Make Your Own Sugar
Activities!

Copyright : The Contributors (see back)

Published : 2010-10-08

License : CC-BY-SA

Note : We offer no warranty if you follow this manual and something goes wrong.
So be careful!

Table of Contents

SUGAR ACTIVITIES
1 Introduction 2
2 What is Sugar? 5
3 What is a Sugar Activity? 9

4 What Do I Need To Know To Write A Sugar Activity? 10
PROGRAMMING

5 Setting Up a Sugar Development Environment 14
6 Creating your First Sugar Activity 23
7 A Standalone Python Program For Reading Etexts 25
8 Inherit From sugar.activity. Activity 32
9 Package The Activity 39
10 Add Refinements 47
11 Add Your Activity Code To Version Control 61
12 Going International With Pootle 80
13 Distribute Your Activity 86
14 Debugging Sugar Activities 91
ADVANCED TOPICS
15 Making Shared Activities 100
16 Adding Text To Speech 153
17 Fun With The Journal 172
18 Making Activities Using PyGame 197
19 Making New Style Toolbars 210
APPENDIX
20 Where To Go From Here? 234
21 About The Authors 236

22 License 238

SUGAR ACTIVITIES

1. Introduction

2. What is Sugar?

3. What is a Sugar Activity?

4. What Do I Need To Know To Write A Sugar Activity?

1 o Introduction

"This book is a record of a pleasure trip. If it were a record of a solemn scientific
expedition, it would have about it that gravity, that profundity, and that impressive
incomprehensibility which are so proper to works of that kind, and withal so attractive."

From the Preface to The Innocents Abroad, by Mark Twain

The purpose of this book is to teach you what you need to know to write Activities for
Sugar, the operating environment developed for the One Laptop Per Child project. This
book does not assume that you know how to program a computer, although those who
do will find useful information in it. My primary goal in writing it is to encourage non
programmers, including children and their teachers, to create their own Sugar

Activities. Because of this goal I will include some details that other books would leave
out and leave out things that others would include. Impressive incomprehensibility will
be kept to a minimum.

If you just want to learn how to write computer programs Sugar provides many
Activities to help you do that: Etoys, Turtle Art, Scratch, and Pippy. None of these are
really suitable for creating Activities so I won't cover them in this book, but they're a
great way to learn about programming. If you decide after playing with these that you'd
like to try writing an Activity after all you'll have a good foundation of knowledge to
build on.

When you have done some programming then you'll know how satisfying it can be to
use a program that you made yourself, one that does exactly what you want it to do.
Creating a Sugar Activity takes that enjoyment to the next level. A useful Sugar
Activity can be translated by volunteers into every language, be downloaded hundreds
of times a week and used every day by students all over the world.

Pride and Preudice by Jane Austen P o

/om®E -

the most qEEE

Mr. Wickh: =
which the
family. T
added tha
heard, his

of Hertfon
allowance:
Mr, Darcy

........

A book that teaches everything you need to know to write Activities would be really,
really long and would duplicate material that is already available elsewhere. Because of
this, I am going to write this as sort of a guided tour of Activity development. That
means, for example, that I'll teach you what Python is and why it's important to learn it
but I won't teach you the Python language itself. There are excellent tutorials on the
Internet that will do that, and I'll refer you to those tutorials.

There is much sample code in this book, but there is no need for you to type it in to try
it out. All of the code is in a Git repository that you can download to your own
computer. If you've never used Git there is a chapter that explains what it is and how to
use it.

I started writing Activities shortly after I received my XO laptop. When I started I didn't
know any of the material that will be in this book. I had a hard time knowing where to
begin. What I did have going for me though was a little less than 30 years as a
professional programmer. As a result of that I think like a programmer. A good
programmer can take a complex task and divide it up into manageable pieces. He can
figure out how things must work, and from that figure out how they do work. He knows
how to ask for help and where. If there is no obvious place to begin he can begin
somewhere and eventually get where he needs to go.

Because I went through this process I think I can be a pretty good guide to writing
Sugar Activities. Along the way I hope to also teach you how to think like a
programmer does.

From time to time I may add chapters to this book. Sugar is a great application platform
and this book can only begin to tell you what is possible. It is my hope that future
versions of the book will have guest chapters on more advanced topics written by other
experienced Activity developers.

2 o What is Sugar?

Sugar is the user interface designed for the XO laptop. It can now be installed on most
PGCs, including older models that can't run the latest Windows software. You can also
install it on a thumb drive (Sugar on a Stick) and boot your PC from that.

When the XO laptop first came out some people questioned the need for a new user
interface. Wouldn't it be better for children to learn something more like what they
would use as adults? Why not give them Microsoft Windows instead?

This would be a reasonable question if the goal was to train children to use computers
and nothing else. It would be even more reasonable if we could be sure that the
software they would use as adults looked and worked like the Microsoft Windows of
today. These are of course not reasonable assumptions.

The OLPC project is not just about teaching computer literacy. It is about teaching
everything: reading, writing, arithmetic, history, science, arts and crafts, computer
programming, music composition, and everything else. Not only do we expect the child
to use the computer for her school work, we expect her to take it home and use it for her
own explorations into subjects that interest her.

This is a great deal more than anyone has done with computers for education, so it is
reasonable to rethink how children should work with computers. Sugar is the result of
that rethinking.

Sugar has the following unique features:

The Journal

The Journal is where all the student's work goes. Instead of files and folders there is a
list of Journal entries. The list is sorted in descending order by the date and time it was
last worked on. In a way it's like the "Most Recently Used" document menu in
Windows, except instead of containing just the last few items it contains everything and
is the normal way to save and resume work on something.

The Journal makes it easy to organize your work. Any work you do is saved to the
Journal. Anything you download from the web goes in the Journal. If you've ever
downloaded a file using a web browser, then had to look for it afterwards because it
went in some directory other than the one you expected, or if you ever had to help your
parents when they were in a similar situation, you can understand the value of the
Journal.

The Journal has metadata for each item in it. Metadata is information about information.
Every Journal entry has a title, a description, a list of keywords, and a screen shot of
what it looked like the last time it was used. It has an activity id that links it to the
Activity that created it, and it may have a MIME type as well (which is a way of
identifying Journal entries so that items not created by an Activity may still be used by
an Activity that supports that MIME type).

In addition to these common metadata items a Journal entry may be given custom
metadata by an Activity. For instance, the Read Activity uses custom metadata to save
the page number you were reading when you quit the Activity. When you resume
reading later the Activity will put you on that page again.

In addition to work created by Activities, the Journal can contain Activities themselves.
To install an Activity you can use the Browse Activity to visit the website
http://activities.sugarlabs.org and download it. It will automatically be saved to the
Journal and be ready for use. If you don't want the Activity any more, simply delete it
from the Journal and it's completely gone. No uninstall programs, no dialog boxes telling
you that such and such a .DLL doesn't seem to be needed anymore and do you want to
delete it? No odd bits and pieces left behind.

Collaboration

The second unique feature Sugar is Collaboration. Collaboration means that Activities
can be used by more than one person at the same time. While not every Activity needs
collaboration and not every Activity that could use it supports it, a really first rate
Activity will provide some way to interact with other Sugar users on the network. For
instance, all the e-book reading Activities provide a way of giving a copy of the book
you're reading (with any notes you added to it) to a friend or to the whole class. The
Write Activity lets several students work on the same document together. The
Distance Activity lets two students see how far apart from each other they are.

There are five views of the system you can switch to at the push of a button (Function
Keys F1-4). They are:

http://activities.sugarlabs.org/

The Neighborhood View

The Friends View

The Activity Ring

The Journal
Of these Views, the first two are used for Collaboration.

The Neighborhood View shows icons for everyone on the network. Every icon looks
like a stick figure made by putting an "O" above an "X". Each icon has a name, chosen
by the student when she sets up her computer. Every icon is displayed in two colors,
also chosen by the student. In addition to these "XO" icons there will be icons
representing mesh networks and others representing WiFi hot spots. Finally there will
be icons representing active Activities that their owners wish to share.

To understand how this works consider the Chat Activity. The usual way applications
do chat is to have all the participants start up a chat client and visit a particular chat
room at the same time. With Sugar it's different. One student starts the Chat Activity on
her own computer and goes to the Neighborhood View to invite others on the network
to participate. They will see a Chat icon in their own Neighborhood View and they can
accept. The act of accepting starts up their own Chat Activity and connects them to the
other participants.

The Friends View is similar to the Neighborhood View, but only contains icons for
people you have designated as Friends. Collaboration can be offered at three levels: with
individual persons, with the whole Neighborhood, and with Friends. Note that the
student alone decides who her Friends are. There is no need to ask to be someone's
Friend. It's more like creating a mailing list in email.

Security

Protecting computers from malicious users is very important, and if the computers
belong to students it is doubly important. It is also more difficult, because we can't
expect young students to remember passwords and keep them secret. Since Sugar runs
on top of Linux viruses aren't much of a problem, but malicious Activities definitely are.
If an Activity was allowed unrestricted access to the Journal, for instance, it could wipe it
out completely. Somebody could write an Activity that seems to be harmless and
amusing, but perhaps after some random number of uses it could wipe out a student's
work.

The most common way to prevent a program from doing malicious things is to make it
run in a sandbox. A sandbox is a way to limit what a program is allowed to do. With the
usual kind of sandbox you either have an untrusted program that can't do much of
anything or a trusted program that is not restricted at all. An application becomes
trusted when a third party vouches for it by giving it a signature. The signature is a
mathematical operation done on the program that only remains valid if the program is
not modified.

Sugar has a more sophisticated sandbox for Activities than that. No Activity needs to be
trusted or is trusted. Every Activity can only work with the Journal in a limited, indirect
way. Each Activity has directories specific to it that it can write to, and all other
directories and files are limited to read-only access. In this way no Activity can interfere
with the workings of any other Activity. In spite of this, an Activity can be made to do
what it needs to do.

Summary

Sugar is an operating environment designed to support the education of children. It
organizes a child's work without needing files and folders. It supports collaboration
between students. Finally, it provides a robust security model that prevents malicious
programs from harming a student's work.

It would not be surprising to see these features someday adopted by other desktop
environments.

3 o What is a Sugar Activity?

A Sugar Activity is a self-contained Sugar application packaged in a .xo bundle.
An .xo bundle is an archive file in the Zip format. It contains:

o A MANIFEST file listing everything in the bundle

¢ An activity.info file that has attributes describing the Activity as name=value
pairs. These attributes include the Activity name, its version number, an identifier,
and other things we will discuss when we write your first Activity.

e Anicon file (in SVG format)

o Files containing translations of the text strings the Activity uses into many
languages

e The program code to run the Activity

A Sugar Activity will generally have some Python code that extends a Python class
called Activity. It may also make use of code written in other languages if that code is
written in a way that allows it to be used from Python (this is called having Python
bindings). Itis even possible to write a Sugar Activity without using Python at all, but
this is beyond the scope of this book.

There are only a few things that an Activity can depend on being included with every
version of Sugar. These include modules like Evince (PDF and other document
viewing), Gecko (rendering web pages), and Python libraries like PyGTK and PyGame.
Everything needed to run the Activity that is not supplied by Sugar must go in the
bundle file. A question sometimes heard on the mailing lists is "How do I make Sugar
install X the first time my Activity is run?" The answer: you don't. If you need X it
needs to go in the bundle.

You can install an Activity by copying or downloading it to the Journal. You uninstall it
by removing it from the Journal. There is no Install Shield to deal with, no deciding
where you want the files installed, no possibility that installing a new Activity will make
an already installed Activity stop working.

An Activity generally creates and reads objects in the Journal. A first rate Activity will
provide some way for the Activity to be shared by multiple users.

4 o What Do I Need To Know To Write A
Sugar Activity?

If you are going to write Sugar Activities you should learn something about the topics
described in this chapter. There is no need to become an expert in any of them, but you
should bookmark their websites and skim through their tutorials. This will help you to
understand the code samples we'll be looking at.

Python

Python is the most used language for writing Activities. While you can use other
languages, most Activities have at least some Python in them. Sugar provides a Python
API that simplifies creating Activities. While it is possible to write Activities using no
Python at all (like Etoys), it is unusual.

All of the examples in this book are written entirely in Python.

There are compiled languages and interpreted languages. In a compiled language the
code you write is translated into the language of the chip it will run on and it is this
translation that is actually run by the OS. In an interpreted language there is a program
called an interpreter that reads the code you write and does what the code tells it to do.
(This is over simplified, but close enough to the truth for this chapter).

Python is an interpreted language. There are advantages to having a language that is
compiled and there are advantages to having an interpreted language. The advantages
Python has for developing Activities are:

10

e It is portable. In other words, you can make your program run on any chip and
any OS without making a version specific to each one. Compiled programs only
run on the OS and chip they are compiled for.

o Since the source code is the thing being run, you can't give someone a Python
program without giving them the source code. You can learn a lot about Activity
programming by studying other people's code, and there is plenty of it to study.

o Itis an easy language for new programmers to learn, but has language features that
experienced programmers need.

o Itis widely used. One of the best known Python users is Google. They use it
enough that they have started a project named “Unladen Swallow” to make
Python programs run faster.

The big advantage of a compiled language is that it can run much faster than an
interpreted language. However, in actual practice a Python program can perform as well
as a compiled program. To understand why this is you need to understand how a
Python program is made.

Python is known as a “glue” language. The idea is that you have components written in
various languages (usually C and C++) and they have Python bindings. Python is used
to “glue” these components together to create applications. In most applications the
bulk of the application's function is done by these compiled components, and the
application spends relatively little time running the Python code that glues the
components together.

In addition to Activities using Python most of the Sugar environment itself is written in
Python.

If you have programmed in other languages before there is a good tutorial for learning

Python at the Python website: http://docs.python.org/tutorial/. If you're just starting
out in programming you might check out Invent Your Own Computer Games With

Python, which you can read for free at http://inventwithpython.com/.

PyGTK

GTK+ is a set of components for creating user interfaces. These components include
things like buttons, scroll bars, list boxes, and so on. It is used by GNOME desktop

environment and the applications that run under it. Sugar Activities use a special
GNOME theme that give GTK+ controls a unique look.

11

http://docs.python.org/tutorial/
http://inventwithpython.com/

PyGTK s a set of Python bindings that let you use GTK+ components in Python
programs. There is a tutorial showing how to use it at the PyGTK website:
http://www. k.org/tutorial. html.

PyGame

The alternative to using PyGTK for your Activity is PyGame. PyGame can create
images called sprites and move them around on the screen. As you might expect,
PyGame is mostly used for writing games. It is less commonly used in Activities than
PyGTK.

The tutorial to learn about PyGame is at the PyGame website:

http://www.pygame.org/wiki/tutorials. The website also has a bunch of pygame projects

you can download and try out.

12

http://www.pygtk.org/tutorial.html
http://www.pygame.org/wiki/tutorials

PROGRAMMING

5. Setting Up a Sugar Development Environment

6. Creating your First Sugar Activity

7. A Standalone Python Program For Reading Etexts
8. Inherit From sugar.activity.Activity

9. Package The Activity

10. Add Refinements

11. Add Your Activity Code To Version Control

12. Going International With Pootle

13. Distribute Your Activity

14. Debugging Sugar Activities

13

5 o Setting Up a Sugar Development
Environment

It is not currently practical to develop Activities for the XO on the XO. It's not so much
that you can't do it, but that it's easier and more productive to do your development
and testing on another machine running a more conventional OS. This gives you access
to better tools and it also enables you to simulate collaboration between two computers
running Sugar using only one computer.

Install Linux Or Use A Virtual Machine?

Even though Sugar runs on Linux it is possible to run a complete instance of Sugar in a
virtual machine that runs on Windows. A virtual machine is a way to run one operating
system on top of another one. The operating system being run is fooled into thinking it
has the whole computer to itself. (Computer industry pundits will tell you that using
virtual machines is the newest new thing out there. Old timers like me know that IBM
was doing it on their mainframe computers back in the 1970's).

For awhile this was actually the recommended way to develop Activities. The version of
Linux that Sugar used was different enough from regular Linux distributions that even
Linux users were running Sugar in a virtual machine on top of Linux.

The situation has improved, and most current Linux distributions have a usable Sugar
environment.

If you're used to Windows you might think that running Sugar in a VM from Windows
instead of installing Linux might be the easier option. In practice it is not. Linux running
in a VM is still Linux, so you're still going to have to learn some things about Linux to
do Activity development. Also, running a second OS in a VM requires a really powerful
machine with gigabytes of memory. On the other hand, I do my Sugar development
using Linux on an IBM NetVista Pentium IV I bought used for a little over a hundred
dollars, shipping included. It is more than adequate.

Installing Linux is not the test of manhood it once was. Anyone can do it. The GNOME
desktop provided with Linux is very much like Windows so you'll feel right at home
using it.

14

When you install Linux you have the option to do a dual boot, running Linux and
Windows on the same computer (but not at the same time). This means you set aside a
disk partition for use by Linux and when you start the computer a menu appears asking
which OS you want to start up. The Linux install will even create the partition for you,
and a couple of gigabytes is more than enough disk space. Sharing a computer with a
Linux installation will not affect your Windows installation at all.

Sugar Labs has been working to get Sugar included with all Linux distributions. If you
already have a favorite distribution, chances are the latest version of it includes Sugar.
Fedora, openSuse, Debian, and Ubuntu all include Sugar. If you already use Linux, see
if Sugar is included in your distribution. If not, Fedora is what is used by the XO
computer so Fedora 10 or later might be your best bet. You can download the Fedora

install CD or DVD here: https://fedoraproject.org/get-fedora.

It is worth pointing out that all of the other tools I'm recommending are included in
every Linux distribution, and they can be installed with no more effort than checking a
check box. The same tools often will run on Windows, but installing them there is more
work than you would expect for Windows programs.

If you are unwilling to install and learn about Linux but still want to develop Activities
one option you have is to develop a standalone Python program that uses PyGame of
PyGTK and make it do what you'd like your Activity to do. You could then turn over
your program to someone else who could convert it into a Sugar Activity. You could
develop such a Python program on Windows or on the Macintosh.

If you want to do development on a Macintosh running Sugar in a virtual machine may
be a more attractive option. If you want to try it details will be found here:

http://wiki.laptop.org/go/Developers/Setup. It may also be possible to install Fedora

Linux on an Intel or Power PC Macintosh as a dual boot, just like you can do with
Windows. Check the Fedora website for details.

Another option for Mac users is to use Sugar on a Stick as a test environment. You can

learn about that here: http://wiki.sugarlabs.org/go/Sugar_on_a_Stick.

15

https://fedoraproject.org/get-fedora
http://wiki.laptop.org/go/Developers/Setup
http://wiki.sugarlabs.org/go/Sugar_on_a_Stick

What About Using sugar-jhbuild?

Sugar-jhbuild is a script that downloads the source code for the latest version of all the
Sugar modules and compiles it into a subdirectory of your home directory. It doesn't
actually install Sugar on your system. Instead, you run it out of the directory you
installed it in. Because of the way it is built and run it doesn't interfere with the
modules that make up your normal desktop. If you are developing Sugar itself, or if you
are developing Activities that depend on the very latest Sugar features you'll need to
run sugar-jhbuild.

Running this script is a bit more difficult than just installing the Sugar packages that
come with the distribution. You'll need to install Git and Subversion, run a Git
command from the terminal to download the sugar-jhbuild script, then run the script
with several different options which download more code, ask you to install more
packages, and ultimately compile everything. It may take you a couple of hours to do
all the steps. When you're done you'll have an up to date test environment that you can
run as an alternative to sugar-emulator. There is no need to uninstall sugar-emulator;
both can coexist.

You run it with these commands:

cd sugar-jhbuild
./sugar-jhbuild run sugar-emulator

Should you consider using it? The short answer is no. A longer answer is probably not

yet.

If you want your Activities to reach the widest possible audience you don 't want the
latest Sugar. In fact, if you want a test environment that mimics what is on most XO
computers right now you need to use Fedora 10. Because updating operating systems in
the field can be a major undertaking for a school most XO's will be running Sugar .82 or
older for quite some time.

Of course it is also important to have developers that want to push the boundaries of
what Sugar can do. If after developing some Activities you decide you need to be one of
them you can learn about running sugar-jhbuild here:
http://wiki.sugarlabs.org/go/DevelopmentTeam/[hbuild.

Strictly speaking sugar-jhbuild is just the script that downloads and compiles Sugar. If
you wanted to be correct you would say "Run the copy of sugar-emulator you made
with sugar-jhbuild". Most Sugar developers would just say "Run sugar-jhbuild" and
that's what I'll say in this book.

16

http://wiki.sugarlabs.org/go/DevelopmentTeam/Jhbuild

Python

We'll be doing all the code samples in Python so you'll need to have Python installed.

Python comes with every Linux distribution. You can download installers for Windows

and the Macintosh at http://www.python.org/.
Eric

Developers today expect their languages to be supported by an Integrated

Development Environment and Python is no exception. An IDE helps to organize
your work and provides text editing and a built in set of programming and debugging

tools.
[] BookExamples - /fhome/jim/olpc/bookexamples/mainline/ReadEtextsAct
File Edit Wiew Start Debug Unittest Mulbproject Project Extras Setings Window Bookmarks Plugins Help
@ » » [vini|® » @» | |fp» B R
Vertical Toolbox B ® .-' ReadEtextsActivitypy |
¢ ProjectViewer 75 T sclf.show_page(page)
— 16 v_adjustment = self.screlled_window.get_vadjustment()
J - lﬁr | @ - Ik 77 v_adjustment.value = v_adjustment.upper - v_adjustment.page_si
[C | 78
Name | 79 - def page_next(self):
& teuntview 20 global page
@ = 81 page=page+1
@ _init_{=elf, handle) 82 if page == len{sclf.page_index): page=0
o font_decrease(self) | 83 self.shaw_page(page)
& font_increase(self) 84 v_au!usrmenr = selr.scrolle|_:|_w|naow.get_vaajug:menl:u
= : 85 v_adjustmentvalue = v_adjustmentlower
¢ keypress_cb(self, widg %6
e make_newﬁlenamel‘,sq 87 - def font_decrease(saif):
«* page_next(self) _ 88 font_size = self.font_desc.get_size() f 1024
o page_previous{self] 89 fonk_size = font_size - 1
o read_file(self, filename|—| a0 - if font size =< 1:
o save_extracted_file(sel 91 i font_size =1
& scroll_down(self) | _ 92 self.font_desc.set_size{font_size * 1024)
o B % 93 self.textview.medify_font(self.font_desc)
= I B8 a4
B SIS — def font_increase(seln:
i Multiproject-Viewer h =
. Proj 96 i font_size = self.font_desc.get_size() / 1024
~ Template-Viewer & |
Henzental Toolbox
L‘}. " 1Python 2.5.2 (r252:60911, Sep 20 2008, 15:41:38)
. 2 [GCC 4.5 2 20080917 (Red Hat 4.3 2-4)] on slpcz.simmons, Standard
3 sm
L

There are two Python IDE's I have tried: Eric and Idle. Eric is the fancier of the two and

I recommend it. Every Linux distribution should include it. It looks like it might work

on Windows too. You can learn more about it at the Eric website: http://eric-ide.python-

projects.org/.

17

http://www.python.org
http://eric-ide.python-projects.org/

SPE (Stani's Python Editor)

This is an IDE I discovered while writing this book. It comes with Fedora and in
addition to being a Python editor it will make UML diagrams of your code and show
PyDoc for it. Here is SPE showing a UML diagram for one of the Activities in this
book:

e 1 ok -t vy - iaane ([S40E Dok mERTin s (i - 5F B LA

He LW Wes s ras Heg
RN

T T T [P e GEGN D ey [FesaTi
iyt rancie) ot < read_argrisaty E,, =
[r— e —

B Bl
._foci bar_Crpp Chiver,urtamy
an g0 il Loiman. crijsef om tocibar]

CEECECOCIOTEOIGEOOD |
5
B
i

O el 15 K| gt |10 | 8¢ Pred oo L e achn 7 M- D

<1 e Lvan [P PTE—Y

Focinfies || Clear | Depeis §
266,20 SIS hOW 10 4G S WEN WG 100, AT 0B 7 A for iame | 2n Gana i 10 spa iani 1@gmat cam Than Aliréegrees

e i rmiten o in spmtabs Ehe e Tied g (0 e 0 Ao Dlede] e spelebsMrd gy loporin seel
L
Espmians | ppopw

Mutch cane | Wildcards

Wcks warth [~ Hegeisr anpressions

Rt
Pyetan sl the TenUmrey macraastily ot cked the s FasEtartsdmuatylay eetmes Lre 0COO1 | Colun 000

If you're an experienced developer you might find this a useful alternative to Eric. If
you're just starting out Eric should meet your needs pretty well.

Other IDE's

There is also a commercial Python IDE called Wingware, which has a version you can

use for free. You can learn more about it at http://www.wingware.com/.

18

http://www.wingware.com

Inkscape

Inkscape is a tool for creating images in SVG format. Sugar uses SVG for Activity icons
and other kinds of artwork. The “XO” icon that represents each child in the
Neighborhood view is an SVG file that can be modified.

read-etexts.svy - Inkscape

Fle Edit View Layer Objest Path Test Effects Whiteboard Help
Ik = L Iy ¥ 3 = b
fTEees BB he B QQQA DEE fH FPTRE W=
& G b g 2 122 S ET xfooe [Tovfoson [Dlwieen [T @ Hlosa e v A [T v
S I LT e P I T T O T I I P TR PRI AP S O L B
L -
&~ -
£ -
.
5
& -
il
©! |
or
{\'.i'} :
G-
= '
L"B‘ e —
l._
Pz —
W - —
y 3]
A
. e ——]
B ——
mh -
Gl | -
T |
i
: e
< Bl -
- HE H T N B T S
>
T 4 3 | -Leyer 1 |v | No objects selected Click, Shilt +elick, ar drag arund objects ta select L s

Inkscape comes with every Linux distribution, and can be installed on Windows as

well. You can learn more about it here: http://www.inkscape.org/.

http://www.inkscape.org/

Git

Git is a version control system. It stores versions of your program code in a way that
makes them easy to get back. Whenever you make changes to your code you ask Git to
store your code in its repository. If you need to look at an old version of that code later
you can. Even better, if some problem shows up in your code you can compare your
latest code to an old, working version and see exactly what lines you changed.

readtoolbar.py

1 15 # along with this program; if not, write to the Free Software
16 16 # Foundation, Inc., 51 Franklin 5t, Fifth Floor, Boston, MA 02110-1301
1 17
18 import os
18 19 import logging
19 20 from gettext import gettext as _
20 21 import re

L

416 416 combotool.show()

417 417

418 418 self,.pitchadj = gtk Adjustment(®, -160, 100, 1, 18, 0)

419 self.pitchadj.connect("value _changed", self.pitch_adjusted cb)
420 419 pitchbar = gtk.H5cale(self.pitchadj)

421 420 pitchbar.set_draw_value(False)

422 421 pitchbar.set_update_policy(gtk.UPDATE_DISCONTINUOUS)

427 | 427 pitchbar.show()

428 428

429 429 self.rateadj = gtk . Adjustment(@, -106, 186, 1, 16, 0)

438 self.rateadj.connect("value_changed", self.rate adjusted_ch)
431 430 ratebar = gtk.HScale(self.ratead]j)

432 | 431 ratebar.set_draw_value(False)

433 432 ratebar.set_update_policy(gthk.UPDATE_DISCONTINLUOUS)

453 453 def pitch_adjusted_cb(self, get}):

454 454 speech.pitch = int{get.value)
455 | 455 speech.say(_("pitch adjusted”))
456 T = open(os.path. join(self.activity.get activity root(), 'insta

If there are two people working on the same program independently a version control
system will merge their changes together automatically.

Suppose you're working on a major new version of your Activity when someone finds a
really embarrassing bug in the version you just released. If you use Git you don't need
to tell people to live with it until the next release, which could be months away. Instead
you can create a branch of the previous version and work on it alongside the version
you're enhancing. In effect Git treats the old version you're fixing and the version you're
improving as two separate projects.

You can learn more about Git at the Git website: http://git-scm.com/.

20

http://git-scm.com/

When you're ready for a Git repository for your project you can set one up here:

http://git.sugarlabs.org/. I will have more to say about setting up and using a Git
repository later in this book.

There is a Git repository containing all the code examples from this book. Once you
have Git installed you can copy the repository to your computer with this command:

git clone git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git

This command should be typed all on one line. The backslash (\) character at the end
of the first line is used in Linux to continue a long command to a second line. It is used
here to make the command fit on the page of the printed version of this book. When

you type in the command you can leave it out and type myo-sugar-activities-
examples/mainline.git immediately following git.sugarlabs.org/.

This convention of splitting long commands over multiple lines will be used throughout
this book. In addition to that, the code in Git will generally have longer lines than
you'll see in the code listings in the book. For that reason I'd recommend that you not
try to type in the code from these listings, but use the code in Git instead.

The GIMP

The GIMP is one of the most useful and badly named programs ever developed. You
can think of it as a free version of Adobe Photoshop. If you need to work with image
files (other than SVG's) you need this program.

&rlc.jpy-5.0 (AGE, 1 layar) 640x491 - GIMP
ble oit Zel=ct Wes mage Layer Lokrs Jools Hiters Sodows Help
e e L I L e 2 P O =
(s dE§,

TyEle Eo yiow St [ebeg Mtkest Mubprsjo crec Sezirgs gArdow Bockmarks Ag

Himia PR el Mo @ ow | M
2| '

el andliae EE gl iy |

) £l Fopet e =%] ¥t awtia spe)
_mEpEmen: = s sl wd_wincow get vasjsmmen]) '

1R T TR A CREITTTA BT - ¥ AT T i

B tarkaround

= | def e sesbizc i
slchal age

et
| M ne0e am e L eean ndexd: nages
G ———
AL M @ pebarrclmd_nincoanast_vashismisn)
T s

5 make_rew FieromsCsn

prge_prezinnek|

Painthrush @ &2
o read fielse. Merame| —
Made Mo - . P wana_wntractes_ el

o serel_downise) orr,_d slecdtand_sze = 11341
Senchy 1002 |, S : . ¢ farkizc . lon: deach

"
Fusn @ ||Circe L) 1% Ma DRt ewer

<1
Part_sesapet_sicedl 0
S IS r—— i =] 15 = o
Sl — |12 |2 '
kel Trdhos Tl
Brush Dyaamics G .
Pl S - d [Oma
] Fade cul = 492 20 LN E) il ans { Hrushms =l
h e {11 (13 = 210
fipply Jither plabienfln b e
”
Ircremerts . / e
Lige calor frem gradient L - -
LN N

21

http://git.sugarlabs.org/

You may never need this program to develop the Activity itself, but when it's time to
distribute the Activity you'll use it to create screen shots of your Activity in action.
Nothing sells an Activity to a potential user like good screen shots.

Sugar Emulation

Most Linux distributions should have Sugar included. In Fedora you can run Sugar as
an alternative desktop environment. When you log in to GDM Sugar appears as a
desktop selection alongside GNOME, KDE, Window Maker, and any other window
managers you have installed.

This is not the normal way to use Sugar for testing. The normal way uses a tool called
Xephyr to run a Sugar environment in a window on your desktop. In effect, Xephyr
runs an X session inside a window and Sugar runs in that. You can easily take screen
shots of Sugar in action, stop and restart Sugar sessions without restarting the computer,
and run multiple copies of Sugar to test collaboration.

B Applicytans Maces Systam w J ____37 lames SImmons ulil Fri O=c 25, 9:235 FM
P i M L =

e

Xephyr on 100.0 [ctri=shift grals mouse and keyhoard)

33 |71 Xephyron 000 ctil.. | . il & i .E

I'll have more to say about this when it's time to test your first Activity.

22

6 e Creating your First Sugar Activity

Make A Standalone Python Program First

The best advice I could give a beginning Activity developer is to make a version of your
Activity that can run on its own, outside of the Sugar environment. Testing and
debugging a Python program that stands alone is faster, easier and less tedious than
doing the same thing with a similar Activity. You'll understand why when you start
testing your first Activity.

The more bugs you find before you turn your code into an Activity the better. In fact,
it's a good idea to keep a standalone version of your program around even after you
have the Activity version well underway. I used my standalone version of Read Etexts
to develop the text to speech with highlighting feature. This saved me a lot of time,
which was especially important because I was figuring things out as I went.

Our first project will be a version of the Read Etexts Activity I wrote.

Inherit From The sugar.activity.Activity Class

Next we're going to take our standalone Python program and make an Activity out of
it. To do this we need to understand the concept of inheritance. In everyday speech
inheritance means getting something from your parents that you didn't work for. A
king will take his son to a castle window and say, "Someday, lad, this will all be yours!"
That's inheritance.

In the world of computers programs can have parents and inherit things from them.
Instead of inheriting property, they inherit code. There is a piece of Python code called
sugar.activity.Activity that's the best parent an Activity could hope to have, and we're
going to convince it to adopt our program. This doesn't mean that our program will
never have to work again, but it won't have to work as much.

Package The Activity

Now we have to package up our code to make it something that can be run under Sugar
and distributed as an .xo file. This involves setting up a MANIFEST, activity.info,
setup.py, and creating a suitable icon with Inkscape.

23

Add Refinements

Every Activity will have the basic Activity toolbar. For most Activities this will not be
enough, so we'll need to create some custom toolbars as well. Then we need to hook
them up to the rest of the Activity code so that what happens to the toolbar triggers
actions in the Activity and what happens outside the toolbar is reflected in the state of
the toolbar.

In addition to toolbars we'll look at some other ways to spiff up your Activity.

Put The Project Code In Version Control

By this time we'll have enough code written that it's worth protecting and sharing with
the world. To do that we need to create a Git repository and add our code to it. We'll
also go over the basics of using Git.

Going International With Pootle

Now that our code is in Git we can request help from our first collaborator: the Pootle
translation system. With a little setup work we can get volunteers to make translated
versions of our Activity available.

Distributing The Activity

In this task we'll take our Activity and set it up on http://activities.sugarlabs.org plus
we'll package up the source code so it can be included in Linux distributions.

Add Collaboration

Next we'll add code to share e-books with Friends and the Neighborhood.

Add Text To Speech

Text to Speech with word highlighting is next. Our simple project will become a Kindle-
killer!

24

http://activities.sugarlabs.org

7 « A standalone Python Program For
Reading Etexts

The Program

Our example program is based on the first Activity I wrote, Read Etexts. This is a
program for reading free e-books.

The oldest and best source of free e-books is a website called Project Gutenberg
(http://www.gutenberg.org/wiki/Main_Page). They create books in plain text format, in
other words the kind of file you could make if you typed a book into Notepad and hit
the Enter key at the end of each line. They have thousands of books that are out of
copyright, including some of the best ever written. Before you read further go to that
website and pick out a book that interests you. Check out the "Top 100" list to see the
most popular books and authors.

The program we're going to create will read books in plain text format only.

There is a Git repository containing all the code examples in this book. Once you have
Git installed you can copy the repository to your computer with this command:

git clone git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git

The code for our standalone Python program will be found in the directory
Make_Standalone_Python in a file named ReadEtexts.py. It looks like this:

#! /usr/bin/env python
import sys

import os

import zipfile

import pygtk

import gtk

import getopt

import pango

page=0
PAGE SIZE = 45

class ReadEtexts () :

def keypress cb(self, widget, event):
"Respond when the user presses one of the arrow keys"
keyname = gtk.gdk.keyval name (event.keyval)
if keyname == 'plus':
self.font increase()

25

http://www.gutenberg.org/wiki/Main_Page).
http://www.gutenberg.org/wiki/Main_Page

26

def

def

def

def

def

return True
if keyname == 'minus':
self.font decrease()
return True
if keyname == 'Page Up'
self.page previous ()
return True
if keyname == 'Page Down':
self.page next ()
return True
if keyname == 'Up' or keyname == 'KP Up' \
or keyname == 'KP Left':
self.scroll up()
return True
if keyname == 'Down' or keyname == 'KP_ Down' \
or keyname == 'KP Right':
self.scroll down ()
return True
return False

page previous (self) :

global page

page=page-1

if page < 0: page=0

self.show page (page)

v_adjustment = \
self.scrolled window.get vadjustment ()

v_adjustment.value = v_adjustment.upper - \
v_adjustment.page_ size

page next (self):

global page

page=page+l

if page >i= len(self.page index): page=0
self.show page (page)

v_adjustment = \
self.scrolled window.get vadjustment ()
v_adjustment.value = v_adjustment.lower

font decrease (self):
font size = self.font desc.get size() / 1024
font size = font size -1
if font size < 1:

font size =1
self.font desc.set size(font size * 1024)
self.textview.modify font(self.font desc)

font increase (self):

font size = self.font desc.get size() / 1024
font size = font size + 1
self.font desc.set size(font size * 1024)
self.textview.modify font(self.font desc)

scroll down (self):

v_adjustment = \
self.scrolled window.get vadjustment ()
if v_adjustment.value == v_adjustment.upper - \

v adjustment.page size:

def

def

def

def

self.page next ()
return
if v_adjustment.value < v_adjustment.upper -\

v_adjustment.page size:

new value = v_adjustment.value + \
v_adjustment.step increment

if new value > v_adjustment.upper -\
v_adjustment.page size:
new value = v_adjustment.upper -\

v_adjustment.page_ size
v_adjustment.value = new_value

scroll up(self):

v_adjustment = \
self.scrolled window.get vadjustment ()
if v_adjustment.value == v_adjustment.lower:
self.page previous ()
return
if v_adjustment.value > v_adjustment.lower:
new value = v_adjustment.value - \

v_adjustment.step increment
if new value < v_adjustment.lower:
new value = v_adjustment.lower
v_adjustment.value = new_value

show page(self, page number) :
global PAGE SIZE, current word
position = self.page_ index[page number]
self.etext file.seek(position)
linecount = 0
label text = '\n\n\n'
textbuffer = self.textview.get buffer ()
while linecount < PAGE SIZE:
line = self.etext file.readline()
label text = label text + unicode(line,
'iso-8859-1")
linecount = linecount + 1
label text = label text + '\n\n\n'
textbuffer.set text(label text)
self.textview.set buffer (textbuffer)

save extracted file(self, zipfile, filename):
"Extract the file to a temp directory for viewing"

filebytes = zipfile.read(filename)
f = open("/tmp/" + filename, 'w')
try:

f.write(filebytes)
finally:

f.close

read file(self, filename):
"Read the Etext file"
global PAGE SIZE

if zipfile.is zipfile(filename):
self.zf = zipfile.ZipFile(filename, 'r')
self.book files = self.zf.namelist()
self.save extracted file(self.zf,

27

self.book files[0])

currentFileName = "/tmp/" + self.book files[0]
else:
currentFileName = filename
self.etext file = open(currentFileName,"r")
self.page index = [0]
linecount = 0
while self.etext file:
line = self.etext file.readline()
if not line:
break
linecount = linecount + 1
if linecount >= PAGE SIZE:
position = self.etext file.tell()
self.page index.append(position)
linecount = 0
if filename.endswith(".zip"):

os.remove (currentFileName)

def destroy cb(self, widget, data=None):
gtk.main_ quit ()

def main(self, file path):
self.window = gtk.Window (gtk.WINDOW TOPLEVEL)
self.window.connect ("destroy", self.destroy cb)
self.window.set title("Read Etexts")
self.window.set size request (640, 480)
self.window.set border width (0)
self.read file(file path)
self.scrolled window = gtk.ScrolledWindow (
hadjustment=None, vadjustment=None)
self.textview = gtk.TextView ()
self.textview.set editable (False)
self.textview.set left margin(50)
self.textview.set cursor visible (False)
self.textview.connect ("key press event",
self.keypress cb)
buffer = self.textview.get buffer ()
self.font desc = pango.FontDescription("sans 12")
font size = self.font desc.get size()
self.textview.modify font (self.font desc)
self.show page (0)
self.scrolled window.add(self.textview)
self.window.add(self.scrolled window)
self.textview.show ()
self.scrolled window.show ()
v_adjustment = \
self.scrolled window.get vadjustment ()
self.window.show ()

gtk.main ()
if name == " main_ ":
try:
opts, args = getopt.getopt(sys.argv[l:], "")
ReadEtexts () .main (args[0])

except getopt.error, msg:
print msg

28

print "This program has no options"
sys.exit (2)

Running The Program

To run the program you should first make it executable. You only need to do this once:

chmod 755 ReadEtexts.py

For this example I downloaded the file for Pride and Prejudice. The program will work
with either of the Plain text formats, which are either uncompressed text or a Zip file.
The zip file is named 1342.zip, and we can read the book by running this from a
terminal:

./ReadEtexts.py 1342.zip
This is what the program looks like in action:

] Read Etexts - X

Produced by Anonymous Volunteers

PRIDE AND PREJUDICE

By Jane Austen

Chapter 1
It is a truth universally acknowledged, that a single man in possession
of a good fortune, must be in want of a wife.

However little known the feelings or views of such a man may be on his
first entering a neighbourhood, this truth is so well fixed in the minds

b d

You can use the Page Up, Page Down, Up, Down, Left, and Right keys to navigate
through the book and the '+' and '-' keys to adjust the font size.

29

How The Program Works

This program reads through the text file containing the book and divides it into pages of
45 lines each. We need to do this because the gtk.TextView component we use for
viewing the text would need a lot of memory to scroll through the whole book and that
would hurt performance. A second reason is that we want to make reading the e-book
as much as possible like reading a regular book, and regular books have pages. If a
teacher assigns reading from a book she might say "read pages 35-50 for tommorow".
Finally, we want this program to remember what page you stopped reading on and
bring you back to that page again when you read the book next time. (The program we
have so far doesn't do that yet).

To page through the book we use random access to read the file. To understand what
random access means to a file, consider a VHS tape and a DVD. To get to a certain
scene in a VHS tape you need to go through all the scenes that came before it, in order.
Even though you do it at high speed you still have to look at all of them to find the
place you want to start watching. This is sequential access. On the other hand a DVD
has chapter stops and possibly a chapter menu. Using a chapter menu you can look at
any scene in the movie right away, and you can skip around as you like. This is
random access, and the chapter menu is like an index. Of course you can access the
material in a DVD sequentially too.

We need random access to skip to whatever page we like, and we need an index so that
we know where each page begins. We make the index by reading the entire file one line
at a time. Every 45 lines we make a note of how many characters into the file we've
gotten and store this information in a Python list. Then we go back to the beginning of
the file and display the first page. When the program user goes to the next or previous
page we figure out what the new page number will be and look in the list entry for that
page. This tells us that page starts 4,200 characters into the file. We use seek() on the
file to go to that character and then we read 45 lines starting at that point and load them
into the TextView.

When you run this program notice how fast it is. Python programs take longer to run a
line of code than a compiled language would, but in this program it doesn't matter
because the heavy lifting in the program is done by the TextView, which was created in
a compiled language. The Python parts don't do that much so the program doesn't
spend much time running them.

Sugar uses Python a lot, not just for Activities but for the Sugar environment itself. You
may read somewhere that using so much Python is "a disaster" for performance. Don't
believe it.

30

There are no slow programming languages, only slow programmers.

31

8 Inherit From sugar.activity.Activity

Object Oriented Python

Python supports two styles of programming: procedural and object oriented.
Procedural programming is when you have some input data, do some processing on it,
and produce an output. If you want to calculate all the prime numbers under a hundred
or convert a Word document into a plain text file you'll probably use the procedural
style to do that.

Object oriented programs are built up from units called objects. An object is described
as a collection of fields or attributes containing data along with methods for doing things
with that data. In addition to doing work and storing data objects can send messages to
one another.

Consider a word processing program. It doesn't have just one input, some process, and
one output. It can receive input from the keyboard, from the mouse buttons, from the
mouse traveling over something, from the clipboard, etc. It can send output to the
screen, to a file, to a printer, to the clipboard, etc. A word processor can edit several
documents at the same time too. Any program with a GUI is a natural fit for the object
oriented style of programming.

Objects are described by classes. When you create an object you are creating an instance
of a class.

There's one other thing that a class can do, which is to inherit methods and attributes
from another class. When you define a class you can say it extends some class, and by
doing that in effect your class has the functionality of the other class plus its own
functionality. The extended class becomes its parent.

All Sugar Activities extend a Python class called sugar.activity.Activity. This class
provides methods that all Activities need. In addition to that, there are methods that
you can override in your own class that the parent class will call when it needs to. For
the beginning Activity writer three methods are important:

__init__()

This is called when your Activity is started up. This is where you will set up the user
interface for your Activity, including toolbars.

32

read_file(self, file_path)

This is called when you resume an Activity from a Journal entry. It is called after the
__init__() method is called. The file_path parameter contains the name of a temporary
file that is a copy of the file in the Journal entry. The file is deleted as soon as this
method finishes, but because Sugar runs on Linux if you open the file for reading your
program can continue to read it even after it is deleted and it the file will not actually go
away until you close it.

write_file(self, file_path)

This is called when the Activity updates the Journal entry. Just like with read_file() your
Activity does not work with the Journal directly. Instead it opens the file named in
file_path for output and writes to it. That file in turn is copied to the Journal entry.

There are three things that can cause write_file() to be executed:
e Your Activity closes.
e Someone presses the Keep button in the Activity toolbar.

e Your Activity ceases to be the active Activity, or someone moves from the Activity
View to some other View.

In addition to updating the file in the Journal entry the read_file() and write_file()
methods are used to read and update the metadata in the Journal entry.

When we convert our standalone Python program to an Activity we'll take out much of
the code we wrote and replace it with code inherited from the sugar.activity. Activity
class.

Extending The Activity Class

Here's a version of our program that extends Activity. You'll find it in the Git repository
in the directory Inherit_From_sugar.activity.Activity under the name
ReadEtextsActivity.py:

import sys

import os

import zipfile

import pygtk

import gtk

import pango

from sugar.activity import activity
from sugar.graphics import style

33

page=0
PAGE SIZE = 45

class ReadEtextsActivity(activity.Activity):

34

def

def

__init_ (self, handle):

"The entry point to the Activity"
global page
activity.Activity. init (self, handle)

toolbox = activity.ActivityToolbox (self)

activity toolbar = toolbox.get activity toolbar ()
activity toolbar.keep.props.visible = False
activity toolbar.share.props.visible = False
self.set toolbox(toolbox)

toolbox.show ()

self.scrolled window = gtk.ScrolledWindow ()

self.scrolled window.set policy(gtk.POLICY NEVER,
gtk.POLICY AUTOMATIC)

self.scrolled window.props.shadow type = \
gtk.SHADOW_NONE

self.textview = gtk.TextView ()

self.textview.set editable(False)

self.textview.set cursor visible (False)

self.textview.set left margin (50)

self.textview.connect ("key press event",
self.keypress cb)

self.scrolled window.add(self.textview)
self.set canvas(self.scrolled window)
self.textview.show ()

self.scrolled window.show ()

page = 0
self.textview.grab focus()
self.font desc = pango.FontDescription("sans %d" %

style.zoom(10))
self.textview.modify font(self.font desc)

keypress cb(self, widget, event):
"Respond when the user presses one of the arrow keys"
keyname = gtk.gdk.keyval name (event.keyval)
print keyname
if keyname == 'plus':
self.font increase()
return True
if keyname == 'minus':
self.font decrease()
return True
if keyname == 'Page Up'
self.page previous ()
return True
if keyname == 'Page Down':
self.page next ()
return True
if keyname == 'Up' or keyname == 'KP Up' \
or keyname == 'KP Left':
self.scroll up()

return True
if keyname == 'Down' or keyname == 'KP Down' \
or keyname == 'KP Right':
self.scroll down ()
return True
return False

def page previous (self):

global page

page=page-1

if page < 0: page=0

self.show page (page)

v_adjustment = \
self.scrolled window.get vadjustment ()

v_adjustment.value = v_adjustment.upper -\
v_adjustment.page_ size

def page next (self):
global page
page=page+l
if page >= len(self.page index): page=0
self.show page (page)

v_adjustment = \
self.scrolled window.get vadjustment ()
v_adjustment.value = v_adjustment.lower

def font decrease (self):
font size = self.font desc.get size() / 1024
font size = font size - 1
if font size < 1:
font size =1
self.font desc.set size(font size * 1024)
self.textview.modify font(self.font desc)

def font increase(self):
font size = self.font desc.get size() / 1024
font size = font size + 1
self.font desc.set size(font size * 1024)
self.textview.modify font(self.font desc)

def scroll down(self):

v_adjustment = \
self.scrolled window.get vadjustment ()
if v_adjustment.value == v_adjustment.upper - \

v_adjustment.page size:
self.page next ()
return
if v_adjustment.value < v_adjustment.upper -\
v_adjustment.page size:
new value = v_adjustment.value +\
v_adjustment.step increment
if new value > v_adjustment.upper -\
v_adjustment.page size:
new value = v_adjustment.upper -\
v_adjustment.page size
v_adjustment.value = new value

def scroll up(self):

36

def

def

def

v_adjustment = \
self.scrolled window.get vadjustment ()
if v_adjustment.value == v_adjustment.lower:
self.page previous ()
return
if v_adjustment.value > v_adjustment.lower:
new value = v_adjustment.value - \
v_adjustment.step increment
if new value < v_adjustment.lower:
new value = v_adjustment.lower
v_adjustment.value = new_value

show page (self, page number) :
global PAGE SIZE, current word
position = self.page index[page number]
self.etext file.seek(position)
linecount = 0
label text = '"\n\n\n'
textbuffer = self.textview.get buffer ()
while linecount < PAGE SIZE:
line = self.etext file.readline()
label text = label text + unicode(line,
'iso-8859-1")
linecount = linecount + 1
label text = label text + '\n\n\n'
textbuffer.set text(label text)
self.textview.set buffer (textbuffer)

save_ extracted file(self, zipfile, filename):
"Extract the file to a temp directory for viewing"
filebytes = zipfile.read(filename)
outfn = self.make new filename (filename)
if (outfn == "'"'):

return False

f = open(os.path.join(self.get activity root(),
'instance’', outfn), 'w')

try:
f.write(filebytes)

finally:
f.close

read file(self, filename):
"Read the Etext file"
global PAGE STIZE

if zipfile.is zipfile(filename) :
self.zf = zipfile.ZipFile(filename, 'r')
self.book files = self.zf.namelist ()
self.save extracted file(self.zf,
self.book files[0])
currentFileName = os.path.join (
self.get activity root(),
'instance', self.book files[0])
else:
currentFileName = filename

self.etext file = open(currentFileName,"r")
self.page index [0]

linecount = 0
while self.etext file:

line = self.etext file.readline()
if not line:

break
linecount = linecount + 1

if linecount >= PAGE SIZE:
position = self.etext file.tell()
self.page index.append(position)
linecount = 0
if filename.endswith (".zip"):
os.remove (currentFileName)
self.show page (0)

def make new filename (self, filename):
partition tuple = filename.rpartition('/")
return partition tuple[2]

This program has some significant differences from the standalone version. First, note
that this line:

#! /usr/bin/env python

has been removed. We are no longer running the program directly from the Python
interpreter. Now Sugar is running it as an Activity. Notice that much (but not all) of
what was in the main() method has been moved to the __init__() method and the
main() method has been removed.

Notice too that the class statement has changed:
class ReadEtextsActivity(activity.Activity)

This statement now tells us that class ReadEtextsActivity extends the class
sugar.activity.Activity. As a result it inherits the code that is in that class. Therefore
we no longer need a GTK main loop, or to define a window. The code in this class we
extend will do that for us.

While we gain much from this inheritance, we lose something too: a title bar for the
main window. In a graphical operating environment a piece of software called a window
manager is responsible for putting borders on windows, making them resizeable,
reducing them to icons, maximizing them, etc. Sugar uses a window manager named
Matchbox which makes each window fill the whole screen and puts no border, title bar,
or any other window decorations on the windows. As a result of that we can't close our
application by clicking on the "X" in the title bar as before. To make up for this we need
to have a toolbar that contains a Close button. Thus every Activity has an Activity
toolbar that contains some standard controls and buttons. If you look at the code you'll
see I'm hiding a couple of controls which we have no use for yet.

37

The read_file() method is no longer called from the main() method and doesn't seem to
be called from anywhere in the program. Of course it does get called, by some of the
Activity code we inherited from our new parent class. Similarly the __init__ () and
write_file() methods (if we had a write_file() method) get called by the parent Activity
class.

If you're especially observant you might have noticed another change. Our original
standalone program created a temporary file when it needed to extract something from
a Zip file. It put that file in a directory called /tmp. Our new Activity still creates the file
but puts it in a different directory, one specific to the Activity.

All writing to the file system is restricted to subdirectories of the path given by
self.get_activity_root(). This method will give you a directory that belongs to your
Activity alone. It will contain three subdirectories with different policies:

data
This directory is used for data such as configuration files. Files stored here will
survive reboots and OS upgrades.

tmp
This directory is used similar to the /tmp directory, being backed by RAM. It may
be as small as 1 MB. This directory is deleted when the activity exits.

instance
This directory is similar to the tmp directory, being backed by the computer's drive
rather than by RAM. It is unique per instance. It is used for transfer to and from
the Journal. This directory is deleted when the activity exits.

Making these changes to the code is not enough to make our program an Activity. We
have to do some packaging work and get it set up to run from the Sugar emulator. We
also need to learn how to run the Sugar emulator. That comes next!

38

0. Package The Activity

Add setup.py

You'll need to add a Python program called setup.py to the same directory that you
Activity program is in. Every setup.py is exactly the same as every other setup.py.
The copies in our Git repository look like this:

#!/usr/bin/env python
Copyright (C) 2006, Red Hat, Inc.

This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation; either version 2 of the License, or (at
your option) any later version.

#

#

#

#

#

#

#

#

This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

#
#
#
#
#
#

You should have received a copy of the GNU General
Public License along with this program; if not,
write to the Free Software Foundation, Inc.,

51 Franklin St, Fifth Floor, Boston, MA

02110-1301 UsA

from sugar.activity import bundlebuilder
bundlebuilder.start ()

Be sure and copy the entire text above, including the comments.

The setup.py program is used by sugar for a number of purposes. If you run setup.py
from the command line you'll see the options that are used with it and what they do.

[jim@simmons bookexamples]$./setup.py
/usr/lib/python2.6/site-packages/sugar/util.py:25:
DeprecationWarning: the sha module is deprecated;
use the hashlib module instead

import sha
Available commands:

build Build generated files

dev Setup for development

dist xo Create a xo bundle package

dist source Create a tar source package

fix manifest Add missing files to the manifest

39

gengot Generate the gettext pot file
install Install the activity in the system

(Type "./setup.py <command> --help" for help about a
particular command's options.

We'll be running some of these commands later on. Don't be concerned about the
DeprecationWarning message. That is just Python's way of telling us that it has a
new way of doing something that is better but the old way we are using still works.
The error is coming from code in Sugar itself and should be fixed in some future Sugar
release.

Create activity.info

Next create a directory within the one your progam is in and name it activity. Create a
file named activity.info within that directory and enter the lines below into it. Here is
the one for our first Activity:

[Activity]

name = Read ETexts II

service name = net.flossmanuals.ReadEtextsActivity

icon = read-etexts

exec = sugar-activity ReadEtextsActivity.ReadEtextsActivity
show launcher = no

activity version = 1
mime types = text/plain;application/zip
license = GPLv2+

This file tells Sugar how to run your Activity. The properties needed in this file are:

name The name of your Activity as it will appear to the user.

Aunique name that Sugar will use to refer to your Activity. Any Journal entry created
service_name by your Activity will have this name stored in its metadata, so that when someone
resumes the Journal entry Sugar knows to use the program that created it to read it.

icon The name of the icon file you have created for the Activity. Since icons are always .svg
files the icon file in the example is named read-etexts.svg.

exec This tells Sugar how to launch your Activity. What it says is to create an instance of the
class ReadEtextsActivity which it will find in file ReadEtextsActivity.py.

show_launcher There are two ways to launch an Activity. The first is to click on the icon in the Activity
view. The second is to resume an entry in the Journal. Activities that don't create Journal
entries can only be resumed from the Journal, so there is no point in putting an icon in
the Activity ring for them. Read Etexts is an Activity like that.

activity_version An integer that represents the version number of your program. The first version is 1,
the next is 2, and so on.

mime_types Generally when you resume a Journal entry it launches the Activity that created it. In
the case of an e-book it wasn't created by any Activity, so we need another way to tell
the Journal which Activity it can use. AMIME type is the name of a common file

40

format. Some examples are text/plain, text/html, application/zip and application/pdf.
In this entry we're telling the Journal that our program can handle either plain text files
or Zip archive files.

license Owning a computer program is not like buying a car. With a car, you're the owner and
you can do what you like with it. You can sell it, rent it out, make it into a hot rod,
whatever. With a computer program there is always a license that tells the person
receiving the program what he is allowed to do with it. GPLv2+ is a popular standard
license that can be used for Activities, and since this is my program that is what goes
here. When you're ready to distribute one of your Activities I'll have more to say about
licenses.

Create An Icon

Next we need to create an icon named read-etexts.svg and put it in the activity
subdirectory. i We're going to use Inkscape to create the icon. From the New menu in
Inkscape select icon_48x48. This will create a drawing area that is a good size.

You don't need to be an expert in Inkscape to create an icon. In fact the less fancy your
icon is the better. When drawing your icon remember the following points:

e Your icon needs to look good in sizes ranging from really, really small to large.

« It needs to be recognizeable when its really, really small.

 You only get to use two colors: a stroke color and a fill color. It doesn't matter
which ones you choose because Sugar will need to override your choices anyway,
so just use black strokes on a white background.

« Afill color is only applied to an area that is contained within an unbroken stroke.
If you draw a box and one of the corners doesn't quite connect the area inside that
box will not be filled. Free hand drawing is only for the talented. Circles, boxes,
and arcs are easy to draw with Inkscape so use them when you can.

o Inkscape will also draw 3D boxes using two point perspective. Don't use them.
Icons should be flat images. 3D just doesn't look good in an icon.

o Coming up with good ideas for icons is tough. I once came up with a rather nice
picture of a library card catalog drawer for Get Internet Archive Books. The
problem is, no child under the age of forty has ever seen a card catalog and fewer
still understand its purpose.

When you're done making your icon you need to modify it so it can work with Sugar.
Specifically, you need to make it show Sugar can use its own choice of stroke color and
fill color. The SVG file format is based on XML, which means it is a text file with some
special tags in it. This means that once we have finished editing it in Inkscape we can
load the file into Eric and edit it as a text file.

41

I'm not going to put the entire file in this chapter because most of it you'll just leave
alone. The first part you need to modify is at the very beginning.

Before:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg

After:

<?xml version="1.0" ?>
<!DOCTYPE svg PUBLIC '-//W3C//DTD SVG 1.1//EN'
'http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd"' [
<!ENTITY stroke color "#000000">
<!ENTITY fill color "#FFFFFF">
1><svg

Now in the body of the document you'll find references to fill and stroke as part of an
attribute called style. Every line or shape you draw will have these, like this:

<rect
style="fill:#ffffff;stroke:#000000;stroke-opacity:1"
id="rect904"
width="36.142857"
height="32.142857"
x="4,1428571"
y="7.1428571" />

You need to change each one to look like this:

<rect

style="fill:&fill color;;stroke:&stroke color;
;stroke-opacity:1"

id="rect904"

width="36.142857"

height="32.142857"

x="4.,1428571"

y="7.1428571" />

Note that &stroke_color; and &fill_color; both end with semicolons (;), and semicolons are
also used to separate the properties for style. Because of this it is an extremely common
beginner's mistake to leave off the trailing semicolon because two semicolons in a row
don't look right. Be assured that the two semicolons in a row are intentional and
absolutely necessary! Second, the value for style should all go on one line. We split it
here to make it fit on the printed page; do not split it in your own icon!

Make a MANIFEST File

You should remember that setup.py has an option to update a manifest. Let's try it:

42

./setup.py fix manifest
/usr/lib/python2.6/site-packages/sugar/util.py:25:
DeprecationWarning: the sha module is deprecated;
use the hashlib module instead

import sha
WARNING:root:Missing po/ dir, cannot build locale
WARNING:root:Activity directory lacks a MANIFEST file.

This actually will build a MANIFEST file containing everything in the directory and its

subdirectories. The /po directory it is complaining about is used to translate Activities
into different languages. We can ignore that for now.

The MANIFEST file it creates will contain some extra stuff, so we need to get rid of the
extra lines using Eric. The corrected MANIFEST should look like this:

setup.py
ReadEtextsActivity.py
activity/read-etexts.svg
activity/activity.info

Install The Activity

There's just one more thing to do before we can test our Activity under the Sugar
emulator. We need to install it, which in this case means making a symbolic link
between the directory we're using for our code in the ~/Activities/ directory. The
symbol ~ refers to the "home" directory of the user we're running Sugar under, and a
symbolic link is a way to make a file or directory appear to be located in more than one
place without copying it. We make this symbolic link by running setup.py again:

./setup.py dev

Running Our Activity

Now at last we can run our Activity under Sugar. To do that we need to learn how to
run sugar-emulator.

Fedora doesn't make a menu option for Sugar Emulator, but it's easy to add one
yourself. The command to run is simply

sugar-emulator

If your screen resolution is smaller than the default size sugar-emulator runs at it will
run full screen. This is not convenient for testing, so you may want to specify your own
size:

sugar-emulator -i 800x600

43

Note that this option only exists in Fedora 11 and later.

When you run sugar-emulator a window opens up and the Sugar environment starts up
and runs inside it. It looks like this:

ﬂ spplicabans Maces Swstsm @ & |[# James simmons ﬂlﬂ' Fri Dec 25, 5:35 FM
TSttt e et 27T

e e e =

83 |71 Rephyron 1000 0l | FEEN =

When running sugar-emulator you may find that some keys don't seem to work in the
Sugar environment. This is caused by bugs in the Xephyr software that creates the
window that Sugar runs in. Sometimes it has difficulty identifying your keyboard and
as a result some keys get misinterpreted. On Fedora 11 I noticed that my function keys
did not work, and my regular arrow keys didn't work either although my keypad arrow
keys did. I was able to get my function keys working again by putting this line in
~/.sugar/debug:

run setxkbmap <keymap name>

non

This needs more explanation. First, the symbo refers to your home directory.
Second, any file named starting with a period is considered hidden in Linux, so you'll
need to use the option to show hidden files and directories in the GNOME directory
browser to navigate to it. Finally, the keymap name is a two character country code: us
for the United States, fr for France, de for Germany;, etc.

44

To test our Activity we're going to need to have a book in the Journal, so use the
Browse Activity to visit Project Gutenberg again and download the book of your
choice. This time it's important to download the book in Zip format, because Browse
cannot download a plain text file to the Journal. Instead, it opens the file for viewing as
if it was a web page. If you try the same thing with the Zip file it will create an entry in
the Journal.

We can't just open the file with one click in the Journal because our program did not
create the Journal entry and there are several Activities that support the MIME type of
the Journal entry. We need to use the Start With menu option like this:

. Mardi - Wiki... Seconds age e

<7 File 1342.zi... Seconds ago

File 1342.zip from httpifwww.gutenberg.org/Mies/1342/1342.2ip.

1
M
T
©
% &
A
I-"\-\.? -
[~ Read ETexts I
M
T"‘? o View Details
o -

When we do open the Journal entry this is what we see:

45

File 1342 zip from hitp.fiwww gutcnberg.on

Produced by Anonymous Volunteers

PRIDE AND PREJUDICE I

By Jane Austen

Chapter 1
It is a truth universally acknowledged, that a single man in possession
of a good fortune, must be in want of a wife.

However little known the feelings or views of such a man may be on his
first entering a neighbourhood, this truth is so well fixed in the minds

Technically, this is the first iteration of our Activity. (Iteration is a vastly useful word
meaning something you do more than once. In this book we're building our Activity a
bit at a time so I can demonstrate Activity writing principles, but actually building a
program in pieces, testing it, getting feedback, and building a bit more can be a highly
productive way of creating software. Using the word iteration to describe each step in
the process makes the process sound more formal than it really is).

While this Activity might be good enough to show your own mother, we really should
improve it a bit before we do that. That part comes next.

46

1 O o Add Refinements

Toolbars

It is a truth universally acknowledged that a first rate Activity needs good Toolbars. In
this chapter we'll learn how to make them. We're going to put the toolbar classes in a
separate file from the rest, because there are two styles of toolbar (old and new) and we
may want to support both in our Activity. If we have two different files containing
toolbar classes our code can decide at runtime which one it wants to use. For now, this
code supports the old style, which works with every version of Sugar. The new style is
currently only supported by Sugar on a Stick.

There is a file called toolbar.py in the Add_Refinements directory of the Git
repository that looks like this:

from gettext import gettext as _
import re

import pango
import gobject
import gtk

from sugar.graphics.toolbutton import ToolButton
from sugar.activity import activity

class ReadToolbar (gtk.Toolbar):
__gtype name = 'ReadToolbar'

def init (self):

gtk.Toolbar. init (self)

self.back = ToolButton('go-previous')
self.back.set tooltip(('Back'))
self.back.props.sensitive = False

self.insert (self.back, -1)
self.back.show ()

self.forward = ToolButton('go-next')
self.forward.set tooltip(('Forward'))
self.forward.props.sensitive = False

self.insert (self.forward, -1)
self.forward.show()

num page item = gtk.ToolItem()
self.num page entry = gtk.Entry()
self.num page entry.set text('0'")

self.num page entry.set alignment (1)
self.num page entry.connect ('insert-text',

47

self.num page entry insert text cb)
self.num page entry.set width chars (4)

num page item.add(self.num page entry)
self.num page entry.show()

self.insert (num page item, -1)
num page item.show ()

total page item = gtk.ToolItem()
self.total page label = gtk.Label ()

label attributes = pango.AttrList()

label attributes.insert (pango.AttrSize (
14000, 0, -1))

label attributes.insert (pango.AttrForeground (
65535, 65535, 65535, 0, -1))

self.total page label.set attributes|(
label attributes)

self.total page label.set text(' / 0')
total page item.add(self.total page label)
self.total page label.show ()

self.insert (total page item, -1)
total page item.show ()

def num page entry insert text cb(self, entry, text,
length, position):
if not re.match('[0-9]"', text):
entry.emit stop by name('insert-text')
return True
return False

def update nav_buttons (self):

current page = self.current page
self.back.props.sensitive = current page > 0
self.forward.props.sensitive = \

current page < self.total pages - 1
self.num page entry.props.text = str(

current page + 1)
self.total page label.props.label = \
"/ ' + str(self.total pages)

def set total pages(self, pages):
self.total pages = pages

def set current page(self, page):
self.current page = page

self.update nav buttons()

class ViewToolbar (gtk.Toolbar):
__gtype name = 'ViewToolbar'

~_gsignals = {

48

'needs-update-size': (gobject.SIGNAL RUN FIRST,
gobject.TYPE NONE,
(t1)) .
'go-fullscreen': (gobject.SIGNAL RUN FIRST,
gobject.TYPE NONE,
([1))

def init (self):
gtk.Toolbar. init (self)
self.zoom out = ToolButton('zoom-out')
self.zoom out.set tooltip(('Zoom out'))
self.insert(self.zoom out, -1)
self.zoom out.show()

self.zoom in = ToolButton('zoom-in')
self.zoom in.set tooltip(('Zoom in'))
self.insert(self.zoom in, -1)
self.zoom_in.show ()

spacer = gtk.SeparatorToolItem()
spacer.props.draw = False
self.insert (spacer, -1)
spacer.show ()

self.fullscreen = ToolButton('view-fullscreen')
self.fullscreen.set tooltip(('Fullscreen'))
self.fullscreen.connect ('clicked',

self.fullscreen cb)
self.insert(self.fullscreen, -1)
self.fullscreen.show ()

def fullscreen cb(self, button):
self.emit ('go-fullscreen')

Another file in the same directory of the Git repository is named
ReadEtextsActivity2.py. It looks like this:

impo
impo
impo
impo
from
from
from
from

page
PAGE
TOOL

clas

rt os

rt zipfile

rt gtk
rt pango

sugar.activity import activity
sugar.graphics import style

toolbar import ReadToolbar, ViewToolbar
gettext import gettext as _

=0
_SIZE = 45
BAR READ = 2

s ReadEtextsActivity(activity.Activity):

def init (self, handle):
"The entry point to the Activity"
global page
activity.Activity. init (self, handle)

toolbox = activity.ActivityToolbox (self)

49

50

activity toolbar = toolbox.get activity toolbar ()
activity toolbar.keep.props.visible = False
activity toolbar.share.props.visible = False

self.edit toolbar = activity.EditToolbar ()

self.edit toolbar.undo.props.visible = False
self.edit toolbar.redo.props.visible = False
self.edit toolbar.separator.props.visible = False

self.edit toolbar.copy.set sensitive(False)

self.edit toolbar.copy.connect('clicked',
self.edit toolbar copy cb)

self.edit toolbar.paste.props.visible = False

toolbox.add toolbar(('Edit'), self.edit toolbar)

self.edit toolbar.show()

self.read toolbar = ReadToolbar ()
toolbox.add toolbar(('Read'), self.read toolbar)
self.read toolbar.back.connect('clicked',
self.go back cb)
self.read toolbar.forward.connect('clicked',
self.go forward cb)

self.read toolbar.num page entry.connect('activate',

self.num page entry activate cb)
self.read toolbar.show()

self.view toolbar = ViewToolbar ()

toolbox.add toolbar(('View'), self.view toolbar)

self.view toolbar.connect ('go-fullscreen',

self.view toolbar go fullscreen cb)

self.view toolbar.zoom_ in.connect ('clicked',
self.zoom in cb)

self.view toolbar.zoom out.connect('clicked',
self.zoom out cb)

self.view toolbar.show/()

self.set toolbox(toolbox)

toolbox.show ()

self.scrolled window = gtk.ScrolledWindow ()

self.scrolled window.set policy(gtk.POLICY NEVER,
gtk.POLICY AUTOMATIC)

self.scrolled window.props.shadow type = \
gtk.SHADOW NONE

self.textview = gtk.TextView ()

self.textview.set editable (False)

self.textview.set cursor visible (False)

self.textview.set left margin(50)

self.textview.connect ("key press event",
self.keypress cb)

self.scrolled window.add(self.textview)

self.set canvas(self.scrolled window)

self.textview.show ()

self.scrolled window.show ()

page = 0

self.clipboard = gtk.Clipboard/(
display=gtk.gdk.display get default(),
selection="CLIPBOARD")

self.textview.grab focus()

self.font desc = pango.FontDescription("sans %d" %
style.zoom(10))

self.textview.modify font(self.font desc)

buffer = self.textview.get buffer()

self.markset id = buffer.connect ("mark-set",
self.mark set cb)

self.toolbox.set current toolbar (TOOLBAR READ)

def keypress cb(self, widget, event):
"Respond when the user presses one of the arrow keys"
keyname = gtk.gdk.keyval name (event.keyval)
print keyname
if keyname == 'plus':
self.font increase()
return True
if keyname == 'minus':
self.font decrease()
return True
if keyname == 'Page Up'
self.page previous ()
return True
if keyname == 'Page Down':
self.page next ()
return True
if keyname == 'Up' or keyname == 'KP Up' \
or keyname == 'KP Left'
self.scroll up()
return True
if keyname == 'Down' or keyname == 'KP Down' \
or keyname == 'KP Right':
self.scroll down ()
return True
return False

def num page entry activate cb(self, entry):
global page
if entry.props.text:
new_page = int(entry.props.text) - 1
else:
new _page = 0

if new page >= self.read toolbar.total pages:

new page = self.read toolbar.total pages - 1
elif new page < O:

new _page = 0
self.read toolbar.current page = new_page

self.read toolbar.set current page(new page)
self.show page (new page)

entry.props.text = str(new _page + 1)
self.read toolbar.update nav_buttons()
page = new_page

def go back cb(self, button):
self.page previous ()

52

def

def

def

def

def

def

def

def

def

go forward cb(self, button):
self.page next ()

page previous (self):

global page

page=page-1

if page < 0: page=0

self.read toolbar.set current page (page)
self.show page (page)

v_adjustment = \
self.scrolled window.get vadjustment ()
v_adjustment.value = v_adjustment.upper -\

v_adjustment.page size

page next (self):

global page

page=page+l

if page >= len(self.page index): page=0
self.read toolbar.set current page (page)
self.show page (page)

v_adjustment = \
self.scrolled window.get vadjustment ()
v_adjustment.value = v_adjustment.lower

zoom_1in cb(self, Dbutton):
self.font increase()

zoom out cb(self, Dbutton):
self.font decrease()

font decrease (self):
font size = self.font desc.get size() / 1024
font size = font size - 1
if font size < 1:

font size =1
self.font desc.set size(font size * 1024)
self.textview.modify font (self.font desc)

font_increase (self):

font size = self.font desc.get size() / 1024
font size = font size + 1
self.font desc.set size(font size * 1024)
self.textview.modify font (self.font desc)

mark set cb(self, textbuffer, iter, textmark):

if textbuffer.get has selection():
begin, end = textbuffer.get selection bounds ()
self.edit toolbar.copy.set sensitive(True)
else:
self.edit toolbar.copy.set sensitive(False)

edit toolbar copy cb(self, button):

textbuffer = self.textview.get buffer ()

begin, end = textbuffer.get selection bounds()
copy text = textbuffer.get text(begin, end)
self.clipboard.set text (copy text)

def view_toolbar go fullscreen cb(self, view_ toolbar):
self.fullscreen ()

def scroll down(self):

v_adjustment = \
self.scrolled window.get vadjustment ()
if v_adjustment.value == v_adjustment.upper - \

v_adjustment.page size:

self.page next ()

return

if v_adjustment.value < v_adjustment.upper - \

v_adjustment.page size:

new value = v_adjustment.value + \
v_adjustment.step increment

if new value > v_adjustment.upper - \
v_adjustment.page_ size:
new value = v_adjustment.upper - \

v_adjustment.page size
v_adjustment.value = new value

def scroll up(self):

v_adjustment = \
self.scrolled window.get vadjustment ()
if v_adjustment.value == v_adjustment.lower:
self.page previous()
return
if v_adjustment.value > v_adjustment.lower:
new value = v_adjustment.value - \

v_adjustment.step increment
if new_value < v_adjustment.lower:
new value = v_adjustment.lower
v_adjustment.value = new value

def show page(self, page number) :
global PAGE SIZE, current word
position = self.page index[page number]
self.etext file.seek(position)
linecount = 0
label text = '\n\n\n'
textbuffer = self.textview.get buffer ()
while linecount < PAGE _SIZE:
line = self.etext file.readline()
label text = label text + unicode(line,
'is0o-8859-1")
linecount = linecount + 1
label text = label text + '\n\n\n'
textbuffer.set text(label text)
self.textview.set buffer (textbuffer)

def save extracted file(self, zipfile, filename):

"Extract the file to a temp directory for viewing"

filebytes = zipfile.read(filename)

outfn = self.make new filename (filename)

if (outfn == ""):
return False

f = open(os.path.join(self.get activity root(),
'tmp', outfn), 'w')

try:

54

def

def

def

f.write(filebytes)
finally:
f.close()

get saved page number (self):

global page
title = self.metadata.get('title', '")

if title == "' or not title[len(title)- 1].isdigit():
page = 0
else:
i = len(title) - 1
newPage = ''
while (titlef[i].isdigit() and i > 0):
newPage = title[i] + newPage
i=1-1
if title[i] == 'P':
page = int (newPage) - 1
else:
not a page number; maybe a volume number.
page = 0

save page number (self) :

global page

title = self.metadata.get('title', '")

if title == '' or not title[len(title)-1].isdigit():
title = title + ' P' + str(page + 1)

else:
i = len(title) - 1
while (titlef[i].isdigit() and i > 0):
i=1i-1
if title[i] == 'P':
title = title[0:1] + 'P' + str(page + 1)
else:
title = title + ' P' + str(page + 1)
self.metadata['title'] = title

read file(self, filename):
"Read the Etext file"
global PAGE SIZE, page

if zipfile.is zipfile(filename) :
self.zf = zipfile.ZipFile(filename, 'r')
self.book files = self.zf.namelist ()
self.save extracted file(self.zf,
self.book files[0])
currentFileName = os.path.join(
self.get activity root(),
'tmp', self.book files[0])

else:
currentFileName = filename
self.etext file = open(currentFileName,"r")
self.page _index = [0]
pagecount = 0
linecount = 0
while self.etext file:
line = self.etext file.readline()

if not line:

break

linecount = linecount + 1

if linecount >= PAGE SIZE:
position = self.etext file.tell()
self.page_ index.append(position)

linecount = 0
pagecount = pagecount + 1
if filename.endswith(".zip"):

os.remove (currentFileName)
self.get saved page number ()
self.show page (page)
self.read toolbar.set total pages(pagecount + 1)
self.read toolbar.set current page (page)

def make new filename (self, filename):
partition tuple = filename.rpartition('/")
return partition tuple[2]

def write file(self, filename):
"Save meta data for the file."
self.metadata['activity'] = self.get bundle id()
self.save page number ()

This is the activity.info for this example:

[Activity]

name = Read ETexts II

service name = net.flossmanuals.ReadEtextsActivity

icon = read-etexts

exec = sugar-activity ReadEtextsActivity2.ReadEtextsActivity
show launcher = no

activity version = 1
mime types = text/plain;application/zip
license = GPLv2+

The line in bold is the only one that needs changing. When we run this new version
this is what we'll see:

55

Produced by Anonymous Volunteers

PRIDE AND PREJUDICE

By Jane Austen

Chapter 1
It is a truth universally acknowledged, that a single man in possession
of a good fortune, must be in want of a wife.

However little known the feelings or views of such a man may be on his
first entering a neighbourhood, this truth is so well fixed in the minds

el

There are a few things worth pointing out in this code. First, have a look at this import:

from gettext import gettext as

We'll be using the gettext module of Python to support translating our Activity into
other languages. We'll be using it in statements like this one:

self.back.set tooltip(('Back'))

The underscore acts the same way as the gettext function because of the way we
imported gettext. The effect of this statement will be to look in a special translation file
for a word or phrase that matches the key "Back" and replace it with its translation. If
there is no translation file for the language we want then it will simply use the word
"Back". We'll explore setting up these translation files later, but for now using gettext for
all of the words and phrases we will show to our Activity users lays some important
groundwork.

56

The second thing worth pointing out is that while our revised Activity has four toolbars
we only had to create two of them. The other two, Activity and Edit, are part of the
Sugar Python library. We can use those toolbars as is, hide the controls we don't need,
or even extend them by adding new controls. In the example we're hiding the Keep
and Share controls of the Activity toolbar and the Undo, Redo, and Paste buttons of
the Edit toolbar. We currently do not support sharing books or modifying the text in
books so these controls are not needed. Note too that the Activity toolbar is part of the
ActivityToolbox. There is no way to give your Activity a toolbox that does not contain
the Activity toolbar as its first entry.

Another thing to notice is that the Activity class doesn't just provide us with a window.
The window has a VBox to hold our toolbars and the body of our Activity. We install
the toolbox using set_toolbox() and the body of the Activity using set_canvas().

The Read and View toolbars are regular PyGtk programming, but notice that there is a
special button for Sugar toolbars that can have a tooltip attached to it, plus the View
toolbar has code to hide the toolbox and ReadEtextsActivity2 has code to unhide it.
This is an easy function to add to your own Activities and many games and other kinds
of Activities can benefit from the increased screen area you get when you hide the
toolbox.

Metadata And Journal Entries

Every Journal entry represents a single file plus metadata, or information describing
the file. There are standard metadata entries that all Journal entries have and you can
also create your own custom metadata.

Unlike ReadEtextsActivity, this version has a write_file() method.

def write file(self, filename):
"Save meta data for the file."
self.metadata['activity'] = self.get bundle id()
self.save page number ()

We didn't have a write_file() method before because we weren't going to update the file
the book is in, and we still aren't. We will, however, be updating the metadata for the
Journal entry. Specifically, we'll be doing two things:

» Save the page number our Activity user stopped reading on so when he launches
the Activity again we can return to that page.

o Tell the Journal entry that it belongs to our Activity, so that in the future it will use
our Activity's icon and can launch our Activity with one click.

The way the Read Activity saves page number is to use a custom metadata property.

57

self.metadata['Read current page'] = \

str(self. document.get page cache().get current page())

Read creates a custom metadata property named Read_current_page to store the current
page number. You can create any number of custom metadata properties just this
easily, so you may wonder why we aren't doing that with Read Etexts. Actually, the
first version of Read Etexts did use a custom property, but in Sugar .82 or lower there
was a bug in the Journal such that custom metadata did not survive after the computer
was turned off. As a result my Activity would remember pages numbers while the
computer was running, but would forget them as soon as it was shut down. XO laptops
currently cannot upgrade to anything newer than .82, and when it is possible to

upgrade it will be a big job for the schools.

To get around this problem I created the following two methods:

def get saved page number (self):

global page

title = self.metadata.get('title', ''")
if title == '' or not title[len(title)-1].isdigit():
page = 0
else:
i = len(title) - 1
newPage = ''
while (titlef[i].isdigit() and i > 0):
newPage = title[i] + newPage
i=1-1
if title[i] == 'P':
page = int (newPage) - 1
else:

not a
page =

def
global page

page number; maybe a volume number.

save page number (self) :

title = self.metadata.get('title', '")

if title == '' or not title[len(title)-1].isdigit():
title = title + ' P' + str(page + 1)

else:
i = len(title) - 1
while (titlef[i].isdigit() and i > 0):

i =1 -
if title[i]

title =
else:

title =

self.metadata['title'] =

save_page_number() looks at the current title metadata and either adds a page number to
the end of it or updates the page number already there. Since title is standard metadata

1

'pr.

title[0:1i] + 'P' + str(page + 1)

title + ' P' + str(page + 1)

title

for all Journal entries the Journal bug does not affect it.

58

These examples show how to read metadata too.
title = self.metadata.get ('title', ''")

This line of code says "Get the metadata property named title and put it in the variable
named title, If there is no title property put an empty string in title.

Generally you will save metadata in the write_file() method and read it in the read_file()
method.

In a normal Activity that writes out a file in write_file() this next line would be
unnecessary:

self.metadata['activity'] = self.get bundle id()

Any Journal entry created by an Activity will automatically have this property set. In
the case of Pride and Prejudice, our Activity did not create it. We are able to read it
because our Activity supports its MIME type. Unfortunately, that MIME type,
application/zip, is used by other Activities. I found it very frustrating to want to open a
book in Read Etexts and accidentally have it opened in EToys instead. This line of
code solves that problem. You only need to use Start Using... the first time you read a
book. After that the book will use the Read Etexts icon and can be resumed with a
single click.

This does not at all affect the MIME type of the Journal entry, so if you wanted to
deliberately open Pride and Prejudice with Etoys it is still possible.

Before we leave the subject of Journal metadata let's look at all the standard metadata
that every Activity has. Here is some code that creates a new Journal entry and updates
a bunch of standard properties:

def create journal entry(self, tempfile):
journal entry = datastore.create()
journal title = self.selected title
if self.selected volume != '':
journal title += "'+ _('Volume') + ' ' 4+ \
self.selected volume
if self.selected author != '':
journal title = journal title + ', by ' + \
self.selected author

journal entry.metadata['title'] = journal title
journal entry.metadata['title set by user'] = '1'
journal entry.metadata(['keep'] = '0'
format = \
self. books toolbar.format combo.props.value
if format == '.djvu':
journal entry.metadata['mime type'] = \
'image/vnd.djvu'
if format == '.pdf' or format == ' bw.pdf':
journal entry.metadata['mime type']l = \

59

'application/pdf"
journal entry.metadata['buddies'] = "'
journal entry.metadatal['preview'] = "'

journal entry.metadata['icon-color'] = \
profile.get color().to_string()

textbuffer = self.textview.get buffer ()

journal entry.metadata['description'] = \

textbuffer.get text(textbuffer.get start iter(),
textbuffer.get end iter())
journal entry.file path = tempfile
datastore.write (journal entry)
os.remove (tempfile)
self. alert(('Success'), self.selected title + \
(' added to Journal.'))

This code is taken from an Activity I wrote that downloads books from a website and
creates Journal entries for them. The Journal entries contain a friendly title and a full
description of the book.

Most Activities will only deal with one Journal entry by using the read_file() and
write_file() methods but you are not limited to that. In a later chapter I'll show you how
to create and delete Journal entries, how to list the contents of the Journal, and more.

We've covered a lot of technical information in this chapter and there's more to come,
but before we get to that we need to look at some other important topics:

e Putting your Activity in version control. This will enable you to share your code
with the world and get other people to help work on it.

o Getting your Activity translated into other languages.

o Distributing your finished Activity. (Or your not quite finished but still useful
Activity).

60

11 e Add Your Activity Code To Version
Control

What Is Version Control?

"If I have seen further it is only by standing on the shoulders of giants.”
Isaac Newton, in a letter to Robert Hooke.

Writing an Activity is usually not something you do by yourself. You will usually have
collaborators in one form or another. When I started writing Read Etexts I copied
much of the code from the Read Activity. When I implemented text to speech I
adapted a toolbar from the Speak Activity. When I finally got my copied file sharing
code working the author of Image Viewer thought it was good enough to copy into
that Activity. Another programmer saw the work I did for text to speech and thought
he could do it better. He was right, and his improvements got merged into my own
code. When I wrote Get Internet Archive Books someone else took the user interface
I came up with and made a more powerful and versatile Activity called Get Books.
Like Newton, everyone benefits from the work others have done before.

Even if I wanted to write Activities without help I would still need collaborators to
translate them into other languages.

To make collaboration possible you need to have a place where everyone can post their
code and share it. This is called a code repository. It isn't enough to just share the latest
version of your code. What you really want to do is share every version of your code.
Every time you make a significant change to your code you want to have the new
version and the previous version available. Not only do you want to have every
version of your code available, you want to be able to compare any two versions your
code to see what changed between them. This is what version control software does.

The three most popular version control tools are CVS, Subversion, and Git. Git is the
newest and is the one used by Sugar Labs. While not every Activity has its code in the
Sugar Labs Git repository (other free code repositories exist) there is no good reason not
to do it and significant benefits if you do. If you want to get your Activity translated
into other languages using the Sugar Labs Git repository is a must.

61

Git Along Little Dogies

Git is a distributed version control system. This means that not only are there copies
of every version of your code in a central repository, the same copies exist on every
user's computer. This means you can update your local repository while you are not
connected to the Internet, then connect and share everything at one time.

There are two ways you will interact with your Git repository: through Git commands
and through the website at http://git.sugarlabs.org/. We'll look at this website first.

Go to http://git.sugarlabs.org/ and click on the Projects link in the upper right corner:

You will see a list of projects in the repository. They will be listed from newest to
oldest. You'll also see a New Project link but you'll need to create an account to use
that and we aren't ready to do that yet.

New project

karma_English_Alphabet_Puzzle Solving

A simple English Alphabet lesson
Categories: none

karma_Conozco-Uruguay

A simple lesson for learning the geography of Uruguay
Categories: none

karma_adding_up_to_10_svg

A simple game for learning how to add up to 10
Categories: none

supervisor

A privileged service which supervises activity run cycle, exposes startup progress, upgr
infrastructure.
Categories: service

62

http://git.sugarlabs.org/
http://git.sugarlabs.org

If you use the Search link in the upper right corner of the page you'll get a search form.
Use it to search for "read etexts". Click on the link for that project when you find it. You

should see something like this:

Project Ove rview Repositories

readetexts

Read Etexts is an alternative to the regular Read Activity which can read Project Gutenberg pla
stopgap until Read itself can use this format. Plain text files are by far the most popular Gutenk
thousands of free books in many languages.

In addition to the normal ebook reader functions this reader adds text to speech with karaoke st
needs speech-dispatcher installed, which is not currently part of the Sugar distribution but even

Activities

FRIDAY MARCH 12

01:50 |— alsroot deleted repository readetexts/gst-plugins-espeak

SATURDAY MARCH OF

17-58 [alsroot deleted repository readstexts/bugfix

FRIDAY FEBRUARY 27

2049 |— jdsimmons added committer poctle to readetexts/mainline

This page lists some of the activity for the project but I don't find it particularly useful.

To get a much better look at your project start by clicking on the repository name on the

right side of the page. In this case the repository is named mainline.

Labels: activities

License: GMU General Public License version 2(GPLv2)
Owner: jdsimmons

Created: 18 Jan 00:38

Repositories

. mainline
F idsimmons

63

You'll see something like this at the top of the page:

reade

Project Cverview Repositories

Overview Commits Source Tree Comments (0) Merge requests(0)
"mainline" repository in readetexts

Public clone url: git://git.sugarlabs.org/readetexts/mainline. git moe info...

You can clone this repository with the following command:
git clone git://git.sugarlabs.org/readetexts/mainline.git

HTTP clone url: http: //git.sugarlabs.org/git/readetexts/mainline. git mame info...

You can clone this repository with the following command:
git clone hitp://git.sugarlabs.org/git/readetexts/mainline.git
{nole 1hal cloning cwer HTTP i alighily slower, bul useful | you e behind a Fiwallj

Activities

2904 [IL jdsimmons committed 7638697a to readetexts/mainline
modified: ReadEtextsActivity.py

This page has some useful information on it. First, have a look at the Public clone url
and the HTTP clone url. You need to click on More info... to see either one. If you
run either of these commands from the console you will get a copy of the git repository
for the project copied to your computer. This copy will include every version of every
piece of code in the project. You would need to modify it a bit before you could share
your changes back to the main repository, but everything would be there.

The list under Activities is not that useful, but if you click on the Source Tree link
you'll see something really good:

64

Tree of mainline repository in readetexis

! mainline
| .gitignore
Cd activity/
_| ausextract.py
] gutextract.py
| help.txt
i locale/
| MANIFEST
1 NEWS
_| pgconvert.py
i po
_| ReadEtextsActivity. py
| readsidebar.py
_| readtoolbar.py

_| rfconvert. py

01 Sep 23116
22 Now 20:62
30 May 21:52
30 May 21:52
22 Now 20:52
08 Dec 23:39
22 Now 23:31
01 Mar 20:48
28 Nov 22:34
11 Mow 0555
28 Now 22:34
25 Jul 14:48

08 Dec 23:39

22 Now 23.25

modified:

modified:

modified:

modified:

modified:

new file:

modified:

.gitignore modified: MAN:
ReadEtextsActivity.py mo
ReadEtextsActivity.py mo
ReadEtextsActivity.py mo
ReadEtextsActivity.py mo
locale/kos/LC_MESSAGES/o

MANIFEST modified: local

Initial import

modified:

ReadEtextsActivity.py mo

Commit from Sugar Labs: Translatio

modified:

modified:

new file:

modified:

ReadEtextsActivity.py mo
ReadEtextsActivity.py mo
locale/kos/LC_MESSAGES/o

ReadEtextsActivity.py mo

Here is a list of every file in the project, the date it was last updated, and a comment on

what was modified. Click on the link for ReadEtextsActivity.py and you'll see this:

65

Project Ove rview Repositories

Overview Commits Source Tree Comments (0) Merge requests(0)

Blob of ReadEtextsActivity. py (raw blob data)

! mainline / ReadEtextsActivity. py

1| #! Jusr/bin/env python

2

3 # Copyright (C) 2008, 2009 James D. Simmons

4 #

5 # This program is free software; you can redistribute it and/or modify
& # 1t under the terms of the GNU General Public License as published by
7| # the Fr software Foundation; either wversion 2 of the License, or

8| # (at your option) any later version.

g| #

10| # This program 1s distributed in the hope that it will be useful,

11| # but WITHOUT ANY WARRANTY; without even the implied warranty of
12| # MERCHANTABILITY or FITMESS FOR A PARTICULAR PURPOSE. See the
13| # GNU General Public License for more details.

14| #

15| # You should have received a copy of the GNU General Public License
16| # along with this p -am; 1f not, write to the Free Software

17| # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 0211@-1301
18 1import os

19 import logging

20| import tempfile

21| import time

22| 1import zipfile

23| import pygtk

24 pygtk.require('2.0")

25 import gtk

26| 1mport string

27 from sugar.graphics import style

28| from sugar import profile

This is the latest code in that file in pretty print format. Python keywords are shown in
a different color, there are line numbers, etc. This is a good page for looking at code on
the screen, but it doesn't print well and it's not much good for copying snippets of code
into Eric windows either. For either of those things you'll want to click on raw blob
data at the top of the listing:

66

#! jusr/bin/env python
Copyright (C) 2008, 2009 James D. Simmons

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITMESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA ©2110-1301
import os

impert legging

import tempfile

import time

import zipfile

import pygtk

pygtk. require('2.0')

import gtk

import string

from sugar.graphics import style

from sugar import profile

from sugar.activity import activity

from sugar import network

from sugar.datastore import datastore

from sugar.graphics.alert import NotifvAlert

£ IS CE CHE CHE THE THE TR SRR TR TR T R RS

UsA

We're not done yet. Use the Back button to get back to the pretty print listing and click
on the Commits link. This will give us a list of everything that changed each time we

committed code into Git:

67

Project Cverview Repositories

Overview Commits Source Tree Comments (0) Merge requests(0)

Commitlog for mainline:master in readetexts

SUNDAY DECEMBER 05

5399 [_ James Simmons committed ccB81203
new file: locale/kos/LC_MESSAGES/org.laptop.sugar.ReadEtextsActivity.mo

SUNDAY NOVEMBER 23

23:94 |— James Simmons committed 720afic
modified: ReadEtextsActivity.py

SUNDAY NOVEMBER 22

e |— James Simmons committed 3507417
modified: MANIFEST

29:06 [_ James Simmons committed dcE322a
modified: ReadEtextsActivity.py

62 |— James Simmons committed 19cdass
modified: ReadEtextsActivity.py

You may have noticed the odd combination of letters and numbers after the words
James Simmons committed. This is a kind of version number. The usual practice
with version control systems is to give each version of code you check in a version
number, usually a simple sequence number. Git is distributed, with many separate
copies of the repository being modified independently and then merged. That makes
using just a sequential number to identify versions unworkable. Instead, Git gives each
version a really, really large random number. The number is expressed in base 16,
which uses the symbols 0-9 and a-f. What you see in green is only a small part of the
complete number. The number is a link, and if you click on it you'll see this:

68

readetexts

Project Ove rview Repositories

Overview Commits Source Tree Comments () Merge requests(0)

Commit cc812030cbf3ec8a514275fb97c2cad425b216a2f

Date: Sun Dec 06 23:39:56 +0000 2009

Committer: James Simmons (jim@simmons.olpc)

Author: James Simmons (jim@simmons. olpe)
Commit SHA1: cc812030cbf3ecBa514275fba7c 2cad25b21 Ba2f
Tree SHA1: aa0f8aadc 7636b9e7504 TaB5c 5340f234c 093365

new file:
new Tile:
new file:
new Tile:
modified:

locale/kos/LC_MESSAGES/org.laptop.sugar.ReadEtextsActivity.mo
locale/kes/activity. linfo
locale/tzo/LC_MESSAGES/org.laptop.sugar.ReadEtextsActivity.mo
locale/tzo/acTivity. linfo

readtoolbar.py

Modify speech toolbar to save and restore speech settings.

Commit diff ‘ ‘ Comments (0)

readtoolbar.py 29 - - siriasdii i bbb i a4 i 4414
locale/tzo/activity. linfo 2 ++

locale/tzo/LC_MESSAGES/org. laptop.sugar.ReadEtextsActivity.mo O
locale/kos/activity. linfo 2 +

locale/kos/LC_MESSAGES/org. laptop.sugar.ReadEtextsActivity.mo O

Commit diff

locale/kos/LC_MESSAGES/org.laptop. sugar. ReadEtextsActivity. mo

At the top of the page we see the complete version number used for this commit.
Below the gray box we see the full comment that was used to commit the changes.

Below that is a listing of what files were changed. If we look further down the page we

see this:

69

readtoolbar.py

15 15 # along with this program; if not, write to the Free Software
16 # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
17| 1%
18 import os
18 19 import logging
19 20 from gettext import gettext as _
20 21 import re

416 41k combotool.show()

417 417
418 418 self,.pitchadj = gtk Adjustment(®, -160, 100, 1, 18, 0)
419 self.pitchadj.connect("value _changed", self.pitch_adjusted cb)
420 419 pitchbar = gtk.H5cale(self.pitchadj)
421 420 pitchbar. set_draw_value(False)
422 | 421 pitchbar. set_update policy(gtk.UPDATE_DISCONTINUOUS)
427 | 427 pitchbar. show()
428 42
429 429 self.rateadj = gtk . Adjustment(@, -106, 186, 1, 16, 0)
438 self.rateadj.connect("value_changed", self.rate adjusted cb)
431 438 ratebar = gtk.HScale(self.ratead]j)
432 | 431 ratebar.set_draw_value(False)
433 | 432 ratebar.set _update_policy(gtk.UPDATE_DISCONTINLOUS)
453 | 453 def pitch_adjusted_cb(self, get):
454 454 speech.pitch = int{get.value)
455 | 455 speech.say(_("pitch adjusted”))
456 T = open(os.path. join(self.activity.get activity root(), 'insta

This is a diff report which shows the lines that have changed between this version and
the previous version. For each change it shows a few lines before and after the change
to give you a better idea of what the change does. Every change shows line numbers
too.

A report like this is a wonderful aid to programming. Sometimes when you're working
on an enhancement to your program something that had been working mysteriously
stops working. When that happens you will wonder just what you changed that could
have caused the problem. A diff report can help you find the source of the problem.

By now you must be convinced that you want your project code in Git. Before we can
do that we need to create an account on this website. That is no more difficult than
creating an account on any other website, but it will need an important piece of
information from us that we don't have yet. Getting that information is our next task.

70

Setting Up SSH Keys

To send your code to the Gitorious code repository you need an SSH public/private
key pair. | SSH is a way of sending data over the network in encrypted format. (In
other words, it uses a secret code so nobody but the person getting the data can read it).
Public/private key encryption is a way of encrypting data that provides a way to
guarantee that the person who is sending you the data is who he claims to be.

In simple terms it works like this: the SSH software generates two very large numbers
that are used to encode and decode the data going over the network. The first number,
called the private key, is kept secret and is only used by you to encode the data. The
second number, called the public key, is given to anyone who needs to decode your
data. He can decode it using the public key; there is no need for him to know the
private key. He can also use the public key to encode a message to send back to you
and you can decode it using your private key.

Git uses SSH like an electronic signature to verify that code changes that are supposed
to be coming from you actually are coming from you. The Git repository is given your
public key. It knows that anything it decodes with that key must have been sent by
you because only you have the private key needed to encode it.

We will be using a tool called OpenSSH to generate the public and private keys. This
is included with every version of Linux so you just need to verify that it has been
installed. Then use the ssh-keygen utility that comes with OpenSSH to generate the
keys:

[Jim@olpc2 ~]$ ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/jim/.ssh/id rsa):

By default ssh-keygen generates an RSA key, which is the kind we want. By default it
puts the keyfiles in a directory called /yourhome/.ssh and we want that too, so DO NOT
enter a filename when it asks you to. Just hit the Enter key to continue.

[jim@olpc2 ~]1$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/jim/.ssh/id rsa):
Created directory '/home/jim/.ssh'.

Enter passphrase (empty for no passphrase):

Now we DO want a passphrase here. A passphrase is like a password that is used with
the public and private keys to do the encrypting. When you type it in you will not be
able to see what you typed. Because of that it will ask you to type the same thing again,
and it will check to see that you typed them in the same way both times.

71

[Jim@olpc2 ~]$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/jim/.ssh/id rsa):
Created directory '/home/jim/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/jim/.ssh/id rsa.
Your public key has been saved in /home/jim/.ssh/id rsa.pub.
The key fingerprint is:
dO:fe:c0:0c:1e:72:56:7a:19:cd:£3:85:c7:4c:9e:18
jim@olpc2.simmons

The key's randomart image is:

+--[RSA 2048]----+
| oo E=. |
| + ot .+=. |
| B + o0.00 |
\ = 0 |
\ . S |
\ o |
\ |
\ |
\ |
o - +

When choosing a passphrase remember that it needs to be something you can type
reliably without seeing it and it would be better if it was not a word you can find in the
dictionary, because those are easily broken. When I need to make a password I use the

tool at http://www.multicians.org/thvv/gpw.html. This tool generates a bunch of

nonsense words that are pronounceable. Pick one that appeals to you and use that.

Now have a look inside the .ssh directory. By convention every file or directory name
that begins with a period is considered hidden by Linux, so it won't show up in a
GNOME file browser window unless you use the option on the View menu to Show
Hidden Files. When you display the contents of that directory you'll see two files:
id_rsa and id_rsa.pub. The public key is in id_rsa.pub. Try opening that file with
gedit (Open With Text Editor) and you'll see something like this:

id_rsa.pub (~/.ssh) - gedit

Fle Edit WView Search Tools Documents Help

8.2 | s B A AN
MNew Open Save | Print.. Paste = Find Replace
=] id_rsapub 3

issn- rsa AMAAEINZaC 1yc ZEAAMMBIWAANGEAVEREZ 3EL / /Wi yL 3TXD ZLNZ SxR2VDpV EHIEWHXY D TEELUNMNR Fr o
|+ ZKWCE dwyUrKsivn TKZIVKYQB/ £2 jspuwBlyyf
+TzshKJvwoykPEFPdHp Jets JHnl j41Cy 1CHpcCeYolLxsp JxD8HNm/ Ooeh 3YdP IWnUSe F50w3mlqosn oM3uurv JAThP 2P CSXPCARX
+d5D01 34T LGZHEBhPY 3d TVOWP NOKhCI19TVEpLSpHRLU KpMF # SHsC KKz C2yh BLGL T s 0wy T2 ¢ Jq 0B L T/ v 3K F+w765X50 JTEGVy +hhmg
1EJYSDEQCPZTDWa99aI rwrCrXRellbvh 5pD040kCO== j1im@clpci.simmens

Ln 1. Col 1 INS

72

http://www.multicians.org/thvv/gpw.html.

When you create your account on git.sugarlabs.org there will be a place where you can
add your public SSH key. To do that use Select All from the Edit menu in gedit, then
Copy and Paste into the field provided on the web form.

Create A New Project

I'm going to create a new Project in Git for the examples for this book. I need to log in
with my new account and click the New Project link we saw earlier. I get this form,
which I have started filling in:

Create a new project

Title

Make Your Own Sugar Activities Examples

Slug (for urls efc)

my o-sugar-activities-examples

Categories (space seperated)

activities

License

GMNU General Public License vej

The Title is used on the website, the Slug is a shortened version of the title without
spaces used to name the Git repository. Categories are optional. License is GPL v2 for
my projects. You can choose from any of the licenses in the list for your own Projects,
and you can change the license entry later if you want to. You will also need to enter a
Description for your project.

Once you have this set up you'll be able to click on the mainline entry for the Project
(like we did with Read Etexts before) and see something like this:

73

http://git.sugarlabs.org

m

Overview Commits Source Tree Comments (0) Merge requests(0)
"mainline" repository in Make Your Own Sugar Activities Book Examples

Public clone url: git: //git. sugarlabs.org/myo-sugar-activities-examples/mainline. git vos o

You can clone this repositery with the following command:

git clone git://git.sugarlabs.org/myo-sugar-activities-examples/nainline, git

HTTP clone url: http://git.sugarlabs. org/git/myo-sugar-activities-examples/mainline, git Mo info..

You can clone this repositary with the following command:

i

fgit.sugarlabs.org/glt/myo-sugar-activities-exanples/malnline. git

git clone http

(nei= thal cloning over HTTF i siightly slewer. bal ussful you're behind & fiswsll)

Push url: gitorious@it.sugarlabs.org: myo-sugar-activities-exanples/mainline. gitiem i

Youcan run "git push gitorious@git.sugarlabs.orgimyo-sugar-activities-examples/mainline.git" oryoucs

git remote add origin gitorious@git.sugarlabs.org:myo-sugar-activities-examples/mainline.git
£ to push the mastér branch to the origin remote we added above:

git push origin master
after that you can just do:
git push

Activities

The next step is to convert our project files into a local Git repository, add the files to it,
then push it to the repository on git.sugarlabs.org. We need to do this because you
cannot clone an empty repository, and our remote repository is currently empty. To get
around that problem we'll push the local repository out to the new remote repository we
just created, then clone the remote one and delete our existing project and its Git
repository. From then on we'll do all our work in the cloned repository.

This process may remind you of the Edward Albee quote, "Sometimes a person has to
go a very long distance out of his way to come back a short distance correctly".
Fortunately we only need to do it once per project. Enter the commands shown below
in bold after making you project directory the current one:

git init
Initialized empty Git repository in
/home/jim/olpc/bookexamples/.git/
git add *.py
git add activity
git add MANIFEST
git add .gitignore
git commit -a -m "Create repository and load"
[master (root-commit) 727bfe8] Create repository and load
9 files changed, 922 insertions(+), 0 deletions(-)
create mode 100644 .gitignore
create mode 100644 MANIFEST
create mode 100755 ReadEtexts.py
create mode 100644 ReadEtextsActivity.py
create mode 100644 ReadEtextsActivity2.py
create mode 100644 activity/activity.info

74

http://git.sugarlabs.org

create mode 100644 activity/read-etexts.svg
create mode 100755 setup.py
create mode 100644 toolbar.py

I have made an empty local Git repository with git init, then I've used git add to add
the important files to it. (In fact git add doesn't actually add anything itself; it just tells
Git to add the file on the next git commit). Finally git commit with the options shown
will actually put the latest version of these files in my new local repository.

To push this local repository to git.sugarlabs.org we use the commands from the web
page:

git remote add origin \
gitorious@git.sugarlabs.org:\
myo-sugar-activities-examples/mainline.git
git push origin master
Counting objects: 17, done.
Compressing objects: 100% (14/14), done.
Writing objects: 100% (15/15), 7.51 KiB, done.
Total 15 (delta 3), reused 0 (delta 0)
To gitorious@git.sugarlabs.org:myo-sugar-activities—-examples/
mainline.git

2cb3ale..700789d master -> master
=> Syncing Gitorious...
Heads up: head of changed to
700789d3333a7257999d0a69%dcatb840e6adc09 on master
Notify cia.vc of 727bfe819d5b7b70£4£2b31d02£5562709284ac4 on
myo-sugar-activities-examples
Notify cia.vc of 700789d3333a7257999d0a69%dcafb840e6adc09 on
myo-sugar-activities-examples
[OK]
rm *
rm activity -rf
rm .git -rf
cd ~
rm Activity/ReadEtextsII
mkdir olpc
cd olpc
mkdir bookexamples
cd bookexamples
git clone \
git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git
Initialized empty Git repository in
/home/jim/olpc/bookexamples/mainline/.git/
remote: Counting objects: 18, done.
remote: Compressing objects: 100% (16/16), done.
remote: Total 18 (delta 3), reused 0 (delta 0)
Receiving objects: 100% (18/18), 8.53 KiB, done.
Resolving deltas: 100% (3/3), done.

75

http://git.sugarlabs.org

The lines in bold are the commands to enter, and everything else is messages that Git
sends to the console. I've split some of the longer Git commands with the backslash (\)
to make them fit better on the printed page, and wrapped some output lines that would
normally print on one line for the same reason. It probably isn't clear what we're doing
here and why, so let's take it step by step:

e The first command git remote add origin tells the remote Git repository that we
are going to send it stuff from our local repository.

e The second command git push origin master actually sends your local Git
repository to the remote one and its contents will be copied in. When you enter
this command you will be asked to enter the SSH pass phrase you created in the
last section. GNOME will remember this phrase for you and enter it for every Git
command afterwards so you don't need to. It will keep doing this until you log out
or turn off the computer.

o The next step is to delete our existing files and our local Git repository (which is
contained in the hidden directory .git). The rm .git -rf means "Delete the directory
.git and everything in it". rm is a Unix command, not part of Git. If you like you
can delete your existing files after you create the cloned repository in the next step.
Note the command rm Activity/ReadEtextsIl, which deletes the symbolic link to
our old project that we created by running ./setup.py dev. We'll need to go to our
new cloned project directory and run that again before we can test our Activity
again.

» Now we do the git clone command from the web page. This takes the remote Git
repository we just added our MANIFEST file to and makes a new local repository
in directory /yourhome/olpc/bookexamples/mainline.

Finally we have a local repository we can use. Well, not quite. We can commit our code
to it but we cannot push anything back to the remote repository because our local
repository isn't configured correctly yet.

What we need to do is edit the file config in directory .git in
lyourhome/olpc/bookexamples/mainline. We can use gedit to do that. We need to
change the url= entry to point to the Push url shown on the mainline web page. When
we're done our config file should look like this:

[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true

[remote "origin"]

url = gitorious@git.sugarlabs.org:

myo-sugar-activities-examples/mainline.git
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]

76

remote = origin
merge = refs/heads/master

The line in bold is the only one that gets changed. It is split here to make it fit on the

printed page. In your own files it should all be one line with no spaces between the
colon(:) that ends the first line and the beginning of the second line.

From now on anyone who wants to work on our project can get a local copy of the Git
repository by doing this from within the directory where he wants the repository to go:

git clone git://git.sugarlabs.org/\
myo-sugar-activities-examples/mainline.git

He'll have to change his .git/config file just like we did, then he'll be ready to go.

Everyday Use Of Git

While getting the repositories set up to begin with is a chore, daily use is not. There are
only a few commands you'll need to work with. When we left off we had a repository
in /yourhome/olpc/bookexamples/mainline with our files in it. We will need to add
any new files we create too.

We use the git add command to tell Git that we want to use Git to store a particular file.
This doesn't actually store anything, it just tells Git our intentions. The format of the
command is simply:

git add file or directory name

There are files we don 't want to add to Git, to begin with those files that end in .pyc. If
we never do a git add on them they'll never get added, but Git will constantly ask us
why we aren't adding them. Fortunately there is a way to tell Git that we really, really
don't want to add those files. We need to create a file named .gitignore using gedit and
put in entries like this:

*.pyc

*.edp

*.zip
.ericdproject/
.ropeproject/

These entries will also ignore project files used by Eric and zip files containing ebooks,
Once we have this file created in the mainline directory we can add it to the repository:

git add .gitignore
git commit -a -m "Add .gitignore file"

77

From now on Git will no longer ask us to add .pyc or other unwanted files that match
our patterns. If there are other files we don't want in the repository we can add them to
.gitignore either as full file names or directory names or as patterns like *.pyc.

In addition to adding files to Git we can remove them too:
git rm filename

Note that this just tells Git that from now on it will not be keeping track of a given
filename, and that will take effect at the next commit. Old versions of the file are still in
the repository.

If you want to see what changes will be applied at the next commit run this:

git status
On branch master
Changed but not updated:

(use "git add <file>..." to update what will
be committed)

#

modified: ReadEtextsActivity.py

#

no changes added to commit (use "git add" and/or
"git commit -a")

Finally, to put your latest changes in the repository use this:

git commit -a -m "Change use of instance directory to tmp"
Created commit a687b27: Change use of instance
directory to tmp

1 files changed, 2 insertions(+), 2 deletions(-)

If you leave off the -m an editor will open up and you can type in a comment, then save
and exit. Unfortunately by default the editor is vi, an old text mode editor that is not
friendly like gedit.

When we have all our changes done we can send them to the central repository using
git push:

git push

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 322 bytes, done.

Total 3 (delta 2), reused 0 (delta 0)

To gitorious@git.sugarlabs.org:

myo-sugar-activities-examples/mainline.git
700789d..a687b27 master -> master

=> Syncing Gitorious...

Heads up: head of changed to

a687b27e2f034e5a17d2ca2fe9f2787c7£633e64 on master

Notify cia.vc of a687b27e2f034e5a17d2ca2fe9f2787c7£633e64

on myo-sugar-activities-examples

78

[OK]

We can get the latest changes from other developers by doing git pull:

git pull

remote: Counting objects: 17, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 15 (delta 3), reused 0 (delta 0)

Unpacking objects: 100% (15/15), done.

From gitorious@git.sugarlabs.org:

myo-sugar-activities-examples/mainline
2cb3ale..700789d master -> origin/master

Updating 2cb3ale..700789d

Fast forward

.gitignore | 6 +

MANIFEST | 244 4-———mmmm e
ReadEtexts.py | 182 44+ttt
ReadEtextsActivity.py [182 +++++++++t+ttttttttttttttttt
ReadEtextsActivity2.py | 311 ++++++++++tttttttttt bttt

i o

activity/activity.info | 9 ++
activity/read-etexts.svg | 71 +++++++++++

setup.py | 21 +++

toolbar.py | 136 +++++++++tttttttt+++

9 files changed, 921 insertions(+), 241 deletions(-)
create mode 100644 .gitignore

create mode 100755 ReadEtexts.py

create mode 100644 ReadEtextsActivity.py

create mode 100644 ReadEtextsActivity2.py

create mode 100644 activity/activity.info

create mode 100644 activity/read-etexts.svg

create mode 100755 setup.py

create mode 100644 toolbar.py

79

12 e Going International With Pootle

Introduction

The goal of Sugar Labs and One Laptop Per Child is to educate all the children of the
world, and we can't do that with Activities that are only available in one language. It is
equally true that making separate versions of each Activity for every language is not
going to work, and expecting Activity developers to be fluent in many languages is not
realistic either. We need a way for Activity developers to be able to concentrate on
creating Activities and for those who can translate to just do that. Fortunately, this is
possible and the way it's done is by using gettext.

Getting Text With gettext

You should remember that our latest code example made use of an odd import:
from gettext import gettext as
The "_()" function was used in statements like this:

self.back.set tooltip(('Back'))

At the time I explained that this odd looking function was used to translate the word
"Back" into other languages, so that when someone looks at the Back button's tool tip
he'll see the text in his own language. I also said that if it was not possible to translate
this text the user would see the word "Back" untranslated. In this chapter we'll learn
more about how this works and what we have to do to support the volunteers who
translate these text strings into other languages.

The first thing you need to learn is how to properly format the text strings to be
translated. This is an issue when the text strings are actual sentences containing
information. For example, you might write such a message this way:

message = ("User ") + username + \
(" has joined the chat room.")

This would work, but you've made things difficult for the translator. He has two
separate strings to translate and no clue that they belong together. It is much better to
do this:

message = ("User %s has joined the chat room.") % \

username

80

If you know both statements give the same resulting string then you can easily see why
a translator would prefer the second one. Use this technique whenever you need a
message that has some information inserted into it. When you use it, try and limit
yourself to only one format code (the %s) per string. If you use more than one it can
cause problems for the translator.

Going To Pot

Assuming that every string of text a user might be shown by our Activity is passed
through "_()" the next step is to generate a pot file. You can do this by running setup.py
with a special option:

./setup.py genpot

This creates a directory called po and puts a file ActivityName.pot in that directory. In
the case of our example project ActivityName is ReadEtextsII. This is the contents of
that file:

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER

This file is distributed under the same license as the
PACKAGE package.

FIRST AUTHOR <EMAILRADDRESS>, YEAR.

#

#,

fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2010-01-06 18:31-0600\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAILQRADDRESS>\n"
"Language-Team: LANGUAGE <LL@1li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: activity/activity.info:2
msgid "Read ETexts II"
msgstr ""

#: toolbar.py:34
msgid "Back"
msgstr ""

#: toolbar.py:40
msgid "Forward"
msgstr ""

#: toolbar.py:115

msgid "Zoom out"
msgstr ""

81

#: toolbar.py:120
msgid "Zoom in"
msgstr ""

#: toolbar.py:130
msgid "Fullscreen"
msgstr ""

#: ReadEtextsActivity2.py:34
msgid "Edit"
msgstr ""

#: ReadEtextsActivity2.py:38
msgid "Read"
msgstr ""

#: ReadEtextsActivity2.py:46

msgid "View"

msgstr ""

This file contains an entry for every text string in our Activity (as msgid) and a place to
put a translation of that string (msgstr). Copies of this file will be made by the Pootle
server for every language desired, and the msgstr entries will be filled in by volunteer
translators.

Going To Pootle

Before any of that can happen we need to get our POT file into Pootle. The first thing
we need to do is get the new directory into our Git repository and push it out to
Gitorious. You should be familiar with the needed commands by now:

git add po

git commit -a -m "Add POT file"

git push

Next we need to give the user "pootle" commit authority to our Git project. Go to
git.sugarlabs.org, sign in, and find your Project page and click on the mainline link.
You should see this on the page that takes you to:

82

http://git.sugarlabs.org

Project: Make Your Own Sugar Activities Book
Examples

Maintainer: jdsimmons

Created: 03 Jan 21:46

Clone repository

Request merge

Add comirmitter

Committers

Jd5iIMmmans fowner

(lick on the Add committer link and type in the name pootle in the form that takes
you to. When you come back to this page pootle will be listed under Committers.

Your next step is to go to web site http://bugs.sugarlabs.org and register for a user id.
When you get that open up a ticket something like this:

83

http://bugs.sugarlabs.org

sugariabs

logged
C wiki
Create New Ticket
Summary: Add project "Make Your Own Sugar Activities Book Examples” to Pootle
Description: B | & w El|l— 1/ « H
User pootle is alresdy a committer for this project in Git.
Type: |task 'i Pricrity: |Unspa|:'rfiadhy Maintamarj
Milestone:]Unspeciiled by Release Team j Caomponent: IIncBlizatun j
Version: | Unspecified - Severity: IUnspemfied 'I
Keywords: Ce:
Distribution/0S: [Unspecified =| Bug Status: [New -
Assign to:] EI

The Component entry localization should be used, along with Type task.

Believe it or not, this is all you need to do to get your Activity set up to be translated.

Pay No Attention To That Man Behind The Curtain

After this you'll need to do a few things to get translations from Pootle into your
Activity.

84

When you add text strings (labels, error messages, etc.) to your Activity always use
the _() function with them so they can be translated.

After adding new strings always run ./setup.py genpot to recreate the POT file.
After that commit and push your changes to Gitorious.

Every so often, and especially before releasing a new version, do a git pull. If
there are any localization files added to Gitorious this will bring them to you.

After getting a bunch of new files run ./setup.py fix_manifest to get the new files
included in your MANIFEST file. Afterwards edit the MANIFEST with gedit to
remove any unwanted entries (which will be Eric project files, etc.).

Localization with Pootle will create a large number of files in your project, some in the
po directory and others in a new directory called locale. As long as these are listed in
the MANIFEST they will be included in the .xo file that you will use to distribute your
Activity.

C'est Magnifique!

Here is a screen shot of the French language version of Read Etexts reading Jules
Verne's novel Le tour du monde en quatre-vingts jours:

Editer

T R R R R R T TP LA R R R

LE TOUR DU MONDE
EN
QUATRE-VINGTS JOURS

par Jules Verne

1 l

DANS LEQUEL PHILEAS FOGG ET PASSEPARTOUT
S'ACCEPTENT RECIPROQUEMENT L'UN COMME MAITRE,
L'AUTRE COMME DOMESTIQUE

Enl'année 1872, la maison portant le numéro 7 de Saville-row, Burlington Gardens
-- maison dans laquelle Sheridan mourut en 1814 --, était habitée par Phileas Fogg,
esq., I'un des membres les plus singuliers et les plus remargués du Reform-Club de
Londres, bien gu'il semblat prendre a tache de ne rien faire qui plt attirer
|'attention.

There is reason to believe that the book is in French too.

85

1 3 « Distribute Your Activity

Choose A License

Before you give your Activity to anyone you need to choose a license that it will be
distributed under. Buying software is like buying a book. There are certain rights you
have with a book and others you don't have. If you buy a copy of The DaVinci Code
you have the right to read it, to loan it out, to sell it to a used bookstore, or to burn it.
You do not have the right to make copies of it or to make a movie out of it. Software is
the same way, but often worse. Those long license agreements we routinely accept by
clicking a button might not allow you to sell the software when you're done with it, or
even give it away. If you sell your computer you may find that the software you
bought is only good for that computer, and only while you are the owner of the
computer. (You can get good deals on reconditioned computers with no operating
system installed for that very reason).

If you are in the business of selling software you might have to hire a lawyer to draw up
a license agreement, but if you're giving away software there are several standard
licenses you can choose from for free. The most popular by far is called the General
Public License, or GPL. Like the licenses Microsoft uses it allows the people who get
your program to do some things with it but not others. What makes it interesting is not
what it allows them to do (which is pretty much anything they like) but what it forbids
them to do.

If someone distributes a program licensed under the GPL they are also required to
make the source code of the program available to anyone who wants it. That person
may do as he likes with the code, with one important restriction: if he distributes a
program based on that code he must also license that code using the GPL. This makes it
impossible for someone to take a GPL licensed work, improve it, and sell it to someone
without giving him the source code to the new version.

While the GPL is not the only license available for Activities to be distributed on
http://activities.sugarlabs.org all the licenses require that anyone getting the Activity
also gets the complete source code for it. You've already taken care of that requirement
by putting your source code in Gitorious. If you used any code from an existing
Activity licensed with the GPL you must license your own code the same way. If you
used a significant amount of code from this book (which is also GPL licensed) you may
be required to use the GPL too.

86

http://activities.sugarlabs.org

Is licensing something you should worry about? Not really. The only reason you'd

want to use a license other than the GPL is if you wanted to sell your Activity instead of
give it away. Consider what you'd have to do to make that possible:

e You'd have to use some language other than Python so you could give someone
the program without giving them the source code.

» You would have to have your own source code repository not available to the
general public and make arrangements to have the data backed up regularly.

» You would have to have your own website to distribute the Activity. The website
would have to be set up to accept payments somehow.

» You would have to advertise this website somehow or nobody would know your
Activity existed.

e You would have to have a lawyer draw up a license for your Activity.

e You would have to come up with some mechanism to keep your customers from
giving away copies of your Activity.

e You would have to create an Activity so astoundingly clever that nobody else could
make something similar and give it away.

» You would have to deal with the fact that your "customers" would be children with
no money or credit cards.

In summary, activities.sugarlabs.org is not the iPhone App Store. It is a place where
programmers share and build upon each other's work and give the results to children
for free. The GPL encourages that to happen, and I recommend that you choose that
for your license.

Add License Comments To Your Python Code

At the top of each Python source file in your project (except setup.py, which is already
commented) put comments like this:

S o e R e S SR S e S e e e e

filename Program description
Copyright (C) 2010 Your Name Here

This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even

the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public

87

http://activities.sugarlabs.org

License for more details.

You should have received a copy of the GNU General
Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301 USA

Eegpt &

If the code is based on someone else's code you should mention that as a courtesy:.

Create An .xo File

Make certain that activity.info has the version number you want to give your Activity
(currently it must be a positive integer) and run this command:

./setup.py dist xo

This will create a dist directory if one does not exist and put a file named something like
ReadETextslII-1.xo in it. The "1" indicates version 1 of the Activity.

If you did everything right this .xo file should be ready to distribute. You can copy it to
a thumb drive and install it on an XO laptop or onto another thumb drive running
Sugar on a Stick. You probably should do that before distributing it any further. I like
to live with new versions of my Activities for a week or so before putting them on

activities.sugarlabs.org.

Now would be a good time to add dist to your .gitignore file, then commit it and push
it to Gitorious. You don't want to have copies of your .xo files in Git. Another good
thing to do at this point would be to tag your Git repository with the version number so
you can identify which code goes with which version.

git tag -m "Release 1" v1 HEAD
git push --tags

Add Your Activity To ASLO

When you're ready to post the .xo file on ASLO you'll create an account as you did with
the other websites. When you've logged in there you'll see a Tools link in the upper
right corner of the page. Click on that and you'll see a popup menu with an option for
Developer Hub, which you should click on. That will take you to the pages where you
can add new Activities. The first thing it asks for when setting up a new Activity is
what license you will use. After that you should have no problem getting your Activity
set up.

88

http://activities.sugarlabs.org

You will need to create an Activity icon as a .gif file and create screen shots of your
Activity in action. You can do both of these things with The GIMP (GNU Image
Manipulation Program). For the icon all you need to do is open the .svg file with The
GIMP and Save As a .gif file.

For the screen shots use sugar-emulator to display your Activity in action, then use the
Screenshot option from the Create submenu of the File menu with these options:

Y Screenshot L
Area
(® Take a screenshot of a single window
Include window decoration

) Take a screenshot of the entire screen

_ Select a region to grab

Delay
~| seconds

e

10

At the end of the delay, click in a window to snap it.

&3 Heip Qcancel | @@snap

This tells GIMP to wait 10 seconds, then take a screenshot of the window you click on
with the mouse. You'll know that the 10 seconds are up because the mouse pointer will
change shape to a plus (+) sign. You also tell it not to include the window decoration
(which means the window title bar and border). Since windows in Sugar do not have
decorations eliminating the decorations used by sugar-emulator will give you a
screenshot that looks exactly like a Sugar Activity in action.

Every Activity needs one screenshot, but you can have more if you like. Screenshots
help sell the Activity and instruct those who will use it on what the Activity can do.
Unfortunately, ASLO cannot display pictures in a predictable sequence, so it is not
suited to displaying steps to perform.

Another thing you'll need to provide is a home page for your Activity. The one for
Read Etexts is here:

http://wiki.sugarlabs.org/eo/Activities/Read Etexts

89

http://wiki.sugarlabs.org/go/Activities/Read_Etexts

Yes, one more website to get an account for. Once you do you can specify a link with
/gol Activities/some_name and when you click on that link the Wiki will create a page for
you. The software used for the Wiki is Media Wiki, the same as used for Wikipedia.
Your page does not need to be as elaborate as mine is, but you definitely should provide
a link to your source code in Gitorious.

90

14 o Debugging Sugar Activities

Introduction

No matter how careful you are it is reasonably likely that your Activity will not work
perfectly the first time you try it out. Debugging a Sugar Activity is a bit different than
debugging a standalone program. When you test a standalone program you just run
the program itself. If there are syntax errors in the code you'll see the error messages on
the console right away, and if you're running under the Eric IDE the offending line of
code will be selected in the editor so you can correct it and keep going.

With Sugar it's a bit different. It's the Sugar environment, not Eric, that runs your
program. If there are syntax errors in your code you won't see them right away.
Instead, the blinking Activity icon you see when your Activity starts up will just keep
on blinking for several minutes and then will just go away, and your Activity won't start
up. The only way you'll see the error that caused the problem will be to use the Log
Activity. If your program has no syntax errors but does have logic errors you won't be
able to step through your code with a debugger to find them. Instead, you'll need to
use some kind of logging to trace through what's happening in your code, and again use
the Log Activity to view the trace messages. Now would be a good time to repeat some
advice I gave before:

Make A Standalone Version Of Your Program First

Whatever your Activity does, it's a good bet that 80% of it could be done by a
standalone program which would be much less tedious to debug. If you can think of a
way to make your Activity runnable as either an Activity or a standalone Python
program then by all means do it.

Use PyLint, PyChecker, or PyFlakes

One of the advantages of a compiled language like C over an interpreted language like
Python is that the compiler does a complete syntax check of the code before converting
it to machine language. If there are syntax errors the compiler gives you informative
error messages and stops the compile. There is a utility call lint which C programmers
can use to do even more thorough checks than the compiler would do and find
questionable things going on in the code.

91

Python does not have a compiler but it does have several lint-like utilities you can run
on your code before you test it. These utilities are pyflakes, pychecker, and pylint.
Any Linux distribution should have all three available.

PyFlakes
Here is an example of using PyFlakes:

pyflakes minichat.py
minichat.py:25: 'COLOR BUTTON GREY' imported but unused

minichat.py:28: 'XoColor' imported but unused
minichat.py:29: 'Palette' imported but unused
minichat.py:29: 'CanvasInvoker' imported but unused

PyFlakes seems to do the least checking of the three, but it does find errors like these
above that a human eye would miss.

PyChecker
Here is PyChecker in action:

pychecker ReadEtextsActivity.py

Processing ReadEtextsActivity...
/usr/lib/python2.5/site-packages/dbus/ dbus.py:251:
DeprecationWarning: The dbus bindings module is not public
API and will go away soon.

Most uses of dbus bindings are applications catching
the exception dbus.dbus bindings.DBusException.

You should use dbus.DBusException instead (this is
compatible with all dbus-python versions since 0.40.2).

If you need additional public API, please contact
the maintainers via <dbus@lists.freedesktop.org>.

import dbus.dbus bindings as m
Warnings...

/usr/lib/python2.5/site-packages/sugar/activity/activity.py:847:
Parameter (ps) not used
/usr/lib/python2.5/site-packages/sugar/activity/activity.py:992:
Parameter (event) not used
/usr/lib/python2.5/site-packages/sugar/activity/activity.py:992:
Parameter (widget) not used
/usr/lib/python2.5/site-packages/sugar/activity/activity.py:996:
Parameter (widget) not used

/usr/lib/python2.5/site-packages/sugar/graphics/window.py:157:
No class attribute (_alert) found
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:164:
Parameter (window) not used
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:188:
Parameter (widget) not used

92

/usr/lib/python2.5/site-packages/sugar/graphics/window.py:200:
Parameter (event) not used
/usr/lib/python2.5/site-packages/sugar/graphics/window.py:200:
Parameter (widget) not used

ReadEtextsActivity.py:62: Parameter (widget) not used

4 errors suppressed, use -#/--limit to increase the number
of errors displayed

PyChecker not only checks your code, it checks the code you import, including Sugar

code.
PyLint
Here is PyLint, the most thorough of the three:

pylint ReadEtextsActivity.py

No config file found, using default configuration
FARIxxAFIxxAF* Module ReadEtextsActivity

C:177: Line too long (96/80)

C: 1: Missing docstring
C: 27: Operator not preceded by a space
page=0

C: 27: Invalid name "page" (should match
(([A-Z_)[A-20-9_1*%) | (__.*_))$)

C: 30:ReadEtextsActivity: Missing docstring
C:174:ReadEtextsActivity.read file: Invalid name "zf" (should
match [a-z][a-z0-9]1{2,30}53)

W: 30:ReadEtextsActivity: Method 'write file' is abstract

in class 'Activity' but is not overridden

R: 30:ReadEtextsActivity: Too many ancestors (12/7)

W: 33:ReadEtextsActivity. init : Using the global statement
R: 62:ReadEtextsActivity.keypress cb:

Too many return statements (7/6)

C: 88:ReadEtextsActivity.page previous: Missing docstring

W: 89:ReadEtextsActivity.page previous:

Using the global statement

C: 90:ReadEtextsActivity.page previous:

Operator not preceded by a space

page=page-1

C: 91:ReadEtextsActivity.page previous:
Operator not preceded by a space

if page < 0: page=0
C: 91:ReadEtextsActivity.page previous: More than one
statement on a single line
C: 96:ReadEtextsActivity.page next: Missing docstring
W: 97:ReadEtextsActivity.page next: Using the global
statement
C: 98:ReadEtextsActivity.page next: Operator not preceded
by a space

page=page+l

93

C: 99:ReadEtextsActivity.page next: More than one
statement on a single line
:104:ReadEtextsActivity.font decrease: Missing docstring
:112:ReadEtextsActivity.font increase: Missing docstring
:118:ReadEtextsActivity.scroll down: Missing docstring
:130:ReadEtextsActivity.scroll up: Missing docstring
:142:ReadEtextsActivity.show page: Missing docstring
:143:ReadEtextsActivity.show page: Using global for

PAGE SIZE' but no assigment is done
W:143:ReadEtextsActivity.show page: Using global for
'current word' but no assigment is done
W:157:ReadEtextsActivity.save extracted file: Redefining
name 'zipfile' from outer scope (line 21)
C:163:ReadEtextsActivity.save extracted file: Invalid
name "f" (should match [a-z][a-z0-9]1{2,30}3)
W:171:ReadEtextsActivity.read file: Using global

for 'PAGE SIZE' but no assigment is done
C:177:ReadEtextsActivity.read file: Invalid name
"currentFileName" (should match [a-z][a-z0-9 1{2,30}3)
C:179:ReadEtextsActivity.read file: Invalid name
"currentFileName" (should match [a-z][a-z0-9 1{2,30}3)
C:197:ReadEtextsActivity.make new filename: Missing
docstring

R:197:ReadEtextsActivity.make new filename: Method could be
a function

R: 30:ReadEtextsActivity: Too many public methods (350/20)
W:174:ReadEtextsActivity.read file: Attribute

- = Q00000

'zf' defined outside init
W:181:ReadEtextsActivity.read file: Attribute
'etext file' defined outside _ init
W:175:ReadEtextsActivity.read file: Attribute
'book files' defined outside init
W:182:ReadEtextsActivity.read file: Attribute
'page_index' defined outside init

A bunch of tables appear here

Global evaluation

Your code has been rated at 7.52/10 (previous run: 7.52/10)

PyLint is the toughest on your code and your ego. It not only tells you about syntax
errors, it tells you everything someone might find fault with in your code. This includes
style issues that won't affect how your code runs but will affect how readable it is to
other programmers.

94

The Log Activity

When you start testing your Activities the Log Activity will be like your second home. i

It displays a list of log files in the left pane and when you select one it will display the

contents of the file in the right pane. Every time you run your Activity a new log file is

created for it, so you can compare the log you got this time with what you got on
previous runs. The Edit toolbar is especially useful. It contains a button to show the

log file with lines wrapped (which is not turned on by default but probably should be).

It has another button to copy selections from the log to the clipboard, which will be
handy if you want to show log messages to other developers.

The Tools toolbar has a button to delete log files. I've never found a reason to use it.
Log files go away on their own when you shut down sugar-emulator.

Activity
Word Wrap

(T SE OOTE
+huddy+Buddy at OxaS66c50)=>
- 1266714541, 986980 DEBUG root: Activity.write_file is not
= fhomejjim/.sugaridefaultiogs irplemented.
datastore log 1266714541.997361 DEBUG root: datastore.write
e e et 1266714541, 999744 DEBUG root: dbus_helpers.update: ldb7f629-
net.flassmanuals. MIRIChat-110g | Fiz02- 409 - 923e- 0c 1208920627, fhome/jin/. sugar/defaults
o data/1dbTT629- d202- 4057-923e- 0c 1208920b27 . doc, {dbus.String
org laptop.Log-1 /o9 [utactivity id']: dbus.ByteArray

presenceservice log ['4c222799748a56b24e8e29cTd0c 585f60e9f 512 ',
variant_level=1], dbus.5tring{u'title_set_by user']):
shelllog dbus.ByteArray('8', variant_level=l], dbus.String{u‘uid'):

telepathy-salut.lo dbu;.ByteA rray[']J::Ib?f629-dgﬁz-d@gf-gﬁe-ﬁc 1208920027 ",
Fathy 9 variant_level=1]), dbus.String(u'title'): dbus.ByteArray

~ ivarfog ['Mini Chat Activity', variant_level=l), dbus.5tring

[u'timestamp'): 1266714541, dbus.string(u'activity'):

boaot log dbus.ByteArray(‘'net. flossmanuals.Minithat',
boot log-20100122 variant_level=l], dbl._ls.st ringfu’ share-scope'): :

g dbu s, Bytedrray ['public', variant_level=1]), dbus.5tring
boot.log-20100124 [u'keep']: dbus.ByteArray['0', variant_level=l), dbus.String

[u'icon-color'): dbus.BytehArray('#0DACFF, #FF2B34°,

boot.log-20100206 variant_level=l], dbus.String(u'mtime']:

boot log-20100215 '2010-02-21701:09:01.999242", dbus.stringlu'preview']:
repmitted=', dbus. String(u'mime_type'): dbus.ByTtehrray
dmesg ['text/plain', variant_level=l]}, True

dmesa.old L266714542.040518 DEBUG root: Written object Ldb7fe29-
8- dz202- 4097- 923e- 0c 1208920627 to the datastore.
lastlog 1266714542, 117447 DEBUG rooT: Activity. save cb

Here is what the Log Activity looks like showing a syntax error in your code:

95

Activity

Jusr/libspython2.6/site-packages/sugar/util, py:25:
eprecationWamaing: the sha module is deprecated; use the hashlib
= thomefjimy/.sugaridefaultiogs dule instead

ampart sha
datastore.log Traceback (most recent call last): y
net.flossmanuals.MiniChz File "Jusr/bin/ssugar-activity", line 21, in <module=>
main.main ()
org laptop.Analyze-1.log f File "/u 5 r,-"l:tt?,-fpy thon2.6/s1te-packages/sugar/activity/main.py",
Line 112, 1in main
org laptop.Log-1.log module = _ import_ (module_name)

3 W
orglaptop.Log-2 lag 11:;1-;9 J-’irsl rﬁgﬁé:u garfactivities/Speak.activity/activity.py",
presenceservice log import voice

s File "Jjusr/sharessugar/activities/Speak.activity/voice.py", line
shelllog 8104

telepathy-salut Jog as = re.split{r'[*a-z]+', a.lower(})

- yntaxError: invalid syntax
~ parfog Rl‘.!ﬁ&?l&ml.gg?ﬂ? DEBUG root: _cleanup_temp files
boot log

boot log-20100122

boot log-20100124

boot log-20100206

boot.log-20100215

Logging

Without a doubt the oldest debugging technique there is would be the simple print
statement. If you have a running program that misbehaves because of logic errors and
you can't step through the code in a debugger to figure out what's happening you might
print statements in your code. For instance, if you aren't sure that a method is ever
getting executed you might put a statement like this as the first line of the method:

def my method() :
print 'my method() begins'

You can include data in your print statements too. Suppose you need to know how
many times a loop is run. You could do this:

while linecount < PAGE SIZE:
line = self.etext file.readline()
label text = label text + unicode(line,
'iso0-8859-1")
linecount = linecount + 1
print 'linecount=', linecount

The output of these print statements can be seen in the Log Activity. When you're
finished debugging your program you would remove these statements.

96

An old programming book I read once made the case for leaving the statements in the
finished program. The authors felt that using these statements for debugging and them
removing them is a bit like wearing a parachute when the plane is on the ground and
taking it off when it's airborne. If the program is out in the world and has problems you
might well wish you had those statements in the code so you could help the user and
yourself figure out what's going on. On the other hand, print statements aren't free.
They do take time to run and they fill up the log files with junk. What we need are
print statements that you can turn on an off.

The way you can do this is with Python Standard Logging. In the form used by most
Activities it looks like this:

self. logger = logging.getLogger (
'read-etexts-activity')

These statements would go in the __init__() method of your Activity. Every time you
want to do a print() statement you would do this instead:

def shared cb(self, activity):
self. logger.debug('My activity was shared')
self.initiating = True
self. sharing setup()

self. logger.debug(
'This is my activity: making a tube...')

id = self.tubes chan[telepathy.CHANNEL TYPE TUBES].\
OfferDBusTube (SERVICE, {})

def sharing setup(self):
if self. shared activity is None:
self. logger.error(
'Failed to share or join activity')
return

Notice that there are two kinds of logging going on here: debug and error. These are
error levels. Every statement has one, and they control which log statements are run
and which are ignored. There are several levels of error logging, from lowest severity to
highest:

self. logger.debug("debug message")

self. logger.info("info message")

self. logger.warn("warn message")

self. logger.error ("error message")

self. logger.critical("critical message")

When you set the error level in your program to one of these values you get messages
with that level and higher. You can set the level in your program code like this:

self. logger.setLevel (logging.DEBUG)

97

You can also set the logging level outside your program code using an environment
variable. For instance, in Sugar .82 and lower you can start sugar-emulator like this:

SUGAR LOGGER LEVEL=debug sugar-emulator

The way you accomplish the same thing in Sugar .84 and greater is to edit the file
~/.sugar/debug and uncomment the line that sets the SUGAR_LOGGER_LEVEL.

The Analyze Activity

Another Activity you may find yourself using at some point is Analyze. This is more
likely to be used to debug Sugar itself than to debug your Activity. If, for instance, your
collaboration test environment doesn't seem to be working this Activity might help you
or someone else figure out why.

I don't have a lot to say about this Activity here, but you should be aware that it exists.

xR

Activity Interfac
Presance Sarvice

! Activity jorg/flaptop/Sugar/PresencefActivities/l emitted NewChannel(*.. /MucChannelj1*) or mentioned the chg
INFO: Activity jorgflaptop/sugar/Presence/Activities/l emitted NewChannel*.. /MucTubesChannell") or mentioned t

INFO: Activity jorgflaptop/Sugar/PresencefActivitiesl emitted Buddyjoined(".. fkeyid/Tdbcen7d43a5h5048e50f33588
INFO: <Buddy jorglaptop/sugar/Presence/Buddies keyid/7dbce07d43a5b 5048 50f33588582222659C %2 77> GetPrope
INFO: Buddy forgdaptop/sugar/Presence/Buddieskeyid/7dbce07d43a5b5048e50f32588582222899c9e77 emitted Acti
INFO: Buddy fargdaptop/Sugar/Presence/Buddieskeyid/7dbce07d43a5b5048e50f33588582222899c9e77 emitted Tele

Activities:
Object path 1o Color Type Na
wfl 4c222799748a56b2428229c7d0c 5856020512 #FF2B34 #00A0FF net.flossmanuals. MiniChat Min

I

Buddies:
Object path Pubkey

.Jkeyid7dbce07d43a5b5048e50f33588582222899c%e77 580 bytes, shal 7dbce07d43a5h5048250f33588582222899

I

\O
Qo

ADVANCED TOPICS

15. Making Shared Activities

16. Adding Text To Speech

17. Fun With The Journal

18. Making Activities Using PyGame
19. Making New Style Toolbars

99

15 o Making Shared Activities

Introduction

One of the distinctive features of Sugar is how many Activities support being used by
more than one person at a time. More and more computers are being used as a
communications medium. The latest computer games don't just pit the player against
the computer; they create a world where players compete against each other. Websites
like Facebook are increasingly popular because they allow people to interact with each
other and even play games. It is only natural that educational software should support
these kinds of interactions.

I have a niece that is an enthusiastic member of the Club Penguin website created by
Disney. When I gave her Sugar on a Stick Blueberry as an extra Christmas gift I
demonstrated the Neighborhood view and told her that Sugar would make her whole
computer like Club Penguin. She thought that was a pretty cool idea. I felt pretty cool
saying it.

Running Sugar As More Than One User

Before you write any piece of software you need to give some thought to how you will
test it. In the case of a shared Activity you might think you'd need more than one
computer available to do testing, but those who designed Sugar did give some thought
to testing shared Activities and gave us ways to test them using only one computer.
These methods have been evolving so there are slight variations in how you test
depending on the version of Sugar you're using. The first thing you have to know is
how to run multiple copies of Sugar as different users.

Fedora 10 (Sugar .82)

In Sugar .82 there is a handy way to run multiple copies of sugar-emulator and have
each copy be a different user, without having to be logged into your Linux box as more
than one user. On the command line for each additional user you want add a
SUGAR_PROFILE environment variable like this:

SUGAR PROFILE=austen sugar-emulator

100

When you do this sugar-emulator will create a directory named austen under ~/.sugar to
store profile information, etc. You will be prompted to enter a name and select colors
for your icon. Every time you launch using the SUGAR_PROFILE of austen you will
be this user. If you launch with no SUGAR_PROFILE you will be the regular user you
set up before.

Fedora 11 (Sugar .84)

As handy as using SUGAR_PROFILE is the developers of Sugar decided it had
limitations so with version .84 and later it no longer works. With .84 and later you need
to create a second Linux user and run your sugar-emulators as two separate Linux
users. In the GNOME environment there is an option Users and Groups in the
Administration submenu of the System menu which will enable you to set up a
second user. Before it comes up it will prompt you for the administrative password you
created when you first set up Linux.

Creating the second user is simple enough, but how do you go about being logged in as
two different users at the same time? It's actually pretty simple. You need to open a
terminal window and type this:

ssh -XY jausten@localhost

where "jausten" is the userid of the second user. You will be asked to verify that the
computer at "localhost" should be trusted. Since "localhost" just means that you are
using the network to connect to another account on the same computer it is safe to
answer "yes". Then you will be prompted to enter her password, and from then on
everything you do in that terminal window will be done as her. You can launch sugar-
emulator from that terminal and the first time you do it will prompt you for a name and
icon colors.

sugar-jhbuild

With sugar-jhbuild (the latest version of Sugar) things are a bit different again. You will
use the method of logging in as multiple Linux users like you did in .84, but you won't
get prompted for a name. Instead the name associated with the userid you're running
under will be the name you'll use in Sugar. You won't be able to change it, but you will
be able to choose your icon colors as before.

You will need a separate install of sugar-jhbuild for each user. These additional installs
will go quickly because you installed all the dependencies the first time.

101

Connecting To Other Users

Sugar uses software called Telepathy that implements an instant messaging protocol
called XMPP (Extended Messaging and Presence Protocol). This protocol used to be
called Jabber. In essence Telepathy lets you put an instant messaging client in your
Activity. You can use this to send messages from user to user, execute methods
remotely, and do file transfers.

There are actually two ways that Sugar users can join together in a network:

Salut

If two computer users are connected to the same segment of a network they should be
able to find each other and share Activities. If you have a home network where
everyone uses the same router you can share with others on that network. This is
sometimes called Link-Local XMPP. The Telepathy software that makes this possible is
called Salut.

The XO laptop has special hardware and software to support Mesh Networking, where
XO laptops that are near each other can automatically start networking with each other
without needing a router. As far as Sugar is concerned, it doesn't matter what kind of
network you have. Wired or wireless, Mesh or not, they all work.

Jabber Server

The other way to connect to other users is by going through a Jabber Server. The
advantage of using a Jabber server is you can contact and share Activities with people
outside your own network. These people might even be on the other side of the world.
Jabber allows Activities in different networks to connect when both networks are
protected by firewalls. The part of Telepathy that works with a Jabber server is called
Gabble.

Generally you should use Salut for testing if at all possible. This simplifies testing and
doesn't use up resources on a Jabber server.

It does not matter if your Activity connects to others using Gabble or Salut. In fact, the
Activity has no idea which it is using. Those details are hidden from the Activity by
Telepathy. Any Activity that works with Salut will work with Gabble and vice versa.

To set up sugar-emulator to use Salut go to the Sugar control panel:

102

Control Panel

Logout

Restart

Shutdown

Register

In Sugar .82 this menu option is Control Panel. In later versions it is My Settings.

103

About Me About my X0 Date & Time

Network Power

Click on the Network icon.

104

@ Network

Wireless

Turn off the wireless radio to save battery life

D Radio

Discard network history if you have
trouble connecting to the network

Discard network history

Mesh

The Server field in this screen should be empty to use Salut. You can use the
backspace key to remove any entry there.

You will need to follow these steps for every Sugar user that will take part in your test.

If for some reason you wish to test your Activity using a Jabber server the OLPC Wiki
maintains a list of publicly available servers at
http://wiki.laptop.org/go/Community_Jabber_Servers.

Once you have either Salut or a Jabber server set up in both instances of Sugar that you
are running you should look at the Neighborhood view of both to see if they can detect
each other, and perhaps try out the Chat Activity between the two. If you have that
working you're ready to try programming a shared Activity.

The MiniChat Activity

Just as we took the Read Etexts Activity and stripped it down to the basics we're going
to do the same to the Chat Activity to create a new Activity called MiniChat. The real
Chat Activity has a number of features that we don't need to demonstrate shared
Activity messaging:

105

http://wiki.laptop.org/go/Community_Jabber_Servers

o It has the ability to load its source code into Pippy for viewing. This was a feature
that all Activities on the XO were supposed to have, but Chat is one of the few that
implemented it. Personally, if I want to see an Activity's code I prefer to go to

git.sugarlabs.org where I can see old versions of the code as well as the latest.

e Chat can connect one to one with a conventional XMPP client. This may be useful

for Chat but would not be needed or desirable for most shared Activities.

e If you include a URL in a Chat message the user interface enables you to click on

the URL make a Journal entry for that URL.

You can then use the Journal to open

it with the Browse Activity. (This is necessary because activities cannot launch

each other). Pretty cool, but not needed to demonstrate how to make a shared

Activity.

o The chat session is stored in the Journal. When you resume a Chat entry from the
Journal it restores the messages from your previous chat session into the user

interface. We already know how to save things to the Journal and restore things

from the Journal, so MiniChat won't do this.

The resulting code is about half as long as the original. I made a few other changes too:

o The text entry field is above the chat messages, instead of below. This makes it
easier to do partial screenshots of the Activity in action.

e I removed the new style toolbar and added an old style toolbar, so I could test it in
Fedora 10 and 11 which don't support the new toolbars.

o I took the class TextChannelWrapper and put it in its own file. I did this because
the class looked like it might be useful for other projects.

The code and all supporting files for MiniChat are in the MiniChat directory of the Git

repository. You'll need to run

./setup.py dev

on the project to make it ready to test. The activity.info looks like this:

[Activity]

name = Mini Chat

service name = net.flossmanuals.MiniChat
icon = chat

exec = sugar-activity minichat.MiniChat
show launcher = yes

activity version =1

license = GPLv2+

Here is the code for textchannel.py:
import logging

from telepathy.client import Connection,
from telepathy.interfaces import (

106

Channel

http://git.sugarlabs.org

CHANNEL INTERFACE, CHANNEL INTERFACE GROUP,

CHANNEL TYPE TEXT, CONN_ INTERFACE ALIASING)
from telepathy.constants import (

CHANNEL GROUP FLAG CHANNEL SPECIFIC HANDLES,

CHANNEL TEXT MESSAGE TYPE NORMAL)

class TextChannelWrapper (object) :
"""Wrap a telepathy Text Channel to make

usage simpler.

def

def

def

def

def

__init (self, text chan, conn):
"""Connect to the text channel"""
self. activity cb = None

self. activity close cb = None
self. text chan = text chan

self. conn = conn

self. logger = logging.getLogger (
'minichat-activity.TextChannelWrapper')

self. signal matches = []

m = self. text chan[CHANNEL INTERFACE].\
connect to signal (
'Closed', self. closed cb)

self. signal matches.append (m)

send(self, text):
"""Send text over the Telepathy text channel."™""
XXX Implement CHANNEL TEXT MESSAGE TYPE ACTION
if self. text chan is not None:
self. text chan[CHANNEL TYPE TEXT].Send(
CHANNEL TEXT MESSAGE TYPE NORMAL, text)

close(self):
"""Close the text channel."""
self. logger.debug('Closing text channel')
try:
self. text chan[CHANNEL INTERFACE].Close ()
except:
self. logger.debug('Channel disappeared!’')
self. closed cb()

_closed cb(self):

"""Clean up text channel.™""

self. logger.debug('Text channel closed.')

for match in self. signal matches:
match.remove ()

self. signal matches = []

self. text chan = None

if self. activity close cb is not None:
self. activity close cb ()

set received callback(self, callback):
"""Connect the function callback to the signal.

callback -- callback function taking buddy
and text args
if self. text chan is None:
return
self. activity cb = callback

107

m = self. text chan[CHANNEL TYPE TEXT].\
connect to signal(
'Received', self. received cb)

self. signal matches.append (m)

def handle pending messages (self):

"""Get pending messages and show them as

received."""

for id, timestamp, sender, type, flags, text \
in self. text chan]|
CHANNEL TYPE TEXT].ListPendingMessages (
False) :
self. received cb(id, timestamp, sender,

type, flags, text)

def received cb(self, id, timestamp, sender,
type, flags, text):
"""Handle received text from the text channel.

Converts sender to a Buddy.
Calls self. activity cb which is a callback
to the activity.
if self. activity cb:
buddy = self. get buddy(sender)
self. activity cb(buddy, text)
self. text chan|
CHANNEL TYPE TEXT].
AcknowledgePendingMessages ([id])
else:
self. logger.debug(
'Throwing received message on the floor'
' since there is no callback connected. See '
'set received callback')

def set closed callback(self, callback):
"""Connect a callback for when the text channel
is closed.

callback -- callback function taking no args

self. activity close cb = callback

def get buddy(self, cs handle):
"""Get a Buddy from a (possibly channel-specific)
handle.™""
XXX This will be made redundant once Presence
Service provides buddy resolution
from sugar.presence import presenceservice
Get the Presence Service
pservice = presenceservice.get instance ()
Get the Telepathy Connection
tp _name, tp path = \
pservice.get preferred connection()
conn = Connection (tp name, tp path)
group = self. text chan[CHANNEL INTERFACE GROUP]
my csh = group.GetSelfHandle ()

108

if my csh == cs_handle:
handle = conn.GetSelfHandle ()
elif group.GetGroupFlags () & \
CHANNEL GROUP FLAG CHANNEL SPECIFIC HANDLES:
handle = group.GetHandleOwners ([cs_handle]) [0]
else:
handle = cs_handle

XXX: deal with failure to get the handle owner
assert handle != 0

return pservice.get buddy by telepathy handle (
tp name, tp path, handle)

Here is the code for minichat.py:

from gettext import gettext as _

import hippo

import gtk

import pango

import logging

from sugar.activity.activity import (Activity,
ActivityToolbox, SCOPE_ PRIVATE)

from sugar.graphics.alert import NotifyAlert

from sugar.graphics.style import (Color, COLOR BLACK,
COLOR WHITE, COLOR BUTTON GREY, FONT BOLD,
FONT NORMAL)

from sugar.graphics.roundbox import CanvasRoundBox

from sugar.graphics.xocolor import XoColor

from sugar.graphics.palette import Palette, CanvasInvoker

from textchannel import TextChannelWrapper
logger = logging.getlLogger ('minichat-activity"')

class MiniChat (Activity) :
def init (self, handle):
Activity. init (self, handle)

root = self.make root()
self.set canvas (root)
root.show _all()
self.entry.grab focus()

toolbox = ActivityToolbox (self)

activity toolbar = toolbox.get activity toolbar ()
activity toolbar.keep.props.visible = False
self.set toolbox(toolbox)

toolbox.show ()

self.owner = self. pservice.get owner|()
Auto vs manual scrolling:

self. scroll auto = True

self. scroll value = 0.0

Track last message, to combine several
messages:

self. last msg = None

self. last msg sender = None

109

110

self.text channel = None

if self. shared activity:
we are joining the activity
self.connect ('joined', self. joined cb)
if self.get shared():
we have already joined
self. joined cb()
else:
we are creating the activity
if not self.metadata or self.metadata.get (
'share-scope',

SCOPE_PRIVATE) == SCOPE PRIVATE:
1if we are in private session
self. alert(('Off-line'),

_('Share, or invite someone.'))
self.connect ('shared', self. shared cb)

def shared cb(self, activity):
logger.debug('Chat was shared')
self. setup()

def setup(self):

self.text channel = TextChannelWrapper (
self. shared activity.telepathy text chan,
self. shared activity.telepathy conn)

self.text channel.set received callback(
self. received cb)

self. alert(('On-line'), _('Connected'))

self. shared activity.connect ('buddy-joined’',
self. buddy joined cb)

self. shared activity.connect ('buddy-left"',
self. buddy left cb)

self.entry.set sensitive (True)

self.entry.grab focus()

def joined cb(self, activity):

"""Joined a shared activity."""

if not self. shared activity:
return

logger.debug('Joined a shared chat')

for buddy in \
self. shared activity.get joined buddies():
self. buddy already exists (buddy)

self. setup()

def received cb(self, buddy, text):
"""Show message that was received.”"""
if buddy:
nick = buddy.props.nick
else:
nick = '"?2?2°72"'
logger.debug (
'Received message from %s: %$s', nick, text)
self.add text (buddy, text)

def alert(self, title, text=None):
alert = NotifyAlert (timeout=5)

alert.props.title = title

alert.props.msg = text

self.add alert(alert)

alert.connect ('response', self. alert cancel cb)
alert.show ()

def alert cancel cb(self, alert, response id):
self.remove alert (alert)

def buddy joined cb (self, activity, buddy):
"""Show a buddy who joined"""

if buddy == self.owner:
return
if buddy:
nick = buddy.props.nick
else:
nick = '?2?2?'

self.add text (buddy, buddy.props.nick+'
'+ ('joined the chat'),
status message=True)

def buddy left cb (self, activity, buddy):
"""Show a buddy who joined"""

if buddy == self.owner:
return
if buddy:
nick = buddy.props.nick
else:
nick = '"?2?27?2'

self.add text (buddy, buddy.props.nick+'
'+ ('left the chat'),
status message=True)

def buddy already exists(self, buddy):
"""Show a buddy already in the chat."""

if buddy == self.owner:
return
if buddy:
nick = buddy.props.nick
else:
nick = '?27?2°?2"'
self.add text (buddy, buddy.props.nick+
' '+ ('is here'),

status message=True)

def make root(self):
conversation = hippo.CanvasBox (
spacing=0,
background color=COLOR WHITE.get int())
self.conversation = conversation

entry = gtk.Entry()

entry.modify bg(gtk.STATE INSENSITIVE,
COLOR WHITE.get gdk color())

entry.modify base(gtk.STATE INSENSITIVE,
COLOR WHITE.get gdk color())

entry.set sensitive(False)

entry.connect ('activate',

111

112

def

def

def

self.entry activate cb)
self.entry = entry

hbox = gtk.HBox ()
hbox.add (entry)

sw = hippo.CanvasScrollbars/()

SW. Setipolicy (hippo. ORIENTATION HORIZONTAL,
hippo. SCROLLBAR_NEVER)

sw.set root (conversation)

self.scrolled window = sw

vadj = self.scrolled window.props.widget.\
get vadjustment ()

vadj.connect ('changed', self.rescroll)

vadj.connect ('value-changed',
self.scroll value changed cb)

canvas = hippo.Canvas ()
canvas.set root (sw)

box = gtk.VBox (homogeneous=False)
box.pack start (hbox, expand=False)
box.pack start (canvas)

return box

rescroll (self, adj, scroll=None):
"""Scroll the chat window to the bottom"""
if self. scroll auto:
adj.set value(adj.upper-adj.page size)
self. scroll value = adj.get value()

scroll value changed cb(self, adj, scroll=None):
"""Turn auto scrolling on or off.

If the user scrolled up, turn it off.
If the user scrolled to the bottom, turn it back on.

if adj.get value() < self. scroll value:
self. scroll auto = False

elif adj.get value() == adj.upper-adj.page_ size:
self. scroll auto = True

add text (self, buddy, text, status message=False):
"""Display text on screen, with name and colors.

buddy -- buddy object
text -- string, what the buddy said
status message -- boolean

False: show what buddy said
True: show what buddy did

————————————— rb ———--—— -
| +name vbox+ +----msg_vbox----+ |

| | nick: | | +--msg hbox--+ | |

\ | (I
| === + | A + |
\ | [
\ | +--msg _hbox--+ | |
\ I | text ol
| | Ammmmmm e 1
\ o +
N .
if buddy:

nick = buddy.props.nick
color = buddy.props.color
try:
color stroke html, color fill html
color.split(',")
except ValueError:
color stroke html, color fill html
"#000000", '#888888")
Select text color based on fill color:
color fill rgba = Color(
color fill html) .get rgba()
color fill gray = (color fill rgba[O] +
color fill rgball] +
color fill rgbal2])/3
color stroke = Color(
color stroke html).get int ()
color fill = Color(color fill html).get int()
if color fill gray < 0.5:
text color = COLOR WHITE.get int ()
else:
text color = COLOR BLACK.get int ()

I
_

else:
nick = '?7?22'
XXX: should be '' but leave for debugging
color stroke = COLOR BLACK.get int()
color fill = COLOR WHITE.get int ()
text color = COLOR BLACK.get int()
color = '"#000000, #FFFFFF'

Check for Right-To-Left languages:
if pango.find base dir(nick, -1) ==\
pango.DIRECTION RTL:
lang rtl = True
else:
lang rtl

False

Check if new message box or add text to previous:
new msg = True
if self. last msg sender:
if not status message:
if buddy == self. last msg sender:
Add text to previous message
new msg = False

if not new msg:
rb = self. last msg
msg_vbox = rb.get children() [1]
msg hbox = hippo.CanvasBox (

113

114

orientation=hippo.ORIENTATION HORIZONTAL)
msg_vbox.append (msg_hbox)

else:
rb = CanvasRoundBox (
background color=color fill,
border color=color_ stroke,
padding=4)
rb.props.border color = color stroke

self. last msg = rb
self. last msg sender = buddy
if not status message:
name = hippo.CanvasText (text=nick+': 'y
color=text color,
font desc=FONT BOLD.get pango_desc())
name vbox = hippo.CanvasBox (
orientation=hippo.ORIENTATION VERTICAL)
name vbox.append (name)
rb.append (name_ vbox)
msg_vbox = hippo.CanvasBox (
orientation=hippo.ORIENTATION VERTICAL)
rb.append (msg_vbox)
msg_hbox = hippo.CanvasBox (
orientation=hippo.ORIENTATION HORIZONTAL)
msg_vbox.append (msg_hbox)

if status message:

self. last msg sender = None
if text:
message = hippo.CanvasText (

text=text,

size mode=hippo.CANVAS SIZE WRAP WORD,

color=text color,

font desc=FONT NORMAL.get pango desc(),

xalign=hippo.ALIGNMENT START)
msg_hbox.append (message)

Order of boxes for RTL languages:
if lang rtl:
msg_ hbox.reverse ()
if new _msg:
rb.reverse ()

if new msg:
box = hippo.CanvasBox (padding=2)
box.append (rb)
self.conversation.append (box)

def entry activate cb(self, entry):

text = entry.props.text
logger.debug ('Entry: %$s' % text)
if text:
self.add text(self.owner, text)
entry.props.text = "'
if self.text channel:
self.text channel.send(text)
else:
logger.debug (

'Tried to send message but text '
'channel not connected.')

And this is what the Activity looks like in action:

Mini Chat Activity

(]ane Austen is here

(lnne Austen: As well as can be expected. And you?

Try launching more than one copy of sugar-emulator, with this Activity installed in
each. If you're using Fedora 10 and SUGAR_PROFILE the Activity does not need to be
installed more than once, but if you're using a later version of Sugar that requires
separate Linux userids for each instance you'll need to maintain separate copies of the
code for each user. In your own projects using a central Git repository at
git.sugarlabs.org will make this easy. You just do a git push to copy your changes to
the central repository and a git pull to copy them to your second userid. The second
userid can use the public URL. There's no need to set up SSH for any user other than
the primary one.

You may have read somewhere that you can install an Activity on one machine and
share that Activity with another that does not have the activity installed. In such a case
the second machine would get a copy of the Activity from the first machine and install it
automatically. You may have also read that if two users of a shared Activity have
different versions of that Activity then the one who has the newer version will
automatically update the older. Neither statement is true now or is likely to be true in
the near future. These ideas are discussed on the mailing lists from time to time but
there are practical difficulties to overcome before anything like that could work, mostly
having to do with security. For now both users of a shared Activity must have the
Activity installed. On the other hand, depending on how the Activity is written two
different versions of an Activity may be able to communicate with one another. If the
messages they exchange are in the same format there should be no problem.

115

http://git.sugarlabs.org

Once you have both instances of sugar-emulator going you can launch MiniChat on one
and invite the second user to Join the Chat session. You can do both with the
Neighborhood panes of each instance. Making the invitation looks like this:

@)

L]
x Jane Austen

o Make friend

@ Invite to Mini Chat Actjyity

K

Accepting it looks like this:

Mini Chat Activity

CR

After you've played with MiniChat for awhile come back and we'll discuss the secrets
of using Telepathy to create a shared Activity.

116

Know who Your Buddies Are

XMPP, as we said before, is the Extended Messaging and Presence Protocol. i
Presence is just what it sounds like; it handles letting you know who is available to
share your Activity, as well as what other Activities are available to share. There are
two ways to share your Activity. The first one is when you change the Share with:
pulldown on the standard toolbar so it reads My Neighborhood instead of Private.
That means anyone on the network can share your Activity. The other way to share is
to go to the Neighborhood view and invite someone specific to share. The person
getting the invitation has no idea of the invitation was specifically for him or broadcast
to the Neighborhood. The technical term for persons sharing your Activity is Buddies.
The place where Buddies meet and collaborate is called an MUC or Multi User
Chatroom.

The code used by our Activity for inviting Buddies and joining the Activity as a Buddy
isin the __init_ () method:

if self._ shared_activity:
we are joining the activity
self.connect ('joined', self. joined cb)
if self.get shared():
we have already joined
self. joined cb()
else:
we are creating the activity
if not self.metadata or self.metadata.get(
'share-scope',

SCOPE_PRIVATE) == SCOPE PRIVATE:
if we are in private session
self. alert(('Off-line'),

_('Share, or invite someone.'))
self.connect ('shared', self. shared cb)

def shared cb(self, activity):
logger.debug('Chat was shared')
self. setup()

def joined cb(self, activity):

"""Joined a shared activity."""

if not self. shared activity:
return

logger.debug('Joined a shared chat')

for buddy in \
self. shared activity.get joined buddies():
self. buddy already exists (buddy)

self. setup()

def setup(self):
self.text channel = TextChannelWrapper (
self. shared activity.telepathy text chan,
self. shared activity.telepathy conn)

117

self.text channel.set received callback(
self. received cb)

self. alert(('On-line'), ('Connected'))

self. shared activity.connect ('buddy-joined’',
self. buddy joined cb)

self. shared activity.connect ('buddy-left',
self. buddy left cb)

self.entry.set sensitive(True)

self.entry.grab focus/()

There are two ways to launch an Activity: as the first user of an Activity or by joining
an existing Activity. The first line above in bold determines whether we are joining or
are the first user of the Activity. If so we ask for the _joined_cb() method to be run when
the 'joined' event occurs. This method gets a buddy list from the _shared_activity object
and creates messages in the user interface informing the user that these buddies are
already in the chat room. Then it runs the _setup() method.

If we are not joining an existing Activity then we check to see if we are currently sharing
the Activity with anyone. If we aren't we pop up a message telling the user to invite
someone to chat. We also request that when the 'shared' even happens the _shared_cb()
method should run. This method just runs the _setup() method.

The _setup() method creates a TextChannelWrapper object using the code in
textchannel.py. It also tells the _shared_activity object that it wants some callback
methods run when new buddies join the Activity and when existing buddies leave the
Activity. Everything you need to know about your buddies can be found in the code
above, except how to send messages to them. For that we use the Text Channel.
There is no need to learn about the Text Channel in great detail because the
TextChannelWrapper class does everything you'll ever need to do with the TextChannel
and hides the details from you.

def entry activat