MEMOIRS OF THE

NATIONAL MUSEUM OF VICTORIA melbourne

(World List abbrev. Mem. Nat. Mus. Vic.)

No. 17

Issued March, 1951
R. T. M. PESCOTT, M.Agr.Sc., F.R.E.S.

PUBLISHED BY ORDER OF THE TRUSTEES

MELBOURNE
BROWN, PRIOR, ANDERSON PTY. LTD., 430 LITTLLE BOURKE ST., MELBOURNE, C. \boldsymbol{r}

MEMOIRS

OF THE

NATIONAL MUSEUM OF VICTORIA MELBOURNE

(World List abbrev. Mem. Nat. Mus. Vic.)

No. 17

Issued March, 1951

R. T. M. PESCOT'T, M.Agr.Sc., F.R.E.S. Director

PUBLISHED BY ORDER OF THE TRUSTEES

NATIONAL MUSEUM OF VICTORIA

TRUSTEES

Sir Russell Grimwade (Chairman).
P. Crosbie Morrison, Esq., M.Sc. (Deputy Chairman).
F. G. Thorpe, Esq., M.C., E.D. (Treasurer).
G. Finlay, Esq., O.B.E., L.D.S., B.D.Sc.

Professor E. S. Hills, D.Sc., Ph.D.
S. R. Mitchell, Esq., M.A.I.M.M., A.A.C.I.

Sir David Rivett, K.C.M.G., M.A., D.Sc., F.R.S., F.A.C.I.
NATIONAL MUSEUM OF VICTORIA
DIRECTOR
R. T. M. Pescott, M.Agr.Sc., F.R.E.S.

SCIENTIFIC STAFF
Geology and Palaeontology:
Palaeontology: E. D. Gill, B.A., B.D.
Mineralogy: A. W. Beasley, M.Sc., Ph.D., D.I.C., F.G.S.
Assistants: J. J. Jenkin.
N. J. Shaw.

Vertebrate Zoology:
Mammalogy and Herpetology: C. W. Brazenor.
Ornithology: W. B. Нітснсоск.
Assistant: Jeannie Mitchell.
Invertebrate Zoology:
Entomology:
A. N. Burns, B.Sc.
C. G. Oke.

Conchology: J. Hope Macpherson, B.Sc.
Assistants: Patricia Hoggart.
Elizabeth Matheson.
Ethnology:
Ethnology: D. J. Tugby, B.Sc.
Library:
Librarian: Joyce M. Shaw, B.A.
PREPARATORIAL STAFF
Preparation: P. C. R. Boswell.
L. J. Chapman.
M. Traynor.

HONORARY SCIENTIFIC STAFF
Geology and Palaeontology:
Palaeontology: F. A. Cudmore, Esq. Rev. E. H. Chapple.
Mineralogy: S. R. Mitchell, Esq.
Zoology:
Ornithology: C. E. Bryant, Esq.
A. G. Campbell, Esq., J.P.
N. J. Favaloro, Esq.

Conchology: C. J. Gabriel, Esq.
Entomology: G. Lyeld, Esq.
F. E. Wilson, Esq.

Arachnology: R. A. DunN, Esq.
Ethnology:
Ethnology: H. R. Balfour, Esq.
D. A. Casey, Esq.
S. R. Mitchell, Esq.

Photography:
Photography: P. Crosbie Morrison, Esq.

CONTENTS

PAGE
The Russell Grimwade Expedition to South and Western Australia, August-September, 1947
Introduction, by Sir Russell Grimwade 7
Spiders, by R. A. Dunv 9
Coleoptera, by Charles G. Oke 19
Lepidoptera, by R. T. M. Pescott 27
Land Mollusca, by J. Hope Macpherson 29
Botany, by James H. Willis 33
A Critical Revision of Species in the Genus Asaropoda by New Characters. By Tarlton Rayment 65
A New Species of Myadora from Victoria (Mollusca, Myochamidae). By
J. Hope Macpherson 81
Notes on Australian Rhopalocera with Descriptions of New Subspecies and Life Histories. By A. N. Burns 83
A Systematic List of the Marine and Estuarine Mollusea of Victoria. By
J. Hope Macpherson and Rev. E. H. Chapple 107
Two New Brachiopod Genera from Devonian Rocks in Victoria. By Edmund D. Gill 187
Victorian Records of Sterna striata Gm. and Sterna hirundo longipennis Nordm. By W. B. Hitchcock and N. J. Fataloro 207
On the Victorian Species of Tuberculated Diplodactylus. By C. W. Brazenor 215

THE RUSSELL GRIMWADE EXPEDITION TO SOUTH AND WESTERN AUSTRALIA AUGUST-SEPTEMBER, 1947

Introduction

By Sir Russell Grimwade

In the winter of 1947 I was privileged to organize and lead a party of scientists by road from Port Lincoln to Perth. The party included a forester, naturalist, entomologist, botanist, ethnologist, bird observers and plant collectors.
The journey took sixteen days, and was made in a large touring bus that accommodated the party of nine and a crew of four, with a trailer that carried reserve supplies of fuel, water, tyres and necessary camping gear. Travel was done by day only, the nights being spent in camp, or in hotels if they were available.

GRIMWADE EXPEDITION TO SOUTH-WEST AUSTRALIA

AUGUST - SEPTEMBER 1947
The route from east to west coincided very closely with that travelled by Edward John Eyre on his historic journey in the years 1840-41, and every member of the party was conscious of and humbled by the comfort and safety of the trip, in contrast with the ardours and dangers experienced by the great explorer.

Large collections, especially in the botanical and entomological fields, were made, and these specimens are now deposited in the National Herbarium, Melbourne, and the National Museum of Victoria respectively.

Since the completion of the journey, specialists have worked upon these specimens, comparing them with the specimens already held by these two great institutions.

The results of this expedition were many - they included a manifestation of the comparative ease and comfort with which such trips can be made nowadays with motor transport, and illustrate the rapidity with which a full knowledge of our country may be acquired by its aid with improved roads and tracks.

Of the nine hundred botanical specimens and the three hundred natural history specimens brought to the permanent collections of the National Herbarium and the National Museum, the great majority was well known, having been previously collected and recorded. A few were old friends found in new places, and a few were entirely new to science. It is with these collections that the remainder of this paper deals.

The pleasant and lasting memories of such an expedition have their real foundation in the belief that a small contribution was made on this occasion to the general knowledge of the Australian environment, and my thanks and congratulations go to those enthusiastic companions who so freely shared their knowledge with those of the party who were less informed than they, and for their companionship on an occasion that was both useful and pleasurable.

SPIDERS OF THE RUSSELL GRIMWADE EXPEDITION

By R. A. Dunn, Honorary Arachnologist, National Museum of Victoria. (Received for publication May 6, 1949.)

By the courtesy of the Director of the National Museum, to whom I am consequently indebted, I have been permitted to examine the spiders collected in Western Australia by the Russell Grimwade Expedition. Though much of the material consists of species that are already known from that State, several specimens have either not been recorded from there, or are entirely new. These specimens alone are mentioned in this paper, and the species represented are detailed hereunder.
Acknowledgments are made to Mr. L. S. G. Butler, of Melbourne, for literature not otherwise available.

Order ARANEAE
Suborder DIPNEUMONOMORPHAE Branch TRIONYCHAE
Family ZODARIIDAE
Subfamily ZODARIINAE
Genus STORENA Walckenaer, 1805

Synorsis of Australlan Species

1. Leg iii longer than leg iv.
S. cyanea Walck.

- Leg iv longer than leg iii

2. Both rows of eyes procurved.

- Anterior row of eyes strongly recurved.

3. Femorae each of two strongly contrasting colours. 2. 3.
S. variepes Rainb.

- Femorae uniform in colour. 4.

4. Femorae lighter in colour apically. 11.

- Femorae lighter in colour at base only.

5. Dorsal surface of abdomen dark brown in colour, ornamented with white patches.
S. auripes Rainb.

- Dorsal surface of abdomen yellow-brown, spotted with pale yellow, but not ornamented.
S. inornata Rainb.

6. A.M.E. the largest of all eyes.
7.

- A.M.E. smaller than P.M.E. and P.L.E.

8.
9. A.M.E. and P.L.E. forming a recurved row.

- A.M.E. and P.L.E. forming almost a straight row.

8. A.M.E. and P.L.E. forming a straight row. S. annulipes (L. Koch).

- A.M.E. and P.L.E. forming a recurved row. 9.

9. Cephalothorax as broad as the length of tibia and patella iv.
S. braccata (L. Koch).

- Cephalothorax not broader than the length of tibia iv. 10.

10. P.M.E. their diameter apart.
S. picta (L. Koch).

- P.M.E. their radius apart.

11. All eyes about equal in size.

- Eyes unequal in size.

12. Sternum glossy black in colour.

- Sternum dark reddish-brown in colour.

13. Area of median eyes subparallel.
S. striatipes (L. Koch).
14.
15.

- Area of median eyes narrower in front than at rear.
S. albomaculata Rainb.

14. A.M.E. and P.L.E. forming a procurved row.
S. variegata O. P. Cambr.

- A.M.E. and P.L.E. forming a recurved row.

15. A.M.E. larger or at least not smaller than P.M.E.
16.

- A.M.E. smaller than P.M.E.

22.
23. A.M.E. and P.L.E. forming a procurved row. 17.

- A.M.E. and P.L.E. forming a straight row. 18.
- A.M.E. and P.L.E. forming a recurved row.

17. Cephalothorax strongly wrinkled.
18.

- Cephalothorax finely striated.

18. Cephalothorax coarsely granular.

- Cephalothorax very finely granular.

19. Caput black, thorax yellowish-red in colour.

- Cephalothorax either uniform in colour or else more brightly coloured on the caput.

20.
21. Sternum coarsely wrinkled.

- Sternum smooth, finely granular.

21. P.M.E. about their diameter apart.

- P.M.E. one-and-a-half diameters apart.

22. A.L.E. smaller than A.M.E.

- A.L.E. larger or at least not smaller than M.M.E.
S. spirafer (L. Koch).
S. graeffei L. Koch. S. rastellata, Strand.
S. toddi Hickman.

23. Legs 4, 3, 2, 1, or 4, 3, 1, 2. 23. .

- Legs 4, 1, 2, 3 .
S. flavipes (Urquhart).

24. Profile of cephalothorax depressed near the thoracic fovea.
S. bradleyi O. P. Cambr.
S. grimwadei sp . nov. 26.
S. scenical (L. Koch).

- Profile of cephalothorax an even curve.

25. A.M.E. and P.L.E. forming a procurved row.

- M.M.E. and P.L.E. forming a straight row.
- A.M.E. and P.L.E. forming a recurved row (if belonging to this genus).

26. Legs 4, 2, 3, 1.

- Legs, $4,1,2=3$.
S. australiensis O. P. Cambr.
S. naculata O. P. Cambr.

1

Storena grimwadei sp. nov.
Fig. 1. ô Profile of cephalothorax.
Fig. 2. it Ventral view of left palpus.
Fig. 3. \& Dorso-anterior view of eyes.
Fig. 4. \& Epigynum.
Storena grimwadei sp. nov.
Figs. 1-4

Male (holotype).						mm.
Total Length	-		.	.		$4 \cdot 36$
Length of Cephalothorax	.	-	\cdots	.		$2 \cdot 30$
Width of Cephalothorax						$1 \cdot 67$
Length of Abdomen	.		-	.		$2 \cdot 06$
Width of Abdomen				.		1.53
Femur	Patella	Tibia	Metatarsus	Tarsus		Total
Leg i 1•70	$0 \cdot 59$	1.59	1.72	$1 \cdot 30$	$=$	6.90
ii 1.76	$0 \cdot 62$	1.55	$1 \cdot 81$	$1 \cdot 34$	=	$7 \cdot 08$
iii 1.76	$0 \cdot 66$	1-52	$2 \cdot 33$	$1 \cdot 37$	$=$	$7 \cdot 64$
iv $2 \cdot 65$	$0 \cdot 66$	$2 \cdot 26$	$3 \cdot 57$	$1 \cdot 89$	=	11.03
Palp 0.90	$0 \cdot 37$	$0 \cdot 19$	-	$1 \cdot 12$	$=$	$2 \cdot 58$

Carapace light brown, eyes edged with black, a few black bristles around eyes and on clypeus. Chelicerae light brown. Maxillae, labium, and coxae yellowish brown. Sternum light brown, with scattered black bristles directed backwards. Legs and palpi light brown, with black spines. Abdomen dark brown, with a bluish sheen laterally; dorsal surface with four white spots, of which two are large and oval and are placed opposite each other near the middle, the other two nearer the apex in the median line, the first being semi-circular, truncate
behind, and the other long and shaped somewhat like an hour-glass. There are also two long, oblique, light brown stripes laterally; the anterior one extends round the front of the abdomen and almost joins in front. Ventrally, the abdomen is brown; spinnerets yellowish brown.

Carapace with finely granulate tegument, without hair; rounded laterally, only slightly narrower in front; profile as in Fig. 1. Thoracic fovea short, longitudinal.

Eyes arranged in two strongly procurved rows, occupying area broader than long in the ratio of approximately $36: 30$. Ratio of eyes A.M.E. : A.L.E. : P.M.E. : P.L.E. $=5: 4 \cdot 5: 7: 7 \cdot 5$. The $\Lambda . M . E$. are separated from each other by $5 / 5$, and from A.L.E. by $5 / 5$ of the diameter of A.M.E. The P.M.E. are separated from each other by $7 / 5$, and from P.L.E. by $10 / 5$ of the diameter of A.M.E. The P.L.E. are separated from A.L.E. by $6 / 5$, and from A.M.E. by $8 / 5$ of the diameter of A.M.E. The P.L.E. and A.M.E form a recurved row when viewed from in front.

Chelicerae conical; lateral condyles present; margins of furrow without teeth, promargin with seopula. Fang short.

Maxillae strongly converging, with scopulae. Labium triangular, almost as broad as long.

Sternum shield-shaped, almost as broad as long, extended posteriorly into a short point between coxae iv, anterior margin straight.

Legs 4, 3, 2, 1. Trichobothria in two rows on tibiae, in one row on metatarsi and tarsi. Three tarsal claws, the superior claws with about ten teeth, the inferior claw small and unarmed. Palpal bulb has the form shown in Fig. 2.

Spines on legs and palpi arranged as follows: First lcg-Femur : dorsal 1.1.1, prolateral 1, elsewhere 0. Patella: 0. Tibia: dorsal 1 near base, prolateral 1.1.1, retrolateral 0 , ventral 2.2.2. Metatarsus: dorsal 0, prolateral 1.1, retrolateral 1 apical, ventral 2.2.2. Second leg-as in leg i. Third leg-Femur: dorsal 1.1.1, elsewhere 0. Patella: dorsal 1, prolateral 2, elsewhere 0. Tibia: dorsal 2.1.1.1.2.1.1.1.2, prolateral 1.1.1, retrolateral 1, ventral 2.2.2. Metatarsus: dorsal 1.1.2, prolateral 1.1.1, retrolateral 1.1.1, ventral 2.2.2.2.2. Fourth legFemur : dorsal 1.1.1, elsewhere 0. Patella : prolateral 1, retrolateral 1, elsewhere 0 . Tibia : dorsal 1.1.1, prolateral 1.1.1, retrolateral 1, ventral 2.2.2. Metatarsus : dorsal 1.1.2, prolateral 1.1.1, retrolateral 1.1.1, ventral 2.2.2.2.2.2. All tarsi have numerous short spines ventrally. Palp-Femur : dorsal 1.1, elsewhere 0. Patella: prolateral 1, elsewhere 0 . Tibia: prolateral 1 long, elsewhere 0.

Abdomen oval ; anterior spinnerets longer than the posterior pair.
Female (allotype).

mm.

Total Length 5•46
Length of Cephalothorax $2 \cdot 73$

Width of Cephalothorax 2.04
Length of Λ bdomen $2^{2.73}$
Width of A bdomen $\quad . \quad$.. 2.06

Leg i	Femur	Patella	Tibia	Metatarsus	Tarsus		Total
	$1 \cdot 84$	0.71	1.55	$1 \cdot 86$	1.28	=	$7 \cdot 24$
ii	$2 \cdot 02$	$0 \cdot 78$	1.52	$1 \cdot 87$	$1 \cdot 26$	$=$	$7 \cdot 45$
iii	$2 \cdot 02$	0.86	$1 \cdot 64$	2.43	1.36	$=$	$8 \cdot 31$
iv	2.61	$0 \cdot 86$	$2 \cdot 30$	$3 \cdot 61$	1.84	$=$	11.22
Palp	0.96	0.58	0.50		0.81	$=$	$2 \cdot 85$

Except for the following details, the description of the female is similar to that of the male.

The dorsal surface of the abdomen has, towards the base, an additional pair of white spots which are much smaller than the median pair; and the lateral stripes are white.

Eyes as in Fig. 3, occupying area broader than long in the ratio of approximately 46 : 35. Ratio of eyes A.M.E. : A.L.E. : P.M.E. : P.L.E. $=5: 4.5$: 7 : 8. The A.M.E. are separated from each other by 5/5, and from A.L.E. by 6/5 of the diameter of A.M.E. The P.M.E. are separated from each other by $12 / 5$, and from P.L.E. by $11 / 5$ of the diameter of A.M.E. The P.I.E. are separated from A.L.E. by $9 / 5$, and from A.M.E. by $10 / 5$ of the diameter of A.M.E.

Palp with a single tarsal claw provided with about seven short teeth.
Spines on legs as in male, except for tibia iii dorsally, which has 1.1.1 only. Palp-Tibia: dorsal 1 bristle, prolateral 2.1 bristles, elsewhere 0. Tarsus with numerous spines ventrally.

Epigynum has the form shown in Fig. 4.
Locality. About 40 miles west of Eucla, W.A.; one male and two females, collected by R. T. M. Pescott, August 30, 1947. Mr. Pescott remarked that they were captured in the act of preying on the ant Iridomyrmex (?)detcctus (Smith).

Types in the National Museum of Victoria. Named in honour of the Chairman of Trustees and Expedition leader, Sir Russell Grimwade.

Branch DIONYCHAE
 Family GNAPHOSIDAE Subfamily DRASSODINAE Genus PRIONOSTERNUM nov.

Cephalothorax suboval, only slightly narrowed anteriorly; thoracic fovea short, longitudinal.

Eyes eight, in two procurved rows, heterogeneous, A.M.E. alone diurnal. A.M.E. smaller than A.L.E. and closer to them than the space between each other. Median ocular quadrangle broader than long, and broader at rear than in front.

Chelicerae with both margins armed with two teeth.
Maxillae parallel, inner margin bevelled; palpi inserted at base. Labium longer than broad, slightly tapered, apex truncate.

Sternum cordate, with serrated flange; coxae iv well separated.
Legs 4, 1, 2, 3, prograde; i and ii without spines, iii and iv almost likewise.
Abdomen oval, with dorsal scuta; anterior spinnerets close together.
Differs from Anzacia Dalmas principally in having the A.M.E. smaller than A.L.E., the sternum with a serrated flange, legs i and ii unarmed and legs iii and iv almost so, and the abdomen with a dorsal scuta.

Genotype: P. scutatum sp. nov.

Prionosternum scutatum gen. et $s p$. nov.
Fig. 5. Dorso-anterior view of eyes.
Fig. 6. Maxillae, labium, and sternum.
Fig. 7. Ventral view of right palpus.
Prionosternum scutatum sp. nov. Figs. 5-7

Male (holotype).						mm.
Total Length	.		-	.	-	$4 \cdot 14$
Length of Cephalothorax				.		1.99
Width of Cephalothorax	\ldots		\ldots	.		1.53
Length of Abdomen	.		\cdots	.		$2 \cdot 15$
Width of Abdomen	.					$1 \cdot 25$
Femur	Patella	Tibia	Metatarsus	Tarsus		Total
Leg i 1.53	$0 \cdot 80$	$1 \cdot 30$	$1 \cdot 09$	$0 \cdot 74$	$=$	$5 \cdot 46$
ii 1.36	$0 \cdot 77$	$1 \cdot 11$	$0 \cdot 90$	0.65	$=$	$4 \cdot 79$
iii 1•12	$0 \cdot 59$	0. 84	0.78	$0 \cdot 44$	=	$3 \cdot 77$
iv 1.56	$0 \cdot 78$	$1 \cdot 36$	$1 \cdot 31$	$0 \cdot 65$	$=$	$5 \cdot 66$
Palp 0.53	$0 \cdot 37$	$0 \cdot 34$	-	$0 \cdot 52$	$=$	$1 \cdot 76$

Width of Patella i at "knee": 0.22 mm . Tibial Index 11.
Width of Patella iv at "knee": 0.24 mm . Tibial Index 11.
Carapace brown, thorax with black granules. Chelicerae brown. Maxillae, labium, and sternum light brown. Legs and palpi yellowish, the femorae greyish yellow. Abdomen dark grey above; sides and apex whitish; ventral surface light grey, with four converging longitudinal lines of whitish spots; between the epigastric furrow and the base of the abdomen yellowish; spinnerets whitish, encircled by a line of dark grey.

Carapace suboval, slightly narrowed anteriorly, anterior margin obtusely truncate, posterior margin excavated; convex; caput smooth, thorax with granulations forming a pattern radiating from the fovea. Thoracic fovea short, longitudinal. Clypeus equal to approximately $3 / 7$ of the diameter of A.M.E.

Eyes as in Fig. 5, in two procurved rows, heterogeneous, A.M.E. alone diurnal. Ratio of eyes A.M.E. : A.L.E. : P.M.E. : P.L.E. $=7: 10: 10: 9 \cdot 5$. The A.M.E. are separated from each other by $7 / 7$, from A.L.E. by $4 / 7$, and from P.M.E. by $7 / 7$ of the diameter of A.M.E. The P.M.E. are ovate, separated from each other by $5 / 7$, and from P.L.E. by $8 / 7$ of the diameter of A.M.E. The P.L.E. are separated from A.L.E. by $5 / 7$ of the diameter of A.M.E. Median ocular quadrangle occupying area broader at rear than in front in the ratio of approximately $25: 21$, and broader, at rear, than long in the ratio of approximately $25: 22$.

Chelicerae conical, sparsely covered with long setae, margins oblique. Promargin with seopula and two teeth, the one nearer the base of the fang the larger. Retromargin with two teeth, the one further from the base of the fang the larger. Fang short.

Maxillae as in Fig. 6, parallel, with apical scopulae, impressed transversely; outer margin concave, palpi inserted at base; imner margin bevelled. Labium reaching to almost two-thirds of the height of the maxilliae, slightly tapered anteriorly, longer than broad in the approximate proportion of $4: 3$, apex truncate.

Sternum cordate, convex, with serrated flange, longer than broad in the ratio of approximately $8: 7$, surface sparsely provided with setae. Coxae iv well separated.

Legs 4, 1, 2, 3; sparsely provided with setac, those under tibiae and metatarsi i and ii being longer and almost erect; apices of metatarsi iii and iv ventrally with more numerous bristles. Tarsi with two claws and claw-tufts, each claw with three teeth of which the basal is much the smallest; no scopulae. Trichobothria in three rows on tibiae, in one row on metatarsi, and in two rows on tarsi. Palpi with a short, spur-like apophysis on the retrolateral apex of the tibia. Palpal bulb has the form shown in Fig. 7.

Spines on legs and palpi present only as follows: Tibia iii : ventral 1.2. Tibia iv : retrolateral 0.1 , ventral 1.2. Metatarsus iv: ventral 1.0.

Abdomen oval, provided with oval dorsal scuta; clothed with short black setae. Spinnerets six, cylindrical; anterior pair separated by less than half their diameter, slightly stouter than posterior pair.

Locality. Pimlea, W.A.; a single male, collected by R. T. M. Pescott, September 7, 1947.

Holotype in the National Museum of Victoria.

Family SALTICIDAE
 Division UNIDENTATI Subfamily MARPISSINAE Genus CLYNOTIS Simon, 1901

Clynotis viduus (L. Koch)

1879. Icius viduus L. Koch, Die Arach. Austr., ii, p. 1129, tab. xeviii, figs. 4-4d, 5-5d
1880. Clynotis viduus, Simon, Hist. Nat. Araign., ii, p. 600.

A single male specimen from Koonalda, W.A., collected by R. T. M. Pescott, August 29, 1947, which I ascribe to this species. The markings are very different from those figured by L. Koch, but, as he has already pointed out, the pattern is not constant.

Previously recorded from Queensland and New South Wales.

Division FISSIDENTATI Subfamily CYTAEINAE
 Genus CYTAEA Keyserling, 1882 Synopsis of Australian Species

1. Leg ithe longest.
2.

- Legs iii and iv longer than leg i.

4.
5. Sternum about one-third longer than broad.
6.

- Sternum twice as long as broad. C. albiventris (Keys.).

3. Labium truncate at apex.
C. alburna Keys.

- Labium rounded at apex.

4. Labium rounded at apex.
C. morrisoni sp. nov.
5.

- Labium excavated at apex.
C. grisea Keys.

5. Metatarsi iii and iv more than twice the length of their tarsi.
C. clarovittatus (Keys.).

- Metatarsi iii and iv only slightly longer than their tarsi.

6.
7. Patellae i and ii with 1 prolateral, tibiae i and ii with 3 prolateral spines. C. infrastriatus (Keys.).

- Patellae i and ii without any, tibiae i and ii with 1 prolateral spine.
C. piligera Keys.

Cytaea morrisoni sp. nov.
Figs. 8-9

Male (holotype).						mm.
Total Length	\cdots		-			7.9
Length of Cephalothorax			-			3•8
Width of Cephalothorax						$3 \cdot 2$
Length of Abdomen						$4 \cdot 1$
Width of Abdomen			.			$3 \cdot 5$
Femur	Patella	Tibia	Metatarsus	Tarsus		Total
Leg i $2 \cdot 76$	1-74	$1 \cdot 99$	1.61	$0 \cdot 75$	$=$	$8 \cdot 85$
ii $2 \cdot 42$	1.52	$1 \cdot 62$	$1 \cdot 50$	$0 \cdot 61$	$=$	$7 \cdot 67$
iii $2 \cdot 36$	$1 \cdot 25$	$1 \cdot 26$	1.59	$0 \cdot 62$	$=$	$7 \cdot 08$
iv $2 \cdot 36$	$1 \cdot 24$	1.50	1.85	$0 \cdot 62$	$=$	7-57
Palp 1.25	$0 \cdot 61$	$0 \cdot 46$	-	$1 \cdot 34$	$=$	$3 \cdot 66$

Carapace brown, with light brown and greyish fusiform hairs; caput dark brown; eyes pearly. Chelicerae and maxillae brown, labium dark brown; maxillae and labium lighter, almost yellowish, apically. Sternum brown. Legs and palpi brown; femorae dark brown; tarsus and apical two-thirds of metatarsus of leg i light brown, of legs ii, iii, and iv, yellowish, all metatarsi darker apically. Abdomen mottled in grey and yellowish, with black bristles, and light
brown and greyish hairs; extending from near the middorsal position towards the apex, is an indistinct, darker grey pattern of about five chevrons; ventral surface light brown, with a lenticular figure outlined by lines of yellowish spots.

Carapace high, convex; caput almost flat, thorux declivions. Thoracic fovea short and longitudinal. Clypeus retreating, fringed with long bristles, equal to approximately $1 / 6$ of the diameter of A.M.E.

Eyes arranged in three rows, the anterior row recurved so that a line joining the lower edges of the A.L.E. passes through the upper half of the A.M.E. Ratio of eyes A.M.E.: A.L.E. : P.M.E.: P.L.E. $=21: 13: 3: 11$. The A.M.E. are separated from each other by 5/21, and from A.L.E. by $9 / 21$ of the diameter of A.M.E. The P.M.E. are separated from A.L.E. by $16 / 21$, and from P.L.E. by $17 / 21$ of the diameter of A.M.E. The P.L.E. are separated from each other by $63 / 21$ of the diameter of A.M.E., and are raised somewhat on black mounds. Ocular quadrangle occupies an area broader in front than at rear in the ratio of approximately $49: 47$, and broader, in front, than long in the ratio of approximately $49: 37$.

Cytaca morrisoni sp. nov.
Fig. 8. Front view of chelicerae and anterior eyes.
Fig. 9. Ventral view of left palpus.

Chelicerae as in Fig. 8, arcuated, provided with long bristles in front, with oblique margins. Retromargin with a large bicuspid tooth. Promargin with three teeth.

Maxillae converging, with apical seopulae. Labium more than half the length of the maxillae, longer than broad in the ratio of approximately $6: 5$, subtriangular, apex and corners of base rounded.

Sternum oval, convex, broadly truncate in front, longer than broad in the ratio of approximately $6: 5$.

Legs 1, 2, 4, 3, with two tarsal claws and claw-tufts. Claws dissimilar, retrolateral with about 19 teeth, prolateral with about 9 teeth. Trichobothria in two rows on tibiae, in one row on metatarsi and tarsi. Palpi with a short, pointed apophysis at the retrolateral apex of tibia; a few long bristles are present, but no spines. Palpal bulb has the form shown in Fig. 9.

Spines on legs arranged as follows: First leg-Femur : dorsal 1.1.1, prolateral 2 apical, retrolateral 1, ventral 0 . Patella: prolateral 1, retrolateral 1, elsewhere 0 . Tibia: dorsal 0 , prolateral 1.1, retrolateral 1, ventral 2.2.2. Metatarsus: dorsal 0, prolateral 1.1, retrolateral 1.1, ventral 2.2 Second leg-as in leg i. Third leg-Femur and patella: as in leg i. Tibia: dorsal 0, prolateral 1.1, retrolateral 1.1, ventral 2 apical. Metatarsus: dorsal 0 , prolateral 1.2, retrolateral 1.2, ventral 2.2. Fourth leg-Femur and patella: as in leg i. Tibia: dorsal 0, prolateral 1.1, retrolateral 1.1.1, ventral 2 apical. Metatarsus: as in leg iii. There are no spines on the tarsi.

Abdomen oval, somewhat flattened dorsally. Spinnerets six, subcylindrical, the anterior pair the stoutest.

Locality. Ravensthorpe-Ongerup, W.A., a single male, collected by R. T. M. Pescott, September 3, 1947.

Holotype in the National Museum of Victoria. Named in honour of Mr. P. Crosbie Morrison, M.Sc., a Museum Trustee and a member of the Expedition.

Rererences

1911. Rainbow, W. J., Rec. Austr. Mus., IX, 2.
1912. Rainbow, W. J., Mem. Qld. Mus., I.
1913. Strand, E., Zool., Jahrb., 35.
1914. Rainbow, W. J., Rec. Austr. Mus., XI, 3.
1915. Dalmas, Comte de, Bull. Mus. Paris.
1916. Hickman, V. V., Trans. Roy. Soc. S. Aust., 68, I.

THE COLEOPTERA OF THE RUSSELL GRIMWADE EXPEDITION

By Charles G. Oke, Assistant Entomologist, National Museum of Victoria

Family CARABIDAE
Amblytelus brunnicolor Sl. 2 specimens. W.A.: Pimelea.
Sarothrocrepis benifica Newm. 1 specimen.
W.A.: Pimelea.
Agonochila punctulata Sl. 1 specimen.
W.A.: Pimelea.
Trigonothops lineata Dej. 1 specimen.
W.A.: Pimelea.
\section*{Xanthophoea Pescotti n.sp.}

Dark testaceous, head and pronotum slightly reddish, femora paler; dise of pronotum lightly infuscated towards sides; elytra with three vittae, the sutural vitta rather faint, commencing just before middle and not quite reaching apex; the lateral vittae starting at the humeral angle on the seventh interstice, extending almost to apex and gradually spreading on to the sixth and eighth interstices; the vittae connected near apex by a zigzag fascia. Glabrous. Subnitid.

Head convex, obliquely narrowed behind eyes, impunctate, frontal sulci deeper than usual ; eyes large and protruding, finely facetted; antennae with three basal segments nonpubescent. Prothorax cordate (as $3 \frac{1}{2} \times 4 \frac{1}{2}$), widest at apical third, sides explanate, margins reflexed, anterior angles rounded, base truncate with angles acute; anterior marginal seta at widest part, posterior at angle; median line strongly impressed, foveate at basal third; with a few, fine, wavy, transverse lines, impunctate. Elytra slightly dilated to apex; humeral and apical angles rounded off; striae deep, interstices lightly convex, with microscopic punctures; two fixed punctures on inner side of third interstice. Abdomen of male with one fixed seta on either side of apex; female with two. Tarsal segments with four setae near apex on upper surface.

Length, 12 mm . ; width, $4 \frac{1}{2} \mathrm{~mm}$.
Hab. W. Australia: Pimelea.
A large robust species, very distinct from any other known to me. In Sloane's table (I) it would be associated with dorsalis Sl., which is a small, narrow species of peculiar colour, with only one fixed puncture on third interstice. In appearance it is more like grandis Chaud., but is paler and wider, the third antennal segment is not pubescent and the tarsi and apex of abdomen are not plurisetose.

Named in honour of Mr. R. T. M. Pescott, Director of the National Museum, who collected the insects of the Expedition.
Holotype, allotype, and paratype in National Museum, Melbourne.

Family STAPHYLINIDAE

Paederus Meyricki Bl. 4 specimens.
W.A.: Walpole.

Oedichirus Andersoni Bl. 1 specimen. W.A. : Pimelea.

Family LEIODIDAE
Dietta sperata Sh. 1 specimen. W.A.: Ongerup.

A very fine specimen of this interesting species, a little larger than usual.

Family HISTERIDAE
Saprinus cyaneus Fab. 2 specimens. W.A. : Norseman.

Family ELATERIDAE
Lacon caliginosus Guer. 7 specimens.
W.A. : Pimelea and Pemberton.
L. costipennis Germ. 1 specimen.
W.A.: Cocklebiddy.

Monocrepidius nitidulis Cand. 4 specimens.
W.A. : Koonalda.

Family DERMESTIDAE
Dermestes vulpinus Fab. 4 specimens.
W.A. : Norseman.

Family TEMNOCHILIDAE
Ancyrona Lewisi Reitt. 4 specimens.
W.A. : Pemberton and Ongerup.

Family CUCUJIDAE
Myrabolia Haroldiana Reitt. 1 specimen.
W.A. : Koonalda.

Oryzaephilus ?surinamensis (Linn.). 1 specimen.
W.A.: Koonalda.
This specimen appears to be a variety, shorter, though not narrower, than usual. I have seen other examples like it from the Victorian Grampians.

Family EROTYLIDAE
Diplocoelus latus Lea. 12 specimens.
W.A.: Pimelea and Pemberton.

Family COCCINELLIDAE

Rhizobiellus nom. nov.
Rhizobius Agassiz (1846) was preoccupied by Burmeister (1835) IIemiptera. Rhizobiellus alphabeticus Lea. 3 specimens.
W.A.: Pimelea.

Rhizobiellus, 3 species. 3 specimens.
Small obscure species each represented by a single specimen.
Family CISTELIDAE

Dimorphochilus Gouldi Hope. 1 specimen. W.A.: Pimelea.

Family TENEBRIONIDAE

Latometus lunatus Pasc. 10 specimens.
W.A. : Pimelea and Pemberton.

Elascus lunatus Pasc. ${ }^{(2)}$
Latometus differens Cart. ${ }^{(3)}$
Specimens of this species in perfect condition are covered with dense scale-like hairs and present quite a different appearance when abraded. Carter mentions seven differences between lunatus and his supposed new species: five structural and two colour. Taking a freshly caught specimen which was in perfect condition, I compared with the five characters given by Carter for his new species, as follows:

1. Eyes subconic. The eyes appeared to be a blunted cone until the scales or hairs were scraped off with a pin, when they were quite round in outline. 2. Two (should have been three) apical segments of antennae wider than preceding. Yes, until the antennae were turned over so as to see them from the side, when the third and fourth appear to be the widest and from there narrowing to the apex. 3. Anterior angles of prothorax directed outwards: when scales were removed the angle was seen to be pointed forwards. 4. Inner costae continuous. Removal of scales shows these to be pseudo-costae and my specimen now has one elytron as in lunatus, the other as in differens. 5. Diverging apices. If carefully examined it is seen that it is the rows of scales that diverge and not the actual apices. The shape of the posterior mark varies considerably, from a narrow chevron shape to a fairly wide triangle, quite straight posteriorly.

In preparing this note I have had Pascoe's type ; Carter's type and three other specimens identified by him; the ten specimens from this trip, also two from Albany; and the following specimens collected by myself:-Victoria: Warburton 3, Belgrave 2, Emerald 1, Gembrook 2, Grampians 2; Tasmania: Ridgeway 8, Launceston 1.

Pterohelaeus nitidissimus Pasc. 1 specimen. W.A. : Koonalda.

Chalcopterus eyrensis Bl. 1 specimen.
S.A. : Colona.

> C. difficilis Bl. 1 specimen. W.A.: Koonalda.
> C. iridescens Cart. 1 specimen. W.A.: Cocklebiddy.
Λ very fine example, $4 \frac{1}{2} \mathrm{~mm}$. longer and in every way larger than the type.
Omolipus Grimwadei n.sp. 1 specimen.
Black, with dark metallic blue reflections, more noticeable on pronotum than elsewhere; antennae and tarsi piceus. Apex of tibiae and tarsi with bright reddish vestiture; antennae finely pubescent; elsewhere glabrous.

Head transverse, lightly convex; sides obliquely widened from base to eyes, thence narrowed to clypeus; anterior margin of clypeus lightly emarginate; clypeal suture lightly impressed; with very fine and rather close punctures. Eyes large, strongly transverse, with rather small facets. Antennae short, scarcely reaching middle of prothorax, moderately thick; third segment longest, fifth to tenth transverse, eleventh large, bluntly pointed. Prothorax lightly transverse, truncate across base, lightly recurved on apex; widest at apical third, sinuately narrowed to base; with fine, fairly close punctures. Scutellum transversely triangular, laevigate. Elytra elongate-ovate, striate punctate, the punctures oblong and irregular, much wider than the interstices, which are quite flat. Under surface finely punctate. Legs moderately long and thin. Length, 8 mm .

Hab. W. Australia: Denmark. (Unique.)
An interesting species, nearer to O. cyaneus Pase. than to any other described species, but the sculpture of the elytra is very different. In cyaneus the punctures are more regular and the interstices are strongly convex. It is with pleasure that I associate the name of Mr. Russell Grimwade, who organized and led the Expedition, with this fine species.
Holotype in National Museum.

> Family SCARABAEIDAE
> Aphodius granarius Linn. 1 specimen. W.A.: Pimelea.
> Trox eucelensis BI. 8 specimens. S.A.: White Wells. Diphucephala dentipes n.sp. 3 specimens.

Bright metallic-green, becoming blue on sides of elytra and femora; coppery reflections on base of head and anterior tibiae; tarsi purple; antennal club, palpi and claws black; tips of tibial spurs and claws reddish. Head with minute upright white setae, longer on legs and fairly dense on under surface and forming a narrow depressed fringe on sides of pronotum. Anterior and middle tarsi clothed with bright yellowish setae, much paler on posterior. A fascicle of pale yellowish setae on front angles of eyes.
t Head finely shagreened and with dense, fine punctures; with an arcuate impressed line marking suture of frons. Clypeus with a strong U-shaped excision, the base marked with a well raised, sharp carina. Prothorax feebly
transverse, median line narrow, nowhere dilated, lightly impressed; with an oblique impression on either side, running to the angulate point of sides; each side angulate behind middle; the surface finely shagreened and with dense, fine punctures, becoming confluent in parts. Scutellum with a fine impressed line and a few small punctures. Elytra with first (suture), fourth and seventh interstices fairly raised, and with large rough punctures, many of which are confluent and cross the interstices; with a strong impression on base between scutellum and humeral angle. Legs fairly long; anterior tibiae strongly grooved; inner apical spur, or tooth, sharply pointed; outer apical spur strong and a well developed spur, or tooth, above it; anterior tarsi with three basal segments dilated and densely clothed.

아 Differs in having a much shorter elypeus, with a wide open noteh; the pronotum more convex, with the median line scarcely traceable and not shagreened; anterior tarsi not dilated and without dense clothing. Length, 7-8 mm .

Very close to D. furcata Guer., but differs therefrom by the anterior tibiae having two spurs on outside of apex, furcata having only one; also, if constant, by the pronotum of female without shagreening. This latter seems rather peculiar, as it does not occur in other species, but the sexes were taken together and agree in all other non-sexual characters.

Holotype δ, allotype $ㅇ$, , and paratype δ in National Museum, Melbourne.
Heteronyx Randalli Bl. 1 specimen.
W.A.: Cocklebiddy.

Maechidius major Bl. 1 specimen.
W.A.: Pimelea.

Ateromonocheila longipes Bl. 3 specimens. W.A.: Pimelea.

The three specimens taken, as also one I have from Albany (J. M. Andrew) are all females; Blackburn only knew the male. ${ }^{(4)}$ They agree fairly well with his description, particularly of antennae, palps, anterior tibiae, sculpture of elytra and clothing, but the mentum is not transverse and the posterior tibiae with its tarsus is shorter than the length of the elytra, also the clypeus is lightly emarginate: the last two may be sexual characters. The pygidium is sharply declivous, without impressions, and the abdomen is evenly rounded throughout.

Aneurystypus calvus Bl. 1 specimen.
S.A.: Nullarbor.

Novapus sp.?
S.A.: Colona.

A female specimen which is not satisfactory to identify.
Family CHRYSOMELIDAE
Calomela maculicollis Boi. 1 specimen. W.A. : Pimelea.

Edusa Meyricki Bl. 1 specimen.
W.A.: Esperance.

Paropsis mentitrix Bl. 1 specimen. W.A.: Pimelea.
P. festiva Chp. 1 specimen.
W.A.: Pimelea.

Arsipoda acuminata Warterh. 1 specimen.
W.A. : Pimelea.

Family CURCULIONIDAE

Pascoellus nom. nov.
Pephricus Pase.
Pephricus had been used by Amyot and Serville (1843) when proposed by Pascoe (1870). Lea sank Pephricus and Chaodius as synonyms of Essolithna, but this was certainly a mistake as Pascoe's Pephricus belong to the Eremninae, while Essolithna and Chaodius are Leptopiinae.

Pascocllus umbratus Bl. 5 specimens.
W.A.: Pimelea.

Polyphrades aesalon Pasc. 8 specimens.
W.A. : Pimelea and Pemberton.

Subfamily LEPTOPIINAE
A slight emendation, necessary by the change of the typical genus.

Leptopius nom. nov.
This name is proposed for the well known Leptops, which had been used by Rafinesque (1820) for Pisces before being used by Schoenherr (1833). Both Lea ${ }^{(5)}$ and McKeown ${ }^{(6)}$ have suggested that Leptops and Baryopadus are the same, but this is not so. Baryopadus has very different tarsi, as already noted by Marshall. ${ }^{(7)}$

Leptopius cacozelus Lea. 2 specimens.
S.A.: White Wells.

Cubicorrhynchus morosus Boi. 2 specimens.
S.A.: White Wells.

Ethemaia sellata Pasc. 2 specimens.
W.A. : Norseman.

Rhinaria tragocephala Lea. 1 specimen.
W.A.: Koonalda.

Paryzeta vittata Bl. 1 specimen.
W.A. : Koonalda.

Desiantha trivitticollis Lea. 1 specimen. W.A. : Denmark.

Haplonyx nasutus Lea. 1 specimen.
W.A.: Esperance.

Decilaus distans Pasc. 1 specimen. W.A.: Pemberton.
D. moluris Lea. 1 specimen. W.A.: Pimelea.

Ophrythyrcocis vigilans Lea. 1 specimen. W.A.: Pimelea.

References

1. Sloane, Proc. Linn. Soc. N.S.W., XLII, 1917, p. 425.
2. Pascoe, Journ. Ent., 1860, p. 119.
3. Carter, Trans. Roy. Soc. S. Austr., LXI, 1937, p. 127.
4. Blackburn, Trans. Roy. Soc. S. Austr., XXXI, 1907, p. 239.
5. Lea, Ann. Soc. Ent. Belg., L, 1906, pp. 314 and 239.
6. McKeown, Proc. Linn. Soc. N.S.W., LXIV, 1939, p. 408.
7. Marshall, Ann. Mag. Nat. Hist., VI (10 ser.), 1930, p. 558 .

LEPIDOPTERA OF THE RUSSELL GRIMWADE EXPEDITION

By R. T. M. Pescott, M.Agr.Sc., Director, National Museum of Victoria.

Owing to the fact that the Expedition made the journey across Australia at the end of winter, there were very few specimens of moths seen on the wing.

The following species, one of which is new, were recorded, and, in some cases, considerably extend the range of known species:

Family NOCTUIDAE
Subfamily ACRONYCTINAE
Radinogoes tenuis Butl.
Locality: Nullarbor Homestead, S.A. (R.T.M.P.), 28/8/471 specimen.

Subfamily AGROTINAE

Euxoa radians Gn.
Locality: Nullarbor Homestead, S.A. (R.T.M.P.), 28/8/473 specimens.

Subfamily MELANCHRINAE
Sideridis ewingi West.
Locality: Nullarbor Homestead, S.A. (R.T.M.P.), 28/8/472 specimens.

Family BOARMIDAE
Idiodes apicata Gn.
Locality: Pimelea, W.A. (R.T.M.P.), $7 / 9 / 47-1$ specimen.
Family ARCTIIDAE
Subfamily LITHOSIANAE
Genus THALLARCHA

Thallarcha eremicola n. sp.

Plate I, Figs. a, b.
o ㅇ $18-21 \mathrm{mms}$. Head white; face black. Palpi and antennae fuscous. Thorax black, flecked with white; patagia and apices of tegulae white. Abdomen chamois (Ridgeway Colour Chart, 1912). Legs ochreous, anterior pair fuscous.

Forewings elongate-oval, costa very slightly arehed, apex flat-pointed, termen slightly curved, oblique, greyish-white with dark fuscous markings, particularly
in distal apex region; a fuscous costal streak from $1 / 5$ to $3 / 5$ of costa, a costal dot at $4 / 5$; a series of seven black dots along whole length of termen; a curved fuscous streak on dorsum at $1 / 5$, two parallel longitudinal fuscous markings at $\frac{1}{2}$ dorsum, running halfway up discal area, indefinite smoky dots between these and tornus; dark spot at tornus.

Hindwings with termen distinctly rounded, cream-buff (Ridgeway Colour Chart, 1912) ; an elongate dot in anterior discal area; apical blotch fuscous running half down termen. Cilia cream-buff, at apex fuscous.

This species comes closest to T. jocularis Ros., from which it differs considerably in the markings on the forewings and the elongated discal dot on the hind wings.

Six specimens, all collected on the surface of a pool of water on extensive granite outcrops, half a mile south of the Balladonia Homestead, Western Australia (R.T.M.P.), on August 31, 1947. Type in collection of National Museum of Victoria.

Family LASIOCAMPIDAE

Digglesia rufescens Walk. Locality : Pimelea, W.A., 7/9/47-1 specimen.

Family GEOMETRIDAE
Prasinocyma semicrocea Walk.
Locality : Pimelea, W.A., 7/9/47-1 specimen.

LAND MOLLUSCA OF THE RUSSELL GRIMWADE EXPEDITION

By J. Hope Macpherson, B.Sc., Conchologist, National Museum of Victoria

On their coastal journey westward from Adelaide, the Grimwade Expedition passed through two of the main faunal areas of Australia. The eastern half of the Great Australian Bight lies within the Centralian area, whilst the remainder of the southwestern coast bounds the Leeuwinian area. The species collected are typical of the areas and may be listed as follows:

Phylum MOLLUSCA
 Class GASTROPODA
 Subclass PROSOBRANCHIA
 Order PECTINIBRANCHIA
 Family BOTHRIEMBRYONTIDAE
 Genus BOTHRIEMBRYON Pilsbry, 1894

Bothriembryon esperantia Iredale
1939. Bothriembryon esperantia Iredale, Journ. Roy. Soc. W.A., 25, 1939, p. 21, Pl. 2, Fig. 8.
Locality. Esperance, W. Australia.
Observations. These specimens were collected on sand dunes.

Bothriembryon balteolus Iredale

1939. Bothriembryon balteolus Iredale, Journ. Roy Soc. W.A., 25, 1939, p. 21, Pl. 2, Fig. 9.
Locality. Salmon Gums, W. Australia.
Bothriembryon dux (Pfieffer)
1940. Bulimus dux Pfieffer, Proc. Zool. Soc. (Lond.), 1861, p. 24.
1941. Bothriembryon dux Pilsbry, Man. Conch. (Tryon), Ser. 2, Vol. 13, p. 3, Pl. 3, Fig. 62, April 23.
Localities. Salmon Gums, W.A.; west of Madura, W.A.
Observations. In isolated areas there were large numbers of dead shells on the ground (Plate II, fig. 1).

Bothriembryon distinctus Iredale

1939. Bothriembryon distinctus Iredale, Journ. Roy. Soc. W.A., 25, 1939, p. 36, Pl. 2, Fig. 43.

Locality. 17 miles west of Balladonia, W.A.
Observations. Two shells from the locality mentioned in Iredale's description agree perfectly with it. Number's of dead shells were noted.

Bothriembryon multispirus sp. nov.

Shell perforate, acutely conical, white. Surface of live shells shining, irregularly striated, the striae stronger near the suture, and traversed by one or two spiral incised lines below the suture. Spire long, tapering to a comparatively acute point, nepionic whorls 2 , pitted. Whorls $6 \frac{1}{2}-7$, not markedly convex.

Bothriembryon multispirus, sp. nov.

Aperture slightly oblique, small, narrowly ovate, acute above; columella broadly dilated above; parietal callus indistinct.

Type. - Dimensions. Length 24 mm .; breadth 12 mm .; spire 14 mm .; longest axis of aperture 12 mm .

Locality. Twenty miles west of Cocklebiddy Waterhole, W. Australia.

Type in National Museum of Victoria, Reg. No. F.5716. Paratypes (4), F. 3068 (4 shells), F. 3073 (2 spirit specimens).
The Cocklebiddy shell is near Iredale's distinctus but differs from his description in the following-
(1) it is longer and slimmer;
(2) the spiral lines dissecting the growth lines are confined to the area near the sutures, are shallow and do not form square nodules.

Observations. Members of the expedition said that dead shells of this species were numerous at the type locality. The series is uniform in appearance but varies in size, the largest being 27 mm . by 14 mm .

Bothriembryon barretti Iredale

1930. Bothriembryon barrettis Iredale, Vict. Naturalist, Vol. 47, p. 119, fig. in text.
Localities. Head of the Bight, S.A.; Murrawijinie Cave, S.A.; Colona, S.A.; 42 miles west of Colona, S.A.

Family DIPNELICIDAE
 Genus ANNOSELEX Iredale, 1939
 Annoselix dolosa Iredale

1939. Annoselix dolosa Iredale, Journ. Roy. Soc. W.A., 25, 1939, p. 39, Pl. 1, Figs. 24, 27.

ドiッ． 1

Locality. Pimelea, West Australia.
Observations. Found in very damp conditions under the bark of a Jarrah tree, 12 inches above the ground.

Family XANTHOMELONTIDAE Genus SINUMELON Iredale, 1930

Sinumelon nullarboricum Tate
1879. Helix nullarborica Tate, Trans. Proc. Phil. Soc. S.A., 1878-9, p. 133, Pl. 6, Fig. 1 a-b.
1930. Sinumelon nullarboricum Iredale, Vict. Naturalist, Vol. 47, p. 120.

Locality. Head of Bight, S.A.; 42 miles west of Colona, S.A.; 6 miles north of Koonalda, W.A.

Observations. At Koonalda there were isolated areas with large numbers of dead shells on the ground. (Plate II, Fig. 2.)

Genus PLEUROXIA Aucey, 1887

Pleuroxia polypleura Tate
1899. Angasella polypleura Tate, Trans. Roy. Soc. S.A., Vol. 23, p. 246, Pl. 6, Figs. 2 a-c.
1938. Pleuroxia polypleura Iredale, The South Aust. Naturalist, Vol. 18, 1937, p. 48.

Localities. Murrawidjinie Cave, S.A.; 20 miles west of Cocklebiddy Waterhole, W.A.; 6 miles north of Koonalda, W.A.

Observations. These shells were found buried under shrubs, often at the bottom of depressions. (Plate III.)

Family HELTCIDAE Genus EUPARYPHA Hartmann, 1844

Euparypha pisana (Muller)
1774. Helix pisana Muller, Verm. Hist., 2, 1774, p. 60.
1902. Euparypha pisana Westerlund, Rad. Jugoslav. Akad., 151, 1902, p. 100.

Localities. Esperance, W.A.; Bunbury, W.A.
Observations. This introduced species of European origin is colonizing the whole southern coast of Australia.

'lypical depression in N'ullabor Plann, neat Koonalda.

IEad of the (ireat Anstralian Bieht, mear White Wods, south Austratia. The limestone eliffs are 300 feet hidh at this point. Note the whitish band, mentioned by dohn Eyre in his diary, about two-thinds of the distance down the diffs.

Sand-dunes at Eucla. Western Australia.

Botany of the russell grimwade expedition

By James H. Willis, B.Sc., National Herbarium, South Yarra.

General Report

Introduction

Sundry notes on vegetational features of the changing South Australian landscape between Murray Bridge and Adelaide were made by the writer from windows of the Adelaide Express on Monday morning, August 25, 1947, and during the afternoon he had opportunity to inspect the Botanical Gardens, Botany School (University) and Museum of that city, viewing the Tate and Ising herbaria and excellent carpological collection more recently brought together by E. Stirling Booth. But the Grimwade Expedition really commenced the following day at Port Lincoln, where its personnel had travelled overnight by ship from Adelaide.

Eyre's Peninsula

Before boarding the parlour coach that was to carry us over 1800 miles to Perth, via Eucla, Norseman, Esperance, Ravensthorpe, Albany, Pemberton and Bunbury; opportunity was taken to visit a patch of natural scrub right in the township and to secure good flowering and fruiting specimens of Eucalyptus diversifolia and E. incrassata var. angulosa (Port Lincoln is type locality of this mallee eucalypt with large strongly ribbed firuits, up to an inch long; Robert Brown collected it there in March, 1802).

Travertine outcrops are conspicuous everywhere near Mt. Dutton, the Marble Range and toward Elliston, the limestone being used extensively for farm buildings and fences. Euculyptus cladocalyx (Sugar Gum) occurs naturally in several places along the coast road, in groves of rather stunted broad-leaved trees, while Melaleuca pubescens (Moonah) and Casuarina stricta (Drooping Sheoak) are abundant everywhere-Crocker remarks [Trans. Royal Soc. S. Aust., LXVIII, 162 (1944)] that they form "probably the most widespread association on Eyre's Peninsula." Oxalis pes-caprae and Romulea rosea were observed as common wayside weeds.

Along the limestone sea cliffs at Elliston we stopped for a glimpse of the Investigator Group (Flinders and Pearson

Islands) and were able to examine a formation of extremely stunted, almost prostrate Eucalyptus incrassata var. angulosa, no higher than its associate low tussocks of Triodia irritans (Porcupine Grass) and bushes of Westringia Dampieri in honey-scented bloom-the vegetation here has doubtless been dwarfed by the combined unfavourable effects of low rainfall on poor soil and frequent high winds from the sea.

About five miles west of Port Kenny on Venus Bay, lateritic cappings in mallee scrub have provided a veritable "wildflower. garden" of small shrubs. Sixteen species were collected in the lew minutes that we alighted there : the rich scarlet Prostanthera calycina (a mint-bush endemie in South Australia), paler Correa pulchella, light mauve Lasiopetalum discolor, golden Acacia spinescens and C'assia eremophila, and five orchids (including ('aladenia filamenlosa, the "Daddy-longlegs") contributed to the riot of colonr. Farther along the road toward Streaky Bay, the large bluish flowers of Hibiscus Huegelii were occasionally seen and admired.

Eucalyphus gomphocephala ('Tuart) is the principal street tree at Streaky Bay; few other trees could be used to more advantage there than this one, thriving in the limestone terrain under a rainfall of about 10 inches. (Ceduna, 248 miles from Port Lincoln and the last sizeable township on the South Australian west coast, has interesting patches of indigenous vegetation; outside the Post Office, flowering material was secured of Atriplex paludosa, Kochia erioclada, Trichinium obovatum, Gcijera linearifolia, blue Eremophila Weldii and Olearia pimeleoides var. minor.

Near Colona Station (controlling 1400 square miles), the southern highway passes into a more arid region, where rainfall is unreliable and generally below 10 inches per annum. 'This belt of country (chiefly calcareous) is the "Eremea" of C. A. Gardner" [ride Vegetation of W. Aust., 1944, p. 1] and we were to follow it tor the ensuing 500 miles, as far as Balladonia Station (W.A.), where the taller mallee re-appears. Eucalyptus oleosa, some E. incrussutu, patches of Acuciu Sowdenii (local "Myall") and stunted Melalencu pubescens (Moonah), many trees of Myoporum platycarpum (Sugarwood) E.rocarpus aphylla, and occasional ones of S'antalum acuminatum (Quandong) constitute the arboreal growth on sandy soils at Colona. Associated ground shrubs include Kochia Georgei, Templetonia Battii (peculiar to the Bight), Geijera linearifolia, Eremophila seoperia and Olearia magniflora (large and very handsome purple flower heads). A tall form of S'tipa čariabilis, flowering out of season, was conspicuous on sandy
rises, where the crucifer and composite families were well represented by small ephemeral herbs, e.g., Alyssum linifolium, Stenopetalum lineare, Hymenolobus procumbens, Capsella pilosula, Brachycome lineariloba, B. ciliaris and Toxanthus Muelleri.

Several alien weeds were frequent around the station homestead, notably Annual Cat's-tail (grass), London Rocket, Dwarf Mallow, Horehound and Wild Sage. An abrupt change was apparent on limestone depressions among the timbered sand-hills. Such areas were treeless, with cover of a halophytic typeFrankenia foliosa, Plagianthus squamatus, Bassia obliquicuspis. and the curious prostrate Kochia lobiflora were collected inter alia.

Some attention was given to the cryptogamic flora on soil and bark, and specimens of a dozen different lichens were secured, including Parmelia hypoxantha from sand-hills-an intriguing species which readily detaches from the earth, curls up into balls and blows away until piled against some object by the wind; it is very rarely found in fruit, and Colona samples yielded a few well developed but sterile apothecia. Two lichens, Lecanora spherospora and Buellia subalbula, from limestone pebbles, were, apparently, known before only by the type collections.

Nullarbor Region and Great Bight

About ten miles west of Colona Melaleuca pubescens vanished from the roadside, its common associate Casuarina stricta having dropped out of the flora between Ceduna and Colona. In their stead, along the road toward Eucla, the umbrageous Acacia Soudenii ("Myall") becomes conspicuous and dominates the landscape in many places, bearing occasionally clumps of parasitic Amyema quandang (Grey Mistletoe); it was a disappointment not to have seen this useful, attractive, drought-resisting tree in blossom. Acacia Oswaldii (Umbrella Wattle) is rather similar in habit and often associated with it.

Approaching the head of the Bight, we pass over portion of the vast Nullarbor Plain-"one of the geographical wonders of the world," according to J. T. Jutson-devoid of all but low halophytic shrub growth and seasonal herbs. The Plain meets the sea cight miles south of White Wells in a succession of beetling 200 -ft. limestone cliffs and a deviation was made to view this impressive escarpment. Of 15 plants collected in the vicinity of White Wells, eight were referable to the family Chenopodiacere (viz., Atriplex mummalaria, A. vesicaria, Kochia erioclada, K. sedifolia, K. oppositifolia, Bassia uniflora, Arthrocnemum arbus-
culum and Hemichroa diandra), pointing the aptness of the name "salt-bush steppe" for this particular community of plants.

From Nullarbor Homestead and Kunalda short trips north were taken to examine several of the shallow dry caves which abound on the plain. Under the favourable micro-climate obtaining in the shelter of these limestone sink-holes, welcome greenery is given by several peremial plants that would be too tender to survive the high winds and insolation above ground, notably: Pleurosorus mitifolius, Parietaria debilis, Lavatera plebeja and Galium umbrosum. Bushes of Geijera linearifolia oceur both at Murrawijinie Cave (eight miles north of Nullarbor) and in "Bitumen" ("ave, Kumalda, which was filled with a luxuriant growth of Vicotiana Goodspeedii-an indigenous tobacco having delicately scented flowers.

There is a change to mallee eucalypts and moonah again near' the West Australian border, and at Eucla (ten miles beyond it) the highway descends rapidly to sea level over the Hampton Range. Really a limestone plateau escarpment, this "range" marks the westerly inland continuation of the Great Bight cliffs and apparently denotes a former shore-line, the saline flats and dunes at its base having been uplifted from the sea in comparatively recent geological time.

Euclonia

Eucla (with one inhabited building) is chiefly remarkable for its high moving sand dumes which threaten to overwhelm the deserted cable station, and immense clumps of Nitraria Schoberi (Nitre Bush) seem to be the only local shrubs that can keep pace with the smothering effect of blown sand. Inland from the encroaching dunes, a saline flat merges into the eucalypt serubland (E. grucilis and E. incrassata, with Melaleuca pubescens toward the cliffs). West of Eucla the roadway follows the base of Itampton Range scarp-almost straight for more than 100 miles. (lasswort flats are succeeded by alternating myall woodland and eucalypt-moonah rises toward Madura ($\mathbf{1 1 5}$ miles from Eucla).

Betore ascending the esearpment again, the writer was enabled to examine its characteristic flora-in a steep moist cleft immediately behind Madura Homestead. Eucalyptu.s oleosa is dominant there and commonly associated with stunted Melalenco pubescens (Moonah). Pitlospormm phillyreoides, Ileterodendron oleifolium, and Eremophila alternifolia (spotted pale magenta flowers on long, pedicels) are tall shrubs, while Rhagodiu Preissii, Pomaderris Forrestiana, Olearia exiguifolia and O. Muelleri were noted as frequent ground shrubs-all in bloom. Of particular interest
was a handsome spear-grass having thin cane-like stems (to 3 ft . high) ; it is either a distinct variety of the uncommon Stipu breviglumis or an undescribed species. Bredemeyeru volubilis (Love-creeper) twined attractively among the lower shrubs, its blue flowers much larger than most examples to be met with in Victoria; a robust strain of the introduced blue pimpernel, Anagallis arvensis var. corulet, also luxuriated as a weed around the' small dam above the homestead.

Westward across Hampton upland, the country is very heavily rabbit-infested; in many places trees and shrubs are cither dead or dying and no seedlings whatever are to be found of such valuable trees as the local Myall and Sugarwood. Belts of mallee scrub (Eucalyptus oleosa and E. gracilis), Acacia Oswaldii and Melaleuca pubescens are interspersed with grassy tracts and treeless flats carrying succulent herbage (Arthrocnemum, Zygophyllum apiculatum and Z. glaucescens).

At Moonera, near Cocklebiddy (80 miles beyond Madura), tall broom-like shrubs of Casuarina humilis and Eremophita Dempsteri (about 6 ft . high) were noted for the first time. Here also the rare Frankenia densa was collected, in limestone gravel on the roadway; this bluish-grey "sea heath" has rosy pink flowers, is completely prostrate and exceedingly brittle in both fresh and dried condition. Moonah disappeared at about 280 miles west of Eucla, where we entered a section of the road that runs perfectly straight for the next 96 miles.

The historical Balladonia Homestead, 306 miles beyond Eucla, is situated on a granite outcrop covering 20 or 30 acres and culminating in some large boulders-impressive enough against the surrounding monotonous limestone flats. These rocks gave support to some interesting plants, e.g., Notholaena vellea (the drought-resisting Woolly Cloak-fern), prickly Solanum orbiculatum and a silky form of Glycine clandestina with deep violet flowers. Seasonal composites were a feature in the damp sandy soil covering flat slabs of granite-Brachycome ciliaris var. Tanuginosa, Angianthus tomentosus and an indeterminate Gnephosis which is probably new to science. Trichinium obovatum (Silvertails) and Disphyma australe (Australian Noon-flower) were abundant on calcareous rises adjoining the granite, the latter making rosy-magenta carpets of colour around the station-yard walls.

From Balladonia the rainfall increases toward Norseman, as one comes gradually out of the vast eremean division of "Euclonia." Taller mallee soon appears, with Melaleuca cymbifolia replacing Moonah as an understorey, and we pass through
the eastern fringe of the great Salmon Gum belt (Eucalyptus salmonophloia) - a forest of these bronze-boled eucalypts excited admiration along the roadside a few miles beyond Balladonia. Other trees observed hereabouts for the first time were Codonocarpus cotinifolius (Bell-fruit), Acacia acuminata ("Raspberryjam'"), Eucalyptus calycogona and a puzzling eucalypt with most attractive, shining red, long-horned buds that lent a distant impression of massed crimson blossom.

Fraser Range-Dundas IIills

Where the road crosses Fraser Range near its low southern extremity, a brief sortie was made to examine local vegetation. The rocky crest of the range is almost devoid of trees, except for gnarled examples of Casuarina IIuegeliana, much resembling the eastern C. stricta (Drooping She-oak) in habit and large cones, and for an occasional tree of Pittosporum phillyreoides; Eremophita alternifolia and the bright yellow Pimelea thesioides also occur among the rocks. Sandy approaches carry a stunted cucalypt forest (E. oleosa var. glauca, E. Le Souefi, E. salubris, ete.), but the whole area is rather disappointing botanically and we did not find the more spectacular Eucalyptus casia and E. Strichlandii which doubtless occur farther north along this range. Low shrubs of Dodonca microzyga were rendered ornamental by trusses of bright red-winged fruits.

Dundas area lies at the south-cast of Jutson's "Salinaland" or' salt-lake division [vide Physiogr. W. Aust., 94 (1934)] and affords many glimpses of salt-encrusted depressions-contrasting sharply with the surrounding timbered country; some were several miles in extent, but there was no opportunity to collect any samples of their halophytic vegetation during our 126-mile journey from Norseman to Esperance. As we moved south through Salmon Gums and Grass Patch, there was a crescendo of botanical excitement, attaining a climax in the heathy sand-plains toward the coast - richest floral region in the world, with the possible exception of Cape Peninsula in South Africa.

Southern Sand-plains

About six miles north of Salmon Gimes, dense thickets of small slender encalypts had sprung up following fire-E. Flocktonia, E. dumost, E. eremophilu, and the very localized E. diptera with sessile, hemispherical, two-winged fruits. The first two species extended nearly the whole way to Esperance, while a little south of Grass Patch we collected also E. Forresticna, E. goniantha, and E. sputhulutu var. grandiflora. Beyond Salmon Gums, and
especially in the neighbourhood of Grass Patch, is a bewildering variety of small Acaciu species: the remarkable leafless A. glaucoptera, with much flattened branches (like an Epiphyllum cactus), evoled expressions of astonishment. Other speries of interest were A. Graffiana, A. colletioides var. Hysophylla, A. gonophylla, A. Pritzeliana, A. dermatophylla, A. pilosa, A. bidentata, and three as yet undescribed species; one of these novelties grew in cushion formation, less than a foot high, and had bluish awl-shaped phyllodes of almost succulent appearance - a very charming dwarf.

In a half-mile strip of heathland along the main roat between Grass Patch and Gibson railway sidings, we observed more flowering species than in all the preceding 1000 miles of our journey! Brilliant splashes of colour came from clumps of purple Dampiera lavandulacea and D. Lindleyi and scarlet Leeschenaultia formosa. Among the numerous Proteacere were tall bushes of Lambertia inermis, Grevillea plurijuga, Hakea cinerea, H. Brookeana and II. pandanicarpa, the last with very large woody follicles deeply cracked into regular pyramidal warts. Of rare and localized plants one could mention: Boronice breclicucen, Dodonaa amblyophylla and Olearia ramosissima, while a Spyridium, Hybanthus and Scavola cannot be matched with any specimen or description available at the Melbourne Herbarium and may represent three other undescribed plants from this fruitful region. In view of the fact that the Grimwade party found so much unusual material, including several species undoubtedly new to science, merely by stopping for a short time at isolated intervals along main roads, what wealth of new reeords must surely await a thorough botanical survey of these fascinating southern heathlands?

Granite cliffs at Dempster's Hill, Esperance, afford wouderful sea-scapes, especially toward the islands of Recherche Archipelago, and the local flora is most varied and full of interest. The district has a long botanical history, beginning with the visit of the French botanists Riche and Labillardière in December, 1792 (during Commander Bruny D'Entrecasteaux's expedition to search for La Perouse). Labillardière made extensive collections which became the types of many new species deseribed in his Nova Hollandio Plantarum Specimen (two volumes, 1803/6), and we were gratified to see that a number of these plants still survives here in their type area, e.g., Arlenanthos cuncutn, Olax phyllanthi, Nuytsia floribunda, Boronia tetrandra, Phyllanthus calycinus, Adriana quadripartita, Spmridium globulosum, Thomasia triphylla, Pimelea ferruginea, Agonis marginata,

Platysace compressa, Anthocercis littorea and Velleia trinervis. The Olux and Platysuce are remarkable for their strange appearance - the former with naturally drooping and dead-looking leaves of ashen grey-green, the latter leafless with flattened tape-worm-like stems that zigzag at each branching.

Nine years later, in January, 1802, Robert Brown (with Captain Matthew Flinders) collected at "Lucky Bay," some 25 miles S.E. of Esperance, during four days that the Investigator anchored there. It was rather unfortunate that both Labillardière and Brown should have visited this rich botanical area in the height of summer when the flowering season of most plants would be long past. Several of their records have not been seen since.

We found flamboyant red blooms of Templetonia retusa ("('ocky's-tongues") conspicuous among the shrubberies on Dempster's ILill; so were the dense, almost fleshy, white flower spikes of Fitagerald's Goodenia decursiva (this being the type locality). IIalec prostrata was true to name, being utterly pros-trate-farther inland it grows erect and becomes a small tree.

The 120 -mile drive to Ravensthorpe was wholly through undulating sand-heath country and revealed an endless succession of beautiful flowers-hakeas, banksias, melaleucas, leucopogons, dampieras orchids, etc., and such exclusively western genera as Conostylis, Dryandra, Synaphea, Franklandia, Calothamnus, Chamelaucium, Verlicordia, Andersonia and Needhamia. Silverblue Eucalyptus tetrayonu has large broad leaves and quadrangular branchlets (recalling the juvenile condition of Tasmanian Blue (fum and Shining (xime); it is dominant throughout this region, the whole plant being strongly pruinose. E. tetraptera, with invariably slender stems, long stiff shiny exceedingly thick leaves (probably the thickest in the genus) and very large square "cattle-bell" shaped fruits, is a top-heavy plant; the numerous examples witnessed were always procumbent and of untidy appearane. A large frequent shrub in many places was Banksia speciosa, with long deflexed Dryandra-like leaves.

These sand-plains have been extensively burnt again and again, and fire-scarred trees of Nuytsio floribunda (W.A. Christmastree) dot the landscape everywhere - bizarre, twisted growths with archaie mien. Nuytsia is apparently tenacious of life, for every fire-damaged specimen was encircled at the base by vigorous sucker shoots. Several salt lakes on the plains carried marginal groves of picturesque white-boled paperbarks (Melaleucu culicularis) - a widely distributed tree in W.A. "Salinaland". Grass-trees (Xunthorvoca Preissii) were abundant, flowering over recent burns.

Probably the most brilliant floral displays were attributable to flame-red Leschenaultia formosa [Brown's type came from near Esperance in 1802], vivid purple Colyt rix bruchyphylla and mauve Burtonia scabra (an ericoid pea shrub). Smaller very decorative legumes were the dark blue Wedge-peas, Giompholobium venustum and G. Knightianum (both with elegant pinnate leaves), and the little herbaceons Isotropis cuncifolia of damp ground-its few rather large flowers are apricot-hned and exquisitely veined on the back with deep red.

Ravensthorpe, the site of former copper mines, is stony and dry (14 in. rainfall), but its flora proved interesting. Here we touched again the southern fringe of Nalmon Gum-Mallet forest with several smaller eucalypts in association, including E. phatypus var. heterophylla and typical E. annulata. Some of the Mallet trees (E. occidentalis) in the township are large specimens. A dry creek, at an old copper mine about one mile north of the town, disclosed five species each of Acaria and Melalencer-all in bloom. One Acacia had broadish, glaucous, multi-veined phyllodes about 11 inches long and is apparently undeseribed. Several plants of an elegant Grevillea (G.putentiloba) were also seen, the red flowers in loose clusters along bare attenuated and trailing shoots. The dry character of this climate was reflected in such plants as Teucrium sessiliforum, Sida, Halgania, Aristida and Kochia tomentosa. Melaleucu pubescens appeared again here - the farthest west that we observed, although it has since been certified as a remarkably isolated occurrence on Rottnest Island. Time did not permit an excursion south of the town to see Actinotus superbus (Flannel-flower) or Pimelea physodes (Qualup, Bell) for which the district is famous. These splendid flowers grow some 10-20 miles away toward the Mts. Barren Range.

Ten miles west of Ravensthorpe one meets the sand-plain country again, and for the next 70 miles our road passed through heathland ablaze with colour. South and south-east, the jagged peaks of the Barren mountains rose boldly out of the plain, a panorama of great beauty not unlike the Victorian Crampians, and certain flowers appeared peculiar to this region. In the great abundance of leguminous plants, the genera Acacia, C'horizema and Daviesia (with several extraordinary species) were noteworthy. Acacia acuminata ("Raspberry-jam") and A. ericifolia had been admired on the outskirts of Ravensthorpe where we passed also some broomy shrubs of Eremophita pachyphylla and E. dichroantha. Soon Acacia sessilispica, A. Tatipes, A. pulchella (very stunted) and a probable form of Λ. lineolata were added to the growing list. Daviesia pachyphylla discouraged interference
by virtue of its concentrated armament of spiny awl-shaped leaves -glaucous and curiously inflated; D. reversifolia offered a similar problem to the collector, but here the foliage was rather sparse, each rigid narrow spine-tipped leaf alternatively deflexed at a shar'p angle so that the trailing branches presented a regular zigzag effect-reminiscent of an agricultural harrow.

By the road crossing on the upper reaches of Fitzgerald River (saline, as are most watercourses between Esperance and Albany) we found welcome groves of Casuarina Huegeliana and the pine Callitris Drummondii, the ground under them soft from fallen needles. This stopping place also yielded a rare epacrid, Acrotriche ramiflora (heavy with bloom) and was remarkable for the variety of its Myrtacea-Eucalyptus uncinata, Leptospermum erubescens, Kunzea recurea, Melaleuca spathulata (form), M. pentagona and Backea crispiflora, to mention but a few of the interesting species. Hakea laurina grew here too, but in such a spindly form and with so few leaves that one would hardly recognize it as conspecific with the bushy Pincushion Hakea of Victorian gardens.

Near Ongerup, specimens were obtained of several mallee eucalypts, viz., E. platypus (the typical form, of poplar-like aspect and with very broad, thick, lustrous leaves), E. annulata, E. conglobata, E. calycogona and E. spathulata-the last a neat ornamental tree, having an umbrageous crown of slender greyish leaves. Approaching Pallinup River from Borden, the road suddenly affords a magnificent view of the Stirling Range some 20 miles to the south-sharply serrated peaks exceeding 3000 ft . and, like the Barrens, strongly reminiscent of Victoria's Grampians.
Stirling Range Area
Pallinup River is believed to have "captured" the heads of several ancient watercourses after the gigantic east-west Stirling uplift barred their flow to the south. It is now a sluggish salty stream, but has excellent camping sites among the she-oaks, jamwoods, guarled banksias and paperbarks that shade its low banks. A representative collection of lichens and bryophytes was made on carth and woody debris near the road bridge, while damp sandy slopes in the vicinity yielded several interesting sedges (a Lepidobolus, Loxocarya and Lyginia and three species of Schonus). What would seem to be an undeseribed species of Calytrix had small white flowers with exceedingly minute calyces.

Four hours botanizing at Chester Pass in the Stirling Range National Park provided the floristic highlight of the whole expedition. Two of us essayed to climb the nearby slopes of

Mt. Hassell (its pinnacle touches 3000 ft .) where, despite the spoliation caused by successive bushfires, the flowers are still a sheer delight. No less than 26 different proteads were collectedhalf the total species in Victoria! Scarlet Bunhsian cocrinea, stiff and regal as a waratah, was one of the loveliest, and fertile seeds taken flom Chester Pass have since been grown suceessfully at Frankston. Another very showy red flower was idmtified as Beaufortio decussata. Splashes of vivid blue came from occasional patches of the ericoid Conospermum amomum; Dryandra formosa and Banksia Brownii shone with golden heads, those of the latter species borne among most decorative, delicately cut leaves of ferny aspect. Stunted Jarrah (Eucalyptus marginata) and Marri (\boldsymbol{E}. calophylla) forest clothed the foothills of the range, but undoubtedly the most pleasing eucalypt was E. doratoxylon (Bell Gum) -wholly rubescent, with sleuder leaves and gracefully drooping trusses of small pilular fruits. The remarkable "drumstick" grass-tree, Kingia australis, confronted us for the first time here-it has been reliably estimated to grow at the rate of a foot a century, and many examples exceeded eight feet in height.

On the swampy plain tract some five miles south of Stirling Range we saw magenta patches in the roadside scrub and found the climbing trigger-flower, Stylidium scandens, its whorled leaves each coiled into an elegant spiral at the tip for support in dense undergrowth. Nearby grew Eucalyptus decipiens, also E. buprestium, fruits of which appear like large globular galls amongst the foliage. The granitic Porongorups, shrouded in mist. were too far from our main roarl to permit visitation; but gully vegetation in full bloom along Napier Creek (15 miles north of Albany) called for a brief inspection. In striking contrast with the gold of several Acacia species were deep purple flowers of Hovea elliptica, H. chorizemifolia and Havdenbergia Comptomiana, and vivid scarlet umbels of Kennedya coccinea. Several orchids grew luxuriantly on the moist sandy slopes above the creek, notably Diuris longifolia, Pterostylis recurla and P. vittata, but in general the season was not a good one for orehids, along the southern coastal heaths.

King George's Sound to Nornalup Inlet

Albany is built partly around the western slopes of Mt. Clarence -a granite hill whose natural bushland has been wisely preserved. A scenic road skirts the steep seaward face of the hill and affords easy access to the flora in mossy soaks among large slabs of granite. In a few moments we found several proteads, including Stimingia
tenuifolia (with extremely dissected foliage), the large-flowered searlet bladderwort, Utricularia Menziesii, and Borya nitida (Pincushion Lily). Several large weeds are well established in the dampish environs of Albany, e.g., White Calla-lily, Watsonia, Blackberry and Pinuate Psoralea.

The West Australian Pitcher-plant (Cephalotus follicularis, in the monotypic endemic family C'ephalotacea) grows plentifully enough in certain swampy tracts between Albany and Denmark, and it was a matter for great regret that lack of time prevented location of this unique, world-famous plant. Denmark is at the eastern fringe of the high-rainfall Karri forest belt. Between there and l'arryville were seen our first examples of Karri trees (Eucalyptus diversicolor) with associate shrubs of tall Acacia pentademin (a bipimnate species), the small endemic conifer Podocarpus. Drouyniana, ete. An isolated patch of Karri timber is to be found as far east as the Porongorups (north of Albany). A special search at Parryville for Brown Boronia (B. megastigma) was rewarded by several spindly, shallow-rooted specimens of this very fragrant plant-concealed amongst rank swamp growth on permanently wet flats. Around the same swamp occurred also graceful pink-flowered B. gracilipes, Crowea angustifolia, Tetrathect hispidissima, Scevola striata, S. microphylla and an, as yet, indeterminate species of IIemigenia.

Massive trees of Red Tingle-tingle (Euculyptus Jacksonii) with Karri, Marri and Casuarina decussata may be inspected conveniently by a short detour (between Parryville and Nornalup) to the "Valley of the Giants." " The undergrowth is dense, with much Chorizema ilicifolium trailing attractively through it; Petrophila diversifolie there has remarkably hemlock-like foliage, while the little greenhood orchid (Pterostylis nana) is frequent around the shaded mossy butts of the big trees and even on old decaying logs.

At about four miles east of Nornalup a forest track leads one south across marsly country with abundant tall sedge-like growths (Dasypogon bromeliifolizes, Lomandru Endlicheri, Evandra arislata, Anarthria scabra, ete.) to gentle hill slopes where Eucalyptus ficifolia (Flame (lum) may be seen. Although so extensively planted in the eastern States, this tree is remarkably localized in its native haments, inhabiting only a few thousand acres of sandy rises near the coast about Nornalup and at Brookes Inlet (the type area, some 25 miles to the west). Except when in flower, indigenous E. ficifoliu is anything but ornamental - twisted, unhealthy-looking specimens of low stature. This poor forest,
*The "Valley of the Giants" was burnt out by a disastrous bush-fire early in 1950 .
however, proved to be singularly rich in Epacriducea and Rutacea; Crowea dentata and four species of Boronia (B. crenulata, B. spathulata, B. gracilipes and another indeterminate one resembling B. pulchella) were there, while of Leucopogon species two cannot be matched with any forms represented in the Melbourne Herbarium.

Walpole settlement on Nornalup Inlet is noted for its Yellow Tingle-tingle (Eucalyptus Guilfoylei) -a tall tree of restricted distribution between Denmark and Cape Leeuwin. In neighbouring swamps we found the large handsome leek-orchid Prasophyllum fimbria, Isopogon axillaris and the uncommon little goodeniaceous plant Diaspasis filifolia.

Karri Forests

Near Weld River, along the road to Pemberton, Eucalyptus megacarpa (Bullich) and E. patens (Swan River Blackbutt) were both examined, anong the prevailing Karri and Marri stands. Shannon River crossing was memorable for more and better samples of Brown Boronia, other interesting shrubs in the vicinity being pendant Melaleuca microphylla, tall Ricinocarpus glaucus, silver Hemigenia podalyrina and serambling Dampiera hederacea. Miniature bog-gardens flourished in natural clearings that marked the outcropping of many granite slabs in the Karri forest; Burchardia umbellata (small stocky form), Tribonanthes australis, Polypompholyx muttifida and several trigger-flowers were blooming profusely in one of these soakages near the main road.

Three days were spent amongst the big timber in Pemberton district, where lofty eucalypts and dense undergrowth (exhaling a delicious aroma) recall the mountain forests of the Otways and Upper Yarra watershed in Victoria, albeit at a much lower elevation. Rainfall is similar ($50-60$ inches), but one misses fern growth: bracken is the only frequent kind here, growing very tall, while occasional clumps of Asplenium promorsum (Forked Spleenwort) occur as epiphytes on the mossy branches of Casuarina decussata; Adiantum ethiopicum (Maidenhair-fern) was also observed sparingly in several gullies. The Karri Sheoak (C. decussata) is a most attractive understorey tree, with deeply fluted corky bark of a curious yellow-brown colour and somewhat amorphous cones of the same hue, their valves being nearly immersed. Banhisia grandis (with exceptionally large leaves and cones for its genus) and weeping Agonis flextosa are two other frequent trees of the lower canopy; tall shrubs are well represented by various Acacia species, Albizzia distachya, Bossica aquifolium ("Water-bush" from its efficiency in holding rain-
drops), Choriluena hirsuta, Trymalium floribundum, Pimelea clavata ("Banjine"), Agonis linearifolit, Leucopogon verticillatus, Logania vaginalis, Persoonia longifolia and Leptomeria squarmesa.

Deep sheltered valleys two to four miles east of Pemberton approached nearer to a typical Gippsland fern gully than any other formation we saw in the West-Maidenhair-fern on the stream banks, Forked Spleenwort on the Karri Sheoaks, Clematis pubescens and Hardenbergia Comptoniana (conspicuous lianes) ascending high up the trunks of trees, and many bryophytes* and foliose lichens on fallen timber or around the bases of old trees. These cryptogams mostly belong to species that are common also in east Australian forests, e.g., the large lichens Peltigera polydectyla and Sticta Mougeotiana which Baron von Mueller had collected at the Porongorups in 1867.

The small diffuse conifer Podocarpus Drouyniana (with unusually large seeds) and cycad Macrozamia Reidlei ("Zamia Palm") occur almost throughout the Karri belt. In more open places with loamy soil, Patersonia xanthina expands its large golden blooms-a startling contradiction in this genus of otherwise purplish-flowered irids. Hovea elliptica colours the forest a rich purple in many places, its brilliance contrasting delightfully with the ubiquitous yellows of the Karri wattles (Albizzia distachya, Acacia alata, A. diptera, A. myrtifolia var. angustifolia, A. urophylla, A. pulchella, A. pentudenia, etc.) and the stark white boles of the noble Karri eucalypts themselves. In all this highrainfall area, no floral subject was more appealing than graceful Crowea dentata with its long sprays of waxy-white bloom.

Tetrarhena laevis was the only indigenous grass to be noted, and apparently there has always been a paucity of Graminece in wet Karri country. Early pioncers who put stock around the fringes of the big timber may be accounted responsible for the almost complete disappearance of such native pasture plants as existed originally. After forest fires, the first plants to shoot are eycads and hungry cattle will browse on these until rickets are manifest - the result of a cumulative poisoning; Macrozamia seeds also are violently poisonous, unless treated as the aborigines prepared them for food. In 1922, large tracts of virgin Karri were surveyed for closer settlement and by 1928 systematic ringbarking began. (froup settlers, arrived from England, fought a losing battle against bracken and scrub on a hungry soil that would never provide pasture without constant heavy manuring.

[^0]For mile after mile in the Warren River district one is depressed by the sight of gaunt ringbarked trees, burnt-out country and abandoned selections. Fortunately the Karri seeds well aud there is evidence of much natural regeneration.

Of outstanding interest in the Warren River National Park is an aged Karri that has achieved historical fame and is known as "Miss North's Tree." It is completely encircled at a height of about 30 feet on the trunk by a gigantic burl which in the 1870's attracted the attention of an English lady, Miss North; she was driven from Brockman's homestead every day for a fortnight in order to paint the knobbly giant. Her excellent paintings of S.W. Australian trees were finally donated to the Herbarium at the Royal Botanic Gardens, Kew, with enough money for their appropriate housing, and they may still be consulted there. It was singular that here, in this very wet region, we should experience three cloudless days of warm sunshine, whereas in the proverbially dry Nullarbor section of our journey the same period had been attended by grey skies and gentle showers.

No collecting was done over the 100 miles between Pemberton and Bunbury, but it was noted that Podocarpus Drouyniuna extends as far north as Yornup, near Bridgetown. On high sand dunes at Bunbury-our first glimpse of the Indian Ocean-several unfamiliar psammophytic plants were collected, including: Spinifex longifolius, Acanthocarpus Preissii, Acacia heteroclita, Alyxia buxifolia, Scaevola crassifolia and two introductions from South Africa (Pelargonium capitatum and Anthericum divaricatuma lily with long sprawling strap-like leaves). The brown alga, Scaberia Agardhii was taken from the tessellated basaltic wave platform nearby-a unique geological feature on the sandy coastline of Swanland.

Darling Scarp and Swan Coastal Plain

Yarloop was our first record for the strange proteaceous "Wooden-pear" tree (Xylomelum occidentale), which follows typical sand-heath country fringing the Darling Scarp for a hundred miles; north of Perth, it is succeeded by the more attractive X. angustifolium. Other noteworthy plants at Yarloop were Sowerbaca laxiflora (very similar to the east Victorian S. juncea), Conostylis involucrata, Acacia sphacelata var. sessilis, Labichea punctata (a legume with only two perfect stamens) and the heath Conostephium pendulum, having its creamy-white flower bells tipped heavily with purple-black and very sharply contracted.

Dwellingup, in the centre of an important Jarrah timber milling area, was compared with the wetter Karri forests farther south. Near the "Banksia" sawmill flowered Leschenaultia biloba, a famous blue subject that we had been anxious to see ever since leaving Norseman, also a possible giant form of IIibbertia montana which camot be satisfactorily matched in Melbourne. Banksia grandis formed the principal, if rather sparse, undercanopy of this Jarrah forest.

The descent from the Darling escarpment toward North Darnalup is rather abrupt and takes one through a surprising wealth of flowering shrubs, especially proteads, of which eight species were recorded in a few minutes and included yellow Lambertia multiflora and the very showy crimson Grevillea Wilsonii; Hypocalymmu robustum, H. angustifolium, Eriostemon spicatus, Hibbertia Huegelii and H. acerosa were also present and typical of the Darling Range flora. Euculyptus haematoxylon was met with only here-a tree in vegetative character and fruit almost indistinguishable from E. culophylla; but differing in its dark red timber. It is indeed regrettable that the rich sand-heath flora between the Darling plateau region and the sea (the Swan Coastal Plain) should be in process of extermination through farming and the introduction of all-too-aggressive weeds.

Our arrival in Perth on Wednesday afternoon, September 10th, terminated the Expedition which had covered 1800 miles in sixteen days-an average daily mileage of 112. Despite such rapid movement and the necessarily limited time for intensive collecting anywhere, the writer made the most of every opportunity to botanize along the route; he remained in Perth for five days in order to see something of the local flora and to check up as many identities as possible at the State Herbarium. The Government Botanist, Mr. ('. A. Gardner, kindly escorted him to the National Park at Jane Brook, the forest look-out tower and weir at Mundaring, Greystones Road and Cannington Swamps - a very interesting but fast vanishing flora in which the little conifer Actinostrobus pimpamidalis is still to be found by the roadside. Other trips were made to Bull's Brook and City Beach, and the results of all these latter excursions in and around Perth have been added to those of the Expedition itself.

Conclusion

In the total of 870 separate collections of vascular plants, 685 species are concerned, including: Protencere 85 spp.; Leguminosa 98 spp. (37 in Acceria) ; Myrtacere 94 spp. (38 in Eucalyptus and 22 in Melateuca); Epucridtucea 36 spp.; ('oodeniacea 25 spp ; and

The Experlition :s Transport in the Ntirling Ranmes. Western Anstralia.

Compositce 28 spp . In addition, 32 species of lichens were collected, but the Bryophyta were checked too late for insertion here. Flowering plants have been carefully mounted and incorporated in the National Herbarium of Victoria, angmenting the great collections already housed there by at least 38 species that were not previously represented and by 21 others of whirh the IIerbarium possessed only single specimens (including 11 types) ; 127 (18.5%) of the species collected occur also in Victoria, but the majority of these were taken in Eyre's Peninsula, South Australia. Several species from the Expedition, including four in the genus Acacia, are new to seience and will be published as opportunity offers.

A memorable experience was the location, in company with Mr. C. A. Gardner, of the extremely rare and apparently localized Pilostyles ILamiltonii at the Mundaring Pine Plantation. This minute-flowered member of Rafflesiacere is parasitic on Daviesia species and created a botanical stir in Western Australia when it was discovered by Mr. C. D. Hamilton as recently as March, 1946 -hitherto the family had been unknown from Australia and the genus Pilostyles recorded only for Persia, tropical Africa and the American region between California and Chile, always on some leguminous host. We were fortunate to find it in a fruiting condition on one small patch of Daviesia incrassata. [See (., A. Gardner in Journ. Royal Soc. W. Aust., XXXII, 77 (1948).]

Mr. J. Swanson was untiring in his collection of seed throughout the itinerary and has achieved a large measure of success in germinating these and establishing seedling plants of unfamiliar species at the Frankston Golf Club nursery.

The writer wishes to register the personal debt of gratitude he owes to Sir Russell Grimwade, organizer and leader of this venture, without whose kindly munificence he would probably never have been able to visit the West or to explore such a variety of rich wildflower country-from rainfall regions of under 10 in . to those of 60 in . Botanical results from the Expedition are most gratifying and constitute the largest single addition of Australian exsiccatae to be received into the Victorian National Herbarium since the time of Baron von Mueller. A limited number of duplicate specimens is available for exchange purposes.

Grateful acknowledgement is also made to Mr. P. N. S. Bibby, of the National Herbarium staff (South Yarra), for much willing help in identifying the lichen material gathered on the Grimwade Expedition, and to Mr. C. A. Gardner', Govermment Botanist, Perth, who assisted by the determination of a number of doubtful specimens.

SYST'EMATIC ENUMERATION OF VASCULAR PLANTS (OLLECTED (AND NOW ADDED TO THE NATIONAL HERBARIUM OF VICTORIA)

[* Denotes a naturalized alien, \dagger a species not previously represented in Melbourne.]

ITERIDOPHYTA
Polypodiacese
Asplenium
premorsum Sw.-Warren R. Nat. Park; 4 ml . E. of Pemberton (on Casuarina)
Pleurosorus
rutifolius (R.Br.) Fee - Murrawijinie and Kunalda Caves, S.A.
Notholana
vellea R.Br.-Balladonia (granite crevices)
Adiantum
athiopicum L.-Warren R. Nat. Park

GYMNOSPERMEF
Cycadacea
Macrozamia
Reidlei (Gaud.) Gardner - "Pimelea," 9 ml . N.W. of Pemberton
Taxaceas
Podocarpus Drouyniana F.v.M.-Parryville; Shannon R. (1 ml N.)
Cupressaceat
Actinostrobus pyramidalis Miq. in Lehm.-Cannington swamps
Callitris
Drummondii (Parl.) F.v.M. Fitzgerald R. (head)

ANGIOSPERMEA

Scheuchzeriacea
Triglochin
calcitrapa Hook.-City Beach trichophora Nees in Lehm.-City Beach

Graminefe (14 spp.)
Cymbopogon obtectus S.T. Blake-Jane Brook (Nat. Park)
Neurachne
alopecuroides R.Br. - S. of Grass Patch; Ravensthorpe; Dwellingup ("Banksia" mill)
Paspalidium gracile (R.Br) Hughes-Balladonia (granite)
Spinifex
longifolius R.Br.-Bunbury Beach Tetrarrhena levis R.Br.-Warren R. Nat. Park; Mundaring fire tower

Aristida
arenaria Gaud.-Fraser Range; Ravensthorpe
Stipa
breviculmis J. M. Black, var.Madura Stn.
clatior (Benth.) Hughes-City Beach
variabilis Hughes-Colona Stn., S.A.
Danthonia
?setacea R.Br.-S. of Grass Patch
sp.-Murrawijinie Cave, S.A.
Triodia
irritans R.Br.-Elliston cliffs, S.A.
Koleria
*phleoides Pers.,
var, azorensis Domin-Colona
Stn., S.A.
Poa
Drummondiana Nees in Hook.Kunalda Cave, S.A.
[+1 indet. sp.]
Cyperacere (15 spp .)
Scirpus
antarcticus L.-City Beach
Schocnus
flavus (Nees) Bœek1.-Pallinup R.
?barbatus Boeckl.-Pallinup R.
curvifolius (R.Br.) Benth.- 35 ml .
W. of Esperance; Pallinup R.
unispiculatus (F.v.M.) Benth.Greystones Rd. (Mundaring)
breviculmis Benth. -35 ml . W. of Esperance
grandiflorus (Nees) F.v.M.Esperance; City Beach
Mesomelæna
tetragona (R.Br.) F.v.M. - 70 ml . W. of Esperance; Greystones Rd. (Mundaring)
Lepidosperma
effusum Benth.-Pemberton
tetraquetrum Nees in Lehm."Pimelea," 9 ml . N.W. of Pemberton
angustatum R.Br.-Walpole
leptostachyum Benth.-Warren R. Nat. Park
Tetrariopsis
octandra (Nees) C. B. ClarkePorongorup foothills
Evandra
aristata R.Br.-4 ml. E. of Nornalup
[+1 indet. sp .]
Restionaceae (9 spp.)
Lyginia
tenax (Labill.) Gardner-Pallinup R.

Restionacefe (contd.)
Anarthria
scabra R.Br. -4 ml . E. of Nornalup prolifera R.Br.-Chester Pass, Stirling Ra.
polyphylla Nees in Lehm. -30 ml .
W. of Ravensthorpe

Lepyrodia
Muirii F.v.M.-Shannon R.
Restio
\dagger ?sp. -4 ml . E. of Pemberton
Loxocarya
fasciculata (R.Br) Benth. -35 ml . W. of Esperance
cinerea R.Br.- 50 ml . W. of Ravensthorpe; Pallinup R.
Lepidobolus
Preissianus Nees in Lehm. -70 ml . W. of Esperance; Pallinup R.

Centrolepidacere

Centrolepis
polygyna (R.Br.) Hieron.-Greystones Rd. (Mundaring)
Philydracefe
Pritzelia рygmæa (R.Br.) F.v.M.-Greystones Rd. (Mundaring)
Liliacere (17 spp.)
Burchardia
umbellata R.Br.-Shannon R. (granite $1 \mathrm{ml} . \mathrm{N}$.)
Thysanotus Patersonii R.Br.-Fraser Range
*Anthericum
\dagger +divaricatum Jacq.-Bunbury Beach
Tricoryne
elatior R.Br.-Jane Brook (Nat. Park)
Agrostocrinum
scabrum (R.Br.)-Baill.-Jane Brook (Nat. Park)
Stypandra
imbricata R.Br. -10 ml . W. of Ravensthorpe
Laxmannia grandiflora Lindl.-Bull's Brook (1 ml . S.)

+ var. paleacea Benth.-S. of Grass Patch
squarrosa Lindl.-S. of Grass Patch brachyphylla F.v.M. ex Benth.-70 ml. W. of Esperance

Sowerbæá laxiflora Lindl.-Yarloop
Borya
nitida Labill.-Mt. Clarence (Albany)
Dasypogon bromeliifolius R.Br. -4 ml . E. of Nornalup
Acanthocarpus Preissii Lehm.-Bunbury Beach; City Beach
Lomandra Endlicheri (F.v.M.) Ewart-Parryville; 4 ml . E. of Nornalup
pauciflora (R.Br.) Ewart-Parryville; 4 ml . E. of Pemberton
Xanthorrhcea
Preissii Endl. in Lehm.- 50 ml . W. of Ravensthorpe
Calectasia
cyanea R.Br.- 35 ml . W. of Esperance; Chester Pass, Stirling Ra.; Cannington swamps
Hemodoraces
Phlebocarya
ciliata R.Br.-Darling Ra., North Darnalup
Amaryluidacere
Tribonanthes
australis Endl.-Shannon R. (granite $1 \mathrm{ml} . \mathrm{N}$.)
variabilis Lindl.-Cannington swamps
longipetala Lindl. -1 ml . S. of Bull's Brook
Conostylis
Bealiana F.v.M. -35 ml . W. of Esperance
serrulata R.Br. -35 ml . W. of Esperance
candicans Endl.-City Beach
involucrata Endl.-Yarloop
setosa Lindl.-Mundaring fire tower
setigera R.Br.-Porongorup foothills; Nth. Darnalup
Anigozanthos
humilis Lindl. -50 ml . W. of Ravensthorpe
bicolor Endl. in Lehm.-Yarloop; Greystones Rd. (Mundaring)
Dioscoreaceat
Dioscorea
hastifola Endl. in Lehm.-Jane Brook (Nat. Park)
IRIDACEA
Patersonia
xanthina F.v.M.-Pemberton
rudis Endl.-Dwellingup
Orthrosanthus
multiflorus Sweet-Chester Pass, Stirling Ra.
laxus (Endl.) Benth.-Jane Brook (Nat. Park)
ORCHIDACEA (18 spp.)
Thelymitra
crinita Lindl.-Darling Ra., North Darnalup
Diuris
longifolia R.Br.-Esperance; Napier Ck.
carinata R.Br. -35 ml . W. of Esperance
Prasophyllum
elatum R.Br.
var. Muelleri (Andr.) Nicholls1 ml. S. of Bull's Brook; City Beach
fimbria Reichb.f.-Walpole

Orchidacese (contd.)
Pterostylis
nana R.Br.-Esperance; Valley-ofGiants (Nornalup)
recurva Benth.-Napier Ck.
vittata Lindl.-Napier Ck.
mutica R.Br.-Venus Bay, S.A.
Acianthus
reniformis (R.Br.) Schlecht.-Venus Bay, S.A.; Pemberton
Caladenia
filamentosa R.Br., var. tentaculata (Tate) BlackVenus Bay, S.A.; Jarramongup Stn.
Patersonii R.Br., var. longicauda (Lindl.) RogersEsperance; 35 mls . W. of Esperance
dilatata R.Br.-Venus Bay, S.A.
flava R.Br.-Pallinup R.
latifolia R.Br.-Venus Bay, S.A.; Porongorup foothills; Kirup; City Beach
sericea Lindl.--North Darnalup
gemmata Lindl.- 50 ml . W. of Ravensthorpe
Glossodia
Brunonis Endl.- 50 ml . W. of Ravensthorpe
Casuarinaceze
Casuarina
Huegeliana Miq. in Lehm.-Fraser Ra.; Fitzgerald R. (head)
decussata Benth. - Valley-of-Giants (Nornalup); 4 ml . E. of Pemberton
humilis Otto \& Dietr.- 70 ml . W. of Esperance; City Beach
thuyoides Miq. in Lehm.- 70 ml . W. of Esperance
URTICACEAE
Parietaria
debilis Forst.f.-Murrawijinie Cave, S.A.

Proteacea: (85 spp.)
Persoonia
longifolia R.Br.-4 ml. E. of Nornalup; Dwellingup; "Pimelea," 9 ml. N.W. of Pembertisn
? sp. -40 ml . W. of Ravensthorpe
Franklandia
fucifolia R.Br.-35 ml. W. of Esperance; Chester Pass, Stirling Ra.
Isopogon (8 spp.)
latifolius R.Br.-Chester Pass, Stirling Ra.
attenuatus R.Br.-Chester Pass, Stirling Ra.
spharocephalus Lindl.-Darling Ra., Nth. Darnalup
axillaris R.Br. -15 ml . N.W. of Walpole

Baxteri R.Br.-Chester Pass, Stirling Ra.
roseus Lindl.--Chester Pass, Stirling Ra.
asper R.Br. -1 ml . S. of Bull's Brook
formosus R.Br. -40 ml . W. of Ravensthorpe
Petrophila (9 spp.)
teretifolia R.Br. -30 ml . E. of Ravensthorpe
longifolia R.Br.-Chester Pass, Stirling Ra.
media R.Br.-Cannington swamps
acicularis R.Br.-Mt. Clarence (Albany)
propinqua R.Br., var. sericiflora Benth. -35 ml . W. of Esperance
divaricata R.Br.-Chester Pass, Stirling Ra.
diversifolia R.Br.-Valley-of-Giants (Nornalup)
ericifolia R.Br.-Chester Pass, Stirling Ra.
seminuda Lindl.-Cannington swamps
Adenanthos
barbigera Lindl.-Mundaring fire tower
obovata Labill.-Chester Pass, Stirling Ra.; Walpole
cuneata Labill.- 35 ml . W. of Esperance
Meissneri Lehm.-Nth. Darnalup
Stirlingia
simplex Lindl.-Greystones Rd. (Mundaring)
tenuifolia (R.Br.) Steud.- 35 ml . W. of Esperance; Mt. Clarence (Albany)
latifolia (R.Br.) Steud.-Chester Pass, Stirling Ra.
Synaphexa
polymorpha R.Br. - 35 ml . W. of Esperance; Chester Pass, Stirling Ra.
petiolaris R.Br. -30 ml . W. of Ravensthorpe
\dagger pinnata Lindl.-Jane Brook (Nat. Park)
Conospermum
flexuosum R.Br. -4 ml . E. of Nornalup
amœиum Meissn. in Lehm.-Chester Pass, Stirling Ra.
carruleum R.Br. $-5-10 \mathrm{ml}$. S. of Chester Pass, Stirling Ra.
stechadis Endl.-Yarloop
Grevillea (15 spp .)
patentiloba F.v.M.-Ravensthorpe plurijuga F.v.M.-S. of Grass Patch nudiflora Meissn. in Hook. - S. of Grass Patch; 35 ml . W. of Esperance

Proteacee (contd.)
Grevillea (contd.)
Thelemanniana Hueg. in Endl.City Beach
Hookeriana Meissn. in Lehm. - 40 ml . and 60 ml . W. of Ravensthorpe
bipinnatifida R.Br.-Jane Brook (Nat. Park)
Wilsonii A. Cunn. in Wils.-Darling Ra., Nth. Darnalup
fasciculata R.Br. (inc. G. Brownii Meissn. in Lehm.) -Chester Pass, Stirling Ra.
pilulifera (Lindl.) Gardner-North Darnalup; Greystones Rd. (Mundaring) ; 1 ml . S. of Bull's Brook
Endlicheriana Meissn. in Lehm.Jane Brook (Nat. Park)
crithmifolia R.Br.-City Beach
synapher R.Br.-Mundaring fire tower
brevicuspis Meissn. in Lehm.Parryville
pulchella (R.Br.) Meissn. in Lehm. -Chester Pass, Stirling Ra.
glabrata (Lindl.)-Meissn. in Lehm. -Jane Brook (Nat. Park)
Hakea (17 spp.)
cyclocarpa Lindl.-Darling Ra., Nth, Darnalup
crassifolia Meissn. in Lehm.-Chester Pass, Stirling Ra.
Brookeana F.v.M. - S. of Grass Patch. (Holotype only in Melbourne.)
pandanicarpa R.Br.-S. of Grass Patch
Baxteri R.Br.-Chester Pass, Stirling Range
trifurcata (Sm.) R.Br. - Cannington swamps

+ forma (?) - 40 ml . W. of Ravensthorpe
amplexicaulis R.Br.-4 ml. E. of Pemberton; Greystones Rd. (Mundaring)
prostrata R.Br.-Esperance
laurina R.Br.-Fitzgerald R. (head)
cinerea R.Br.-S. of Grass Patch (1 specimen only in Melbourne)
corymbosa R.Br.-Pallinup R.
undulata R.Br.-Chester Pass, Stirling Ra.; Greystones Rd. (Mundaring)
elliptica (Sm.) R.Br.-Greystones Rd. (Mundaring)
ambigua Meissn. in Lehm.-Chester Pass, Stirling Ra.
varia R.Br.- 40 ml . W. of Ravensthorpe
lissocarpha R.Br.-Fitzgerald R. (head)
bipinnatifida R.Br.-Greystones Rd. (Mundaring)

Xylomelum
occidentale R.Br.-Yarloop
Lambertia
inermis R.Br.-S. of Grass Patch; 35 ml . W. of Esperance
cricifolia R.Br.-Chester Pass, Stirling Ra.
multiflora Lindl.-Darling Ra., Nth. Darnalup
Banksia (10 spp.)
pulchella R.Br. -35 ml . W. of Esperance
nutans R.Br.-Chester Pass, Stirling Ra.
sphærocarpa R.Br.-Cannington swamps
Brownii Baxt. ex R.Br.-Chester Pass, Stirling Ra.
attenuata R.Br.-Pallinup R.
repens Labill.-S. of Grass Patch; 70 ml . W. of Esperance
prostrata R.Br. -40 ml . W. of Ravensthorpe
quercifolia R.Br.-Chester Pass, Stirling Ra.; 4 ml . E. of Nornalup
coccinea R.Br.-Chester Pass, Stirling Ra.
ilicifolia R.Br. -4 ml . E. of Nornalup
Dryandra
floribunda R.Br.- 35 ml . W. of Esperance; Chester Pass, Stirling Ra.; City Beach
mucronulata R.Br.-Chester Pass, Stirling Ra.
formosa R.Br.-Chester Pass, Stirling Ra.
nivea (Labill.) R.Br.- 70 ml . W. of Esperance; Nth. Darnalup; Serpentine Falls
? bipinnatifida R.Br.- 40 ml . W. of Ravensthorpe
Santalacem
Exocarpus
spartea R.Br.-Esperance
? sp.-S. of Grass Patch
Leptomeria
pauciflora R.Br. -4 ml . E. of Nornalup
scrobiculata R.Br.-Chester Pass, Stirling Ra.; Shannon R.
squarrulosa R.Br.-Pemberton
Santalum
acuminatum (R.Br.) DC.-City Beach
Olacacere
Olax
phyllanthi (Labill.) R.Br--Esperance; 17 ml . S. of Ravensthorpe

Rafflesiacee

Pilostyles
\dagger Hamiltonii Gardner-Mundaring pine plantation (parasitic on Daviesia incrassata)

LORANTHACEAE

Nuytsia
floribunda (Labill.) R.Br. - Esperance
Amyoma
quandang (Lindl.) van Tieghem20 ml . W. of Colona Stn., S.A.
Chenopodiaceat
Rhagodia
Preissii Moq. in DC.-Madura Stn., Fraser Ra.
Atriplex
nummularia Lindl. in Mitch.-Head of Bight, S.A.
paludosa R.Br.-Ceduna, S.A.
vesicaria Heward ex Benth.-Head of Bight, S.A.
Bassia
sclerolenoides F.v.M.-Colona Stn., S.A.
uniflora (R.Br.) F.v.M. - Head of Bight, S.A.
obliquicuspis R. H. AndersonColona Stn., S.A.
Kochia
lobiflora (F.v.M.) Benth.-Colona Stn., S.A.
crioclada (Benth.) Gauba-Ceduna, S.A.; Head of Bight, S.A.
tomentosa (Moq.) F.v.M.-Ravensthorpe

+ var. tenuifolia F.v.M.--Ravensthorpe
scdifolia F.v.M.-Head of Bight, S.A.
oppositifolia F.v.M.-Head of Bight, S.A.

Arthrocnemum
arbusculum (R.Br.) Moq.-Head of Bight, S.A.
Amarantilacefe
Hemichroa
diandra R.Br.-Head of Bight, S.A. [The genus is intermediate between Chenopodiaces and Amaranthaces and placed in one or other family by various botanists.]
Trichinium
obovatum Gaud.-Ceduna, S.A.
alopecuroideum Lindl. in Mitch.King's Park, Perth spathulatum R.Br.-Fraser Ra.
Phytolaccaces
Gyrostemon
Sheathii W. V. Fitzg.-Esperance
Codonocarpus
cotinifolius (Desf.) F.v.M.-Between Balladonia Stn. and Fraser Ra.
Tersonia
brevipes Moq. in DC.-City Beach
Alzoaceas
Tetragonia

* \dagger ?Zeyheri Fenzl ex Harv, and Sond. -City Beach

Disphyma

australe (Soland ex Forst.) J. M. Black-Head of Bight, S.A.
Portulacaceat
Calandrinia
brevipedata F.v.M.-City Beach
Ranunculacefe
Clematis
pubescens Hueg.-"Pimelea," 9 ml . N.W. of Pemberton

Cructrer A

*Heliophila
*pusilla L.-City Beach
Stenopetalum lineare R.Br.-Colona Stn., S.A. robustum Endl. in Hueg.-City Beach
Alyssum linifolium Steph.-Colona Stn., S.A.
Hymenolobus procumbens (L.) Nuttall-Colona Stn., S.A.
Capsella
pilosula F.v.M.-Colona Stn., S.A.
Droseracefe
Drosera
scorpioides Planch. -70 ml . W. of Esperance
gigantea Lindl.-Greystones Rd. (Mundaring)
Menziesii R.Br. in DC.-Darling Ra., Nth. Darnalup
stolonifera Endl.--"Banksia" mill near Dwellingup
Pittosporacese
P'ittosporum
phillyreoides DC.-Madura Stn.
Cheiranthera
Preissiana Putterl. in Lehm. -1 ml . S. of Bull's Brook. (1 specimen only in Melbourne.)
Leguminose (98 spp .)
Acacia (37 spp.)
glaucoptera Benth.-S. of Grass Patch; Ravensthorpe
alata R.Br.-"Pimelea," 9 ml. N.W. of Pemberton
diptera Lindl.-Chester Pass, Stirling Ra.; Porongorup foothills; 4 ml. E. of Pemberton
spinescens Benth.-Venus Bay, S.A. latipes Benth. -40 ml . W. of Ravensthorpe
colletioides (A.Cunn.) Benth., var. nysophylla Benth.-Salmon Gums
sphacelata Benth. in Hook., var. sessilis Benth.-Yarloop Sowdenii Maiden-20 ml. W. of Colona Stn., S.A.
gonophylla Benth.-S. of Grass Patch

Leguminose (contd.)
Acacia (contd.)
ericifolia Benth. in Hook. 4 ml . W. of Ravensthorpe
$\dagger s p . n o v$. (dwarf, turgid glaucous leaves $\mathbf{z}^{\prime \prime}$) —
S. of Grass Patch; 50 ml . W. of Ravensthorpe
cometes Andrews-S. of Grass Patch (fragment only in Melbourne)
ferocior Maiden-4 ml. S. of Borden (1 specimen only in Melbourne)
\dagger Pritzeliana Gardner-S. of Grass Patch
sp. nov. (thick, marginate, rotund leaves, $\frac{z_{2}}{}{ }^{\prime \prime}$) -S. of Grass Patch \dagger sp.-City Beach (2 forms)
erinacea Benth. in Hook.-Ravensthorpe
\dagger †ermatophylla Benth.-S. of Grass Patch
pilosa Benth.-S. of Grass Patch
hastulata Sm.-Denmark (river banks)
bidentata Benth. in Hook.-S. of Grass Patch
acanthoclada F.v.M.-"Jarramongup" Stn.
Graffiana F.v.M.-Salmon Gums
myrtifolia Willd., var. angustifolia Benth.-Porongorup foothills; Walpole; 4 ml . E. of Pemberton
urophylla Benth.-Denmark (river banks); 4 ml . E. of Pemberton
nitidula Benth.-Ravensthorpe
heteroclita Meissn. in Lehm.Esperance; Bunbury Beach
? lineolata Benth. in Schlecht.40 ml . W. of Ravensthorpe
\dagger †p. nov. (broad, glaucous, obtuse, plurinerved leaves, $1-2^{\prime \prime}$) -1 ml . N. of Ravensthorpe
ixiophylla Benth.-Ravensthorpe
sessilispica Maid. and Blakely-60 ml . W. of Ravensthorpe (fragment only in Melbourne)
acuminata Benth.-Between Balladonia and Fraser Ra.; 4 ml . W. of Ravensthorpe
pulchella R.Br. in Ait. - .Chester Pass, Stirling Ra.; Napier Ck.; City Beach + forma (?)- 40 ml . W. of Ravensthorpe
pentadenia Lindl.-Parryville
nigricans $\mathrm{R} . \mathrm{Br}$.-Napier Ck.
strigosa Link-Chester Pass, Stirling Ra.; Mt. Clarence (Albany); Parryville; Dwellingup + forma (?) -Esperance
Drummondii Lindl.-Mundaring fire tower

Labichca

lanceolata Benth. in Hueg. - Jane Brook (Nat. Park)
punctata Benth. in Lindl.-Yarloop
Cassia
eremophila A. Cunn. in T. Vog.Venus Bay, S.A.; 4 ml . W. of Ravensthorpe
Brachysema
latifolirm R.Br. in Ait. -35 ml . W. of Esperance
Oxylobium [sensu lato]
atropurpureum Turcz.-Chester
Pass, Stirling Ra.
capitatum Benth. in Hueg.-Nth. Darnalup; Cannington swamps
cuneatum Benth. in Lindl.,
var. emarginatum Benth.-Chester Pass, Stirling Ra.
heterophyllum (Turcz.) Benth., ? forma- 4 ml . W. of Ravensthorpe
Chorizema
nervosum T. Moore- 40 ml . W. of Ravensthorpe
ilicifolium Labill.-Valley-of-Giants (Nornalup)
glycinifolium (Sm.) Druce-Chester Pass, Stirling Ra.
aciculare (DC.) Gardner-S. of Gr. Patch; 35 ml . W. of Esperance; Napier Ck.
Mirbelia
spinosa Benth.-Jane Brook (Nat. Park)
Isotropis
cuncifolia (Sm.) Domin-S. of Gr. Patch; Napier Ck.
Gompholobium
ovatum Meissn. in Lehm.-4 ml. E. of Pemberton
polymorphum R.Br.-Jane Brook (Nat. Park)
marginatum R.Br.-Porongorup foothills
burtonioides Meiss. in Lehm.-Chester Pass, Stirling Ra.
tomentosum Labill. -1 ml . S. of Bull's Brook; City Beach
venustum R.Br. -70 ml . W. of Esperance; Mundaring fire tower
Knightianum Lindl. -35 ml . W. of Esperance; 30 ml . W. of Ravensthorpe; Chester Pass, Stirling Ra.
Burtonia
villosa Meissn. in Lehm,-Chester Pass, Stirling Ra.
scabra R.Br.- 35 ml . W. of Esperance
Jacksonia
furcellata (Bonpl.) DC.-State Herbarium, Perth (grounds)
Sternbergiana Hueg. -1 ml . S. of Bull's Brook

Leguminosfe (contd.)

Sphærolobium alatum Benth.-Chester Pass, Stirling Ra.
Daviesia
cordata Sm.-4 ml. E. of Pemberton; Mundaring Weir
pachyphylla F.v.M. -10 ml . W. of Ravensthorpe
teretifolia (R.Br.) Benth. 35 ml . W. of Esperance
colletioides Meissn.-Chester Pass, Stirling Ra.
reversifolia F.v.M. -35 ml . W. of Esperance; 40 ml . W. of Ravensthorpe (1 collection only in Melbourne)
incrassata Sm. - Mundaring pine plantation (the host of Pilostyles Hamiltonii)
divaricata Benth. - State Herbarium, Perth (grounds)
juncea Sm.-Chester Pass, Stirling Ra.; Napier Ck.
Aotus
? sp. $-10 \mathrm{ml} . \mathrm{W}$. of Ravensthorpe
Pultenera
reticulata (Sm.) Benth. 4 ml . E. of Nornalup; 15 ml . N.W. of Walpole
obcordata (R.Br.) Benth.Esperance
Gastrolobium
spathulatum Benth. in Lindl.-Jane Brook (Nat. Park)
spinosum Benth. in Lindl. -1 ml . S. of Bull's Brook
calycinum Benth. in Lindl.-Greystones Rd. (Mundaring)
Eutaxia
microphylla (R.Br.) GardnerRavensthorpe
Latrobea
diosmifolia Benth.- 10 ml . W. of Ravensthorpe
Dillwynia
cinerascens R.Br.-Mundaring fire tower; 1 ml . S. of Bull's Brook
sp. (glabrous calyx) - 35 ml . W. of Esperance; 30 ml . E. of Ravensthorpe
? sp.-S. of Grass Patch
Bossiza
aquifolium Benth.-"Pimelea," 9 ml . N.W. of Pemberton
linophylla R.Br. in Ait.-Porongorup foothills
pulchella Meissn. in Lehm.-Mundaring fire tower
omata (Lindl.) Benth.-"Pimelea," 9 ml . N.W. of Pemberton; Mundaring fire tower
criocarpa Benth. in Hueg., var. angustifolia (Meissn. in

Lehm.) comb.?-Jane Brook (Nat. Park)
Templetonia
retusa (Vent.) R.Br.-Esperance
Battii F.v.M.-Colona Stn., S.A. (Holotype only in Melbourne)
sulcata (Meissn.) Benth.-S. of Grass Patch
Hovea
chorizemifolia (Sweet) DC.-Napier Ck.; 4 ml . E. of Nornalup
elliptica (Sm.) DC.-Napier Ck.; 4 ml. E. of Pemberton
trisperma Benth. in Hueg.-Chester Pass, Stirling Ra.; Shannon R.; Yarloop
pungens Benth. in Hueg.-City Beach
*Lupinus
*angustifolius L.-State Herbarium, Perth (grounds)
Glycine
clandestina Wendl., var. sericea Benth.-Balladonia (granite)
Kennedya
coccinea Vent.-Napier Ck.
Hardenbergia
Comptoniana (Andr.) Benth. in Hueg.-Napier Ck.; Warren R. Nat. Park; City Beach
Geraniacere
Erodium
*Botrys (Cav.) Bertol. -1 ml . S. of Bull's Brook
Pelargonium
*capitatum (L.) Ait.-Bunbury
Beach; City Beach
Rutaceze (16 spp.)
Geijera
linearifolia (DC.) Black-Ceduna, S.A.

Boronia (8 spp.)
megastigma Nees in Lehm.-Parryville; Shannon R.
tetrandra Labill.-Esperance
$\dagger \mathrm{tp}$. (aff. B. pulchella) - 4 ml . E. of Nornalup
gracilipes F.v.M.-Parryville; 4 ml . E. of Nornalup
backeacea F.v.M.-S. of Gr. Patch (Holotype only in Melbourne)
crenulata Sm.-Chester Pass, Stirling Ra.; Napier Ck.; 4 ml . E. of Nornalup
inornata Turcz.-S. of Grass Patch
spathulata Lindl. - Chester Pass, Stirling Ra.; 4 ml . E. of Nornalup; Mundaring fire tower
Eviostemon
spicatus A. Rich.-Darling Ra., Nth. Darnalup
Crowea
angustifolia Turcz.-Parryville

Leguminosfe (contd.)
dentata (R.Br.) Benth. -4 ml . E. of Nornalup
Microcybe
pauciflora Turcz.-S. of Gr. Patch
multiflora Turcz. 6 ml . N. of Salmon Gums

+ var. "baccharioides" F.v.M. ms.
-S. of Grass Patch
Correa
pulchella Sweet-Venus Bay, S.A.
Chorilsena
hirsuta Benth.-Shannon R.

Tremandracese

Tremandra stelligera R.Br. in DC.,
var. hispida Benth.-6 ml. N.W. of Walpole
diffusa R.Br. in DC.-Walpole
Platytheca
verticillata (Hueg.) Baill.-Chester
Pass, Stirling Ra.
Tetratheca
affinis Endl. in Hueg.-Chester Pass, Stirling Ra.
setigera Endl. in Hueg.-Kirup
hispidissima Steetz in Lehm.Parryville
hirsuta Lindl.-Mundaring fire tower
viminea Lindl.-Chester Pass, Stirling Ra.; Dwellingup

Polygalacere

Bredemeyera volubilis (Labill.) Chod. - Madura Stn.; 1 ml. S. of Bull's Brook virgata (Labill.) comb.?-Parryville

Euphorbiaces
Phyllanthus calycinus Labill.-Esperance scaber Klotzsch in Lehm.Esperance
Adriana quadripartita (Labill.) Gaud.Esperance
Poranthera microphylla Brongn.-Mundaring fire tower
Huegelii Klotzsch in Lehm.Mundaring fire tower
Ricinocarpus glaucus Endl. in Hueg.-Shannon R.
Beyeria Leschenaultii (DC.) Baill., var. Drummondii GrüningVenus Bay, S.A.
Monotaxis
gracilis (Muell. Arg.) Baill.-S. of Grass Patch
Amperea ericoides Adr. Juss.-Mt. Clarence (Albany)
protensa Nees in Lehm.- 4 ml . E. of Pemberton (Type only in Melbourne)
Stackhousiaceze
Stackhousia
pubescens A. Rich.-Esperance;
Jane Brook (Nat. Park)
Huegelii Endl. in Hueg.- 10 ml . W. of Ravensthorpe
Brunonis Benth.-Jane Brook (Nat. Park)
Sapindace
Diplopeltis Huegelii Endl. in Hueg.-Jane Brook (Nat. Park) ; City Beach
Dodonza
ptarmicifolia Turcz:-Ravensthorpe ceratocarpa Endl. in Hueg.Esperance \dagger amblyophylla Diels-S. of Grass Patch
hexandra F.v.M.-Venus Bay, S.A. Baueri Endl.-Venus Bay, S.A. microzyga F.v.M.-Fraser Ra.
Rhamnaceet
Pomaderris myrtilloides Fenzl in Hueg.Esperance
Forrestiana F.v.M. - Madura Stn., Moonera, near Cocklebiddy (197 ml. W. of Eucla)

Trymalium
floribundum Steud.-Napier Ck.
ledifolium Fenzl in Hueg.-Porongorup foothills; "Banksia" mill near Dwellingup; Jane Brook (Nat. Park)
Spyridium
globulosum (Labill.) Benth.Esperance; Bunbury Beach
\dagger sp. (aff. S. rotundifolium) -S. of Grass Patch
Cryptandra
pungens Steud. in Lehm. -10 ml . W. of Ravensthorpe

Malvacere
Lavatera
plebeia Sims-Kunalda Cave, S.A.
Plagianthus
squamatus (Nees) Benth.-Colona Stn., S.A.; Head of Bight, S.A.
Sida.
?virgata Hook in Mitch. -1 ml . N. of Ravensthorpe
Hibiscus
Huegelii Endl. in Hueg.- 4 ml . W. of Ravensthorpe
Sterculiacefe
Rulingia cygnorum (Steud.) Gardner - Esperance; Jane Brook (Nat. Park) parvifora Endl. in Hueg.Esperance

Sterculiacere (contd.)

Thomasia
quercifolia (Andr.) J. Gay-
Parryville
foliosa J. Gay-Darling Ra., Nth.
Darnalup
triphylla (Labill.) J. GayEsperance
\dagger sp.-Shannon R.
Guichenotia
ledifolia J. Gay-Esperance
Lysiosepalum
involucratum (Turcz.) Gardner-
Fitzgerald R. (head)
Lasiopetalum
discolor Hook.-Venus Bay, S.A.
rosmarinifolium (Turcz.) Benth.S. of Grass Patch

Behrii F.v.M.-Venus Bay, S.A.

Dille:iacere
 Hibbertia

montana Steud. in Lehm.-"Banksia" mill near Dwellingup + var. confertifolia (Steud.)

Benth.-Chester Pass, Stirling Ra.

+ var. major Benth.-Shannon R.
$?+$ var. (giant form)-"Banksia" mill near Dwellingup
amplexicaulis Steud. in Lehm.Pemberton
Cunninghamii (Benth.) Steud.Chester Pass, Stirling Ra.; Napier Ck.
cuneiformis (Labill.) Gilg. in Engl. and Prantl - "Pimelea," 9 ml . N.W. of Pemberton

Huegetii (Endl.) F.v.M. - Darling Ra., Nth. Darnalup
glaberrima (Steud.) Gilg. in Engl. and Prantl-Jane Brook (Nat. Park)
acerosa (R.Br.) Benth. - Darling Ra., Nth. Darnalup
stricta R.Br.,
var. leiocarpa Benth. -20 ml . N. of Esperance

Frankentacees

Frankenia
sessilis Summerhayes-Head of Bight, S.A.
\dagger densa Summerhayes-Moonera, near Cocklebiddy, 197 ml . W. of Eucla
foliosa J. M. Black-Colona Stn., S.A.

Violacee
Hybanthus
floribundus (Walp.) F.v.M. -1 ml . N. of Ravensthorpe
calycinus (Steud.) F.v.M.-1 ml. S. of Bull's Brook
\dagger tsp.nov. (?) -S. of Grass Patch

Thymeleacese

Pimelea (13 spp.)
spectabilis (Fisch. and Mey.) Lindl. -Mundaring fire tower
rosea R.Br.-Napier Ck.
ferruginea Labill.-Esperance
brachyphylla Benth.-S. of Grass Patch
Maxwellii (F.v.M.) Benth.-Chester Pass, Stirling Ra.
suaveolens (Endl.) Meissn. in Lehm. —Shannon R.; Yarloop; North Darnalup
physodes Hook. -17 ml . S. of Ravensthorpe
imbricata R.Br. -1 ml . S. of Bull's Brook
argentea R.Br. -1 ml . S. of Bull's Brook
clavata Labill.-Warren R. Nat. Park
thesioides S. Moore-Fraser Ra.
longiftora R.Br.-Walpole
glauca R.Br.-Venus Bay, S.A.
Myrtacese (94 spp .)
Eucalyptus (38 spp.)
annulata Benth. - Between Balladonia and Fraser Ra. (forma?); Ravensthorpe; Ongerup; 4 ml . S. of Borden
platypus Hook,-Ongerup + var. heterophylla BlakelyRavensthorpe; 40 ml . W. of Ravensthorpe
occidentalis Endl. in Hueg.Ravensthorpe
astringens Maiden- 4 ml . S. of Borden
cremophila (Diels) Maiden- 6 ml . N. of Salmon Gums
spathulata Hook.-Ongerup + var. grandiflora Benth.-S. of Grass Patch; 60 ml . W. of Ravensthorpe
goniantha Turcz.-S. of Grass Patch
\dagger Le Souefii Maiden-Fraser Ra.
dumosa A. Cunn. ex Schauer in Walp. $-6 \mathrm{ml} . \mathrm{N}$. of Salmon Gums; S. of Grass Patch; 30 ml . E. of Ravensthorpe
incrassata Labill.-Eucla; Esperance + var. costata (Behr and F.v.M.) N. T. Burbridge- 20 ml . W. of Colona Stn., S.A.; 30 ml . E. of Ravensthorpe + var. angulosa (Schauer) Benth. -Port Lincoln, S.A.
conglobata (R.Br.) Maiden-4 ml. W. of Ravensthorpe; Borden
tetraptera Turcz. 30 ml . E. of Ravensthorpe
Forrestiana Diels-S. of Grass Patch (one collection only in Melbourne)
doratoxylon F.v.M. - Chester Pass, Stirling Ra.

Myrtaceae (contd.)
\dagger diptera Andrews- 6 ml . N. of Salmon Gums
megacarpa F.v.M.-Weld R. gomphocephala DC.-City Beach diversicolor F.v.M.- 4 ml . E. of Pemberton
redunca Schauer in Lehm.- 30 ml . E. of Ravensthorpe; 40 ml . W. of Ravensthorpe
\dagger †ylindriftora Maiden and BlakelyS. of Grass Patch
diversifolia Bonpl. - Port Lincoln, S.A.; Venus Bay, S.A.
salubris F.v.M.-Fraser Ra.
rudis Endl. in Hueg.-Keysbrook; Mundaring weir
calophylla R.Br.-Chester Pass, Stirling Ra.; Pemberton
ficifolia F.v.M. -4 ml . E. of Nornalup
hrmatoxylon Maiden-Darling Ra., Nth. Darnalup (one collection only in Melbourne)
calycogona Turcz.-Between Balladonia and Fraser Ra.; 40 ml . W. of Ravensthorpe; Ongerup
gracilis F.v.M.-Eucla
$\dagger s p$. (aff. E. gracilis) -Ravensthorpe salmonophloia F.v.M.-Ravensthorpe oleosa F.v.M.-Between Balladonia and Fraser Ra.; Ravensthorpe + var, glauca Maiden (syn. E. transcontinentalis) - Fraser Ra.
Flocktonir Maiden- 6 ml . N. of Salmon Gums; S. of Grass Patch
falcata Turcz., var. ecostata Maiden- 30 ml . E. of Ravensthorpe
decipiens Endl. in Hueg.- $5-10 \mathrm{ml}$. S. of Chester Pass, Stirling Ra.
uncinata Turcz.-Fitzgerald R. (head)
buprestium F.v.M. $-5-10 \mathrm{ml}$. S. of Chester Pass, Stirling Ra.
marginata Sm.-Chester Pass, Stirling Ra.; 4 ml . E. of Pemberton
\dagger Jacksonii Maiden-Valley-of-Giants (Nornalup)
Leptospermum
spinescens Endl. in Hueg.- 70 ml . W. of Esperance (one collection only in Melbourne)
erubescens Shauer in Lehm.Fitzgerald R. (head)
Agonis
flexuosa (Spreng.) Shauer in Lehm. -"Pimelea," 9 ml . N.W. of Pemberton
hypericifolia Schauer in Lehm.Chester Pass, Stirling Ra.
marginata (Labill.) Schauer in Lehm.-Esperance
linearifolia (DC.) Schauer in Lehm. - 35 ml . W. of Esperance; "Pime-
lea," 9 ml . N.W. of Pemberton
parviceps Schauer in Lehm.-Chester Pass, Stirling Ra.; Porongorup foothills
Kипzea
recurva Schauer in Lehm. - Fitzgerald R. (head) ; Chester Pass, Stirling Ra.; 15 ml . N.W. of Walpole; Nth. Darnalup
affinis S. Moore- 10 ml . W. of Ravensthorpe
Melaleuca (22 spp.)
elliptica Labill. - Ravensthorpe (1 ml . N.)
acuminata F.v.M.-Ravensthorpe (1 ml. N.)
violacea Lindl. $-5-10 \mathrm{ml}$. S. of Chester Pass, Stirling Ra.
cardiophylla F.v.M.-Ravensthorpe (1 ml . N.)
suberosa (Schauer) Gardner-35 ml. W. of Esperance
pubescens Schauer in Walp.Eucla; Ravensthorpe
hamulosa Turcz.-Cannington swamps
rhaphiophylla Schauer in Lehm.Cannington swamps
cymbifolia Benth.-Between Balladonia and Fraser Ra.
cuticularis Labill.-Ravensthorpe (1 ml . N.)
calycina R.Br. in Ait.-S. of Grass Patch; 35 ml . W. of Esperance
pentagona Labill., var. subulifolia SchauerFitzgerald R. (head)
\dagger sp. -4 ml . W. of Ravensthorpe
?spathulata Schauer in Lehm.-S. of Grass Patch; Fitzgerald R. (head) + var. (?) - 35 ml . W. of Esperance
subtrigona Schauer in Lehm.-S. of Grass Patch
scabra R.Br. in Ait.- 35 ml . W. of Esperance
thymoides Labill.-Chester Pass, Stirling Ra.
microphylla Sm.-Shannon R.
acerosa Schauer in Lehm.-S. of Grass Patch; City Beach
pauperiflora F.v.M. -6 ml . N. of Salmon Gums
$\dagger \mathrm{sp}$. (cypress-like branchlets) -40 ml . W. of Ravensthorpe

Conothamnus
aureus (Turcz.) Domin-Chester Pass, Stirling Ra. (one collection only in Melboume)
Calothamnus
gracilis R.Br. -35 ml . W. of Esperance; 30 ml . E. of Ravensthorpe

Myrtacefe (contd.)
quadrifidus R.Br.-Esperance; City Beach
Beaufortia
decussata R.Br.-Chester Pass, Stirling Ra.
heterophylla (Turcz.) Domin-Chester Pass, Stirling Ra.
Breckea
crassifolia Lindl. in Mitch. - S. of Grass Patch
?tetragona (F.v.M.) Benth. -30 ml . W. of Ravensthorpe
sp. (aff. B. ramosissima) -40 ml . W. of Ravensthorpe
crispiflora F.v.M.-Fitzgerald R. (head)
Astartea
?ambigua F.v.M.-S. of Grass Patch
Hypocalymma
robustum Endl. in Hueg.-Darling Ra., Nth. Darnalup
speciosum Turcz.-Chester Pass, Stirling Ra.
Phillipsii Harv.-Chester Pass, Stirling Ra .
angustifolium Endl. in Hueg.-Darling Ra., Nth. Darnalup
Calytrix
brachyphylla Turcz. - S. of Grass Patch; 35 ml . W. of Esperance; Pallinup R.
tetragona Labill. -30 ml . W. of Ravensthorpe
$\dagger s p$. (minute calyx) - Pallinup R.
Chamelarcium
megalopetalum (F.v.M.) Benth.-35 ml. W. of Esperance

Thryptomene
austratis Endl.- 30 ml . W. of Ravensthorpe (one collection only in Melbourne)
saxicola (A. Cunn.) Schauer in Lehm.-Esperance
Darwinia
vestita (Endl.) Benth.- 35 ml . W. of Esperance; Chester Pass, Stirling Ra.
diosmoides (DC.) Benth.-Esperance
citriodora (Endl.) Benth.-Jane Brook (Nat. Park)
pimeleoides Kayser and Wakef.Jane Brook (Nat. Park) (Co-Type only in Melbourne)
Verticordia
plumosa (Desf.) Domin-S. of Grass Patch
Preissii Schauer in Lehm. -35 ml . W. of Esperance; 70 ml . W. of Esperance; 30 ml . W. of Ravensthorpe
multiflora Turcz. -30 ml . E. of Ravensthorpe
habrantha Schauer in Lehm.-Chester Pass, Stirling Ra.

Haloragidacese

Loudonia
aurea Lindl.-Mundaring fire tower

Umbelliferfe

Hydrocotyle
pilifera Turcz.-City Beach
Centella
?sp.-Shannon R.
Trachymene
anisocarpa (Turcz.) Burtt-Parryville. (Blue-flowered.)
pilosa Sm.-City Beach
Platysace
compressa (Labill.) NormanEsperance
tenuissima (Benth.) Norman-4 ml. E. of Pemberton

Xanthosia
rotundifolia DC. -4 ml . E. of Nornalup
Actinotus
superbus O. H. Sargent- 17 ml . S. of Ravensthorpe (Co-Type only in Melbourne)

Epacridacef (36 spp.)
Andersonia
echinocephala (Stschegl.) DruceChester Pass, Stirling Ra.
simplex (Stschegl.) Druce-Chester Pass, Stirling Ra.
sprengelioides R.Br.-Porongorup foothills
parvifolia $\mathrm{R} . \mathrm{Br} .-35 \mathrm{ml}$. W. of Esperance
depressa R.Br. -4 ml . E. of Nornalup
cerulea R.Br.-Shannon R.
subulata Benth.-Parryville
(Co-Type only in Melbourne)
Sphenotoma
dracophylloides Sond. in Lehm.Chester Pass, Stirling Ra.
gracile (R.Br.) Sweet- 15 ml . N.W. of Walpole
Lysinema
cilictum R.Br.-S. of Grass Patch; 35 ml . W. of Esperance
Astroloma
pallidum R.Br.-Napier Ck.
Leucopogon (18 spp.)
verticillatus R.Br.-Napier Ck.
australis R.Br.- 15 ml . N.W. of Walpole

+ var.(?) -Chester Pass, Stirling Ra.
revolutus R.Br.-Chester Pass, Stirling Ra.; Napier Ck.; "Pimelea," 9 ml . N.W. of Pemberton
atherolepis Stschegl.,
var. densiflorus Benth.-Chester
Pass, Stirling Ra.
gibbosus Stschegl.-Chester Pass, Stirling Ra.

Epacridacere (contd.)
$\dagger s p$.-Chester Pass, Stirling Ra. $\dagger s p$. (resembling L. biflorus) - 4 ml . E. of Nornalup
\dagger tp. (large pink corolla like an Epa-cris)-Greystones Rd. (Mundaring)
\dagger sp. (resembling L. virgatus) -4 ml .
E. of Nornalup
carinatus R.Br.- 20 ml . N. of Esperance
polystachyus R.Br. -4 ml . E. of Nornalup
sprengelioides Sond. in Lehm.Greystones Rd. (Mundaring)
obtusatus Sond. in Lehm.-S. of Grass Patch
fimbriatus Stschegl. -40 ml . W. of Ravensthorpe
propinquus R.Br.-Pemberton
pendulus R.Br.-1 ml. N. of Shannon R. bridge
crassifolius Sond. in Lehm. -70 ml . W. of Esperance
sp.-1 ml. S. of Bull's Brook
Monotoca
oligarrhenoides F.v.M.- 35 ml . W. Esperance (Holo-type only in Melbourne)
tamariscina F.v.M.-Chester Pass, Stirling Ra.; 4 ml. E. of Nornalup
Acrotriche
ramiflora R.Br.-Fitzgerald R. (head) (one collection only in Melbourne)
patula R.Br. Venus Bay, S.A.
Conostephium
pendulum Benth. in Hueg.-Yarloop
Needhamia
pumilio R.Br. -35 ml . W. of Esperance
Oligarrhena
micrantha R.Br.-Chester Pass, Stirling Ra.

Loganiacere

Logania
vaginalis (Labill.) F.v.M.-"Pimelea," 9 ml . N.W. of Pemberton buxifolia F.v.M.- 35 ml . W. of Esperance
stenophylla F.v.M.-S. of Grass Patch
fasciculata R.Br.--Esperance
serpyllifolia R.Br.-Napier Ck.; 4 ml. E. of Pemberton

Apocynacese

Alyxia buxifolia R.Br.-Bunbury Beach

Convolvulaceas

Wilsonia
humilis R.Br. -4 ml . W. of Ravensthorpe

Boraginacese
Halgania
lavandulacea Endl.-S. of Grass
Patch; Ravensthorpe
Labiatee
Teucrium
sessiliforum Benth. in DC.Ravensthorpe
Westringia
rigida $\mathrm{R} . \mathrm{Br} .-6 \mathrm{ml}$. N. of Salmon Gums
Dampieri R.Br.-Elliston cliffs, S.A.

Hemigenia
$\dagger s p$.-Parryville
podalyrina F.v.M. -1 ml . N. of Shannon R. bridge
incana (Lindl.) Benth.-Jane Brook
(Nat. Park)
Hemiandra pungens R.Br.-Napier Ck.
Prostanthera
calycina F.v.M.-Venus Bay, S.A.
Solanacere
Lycium
australe F.v.M.-Head of Bight, S.A.

Solanum orbiculatum Dunal in Poir.-Balladonia (granite)
Nicotiana Goodspeedii Wheeler-Head of Bight, S.A.; Kunalda, S.A.
Anthocercis
littorea Labill.-Esperance; City Beach

Scrophulariace x

*Dischisma *arenarium E. Mey.-City Beach

Orobanchacere
Orobanche
?australiana F.v.M.-City Beach
LENTIBULARIACEA
Polypompholyx
multifida (R.Br.) F.v.M.-1 ml. N. of Shannon R. bridge
Utricularia
Menziesii R.Br.-Mt. Clarence (Albany)
Myoporaceae
Myoporum serratum R.Br.-Chester Pass, Stirling Ra.
Evemophila Dempsteri F.v.M. - Moonera, near Cocklebiddy, 197 ml . W. of Eucla pachyphylla Diels-4 ml. W. of Ravensthorpe (one collection only in Melbourne) \dagger dichroantha Diels- 4 ml . W. of Ravensthorpe

Myoporacefe (contd.)
$\dagger s p$. (aff. E. dichroantha)-Salmon Gums
scoparia (R.Br.) F.v.M.-Colona Stn., S.A.
Weldii F.v.M.-Ceduna, S.A.
maculata F.v.M.-Fraser Ra.
alternifolia R.Br.-Madura Stn; Fraser Ra.

Plantaginaceac
Plantago varia R.Br.-Balladonia (granite)

Rubiaceme
Opercularia vaginata Labill. - 50 ml . W. of Ravensthorpe; Jane Brook (Nat. Park) scabrida Schlecht.- 30 ml . E. of Ravensthorpe
volubilis (R.Br.) Benth.-Parryville hispidula Endl. in Hueg.-Esperance + var. pauciflora (Endl.) Benth. -4 ml . E. of Pemberton
$\dagger s p$.-"Banksia" mill, near Dwellingup
Galium umbrosum Sol., var. muriculatum (Benth.) Ewart -Murrawijinie Cave, S.A.
Jobeliacere
Lobelia tenuior R.Br.-City Beach rhombifolia De Vr. in Lehm. $\mathbf{1} \mathrm{ml}$. S. of Bull's Brook

Goodeniaceas (25 spp.)
Velleia trinervis Labill.-S. of Grass Patch; Esperance
Goodenia
\dagger decursiva W. V. Fitzg.-Esperance (Type loc.)
affinis De Vr.-Ravensthorpe strophiolata F.v.M.-S. of Grass Patch pterygosperma R.Br. -35 ml . W. of Esperance
Leschenaultia biloba Lindl. - Dwellingup; North Darnalup; Mundaring fire tower linarioides DC.-City Beach formosa R.Br.-S. of Grass Patch; 35 ml . W. of Esperance
Diaspasis
filifolia R.Br. -15 ml . N.W. of Walpole
Screvola (9 spp). spinescens R.Br.-Salmon Gums striata R.Br.-Parryville thesioides Benth. -30 ml . W. of Ravensthorpe
crassifolia Labill.-Bunbury Beach
holosericea De Vr.-City Beach platyphylla Lindl.-Mundaring fire tower
microphylla (De Vr.) Benth.Parryville
fasciculata Benth. in Hueg.-Jane Brook (Nat. Park)
sp. (resembling Halgania lavandu-lacea)-S. of Grass Patch (one collection only in Melbourne)
Dampiera (8 spp.)
alata Lindl.- 4 ml . E. of Pemberton; 1 ml. S. of Bull's Brook
Lindleyi De Vr.-S. of Grass Patch hederacea R.Br.-Shannon R.
lavandulacea Lindl.-S. of Grass Patch
linearis R.Br. -4 ml . E. of Nornalup; Yarloop; 1 ml. S. of Bull's Brook
leptoclada Benth. -4 ml . E. of Nornalup
fasciculata R.Br.-Esperance
sacculata F.v.M. ex Benth.- 35 ml . W. of Esperance.

Stylidiaceat
Stylidium (12 spp.)
calcaratum R.Br. - "Banksia" mill near Dwellingup; Greystones Rd. (Mundaring)
imbricatum Benth. in Hueg.-Chester Pass, Stirling Ra.
petiolare Sond. in Lehm. - Greystones Rd (Mundaring); 1 ml . S . of Bull's Brook
junceum R.Br. -1 ml . S. of Bull's Brook
scandens R.Br. $-5-10 \mathrm{ml}$. S. of Chester Pass, Stirling Ra.
aтœиит R.Br.-Pemberton
Brunonianum Benth. -1 ml . S. of Bull's Brook
hispidum Lindl.-Greystones Rd. (Mundaring)
piliferum R.Br.,
var. minor Mildbr. -10 ml . W. of Ravensthorpe
schocnoides DC.-Mundaring fire tower
pubigerum Sond. in Lehm. -1 ml . S . of Bull's Brook
adnatum R.Br.-Warren R. Nat. Park

Compositae (28 spp.)
Brachycome
lineariloba (DC.) Druce-Colona Stn., S.A.
pusilla Steetz_Pallinup R.; Greystones Rd. (Mundaring)
ciliaris (Labill.) Less.-Colona Stn., S.A. + var. lanuginosa (Steetz) Benth. -Balladonia (granite)

Composite (contd.)
Minuria
Cunninghamii (DC.) Benth.Nullarbor Stn., S.A.
Olearia (10 spp.) axillaris (DC.) F.v.M., var. obovata Benth.-City Beach exiguifolia F.v.M.-Madura Stn. ramosissima Benth.-S. of Grass Patch
pimeleoides (DC.) Benth., var. minor Benth.-Ceduna, S.A.
Muelleri (Sond.) Benth.-Madura Stn.
magniflora F.v.M.-Colona Stn., S.A.
paucidentata (Steetz) F.v.M.-Warren River Nat. Park; Mundaring Weir
rudis (Benth.) F.v.M.-City Beach ciliata (Benth.) F.v.M.-S. of Grass Patch
homolepis F.v.M., var. pilosa A.J. Ewart-S. of Grass Patch
Cratystylis
conocephala (F.v.M.) S. Moore-20 ml. W. of Colona Stn., S.A.

Helipterum
Cotula (Benth.) DC.-City Beach
Helichrysum
ramosum DC.-Warren River Nat. Park
cordatum DC.—City Beach
Angianthus
tomentosus Wendl.-Balladonia (granite)
Gnephosis
$\dagger s p . n o v .-B a l l a d o n i a$ (granite)
I'odolepis
nutans Steetz in Lehm.-Jane Brook (Nat. Park)
Athrixia
asteroides (Turez.) Gardner-50 ml. W. of Ravensthorpe
nivea (Stectz) Druce- 30 ml . E. of Ravensthorpe
athrixioides (Sond. and F.v.M.)
Druce-Ravensthorpe
*Chrysanthemum
*frutescens L.-Elliston cliffs, S.A.
Senecio
lautus Soland. in G. Forst.-Head of Bight, S.A.; Esperance
*Tripteris

* clandestina Less.-Parliament House grounds (Perth)
* Ursinia
*anthemoides (R.Br.) Gaertn.-Parliament House grounds (Perth); Nth. Darnalup
*Arctotis
*nivea (L.) Hoffm.-City Beach (one collection only in Melbourne)

EndMERATION OF LICHENS

Thelotremacea
Thelotrema lepadinum Ach.-2\% ml. E. of Pemberton (on bark of shrubs and trees)
Diploschistaceat
Urceolaria
scruposa (Schreb.) Ach. Murrawijinie Cave, S.A. (on limestone soil)
Stictaceas

Sticta

?Mougeotiana Del.-2t ml. E. of Pemberton (on logs and earth)
Peltigeracefe
Peltigera polydactyla (Neck.) Hoffm.-Shannon R. (logs and earth)
Lecideaceat
Lecidea decipiens (Ehrh.) Ach. - Colona Stn., S.A. (on sandy soil)
Cladoniacere Cladonia retipora (Labill.) Flk.-Greystones Rd. (soil amongst granite)
aggregata (Sw.) Eschw.-2 2 ml . E. of Pemberton; Shannon R. (on ground)
?lepidula Krempel - $2 \frac{1}{2} \mathrm{ml}$. E. of Pemberton (on logs and earth)
verticillata Hoffm. - $2 \frac{1}{2} \mathrm{ml}$. E . of Pemberton (on logs and earth)
Thysanothecium
hyalinum (Tayl.) Nyl.-2娄 ml. E. of Pemberton (on dead wood)

Pertusariacees

Pertusaria sp.-Pallinup R. (on Casuarina bark)

Lecanoraceas

Lecanora
sphzrospora Muell. Arg. - Colona Stn. S.A. (on limestone pebblesapparently this was known from Type only)
sp. (indet,)-Colona Stn., S.A. (on stones and earth)
sp. (indet.)-Colona Stn., S.A. (on stones and earth)
sp. (indet.) -Colona Stn., S.A. (on stones and earth)

Parmeliacefe
Parmelia
physodes (L.) Ach.-2雭 ml. E. of Pemberton (on wood)
quercina (Willd.) Vainio [syn. P. tiliacea (Hoffm.) Ach.]-Pallinup R. (on trees and wood)
?caperata (L.) Ach.-Pallinup R. (on dead wood)
conspersa (Ehrh.) Ach.-Greystones Rd. (on granite rocks)
congruens Ach.-Murrawijinie Cve., S.A. (on limestone soil)
hypoxantha Muell. Arg. - Colona Stn., S.A.; Murrawijinie Cave, S.A. (on sandy soil)
australiensis Cromb. - Colona Stn., S.A.; Murrawijinie Cave, S.A. (on sandy soil)
Heterodea
Muelleri (Hampe) Nyl. - Pallinup R. (moist sandy soil under Casuarina)
Usneacere
Ramalina
calicaris (L.) Röhling-Colona Stn., S.A.; Pallinup River (on dead branches)
Usnea
florida (L.) Web. in Wigg., var. strigosa Ach. - Pallinup R. (on dead wood)
Siphula
coriacea Nyl. - Pallinup R.; Greystones Rd. (on sandy soil)

Caloplacaceat

Blastenia
ferruginea Massal - Colona Stn., S.A. (red dises on bark of Melaleuca pubescens)
Caloplaca
fulgens (Sw.) Koerb.,
var. bracteatum Muell. Arg.-Colona Stn., S.A. (yellow rosettes on limestone ground)

Teloschistacea

Teloschistes
parietinus (L.) Norm.-Colona Stn., S.A. (on bark)
chrysophthalmus (L.) Beltr.,
var. Sieberianus Muell. Arg.Colona Stn., S.A.; Pallinup R. (on bark)

Buelliacefe Buellia
subalbula (Nyl.) Muell. Arg.Colona Stn., S.A. (on limestone pebbles - apparently this was from Type only)

Physciacefe

 Physcia?pulverulenta (Schreb.) Nyl.Colona Stn., S.A. (on bark of Melaleuca pubescens)

ACKNOWLEDGMENT

Grateful acknowledgment is made to Messrs. D. A. Casey and P. C. Morrison for permission to use the photographs in Plates II-VI.

A CRITICAL REVISION OF SPECIES IN THE GENUS ASAROPODA BY NEW CHARACTERS

By Tarlton Rayment, F.R.Z.S.

Introduction

The several species in this genus are robust, red-haired bees up to 17 mm . in length, with largely yellow "faces", and clearly close to Anthophora by the mouth-parts, pygidial plates of males and females, genitalia, and the neuration of the wings. The genus is endemic to Australia and New Guinea.

The bees have not been recorded from either Tasmania or New Zealand, and Anthophora, too, is absent from those countries. The author (1942) has already discussed the peculiar distribution and polylectic habits of Anthophora as evidence of its recent arrival in Australia.
A critical study demonstrated that Asaropoda probably derives from Anthophora, and is not of primitive origin, but rather a comparatively recent branch, losing two segments of the labial palpus, leaving it with only two segments. The wings are more or less fuliginious, the legs strong and hairy; the base of the abdomen is broad, and closely adapted to the thorax, so that there is a superficial likeness to certain bumble bees.

None of the species exhibits any greenish or bluish colour, and have little relationship to the Zonata Group of Anthophora, but it is clear that \boldsymbol{A} saropode approaches the red-haired species such as Anthophora scymna Grib., and A. rhodoscymna Ckll., and could be derived from this group. A. dawsoni Raym. appears to be entirely distinct. By the genitalia, A. punctata Raym. appears to link the bombiformis group with the albiceps group. Certain Anthophorae have been included in this revision because they are not close to any other Anthophorid bees.

The species are all critical, and difficult to determine without dissection. It was found that the characters employed by the author in his critical revision of the Zonata Group held good for Asaropoda, consequently he prepared a number of mounts of the seventh abdominal tergum, the seventh, eighth and ninth sterna, -and the genitalia. It was not possible to examine the mouth-parts of every specimen surveyed in this revision.

The bees were considered by Smith to be allied to the European genus Saropoda, and bombiformis was so described, but later

Professor T. D. A. Cockerell included the species in Anthophora. However, microscopical examination showed them to be distinct, and he proposed the genus Asaropoda. It will be observed that Asaropoda has the "copulatory gauges" of Anthophora (Rayment 1942) consisting of the striated pygidial plate of the female and the bidentate plate of the male. The study of the genitalia revealed that the northern and the southern species are in two distinct groups, one possessing the genitalia of the typical Anthophorid and the other the genitalia of the Zonata Cluster.

Professor T. D. A. Cockerell (1929) had already remarked that several species have passed as A. bombiformis because of the strong superficial likeness, and the several collections which passed under the author's hands demonstrated the necessity for a critical revision of the species, since the insects had been labelled "Asaropoda bombiformis" by various workers both here and abroad. In this paper the abdominal segments are numbered morphologically.

The author is indebted to the courtesies of the authorities of the several Australian Museums for permission to study the material in their collections, and to the many correspondents who have taken specimens over a wide area of the Commonwealth, and their names are recorded under each species. The notes on the architecture of A.rufa were supplied by the original discoverer of the only cells known to the science.

The research was assisted by a small grant from the Trustees of the Science and Industry Endowment Fund, and the author desires to acknowledge the support accorded by the Chairman, Sir David Rivett, to his researches in the Australian APOIDEA.

References

Cockerell, T. D. A. American Museum Novitates, No. 346, p. 15, 1929.
Rayment, Tarlton. A Cluster of Bees, p. 389, 1935.
——, Ibid, p. 15, 393.
-, A Critical Revision of the Zonata Group in the Genus Anthophora, Treubia, Japanese Edition, p. 16, 1942.
——, Ihid, p. 15.
-, Victorian Naturalist, Vol. 65, p. 250, 1949.

Taxononic Position

Saropoda Latreille
Gen. Crust. and Insect., IV, p. 177, 1809.
Sarapoda bombiformis Smith, Cat. Hym. B.M., II, p. 318, 1854.
Anthophora Latreille
Hist. Nat. Cr. et Ins., XIV, p. 45, 1808. Anthophora bombiformis Dours, Monogr. Icon. Anthophora, p. 202, 1869.

Saropoda Latreille
Saropoda bombiformis Cockerell, Ann. Mag. Nat. Hist. (7), XVI, p. 296, 1905. Saropoda alpha Cockerell, Ann. Mag. Nat. IIist. (7), Vol. XIV, p. 204, 1904.

Asaropoda Cockerell
Ann. Mag. Nat. Hist. (9), Vol. XVIII, p. 216, 1926.
Asaropoda Cockerell
Aust. Zool., Vol. VII, Pt. I, p. 34, August, 1931.
Asaropoda Rayment
A Cluster of Bees, p. 384, 1935.
Although Cockerell (Aust. Zool.) gives six segments for the maxillary palpus and two for the labial palpus, examination by the author of these organs in A. anomala Ckll. reveals only five segments in the maxillary palpus. Antho phora has, of course, four segments, in the labial palpus, and six in the maxillary.

The specimen examined by Cockerell was taken at Studley Park, Melbourne, Victoria, and was very probably A. albiceps Raym.; Saropoda has four segments in the maxillary, and only two in the labial palpus.

Gross Morphology

Head is small in comparison with the bulk of the body, the "face" with much yellow hair; compound eyes large and bulging in both sexes; ocelli in a low curve; scape short, somewhat dilated, and often yellow, flagellum long and sub-moniliform; glossa attenuated, and bearing a number of spatulate setae as in Anthophora. The generic character is found in the labial palpus, which has but two segments, the basal one excessively long and slender; maxillary palpus of five or six segments, the basal one excessively short, the second long and slender, the others short; labrum large, pale-yellow and quadrangular ; mandibles bidentate, mostly yellow in colour; the maxillary combs are well developed, as in Anthophora.

Thorax large and strong, with a punctate sculpture but, like the scutella, hidden under the dense foxy-red fleece, so that characters of any value cannot be investigated without removing the hair ; the metathorax is similarly masked, but even after the hair is removed, there is no sculpture or other characters of specific value; tegulae large, but typical of the Family.

Abdomen strong, ovate, and broadly adapted to the thorax; tegument reddish or blackish, with the hind margins of the abdominal segments somewhat paler, the whole body covered with dense reddish hair (on the southern species the hair of the head is usually white) ; there is a blackish band on tergum three; critical specific characters lie in the apical segments of the abdomen, but these can be studied only after dissection.

Legs stout and strong, the hind pair carrying dense scopae of harvesting-hair, which is usually black on the inner surface; basitarsi broad and powerful and, like those of Anthophora have no "pad" or empodium between the claws. The antennal cleaner, the strigilis, of the anterior legs has a large convex velum; there is a broad patella, or knee-plate, on the median legs; the calcariae of the posterior legs are finely serrated, and very strong, but without the coarse teeth of other earth-digring bees.

Wings are large and strong, subhyaline, or infuscated, with large areas naked, but apically there are many short papillae, and along the costal region a few long black hairs; pterostigma inconspicuous; radial cell somewhat truncated at the end; the three cubitals sub-equal, the second receiving the first recurrent nervure at about the middle, the third intercubitus nervure usually meeting the second recurrent; the twenty or more hamuli are strongly developed, and indicate a long range of flight.

Architecture

The only cells hitherto described are in the collection of the author', and were found in February, 1932, in heavy black soil at Earlwood; in hard yellowish clay at Clovelly; in fine sand among grass-roots at Thompson's Bay. Some of these at least were built by Asaropode rufa Raym. All the localities are in New South Wales.

The entrance ranges about 9 mm . in diameter, and leads to a shaft about 10 cm . in length and which gives access to some ten or twelve oval "mud"' cells, none of which is connected. The material is not actually mud, for the "dross" has all been removed, and the refined residue of minute pebbles is incorporated with a secretion of the salivary glands. The cells measure 23 mm . at the long axis, and 16 mm . at the short axis, and are considerably lighter in weight than a similar volume of earth. (Rayment, 1935.)

Each cell has four walls, the outer rough one, the third of a smooth brown material of unknown composition, a thinner brown one like paper, and the interior one of a pale creamy nature, but the author could not determine conclusively whether or not a primitive wax had been used for the innermost lining. IIe has proved that such a material is used by Anthophora, and suspects that Asaropode has a similar habit. The total thickness of the wall is about 4 mm .

The bees seem to prefer to "nest" in the shade afforded by a ledge of rock, or even the root of a tree, and often in the vicinity of shafts of Anthophorae, although the "blue-bands" choose a sumny position nearby. Tests of the cell-material made with diluted nitric acid produced no ebulition, and there does not appear to be any lime or mortar in its composition. The cells of Anthophore, when subjected to a similar test, produced a strong ebulition, for they contain considerable lime in their composition.

Larly in March, 1949, Rica Erickson, of Bolgart, Western Australia, a valued eorrespondent who has contributed much to our knowledge of the bees of the West, discovered a fine large female searching for her "nest" in loose sand. After a survey of the locality, the bee dived down into a shaft in a small tussock of dry reeds.

This observer investigated the shaft and found that the entrance was a short turret built of the tougher bright-red subsoil, the diameter of the shaft being about 10 mm ; the particles appeared to be cemented together with a biological secretion, probably from the salivary glands, but whether from the thoracic or the cephalie systems could not be determined. Such a firm structure appeared to be essential, for the strengthening of the shaft, owing to the friable nature of the soil. The bee had not commenced to build the cells at that date, and the rather large shaft went down in a slightly winding curve for 121 cm . and terminated on a concave base. This is the first observation on these bees recorded for the far western State.

Behaviour of the Individual

These large robust bees are capable of excavating tough clayey ground, but they dig successfully in several other types of soil. Rica Erickson sends the following note on the behaviour of the female:
"She flew low over the ground in a swift but peculiar flight, now hovering, now darting, obviously searching for her nesting hole; after some hesitation she discovered it about a foot farther on, amid a similar tussock of reeds. All the time she maintained an exceedingly high buzzing obligato."

The egg of Asaropoda is large, measuring about 4.5 mm . at the long axis, with a diameter of 2 mm . approx. Like most eggs of bees they increase in size just before hatching, and the larvae of both host and a parasite feed on the store of a rather dry batter of honey and pollen, plus a little biological secretion.

Philip Whitely, another of the author's correspondents, has observed certain habits of the bees. The males assemble at night, often in the company of blue-banded Anthophorae, and arrange themselves along a dry stalk of grass, bending it with their weight. The bees grasp the stem with their mandibles, and rest throughout the night with the body held out almost at right angles to the support. This remarkable attitude is characteristic of other Anthophorid bees in America.

Whitely said that one night a violent hailstorm swept the district of Marrickville, N.S.W., and next morning he found that the hailstones had decapitated many Anthophorid bees assembled, the heads being still attached to the stalk; the headless bodies scattered over the ground. Some of these were A. rufa Raym., and others were probably A. bombiformis (Sm.).
F. E. Wilson, the well known Melbourne coleopterist, once observed a number of Asaropodae flying in company about the
flowers of mistletoc, Loranthus sp., at Melton, Victoria, but there is reason to believe that the bees visit a wide range of other plants, including the Antignon vine; Begonia sp., an introduction to Queensland; and Wandoo, Eucalyptus redunca, in West Australia, Pollens from many species have been recovered by the author from the flecee of the bees.

Comlangals and Parasiteg

At Bolgart, Rica Erickson observed a large fly in close attendance on the bee digging its shaft. "In flight the fly certainly had a superficial resemblance to the bee, for it had a long dense fleece of similar golden hair." The fly proved to be a handsome specimen of Bombylius, and there is little doubt it is parasitic in the nests of the red-haired bees.

The complete literature on the genus is not available to the author', and he is unable to determine the species, but the following brief desceription will assist in the identification of the fly.

Length 10 mm . approx. ; width of abdomen 5.5 mm , overall length of expanded wings ' 24 mm ; the insect is covered with dense long reddish-gold hair; arista black; with much long black hair; vertex with long hair about the ocelli; a long-oval depression on a dull-black almost naked area of the mesonotum; abdomen with black integument, but terga with a lateral broad reddish-amber band, and conspicuous long black hair among the golden flecce; on the ventral surface the hair is pale lemon; the very long slender legs are of a golden colour; tarsi black with black hair; wings sub-hyaline, the nervures typical of the genus; halteres clavate, golden-yellow; squamae golden-amber.

The author has reared 'Tachinid flies, Miltogramma, from cells of the blue-banded Authophorae, and as many as five red pupalcases have been present in one cell; there is no doubt that Anthophorid bees suffer from a heavy infestation of Dipterous parasites.

The most ammon parasite is probably the blue-spotted bee in the genus crocist, and specimens taken by Whiteley, at nests in Marrickville, near Sydney, proved to be C. Lugubris Sm., and a new subsperies. The parasites loiter about the vicinity with a soft noiseless flight and, when the Aseropode departs, descends to the cells to deposit the eegy, which measures about 2.8 mm . at the long axis, with a diameter' of 1.5 mm . at the short. 'The two eggs were present on one pudding. Anthophora, too, is pestered by these spoted parasites, and the young bees which emerge from such cells are mere dwarls, owing to the depleted supply of food.

The author has taken only a few acarine mites from the fleece of "ertain Ascropodue, and of the many hundreds of Anthophorid bees studied by him, only about 1 per 'ent harbon' these universal parasites. It wond appear then that, in Australia at least, Anthophorid bees enjoy a remarkable freedom from these small pests,

1. Ventral view of a new Tyroglyphid mite.
2. Dorsal view showing the striations.
3. A parasite of Asaropoda rufa that had woven the hairs and indigestible portions of the chitinous plates of the bee into a strange cocoon.
4. Portion of the shaft built by Asaropoda rickae sp. nov.
5. The rough mud broken away from a cell of Asaropoda rufa to show the smooth inner cell.
6. The cap of the cell.
7. A long spatulate seta from the mite.
and the reason for this is not known. It is interesting to learn that the very different reed-dwelling simple social bee, Exoneura, enjoys a similar freedom from mites. (Rayment, 1949.)

I am indebted to Mr. H. Womersley, South Australian Museum, Adelaide, for his determination of the mite. It is a new species of Tyroglyphus, near to the ubiquitous T. farinae L., but may be separated by the striated hysterosoma (it is pitted in farinae), and the outer spatulate setae being longer than the inner. Womersley will later publish a full specific description.

Descriptions of New Species
 Asaropoda albiceps, sp. nov.

Type, Male. Length 13 mm . approx.
Head covered with white hair; clypeus yellow, with two black lines laterally, the wide lateral yellow marks slightly higher than clypeus; a very large supra-
elypeal mark; antennae missing; mesothorax with buff hair lightly tipped with black; terga black, wide amber margins, much buff-red hair; sterna black and amber; legs reddish with buff-red hair; the black hair of the inner surface of basitarsi visible laterally as a black fringe; second cubital cell almost quadrate. The black band on abdomen more defined than on a female which seems to agree.

Allotype, Female. Length 15 mm . approx.

Head covered with deep-buff hair ; clypeus yellow, with two wide bars of suffused amber; no supraclypeal or lateral marks; antennae dark above, reddish beneath; mesothorax with buff-coloured hair tipped with black; terga black with wide red margin, the dense hair redder than thoracic fleece; sterna black with wide ferruginous margins; some black hair above the pygidial plate, which has a narrow rim and striae persisting throughout; tegument of legs dark-brown, hair red. Wings sub-hyaline, second cubital cell narrow, much contracted at top.

There is some doubt of this association with the male.
Locality. Studley Park, Melbourne, Victoria. Chas French, Junr.
Allies, Approaches dentiventris Raym. and victoriensis Raym.

Asaropoda albigena Raym. stat. nov.

 Jour, Roy. Soc. West. Aust., Vol. XVII, p. 182, 1930-1931.Male. Length 12 mm . approx. The whole insect covered with a fleece of reddishyellow hair.

Head small, scape yellow in front, flagellum black, obscurely red beneath; third segment of antennae long and slender; genae with conspicuous long white hair ; mesothorax with some black hair intermixed; margins of abdominal terga broadly red; large contiguous punctures on mesothorax; pygidial plate short, dentate.

Locality. Lander Station, West Australia. H. Newman?
Allies. Clearly close to albiceps and rickae.

Asaropoda alpha Ckll., stat. nov.

(Smith's var. A. of bombiformis)

Ann. Mag. Nat. Mist., Ser. 7, Vol. XIV, p. 204, 1904.

Male. Length $10-11 \mathrm{~mm}$. approx.
Head small, clypeus laterally with a broad black band on the yellow; flagellum ferruginous beneath; legs blackish, with much orange hair, except on posterior tarsi, where hair is entirely black; some black hair adjacent to pygidial plate, which is dentate.

Female not known.
Locality. Toowoomba and Mackay, Queensland. Coll. not known.

Asaropode anomala Ckll., stat. nov.

 American Museum Novitates, No. 346, p. 14, 1929.Male. Length 12 mm . approx. The largest and reddest species of the group.
Clypeus yellow, with a marginal black dot laterally; lateral marks suffused with orange and not quite so high as elypeus; supraclypeal mark ivory-yellow; third antemnal segment short and thick; scape yellow, flagellum blackish; a few black hairs among the very red ones of the mesothorax; terga with much darkred hair and a conspicuous black band on second tergum; legs largely red, with some black hair on the inner surface; pygidial plate obtusely bilobed (not
distinctly angled as in bombiformis, for which it would be taken on casual inspection: Cockerell).

Locality. Brisbane, Queensland. H. Hacker?
Lismore, New South Wales. Dudley Townley.
Female. Length 17 mm . approx. ; larger than bombiformis.
Head small; clypeus suffused with reddish, no lateral or supraclypeal mark; the dark antennae long, third antennal segment long and slender; seape ferruginous; red hair of mesothorax with a few black lairs intermixed; the hairs on the abdominal terga are lighter on the anterior half; sterna black; considerable black hair about the pygidial plate, which has a fine rim and striae persisting throughout.

Locality. Lismore, New South Wales. Dudley Townley.

> Asaropoda bombiformis (Sm.), stat. nov.
> Cat. Hym. B.M., II, p. 318, 1854 .

Male. Length 12 mm . approx. Smaller, and not so rufous as anomala.
Clypeus yellow, two suffused amber bars laterally, and a black dot; yellow lateral face-marks as high as clypeus, a large yellow supraclypeal mark; scape yellow, flagellum dark; mesothorax with much black hair among the buff-coloured hair; terga black, margins obscurely lighter, with much golden hair, a conspicuous black band on tergum three; sterna ferruginous, with a black dot; pygidial plate dentate, no black hair about the pygidial plate. Legs very light ferruginous in certain lights; wings sub-hyaline, the large second cubital cell almost quadrate.

Female. Length 16 mm . approx.
Head small ; clypeus suffused with reddish; no lateral or supraclypeal marks ; scapes and flagellum beneath ferruginous; dise of mesothorax with less hair, so that the sculpture is evident; the black band of the terga is very conspicuous; no black hair about the pygidial plate, which has the striae failing over a large area. Legs dark-red, with much black hair on inner surface. Wings sub-hyaline, the large second cubital cell contracted at top.

Locality. Sydney, New South Wales, Feb., 1942. Rayment.
Hunters Hill, Sydney, 20th March, 1940. L. Robertson.
Lismore, New South Wales, 13th March, 1940. Dudley Townley.
Sydney, New South Wales. Owen Dawson.
Richmond River, New South Wales?
Magnetic Island, Queensland. J. Stewart.
Toowoomba, Queensland?
Brisbane, Queensland? Recorded by H. Hacker.
Buderim Mountain, Queenslaind?
Montville, Queensland? C. Borch.
Binaturi River, New Guinea? Included by Cockerell.
This last recorded by Cockerell, but all the six must be doubtful, since both authors had more than one species.

Allies. A. anomala Ckll., A. rufa Raym., and A. rubricata Raym.

Asaropoda dentiventris, sp. nov.

Type, Male. Length 7 mm . approx. The smallest male in the group.
Hair of head white; clypeus ivory-yellow, lateral marks a triffe below apex of clypeus, a large supraclypeal mark of similar colour; antennae dark-brown above,
flagellum reddish beneath; scapes yellow beneath; mesothorax with reddish hair, a few black-tipped; terga black, obscurely lighter on margins, much foxy-red hair ; sterna black with wider amber margins ; sixth sternum with a pair of lateral teeth (see Fig. 2, Pl. 5) ; legs red, with much foxy-red hair ; the dark hair of the inner surface visible laterally as a black fringe; the fifth sternum has a sharp tooth laterally. Second cubital small and much contracted at top.

Female not known.
Locality. Broadmeadows, Victoria, 5th October, 1922. F. P. Spry.
Allies. Closely allied to albiceps Raym. and victoriensis Raym.
Asaropoda imitata, sp. nov.
Type, Female. Length 15 mm . approx.
Head covered with foxy-red hair; clypeus yellow, suffused with amber; not any lateral or supraclypeal marks; stout scapes reddish-amber, flagellum reddish beneath, darker above; mesothorax with buff-red hair and many black ones intermixed; about the tegulae the hair is bright-orange; terga black, margins obscurely reddened, much appressed red hair, among which is a few long black ones; a black spot of hair above the pygidial plate which has the striae absent on a narrow median line; sterna brownish-black; the black band and hair on the abdomen is very distinct; legs reddish with much red hair, blackish on inner surface; wings very pale; large second cubital cell almost quadrate.

Male not known.
Locality. New South Wales. Rayment Coll.
Allies. Plainly very close to rufa Raym., rubricata Raym., and bombiformis (Sm.).

Asaropoda meltonensis, sp. nov.

Type, Female. Length 16 mm . approx.
Hair of head white; clypeus yellow, suffused with amber; a wide thin supraclypeal mark; obscure lateral marks; scápe excessively short, flagellum brownishblack; mesothorax covered with foxy-red hair, not any black; abdomen with reddish-brown terga and sterna, and much red hair ; copious black hair about the apical segments; pygidial plate with striae persisting throughout; legs with similar red hair on red tegument; wings sub-hyaline, second cubital cell large, almost quadrate, slightly contracted at top. Mouth-parts could not be examined. Male not known.
Locality. Melton, Victoria. F. E. Wilson.
Allies. Approaches albiceps Raym., but not very close.
On flowers of mistletoe (Loranthus sp.).
Asaropoda punctata Raym., stat. nov.
Jour. Roy. Soc. West Aust., XVII, 1930-1931.
Type, Male. Length 13 mm . approx.
Head small, with much long buff hair; clypeus butter-yellow, white hair; lateral yellow marks higher than clypeus; large yellow supraclypeal mark; scapes ycllow in front, flagellum dark above, reddish beneath; hair of genae and pleura white; mesothorax with sparse buff-coloured and black hair ; terga black, margins amber, much dull ferruginous hair, a few long black ones; sterna darkamber; black band of abdomen but little evident; legs red, hair red, only a few
black hairs on inner surface. Wings almost clear, second cubital cell narrow, higher than wide, and contracted at top. Mouth-parts could not be studied.

Female not known.
This and albiceps are the lightest-coloured of all the group.
Locality. Brisbane, Queensland, end March, 1923. Cedric Deane.
Allies. By the genitalia, punctata appears to link the two groups, albieps and bombiformis.

> Asuropoda rictiae, sp. nov.

Allotype. Female. Lengrth 14 mm . approx.
Hair of head ivory and pale-buff, with many long black hairs intermixed; dypeus yellow, with a wide black bar laterally, and which, taken with a mude area above, form a horse-shoe design; no lateral or supraclypeal marks; the silvery hair of the genae is very conspicuous; scape and flagellum all black, the third segment of the antemae exceedingly long and slender; mesothorax with dense straw-coloured, buff, and black hair, so that the dise appears to be grey in colour: about the tegulae the hair is bright-orange; terga black, obscurely lighter on margins, and covered with a dense fleece of buff-coloured hair, sterna black, with amber margins; much black hair about the pyeqdial plate which has no rim and striat persisting throughout; legs brownish-red and black, with much deepbuft hair, tarsi reddish. Wings sub-hyaline, the small second cubital cell greatly narrowed at top: there is an enclosed deeply infuseated appendicular cell.

This may prove to be the other sex of albigena.
Locality. Bolgart, West Australia, 26th March, 1949. Ria Erickson.
Allies. The yellowest in colour of all the group.
Taken at "nest." (See notes under headings Architecture and Behaviour.)
[A fiemale, Inthophora fleture was described by Friese (I)entseh. Ent. Zeitschro. p. +4s, 1911) from Fremantle. Western Australia. From the deseription, this speress apparently appobathes the albigena group of Asoropode; the tegrment of the abobomen is black, and the dense Heece yellowish in colour ; legs, clypeus. mandibles, labrum, and tegulae gellow. The anthor has no bee conforming to the deseription, and sine Friese dees not incelude any eritical characters (he said it resembled Anthophora bombiformis), only this brief reference ean be inchuded.

The same author also deseribed Anthophora rufescens Fro. Which is said to be related to . 1. bombiformis sim., but (oekeredl (Australian Zoologist, Vol. V11, Part I, p. is. 19:31) sugerests that it "is evidently very close to A. rhodoscymme Ckll. A. scymma Grib. has the abdominal terera black.

Neither of Friese stypes was avalable for study ; no dissections appear to have herem made. and in the abseme of tienters of eritical characters the athor is mable to determine the ir true relationships. These bees have been mentioned here beeathe they eould not be included in the anthores critieal revision of the 'Zonitta group of Anthophora.]

Asaropoda rubricata, sp. nov.

Type, Male. Length 11 mm . approx.
Head small, with pale ferruginous hair; clypeus and supraclypeal mark yellowish-ivory, a suffused area laterally on the former ; lateral face-marks paler, and higher than clypeus on orbital margin; seape yellow, flagellum blackish, reddish beneath; clypeus with much black hair; mesothorax with sparse buffcoloured hair intermixed with many black ones; abdominal terga with the black band marked with much long black hair, and margins lighter; sterna clearferruginous, with much red hair. Legs ferruginous, with copious red hair; only a few black hairs on the inner surface. Wings reddish, the small second cubital cell contracted at top, higher than wide.

The general aspect is redder than bombiformis but not so red as anomala.
Female. Length 14 mm , approx.
Hair of head reddish-yellow to pale-buff, no lateral face-marks; the supraclypeal mark almost obsolete; clypeus deeply suffused with amber, copious black hair; scape black, flagellum black above and reddish beneath; mesothorax with many black hairs among the pale ferruginous ones; the black hair conspicuous about the tegulae; terga of abdomen black, with red hair, but two black bands are clearly defined; not any black hair about the pygidial plate; sterna black and ferruginous; pygidial plate with a narrow rim and striae persisting throughout; legs ferruginous, with red hair; wings reddish, the small second cubital cell higher than wide, contracted at top. This association of the sexes may not be correct.

Locality. Lismore, New South Wales, 9th March, 1940. Dudley Townley. Lismore, New South Wales, 20th May, 1940. Dudley Townley.
Parramatta, New South Wales, February, 1933. N. A. Hall.
Taken on flowers of Antignon vine.

Asaropoda rubricata dentata, subsp. nov.

A male from Sydney is not typical. Hair of frons white; the black fringe of the posterior legs, especially the basitarsi, is very conspicuous; pygidial plate with a small tubercle between the two short stout teeth; wings distinctly yellowish, the small second cubital cell almost quadrate, a small enclosed appendiculate cell; mesothorax has much black hair among the yellowish hair.

Location. Sydney, New South Wales, 7th February, 1943. Owen Dawson.

Asaropoda rufa Raym., stat. nov.

Jour. Roy. Soc. West Aust., Vol. XVII, p. 181, 1930-1931.
Male. Length 13 mm . approx.
Hair of head with a large amount of black among the orange-red hair; yellow of face suffused with reddish; supraclypeal mark deeply so; lateral facemarks as hiph as clypeus, which has much long black hair, and two longitudinal bars suffused with reddish; scape yellow, flagellum reddish beneath; mesothorax with bright ferruginous hair, many long black ones intermixed; terga black, broadly lighter margins, much appressed ferruginous hair with a few long black ones; venter clear-ferruginous; legs red, basitarsi long, the black hair of the immer surface shows laterally as a fringe against the ubiquitous red hair; wings yellow, second cubital cell slightly higher than wide.

This species is redder than bombiformis but not so red as anomala.
The type, male, was taken at Enoggera, Queensland-not Sydney, New South Wales, as given in the original description. Specimens from the latter locality are not quite typical.

Female. Length 16 mm . approx.
Head very small, and covered with bright-ferruginous hair, among which is a number of black ones; clypeus yellow, suffused with amber; not any lateral marks; supraclypeal mark so deeply suffused as to be almost obsolete; antemnae reddish beneath, slightly darker above; mesothorax with many black hairs amone the foxy-red fleece; terga black, with wide golden margins; sterna similar, muclu orange-red hair; in a certain light each of the terga show a blackish band; no black hair about the pygidial plate, on which the striac fail over a large area; wings yellowish, second cubital cell large and almost quadrate.

The pattern of the pygidial plate is after the manner of Anthophora longmani Raym.

The sexes may not be correctly associated.
Locality. Lismore, New South Wales, 1st January, 1940. Dudley Townley.
Hunters Hill, Sydney, 20th March, 1940. L. Robertson.
Ennogera, Queensland, 27th December, 1912. Coll. not known.
Marrickville, Sydney, 6th January, 1931. Phillip Whiteley.
Allies. Plainly close to bombiformis.
Taken at "nest" in the ground. (See description of the Architecture.)

Asaropoda victoriensis, sp. nov.

Type, Male. Length 8 mm . approx.
Head covered with white hair; clypeus ivory-yellow ; two wide short black bars laterally, lateral face-marks wide, and a trifle lower than the clypeus; antennae dark-brown, but scape yellow in front; mesothorax with foxy-red hair and a few black ones intermixed; terga black, margins obscurely lighter; two basal segments have copious black hair-bands, but all others covered with dense foxyred hair; sterna brownish; legs dull-reddish, hair red, but blackish on inner surface. Wings almost clear, the second cubital cell almost quadrate.

Female not known.
Locality. Broadmeadows, Victoria, 1st January, 1918. F. P. Spry.
Allies. Clearly in the albiceps and dentiventris group.

Anthophora dawsoni, sp. nov.

Male. Length 18 mm . approx., the smallest specimens 15 mm . Red and black.
Head transverse, with pale fulvous and white hair; face-marks lemon-yellow, lateral marks separated from the clypeus by a black undulating mark like that of Anthophora zonata; black frons with scattered coarse punctures; clypeus lemon-yellow, with two pale-amber longitudinal lines, white hair; supraclypeal area a wide low triangle of yellow; vertex rugose, with long pale fulvous hair; compound eyes large, claret; genae with dense fulvous hair fading to white near mandibles; labrum square, yellow, very coarsely punctured, with two black nodules on anterior margins; mandibulae yellow, blackish apically; black antennae, with yellow patch on front of scape; segments well marked.

Prothorax with dense fulvous short hair; tubercles fulvous; mesothorax with numerous large shallow punctures under a dense mat of plumose reddish hair; beneath the hair is paler; scutellum and postscutellum with a like mass of fulvous hair; metathorax masked with similar red hair; ventral segments with whitish hair; abdominal dorsal segments of a rich reddish-brown tegument; 1 with a mass of fulvous hair as on mesothorax ; 2-6 with lighter margins, and coarse appressed black hair; 7 like an oblong plate with two nodules laterally.

Legs dark-reddish, with amber hair on anterior and median pairs; much long black hair on posterior pair; tarsi reddish, with close fulvous hair on anterior, black on posterior; claws dark-reddish; hind calcar black, finely serrated, pate apically; tegulae reddish-amber, polished.

Wings suffused with a beautiful dark dusky-purple iridescence; nervures heavy and black; third cubital cell almost quadrate; pterostigma blackish, inconspicuous; hamuli powerful, about 24.

Locality. Onslow, North-West Australia, 2nd August, 1944. Owen Dawson.
Type in the collection of the author.
Allies. A very distinctive bee, resembling some of the Chalicodoma of Europe. Genitalia typical of the genus. Easily known by the dark wings and reddishbrown body.

CRITICAL REVISION OF GENUS ASAROPODA

Explanation of Plate I

No. 1. Pygidial plate of female Asaropoda bombiformis (Sm.).
2. The plate of A. anomala Ckll. has the striae persisting throughout except over a wide rim.
3. The striae persists over the narrow rim in A. rubricata, sp. nov.
4. Striae fails over a wide band on A, rufa Raym.
5. A. imitata has the striae failing on a narrow median line.
6. The plate of Anthophora grisescens Raym, has a high median rise with striae persisting throughout.
7. There is no rim, and striae persists over plate of Asaropoda meltonensis, sp. nov.
8. There is a narrow rim on Asaropoda albiceps, sp. nov.
9. Striae persists over a low narrow rim on Anthophora rhodoscymna Ckll.
10. Striae fails entirely but there is an elevated area on Anthophora calva Raym.
11. Striae persists over a low narrow rim in Anthophora preissi froggattii Ckll. The plates of Anthophorae Nos. 6 and 10 are illustrated here because they could not be included in the blue-banded Zonata Group, being nearer to A. rhodoscymna Ckll.
12-17. There is a distinctive patch of black hair on fifth abdominal sternum of A. anomala Ckll. (All at the same magnification, but allowance must be made for distortion by pressure of the cover-glass.)
18. Eighth tergum of male Asaropoda rubricata, sp. nov.
19. Anterior wing of mutation showing stump on second intercubitus nervure.
20. Posterior wing.
21. The twenty-two hamuli indicate strong flight.
22. Much of the wing area is nude, but apically there are alar papillae; a few stiff hairs are in the costal region.

Explanation of Plate II.
 Eighth Tergum and Genitalia of Males

1-2. Asaropoda bombiformis (Sm.)
3-4. Asaropoda anomala Ckll.
5-6. Asaropoda rubricata, sp.nov.
7-8. Asaropoda rufa Raym.
9-10. Asaropoda albiceps.

11-12. Asaropoda victoriensis, sp. nov.
13-14. Asaropoda dentiventris, sp. nov.
15-16. Anthophora rhodoscymna Ckll. is closer to Asaropoda by the genitalia pygidial plate.
17-18. Anthophora dawsoni Raym. is unlike other Australian species, for the pygidial plate has an almost straight margin, after the manner of certain American Anthophorid bees, such as A. edwardsii Cresson.

Explanation of Plate III
Eighth Abdominal Sternum of Males

1. Asaropoda bombiformis (Sm.)
2. Asaropoda anomala Ckll.
3. Asaropoda rubricata, sp. nov.
4. Asaropoda rufa Raym.
5. Asaropoda albiceps, sp. nov.
6. Asaropoda victoriensis, sp. nov.
7. Asaropoda dentiventris, sp. nov.
8. Anthophora rhodoscymna Ckll.
9. Anthophora dawsoni Raym.

By the genitalia of the males 2, 4, 6, 8 are definitely closely related, and approach typical Anthophora, but 10, 12, 14 are farthest away, and constitute a distinct group.

The eighth tergum of the males is bidentate, with 14 approaching the form of Anthophora dawsoni; that of Anthophora rhodoscymna is distinct, having an undulate margin.

Explanation of Plate IV

Seventh and Ninth Sterna of Males
1 and 2. Asaropoda bombiformis (Sm.)
3 and 4. Asaropoda anomala Ckll.
5 and 6. Asaropoda rubricata, sp. nov.
7 and 8. Asaropoda rufa Raym.
9 and 10. Asaropoda albiceps.
11 and 12. Asaropoda victoriensis, sp. nov.
13 and 14. Asaropoda dentiventris, sp. nov.
15 and 16. Anthophora rhodoscymna Ckll.
17 and 18. Anthophora dawsoni Raym.
By the ninth sternum 2, 4, 6, 8 are in one group, with the plate short and wide, and 10, 12, 14 are in the second group, with the plate long and narrow, as in the Zonata Group of Anthophora.

The gradulus of the seventh sternum also shows close affinity, except in the case of 17 , where the large plate is quite distinct, and only 13 shows any approach to this form.
A. rufa is close to A. anomala, but A. rubricata is closer to A. bombiformis.

Explanation of Plate V

1. Front of head-capsule of female Asaropoda rickae, sp. nov. Note the horse-shoe pattern.
2. Sixth sternum of A. dentiventris, sp. nov.
3. Seventh sternum of A. punctata Raym.
4. Sixth sternum of A. victoriensis, sp. nov.
5. Pygidial plate of female A. imitata, sp. nov.
6. Pygidial plate of female A. rickae, sp. nov.
7. Bouton, or spoon, at apex of glossa of male A. anomala Ckll.
8. Eighth sternum of male A. punctata Raym.
9. Strigilis of male A. anomala Ckll.
10. Maxilla with comb and maxillary palpus.
11. Maxillary palpus more highly magnified.
12. Dentate pygidial plate of male A. punctata Raym.
13. Posterior calcar of male.
14. Ninth sternum of A. punctata Raym.
15. Apex of stipite of genitalia of male.
16. Four tarsal segments and claws of A. anomala Ckll.
17. Third antennal segment of female A. imitata, sp. nov.
18. Third antennal segment of male A. anomala Ckll.
19. Mandible of male.
20. Labrum of male.
21. One of the spatulate setae of the glossa of male.

A NEW SPECIES OF MYADORA FROM VICTORIA (MOLLUSCA, MYOCHAMIDAE)

By J. Hope Macpherson, B.Sc., Conchologist, National Museum of Victoria.

(Received for publication July 20, 1949.)

> Myadora gabrieli, sp. nov.

Shell thin, white, oblong-ovate, abruptly truncated posteriorly, rounded anteriorly, concentrically ridged; ridges about 16 in number, regularly spaced and inflated, the slightly flattened top being broader than the base. Umbos central, acute.

Interior of the shell white, shining and showing impressions of the ridges. Muscle scars and pallial line indistinct.

Right valve convex, with an angle extending from the umbo to the posterior margin, defining the truncated area. A corresponding area in the flat left valve is slightly depressed.

Fig. 1. Myadora complexa Iredale (right valve), Twofold Bay, N.S.W. Fig. 2. Myadora gabrieli, sp. nov. (right valve), off Rhyll, Western Port, Victoria.
Fig. 3. Cross-section of ridges of Myadora complexa Iredale.
Fig. 4. Cross-section of ridges of Myadora gabrieli, sp. nov.

Type.-Dimensions. Anterior-posterior 20 mm ; umbo-ventral 15 mm .

Locality. Off Rhyll, Western Port, Victoria.
Type in National Museum of Victoria, Reg. No. F.5685. Paratypes (16) Reg. No. F. 5061.

Observations. This shell has some affinities to Myadora complexa Iredale, but differs from it in the following characters:
(1) Its more angular shape and elongate proportions.
(2) Its thinner shell.
(3) Its stronger, more inflated ridges which do not coalesce.
(4) Its ridged interior and less distinct muscle scars and pallial sinus.
The 17 specimens on which this species is founded were dredged in approximately 8 fathoms by Messrs. J. H. Gatliff and C. J. Gabriel in April, 1892, and are part of the Gatliff Collection.

NOTES ON AUSTRALIAN RHOPALOCERA WITH DESCRIPTIONS OF NEW SUBSPECIES ANI LIFE HISTORIES

By A. N. Burns, B.Sc., Entomologist, National Museum of Victoria
Family HESPERIDAE
Subfamily TRAPEZITINAE
Hesperilla flavescens flavescens Whs.
and

Hesperilla flavescens flavia Whs.
H. donnysa flavescens Whs. and II. donnysa flavia Whs. were described by Waterhouse $(1927,1941)$ as geographical races of H. donnysa Hew. II. donnysa donnysa Hew. was deseribed in 1868 by Hewitson from specimens reputed to come from Moreton Bay, Queensland. This is clearly set out by Waterhouse (1937). Waterhouse expresses a doubt as regards Moreton Bay being the correct locality but, on a visit to England some years ago, established the fact that Hewitson did receive his eastern Australian material from near Brisbane. II. donnysa is not a common butterfly in southern Queensland and northern New South Wales. Its distribution extends through south-eastern, southern, and south - western Australia, where it has developed a number of geographical races. These are all listed by Waterhouse (1941) and may be annexed to the following regions:
H. donnysa donnysa Hew. The coastal portion of New South Wales about 40 miles south of Sydney to the Newcastle area.
H. donnysa icaria Whs. (1941). The northern race, from a point north of Newcastle to the Richmond River (N.S.W.), Burleigh Heads, and Brisbane, including Stradbroke Island, Queensland.
H. donnysa samos Whs. (1941). Apparently confined to the Blue Mountains, where it is a common butterfly at an altitude of $2000-3000 \mathrm{ft}$. Λ dark race slightly smaller than icaria.
H. donnysa patmos Whs. (1941). Far eastern Victoria, throughout Gippsland, the Dandenongs, parts of coastal Victoria (Inverloch, Frankston, Dromana), parts of the Western District, inland at Ararat, and the Grampians.
H. donnysa aurantia Whs. (1927). At present this is the only race named from Tasmania, where it oceurs freely near Hobart (on Mt. Wellington) and other localities on the island.
II. donnysa diluta Whs. (1932). Found in South Australia, originally near Goolwa; also at Woods Well, Kingston, and Robe (Parsons). No doubt at other localities in the Coorong.
II. donnysa delos Whs. (1941). Near Adelaide, South Australia, chiefly in the hilly country, Mt. Lofty, Bridgewater, Aldgate, Woodside, also at Mt. Compass and Second Valley (F. Angel).
1I. donnysa albina Whs. (1932). Western Australia, near and at Bunbury (II. L. Whitlock and A. N. Burns), Waroona (F. E. Wilson). This race appears to be centred around Bunbury. It is a rare butterfly during the spring, but appears in greater numbers during March.
II. donnysa galena Whs. (1927). Geraldton, Western Australia. This is a yellowish race, bred from pupae collected by Waterhouse at Geraldton.
II. donnysa flavia Whs. (1941). Near Adelaide, at St. Kilda, West Beach (H . Angel), and IIenley Beach (Parsons). Probably at other coastal places in South Australia where its food plant occurs.
II. donnysa flavescens Whs. (1927). Until recently confined to Altona Bay, Victoria. Now also recorded from the Bellarine Peninsula and Ararat (F, E. Wilson).
With the exception of the races flavescens, flavia, and the upperside of galena, all the other races bear a resemblance to the typical form donnysa donnysa; but after careful examination of long series of the first two of the above-named races (only few specimens of galena are yet available for study) it appears conclusive that flavescens and flavia should be elevated to specific and sub-specitic rank respectively. This has been based on considerable study of their life histories, breeding experiments, times of appearance, mieroseopic examination of genitalia, and an examination of long series of specimens bred and collected over the past few years.

Much valuable information has been gleaned from the recent studies of Goldschmidt (1940) and Mayr (1942), and an endeavour has been made to ascertain the necessary data on which to substantiate the claim that flavescens and flavia are now at the stage in which they are distinct species and sub-species respectively from dommysu and its other races. Various theories based on observation and experiment have been advanced with regard to the status of a species. It has been stated that subspecies are not incipient species, nor models for the origin of the species, but are simply blind alleys within a species, and the change from one speries to another requires methods other than those afforded by an accumulation of micro-mutations.

Speries have a separate existence, and do not grade into one another. Suhsperies are similar forms or types which replace each other in geographical regions, whereas species can live in the same region or area without inter-breeding; thus one species is separated from another by a definite gap. It is in time that variation within a speries is fomb-the formation of races and
species being due to genic differentiation and differentiation in the chromosome structure. Specific differences are clear-cutwith subspecies, intergrading may occur, but the stable specific characters remain, e.g., genital armature, etc. Gradation in subspecies may extend over a geographic range begimning with one particular type and ending with another, thus expressing the extremes of intergradation.

Modern research in geneties and evolution has demonstrated that subspecific differences are not only the result of one or two gene mutations, but are the outcome of many mutational steps, as well as additional chromosomal re-arrangements. Physiological differences are important, and these in dispersion and time give rise to geographical races. Species have a genetic origin, therefore the question arises, "Are the differences between geographical races phenotypical or genotypical?" Practically all genetic factors are embodied in the chromosomes, and in all normal individuals reproducing sexually there are two sets of homologous chromosomes, one from each parent, and the genes of the two homologous chromosomes in the same individual do not merge but segregate at the formation of gametes. This is simple Mendelian inheritance, and explains most genetic phenomena.

Speciation is normal and progressive, and gives rise to the origin of new species. Mutations are abnormal, and though they occur frequently, may not be adaptive, and even may be upsetting factors in the normal course of speciation. It is generally accepted that by the gradual building up of minor mutational degrees, eventually a stage is reached where a new species is evolved.

Within a species, or even more precisely within a subspecies, individuals of a population will vary (polymorphism), and these variants will be seen to fall into certain similar types. Rarely extreme variants occur, such as albinos (whites), or on the other hand melanic (dark) forms. Polymor phism may vary in geographical races which are widely separated geographically, and have been thus over a long period of time.

The geographical race or "subspecies" has hence become a specialized subdivision of the original species, and differs genetically and taxonomically from the other geographical races of the same species. In races not widely separated by geographical barriers, it is natural to consider that these differences would not be so marked, and intergradation might even occur. This shows the desirability, or rather necessity, for having large numbers of specimens from many localities for study and examination. It is generally accepted that all forms which produce fertile offspring belong to one species; this is the outcome of a process,
and forms which have attained this level have diverged physiologically to the extent that they can live in association with each other without interbreeding. Thus each species in a genus consists of a population of individuals which may replace another population geographically or ecologically, and each such group is reproductively isolated from other such groups.

Not all species, however, break up into geographical races; some species are static, others plastic, and upon this characteristic depends the ability to change gradually. The formation of a new species has been summarized as follows: "The geographic isolation from the parent species has brought about characteristics which make reproductive isolation certain if the two species are brought together" (Mayr).

Other theories exist regarding the origin of speciation:
(1) Semi-geographic, i.e., the origin of species gaps in zones of intergradation.
(2) Non-geographic or sympatric speciation. This would be either instantaneous or by ecological specialization, and would be confined within a single population or interbreeding unit.

If gradual, the idea is regarded as being possible through the formation of biological or ecological races which gradually build up differences, until the stage of specific distinctiveness is reached. Sympatric forms which are morphologicaly identical, but which may possess specific biological characters and are reproductively isolated, are called Sibling species, but must not be confused with geographical races.

Size as a character does not enter largely into the donnysa flavescens problem as it does in the classical example of the moth Lymantria and its various races; donnysa and its various races are all of similar size, and any great departure from the normal would be due to the influence of environmental characters.

The subspecies samos (Blue Mountains) is generally smaller and darker than donnysa and the races patmos and icaria, and can easily be picked and distinguished by visible characters. The females in particular have the hyaline markings clear-cut. Patmos (Victoria, excepting Altona Bay and parts of the Bellarine peninsula), icaria (northern N.S.W. and southern Qucensland), donnysa donnysa (Sydney - Newcastle), delos (near Adelaide), and diluta (Coorong) all exhibit great similarity; if anything, delos is larger and a little more richly coloured than the other races; diluta is slightly paler, has a duller and wider sex mark in the male, and tends to have pinkish suffusion on the underside. The Tasmanian race, urrantin, has the hyaline markings richer
and deeper in colour than the mainland forms-and fresh specimens, especially females, have a faint plum-coloured suffusion on the underside.

The south-western Australian form albina has the markings on both sexes considerably reduced and paler in colour, and the underside has a definite brownish suffusion.

Galena is smaller than either flavescens or flavia, and not as yellow. In the male, the sex mark is wavy, brown, and oblique, and extends from just below vein 1 A to just above vein 4 , and the cilia are grey-brown. The underside of the male is much more like donnysa, and is greyish-brown. Although the upperside of the female resembles a small flavescens, the underside, too, is greyish-brown. The writer has not seen enough specimens yet to prove whether this race belongs to domysa or flavescens. It is very unlike the south-western albina, and until many more specimens are collected and studied, and specimens of one or both obtained from between Geraldton and Perth, it must remain as a race of donnysa. Its food plant is Gahnia trifida.

In the case of Lymantrio, a definite gradient in racial types parallels a climatic change. H. donnysa extends from the latitude of Brisbane, through coastal N.S.W., Victoria (chiefly south of the Divide), South Australia, and Western Australia from near. Albany to Geraldton. This distribution presents a great diversity in climate from a mild and comparatively humid one, through one with warm dry summers and cold damp winters, to one with a fairly mild winter and a hot dry summer. Yet unless one was familiar with donnysa and its races, it is unlikely that it would be possible for other than a specialist to pick out specimens of each race from a large number of specimens and assign each to its correct region. This is excluding samos, which is a mountain form and darker, and aurantia, the Tasmanian form, which is also darker. H. donnysa flavescens and flavia have purposely been omitted here, and will be discussed later. This distribution, with the exception of Western Australia, is probably due to the ability of the species to widen its range, rather than to have been isolated in certain areas due to geological changes. Its occurrence, however, in Western Australia, with an apparent gap from South Australia, makes it appear to be a residual butterfly there. This seems also to apply to the Satyrid butterfly Heteronympha merope duboulayi (Butl.) and the Hesperid, Trapezites sciron (Whs. and Lyell) and other species which occur in that State as well as in the east of Australia.
\boldsymbol{H}. donnysa appears to be fairly constant in its races, only two types of variation usually being found-one in which the central
hyaline patch of the hind wing in the female has one or two small orange dots, and that in which the third hyaline spot near the tormus in the forewing of the male is absent. Other much less apparent variations also occur. These are inherited in a simple Mendelian way, and do not bear any relation to any particular subspecies.

To define the limits of distribution of each of the subspecies referred to above, with the exception of samos (Blue Mountains) aurantia (Tasmania), and albina (W.A.), would be somewhat difficult. H. donnysa donnysa, from the Sydney-Newcastle area, is smaller than the northern race icaria (Whs.), and the species no doubt occurs right through the coastal country from Newcastle to Brisbane, wherever its food plant occurs. The Victorian race, patmos, is found from far eastern Gippsland across the State to the Grampians and the far south-western corner, and appears to be constant throughout.

Subspecies are the product of a number of micro-mutations brought about to cope with local conditions, climate, etc.-in the process of adaptation to environment in time. In the process of evolution, the transition of one stable organic system into another still stable system brings about the origin of the new species (Goldschmidt). This is possible only by means of an initial change in the chromosomes which then gives rise to the formation of a new and stable organism.

Of all the races of H. donnysa donnysa, flavescens and flavia are outstanding; the factors governing their separation as a distinct species (flavescens) with a geographical race (flavia) will be set out hereunder. Flavescens was first recorded by the late F. P. Spry, then Entomologist of the National Museum of Victoria, from Altona Bay, Victoria, in 1927, where it breeds on Cladium filum, a clumpy sword or "cutty" grass which grows in the swamps behind the shore-line. A spring and autumn brood are produced, the first appearing during October and early November, and the latter during March and early April. The species was also taken by the author during October-November, 1946, at several places at Lake Coonewarre near Barwon Heads, where it was breeding on Cladium filum.

It is of interest that H. donnysa patmos occurs within 20 miles of Altona Bay (near Box Hill), where it breeds on Gahnia radula. It, too, produces a spring and an autumn brood, the former appearing during November and early December, and the latter during March. Of several hundred specimens bred over a period of three years from larvae and pupae collected within 25 miles of Melbourne (excepting Altona Bay), in addition to many captured
specimens, no flavescens-like specimen has been observed. Likewise, of over 250 specimens of flavescens bred from Altona Bay, no donnysa patmos type has been noted. Although the difference in the food plant of these insects is an important point, it is not, however, in itself sufficient to prove the specificity of flavescens.

Another point worthy of consideration is that flavescens appears on the wing from three weeks to a month earlier than patmos, so that when one is finishing the other is only beginning.

These facts led to a detailed study of flavia, which occurs at St. Kilda, Henley Beach, West Beach, and other low-lying coastal places near Adelaide, where the food plant grows. This is Cladium filum, and during August, 1947, when the writer was in Adelaide, a visit was made to St. Kilda, in company with N. B. Tindale of the South Australian Museum, and F. Angel of Parkside, Adelaide, where a large number of larvae and pupae was collected. As with flavescens, these began emerging fully three weeks in advance of H. donnysa delos (Whs.) from the Adelaide hills. I am indebted to Mr. F. Angel for specimens and much valuable information relative to the above species.
H. donnysa patmos is not confined to feeding on Galmia radula; occasionally it is found feeding on Gahnia psittacorum, but, as far as the writer is aware, has not been recorded as feeding on Cladium filum.

In July, 1947, at Ararat, Victoria, F. E. Wilson collected three donnysa type skipper larvac from a sword grass which resembled Gahnia radula; these he was successful in breeding to the adult stage. There were one male and two females, all of which bear a very strong resemblance to flavescens. Close examination of and comparison with flavescens shows them to be this species. They all emerged from pupae in early November, 1947.

Slides were made of the male genitalia of donnysa patmos, flavescens and flavia, the specimens coming from Ferntree Gully, Victoria, Altona Bay, Victoria, and St. Kilda, S.A., respectively. Careful examination of these shows considerable differences which are detailed in the camera lucida drawings.
M. W. Mules carried out an interesting experiment in 1948, when he caged 12 freshly emerged males with 12 freshly emerged females of donnysa patmos, but results were entirely negative in that no pairs mated.

In the spring of 1947 the writer placed several three-quarter grown larvae of flavescens on Gahnia radula (food plant of donnysa patmos), but they refused to feed. This, however, does not

flavia

Male genitalia of Hesperilla flavescens flavescens Whs., Hesperilla flavescens flavia Whs., and Hesperilla donnysa patmos' Whs.
necessarily mean that they would not do so if placed on this plant when very young.
Accurate enlarged colour drawings of the larvae and pupae of flavescens, flavia, and patmos have been made by P. J. O'Brien, late Preparator of the National Museum. The drawings were made in each case from an average specimen selected from a number, and some interesting differences are apparent; these are set out in the descriptions of the larvae and pupae hereunder:

Hesperilla flavescens Whs.

Larva. Length (average) $1 \frac{1}{4}$ inches (32 mm .)
Colour: Body-Apple green, tinged bluish at junction of segments. Dorsal line dull green, much darker than body; ventral surface bright green slightly tinged blue. Head-Coriaceus, yellowish green slightly tinged brown; a wedgeshaped marking narrowing from mandibles to back of head, dull piceus. A moderately wide stripe on the sides of the head from base of mandibles to back of the head in some specimens, in others to half way or further, piceus. Mandibles shining black. Anal Plate-Indistinctly blue-green with numerous small black granules. From anal end of plate just before the margin about 8 bristle-like setae, brown. Extreme margin fringed with very fine white setae. SpiraclesLight brown, first larger than the others, transversely oval, last slightly larger than medians, also transversely oval, medians round. Prolegs-Hyaline tipped black. Claspers-Bright green, hooks blackish.

Food plant: Cladium filum.
Pupa. Length (male) $\frac{7}{8}$ inch ($22-24 \mathrm{~mm}$.) ; (female) 1 inch or a little more ($26-28 \mathrm{~mm}$.).
Colour: Dark piceus, margin of wing cases much diluted, abdominal segments with fairly short brownish setae, many of which arise from umbilicate pustules. Cremaster-Black, fringed with fairly long brown setae. Operculum-Nitid, tripartite, coarsely sculptured and clothed with fine reddish setae. A tuft of short setae on each shoulder, brown.

Dorsal surface of abdominal segments with umbilicate pustules sparse on basal segments, increasing in size and number towards apex.

Localities. Altona Bay, near Lake Coonewarre, and Ararat, Vic.
The writer recently visited St. Kilda, S.A., where flavia occurs; the type of country and general ecology is identical with that where this species occurs.

Adult

Male. Above: Forewing brown, suffused yellow giving a Jellowish-brown appearance. A series of from 2 to 5 small subapical spots hyaline yellow, an elongate spot at distal end of cell darker hyaline yellow, and a series of from 3 to 4 similar discal spots. The extent of the yellow suffusion varies in individuals, and may extend from over half way from the base to completely covering the wing. Sexmark grey-brown, oblique, normally from just below vein 1A to just above vein 4. Cilia greyish white.

Hindwing brown suffused yellow, a central dark yellow spot slightly hyaline. In some specimens there may be one or two minute yellow dots immediately below and bordering the central marking. Cilia greyish white.

Beneath : Forewing apex extending almost to tornus pale ashy grey; apical, cellular, and discal spots indistinctly as above; below the subapical spots a dull
black patch; the area from distal end of and below cell also black. Cilia greyish white.

Hindwing greyish white faintly suffused yellowish or pale ashy grey, a small central spot sometimes whitish, narrowly encircled dull black, sometimes reduced to a small dull black spot. A curved series of 6 or 7 similar spots extending from near apex to near dorsum. Cilia greyish white.

Female. Above: Forewing brown suffused yellow, this suffusion usually being more pronounced than in the male. A series of from 4 to 5 subapical spots hyaline yellow, an elongate spot at distal end of cell darker hyaline yellow, and a series of from 3 to 5 similar diseal spots. In some specimens these spots coalesce to form an irregular band. Sexmark absent. Cilia greyish white.

Hindwing brown suffused yellow, a moderately large central marking dark yellow, very slightly hyaline. As in the male, there may be one or two small yellow circular dots immediately below and bordering the central marking. Cilia greyish white.

Beneath: Forewing similar to the male, spots larger and more clearly defined, an obscure dull black streak in the yellow of the cell.

IIindwing also as in the male, the central spot sometimes whitish and only faintly visible, the narrow dull black encircling margin sometimes being absent. The curved series of spots as in the male and varying in number in individuals, from 5 to 7. Cilia greyish white.

Distribution. Victoria: Altona Bay, Bellarine Peninsula near Lake Coonewarre, and Ararat.

Hesperilla flavescens flavia Whs.

Larva. Length (average) $1 \frac{1}{4}$ inches (32 mm .).
Colour: Body-Apple green, tinged bluish at junction of segments. Dorsal line dull green, much darker than body; ventral surface bright green, slightly tinged blue. Head-Coriaceus, yellowish green slightly tinged brown; a wedgeshaped marking narrowing from mandibles to back of head, dull piceus. A moderately wide stripe on the sides of the head from base of mandibles to the back of the head in some specimens, in others to half way or further, piceus. Mandibles shining black. Anal Plate-Indistinctly blue-green with numerous small black granules. Just before margin about 8 bristle-like setae, brown, a few shorter semi-erect ones between. Extreme margin fringed with very fine white setae. Spiracles-Light brown, first larger than the others, transversely oval, last slightly larger than medians, also transversely oval, medians round. Prolecrs-Hyaline tipped brown-black. Claspers-Bright green, hooks brown.

Food plant: Cladium filum.
Pupa. Length (male) $\frac{7}{8}$ inch ($22-24 \mathrm{~mm}$.) ; (female) 1 inch ($25-27 \mathrm{~mm}$.).
Colour: Dark piceus, marerins of wing cases much diluted, abdominal segments with fairly short setae, many of which arise from umbilicate pustules. Cremaster-Black, fringed with long brown setae. Operculum-Nitid, tripartite, coarsely sculptured and clothed with fine reddish setae. A tuft of short setae on each shoulder, brown.

Dorsal surface of abdominal segments with umbilicate pustules, sparse on basal segments, increasing in number towards apex. In this subspecies these pustules tend to extend further laterally, especially in male pupae, than in flavescens.

It is doubtful if this really warrants a racial name, close examination of long series of specimens showing it to present exactly the same types of variation as flavescens. The tendency for the discal spots in the forewing of the female to coalesce and form an irregular band as in flavescens oceurs in about the same percentage of specimens. The sexmark in the male is also oblique and greyish brown. The food plant is the same (Cladium filum) and the insect is found in precisely similar localities on the swampy flats near the sea.

In company with N. B. Tindale and F. Angel of Adelaide the writer was able to visit St. Kilda near Adelaide and collect a number of larvac and pupaethese, as the accompanying figures show, are identical with those of flavescens; the feeding habits and shelters made by the larvae also agree in every way.

Distribution. South Australia: St. Kilda, West Beach, and other places near the sea where the food plant grows.

Hesperilla donnysa patmos Whs.

Larva. Length (average) $1 \frac{1}{4}$ inches (32 mm .).
Colour: Body-Yellowish green, darker green at junctions of segments laterally and at base of prolegs. Ventral surface slightly darker and less yellowish. Surface of body with very minute scattered brown setae arising from minute granules, these interspersed sparsely with very fine white setae. HeadBrownish green, finely granulate, a wedge-shaped marking narrowing from mandibles to back of head, piceus; a very fine brown line running down middle from vertex to half way, where it forks and runs to the margin of markings at mandibles. A wide stripe on sides of head sometimes from base of mandibles to back of head, sometimes only part of the way, piceus. Mandibles shining black. Anal Plate-Yellowish green with numerous small black granules; from end and sides just before margin 6 long brown setae, extreme margin with a few fairly long brown setae tipped white, interspersed with a few shorter white setae. Spiracles-Light brown, first larger than the others, transversely oval, last slightly larger than median ones, also transversely oval, medians round. Prolegs-Hyaline tipped shining pale brown. Claspers-Yellowish green, hooks light brown.

Food plant: Gahnia radula, rarely G. tetragonocarpa and G. psittacorum.
Pupa. Length (male) $\frac{7}{8}$ inch almost to 1 inch ($23-25 \mathrm{~mm}$.) ; (female) 1 inch or a little more ($25-27 \mathrm{~mm}$.).

Colour. Dark piceus, margin of wing cases much diluted, usually more so in male pupae, and suffused greenish; junctions of abdominal segments lighter in colour, also suffused greenish, and with fairly short brown setae arising from umbilicate pustules which are sparser on basal segments, and increase in size and number towards apex. Cremaster-Black, fringed with long brown setae. Operculum-Nitid, tripartite, coarsely sculptured angularly, dotted sparsely with fine reddish brown setae; palpal shields dark brown, almost black. A tuft of setae on each shoulder, reddish brown.

Sexmarks. (Found only in males.)

1. Hesperilla donnysa donnysa Hew. Dull black, extends from below vein 1A to vein 4 . Narrow and nearly uniform.
2. Hesperilla donnysa icaria Whs. Dull black, extends from below vein 1A to vein 4. Broadest near 4, gradually narrowing towards 1 A .

3. Hesperilla donnysa samos Whs. Dull black, extends from below vein 1Λ to vein 4 , practically uniform.
4. Hesperilla donnysa patmos Whs. Dull black, extends from below vein 1Λ to vein 4 , usually slightly widening towards 4 .
5. Hesperilla donnysa delos Whs. Dull black, extends from below vein 1Λ to vein 4, almost uniform.
6. Hesperilla donnysa diluta Whs. Dull black, extends from below vein 1A to vein 4 , sometimes broadening towards 4 .
7. Hesperilla donnysa aurantia Whs. Dull black, extends from below vein 1A to vein 4 . In some examples inclined to be interrupted, usually almost uniform.
8. Hesperilla donnysa albina Whs. Dull black, extends from below vein 1A to vein 4. Narrow, almost uniform, sometimes slightly interrupted.
9. Hesperilla donnysa galena Whs. Greyish black, oblique, extends from below vein 1A to vein 4 . Irregular and of uniform width.
10. Hesperilla flavescens flavescens Whs. Obliquely greyish black, extends from below vein 1 A to vein 4 . In some specimens almost uniform, usually not interrupted, narrow.
11. Hesperilla flavescens flavia Whs. Obliquely greyish black, extends from below vein 1A to vein 4 . In some specimens widest near 4, gradually narrowing towards 1Λ, in others almost uniform, generally not interrupted.

Table showing extremes in variation of markings in H. flavescens, H. flavescens flavia, and H. donnysa patmos

Males
 Females

flavescens
Total Specimens examined, 63 males, 43 females

No. Spec.	Discal Spots	No. Spec.	Sub- Apical Spots	No. Spec.	SubCentral Spots	No. Spec.	Discal Spots	No. Spec.	Sub- Apical Spots	No. Spec.	SubCentral Spots
46	4	20	5	9	2	35	4	29	5	20	2
12	3	16	4	12	1	8	3	11	4	9	1
5	2	27	3					3	3		

flavia
Total Specimens examined, 29 males, 17 females

23	4	5	5	12	2	4	4	4	5	8	2
4	3	9	4	8	1	5	3	10	4	4	1
2	2	15	3			8	2	3	3		

Total Specimens examined, 69 males, 47 females

26	4	4	5	1	2	20	4	2	5	1	1
31	3	7	4								
12	2	56	3			27	3	10	4	2	2
		2	1					35	3		

Deductions made from Table and Graphs

Subapical Spots

The flavescens and flavia graphs V in the opposite direction to the patmos graph.
Flavescens males tend to a high number with 3 and 5 spots, but fewer with 4 , thus showing strongly a variation within the species of greater numbers with the maximum and minimum number of spots. In the females the tendency towards the maximum is more marked.

Flavia males show a decreasing tendency towards the maximum number; this is slightly more marked in the females. This may be a pointer towards a geographical difference.
Patmos shows 3 spots to be typical in the males, and in the females the greatest number exhibited the same number. Thus in all three the typical number of spots is 3 , but the number distribution is very different, particularly with patmos as compared with flavescens and flavia.

Discal Spots

Flavescens shows a marked tendency towards more spots, especially in the males; this is almost equally marked in the females.
Flavia males show a similar inclination, but the females indicate a slight decrease towards the maximum amount of spotting.
Patmos shows a mean of 3 spots with a marked tendency in both sexes to lesser numbers with the maximum number of spots.
Subcentral Spots
Hindwing: Flavescens and flavia show a different distribution from patmos in numbers having a particular number of spots. Patmos males show a limitation of range to lower numerals; in the females the tendency is to a higher range. Flavescens females show a mean round one spot with a rather marked tendency towards two; flavia exhibits this tendency to a lesser degree. Flavescens males show a slightly decreasing inclination towards two spots, in contrast with flavia males which show a slightly increasing tendency. This again may be movement towards geographical change.

Order LEPIDOPTERA Suborder RHOPALOCERA Family SATYRIDAE Geitoneura klugi insula n. subsp.

Male. Above: Forewing black with rich orange brown markings which are slightly more restricted than in mainland specimens (W.A.) and examples from
the castern States. A white pupilled ocellus near apex, sexmark brown-black and extending from vein 4 to the mid-point of vein 1A. Tornus black, dorsum brown-black, cilia greyish.

Hindwing with central area rich orange brown, a central black band extending from vein 4 to vein 1B, a white pupilled ocellus in discal area at tornus and another smaller ocellus near apex. In most examples this ocellus shows the white pupil clearly but in some specimens it is reduced to a black spot. Cilia grey.

Beneath: Forewing similar to the upperside, apical ocellus larger and brighter, apex greyish black, sexmark absent, orange markings darker towards base.

Hindwing not nearly as variable as in typical klugi; light grey with rich brown-black striae and markings which are darker and generally more extensive than in the typical form. The central dark band sharply edged black. Ocelli faintly visible.

Female, Above: Similar to the male, markings orange but paler and more extensive; ocellus near apex white pupilled and clearly defined. Dorsum brownblack near tornus, almost merging to orange near base. Cilia grey.

Hindwing similar to the male but with orange area much more extensive, margins narrower, central dark band in some examples almosi absent, only the portion near vein 4 being clearly visible, in others brown but less conspicuous than in the typical form. Cilia grey.

Beneath: Forewing similar to the upperside, apical ocellus larger and more distinct, apex grey finely suffused black, orange markings darker and richer near base.

Hindwing grey with dark brown and black striae and markings which are more numerous and generally darker than in mainland (W.A.) specimens and $k l u g i$ from eastern Australia. The central dark band much less conspicuous than in the male, sharply edged black. Ocelli faintly visible. The black markings in the discal area are so numerous as to constitute an almost continuous greyish black area.

This race is considerably brighter than klugi from the mainland and on the wing presents quite a different appearance. G. klugi Guer. is a common butterfly in southern Australia and Tasmania, and as far as is at present known has not developed many geographical races, G. klugi mulesi Bns. from Wardang Island, S.A., being the only one so far described.

It is likely, however, that when further long series of specimens are collected and studied from South and Western Australia other races will be found. Specimens from the mainland of Western Australia, which at the nearest point is about 9 miles from Rottnest Island, are definitely distinct from this new race. The writer collected a number of specimens at Bunbury, Kings Park (Perth), and Wembley during November, 1947, and again in company with F. E. Wilson at the same and additional localities in November, 1948. Although the females are brighter in colour and appear different from castern specimens, the males exhibit little difference. One male captured at the $6 t$-mile post on the Geraldton road on 12.11 .48 is smaller and paler than all other specimens collected, and at first glance resembles specimens from
the Grampians area in western Victoria. The collection of further material from this locality in the future will provide valuable data for study of this interesting butterfly.

It is worthy of note to mention that an allied species, Geitoneura minyas minyas Whs. and Lyell, is a common butterfly in coastal south-western Australia and so far has never been recorded from Rottnest Island. The distribution of minyas on the mainland is extensive, occurring from east of Albany in the south to north of Geraldton (minyas mjobergi Aur.) in the north, a total distance of at least 700 miles. F. E. Wilson and the writer collected intensively on Rottnest Island and examined many places which looked promising for minyas, but without result.

On the mainland both species fly freely together. Minyas appears on the wing about the first week of October, and persists until the end of November (Perth area) ; klugi appears towards the end of October and continues until December, so that by the end of October and beginning of November overlapping of both species occurs.

A large series of minyas was collected because of the great variation exhibited in this species; many females, especially those captured late in its season, bear a striking resemblance to G. klugi both on the upper and undersides of the wings. This variation is not a geographical one, because at all places where the insect was collected a similar range of variations was found. Much further interesting study remains to be done with regard to this species also.

I am indebted to Mr. L. Glauert, Director of the West Australian Museum, for valuable assistance and notes covering his obscrvations made over a number of years and trips to Rottnest Island, and he states that he has never seen G. minyas there, although G. klugi is always plentiful.

Types in the collection of the writer.
Distribution. As known, Rottnest Island, 9 miles from the mainland of Western Australia, opposite Cottesloe.

Family LYCAENIDAE
 Subfamily THECLINAE

Ialmenus icilius parvus n. subsp.
Male. Above : Forewing smoky brown with a large central area metallic green faintly tinged blue. The brown margins have a faint bronzy lustre. Cilia greyish brown.

Hindwing smoky brown with a large central area metallic green faintly tinged blue. Vein 2 prolonged into a short tooth at the base of which is a black dot above which again is a small faint almost obscure orange-brown marking. In
some specimens the black dot at the base of the tooth is absent. Cilia greyish brown.

Beneath: Forewing pale greyish brown with slightly darker markings which are narrowly edged greyish white. The intra-marginal markings run from the apex to the tornus, forming a slightly lomulated irregular band which is more clearly defined in some specimens than others. Cilia dull brown.

IIindwing as the forewing with rather darker markings which are narrowly edged greyish white. The intra-marginal band runs from the apex to the dorsum and, as in the female, is much more distinct in some specimens than others.

Female. Above: Forewing smoky brown, rather paler than in the male, with a large central area pale metallic blue. A narrow smoky brown marking interrupts the metallic blue at end of cell. Cilia greyish white.

Hindwing smoky brown, central area pale metallic blue, vein 2 prolonged into a short tooth at the base of which is a small black spot; above this, extending along each side, is a narrow orange-brown marking. In some specimens this marking is so pale that it is almost obscured. Some specimens show another minute black dot near the end of vein 1 A . Cilia greyish white.

Beneath: Forewing as in the male; markings more variable, in some examples being so faint as to merge into the grey-brown colour of the wing, in others darker but usually not so conspicuously edged greyish white. Cilia dull greyish brown.

Hindwing as the forewing, markings as in the male, with the same degree of variation in individuals as stated for the forewing. In nearly all the specimens examined two black dots narrowly and obscurely edged orange-brown, one at the end of vein 2 , the other near the end of vein 1 A . Cilia dull greyish brown.

Microscope slides have been made of the male genitalia of both Geraldton and Walebing (W.A.) specimens, and examination shows them to be identical.

This race is much smaller, and the females considerably duller, than other specimens of I. icilius from Western Australia and the eastern States. A number of icilius was captured and bred from Walebing, 95 miles north of Perth along the Geraldton road, and these were quite typical, perhaps a little larger than the usual type of specimen from the eastern States. Further specimens were captured at National Park (F. E. Wilson), near Perth, and these were typical though definitely larger than normal castern specimens.

Larvae and pupae of this new race were collected, these corresponding in habits and markings with the specimens from Walebing, and life history stages observed by the writer in western Victoria. Larvae and pupae were attended by a small black ant.

Food plant: Λ phyllode type of Acacia (A. cyanophylla?).
Distribution. Geraldton district, Moonyoonooka, Western Australia.

Types in the collection of the writer.

Ialmenus schraederi Felder

Through the courtesy of J. Macqueen of Milmerran, Queensland, I have been able to have photographs made of the larva and pupa of this interesting butterfly. A description of these was given in the Queensland Naturalist, Vol. 13, No. 4, August 1947, pp. 75-79, together with interesting notes regarding the habits, ant association, and feeding of this and another closely allied species, Ialmenus ictinus Hew.

In the adult stage I. schraederi and I. ictinus are practically indistinguishable. Mr. Macqueen has examined many specimens of each species and states as a result that he cannot find any single constant point of difference between them. Dr. Waterhouse, who is a notable authority on the subject, has seen and examined the same series of specimens, and he too agrees that no constant point of difference can be found. The writer has examined very carefully long series of I. ictinus and has compared them with a number of specimens of I. schraederi sent to him by Mr. Macqueen, and has come to the same conclusion. In some of the females of I. schraederi the metallic area of the wings appears to be very slightly tinged purplish-blue, but variation in the colour and its intensity also occurs in some examples of I. ictinus.

The larva of each species is very dissimilar in appearance, markings, and body features, and is in each instance attended by a different species of ant. I. ictinus is always attended by the common red Meat or Mound Ant (Iridomyrmex detectus), whilst I. schraederi is attended by a small reddish coloured ant (Froggatella kirbyi).

The food plant of both species is Brigalow (Acacia harpophylla), but Mr. Macqueen records having once taken I. schraederi on Heterodendron diversifolium. He further states that I. ictinus is widely distributed throughout the district (near Milmerran, Q.), whilst I. schraederi is very local and favours the same feeding trees year after year; and although the two species have been taken within ten feet of one another, each remained on its own food plant with its own particular species of ant.

Considerable differences exist in the shape and colouration of the pupa of each species. I. ictinus varies from pale brown to almost black in colour and is stouter and less elongate than that of I. schraederi, which is invariably black. Mr. Macqueen makes mention of the interesting fact that whilst I. ictinus pupates in twos and threes amongst the twigs or leaves of the food plant, those of I. schraederi (unless parasitized) are invariably found in sheltered places under bark or holes in fence posts some distance from the feeding tree.

Whilst figuring the larva and pupa of each of the above species, two pairs each of the butterflies of I. ictinus and I. schruederi have been photographed to show the identical appearance of both upper' and undersides of the wings.

Recently I had the opportunity of examining further specimens of I. schraederi ?Feld. and agree with the later observations of Mr. J. Macqueen that in this species the costa of the forewing is not as straight as in I. ictinus; that the metallic area in ictimus females is more purplish, and in the males more bluish.

Both species occur during the summer months, from December until the end of March (Macqueen). The writer has had I. ictinus from the Rockhampton district in central coastal Queensland, New South Wales (near Paterson) and Victoria (Bacchus Marsh and Broadmeadows), and in each instance, though feeding on a different species of Acacia, the larvae and pupae have always been attended by the red Meat or Mound Ant (Iridomyrmex detectus). From each of these localities the specimens were obtained during the summer months, i.e., from December to March.

Ialmenus inous Hew.

Larva. Length (average) $\frac{7}{8}$ inch ($20-22 \mathrm{~mm}$.)
Colour: Dark brown, almost chocolate; dorsal line broad, brown; on either side a broad greyish brown longitudinal stripe, outside this a broad chocolate stripe marked intersegmentally with a narrow greyish stripe which is not continuous through the segments. Lateral area paler brown, with three interrupted pale greyish brown longitudinal stripes. Anterior segment with two flange-like projections directed forwards and carrying a number of long white setae. Central area of this segment depressed, with a large diamond-shaped shiny dark brown marking. Second and third segments each with a rounded projection which carries short dark-brown stiff bristles arising from pustules. Anal segment much depressed and carrying a shiny black plate. Pre-anal segment with two conical prominences bearing a stellate tuft of short white setae. Head retractile, black. Body ventrally pale yellowish green suffused pale green. Extreme lateral edges of segments with pale brown setae arising from small black pustules.

Larvae shelter during the day, either singly or in twos or threes, along the stems of the food plant just below ground level. They harmonize perfectly with their surroundings, and are always attended profusely by numerous brown ants (Iridomyrmex gracilis?) whose mound nests are usually close to the feeding shrubs. In habits larvae of I. inous greatly resemble those of I. icilius. Occasionally small larvae may be found resting in daytime along the young shoots of the food plant. Rarely larvae may be found with the chocolate coloured areas bright apple green.

Pupa. Length (average) $\frac{1}{2}$ inch ($11-13 \mathrm{~mm}$.).
Stout and much flattened ventrally. Attached by the tail and a central girdle to leaves, stems, debris or clods of earth, or the stem of the food plant just below ground level, and attended by ants.

Colour: Dull black, varying to greyish, irregularly blotched with black markings and spots; ventral area paler and with fewer and similar black markings. In some examples where the ground colour is greyish there is a pink suffusion. In no two pupae are the black markings similar in pattern.

Food plant: Acacia cyanophylla.
Locality. Western Australia, at Bunbury, Hamel, and Waroona, during the months of October, November and December. It is probable that butterflies may also be found from January to March. During the first week of November, 1947, at Bunbury butterflies were flying, and eggs, larvae in all stages, and pupae were collected.

Family HESPERIDAE Subfamily TRAPEZITINAE

Description of the Larva and Pupa of Anisyntoides argenteoornata insula Whs.

Larva. Length (average) $\frac{3}{3}$ inch ($18-20 \mathrm{~mm}$.).
General body colour faintly pinkish grey, with a series of black angular Jongitudinal lines. Body surface closely granulate. Dorsal line narrow, slightly irregular, black, more clearly defined towards the anterior end of the body. On either side of this four irregular longitudinal lines, black, those nearest the dorsal line being the broadest and the others decreasing in width towards the lateral area.

Anal l'late slightly depressed, on thls a median black line and a black crescent-shaped marking which joins the median marking at the anterior end and extending round the margins. The anal plate also carries a few minute black spots.

IHead coarsely granulate; a nitid median broad marking extends from the vertex to the centre of the face, where it forks into two narrower markings each of which extends to the region of the mandibles. On either side of this a pale pinkish grey area which margins the black markings. Mandibles nitid, shining. Sides of head broadly and irrecularly nitid and extending to lateral centre.

Ventral area of body pale pinkish white.
In general appearance the larva of this butterfly bears a strong resemblance to that of Trapezites luteus Tepper., and the habits and flight of the butterfly to that species also.
'The larva was fiust taken by F. E. Wilson on Rottnest Island, Wester'n Australia, on 1st November, 1948, and the pupa by the writer on 27th October, 1947.

Unlike the larvae of Trapezites, which construct shelters of leaves drawn together and situated right at the base of the food plant, the larva of this insect spins a whitish cocoon which is open at one end and which is usually situated amongst the foliage quite near the top of the food plant.

A larva of the mainland form was collected at Bunbury, W.A., on 5.11.48.

Food plant: Acanthocarpus pressii.

Pupa. Enclosed within a white silky cocoon which is open at the top or placed between several leaves of adjacent grass or similar plants which are incorporated into a cocoon-like structure.

Length $\frac{5}{8}$ inch ($12-14 \mathrm{~mm}$.). Stout, resembles a Trapezites pupa.
Colour: Light brown, darker dorsally and in the region of the legs and antennae ventrally. Eyes prominent.

Operculum not well defined, small, rounded, irregularly furrowed and bearing short greyish setae. Another tuft of setae on each side of the prominence above the eyes, so that they are almost surrounded with setae.

Whole of dorsal area and abdomen finely clothed with short greyish setae, dorsal area marked with darker brown irregular transverse lines.

Cremaster long, dark brown and curved forwards.
Locality. Western Australia at Rottnest Island during October and November. Also recorded from Monte Bello Island and the Abrolhos Islands.

The butterflies are attracted to flowers of several species; those most frequently visited are Senecio and a yellow flowering tussocky herbaceous plant, Conostilis radicans.

The food plant (Acanthocarpus preissii) of this insect was observed at Bunbury, Wembley, Rottnest Island and Geraldton.

Adknowledgements

The writer desires to thank the undermentioned for generous assistance in the preparation of this paper:

Mr. L. Glanert, Director of the W.A. Museum, data;
Mr. J. Macqueen, Milmerran, Queensland, specimens and data;
Miss J. Gemmell, Glen Aplin, Queensland, specimens;
Mr. H. Lawson Whitlock, Bunbury, W.A., specimens and data;
Mr. F. Angel, Adelaide, S.A., specimens and data;
Mr. S. Angel, Hobart, Tasmania, specimens and data;
Mr. J. R. Cunningham, Kingston, Tasmania, specimens and data;
Mr. M. W. Mules, Croydon, Victoria, data and reports of experiments;
Mr. F. E. Wilson, Hon. Entomologist, National Museum of Victoria, specimens and data;

Mr. P. J. O'Brien, late Preparator, National Museum of Victoria, accurate coloured drawings of life histories; and

Mr. L. Chapman, Assistant, National Museum of Victoria, assistance with drawings.

References

1. The Material Basis of Evolution. Richard Goldschmidt, Univ. of California. (New Haven: Yale Univ. Press, 1940.)
2. Systematics and the Origin of Species. Ernst Mayr, the American Museum of Natural History. (Columbia Univ. Press, 1942.)
3. Waterhouse, G. A., 1927. Australian Hesperidae, Part I. Notes and Descriptions of New Forms. Proc. Linn. Soc. N.S.W., LII, Part 3, pp. 275-283.
4. Waterhouse, G. A., 1932 (a). Australian Hesperidae, Part II. Notes and Descriptions of New Forms. Proc. Linn. Soc. N.S.W., LVII, Parts 3-4, pp. 218-238.
5. Waterhouse, G. A., 1932 (b). What Butterfly Is That? (Angus \& Robertson, Sydney.)
6. Waterhouse, G.A., 1934. Australian Hesperidae, Part V. Notes and Descriptions of New Forms. Proc. Linn. Soc. N.S.W., LIX, Parts 5-6, pp. 411-415.
7. Waterhouse, G. A., 1937. Australian Hesperidae, Part VII. Notes on the Types and Type Localities. Proc. Linn. Soc. N.S.W., LXII, Parts 3-4, pp. 107-125.
8. Waterhouse, G. A., 1941. Australian Hesperidae, Part X. On Hesperilla donnysa Hew., 1868. Proc. Linn. Soc. N.S.W., LXVI, Parts 3-4, pp. 215-218.
9. The Butterflies of Australia. Waterhouse and Lyell. (Angus \& Robertson, Sydney, 1914.)

EXPLANATION OF PLATES

Plate I

Fig. 1. Hesperilla flavescens flavescens Whs.
(a) Larva, lateral view.
(b) Head of larva, front view, enlarged.
(c) Male pupa.
(d) Operculum of male pupa, enlarged.
(e) Operculum of female pupa, enlarged.
(f) Female pupa.

Fig. 2. Hesperilla flavescens flavia. Whs.
(a) Larva, lateral view.
(b) Head of larva, front view, enlarged.
(c) Male pupa.
(d) Operculum of male pupa, enlarged.
(e) Operculum of female pupa, enlarged.
(f) Female pupa.

Fig. 3. Hesperilla donnysa patmos Whs.
(a) Larva, lateral view.
(b) Head of larva, front view, enlarged.
(c) Male pupa.
(d) Operculum of male pupa, enlarged.
(e) Operculum of female pupa, enlarged.
(f) Female pupa.

Fig. 4. Ialmenus inous Hew.
(a) Larva, lateral view.
(b) Larva, dorsal view.
(c) Pupa, lateral view.
(d) Pupa, dorsal view.

Plate II

Fig. 1. Hesperilla flavescens flavescens Whs.
(a)-(f) Males, the last one in the series (f) showing the underside.
(g)-(1) Females, the last one in the series (1) showing the underside.

These specimens were chosen from long series to show the extremes of range in markings.

Fig. 2. Hesperilla flavescens flavia Whs.
(a)-(f) Males, the last one in the series (f) showing the underside.
(g)-(l) Females, the last one in the series (l) showing the underside.

These specimens were chosen from long series to show the extremes of range in markings.

Mem. Nat. Mes. Viet., 17

Plate III

Fig. 1. Hesperilla donnysa patmos Whs.
(a)-(f) Males, the last one in the series showing the underside.
(g)-(l) Females, the last one in the series showing the underside.

These specimens were chosen from long series to show the extremes of range in markings.

Fig. 2. (a) Geitoneura klugi insula n. subsp. Male.
(b) Geitoneura klugi insula n. subsp. Male, underside.
(c) Geitoneura klugi klugi Geur. Male, underside.
(d) Geitoneura klugi klugi Geur. Male.
(e) Geitoneura klugi insula n. subsp. Female.
(f) Geitoneura klugi insula n. subsp. Female, underside.
(g) Geitoneura llugi klugi Guer. Female.
(h) Geitoneura klugi klugi Guer. Female, underside.

Plate IV
Fig. 1. (a) and (b) Ialmenus icilius parvus n. subsp. Males. Geraldton, W.A.
(c) and (d) Ialmenus icilius icilius Hew. Males. Walebing, W.A.
(e) and (f) Ialmenus icilius icilius Hew. Males. Western Grampians, Vic.
(g) and (h) Ialmenus icilius parvus n.subsp. Females. Geraldton, W.A.
(i) and (j) Ialmenus icilius icilius Hew. Females. Walebing, W.A.
(k) and (1) Ialmenus icilius icilius Hew. Females, Western Grampians, Vic.

Fig. 2. (a) Ialmenus schraederi ?Feld. Male, upperside.
(b) Ialmenus schraederi ?Feld. Male, underside.
(c) Ialmenus ictinus Hew. Male, upperside.
(d) Ialmenus ictinus Hew. Male, underside.
(e) Ialmenus schraederi ?Feld. Female, upperside.
(f) Ialmenus schraederi ?Feld. Female, underside.
(g) Ialmenus ictinus Hew. Female, upperside.
(h) Ialmenus ictinus Hew. Female, underside.

Plate V

Fig. 1. Anisyntoides argenteo-ornata insula Whs.-mature larva.
Fig. 2. Anisyntoides argenteo-ornata Whs.-pupa, lateral view.
Fig. 3. Anisyntoides argenteo-ornata insula Whs.-mature larva.
[Photography by M. W. Mules.]

Plate VI

Fig. 1. Ialmenus schraederi ?Feld.
(a) Young larva.
(b) Mature larva.
(c) Pupa.

Fig. 2. Ialmenus ictinus Hew.
(a) Mature larva.
(b) Pupa.

A SYSTEMATIC LIST OF THE MARINE AND ESTUARINE MOLLUSCA OF VICTORIA

By
J. Hope Macpherson, B.Sc., Conchologist, National Museum of Victoria, and
Rev. E. H. Chapple,
Honorary Palacontologist and Conchologist, National Museum of Victoria.

Introduction

This list is an attempt to express, in terms of modern nomenclature, the species recorded from the Victorian coast. It is based entirely upon the writings of earlier workers, and the authors have had no opportunity of personally verifying all the species listed. The data with some original specimens is loose, and they require critical comparison with recently collected and adequately dated specimens, on which some morphological work can be done.

In the meantime it is felt that the present revised list will serve a useful purpose in allowing workers to directly relate Victorian mollusca with the modern nomenclature used in recent lists from other parts of Australasia.

Early Victorian conchologists were fortunate in having a detailed checklist, the "Catalogue of the Marine Shells of Victoria,'' by G. B. Pritchard and J. H. Gatliff, published in parts in the Proceedings of the Royal Society of Victoria, between 1897 and 1905. It was kept up to date until 1930 by a series of papers, "Additions to and Alterations in the Catalogue of Victorian Marine Mollusea," by J. H. Gatliff and C. J. Gabriel, in the same publication. Since this time no attempt has been made to bring our nomenclature into line with that accepted in other States.

Mr. C. J. Gabriel, while retaining a keen interest in marine conchology, has of late years contributed only in the field of land and freshwater mollusca. ${ }^{1}$

[^1]
Acknowledgements

We would like to acknowledge the help of several workers. Firstly, we wish to record our thanks to Mr. C. J. Gabriel, whose generosity in sharing both his specimens and his wide knowledge has greatly helped us.

We are also indebted to Mrs. J. J. Freame for the loan of specimens of Nudibranchia, to Mr. A. Carter for allowing us to see the MS. of his list of Sepiidae, and to Miss P. Hoggart for preparation of the index and proof reading.

Explanation of Text

This list follows the generally accepted classification of molluses to the level of genera, but, for convenience, species are listed in alphabetical order. Original generic descriptions are listed, and the type of the genus will be found, in brackets, at the end of the reference.

The original reference to each specific description is also given and where the species has since been removed from its original genus, the latter is inserted after the author's name.

PHYLUM MOLLUSCA

Class CREPIPODA

Order EOPLACOPHORA Family LEPIDOPLEURIDAE
Terenochiton Iredale, Proc. Mal. Soc., 11, 1914, p. 28. (subtropicalis Iredale.) badius Hedley and Hull, Lepidopleurus, Rec. Aust. Mus., 7, 1909, p. 260, pl. 73, f. 1 and 2.
liratus H. Adams and Angas, Lepidopleurus, Proc. Zool. Soc., 1864, p. 192. matthewsianus Bednall, Lepidopleurus, Proc. Mal. Soc., 7, 1906, p. 92, pl. 9, f. 1-1f.

Parachiton Thiele, Revision Chitonen (Chun's Zoologica, heft 5-6), Part 1, 1909, p. 14. (acuminatus Thiele.)
collusor Iredale and Hull, Aust. Zool., 3, 1925, p. 346, pl. 39, f. 22.
columnarius Hedley and May, Lepidopleurus, Rec. Aust. Mus., 7, 1908, p. 123, pl. 24, f. 27-28.
profundus May, Lepidopleurus, Illustrated Index Tasm. Shells, 1923, App. and pl. 14, No. 2.

Order MESOPLACOPHORA Family ISCHNOCHITONIDAE

Subterenochiton Iredale and Hull, Aust. Zool., 3, 1924, p. 227. (gabrieli Hull.) gabricli Hull, Ischnochiton, Proc. Roy. Soc. Vic., 25, 1912, p. 120, pl. 8, f. 1a-f.

Ischnochison Gray, Proc. Zool. Soc., 1847, p. 126. (textilis Gray.)
atkinsoni Iredale and May, Proc. Mal. Soc., 12, 1916, p. 110, pl. 4, f. 3. cariosus Pilsbry, Heterozona, Man. Conch., 14, 1892, p. 65, pl. 24, f. 20-22. contractus Reeve, Chiton, Conch. Icon., 4, 1847, pl. 15, f. 78.
elongatus Blainville, Chiton, Dict. Sci. Nat., 36, 1825, p. 542.
falcatus Hull, Proc. Roy. Soc. Vic., 25, 1912, p. 121, pl. 8.
fruticosus Gould, Chiton, Proc. Bost. Soc. Nat. Hist., 2, 1846, p. 142.
lentiginosa Sowerby, Chiton, Mag. Nat. Hist., Charlesworth, 4, 1840, p. 293.
lineolatus Blainville, Chiton, Dict. Sci. Nat., 36, 1825, p. 541.
pura Sykes, Proc. Mal. Soc., 2, 1896, p. 88, pl. 6, f. 3, 3a.
resplendens Bednall and Matthews, Proc. Mal. Soc., 7, 1906, p. 91, pl. 9, f. 4-4f.
smaragdinus Angas, Lophyrus, Proc. Zool. Soc., 1867, p. 115, pl. 13, f. 28. subviridis Iredale and May, Proc. Mal. Soc., 12, 1916, p. 105, pl. 4, f. 2.
tateanus Bednall, Proc. Mal. Soc., 2, 1897, p. 147, pl. 12, f. 3 and text fig.
thomasi Bednall, Proc. Mal. Soc., 2, 1897, p. 149, text fig. and pl. 12, f. 4 and 5.
torri Iredale and May, Proc. Mal. Soc., 12, 1916, p. 111, pl: 5, f. 3.
versicolor Sowerby, Chiton, Mag. Nat. Hist., Charlesworth, 4, 1840, p. 292.
virgatus Reeve, Chiton, Conch. Icon., 4, 1847, pl. 28, f. 192.
wilsoni Sykes, Proc. Mal. Soc., 2, 1896, p. 89, pl. 6, f. 1, 1a.
Stenochiton H. Adams and Angas, Proc. Zool. Soc., 1864, p. 193. (juloides H. Adams and Angas.)
cymodocealis Ashby, Trans. Roy. Soc. S.A., 42, 1918, p. 70, pl. 13 and 14, f. $1,4,5,11,12$ (a, b, c, d, e).
longicymba Blainville, Chiton, Dict. Sci. Nat., 36, 1825, p. 542.
pallens Ashby, Trans. Roy. Soc. S.A., 24, 1900, p. 86, pl. 1, f. 1a-g.
pilsbryanus Bednall, Ischnochiton, Proc. Mal. Soc., 2, 1897, p. 142, text fig.
Ischnoradsia Shuttleworth, Mittheil. Natur. Gesell. Berne., 1853, p. 189. (australis Sowerby.)
australis Sowerby, Chiton, Mag. Nat. Hist., Charlesworth, 4, 1840, p. 290. evanida Sowerby, Chiton, Mag. Nat. Hist., Charlesworth, 4, 1840, p. 291.

Family CALLISTOCHITONIDAE

Callistelasma Iredale and Hull, Aust. Zool., 3, 1925, p. 351. (antiqua Reeve.) antiqua Reeve, Chiton, Conch. Icon., 4, 1847, pl. 25, f. 169.
meridionalis Ashby, Callistochiton, Trans. Roy. Soc. S.A., 43, 1919, p. 400, pl. 42, f. 7.
Callistassecla Iredale and Hull, Aust. Zool., 3, 1925, p. 351. (mawlei Iredale and May.)
mawlei Iredale and May, Callistochiton, Proc. Mal. Soc., 12, 1916, p. 113, pl. 4, f. 5.

Order ISOPLACOPHORA Family CRYPTOCONCHIDAE

Craspedoplax Iredale and Hull, Aust. Zool., 4, 1925, p. 96. (rariabilis H. Adams and Angas.)
cornuta Torr and Ashby, Acanthochites, Trans. Roy. Soc. S.A., 1898, p. 217, variabilis H. Adams and Angas, Hanleya, Proc. Zool. Soc., 1864, p. 194. pl. 6, f. 3.
Meturoplax Pilsbry, Nautilus, 7, 1894, p. 107. (retrojecta Pilsbry.)
retrojecta Pilsbry, Acanthochites, Nautilus, 7, 1894, p. 107.
Acanthochiton Gray, London Medical Repository, 15, 1821, p. 234. (fascicularis Linn.)
bednalli Pilsbry, Acanthochites, Proc. Acad. Nat. Sci. Philad., 1894, p. 81, pl. 2, f. 7-11.
coxi Pilsbry, Acanthochites, Nautilus, 7, 1894, p. 119.
gatliffi Ashby, Trans. Roy. Soc. S.A., 43, 1919, p. 398, pl. 42, f. 2-5.
granostriatus Pilsbry, Acanthochites, Nautilus, 8, 1894, p. 119.
kimberi Torr, Acanthochites, Trans. Roy. Soc. S.A., 36, 1912, p. 167, pl. 6, f. 5a-f.
pitsbryi Sykes, Acanthochitcs, Proc. Mal. Soc., 2, 1896, p. 91, pl. 6, f. 6, 6a. sueurii Blainville, Chiton, Dict. Sci. Nat., 36, 1825, p. 553.
wilsoni Sykes, Acanthochites, Proc. Mal. Soc., 2, 1896, p. 92, pl. 6, f. 2, 2c. Notoplax H. Adams, Proc. Zool. Soc., 1861, p. 385. (speciosa H. Adams.)
costata H. Adams and Angas, Acanthochites, Proc. Zool. Soc., 1864, p. 194.
speciosa H. Adams, Cryptoplax, Proc. Zool. Soc., 1861, p. 385.
Bassethullia Pilsbry, Nautilus, 41, 1928, p. 105 . (matthewsi Pilsbry.)
glypta Sykes, Acanthochites, Proc. Mal. Soc., 2, 1896, p. 92, pl. 6, f. 5, 5a. matthewsi Pilsbry, Acanthochites, Nautilus, 7, 1894, p. 120.

Family CRYPTOPLACIDAE

Cryptoplax Blainville, Dict. Sci. Nat. (Levrault), 12, 1818, p. 124. (larvaeformis Burrow.)
iredalei Ashby, Trans. Roy. Soc. S.A., 47, 1923, p. 238, pl. 19, f. 4. striata Lamarek, Chitonellus, Anim. s. Vert., 6, 1819, p. 317.

Family PLAXIPHORIDAE

Poneroplax Iredale, Proc. Mal. Soc., 11, 1914, p. 32. (costata Blainville.) albida Blainville, Chiton, Dict. Sci. Nat. (Levrault), 36, 1825, p. 547. costata Blainville, Chiton, Dict. Sci. Nat. (Levrault), 36, 1825, p. 548.
Kopionella Ashby, Trans. Roy. Soc. S.A., 43, 1919, p. 71. (matthewsi Iredale.) matthewsi Iredale, Plaxiphora, Proc. Mal. Soc., 9, 1910, p. 99.

Order TELEOPLACOPHORA
 Family AULACOCHITONIDAE

Loricella Pilsbry, Man. Conch., 14, 1893, p. 238. (angasi H. Adams.)
angasi H. Adams, Lorica, Proc. Zool. Soc., 1864, p. 193.
Aulacochiton Shuttleworth, Mitt. Naturf. Ges. Berne., 1853, p. 192. (volvox Reeve.)
cimolia Reeve, Chiton, Conch. Icon., 4, 1847, pl. 21, f. 141.

Family LEPIDOCHITONIDAE

Paricoplax Iredale and Hull, Aust. Zool., 6, 1929, p. 87. (crocina Reeve.) crocina Reeve, Chiton, Conch. Icon., 4, pl. 22, f. 146.
Acutoplax Cotton and Weeding, Trans. Roy. Soc. S.A., 63, 1939, p. 189. (mayi Torr.)
mayi Torr, Callochiton, Proc. Roy. Soc. Tas., 1912, p. 1.
rufa Ashby, Callistochiton, Trans. Roy. Soc. S.A., 24, 1900, p. 87, pl. 1, f. $2 \mathrm{a}-\mathrm{g}$.

Family CHITONIDAE

Anthochiton Thiele, Das Gebiss den Schnecken (Troschel), 2, 1893, p. 377. (tulipa Quoy and Gaimard.)
bednalli Pilsbry, Chiton, Nautilus, 9, 1895, p. 90.
calliozona Pilsbry, Chiton, Nautilus, 8, 1894, p. 55.
diaphora Iredale and May, Rhyssoplax, Proc. Mal. Soc., 12, 1916, p. 115, pl. 5, f. 1.
exoptanda Bednall, Chiton, Proc. Mal. Soc., 2, 1897, p. 152, text fig. and pl. 12, f. 7.
jugosa Gould, Chiton, Proc. Bost. Soc. Nat. Hist., 2, 1846, p. 142.
orukta Maughan, Chiton, Trans. Roy. Soc. S.A., 24,1900 , p. 89, pl. 1, f. 3a-g. tricostalis, Pilsbry, Chiton, Nautilus, 8, 1894, p. 54.
Mucrosquama Iredale and Hull, Aust. Zool., 4, 1926, p. 182. (carnosus Angas.) verconis Torr and Ashby, Chiton, Trans. Roy. Soc. S.A., 2, 1898, p. 215, pl. 6, f. 1 .

Class GASTROPODA Subelass S'TREPTONEURA Order ASPIDOBRANCHIA Suborder ARCHAEOGASTROPODA Superfamily ZEUGOBRANCHIA Family HALIOTIDAE

Haliotis Linne, Syst. Nat., ed. 10, 1758, p. 779. (midae Linne.)
coccoradiatum Reeve, Conch. Icon., 3,1846 , pl. 13, f. 46.
conicopora Peron, Voy. "Terre. Aust.," 2, 1816, p. 80.
cyclobates Peron, Voy. "Terre Aust.," 2, 1816, p. 80.
emmae Reeve, Conch. Icon., 3, 1846, pl. 10, f. 29.
improbulum Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 222.
laevigata Donovan, Rees Encyclopaedia, Conch. Series, 1808, pl. 6. ruber Leach, Zool. Mise., 1, 1814, p. 54, pl. 23.

Family SCISSURELLIDAE

Scissurona Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 215. (rosea Hedley.) remota Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 215.
Schizotrochus Monterosata, Ann. Mus. Stoc. Nat. Genova, 9, 1877, p. 416. (crispata Flemming.)
australis Hedley, Scissurella, Mem. Aust. Mus., 4, 1903, p. 329, f. 63.
Schismope Jeffrey, Ann. Mag. Nat. Hist., 17, 1856, p. 321. (striatula Philippi.) atkinsoni T. Woods, Scissurella, Proc. Roy. Soc. Tas., 1876, p. 149. beddomei Petterd, Journ. of Conch., 4, 1884, p. 139. pulchra Petterd, Journ. of Conch., 4, 1884, p. 139.

Family FISSURELLIDAE

Scutus Monfort, Conch. Syst., 2, 1810, p. 58. (ambiguus Chemnitz.)
anatinus Donovan, Rees. Encyclop. Conch., 5, 1820, pl. 16. antipodes Montfort, Conch. Syst., 2, 1810, p. 58.
Tugalia Gray, Dieffenbach's New Zealand, 2, 1843, p. 240. (elegans Gray.) cicatricosa A. Adams, Proc. Zool. Soc., 1851, p. 89.
Emarginula Lamarck, Syst. Anim., 1801, p. 69. (conica Lamarek.) amitina Iredale, Ree. Aust. Mus., 14, 1925, p. 257, pl. 42, f. 12, 13. australis Quoy and Gaimard, Voy. "Astrolabe," Zool. 3, p. 328, pl. 68, f. 11-12.
candida A. Adams, Proc. Zool. Soc., 1851, p. 85. dilecta A. Adams, Proc. Zool. Soc., 1851, p. 85.
superba Hedley and Petterd, Rec. Aust. Mus., 6, 1906, p. 216, pl. 37, f. 7, 8.
Montrortula Iredale, Trans. New Zeal. Instit., 47, 1914, p. 433. (rugosa Q. and G.)
conoidea Reeve, Emarginula, Conch. Syst., 2, 1842, pl. 140, f. 7.
rugosa Quoy and Gaimard, Emarginula, Voy. "Astrolabe," Zool. 3, 1834, p. 331, pl. 68, f. 17-18.

Hemitoma Swainson, Malacology, 1840, p. 356. (tricostata Swainson.)
subemarginata Blainville, Emarginula, Diet. Sci. Nat. (Levrault), 14, 1819, p. 382.

Cosmetalepas Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 218. (concatenata Crosse and Fischer.)
concatenata Crosse and Fischer, Fissurella, Journ. de Conch., 12, 1864, p. 348.

Amblychilepas Pilsbry, Man. Conch., 12, 1890, p. 184. (javanicensis Lamarck.) javanicensis Lamarck, Fissurella, Anim. s. Vert., 6 (2), 1822, p. 14.
omicron Crosse and Fischer, Fissurella, Journ. de Conch., 12, 1864, p. 348.
Sophismalepas Iredale, Proc. Limn. Soc. N.S.W., 49, 1924, p. 219. (nigrita Sowerby.)
crusis Beddome, Fissurella, Proc. Roy. Soc. Tas., 1882, p. 169.
nigrita Sowerby, Fissurella, Proc. Zool. Soc., 1834, p. 127.
oblonga Menke, Fissurella, Moll. Nov. Holl., 1834, p. 33.
Macrochisma Swainson, Malac., 1840, p. 356. (hiatula Swainson.) producta A. Adams, Proc. Zool. Soc., 1850, p. 202. tasmaniae Sowerby, Thes. Conch., 3, 1866, p. 206, pl. 244, f. 223.
Eleaidion Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 220. (audax Iredale.) audax Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 220.
Vacerra Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 221. (demissa Hedley.) demissa Hedley, Puncturella, Rec. Aust. Mus., 5, 1904, p. 93, f. 19.
harrisoni Beddome, Cemori, Proc. Roy. Soc. Tas., 1882, p. 168.

Suborder DOCOGLOSSA
 Superfamily PATELLACEA
 Family Patellidae

Patellanax Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 239. (squamifera Reeve.)
chapmani T. Woods, Patella, Proc. Roy. Soc. Tas., 1876, p. 157.
peroni Blainville, Patella, Dict. Sci. Nat. (Levrault), 38, 1825. p. 111.
squamifera Reeve, Patella, Conch. Icon., 8, 1855, pl. 32, sp. 94.
victoriana Singleton, Proc. Roy. Soc. Vic., 49, 1937, p. 391, pl. 23, f. 1.
Cellana H. Adams, Proc. Zool. Soc., 1869, p. 274. (cernicai H. Adams.)
laticostata Blainville, Patella, Dict. Sci. Nat. (Levrault), 38, 1825, p. 111.
rubraurantiaca Blainville, Patella, Dict. Sci. Nat. (Levrault), 38, 1825, p. 110.
tramoserica Sowerby, Patella, Cat. Tankerville Coll., 1825, p. 30.

Family LOTTIIDAE

Patelloida Quoy and Gaimard, Voy. "Astrolabe," Zool. 3, 1834, p. 349. (rugosa Quoy and Gaimard.)
alticostata Angas, Patella, Proc. Zool. Soc., 1856, p. 56, pl. 2, f. 11.
latistrigata Angas, Patella, Proc. Zool. Soc., 1865, p. 154.
nigrosulcata Reeve, Patella, Conch. Icon., 8, 1855, pl. 30, sp. 84.
submarmorata Pilsbry, Acmaea, Man. Conch., 13, 1891, p. 52, pl. 42, f. 69-70.
Chinzacmea Oliver, Trans. and Proc. New Zealand Inst., 56, 1926, p. 558. (flammea Quoy and Gaimard.)
flammea Quoy and Gaimard, Patelloida, Voy. "Astrolabe," Zool., 3, 1834, p. 354 , pl. 71, f. 15, 16. mixta Reeve, Patella, Conch. Icon., 8, 1855, pl. 39, sp. 129.

Asteracmea Oliver, Trans. and Proc. New Zealand Inst., 56, 1926, p. 563. (illibrata Verco.)
illibrata Verco, Helcioniscus, Trans. Roy. Soc. S.A., 30, 1906, p. 205, pl. 10, f. 6-14.
stowae Verco, Nacella, Trans. Roy. Soc. S.A., 30, 1906, p. 209, pl. 10, f. 4-5.
Naccula Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 238. (parva Angas.)
parva Angas, Nacella, Proc. Zool. Soc., 1878, p. 862, pl. 54, f. 12.
Actinoleuca Oliver, Trans. and Proc. New Zealand Inst., 56, 1926, p. 567. (campbelli Filhol.)
calamus Crosse and Fischer, Patella, Journ. de Conch., 1864, p. 348.
Notoacmea Iredale, Trans. New Zealand Inst., 47, 1915, p. 428. (pileopsis Quoy and Gaimard.)
mayi May, Illus. Index Tas. Shells, 1923, App. and pl. 22, f. 3. scabrilirata Angas, Acmea, Proc. Zool. Soc., 1865, p. 154.
septiformis Quoy and Gaimard, Patelloida, Voy. "Astrolabe," Zool., 3, 1834, p. 362 , pl. 71, f. 43, 44.

Conacmea Oliver, Trans. New Zealand Inst., 56, 1926, p. 577. (parviconoidea Suter.)
alta Oliver, Notoacmea, Trans. New Zealand Inst., 56, 1926, p. 579, pl. 99, f. 6.

Suborder RHIPIDOGLOSSA
 Superfamily TROCHACEA
 Family TROCHIDAE

Clanoulus Montfort, Conch. Syst., 2, 1810, p. 190. (pharaonius Linne.)
aloysii T. Woods, Proc. Zool. Soc. Tas., 1875, p. 155.
brunneus A. Adams, Proc. Zool. Soc., 1851, p. 161.
dunkeri Koch, Trochus, In Philippi, Abbild und Besch Neuer Conch. k., 1, 1843, p. 67, pl. 2, f. 5.
flagellatus Philippi, Trochus, Zeit f. Malak., 5, 1848, p. 105.
floridus Philippi, Trochus, Zeit f. Malak., 6, 1849, p. 156.
limbatus Quoy and Gaimard, Trochus, Voy. "Astrolabe," Zool., 3, 1834, p. 245, pl. 63, f. 1-6.
mangeri Wood, Trochus, Index Test. Suppl., 1828, p. 17, pl. 5, f. 27.
ochroleucus Philippi, Trochus, Conch. Cab., No. 310, 1853, p. 243, pl. 36, f. 16 .
personatus Philippi, Trochus, Zeits. f. Malak., 1846, p. 99.
plebjus Philippi, Trochus, Zeits. f. Malak., 8, 1851, p. 41.
undatus Lamarck, Monodonta, Encycl. Meth., 1816, p. 16, pl. 447, f. 3a, b.
Cantharidus Montfort, Syst. Conch., 2, 1810, p. 251. (iris Gmelin.)
pulcherrimus Wood, Trochus, Index Test. Suppl., 1828, p. 18, pl. 6, f. 45.
ramburi Crosse, Trochus, Journ. de Conch., 1864, p. 342, pl. 13, f. 3.
Phastanotrochus Fischer, Man. Conch., 1885, p. 819. (eximius Perry.)
apicinus Menke, Monodonta, Moll. Nov. Holl., 1843, p. 15.
bellulus Dunker, Trochus, In Philippi, Abild. Besch. Neuer Conch., 2, 1845, p. 34, pl. 7, f. 6.
eximius Perry, Bulimus, Conch., 1811, pl. 30, f. 2.
irisodontes Quoy and Gaimard, Trochus, Voy. "Astrolabe," Zool., 3, 1834, nitidulus Philippi, Trochus, Conch. Cab., 1849, p. 295. p. 246, pl. 63, f. 7-12.
rutilus A. Adams, Elenchus, Proc. Zool. Soc., 1851, p. 171.
Thalotia Gray, Syn. Cont. Brit. Mus. ed., 42, 1840, p. 147. (conica Gray.)
comtessi Iredale, Rec. Aust. Mus., 18, 1931, p. 208, pl. 23, f. 8.
conica Gray, Monodonta, King's Survey Aust., App. 2, 1827, p. 479.

Bankivia Krauss, Dic Sudafr. Mollusk., 1848, p. 105. (fasciata Menke.)
fasciata Menke, Phasianclla, Syn. Meth. Moll., 1830, p. 141.
Leiopyrda, II. and A. Adams, Ann. Mag. Nat. Hist., ser. 3, 11, 1863, p. 19. (lineolaris Gould.)
lineolaris Gould, Cantharidus, Proc. Boston Soc. Nat. Hist., 8, 1861, p. 18.

Cantharidella Pilsbry, Man. Conch., 11, 1889, p. 197. (picturata Ad. and Ang.)
tiberiana Crosse, Trochus, Journ. de Conch., 11, 1863, p. 381, pl. 13, f. 2.
Austrocochlea Fischer, Man. Conch., 1885, p. 820. (constricta Lamarck.)
adelaidac Philippi, Trochus, Conch. Cab., 2, 1849, p. 140, pl. 24, f. 1.
concamerala Wood, Trochus, Index Test. Supp., 1828, p. 17, pl. 6, f. 35.
constricta Lamarck, Monodonta, Anim. s. vert., 7, 1822, p. 36.
obtuse Dillwyn, ''rochus, Descrip. Cat., 2, 1817, p. 809.
odontis Wood, Trochus, Index Test. Supp., 1828, p. 17, pl. 6, f. 37.
Gibbula Risso, Hist. Nat. Europe, 4, 1826, p. 134. (magus Linne.)
coxi Angas, Proc. Zool. Soc., 1867, p. 115, pl. 13, f. 26.
lehmanni Menke, T'urbo, Moll. Nov. IIoll., 1843, p. 18.
preissiana Philippi, Trochus, Zeits. f. Malak., 1848, p. 123.
tasmanica Petterd, Journ. of Conch., 2, 1897, p. 103.
Fossharina Adams and Angas, Proc. Zool. Soc., 1863, p. 423. (patula Ad. and Ang.)
brazicri Angas, Proc. Zool. Soc., 1871, p. 18, pl. 1, f. 24.
legrandi Petterd, Journ: of Conch., 2, 1897, p. 104.
petterdi Crosse, Journ. de Conch., 18, 1870, p. 303.

Family CALLIOSTOMATIDAE

Calhostoma Swainson, Malacology, 1840, p. 351. (conulum Linne.) allporti 'T. Woods, Zizyphinus, Proc. Roy. Soc. 'Tas., 1875, p. 155. armillata Wood, I'rochus, Index Test. Suppl. 1828, p. 16, pl. 5, f. 5a. australis lBroderip, Trochus, Zool. Journ., 5, 1835, p. 331.
compta A. Adams, Žizyphinus, lroc. Zool. Soc., 1854, p. 38.
hedleyi Pritchard and Gatlift, Proc. Roy. Soc. Vic., 14, 1902, p. 182, pl. 9, f. 4.
incerta Reeve, Zizyphinus, Conch. Icon., 14, 1863, pl. 5, sp. 28.
legrandi 'I'. Woods, Kizyphinus, Proc. Roy. Soc. 'Tas., 1875, p. 154.
nobile Philippi, Trochus, Conch. Cab., 1846, p. 86, pl. 15, f. 6, and pl. 38, f. 1.
zietze Vereo, Trans. Roy. Soc. S. $1 ., 29,1905$, p. 166, pl. 31, f. 1-3.
Astele Swainson, Proc. Roy. Soc. V.D. Land, 3, 1854, p. 38. (subcarinatum Swainson.)
subcarinatum Swainson, Proc. Roy. Soc. V.D. Land, 3, 1854, p. 38, pl. 6, f. 1, 2.

Astelena Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 230. (scitula A. Adams.) scitula A. Adams, Zizyphinus, Proc. Zool. Soc., 1854, p. 38.

Family UMBONIIDAE

Naniula Thiele, Nitt, Zool. Mus., Berlin, 11, 1924, p. 54. (tasmanica Petterd.) tasmanica Petterd, Margarita, Proc. Roy. Soc. 'Tas., 1877, p. 143.
Sbletamen Iredale, Proc. Limm. Soc. N.S.W., 49, 1924, p. 227. (philippensis Watson.)
philippensis Watson, Trochus, Journ. Limn. Soc. Zool., 15, 1881, p. 92.

Family S'TOMATELLIDAE

Stomatella Lamarck, Encyl. Meth. (Vers), 1816, p. 10, pl. 450. (imbricata Lamarek.)
imbricata Lamarek, Anim. S. Vert., 6 (2), 1892, p. 209.
Herpetopoma Pilsbry, Man. Conch., 11, 1890, p. 430. (scabriuscula Ad. and Angas.)
atrata Gmelin, Turbo, Syst. Nat., 13, 1791, p. 3601. baccata Menke, Monodonta, Moll. Nov. Holl., 1843, p. 14.
profundior May, Euchelus, Proc. Roy. Soc. Tas., 1915, p. 98, pl. 7, f. 39.
pumilio Tate, Euchelus, Proc. Roy. Soc. S.A., 17, 1893, p. 196, pl. 1, f. 3.
scabriuscula Angas, Euchelus, Proc. Zool. Soc., 1867, p. 215.
tasmanica, T. Woods, Euchelus, Proc. Roy. Soc. Tas., 1875, p. 152.

Family STOMATIIDAE

Gena Gray, Proc. Zool. Soc., 1847, p. 146. (nigra Quoy and Gaimard.)
auricula Lamarck, Stomatclla, Tabl. Encly. Meth., 1818, p. 10, pl. 450, f. 1. impertusa Burrow, Haliotis, Elem. Conch., 1825, p. 162, pl. 21, f. 9.

Family LIOTHIDAE

Callomphala Adams and Angas, Proc. Zool. Soc., 1864, p. 36. (Lucida Ad. and Ang.)
lucida Adams and Angas, Neritula, Proc. Zool. Soc., 1864, p. 35.
Cirsonella Angas, Proc. Zool. Soc., 1877, p. 38. (australis Angas.)
microscopica Gatliff and Gabriel, Cyclostrema, Proc. Roy. Soc. Vic., 23, 1910, p. 85 , pl. 18 , f. 5-7.
translucida May, Proc. Roy. Soc. Tas., 1915, p. 97, pl. 7, f. 38.
weldii T. Woods, Cyclostrema, Proc. Roy. Soc. Tas., 1876, p. 147.
Brookula Iredale, Proc. Mal. Soc., 10, 1912, p. 219. (stibarochila Iredale.)
angeli T. Woods, Rissoa, Proc. Roy. Soc. Tas., 1876, p. 153.
crebrisculpta Tate, Cyclostrema, Proc. Roy. Soc. S.A., 23, 1899, p. 219, pl. 7, f. 5.
densilaminata Verco, Cyclostrema, Proc. Roy. Soc. S.A., 31, 1907, p. 306, pl. 29, f. 9.
johnstoni Beddome, Cyclostrema, Proc. Roy. Soc. Tas., 1882, p. 168.
nepeanensis Gatliff, Scala, Proc. Roy. Soc. Vie., 20, 1906, p. 1, pl. 1, f. 5.
Lissotesta Iredale, Trans. New Zealand Instit., 47, 1915, p. 442. (micra 'T. Woods.)
contabulata Tate, Cyclostrema, Proc. Roy. Soc. S.A., 23, 1899, p. 292, pl. 7, f. 6.
micra T. Woods, Cyclostrema, Proc. Roy. Soc. Tas., 1876, p. 147.
porcellana Tate and May, Cyclostrema, Proc. Roy. Soc. S.A., 24, 1900, p. 101.

Zalipais Iredale, Trans. New Zealand Instit., 47, 1915, p. 442. (lissum Suter.) inscripta 'Tate, Cyclostrema, Proc. Roy. Soc. S.A., 23, 1899, p. 216, pl. 7, f. $3 \mathrm{a}, 3 \mathrm{~b}$.

Elachorbis Iredale, Trans. New Zealand Instit., 47, 1915, p. 443. (tatei Angas.)
caperatum Tate, Cyclostrema, Proc. Roy. Soc. S.A., 23, 1899, p. 216, pl. 7, f. $1 \mathrm{a}, 1 \mathrm{~b}$.
delectabile Tate, Cyclostrema, Proc. Roy. Soc. S.A., 23, 1899, p. 216, pl. 7, f. 4.
harriettae Petterd, Cyclostrema, Journ. of Conch., 4, 1884, p. 141.
homalon Verco, Cyclostroma, Proc. Roy. Soc. S.A., 31, 1907, p. 305, pl. 29, f. 3,4 .

Liotelin Iredale, Trans. New Zealand Instit., 47, 1915, p. 442. (polypleura Hedley.)
annulata 'T. Woods, Liotia, Proc. Roy. Soc. Tas., 1878, p. 121.
kilcundac Gatliff and Gabriel, Cyclostrema, Proc. Roy. Soc. Vic., 27, 1914, p. 95 , pl. 15, f. 8-10.
petalifera IIedley and May, Liotia, Rec. Aust. Mus., 7, 1908, p. 116, pl. 22, f. $6,7,8$.
vercoi Gatliff and Gabriel, Cyclostrema, Proc. Roy. Soc. Vic., 27, 1914, p. 96, pl. 15, f. 1-3.
Lodderta Tate, Proc. Roy. Soc. S.A., 23, 1899, p. 215. (lodderae Petterd.)
lodderae Petterd, Liotia, Journ. of Conch., 4, 1884, p. 135.
minima T'. Woods, Liotia, Trans. Roy. Soc. Vic., 14, 1878, p. 58.
Pseudohotia Tate, Trans. Roy. Soc. S.A., 22, 1898, p. 71. (micans Adams.)
micans Adams, Cyclostrema, Proc. Zool. Soc., 1850, p. 44.
Mundtia Finlay, Trans. New Zealand Instit., 57, 1926, p. 363. (tryphenensis Powell.)
australis Kiener, Delphinula, Icon. Coq. Viv., 10, 1839, p. 8, pl. 4, f. 7.
hedleyi Pritehard and Gatliff, Liotia, Proc. Roy. Soc. Vic., 12 (n.s.), 1899, p. 105.
subquadrata T. Woods, Liotia, Proc. Linn. Soc. N.S.W., 3, 1878, p. 236.
tasmanica T. Woods, Liotia, Proc. Roy. Soc. Tas., 1875, p. 153.
Liotina Munier-Chalmas, in Fischer, Man. Conch., 1885, p. 831. (gervillei Defrance.)
mayana Tate, Liotia, Proc. Roy. Soc. S.A., 23, 1899, p. 227, pl. 6, f. 5a-5c.
Cuarisma Hedley, Proc. Limm. Soc. N.S.W., 29, 1915, p. 711. (compacta Hedley.)
arenacea Pritchard and Gatliff, Leptothyra, Proc. Roy. Soc. Vic., 14 (n.s.), 1902, p. 181, pl. 9, f. 3.
josephi T. Woods, Cyclostrema, Proc. Roy. Soc. Tas., 1876, p. 147.
Crosscola Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 251. (concinna Angas.)
cancellata T. Woods, Crossea, Proc. Roy. Soc. Tas., 1878, p. 122.
carinata IIedley, Crossca, Mem. Aust. Mus., 4, 1903, p. 345, f. 71.
concinna Angas, Crossea, Proc. Zool. Soc., 1867, p. 911, pl. 44, f. 14.
naticoides Hedley, Crossea, Rec. Aust. Mus., 6, 1907, p. 290, pl. 54, f. 6-7.
Doherossea Iredale, Proc. Limn. Soc. N.S.W., 49, 1924, p. 251. (labiata T. Woods.)
labiata 'T. Woods, Crossea, Proc. Roy. Soc. Tas., 1875, p. 151.
Areanista Iredale, Trans. New Zealand Instit., 47, 1915, p. 445 . (fluctuata Hutton.)
rosea, 'T. Woods, Monilea, Proc. Roy. Soc. Tas., 1876, p. 154.
Microdiscula Theile, Dtsch. Sudpolar Exped., 13 (Zool., 5), 1912, p. 199. (vanhoffeni Theile.)
charopa Tate, Cyclostrema, Trans. Roy. Soc. S.A., 23, 1899, p. 217, pl. 7, f. $2 \mathrm{a}-\mathrm{-2}$.

Skenmad Pfeffer, Jahrb. Wiss. Anst. Hamburg, 3, 1886, p. 96. (serpuloides Montagu.)
brunicnsis Beddome, Cyclostrema, Proe. Roy. Soc. Tas., 1882, p. 168.

Family TURBINIDAE

Subninglua Thiele, Hand. Syst. Weight., 1929, p. 68. (undulata Solander.) undulata Solander, T'urbo, Cat. Portland Mus., 1786.

Ninella Gray, Figs. Moll. Anim., 4, 1850, p. 87. (torquata Gmelin.) torquata Gmelin, Turbo, Syst. Nat., 1788, p. 3597, no. 106.
Euninella Cotton and Godfrey, Mal. Soc. S. Aust., Pub. No. 1, Gastr. 1938, p. 9. (gruneri Philippi.)
gruneri Phillipi, Turbo, Conch. Cab., 1846, p. 52, pl. 12, f. 7-8.
Bellastrea Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 232. (kesteveni Iredale.)
kesteveni Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 232. sirius Gould, Turbo, Proc. Bost. Soc. Nat. Hist., 3, 1849, p. 90.
Micrastraea Cotton, Syst. List Gastropoda, 1938, p. 9. (aurca Jonas.) aurea Jonas, Trochus, Zeits. f. Malak., 1844, p. 168.

Family EUTROPIIDAE
Phasianella Lamarck, Ann. Mus. Nat. Hist., Paris, 4, 1904, p. 295. (australis Gmelin.)
australis Gmelin, Buccinum, Syst. Nat., 1788, p. 3490.
variegata Lamarek, Anim. s. Vert., 7, 1822, p. 53.
ventricosa Swainson, Cat. Coll. Shells Bligh, Append., 1822, p. 12.
Gabrielona Iredale, Proc. Mal. Soc., 12, 1917, p. 327. (nepeanensis Gat. and Gab.)
nepeanensis Gatliff and Gabriel, Phasianella, Proc. Roy. Soc. Vic., 21 (n.s.), 1908, p. 366, pl. 21, f. 9-10.
Pellax Finlay, Trans. New Zealand Instit., 57, 1926, p. 368. (huttoni Pilsbry). rosea Angas, Eutropia, Proc. Zool. Soc., 1867, p. 114, pl. 13, f. 24.

Superfamily NERITACEA Family NERITIDAE

Nerita Linne, Syst. Nat., 10, 1758, p. 776. (peloronta Linne.) melanotragus Smith, Voy. "Alert," Zool., 1884, p. 69.

Family PHENACOLEPADIDAE

Phenacolepas Pilsbry, Nautilus, 5, 1891, p. 89 . (crenulata Broderip.)
calva Verco, Scutellina, Proc. Roy. Soc. S.A., 30, 1906, p. 217, pl. 8, f. 9-10.

Superfamily COCCULINACEA

Family COCCULINIDAE
Notocrater Finlay, Trans. New Zealand Instit., 57, 1926, p. 374. (craticulata Suter.)
tasmanica Pilsbry, Acmaea, Nautilus, 8, 1895, p. 128.

Family LEPETELLIDAE

Cocculinella Thiele, Conch. Cab. (2), 11, 1909, p. 21. (minutissima Sand.) coercita Hedley, Cocculina, Rec. Aust. Mus., 6, 1907, p. 289, pl. 54, f. 1-2.

Order PECTINEBRANCHIA
 Suborder TAENIOGLOSSA
 Section PLATYPODA
 Superfamily LITTORINACEA
 Family LITTORINIDAE

Pellilitorina Pfeffer, Jahrb. Wiss. Anst., Hamburg, 3, 1886, p. 77. (setosa Smith.)
globula Angas, Amauropsis, Proc. Zool. Soc., 1880, p. 416, pl. 40, f. 5.
Larinorsis Gatliff and Gabriel, Proc. Roy. Soc. Vic., 29 (n.s.), 1916, p. 104. (turbinata Gat. and Gab.)
turbinata Gatliff and Gabriel, Larina, Proc. Roy. Soc. Vic., 22 (n.s.), 1909, p. $35, \mathrm{pl} .13$.

Melaraphe Menke, Syn. Meth. Moll., 1828, p. 23. (neritoides Linne.)
praetermissa May, Littorina, Proc. Roy. Soc. Tas., 1908, p. 57, pl. 6, f. 3.
unifasciata. Gray, Littorina, King's Survey of Aust., 2, 1826, App., p. 483.
Laevilitorina Pfeffer, Jahrb. Hamburg, 3, 1886, p. 81. (caliginosa Gould.)
mariae T. Woods, Rissoa, Proc. Roy. Soc. Tas., 1875, p. 147.

Family BEMBICIIDAE

Bembicium Philippi, Zeit. Malak., 1846, p. 129. (melanostoma Gmelin.)
auratum Quoy and Gaimard, Trochus, Voy. "Astrolabe," Zool., 3, 1834, p. 276, pl. 62, f. 15-19.
melanostoma Gmelin, Trochus, Syst. Nat., 13, 1791, p. 3581.
nonum Lamarck, Trochus, Anim. s. Vert., 7, 1822, p. 30.
planum Quoy and Gaimard, Trochus, Voy. "Astrolabe,' Zool., 3, 1834, p. 274, pl. 62, f. 13-14.
Nodilittorina Martens, in Weber, Ergeb. Reise Niederl. O. Ind., 4, (1), 1897, p. 204. (nodulosus Gmelin.)
tuberculata Menke, Litorina, Syn. meth. Moll., 1830, p. 44.

Family PLANAXIDAE

Hinia Gray, Proc. Zool. Soc., 1847, p. 138. (brasiliana Lamarck.) brasiliana Lamarck, Buccinum, Anim. s. Vert., 7, 1822, p. 272.

Superfamily RISSOACEA
Family RISSOIDAE
Estea Iredale, Trans. New Zealand Instit., 47, 1915, p. 451. (zosterophila Webster.)
approxima Petterd, Rissoa, Journ. of Conch., 4, 1884, p. 138.
bicolor Petterd, Rissoa, Journ. of Conch., 4, 1884, p. 137.
columnaria Hedley and May, Rissoa, Rec. Aust. Mus., 7, 1908, p. 117, pl. 22, f. 9.
erma Cotton, Trans. Roy. Soc. S.A., 68, 1944, p. 288, pl. 16, f. 1.
frenchiensis Gatliff and Gabriel, Rissoa, Proc. Roy. Soc. Vic., 1908, p. 379.
incidata Frauenfeld, Sabanaea, Novara, Exped. Moll., 1867, p. 12, pl. 2, f. 19.
iravadoides Gatliff and Gabriel, Rissoa, Proc. Roy. Soc. Vic., 26, 1913, p. 67, pl. 8, f. 1.
janjucensis Gatliff and Gabriel, Rissoa, Proc. Roy. Soc. Vic., 26, 1913, p. 67, pl. 8, f. 2.
kershawi T. Woods, Rissoina, Proc. Roy. Soc. Vic., 14, 1877, p. 57.
microcosta May, Proc. Roy. Soc. Tas., 1919, p. 61, pl. 15, f. 12.
obeliscus May, Rissoa, Proc. Roy. Soc. Tas., 1915, p. 92, pl. 5, f. 24.
olivacea Frauenfeld, Alvania, Novara Exped. Moll., 1867, p. 11, pl. 2, f. 14.
pyramidata Hedley, Scrobs, Mem. Aust. Mus., 4, 1903, p. 354, f. 77.
rubicunda Tate and May, Rissoa, Trans. Roy. Soc. S.A., 24, 1900, p. 100.
subfusca Hutton, Rissoa, Cat. New Zealand Moll., 1873, p. 28.
tasmanica T. Woods, Eulima, Proc. Roy. Soc. Tas., 1875, p. 29.
tumida T. Woods, Diala, Proc. Roy. Soc. Tas., 1875, p. 147.
Subestea Cotton, Trans. Roy. Soc. S.A., 68, 1944, p. 292. (seminodosa May.)
flindersi 'T. Woods, Rissoina, Proc. Roy. Soc. Tas., 1876, p. 154.
salebrosa Frauenfeld, Rissoa, Novara Exped. Moll., 1867, p. 11, pl. 2, f. 15.

Haurakia Iredale, Trans. New Zealand Instit., 47, 1915, p. 449. (hamiltoni Suter.)
descrepans Tate and May, Rissoa, Trans. Roy. Soc. S.A., 24, 1900, p. 99.
liddelliana Hedley, Rissoa, Proc. Linn. Soc. N.S.W., 32, 1907, p. 494, pl. 17, f. 24.
strangei Brazier, Rissoa, Proc. Linn. Soc. N.S.W., 19, 1894, p. 173, pl. 14, f. 12 .
supracostata May, Proc. Roy. Soc. Tas., 1919, p. 62, pl. 15, f. 16.
Lironoba Iredale, Trans. New Zealand Instit., 47, 1915, p. 450. (suteri Hedley.) agnewi T. Woods, Rissoa, Proc. Roy. Soc. Tas., 1876, p. 152.
imbrex Hedley, Bissoa, Proc. Linn. Soc. N.S.W., 33, 1908, p. 469, pl. 10, f. 33.
layardi Petterd, Rissoa, Journ. of Conch., 4, 1884, p. 138.
schoutanica May, Rissoa, Proc. Roy. Soc. Tas., 1912, p, 47, pl. 2, f. 6.
wilsonensis Gatliff and Gabriel, Rissoa, Proc. Roy. Soc. Vic., 26, 1913, p. 68, pl. 8, f. 4.
Botelloides Strand, Arch. Naturgesch., 92, 1926, A. 8, 66. (bassianus Medley.)
bassianus Hedley, Onoba, Zool. Res. Endeavour, 1, 1911, p. 108, pl. 19, f. 25.
Merelina Iredale, Trans. New Zealand Instit., 47, 1915, p. 449. (cheilostoma 'T'. Woods.)
australiae Fravenfeld, Cingula, Novara Exped. 2 Moll., 1867, p.14, p1.2, f. 23. cheilostoma T. Woods, Rissoa, Proc. Roy. Soc. Tas., 1876, p. 152.
gracilis Angas, Alvania, Proc. Zool. Soc., 1877, p. 174, pl. 26, f. 16.
hulliana Tate, Rissoa, Hand. List. S.A. Moll., 1893, p. 7.
Linemera Finlay, Trans. New Zealand Instit., 55, 1924, p. 483. (interrupte Finlay.)
filocincta Hedley and Petterd, Rissoa, Rec. Aust. Mus., 6, 1906, p. 217, pl. 37, f. 2.
suprascuipta May, Alvania, Proc. Roy. Soc. Tas., 1915, p. 95, pl. 6, f. 31.
Notoseria Iredale, Trans. New Zealand Instit., 47, 1914, p. 452. (neozelandica Suter.)
atropurpurea Frauenfeld, Setia, Novara Exped. 2 Moll., 1867, p. 13, pl. 2, f. 21.
muratensis Cotton, Trans. Roy. Soc. S.A., 68, 1944, p. 304, pl. 16, f. 9.
nitens Frauenfeld, Setia, Novara Exped. Moll., 1867, p. 13, pl. 2, f. 2\%. pellucida Tate and May, Rissoa, Trans. Roy. Soc. S. $\Lambda ., 24,1900$, p. 100. pertranslucida May, Rissoa, Proc. Roy. Soc. Tas., 1912, p. 48, pl. 2, f. 8. purpureostoma May, Proc. Roy. Soc. Tas., 1919, p. 63, pl. 16, f. 18. simillima May, Rissoa, Proc. Roy. Soc. Tas., 1915, p. 93, pl. 5, f. 26.
Dardanula Iredale, Trans. New Zealand Instit., 47, 1915, p. 452. (olivacea Hutton.)
aurantiocincta May, Amphiltalamus, Proc. Roy. Soc. Tas., 1915, p. 96, pl. 6, f. 33.
dubitabilis Tate, Rissoa, Trans. Roy. Soc. S.A., 23, 1899, p. 232.
erratica May, Amphiltalamus, Proc. Roy. Soc. Tas., 1912, p. 48, pl. 2, f. 7.
flammea Franenfeld, Sabanaca, Novara Exped. Moll., 1867, p. 12, pl. 2, f. 18. melanochroma Tate, Rissoa, Trans. Roy, Soc. S.A., 23, 1899, p. 234.
Eusetia Cotton, Trans. Roy. Soc. S.A., 68, 1944, p, 306. (expansa Powell). brevis May, Rissopsis, Proc. Roy. Soc. Tas., 1919, p. 63, pl. 16, f. 19. bulimnoides Tate and May, Rissopsis, Trans. Roy. Soc. S.A., 24, 1900, p. 101. consobrina Tate and May, Rissopsis, Trans. Roy. Soc. S.A., 24, 1900, p. 101. maccoyi T. Woods, Rissoa, Proc. Roy. Soc. Tas., 1876, p. 154.

Epigrus Hedley, Mem. Aust. Mus., 4, 1903, p. 355. (ischna Tate.)
apicilata Gatliff and Gabriel, Rissoa, Proc. Roy. Soc. Vic., 26 (n.s.), 1913, p. 68, pl. 8, f. 3.
badius Petterd, Rissoa, Journ. of Conch., 4, 1884, p. 138.
cylindraceus T. Woods, Rissoina, Proc. Linn. Soc. N.S.W., 2, 1877, p. 266.
dissimilis Watson, Eulima, Chall. Zool., 15, 1886, p. 522, pl. 37, f. 5.
Scrons Watson, Chall. Zool., 15, 1886, p. 611. (jacksoni Brazier.)
jacksoni Brazier, Rissoa, Proc. Linn. Soc. N.S.W., 9, 1894, p. 695.
petterdi Brazier, Rissoa, Proc. Linn. Soc. N.S.W., 9, 1894, p. 697.
Anabathron Frauenfeld, Novara Exped. Moll., 1867, p. 13. (contabulatum Frauendfeld.)
contabulatum Frauenfeld, Novara Exped. Moll., 1867, p. 13, pl. 2, f. 20a-b.
Coenaculum Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 244. (minutulum Tate and May.)
minutulum Tate and May, Scalaria, Trans. Roy. Soc. S.A., 24, 1900, p. 95.

Family RISSOINIDAE

Rissoina d'Orbigny, Voy. Amer. Merid., 1840, p. 395. (inca d'Orbigny.) elegantula Angas, Proc. Zool. Soc., 1880, p. 417, pl. 40, f. 10.
fasciata A. Adams, Proc. Zool. Soc., 1851, p. 264.
gertrudis 'T. Woods, Proc. Roy. Soc. Tas., 1875, p. 146.
lintea Hedley and May, Rec. Aust. Mus., 7, 1908, p. 117, pl. 23, f. 11. nivea A. Adams, Proc. Zool. Soc., 1851, p. 265.
rhyllensis Gatliff and Gabriel, Proc. Roy. Soc. Vic., 21, 1908, p. 367, pl. 21, f. 8 .
spirata Sowerby, Rissoa, Genera of Shells, 2, 1824, No. 4, pl. 208, f. 3.
variegata Angas, Rissoa, Proc. Zool. Soc., 1867, p. 113, pl. 13, f. 19.
Cithna A. Adams, Proc. Zool. Soc., 1863, p. 113. (globosa A. Adams.)
angulata Hedley, Rec. Aust. Mus., 6, 1907, p. 291, pl. 55, f. 16.
flexuosa Gould, Rissoina, Proc. Bost. Soc. Nat. Hist., 7, 1861, p. 400.
Heterorissoa Iredale, Proc. Mal. Soc., 10, 1912, p. 221. (secunda Iredale.) wilfredi Gatliff and Gabriel, Jeffreysia, Proc. Roy. Soc. Vic., 24 (n.s.), 1911, p. 188, pl. 46, f. 3.

Rissolina Gould, Proc. Boston Soc. Nat. Hist., 7, 1861, p. 401. (elegantissima d'Orbigny.)
angasi Pease, Rissoina, Am. Journ. Conch., 7, 1872, p. 20. crassa Angas, Rissoina, Proc. Zool. Soc., 1871, p. 17, pl. 1, f. 16.
Stiva Hedley, Proc. Linn. Soc. N.S.W., 29, 1904, p. 192. (ferruginea Hedley.) royana Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 245, pl. 34, f. 11.

Family TORNIDAE

Naricava Hedley, Proc. Linn. Soc. N.S.W., 38, 1913, p. 294. (angasi A. Adams.) angasi A. Adams, Adcorbis, Proc. Zool. Soc., 1863, p. 424, pl. 37, f. 11-12. kimberi Verco, Adeorbis, Trans. Roy. Soc. S.A., 31, 1907, p. 308, pl. 29, f. 1-2.
vincentiana Angas, Adcorbis, Proc. Zool. Soc., 1880, p. 417, pl. 40, f. 9.
Family ORBITESTELLIDAE
Orbitestella Iredale, Proc. Mal. Soc., 12, 1917, p. 327. (bastowi Gat. and Gab.) bastowi Gatliff and (Gabricl, Cyclostrema, Proc. Roy. Soc. Vic., 19, 1906, p. 3, pl. 2, f. 8-10.
mayi Tate, Cyclostrema, Trans. Roy. Soc. S.A., 23, 1899, p. 218, pl. 6, f. $4 a$, c.

Superfamily CERTHIACEA

Family TURRITELLIDAE

Kimberia Cotton and Woods, Rec. S.A. Mus., 5, 1935, p. 370. (kimberi Verco.) microscopica May, Turritella, Proc. Roy. Soc. Tas., 1910, p. 395, pl. 15, f. 23.
Gazameda Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 247. (gunnii Reeve.) gunnii Reeve, Turritella, Conch. Ieon., 5, 1849, pl. 9, sp. 45.
iredalei Finlay, Trans. New Zealand Instit., 57, 1927, p. 496.
subsquamosa Dunker, Turritella, Mal. Blat., 18, 1871, p. 152.
Colospira Donald, Proc. Mal. Soc., 4, 1900, p. 51. (runcinata Watson.)
accisa Watson, Turritella, Journ. Linn. Soc., 15, 1881, p. 220.
runcinata Watson, Turritella, Journ. Linn. Soc., 15, 1881, p. 218.
sinuata Reeve, Turritella, Conch. Icon., 5, 1849, pl. 11, sp. 62.
smithiana Donald, Turritella, Proc. Mal. Soc., 4, 1900, p. 52, pl. 5, f. 1-1c.
Glyptozaria Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 248 . (opulenta Hedley.)
opulenta Hedley, Turritella, Rec. Aust. Mus., 6, 1907, p. 292, pl. 54, f. 9.
Ctenocolpus Iredale, Rec. Aust. Mus., 14, 1925, p. 266. (australis Lamarck.) diffidens Iredale, Rec. Aust. Mus., 14, 1925, p. 267, pl. 43, f. 17.

Family MATHILDIDAE
Opimmda Iredale, Rec. Aust. Mus., 17, 1929, p. 187. (decorata Hedley.) decorata Hedley, Mathilda, Mem. Aust. Mus., 4, 1903, p. 352, f. 75.

Family SOLARIIDAE

Philippia Gray, Proc. Zool. Soc., 1847, p. 146. (lutea Lamarck.)
lutea Lamarek, Solarium, Anim. s. Vert., 7,1822, p. 5.
Family VERMETIDAE
Vermicularia Lamarck, Mem. Soc. Nat. Hist., Paris, 1799, p. 78. (lumbricalis Linne.)
flava Verco., Trans. Roy. Soc. S.A., 1907, p. 214, f. 1.
sipho Lamarck, Serpula, Anim. s. Vert., 5, 1818, p. 367.
Siliquaria Bruguiere, Enclycl. Meth. (Vers), 1, 1789, p. 15. (australis Quoy and Gaimard.)
australis Quoy and Gaimard, Voy. "Astrolabe," Zool., 3, 1834, p. 302. weldii T. Woods, Tenogodus, Proc. Roy. Soc. Tas., 1875, p. 144.
Magilinea Velain, Arch. Zool. Exped. Gen., Paris, 6, 1877, p. 105. (serpuliformis Velain.)
caperata Tate and•May, Thylocodes, Trans. Roy. Soc. S.A., 24, 1900, p. 94.

Family CAECIDAE

Caecum Fleming, Brewster's Edin. Enclycl., 7 (1), 1831, p. 67. (trachea Montagu.)
amputatum Hedley, Proc. Linn. Soc. N.S.W., 18, 1893, p. 504 and text fig.
Strebloceras Carpenter, Proc. Zool. Soc., 26, 1858, p. 440. (subannulatum Folin.)
cygnicollis Hedley, Proc. Linn. Soc. N.S.W., 27, 1904, p. 189, pl. 8, f. 12-14.
Family CERITHIIDAE
Zeacumantus Finlay, Trans. New Zealand Instit., 57, 1926, p. 380. (subcarinata Sowerby.)
cerithium Quoy and Gaimard, Turritella, Voy: "Astrolabe," Zool., 3, 1834, p. 139, pl. 55, f. 27, 28.

Eubititium Cotton, Sth. Aust. Nat., 18, 1937, p. 2. (lawleyanum Crosse.) insculptum Reeve, Cerithium, Conch. Icon., 15, 1865, pl. 18, sp. 128. lawleyanum Crosse, Bittium, Journ. de Conch., 9, 1863, p. 87, pl. 1, f. 4.
Batillariella Thiele, Handb. Syst. Weicht., 1, 1929, p. 208. (estuarina Tate.) estuarina Tate, Bittium, Trans. Roy. Soc. S.A., 1893, p. 190, pl. 1, f. 12.
Velacumantus Iredale, Rec. Aust. Mus., 19, 1936, p. 292. (australis Quoy and Gaim.)
australis Quoy and Gaimard, Cerithium, Voy. "Astrolabe," Zool., 3, 1835, p. 131, pl. 55, f. 7.

Cacozeliana Strand, Archiv. f. Naturgesch Jahrb., 92, 1928, A. 8, p. $66 . \quad$ (granarium Kiener.)
granarium Kiener, Cerithium, Coq. Viv., 1924, p. 72, pl. 19, f. 5.
icarus Boyle, Cerithium, Journ. de Conch., 28, 1880, p. 249.
Pyrazus Montfort, Conch. Syst., 2, 1810, p. 458 . (paliestris Linne.)
ebininus Bruguiere, Potamides, Encycl. Meth., pl. 442, f. 1a, b.
Ataxocerithium Tate, Journ. Roy. Soc. N.S.W., 32, 1894, p. 179. (serotinum A. Adams.)
serotinum A. Adams, Cerithium, Thes. Conch., 2, 1855, p. 861, pl. 180, f. 102.
Hypotrochus Cotton, Rec. S. Aust. Mus., 4, 1932, p. 539. (monachus Crosse and Fischer.)
monachus Crosse and Fischer, Cerithium, Journ. de Conch., 1864, p. 347.

Family CERITHIOPSIDAE

Joculator Hedley, Proc. Linn. Soc. N.S.W., 34, 1909, p. 442. (ridiculus Watson.)
cessicius Hedley, Cerithiopsis, Proc. Linn. Soc. N.S.W., 30, 1905, p. 529.
Seilarex Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 246. (attenuatus Hedley.)
attenuatus Hedley, Seila, Proc. Linn. Soc. N.S.W., 25, 1900, p. 91, pl. 3, f. 9,9 a.
turritelliformis Angas, Bittium, Proc. Zool. Soc., 1877, p. 174, pl. 26, f. 14.
Specula Finlay, Trans. New Zealand Instit., 57, 1926, p. 382. (styliformis Suter.)
turbonilloides T. Woods, Bittium, Proc. Roy. Soc. Tas., 1878, p. 39.
Zaclys Finlay, Trans. New Zealand Instit., 57, 1926, p. 382. (sarissa Murdoch.)
angasi Semper, Cerithiopsis, Cat. v. Mus. Godeffroy, 5, 1874, p. 108.
dannevigi Hedley, Cerithiopsis, Zool. Results F.I.S. "Endeavour," 1, 1911, p. 109, pl. 19, f. 26-27.
semilaevis T. Woods, Bittium, Proc. Roy. Soc. Vic., 1877, p. 58.
Notoseila Finlay, Trans. New Zealand Instit., 57, 1926, p. 382. (terebelloides Hutton.),
albosutura T. Woods, Cerithiopsis, Proc. Roy. Soc. Tas., 1876, p. 140. crocea Angas, Cerithiopsis, Proc. Zool. Soc., 1871, p. 16, pl. 1, f. 13. marmorata Tate, Cerithiopsis, Trans. Roy. Soc. S.A., 17, 1893, p. 190.

Family TRIPHORIDAE

Eutriphora Cotton and Godfrey, S. Aust. Nat., 12, 1931, p. 1. (cana Verco.) cana Verco, Triphora, Trans. Roy. Soc. S.A., 33, 1909, p. 289, pl. 23, f. 2-4. Isotriphora Cotton and Godfrey, S. Aust. Nat., 12, 1931, p. 2. (tasmanica T. Woods.)
disjuncta Verco, Triphora, Trans. Roy. Soc. S.A., 33, 1909, p. 292. tasmanica T. Woods, Triforis, Proc. Roy. Soc. Tas., 1876, p. 151.

Notosinister Finlay, Trans. New Zealand Instit., 57, 1926, p. 384. (fascelina Suter.)
albavittata Hedley, Triphora, Proc. Linn. Soc. N.S.W., 27, 1903, p. 609, pl. 32, f. 26-27.
armillata Verco, Triphora, Trans. Roy. Soc. S.A., 33, 1909, p. 283, pl. 22, f. 5.
festiva A. Adams, Triphoris, Proc. Zool. Soc., 1851, p. 278.
granifera Brazier, Triphora, Proc. Linn. Soc. N.S.W., 19, 1894, p. 173, pl. 14, f. 10.
innotabilis Hedley, Triphora, Proc. Linn. Soc. N.S.W., 27, 1903, p. 608, pl. 32, f. 23-25.
mammillata Verco, Triphora, Trans. Roy. Soc. S.A., 33, 1909, p. 285.
pfeifferi Crosse and Fischer, Triphoris, Journ. de Conch., 13, 1865, p. 47, pl. 1, f. 14-15.
spina Verco, Triphora, Trans. Roy. Soc. S.A., 33, 1909, p. 280, pl. 22, f. 2-4.
Cautor Finlay, Trans. New Zealand Instit., 57, 1926, p. 384. (obliqua May.)
ampulla Hedley, Triphora, Proc. Linn. Soc. N.S.W., 27, 1903, p. 615, pl. 33, £. 38-39.
labiata A. Adams, Triphoris, Proc. Zool. Soc., 1851, p. 279.
maculosa. Hedley, Triphora, Proc. Linn. Soc. N.S.W., 27, 1903, p. 614, pl. 32, f. 32-33.
regina Hedley, Triphora, Proc. Linn. Soc. N.S.W., 27, 1903, p. 608, pl. 32, f. 21.

Teretriphora Finlay, Trans. New Zealand Instit., 57, 1926, p. 384. (huttoni Suter.)
angasi Crosse and Fischer, Triphora, Journ. de Conch., 13, 1865, p. 46, pl. 1, f. $12,13$.
cinerea Hedley, Triphora, Proc. Linn. Soc. N.S.W., 27, 1903, p. 612, pl. 33, f. 36-37.
gemmegens Verco, Triphora, Trans. Roy. Soc. S.A., 33, 1909, p. 290, pl. 23, f. 7-8.
leuca Verco, Trifora, Trans. Roy. Soc. S.A., 33, 1909, p. 282. nigrofusca A. Adams, Triphora, Proc. Zool. Soc., 1851, p. 278.

Family LITIOPIDAE

Diala A. Adams, Ann. Mag. Nat. Hist. (3), 8, 1861, p. 242. (varia A. Adams.)
imbrica A. Adams, Alaba, Ann. Mag. Nat. Hist. (3), 10, 1862, p. 297.
lauta A. Adams, Ann. Mag. Nat. Hist. (3), 10, 1862, p. 298.
magna Tate, Trans. Roy. Soc. S.A., 14, 1891, p. 259, pl. 11, f. 9.
monile A. Adams, Alaba, Ann. Mag. Nat. Hist. (3), 10, 1862, p. 296. pagodula A. Adams, Alaba, Ann. Mag. Nat. Hist. (3), 10, 1862, p. 297. picta A. Adams, Ann. Mag. Nat. Hist. (3), 8, 1861, p. 243. pulchra A. Adams, Alaba, Ann. Mag. Nat. Hist. (3), 10, 1862, p. 296.
translucida Hedley, Proc. Linn. Soc. N.S.W., 30,1905 , p. 522, pl. 33, f. 35. varia A. Adams, Ann. Mag. Nat. Hist. (3), 8, 1861, p. 243.

Superfamily PTENOGLOSSA
 Family SCALIDAE

Scala Brugiere, Encycl. Meth. (vers 1), 2, 1792, p. 532. (scalaris Linne.) acanthopleuro Verco, Trans. Roy. Soc. S.A., 30, 1906, p. 145, pl. 4, f. 8. aculeatum Sowerby, Scalaris, Proc. Zool. Soc., 1844, p. 12.
australis Lamarck, Scalaris, Anim. s. Vert., 6, 1822, p. 228.
granosa Quoy and Gaimard, Turritella, Voy. "Astrolabe," Zool., 3, 1834, p. 138, pl. 55, f. 29-30.
helicornua Iredale, Limascala, Rec. Aust. Mus., 19, 1936, p. 299, pl. 22, f. 11. invalida Verco, Trans. Roy. Soc. S.A., 30, 1906, p. 148, pl. 4, f. 9-10.
jukesianum Forbes, Scalaria, Append. Voy. "Rattlesnake," 2, 1852, p. 383, pl. 3, f. 7.
martyr Iredale, Dannevigena, Rec. Aust. Mus., 19, 1936, p. 303, pl. 22, f. 25. morchi Angas, Proc. Zool. Soc., 1871, p. 15, pl. 1, f. 7.
phillippinarum Sowerby, Thes. Conch., 1, 1844, p. 86, pl. 32, f. 1-3.
platypleura Verco, Trans. Roy. Soc. S.A., 30, 1906, p. 145, pl. 4, f. 6.
translucida, Gatliff, Proc. Roy. Soc. Vic., 19, 1906, p. 19, pl. 1, f. 3-4.

Family IANTHINIDAE

Ianthina Bolten, Mus. Bolt., 2, 1798, p. 75. (nitens Menke.) balteata Reeve, Conch. Icon., 11, 1858, pl. 3, sp. 11a, b. exigua Lamarck, Janthina, Anim. s. Vert. (3rd ed.), 3, 1839, p. 505. smithiae Reeve, Conch. Icon., 11, 1858, pl. 3, sp. 15a, b. striolata Adams and Reeve, Voy. "Samarang," 1848, p. 54, pl. 11, f. 9. violacea Bolten, Mus. Bolt., 2, 1798, p. 75.

Superfamily AGLOSSA

Family STROMBIFORMIDAE

Eulima Risso, Hist. Nat. Europ. Merid., 4, 1826, p. 123. (subulata Donovan.)
augur Angas, Proc. Zool. Soc., 1865, p. 56.
commensalis Tate, Trans. Roy. Soc. S.A., 22, 1898, p. 82, pl. 4, f. 2.
coxi Pilsbry, Proc. Acad. Nat. Sci. Philad., 1899, p. 258, pl. 11, f. 3-4.
immaculata Pritchard and Gatliff, Stilifer, Proc. Roy. Soc. Vic., 13 (n.s.), 1900, p. 137, pl. 21, f. 2.
inflata Tate and May, Trans. Roy. Soc. S.A., 24, 1900, p. 95.
mucronata Reeve, Conch. Icon., 15, 1866, pl. 6, sp. 42.
orthopleura Tate, Trans. Roy. Soc. S.A., 1898, p. 80, pl. 4, f. 1.
tenisoni Tryon, Man. Conch., 8, 1886, p. 269, pl. 68, f. 16.
tryoni Tate and May, Trans. Roy. Soc. S.A., 24,1900, p. 96.
victorice Gatliff and Gabriel, Proc. Roy. Soc. Vic., 27, 1914, p. 94, pl. 14, f. 1.
Melanella Bowdich, Elem. of Conch., 1, 1822, p. 27. (dufresnii Bowdich.)
petterdi Beddome, Eulima, Proc. Roy. Soc. Tas., 1882, p. 168.
Strombiformis da Costa, Brit. Conch., 1778, p. 107. (glaber da Costa.)
acutissima Reeve, Leiostraca, Conch. Icon., 15,1866, pl. 2, sp. 10a, b.
joshuana Gatliff and Gabriel, Leiostraca, Proc. Roy. Soc. Vic., 23, 1910, p. 83, pl. 18, f. 41.
kilcundae Gatliff and Gabriel, Leiostraca, Proc. Roy. Soc. Vic., 27, 1914, p. 94, pl. 14, f. 2-3.
lodderae Hedley, Mem. Aust. Mus., 4, 1903, p. 360, f. 82.
perexigua Tate and May, Rissoa, Trans. Roy. Soc. S.A., 24, 1900, p. 100.
styliformis Gatliff and Gabriel, Leiostraca, Proc. Roy.'Soc. Vic., 27, 1914, p. $95, \mathrm{pl} .14$, f. 4-5.
topaziaca Hedley, Eulima, Proc. Linn. Soc. N.S.W., 33, 1908, p. 470, pl. 10, f. 29 .

Family STILIFERIDAE

Stilifer Broderip, Proc. Comm. Sci. Zool. Soc. Lond., 1832, p. 60. (astericola Broderip.)
auricula Hedley, Proc. Linn. Soc. N.S.W., 32, 1907, p. 483. brazieri Angas, Proc. Zool. Soc., 1877, p. 173, pl. 26, f: 12. brunneus Tate, Trans. Roy. Soc. S.A., 1888, p. 65, pl. 11, f. 9. lodderae Petterd, Journ. of Conch., 4, 1884, p. 140, No. 23. petterdi Tate and May, Trans. Roy. Soc. S.A., 24, 1900, p. 96.

Family PYRAMIDELLIDAE

Leucotina A. Adams, Ann. Mag. Nat. Hist. (3), 5, 1860, p. 406. (niphonensis A. Adams.)
casta Adams, Monoptygma, Proc. Zool. Soc., 1851, p. 223.
harrisoni Tate and May, Syrnola, Trans. Roy. Soc. S.A., 24, 1900, p. 96, pl. 25, f. 54.
micra Pritchard and Gatliff, Turbonilla, Proc. Roy. Soc. Vic., 13 (n.s.), 1900, p. 134, pl. 21, f. 1.

Syrnola A. Adams, Ann. Mag. Nat. Hist. (3), 5, 1860, p. 405. (gracillima A. Adams.)
aurantiaca Angas, Styloptygma, Proc. Zool. Soc., 1867, p. 112, pl. 13, f. 14. bifasciata T. Woods, Trans. Roy. Soc. Tas., 1875, p. 145.
jonesiana Tate, Odontostomia, Trans. Roy. Soc. S.A., 1898, p. 70 and text fig. p. 82.
manifesta Hedley, Rec. Aust. Mus., 8, 1912, p. 143, pl. 42, £. 23-24.
tincta Angas, Proc. Zool. Soc., 1871, p. 15, f. 1.
Odostomia Fleming, Brewster's Edinb. Encycl., 7, 1813, p. 76. (plicata Montagu.)
angasi Tryon, Man. Conch., 8, 1886, p. 362, pl. 79, f. 68.
australis Angas, Agatha, Proc. Zool. Soc., 1871, p. 15, pl. 1, f. 9.
deplexa Tate and May, Odontostomia, Trans. Roy. Soc. S.A., 24, 1900, p. 97, pl. 25, f. 45.
laevis Angas, Proc. Zool. Soc., 1867, p. 112, pl. 13, f. 10.
mayii Tate, Trans. Roy. Soc. S.A., 22, 1898, p. 84, pl. 4, f. 6.
metcalfei Pritchard and Gatliff, Proc. Roy. Soc. Vic., 13, 1900, p. 136, pl. 21, f. 3.
nugatoria Hedley, Odontostomia, Mem. Aust. Mus., 4, 1903, p. 363, f. 87. occultidens May, Trans. Roy. Soc. Tas., 1915, p. 90, pl. 4, f. 19. petterdi Gatliff, Vict. Nat., 17, 1900, p. 54.
simplex Angas, Proc. Zool. Soc., 1871, p. 15, pl. 1, f. 10. suprasculpta T. Woods, Rissoina, Proc. Roy. Soc. Vic., 14, 1877, p. 57. victoriae Gatliff and Gabriel, Proc. Roy. Soc. Vic., 24, 1911, p. 187, pl. 46, f. 2.

Turbonilla Risso, Hist. Nat. Europ. Merid., 4, 1826, p. 224. (lactea Linne.) acicularis A. Adams, Chemnitzia, Proc. Zool. Soc., 1853, p. 182. beddomei Petterd, Chemnitzia, Journ. of Conch., 4, 1884, p. 136. brevis Pritchard and Gatliff, Proc. Roy. Soc. Vic., 13 (n.s.), 1900, p. 135, pl. 21, f. 4.
fusca A. Adams, Chemnitzia, Proc. Zool. Soc., 1853, p. 181.
hofmani Angas, Proc. Zool. Soc., 1877, p. 183.
mariae T. Woods, Trans. Roy. Soc. Tas., 1875, p. 144.
portseaensis Gatliff and Gabriel, Proc. Roy. Soc. Vic., 24 (n.s.), 1911, p. 188, pl. 46, f. 1.)
scalpidens Watson, Odostomia, Chall. Zool., 15, 1886, p. 489, pl. 32, f. 1. tiara May, Trans. Roy. Soc. Tas., 1910, p. 396, pl. 15, f. 25, 25a, b.
Oscllea A. Adams, Proc. Zool. Soc., 1867, p. 310. (cingulata A. Adams.)
tasmanica T. Woods, Parthenia, Proc. Roy. Soc. Tas., 1876, p. 150.
Eulimella Jeffrey, Ann. Mag. Nat. Hist., 19, 1847, p. 311 . (scillae Gray.)
moniliformis Hedley and Musson, Proc. Linn. Soc. N.S.W., 16, 1891, p. 247, pl. 19, f. 1-3.
turrita Petterd, Aclis, Journ. of Conch., 4, 1884, p. 140.
Cingulina A. Adams, Ann. Mag. Nat. Hist. (3), 6, 1860, p. 414. (circinata A. Adams.)
diaphana Verco, Trans. Roy. Soc. S.A., 30, 1906, p. 143, pl. 4, f. 11.
insignis May, Proc. Roy. Soc. Tas., 1910, p. 396, pl. 15, f. 24 and 24 a.
magna Gatliff and Gabriel, Proc. Roy. Soc. Vic., 23, 1910, p. 84, pl. 19, f. 8.
rhyllensis Gatliff and Gabriel, Proc. Roy. Soc. Vie., 23, 1910, p. 84, pl. 19, f. 9.
spina Crosse and Fischer, Turritella, Journ. de Conch., 12, 1864, p. 347.
Aclis Loven, Ofvers, Vetens Ahad. Forh., 3 (5), 1846, p. 148. (nitidissima Montagu.)
pellucida Gatliff and Gabriel, Proc. Roy. Soc. Vic., 24, 1911, p. 187, pl. 46, f. 4.

Pseldorissoina Tate and May, Trans. Roy. Soc. S.A., 1900, p. 98. (tasmanica
T. Woods.)
tasmanica T. Woods, Stilifer, Proc. Roy. Soc. Tas., 1876, p. 152.

Superfamily HIPPONICACEA Family HIPPONICIDAE

Sabia Reeve, Conch. Syst., 2, 1842, p. 34. (conica Schumacher.)
australis Quoy and Gaimard, Hipponix, Voy. "Astrolabe," Zool., 3, 1835, p. 434, pl. 72, f. 25-34.

Antisabia Iredale, Aust. Zool. 8, 1937, p. 253. (foliacea Quoy and Gaimard.) foliacea Quoy and Gaimard, Hipponix, Voy. "Astrolabe," Zool., 3, 1835, p. 439, pl. 72, f. 41-45.

Superfamily CHEILEACEA Family CaPULIDAE

Capulus Montfort, Conch. Syst., 2, 1810, p. 54. (hungaricus Linne.)
devotus Hedley, Proc. Linn. Soc. N.S.W., 29, 1904, p. 190, pl. 8, f. 15-16. violaceus Angas, Proc. Zool. Soc., 1867, p. 114, pl. 13, f. 23 .

Family LIPPISTIDAE

gabrieli Pritchard and Gabriel, Trichotropis, Proc. Roy. Soc. Vic., 1899, p.
183, pl. 20, f. 7 .
Incuncula Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 251. (torcularis T. Woods.)
zodiacus Hedley, Lippistes, Proc. Linn. Soc. N.S.W., 32, 1907, p. 502, pl. 18,
f. 30 .

Sirius Hedley, Proc. Linn. Soc. N.S.W., 25, 1900, p. 88. (badius T. Woods.) badius T. Woods, Raulinia, Proc. Limn. Soc. N.S.W., 2, 1878, p. 264.

Family G A LERIDAE

Sigapatella Lesson, Voy. "Coquille," Zool., 2 (1), 1831, p. 389. (novaezclandiae Lesson.)
calyptraeformis Lamarck, Trochus, Anim. s. Vert., 7, 1822, p. 12.
Zeacrypta Finlay, Trans. New Zealand Instit., 57, 1926, p. 393. (monoxyla Lesson.)
immersa Angas, Crepidula, Proc. Zool. Soc., 1865, p. 57, pl. 2, f. 12. scutum Lesson, Calyptraea, Voy. "Coquille," Zool., 2, p. 395.
Crypta Humphrey, Mus. Calonnianum, 1797, p. 4. (fomicata Linne.) aculeata Gmelin, Patella, Syst. Nat., 13, 1791, p. 3693.

Family CHEILEIDAE

Cheilea Modeer, K. Vetens Acad. Nya. Handl., 14, 1793, p. 110. (equestris Linne.)
equestris Linne, Patella, Syst. Nat., ed. 12, 1766, p. 257.

Superfamily NATICACEA Family NATICIDAE

Notocochlis Powell, Trans. New Zealand Instit., 63, 1933, p. 166. (migratoria Powell.)
sagittata Menke, Natica, Moll. Nov. Holl., 1843, p. 10.
schoutanica May, Natica, Proc. Roy. Soc. Tas., 1912, p. 45, pl. 2, f. 3.
Cochlis Bolten, Mus. Bolten, 1798, p. 146. (albulla Bolten.)
shorehami Pritchard and Gatliff, Natica, Proc. Roy. Soc. Vic., 13, 1900, p. 131, pl. 20, f. 4.
Uber Humphrey, Mus. Calonnianum, 1797, p. 21. (mammilla Linne.)
conicum Lamarck, Natica, Anim. s. Vert., 6, 1822, p. 198.
incei Philippi, Natica, Proc. Zool. Soc., 1851, p. 233.
melástoma Swainson, Natica, Zool. Illustr., 1st ser., 1822, pl. 79.
plumbeum Lamarck, Natica, Anim. s. Vert., 6, 1822, p. 198.
tasmanica, T. Woods, Natica, Proc. Roy. Soc. Tas., 1875, p. 148-149.
Quantonatica Iredale, Rec. Aust. Mus., 19, 1936, p. 311 . (subcostata T. Woods.) subcostata T. Woods, Natica, Proc. Linn. Soc. N.S.W., 2, 1878, p. 263.
Friginatica Hedley, Moll. Aust. Antarctic Exped., 1916, p. 51. (beddomei Johnston.)
beddomei Johnston, Natica, Proc. Roy. Soc. Tas., 1884, p. 222.
Ectosinum Iredale, Rec. Aust. Mus., 18, 1931, p. 216. (pauloconvexum Iredale.) zonale Quoy and Gaimard, Cryptosoma, Voy. "Astrolabe," Zool., 2, 1833, p. 221, pl. 66, f. 1-3.

Propesinum Iredale, Proc. Linn Soc., N.S.W., 49, 1924, p. 256. (umbilicatum Quoy and Gaim.)
nitidum Reeve, Sigaretus, Conch. Icon., 15, 1864, pl. 4, sp. 20a, b. pictum Reeve, Sigaretus, Conch. Icon., 15, 1864, pl. 5, sp. 24.
umbilicatum Quoy and Gaimard, Natica, Voy. "Astrolabe," Zool., 2, 1833, p. 234, pl. 66, £. 22-23.

Superfamily LAMELLARIACEA
Family LAMELLARIIDAE
Lamellaria Montagu, Trans. Linn. Soc, 11 (2), 1815, p. 183. (perspicua Linne.) ophione Gray, Proc. Zool. Soc., 1849, p. 169.
Mysticoncha Allan, Rec. Aust. Mus., 19, 1936, p. 393. (wilsoni Smith.) wilsoni Smith, Lamellaria, Ann. Mag. Nat. Hist., 18, 1886, p. 270 and fig. Merria Gray, Beechey's Voy., 1839, p. 137. (cancellata. Lamk.)
quoyiana A. Adams, Vanicoro, Proc. Zool. Soc., 1853, p. 175, pl. 20, f. 4.

Superfamily STROMBIDIACEA Family STROMBIDAE

Strombus Linne, Syst. Nat., 10, 1758, p. 742. (vittatus Linne.) floridus Lamarck, Anim. s. Vert., 7, 1822, p. 211.

Superfamily CYPRAEACEA
 Family CYPRAEIDAE

Notocypraea Schilder, Arch. fur. Naturg. (Wiegm), 1927, 91, Abt. A, heft 10, p. 110. (piperata Gray.)
albata Beddome, Cypraea, Proc. Linn. Soc. N.S.W., 22, 1897, p. 571, pl. 21, f. 11 .
angustata Gmelin, Cypraca, Syst. Nat., 13, 1791, p. 3421.
bicolor Gaskoin, Cypraea, Proc. Zool. Soc., 1848, p. 92.
comptoni Gray, Cypraca, Juke's Voy. H.M.S. "Fly," 2, 1847, p. 356, pl. 1, f. 3.
declivis Sowerby, Cypraea, Thes. Conch., 4, 1870, p. 31, f. 287, 329.
piperata Gray, Cypraea, Zool. Journ., 1, 1824, p. 498.
Umbilia Jousseaume, Bull. Soc. Zool., France, 9, 1884, p. 90. (hesitata Iredale.) hesitata Iredale, Cypraca, Proc. Mal. Soc., 12, 1916, p. 93.

Family TRIVIIDAE

Ellatrivia Iredale, Rec. Aust. Mus., 18, 1931, p. 221. (merces Iredale.) merces Iredale, Trivia, Proc. Linn. Soc. N.S.W., 49, 1924, p. 257, pl. 35, f. 16-17.

Family ERATOIDAE
Lachryma Reeve, Conch. Syst., 1842, p. 261. (lachryma Sowerby.)
denticulata Pritchard and Gatliff, Erata, Proc. Roy. Soc. Vic., 1900, p. 133, pl. 20, f. 5.

Superfamily DOLIACEA
 Family CASSIDIAE

Hypocassis Iredale, Rec. Aust. Mus., 15, 1927, p. 329. (decresensis Hedley.) fimbriata Quoy and Gaimard, Cassis, Voy. " Λ strolabe," Zool., 2, 1833, p. $596, \mathrm{pl} .43$, f. 7-8.
Antephalium Iredale, Ree. Aust. Mus., 15, 1927, p. 350. (semigranosum Lamarck.)
semigranosum Lamarck, Cassis, Anim. s. Vert., 7, 1822, p. 228.
sinuosum Verco, C'assidea, Trans. Roy. Soc. S.A., 28, 1904, p. 141, pl. 26, f. 7-10, a-c.

Xenogalea Iredale. Rec. Aust. Mus., 15, 1927, p. 339. (pyrum Lamarck.) labiata Perry, Cassidea, Conchology, 1811, pl. 34, 1.
paucirugis Menke, Cassis, Moll. Nov. Holl., 1843, p. 23.
pyrum Lamarck, Cassis, Anim. s. Vert., 7, 1822, p. 226.
spectabilis Iredale, Rec. Aust. Mus., 17, 1929, p. 178, pl. 38, £. 6.
stadialis Hedley, Cassidea, Biol. Results F.I.S. "Endeavour," 2, 1914, p. $72, \mathrm{pl} .10$, f. 4.
thomsoni Brazier, Cassis, Proc. Linn. Soc. N.S.W., 1, 1875, p. 8.

Family CYMATIIDAE

Charonia Gistel, Natung. Thier, 1848, p. 170. (tritonis Linne.)
rubicunda Perry, Septa, Conchology, 1811, pl. 14, f. 4.
Cymatium Bolten, Mus. Bolten, 1798, p. 129. (femorale Linne.)
exaratum Reeve, Triton, Proc. Zool. Soc., 1844, p. 116.
Cymatilesta Iredale, Rec. Aust. Mus., 19, 1936, p. 307. (spengleri Perry.)
spengleri Perry, Septa, Conchology, 1811, pl. 14, f. 3.
waterhousci Adams and Angas, Triton, Proc. Zool. Soc., 1864, p. 35.
Cymatona Tredale, Rec. Aust. Mus., 17, 1929, p. 177. (kampyia Watson.)
kampyla Watson, Nassarius, Journ. Linn. Soc. Zool., 16, 1883, p. 594 and f.
Gondwanula Finlay, Trans. New Zealand Instit., 57, 1926, p. 399. (tumida Dunker.)
bassi Angas, Triton, Proc. Zool. Soc., 1869, p. 45, pl. 2, Ł. 2. vexillum Sowerby, Ranella, Conch. Illus., f. 3.
Negyrina Iredale, Rec. Aust. Mus., 17, 1929, p. 177. (subdistorta Lamarck.) subdistorta Lamarek, Triton, Anim. s. Vert., 7, 1822, p. 186.
Mayena Iredale, Proc. Mal. Soc., 12, 1917, p. 324. (australasia Perry.)
australasia Perry, Biplex, Conchology, 1811, pl. 4, f. 2 and 4.
Cymatiella Tredale, Proc. Limn. Soc. N.S.W., 49, 1924, p. 254. (quoyi Reeve.) columnaria Hedley and May, Cymatium, Rec. Aust. Mus., 7, 1908, p. 119, pl. 23, f. 15.
gaimardi Iredale, Rec. Aust. Mus., 17, 1929, p. 176, pl. 40, f. 7.
lesueuri Iredale, Rec. Aust. Mus., 17, 1929, p. 175, pl. 40, f. 11.
quoyi Reeve, Triton, Conch. Icon., 2, 1844, pl. 19, sp. 93.
verrucosa Reeve, Triton, Conch. Icon., 2, 1844, pl. 17, sp. 71.
Maculotriton Dall, Smithson. Misc. Coll., 47, No. 1475, 1904, p. 136. (bractealus Hinds.)
australis Pease, Tritonidea, Amer. Journ. Conch., 7, 1872, p. 21.
Austrocassia Finlay, Trans. New Zealand Instit., 62, 1931-2, p. 7. (parkinsonia Perry.)
parkinsonia Perry, Septa, Conchology, 1811, pl. 14, f. 1.
Ratifusus Iredale, Rec. Aust. Mus., 17, 1929, p. 183. (adjunctus Iredale.)
bednalli Brazier, Triton (Epidromus), Proc. Linn. Soc. N.S.W., 1, 1875, p. 6. reticulata, A. Adams, Pisania, Proc. Zool. Soc., 1854, p. 138.

Suborder STENOGLOSSA
 Section RACHIGLOSSA
 Superfamily MURICACEA Family MURICIDAE

Torvamurex Iredale, Rec. Aust. Mus., 19, 1936, p. 323. (denudatus Perry.) damicornis Hedley, Murex, Mem. Aust. Mus., 4, 1903, p. 378, f. 92. denudatus Perry, Triplex, Conch., 1811, pl. 7, f. 2.
Pterynotus Swainson, Zool. Illust. (2), 3, (22), 1883, p. 100. (pinnatus Swainson.)
angasi Crosse, Typhis, Journ. de Conch., 11, 1863, p. 86, pl. 1, f. 2. triformis Reeve, Murex, Conch. Icon., 3, 1845, pl. 13, sp. 53.
Murexsel Iredale, Trans. New Zealand Instit., 47, 1915, p. 471. (octogonus Q. and G.)
Brazieri Angas, Murex, Proc. Zool. Soc., 1877, p. 171, pl. 26, f. 3. fimbriatus Lamarck, Murex, Anim. s. Vert., 7, 1822, p. 176. umbilicatus T. Woods, Trophon, Proc. Roy. Soc. Tas., 1875, p. 135.
Galfridus Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 271. (speciosus Angas.) eburneus Petterd, Trophon, Journ. of Conch., 4, 1884, p. 142. speciosus Angas, Triton, Proc. Zool. Soc., 1871, p. 13, pl. 1, f. 1.
Typhis Monfort, Syst. Conch., 2, 1810, p. 614. (tubifer Bruguiere.) philippensis Watson, Journ. Linn. Soc., 16, 1883, p. 605. yatesi Crosse, Journ. de Conch., 13, 1865, p. 54, pl. 2, f. 3.
Cyphonochelus Jousseaume, Rev. Mag. Zool. (3), 7, 1881, p. 337. (arcuatus Hinds.)
syringianus Hedley, Typhis, Mem. Aust. Mus., 4, 1903, p. 381, f. 94.
Litozamia Iredale, Rec. Aust. Mus., 17, 1929, p. 185. (rudolphi Brazier.) brazieri T. Woods, Trophon, Proc. Roy. Soc. Tas., 1875, p. 136. goldsteini T. Woods, Trophon, Proc. Roy. Soc. Tas., 1875, p. 136.
Benthoxystus Iredale, Rec. Aust. Mus., 17, 1929, p. 185. (columnarius Hedley and May.)
petterdi Crosse, Trophon, Journ. de Conch., 18, 1870, p. 303. recurvatus Verco, Trophon, Trans. Roy. Soc. S.A., 1909, p. 336, pl. 24, f. 7-8.
Enatimene Iredale, Rec. Aust. Mus., 17, 1929, p. 185. (simplex Hedley.) simplex Hedley, Trophon, Mem. Aust. Mus., 4, 1903, p. 380, f. 93.
Bedeva Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 273. (hanleyi Angas.) assisi T. Woods, Trophon, Proc. Roy. Soc. Tas., 1876, p. 132. hanleyi Angas, Trophon, Proc. Zool. Soc., 1867, p. 110, pl. 13, f. 1. paivae Crosse, Trophon, Journ. de Conch., 12, 1864, p. 278, pl. 11, f. 7.
Rapana Schumacher, Ess. Vers. Test., 65, 1817, p. 214. (bezoar Linne.) mira Cotton and Godfrey, S. Aust. Nat., 13, 1932, p. 145, pl. 1, f. 16. nodosa A. Adams, Proc. Zool. Soc., 1853, p. 98.
Drupa Bolten, Mus. Bolt. (2), 1798, p. 55. (grossularia Bolten.) aspera Lamarck, Ricinula, Anim. s. Vert., 7, 1822, p. 232.

Family THAIDIDAE

Dicathais Iredale, Rec. Aust. Mus., 19, 1936, p. 325. (orbita Gmelin.) baileyana T. Woods, Purpura, Proc. Roy. Soc. Vic., 17, 1881, p. 80, f. 1-2. orbita Gmelin, Buccinum, Syst. Nat., ed. 13, 1791, p. 3490. textiliosa Lamarck, Purpura, Anim. s. Vert., 7, 1822, p. 242.
Lepsiella Iredale, Proc. Mal. Soc., 10, 1912, p. 223. (scobina Quoy and Gaim.) adelaidensis Crosse and Fischer, Ricinula, Journ. de Conch., 1865, p. 50 , pl. 2, f. 1.
reticulata Blainville, Purpura, Nouv. Ann. du Mus., 1, 1832, p. 229. vinosa Lamarek, Buccinum, Anim. s. Vert, 7, 1822, p. 273.
Tolema Iredale, Rec. Aust. Mus., 17, 1929, p. 186. (sertata Hedley.) sertata Hedley, Purpura, Aust. Mus. Mem., 4, 1902, p. 382, f. 95-96.
Agnewia T. Woods, Proc. Roy. Soc. Tas., 1877, p. 29. (typica Dunker.) tritoniformis Blainville, Purpura, Nouv. Ann. Mus., 1, 1832, p. 221, pl. 10, f. 10 .

Superfamily BUCCINACEA
 Family PYRENIDAE

Zemitrella Finlay, Trans. New Zealand Instit., 57, 1926, p. 431. (sulcata Hutton.)
austrina Gaskoin, Columbella, Proc. Zool. Soc., 1851, p. 9.
dictua T. Woods, Columbella, Proc. Roy. Soc. Tas., 1878, p. 34.
franklinensis Gatliff and Gabriel, Columbella, Proc. Roy. Soc. Vic., 23, 1910, p. 83, pl. 18, f. 3.
lincolnensis Reeve, Columbella, Conch. Icon., 11, 1859, pl. 29, sp. 184, a, b.
menkeana Reeve, Columbella, Conch. Icon., 11, 1859, pl. 14, sp. 69a, b.
nubeculata Reeve, Columbella, Conch. Icon., 11, 1859, pl. 37, sp. 234.
nux Reeve, Columbella, Conch. Icon., 11, 1859, pl. 35, f. 227.
pulla Gaskoin, Columbella, Proc. Zool. Soc., 1851, p. 6.
semiconvexa Lamarck, Buccinum, Anim. s. Vert., 7, 1822, p. 272.
vincta Tate, Columbella, Trans. Roy. Soc. S.A., 17, 1893, p. 190, pl. 1, f. 11.
Zella Iredale, Proc. Limn. Soc. N.S.W., 49, 1924, p. 271. (beddomei Petterd.) beddomei Petterd, Terebra, Journ, of Conch., 4, 1884, p. 142.
Pseudamycla Pace, Proc. Mal. Soc., 5, 1902, p. 255. (dermestoidea Lamarek.) dermestoidea Lamarck, Buccinum, Anim. s. Vert., 7, 1822, p. 275. miltostoma. T. Woods, Columbella, Proc. Roy. Soc. T'as., 1876, p. 134.
Truncaria Adams and Reeve, Voy. "Samarang," Zool., 6, 1850, p. 33. (filosa Ad. and Reeve.)
australis Angas, Proc. Zool. Soc., 1877, p. 172, pl. 26, f. 5.
Macrozafra Finlay, Trans. New Zealand Instit., 57, 1926, p. 431. (subabnormis Suter.)
atkinsoni T. Woods, Mangelia, Proc. Roy. Soc. T'as., 1875, p. 141.
calva Verco, Pyrene, Trans. Roy. Soc. S.A., 34, 1910, p. 143, pl. 29, f. 2-3.
cominelliformis Tate, Columbella, Trans. Roy. Soc. S.A., 15, 1892, p. 126, pl. 1, f. 8.
fulgida Reeve, Columbella, Conch. Icon., 11, 1859, pl. 28, sp. 178.
legrandi T. Woods, Columbella, Proc. Roy. Soc. Tas., 1875, p. 152.
lurida Hedley, Pyrene, Proc. Linn. Soc. N.S.W., 32, 1907, p. 510, pl. 17, f. 19 .
remoensis Gatliff and Gabriel, Columbella, Proc. Roy. Soc. Vic., 23, 1910, p. 82, pl. 18, f. 1-2.
smithi Angas, Columbella, Proc. Zool. Soc., 1877, p. 172, pl. 26, f. 7.
Retizafra Hedley, Proc. Limm. Soc. N.S.W., 38, 1913, p. 326. (gemmulifera Hedley.)
gemmulifera Hedley, Pyrene, Proc. Linn. Soc. N.S.W., 32, 1907, p. 510, pl. 19, f. 44.
Antizafra Finlay, Trans. New Zealand Instit., 57, 1926, p. 431. (pisaniopsis Hutton.)
plexa Hedley, Columbella, Proc. Linn. Soc. N.S.W., 26, 1901, p. 702, f. 25.
Aesopus Gould, Proc. Boston Soc. Nat. Hist., 7, 1860, p. 383. (japonicus Gould.) cassandra Hedley, Daphnella, Proc. Linn. Soc. N.S.W., 29, 1904, p. 187, pl. 8, f. 17.
gatliffi Verco, Mangilia, Trans. Roy. Soc. S.A., 33, 1909, p. 312, pl. 28, f. 9. pallidulus Hedley, Mitromorpha, Proc. Linn. Soc. N.S.W., 30, 1905, p. 534, pl. 32, f. 26.
plurisulcatus Reeve, Columbella, Conch. Icon., 11, 1859, pl. 36, sp. 233.
Family BUCCINIDAE
Cominella Gray, Figs. Moll. Anim., 4, 1850, p. 72. (testudinea Martyn.)
acutinodosa Reeve, Buccinum, Conch. Icon., 3, 1846, pl. 4, sp. 21.
eburnea Reeve, Buccinum, Conch. Icon., 3, 1846, pl. 12, sp. 93. lineolata Lamarck, Buccinum, Encycl. Meth., 1809, pl. 400, f. 8.
Tasmeuthria Iredale, Rec. Aust. Mus., 14, 1925, p. 262. (clarkei T. Woods.)
clarkei T. Woods, Siphonalia, Proc. Roy. Soc. Tas., 1875, p. 138.
Pnos Monfort, Conch. Syst., 2, 1810, p. 494. (textum Gmelin.)
senticosus Linne, Murex, Syst. Nat., ed. 10, 1758, p. 751.
$F_{\text {ax }}$ Iredale, Rec. Aust. Mus., 14, 1925, p. 262. (tabidus Hedley.)
tabida Hedley, Phos, Proc. Linn. Soc. N.S.W., 29, 1904, p. 191, pl. 8, f. 18.

Family AUSTROSIPHONIDAE

Austrosifio Cossmann, Essaid Paleoconch., 7, 1906, p. 229. (roblini Tate.) grandis Gray, Fusus, Zool. Beechey's Voyage, 1839, p. 116. maxima Tryon, Siphonalia, Man. Conch., 3, 1881, p. 135, pl. 54, f. 355. oligostira Tate, Siphonalia, Trans. Roy. Soc. S.A., 14, 1891, p. 258, pl. 11, f. 6 . waitei Hedley, Fusus, Mem. Aust. Mus., 4, 1903, p. 373, pl. 37.

Family NASSARIIDAE

Nassarius Dumeril, Zool. Analyt., 1806, p. 166. (mutabile Linne.) particeps Hedley, Arcularia, Proc. Linn. Soc. N.S.W., 39, 1915, p. 738.
Tavaniotha Iredale, Rec. Aust. Mus., 19, 1936, p. 321. (optata Gould.) municriana Crosse, Nassa, Journ. de Conch., 12, 1864, p. 345, pl. 13, f. 6.
Parcanassa Iredale, Rec. Aust. Mus., 19, 1936, p. 322. (ellana Iredale.) burchardi Philippi, Buccinum, Abbild. Beschr. Conch., 3, 1851, p. 69, pl. ², f. 14.
jonasi Dunker, Buccinum, Zeit. Malak., 3, 1846, p. 171. pauperata Lamarek, Buccinum, Anim, s. Vert., 7, 1822, p. 278.
Reticunassa Tredale, Rec. Aust. Mus., 19, 1936, p. 322. (paupera Gould.) paupera Gould, Nassa, Proc. Boston Nat. Hist. Soc., 3, 1850, p. 155.
Nıтни H. and Λ. Adams, Gen. Moll., 1, 1853, p. 117. (cumingi A. Adams.) pyrrhus Menke, Buccinum, Moll. Nov. Holl., 1843, p. 21, No. 93.

Family FASCIOLARIIDAE

Fasciolarta Lamarek, Mem. Soc. N.H., Paris, 1799, p. 73. (tulipa Linne.) australasia Perry, Pyrula, Conch., 1811, pl. 54, f. 4. coronata Lamarck, Anim. s. Vert., 7, 1822, p. 120.
Dolicholatifrus Bellardi, Mem. Acas. Sci. Torina (2), 37, 1886, p. 38. (lancea Gmelin.)
spiceri T. Woods, Fusus, Proc. Roy. Soc. Tas., 1876, p. 137.

Family COLIDAE

Colus Humphrey, Museum Calonnianum, 1797, p. 34. (colus Linne.) australis Quoy and Gaimard, Fusus, Voy. "Astrolabe," Zool., 2, 1833, p. $495, \mathrm{pl} .34$, f. 9-14. novaehollandiae Reeve, Fusus, Conch. Icon., 4, 1848, pl. 18, sp. 70.
Propefusus Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 268. (pyrulatus Reeve.)
pyrulatus Reeve, Fusus, Conch. Icon., 4, 1847, pl. 13, sp. 50. undulatus Perry, Pyrula, Conch., 1811, pl. 54, f. 1.
Microcolus Cotton and Godfrey, S.A. Nat., 13, 1932, p. 72. (dunkeri Jonas.) dunkeri Jonas, Fusus, Malak. Beitrog., 1844, p. 129.

Superfamily VOLUTACEA

Family ZEMIRIDAE
Zemira H. and A. Adams, Gen. Rec. Moll., 1, 1858, p. 110. (australis Sowerby.) australis Sowerby, Eburna, Conch. Illust., 1841, pt. 20, f. 5.

Family OLIVIDAE

Oliva Burgiere, Ency. Meth. (Vers), (1), 1789, p. 15. (porphyria Linne.)
australis Duclos, Monog. du Genre, 1835, sp. 56, pl. 8, f. 3-4.
Belloliva Peile, Proc. Mal. Soc., 15, 1922, p. 18 . (brazieri Angas.)
leucozona A. Ad. and Angas, Olivella, Proc. Zool. Soc., 1863, p. 422, pl. 37, f. 23 .
pardalis A. Ad. and Angas, Oliva, Proc. Zool. Soc., 1863, p. 422, pl. 37, f. 3.
Baryspira Fischer, Man. Conch., 1883, p. 600. (australis Sowerby.) dyspetes Iredale, Aust. Zool., 5, 1929, p. 341, pl. 38, f. 12.
edithae Pritchard and Gatliff, Ancilla, Proc. Roy. Soc. Vic., 11 (n.s.), 1898, p. 181, pl. 20, f. 5.
fusiformis Petterd, Ancillaria, Proc. Roy. Soc. Tas., 1885, p. 3 ± 2. monilifera Reeve, Ancillaria, Conch. Icon., 15,1864, pl. 10, sp. 36a, b. oblonga Sowerby, Ancillaria, Species Conch., pt. 1, 1830, p. 7, f. 38, 39. petterdi Tate, Ancillaria, Proc. Roy. Soc. S.A., 17, 1893, p. 199. tasmanica T. Woods, Ancillaria, Proc. Roy. Soc. Tas., 1876, p. 135.
Cupidoliva Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 259. (nympha Ad. and Ang.)
nympha Adams and Angas, Olivella, Proc. Zool. Soc., 1863, p. 422.
Family MITRIDAE
Mitra Bolten, Mus. Bolteneanum, 2, 1798, p. 135. (episcopalis Linne.) australis Swainson, Zool. Illust., 1, 1822, 1st series, pl. 18. carbonaria Swainson, Bligh. Cat. Append., 1822, p. 10.
glabra Swainson, Exot. Conch., 1, 1821, pl. $2 t$.
rhodia Reeve, Conch. Icon., 2, 1845 , pl. 28, sp. 225.
rosettae Angas, Proc. Zool. Soc., 1865, p. 55, pl. 2, f. 6.
vincentiana Verco, Trans. Roy. Soc. S.A., 1896, p. 223, pl. 8, f. 3.
Austromitra Finlay, Trans. New Zealand Instit., 57, 1926, p. 410. (rubiginosa Hutton.)
acromialis Hedley, Mitra, Proc. Linn. Soc. N.S.W., 39, 1914, p. 730, pl. 84, f. 85 .
analogica Reeve, Mitra, Conch. Icon., 2, 1845, pl. 35, sp. 293.
cinnamonea A. Adams, Volutomitra, Proc. Zool. Soc., 1854, p. 134.
legrandi T. Woods, Proc. Roy. Soc. Tas., 1875, p. 140.
pumilio May, Vexillum, Proc. Roy. Soc. Tas., 1915, p. 85, pl. 1, f. 5.
retrocurvata Verco, Mitra, Trans. Roy. Soc. S.A., 33, 1909, p. 338, pl. 24, f. 4 and 5.
scalariformis T. Woods, Mitra, Proc. Roy. Soc. Tas., 1875, p. 140.
schomburgki Angas, Mitra, Proc. Zool. Soc., 1878, p. 313, pl. 18, f. 12-13.
stadialis Hedley, Mitra, Zool. F.I.S. "Endeavour," pt. 1, 1911, p. 112, pl. 20, f. 37 .
tatei Angas, Mitra, Proc. Zool. Soc., 1878, p. 861, pl. 54, f. 8.
Proximitra Finlay, Trans. New Zealand Instit., 57, 1926, p. 410. (rutidolomum Suter.)
pica Reeve, Mitra, Conch. Icon., 2, 1845, pl. 31, sp. 247.
Peculator Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 269. (verconis Iredale.)
porphyria Verco, Imbricaria, Trans. Roy. Soc. S. $1 ., 1897$, p. 227, pl. 8, \&. 5, 5a.
Cancilla Swainson, Treat. Malacol., 1840, p. 320. (sulcata Swainson.)
strangei Angas, Mitra, Proc. Zool. Soc., 1867, p. 110, pl. 13, f. 4.
Mitroidea Pease, Proc. Zool. Soc., 1865, p. 514. (ancillides Swainson.) pellucida Tate, Mitra, Trans. Roy. Soc. S.A., 9, 1886, p. 63, pl. 4, f. 13.

Family VOLUTIDAE

Amorena Iredale, Rec. Aust. Mus., 17, 1929, p. 180. (undulata Lamarck.) undulata Lamarek, Voluta, Amn. du Mus., 5, 1804, p. 157, pl. 12, £. 1a, b. zebra Leach, Voluta, Zool. Misc., 1, 1814, p. 31, pl. 12, f. 1.
Cymbiola Swainson, Zool. Illust., 2, 1832, pl. 33. (ancilla Solander.) magnifica Perry, Voluta, Conchology, 1811, pl. 18, f. 1.
Ericusa H. and A. Adams, Genera Rec. Moll., 2, 1858, p. 619. (papillosa Swainson.)
papillosa Swainson, Voluta, Append. Bligh Cat., 1821.
sowerbyi Kiener, Voluta, Coq. Viv., 1839, p. 47, pl. 50.
Livonia Gray, Brit. Mus. Cat. Volut., 1855, p. 8. (dubia Broderip.)
mamilla Gray, Voluta, in Sowerby's Thes. Conch., 1844, 1, p. 207, pl. 50, f. $57,58$.
roadnightae McCoy, Voluta, Ann. Mag. Nat. His., ser. 5, 8, 1881, p. 89, pl. 7, f. 1-2.

Lyria Gray, Proc. Zool. Soc., 1847, p. 141. (nucleus Lamarck.)
mitraeformis Lamarck, Voluta, Anim. s. Vert., 7, 1822, p. 347.

Family CANCELLARIIDAE

Sydapiera Iredale, Aust. Zool., 5, 1929, p. 341. (renovata Iredale.) granosa Sowerby, Cancellaria, Conch. Illust., 1832, p. 2, No. 15, f. 16-17. lactea. Deshayes, Cancellaria, Enclyc. Meth., 2, 1830, p. 180. purpuraeformis Kuster, Cancellaria, Coq. Viv., Canal, 2, 1841, p. 37, pl. 7, f. 4.
undulata Sowerby, Cancellaria, Conch. Illust., 1832, pl. 10, f. 16.
Nevia Jousseaume, Le Naturaliste (2), 1, 1887, p. 222. (excavata Sowerby $=$ spirata Lamarck.)
spirata Lamarck, Cancellaria, Anim. s. Vert., 7, 1822, p. 115.
Pepta Iredale, Ree. Aust. Mus., 14, 1925, p. 266. (stricta Hedley.)
stricta Hedley, Admete, Rec. Aust. Mus., 6, 1907, p. 295, pl. 54, f. 10.

Family MarginellidaE

Marginella Lamarck, Mem. Soc. N.H., Paris, 1799, p. 70. (glabella Linne.)
agapeta Watson, Chall. Zool., 15, 1886, p. 266, pl. 16, f. 9.
allporti T. Woods, Proc. Roy. Soc. Tas., 1875, p. 28.
alternans Pritchard and Gatliff, Proc. Roy. Soc. Vic., 11 (n.s.), 1898, p. 180, pl. 20, f. 3.
angasi Brazier, Journ. de Conch., 18, 1870, p. 304.
caducocincta May, Proc. Roy. Soc. Tas., 1915, p. 88, p1. 2, f.11.
columnaria Hedley and May, Rec. Aust. Mus., 7, 1908, p. 120, pl. 23, f. 19.
connectans May, Proc. Roy. Soc. Tas., 1910, p. 387, pl. 14, f. 11.
cratericula Tate and May, Trans. Roy. Soc. S.A., 24, 1900, p. 91.
cymbalum Tate, Trans. Roy. Soc. S.. ., 1, 1878, p. 86.
flindersi Pritchard and Gatliff, Proc. Roy. Soc. Vic., 11 (n.s.), 1898, p. 180, formicula Lamarck, Anim. s. Vert., 7, 1822, p. 359, No. 14. freycineti May, Proc. Roy. Soc. Tas., 1915, p. 86, pl. 2, f. 9. gabrieli May, Proc. Roy. Soc. Tas., 1910, p. 386, pl. 13, f. 9.
gatliff May, Proc. Roy. Soc. Tas., 1910, p. 385, pl. 13, f. 8.
geminata Hedley, Rec. Aust. Mus., 8, 1912, p. 145, pl. 42, f. 28.
halli Pritchard and Gatliff, Proc. Roy. Soc. Vic., 11 (n.s.), 1898, p. 179, pl. 20, f. 1.
inconspicua Sowerby, Thes. Conch., 1, 1846, p. 387, pl. 75, f. 80.
johnstoni Petterd, Journ. of Conch., 4, 1884, p. 143.
laevigata Brazier, Proc. Limn. Soc. N.S.W., 1876, p. 225.
muscaria Lamarck, Anim. s. Vert., 7, 1822, p. 359, No. 14.
mustelina Angas, Hyalina, Proc. Zool. Soc., 1871, p. 14, pl. 1, f. 5.
nympha Brazier, Proc. Limn. Soc. N.S.W., 19, 1894, p. 168, pl. 14, f. 2.
ovulum Sowerby, Thes. Conch., 1, 1846, p. 401, pl. 78, f. 188.
pisum Reeve, Conch. Icon., 15, 1865, pl. 27, sp. 156a, b.
problematica Gatliff and Gabriel, Proc. Roy. Soc. Vic., 29 (n.s.), 1916, p. 104, pl. 7, f. 1.
pulchella Kiener, Coq. Viv., 1830, p. 27, pl. 9, f. 41.
pumilio Tate and May, Proc. Linn. Soc. N.S.W., 1901, p. 363, pl. 26, f. 79.
pygmaeoides Singleton, Proc. Roy. Soc. Vic., 49, 1937, p. 393, pl. 23, f. 2.
schoutanica May, Proc. Roy. Soc. Tas., 1912, p. 45, pl. 2, f. 2
shorehami Pritchard and Gatliff, Proc. Roy. Soc. Vic., 11 (n.s.), 1898, p. 179, pl. 20, f. 2.
simsoni Tate and May, Trans. Roy. Soc. S.A., 24, 1900, p. 92.
stanislas T. Woods, Proc. Roy. Soc. Tas., 1876, p. 133.
stilla Hedley, Mem. Aust. Mus., 4, 1903, p. 367, f. 90 (text).
strangei Angas, Proc. Zool. Soc., 1877, p. 172, pl. 26, f. 8.
subauriculata May, Proc. Roy. Soc. Tas., 1915, p. 86, pl. 2, f. 7.
subbulbosa Tate, Trans. Roy. Soc. S.A., 1878, p. 86.
tasmanica T. Woods, Proc. Roy. Soc. Tas., 1875, p. 28, No. 5.
tridentata Tate, Trans. Roy. Soc. S.A., 1878, p. 87.
turbinata Sowerby, Thes. Conch., 1, 1846, p. 385, pl. 75, f. 70, 71.
victoriae Gatliff and Gabriel, Proc. Roy. Soc. Vic., 21 (n.s.), 1908, p. 365, pl. 21, f. 5.
whani Pritchard and Gatliff, Proc. Roy. Soc. Vic., 13, 1900, p. 137, pl. 21, f. 5-6.

Superfamily TOXOGLOSSA

Family TURRIDAE
Epidirona Iredale, Rec. Aust. Mus., 18, 1931, p. 225. (hedleyi Iredale.) gabensis Hedley, Epideira, Rec. Aust. Mus., 13, 1922, p. 228, pl. 43, f. 16. philipineri T. Woods, Pleurotoma, Proc. Roy. Soc. Tas., 1876, p. 136.
quoyi Reeve, Pleurotoma, Conch. Icon., 1, 1843, pl. 16, sp. 137.
Epideira Hedley, Journ. Limn. Soc. N.S.W., 51, 1917, p. 79. (striata Gray.) schoutanica May, Drillia, Proc. Roy. Soc. Tas., 1910, p. 391, pl. 14, f. 17.
Fenestrosyrinx Finlay, Trans. New Zealand Instit., 56, 1926, p. 254. (bicarinatus Suter.)
mayi Verco, Hemipleurotoma, Trans. Roy. Soc. S.A., 33, 1909, p. 295, pl. 25, f. 2.

Vexitomina Powell, Bull. Auckland Instit. and Mus., No. 2, 1942, p. 77. (metcalfei Angas.)
radulaeformis Weinkauff, Pleurotoma, Conch. Cab., 1876, p. 91, pl. 19, f. 7 and 8.
Inquisitor Hedley, Journ. Roy. Soc. N.S.W., 51, 1917, p. M79. (sterrha Watson.)
aemuila Angas, Drillia, Proc. Zool. Soc., 1877, p. 36, pl. 5, f. 9.
coxi Angas, Drillia, Proc. Zool. Soc., 1867, p. 113, pl. 13, f. 15. immaculatus T. Woods, Mangelia, Proc. Roy. Soc. Tas., 1875, p. 142. sauvis Smith, Pleurotoma, Ann. Mag. Nat. Hist., ser. 6, 2, 1888, p. 305. spadix Watson, Pleurotoma, Chall. Zool., 15, 1886, p. 310, pl. 26, f. 6. Austrodrillia Hedley, Journ. Roy. Soc. N.S.W., 2, 1917, p. M79. (angasi Crosse.)
angasi Crosse, Pleurotoma, Journ. de Conch., 11, 1863, p. 37, pl. 1, f. 5. beraudiana Crosse, Pleurotoma, Journ. de Conch., 11, 1863, p. 88, pl. 1, f. 6. nenia Hedley, Drillia, Mem. Aust. Mus., 4, 1903, p. 387, text. fig. 101. saxea Sowerby, Drillia, Proc. Mal. Soc., 2, 1896, p. 25, pl. 3, f. 4.
Splendrillia Hedley, Rec. Aust. Mus., 13, 1922, p. 250. (woodsi Beddome.) eburnea Hedley, Melatoma, Rec. Aust. Mus., 13, 1922, p. 251, pl. 45, f. 43. woodsi Beddome, Drillia, Proc. Roy. Soc. Tas., 1882, p. 167.
Antimelatoma Powell, Bull. Auckland Instit. and Mus., No. 2, 1942, p. 97. (maorum Smith.)
harpularia Desmonlins, Pleurotoma, Act. Soc. Linn., Bordeaux, 12, 1842, p. 162.
subviridis May, Drillia, Proc. Roy. Soc. Tas., 1910, p. 392, pl. 14, f. 18.
Austroclavus Powell, Bull. Auckland Instit. and Mus., No. 2, 1942, p. 118. (temuispiralis Marshall.)
lygdinus Hedley, Melatoma, Rec. Aust. Mus., 13, 1922, p. 252, pl. 45, f. 44.
Mitrathara Hedley, Rec. Aust. Mus., 13, 1922, p. 233. (alba Petterd.)
alba Petterd, Columbella, Journ. of Conch., 2, 1879, p. 104.
incerta Pritchard and Gatliff, Mangilia, Proc. Roy. Soc. Vic., 14, 1902, p. 180 , pl. 9 , f. 1.
proles Hedley, Rec. Aust. Mus., 13, 1922, p. 236, pl. 43, f. 24.
Scrinium Hedley, Rec. Aust. Mus., 13, 1922, p. 258. (brazieri Smith.)
furtivum Hedley, Rec. Aust. Mus., 13, 1922, p. 259, pl. 45, f. 53.
gatliff Verco, Drillia, Trans. Roy. Soc. S.A., 33, 1909, p. 312, pl. 28, f. 9.
Guraleus Hedley, Journ. Roy. Soc. N.S.W., 51, 1917, p. M79. (picta Adams and Angas.)
alucinans Sowerby, Mangilia, Proc. Mal. Soc., 2, 1896, p. 29, pl. 3, f. 12. brazieri Angas, Clathurella, Proc. Zool. Soc., 1871, p. 18, pl. 1, f. 21. cuspis Sowerby, Mangilia, Proc. Mal. Soc., 2, 1896, p. 31, pl. 3, f. 17. delicatulus T. Woods, Mangelia, Proc. Roy. Soc. Tas., 1878, p. 37. granulosissimus T. Woods, Clathurella, Proc. Roy. Soc. Tas., 1878, p. 37. incrustus 'T. Woods, Drillia, Proc. Roy. Soc. Tas., 1876, p. 136.
meredithice T. Woods, Mangelia, Proc. Roy. Soc. Tas., 1875, p. 142.
morologus Hedley, Rec. Aust. Mus., 13, 1922, p. 319, pl. 52, f. 146.
pictus Adams and Angas, Mangelia, Proc. Zool. Soc., 1863, p. 419, pl. 37, f. 7.
varix T. Woods, Daphnella, Proc. Roy. Soc. Tas., 1876, p. 138.
vincentinus Crosse and Fischer, Pleurotoma, Journ. de Conch., 13, 1865, p. 422, pl. 11, f. 6.
Euguraieus Cotton, S. Aust. Nat., 24, 1947, p. 15. (anisus Cotton.)
australis Adams and Angas, Bela, Proc. Zool. Soc., 1863, p. 420.
lallemantianus Crosse and Fischer, Pleurotoma, Journ. de Conch., 13, 1865, p. 423, pl. 11, f. 5.
letourneuxianus Crosse and Fischer, Pleurotoma, Journ. de Conch., 13, 1865, p. 425, pl. 11, f. 7.
tasmanicus T. Woods, Cithara, Proc. Roy. Soc. Tas., 1875, p. 145.
Marita Hedley, Rec. Aust. Mus., 13, 1922, p. 312. (compta Ad. and Ang.)
bella Adams and Angas, Cithara, Proc. Zool. Soc., 1863, p. 419, pl. 37, f. 6.
compta Adams and Angas, Cithara, Proc. Zool. Soc., 1863, p. 419, pl. 37, f. 5. fullaciosa Sowerby, Daphmella, Proc. Mal. Soc., 1896, p. 26, pl. 3, f. 7.
flaccida Pritchard and Gatliff', Mangilia, Proe. Roy. Soc. Vie., 12, 1899, 1. 102, pl. 8, f. 3-4.
insculpta Adams and Angas, Mangelia, Proc. Zool. Soc., 1863, p. 420, pl. 37, f. 8 .

Kingensis Petterd, Daphnella, Journ. of Conch., 2, 1879, p. 102.
mitralis Adams and Angas, Bela, Proc. Zool. Soc., 1863, p. 420.
schoutenensis May, Mangilia, Proc. Roy. Soc. Tas., 1910, p. 393, pl. 15, f. 19.
Heterocithara Hedley, Rec. Aust. Mus., 13, 1922, p. 297. (bilineata. Angas.) bilineata Angas, Clathurella, Proc. Zool. Soc., 1871, p. 18, pl. 1, f. 23.
Ethema Hedley, Journ. Roy. Soe. N.S.W., 51, 1917, p. M79. (aliceae Melv. and Strand.)
bicolor Angas, Clathurella, Proc. Zool. Soc., 1871, p. 18, pl. 1, f. 20. crassina Angas, Clathurella, Proc. Zool. Soc., 1880, p. 416, pl. 40, f. 6. denseplicata Dunker, Drillia, Mal. Blatt., 18, 1871, p. 159.
Kymatoessa Watson, Pleurotoma, Chall. Zool., 15, 1886, p. 309, pl. 26, f. Ј. nassoides Reeve, Pleurotoma, Conch. Icon., 1, 1845, pl. 29, sp. 259.
Fillodrillia Hedley, Rec. Aust. Mus., 13, 1922, p. 220. (tricarinata T. Woods.) columnaria Hedley, Rec. Aust. Mus., 13, 1922, p. 221, pl. 42, f. 7. hilum Hedley, Mangelia, Proc. Linn. Soc. N.S.W., 33, 1908, p. 471, pl. 9, f. 17.
lacteola Verco, Drillia, Trans. Roy. Soc. S.A., 33, 1909, p. 304, pl. 26, f. 5. recta Hedley, Leucosyrinx, Mem. Aust. Mus., 4, 1903, p. 386, f. 99. steira Hedley, Ree. Aust. Mus., 13, 1922, p. 224, pl. 42, f. 11. tricarinata 'T'. Woods, Drillia, Proc. Linn. Soc. N.S.W., 2, 1878, p. 265.
Macteola Hedley, Journ. Roy. Soc. N.S.W., 51, 1917, p. M.79. (anomala Angas.) anomala Angas, Purpura, Proc. Zool. Soc., 1877, p. 34, pl. 5, f. 1.
Daphnella Hinds, Voy. "Sulphur," Zool., 184t, p. 25. (lymneiformis Kiener.) botanica Hedley, Journ. Roy. Soc. N.S.W., 51, 1917, p. M. 83.
Asperdaphne Hedley, Rec. Aust. Mus., 13, 1922, p. 338. (versivestita Hedley.) albocincta Angas, Clathurella, Proc. Zool. Soc., 1871, p. 18, pl. 1, f. 22. bastowi Gatlifí and Gabriel, Daphnclla, Proc. Roy. Soc. Vic., 21, 1908, p. 365 , pl. 21, f. 1-4.
bitorquata Sowerby, Daphnella, Proe. Mal. Soc., 2, 1896, p. 27, pl. 3, f. 9. desalesii T. Woods, Mangelia, Proc. Roy. Soc. Tas., 1876, p. 138.
sculptilis Angas, Clathurella, Proc. Zool. Soc., 1871, p. 17, pl. 1, f. 19.
tasmanica, T. Woods, Daphnella, Proc. Roy. Soc. Tas., 1876, p. 138.
vestalis Hedley, Daphnella, Mem. Aust. Mus., 4, 1903, p. 390, f. 105.
walcotae Sowerby, Drillia, Proc. Zool. Soc., 1893, p. 487, pl. 38, f. 7-8.
Aspertilla Powell, Rec. Auckland Instit. and Mus., 3, 1944, p. 60. (legrandi Beddome.)
legrandi Beddome, Drillia, Proc. Roy. Soc. Tas., 1882, p. 167.
Exomilus Hedley, Journ. Roy. Soc. N.S.W., 51, 1917, p. M.79. (lutraria Hedley.) telescopialis Verco, Drillia, Trans. Roy. Soc. S.A., 20, 1896, p. 222, pl. 7, f. 1, a, b.

Gathffena Iredale, Rec. Aust. Mus., 17, 1929, p. 189. (fenestrata Tate and May.)
fenestrata Tate and May, Donovania, Trans. Roy. Soc. S.A., 24, 1900, p. 94. Nepotilla Hedley, Journ. Roy. Soc. N.S.W., 51, 1917, p. M.79. (bathentoma Verco.)
excavata Gatliff, Daphnella, Proc. Roy. Soc. Vic., 19, 1906, p. 1, pl. 1, f. 1-2. lamellosa Sowerby, Clathurella, Proc. Mal. Soc., 2, 1896, p. 28, pl. 3, f. 11.
microscopica May, Taranis, Proc. Roy. Soc. Tas., 1915, p. 84, pl. 1, f. 2. mimica Sowerby, Daphnella, Proc. Mal. Soc., 2, 1896, p. 27, pl. 3, f. 10. minuta T. Woods, Drillia, Proc. Roy. Soc. Tas., 1876, p. 136.
triseriata Verco, Daphnella, Trans. Roy. Soc. S.A., 33, 1909, p. 325, pl. 28, f. 8.

Pseudodaphnella Boettger, Nachr. Malak. Gosell., 27, 1895, p. 58. (philippinensis Reeve.)
modesta. Angas, Clathurella, Proc. Zool. Soc., 1877, p. 38, pl. 5, f. 15. tincta Reeve, Pleurotoma, Conch. Icon., 1, 1846, pl. 38, sp. 347.
trachys T. Woods, Mangelia, Trans. Roy. Soc. Vic., 14, 1879, p. 57.
Benthofascis Iredale, Rec. Aust. Mus., 19, 1936, p. 319. (biconica Hedley.)
sarcinula Hedley, Bathytoma, Rec. Aust. Mus., 6, 1905, p. 53, £. 21.
Teleochilus Harris, Cat. Tert. Moll. Brit. Mus., 1, 1897, p. 64. (gracillima T. Woods.)
royanus Iredale, Radulphus, Proc. Linn. Soc. N.S.W., 49, 1924, p. 270, pl. 34 , f. 8.

Family CONIDAE

Floraconus Iredale, Mem. Queens. Mus., 10, 1930, p. 80. (anemone Lamarck.) anemone Lamarek, Conus, Ann. du Mus., 15, 1810, p. 272. segravei Gatliff, Conus, Vic. Nat., 7, 1890, p. 179.
Parviconus Cotton and Godfrey, S. Aust. Nat., 13, 1932, p. 68 . (rutilus Menke.) rutilus Menke, Conus, Moll. Nov. Holl., 1843, p. 27, No. 133.

Family TEREBRIDAE

Terebra Bruguiere, Enclycl. Meth. (Vers), (1), 15, 1789, p. 15. (sublata Linne.) albida Gray, Proc. Zool. Soc., 1834, p. 63.
Pervicacla Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 262. (ustulata Deshayes.)
bicolor Angas, Acus, Proc. Zool. Soc., 1867, p. 111, pl. 13, f. 7.
fictilis Hinds, Thes. Conch., 1, 1844, p. 183, pl. 45, £. 109-110.
kieneri Deshayes, Terebra, Proc. Zool. Soc., 1859, p. 294.
ustulata Deshayes, Terebra, Journ. de Conch., 1857, p. 97, pl. 3, f. 12 .
Acuminia Dall, Nautilus, 21, 1908, p. 124. (lanceata Linne.)
brazieri Angas, Terebra, Proc. Zool. Soc., 1871, p. 16, pl. 1, f. 15.
Euterebra Cotton and Godfrey, S. Aust. Nat., 13, 1932, p. 65 . (inconspicua Pritchard and Gatliff.)
inconspicua Pritchard and Gatliff, Terebra, Proc. Roy. Soc. Vic., 14, 1902, p. 181, pl. 9, f. 2.

Parviterebra Pilsbry, Proc. Acad. Nat. Sci. Philad., 56, 1904, p. 5. (paucivolvis Pilsbry.)
brazieri Angas, Euryta, Proc. Zool. Soc., 1875, p. 390, pl. 45, f. 5, 5a.
Subclass EUTHYNEURA Order OPISTHOBRANCHIA Suborder PLEUROCOELA Section BULLOMORPHA Superfamily CEPHALASPIDEA Family ACTAEONIDAE
Acteon Montfort, Conch., 2, 1810, p. 314. (tornatilis Linne.) fructuosus Iredale, Rec. Aust. Mus., 19, 1936, p. 330. subroseus Iredale, Rec. Aust. Mus., 19, 1936, p. 330, pl. 24, f. 25.
Pugnus Hedley, Rec. Aust. Mus., 2, 1896, p. 106. (parvus Hedley.) parvus Hedley, Rec. Aust. Mus., 2, 1896, p. 106, pl. 23, f. 1.

Family RINGICULIDAE

Ringiculadda Iredale, Rec. Aust. Mus., 19, 1936, p. 332. (semisculpta Hedley.) australis Hinds, Ringicula, Proc. Zool. Soc., 1844, p. 97. grandinosa Hinds, Ringicula, Proc. Zool. Soc., 1844, p. 96.

Family BULLARIIDAE

Bullaria Rafinesque, Anal. Nat., 1815, p. 142. (ampulla Linne.) tenuissima Reeve, Bulla, Conch. Icon., 16, 1868, pl. 2, sp. 4.
Haminoea Turton, Nat. Hist. Teignmouth, 2, 1830, sign. F. 8. (hydatis Linne.) brevis Quoy and Gaimard, Bulla, Voy. "Astrolabe," Zool., 2, p. 358, pl. 26, f. 36-37.
cuticulifera Smith, Haminea, Ann. Mag. Nat. Hist., ser. 4, 9, 1872, p. 350. tenera A. Adams, Bulla, Thes. Conch., 2, 1850, p. 583, pl. 124, f. 103.
Cylindrobulla Fischer, Journ. de Conch., 5, 1856, p. 275. (beauii Fischer.) fischeri Adams and Angas, Proc. Zool. Soc., 1864, p. 37.
Lobiger Krohn, Ann. Sci. Nat. (3), Zool., 7, 1847, p. 52. (philippi Krohn.) wilsoni Tate, Trans. Roy. Soc. S.A., 11, 1889, p. 66, pl. 11, f. 12.

Family AKERIDAE

Akera Muller, Zool. Dan. Prod. 29, 1776, p. 242. (bullata Muller.) soluta Gmelin, Bulla, Syst. Nat., 13, 1791, p. 3434. tasmanica Beddome, Proc. Roy. Soc. Tas., 1882, p. 169.

Family RETUSIDAE

Retusa Brown, Illustr. Conch. Gt. Brit., 1, 1827, Expl. pl. 38, f. 1. (truncatula Bruguiere.)
amphizosta Watson, Utriculus, Chall. Zool., 15, 1886, p. 652, pl. 48, f. 11. apicina Gould, Tornatina, Proc. Bost. Soc. Nat. Hist., 7, 1859, p. 139.
apiculata Tate, Utriculus, Trans. Phil. Soc. S.A., 2, 1879, p. 138, pl. 5, f. 3. eumicra Crosse and Fischer, Bulla, Journ. de Conch., 1865, p. 40, pl. 2, f. 7. fusiformis A. Adams, Bulla, Thes. Conch., 2, 1854, p. 570, pl. 121, f. 37. hofmani Angas, Tornatina, Proc. Zool. Soc., 1877, p. 39, pl. 5, f. 19.
Cylichnina Monterosata, Nom. Gen. Spec. Medit., 1884, p. 143. (umbilicata Montagu.)
atkinsoni T. Woods, Cylichna, Proc. Roy. Soc. Tas., 1875, p. 156.
pygmaea A. Adams, Bulla, Thes. Conch., 2, 1854, p. 595, pl. 125, f. 150.
sculpta Gatliff and Gabriel, Bullinella, Proc. Roy. Soc. Vic., 26, 1913, p. 69, pl. 8, f. 7.
Volvulella Newton, Syst. List. Brist. Olig. Eoc. Moll., 1891, p. 268. (rostrata A. Adams.)
rostrata A. Adams, Bulla, Thes. Conch., 2, 1850, p. 596, pl. 125, f. 154.

Family SCAPHANDRIDAE

Cylichnella Gabb, Proc. Ac. Nat. Sci. Philad., 1872, p. 273 . (bidentata d'Orbigny.)
arachis Quoy and Gaimard, Bulla, Voy. "Astrolabe," Zool., 2, 1833, p. 361, pl. 26, f. 28-30.
protumida Hedley, Cylichna, Mem. Aust. Mus., 4, 1903, p. 396, f. 112. tenuis Hedley, Cylichna, Rec. Aust. Mus., 6, 1905, p. 54, f. 22.
Damoniella Iredale, Proc. Mal. Soc., 13, 1918, p. 37. (cranchii Fleming.) exigua A. Adams, Atys., Thes. Conch., 2, 1854, p. 589, pl. 125, f. 129.

Family PHILINIDAE

Puiline Ascanius, K. Vet. Ak. Handl., 33, 1772, p. 331. (aperta Linne.)
angasi Crosse and Fischer, Bullaea, Journ. de Conch., 13, 1865, p. 38, pl. 2, f. 8 .
columnaria Hedley and May, Rec. Aust. Mus., 7, 1908, p. 123, pl. 24, f. 25-26.
Order PTEROPODA
Suborder THECOSOMATA
Superfamily EUTHECOSOMATA
Family CAVOLINIIDAE
Cavolinia Abildgaard, Skr. Nat. Selsk., 1, 1791, p. 175. (tridentata Forskal.)
gibbosa Rang, Hyalaea, Voy. d. l'Amer. Merid., 5, 1836, p. 95, pl. 5, f. 16-20.
longirostris Lesueur, Hyalaca, M.S. in de Blainville, Dict. Sci. Nat., 22, 1821, p. 81.

Diacria Gray, Proc. Zool. Soc., 1847, p. 203. (trispinosa Lesueur.)
trispinosa Lesueur, Hyaluea, M.S. in de Blainville, Dict. Sci. Nat., 22, 1821, p. 82.

Clio Linne, Syst. Nat., 12, 1767, p. 1094. (pyramidata Linne.) pyramidata Linne, Syst. Nat., ed. 12, 1767, p. 1094.
Creseis Rang, Ann. Sci. Nat., 13, 1828, p. 305. (virgula Rang.)
virgula Rang, Ann. Sci. Nat., 13, 1829, p. 316, pl. 17, f. 2.
Styliola Lesueur, Man. Malc.., 1827, p. 655. (recta Lesueur.) recta Lesueur, in de Blainville, Man. de Malac., 1827, p. 655.
subula Quoy and Gaimard, Cleodora, Ann. de Sci. Nat., ser. 1, 10, 1827, p. 233, pl. 8D, f. 1-3.

Family SPIRATELLIDAE

Spiratella Blainville, Dict. Sci. Nat., 9, 1817, p. 407. (helcina Philps.)
bulimoides d'Orbigny, Atlanta, Voy. d. l'Amer. Merid., 5, 1836, p. 179, pl. 12, f. 36, 38.
inflata d'Orbigny, Atlanta, Voy. d. l'Amer. Merid., 5, 1836, p. 174, pl. 12, f. 16-19.
lesueuri d'Orbigny, Atlanta, Voy. d. l'Amer. Merid., 5, 1836, p. 177, pl. 20, f. 12-15.
retroversa Fleming, Mem. Wern. Nat. Hist. Soc., 4, 1823, p. 498, pl. 15, f. 2.
Suborder ACOELA
Section NOTASPIDEA
Family UMBRACULIDAE
Umbraculum Schumacher, Essai. Nouv. Test., 1817, p. 55. (sinicum Gmelin.) corticalis Tate, Umbrella, Trans. Roy. Soc. S.A., 11, 1889, p. 65, pl. 11, f. 11.

> Suborder NUDIBRANCHIA
> Superfamily DORIDACEA
> Family DORIDIGITATIDAE

Ceratosoma Adams and Reeve, Voy. "Samarang," Zool. (7), 1850, Moll., p. 67. (cornigerum Ad. and Reeve.)
brevicaudatum Abraham, Ann. Mag. Nat. Hist., ser. 4, 18, 1876, p. 142, pl. 7, f. 6.

Allorodoris Bergh, in Semper, Reis. Philippi, 2, 9, 6, 1904, p. 41. (marmarata Beigh.)
marmorata Beigh, Reis. Arch. der Phil., 2, 9, 190t, p. 42, pl. 3, f. 12-19.
Archidoris Beigh, in Semper, Reise Arch. Philippi, 2, 2, 14, 1878, p. 616. (tuberculata Alder and Hancock.)
varia Abrahams, Doris, Proc. Zool. Soc., 1877, p. 209.
Staurodoris Bergh, in Semper, Reis. Arch. Philippi 2, 2, 13, 1878, p. 578. (verrucosa Cuvier.)
pustulata Abrahams, Doris, Proc. Zool. Soc., 1877, p. 205, pl. 29, f. 18, 19.

Family DENDRODORIDAE

Dendrodoris Ehrenberg', Sym. Phys., Moll., 1831, sign. g. (pl. 1828). (gramulosa Pease.)
carneola Angas, Doris, Journ. de Conch., 12, 1864, p. 48, pl. 4, f. 7. melacna Allan, Aust. Zool., 7, 1932, p. 98, pl. 5, f. 11.

> Superfamily AEOLIDIACEA Family, ARMINIDAE

Armina Rafinesque, Precis Som., 1814, p. 30. (tigrina Rafinesque.) cygnea Bergh, Malakol Blatter, 23, 1876, p. 9, pl. 1, f. 1-7.

Family SCYLLAEIDAE
Scyllaea Linne, Syst. Nat., ed. 10, 1758, p. 656. (pelagica Linne.) pelagica Linne, Syst. Nat., ed. 10, 1758, p. 656.

Family TETHYIDAE
Tethys Linne, Syst. Nat., 10, 1758, p. 653. (leporina Linne.)
norfolkensis Sowerby, Aplysia, Conch. Icon., 17, 1869, pl. 10, sp. 42. tigrina Rang, Aplysia, Hist. Nat. Apl., 1828, p. 57, pl. 11.

Family PLEUROBRANCHAEIDAE

Pleurobranchus Cuvier, Ann. Mus. Hist. Nat., 5, 180t, p. 275. (peronii Cuvier.)
angasi Smith, "Alert" Zool., 1884, p. 88, pl. 6, f. k.
maculatus Quoy and Gaimard, Pleurobranchidium, Voy. "Astrolabe," Zool., 2, 1883, p. 301, pl. 22, f. 11, 14.

Order PULMONATA
Suborder BASOMMATOPHORA

Superfamily ACTOPHILA

Family ELLOBIIDAE
Marinula King, Zool. Journ., 5, 1835, p. 343. (pepita King.) meridionalis Brazier, Alexia, Proc. Limn. Soc. N.S.W., 1877, 2, p. 26. xanthostoma H. and A. Adams, Proc. Zool. Soc., 1854, p. 35.
Ophicardelus Beck, Index. Moll. Mus. Ch. Fred. (2), 1837, p. 108. (australis Quoy and Gaimard.)
ornatus Ferussac, Auricula, Tab. Syst., 1821, p. 103.
Leuconopsis Hutton, Trans. New Zealand Instit., 16, 1883, p. 213. (obsoleta Hutton.)
pellucida Cooper, Auricula, Miero. Journ. 1841, p. 16.

Family ONCHIDIIDAE

Onchidella Gray, Figs. Moll. Anim., 4, 1850, p. 117. (granulosa Lesson.)
patelloides Quoy and Gaimard, Onchidium, Voy. "Astrolabe," Zool., 2, 1832, p. 212, pl. 15, f. 21-23.
Oncmidina Semper, Reis. Arch. Philipp., Bd. 3, (6), 1882, p. 287. (australis Semper.)
australis Semper, Reis. Arch. Philipp., 3, Landmoll., 6, 1882, p. 287, pl. 19, f. 14-15 ; pl. 21, f. 27 ; pl. 23 , f. 10.

Superfamily AMPHIBOLACEA
 Family AMPHIBOLIDAE

Salinator Hedley, Proc. Linn. Soc. N.S.W., 25, 1900, p. 511. (fragilis Lamarck.) fragilis Lamarck, Ampullaria, Anim. s. Vert., 6, 1822, p. 179. solida von Martens, Amphibola, Jahr. Deutsch. Malak. Ges., 1878, p. 2.

Superfamily PATELLIFORMIA
 Family GADINIIDAE

Gadinia Gray; Philos. Mag., 63, 1824, p. 274. (afra Gmelin.)
conica Angas, Proc. Zool. Soc., 1867, p. 115, pl. 13, f. 27.
Family SIPHONARIIDAE
Siphonaria Sowerby, Genera Shells, 1823, fasc. 21. (sipho Sowerby.) baconi Reeve, Conch. Icon., 9, 1856, pl. 6, sp. 30. diemenensis Quoy and Gaimard, Voy. "Astrolabe," Zool., 2, 1833, p. 327, pl. 25, f. 1-12.
tasmanica T. Woods, Proc. Roy. Soc. Tas., 1876, p. 54.
virgulata Hedley, Proc. Linn. Soc. N.S.W., 39, 1915, p. 751, pl. 85, f. 96-98.
Pugillarta Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 277. (stowae Verco.) stowae Verco, Siphonaria, Trans. Roy. Soc. S.A., 30, 1906, p. 223, pl. 8, f. 3-8.

Class SCAPHOPODA

Family DENTALIIDAE

Dentalium Linne, Syst. Nat., ed. 10, 1758, p. 785. (elephantinum Linne.)
lubricatum Sowerby, Thes. Conch., 3, p. 97, pl. 3, f. 56.
platyceras Sharp and Pilsbry, Man. Conch., 17, 1898, p. 126, pl. 22, f. 58-60. tasmaniensis T. Woods, Proc. Roy. Soc. Tas., 1876, p. 140. virgula Hedley, Mem. Aust. Mus., 4, 1903, p. 328, f. 62.

Family SIPHONODENTALIIDAE

Cadulus Philippi, Moll. Sicil., 2, 1844, p. 208. (ovulum Philippi.)
angustior Verco, Trans. Roy. Soc. S. Aust., 35, 1911, p. 211, pl. 26, f. 5, 5a, b. gibbosus Verco, Trans. Roy. Soc. S. Aust., 35, 1911, p. 213, pl. 26, f. 6.
spretus Tate and May, Trans. Roy. Soc. S.A., 24, 1900, p, 102.
vincentianus Cotton and Godfrey, Moll. S. Aust., 'pt. 2, 1940, p. 338, f. 360.

Class PELECYPODA
 Order PRIODESMACEA
 Suborder PALAEOCONCHA
 Family SOLEMYIDAE

Solemya Lamarck, Anim. s. Vert., 5, 1818, p. 488. (australis Lamarck.) australis Lamarck, Anim. s. Vert., 5, 1818, p. 489.

Suborder TAXODONTA
 Superfamily NUCULACEA
 Family NUCULIDAE

Pronucula Hedley, Mem. Aust. Mus., 4, 1902, p. 290. (decorosa Hedley.) hedleyi Pritchard and Gatliff, Nucula, Proc. Roy. Soc. Vic., 17, 1904, p. 237. micans Angas, Nucula, Proc. Zool. Soc., 1878, p. 864, pl. 54, f. 16.
Ennucula Iredale, Rec. Aust. Mus., 18, 1931, p. 202. (obliqua Lamarck.) beachportensis Verco, Nucula, Trans. Roy. Soc. S.A., 31, 1907, p. 216, pl. 27, f. 3.
obliqua Lamarck, Nucula, Anim. s. Vert., 6, 1819, p. 59.

Family LEDIDAE

Scaeoleda Iredale, Rec. Aust. Mus., 17, 1929, p. 158. (crassa Hinds.) crassa Hinds, Nucula, Proc. Zool. Soc., 1843, p. 99. dohrni Hanley, Leda, Proc. Zool. Soc., 1861, p. 242.
Ledella Verrill and Bush., Amer. Journ. Sci. (4), 3, 1897, p. 54. (messanensis Verrill and Bush.)
miliacea Hedley, Leda, Mem. Aust. Mus., 4, 1902, p. 295, f. 43.
Teretileda Iredale, Rec. Aust. Mus., 17, 1929, p. 158. (oculata Iredale.) fortis Hedley, Leda, Rec. Aust. Mus., 6, 1907, p. 362, pl. 66, f. 2, 3.
Poroleda Hutton, Macleay, Mem. Linn. Soc. N.S.W., 1893, p. 86. (lanceolata Hutton.)
spathula Hedley, Proc. Linn. Soc. N.S.W., 39, 1915, p. 696, pl. 78, f. 17, 18.
Propeleda Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 186. (ensicula Angas.) ensicula Angas, Leda, Proc. Zool. Soc., 1877, p. 177, pl. 26, f. 27.

Superfamily ARCACEA
 Family ARCIDAE

Anadara Deshayes, Encly. Meth. (Vers), 2 (1), 1830, p. 37. (antiquata Linn.) trapezia Deshayes, Mag. Zool., 1840, pl, 21.
Arca Linne, Syst. Nat., 10, 1758, p. 693. (barbata Linne.) pistachia Lamarck, Anim. s. Vert., 6, 1819, p. 41. squamosa Lamarck, Anim. s. Vert., 6, 1819, p. 45.

Family LIMOPSIDAE

Limopsis Sasso, Giorn. Ligust. Scien., 1, 1827, p. 476. (aurita Brocehi.) tenisoni T. Woods, Proc. Roy. Soc. Tas., 1877, p. 56.
Cyrillona Tredale, Rec. Aust. Mus., 17, 1929, p. 160. (dalli Hedley.) dalli Hedley, Cyrilla, Mem. Aust. Mus., 4, 1902, p. 296, f. 44.
Lissarca Smith, Phil. Trans., 168, 1877, p. 185. (rubrofusca. Smith.) rhomboidalis Verco, Trans. Roy. Soc. S.A., 31, 1907, p. 221, pl. 27, f. 7. rubricata Tate, Limopsis, Trans. Roy. Soc. S.A., 9, 1886, p. 71, pl. 5, f. 6.

Family GLYCYMERIDAE

Glycymeris Da Costa, Brit. Conch., 1778, p. 168. (glycymeris Linne.)
flabellatus T. Woods, Proc. Roy. Soc. Vic., 14, 1877, p. 61.
flammeus Reeve, Pectuncrilus, Conch. Icon., 1, 1843, pl. 2, f. 7.
radians Lamarck, Pectunculus, Anim. s. Vert., 6, 1819, p. 54.
sordidus Tate, Pectunculus, Trans. Roy. Soc. S.A., 14, 1891, p. 264, pl. 11, f. 8 .
striatularis Lamarck, Pectunculus, Anim. s. Vert., 6, 1819, p. 52. tenuicostatus Reeve, Pectunculus, Conch. Icon., 1, 1843, pl. 6, f. 35.

Family PHILOBRYIDAE

Phllobrya Carpenter, Smithson, Miscel. Coll., No. 252, 1872, Index p. 21. (setosa Carpenter.)
fimbriata Tate, Trans. Roy. Soc. S. $\Lambda ., 22,1898$, p. 87, pl. 4, f. 8.
pectinata Hedley, Mem. Aust. Mus., 4, 1902, p. 299, f. 46.
Notomytilus Hedley, Austral. Antarct. Exped. Moli., 1916, p. 20. (ruber Hedley.)
ruber Hedley, Philippiclla, Proc. Limn. Soc., N.S.W., 29, 1904, p. 207, pl. 10, f. 44-47.
Micromytilus Cotton, Rec. S. Aust. Mus., 4, 1931, p. 335. (crenatuliferus Tate.) cronatuliferus Tate, Myrina, Trans. Roy. Soc. S.A., 15, 1892, p. 131, pl. 1, f. 11 and 11a.

Suborder SCHIZODONTA

Superfamily PTERIACEA
Family PERNIDAE
Foramelina Medley, Biol. Results "Endeavour," 2, 1914, p. 70. (exempla Hedley.)
exempla Hedley, Biol. Results "Endeavour," 2, 1914, p. 71, pl. 11, 12, f. 6, 7, 8.

Family VULSELLIDAE

Vulsella Bolton, Mus. Bolt., 1798, p. 156. (lingulata Lamarck.) spongiarum Lamarek, Anim. s. Vert., 6, 1819, p. 222.
Malleus Lamarck, Mem. Soc. N.H. Paris, 1799, p. 82. (vulgaris Lamarck.) albus Lamarck, Anim. s. Vert., 6, 1819, p. 144.

Family PTERIIDAE
Electroma Stolickza, Pal. Indica. (6), fase. 8, 1871, p. 391. (smaragdina Reeve.) georgiana Quoy and Gaimard, Avicula, Voy. "Astrolabe," Zool., 3, 1835., p. 457, pl. 77, f. 10, 11.

Pinctada Bolton, Mus. Bolt., 1798, p. 166. (margaritifera Lamarek.) margaritifera Lamarck, Meleagrina, Anim. s. Vert., 6, 1819, p. 151.

Family PINNIDAE
Atrina Gray, Proc. Zool. Soc., 1847, p. 199. (nigra Chemnitz.) tasmanica T. Woods, Pinna, Proc. Roy. Soc. Tas., 1875, p. 161.

Superfamily OSTRACEA
 Family OSTREIDAE

Ostrea Linne, Syst. Nat., 10, 1758, p. 696. (edulis Linne.) sinuata Lamarek, Anim. s. Vert., 6, 1819, p. 208.
Saxostrea Iredale, Rec. Aust. Mus., 19, 1936, p. 269. (commercialis Iredale and Roughly.)
commercialis Iredale and Roughly, Ostrea, Proc. Linn. Soc. N.S.W., 58, 1933, p. 278.

> Superfamily TRIGONICEA
> Family TRIGONIIDAE

Neotrigonia Cossman, Ann. Paleont., 7, 1912, p. 81. (pectinata Lamarck.) margaritacea Lamarck, Trigonia, Ann. Mus., 4, 1804, p. 355, pl. 67, f. 2.

Suborder ISODONTA
Superfamily PECTINACEA
Family PECTINIDAE
Notovola Finlay, Trans. New. Zeal. Inst., 57, 1926, p. 451. (novac-zealandiae Reeve.)
alba Tate, Pecten, Proc. Roy. Soc. Tas., 1886, p. 114.
fumata Reeve, Pecten, Conch. Icon., 8, 1852, pl. 7, sp. 32.
Equichlamys Iredale, Rec. Aust. Mus., 17, 1929, p. 162. (bifrons Lamarck.)
bifrons Lamarck, Pecten, Anim. s. Vert., 6, 1819, p. 164.
Notochlamys Cotton, Rec. Mus. S.A., 4, 1930, p. 233. (anguineus Finlay.) anguineus Finlay, Chlamys, Trans. New Zeal. Inst., 57, 1926, p. 527.
Scaeochlamys Tredale, Rec. Aust. Mus., 17, 1929, p. 162. (lividus Lamarck.) atkinos Petterd, Pecten, Proc. Roy. Soc. Tas., 1886, p. 329.
Ctenamusium Iredale, Rec. Aust. Mus., 17, 1929, p. 164. (thetidis Hedley.) thetidis Hedley, Amusium, Mem. Aust. Mus., 4, 1902, p. 304, f. 49.
Chlamydella Iredale, Ree. Aust. Mus., 17, 1929, p. 164. (favus Hedley.) favus Hedley, Cyclopecten, Mem. Aust. Mus., 4, 1902, p. 305, f. 50.
Mimachlamys Iredale, Rec. Aust. Mus., 17, 1929, p. 162. (asperrimus Lamarck.) asperrimus Lamarck, Pecten, Anim. s. Vert., 6, 1819, p. 174.
famigerator Tredale, Chlamys, Rec. Aust. Mus., 14, 1925, p. 252, pl. 41, f. $1,2$.
perillustris Iredale, Chlamys, Rec. Aust. Mus., 14, 1925, p. 254, pl. 41, f. 3, 4.
Family SPONDYLIDAE
Spondylus Linne, Syst. Nat., 10, 1758, p. 690 . (gaederopus Linne.)
tenellus Reeve, Conch. Icon., 9, 1856, pl. 18, sp. 67.

Family LIMIDAE

Austrolima Iredale, Rec. Aust. Mus., 17, 1929, p. 165. (nimbifer Iredale.) nimbifer Tredale, Lima, Proc. Linn. Soc. N.S.W., 49, 1924, p. 195, pl. 34, f. 1-4.

Mantellum Bolton, Mus. Bolt., 2, 1798, p. 160. (inflata Chemnitz.)
orientalis Adams and Reeve, Lima, Voy. "Samarang," 1850, p. 75, pl. 11, f. 33 .

Escalima Iredale, Rec. Aust. Mus., 17, 1929, p. 165. (murrayi Smith $=$ acclinis Hedley.)
murrayi Smith, Lima, Proc. Zool. Soc., 1891, p. 444, pl. 35, f. 26.
Limatula Wood, Mag. Nat. Hist., n.s., 3, 1839, p. 235. (subauriculata Montagu.) strangei Sowerby, Lima, Conch. Icon., 18, 1872, pl. 3, sp. 15.

Superfamily ANOMIACEA
 Family ANOMIIDAE

Monia Gray, Proc. Zool. Soc., 1849, p. 121. (zelandica Gray.) ione Gray, Proc. Zool. Soc., 1849, p. 123.

> Suborder DYSODON'A
> Superfamily MYTILACEA
> Family MYTILIDAE

Mytilus Linne, Syst. Nat., 10, 1758, p. 704. (edulis Linne.) planulatus Lamarek, Anim. s. Vert., 6, 1819, p. 125.
Modiolus Lamarck, Mem. Soc. N.H. Paris, 1799, p. 87. (modiolus Linne.)
albicostus Lamarck, Modiola, Anim. s. Vert., 6, 1819, p. 111.
australis Gray, Modiola, King Survey Aust., 2, 1827, p. 477.
inconstans Dunker, Volsella, Proc. Zool. Soc., 1856, p. 363.
lineus Hedley, Modiola, Rec. Aust. Mus., 6, 1906, p. 300, pl. 56, f. 23-25.
pulex Lamarck, Modiola, Anim. s. Vert., 6, 1819, p. 112 .
vexillum Reeve, Conch. Icon., 10, 1857, pl. 8, sp. 10.
victoriae Pritchard and Gatliff, Modiola, Proc. Roy. Soc. Vic., 16, 1903, p. 93, pl. 15, f. 1, 2.
Amygdalum Megerle, Ges. Nat. Fr. Berlin Mag., 5 (1), 1811, p. 69. (arborescens Chemnitz $=$ dendriticum Muhlfeld.)
beddomei Iredale, Proc. Linn. Soc., 49, 1924, p. 197, pl. 35, f. 21.
Brachyodontes Swainson, Malac., 1840, p. 384. (sulcatus Lamarck.)
erosus Lamarck, Mytilus, Anim. s. Vert., 6, 1819, p. 120.
hirsutus Lamarck, Mytilus, Anim. s. Vert., 6, 1819, p. 120.
rostratus Dunker, Mytilus, Proc. Zool. Soc., 1856, p. 358.
Exosiperna Iredale, Rec. Aust. Mus., 17, 1929, p. 166. (scapha Verco.) scapha Verco, Acroperna, Trans. Roy. Soc. S.A., 1908, p. 196, pl. 12, f. 1-5.
Solamen Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 198. (rex Iredale.)
recens Tate, Acroperna, Proc. Malc. Soc., 2, 1897, p. 181, text figs.
Musculus Bolton, Mus. Bolt., 1798, p. 156. (discors Linne.)
barbatus Reeve, Lithodomus, Conch. Icon., 10, 1858, pl. 5, sp. 27.
impactus Herman, Modiolaria, Naturforscher, 17, 1782, pl. 3, f. 5-8.
paulucciae Crosse, Crenella, Journ. de Conch., 11, 1863, p. 89, pl. 1, f. 8. rhyllensis Gatliff and Gabriel, Modiolaria, Proc. Roy. Soc. Vic., 25, N.S., 1912, p. 167, pl. 9, f. $9,10$.
ulmus Iredale, Rec. Aust. Mus., 19, 1936, p. 271, pl. 21, f. 10.

Superfamily GAIMARDIACEA

Family GAIMARDIIDAE
Neogaimardia Odhner, Videns Meddel. Nat. For. Kjobenhavn., 77, 1924, p. 69. (rostellata Tate.)
rostellata Tate, Kellia, Trans. Roy. Soc. S.A., 11, 1888, p. 63, pl. 11, f. 14. tasmanica Beddome, Modiolaria, Proc. Roy. Soc. Tas., 1882, p. 168.

Family JULIIDAE
Edenttellina Gatliff and Gabriel, Proc. Roy. Soc. Vie., 24, 1911, p. 190. (typica Gatliff and Gabriel.)
typica Gatliff and Gabriel, Proc. Roy. Soc. Vic., 24, 1911, p. 190, pl. 46, f. 5, 6 .

> Order ANOMALODESMACEA
> Superfamily LATERNULACEA
> Section EUSIPHONIA
> Family LATERNULIDAE

Laternula Bolton, Mus. Bolt., 1798, p. 155. (anatina Linne.) creccina Reeve, Anatina, Conch. Ieon., 14, 1860, pl. 2, sp. 12. tasmanica Reeve, Anatina, Conch. Icon., 14, 1863, pl. 3, sp. 20.

Family PERIPLOMIDAE

Offadesma Iredale, Rec. Aust. Mus., 17, 1930, p. 387. (angasi Crosse and Fischer.) angasi Crosse and Fischer, Periploma, Journ. de Conch., 12, 1864, p. 349.

Family THRACIIDAE

Eximiothracia Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 199. (speciosa Angas.)
lincolnensis Verco, Thracia, Trans. Roy. Soc. S.A., 31, 1907, p. 229, pl. 28, f. 19-21.
modesta Angas, Thracia, Proc. Zool. Soc., 1867, p. 908, pl. 44, f. 3. myodoroides Smith, Thracia, Chall. Zool., 13, 1885, p. 70, pl. 6, f. 6, 6b. speciosa Angas, Thracia, Proc. Zool. Soc., 1869, p. 48, pl. 2, f. 12.
subalata Gatliff and Gabriel, Saxicava, Proc. Roy. Soc. Vic., 23, 1910, p. 85, pl. 19, f. 10, 12.
Thraciopsis Tate and May, Trans. Roy. Soc. S.A., 24, 1900, p. 103. (angustata Angas.)
angustata Angas, Alicia, Proc. Zool. Soc., 1867, p. 908, pl. 44, f. 1.
elongata Stutchbury, Anatina, Zool. Journ., 5, 1835, p. 100, Tab. Suppl., pl. 43, f. 9, 10.
Thracidora Tredale, Proc. Limn. Soc. N.S.W., 49, 1924, p. 200. (arenosa Hedley.) arenosa Hedley, Thraciopsis, Proc. Linn. Soc. N.S.W., 29, 1904, p. 197, pl. 9, f. 26-27.

Phragmorisma Tate, Proc. Roy. Soc. N.S.W., 27, 1893, p. 189. (watsoni Smith.) watsoni Smith, Thracia, Chall. Zool., 13, 1885, p. 69, pl. 6, f. 5-5b.

Family MYOCHAMIDAE

Mfochama Stutchbury, Zool. Journ., 5, 1830, p. 96. (anomioides Stutchbury.) anomioides Stutchbury, Zool. Journ., 5, 1830, p. 97, suppl. pl. 42, f. 1-4. keppelliana A. Adams, Proc. Zool. Soc., 1852, p. 90, pl. 15, f. 1.
Myadora Gray, Ann. Nat. Hist., 1840, p. 306. (brevis Stutchbury.) albida T. Woods, Proc. Roy. Soc. Tas., 1875, p. 160.
antipodum Smith, Proc. Zool. Soc., 1880, p. 585, pl. 53, f. 7, 7a.
brevis Sowerby, Pandora, App. Stutchbury's Cat., 1829, p. 3, f. 2.
complexa Iredale, Proc. Linn. Soc. N.S.W., 24, 1824, p. 201, pl. 33, f. 9, 10.
gabrieli Macpherson, Mem. Aust. Mus. Vic., 17, 1951, p. 81.
pandoriformis Stutchbury, Anatina, Zool. Journ., 5, 1830, p. 99, pl. suppl. 43, f. 3-4.
subalbida Gatliff and Gabriel, Proc. Roy. Soc. Vic., 27, 1914, p. 96, pl. 15, f. 14.

Section ADELOSIPHONIA Family PANDORIDAE

Cleidothaerus Stutchbury, Zool. Journ., 5 (17), 1830, p. 97. (albidus Lamk.) albidus Lamarek, Chama, Anim. s. Vert., 6, 1819, p. 96.

Superfamily CLAVAGELLACEA Family CLAVAGELLIDAE

Clavagella Blainville, Dict. Sci. Nat., 9, 1817, p. 366. (echinata Lamarek.) australis Sowerby, Append. Stutchbury's Cat., 1829, pl. 1, f. 1.
Humphreyia Gray, Ann. Mag. Nat. Hist. (3), 2, 1858, p. 16 . (strangei Adams.) strangei Adams, Aspergillum, Proc. Zool. Soc., 1852, p. 91, pl. 15, f. 5.

Superfamily POROMYACEA Family VERTICORDIIDAE

Verticordia Sowerby, Min. Conch., 7 (112), 1844, p. 67 . (verticordia Wood.) tasmanica May, Proc. Roy. Soc. Tas., 1915, p. 99, pl. 8, f. 41.

Family POROMYIDAE

Ectorisma Tate, Trans. Roy. Soc. S.A., 15, 1892, p. 127. (granulata Tate.) granulata Tate, Trans. Roy. Soc. S.A., 1892, p. 127, pl. 1, f. 3, 3a.

Family CUSPIDARIIDAE

Cuspidaria Nardo, Atti. Ruin. Sci. Ital., 1, 1839, p. 175. (cuspidata Olivi.) alta Verco, Trans. Roy. Soc. S.A., 32, 1908, p. 198,, pl. 13, f. 8-11. brazieri Smith, Neaera, Chall. Zool., 13, 1885, p. 51, pl. 9, f. 3-3b. tasmanica T. Woods, Neaera, Proc. Roy. Soc. Tas., 1875, p. 27.

Order TELEODESMACEA Suborder DIOGENODONTA Superfamily ASTARTACEA Family CRASSATELLIDAE

Eucrassatella Iredate, Proc. Limi. Soc. N.S.W., 49, 1924, p. 202. (kingicola Lamarck.)
kingicola Lamarck, Crassatella, Ann. du Mus., 5, 1804, p. 408.
Talbrica Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. $204 . \quad$ (aurora A. Adams and Angas.)
aurora Adams and Angas, Crassatella, Proc. Zool. Soc., 1863, p. 426, pl. 37, f. 15.

Salaputium Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 204. (fulvidum Angas.)
micrum Verco, Crassatella, Trans. Roy. Soc. S.A., 1895, p. 93, pl. 1, f. 3.
Cuna Hedley, Mem. Aust. Mus., 4, 1902, p. 314. (concentrica Hedley.) atkinsoni T. Woods, Kellia, Proc. Roy. Soc. Tas., 1876, p. 158 comma Verco, Trans. Roy. Soc. S.A., 32, 1908, p. 357, pl. 17, f. 29-31. concentrica Hedley, Mem. Aust. Mus., 4, 1902, p. 315, f. 55. edentata Verco, Trans. Roy. Soc. S.L., 32, 1908, p. 357, pl. 14, f. 1-3. planilirata Gatliff and Gabriel, Proc. Roy. Soc. Vic., 24, 1911, p. 191, pl. 47, f. 13-17.

Volupicuna Iredale, Rec. Aust. Mus., 19, 1936, p. 272. (delta Tate and May.) delta Tate and May, Carditella, Trans. Roy. Soc. S.A., 24, 1900, p. 102.
Salmocuna Iredale, Rec. Aust. Mus., 19, 1936, p. 272. (particula Hedley.) particula Hedley, Cuna, Mem. Aust. Mus., 4, 1902, p. 316, f. 56.

Superfamily CYAMIACEA Family CYAMIIDAE

Cyamiomactre Bernard, Bull. Mus. Hist. Nat., 3, 1897, p. 311. (problematica Bernard.)
balauistina Gould, Kellia, Proc. Bost. Soc. Nat. Hist. (5), 8, 1861, p. 33. communis Hedley, Proc. Linn. Soc. N.S.W., 30, 1905, p. 541, pl. 31, f. 11-13. mactroides Tate and May, Cyamium, Trans. Roy. Soc. S.A., 24, 1900, p. 102.

Superfamily CARDITACEA Family CARDITIDAE

Cardita Bruguire, Ency. Meth. Vers, 2, 1792, p. 401. (sulcata Bruguire.) calyculata Lime, Chama, Syst. Nat., 10, 1758, p. 692. crassicosta Lamarck, Anim. s. Vert., 6, 1819, p. 24.
Venericardia Lamarck, Syst. Anim., 1801, p. 123. (imbricata Lamarek.) amabilis Deshayes, Cardita, Proc. Zool. Soc., 1852, p. 102, pl. 17, f. 8-9. bimaculata Deshayes, Cardita, Proc. Zool. Soc., 1852, p. 102, pl. 17, f. 4-5. cavatica Hedley, Cardita, Mem. Aust. Mus., 4, 1902, p. 318, f. 58. columnaria Hedley and May, Ree. Aust. Mus., 7, 1908, p. 125, pl. 25, f. 37-40.

Vimentum Iredale, Rec. Aust. Mus., 14, 1925, p. 254. (dilectum Smith.)
delicatum Verco, Venericardia, Trans. Roy. Soc. S.A., 32, 1908, p. 351, pl. 16 , f. $18,19$.
dilectum Smith, Cardita, Chall. Zool., 13, 1885, p. 213, pl. 15, f. 4, 4a.
Carditellona Iredale, Ree. Aust. Mus., 19, 1936, p. 272. (angasi Smith.)
angasi Smith, Carditella, Chall. Zool., 13, 1885, p. 217, pl. 15, f. 9, 9a.
Carditellopsis Iredale, Rec. Aust. Mus., 19, 1936, p. 272. (elegantula Tate and May.)
elegantula Tate and May, Carditella, Proc. Limn. Soc. N.S.W., 26, 1901, p. 464, f. 14.

Family CONDYLOCARDIIDAE

Carditella Smith, Proc. Zool. Soc., 1881, p. 42. (pallida E. A. Smith.) exulata Smith, Chall. Zool., 13, 1885, p. 215, pl. 15, f. 6, 6a.
vincentensis Verco, Trans. Roy. Soc. S.A., 32, 1908, p. 354, pl. 16, f. $20,21$.
Condylocardia Bernard, Bull. Mus. Hist. Nat., Paris, 2, 1896, p. 193. (sanctipauli Bernard.)
adelaideuna Cotton and Godfrey, Moll. S.A., pt. 1, Pelecypoda, 1938, p. 194, f. 195.
australis Bernard, Journ. de Conch., 36, 1896, p. 176, pl. 6, f. 4.
chapmani Gatliff and Gabriel, Proc. Roy. Soc. Vic., 25, 1912, p. 167, pl. 11, f. 5-8.
ovata Hedley, Proc. Linn. Soc. N.S.W., 30, 1905, p. 539, pl. 31, f. 5, 6.
pectinata Tate and May, Carditella, Trans. Roy. Soc. S.A., 24, 1900, p. 103. porrecta Hedley, Proc. Linn. Soc. N.S.W., 31, 1906, p. 475, pl. 38, f. 24.
projecta Hedley, Mem. Aust. Mus., 4, 1902, p. 317, f. 57.
subradiata Tate, Carditclla, Trans. Roy. Soc. S.A., 11, 1888, p. 62, pl. 11, f. 7.

Superfamily LUCINACEA

Family LUCINIDAE
Cavatidens Iredale, Rec. Aust. Mus., 17, 1930, p. 391. (omissa Iredale.)
perplexa Cotton and Godfrey, Moll. S.A., pt. 1, 1938, p. 199, f. 208.
Notomyrtea Iredale, Proc. Limn. Soc. N.N.W., 49, 1924, p. 206, (botanica Hedley.)
botanica Hedley, Lucina, Supp. Journ. Roy. Soc. N.S.W., 51, 1917, p. 18.
mayi Gatliff and Gabriel, Lucina, Proc. Roy. Soc. Vic., 24 (n.s.), 1911, p. 189, pl. 47, f. 8-12.
Divalucina Iredale, Rec. Aust. Mus., 19, 1936, p. 273 . (cumingi Adams and Angas.)
cumingi Adams and Angas, Lucina, Proc. Zool. Soc., 1863, p. 426, pl. 37, f. 20 .

Wallucina Iredale, Rec. Aust. Mus., 17, 1930, p. 390. (jacksoniensis Smith.) assimilis Angas, Loripes, Proc. Zool. Soc., 1867, p. 910, pl. 44, f. 8. icterica Reeve, Lucina, Conch. Icon., 6, 1850, pl. 10, f. 60a, 60b.
Monitilora Iredale, Rec. Aust. Mus., 17, 1930, p. 390. (ramsayi Smith.) paupera Tate, Lucina, Trans. Roy. Soc. S.A., 15, 1892, p. 129, pl. 1, f. 6.
Codakia Scopoli, Intr. Hist. Nat., 1777, p. 398. (orbicularis Linne.) crassilirata Tate, Lucina, Trans. Roy. Soc. S.A., 9,1886, p. 67, pl. 14, f. 2. lacteola Tate, Lucina, Trans. Roy. Soc. S.A., 1897, p. 48. minima T. Woods, Lucina, Proc. Roy. Soc. Tas., 1875, p. 162. perobliqua Tate, Lucina, Trans. Roy. Soc. S.A., 15,1892 , p. 128, pl. 1, f. 10. tatei Angas, Lucina, Proc. Zool. Soc., 1878, p. 863, pl. 54, f. 15.

Family UNGULINIDAE

Zemysia Finlay, Trans. and Proc. New Zeal. Inst., N.S. 57, 1926, p. 462. (zelandica Gray.)
globularis Lamarck, Lucina, Anim. s. Vert., 5, 1818, p. 544.
globulosa A. Adams, Diplodonta, Proc. Zool. Soc., 1855, p. 226.
sphaericula Deshayes, Cyrenella, Proc. Zool. Soc., 1854, p. 340. sublateralis Smith, Diplodonta, Zool. "Alert," 1884, p. 104, pl. 7, f. K. tasmanica T. Woods, Gouldia Proc. Roy. Soc. Tas., 1876, p. 158.
Numella Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 206. (adamsi Angas.) adamsi Angas, Mysia, Proc. Zool. Soc., 1867, p. 910, pl. 44, f. 9. jacksoniensis Angas, Mysia, Proc. Zool. Soc., 1867, p. 910, pl. 44, f. 10.

Family THYASIRIDAE
Thyasira Lamarck, Anim. s. Vert., 5, 1818, p. 492. (flexuosa Montagu.) adelaideana Iredale, Prothyasira, Rec. Aust. Mus., 17, 1930, p. 393, pl. 63, f. 6, 7 .

Superfamily ERYCINACEA
 Family ERYCINIDAE

Melliteryx Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 207. (acupunctun Hedley.)
acupuncta Hedley, Erycina, Mem. Aust. Mus., 4, 1902, p. 321, f. 60. helmsi Hedley, Erycina, Proc. Linn. Soc. N.S.W., 39, 1915, p. 701, pl. 80, f. 37-39.

Borniola Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 207. (lepida Hedley.) lepida Hedley, Bornia, Proc. Linn. Soc. N.S.W., 30, 1905, p. 543, pl. 32, f. 22, 23.
Kellia Turton, Conch. Insul. Brit., 19, 1822, p. 56. (rubra Montagu.) angasiana Tate, Trans. Roy. Soc. S.A., 9, 1886, p. 68, pl. 5, f. 7. australis Lamarck, Cyclas, Anim. s. Vert., 5, 1818, p. 560.
Marikellia Iredale, Rec. Aust. Mus., 21, 1936, p. 274. (solida Angas.)
jacksoniana Smith, Kellia, Zool. "Alert," 1884, p. 105, pl. 7, f. F. and F1. rotunda. Deshayes, Erycina, Proc. Zool. Soc., 1855, p. 181.
vincentensis Cotton and Godfrey, Moll. S.A., pt. 1, Pelecypoda, 1938, p. 215, f. 231.

Lepton Turton, Conch. Insul. Brit., 19, 1822. (squamosum Montagu.) australis Angas, Proc. Zool. Soc., 1878, p. 863, pl. 54, f. 14.
frenchiensis Gatliff and Gabriel, Proc. Roy. Soc. Vic., 29, N.S., 1916, p. 105, pl. 7, f. 3 and 4.
ovatum Tate, Trans. Roy. Soc. S.A., 9, 1886, p. 68, pl. 5, f. 11. trigonale Tate, Trans. Roy. Soc. S.A., 2, 1879, p. 131, pl. 5, f. 5.

Neolepron Monterosato, Atti. Acad. Sci. Lett. Art. Palermo, N.S. 5, 1875, p. 12. (sulcatulum Jeffreys.)
antipodium Filhol, Kellia, Compt. Rend. Acad. Sci., 91, 1880, p. 1095.
novaecambrica Hedley, Proc. Linn. Soc. N.S.W., 39, 1915, p. 701, pl. 79, f. 29-32.
sanguineum Hutton, Kellia, Trans. New Zeal. Inst., 16, 1884, p. 215.
Mylitta d'Orbigny and Recluz, Journ. de Conch., 1850, p. 288. (deshayesi d'Orbigny and Recluz.)
auriculata Smith, Ann. Mag. Nat. Hist. (6), 8, 1891, p. 236, pl. 13a, f. A-C.
deshayesi d'Orbigny and Recluz, Journ. de Conch., 1, 1850, p. 292, pl. 11, f. 12-13, pl. 14.
tasmanica T. Woods, Pythina, Proc. Roy. Soc. Tas., 1875, p. 162.
Legrandina Tate and May, Proc. Linn. Soc. N.S.W., 1901, p. 463. (bernardi Tate and May.)
bernardi Tate and May, Proc. Linn. Soc. N.S.W., 1901, p. 463, pl. 27, f. 98-99.

Family MONTACUTIDAE

Montacuta Turton, Conch. Insul. Brit., 18, 1822, p. 58. (substriata Montagu.) nitens Gatliff and Gabriel, Proc. Roy. Soc. Vic., 14, N.S., 1911, p. 191, pl. 47, f. 7.
semiradiata Tate, Trans. Roy. Soc. S.A., 11, 1889, p. 63, pl. 40, f. 2.
Benthoquetia Iredale, Rec. Aust. Mus., 17, 1930, p. 403. (integra Hedley.)
integra Hedley, T'urquetia, Rec. Aust. Mus., 6, 1907, p. 364, pl. 66, f. 7-10.
Mysella Angas, Proc. Zool. Soc., 1877, p. 176. (anomala Angas.)
anomala Angas, Proc. Zool. Soc., 1877, p. 176, pl. 26, f. 22.
donaciformis Angas, Proc. Zool. Soc., 1878, p. 863, pl. 54, £. 13.
dromanaensis Gatliff and Gabriel, Montacuta, Proc. Roy. Soc. Vic., 25, 1912, p. 167, pl. 9, f. 1-4.
lactea Hedley, Rochfortia, Mem. Aust. Mus., 4, 1902, p. 320, f. 59.

> Suborder CYCLODONTA Superfamily CARDIACEA Family CARDIIDAE

Cardium Linne, Syst. Nat., 10, 1758, p. 678. (costatum Linne.) cygnorum Deshayes, Proc. Zool. Soc., 1854, p. 331.
pulchellum Gray, In Dieffenbach New Zeal., 2, 1844, p. 252.
racketti Donovan, Nat. Repos., 4, 1826, p. 124.
Pratulum Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 207. (thetidis Hedley.) thetidis Hedley, Cardium, Mem. Aust. Mus., 4, 1902, p. 322.

Suborder TELEODONTA
 Superfamily VENERACEA
 Family VENERIDAE
 Subfamily DOSINIINAE

Dosinia Scopoli, Intr. Hist. Nat., 1777, p. 399. (africana Gray.)
caerulea Reeve, Artemis, Conch. Icon., 6, 1850, pl. 4, sp. 25.
crocea Deshayes, Cat. Conch. Brit. Mus., 1853, p. 8.
grata Deshayes, Cat. Conch. Brit. Mus., 1852, p. 8.
victoriae Gatliff and Gabriel, Proc. Roy. Soc. Vic., 27, 1914, p. 96, pl. 16, f. 17-19.

Subfamily MERETRICINAE

Paradione Dall, Proc. Mal. Soc., 8, 1909, p. 197. (ovalina Lamarck.) diemenensis Hanley, Cytherea, Proc. Zool. Soc., 1844, p. 110. kingii Gray, Cytherea, King's Survey Aust., 2, 1827, p. 476. regularis Smith, Cythera, Chall. Zool., 13, 1885, p. 140, pl. 1, f. 8-8b.
Sunemeroe Iredale, Rec. Aust. Mus., 17, 1930, p. 395. (adelinae Angas.) aliciae Adams and Angas, Sunetta, Proc. Zool. Soc., 1863, p. 425, pl. 37, £. 18.

Subfamily VENERINAE

Bassina Jukes-Brown, Proc. Mal. Soc., 11, 1914, p. 81. (pachyphylla Jonas.) disrupta Sowerby, Cytherea, Thes. Conch., 2, 1853, p. 743, pl. 163, f. 208, 209. pachyphylla Jonas, Venus, Archiv. fur Naturgeschichte, 5, 1839, Zool., p. 344 , pl. 9, f. 6, 7.
Callanaitis Iredale, Proc. Mal. Soc., 12, 1917, p. 329. (yatei Gray.) disjecta Perry, Venus, Conchology, 1811, pl. 58, f. 3.
Placamen Iredale, Rec. Aust. Mus., 14, 1925, p. 255. (placidus Philippi.) placidus Philippi, Venus, Abbild. Besegr. Conch., 1, 1844, p. 128, pl. 2, f. 2.
Tawera Marwick, Trans. New Zeal. Inst., 57, 1927, p. 613. (spissa Deshayes.) gallinula Lamarck, Venus, Anim. s. Vert., 5, 1818, p. 592. lagopus Lamarck, Venus, Anim. s. Vert., 5, 1818, p. 591.
Cimoneryx Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 210. (cardioides Lamarck.) cardioides Lamarck, Erycina, Anim. s. Vert., 5, 1818, p. 486.
Katelysia Roemer, Krit. Unters Venus, 1857, p. 17. (scalarina Lamarck.) peronii Lamarck, Chione, Anim. s. Vert., 5, 1818, p. 606. scalarina Lamarck, Chione, Anim. s. Vert., 5, 1818, p. 599. strigosa Lamarck, Chione, Anim. s. Vert., 5, 1818, p. 605.
Eumarcia Iredale, Proc. Limn. Soc. N.S.W., 49, 1924, p. 211. (fumigata Sowerby.)
fumigata Sowerby, Venus, Thes. Conch., 2, 1853, p. 737, pl. 159, f. 152-155.
Gompiina Moerch, Yoldi Cat. Conch., 2, 1853, p. 9. (donacina Chemnitz.) undulosa Lamarck, Venus, Anim. s. Vert., 5, 1818, p. 606.
Gouldiopa Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 209. (australis Angas.) australis Angas, Gouldia, Proc. Zool. Soc., 1865, p. 459.
Fiuctiger Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 209. (royanus Iredale.) royanus Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 209.
Venerupis Lamarck, Anim. s. Vert., 5, 1818, p. 506 . (perforans Montagu.) crenata Lamarek, Anim. s. Vert., 5, 1818, p. 508. exotica Lamarck, Anim. s. Vert., 5, 1818, p. 507.
fabagella Deshayes, Tapes, Cat. Conch! Brit. Mus., 1853, p. 182.
galactites Lamarck, Venus, Anim. s. Vert., 5, 1818, p. 599.
iridescens Tate, Proc. Zool. Soc. S.A., 10, 1889, p. 61, pl. 11, f. 10.
mitis Deshayes, Proc. Zool. Soc., 1853, p. 5.
obesa Deshayes, Proc. Zool. Soc., 1853, p. 5.
Claudiconcha Fischer, Man. Conch., 1887, p. 1087. (monstrosa Chemnitz.) cumingi Deshayes, Venerupis, Proc. Zool. Soc., 1853, p. 4.

Family PETRICOLIDAE

Velargilda Tredale, Rec. Aust. Mus., 18, 1931, p. 207. (rubiginosa Ad. and Ang.) rubiginosa Adams and Angas, Naranio, Proc. Zool. Soc., 1863, p. 425, pl. 37, f. 17.

Naranio Gray, Ann. Mag. Nat. Hist. (2), 11, 1853, p. 38. (divaricata Gray.) lucinalis Lamarck, Petricola, Anim. s. Vert. (2nd ed. Desh.), 6, 1835, p. 157.

Superfamily TELLINACEA Family TELLINIDAE

Telina Linne, Syst. Nat., ed. 10, 1758, p. 674 . (virgata Linne.) albinella Lamarck, Anim. s. Vert., 5, 1818, p. 524.
ensiformis Reeve, Conch. Icon., 17, 1868, pl. 49, sp. 289a, b.
Semelangulus Iredale, Proc. Linn. Soc. N.S.W., 49, 1924, p. 212. (temiliratus Sowerby.)
dilutus Smith, Tellina, Chall. Zool., 13, 1885, p. 108, pl. 4, f. 7-7b. subdilutus Tate, Tellina, Proc. Roy. Soc. S.A., 9, 1887, p. 65, pl. 4, f. 9 . tenuiliratus Sowerby, Tellina, Conch. Icon., 17, 1867, pl. 39, sp. 219, a, b.
Macoma Leach, Ross Voyage, Append. 2, 1819, pl. 12. (tenera Leach.)
deltoidalis Lamarck, Tellina, Anim. s. Vert., 5, 1818, p. 532.
diemenensis Deshayes, Tellina, Proc. Zool. Soc., 1854, p. 361.
mariae T. Woods, Tellina, Proc. Roy. Soc. Tas., 1875, p. 162.
Pseudarcopagia Bertin, Nouv. Arch. Mus. Paris (2), 1, 1878, p. 264 . (victoriae Gatliff and Gabriel.)
victoriae Gatliff and Gabriel, Tellina, Vic. Nat., 31, 1914, p. 83.

Family SEMELIDAE

Semele Schumacher, Essai, Vers. Test., 53, 1817, p. 165. (proficua Pulteney.) exigua A. Adams, Proc. Zool. Soc., 1861, p. 385.

Family PSAMMOBIIDAE

Psammobia Lamarck, Anim. s. Vert., 5, 1818, p. 511. (feroensis Gmelin.) kenyoniana Pritchard and Gatliff, Tellina, Proc. Zool. Soc. Vic., 17, 190t, p. 339, pl. 20, f. 1-4.
livida Lamarck, Anim. s. Vert., 1818, p. 515.
menkeana Reeve, Conch. Icon., 10, 1856, pl. 6, sp. 43.
Flavomala Iredale, Rec. Aust. Mus., 19, 1936, p. 283. (biradiata Wood.). biradiata Wood, Solen, General Conch., 1815, p. 135, pl. 33, f. 1. donacioides Reeve, Soletellina, Conch. Icon., 10, 1857, pl. 3, sp. 11.

Family DONACIDAE

Plebidonax Iredale, Rec. Aust. Mus., 17, 1930, p. 398. (deltoides Lamarek.) deltoides Lamarck, Donax, Anim. s. Vert., 5, 1818, p. 547.
Deltachion Iredale, Rec. Aust. Mus., 17, 1930, p. 398. (virilis Iredale.), brazieri Smith, Donax, Proc. Zool. Soc., 1891, p. 491, pl. 40, f. 10, 10 a. chapmani Gatliff and Gabriel, Hemidonax, Vic. Nat., 40, 1923, p. 10, pl. 2.

Superfamily, SOLENACEA

Family SOLENIDAE
Solen Linne, Syst. Nat., 10, 1758, p. 672. (marginatus Pulteney.) vaginoides Lamarck, Anim. s. Vert., 5, 1818, p. 451.

Superfamily MACTRACEA

 Family MACTRIDAEMactra Linne, Syst. Nat., ed. 12, 1767, p. 1125. (stultorum Linne.) australis Lamarck, Anim. s. Vert., 5, 1818, p. 475.
pura Deshayes, Proc. Zool. Soc., 1853, p. 15.
rufescens Lamarck, Anim. s. Vert., 5, 1818, p. 476.
Nannomactra Iredale, Rec. Aust. Mus., 17, 1930, p. 400. (jacksonensis Smith.) jacksonensis Smith, Mactra, Chall. Zool., 13, 1885, p. 62, pl. 5, f. 9-9b. pusilla Adams, Mactra, Proc. Zool. Soc., 1855, p. 226.
Electromactra Iredale, Rec. Aust. Mus., 17, 1930, p. 400. (parkesiana Hedley.) antecedens Iredale, Rec. Aust. Mus., 17, 1930, p. 401, pl. 54, f. 1-3.
Notospisula Iredale, Rec. Aust. Mus., 17, 1930, p. 400 . (parva Petit.) cretacea Angas, Spisula, Proc. Zool. Soc., 1867, p. 909, pl. 44, f. 6. parva Petit, Gnathodon, Journ. de Conch., 4, 1853, p. 358, pl. 13, f. 9, 10.
Anapella Dall, Proc. Malac. Soc., 1, 1895, p. 213. (triquetra Hanley.)
cycladea Lamarck, Crassatella, Anim. s. Vert., 5, 1818, p. 483.
triquetra Hanley, Mesodesma, Proc. Zool. Soc., 1843, p. 101.
Lutraria Lamarck, Mem. Soc. Nat. Hist., Paris, 1799, p. 85. (lutraria Linne.) rhynchaena Jonas, Zeit f. Malak., 1, 1844, p. 34.
Zenatia Gray, Ann. Mag. Nat. Hist. (2), 11, 1853, p. 43. (acinaces Q. and G.) victoriae Pritchard and Gatliff, Proc. Roy. Soc. Vic., 16, 1903, p. 92, pl. 15, f. 3.

Family AMPHIDESMATIDAE

Amphidesma Lamarck, Anim s. Vert., 5, 1818, p. 489. (donacilla Lamarck.) angusta Reeve, Mesodesma, Conch. Icon., 8, 1854, pl. 1, sp. 3.
cuneata Lamarck, Crassatella, Anim. s. Vert., 5, 1818, p. 483.
erycinaea Lamarek, Crassatella, Anim: s. Vert., 5, 1818, p. 483.
glabrella Lamarck, Anim. s. Vert., 5, 1818, p. 493.
nitida Deshayes, Mesodesma, Proc. Zool. Soc., 1854, p. 338.

Suborder ASTHENODONTA
 Superfamily MYACEA
 Family ALOIDIDAE

Aloidis Megerle, Ges. Nat. Fr. Berl. Mag., 5, 1811, p. 67. (sulcata Lamarck.)
findersi Cotton, Corbula, Rec. S. Aust. Mus., 4, 1930, p. 240, f. 15.
iredalei Cotton, Corbula, Rec. S. Aust. Mus., 4, 1930, p. 239, f. 14.
stolata Iredale, Notocorbula, Rec. Aust. Mus., 17, 1930, p. 405, pl. 75, f. 1, 2, 7.

Family HIATELLIDAE

Hiatella Daudin, Bosc. Suite a Deterville ed. Buffon, Moll., 3, 1801, p. 120. (arctica Linne.)
angasi Angas, Saxicava, Proc. Zool. Soc., 1865, p. 643. australis Lamarck, Corbula, Anim. s. Vert., 5, 1818, p. 495.
Panopea Menard, Ann. Mus. Hist. Nat., Paris, 9, 1807, p. 135. (glycimeris Gmelin.)
australis Sowerby, Genera Shells, 1833, pl. 40, f. 2.

Family GASTROCHAENIDAE

Gastrochaena Spengler, Nye. Saml. K. Dansk. Skrifter, 2, 1783, p. 179. (cuneiformis Spengler.) tasmanica T. Woods, Proc. Roy. Soc. Tas., 1876, p. 159.

Superfamily ADESMACEA
Family PHOLADIDAE
Pholas Linne, Syst. Nat., 10, 1758, p. 669. (dactylus Linne.)
australasiae Sowerby, Thes. Conch., 2, 1849, p. 488, pl. 106, f. 73.
obturamentum Hedley, Rec. Aust. Mus., 2, 1893, p. 55, pl. 14, f. 1-3.
Family TEREDIDAE
Teredo Linne, Syst. Nat., 10th ed., 1758, p. 651. (navalis Linne.)
austini Iredale, "Destruction of Timber by Marine Organisms in the Port of Sydney," 1932, p. 29, pl. 1, f. 1-4.
fragilis Tate, Trans. Roy. Soc. S.A., 11, 1888, p. 60, pl. 11, f. 13-13c.
Nototeredo Bartsch, Proc. Biol. Soc. Wash., 36, 1923, p. 100. (edax Hedley.)
edax Hedley, Teredo, Proc. Linn. Soc. N.S.W. (2), 9, 1894, p. 501, pl. 32, f. 1-5.
remifer Iredale, "Destruction of Timber by Marine Organisms in the Port of Sydney," 1932, p. 32, pl. 3, f. 1-4.
Bankia Gray, Synops. Brit. Mus., ed. 44, 1842, p. 76. (bipalmulata Lamarck.) rosenthali Iredale, "Destruction of Timber by Marine Organisms in the Port of Sydney," 1932, p. 35, pl. 3, f. 9-12.

Class CEPHALOPODA
 Subclass DIBRANCHIA Order DECAPODA
 Suborder OEGOPSIDA
 Family SPIRULIDAE

Spirula Lamarck, Mem. Soc. Nat. Hist., Paris, 1799, p. 80. (spirula Linne.) spirula Linne, Nautilus, Syst. Nat., ed. 10, 1758, p. 710.

Family ARCHITEUTHIDAE

Architeuthis Steenstrup, Skand. Natur. Forhandl., 7, 1856, p. 182. (dux Steenstrup.)
kirkii Robson, Trans. New Zeal. Instit., 19, 1887, p. 155.

Family ENOPLOTEUTHIDAE

Enoploteuthis d'Orbigny, in Ferassue and d'Orbigny, Hist. Nat. gen. Ceph. acetab., 1839. (smithsii Leach.) galaxias Berry, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 211, pl. 59-60.

Family HISTIOTEUTHIDAE

Calliteuthis Verrill, Amer. Journ. Sci. (3), 20, 1880, p. 393. (reversa Verrill.) miranda Berry, Biol. Results F.I.S. 'Endeavour," 4, 1918, p. 221, pl. 61-62.

Family OMMASTREPHIDAE
Notorodarus Pfeffer, Ergel. Plankton Exped., 2, 1912, F.a., p. 434. (insignis Gould.)
gouldi McCoy, Ommastrephes, Prod. Zool. Vic., Dec. 17, 1888, p. 255, pl. 169 and 170 .

Family SEPIOLIDAE

Austrorossia Berry, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 252. (australis Berry.)
australis Berry, Rossia, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 253, text fig. $43-47$, pl. 69, f. 3, 4; pl. 70.
Euprymna Steenstrup, Overs. Danske Selsk. Kjob., 1887, p. 43. (morsei Verrill.)
tasmanica Pfeffer, Ceph. Hamb. Mus., 1884, p. 6, f. 7.

Family LOLIGINIDAE

Loligo Schneider, Samml. Vern. Abh., 1784, p. 110. (loligo Linne.)
etheridgei Berry, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 243, text. fig. 28-38, pl. 67-68; pl. 69, f. 1-2.
Sepioteuthis Blainville, Dict. Sci. Nat., 32, 1824, p. 175. (sepiacea Blainv. $=$ sepioidae Blainv.)
australis Quoy and Gaimard, Sepia, Voy. "Astrolabe," Zool., 2, 1832, p. 70, pl. 5, f. 3-7.
bilineata Quoy and Gaimard, Sepia, Voy. "Astrolabe," Zool., 2, 1832, p. 66, pl. 2, f. 1.

Family SEPIIDAE

Sepia Linne, Syst. Nat., ed. 10, 1758, p. 658. (officinalis Linne.)
apama Gray, Ceph. Antep. B.M., 1849, p. 103.
hedleyi Berry, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 258, text fig. $48-50, \mathrm{pl} .71,72$.
novachollandiae Hoyle, Proc. Roy. Phys. Soc. Edin., 17, 1909, p. 266.
rex Iredale, Decorisepia, Aust. Zool., 4, 1926, p. 193, pl. 22, f. 9-10.
Arctosepia Iredale, Aust. Zool., 4, 1926, p. 193. (limata Iredale.)
braggi Verco, Sepia, Trans. Roy. Soc. S.A., 31, 1907, p. 213, pl. 27, f. 6, 6a, b. limota Iredale, Aust. Zool., 4, 1926, p. 193, pl. 23, f. 7-8.

Order OCTOPODA

Family OCTOPODIDAE
Octopus Lamarck, Bull. Sci. Soc. Philom., 17, 1798, p. 130. (vulgaris Lamarck.) australis Hoyle, Ann. Mag. Nat. Hist., ser. 5, 15, 1885, p. 224.
duplex Hoyle, Amn. Mag. Nat. Hist., ser. 5, 15, 1885, p. 226.
pallida Hoyle, Ann. Mag. Nat. Hist. (5), 15, 1885, p. 223.
superciliosus Quoy and Gaimard, Voy. "Astrolabe," Zool., 2, 1832, p. 88, pl. 6, f. 4.
variolatus Blainville, Dict. Sci. Nat., 43, 1826, p. 186.

Family CIRROTEUTHIDAE

Teuthidiscus Berry, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 284. (pluto Berry.)
persephone Berry, Opisthoteuthis, Biol. Results F.I.S. "Endeavour," 4, 1918, p. 290, text fig. 66, 67, pl. 81; f. 6, 7, pl. 82 ; f. 9, 10, pl. 85-88.

Family ARGONAUTIDAE
Argonauta Linne, Syst. Nat., ed. 10, 1758, p. 708. (argo Linne.)
argo Linne, Syst. Nat., ed. 10, p. 708.
nodosa Solander, Cat. Portland Mus., 1786, p. 96.

INDEX TO GENERA AND SPECIES

Acanthochites, 109, 110
Acanthochiton, 109
acanthopleura, Scala, 123
accisa, Colaspira, 121
Turritella, 121
acclinis, Escalima, 145
acicularis, Chemnitzia, 125
,, Turbonilla, 125
acinaces, Zenatia, 154
Aclis, 126
Acmaea, 112, 113, 117
Acoela, 140
acromialis, Austromitra, 133 , Mitra, 133
Acroperna, 146
Actaeonidae, 138
Acteon, 138
Actinoleuca, 113
Actophila, 141
aculeata, Crypta, 127
" Patella, 127
aculeatum, Scala, 123 ,, Scalaris, 123
acuminatus, Parachiton, 108
Acuminia, 138
acupuncta, Erycina, 150
Melliteryx, 150
Acus, 138
acutinodosa, Buccinum, 131
Cominella, 131
acutissima, Leiostraca, 124
Strambiformis, 124
Acutoplax, 110
adamsi, Mysia, 150
Numella, 150
adelaidae, Austrocochlea, 114
Trochus, 114
adelaideana, Condylocardia, 149 , Prothyasira, 150 ,, Thyasira, 150
adelaidensis, Lepsiella, 130
Ricinula, 130
adelinae, Sunemeroe, 152
Adelosiphonia, 147
Adesmacea, 155
adjunctus, Ratifusus, 129
Admete, 134
Adeorbis, 120
aemula, Drillia, 135
Inquisitor, 135
Aeolidiacea, 141
Aesopus, 131
afra, Gadinia, 142
africana, Dosinia, 151
agapeta, Marginella, 134
Agatha, 125
Aglossa, 124
agnewi, Lironoba, 119
,, Rissoa, 119
Agnewia, 130
Akera, 139
Akeridae, 139
Alaba, 123
alba, Columbella, 136
," Mitrathara, 136
" Notovola, 145
,, Pecten, 145
albata, Cypraea, 128
,, Notocypraea, 128
albavittata, Notosinister, 123
, Triphora, 123
albicostus, Modiola, 146
Modiolus, 146
albida, Chiton, 110
,, Myadora, 147
, Poneroplax, 110
,, Terebra, 138
albidus, Chama, 147
," Cleidothaerus, 147
albinella, Tellina, 153
albocincta, Asperdaphne, 137
,, Clathurella, 137
albosutura, Cerithiopsis, 122
Notoseila, 122
albula, Cocklis, 127
albus, Malleus, 144
Alexia, 141
Alicia, 147
aliciae, Etrema, 137
" Sunemeroe, 152
, \quad Sunetta, 152
Alloiodoris, 141
allporti, Calliostoma, 114
, Marginella, 134
Zizyphinus, 114
Aloididae, 154
Aloidis, 154
aloysii, Clanculus, 113
alta, Cuspidaria, 148
,, Conacmea, 113
,, Notoarmea, 113
alternans, Marginella, 134
alticostata, Patella, 112
, Patelloida, 112
alucinans, Guraleus, 136 ,, Mangilia, 136

Alvania, 118, 119
amabilis, Cardita, 149
" Venericardia, 149
Amauropsis, 118
ambiguus, Scutus, 111
Amblychilepas, 112
amitina, Emarginula, 111
Amorena, 134
Amphibola, 142
Amphibolacea, 142
Amphibolidae, 142
Amphidesma, 154
Amphidesmatidae, 154
Amphiltalamus, 119
amphizosta, Retusa, 139 Utriculus, 139
ampulla, Bullaria, 139
" Cautor, 123
" Triphora, 123
Ampullaria, 142
amputatum, Caecum, 121
Amusium, 145
Amygdalum, 146
Anabathron, 120
Anadara, 143
analogica, Austromitra, 133
Mitra, 133
Anapella, 154
Anatina, 146, 147
anatina, Laternula, 146
anatinis, Scutus, 111
Ancilla, 133
ancilla, Cymbiola, 134
Ancillaria, 133
ancillides, Mitroidea, 134
anemone, Conus, 138
Floraconus, 138
angasi, Adeorbis, 120
" Austrodrillia, 136
", Bullaea, 140
" Carditella, 149
" Carditellona, 149
", Cerithiopsis, 122
" Hiatella, 154
" Lorica, 110
", Loricella, 110
", Marginella, 134
" Naricava, 120
" Odostomia, 125
" Offadesma, 146
", Periploma, 146
" Philine, 140
", Pleurobranchus, 141
" Pleurotoma, 136
" Pterynotus, 130
", Rissoina, 120
", Rissolina, 120
" Saxicava, 154
" Teretriphora, 123
angasi, Triphora, 123
, Typhis, 130
" Zaclys, 122
angasiana, Kellia, 150
angeli, Brookula, 115
" Rissoa, 115
anguineus, Chlamys, 145
Notochlamys, 145
angulata, Cithna, 120
angusta, Amphidesma, 154
Mesodesma, 154
angustata, Alicia, 147
" Cypraea, 128
", Notocyprae, 128
" Thraciopsis, 147
angustior, Cadulus, 142
anisus, Euguraleus, 136
annulata, Liotella, 116
Liotia, 116
anomala, Macteola, 137
", Mysella, 151
, Purpura, 137
Anomalodesmacea, 146
Anomiacea, 145
Anomiidae, 145
anomioides, Myochama, 147
antecedens, Electromactra, 154
Antephalium, 128
anthochiton, 110, 111
Antimelatoma, 136
antipodes, Scutus, 111
antipodium, Kellia, 151
Neolepton, 151
antipodum, Myadora, 147
antiqua, Callistelasma, 109
Chiton, 109
antiquata, Anadara, 143
Antisabia, 126
Antizafra, 131
apama, Sepia, 156
aperta, Philine, 140
apicilata, Epigrus, 120
Rissoa, 120
apicina, Retusa, 139
, Tornatina, 139
apicinus, Monodonta, 113
Phasianotrochus, 113
apiculata, Retusa, 139
Utriculus, 139
Aplysia, 141
approxima, Estea, 118
Rissoa, 118
arachis, Bulla, 139
Cylichnella, 139
arborescens, Amygdalum, 146
Arca, 143
Arcacea, 143
Archaeogastropoda, 111
Archidoris, 144

Architeuthidae, 155
Architeuthis, 155
Arcidae, 143
arctica, Hiatella, 154
Arctosepia, 156
arcuatus, Cyphonochelus, 130
Arcularia, 132
arenacea, Charisma, 116
Leptothyra, 116
arenosa, Thracidora, 147
Thraciopsis, 147
Argalista, 116
Argonauta, 156
Argonautidae, 156
argo, Argonauta, 156
armillata, Calliostoma, 114
" Notosinister, 123
" Trochus, 114
, \quad Triphorus, 123
Armina, 141
Arminidae, 141
Artemis, 151
aspera, Drupa, 130
Ricinula, 130
Asperdaphne, 137
Aspergillum, 147
asperrimus, Mimachlamys, 145
Pecten, 145
Aspertilla, 137
Aspidobranchia, 111
assimilis, Loripes, 150
, Wallucina, 150
assisi, Bedeva, 130
, Trophon, 130
Astartacea, 148
Astele, 114
Astelena, 114
Asteracmea, 113
astericola, Stilifer, 125
Asthenodonta, 154
Ataxocerithium, 122
atkinos, Pecten, 145
, Scaeochlamys, 145
atkinsoni, Cuna, 148
" Cylichna, 139
, Cylichnina, 139
" Ischnochiton, 108
, Kellia, 148
" Macrozafra, 131
, Mangelia, 131
, Schismope, 111
„ Scissurella, 111
Atlanta, 140
atrata, Herpetopoma, 115
, Turbo, 115
Atrina, 144
atropurpurea, Notosetia, 119
attenuatus, Seila, 122
"
Seilarex, 122
Atys, 139
audax, Elegidion, 112
augur, Eulima, 124
Aulocochiton, 110
Aulacochitonidae, 110
aurantiaca, Styloptygma, 125
,, Syrnola, 125
aurantiocincta, Amphiltalamus, 119
Dardanula, 119
auratum, Bembicium, 118
,, Trochus, 118
aurea, Micrastraea, 117
". Trochus, 117
Auricula, 142
auricula, Gena, 115
, Stilifer, 125
" Stomatella, 115
auriculata, Mylitta, 151
aurita Limopsis, 143
aurora, Crassatella, 148
Talbrica, 148
austini, Teredo, 155
australasia, Biplex, 129
" Fasciolaria, 132
," Mayena, 129
, Pyrula, 132
australasiae, Pholas, 155
australiae, Cingula, 119 Merelina, 119
australis, Agatha, 125
, Austrorossia, 156
," Baryspira, 133
,, Bela, 136
" Buccinum, 117
," Calliostoma, 114
" Cerithium, 122
" Cirsonella, 115
, \quad Chiton, 109
" Clavagella, 147
" Colus, 132
" Condylocardia, 149
" Corbula, 154
, Ctenocolpus, 121
, Cyclas, 150
, Delphinula, 116
" Eburna, 133
, Emarginula, 111
" Euguraleus, 136
", Fusus, 132
,, Gouldia, 152
," Gouldiopa, 152
,, Hiatella, 154
", Hipponix, 126
,, Ischnoradsia, 109
,, Kellia, 150
" Lepton, 150
" Mactra, 153
australis, Maculotriton, 129
,, Mitra, 133
" Modiola, 146
, Modiolus, 146
,, Munditia, 116
,, Octopus, 156
, Odostomia, 125
, Oliva, 133
,, Onchidina, 142
,, Ophicardelus, 141
,, Panopea, 154
" Phasianella, 117
," Ringicula, 139
,, Ringiculadda, 139
,, Rossia, 156
," Sabia, 126
,, Scala, 124
, Scalaris, 124
,, Scissurella, 111
,, Schizotrochus, 111
, Sepia, 156
,, Sepioteuthis, 156
,, Siliquaria, 121
," Solemya, 142
,, Tritonidea, 129
," Trochus, 114
," Truncaria, 131
,, Velacumantus, 122
, Zemira, 133
austrina, Columbella, 131
, Zemitrella, 131
Austrocassia, 129
Austroclavus, 136
Austrocochlea, 114
Austrodrillia, 136
Austrolima, 145
Austromitra, 133
Austrorossia, 156
Austrosipho, 132
Austrosiphonidae, 132
Avicula, 144
baccata, Herpetopoma, 115
Monodonta, 115
baconi, Siphonaria, 142
badius, Epigrus, 120
,, Lepidopleurus, 108
,, Raulinia, 127
,, Rissoa, 120
", Sirius, 127
," Terenochiton, 108
baileyana, Dicathais, 130
Purpura, 130
balauistina, Cyamiomactra, 148
Kellia, 148
balteata, Ianthina, 124
Bankia, 155
Bankivia, 114
barbata, Arca, 143
barbatus, Lithodomus, 146
,, Musculus, 146
Baryspira, 133
Basommatophora, 141
Bassethullia, 110
Bassina, 152
bassi, Gondwanula, 129
," Triton, 129
bassianus, Botelloides, 119
, Onoba, 119
bastowi, Asperdaphne, 137
" Cyclostrema, 120
" Daphnella, 137
,, Orbitestella, 120
Bathytoma, 138
bathentoma, Nepotilla, 137
Batillariella, 122
beachportensis, Ennucula, 143
Nucula, 143
beauii, Cylindrobulla, 139
beddomei, Amygdalum, 146
" Chemnitzia, 125
" Friginatica, 127
, Natica, 127
" Schismope, 111
" Terebra, 131
" Turbonilla, 125
, Zella, 131
Bedeva, 130
bednalli, Acanthochites, 109
" Acanthochiton, 109
, Anthochiton, 110
" Chiton, 110
" Epidromus, 129
", Ratifusus, 129
Triton, 129
Bela, 136, 137
bella, Cithara, 136
, Marita, 136
Bellastrea, 117
Belloliva, 133
bellulus, Phasianotrochus, 113 ," Trochus, 113
Bembiciidae, 118
Bembicium, 118
benhami, Zelippistes, 126
Benthofascis, 138
Benthoquetia, 151
Benthoxystus, 130
beraudiana, Austrodrillia, 136 , Pleurotoma, 136
bernardi, Legrandina, 151
bezoar, Rapana, 130
bicarinatus, Fenestrosyrinx, 135
bicolor, Acus, 138
, Clathurella, 137
Cypraea, 128
Estea, 118
Etrema, 137
bicolor, Notocypraea, 128 Pervicacia, 138 Rissoa, 118
biconica, Benthofascis, 138
bidentata, Cylichnella, 139
bifasciata, Syrnola, 125
bifrons, Equichlamys, 145 Pecten, 145
bilineata, Clathurella, 137
, Heterocithara, 137
" Sepia, 156
, \quad Sepioteuthis, 156
bimaculata, Cardita, 149
Venericardia, 149
bipalmulata, Bankia, 155
Biplex, 129
biradiata, Flavomala, 153
Solen, 153
bitorquata, Asperdaphne, 137
, Daphnella, 137
Bittium, 122
Bornia, 150
Borniola, 150
botanica, Daphnella, 137
" Lucina, 149
" Notomyrtea, 149
Botelloides, 119
Brachyodontes, 146
bractealus, Maculotriton, 129
braggi, Arctosepia, 156
" Sepia, 156
brasiliana, Buccinum, 118 , Hinia, 118.
brazieri, Acuminia, 138
, Belloliva, 133
" Clathurella, 136
" Cuspidaria, 148
," Deltachion, 153
," Donax, 153
", Euryta, 138
,, Fossarina, 114
,, Guraleus, 136
,, Litozamia, 130
, Murex, 130
, Murexsel, 130
", Neaera, 148
,, Parviterebra, 138
" Scrinium, 136
" Stilifer, 125
,, Terebra, 138
, Trophon, 130
brevicaudatum, Ceratosoma, 140
brevis, Bulla, 139
" Eusetia, 119
, Haminoea, 139
, Myadora, 147
", Pandora, 147
,, Rissopsis, 119
,, Turbonilla, 125

Brookula, 115
brunneus, Clanculus, 113 , \quad Stilifer, 125
bruniensis, Cyclostrema, 116 , Skenella, 116
Buccinacea, 131
Buccinidae, 131
Buccinum, 117, 118, 130, 131, 132
bulimnoides, Eusetia, 119
Rissopsis, 119
bulimoides, Atlanta, 140 , Spiratella, 140
Bulimus, 113
Bulla, 139
Bullaea, 140
Bullaria, 139
Bullariidae, 139
bullata, Akera, 139
Bullinella, 139
Bullomorpha, 138
burchardi, Buccinum, 132
" Parcanassa, 132
Cacozeliana, 122
caducocincta, Marginella, 134
Cadulus, 142
Caecidae, 121
Caecum, 121
caerulea, Artemis, 151 , Dosinia, 151
calamus, Actinoleuca, 113
Patella, 113
Callanaitis, 152
caliginosa, Laevilitorina, 118
Calliostoma, 114
Calliostomatiidae, 114
Calliostomidae,
calliozona, Anthochiton, 110
Chiton, 110
Callistassecla, 109
Callistelasma, 109
Callistochiton, 109, 110
Callistochitonidae, 109
Calliteuthis, 155
Callochiton, 110
Callomphala, 115
calva, Macrozafra, 131
" Phenocolepas, 117
" Pyrene, 131
" Scutellina, 117
calyculata, Cardita, 149
,, Chama, 149
Calyptraea, 127
calyptraeformis, Sigapatella, 127
Trochus, 127
campbelli, Actinoleuca, 113
Cancellaria, 134
Cancellariidae, 134
cancellata, Crossea, 116
, Crosseola, 116
, Merria, 128
Cancilla, 134
candida, Emarginula, 111
canna, Eutriphora, 122
, Triphora, 122
Cantharidella, 114
Cantharidus, 113, 114
caperata, Magilinea, 121
" Thylocodes, 121
caperatum, Cyclostrema, 115
Elachorbis, 115
Capulidae, 126
Capulus, 126
carbonaria, Mitra, 133
Cardiacea, 151
Cardiidae, 151
cardioides, Chioneryx, 152
, Erycina, 152
Cardita, 149
Carditacea, 149
Carditella, 148, 149
Carditellona, 149
Carditellopsis, 149
Carditidae, 149
Cardium, 151
carinata, Crossea, 116
Crosseola, 116
cariosus, Heterozona, 108
Ischnochiton, 108
carneola, Dendrodoris, 141
" Doris, 141
carnosus, Mucrosquama, 111
cassandra, Aesopus, 131
Daphnella, 131
Cassidea, 128, 129
Cassidiae, 128
Cassis, 128, 129
casta, Leucotina, 125
, Monoptygma, 125
Cautor, 123
cavatica, Cardita, 149 , Venericardia, 149
Cavatidens, 149
Cavolinia, 140
Cavoliniidae, 140
Cellana, 112
Cemori, 112
Cephalaspidea, 138
Cephalopoda, 155
Ceratosoma, 140
Cerithiidae, 121
Cerithiopsidae, 122
Cerithiopsis, 122
Certhiacea, 121
Cerithium, 122
cerithium, Turritella, 121
, Zeacumantus, 121
cernica, Cellana, 112
cessicius, Cerithiopsis, 122
Joculator, 122
Chama, 147, 149
chapmani, Condylocardia, 149
" Deltachion, 153
, Hemidonax, 153
, Patella, 112
,, Patellanax, 112
Charisma, 116
Charonia, 129
charopa, Cyclostrema, 116
, Microdiscula, 116
Cheilea, 127
Cheileacea, 126
Cheileidae, 127
cheilostoma, Merelina, 119
Rissoa, 119
Chemnitzia, 125
Chiazacmea, 112
Chione, 152
Chioneryx, 152
Chiton, 108, 109, 110, 111
Chitonellus, 110
Chitonidae, 110
Chlamydella, 145
Chlamys, 145
cicatricosa, Tugalia, 111
cimolia, Aulacochiton, 110
, Chiton, 110
cinerea, Teretriphora, 123
" Triphora, 123
Cingula, 119
cingulata, Oscilla, 126
Cingulina, 126
cinnamonea, Austromitra, 133
" Volutomitra, 133
circinata, Cingulina, 126
Cirrotheuthidae, 156
Cirsonella, 115
Cithara, 136, 137
Cithna, 120
Clanculus, 113
clarkei, Siphonalia, 132
" Tasmeuthria, 132
Clathurella, 136, 137, 138
Claudiconcha, 152
Clavagellacea, 147
Clavagella, 147
Clavagellidae, 147
Cleidothaerus, 147
Cleodora, 140
Clio, 140
coccoradiatum, Haliotis, 111
Cocculina, 117
Cocculinacea, 117
Cocculinella, 117
Cocculinidae, 117
Cochlis, 127

Codakia, 150
Coenaculum, 120
coercita, Cocculina, 117
"
Cocculinella, 117
Colidae, 132
collusor, Parachiton, 108
Colospira, 121
Columbella, 131, 136
columnaria, Cymatiella, 129
, Cymatium, 129
" Estea, 118
, Fillodrillia, 137
,, Marginella, 134
" \quad Philine, 140
,, Rissoa, 118
,, Venericardia, 149
columnarius, Benthoxystus, 130
Lepidopleurus, 108
", Parachiton, 108
Colus, 132
colus, Colus, 132
Cominella, 131
cominelliformis, Columbella, 131
cominelliformis, Macrozafra, 131
comma, Cuna, 148
commensalis, Eulima, 124
commercialis, Ostrea, 144 Saxostrea, 144
communis, Cyamiomactra, 148
compacta, Charisma, 116
complexa, Myadora, 147
compta, Calliostoma, 114
", Cithara, 137
" Marita, 136, 137
" Zizyphinus, 114
comptoni, Cypraea, 128
Notocypraea, 128
comtessi, Thalotia, 113
Conarmea, 113
concamerata, Austrocochlea, 114
Trochus, 114
concatenata, Cosmetalepas, 112
Fissurella, 112
concentrica, Cuna, 148
concinna, Crossea, 116 , Crosseola, 116
Condylocardia, 149
Condylocardiidae, 149
conica, Emarginula, 111
" Gadinia, 142
" Monodonta, 113
" Sabia, 126
", Thalotia, 113
conicum, Natica, 127 ,, Uber, 127
conicopora, Haliotis, 111
Conidae, 138
connectans, Marginella,
conoidea, Emarginula, 111
, Montfortula, 111
consobrina, Eusetia, 119 Rissopsis, 119
constricta, Austrocochlea, 114 Monodonta, 114
contabulata, Cyclostrema, 115
, Lissotesta, 115
contabulatum, Anabathron, 120
Conthams,
contractus, Chiton, 108
Ischnochiton, 108
conulum, Calliostoma, 114
Conus, 138
Corbula, 154
cornuta, Acanthochites, 109
, Craspedoplax, 109
cornigerum, Ceratosoma, 140
coronata, Fasciolaria, 132
corticalis, Umbraculum, 140
Umbrella, 140
Cosmetalepas, 112
costata, Acanthochites, 110
" Chiton, 110
" Notoplax, 110
" Poneroplax, 110
costatum, Cardium, 151
coxi, Acanthochites, 110
" Acanthochiton, 110
" Drillia, 136
", Eulima, 124
,, Gibbula, 114
" Inquisitor, 136
cranchii, Damoniella, 139
Craspedoplax, 109
crassa, Nucula, 143
" Rissoina, 120
,, Rissolina, 120
, Scaeoleda, 143
Crassatella, 148, 154
Crassatellidae, 148
crassicosta, Cardita, 149
crassilirita, Codakia, 150
Lucina, 150
crassina, Clathurella, 137 Etrema, 137
cratericula, Marginella, 134
craticulata, Notocrater, 117
crebrisculpta, Brookula, 115 Cyclostrema, 115
creccina, Anatina, 146
Laternula, 146
crenata, Venerupis, 152
crenulata, Phenacolepas, 117
crenatuliferus, Myrina, 144
Notomytilus, 144
Crenella, 146
Crepidula, 127
Crepipoda, 108

Creseis, 140
cretacea, Notospisula, 154
" spisula, 154
crispata, Schizotrochus, 111
crocea, Cerithiopsis, 122
" Dosinia, 151
" Notoseila, 122
crocina, Chiton, 110
" Paricoplax, 110
Crossea, 116
Crosseola, 116
crusis, Fissurella, 112
Siphismalepas, 112'
Crypta, 127
Cryptoconchidae, 109
Cryploplacidae, 110
Cryptoplax, 110
Cryptosoma, 127
Ctenamusium, 145
Ctenocolpus, 121
cumingi, Claudiconcha, 152
," Divalucina, 149
", Lucina, 149
", Niotha, 132
" Venerupis, 152
Cuna, 148
cuneata, Aphidesma, 154
Crassatella, 154
cuneiformis, Gastrochaena, 154
Cpidoliva, 133
Cuspidaria, 148
Cuspidariidae, 148
cuspidata, Cuspidaria, 148
cuspis, Guraleus, 136
" Mangilia, 136
cuticulifera, Haminea, 139
, Haminoea, 139
Cyamiacea, 148
Cyamiidae, 148
Cyamiomactra, 148
Cyamium, 148
cycladea, Anapella, 154 , Crassatella, 154
Cyclas, 150
cyclobates, Haliotis, 111
Cyclodonta, 151
Cyclopecten, 145
Cyclostrema, 115, 116, 120
cygnea, Armina, 141
cygnicollis, Strebloceras, 121
cygnorum, Cardium, 151
Cylichna, 139
Cylichnella, 139
Cylichnina, 139
cyclindraceus, Epigrus, 120
Rissoina, 120
Cylindrobulla, 139
Cymatiella, 129
Cymatiidae, 129

Cymatilesta, 129
Cymatium, 129
Cymatona, 129
cymbalum, Marginella, 134
Cymbiola, 134
cymodocealis, Stenochiton, 109
Cyphonochelus, 130
Cypraea, 128
Cypraeacea, 128
Cypraeidae, 128
Cyrenella, 150
Cyrilla, 143
Cyrillona, 143
Cytherea, 152
dactylus, Pholas, 155
dalli, Cyrilla, 143
" Cyrillona, 143
damicornis, Murex, 129
Torvamurex, 129
Damoniella, 139
Dannevigena, 124
dannevigi, Cerithiopsis, 122 Zaclys, 122
Daphnella, 120, 131, 136, 137, 138
Dardanula, 119
Decapoda, 155
declivis, Cypraea, 128
,, Notocypraea, 128
decorata, Mathilda, 121
, Opimilda, 121
Decorisepia, 156
decorosa, Pronucula, 143
decresensis, Hypocassis, 128
delectabile, Cyclostrema, 115
Elachorbis, 115
delicatulus, Guraleus, 136
" Mangelia, 136
delicatum, Venericardia, 149 , Vimentum, 149
Delphinula, 116
delta, Carditella, 148
, Volupicuna, 148
Deltachion, 153
deltoidalis, Macoma, 153
Tellina, 153
deltoides, Donax, 153
Plebidonax, 153
demissa, Puncturella, 112
Vacerra, 112
dendriticum, Amygdalum, 146
Dendrodoridae, 141
Dendrodoris, 141
densilaminata, Brookula, 115
Cyclostrema, 115
denseplicata, Drillia, 137
Etrema, 137
Dentaliidae, 142
Dentalium, 142
denticulata, Erata, 128
Lachryma, 128
denudatus, Triplex, 129
Torvamurex, 129
deplexa, Odontostomia, 125
Odostomia, 125
dermestoidea, Buccinium, 131
Pseudamycla, 131
desalessii, Asperdaphne, 137
,, Mangelia, 137
descrepans, Haurakia, 119 Rissoa, 119
deshayesi, Mylitta, 150
devotus, Capulus, 126
Diacria, 140
Diala, 118, 123
diaphana, Cingulina, 126
diaphora, Anthochiton, 110
" Rhyssoplax, 110
Dibranchia, 155
Dicathais, 130
dictua, Columbella, 131
, Zemitrella, 131
diemenensis, Cytherea, 152
" Macoma, 153
" Paradione, 152
" Siphonaria, 142
", Tellina, 153
diffidens, Ctenocolpus, 121
dilecta, Emarginula, 111
dilectum, Cardita, 149
, Vimentum, 149
dilutus, Semelangulus, 153
Tellina, 153
Diogenodonta, 148
Diplodonta, 150
discors, Musculus, 146
disjecta, Callanaitis, 152
,, Venus, 152
disjuncta, Isotriphora, 122
,, Triphora, 122
disrupta, Bassina, 152
Cytherea, 152
dissimilis, Epigrus, 120
, Eulima, 120
Divalucina, 149
divaricata, Naranio, 153
Docoglossa, 112
dohrni, Leda, 143
" Scaeoleda, 143
Doliacea, 128
Dolicholathyrus, 132
Dolicrossea, 116
Donacidae, 153
donaciformis, Mysella, 151
donacilla, Amphidesma, 154
donacina, Gomphina, 152
donacioides, Soletellina, 153

Donovania, 137
Donax, 153
Doridacea, 140
Doridigitatidae, 140
Doris, 141
Dosinia, 151
Dosiniinae, 151
Drillia, 135, 136, 137, 138
dromanaensis, Montacuta, 151
, Mysella, 151
Drupa, 130
dubia, Livonia, 134
dubitabilis, Dardanula, 119
Rissoa, 119
dufresnii, Melanella, 124
dunkeri, Clanculus, 113 , Fusus, 132
" Microcolus, 132
", Trochus, 113
duplex, Octopus, 156
dux, Architeuthis, 155
Dysodonta, 145
dyspetes, Baryspira, 133
ebininus, Potamides, 122 „ Pyrazus, 122
Eburna, 133
eburnea, Buccinum, 132
, Cominella, 132
" Melatoma, 136
", Splendrillia, 136
eburneus, Galfridus, 130
, Trophon, 130
echinata, Clavagella, 147
Ectorisma, 148
Ectosinum, 127
edax, Nototeredo, 155
," Teredo, 155
edentata, Cuna, 148
Edenttellina, 146
edithae, Ancilla, 133 Baryspira, 133
edulis, Mytilus, 145 , Ostrea, 144
Elachorbis, 115, 116
Electroma, 144
Electromactra, 154
elegans, Tugulia, 111
elegantissima, Rissolina, 120
elegantula, Carditella, 149
, Carditellopsis, 149
" Rissoina, 120
Elegidion, 112
Elenchus, 113
elephantinum, Dentalium, 142
ellana, Parcanassa, 132
Ellatrivia, 128
Ellobiidae, 141
elongata, Anatina, 147
" Thraciopsis, 147
elongatus, Chiton, 108
, Ischnochiton, 108
Emarginula, 111, 112
emmae, Haliotis, 111
Enatimene, 130
Ennucula, 143
Enoploteuthidae, 155
Enoploteuthis, 155
ensicula, Leda, 143
,, Propeleda, 143
ensiformis, Tellina, 153
Eoplacophora, 108
Epideira, 135
Epidirona, 135
Epidromus, 129
Epigrus, 120
episcopalis, Mitra, 133
equestris, Cheilea, 127
Patella, 127
Equichlamys, 145
Erata, 128
Eratoidae, 128
Ericusa, 134
erma, Estea, 118
erosus, Brachyodontes, 146
, Mytilus, 146
erratica, Amphiltalamus, 119
" Dardanula, 119
Erycina, 150, 152
Erycinacea, 150
erycinea, Amphidesma, 154
, Crassatella, 154
Erycinidae, 150
Escalima, 145
Estea, 118
estuarina, Batillariella, 122
, Bittium, 122
etheridgei, Loligo, 156
Etrema, 137
Eubittium, 122
Euchelus, 115
Eucrassatella, 148
Euguraleus, 136
Eulima, 118, 120, 124
Eulimella, 126
Eumarcia, 152
eumicra, Bulla, 139
Retusa, 139
Euninella, 117
Euprymna, 156
Euryta, 138
Eusetia, 119
Eusiphonia, 146
Euterebra, 138
Euthecosomata, 140
Euthyneura, 138
Eutriphora, 122

Eutropiidae, 117
Eutropia, 117
evanida, Chiton, 109
, Ischnoradsia, 109
exaratum, Cymatium, 129
,, Triton, 129
excavata, Daphnella, 137
, Nepotilla, 137
,, Nevia, 134
exempla, Foramelina, 144
exigua, Atys, 139
," Damoniella, 139
" Ianthina, 124
" Janthina, 124
,, Semele, 153
Eximiothracia, 147
eximius, Bulimus, 113
,, Phasianotrochus, 113
Exomilus, 137
exoptanda, Anthochiton, 110
, Chiton, 110
Exosiperna, 146
exotica, Venerupis, 152
expansa, Eusetia, 119
exulata, Carditella, 149
fabagella, Tapes, 152
,, Venerupis, 152
falcatus, Ischnochiton, 109
fallaciosa, Daphnella, 137 Marita, 137
famigerator, Chlamys, 145 Mimachlamys, 145
fascelina, Notosinister, 123
fasciata, Bankivia, 114
," Phasianella, 114
" Rissoina, 120
fascicularis, Acanthochiton, 109
Fasciolaria, 132
Fasciolariidae, 132
favus, Chlamydella, 145

$$
\text { Cyclopecten, } 145
$$

Fax, 132
femorale, Cymatium, 129
fenestrata, Donavania, 137
, Gatliffena, 137
Fenestrosyrinx, 135
feroensis, Psammobia, 153
ferruginea, Stiva, 120
festiva, Notosinister, 123
,, Triphoris, 123
fictilis, Pervicacia, 138
filocincta, Linemera, 119
Rissoa, 119
filosa, Truncaria, 131
Fillodrillia, 137
fimbriata, Cassis, 128
" Hypocassis, 128
" Philobrya, 144
fimbriatus, Murex, 130
Murexsel, 130
fischeri, Cylindrobulla, 139
Fissurella, 112
Fissurellidae, 111
flabellatus, Glycymeris, 143
flaccida, Mangilia, 137
,, Marita, 137
flagellatus, Clanculus, 113 , Trochus, 113
flammea, Dardanula, 119
, Chiazacmea, 112
" Patelloida, 112
, Subanaea, 119
flammeus, Glycymeris, 143
Pectunculus, 143
flava, Vermicularia, 121
Flavomala, 153
flexuosa, Cithna, 120
, Rissoina, 120
," Thyasira, 150
flindersi, Aloidis, 154
" Corbula, 154
,, Marginella, 134
", Rissoina, 118
" Subestea, 118
Floraconus, 138
floridus, Clanculus, 113
„ Strombus, 128
" Trochus, 113
Fluctiger, 152
fluctuata, Argalista, 116
foliacea, Hipponix, 126 Sabia, 126
fomicata, Crypta, 127
Foramelina, 144
formicula, Marginella, 134
fortis, Leda, 143
" Teretileda, 143
Fossarina, 114
fragilis, Ampullaria, 142
" Salinator, 142
" Teredo, 155
franklinensis, Columbella, 131 Zemitrella, 131
frenchiensis, Estea, 118
" Lepton, 150
" Rissoa, 118
freycineti, Marginella, 134
Friginatica, 127
fruticosus, Chiton, 109 Ischnochiton, 109
fructuosus, Acteon, 138
fulgida, Columbella, 131
, Macrozafra, 131
fulvidum, Salaputium, 148
fumata, Notovolva, 145
" Pecten, 145
fumigata, Eumarcia, 152
Venus, 152
furtivum, Scrinium, 136
fusiformis, Ancillaria, 133
,, Baryspira, 133
, Bulla, 139
" Retusa, 139
fusca, Chemnitzia, 125
, Turbonilla, 125
Fusus, 132
gabensis, Epideira, 135
, Epidirona, 135
gabrieli, Ischnochiton, 108
,, Marginella, 134
", Myadora, 147
", Subterenochiton, 108
" Trichotropis, 126
, Zelippistes, 126
Gabrielona, 117
Gadinia, 142
Gadiniidae, 142
gaederopus, Spondylus, 145
gaimardi, Cymatiella, 129
Gaimardiacea, 146
Gaimardiidae, 146
galactites, Venerupis, 152
" Venus, 152
galaxias, Enoploteuthis, 155
Galeridae, 127
Galfridus, 130
gallinula, Tawera, 152
, Venus, 152
Gastrochaena, 154
Gastrochaenidae, 154
Gastropoda, 111
Gatliffena, 137
gatliffi, Acanthochiton, 110
, Aesopus, 131
" Drillia, 136
" Mangilia, 131
" Marginella, 135
", Scrinium, 136
Gazameda, 121
geminata, Marginella, 135
gemmegens, Teretriphora, 123
Triphora, 123
gemmulifera, Pyrene, 131
" Retizafra, 131
Gena, 115
georgiana, Avicula, 144
Electroma, 144
gertrudis, Rissoina, 120
gervillei, Liotina, 116
gibbosa, Cavolinia, 140
, Hyalaea, 140
gibbosus, Cadulus, 142
Gibbula, 114
glabella, Marginella, 134
glaber, Strombiformis, 124
glabra, Mitra, 133
glabrella, Amphidesma, 154
globosa, Cithna, 120
globula, Amauropsis, 118
Pellilitorina, 118
globularis, Lucina, 150 , Zemysia, 150
globulosa, Diplodonta, 150 " Zemysia, 150
Glycymeridae, 143
Glycymeris, 143
glycymeris, Glycymeris, 143
" Panopea, 154
glypta, Acanthochites, 110
, Bassethullia, 110
Glyptozaria, 121
Gnathodon, 154
Gomphina, 152
gouldi, Nototodarus, 155
" Ommastrephes, 155
Gouldia, 150, 152
Gouldiopa, 152
goldsteini, Litozamia, 130
, Trophon, 130
Gondwanula, 129
gracilis, Alvania, 119
, ${ }^{2}$ Merelina, 119
gracillima, Syrnola, 125
". Teleochilus, 138
granarium, Cacozeliana, 122 Cerithium, 122
grandinosa, Ringicula, 139 Ringuculadda, 139
grandis, Austrosipho, 132
" Fusus, 132
granifera, Notosinister, 123
" Triphora, 123
granosa, Cancellaria, 134
, Scala, 124
" Sydaphera, 134
" Turritella, 124
granostriatus, Acanthochites, 110
; Acanthochiton, 110
granulata, Ectorisma, 148
granulosa, Dendrodoris, 141
" Onchidella, 142
granulosissimus, Clathurella, 136 Guraleus, 136
grata, Dosinia, 151
grossularia, Drupa, 130
gruneri, Euninella, 117
Turbo, 117
gunni, Gazameda, 121
, Turritella, 121
Guraleus, 136
Haliotidae, 111
Haliotis, 111, 115
halli, Marginella, 135
hamiltoni, Haurakia, 119
Haminea, 139
Haminoea, 139
Hanleya, 109
hanleyi, Bedeva, 130
, Trophon, 130
harpularia, Antimelatoma, 136
, Pleurotoma, 136
harriettae, Cyclostrema, 115
, Elachorbis, 115
harrisoni, Cemori, 112
" Leucotina, 125
", Syrnola, 125
" Vacerra, 112
Haurakia, 119
hedleyi, Calliostoma, 114
,, Epidirona, 135
" Liotia, 116
" Munditia, 116
", Nucula, 143
", Pronucula, 143
,, Sepia, 156
helcina, Spiratella, 140
Helcioniscus, 113
helicornua, Scala, 124 Limascala, 124
helmsi, Erycina, 150
". Melliteryx, 150
Hemidonax, 153
Hemipleurotoma, 135
Hemitoma, 112
Herpetopoma, 115
hesitata, Cypraea, 128
" Umbilia, 128
Heterocithara, 137
Heterorissoa, 120
Heterozona, 108
Hiatella, 154
Hiatellidae, 154
hiatula, Macrochisma, 112
hilum, Fillodrillia, 137
". Mangelia, 137
Hinia, 118
Hipponicacea, 126
Hipponicidae, 126
Hipponix, 126
hirsutus, Brachyodontes, 146
, Mytilus, 146
Histioteuthidae, 155
hofmani, Retusa, 139
" Tornatina, 139
" Turbonilla, 125
homalon, Cyclostrema, 116
, Elachorbis, 116
hulliana, Merelina, 119
, Rissoa, 119
Humphreyia, 147
hungaricus, Capulus, 126
huttoni, Pellax, 117
, Teretriphora, 123
Hyalaea, 140
Hyalina, 135
hydatis, Haminoea, 139
Hypocassis, 128
Hypotrochus, 122
Ianthina, 124
Ianthinidae, 124
icarus, Cacozeliana, 122
" Cerithium, 122
icterica, Lucina, 150
, Wallucina, 150
illibrata, Asteracmea, 113 Helcioniscus, 113
imbrex, Lironoba, 119
" Rissoa, 119
imbrica, Alaba, 123
" Diala, 123
Imbricaria, 134
imbricata, Stomatella, 115 ,, Venericardia, 149
immaculata, Eulima, 124 Stilifer, 124
immaculatus, Inquisitor, 136 Mangelia, 136
immersa, Crepidula, 127
,, Zeacrypta, 127
impactus, Modiolaria, 146
,, Musculus, 146
impertusa, Gena, 115
, Haliotis, 115
improbulum, Haliotis, 111
inca, Rissoina, 120
incei, Natica, 127
Uber, 127
incerta, Calliostoma, 114
" Mangilia, 136
", Mitrathara, 136
", Zizyphinus, 114
incidata, Estea, 118 Sabanaea, 118
inconspicua, Euterebra, 138 " Marginella, 135
" Terebra, 138
inconstans, Modiolus, 146 " Volsella, 146
incrustus, Drillia, 136 , Guraleus, 136
Incuncula, 126
inflata, Atlanta, 140
" Eulima, 124
" Mantellum, 145
" Spiratella, 140
innotabilis, Notosinister, 123
Triphora, 123
Inquisitor, 135
inscripta, Cyclostrema, 115
," Zalipais, 115
insculpta, Mangelia, 137
,, Marita, 137
insculptum, Cerithium, 122 Eubittium, 122
insignis, Cingulina, 126
" Nototodarus, 155
integra, Benthoquetia, 151
Turquetia, 151
interrupta, Linemera, 119
invalida, Scala, 124
ione, Monia, 145
iravadoides, Estea, 118
Rissoa, 118
iredalei, Aloidis, 154
," Corbula, 154
", Cryptoplax, 110
" Gazameda, 121
iridescens, Venerupis, 152
iris, Cantharidus, 113
irisodontes, Phasianotrochus, 113
Trochus, 113
Ischnochiton, 108, 109
Ischnochitonidae, 108
Ischnoradsia, 109
Isodonta, 145
ischna, Epigrus, 120
Isoplacophora, 109
Isotriphora, 122
jacksoni, Rissoa, 120
, Scrobs, 120
jacksonensis, Mactra, 1.54
Mysia, 150
", Nannomactra, 154
" Numella, 150
". Wallucina, 150
jacksoniana, Kellia, 150 , Marikellia, 150
janjucensis, Estea, 118
Rissoa, 118
Janthina, 124
japonicus, Aesopus, 131
javanicensis, Amblychilepas, 112
Fissurella, 112
Jeffreysia, 120
Joculator, 122
johnstoni, Brookula, 115
" Cyclostrema, 115
, Marginella, 135
jonasi, Buccinum, 132 Parcinossa, 132
jonesiana, Odontostomia, 125
" Syrnola, 125
josephi, Charisma, 116
, Cyclostrema, 116
joshuana, Leiostraca, 124
, Strombiformis, 124
jugosa, Anthochiton, 111
" Chiton, 111
jukesianum, Scala, 124
Scalaria, 124
Juliidae, 146
juloides, Stenochiton, 109
kampyla, Cymatona, 128
Nassarius, 128
Katelysia, 152
Kellia, 146, 148, 150, 151
kenyoniana, Psammobia, 153
Tellina, 153
keppelliana, Myochama, 147
kershawi, Estea, 118
, Rissoina, 118
kesteveni, Bellastrea, 117
kieneri, Pervicacia, 138
Terebra, 138
kilcundae, Cyclostrema, 116
," Leiostraca, 124
" Liotella, 116
, Strombiformis, 124
kimberi, Acanthochites, 110
" Acanthochiton, 110
" Adeorbis, 120
, Kimberia, 121
, Naricava, 120
Kimberia, 121
kingii, Cytherea, 152
" Paradione, 152
kingensis, Daphnella, 137
Marita, 137
kingicola, Crassatella, 148
Eucrassatella, 148
kirkií, Architeuthis, 155
Kopionella, 110
kymatoessa, Etrema, 137
" Pleurotoma, 137
labiata, Cassidea, 128
, Cautor, 123
", Crossea, 116
" Dolicrossea, 116
" Triphoris, 123
,, Xenogalea, 128
Lachryma, 128
lachryma, Lachryma, 128
lactea, Cancellaria, 134
" Mysella, 151
," Rochfortia, 151
", Sydaphera, 134
,, Turbonilla, 125
lacteola, Codakia, 150
" Drillia, 137
" Fillodrillia, 137
," Lucina, 150
laevigata, Haliotis, 111
,, Marginella, 135

Laevilitorina, 118
laevis, Odostomia, 125
lagopus, Tawera, 152
" Venus, 152
lallemantianus, Euguraleus, 136
, Pleurotoma, 136
Lamellaria, 128
Lamellariacea, 128
Lamellariidae, 128
lamellosa, Clathurella, 137
, Nepotilla, 137
lancea, Dolicholathyrus, 132
lanceata, Acuminia, 138
lanceolata, Poroleda, 143
Larina, 118
Larinopsis, 118
larvaeformis, Cryptoplax, 110
Laternula, 146
Laternulacea, 146
Laternulidae, 146
laticostata, Cellana, 112
Patella, 112
latistrigata, Patella, 112 Patelloida, 112
lauta, Diala, 123
lawleyanum, Bittium, 122
Eubittium, 122
layardi, Lironoba, 119
Rissoa, 119
Leda, 143
Ledella, 143
Ledidae, 143
legrandi, Aspertilla, 137
" Austromitra, 133
" Calliostoma, 114
" Columbella, 131
", Drillia, 137
, Fossarina, 114
" Macrozafra, 131
, Zizyphinus, 114
Legrandina, 151
Leiopyrga, 114
Leiostraca, 124
lehmanni, Gibbula, 114
" Turbo, 114
lentiginosa, Chiton, 109
Ischnochiton, 109
Lepetellidae, 117
lepida, Bornia, 150
, Borniola, 150
Lepidochitonidae, 110
Lepidopleuridae, 108
Lepidopleurus, 108
leporina, Tethys, 141
Lepsiella, 130
Lepton, 150
Leptothyra, 116
lesueuri, Atlanta, 140
" Cymatiella, 129
lesueuri, Spiratella, 140
letourneuxianus, Euguraleus, 136
Pleurotoma, 136
leuca, T"̈eretriphora, 123
" Trifora, 123
Leuconopsis, 141
Leucosyrinx, 137
Leucotina, 125
leucozona, Belloliva, 133
Olivella, 133
liddelliana, Haurakia, 119
Rissoa, 119
Lima, 145
Limascala, 124
limata, Arctosepia, 156
Limatula, 145
limbatus, Clanculus, 113 , Trochus, 113
Limidae, 145
Limopsidae, 143
Limopsis, 143
lincolnensis, Columbella, 131
" Eximothracia, 147
" Thracia, 147
", Zemitrella, 131
Linemera, 119
lineolaris, Cantharidus, 114 Leiopyrga, 114
lineolata, Buccinum, 132
, Cominella, 132
lineolatus, Chiton, 109
, Ischnochiton, 109
lineus, Modiola, 146
" Modiolus, 146
lingulata, Vulsella, 144
lintea, Rissoina, 120
Liotella, 116
Liotia, 116
Liotiidae, 115
Liotina, 116
Lippistes, 126
Lippistidae, 126
liratus, Lepidopleurus, 108
" Terenochiton, 108
Lironoba, 119
Lissarca, 143
Lissotesta, 115
lissum, Zalipais, 115
Lithodomus, 146
Litiopidae, 123
Litozamia, 130
Litorina, 118
Littorina, 118
Littorinacea, 117
Littorinidae, 117
livida, Psammobia, 153
lividus, Scaeochlamys, 145
Livonia, 134
Lobiger, 139
lodderae, Stilifer, 125
, Strombiformis, 124
Lodderia, 116
lodderae, Lodderia, 116
, Liotia, 116
Loliginidae, 156
Loligo, 156
loligo, Loligo, 156
longicymba, Chiton, 109 Stenochiton, 109
longirostris, Cavolinia, 140 , Hyalaea, 140
Lophyrus, 109
Lorica, 110
Loricella, 110
Loripes, 150
Lottiidae, 112
lubricatum, Dentalium, 142
lucida, Callomphala, 115
" Neritula, 115
Lucina, 149, 150
Lucinacea, 149
lucinalis, Naranio, 153
,, Petricola, 153
Lucinidae, 149
lumbricalis, Vermicularia, 121
lumbricatum, Dentalium, 142
lurida, Macrozafra, 131
," Pyrene, 131
lutea, Philippia, 121
,, Solarium, 121
Lutraria, 154
lutraria, Exomilus, 137
Lutraria, 154
lygdinus, Austroclavus, 136
Melatoma, 136
lymneiformis, Daphnella, 137
Lyria, 134
maccoyi, Eusetia, 119
, \quad Rissoa, 119
Macoma, 153
Macrochisma, 112
Macrozafra, 131
Macteola, 137
Mactra, 153, 154
Mactracea, 153
Mactridae, 153
mactroides, Cyamiomactra, 148 Cyamium, 148
maculatus, Pleurobranchiduim, 141
, Pleurobranchus, 141
Maculotriton, 129
maculosa, Cautor, 123
, Triphora, 123
Magilinea, 121
magna, Cingulina, 126
" Diala, 123
magnifica, Cymbiola, 134
, Voluta, 134
magus, Gibbula, 114
Malleus, 144
mamilla, Livonia, 134
" Voluta, 134
mammilla, Uber, 127
mammillata, Notosinister, 123
Triphora, 123
manifesta, Syrnola, 125
Mangelia, 131, 136, 137, 138
Mangilia, 131, 136, 137
Mantellum, 145
maorum Antimelatoma, 136
Margarita, 114
margaritacea, Neotrigonia, 144
, Trigonia, 144
margaritifera, Meleagrina, 144
Pinctada, 144
marginatus, Solen, 153
Marginella, 134
Marginellidae, 134
mariae, Laevilitorima, 118
,, Macoma, 153
, \quad Rissoa, 118
" Tellina, 153
, Turbonilla, 125
Marikellia, 150
Marinula, 141
Marita, 136
marmorata, Alloiodoris, 141
" Cerithiopsis, 122
, Notoseila, 122
martyr, Dannevigena, 124
, Scala, 124
Mathilda, 121
Mathilidae, 121
matthewsi, Acanthochites, 110
, Bassethullia, 110
, Kopionella, 110
,, Plaxiphora, 110
matthewsianus, Lepidopleurus, 108
Terenochiton, 108
maugeri, Clanculus, 113
Trochus, 113
mawlei, Callistassecla, 109
, Callistochiton, 109
maxima, Austrosipho, 132
, Siphonalia, 132
mayana, Liotia, 116
, Liotina, 116
Mayena, 129
mayi, Acutoplax, 110
" Callochiton, 110
, Cyclostrema, 120
,, Fenestrosyrinx, 135
," Hemipleurotoma, 135
" Lucina, 149
,, Notoacmae, 113
mayi, Notomyrtaea, 149
,, Orbitestella, 120
mayii, Odostomia, 125
melaena, Dendrodoris, 141
Melanella, 124
melanochroma, Dardanula, 119 Rissoa, 119
melanostoma, Bembicium, 118
„ Trochus, 118
melanotragus, Nerita, 117
Melaraphe, 118
melastoma, Natica, 127
Uber, 127
Melatoma, 136
Meleagrina, 144
Melliteryx, 150
menkeana, Columbella, 131
,, Psammobia, 153
" Zemitrella, 131
merces, Ellatrivia, 128
Trivia, 128
meredithiae, Guraleus, 136
, Mangelia, 136
Merelina, 119
Meretricinae, 152
meridionalis, Alexia, 141
, Callistelasma, 109
" Callistochiton, 109
,, Marinula, 141
Merria, 128
Mesodesma, 154
Mesoplacophora, 108
messanensis, Ledella, 143
metcalfei, Odostomia, 125
,, Vexitomina, 135
Meturoplax, 109
micans, Cyclostrema, 116
," Nucula, 143
,, Pronucula, 143
,, Pseudoliotia, 116
micra, Cyclostrema, 115
" Leucotina, 125
", Lissotesta, 115.
, Turbonilla, 125
Micrastraea, 117
Microcolus, 132
microcosta, Estea, 118
Microdiscula, 116
Micromytilus, 144
microscopica, Cirsonella, 115
" Cyclostrema, 115
, Kimberia, 121
" Nepotilla, 138
, Taranis, 138
, Turritella, 121
micrum, Crassatella, 148
Salaputium, 148
midae, Haliotis, 111
migratoria, Notocochlis, 127
miliacea, Leda, 143
, Ledella, 143
miltostoma, Columbella, 131 " Pseudamycla, 131
Mimachlamys, 145
mimica, Daphnella, 138 Nepotilla, 138
minima, Codakia, 150
, Liotia, 116
", Lodderia, 116
,, Lucina, 150
minuta, Drillia, 138
, Nepotilla, 138
minutissima, Cocculinella, 117
minutulum, Coenaculum, 120
Scalaria, 120
mira, Rapana, 130
miranda, Calliteuthis, 155
mitis, Venerupis, 152
Mitra, 133, 134
mitraeformis, Lyria, 134
Voluta, 134
mitralis, Bela, 137
,, Marita, 137
Mitramorpha, 131
Mitrathara, 136
Mitridae, 133
Mitroidea, 134
mixta, Chiazarmae, 112
, Patella, 112
modesta, Clathurella, 138
" Eximiothracia, 147
, Pseudodaphnella, 138
, Thracia, 147
Modiola, 146
Modiolaria, 146
Modiolus, 145
modiolus, Modiolus, 145
monachus, Cerithium, 122 ,, Hypotrochus, 122
Monia, 145
monile, Alba, 123
, Diala, 123
Monilea, 116
monilifera, Ancillaria, 133
., Baryspira, 133
moniliformis, Eulimella, 126
Monitilora, 150
Monodonta, 113, 115
Monoptygma, 125
monoxyla, Zeacrypta, 127
monstrosa, Claudiconcha, 152
Montacuta, 151
Montacutidae, 151
Montfortula, 111
morchi, Scala, 124
morologus, Guraleus, 136
morsei, Euprymna, 156
mucronata, Eulima, 124

Mucrosquama, 111
Munditia, 116
munieriana, Nassa, 132
,, Tavanoitha, 132'
muratensis, Notosetia, 119
Murex, 129, 130, 132
Murexsel, 130
Muricacea, 129
Muricidae, 129
murrayi, Escalima, 145
" Lima, 145
muscaria, Marginella, 135
Musculus, 146
mustelina, Hyalina, 135
Marginella, 135
mutabile, Nassarius, 132
Myacea, 154
Myadora, 147
Myochama, 147
Myochamidae, 147
myodoroides, Eximiothracia, 147
Thracia, 147
Mylitta, 151
Myrina, 144
Mysella, 151
Mysia, 150
Mysticoncha, 128
Mytilacea, 145
Mytilicardia,
Mytilidae, 145
Mytilus, 145, 146
Naccula, 113
Nacella, 113
Nannomactra, 154
Nanula, 114,
nanum, Bembicium, 118
" Trochus, 118
Naranio, 152, 153
Naricava, 120
Nassa, 132
Nassariidae, 132
Nassarius, 129, 132
nassoides, Etrema, 137
," Pleurotoma, 137
Natica, 127
Naticacea, 127
Naticidae, 127
naticoides, Crossea, 116
Crosseola, 116
Nautilus, 155
navalis, Teredo, 155
Neaera, 148
Negyrina, 129
nenia, Austrodrillia, 136
" Drillia, 136
Neogaimardia, 146
Neolepton, 151
Neotrigonia, 144
neozelandica, Notosetia, 119
nepeanensis, Brookula, 115
Gabrielona, 117
Phasianella, 117
Scala, 115
Nepotilla, 137
Nerita, 117
Neritacea, 117
Neritidae, 117
neritoides, Melaraphe, 118
Neritula, 115
Nevia, 134
nigra, Atrina, 144
,, Gena, 115
nigrita, Fissurella, 112
Sophismalepas, 112
nigrofusca, Teretriphora, 123
Triphora, 123
nigrosulcata, Patella, 112 Patelloida, 112
nimbifer, Austrolima, 145
Lima, 145
Ninella, 117
niphonensis, Leucotina, 125
Niotha, 132
nitens, Ianthina, 124
, Montacuta, 151
", Notosetia, 119
", Setia, 119
nitida, Amphidesma, 1.54
Mesodesma, 154
nitidum, Propesinum, 127
Sigaretus, 127
nitidissima, Aclis, 126
nitidulis, Phasianotrochus, 113
Trochus, 113
nivea, Rissoina, 120
nobile, Calliostoma, 114 Trochus, 114
Nodilittorina, 118
nodosa, Argonauta, 156
Rapana, 130
nodulosus, Nodilittorina, 118
norfolkensis, Aplysia, 141
Tethys, 141
Notaspidea, 140
Notoacmea, 113
Notochlamys, 145
Notocochlis, 127
Notocorbula, 154
Notocrater, 117
Notocypraea, 128
Notomyrtea, 149
Notomytilus, 144
Notoplax, 110
Notoseila, 122
Notosetia, 119
Notosinister, 123
Notospisula, 154

Nototeredo, 155
Nototodarus, 155
Notovola, 145
novaecambrica, Neolepton, 151
novaehollandiae, Colus, 132
Fusus, 132
Sepia, 156
novae-zelandiae, Notovola, 145
Sigapetalla, 127
nubeculata, Columbella, 131
, Zemitrella, 131
nucleus, Lyria, 134
Nucula, 143
Nuculacea, 143
Nuculidae, 143
Nudibranchia, 140
nugatoria, Odontostomia, 125
Odostomia, 125
Numella, 150
nux, Columbella, 131
," Zemitrella, 131
nympha, Cupidoliva, 133
,, Marginella, 135
" Olivella, 133
obeliscus, Estea, 118
Rissoa, 118
obesa, Venerupis, 152
obliqua, Cautor, 123
,, Ennucula, 143
", Nucula, 143
oblonga, Ancillaria, 133
" Baryspira, 133
" Fissurella, 112
" Sophismalepas, 112
obsoleta, Leuconopsis, 141
obturamentum, Pholas, 155
obtusa, Austrocochlea, 114 Trochus, 114
occultidens, Odostomia, 125
ochroleucus, Clanculus, 113
Trochus, 113
octogonus, Murexsel, 130
octona, Leiopyrga, 114
Octopoda, 156
Octopodidae, 156
Octopus, 156
oculata, Teretileda, 143
odontis, Austrocochlea, 114 Trochus, 114
Odontostomia, 125
Odostomia, 125, 126
Oegopsida, 155
Offadesma, 146
officinalis, Sepia, 156
oligostira, Austrosipho, 132
Siphonalia, 132
Oliva, 133
olivacea, Alvania, 118
, Dardanula, 119
, \quad Estea, 118
Olivella, 133
Olividae, 133
omicron, Amblychilepas, 112
Fissurella, 112
omissa, Cavatidens, 149
Ommastrephes, 155
Ommastrephidae, 155
Onchidella, 142
Onchidiidae, 142
Onchidina, 142
Onchidium, 142
Onoba, 119
Ophicardelus, 141
ophione, Lamellaria, 128
Opimilda, 121
Opisthobranchia, 138
Opisthoteuthis, 156
optata, Tavaniotha, 132
opulenta, Glyptozaria, 121
" Turritella, 121
orbicularis, Codakia, 150
orbita, Buccinum, 130 Dicathais, 130
Orbitestella, 120
Orbitestellidae, 120
orientalis, Lima, 145
Mantellum, 145
ornatus, Auricula, 141 Ophicardelus, 141
orthopleura, Eulima, 124
orukta, Anthochiton, 111
, Chiton, 111
Oscilla, 126
Ostracea, 144
Ostrea, 144
Ostreidae, 144
ovalina, Paradione, 152
ovata, Condylocardia, 149
ovatum, Lepton, 150
ovulum, Cadulus, 142
," Marginella, 135
pachyphylla, Bassina, 152
Venus, 152
pagodula, Alaba, 123
" Diala, 123
paivae, Bedeva, 130 Trophon, 130
Palaeoconcha, 142
paliestris, Pyrazus, 122
pallens, Stenochiton, 109
pallida, Carditella, 149
Octopus, 156
pallidulus, Aesopus, 131
Mitromorpha, 131
Pandora, 147
Pandoridae, 147
pandoriformis, Anatina, 147
, Myadora, 147
Panopea, 154
papillosa, Ericusa, 134
" Voluta, 134
Parachiton, 108
Paradione, 152
Parcanassa, 132
pardalis, Belloliva, 133
Oliva, 133
Paricoplax, 110
parkesiana, Electromactra, 154
parkinsonia, Austrocassia, 129 , Septa, 129
Parthenia, 126
particeps, Arcularia, 132
,, Nassarius, 132
particula, Cuna, 148
,, Salticuna, 148
parva, Naccula, 113
, Nacella, 113
" Notospisula, 154
", Gnathodon, 154
parviconoidea, Conarmea, 113
Parviconus, 138
Parviterebra, 138
parvus, Pugnus, 138
Patella, 112, 113, 127
Patellacea, 112
Patellanax, 112
Patellidae, 112
Patelliformia, 142
Patelloida, 112, 113
patelloides, Onchidella, 142
Onchidium, 142
patula, Fossarina, 114
paucirugus, Cassis, 129
Xenogalea, 129
paucivolvis, Parviterebra, 138
pauloconvexum, Ectrosinum, 127
paulucciae, Crenella, 146
" Musculus, 146
paupera, Lucina, 150
," Monitilora, 150
, Nassa, 132
,, Reticunassa, 132
pauperata, Buccinum, 132
, Parcanassa, 132
Pecten, 145
Pectinacea, 145
pectinata, Carditella, 149
" Condylocardita, 149
, Neotrigonia, 144
,, Philobrya, 144
Pectinebranchia, 117
Pectinidae, 145
Pectunculus, 143, 144
Peculator, 133
pelagica, Scyllaea, 141

Pelecypoda, 142
Pellax, 117
Pellilitorina, 117
pellucida, Aclis, 126
" Auricula, 141
" Leuconopsis, 141
, Mitra, 134
" Mitroidea, 134
", Notosetia, 119
,, Rissoa, 119
peloronta, Nerita, 117
pepita, Marinula, 141
Pepta, 134
perexigua, Rissoa, 124 „ Stromiformis, 124
perforans, Venerupis, 152
perillustris, Chlamys, 145
Mimachlamys, 145
Periploma, 146
Periplomidae, 146
Pernidae, 144
perobliqua, Codakia, 150
" Lucina, 150
peroni, Patella, 112
" Patellanax, 112
peronii, Chione, 152
, Katelysia, 152
," Pleurobranchus, 141
perplexa, Cavatidens, 149
persephone, Opisthoteuthis, 156
, Teuthidiscus, 156
personatus, Clanculus, 113
Trochus, 113
perspicua, Lamellaria, 128
pertranslucida, Notosetia, 119
Rissoa, 119
Pervicacia, 138
petalifera, Liotia, 116
Liotella, 116
Petricola, 153
Petricolidae, 152
petterdi, Ancillaria, 133
," Baryspira, 133
" Benthoxystus, 130
", Eulima, 124
" Fossarina, 114
" Melanella, 124
" Odostomia, 125
" Rissoa, 120
" Scrobs, 120
" Stilifer, 125
,, Trophon, 130
pfeifferi, Notosinister, 123
,, Triphoris, 123
pharaonius, Clanculus, 113
Phasianella, 114, 117
Phasianotrochus, 113
Phenacolepas, 117
Phenacolepadidae, 117

Philine, 140
Philinidae, 140
philipineri, Epidirona, 135
Pleurotoma, 135
philippensis, Spectamen, 114
" Trochus, 114
" Typhis, 130
philippi, Lobiger, 139
Philippia, 121
philippinensis, Pseudodaphnella, 138
Phillippiella, 144
phillippinarum, Scala, 124
Philobrya, 144
Philobryidae, 144
Pholadidae, 155
Pholas, 155
Phos, 132
Phragmorisma, 147
pica, Mitra, 133
," Proximitra, 133
picta, Diala, 123
pictum, Propesinum, 127 Sigaretus, 127
pictus, Guraleus, 136
,, Mangelia, 136
picturata, Cantharidella, 114
pileopsis, Notoacmae, 113
pilbryanus, Ischnochiton, 109
Stenochiton, 109
pilsbryi, Acanthochites, 110
Acanthochiton, 110
Pinctada, 144
Pinna, 144
pinnatus, Pterynotus, 129
Pinnidae, 144
piperata, Cypraea, 128
, Notocypraea, 128
pisaniopsis, Antizafra, 131
Pisania, 129
pistachia, Arca, 143
pisum, Marginella, 135
Placamen, 152
placidus, Placamen, 152
" Venus, 152
Planaxidae, 118
planilirata, Cuna, 148
planulatus, Mytilus, 145
planum, Bembicium, 118
" Trochus, 118
platycerus, Dentalium, 142
platypleura, Scala, 124
Platypoda, 117
Plaxiphora, 110
Plaxiphoridae, 110
Plebidonax, 153
plebjus, Clanculus, 113
,, Trochus, 113
Pleurobranchaeidae, 141
Pleurobranchidium, 141

Pleurobranchus, 141
Pleurocoela, 138
Pleurotoma, 135, 136, 137, 138
plexa, Antizafra, 131
" Columbella, 131
plicata, Odostomia, 125
plumbeum, Natica, 127 ,, Uber, 127
plurisulcatus, Aesopus, 131
Columbella, 131
pluto, Teuthidiscus, 156
polypleura, Liotella, 116
Poneroplax, 110
porcellana, Cyclostrema, 115 , Lissotesta, 115
Poroleda, 143
Poromyacea, 148
Poromyidae, 148
porphyria, Imbricaria, 134
" Oliva, 133
, Peculator, 134
porrecta, Condylocardia, 149
portseaensis, Turbonilla, 126
Potamides, 122
Pratulum, 151
praetermissa, Littorina, 118
Melaraphe, 118
preissiana, Gibbula, 114
Trochus, 114
Priodesmacea, 142
problematica, Cyamiomactra, 148
Marginella, 135
producta, Macrochisma, 112
proficua, Semele, 153
profundior, Euchelus, 115
, Herpetopoma, 115
profundus, Lepidopleurus, 108
Parachiton, 108
projecta, Condylocardia, 149
proles, Mitrathara, 136
Pronucula, 143
Propefusus, 132
Propeleda, 143
Propesinum, 127
Prothyasira, 150
protumida, Cylichna, 139 ,, Cylichnina, 139
Proximitra, 133
Psammobia, 153
Psammobiidae, 153
Pseudamycla, 131
Pseudarcopagia, 153
Pseudodaphnella, 138
Pseudoliotia, 116
Pseudorissoina, 126
Ptenoglossa, 123
Pteriacea, 144
Pteriidae, 144

Pteropoda, 140
Pterynotus, 129
Pugillaria, 142
Pugnus, 138
pulchella, Marginella, 135
pulchellum, Cardium, 151
pulcherrimus, Cantharidus, 113 Trochus, 113
pulchra, Alaba, 123
" Diala, 123
", Schismope, 111
pulex, Modiola, 146
„, Modiolus, 146
pulla, Columbella, 131
, Zemitrella, 131
Pulmonata, 141
pumilio, Austromitra, 133
" Euchelus, 115
" Herpetopoma, 115
", Marginella, 135
, Vexillum, 133
Puncturella, 112
pura, Ischnochiton, 109
,, Mactra, 154
Purpura, 130, 137
purpuraeformis, Cancellaria, 134 , Sydaphera, 134
purpureostoma, Notosetia, 119
pusilla, Mactra, 154
,, Nannomactra, 154
pustulata, Doris, 141
, Staurodoris, 141
pygmaea, Bulla, 139
, Cylichnina, 139
pygmaeoides, Marginella, 135
pyramidata, Clio, 140 , Estea, 118 , Scrobs, 118
Pyramidellidae, 125
Pryazus, 122
Pyrene, 131
Pyrenidae, 131
pyrrhus, Buccinum, 132
" Niotha, 132
Pyrula, 132
pyrulatus, Fusus, 132
, Propefusus, 132
pyrum, Cassis, 129
,, Xenogalea, 128, 129
Pythina, 151
Quantonatica, 127
quoyi, Cymatiella, 129
, Epidirona, 135
" Pleurotoma, 135
", Triton, 129
quoyiana, Merria, 128 " Vanicoro, 128

Rachiglossa, 129
racketti, Cardium, 151
radians, Glycymeris, 143
Pectunculus, 143
radulaeformis, Pleurotoma, 135 , Vexitomina, 135
Radulphus, 138
ramburi, Cantharidus, 113
, Trochus, 113
ramsayi, Monitilora, 150
Ranella, 129
Rapana, 130
Ratifusus, 129
Raulinia, 126
recens, Acroperna, 146
Solamen, 146
recta, Fillodrillia, 137
,, Leucosyrinx, 137
, Styliola, 140
recurvatus, Benthoxystus, 130
Trophon, 130
regina, Cautor, 123
, Triphora, 123
regularis, Cythera, 152
, Paradione, 152
remifer, Nototeredo, 155
remoensis, Columbella, 131 , Macrozafra, 131
remota, Scissurona, 111
renovata, Sydaphera, 134
resplendens, Ischnochiton, 109
reticulata, Lepsiella, 130
, Pisania, 129
" Purpura, 130
," Ratifusus, 129
Reticunassa, 132
Retizafra, 131
retrocurvata, Austromitra, 133
Mitra, 133
retrojecta, Acanthochites, 109
, Meturoplax, 109
retroversa, Spiratella, 140
Retusa, 139
Retusidae, 139
reversa, Calliteuthis, 155
rex, Decorisepia, 156
Sepia, 156
,, Solamen, 146
Rhipidoglassa, 113
rhodia, Mitra, 133
rhomboidalis, Lissarca, 143
rhyllensis, Cingulina, 126
, Modiolaria, 146
, Musculus, 146
, Rissoina, 120
rhynchaena, Lutraria, 154
Rhyssoplax, 110
Ricinula, 130
ridiculus, Joculator, 122

Ringicula, 139
Ringiculadda, 139
Ringiculidae, 139
Rissoa, 115, 118, 119, 120, 124
Rissoacea, 118
Rissoidae, 118
Rissoina, 118, 120, 125
Rissoinidae, 120
Rissolina, 120
Rissopsis, 119
roadnightae, Livonia, 134 Voluta, 134
roblini, Austrosipho, 132
Rochfortia, 151
rosea, Argalista, 116
" Eutropia, 117
,, Monilea, 116
" Pellax, 117
" Scissurona, 111
rosenthali, Bankia, 155
rosettae, Mitra, 133
Rossia, 156
rostellata, Kellia, 146
Neogaimardia, 146
rostrata, Bulla, 139
Volvulella, 139
rostratus, Brachyodontes, 146
, Mytilus, 146
rosulenta, Cardita, 149
, Venericardia, 149
rotunda, Erycina, 150
, Marikellia, 150
royana, Stiva, 120
royanus, Fluctiger, 152
, Radulphus, 138
" Teleochilus, 138
ruber, Haliotis, 111
, Notomytilus, 144
, Philippiella, 144
rubicunda, Charonia, 129
, Estea, 118
,, Rissoa, 118
" Septa, 129
rubiginosa, Austromitra, 133
, Naranio, 152
" Velargilla, 152
rubra, Kellia, 150
rubraurantiaca, Cellana, 112 " Patella, 112
rubricata, Limopsis, 143
Lissarca, 143
rubrofusca, Lissarca, 143
rudolphi, Litozamia, 130
rufa, Acutoplax, 110
, Callistochiton, 110
rufescens, Mactra, 154
rugosa, Emarginula, 111, 112
, Montfortula, 112
" Patelloida, 112
runcinata, Colospira, 121
Turritella, 121
rutidolomum, Proximitra, 133
rutilus, Conus, 138
" Elenchus, 113
", Parviconus, 138
", Phasianotrochus, 113
Sabanaea, 118, 119
Sabia, 126
sagittata, Natica, 127
Notocochlis, 127
Salaputium, 148
salebrosa, Rissoa, 118
Subestea, 118
Salinator, 142
Saltocuna, 148
sanctipauli, Condylocardia, 149
sanguineum, Kellia, 151
Neolepton, 151
sarcinula, Bathytoma, 138
Benthofascis, 138
sarissa, Zaclys, 122
sauvis, Inquisitor, 136
,, Pleurotoma, 136
saxea, Austrodrillia, 136
Drillia, 136
Saxicava, 147, 154
Saxostrea, 144
scabrilirata, Acmae, 113
Notoacmae, 113
scabriuscula, Euchelus, 115 Herpetopoma, 115
Scaeoleda, 143
Scaeochlamys, 145
Scala, 115, 123, 124
Scalaria, 120, 124
scalariformis, Austromitra, 133
Mitra, 133
scalarina, Chione, 152
Katelysia, 152
Scalaris, 123, 124
scalaris, Scala, 123
Scalidae, 123
scalpidens, Odostomia, 126
, Turbonilla, 126
scapha, Acroperna, 146
Exosiperna, 146
Scaphandridae, 139
Scaphopoda, 142
Schismope, 111
Schizodonta, 144
Schizotrochus, 111
schomburghki, Austromitra, 133
Mitra, 133
schoutanica, Epideira, 135 Drillia, 135
Lironoba, 119
Marginella, 135
schoutanica, Natica, 127
Notocochlis, 127
", Rissoa, 119
schoutenensis, Mangilia, 137
Marita, 137
scillae, Eulimella, 126
Scissurella, 111
Scissurellidae, 111
Scissurona, 111
scitula, Astelena, 114
, Zizyphinus, 114
scobina, Lepsiella, 130
Scrinium, 136
Scrobs, 118, 120
sculpta, Bullinella, 139
, Cylichnina, 139
sculptilis, Asperdaphne, 137 , Clathurella, 137
scutum, Calyptraea, 127
,, Zeacrypta, 127
Scutus, 111
Scutellina, 117
Scyllaea, 141
Scyllaeidae, 141
secunda, Heterorissoa, 120
segravei, Conus, 138
, Floroconus, 138
Seila, 122
Seilarex, 122
Semelangulus, 153
Semele, 153
Semelidae, 153
semiconvexa, Buccinum, 131
Zemitrella, 131
semigranosum, Antephalium, 128
Cassis, 128
semilaévis, Bittium, 122
Zaclys, 122
seminodosa, Subestea, 118
semiradiata, Montacuta, 151
semisculpta, Ringiculadda, 139
semisculpa, Ringicula, 139
senticosus, Murex, 132
Phos, 132
Sepia, 156
sepiacea, Sepioteuthis, 156
Sepiidae, 156
sepioidae, Sepioteuthis, 156
Sepiolidae, 156
Sepioteuthis, 156
Septa, 129
septiformis, Notoaemae, 113
Patelloida, 113
serotinum, Ataxocerithium, 122
, Cerithium, 122
Serpula, 121
serpuliformis, Magilinea, 121
serpuloides, Skenella, 116
sertata, Purpura, 130
, Tolema, 130
Setia, 119
setosa, Pellilitorina, 117
" Philobrya, 144
shorehami, Cochlis, 127 , Marginella, 135
, Natica, 127
Sigapatella, 127
Sigaretus, 127
Siliquaria, 121
simillima, Notosetia, 119 Rissoa, 119
simplex, Enatimene, 130
, Odostomia, 125
,, Trophon, 130
simsoni, Marginella, 135
sinicum, Umbraculum, 140
sinuata, Colospira, 121
, Ostrea, 144
" Turritella, 121
sinuosum, Antephalium, 128
, Cassidea, 128
sipho, Serpula, 121
," Siphonaria, 142
", Vermicularia, 121
Siphonalia, 132
Siphonaria, 142
Siphonariidae, 142
Siphonodentaliidae, 142
Sirius, 127
sirius, Bellastrea, 117
,, Turbo, 117
Skenella, 116
smaragdina, Electroma, 144
smaragdinus, Ischnochiton, 109
Lophyrus, 109
smithi, Columbella, 131
Macrozafra, 131
smithiae, Ianthina, 124
smithiana, Colospira, 121
,, Turritella, 121
smithsii, Enoploteuthis, 155
Solamen, 146
Solariidae, 121
Solarium, 121
Solemya, 142
Solemyidae, 142
Solen, 153
Solenacea, 153
Solenidae, 153
Soletellina, 153
solida, Amphibola, 142
,, Marikellia, 150
, Salinator, 142
soluta, Akera, 139
, Bulla, 139
Sophismalepas, 112
sordidus, Glycymeris, 143
Pectunculus, 143
sowerbyi, Ericusa, 134
Voluta, 134
spadix, Inquisitor, 136
Pleurotoma, 136
spathula, Poroleda, 143
speciosa, Cryptoplax, 110
, Eximiothracia, 147
" Notoplax, 110
, Thracia, 147
speciosus, Galfridus, 130
Triton, 130
spectabilis, Xenogalea, 129
Spectamen, 114
Specula, 122
spengleri, Cymatilesta, 129
Septa, 129
sphaericula, Cyrenella, 150
Zemysia, 150
spiceri, Dolicholathyrus, 132
Fusus, 132
spina, Cingulina, 126
, Notosinister, 123
" Triphora, 123
" Turritella, 126
spirata, Cancellaria, 134
" Nevia, 134
, \quad Rissoa, 120
" Rissoina, 120
Spiratella, 140
Spiratellidae, 140
Spirula, 155
spirula, Nautilus, 155
, Spirula, 155
Spirulidae, 155
spissa, Tawera, 152
Spisula, 154
Splendrillia, 136
splengleri, Cymatilesta, 128
,, Septa, 128
Spondylidac, 145
Spondylus, 145
spongiarum, Vulsella, 144
spretus, Cadulus, 142
squamifera, Patella, 112
Patellanax, 112
squamosa, Arca, 143
squamosum, Lepton, 150
stadialis, Austromitra, 133
" Cassidea, 129
" Mitra, 133
" Xenogalea, 129
stanislas, Marginella, 135
Staurodoris, 141
steira, Fillidrillia, 137
Stenochiton, 109
Stenoglossa, 129
sterrha, Inquisitor, 135
stibarochila, Brookula, 115
Stilifer, 124, 125, 126
Stiliferidae, 125
stilla, Marginella, 135
Stiva, 120
stolata, Aloidis, 154
, Notocorbula, 154
Stomatella, 115
Stomatellidae, 115
Stomatiidae, 115
stowae, Asteracmae, 113
, Nacella, 113
" Pugillaria, 142
" Siphonaria, 142
strangei, Aspergillum, 147
, Cancilla, 134
" Haurakia, 119
", Humphreyia, 147
" Lima, 145
" Limatula, 145
, Marginella, 135
", Mitra, 134
, \quad Rissoa, 119
Strebloceras, 121
Streptoneura, 111
striata, Chitonellus, 110
" Cryptoplax, 110
" Epidiera, 135
striatula, Schismope, 111
striatularis, Glycymeris, 144 Pectunculus, 144
stricta, Admete, 134 Pepta, 134
strigosa, Chione, 152
Katelysia, 152
striolata, Ianthina, 124
Strombidae, 128
Strombidiacea, 128
Strombiformidae, 124
Strombiformis, 124
Strombus, 128
stultorum, Mactra, 153
styliformis, Leiostraca, 124
" Specula, 122
", Strombiformis, 124
Styliola, 140
Styloptygma, 125
subabnormis, Macrozafra, 131
subalata, Eximothracia, 147
Saxicava, 147
subalbida, Myadora, 147
subannulatum, Strebleceras, 121
subauriculata, Limatula, 145 Marginella, 135
subbulbosa, Marginella, 135
subcarinatum, Astele, 114
subcarinata, Zeacumantus, 121
subcostata, Natica, 127
" Quantonatica, 127
subdilutus, Semelangulus, 153
" Tellina, 153
subdistorta, Negyrina, 129
, Triton, 129
subemarginata, Emarginula, 112
Hemitoma, 112
Subestea, 118
subfusca, Estea, 118
Rissoa, 118
sublata, Terebra, 138
sublateralis, Diplodonta, 150
" Zemysia, 150
submarmorata, Acmaea, 112
Patelloida, 112
Subninella, 116
subquadrata, Liotia, 116
Munditia, 116
subradiata, Carditella, 149
" Condylocardia, 149
subroseus, Acteon, 138
subsquamosa, Gazemeda, 121
Turritella, 121
substriata, Montacuta, 151
Subterenochiton, 108
subtropicalis, Terenochiton, 108
subula, Cleodora, 140
, Styliola, 140
subulata, Eulima, 124
subviridis, Antimelatoma, 136
" Drillia, 136
„ Ischnochiton, 109
sueurii, Acanthochiton, 110
Chiton, 110
sulcata, Aloidis, 154
" Cancilla, 134
", Cardita, 148
" Zemitrella, 131
sulcatus, Brachyodontes, 146
sulcatulum, Neolepton, 151
Sunemeroe, 152
Sunetta, 152
superba, Emarginula, 111
superciliosus, Octopus, 156
supracostata, Haurakia, 119
suprasculpta, Alvania, 119

$$
\begin{array}{ll}
" & \text { Linemeria, 119 } \\
" & \text { Odostomia, 125 } \\
" & \text { Rissoina, 125 }
\end{array}
$$

suteri, Lironoba, 119
sueurii, Acanthochiton, 110 Chiton, 110
Sydaphera, 134
syringianus, Cyphonochelus, 130
"la, 125 Typhis, 130

Syrnola, 125
tabidus, Fax, 132
Phos, 132
Taenioglossa, 117

Talbrica, 148
Tapes, 152
Taranis, 138
tasmaniae, Macrochisma, 112
tasmanica, Acmaea, 117
" Akera, 139
" Anatina, 146
" Ancillaria, 133
" Asperdaphne, 137
" Atrina, 144
" Baryspira, 133
", Cithara, 136
" Cuspidaria, 148
" Daphnella, 137
" Estea, 118
" Euchelus, 115
" Euguraleus, 136
" Eulima, 118
" Euprymna, 156
, Gastrochaena, 154
" Gibbula, 114
" Gouldia, 150
, Herpetopoma, 115
, Isotriphora, 122
" Laternula, 146
", Liotia, 116
" Margarita, 114
", Marginella, 135
", Modiolaria, 146
,, Munditia, 116
" Mylitta, 151
" Nanula, 114
" Natica, 127
,, Neaera, 148
" Neogaimardia, 146
,, Notocrater, 117
" Oscilla, 126
," Parthenia, 126
, Pinna, 144
, Pseudorissoina, 126
" Pythina, 151
,, Siphonaria, 142
, \quad Stilifer, 126
" Triforis, 122
, Uber, 127
, Verticordia, 148
" Zemysia, 150
tasmaniensis, Dentalium, 142
tasmanicus, Euchelus, 115
" Euguraleus, 136
, Herpetopoma, 115
Tasmeuthria, 132
tateanus, Ischnochiton, 109
tatei, Austromitra, 133
" Codakia, 150
" Elachorbis, 115
", Lucina, 150
, Mitra, 133
Tavaniotha, 132

Tawera, 152
Taxodonta, 143
Teleochilus, 138
Teleodesmacea, 148
Teleodonta, 151
Teleoplacophora, 110
telescopialis, Drillia, 137
Tellina, 153
Tellinacea, 153
Tellinidae, 153
tenellus, Spondylus, 145
tenera, Bulla, 139
" Haminoea, 139
" Macoma, 153
tenisoni, Eulima, 124
, Limopsis, 143
Tenogodus, 121
tenuicostatus, Glycymeris, 144
Pectunculus, 144
tenuiliratus, Semelangulus, 153
Tellina, 153
tenuis, Cylichna, 139
Cylichnella, 139
tenuispiralis, Austroclavus, 136
tenuissima, Bulla, 139
Bullaria, 139
terebelloides, Notoseila, 122
Terebra, 131, 138
Terebridae, 138
Teredo, 155
Teredidae, 155
Terenochiton, 108
Teretileda, 143
Teretriphora, 123
testudinea, Cominella, 131
Tethyidae, 141
Tethys, 141
Teuthidiscus, 156
textiliosa, Dicathais, 130
," Purpura, 130
textilis, Ischnochiton, 108
textum, Phos, 132
Thaididae, 130
Thalotia, 113
Thecosomata, 140
thetidis, Amusium, 145
" Cardium, 151
" Ctenamusium, 145
" Pratulum, 151
thomasi, Ischnochiton, 109
thomsoni, Cassis, 129
, Xenogalea, 129
Thracia, 147
Thracidora, 147
Thraciidae, 147
Thraciopsis, 147
Thyasira, 150
Thyasiridae, 150

Thylocodes, 121
tiara, Turbonilla, 126
tiberiana, Cantharidella, 114
tiberianus, Trochus, 114
tigrina, Aplysia, 141
", Armina, 141
," Tethys, 141
tincta, Pleurotoma, 138
, Pseudodaphnella, 138
" Syrnola, 125
Tolema, 130
topaziaca, Eulima, 124
Strombiformis, 124
torcularis, Incuncula, 126
tornatilis, Acteon, 138
Tornatina, 139
Tornidae, 120
torquata, Ninella, 117
Turbo, 117
torri, Ischnochiton, 109
Torvamurex, 129
Toxoglossa, 135
trachea, Caecum, 121
trachys, Mangelia, 138
Pseudodaphnella, 138
tramoserica, Cellana, 112 Patella, 112
translucida, Cirsonella, 115
, Diala, 123
" Scala, 124
trapezia, Anadara, 143
tricarinata, Drillia, 137
Fillodrillia, 137
Trichotropis, 126
tricostalis, Anthochiton, 111
Chiton, 111
tricostata, Hemitoma, 112
tridentata, Cavolinia, 140 Marginella, 135
Trifora, 123
Triforis, 122
triformis, Murex, 130
Pterynotus, 130
trigonale, Lepton, 150
Trigonia, 144
Trigonicea, 144
Trigoniidae, 144
Triphora, 122, 123
Triphoridae, 122
Triphoris, 123
Triplex, 129
triquetra, Anapella, 154
, Mesodesma, 154
triseriata, Daphnella, 138
Nepotilla, 138
trispinosa, Diacria, 140
Hyalaea, 140
Triton, 129, 130
Tritonidea, 129
tritonis, Charonia, 129
tritoniformis, Agnewia, 130
" Purpura, 130
Trivia, 128
Triviidae, 128
Trochacea, 113
Trochidae, 113
Trochus, 113, 114, 117, 118, 127
Trophon, 130
Truncaria, 131
truncatula, Retusa, 139
tryoni, Eulima, 124
tryphenensis, Munditia, 116
tubifer, Typhis, 130
tuberculata, Archidoris, 141
, Litorina, 118
, Nodilittorina, 118
Tugalia, 111
tulipa, Anthochiton, 110
Fasciolaria, 132
tumida, Diala, 118
" Estea, 118
, Gondwanula, 129
turbinata, Larina, 118
" Larinopsis, 118
, Marginella, 135
Turbinidae, 116
Turbonilla, 125
turbonilloides, Bittium, 122 , Specula, 122
Turbo, 115, 116, 117
Turquetia, 151
Turridae, 135
turrita, Aclis, 126
, Eulimella, 126
Turritella, 121, 124, 126
Turritellidae, 121
turritelliformis, Bittium, 122
Seilarex, 122
Typhis, 130
typica, Agnewia, 130
" Edenttellina, 146
Uber, 127
ulmus, Musculus, 146
Umbilia, 128
umbilicata, Cylichnina, 139
umbilicatum, Natica, 127
," Propesinum, 127
umbilicatus, Murex, 130
Murexsel, 130
Umboniidae, 114
Umbrella, 140
Umbraculidae, 140
Umbraculum, 140
undatus, Clanculus, 113
, Monodonta, 113
undulata, Amorena, 134
", Cancellaria, 134
undulata, Subninella, 116
,, Sydaphera, 134
" Turbo, 116
, Voluta, 134
undulatus, Propefusus, 132
Pyrula, 132
undulosa, Gomphina, 152
Venus, 152
Ungulinidae, 150
unifasciata, Littorina, 118
Melaraphe, 118
ustulata, Pervicacia, 138
Terebra, 138
Utriculus, 139

Vacerra, 112
vaginoides, Solen, 153
vanhoffeni, Microdiscula, 116
Vanicoro, 128
varia, Archidoris, 141
" Diala, 123
,, Doris, 141
variabilis, Craspedoplax, 109
, Hanleya, 109
", Phasianella, 117
," Rissoa, 120
", Rissoina, 120
variegata, Phasianella, 117
,, Rissoa, 120
" Rissoina, 120
variolatus, Octopus, 156
varix, Daphnella, 136
Guraleus, 136
Velacumantus, 122
Velargilla, 152
Veneracea, 151
Venericardia, 149
Veneridae, 151
Venerinae, 152
Venerupis, 152
ventricosa, Phasianella, 117
Venus, 152
vercoi, Cyclostrema, 116
,, Liotella, 116
verconis, Chiton, 111
Mucrosquama, 111
," Peculator, 133
Vermicularia, 121
Vermetidae, 121
verrucosa, Cymatiella, 129
, Staurodoris, 141
" Triton, 129
versicolor, Chiton, 109
Ischnochiton, 109
versivestita, Asperdaphne, 137
Verticordia, 148
verticordia, Verticordia, 148
Verticordiidae, 148
vestalis, Asperdaphne, 137
Daphnella, 137
Vexillum, 133
vexillum, Gondwanula, 129
," Modiolus, 146
," Ranella, 129
Vexitomina, 135
victoriae, Dosinia, 151
, Eulima, 124
", Marginella, 135
Modiola, 146
Modiolus, 146
Odostomia, 125
Pseudarcopagia, 153
Tellina, 153
Zenetia, 154
victoriana, Patellanax, 112
Vimentum, 149
vinosa, Buccinum, 130
, Lepsiella, 130
vincentiana, Adeorbis, 120
,, Mitra, 133
," Naricava, 120
vincentianus, Cadulus, 142
vincentensis, Carditella, 149 ,, Marikellia, 150
vincentinus, Guraleus, 136
Pleurotoma, 136
vincta, Columbella, 131
Zemitrella, 131
violacea, Ianthina, 124
violaceus, Capulus, 126
virgata, Tellina, 153
virgatus, Chiton, 109
Ischnochiton, 109
virgula, Creseis, 140
, Dentalium, 142
virgulata, Siphonaria, 142
virilis, Deltachion, 153
vittatus, Strombus, 128
Volsella, 146
Volupicuna, 148
Voluta, 134
Volutacea, 133
Volutidae, 134
Volutomitra, 133
volvox, Aulocochiton, 110
Volvulella, 139
vulgaris, Malleus, 144
Octopus, 156
Vulsella, 144
Vulsellidae, 144
waitei, Austrosipho, 132
, Fusus, 132
walcotae, Asperdaphne, 137 Drillia, 137
Wallucina, 150
waterhousei, Cymatilesta, 129
Triton, 129
watsoni, Phragmorisma, 147
Thracia, 147
weldii, Cirsonella, 115
Cyclostrema, 115
" Siliquaria, 121
" Sirquaria, 121
whani, Marginella, 135
wilfredi, Heterorissoa, 120
Jeffreysia, 120
wilsoneneis, Lironoba, 119 Rissoa, 119
wilsoni, Acanthochites, 110
Acanthochiton, 110
", Ischnochiton, 109
" Lamellaria, 128
" Lobiger, 139
,, Mysticoncha, 128
woodsi, Drillia, 136
" Splendrillia, 136
xanthostoma, Marinula, 141
Xenogalea, 128
yatei, Callanaitis, 152
yatesi, Typhis, 130
Zaclys, 122
Zalipais, 115
Zeacrypta, 127
Zeacumantus, 121
zebra, Amorena, 134
Voluta, 134
zelandica, Monia, 145
Zemysia, 150
Zelippistes, 126
Zella, 131
Zemira, 133
Zemiridae, 133
Zemitrella, 131
Zemysia, 150
Zenatia, 154
Zeugobranchia, 111
zietze, Calliostoma, 114
Zizyphinus, 114
zodiacus, Incuncula, 126
Lippistes, 126
zonale, Cryptosoma, 127
, Ectosinum, 127
zosterophila, Estea, 118

TWO NEW BRACHIOPOD GENERA FROM DEVONIAN ROCKS IN VICTORIA

By Edmund D. Gill, B.A., B.D., Palaeontologist, National Museum of Victoria.

(Received for publication October 10, 1949.)

Summary

Notoconchidium and Notoleptaena, new brachiopod genera, are described from Lower Devonian strata in Victoria. New species are Notoconchidium thomasi, Notoleptaena linguifera, and Notoleptaena otophera. As known at present, the former genus belongs to a sandy facies, while the latter has speeies in both sandy and muddy facies. The adaptation of these forms to their respective environments is discussed.

Introduction

While describing fossils of Upper Silurian and Lower Devonian age collected by Dr. D. E. Thomas from' the Heatheote district of Victoria (Thomas 1937), the writer encountered unusual brachiopods which are now presented as new genera, viz., Notoconchidium and Notoleptaena. Search in other collections showed that the latter genus also occurs elsewhere in the State. The basement rocks of the Heathcote district consist of Cambrian, Ordovician, Silurian, and Devonian sediments. The Silurian and Devonian beds, on the whole, are of inshore or Rhenish facies, sandstones predominating. The sequence is of interest in that (1) it spans the Silurian-Devonian boundary, and (2) the Devonian rocks contain a fauna of inshore or Rhenish facies, contrasting with the contemporary offshore or Bohemian facies described from Lilydale and Killara (Gill 1939-1949).

Notoconchidium and Notoleptaena both appear in typical sandy facies horizons. The former is limited to the Heathcote area, as far as is known at present, but the latter has been found also in the Lilydale and Killara districts of Victoria. Different species of Notoleptaena occur in the two facies, and it is instructive to note the special features which suited these contemporancous forms to their respective ecological settings.

Family PENTAMERIDAE McCoy NOTOCONCHIDIUM gen. nov.

Genotype Notoconchidium thomasi, gen. et sp. nov.
Diagnosis. Multicostellate, rectimarginate, pentamerid brachiopods, in which both valves are of more or less equal convexity;
there is an angular deflection of the lateral margins of the dorsal valve, and often also of those of the ventral valve. The septal plates of the dorsal valve diverge slightly, then converge, and laterally to them thick callists develop with age. In the ventral valve a small spondylium is present and a median septum one quarter to one half of the valve in length. In adult shells, small tooth-like processes develop on the spondylial plates.

Taxonomy. The new genus is a typical pentamerid, allied to Conchidium in its external appearance, in having a spondylium and median septum in the ventral valve, and in the triple set of plates in the dorsal valve. On the other hand, the converging septal plates and lateral callists of the dorsal valve are conspicuous and taxonomically important variations from the genus Conchidium as at present understood. The dorsal steinkerns with their projecting septal areas are a conspicuous feature in the field, where these fossils occur in great numbers.

Etymology. The name of the genus is derived from the Greek word notos $=$ south (to denote its description from Australia), and the name of the closely allied genus Conchidium.

> Notoconchidium thomasi, gen. et sp. nov. Pl. I, Figs. 1-15.

Conchidium knightii Chapman 1913, pp. 105-106, Pl. XI, fig. 11.
Type Materlal. 1. Holotype, consisting of the steinkern of a dorsal valve preserved in light greyish quartzitic sandstone stained in places with ferruginous infiltrations (M.D.V.* 46315), from locality F52, Parish of Redcastle (see maps published by Mines Department), i.e., in the Mt. Ida Beds.
2. Paratype, consisting of the steinkern of a ventral valve in a mottled (light grey and maroon) quartzitic sandstone (M.D.V. 39094) from loc. 61), Parish of Dargile, also in the Mt. Ida Beds.
3. Hypotypes, consisting of two dorsal valves which show progressive thickening of the internal structures: (a) external mould (M.D.V. 46289A) and steinkern (46289B) preserved in brownish quartzitic sandstone; and (b) steinkern preserved in light greyish quartzitic sandstone (M.D.V. 46293). Two ventral valve steinkerns (M.D.V. 46252,46284$)$ are also included to illustrate growth stages. All hypotypes are from loc. F52, Parish of Redcastle, i.e., in the Mt. Ida Beds.

[^2]Descriptions. 1. Holotype. Dorsal valve sub-triangular, strongly convex, the median longitudinal profile rising about 7 m.m. above the plane joining the anterior and posterior margins. Length in plan, i.e., not following the profile, 2.1 cm .; maximum width, 1.7 cm . Hingeline narrow. Beak obtuse. Anterior commissure rectimarginate. Shell very thick in posterior region. Lateral margins of the shell deflected at right angles, and the resultant flange is costate. Umbo comparatively smooth, but rest of shell multicostate, there being 9 costae per cm . at the anterior margin.

Septal plates diverge slightly at first, then converge; they reach 1.6 cm . down the length of the shell, i.e., three-quarters of the length. The septal plates are thickest in the middle. The spaces between the septa and the lateral walls of the valve are filled with callists some 3 mm . thick. At the posterior end of the shell there is a bulbous swelling on each side of the central septa; at the posterior end of each swelling there is a ridge which is interpreted as a brachial support.

There is a low median septum between the septal plates, but it is not very well preserved in the holotype. Specimens in which this structure is well preserved show that it gradually gets deeper and wider posteriorly.
2. Paratype. Ventral valve strongly convex, the median longitudinal profile rising 7 mm . above the plane joining the anterior and posterior margins. The valve is evenly arched transversely, the lateral margins not being deflected at right angles as in the holotype dorsal valve. Length in plan 2.5 cm ., and maximum width about 1.7 cm . Outline sub-triangular, but the lateral margins are not distinct in this specimen. Spondylium small, narrow, being 1 mm . wide at greatest breadth and 5 mm . long (outside measurements).

A narrow median septum extending anteriorly from the spondylium reaches 12.5 mm . along the profile of the valve, or 10 mm . in flat measurement. Specimens M.D.V. 46284 and 39222 show that the septum becomes higher in the middle; in the latter it is 4 mm . high. The costae commence fine and thin on the umbo, and gradually increase in size anteriorly, no intercalations or bifurcations being observed. This means that the young shell has quite a different appearance from that of the adult shell as far as ornamentation is concerned.
3. Hypotypes. Full description of the two dorsal valves is not necessary, they being included to illustrate growth stages. In specimen M.D.V. 46289B the septal plates are comparatively
thin and there are no callists. In the steinkern, the central part between the septa is on the same level as the impression of the shell floor. In M.D.V. 46293, however, the septa are thicker, and the callists have just begun to form. This stage is intermediate between that of the foregoing hypotype and that seen in the holotype. The three specimens are all about the same size, but there is a great difference in the character of the septa, and the degree of formation of callists. Specimen M.D.V. 46289A shows the nature of the external ornament.

On the specimen numbered M.D.V. 46252 there are the steinkerns of three ventral valves which provide three stages in the thickening of the internal plates, but the one chosen, for illustration is marked with a black circle. The spondylial plates are thickened, and the median septum, instead of being a fine plate as in the paratype, is posteriorly 1.5 mm . thick at its base, and 1.5 cm . long. Specimen M.D.V. 46284 is the steinkern of a gerontic ventral valve showing an extreme of thickening of the spondylial and septal plates, and also markings on the ovarian areas consisting of elongate pustules. Two small teeth-like projections are present on the spondylial plates near where they unite with the median septum. They are apparently only developed to a recognizable degree in the older shells.

Comment. Chapman (1913) described a damaged steinkern of a dorsal valve (N.M.V. 12407) of this species as a ventral valve of Conchidium knightii, interpreting the septal plates as parts of a spondylium.

Notoconchidium thomasi is an index fossil in the Mt. Ida Beds, and was so used by Thomas (1937) to define the "Pentamerus (Conchidium) Beds."
The new species is a typical Conchidium in so far that it has a strongly multicostate exterior, strongly biconvex valves, and a thick shell in the posterior region, but it contrasts with the genotype of that genus (vide Schuchert and Cooper 1932) in that-

1. The septal plates of the dorsal valve are not simply divergent as in Conchidium; they diverge then converge. It was this characteristic which caused Chapman to interpret them as part of a spondylium.
2. The postero-lateral callists of the dorsal valve are so strongly developed as to give a characteristic appearance to the steinkerns.
3. The spondylium is very short.
4. The valves are more or less equally convex.
5. The angular deflection of the laterar margins of the dorsal valve is a notable feature, being present even in comparatively young specimens. The younger ventral valves are arched fairly evenly in cross-section, but a degree of deflection is developed in older specimens.
Palaeofology. The heavy shells and costate surface are features characteristic of inshore (Rhenish) facies brachiopods. The extra weight and the friction of the costae with the sediments helped to hold them in place on the sea floor in an area where water currents were rife. The thick quartzitic sandstones in which the fossils are found are formed from sediments likewise characteristic of that facies. The shells contrast with those of Conchidium polymitum recently described from an offshore (Bohemian) facies of Lower Devonian rocks in another part of Victoria (Gill 1949e). The nature and extent of the 'Iasman Geosyncline, in which these strata were laid down, have recently been discussed (Brown 1942, Gill 1949d).

Notoconchidium thomasi was a very successful brachiopod, judging by its prolific occurrence in the specimens of rock sent for examination.

Family RAFINESQUINIDAE Caster NOTOLEPTAENA gen. nov.

Diagnosis. Convexi-concave rafinesquid brachiopods with valves geniculated anteriorly and laterally, the dorsal valve being the more strongly geniculated. Ventral valve with tongue on anterior margin, and dorsal valve with accommodating recess. Ornamentation radially multistriate with concentric wrinkles on both the posterior and the geniculated parts of the valves. Ventral valve with high, smooth palintrope, while that of the dorsal valve is linear. Ventral and dorsal muscle fields of leptaenid type, with associated marginal ridges. Large bilobed cardinal process.

The new genus is readily recognized by the presence of the tongue (die Zunge of the German literature).

Taxonomy. Although Notoleptaena has the cardinalia, museulature, "ornamentation" and other features like those in Leptaena, it is convexi-concave and not concavo-convex like Leptaena. If Schuchert's (1913) classification of the Strophomenacea, which made the form of the valves rather fundamental, be followed closely, then the convexi-concavity of the new genus is a matter of some taxonomic importance. But there is some doubt as to whether this feature is taxonomically quite so fundamental. For instance, Caster (1939, p. 26) writes: "It appears after a rather
careful study of the better part of the entire group as developed in the Western Hemisphere that, in this stock at least, the character of resupination is not so important as former classifications would imply. Schuchert and LeVene, 1929, for example, dissociated the strophonellids from the stropheodontids mainly on resupination, it would seem, and referred the former to the Orthotetinae, with which they seem to show, omitting reversed convexity, no major classifactory correlation. It seems to express relationship much better to place both groups in a common family and recognize the resupination as principally a subfamily, or even less significant characteristic in this stock. In the stropheodontids Douvillina and Douvillinella, the latter being resupinate, the character is apparently not of more than generic value."

Secondly, the tongue is a feature of taxonomic interest. This character appeared in a number of different evolutionary lines of Palaeozoic brachiopoda, and this frequent appearance and continuance must surely be evidence of its biological worth. It is further discussed in the section on palaeoecology. Notoleptaena is founded as a new genus largely, although not completely, on the presence of this tongue.

Etymology. The name of the new genus is compounded from the Greek word notos $=$ south, and the well-known, generic name Leptaena. The latter element is included because Notoleptaena shares so many features with Leptaena, and the former word is to indicate its connection with Australia. It is considered better than the prefix austral, since this term has been used for a palaeogeographical province, which does not include Australia.

The trivial name of the genotype is intended to draw attention to the biocharacter which is taxonomically important and probably was biologically important-the tongue (Latin lingua $=$ tongue , fero $=$ I carry $)$.

Notoleptaena linguifera, gen. et sp. nov. Pl. I, Figs. 16-23.

Material. 1. Holotype, consisting of the steinkern of a ventral valve in whitish or light-greyish sandstone with tinges of ferruginous stain (M.D.V. 39470) from locality 3, Parish of Dargile, in the Mt. Ida Beds (Pleurodictyum Beds). Pl. I, figs. 16-17.
2. Paratype, consisting of the steinkern of a dorsal valve (M.D.V. 39477) in the same matrix and from the same locality. Pl. I, figs. 20-21.
3. Hypotypes as follows: (a) External mould and steinkern (M.D.V. 39480A and 39480B respectively) of a ventral valve to
show the nature of the "ornamentation." Only the former is figured (Pl. I, fig. 18). Same locality and matrix. (b) Steinkerns of two dorsal valves (M.D.V. 39469B) from the same locality and in the same matrix to show cardinalia and muscle field (Pl. I, figs. 19, 22-23).

Descriptions. 1. Holotype. Ventral valve large, sub-quadrate in outline, measuring 3.4 cm . wide and 2.5 cm . long. Hingeline straight; palintrope smooth (as far as can be judged from the impression in the sandstone matrix) and a little over 1 mm . high in the middle as preserved, but this is not the full height, part having broken away. Another specimen of about the same size and on the same slab indicates that the palintrope would be about 2 mm . high when complete, narrowing towards the cardinal extremities. The plane of the palintrope makes an angle of about 45° (judged by eye only) with the plane of the valve. Projections of the hingeline and lateral margins of the valve would make right angles, but the actual cardinal extremities are well rounded.

The anterior margin possesses a tongue which is at right angles to the postero-central part of the valve. The lateral margins are deflected ventrally, i.e., the opposite direction from that of the tongue.

On the interior of the valve the lateral margins are differentiated by a border half a centimetre wide which is delimited on the inner edge by a strong ridge or diaphragm such as has often been described for the ubiquitous "Leptaena rhomboidalis." From the cardinal angles, the lateral margins begin to rise slowly in a ventral direction, then at about 1.3 cm . from the hingeline they rise suddenly so that in about half a centimetre the differentiated border stands at right angles to the general plane of the valve. At the front, the border is deflected dorsally to follow round the margin of the tongue.

The muscle field is of the typical leptaenid type, being deeply excavated, flabellate, and surrounded by a high and sharp ridge. Posteriorly this ridge merges with the teeth bases, but becomes less defined before doing so. The field is 1.3 cm . long and the same wide, including the ridges. The outline is broadly V-shaped posteriorly and rounded anteriorly. The umbo is well defined but not pronounced. On each side of it are the teeth, which are strong, divergent, and with bases of triangular outline.

A median septum divides the muscle field. About a third of its length from the umbo, the septum suddenly thickens, then thins out comparatively slowly towards the anterior margin of the field. This specialization in the septum was no doubt connected with
the attachment of the adductor muscles. Where the septum crosses the ridge bounding the muscle field, there is a localized thickening. The septum continues less strongly towards the anterior end of the valve, fading out where the valve is geniculated. This continuation of the median septum beyond the muscle field does not appear in all specimens, and is probably a gerontic feature.

Faint traces of the radial striae and concentric rugae of the exterior surface show on the steinkern.
2. Paratype. Dorsal valve 3.6 cm . wide and 2 cm . long; the geniculated part of the valve is about 1.4 cm . deep. The nature of the recess for the tongue in the anterior margin is shown by Pl. I, fig. 20; it is about 1.5 cm . wide. There is a differentiated lateral border marked by a ridge ory diaphragm as in the ventral valve, but it is not quite complete in this specimen (M.D.V. 39477).

The musculature is of the leptaenid type. The muscle field is surrounded by a callosity consisting of a low broad ridge and not of a sharp ridge as in the ventral valve. The adductor muscle seats are excavated, though not as deeply as the diductors of the ventral valve. Anterior to these are two smaller scars. The median septum widens posteriorly to merge with the cardinalia. While in the field of the large adductors, the septum is relatively broad, but anterior to that it is narrow; it extends anteriorly as far as the point of geniculation.

Traces of the radiating striae and concentric rugae of the exterior surface appear in the steinkern both on the posterior part of the valve and on the geniculated part.
3. Hypotype (a). An external mould (M.D.V. 39480A), which has a counterpart steinkern (M.D.V. 39480B), is presented as a hypotype to demonstrate the nature of the prosopon. This is not well preserved owing to the coarse arenaceous type of matrix. However, there are radially disposed striae occurring 30-40 per cm ., of rounded cross-section, and with interspaces of approximately the same width as the striae. Concentric rugae of low elevation occur both on the near-planate part of the valve and on the geniculated part.

The mould also reveals a slight flexure of the shell, consisting of a median fold with a faint sinus on each side. There is evidence of a corresponding flexure in the dorsal valve.

Yet another feature shown by this holotype is multitudinous minute pillars of secondary mineral, indicating the pseudopunctate character of the shell.
4. Hypotype (b). This is presented to show the nature of the cardinalia (M.D.V. 39469B). The median septum merges

LEPTAENA

VENTRAL VALVE THICKER

CONVEX

DORSALLY DEFLECTED
MARGIN

NOTOLEPTAENA

NOTOLEPTAENA

FIG. 1.
Diagrams showing nature and relationships of valves. (a) Ventral valve of Leptaena. (b) Ventral valve of Notoleptaena. (c) Ventral and dorsal valves together in Notoleptaena.
posteriorly into a large crural platform. Antero-lateral extensions thereof form an angle of about 90°, and outline the posterior edges of the sub-flabellate adductor scars. The large cardinal process is also merged with the crural platform, and it possesses two big prongs which jut ventrally more or less at right angles to the plane of the platform, and are very close together. The cardinal process extends a little beyond the hingeline. The palintrope is linear. Dental sockets occur on each side of the crural' platform, and are of such size and shape as to accommodate the triangular teeth of the ventral valve.

The steinkern provides evidence of a low median sinus or flexure; this is to be seen also in specimen M.D.V. 39474.

On the same piece of rock as the hypotype just described is another dorsal valve in the form of a steinkern. It is a gerontic specimen with a recess for a large tongue, and with a high degree of secondary calcification of the diaphragm. The differentiated border is strongly developed. The external mould of this valve can be seen on specimen M.D.V. 39469A.

Palakoecology. 1. Relationship of Valves to each other. In Notoleptaena the dorsal valve is the deep one, and the ventral the shallow one, a character in which it contrasts with Leptaena. The dorsal valve in Leptaena is like a lid to the ventral box, but the opposite is the case in Notoleptaena (contrast b and c in fig. I).

Moreover, the ventral valve is geniculated dorsally in Leptaena, but ventrally in Notoleptaena (leaving the tongue out of consideration, since this is a special structure). Thus instead of deflecting to meet the opposing valve, the edges of the ventral valve in the new genus turn towards the sea-floor. The edges therefore tend to lift the anterior part of the valve above the level of the sea-floor. It is said "tend," because the degree to which this elevation is effected will depend on the degree to which the edges sink into the sea-floor. In Leptaena the heavier valve is underneath, but in Notoleptaena the heavier valve is on top. This is assuming that the shells of both genera rested on their ventral valves.
2. Relationship of Shell to Sea-floor. Leptaena rhomboidalis was presumably so named because of its rhomboidal outline. Being without a functional pedicle (Arber 1939, 1940), the shell lived on the mud or sand of the sea-floor. The rugae would help hold the shell in position, as also would the rhomboidal outline of the shell. Lamont (1934, p. 167) observes: "If we take L. rhomboidalis, we find that the concentric folds on the ventral valve are most pronounced at points immediately behind the line of
geniculation. In this position no doubt they would help to maintain the stability of the shell on a muddy or sandy sea-floor. When the centre of gravity of the organism was changed and weight added posteriorly by the raising of the upper valve, these corrugations would be a means of preventing the ventral valve from sliding forward and sinking along the hinge-line. Such sinking, if it took place, might have allowed the ingress of foreign particles at the posterior angles. In some of the less transverse forms of L. rhomboidalis the rugae are particularly strong on the lateral parts of the shell. The writer correlates this with the fact that the more equi-dimensional shells would have a greater tendency to upset in a sideways fashion. From this argument it will be seen that, while rugae on the lower valve serve primarily to maintain stability, the final explanation lies in the principle of the exclusion of foreign material."

Notoleptaena linguifera shared with Leptaena the advantages of rhomboid outline and rugose shell, only the latter feature was more extensive in Notoleptaena, the rugae appearing on the geniculated parts of the valves as well as on the non-geniculated areas.

When the valves of a strophomenoid shell were parted to admit water for respiration and nourishment, they were in contact at the hingeline whence the valves were parted in progressively greater measure to the anterior margin, where the maximum gape occurred. It was important to protect the animal from foreign bodies, and the greatest danger from these was along the anterior margin where the gape was greatest. If the margin could be lifted from contact with the sea-floor, there was less danger because clearer water was drawn in. This was attained in various ways which may be grouped in two categories:
(a) Means of attachment, e.g., pedicle, cementation, spines (Gill 1949d);
(b) Means of elevation from sea-floor, e.g., thickening of a valve (Richthofenia), shape of the valves.
In the last group come Leptaena and Notoleptaenc. The former achieved elevation of the anterior margin by geniculation of the ventral valve. The latter genus achieved the same end, to a less extent probably, by the ventrally directed flanges of the ventral valve.

It is assumed in the foregoing discussion that these brachiopods had their ventral valves on the sea-floor, but this is not necessarily so. Lamont (1934, p. 180) claims that "the Strophomenacea in general had the convex valve downwards; this is true of Sower-
byella, Leptelloidea, Leptaena, Rafinesquina, Stropheodonta, Christiania, Chonetes, etc., but Strophomena and Schuchertella rested upon the convex dorsal valve." However, even if Notoleptaena lived resting on its dorsal valve, the anterior margin would still be clevated above the sea-floor because of the strongly geniculate nature of the dorsal valve. But it should be lemembered that the presence of the tongue in the anterior margin of Notoleptuenc had the effect of lifting most of it above the sea-floor. This, combined with the effect of the downward turned ventral margins, leaves no need to postulate that Notoleptaena lived the other way from that of Leptaena.
3. The Tongue. A characteristic difference between Leptaena and Notoleptacua, and apparently a biologically significant one, is the presence of a tomgu in the latter. Specimens of Leptaena have been described which have not a straight or evenly rounded anterior margin. For instance, Davidson (1865, Pl. XV) figures specimens of L. Thomboidalis with one (fig. 45) or more (fig. 46) shallow sinuses in the anterior margin. Other specimens, like the one figured in Zittel (1913, p. 384), show a slight fold.

It should be noted that a tongue is a different structure from the median fold and simus, although the two are commonly associated. For example, some species of C'honetes (Gill 1945b) have median folds, but no tongue. Conversely, the tongue may be present but no fold and sinus structure, as Dr. Herta Schmidt (1937) has pointed out in her study of the morphogeny of the Rhynchonellidae. Dr. Schmidt also comments that the tongue structure is not yet fully understood. She says that the ecological significance of the tongue structure is clear in that in many cases the edge aperture is thereby increased in length. In a shell so equipped, a smaller gape will admit the same amount of water in unit time as a wider gape in a rectimarginate shell. The smaller gape will exclude foreign bodies which the wider gape would admit.

But as Schmidt indicates, this advantage does not accrue to the forms which have a tongue with sides at right angles to the general valve margin-in which class Notoleptaena falls. In such cases, the tongue slides up and down the sinus like a sleeve valve, so that when the shell valves part there is no aperture along the sides of tongue. The aperture then consists of three separated sections-the two lateral parts, and that at the tip of the tongue. The total length of these three secions is approximately the same as that of a shell without a tongue, i.e., rectimarginate. Schmidt therefore correctly infers that if there is an ecological significance in the tongue structure, it probably lies in its tripartite division
of the shell aperture. She suggests that incurrent streams flowed through the side openings and an excurrent stream through the middle opening, or vice ver's. By such regulation, the streams are made stronger, and so the supply of food and oxygen enriched. The function of the tongue structure is thus somewhat analagous with that of the siphons in lamellibranchs. Where fold and sinus are present, they would support the function of the tongue structure as a stream regulator.

It appears to the writer that there is some ecological significance in the great length of the tongue as seen in Notoleptacna. Once a tongue is formed in such a way as to establish stream regulation, why should it be elongated until, as in Notoleptaena (Pl. I, fig. 26) it is over a centimetre long, i.e., more than half the length of the flat part of the valve? One would expect to find some ceological significance in the elongated tongues, since they appear and are maintained in different evolutionary lines. I suggest that there was a biological advantage in that the longer the tongue, the greater was the separation of the incurrent and excurrent streams, and so the less the danger of re-entry of ejected waters. If and when such re-entry occurred, it would mean-
(a) Reduction in amount of oxygen available per unit quantity of water, because oxygen had already been withdrawn from it. The effect would be analagous to our breathing "bad air" -our own or someone else's breath.
(b) Reduction in amount of food available per unit quantity of water, because food had already been gathered from that water.
(c) Increase in amount of any toxic excretory substances per unit quantity of water.
All these things would be biologically disadvantageous, and their avoidance a relative biological advantage.
4. Gerontic Features. There is but a limited amount of material from which to study the new genus, but what is present shows that with age-
(a) The shell becomes thicker through the deepening of the dorsal valve, and the accentuation of the ventrally directed flanges on the ventral valve.
(b) There is much secondary calcification, chiefly in the ridges bordering the muscle fields and the diaphragm. There is increased differentiation on the inside of the lateral and anterior border of the valves described above.
Occurrence. Notoleptaena linguifera has been noted in specimens from localities 3 (holotype) and 2D (M.D.V. 39190), Parish
of Dargile; also localities 32A (M.D.V. 47251) and 54 (M.D.V. 47197), Parish of Redcastle. Those from the latter parish are much smaller specimens and with better material may prove to be taxonomically distinct.

Age. Lower Devonian.

Notoleptaena otophera sp. nov.
 Pl. I, Figs. 24-27.

Type Material. 1. Holotype consisting of the steinkern (N.M.V. 14687) and external mould (N.M.V. 14688) of a ventral valve in buff siltstone from Syme's Homestead, Killara, Victoria (for locality map see Gill 1945).
2. Hypotype consisting of the steinkern of another ventral valve (N.M.V. 14689) from the same locality.

Occurrence. Although a great deal of material from Syme's Homestead has been examined, only the figured specimens and some fragments of Notoleptaena otophera have been found. It is therefore not common. A smaller specimen referable to the same species has been collected from Syme's Tunnel, Killara (N.M.V. 14690). From Ruddock's Quarry in the Lilydale area (for locality map see Gill 1941) a specimen referable to the genus, but not specifically determinable at present, was collected by Mr. F. A. Cudmore (N.M.V. 14691). A ventral valve of Notoleptaena (counterparts N.M.V. 14708-9) was collected by the author from the limestone outcrop on Cemetery Hill Road, west of Whittlesea. It is notable in that radial costellae are absent.

Etymology. The trivial name of this species is derived from the Greek ous, otos $=$ an ear, and phero $=I$ carry, a reference to the auriculate nature of the cardinal extremities.

Descriptions. 1. Holotype ventral valve sub-semicircular in outline except for the auriculate cardinal extremities. Greatest width 4.5 cm . (calculated from the complete side), greatest length of planate part of valve 1.5 cm ., and length along midline 1.4 cm . Hingeline long and straight, palintrope smooth and 1 mm . high as preserved on the external mould, but it was higher than this in the middle, probably about 2 mm . Palintrope narrows towards cardinal extremities. It is approximately at right angles to the planate part of the valve in the holotype, but sloping outwards slightly in the hypotype. Very fine growth lines are present on the palintrope parallel to the hingeline. The cardinal extremities are auriculate, and extend over half a centimetre beyond the semicircular part of the shell ; their terminations are rounded.

The anterior margin possesses a tongue which is at right angles to the planate part of the valve. If the shell is viewed in plan, the line where the valve geniculates to form the tongue is incurved. A specimen of "Leptaena rhomboidalis" in the National Museum from Cooper's Creek, five miles S.W. of Walhalla (N.M.V. 671-2 counterparts) has a similar sinus in the geniculated part of the ventral valve, but without the formation of a tongue. The tongue in the holotype of the new species is 1.4 cm . wide and 1 cm . long. The sides are parallel, and the anterior margin only slightly curved.

The lateral margins of the valve are deflected nearly at right angles in the opposite direction to the tongue, i.e., ventrally, for a distance of about 3 mm . The "ornamentation" on the exterior of the valve consists of fine, somewhat irregular, concentric rugae, and of slightly sinuous radiating striae of a frequency of 25-30 per cm . Fine growth lines can also be seen. They suggest that the auriculations on the cardinal extremities were not present in youth, but developed with adult growth. There is a slight sinus down the middle of the valve.

The muscle field is of leptaenid type, deeply excavated, and with a strong bounding ridge. Anterior to the field is a very fine and faint median septum, but this cannot be seen in the hypotype. Fine radiating ridges occur on the diductor scars. Teeth strong, diverging, sub-triangular in cross-section, and vertically finely serrated on the outer edges, which are below the palintrope, but more or less in the same plane. The serrated area is 1.5 mm . long, and has about 18 serrations. The significance of this feature is discussed below.

Interior of valve finely papillate-closely in the area surrounding the muscle field and less so outside that.
2. Hypotype shows the full height of the palintrope. The ridges described for the holotype diductor field are almost absent in this specimen. The papillation of the interior of the valve is shown well, and some of the pallial sinuses can be recognized.

No dorsal valve of this species has yet been found.
Palaeoecology. In addition to the features already discussed relative to the genotype, there are specializations in N. otophera whereby it was adapted to the ecological conditions in which it lived. The general character of those conditions has been described elsewhere (Gill 1949a). The generally lighter build of N. otophera, compared with that of N. linguifera, matches its quieter environment. The auriculate cardinal extremities, on Lamont's (1934, p. 166) interpretation, are also an adaptation to a muddy sea-floor,
being "in response to the necessity of warding off silt from the lateral edges of the opening shell."

Relationshirs. In general structure, N. otophera is very close to that of N. linguifera, and so is included in the same genus. It possesses the tongue and the ventrally deflected margins which are so characteristic of the new genus. N. otophera differs in the generally lighter construction, presence of auriculate cardinal extremities, and teeth of slightly different shape and possessing a row of serrations. I regard the two species as isochronons occupying differing facial environments, N. linguifera belonging to the sandy facies and N. otophera to the muddy facies.

A taxonomic problem is posed by the presence of crenulations in the latter species. Of such I can find no evidence in N. linguifera. The matrix imposes limitations on the preservation of such fine structures, but they are seen on the margins of other strophomenids, and there was ample material for examination. Amphistrophia has small crenulated plates, but the shells are small, have a costellate-striate ornamentation without concentric rugae, and the ventral muscle field has no strong delimiting ridge as in Leptaena and Notoleptaena. Cymostrophia possesses rugae and a partly crenulated hinge, but the teeth files are longer and imposed on the palintrope (not limited to small plates below the hingelines as in N. otophera) ; also, the ornamentation is intercalated, and the rugae are interrupted to give a "seersucker" effect.

From Bohemia, Barrande described Leptaena bouei (Haidinger 1848, Barrande 1879) which, although different from Notoleptaena morphologically, shows ecological accommodations. Firstly, there are strong lateral flexures of the shell which are so pronounced that they would function like the reflexed ventral margins of Notoleptaena for holding the shell in place on the sea-floor. Secondly, the middle of the anterior margin is flexed strongly in a dorsal direction, i.e., in the opposite direction from the flexures just described, so that a tongue-like emargination is effected. The flexure would raise the anterior aperture above the sea-floor, and also increase the apertural length so that an opening smaller than otherwise necessary would suffice for respiration and feeding, but without admitting foreign bodies which could enter by the larger aperture. Leptaena bouei is found not only in Bohemia but also in the Lower Devonian of Western Europe (e.g., Haüsel and Richter 1936, Mailleux 1941).

Barrande (1879) also described Strophomena emarginata, a brachiopod possessing a tongue in its anterior margin. Kozlowski (1929, a work I have not been able to see) referred the species to Leptaena, though not without doubt. Kozlowski is quoted
in extenso in Northrop (1939), who refers Barrande's species to Amphistrophia. Northrop's comments were à propos his Amphistrophia peroccidens, which also has a tongue structure. Barrande stressed that S. emarginata developed its emargination only as a feature of the full-grown shell. He stated (p.53) : "L'échancrure du bord frontal est le principal charactère distinctif de cette espèce. Mais il faut remarquer qu'il n'est bien prononcé que dans les adultes. Il ne se manifeste pas dans les jeunes, ni dans les individus d'un âge moyen."

Kozlowski compared his Leptaena emarginata with L. cauduta (Schnur 1854), which Reed (1908) referred to Strophonella and Mailleux (1941) to Stropheodonta.

Study of the above forms may reveal relationships with the new genus Notoleptaena.

Acknowledgements

I am indebted to Dr. D. E. Thomas, Chief Geologist of the Mines Department of Victoria, for the opportunity of describing the Heathcote fossils; to Mr. L. A. Baillôt, of the Melbourne Technical College, for taking the photographs; and to Mr. P. C. R. Boswell, of this Museum, for preparing latex moulds of a number of the fossils described.

Literature References

Barrande, J., 1879. Systême Silurien du Centre de la Bohême. Pt. 1 Recherches Paléontologiques, Vol. V. Prague et Paris.
Brown, W. R., 1947. A Short History of the Tasman Geosyncline of Eastern Australia. Science Progress, XXXV (140), pp. 623-237.
Chapman, F., 1913. New or Little-known Victorian Fossils in the National Museum. Pt. XVI. Some Silurian Brachiopoda. Proc. Roy. Soc. Vic., XXVI (1), pp. 99-113.
Gill, E. D., 1939. The Silurian Trilobite Lichas australis. Mem. Nat. Mus., Melbourne, 11, pp. 140-142.
——, 1941. The Place of the Genus Styliolina in the Palacozoic Palacontology and Stratigraphy of Victoria. Proc. Roy. Soc. Vic., LIII (1), pp. 145-164. , 1940. The Silurian Rocks of Melbourne and Lilydale. Ibid., LII (2), pp. 249-261.
1942. The Thickness and Age of the Type Yeringian Strata, Lilydale, Victoria. Ibid., LIV (1), pp. 21-52.
, 1945a. Trilobita of the Family Calymenidae from the Palaeozoic Rocks of Victoria. Ibid., LVI (2), pp. 171-186.
, 1945b. Chonetidae from the Palaeozoic Rocks of Victoria and their Stratigraphical Significance. Ibid., LVII (1-2), pp. 125-150.
, 1949a. A Study of the Palaeozoic Genus Hercynella, with Description of Three Species from the Yeringian (Lower Devonian) of Victoria. Ibid. In press.
1949b. Palaeozoology and Taxonomy of Some Australian Homalonotid Trilobites. Ibid. In press.

Gill, E. D., 1949c. Description and Biological Interpretation of Some Victorian Trilobite Hypostomes. Ibid. In press.
——, 1949d. The Biological Significance of Exoskeletal Structures in the Palaeozoic Brachiopod Genus Chonetes. Ibid. In press.
——, 1949e. Devonian Fossils from Sandy's Creek, Gippsland, Victoria. Mem. Nat. Mus. Vic., No. 16.
1949f. Palaeogeography of the Australia - New Zealand Area in Lower Devonian Time. Trans. and Proc. Roy. Soc. N.Z. In press.
Haidinger, W., 1848. Naturwissenschaftliche Abhandlungen. Bd. 2 (5). Ueber die Brachiopoden der silurischen Schichten von Böhmen. By Joachim Barrande. Pp. 153-256.
Häusel, W., and Richter, E., 1936. Fundstellen im Unterkoblenz (Unter-Devon) des östlichen Taunus (Blatt Usingen-Fauerbach). Senckenbergiana, Bd. 18, pp. 296-307.
Kozlowski, R., 1929. Les Brachiopodes Gothlandiens de la Podolie Polonaise. Palaeont. Polonica, Vol. 1. (Not seen.)
Lamont, A., 1934. Lower Palaeozoic Brachiopoda of the Girvan District: Suggestions on Morphology in relation to Environment. Ann. and Mag. Nat. Hist., 80, pp. 161-184.
Mailleux, E., 1941. Répartition des Brachiopodes dans le Devonien de l'Ardenne. Bull. Mus. Roy. d'Hist. de Belg., Tome XVII (30), pp. 1-14.
Northrop, S. A., 1939. Palaeontology and Stratigraphy of the Silurian Rocks of the Port Daniel-Black Cape Region, Gaspé. Geol. Soc. Amer., Spec. Papers 21.

Reed, F. R. C., 1908. The Devonian Faunas of the Northern Shan States. Mem. Geol. Surv. India, Palaeontologica Indica, Vol. II (5).
Schnur, J., 1854. Palaeontographica, Vol. 3. (Not seen.)
Schuchert, C., and Cooper, G. A., 1932. Brachiopod Genera of the Suborders Orthoidea and Pentameroidea. Mem. Peabody Mus. Nat. Hist., Vol. IV (1).
Thomas, D. E., 1937. Some Notes on the Silurian Rocks of the Heathcote District. Min. and Geol. Journ., Vol. 1 (1), pp. 64-67.

Description of Plate I

Fig. 1. Notoconchidium thomasi, gen. et sp. nov. Steinkern of ventral valve viewed from above. Paratype, M.D.V. 39094.
Fig. 2. Same specimen. Umbonal view to show spondylium.
Fig. 3. N. thomasi. Steinkern of ventral valve viewed from above. Hypotype M.D.V. 46252. Figures 1-7 illustrate the progressive thickening during growth of the spondylial walls and median septum. Figures $3-4$ illustrate the intermediate stage.
Fig. 4. Same specimen. Latex impression.
Fig. 5. N. thomasi. Ventral view at gerontic stage showing maximum thickening of spondylial walls and median septum. Hypotype M.D.V. 46284 photographed from above.
Fig. 6. Same specimen. Umbonal view.
Fig. 7. Same specimen. Latex impression.
Fig. 8. N. thomasi. Steinkern of dorsal valve, viewed from above. Hypotype M.D.V. 46289B. Figures $8-15$ illustrate the progressive thickening of septa during growth, and the accumulation of callus deposits laterally to them.
Fig. 9. Same specimen. Latex impression.

Fig. 10. N. thomasi. Steinkern of dorsal valve viewed from above. Hypotype M.D.V. 46293.

Fig. 11. Same specimen. Latex impression.
Fig. 12. Same specimen. Umbonal view of steinkern.
Fig. 13. N. thomasi. Steinkern of dorsal valve viewed from above. Holotype M.D.V. 46315.

Fig. 14. Same specimen. Latex impression.
Fig. 15. Same specimen. View of steinkern from side.
Fig. 16. Notoleptaena linguifera, gen. et sp. nov. Steinkern of ventral valve viewed from above. Holotype M.D.V. 39470.
Fig. 17. Same specimen, viewed at an angle to show the deflected valve margin and the median sinus.
Fig. 18. N. linguifera. Hypotype 39480A. External moulds of two ventral valves to show fine costellation and rugae.
Fig. 19. N. linguifera. Steinkern of dorsal valve viewed from above. Hypotype M.D.V. 39469B.

Fig. 20. N. linguifera. Steinkern of dorsal valve, anterior view. Paratype M.D.V. 39477.

Fig. 21. Same specimen viewed from above.
Fig. 22. Enlargement of cardinalia of Fig. 19.
Fig. 23. N. linguifera. Side view of steinkern of dorsal valve on specimen 39469B. Note thickened margin, median sinus, median septum, and muscle field.
Fig. 24. N. otophera, sp. nov. Steinkern of ventral valve viewed from above. Holotype counterpart, N.M.V. 14687.
Fig. 25. N. otophera. External mould of ventral valve, and counterpart of Fig. 24. Holotype, N.M.V. 14688.

Fig. 26. N. otophera. Anterior view of holotype steinkern, N.M.V. 14687. Compare Fig. 24. Note anterior tongue.
Fig. 27. N. otophera. Steinkern of another ventral valve viewed from above. Hypotype, N.M.V. 14689.
Note. All figures are natural size except Fig. 22, which is enlarged one half.

VICTORIAN RECORDS OF Sterna striata Gm. AND Sterna hirundo longipennis Nordm.

By W. B. Hitchcock, Ornithologist, National Museum of Victoria, and N. J. Favaloro, Hon. Worker in Ornithology, National Museum of Victoria.
(Received for publication, November 8, 1950.)
Formal Records

S. striata

Although there are several sight records of the White-fronted Tern (Sterna striata) for Victoria, there are, to our knowledge, only two skins in existence from that State, both in the National Museum of Victoria. Hindwood (1946: 183), in his exhaustive account of this species in Australia, referred to one of them (B2537, infra), but was unable to locate the specimen. It has since been found, and details of both skins follow.

Reg. No.	B2537	B2293
Sex	\%	${ }^{\text {o }}$
Plumage	winter ; imm	winter; sub-adult (see plate, A,B)
Locality	Mordialloc	Williamstown
Date	c. 1874	Aug. 6, 1948
Collector	W. Kershaw	J. A. McVeigh
Iris	-	dark brown
Bill	-	black, tipped whitish
Feet	-	reddish-brown, webs yellowish-brown
Stom. contents	-	blue sprats (Stolephorus robustus) lamprey (Mordacia sp.)

S. h. longipennis

In an earlier paper, Hindwood (1944: 41-43) drew attention to the fact that there were two formal records of Sterna hirundo congipennis (vernacular names: Black-billed or Eastern Common Tern, Nordmann's Tern and Long-tailed Tern), from Australian waters, viz., 'Warrior Reef,' Torres Strait, and Cape York, North Queensland. Both specimens had previously been identified as S. striata, a species which closely resembles longipennis in winter plumage. He also listed three examples from Lord Howe Island. Further, it was Hindwood's opinion that these occurrences 'may be considered, in the present state of our knowledge, abnormal.'

We now wish to record a Victorian specimen and hope to show that this race of the Common Tern can be regarded as a rare, but regular summer visitant in eastern Australia.

Particulars of specimen: N.M.V. no. B2650, ô (?), collected at Williamstown on March 2, 1949, by J. A. McVeigh. Iris brown, bill black (extreme tip of both mandibles whitish), feet reddish-brown, claws black. Stomach contents nil.

The bird appears to be in first-winter plumage, immaturity being indicated by the dark-grey lesser wing-coverts (see plate, C, D). The second (outer) and third primaries have the outer webs and inner portion of the inner webs dark-grey, with the characteristic 'wedge' of white on the third. The succeeding primaries are more silvery-grey on the outer webs, slightly darker on the inner, with white 'wedges.' Wings and tail are in moult, the fourth primary being 27 mm . shorter than the fifth. The outermost pair of rectrices are considerably shorter than the next pair.

Measurements

For ease of comparison, measurements of the above three skins are tabulated together. (Wing flattened; bill length, depth and width all taken from end of feathering.)

Reg. No.	Bill			Wing	Tarsus	Toe
	Length	Depth	Width			
B2293	40	8.5	6.5	272	21	26
B2537	37	9	7	265	21	25
B2650	35	9	7	258	20	21

Field Notes

We are indebted to Mr. J. A. McVeigh, a resident of Williamstown, and a keen observer, for the following summary of his extensive field notes on striata and longipennis. We make no apologies for quoting him at some length. It should be borne in mind that, during the entire period, he was not aware that there were two distinct species involved, although he obviously suspected as much. It was not until quite recently that a critical examination of the March skin revealed the truth.
Williamstown is situated on Port Phillip Bay, $4 \frac{1}{2}$ miles S.S.W. of Melbourne. As far as shipping is concerned, it is chiefly a grain export centre. The area under observation comprises a small boat haven, "The Gap," bounded, on one side, by Gellibrand Pier and, on the other, by Breakwater Pier. The "summer tern"" was also noted on a nearby beach, "The Cockle Bed," where it occasionally rested in the daytime with Silver and Pacific Gulls and Crested Terns.

A., B. Sterna striata (im. B2e93, o, Williamstown, Vic., Sur, 6, 19ts.
 Mareh 2., 1949.

$$
3
$$

The iron pipe, which the "summer tern" claimed as a perch, and from which it did a lot of fishing, is embedded in rocks at the entrance to the Gap. The depth of water around the pipe is $8-10$ feet, shelving rapidly outside,

The winter of 1948 saw an abnormal number of blue sprats and "greybacks" around the piers and rocks, the close shelter of which they seem to prefer, as we never see them far from shore. Perhaps that accounts for the White-fronted Tern confining its attention to inshore fishing. Lampreys were also present in 1948, apparently in quantity, as they were brought into the boat when we were catching barracouta.

Following are relevant extracts from my diary.

1948

March 26: One small tern has been on pipe at Gap for last three or four months. It is about 11 inches long, grey on back; underparts, tail, back of neck and forehead white; crown, nape, bill and legs black. Seems to be the only one of its kind in the vicinity. Does all its fishing close to rocks (at Gap entrance), where it apparently camps. On one occasion I saw it dive straight down from the pipe, emerge with a pilchard (?) about 4 inches long, then fly to a height of 100 feet or more before swallowing it. This manoeuvre seemed to be a precaution against dropping the fish before its consumption was complete.
March 29: Little tern still on pipe at Gap.
April 3: Photographed small tern on pipe. Saw this bird attack other (Crested) terns between the two piers. It seems to be aggressive, especially towards other terns.
May 16: Small tern not seen for a few weeks now.
July 11: At Gap, on return from fishing trip, a White-fronted Tern flew slowly past shore end of our boat landing. It is very light on back now, almost white, instead of grey. Leading-edge of wings, close to body, is a darker grey. Beak and legs still black, also the cap; forehead white. Seems larger than the summer bird.
July 17': White-fronted Tern still at Gap.
July 31: Morning. At least two W.F. Terns seen at Gap. Strong N. wind. Seems they favour Gap on these days. Afternoon. Two W.F. Terns at Gap, one noticeably smaller, with a short tail. Could this be bird which stayed at Gap last summer? [latter probably striata in moult.-W.B.H.]
August 2: Evening. Single W.F. Tern fishing outside, near Gellibrand Pier.
August 6: Evening. Strong nor'-easter blowing; shot a W.F. Tern at Gap. [= striata, B2293, W.B.H.]
August 7: 2.30 p.m. One W.F. Tern at Gap; later in afternoon saw another half-way between Pt. Gellibrand and Breakwater.
August 21: Single W.F. Tern on jetty in Gap. Very tame.
August 29: Strong northerly. About a dozen terns fishing on leeward side of Breakwater Pier, two W.F. Terns among them; possibly after whitebait as Gannets diving further out. One W.F. Tern alighted on edge of breakwater. When at rest, dark grey patch on inner part of wing pronounced. The flight of this tern is more erratic than that of the Crested Tern, also its wing beat is quicker.
September 2: W.F. Tern visited Gap and flew over Breakwater Pier.
September 4: Two W.F. Terns seen outside breakwater.
December 12: Evening. A single black-billed tern at entrance to Gap sitting on rocks with Silver Gulls. Later perched on pipe and fished from there.

About same size as winter tern, possibly smaller, but lacks dark shoulder patch. Back is all pale grey and tail whiter.

1949

January 19: Little black-billed tern still perches on pipe. Last night a bird of the same species flew in and was promptly chased away by the pipe occupant.
March 1: Wounded the little tern, which flew off after disgorging stomach contents. These were examined and found to consist of a compact mass of moths covered with a slimy substance.
March 2: Evening. Collected a little tern at Gap. [= longipennis, B2650, W.B.H.]

April 9: Watched two summer terns fishing close alongside dry-dock. (Not seen again after this date.)
May-Dec.: Although weekly visits were paid to the Gap during this period, no White-fronted Terns were seen-probably due to the absence of blue sprats and "greybacks."

1950
January 1: Advised by Mr. E. McDonald that he saw a small black-billed tern on Cockle Bed, apparently in breeding plumage.
January 15: Small black-billed tern on Cockle Bed in company with Silver Gulls and Crested Terns. When first seen it was bathing with one of the latter, then stood with the other birds on the sand. Noted that black cap very distinct and clear-cut against white of neck and face. No white among black feathers on cap.
February 4: Single black-billed summer tern at Cockle Bed-my last record for this bird.

In view of the period and continuity of observation, supported by specimens, it seems reasonable to conclude the following from an analysis of the above data.

1. Sterna striata and S. h. longipennis may be considered, respectively, as regular winter and summer visitors to Victoria, at least in small numbers.
2. S. striata probably visits Victoria between July and September, longipennis between December and April, so that they would not normally occur there together.
3. The presence ol absence of striata may be influenced by the movement of small fish, such as blue sprats, "greybacks" and lampreys. This would not affect longipennis to the same extent as it is not wholly piscivorous.
4. The lack of collecting and competent observers at suitable localities, plus the difficulty of distinguishing it from striata in the field, have been factors in the previous non-recognition of longipennis in Victoria and, for that matter, in Eastern Australia. However, the possibility that longipennis has ex-
tended its southern range in comparatively recent years cannot be overlooked.
5. It is more than likely that some of the late Sydney records for striata, mentioned by Hindwood (1946: 187), were, in fact, referable to longipennis, particularly the January "stragglers."

Ecology

There are differences in the feeding habits and ecological requirements of the two species. They are both shallow divers but, whereas striata feeds "exclusively on small fish" (Stead, 1932: 38) and has "the habit of fishing in broken water close to a rocky shore, or a reef, and in the surf zone" (Hindwood, loc. cit.: 180), longipennis has a more varied diet, confining its fishing to a relatively circumscribed area in rivers and estuaries. Writing of the latter tern in Malaya, Robinson and Chasen (1936:95) remark: "In the Straits of Malacca it is largely an estuarine and shallowwater bird, frequenting the fishing stakes in large numbers." In Kamchatka, Bergman (1935:138) observed it breeding along the Kamchatka River. He also found it plentiful around the estuaries of the Avatscha and Paratunka Rivers, but saw no examples on the rocky south-east coast. In brief, striata is essentially a marine species, both in habitat and food requirements, while longipennis shows a marked preference for a fluviatile and estuarine environment.

Field Diagnosis

For the benefit of Australian observers, who will normally see both species in non-breeding plumage only, the following summary of field characters is offered.
longipennis. Summer visitor. Length about 12 inches; bill relatively short and stout; back grey, contrasting with whiter tail; small black spot before eye; sedentary, favouring a single "fishing perch" (stake, pipe, etc.), takes insects (e.g. moths) ; aggressive, especially towards other terns.
striata. Winter visitor. Length 14-15 inches; bill relatively long and slender; back grey, but paler than tail; large black spot before eye; feeding range wider, takes fish only; not aggressive towards other birds.
In skins, the toes and claws of striata are noticeably longer and heavier than in longipennis, but this would scarcely be evident in the field.

Sketch map showing distribution of S. hirundo longipennis.

Distribution of S. h. longipennis

The accompanying sketch map is an attempt, based on the literature, to plot the known distribution of longipennis. The following comments on it are necessary.

Breeding Range

There are remarkably few references to authentic nesting records. Kamchatka and Sakhalin would appear to be the principal breeding grounds. Bergman (ibid.) states that it is particularly numerous along the Kamchatka River, where it breeds in colonies in several places. Kobayashi and Ishizawa (1932-40: 194) include the Kurile Islands in the breeding range and state that eggs were discovered from June to the beginning of August on the bank of Lake Taraika in Sakhalin by K. Shimomura. It possibly breeds, too, on Bering Island (the larger and more westerly of the Commanders), where Stejneger (1885:85) collected two adult females in May and June. Hartert (1920: 132) also suggested this, basing his opinion on three adults collected there by Sokolnikoff in the same two months. Peters (1934:333) includes Ussuriland and the upper Amur, while Kozlova (1932: 585) states that it "breeds occasionally in South-West Transbaikalia, where its range meets that of minussensis." This locality appears to be much too far west for longipennis and the record might be treated with reserve.

Winter Range

Some authors, e.g. Peters (ibid.), do not include the Malay States in the range of longipennis. However, Robinson and Chasen (ibid.) and Gibson-Hill (1949:76) list it as a common autumn and winter visitor to the Straits of Malacca. There are formal records, too, from the east coast of Peninsular Siam: Nakon Sritamarat (Riley, 1938: 100). Gibson-Hill (1950:265) records it as a vagrant, on the basis of one specimen and two sight records, in the Cocos-Keeling Islands. The status of longipennis in the remainder of Malaysia seems to be ill-defined. We have seen very few references to formal records from Sumatra, Java and Borneo and prefer to consider it only a vagrant to these islands. The principal southernmost wintering grounds are probably the Gulf of Papua, the Louisiade and Bismarck Archipelagos, and the Solomons. However, it undoubtedly winters in small numbers in the Philippines, Halmahera, Moluccas and Aru Islands.

Migration Routes

It is well known that the autumn and spring routes of migrants may be quite distinct, and it would be futile to try and map precise fly-lines without the supporting evidence of banding records. It is suggested, however, that the routes shown on the map indicate approximately the autumn migrations of longipennis. An alter-
native route for some individuals may be through Micronesia (Mayr, 1945: 25), as there are formal records from Palau.

Summary

1. Data of two Victorian specimens of Sterna striata Gm. and one of Sterna hirundo longipennis Nordm. are given. The latter constitutes the first Victorian record and extends its known range far south of Lord Howe Island.
2. Evidence, in the form of detailed field notes, is produced to show that both species may be considered regular visitors to Victoria in small numbers-striata in winter, longipennis in summer.
3. Some differences in the ecology of the two species are discussed.
4. A summary of certain field characters of striata and longipennis (in Australia) is submitted as a guide to their identification.
5. A sketch map, with explanatory notes, illustrates the breeding range, winter quarters and probable migration routes of longipennis.

References

Bergman, Sten, 1935. Zur Kenntnis Nordostasiatischer Vögel (Stockholm).
Gibson-Hill, C.A., 1949. An Annotated Checklist of the Birds of Malaya. Bull. Raffles Mus., Singapore. No. 20.
-, 1950. Notes on the Birds of the Cocos-Keeling Islands. op. cit., No. 22.
Hartert, Ernst, 1920. The Birds of the Commander Islands. Nov. Zool., vol. 27.
Hindwood, K. A., 1944. Occurrence of the Eastern Common Tern (Sterna hirundo longipennis) in Australia. Emu, vol. 44, pt. 1.
-_, 1946. The White-fronted Tern (Sterna striata) in Australia. op. cit., vol. 45 , pt. 3.
Kobayashi, K., and T. Ishizawa, 1932-40. The Eggs of Japanese Birds. Part 1 (text). (Kobe.)
Kozlova, E. V., 1932. The Birds of South-West Transbaikalia, Northern Mongolia and Central Gobi. Part III. Ibis, (13), vol. 2, no. 4.
Mayr, Ernst, 1945. Birds of the Southwest Pacific. (New York.)
Peters, J. L., 1934. Checklist of Birds of the World. Vol. 2.
Riley, J. H., 1938. Birds from Siam and the Malay Peninsula in the U.S. National Museum collected by Drs. Hugh M. Smith and William L. Abbott. Bull. U.S. Nat. Mus., No. 172.
Robinson, H. C., and F. N. Chasen, 1936. The Birds of the Malay Peninsula. Vol. 3.
Stead, E. F., 1932. The Life Histories of New Zealand Birds. (London.)
Stejneger, L., 1885. Results of Ornithological Explorations in the Commander Islands and in Kamchatka. Bull. U.S. Nat. Mus., No. 29.

ON THE VICTORIAN SPECIES OF TUBERCULATED DIPLODACTYLUS

By C. W. Brazenor, National Museum of Victoria

The tuberculated geckos of the genus Diplodactylus have been the subject of some disagreement between herpetologists. Originally four species were described.
1839. Phyllodactylus strophurus Dumeril and Bibron, Erp. Gen., vol. 3, p. 397.
1842. Diplodactylus spinigerus Gray, Zool. Miscel., p. 53.
1885. Diplodactylus ciliaris Boulenger, Cat. Liz. Brit. Mus., vol. 1, p. 98.
1892. Diplodactylus intermedius Ogilby, Rec. Aust. Mus., vol. 2, p. 10.

In the British Museum Catalogue (1885), Boulenger assigned the three species then known to geographical regions, namely:

> ciliaris - North Australia
> spinigerus - West and North Australia
> strophurus - South-east Australia.

Ogilby later described intermedius and localized it to "the interior of New South Wales."

Zietz (2), in 1920, admitted only one species, placing the other three names in its synonomy. In selecting spinigerus as the valid name he ignored the fact that strophurus was described earlier, and its name should therefore have been used.
Kinghorn (3), in 1929, resurrected strophurus from synonomy and reinstated it as a full species. He agreed to leave ciliaris and intermedius as synonomys of spinigerus, but suggested that they might be "geographical varieties or races." He suggested that Boulenger's record from Sydney is a mistake, "for it appears to be restricted to locations in the vicinity of the Murrumbidgee River and particularly south-western New South Wales."

Loveridge (4), in 1934, agreed with Kinghorn regarding ciliaris, which he made a subspecies of spinigerus.

In the National Museum collections are 31 specimens of tuberculated Diplodactylus from localities within Victoria, and 38 specimens from Central and Northern Australia. Any later mention of the Victorian or North Australian series in this paper refers to these specimens.

During the preparation of a list of Victorian reptiles for future publication, the present writer was confronted with the problem of the correct designation of the Victorian member of this group of geckos. No Victorian specimen possessed spines, so that
strophurus seemed to be indicated. However, both Kinghorn and Ogilby deny the presence of tubercules on the tail of strophurus, whereas the tails of Victorian specimens are ornamented with rows of tubercules. A perusal of the original descriptions of the four species was obviously desirable, but unfortunately it reveals a confused situation from which it is difficult to escape.

It seems best to set out this situation as follows:

1. Type Localities

strophurus
Dumeril and Bibron say, at the end of their type description, "Ce Phyllodactyle est une espèce Australasienne, que MM. Quoy et Gaimard ont trouvée à la baie des Chiens marins, à la NouvelleHollande." The Bay of Chinese Sailors is near the mouth of the Wooramel River, in the inner part of what is now Shark's Bay, Western Australia. Without doubt the specimen was collected during the voyage of the corvettes L'Uranie and Physicienne, for which Quoy and Gaimard were first and second surgeons respectively. The landing is noted by Freycinet in the "Historique" (1).

Boulenger's relegation of this species to the diametrically opposite end of Australia, and his restriction of it to that eastern part, is difficult to understand unless he confused the above voyage with that of a later one made by Quoy and Gaimard on the "Astrolabe". The latter vessel did not touch the western coast of West Australia, but did spend a considerable time on the southern and eastern coasts of the continent.

Kinghorn perpetuated this apparent error when he still further restricted the specific range.

spinigerus

The earliest description of spinigerus is in Gray's "Zoological Miscellany" (1842), in which he gives the type locality as Van Diemen's Land. This is the old name for Tasmania, but other than this assumption by Gray, and one other doubtful record of an example of another genus (Hoplodactylus), geckos are unknown on this island. However, in his 1845 Catalogue of Lizards, he places strophurus D. and B. in the synonomy of spinigerus and gives the locality as Houtman's Abrollos. This is apparently correct, for Boulenger in the 1885 Brit. Mus. Catalogue notes the type as from this island group.

ciliaris

The type came from "Darwin, Northern Territory."
intermedius
Type from "Interior of New South Wales."

2. Dimensions

strophurus
Measurements of the type are given as follows:

Longueur totale	$9^{\prime \prime}$	$1^{\prime \prime \prime}$	Corps. Long.	$2^{\prime \prime}$	$3^{\prime \prime \prime}$
Tete. Long.	$1^{\prime \prime}$	$2^{\prime \prime \prime}$	Queue. Long.	$2^{\prime \prime}$	$6^{\prime \prime \prime}$
Cou. Long.		$3^{\prime \prime \prime}$			

It will be seen that when the length of the parts are added together the result is 27 mm . short of the given total length of 91 mm . If the error lies in the total measurement, then the specimen must have been but half-grown, and that this is so is suggested by the approximately correct ratio of the separate parts.

spinigerus

No dimensions are given for the type.

ciliaris

Total length 125 mm , head 22 mm ., body 56 mm ., tail 47 mm . intermedius

Total length 100 mm ., head 16 mm ., body 47 mm ., tail 37 mm .
The proportional length of snout to diameter of eye has been used as a diagnostic character by several authors:
strophurus. Kinghorn says "the head is shorter and deeper than that of spinigerus." He gives no measurements, nor does Boulenger in the Cat. Liz.
spinigerus. Ogilby says when describing intermedius, "in spinigerus the snout is only a little longer than the diameter of the eye."
ciliaris. Boulenger says of the type, "snout rounded, longer than the distance between the eye and the ear opening, and than the orbit."
intermedius. The type description says, "Snout rounded, much longer than the eye and the ear opening, from once-and-threefourths to twice the diameter of the eye."

It would appear from the above that there should be a progressive lengthening from the short-snouted strophurus, through spinigerus and ciliaris to intermedius. It should be remembered, however, that the comparisons were made, not from the original specimens, but from subsequent designations.

Variation in proportional snout length was checked by measuring the museum series (for accuracy this was done under a low-power microscope carrying a micrometer eyepiece, so that positive comparison could be obtained). The following figures were computed:

For 20 fully-grown specimens of the Victorian series, snout length $=1.93{\underset{-}{-42}}_{-40}$ times diameter of eye.
For 20 fully-grown spiny specimens of the N. Australian series, snout length $=1.97 \pm .{ }_{-21}^{.17}$ times diameter of eye.
Thus the average of the Victorian series is very slightly less than that of the N. Australian series, but the variation is wider and its limits overlap those of the N. Australian series as well as the proportions quoted by Ogilby for intermedius.

3. Labials

Labial counts for the species are set out under authors. strophurus

Dumeril and Bibron	upper 12	lower 12
Boulenger	$" \quad 10-12$	$"$

spinigerus
Gray
Ogilby
Boulenger

$"$	$\overline{-13-15}$	$"$	$\bar{\prime}$
$"$	$13-15$		
$"$	$13-15$	$"$	$13-15$

ciliaris

Boulenger	$"$	12		12
nedius Ogilby	,	$11-13$		

Victorian

Museum series \quad upper $12.6 \pm \underset{1.6}{1.4}$ lower $11.9 \pm$| 2.1 |
| :---: |

N. Australian

Museum series $\quad, \quad 12 \cdot 1 \pm \underset{1 \cdot 1}{1 \cdot 9} \quad$, $\quad 11 \cdot 8 \pm$| $2 \cdot 4$ |
| :--- |
| 1 |

4. Body Tubercules

strophurus
Dumeril and Bibron say of the body scales: "Celles du dessus et des côtés du corps sont plates, clairsémees de petits tubercules peu élevés, ou bien d'écailles circulaires d'un diamètre trois fois
plus grand que celui des autres." No pattern is suggested for the "thinly-sown" tubercules.

Kinghorn says "there are large and small tubercules scattered over the dorsal area but nothing to resemble spines."

spinigerus

The type description says "scales small, granular, with a series of black spines along each side of the back and tail."

Ogilby says "In spinigerus the tubercules are irregularly scattered over the dorsal surface."

ciliaris

Type description says "Upper surface covered with rather large granules intermixed on the back with enlarged conical tubercules forming two irregular, longitudinal series."

intermedius

Type description says "the dorsal tubercules form two regular longitudinal series."

Victorian. Museum series

No specimen has spines. In no specimen can the tubercules be called "scattered"; there is some irregularity and broken continuity, but no tubercules are found in the mid-dorsal area.

N. Australian. Museum series

T'wo specimens only have truly scattered tubercules. Five specimens have a few tubercules in the mid-dorsal area between two obvious lines; the remainder have tubercules or pointed spines in two more or less regular lines.

5. Tail Tubercules

strophurus
The original description says: "Sur' le dessus de la queue, ou voit successivement, depuis sa racine jusqu'aux deux tiers de sa longueur, deux rangs transversaux de tubercules, et deux rangs de tres petit grains squammeux ; mais a partir de cet endroit les rangs de grains augmentent de plus en plus jusqu'à la pointe caudale."

This I translate to mean: "On the upper side of the tail one sees in succession, from its root up to two-thirds of its length, two transverse rows of tubercules and two rows of very small granular scales; but from this point onwards the rows of small scales increase more and more towards the tip."

Kinghorn in resurrecting the species says: "The tail of the Leeton specimen is long and thin and without tubercules; in the two from Hillston, in which the tail is rejuvenated, the new part is very short and thin, suggesting to me that the originals were like the Leeton specimen."

Ogilby, in describing intermedius, says "From strophurus it (intermedius) is equally distinguished by the presence of tubercules on the tail."

spinigerus

Type description says "scales small, granular, with a series of black spines along each side of the back and tail, and a group of spines at the base of the latter."

ciliaris

Type description says "Tail short, cyclo-tetragonal, prehensile (?), covered with granular scales; on each side of its upper surface a series of long, curved spines."

intermedius

Ogilby says of the type tail, "short, sub-cylindrical, covered with small granules; seventeen more or less regular transverse bands of strong tubercules."

Victorian. Museum series

It has been mentioned earlier that no Victorian specimen has spines on the tail. All possessing their original tail have blunt, sub-conical tubercules which are arranged in from fifteen to seventeen transverse rows. The composition of the rows differs from that described for strophurus by Dumeril and Bibron in that the large tubercules are in single rows, and are separated from one another by four or five rows of granules.

N. Australian. Museum series

The original tail is preserved in less than half of the specimens of this series. Transverse rows of tubercules are not present on the tail of any specimen. On the mid-dorsal area of the tail of two specimens, a few enlarged scales, which bear little or no relation to raised, sub-conical tubercules, are scattered. In the remainder of the series the mid-dorsal area is clothed with small granular scales only.

6. Comment

From the confusion of quotations and comparisons noted above, several facts emerge which have not previously been stressed, but
which must be taken into account when considering the taxonomy of this group of geckos.

Regarding the group as a whole, the writer feels that a larger and more geographically comprehensive collection than is available to him is necessary before the situation can be satisfactorily clarified. Individual variability, added to the distortion so often a part of alcoholic specimens, makes measurement, direct or comparative, an impracticable basis for species diagnosis. Scalation, also, is very variable, but amongst the series examined there does seem to be a disjunction. The demarcation is between forms in which the tail is clothed with a succession of transverse rows of tubercules and granular scales, and those in which the tail is provided with two longitudinal lines of spines, between which there are no tubercules and therefore no transverse bars. However, whether or not the non-spiny forms should be separated, specifically, from the spinigerus-ciliaris group is not of consequence to the present question, for in any case strophurus would be the prior and valid name.

Two facts may be stressed. Firstly, the true strophurus is topotypically a western species and should not be confined, as by some authors, to south-eastern Australia. Secondly, the tail of this species originally was described as having successive, transverse rows of tubercles and granular scales, and is thus closely allied to the specimen later described by Ogilby as intermedius.

Victorian specimens are obviously within the strophurus group but, apart from their geographical remoteness from the type locality, they also disagree in some minor characters such as the scalation of the dorsal area and the constitution of the transverse scale rows on the tail. So, also, does Ogilby's intermedius, with which the Victorian specimens closely agree. Normal variation suggests that such differences are not sufficiently great to separate the forms into species, and the position may therefore be set out as follows:

Diplodactylus strophurus strophurus D. and B.

1839. Phyllodactylus strophurus Dumeril and Bibron, Erp. Gen., vol. 3, p. 397, baie des Chiens marins, W. Aust. (Quoy and Gaimard).
Range, Western Australia.

Diplodactylus strophurus intermedius Ogilby

1892. Diplodactylus intermedius Ogilby, Rec. Aust. Mus., vol. 2, p. 10, interior of New South Wales.

Represented in the National Museum collections by 31 specimens from North-Western Victoria and 4 specimens from Purnong, South Australia.
Range, Western New South Wales, N. W. Victoria, E. South Australia.

References

1. 1827 Freycinet, L., Voy. Autour du Monde, Historique, vol. 1, pp. 470-86.
2. 1920 Zietz, F. R., Rec. Sth. Aust. Mus., vol. 1, p. 185.
3. 1929 Kinghorn, J. R., Rec. Aust. Mus., vol. 17, p. 81.
4. 1934 Loveridge, A., Bull. Mus. Comp. Zoo. Harvard, vol. 77. No. 6, p. 303.

[^0]: *The mosses and hepatics of the Expedition, numbering about 30 species, are now determined and will form the subject of a special report.

[^1]: ${ }^{1}$ Gabriel, J. C. "Catalogue of the Land Shells of Victoria," Proc. Roy. Soc. Vict., Vol. 43, Pt. 1 (n.s.), 1930, p. 62.
 "Additions to and Alterations in the Catalogue of the Land Shells of Victoria," Mem. Nat. Mus. Vict., Vol. 15, 1947, p. 109.
 "The Freshwater Mollusca of Victoria," Mem. Nat. Mus. Vict., Vol. 11, 1939, p. 100.

[^2]: *Numbers in parentheses are registered numbers in the palaeontological collections of the following institutions: M.D.V. = Mines Department, Victoria; N.M.V. = National Museum of Victoria.

