heuristics usually give surprisingly good solutions. 

The method assumes that the problem can be represented in a two-dimensional 
space as depicted in the example of Figure 23-4. Each city i, i = 1, 2, . . ., N, can 
be represented by the coordinates (**, yj. The distance di;- between any two cities is 
given by the Euclidean distance of expression (23-2). Alternatively, travel costs between 
any two cities are assumed to be proportional to the Euclidean distance. Consequently, 
the distances between cities can be represented by a distance matrix which is sym¬ 
metrical about the diagonal, i.e., dtj = djt, for all i, ). For the example in Figure 23- 

4, the distance matrix is 
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Figure 23-4. Seven-city traveling salesman problem in Euclidean two-space. 

For the more general form of the traveling salesman problem, distances or costs 
may not necessarily be symmetrical. More general solution methods are then needed. 

An optimal tour in Euclidean two-space will satisfy the following two properties: 

1. An optimal tour never intersects itself. That this must be so can easily be seen 
from Figure 23-5. The tour with the solid line intersects itself. By reversing 
the order of visiting cities X and Y, we obtain the tour shown try the broken 
line. Clearly, the latter is shorter. 

Figure 23-5. Tour -Z-Y-X-S- is longer than tour -Z-X-Y-S-. 
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2. Consider again the problem of visiting all cities shown in Figure 23-4. The 
smallest convex region that contains all cities is given by the convex hull. Each 
corner point of the convex hull corresponds to a city. In Figure 23-6, part (a), 
the convex hull is shown as A-B-C-D-A. From property 1, it follows that an 
optimal tour will always visit the cities on the convex hull in the sequence in 
which they appear on the convex hull. If this were not true, then the tour 
would have to intersect itself at least once. (Note that in a complete tour, the 
cities in the interior of the convex hull will be visited between cities on the 
convex hull.) 

The method in fact starts out by forming a partial tour containing only the cities 
on the convex hull. For our example, the initial partial tour is thus A-B-C-D-A, 
as depicted in part (a) of Figure 23-6. The points that form the convex hull can easily 
be found by the following procedure: Locate the point with the lowest x-coordinate 
(initial point). Place a ruler horizontally through this point. Keeping the ruler fixed 
on this point, swivel it counterclockwise until it touches a new point. Connect these 
two points by a straight line. The new point is now used as the swivel point, and the 
ruler is again turned in a counterclockwise direction until another point is touched. 
This process is repeated until the initial point is found again. The lines connecting 
these points form the convex hull. 

The problem is now to determine where and in what sequence the remaining 
cities should be inserted between consecutive cities in the partial tour. The approach 
is to add cities one at a time to form new partial tours, until all cities have been 
included. It is thus a solution-building strategy. 

One simple way to decide which city to insert next into a partial tour is as follows. 
Measure all angles whose vertices are at cities not yet included in the partial tour and 
whose sides are lines through consecutive cities on the partial tour. This is shown in 
part (b). The city with the largest angle is the one that is inserted next between the 
two corresponding consecutive cities on the partial tour. The angle C-G-D is the 
largest; hence city G is included into the partial tour between cities C and D. The 
new partial tour A-B-C-G-D-A is shown in part (c). This tour is used as the starting 
point for a new iteration. New angles are found for all cities not yet included, and 
the process is repeated until a complete tour has been generated. This process is 
depicted in parts (c), (d), and (e). The complete tour found is A-B-C-G-D-F-E-A. 
From the distance matrix (23-8), we find its total distance as 73.74. In this example, 
the process did not find the optimal tour A-B-C-D-G-F-E-A, depicted in part (f). 
Its total distance is 73.07, or 0.67 less than the tour found. The difference is less than 
1 percent. 

For small problems of up to 20 cities, angles may easily be estimated by eye and 
a tour generated quickly with equipment no more complicated than a straightedge, 
a pencil, and a geographical map of the problem. It is thus an effective and convenient 
“back of the envelope method.” 

Although the tour generated may not be optimal, Norback and Love report highly 
encouraging sample results, solving problems of up to 318 cities. For 25 smaller 
problems with 12 cities each, where the method could be tested against the optimal 
solution, almost half of the problems were solved optimally, while of the remainder 
only 2 were off by more than 5 percent. 



Figure 23-6. Iterations of the geometric traveling salesman method. 



666 Chapter 23 Heuristic Problem Solving 

Having found a complete tour, we could attempt to improve the solution by a 
search-learning phase. One approach is to form a new tour by an interchange of two 
consecutive cities. If the interchange causes the tour to intersect itself, it is discarded. 
Otherwise it is costed out and retained, provided that it reduces the tour length. Let 
us apply this to the solution obtained by the geometric method: 

Interchange Change in Tour Length 

A and B tour intersects 

B and C tour intersects 

C and G no intersect + 11.08 

G and D no interesect -0.67 

D and F no intersect +4.05 

F and E tour intersects 

E and A no intersect + 12.55 

Interchanging G and D reduces the total tour length by 0.67 to 73.07, which in fact 
is the optimal tour depicted in part (f). Note, though, that it is not possible to guarantee 
optimality by this method. 

Instead of considering only interchanging the order of two consecutive cities, we 
could evaluate interchanges of links between any two pairs of cities. All those inter¬ 
changes that decrease the total distance of the tour are made. The resulting tour is 
then called 2-optimal, i.e., it cannot be improved any further by interchanges of two 
links. Note, though, the large number of possible interchanges that have to be 
checked—the majority violating property 1. This concept can be extended to the 
simultaneous interchanges of more than two lirtks. 

Another approach suitable for large problems is to use a break-make strategy. The 
map of cities to be visited is divided into several compact natural geographical clusters, 
or regions, of cities. Within each region, a good or even the optimum tour is found. 
Finally, the various subtours are linked to one another. The task is again best done 
directly on the map of cities. 

EXERCISES 

23.1 N items of volume qP i = 1, 2, . . ., N, have to be loaded into boxes each with 
capacity Q. The following heuristic procedure is suggested to find a good if not optimal 

packing schedule: 
(a) Make a list (A) of the items in terms of descending order of volume. 
(b) Take the first item on list A, and allocate it to a box. 
(c) Rearrange the partially loaded boxes (list B) in ascending order of space left unused. 
(d) Take the next item on list A, and allocate it to the first box in list B that will 

accommodate it. If none do, use a new box. 
(e) Repeat steps (c) and (d) until all items have been loaded. 
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(f) If the number k of boxes used is equal to kQt where 

j=i 1=1 ‘ 

then the loading is optimal. Stop. If k > k0, go to step (g). 
(g) Rearrange the partially loaded boxes in list B in ascending order of space left 

unused. 
(h) Take the last box in list B—the one with the largest unused spac$. Starting with 

the first box in list B, check whether it is possible to reduce the unused space in 
that box by interchanging the last / items loaded in the last box with the last m 
items loaded in the other box, / = 1, 2, 3, . . . and m = 1, 2, 3, ... . Make 
the interchange with the largest unused space reduction. Continue these compar¬ 

isons and interchanges with the second and third boxes, etc., until all boxes have 

been compared with the last. 
(i) Remove the last box from list B, and also remove any boxes completely emptied. 
(j) Stop if k = k0, or if no further improvements can be made; otherwise, go to 

step (g). 

In terms of the classification in Section 23-4, identify the various strategies used. 

Identify each heuristic used. 

23.2 Consider the transportation algorithm of Chapter 6. In terms of the discussion of 
Section 23-4, identify the various strategies used in that algorithm: and state each 

heuristic. 

23.3 Consider the critical path cost model of Section 8-6. From the description given there, 
construct a step-by-step algorithm for the method. In terms of the discussion in Section 

23-4, identify the various strategies used and list each heuristic. 

23.4 In the car pool problem, the objective is to assign itineraries to a number of car drivers 
who may each pick up a limited number of passengers en route to a common desti¬ 
nation. This itinerary should minimize the total distance traveled. Consider the fol¬ 
lowing list of coordinates, where each point is a pickup and the distances between 
points are proportional to the Euclidean distance: a (-6, 0), b (-3, 10), c (-4.5, 
7), d (-2, 6), e (-6, 4), f(-2.5, 2), g(0, 8), h (0, 4), i (2.5, 6),!; (5, 9), k (5.5, 

7.5), / (4.5, 5),m(4, 3),n(-3, -l),o(-5, -2.5), #>(-1, -3),jc/(-4, -5),r 
(-5, -9), s (-5.5, - 9), t (0, - 5), u (-0.5, -7), v(-l, -10), *(1, -2), y 
(0.5, -10), % (7, -5); destination (0, 0). No car can take more than 4 people, 
including the driver. 
(a) Suggest a heuristic solution-building procedure aimed at minimizing total distance 

traveled by all cars. All cars travel to the destination (0, 0). Use the procedure to 
find a solution. (Hint: Graph the points and do it directly on the graph.) 

(b) Redo (a) but allow the cars to be left at intermediate points, with the occupants 
merging with occupants in other cars. 

23.5 Nick Dickson, a confirmed gambler, while knowing nothing about politics, enjoys 
betting on the outcome of elections. For the forthcoming contest, Nick had shopped 
around and obtained the following odds, in terms of the total payout for each $1 bet 
if each candidate wins: Joe Honest $7, Ted Algood $10, Bob Friendly $2, Jack Sincere 
$5. “If I place my bets properly, I can’t lose,” thought Nick. He was able to raise 
$6600 for the venture. Unfortunately, he made a mistake when placing the bets, so 
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that when Bob Friendly won, Nick came out on the losing end. Use a heuristic 
procedure to determine how Nick should have placed his bets so as to ensure a gain 

whatever the outcome. 

23.6 The air force command has received instructions to disrupt the enemy’s supply lines 
so as to slow down their advance. Supplies are being transported along one road on 
which there are five major bridges. The destruction of any one of these bridges will 
achieve the desired effect. The amount of fuel available is 25,000 gallons. Two types 
of aircraft are suitable for this mission: B21.5’s and F222’s. There are 20 B21.5’s and 
15 F222’s. The fuel consumption is 1 gal/mile for a B21.5 and § gal/mile for an F222. 
Data concerning the vulnerability of each bridge to attack by each type of plane, and 
the distance of each bridge from the base, are given in the table below. 

Bridge 

Probability of Destruction 
Distance from 
Base (in miles) By a B21.5 By an F222 

A 0.08 0.06 600 

B 0.18 0.18 900 

C 0.15 0.13 1100 

D 0.28 0.23 1200 

E 0.30 out of range 1500 

Each plane has to carry sufficient fuel for the round trip (to target and back) plus 
10 percent extra as a safety margin. For planning purposes, any bomb damage short 
of complete destruction is regarded as a miss because the bridge is still usable. Devise 
a heuristic procedure that will enable you to allocate planes to targets, so that the 
probability of success is maximized. In calculating the probability of success for any 
particular allocation, you may find the following method easiest: Suppose the allocation 
decided upon is for all planes to be assigned to bridge A (this allocation is not within 
the fuel limit). Then (probability of success) = (1 - probability of failure) = 

[1 - (1 - .08)20( 1 - .06)15] = 0.9254. 

23.7 Middle Earth is reapportioning its election districts for its high court of elders. The 
guiding principle of this reapportionment is one person, one vote. This means that 
the 22 regions should be assigned to 4 election districts such that each district has 
about the same population size, say within a margin of 5 percent from either side of 
the average. No region should be split; i.e., each should be assigned entirely to only 
one election district. Furthermore, to avoid gerrymandering, each district should be 
contiguous (i.e., it should be possible to walk from each region in a district to all other 
regions in the same district without leaving the district) and compact (i.e., the centers 
of all regions in a district should be as close together as possible). In other words, 
districts of a circular shape are preferred to districts with arms protruding. A suitable 
measure of compactness is given by the ratio of the sum of the squared distances 
between the region centers over the total area of the district. A list of populations, 
areas for each region, and distances between region centers is given in the table. Find 
a heuristic procedure for allocating the regions to districts, subject to the population 
constraint, contiguity, and achieving good compactness. Figure 23-3 in the text shows 

a map of Middle Earth. 
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Distance to Center of Region 

Region Population i Area 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 1000 16 4 12 8 7 12 17 18 15 20 24 27; 23 22 20 22 28 28 31 33 36 34 

2 2000 15 8 6 7 10 15 15 12 17 21 25: 20 20 19 21 26 2J6 29 31 33 32 

3 1100 70 5 9 9 12 11 5 10 11 18 13 15 16 18 22 2° 23 24 27 27 

4 4100 7 4 5 10 10 7 12 16 18 14 14 13 16 20 20 25 25 27 26 

5 1500 32 5 10 11 10 15 18 21 16 16 13 15 21 il 25 27 29 27 

6 2600 23 5 6 7 11 16 16 12 11 8 11 16 16 20 22 24 22 

7 1000 26 4 7 10 14 12 8 6 4 6 10 10 15 18 20 17 

8 800 14 6 8 1 2 8 9 6 8 11 10 14 15 18 17 

9 3000 40 8 11 14 9 10 11 13 15 1,4 17 18 21 21 

10 2000 24 4 8 5 8 13 14 14 12 14 15 18 20 

11 3500 65 8 7 10 16 17 15 13 14 13 17 20 

12 1500 22 5 6 12 12 8 !5 6 6 10 12 

13 1900 11 3 9 10 9 7 10 11 14 14 

14 2700 31 6 6 7 6 9 11 13 13 

15 1500 16 3 9 to 13 16 18 14 

16 3800 30 7 8 32 15 18 12 

17 2700 31 7 8 9 9 9 

18 4500 13 1 3 6 8 7 

19 4000 15 3 5 6 

20 1500 18 4 8 

21 1000 28 6 

22 1500 38 

23.8 There are n jobs 1, 2, . . ., i, . . n that have to be processed on either of two 
machines in a single pass. Each job i takes a time f. and has associated with it a priority 
weighting pt > 0. Higher values of pt correspond to more urgent jobs. We have to 
assign each job to a machine and determine the order in which each machine processes 
the jobs assigned to it. At time 0 each machine starts processing its first job and upon 
completion immediately proceeds to the next job, and so on. Let Trbe the time in 
which job i is completed. Thus, if a machine processes jobs 1, 2, and 4 in that order, 
T1 = tlf T2 = T'j + t2, T4 = T2 + f4. We want to find an allocation of jobs to the 

two machines and a sequencing of jobs at each machine so as to minimize the weighted 
sum of completion times, C = S"=1^Tt. Consider the following jobs: 

i 1 2 3 4 5 6 7 8 

t 4 7 2 12 7 3 5 15 
px 9 15 4 20 10 3 4 9 

(a) Develop a step-by-step heuristic solution-building procedure. (Hint: If there is only 
a single machine, then the optimal assignment of jobs is in order of nondecreasing 
ratios et = tjpx. See D. A. Wismer, “Solution of the Flowshop-Schcpduling Problem 
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with No Intermediate Queues/’ Operations Researchr Vol. 20, No. 3, May-June 
1972, p. 689. Hence, to get an initial good solution, we only have to worry about 
assigning jobs to machines. The order of processing the jobs on a machine follows 
the same principle as for a single machine.) 

(b) Develop a step-by-step solution-modification procedure with a view to improving 
the solution derived under (a). (Hint: Find a criterion for interchanging jobs or 

groups of jobs between the 2 machines, such that total weighted completion time 

is reduced.) 

23.9 Use Johnson’s sequencing algorithm to find the optimal sequence for the following 

jobs to be processed on two machines: 

Job 1 2 3 4 5 6 7 8 9 10 11 12 

A. 5 8 11 2 4 7 12 3 9 3 6 10 
B* 594376945894 

What is the total processing time? 

23.10 Assume now that not all jobs have the same sequence—some jobs have to go first on 
machine B, followed by machine A. For the data of problem 23.9, assume that jobs 
8 through 12 have the order B-A. Adapt Johnson’s algorithm to get a heuristic method 
for sequencing all 12 jobs. The objective is still to minimize total elapsed time to 

process all jobs. 

23.11 A firm has to relocate its factory, serving six regional warehouses, located as follows: 

Warehouse 1 2 3 4 5 6 

^-coordinate 120 160 250 220 300 180 miles 

^-coordinate 210 40 200 100 60 280 miles 

Volume of sales 40 80 50 70 30 60 units 

If transport costs are linear with respect to volume and distance, find the optimal 
factory location. 

23.12 Assume that transport costs in exercise 23.11 are a function of the warehouse location 
because of geographical features of the area. The costs are as follows: 

Warehouse 1 2 3 4 5 6 

Cost/unit/mile 1 1 1.5 2 1 1 

Adapt the procedure to this situation and find the new optimal factory location. 

23.13 (Computationally heavy) Consider the Middle Earth weed processing problem in 
Section 23-7. Find the optimal location if two processing plants have to be built for 
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the first 10 regions only. (Disregard the remaining 12 regions.) Use as initial locations 
for the two plants the center of gravity of regions 2 and 9. Terminate iterations if the 
change in location for both plants is less than 5 10-mile units for all coordinates. Find 
the cost associated with the final solution. 

23.14 Consider the following 10 cities: 

_City 1 234567 8 9 10 

^-coordinate 0 5 8 7 10 15 16 18 18 20 
^-coordinate 0 20 12 4 15 4 18 8 15 17 

(a) Use the method by Norback and Love to find a “good” tour. ’ 
(b) Apply the search-learning heuristic of interchanging consecutive cities. Can the 

tour be improved? 
(c) Try Lin's procedure of interchanging links between 2 pairs of cities on the solution 

found in (a). Note that all possible interchanges of two links hav^ to be tested, 
although many can be ruled out visually either as violating properly 1 or as bad. 
Can the tour be improved? 

Using the Norback and Love method, find a good tour for visiting the 22 locations 
in Middle Earth, whose coordinates are given in Table 23-1. 

Use a break-make strategy to find a good tour for visiting all 22 locations in Middle 
Earth, shown in Table 23-1. Divide Middle Earth in about 4 areas. Use the Norback 
and Love method for each area, and then connect the subtours appropriately. 

REFERENCES 

Eilon, S., C. D. T. Watson-Gandy, and N. Christofides. Distribution Management: Math¬ 
ematical Modelling and Practical Analysis. London: Griffen, 1971. Extensive coverage 
of facility location, particularly the infinite set approach, and vehicle scheduling. An 
excellent starting point in this field. 

Gordon, P. J. “Heuristic Problem Solving,” Business Horizons, Spring 1961 The author 
develops his discussion of heuristic problem solving around a very tricky puzzle and its 
method of solution. This easy-to-read article is a must for puzzle addicts. 

Hinkle, Charles L., and Alfred A. Kuehn. “Heuristic Models: Mapping the Maze for Man¬ 
agement,” California Management Review, Fall 1967. A nontechnical introduction to the 
subject of heuristic problem solving with a brief survey of specific application areas. This 
article is reprinted in A. Rappaport, Ed., Information for Decision Making (Englewood 
Cliffs, N.J.: Prentice-Hall, 1970). It includes a substantial list of referenced 

Meier, R. C., W. T. Newell, and H. L. Pazer. Simulation in Business and Economics. 
Englewood Cliffs, N.J.: Prentice-Hall, 1969. Chapter 5 contains an introduction to the 
nature of heuristic methods, along with some detailed examples of the application of the 
approach. An extensive list of references up to 1968 is included. 

Mercer, A., M. Cantley, and G. Rand. Operational Distribution Research—Innovative Case 
Studies. London: Taylor & Francis, 1978. Detailed analysis of ten disguised case studies 

23.15 

23.16 



672 Chapter 23 Heuristic Problem Solving 

in facility location, distribution management, and vehicle scheduling. Gives good insight 
into effective operations research. 

Minieka, E. Optimization Algorithms for Networks and Graphs. New York: Dekker, 1978. 
Introductory coverage of algorithms for the Chinese postman problem, the traveling sales¬ 
man problem, and location problems. 

Scott, A. J. Combinatorial Programming, Spatial Analysis and Planning. London: Methuen 
and Co., 1971. Chapter 3 contains an exposition of the application of heuristic methods 
to combinatorial problems. Includes a comprehensive reference list. 

Simon, H. A. The New Science of Management Decisions. New York: Harper and Brothers, 
1960. This book contains a series of lectures on the impact of computer technology on 
managerial decision making. In lecture two, heuristic methods in relation to human 
problem solving activity are discussed. 

_“The Structure of Ill-Structured Problems,” Artificial Intelligence, Winter 1973. The 
properties of well-structured and ill-structured problems are discussed, and the 
implications of these are examined by use of examples. 



APPPNmTY A zAJrJl HilML/li\ /V 

Introduction to 
Vectors and 

Simultaneous 
Equations, plus a 

Matrix Algebra 
Approach to Linear 

Programming 

The first part of this appendix (Sections A-l through A-8) briefly develops the concepts 
of vector analysis and simultaneous equations necessary for the main tody of the text. 
In the second part of the appendix (Section A-9), linear programming is derived in 
terms of matrices for readers who already have a working knowledge of this type of 
mathematics. This latter part is not self-contained; it relies on the ideas developed in 
Chapters 2 and 3. Therefore, it is recommended that those chapters be read before 
Section A-9 is studied. 

A-l VECTORS 

We are familiar with the notion of expressing a point in terms of an origin and 
coordinate axes. Each point in 2 dimensions (2-space) uniquely represents an ordered 

673 
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Figure A-l. Vectors in two-space. 

pair of real numbers. The pair is ordered because it matters which order the numbers 
are in; e.g., (0, 1) is not the same as (1, 0). Also, each point uniquely represents a 
line from the origin to the point. We will call this line a vector. The vector has 
direction (from the origin to the point) and magnitude (the length of the line), as 
illustrated in Figure A-l. Thus, in 2-space, there is a unique correspondence between 
vectors directed from the origin and ordered pairs of real numbers. 

These concepts can be generalized to n-space. Every vector in n-space is uniquely 
represented by an ordered set of n real numbers (the elements of the vector). We will 
write the vector, in terms of its elements, as {au a2, av . . ., an) = a. 

Vectors are significant in that they facilitate manipulation of points and, thus, 
of ordered sets of real numbers. Take the two points a = (a]f a2, . . ., an) and b = 
(fcj, fc2, . . ., bn). How do we add or multiply them? How do we find the distance 
between them? Geometric ideas in 2-space and 3-space can be generalized to enable 
algebraic analysis of points in n-space. 

A-2 MANIPULATION OF VECTORS 

In 2-space, the sum of two vectors—e.g., (1, 2) and (3, 1)—is given by the sum of 
corresponding elements (1 + 3, 2 + 1) = (4, 3). This procedure is represented 
diagrammatically in Figure A-2 by a parallelogram. 

When generalizing to n-space, it is necessary to insist that vectors can be summed 
only if they exist in the same space. For example, the 2-space vector (2, 1) cannot 
be added to the 4-space vector (1, 0, 1, 0). 



Subtraction of vectors follows immediately. If — b = ( — b19 —b27 . . ., -bn), then 
a - b = a + (-b) = (a, - a2 - b2, . . an - bn). 

Before we discuss multiplication of vectors, it will be necessary to distinguish 
between a row vector and a column vector. If the elements are written \gl9 . . gn] 

it is a row vector; if the elements are written 

r*n 

LgnJ 

it is a column vector. There is no conceptual difference between them; it is purely 
a matter of usage. We will assume that all vectors are column vectors unless otherwise 

stated (but for convenience they will be written as row vectors). If ja is a column 
vector, we can denote its row vector equivalent as a'. 

A useful multiplication of vectors is the scalar product. It is called the scalar 
product because the result of the multiplication is a scalar (a real number—not a 
vector). 
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SCALAR PRODUCT 

If a and b are vectors in n-space, then the scalar product 

a'b oa 

where c is the scalar 

An n-dimensional space is called Euclidean space (denoted by En) when the 
distance between two points a and b is measured by the n-dimensional extension of 

Pythagoras’ Theorem. In 2-dimensional Euclidean space E2, the distance between 
points a and b is as shown in Figure A-3. The distance 7 from a to b is the length 
of the side AB of the triangle ABC. By Pythagoras’ Theorem, 

72 = {bx - a{)2 + (a2 - b2f = {ax - bx)2 + (a2 - b2)2 

and 

2 H 
L;=l ' 

In n-space E", distance is defined as follows. 

DISTANCE IN EUCLIDEAN SPACE F/‘ 

id b = (b . fe. A ^ 1 c 

V 2 



Another aspect of vectors that is of importance to us is the multiplication of a 
vector by a scalar. 
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SUM VECTOR 

The sum vector is the vector whose elements are all unity: 

The unit vector e, is the vector with unity as its ith ek 

elements zero. 

Examples of unit vectors are e,= (1, 0, . . 0), e2= (0, 1, 0, . . 0), etc. In 
2-space, there are 2 unit vectors; in n-space, there are n unit vectors. Geometrically, 
these vectors lie along the axes of the space and have unit length. 

A-4 REPRESENTING A VECTOR AS A LINEAR 
COMBINATION OF OTHER VECTORS 

If we have a set of vectors in E", ai, a2, . . ., ar, we say that b is expressed as a linear 

combination of these vectors if, for some scalars 7,, 72, . . ., y,, 

(A-l) b = 7,a, + 72a2 + y3a, + • • • + 7rar 

Expression (A-l) combines the ideas of vector addition and multiplication by a 
scalar. We are finding proportions (the y,) of the vectors a,, . . ., a, that sum to b. 

In Figure A-4, we illustrate this for the case of a, = (2, 1), a, = (1, 3), and 

b = (8,9): 

(A-2) 

or 

b = 7,3, + 72a2 

+ 2! 
1 
3 

The proportions are 7, = 3 and y2 = 2; i.e., b is 3 times aj, plus 2 times a2. 
A special case of a linear combination is where 2,7, = 1, with all 7, 3= 0. For the 

two-vector case, this defines a vector on the straight line between the vectors (line 

segment). 

For example, let a, = 
9 
3 

L 7, = I, y2 = f. For simplicity, let 7, = 

y = 5, and let y2 = (1 - 7) = 5. We now look at 

b 7a, + (1 - y)a2 
1 ’12’ 2 '9’ *10' 

3 9 + 3 3_ _ 5 _ 

This lies on the straight line between a, and a2. In fact, for any 0 y =£ 1, the vector 
b = ya, + (1 - y)a2 lies 7 of the way from a2 to a, on the line segment. Figure A- 

5 illustrates this. 
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This definition can be extended to any number of points. In its more general form, 
this linear combination is called a convex combination and represents a segment of 
a plane. The plane segment is called the convex hull of the points. 

CONVEX HULL OF THE POINTS a„ a:, . . ., a,IN E" 

Tire convex hull in E" of p points a,, a,, a„ . . ., apis the set of points 
b= 2^)7,a„ for all 7,, such that 2f_,7i = 1 and all 7,3* 0. 

Consider the points aj >a2 = ? 
. the convex hull of these points 

is shown in Figure A-6. If yl = 3, 72 = 3, 7b “ 5 (so 2^7,- 1, and all 7,^ 0), then 

1 "l2* 1 V 1 6" V 
3 9 _ + 3 3 + 3 6 _6 

Figure A-6. Convex hull of three points in E2. 

A-5 LINEAR INDEPENDENCE, SPANNING SET, AND BASIS 

We now want to define some properties of sets of vectors. If, in E", we have a set of 
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vectors ap a2, . . ar, we say that they are linearly independent if no one of them 

can be expressed as a linear combination of the remaining ones. 

A set of vectors is linearly dependent if it is not linearly independent. 

Consider the set of vectors a1? a2, a3, a4 in E2, where ^ = (2, 1), a2 = (1, 3), 

a3 = (2, 3), a4 = (4, 2). These are shown in Figure A-7. The set (a1? a2) is linearly 

independent, since neither of the vectors can be expressed in terms of the other. This 

is clear geometrically from Figure A-7. Algebraically, only yY = y2 = 0 will satisfy 

~2l fll fol 
7l 1 + 72 3 ~ 0 

2 1 
There is no finite scalar (-y2/yl) such that j = (—y2/'Y1) 3 -However, the set 

(aj, a2, a3) is not linearly independent. Geometrically, we see that a, can be expressed 

as a linear combination of (a1; a2). Algebraically, 7,a, + y2a2 + 73a3 = 0 is satisfied 

by (at least) 7, = s, 72 = I ^3 = — 1- In fact, no set of three vectors In E2 can be 
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linearly independent. What about the set (a,, a4)? We can write 2a, = a4; so 7, = 
2, 74 = - 1 gives us 7,a, + 74a4 = 0. The set is linearly dependent. Is the set (a,) 

linearly independent? 
The set of vectors a„ a2, . . ., ar in E" is a spanning set of E" if every vector in 

En can be expressed as a linear combination of the set. From Figure A-7 we can see 
that no less than two vectors are required to form a spanning set in E2. So, for example, 
the set (a,, a2) is a spanning set, and so is (a,, a2, a,). However, the set (a,) is not a 
spanning set, and neither is (a,, a4), since many vectors in the space cannot be 
expressed as linear combinations of either of these sets. 

A set of vectors a„ a2, . . ., ar in En is called a basis if it is both linearly 
independent and a spanning set in En. Our discussion of linear independence showed 
us that no set of r > n vectors in E" could be linearly independent. Similarly, no set 
of r < n vectors in E" could span the space. So we conclude that a basis must have 
exactly n vectors in En. Looking at Figure A-7, we see that (a,, a2) is a basis, and so 
is (a„ a4). How many other bases are there? Is (a,, a4) a basis? Clearly, it is not a basis 
because it is not linearly independent. 

A set of vectors a„ a2.ar in En is a basis if it is a linearly independent 
spanning set of E". If it is a basis, then r *= n. 

A-6 MATRICES 

Let us look at a few properties of matrices that will be useful in Chapters 13 and 17. 
There are a number of ways of understanding a matrix. We could think of it as a 
vector of vectors, or as a rectangular array of numbers arranged in rows and columns. 
Whichever way we perceive it, the result is the same. The following is an example 

of a matrix: 

The number of rows m and number of columns n of A define the dimensions of A. 
So A is a 2 x 3 (two by three) matrix. If the numbers of rows and columns are the 
same, it is a square matrix. Let A = (a,, a2, . . ., a„) and B = (b„ b2, . . ., bn) be 
row vectors of column vectors in Em. The sum of A and B follows from the addition 

of vectors: 

A + B = (a, + b,, a2 + b2, . . ., an + b„) 

Expanding this further, we get the following. 



The product of matrices is also a generalization of the scalar product of vectors, 
though this is not as obvious as it is for addition. Let A be an m X r rpatrix, and let 
B be an r X n matrix. Consider A as a column vector of m row vectors in E\ and 
consider B as a row vector of n column vectors in Er. 1 
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However, note that BA will be defined only when m = n. 
If A is a square matrix of dimension n, we can write AA as A2. Let a, be the ith 

row, and let ay be the jth column of A; the element of A2 in row i and column j is 

a,a; = %nk= i difiki- More generally, 

A1 = AA*"1 = AAA • • • A 

It is often convenient for us to view a vector as a matrix with only one row or column. 
Thus, if c = [cj, c2, . . ., cj is a row vector of m elements (1 X m matrix) and if 
A is an m X n matrix, the product cA is a row vector of n elements: 

cA = ^ c,aA, ^ c,a,2, . . ., ^ 

For the next property, we need the concept of the identity matrix I. I is an 
n X n matrix with ones down its diagonal and all other elements equal to zero. For 

instance, for n = 2, 

The product of any n X n matrix A with I reproduces A; i.e., 

AI = IA = A 

Verify this result for A = 

THE INVERSE OF A MATRI: 

:h we can find 

AB = BA = I 

Verify that B 
0.6 -0.2 

■0.2 0.4 
is the inverse of A above. 

A-7 LINEAR SIMULTANEOUS EQUATIONS 

Let us consider the problem of finding values of the variables Xj and x2 that satisfy 
simultaneously the linear equations 

2x, + x, = 8 

+ 3x, = 9 
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Figure A-8. Simultaneous equations. 

X2 

A pair of values for x, and x2 satisfying (A-3) is called a solution to the equations. 
A unique solution exists when only one pair (x„ x2) will satisfy the equations, and 
there is no solution if no pair of values satisfies the equations. 

We see problem (A-3) graphically in Figure A-8. The problem asks for those x, 
and x2 that are common to both of the equation lines. In this case, the answer is a 
single point—point A. The solution values are x; = 3 and x2 = 2. 

Consider next the equations ; 

2xj + x2 = 8 

(A-4) xj + 3x2 = 9 

X, + x2 = 4 

There is no solution to (A-4). No pair (xu x2) exists that satisfies all three equations 
simultaneously. The equations are inconsistent. This is seen clearly irj Figure A-8. 
Had the last equation been x, + x2 = 5, point A would have provided the unique 
solution. In that case, any two of the three equations would have generated the 
solution, so one of the equations is redundant. 

Let us change the problem again. Consider the single equation 

(A-5) 2x, + x2 = 8 

What are the solutions to this equation? Certainly, xt = 3, x2 = 2 satisfies the equation, 
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but so does xY = 4, x2 - 0; in fact, so do all points on the line 2xx + x2 = 8. The 
number of solutions is infinite. Some specific solutions can be found by setting one 
of the variables equal to some value; e.g., set xx = 0, then x2 = 8. We will find some 

such solutions particularly useful. 
Let us collect the results we have established for the two-variable case: 

(i) Two variables and more than two equations normally have no solution. 
(ii) Two variables and two equations normally have a unique solution. 

(iii) Two variables and less than two equations normally have an infinite number 

of solutions. 
(iv) Redundant equations may reduce (i) to case (ii) or (iii), and may reduce case 

(ii) to case (iii). 
(v) Inconsistent equations in case (ii) result in no solution. 

Provide examples of cases (iv) and (v). These results generalize to the n-variable case: 

(i) n variables and more than n equations have no solution, unless there are 
redundant equations (in which case the solution may be unique, or there may 
be an infinite number of solutions). 

(ii) n variables and n equations have a unique solution, unless the equations are 
inconsistent (there is no solution) or unless some equations are redundant (the 
number of solutions is infinite). 

(iii) n variables and less than n equations have an infinite number of solutions, 
unless there are inconsistent equations (in which case there is no solution). 

You may have noticed that (A-3) is the same problem as (A-2). In (A-3) we were 
solving for xL and x2 and in (A-2) we were solving for and 72, yet the answer was 
the same. The solution of simultaneous linear equations is synonymous with finding 
the linear combination of b in terms of and a2, where b is the vector of the 
parameters on the right-hand side of the equations and aj and a2 are the vectors of 

the coefficients of xx and x2, respectively. 
For an n-variable system with m equations, solving the simultaneous equations 

is the same as finding the linear combination of b in terms of al9 a2, . . ., an. The 
vectors b, al9 a2, . . ., an are vectors in Em. When the equations have a unique 
solution, there is only one linear combination of b in terms of at, a2, . . ., an. When 
the number of solutions is infinite, the number of linear combinations of b in terms 
of al9 a2, . . ., an is infinite; and when there is no solution, there is no way of 
constructing the linear combination. For example, in Figure A-9, 

(i) b, in terms of a} only, has no solution. 
(ii) b, in terms of a} and a2, has a unique solution. 

(iii) b, in terms of al9 a2, a3, has an infinite number of solutions. 

These correspond to the equation systems 

(i) 2x{ = 8 
xi = 9 

(ii) 2xx + x2 = 8 
*i + 3x2 = 9 

(iii) 2xx + x2 + 3x3 = 8 
Xj + 3x2 4- 3x3 = 9 



Section A-8 Numerical Solution of Simultaneous Equations 

Figure A-9. Vector representation of simultaneous equations. 

b = (8, 9) 

a3 =(3,3) 

n = (2,1) 

0 1 23456789 10 

A-8 NUMERICAL SOLUTION OF SIMULTANEOUS EQUATIONS 

In matrix notation, we can write a system of n equations in n variables as 

(A-6) Ax = b 

where A is a column vector of constants and x is a column vector of variables. The 
pair of equations (A-3), for example, can be written as 

2 1 Xj 8 
1 3 x2 9 

Formally, the solution to (A-6) can be found if we know the inverse matrix of 
A. Using the fact that A_1A = I and lx = x, we premultiply both sides of (A-6) by 
A-1 and simplify: 

A_1Ax=A~1b or x=A_1b 

This is not, however, an efficient method of solving the equations. Methods 
based on the technique of Gaussian elimination require fewer operations than would 
be required to find the inverse of A. The particular method we consider is a simple 
version of the Gauss-Jordan method. The first step is to form the n x (n + 1) 
augmented matrix [A, b], in which the column vector b now forms the (n + l)th 
column. 

The operations that we are permitted to do in order to solve a system of equations 
such as (A-6) (i.e., addition and subtraction of equations or multiples of equations) 
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now correspond to addition and subtraction of rows or multiples of rows of the aug¬ 
mented matrix. We do these operations systematically, so that, for each column of 
A, the off-diagonal elements are eliminated and the diagonal elements are scaled to 
one. In this way, the augmented matrix for the set of equations Ax = b is transformed 
into one for lx = b', for which the solution is x = b'. Recursion formulas for the 
method, which can easily be programmed, are as follows. 

At stage k, k = 1, 2, . . ., n: 

(i) Scale the nonzero elements of the kth row so that the diagonal element is one: 

(A-7) 4 = <'/<-' ] = k, k + 1, . . ., n + 1 

(ii) Eliminate all of the off-diagonal elements in the kth column by subtracting a 
suitable multiple of row k from each row: 

(A-8) ak = ak~1 y i) 
a *-1 

lk <> j = k, k + 1, . . ., n + 1 

for each row i = 1, . . ., n, except row k 

To simplify the formulas, we have defined bi = ai>n+I. Note that a®, i, j = 1, 
. . ., n + 1, are thus the elements of the original augmented matrix. 

For the equations (A-3), the augmented matrix is as follows: 

Stage 0 [A, b] 
2 1 8 
1 3 9 

Stage 1 
1 \ 4 Row 1 has been scaled so that a\x = 1, then row 1 was 
0 1 5 subtracted from row 2. 

Stage 2 
1 0 3 Row 2 has been scaled so that a\2 = 1, then row 2 was 
0 12 subtracted from row 1. 

This is now the augmented matrix for the system of equations x, = 3, x2 = 2. 
The Gauss-Jordan method can also be used to find the inverse of a square matrix 

A, should it be required. Starting from an n X 2n augmented matrix of the form, 
[A, I] the operations that transform A to an identity matrix will also transform tne 
original identity matrix into the inverse of A. 

A FORTRAN subroutine for solving a system of equations by the Gauss-Jordan 
method is given below. The solution vector is returned as the right hand column of 
the augmented matrix A. Note that more sophisticated and robust algorithms are 
available, including ones which can deal better with special types of matrices. These 
can be found in computer packages for numerical analysis. 

SUBROUTINE GJ(A,N) 
DIMENSION A(20,21) 
N1 = N + 1 
DO 1 K = 1 ,N 
K1 = K + 1 
DO 2 J = K1 , N1 
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2 A(K,J) = A(K,J)/A(K,K) 

DO 1 I = 1 ,N 
IF(I.EQ.K)GC) TO 1 
DO 3 J = K1 ,N 1 

3 A(I,J) = A(I,J)-A(I,K)*A(K,J) 
1 CONTINUE 

RETURN 
END 

*A-9 LINEAR PROGRAMMING IN MATRIX NOTATION 

We can write the linear program in matrix and vector notation as 

,. maximize z = cx 
(A-9) 

subject to Ax = b, x 5* 0 

where z is a scalar, x is a column vector in E", c is a row vector in E",' b is a column 
vector in Em, and A is an m X n dimensional matrix. 

The columns of A corresponding to a basic solution form a nonsingular matrix 
B. There is no loss in generality in assuming that the rank of A is m \ and thus B is 
an m X m matrix (assuming that there are no redundant constraints). 

The basic solution corresponding to B is denoted by xB. If R is the matrix of 
nonbasic columns of A and xR is the vector of nonbasic variables, then 

(A-10) BxB+RxR=b 

Since xR = 0 (by definition), 

(A-11) Bxb = b 

and since B is nonsingular, 

(A-12) xB = B-1 b 

where B_1 is the inverse of B. xBis a feasible solution when B_1 b 2= 0. 

Equation (A-ll) expresses b as a linear combination of the column vectors that 
form the basic matrix B. We will define the z'th column of B as b, and the ith 
component of xB as xBi, so (A-ll) becomes 

m * 

(A-13) b = £ xB,b, 
i=l ; 

Clearly, the xB, are the coefficients of the linear combination of b in terms of B. 
We will now consider expressing a;, any column of A, in terms of B. Let ytj be 

the coefficient of the linear combination of ay and b„ then 
m 

a/ = 2 y.th, 
j = i 
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Or, defining yy as the column vector of the yn, 

(A-14) a, = By,, 

and 

(A-15) y>= B-‘a, 

The simplex tableau corresponding to the basis B consists of xB and the yy for all the 

columns of A. 
The elements of c corresponding to the basic solution we will call cB. You will 

recall that cy is the objective function value of a,, and Zj is the objective function value 
of ay expressed in terms of the basis, i.e., of By,, Using logic developed in Chapter 

3, we obtain 
m 

(A-16) Zj = ^ yacb,- = cBy; = cBB'‘ay 
/'=1 

When the matrix A contains an identity matrix I within it and when b 2* 0, 
there exists an immediate initial basis—the identity matrix—that provides a basic 
feasible solution. When A does not contain an identity matrix, artificial vectors and 
variables are used to augment A until an I does exist. 

A. 1 (i) Draw the vectors 

EXERCISES 

3] 1 _ [Yl n _ [4 
a= 1 b~ 4 c“ 3 

(ii) Show graphically that a + b = ^ . 

(iii) Draw 2a + and verify the answer algebraically. 

(iv) Find algebraically the distance between a and c, and find algebraically the length 

of b. Verify these on the graph. 

(v) Show where the null vector, the sum vector, and the unit vectors are on the graph. 

A. 2 Using the vectors in exercise A. 1, graphically and algebraically, express b as a linear 

combination of a and c. Also express a as a linear combination of b and c. 
A. 3 Using the vectors in exercise A. 1, find two points on the line segment between a 

and b. 
A. 4 Draw the convex hull of the points 

(i) Find algebraically two points in this convex hull. 

(ii) Position the points represented by the following values of y,. 

(a) y, = 0, y2 = 0, y, = i y4 = l 
(b) y, = i y2 = iy,= i y4 = 0. 

(iii) What are the values of y, that give the four corner points of the convex hull? 
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A.5 Consider the following vectors in E3: = (1, 0, 0), a2 = (2, 1, 1), a, = (1, 1, 1) 
a4 = (0, 2, 0). 

(i) Is the set (a2, a3) linearly independent? 
(ii) Is the set (a1? a2, a3) a spanning set? 

(iii) Show that the set (a1? a3, a4) is a basis. 

A.6 Before solving each of the following sets of simultaneous equations, indicate how many 
solutions you might expect them to have. How many do they in fact have? Why? 

(i) x1 + x2 = 6 ■ 
2Xj + X2 = 8 j 

(ii) Xj + x2 = 6 
2xj + x2 = 10 
3x; - 2x2 = 8 

(iii) Xj + x2 + x3 = 5 

4xj + 2x2 + x3 = 18 
6xj + 4x2 + 3x3 = 26 

A.7 Solve these systems of equations by the Gauss-Jordan method. 
(i) X] + 2x2 -4- 3x3 = 5 

2xj + x2 - x3 = 6 
Xj + 3x2 - 5x3 = 2 

(ii) ttP = tt, where tt is a row vector whose elements sum to 1 and | 

~0.6 0.3 O.ll 
P= 0.2 0.4 0.4 

0.2 0.3 0.5 

REFERENCES 
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Table B-l. Areas under a standard normal curve 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .'1103 .1141 
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .^190 .2224 

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .‘2823 .2852 
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .'3599 .3621 

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 73810 .3830 
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 

This table is abridged from Table 1 of Statistical Tables and Formulas, by A. Hald (New York: John Wiley 
& Sons, Inc., 1952). Copyright © 1952 John Wiley & Sons, Inc. Reprinted by permission of John Wiley 
& Sons, Inc. 
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APPENDIX C 

Abstracts, Journals, 
and Case Books 

OPERATIONS RESEARCH ABSTRACTS 

Batchelor, James H., Operations Research: An Annotated Bibliography, Saint Louis University 
Press, Saint Louis, Vol. 1—1959, Vo. 2—1962, Vo. 3—1963, Vol. 4—1964. 

A Comprehensive Bibliography on Operations Research, Operations Research Group, Case 
Institute of Technology, Publication in Operations Research Series No. 4, published by 
Wiley and Sons under the Sponsorship of ORSA, 1959. 

International Abstracts in Operations Research, published bimonthly for iEORS by North- 
Holland, P.O. Box 211, Amsterdam, The Netherlands (since 1961). A must for any 
operations researcher. 

Operations ResearchIManagement Science, published monthly by Executive Science Institute, 
Inc., Whippany, N.J. 07981 (since 1961). International literature digest periodical by a 
commercially run service. Individual entries are more extensive than in IAOR; coverage 
is more restrictive. 

SELECTED TECHNICAL AND PROFESSIONAL JOURNALS 

IN OPERATIONS RESEARCH IN ENGLISH ; 

American Institute of Industrial Engineers Transactions (U.S.), published quarterly by A.I.I.E., 
25 Technology Park; Norcross, Ga. 30092. 

Computers and Operations Research, a quarterly journal published by Pergamoii Press, Maxwell 
House, Fairview Park, Elmsford, N.Y. 10523. 

Decision Sciences (U.S.), published by the American Institute for Decision Sciences, University 
Plaza, Atlanta, Ga. 30303. 

European Journal of Operational Research, sponsored by the Association of (European Oper¬ 
ational Research Societies, published six times per year by North-Holland, P.O. Box 211, 
Amsterdam, The Netherlands. 
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INFOR (Canadian Journal of Operational Research & Information Processing) (Canada), pub¬ 
lished three times per year by University of Toronto Press, 5201 Dufferin St., Downsview, 
Ontario, Canada. 

Interfaces (U.S.), published bimonthly by TIMS and ORSA, jointly. Dealing with practice in 
O. R. and management science. A most readable journal. See Management Science and 
Operations Research for details. 

International Journal of Physical Distribution and Materials Management (U.K.), published 
eight times per year by MCB Publications Ltd., 200 Keighley Rd., Bradford BD9 4JQ, 

England. 

The International Journal of Production Research (U.K.), published bimonthly by Taylor & 
Francis Ltd., 10-14 Macklin Street, London WC2B 5NF, England. 

International Journal of Systems Science (U.K.), published monthly, by Taylor & Francis Ltd., 
10-14 Macklin Street, London WC2B 5NF, England. 

Journal of the Operational Research Society (formerly Operational Research Quarterly) (U.K.), 
published monthly for the Operational Research Society Ltd. by Pergamon Press, Head- 
ington Hill Hall, Oxford OX3 OBW, England. 

Management Science (U.S.), published monthly, Journal of the Institute of Management 
Sciences (TIMS), 146 Westminster Street, Providence, R.I. 02903. 

Mathematical Programming, published bimonthly by North-Holland, P.O. Box 211, Amster¬ 

dam, The Netherlands. Highly mathematical. 

Mathematics of Operations Research (U.S.), a quarterly published jointly by ORSA and TIMS; 
subscriptions through either society. See Management Science and Operations Research 
for details. Highly mathematical. 

Naval Research Logistics Quarterly (U. S.), published by the Office of Naval Research, Managing 
Editor NRLQ, Arlington, Va. 22217. 

New Zealand Operational Research (N.Z.), published twice per year by the Operational Re¬ 
search Society of N.Z., P.O. Box 904, Wellington, New Zealand. 

OMEGA (U.K.), published bimonthly by Pergamon Press, Headington Hill Hall, Oxford, OX3 
OBW, England. This is an international journal of management science 

Operations Research (U.S.), published bimonthly, Journal of the Operations Research Society 

of America (ORSA), 428 East Preston Street, Baltimore, Md. 21202. 

OPSEARCH (India), Operational Research Society of India, 7/3 Mandeville Gorden, Calcutta 
700019, India. 

Operations Research Letters, sponsored by ORSA, published bimonthly by North-Holland, 
P. O. Box 211, Amsterdam, The Netherlands. 

SIAM Journal on Algebraic and Discrete Methods (U.S.), published quarterly by SIAM Pub¬ 
lications, 33 South 17th Street, Philadelphia, Penn. 19103. 

SIAM Journal on Applied Mathematics (U.S.), published eight times per year by SIAM Pub¬ 
lications. (See above.) 

Simulation, published by the Society for Computer Simulation, P.O. Box 2228, La Jolla, Ca. 
92038. 

Transportation Research (U.S.), published quarterly by Pergamon Press, Inc., Maxwell House, 
Fairview Park, Elmsford, N.Y. 10523. 

Transportation Science (U.S.), published quarterly by the Operations Research Society of 
America, 428 East Preston Street, Baltimore, Md. 21202. 
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Some national O.R. society journals—such as Operations Research Verfahren (Germany), 
Zeitschrift fur Operations Research (Germany), or the Journal of the Operation Research Society 
of Japan—regularly contain articles written in English. For a list of non-English-language 
journals, see International Abstracts in Operations Research. It goes without skying that many 
articles dealing with operations research problems have appeared in other journals, particularly 
in the fields of economics, finance, marketing research, business administration, industrial and 
electrical engineering, statistics, and mathematics. 

CASE BOOKS IN OPERATIONS RESEARCH 

Berry, W. L., C. J. Christenson, and J. S. Hammond, III. Management Decision Sciences— 
Cases and Readings. Homewood, Ill.: Irwin, 1980. A mixture of easy and more advanced 
cases, classified by type of analysis: cost analysis, linear programming, uncertainty, sim¬ 
ulation, and modeling methodology. Also contains several insightful articles (reprints) 
entitled “Wisdom from the Experts/’ Read “Solving Problems” by R. Hyman and B. 
Anderson, and “On the Art of Modeling” by W. T. Morris. 

Dyer, J. S. and R. D. Shapiro. Management SciencelOperations Research—Casqs and Readings. 
New York: Wiley, 1982. A mixture of brief survey lectures, reprints of applications reported 
in the literature, followed up by some questions; also some cases for the $tudent to solve. 

Haehling von Lanzenauer, C. Cases in Operations Research, London, Canada: Research and 
Publication Division, School of Business Administration, University of Western Ontario, 
1975. Contains twenty-five comprehensive real cases in operations research, some of which 
originate at Harvard, Stanford, and IMEDE (Switzerland). An ideal companion book to 
this text. A detailed Instructors Manual is available from the publishers to (x>na fide course 
instructors. 

Martin, M. J. C., and R. A. Denison, Eds, Case Exercises in Operations Research. London: 
Wiley-Interscience, 1971. Contains fifteen comprehensive real cases in operations re¬ 
search, cost benefit analysis, and Bayesian statistical decision theory. Ex;cept for the last 
three, the cases are British. A detailed Tutors Guide is available to instructors. 

Newson, E. F. P. (Ed.). Management Science and the Manager—A Case Book. Englewood 
Cliffs, N.J.: Prentice-Hall, 1980. Paperback, with easy and intermediate cases classified 
by uncertainty and risk, resource allocation, simulation, model formulation, and evalu¬ 
ation. Solutions manual available. 

Norman, J. M. and E. Ritchie. Problem Solving Exercises in Operational Research, Vol. 1. 
Lancaster, England: Lancord Ltd., University of Lancaster, 1981. A set of ten of the 
famous Lancaster OR cases, covering a wide spectrum of applications, including good 
common sense. Highly recommended. Solutions manual available. 

Render, Barry, and Stair, Ralph M., Jr. Case and Readings in Quantitative Analysis for 

Management. Boston: Allyn and Bacon, 1982. Over thirty cases. Instructor’s manual 
available. 





INDEX 

Page numbers in italics refer to exercises or 
references. 

ABC classification, 348 
Absorbing states, 370, 375, 389 
Ackoff, R. L., 31 
Activity, simulation, 466 
Activity cycle diagram, 479-483, 487, 496 
Additive utility functions, 636-638, 640 
Additivity, linear programming, 37 
Advertising media selection problem, 63-69, 

619-627, 632-633 
Air pollution control problem, 34-52, 297-315 
Algorithm, definition, 23 
Allocation problem, 52-56, 70, 72, 74, 

247-252, 260, 261-263 
Alternative optimal solutions: 

dynamic programming, 235 
linear programming, 44-45, 102-103,107 

Antithetic variate method, 484-485, 497 
Approximating problem, separable program¬ 

ming, 511-515 
Approximation: 

models as, 21-22, 26, 29 
successive, 344, 559-560, 568-569 

Approximation in policy space: 
average return per period, 411-416, 423-424 
discounting, 406-411, 420-422 
using linear programming, 416-418, 424 

Arc, 186 
Arrival time distribution, 290-292, 428-431 
Artificial variables: 

augmented problem, 97 
interpretation of dual variables and, 118-119 
quadratic programming, 597 
simplex method, 97-102 

Assembly line balancing, 520-522 
Assembly line simulation, 474-479, 492-495 
Assignment problem, 152, 173-178, 183-184 
Assortment problem, 260, 266 
Attributes, 15-16 

proxy, 15-16 

simulation, 465-466 
Augmented problem: 

Lagrangian penalty method, 590, 611 
simplex method, 97 

Backtracking, in dynamic programming, 223, 
234 

Balking, queueing, 429, 444, 455 
Barrier methods, 606 
Basic feasible solution: 

dual simplex method, 120-121 
simplex method, 86-89 
transportation problem, 157-162 

Basic variables, or basis: 
dual simplex method, 120-121 
reduced gradient method, 600-603 
simplex method, 88 
transportation problem, 157-158 

Basis restriction, separable programming, 515 
Batch-size inventory model (See Economic or¬ 

der quantity model) 
Bayesian decision analysis, 29?—316, 316-319 
Bayes’s theorem, 275, 293 
Beale’s quadratic programming algorithm, 

598, 613 
Benefits, 10, 20, 21, 24-25, 29, 556 
Bernoulli variable, 294 
Bicriterion linear programming, 634, 645 
Big M method, 98-100, 107 ; 
Binding constraints, 44, 46-42 

duality and, 117 
shadow prices and, 44, 46-47 

Birth and death processes (See Queueing) 
Blending problem, 70, 71, 78 
Blocked calls, queueing, 446 
Block search, 572 
Bootstrap operation, Markovian decision pro¬ 

cesses, 406, 411 ! 
Branch and bound methods, 5^7-530,545-547 

sensitivity analysis and, 540-542 
Brand-share model, 377-378, 386 
Break-make strategy, 29-30, 651-652,, 666, 671 

699 
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Busy period, or time, 436, 438, 440 

Calling population, 428, 445 
Candidate problem in branch and bound, 527 
Canonical form: 

dual simplex method, 121 
simplex method, 88, 90-92 

Capacitated transportation problem, 198 
Capacity, networks, 187, 195 
Capital budgeting, 10, 21-22, 24, 25 
Capital investment problem, 72» 492, 519, 

535-540, 545 
CAPS/ECSL, 487 
Central limit theorem, 284, 312, 470 
Certainty: 

decision making under, 5-6 
deterministic models, 16 

Certainty equivalent, 307 
Change of basis: 

dual simplex method, 123-124 
reduced gradient method, 602-606 
simplex method, 90-97 
transportation problem, 158-162, 165-168 
upper bounding, 502-504 

Chi-square goodness of fit test, 430-431, 
453-454 

Churchman, C. W., 5, 31 
Classical optimization, 334, 549-567, 567-570 

constrained optimization and Lagrange 
multipliers, 561-568, 569-570 

convex or concave functions, 554-555, 560, 
567-569 

differentiation of variables in integrals, 553 
discontinuous functions, 325-326, 337-338, 

361-362 
extreme values, 550-552, 556, 557-558, 560 
marginal analysis and, 554, 556, 566 
successive approximations and, 344, 

559-560, 568, 569 
Column minimization rule, 158, 169-171 
Company-wide planning model, 56-63, 84 
Complementary slackness, 47, 117-118, 119, 

121, 175-176, 594 
Computer programs, simulation, 472-474, 

485-488 
Concave functions, 554-555, 560, 595-597, 

598 
reduced gradient method, 600 
separable programming, 516 

Conditional probability, 274, 293-294 
density function, 278 

Conjugate direction methods, 587-588 
Conservation of flow, networks, 187, 451 

Constant interarrival or service times, 448 
Constrained nonlinear programming, 571, 

590-611, 611-613 
Constraint qualification in Kuhn-Ilicker condi¬ 

tions, 594 
Construction of model, 2, 14-18 

sequential, 22 
Control over solution, 4-5, 7, 8, 12-13, 14 
Convergence: 

gradient methods, 583, 584-585, 589 
Markovian decision processes, 408 
Newton’s method, 578 
penalty methods, 611 
quasi-Newton’s method, 588 

Convex combinations, 680 
alternative optima in linear programming, 

102-103 
Convex functions, 554-555, 560, 567-569, 

595-597, 598 
reduced gradient method and, 600 
separable programming and, 516 

Convex hull, 680 
of integer solutions, 532 
traveling salesman problem, 663, 664 

Convex set, 595-596 
Convolution of probability distributions, 

288-289, 294-295 
negative exponential distribution, 432 

Corporate model, 56-63, 84 
Cost-benefit analysis and implementation, 10, 

24-25 
Cost ranging, 44-46, 50-52, 71-75, 128-131, 

144, 145, 147, 148-150 
Costs, 9-10, 13, 15-17, 21, 25, 556, 566 

associated with inventory control, 17-18, 
21-22, 324-328 

associated with projects, 10, 21, 24-25 
discounting, 20 
opportunity, 10, 18, 326-327 

Covering problem, 523, 545 
CPM (See Critical path method) 
Crane truck problem, 430-431, 437-439 
Crash time, 217 
Critical path, 209 

dummy tasks, 204 
earliest time, 204-207 
free-float, 204, 211 
latest time, 209-210 
linear programming and, 218 
networks, 202-208 
PERT and, 201, 214-217 
total float, 210-211 

Critical path cost model, 217-219, 228-230 
Critical path method, 201-219, 220-225 
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schedule graphs, 212-214 
Cumulative distribution function (See Proba¬ 

bility distribution function) 
Curse of dimensionality of dynamic program¬ 

ming, 258-259, 269 
Cut in a network, 195 

capacity value of, 195 
maximum cut, 195 

Cutting plane technique, 530-535, 545-547 
Cycling, degeneracy and, 104, 165 

Dantzig, G. B., 86 
Data, 3, 8-10, 21, 27, 30 

accuracy of, 8, 27 
form of, 9-10, 30 
needs, 3, 8, 9-10, 27, 30 
maintaining solution and, 27 
testing of model and, 30 

Decision maker, 4-5, 12-13 
Decision trees, 23, 302-303, 317-318 
Decomposition, dynamic programming, 238 
Degeneracy, 103-104 

cycling and, 104, 165 
degenerate solution, 102, 103 
transportation problem and, 163, 165 

DELTAJ value, 49-52 
Demand, 9, 13, 15, 328-329 

forecasting, 329-332, 359-360 
Demand constraints, 154, 156 
Demand distributions, 289, 329, 340, 342, 

348-351 
Density function, probability, 277 
Depot location problem (See Facility location 

problem) 
Descendants, 525-526, 527 
Destinations, 152, 155-156 

dummy, 156, 169 
Detached coefficient form, 48 

transportation problem, 155, 166 
Deterministic models, 16 
Diesel motor overhaul, project scheduling, 

217-219, 228-230 
Diet problem, 70, 71 
Differential dynamic programming, 269 
Differentiation of variables in integrals, 553 
Directed arc or link, 186 
Directional derivative, 580 
Direction of movement, 580-581 

gradient methods, 581 
Newton’s method, 587 
reduced gradient method, 600, 605 

Direction vector, 580-581, 587, 600, 605 
Direct methods of nonlinear programming, 611 

Discounting, 20 
Discrete dynamic programming (See Markovi¬ 

an decision processes) 
Distance metric, Euclidian, 625, 656, 676 
Distribution by annual dollar usage-value, 348 
Distribution functions (See Probability distri¬ 

bution functions) 
Distribution problems, 70, 152-157, 655-662, 

670-672 
Divisibility, linear programming, 35 
Dominance, 618 
DRAFT, 487 
Dual, 110-112, 125 
Duality, 110-120 

assignment problem and, 175-176 
complementary slackness, 117, 725, 594 
Kuhn-Tucker conditions and, 594 
transportation problem and, 165-167 

Duality theorem, 116, 125 
Dual simplex method, 120-124, 126, 139-140, 

534-535 
Dual variables, 112-124 ' 

interpretation of, 118,126,147,149, 540-542 
post-optimal analysis and, 138-139, 144, 

145-151 
Dynamic economic order quantity model, 

352-357, 363-364 
Dynamic inventory model, 240-247, 260, 

261-263, 352-359, 363-364 
Dynamic programming, 232-261, 261-269 

allocation problem, 247-252, 260, 261-263 
assortment problem, 260, 266 
continuous state variables, 259-260 
deterministic, 232-269 
flow chart of computations, 248, 269 
fly-away-kit problem, 247-252,260,261-263, 

268 
forest stand management problem, 394-399 
inventory control problems, 240-247, 260, 

263-264 ; 
knapsack problem, 247-252, 260, 261-263, 

268 
Markovian decision processes, 403-418, 

420-424 I 
optimal control problem, 237 
planning horizon, 258 
process operations, 260, 265 
production scheduling, 260j, 263-265 
regeneration problem, 255-257, 268 
reliability problem, 264 
rental decision problem, 240-247 
replacement problem, 252-258, 267-268 
resource allocation, 247-252, 260, 261-263 
river pollution problem, 247-252 
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routing problem, 232-240, 261, 265, 266 
sensitivity analysis, 252 
several state variables, 258-259, 268-269 
shortest path problem, 232-240, 261, 265, 

266 
smoothing problem, 264, 265 
stochastic inventory problem, 401-406 
stochastic routing problem, 392-394 
stochastic state space, 392-399 
transmission line problem, 232-240 
trim problem, 260 
unbounded planning horizon, 399-403 
water pollution abatement problem, 247-252 

DYNAMO, 487-488, 497 

Earliest project completion time, 204-209 
Earliest time, critical path method, 206-207 
Ecker, J. G., 632, 646 
Economic order quantity model, 17-18, 23, 

332-338, 360-361 
dynamic, 352-357, 363-364 
sensitivity analysis of, 335-336, 361 
shortage model, 568 

Edge, or link, 186 
Effectiveness, 3, 5, 13, 30 

measure of, 14-18 
Efficiency, 30 
Efficient frontier, 618-619 
Efficient solution method, 618, 632-635, 644 
Either-or constraints, 520, 523 
Endogenous events, 467-468 
Entities, bound, 466 
Entities in simulation, 465-468 
Entity cycle diagram, 479-483, 496 
Environment, 4-8, 13, 26, 27, 31 
EOQ (See Economic order quantity model) 
Ergodic states, 370 
Erlang distribution, queueing, 432, 446, 449 
Erlangs, 446 
Euclidian distance, 656, 676 
Euclidian space, 676 
Event, 5-6, 16, 298 

critical path method, 204 
simulation, 466-468 

Event-step incrementation, 474-479, 490, 
492-496 

Excess capacity, networks, 189 
Exogenous events, 467-468 
Expected opportunity loss, 300, 302, 316 
Expected utility, 307-309 
Expected values, 278-279, 294 

monetary, 299, 302 
of perfect information, 301-302, 311-313,316 

of sample information, 306, 313-315, 
318-319 

Exponential smoothing, 329-332, 359-360, 
364 

Extremal equations, 403 
Extreme point, linear programming, 41, 88-89 

Facility location problem, 655-662, 670, 671, 
672 

Middle Earth weed processing problem, 
658-662 

Failure model, 380-383, 387-388 
Farm stocking problem, 77, 147 
Fathoming, 527 

branch and bound methods, 529 
cutting plane technique, 530-531 

Feasible direction, reduced gradient method, 
600, 605 

Feasible path, networks, 181 
Feasible region, 40-42 
Feasible solution, 40-42, 88, 97-102, 124, 139 
Feed mix problem, 70, 71 
Ferry system, simulation, 466-467 
Fibonacci search, 572-573 
Files in simulation, 465-466, 475 
Finite calling population, queueing, 445-446, 

455 
Finite queues, 438-439, 454 
Finite set approach, facility location, 655 
First passage time probabilities, 374-375 
Fixed charge problem, 522-523, 544 
Fixed-time incrementation, 474, 489, 490 
Float, critical path method, 204, 210-211 
Flow augmentation, networks, 189, 190 
Flow charts of computations: 

branch and bound method, 528 
dynamic programming, 248, 268 
heuristic problem solving, 549 
labeling technique, 191 
simulation, 461, 473, 477, 479-483, 494-496 

Flow conservation, networks, 187, 451 
Fly-away-kit problem, 247-252, 260, 261-263, 

268 
Ford-Fulkerson maximum flow algorithm (See 

Labeling technique) 
Forecasting, 329-332, 359-360, 364 
Forest Industries Corporation, 56-63 
Forest stand management problem, 394-399 
Formulation of problem, 2, 3-10, 31, 32 

case study of, 10-13 
Free float, 204, 211 
Free variables, 36, 115 
Functional equations, 401-403 
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Function approximation methods, 572, 
576-579 

Game theory, 6 
Gauss-Jordon method to solve simultaneous 

linear equations, 373, 375, 687-689 
Generalized reduced gradient method, 604, 613 
General purpose model, 14 
General purpose systems simulation (GPSS), 

486, 497 
General service time distribution, 448 
Global optimum, 240, 550, 556, 560, 595, 600 
Goal (See Objective) 
Goal programming, 19, 83, 84 

advertising media selection, 63-69 
preemptive, 69, 618, 619-622, 643 
quadratic programming and, 600 
weighted sum, 67 

Golden section search, 572-576, 588 
Gomory, R. E., 532, 542 
Gomory cutting plane algorithm, 530-535, 

545-547 
Goodness of fit test, Chi-square, 430-431, 

453-454 
Goods-in-process, 322-324, 567 
GPSS, 486, 497 
Gradient method, unconstrained, 581-584 
Gradient projection, 601 
Gradient vector, 581-584, 587, 600 
Graph theory, 186 
Grid points, separable programming, 511 
Group replacement model, 383-385, 389 

Heuristic problem solving, 23, 647-666, 
666-672 

break-make strategy, 651, 666 
facility, or depot, location problem, 

655-662, 670-672 
ill-structured problems, 648 
job scheduling problem, 653-655, 670 
Middle Earth weed processing problem, 

658-662 
satisficing, 650 
search-learning strategy, 653, 666 
solution building strategy, 651, 653-655, 

664-665 
solution modification strategy, 652, 655-662 
traveling salesmen problem, 662-666, 671 

Heuristic program, 650, 652-653, 666-667 
Heuristics, 647, 650 
Hill climbing methods {See Gradient method) 
Hobbits, 658 

Holding time {See Service time distribution) 
Horizon, planning, 16, 258, 399-401 
Howard, R. A., 424 
Hungarian method, assignment problem, 

175-178, 184 

Idle period, or time, 436, 438? 440 
Ill-structured problems, heuristics, 648 
Implementation, 2-3, 9, 10, 21, 25-27, 30, 32 

cost-benefit analysis of, 10, 21, 24-25, 29 
data and, 3, 8, 9-10 
models as approximation and, 21-22 
planning for, 3, 26-27 

Imputed value {See Shadow price) 
Incumbent, branch and bound methods, 529 
Independence: 

linear, 681 
statistical, 274, 278, 284, 288-289 

Infeasibility form, 100-101 
Infeasible (no feasible solution), 42, 97-99, 

107, 120-124, 139-140, 156, 597 
Infinite planning horizon, 399-401 
Infinite set approach, facility location, 655 
Inflection point, 551 
Initial feasible solution: 

column minimization, transportation prob¬ 
lem, 169-171 

dual simplex method, 124 
northwest corner rule, 157-158 
quadratic programming, 597 
reduced gradient method, 601 
simplex method, 90, 97-98 
two-phase method, 100 

Input-output relations, 60 
Integer programming, 519-542, 542-547 

all integer problem, 520, 5^4 
assembly line balancing, 520-522 
branch and bound methods, 527-530, 

545-547 \ 
capital investment problem, 519, 535-540, 

545 : 
cutting plane algorithm, 530-535, 545-547 
dummy variables, 520, 523' 
fixed charge problem, 522-523, 544 
general procedure, 524-527 
mixed integer problem, 524, 535-539 
plant upgrading problem, $35-540 
scheduling problem, 542 
sensitivity analysis, 540-542 
water pollution problem, 542 
zero-one variables, 520 

Integer solutions: 
assignment problem, 174-175 
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transportation problem, 164 
Interactive solution methods, multiple objec¬ 

tives, 617, 635 , 646 
Interarrival time distribution, 290-292, 

428-431 
Interval criterion method, multiple objectives, 

634, 646 
Interval elimination methods, nonlinear, 

572-576 
Inventories: 

anticipation, 323 
cycle, 323, 332-338 
goods-in-process, 322-324, 567 
pipeline, 323 
safety stocks, 324-325, 338-347, 348, 

350-351 
Inventory control, 320-359, 359-364 

case study, 10-13, 15, 17-18, 22, 23, 29 
choice of model, 347-352 
constant cycle model with random demand, 

338-347, 362-363, 552-554, 558-560, 
567-568 

constrained resources, 561-567, 569-570 
costs, 17, 18, 324-328 
demand, 328-329 
dynamic models, 240-247, 260, 261-263, 

352-359, 363-364 
economic order quantity models, 17-18, 23, 

332-338, 360-361 567-569 
implementation, 27, 347-352 
joint product replenishment, 361 
Lagrange multipliers, 561-567, 569-570 
lead time, 17, 323, 324 
Lubrication Oil Division problem, 10-13, 

334-335, 360, 569 
McKinley Airlines problem, 339-341 
newsboy problem, 338-341, 362, 552-554 
practical implementation, 347-352 
price-breaks, or quantity discounts, 

325-326, 337-338, 361 
(Q,r) models, 341-343, 343-345, 350, 

362-363, 459, 558-560, 568 
resource restrictions, 19, 359, 561-567, 

569-570 
sensitivity analysis, 335-336, 361 
service level, 350-351 
shortage cost models, 338-347, 362-363, 

401-406, 552-554, 558-560, 568-569 
Silver-Meal heuristic, 357-359, 364 
special production runs to meet customer 

demands, 569 
(s,S) model, 346-347, 350,404,410,416,569 
stochastic models, 338-347, 362-363, 

401-406, 552-554, 558-560, 568-569 

stockouts, 327, 328-329, 348, 350-351 
two-bin system, 351 

Inventory simulation, 459-465, 466, 472-474, 
489-490 

Inverse transformation, 471-472, 491 
Inversion, revised simplex method, 508 
Investment problem, 72, 492, 519, 535-540, 

545 
Irreducible Markov chains, 371 
Iterative equation, 580 

Newton’s method, 678, 585 
reduced gradient method, 606 
steepest ascent, 583 

Jackson networks, queueing, 450-452, 456 
Job shop scheduling, 488, 494-495, 653-655, 

670 
Johnson’s algorithm, 653-655, 670 
Joint inventory replenishments, 361 
Joint probability distribution, 277-278, 

288-289, 294-295 

Keeney, K. L., 319, 617, 645 
Kleinrock, L., 450, 457 
Knapsack problem, 247-252, 260, 261-263, 

268, 523 
Kuhn-Tbcker conditions, 590, 591-597, 612 

constraint qualifications, 594 
Lagrange multipliers, 591-594 
necessary conditions, 595 
quadratic programming, 597 
standard form problem, 594 
sufficient conditions for global optimum, 

595-597 

Labeling technique, 189-195,198 
Lack of memory, Poisson process, 291-292, 

295 
Lagrange multipliers, 562-568 

dual variables and, 566, 595 
interpretation of, 566, 595 
inventory control restrictions and, 359, 

561-568, 569-570 
Kuhn-Tbcker conditions, 591-595 

Lagrangian function, 563, 591-594, 611 
Lambda-formulation of separable program¬ 

ming, 511-515, 517 
Latest time, critical path method, 209-210 
Lead time, inventory control, 17, 323-324 
Least-cost route, 232-240, 261, 265, 266, 

662-666, 671 
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Lexicographic form of simplex method, 
104 

Limiting state probabilities, 371-374 
Linear algebra, 673-689, 690-691 
Linear combinations, 678-679 
Linear independence, 680-682 
Linearity assumption, 37 
Linearization, 510-513, 600-601 
Linear programming, 34-149, 501-508 

advertising media selection, 63-69 
air pollution emission control 34-52 
allocation problems, 52-56, 70, 72, 74 
approximation in policy space and, 416-418, 

424 
blending problem, 70, 71, 78 
computer solution, 48-52, 104-105, 144, 

508 
corporate planning model, 56-63, 84 
diet problem, 70, 71 
duality, 110-120 
dual simplex method, 120-124,126 
farm stocking problem, 77 147 
feed mix problem, 70, 77 
lower bounded variables, 501-502, 516 
manpower planning, 79 
matrix notation for, 504-505, 689-690 
power generating problem, 34-52 
production planning, or scheduling, 52-56, 

70, 72-78, 80 
project planning and scheduling, 218 
revised simplex method, 504-508, 517, 518 
sensitivity analysis, 44-48, 49-52, 70-75, 

128-144,145-151 
simplex method, 86, 89-105 
smoothing problem, 69, 79-80 
standard form, 112-114 
transportation problem, 80, 152-157 
trim problem, 70, 77 
upper bounded variables, 501-504, 516 

Linear simultaneous equations, 86, 597, 
684-689, 691 

Line search (univariate), 572-579, 583, 602 
Line segment, 595, 678-680 
Link, 186-189 
Local optimum, 550, 572, 595, 598, 600 
Location problem, 523, 655-662 
Logical variables, 523 
Long-run frequency, Markov chains, 373 
Lot size models (See Economic order quantity 

model) 
Lower bounded variables, 501-502 
Lubrication Oil Division, 10-13, 15, 17-18, 22, 

23, 29 
inventory problem, 334-335, 360, 569 

Machine interference problem, 387-388, 
444-445 

Machine repair problem, 444-445 
Maintaining solution, 2, 27-28 
Manpower planning, 79 
Marginal analysis, 554 

costs, 556, 566 
Lagrange multipliers and, 566 

Marginal probability distribution, 278, 294 
Marginal value of resource, 566 
Markov chains, 365-385, 386-390 

absorbing, 370, 375, 389 
aperiodic, 371 
dynamic programming and, 403-406 
ergodic, 370 
failure model, 380-383, 387-388 
fitting a model, 376-377 j 

group replacement model, 3^3-385, 389 
inventory control, 401-406 
irreducible, 371 
limiting state probabilities, 371-374 
machine interference problem, 387-388 
periodic, 371 
regular, 371 
reservoir release model, 365-368, 379-380, 

422 
with rewards, 379-380. 387-388 
share-of-market model, 377-378, 386 
(s,S) policy, 404, 410, 416 
transient behavior, 374-376, 383-385 

Markovian assumption, 368 
Markovian decision processes, 403-418, 

420-424 ; 
average cost or return per pleriod, 411-416, 

423-424 
discounted cost or return, 401-403,406-411, 

420-422 
dynamic programming and, 401-403 
linear programming solution, 416-418, 424 
separable, 424 

Markovian networks, queueing, 449-452 
Markovian property, 368 
Markovian queueing models, 431-434 
Matching problem, 523 
Material balance equations, 60 
Matrices, 682-684 : 
Max flow/min cut theorem, 19j5 
Maximax criterion, 299 
Maximin criterion, 299 
Maximum feasible distance, 6d2, 605 
Maximum flow in a network, 186-197 
McKinley Airlines problem, 338-341 
Mean absolute deviation, 331 
Mean recurrence time, 374 
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Mexico City airport, 616, 645 
Minimum cost flow problem, 197-198 
Minimum cut, 195 
MINMAX and MINSUM solutions, multiple 

objectives, 625-632 
MINOS, 604 
Mixed integer programming problem, 524, 

535-539 
Model as approximation, 21-22 
Model building (See Formulation of problem) 
Monte-Carlo methods, 468, 491, 492 
Multiattribute decision analysis, 617, 618, 

635-643, 644, 645, 646 
Multiple objective decision making, 4, 16, 

18-20, 615-643, 643-646 
advertising media selection problem, 63-69, 

619-627, 632-633 
bicriterion linear programming, 634, 645 
efficient solution methods, 617,635, 644, 645 
goal programming, 19, 63-69, 83, 84, 618, 

619-622, 643, 645 
interactive solution methods, 617, 635, 646 
Mexico City airport, 616, 645 
multiattribute decision analysis, 617, 618, 

635-643, 644, 645, 646 
multiple objective linear programming, 

623-632, 634, 645 
multiple use land management, 616,627-632 
search and rescue mission problem, 635-643 
sequential elimination methods, 617, 618 
surrogate constraints, 19 
tradeoffs, 19, 617-619, 623 
weighting methods, 617, 625 

Multiple objective functions, 144 
Multiple objective linear programming: 

bicriterion, 634, 645 
MINMAX solution, 625-632, 643, 644 
MINSUM solution, 623-627, 643, 644 

Multiple regression and quadratic program¬ 
ming, 598 

Multiple right-hand sides, 144 
Multiple use land management, 616, 627-632 
Multiplicative congruential method, 468-469 
Multivariate optimization, 579-588 

Necessary and sufficient conditions, 551, 558, 
595-597 

Networks, 186-198 
critical path, 202-208 
Jackson, 450-452, 456 
labeling technique, 189-195,198 
out-of-kilter algorithm, 164,198 
probabilistic shortest route, 392-394 

queueing, 449-452 
shortest route problem, 232-240, 261, 265, 

266 
transportation problem, 158-162 
transport network, 195-196 

Newsboy problem, 338-341, 362, 552-554 
Newton-Raphson method (See Newton’s meth¬ 

od) 
Newton’s method: 

convergence, 584-585 
univariate, 573, 576-579, 581, 588 
multivariate, 584-587, 588 

Node, 186 
No feasible solution, 41-42, 97-99, 107, 156 
Nonbasic variables, 88, 600-603 
Nonlinear programming, 571-613 

constrained, 590-611, 612-613 
general structure of methods, 580-581 
penalty method, 609-610, 613 
quadratic programming, 597-600, 612-613 
reduced gradient method, 600-606, 612-613 
separable programming, 508-516, 517, 518 
unconstrained, 571-587, 588-589 

Norback, J. P., 662 
Normal loss function (See Unit normal loss in¬ 

tegral) 
Northwest corner rule, 158 
Null vector, 677 

Objective(s), 4-5, 6, 15 
function, 16 
multiple, 16, 18-20 
trade-off functions, 19 

Offered load, queueing, 446 
Opportunity costs, 10, 18 
Opportunity loss, 300, 311-313 
Optimal control, 237 
Optimum: 

global, 240, 550, 556, 560, 595, 600 
local, 550, 572, 595, 598, 600 

Out-of-kilter algorithm, 164, 198 
Overtime/regular time production problem, 

168-171, 181, 183, 263, 490 

Parametric linear programming: 
objective function, 131-134, 144,145, 150 
right-hand-side, 140-141, 144,151 

Payoff matrix, or table, 16, 299 
Penalty function, 606-608 
Penalty methods, 590, 606-610, 612-613 

augmented Lagrangian, 590, 611 
big M method, 98-100, 107 
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Perfect information 301-302, 311 
Periodic chains, 371 
PERT, 201, 214-217, 226-229 

beta distribution and, 214, 286 
simulation and, 216, 491 

Perturbation, 104 
Peterson, R., 351, 364 
Piecewise linear approximations, 510-513, 

600-601 
Planning horizon, 16, 258 

infinite, or unbounded, 399-401 
rolling, 400 

Plant upgrading problem, 535-540 
Poisson input, queueing, 291-292, 429-430, 

432 
Poisson process, 291-292, 295, 429-430 
Policy: 

dynamic programming, 237 
stationary, 401 

Policy evaluation and improvement routines, 
406-407, 413-414, 420-424 

Pollaczek-Khinchin formula, 448 
Pooling in waiting line models, 443-444 
Port operation, 482-484, 490 
Postoptimal analysis, 128-144,145-151 

adding new variables, 142-144,145 
left-hand-side coefficients, 142-144 
objective function, 128-134, 144, 145-151 
right-hand-side, 134-141, 144, 145-151 

Power generating problem, 34-52 
Preemptive goal programming, 69, 618, 

619-622, 643 
Present value, 401 (See also Discounting) 
Price-break inventory model, 324-325, 361 
Primal, 112-117 
Principle ot optimality, 239 
Probability, 272-292, 293-295 

Bayes’s theorem, 275, 293 
conditional, 272, 278, 293-294 
first passage times, 374 
posterior, 304, 318 
prior, 304, 318 

Probability distributions: 
beta, 216, 286 
Bernoulli, 294 
binomial, 282, 289, 293-294 
central limit theorem, 284, 312, 470 
convolutions of, 288-289, 294-295 
Erlang, 289, 432, 446, 449, 470 
exponential (negative), 283, 291, 430, 

469-470 
geometric, 281, 435 
joint, 277-278, 294-295 
Laplace, 287, 329, 350-351 

lognormal, 284 
marginal, 278, 294 
normal, 283, 289, 294, 311-315, 329, 342, 

348, 470, 472, 474 ' 
Poisson, 282, 289, 291, 329|, 340, 429-430 
posterior event, 313-314 
prior, 309-311, 318 
rectangular, 283 
revision of prior, 313-314, -318-319 
triangular, 294, 469, 568 ! 
uniform, 281, 283, 469, 471 

Production scheduling, 52-56, 70, 72-78, 80, 
145-151, 260, 263-265 : 

regular time/overtime, 168-171, 183, 263, 
490 

Product-mix scheduling, 70, 12-78, 80 
Program evaluation and review technique (See 

PERT) 
Project completion time, 204-209, 217-219 
Project duration, 3 
Project planning through critical path method, 

212-214, 223, 225 
Proxy attributes, 635-636 
Pseudorandom numbers, 468 

(Q,r) inventory models, 341-343, 343-345, 
350, 362-363, 558-560, 568 

simulation, 459 
Quadratic approximations, 573, 576, 584-585 
Quadratic interpolation, 573 
Quadratic programming, 590, 597-600, 

612-613 
Beale’s algorithm, 598, 613 
goal programming and, 600 
Kuhn-Ilicker conditions, 597 
multiple regression and, 600 
recursive, 611 
Wolfe’s algorithm, 597-600, 612 

Quantity discounts, inventory control, 
324-325, 337-338, 361 ' 

Quasi-Newton’s method, 578, 587-588, 600 
Queue discipline, 429 
Queueing, 291, 426-452, 453-457 

arrival, 290-292, 427-431 - 
balance equation method, 431-433 
balking, 429, 444, 455 
blocked calls, 446 
busy time, or period, 436, 438, 440 
calling population, 428 
conservation of flow, 451 
constant service time, 448 
crane-truck problem, 430-431, 437-439 
Erlang distribution, 289, 432, 446, 449 
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finite calling population, 445-446, 455 
finite queues, 438-439, 454 
goodness-of-fit test, Chi-square, 430-431, 

453- 454 
idle time, or period, 436, 438. 440 
interarrival time distribution, 290-292, 

428-431 
Jackson networks, 450-452, 456 
machine repair problem, 444-445, 454, 455 
M|M 1 example, 431-439, 453-454 
M|M S, 439-443, 454-455 
multiple server model (M|M|S), 439-443, 

454- 455 
networks, 449-452, 456 
nomenclature of, 432 
nonexponential arrivals and services, 

447-449, 455 
offered load, 446 
optimization, 567 
Poisson input, 291-292, 429-430, 432 
Pollaczek-Khinchin formula, 448 
pooling, 443-444 
priority rules, 429 
reneging, 444 
routing matrix, 451-452 
service channel, or station, 427 
service priorities, 429 
service time distribution, 290-292,428-429, 

431-432 
simulation and, 486, 488, 493-494, 496 
single server models (M|M|1), 432-439, 

453-454 
state-dependent transition rates, 444-447 
steady-state balance equations, 431-433 
tables and graphs, 447 
telephone traffic models, 291, 446 
tool crib problem, 441-443 
traffic equations, 451-452 
traffic intensity, or utilization, factor, 435, 

438,440 
waiting times, 436-437, 438, 441, 448 

Queue length, 429, 436, 438, 440, 448 

Raiffa, H., 316, 319 
Random decimal fractions, 469 
Random numbers, 468-472 

deviates or variates, 469-472, 491 
uniformly distributed, 468-469 

Random variables, 276-281, 294-295 
convolutions of, 288-289, 294-295 
distribution of, 281-287 
expected values of, 278-279, 294 
function^ of, 287-289, 294-295 

variance of, 280-281, 294 
Ranging: 

costs, 44-46, 50-52, 71-75, 128-130, 144, 
145, 147-151 

right-hand-side, 46-48, 50-52, 71-75, 
134-137, 139-140, 145, 147-151 

Recursive relation of dynamic programming, 
232, 238-239 

Reduced gradient method, 590, 600-606, 
612-613 

Reduced objective function coefficients, 92-93 
Redundant constraint, 41 
Redundant equation, 685 
Regeneration period, 255 
Regeneration problem, 255-257, 268 
Regression, quadratic programming, 600 
Regret, 300 
Regular Markov chains, 371 
Regular time/overtime production problem, 

168-171, 181, 183, 263, 490 
Relaxation, integer programming, 526 
Reliability problem, 264 
Renewal process, 290, 428 
Rental decision problem, 240-247 
Replacement, stochastic, 380-385, 387-389 
Replacement model, 252-258, 267-268 
Replenishments (See Inventory control) 
Research and development projects, 10, 25 
Reservoir release scheduling problem, 365-368 
Restart procedures, linear programming, 144 
Restricted basis entry, 501, 515, 598 
Restrictions on inventories, 19, 359, 561-567, 

569-570 
Revised simplex method, 104-105, 504-508, 

517, 518 
Revision of prior probabilities, 304, 313-315, 

318-319 
Right-hand-side sensitivity analysis, 46-48, 

50-52, 71-75, 134-141, 144, 147-151 
Risk averse, neutral, prone, 308-309 
River pollution problem, 247-252, 542 
Robustness, 14 
Routing problem: 

matrix, 451-452 
shortest route, 232-240, 261, 265, 266 
stochastic shortest route, 392-394 

Saddle-point, 598 
Safety stock, 324, 348, 351 
Sample information, 304-306, 313-315, 

318-319 
Sample space, 272 
Satisficing, 650 
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Scalar product, 676 
Scaling in simplex method, 105 
Schedule graph, 212-214 
Scheduling: 

production, 52-56, 7ft 72-78, 80, 145-151, 
168-171, 263, 490 

project (See Critical path method) 
Scheduling overtime, 168-171,183, 263, 490 
Scheduling problem, integer programming, 

523, 542 
Schlaifer, R., 375, 379 
Search and rescue missions, 635-643 
Search-learning strategy, heuristics, 653, 666 
Sensitivity analysis, 24, 32 

economic order quantity model, 335-336 
integer programming, 540-542 
linear programming, graphical, 44-48 
linear programming, by computer, 50-52, 

72-75, 144 
post-optimal analysis, 128-144, 745-757 
shadow prices, 46-47, 49, 111, 117-118, 144, 

566, 598, 604 
Separable functions, 509 
Separable Markovian decision processes, 424 
Separable programming, 508-516, 517, 518 

lambda-formulation, 511-516, 577 
sufficiency conditions satisfied, 516 

Separation in integer programming, 525-526 
Sequencing problem, 523 

job flow problem, 653-655, 669, 670 
Johnson’s algorithm, 653-655 , 669, 670 

Sequential elimination methods, 617, 618 
Sequential unconstrained maximization tech¬ 

nique (SUMT) (See Penalty methods and 
Barrier methods) 

Service level, safety stocks, 350-351 
Service priorities, queueing, 429 
Service rate, 428-429, 431 
Service time distribution, 290-292, 431-432 

arbitrary, 447-449 
exponential, 290-292, 431-432 

Shadow price, 46-47, 49, 111, 144, 566, 598, 
604 

dual variables, 117 
marginal revenue product, 110 
Zj values, 119 

Shannon, R. E., 488, 497 
Share-of-market model, 377-378, 386 
Shortage cost inventory models, 338-347, 

362-363, 552-554, 558-560, 568-569 
Shortest path problem, 232-240, 261, 265, 266 

stochastic, 392-394 
Silver-Meal heuristic inventory model, 

357-359, 364 

Simplex method, 86, 89-105, 706-707 
big M method, 98-100, 707 
dual simplex method, 120-124, 726 
full tableau algorithm, 95-103, 104 
lexicographic form, 104 
quadratic programming, 597-600, 612-613 
reduced gradient method, teO-606 
revised simplex method, 104-105, 504-508, 

517,518 
separable programming, 508-516, 517, 518 
transportation stepping-stone algorithm, 

157, 162-165, 178-180 
transportation uv method, 165-168 
two-phase method, 98, 100-102, 706-707 

Simplex multipliers, 118-120 | 
dual simplex method and, 121 
dual variables and, 118-120 
wv-method for transportation problem, 

166-167 
Zj values, 118-120 

Simplex tableau: 
full tableau method, 95 
revised simplex method, 507 

SIMSCRIPT, 486, 497 
SIMULA, 487 
Simulation, 458-489, 489-497 

activity cycle diagrams, 479-483, 487, 496 
assembly line, 474-479, 49i-495 
computer languages, 485-488 
deterministic, 467, 489-491, 494, 495 
event-step incrementation, 474-479, 490, 

492-496 
ferry system, 467-468 
fixed time incrementation, 474, 489, 490 
inventory, 459-465, 466, 472-474 
Monte-Carlo method, 468, 491, 492 
PERT networks, 216, 497 
port operation, 482-484, 490 
production scheduling, 490 
run length, 474, 484-485 
solution and model testing, 459, 474 
stochastic, 468, 472-479, 4&1-496 
structure of, 465-468 
three-phase structure, 475 
validation, 484-485 
variance reducing techniques, 484-485, 497 

Simultaneous equations, linear, 86,90-92, 597, 
684-689, 697 

Sink, networks, 187 
Slack, or float, critical path method, 204, 

210-211 

Slack variables, 43-44, 88-89 
SLAM, 487, 497 
Smoothing problem, 69, 264, 265 



710 Index 

Solution-building strategy, 651, 653-655, 
664-665 

Solution derivation, 2, 23 
Solution-modification strategy, 652, 655-662 
Source, 152, 155-156 
Spanning set of vectors, 682 
Special purpose models, 14 
(s,S) policies, 346-347, 350, 410, 416, 569 
Stagecoach problem (See Shortest path prob¬ 

lem) 
Standard deviation, 280-281, 294 
Standard form: 

linear program, 112-113 
nonlinear programs, 591, 594 
transportation problem, 156-157 

Standardized normal distribution table, 692 
Standard normal loss function (See Unit nor¬ 

mal loss integral) 
State: 

dynamic programming, 237-239 
Markov chains, 366 
simulation, 466 

State of nature, 5, 298 
State probabilities, 368-369 

limiting or steady state, 371-374 
State transformation function, 242 
State variable, dynamic programming, 237-239 
Statioiiarity assumption, 400 
Stationary policies, 401 
Stationary transition probabilities, 368 
Statistical decision theory, 297-316 
Steady-state balance equations, 371-373, 

433-435 
Steady-state probabilities, 371-374, 435 
Steepest ascent, 581-584, 587, 588, 600 (See 

also Gradient methods) 
Step size, 580 

Newton’s method, 584 
reduced gradient method, 602, 606 
steepest ascent, 582 

Stepping-stone algorithm, 157, 158-165 
column minimization, 167-170 
comparison with out-of-kilter algorithm, 164 
degeneracy, 165 
initial basic feasible solution, 157-158 
tableau structure, 161 

Steuer, R. E., 634-635, 646 
Stochastic deterioration, 386, 388 
Stochastic dynamic programming, 392-399 
Stochastic matrix, 367 
Stochastic processes, 290-292 

Markov chains, 365-385 
Stockouts: 

backorder case, 327 

lost sales case, 327 
Strategy, stochastic dynamic programming, 394 
Suboptimization, 7, 8 
Successive approximations: 

classical calculus, 344, 559-560, 568-569 
in policy space, 406-411, 411-416, 420-424 

Sufficiency condition, global optimum, 552, 
558 

Kuhn-Tbcker conditions, 595-597 
quadratic programming, 598 
reduced gradient method, 600 
separable programming, 516 

SUMT (See Penalty methods) 
Sum vector, 678 
Sunk cost, 25 
Super-sink, super source, 188 
Surplus variable, 43 
Surrogate constraints, 19, 615 
Survival function, 381 
System, 5, 6-10 
Systems approach, 6-10, 12-23, 31 

Thbleau: 
reduced gradient method, 601 
revised simplex method, 507 
simplex method, 95 
transportation problem, 157 

Thbles, queueing, 447 
Tabular method, inverse transformation, 

470-472, 491 
Thylor’s series expansion, 551, 558 
Telephone traffic models, 291, 446 
Testing of model and solution, 2, 24-25, 459, 

474 
Tolerances: 

gradient method, 583 
penalty method, 609-610 
reduced gradient method, 604 
simplex method, 104-105 

Tool crib problem, 441-443 
Tirade-offs, 19, 617-619, 623 
Traffic equations, 451-452 
Traffic intensity, 435, 438, 440 
Trajectory, 237 
Transient behavior of Markov chains, 374-376, 

383-385, 389 
Transient states, 370 
Transition diagram probabilities, 366, 367,434, 

444, 450 
Transition matrix, 367 
Transmission line routing problem, 232-240 
Transportation problem, 152-175, 178-183 

capacitated, 198 
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degeneracy, 163, 165 
detached coefficient form, 155 
duality, 165-167 
dummy destinations, 156, 169 
linear programming formulation, 152-155 
loop structure, 161-162 
minimum cost flow problem, 197-198 
regular time/overtime problem, 168-171, 

181, 183 
stepping-stone algorithm, 162-165 
transshipment problem, 171-173,180-181 
wv-method, 166 

Transportation-production problem, 168-171, 
180, 181, 183 

Transportation tableau, 157 
Transport network, 195-197 
Transshipment problem, 171-173, 180, 181 
Traveling salesmen problem, 523, 662-666, 

671, 672 
TTim problem, 70, 77, 260, 266 
Two-bin inventory system, 351 
Two-phase method: 

quadratic programming, 597 
simplex method, 98, 100-102, 106-107 

Unbounded planning horizon, 399-401 
Unbounded solution, 42, 94, 107 
Uncertainty: 

Bayesian decision making, 297-316 
decision making under, 5-6 
probabilistic models, 16 

Unconstrained gradient methods, 581-584,588 
Unconstrained optimization, 571-588 
Unimodal function, 572-573, 590-611 
Unit normal loss integral, 311, 345 
Unit vectors, 678 
Univariate optimization, 571-579, 583 
Univariate search (See Line search and Univar¬ 

iate optimization) 
Unrestricted in sign, variables, 36, 114-115 
Upper bounded variables, 501-504, 516 
Utility, 21 
Utility functions: 

additive, 617, 636-638, 640, 645 
multiple attribute, 636-641 

mutual utility independence, 638-641, 644, 
645 

single attribute, 306-309, 318, 637, 644 
Utilization factor, 435, 438, 440 
wv-method, 165-168 

Validation in simulation, 484-485 
Value determination routine (See Policy evalu¬ 

ation and improvement routines) 
Value of information, 301-302, 306, 311 
Variable-metric method, 587 | 
Variable time incrementation (See Event-step 

incrementation) 
Variance, 280-281, 294 
Variance reducing techniques, 484-485, 497 
Vectors, 673-682 

null vector, 677 
scalar product, 676 
sum vector, 678 
unit vector, 678 

Vertex (See Node) 

Waiting lines (See Queueing) 
Waiting time, 436-437, 438, 441, 448 
Warehouse space, limited, 19, $69 
Warehousing problem, 131-133 
Water pollution abatement problem, 247-252 

integer programming and, 542 
Weighting methods, multiple objectives, 617, 

625 
Wilson lot size (See Economic order quantity 

model) 
Wolfe’s quadratic programming algorithm, 

597-600, 612 
Wolfe’s reduced gradient method, 600-606, 

612-613 ■ 

Zero-one variables, 520 
Zj value 92-97, 144, 161-163 

optimal dual variables, 118, 144 
reduced gradient vector, 601, 603, 605 
simplex multipliers, 118-120 
wv-method, 165-167 




