

$$
\begin{gathered}
S B \\
63 \\
D A R \\
Q
\end{gathered}
$$

$$
\begin{aligned}
& 63 \\
& \text { DAR }
\end{aligned}
$$

$$
Q
$$

PHYTOLOGIA;

 OR THEPHILOSOPHY

OF

AGRICULTURE

AND

- GARDENING.

WITH THE THEORY OF DRAINING MORASSES, AND WITH AN

IMPROVED CONSTRUCTION OF THE DRILL PLOUGH.

By ERASMUS DARWIN, M.D.F.R.S:
AUTHOR OF ZOONOMIA, AND OF THE BOTANIC GARDEN.

Suadent hec Creatoris leges a fimplicibus ad compofita. Lin. Ord. Nat.

LONDON:
PRINTED FOR J. JOHNSON, ST PAUL'S CHURCH-YARD; BET. \#SNSLEY, SOLT COURT, FLEET STREET, 1800

DEDICATION.

To Sir John Sinclair, Baronet, to whofe unremitted exertions, when Prefident of the Board of Agriculture, many important improvements in the cultivation of the earth were accomplifhed and recorded; this Work, which was began by the infligation of his letters to the author, is dedicated with great refpect.

Derby, Jan. I, 1799.

CONTENTS:

Introduction.

PART THE FIRST. PHYSTOLOGYOF VEGETATION.

Sect. I. Individuality of the Buds of Vegetables:
II. Their Abforbent Veffels.
III. Their Umbilical Veffels.
IV. Their Pulmonary Arteries and Veins.
V. Their Aortal Arteries and Veins.
VI. Their Glands and Secretions.
VII. Their Organs of Reproduction.
VIII. Thbeir Mufcles, Nerves, and Brain.

PART THE SECOND.

 economy of vegetation.1X. The Growth of Seeds, Buds, and Bulbs.
X. Manures, or the Food of Plants.
XI. Of Draining and Watering Lands.
XII. Aeration and Pulverization of the Soil。
XIII. Of Light, Heat, Electricity.
XIV. Difeafes of Plants.

PART THE THIRD.

AGRICULTURE AND HORTICULTURE.

XV. Production of Fruits.
XVI. Production of Seeds.
XVII. Production of Roots and Barks.
XVIII. Production of Leaves and Wood.
XIX. Production of Flowers.
XX. Plan for difpofing a Part of tbe Syfiem of Limneus into more Natural Clafes and Orders.

A PPENDIX.
Improved Conftruction of the Drill Plougb.

INTRODUCTION.

Agriculture and Gardening, though of fuch great utility in producing the nutriment of mankind, continue to be only Arts, confifting of numerous detached facts and vague opinions, without a true theory to connect them, or to appreciate their analogy; at a time when many parts of knowledge of much inferior confequence have been nicely arranged, and digefted into Sciences.

Our imperfect acquaintance with the phyfiology and economy of vegetation is the principal caufe of the great immaturity of our knowledge of Agriculture, and Gardening. I fhall therefore firft attempt a theory of vegetation, deduced principally from the experiments of Hales, Grew, Malpighi, Bonnet, Du Hamel, Buffon, Spallanzani, Prieftley, and the Philofophers of the Linnæan School, with a few obfervations and opinions of my own; fome of which have in part already appeared in Zoonomia, and in the notes to the Botanic Garden, but are here corrected and enlarged. To the former of which ${ }^{3}$ works I hope this may be efteemed a fupplement, as it is properly a. continuation of the fubject.

My inducement to commence this work, after it was fuggefted to me by the letters of Sir John Sinclair, was a belief, that the experiments and obfervations already made on the growth of plants, with the modern improvements in chemiftry, were fufficiently numerous and accurate for the eftablifhment of a true theory of vegetation; fo much wanted to connect the various facts in the memory, to appreciate their value, and to compare them with each other; and finally to direct the profecution of future experiments to ufeful purpofes.

P HYTOLOGIA.

PART THE FIRST.

PHYSIOLOGY OF VEGETATION.

```
S E C T. I. THE INDIVIDUALITY OF THE BUDS OF VEGETABLES.
```

1. Vegetables are inferior animals. A bud torn from a tree will grow; vines and bawtborns fo planted. Many kinds of fruit ingrafted on one tree. 2. Tbe bark and branches of bollow trees remain alive. Caudex of berbaceous plants. Caudex of buds. 3. Which defcending, form a new bark over the old one. Tbefe bark veffels occafionally inofculate. Upper lip of wounds of the bark grows downwards. 4. Flower-buds are individual beings; do not fo certainly grow by inoculation as leaf-buds; are biennial plants like leaf-buds, but die in autumn without enlarging the fize of the tree by their progeny. 5. In what vegetables differ from animals; they bave not mufcles of locomotion; nor organs of digeftion. 6. In what they refemble animals. They bave abforbent, umbilical, placental, and pulmonary veffels, arteries, glands, organs of reproduction, with mufcles, nerves, and brain. 7. Progress of a young bud, and of a feed. The plumula, radicle, and caudex of a bud. 8. Buds and jeeds are biennial beings. How they differ. Tbe difunion of the pitb difinguibes buds from each other, and tbus evinces their individuality.
2. We have fo accuftomed ourfelves to confider life and irritability to be affociated with palpable warmth and vifible motion, that we find a renitency in ourfelves to afcribe them to the comparatively cold'and motionlefs fibres of plants. But to reafon rightly on many vegetable phenomena we fhall find it neceffary firft to fhew, that vegetables are in reality an inferior order of animals.

If a bud be torn from the branch of a tree, or cut out atid planted
in the earth with a glafs cup inverted over it, to prevent the exhalation from being at firft greater than its power of abforption ; or if it be inferted into the bark of another tree, it will grow, and become a plant in every refpect like its parent. This evinces that every bud of a tree is an individual vegetable being; and that a tree therefore is a family or fwarm of individual plants, like the polypus, with its young growing out of its fides, or like the branching cells of the coral-infect.

The prefent moft approved method of propagating vines in hothoufes confifts in cutting off a fingle eye of a vine-ftalk with about an inch of the fem above the eye, and two or three inches below it ; and fetting this aflant in the bark-bed with the eye about an inch or lefs beneath the furface, pointing upwards; and I have feen a quickfet or hawthorn hedge, cretægus, propagated in the fame manner by planting twigs in the ground with one bud only above the foil.

Mr. Barns, in a treatife on Propagating Fruit-trees (1759, Baldwin, London) afferts, that he cut a branch into as many pieces, as there were buds or leaves upon it; and wiping the two wounded ends dry, he quickly applied to each a cement previoufly warmed, which confifted chiefly of pitch, and planted them in the earth with unfailing fuccefs. The ufe of this cement I fufpect to confift in its preventing the bud from bleeding to death, though the author afcribes it to its antifeptic quality. And laftly, in the inoculation and ingrafting of fruit-trees, five or fix different kinds of pears are frequently feen on the branches of one tree, which could not then properly be termed an individual being.
2. When old oaks, or willows, lofe by decay almoft all their folid internal wood, it frequently happens, that a part of the fhell of the ftem continues to flourifh with a few healthy branches. Whence it appears, that no part of the tree is alive but the buds, and the bark, and the root-fibres; that the bark is only an intertexture of the caudexes

Sect. I. 2.
OF BUDS.
dexes of the numerous buds, as they pafs down to fhoot their radicles into the earth; and that the folid timber of a tree ceafes to be alive; and is then only of fervice to fupport the numerous family of buds in the air above the herbaceous vegetables in their vicinity.

A bud of a tree therefore, like a vegetable arifing from a feed, confifts of three parts; the plumula or leaf, the radicle or root-fibres, and the part which joins thefe two together; which is called the caudex by Linneus when applied to intire plants; and may, therefore, be termed caudex gemmæ when applied to buds.

In herbaceous plants the caudex is generally a broad flat circular plate, from which the leaf-Atem afcends into the air, and the radicles or root-fibres defcend into the earth. Thus the caudex of a plant of wheat lies between the ftem and the radicles, at the bafis of the lowermoft leaf, and occafionally produces new flems and new radicles from its fides. Thus the caudex of the tulip lies beneath the principal bulb, and generates new fmaller bulbs in the bofom of each bulb-leaf, befides one principal or central bulb; the caudex of orchis, and of fome ranunculufes, lies above their bulbous roots; whereas the caudexes of the buds of trees conflitute the longitudinal filaments of the bark, reaching from the plumula or apex of the bud on the branch to the bafe of it, or its root-fibres beneath the foil.

Nor is this elongation of the caudexes of the buds of trees tunalogous to what bappens to fome herbaceous plants, as in wheat ; when the grain is buried two or three inches beneath the foil, an elongation of the caudex occurs almof up to the furface, where another fet of fibrous roots are protruded, and the upright ftem commences. The fame happens to tulip-roots when planted too deep in the earth, as I have witneffed, and I fuppofe to thofe of many other vegetables.

This caudex of the buds of trees not only defcends as above defcribed, but alfo afcends from each bud to that above it; as on the
long fhoots of vines, willows, and briars; in this refpect refembling the wires of ftrawberries and other creeping plants. Thus the caudex of perennial herbaceous plants confifts of a broad plate, buried beneath the foil to protect it from the froft; while the caudex of buds of trees confilts of a long vafcular cord extending from the bud on the branch to the radicle beneath the earth, and endures the winter frofts without injury.
3. Thefe buds are properly biennial plants, as they are generated in one fummer, and in the next either produce feeds and die, or produce other buds, whofe caudexes form a new bark over the former one, that of the laft year firft becoming a fofter or more porous wood, called alburnum, or fap-wood, and gradually hardening into folid timber, which ceafes to poffefs vegetable life.

Thefe long caudexes of the individual buds of trees, which conftitute their bark, are well feen in the cloth made from the mulberrybark brought from Otaheite. On infpecting this cloth the long fibres are feen in fome places to adhere, where it is probable they occafionally inofculate, like fome of the veffels in animal bodies; becaufe when fome buds are cut off, the neighbouring ones flourifh with greater vigour, being fupplied with more of the nutritious juices.

This informs us why the upper lip of an horizontal wound made in the bark of a tree grows downwards with fo much greater expedition than the under one grows upwards to meet it ; as the defcending caudexes of the individual buds are fupplied directly with nutriment from the vegetable arteries after the oxygenation of the blood in their leaves; whereas the under lip of the wound is nourifhed only by the lateral or inofculating veffels, which fupplies us with another argument againft the individuality of trees, and in favour of that of buds.
4. The buds producing flowers are each an individual being as well

Sect.I. 5, 6. OF BUDS. 5 as the leaf-buds above defcribed, though they are probably not fo eafily capable of tranfplantation into the bark of other trees by inoculation; ass, I believe, it is from the miftake of the gardeners in choofing flower-buds inftead of leaf-buds to inoculate with, that fo many buds die in this mode of propagation. Nor does the exiftence of many male and female parts in oue flower deftroy its individuality any more than the number of paps of a fow or bitch, or the number of their cotyledons, each of which during geftation belongs to a feparate fetus.

The flower-buds as well as the leaf-buds are properly biennial plants, as they are produced in the fummer of one year, and perifh in the autumn of the next; but as the new buds generated by leafbuds continue to adhere to the parent, they are furnifhed with their numerous caudexes, which form a new bark over the old one, whereas the flower-buds generate feeds, which when mature fall upon the ground, and thus they die in the autumn without increafing the fize of the parent-tree by the adhefion of their progeny like the leaf-buds.
5. Thefe buds of plants, which are each an individual vegetable being, in many circumftances refemble individual animals; but as animal bodies are detached from the earth, and move from place to place in fearch of food, and take that food at confiderable intervals of time, and prepare it for their nourifhment within their own bodies, after it is taken; it is evident, that they muft require many organs and powers, which are not neceffary to a ftationary bud. As vegetables are immoveably fixed to the foil, from whence they draw their aliment ready prepared, and this uniformly, and not at returning intervals; it follows, that in examining their anatomy we are not to look for mufcles of locomotion, as legs and arms; nor for organs to receive and prepare their aliment as a mouth, threat, fomach, and bowels, by which contrivances animals are enabled to live many hours without new fupplies of food from without.
6. The parts, which we may expect to find in the anatomy of vegetables,
vegetables, which correfpond to thofe in the animal economy, are firft a threefold fyftem of abforbent veffels, one branch of which is defigned to imbibe the nutritious moifture of the earth, as the lacteals imbibe the chyle from the ftomach and inteftines of animals; another to imbibe the water of the atmofphere, opening its mouths on the cuticle of the leaves and branches, like the cutaneous lymphatic veffels of animals; and a third to imbibe the fecreted fluids from the internal cavities of the vegetable fyftem, like the cellular lymphatics of animals.

Secondly, in the vegetable fetus, as in feeds or buds, another fyftem of abforbent veffels is to be expected, which may be termed umbilical veffels, as defcribed in Sect. III. of this work, which fupply nutriment to the new bud or feed, fimilar to that of the albumen of the egg, or the liquor amnii of the uterus; and alfo another fyftem of arterial veffels, which may be termed placental ones, correfponding with thofe of the animal fetus in the egg or in the womb, which fupply the blood of the embryon with due oxygenation before its nativity.

Thirdly, a pulmonary fyftem correfpondent to the lungs of aerial animals, or to the gills of aquatic ones, by which the fluid abforbed by the lacteals and lymphatics may be expofed to the influence of the air. This is done by the leaves of plants, or the petals of flowers; thofe in the air refembling lungs, and thofe in the water refembling gills.

Fourthly, an arterial fyftem to convey the fluid thus elaborated to the various glands of the vegetable for the purpofes of its growth, nutrition, and fecretions; and a fyftem of veins to bring back a part of the blood not thus expended.

Fifthly, the various glands which feparate from the vegetable blood the honey, wax, gum, refin, farch, fugar, effential oil, and other fecretions.

Sixthly, the organs adapted to the lateral or visiparous generation
of plants by buds, or to their fexual or oviparous propagation by feeds.
Seventhly, longitudinal mufcles to turn their leaves to the light, and to expand or clofe their petals or their calyxes; and vafcular mufcles to perform the abforption and circulation of their fluids, with their attendant nerves, and a brain, or common fenforium, belonging to each individual feed or bud ; to each of which we fhall appropriate an explanatory fection.
7. An embryon bud, therefore, whether it be a leaf-bud or a flowerbud, is the viviparous offspring of an adult leaf-bud, and is as individual as a feed, which is its oviparous offspring. It confifts, firft, of a central organization or caudex like the corculum of a feed, which contains the rudiments of arteries, veins, abforbent veffels, and glands, with an internal pith or brain.

Secondly, it is furnifhed with a fyftem of umbilical veffels, which are inferted into the alburnum or fap-wood of the tree, or form a part of it, and defcending into the earth fupply it in the early fpring with its firft nutrition, like the feminal roots, fo called, which pafs from the corculum of the feed, and are fpread on the cotyledons, as feen in the garden bean, reprefented in Plate I. Fig. 1. which is taken from Dr. Grew's Anatomy of Plants.

Thirdly, this umbilical fyftem probably contains alfo what may be termed a placental artery, terminating on the coats of the lateral airveffels, which penetrate the bark of trees horizontally, for the purpofe of oxygenating the blood of the vegetable fetus, like thofe diftributed from the umbilical veffels of the chick on the air-bag at the broad end of the egg. See Sect. II. 4. and III. 1-4.

Fourthly, it contains the rudiments of organs adapted to lateral generation or the production of new buds ; or to fexual propagation, and the confequent production of feeds.

In the early fpring the umbilical veffels fupply the embryon buds of trees with fap-juice, which is then feen to exfude from wounds of
the alburnum, as in the vine, vitis; the birch, betula; and the maple, acer ; which I fuppofe to become oxygenated in the circulation of the vegetable fetus by the horizontal air-veffels of the bark.

As the feafon advances, the leaf-bud puts forth a plumula, like a feed, which ftimulated by the oxygen of the atmofphere rifes upwards into leaves to acquire its adapted pabulum, which leaves conflitute its lungs; it alfo protrudes from its long caudex, which forms the new bark over the old one, a radicle, which fimulated by moifture paffes downwards, and defcends into the earth to acquire its adapted pabulum ; and it thus becomes an adult vegetable being with the power of producing new buds.

The flower-bud under fimilar circumftances puts forth its bractes or floral-leaves, which ferve the office of lungs to the pericarp and calyx; and expands its petals, which ferve the office of lungs to the anthers, and ftigmas, which are the fexual organs of reproduction, and which die and fall off, when the feed is impregnated; and thus, like the leaf-bud, it becomes an adult vegetable being with the power of producing feeds.
8. As the flower-bud produces many feeds during the fummer, fo the leaf-bud produces many budlets during the fummer, as may be feen in the long fhoots of the vine and willow, vitis et falix. In this climate both the buds and feeds are properly biennial vegetables; that is, they are produced in one fummer, and perifh in the next. But the feed differs from the bud in this circumftance, that it drops on the earth, and is thus feparated from its dead parent in the autumn; whereas the bud continues to adhere to its dead parent, and grows over it as it advances.

Now as the internal pith of a bud appears to contain or produce the living principle, like the brain and medulla oblongata, or fpinal marrow of animals, we have from hence a certain criterion to diftinguifh one bud from another, or the parent bud from the numerous budlets,

PLATE I.

PLATE I.

Fig. 1. reprefents the umbilical veffels fpread on the lobes of a bean, when it begins to vegetate, as mentioned in Sect. I. 7. but more particularly defcribed in Sect. III. 1. 3 ; which are believed to confift of a fyttem of abforbent veffels, and another fyftem of placental veffels, for the purpofe of acquiring nutriment, and of oxygenating the vegetable blood. The plate is copied from Grew, Tab. I. f. . I4. a the plumula, b the corculum, $c c$ the lobes. See Sect. I. 7. and III. 1. 3.

Fig. 2. is copied from Malpighi, Tab. II. Fig. 6, and reprefents the longitudinal fibres of the bark of willow, which adhere together, and feparate from each other alternately, with horizontal apertures between them; which are believed to be air-veffels, for the purpofe of oxygenating the blood of the embryon buds, like the air-bag at the broad end of an egg. $b b b$ are the longitudinal filaments of the bark, $a a a$ are the horizontal perforations.
Duhamel obferved by a microfcope fimilar apertures of different diameters in the bark of oak; the fmaller ones he believed to be the excretory ducts of the perfirable matter, and larger ones I fuppofe to be air-veffels. The extremities of fome of thefe in the birchtree ftood above the level of the cuticle. Phyfique des Arbres, Plate I. Fig. 7. and ir. See Sect. I. 7. and II. 4. of this work.

Fig. 1.

Sect. I. 8. OF BUDS. 9

budlets, which are its offspring, as there is no communication of the internal pith between them.

This obfervation was made by flitting the young branches of horfechefnut, x efculus hippocaftanum ; of ahh, fraxinus; of willow, falix ; and of elder, fambucus nigra ; and I plainly difcerned that there exifted no communication of pith between the lateral budlets and their parent fhoots, or between the central larger budlet at the fummit of the branch, and its parent fhoot. This alfo afforded me one reafon to conclude that the different joints of wheat, triticum, of fouthiftle, fonchus, and of teafel, dypfacus, are different buds growing on each other, thofe at the fummit only producing feeds; becaufe there is a divifion which feparates the pith contained in each joint of their hollow ftems, as is further explained in Sect. IX. 2. 4. and 3. 1. and which perfectly evinces the individuality of buds.

1. Roots, leaves, bark, fap-rwood, 乃berwn to abforb by not moifening them, by placing them in water. 2. Abjorbent veffels coloured by a decoction of madder, by dilute ink. They form a ring in the fap-wood beneath the bark, with a ring of arteries exterior to them. 3. Abforbents erroneoufly believed to be air-veffels, are vifibly full of fap-juice in a vine-ftalk. Vegetable veffels bave rigid fides, which do not collapfe, and bence become full of air when cut; not $\int 0$ in animal veffels. 4. Some borizontal veffels in trees are truly air-veffels for the embryon bud, like the air in the broad end of the egg. 5. Abjorbent veffels confift of long cylinders; air will pafs through them either way in the dead vegetable; are not refpiratory organs, as they exift in the roots of trees. May receive air difolved in water. 6. Abforbent veffels alt eitber direet or retrograde. A forked branch in water. An inverted tree. A Jujpended tree. So in the operation of an emetic, and in ruminating cows. 7. They confif of a Spiral line without valves; and by its vermicular contraEtion forcibly carry on their contained fluids either way. 8. Thofe of the root act occafonally in winter; but vines in bot-boufes muft bave their roots guarded from froft in fpring. Accumulated ice deftroys trees in Jpring. 9. They fometimes abfarb poifonous fluids, as spirit of wine, Solution of arjenic, vitriolic acid; roots faid to creep afide from bad joil erroneous. 10. Abjorbents of trees like the receptacle of chyle.
r. THE exiftence of that branch of the abforbent veffels of vegetables, which refembles the lacteals of animal bodies, and imbibes their nutriment from the moift earth, is evinced by their growth, fo long as moifture is applied to their roots, and their quickly withering when it is withdrawn.

Befides thefe abforbents in the roots of plants there are others, which open their mouths on the external furfaces of the bark and leaves to abforb the moifture of the atmofphere, refembling the cutaneous lymphatics of animal bodies; the exiftence of thefe is thewn, becaufe a leaf plucked off and laid with its under fide on water will not wither fo foon as if left in the dry air. The fame if the bark alone of a branch, which is feparated from a tree, be kept moift with water.

A third branch of abforbent veffels opens its mouths on the internal furfaces of the cells and cavities of the vegetable fyftem to abforb the fecreted fluids, after they have performed their adapted offices, fimilar to the cellular lymphatics of animal bodies, as may be fhewn by moiftening the alburnum or fap-wood, and the internal furface of the bark of a branch detached from a tree, which will not then fo foon wither as if left in the dry air unmoiftened.

Another means of demonftrating the abforbent powers of the parts of vegetables is by inferting them into glafs tubes, or into tall narrow veffels filled with water, and obferving how much more rapidly the furface of the water fubfides than in fimilar veffels by evaporation alone.
2. By the following experiment thefe vegetable abforbent veffels were made agreeably vifible by a common magnifying glafs. I placed in the fummer of 1781 fome twigs of a fig-tree with leaves on them about an inch deep in a decoction of madder (Rubia tinct), and others in a decoction of logwood (hæmatoxylum campechenfe), along with fome fprigs cut off from a plant of picris. Thefe plants were chofen becaufe their blood is white. After fome hours, and on the next day, on taking out either of thefe, and cutting off from its bottom about an eighth of an inch of the falk, an internal circle of red points appeared, which I believed to be the ends of abforbent veffels coloured red with the decoction, and which probably exifted in the newly formed alburnum, or fap-wood, while an external ring of arteries was.
feen
feen to bleed out haftily a milky juice, and at once evinced both the abforbent and arterial fyftem.

Many fimilar experiments were made by M. Bonnet, by placing parts of the ftem or roots of various vegetables, as of kidney-beans, peach-tree, and elder, in dilute ink; in all thefe the veffels of the bark were uncoloured, and thofe of the pith; but thofe beneath the bark, which he terms woody, were coloured black, which I fuppofe to have been the circle of abforbent veffels above mentioned. Ufage de Feuilles, Plate XXIX.
3. Thefe abforbent veffels have been called bronchia by Malpighi and Grew, and fome other philofophers, and erroneoully thought to be air-veffels; in the fame manner as the arteries of the human body were fuppofed to convey air by the antients, till the great Harvey by more exact experiments and jufter reafoning evinced, that they were blood-veffels. This opinion has been fo far credited becaufe air is feen to iffiue from wood, whether it be green or dry, if it be covered with water, and placed in the exhaufted receiver of an airpump; and thefe veffels have therefore been fuppofed to conftitute a vegetable refpiratory organ ; but it will be fhewn hereafter, that the leaves of plants are their genuine lungs, and that the abforbent veffels and arteries become accidentally filled with air in the dead parts of vegetables.

For as the veffels of vegetables are very minute, and have rigid coats, their fides do not collapfe when they are cut or broken, as, their juices flow out or exhale; they muft therefore receive air into them. This may be readily feen by infpecting with a common lens the end of a vine-ftalk two or three years old, when cut off horizontally. At firft the veffels, which are feen between the partitions radiated from the center, appear full of juice; but in a minute or lefs this juice either paffes on, or exhales; and the veffels appear empty, that is filled with air. This experiment I have twenty times repeated with
with uniform fuccefs, and it is fo eafily made by haftily applying a common lens after the divifion of a vine-ftalk, that I think there can be no error in it; and it is wonderful that thefe veffels, which are found in the alburnum, and confift of a firal line, whether they may properly be called abforbent or umbilical veffels, or confift of both, fhould ever have been fuppofed to be air-veffels.

There is neverthelefs an experiment by Dr. Hales, which would at firft view countenance the affertion, that vegetables abforb air. He cemented the lower end of a fmall twig of a tree with leaves on it into a glafs tube about four inches long, and fet the other end of the tube an inch deep in water, and obferved in a little time, that the water rofe an inch in the tube; but this muft happen from the vegetable veffels emptying themfelves by the afcent of their juices, and having rigid coats, and therefore not contracting, a portion of the air was forced into them by the preffure of the atmofphere, as in the above obfervation on the vine-branch cut horizontally.

This reception of air does not happen to the veffels of animal bodies, when they are emptied of their blood, owing to the lefs rigidity of their coats; whence the weight of the atmofpheric air preffes their fides together, and clofes the veffel, inftead of paffing into it. In the fame manner no air would pafs into the veffels of the lungs of animals in refpiration, unlefs the preffure of the atmofphere on their fides was prevented by the action of the mufcles, which enlarge the cavity of the thorax by elevating the ribs.
4. There are neverthelefs certain horizontal veffels of large diameter, which pafs through the bark of trees to the alburnum, which probably contain air, as they are apparently empty, I believe, in the living vegetable; for the bark of trees confifts of longitudinal fibres, which are joined together, and appear to inofculate at certain diftances, and recede from each other between thofe diftances like the mehes of a net, in which fpaces feveral horizontal apertures are feen to penetrate through the bark to the alburnum, according to Malpighi,
who has given a figure of them, which is copied in Plate I. Fig. 2. of this work. Very fine horizontal perforations through the bark of trees are alfo mentioned by Duhamel, which he believes to be perfpiratory or excretory organs, but adds, that there are others of much larger diameter, fome round and fome oval, and which in the birchtree ftand prominent, and pierce the cuticle or exterior bark. Phyfique des arbres, T. i.Tab. III. Fig. 8. and If.

Thefe veffels probably contain air during the living flate of the tree, as they pierce the external bark, which frequently confifts of many doubles, like a roll of linen cloth; as a new cuticle is annually produced beneath the old one, like a new fcarf-fkin beneath a blifter in animal bodies; and the old one fometimes continues, and fometimes peels off like the cuticle of a ferpent, as is feen on the trunks of many cherry-trees and birches. Thefe veffels, when contracted in dry timber, appear like horizontal infertions in many planed boards, in which the firal abforbent veffels become by their contraction the longitudinal fibres, as appears in the figure of a walking cane given by Dr. Grew, Tab. XX.

Thefe horizontal veffels I fuppofe to contain air inclofed in a thin moilt membrane, which may ferve the purpofe of oxygenating the fluid in the extremities of fome fine arteries of the embryon buds, in the fame manner as the air at the broad end of the egg is believed to oxygenate the fluids in the terminations of the placental veffels of the embryon chick, as further noticed in Sect. III. 2. 6. and III. I. 4.
5. The abforbent veffels of trees in paffing down their trunks confift of long hollow cylinders, whofe fides I believe to be compofed of a firal line, and are of fuch large diameters in fome vegetables as to be vifible to the naked eye, when they become dry and empty, as in cane. Air will rapidly pafs through thefe veffels in either direction, as may be feen in lighting a cane fome inches long at either end, and drawing the fmoke through the pores of it into the mouth, as through a tobacco-pipe. Dr. Hales readily paffed both air and water through
a recent vegetable ftick both upwards and downwards, by fetting one end of it in a cup of water in the receiver of an air-pump, and exhaufting the air, Veg. Stat. p. 154 ; whence he concludes with Grew, that there are air-veffels or lungs for the purpofe of refpiration, and that they receive atmofpheric air in their natural fate,

There is one objection to their ufe as air-veffels, which is, that they have no communication with the horizontal air-veffels above defcribed ; for by blowing forcibly through a piece of dry cane immerfed deep in water, no air is feen to bubble out of the fides, but only from the bottom of it. It may indeed be fuppofed, that the longitudinal cavities in dry cane may not confift of the abforbent veffels above defcribed, but of the interfices between them, as the coats of thofe abforbent veffels, confifting of a firial line, may be thought to clofe up by their vermicular contraction; and their interftices, confifting of vegetable cellular membrane, may be fuppofed, when dry, to become the tubes in cane. But in this cafe the longitudinal canals in dry cane would not be circular cylinders, whereas they are fo reprefented in a figure of a piece of cane much magnified by Dr. Grew, Tab. XX. who has in the fame figure given the mouths of horizontal air-veffels of circular form and larger diameter.

But there is another infuperable objection to this idea of their ufe, which is, that thefe veffels equally exift in the roots of plants as in their trunks; and according to Malpighi with larger diameters; and probably terminate externally only in the roots; and, as they are there not expofed to the atmofphere, they cannot ferve the purpofe of refpiration; air neverthelefs in its combined ftate, or even as diffolved in water, may be abforbed by thefe veffels ; and may appear, when the preffure of the atmofphere is removed in the exhaufted receiver; or when expanded by heat, as is feen in the froth at one end of a green ftick, when the other end is burning in the fire.
6. Thefe vegetable abforbents differ from thofe of animals in the facility, with which they carry their fluids either way; for a forked
branch of a tree, torn from its trunk, and having one of its forks with the leaves on it inverted in a veffel of water, will continue for feveral days unwithered, nearly as well as if the whole had been placed upright in the water. A willow rod on the fame account will grow almoft equally well, whether the apex or bafe of it be fet in the ground ; and Dr. Bradley, I think, mentions a young goofeberry-tree having been taken up, and replanted with its branches in the earth, and its roots in the air ; and that the branches put forth root-fibres, and the roots put forth leaf-buds. There is likewife a curious experiment by Dr. Hales, who attached the eaftern branch of a young tree to its neighbour by inarching, and its weftern branch to another of its neighbours in the fame manner; and after they were united, he cut the ftem of the middle tree from its root, and thus left it hanging in the air by its two inarched arms, where it flourifhed with confiderable vigour.

This power of carrying their fluid contents in a retrograde direction is alfo poffeffed in fome degree by the abforbents of animals, particularly in their difeafed ftate, and even in the operation of an emetic, as fhewn in Zoonomia, Vol. I. Sect. 29; and is vifible in the œfophagus or throat of cows, who convey their food firft downwards, and afterward upwards by a direct and retrograde motion of the annular cartilages, which compofe the gullet, for the purpofe of rumination.
7. The ftructure of thefe large vegetable abforbents, erroneoully called air-veffels, probably confifts of a fpiral line, and not of a veffel interrupted with valves, and differs in this conftruction from animal lymphatics; for firft, on breaking almoft any tender vegetable, as a laft year's fprig of a rofe-tree, or the middle rib of a vine-leaf, and gradually extending fome of the fibres, which adhere the longeft, this firal ftructure becomes vifible even to the naked eye, and diftmetly fo by the ufe of a common lens, as is delineated in Duhamel's Phifique des arbres, T. I. Tab. II. Fig. 17, 18, 19, and in Plate LI.
and LII. of Grew's Anatomy of Plants (fol. edit.), and by this eafy experiment both that abforbent fyftem, which imbibes nourifhment from the earth, and brings it to the caudex of each bud; and that which imbibes moifture from the air, and a part of the perfpirable matter on the furface of the leaf, and brings it to the caudex of each bud, are agreeably demonftrated. See Plate II. Fig. I. And that thefe veffels of large diameter, with their fides confifting of a firal line, are not arteries or veins, is evinced by infpecting a ftem of euphorbia, fpurge; or the ftalk of a fig-leaf, ficus, immediately on dividing them, as the milky juice oozes, from a ring of veffels exterior to thofe large abforbents.

Secondly, that thefe veffels are not furnifhed with frequent valves is countenanced by the experiments before mentioned in No. 5 of this fection, one of which confifted of lighting a piece of cane, and draw ing the fmoke through it, as through a tobacco-pipe, in either direction; and the other in placing a bit of recent twig with one end of it in a cup of water in the receiver of air-pump, and caufing both air and water to pafs through it in either direction.

If the minuter branches of vegetable abforbents be of a fimilar Aructure, it is eafy to conceive how a vermicular or periftaltic motion of the veffel, beginning at the loweft part of it, each fpiral ring fucceffively contracting itfelf,' till it fills up the tube, muft forcibly pufh forwards its contents without the aid of valves; and if this vermicular' motion fhould begin at the upper end of the veffel, it muft with equal facility carry its contained fluid in a retrograde or contrary direction.
8. As the abforbent veffels in the roots of plants are protected from the froft in fome degree by the earth which covers them; they feem at all times to be fufficiently alive to drink up and pufh forwards their adapted fluid, fince if a branch of a tree is brought into a warm room, it will in general pullulate in the winter, as foon as the veffels of the upper part of the branch are rendered fufficiently irsitable by warmth to act in concert with the abforbents of the root, D Neverthelefs,

Neverthelefs, in fevere frofts it is neceffary to guard all the parts of the ftem which is expofed to the open air, as is experienced in the vines brought through holes into hot-houfes, otherwife after the buds are put out a fevere froft fo affects the ftems on the outfide of the houfe as to deftroy all the fruit of that year. Kenedy on Gardening, Vol. I. p. 270. And it is obferved in Mr. A. Aikin's Natural Hiftory of the Year, that much ice was carried from the ftreets in London in 1594, and piled round fome elm trees in Moorfields, many of which were deftroyed in the enfuing fpring by the flow melting of it.
9. The abforbent veffels of vegetables, like thofe of animal bodies, are liable to err in the felection of their proper aliment, and hence they fometimes drink up poifonous fluids, to the detriment or deftruction of the plant. Dr. Hales put the end of a branch of an apple-tree, part of which was previoufly cut off, into a quart of rectified fpirit of wine and camphor, which quantity the fem imbibed in three hours, which killed one half of the tree. Veg. Stat. p. 43 . Some years ago I fprinkled on fome branches of a wall-tree a very flight folution of arfenic, with intent to deftroy infects; but it at the fame time deftroyed the branches it was thrown upon. And I was informed by Mr. Wedgewood, that the fruit-trees planted in his garden near Newcafle in Staffordfhire, which confifted of an acid clay beneath the factitious foil, became unhealthy as foon as their roots penetrated the clay; and on infpection it appeared, that the fmall fibres of the roots, which had thus penetrated the clay, were dead and decayed, probably corroded by the vitriolic acid of the clay, beneath which is a bed of coals.

It is, however, afferted by M. Buffon, that the roots of many plants will creep afide to avoid bad earth, or to approach good. Hift. Nat. Vol.III. But this is perhaps better accounted for by fuppofing, that the roots put out no abforbent veffels, where they are not fimulated by proper juices; and that an elongation of roots in confequence only fucceeds, when they find.proper nutriment.
10. Thefe long and large cylindrical abforbent veffels, which pafs from

PLATEII.

PLATE II.

Reprefents the fpiral veffels of a vine-leaf confiderably magnified, copied from Grew, Tab. LI. On flowly tearing afunder almoft any tender vegetable fhoot or leaf, the fpiral ftructure of thefe veffels becomes vifible to the naked eye. They have been erroneoufly believed to be air-veffels; but as they exift equally in the roots of plants, as in their barks, and have no communication with the horizontal perforations of the cuticle of the bark, they cannot be air-veffels, and are therefore believed to conititute the abforbent veffels of the adult vegetable, and the umbilical ones of the embryon bud. A fimilar plate of the fpiral ftructure of thefe veffels is given by Duhamel. As they are larger than the vegetable blood-veffels, and pafs along the whole caudex of each bud from its plumula to its radicle, as well as to the cutaneous abforbents, thofe of the trunks of trees or herbaceous plants may be thought to refemble the receptaculum chyli of animal bodies. See Sect. II. 7.

Secr. II. io. ABSORBENT VESSELS.

from the roots of trees up to the fummit of the caudex of each bud at the foot-ftalk of the leaf, I fuppofe to be analogous to the receptacle of the chyle of animals, as the fmall abforbent branches of the roots probably unite beneath the foil into thofe large veffels, which are fo eafily vifible; hence the caudex of each bud confifts of an elongation of abforbent veffels, and of arteries and veins reaching from the union of the root-branches to the foot-Italk of each leaf, and the plumula of the bud in its bofom, as defcribed in Sect. I. 7.

S E C T. III.

I. I. Seeds are a Sexual offspring like eggs. Some Seeds and eggs contain two kinds of nouribment. Other Jeeds and Jparon of fifb contain but one kind of nouribhment. 2. Air-bag in eggs, and in fome fruits; not in feeds, nor in Spawn. 3. Veffels improperly called umbilical; those properly called umbilical confift of abjorbents, and a placental artery and vein. Seed embryon and cbick begin their groweth by the action of their abjorbents. 4. Seminal roots of Grew, and cborion of the chick of Malpigbi, are repiratory organs. 5. In what the cbick differs from the feed-embryon. Notbing is found in feeds fimilar to the yolk of the egg. II. I. Buds and bulbs are a paternal offspring; exactly refemble their parents. 2. Have umbilical veffels, in which the Sap-juice rifes in the fpring. Why the bark is then eafily Separated from the alburnum. 3. Sugar in the Sap-juice exits in the alburnum, and in roots. Dry rot of timber owing to fermentation. Why lower branches first pullulate. 4. Sap afcends not by capillary attraction, but by the irritative motions of abforbent veffels. Inftances of vegetable irritability. Abforbent veffels fometimes alt as capillary fyphons, and as capillary tubes. 5. Umbilical veffels coalefce. Why trees, do not bleed in fummer. 6. Umbilical veffels of buds like thofe of jeeds. Poffess air-veffels like thoje of the cbick. Buds, like eggs, feparate from the parent; their umbilical vefels improperly called placental ones, as they convey nutriment; bence plants become dwarfs if the cotyledons of the feed are defroyed. Birch-trees die if fmeared with oil or pitch. 7. Refervoir of nutriment in the alburnum of trees, and in the roots of biennial plants. Experiment of boiling the alburnum and fermenting the liquor. As buds are formed at midfummer, they may then be tranfplanted by inoculation, but in the fpring muft be ingrafted, and grow by inofculation of veffels, like inflamed parts of animals. 8. A paufe in vegetation at midfummer. New umbilical veffels aEt in autumn, and the bark feparates eafly as in fpring. Honey-decw. Sap-juice rifes in winter occafionally both in
ever-green trees and deciduous ones, and after the fummit of the plant is cut off: 9. Umbilical veffels and abforbents feen in a vine-flalk, the latter exterior to the former. Exif in the alburnum.
I. 1. The feeds of vegetables are a fexual offspring correfponding with the eggs of animals, and contain, like them, not only the rudiment of the new organization, but alfo a quantity of aliment laid up for its early nourifhment.

The eggs of birds contain two kinds of albumen, or white, one lefs vifcid than the other, which is firft confumed, and the yolk or vitellum, which is drawn up into the bowels of the chick at its exclufion from the fhell, and ferves it for nourifhment a day or two, till it can learn to felect and digeft grains or infects. In like manner many feeds are furnifhed with two kinds of nourifhment, the mucilaginous or oily meal of the feed-lobes, and the faccharine or acefcent pulp of the fruit, as in pears, plums, cucumbers, which fupply nutriment to the embryon plant, till it is able to ftrike into the earth fufficient roots for the purpofe of abforbing its nutritious juices.

The fpawn of fifh, and of frogs, and of infects, as of fnails and bees, which are almoft as innumerable as the feeds of plants, and are in the fame manner excited into life by the warmth of the fun, are analogous to thofe feeds, I believe, which are not furrounded with fruit, and which contain but one kind of nourifhment for the embryon plant, as grains of corn, and legumes; but perhaps thefe have not yet been fufficiently attended to by philofophers.

Thefe eggs of animals and feeds of vegetables are produced by the congrefs of male and female organs; the former fupplying the fpeck of animation or cicatricula in the egg, and the corculum or heart in the feed; and the latter producing the nidus, or neft for its reception, and the nutritive material for its firf fupport. Thus the eggs of fowls are formed long before they are impregnated, and are fometimes laid in their unimpregnated ftate; and the feeds of legumes are vifible
vifible many days before the flower opens, and in confequence before they are impregnated, as obferved by Spallanzani.
2. The eggs of birds contain a bag of air at their broad end for the purpofe of oxygenating the blood of the chick. In this one circumfance the feeds of plants feem to differ from the eggs of birds, as they contain no air-bag, though it is probable they may agree with the fpawn of filh, which I fuppofe poffefs no included air. When the feeds fall on the ground in their natural ftate of growth, or are buried an inch or two beneath the foil, which has recently been turned over, and thus contains much air in its interftices, their coats do not continue dry like the fhells of eggs during incubation, but immediately become moift membranes, like the external membrane of the fpawn of filh immerfed in water, and in confequence can admit the oxygenation of the air through them to an adapted fet of arteries on their internal furface, according to the curious obfervations of Dr. Prieftley on the oxygenation of the blood by the air through the moift membranes of the lungs.

It fhould be here obferved, that many feeds, before they fall on the moilt earth, are included in a bag of air, as thofe of the ftaphylea, bladder-nut ; of the phyfalis alhekengi, winter-cherry; of colutea, bladder-fenna; in the pods of peas and beans; in the cells furrounding the feeds of apples and pears; and in the receptacle of ketmia, which probably ferves to oxygenate the blood of the infant feed, which in thefe plants may thus be of forwarder growth, before it is thed upon the foil.
3. There exifts a feries of glands, and their ducts, improperly called umbilical veffels by fome writers, which fupplies the feed with nourifhment from the parent plant, fo long as it adheres to the ovarium of its mother, as the veffels by which a pea adheres to the pod, in which it is included; in fruits and nuts, where the kernel is covered with a ftone or thell, a long cord of veffels paffes into the bottom of the ftone or fhell, and rifing to the top bends round the lobes of the ker-
nel, and is inferted near or into the corculum or heart of the feed, where the living principle refides, and affords not only prefent nutrition to the vegetable embryon, but alfo fecretes the farinaceous or oily materials for its future nourihment, which conftitute the cotyledons of the feed.

But the veffels, which may be properly called umbilical, pafs from the heart or corculum of the feed, which is the living embryon of the future plant, into the feed-lobes, commonly called cotyledons, and imbibe from thence a folution of the farinaceous or oily matter there depofited for the nutriment of the new vegetable. Thefe veffels are delineated in their magnified appearance by Dr. Grew, Plate LXXIX. fol. edition, and are by him termed feminal roots. See Plate I. Fig. I.

Thefe umbilical veffels probably confift of a fyftem of abforbents, which fupply nutriment to the embryon plant from the cotyledons of the feed, and alfo of a fytem of placental arteries and veins fpread on the humid membrane, which covers the cotyledons, and is moiftened by its contact with the earth, for the purpofe of oxygenating the vegetable blood. This idea is countenanced by many plants bringing up their cotyledons, or feed-lobes, out of the ground into the air, which are then converted inte leaves, and perform the office of lungs, after they have given up beneath the foil the nutriment, which they previoufly contained, as in the young kidney-bean, phafeolus; fo the white corol of the helleborus niger, chriftmas rofe, is changed into a green calyx by loofing one fyftem of arteries after the impregnation of the feeds.

The feed-embryon therefore refembles the chick in the egg, firft as when vivified by the influence of external warmth they both begin their growth by the abforbent fyftem of veffels being ftimulated into action by their adapted nutriment; and the fluids thus pufhed forwards ftimulate into action the other parts of the fyftem, confifting at firft principally of arteries and glands.

Secondly, they feem torefemble each other in their poffeffing each of
of them an abforbent fyftem of veffels, which imbibe the nutritious matters laid up for them in the albumen or white of the egg, and in the cotyledons or lobes of the feed; and alfo of a placental fyttem of arteries for the purpofe of oxygenating their fluids, as defcribed above in the feed, and which appears in the egg to be fpread on a membrane, which covers the white, as is thewn in the plates of Malpighi, and called by him the chorion, and expofes the blood of the chick to the oxygen of the air contained at the broad end of the egg through a moift membrane.
4. The ufe of the large apparent artery fpread on the cotyledons of a germinating feed of a garden-bean, called feminal roots by Grew, as Thewn in Plate I. Fig. I, and that fpread on the chorion of the chick in the egg, fo called by Malpighi, and thewn in Tom. II. Fig. 54, and by Fabricius ab Aquapendente, Tab. I. Fig. 13, which muft be an artery, as it carries red blood, are believed to be refpiratory organs, like the placental veffels of the fetus of viviparous animals, becaufe the cotyledons of fome feeds rife out of the ground, and become leaves, after the nutriment they contained is expended, and are then called feminal leaves, as in the kidney-bean, phafeolus; and becaufe thofe which do not rife out of the ground perifh beneath the foil, as foon as the young plant gains its leaves, which are its aerial refpiratory organ.

Secondly, the chorion of the chick confifts of a membrane including the white, or albumen, and is not only in contact with the airbag at the broad end of the egg, which, as the chick advances, covers more than half of the internal furface of the fhell, but alfo with the membrane which lines all the other part of the Ihell, as appears. in Plate 111. which is copied from Malpighi: yet this extenfive chorion, with the numerous arteries and veins which are fpread upon its furface, is not drawn up into the body of the chick like the yolk and its including membrane, but perifhes at the nativity of the chick like the placental veffels of the fetus of viviparous animals; or fometimes,
times, I fuppofe, before its nativity, as the chick perforates the airbag, and is heard to chirp, before it is excluded from the thell.
Hence it would appear, that both the artery attending the feminal roots above mentioned, and this artery on the chorion of the chick, muft perform fome more important office than to fupply nourifhment to the coats of the abforbent veffels, which imbibe the mucilage of the feed, or the white of the egg, and which abforbents muft themfelves poffefs their proper vafa vaforum. And what more important office can they have than that of oxygenating the blood of the vegetable or animal embryon? And this becomes more probable as they both perifh at its nativity like the placenta and cotyledons of viviparous animals.
5. As the incubation of the chick advances, it differs from the feedembryon in the production of inteftines, with a ftomach, on the internal furfaces of which the mouths of the abforbents now terminate ; and laftly in the production of a mouth and throat to receive and fwallow the remainder of the albumen, in which it fwims; whereas the feed-embryon fhoots down new roots into the earth with an abforbent fyftem to acquire its nutriment, as that from the cotyledons of the feed becomes exhaufted. See Sect.VII. 1, 2.

Nor is there any thing fimilar to the yolk of the egg found in the feeds of vegetables, which is drawn up into the inteftines of the young chick about the time of its exclufion from the fhell to ferve it with nutriment for a day or two, till it can learn of its parent by imitation to felect and fwallow its adapted food. Nor is the fetus of viviparous animals furnifhed with any thing fimilar to the yolk of oviparous ones, as they have milk ready prepared for their firf nutriment in the breaft of the mother.

As foon as the new foliage of the plant rifing out of the ground becomes expanded, and the root defcending penetrates the earth with its fibrous ramifications, the umbilical fyftems of veffels ceafe to act, both the abforbents, which previoufly fupplied the young embryon E
with
with nutriment from the cotyledons, and alfo the placental artery, which was fpread on the exterior membrane of the cotyledons for the purpofe of oxygenation. Thefe veffels now either coalefce and decay beneath the foil, or wither and fall off, when raifed above it in the form of feed-leaves.
II. I. The feeds of plants are thus a fexual or amatorial progeny, produced principally by the male part of the flower, and received into a proper nidus, and fupplied with nutriment by the female part of it, and which can thus claim both a father and a mother. But the buds of vegetables are a linear pogeny, produced and nourifhed by a father alone, to whom they adhere, not falling off like the feeds, as is farther treated of in Zoonomia, Vol. I. Sect. XXXIX. II. 2. and in Sect VII. I. 3. of this work. For in this moft fimple kind of vegetable reproduction, by the buds of trees, and by the bulbs of fome plants, and by the wires of others, which are their viviparous progeny, the caudex of the leaf is the parent of the bud or bulb, or wire, which rifes in its bofom, according to the obfervation of Linneus.

This linear or paternal progeny of vegetables in buds or bulbs, or wires, is attended with a very curious circumftance, which is that they exactly refemble their parents, when they are arrived at their maturity, as fhewn in Sect. VII. 1. 3. as is obferved in grafting fruit-trees, and in propagating flower-roots, or ftrawberries, or potatoes, by their wires or roots; whereas the feminal offspring of plants, as it derives its form in part from the mother as well as father, is liable to perpetual variation, both which events are employed to great advantage by fkilful gardeners.
2. As the embryons in the buds are the viviparous offspring of vegetables, it becomes neceffary, as they have no mouths, that they fhould be furnifhed like the embryons in the feeds with umbilical veffels to fupply them with nourifhment, till they acquire roots with another fet of abforbent veffels to imbibe moifture from the earth, and leaves to act like lungs for the purpofe of oxygenating their blood.

Thefe umbilical veffels, which fupply the buds of plants with nourifhment in the early fpring, and unfold their foliage, have been much attended to by Dr. Hales and Dr. Walker (Edinb. Phil. Tranfact. Vol.I.) The former obferved, that the fap from the ftump of a vine, which he had cut off in the beginning of April, arofe twenty-one feet high in glafs tubes affixed to it for that purpofe, but which in a few weeks ceafed to bleed. Dr.Walker alfo marked the progrefs of the afcending fap in various branches of trees, and obferved, that in cold weather it ftopped many hours in a day, as well as in the night, and found likewife as foon as the leaves became expanded, that the wounded trees ceafed to bleed.

The veffels, which convey the fap-juice with fuch amazing force, are fituated in or compofe the alburnum, or fap-wood, of the trunk or root of the tree; nor is it furprizing, that fome of it when preffed by fo high a column thould exfude into the cells between the alburnum and bark, as in thefe cells much fap-juice was obferved by Dr. Walker, and this accounts for the great eafe with which the barks of willows and of oaks are feparated in the fpring from their wood. The abforbent mouths of thefe fap-veffels open externally in the moift earth on the roots of trees, and alfo into the air on their trunks; and thus mix the aqueous fluids, which they thus imbibe, with the faccharine and mucilaginous materials depofited previoufly in the alburnum of thefe roots and trunks.
3. This afcending fap-juice during the fpring feafon is in fome trees fo fweet, that it is ufed in making wine, as that of the birchtree in this country; and fugar is procured in fuch quantity from a maple in Penfylvania, that from each tree five or fix pounds of good fugar have been made annually without deftroying it. Rufh, on Sugar Maple. Phillips, London. This fugar is depofited I believe in the fap-wood of the trunk and roots of trees, as in the manna-afh, and is diffolved in the fring by the moifture, which is drank up by the abforbents from the earth and atmofphere, and forcibly carried on to
expand the buds. Its exiftence in the fap-wood as well as in the roots is Chewn from the pullulation of oak-trees, which have been fripped of their bark, and alfo from the expanfion of the eyes of a vine-fhoot, when it is cut from the tree, and planted in the earth, as defcribed in Sect. XV. 1. 3.

This fuggefts to us the reafon why the wood of trees is fo much fooner fubject to decay, when they are felled in the vernal months s becaufe the fugar, which the fap-wood then contains, foon runs into fermentation, and produces what is called the dry rot ; whence the cuftom has prevailed of debarking oaks in the fpring, and felling them in the autumn; and it is probable that the wood of all other trees would laft much longer, if it was thus managed, as the growth of the new leaves would exhauft the fugar of the fap-wood.

Sweet juices for a fimilar purpofe of expanding the buds of herbaceous plants are depofited during the autumn in their roots, as in turnep, beet, tragapogon; or in the knots or joints of the ftem, as in graffes, and the fugar-cane; which like the farina and oil in feeds, and the dulcet mucilage of fruits, and the honey of flowers, were defigned for the food of the young progeny of plants, but become the fuftenance of mankind!

As the faccharine matter which is thus depofited in the roots, or in the alburnum, or in the joints of plants, muft be diluted by the moifture abforbed from the earth by their roots, we underftand why the leaves of the lower branches of trees are firft expanded, as is feen diftinctly in the hawthorn hedges in April, as thefe muft firft receive the afcending fap-juice, as was obferved by Dr.Walker in his account of the maple.
4. The force of the rifing fap from a vine-ftump in the bleeding feafon, as difcovered by Dr. Hales, is at fome times equal to the whole preffure of the atmofphere, which is about fourteen pounds on a fquare inch of furface. This great power in raifing the fap he af-- cribes to capillary attraction, and to the variations of heat during the
day and night. In regard to capillary attraction, however high it may raife a fluid in very fmall tubes, it can not make it flow over them, as the fap-juice did in Dr. Hales's vine-ftump ; nor can it raife a fluid quite to a level with the upper rim of a glafs tube, as the fluid is there more attracted downwards by the glafs befides its gravity, and is left in confequence with a concave furface.

The means by which vegetable abforbent veffels in their living ftate imbibe the fluids of the earth and atmofphere, and carry them forwards with fo much force, muft be fimilar to thofe, with which animal abforbent veffels perform the fame office; that is by their mouths being excited into action by the ftimulus of the fluids, which they abforb.

This circumftance is confirmed by the evident proofs of the irritability of plants in various other inftances, as the clofing and opening of the petals and calyxes of flowers by light and darknefs, warmth and cold, drynefs and moifture, and by the motions of the leaves of mimofa, or fenfitive plant, and of dionœa mufcipula, by any mechanical ftimulus. To this might be added a variety of inftances of the irritability of vegetables to the ftimulus of heat, being increafed after a previous expofure to cold, exactly in the fame manner as happens to animal bodies, which are enumerated in a note in the Botanic Garden, Vol. I. Canto I. 1. 322, whence the reciprocal times of the acting and the ceafing to act of thefe vernal vegetable abforbents, which are here termed umbilical veffels, in the experiments both of Dr. Hales and Dr.Walker, may be readily explained by their having been benumbed by the cold, or excited into action by the warmth of the air or earth. See Sect. XIII. 2. 3.

From one experiment neverthelefs of Dr. Walker's thefe veffels occafionally act as capillary fyphons, becaufe when he bent down a branch much lower than its origin from the tree, and cut off the end of it in the bleeding feafon, the fap flowed from the extremity of this branch fo bent down, when fome wounds two or three feet
lower than the origin of this branch did not bleed. This may be accounted for from the afcent of the fluid in thefe veffels being at this time principally owing to the aetion of their abforbent mouths, and to their confifting of long cylinders with minute diameters and rigid coats, like thofe which are vifible to the eye in dry cane, through which fmoke will pafs in either direction, and which at this early feafon may not be excited into vegetable action; there is neverthelefs a power of abforption exifting in any part of them in the warmer feafon, becaufe a branch or flower-ftalk cut from the root, and fet in a glafs of water, will drink up a confiderable quantity of it. There is alfo a fituation in their difeafed or dead ftate, where they appear to act for fome years like capillary tubes, as in the decorticated part of a pear-tree, defcribed in Sect. XV. 2, 3 .
5. During the great action of thefe umbilical abforbent veffels the buds become expanded, that is the young vegetable beings put forth leaves, which are their lungs, and confift of a pulmonary artery, vein, and abforbents, and alfo acquire a new bark over that of the branches, trunk, and roots, of the laft year, which confifts of aortal arteries, veins, and abforbents, and new radicles, which terminate in the foil. At this time the umbilical veffels, which exifted in the alburnum, or fap-wood, ceafe to act, and coalefee into more folid wood, perhaps fimply by the contraction of the firal fibre, of which they are compofed ; and the fwarm of new vegetables, which conftitute a tree, are now nourifhed by their proper lacteal and lymphatic fyitems.

A curious circumftance now occurs, which is that wherever a tree is now wounded, no moifture appears. On the contrary, the wound from Dr. Hales's experiments is in a ftrongly abforbing ftate, infomuch that on applying water to wounds made in the fummer feafon, it was found to be drank up with great force, as was ingenioufly fhewn by mercurial fyphons contrived to refift its abforption.

This evinces, that though during the bleeding feafon in the vernal months the fap-juice is imbibed by the umbilical abforbents, and carried
ried upwards probably by the annular contraction of the firal fibres, which I believe compofe thefe abforbent veffels, in fuch quantities as to bleed wherever the alburnum is expofed or wounded, yet that afterwards the exhalation by the numerous leaves becomes fo great, that the actions of the new radical and lateral abforbents do not fupply a fluid fo faft, as it could otherwife be expended in the growth of the plant, or diffipated into the air; and as the veffels, which pafo down the trunks of trees, inofculate in variety of places, as is feen in the cloth made at Otaheite from the bark of a mulberry-tree, when a wound is made through fome of thefe veffels, the fluid, which might otherwife ooze out, is carried away laterally by thofe in their vicinity; and as the veffels of vegetables are rigid, and do not collapfe when wounded like thofe of animals; and as the circulation in them is comparatively flow, but little of their contained fluids are poured out of them when wounded in the fummer months.
6. From all thefe obfervations it finally appears, that the umbilical veffels of each bud are fimilar to thofe of a feed, which are called by Dr. Grew feminal roots, and that like the umbilical cords, which form the wires of frawberries above ground, and of potatoes under ground, they fupply the new vegetable with nutriment, till the leaves are expanded in the air, and new roots are puhhed out and penetrate the earth.

There is alfo a curious analogy between thefe umbilical veffels of buds, which exift in the alburnum of trees, and thofe belonging to the chick in the egg, which confifts in their both poffeffing certain airveffels; thofe of trees pafs horizontally from the bark to the alburnum, and that of the egg exifts at the broad end of it. Thus it is probable, that the fluid in the fine extremities of the new veffels of the embryon bud becomes oxygenated by thefe horizontal air-veffels, in the fame manner as the fluid in the terminations of the arteries on the chorion of the chick is believed to become oxygenated by the air contained
contained at the broad end of the egg, as alluded to in Sect. II. 4. and III. I. 4.

A circumftance, in which the bud may be conceived to differ from the egg, confifts in the feparation of the egg from its parent, as foon as the fetus has acquired a certain maturity, along with its umbilical veffels, and its refervoir of nutriment. But in vegetables fomething fimilar occurs, for the parent bud is feparated by death in the autumn from its embryon offspring; the leaf falls off, which was the lungs of the parent bud, and the veffels of its caudex, which formed the bark, coalefce into alburnum, or fap-wood, furrounding the umbilical veffels of the new bud; which thus may be faid to loofe its parent like the egg, but retains its umbilical veffels, and a refervoir of nutriment, which exifts in the fap-wood, and alfo another fyftem of veffels, which conflitute the new bark of the tree, confifting of the interwoven caudexes of each individual new bud.

But as the umbilical veffels of plants above defcribed, which confitute the alburnum of the trunks of trees, and the feminal roots, fo called, of the growing feed, convey nutriment to the embryon bud, or to the rifing plumula, as well as oxygenation, they are not fimilar in that refpect to the placenta of the animal fetus, and were improperly called placental veffels in the notes to the Botanic Garden, as the placenta of the animal fetus is fhewn in Zoonomia, Vol. I. Sect. XXXVIII. to be an organ of refpiration only, like the gills of fifh, and not an organ for nutrition.

Hence when the cotyledons of feeds are cut away from the rifing plume, the plant becomes a dwarf for want of nutriment; and the wounding or expofing the alburnum of bleeding trees, as of the birch or maple, in the vernal months to obtain the fap-juice retards the expanfion of the new buds, and the confequent growth of the tree. Hence alfo it appears, why fmearing the bark of a tree with pitch, or oil, or paint, is liable to deftroy the new buds, and confequently the
tree, by ftopping up their fpiracula; and why covering an egg with greafe or varnifh is faid to prevent the production of a chicken, by preventing a change of air at the broad end of it.
7. We may conclude that the umbilical veffels of the new bud are formed along with a refervoir of nutritious aliment about midfummer in the bark, which conftitutes the long caudex of the parent bud, in the fame manner as a refervoir of nutritious matter is formed in the root or broad caudex of the turnep or onion, for the nourifhment of the rifing ftem. And that there umbilical veffels of the embryon bud, and the refervoir of nutriment laid up for it, which is fecreted by the glands of the parent bud, and now intermixed with the prefent bark of the tree, become gradually changed into alburnum, or fap-wood, as the feafon advances, in part even before the end of fummer, and entirely during the winter months.

That the alburnum of trees, which exifts beneath the bark both of the trunk and roots of them, contains the nutritious matter depofited by the mature leaves or parent buds for the ufe of the embryon buds, appears not only from the faccharine liquor, which oozes from the wounds made in the vernal months through the bark into the alburnum of the birch and maple, betula et acer ; but alfo from the following experiment, which was conducted in the winter before the vernal fap-juice rifes.
Part of a branch of an oak-tree in January was cut off, and divided carefully into three parts, the bark, the alburnum, and the heart. Thefe were fhaved or rafped, and feparately boiled for a time in water, and then fet in a warm room to ferment; and it was feen that the decoction of the alburnum or fap-wood paffed into rapid fermentation, and became at length acetous, but not either of the other, which evinces the exiftence both of fugar and mucilage in the alburnum during the winter months; fince a modern French chemift has fhewn by experiments, that fugar alone will not pafs into the vinous fermentation, but that a mixture of mucilage is alfo required; and
from this experiment it may be concluded, that in years of fcarcity the fap-wood of thofe trees, which are not acrid to the tafte, might afford nutriment by the preparation of being rafped to powder, and made into bread by a mixture of flour, or by extracting their fugar and mucilage by boiling in water, as mentioned in Zoonomia, Part III. Article I. 2.3.6.

Now as the embryon buds of deciduous trees of this climate are formed about midfummer, fecreted by the generative glands in the caudex of the parent leaf-bud, and are fupplied with due nourifhment from the fame fource, not having yet fhot out radicles of their own from the lower end of their long caudexes into the earth, they may be readily tranfplanted at this feafon from one tree to another by inoculation, or into different parts of the fame tree; as the new caudex of the young bud of one tree will readily unite with the new caudex of that of another tree, and as they can be removed entire during the early ftate of their growth along with a part of the bark only, as fcarcely any alburnum is yet formed beneath the bark of the young twig, from whence the bud is cut or torn.
But after their greater maturity, fo that many buds exift on one twig, or fcion, and are already furnifhed with radicles paffing down into the ground, as in the enfuing fpring, it becomes neceffary to ingraft them by cutting off a part of the alburnum, as well as of the bark of the new bud ; and to apply thefe in contact with the bark and alburnum of another tree, to which they may grow by inofculation of veffels; whence it appears why budding or inoculation muft be performed foon after midfummer, and ingrafting in the early fpring, as in the former the buds continue to grow by the junction of the caudex or bark veffels alone with thofe of the tree into which they are inferted, and in the latter by the inofculation of their veffels with thofe of the bark and alburnum of the tree, to which they are applied and bound.

The inofculation of the veffels of a bud cut out of one tree and inferted into the bark and alburnum of another, as in the ingraftment of fcions, is exactly refembled by a fimilar operation on animal bodies, when a tooth is taken from one perfon and inferted into the head of another, and where two inflamed parts grow together. Thus an experienced anatomift is faid to have cut the two fpurs from a young cock, and applied them to the oppofite fides of his comb, which was previoufly excoriated, where they continued to grow and appeared like horns ; and Talicotius, whofe book lies by me, ferioufly afferts, that he fucceeded in making artificial nofes from a part of the Ikin of the arm of his patients, and has publifhed prints of the manner of the operation, fo ridiculed by the author of Hudibras. Cheirurgia Cafparis Talicotii.

The growth of an inoculated bud on the bark of another tree, where the upper part of the caudex of the inoculated bud joins with the lower part of the caudex of another bud belonging to the ftock, is Atill more nicely refembled by the union of the head and tail part of two different polypi in the experiment of Blumenbach, mentioned in Sect. VII. 3. 2. of this work.
8. As the leaves of trees become expanded, the fap-juice above defcribed ceafes to flow, and the bark of the tree then adheres to the alburnum. Afterwards from the middle of June to the middle of Auguft, as Dr. Bradley has obferved, there feems to be a paufe in vegetation; at which time the new buds in the bofom of each leaf feem to be generated, and the bark, which during the two preceding months adhered to the wood, now eafily feparates, as in the fpring, according to the obfervation of Duhamel, Vol. II. 261; and vegetation, which appeared to languifh during the heats of midfummer, acquires new vigour at the approach of autumn like that of fpring.

This circumftance, which feems to have puzzled many naturalifts, is to be explained from the action of the umbilical veffels of the new F_{2}
buds, buds, which begin to enlarge as foon as they are formed, and in this climate have their progrefs ftopped by the cold during the winter, and the moifture which exfudes from the fides of thefe veffels, and is extravafated between the alburnum and the bark, caufes an eafy reparation of them from each other.

From the new flow of fap in thefe veffels about midfummer, being probably in part conveyed to the leaves by the rotrograde action of their lymphatics in very hot weather, the honey-dew feems to originate either as an exfudation from the leaf, or from the veffels being punctured by the aphis, which drinks the vegetable chyle in fuch great quantity that it paffes through the infect almoft unchanged; fee Sect. XIV. 1. 7. and 3.2; and thus caufes the fuffufion of honey on the leaves below them for a time in the heat of fummer.

Add to this that M. Du Hamel, by nicely meafuring fome buds, found that they were gradually enlarged at fome times during the winter, and concludes from thence that the fap-juice, which nourifhes them, continues to flow, though flowly, in the milder parts of the winter days, Vol. II. p. 262 ; and adds, that it muft rife continually during the winter months in ever-green trees, otherwife their foliage would wither; and alfo in deciduous trees, becaufe the branch of an ever-green tree will grow on a deciduous tree, and not lofe its leaves in the winter, as the lauro-cerafus on a cherry-tree, and an ever-green oak on a common oak.

It muft neverthelefs be obferved, that as the umbilical veffels are a part of the new bud, as the lacteals and other abforbents are a part of the chick or fetus, the perpetual action of thefe umbilical veffels muft depend on the bud to which they belong, in the caudex of which, between the plumula and radicle, the brain or common fenforium, and the confequent vital energy, are believed to refide; and that whether an ingraftment exifts between the bud and the umbilical abforbent veffels or not. But as in thofe animals which have a very
fmall portion of brain in the head compared with that in the fine of the back, as in eels, fnakes, worms, butterflies, if the head be cut off, the other parts will continue to live with great activity for hours, and even days; fo it happens to thefe umbilical abforbent veffels, which in vine-ftumps, and many herbaceous plants, will continue to pour out the fap-juice in great force and great quantity for many days after the exfection of the whole upper part of the plant.

The continuance of the motion of thefe umbilical veffels confifting of a firal line, which are believed to be air-veffels by many authors, is mentioned by Malpighi; who afferts, that when he examined them in the winter, he could often obferve them for fome time to continue their vermicular motion fo as to aftonifh him. See Duhamel. Phyf. des arb. Vol. I. p. 43.
9. The umbilical veffels of this fection, like the abforbents of the preceding one, both which are believed to confift of a firal line; as fhewn in Sect. II. 7. may be readily feen in cutting a vine-ftalk horizontally, as they at firft appear full of fluid; but in a very little time, as the fluid exhales or becomes effufed, a circular area of round holes appears to pafs longitudinally interior in refpect to the bark; which I fuppofe to confift both of the umbilical veffels, which bleed during the vernal months, and of the other radical, cellular, and cutaneous abforbents; the latter of which I fufpect to be exterior to the former, and to refide between the bark and the umbilical velfels, though both of them. are believed to conflitute the alburnum of the plant.
From many ingenious obfervations on vegetables monfieur de la Baiffe draws the following conclufions, which are affented to by M. Bonnet, and which I fhall here tranfcribe, as they fo accurately coincide with the theory above delivered, and as they were deduced from different experiments, are a confirmation of 'it. He fays, " that the veffels deftined to convey nourifhment to plants are neither in the pith, nor in the bark, nor between the bark and the wood;
bat
but in the ligneous fubftance itfelf; or, to feak more accurately, that thofe veffels are themfelves the woody fibres included between the pith and the bark of plants, which have their origin in the roots, and extend themfelves to every part of the plant." Bonnet ufage des feuilles, p. 275.
I. 1.
that

PLATE III.

PLATE III.

Is copied from Malpighi Appendix de ovo Incubato, Tom. II. Fig. 54, and reprefents the chick in the egg on the fourteenth day of incubation. The chick rolled up fwims in the amnios $a a$, which is kept moift by very minute veffels. Round this is placed the yolk $b b$, to which adjoins the thicker part of the white. The whole is furrounded with chorion $d d d$. On this are fpread the blood-veffels, of which the large one e emerging from the navel of the chick, and generating the various branches $f f f$, terminates in a capillary network. In contact with thefe a redder fet of veffels paffes with fimilar ramifications. Another fet of veffels $g g$ arifes from the navel, which are fmaller ones, and are propagated amidft the ramification of $f f$. The lungs are white; the ftomach full of milk, or of coagulated albumen or white; and the inteftines hang out from the navel.

As two fets of blood-veffels terminate on the chorion, and as one branch of the larger fet carries redder blood, and as the lungs are ftill white; it feems evident, that this larger fet of veffels refemble the placental arteries and vein of viviparous animals, and that the blood receives its red colour by acquiring oxygen from the air included between the external moift membrane and the fhell of the egg ; which air at firft is feen only at the broad end, but afterwards extends from thence to the equator of the egg, and probably paffes through the other and of the fhell to that part of the internal membrane, which adheres to it. See an analogous plate in Fabricius ab Aquapendente, Tom. I. Fig. I3. See alfo Sect. III. 1. 4. and III. 2. 6. of this work.

Sect. IV. I. I. PULMONARY ARTERIES AND VEINS.

S E C T. IV.

THE PULMONARY ARTERIES AND VEINS OF VEGETABLES.

1. 2. Leaves not perfpiratory organs, nor excretory nor nutritious organs, nor electric nor luminous ones. 2. Vital air in the atmoppere, in water. Lungs of aerial animals; gills of aquatic ones. 3. Leaves are the lungs of vegetables. Arteries and veins vifible in a leaf of Spurge and picris coloured by madder, and in bloody dock. 4. Upper furface only of the leaf refpires, and repels moifture, and dies if fmeared with oil, and exbales much lefs than the under one. II. I. Aquatic leaves are like the gills of ffls; bave larger furfaces, as the uncombined oxygen in water is lefs than in air; are divided like the leaves on bigh mountains. 2. Are furnibed with numerous points like gills of fibs. 3. Which jet at liberty oxygen from fome waters. III. 1. Root-leaves of many plants differ from ftem-leaves. 2. As they produce only buds. 3. They differ as common leaves from floral leaves. 4. And arife fometimes from the cotyledons. IV. I. Floral leaves or bractes are refpiratory organs to the calyx and pericarp. 2. In fome plants they do not appear till the corol drops off. 3. Recapitulation. Leaves die in the exbaufted receiver. V. 1. The corol is a pulimonary organ; its colours. 2. Its vafcular texture, its glands. Some flowers bave no brafles. The corol is not for defence. The corol of belleborus niger cbanges to a calyx. 3. Corol of colchicum and crocus fall off before the braites appear. Vines bear alternate flowers and leaves. Fruit deprived of green leaves. 4. Vegetable uterus requires the braEles. Flowers enlarged by defroying the green leaves. 5. Plants do not refpire in their fleep. 6. Conclufion. The anthers and figmas are Jeparate vegetable beings; live on boney and acquire greater irritability, and amatorial fenfibility.
I. I. There have been various opinions concerning the ufe of the leaves of plants in the vegetable economy. Some have contended, that they are perfpiratory organs. This does not appear probable from an experiment of Dr.Hales, Veg. Stat. p. 30. He found, by cutting off
branches of trees with apples on them, and taking off the leaves, that an apple exhaled about as much as two leaves, the furfaces of which were nearly equal to that of the apple; whence it would appear, that apples have as good a claim to be termed perfpiratory organs as leaves.

Others have believed them the excretory organs of excrementitious juices; but as the vapour exhaled from vegetables has no tafte, this idea is no more probable than the other. Add to this, that in moift weather they do not appear to perfpire or exhale at all, as fhewn by fome ftatical experiments of Dr. Hales, like thofe of Sanctorius on the perfpiration of the human body; which perfpiration has alfo been fuppofed to be an excrement, which is hewn to be an erroneous opinion; and that its defign is fimply to preferve the fkin fupple, like the tears diffufed on the eye-ball to preferve its tranfparency, as explained in Zoonomia, Vol. II. Clafs I. 1, 2.14.

Others have believed that vegetables abforb much nutriment by their leaves, and quote an experiment of Dr. Prieftley's, who found plants placed in water under glaffes grew much fafter, when the air, in which they grew, was occafionally impregnated with putrid exhalations. But there is another experiment of Dr. Priefley's, which fhould be mentioned, and that is, that he agitated one part of a veffel of water beneath a glafs filled with putrid exhalation, and the whole of the water prefently became very fetid. Hence we may conclude, that in the firft cafe the water, in which the vegetable grew, abforbed the putrid exhalations from the air over it, and that thefe were again abforbed from the water by the roots of vegetables, which correfpond to the lacteals of the ftomach and inteftines of animals; and that they thus received nourifhment from the putrid vapours, and not by their leaves, which we fhall endeavour to thew to be fimply refpiratory organs.

Othere philofoghers have conceived, that the leaves of plants acquire elgevisitivy from thice iift. In anfwer to thefe it may be obferved, that
no electricity is hewn by experiments to defcend through the fems of trees, except in thunder ftorms; and that if the final caufe of ver getable leaves had been to conduct electricity from the air, they ought to have been gilded leaves with metallic ftems.

Others again have fuppofed that the leaves of plants acquire a phlogiftic material from the fun's light, whence it was believed that on this account they turn their upper furfaces to the fun. But though light is more or lefs attracted by all opake bodies, yet if the final caufe of vegetable leaves had been to abforb light, they ought to have been black and not green; as by Dr. Franklin's experiment, who laid fhreds of various colours on fnow in the fun-fhine, the black funk much deeper than any other colour, and confequently abforbed much more light. The ufe of light in vegetable refpiration will be treated of in Sect. XIII.
2. The air of our atmofphere has been fhewn by the experiments of Priefley, Cavendifh, and Lavoifier, to confift of twenty-feven parts of refpirable air, called oxygene gas, with feventy-three parts of unrefpirable air, termed azotic gas, which are mixed together, not chemically combined; whereas water confifts of eighty-five hundreth parts of oxygen to fifteen of hydrogen, which exift in their fate of combination, and are not therefore fit for refpiration. But in water a confiderable quantity of common air is alfo diffolved, which efcapes on boiling; and even pure vital air was difcovered in the water of fome fprings by fir Benj. Thomfon, when it was expofed to the fun's light. Philofoph. Tranfact. The former of thefe fluids is thus adapted to the refpiration of aerial animals, and the latter to that of aquatic ones; and the analogy between the aerial and aquatic leaves of vegetables and the lungs and gills of animals embraces fo many circumftances, that we can fcarcely withhold our affent to their performing fimilar offices.

The internal furface of the air-veffels of the lungs of men are faid to be equal to the external furface of the whole body, or about fif-
teen fquare feet. On this furface the blood is expofed to the influence of the refpired air, through the medium of a thin moift pellicle. By this expofure to the air it has its colour changed from deep red to bright fcarlet, and acquires fomething fo neceffary to the exiftence of life, that we can live fearcely a minute without this wonderful procefs.

In aquatic animals, as fifh, the blood is expofed to the air, which is diffufed in the water by the gills; the furface of which is probably greater in proportion to the external furface of their bodies, than that of the air-veffels of the lungs of aerial animals to their external furfaces. Through thefe gills, or aquatic lungs, a current of water is made perpetually to pafs by the gaping of the fifh, as it moves, like the air in refpiration; and from this water it is probable the fame material is acquired by the gills of fifh as from the air by the lungs of aerial animals.
3. The great furface of the leaves compared to that of the trunk and branches of trees is fuch, that it would feem to be an organ well adapted for the purpofe of expofing the vegetable juices to the influence of the air. This however we fhall fee afterwards is probably performed only by their upper furfaces, which are expofed to the light as well as air, and on that account acquire greater oxygenation, as will be fhewn hereafter : yet even in this cafe the upper furfaces of the leaves muft bear a greater proportion to the furface of the bark of the tree than that of the air-cells of the lungs of animals to their external furfaces.

Aerial or aquatic animals, by their mufcular exertions, produce a current of air or water reciprocally to and from their lungs, and can occafionally change the place, where they refpire, when the air or water becomes vitiated. But as vegetables have but little mufcular power to move their leaves, except in a few inftances; and as the air or water is frequently nearly ftationary, where they exift, it feems to have been neceffary to expofe their fluids to the air or water on a greater
greater expanfe of furface than in the lungs or gills of animals, which well accounts for the exuberant extent of their foliage.

In the lungs of animals the blood, after having been expofed to the air in the extremities of the pulmonary artery, is changed in colour from deep red to bright fcarlet, and is then collected and returned by the pulmonary vein. So in the leaves of plants the vegetable blood is rendered yellow in fome plants, as in celandine, chelidonium ; white in others, as in fig-leaves, ficus; and in fpurge, euphorbia; and red in others, as in red beets, beta. And the ftructure of the leaf, as confiffing of arteries and veins to expore the vegetable blood to the influence of the air, and to return it to the caudex of the bud at the foot-ftalk of the leaf, beautifully became vifible by the following experiment.

A ftalk with the leaves and feed-veffels of large fpurge (euphorbia heliofcopia) in June 1791, had been feveral days placed in a decoction of madder, (rubia tinctoria) fo that the lower part of the ftem and two of the inferior leaves were immerfed in it. After having wathed the immerfed leaves in much clean water, I could readily difcern the colour of the madder paffing along the middle rib of each leaf. This red artery was beautifully vifible both in the under and upper furface of the leaf; but on the upper fide many red branches were feen going from it to the extremities of the leaf, which on the other fide were not vifible except by looking through it againft the light. On this under fide a fyftem of branching veffels carrying a pale milky fluid, were feen coming from the extremities of the leaf, and covering the whole underfide of it, and joining into two large veins, one on each fide of the red artery in the middle rib of the leaf, and along with it defcending to the foot-ftalk or petiole. On flitting one of thefe leaves with fciffars, and having a common magnifying lens ready, the milky blood was feen oozing out of the returning vein on each fide of the red artery in the middle rib, but none of the red fluid from the artery.

All thefe appearances were more eafily feen in a leaf of picris treated in the fame manner; for in this milky plant the ftems and middlerib of the leaves are fometimes naturally coloured reddifh, and hence the colour of the madder feemed to pafs further into the ramifications of their leaf-arteries, and was there beautifully vifible with the returning branches of milky veins on each fide.

In a plant which was fent to me under the name of fenecio bicolor, but which I have not yet feen in flower, the upper furface of the leaf is green like moft other leaves, but during the vernal months the under furface is of a deep red, whence I conclude that the vegetable blood acquires the red colour in the terminations of the pulmonary artery in the upper furfaces of the leaves, which becomes vifible as it paffes in the large veins on the inferior furface. In the fame manner the red colour of the blood is moft vifible in the large veins beneath the leaf of the red veined dock, rumex fanguinea.
4. From thefe experiments the upper furface of the leaf appeared to be the immediate organ of refpiration, becaufe the coloured fluid was carried to the extremities of the leaf by veffels moft confpicuous on the upper furface, and there changed into a milky fluid, which is the blood of the plant, and then returned by concomitant veins on the under furface, which were feen to ooze when divided with fciffars, and which in picris particularly rendered the under furface of the leaves greatly whiter than the upper one.

As the upper furface of leaves conftitutes the organ of refpiration, on which the vegetable blood is expofed in the terminations of arteries beneath a thin moift pellicle to theaction of the atmof phere, thefe furfaces in many plants ftrongly repel moitture, as cabbage-leaves, whence the particles of rain lying over their furfaces without touching them, as obferved by Mr. Melville, (Effays Literary and Philof, Edinb.) have the appearance of globules of quick-filver. And hence leaves laid with their upper furfaces on water wither as foon as in the dry air, but continue green many days if placed with their under furfaces on water,
water, as appears in the experiment of monfieur Bonnet, (Ufage des Fevilles) ; heuce fome aquatic plants, as the water-lily (nymphæa) have the lower fides of their leaves floating on the water, while the upper furfaces remain dry in the air.

This repulfion of the upper furfaces of the leaves of aerial plants to water bears fome analogy to the renitency of the larinx to the admiffion of water into the lungs of animals; for if a fingle drop accidentally falls into the windpipe, a convulfive cough is induced till it is regurgitated. For the fame reafon feveral plants clofe together the upper furfaces of their leaves, when it rains, in the fame manner as in their fleep during the night, as mimofa, the fenfitive plant, and the young fhoots of chick-weed, alfine; and of kidney-bean, phafeolus.

As thofe infects which have many firacula, or breathing apertures, as wafps and flies, are immediately fuffocated by pouring oil upon them, in the year 1783 I carefully covered with oil the furfaces of feveral leaves of phlomis, of Portugal laurel, and balfams ; and though it would not regularly adhere, I found them all die in a day or two, which thews another fimilitude between the lungs of animals and the leaves of vegetables.

There is an ingenious experiment of M. Bonnet, (Ufage des feuilles) which thews that the upper furfaces of leaves exhale much lefs than their under furfaces. He put the ftalks of many leaves frefh plucked from trees or herbaceous plants into glafs tubes filled with water; of thefe he covered with oil or varnilh the upper furface of many leaves, and the under furface of many others, and uniformly obferved by the water finking in the tubes that the upper furfaces exhaled much lefs than half the quantity exhaled by the under furfaces, which fhews them to be organs defigned for different purpofes.
II. 1. There exifts a frict analogy between the leaves of aquatic plants, which are conftantly immerfed beneath the water, and the gills
of aquatic animals, which confifts in the largenefs of their furface, owing to their hair-like fubdivifions, and to their being terminated with innumerable points. The gills of firh confift of many folds of blood-veffels lying over each other, each refembling a fringe, or the downy part on one fide of a feather attached to the middle rib of it, by which means they expofe a greater furface of blood to the water than is expofed to the air by the internal membranes of the air-cells of the lungs of other animals; and undoubtedly for this final caufe, becaufe water contains lefs oxygen in its uncombined ftate, which is the material neceffary to life, than air, though much more of it in its combined ftate, as water confifts of eighty-five parts of oxygen to fifteen parts of hydrogen ; but it is the uncombined oxygen only diffolved in heat, and diffufed in water, which can ferve the purpofe of animal or vegetable refpiration.

The apparatus for this purpofe, according to Duverney's Anatomy of a Carp, is truly curious. He found 43^{86} bones in the gills, which had fixty-nine mufcles to give them their due motions. See Bomare's Dictionaire raifoneé, Art Poiffon. And Monro obferved by the numerous divifions and folds of the membrane of the gills, that their furface in a large fkate was nearly equal to the furface of the human body. Phyfiol. of Fifh, p. 15. He adds that in the whole gills there exift 144,000 fubdivifions or folds, and that the whole extent of this membrane may be feen by a microfcope to be covered with a network of exceedingly minute veffels.
2. In this refpect the gills of firh are refembled by the fubaquatic leaves of plants, which are flit into long wires terminated in points, as in trapa, œenanthe, hottonia, the water-violet, and the water-ranunculus. This laft plant, and fome others, have frequently fome leaves erect in the air, ànd others immerfed in water, arifing from the fame ftem; and it is curious to obferve that the aerial leaves are nearly entire, or divided only into a few lobes; whilft the aquatic leaves are flit into innumerable branches like a fringe, and have thus
their furfaces wonderfully enlarged for the purpofe of acquiring uncombined oxygen from the air, which is diffufed in the water, and which abounds fo much lefs there than in the atmofphere; for the fame purpofe the plants on the fummits of high mountains, where the air is fo much rarer, and confequently abounds lefs with oxygen, have their leaves much more divided than in the plains, as pimpinella, petrofelinum, and others, that they may expofe a more extenfive furface of veffels to the influence of the thinner atmofphere.
3. This great enlargement of the furface by fo minute a divifion does not however feem to be the only ufe of this uniform ftructure of gills and aquatic leaves; but there is another very important one, which hath hitherto I believe efcaped the notice of philofophers; and that is that points and edges contribute much to the feparation of the air, which is mechanically mixed or chemically diffolved in water, as appears on immerfing a dry hairy leaf into water frefh from a pump, on which innumerable globules of air, like quick-filver, appear on almoft every point. Nor is it improbable that points immerfed in water may in a bright day contribute to decompofe it, or certainly to fet at liberty its fuperabundant oxygene, as occurs in the perfpiration of leaves when expofed to the funfhine, and to the green matter in the experiments of Dr. Prieftley, which is probably owing to the fine points of both of them ; and laftly, when points of filk are immerfed in fpring water, which is frequently hyperoxygenated, as in the experiments of Count Rumford, related in the Philof. Tranfact. See Sect. XIII. I. 5 .
III. i. The root-leaves of many perennial plants, which do not produce flowers in the firft year from the feed, are different from thofe of future years, as in the rheum palmatum, palmated rhubarb, the leaves are fmall and nearly circular, and not divided into fingers till the fecond year; and in tulip the leaf the firft year from the feed is fmall like a blade of grafs, rifing from a diminutive bulb. In other perennial plants the root-leaf is undivided, but at the fame time larger
than thofe on the rifing ftem, as in geum, averns; in fenecio aureus, and the campanula rotundifolia, fo named from the round form of the root-leaf, which is alfo much broader than thofe on the ftem, as well as undivided. The root-leaves of many biennial, and of fome annual plants, are likewife larger, as well as of a different form from thofe on the rifing flower-ftem, as in turneps and carrots. And laftly, the root-leaves of fome plants, which rife immediately from feeds, confift of the cotyledons of the feed, and are thus different from the leaves above them.
2. In refpect to the root-leaves of palmated rhubarb and of tulips', when thefe plants are raifed immediately from feed, as thefe firft plants are not defigned to generate flowers and confequent feeds, but to produce fimply another plant like a leaf-bud of a tree, lefs oxygenation feems to have been neceffary, and the leaves therefore require lefs furface, and are in confequence undivided. In refpect to the root-leaves of geum, and of campanula rotundifolia, which are larger than their ftem-leaves, it is probable that they lay up a refervoir of nutritious matter for the rifing ftem, like thofe of turneps and carrots, and thus require greater oxygenation, and in confequence a greater furface.
3. Another difference of root-leaves from thofe of the ftem in annual plants often confifts in the latter being properly bractes or floralleaves, which will be fpoken of below, while the root-leaf refembles thofe belonging to the leaf-buds of trees. Thus in the rifing ftem of wheat the root-leaf produces the firft joint above the foil, and the fecond and third leaf produce joint above joint, which are each a feparate bud rifing on that below it, as is feen by the divifion of the pith or hollow part of one joint from another, and at length the uppermoft leaf is a bracte or floral-leaf belonging to the ear.
4. And laftly, the feed-leaves which rife out of the ground with the firft joint of the flower-ftem, as in kidney-bean, phafeolus, as they confift of the placental artery, which was fpread on the cotyle-
dons of the feed, and, now rifing out of the earth, when the nutritive part has been diffolved in the terrein moifture and abforbed, they ferve the office of an aerial pulmonary organ, or lungs, which before ferved that of an aquatic one, or gills; but wither and fall off as the true leaves become expanded.
IV. I. The common foliage of deciduous plants conflitutes the organ of refpiration already fpoken of, which belongs to the leaf-buds during the fummer months, and drops off in the autumn, when thofe buds perifh by the cold, or by the natural termination of their exiftence. But there is another kind of foliage diffimilar to the former, confifing of brates or floral-leaves, which fupply an organ of refpiration to the calyx and pericarp of the flower-bud. Thefe frequently differ in fize, form, and colour from the other leaves of the plant, and are fituated on the flower-ftalk often fo near the fructification as to be confounded with the calyx. In fome plants there are two fets of floralleaves, or bractes, one at the foot of the umbel, and another beneath each diftinct floret of it; and in others they appear in a tuft above the flower, as well as on the ftalk beneath it, as in fritillaria imperialis, crown imperial; and in others they are fo frmall as to be termed ftipule or props.

All thefe kinds of bractes, or floral-leaves, ferve the office of lungs for the purpofe of expofing the vegetable blood to the influence of the air, and of preparing it for the fecretion, or production and nourimment of the vegetable uterus, or pericarp, and of the feeds produced and retained in it, frequently before their impregnation, and always after it.
2. It muft be obferved that in many plants thefe'floral-leaves, or bractes, do not appear till after the corol and nectaries, with the anthers and figmas, drop off; that is, not till after the feed is impregnated, as in colchicum autumnale, crocus, hamamelis, and in fome fruittrees. The production of the vegetable uterus, or pericarp, with the unimpregnated feeds included in it, is in thefe plants: accomplifhed or H evolyed,
evolved, like the bractes themfelves with the corol and fexual organs, by the fap-juice, forced up in the umbilical veffels from fome previoufly prepared refervoir, without the neceffity of any expofition to the air in leaves or lungs, which are not yet formed, though it may acquire oxygenation in the fine arteries of the embryon buds, which are fuppofed to furround the horizontal air-veffels obferved in the bark of trees.

As foon as the feeds become impregnated, the corol and nectaries with the fexual organs fall off, and the pericarp and its contained feeds are then nourifhed by the blood, which is aerated or oxygenated in the bractes, or floral-leaves. Thus the flower of the colchicum appears in autumn without any green leaves, and the pericarp with its impreguated feeds rifes out of the ground in the enfuing fpring on a ftem furrounded with bractes, and with other green leaves below them, which produce new bulbs in their bofoms.

The blood, which thus fupplies nutriment to the pericarp and its included feeds, does not feem to require fo much oxygenation as that which fupplies nutriment to the embryon buds; whence the floral leaves are in general much lefs than the root-leaves in many plants, and than the common green leaves of almoft all vegetables. And in the plant mentioned in No. I. 3. of this fection, under the name of fenecio bicolor, the under furfaces of the ftem-leaves near the expected flower ceafed to be red like thofe of the radical leaves, which feemed to fhew that the vegetable blood was in them lefs oxygenated.

Whence it may be believed that lefs irritability may be neceffary for the growth of the feed than of the embryon bud, as the former does not yet perhaps poffefs fo much vegetable life as the latter. And laftly, that as the anthers and ftigma require greater irritability, and fome fenfibility, it was neceffary a fecond time to oxygenate the blood which fupplies them with nutriment in the corols of the flowers. See Sect. VII. 2. 4.
3. Recapitulation of the arguments tending to thew that the leaves
of vegetables are their lungs. i. They confitt of an artery, which carries the fap to the extreme furface of the upper fide of the leaf, and there expofes it under a thin moirt pellicle to the action of the air; and of veins, which there collect and return it to the foot-ftalk of the leaf, like the pulmonary fyftem of animals. 2. In this organ the pellucid fap is changed to a coloured blood, like the chyle in paffing through the lungs of animals. 3. The leaves of aquatic plants are furnifhed with a larger furface, and with points like the gills of aquatic animals. 4. The upper fides of aerial leaves repel moifture, like the larynx of animals. 5. Leaves are killed by fmearing them with oil, which in the fame manner deftroys infects by ftopping their fpiracula, or the air-holes to their lungs. 6. Leaves have mufcles appropriated to turn them to the light, which is neceflary to their refpiration, as will be fhewn in the Section on Light. 7. To this may be added an experiment of Mr. Papin related by M. Duhamel. He put an intire plant into the exhaufted receiver of an air-pump, and it foon perifhed; but on keeping the whole plant in this vacuum except the leaves, which were expofed to the air, it continued to live a long time, which he adds is a proof that the leaves are the organs of refpiration. Phyfic des arbres, V.I. p. 169.
V. I. The organs of refpiration already defcribed confift of the green leaves belonging to leaf-buds, and of the bractes belonging to flower-buds. But there is another pulmonary fyftem totally independent of the green foliage, which belongs to the fexual or amatorial parts of the fructification only, I mean the corol or petals. In this there is an artery belonging to each petal, which conveys the vegetable blood to its extremities, expofing it to the light and air under a delicate moift membrane covering the internal furface of the petal, where it often changes its colour, as is beautifully feen in fome partycoloured poppies, though it is probable that fome of the irridefcent colours of flowers may be owing to the different degrees of tenuity
of the exterior membrane of the petal refracting the light like foapbubbles.

The vegetable blood is then collected at the extremities of the corol-arteries, and returned by correfpondent veins exactly as in the green foliage, for the fuftenance of the anthers and Itigmas, and for the important fecretions of honey, wax, effential oil, and the prolific duft of the anthers, and thus conftitutes a pulmonary organ, as is thewn by the following analogies.
2. Firft, the vafcular Atructure of the corol, as above defcribed, and which is vifible to the naked eye; and its expofing the vegetable juices to the air and light during the day evinces that it is a pulmonary organ.

Secondly, as the glands which produce the prolific duft of the anthers, the honey, wax, and frequently fome odiriferous effential oil, are generally attached to the corol, and always fall off and perifh with it, it is evident that the blood is elaborated or oxygenated in this pulmonary fyftem for the purpofe of thefe important fecretions.

Thirdly, many flowers, as the colchicum and hamamelis, arife naked in autumn, no green leaves appearing till the enfuing fpring; and many others put forth their flowers, and complete their impregnation early in the fpring, before the green foliage or bractes appear, as mezereon, and fome fruit-trees, which fhews that thefe corols are the lungs belonging to thefe parts of the fructification.

Fourthly, this organ does not feem to have been neceffary for the defence of the ftamens and piftils, fince the calyx of many flowers, as tragopogon, performs this office; and in many flowers thefe petals themfelves are fo tender as to require being thut up in the calyx during the night. For what other ufe then can fuch an apparatus of veffels be defigned?

Fifthly, in the helleborus niger, Chriftmas-rofe, after the feeds are grown to a certain fize, the nectaries, anu ftamens, and Aigmas, drop
off, and the beautiful large white petals change their colour to a deep green, and gradually thus become a calyx, inclofing and defending the ripening feeds; hence it would feem that the white veffels of the corol ferved the office of expofing the blood to the action of the air, for the purpofes of feparating or producing the honey, wax, and prolific duft; and when thefe were no longer wanted, that thefe veffels coalefced, like the umbilical veffels of animals after their birth, and thus ceafed to perform that office, and loft at the fame time their white colour. Why hould they lofe their white colour unlefs they at the fame time lof fome other property befides that of defending the feed-veffel, which they fill continue to defend?

Sixthly, neither the common green leaves nor the bractes are neceffary to the progrefs of the corol, and ftamens, and figma, or to the fecretion of honey, after the laft year's leaves are fallen off, as is evinced by the flowers of colchicum in the autumn, and of crocus in the fpring, in both which the feeds rife out of the earth with their common lenves and bractes fo long after the difappearance of the flower. In deciduous plants the common green leaves ferve as lungs in the fummer and autumn to each individual bud, which then produces the new buds in its bofom, which are either leaf-buds or flower-buds. In the enfuing fpring the new common leaves are the refpiratory organ belonging to the leaf-buds, and the bractes are the refpiratory organ to the pericarp, and its included feeds before or after impregnation; and the corols, as foon as expanded, become the lungs to the amatorial parts of the fructification, and require neither the green leaves nor bractes.
3. Hence the vine bears fruit at one joint without leaves, and leaves at the other joint without fruit. Hence the flower of the colchicum rifes out of the ground without bractes or other green leaves, and flourifhes thll the feed is impregnated; and the bractes, which rife out of the groundion the ftem in the following fpring, are lungs to give maturity to the pericarp and feed; and the other green leaves are
for the purpofe of producing new bulbs round the old one, but can have nothing to do with the corol, anthers, ftigmas, and nectaries, which have long fince fallen off, and perifhed. And laftly, when currant or goofeberry trees lofe their common green leaves, and their bractes, by the depredation of infects ; the new leaf-buds become fmall and weak, but the corol, anthers, Atigmas, and nectaries, continue to flourifh, and the fruit becomes impregnated, though it is lefs fweet and of lefs fize from the pericarp and included feed wanting their due nutrition by the bractes before or after impregnation.
4. It hence appears that the flower-bud, after the corol, ftamens, ftigmas, and nectaries fall off, becomes fimply a vegetable uterus, for the purpofe of fupplying the growing embryons with nourifhment, and poffeffes a fyftem of abforbent veffels, which brings the fap-juice to the foot-ftalk of the fruit, and which there changes into a pulmonary artery, which conftitutes the bractes or floral-leaves, and expofes the acquired juices to the oxygenation of the air, and converts them into vegetable blood. This blood is collected again by the veins of the bractes, and conveyed by an adapted or aortal artery for the various fecretions of faccharine, farinaceous, or acefcent materials, for the nourifhment of its included embryons, or the conftruction of the fruit and feed-lobes.

At the fame time, as perhaps all the veffels of trees inofculate, the fruit may become fweeter and larger when the green leaves as well as the bractes continue on the tree; but the corols with the ftamens, ftigmas, and nectaries, (the fucceeding fruit not confidered) fuffer, I believe, no injury, when the green leaves and even the bractes are taken off, as by the depredations of infects. Some florifts have obferved this circumftance, and affirm that in many plants when the leaves are pulled off, the flowers become fronger from their then producing no bulbs, as in tulips and hyacinths. The inofculation of vegetable veffels is evinced by the increafed growth of one bud, when others in its vicinity are cut away.
5. The
mate perifh in autumn; while the new buds remain to expand in the enfuing fpring. Secondly, that the bractes, or floral-leaves, are the lungs of the pericarp or uterus, and to the growing feeds which it contains, as the bractes on the ftem of the crown-imperial, fritillaria imperialis, and the tuft above its flowers. And thirdly, that the corol or petals are the lungs belonging to the anthers and ftigmas, which are the fexual or amatorial parts of the plant, and to the nectaries for the fecretion of honey, and to the other glands which affords effential oil and wax.

Lafty, the famina and ftigma with the petals and nectary, which conftitute the vegetable males, and the amatorial part of the female, as they in fome plants appear before the green leaves or bractes, as in colchicum and mezereon, and in all plants fall off when the female uterus is impregnated, would appear to be diftinct beings, totally different both from the leaf-buds, which produce a viviparous progeny; and alfo from the bractes with the calyx and pericarp, which conflitute the vegetable uterus.

They muft at firft receive nutriment from the vernal fap-juice, like the expanding foliage of the leaf-buds, or the bractes of the flowerbuds. But when the corol becomes expanded, and conflitutes a new pulmonary organ, the vegetable juices are expofed to the air in the extremities of its fine arteries beneath a moift pellicle for the purpofe of greater oxygenation, and for the important fecretion of honey; and then the anthers and ftigmas are fupplied with this more nutritious food, which they abforb from its receptacle, the nectary, after it has there been expofed to the air, and are thus furnifhed with greater irritability, and with the neceffary amatorial fenfibility, and live like bees and butterflies on that nutritious fluid. See Sect. VII. II. 4.

SE CT. V.

the aortal arteries and veins of vegetables.

1. Aortal arteries in vegetables have correspondent veins. Shewn by experiment on picris, tragopogon, and euphorbia. Seen in the calyx of flowers. Circulation Shewn by ingrafting friped-pafion-flower, and jafmine, and hardier scions on cankered ftems, from fruit-grafts on bad flocks degenerating. 2. Vegetable circulation performed without a heart, as in the aorta and liver of fill. 3. Force of the mouths of absorbents greater than that of the heart in producing circulation. Why there is no pulsation in the vena portarum. Circulation in the veins of animals produced by absorption. Very foal refiftance in the capillaries and glands. Wounds in trees frongly absorb fluids except in the bleeding feafon. 4. Vegetable veffels too minute to carry red blood, hence not eafily injected with coloured fluids. Charcoal injected with quickflver, or melted wax. 5. Recapitulation. Circulation performed by irritability of the veffels, and by the great power of absorption, and the action of the fides of veffels confining of a Spiral line. 6. Veffels unite at the lower and upper caudex gemma. Absorbents and umbilical veffels confift of a spiral line. Experiment by placing eupborbium first in a decoction of galls, and then in a solution of green vitriol. Function of great vein, absorbent trunk, and pulmonary artery in the upper caudex gemma. Embryon bud Seen in contact with the pith. Experiments with charcoal injected with white paint, suet, wax, and quickfilver.
2. The two principal arteries in animal bodies are the pulmonary artery and the aorta. The former receives the blood from the right cavity of the heart, and difperfing it round all the air-cells which terminate the bronchia, or air-pipes of the lungs, expofes it to the influence of the atmofphere through the thin moift membrane, which lines them. This we have fhewn in Sect IV. I. 3. to be refembled in its office by the vegetable arteries, which carry their blood up the
foot-ftalks of the leaves, and expofe it on the upper furface of them to the influence of the air through a thin moift pellicle, where it changes its colour, and returns by correfpondent veins like the blood of animals.

The aortal arteries of the more perfect animals receive the blood from the left cavity of the heart, after it has been expofed to the influence of the air in the lungs, and difperfe it by numerous ramifications over the whole body for the purpofes of fecretion and nutrition. In lefs perfect animals the aorta itfelf has a pulfation, and carries forward the blood without the affiftance of a heart, as may be feen in the back of a full-grown filk-worm by the naked cye, and very diftinctly by the ufe of a common lens. After the blood has paffed the various glands and capillaries, it is received by another fyftem of veffels, the veins, which conftitute a kind of refervoir for the quantity of blood, that remains unexpended by the fecretions, excretions, nutrition, and growth of the animal ; by thefe it is again carried to the right cavity of the heart, and again expofed in the lungs to the influence of the air.

In a fimilar manner the branching veins, which bring the blood from the leaves of plants, after it has been expofed to the influence of the air, unite at the foot-ftalk of each leaf into more or fewer trunks, as may be feen in tearing off the foot-ftalk of a leaf of a chefnut-tree from the ftem; and there without the interpofition of a heart, like the circulation in the aorta of firh, and that in the livers of red-blooded animals, thefe venous trunks take the office of arteries, and difperfe the blood downwards along the bark to the roots, and to every other part of the vegetable fyftem, performing the various purpofes of fecretion, excretion, and nutrition, as was hewn in the experiment of placing a fig-leaf in a decoction of madder, defcribed in Seet. IV. 1. 3. of this work.

But as vegetables drink up their adapted nourifhment perpetually from the moilt earth, and in confequence mult be fuppofed to take
up no more than their perpetual wafte may require, I formerly believed, that this refervoir, or venous fyftem, was not neceflary in vegetables; and that therefore probably it did not exift. I was induced to adopt this idea from having obferved in cutting afunder a ftem of large fpurge, euphorbia heliofcopia; in which the rifing fap could not be miftaken for the milky blood; that much more of the vegetable blood flowed from the upper part of the plant than from the lower part of it ; and I therefore fufpected, that there was no returning veins correfpondent to the defcending aortal arteries. But firft this muft neceffarily occur from the veins returning from the root effufing their blood flower than the arteries of the upper part of the plant. And fecondly, if there were no returning veins from the lower part of the plant, there ought to have been no effufion of blood from it. I have fince obferved on cutting afunder a large plant of picris, and alfo a large plant of tragopogon fcorzonera, and inftantly infpecting them with a common lens; that two concentric circles of veffels were vifible, which oozed a milky juice; the internal circle of the upper divifion of the two plants, and the external one of the lower divifion, appeared to bleed more copioufly, and in quicker ftreams, than the external circle of the upper divifion, and the internal one of the lower divifion; whence I concluded, that the veffels of the internal circles were arteries, and thofe of the external ones veins; and that the arteries of the upper part of the plant, which arife from the upper part of the caudex of each individual bud, were thus feen to pour out more blood, and in a quicker ftream, than the veins of the lower part of the plant, as they return from the roots.

Add to this, that as the pulmonary arteries in the green leaves of plants, and in their petals, have correfpondent veins vifible to the eye; and that thefe are alfo feen in the calyxes of fome flowers, which from their other evident ufes can not be efteemed pulmonary organs : There is the ftricteft analogy to believe, that the aortal arteries of the bark of the truank and roots have alfo their correfpondent veins.

Neverthelefs to evince that the veffels returning from the roots of plants, which oozed out a milky juice, were in reality not abforbent veffels, I cut off the ftem of a large fpurge plant, euphorbia heliofcopia, about a foot and half from the ground, and bent it down into a cup of a decoction of madder, rubia tinctoria, in which it was confined two or three minutes; and wiping the end clean, I prefently eut off about an eighth of an inch of it with a fharp penknife, and obferved with a common lens the large abforbent veffels to be coloured with the madder, while the veins continued to effure a little white blood; and thus demonftrated both the exiftence of abforbent veffels and returning veins. See Sect. II. 2.

At the fame time the upper part of the plant had alfo its fem fet in the decoction of madder, and after two or three minutes on cutting off about the eighth of an inch of it, or fimply by wiping the extremity, the large abforbent veffels were feen by the naked eye to be coloured with the madder, and the arteries continued to effufe a large quantity of milky blood. The fame experiments were tried on a plant of tragopogon with the fame event.

It thould be here obferved, that the decoction of madder fhould be frefh made, as otherwife the colouring matter is liable to form itfelf into molecules, too large to be imbibed by any other veffels but the trunks of the abforbents, which may be faid to refemble the receptaculum chyli of animals, as they pafs from the lower extremity of the caudex of each bud to the upper one.

A proof of the circulation of the juices of plants has been deduced from the communication of white fpots from a grafted fcion to the whole of the tree in which it was ingrafted. Mr. Fairchild budded a paffion:tree, whofe leaves were fpotted with 'yellow, into one which bears long fruit. The buds did not take, neverthelefs in a fortnight yellow fpots began to thew themfelves about three feet above the inoculation ; and in a thort time afterwards yellow fpots appeared on a thoot,
a hoot, which came out of the ground from another part of the plant. Bradley on Gardening, Vol. II. p. 129.

And Mr. Lawrence obferves, that the yellow friped jaffamine has afforded a demonftration of the circulation of the juices in a tree; he inoculated in Augur the buds of ftriped jaffamine-trees into the branches of plain ones; and afferts, that he has feveral times experienced, that if the bud lives but two or three months, it will communicate its virtue or difeafe to the whole circumfluent fap, and the tree will become entirely ftriped. Art of Gardening, p. 66. There are both of them important facts, as they are related from respectable authorities.

And I think I have myfelf observed in two pear-trees about twenty years old, whole branches were much injured by canker, that on ingrafting hardier pear-fcions on their fummits, they became healthier trees, which can only be explained from a better fanguification produce in the leaves of the new buds.

It has alfo been observed by an ingenious lady, that though fruittrees ingrafted on various kinds of flocks are fuppofed to bear fimilar fruit, yet that this is not accurately fo ; as on forme flocks the has known the ingrafted fcions of apple-trees to fuffer confiderable change for the wore compared with the fruit of the parent-tree; whereas thole fcions, which can be made to grow by friking roots into the earth, the believes to fuffer no deterioration. If this really occurs, it fhould be in a very flight degree, as the fruit is formed by the action of fecretion, and depends on the glands of the part more than on any flight change of the vegetable blood, from which the fecretion is felected or produced. Nevertheless if the fact be afcertained, it confirms the truth of the exiftence of a vegetable circulation.
2. The circulation of the vegetable juices in the leaves of plants, and in their trunks and roots, is performed without a heart, and is ,very fimilar to that in the aorta of fifth. In fill the blood, after haveing paffed through their gills, does not return to the heart, as from the
the lungs of air-breathing animals; but the pulmonary vein, taking the ftructure of an artery, after having received the blood from the gills, which there gains a more florid colour, diftributes it to the other parts of their bodies. A fimilar ftructure obtains in the livers of fifh, as well as in thofe of air-breathing animals; the blood is collected from the mefentery and inteftines by the branches of their proper veins, which unite on their entrance into the liver, branch out again, and affume the office of an artery, under the name of vena portarum, diftributing the blood through that large vifcus for the purpofe of the fecretion of bile; whence we fee in thefe animals two circulations independent of the power of the heart. Firft, that which begins in the mefentery and inteftines, and paffes through the liver; and fecondly, that beginning at the termination of the veins of the gills, and paffing through the other parts of the body; both which circulations are carried on by the action of thofe refpective arteries and veins. Monro's Phyfiology of Fifh, p. 19.

The courfe of the fluids in the leaves, and in the trunks and roots of vegetables, is performed in a fimilar manner. Firft, the abforbent veffels of the roots, of the internal cells, and of the external bark, with the venous blood returning from thofe parts, unite at the foot-ftalk of the leaf; and then, like the vena portarum, an artery commences without the intervention of a heart, and receiving the fap and venous blood fpreads it in numerous ramifications on the upper furface of the leaf; here it changes its colour, and becomes vegetable blood; and is again collected by a pulmonary vein, and returns on the under furface of the leaf. This vein, like that which receives the blood from the gills of fifh, affumes the office of an artery, which correfponds with the aorta of animals, and branching again difperfes the blood upward to the plumula or fummit of the bud, from its caudex at the foot-ftalk of the leaf, and downward along the bark of the trunk to the roots; where it is received by a vein correfponding to the vena cava of animals, after having expended what was required for the fecretions,

Sect. V. 3. AND VEINS.
tions, excretions, and nutritition, and returns to the caudex of the bud, and to the foot-ftalk of the leaf.
3. The power, which produces a circulation without a heart in vegetables, acts with an aftonifhing force. In fome of the experiments of Dr.Hales, who fixed glafs tubes to vine-ftumps in the fpring, the fap-juice rofe above thirty feet; and in fome trees muft probably arife ftill higher in the vernal months before the leaves are expended; and this either folely by the activity of the abforbent mouths of thefe veffels, or affifted by the vermicular action of their fides, which appear to confift of a fpiral line, as defcribed in Sect. II. 7. of this work.

When the fap-juice rifes thirty-five feet high, which is about the weight of the atmofphere, the column preffes about fourteen pounds on every fquare inch. Now if the area of the mouth of an abforbent veffel be only one ten thoufandth part of the area of a fquare inch, the ten thoufandth part of fourteen pounds is the whole that counteracts the efforts of each abforbent mouth; and as the veffels of vegetables appear to have both very minute diameters, and very rigid fides, they are thence prevented from aneurifm or rupture by the preffure of fo high a column of fap-juice.

The fame philofopher, by fixing glafs tubes to the arteries of horfes, as near the heart as was practicable, found the blood in them to rife only nine or ten feet; whence it appears, that a circulation of blood may be carried on more forcibly by the action of the mouths of abforbent veffels, than by the apparently more violent exertions of the beart, the power of which was calculated by Borelli and others to be fo enormoully great, as to equal the preffure of fome thoufand pounds, as the counter preffure of the moving blood acts on fo large a furface as that of the whole internal fides of the heart.

But as a column of blood nine feet high preffes with lefs than one third of the weight of the atmofphere, or about four pounds on every fquare inch of furface; and as the internal furface of the left cavity
of the heart of a horfe may not exceed thirty fquare inches, its whole power does not overcome the refiftance of more than 120 pounds.

Hence it becomes intelligible, how the circulation of the blood in the vena portarum of the liver is performed without any apparent pulfation, or contraction of its fides like an artery, which fome have indeed fuppofed it to poffefs, but fimply by the force of abforption exerted by the mouths of the veins, which fupply it with blood.

Secondly, how the circulation of the blood in the bodies of finh, except in their gills, is carried on through their fyftem without the action of the heart. And thirdly, how the blood in the vena cava of the human body, as well as the fluids imbibed by the lacteals and lymphatics, are carried forwards to the heart by the power alone of their abforbent mouths, which drink up their blood from the capillaries, or their other fluids from the furfaces or cavities of the body. And laftly, how the whole circulation in vegetables is performed in very minute veffels without valves, and without a heart, folely by the power of abforption, circumftances which have long perplexed the phyfiology both of the animal and vegetable kingdoms.

Another circumftance attending the circulation of the juices in vegetables, as well as the circulation of the blood in animal bodies, has not been fufficiently attended to ; and that is, that the refiftance to the paffage of thefe fluids from the terminations of the arteries, in what are termed capillaries, to the beginnings of the veins, and through the glands of various kinds, is much lefs than is generally imagined, as we fee with what great force the mouths of both the vegetable and animal abforbents imbibe their fluids; and that the beginnings of the veins, and the mouths of the lacteals and lymphatics, and probably thofe belonging to every kind of gland, poffefs this great power of abforption. And that on this account, when wounds are made in trees in the fummer months, when the umbilical fap-veffels of the root have ceafed to act, fuch wounds powerfully abforb any fluid, whether falutary or poifonous, which is applied to them, which does
its whole ounds. blood in apparent ome have bforption blood. f filh, exut the aca cava of cteals and r alone of the capilthe body. formed in folely by perplexed
ices in vepodies, has ance to the s, in what d through imagined, vegetable innings of and proba t power of e made in
rels of the

SECT.V. 4, 5. AND VEINS. $\quad 6_{5}$
not occur during the bleeding feafon, as the fap-juice from the diffevered veffels of the alburnum fupplies a greater quantity of fluid than the other parts of the wound can imbibe.
4. The red particles of blood have been faid by Lewenhook and others, who have infpected them in microfcopes, to be of the fame fize in all creatures. Hence nature has formed no very fmall animals with a general circulation of warm red blood; the moufe and hum-ming-bird are perhaps the leaft. When it was neceffary to form the veffels much more minute, a diluter kind of yellow or milky blood, or ${ }^{-}$ one nearly tranfparent, confitutes the greatelt part of the vital fluid, as in infects of various kinds, and in the white mufcles of fifh; whence arofe a difficulty to the anatemift of vifibly injecting thefe finaller feries of veffels, as they are too minute to convey almoft any coloured particles.

In the vegetable world the finer fyftems of their veffels have ftill greater tenuity, and hence evade our eyes and microfcopes; and as their coats poffefs at the fame time a greater rigidity, they are in general on that account alfo incapable of receiving coloured injections, which has rendered the anatomy of plants fo much more difficult to inveftigate than that of animals, and muft apologife for the imperfections of this part of the work, but affords no argument againft the exiftence of a vegetable circulation.

It is probable that by immerfing charcoal, nicely made by flow calcination, in quickfilver, or even in melted coloured wax, as it fo greedily abforbs almoft all fluids, when recently taken from the fire, or cooled without the contact of air, we might produce beautiful vegetable preparations, and give more accurate light into the anatomy of plants. But the column of quickfilver employed to pufh forwards the injection fhould not be too high, left it fhould rupture the veffels it ought only to fill, as I fuppofe has fometimes happened in thus injecting the glands or capillaries of animal bodies.
5. Recapitulation. We may finally conclude, that the circulation K
of
of vegetables is performed like that of animals by the irritability of their veffels to the ftimulus of the fluids, which they abforb and protrude; that is, that the extremities of the branching veins of the leaves forcibly abforb the vegetable, blood from the extremities of their arteries, which correfpond with the pulmonary arteries of animals; and that it is thus puihed on to the foot-ftalk of the leaf, where the veins unite, and branching out again take the office of an artery, like the aorta in fifh, without perceptible pulfation. The blood in this artery is pufhed forwards by that behind it, the motion of which was given by the power of abforption in the pulmonary vein, till it arrives at the extremities of thefe aortal branches, and is there again forcibly abforbed by the terminations of the correfpondent veins, and again pufhed forwards to the caudex gemmx, and to the foot-ftalk of the leaf, like the blood in the vena cava of animals.

A part of this blood is at the fame time forcibly felected and abforbed by the various glands for the purpofes of the neceffary fecretions, excretions, or nutrition; and the fap-juice or chyle and the water, which is aequired by the abforbent veffels, that corsefpond to the lacteal and lymphatic veffels of animals, is carried, as well as the remainder of the blood, to the foot-ftalk of the leaf. Here thefe abforbent veffels are believed to pufh their contents into the veins correfpondent to the vena cava of animals, and which now uniting: without the intervention of a heart, affume the name and office of the pulmonary arteries; and branching out upon the leaf expofe the returning blood and new fap-juice to the influence of the air. And finally, all this is accomplifhed by the power of abforption, as in the aortal arteries, and vena portarum, of Gifh, which is excited into action by the irritability of the mouths of thefe veffels to the ftimulus of the fluids, which they abforb.

2d. A circulation of vegetable juices, in every refpect fimilar to that in the common leaves above defrribed, exits in the bractes or floral: leaves, except that the leaves of the leaf-bud prepare their juices. for
the production and nourifhment of other buds in their bofoms; but thefe bractes, which are the lungs of the fructification, prepare their juices for the nourifhment of the pericarp and its included feeds, but not for that of the corol with its anthers and figmas, as thefe in many flowers exift before the production of the floral-leaves, as in colchicum and hamamelis.
3 d. Another circulation of vegetable juices exifts in the fexual parts of flowers, including the nectaries and corols. In the corols the vegetable blood is expofed to the influence of the air, and prepared for the fecretion of honey, which is the food or fupport of the anthers and ftigmas, as treated of in the fection IV. V. I. and in Section VII. 4. In thefe the progreffion and circulation of the fluids muft be caufed by the power of abforption, which we have fhewn to be a greater force than that of the heart of animals.

4th. The progrefs of the fluids imbibed by vegetable lacteals from the earth, and by their lymphatics from the air, and from the furfaces of their internal cells, is evidently began and carried on by the power of abforption of their terminating mouths, and the annular contraction of their fpiral fibres.
$5^{\text {th. And laftly, the wonderful force with which the fap-juice is }}$ drank up and protruded in the umbilical veffels, which expands and nourithes the buds of trees, and which forms the wires of ftrawberries above ground, and thofe of potatoes under ground, with the great variety of bulbs and root-fcions, is to be afcribed to this fugle principle of abforption. Except that fome of thefe long cylindric veffels are evidently compofed of a fpiral line, as mentioned in Sect. II. 7. and which may by the annular contraction of this firal line carry the fluids they have abforbed with great force either in a forward or retrograde direction.
6. Finally I conclude, that the branching abforbents of the roots unite at the lower caudex of each bud, before it rifes out of the earth,

$$
\mathrm{K}_{2} \quad \text { and }
$$

and forms a large trunk, which paffees up the alburnum of the tree to the upper caudex of the bud at the foot-ftalk of the leaf, and may be compared to the receptaculum chyli of animals extended to fo great a length; and that it there joins the great returning vein, which alfo is compofed of the branching veins of the roots uniting at the lower caudex of the bud, and afcending terminates at the upper caudex of it, where it becomes again branched, and forms the pulmonary artery.

The aorta or great artery defcends, I fuppofe, along with the great vein, or vena cava above mentioned; and branching in the roots below, and on all other parts of the individual leaf-bud, performs the offices of fecretion and nutrition. The pulmonary arteries and veins belong to the leaf; the former expofes the blood to the atmofphere beneath a thin moift pellicle, whence it becomes oxygenated, and probably acquires fome warmth, and phofphoric acid, and the fpirit of vegetable life. The latter collects the aerated blood by its branches, and conveys it to the upper caudex of the bud, at the foot-ftalk of the leaf, where it becomes the aorta or great artery above mentioned.

The fides of the long abforbent trunks, or receptacles of chyle, which rife from the lower caudex and terminate in the upper caudex of each bud, as well as the long trunks of the umbilical veffels deforibed in Sect. III. evidently confift of a fpiral line, as well as thofetrunks of abforbents, which imbibe aqueous fluids from the air, and a part of their perfpirable matter on the furfaces of the leaves. But whether the pulmonary and aortal arteriespor great veins confift of a fimilar ftructure is not yet afcertained.

I fhall here relate the following experiments, which were made a few days ago, to confirm or confute the ideas above delivered.

Some ftems of large fpurge, euphorbia, were fet upright in a decoction of oak-galls, and others in a folution of green vitriol. On the next day thefe were reciprocally removed from the one to the other, as by this management I fuppofed that the black molecules would
e tree to $_{0}$ and may aIded to to en, which ting at the the upper os the pul.
h the great e roots be. forms the s and veins atmofphere d, and pro. he frit of 3 branches, talk of the entioned. s of chyle, per caudex veffels deell as thole the air, and aves. But confine of
ere made a cred.
ht in a de On_{n} the the other, oles would be
be produced in the veffels of the plants, and would thence appear higher in thole veffels than if the black molecules had been formed by a mixture of the two fluids previous to their abforption.

On cutting there horizontally flice after flice with a tharp knife, and infecting them with a common lens, the milky blood was feen to ooze, as before defcribed, from an external ring of the bark; and an interior ring of coloured points was agreeably vifible many inches up the flem; but on flicing the flem from below up to the infertion of the leaves and buds in their bofoms, I perfuaded myfelf that I could perceive the coloured abforbents of the fem enlarged at the part where each with the attendant vein changes into a pulmonary artery, and paffes into the leaf, forming three or more of the ribs of it, and thus conflituting the upper part of the caudex gemma.

Another circumfance was beautifully vifible, which was, that the coloured cylinder of abforbent veffels had evidently Separated to allow the new bud to apply its interior termination to the pith; which probably, when it was fecreted by the glands of the caudex of the parent bud, found in this fituation a proper nidus, and due nutriment for its embryon fate, as in the uterus of the female.

Some other kinds of experiments I directed with defign to thew the part of the lower caudex of each bud, where the branching abforbents and veins of the root unite each into one trunk, before they afcend along the bole of the tree; and also to thew, as in the above experiment, the upper caudex of each bud, where the veins are joined by the abforbents, and become the pulmonary arteries of each leaf, but did not fucceed quite to my wifh, though what I could obferve feemed to confirm the above theory. I had not leifure to repeat the experiments with fufficient attention, but fall here in few words defcribe the manner of making them, hoping fome one may be induced to profecute them with fuccefs, and to inject vegetable veffels, as the anatomifts do thole of animals.

A part of a leaf-ttalk, and the joint to which it adhered, with 9
about
about half an inch of the ftem above and below the joint, were cut off from fome laft year's twigs, and alfo the caudex of fome herbaceous plants. Thefe were covered with fand in a crucible placed on the fire, till they were red hot, fo that the vegetable joints were become charcoal. They were then taken out of the fand, and fome immerfed in melted fuet, others in melted bees-wax, others in white paint, and one or two in an amalgama of quickfilver and zinc, which happened to be prepared for the purpofes of electricity. When they were cold, on flicing them, fome horizontally, and others vertically, I perfuaded myfelf that the blood-veffels above mentioned, as well as the pulmonary vein and aortal artery, were vifible in the two extremities of the long caudex of the bud, as well as the long trunks of the arteries, veins, and abforbents, which conftitute the middle part of it.

S E C T. VI.

THE GLANDS AND SECRETIONS OF VEGETABLES.

1. 2. Glands of degetables. Their veffels are too minute for coloured injections. 2. They poffefs appetency. Are fimulated by the pafling blood. II. I. Mucilage in all vegetables. 2. Is a part of their nutriment, and convertalle into fugar. III. 1. Starch not Joluble in cold water. Potatoe bread. 2. Starich produced from mucilage, whence old grain better than new. Alum coagulates mucilage. UJe of it in bread. How diftinguibed in bread by the eye. Is falutary in London bread. Is ufed in making bair-powder. 3. Froft converts mucilage into Atanch; fnow pancakes. 4. Starch from poifonous plants is wholefome, and may be obobtained by elutriation in times of farcity. IV. I. Oils may be feparated from bitter or narcotic materials, as the latter adbere to the mucilage. V. 1. Sugar formed by animal digefion. 2, By vegetable digefion. Sugar is nutritive, but may injure the teeth. 3. In many roots it is found ready prepared. May be feparated from mucilage by vinous spirit. 4. Exifts in fruit formed from auftere acids by a vegetable proces. 5. By beat; by bruifing auftere fruit; by drying. malt. Sugar converted into ftarch as well as farch into fugar. Ufe of fugar to vegetables and animals. VI. 1. Honey guarded from infects, and from rain. 2. Is of great importance. Is expofed to the air. Is reabjorbed, and is nutri= tious. 3. Depredation of infects on boney is injurious to vegetation. So is the boney-dew on trees. Bees aljo collect farina from flowers. 4. Why the boney is expofed to the air. Is the food of the anthers and figmas. Differs from fugar by greater oxygenation. Benevolent economy of nature. VII. 1. Wax preferves the onther-duft from rain. How wet feafons injure wheat: 2. Wax collected from. cifus labdiniferus. Bees mucb injure flowers. 3. Wax from candleberrymyrtle, and from croton Sebiferum. Preferves or nouribes the immature feeds. 4. Wax depofited on plants by infects in Cbina. Gives confifence to oil. VIII. 1. Turpentines and effential oils are inadmifible with water. Moift parts of vegetables are fooneft deftroyed by frof. Evergreen trees contain moft refin. Defends the buds of deciduous plants. 2. Origin of petroleum, jet, amber, foffit, coal.
coal. 3 Efential oils agreeable. Poijonous. Preferve wood from infeits. Ujed in Africa to poijon weapons and pools of water. 4. Some effential oils burft into fame with nitric acid. Produce vapour round ditaamnus fraxinella: 5. Elaffic refin. Bird-lime. Refnous part of webeat-flower. IX. I. Bitter, narcotic, acrid juices, for the defence of plants. Opiume exifs in the poppy-bead, but not in the feed. So of byofryamus. Narcotic matter in woalnut-bukss not in the feed. Oil of bitter almonds taffelefs. 2. Acrid, affringent, emetic, catbartic, and colouring matters. Many pojonous plants in all our bedge-bottoms. 3. Ail thefe are frongeff in the byberraculum or winter-lodge of plants. When oaks fibould be decorticated. X. I. Acids in fruit and leaves of various kinds. Convertible into Jugar. For the nutriment of Jeeds and buds. For the defence of the plants.
1. . The itructure of the glands of animals has not been yet fully afcertained. They confift of veffels fo minute as to exclude all coloured injections, except quickfilver; and the terminations of thefe veffels are fo tender, that the neceffary weight of the quick filver is liable to break them, and thus mifinform the obferver, as mentioned in Sect. V. 4. Little more is therefore known of them than their effect, which is, that they fecrete, that is feparate or produce, fome fluid from the blood; as bile, falvia, urine, milk.

The veffels of vegetables being fill more minute, and more rigid, the ftructure of their glands is ftill further removed from our difcovery. Their effects are however as evident as thefe of the glands of animals in the fecretion or production of various fluids, which become folid, as their aqueous parts are abforbed or exhaled, as mucilage, ftarch, oil, fugar, honey, wax, turpentines, effential oils, aromatics, bitters, narcotics, acrids, acids, and a variety of other materials, which fill our barns and granaries, and crowd the fhops of the druggift.
2. There can be no doubt from what has been already faid of the circulation of vegetable juices, but that their various fecretions muft be effected in a fimilar manner to that in animal bodies, which is believed
en yet fully de all co. ns of thele ickfilver is mentioned than their duce, fome
more rigid, n our difcoe glands of which be
s mucilage,
materials, of the drug.
believed to be performed by the mouth of each gland being irritated into action by the ftimulus of the blood, which is brought to it, and that by a kind of appetite it drinks up a part of the blood, and converts it to the fluid, which it fecretes, which then becomes more or lefs folid, as its aqueous parts are abforbed or exhaled.
II. i. Mucilage is found in all parts of plants, as being an effential conftituent of vegetable as of animal bodies; fo when an extract is made by boiling plants in water, the mucilage makes the greateft part of this extract. The mucilage called gum arabic is obtained from mimofa nilotica, gum tragacanth exfudes from aftragalus tragacantha, as a fimilar gum exfudes from our cherry and plumb-trees; fagoe is the pith of the lycas circinalis; and falep is the root of the orchis dried in an oven.

This mucilage feems to ferve as nourihment to the plant; firft, becaufe it is found in all vegetable as well as animal materials, as they * decompofe in dunghills; fecondly, becaufe it forwards the growth of vegetables, when fpread upon land; thirdly, becaufe thofé trees, which bleed much gum, are weakened and frequently die; and laftly, becaufe it is evidently laid up in the roots and feeds of various vegetables for the nourifhment of the young plants. But in thefe it feems to undergo a change either in part chemical, or wholly by the digeftive organs of the embryon plant, and is converted into fugar, as in the tranfmutation of barley into malt; and as appears from the fweet tafte of onions and potatoes, when boiled after they have germinated; and as fugar abounds in the vernat fap-juice of trees in fuch quantity as to be capable of fermentation.
III. I. Starch is another kind of mucilage, which differs from thofe above mentioned in its property of not diffolving in cold water, and can hence be eafily feparated from them. If eight pounds of good raw potatoes be grated by means of a bread-grater into cold water ; and, after well agitating the mixture, the ftarch be fuffered to fubfide; and this flarch be then mixed with eight other pounds of
boiled potatoes, as good bread may be made as from the beft wheat flour ; as is affirmed by Monf. Parmentier. From this it appears, that the quantity of ftarch in potatoes and in wheat produces the principal difference of their refpective flours. See Zoonomia, P. III. Article I. 2. 3.4.
2. There is reafon to believe that the mucilage during the growth of the plant is converted into flarch; and that this procefs continues in grain fome time after it is carried into the barn or granary, which occafions old wheat to produce better flour for the baker; and old oats and old beans are univerfally believed to give more nourifhment to horfes. I hall here add a conjecture, that I fuppofe the ufe of alum in making bread confifts in its coagulating the mucilage, and perhaps thus contributing to convert it into ftarch; for the bakers mix it principally with new wheat ; and affirm, that it makes the flour of new wheat equal to old.

Where much alum is mixed with bread, it may be diftinguifhed by the eye by a curious circumftance, which is, that where two loaves have ftuck together in the oven, they break from each other with a much fmoother furface, where they had adhered, than thofe loaves do which do not contain alum.

Add to this, that alum is alfo ufed by the London bakers for the purpofe of clearing the river water, with which they are fupplied, which is frequently muddy; and alfo for inftantaneoully deftroying the volatile alkali, which is faid to exift in fome London wells owing to the vicinity of dunghills. Thefe purpofes it probably fulfils by coagulating the mucilage, which may occafionally be mixed with the water and fupport the mud in it ; or by uniting with the calcareous earth, or with the volatile alkali which it may contain, and depofiting the new-formed gypfum, or its own argillaceous bafe, the defcent of which may carry down other impurities along with it, in the fame manner as fome muddy wines have been rendered fine, not by filtering them through fand, as then the mud retained on the appers s the ping. . III. A_{5}. he growth continues ry, which ; and old urifhment Ife of alum Id perhaps ers mix it he flour of
furface of the fand foon prevents the defcent of the wine through it, but by paffing clean fand in thowers by means of a riddle through the wine. Alum is faid to be ufed by the Chinefe for the purpofe of cleaning the water of fome ftagnant refervoirs; and when ufed in fmall quantity may in all thefe refpects be rather falutary than injurious to the bread of London.

Alum is faid alfo to be ufed in the manufactory of hair-powder, which Thould confift of farch without mucilage, that the hair may not be glued together by the perfpirable matter of the head, or by an accidental fhower. Whether it has the property of converting mucilage into ftarch might be eafily afcertained by experiment, by wafhing in cold water alone one parcel of wheat flour, and wafhing a fimilar parcel in a folution of alum in water.
3. Another conjecture I Thall introduce here is, that it is probable that the action of frof alfo may tend to coagulate mucilage, or convert it into ftarch; for in the colder parts of Britain it is faid, that the corn never ripens till they have frofty nights; and I well remember many years ago having obferved, that fome book-binder's pafte made by boiling wheat-flour and water, after it had been frozen, ceafed to cohere on being preffed together, like the crumbs of fome bread; and I have been told by fome houfewives that their pancakes become much lighter if fnow be mixed with the flour inftead of water. See Sect. XVI. 3. 2.
4. Now as ftarch is not foluble in cold water, the bitter and acrid particles of plants may be wafhed from it along with the mucilage; whence in times of fearcity this nourifhing part of vegetables may be obtained by elutriation from poifonous plants; on this circumftance principally depends the wholefomenefs of the bread made from the caffava, the acrid and poifonous particles being previoully wafhed away along with the mucilage. Monf. Parmentier found the ftarch from the root of the white bryony to contain no acrimony, and to be a wholefome article of food.

L 2
IV. i. Many
IV. I. Many feeds contain much oil mixed with their mucilage, or flarch; as nuts, almonds, flax-feed, rape-feed. Some of thefe contain alfo a bitter or narcotic material, as bitter almonds, apricot kernels, acorns, horfe-chefnuts; which, as it adheres to the mucilage, may be feparated from the oil; as in expreffing the oil from bitter almonds, which is as good as from fweet ones. And it is probable by grating to powder, and wafhing in cold water, the kernels of acorns, and horfe-chefnuts; or fimply by preffure, that a wholefome ftarch, or oil, might be procured. It is probable alfo that the roots of fern treated in this manner would afford good nourifhment, as thefe are faid to be eaten by the inhabitants of New Zealand, and have been ufed in this country in times of great fearcity. And that the roots of nymphæa, water-lily, might be thus made into wholefome bread, (which are faid to have been eaten in Egypt by Herodotus) and the roots of many other water-plants, which might thus become articles of fubaquatic agriculture, which is an art much wanted in this country. See Sect. XI. 2. 5. and XVII. 2. 3.
V. I. The digeftive power of animals feems to be principally exerted in converting their food into fugar ; fince the chyle of all animals refembles milk, which contains much fugar, and thence fpontaneoufly runs into fermentation, which terminates in the production of acid, as in butter-milk. In Siberia the natives diftil a firituous and intoxicating liquor from milk thus fermented. Gmelin. In the diabetes there is reafon to believe, that the chyle paffes off into the bladder without being previoufly mixed with the blood; and there is a curious hiftory of a patient in the infirmary at Stafford, who laboured under a diabetes, he eat and drank thrice as much as moft moderate men, and from fixteen to eighteen ounces, and even twenty ounces of coarfe fugar was extracted for fome time daily from his wine. Zoonomia, Vol. I. Sect، XXIX. 4.
2. In like manner the digeftive powers of the young vegetable, with the chemical agents of heat and moifture, convert the farch or mucilage

Sect. VI. 5. 3, 4.
SECRETIONS.
mucilage of the root or feed into fugar for its own nourifhment ; or they obtain fugar ready prepared for them from fome roots, as the beet-root; from many fruits, as grapes, pears, peaches; from the milk of cocoa-nuts, and from the fap-juice of the fugar-maple, birch, and many other trees. And thus it appears probable, that fugar is the principal nutriment of both animal and vegetable beings. That it is the moft nutritive part of vegetable fubfances is evinced by the well afcertained fact, that the flaves in Jamaica grow fat in the fugar-harveft, though they endure at that time much more labour.

Yet there is an idle notion propagated amongft the people that fugar is unwholefome; it is indeed probable, that the moft nourifhing materials may be taken more eafily to excefs, but not that it is therefore in general unwholefome; at the fame time it is probable, that fome fruits preferved in fyrup, or fweet-meats, may contribute to deftroy the teeth; fince, if the fugar thould become in a flate of decompofition, and the faccharine acid fhould abound, it will diffolve calcareous earth with greater avidity than any other acid.
3. In many plants fugar is found ready prepared, as above mentioned; thus in the beet-root, the cryftals of it may be dif̧erned by a microfcope ; and may be extracted from the mucilaginous matter of the root by diffolving it in rectified firit of wine; which will unite with fugar but not with mucilage. In the joints of grafs and of corn it may be difcovered by the tafte. In the manna-ah, fraxinus ornus, the fame faccharine matter is produced along with the effential falt of the plant, which is purgative; and in the fugar-cane it abounds in fuch large quantity as to contribute much to the nourifhment of mankind. And,-and what ?-Great God of Juftice ! grant, that it may foon be cultivated only by the hands of freedom, and may thence give happinefs to the labourer, as well as to the merchant and confumer.
. 4. Another fource of fugar in vegetables is in the fruit, which in many plants changes from an auftere acid to a faccharine acid, as in goofeberries,
goofeberries, apples, oranges. This change continues to proceed after the pears and apples, or oranges, are taken from the tree into our ftorehoufes, but the fruit in this fituation continues to ripen by a vegetable procefs, as it can not be faid to be dead, becaufe it does not yet undergo fermentation or putrefaction, or other chemical diffolution; and though its progrefs in ripening may be forwarded by warmth, yet it muft ftill be afcribed to a vegetable procefs; as the plants themfelves grow quicker when expofed to additional heat.
5. But there are other means of increafing or haftening the faccharine procefs in auftere vegetable fruits, as by bruifing them, or by baking them, both which muft deftroy the life of the fruit; thus when apples are bruifed for the purpofe of making cyder, they become fweeter even in the act of bruifing them; and many pears change from an auftere to a fweet juice fimply by the heat of baking ; and it is probable that malt acquires a great part, though not the whole of its faccharine matter, in the act of drying. This chemical production or increafe of fugar in vegetable juices is worth being further inquired into; fince if fugar could be made from its elements without the affiftance of vegetation, fuch abundant food might be fupplied as might tenfold increafe the number of mankind!

It is a curious circumftance not yet fufficiently underflood, that not only ftarch appears to be convertible into fugar by the vegetable procefs of digeftion, as in the germination of farinaceous feeds; but that fugar is capable of being converted into ftarch, as appears in the ripening procefs of fome pears, which firft contain a fweet-juice, and afterwards become mealy.

The ufe of this faccharine matter of the fruit or fap-juice in the vegetable economy is for the purpofe of fupplying the young feed or bud with nourifhment to enable it the better to frike its roots into the earth, and to elevate its leaves into the air, and thus by its
quicker
mal heat,
ling the fac. them, or by fruit ; thus er, they be many pears it of baking; pugh not the This chemiworth being its elements od might be ind!
ood, that not
egetable pro.
eds; but that
ars in the fis et-juice, and
ice in the pe
its roo
oots inio
thus by it quicker

Sect. VI. 6. 1, 2. SECRETIONS.
quicker growth to rival its neighbours in their contentions for air, and light, and moifture, which are neceffary for its exiftence.
VI. 1 . The production of honey is perhaps one of the moft important vegetable fecretions, except that of the prolific farina from the anthers; and of the favilla, or new embryon, in the axilla of the leaf. The glands for this purpofe, or certainly the refervoirs, which contain the honey after it is fecreted, are in many flowers vifible to the naked eye; as in crown-imperial, fritillaria imperialis; in monkfhood, aconitum napellus; hellebore, ranunculus. It is neverthelefs probable, that this refervoir of honey is frequently placed at a diftance from the gland, which fecretes it, for the purpofe of preferving it from infects and from rain, which is often effected both by a very complicated apparatus, and by an acrid or poifonous juice, as in the aconites and the hellebores above mentioned.

As the nectary, or honey-gland, always falls off along with the corol, and anthers, and ftigmas; thefe appear to be parts or appendages to each other. The vegetable blood is expofed to the air in the corol, and thus is oxygenated or prepared for the fecretion of this important fluid; which I fuppofe is again reabforbed, and fupplies nourifhment to the anthers and ftigmas. Some acrid juices, and odorous particles, are at the fame time fecreted from the blood thus oxygenated in the corol; which feem defigned as one kind of defence againft the depredations of infects on this important refervoir of honey.
2. The univerfality of the production of honey in the vegetable world, and the very complicated apparatus, which nature has conftructed in many flowers, as well as the acrid or deleterious juices the has furnifhed thofe flowers with, as in the aconite, to protect this honey from rain, and from the depredations of infects, feem to imply, that this fluid is of very great importance in the vegetable economy ; and alfo that it was neceffary to expofe it to the open air previous to its reabforption inte the vegetable veffels.

In the animal fyftem the lacrymal gland feparates its fluid into the open air for the purpofe of moiftening the eye; of this fluid the part, which does not exhale, is abforbed by the puncta lacrymalia, and carried into the noftrils; but, as this is not a nutritive fluid, the analogy goes no further than its fecretion into the open air, and its reabforption into the fyftem. The perfpirable matter is another material $\mathrm{fe}-$ creted by animal glands into the external air, and is in part reabforbed, and in part exhaled. And every other fecreted fluid in the animal body is in part abforbed again into the fyftem, even thofe which are efteemed excrementitious, as the urine; and others are probably entirely reabforbed, as the bile, faliva, and gaftric juice.

That the honey is a nutritious fluid, perhaps the moft fo of any vegetable production, appears from its great fimilarity to fugar, and from its affording furtenance to fuch numbers of infects, which live upon it folely during fummer, and lay it up for their winter provifion. Thefe proofs of its nutritive nature evince the neceffity of its reabforption into the vegetable fyttem for fome ufeful purpofe.
3. It is probable, that the depredations of infects on this nutritious fluid muft be injurious to the products of vegetation; and would be much more fo, but that the plants have either acquired means to defend their honey in part, or have learned to make more, than is abfolutely neceffary for their own economy. Thus in filene, catch-fly, and in drofera, fun-dew, it is defended by a vifcid juice from the attack of infects; in hellebore, and in aconite, it is defended by the difficult paffage to it, and by the acrid juice of the plant, if infects fhould endeavour to creep into the nectary, or pierce it with their probofcis; and in polygonum melampyrum, buck-wheat, and in cacalia fuaveolens, alpine colts-foot, there feems to be a fuperabundant quantity of honey fecreted, as thofe flowers are perpetually loaded with bees and butterflies, infomuch that at Kempton-land in Germany, Mr.Worlidge fays, in his Myfteries of Hurbandry, Ch. IX. 3. that he faw forty great bee-hives filled with honey to the amount of

Sect.VI. 6.4.

 SECRETIONS.feventy pounds in each in one fortnight by their being placed near a large field of buck-wheat in flower; and I well remember being myfelf aftonifhed at feeing the number of bees on a field of buck-wheat in Shropfhire, as well as on a plant of cacalia fuaveolens in my garden ; from which the feent of honey could be perceived at many feet diftance from the flower.

In the fame manner the honey-dew on trees is very injurious to them; in which difeafe the nutritive fluid, the vegetable fap-juice, feems to be exfuded by a retrograde motion of the cutaneous lymphatics, as in the fweating ficknefs of the laft century, or is devoured by infects, which pierce the lymphatic veffels of the leaves at midfummer, feed on the vegetable chyle, and void it almoft unchanged. See Sect. III. II. 8. and XIV. I. \%-
To prevent the depredation of infects on honey a wealthy man in Italy is faid to have poifoned his neighbour's bees, perhaps by mixing arfenic with honey, againft which there is a flowery declamation in Quintillian, No. XIII. This mixture of honey and arfenic may be ufed with effect to poifon flies, which fometimes abound in pernicious multitudes; for the flies which frequent our houfes are liable to great thirft, as is feen by their drinking any fluid, which is diffufed on a table; whence if a flight folution of arfenic, with a little fugar, be put thinly on a plate or two, and fet on chimney-pieces or windows, the flies will eagerly drink it, and perifh almoft infantly. It is probable that wafps might be thus deftroyed in hot-houfes, if a little honey was added to attract them by its odour.

As the ufe of the wax is to preferve the duft of the anthers from moifture, which would prematurely burft them, the bees, which collect this for the conftruction of the combs or cells, and collect the farina alfo probably for bee-bread for their larvæ or maggots, muft on both thefe accounts alfo injure the vegetation of a country, where they too much abound.
4. It is not eafy to conjecture, why it was neceffary, that this fecreM
tion of honey fhould be expofed to the open air in the nectary or ho-ney-cup; for which purpofe fo great an apparatus for its defence from infeits and from howers became neceflary. This difficulty increafes, when we recollect, that the fugar in the joints of grafs, in the fugar-cane, and in the roots of beets, and in ripe fruits, is produced without expofure to the air. But on fuppofition of its fupplying nutriment to the anthers and ftigmas, it may thus acquire greater exygenation for the purpofe of producing the greater powers of amatorial fenfibility, as mentioned in Sect. IV. 5.6. and probably in this circumftance alone differs from fugar.

From this provifion of honey for the male and female parts of flowers, and from the provifions of fugar, ftarch, and mucilage, in the fruits, feeds, roots, and alburnum of plants, laid up for the nutriment of the young progeny; not only a very numerous clafs of infeets, but a great part of the larger animals, procure their food. Surely this muft be called a wife provifion of the Author of nature, as by thefe means innumerable animals enjoy life and pleafure without producing pain to others; for the embryons in thefe buds, feeds, or eggs, as well as the nutriment laid up for them, are not yet endued with fenfitive life. There is another fource of nutriment provided for young animals, which ftill further evinces the benevolence of the Author of nature; and that is the milk furnifhed by the mother to her offspring; by this beautiful contrivance the mother acquires pleafure in parting with a nutritious fluid, and the offspring in receiving it !
VII. I. The wax is another vegetable fecretion produced with the fecundating duft on the anthers of flowers, which in wet feafons it preferves from rain, to which it is impenetrable; for the farina, or fecundating duft of plants, is liable to fwell if expofed to much moifture, and to burft its thell; and it either then becomes inert and ineffectual, or is wafhed away. Whence Mr.Wahlborn obferves, that as wheat, rye, and many of the graffes, and plantain, lift up their wathers on long filaments, and thus expofe the enclofed fecundating
$\mathrm{A}_{\text {ary }}$ or ho. its deferice is difficulty of grafs, in uits, is pro. ts fupplying uire greater vers of ama. bably in this
ale parts of aucilage, in for the ausclafs of inood. Surely iture, as by re without ds, feeds, or yet endued provided for e of the Auother to her res pleafure ceiving it! ed with the t feafons it e farina, or much moif lert and ins. Cerves, that ift up their fecundating durt

Sect, V1. 7.2, ${ }^{\circ}$
SECRETIONS.
duft to be wafthed away by the rains; a fearcity of corn is produced in wet fummers; hence the neceffity of a careful choice of feedwheat ; as that, which had not received the duft of the authers, will not grow, though it may appear well to the eye.
2. A fubftance fimilar to this is faid to be collected from extenfive underwoods of the ciftus labdaniferus in fome eaftern countries by this fingular contrivance; long leathern thongs are tied to poles, and drawn over the flowers of thefe fhrubs about noon, which thus colleet the wax or refin with part of the anther duft, which adheres to the leathern thongs, and is occafionally fcraped off for ufe. Thus in fome degree the depredation of the bee is imitated, except that tho loads her thighs only with the anther-duft, which according to Mr. John Hunter conflitutes the bee-bread found in hives for the fupport of the larva or bee-maggot; and that the fwallows the wax for the conftruction of her combs, as well as the honey for her winter provender; and thus every way injures the fecundity of flowers.
3. A wax in America is obtained from the myrica cerifera, candleberry myrtle, the berries of which are boiled in water, and the wax feparates. The feeds of the croton febiferum are lodged in a kind of tallow; in both thefe plants the wax or tallow probably ferves the purpofe of preferving the immature feeds from moiture; or like the oil found in flax-feed, rape-feed, and in many kernels, they may conflitute in part the nourifhment of the new plant.

It muft neverthelefs be obferved, that Mr . Sparman fufpects, that the green wax-like fubftance on the berries of the myrica cerifera is depofited by infects. Voyage to the Cape, V. I. p. 145. And Du Halde defcribes a white wax made by infects in great quantity round the branches of a tree in China, which is called Tong-tin. Defcript. of China, V. I. p. 230. And lafly, fir G. Staunton mentions a white wax on a plant in Cochin-China, which be believes to be ftrewed on the plant in the form of white powder, which has this fingular property, that one part of this white powder mixed with three parts of M_{2} olive
olive oil made hot, gave it when cold the confiftence of bee's-wax. Embaffy to China, Vol. I. p. 354.
VIII. I. Turpentines or balfams, refins, and effential oils, are analogous to the vegetable fecretions laft mentioned, in their being inadmiffible with water. Thofe vegetables, which contain in their veffels the leaft water, bear cold climates the beft; becaufe when water is frozen, it occupies more fpace than before; and hence burfts the bottles which contain it; in the fame manner when any fucculens vegetable is frozen, its veffels become burft or bruifed by the expanfion of the ice, and the plant is deftroyed; on this account thofe parts of plants, which are the moft juicy, as the laft fhoots of vines, are fooneft deftroyed in winter. Hence many of the evergreen trees of this climate are replete with turpentine or refin, which by occupying the place of fo much water, contributes to their hardinefs. There is alfo a partial fecretion of balfam or turpentine in many deciduous plants for the purpofe of defending their buds during the winter, both from froft and from wet, which is repelled by their balfamic varnifh, as on the buds of the populus tacamahaeca.
2. The balfams and refins of the fhops are either extracted from the wood by fire, or exfude from wounds of the tree; thus what is called Venice turpentine is obtained from the larch by wounding the bark about two feet from the ground, and catching it as it exfudes. Sandarach is procured from common juniper, and incenfe from another juniper; and there is reafon to believe that bitumen, or petroleum, with jet, amber, and all the foffile coal in the world, owes its inflammable part to the recrements of deftroyed forefts of terebinthinate vegetables, fo important to the prefent race of mankind has been this vegetable fecretion !
3. The effential oils are fometimes raifed by diftillation from bal fams or refins, as oil of turpentine; but are chiefly extracted from flowers; where their office has been to prevent the depredations of infects; though many of them are fo agreeable to the human fenfe of fmell,
fmell, when thefe effential oils are diffolved or mixed with water in diftillation, they have been called the firitus rector of the plant, and conftitute the odour of it, whether aromatic or fetid.

Some of thefe effential oils poffefs the moft poifonous qualities, as thofe of lauro-cerafus, and of tobacco; and are ufed by Indian nations for the purpofe of poifoning their weapons, which they cover like a varnifh. And hence fome of the refinous woods are faid never to be devoured by infects, as the unperifhable chefts of cyprefs, in which the Egyptian mummies have been preferved for fo many ages, and the cedar in which black lead is inclofed for pencils.

The acrid poifon of the large euphorbium of Africa exitts in the oil of that plant; as M.Vaillant obferves, that the natives fometimes poifon the waters with flicing this plant into them, and that the poifonous oil fwims upon the furface, and may thus be avoided by a careful drinker. This in a country where water is fcarce, and generally in ftaguant pools, may be readily effected; as a few fpoonfuls of oil will cover a large fheet of water, as it becomes diffufed upon it without friction, as mentioned in Botanic Garden, Vol. I. Addition. Note XXIX.
4. Some of the effential oils are fo inflammable as to burft into a vehement flame on being mixed with nitrous acid, as oil of cloves; and even the fmall quantity diffufed in the air round the dictamnus fraxinella will take fire on a ftill evening at the approach of a lighted candle.
5. With thefe fhould be arranged the elaftic refin called Caoutchouc, which is faid to exfude from a tree in Guaina, called Iatropha elaftica, by M. de la Borde, phyfician at Cayenne. A fimilar elaftic refin is faid to be obtained from a plant in Madagafcar, called Finguere, a kind of wild fig-tree, according to Abbe Rochon; and the bird-lime extracted from the bark of the hollies of our climate feems to be a fimilar material; as like the caoutchouc it becomes foft by heat, and is impenetrable by water, but foluble in ether. Another elaftic fub. ftance,
fance, which is infoluble in water, is procured from wheat by long maftication, or by agitating the flour of it in water; which has been faid to approach to animal matter, and is believed to be the moft nutritious part of that aliment, and was once much talked of, or fold under the name of alimentary powder for the nourihment of marching armies.
IX. I. The bitter, narcotic, and acrid juices of plants are fecreted by their glands for the defence of the vegetable from the depredation of infects and of larger animals. Opium is found in the leaf, ftalk, and head of the poppy, but not in the feeds. A fimilar narcotic quality exifts in the leaf and ftem of hyofcyamus, henbane, but not in the feeds. An acrid juice exifts in hufks of walnuts, and in the pellicle, or fkin , of the kernel; but not in the lobes, or nutritious part of it. Thefe feem to have been excluded from the feed, left they might have been injurious to the tender organs of digeftion of the embryon plant. In fome feeds, however, there is a bitter quality, but which refufes to mix with the oleagenous part; as the oil expreffed from bitter almonds is as taftelefs as that from the fweet almonds.
2. Other vegetables poffefs glands adapted to the fecretion of various fluids more or lefs aromatic, acrid, or aftringent; as the herb of water-crefs, the root of horfe-radifh, the feeds of muftard, the flowers of rofes, the fruit of quince, and the bark of oak. To thefe fhould be added thofe which have emetic and cathartic qualities; and other vegetable preparations, which are ufed in the arts of dying, tanning, varnifhing; and which fupply the fhops of the druggift with medicines and with poifons. All which deleterious juices feem to have been produced for the protection of the plant againft its enemies, as appears by the number of poifonous vegetables, which are feen in all our hedge-bottoms and commons, as hyofcyamus, cynogloffum, jacobæa, and common nettles; which neither infects nor quadrupeds devour, and which are therefore of no known ufe but to themfelves; and poffero
heat by long
inch has been the mot nu d of, or fold at of match. are fecreted e depredation e leaf, talk, narcotic qua. e, but not in d in the pol. atritious part ed, left they eftion of the - quality, but oil exprefied : almonds. retion of vas the herb of , the flowers there Could s; and other ing, tanning to with medto have been
es, as appears
n in all ours um, jacobus
poffefs a fifer armour in this panapoly of poifon, than the thorns of hothes, briars, and goofeberries.
3. As the bitter, narcotic, acrid, and terebinthinate, as well as the farinaceous, oily, and faccharine matters, are ferreted in fumier from the vegetable blood, and referved for the nutrition and defence of the new buds and bulbs, they are in this climate generally found more concentrated in the hybernaculum, or winter-lodge of plants, before the new lap is raised by the umbilical or absorbent veffels in the firing. Hence roots and barks, as well as fruits and feeds, are bet collected in autumn, or in winter, for the purpofes of medicine or of other arts.
Thus the bark of oaks fhould be taken off for the ufe of the tanner in the winter, or in early firing, before the leaves pullulate, as then a great part of its aftringent or bitter juices is reabsorbed, and carried to the new foliage along with the faccharine fap-juice, which has been depofited in the cells of the alburnum or fap-wood. But as the barks of trees become loofer, and much more eafily detached from the wood, when the fap-juice riffs in the firing, this is the beft time for debarking them; but the naked bole and branches could fend till autumn, till the faccharine matter collected in the alburnum has been expended in unfolding the new leaves; otherwife it will foo ferment and putrefy ; and the fap-wood will thus quickly decay by what is termed the dry-rot of timber, as mentioned in Sect. III. 2.3.
X. i. The acids produced by vegetable fecretion have of late been much fubjected to chemical inquiry, and have been found to be for numerous, that they have been named from the vegetables, or parts of vegetables, from which they have been extracted; as the gallic acid, malic acid, oxalic acid. Many unripe fruits contain an auftere acid, which is gradually converted into fugar by vegetable or chemical proceffes for the nutriment of their feeds, as defcribed in No. V. 4. of this faction. In other plants it exits in the foot-ftalks of the leaves,
as in rheum, rhubarb; or in the leaves themfelves, as in oxalis, forrel; in thefe fituations alfo I fuppofe it is fecreted both for the defence of thofe plants from the depredation of infects and of larger animals; and alfo for the purpofe of its being converted into a faccharine juice by the digeftion of the young bud in the bofom of the leaf.

Sect. VII. ORGANS OF REPRODUCTION.

SE CT. VII.

THE ORGANS OF REPRODUCTION OF VEGETABLES.

The theory of Limneus for vegetable reproduction too mechanical, and without analogy. Every new fluid is Secreted by glands, as the liquor amnii and albumen oui. So also is the favilla vita, or living entity. I. 1. Lateral progeny. The nero bud is secreted in the axilla of the leaf, and requires no female apparatus. It adheres to its parent not by inofculation of veffels, but resembles the chick in the egg. 2. Difference of the chick and fetus. Their nutriment and oxygenation. The embryon may be gen in the buds of borfe-cbefint. It is a paternal progeny. 3. This lateral offspring refembles the parent. Not universally fo. More perfect than feeds. Buds of diacious plants bear fimilar sexes. The lateral progeny degenerates from bereditary dijeafes. Whence curled potatoes, blighted frawberries, bears fruit at the fame time, and of the fame kind. Plants live longer if prevented from flowering. Art of producing double byacintbs, ranunculus, tulips. 4. Lateral progeny of corallines and Sea-anemonies. Polyp are all males. Wires of knot grass like the joints of the tape-worm, which are all males. 5. Aphis, viviparous and oviparous like vegetable generation. 6. Veffels of the bud and leaf do not inosculate. Viviparous, oviparous, and paternal generation. 7. Leaves on twigs like the progeny of volvox. But in fome twigs the pith is divided, and the buds fuccefive. Hermaphrodite generation. Buds from every part of the caudex. Those from belowe the graft are like the flock. Find numerous uteri like eggs and fparen. Paternal generation preceded Sexual generation. The last more excellent. II. I. Sexual progeny. Seeds before impregnation. Eggs before impregnation. Seed-embryon suspended by oppofite points like the cicatricula of the egg. 2. Seed-bud and flower. Stamens and fitigas. Males bend to females, and females to males. Style of Spartium bends round like a French born. Onanism of epilobium. Male flowers of vallifneria swim to the females. Flowers with long filaments injured by rain. Submarine plants project a liquor. 3. The petals are respiratory organs. 4. Honey is the food of the anthers and figma; which like butterflies propagate and die.
5. Seeds are formed and nour ibed by the umbilical veffels previous to fecundation, or by the bractes or floral-leaves. Difperfion of feeds by plumes, by books, by twifted arons. Creep on the groand. Hygrometer of a geranium seed. 6. Sexual generation the chef d'couvre of nature. Produces variety of Species. Mixed breed of cabbage. Mixed breeds of beans. An apple four on one fide. Vegetable mules. 7. Animal mules. They externally refemble the male, internally the female. Mule from the borse and female afs. From the mare and male afs. From Spanib rams and Swedijb eives, and the contrary. From the goat of angora. Ram weitbout borns. 8. Howe to improve the varieties of fruits and flowers, and produce newo ones. Many plants were originally mules, and many animals. Howe to produce new animal monfers, both quadrupeds and ffh, by the method of Spallanzani. Mules more frequent in antient times. III. Vegetable generation. 1. A triple tree by ingraftment. The caudex of each bud is triple. Lateral or paternal mules. Conferva fontinalis Splits. 2. The lateral propagation of the polypus. The bydra fentorea jplits. Two balves of different polypi unite. So the vegetable filaments or caudexes in ingrafted trees. 3. Triple lateral mule. Each part of the triple caudex is produced from that in its vicinity, not from the plumula of the bud. 4. Worms multiplied by dividing them. So the caudexes of the buds of trees. 5. The parts of the long caudexes of trees are fecreted from the adjoining parts of the parent caudexes, and combine beneath the cuticle of the tree. Every part of a compound caudex can produce a nerw bud, refembling the part of the compound fock, where it rijes. Lateral mules conjit of parts from three or four parents. Could there bo a threefold Jexual mule? 6. Power of attraction. Aptitude to be attracted. Cbemical combinations by 今ingle attraction. By double affinity. 7. Union of animated bodies with inanimate matter, as in fwallowing food. In abforption by the lacteals. Vitality of the blood. Fibrils with nutritive appetencies. Molecules with nutritive propenfities. 8. Fibrils with formative appetencies, and molecules with formative propenfities Jecreted beneath the cuticle of trees, and coalefie. Hunger and love, thirft, fuckling cbildren, they reciprocally fimulate and embrace. each otber. 9. Great fecret of nature. Formative or nutritive particles in the blood more than neceffary. Secreted by numerous glands. Arranged under the cuticie of trees. Acquire new appetencies, and produce new parts. 10. In jexual generation they are fecreted by two glands only. Thofe of the anther and pericarp unite in the matrix. 11. Witbout formative molecules as well as formative fibrils
there could be no mules, or any refemblance to the motber. The new dectine of tbreefold vegetable mules applied to animal generation. 12. Conclufion.

The theory of Linneus in refpect of the reproduction of vegetables maintains, that the internal medullary part muft be joined with the external or cortical part of the plant for the purpofe of producing a new one. If the medulla be fo vigorous as to burft through its containing veffels, and thus mix with the cortical part, a bud is produced either on the branches or roots of vegetables; otherwife the medulla is extended, till it terminates in the piftillum, or female part of the flower; and the cortical part is likewife elongated, till it terminates in the anthers, or male part of the flower; and then the fecundating duft from the latter being joined to the prolific juices of the former, produces the feeds or new plants; at the fame time the inner rind is extended into the corol or petal, and the outer bark into the calyx.

After the feeds are thus produced, the parent bud dies; and in this refpect the buds bear a very great analogy to thofe annual infeets, which change from their caterpillar or larva-forms, putting forth painted wings and organs of reproduction, and after depofing their eggs ceafe to exift. See the account of the vegetable kingdom by Linneus, prefixed to the fyftem of vegetables tranflated by a botanical fociety at Lichfield. Leigh and Sotheby, London.

However fimple and ingenious the firft part of this theory may appear, in which the medulla is fuppofed to extend itfeif, till it burfts the inclofing or cortical part, and joining with that produces a new bud; yet it feems too mechanical for a living organized fyftem; and fo totally different from any thing we know of fexual production either in animals or flowers, as not readily to fatisfy a reafoning mind.

Every new fluid or folid produced in the organic fyftem of vegetable or animal bodies is fecreted from their blood, as the various fluids
of bile, faliva, tears, in animals; and thofe of gum, refin, fugar, in vegetables. Amongft thefe are the juices which conflitute the nutritious fluid of the amnios in the uterus of viviparous animals, or that of the albumen of the egg in oviparous ones. And lafty, the flavilla vitæ, the new fpark of being, or living entity, is alfo fecreted from the blood of male animals by adapted glands to be received into a proper nidus, and nourifhed by the female.

I. LATERAL PROGENY.

y. As the leaf with its petiole, or foot-ftalk, and its caudex down the bark of a tree, with its radicle beneath, conftitutes an individual plant; and the bud in its bofom fucceeds, and is evidently produced by it ; it may be concluded from the ftrongeft analogy that this new progeny is fecreted from a gland or glands of the parent; and that, as it adheres to the parent, it requires no female apparatus for its reception, nourifhment, or oxygenation.

I was formerly induced to believe, that there was a communication of blood, or inofculation of veffels between the parent leaf, and the new bud in its bofom, as expreffed in Zoonomia, Sect. XXXIX. 2. 2. and that this conflituted the difference between paternal geftation and maternal geftation. But that the veffels between the new bud and the parent leaf-bud do not inofculate may be well feen by taking away the bark of the foot-ftalk of a leaf, and of the new bud in its bofom ; as the remains of the arteries of the late leaf, as well as the rudiment of the new bud, are feen to terminate in the alburnum, or to penetrate the pith, but without any apparent communication ; and I therefore fufpect, that the embryon bud is not ferved with vegetable blood from the veffels of the parent, but that it acquires both nutriment and oxygenation much in the fame manner as the chick in the egg. See Sect. III. I. 5 .
2. The condition of the chick in the egg differs from that of the
fetus in the womb of viviparous animals in the whole of its nutriment being at firft provided for it, which confifts of the albumen, or white of the egg, which is contained in cells, and is of different degrees of confiftency, that which is moft fluid being firft confumed; whereas the liquor amnii, or nutriment of the fetus in utero, is gradually fecreted by adapted glands from the blood of the mother, as it is wanted.

Another difference between the condition of the chick and of the fetus confifts in the manner, by which their blood acquires its neceffary oxygenation. In the fetus this is done by means of the placental veffels, whofe extremities are inferted into the blood-veffels of the uterus, and receive oxygen through their moift membranes from the paffing currents of the mother's blood, as defcribed in Zoonomia, Vol. I. Sect. XXXVIII. Whereas in the egg after a few days incubation a membrane is feen, which includes the albumen, and fpreads the extremities of its fine blood-veffels on the moift membrane, which covers the air at the broad end of the egg; which air is occafionally renewed, as would appear by its being feen fo eafily to pafs through the fhell, when an egg is covered with water in the exhaufted receiver of an air-pump.

The condition of the embryon bud, when the parent leaf-bud dies, I conceive to be fimilar to that of the chick in the egg, when that is feparated from its parent. Each of them has at this time a refervoir of nutriment provided for it ; that of the chick confilts of the albumen, or white of the egg above mentioned ; and that of the bud confifts of mucilage and fugar, which are depofited in the alburnum or fap-wood, or in the roots of the plant. And fecondly, I conceive that the extremities of a fine fyftem of veffels belonging to the bud may terminate on the moift membrane, which covers the horizontal air-veffels defcribed in Sect. III. 2.6. as thofe on the chorion of the chick terminate on the air-bag of the egg, and thus acquire the neceffary oxygenation of their vegetable blood.

This

This analogy between the vegetable and animal fetus in refpect to their production, nourifhment, and oxygenation, is as forcible in fo obfeure a fubject, as it is curious; and may in large buds, as of the horfe-chefnut, be almoft feen by the naked eye. If with a penknife the remaining rudiment of the laft year's leaf, and of the new bud in its bofom, be cut away flice by flice, the feven ribs of the laft year's leaf will be feen to have arifen from the pith in feven diftinct points, making a curve; and the new bud to have been produced in their center, and to have pierced the alburnum and bark, and grown without the affiftance of a mother.

And laftly, by in part cutting, and in part tearing, the pith and alburnum from the bottom of a new leaf-ftalk of horfe-chefnut about the middle of May, an oval prominence may be feen in the internal part of the leaf-ftalk, which fills up a fpace between the veffels of the bottom of the leaf-ftalk and thofe of the new bud, and feems to connect them by its extremities, and to prefs on the pith beneath it. From this apparent gland I conjecture that the now living fibres, or animalcules, are probably fecreted, which form the new bud adhering to the pith, and nourifhed by the parent leaf; that thus a paternal progeny is produced without the affiftance of a mother.
3. This paternal offspring of vegetables in their buds and bulbs is attended with a very curious circumftance ; and that is, that they exactly refemble their parents, as is obfervable in grafting fruit-trees, and in propagating flower-roots; whereas the feminal offspring of plants, being generated by two parents, and certainly fupplied with nutriment by the mother, is liable to perpetual variation. This alfo in the vegetable clafs diæcia, where the male flowers are produced on one tree, and the females on another, the buds of the male trees uniformly produce either male flowers, or other buds fimilar to themfelves; and the buds of the female trees either produce female flowers, or other buds fimilar to themfelves; whereas the feeds of thefe trees produce either male or female 'plants. See Sect: III. 2. 1.

This fimilarity of buds and bulbs to their parents is to be underftood only to exift after the maturity of the plant, that is after it has produced a fexual offspring in flowers and feeds; for a bulb, as of a tulip, and a bud of a fruit-tree, when firft raifed from their feeds, are very fmall, but produce one or more improved bulbs, or improved buds annually, for fome years; which differ from their parent bulbs or buds in the fize, form, and colour of their leaves, till it arrives at its maturity, or acquires the power of generating a fexual progeny; from whence it appears, that the leaf-buds of thofe trees, and the leafbulbs of thofe roots, which have acquired their puberty, if it may be fo called; that is, their power of generating flowers, are a more perfect progeny than the feeds of thofe plants, as thefe latter, when feparated from their parent either by tranfplantation or by ingrafting, can immediately produce feeds, or a fexual progeny; but the buds: from many feeds are fome years before they can produce feeds. The fame is probably true of many annual or biennial plants, as of wheat; which produce many fucceffive buds upon each other previous to the flower-bud, as appears by the joints of the ftem; all which may be confidered as individual plants growing on each other like the annual fucceffion of the buds of trees.

Another curious occurrence in this lateral production of vegetables by their buds has been lately publifhed by Mr. Knight in the Phil. Tranf. for the year 1795, who obferves, that thofe apple-trees, which have been continually propagated for above a century by ingrafting, are now become fo difeafed by canker, or otherwife, that though the fruit continues of the fame flavour, the trees are not worth propagating; as thefe grafts, though tranfplanted into other trees, he efeems to be ftill an elongation of the original tree, and muft feel the effect of age like the tree they were taken from, If this idea fhould prove true on further examination, there is reafon to fufpect the fame may occur in the too long propagation of plants from bulbs and wires, as potatoes and ftrawberries, which may have occafioned the curled tops of pota-
toes, and the black blight in the flowers of the hautbois ftrawberry, which fome have afcribed to its only bearing male flowers; the cure of which muft arife from our applying to other varieties more lately derived from a feminal offspring.

This degeneracy of trees or perennial herbaceous plants propagated by buds or root-fcions is not I think to be afcribed fimply to the age of the original feedling-tree, becaufe each fucceffive generation of buds or bulbs are as diftinct from the parent, as the generation by feeds. But as the lateral progeny of vegetables have no fource of improvement after they have arrived at their maturity, but are liable like other plants and animals to injuries from food and climate, which injuries produce hereditary difeafes, it is to this circumftance that their degeneracy ought rather to be afcribed; whereas the fexual progeny of vegetables are liable to improvement by the intermixture of the individuals of the fame, or even of different fpecies to counteract the effects of hereditary difeafes.

Another curious fimilarity which buds bear to their parent tree is alfo obferved by Mr. Knight, Phil. Tranf. for 1795. Part II. p. 292. " Cuttings from feedling apple-trees of two years old were inferted on ftocks of twenty years old, and in a bearing ftate; but thefe have now been grafted nine years; and, though they have been frequently tranfplanted to check their growth, they have not yet produced a fingle bloffom. I have fince grafted fome very old trees with cuttings from feedling apple-trees of five years old. Their growth has been extremely rapid, and there appears no probability that their time of producing fruit will be accelerated, or that their health will be injured by the great age of the flocks. A feedling apple-tree ufually bears fruit in thirteen or fourteen years; and I therefore conclude, that I have to wait for a bloffom, till the trees, from which the grafts were taken, attain that age; though I have reafon to believe from the form of their buds that they will be extremely prolific. Every cutting therefore taken from the apple, and probably from
every other tree, will be affected by the flate of the parent ftock. If that be too young to produce fruit, it will grow with vigour, but will not bloffom; and if it be too old, it will immediately produce fruit, but will never make a healthy tree, and confequently nezer anfwer the intention of the planter.
"The durability of the apple and pear I bave long fufpected to be different in different varieties; but that none of either would vegetate with vigour much, if at all, beyond the life of the parent ftock, provided that died from mere old age. The oak is much more longlived in the north of Europe than with us, though the timber is lefs durable ; the climate of this country, being colder than its native one, may in the fame way add to the durability of the elm; which may poffibly be further increafed by its not producing feeds in this climate; as the life of many annuals may be increafed to twice its natural period, if not more, by preventing their feeding。"

It is obferved above, that the firft bulb of a tulip raifed from feed produces a more perfect bulb annually for five or fix years, and perhaps more than one lefs perfect ones, before it acquires the power of generating feeds. Now when this period arrives, if the feed-ftem be pinched off, I fuppofe that the next year's bulb or bulbs will become more vigorous or tuxuriant, and if this be continued for three or four years I fufpect the double flowers, which are perhaps owing to a more luxuriant growth, may be formed; and that in this, with fuperfluous nourifhment by manure, warmth, and moifture, confifts the art of obtaining hyacinths, ranunculus, and fometimes tulips, with fuch wonderful multiplication of petals or nectaries. See Sect. XIX. 3. I.
4. The analogy, which exifts between this lateral production of vegetables and that of fome tribes of infects, is worth inveftigation. I. This paternal or lateral generation of plants, which conflitutes the buds on the ftems of trees, and the fcions on their roots, which continue to adhere to them, are fo far refembled by the branching infects, which form the corals or corallines; and by many other fea-

[^0]animals, as the fea anemonies, which are faid to adhere to the fhores, or fubmarine earth, by one extremity, while they pullulate, or fpread out by the other into living ramifications of unmeafurable lengths.

Thofe who have attended to the habits of the polypus, which is found in the ftagnant water of our ditches in July, affirm, that the young ones branch out from the fide of the parent like the buds of trees; and after a time feparate themfelves from them. This is fo analogous to the manner in which the buds of trees appear to be produced, that thefe polypi may be confidered as all male animals, producing embryons, which require no mother to fupply them with a nidus, or with nutriment and oxygenation.

Secondly, this patermal or lateral vegetable progeny is beautifully feen in the wires of knot-grafs, polygonum aviculare ; and in thofe of ftrawberries, fragaria vefca; and in the roots of potatoes. The lateral generation of thefe plants by wires, while each new plant is thus chained to its parent, and continues to put forth another and another, as the wire creeps onward on or beneath the ground, is exactly refembled by the tape-worm, or tænia, fo often found in the bowels, ftretching itfelf in a chain quite from the ftomach to the rectum. Linneus afferts, " that it grows old at one extremity, while it continues to generate young ones at the other, proceeding ad infinitum, like a root of grafs. The feparate joints are called gourdworms, and propagate new joints like the parent without end, each joint being furnifhed with its proper mouth and organs of digeftion." Syftema Naturæ, vermes, tenia. In this animal there evidently appears a power of reproduction without any maternal apparatus for the purpofe of fupplying nutriment and oxygenation to the embryon, as it remains attached to its father till its maturity, and in this refpect exactly refembles the lateral generation of vegetables.
5. This fubject of the lateral production of vegetables from male parents without the intervention of a female is further refembled by the innumerable progeny of the aphis, which rifes from an egg in the fpring,

0 the Thores,
te, or Cpred lengths. us, which m , that the the buds of This is 10 ar to be proo nimals, pro. them with a
fluence of the cold of autumn. But how long a twig or fcion of leaves, as in the vine or willow, fucceed each other, fome producing embryon buds in their bofoms before others become expanded, is not eafy to underftand; but the embryons of all there new leaves, though not of the buds in their bofoms, probably exifted in the paternal womb, though in different degrees of maturity, which accords with the obfervations of fome naturalifts on the fucceffive generations of the volvox globator, which Linneus afferts to be diaphanous, and that it carries within itfelf fons and grandfons to the fifth generation, but which are probably living fetufes produced by the father, of different degrees of maturity, and to be detruded at different periods of time like the unimpregnated eggs of various fizes, which are found in poultry. See Zoonomia, Vol. I. Sect. XXXIX. 2. and Linnei Syftem. Naturx. Vermes. Volvox.

In fome trees however, as in the vine, vitis, and in many herbaceous plants, as in wheat, fouthiftle, teafel, triticum, fonchus, dypfacus, each fucceffive joint of the plant is evidently an individual vegetable being; becaufe the pith, which confitutes the brain or fpinal marrow of each individual, terminates at every joint by a divifion, as fooken of in Sect I. 8. whence in thefe vegetables every fucceffive joint appears to be produced by that beneath it; whereas where there is no divifion of the pith, the twig feems to be fimply an elongation of the caudex of the leaf-bud, like the wires of ftrawberries and other creeping plaats.

It hould neverthelefs be added, that there are many hermaphrodite infects, as fhell-fnails and dew-worms, which contain both male and female organs of generation; and as they are perpetually feen to copulate with each other, it is believed, that they can not impregnate themfelves. Now it may be conceived, that the buds of trees poffefs both male and female organs of generation, and that they can impregnate themfelves, and that thus the new buds, might be termed an hermaphrodite offspring rather than a paternal one. This would however
however produce a confufion of terms, as the eggs of fnails and of worms, as mentioned above, are properly an hermaphrodite offfpring.

Another circumftance occurs in this paternal generation, which differs from that of thofe hermaphrodite infects above alluded to, which is, that though in vegetables the new embryon is generally produced in the bofom of the leaf-ftalk, which is believed to be its parent; yet new buds are occafionally protruded from almoft any part of the bark, when the fummit of a branch is taken off, or the fide branches of a tree, fo as to admit light and air, and a fupply of more nutriment ; whence it would feem, that though hermaphrodite infects poffefs but one male and one female apparatus for the production and reception of the new entity or embryon, yet that in paternal generation the prolific fluid is occafionally fecreted in any part of the caudex of each individual bud from its fummit on the branch of a tree to its termination in the root; and that wherever a proper nidus can be found, which is fupplied with nutriment, and expofed to light and air, that there the new embryon can adhere and grow; although this occurs moft conveniently, and thence moft frequently, in the bofom of the leaf-ftalk, where the prolific fluid is probably firft fecreted, and the nutriment moft copioully fupplied from the vegetable blood newly oxygenated in the leaf. In this I fuppofe to confift the great difference between paternal and fexual generation; and that this mode of reproduction forms an exception to the general axiom of the great Harvey, " all things from eggs."

The exiftence of a power of generation in every part of the caudex of a vegetable bud from the fummit to the root is not only fhewn by the new buds, which grow on the trunks of trees, which were felled in the fpring, bat alfo from a curious circumftance which occurs in ingrafted trees; which is, that whenever after many years any new buds or fcions grow from the fock beneath the graft, it is always fimilar to the parent flock, and not to the ingrafted fcion; which fhews,

Shews, that this new bud was generated in the old ftock, and not that it was owing to an abforption and depofition of a prolific fluid fecreted in any part of the ingrafted head. It muft however be remembered, that the caudex of each bud extends from the leaf-ftalk to the root, whether it be a fimple caudex as in a feedling tree, or a compound one as in a grafted tree; and that the generation of new buds in perennial herbaceous plants exifts in every part of the broad caudex on the root, as it does here in every part of the long caudex on the trunk. Nothing known in the animal world refembles this univerfality of the generative faculty throughout almoft the whole of an individual vegetable being, except the number of new polypi faid to arife at the fame time from different parts of the fame individual animal.

Wherever the new vegetable embryons are fecreted, they alfo find a fituation or uterus, where they can adhere and be nourifhed to almoft any number; which however is not unfupported by fome analogy even in viviparous animals; as there have been many inftances of extra-uterine fetufes, which have attached or inferted their veffels into the peritoneum, or on the vifcera of the mother, in the fame manner as they naturally attach or infert them into the fides of the true uterus. And in refpect to the number of uteri produced we may recollect the number of eggs, and of fifh-fpawn, or frog-fpawn, or of feeds, which may all be termed fo many diftinct uteri, as they contain every thing, which is found in the uteri of viviparous animals.

The aphis, and probably many other infects, poffefs both the folitary and fexual mode of propagation, as is poffeffed by moft vegetables; but the polypus and tenia, and hydra ftentorea, and volvox, appear only to be reproduced by the folitary or lateral generation ; and it is probable that the truffle amongft vegetables, and fome fubmarine plants, and others of the clafs cryptogomia, whofe feeds have not been yet difcovered, may ftill be only propagated by the
ed, they alfo
e nourifhed to rted by fome een many in - inferted their nother, in the to the fides of i produced we or frog-\{pawn, uteri, as they iviparous anlo

Sect. VII. 2. i. REPRODUCTION.
lateral mode of reproduction, as is well obferved in an ingenious work by a lady of very àccurate botanic knowledge, called "Botanic Dialogues, defigned for the ufe of fchools," one volume octavo, Johnfon, London ; but which may be ftrongly recommended to the adult in botany as containing much ufeful information agreeably imparted.

This curious fubject of lateral or folitary generation is well worthy more accurate inveftigation, as it is the fimpleft, and was probably the firft mode of reproduction which exifted; and if any accurate knowledge can ever be acquired of animal generation, it will poffibly occur from a more nice attention to the production of the buds and bulbs of vegetables! which is further fpoken of in Sect. IX. 2 and 3. At the fame time it muft be obferved, that the fexual reproduction is the chef d'ouvre, the mafter-piece of nature, as by the paternal or lateral reproduction the fame feecies only are propagated ad infinitum: whereas by the fexual mode of reproduction a countlefs variety of animals are introduced into the world, and much pleafure is afforded to thofe, which already exift in it.

11. SEXUAL PROGENY.

1. We come now to the feminal mode of the production of vegetables, which originates from the congrefs of the male and female parts of flowers, and may be therefore termed the fexual or amatorial progeny of vegetation.

From the accurate experiments and obfervations of Spallanzani it appears, that in the Spartium Junceum, ruh-broom, the very minute feeds were difcerned in the pod at leaft twenty days before the flower is in full bloom ; that is, twenty days before fecundation. At this time alfo the powder of the anthers was vifible, but glued faft to their fummits. The feeds however at this time, and for ten days after the bloffom had fallen off, appeared to confift of a gelatinous
fubftance. On the eleventh day after the falling of the bloffom the feeds became heart Chaped, with the bafis attached by an appendage to the pod, and a white point at the apex ; this white point was on preffure found to be a cavity including a drop of liquor.

On the twenty-fifth day the cavity, which at firft appeared at the apex, was much enlarged, and fill full of liquor ; it alfo contained a: very fmall femi-tranfparent body of a yellowifh colour, gelatinous, and fixed by its two oppofite ends to the fides of the cavity.

In a month the feed was much enlarged, and its thape changed from a heart to a kidney; the little body contained in the cavity was increafed in bulk, and was lefs tranfparent, and gelatinous, but there yet appeared no organization.

On the fortieth day the cavity now grown larger was quite filled with the body, which was covered with a thin membrane; after this. membrane was removed, the body appeared of a bright green, and was eafily divided by the point of a needle into two portions, which manifeftly formed the two lobes; and within thefe attached to the lower part the exceedingly fmall plantule was eafily perceived.

The foregoing obfervations evince, I . That the feeds exift in the ovarium many days before fecundation. 2. That they remain for fome time folid, and then a cavity containing a liquid is formed in them. 3. That after fecundation a body begins to appear within the cavity fixed by two points to the fides, which in procefs of time proves to be two lobes containing a plantule. 4. That the ripe feed confifts of twe lobes adhering to a plantule, and furrounded by a thin membrane, which is itfelf covered with a hufk or cuticle. Spallanzani's Differtations, Vol. II. p. 253°

The analogy between feeds and eggs has long been obferved, and is confirmed by the mode of their production. The egg is known to be formed within the hen long before its impregnation. C. F. Wolf afferts, that the yolk of the egg is nourifhed by the veffels of the mother, and that it has from thofe its arterial and venous branches;
e blofiom the
an appendage
point was on ppeared at the fo contained ar, gelatinous, vity. Thape changod the cavity was ous, but there
vas quite filled rane ; after this ght green, and ortions, which attached to the perceived. eds exift in the emain for fone rmed in thema thin the cavity time proves 50 feed confifitto thin membrana zani's Dififet
n obferved, and gration enous brand
but that after impregnation thefe veffels gradually become impervious and obliterated; and that new ones are produced from the fetus, and difperfed into the yolk. Haller's Phyfiol. Tom. VIII. p. 94. The young feed after fecundation I fuppofe is nourifhed in a fimilar manner from the gelatinous liquor, which is previoully depofited for that purpofe; the uterus of the plant producing or fecreting it into a refervoir or amnios, in which the embryon is lodged; and that the young embryon is furnifhed with veffels to abforb a part of it, as in the very early fate of the embryon in the egg.

Another curious analogy feems to exift between the embryon of the feed and of the egg in their mode of fufpenfion. The cicatricula of the egg refts on the yolk, which is fufpended by two points, called chalaze, fomewhat above its center of gravity; whence, however the egg is moved, this embryon is always kept upwards, probably the better to receive the warmth of the mother during incubation. The feed-embryon feems to be fupported in the fame manner by the above relation of Spallanzani by two points, and may thus receive a greater warmth from the fummer fun.
2. The feeds are thus produced in their unimpregnated ftate in the vegetable uterus, and nourifhed by the flower-bud, which was formed in the deciduous trees of this climate during the preceding fummer, and which now puts forth the bractes, or floral-leaves, for the oxygenation of its blood; and protrudes its roots and abforbents into the ground from the lower part of its caudex, for the purpofe of acquiring nourifhment; and on the fummit of this fexual apparatus are at the fame time produced the corol and nectaries of the flower, with the ftamens, and ftigmas, which are evidently defigned to give fecundation to the vegetable feeds, or eggs, previoufly depofited in the pericarp or uterus; becaufe, as foon as thefe are impregnated, the corol and nectaries, with the ftamens, and ftigmas, fall off and difappear.
The anthers have been proved by many experiments to be neceffary to the fecundation of the vegetable feeds by the farina, or duft;
which they difperfe, and which adheres to the moift ftigma on the fummit of the fyle or pericarp. The amatorial attachment between thefeftigmas and the anthers on the fummits of the ftamens has attracted the notice of all botanifts. In many flowers the anthers or males bend into contact with the ftigmas or females, as in kalmia, fritillaria perfica, parnaffia, cactus, and ciftus. In the kalmia the ten ftamens lie round the piftil, like the radii of a wheel, and each anther is concealed in a nich of the corol to protect it from cold and moifture ; thefe anthers rife feparately from their niches, and approach the ftigma of the piftil for a time, and then recede to their former fituations. In the fritillaria perfica the fix ftamens are of equal lengths, and the anthers lie at a diftance from the piftil; of thefe three alternate ones approach firt, and furround the female; and when thefe decline, the other three approach; and in parnaffia the males alternately approach and recede from the female ; and laftly in the moft beautiful flowers of cactus grandiflorus, and of ciftus labdaniferus, where the males are very numerous, fome of them are perpetually bent into contact with the female; and as they recede, others advance.

In other flowers the females bend into contact with the males, as in nigella, epilobium, fpartium, collinfonia. In nigella, devil in the bufh, the females are very tall compared to the males, and bending down over them in a circle, give the flower fome refemblance to a regal crown. The female of the epilobium anguftifolium, willowherb, bends down amongft the males for feveral days, and becomes upright again when impregnated. In the fpartium fcoparium, common broom, the males or flamens are in two fets, one fet rifing a quarter of an inch above the other. The upper fet does not arrive at their maturity fo foon as the lower; and the ftigma, or head of the female, is produced amongft the upper or immature fet. But as foon as the piftil grows tall enough to burft open the keel-leaf, or head of the flower, it bends itfelf round in an inftant likea a French horn, le ; and latily 1 of ciftus ado of them are they recele,
the males, 25 a, devil in the s, and bending emblance to lium, willow-
and becomem
parium, com
se fet rifing ${ }^{2}$
does not arrite

flowers are feparate from the female, and the anthers are feen in fair weather to burft with force, and to difcharge their duft, which hovers about the plant like a cloud.

In plants of the clafs diecia, or two houfes, the fecundating farina is carried to the diffance of many miles by the winds, as has been proved by the impregnation of fome female date trees, which were at a great diftance from the male ones. And the male flowers themfelves of vallifneria are carried many miles down the rivers, which it inhabits, to the female ones. This plant has its ropts at the bottom of the Rhone; the flowers of the female plant float on the furface of the water, and are furnihed with an elaftic fpiral ftalk, which extends or contracts, as the water rifes and falls. The flowers of the male plant are produced under water, and as foon as their farina, or duft, is mature, they detach themfelves from the plant, and rife to the furface, continue to flourifh, and are wafted by the air, or borne by the currents, to the female flowers. In this refembling thofe tribes of infects, where the males at certain feafons acquire wings, but not the females, as ants, coccus, lampyris, phalæna, brumata, lichanella. See vallifneria in the Families of Plants, tranflated from Linneus. Johnfon, London.

The plants, which grow in the air, are frequently injured in wet feafons by the moifture occafioning the cells of the anthers, which contain the fecundating farina, to burft, and to fhed it on the ground. To which a fcarcity of the quantity of wheat, or an imperfection of its fecundating quality, and the uftilago, or fmut, have rationally been afcribed, as its anthers are expofed on long filaments to the weather. On this account many flowers clofe their corols before rain, and the aquatic plants of rivers perform their impregnations in the air. But M. Bonnet remarks another method of the difperfion of the fecundating influence of fome marine plants, in which the male organ does not project a fine powder, but a liquor, which forms a perceptible cloud in the water; and adds, that the male falamander darts his
femen into the water, where it forms a whitifh cloud, which is afterwards received by the fwollen anus of the female, and the becomes impregnated. ${ }^{\text {a }}$ Nor is this vegetable impreguation in water unanalogous to other animal impregnations, as the fpawn of frogs and of firh is delivered from the female before it is fecundated; and its fecundation is feen to fucceed in water; and Spallanzani found, that the feminal fluid even of dogs, as well as of frogs, retained its prolific quality when diluted with much water. Bonnet's EEuvres Philof. in a letter to Spallanzani.
3. The other parts, which rife on the edge of the pericarp, and expand themfelves before the impregnation of the feed, are the corol and nectaries. The former of thefe has been thewn to be a refpiratory organ for the purpofe of oxygenating the blood to a greater degree than in the green foliage, as it is there expofed to the air beneath a finer pellicle, and acquires variety of colours. See Sect. IV. 5. i. to which may be added, that as the corol in helleborus niger, Chriftmas rofe, changes after the fecundation of the feed into a calyx, lofing its white colour, and becoming green. So in many flowers the calyx falls off along with the corol; in thefe it fhould be efteemed a part of or appendage to the corol ; whereas thofe calyxes, which are permanent after the corol falls off, are properly parts of the pericarp or vegetable uterus.
4. The nectary, or honey-cup, is evidently an appendage to the corol, aind is the refervoir of the honey, which is fecreted by an appropriate gland from the blood after its oxygenation in the corol, as mentioned in Sect. IV. 5. 5. and is abforbed for nutriment by the fexual parts of the flower. This purpofe however has as yet efcaped the refearches of philofophical botanifts. M. Pontedera believes it defigned to lubricate the vegetable uterus. (Antholog. p. 49.) Others have fuppofed, that the honey, when reabforbed, might ferve the purpofe of the liquor amnii, or white of an egg, as a nutriment for the young embryon, or fecundated feed, in its early fate of exiftence.

But as the nectary is found equally general in male flowers as in female ones, and as the young embryon, or feed, grows before the petals and nectary are expanded, and after they fall off; thefe feem to be infurmountable objections to both the above-mentioned opinions.

In many tribes of infects, as the filk-worm, and perhaps in all the moths and butterflies, the male and female parents die, as foon as the eggs are impregnated and excluded, the eggs remaining to be perfected and hatched at fome future time. The fame thing happens to the male and female parts of flowers; the anthers and filaments, which conftitute the male parts of the flower, and the figma and style, which conflitute the fenfitive or amatorial organ of the female part of the flower, fall off and die, as foon as the feeds are impregnated, and along with thefe the petals and nectary. Now the moths and butterflies above mentioned, as foon as they acquire the paffion and the apparatus for the reproduction of their fepecies, lofe the power of feeding upon leaves, as they did before, and become nourihed by what?-by honey alone.

Hence we acquire a ftrong analogy for the ufe of the nectary, or fecretion of honey, in the vegetable economy; which is, that the male parts of tlowers, and the female parts, as foon as they leave their fetus-ftate, expanding their petals, (which conftitute their lungs) become fenfible to the paffion, and gain the apparatus, for the reproduction of their fpecies; and are fed and nourifhed with honey like the infects above defcribed; and that hence the nectary begins its office of producing honey, and dies or ceafes to produce honey, at the fame time with the birth and death of the anthers and the figmas; which, whether exifting in the fame or in different flowers, are feparate and diftinct animated beings.

Previous to this time the anthers with their filaments, and the ftigmas with their ftyles, are in their fetus-ftate fuftained in fome plants by their umbilical veffels, like the unexpanded leaf-buds, as in

Wers as in f_{6}
ws before ws before the ; thefe feem rentioned opin laps in all the as foon as the ig to be per. ng happens to ind filaments, re Atigma and of the female Is are impreg. ow the moths ire the pafition lofe the power nourithed by
ne nectary, or a is, that the hey leave their neir lungs) be. for the repro. ith boney like
Zary begins its
duce bouev, at
s and the fifo.
erent lloweris,
nents, and the
ained in fone
eaf-buds, as il
colchicum

SECT. VII. 2.4. REPRODUCTION.
colchicum autumnale, and daphne mezereon; and in other plants by the bractes, or floral-leaves, as in rhubarb, which are expanded long before the opening of the flower; the feeds at the fame time exifting in the vegetable womb yet unimpregnated, and the duft yet unripe in the cells of the anthers. After this period the petals become expanded, which have been fhewn to conftitute the lungs of the flower ; the umbilical veffels, which before nourithed the anthers and the ftigmas, coalefce, or ceafe to nourifh them; and they acquire blood more oxygenated by the air, obtain the paffion and power of reproduction, are fenfible to heat; and light, and moifture, and to mechanic ftimulus, and become in reality infects fed with honey; fimilar in every refpect except that all of them yet known but the male flowers of vallifneria, continue attached to the plant, on which they are produced.

So water infects, as the gnat, and amphibious animals, as the tadpole, acquire nefw aerial lungs, when they leave their infant fate for that of puberty. And the numerous tribes of caterpillars are fed upon the common juices of vegetables found in their leaves, till they acquire the organs of reproduction; and then they feed on honey, all 1 believe except the filk-worm, which in this country takes no nourifhment after it becomes a butterfly. And the larva or maggot of the bee, according to the obfervations of Mr. Hunter, is fed with raw vegetable matter, called bee-bread, which is collected from the anthers of flowers, and laid up in cells for that purpofe, till the maggot becomes a winged bee, acquires greater fenfibility, and is fed with honey. Phil. Tranf. 1792.

Latly, though the filaments and fyle, as well as the corolla and nectary, belong to the fexual organs of vegetables; yet it is the anthers alone of the ftamina, and ftigmas alone of the piftilla, which poffefs the power, and I fuppofe the paffion of reproduction, as appears from the mutilated filaments of many flowers, as of curcuma, of linum or flax of this country, of gratiola, and hemlock-leaved geranium,
ranium, which have half their ftamina unterminated by anthers, and in confequence produce no prolific farina. And fecondly, from the florets, which form the rays of the flowers of the order fruftraneous polygamy of the clafs fyngenefia, as the fun-flower, which are furnifhed with a ftyle only, and no ftigma, and are thence barren. There is alfo a ftyle without a ftigma in the whole order of diocia gynandria, the male flowers of which are thence barren, and thews the neceffity of the exiftence of the ftigma to the fecundation of the vegetable uterus, probably owing to its amatorial action in conveying the living principle to the included feeds like the fallopian tubes of the animal womb.
5. The feeds are produced in the pericarp, and at firt acquire nutriment by the umbilical veffels previous to their fecundation, like the unexpanded leaf-buds; and then by the caudex down the bark with its radicles, which is oxygenated by the bractes, or floral-leaves, as foon as thefe are expanded, they afterwards become in one day impregnated in fome flowers, as in the oenothera, cactus grandiflorus, and ciftus; and the corol or petals, with the ftamens and ftigmas, and nectaries, wither and fall off. In other flowers many days elapfe before the various cells of feeds are fecundated, and thefe more animated parts of fexual reproduction perifh. But in all cafes the feeds remain in the pericarp or uterus after fecundation as before it, except in thofe plants, which are called proliferus, as the polygonum viviparum, and magical onions, which immediately begin to vegetate; in all other plants the feed either fleeps till the enfuing fpring, as in the colchicum and hamamelis ; or they continue to grow to maturity, and to be nourifhed in the pericarp by the blood of the parent flowerbud, which is oxygenated in the bractes or floral-leaves, till they become perfected like eggs, and fall on the ground, or are otherwife difperfed, for the purpofe of taking root in the earth.

Whence it appears, that in the fexual reproduction of vegetables the amatorial organ is diftinct from the uterus, as is probably the cafe
y anthers, and
d le, from the er fruftrancoun which are fur. barren. There dioecia gym. and thews the tron of the re. n in conveying apian tubes of
rt acquire nu. dation, like the the bark with floral-leaves, as in one day in. us grandiflorus, Ind Itigmas, and days elapre be. there more anis Il cafes the feeds before it, excel oolygonum iris gin to vegetate: ing faring, as ill
in animals; which in female quadrupeds would rem to fleep after impregnation during the time of geftation and lactefcence, and afterwards to revive; whereas this amatorial organ in vegetable flowers perishes, when the uterus is impregnated, along with the male organs, neither of which are any longer of ufe in the fe annual beings.

The various methods, which nature has employed for the difperfion of feeds, are worth the attention of the farmer and gardener, both for the purpofe of preventing the growth of noxious feeds, and of collecting the profitable ones. The pericarp of forme plants burfts with fudden violence, when the feed is mature, and difperfes it to confiderable diftance; as that of wood-forrel, oxalis acetocalla; and of inpatiens, touch me not. The feeds of many plants of the clafs fyngenefia are furnished with a plume, by which admirable mechanifm they are diffeminated by the winds far from their parent fem, and look like a fhuttlecock, as they fly. Other feeds are diffeminated by animals; of there forme attach themfelves to their hair or feathers by a gluten, as milletoe; others by hooks, as clivers, galium aperine; burdock, arctium lapps; hound's-tongue, cynogloffum. Others are fallowed whole for the fake of the fruit, and voided uninjured, as the hawthorn, cratægus, juniper, and rome graffes. And the feeds of aquatic plants, and of thole which grow on the banks of rivers, are carried many miles by the currents into which they fall.

Other feeds are feparated from each other, and difperfed by the twitting of the awn at the fummit of them, when moiftened by rain, as a black oat, avena fatua, with hairy awns, which feems to crawl like an infect when moiftened; geranium alto, and barley; and as this happens in wet weather, the moift ground is then fit to receive and nourifh them. The awns of the geranium have been ufed as hygrometers by flicking the bafe of the feed into a cork for a pedeftal, and marking divifions on a paper circle beneath it ; and the awn of barley is furnifhed with tiff points, which, like the teeth of a faw, are all turned towards one end of it; as this long awn lies upon the ground,
it extends itfelf in the moift air of night, and pufhes forward the barley-corn, which it adheres to; in the day it fhortens as it dries; and as thefe points prevent it from receding, it draws up its pointed end; and thus, creeping like a worm, will travel many feet from the parent ftem ; and may thus be ufed as a travelling hygrometer, when laid on a cloth on the floor, like the automaton of Mr. Edgeworth, defcribed in Botanic Garden, article Impatiens, Vol. II.
6. The formation of the organs for fexual generation, in contradiftinction to thofe for lateral generation, in vegetables, and in fome animals, as the polypus, the trnia, and the volvox, feems the chef d'œuvre, the mafter-piece of nature, as appears from many flying irrfects, as moths and butterflies, which feem to undergo a general change of their forms folely for the purpofe of fexual reproduction; and in all other animals thefe organs are not complete till the maturity of the creature; whereas the lateral generation commences with the infancy of the germ or bud, as on the roots of young herbs, and on the ftems of infant trees.

There feems neverthelefs to be one circumftance, in which the folitary generation of the buds of plants, when the plants are at their maturity, is fuperior to the fexual generation by feeds. This confifts in the progeny of the former being more perfect than that of the latter, in refpect to the power of the reproduction of their fpecies. Thus in many plants, as in tulips and apple-trees, the young vegetable from the feed produces other bulbs, or buds, for fome years, which feem annually to improve, till at length they acquire a puberty, if it may be fo called, and become furnifhed with fexual organs for the purpofe of feminal reproduction; whereas the leaf-buds, or leaf-bulbs, of the apple-tree and tulip during their firft years produce other leaf-buds, or leaf-bulbs, rather more perfect than their parents; and when thefe bulbs, and buds, arrive at their puberty, or maturity, fo as to be capable of fexual generation, their new bulbs and new buds alfo, if taken from their dying parents, and tranfplanted or ingrafted, or left

$$
1 .
$$

ion, in contras. es, and in foree Ceems the chef many flying in lergo a general reproduation; till the maturity ences with the g herbs, and on
n which the fo unts are at their This conififsin at of the latter, fpecies. Thax g vegetable from ars, which feem for eaf-bulbs, other leaffoblat
adhering to them, are immediately capable of producing flowers, and a confequent feminal progeny.
As the progeny by lateral generation fo exactly refembles the parent ftock, it follows, that though any new variety, or improvement, may be thus continued for a century or two, as in grafted fruit-trees, yet that no new variety or improvement can be obtained by this mode of generation ; though fome hereditary difeafes, as the canker, are believed to arife in ingrafted trees, which have long been propagated by lateral generation, as explained in No. 1. 3. of this Section.

But from the fexual, or amatorial, generation of plants new varieties, or improvements, are frequently obtained; as many of the young plants from feeds are diffimilar to the parent, and fome of them fuperior to the parent in the qualities we wifh to poffers; which is another proof that the anthers and ftigmas of plants are animated beings, different from the green foliage of the tree on which they grow; as they produce varieties in the form of their offspring like fexual animals, which buds do not.

Befides the production of different, and fometimes more excellent, varieties in the fpecies of vegetables from feeds, another advantage occurs from fexual generation, which is the production of new fpecies of plants, or mules, by fhedding the fecundating duft of fome flowers on the ftigmas of others of a different fpecies, though generally of the fame genus.

A mule cabbage is defrribed in the Bath Agriculture, Vol. I. Art. 4 , which is faid to fatten a beaft fix weeks fooner than turneps. It is there faid, "that the fort of cabbage principally raifed is the tallow-loaf or drum-head cabbage; but it being too tender to bear fharp froft, I planted fome of this fort and the common purple-cabbage ufed for pickling, (it being the hardieft I am acquainted with) alternately; and when the feed-pods were perfectly formed, I cut down the purple, and left the other for feed. This had the defired effect, and produced a mixt ftock of a deep green colour with purple
veins,
veins, retaining the fize of the drum head, and acquiring the hardinefs of the purple."

In another curious paper of the Bath Society, Vol. V. p. 38, Mr. Wimpey relates, that he planted a field with garden-beans in rows about three feet afunder in the following order, mazagan, whitebloffom, long-podded, Sandwich-toker, and Windfor-beans. The mazagan and white-bloffom were thrafhed firf, when to his great furprife he found many new fpecies of beans; thofe from the mazagan were mottled black and white; the white-bloffoms were brown and yellow inftead of their natural black; and they were both much larger than ufual. See Sect. XVI. 4. of this work.

There is an apple defcribed in Bradley's work, which is faid to have one fide of it a fweet fruit, which boils foft, and the other fide a four fruit, which boils hard. This Mr. Bradley fo long ago as the year $17^{2 I}$ ingenioully afcribes to the farina of one of thefe apples impregnating the other; which would feem the more probable, if we confider, that each divifion of an apple is a feparate womb, and may therefore have a feparate impregnation, like puppies of different kinds. in one litter. The fame is faid to have occurred in oranges and lemons, and grapes of different colours.

Vegetable mules are faid to be numerous, and, like the mules of the animal kingdom, not always to continue their fpecies by feed. There is an account of a curious mule from the antirrhinum linaria, toad-flax, in the Amœnit. Academ. V. I. No. 3. and many hybrid plants are defcribed in No. 32. The urtica alienata is an evergreen plant, which appears to be a nettle from the male flowers, and a pellitory (parietaria) from the female ones and the fruit, and is hence between both. Murray, Syft. Veg. Amontt the Englifh indigenous. plants, the veronica hybryda, mule fpeedwell, is fuppofed to have originated from the officinal one, and the fpiked one; and the Sibthorpia Europæa to have for its parents the golden faxifrage and marf pennywort. Pulteney's View of Linneus, p. 253.

There is another vegetable fact publifhed by M. Koelruter, which he calls " a complete metamorphofis of one natural facies of plants into another;" which thews, that in feeds as well as in buds, the embryon proceeds from the male parent, though the form of the fubfequent mature plant is in part dependent on the female. M. Koelruter impregnated a ftigma of the nicotiana ruftica with the farina of the nicotiana paniculata, and obtained prolific feeds from it. With the plants, which fprung from there feeds, he repeated the experiment, impregnating their piftilla with the farina of the nicotiana paniculate. As the mule plants, which he thus produced, were prolific, he continned to impregnate them for many generations with the farina of the nicotiana paniculata, and they became more and more like the male parent, till he at length obtained fix plants in every refpect perfeatly fimilar to the nicotiana paniculate, and in no refpect refembling their female parent the nicotiana ruftica. Blumenback on Generatron.

Mr. Graberg, Mr. Schreber, and Mr. Ramftrom, feem of opinion, that the internal ftructure or parts of fructification in mule plants refemble the female parent; but that the habit or external ftructure refembles the male parent. See treatifes under the above nantes in Vol. VI, Amœnit. Academic.
7. Something fimilar to this feems to obtain in mixing the breeds of the fame facies of animals, and in animal mules, which may be worth the attention of the grazier. The mule produced from a horfe and a the aft refembles the horfe externally with his ears, mane, and tail ; but with the nature, or manners of an ais. But the hinnus, or creature produced from a male ans and a mare, refembles the father externally in ffature, afh-colour, and the black crofs on his thoulders, but with the nature or manners of a horfe. The breed from Spanish rams and Swedifh ewes refembled the Spanish sheep in wool, ftature, and external form; but was as hardy as the Swedifh cheep; and the contrary occurred in the breeds which were produced from Swedish rams
rams and Spanifh ewes. The offspring from the male goat of Angora and the Swedifh female goat had long foft camel's hair ; but that from the male Swedifh goat, 'and the female one of Angora, had no improvement of their wool. An Englifh ram without horns, and a Swedifh horned ewe, produced fheep without horns. Amoen. Acad. Vol. VI. p. 13.
8. From thefe circumftances it appears, that not only new varieties may be procured from the feminal offspring of plants; where thofe from the lateral offspring become difeafed by age, as the cankered apple-grafts, and perhaps the curled potatoes, and barren ftrawberries; but that more curious or ufeful fruits or flowers may be obtained by fhedding the farina of fome valuable plant on the figma of another variety of the fame fpecies, as of two different but equally excellent apple-trees, or tulip-flowers, hyacinths, anemonies, and geraniums. And thirdly, that mules may be produced by a mixture of different fpecies of plants, and perhaps of different genera; as of pines and melons; grapes and goofeberries; oranges and apples; apricots and nectarines; nuts and acorns; which may be afterwards propagated by the lateral progeny, if not by the feminal one.

The facility of generating vegetable mules feems forcibly to have ftruck the great Linneus; who in the preface to his natural orders of plants at the end of his Genera Plantarum thinks, that about fixty vegetables were at firft created correfponding with his natural orders. That a mixture of thefe orders amongft themfelves produced the genera; that a mixture of the genera amongft themfelves produced the fpecies; and that a mixture of the fpecies produced the varieties, which he believes to accord with the general progrefs of nature "from impler things to the more compound."

In the fame manner it may be fuppofed, that many of the prefent fpecies of animals were originally mules produced by a mixture of animals of different genera; and that all fuch mules, as had perfect orgañ of reproduction, continued their fpecies. But as thefe organs feem
feem to be the chef d'œuvre of nature, as above remarked, they often become imperfect in the generation of mules, and the fpecies then becomes extinet ; as it could not be propagated by fexual generation, it is poffible, that many new kinds of mules, which might be ufeful for labour, or by their milk or wool, or for food, might ftill be produced by the method of Spallanzani ; who diluted the feminal fluid of a dog with much warm water, and by injecting it fecundated a bitch, and produced puppies like the dog.

Thus new animal combinations might poffibly be generated numerous as the fabled monfters of antiquity ; as between the ram and the female goat ; the ftag and the cow; the horfe and the doe; the bull and the mare ; boar and bitch ; dog and fow. And fecondly, as Spallanzani diluted the feminal fluid of a male frog with water, and fecundated fome female fpawn with it, and produced perfect tadpoles, there is reafon to conclude, that new combinations of fifh might thus be generated, and people our rivers with aquatic monfters. And laftly, that it is not impoffible, as fome philofopher has already fuppofed, if Spallanzani fhould continue his experiments, that fome beautiful productions might be generated between the vegetable and animal kingdoms, like the eaftern fable of the rofe and nightingale, and which might be propagated by lateral or paternal, though not by fexual or feminal generation.

The claffic reader will here be reminded of the metamorphofes of Ovid, of gods turned into bulls and fwans, men into frogs and partridges, ladies into trees and flowers, of fphinxes, griffins, dragons, mermaids, centaurs, and minataurs; Pafiphae and her bull; Leda and her fwan; Arethufa and her filh-god Alpheus, and conclude that mules in early times were more frequent thău at prefent, which occafioned the poets and the priefts of antiquity to invent fo many fibulous monfters, and impofe them on the credulity of mankind.

1. The intelligent reader is become, I hope, by this time fo much interefted in the further inveftigation of the circumftances attending the lateral and fexual generation of vegetables, that he will not be difpleafed with the continuance of the fubject for a few more pages, fo agreeable from its novelty, and fo important from its future application to animal reproduction.

If a fcion of a nonpareil apple be ingrafted on a crab-ftock, and a golden pippin be ingrafted on the nonpareil, what happens? The caudex of the bud of the golden pippin confifts of its proper abforbent veffels, arteries, and veins, till it reaches down to the nonpareilftock; and then the continuation of its caudex downwards confifts of veffels fimilar to thofe of the nonpareil; when its caudex defcends ftill lower, it confifts of veffels fimilar to thofe of the crab-ftock.

The truth of this is fhewn by two circumftances; firft, becaufe the lower parts of this compound tree will occafionally put forth buds fimilar to the original ftock. And fecondly, becaufe in fome ingrafted trees, where a quick-growing fcion has been inferted into a ftock of flower growth, as is often feen in old cherry-trees, the upper part of the trunk of the tree has become of almoft double the diameter of the lower part ; both which occurrences fhew, that the lower part of the trunk of the tree continues to be of the fame kind, though it muft have been fo repeatedly covered over with new circles of wood, bark, and cuticle.

Now as the caudex of each bud, which paffes the whole length of the trunk of the tree, and forms a communication from the upper part, or plumula, to the lower part, or radicle, muft confift in thefe doubly ingrafted trees of three different kinds of caudexes, refembling thofe of the different focks or fcions; we acquire a knowledge of what may be termed a lateral or paternal mule, in contradiftinction
to a fexual mule. For as in thefe trees thus combined by ingraftment every bud has the upper parts of its caudex that of a golden pippin, the middle part of it that of a nonpareil, of the lower part of it that of a crab; if thefe caudexes, which conftitute the filaments of the bark, could be feparated intire from the tree with their plumules and radicles, they would exhibit fo many lateral or paternal mules, confifting of the connected parts of their three parents; the plumula belonging to the upper parent, and the radicle to the lower one, and the triple caudex to them all.

A feparation of thefe buds from the parent plant is faid to have been obferved by Mr. Blumenback in the conferva fontinalis, a vegetable which confifts of fmall hort flender threads, which grow in our fountains, and fix their roots in the mud. He obferved by magnifying glaffes, that the extremities of the threads fwell, and from fmall tubera, or heads, which gradually feparate from the parent threads, attach themfelves to the ground, and become perfect vegetables; the whole progrefs of their formation can be obferved in forty-eight hours. Obfervations on Plants, by Von Uflar, Creech, Edinb.
2. The lateral propagation of the polypus found in our ditches in July, but more particularly that of the hydra ftentorea, is wonderfully analagous to the above idea of the lateral generation of vegetables. The hydra ftentorea, according to the account of monfieur Trembley, multiplies itfelf by fplitting lengthwife; and in twentyfour hours thefe divifions, which adhere to a common pedicle, refplit, and form four diftinct animals. Thefe four in an equal time fplit again, and thus double their number daily, till they acquire a figure fomewhat refembling a nofegay. The young animals afterwards feparate from the parent, attach themfelves to aquatic plants, and give rife to new colonies.

Another curious animal fact is related by Blumenback in his treatife on generation, concerning the frefh water polypus. He cut two of them in half, which were of different colours, and applying the upper R part
part of one to the lower part of the other, by means of a glafs-tube, and retaining them thus for fome time in contact with each other, the two divided extremities united, and became one animal.

The attentive reader has already anticipated me in applying thefe wonderful modes of lateral animal reproduction and conjunction to the lateral propagation and ingraftment of vegetables. The junction of the head-part of one polypus to the tail-part of another is exactly reprefented by the ingraftment of a fcion on the ftock of another tree. The plumula, or apex of each bud, with the upper part of its caudex, joins to the long caudex of the ftock, which paffing down the trunk terminates in the radicles of it. And if this compound vegetable could be feparated longitudinally from the other long filaments of the bark in its vicinity, like the fibres of the bark of the mulberrytree prepared at Otaheite, or as the bark of hemp and flax are prepared in this country, as the young ones of the hydra fentorea feparate from their parents, it might claim the name of a lateral or paternal mule, as above mentioned.
3. It hence appears, that every new bud of a tree, where two fcions have been inferted over each other on a fock, if it could be feparated from the plume to the radicle, muft confift of three different kinds. of caudex, and might therefore be called a triple lateral mule. And that hence it follows, that every part of this new triple caudex, muft have been feparated or fecreted laterally from the adjoining part of the trunk of the tree; and that it could not be formed, as I formerly believed, from the roots of the plume of the bud defcending from the upper part of the caudex of it to the earth. A circumfance of great importance in the inveftigation of the curious fubject of the lateral generation of vegetables, and of infects.

One might hence fufpeet, that if Blumenback had attended to the propagation of the polypus, which he had compofed of two half polypi, that the young progeny might have poffeffed two colours re-
here two fionos uld be feparated different kinds cal mule. And triple caudes, e adjoining part bud, as 190 .
bud curious fubject
attended to the two hallf pr two colours ${ }^{\text {ch }}$ formutiog

Sect. VII. 3.4,5.
REPRODUCTION.
fembling the compound parent, like the different caudexes of ingrafted trees; an experiment well worthy repeated obfervation.
4. Another animal fact ought alfo to be here mentioned, that many infects, as common earth-worms as well as the polypus, are faid to poffefs fo much life throughour a great part of their fyftem, that they may be cut into two or more pieces without deftroying them, as each piece will acquire a new head, or a new tail, or both; and the infect will thus become multiplied. How exactly this is refembled by the long caudex of the buds of trees, which poffers fuch vegetable life from one extremity to the other, that when the head or plume is lopped off, it can produce a new plume; and when the lower part is cut off, it can produce new radicles; and may be thus wonderfully multiplied.
5. Hence we acquire fome new and important ideas concerning the lateral generation of vegetables, and which may probably contribute to elucidate their fexual generation. Thefe are, firft, that the parts of the long caudex of each new bud of an ingrafted tree, and confequently of all trees, are feparated or fecreted from the correfpondent or adjoining parts of the long caudex of the laft year's bud, which was its parent; and not that it confifts of the roots of each new bud hot down from the plumula or apex of it, as I formerly fuppofed; and that thofe various molecules, or fibrils, fecreted from the caudex of the laft year's buds, adjoin and grow together beneath the cuticle of the trunk of the tree, the upper ones forming the plumula of the new bud, which is its leaf or lungs, to acquire oxygen from the atmofphere; and the lower ones forming the radicles of it, which are abforbent veffels to acquire nutriment from the earth.

Secondly, that every part of the caudex of an ingrafted tree, and confequently of all trees, can generate or produce a new bud, when the upper part of it is ftrangulated with a wire or cut off, or otherwife when it is fupplied more abundantly with nutriment, ventilation, and light. And that each of thefe new buds thus produced

R 2
refembles
refembles that part of the ftock in compound trees, where it arifes. Thus in the triple tree above mentioned a bud from the upper part of the long caudexes, which form the filaments of the bark, would become a golden pippin branch; a bud from the middle part of them would become a nonpareil branch; and a bud from the lower part a crab branch.

Thirdly, another wonderful property of this lateral mule progeny of trees compounded by ingraftment confifts in this, that the new mule may confift of parts from three, or four, or many parents, when fo many different fcions are ingrafted on each other; whence a queftion may arife, whether a mixture of two kinds of anther-duft previous to its application to the fligma of flowers might not produce a threefold mule, partaking of the likenefs of both the males?
6. On this nice fubject of reproduction fo far removed from common apprehenfion the patient reader will excufe a more prolix inveftigation. The attraction of all matter to the centres of the planets, or of the fun, is termed gravitation ; that of particular bodies to each other is generally calted chemical affinity; to which the attractions belonging to electricity and magnetifm appear to be allied.

In thefe latter kinds of attraction two circumftances feem to be required ; firft, the power to attract poffeffed by one of the bodies, and fecondly, the aptitude to be attracted poffeffed by the othera Thus when a magnet attracts iron, it may be faid to poffefs a fpecific tendency to unite with the iron; and the iron may be faid to poffefs a fpecific aptitude to be united with the magnet. The former appears to refide in the magnet, becaufe it can be deprived of its attractive power, which can alfo be refored to it; and the iron appears to poffefs a fpecific aptitude to be united with the magnet, becaufe no other metal will approach it. In the fame manner a rubbed ftick of fealing-wax may be faid to poffefs a fpecific tendency to unite with a light ftraw, but not with a glafs bead. Here the fraw feems to poffers a fpecific aptitude to unite with the rubbed fealing-wax, becaufe whence a quef. her-duft previ. not produce a nales ?
ved from com. re prolix invelthe planets, or bodies to each the attractions lied.
aces feem to be of the bodies, by the otherio ooffers a fecciic e faid to poifits former appears of its attractivo appears top of ret, becaure
rub
rubea ed fick ${ }^{6}$ fraw , g-waz, rant

Sect. VII. 3.7. REPRODUCTION.
many other bodies refufe to do fo, as glafs, filk, air ; and laftly, the fpecific attraction of the rubbed fealing-wax can be withdrawn or refored; to which may be added, that fome chemical combinations may arife from the fingle attraction of one body, and the aptitude to be attracted of another; or they may be owing to reciprocal attractions of the two bodies, as in what is termed by the chemifts double affinity, which is known to be fo powerful as to feparate thofe bodies, which are held together by the fingle attraction probably of one of them to the other, which other poffeffes only an aptitude to be attracted by the former.
7. The above account of the tendencies to union by unorganized or inanimate matter is not given as a philofophical analogy, but to facilitate our conception of the adjunctions or concretions obfervable in organized or animated bodies, which conftitute their formation, their nutrition, and their growth. Thefe may be divided into two kinds; firf the junction or union of animated bodies with inanimate matter, as when fruit or flefh is fwallowed into the fomach, and becomes abforbed by the lacteals; and the fecond, where living particles coalefce or concrete together, as in the formation, nutrition, or conjunction of the parts of living animals.

In refpect to the former, the animal parts, as the noftrils and palate, poffefs an appetency, when ftimulated by the fcent and flavour of agreeable food, to unite themfelves with it ; and the inanimate material poffefles an aptitude to be thus united with the animal organ. The fame occurs when the food is fwallowed into the ftomach; the mouth of the lacteal veffels being agreeably ftimulated poffefs an appetency to abforb the particles of the digefting mafs, which is in-a fituation of undergoing chemical changes, and poffeffes at fome period of them an aptitude to be united with the mouths of the abforbent lacteals.

But when thefe abforbed particles of inanimate matter have been circulated in the blood, they feem gradually to obtain a kind of vi-
tality ; whence Mr. John Hanter, and I believe fome ancient philofophers, and the divine Mofes, afferted, that the blood is alive; that is, that it poffeffes fome degree of organization, or other properties different from thofe of inanimate matter, which are not producible by any chemical procefs, and which ceafe to exift along with the life of the animal. Hence for the purpofe of nutrition there is reafon to fufpect, that two circumftances are neceffary', both dependent upon life, and confequent activity; thefe are firft an appetency of the fibrils of the fixed organization, which wants nutrition; and fecondly, a propenfity of the fluid molecules exifting in the blood, or fecreted from it, to unite with the organ now ftimulated into action. So that nutrition may be faid to be affected by the embrace or cohefion of the fibrils, which poffefs nutritive appetencies, with the molecules, which poffefs nutritive propenfities.
8. If the philofopher, who thinks on this fubject, fhould not be inclined to believe that the whole of the blood is alive; he can not eafily deny life to that part of it which is fecreted by the organs of generation, and conveys vitality to the new embryon, which it produces. Hence though in the procefs of nutrition the activity of two kinds of fibrils or molecules may be furpected, yet in the procefs of the generation of a new vegetable or animal, there feems great reafon to believe, that both the combining and combined particles are endued with vitality ; that is, with fome degree of organization or other properties not exifting in inanimate matter, which we beg leave to denominate fibrils with formative appetencies, and molecules with formative propenfities, as the former may feem to poffefs a greater degree of organization than the latter.

And thus it appears, that though nutrition may be conceived to be produced by the animated fibrils of an organized part being ftimulated into action by inanimate molecules, which they then embrace, and may thus be popularly compared to the fimple attractions of chemiftry; yet that in the production of a new embryon, whether
9. This then is the great fecret of nature ; more living particles are produced by the powers of vitality in the fabrication of the vegetable blood, than are neceffary for nutrition or reftoration of decompofing organs. Thefe are fecreted, and detruded externally, and produce by their combination a new vital organization beneath the cuticles of trees over the old one. Thefe new combinations of vital fibrils and molecules acquire new appetencies, or fabricate molecules with new propenfities, and thus poffefs the power of forming the leaf or lungs at one extremity of the new caudex ; and the radicles, or abforbent veffels at the other end; and fome of them, as in the central buds which terminate the branches, finally form the fexual organs of reproduction, which conftitute the flower.

That new organizations of the growing fyftem acquire new appetencies appears from the production of the paffion for generation, as foon as the adapted organs are complete; and from the defire of lactefcent females to fuckle their offspring, and alfo from the variation of the palate, or defire for particular kinds of food, as we advance in life, as from milk to flefh. Thus as a popular allufion, and not as a philofophical analogy, we may again be allowed to apply to the combinations of chemiftry; where two different kinds of particles unite, as acids and alkalies, a third fomething is produced, which poffeffes attractions diffimilar to thofe of either of them; and that new organizations form new molecules appears from the fecretions of the feminal and uterine glands, when they have acquired their maturity; and from the breafts of lactefcent females.
10. In the lateral propagation of vegetable buds as the fuperfluous fibrils or molecules, which were fabricated in the blood, or detached from living organs, and poffers nutritive or formative appetencies and propenfities, and which were more abundant than were required for the nutrition of the parent vegetable bud, when it had obtained its full growth, were fecreted by innumerable glands on the various parts of its furface beneath the general cuticle of the tree, and there embracing
living partich
on of the veg.
ation of decom. externally, and on beneath the sinations of vita ricate moleculyse of forming the and the radicles, them, as in the m the fexual o:
acquire new ap. for generation, om the defire of om the variation s we adrancein afion, and not 24 to apply to the inds of particles produced, which them ; and that m the fecretions e acquired their s. s the fuperfluollis ood, or detached were red had oquired tor the vario e, and there eflis barain

SECT. VII. 3. 11. REPRODUCTION.
129
bracing and coalefcing, form a new embryon caudex, which gradually produces a new plumula and radicles. And as the different parts of the new caudex of a compound tree refemble the parts of the parent caudex, to which it adheres, it was thewn, beyond all doubt, that different fibrils or molecules were detached from different parts. of the parent caudex to form the filial one.

So in the fexual propagation of vegetables the fuperfluous living fibrils, or molecules, floating in the blood, appear to be fecreted from it by two kinds of glands only; thofe which conftitute the anthers, and thofe which conftitute the pericarp of flowers. By the former I fuppofe the fibrils, with formative appetencies and with nutritive appetencies, to be fecreted ; and by the latter the molecules, with formative and with nutritive propenfities. Afterwards that thefe fibrils with formative and nutritive appetencies, become mixed in the pericarp or uterus of the flower, with the correfpondent molecules with formative and nutritive propenfities; and that a new embryon is inftantly produced by their reciprocal embrace and coalefcence. And that parts of this new organization afterwards acquire new appetencies, and form molecules with new propenfities, and thus gradually produce other parts of the growing feed, which do not at firft appear, as the plumula, radicles, cuticle, and the glands of reproduction in the pericarp and anthers, which correfpond in the animal fetus to the lungs, inteftines, cuticle, and the organs, which diftirguifh the fexes.
11. From this new doctrine of a threefold vegetable mule by lateral propagation, as the new bud on the fummit of a tree, which has had two fcions ingrafted on it one above another, in which it is inconteftibly fhewn, that different fibrils, or molecules, are detached from different parts of the parent caudex to form the filial one, which adheres to it; and that it then acquires the power of producing new radicles, or a new plumula; we may fafely conclude, as it is deducible from the frongeft analogy, that in the production of fexual

$$
\mathrm{S} \text { mules, }
$$

mules, whether vegetable or animal, fome parts of the new embryon were produced by, or detached from, fimilar parts of the parent, which they refemble. And that as thefe fibrils, or molecules, floated in the circulating blood of their parents, they were collected feparately by appropriated glands of the male or female ; and that finally, on their mixture in the matrix the new embryon was immediately generated, refembling in fome parts the form of the father, and in other parts the form of the mother, according to the quantity or activity of the fibrils or molecules at the time of their conjunction.

And laftly, that various parts of the new organizations afterwards acquired new appetencies, and formed molecules with new proper!fities, and thus gradually produced other parts of the growing fetus, as the fkin, nails, hair, and the organs which diftinguifh the fexes.

If the molecules fecreted by the female organ into the pericarp of flowers, or into the ovary of animals, were fuppofed to confift of only unorganized or inanimate particles; and the fibrils fecreted by the male organ only to poffers formative appetencies to felect and combine with them; the new embryon mult probably have always refembled the father, and no mules could have had exiftence.

But by the theory above delivered it appears, that the new offfpring, both in vegetable and animal reproduction, whether it be a mule or not, muft fometimes more refemble the male parent, and fometimes the female one, and fometimes appear to be a combination of them both, as the epigram of Martial :

Dum dubitat natura gravis puerum faceretne puellam, Factus es, O pulcher, pene puella, puer.
12. The certain proof above given, that fome parts of the triple caudex of the new bud of a tree, which has been compounded by ingraftment, are formed from fimilar parts of the triple caudex of the parent bud, carries us one ftep further back into the myfterious procefs

SECT.

S E C T. VIII.

```
1. THE MUSCLES, NERVES, AND BRAIN OF VEGETABLES.
```

1. Vegetable mucles evinced by their clofing their corols, and calyxes, and moving their leaves in conjequence of ftimulus. Hence aljo vegetable nerves botb of fenfe and motion. When one part of a leaf of mimofa is toucbed the wobole leaf falls. Hence alfo a vegetable brain or common fenforium. 2. Their irritability flewn by the abSorption, and circulation of their fluids. By eleatric Joocks. By the afcent of Japjuice. 3. Their fenfibility fheren by the collaps of mimofa. By ciofing their petals from defect of fimulus, as in darknefs and cold. By the males and females bending to each other. 4. Their volition fheren from bedyjarum gyrans. From polymorpha marcbantia. From tendrils of vines. From their fleep. 5.Their affociations of motion Jbewn by their clofing their petals, performing abforption and circulation of fluids. Their acquired babits. Grains and roots from the fouth vegetate jooner. Apple-trees. Senfitive plant. Berberry. 6. Vegetables poffess a senje of beat, of light, and of moifture, and confequently poffess a brain or common fenforium. 7. They poffefs a fenfe of touch and a common fenforium. 8. How do the antbers and figmas find each otber? by a Jenfe of fmell. Adultery of collinfonia. 9. From their abforptions, fecretions, fenfes, love and leep, they muft poffefs a brain. Does this refide in the pith of each individual bud?
2. The various motions of peculiar parts of vegetables evince the exiftence of mufcles and nerves in thofe parts, fuch as the clofing of their petals, and calyxes, at the approach of night, or in cold or wet weather; though the fibres and nerves, which conftitute thefe mufcles, are too fine for anatomical demonftration.

Some vegetables fold the older leaves over the new buds at the extremity of their ftalks during the night, as alfine, chick weed; others, as the mimofa, fenfitive plant, fold the upper or polifhed fides of their
their leaves together during their fleep. The hedyfarum gyrans whirls its leaves in various directions, when the air is fill, by an apparently voluntary effort, probably for the purpofe of refpiration. The dionoea mufcipula, Venus's fly-trap, clofes its leaves from the ftimulus of infects, which crawl upon them, and pierces them with its prickles. And the apocynum androfemifolium contracts its petals or nectaries round the probofcis of the flies, which fimulate it, and holds them till they die, or till the fleep of the plant releafes them by the relaxation of its mufcular action.

From thefe circumftances it appears, that there are not only mufcles about the moving foot-ftalks or claws of the leaves and petals above mentioned; but that thefe mufcles muft be endued with nerves of fenfe as well as of motion. Now, as when one part of a leaf of mimofa is touched, the whole leaf falls, it follows, that there muft be a common fenforium, or brain, where the nerves communicate, belonging to this one leaf-bud. To evince this further another leaflet was flit with fharp fciffars, and fome feconds of time elapfed, before the plant feemed fenfible of the injury; and then the whole plant collapfed as far as the principal ftem. Afterwards a fmall drop of oil of vitriol was put on the bud in the bofom of a leaf of another fenfitive plant; and, after about half a minute, when the brain of this bud could be fuppofed to be deftroyed, the whole leaf fell, and rofe no more. If the individual buds of plants poffefs mufcles and nerves with a brain, or common fenforium ; the following queftions confequently occur, and fhould be anfwered in the affirmative. Have vegetable buds irritability ? have they fenfation? have they volition? have they affociations of motion? I am perfuaded they poffers them all, though in a much inferior degree even than the cold blooded animals.
2. The irritability of vegetable fibres is demonftrated by the abforption and circulation of their fluids in their roots, leaves, and petals; which can not be explained by any mechanic law, and exactly tals ; which can not be explained by any mechanic law, and exachy the blood in animals ; which Phyfiologifts have demonftrated to depend on the mufcular motions of the veffels themfelves, which poffefs irritability, and are excited into action by the ftimulus of the fluids, which they acquire or contain.

The irritability of vegetable veffels is fhewn by a curious experiment of Von Uflar, who paffed ftrong electric fhocks through a plant of euphorbia, fo as to deftroy the life of the plant; and he then obferved on cutting off a branch, that it did not bleed; though a fimilar branch cut off before the death of the plant effufed much milky juice; whence he juftly concludes, that the electric percuffion had deftroyed the irritability of the plant.

Mr. Cavalle afferts in his Treatife on Electricity, that he found by repeated experiments, that the plant balfam (impatiens) was deftroyed by lefs quantities of electricity than any other vegetables, which he fubjected to it; and that on examining the plant afterwards no injury on the external or internal parts of it could be difcovered; whence it may be concluded that the irritability fimply, and not the organization of the plant, was deftroyed by the unnatural quantity of fimulus. He adds, that not only hocks from fo fimall a coated furface as fix or eight fquare inches, but even ftrong farks from a large conductor deftroyed thefe plants, which fometimes recovered in a day or two, but not frequenty. See Sect. XIII. 3. and Sect. XIV. 2. 3. of this work.

The afcent of the fap-juice during the vernal months in the experiments both of Hales and Walker, being retarded or quite ftopped during the cold parts of the day, and in the night; and on the north fide of the tree in cool days, when it continued to flow on the fouth fide, can only be afcribed to the irritability of the vegetable veffels being decreafed by the deficient ftimulus of heat. See this fubject further treated of in Sect. XIV. I. IO. of this work.
3. 'The fenfibility of fibres is diftinguifhed from their irritability
by the pain or pleafure, which precedes or attends any animal action; and therefore fuppofes the exiftence of a common fenforium; now when one divifion of a leaf of mimofa is injured by a wound or touch, in a thort time the whole leaf clofes, which is owing to the actions of the diftant mufcles about the footfalks of the fubdivifions of the leaf. Does not this prove, that there is a brain or common fenforium, where the nerves communicate in fome part of this bud or leaf, as the injury of one diftant part of it thus affects the whole? or in other words, that the difagreeable fenfation is propagated from a part to the whole, and caufes the actions of fome diftant mufcles, in the fame manner as I draw away my hand when my finger is hurt?

There are mufcles placed about the foot-ftalks of the leaves or leaflets of many plants, for the purpofe of clofing their upper furfaces together, or of bending them down fo as to fhoot off the fhowers or dew-drops, as in fenfitive plant, mimofa; kidney-bean, phafeolus; and many trees. The claws of the petals, or of the divifions of the calyx of many flowers, are furnihed in a fimilar manner with mufcles, which are exerted to open or clofe the corol and calyx of the flower, as in tragopogon, anemone. This action of opening and clofing the leaves or flowers does not appear to be produced fimply by irritation on the mufcles themfelves, but by the connexion of thofe mufcles with a fenfitive fenforium, or brain, exifting in each individual bud or flower. Ift. Becaufe many flowers clofe from defect of ftimulus, not by the excefs of it, as by darknefs, which is the abfence of the fimulus of light; or by cold, which is the abfence of the ftimulus of heat. Now the defect of heat, like the abfence of food, or of drink, affects our fenfes with pain, which had been previouly accuftomed to a greater quantity of them, and a cutaneous hivering may be excited in confequence of the pain; but a mufcle cannot be faid to be ftimulated into action by a defect of ftimulus, though fome modern writers on medicine have called cold a ftimulus to animal fibres, which it always renders torpid or inactive; a theory
derived from Galen, and which mult have originated in his total ig. norance of chemiftry and natural philofophy.

In fome flowers the males bend into contact with the females, as in ciftus, kalmia, fritillaria perfica, lithrum falicaria; in others the female bends to the males, as in collinfonia, gloriofa, genifta, epilobium; which fhews a fenfibility to the paffion of reproduction. In irritation the ftimulated mufcles only are brought into action, without being perceived by the other parts of the fyftem; but in Jenfation the whole fyftem is affected by means of the brain or common fenforium, and thence very diftant mufcles are brought into action to acquire an agreeable object, or to repel or withdraw from a difagreeable one. See Zoonomia, Vol. I. Sect. XIII. 2.
4. That plants poffefs in fome degree the power of volition would appear firft from the hedyfarum gyrans, which moves its leaves in circular directions when the air is too ftill. Secondly, from the marchantia polymorpha, in which fome yellow wool advances from the flower-bearing anthers, while it drops its duft like atoms. Murray's Syftem of Vegetables. Thirdly, from the tendrils of vines, and the ftems of other climbing vegetables, which continue to move round, till they find fomething to adhere to, or till they have rolled themfelves up in a fpiral line like a cork-fcrew. And laftly, from the efforts of almof all plants to turn the upper furface of their leaves, or their flowers, to the light.

But there is an indubitable proof of plants poffeffing fome degree of voluntarity, and that is deduced from their fleep. In animal bodies fleep confifts in a fufpenfion or temporary abolition of voluntary power; the organs of fenfe being at the fame time clofed, or by fome other means rendered unfit for the perception of external bodies. Now the fleep of plants is proved by the hanging down or clofing of the leaves of many plants, and of fhutting the petals and calyxes of many flowers in the dark, and their again opening or expanding them in the light, or at certain hours of the day.

$$
5 . \mathrm{In}
$$

5. In refpect to vegetables acquiring affociations of motion, or babits of action, the former is feen in the abforptions and circulations of their fluids, and in the various movements above defcribed; which whirl their leaves or tendrils, and clofe or open their corols and calyxes, which could not be performed without the fynchronous and affociated actions of many mufcles; as in the abforptions and circulations of animal bodies, and the movements of their limbs.

Other acquired habits of vegetable actions appear from the grains and roots brought from more fouthern latitudes, which germinate here fooner than thofe which are brought from more northern ones, owing to their acquired habits. Fordyce on Agriculture. And from the apple trees fent from hence to New York, which bloffomed for a few years too early for the climate, and bore no fruit ; but afterwards learnt to accommodate themfelves to their new fituation. Travels in New York by Profeffor Kalm.

The divifions of the leaves of the fenfitive plant have been accuftomed to contract at the fame time from the abfence of light; hence if by any other circumftance, as a llight Atroke or injury, one divifion is irritated into contraction; the neighbouring ones contract alfo, from their motions being affociated with thofe of the irritated part. So the various ftamina of the barberry have been accuftomed to contract together in the evening; and thence, if you ftimulate one of them with a pin, according to the experiment of Dr. Smith, they all contract from their acquired affociations.
6. This leads us to a curious inquiry, whether vegetables poffers any organs of fenfe? Certain it is, that they poffers a fenfe of heat and cold, another of moifture and drynefs, and another of light and darknefs; for they clofe their petals occafionally from the prefence of cold, moitture, or darknefs. And it has been already fhewn, that thefe actions cannot be performed fimply from irritation, becaufe cold and darknefs are defective quantities of our ufual ftimuli; and that on that account fenfation or volition are employed; and in confeT
quence
quence a fenforium or union of the nerves muit exift. So when we go into the light, we contract the iris, not from any ftimulus of the light on the fine mufcles of the iris, but from its motions being affociated with the fenfation of too much light on the retina, which could not take place without a fenforium or center of union of the nerves of the iris with thofe of vifion.
7. Befides thefe organs of fenfe, which diftinguifh cold, moifture, and darknefs, the leaves of mimofa, and of dionæa, and of drofera, and the ftamens of many flowers, as of the barberry, and of the numerous clafs of fyngenefia, are fenfible to mechanic impact ; that is, they poffefs a fenfe of touch; and as many of their diftant mufcles are in confequence excited into action, this alfo evinces, that they poffefs a common fenforium, by which this fenfation is communicated to the whole, and volition occafionally exerted.
8. Laftly, in many flowers the anthers when mature approach the ftigma, in others the female organ approaches to the male. I afk, by what means are the anthers in many flowers, and ftigmas in other flowers, directed to find their paramours? Is this curious kind of ftorge produced by mechanic attraction, or by the fenfation of love? The latter opinion is fupported by the ftrongeft analogy, becaufe a reproduction of the fpecies is the confequence; and then another organ of fenfe mult be wanted to direct thefe vegetable amourettes to find each other ; one probably analagous to our fenfe of fmell, which in the animal world directs the new-born infant to its fource of nourifhment; and in fome animals directs the male to the femate; and they may thus poffefs a faculty of perceiving as well as of producing odours.

A moft curious example of the exiftence of fome kind of fenfe, which may direct the pittils, or female parts of the flowers of collinfonia, which way to bend for the purpofe of finding the mature males, is related in Botanic Garden, Vol. I. Canto IV. 1. 460, where fome of the piftils miftake the males, or ftamens, of the neighbouring
dd of the nu.
pact ; that is, t mufcles ate at they polfefs nicated to the
approach the male. I afk, gmas in other rious kind of ation of love! gy, becaufe a en another orle amourettes nfe of fmell, t to its fourte to the female; well as of proo

PHYTOLOGIA.

PART THE SECOND.

ECONOMY OF VEGETATION.

S E C T. IX.
THE GROWTH OF SEEDS, BUDS, AND BULBS.
I. 1. Seeds refemble eggs. 2. The embryon is of different maturity. The leaves rifible in fome feeds. 3. Why the plumula afcends and the root defcends. Is nourifhed by the feed-lobes, by the fruit. Becomes a dwarf if deprived of them. Melons and cucumbers are too luxuriant. Turnep-Jeed Jould be new. 4. Seeds bave bard fbells, bave acrid rinds with bitter or narcotic juices, but pure ftarch may be procured from them. 5. Umbilical veffels, and roots of Jeeds." Annual, biennial, and perennial plants. Refervoirs of nutriment in tbeir roots. All plants are biennials. Bulbs and buds fucceed each otber many times before they flower. 6. Wheat. Stems and roots round the firf joint. Has no neEfary. Is greatly increajed by tranfplanting. II. 1. Buds are a viviparous progeny. Protected by fcales and varnilh. Grow by piping with more beat and moifure as they exbale lefs. Are individual, annual, or biennial plants. . 2. Buds of berbs. Evergreens bave no bleeding feafon. 3. Buds of deciduous trees are in different fates of maturity, as in bepatica, dapbne, ofmunda. Some buds are invifible. 4. Importance of the pith like the Spinal marrow; it lines bollow falks. 5. Rejervair of nutriment for buds. Tbeir umbilical veffels. 6. A bud contains many embryons. The fir/t leaf-buds often defiroyed by infecis. The flower-buds only injured by them. 7. Vigorous brancbes produce leaf-buds, weak ones flower-buds. Wby jeedling apples are long before they bear. Why pears bear only at their extremities. 8. New buds 'may be made eitber leaf-buds by lopping a part of the branch, or flowerbuds by bending the brancb down, or cutting a ring in the bark, or Arangulating
it with a wire. Debarked oaks pullulate. Sap-juice in the alburnum. 9. A paufe in vegetation about midfummer. Trees then fecrete nutriment in their roots and Sap-wood for the new buds. Are then beft tranjplanted without lopping their branches. 10. Caudexes of the buds form the bark, whofe veffels inofculate. Heartwood dies. Sap-wood aEts as umbilical veffels, and afterwards as capillary tubes, or as capillary fyphons. 1 . Floweer-buds perifh without increafing the bark by new caudexes. Are convertible into leaf-buds. Vegetable monfters. 12. Central part of an adult bud. III. 1. Bulbs. Leaf-bulbs precede flower-bulbs in the tulip as leaf-buds in apple-trees, as joints in the ftalk of wobeat. Solitary generation of infects. 2. Bulbs of onions. Orcbis. Tulip. Hyacinth. Rananculus. Iris. 3. Roots of potatoes. Wires of frawberries. Seeds of orcbis. Flowers of potatoes. 4. Stem-bulbs on magical onions are fimilar to root-bulbs. 5. Root-grafting. Root-inoculation. Root-propagation. Suckers of trees. Rootbuds of berbaceous plants. Internal parts of which decay. 6. Tuberous roots of turnep and carrot are refervoirs of nutriment for the fucceeding flower-ftem. No flower-bud is ever produced from a feed witbout previous leaf-buds. Why feedling apple-trees are ten or twelve years before they bear fruit. Magazines of aliment in almoft all roots. 7. Ufe of the borfe-boe to accumulate earth round the wheatplants. Wheat dropped on the foil Jboots up but one ftem. Covered with the foil it fboots up many. And tranfplanted deeper in the foil many more. Potatoes, vines, and figs, produce lateral roots from their joints. So does the bark if wounded circularly. Uje of eating down forward wheat with Jeep.
I. 1. Having treated of the phyfiology, we now ftep forwards to confider the economy of vegetation, as far as it may ferve the purpofes of agriculture and gardening.

After the production of the feed, or vegetable egg in the pericarp of flowers, and its enfuing impregnation by the farina of the anthers Thed upon the ftigma, a coagulated point appears on the feed-lobes according to the obfervations of Spallanzani, like the cicatricula on the yolk of the egg.

The feed continues to grow in the pericarp fuftained by adapted fecretions from the vegetable blood, which is previoully oxygenated in
neceffary to all organic life; and which renders the living fibres both of the vegetable and animal world obedient to the Aimuli, which are naturally applied to them.

Whence we may in fome meafure comprehend a difficult queftion; why the plume of a feed fowed upon, or in the earth, fhould alcend, and the root defcend, which has been afcribed to a myfterious inftinct ; the plumula is ftimulated by the air into action, and elongates it felf, where it is thus moft excited; and the radicle is ftimulated by moifture, and elongates itfelf thus, where it is moft excited, whence one of them grows upwards in queft of its adapted object, and the other downward.

The firft fource of nutriment fupplied to the feminal embryon, after it falls from the parent plant, exifts in the feed-lobes, or cotyledons, which either remain beneath the earth, and are permeated by the umbilical veffels of the embryon plant, which abforb the mucilaginous, farinaceous, or oily matter depofited in them, as in the bean, pifum ; or the feed-lobes rife up into the air along with the young plant, as in the kidney-bean, phafeolus, become feed-leaves, and ferve both as a nutritive and refpiratory organ. Thefe cotyledons or feedlobes generally contain mucilage, as in quince-feed ; or farch, as in wheat ; or oil, as in line-feed. Some of thefe nutritive materials are probably abforbed unchanged, or diffolved only by the moifture of the earth; others are converted into fugar partly by a chemical procefs, and partly by the digeftive powers of the young plant, as appears in the procefs of germinating barley, and converting it into malt ; thefe refervoirs of nutriment are hence perfectly analogous to the white of the egg, a part of which is probably abforbed unchanged by the lymphatics of the young embryon, and a part of it converted into a fweet chyle for the nourifhment of the chick, when it has acquired a ftomach.

If the feed be deprived of thefe cotyledons, foon after the root appears, it will continue to grow, but with lefs vigour, and is faid to produce
duce a dwarf plant from three to nine times lefs than the parent. Hence the feeds of plants, which are liable to produce too vigorous roots, and thence have not time to ripen their fruits in the fhort fummers of this climate, or which fill our hot-beds with too luxuriant foliage, as melons, and cucumbers, fhould in this climate be kept three or four years; by which part of the mucilaginous, or farinaceous, or oily matter of the cotyledons becomes injured or decayed, and the new plant grows lefs luxuriantly.

Another fource of nutriment for the feminal embryon of many. plants exifts in the fruit, which envelopes the ftone or feed-veffel, after the growing fetus has burft its confinement, and fo far refembles the yolk of the egg, which becomes a nutriment to the chick, after it has confumed the white, and eloped from its chell.
When mature fruit, as an apple or a cucumber, falls upon the ground, it fupplies, as it ripens or decays, a fecond fource of nourifhment, which enables the inclofed feeds to fhoot their roots into the earth, and to elevate their ftems with greater vigour. Hence fruits generally contain a faccharine matter, or juices capable of being converted into fugar, either by a fpontaneous chemical procefs, as in baking four apples; or by a vegetable procefs, as in thofe four pears, which continue to ripen for many months both before and after they are plucked from the tree, as long as life remains in them; that is, till they ferment or putrify; and laftly, by the digeftive power of the young embryon, as above mentioned.

If the feed be deprived of the fruit, it will indeed vegetate, but with lefs vigour. Hence thofe feeds which are liable to produce too vigorous thoots for this climate, as the feeds of melons and cucumbers, fhould be wafhed clean from their pulp, before they are hoarded, and preferved three or four years before they are fown in hot beds. But thofe feeds, which are fown late in the feafon for the purpofe of producing winter fodder, as the feeds of turneps, fhould be collected and preferved with every poffible advantage; and on this U
account
account new feed is much to be preferred to that which has been long kept.
4. Many feeds when mature are difperfed far from the parent tree, for the purpofe of their growth, by various contrivances, as mentioned in Sect. VII. 2. 5. Some of thefe are furrounded with hard fhells, which are impenetrable by infects, as they lie on the earth to take root, as peaches, nectarines, nuts, cocoa-nuts. Other feeds are furnifhed with an acrid covering to prevent the depredation of infects, as the peel of oranges and lemons, the outward hufk and inward rind of walnuts, and of cafhew-nuts, and the fkin of muftard-feed, and rape-feed; other feeds for the fame purpofe abound with bitter or narcotic juices, as the horfe-chefnut, acorn, apricot, cherry, many of which fupply materials to the fhops of medicine, and may fupply nutriment in times of fcarcity; as the ftarch, which they contain, may be procured by grating them into cold water, and wafhing away the mucilage, and the poifonous material, which adheres to it, or which is foluble in water.
5. The plumula of the feed, or embryon plant, abforbs the nutriment laid up for it in the feed-lobes by veffels, which permeate them for that purpofe, and have been termed umbilical veffels; and afterwards fhoots its roots down into the fruit, or into the earth, in fearch of other nourihment ; and expands its leaves in the air as an organ of refpiration.

Thofe plants, which are ufually termed annuals, produce their flowers and die in the fame year in which their feeds are fown; as barley, oats, and a variety of garden flowers. Thefe neverthelefs in accurate language fhould be termed biennials, becaufe the feed in this climate is produced in one fummer ; and the embryon plant becomes mature in the next; as the feed is generally preferved in our granaries, or feed-boxes, and not committed to the ground till the enfuing fpring; for many of thefe vegetables are not natives of this climate,
climate, and would perish if the feeds were fown in autumn, when it is naturally fcattered on the earth.

Thole which are ufually termed biennial plants, differ from the former, firft in the time of flowing the feed, which is generally in the early autumn, as foo as it is ripe, as of turneps, carrots, wheat; and thus thee, produce their flowers in the fecond year after the feed is fown, which has given them the name of biennials. Many of there plants, perhaps all of them, lay up a refervoir of nutritious matter during the fummer or autumn in their roots. This nutriment is fecreted from the vegetable blood, which is previoufly oxygenated for that purpofe in the large leaves, which generally furround the caudex of the plant, as in turneps and carrots. There leaves furvive the winter in many plants, which the more fucculent items probably would not ; and the nutriment depofited in the root is expended in the growth of the fem and the production of feed in the enfuing faring. As in there vegetables one of our fummers is too fort for their growth from the feed to the fructification; and it is for this refervoir of nutriment that there plants are generally cultivated.

But thole plants, which are termed perennial, when firft raifed from feed, are many of them fome years before they produce flowers. Some of them form bulbous roots, as the tulip, hyacinth, onion, which are three or four years before they flower, during which time I believe all the bulbs die annually, producing one larger than that of the preceding year, and perhaps forme faller ones, all which annually increafe in frize till they flower. The fame occurs in potatoesroots raifed from feed, which do not flower as I am informed till the third year, and then only thole which feemed of ftronger or forwarder growth.

Other perennial plants have palmated or branching roots; in forme of there, as in feeding apple-trees, the flower is faid not to appear till ten or twelve years after the feed is fown; the buds neverthelefs annually dying and producing other buds over them, perhaps more U 2
perfect
perfect ones, as they acquire after a few years the power of producing fexual organs, and in confequence a feminal progeny. In thefe perennial herbaceous plants and trees a magazine of nutriment is provided in their roots or fap-wood, to fupply the new buds, which are to grow in the enfuing fpring.

Whence it appears, that all the vegetables of this climate may be termed biennial plants; as the feeds of fome, and the buds or bulbs of others, are produced in one fummer, and flourifh and die in the next ; thofe which are called annuals or biennials leaving behind them a future progeny of feeds only; thofe, which are termed perennial herbaceous plants, leaving behind them the firft year or two a progeny of bulbs or root-buds only, and afterwards a progeny of feeds alfo; while the perennial arborefcent vegetables leave behind them a progeny of buds only for feveral fucceffive years, and afterwards a progeny of both buds and feeds.

Thus the bulb from a tulip-feed produces a more perfect bulb annually, till it flowers, I believe, on the fifth year. It then produces a flower, and alfo one perfect bulb, which flowers the next year; and fome other lefs perfect bulbs, which are fucceeded by more perfect ones annually, till they alfo flower. Whence I conclude, that no tulip bulb flowers till the fourth or fifth generation.

It is probable, that a fimilar circumftance occurs in other vegetables, as in apple-trees; and that the buds of thefe do not produce fexual organs, and a confequent feminal progeny, till the twelfth or fourteenth generation of the bud from the feed; each of thofe buds neverthelefs producing one principal bud annually more perfect than itfelf; and many lateral buds lefs perfect than itfelf; that is, at a greater diftance from that ftate of maturity which enables it to form a flower. This art of diftinguifhing the greater or lefs maturity of buds is a matter of great importance in the management of fruit-trees, as in many of them the central bud becomes a fpur one year, and flowers
erfect bulb an then prodices the next yar; clude, that no
the next; and the lateral buds one or two years afterwards, as will be mentioned in Sect. XV. on the production of fruit.
6. In wheat there exifts about the caudex a refervoir of nutritious juices depofited in the autumn for the purpofe of raifing the ftem in the enfuing fpring like that of turneps and carrots; but which is attended with other circumftances peculiar I fuppofe to the graffes, and other plants, which poffefs only one cotyledon or feed-lobe. The early leaf, which furrounds the firft joint of the ftem, withers, as the fpring advances ; in which joint it had previoufly depofited a faccharine juice, and probably fome new embryon buds were at the fame time generated in the caudex; for through this withered leaf, which furrounds the firft joint of the ftem within the earth, a circular fet of new ftems iffue adhering to it, and a circle of roots below them adhering to the caudex or bafe of it. Thefe new buds rife into air, and fhoot their roots into the earth; and in this manner many ftems are produced in the fpring from one feed fowed in the autumn preceding ; though in fome kinds of wheat the whole procefs of the feed rifing from earth, and producing other ftems round the principal one, and of ripening its feeds, may be performed in one fummer even in this northern climate.

Another peculiarity attends the growth of wheat and other graffes; the leaf, which furrounds and ftrengthens the ftem by its foot-ftalk, depofits at every lower joint a faccharine matter for the purpofe of nourihing the afcending part of the young ftem; and in the uppermoft joint, I fuppofe, to ferve inftead of honey for the ftamens and ftigmas, as their flowers have no vifible nectary; and as the fcales of the flower may with good reafon be efteemed a calyx rather than a corol, according to the opinion of Mr. Milne ; as thefe fcales attend the feed-veffel to its maturity, which the corol does not. Milne's Botanical Dict. Art. Gramina.

Owing to this fecretion of faccharine matter at the foot-ftalk of every leaf, and its collection round the joints of graffes, it happens that
that when thefe joints are furrounded with moift earth, and are placed but a certain depth from the air, that new buds will put forth round thefe joints, and frike their roots into the foil. Whence the agrarian hufbandman may derive great advantage from tranfplanting his wheat, after it has produced a circle of new ftems from the firft joint of the ftraw ; for if he then parts and replants them an inch or two deeper in the ground, fo as to cover the firft joint of each of thefe additional ftems, he may multiply every one of them four or fix times, and thus obtain twenty or thirty ftems from one original feed. See No. III. I. and 7. of this fection.
II. I. Other vegetable embryons are produced in the buds on the ftems or branches of trees, which may be termed the viviparous progeny of plants, in contradiftinction to thofe from feeds, which may be termed their oviparous progeny. Thefe buds are either leaf-buds or flower-buds, or both in one covering ; the bud is termed hybernaculum, or winter-cradle, of the embryon fhoot, and is covered with fcales, and often with a refinous varnifh, as in tacamahacca, to protect it from the cold and moifture of the enfuing winter, and from the depredation of infects.

Thefe by inoculation or ingrafting on other ftems of trees, or by being planted in the earth, become plants exactly fimilar to their parents. A fmall glafs inverted over thefe buds, when fet in the earth, contributes to infure their growth by preventing too great an exhalation; otherwife they are liable to perfpire more than they can abforb, before they have acquired roots; this the gardeners call piping a flip, or a cutting, of a plant. In this fituation a greater heat may be given them, as in hothoufes, without increafing their quantity of perfpiration, which ceafes as foon as the air in the glafs is faturated with moifture; and the increafe of heat much contributes to the protrufion of their roots and new buds, as they can at the fame time bear to be fupplied with a greater quantity of moifture.

Every bud of moft of the deciduous trees of this climate may there-
T. [x $x_{1,2,}$ ad are plac. put forth Whence the anfplanting om the frift 1 an inch or of each of rem four or one original
buds on the iparous pro. which may ner leaf-buds med hybercovered with cca, to pror, and from trees, or by to their p^{p-} fet in the too great an ana they can aers call pip. greater heat g their quant
glafs is an 2
ontributes ${ }^{\text {io }}$
at the fande
te may theice for
fore be confidered as an individual biennial plant, as diftinetly fo as a feed; that is, the bud like a feed is formed in one fummer, grows to maturity in the next, and then dies. In fome trees neverthelefs of this climate, as the mock orange, philadelphus, acacia, viburnum; and in the evergreen fhrubs or trees, as holly, laurel, vinca, heath, and rue; and in all thofe herbs commonly called annuals; and in moft of the trees of warmer climates; the buds appear to be formed in the vernal months, and to arrive at their maturity during the fame year ; and may therefore properly be called annual plants.
2. The bud of thefe herbs, which are commonly called annuals, rifes in the bofom of a leaf; and, as it adheres to its parent, requires no female apparatus to nourifh it, but gradually frikes down roots from its caudex into the ground, which caudex forms a part of the bark of the increafing plant. This occurs in thofe herbaceous vegetables, which have juft rifen from feeds; the buds of which are properly individual annual plants, which grow to maturity adhering to the parent, and do not therefore refemble a feed or egg, as there is no refervoir of nutriment laid up for them.

This circumftance alfo happens, I fuppofe, to the evergreen flirubs. and trees of this climate, as to heath, rue, box, pine, laurel; for in thefe vegetables, as the leaf does not die in the autumn, it continues, to oxygenate the blood, and to fupply nourifhment to the bud in its. bofom during the fine days of winter, and in the fpring, and furvives. till near midfummer; that is, till the new bud has expanded a leaf of its own. Whence I fuppofe thefe evergreens lay up in fummer no flore of nutriment in their roots or alburnum for the fuftenance of their enfuing vernal buds ; and have thence probably no bleeding feafon like deciduous trees.

But the embryon in a bud of a deciduous plant leaves in the fpring: of the year its winter cradle, or hybernaculum, like the embryon in a feed, or a chick in the egg; and like thefe the young plants of different vegetables have previoufly arrived at different ftates of matu-
rity. Thus Mr. Ferber afferts, that he was delighted in obferving in the buds of hepatica, and pedicularis hirfuta, yet lying in the earth, and in the gems of the fhrub daphne mezereon, and at the bafe of ofmunda lunaria, a perfect plant of the future year difcernible in all its parts; thus alfo in horfe-chefnut the leaves, and in cornel-tree the flowers, are each diftinctly vifible during the winter in their refpective buds. Amon. Acad. Vol. VI. No. CXX. Milne's Dict. Art. Gemma.

While in buds of many other trees, and probably in all the more backward buds, which are formed late in the fummer on the lower parts of branches, and much deprived of light and air, the embryon is not fo forward as to be eafily difcernible; and in thofe fhrubs or trees, which are deciduous in this climate, and yet have no apparent buds in winter, as the philadelphus, mock orange, viburnum, and many fhrubs. I fufpect there is neverthelefs an embryon fecreted from the blood at the foot-ftalk of each leaf, though it is not fo forward as to protrude through the bark, and produce a prominent bud, or hybernaculum. The fame I fufpect to occur in refpect to trees, which lofe their leaves in winter, in warmer climates, in which they are faid not to produce autumnal buds; as I can not conceive by what means frefh leaf-buds can be generated in the fpring, when the leaves, which conflitute the lungs of the mature living part of the tree, are dead; and the whole of that mature living part, or laft year's bud, confequently dead along with them. But if the caudex of the new bud be generated without the plumula, or vifible bud, it can certainly produce a plumula for itfelf in the enfuing fpring, as is feen by the production of new buds, when a branch is cut off, round the remaining trunk, as is done frequently to the ftems of willows.
In fimilar manner the viviparous offspring of different animals arrive at different ftates of perfection before they are born, as calves and foals can ftand erect in an hour, and quickly learn to ufe their eyes, and to run after their mothers; while the blind puppy, and kitten, and
and the downlefs rabbit, are long before they can leave the neft which the parent has provided for them.
4. The prefence of the pith or medulla is of great importance to the growth of the new bud, as may be obferved by gradually flicing a fhoot of a horfe-chefnut in autumn, or in the early fpring. The rudiments of the feven feparate ribs of the late parent-leaf, and the central pith of the bud in its bofom, are feen to arife or terminate near the pith of the parent fhoot, where the embryon plumula is probably fecreted by a gland at the bottom of the parent leaf-ftalk, finds there its firf reception and nourifhment, and is gradually protruded and elongated by the pith, which exitts in its center, as the bud proceeds, and thus conflitutes the afcending caudex or uterus of the new bud; which is refembled by the wires of ftrawberries, and other creeping vegetables; whereas the defcending caudexes of the new buds, which form the filaments of the bark of trees, are fecreted from the various parts of the old bark in their vicinity; all which probably occur at the fame time by fympathy, as fhewn in Sect.VII.

The pith thus appears to be the firft or moft effential rudiment of the new plant, like the brain or fpinal marrow, medulla oblongata, which is the firft vifible part of the figure, I believe, of every animal fetus, from the tadpole to mankind.

In thofe plants which have hollow ftems, this central cavity, though not filled with the pith or medulla, appears to be lined with it ; as in picris and tragopogon; in the former the ftem is not only lined with the pith, but wherever a new bud is generated on the fummit of the afcending ftem, or in the bofom of a leaf, a membranous diaphragm divides the cavity, and is covered with this medullary fubftance, which divifion thus diftinguifhes one bud from another ; and in flicing away the part of the ftem of tragopogon, where the new lateral bud adheres, the medulla or pith in the center of the bud is feen to commence near that membrane which lines the ftem, and to pafs through the circle of arterial, venal, and abforbent veffels, which conftitute
the
the afcending caudex, or uterus, of the new bud, while the defcending caudex of it is fecreted from the various parts of the older bark in its vicinity.

Something fimilar to this mode of the production of the buds of trees had not efcaped the ingenious Mr. Bradley, who afferts, "that buds have their firft rife in the pith; they are there framed, and furniched with every part of vegetation, and forced forwards to meet the air through the tender bark, and would drop on the ground, if they were not reftrained by veffels, which ferve as roots to nourifh them; and thus as a feed takes root in the earth, a bud takes root in the tree; but with this difference, that the feed has lobes to fupply it with nourifhment, till it can felect juices from the earth; but the bud has no occafion for lobes, becaufe it takes root immediately in the body of the tree, where the proper juices are already prepared for it." Difcourfes on Growth of Plants, 1727 , p. 56.
5. As the feed was nourifhed in the pericarp by an adapted fecretion from the vegetable blood oxygenated in the bractes or floralleaves; and as a refervoir of nutriment was alfo prepared for it afterwards in the feed-lobes and fruit : fo the bud is at firft nourifhed in the bofom of its parent-leaf by an adapted fecretion from the vegetable blood; and continues to be fo nourifhed in annual herbs and evergreen trees, till it protrudes and expands its own leaf; but if it be a bud of a deciduous plant, which mult lofe its parent-leaf in winter, a refervoir of nutriment is prepared for it in the roots of fome plants, as in carrots, trirneps, liquorice, fern; and probably both in the roots and alburnum, or fap-wood, of trees.

Thus in the fpring the umbilical veffels belonging to each individual biennial plant, or bud of a tree, abforb moifture from the earth, and propel it upwards through the roots and alburnum, where it is mixed with a nutritious material, and carried upwards in fome trees with a power equal to the preflure of the atmofphere, as in the vine,
vitis; the birch, betula; and the maple, acer; which at that feafon bleed at every wound, as treated of in Sect. IHI.
6. At this time the buds begin to fwell, and to fhoot roots downwards from their caudexes into the earth; the intertexture of thefe caudexes conflitutes a new bark over the old one, confifting of arteries, veins, and abforbents, as defcribed in Sect. I. 3. Each bud then alfo puts forth a leaf, which is a refpiratory organ, and refembles in many refpects the lungs of animals, as defcribed in Sect. IV. but differs from them in this circumftance, that the leaf requires light as well as air for the purpofe of perfect refpiration, as will be treated of in the Section on Light.

Each embryon of a leaf-bud is thus furnifhed with its proper refpiratory organ ; and as many new embryons were generated during the fummer in each leaf-bud, they now pullulate in fucceffion; each of which has like the firft its appropriate leaf, which, as they fucceffively advance, compofe the annual fhoots or fprigs of trees; which in fome plants become of great length, as in vines, and willows, conflaing of twenty or thirty new leaves. Hence if the firft fet of leaves be deftroyed by vernal frofts, as frequently happens to afhtrees, fraxinus, and to the weeping willow, falix babylonica; or by the depredation of infects, which often injures our fruit-trees; and perpetually occurs in this climate to the fpindle-tree, euonymus; and in Italy to the white mulberry-tree, which has its firft leaves plucked. off for the food of filk-worms, and to the tea-tree in China; a fecond fet of leaves fucceeds, which belong to the fecond embryons of the fame bud.

But when the bractes or floral-leaves are deftroyed by infects, as: fometimes happens to currant-trees, and apple-trees; the fruit in the pericap does not perifh, like the firtt embryon of the leaf-bud above mentioned; becaufe it is ftill fupplied by the abforbent fyftem of the caudex and roots of the flower-bud, which compofe a part of the bark, and pafs into the ground; but the fruit becomes four and lefs per X 2
fect
fect from the want of a due oxygenation of the juices, from which it is fecreted; though its glands may probably alfo receive fome oxygenated blood by the inofculation of the veffels of different buds, whether flower-buds or leaf-buds, with each other in the bark, on fuppofition that they are not all of them totally deftroyed.
7. In the axilla of each leaf is generally produced about midfummer either a new leaf-bud or a flower-bud; if it be a leaf-bud, it becomes a branch the next year, producing many other leaves, and many other buds; if it be a flower-bud, the growth ceafes, terminating in the feed. During the greater vigour of the plant the leafbuds are folely or principally produced, as in young healthy trees; but when the veffels of the bark become further elongated, as the plant grows taller, the nutritive juices are lefs copioufly fupplied, or the buds are become more mature, and the production of flower-buds fucceeds as in Mr.Walker's experiments the fap of the birch-tree in the fpring was two or three weeks later in afcending to the top of a high tree, than to the lower branches. Edinb. Tranfact. Vol. I.

Hence it happens, that the grafts from ftrong feedling apple-trees do not bear fruit, till they are twelve or twenty years old; while the grafts from old weak trees will bear copioufly in two or three years, and hence very vigorous trees, as pears, produce fruit only at their extremities; but if you decorticate about an inch of a branch of a vigorous pear-tree, and thus weaken it ; that branch will flower, and bear fruit at every bud like trees of lefs vigour.

It fhould be here obferved, that the words ftrength and weaknefs, when applied to the growth of vegetables, are in reality metaphorical terms; or exprefs the effect or confequence of their producing leafbuds or flower-buds, rather than the caufe of it, whereas it is the facility with which the long caudexes of the new buds, which form the new filaments of bark, can be generated, which increafes the number of leaf-buds, aud gives the tree a luxuriant or vigorous appearance; and the difficulty of generating thefe new caudexes which increafes
increafes the flower-buds, and thus gives a left vigorous appearance to the tree.

The generation of buds feems to require a lefs perfect apparatus than the generation of feeds; as that of buds always precedes that of feeds, both in trees and herbs; and becaufe the caterpillar is converted into a butterfly folly for the purpose of feminal propagation; whereas the polypus can only propagate laterally, or by buds. Hence the age of the plant is another neceffary circumftance to the production of flowers, fruit, and feeds, as appears in tulips, and hyacinths, as well as in apple-trees and pear-trees.
8. About midfummer the new buds are formed; but it is believed by forme of the Linnean fchool, that there buds may in their early state be either converted into flower-buds or leaf-buds, according to the vigour of the vegetating branch. Thus if the upper part of a branch be cut away, the buds near the extremity of the remaining flem, having a greater proportional fupply of nutriment, and poffeffing a greater facility of producing their new caudexes along the bark, will become leaf-buds; which might otherwife have been flowerbuds; and on the contrary, if a vigorous branch of a wall-tree, which was expected to bear only leaf-buds, be bent down to the horizon or lower, it will bear flower-buds with weaker leaf-buds, as is much exemplified by Mr. Witt in his Treatife on Fruit Trees.

The theory of this curious vegetable fact has been efteemed diffcult, but receives great light from the foregoing account of the individuality of buds. Both the flower-buds and leaf-buds die in the auturn; but the leaf-buds, as they advance, produce during the fummer other leaf-buds or flower-buds in the axilla of every leaf; which new buds require new caudexes extending down the bark, and thus thicken as well as elongate the branch; whereas the flower-buds shed their feed, when they perish in the autumn, and thus require no place on the bark for new caudexes. Hence when the fummit of 4 branch is lopped off, the buds near the extremity of the remaining
ftem produce new leaf-buds with greater facility, as there is more room for their new caudexes to be generated along the defcending bark. But if a vigorous branch be bent down to the horizon, or below it, the bark is compreffed beneath the curve, and extended above it, and thus the production of new caudexes along the bark is impeded, and in confequence lefs leaf-buds and more flower-buds will be generated, or the former converted into the latter ; which require no new caudexes. And on this circumftance principally depends the management of wall-fruit trees, and of efpalliers.
For the purpofe of thus converting leaf-buds into flower-buds Mr. Whitmill advifed to bind fome of the moft vigorous fhoots with ftrong wire, and even fome of the large roots; and Mr.Warner cuts, what he calls, a wild-worm about the body of the tree; or fcores the bark quite to the wood like a fcrew with a fharp knife. Bradley on Gardening, Vol. II. p. 155. Mr. Fitzgerald produced flowers and fruit on ftandards and wall-trees by cutting off a cylinder of the bark, three or four inches long, and replacing it with proper bandage, (Philof. Tranf. Anin. 1761) as defcribed in Sect. XV. 1. 3. of this work. M. Buffon produced the fame effect by a ftraight bandage put round a branch, Act Paris, Ann. 1738; and concludes that an ingrafted branch bears better from its veffels being comprefied by the callus produced, where the grafted fcion joins the fock.

It is cuftomary to debark oak-trees in the fpring, which are intended to be felled in the enfuing autumn; becaufe the bark comes: off eafier at this feafon, and the fap-wood, or abburnum, is believed to become more durable, if the trees remain till the end of fummer from their expending their faccharine fap-juice in the enfuing foliage, and thus being lefs liable to ferment and putrify. The trees thus flripped of their bark put forth fhoots as ufual with acorns on, the fixth, feventh, and eighth joint, like vines; but in the branches I examined the joints of the debarked trees were much fhorter than thofe of other oak-trees; the acorns were more numerous; and no new
new buds were produced above the joints which bore acorns. From hence it appears that the branches of debarked oak-trees produce fewer leaf-buds, and more flower-buds; which muft be owing to the impoffibility of their producing new caudexes down the naked branches and ftem for the embryon progeny of leaf-buds.

The pullulation of leaves on debarked oaks demonftrates, that the refervoirs of nutriment depofited in the preceding fummer for the ufe of the vernal buds muft be in this alburnum ; and that it is this faccharine matter which induces the alburnum to ferment and rot fooner than the internal wood. Thus Dr.Walker found on nice infpection the fap-juice to flow from the ligneous circles of the alburnum as well as between them, when a frefh piece was cut off from a cicatrized part, and alfo between the wood and the bark. Edinb. Tranfact.Vol. I. He alfo obferved that oak, afh, elm, afpen, hazel, and hawthorn, do not bleed; and that the birch, plane, and maple bleed the moft, and that the grey willow, falix caprea, does not bleed, but the fap-juice rifes vifibly between the wood and the bark, fo as to make the bark feparate eafily from the wood. From all thefe facts it may be inferred, that the faccharine matter, which is diffolved in the fap-juice, is depofited in the autumn in the roots of fome trees, and in the alburnum of others, or in both; as manna is found in the wood of the manna-ath; and fugar in the joints of many graffes and of the fugar-cane, and in the roots of liquorice, beets, and many other herbaceous vegetables.
9. About Midfummer, after the new buds appear in the bofom of every leaf, many authors have remarked that there feems to be a kind of paufe in vegetation for about a fortnight, which they have afcrib. ed to different caufes. At this time I fufpect the refervoir of nourifhment for the new buds is forming about the roots or in the alburnum of the tree; and that the caudexes and umbilical veffels of the new buds are alfo at this time forming down the bark, and terminate in thofe nutritious refervoirs in the roots or new alburnum like the umbilical
umbilical vefiels called feminal roots, which are vifible in many feeds.

That this fyytem of umbilical veffels is poffeffed of a great power of abforption in the roots of trees is certain from the force, with which the fap-juice was propelled upward from a vine-ftump in Dr. Hales' experiment. That the fap-juice thus propelled upwards nourifhes or expands the leaf of each new bud appears from the experiments of Dr.Walker ; as the leaves began to unfold at the fame height, as the wounded wood began to bleed, and that thefe veffels pafs through or conftitute the fap-wood is evinced by the growth of the buds on oaktrees, after the bark is almoft totally taken off.

The roots of trees are at this time protruded with greater vigour, as obferved by the ingenious Mr. Bradley, who on that account prefers the midfummer feafon for tranfplanting trees, if they are not to be removed to any great diftance ; and adds, that the new fhoots in the following fpring will put forth with much greater force, and the tree will thence be almoft a year forwarder in its growth, than if it remains untranfplanted till the winter. Difcourfes on Earth and Water. This feems to be owing to the deftruction of much of the nutritious matter depofited in the roots for the ufe of the new buds, which is torn off in tranfplanting, and which can only be replaced about Midfummer or foon after.

Mr. Bradley further adds, that when trees are thus tranfplanted at Midfummer, no part of the top or branches, or foliage, fhould at that time be cut off; which well accords with the theory above delivered; as it is from the vegetable-blood, which is oxygenated by its expofure to the air through the thin moift pellicle on the upper fmooth furfaces of thefe leaves, that the nutriment for the expanfion of the buds in the fucceeding fpring is fecreted or produced; and hence if thefe leaves are prematurely deftroyed, the vernal growth of the buds muft receive injury; as the refervoir of future nutriment for them will be lefs in quantity; but if fome of the branches are
lopped during the winter, the remainder will protrude more vigorous hoots, as their thare of the referved nutriment will be greater.
10. The umbilical veffels of the new buds of deciduous trees, which are analogous to thofe which permeate the tobes of the feed, are extended downward in the bark about midfummer, and terminate in certain refervoirs of nutriment, which are at this time fecreted from the vegetable blood oxygenated in the leaves. This bark now confifts of an intertexture of the caudexes of the prefent leaves, which were buds in the laft fummer, and are now adult vegetable beings; and of the embryon caudexes of the new buds; and of the umbilical veffels of the new buds; it will become alburnum or fap-wood during the autumn or enfuing fpring, and will be gradually covered over with a new bark confifting of the mature caudexes of the new buds, while that, which was the alburnum in the preceding fpring, will become a circle of lifelefs timber, interior to the circle of alburnum.

The veffels of this new bark, though they confift of the caudexes of the individual adult leaves, and the umbilical veffels of the individual young buds, evidently inofculate; becaufe, when fome buds are rubbed off or deftroyed, thore in their vicinity grow with greater vigour; as the daily experience of pruning all kinds of trees evinces. The facility with which the ruptured veffels of vegetables inofculate into each other, or grow together, correfponds with that of animal veffels in their inflamed ftate. Thus a bud taken from one tree, and inferted into any part of the bark of another tree of the fame genus, or ingrafted on it, prefently receives nutriment, and grows to it by the reciprocal inofculation of the wounded veffels, in the fame manner as a tranfplanted tooth; or as the fingers are liable to grow together after having been excoriated by a burn; or as the inflamed lungs and pleura are liable to adhere, and intermix their blood-veffels. See Sect. III. 2. 7.

During the winter, when the leaves die and fall off, the arterial and senous fyftems, which belonged to them, and which compofed the
greateft part of the bark, feem to lofe their vegetable life at the fame time, and to coalefce, and form the alburnum, or fap-wood; but the umbilical veffels belonging to the new buds, which are intermixed with this alburnum, remain alive; and at the returning fpring act with aftonifhing vigour; as defcribed in Sect. III. 2. 2.

As the fpring advances, the umbilical veffels, after having drank up the refervoirs of nutriment, which were depofited about the roots, and having thus nourifhed and expanded the new leaves, ceafe to act; and the alburnum gradually changes into hard wood, called the heart of the tree; which no longer poffefles vegetative life; and is now only ufeful to elevate and fuftain aloft the fwarm of biennial plauts, which cover it ; and was probably originally produced for this purpofe in the contef of all vegetables for light and air.

This inert or lifelefs ftate of the central parts of trees, called the heart-wood, is evident from thofe old oaks and willows, which have loft their internal hard wood, and are become quite hollow, confifting only of their bark and alburnum, and yet are furnihed with many healthy branches. But the umbilical veffels of the alburnum poffefs the properties of capillary tubes, or of a fponge, after they are extinct, and ceafe to act as umbilical veffels; and thus may occafionally attract moifture, or fuffer it to pafs through them mechanically; whilft the new bark, which confifts of an intertexture of the caudexes of each bud with their radicles, may occafionally abforb this moifture from the capillary veffels of the alburnum, which may be compared to the upper ftratum of the foil attracting by capillary power the moiture from the foil immediately beneath it, which may exhale into the atmofphere, or be imbibed by the roots of vegetables by the fuperior living power of their abforbent mouths.

That the veffels of the alburnum in their living ftate poffers the property of conveying the fap-juice, which is propelled upwards in the early' fpring by the abforbent terminations of the roots, is vifible in decorticated oaks; the branches of which expand their buds, like
thofe of the birch and vine in the bleeding feafon. That the veffels of the alburnum in their living fate occafionally act as capillary fyphons, through which the fap-juice is firft puthed upwards by the abforbent extremities of the roots, and afterwards returns downwards partly by its gravitation in branches bent below the horizon, appears from an experiment of Dr.Walker, mentioned in Sect. III. 2. 4.
Laftly, that the veffels of the alburnum after their vegetable life is extinct, poffefs a power of capillary attraction of the fap-juice, or of permitting it to pafs through them occafionally, appears from the following experiments. Firft, a branch of a young apple-tree was fo cankered, that the bark for about an inch quite round it was totally deftroyed. To prevent the alburnum from becoming too dry by exhalation, this decayed part was covered with thick white paint; in a few days the painting was repeated, and this three or four times, fo as to produce a thick coat of paint over the decayed part, or naked alburnum, extending to the afcending and defcending lips of the wound ; this was in fpring, and the branch bloffomed and ripened feveral apples.

In a garden in Lichfield about four years ago a complete cylinder of bark about an inch long was cut from a branch of a pear-tree nailed againft a wall; the circumcifed part is now not more than half the diameter of the fame branch above and below it ; yet this branch has been full of fruit every year fnce, when the other branches of the tree have borne only fparingly. I lately obferved, that the leaves of this wounded branch were fmaller and paler, and the fruit lefs in fize, and ripened a fortnight fooner, than on the other parts of the tree. Another branch of the fame tree has a part of the bark taken off about an inch long, but not quite all round it, with much the fame effect.

The exiftence of capillary tubes in dead fap-wood is vifible in a piece of dry cane, which permit water or fmoke to pafs through them; and in the exhaufted receiver of an air-pump both water and
quickfilver may be made readily to pafs through pieces of the dry alburnum of wood by the preffure of the atmofphere.
11. The flower-buds of many trees arife immediately from the laft year's terminal fhoots, or fpurs, either accompanied with leaf-buds, or feparately, as in apple and pear-trees. Other flower-buds arife from the fhoots of the prefent year alternately with leaf-buds, as thofe of vines, and form the third or fourth buds of the new fhoots. They differ from leaf-buds in this circumftance, that they perih when their feeds are ripe, without producing any addition or increafe to the tree; whereas when the leaf-buds perifh in the autumn, their caudexes, the intertexture of which conftitutes the bark of the tree, gradually become converted into alburnum, or fap-wood; over which the new leaf-buds fhoot forth their caudexes and radicles, or infert them into it, and gradually fabricate the new bark and root-fibres.

It was before mentioned, that it is believed by fome difciples of the Linnean fctrool, that about Midfummer leaf-buds may be changed into flower-buds, or flower-buds inte feaf-buds; and that even after the vegetable embryons are generated. And that this may be effected by weakening or ftrengthening the growth of the laft year's buds, which fecrete thefe new ones from the vegetable blood, and nourifh them in their infant flate. Thus if fome inches of the extremity of a branch be lopped off at Midfummer, as is fometimes done by unfkilful gardeners, the remaining few buds will become more vigorous, and confequently produce leaf-buds inftead of flower-buds; or perhaps the embryons already formed may be converted from one kind to the other. The contrary may occur, if a vigorous branch of a wall-tree be bent down beneath the horizon, or fo much as to impede the generation of new caudexes; or if the leaf of the parent-bud be taken off, foon after the plumula or apex of the new bud is generated; and thus the new caudex along the bark may be prevented by deficiency of nutriment.

The probability of this idea of tranfmuting flower-buds and leaf- offspring, and in a flower-bud the feminal or amatorial one. Fourthly, a center of nervous influence, as a brain, or final marrow, or common fenforium, exifts in each bud; and probably refides near this junction of the blood-veffels of the leaf and root, and of the abforbent fyftem, along with the organ of reproduction in the caudex gemme.
III. i. The bulbous roots of fome perennial herbaceous plants, and the root-fcions of other perennial herbaceous plants, are fimilar in this refpect, which diftinguifhes them from buds; that they are generated on the broad caudex of the plant within the ground, or in contact with it, and immediately fhoot down their new roots into the earth. Whereas buds are formed above the foil on the long caudexes, which conflitute the filaments of the bark of trees, and thoot down new roots into the earth from the lower end of thefe elongated caudexes.

Bulbs have not improperly been called fubterraneous buds; and like them they may be divided into leaf-bulbs and flower-bulbs. When a tulip-feed is fown, it produces a fmall plant the firft fummer, which in the autumn dies, and leaves in its place one or more bulbs. Thefe are leaf-bulbs, which in the enfuing fpring rife into ftronger plants than thofe of the firft year, but no flowers are yet generated; in the autumn thefe perifh like the former, and leave in their places other leaf-bulbs ftronger, or more perfect, than their preceding parents. This fucceffion of leaf-bulbs continues for four or five years, till at length the bulb acquires a greater perfection or maturity, neceffary for feminal generation, and produces in its place a large flowerbulb in the centre with feveral fmall leaf-bulbs around it.

This fucceffive formation of leaf-bulbs in bulbous rooted plants previous to the formation of a flower-bulb is curioufly analogous to the production of leaf-buds on many trees for feveral years before the production of flower-buds; thus the apple-trees, pyrus malus, which are raifed from feeds, generate only leaf-buds for ten or twelve years,
and afterwards annually generate both flower-buds and leaf-buds. From whence it would feem, that the adherent lateral or paternal progeny is the moft fimple, and eafieft, and confequently the firft mode of reproduction ; and that the amatorial or feminal progeny is on this account not generated till the maturer age or more perfect ftate of the parent-bud.

A fill more curious analogy to this circumftance of a fucceffion of leaf-buds and leaf-bulbs preceding the formation of flower-buds and flower-bulbs exifts in the growth of wheat, triticum, and other graffes; but with this difference, that a fucceffion of leaf-buds, as of two, or three, or four, are produced in the fame year previous to the flower-bud. At the firft joint of the flem of wheat, on or within the furface of the earth, a leaf is produced; from which rifes the principal or central bud, and around it many new buds, which ftrike their roots into the foil. After this central bud, and thofe around it, have arifen fix or eight inches, a new leaf and a new leaf-bud rifes on each of them, producing a fecond joint of the ftem; and laftly, a flower-bud is generated at the fummit, which are all evidently diftinct vegetable beings, as there is a divifion acrofs the ftem at each joint, which fhews there is no connexion of the pith, or brain, or fpinal marrow, between the lower and upper joints, as mentioned in Sect. I. 8.
That a new bud thus conflitutes each joint of the ftem of wheat, and other graffes, is further evinced; firft, by the exiftence of a leaf at each joint without a lateral bud in its axilla, as occurs in other vegetables. Secondly, becaufe for the nourifhment of this new leafbud a refervoir of fweet-juice is prepared in the new joint; as in the bulbs of many plants. And thirdly, becaufe the lower leaf dies, and the fweet juice is abforbed, as the upper leaf becomes vegete. Hence we acquire the knowledge of the ufe of this refervoir of fugar in the vegetable economy, which fupplies fo much agreeable and falu-
tary nourifhment to mankind from the cultivation of the fugar-cane. See No. 1. 6. and No. 3. 7. of this Section.

The analogy between the buds of plants and the adherent lateral progeny of fome infects, as of the polypus, and tenia, or tape-worm, and volvox, was mentioned in Sect.VII. I. 4. But the circumftance of the fucceffive production of leaf-buds and leaf-bulbs previous to the production of flower-buds or flower-bulbs is wonderfully analogous to the generation of the aphis, which rifing from an egg in the fpring after cafting its fkin once or twice produces a living progeny without amatorial copulation ; and this offspring produces others by this folitary propagation till the tenth generation; then a fexual progeny of males and females is produced, and eggs are laid in the autumn from their amatorial intercourfe. Encycloped. Britan. Amœnitat. Academ. Vol. VII. by A.T. Bladh. See Sect. XIV. 3.2. Thus this infect from the egg requires to be reproduced many times by folitary propagation before it becomes fufficiently perfect to generate a fexual offspring like the buds and bulbs from feeds above mentioned. And it is probable, that the polypus of our ftagnant waters, which produces a lateral offspring in the fummer, I fuppofe by folitary propagation, may produce males and females, and generate eggs in confequence in the autumn for their reproduction in the enfuing fpring.

To this may be added the great change, which many infects and even larger animals undergo either in ftrength or form, before they acquire the power of feminal reproduction. As the filk-worm changes into a butterfly apparently for the purpofe of generation only, as it then performs this office and dies. Other caterpillars change their form likewife into butterflies, and at the fame time change their kind of food, which was the green foliage of vegetables before this tranfformation ; but now confifts folely of honey. And laftly, the gnat and mufqueto change at the fame time both their forms, their food, and their element; and thus acquire higher animation apparently for the purpofe of fexual reproduction.
2. The manner of the production of herbaceous plants from their various perennial roots wants further inveftigation, as their analogy is not yet clearly afcertained. I this autumn defected two large roots of the onion or leek kind, which were in full flower; the fem of each of them was embraced by the cylindrical pedicles of fix or feven concentric leaves; but the flem itself arofe from the center between three large new bulbs in one of them, and between two in the other. All of which grew from the fame caudex, but the central flowerfem was wrapped at its bottom in one membrane only, which feparted it from the new bulbs in its vicinity.

A large root of a young onion, which grew from feed frown in the faring, was at the fame time diffected by flipping off the leaves, and their flefhy bares, one after another, till two buds were vifible in the center of the fleshy bales of the concentric leaves, which formed the bulb. There two bulbs were evidently formed and nourihed on the caudex by the fem, and its fix or feven concentric cylindrical leaves; and will, I fuppofe, feparate in the faring, as they rife up, and produce each of them a flower with two or three new bulbs at the bale of it, as defcribed in the above paragraph.

Or from the different frize and apparent greater maturity of the central bulb, and the fecondary bulb being between the innermoft and the fecond circular flefhy membrane, I fuppofe in there roots of onion, like the tulip-roots before fpoken of, that the central bulb alone may produce a flower in the next fummer; and that the lateal bulb or bulbs will produce only ftronger and more mature leafbulbs, which will in the fucceeding fummer bear a flower or fexual progeny.

The caudex, or central part of the bulb, from which the rootfibres defend, and the leaves afcend, lies above the knot in the orchis morin; and the parent-root drivels up and dies, as the young one increafes. The flower of this plant does not ripen its feeds in this climate; it might be otherwife worth cultivation for the use of the Z new
new roots; which when fealded and peeled, are faid to be the falep of the Chops. It is afferted by one of the Linnean fchool in the Amœen. Academ. that if the new root be pinched off, the feeds on the old one will ripen, and become prolific.

In the tulip the caudex lies below the bulb, from whence proceed the fibrous roots and the new bulbs; the root after it has flowered dies like the orchis root ; for the ftem of the laft year's tulip lies on the outfide, and not in the center of the new bulb. In the tuliproot, diffected in the early fpring, juft before it begins to fhoot, a perfect flower is feen in its center; and between the firft and fecond coat the large next year's bulb is, I believe, produced; between the fecond and third coat, and between this and the fourth coat, and perhaps further, other lefs and lefs bulbs are vifible, all adjeining to the caudex at the bottom of the mother bulb; and which I am told, require as many years, before they will flower, as the number of the coats with which they are covered; and that the fame different fates of maturity probably obtain in the buds round the fhoots of many fruit-trees, the central one of which will produce flowers the next year as on the fpurs of apple-trees; while thofe beneath it require more or fewer years, before they become fufficiently mature to produce organs of fexual generation; an important fecret in the management of fruit-trees.

The hyacinth-root differs from the tulip-root ; for, as I am informed, the ftem of the laft year's flower is always found in the center of the root, as in the onions above defcribed; and that the new offfets arife from the caudex below this bulb, and not between any of the concentric coats of it, except the two external ones. On this account the central part is liable by its decay to defroy the flower-bud, if not taken out of the earth, when the leaves die; and hence fome florifts believe, that thefe roots perifh naturally in five or feven years, after they have flowered, but that the tulip-root never dies from age. :ulip lies on I the tulip. hoot, a perfecond coat een the fet , and per. ning to the m told, reaber of the Cerent Atates ts of many s the next it require ure to pro. le manage-
am informthe center ne new off. ceerr any of On this 20° flower-bud, hence fome Revell yearis dies from

In a few roots of hyacinths, which I this day examined, September 1 , the ftem of one, which had apparentily flowered in the fummer, was perfectly decayed in the center of many new bulbs. In another bulb of lefs fize and compact, which I fuppofed had not born a flower, I found a central flower-bud inclofed in many concentric flethy bafes of former leaves, like an onion in the autumn, which had been fown in the preceding fpring. And concluded from hence, that the hyacinth-root dies annually or biennially like the onion, leaving behind it a fucceffion of leaf-bulbs or of flower-bulbs.

The caudex and claw-like roots of the ranunculus cultivated by florifts dies I believe annually, after having put forth a circle of new claws from the upper part of it round the bottom of the perifhing flower-ftem. Hence the claws of the old root, which became fhrivelled, as the flower advanced, in the autumn difappear; and the decayed part of the old caudex is feen beneath the new claw-like roots, which I fuppofe has given occafion to fome inaccurate obfervers to believe, that the old ftem in this and fome other perennial herbaceous plants was drawn downwards by the new root fibres; while the bulbs of the iris have been fuppofed to have been pufhed upwards, like the lamb-like barometz, by the refiftance of the foil to the elongation of the root-fibres; which laft feems to be a much more probable idea than the former.

From thefe obfervations it appears, that the concentric leaves, which incircle the ftems of bulb-rooted plants, are the lungs to the caudex, as one or more leaves are to the bud of a tree; and that the caudex with thefe leaves, and the root-fibres, conftitute a vegetable being; which produces a viviparous progeny of new leaf-bulbs, or a feminiferous progeny in flower-bulbs, with a magazine of nutriment in the flefhy bafe of each leaf; and that the tulip produces only leafbulbs for four or five years from the feed, and then but one flowerbulb with many leaf-bulbs annually. But that the onion-kind, allium, generates two or three flower-bulbs in the firft fummer from Z 2
the
the feed; which produce flowers and other leaf-bulbs in the fecond fummer from the feed. And laftly, that it is probable, that all bulbous roots, like the buds of deciduous trees, and perhaps of evergreen ones alfo, are properly fpeaking biennial plants, as they rife in one fummer and perifh in the next.
3. In tulip-roots, which have been planted too deep in the earth, and in onion-roots, a vegetable cord, or procefs, is fometimes feen about an inch long to arife from the caudex beneath the bafes of the cylindrical leaves, and to form a new bulb. Similar to this appears the natural growth of the roots of potatoes; a feermatic cord arifes from the old root, after the leaves are expanded in the air, to oxygenate the vegetable blood, and a new tuberous or bulbous root is thus generated.

This mode of producing diftant roots is exactly refembled above ground by the wires of ftrawberries ; which may be called fpermatic cords, which depofit a new vegetable being on the earth, and fupport it like a bud on a tree, till it can ftrike roots into the foil, and elevate leaves into the air. The final caufe of the length of thefe fubterraneous and aerial fpermatic cords is evidently the defign of placing their roots at a convenient diftance from their parent plants; that they may not incommode each other, but may both of them more readily acquire nutritious juices from the earth, and the ventilation and funthine of the atmofphere.

There embryon vegetables in the various bulbous and tuberous roots are in very different ftates of maturity, as in the buds of different trees; thus in the potatoe the corculum or plumula of the new plant only is vifible, furrounded with a farinaceous nutriment, as in many feeds; whereas in the tulip and hyacinth the flower of the fucceeding year is difcernible, as in the bud of the horfe-chefnut.

As the ripening of the feed of fome bulbous-rooted plants is forwarded by deftroying the new bulbs, as in orchis; and the flowering bulbs of other plants are made Atronger by raifing them out of the
earth, and taking away the leaf-bulbs, which furround them on the fame caudex; as in the cuftomary management of tulip-roots, and hyacinth-roots by the florits; I was led to furpect, that pinching off the flowers of potatoes two or three times might increafe the fize or quantity of the roots; as the nourifhment derived from the vegetable blood to the flowers and feeds might thus be directed to enlarge the roots, and thus lay up more nutriment for the future plants. This. idea I mentioned to an ingenious Lady, who acquainted me a few months afterwards, that on a few roots fhe had made this experiment with apparent advantage.
4. The bulbous and tuberous roots of plants are a lateral or paternal progeny like the buds of trees, and therefore exactly refemble the parent plant, as mentioned in Sect. III. 2. 1. and on this account may be liable to be affected by hereditary difeafes, and thus to become unhealthy; whence the canker is fuppofed to arife in thofe apple-trees, which have for a century or two been propagated by grafting; and the curled leaf in potatoes, which have been too long propagated by their bulbs; and the barrennefs of hautbois Atrawberries, which have too long been propagated by wires; all which difeafes are believed not to happen in thefe plants, if they bave recently been raifed from feed, but want further obfervations to authenticate the facts.

But there exifts a fet of bulbs, which feem to be formed by amatorial or feminal generation, and not by the lateral or paternal generation, and would therefore feem to be a viviparous fexual progeny. Thefe are produced on the flower-ftem in the place of feeds; and in procefs of time fall off, and take root in the earth, as is agreeably feen. in the polygonum viviparum, viviparous biftort, and the magical onion, allium magicum, and the leek, allium fativum. A curious queftion here occurs, whether the plants from thefe bulbs are liable exactly to refemble their parents? and whether they would be liable to hereditary difeafes from a long cultivation of them in fucceffion, as is fuppofed to happen to thofe mentioned above?

Though a perfect flower precedes the product of fome fummitbulbs, as I believe in the lower part of the fpike of the polygonum viviparum ; yet I fufpect, that the fummit-bulbs of allium magicum, are exactly fimilar to the bulbs, which are produced at their roots; becaufe on cutting one of them horizontally into two hemirpheres this morning, September io, I obferved three young bulbs inclofed in the concentric flefhy membranes of the fummit-bulb in the following manner; five thick flefhy concentric coats of the general fummitbulb being taken away, there appeared one fingle naked fmall bulb; and on the fixth coat being removed, two other bulbs became vifible, which were included in it. Whence it feems, that thefe ftem-bulbs are as forward as thofe of the root, and probably are in every refpect fimilar:; and that the bractes or floral-leaves, which in feed-bearing plants fecrete or prepare a nourifhment for the feed, and pericarp of the flower, acquire in thefe bulbiferous onions and leeks a new office, and prepare a magazine of nourifhment in the concentric membranes, which furround their fummit-bulbs; and thefe may be efteemed therefore a fexual viviparous progeny of vegetables, as buds are a lateral viviparous progeny.
5. The roots of trees fo refemble their branches, that fubterraneous buds are frequently produced upon them, which refemble the parent-tree. The bark of the root likewife fo refembles the bark of the branches, that it is not uncommon to ingraft with fuccefs on roots taken out of the earth and replanted; as the robinia on the root of the acacia, and any other apples on the roots or the fuckers of burapples or of codings; which may be done earlier in the vernal months, as being lefs liable to injury from frofty nights; and it is probable, that budding or inoculating may be performed in the fame manner on the roots at midfummer, as on the branches.

The roots of thofe plants, which are otherwife not eafily propagated, will fhoot up buds, if a part of them next to the plant be half cut through, or raifed out of the ground, and expofed to the air ; as root may be feparated from the fock, and many new plants may be this way produced.

Thefe root-buds, or fuckers, are generally produced near the trunk of the tree, before the root defcends much beneath the foil; but in fome trees, as the eim, ulmus, and acer, maple, whofe roots fpread far horizontally, and near the furface of the earth, they are generated at a great diftance from the parent tree; becaufe the new fcion can thes foon acquire the influence of the atmofphere on its expanding foliage. Thefe root-fcions from apple-trees are frequently ufed in vegetable nurferies for the purpofe of ingrafting upon, and are termed paradice-ftocks by fome gardeners; but are not liable to the canker like the grafts from thofe old apple-trees, which have been in fafhion above a century; as thefe root-fcions refemble the trunk of the tree, which produces them, not the ingrafted head of it; and thus may not have been many years from the flate of a feedling vegetable.

Similar to thefe root-fcions of trees it is probable, that the rootbuds of perennial herbaceous plants are produced; which have divaricated, or fibrous-roots, and whofe fummits perifh in the winter. For many years the root thickens by an annual new bark being induced over the old one, exactly as in the trunks and roots of trees.

As thefe roots increafe in fize, the central part, I fuppofe, changes like the internal wood of a tree, and ceafes to poffers vegetable life ; and in procefs of time is liable to decay. On this account thefe perennial roots are not fo valuable for the purpofes of medicine or diet, or mechanic arts, either before or after they have paffed a determinate age; as the bark of the root changes annually into a kind of alburnum, and then into a kind of wood, and laftly, is liable to decay, as occurs in the roots of rheum palmatum, when they are feven or more years old. See Sect. XVII. 2. 1. This decay of the central part of the root, which happens annually to fome plants, and is furrounded with new buds and their root-fibres, exhibits the appearance of the
lower end of the root having been chopped, or bitten off, to fome fancifud botanifts; as in plantago major, and valerian ; and has hence given to fcabiofa fuccifa the name of devil's-bit, morfus diaboli.
6. The bulbs already mentioned, as thofe of tulips, hyacinths, and onions, are properly the winter-cradles, or hybernacula, of the young plants, whether in their leaf-bulb or flower-bulb ftate ; and are furnifhed with a magazine or refervoir of nourifhment for the growing embryons, as appears in the fquil, fcilla maritima, which vegetates from this fource of nutriment in the druggifts fhops. But there are other roots termed tuberous roots, as of turnep and carrot, which confift folely of a large refervoir of nutriment for the growth and nourihment of the rifing ftem and future feeds; whether thefe are produced in the fame year, as occurs, when the feeds are fown early in the fpring; or when their vegetation is ftopped by the cold of winter, and proceeds again in the enfuing fpring; as generally occurs to our turneps, the roots of which I am well informed may be much enlarged by tranfplantation. See Sect. XII. 6.

In thefe plants the leaves, by expofing the vegetable blood to the influence of the air, prepare it for the fecretion of nutriment in their knobby roots; in the fame manner as nourifhment is produced and referved in the concentric flehy bafes of the leaves of onions; and in thefe plants, as in the onion kind, the leaves, which furround the bafe of the new ftems, wither and die; as the new buds, or bulbs, put forth leaves of their own for the purpofe of oxygenating their blood. Thus it appears, that the ftem and flower of the onion, or carrot, or turnep, is a new plant, not arifing immediately from the feed which was fown, but from the leaf-root or leaf-knob, if it may be fo called, which preceded the production of the flower-bud, or flower-ftem, exactly as the flower or ear of wheat, which was hewn in Sect. IX. 3. I. to have three or four fucceffive leaf-buds preceding the flower-bud.
From thefe obfervations may we conclude, that no flower-bud or flower- f, to fomef far
is diaboli,
hyacinths, and
, of the young
; and are fur.
or the growing
hich vegetates
But there are carrot, which de growth and ether thefe are are fown callo by the cold of enerally occura d may be much riment in thein produced and onions ; andin h furround the buds, or butbs, ygenating theit of the onion, of tiately from the knob, if it mof flower-bud, of hich was hime -buds pread o flower.bul foll
flower-bulb is ever produced from a feed, without the previous interpofition of one or more leaf-buds or leaf-bulbs? and that thofe flower-buds or flower-bulbs are either produced in one generation after fowing the feed, as the flower-bulbs of onions, which are generated and nourifhed at the bafes of the concentric cylindrical leaves of the preceding leaf-plant, which arofe from the feed; or as the ftems and flower-buds of the carrot and turnep, which are generated and nourihed at the bafe of the concentric leaves of the preceding leafplant. Or fecondly, that they are produced in one fummer, though after feveral generations from the feed; as the three or four joints of the ftem of wheat, and other graffes, which are generated and nourifhed in fucceffion in the bofoms of four or five cylindrical leaves, one at each joint ; which alfo probably obtains in all other vegetables, which are fupported by hollow ftems divided by joints, and furnifhed with leaves at thefe ftem-joints with or without branches, as tragopogon or picris. In thefe plants, where there are no branches, there is fimply a new central bud; and two or more lateral new buds befide the central one, where there are branches.

Or laftly, where the leaf-buds or leaf-bulbs, which are produced from feeds, fucceed each other for fome years, before they arrive at fufficient maturity to produce fexual organs, or generate a flower, as in the bulbs of tulips, and hyacinths, and the buds of trees. Whence we at length acquire a diftinct idea, why feedling apple-trees are ten or twelve years before they bear fruit; though the buds or fhoots taken from a tree, which already has born fruit, and ingrafted even on a young feedling-tree, fhall produce flowers in the firft or fecond year; as thefe buds have already acquired that ftate of perfection or maturity, which is neceffary to the production of fexual or feminal generation: and as it therefore poffeffes the age of puberty, or the maturity of the tree; we may fufpect, that it will fooner acquire the hereditary difeafes confequent to too long unmixed fuc-
ceffive generations, a piece of very important knowledge to the planters of orchards; which they owe to the obfervation of Mr. Knight, as mentioned in Sect. VII. 1. 3.

Hence in many plants produced from feeds, perhaps in all, one or more leaf-buds precede the flower-bud; and I fuppofe generally, if not always, a magazine of aliment is formed at the bafes of the leaves, or in the roots, for the nutriment of the fucceeding leaf-bud or flower-bud, of which it is the parent.

Thus in the carrot and turnep the firft leaves conftitute the lungs of the new vegetable being, which generates the fucceeding flowerftem, and fecretes or depofits for it a magazine of aliment, which forms the tuberous root : and then this firft plant from the feed and its leaves or lungs perifh; and the root gradually fhrivels up, as it is abforbed by the new flower-ftem. In many plants thefe firft or rootleaves differ in form from thofe of the fucceeding ftem, as in palmated rhubarb, and in campanula rotundifolia, which is fo called from the round form of the leaves of this firft leaf-bud, or root-plant, which precedes the flower-ftem.
7. One great advantage of Mr. Tull's horfe-hoeing hufbandry, in which the earth near the rows of wheat is alternately turned from and to them during the vernal months, has been fuppofed to arife from fome fibres of the roots being thus cut off, and new ftems fhooting up at the ends of thofe which remain; but the real caufe of the production of the new ftems is from the accumulation of earth above the firf joint of the young wheat-plant; from which the new buds fpring out, generated and nourifhed by the caudex of the leaf, which furrounds that joint, and which afterwards withers; this important circumftance is fhewn by the annexed delineation of a tranfplanted wheat-plant.

The plant of wheat was taken from a corn-field in the fpring, and then confifted firft of the root immediately proceeding from the
feed a, which has been called the feminal root; and fecondly, of the root, which was then near the furface of the ground b, which has been called the coronal root, was furnifhed with a fem and leaf, c, d, and with a fecondary fem, or root-fcion, e, f. This wheat-plant confining of only two ftems was replanted in my garden, and purpofely buried fo deep as to cover the two or three firf joints of both the ftems beneath the foil ; that is as high as the letter f, where the fecondary fem was purpofely cut off.

On taking up this plant with forme others on September 24, it had affumed the form here delineated. The primary fem, c, g, had foot out no new roots from the joint g, which I fuppofe to have happend from its being too far advanced when replanted; as many other ftems of other wheat-plants, which had not been obtruncated, had neverthelefs put forth one or more lateral ftems or root-fcions at the fecond or third joints, which on tranfplantation had been covered with the foil.

But the obtruncated flem, e, f, had generated a new root-fcion at b, like the firft hoot from the feed at a; which had produced other new ftems, as it approached nearer the furface of the earth at i; and as there advanced into the air, and formed their leaves, other new root-fcions were generated at k and l. Whence it appears, that by decapitation, and a deeper immerfion in the ground, a fecondary fem in this plant became multiplied into five; all which produced perfect ears of corn ; and in other roots, which I had planted in a fimilar manner, the increate was much greater: and efpecially where one or more of the primary or fecondary ftems had been decapistated.

If a grain of wheat be dropped on the furface of the earth, and futfeed to shot down its roots, and to raife its fem, which is the process of nature, I fuppofe but one fem would be produced; as the firft knot or joint of it would not be covered with earth, and could
not therefore fhoot down new roots; which are neceffary in thefe plants to the production of new fems, which are not branches but fuckers or root-fcions.

But if the grain be buried an inch deep in the earth, a fhoot rifes from the roots, which iffue from the feed, which is an elongation of the caudex, and puts forth a leaf in contact with the furface of the earth; this leaf and ftem conflitute the primary plant, and generate new buds, which put forth new roots defcending into the earth; and thus three or four or more fuckers; or new plants, arife round the original one, which was contained in the feed : hence the appearance of two roots, which fome authors have named the feminal and coronal roots. The ingenious Mr.Tull feems himfelf to have been aware of this circumftance, as he fays in his Hufbandry, "Late planted wheat fends out no root above the grain before fpring, but is nourihhed all winter by a fingle thread proceeding from the grain up to the furface."

This explains the prodigious multiplication of the ftems of wheat, which may be produced by tranfplanting it three or four times in the fummer, autumn, and enfuing fpring; for if it be fo managed, that a fecond joint of each young ftem be buried in the foil, or brought even into contact with it, fo that new roots may frike down into the earth ; the caudex of the leaf, which furrounds this joint, will generate many new buds, which will thus become fuckers, or root-fcions, and rival their parent; and may be again tranfplanted or earthed up three or four times with wonderful increafe. Mr. Charles Miller of Cambridge fowed fome wheat on the fecond of June 1766, and on the eighth of Auguft one plant was taken up and feparated into eighteen parts and replanted; thefe plants were again taken up and divided between the middle of September and the middle of October, and again planted feparately to ftand the winter, and this fecond divifion produced fixty-feven plants. They were again taken up, and divided between the middle of March and the middle of April, and
produced five hundred plants. The number of ears thus produced from one grain of wheat was 21109 , which meafured three pecks and three quarters of corn; weighed forty-feven pounds feven ounces, and were eftimated at .576840 grains! Philof. Tranf. Vol. LVIII. p. 203 . See Sect. XII. 6.

Nor is this unfupported by the analogy of other vegetables, in which new roots are liable to fhoot in great abundance from their joints either alone or along with new buds, if a proper degree of moifture is prefented to them. Thus if the ftem of a potatoe be laid down upon the earth, and covered with foil over the firft joint, a new feries of roots will be protruded from that joint ; and afterwards another feries of roots from the fecond joint, if managed in the fame manner ; and it is afferted that this will occur even if the potatoe ftems are taken out of the ground, when they are fix or eight inches high, and deprived of all their young roots, and tranfplanted, fo as to cover one or two joints, and that a great crop has been thus produced.

The rapid growth of fome graffes, and of fome fpecies of the convolvulus, and of colt's-foot, is well known, and very troublefome in many fituations. Of thefe very minute parts of the jointed root, when cut from the parent, elongate themfelves, and fhoot up new plants. From the very numerous divifions of the wheat-root deferibed by Mr. Miller, it may be fufpected that fomething fimilar to this muft have happened, which further obfervations muft determine.

Vines alfo are thus liable to fhoot out roots at their joints, and fig-trees, when covered only with a fhred of cloth in nailing them to a wall, if it be accidentally kept moift. And there is an appletree, which is called a burr-apple, becaufe it puts out roundifh protuberances or excrefcences of the bark like a burr, which if the branch be bent down, or even torn off, and fet in the moift earth, will
will immediately ftrike out roots, as I am told, and become a tree fimilar to the parent.

In the fame manner I have been informed that if a circular ring of the bark be cut off from many trees and fhrubs, which are otherwife difficult to propagate, and earth be put round the branch thus decorticated a few inches above and below the wounded part, by means of a garden-pot previoully broken longitudinally, and bound together round the branch, that roots will fhoot from the upper lip of the wound; and in a little time the branch may be fafely cut off below the garden-pot, and planted with fuccefs.

When a few inches of the end of a branch are cut off in the fpring, as is common in pruning wall-trees, new buds are produced near the extremity, which remains; or thofe, which did exift, grow with greater vigour; as they obtain fome of that nourifhment, which thould have fupported the buds, which were cut off. The fame occurs in refpect to the fuckers or root-fcions of thofe trees, which produce them, as of elm-trees, and of fome apple-trees; if many of the branches be cut away, the fuckers or root-fcions become more numerous, or more vigorous.

This explains the ufe of a practice among many farmers of eating down a forward crop of wheat in the fpring with fheep. In this cafe the central or upright ftem of the wheat is decapitated, and many lateral ones, or root-fcions, as above defcribed, become generated, or grow with greater vigour ; acquiring additional nourifhment from the joint, which was to have been expended in the growth of the central ftem; and which appears fo diftinctly in the preceding figure of a tranfplanted wheat-plant, which neverthelefs in crops, which are not too forward, may be very injurious, as fpoken of in Sect. XVI. 2. 3.

Thus the figure above alluded to explains four important circumftances in the cultivation of grains, that of earthing up the rows in
${ }^{C T} .1 X_{1}$
become a the
circular ting
ch are other.
branch thus
led part, by
, and bound
the upper lip
safely cut of
in the firing
aced near the
, grow with
PLATE•IV.
ment, which
Che fame o.
trees, which
; if many of
become more
gers of eating
sep. In this apitated, and
become gene
onal nourish.
n the grout
the preceding
es in crop ${ }^{3}$
Spoken of in
tat circus
the rows in forms

PLATE IV.

Reprefents a tranflanted root of wheat defcribed in SeCl. IX. 3.7. a the feminal root, b the coronal root, $a b$ the elongated caudex, $c g$ the firff ftem, $c d$ the firf leaf, ef a fecondary ftem. All thefe exilted before tranfplantation. The fecondary ftem was then cut off at f, and the plant was buried in the foil as deep as the letter f, where it was cut off. Afterwards the ftem, which was lopped, had put forth a new caudex or root-fcion at b; which had produced three new ftems at i; and other new ones, as it approached nearer the furface, at k and l. As thefe leaves advanced into the air, the latter new ftems were produced by the caudexes of them.

Sect. IX. 3. \%. SEEDS, BUDS, BULBS.

fpring by Mr. Tull's horfe-hoe; that of eating down the firft ftems of forward crops by fheep; that of tranfplanting the roots deeper in the foil; and that of fowing the feed an inch or two beneath the furface. For an account of the drill hulbandry now practifed by Mr. Coke of Holkham in Norfolk, fee Sect. XVI. 2.2.

S E C T. X.

MANURES, OR THE FOOD OF PLANTS.
I. r. The chyle of all animals is fimilar. It confits of water, fugar, mucilage, oil, with carbon, phopborus, and caicareous earth. The sap-julce of vegetables confits of water, fugar, mucilage, with carbon, phofphorus, and calcareous earth. 2. Food of young animals, of adult animals. Power of digeftion. Production of fugar by digefion. 3. Food of young. vegetables. Production of Jugar by germination. 4. Food of adult plants from the fpontanesus decompestion of vegetable and animal bodies, or from water and air aione. They palers low beat and cold blood like winter-leeping animals. Difinction between anima's and vegetables. II. i. Air. Oxygen in air, in water, united with beat, and light. 2. Forms all acids. 3. Metallic oxydes. 4. Te ba of uit cuis are injouble in water. 5. Carbonic acid gas from ferm ous acid. 7. Oxygen in vegetable perferaton. 8.- Piants Prinklud inith ixygenated water. Oxygen gas applied near their roois, 9 Kiote or wincench is found in vegetables. Produces nitre and ammoniac III. 1. Water. Its large quantity in piants. 2. Ufe of their great perfpiration. 3. Water becomes decom. pofed in plants, and is byper-oxygenated. 4. Gives lubricity, fuidity, and jolution. 5. Irrigation of the foil brings other manures. 6. Penetrability of the Joil from irrigation. Sow and reap, early in wet foils. 7. Hafty bowers are injurious. Hills Jbould be plougbed borizontally. UJe of ridges and furrows. Surface of air greater. 8. Evaporation produces cold. Ujes of coping-Aones on fruit-walls. 9. Production of foliage requires more moifure than that of feeds. Froft in Scotland ripens the corn. 10. Lime and dung-bills attract water. Steam ufed in bot-boufes. Mucb water in the atmofphere. IV. 1. Carbon is an univerfal material in the atmofpbere. 2. In limeftone. 3. In black earth, morafles, loam. Carbon combines with putrid exbalations. 4. United with oxygen is foluble in water. Lime combines with water. Emits beat. Is broken into powder by feam. Sbould be Jaked before it is ufed in agriculture. Better Jlaked with bot water.

Attracts the carbonic acid, and in confequence the water, of the atmophere. 5. Carbonic acid fubfides on the earth in the air. 6. United with calcareous' earth is foluble in water, and abjorbed by vegetables. 7. An experiment in wobich carbon and lime form an bepar, and tbus become foluble in water. 8. Vegetable roots abforb carbonic acid from limefone in its fluid, not its gaffeous fate. 9. Carbon exifts in jugar and mucilage, which are abjorbed undecompounded. V. Рнозрноnus is a fimple fubfance. Appears in rotten wood. In putrefcent flefb and fish. 2. Exifts in all vegetable and animal matter, as seen in Homberg's pyrophorus, and in Kunkel's phoppborus. 3. And in all calcareous earth, as in oyfter-fhells, limefone, gypfum, fluor. 4. Hence the ufe of calcarsous earth in agriculture. 5. Sbells become limeftone by attraEIing carbonic acid from the air. Mountains of calcareous phofphorus. Limeftone foould be burnt in cloje veffels. 6. The bardnefs of bones owing to phospboric acid, and perbaps of ligneous fibres. VI. I. Lime with carbon may make an bepar carbonis foluble in water. 2. Unites with carbonic acid, and renders it joluble in its fluid not its gafleous fate. Water from fprings is preferable to that from rivers for flooding lands. 3. Lime unites with phofphorus, and renders it foluble in water. Unites alfo with phofpboric acid. Whence crab-fifb renew tbeir Jbells, and nails repair and enlarge theirs. 4. Lime unites with oil and mucilage, and may thence become nutritious. It decompofes foap, and confitutes a part of animals and vegetables. 5. Lime deftroys the cobefion of dead vegetables. Of recent ones by combuftion. Attraits moifure from the air and earth. Makes clay lefs adbefive. Unites with acids of vitriol and of nitre. Kills infeets. 6. One limefone twenty miles long and ten broad. Lime not of ufe on wet land, nor always on all calcareous joils. 7. Lime both forwards the ripening and meliorates and increafes wheat and grafs by jupplying nutriment. 8. Gypfum, fluor, bone afbes. Breedon lime is balf magnefia. VII. I. Clay is too adbefive. Becomes more folid by froft. 2. Effervefces in the air. Acquires oxygen. So iron, manganefe, zinc. Raddle ufed as manure. 3. Granite acquires oxygen. Granites and dry clay bave afmell when breathed on. Marl crumbles in the air. Burnt clay acquires oxygen and burnt lead. 4. Burnt clay promotes the generation of nitre. UJe of paring and burning. 5. Burnt clay decompofes marine falt. Uje of Sea-falt in manure. 6. Would phoppbat of lime combine with clay, or boneahes? 7. Cohefion of clay overcome by air. By roots of Atrong plants. By carbonic acid from leaves in the 乃bade. By dungbill water. By lime. 8. Aluminous clays bow to correct. By wood-afbes, foap-fuds, lime, magnefia. VIII. I. Spon-

> B b
taneous
taneous manures. Saccbarine fermentation is a chemical procefs. Exifs. beneath the foil. 2. Vinous fermentation. Carbon and oxygen in a fluid fate. Heat of bark-beds. Hay-facks take fire. 3. Putrefaczion decompofes water. 4. Produces nitre, wboje looje oxygen promotes vegetation. 5. Sow foon after the: plough. IX. Chemical manures. 1. Sugar and mucilage abforbed undecompofed. 2. Heat deftroys life in feeds, fruits, roots. Potatoes dried on a maltkiln. Cooked in fteam botter than boiling water. Papin's digefer. 4. Trituration of wood, ftrare, bay, for food in times of fcarcity; of bones, chalk, bricks, ocbres, calamy for manures. X. Insect-manure. Cultivated countries increaje in fertility. Some bave decreajed. Calcareous frata from fbells. Tbofe: above them from vegetables and animals. The former can live on air and water, not the latter. 2. Crops ploughed in for manure. 3. Injects increafe manure. Water from dungbills. 4. Fith. XI. Preservation of manures. Rains. wafb manure into the fea. Snow floods lefs injurious. Hills fbould be plougbed borizontally. 2. Common fores. 3. Burial grounds. 4. Wood-fuel. 5. Fermentation requires air, water, beat. Manure ßould be tursed over and mixed with lime. 6. Pig-trougbs, Joap-juds. 7. Weeds, leaves, water-plants. 8. Peat. XII. Application of manures. i. In powder for top-drefing. In fraw. for clay-fields. 2. In fields when the corn is fowed. On grafs-lands in the fpring, not in the autumn. 3. Cover dung-beaps with foil. Gather cow-dung from the grafs. 4. What manures are moft nutritive. Flef, born, woollen rags, meals, fugar, oil.
I. 1. The various fubftances, which conftitute animal bodies, or which are found in the cavities of them, are compofed from fimpler elements by the proceffes of digeftion, and fanguification, and fecretion; for it is well known, that even milk, which fo much refembles the chyle of animals, is not abforbed by the lacieals without its being previoully coagulated, and again diffolved in the fomach by the power of digeftion.

Hence it happens, that the chyle of all animals, and from every kind of food which they take into their ftomachs, is very fimilar ; and like milk confifts of water, fugar, mucilage, and oil; the laft of which
which not being foluble in water, but only mifcible with it, gives it its opaque white colour.
But though the chyle from different kinds of aliment is fo fimilar, and all the various conftituent parts of animal bodies are ultimately produced from the chyle by fanguification and fecretion, yet it happens, that fome kinds of aliment poffefs a greater quantity of thefe particles, which make chyle, than other kinds of aliment. Such materials for inftance as already contain much fugar, mucilage, and oil, as the flefh of dead animals, or the fruits and feeds of vegetables.

Befides the water, fugar, mucilage, and oil, which exift in chyle, there may be other materials, which are invifible from their perfect folution in water, either alone or when converted into acids by the addition of oxygen ; as carbon, phofphorus, calcareous earth, marine and ammoniacal falts; though it is more probable, that the two laft are formed and fecreted by animal proceffes, as well as felected by their abforbent roots, as they are more compounded bodies than the former.

Similar to this chyle of animals the fap-juice, which is abforbed from the earth by the roots of plants, conftitutes their nourifhment, and confifts of water, fugar, and mucilage, with other tranfparent folutions, as of carbon, phofphorus, and calcareous earth. And though it has been proved by the experiments of fome philofophers, that vegetables can extract or compofe all thefe fubftances from air and water alone ; yet fome materials contribute more to the production of this vegetable chyle or fap-juice than others, fuch as the recrements of dead vegetable and animal fubitances.
2. If any one fhould afk, what is the food of animals? I fhould anfwer, that in the moft early ftate of animal life the embryon lives on a mucilaginous fluid, with which it is furrounded, whether in the egg or womb: that in its infant flate the young animal is fuftained by milk, which its fomach converts into chyle.

$$
\mathrm{Bbz}
$$

In their adult ftate animals are fuftained by other vegetable or animal fubftances taken into their ftomachs, which are there converted into chyle partly by a chemical, and partly by an animal procefs; as by a mixture of gaftric juice with water and heat, fome of thefe recrements of organic nature are decompofed, either into their fimpler component parts, or fometimes even into their elements; while other parts of them are only rendered foluble or mifcible with water; and are then drank up by the abforbents of the ftomach and inteftines.

In this procefs of digeftion much fugar is produced, which is probably immediately felected and drank up by the numerous mouths of the lacteals, or lymphatics; to which it is prefented by the vermicular or periftaltic motions of the ftomach and inteftines. And as this ready felection and abforption of the fugar, as foon as it is formed, prevents it from paffing into the vinous or acetous fermentation; it is probable that from the want of fuch a means of feparating faccharine matter, as foon as it is formed, chemiftry has not yet been able to produce fugar from its elements without the affiftance of animal digeftion, or vegetable germination; as further fpoken of in No. 8. I. of this fection.

In this procefs of digeftion, I believe, a great part of the water, fugar, mucilage, and oil, which exift in vegetable and animal recrements, are not decompofed into their elements, but abforbed by being foluble or mifcible with water; the carbon, and the phofphorus, and the hydrogen, are alfo I fuppofe diffolved in the other fluids by means of oxygen, and form a part of the chyle, without their being converted into gaffes; for when this happens to any excefs in refpect to carbon, it efcapes from the ftomach in eructations; and the fame occurs to the inflammable air or hydrogen, if a part of the water becomes decompofed in the intefines; which, if it be not abfinbed by its folution in other fluids, but acquires a gaffeous flate, is liable to efcape below; though both thefe gaffes feem occafionally
to revert to a fluid fate from their aerial one in the fomach or inteftines, and to be then abforbable by the lacteals or lymphatics.
3. What then is the food of vegetables? the embryon plant in the feed or fruit is furrounded with faccharine, mucilaginous, and oily materials, like the animal fetus in the egg or uterus, which it abforbs, and converts into nutriment; while the embryon buds of deciduous trees, which is another infantine ftate of vegetables, are fupplied with a faccharine and mucilaginous juice prepared for them at the time of their production, and depofited in the roots or fap-wood of their parent-trees; as in the vine, maple, and birch; which faccharine matter is foluble and mifcible with the water of the furrounding earth in the fubfequent fpring, and is forcibly abforbed by their root-veffels, and expands their nafcent foliage.
In their infantine ftate therefore there is a wonderful analogy between plants and animals; and it is particularly curious to obferve in the procefs of converting barley into malt by the germination of the feed, that the meal of the barley is in part converted into fugar by the digeftion of the young plant exactly as in the animal ftomach. The wonderful effect of vegetable digeftion in producing fugar may be deduced from the great product of the fugar-cane, and of the maple-tree in America, mentioned in Sect. III. 2. 3. and the wonderful effect of animal digeftion in producing fugar appears in patients, who labour under diabetes. A man in the Infirmary of Stafford, who drank daily an immoderate quantity of beer, and who eat above twice the quantity of food that thofe in health confume, voided fixteen or eighteen pounds of water daily, from each pound of which ábove an ounce of coarfe fugar was extracted by evaporation. Zoonomia, Vol. I. Sect. XXIX. 4.9.
4. We now come to confider the food of adult plants ; and in this confifts the great and effential difference between the nutritive proceffes of animals and vegetables. The former are poffeffed of a ftomach, by which they can in a few hours decompofe the tender parts.
of vegetable and animal fubftances by a chemical procefs within themfelves, conducted in the heat of ninety-eight degrees, with a due quantity of water, and a perpetual agitation of the ingredients; which both mixes them, and applies them to the mouths of the abforbent veffels, which furround them. Whereas a vegetable being having no fomach is neceffitated to wait for the fpontaneous decompofition of animal or vegetable recrements; which is indeed continually going on in thofe foils, and climates, and in thofe feafons of the year, which are moff friendly to vegetation; but is in other fituations, and in other feafons, a flow procefs in a degree of heat often as low as forty of Farenheit, (in which the reindeer mofs, mofchus rangiferinus, vegetates beneath the fnow in Siberia,) and often without an adapted quantity of water to give a due fluidity, or any mechanical locomotion to prefent them to the abforbent mouths of their roots; or in fill worfe fituations adult vegetables are neceffitated fill more flowly to acquire or produce their nutritive juices from the fimpler elements of air and water, with perhaps the folutions of carbonic acid and calcareous earth, and perhaps of fome other matters, with which one or more of them abound.
But M. Haffenfratz found, that the vegetation of thofe plants was imperfect, which had not been fuffered to grow in contact with the earth; as they never arrived at fuch maturity as to produce fruit; and were found on amalyfis to contain a lefs portion of carbon, than other plants of the fame kind. The experiments were tried on hyacinths, kidney-beans, and creffes.

Hence the other great difference, which exifts between thefe two extenfive kingdoms of nature, is, that the larger and warmer blooded animals certainly, and I fuppofe all the tribes of infects, and of colder blooded creatures alfo, can not exift long on air and water alone, except in their ftate of hibernal torpor. The neareft approach to this is however feen in fome fevers, where water alone has been taken for a week or two, and yet the patient has recovered; and there is a well

Oxygen gas confifts of oxygen and heat; and when it unites with fuch bodies, as are capable of uniting with it, the heat is fet at liberty, as in refpiration and in combuftion; in both which proceffes an acid is produced by the combination of oxygen with fome inflammable bafe. Hence vital air confifts of oxygen diffolved in the fluid matter of heat ; but there is alfo another fluid, which feems to be combined with this folution of oxygen in heat, and that is light. For when oxygen becomes combined with charcoal, or with fulphur, or with phofphorus, both heat or light are fet at liberty from thefe new combinations of oxygen; which thus produce the carbonic, fulphuric, and phofphoric acids.

When thefe new combinations of oxygen are performed very flowly, the light is fometimes not vifible, as in the heating of a dunghill; in which procefs the oxygen in the cells or cavities of the hotbed unites flowly with the carbon and phofphorus of the decompofing vegetable and animal matters; but though much heat is given out, no light is feen. While on the contrary from rotten wood alone, or putrefcent filh, when expofed to the atmofphere, much light is emitted, but not much fenfible heat, owing perhaps fimply to the combuftion of the phofphorus, which they contain.
2. The products of thefe combinations of oxygen with other bodies may all of them be termed acids; though in fome the heat or light fet at liberty converts thefe acid productions into gaffes, as oxygen and charcoal form carbonic acid gas; and in others it converts the new product into fteam, which is condenfible by cold, as the fulphuric acid from the combination of oxygen and fulphur; and the phofphoric acid from oxygen and phofphorus.
3. Other combinations of oxygen with heavier fubftances are produced in the atmofphere without the feparation of either fenfible heat, or vifible light; as the union of oxygen with metallic bodies, as with that of mangarrefe, with zinc, lead, iron, as in common ore of manganefe, in lapis calaminaris, white calciform lead-ore, and the
red ochre of iron; which have not obtained the name of acids, but are termed oxydes of thofe minerals.
4. Now it happens, that none of thefe bafes, which can combine with oxygen alone, are foluble in water, and therefore can not be imbibed by the abforbent veffels of vegetable roots, until they become acids; and are perhaps then all of them in greater or lefs quantities foluble in water; and are thence capable of being drank up by the abforbent veffels of vegetable roots, and conftitute a part of the food of plants.
5. When vegetable fubftances are decompofed by fermentation, there is a quick union of oxygen and carbon ; and this carbonic acid gas, called formerly fixed air, rifes up in vapour, and flies away. But where this procefs goes on more flowly, as in a dung-hill lately turned over, or in black garden mould lately turned over, and thus expofed to the air ; much of which remains in the cells or cavities of the hotbed, or border ; this carbonic acid is flowly produced, and is abforbed by vegetable roots, I fuppofe in its fluid ftate, or diffolved in water, before it acquires fo much heat as to rife in the atmofphere in the form of gas.

This carbonic gas in its fluid ftate, or diffolved in water, not in its aerial or gaffeous ftate, is the principal food of plants; as appears, becaufe their folid fibres confift principally of carbon, and their fluids of water.
6. Next to carbonic acid the aqueous acid, if it may be fo called, or water, feems to afford the principal food of vegetables; as water confifts of oxygen and hydrogen, it is properly an acid, like all other combinations of oxygen; and when abforbed by vegetable roots becomes in part decompofed in the circulation or fecretion of their juices; the oxygen difappears, or contributes to form the vegetable acids; and the hydrogen produces ammonia by its union with azote; which may contribute to vegetable nutriment by its mixture with oils, and thus producing foaps, which become diffufible in water ; and alfo by

$$
\text { C c } \quad \text { decompofing }
$$

decompofing infoluble faline earths, as gypfum, or metallic falts, as vitriol of iron, and thus producing more foluble or innocuous falts. And which laftly forms a part of the various vegetable productions of fugar, honey, wax, refin, and other fecretions.
7. There is a curious evolution of oxygen attends the perfpiration of the leaves of plants, which is not known to attend that of animal lungs; and that is, that when vegetable leaves are expofed to the fun's light, they feem to give up oxygen gas; but in the dark they give up carbonic acid gas, like the breath of animals. It is probable that animal lungs might do the fame, if they were expofed to the light; as perhaps might be fubjected to experiment in the gills of fifh, or by breathing through a tube into water in the funthine.

In refpiration as well as in combuftion fome light may poffibly be given out as well as fome heat from the combination of oxygen with fome phlogiftic bafe, as carbon or phofphorus; whence the production of carbonic and phofphoric acids in both animal and vegetable refpiration. In moft animals this quantity of light is probably too fmall to be perceived, if their bodies were tranfparent; but in the glow-worm of this country, and in the more luminous fire-flies of the tropical climates, I fufpect the light to be emitted from their lungs in the act of refpiration, which is a flow combuftion.
8. Befides the ufe of oxygen in the refpiration of vegetables, when applied to their leaves, as it is mixed in the atmofphere; it is believed by many to contribute much to their growth and nourifhment in its combined ftate, when abforbed by their roots; and that by the decompofition of water in the vegetable fyftem, when the hydrogen unites with carbon and produces oil, the oxygen becomes fuperfluous, and is in part exhaled, as further fpoken of in Sect. XIII. 1. 2. Hence alfo fome calciform ores, or metallic oxydes, as raddle, and calamine, and burnt clay, are fuppofed to be ufeful as manures, becaufe they contain much oxygen, as mentioned in No. 7. 1. of this Section. lic falts, cuous falts oductions of perfpiration at of animal ofed to the e dark they probable that to the light; s of fifh, of

Mr. Humboldt afferts, that on putting creffes, lepidium fativum, into oxygenated muriatic acid gas mixed with water, they produced germs in fix hours; while thofe in common water were thirty-fix hours before they produced germs. Jacquin at Vienna put many old feeds, which had been in vain tried if they would vegetate, into fuch a folution of oxygenated muriatic acid, and found great numbers of them quickly to vegetate. Journal de Phyfique, 1798. See Sect. XIV. 2. 5 .

In the experiments of fir Francis Ford many plants, which were fprinkled with water previoully impregnated with oxygen gas, are faid to have grown more vigoroully, and to have difplayed more beautiful tints, than thofe nourifhed with common water. Other experiments are faid to have been made by inverting bottles filled with oxygen gas, and burying their open mouths beneath the foil near the roots of vegetables, which are faid to have grown more healthy and beautiful, as the oxygen became abforbed, and was fucceeded by air like the common atmofphere. Philof. Magaz. 1 998, p. 224. Further experiments are required on this fubject, fince the fluids of vegetables would in general appear to be hyperoxygenated from the oxygen emitted from the perfpiration of their leaves in the funfhine, and which is believed to arife from the decompofition of water in their arteries or glands.
9. We now come to the other ingredient, which conftitutes a much greater part of the aimofphere than the oxygen, and this is the azote, or nitrogen; which alfo feems much to contribute to the food or fuftenance of vegetables; for though azote, or nitrogen, enters into animal bodies in much greater quantities perbaps than into vegetables, fo as to conftitute according to fome chemical philofophers the principal difference between thefe two great claffes of organized nature ; yet it enters alfo into the vegetable fyftem, and is given out by their putrefaction ; and alfo when lime is applied to moift vegetables it difengages from them both hydrogen and azote forming
volatile alkali, as afferted in the ingenious work of Lord Dundonald on the Connection of Agriculture with Chemiftry.

The azote of the atmofphere, when air is confined in the interftices of the foil newly turned over by the plough or fpade, contributes to the production of the nitrous acid by its union with the oxygen of the atmofphere, with which it was before only diffufed, or with the much greater fource of oxygen from the decompofing water of the foil. At the fame time another part of the abundant azote combines with the hydrogen of the decompofing water of the foil, and produces ammonia or volatile alkali ; which contributes to the growth of vegetables many ways, as already defcribed in No. 2. 6. of this Section.

III. W A TER.

1. The neceffity of much water in the progrefs of vegetation appears from the great quantity, which exifts naturally in all parts of plants; infomuch that many roots, as fquill and rhubarb, are known to lofe about fix parts out of feven of their original weight fimply by drying them before the fire; which quantity of moifture neverthelefs does not exhale in the common heat of the atmofphere during the life of the root; as is feen in the growth of fquills in the fhops of the druggifts, and of onions on the floors of our ftore-rooms.
2. A fecond neceffity of much water in the economy of vegetation may be deduced from the great perfpiration of plants, which appears from the experiments of Hales and others; who like Sanctorius have eftimated the quantity of their perfpiration from their daily lofs of weight; which however is not an accurate conclufion either in refpect to plants or animals, as they both abforb moifture from the atmofphere, as well as perfpire it.

This great perfpiration of vegetables, like that from the 1 kin and lungs of animals, does not appear to confilt of excrementitious matter, becaufe it has in general no putrefcent fraell or talte; but feems
to be fecreted firft for the purpofe of keeping the external furface of the leaves from becoming dry, which would prevent the oxygen of the atmofphere from entering into the vegetable blood through them; fince according to the experiments of Dr. Priefley on animal membranes the oxygen will only pafs through them, when they are moift. A fecond ufe of this great perfpiration is to keep the bark fupple by its moifture, and thus to prevent its being cracked by the motion of the branches in the wind. And though a great part of this perfpirable matter is probably abforbed, as on the fkins of animals; yet as

- it exifts on fo large a furface of leaves and twigs, much of it muft neceffarily evaporate on dry and windy days.

3. One of the great difcoveries of modern chemiftry is the decompofition of water, which is fhewn both by analyfis and fynthefis to confift of eighty-five hundredth parts of oxygen, and fifteen of hydrogen. Hence a third great ufe of water in the vegetable economy is probably owing to its ready decompofition by their organs of digeftion, fanguification, and fecretion. This is evinced firft by the great quantity of hydrogen, which exifts in the compofition of many of their inflammable parts. And fecondly, from the curious circumftance, which was firft difcovered by the ingenious Dr. Priefley, that the water, which they perfpire, is hyperoxygenated ; and in confequence always ready to part with its fuperabundance of oxygen, when expofed to the fun's light; from whence it may be concluded, that part of the hydrogen, which was previoully an ingredient of this water, had been feparated from it, and ufed in the vegetable economy, as is further treated of in Section XIII. I. 2.

Add to this, that from the decompofition of water, when confined in contact with air beneath the foil, the nitrous acid feems to be produced and ammonia, both which are believed ufeful to vegetation, as mentioned in No. 2. 6. of this Section.
4. Befides the peculiar ufes of a great quantity of water, as above defcribed, the more common ufes of it both to vegetable and animal
life,
life, along with the matter of heat, are to produce or preferve a due fupplenefs or lubricity of the folids, and a due degree of fluidity of the liquids, which they contain or circulate. And laftly, for the purpofe of diffolving or diffufing in it other folid or fluid fubftances, and thus rendering them capable of abforption, circulation, and fecretion.
5. The due irrigation of the foil is much attended to in drier and warmer countries, as in Italy, Egypt, and fome parts of China; where numerous canals, and aqueducts, have been dug through hills, and carried over vallies, for the purpofe of watering the foil; and even in this colder and moifter climate the practice of flooding land is coming daily into greater repute. For this occafional fuffufion of water over land not only fupplies fimple moifture for the purpofes above mentioned in the drier parts of the feafons, but brings along with it calcareous earth and azotic air from the neighbouring fprings, or other manures from the rivers. Calcareous earth may be detected in the water of all thofe fprings which pafs under or over ftrata of marle or limeftone, by dropping into them a folution of falt of tartar ; or of fugar of lead in water, or of foap in fpirits of wine; and a portion of azotic gas was difcovered in Bath-water by Dr. Prieftley, and in Buxton-water by Dr. Pierfon. See Section XI. 3. I. Dr. Home thinks he difcovered nitrat of lime in hard water, and found by his experiments that it promoted the growth of plants in a much greater degree than foft water.
6. Another demand for water in agriculture is to give a due penctrability to the foil, which otherwife in moft fituations becomes fo hard as to ftop the elongation of the tender roots of plants; but the cohefion of the foil may neverthelefs be too much diminifhed by great and perpetual moifture, fo as not to give fufficient firmnefs to the roots of trees. And befides this too much as well as too little water may be fupplied to the generality of vegetables, which grow upon the land ; though there are aquatic and amphibious plants as well as
aquatic and amphibious animals, and which differ from each other as fifh and feals from quadrupeds.

Where land abounds too much with moiture, the art of making fubterraneous or fuperficial drains defcribed in Sect. XI. I. muft be had recourfe to. But where thefe are not executed, in lands not very moift it is thought advantageous to fow the crops early before the wet feafon, fince corn will bear much more moifture after it has fhot from the feed, than the feed will bear; as the feed is lefs tenacious of life, and in confequence more liable to putrify. The crops thould likewife be fown or planted thinner, and be reaped early in the feafon, as the exclufion of the air by thick foliage, and the greater dampnefs of the autumn, are liable to generate mildew in moift fituations. Perhaps it fhould be added, that fowing early, and the confequent reaping early, has fo many advantages in all feafons on all lands, that it may in general be univerfally recommended; and that in wet lands it might be very advantageous to cultivate crops by tranfplantation in the vernal months, having previoufly fowed the feed in drier or warmer fituations. See Sect. XVI. 8. s.
7. Another injury in this climate occafioned by too great a quantity of water arifes from hafty howers; which wath off much of the decompofing animal and vegetable recrements, which are foluble or diffufible in water, and carry them down the rivers into the fea. From the fides of hills this damage is accomplifhed by fmall thowers, on which account all floping grounds when applied to agriculture fhould be ploughed horizontally, as by the ridges and furrows thus produced the fmaller thowers of rain will not pafs fo haftily off, as when they are ploughed vertically.
A queftion here occurs, whether it be advantageous to plough level plains into ridges and furrows? the Chinefe are faid never to divide their fields into ridges and furrows, but to plant their grain on an even furface. Embafly to China by fir G. Staunton, Vol. III. p. 197, 8 vo. edit. Some think it an error to fuppofe, that any increafe of crop
crop can be thus obtained, as no more plants can rife perpendicularly from the ground; but in the ripening of grain the furface of air to which the ears are expofed is alfo to be confidered; which correfponds with the furface of the ground, and is increafed by its being laid in hill and dale. But there is a ferious objection to this mode of ploughing in móift fituations without fufficient declivity, as the corn in the furrows appears weak and backward owing to the rain lying on it too long; and alfo to the beft part of fhallow foils being frequently taken from them to conftruct the ridges. See Sect. XVI. 2. 2.
8. Add to this, that the evaporation of moifture from the furface of the earth produces fo much cold as to injure thofe terreftrial plants, which are too long covered with it. On this account thofe parts of wall-trees, which are fheltered from the defcending dews by a coping ftone on the wall, are not fo liable to be injured by frofty nights on two accounts; both as they are not made colder by the evaporation of the dew, and alfo have lefs water to be congealed in their veffels, and by its expanfion to burft them.
9. Laftly, the foliage on buds of plants, which conftitute one part of their progeny, requires more moifture for its vigorous growth, than their flowers or organs of fexual generation. Hence in warm countries the rice-grounds are flooded only till the feafon of flowering commences, and are laid dry again for the purpofe of maturating the feed; and in our climate continued rains are liable not only to wafh off the farina from the burfting anthers, and thus prevent the impregnation of the piftillum, but alfo to delay the ripening of the fruit or feeds from the want of a due evaporation of their perfpirable matter, as well as from the lefs folar light in cloudy feafons; whence in the uorth of Scotland the oats are faid feldom to ripen till the frof commences with the dry feafon, which accompanies it.
10. There are methods of procuring or preferving the falutary moifture of the foil befides thofe of canals and aqueducts, which
fhould
fhould be here mentioned. Thefe are by ufing as manures fuch fubftances as perpetually attract moifture from the lower part of the foil, or from the atmofphere; as quick-lime, and vegetable and animal recrements in the act of putrefaction.

In hot-houfes fome have already employed fteam as a means both of giving warmth and moifture to the included plants, or to the foil in which they grow; and a great variety of forcing pumps have been conftructed for the purpofe of moiftening the foliage of wall-trees; but there is a hope from the prefent great progrefs of chemical refearch, that a means may fometıme be difovered of precipitating the water of the atmofphere, which the ingenious bifhop Wation thinks always exifts in it in fuch quantity as, if it was fuddenly precipitated, might again deluge the world.

IV. CARBON.

1. When animal and vegetable bodies are burnt without the accefs of air, that is, when their volatile parts are fublimed; there remains a great quantity of charcoal, a much greater in vegetable bodies than in animal ones; this is termed carbon by the French fchool, when it is quite pure; and is now known to be one of the moft univerfal materials of nature. And as vegetable bodies contain fo much of it in their compofition, they may be fuppofed to abforb it intire, where they grow vigorounly; efpecially as it is a fimple material ; but they may poffibly form it alfo occafionally from water and air within their own veffels, when they are fecluded from accefs to it externally.

The whole atmofphere contains always a quantity of it in the form of carbonic acid, or fixed air ; as is known by the fcum, which prefently becomes vifible on lime-water, when expofed to the air; and which confints of a reunion of the lime with carbonic acid; which may therefore be faid to encompafs the earth.

D d
The

The fimplicity of carbon, as an elementary fubftance, was difputed by Dr. Auftin, who believed he had decompounded it. But Mr. Henry, by accurately repeating his experiments, has fhewn the fallacy or inconclufivenefs of them. Philof. Tranfact. 1797.
2. Another great refervoir of carbon exifts in limeftone in the form of carbonic acid; which when a ftronger acid is poured on the calcareous earth becomes a gas, acquiring its neceffary addition of heat from that, which is given out in the combination of the ftronger acid with the lime. It alfo acquires its neceffary heat, when limeftone is burnt, from the confuming fuel, rifes in the form of gas, and is diffipated in the air; and probably foon fettles on the earth, as it cools, as it is ten times heavier than the common atmofphere.
3. But the great fource of carbon exifts in the black earth, which has lately been left by the decompofition of vegetable and animal bodies; and is then in a flate fit to combine with azote or nitrogen, and with oxygen, when expofed to thofe two gaffes, as they exift in the atmofphere; and is thus adapted either to promote the generation of nitrous acid, or to form carbonic acid, and thus to affift vegetation.

Moraffes confift principally of the carbonic recrements of vegetable matters, which are gradually decompofed in great length of time into clay, with argillaceous fand, fuch as is found over coal-beds, and fome calcareous earth, as in marl; and laftly, with fome iron, and foffile coal. Thefe by elutriation are feparated from each other, and form the ftrata of coal countries. In other places they remain intermixed, as they were probably produced from the decompontion of vegetables and terreftrial animals; and form what in books of practical agriculture is called a loamy foil, confifting of carbonic matter, fand, and clay, with a portion of iron.
It has always been obferved, that this black garden mould, or earth produced from the recrements of vegetables, is capable of abforbing a much greater quantity of putrid effluvia than either air or water, and
probably of combining with its ammonia, and producing a kind of hepar carbonis, and thus facilitating vegetation. The practice of burying dead bodies fo few feet below the furface is a proof of this; as the putrid exhalations from the carcafs are retained, and do not penetrate to the furface. On the fame account the air over new ploughed fields has long been efteemed falutary to invalids, or convalefcents, as it probably purifies the fupernatent atmofphere. But it was not till lately known that carbon, or charcoal, abforbs with fuch great avidity all putrid exhalations; if it has been recently burnt, and has not been already faturated with them, infomuch that putrid flefh is faid to be much fweetened by being covered a few inches with the powder of charcoal ; or even by being buried for a time in black garden mould ; as putrid exhalations confift chiefly of ammonia, hydrogen, and carbonic acid, and are the immediate products of the diffolution of animal or vegetable bodies, they are believed much to contribute to vegetation; as whatever materials have conftituted an organic body, may again after a certain degree of diffolution form a part of another organic body. The hydrogen and azote produce ammonia, which combining with carbon may form an hepar carbonis, and by thus rendering carbon foluble in water may much contribute to the growth of vegetables.

It has been faid, that fome moraffes have prevented the animal bodies, which have been buried in them, from putrefaction; which may in part have been owing to the great attraction of the carbon of the morafs to putrid effluvia, and in part perhaps to the vitriolic acid, which fome moraffes are faid to contain.
4. Here occurs an important queftion, by what other means is this folid carbon rendered fluid, fo as to be capable of entering the fine mouths of vegetable abforbents? The carbon, which exifts in the atmofphere, and in limeftone, is united with oxygen, and thence becomes foluble or diffufible in water; and may thus be abforbed by the living action of vegetable veffels; or may be again combined by

$$
\mathrm{D} \mathrm{~d} 2
$$

chemical
chemical attraction with the lime, which has been deprived of it by calcination.

When mild calcareous earth, as limeftone, chalk, marble, has been deprived of its water and of its carbonic acid by calcination, it becomes lime. Afterwards when it is cold, if water be fprinkled on it, a confiderable heat is inftantly perceived; which is preffed out by the combination of a part of the water with the lime; as all bodies, when they change from a fluid ftate to a folid one, give out the heat, which before kept them fluid. At the fame time another part of the water, which was added, is raifed into fteam by the great heat given out as above mentioned; and the expanfion of this feam breaks the lime into fine powder, which otherwife retains the form of the lumps of limeftone before calcination. But if too great a quantity of cold water be fuddenly added, no fteam is raifed; and the lump of lime retains its form ; whence it happens, that fome kinds of lime fall into finer powder, and are faid to make better mortar, if flaked with boiling water than with cold.

On this account the lime, which is defigned to be fpread on land, fhould previoufly be laid on a heap, and either fuffered to become moift by the water of the atmofphere, or flaked by a proper quantity of water; otherwife if it be fpread on wet ground, or when fo fpread is expofed to much rain, the heat generated will be diffipated without breaking the lumps of lime into powder; which will then gradually harden again into limeftone, difappoint the expectation of the agricultor, and afflict him with the lofs of much labour and expence.

When the powder of flaked lime mixed with fand and water is fpread on a wall, that part of the water which is not neceffary for its imperfect cryftallization, evaporates into the air ; and the lime then gradually attracts the carbonic acid, which is diffufed in the atmofphere ; but as I fuppofe this carbonic acid is diffolved in the water, which is alfo diffufed in the atmofphere; the lime is perpetually moiftened
moiftened by this new acquifition of water from the air ; as that, which before adhered to it, and had parted with its carbonic acid, evaporates. On which account new built walls are months, and even years, in drying, as they continue to attract water along with the carbonic acid from the air, which ftands upon them in drops, till the lime regains its original quantity of carbonic acid, and again hardens into ftone, or forms a far by its more perfect or lefs difturbed cryftallization.
5. The earth I fuppofe acquires carbon, both in a manner fimilar to the above by its attracting either the carbonic acid, or the water in which it is diffufed, from the atmof phere; and alfo by the fecific gravity of carbonic acid gas being ten times greater than that of common air; whence there muft be conftantly a great fediment of it on the furface of the earth; which in its fate of folution in oxygen and water may be readily drank up by the roots of vegetables.
6. Another means by which vegetables acquire carbon in great quantity may be from limeftone diffolved in water ; which though a flow procefs occurs in innumerable fprings of water, which pafs through the calcareous or marly ftrata of the earth; as thofe of Matlock and Briftol in paffing through limentone; and thofe about Derby in paffing through marl; and is brought to the roots of vegetables by the fhowers, which fall on foils, where marl, chalk, limeftone, marble, alabafter, fluor, exift; which includes almoft the whole of this ifland. By this folution of mild calcareous earth in water not only the carbon in the form of carbonic acid not yet made into gas, but the lime alfo, with which it is united, becomes abforbed into the vegetable fyftem, and thus contributes to the nutriment of plants both as fo much calcareous earth, and as fo much carbon.
7. Another mode by which vegetables acquire carbon, may be by the union of this fimple fubftance, with which all garden-mould abounds, with pure calcareous earth into a kind of hepar, analogous to the hepar of fulphur made with lime, which abounds in fome mi-
neral waters. And this I fuppofe to be the great ufe of lime in agriculture.

For the purpofe of afcertaining the probability of this mode of folution of carbon I made the following experiment. About two ounces of lime in powder were mixed with about as much charcoal in powder, put into a crucible, and covered with an inch or two of filiceous fand. The crucible was kept red hot for an hour or longer, and then fuffered to cool. On the next day water was poured on the lime and charcoal, which then ftood a day or two in an open cup, and acquired a calcareous fcum on its furface. And though it had not much tafte, except of the caufticity of the lime, yet on dropping one drop of marine acid into a tea-fpoonful of the clear folution a ftrong fmell like that of hepar fulphuris was perceived, or like that of Harrogate water; which evinced, that the carbon was thus rendered foluble in water.

Perhaps the fulphureous fmell of Harrogate and Kedlefton waters, and other fimilar fprings, may be owing to the union of the alkali of decompofing marine falt with the carbon of the earth, they run through ? and this kind of water might thus poffibly be ufed as a profitable manure ?
8. Another mode by which vegetable roots acquire carbon, I fufpect to be by their difuniting carbonic acid from limeftone in its fluid not its gaffeous ftate; which the limeftone again attracts from the atmofphere and confolidates, or from other matters included in the foil. Firft, becaufe lime is believed by fome agricultors, who much employ it, to do more fervice in the fecond year than in the firft; that is in its mild ftate, when it abounds with carbonic acid, than in its cauftic ftate, when it is deprived of it.

Secondly, that the ufe of burning lime feems hence to be fimply to reduce it to an impalpable powder, almoft approaching to fluidity; which muft facilitate the application of the innumerable extremities of vegetable fibres to this uncalculable increafe of its furface; which
may thence acquire by their abforbent power the carbonic acid from there minute particles of lime, as fat as they can recover it by chemical attraction from the air, or water, or from other inanimate fubftances in their vicinity.

Thirdly, the hyper-oxygenation of the perfpirable matter of plants, which thence gives up oxygen gas in the funthine, would induce us to believe, that a great part of the carbon, which furnifhes fo primcipal a part of vegetable nutriment, was received by their roots in the form of carbonic acid ; and that it becomes in part decomposed in their circulation, giving up its oxygen; which thus abounds in the ferreted fluids of vegetables from this fource, as well as from decompored water.
9. Another way by which carbon is received into the vegetable fyftem is by its exiftence in fugar and in mucilage ; both which are taken up undecompounded, as appears by their prefence in the vernal fap-juice, which is obtained from the maple and the birch; which like the chyle of animals, is absorbed in its undecompounded fate.

v. PHOSPHORUS.

I. Another material which exits, I believe, univerfally in vegetabes, and has not yet been fufficiently attended to, is phorphorus. This like the carbon, nitrogen, hydrogen, and fulphur, is probably a dimple fubftance; as our prefent chemiftry has not yet certainly analysed any of them; and therefore I fuppofe it is taken up intire by the absorbent veffels of vegetables, when it can be met with in a fate of folution ; though it may alfo be occafionally formed and fecreted by them; and may hence be registered among the articles of their food or fuftenance.
When wood is decomposed by putrefaction in a certain degree of warmth and moifture, it is often feed to emit much light in dark evenings, when recently broken and expofed to the oxygen of the atmofphere,
atmofphere, fo as to alarm benighted paffengers; which is undoubtedly owing to the phofphorus, which it contains, and which is at this time converted into phofphoric acid. Such a light frequently is feen on putrefcent veal, when kept in a certain degree of warmth and moifture; and on the fea-weed placed on the oyffers packed in barrels, and fent into the country; and in the ftreets of Edinburgh, where the heads of the filh called whitings or haddies are frequently thrown out by the people, I have on a dark night eafily feen the hour by holding one of them to my watch.
2. The exiftence of phofphorus in vegetables was detected by Margraaf; who found, that many vegetable matters, particularly farinaceous grains, contain enough of the phofphoric acid to produce phofphorus, when they are expofed to great heat in clofe veffels. Macquer's Chemical Dictionary tranflated by Mr. Keir, Vol. II. p. 535, Art. Phofphorus. Phofphorus has been detected in gum arahic, fugar, honey, flour, and in every kind of vegetable or animal fubftance by the procefs of making the phofphorus of Homberg. And the exiftence of phofphorus in greater quantity in all the parts and recrements of animals, as in their flefh, dung, urine, and boneathes, and moft copioufly in the two latter, is evinced in the fabrication of Kunkel's phofphoru. Whence its univerfal exiftence is difcovered in thefe two great kingdoms of nature. See the above Dict. Art. Pyrophorus.

The moft eafy procefs for producing Homberg's phofphorus confifts in mixing three parts of alum with one of fugar, wh.ch are to be expofed to a great heat in a covered cracible, till a bluifh flame has appeared for fome time. It muft then be fuffered to cool a little, and be put into a dry hot bottle, and clofely fopped from the air. A drachm of this powder will afterwards, when poured from the bottle into the open air on paper, quickly kindle, become red like burning coals, and burn the paper, which it lies upon.

Hence we may conclude, that vegetable bodies, as well as animal
ones, contain acid of phorphorus; and that in this experiment the acid of the alum takes the fixed alkaline falt from the vegetable athes, and the calcareous earth, if fuch there be, and that the carbon unites with the oxygen of the phofphoric acid; and the vegetable phofphorus is left mingled with the earth of alum ; exactly in. the fame manner as the animal phofphorus is obtained from the athes of bones, or the falt of urine, by calcining them in clofe veffels with charcoal.
3. An important queftion now occurs; if this fimple material of phofphorus be not generally made in the veffels of vegetables, whencedo they acquire it? They may probably obtain it in confiderable quantity from the recrements of decaying vegetable and animal bodies; as it appears in rotten wood, and in putrefying fifh, and exifts in fuch large quantities in bone-arhes, and in the falt of urine. But I fuppofe there is another great fource of phofphorus, I mean in calcareous earth, which alfo has been of animal origin in the early ages. of the world.

If an oyfter-fhell be calcined for about half an hour in a common fire, and is then kept from the air in a cold place; when it is after wards expofed for a while to the funfhine, and brought into a dark room, it willappearluminous like the calcined Bolognian ftone; which is owing to the phofphoric acid thus deprived of its oxygen by the carbon of the fire-coals, and intermingled with the pure calcareous earth or lime of the fhell; and which again combining with the oxygen of the air, both light and heat are emitted in the reproduction of phofphoric acid. See Wilfori on Phofphori, Dodlley, London, 1795.

The Bolognian ftone is a felenite or gypfum, which confifts of vitriolic acid and calcareous earth, and I fuppofe of acid of phofphorus; fince on mixing the powder of this fone with gum arabic, and calcining it fome time, a kind of phofphorus is produced fimilar to the above, owing I fuppofe to the carbon of the fire coals, or of the gum arabic, carrying off the oxygen from the phofphoric acid; which preE.
vioully
vioufly exifted both in the calcareous earth of the felenite, and in the athes of the gum arabic.

Mr. Canton, in the Philof. Tranfact. Vol. LVIII. p. 337, publifhed his making a pyrophorus by calcining oyfter-fhells, and then mixing them reduced to powder with fulphur, and recalcining them in clofe veffels. This powder after being expofed to light, or heated by other means, became luminous in the dark for many minutes. By this procefs the acid of phofphorus exifting in the animal fhell had been decompofed by the red hot fulphur having robbed it of its oxygen ; and thus the phofphorus remained united with the calcareous earth.
M. Du Fay, in a memoir publifhed in the year 1730, afferts from experiments, that all calcareous ftones, whether they contain vitriolic acid or not, are capable of becoming luminous by calcination; with this difference only, that the pure calcareous ftones require a ftronger or repeated calcination; whereas thofe, which contain an acid, as felenites, or gypfum, become phofphoric by flighter calcination. M. Margraaf alfo afferts, that all kinds of calcareous ftones may by calcination be rendered phofphoric; but thinks, that the pure ones fhould be previoufly faturated with an acid. Keir's Dict. Art. Phofphorus. And laftly, fome kinds of fluor, which is known to confift of calcareous earth and the fluor-acid, emit phofphoric light on being heated nowly, but loofe it, when much ignited. (Kirwan's Mineralogy.) This material might probably as well as gypfum become ufeful in agriculture.
4. Thefe experiments, which fhew that all common calcareous Atones, which contain only carbonic acid, were rendered phofphoric by calcination ; but that thofe which did contain a fixed acid, as gypfum, and fluor, were rendered phofphoric with lefs difficulty, acquaint us firft with perhaps one very important ufe of lime in agriculture. Secondly, with that alfo of gypfum, or alabafter, which has lately been ufed in America and in Germany without previous calcination;

Sect. X. 5. $5 \cdot$

but which might probably be more fuccefsful after calcination. And thirdly, with the probable fe of fluor far in its recent or calcined fate. As there is reafon to believe, that the vegetable fyftem may abforb phofphorus from any of there materials; which phofphorus may originally have been of animal origin, as well as that which exits in feces and urine. And laftly, the ufe of recent thells or bones ground into powder, or of bone-athes, fpread on land may be deduced ; as they confift almoft entirely of phofphorus and calcareous earth.
5. In the converfion of thells into limeftone there feems to have been either fimply an additional quantity of carbonic acid attracted from the air or from water during the proceffion of ages, and added to the calcareous earth, or alto a diminution of the phofphoric acid. But an union of phofphoric acid only with lime has lately been found tocompofe whole mountains in Spain, which is mentioned by Fourcroy, and is now termed phofphate of lime, refembling bone-afhes. And M. Brumaire lately received from Spain a yellowifh tranflucent ftone, called chryfolite by the jewellers, which he found to contain nearly equal parts of phofphoric acid and calcareous earth, and to be a fear or crystallization of the phofphate of lime. And as the limestone at Breedon has lately been difcovered to contain equal parts of magnefia and lime, we may hope by greater attention to difcover a montain of phofphate of lime in our own country. See Nicholfon's Jour nat 179^{8}, p. 414.

From hence it would appear, that the immenfe quantities of limeftone in the world, which was originally formed from the Shells of fubmarine animals, has during the long lapfe of time loft more or leis of its original phofphoric acid, and acquired more or leis carbonic acid. The carbon diffolved in the atmofphere or in the ocean having thus lowly decomposed the phofphoric acid in the elaboratory of natore without great heat, as it does in our crucibles in a fort time by the affiftance of great heat.

> E ez

It is probable that much phofphorus may be confumed in our inartificial mode of burning lime, which might be preferved by calcining limeftone in clofe veffels, and thus detaching the carbonic acid without admitting the aerial oxygen to the phofphorus; but the advantage to agriculture of fuch a procefs can only be determined by experiment.

There are many inftances given by Mr. Anderfon, and by Lord Kaims, of foils which are faid to have been for ages uncommonly fertile without addition of manures or culture. Thefe are plains near the fhore in the county of Caithnefs, and in the Hebrides, and are faid to confift almoft entirely of thells broken into very fmall particles, without almoft any mixture of other foil. See Encyclop. Britan. Art. Agricult. Now the foil of an extenfive country called Lincoln Heath I obferved fome years ago to confift in a great degree of powdered limeftone, which like the Ketton limeftone appeared in fmall rounded particles, which I fuppofe had in remote times been diffolved in water, and again precipitated; which thews a probable difference between this lime and recent fhells in refpect to their antiquity, and confequently that the former muft contain much of the original phofphoric acid, and the latter only carbonic acid. And as Lincoln Heath was then efteemed a very unproductive foil, there is reafon to infer that the phofphoric acid in recent fhells is of greatly more fervice to agriculture than the carbonic acid of alluvial limeftone, or than calcined lime alone.

Hence it is probable, that a greater quantity of phofphoric acid may exift in fome marles than in others, as well as in fome limeftones; thus the appearance of recent hells exifts in the lime near Loughborough in Leicefterhire, in the road to Nottingham, and in fome marles called fhell-marle; which muft therefore probably contain much more phofphoric acid, fo as almoft to refemble the bones of animals; and may thus be more friendly to vegetation. A piece of land is mentioned by Mr. Anderfon, that, after a thick coat of marle
laid on it, bore crops for thirty years without additional improvement, and I think it was called fhell-marle. See Encyclop. Britan. Agricult.
6. A medical philofopher, M. Bonhomme, has endeavoured to fhew, that the hardnefs of animal bones depends on the quantity of phofphoric acid united to calcareous earth, which they contain ; and that the rickets, a difeafe in which the bones become too foft, is folely owing to the want of it, or to the exiftence of the vegetable acid inftead of it. Annales de Chemie, Vol. XVII. May we not conclude, that the prefence of phofphoric acid in the vegetable fyftem muft be of importance ; becaufe it fo univerfally exifts in them, and may probably give firmnefs to liqueous as well as to offeous fibres? To which may be added, that M. Fourcroy believes, that the afhes of burnt vegetables, which have been fuppofed to confift of earth or clay, when the fixed alkali is wathed from them, are principally calcareous phofphorus, like thofe of animal bones. The fame is afferted by Lord Dundonald in his Connection of Agriculture and Chemiftry, p 25, who calls the infoluble part of vegetable afhes a phofphat of lime. This fubject is worthy further inveftigation.

VI. LIME.

Many of the principal ufes of calcareous earth in promoting the growth of vegetables have been already mentioned in this fection, which we fhall recapitulate with additions.

1. One great ufe of calcareous earth I fufpect to confift in its uniting with the carbon of the foil in its pure or cauftic flate, or with that of vegetable or animal recrements during fome part of the procefs of putrefaction; and thus rendering it foluble in water by forming an hepar carbonis, fomewhat like an hepar fulphuris produced by lime and fulphur, as mentioned in No. 4. 7. of this Sect. ; by which procefs
cefs I fuppofe the carbon is rendered capable of being abforbed by the lacteal veffels of vegetable roots.

The black liquor, which flows from dunghills, is probably a fluid of this kind; but I mean to fpeak hypothetically, as 1 have not verified it by experiment; and the carbon may be fimply fupported in the water by mucilage, like the coffee drank at our tea-tables; or may be converted into an hepar carbonis by its union with the fixed alkali of decaying vegetable matter, or by the volatile alkali, which accompanies fome ftages of putrefaction. See No. 10. 3. of this Section.
2. A fecond mode of its ferving the purpofes of vegetation I believe to be by its union with carbonic acid, and rendering it thus foluble in water in its fluid ftate inftead of its being expanded into a gas; and that thus a great quantity of carbon may be drank up by vegetable abforbent veffels.

In the practice newly introduced of watering lands by deriving flreams over them for many weeks together, I am informed that water from fprings is generally more effectual in promoting vegetation than that from rivers; which though it may in part be owing to the azotic gas, or nitrogen, contained in fome fprings, as thofe of Buxton and of Bath, according to the analyfis of Dr. Prieftley, and of Dr. Pearfon; yet I fuppofe it to be principally owing to the calcareous earth, which abounds in all fprings, which pafs over marly foils, or through calcareous ftrata ; and which does not exift in rivers, as the falts wafhed into rivers from the foil all feem to decompofe each other, except the marine falt, and fome magnefian falt, which are carried down into the ocean. The calcareous earth likewife, which is wafhed into rivers, enters into new combinations, as into gypfum, or perhaps into filiceous fand; and fubfides. Thefe folutions of calcareous earth in thofe waters, which are termed hard waters, and which incruft the fides of our tea-kettles, may poffibly alfo contribute
tribute to the nutriment of animals, as mentioned in Zoonomia, Part III. Article I. 2. 4. 2.
3. A third mode, by which lime promotes vegetation, I fuppofe may be afcribed to its containing phofphorus; which by its union with it may be converted into an hepar, and thus rendered foluble in water, without its becoming an acid by the addition of oxygen. Phofphorus is probably as neceffary an ingredient in vegetable as in animal bodies; which appears by the phofphoric light vifible on rotten wood during fome ftages of putrefaction ; in which I fuppofe the phofphorus is fet at liberty from the calcareous earth, or from the fixed alkali, or from the carbon of the decompofing wood, and acquires oxygen from the atmofphere; and both warmth and light are emitted during their union. But phofphorus may perhaps more frequently exift in the form of phofphoric acid in vegetables, and may thus be readily united with their calcareous earth, as mentioned in No. 5.6. of this Section, and may be feparated from its acid by the carbon of the vegetable during calcination, and alfo during putrefaction, which may be confidered as a flow combution.

The exiftence of a folution of phofphoric acid and calcareous earth in the veffels of animals is proved by the annual renovation of the fhells of crab-filh, and by the fabrication of the egg-fhells in female birds; and is occafionally fecreted, where it cements the wounds made on fnail-fhells; or where it joins the prefent year's growth of a fnailfhell to the part, where a membranous cover had been attached for the protection of the animal during its ftate of hibernation. And laftly, it is evident from the growth of the bones of quadrupeds, and from the depofition of callus to join them where they have been broken.
4. Lime in its pure fate is foluble in about 600 times its weight of water; and by a greater quantity of carbonic acid than is neceffary for its cryftallization, it is foluble in water in much greater quantities, as appears by the calcareous depofition of the water at Matlock:
lock; and may I fuppofe fupply a nutritious fubftance by uniting with mucilage or oil, either in the earth at the roots of vegetables, or on the furface of the foil, which may be gradually wathed down to them.

If a folution of foap be poured into lime-water, the oil of the foap combines with the calcareous earth, and the cauftic alkali is fet at liberty, according to the experiments of Mr. Bertholet; (fee Nicholfon's Journal, Vol. I. p. 170,) who concludes, that oil has a fronger affinity to calcareous earth than it has to fixed alkali. At the fame time it appeared, that a folution of the mild or effervefcent fixed alkali poured on this calcareous foap would decompofe it by twofold elective attraction; as the carbonic acid of the mild fixed alkali unites with the calcareous earth of the calcareous foap, and the oil unites with the pure or cauftic alkali.

Many arguments may be adduced to fhew, that calcareous earth either alone, or in fome of the ftates of combination above mentioned, may contribute to the nourifhment both of animals and vegetables. Firft, becaufe calcareous earth conflitutes a confiderable part of them, and muft therefore either be received from without, or formed by them, or both. Secondly, becaufe from the analogy of all organic life, whatever has compofed a part of a vegetable or animal, may again after its chemical folution become a part of another vegetable or animal; fuch is the general tranfmigration of matter!
5. There are other ufes of lime in agriculture, which may not be afcribed to it as a nutritive food for vegetables, but from its producing fome chemical or mechanical effects upon the foil, or upon other manures, with which it is mixed; as firt, from its deftroying in a fhort time the cohefion of dead vegetable fibres, and thus reducing them to earth; which otherwife is effected by a flow procefs, either by the confumption of infects, or by a gradual putrefaction. This is faid to be performed both by mild and by cauftic calcareous earth, as in the experiments both of Pringle and Macbride. It is faid that unburnt
unburnt calcareous earth forwards the putrefaction of a mixture of animal and vegetable matter. But that pure lime, though it feemed to prevent puttefaction, deftroyed or diffolved the texture of the flefh. Thus I am informed, that a mixture of lime with oak-bark, after the tauner has extracted from it whatever is foluble in water, will in two or three months reduce it to a fine black earth; which if only laid in heaps, would require as many years to effect by its own fpontaneous fermentation or putrefaction. This effect of lime muft be particularly advantageous to newly enclofed commons when firt broken up.

Mr. Davis, in the papers of the Society of Arts, Vol. XVI. p. 122, afferts, that on a common, which had been previoufly covered with heath, but was otherwife very barren, the effect of lime was very advantageous for about ten years, during which time the vegetable roots might be fuppofed to have been diffolved and expended; but that a fecond liming he obferved produced no good effect. It is probable the good effect might not be fo great, but I hould doubt the circumftance of its producing no good effect at all.

Mr. Browne of Derby has alfo an ingenious paper in the tranfactions of the Society of Arts, in which he afferts, that recent vegetables, as clover, laid on heaps and ftratified with frefh lime, are quickly decompofed, even in a few days. The heat occafioned by the moif. ture of the vegetables uniting with the lime I fuppofe quickens the fermentation of the vegetable juices, and produces charcoal in confequence of combuftion, fimilar to that frequently produced in new hayftacks, which if air be admitted burft into flame.

Secondly, lime for many months continues to attrad moifture from the air or earth; which it deprives I fuppofe of carbonic acid, and then fuffers it to exhale again, as is feen on the plaftered walls of new houfes. On this account it muft be advantageous when mixed with dry or fandy foils, as it attracts moifture from the air above, or
the
the earth beneath; and this moifture is then abforbed by the lymphatics of the roots of vegetables.

Thirdly, by mixing lime with clays it is believed to make them lefs cohefive; and thus to admit of their being more eafily penetrated by vegetable fibres.

Fourthly, a mixture of lime with clay deftroys its fuperabundancy: of acid, if fuch exifts; and by uniting with it converts it into gypfum, or alabafter.

Fifthly, when lime is mixed with a compoft of foil and manure, which is in the flate of generating nitrous acid, it arrefts the acid as it forms, and produces a calcareous nitre, and thus prevents both its exhalation and its eafy elutriation.

And laftly, frefh lime deftroys worms, fnails, and other infects, with which it happens to come in contact, and with which almort every foil abounds.
6. The various properties of lime above defcribed account for the great ufes of it on almoft all lands; except perhaps fome of thofe which already abound with calcareous earth.

On riding from Beckingham to Sleaford, and from thence to Lincoln, I was informed by three or four farmers, that lime had been tried, but was believed to be of no fervice in that country. Nor was I furprifed at this obfervation, as I had feen fragments of alluvial limeftone thrown out of every ditch on the road, which was of a loofe texture, confifting of calcareous fand, like the Ketton limeftone, rounded by friction, before it was confolidated into a mafs, the upper furface of which was broken into fragments, when it was raifed from the fea by fubterraneous fires, or by its cooling from a hot ftate or its drying from a moift one.

Thus, as I had ridden over one fingle alluvial limeftone above ten miles broad and above twenty long, the broken furface of which appeared in the bottom of almoft every ditch, I concluded, that the foil mult be calcareous earth mixed only with fome animal and vegetable
and become fo hard, that the tender plumula of growing feeds, ar the fine extremities of their roots, can not eafily penetrate it. This may occur more certainly in that kind of lime, which contains manganefe, and is therefore capable of fetting under water, as, I fuppofe, the barrow lime of Leicefterfhire, and agnes lime near Ahbourn in Derbyfhire.
7. The great and general advantage of lime in all foils and all fituations, except fome of thofe which are already replete with calcareous earth, or are too moift, can only be underftood from the idea already mentioned of its fupplying actual nutrition to vegetables; and this feems more probable, as it contributes fo much to the melioration of the crops, as well as to their increafe in quantity. Wheat from land well limed is believed by farmers, millers, and bakers, to be, as they fuppofe, thinner fkinned; that is, it turns out more and better flour ; which I fuppofe is owing to its containing more farch. and lefs mucilage.

Hence we perceive another very important ufe of lime in cultivation of land may be owing to its forwarding the converfion of mucilage into ftarch, that is to its forwarding the ripening of the feed; which is a matter of great confequence in this climate of hort and cold fummers. See Sect. VI. 3. and XVI. 3 -

In refpect to grafs-ground I am informed, that if a fpadeful of lime be thrown on a tuffock, which horfes or cattle have refufed to eat for years, they will for many fucceeding feafons eat it quite clofe to the ground; which is owing, I fufpect, to the grafs containing more fugar in its joints; or to the lefs acidity of all its juices.
8. There are not only fome other bodies, which poffefs a calcareous bafe, befides the common limeftone, as gypfum, fluor, boneafhes, and perhaps vegetable afhes; but there are others which are occafionatly united with carbonic acid, and may be detached from it by calcination, as the aerated barytes and magnefia. The laft in its calcined fate may poffibly be as ufeful in agriculture as the lime of
calcareous earth, with which I believe it is frequently mixed. For Mr . Tennant affured me a few days ago, that he had analyfed the limeftone of Breedon in Leicefterfhire, and found it to contain nearly as much magnefia as calcareous earth, befides fome manganefe; which is neverthelefs a lime much efteemed in this country both for architecture and agriculture. As magnefia exifts in fea-water, and in falt fprings, it may render thefe waters ufeful as a manure as well as the marine falt, which they contain. As fteatites or foap-ftone confifts principally of magnefia, perbaps this limeftone of Breedon may be: worth the attention of the porcelain manufactory.

This magnefian lime of Breedon is further worthy attention in the cultivation of land, and particularly where a foil abounds with vitriol of iron, or where it abounds with gypfum, as about Chelafton on the banks of the Derwent, and from Nottingham to Newark on the banks of the Trent, as the magnefian earth would unite with the vitriolic acid, and leave an ochre of iron in one cafe, and lime in the other; at the fame time a foluble falt, called Epfom falt, would be formed, which, according to the experiments of Dr. Home, promotes rapid vegetation. To fow a few pecks of gypfum reduced to powder on grafs land, as is done in America; and then to fow upon this twice or thrice as much Breedon lime, might be an experiment which might be advantageous in the part of Derbythire next to Leicefterfhire, where both of them are to be obtained at no great expence.
VII. CLAY, METALLIC OXXDES, NITRE, SEA-SALT.

1. The too great adhefion of the particles of argillaceous earth or clay renders it in its pure fate unfit for vegetation; as the tender fibrils of roots can with difficulty penetrate it, whence it becomes much improved for the purpofes of agriculture, when it is mixed with calcareous earth and with filiceous fand, as in marle.

It is commonly believed that lumps of clay become meliorated by being
being expofed to frof in its moitt ftate, which by expanding the water, which it contains, by converting it into ice is fuppofed to leave the particles of the clay further from each other. This however feems in general to be a miftaken idea, fince if the act of freezing be not very fuddenly performed, a contrary effect feems to occur, as noticed by Mr. Kirwan ; who obferves, " that clay in its ufual flate of drynefs can abforb two and a half times its weight of water without fuffering any to drop out, and retains it in the open air more pertinacioufly than other earths; but that in a freezing cold clay contracts more than other earths fqueezing out its water, and thus parting with more of it than other earths." Mineralogy, Vol. I. p. 9.

This curious circumftance, that water, as it cryftallizes, detrudes the clay, which is diffured in it, correfponds with other facts of congelation. Thus when wine, or vinegar, or common falt and water, or a folution of blue vitriol in water, are expofed to frofty air ; the alcohol, the acetous acid, the marine falt, and the calx of copper, are all of them detruded from the aqueous cryftals, and retieat to the central part of the fluid, or to that laft frozen, or into numerous cells furrounded with partitions of ice, as I have frequently obferved; whence it appears, that wet clay is in general rendered more folid and tenacious by being frozen, as well as when it is dried, and its moiture exhaled by too warm "a fun; and by both thofe circumcumftances becomes lefs adapted to the purpofes of agriculture.
2. In moft clays a kind of effervefcence occurs, after they are turned over, and thrown on heaps, and thus acquire air into their inteftines, which renders them much fitter for the purpofes of vitrification ; and thus forwards the proceffes of the brick-kiln and pottery. This greater facility to vitrify is probably effected by the union of oxygen with the iron, which moft clays contain ; as oxydes of lead and manganefe are ufed in the more perfect vitrifications.

The calciform ores, or oxydes, of iron, manganefe, and zinc, are frequently found near the furface of the earth, where they have been
ing
ang the
ofed toleave
his howerm
of freezing
to occur, 28
ts ufual fate
Water with.
air more per.
old clay cons.
nd thus part.
ol. I. p. و.
zes, detrudes
facts of con
and water, a
y air ; the d.
of copper, ar
etreat to the
ato numerous
atly obereved;
ed more falid
dried, and its
thofe circuint
-iculture.
after they 10
into their il 10
Ces of vititifor
n and potetry.
united with oxygen by the paffing currents of the atmofphere; and have been fuppofed to have originated from the decompofition of vegetables and animal bodies, as mentioned in Botanic Garden, Vol. I. additional note 18. Iron has been detected in all vegetable and animal matters, manganefe in fome of them; and, if we poffeffed a teft for difcovering fuch minute particles of zinc, as the maguet difcovers of iron, it is probable, that zine alfo would be detected in the vegetables, which grow over its beds.

As fome philofophers have lately contended for the great utility of oxygen in vegetation, as Humboldt and Von Ullar ; who affirm from their experiments, that hyper-oxygenated muriatic acid ufed in fmall quantities promotes both the growth and irritability of plants; there is reafon to fufpect, that the calciform ores of iron, manganefe, and zinc, as well as minium, and other calces or oxydes of metals made by fire, and even burnt clays, when ftrewed on the ground, may contribute to vegetation by their parting with their abundant oxygen in a fluid, not in a gaffeous form; which uniting with carbon, or phofphorus, or nitrogen, without emitting perceptible heat or light, might fupply nutritious fluids to the roots of vegetables; further experiments are wanted on this fubject. But I am well informed, that a red ocher of iron, called raddle, has been ufed on fome lands with advantage in the north of Staffordhire; and fhould recommend a trial of manganefe in thofe countries, where it abounds, as near Kingfbury, and near Atherfone in Warwickfhire ; and a trial of lapis calaminaris, where it abounds, as near Matlock in Derbythire; and even of the ealciform ore of lead, which is found in Anglefey, and on the top of fome other lead mines.
M. Humbold afferts, that he mixed many feeds into a kind of pafte with the black oxyde of manganefe, and poured over it the muriatic acid diluted with water, in the proportion of about fix of water to one of acid; and that much oxygen was thus difengaged, and occafion-
ed quick vegetation. Journal de Phyfique, 1 293. See No. 2. 8. of this Section.
3. When clays are turned up with the fpade, as is ufual in preparing them for the brick kiln, a kind of effervefcence occurs, as mentioned above; which is probably owing to the efcape of the azote of the air imprifoned in the interftices, as the oxygen unites with fome metallic particles in the clay; or to fteam raifed from the water in the clay by the heat fet at liberty from the combination of the oxygen and the iron. This union of oxygen with iron is curioufly almoft vifible in many granates or porphyries; which I have feen thinly fcattered in large nodules near Cannock in Staffordhire, in the road from Lichfield to Shrewsbury; and on breaking them have obferved no appearance of iron on the newly divided furfaces; but which in a few days acquired an ochery appearance on them, which penetrated nearly half an inch. This can not but be afcribed to the oxygen of the atmofphere having united with the iron in thefe ftones, which by their fmell, when breathed upon, contain indurated clay, and having converted into an oxyde either the clay itfelf, or fome metallic particles included in it.

There is neverthelefs an exhalation from clay, and perhaps from moft foils, when they have been previoufly dried, and then fprinkled with water, as after a hower in fummer, which has been fuppofed to be falubrious to invalids and convalefcents. This remarkably occurs, when dry clay is breathed upon even in its moft indurated ftate, as in granites and porphyries, by which criterion thefe ftones are immediately diftinguifhed from the filiceous and calcareous ones. This I imagine is produced by the heat fet at liberty by the combination of dry clay and water, like that produced in fo much greater degree by the combination of lime and water; and that this heat raifes a part of the acquired moifture into fteam, in which are diffolved the odorous particles; both which probably caufe the quick vegetation on clayey foils after the fhowers in fummer.

When
that the heat emitted from the burning vegetable fibres unites oxygen with the clay; which latter forms more than half of the flices of turf, as they are dug from the ground. In other refpects the paring and burning of grafs grounds would certainly be a wafteful procedure; as much carbon is converted into carbonic acid, and difperfed along with the uninflamed fmoke or foot, and nothing left but the vegetable athes. From thefe confiderations it would probably be worthy experiment in farms, where coal and clay abound, to burn the latter to a certain degree; which might fupply an exhauftlefs fource of profitable manure.
5. I have fufpected alfo, that this calcined clay, as it exifts in foft bricks, has a powe: of decompofing marine falt, as I once obferved in a cellar, where beef had been long falted on one fide of a nine-inch wall, the wooden falting-tub for which was attached to it ; that a great efflorefcence appeared on the other fide of the wall, which I believed to be foffile alkali or natron. If this idea be juft, the foft bricks from old buildings, or clays fo far purpofely burnt, may in this manner be ferviceable to vegetation, by feparating the foffile alkali from the fea-falt, which is wafhed from decompofing animal and vegetable fubftances; which by converting carbon into an hepar carbonis, as lime is fuppofed to do in No. 6. I. of this Section, might render it foluble in water, and capable of being abforbed by the lymphatic veffels of the roots of plants.

If clay calcined to a certain degree, and thus united with oxygen, poffeffes the power of decomporing marine falt, there is reafon to believe, when it is more flowly united with oxygen by its expofure to the atmofphere by the fpade or plough, that it may poffefs the fame property; and that this may have given rife to the very contradictory reports concerning the ufe of fea-falt in agriculture; as it may probably be of great advantage to clayey foils, but perhaps not fo to other foils. See Sect. XIV. 2.8.
6. Another faline body, which readily unites with argillaceous earth
earth in the fire, is falt of urine, commonly called microcofmic falt, which acts as a flux diffolving clay with confiderable effervefcence. Kirwan's Mineralogy, Vol. I. p. 9. This microcofmic falt confifts of phofphoric acid united with an ammonical, or with a calcareous bafe; and muft in the latter cafe refemble the phofphat of lime, of which there are whole mountains difcovered in Spain, as mentioned in No. 5.5. of this Section; and of which many may probably be difcovered in our own country. Now as the fame combinations of matter, which are quickly formed by the heat of the chemift's furnaces, are often performed, though more flowly, in the elaboratory of nature; it is probable, that if this calcareous phofphorus could be procured in this country, reduced to powder, and fpread on our clay lands, that it might more than any other calcareous matter render them friendly to vegetation, like the athes of burnt bones; which experiment alone can determine.
7. As clay is lefs adapted to the growth of the roots of plants by the too great cohefion of its particles, this may be in fome degree corrected by frequently expofing it to air imprifoned in its interftices, as by turning it over by the plough or fipade. Another method is by planting on it fuch vegetables firft as are known to grow well in clay, as beans, and as their roots are afterwards left in the clay, they not only thus form tubes in it, fo as to render the mafs lefs cohefive; but add to it fo much carbon, and thus rather enrich than impoverifh it. Add to this that the lower leaves of the denfe foliage of thefe vigorous vegetables are believed to give out much carbonic acid by their refpiration in the fhade fimilar to the refpiration of animals; which perpetually finking down upon the furface of the foil is believed to fupply it with carbon; and thus alfo to render it more nutritive to other vegetables, which may afterwards grow upon it.

Lord Kaimes, who allows that clay, if it be moiftened after it has been pulverized, becomes on drying as indurated and cohefive as

$$
\mathrm{Gg}_{2}
$$

before,
before, afferts, that this does not happen, if it be moiftened with the fluid, which efcapes from dunghills; which may be owing both to the carbon, and to the fixed vegetable alkali, which that fluid contains. And alfo adds, that lime will prevent the cohefion or induration of clay, and therefore greatly improves argillaceous foils for all the purpofes of agriculture.
8. When clay abounds with vitriolic acid fo as to be converted into alum, it becomes very unfriendly to vegetation. In this flate it is believed much to counteract the procefs of putrefaction in animal bodies, as is faid to have happened in fome burying grounds. This it may effect by uniting with the ammonia generated by putrefaction the moment it is formed, or by preventing its production; as when the falt of Neville Holt water in Leicefterfhire, which I fuppofe is alum, is mixed with very putrid blood, as I once witneffed, the putrid fcent was inftantly deftroyed, as I fuppofe the argillaceous earth was precipitated.

Where this acid or aluminous clay abounds, it is believed to check the vegetation of trees as well as of herbaceous plants by eroding the fine extremities of their roots, as mentioned in Sect. H. 9. which is perhaps beft to be remedied in gardens by wood-athes or foap-fuds, and in larger fields by mixing lime, or chalk in powder, or the fweepings from roads, which are repaired by limeftone, with thefe aluminous clays. Or laftly, where it can be procured, by mixing with them fuch lime as that of Breedon in Leicefterfhire, which confifts of equal parts of magnefia and calcareous earth, which would thus fabricate what has been termed Epfom falt, which is faid to be friendly to vegetation.
VIII. MANURES BY SPONTANEOUS DECOMPOSITION.

We fhall now confider more generally the decompofition of organized matter, which vegetable and animal bodies fontaneoufly undergo,
dergo, when they ceafe to live. The proceffes of this decomposition have commonly been divided into the vinous, acetous, and putrefacfive fermentation; which have been fuppofed uniformly to fucceed each other. But it is more probable, that different kinds or parts of dead organized matter may be fubject to many different kinds of chemical changes, and that there may vary with the degrees of heat, and the quantity of water, and of air, with which they are furrounded.

1. In the fomachs of animals a faccharine procefs precedes the vinous fermentation; which left only occurs, when the animal power of digeftion or absorption is for a time fufpended. A fimilar process occurs in the germination of vegetable roots, whereby meal is converted into fugar, as in the malt-houfe; and in the gradual ripening of apples and pears, after they are plucked from the tree; but all there may be fid to be fill alive; and this change of meal or of mucilage into fugar may thus be efteemed a vegetable rather than a chemical procefs.

The art of cookery, by expofing vegetable and animal fubftances to heat, has contributed to increafe the quantity of the food of mankind by converting the acerb juices of rome fruits into fugar, as in the baking of unripe pears, and the bruifing of unripe apples; in both which fituations the life of the vegetable is deftroyed, and the converfion of the hart juice into a fweet one mut be performed by a chemical process; and not by a vegetable one only, as the germinaton of barley in making malt has generally been fuppofed.
Some large round auftere pears were yefterday, November 20, fhewn me after having been nine hours in the oven behind a kitchen fire covered forme inches with water in a fteam-pot. On tatting them they were fret, and foft, and appeared to have had at leapt the heat of boiling water. They were replaced in the oven, and kept in it twelve hours longer; and then became nearly as fleet as syrup or treacle; which might in part have been occafioned by the
evaporation of half the water. From this curious circumftance there feems reafon to conclude, that in a degree of heat about that of boiling water the faccharine procefs may fucceed; and at the fame time that the procefs of fermentation may be prevented from exifting; which I hope may induce fome chemical philofopher to invertigate by experiments this curious and important fubject.

Some circumftances, which feem to injure the life of feveral fruits, feem to forward the faccharine procefs of their juices. Thus if fome kinds of pears are gathered a week before they would ripen on the tree, and are laid on a heap and covered, their juice becomes fweet many days fooner. The taking off a circular piece of the bark from a branch of a pear-tree caufes the fruit of that branch to ripen fooner by a fortnight, as I have more than once obferved. The wounds made in apples by infects occafion thofe apples to ripen fooner ; caprification, or the piercing of figs, in the ifland of Malta, is faid to ripen them fooner ; and I am well informed, that when bunches of grapes in this country have acquired their expected fize, that if the ftalk of each bunch be cut half through, they will fooner ripen.

The germinating barley in the malt-houfe I believe acquires not half its fweetnefs, till the life of the feed is deftroyed; and the faccharine procefs then continued or advanced by the heat in drying it; though I have lately been informed that fome grains of malt will vegetate after having been dried in the ufual manner, which however may have been owing to their not having been previoufly fuffered perfectly to germinate. Thus in animal digeftion the fugar produced in the ftomach is abforbed by the lacteals, as faft as it is made; otherwife it ferments and produces flatulency; fo in the germination of barley in the malt-houfe fo long as the new plant lives, the fugar I fuppofe is abforbed, as faft as it is made; but that which we ufe in making beer is the fugar produced by a chemical procefs after the death of the young plant, or which is made more expeditioufly than the plant can abforb it.
horfe dung and ftraw, was become too cold for the growth of his pots of cucumbers. He was defired fimply to turn over the bed, and fhake every part of it in the air with his fork, as he lightly replaced it. This was complied with, and in a few days I obferved by touching a ftick, which had for fome hours been inferted into it, that it had acquired the ufual heat of a hot-bed.

This addition of heat was doubtlefs acquired from the air, which was recently included in the interftices of the bed by its being turned over, broken into fmall pieces, and expofed to the atmofphere; whence new acids feem to have been generated, and carbon, and perhaps phofphorus and nitrogen, rendered foluble in water. Great heat is produced from the union of oxygen with thofe bafes of acidity, which in large flacks of new hay is often known to excite real combuftion ; the violent fermentation of which may be partly owing to the fugar, which is depofited in the joints of grafs before the feeds are ripe for their nourifhment, and partly to a chemical production of fugar, as above defrribed.
3. In the putrefactive procefs carbon is not only converted into carbonic acid, as above related; but there appears to be a decompofition of water, as is known by the fmell of hydrogen; and it is probable, this inflammable body may unite with carbon, as in hydrocarbonate gas, and thus render them both foluble in water, and abforbable by the veffels of vegetable roots, without their paffing into an acid or gaffeous form, and may much contribute to the nutriment of vegetables.
4. There alfo appears at the end of the putrefactive procefs to be a junction of azote with oxygen producing the acid of nitre, which probably may contribute much to promote vegetation. This appears from the mode of procuring that acid in France and Pruffia, and which might be fuccefsfully practifed under every fhed in our own farm-yards; as it confifts in a due mixture of vegetable and animal recrements with foil, frequently turned over to expofe it to the air,
while it is defended by a fhed from the funfhine and rain; which is thus at the fame time adapted to produce the quickeft vegetation, and to generate the nitrous acid.

The oxygen, which compofes nitrous acid, is believed to adhere more weakly to its bafe the azote, than in the compofition of other acids. On this account it fo readily explodes by its junction with carbon in a given degree of heat. This loofe adherence of the oxygen in nitrous acid, like that of hyper-oxygenated marine acid, and of the oxygen in the ore of manganefe, and of fome other metallic oxydes, may adapt them to promote vegetation by their more readily parting with this material fo effential in the compofition of plants.
5. From the above obfervations it appears, that when the foil is turned over by the fpade or plough, and thus acquires atmofpheric air in its interftices, and in confequence becomes warm by the production of new acids, that the feeds or plants fhould be inferted as foon as convenient, for the purpofe of their receiving the moft falutary effect of thofe operations. Nor fhould this be obferved only in black garden mould, or well manured glebes, where carbon or phofphorus may be fuppofed to abound, and a proper difpofition for the production of the nitrous acid, but in thofe clays alfo which are pure enough for the brick-kiln or the pottery.

IX. MANURES BY CHEMICAL DECOMPOSITION.

The ufe of fire and water contributes to increafe the nourifhment of mankind by rendering many vegetable materials innocuous, and others digeftable in the animal fomach; and feems particularly efficacious in promoting the faccharine procefs, and in producing mucilage from griftles, horn, hair, and perhaps even from bones by means of Papin's digefter. Whether this art could be advantageoully ufed for the purpofe of rendering manures capable of being abforbed by Hh vegetable
vegetable roots in a ftate of lefs decompofition, than by the flow procefs of putrefaction, is a queftion of curiofity and utility.
Sugar and mucilage are certainly abforbed by vegetables without their being refolved into the elements, from which they were compofed; as appears in the fap-juice which flows from the wounds of birch and maple trees in the vernal months; which I am informed will pafs into fermentation and produce wine; a procefs which fome modern chemift affirms cannot be effected by fugar alone without the addition of mucilage. The abforption of mucilage feems to occur in the germination of many feeds, as of barley; a part of the meal of the cotyledon is evidently converted into fugar, but another part of it is probably abforbed in the form of mucilage; fome of which oozes on breaking the plumula; and in the growth of thofe feeds, which contain oil, as in almend, hemp, rape, and line-feed, it is probable, a part of the undecompofed oil may be abforbed by the umbilical veffels of the embryons in thofe feeds.

It hence feems credible, that by the ufe of heat and water the art of cookery might furnifh mucilage, fugar, and oil, from vegetable or animal materials; which might be converted into fap-juice or chyle, without their being previoufly reduced into their elements; and might thus facilitate the more luxuriant growth of plants, as they contribute more to fatten animals, than materials of lefs combination.
2. To this might be added, that the putrefactive procefs may be forwarded by heat in fome materials by deftroying the life of the material; as in roafting apples and pears, and in killing the roots of potatoes, or the feeds of corn. Thus Mr. D-, a friend of mine, had twenty ftrikes of potatoes, which he wifhed to dry on a maltkiln, hoping to render them more like the meal of wheat, and better to preferve them during the fummer-months. Whether they were fufficiently dried he did not attend to; but they were carried into a granary, and laid on heaps: and in a week or two became fo putrid, that
that the fmell was infufferable, his fwine refufed to eat them, and he was obliged to add them to the manure of the dunghill.

That potatoes, which have undergone a certain degree of heat, contribute more to fatten all kinds of animals, arifes from the acrimony of their rinds being deftroyed, and from their auftere juices being converted into mucilage, and perhaps a part of their mucilage into farch, and are hence ready for the faccharine and oily proceffes of animal digeftion. A very convenient method of expofing them to fteam is defcribed in a late ingenious publication of the Agricultural Society. A fmall boiler is fet in brick work under a fhed, fo that the flame of wood or coal may pafs fpirally round it. It fhould be covered with a double lid of tin or wood to prevent much heat from efcaping; and may have a fand-joint to keep the fteam in, or a little moift clay, or even a wet flannel put circularly round the cover may anfwer this purpofe.

Near this furnace is to be fixed a large barrel on one of its ends, with a cover on the other end; which may be occafionally opened to admit potatoes, and clofed again fo as to confine the fteam, which is to be derived into it from the boiler by a double pipe one within the other, of tin or wood, about two inches in diameter. By thefe means a large quantity of potatoes may be rendered much more nutritive to animals, and I fuppofe to vegetables (if they were ufed as manure), as they may thus probably be abforbed by their lacteals or lymphatics without being fo much decompofed as by the putrefactive procefs; and thus produce nutriment in lefs time, and by lefs labour of digeftion.

If the feam could be made hotter than boiling water, which it poffibly may in the veffel above defcribed, if the water in it rifes but a few inches, and the fteam after it is produced, is heated above 212 degrees by the fides of the boiler above the water, round which the flame plays firally, the feam thus made hotter might probably render the potatoes more mucilaginous or more flarchy.

$$
\mathrm{Hh}_{2}
$$

3. A ftill more effectual method of diffolving hard vegetable and animal fubftances, and rendering them nutritive, might be by digefting them for fome time in water raifed to a much greater heat than that of boiling. This is to be done in a clofe velfel, called Papin's digefter ; in which it is faid, that the confined water may be made red hot ; and will then diffolve hair, horns, hoofs, bones, tortoifefhell, and all animal, and perhaps many vegetable matters; which might thus facilitate their decompofition for the purpofes of manures, or for the nutriment of many animals; and might even contribute to the food of mankind in times of fcarcity. This veffel fhould be made of iron, and fhould have an oval opening at top, with an oval lid of iron larger than the aperture. This lid fhould be flipped in endways, when the veffel is filled, and then turned, and raifed by a fcrew above it into contact with the under edges of the aperture. There fhould alfo be a fmall tube or hole covered with a weighted valve to prevent the danger of burfting the digefter.
4. Other materials might be rendered more eafily digeftible, and thence more nutritive to animals, and perhaps to plants, by mechanic trituration as well as by cookery; if the labour and expence were not too great ; as the grinding of graffes, ftraws, and farinaceous feeds into powder between mill-ftones; which have been called the artificial teeth of fociety. It is probable, that fome foft kinds of wood ground into powder, and efpecially when they have undergone a kind of fermentation, and become of loofer texture, or boiled to deftroy their acrimony, might be rendered ufeful food for fwine or horfes, and even for mankind in times of famine.

Nor is it improbable, that hay, which has been kept in ftacks, fo as to undergo the faccharine procefs, may be fo managed by grinding and by fermentation with yeaft like bread, as to ferve in part for the fuftenance of mankind in times of great fcarcity. Dr. Prieftley gave to a cow for fome time a flrong infufion of hay in large quantity for her drink, and found, that the produced during this treatment
above double the quantity of milk. Hence if bread cannot be made from ground hay, there is great reafon to fufpect, that a nutritive beverage may be thus prepared either in its faccharine fate, or fermented into a kind of beer.

It may be here obferved, that it is believed by fome, that feeding horfes with ground corn, as with the flour of beans or oats, does not ftrengthen them nearly fo much as by giving them the fame quantity of oats or beans whole. Parkinfon, Exper. Farmer, Vol. I. p. 227. It is afferted alfo that foup, with the flefh-meat boiled down into a fluid mafs, will give much lefs frength to a man, than he would acquire by eating the folid meat, of which the foup was made. The reafon of both thefe feems to arife from the faliva being well mixed with the mafticated food, and in greater quantity; which therefore becomes more animalized aliment, than that diffolved in water alone, and is more eafily converted into nutriment.

In times of great fcarcity there are other vegetables, which though not in common ufe, would moft probably afford wholefome nourifhment, either by boiling them, or drying and grinding them, or by both thofe proceffes in fucceffion. Of thefe are perhaps the tops and the bark of all thofe vegetables which are armed with thorns or prickles, as goofeberry-trees, holly, gorfe, and perhaps hawthorn. The inner bark of the elm-tree makes a kind of gruel. And the roots of fern, and probably very many other roots, as of grafs and of clover, taken up in winter, might yield nourihment either by boiling or baking, and feparating the fibres from the pulp by beating them; or by getting only the farch from thofe which poffefs an acrid mucilage, as the white briony.

The grinding of bones to powder has already been applied to agriculture, and the chopping of woolien rags; and I fuppofe the trituration of alabafter, and of chalk, and of foft bricks, and probably of iron ochres, manganefe, and calamy, might well repay the labour ; after
after a few experiments had been inflituted to determine the quantity, which fhould be ftrewed on different foils.

X. MANURES BY INSECT PROPAGATION.

I. That the continual growth and decay of animal and vegetable mature increafes the quantity of fuch matter, as is fit for the reproduction of organized bodies, is evinced by the increafing fertility of cultivated countries; fince even in thefe a great quantity of the annual recrements of decompofed animals and vegetables are wafhed by rains from the foil, and carried down the rivers into the ocean; and in many fituations of foil in Africa and America, which have been but lately cultivated, there exifts a wonderful fertility from the aggregate remains of vegetable and animal bodies; which have for uncounted ages arifen and perifhed there ; and which have either left moraffes, where they could not part with their fuperabundant water; or a fertile earth, fuch as in our gardens and church-yards, where the declination of the ground was more favourable.

Some countries on the contrary once highly cultivated and very populous are in procefs of time become deferts of fand; as many parts of Syria, and the diftricts about Palmira, and Balbec. This has probably been owing to the want of the neceffary moifture in thofe warm and fandy regions; which was formerly fupplied by artificial derivations of water; but which ceafed, after their inhabitants were deftroyed by war and tyranny; and fecondly to the rapid ftreams occafionally poured over them by the monfoon floods; fimilar to thofe which impoverifh Abyffinia and Nubia, while they fertilize the flat and fhowerlefs provinces of Egypt.

We might add, that all calcareous ftrata are now believed to have been produced by fhells depofited by aquatic animals in the early ages of the world; and that the materials, which conftitute the ftrata above ne the guane and vegetedye for the reppo. ing fertility of ity of the is. are wathed by te ocean; and ich have been om the agrife have for un. ave either leff rabundant was church-gards, able. ated and refy fand; as many pec. This has oifture in thole ed by artificial habitants yeli pid Areams 0° fimilar to thote ertilize the

Sect. X. ro. 2. MANURES. 239 them, have afterwards been formed by the recrements of terreftrial animal and vegetable bodies. Whence it may be concluded, that vegetables and animals during their growth increafe the quantity of matter fit for the more nutritive food of organized bodies, or of that which is lefs decompounded ; while they mult at the fame time occafionally form or elaborate a part of the materials, of which they confift from the fimple elements of hydrogen, nitrogen, carbon, phofphorus, fulphur, and oxygen; into which modern chemittry has refolved them by analyfis.

And laftly, that vegetables can acquire nutrition from water and air alone with the carbonic acid, which floats in them, appears by the experiments of thofe philofophers, who have nicely enclofed the roots of fome plants in pots, and moiftened them with diftilled water; and from hence we learn an effential diftinction between vegetable and animal nature ; the former can elaborate the two univerfal elements of water and air into nutritive juices, whereas the latter is neceffitated to feek more compound nutriment, and to live upon the vegetables, which have produced it.
2. One method therefore of increafing manures may be by repeatedly propagating and deftroying vegetable crops; as by raifing thofe of quick growth, and ploughing them again into the foil during their faccharine and mucilaginous flate, before they ripen their feeds; as of vetches, and buck-wheat ; vicia and polygonum ; and thus producing a fucceffion of crops by the partial decompofition of the preceding ones. And it is probable that this procefs might be much improved by ftrewing lime over the recent vegetables, at the time of ploughing them in, as is fhewn in No. 6. 5. of this Section.
3. Another mode by which vegetable matter may be decompofed in the fummer months, and at the fame time the quantity of manure increafed, is by the depredation of infects, as is feen in wood, which is fo far decompofing as to become tender, and is then confumed by various kinds of infects, whether it be buried beneath the foil, or ex-

> pofed:
pofed to the air. And I fufpect, that the excrement and the bodies of fuch infects would fupply more nutriment to vegetable roots, than if the vegetable recrements were left to their fpontaneous or chemical diffolution; as I fuppofe the bitter excrementitious powder in a filbert, and the well fed maggot, before it erodes its way out, would fertilize more barren foil than an emulfion of the kernel.

An ingenious obferver of nature conveyed water on a dunghill in the fummer months in fuch quantity, as to make a kind of femifluid chaos, for the purpofe of animating the whole mafs. It became full of infects, and was ufed in the autumn as manure, and he believed with much greater powers, than it would have otherwife poffeffed.

Hence in the fummer months a manure-heap may be advantageoully fupplied with water for the purpofe of encouraging the propagation and nourifhment of myriads of infects; but in the winter feafon it fhould not be expofed to much moifture ; or that which drains from it fhould be derived fpontaneoully on lower grounds, or conveyed to higher ones by pumps or water carts; as it probably confifts of a folution of carbon by means of vegetable alkali ; or of a mixture of it in water by mucilage; and is thought to fertilize the ground more than the other parts of the manure heap. In the tranfactions of fome provincial Society there is an account of much fixed vegetable alkali having been obtained from the evaporation of the water, which oozed from dunghills; and M. Rouelle has obferved, that fixed alkali diffolves a confiderable quantity of charcoal by fufion. Fourcroy's Elem. of Chemift. Vol. IV. p. 125.
4. Another great fource of infect-manure may be obtained from the myriads of fmall fifh, by thofe who live near the ocean ; which by mixing them with foil fo as to make what is termed a compoft, will much add to the fertility of the land, on which it is afterwards fpread, more fo perhaps than any other material except the flefh of land-animals. In China it is faid that the fpawn of filh in the proper feafon
brought to market, and purchafed for the purpofe of peopling the floods on their rice grounds with filth, part of which becomes large enough to be fried and eaten by the land cultivator; and the reft ferves the purpofe of fertilizing the foil, when the floods are drawn off, by their death and confequent decompofition.

XI. PRESERVATION OF MANURES.

I. 'The fertility of all countries depends on the faving and ufing thole kinds of matter, which are fit for the reproduction of organizeed bodies. There is a proverb in China, that for this purpofe a wife man faves even the parings of his nails, and the clippings of his hair.

One great waste of manure in this country, and in molt others, is from the frequent rains walling down the diffufible and foluble parts of the foil into the muddy rivers; fo that every flood from fudden flowers carries into the fa many thoufand pounds worth of the matter of fertility; and thus diminishes fo much the food of terreftrial animals, however it may add to the fuftenance of marine ones. The Delta of Egypt, and a diftrict in South America near the foot of the Andes mentioned by Ulloa, are faid by the fituation of the furrounding country to be free from rain, though they have frequent dews; and to this circumftance they may in part owe their increafing fertility.

In this country the fnow-floods, which occur after a continued froft, are left injurious than thofe from rains; as the ftreams of water from the upper furface of the diffolving ice flows over the under furface of it not yet diffolved ; and the foil is not agitated as in rain by the percuffion of the defending drops; infomuch that in frowfloods the rivers are fcarcely muddy; whence thee floods may be readily diftinguifhed from land-floods by the eye, and are much lefs injurious.

Great attention Could therefore be flew to the preventing fall
Ii flowers
fhowers from waning away the foluble parts of good foil. For this purpofe all hills fhould be ploughed horizontally, and not in afcending and defcending furrows. Defcending plains of grafs-ground might alfo be laid with horizontal ridges and depreffions; by which management fhowers will lie a few hours in the horizontal furrows or depreffions, and either exhale or foak into the ground; and in very wet feafons thefe may eafily by the fpade be opened into each other, if the water is found to lie too long upon them, fo as to produce too much cold by its evaporation, or too great foftnefs by its abforption into the foil.
2. Secondly, the manures of towns and cities, which are all now left buried in deep wells, or carried away by foughs into the rivers, Should be removed by a police, which is faid to exift in China; and carried out of towns at ftated intervals of time for the purpofes of agriculture; which might be performed in the night, as is done in Edinburgh; or by means of large bafons or refervoirs at the extremities of the common fhores, or foughs for the reception of the manure, before it is wafhed into rivers. See Embaffy to China by fir G. Staunton, Vol. III. p. 308, 8vo. edit.

It has been believed by fome writers in the American Medical Repofitory, that the peftilential fever, which has of late infefted that country, was in part produced or propagated by the filth of the ftreets of New York. Dr. S. L. Mitchill adds to his chemical remarks on manures, " it muft be welcome intelligence, that the collected mafs of nuifance, which we are now with fuch happy fuccefs engaged in removing from the city of New York, is convertible by the powers of vegetation from poifon to wholefome articles of food; and thus the purity and healthinefs of the towns may contribute to the thriftinefs and wealth of the furrounding country." Medical Journal, No. I.
3. Thirdly, there fhould be no burial places in churches or in church-yards, where the monuments of departed finners fhoulder

God's

God's altar, pollute his holy places with dead men's bones, and produce by putrid exhalations contagious difeafes among thofe who frequent his worfhip. But proper burial grounds fhould be confecrated out of towns, and divided into two compartments, the earth from one of which, faturated with animal decompofition, fhould be taken away once in ten or twenty years, for the purpofes of agriculture; and fand or clay, or lefs fertile foil, brought into its place.

A great rife of the foil, from the remains of the bodies entombed in it, is feen round the churches of almoft all populous towns; fo as to have rendered it neceffary to defcend by feveral fteps into thofe churches, which were originally built fo as to require fteps to afcend into them; as may frequently be feen by the bafe of the architecture. Nor would the removal of this earth, if the few bones, which might be found, were again buried for a further decompofition, be likely to fhock the relations of the deceafed; as the fuperftition concerning the earth, from which we rofe, and into which we return, has gradually vanifhed before the light of reafon; as occurred about thirty years ago in removing much rich earth from the clofe of the cathedral at Lichfield, and more lately in changing a burying ground at Shrewfbury; both which were executed without fuperfitious terror, or popular commotion.
4. Fourthly, a great wafte of the materials of fertility occurs in all countries, and cannot eafily be avoided, in the confumption by fire of fo much wood inftead of coal. Whence the mucilage, and other nutritious juices, which exift in the fire-wood, are decompofed into their elements; and the carbon united with oxygen is diffufed in the atmofphere, and in part carried by the winds into the furrounding ocean; inftead of the manures occafioned by the flow decompofition of it upon or beneath the foil, or by the depredation of infects; which might fupply lefs decompofed nutriment to the abforbent roots of plants.

This may be more eafy to conceive, if we compare the little vegeI i 2 table
table nutriment, which could be derived from the fmall quantity of afhes left from a cart-load of burnt-ftraw, with that which would arife from the fame quantity of ftraw mixed with fome animal recrements, and made into a manure heap. A fill greater diminution of ufeful manure would be made by burning fhavings or rafpings of horn, or woollen rags, or hair, or flefh; as a nutritive mucilage would be thus decompofed into its elements, which might otherwife have been gradually diffolved beneath the foil, and abforbed by the roots of vegetabies nearly in an unaltered ftate; as jellies and mucilage are known to be drank up by the lacteals of animals; and, when drank in too great abundance, to appear almoft unchanged in their urine.

It muft hence appear, that the numerous fires of a great city, if fupplied with wood inftead of coals, as in Paris, muft very much impoverifh a great part of the councry which fupplies it; not only in the neceffity of ufing large tracts of land for the growth of fire-wood, but alfo becaufe fo fmall a part of it returns as manure. There is a provident adage of general benevolence, "Burn nothing which any animal will eat;" that is, "Burn nothing which may nourih animals by its digeftion in their ftomachs." May not the fame benevolent idea be extended to the vegetable world, and fay, "Burn nothing which may nourif vegetables by its flow decompofition beneath the foil, which conftitutes their fomachs."
5. It may be a matter of ufe as well as of curiofity to afcertain the fituations and circumftances moft favourable for promoting the fpontaneous decompofition of vegetable fubftances; which may confift perhaps in the due quantity of air, water, and heat, with a fufficient proportion of animal fubftances, and finally an admixture of lime toward the end of the procefs.

1. In a cellar covered with an arch of bricks, and clofed with a very ftrong door, I once obferved, that a deal helf t wo inches in thicknefs was decayed, fo as to fall down with fome wine bottles on
it, in about four years. This fudden decay I believed to have been owing to the unchanging moitture of the board, and at the fame time to its expofure to unchanged air without the power of much exhalation; by which a flow fermentation was induced, and a confequent flow putrefaction, unchecked by the extremes either of heat or cold.

For the fame reafon I fuppofe the wooden fupporters of bridges decay firft juft above the furface of the water; and pieces of timber buried but a few inches under ground, which are there expofed to the influence both of water and air, go quicker into fermentation, and confequent putrefaction, than thofe pieces of timber, which are many feet buried beneath the foil, or immerfed deep in water; which in that fituation continue unchanged for ages. The fame feems to occur in the vinous fermentation, which is inftantly checked, if not totally ftopped, by bunging the barrel, or corking the bottle, which contains it, and thus precluding the accefs of atmofpheric air.
2. From hence it may be concluded, firft, that the vegetable and animal fubftances, which we wifh foon to become decompofed by the fermentative and putrefactive proceffes, fhould be expofed to an uniform moifture, though not covered deep with water; as is generally practifed in the firft part of the preparation of hemp or flax, which is defigned to diffolve the mucilage, and the cellular membrane of thofe vegetables, without injuring the ligneous fibres. And that they fhould be fo far accumulated as not too much to exhale; yet not to lie in fuch large heaps, as entirely to preclude the accefs of air from the interior parts of them.

The manures of great farms fhould therefore be occafionally removed from the fold-yards, or large refervoirs of it, and laid in fmall heaps not only to increafe its furface expofed to the external atmofphere, for the purpofe of exciting greater fermentation, which is a flow combution; but alfo that air may be imprifoned in the interftices of thefe manure-heaps, as mentioned in No. 8. 2. of this Section.

It fhould then be ufed on or in the foil, as it afterward lofes much of its nutritive qualities by evaporation, or finking into the ground, or draining away.
3. A due degree of heat is neceffary for the commencement of fermentation and putrefaction, as both vegetable and animal materials, as fruit or flefh, may be preferved for years if kept in an ice-houfe below the freezing point of 32 . And alfo, I am told, if they could be kept in an uniform degree of heat above the boiling point of 212 . After the commencement of either of thefe proceffes a quantity of heat is evolved from the combination of the oxygen and carbon, which contributes to forward the proceffes by promoting the union of the next particles of oxygen and carbon; which may thence be compared to a flow combuftion, or to a gradual explofion of gunpowder.

This heat therefore fhould be managed with fome addrefs, as a great quantity of it would calcine or evaporate too much of the materials, and leave the remainder a lefs profitable mafs; as happens, I am informed, to fome parts of thofe heaps of manure, which are ufed in the manufactory of white lead; while on the contrary, when the heat is too fmall, as in fevere frof, thefe proceffes of decompofition will not commence, or may be fopped in their progrefs. In the former cafe, where the heat is too great, it may be checked by covering the whole manure-heap with foil and turf, and thus preventing the accefs of air. And when the heat is too fmall, as in old hot beds, it may be renewed or promoted by turning the heap over with the fpade, and thus confining a new quantity of air in its interftices. On thefe accounts it appears, that in the vernal and autumnal months thefe proceffes muft fucceed better than in the winter or the fummer ones.
4. Toward the end of the putrefactive procefs the materials fhould be repeatedly turned over with the fpade, not only for the purpofe of fimply expofing their interior parts to the atmofphere, but alfo of in-
cluding air in the interftices; as the union of carbon with oxygen, and probably of azote with hydrogen, feems thus to be occafioned; by which the three laft of thefe elements may change from a gaffeous flate into a fluid one, and thus become abforbed by vegetable roots.

Laftly, I conclude that in general the manure heap before ftables, or in the fold-yard, fhould be placed on a gently rifing eminence, with a bafon beneath it, that the fuperfluous water, which would otherwife prevent the fermentation of the ftraw, may drain off and be there received ; and that into this bafon, as often as a fluid appears in it, fome earth, or weeds, or leaves, or faw-duft, or other vegetable or animal recrements fhould be thrown; the fermentation and putrefaction of which will be thus forwarded, and the carbonic draining from the manure-heap will not be loft.
5. The admixture of lime with this carbonic foil is found by daily experience to produce the moft fertile compofitions for the growth of vegetables, and for the production of nitre. The great ufe of nitrous acid in vegetation has long been acknowledged, and that of hyper-oxygenated marine acid appears probable from recent experiments; and would feem to be occafioned by the more loofe adhefion of the oxygen in thofe acids to their refpective bafes; which may therefore in its fluid ftate be more readily abforbed by vegetable roots. One ufe therefore of the admixture of lime in fuch a compoft of foil and manure is to arreft the nitrous acid, as it is formed, and by making a calcareous nitre, prevent its exhalation, or its eafy elutriation from the other materials.
6. A principal circumftance for the quicker and more perfect decompofition of vegetable recrements is a due quantity of animal matter, and their being properly mixed together; as appears from the early experiments of fir John Pringle and Macbride, and by daily experience. There is neverthelefs great neglect in this refpect in all thofe farm-yards, where the fwine have their food in fixed fonetroughs,
troughs, from which the refufe is occafionally wathed or fwept. Whereas if wooden moveable fwine-troughs were always placed on the fummit of the heaps of dry ftraw, the quantity of their fwill, confifting of broth, whey, and other vegetable and animal matter, which thefe animals wafte in their contention for it, would generate early putrefactive proceffes; befides their mixing the fubftances well together with their feet, and adding to it their urine and ordure.

Befides this inattention to the manure-heap in many houfes the wahings of boilers, and milk-pans, and difhes, as well as the foapfuds, which are all of them manures of the moft productive kind, are thrown into the common fewer, inftead of being derived or carried to the garden or the ftraw-yard.
7. Another inattention to the production of manures concerns the heaps of common weeds, and of dock-roots, and of cabbage-ftalks, and the roots of twitch -grafs; which improvident farmers and gardeners frequently throw into the high roads, or confume with fire; and which if laid on heaps, and occafionally turned over, and covered with foil, will quickly die, and pafs into fpeedy fermentation from the fugar and mucilage, which they contain; and if to thefe a portion of lime be added, I am informed by one who made the experiment, that the whole was decompofed in a fhort time, and manure of the beft kind was the product.

The fame fhould be practifed with the leaves which fall in autumn on grafs land, efpecially from thofe orchards, or hedges, or from goofeberry-trees, which have been infefted with caterpillars; fince I am told the eggs of a future race of thefe infects are frequently depofited on the leaves, and hatched on or beneath the foil in the enfuing fpring. Thefe therefore fhould be removed from the roots of fuch trees, and converted into manure by the procefs above mentioned.

Along with the weeds and leaves above mentioned I fhould ftrongly recommend to the induftrious agricultor to collect the water-plants which
which grow in great abundance in lakes and rivers, for the purpofe of manure; which at prefent are employed to no advantage. Thefe might be moved twice a year, as it is probable that thefe vegetables in their younger ftate, as the typha, or cat's-tail ; the butomus, or flowering-rufh; nymphæa and alifma, as well as many other aquatic plants, would give better manure, or fooner become fufficiently decompofed, during their more faccharine and mucilaginous fate, than when they have acquired more fibrous leaves, and more woody ftems.

By thus expofing the roots and tops of weeds to fermentation, their feeds would alfo be deftroyed as well as the vegetative power of their roots; and on this account the hay-feeds collected from ftacks, which have fermented too violently, fo as to become black by this flow combuftion, are frequently fo much injured as not to vegetate, to the great difappointment of the fower, a circumftance which alfo fometimes occurs in ftacks of wheat, as mentioned in Sect. XVI. 7. 1 .
8. Laftly, peat, fo well underfood and fo ftrongly recommended by Lord Dundonald, is too much neglected in agriculture. The peat or turf, which conftitutes the folid parts of moraffes, as it confifts of vegetable fibres in different ftates of decompofition, may be laid on clayey or fandy foils with the greateft advantage; and ought to be confidered as an ineftimable treafure to the farms in its vicinity. Or it may previoufly be laid on heaps, and thus mixed with air and drained from water for further decompofition, with or without the addition of lime.

XII. APPLICATION OF MANURES.

Two queftions of importance here prefent themfelves. As the fpontaneous or chemical changes of manure-heaps in farm-yards gradually progrede from the faccharine and mucilaginous commenceKk
ment
ment through a great variety of other fermentations; which can only be named from the principal material, which each of them produces, as carbonic acid, alcohol, vinegar, volatile alkali, hydrogen, nitrous acid, and finally carbonic earth. At what era or ftage of this decompofition of vegetable and animal fubftances can they be moft advantageoully applied to the purpofes of agriculture? and fe condly, at what time of the year?

1. In refpect to the era of the progrefs of the decompofition in manure-heaps, in which they may be moft advantageoufly applied in agriculture, the particular purpofe of that application mult be attended to. Where they are defigned to be fpread on the furface of grafs lands, as a top-dreffing, the accumulations of vegetable and animal recrements fhould be permitted to go through the various fpontaneous proceffes of decompofition, which begin with the faccharine and mucilaginous ftate, and end with the production of carbonic earth, with many kinds of intermediate fermentations, if they may be fo called, which accompany or fucceed each other, and which I believe to be more in number than have had names applied to them.

But that lefs of the fertilizing materials, whether of foluble folids, or of fluids, or of gaffes, may be loft in there feries of fermentations; it is a very advantageous management to cover them with foil, when the firft fermentation is advanced, as is known by the production of confiderable heat ; or when the putrefactive one has commenced, which is known by the fmell of volatile alkali, or of hydrogen. By this method the too great rapidity of thefe fermentations is checked, and the fluid part of the manure is retained by the addition of the foil below, and the gaffeous part by that above; and if to this be afterwards added a proportion of lime, which by uniting with the nitrous acid may retain it from exhalation or from alluviation, every thing is preferved that art can accomplifh.

Where manure-heaps are to be ploughed into clayey foils, which are liable to become too folid and impenetrable to the root-fibres of feeds,
re ? and fe. At be attend. face of gals
d animal re. fpontaneous rine and mu. earth, with be fo called, believe to be
f foluble fo. of fermentiothem with by the pro. one has colm-
or of hydro.
ermentations
by the addin
e; and ifto
uniting with
alluviation,

Sect. X. 12. 2.
MANURES.
feeds, as of wheat ; or where knobby or bulbous roots are to be inferted to produce other knobs or bulbs beneath the foil, as potatoes; it is probably more advantageous to bury the manure in a lefs decompofed fate, while fome of the fraw retains its form; as fuch parts by their flower decompofition will longer prevent the fuper-incumbent foil from becoming too folid; and though they will in this fituation require fome time before they will be perfectly decompofed, and reduced to the black carbonic earth; yet they will in the end totally decay, and give the fame quantity of nutriment to the roots, though it may be more gradually applied.
2. In refpect to the time of year thofe manures, which are to be ploughed or dug into the ground, fhould be ufed immediately before fowing the feeds or fetting the roots, which they are defigned to nurture; becaufe the atmofpheric air, which is buried along with the manure in the interftices of the earth, and which for many weeks, or even months, renders the foil loofe, and eafily impreffed by the foot on walking on it, gradually evolves by its union with carbon a genial heat very friendly to vegetation in this climate, as well as the immediate production of much fluid carbonic acid, and probably of a fluid mixture of nitrogen with hydrogen, which are believed to fupply much nutriment to plants.
But thofe manures, which are defigned to be fpread on the furface of grafs-land, which is called the top-dreffing, are beft applied, I fufpect, in the early fpring; and fhould be difperfed over the foil almoft in a ftate of powder, or in lumps of very loofe cohefion; as at this time the vernal fhowers wafh them into the foil; and they are applied to the roots of the grafs, before their effential parts are diminifhed by winter rains or by fummer exhalation. There are fome in Derbyhire, who fipread manure even on the meadows, which are annually overflowed by the Trent or Derwent, at the end of fummer, or as foon as the grafs is mowed and removed; which appears to be an improvident management, fince the aftermath, or autumnal grafs, K k 2
is
is thus rendered unpalatable to the cattle; and the winter rains, or the vernal floods, which generally occur with the return of the fouth-weft winds, after the feafon of froft ceafes, mult wath away a great part of it.

In refpect to the moft economical manner of ufing manures in agriculture Mr. Parkinfon afferts, that one great advantage of the drill-hufbandry confifts in putting the manure into drills, which he directs to be made at two feet diftance from each other. He fows wheat, beans, peas, cabbages, on this manure, and affirms, that four loads of manure on an acre in this kind of hufbandry is equal to fixteen loads in the ufual way of fpreading it over the whole of the field. Experienced Farmer, Vol. I. p. 32.
3. A third queftion here prefents itfelf, if the recrements of vegetable and animal bodies buried a few inches beneath the foil undergo the fame decompofition, as when laid on heaps in farm-yards. And though this is accomplifhed more flowly, yet it is attended with lefs lofs of carbonic acid, and of volatile alkali, and of hyrogen, and of the fluid matter ρf heat; all which are emitted in great quantity during the rapid fermentations of large heaps of manure, and are wafted in the atmofphere, or on unprolific ground ; would it not in general be more economical to bury fuch vegetable and animal matters beneath the foil without a previous fermentation and putrefaction?

In anfwer to this it mult be obferved, that in fome cafes the ufe of recent vegetables ploughed into the earth is found of advantage, as in fandy foils buck-wheat, or vetches, are fown, and the crop ploughed in, before it ripens its feeds. In this circumftance the recent crop is buried in its faccharine and mucilaginous ftate, which muft undergo indeed a flower fermentation, without being mixed with animal fubftances, but no part of the organic matter, nor of the fluid heat, is loft to the purpofes of new organization.

So in the cultivation of clayey lands, whofe tenacity is too great;
ter rains, or
turn of the
fath away
an manures in ntage of the Is, which he r. He lows ns , that four y is equal to whole of the
meats of re. the foil un. farm-yards Attended with yrogen, and rear quantity ore, and are would it not and animal n and puttee-
cafes the ute f advantage, and the crop trance the restate, which being mira or, nor of the

Sect. X. 12. 3 .
MANURES.
or where knobby roots, as potatoes, are to be inferred for the produceion of other knobby roots beneath the foil; long muck, as it is called, or fuch which is only fo far decompofed as to diffolve the mucilage or more tender veffels or membranes, but in which the form of the fibrous or ligneous parts of the ftraw remains, is recommended above; and may in there fituations perhaps be ploughed into the ground even in their mot early fate, when rejected from the fable or cowhoufe, before the commencement of their fpontaneous diffolotion.

So alfo in gardens, which are already fertile, and do not want the immediate affiftance of mature manure, it may be more economical to bury the weeds, as the ground is dug, than to convey them to a manure-heap, and replace them after a twelvemonth's decompofiction.

But where a luxuriant crop is immediately wanted, a manure-heap towards the end of the putrefactive procefs by being recently intermed in the foil, which is immediately to be fown or planted, has this great advantage; that the carbonic acid is prefently formed by the mixture of atmospheric air with the carbon of the manure; which exifts therefore in its fluid, not its gaffeous fate, and is thence more readily abforbed. Secondly, ammoniac is produced, and nitre, and hydrogen probably is mixed with nitrogen ; and there alfo, I fuppore, exift at first in their fluid, not in their gaffeous fate. And thirdly, from there combinations a genial degree of heat is evolved, which fo much affifts the vernal growth of vegetation.

And where manure is to be ufed as a top-dreffing, it is neceffary, that it fhould be in a fate of powder, or in fall lumps of loofe cohefion, as mentioned above; that it may be eafily wafted by rains to the roots of the grass, or that the young items of graft may readill hoot themfelves through it; whence mature heaps of manure are for this purpofe neceffary; and on this account any adhefive mamure,
nure, as cow-dung itfelf, thould be weekly gathered from grafsground, where cattle are nourifhed, and laid on heaps with foil, or ftraw, or weeds, to ferment or putrefy ; till it becomes lefs tenacious, and can be profitably replaced in the enfuing fpring.
Finally, I fufpect the moft economical method of difpofing of the ftraw and dung from the farm-yard would be, as foon as a dark coloured water drains from the heap, by which much lofs is fuftained, to carry the refufe of the ftable and cow-houfe, as frequently as convenient, to the ground, where it is defigned to be employed; and there to mix it with earth in heaps of proper fize, and to cover them likewife with foil; and by thefe means I fuppofe the whole procefs of decompofition may be carried on with very little lofs; and by the addition of a greater or lefs quantity of foil that the era of complete or moft profitable decompofition of the compoft may be managed, fo as to coincide nearly with the time it may be wanted.
4. Fourthly, it may be afked, what kinds of manure contribute moft to the luxuriant growth of vegetables? In anfwer to this it may be faid, that as plants are inferior animals, and are furnifhed with abforbent veffels in their roots correfpondent to the lacteals in the ftomach; that the fame organic matters, which by their quick folution in the ftomach fupply the nutritive chyle to animals, will by their flow folution in or near the furface of the earth fupply the nutritive fap-juice to vegetables. Hence all kinds of animal and vegetable fubftances, which will undergo a digeftive procefs, or fpontaneous folution, as the flefh, fat, fkin, and bones, of animals; with their fecretions of bile, faliva, mucus; and their excretions of urine, and ordure; and alfo the fruit, meal, oil, leaves, wood, of vegetables, when properly decompofed on or beneath the foil, fupply the moft nutritive food to plants.
Secondly, the chyle of all animals is fimilar to the fap-juice of all vegetables in this circumftance, that they both contain mucilage and animals, will h fupply the

Sect. X. 12. 4. MANURES.
fugar, and feem only to differ in this refpect, that the chyle of animals alfo contains oil, which being mixed with the mucilage gives it its whitenefs like milk. Hence thofe matters muft fupply nutriment moft expeditioully to vegetables, which contain mucilage and fugar, or produce them with the leaft decompofition, as the jellies from the Chavings of horns, from hair, woollen rags, and the faccharine matter of fweet fruits, roots, kernels, feeds; and in the fame manner thefe things with the addition of oil are moft expeditioufly nutritive to animals.

Thirdly, fuch materials as contain in folution thofe fimple fubftances, which conftitute a great part of vegetable bodies, as carbon, which is found in moft earths; and oxygen, hydrogen, and nitrogen, which are found in water and in air ; and from hence we may conclude, that whatever material has conftituted a part of living organic bodies, may again conftitute a part of them; and that with more expedition, if they can be ufed without being decompofed into their primary elements.

Mr. Bewley, the Norfolk philofopher, faid to a friend, who was riding by his fide, that when he wanted a whip, he habitually looked for a dead ftick in the hedge, unwilling to pluck off a leafy branch, and deftroy fo many living buds. He might have added, that to burn a hair or a ftraw unneceffarily diminifhes the fum of matter fit for quick nutrition by decompofing it nearly into its elements, and fhould therefore give fome compunctions to a mind of univerfal fympathy.

It would feem therefore, that long roots fixed into the earth, and leaves innumerable waving in the air, were neceffary for the decompofition and new combinations of water and air, and the converfion of them into faccharine and mucilaginous matter; which would have been not only cumbrous but totally incompatible with the locomotions of animal bodies; for how could a man or quadruped have
have carried on his head or back a foreft of leaves, or have trailed after him long branching lacteals terminating on the furface of the earth? Animals therefore fubfift on vegetables; that is, they take the matter fo far prepared, and poffefs organs to prepare it further for the purpofes of greater fenfibility, and of higher animation.

S E C T. XI.

OF DRAINING AND WATERING LANDS.

1. 2. Moraffes are in bigh or lowe fituations. 2. Springs rife from the fummits of mountains, pafs between the Arata. 3. Strata of the earth about Derby, and at Licbfieid, and the fprings. 4. Plains formed in vallies. 5. Wall-fprings intercepted by ditcbes, junk perpendicular to the fides of the bills. 6. By boring boles at the bottom of fuch ditches. 7. Ufe of ditches, where the wall-fprings cannot be intercepted. 8. Holes througb clay into a Sand ftone beneath. 9. Deep Jprings rife bighef, when bored into. 10. Many Jprings may be raijed bigber than their fources. 11. Enlarging the bottom of wells increafes the water in them. 12. Springs difcovered on one fide only of fome mountains. Difovered by evening mifts. By morning rime. By aquatic plants. Warm fprings. II. 1. Draining morafes, where there is no fall. 2. In the craters of ancient volcanoes. 3. In countries of marble, granite, or quartz. 4. Fens below the level of the fea. Sbould be furrounded with dikes. 5. Ujes of aquatic plants. III. 1. Of flooding lands. 2. Ice preferves the grafs beneath. The French bored boles in the ice. 3. Advantages of flooding recapitulated. It defroys ruhbes. Saves manure. 4. Cautions to be obferved. Flooding not injurious to bealth. Vicinity of running water wholefome. 5. Flooding lands might be performed to a great extent. By rivers, jprings, land-floods, and macbinery. Hiero's fountain. Horizontal wind-mill, and centrifugal pump.
I. I. The great quantity of water required for healthy vegetation is treated of in Sect. X. 3. I. But as all extremes are injurious, too much water becomes pernicious to all except aquatic plants. Whence the neceffity of draining thofe lands, which too much abound with moifture ; the art of which is better undenftood, fince the knowledge

$$
\text { L } 1
$$

of
of geology has been ftudied, and in fome meafure diffufed amongtt the people.

Lands in refpect to the method of draining them may be divided into two fituations; thofe which lie fo high, that the water can defeend from them, if it be properly collected and conducted; and thofe which lie fo low as to command no fall, fome of which are even below the level of the fea.
2. In regard to the former it generally happens, that the waters from the fprings beneath the foil have not a free paffage to the rivers in their vicinity; the nature of fprings fhould therefore be previounly underftood. Many modern philofophers have endeavoured to fhew, that all the continents and iflands of the world, as well as the hills, which embofs their furfaces, have been raifed out of the primeval ocean by fubterraneous fires. This appears from the quantity of feafhells, which form innumerable mountains; and from the fiffures in the rocks, of which they confift; the quantity of volcanic productions all over the world; and the numerous remains of craters of volcanoes in mountainous countries.

Hence the ftrata, which compofe the fides of mountains, lie flanting downwards; and one or two or more of the external ftrata not reaching to the fummit, when the mountain was raifed up, the fecond or third ftratum, or a more inferior one, is there expofed to day. This may be well reprefented by forcibly thrufting a very blunt inftrument through fome folds of paper, a bur will be raifed with the lowermolt leaf ftanding higheft in the center of it. Or if at the original elevation of an extenfive mountain the loweft ftratum fhould not at firft ftand higher in the center of the fummit, it would in time become fo by fome of the upper Atrata of the mountain being gradually wathed away by rains into the valleys or rivers. On this uppermoff fratum, which is colder, as it is more elevated, the dews are condenfed in large quantities; and fliding down pafs under the firft, or fecond, or third Atratum, which compofe the fides of the

Sect. XI. i. 3. AND WATERING.
hill; and either form a morafs below, or a weeping rock by oozing out in numerous places; or many of thefe lefs currents meeting together burf out in a more copious rill.

The immediate caufe of fprings confifts therefore in the condenfation of the atmofpheric moifture, during the night principally, by the greater coldnefs of the fummits of hills, which is explained in detail in the Botanic Garden, Vol. I. additional note 26. The water thus condenfed on the fummits of hills defcends between the ftrata of the incumbent foil, fometimes for many miles together; but generally from the neareft eminences into the adjoining vallies.
3. Thus there is a ftratum of marl, which I have obferved on the furface of the lands about Derby, which extends many miles in moft directions. This fratum of marl is of various thicknefs from 10 to 150 feet, and beneath it lies a ftratum of fand, which is alfo of various thicknefs from a few inches to fix or eight feet, and of various degrees of induration; and beneath this lies another ftratum of marl to an unknown depth. On the top of Radborne common, about five miles north-weft from Derby, the fandy ftratum is quite loofe, and rifes above the ftratum of marl, which is deficient at the fummit of the hill. Three or four ftrong fprings of water burft out on the fides of this hill, which thus originate from the moifture of the atmofphere condenfed on the cold fummit, and paffing through the fandy fratum between the two ftrata of marl.

In the road to Duffield, about two miles north of Derby, the fand-ftratum is cemented into ftone, as well as in fome fituations near Radborne-common above mentioned. This fratum of fandftone is fome feet in thicknefs, and lies four or five yards deep, beneath the upper ftratum of marl, dividing it from the lower one. At Normanton, about two miles fouth from Derby, the fand-ftratum confifts. of a loofe fand, fo white and pure, that I imagine it might be ufed in the manufacture of flint-glafs, and lies about twelve feet deep, beneath the upper ftratum of marl, dividing it from the

$$
\mathrm{L} 12
$$

under
under one. In the town of Derby on boring with defign to fink a well, after having paffed about thirteen yards through marl, fome fand was brought up by the auger, and water followed, as related in the Philof. Tranfact. Vol. LXXV.

The dews therefore, which are perpetually condenfing on the fummits of thefe hills, defcend beneath the upper and under flrata of marl, through the thin ftratum of fand, which divides them, and form St. Alkmund's well, and many other fprings in the vicinity of Derby; and probably all thofe which fupply the wells within the town.

But there is a fituation, where the manner of the production of fprings is mon agreeably vifible; it is about a mile from the city of Lichfield, near the cold bath erected by fir John Floyer, in a beautiful piece of ground, which was formerly Dr. Darwin's botanic garden.

In this place a grotto about fix yards wide and ten long bas been excavated on the fide of a hill confifting of filiceous fand-ftone with this peculiar circumftance ; that the upper fratum of the fand-rock, which is there about five feet thick, is divided from the lower ftratum of it by a theet of clay not more than three or four inches in thicknefs; on the upper furface of this theet of clay, between the lips of thefe rocks, a perpetual dribbling of water oozes quite round the grotto, like a Chower from a weeping rock. Such fheets of water having been often obferved to flide between the flata of the earth almoft horizontally, like the horizontal joints of a Atone-wall, have, I fuppofe, given the name of wall-fprings to them, to diftirguifh them from pipe-fprings, or fuch as burft out in a fingle rill.

Thus this thin fheet of clay prevents the water from fiuking into the lower fratum of fand-ftone; and produces other copious fprings, which are collected at about half a mile's diftance, and conveyed by leaden pipes to the cathedral clofe of Lichfield, which is thus fupplied with water of uncommon purity, which contains no calcare-
ign to fink
marl, forme as related in
on the fum. oder Plata of es them, and he vicinity of within the
production of m the city of , in a beautwin's botanic
long has been ad - Atone with he fand-rock, he lower Ara-
four inches in between the
es quite round Sheets of wa. frata of the a ftome-wall,
em, to diftio a jingle rill.
n funking into
pious frinilit
d co
d conveyed by
b is
thus Sup O US
onus earth, owing to its faffing through filiceous fad over a ftratum of clay, and which would be a treafure to the paper-mill or the bleach-yard.
4. One other circumftance in the prefent conformation of the earth is neceffary to be mentioned; which is, that at the time when the mountains were raifed all over the world by deep volcanoes, or by central fires, forme parts of the fummits of many of them, and of their fteeper fides, rolled down again into the new formed vallies. And fecondly, that fince that remote time the recrement of vegetable and animal bodies have continually been wathed down from the eminences by Showers, and have contributed gradually to accumulate in the vallies, and to form the plains, which exit on the fides of rivers. This appears from the tin ores found in the vallies in Cornwall in loofe pieces fimilar to thofe in the proximate mountains; and from the black carbonic foil, or morals turf, found in molt vallies.
5. From thee clear ideas of the Errata of the earth, and of the ftreams of water, which flide between them, and form what are termed wall-fprings, it is eafy to conceive, that the belt method of preventing the vallies at the bottom of hills from being too moil mut be by cutting a long horizontal ditch into the fade of the montain to intercept the water, jut before the level land of the valley commences; and thus to carry away the water before it comes upon the plain beneath.

For this purpofe at the foot of the hill where the plain, which is too moil, commences, forme auger-holes thould be bored to find the depth of the firings, that is to find the thicknets of the upper frarum of the foil. If this be only four or fix feet, an horizontal ditch should be cut along the bottom of the mountain to intercept the water; which muff then be carried away by one or more other ditches opening into this, and conducting the water to collected into the neighbouring rivulet.

As the frat; between which the water defends in forming the fe firings
fprings, have generally the fame inclination as the furface of the hill, or nearly fo; it follows, that the holes fhould be bored, and the ditch cut, not vertically downwards, as is the common practice, but perpendicular to the furface of the mountain; as by that means the fecond fratum will fooner be arrived at ; as fhewn in Plate V . at the end of this Section.
6. But if on cutting a ditch five or fix feet along the bottom of the hill perpendicular to the rifing plain, which forms the fide of it, the upper ftratum be not cut through; and in confequence no water oozes into the bottom of the ditch; it is then proper to bore other holes at the bottom of this ditch fome yards deeper, or till water rifes up through them into the ditch, if it can be fo difcovered. Where this fucceeds, many holes fhould be bored, and the water received into the ditches, and conducted into the adjacent river; for the water will then rife into the bottom of this ditch fix feet below the wet furface of the valley, and thus flow away, rather than rife up from the lower wall-fprings, or apertures of the fratum, through the incumbent foil to the furface of the valley, which is fo many feet higher. This well underfood is the great fecret for draining thofe grounds, where the fprings can not be cut into fimply by a ditch.

This method has been fome years practifed with fuccefs by Mr. Elkington, but was previoufly ufed and explained by Mr. Anderfon, as he afferts in his introduction to Vol. III. of his Effays on Agriculture, who funk a hole into the earth at the bottom of a ditch in the year 1764, and the water rofe fix feet above the furface of the ground, and has continued to flow with lefs violence ever fince that time.

It fhould here be noticed, that where the water rifes with great force through holes thus bored into a deep ftratum, it is liable to bring up along with it much fand, fo as fometimes to obftruct its paffage; which fand in this cafe muft frequently be removed for a few days by the reapplication of the auger. Of this a remarkable in8.
fance is publifhed in a late volume of the Phil. Tranf. by Mr.Wulliamy, who funk a well $2_{3} 6$ feet deep and four feet wide; and, on then boring a few feet lower with a five-inch borer, fo much fand arofe with a violent ftream of water, as to fill up the whole well; which was repeatedly cleared away by buckets in its fluid ftate, and at laft the water ran over the furface to the amount of forty-fix gallons in a minute.

The manner of making thefe ditches narrower, as they defcend, by fpades of an adapted breadth ; and of making the loweft part narrower than any other part, fo that the fhoulders or edges of it may fupport ftones, or faggots, to cover the whole at a fmall expence without obftructing the currents of water, are obvious to the workmen. In many fituations hollow bricks, or ridge-tiles, or old pieces of plafter-floors, may be worth the aditional expence of providing them.
7. There may neverthelefs be found fituations, where the firf ftratum of earth may be too thick to be eafily penetrated; or where the water, condenfed from the atmofphere on the fummits of the hills, may flide between the fecond and third, or between the third and fourth ftrata, which form the fides of thofe hills, owing to a deficiency of fo many of the ftrata at the fummits of them; and hence that it may lie too deep to be eafily arrefted by a ditch, or by boring; and yet by its being dammed up by the materials, which form the level plain of the valley, may rife up through thofe materials to the furface, and form boggy or moraffy ground.

In thefe fituations the common unfkilful method of draining may be ufefully employed; which confifts in cutting many ditches four or fix feet deep acrofs the bog or morafs; and covering them, fo that the water may have no obftruction in paffing along them; which may thus, as it rifes from below, be in part collected and conveyed away ; though lefs advantageoufly than where the fprings can be intercepted.

Another:

Another method of draining moift meadows has been by making or opening drains almoft annually by a large plough with two converging coulters, and other adapted parts, for the purpofe of cutting both the fides of a ditch at the fame time, and turning out the intervening turf and foil. Thefe large ploughs have been kept in fome parifhes, and drawn over moift commons by twelve or twenty horfes, to form parallel ditches.

Mr. Adam Scott has invented for the fame purpofe what he terms a mole-plough, which confifts of a coulter fifteen inches long, and two and a half wide, to cut the fward; and behind this an horizontal cone of caft iron twenty inches long, and two and a half diameter at the bafe, to the middle of which is fixed an upright bartwo feet long, and three inches and a half broad, with a charp edge. As this caft iron cone is drawn along fix or eight inches beneath the turf in moift lands, either in the fpring or autumn, in many parallel lines, the water for a confiderable time is conveyed away, and no injury done to the furface; which thus feems to be an ufeful machine, and may be well managed, I am informed, by fix or eight horfes. In very moift lands, or at very moift feafons, if more horfes be ufed, their feet will not fink fo deep into the turf, as each horfe will draw lefs; or a contrivance of adding broader thoes of wood to the horfes like the fnow-fhoes of higher latitudes, might anfwer this purpofe. See Tranfact. of Society of Arts, Vol. XV.
8. There are neverthelefs fome fituations, where the water is conveyed beneath the firft ftratum on a thin bed of clay over a porus fand-ftone beneath it ; as in the grotto at Lichfield above defcribed. In thefe fituations by boring many auger-holes, or by finking wells, through the fratum of clay the water will penetrate the fand-ftone beneath it ; and either pafs away by the porofity of this kind of fone, or by the cracks or joints which are always found in it; of which the horizontal joints were formed at the time of the production or accumulation of the fand beneath the fea, which was then formed in
an by makion ofe of cutting out the inter. kept in fome twenty horle, what he terms hes long, and ; an horizontal alf diameter at two feet long,

As this call e turf in moith allel limes, the no injury done hine, and may prfes. In very uled, theirfeet 1 draw lefs; o: horfes like the oíe. See Tran.
e water is CO a
y over a portus bove defcribedh finking welly the fand folore is kind of forme
it; of whid then formem horialu
horizontal ftrata ; but the vertical cracks were made at the time of its elevation by fubterraneous fires. In thefe vertical fiffures the ores of lead, ponderous earth, and calcareous fpars, are found in the limeftone rocks of Derby fhire ; and thofe of tin, and quartz, in the granite rocks of Cornwall.
9. The knowledge of this part of geology concerning the formation of fprings may be employed for many ufeful purpofes; thus where the wall-fprings, or water-conducting ftrata, lie fo deep as not to be acceffible at a fmall expence; they generally exift between the fecond and third, or between the third and fourth frata; which rife into day higher on the fummits of the adjacent mountains than the firft fratum ; and hence, when they are bored into, the water will rife higher, than when it is found beneath the firft ftratum only; which generally becomes deficient on lower parts of the adjacent eminences of the country.

Thus where water, defcending in high columns between the ftrata of mountains, is dammed up below by the materials, which fill up the vallies; if a hole be bored in the valley deep through the incumbent foil and ftrata, it frequently rifes much above the fource of the new aperture, and fometimes above the furface of the ground. In finking the king's well at Sheernefs the water rofe 300 feet above its fource in the well, as related in Philof. Tranfact. Vol. LXXIV. And at Hartford in Connecticut there is a well, which was dug feventy feet before water was found ; and then on boring an auger hole through a rock the water rofe fo faft, as to make it difficult to keep it dry by pumps, till the hole could be blown larger by gunpowder ; which was no fooner accomplifhed, than it filled, and run over, and has been a brook for near a century. Travels through America, Lond. 1789. Lane.

In the town of Richmond in Surry, and at Inflip near Prefton, in Lancafhire, I am informed, that it is ufual to bore for water to a certain depth; and that when it is found in both thofe places, it rifes Mm fo
fo high as to flow over the furface. And there is rearon to conclude, that if fimilar experiments were made in many other places, fuch artificial fprings might be produced at fmall expence, both for the common purpofes of life, and for the great improvement of lands by watering them.
10. Another deduction, which may be made from this knowledge of geology, is, that many frings of water, which lie too low for ferving a houfe, or ftreet, or town, or for watering higher grounds for the purpofes of agriculture or gardening, may in many fituations be dammed up many feet with little or no lofs. Thus when the new bridge was building at Dublin, Mr. G. Semple found a fpring in the bed of the river, where he meant to lay the foundation of a pier; which by fixing iron pipes into it he raifed many feet; and in boring a hole near the Derwent in Derby about fifteen yards deep, the water rofe above the furface of the ground, and has continued to flow now for above twelve years in rather an increafing quantity. From having obferved a valley north-weft of St.Alkmund's well near Derby, at the head of which that fpring of water once probably exifted, and by its current formed the valley, (which current in after times found its way out in its prefent lower fituation), I fufpect, that St. Alkmond's well might by building round it be raifed high enough to fupply many ftreets in Derby with fpring water, which are now only fupplied with river water.
11. A third deduction from the knowledge of this geology concerning the production of fprings teaches, that by enlarging the bottom of a well, where the water oozes from between the furrounding ftrata in too fcanty a fupply, a proportionally greater quantity of water may be procured. The hole near the river Derwent in Derby above mentioned, is about an inch and a half in diameter, and was bored about fifteen yards deep through the uppermoft ftratum of marl into the fand beneath it, and fupplies Dr. Darwin's houfe with two or three hogheads of water a day. And Mr. Strutt near St. Pe-
ter's Bridge has funk a well for the ufe of his fteam-engine about 200 yards from the former, which paffes through the fame upper ftratum of marl, and is three feet in diameter at the bottom, and fupplies, when required, a hundred hogtheads in a day.
12. The knowledge of this part of geology leads to another ufeful purpofe, the difcovery of fprings; concerning which fome have pretended to poffers fecret or myftical intelligence both in England and in France. When the eminences of a country were raifed out of the primeval ocean by fubterraneous fires, fome of them were raifed nearly equally on all fides, like the limeftone mountain at Breedon in Leicefterfhire ; in which the central ftratum may be feen to ftand nearly erect or vertical, and thofe on all fides at confiderable inclination. Other mountains were abruptly broken off on one fide only from the adjoining earth, like thofe which form the high torr at Matlock; which rife with one of their fides perpendicular as a wall by the Derwent fide ; fo that the frata of the former of thefe mountains may be reprefented, as before mentioned, by the bur, which would be made on fome folds of paper, if a very hard blunt inftrument was thruft through them; and the latter by raifing up one edge of fuch folds of paper, fo as to incline the whole of it at fome angle with the horizon.

As the fprings confift of the water, which flides between thefe inclined ftrata; it is evident, that in fome eminences of ground they are only to be met with on one fide of the mountain; and in other eminences of ground on all fides of it. In fearching for fprings therefore attention fhould be given to the inclination of the flrata of that part of the country, which may be often feen in marl-pits, gravelpits, or in hollow lanes. But they may in general be found above any moift or moraffy plain or valley; the moifture of which fhews, that fprings exift in the ftrata on that fide of the mountain.

A fecond obfervation for the purpofe of detecting fprings may be made on mitty evenings; as thofe parts of the ground, where the $\mathrm{Mm}_{2} \mathrm{mift}$
mift commences, are moifter than thofe in their vicinity on the fame level; and in confequence may generally, if they are not bollow bafons, poffefs fprings nearer the furface; for thefe moifter parts of the ground, having evaporated more during the day, are become colder on their furfaces than the drier ground in their vicinity; and in mifty evenings, which are at the fame time calm, the fationary air over thefe moilt parts of the ground is alfo more loaded with the evaporated moifture ; and on both thefe accounts thefe moifter fituations are liable to thew a condenfation of aerial vapour fooner than other places on the fame level.

As mountains are colder in proportion to their height, which is explained in Botanic Garden, Vol.I. additional note 26, the evening mift fometimes commences fooner on them than in the valleys; but is feen earlier in thefe fituations over the moifter places, if they are on the fame level with the drier ones, exactly as on the plains or valleys; and may therefore indicate the exiftence of fprings, unlefs thefe moifter places confift of hollow bafons containing water, which if not attended to may in all fituations deceive the obferver.

Another obfervation for detecting fprings may be made in rimy mornings; for as moift earth is a better conductor of heat than dry earth, the rime will fooner melt on thofe parts of the foil, which are kept moift by fprings under it than on other parts; as the common heat of the earth, which is 48 in this country, will fooner be conducted upwards in moift places to diffolve the rime on the furface. On this account the rime is frequently feen on frofty mornings, when the heat of the air is not much above 3^{2}, to lie an hour longer on dry cakes of cow-dung, or on bridges, or planks of wood, than on the common moift ground; as the latter much better conducts the common heat of the earth to the incumbent rime, which is in contact with it.

But as the heat of the common fprings in this country is 4^{8}, where they exift, the rime is fooner diffolved, than on the fagnant moif-

Sect. XI. 2. 1.
AND WrATERING.
ture of bogs or moralfes. And as the fprings about Buxton and Matlock, and at Bath and Briftol, are fo much warmer than common fprings; it is highly probable, that where thefe waters approach the furface of the foil, they muft much fooner diffolve the rime on frofty mornings; which may probably be obferved in fituations much higher than their prefent apparent fources; as they flide down between the interior ftrata of thofe hills, beneath the fummit of which they are condenfed from the fteam of water boiling at great depths in the earth; which rifes up through thofe perpendicular clefts of the rocks, which were formed at their original elevation, as explained in Botanic Garden, Vol. 11. note on fucus; and in Pilkington's View of Derbyfhire, V.I. p. 256.

In the winter months the rife of fprings may be detected in moift ditches by the prefence of aquatic plants, as of water-crefs, waterparfnip, brook-lime; as in thofe ditches, which become dry in the fummer, thefe plants do not exift; and when thofe ditches with fprings in them are nearly dry, it may be difcovered which way the current has formerly defcended by the direction of the points of the leaves of the aquatic plants as certainly as by a level; an obfervation which I learnt from Mr. Brindley, the great canal-conductor of Staffordhire.

Finally, thefe arts of detecting the fituation of fprings may be advantageous to the attentive agricultor both for the purpofes of draining thofe lands, which too much abound with water, and for the purpofe of watering thofe, which are too dry, and which lie beneath the level of the fprings, or to which the water may be raifed by wind-mills or water-engines to be explained hereafter.
II. I. In refpect to draining thofe plains or moraffes where no fall can be had, the water may in many fituations be caught by cutting a long horizontal ditch into the adjoining mountain perpendicular to: the inclined plane, which conflitutes the fide of the mountain, above the level of the morafs, fo as to intercept all the wall-fprings; and may
may then be conveyed away in wooden troughs or hollow bricks above the furface; and if fome water ftill finds its way into the morafs, this lefs quantity may be conducted to one extremity of the ground in open drains or covered foughs, and raifed by an horizontal windmill and centrifugal pump, as defcribed at the end of this Section ; and thus the morafs may be converted into foil of the moft productive kind.
2. There may be other fituations, as in the Peak of Derby/hire, where pools of water, or moraffes, are collected on the hollow fummits of hills; which have been the craters of volcanoes in the primeval ages of the world, as Elden-hole near Caftleton, which feems to have been the fhaft of fuch a volcano. In many of thefe bafons on the fummits of hills there ftill exift what are called "Swallows," or cavities; where the water finks into the earth, as it collects, to pafs to fome diftant valley, as Elden-hole above mentioned, and as in the channels of the rivers Hamps and Manifold, between Ahbourn and Leek. In others, as at the fummit of a fteep promontory called Axedge, near Buxton, and about Broke-houfe, are unfathomed moraffes, which are faid in fome places not to bear a theep to pafs over them; and that on the more tenacious parts of them it is neceflary for the adventurer to ftep from taffock to taffock, or to carry a long pole hosizontally in his hand, like thofe who fkaite upon fufpected ice, to prevent his finking over head, if he fhould chance to fink at all.

It is probable, that by finking a well, or boring a hole, where fuch moraffes or lakes now exift, into the obftructed thaft of the ancient volcano, the water might be let off from thofe eminent moraffes at lefs expence, than by excavating a paffage for it fome miles in a country of marble.
3. It is poffible there may be fituations in high countries of marble, or granite, or quartz, where the difficulty and expence of excavating the ground may be too great, as above; in which a fyphon might be contrived for the purpofe of raifing the water from a mo-
rafs or lake, and conveying it away. Such an infrument might be conftructed of bored Riga deals; but as air is liable to collect in the fummit of a fyphon from the water, which paffes through it, it would be neceffary to fix at the fummit an air-veffel with an airpump at the top of it; which might be moved by a very fmall horizontal windmill fail, to be defcribed at the end of this Section, or occafionally by the hand of a labourer for a few minutes perhapsonce or twice a day.
4. The draining of thofe large plains, which lie beneath the Ievel: of the fea, is a fubject, which belongs to the public, rather than to the individual farmer; and is practifed near Linn on the river Cam. by locks to keep out the tide, and by windmills to lift or forward the otherwife fagnate water in the fen-dikes. Thefe windmills have vertical fails of the common kind, which move a vertical waterwheel, by which the water is raifed a foot or two ; but it is probable even this might be done better by the horizontal fail and centrifugal pump to be defcribed at the end of this Section, as being a fimpler machine, and requiring no attention to turn it to the wind.

It might be a noble work, worthy the attention of a government, that wifhed to increafe the quantity of nutriment, and confequent population and happinefs of the country, to employ proper engineers with a number of labourers to environ with ditches every morafly diffrict of whatever extent, which lies beneath the level of the tides, as the fens of Lincolnfhire and Cambridgefhire. Thefe ditches fhould be cut at the feet of the adjacent rifing grounds, or of eminences furrounded with fens, like illands in a lake, fo as to intercept the wallfprings and land-floods, and convey the water thus collected above the level of the morafs into the ocean.
But this, \mathbf{l} fear, is an effort not to be expected in the prefent times, when the enclofure of forefts and large commons is prevented by the intereft of individuals, or by the difficulty of procuring expenfive acts of parliament for every minute diffrict, inftead of including them in a general
a general act, fo meritorioufly contended for by fir John Sinclair, then Prefident of the Agricultural Society.
5. Where finally the draining of marlhy grounds can not be effected at a refponfible expence, fome plants may perhaps be cultivated with profit to the cultivator; as in fome fituations the feftica fluitans, floating fefcue, callitriche, ftar-grafs; or in others the orchis for the purpofe of making faloop by drying the peeled roots in an oven. This might be better worth notice, if the feed could be ripened in this climate for its eafier propagation, which probably may be accomplifhed either by cutting away the new root, as is affirmed in the Amœnitates Academicæ; or by planting them in a garden-pot fo as to confine the roots in refpect to fpace, which is faid in the fame work to ripen the feeds of convallaria, lily of the valley; and laftly by cultivating a feiw on a hot-bed or in a green-houfe.

In other fituations the menyanthes, bog-bean, would flourifh abui:dantly, and might become a fubftitute for hops in the brewery, and be equally wholefome and palatable. It is indeed much to be lamented, that we have no grain fimilar to rice, that will grow in watery grounds in this cold climate, nor any efculent roots or foliage except the water-crefs. There is reafon to believe neverthelefs, that the roots of nymphæa, water-lily, or of butomus, flowering-rufh, may be efculent by fimple boiling; or that a wholefome ftarch might be obtained from them ; or laftly, that they might be fermentable into ardent fipirit, like the roots of potatoes, or into vinegar.

The nymphæa nelumbo is much cultivated in China in their fwampy grounds, and in their lakes. The feed is like an acorn, and of a tafte more delicate than that of almonds. The roots' are fliced and ferved with ice in fummer at their tables; and are preferved in falt and vinegar for the winter. Embafly to China by fir G. Staunton, Vol. III. p. 214, 8 vo . ed. The nymphæa alba of our country produces a root of three or four inches in diameter. See Sect. XVII. 2. 3 ; and though the feed is very fmall, and perhaps does not perfectly
fectly ripen, I have obferved it to be agreeable to the palate both in its recent ftate, and when dry.

If thefe thould not fucceed, other quick-growing plants might be cultivated for manures, as typha, cat's-tail, caltha, and others; which Thould be mowed twice a year, while they are young, and in confequence abound with faccharine and mucilaginous matter ready to pafs into fermentation.
III. I. The advantages refulting from occafionally covering lands with water have long been experienced in warmer countries, as in Egypt, Italy, and many parts of China; and have of late years been introduced into our own more northern climates. The great importance of much water to the progrefs of vegetation has already been fpoken of in Section X. 3. And in the warm climates above mentioned, it is particularly ufeful in the cultivation of rice for the purpofe perhaps of fimply moiftening the ground.
But the advantages of flooding meadow-lands in this country may be divided principally into three kinds, one of which confirts in fimply moiftening them, which feems to be the priacipal ufe of watering lands in warm countries, where the water is derived to them almoft every evening from refervoirs above them, or from waterwheels worked by affes, and which is fometimes done in the gardens of this country by watering pans and human labour.

The fecond and greater advantage of flooding lands in this climate confifts in deriving much water over them from rivers or from ftrong fprings, and by thus fupplying them with the muddy fediment brought down by rivers, after fudden rains, or with the calcareous earth diffolved in many fprings. All thofe fprings, which pafs through marl, or chalk, or other limeftone, are replete with calcareous earth ; which they hold in folution, as thofe about Derby and about Matlock, which earth they depofit on ftanding on the foil, or in flowly trickling over it. See Sect. X. 6. 2. And river

$$
\mathrm{Nn} \quad \text { water }
$$

water in rainy feafons is loaded with diffufed as woll as with diffolved materials from the neighbouring country.

Both thefe therefore are of great fervice in flooding meadow-lands, and perhaps almoft all other lands. But thofe fprings, which pafs only through filiceous fandftone, as thofe at Lichfield in Staffordhire, have no calcareous earth diffolved in them, as I have found by experiment ; and the water of moft rivers, when they are not fwelled by rain, are alfo too pure for this purpofe; as they have depofited already in their courfe the calcareous earth, which might abound in the fprings, which feed them ; as I have obferved by experiments on the water of the Derwent at Derby, which though it runs for many miles about Matlock through a bed of limeftone, yet when clear of mud from rains, it contains no calcareous earth, as it paffes by Derby, though the fprings in the vicinity are replete with it. Neither of thefe fources of water can therefore do much fervice for this fecond defign of depofiting limeftone, or múd.

The third advantage of flooding lands in this climate is for the purpofe of defending them from the cold of the winter or vernal months. For this advantage the water from ftrong fprings; which are always at 48 degrees of Farenheit in this country, is preferable to river water, where it can be had in fufficient quantity; fince the water of rivers is of the fame degree of cold as the atmofphere, till the thermometer finks to 32. But both of them, when they form a fheet of thin ice, as they cover a meadow, defend the roots of the grafs from feverer degrees of cold; which are thus preferved, and thofe of fome graffes are believed even to vegetate beneath the ice, as the rein-deer mofs in Siberia vegetates beneath the fnow in a degree of heat about 40, which is the medium between that of the under furface of the thawing fnow, which is 32 ; and that of the common heat of the interior parts of the earth, which is 48 ; and thus the rops of grafs in this cold climate may be wonderfully forwarded ; fo
uns for many when clear of it paffes by rith it. Nei. rvice for this
late is for the er or vernal rings, which is preferable y ; fince the noophere, till they form ${ }^{2}$ roots of the eferved, and th the ice, ${ }^{20}$ N in a degree
of the under
the commoll

SECT. XI. 3. 2.

AND WATERING.
as almoft to double the product of the year, if well managed and carefully attended to.
The method of forming the channels to convey the water confifts in carrying the firft or principal aqueduct along the bigheft part of the meadow, and deriving others on the fummits of the lands; if the meadow has formerly been ploughed into ridges and furrows, thefe again are to be divaricated fo as to pafs into the furrows; all thefe branches of the ftream are again to be collected from the furrows, and difcharged at the loweft part of the furface.

Something fimilar to this muft be managed on more level grounds, fo as to conduct the water over the whole meadow, and alfo to carry it off, that it may not fagnate; but that a moving fheet of water about an inch in depth may continually flow over the whole for the purpofe of depofiting the materials diffolved or diffufed in it. The conftruction and width of thefe channels, with many ufeful obfervations, are fhewn in a pamphlet of Mr. T. Wright, on "the Art of Floating Land in Gloucefterfhire." Scatcherd. London.
2. Mr.Wright in the treatife above mentioned advifes, that the aftermath of grafs land fhould be eaten off bare by the beginning of November, and that the channels for conducting the water to and from the meadows fhould be then cleanfed and repaired; and that the water fhould be fuffered to flow over the meadow for three weeks; and that then the land ought to be expofed to the air for a few days; fince fome of the graffes, and thofe of the moft nutritive kinds, he believes will not much longer exift under water. By this early preparation, he adds, that advantage is taken of the autumnal floods, which bring along with them a greater quantity of putrefcent matter than thofe of winter.

In the months of December and January Mr.Wright adds, that the chief care of the floater confifts in keeping the land theltered by the water from the feverity of frofty nights; but advifes through the whole of thefe months every ten or fourteen days to expofe the land
to the air by laying it as dry as poffible for a few days; and always to. difcontinue the flooding, when the land is covered with a theet of ice.

In the month of February greater attention is required; if the water be fuffered to flow over the meadow for the face of many days without intermiffion, a white fcum is generated, and the grafs is much injured. And he juflly obferves that, if you now take off the water, and expofe the land in its wet ftate to a fevere frofty night, a. great part of the grafs will be cut off.

Mr.Wright adds, that in Gloucefterfhire two methods of avoiding thefe injuries are practifed: one is to take off the water by day to prevent the production of the fcum, and to turn it over again at night to guard againft the froft. The other is to take off the water early in the morning; and, if the day be dry, to fuffer it to remain off a few days and nights; for if the land experiences only one drying day, the froft at night will do little injury. But the former of thefe practices, where it can be eafily done, he thinks preferable to the latter.

In the beginning of March the grafs on well-flooded meadows will generally be fo forward, as to afford abundant pafturage, and the water fhould be taken off for about a week, that the land may become dry and firm; and the cattle fhouid for the firft week be allowed a little hay in the evening, if the weather be cold and rainy.

In the month of April the grafs may be eaten off quite hort and clofe, but not later; fince if you trefpafs but one week in the month of May, the crop of hay, which is to fucceed, will be much impaired; and the grafs will become foft and woolly, and the hay have the appearance of lattermath hay, and be lefs valuable.

At the beginning of the month of May the water is again thrown over the meadows for a few days; which fimply by moiftening the land will in moft feafons, Mr. Wright obferves, enfure a crop of hay of one ton aud a half on an acre in the courfe of fix or feven weeks.

Sect. X. 3.2. AND WATERING.

The water is fometimes again ufed, when the hay is carried off, but may render the lattermath, he thinks, unwholefome to theep. But this is particularly ferviceable, when the water is rendered turbid by fuddens rains. Some have taken off two hay-crops in one year, but this Mr.Wright thinks is imprudent in this climate; which however I fuppofe might be accomplifhed, where the firft growth is not eaten in April, and where much turbid river water or calcareous fring water can be ufed between them.

Mr. Wright further obferves, that the hay on thefe flooded meadows is little inferior to upland hay, if it be cut at its proper age; but that fome avaricious farmers have permitted it to remain uncut till it produces three tons on an acre, and that then it will become long and coarfe, and little better than ftraw. But that when it is cut in June, and has been flooded well with muddy water in the winter, that it becomes little inferior to the beft upland hay.

The hay, I hould fuppofe, which is cut before the grafs is in full flower, while the faccharine juice ftill remains in part at the joints of the flower-ftems, muft contain the moft nutritious matter; which is afterwards abforbed as the flower expands, and as the feed ripens, and forms the meal or ftarch of the feed-lobe, and is thed upon the ground, or confumed by birds, and the grafs-ftems and their leaves become fimply like the fraw of ripened corn.

This will appear of more importance to any one, who attends to the difference of the pods or hulks of peas, or of kidney-beans, during the early ftate of the enclofed feeds, and again after the feeds become ripe. The pod or capfule is at firft fweet and mucilaginous, fo as to fupply an agreeable and nutritive food, the latter of which, and fometimes the former, are eaten at our tables; afterwards as the feeds, which are attached alternately to each fide of the capfule, drink up by their vegetable life after impregnation the faccharine and mucilaginous matters there purpofely depofited for them; the capfule itfelf becomes
becomes a mere fibrous membrane not better than the fraw of ripe grains above mentioned.

It may be here repeated, that one great ufe in this country of flooding grafs-grounds in winter, and in early fpring, fo as to let a thin fheet of water perpetually flow flowly over them, is, that it will in frofty nights, when the cold is not much below the freezing point, produce a thin theet of ice, and thus prevent the cold from affecting the roots of the grafs beneath it ; which may thus be two or three weeks forwarder than on other lands; for ice is fo bad a conductor of heat, that water is not readily frozen beneath it ; and efpecially if it flands hollow, fo as to enclofe a ftratum of air between itfelf and the water beneath.

This feems to have been attended to by the philofophers in the French army, when they paffed over ice to fubdue Holland; fearing leaft the ice fhould be too weak for the paffage of their troops and artillery, they bored many holes through it every night ; and then by preffure on its furface the water was made to rife through thefe holes, fo as to fland an inch above the furface; which being thus expofed to the cold air of the night, became frozen before morning; and thus in a few nights thickened and ftrengthened the ice ten times more than would have been done naturally by the flower freezing beneath it.
3. To recapitulate the advantages of flooding, firft, not only the common meadow grounds are enriched, but moraffy ones are confolidated, by the mud brought over them from river water ; or the calcareous fediment, and azotic or nitrogen air, from moft fpring waters, during thofe feafons when grafs does not naturally make much progrefs in its growth. 2. They are defended from froft by the flowing water, or by the ice, when it is frozen; and thus a much forwarder crop of grafs is produced, as may frequently be feen over pieces of ground naturally moift; which look green in the fpring,
fome weeks before that on drier land in their vicinity. 3. The ground is rendered more eafily penetrable by the roots of grafs, both by its being kept fofter, and alfo from its being feldomer frozen below the furface in the vernal months. 4. This early crop may be eaten off by cattle or fheep, and a new flooding for a fhort time will forward the growth of it fo as to produce a good crop of hay. 5. After the hay is removed another flooding for a fhort time enfures a luxuriant growth of autumnal grafs, or aftermath.
The difficulty of getting moift lands free from rufhes is faid to be readily overcome by flooding them, and that efpecially after previoufly mowing them, as their fpongy pith will then abforb fo much water, as to caufe them to putrify by its ftagnation; or if this be done in autumn or fpring, and a frof fupervenes, the water in their pith by expanding, as it becomes ice, burfts and deftroys their organic Atructure.

The following conclufion is copied from Parkinfon's Experienced Farmer. "Upon the whole, artificial watering of meadows is a moft profitable improvement ; it robs no dunghill, but raifes one for the benefit of other lands; for if a farmer can water ten acres of land, cut the grafs and ufe it either in ftall or fold-feeding, he might keep perhaps forty beafts; and by working the manure made by them into a compoft, and applying that compoit to other lands, he might either have a great deal more hay for the winter, or feed more cattle in the fummer." Vol. II. p. 68.
4. Two or three obfervations of importance fhould be here inferted. I. That in flooding lands for a confiderable time, the water fhould only trickle over them from the canal, which leads it along the more elevated parts, and not ftand on it like a filh-pond; as in the latter cafe the grafs roots will perifh in a few weeks in the early fpring, to the great injury of the farmer, an example of which on feveral acres I once witneffed.

As foon as any materials thus begin to putrefy beneath the water, a fcum
a fcum of white froth arifes owing to the air fet at liberty by putrefaction; which is fuppofed by fome to injure the grafs, whereas it is a confequence rather than a caufe of injury, and fhews, that the water has ftagnated too long; and fhould either be immediately drawn off, or fupplied by a running fream; but the former fhould probably be preferred: if the ftems of grafs are fo tall as to rife above the running water, it is probable, that their death and putrefaction do not fo foon occur.

Secondly. It is obferved by gardeners, that in dry feafons, if you begin to water any kinds of plants, you muft continue to repeat it ; otherwife that they are fooner injured by dry weather, than thofe which have not been watered. This fact alfo I think I have obferved, and it may depend on the circumftance of the roots of annual vegetables thooting themfelves lower down in dry feafons in fearch of moifture; but if this be given them in the commencement of their growth, they then fhoot their roots more horizontally, and are afterwards in confequence fooner deftroyed by the fubfequent dry weather.

Thirdly. Much cold water given fuddenly to plants, which were nearly perifhing with heat and drynefs, will I believe fometimes injure or deftroy them, as I faw occur this year, 1798 , in June to fome rows of garden beans; which after being flooded for one night withered, and in part died, on the following day, which was probably caufed, not by the excefs of water, as plants of this genus would feem to bear much moifture from an experiment of Lord Kaimes, who fays in the Gentleman Farmer, that he planted a pea on fome cot-ton-wool fpread on water in a phial, and that it fprung up, and fhot roots through the cotton-wool into the water, and produced large pods full of ripe feeds. The death of thefe beans was more probably occafioned by the torpor of the fyftem induced by cold, as occurs to thofe who have injudicioufly drank much cold water, or plunged into a cold bath, when they have been previoufly much weakened by the unneceffary
erty by putien that the water cly drawn of, Id probably ve the running do not fo foon

Ceafons, if you e to repeat it; er, than thofe have oblerved, f annual veges in fearch of ment of their , and are afterdent dry wea.
s, which were fometimes inJune to fome one night wio 1. Was probably

Sectr. XI. 3. 5 . AND WATERING. 391 unneceffary activity of the fyftem occafioned by continued heat, or great exercife. See Sect. XIV. i. i.

Nor is there reafon to fuppofe that to whatever extent this mode of cultivation of grafs could be carried in this country, that any injurious effects in refpect to the health of the inhabitants could be produced ; as this mode of flooding is not by ftagnant water, as in rice grounds; which D. A. J. Cavanilles, who has lately publifhed a work on the cultivation of rice in the kingdom of Valencia, believes to be injurious to the health of the inhabitants. Magaz. Encyclop. T. 3.

In thefe cold climates the vicinity of running ftreams may perhaps be rather falubrious than the contrary ; as the air is cooled in hot weather, and warmed in cold weather, by its contact with their ever-changing furfaces, till they become frozen. I at this moment recollect many, who lived to an healthy old age in the valley of the Trent near the very edge of the water, whofe names I could repeat. But ftagnate waters, from which putrid exhalations arife, produce agues in cold countries, as in the fens of Lincolnfhire; and putrid fevers in hot ones; from which our armies fuffered fo much at St. Lucia both in the prefent and the laft war.
5. This practice of flooding is capable of being extended to a wonderful degree in this country, not only by ufing the natural falls of brooks and fprings, and by occafionally damming them up to fupply higher fituations; and by effectually fpreading the land-floods from accidental fhowers over the inferior lands to a great extent. And laftly, the water, which is now dammed up to fupply the numerous mills, might be diffufed in rills over a thoufand meadows, or part of it be raifed by pumps to higher grounds; and thus fertilize and enrich the country; while the grinding of corn, fpinning of cotton, rolling iron bars, and other mechanic purpofes, might be effected by wind-mills, or fteam-engines, in almoft every part of the ifland.
For this purpofe likewife the new method of raifing water by the vis inertiæ or acquired momentum of moving ftreams might be well
applied, which was formerly ufed by Mr.Whitehurft of Derby on a frmall fcale at Oulton in Chefhire, as defcribed with a plate of the machine, to which an air-veffel is ingenioufly added, in the Philofophical Tranfactions for the year 1775, Vol. LXV. p. 277, and which is now adapted to variety of ingenious machinery by M. Boulton, Efq. of Soho near Birmingham; and is well explained with two prints in the Repertory of Arts and Manufactures, No. LI.
6. The following water machine, which is on the principle of Hiero's fountain, is defigned to raife part of the water of a fpring, or fmall brook, where fome feet of fall may be acquired, to a greater height for the purpofe of watering higher levels of ground; and the horizontal windmill with centrifugal pump is defigned for the fame purpofe, where no fall can be acquired. We fhall then perhaps have fatiated fome of our readers with this fubject of watering lands, and may conclude with the fhepherds in Virgil's Eclogue,

Claudite jam rivos, Pueri, fat prata biberunt.

PLATE V.

Reprefents the frata of a hill. $a b$ is the upper ftratum, fuppofe of marle; $c d$ is the fecond ftratum, fuppofe of fand; of reprefents the accumulated earth in the valley. It is defigned to fhew, that in boring holes through the upper ftraum to find that beneath it, they fhould be formed perpendicular to the fide of the mountain, and not perpendicular to the horizon, as is the common practice, as by thofe means the hole $y y$ is much fhorter than the hole $x x$. As explained in Sect. XI. I. 5 .

PLATEVI.

PLATE VI.

Is a fection of a machine fimilar to Hiero's fountain, but defigned to raife water to a great perpendicular height, where there is the convenience of a fmall fall.
$a b$ the fream of water, $b c a$ the height of the fall of it, fuppofe ten feet, $d e$ two veffels of lead or iron containing, fuppofe, four gallons each, $f \mathrm{~g}$ bikl are veffels of lead containing, fuppofe, two quarts each, op two cocks, each of which paffes through two pipes opening one and clofing the other, $q r$ a water balance moving on its centre s and turning the two cocks o and p, alternately, $t u$ and $w x$ two air-pipes of lead one quarter or half an inch diameter within, $y z, y z, y z$, water-pipes one inch diameter.

The pipe $b c c$ is always full from the fream $a b$, the fmall citterns $g i l$, and the large one d, are fuppofed to have been previoufly full of water, then admit water by turning the cock o through the pipe $c e$ into the large ciftern e. This water will prefs the air, which was in this ciftern e up the air-pipe $w x$, and will force the water from the fmall cifterns $g i l$ into the cifterns $b k$ and great \mathbf{C}. At the fame time by opening \mathbf{B}, the water and condenfed air; which previoufly exifted in the large ciftern d, and the fmall ones $f b k$, is difcharged at B. After a time the water balance qrs clofes the cocks now open, and opens their antagonifts,' and the cifterns $f b k$ are emptied in their turn by the force of the condenfed air from the ciftern d, as the water enters into it from the pipe $b c$.

PLATE VII.

PLATE VII.

Is a fection of a machine for raifing water a few feet high by the power of the wind for the purpofe of draining moraffes, or of watering lands on a higher level.

It confifts of a windmill fail placed horizontally like that of a fmoak-jack, furrounded by an octagon tower; the diverging rays of this tower, $a b, a b$, may confift of two-inch déals only, if on a fimall fcale, or of brick-work if on a larger one. Thefe upright pillars are connected together by oblique horizontal boards as fhewn at $\mathrm{A} B$, by which boards placed horizontally from pillar to pillar, in refpect to their length, but at an angle of about 45 degrees in refpect to their breadth, fo as to form a complete octagon including the horizontal windmill fail near the top of it ; the wind as it ftrikes againft any of them, from whatever quarter it comes, is bent upwards and then ftrikes againft the horizontal wind-fail. Thefe horizontal boards, which form the fides of the octagon, may either be fixed in their fituations, or be made to turn upon an axis a little below their centres of gravity, fo as to clofe themfelves on that fide of the octagon tower moft diftant from the wind.

It may be fuppofed that the wind thus reflected would lofe confiderably of its power before it ftrikes on the wind-fail, but on fixing a model of fuch a machine on the arm of a long whirling lever, with proper machinery to count the revolution of the wind fail, when thus included in a tower and moving horizontally; and then when moved vertically as it was whirled on the arm of the lever with the fame velocity, it was found on many trials by Mr. Edgeworth of Edgeworth Town in Ireland, and by myfelf, that the wind by being thus reverted upwards by a fixed planed board did not feem to lofe any of its power. And as the height of the tower may be made twice as great as the diameter of the fail, there is reafon to conclude that the power of this horizontal wind-fail may be confiderably greater, than if the fame fail was placed nearly vertically oppofed to the wind in the ufual manner.

At the bottom of the fhaft of the wind-fail is placed a centrifuggal pump with two arms at CD , which has been defcribed in mechanical authors. It confifts fimply of an upright bored trunk, or cylinder of lead, with two oppofite arms with an adapted valve at the bottom to prevent the return of the water, and a valve at the extremity of each arm to prevent any ingrefs of air above the current of the water as it flows out.
$c c c c$ is a circular trough to receive the ftreams of water from C and D , to convey them where required.

S E C T. XII.

AERATION AND PULVERIZATION OF THE SOIL.

1. Soils contain inflammable matters and water. Air confifs of oxygen, nitrogen, and beat. Produces carbonic, nitrous, and pbofphoric acids, and volatile alkali with water when buried in the foil. Heat and light given out from the union of carbon and oxygen in a letter-wafer. Sow and Set foon after the plough or Spade. 2. Penetrability of the foil increajed, and mixture of its ingredients. Retains the rains. Enlarges the Jurface. 3. Ujes of fallowing. Turnips faid not to impoverifh the foil, why. 4. Fallowing injurious to ricb lands, why. 5. The great advantages of Tull's drill bufbandry. Prefers borfe-boeing to band-boeing. An improved drill machine. 6. Advantages of tranjplanting wheat. 7. Of barrowing wheat in fpring. 8. Rolling wheat in Jpring.

As almoft all foils not only contain carbon, and other inflammable thaterials, which are capable of uniting with oxygen, and thus producing the carbonic and other acids; but alfo contain water, which by its decompofition, when in contact with confined air, produces ammonia or volatile alkali by the union of its hydrogen with azote; and nitre by the union of its abundant oxygen with another part of the abundant azote or nitrogen of the atmofpheric air ; there is reafon to conclude, that the great ufe of turning over the foil with the plough or fpade depends principally in the production of thefe effects by the confinement of both the oxygen and the azote or nitrogen of the air in the interftices of the foil; and on this account we have entitled this fection the aeration of the foil rather than the oxygenation
of it, as the latter belongs to the refpiration rather than to the nutrition of vegetables.

When atmofpheric air is imprifoned in the cavities of the foil by turning over its furface, which muft be in greater quantity, when the foil is reduced into the very fmall fragments, which has been called pulverization; and when it is the leaft preffed down by animals trampling on it, it more readily unites, I believe, with the materials above mentioned than in its free ftate; which is probably effected by double or triple chemical affinities.

For this atmofpheric air confifts of oxygen, azote, and the fluid matter of heat ; now if the heat, which occafions the oxygen and azote of the atmofphere to exift uncombined in the form of gaffes, be attracted from them by any other material, as they are confined in the cavities of the foil, they may by their nearer approach to each other combine into nitrous acid; or the oxygen may in its fluid flate, not in its aerial one, more readily unite with carbon; and form a fluid, not an aerial, carbonic acid; which we believe to be of fo much confequence in the growth of plants, as fhewn in Sect. X. 4.

Add to this, that if any putrefactive procefs be proceeding, where atmofpheric air is thus imprifoned in the cavities of the foil, and by the lofs of its heat is converted from a gas to a fluid; that the azote may unite with the hydrogen of the decompofing water, or contribute to decompofe it; and thus to form volatile alkali, which like the nitrous acid, may either'during the procefs of its formation, or after it is formed, be of effectual fervice to vegetation, at the fame time the oxygen given out from the decompofing water may contribute like that of the atmofphere to produce carbonic, nitrous, or phofphoric acids; and thus to render carbon, phofphorus, and the bafis of nitre, capable of being abforbed by vegetable lacteals.

Where atmofpheric air is confined along with water, I well remember from experiments I made long ago, by inverting a bottle filled with air in a jar of water, that the bulk of the air was in fome
days fo much diminifhed as to occupy only half the bottle, which probably occurs from the decompofition of both the water and air ; and the production of ammonia and nitrous acid, both which are believed to be fo ferviceable to vegetation, as mentioned in Sect. X. 2. 9.

That the heat of the atmorpheric air is given out, when oxygen unites with carbon, is fhewn by the heat of hot-beds; and of fermenting faccharine and mucilaginous fluids, as in the production of ardent fpirit ; and may be beautifully feen in the combination of oxygen with carbon in the burning of one of thofe common letter-wafers, which confift of the mucilage of flour, and red lead or minium ; not one of thofe, which are called Irifh wafers, and which are coloured with vermilion. If one of thefe minium wafers be made to blaze in the flame of a candle, the oxygen contained in the minium unites with the carbon of the flour, and gives out a very luminous fark, and confequent great heat, and at the fame inftant a fmall globule of melted lead drops down, and may be agreeably feen, if received on a fheet of white paper held under it. It is alfo probable, that heat is emitted during the production of nitrous and of phofphoric acids.
From thefe obfervations it appears, that feeds fhould be fown, and roots planted, foon after the foil is turned over; while the production of the carbonic, nitrous, and phofphoric acids, and of volatile alkali, and perhaps many other proceffes, are proceeding, rather than after they are completed; and alfo while the fluid element of heat is paffing from its combined ftate, and permeating the foil, which in this cold climate in the vernal months muft be highly conducive to vegetation.
2. By thus turning over the foil with the plough or fade the penetrability of it by the roots of plants is alfo much facilitated; and for this purpofe, as well as for the admixture of atmofpheric air, it can fcarcely be reduced into too fine molecules, or a kind of wet pow-
der ; for the moifture of foil is as neceffary for its being permeated by the young roots of plants, as its fmall cohefion, as mentioned in Sect. X. 3. 6.

Secondly, a more intimate mixture of the various ingredients, which moft foils poffefs, as carbon, calcareous, argillaceous, fliceous, and magnefian earths, with various metallic oxydes, as thofe of iron, and fometimes of manganefe, and calamy, all which by frequent turning over the foil with the plough or fade, become mixed fo as to act on each other or on the roots of vegetables in every minute part of the foil.

And thirdly, the vernal rains are retained by their finking more readily into the pores and cells of land recently turned over, and which ftill poffeffes an uneven furface. Befides a greater furface of it being continually expofed to the paffing air, and to the heaviet impurities, which it perpetually contains, as carbonic acid, foot, odours of many kinds.
3. A recapitulation of thefe circumfances leads us to the knowledge of the ufe of fallowing lands, by repeatedly turning them over much carbonic acid is produced in its fluid ftate; and perhaps fome of the nitrous and phofphoric acids; thefe may remain united with the vegetable recrements, or with volatile alkali, or with calcareous earth. 2. The parts of the foil may become better mixed together, and thus either chemically affect each other to their mutual melioration; or they may more uniformly fupply nutriment to the roots, which penetrate it. 3. The foil may become broken into a moift powder, and may thus be more eafily permeated, and fupply a greater furface of its cavities for the vegetable abforbents to apply themfelves to. 4. Unprofitable plants, or weeds, not being permitted to grow on it, or their being perpetually ploughed under the foil in their early growth, much vegetable nutriment will be referved by not being expended ; or it will be increafed by the faccharine and mucilaginous matter of the young plants, which are thus buried in it.

It fhould be added, that fome plants are faid not to impoverifh the ground, on which they have grown during their herbaceous ftate, before the feed-ftems have arifen; as turnips, when drawn up and carried away to feed cattle or theep on other grounds. This has been afcribed by fome authors to the foil having been fhaded by their thick foliage, and thus not having fuffered fo much by evaporation. Some have afcribed this fuppofed melioration of the foil to its having been fcreened or overhhadowed by the thicker foliage of fuch crops; and that as the putrefactive procefs of vegetable recrements proceeds beft in damp and confined air, as wood decays fooneft in cellars, they fuppofe the foil may thus become improved. But Mr. Tull feems either to doubt the fact, or to attribute it to the ground, where fuch plants are cultivated, being ufually once or twice hoed; and thus in effect to have been followed by the repeated aeration and pulverization of the foil, and the deftruction of innumerable weeds.

If neverthelefs the fact be true, not only all the circumftances above mentioned may contribute to produce it, but alfo, as it appears by the experiments of Prieftley and Ingenhoufe, that though the perfpirable matter of vegetable leaves gives out oxygen in the funfhine, yet that it gives out carbonic acid in the fhade; which even in its aerial or gaffeous form is much heavier than common air, and will therefore fubfide on the earth in the fhade of this perfpiring foliage, and contribute to enrich the foil by the hourly addition of carbon.
4. Neverthelefs where the foil is already replete with manures, and thefe proceffes productive of carbonic, nitrous, and phofphoric acids, and of volatile alkali, are going on in proper abundance; fuch foils muft be injured by being too frequently turned over in fummer fallowing; and thus by expofing too great a furface, and that too frequently, to the air, the funfhine, and the rain; by which much of the fluid carbonic acid will be converted into aerial carbonic acid, and efcape, as well as the phofphorus and the ingredients in their ftate previous to the production of nitrous acid, and of the volatile alkali. On
this account in the manufacture of nitre in France, Spain, and Pruffia, it is directed to cover the compoft of foil and animal recrements with a fhed to prevent too great exhalation and ablution. Hence though a fummer fallow may be of advantage to a poor foil, which has nothing to lofe; it mull be difadvantageous to a rich one, which has nothing to gain.

Lord Dundonald in his work on the Cominection of Agriculture and Chemiftry ingenioufly fuppofes, that foils become injured, when much expofed to the air by fallowing, from the carbon or other inflammable matters uniting with oxygen; and that then being again combined with other materials, they become infoluble, producing limeftone, calcareous nitre, and phofphat of lime. But there is another injury to foil by frequent fallowing, which I furpect to be more extenfive, from the efcape of carbonic acid, or of nitrous acid, or of ammonia, into the atmofphere in the form of gas, as above mentioned ; or their being wafhed away by rains.
5. Hence the great advantages of Mr.Tull's ingenious difcovery of the drill hufbandry are eafily underftood, I. By fowing the wheat in rows, feattered by a drill-plough at regular diftances, and buried at a regular depth, the grain is neither crowded, nor too thinly difperfed. 2. Nor are the roots buried either too deep in the foil, or too fhallow. 3. By turning the foil firft from the rows in the fpring for a week or two, and then turning it up againft the rows, the foil becomes newly aerated with all the good effects in confequence. 4. It becomes more penetrable by the fuperficial roots of the corn. 5. By raifing it to the fecond joint of the corn-ftems, four or fix new roots with new ftems will hoot out, generated by the caudex of the fecond leaf of the corn-ftem; which is now within the foil, or in contact with it, as explained in Sect.IX. 3. 1. and 7. XVI. 2. 2.

Thus Mr. Tull's method of heaping foil againft wheat-plants up to the fecond joint anfwers in fome degree the fame purpofe, as tranfplanting the roots, and fetting them deeper in the foil with much
much lefs expence of labour. But for the more perfeet pulverization of the foil, and the more complete aeration of it, he infifts much on the preference of horfe-hoeing to hand-hoeing; as the former paffes deeper into the foil, and thus expofes a greater quantity of it to the air ; and efpecially of that part of it, which before lay too much beneath the furface to be previoufly much affected by the incumbent atmofphere. But the great objection to the ufe of the horfe-hoe is, that the alternate rows of corn mult be placed at too great a diftance, as will be again fpoken of in Sect. XVI. 2. 2.

To the many advantages of the drill hufbandry above recited Mr . Tull adds, that "where the fpring-turnips are ufed too late in the year, there is not time to bring the land into tilth for barley, and there is a lofs of the barley crop in confequence; which he fays is entirely remedied by the drilling method; for by that the land may be almoft as well tilled before the turnips are eaten or taken off, as it can afterwards." Hurbandry, Chap. VIII. p. 89.

So many great advantages feem to accrue from Mr. Tull's method of drill-fowing and horfe-hoeing, that a curious queftion offers itfelf, Why it has not been more generally adopted? Firft, I fuppofe, becaufe it is difficult to teach any thing new to adult ignorance, fo that the mafter muft for fome time attend the procefs with his own eye. Secondly, I believe the axle-tree of Mr. Tull's fowing machine did not accurately emit the proper quantity of feed from the hopper, and was liable to bruife and deftroy fome of it in its paffage. And thirdly, that the improved drill machine of Mr. Cook's patent is too expenfive for the purchafe of fmall farmers, who fear that it may not anfwer the expected advantages.
I' have therefore given a print at the end of this work of a machine confructed on a cheaper plan, which is fimply an improvement of that defcribed in Mr. Tull's book, by enlarging that part of the axle-tree which delivers the grain, into a cylinder of fome inches diameter

$$
P_{p} \quad \text { with }
$$

with excavations in the rim ; which rim rifes above the furface of the corn in the feed-box, and lets drop again into the feed-box, whatever grains fill the holes above the level of the rim, as that fide of the cylinder afcends. Whence the quantity delivered is uniform, and no grains are in the way to be bruifed or injured, as explained at large along with the print ; and the whole machine is fimple, and of fmall expence.
6. The moft effectual method of obtaining the great combined advantages of aeration and pulverization of the foil is by tranfplanting the roots of wheat, and parting them, as already fpoken of in Sect. IX. 3. 7. By taking up the roots and réplanting them in foil lately turned over, and confequently expofed to the air, which is now confined in its interftices, all the advantages already mentioned are effectually received, from the new made fluid, carbonic, nitrous, and phofphoric acids, and from the ammonia, and other unnamed combinations. Secondly, all the advantages arifing from the eafy penetrability of the loofe foil by the root-fibres, which are believed by Mr. Tull to put out more radicles with abforbent mouths at every part, where they are diffevered, like a brufh or pencil of hairs. Thirdly, by parting the root-fcions from each other they acquire greater fpace of air for their refpiring leaves, and of foil for their abforbent roots. Whereas when too many ftems arife from one root, or many feeds are fown near together, a tuffock is produced in a conical form rifing higheft in the center; which feems to be occafioned by the conteft of the ftems for air and light ; their roots alfo muft defcend lower in their conteft for moifture, and for other advantages of the foil ; whence many of thefe crowded ftems become barren, producing no ears, or ill-corned ones.

Another benefit from tranfplanting corn is owing to the quicker tendency to fructification, and confequent fooner ripening of the grain. Thus tranfplanted garden beans and tranfplanted brocoli flower fooner, and I fuppofe produce lefs ftems or ftraw, as men-
tioned in Sect. XVI. r. 2. I am alfo well informed by the Rev. Mr.
Pole of Radborne, that the roots of thofe turnips, which were drawn out of the ground and tranfplanted, became confiderably larger than thofe, which were only hoed in the common manner; which I fuppofe to have been owing to many of the extremities of the roots having been torn off in drawing them out of the ground; and that thence the tendency to fhoot up the new central ftem is delayed, and the refervoir of nourifhment accumulated in the tuberous root is thus increafed in quantity, as feveral of thefe turnips weighed ten and eleven pounds; and hence probably the tranfplanting turnips by means of a cylindrical fpade defcribed in Vol. IV. of the Bath Society, which tears the roots lefs, might not have been fo advantageous. Something fimilar occurs in tranfplanting fruit-trees. See Sect. XV. 2. 4 -

But the great advantage of tranfplanting wheat above the drillhufbandry confifts in being able at the fame time to divide the rootfcions from each other; and thus not only to prevent their crowding each other, but alfo wonderfully to increafe the product from a fingle grain, with many other advantages mentioned by Mr. Bogle in the works of the Bath Society, Vol. III. p. 494.

Another great advantage of tranfplanting wheat confifts in this, that it may be fowed in a garden, one acre of which will produce fets for one hundred acres, if they be divided and planted at nine inches diftance from each other; and as they are not to be tranfplanted till the fpring, wheat may be thus cultivated in moifter fituations than would otherwife be friendly to its growth.
And that a clean crop may be certainly thus procured; becaufe if the land be ploughed immediately before the plants are fet out, the corn will fpring much quicker from the plants, than the weeds from their feeds; and the corn will thence bear down the growth of the weeds.

For many other particulars the reader is referred to the ingenious paper of Mr. Bogle above mentioned, who thinks the tranfplanting

$$
\mathrm{P}_{\mathrm{p} 2} \quad \text { might }
$$

might be done by boys and girls at a fmall expence; I thall only add, that rape-feed, which is generaHy fown in Auguft, and not reaped till the Auguft following, might be profitably tranfplanted, as well as peas and beans. And laftly, that it is probable, that fome means of making the holes to receive the plants might be much expedited by a broad wheel to be drawn by a man or horfe with prominent pegs on its periphery two inches tall, and nine inches afunder.
7. Another means of aeration and of pulverization has been ufed in refpect to wheat crops by many with advantage, and that is by drawing a lightifh harrow over a wheat-crop in the fpring, which, where a crop is thin, is particularly recommended; and may alfo be of fervice where it is too thick.

The harrow by breaking the clods, and by turning up the foil againft the ftems of many plants, earths them deeper as in hoeing; and thus by burying the fecond joint occafions it to tiller, or fhoot out new root-fcions; at the fame time the earth is expofed to the air, and many weeds are rooted up and covered, and fome roots of the corn.

The drawing a fharp harrow over a field of wheat in the fpring muft cut or tear many of the roots of thofe ftems, which it comes near, which according to Mr. Tull's theory would fhoot out many new radicles, or pencils of fine roots, and thus acquire more nourihment. But I fufpect that tearing of many of the root-fibres prevents the too luxuriant growth of the ftem and leaves, and thence fooner produces the fructification, as in tranfplanting. At the fame time the earth being loofened becomes more penetrable to the remaining roots, as well as more nutritive from its aeration.

Others have even ploughed a field at this feafon with good effect, as Mr. Bogle afferts; but both of them appear to be only inferior kinds of drill hufbandry; and the former may fo far be of confiderable utility.
8. Another method of aerating and pulverizing the foil of a wheat field in fpring is by rolling it, which may be done before or after the
use of the harrow, or without it. As the furface of a wheat field is generally left rough with clods or eminences, the preffure of a heavyifh roller will not only pulverize there, and thus expose their interior furface to the air, and raife the foil round the wheat-ftems above the fecond joint, and thus induce them to hoot out new root-fcions, or tiller ; but will alfo prefs down the wheat roots into the foil, and thus alfo promote the growth of new ftems, as mentioned in Sect. XVI. 2. 5. if it be performed, when the ground is neither too wet nor too dry for fuck an operation.

again

 and thus but new air, and corn.e faring it comes ut many nourih prevents ce fooner time the ing roots,

S E C T XIII.

OF LIGHT, HEAT, ELECTRICITY.

1. 2. Liget and heat are different fuids. Light does not beat tranparent bodies. A glafs fire-fcreen, combines with opake bodies, and beat is detruded. 2. Light combines with folid oxygen, and with beat converts it into gas. Perpiration of plants is decompofed by light. The bydrogen retained gives the green colour. Water byper-oxygenated. Oxygenated marine acid. Colourlefs nitrous acid. A branch immerfed in carbonic acid and water. 3. Etiolation of vegetables. Bleaching owing to oxygen. Colour of plants to bydrogen, and the yellow tan of the Jkin. Pure air from dew. Perfpiration of plants oxygenated. Light tans living bodies, and bleacbes dead ones, both vegetable and animal. 4. Uje of light in vegetable refpiration. Plants do not refpire in the night. Truffes and fungi live witbout light. 5. Spring weater frequently oxygenated. Air liberated by points. 6. Plants require oxygen. Fallacy of contrary experiments. II. i. Heat univerfal. Counteralts gravitation. Is the caufe of fluidity, and of aeriform fate. Particles of matter do not touch. Heat becomes combined. Is jet at liberty in production of acids. In freezing water. 2. Frof deftroys fluidity. Ice expands. Separates compound fluids from each other, and burfts the veffels of plants. Not of evergreens. Rime frofts and black frofts. Low fituations not proper for gardens. Uje of coping fones on fruit-walls. Rows of young peas from S. E. to S.W. Bend fig-trees on the ground. Froft erroneoully believed to meliorate the foil, and to be wbolefome. Clay rendered denjer by froft. Snow protects plants. Animals covered with fnow are not wet or Atarved. Lichen rangiferinus. 3. Cold deftroys vegetable irritability. Heat is a fimulus. Acquired babits of plants. 4. Cold produced by evaporation. Plants not to be watered in the funfine. III. I. Electricity confifts of two fluids. Forwards the growth of plants whether pofitive or negative. Ligbtning deftroys them. 2. It alifts the decompofition of water in vegetables. 3. Clouds
are generally electrijed plus. Experiment on vapour. Rain from bydrogen and oxygen. Tbunder Jowers. 4. EleEtric points to collect dew, and promote vegetation. Electric clock.
I. i. Philosophers are not yet agreed, whether light and heat be the fame fluid under different modifications, or two different fluids, which exift frequently together. The latter opinion feems to be more probable from the circumftances related below, and alfo from the analogy of other aqueous, aerial, or ethereal fluids, which appear to confift of two other fluids combined or diffufed with each other. Thus water confifts of oxygen and hydrogen combined together. Atmofpheric air of oxygen and nitrogen diffufed together. Electricity probably confifts of two fluids, which may be termed vitreous and refinous electricity. Maguetifm alfo probably confifts of two fluids, which conftitute northern and fouthern polarity. The power of attraction feems to confift of gravitation and of chemical affinity. And laftly, the element of fire confifts I fuppofe of light and heat.

The diffimilarity of light and heat is evinced by this fimple circumftance; that as light gives no heat to tranfparent bodies, which the emanations from a fire do, there is reafon to believe them to be different fluids. Thus when fmoke is blown mear the focus of a large burning glafs, it does not afcend; which fhews, that the air is not heated and rarified by it; though it would burn or vitrify in an inftant any opake body, which might be oppofed to it ; but the emanations of heat from a fire foon rarify and warm the air in its vicinity, caufing it to afcend, as may be feen by a firal card-vann placed over a chimney-piece, and which is agreeably feen in the ufe of the new glafs fire-fcreens of Parifian invention, which placed before a parlour fire permit the rays of light to pafs, but intercept the emanations of fluid heat.

Whence it would feem, that light does not itfelf communicate heat to opake bodies, when it falls on them; but combines with them, and
and by that union heat is detruded or given out; which heat may produce inflammation of the material, if it be of an inflammable nature, by uniting it with the oxygen of the atmofphere; and thus producing an eduction of more heat from the oxygen, and greater inflammation of the burning body.
2. Another effential difference between light and heat confifts in the particular attraction of the former to oxygen; infomuch that by their union the combined or folid oxygen becomes changed into an aerial, or gaffeous ftate; as conftantly occurs, when the fun thines on the hyper-oxygenated water, which is perfpired or exhaled from plants, as mentioned in Botanic Garden, Vol. I. Cant. IV. 1. 25. But as an addition of heat feems neceffary to the converfion of a folid or fluid body into an aerial or gaffeous one, I fuppofe the fun's light at the fame time by combining alfo with the water fets at liberty fome latent heat from it, which gives wings to the oxygen.

The water perfpired by plants, when expofed to the funfhine, is believed to be decompofed, as it efcapes from the fine extremities of the exhalent or perfpirative veffels of plants; and that the hydrogen is reabforbed by the mouths of thofe veffels, as explained in Botanic Garden, Vol. I. note 34. That this happens to a certain degree is evinced by etiolated or blanched vegetable leaves becoming green, when expofed to the funfhine in a few days; which is, I believe, produced by their retaining the hydrogen of the water they perfpire, as it is decompofed by the fun's light.

But it is alfo probable, that the perfpired fluid of plants is previoufly hyper-oxygenated in the vegetable circulation. Firft, becaufe there is never perceived any fmell of hydrogen to attend this procefs of liberating oxygen by the fun's light. And fecondly, becaufe the following productions of oxygen gas by the fun's light are fimilar phenomena; though I fuppofe the points or hairs on vegetable leaves may contribute to the efcape of the oxygen, as explained in Botanic Garden, Vol. I. note 10.

Sir Benj. Thompfon, now Count Rumford, in a paper publifhed in Philof. Tranfact. Vol. LXXVII. put thirty grains of raw filk previoufly wafhed into fome fpring water, and expofing it fome hours to the funhine obtained from it very pure vital air, or oxygen gas. In that experiment the fpring water feems to have been in a ftate of hy-per-oxygenation, and the points or fine edges of the raw filk to bave affifted its liberation from the water in the funfhine, as explained in Botanic Garden, Vol. II. note on fucus. 2. The hyper-oxygenated marine acid is known very haftily to part with its fuperabundant oxygen in the funfhine. $3 . \mathrm{Mr}$. Scheele inverted a glafs veffel filled with colourlefs nitrous acid into another glafs-veffel containing the fame acid ; and on expofing them to the fun's light, the inverted glafs became partly filled with pure air, and the acid at the fame time became coloured. Crell's Annal. 1736.

As water contains 85 hundredth parts of oxygen to 15 of hydrogen, it may become much oxygenated occafionally by a fmall lofs of hydrogen in the vegetable fyftem; or by the carbonic acid being decompofed in plants by the fecretion of carbon, which conftitutes fo great a part of them; and that on both of thefe accounts they may yield oxygen gas, when expofed to the fun's light, as appears from the following experiment related from Von Ullar by G. Schmeiffer. Obfervat. on Plants. Creech, Edinburgh, p. 92.

If two branches of a plant are immerfed, one in common water, and the other in water impregnated with carbonic acid, we then find, that the branch immerfed in the latter yields a much greater quantity of oxygenous gas in the funfhine than the other. The difference in fome experiments has been found in the proportion of 264 to I . But the proportions vary when different plants are fubjected to trial. Thus the carbonic acid, with which the water is impregnated, is decompofed by the branch, the carbon apparently enters into the conftitution of the plant, while the oxygen is fet at liberty, and efcapes

Q q
in the form of gas in the funfhine; but not in the night, as then the carbon is perfpired along with it.
3. A third circumftance, in which the effects of light differ effentially from thofe of heat, appears in the blanching or etiolation of vegetables; under whatever temperature of heat a plant is kept, it becomes white, if the light be excluded from it, and is fo far difeafed, as mentioned in Sect. XIV. 2. 4. Whence all vegetables turn towards the window, if confined in a room, and in denfe woods grow taller, than in open grounds, for the purpofe of acquiring accefs to this neceffary fluid. On this fubject many experiments are related by M. Senebier on vegetables confined in a dark cavern.

From the experiment laft related of the nitrous acid becoming coloured, when the fuperabundant oxygen was volatilized by the fun's light, or attracted from it ; and from the experiments of bleaching cotton by the hyper-oxygenated marine acid, where the union of oxygen with the colouring matter feems to deftroy the latter by forming a new acid, which is colourlefs, it appears, that the abfence of oxygen occafions the colour of vegetable bodies, probably by the accumulation of hydrogen; and that on this account, when they are fecluded from the light, they become white, or blanched, or etiolated, by their not being in a fituation to part with fo much oxygen, as when they are expofed to the light.

Hence plants growing in the fhade are white, and become green by being expofed to the fun's light; for their natural colour being blue, the addition of hydrogen adds yellow to this blue, and tans them green.

I fuppofe a fimilar circumftance takes place in animal bodies; their perfpirable matter is probably hyper-oxygenated; and, as it efcapes in the funfhine, lofes its fuperabundant oxygen; and by the hydrogen being retained the fkin becomes tanned yellow. Though this muft occur in lefs quantity in animals, as they perfpire fo much lefs
than vegetables; and the greateft part of their perfpired matter, which exhales from the lungs, is not expofed to the fun's light. In proof of this it muft be obferved, that both vegetable and animal fubftances become bleached white by the fun-beams and water, when they are dead, as cabbage-ftalks, bones, ivory, tallow, bees-wax, linen and cotton cloth; and hence, I fuppofe, the copper coloured natives of funny countries might become etiolated, or blanched, by being kept from their infancy in the dark, or removed for a few generations to more northern climates.

It is probable, that on a funny morning much pure air becomes feparated from the dew by means of the points of vegetables, on which it adheres, and much inflammable air imbibed by the vegetable, or combined with it ; and, by the fun's light thus decompofing water, the effects of it in bleaching linen feem to depend; the water is decompofed by the light at the ends or points of the cotton or thread; and the vital air unites with the phlogiftic or colouring matters of the cloth; and produces a new acid, which is either itfelf colourlefs, or wafhes out; at the fame time the hydrogen or inflammable part of the water efcapes. Hence there feems a reafon, why cotton bleaches fo much fooner than linen; viz. becaufe its fibres are three or four times fhorter, and therefore protrude fo many more points ; which feem to facilitate the liberation of the vital air from the inflammable part of the water.

A fun-flower three feet and a half high, according to the experiment of Dr. Hales, perfpired two pints in one day, (vegetable ftatics) which is many times as much in proportion to its furface, as is perfpired from the furface and lungs of animal bodies; it follows, that the vital air, liberated from the furface of plants by the funfhine, muft much exceed the quantity of it abforbed by their refpiration; and that hence they improve the air, in which they live, during the light part of the day; and thus blanched vegetables will fooner become

$$
\text { Q q } 2
$$

tanned
tanned into green by the fun's light, than etiolated animal bodies will become tanned yellow by the fame means.

Lally. This retention of the hydrogen on the fkins of vegetables and animals, when their perfpirable matter is decompofed by the fun's light, and by which the former becomes green, and the latter yellow, is evidently owing to the power of life; becaufe when either of them are dead, the action of the funhine on the water fprinkled on them again blanches them, or bleaches them white.

It is hence evident, that the curious difcovery of Dr. Priefley, that his green vegetable matter, and other aquatic plants, gave out vital air, when the fun thone upon them; and the leaves of other plants did the fame when immerfed in water, as obferved by Mr. Ingenhouz, refer to the perfiration of vegetables, not to their refpiration. Becaufe Dr. Prieftley obferved the pure air to come from both fides of the leaves, and even from the ftalks of a water-flag, whereas one fide of the leaf only ferves the office of lungs, and certainly not the ftalks. Exper. on Air, Vol. III. And thus in refpect to the circumftance, in which plants and animals feemed the fartheft removed from each other, 1 mean in their fuppofed mode of refpiration, by which one was believed to purify the air, which the other had injured, they feem to differ only in degree; and the analogy between them remains unbroken.
4. The conteft for light, as well as for air, which is fo vifible in the growth of vegetables, as defcribed in Botanic Garden, Vol. II. note on cufcuta, hews the former to be of great confequence to their exiftence as well as the latter. Thus many flowers follow the fun during the courfe of the day by the nutation of the ftalks, not by the rotation of them, as obferved in the fun-flower by Dr. Hales; and the leaves of all plants endeavour to turn their upper furface to the light, which is their refpiratory organ, or lungs, as fhewn in Sect. IV.

The great ufe of all plants turning their upper furfaces of their leaves to the light is thus intelligible; the water perfpired from thofe furfaces is hyper-oxygenated; and, as it efcapes from the fharp edges of the mouths of the perfiring veffels, when acted upon by the fun's light, gives out oxygen ; which oxygen, thus liberated from the perfpired water, and added to that of the common atmofphere, prefents to the refpiratory terminations of the pulmonary arteries on the upper furfaces of leaves an atmofphere more replete with vital air.

This neceffity of light to the refpiration of vegetables is fo great, that there is reafon to believe, that many plants do not refpire during. the night, but exift in a torpid fate like winter fleeping infeets. Thus the mimofa, fenfible plant, and many others, clofe the upper furfaces of their oppofite leaves together during the night, and thus preclude them both from the air and light. And the internal furfaces of innumerable flowers, which are their refpiratory organs, are clofed during the night, and thus unexpofed both to light and air.

The fungi neverthelefs, which are termed vegetables, becaufe they are fixed to the earth, or to the ftones, or trees, or timber, where they are found, can exift without light or much air ; as appears in the truffle, which never appears above ground; and by other fungi, which grow in dark cellars; and in efculent mulhrooms, which are cultivated beneath beds of Araw. From this circumftance of their exifting without light, and from their fmell of volatile alkali, like burnt feathers, when they are burnt, and from their tafte when cooked and eaten, they feem to approximate to the animal kingdom.
5. Laftly. It may neverthelefs be fufpected, that in many of the experiments of Dr. Prieftley and Dr. Ingenhouz, the production of vital air might be fimply owing to the action of the fun's light on the water, in which the vegetables were immerfed, like that from the filk in the experiment of Count Rumford; and that the fine points, or tharp edges of thofe bodies, contributed only to facilitate the
the liberation of it, when expofed to the funhine, which thus difoxygenate the water by their united effect.

This appears on immerfing a dry hairy leaf in water frefh from a pump, innumerable globules like quickfilver appear on almoft every point ; for the extremities of thefe points attract the particles of water lefs forcibly, than thofe particles attract each other ; hence the contained air, whofe elafticity was but juft balanced by the attractive power of the furrounding particles of water to each other, finds at the point of each fibre a place, where the refiftance to its expanfion is lefs; and in confequence it there expands, and becomes a bubble of air. It is eafy to forefee, that the rays of the funfhine, by being refracted and in part reflected by the two furfaces of thefe minute airbubbles, mult impart to them much more heat than to the tranfparent water; and thus facilitate their afcent by further expanding them; and that the points of vegetables attract the particles of water lefs, than they attract each other, is feen by the fpherical form of dew-drops on the points of grafs.
6. It may be added in this place, that there may alfo be a fallacy in the fuppofed refults of thofe experiments, where plants have been confined in hydrogen or azote mixed with atmofpheric air ; and have been believed to have vegetated more vigoroully, and to have meliorated the air. In thefe experiments I fufpect, that the impure part of the air was attracted by the water, and taken up by the abforbents of the roots of the plants from the water, rather than by the abforbents of their leaves or ftems in the air; and that the melioration of the air was occafioned, as above defcribed, by the action of the light on the water perfpired from the furface of the plant, or liberated by its points from the water, with which part of it was covered. This is rendered more probable, becaufe plants and feeds in the experiments of others ceafed to vegetate in thofe gaffes, which were totally deprived of oxygen, as in M. Scheele's experiments on the growth of feeds.
II. s. The
us dir.
1 from At every of w_{2} nce the ttractive finds at xpantion ubble of eing reaute arr-tranfpappanding of water form of
a fallacy ave been and have ave mepure part forbents Sorbents of the air It on the ed by its This is eriments tally deowth of
II. i. The fluid matter of heat is one of the moft extenfive elements in nature, perhaps next to that of gravitation ; all other bodies are immerfed in it, and are preferved in their prefent fate of folidity or fluidity by the different attraction of their particles to the matter of heat, which thus counteracts the powers of gravitation, and of chemical affinity; which would otherwife comprefs them into one folid chaotic mafs !

Since all known bodies are contractible into lefs face by depriving them of fome portion of their heat; and as there is no part of nature totally deprived of heat; there is reafon to believe, that the particles of bodies do not touch, but are held towards each other by their felfattraction, or recede from each other by their attraction to the mafs of heat, which furrounds them; and thus exift in an equilibrium between thefe two powers.

If more of the matter of heat be applied to them, they recede farther from each other, and become fluid; if ftill more be applied, they take an aerial form, and are termed gaffes; and it is probable, that the ethereal fluid of electricity may alfo be diffufed with heat, as well as the ethereal fluid of light. .

Thus when water is heated to a certain degree, it would inftantly affume the form of fteam, but for the preffure of the atmofphere; which prevents this change from taking place fo eafily; the fame is true of quickfilver, diamonds, and of perhaps all other bodies in nature ; they would firft become fluid, and then aeriform, by appropriated degrees of heat. On the contrary, this elaftic matter of heat, termed Calorique in the new nomenclature of the French academicians, is liable to become confolidated itfelf in its combinations with fome bodies, as certainly in nitre, and probably in combuftible bodies, as fulphur and charcoal.

This combined heat is univerfally fet at liberty in the production of acids by the union of oxygen with all inflammable bodies, as fhewn in Sect. XII. I. It is alfo taken from fome bodies by the vicinity of
very cold ones, as water when frozen lofes fuddenly a part of its combined heat, at the moment it becomes ice.
2. It is evident, that without fluidity the blood or juices can not circulate in animal or in vegetable veffels; whence fo great a diminution of heat as to produce froft on this account would deftroy them if long continued; at the fame time too great a deduction of heat is known to deftroy the irritability of animal as well as of vegetable fibres, and muft on this account alfo prevent the circulation of their fluids, and occafion the mortification of parts of them, or the death of the whole. But when fluids are converted into ice, the bulk of them is enlarged to a confiderable degree, and that with fuch violence as to burft iron veffels, as bombs, which are filled with water. Whence in this manner alfo froft deftroys thofe parts of vegetables, which are moft fucculent ; as the early fhoots of afh trees, and other young plants, are frequently deftroyed in the beginning of May by a frofty night.

The veffels of thefe fucculent parts of plants are diftended and burft by the expanfion of their frozen fluids; while the drier or more refinous vegetables, as pines, yews, laurels, and other evergreens, are lefs liable to injury from cold. The trees in valleys are on this account more liable to injury by the vernal frofts, than thofe on eminences; becaufe their early fucculent fhoots appear fooner in the year.

Another method, by which the act of freezing may deftroy vegetable life, may be by feparating fome part of their fluids from other parts of them. Thus when wine, or vinegar, or falt and water," or clay diffufed in water, and perhaps milk, are frozen; the watery part, as it congeals, protrudes from its forming cryftals the fpirit, the acid, the falt, the clay, and probably the opake particles of the milk; and by a fimilar procefs on vegetable and perhaps on animal fluids, when expofed to great cold, they may be rendered unfit for future circulation or life. See Sect. XV. 4. I.

The expanfion of ice neverthelefs well accounts for the greater mifchief which is fometimes done by vernal froft, when preceded by much rain, or mift, or dew, as by hoar-froft, than by the dry frofts without rime, called black frofts; as the vegetable veffels are then fuller of fluids. But when mift or dew attends a frofty night, but has not preceded it, I fuppofe a hoar froft may be lefs injurious than a black froft; as the cafe of ice on the buds of trees, or on young grafs, being inftantly produced, covers them with a bad conductor of heat, and prevents them from being expofed to fo great cold, as in the continuance of a black frof without hoar or rime. See Sect. XV. 3 . 5 .

Mr. Laurence, in a letter to Mr. Bradley, complains, that the dalemift attended with a froft on May-day had deftroyed all his tender fruits; though there was a fharper froft the night before without a mift, that did him no injury ; and adds, that a garden not a fone's throw from his own on a higher fituation, being above the dale-mift, had received no damage. Bradley, V. II. p. 232. From this inftructive fact it appears, that very low fituations even in this cold climate are not proper for the purpofes of a garden. And on the contrary, very high fituations are equally improper on account of their greater cold, and the confequent backwardnefs of their vegetable products. See Sect. XV. 3. 5°

Hence fruit trees againft a wall, which are covered with coping ftones projecting fix inches over them, are lefs injured by the vernal frofts; becaufe their being thus fheltered from the defcending nightdews has prevented them from being moift at the time, they were frozen ; which circumftance has given rife to a vulgar error amongf gardeners, who fuppofe froft to defcend.

Hence as the freezing winds of this country are from the northeaft, a gardener fhould extend his rows of young peas and beans from the fouth-eaft to the north-wef, and raife a mound of earth behind them, and might fhelter them occafionally with ftraw, placed on the R. r
ground
ground behind the young plants, and fupported a few inches over them in front by poles placed horizontally over the rows; remembering the old proverb,

> The wind from north-eaft Deftroys man and beaft; The wind from fouth-weft Is always the beft.

The immediate caufe of the coldnefs of the N. E. winds is, that they confift of regions of air brought from the north over evaporating ice, and gain an apparent eafterly direction, becaufe they arrive at a part of the furface of the earth, which moves with greater velocity, than the furface of the part of the earth, they come from. So on the contrary the S.W. winds are warm, as they confift of regions of air brought from the fouth, and gain an apparent wefterly direction, becaufe they arrive at a part of the earth's furface, which moves flower than the furface nearer the equator, whence they came, and of which they had previoully acquired the velocity.

As the common heat of the earth in this climate is 48 degrees, thofe tender trees, which will bear bending down, are eafily fecured from the froft by fpreading them upon the ground, and covering them with ftraw or fern. This particularly fuits fig-trees, as they are very flexible, and as they are furnifhed with an acrid juice, which defends them from infects; but I have neverthelefs found them in this fituation much eaten by mice.

It has been believed by many, that froft meliorates the ground; but it is now well known, that ice contains no nitrous particles, as was formerly fuppofed; and that though froft by enlarging the bulk of fome moift foils may leave them more porous for a time after the thaw ; yet as the water exhales, the foil becomes as hard as before, being preffed together by the incumbent atmofphere. . And from an obfervation of Mr. Kirwan's, mentioned in Section XV. 4. i. it ap-
pears, that moift clay becomes denfer or more folid by being frozen ; and if this fhould not occur, yet it would quickly become as folid as before by the felf-attraction of its particles, called fetting by the potters; as well as by the preflure of the atmofphere; as its water exhales, and leaves vacuities between its particles. Add to this, that on the coafts of Africa, where froft is unknown, the fertility of the foil is much fuperior to our own.

In refpect to the commonly fuppofed falubrity of frofty feafons to mankind, and to other animals, the bills of mortality are an evidence in the negative in refpect to mankind, as in long frofts many weakly and old people perifh from debility, occafioned by the diminifhed heat not being fufficient to excite into action their veffels previoufly too inirritable; and many birds, and other wild animals, and tender vegetables, perifh benumbed by the degree and continuance of the cold.

It fhould however be obferved, as frofty air is alway dry, except when frozen mifts diffolve, as they adhere to the warmer fkins of animals, that it does not generally affect us with fo great a fenfation of cold, as when air near the freezing point is loaded with moifture ; as the moifture of fuch air is perpetually evaporating from our fkins, and produces on them a degree of cold greater than the fimple contact of dry air produces, when it is but a little beneath the freezing point. Hence frofty air is more agreeable to thofe young or ftrong people, who can keep themfelves warm by exercife; that is, who can generate heat by increafed fecretions. But fevere and continued frofts deftroy the old and infirm, who cannot ufe much exertion; and the children of the poor, who want both food, fire, and clothing, in this harfh climate.

It may neverthelefs be true, that fnows of long duration in our winters may be lefs injurious to vegetation than great rains and fhorter frofts. 1. Becaufe great rains carry down many thoufand pounds worth of the beft manure into the fea; whereas fnow diffolves gradually, the upper furface, as it thaws, fliding over the under part, Rr2 which
I, it $2 p^{\circ}$
pears,
which remains frozen, and thence carries away lefs from the land into the rivers; whence a flow flood may be diftinguifhed from a rain flood by the tranfparency of the water.

Secondly. Snow protects vegetables from the feverity of the froft; fince it is generally in a ftate of thaw, where it is in contaft with the earth; as the earth's heat is 48 degrees, and that of thawing fnow is 32°. The plants between them are generally kept in a degree of heat about 40 , by which many of them are preferved. On this account fome plants from Siberia were faid to perifh by the frofts at Upfal ; becaufe the fnows did not commence at the fame time as in the colder climate, from which they were brought.

Thus the lichen rangiferinus, coral-mofs, vegetates beneath the fnow in Siberia, where the degree of heat is always about 40 ; that is in the middle between the freezing point and the common heat of the earth. And as this vegetable is for many months of the winter the fole food of the rein-deer, who digs furrows in the fnow to find it; and as the milk and flefh of this animal is almoft the only fuftenance, which can be procured by the natives during the long winters of thofe higher latitudes, this mofs may be faid to fupport fome millions of mankind.

Snow protects vegetables, that are covered by it, from cold, both becaufe it is a bad conductor of heat itfelf, and contains much air in its pores. When living animals are buried in fnow, as fheep, or hares, the water, which their warmth produces, becomes abforbed into the furrounding fnow by capillary attraction, and the creatures are not moiftened by its dropping on them; but the cavity enlarges, as the fnow diffolves, affording them both a dry and a warm habitation. If this was generally known, many cold and weary travellers in fuowy nights might be faved by covering themfelves with fnow inftead of endeavouring to proceed.

It fhould be added that Halfenfratz has endeavoured to fhew by ingenious chemical experiments, that rain water and fnow contain
both of them a redundancy of oxygen compared with river water, which they may have acquired in their defcent through the atmofphere ; and that as oxygen is fhewn by the experiments of Ingenhouz and Senebier to promote the growth of feeds and of plants, he concludes, that rain water and fnow promote vegetation in a much greater degree than river water or ice, which feems to accord with the popular obfervations on this fubject.
3. Mr. John Hunter by applying thermometers to the internal parts of vegetables newly opened difcovered, that they poffeffed in frofty feafons a degree of heat above that of the atmofphere, though lefs than that of cold blooded animals. Whence another deleterious effect of cold on vegetable bodies mult be by deftroying their irritability, and by that means flopping the abforption and circulation of their juices; in the fame manner as is feen in the pale benumbed fingers of fome people, when expofed to the cold; and which is the immediate caufe of death in thofe, who perifh in the fnow in winter, which occurs long before their fluids are frozen.

The neceffity of a certain degree of heat to produce or to preferve the activity of the abforbent veffels of vegetables is well evinced by the experiments of Hales and Duhamel on the rifing fap of vines in the vernal months. On a frofty day, when the fun thone on one of thofe wounded trees, the fap flowed on the fouth fide of the tree, but not on the north fide. Phyfique des arbres, Vol. II. p.258. M. Duhamel further obferves, that the maples in Canada, where the froft is long and fevere, begin to bleed, when wounded with the firft thaw, and ftop again, when it freezes; and that this in frofty days occurs only on the fouth fide of the tree.

This acquaints us, that one of the principal properties of heat in refpect to organic bodies, whether of vegetables or animals, confirts in its acting as a ftimulus; and that in a greater quantity than that, which the organized being has been accuftomed to, it acts as an excefs of flimulus; and thus increafes the activity of the fyftem
in refpect to the abforption of its food, circulation of its juices, and quantity of its fecretions, and confequently to its more rapid growth; but all increafe of ftimulus becomes injurious by its excefs, and is certainly followed by debility; as is feen in thofe of our own feecies, who are habitually kept in too warm rooms, or are accuftomed to drink intoxicating liquors.

Hence a wife gardener muft regard the acquired habits of tender vegetables; the inhabitants of his green houfe, and thofe plants, which have been expofed to a greater heat for any length of time, fhould be gradually cooled, and watered with fubtepid water ; fince expofing them to the cold of this climate is otherwife liable to deftroy their irritability and occafion their death.
4. The great cold produced by evaporation is now well underftood. In all chemical proceffes, where aerial or fluid bodies become confolidated, a part of the heat, which was before latent, becomes preffed out from the uniting particles; as in the inftant that water freezes, or that water unites with quick lime. On the reverfe, when folid bodies become fluid, or fluid ones become aerial, heat is abforbed by the folution; whence it may be faid in popular language, that all chemical combinations produce heat, and all chemical folutions produce cold. This fhould teach the careful gardener not to water tender vegetables in the heat of the funfhine, or in a warm dry wind; left the hafty evaporation thould produce fo much cold as to deftroy them; and that more certainly from their having been previoufly too much ftimulated by heat, and in confequence their power of life, or irritability, having been already diminifhed; as further fpoken of in Sect. XIV. 2. 2.
III. I. The mechanical theory of electricity invented by Dr. Franklin is believed by fome philofophers not fo well to explain the various phenomena of electricity, as may be accomplifhed by an hypothefis of the exiftence of two electric fluids diffufed together, and ftrongly attracting each other, one of them to be called vitreous, and
the other refinous, electricity. The latter opinion I am inclined to efpoufe, but fhall not here enter into a detail of the theory; but fhall only obferve, that the experiments on vegetation have been principally made with the accumulation of the vitreous electricity only, and the confequent exclufion of the refinous; that is, with what is commonly termed pofitive electricity, and not with what is termed negative elecricity. It is therefore to be wifhed, that fome future experiments may be made with the refinous or negative electricity in preference to the vitreous or pofitive electricity, or with both of them alterternately or comparatively.

The influence of pofitive or vitreous electricity in forwarding the germination of plants and their growth feems to be pretty well eftablifhed; though Mr. Ingenhouz did not fucceed in his experiments, and thence doubts the fuccefs of thofe of others; and though M. Rouland, from his new experiments believes, that neither pofitive nor negative electricity increafes vegetation ; both which philofophers had previoufly been fupporters of the contrary doctrine; for many other naturalifts have fince repeated their experiments relative to this object, and their new refults have confirmed their former ones. Mr . D'Ormey and the two Roziers have found the fame fuccefs in numerous experiments, which they have made in the two laft years; and Mr. Carmoy has fhewn in a convincing manner, that electricity accelerates germination.

Mr. D'Ormey not only found various feeds to vegetate fooner, and to grow taller, which were put upon his infulated table, and fupplied with electricity; but alfo that filk-worms began to fpin much fooner, which were kept electrified, than thofe of the fame hatch, which were kept in the fame place and manner, except that they were not electrified. Thefe experiments of Mr. D'Ormoy are detailed at length in the Journal de Phyfique of Rozier, Tom. XXXV. p. 270.

Mr. Bartholon, who had before written a tract on this fubject, and propofed
propofed ingenious methods for applying electricity to agriculture and gardening, has alfo repeated a numerous fet of experiments; and fhews, that natural electricity as well as the artificial increafes the growth of plants, and the germination of feeds; and oppofes Mr. Ingenhouz by very numerous and conclufive facts. Ib. Tom. XXXV. p. 40 I .

My friend Mr. D. Bilfborrow in June 17.97 fowed muftard-feed in four garden pots at Mr. Hartop's at Dalby Hall in Leicefterfhire. He fubjected one of thefe to pofitive or vitreous electricity, and another to negative or refinous electricity, and obferved that the feeds in the pot fubjected to the negative or refinous electricity germinated a day before the pot fubjected to pofitive or vitreous electricity, and both of them much before the two pots, which were not electrifed, but otherwife expofed to the fame circumftances.

Nor do the injuries occafionally received from lightnirg in its paffage through trees or corn fields from or to the earth or clouds, which are mentioned in Sect. XIV. 2. 3. in the leaft invalidate this opinion of its general utility as well as that of the fluid element of heat ; for the excefs of the moft falutary ftimuli become deleterious both to vegetable and animal bodies.
2. Since by the late difcoveries in chemiftry there is reafon to believe, that water is decompofed in the veffels of vegetables; and that the hydrogene, or inflammable air, of which it in part confifts, contributes to the nourifhment of the plant, and to the production of its oils, refins, gums, fugar, \&cc. And laftly, as electricity has by late experiments been found to decompofe water into the two airs, termed oxygen and hydrogen, there is a powerful analogy to induce us to believe, that it accelerates or contributes to the growth of vegetation; and like heat may poffibly enter into combination with many bodies, or form the bafis of fome yet unanalyfed acid.
3. The folution of water in air or in calorique feems to acquire electric matter at the fame time, as appears from an experiment of

Mr. Bennet. He put fome live coals into an infulated funnel of metal, and throwing on them a little water, obferved that the afcending fteam was electrifed plus; and the water, which defcended through the funnel, was electrifed minus. Hence it appears, that though clouds by their change of form may fometimes become electrifed minus, yet they have in general an accumulation of pofitive electricity. This accumulation of electric matter alfo evidently contributes to fupport the atmofpheric vapour, when it is condenfed into the form of clouds; becaufe it is feen to defcend rapidly, after the flafhes of lightning have diminifhed its quantity.

According to the theory of Mr. Lavoifier concerning the compofition and decompofition of water, there would feem another fource of thunder-fhowers; and that is, that the two gaffes termed oxygen gas, or vital air, and hydrogen gas, or inflammable air, may exift in the fummer atmofphere in a flate of mixture, but not of combination ; and that the electric fpark, or flafh of lightning, may combine them, and produce water inftantaneoufly.
4. A profitable application of electricity by the gardener or agricultor to promote the growth of plants is not yet difcovered; it is neverthelefs probable, that in dry feafons the erection of numerous metallic points on the furface of the ground, but a few feet high, might in the night time contribute to precipitate the dew by facilitating the paffage of electricity from the air into the earth ; and that an erection of fuch points higher in the air by means of wires wrapped round tall rods, like angle rods, or elevated on buildings, might frequently precipitate fhowers from the higher parts of the atmofphere.

And laftly, that fuch points erected in gardens might promote a quicker vegetation of the plants in their vicinity by fupplying them more abundantly with the electric ether; if the events of the experiments of the philofophers above mentioned are to be depended upon, which may at lealt be worth a further trial.
5. For the purpofe of keeping a few flower-pots perpetually fubject to more abundant electricity, Mr. Bennet of Wirkfworth in Derbyfhire affixed a fmall apparatus to the pendulum of a clock, as defcribed below with a plate; but has not yet fufficiently attended to it to determine its effect on vegetation. ally foid. in Der. k, as de.
cended to

PLATE VIII.

PLATEVIII.

Shews the ftructure of Mr. Bennet's electric Doubler, applied to the pendulum of a cloek for the purpofe of fubjecting a flower pot to perpetual pofitive or negative electricity.

A the brafs plate, which is always infulated by its glafs pedeftal, on which the electricity is accumulated. B the brafs plate, which becomes electrified by the influence of the moving plate C , which is alfo infulated. D the pendulum wire. C is infulated by the glafs-tube E.E. The wire FF is allo infulated by the fame glafs, being faftened to the middle of it by a brafs focket at G. H H H H H are wires to connect the plates with each other, or with the earth. I 1 a ftring to be carried from the plate A over infulated hooks to any part of a room, or to an infulated flower-pot.

Now if A be pofitive, and C moves, till it be parallel to it, and the wires at the bottom touch each other, then C becomes negative, and moving till it be parallel to B , and its wire touched by the uppermoft H , then B becomes pofitive; and when C returns to A, the electricity of A and B becomes united by means of the infulated wire FF touching H.H. The longer end of F is bent fo as not to touch the wire of B, till the end is brought to it. Thus the pofitive electricity of A is increafed.

The wires are curled into feveral rings to make them more elafic, as otherwife they would foon be pufhed out of their places, and the proper contacts not occur. The plates A and B may be fixed on heavy pedeftals, that they may be moved upon a flelf to a proper diffance from the plate, which hangs by the pendulum wire. The heavier the pendulum and the larger the plates, the more electricity may be accumulated. With my fmall apparatus fixed to a Dutch wooden clock fparks are fometimes produced between the plates, and fomefimes the clock has been ftopped by their attraction to each other. Perhaps the plates fhould not be circular, but fomething like a lady's fan, when expanded, the bottom being a part of the curve defcribed by the moving pendulum, with the fides directed towards the point on which it moves.

This drawing and defcription of his Pendulum Doubler was fent me by Mr. Bennet of Wirkfworth, and is referred to at the end of Sect. XIII. of this work. If another infulated flower-pot was connected with the plate B inftead of the wire at the uppermoft H, perhaps it might be kept in a ftate of minus, or negative electricity, at the fame time that the other flower-pot was kept in a ftate of plus or pofitive electricity.

$$
\begin{aligned}
& \mathrm{m}^{2} \text { of a cloce } \\
& \text { leetricity. } \\
& \text { ich the elece- } \\
& \text { luence of the } \\
& \text { infulated by } \\
& \text { g faftened to } \\
& \text { e plates with } \\
& \text { over infulated } \\
& \text { es at the bot- } \\
& \text { Hlel to } B \text {, and } \\
& { }^{C} \text { returnsio } \\
& \text { re FF toch- } \\
& \text { till the end is }
\end{aligned}
$$

the fame tine

S E C T. XIV.

DISEASES OF PLANTS.

1. Difeafes from internal caufes. 1. Difeajed irritability. Irritability derived from oxygen. Exbaufted by too great fimulus. Sbade apricot fowers from the fun. Mucb water after a bot day injurious. Irritability accumulated by lefs fimulus. Experiment on euphorbia. Habits of plants brought from the jouth. Taken to America. In the bleeding feafon. Vines in bot-boufes. Habits of plants. Irritability greater after being expofed to mucb cold, lefs after mucb beat. Greateft in the morning. Hybernating animals. Variation of beat contributes to bealth. 2. Eryjphe mildew. A feffle fungus. Give light and ventilation. Drain the land. Sow early. Rubigo, ruft. Probably anotber fungus. Uredo frumenti. Blight. 4. Clavus, ergot. On rye, which it renders inwobolefome. Afcribed to infects by Dubamel. 5. Uftilago, fnut, Afcribed to infeits by Linneus. Is probably owing to want of impregnation. How prevented. 6. Gangrena, canker. Affects appletrees from old grafts. From wounds. Bind living bark on the wound. Or paint the alburnum. 7. Suffufo mellita, boney-dero. If occafioned by the apbis? 'Succeeded by a black porvder. 8. Exfudatio miliaris, miliary fweat. On vines in botboufes from too great beat in confined air. 9. Fiuxus umbilicalis, fap-flow. From wounds in fpring, and after midjummer. Bind on fponge. Strangulate with wire. 10. Secretio gummofa, gum fecretion. Bind on lead., Sponge, Indian rubber. Apply folution of green vitriol. Bind on a newo bark. II. Difeafes from external elements. 1. Draught and moifure. 2. Heat and cold. Sbelter early bloffoms from the funbine. 3. Ligbtning. Injures trees and wobeat fields. By defroying their irritability, like the firmulus of fome poijons. By burfing their veffels. How to prevent. 4. Ligbt. Etiolation of Jea-calc. 5. Of acid clay. Of ferile fand. 6. Noxious exbalations, from lead-works, and lime-kinns. ‘7. Poijons of arfenic, muriatic acid. 8. Condiments. Alcobol. Opium. Sea-jalt. Its ufe and effeit on vegetables. UJe in the worm of Joeep. 9.'External injuries. Wound
grape-falks. Caprification. Pluck pears to ripen them. III. Difeafes from infects. 1. From their nefts and young. On rofes, on quince-blofoms, on aconite. 2. Apbis on peach trees. Slugs prefer withered leaves. Cows eat withered thittles. The poijon of yere leaves. Hitory of the aphis. Means of deftroying them. Aphidivorous larva and fly. 3. Caterpillars on apple-trees and goofe-berries. Burn the leaves. Put a fringe round goofeberry-trees. Défroy wbite butterfies. Cabbage caterpillars defroyed by icbneumon fly. 4. Infects in bot-boufes. Smoke of fulpbur injurious to trees. 5. Beetles beneath the foil. Snails. Slugs. Roll turnips before fun-rije. Slugs prevented by lime or Salt. Caught by a board. Fly on turnips. Roll tbem. Steep turnip feeds in liquid manure as in Cbina. 6. Beetles. Fern-cbaffer. Deftroys crops of wheat. Sow wheat jballow. Roll it, or Atrew falt in fine powder. Tbrips phyjapbus on wobeat. Corn butterfly. May-chaffers on bedges. Locuft. Encourage bedge-birds, larks, rooks, bedge-bogs. Some caterpillars wholefome to eat, others poijonous. All very bardy and difficult to defroy. IV. Deftruction by vermin. I. Mice. Tuflocks of wheat from their granaries. Encourage the breed of owls. 2. Water-rats like beavers, bow driven from a fib-pond. They eat vegetables. Are attracted by scents. How to poijon them. How to entrap tbem. 3. Moles never drink. Sometimes frwim. Work before fun-rife. How to deAroy them by traps.

The difeafes of vegetables may be divided into thofe, which appear to originate from internal caufes, thofe from the external elements, and thofe from the nidifications or depredations of infects; to which may be added the depredations of other animals. We fhall begin with difeafed irritability.

DISEASES FROM INTERNAE CAUSES.

I. I. It has already been fhewn, that the buds of vegetables are individual beings, and conftitute an inferior order of animals; and that they poffefs irritability, and fenfibility, and voluntarity, and have affociations of motion ; as explained in Zoonomia, Vol. I. Sect. XIII. But as the three latter kinds of excitability are poffeffed in a fo much
lefs degree by vegetable buds, than by more perfect animals, we fhall only confider the difeafes of their irritability.
M. Girtannir endeavoured to thew, that animal irritability originates from the oxygen, which conftitutes fomewhat lefs than a third of the atmofphere, which they breathe. And M.Van Ullar has applied the fame idea to vegetable life; and has endeavoured to fhew, that their irritability alfo originates from the oxygen, which they acquire either by the refpiration of their leaves, or by the abforption of their roots. And indeed, as refpiration is every minute neceffary to animal life, there is reafon to believe, that fomething immediately neceffary to the exiftence of life is acquired by the lungs of animals from the atmofphere rather than from the food, which they digeft; and that this, which is believed to be the oxygen only, is mixed with the blood, and feparated again from it by the brain, and fpinal marrow, after having undergone fome change in the circulation or fecretion of it.

In the fame manner it is not improbable, but that the firit of vegetation may have a fimilar origin, probably from the uncombined oxygen of the air, refpired by the upper furfaces of their leaves; and not from that, which is abforbed by their roots in a more combined ftate ; and that this oxygen is again feparated from their juices by the fenforium, or brain, of each individual bud, after having undergone fome change in the circulation or fecretion of it. See Sect. IV。 1.2.

The circumftances attending vegetable irritability are fimilar to thofe belonging to the irritability of animals upon a lefs extenfive fcale, as detailed in Zoonomia, Vol. I. Sect. XII.
When vegetable fibres have been long ftimulated more than natural or ufual by increafe of heat, the firit of vegetation becomes exhaufted; and in confequence a flighter degree of cold will deftroy them; becaufe their fibres after having been long excited by a greater ftimulus will ceafe to act on the application of one, which is much
lefs; whence after hot days tender plants are more liable to be deftroyed by the coldnefs of the night. Whence in more northern climates the gardeners fhade their tender vegetables, as the flowers of apricots, in the fpring-frofts from the meridian fun, as well as from the coldnefs of the night ; which is generally the greateft about an hour before funrife.

In the hot days of June 1798 I twice obferved feveral rows of garden beans become quite fickly, and many of them to die, from being flooded for an hour or two with water from a canal in the neighbourhood; which I afcribed more to the fudden application of too great cold, after being much enfeebled, or rendered inirritable, by the exceffive heat of the feafon, than to the too copious fupply of water to the dry ground; to which fhould be added, that fome plants are more liable to be thus injured than others; as the ftrawberries, young cabbage plants, and onions, which were in the fame fituation, received benefit and not deterioration by being thus occafionally watered in that dry feafon.

On the contrary, when plants have been long expofed to a lefs fimulus of heat than natural or ufual, the firit of vegetation becomes accumulated; and if they are too fuddenly fubjected to much greater heat, their too great increafe of action induces inflammation, and confequent mortification, and death ; as occurs to thofe people, who have had too much warmth applied to their frozen limbs. Experiments of this kind were inflituted by Van Ullar; he increafed the irritability of euphorbia peplus and efula by fecluding light and heat from them ; and, when he expofed them to a meridian fun, they became gangrenous, and died in a fhort time.

This greater or lefs irritability of plants is to be afcribed to their previous habits in refpect to the ftimulus of greater or lefs heat. Thus the times of the appearance of vegetables in the fring feem occafionally to be influenced by their previoufly acquired habits, as well as by their prefent fenfibility to heat. For the roots of potatoes, onions,
killed in England. Perhaps thofe in France having been accuftomed to much hotter fummers were unable to endure the rigour of the fame winter, that did not deftroy the fame plants in England." Horfe-hoeing Hufbandry, Ch. XIII. p. 20 I.

By adapted experiments Medicus is faid to have found, that the irritability of plants is greater in the morning, lefs in the middle of the day, and much lefs in the evening. And Von Ullar found, that their irritability in refpect to their contractions was increafed in cool and rainy weather. Obferv. on Plants by Schmeiffer. Edinb. So the parts of animals become more fenfible to heat after having been previoufly expofed to cold; as our hands glow on coming into the houfe after having for a while been immerfed in fnow; and many infects, and other animals, which hide themfelves in the earth, and fleep during the winter, were obferved by M. Spallanzani to difappear at a feafon, when the heat of the atmofphere was much higher than in the fpring, when they again made their appearance.

Hence it follows, that plants, which are kept in a warm room during winter, fhould occafionally be expofed to cooler air to increafo their irritability; as otherwife their growth in the fpring is obferved to be very tardy. Mankind for the fame reafon requires the perpetual variations of the heat of the atmofphere to preferve or reftore the irritability, and confequent activity, of the fyftem. Whence the health and energy of men are greater, and their lives longer, in this variable ifland, than in the tropical continents, which poffefs greater warmth, and lefs variation of weather.
2. Linneus in the Philofophia Botanica has given names to but four internal difeafes, eurifiphe, mildew ; rubigo, ruft ; clavus, ergot, or fpur ; and uftilago, fmut; to which may be added many others as defcríbed below.

Eryfiphe, a white mucor, or mould, or mildew, with feffile tawny heads, with which the leaves are fprinkled; this is frequent in humulus, hop; lamium, dead nettle; gallopfis, arch-angel; lithofpermum,
faid to appear to be fplit, and the growth of the plant to be much iujured. He defrribes the fungus to be linear-oblong, tawny-black.
4. Clavus, ergot, or fpur, occurs when feeds grow out into large horns, black without, as in fecale, rye, and in carex. This difeafe frequently affects the rye in France, and fometimes in England, in moift feafons, and is called ergot, fpur, or horn-feed; the grain becomes confiderably elongated, and is either ftraight or crooked, containing black meal along with the white ; and is faid to appear to be pierced by infects, which are fuppofed to caufe the difeafe.

Mr. Duhamel afcribes it to this caufe, and compares it to galls on oak-leaves; but this has not yet been eftablifhed by fufficient obfervations. By the ufe of this bad grain amongft the poor, difeafes have been produced, attended with great debility, and mortification of the extremities, both in France and England. Dict. Raifon. Art. Siegle. Philof. Tranfact. Vol. LV. 106.
5. Uftilago, fmut, when the fruit inftead of feed produces a black meal, as in wheat, barley, oats, fcorzonera, tragopogon. Much is faid on this difeafe in the Dict. Raifon of Bomare. Art. Bled, who recommends feeping the grain, before it is fown, in brine; which is generally directed to have fo much falt added to the water, as may increafe its fpecific gravity, till an egg will fwim in it ; or fecondly, to fteep the feed-wheat in lime water ; or thirdly, which he thinks moft efficacious, in an alkaline ley made by adding pot-ath to limewater.

In the fyiftema nature of Linneus under the article Vermes, Zoophyta, Chaos uftilago, there is a quotation from Munchhaufen, that the uftilago is a black powder, which is found in the deftroyed grains of barley, wheat, and other graffes; and in the florets of tragopogon fcorzonera. And that this powder being macerated in warm water for fome days paffes into oblong animalcules, hyaline in refpect to colour, and playing about like fifh, as may be feen by a microfcope;
and are again mentioned in Linneus's differtation on the invifible world.

There is an ingenious paper in the publications of the Bath Society, in which the author obferves, that the fimut in wheat only happens, when wet weather occurs at the time of the flowering of the wheat; which may burft the anthers, and wafh away the farina. He thinks that fteeping the wheat in brine or lime water is an ancient error, and can be of no ufe but to feparate light wheat from that which is good.

For he found fmutty ears and good ones growing from the fame root ; and thence it could not depend on any contagious material, or infects eggs, adhering to the feed; and in fome even the fame ear contained both found and fmutty corns. And laftly, that fome of the corns had one end fmutty, and the other found; and he concludes, that it mult be owing to the want of impregnation from the defect of the farina fecundans; and that the putrefaction fucceeded the death of the grain.

From the obfervations of Spallanzani on leguminous plants the probability of this opinion is much confirmed. He found that the feed was produced by the female organ of the plant, long before it was impregnated; which could not happen, till the flower was open, and the anther-duft ripe. Whence it is eafy to conceive, that for want of impregnation, or the vivifying principle, the wheat-corn muft putrefy like the addle eggs of poultry, which are unimpregnated, and thence die, and in confequence putrefy.

If this difeafe of fmut hould become a ferious evil, it might poffibly be prevented by fowing the grain in diftant rows; and after fome days fowing other rows between them of the fame, or of aniother kind of wheat; by which means, if wet weather fhould deftroy the anthers of one fet of rows, the alternate ones might fupply farina to their ftigmas, if the weather became favourable. See Sect. XVI. 8.2.

Wheat difcoloured by fmut may be' wathed, and readily dried on Tt 2 a malt
a malt kiln, and may be thus eafily made marketable and equally good; for the living grain will not abforb much water in a fhort time; or it may be mixed with clean fand, and after being well agitated the fand may be feparated by a riddle; and if neceffary the fame fand may be wafhed and dried for repeated ufe.
6. Befides the four internal difeafes above fpoken of, as mentioned by Linneus; and the uredo of Mr. Lambert, there are probably many others, which have not yet been fufficiently attended to, as the canker, gangrena; the honey-fweat, exfudatio mellita; the miliary fweat, exfudatio miliaris; the fap-flow, fluxus umbilicalis; and the gum fecretion, fecretio gummofa.

The canker, which may be termed gangrena vegetabilis, is a phagedenic ulcer of the bark; which is very deftructive to apple-trees, and pear-trees, as it fpreads round the trunk or branches, and deftroys them.
Mr. Knight has obferved this difeafe to be moft frequent and fatal to thofe trees, the fruit of which has been long in fathion; as they have been perpetually propagated for a century or two by ingrafting; which he believes to be a continuation of the old tree, though nourifhed by a new fock; and that the canker is thus a difeafe of old age, like the mortification of the limbs of elderly people, and arifes from the irritability of a part of the fyftem.

But it feems more probably to be an hereditary difeafe, as the buds of trees being a lateral progeny, and more exactly refembling their parents, muft be more liable to the difeafes gradually acquired or increafed by the influence of foil or climate ; and have not the probability of improvement, which attends the progeny of fexual generation.

It is neverthelefs frequently produced on trees by external violence, as by a ftroke with a fpade by a carelefs labourer, who is digging near them; but this probably may more eafily affect the old grafts above mentioned. When a deffruction of the bark is thus produced by ex-
ternal violence, it may poffibly be cured by the application of a piece of living bark from a lefs valuable tree, bound on as mentioned in the next article, and in Sect. XVII. 3. 10.

The edges of thefe gangrenous ulcers of the bark fhould be nicely pared with a kuife, fo as to admit the air, and to prevent the depredations of infects and the lodgment of mointure, which might promote the putrefaction of the ftagnant juices, and fpread the gangrene; this Chould be fo managed as only to cut away the dead lips of the wound, but not fo as in the leaft to injure the living bark. Some thick white paint may then be fmeared on the naked alburnum or fap-wood on a dry day, which may prevent infects from inferting their eggs into it, and produce maggots, which erode and deftroy the wood; and may alfo prevent the dews and rains from rotting it. The paint fhould neverthelefs be fo fpread, as not to touch the edges of the wound; as it might injure their growth by its poifonous quality; a quarter of an ounce of fublimate of mercury, hydrargyrus muriatus, rubbed with about a pound of white lead paint, might render it more noxious to infects. See Sect. XV.II. 3. 9. and 10 .
7. The honey-dew, which may be cailed fuffufio mellita, confits of a faccharine juice, which I have fuppofed to be exfuded from the tree by the retrograde motions of the cutaneous lymphatic veffels, connected either with the common fap-veffels defcribed in Sect. If. or with the umbilical veffels defcribed in Sect. III. 2. 8. inftead of its being carried forwards to increafe the growth of the prefent leafbuds, or to lay up nutriment for the buds, which are in their embryon ftate; and may thus be compared to the diabotes mellitus, or to the fweating ficknefs of the laft century.

The faccharine and nutritious quality of the honey-dew, fimilar to that of the fap-juice, which rifes in the vernal months from the birch and maple, is evident from its tafte; and from the number of bees and ants, which are faid to feed on it, when it appears on fome trees;
trees; and which fhews, that its exfudation muft be confiderably injurious to the tree, as before mentioned in Sect. VI. 6. 3.

In a paper written by the Abbe Boiffier de Sauvages, he deferibes two kinds of honey-dew ; one of which he concludes to be an exfudation from the tree, and the other he afferts to be the excrement of one kind of aphis, which the animal projects to the diftance of fome inches from its body on the leaves and ground beneath it; and which he believes the animal acquires by piercing the fap-veffels of the leaf. This paper is detailed in Wildman's work on Bees, p. 46. The circumftances are diftinctly defcribed, and by fo great a philofopher as Sauvages of Montpellier, that it is difficult to doubt the authenticity of the fact. But that a material fo nutritive fhould be produced as the excrement of an infect is fo totally contrary to the ftrongeft analogy, that it may neverthelefs be fufpected to be a morbid exfudation from the tree; though thefe infects might occafionally prey upon it, and void it almoft unchanged at thofe feafons, becaufe the infects continued fome months after the honey-dew ceafed, and before it commenced, as mentioned below; and the upper furfaces of the leaves became covered with a black powder, which had before been covered with the honey-dew. And laftly, becaufe on other trees, as on the peach and nectarine, at other feafons of the year, no honey-dew is perceived, though the aphis much abounds to the great injury of the trees.

Early this morning, June 18, 1798, I obferved a remarkable ho-ney-dew on an extenfive row of nut-trees, corylus avellana, which grow by the fide of a pond of water; the fun thone bright, and the upper furface of every leaf, which was illumined by the fun, was covered with a vifcid juice, which tafted as fweet as diluted honey. From many of thefe leaves large drops hung from the point, and during that day and the following one much of this honey dropped down fo as to moiften the gravel walk beneath the branches of every tree, and feemed more fluid as the funfhine became warmer; and the leaves,
tures; which were made fome weeks earlier in the year, and by an aphis without wings, and differing fomewhat in their fhape, but without any appearance of honey-dew on thofe trees. But I could not difcover any punctures or other difeafe of the leaves of thefe nuttrees, and therefore doubt whether thefe infects, though fo numerous on the under furface of every leaf, could be the caufe of the morbid exfudation, if fuch it was, on their upper furfaces; and the more as I could not diftinguifh, that they preyed upon the honey thus produced; and I afterwards obferved that they continued in immenfe numbers under every leaf, when the weather became cooler, and moifter, and the honey-dew ceafed to be vifible. But after a few weeks I obferved the upper furface of every leaf became covered with a black powder like foot; whether this was a new material, or remained after the exhalation of the honey-dew, I did not determine by experiment. But if both the honey-dew and this fubfequent black powder on the upper furfaces of the leaves, were the excrement of the aphis on the under furfaces of the leaves over the former, or owing to an exfudation from the tree, muft be determined by further obfervations.

But as a fecond period of fap-flow is believed to exift about midfummer, or a depofition of vegetable nutriment for the new buds, as defcribed in Sect. III. 2. 8. there is reafon to fufpect, that the ho-ney-dew is owing to the inverted action of the external lymphatics occafoned by the debility induced by the continued beat, and perhaps to the moiture of fituation. Whence the nutritive fluid is thrown upon the external habit inftead of being applied to nourifh the new buds, or to be laid up as a refervoir for their ufe. And that if it be voided by the aphis, it is owing to their puncturing the fapveffels with the fine probofcis, which they poffers, at this feafon only, or in a diftempered fate of the tree, and drinking more of it than they are able to digeft. For a further hiftory of this infect fee No. 3. 2. of this Section.

Sect. XIV. i.' 8.
 OF PLANTS.

8. Exfudatio miliaris, miliary fiveat, appears to be produced by too great and continued heat, as it exiffs on vines in hot-houfes, which are kept too warm, or too clofe in refpect to their ventilation.

This fecretion has not the fweet tafte like that of the honey-dew, but confifts of mucilage ; which, as the watery part evaporates by heat, remains on the plant in very fmall round hard globules, like millet feeds, whence their name. I once witneffed a very fimilar appearance of minute hard round globules on the 1 kin in a miliary fever, which eafily were rubbed off with the finger; and were probably occafioned, as in this vegetable difeafe, by too great heat, and the exclufion of air, as defcribed in Zoonomia, Vol. II. Clafs 2. I. 3. 12.

In the evaporation of perfipiable matter, which in its difeafed fate may be more mucilaginous than natural, in confined bed-rooms or hot-houfes, I fuppofe, the aqueous part only is exhaled, and the mucilaginous part remains in the form of a globule; in the fame manner as ftalactites are formed on the roofs of caverns from a folution of calcareous earth in water, fimply by the evaporation of the water.
9. Fluxus umbilicalis, fap-flow, this occurs, when the alburnum or fap-wood of trees is wounded in the vernal months, as in birch and maple, defcribed in Sect. III. 2. 2. and confints of a faccharine and mucilaginous fluid fimilar to the honey-dew, or fuffufio mellita; and is often very troublefome, when vines in hot-houfes are pruned too late in the feafon, as the whole branch is liable to bleed to death, owing thus to the lofs of the fap-juice, which ought to be employed in nourifhing the young buds, and expanding their leaves.

When fome perennial plants have rifen but a certain height from the ground, if their ftems are much wounded, or cut off, the roots are liable to bleed to death from this difcharge of the umbilical fluid, or fap-juice, which ought to have nourifhed and expanded the new buds and foliage; as may be feen in cutting down the heracleum fgondylium, cow parfnep, in April ; and on this account it has been
recommended to mow down thiftles, and other weeds, which are troublefome from their numerous increafe, early in the fring; as many of them will then die, and the reft be much weakened by the fap-flow, which attends their wounds at that feafon.

In refpect to trees another period of fap-flow is faid to exift, when the new buds are forming after Midfummer, as fpoken of in Sect. 1H. 2. 8. Whence wounds at this feafon alfo mult be injurious; where this lofs of fap-juice occurs in hot-houfes various applications have been recommended by gardeners. I fufpect that a bit of fponge bound upon the end of the cut branch, or on the wound, by means of fome elaftic bandage, muft be the moft certain application; or a wire twifted round the end of the branch cut off, fo tightly as to ftrangulate the whole circulation of juices, and confequently deftroy the part above the ligature.
10. Secretio gummofa, gum fecretion, a morbid production of gum, which differs from the fap-juice above defcribed, as it contains no faccharine quality, though like the former it exfudes from the wounded alburnum of deciduous trees; whether the wound be originally caufed by internal difeafe, or by external violence, as mentioned in the gangrene of the bark above defcribed.

Where this happens to cherry-trees, prunus cerafus, a gum exfudes like gum arabic; which in dry weather hardens, as it adheres, and thus prevents the further difcharge of this nutritive material; otherwife the tree weeps away its life, perifhing from deficient nourifhment. In fimilar manner a refin is emitted from the injuries or wounds of pine-trees, and fome other evergreens, with great injury to the growth, or the deftruction of the tree.

This exfudation of the gum or refin of trees, as it happens chiefly in fummer, is probably a part of nutritious fluid defigned for the new buds, which in moft deciduous trees are formed about this time, and fhould be prevented from continuing to flow by binding on the part, previounly made fmooth by a knife, a metallic plate, as of the lead
in which tea is wrapped, fo as to prevent rain or dew drops from diffolving the indurated gum. A bit of fponge, or of foft leather, or of Indian rubber, caoutchouc, might be bound on under the lead, till the wound is healed. Might not a ftrong folution of green vitriol in water, or fome ink, if applied to the extremities of thefe bleeding veffels, fimulate them into contraction, and prevent the further effufion of gum?

Another-method might be worth trial, which is mentioned in Sect. XVII. 3. 10. A piece of bark from a fimilar tree of inferior value might be cut out, fo as nicely to fit the wounded part, after its edges were nicely fmoothed, and might be tied on by a proper bandage, as the lifting cut from the edges of cloth, or flannel, fo that its elanicity might fecure a perpetual preffure without injury.

11. DISEASES FROM EXTERNAL ELEMENTS.

1. In climates liable to inceffant rains or perpetual drought for a length of time many difeafes of vegetables mult originate from the excefs of moifture, or to the want of it; which are not very frequent in this country. In moift feafons the leaf-buds of plants, as of grafs and corn, as well as of trees and perennial vegetables, grow too luxuriantly; and the flowers and confequent fruits or feeds are later, and contain more aqueous, and lefs mucilaginous and faccharine matter.

On the contrary, in dry feafons the leaf-buds are lefs vigorous, and therefore in lefs quantity, as the crops of hay, and the quantity of fraw ; but the fruits and feeds ripen earlier, and are of more grateful flavour, and more nutritious.
2. The effect of heat on vegetation is fpoken of in Sect. XIII.
2. 2. The excefs of that element is feldom much injurious to the vegetation of this country, unlefs it may contribute to increafe the dryneis of the foil, when there is a fcarcity of moifture. But the de-

$$
\mathrm{U} 42
$$

fect
fect of the element of heat, or in common language excefs of cold, is frequently deftructive to the early fhoots of the afh, fraxinus, and to the early blofloms of many fruit-trees, as apples, pears, apricots; as thefe are either more fucculent, or have lefs irritability, or more fenfibility; on both which accounts they are more liable to be difeafed by cold.

The blights occafioned by frof generally happen in the fpring, when cold nights fucceed to warm fuiny days, as the living power of the plant has then been previoufly exhaufted by the ftimulus of heat, and is therefore lefs capable of being excited into the actions, which are neceffary to vegetable life, by the greatly diminifhed ftimulus of a freezing atmofphere.
In fome northern climates, where the long funny days fucceed the diffolving of the fnows, as in Denmark and in Ruffia, the gardeners are faid to thelter their wall-trees from the meridian fun in the vernal months; which preferves them from the cold of the fucceeding night; and by preventing them from flowering too early avoids the danger of the vernal frofts.

The deftruction of the more fucculent parts of vegetables, as their early fhoots, and that efpecially when expofed to frofty nights, was fpoken of in Sect. XIII. 2. 2. and can only be counteracted by covering them from the defcending dews or rime by the coping-ftones. of a wall, or matts of ftraw.
3. The blafts occafioned by lightning are more frequent, I believe, than is ufually fuppofed; as I am informed by thofe, who purchafe extenfive woods, that very many trees on being fawed through are found cracked, and much injured by lightning. I had laft year a fandard apple-tree, and a tall apricot-tree, in full leaf blafted at the fame time by lightning, as was believed. They both tof all their leaves; the apple-tree neverthelefs put out a new foliage, and recovered, and bore fruit this year ; but the apricot, which was nailed to a bigh wall, never thewed any returning life.

Mr.Tull afcribes one injury to the health of wheat plants, and frequently their death, to lightning; the effects whereof, he fays, may be oblerved by the blackih parts or patches vifible in a field of wheat, efpecially in thofe years which have more thunder-ftorms than ufual, and'adds that againft this there is no remedy.

The erection of frequent metallic points could alone fecure a garden or field from this misfortune ; which probably occurs more frequently on damp fituations, than on dry ones; as mentioned in the account of Fairy Rings in Botanic Garden, Vol. I. note XIII.

The manner in which lightning deftroys the life of vegetables may be fimilar to that, in which it deftroys animal life; which is I fuppofe by its great flimulus exhaufting the fenforial power in the violent action it occafions, and thus producing total inirritability to the common ftimuli, which ought to excite the vital actions of the fyftem; fimilar to which, though with lefs expedition, feems to be the effect of fome poifons on the animal fyftem, as the diftilled water of lauro-cerafus, a folution of arfenic, the contagious matter of fevers, and even a common emetic; all which by their ftrong ftimulus feem almoft inftantaneoully to render the ftomach, and other parts of the fyftem, nearly or entirely inirritable, or difobedient to their natural ftimuli.

It may alfo affeet vegetables in another way fimilar to that, which probably alfo happens, when their young fucculent fhoots are frozen ; that is, by burfting their veffels, as it paffes through them, by its expanfive power; as happens to the large branches of fome trees, and to ftone-buildings, and other bad conductors of electricity, when they are ftruck with lightning.

The expanfive power of electricity is not only fhewn by trees and towers being rent by lightning, but by the found, which fucceeds the paffage of it through air; fince a vacuum, or nearly a vacuum, in refpect to air muft previoufly be made by the prefence of the electric fluid; and the fides of this vacuum rufhing together, when the

Atream has paffed, occafions the confequent vibrations of the air, which conflitute found, whether in the audible fpark of electricity, or the tremendous crafh of thunder. See Sect. XIII. 3.
4. The element of light, as well as that of heat, is neceffary to vegetation. In this climate they both feem in general to be injurious only by their defect, and feldom by their excefs. But as light acts as a ftimulus on the more irritative or fenfitive parts of plants, which appears by the expanfion of many flowers, and of fome leaves, when the fun thines on them; and by the nutation of the whole flower, as of the fun-flower, helianthus; and by the bending of the fummits of all plants confined in houfes towards the light; there may be difeafes owing to the excefs of this flimulus, which have not been attended to ; to prevent which the flowers of tragapogon falfafi, and of other plants, clofe about noon. Other unobferved difeafes may be owing to a defect of the ftimulus of light; as a mimofa, fenfitive plant, which I had confined in a dark room, did not open its foliage, though late in the day, till many minutes after it was expofed to the light.

The excefs of light has not been obferved to be attended by vegetable difeafes in thefe more northern latitudes; but the difeafe produced by the deficiency of it, which is termed etiolation, or blanching, has been fuccefsfully ufed to render fome vegetable leaves and falks efculent by depriving them of much of their acrimony, and of their cohefion, as well as of their colour; as is feen in the blanching of celery, apium; endive, cichorium; cinara, cardoon; fea-cale, crambe.

The following method of the growth and etiolation of fea-cale is tranfribed from the letter of a friend; to which fhould be added, that the young heads of this vegetable without blanching are equal or fuperior to moft kinds of brocoli, braffica. "Sea-cale feed fhould be fowed the latter end of March or beginning of April in drills, and then earthed up. In autumn it fhould be tranfplanted into bigh beds, one row of roots in a bed, about a foot afunder, and in the winter
winter it fhould be covered up. It muft be kept dry, that is, the beds made in the drieft ground ; it is not fit to be eaten till the third year after it is fowed. The year before it is eaten it muft be covered $u p$ in the beginning of winter, firft with ftable dung, which may be kept from preffing on it by a few flicks placed like a cone over each root ; then with long litter two or three feet high; the higher the better, becaufe the more it is forced, the earlier it is fit to be gathered, and the whiter it will be. It is to be gathered about the beginning of January, and fo on till May, one bed being kept under another. It fhould be boiled and fent up on toaft like afparagus, and is an excellent vegetable, and at an early feafon."
5. The earth, on which vegetables infert their roots, fometimes prefents noxious materials to their abforbent fyftem, as the acidity of fome clays; into which when the roots of fome fruit trees penetrate, they are faid to lofe their health, as mentioned in Sect. II. 9. by the death or decay or their root-fibres.

Pure filiceous fands alfo prevent vegetation from their containing no carbonaceous matter, and by their fo readily permitting the dews and rains to exhale from them, efpecially in hotter climates, where they conftitute a moving furface unfriendly to all organized life.
6. There are alfo noxious exhalations diffufed in the atmofphere in the neighbourhood of fome manufactories; which are faid to injure the growth or deitroy the life of vegetables; as the fmoke from the furnaces, in which lead is fmelted from the ore, from potteries, and from lime-kilns; to which may be added the marine falt, or marine acid, which abounds in the too great vicinity of the fea.

To thefe belong the experiments of Dr. Pefchier of Geneva, who immerfed feveral plants in vapours of nitrous acid, of volatile alkali, and of ether, to the great injury or death of the plants. Journal de Phyfique par Delametherie, T. ii. p. 345 -
7. Unwholefome or poifonous materials may be applied to vegetables fo as to difeafe or deftroy them; as their abforbent fy ftems like thofe
thofe of animals are liable to imbibe many noxious materials, as mentioned in Sect. II. 8, A flight folution of arfenic, fprinkled on a peach-tree in the fpring, deftroyed the branches which received it. A folution of liver of fulphur was equally fatal to the branches of a nectarine-tree, and alfo oil of turpentine.

Mr. Von Uflar affirms, that watering plants with a due quantity of oxygenated muriatic acid will increafe their irritability; and if carried beyond a certain degree will injure or deftroy the vegetable by giving it too much oxygen; which is known in due quantity to be a falutary material, and the moft neceffary of all others to vegetable as well as to animal life.
8. There are materials called condiments, which are believed to poffefs Atimulus without nutriment in refpect to animal bodies, as f pice, falt, bitters, as the hop, and probably opium and vinous firit. Thefe when taken into the flomach increafe its activity, and render the animal for a time fat, and even ftrong; but as all increafe of ftimulus, beyond what is natural, is followed by debility; after a time the animal becomes weak, and emaciated; and enervated in mind as well as body; as is uniformly feen in thofe who are addicted to the ufe of much beer and wine, or of opium ; and in a lefs degree where fpice, or falt, or bitters, are taken in too large quantity.

What then fhall we fay to the ufe of common falt in agriculture? as it is a ftimulus, which poffeffes no nourifhment, but may incite the vegetable abforbent veffels into greater action; it may in a certain quantity increafe their growth by their taking up more nutriment in a given time, and performing their circulations and fecretions with greater energy. In a greater quantity its ftimulus may be fo great as to act as an immediate poifon on vegetables, and deftroy the motions of the veffels by exhaufting their irritability.

After a time I furpect vegetables. will always be liable to difeafe from this ftimulating innutritive material; and that though it may increafe the early growth of the plant, it will injure its flowering or feed-
feed-bearing ; and that hence, if it be ufed at all, it fhould be a little before the time, that the plant would acquire that part of its growth, which is wanted. Thus if the herb or young ftem only be wanted, as in fpinage, mercury, afparagus, apply falt early; if the flower be wanted, as in brocoli and artichoke, or in tulip or hyacinth, moiften them with a flight folution of falt, when the flower-bud is formed. When the fruit or feed is wanted, as in melons or cucumbers, or peas and beans, apply the folution of falt ftill later, and at all times with rather a parfimonious hand. See Sect. X. 7. 4.

Similar to this, where animals difeafed with fuperabundancy of fat are required, it is cuftomary, I am told, to feed poultry for the London markets by mixing gin and even opium with their food, and to keep them in the dark; but they muft be killed as foon as their corpulency is formed, or they foon become weak, and emaciated like human drunkards. And in fome countries, as in Languedoc in France, the livers of geefe and ducks are required to be enlarged and difeafed; as they are reckoned a dainty by modern epicures, as well as by the ancient ones, who fpeak of the tumidum jecur anferis; and for this purpofe the animals are kept in the dark, and crammed with more than their natural quantity of nutriment; but are faid to become lean, and to die, if not killed as foon as this difeafe is produced.

It is neverthelefs to be obferved, that fea-falt as well as other ftimulating condiments may be advantageoufly ufed as medicines, though injurious as common food. Thus it is afferted by Baron Schulz in the communications to the board of Agriculture, Vol. I. Part III. and IV. p. 3^{18}, that it deftroys the fafciola hepatica, or flewk-worm in fheep. Some have recommended one ounce of falt to be given every day diffolved in water, but it is probable, it might be ufed with greater advantage, if hay was moiftened with the folution, which would thus at the fame time fupply them with better nourifh-
ment than generally falls to the lot of thefe difeafed fheep, on fuppofition that they would eat it.

The rot of fheep, I fufpect, arifes from the inactivity of the abforbent veffels of the liver of that animal; whence the bile is too dilute, efpecially in moift feafons; whence the flewk-worm, as I have feen in the fhambles, inhabits the common bile-duct, and at length erodes the liver, caufing ulcers; which from the fympathy of the lungs with the liver occafions a cough, and a hectic fever from the abforption of the matter. Hence the falt by its additional ftimulus may render the bile lefs dilute by promoting a greater abforption of its aqueous, parts, as well as a greater fecretion of it ; which hawever. I furpect would be much more efficacious, if about fixty grains of iron-filings. made into a ball with flour was given every morning for a week along: with the falt, as further explained in Zoonomia, Part III. Art. 4. 2. 6. 4.

Since writing the above account of common falt as a condiment, and the probable confequences attending the ufe of it, I have met. with fome experiments publifhed by Lord Kaimes, in his Gentleman. Farmer, which feem much to confirm the preceding account. He watered fome Jerufalem artichokes, helianthus tuberofus, which. were planted in feparate pots, with a folution of fixed vegetable alkali, others with volatile alkali, others with weak lime water, others. with ftrong lime water, others with putrid urine, and laftly others with water impregnated with putrid animal and vegetable fubftances, I fuppofe as they exift in a dunghill. All thefe faline folutions at firt encouraged the growth of the refpective plants, fo as much to furpafs thofe in the pot, which was moiftened only with common water, as a ftandard to compare the others to; but by additional quantities of the folutions, they all, except the laft, gradually loft their vigour, and perifhed in the end ${ }_{2}$ as I fuppofe, by the excefs of ftimulus.

There is alfo an experiment in the works of Mr. Anderfon, which feems to fhew, that common falt poffeffes no nutritive quality adapted to vegetable growth ; and that in fome foils, or to fome vegetables, it would feem not even to att as a ftimulus or condiment. He marked out a circle of fix feet diameter in the middle of a grafs field, which he diftinguifhed by driving a ftake in the centre; on this circle he ftrewed common falt, fo as to lie nearly an inch thick on the ground. The grafs fprung up in this circle in the fame manner as in the other parts of the ground, and the place could only be diftinguifhed by the flake, though it was left there for fome years. Encycl. Britan. Art. Agriculture. See Sect. X. 7. 5. of this work. This experiment is worthy to be repeated, left there might have been fome miftake attending it; as fo many authors have given experiments with contrary refults; and as fome other neutral falts were thewn to promote vegetation in the experiments of Dr. Home.
9. Some difeafes from external violence have been alreády mentioned in this Section, in which the injury is a remote rather than a proximate caufe of the difeafe, as in the canker fometimes, and the fap-flow, and gum-fecretion. But fome other difeafes from external violence have been purpofely produced, as well as that of etiolation, and turned to advantage ; as the bunches of grapes, which have acquired their full fize, are faid to ripen fooner, if the flalk of the bunch be cut half through. Tournefort fays, that the figs in Provence and about Paris ripen fooner, if the buds be wounded with a ftraw dipped in olive-oil. And laftly, the figs in the ifland of Malta are made to ripen fooner by caprification; as fpoken of in Botanic Garden, Vol. II. note on Caprificus. And it may daily be remarked, that thofe apples and plums ripen fooner, which have been wounded by infects; and that pears will ripen confiderably fooner, if they be immaturely plucked from the tree, which muft be efteemed injurious to the life of the pear; and as the converfion of auftere acid juices of fruit into fugar in the procefs of ripening may be in part che-
mical, it may proceed more haftily, when the life of the fruit is impaired or deftroyed; as feems to occur in the drying of germinated barley, and in baking pears, as well as in bruifing apples for the purpofe of making cyder; whish laft effect might probably be much improved by the addition of warmth.

III. DISEASES OCCASIONED BY INSECTS.

1. Among the difeafes of plants Linneus adds in his Philofophia Botanica the nefts of thofe infects, which depofit their eggs in plants; whence a variety of excrefeences. Thefe are, 1. The galls of oak, of ground-ivy, ciftus, trembling poplar, willow, and hawk-weed. 2. Bedequar of rofes, or briar-balls. 3. Follicles of piftachia, and black poplar. 4. Contortions of ceraftium, chick-weed, veronica, fpeedwell, and lotus. 5. Scales of firs, willows, and rofes.
He then adds, that the duplicature and prolification of flowers is often occafioned by infects, as common chamomile, matricaria, is thus made proliferus; and that carduus caule crifpo bears larger florets, with the piftils growing into leaves, by the wounds of infects.
It muft be obferved, that thefe excrefcences on the leaves of fome plants, or mutation of their manner of growth, are not always the confequence of a fimple wound or puncture of the infects, but of the depofition of their eggs, or young offspring; which afterwards continue to fimulate the growing plant into unnatural motions, and confequently into unnatural growth; like the inflammation and confequent new granulations of flefh in the wounds of animal bodies; which, if the fkin is prevented from fpreading over them, will rife into large fubftances of fungous flefh; or beneath the fkin, where it is loofe, as in wens.
Many flowers are deftroyed or rendered unprolific by the depredation of infects, as rofe-buds by the cynips; and I remember obferving one dry fummer, that every bloffom of a large quince tree opened. I have alfo feen the hood of the aconite, fo replete with an acrid juice, pierced by infects to plunder it of its honey.
2. The curling of the leaves of nectarine, and peach, and cherrytrees, with the cells or bladders on their furfaces, are formed in confequence of the wounds inflicted by the aphis; in the fame manner as the galls and bedeguars on the oak and fweet-briar by other infects, but without their nidification or the depofition of their eggs; though from the fudden and general appearance of thefe injuries they have been afcribed to blights from inclement weather.

Some obfervers have believed neverthelefs, that thefe affected leaves were previoully out of health; which occafioned them to fupply a proper fituation for thofe infects, which moleft them; as I have frequently obferved, that fnails or flugs eat thofe leaves, which have been plucked from cucumber plants, and are beginning to wither; in preference to thofe, which are growing in perfect health.

Mr. Lawrence relates, that in June the leaves of fome of his wall-pear-trees were much injured by a hail-ftorm, which leaves were afterwards blighted; and become full of tumours from infects; and the pears, which were then as large as walnuts, all perifhed.' On this Mr . Bradley remarks, that infects generally lay their egrs on the dead or putrefying parts both of vegetable and animal bodies; and adds a conjecture, that the parent infects may circulate in the juices of the plant, which however is not probable, as though microfcopic animals have been difcovered in the ftagnating juices of animal bodies, as in the puftules of the itch, and in the fæces in the dy fentery, and even in the femen, which may have ftagnated in the veficule feminales; yet no fuch animalculæ have, I believe, ever been detected in recent blood, or any recent fecretions from it.

A predilection for fome withered leaves appears alfo in larger animals as well as in infects; cows will eat young thiftles, a few hours after they are cut down, as their prickles become flaccid; and horfes refufe
refure the young fhoots of yew-trees, as they grow; but will eat them when they are cut off, and begin to wither; and on that account lofe a part of their acrimony; though there is ftill often fufficient peifon within them to deftroy the animal. And it is even probable, that when the leaves of yew are withered to a greater degree, their poifonous acrimony becomes fo far deftroyed, that they ceafe to be deleterious to horfes; fo that in Hefle in Germany it is cuftomary in the winter to crop the young fhoots of yew-trees, and mixing them with other provender to give them as common food to horfes. See Anderfon on Agriculture, Vol. III. p. 590.

On this account if wall-trees are frequently watered by an engine, fo as to moiften their leaves or branches as well as the ground at their roots on the dry days in fpring, by which they will be kept in vigorous growth, I was told, that they would totally or nearly efcape the depredations of infeets; but I found by an experiment well conducted on three trees, that this management had no effect; and I alfo obferved in the fpring and fummer of this year, 1798, which feems to have much favoured the production of the aphis, that they attacked the moft healthy leaves of peach and nectarine trees, as well as the others; and that plums, cherries, black currants, and many other trees fuffered by their depredations, though previoully in perfect vigour. And laftly, that on repeatedly having wahhed off many thoufands of aphifes from peach and nectarine leaves by a ftrong ftream from a forcible water-engine, that they evidently crawled again up the ftems of the trees, or on the wall to which they were nailed, as in another day the lowermoft branches were thus more inferted with them than the upper ones.

The hiftory of the aphis, puceron, or vine-fretter, is fo curious, the deftruction it commits on the foliage of the peach and nectarine is in dry fummers fo irrefiftible, and its exiftence on other trees fo extenfive, that it demands our particular attention. See No. 1. 7. of this Section. From the obfervations of Swammerden, Bonnet, Dr. Richardfon,

Sect. XIV. 3.2. OF PLANTS.

Richardfon, and of other philofophers, this extraordinary infect rifes in the fpring from eggs, which are faid to be attached by the parent aphis to the twigs of trees in the autumn, and are believed to produce not a larva or caterpillar, but a progeny fimilar to the parent ; every one of which produces in about ten days not an egg, but another living progeny to the ninth generation, without being connected amatorially with each other. The ninth generation produces males and females, fome of both kinds with wings, and others without them; and this tenth generation from thofe, which were hatched from eggs, become amatorially connected, and produce eggs; which are laid on the new twigs of various trees for the next year's progeny to be hatched by the vernal fun. Philof. Tranfact. Vol. LXI. p. 182.

In this uncommon circumftance the eggs of the aphis refemble the feeds of plants; which firft produce fome fucceffive generations of leaf-buds, which are a viviparous progeny, before they again produce feeds, which are their oviparous progeny, as mentioned in Sect. 1X. 3. 1. of this work. Nor is this to be aferibed to what has been termed equivocal generation, or to an impregnation of nine fetufes enclofed within each other, as fome have fuppofed. But this central production of the viviparous progeny of the aphis feems to refemble the lateral production of a viviparous progeny from the polypus, which in time detach themfelves from their parents; like the buds of the polygonum viviparum, or the bulbs of the magical onion, allium magicum ; which are produced from the flawer-cup inftead of feeds, and in time detach themfelves, and fall on the ground. So that thefe aphifes are not, I fuppofe, to be efteemed fecundated females, but proliferous males, as explained in Zoonomia, Vol. Id Sect. 39. on generation.

This double mode of reproduction, fo exactly refembing the buds and feeds of trees, accounts for the wonderful increafe of this infect; which according to Dr. Richardfon confifts of ten generations, and of fifty at an average in each generation; fo that the fum of fifty multiplied
multiplied by fifty, and that product again multiplied by fifty niue times, would give the product of one egg only in countlefs millions: to which muft be added the innumerable eggs laid by the tenth generation for the renovation of their progeny in the enfuing fring.

Their punctures of the leaves of peach and nectarine trees in the vernal months, and of cherry, plum, and currant trees in the fummer, produce a fwelling and elevation of the cuticle of the leaf on its upper fide, and a confequent curling of it with its upper furface outwards, which terminates in a deftruction of it to the great injury of the tree, and frequently to the death of it; while the leaves of the nut-trees, mentioned above, in No. 1. 7. of this Section, appeared to be but little injured by them, though fifty or a hundred of thefe infects were feen under every leaf about Midfummer, both before and after their affufion with the honey-dew.

From Dr. Richardfon's account the aphifes on the rofe-tree appeared in February, when the weather happened to be warm, from fmall black oval eggs; which were depofited on the laft year's fhoots in autumn; and that, when the weather became colder, great numbers of them perifhed, by which circumftance the rofe-trees are in fome years almoft freed from them.

They came to their full growth before April, and after having twice caft off their exuviæ, every one of them produced about fifty young ones; all of which came into the world backwards, and adhered fometime to the vent of the parent by their mouths or forepart ; as fhewn in a magnified ftate at fig. 2. plate IX; and were at length fet down on fome tender fhoots of the plant, and came to maturity in about ten days, cafting off their coats two, three, or four times.

The ninth generation in October confifted of males as well as females, which were feen to cohabit ; and the eggs produced by their intercourfe, he afferts, were depofited generally near the new buds, or on other parts of the twigs of the trees, which they poffeffed.

Thefe were at firft green, but in a few days became brown, and by degrees quite black. They were of regular oval figures about one tenth of an inch in length, and about half as broad, and adhered firmly by means of fomething glutinous, and refifted the feverity of the winter.

Other infects, which are produced from eggs, and become winged butterflies or moths, live for fome time in the intermediate ftate of caterpillars or larvx. During this flate of their exiftence they feed on the leaves, on which they are hatched; or on fruits or kernels; but after they have acquired wings and organs of reproduction, fome of them take no food, as the filkworm; and others live only upon honey, as bees, and moths, and butterflies. Now the aphis, I fuppofe, has no intermediate ftate between the egg and the fly, and therefore makes no holes in the leaves by eating them; or if any of them previoufly exift in a caterpillar, or larva ftate, it can be only thofe which are produced from eggs in the early fpring, which is worthy of future attention.
Whence I fuppofe, that this fly lives not by confuming the foliage of the plants, which it inhabits; but by piercing the pulmonary veffels in their natural ftate, or the lymphatic veffels of the leaf in their retrograde ftate, by a fine tube or probofcis, which it poffefies, and which it may be feen by a common lens perpetually to employ, as thewn under its chin in the magnified infect at figure firt of plate 1X. For the fap-juice or vegetable chyle is brought from the radicles of each leaf-bud, and propelled up the long caudex to the pulmonary artery of the leaf, where it becomes oxygenated, and converted into vegetable blood. And may thus be extracted by the tubes of thefe infects before its fanguification.

Perhaps thofe aphifes, which were from eggs, might eat fome part of the peach leaves during their larva ftate, if fuch exifts, and occafion them to curl up. While thofe, which were a viviparous progeny, might only pierce the fap-veffels, or blood veffels, and thus not ap-
Y y
parently
parently injure the leaves; as on the nut-trees, where perhaps they were not hatched from eggs, but might have come thither in their winged ftate, and have then produced their innumerable viviparous offspring; as on the nut-trees above mentioned I could not difcern the eggs, from which they were hatched, and a few larger aphifes. with wings appeared early in the feafon amongft the fmaller ones. without wings.

We may finally conjecture on this interefting fubject, firf, that the aphifes produced from eggs early in the fpring may have a larva or caterpillar ftate, and that during that flate they may feed on the young leaves of peaches, nectarines, plums, and cherries, and thus occafion them to curl and die. 2. That thofe, which are not from eggs, have no larva ftate, and only puncture the larger chyle veffels of the young twigs, or the pulmonary arteries of the leaves; which receive the vegetable fap-juice from the roots, and thus that they fuck it up, and live on it, before it is converted into blood, as moths, butterflies, and bees, live on honey in their winged ftate, though on other parts of vegetables, as on their leaves, or anther-duft, in their larva ftate; and that thefe punctures are attended with no vifible injury to the leaf. 3. That for a week or two about Midfummer, when the umbilical veffels of the new buds convey the fap-juice to them, or to the refervoirs of nutriment preparing for them, that the aphifes by piercing thefe vefiels, or the pulmonary arteries of the leaves, acquire fo large a quantity of this faccharine material, that it paffes through them almoft unchanged, falling on the leaves and ground beneath them, and produces what is called the honey-dew; but that this happens only for a fhort feafon, as a week or twe about Midfummer, during the production of the new buds. And laftly, that the black powdery material on the upper furface of the leaves of the nut-trees and plum-trees, and of the fhrubs which grow beneath them, is an excrement from the aphifes, which hang on the under furfaces of the leaves above them, like the black bitter powder in the
nut-fhell; which is the excrement of the curculio, which has eaten the fweet kernel.

Secondly, having laft year written the above, I bave had another opportunity of attending to the aphis during the fummer of 1599, and fhall add the further remarks, which I have been able to make on this moft curious and important animal, which may in procefs of time deftroy the vegetable world.

As the month of June was again in this fummer very dry, though not very warm, the aphis was propagated in immenfe numbers on a great variety of trees, flarubs, and herbaceous plants. The row of nut-trees mentioned in No. 1. 7. of this Section was infefted with a greater number of them this year than in the preceding one; yet during the feafon about Midfummer there was fo little honey-dew this year, that it might have efcaped obfervation, if it had not been particularly attended to; yet what did appear was only on the upper furfaces of thofe leaves, which had other leaves impending over them crowded with aphifes; whence I had no doubt, but that it was voided by the millions of aphifes, which adhered on the under furfaces of thofe fuperior leaves with their backs downwards.

On examining them with a frong magnifier I could frequently perceive them infert their probofcis or trunk into the veffels of the inferior furface of the leaf; and particularly obferved, that when they were not moving from place to place, that they generally ftood with their heads towards the foot-ftalk of the leaf of nut-trees, or towards the bafe of the twigs of plum-trees, which circumftance I fhewed to many of my friends.

Both before and after the exiftence of the honey-dew a black material, which was fometimes moift and fometimes dry, appeared on the upper furfaces of thofe leaves only, which had other leavescrowded with aphifes over them, and even on the upper furface of the leaves of fome herbaceous plants, which grew under thefe nut-trees,

$$
\begin{equation*}
\text { Y y } 2 \tag{and}
\end{equation*}
$$

and alfo on others, which grew under plum-trees, which were much infefted with an aphis of a greener colour.

To prove beyond poffibility of error that this black matter was dejected on the leaves below by the aphifes, which were walking with their heads downwards on thofe above, I fewed flightly with a needle and thread under feveral leaves a piece of writing paper about the fize of the leaf; and obferved on the next day that many black marks were diftinguifhable on the paper.

On plum-trees and on many herbaceous plants innumerable aphifes were feen on the upper tender part of the upright hoots, adhering with their heads downwards; and on the hanging fhoots with their heads upwards; and inferting their probofcis into the veffels, I fuppofe, which contained the afcending fap-juice. But on the nut-trees the moft tender or uppermoft parts of the young fhoots were covered with very numerous briftes, which appeared to be an armour purpofely produced to defend them from thefe deftructive infects, and hence they were principally found on the under furfaces of the leaves.

As the chyle of animals is mixed with the venous blood, and is immediately projected by the force of the heart into the pulmonary artery, at the extremities of which it is principally converted into blood by its expofure to the air; fo in the vegetable fyftem the fap-juice muft be mixed with the returning venous blood, and carried forwards to the extremities of the pulmonary artery of the leaf, before it is converted into vegetable blood. Thefe pulmonary arteries pafs along the under furfaces of leaves, as the upper furfaces of them are covered by the fine terminations of them on an air-membrane for the purpofe of refpiration ; hence on thefe under furfaces of leaves the aphifes adhere, and pierce the branches of the pulmonary arteries with their probofcis ftanding with their heads towards the falk of the leaf, that they may thus meet the ftreams of chyle or fap-juice yet unchanged
into blood; which accounts both for their exifting in all kinds of weather on the inferior fide of the leaves, and for their ftanding with their heads towards the foot-ftalks of them. Thus on an upright twig of a plum-tree I this day obferved a number of aphifes adhere -with their heads downwards with their probofcifes inferted into the tender ftem, and fo near to each other, that the tail part of the lower ones extended one third of their length over the head part of thofe above them, and gave fomewhat the appearance of fcales; while on the hanging twigs they adhered with their heads upwards, ftill intent to meet the ftreams of fap-juice in the afcending chyle veffels, or in the pulmonary arteries.

Dr. Bradley and others obferve, that about Midfummer there appears to be a paufe in vegetation, and that at this time the new buds are generated; and Duhamel and others found, that the bark of feveral trees became at this time as eafily to be feparated from the alburnum as in the fpring; as is related in Sect. III. 2. 8. of this work. At this time therefore there exifts a new flow of fap-juice to fupply prefent nutriment, or to furnifh a refervoir of future nutriment to the newly generated or expected embryon, either before or after its vivification, or its impregnation, if fuch a procefs may be fuppofed to occur in the production of buds.

At this time then, when there exifts a fummer-flow of fap-juice, this pernicious infect in uncounted millions pierces the fap-veffels round the new fhoots, of the pulmonary arteries beneath the leaves; and thus drinks the vegetable chyle, or fap-juice, with fuch avidity, as to part with much of it again almoft unchanged. This I now believe with Sauvage to be the origin of one kind of honey-dew certainly; and if another kind of honey-dew exifts, as he mentions, where there are no aphifes, I fufpect, as obferved in No. I. 7. of this Section, that it muft arife from the inverted action of the lymphatic veffels of the leaf, at the time of the increafed quantity of fap-juice
about Midfummer; but have not had an opportunity to afcertain thefe facts.

Thirdly. There appears to be a power impreffed on organized bodies by the great author of all things, by which they not only increafe in fize and ftrength from their embryon fate to their maturity, and occafionally cure their accidental difeafes, and repair their accidental injuries, but alfo a power of producing armour to prevent thofe more violent injuries, which would otherwife deftroy them. Of this laft kind are the poifonous juices of fome plants, as of atropa belladonna, deadly nighthade, hyofcyamus, hen-bane, cynogloffum, hounds-tongue. Other plants are armed with thorns and prickles to prevent the depredation of animals, as ilex, holly, cratægus, hawthorn, ribes groffularia, goofeberry; the leaves of which would be perpetually devoured but for this kind of protection. Other plants fecrete a vifcid juice to agglutinate the infects, which crawl up towards their fructification, as filene, catchfly, drofera, fun-dew ; and others by the contraction of their leaves or petals arreft or deftroy the infects, which attack them, as dionœea mufcipula, and apocynum androfemifolium.

But how can vegetables protect the whole inferior furfaces of their leaves, and of their young rifing ftems from the innumerable progeny of the deftructive aphis, which penetrates their chyle veffels and their arteries; and which from their immenfe numbers may in proacefs of time deftroy the vegetable world. Many vegetables have not yet acquired any means of defence, and have therefore the firft growth of their foliage much injured, or totally deftroyed by this deftructive infect, as the nectarine, and peach, and plum, and cherry-trees, in many parts of this country, as is every year feen and lamented.

Some vegetables have neverthelefs already acquired an armour, which leffens, though it does not totally prevent, the injuries of this animal. This is moft confpicuous on the ftems and floral-leaves of mofs.
mofs-rofes, and on the young fhoots and leaf-ftalks of nut-trees. Both thefe are covered with thickfet briftles, which terminate in globular heads, and not only prevent the aphis from furrounding them in fuch great numbers, and from piercing their veffels fo eafily, but alfo fecrete from the gland, with which I fufpect them to be terminated, a juice; which is inconvenient, or deleterious to the infect, which touches it.

Hence mofs-rofes appear to be lefs injured by the aphis, than other rofes, which have lefs of this armour; and while on plum-trees, and on many herbaceous plants, they hang round the upright young fhoots with their heads downwards, and infert their trunks, fo as totally to conceal the rifing thoot; yet on nut-trees, though they are feen in millions beneath the leaves on the unarmed parts, they never appear round the young hoots, nor on the large trunks of the veffels beneath the leaves, all which have acquired a panoply of briftles with glandular heads to them, like thofe round the mofs-rofe, but without the branching ftructure of the latter. While thofe plants, which are not infefted with the legions of this felf-productive animal, have probably acquired fome material mixed with their fap-juice, or blood, which is poifonous to them; as thofe plants, which poffers a milky or a yellow blood, as the fpurges euphorbia, or the celandines chelidonium, or the fig-tree, ficus.

Nor is this more aftonihing, than that the holly-trees fhould annually fupply prickles only to their lower leaves, about fix or eight feet from the ground, as high as the animals can reach them, which would prey upon them; but refufe the expence of puiting forth prickles in their higher branches, which are faved by their fituation, as I have repeatedly obferved on the numerous holly-trees, which are the ornament of Needwood foreft.

From hence I fufpect, that another reafon, why the leaves of nuttrees and of rofe-trees are not curled up or bliftered like thofe of nectarines, peaches, plums, and cherries, is becaufe their foot-Atalks,
and the larger branches of the pulmonary arteries, are defended by thefe briftles, which are perhaps only beginning to appear on the leaf-ftalks of the plum, but which may increafe in the progreffion of time; as all the works of nature may be approaching to greater perfection, as mentioned more at large in No. 2. of the laft Section of this work.

Fourthly. The means of deftroying an infect fo extenfively injurious not only to gardens and hot-houfes, but to half the vegetable world, would be indeed a valuable difcovery. If the eggs exift on the young buds, as Dr. Richardfon affirms, fome application to thefe, before they are hatched, which might diffolve their Chells, as by very dilute marine acid injected on them ; or by fome adhefive material, which might invifcate them as foon as they are hatched, whether they appear firft in their larva ftate, like minute caterpillars, or in the form of the parent aphis, as foap-fuds injected on the t wigs before the leaves begin to unfold; or perhaps by rubbing them with oil or glue by means of a fponge, or a painter's brufh; but experiments alone can determine the effect of thefe applications, both on the infect and on the tree.

Lime water alone will not readily deftroy the aphis, as I obferved by immerfing leaves with aphifes on them; which crept up the leaves, and thus efcaped. But if pot-ahh, or fixed alkali, be mixed with lime, the folution becomes fo cauftic as to deftroy many infects without injuring the foliage of trees, or the ftems of wheat, if we may credit M. Socoloff, who in the tranfactions of an Academy at Peterfburgh, Vol.V. afferts, that he added three parts of quick-lime newly made to two parts of a faturated folution of fixed alkali in water; which poured on the ground deftroyed the earth-worms, and fprinkled on the leaves of trees deftroyed the caterpillars, but did not injure, or much injure the foliage of trees, or the leaves of wheat plants.

Tar water has lately been faid to deftroy flugs, white frails with-
out fhells, and might be worthy a trial by injecting it on trees at firft with caution, left it fhould iujure them ; as it is probably the vegetable acid chiefly, with a fmall portion of effential oil, which is diffolved, or mixed with the water, by agitation. See No. 3. 5. of this Section.
Previous to the pullulation of the buds, it is alfo believed to be of great fervice to water wall-trees with lime-water, or with foap-fuds, or perhaps with the addition of fome pot-afh to either of them to make a more cauftic ley, fuch as is recommended for fteeping feedwheat; but this with caution, as I have known a folution of hepar fulphuris kill the branches of a tree, which were moiftened with it, as well as the infects, which were upon it. Nor am I certain that this will anfwer the purpofe from the obfervations I have heard from thofe, who have tried it.

The effential oils are all deleterious to certain infects, and hence their ufe in the vegetable economy, being produced in flowers or leaves to protect them from the depredations of their voracious enemies. One of the effential oils, that of turpentine, is recommended by M. de Thoffe for the purpofe of deftroying infects, which infect both vegetables and animals. Having obferved that the trees were attacked by multitudes of fmall infects of different colours (pucins ou pucerons), which injured their young branches, he deftroyed them all entirely in the following manner. He put into a bowl a few handfuls of earth, on which he poured a fmall quantity of oil of turpentine; he then beat the whole together with a fpatula, pouring on it water, till it became of the confiftence of foup; with this mixture he moiftened the ends of the branches, and both the infects and their eggs were deftroyed, and other infects kept aloof by the fcent of the turpentine. He adds, that be deftroyed the fleas of his puppies by once bathing them in warm water impregnated with oil of turpentine. Mem. d'Agriculture, An. 1787 , Printemp. p. 109.

I frinkled fome oil of turpentine by means of a brufh on fome Zz
branches
branches of a nectarine-tree, which was covered with the aphis; but it killed both the infect and the branches. A folution of arfenic much diluted did the fame. Might not the fcent of turpentine, or of tar, fmeared on a fruit-wall deter the flies from approaching the trees to depofit their eggs? or might not arfenic mixed with honey be fmeared on the wall, to which the trees are nailed, be likely to attract the aphis as well as other kinds of flying infects. But none of thefe fhould be fineared on the branches, left it injure or deftroy the tree. Perhaps if a few twigs fmeared with turpentine, mixed with a little oil of turpentine to make it more fluid, and to increafe its odour, were fixed in quince-trees, or in apple-trees, the flowers of which are liable to be deftroyed by the eggs depofited in them by a fmall fly; they might be deterred from approaching the tree, as the great ufe of effential oils, which caufe the fragrance of flowers, feems to be to deter infects from inferting their leaves, or preying upon their honey.

It is probable, that if infufions were made in hot water, or perhaps for a longer time in cold water, of thofe leaves which no infects devour; as of the walnut, juglans; lauro-cerafus, laurel; foxglove, digitalis; hen-bane, hyofcyamus; hounds-tongue, cynogloffum; rag-wort, fenecio jacobæa; or of tobacco, nicotiana; and many others; and were fprinkled on the curled leaves of wall-trees, or on the buds before they open, by a pump, or by a brufh, or fponge; they might deftroy the infects without injuring the trees, which might be determined by a few experiments.

The duft of tobacco is frequently fpread on affected leaves, but not I believe with very encouraging fuccefs, owing perhaps to the powder not being very fine, or not foon enough applied. Some kinds of lime ftrewed on in powder might probably be too cauftic, and deftroy the leaf along with the infects; which alfo might be fubjected to experiment. The powder of fulphur, or of tobacco, or of any of the poifonous leaves above mentioned, might be injected upon affected trees
by a powder-puff, fuch as hair-dreffers ufe, or the fmoke of tobacco, or of any other of the poifonous leaves above inentioned, might be forcibly blown on them by an adapted pair of bellows, as the fmoke of many of them may poffefs as poifonous a quality as that of tobacco; and even the fteam of a decoction of others, as of lauro-cerafus, and walnut ; the poifon of the former of which is known to rife in diftillation, might probably be ufed with effect ; but this muft depend on the greater or lefs fixity of their effential oils. The fmoke or fteam might be applied to wall-trees by previoufly fufpending over them a large fheet of matting, or of linen, or of paper, or an old carpet; but may however be ufed with greater advantage in hothoufes, than in the open air.

Since the above was written I directed in the early fpring of this year one nectarine-tree to be moiftened with tar-water, and parts of the wall to be fmeared with tar; another to be moiftened with lime and pot-afh diffolved in water; a third with foap-fuds and lime added to them; and many both nectarine and peach-trees with foap-fuds alone. This was done by means of a bruth before any flowers appeared, and was repeated thrice on different days; but to my great difappointment, when the leaves appeared, they became affected with the aphis as on former years. I alfo afterwards dipped many nutleaves crowded with the aphis in ftrong infufion of tobacco, for a few minutes, as the leaves hung on the trees without, as I believed, deftroying the infects; though fome of them appeared for a time to be rendeređtorpid.

Neverthelefs on covering a low nut-tree with fome fheets of brown paper fewed together, and throwing the fmoke of tobacco under it from a proper pair of bellows, great numbers of aphifes were killed, many of which dropped from the upper leaves on thofe below them, and many adhered motionlefs to the under furfaces of the leaves. The fine powder of tobacco called Scotch fnuff fprinkled on the aphifes by turning up fome of the leaves quickly deftroyed them.
Zz_{2}

As walnut-leaves may be had in great quantity in the autumn, and the whole plant of fenecio jacobæa, rag-wort, at any time, both which are probably deleterious to infects, as they feem never to be injured by them, thefe might be procured at fmall expence, and might probably, when dried and burnt, produce a fmoke equally deffructive to them.

Fifthly. The moft ingenious manner of deftroying the aphis would be effected by the propagation of its greateft enemy, the larva of the aphidivorous fly; of which I have given a print, and which is faid by Reaumeur, Tom. III. Mem. 9. to depofit its eggs, where the aphis abounds; and that, as foon as the larvæ are produced, they devour hundreds around them with the neceffity of no other movements but by turning to the right or left, arrefting the aphis and fucking its juices. If thefe eggs could be collected and carefully preferved daring the winter, and properly difpofed on nectarine and peach-trees in the early fpring, or protected from injury in hot-houfes; it is probable, that this plague of the aphis might be counteracted by the natural means of devouring one infect by another; as the ferpent of Mofes devoured thofe of the magicians.

Mr. Horrocks of Derby fhewed me this larva of the aphidivorous fly, which I faw devour two or three aphifes, and Mr. Swanwick of this town at my requeft made an accurate drawing both of the larva and fly, which he kindly favoured me with, accompanied with the following note.
"On Auguft the 4 th Mr. Horrocks obligingly fent me an aphidivorous larva in a box on a leaf of a plum-tree, on which were a number of aphifes; and I had almoft immediately the pleafure of feeing it eat one.
"The method of taking his prey is thus: he is like the floth in his difpofition, for he does not ramble about, while he has food around him. He only lifts up his head, and frikes it down again, extending it in various directions, as if he was blind, and repeating the above ac-
tion. If by fo doing he happens to feel an aphis, he immediately feizes it by the back, lifts it up and poifes it in the air, as if to prevent it from liberating itfelf by its ftruggles againft the furface of the leaf, or that it may fall more eafily into the cavity of his mouth. In this pofition he holds it, while he pierces it, and fucks the juice out of the body; which having done, he drops the fkin , licks his lips round with his little black tongue, contracts his head, and drops it down; thus refting in perfect repofe for fome time, after which he repeats the fame actions. But if he is in the midft of plenty, he feldom gives himfelf this trouble, but waits till an aphis touches him, when he immediately turns his head round, and with fatal certainty feizes him, poizing him as before.
"For the purpofe of feeing what fly was produced from this caterpillar, I procured him food for about ten days. During this time he eat a great number of aphifes, and grew to about an inch in length; when he left off eating, contracted himfelf to about half his former length, fixed himfelf to the box by a little gluten, which he difcharged from his mouth, and without cafting a fkin changed to a chryfalis.
"In this ftate he lay about ten or eleven days, at the end of which time he burft his cell, and came out a beautiful fly, of which the figure is a good reprefentation."

No. 1. The caterpillar with an aphis in his mouth.
No. 2. The chryfalis open at one end.

No. 3. The fly.

Another enemy to the aphis is faid to be a beautiful fmall fpotted beetle, called a lady-bird by the people. Several of thefe were feen on the nut-leaves, and are believed firft to appear there in their larva ftate, and to feed on the aphis; they then change to a chryfalis, and laftly to a fmall wing-fheathed beetle; and finally, I fuppofe, they bore holes into the earth, as would appear from their poffeffing fheaths to their wings, and that they there depofit their eggs to be hatched,
hatched, and to climb the trees infefted with the aphis in the enfuing fpring.

Thus from the exertions of a few aphidivorous larvæ or caterpillars, from the poifonous juices of fome plants, and from the briftly armour on the young twigs and leaves of others, the vegetable world is fo far protected from the deftruction, with which it has been, and is threatened, by the fine probofcis of this multitudinous infect, which in its manner of attack refembles that of the large bat of Afia, vef-pertilio-vampyris; which is afferted by Linneus to drink the blood by night of fervants, who fleep in the open air, Syft. Natur. p. 46; and is faid by others to be fo fkilful an operator as not to wake the patient by the puncture, which it inflicts, as it agreeably fans them with its wings.
3. Many of the orchards of apple-trees in this country are liable to lofe all their leaves by the depredations of caterpillars; the fame occurs to goofeberry-trees in fome gardens, and to cabbages in the latter part of the fummer.

A few years ago I obferved, that the bloffoms of the quince-tree, before they were quite expended, were perforated by a fly; as the wound could be eafily difcerned like that on young nuts, when wounded by the curculio; and all the bloffoms of a large tree were thus deftroyed by a fmall caterpillar. And in this late fummer of 1799 the apple-bloffoms in this country are much injured by a caterpillar, which eats the feed in the pericarp of each bloffom either before or at the time of its impregnation, the petals of the flower clofing again over it and dying.

The leaves of many trees are renewed after having been totally deftroyed in the early part of the feafon; as thofe of the apple-tree above mentioned, which had loft its leaves entirely by lightning; as the mulberry-trees in Italy, which are thus robbed of their firft leaves to feed filk-worms, as the tea-tree in China, which is thus robbed for a falhionable potation. And laftly, as the euonymus, or f pindle-tree, which
which in this country has its firft crop of leaves almoft perpetuatly deftroyed by caterpillars. But though the leaves are reftored after the depredation of this infect, yet there follows an irremediable injury to the fruit. See Sect. IX. 2.6.

As the eggs of butterflies are in the autumn wifely depofited in fituations, where the young can find proper food, when they are hatched by the warmth of the fpring; thofe on apple-trees, and on goofeberry-trees, are frequently depofited on the leaves, as well as on other parts of the tree; and as thefe leaves fall on the ground, the eggs are thus covered and protected from the frofts, and the young caterpillars are believed to climb the trees in fearch of their food. If this be true, it would be an advantageous practice to rake together the leaves in orchards, and to burn them; which fome have done from an idea, that the fmoke thus produced was noxious to the eggs of infects depofited on the branches.

Some gardeners for this purpofe rear their goofeberry trees on one ftem only; and believe, that by tying a fringe round this ftem the infects, which are hatched in the foil, if fuch there be, can not climb up the tree thus furrounded with a fringe; and as thofe caterpillars, which are already on the tree, let themfelves down by a thread, when the tree is fhaken, from the fear of being hurt by the vibrating twigs; if this thread be then broken, by moving a flick round under the tree, thefe infects cannot reafcend. A paper recently tarred on the outfide might be wrapped round the ftem of the tree infead of the fringe with perhaps more certain fuccefs; but the tar fhould not be fmeared on the bark of the tree, left it fhould injure or deftroy it.

It may be obferved in the choice of apple-trees, that thofe kinds, which flower early, are lefs liable to the depredation of infects; and thofe, which flower late, are leff liable to the injuries of froft. In ap-ple-trees perhaps the former is in fome fituation the greater evil, but in pears I fhould furpect the latter, the bloffoms of which are fo of ten totally deftroyed by one night's frof.

The white butterflies, which depofit their eggs on cabbage plants, are feen flying about awkwardly in fummer, and fould be caught, and deftroyed by the gardener. Or they perhaps might be invited and poifoned by a mixture of honey, and water, and arfenic; as a wealthy man in Italy was faid to have poifoned his neighbour's bees. See Sect. VI. 6. 3. Thefe cabbage-caterpillars would increafe in defructive numbers, but are half of them annually deftroyed by a fmall ichneumon fly; which depofits its own eggs in their backs, which are there hatched by the warmth of the animal, and live on the filk there fecreted for its futare neft; and eroding their way out fin fmall cacoons of their own; ten or twelve of which hang on each caterpillar; which thus perifhes inftead of changing into a butterfly. This I faw happen to a great many of them, which were put into a box on bran with a few cabbage leaves, and covered with gauze, a few days before they were ready to change into chryfolifts.' This ichneuman fly fhould therefore be encouraged, if his winter habitation could be difcovered.
4. The variety of infects, which infeft hot-houfes, as the acarus, thrips, aphis, and cocci, and the means commonly ufed to deftroy them by the fmoke of tobacco, or by the powder of fulphur and tobacco, or by folutions of lime and fulphur, are defcribed in Speechly's books on the Vine and Pine; but require fome caution in their application. A friend of mine, by fubjecting a wall-tree to the fmoke of fulphur by hanging a matt before it during the fumigation, killed both the infects and the tree.
5. Other kinds of infects are produced beneath the foil, or occafionally retire into terreftrial habitations. Of thefe are the various families of fuails, with and without fhells, and other infects with fheaths over their wings, with which they are furnifhed to prevent any injury from the friction of the fides of the holes they make or defcend into.
It has been lately fuppofed, that the great deftruction of the crops
of turnips, which occafionally occurs, is owing to the depredation of a white flug, or fnail, which comes out of the foil before fun-rife in dewy mornings; and that by rolling the young turnips with a heavy roller before fun-rife for a few mornings, thefe pernicious infects may be deftroyed, and add manure to the rifing plants they have injured.

The white flugs in gardens are very deftructive to many flowerftems, as they rife out of the ground, as to dictamnus fraxinella, apocynum androfemifolium, to phafeolus, kidney-bean, to cinara, artichoke, and many other plants. I well remember in one feafon favourable to their production in a garden by the fide of the Derwent obferving, that many artichoke ftems above a foot high were eaten by them near the moift earth till they fell down, like trees felled by the ax. It has lately been afferted, that watering the ground with tar-water will deftroy them ; which may be made by adding a few pounds of tar to a hoghead of water, and well flirring it, without perceptible injury to the tar. A circle of lime round the flowerftems, or of falt, or even of bran in dry weather, are means of preventing the approach of flugs; and fome gardeners lay a board lightly on the ground between the alleys, under which the flugs hide themfelves when the fun rifes, and are hence eafily caught and deftroyed.

The leaves of the young turnip are alfo believed to be deftroyed by a fly; which, if it be of the fcarabrus, or beetle kind, which arifes out of the earth, may likewife be deftroyed by rolling. The Chinefe are faid by fir G. Staunton to fteep all their feeds in liquid manure until they fwell, and their germination begins to appear; which they believe not only haftens the growth of the plants, but alfo defends them againft infects beneath the foil; and that ta this fir George obferves it may be owing, that the Chinefe turnips efcape the fly fo injurious to them in this country. Embafly to China, 8ro edit. Vol. 111. p. 310 . An obfervation of Mr. Guillet in the Bath Agriculture, Vol. II. Ait. 44, feems to confirm this idea. He afferts, that when turnip feed is fown during rain, or has rain immediately after-

$$
3 \mathrm{~A}
$$

wards,
wards, that the firf leaves are fo vigorous that the fly never attacks them; or that the rain itfelf is fo inconvenient to the fly, as to preyent itṣ appearance. It is alfo afferted by Mr. Exeter in the Tranfactions of the London Society for Arts, Vol. XVI. p. 191, that the fowing turnips in drills deeper than by broad caft, accelerates the growth of the plant by giving it more moifure; whence it fooner puts forth its rough leaves, and efcapes the depredations of the fly. He fpeaks highly of the ufe of the drill, advifes the rows to be one foot diftant, ufes three quarters of a pound of feed to an acre, and fows them from one inch and a half to two inches deep.
6. The great numbers and varieties of animated beings, which live under the foil, and fleep in winter, defcending beneath the reach of froft, is truly aftonifhing. I once obferved fuch immenfe numbers of fmall wing-fheathed infects, which I believed to be the fcarabæus folftitialis, or fern-chaffer, as they were not one fixth part of the fize of a May-chaffer, fcarabæus melolontha, though much of the fame form and colour; which arofe out of the ground near the cold bath at Lichfield, that I gueffed, that one or two emerged from every fquare inch of many acres of land.

The grubs or maggots, from which thefe wing-heathed flies arofe, I furpect in fome feafons and fituations favourable to their production to be very deftructive to the wheat in fpring, or the early part of fummer, devouring the ftem near the furface of the ground at the joint, which is fweet, till it falls down or withers, by which many crops were nearly deftroyed this year, 1797, and that, I was informed, on fome lands, which had been previoufly well limed.

Mr. Tull in his hufbandry, fpeaking of wheat, advifes not to fow it deeper than an inch, fince the thread or caudex, which connects the lower or feminal root with the upper or coronal root, he believes to be then'not fo readily found by worms in the winter, as one three inches long might be, both on account of the gieater length of the
latter, and becaufe infects do not rife fo near the furface in the winter months.

Where this peftilential grub occurs, perhaps rolling the land early in the mornings in the fpring might cruth them. And when the fly is feen to come out in fuch abundance in the fummer evenings on grafs land or fallows, it is probable, that rolling the ground in the evening might prevent the return into the earth both of thefe and of the May-chaffers to depofit their eggs, and thus prevent their future progeny; or during their grub ftate, when they exift at the roots of wheat above or juft beneath the furface of the foil, perhaps flaked lime might be fprinkled over the crop in powder, or fea-falt in powder, which'might be wafhed down the ftems of the'corn in a wet day, and deftroy the infect without injuring the vegetable; or laftly, by tar-water ; all which might be firft tried on a fmall part of a field; for as lime is not all of equal purity, it is not all of the fame flrength or caufticity.

Another infect is faid to injure wheat when in flower, and is fuppofed to be the thrips phyfapus of Linneus, as mentioned in the tranfactions of the Linnean Society, Vol. III. But as it only attacks the late flowering ftems, it may poffibly be prevented by fowing the wheat early, if it thould ever become a ferious evil.

Some time ago an infect called a corn-butterfly committed great ravages in France while in its vermicular ftate, fo as to ruin two hundred parifhes. A cure for it was at length difcovered, which confifted in drying the wheat in an oven before fowing it, and thus expofing it to fuch a degree of heat as would deftroy the eggs of the infect without injuring the feed; or perhaps which hatched them without fufficient moifture to foften the grain for their fupport. See Encycl. Britan. Agricult.

Between Chefterfield and Plaifly in Derbyhire I well remember above forty years ago to have feen for two or three miles together every leaf of the hedges devoured by the May-chaffers, fcarabæus
melolontha,
melolontha, which hung on each other, where the foliage was deAtroyed, like bees in a fivarm. And to have found in the fame year, as it lay dead in a field near Chefterfield, a true lucuf, like a very large grafs-hopper with very long and broad wings; which I preferved in fipits, and was informed, that many of them were found in other parts of England about the fame time.

All thefe noxious animals might be deftroyed or diminifhed by encouraging the breed of fmall hedge-birds, and perhaps of larks, and of rooks, by not taking their nefts. I have obferved, that houfe fparrows deftroy the May-chaffer, eating out the central part of it ; and am told that turkeys and rooks do the fame; which I thence conclude might be as grateful food, if properly cooked, as the locufts or termites of the eaft. And probably the large grub, or larva of it, which the rooks pick up in following the plow, is as delicious as the grub called groogroo, and a large caterpillar, which feeds on the palm; both of which are roafted and eaten in the Weft Indies. The various fpecies of linnets carry fmall caterpillars to their gaping young; and hedgehogs are faid to devour frails, and on that account to be profitably kept in gardens.

When a fevere frof occurs, before the ground is covered with fnow, thofe infects, which do not penetrate deeply into the earth during their hybernation, as the fhell-lefs frails or flugs, are liable to be deftroyed, and probably many of the larvæ of the fern-chaffer and May-chaffer, as is feen by their diminifhed numbers in the enfuing feafon.

In China the aurelia of the filk-worm, after the filk is wound off, and the white earth-grub, and the larva of the fphinx moth, furnifh articles at the table, and are faid to be delicious. Embaffy to China. Neverthelefs all the caterpillar tribes may not be equally innocuous; as in this climate the hairy caterpillars, if laid between the fingers, where the fkin is tender, I have obferved to produce an itching, and leave fome of their pointed briftles in the fkin . And M. Vaillant,
in his travels in Africa from the Cape, afferts, that both a black and a white hairy caterpillar becomes fo poifonous, when it feeds on a large cuphorhia, that the natives put them in bags, bruife them, and after a few days poifon their arrows with them. But that they are lefs puifonous if they feed on tefs acrid vegetables.

There muft be great difficulty in deftroying the larvæ, or grubs, or caterpillars, of many infects, which are injurious to the fruits and kernels, as well as to the foliage of plants, by any chemical mixtures; as in this ftate, I fuppofe, fome of them are uncommouly hardy or tenacious of life. Mr. Gouch affirms, that he kept the curculio nucum, or worm found in nurs, in brandy for feventeen hours, which recovered; and I remember putting a worm, which came from a perfon, who called it an afcaris, though it was above an inch long, and nearly as thick as a thin crow-quill, into a faturated folution of fugar of lead in water; which lived many hours without apparent injury. See Nicholfon's Journal, No. 21, for November 1798.
7. A great number of bees, as well as of moths, and butterflies, muft be very injurious to flowers, and confequently to the production of fruits, as all of them plunder the nectaries of their honey, and thence deprive the anthers and ftigmas of their adapted nourifhment, as mentioned in Sect. VI. 6. 3. This would be more deftructive to the feminal products of plants, but that many of them poffers means of defending their refervoirs of honey, and yet of expofing it to the influence of the air, fome of them by long winding canals, as in the bottom of the tubes of the honey-fuckles, trefoils, and larkfpurs, lonicera, trifolium, delphinium; others by covering it with a hood, as in monkfhood, aconitum ; others by a gluten, as in catchfly, filene, and in fun-dew, drofera; others by contracting fome part of their leaves or flowers, and deftroying the hoftile infect, as in dionœea mufcipula, and in apocynum androfemifolium; and finally, many other flowers have probably acquired the habit of fecreting more ho-
ney than is neceffary for their own confumption, as cacalia fuaveolens, alpine colts-foot, and polygonum fagopyrum, buck-wheat. From all thefe contrivances the flowers of plants probably receive lefs injury from the depredations of bees, moths, and butterflies, in this country, and from the humming bird in tropical climates, than they otherwife would be fubject to.

But befides the lofs of much of their boney an abundance of bees muft likewife injure the feminal products of vegetables by plundering the ftamina of flowers of their anther-duff for bee-bread, as Mr. Hunter believes; and alfo of the wax. which covers the authers for their defence againft rain. Neverthelefs, as mankind convert to their own purpofes the honey thus collected by bees, and the wax, with which they fabricate their combs; and as the feeds of plants and their fruits are neverthelefs in fufficient abondance; the depredations of bees are not counteracted like thofe of other initets, but on the contrary encouraged.

The following obfervations, which I made this fummer, may be of fervice to thofe who keep bees, and which 1 hall therefore bere relate. The bees of one fociety frequently attack thofe of another fociety, plunder them of their honey, and deftroy moft of them, perhaps all of them, in battle; in this refpect refembling the focieties of mankind! This war for plunder occurs more frequently than is commonly fufpeeted. Laft year I had one hive of bees totally deflroyed, and the year before another, which I did not take means to prevent, though I faw the conteft, and the number deftroyed in the latter; but not early enough in the commencement of hoftilities.

Laft week, June 16 , 1 happened to fee a great number of bees on the wing near the mouth of my only hive, and fuppofed that they were about to fivarm. In an hour or two, on again attending to them I diffinctly faw it was a violent battle; and at night obferved about a hundred dead bees on the ground, and on the bench before the hive. I then directed a board about an ineh thick to be laid on
the bee bench, and fet the hive on this board with its mouth exataly on the edge of this board, the mouth of the hive was allo contracted to about an inch in length, and a femicircular hollow was made in the board immediately under the mouth of the hive. By this means the affailing bees were obliged to alight on the bee-bench, and then to climb perpendicularly up the edge of the board, on which the hive was now placed; and thus appeared to act with great difadvantage; and a much lefs number of bees appeared to be flain in this day's battle; whence it would be advantageous always to place bee-hives in this manner.

Neverthelefs, as the war did not ceafe, I directed early on the next morning to remove the bee-hive to a diftant part of the garden, and to a more eafterly afpect, and found to my great fatisfaction, that the hofts of the enemy did not follow ; and that in a few hours the unaffailed bees refumed their work, as appeared by their going into the hive with loaded thighs; and though a few of them were feen on the following two nights refting on their old habitation, thefe were carried early on the enfuing morning in their torpid ftate to their new fituation, and the war ended without extermination of either fociety.

IV. DESTRUCTION BY VERMIN.

1. The deftruction of grain, after it is fown, by the field-mice, which mine their way very quickly under newly ploughed lands near the furfáce, is faid by Mr. Wagftaff, in the papers of the Bath Society, Vol. VI. to be effected in fome feafons to a very great extent. He adds, that the tuffocks of wheat, feen to arife in many fields, are owing to the granaries of thefe diminutive animals; which he has often found to contain nearly a hatful of corn, which grows into a tuft, if the owner becomes accidentally deftroyed.
Mr.Wagftaff alfo afferts, that they feed much on the young plants,
as they arife from the feed, and multiply at that time very faft. He detects their habitations by fmall mounds of earth being thrown up on or near the apertures of their dwellings, or of the paffages, which lead to their nefts or granaries; and by following the courfe of thefe paffages be found and deftroyed the parents and the progeny.

Mr.Wagftaff recommends the taking up and dividing the tuffocks of wheat, thus fown in the autumn by the field-mice, and tranfplanting them in the fring; and alfo to thin other parts of a young crop, as they appear too thickly fown, which he efteems an advantageous practice.

Acorns when fown, and garden beans, and peas, are liable to be dug up or devoured by thefe voracious little animals, which may be deftroyed by traps baited with cheefe; or beft of all by the encouragement of the breed of owls, fo active in the purfuit of nocturnal vermin, and thence fo ufeful to the gardener and farmer, who ftill permit their fervants and children to deftroy both their eggs and callow young.
2. This country was infefted with two kinds of rats, the houfe-rat and the water-rat; but it is believed, that within the laft half century the water-rat has deftroyed the houfe-rat. The water rats porfefs fome kinds of ingenuity fimilar to the beaver in the conftruction of their houfes near the brinks of rivers and pools; which have two apertures, one above ground amongft the grafs, and the other beneath the furface of the water; and unlefs they can hide their upper opening amid weeds or grafs, they forfake the fituation. Thus if a rim, three or four feet in breadth, round a fifh-pond be kept fo low as to rife only two, or three, or four inches above the level of the water; and if this be kept clean from high grafs, or weeds, the rats will defert the pond.

I have feen a young water-rat devour a large leaf of water-plantain, alifma plantago, and therefore fuppofe that they occafionally prey on the foliage, as well as on the feeds and fruits of vegetables, and on young animals, as ducklings and rabbits. As thefe animals, like the dog,
dog, are of a lafcivious nature, and as fome materials have a Atrong fcent, refembliag perhaps that of their venereal orgafm, they are liable to be attracted by fuch fmells, as dogs are, on the fame account, I fuppofe, inclined to roll themfelves on putrid carrion; and male cats to eat marum, valerian, and cat-mint. On this account it is ufual for rat-catchers to avail themfelves of this propenfity, and to mix effential oil of rhodium, or mulk, with the poifonous powders of ftrychnos nux vomica, or of delphinium flavifagria, or perhaps of arfenic.

The great injury to vegetation effected by thefe rats confints in their making innumerable burrows beneath the foil, and feeding on the roots of a great variety of vegetables. Some new planted appletrees I remember to have feen taken out of the ground with nearly the whole of their fmaller roots eaten, and the larger ones peeled by thefe reptiles. They will alfo deftroy young ducks, young rabbits, and young chickens; and devour with great avidity every kind of food, with which poultry and fwine are ufually fed; and are hence in many ways injurious in fituations near water.

The fubfequent receipts for poifoning this mifchievous vermin are printed in the papers of the Bath Agricultural Society, and faid to have been attended with great fuccefs. Firft, to a quart of oatmeal add fix drops of oil of rhodium, one grain of mulk, and two or three of the nuts of nux vomica finely powdered; make it into pellets, and put them into the rat-holes. This was at firft greedily eaten, and did great execution, but the wife animals after a time ceafed to eat it. The fecond confifted of three parts of oatmeal, and one of favifagria, ftave's-acre, mixed well into a pafte with honey. Pieces of this pafte were laid in their holes, and again did great execution. A third method of deftroying them there recommended is by laying a large box down on its front fide with the lid fupported open by a fring over a pully; and by trailing toafted cheefe, and a red herring, from their holes to this box; and placing oatmeal and other food in this ${ }_{3} \mathrm{~B}$ box,
box, which they are for a few nights permitted to eat unmolefted; and finally to watch them by moonlight, the infide of the box being painted white; and, when many of them are feen, to let down the lid; by which contrivance fixty of them were taken at once.
3. Moles, as well as rats, have occafionally increafed fo greatly in numbers as to much injure the agricultor; they perforate the earth near its furface, and are faid never to drink, but to feed on the roots of vegetable, as well as on fubterraneous infects; and though they are believed never to drink, yet they have been feen occafionally to fwim over lakes of water to the iflands which they furround, of which an ocular proof is related in the tranfactions of the Linnean Society, Vol. III. 1797. Some have recommended to inject the fmoke of burning fulphur, or of tobacco, into their fubterraneous manfions; but as the earth frequently falls in behind them, as they pafs, or is accumulated behind them by their hindermoft feet, as they perforate the foil with their foremoft feet or hands, this method of attack can feldom fucceed, unlefs the neft of the animal be near the fumigated aperture. Others have advifed to pour water into their holes, which is equally inefficacious in general, though it may have effect in particular fituations. Some alfo have baited traps with worms, and others have advifed to put poifon into their holes; but they are not to be attracted together like rats from their not appearing above ground.

The following method was related to me by Francis Paget of Elfton near Newark, a very popular and fucceffful mole-catcher, whom I once attended in his occupation to witnefs his operations. The moles have cities under ground, which confift of houfes, or nefts, where they breed and nurfe their young; communicating with thefe are wider and more frequented ftreets, made by the perpetual journeys of the male 'and female parents; as well as many other lefs frequented allies or bye roads, with many diverging branches, which they daily extend to collect food for themfelves or their progeny.

Sect. XIV. 4. 3.
 OF PLANTS.

This animal is more active in the vernal months, during the time of the courthip of the males; and many more burrows are at this time made in the earth for their meeting with each other. And though thefe animals are commonly efteemed to be blind, yet they appear to have fome perception of light even in their fubterraneous habitations; becaufe they begin their work as foon as it is light, and confequently before the warmth of the fun can be fuppofed to affect them. Hence his method of deftroying them confifted firft in attending their fituation early before fun-rife; and at that time be frequently could fee the earth move over them, or the grafs upon it; and by a fmall light fpade he frequently cut off their retreat, by friking it into the ground behind them, and then dug them up. He added, that by laying the ear on a newly raifed mole-hill, the found of the fcratching mole might fometimes be heard at a diftance, and direct where to find it; as the folid earth conveys fimall vibrations better, or to a greater diftance, than the light air. And that a terrier dog, after having been accuftomed to the bufinefs, was frequently of fervice in detecting by his nofe the place of the mole beneath the foil, and by endeavouring to fcratch the earth over it.

The mole he faid generally fuckles four or five, and fometimes fix, young ones; which are placed confiderably deeper in the ground than their common runs; and as thefe nefts are funk much deeper into the ground than their ftreets or bye-roads, and the mole-hills confequently larger, the earth on the fummit of thofe mole-hills is generally of a different colour, and is raifed higher than that of the other ones. Thefe nefts are to be dug up, havinglfirft intercepted the canal between them and the mole-hills in their vicinity, to cut of the retreat of the inhabitants.

The next important circumftance is to difcover, which are the frequented ftreets, and which the bye-roads, for the purpofe of fetting fubterraneous traps. This is effected by making a mark on every new mole-hill by a light preffure of your foot; and on the next morning

$$
3 B_{2}
$$

by obferving whether a mole has again paffed that way, and obliterated the foot mark; and this is to be done two or three fucceffive mornings. Thefe foot-marks thould not be deeply impreffed, left it fhould alarm the animal on his return, and he fhould form a new branch of road, rather than open the obftructed one.

The traps are then to be fet in the frequented ftreets, fo as nicely to fit the divided canal. They confift of a bollow femicylinder of wood with grooved rings at each end of it, in which are placed two noofes of horfehair, one at each end, faitened loofely by a peg in the center, and ftretched above ground by a bent flick. When the mole has paffed half way through one of the noofes, and removes the central peg in his progreffion, the bent ftick rifes by its elafticity, and Atrangulates the animal. He added, that where the foil was too moift or tenacious, that the moles in paffing the old runs fometimes puthed a little of it before them, and thus loofened the central peg before they were in the noofe; in which cafe he fixed the peg a little fafter in the trap.

By thefe means Francis Paget cleared many of the neighbouring parifhes of this kind of vermin in a few days, or a week or two, and laid them under an annual tax for the defence of their territories from thefe invaders. And added, that fome other mole-catchers had carried moles into thofe farms, whofe occupiers refufed to pay them an annual ftipend, a practice which he fcorned to ufe. I have detailed this method to prevent this impofition, and to enable every farmer to be his own mole-catcher, or to teach the art to his fervants.

PLATE IX.

PLATE IX.

Exhibits the aphis, puceron, or vine-fretter, and the infects which deftroy it.
Fig. 1. reprefents the aphis of the rofe-tree without wings very much magnified, copied from M. Bonnet, with its antennæ before, and its two horns behind, which are not half the length of the antennæ, are immoveable, and faid by Bonnet to be hollow canals from which the fweet juice called honey-dew is evacuated; laftly, with the trunk under its head in the pofition in which it penetrates the leaves. In fome the horns behind are wanting, and little knobs fupply their place, which Reaumur thinks fupply the fame fweet juice. That fome poffeffing wings, and others not, does not diftinguifh the fexes is agreed by all obfervers.

Fig. 2. reprefents a magnified aphis of a pear-tree, from which a young one is fufpended for fome time after it is otherwife born.

Fig. 3. reprefents the aphidivorous larva, with an aphis in its mouth, and the chryfalis of the fame infect, before it is transformed into the fly at fig. 4. All thefe were drawn from nature, and exactly refemble fimilar reprefentations in the work of Bonnet.

Fig. 5. reprefents an infect from Bonnet, which he terms an aphis lion, as it fo greedily devours the aphifes. This infect is transformed into the fly at fig, 6.

Fig. 7. reprefents a fpotted hemifpheric fcarabeus, called by fome a lady-bird, into which the infect at fig. 8. is transformed, which is alfo faid to be a great aphis-eater. Oeuvres de C. Bonnet, T. I.

```
84
```

Fig. 1

4

.3

one is fuit
chrvalis of
Irawa from

1o greedily
-bird, into
aplis cealifio

P HYTOLOGIA.

PART THE THIRD.

AGRICULTURE AND HORTICULTURE.

S EC T. XV

THE PRODUCTION OF FRUITS.

Buds immediately from feeds never produce feeds. Neither in annuals nor trees. As in wheat, tulip, apple-tree. Buds from the broad caudex of a tulip, and the long caudex of trees, are of different maturity. Leaf-buds changed into fower-buds at Midsummer, or flower-buds into leaf-buds by art. I. To produce fruit-bearing trees. 1. Seedling-trees. Their puberty. Ingraft walnut and mulberry trees. If unpruned young trees or espaliers bear fruit joyner than other fondards? Buds. on bended branches earlier and larger. An apple four on one file. How to produce fine Jeedling-trees or flowers. Leaves of feedling-trees. 2. Root-fuckers from apples, vines, briers, figs, are like ingrafted Scions. 3. Scions from branches planted in the earth. A quick-bedge thus raijed. Cbinefe method. Vines bow raided by Mr. Michel. 4. An ingrafted sion sometimes affects the Jock. Acquires vigour from a vigorous flock. On trees of the fame genus. On trees of different genus. Subject to hereditary dijeafes, not to old age, like the parent tree. Sumwits die firft. Talicotius's ingrafted noes. Sour apple on one fides. Apply rind to rind in grafting. Flower-bud not proper for inoculation. Sweeter apples brave whiter bloffoms. Colour of black cherry and purple grape known by their red leaves in autumn. Lines from Virgil's Georgics. II. To inereafe the number of fruitbuds. Leaf-buds are furnibed with new caudexes down the trunk. Flower= buds not fo. Retard the production of new caudexes. Viviparous and oviparous progeny. Production of new caudexes, or bark filaments, are compound in ingrafted trees, and suddenly generated. 1. Bend down the viviparous branches, and
and they become oviparous, and receive more nutriment. Apple-trees trained in borizontal circles. Nectarines and peaches trained on the ground. 2. Twift a wire or tie a cord round viviparous branches. Apple-trees become dwarfs by freguent ingrafting on them. 3 Wound or break a viviparous branch, or cut off a cylinder of the bark. The veffels of the alburnum fometimes aft as capillary tubes. Decorticated oaks. Tapped birch and maple. Decorticate alternate branches about Midfummer. Decorticated roots produce root-fcions. Grafted roots. Layers. Take bark off and replace it. Cut tbree or four circular incifions, or a Spiral line. To make droarfs. 4. Tranflant a tree, or cut the roots, or confine them. Pluck能 and tran/plant beans, brocoli, frawberries. Alfo crowd the roots of Atrawberries. Put a brick floor under fruit-trees. Confine lily of valley in pots. Orcbis. Cucumbers and melons. 5. Cut away central viviparous branches.' Why jpurs are oviparous. Wby terminal buds are viviparous. Effect of it. Management of melons. Management of vines. Pinch off viviparous fecondary buds, and they become oviparous next year at the fame eye. A longer beat to ripen the wood explained. If this could be practifed on other fruit-trees. 6. Lines from Botanic Garden. III. To perfect and enlarge the fruit. 1. Sborten the oviparous branches. Cut azeay root-fuckers. 2. Pinch off ufelefs viviparous buds. Pick out Jecondary buds. And of melons. 3. Thin wall-fruits, and grapes. Mucor growes without light. 4. Tie waxed tbread round twigs of fig-trees and pear-trees whben in flower, to prevent' new leaf-buds. 5. Give additional moifture, manure, and warmth. Moifture enlarges fruit by relaxing their cuticle, and preventing abforption from them. Of Juckling goofeberries. Watering rice when in flower. Manure adds nutriment. Mucb warmth with much moifure both enlarges fruit and adds to its flavour. Hot-boufes beated by feam. Pines cultivated in water. 6. Protect flowers and fruits from froft. A low Situation is not proper for a garden. Walls covered with projecting coping fones are ufeful in Jpring, not in fummer. Moveable coping heds. Fire-flues in garden-walls. A' jecret in the management of them. Sbade flowers from the Jun. 7. Fruits ripen fooner if reounded, or gathered before they are ripe, or baked in the bot-boufe, or in an oven. IV. I. To preferve fruit. Keep it from beat and cold, and from moifture. Horv beat and cold deftroy the life of fruit. Congelation Separates falts, vinous jpirit, and vinegar, from water. Condenfes clay. Repels mucilage. Tbaw frozen fruit Nowly. Preferve fruits in ice-boufes, or by feam. 2. Gatber fruit during

Sect. XV.I.I.

its acid fate. Evaporate part of its water. Keep it cool. 3. Impregnate fruit with fugar. Brandy poifons nucor or mould. 4. Fruits preferved in brine, in vinegar, in fpirit of wine, ratifie. V. Verfes on pruning trees and melons.

The objects of the culture of the farm or garden may be divided into the production of fruits, feeds, roots, barks, woods, leaves, and flowers.
We have repeatedly endeavoured to fhew, that the buds immediately arifing from feeds are not themfelves capable of producing feeds neither in herbaceous nor in arborefcent vegetables; but that the firft bud from every feed is fucceeded by a fecond bud more perfect than itfelf; and that by a third, fourth, or many more ; each generation being more perfect than the preceding one, till they acquire a puberty, if it may be fo called, or a power of producing fexual organs, and a confequent feminal progeny.

In thofe plants, which are called annuals, becaufe their feeds are fown, and produce other feeds, in the fame year, and then perifh, fome fucceffive buds grow on each other, before a flower can be produced; as is feen in the ftems of wheat, and fowthifle, triticum, fouchus; which confilt of joints, which appear to be fucceffive buds growing on each other.
From the tulip feed a fingle bud arifes the firft year with a circular flat caudex exifting beneath it, on which one principal new bulb is formed annually more perfect than its parent, as is feen by the larger leaf; and alfo fome lefs bulbs are produced around the more perfect one in the bofom of each rudiment of a leaf, which compofes or enclofes the principal bulb, as defrribed in Sect. VII. I. 3 . and Sect.IX. 3. 1. and 3.6. Thefe lefs perfect bulbs round the principal one, after the principal one has acquired its puberty, or power of producing fexual organs, are of greater or lefs degree of maturity, as appears by their fize; and thence I fuppofe muft require more or fewer years, before they flower.

Similar to this circumftance of the tulip-root, the buds of trees, which firft arife from the feed, produce annually other buds more perfect than themfelves, till they acquire the power of feminal generation; and afterwards not only a flower-bud is formed, which is in fome trees the central bud on the extremity of the twig, as in pear-trees, and on the fpurs of apple-trees; but alfo many leaf-buds of greater or lefs maturity are formed around the principal, or flowerbud; which require more or fewer years, before they obtain the maturity neceflary to produce a flower.

It was hewn in Sect. VII. I. 7. that every part of the long caudex, extending from a bud on the fummit of a tree to the root, can produse a bud, like every part of the broad caudex of a tulip-root; but thofe produced in the bofom of the leaf I believe generally to be the moft mature ; and thofe which arife from a lower part of the caudex to be lefs mature, and will in confequence require more fucceffive buds to proceed from them, before they can form a flower. Thus when the whole branches of a fruit-tree are lopped from the trunk, the new buds are produced from the lower parts of the caudexes of the branch-buds, which have been lopped off, and are therefore an immature progeny, and require fome years before they can flower.

It hence appears, that a number of buds or bulbs in all vegetables muft fucceed each other from the feed, before a flower and confequent fruit can be generated; but that thefe fucceffive generations are more numerous or fewer in fome plants than in others; that they in fome plants may only fucceed each other annually; in others perhaps many of them in the fame fummer, as in the herbaceous plants, as wheat; and in thofe trees, whofe annual joints have their pith divided from each other, as in vines. And laftly, that the number of thefe fucceffive generations, or the times of their production, whether only amually, or many of them in one fummer, may be diminithed

Sect.XV. 1.1.

OF FRUITS.
nimed or accelerated by art; and that in attending to all thefe circumftances confifts the fuccefsful management of fruit-trees.

The new buds on deciduous trees in this climate are produced about Midfummer, as obferved in Sect. IX. 2. 9; and it is believed by the Linnean fchool, that many of them at this time may be fo affected by art, as to become either leaf-buds or flower-buds. At this feafon therefore the production of buds on wall-trees, or efpaliers, or on ftandards, fhould employ the attention of the horticultor; as thofe feedling-trees produce leaf-buds only, which are too young to produce flower-buds; and as the particular hoots or buds of other trees are not fo mature as to produce flower-buds; and laftly, as fome trees flourih too vigoroufly, as it is termed, to produce flower-buds. The things to be attended to are the age of the tree, from which the graft was taken, which now forms a branch ; the maturity of the particular buds, which you wifh to encourage; and the vigour of the whole tree, or its tendency to produce leaf-buds in preference to flower-buds.

1. TO PRODUCE FRUIT-BEARING TREES.

1. There are four methods of procuring fruit-trees for the purpofes of horticulture, by feeds, by root-fuckers, by planted fcions, or by ingrafted fcions.

1. Of Seedling Trees.

It was obferved above in Section IX: 3. I. and 3.6. that in tulips and hyacinths, and even in potatoes and onions, the bulbs fucceed each other for two or three years or longer, before they produce flowers; and that the fame happens to the buds of feedling-trees, which are many years a fucceffion of leaf-buds only, before the propagation of a fingle flower-bud; for the power, which produces the 3 C lateral
lateral germination of buds, feems to require a lefs mature organization than that, which is employed in the fexual generation of feeds; whence a kind of puberty of the plant feems to be acquired for the production of the feminal or amatorial progeny, analogous to the $t_{\text {ransformation of caterpillars into butterflies; which appears to be }}$ effected folely for the purpofe of propagation.
M. Speechly, in his treatife on the Culture of the Vine, p. 49, feems to fay, that feedling vines muft be three or four years old, before they produce fruit ; whereas a planted fcion, or an ingrafted one, from an aged tree, will produce fruit the firft or fecond year; and according to the obfervations of Mr. Knight, feedling apple-trees will not bear fruit till they are twelve or fourteen years old ; and other fruit-trees in fimilar manner require fome years after their birth from the feed, before they arrive at fufficient maturity to bear flowers. See Sect.VII. I. 3. Hence he advifes the horticultor to procure fcions for grafting from fuch trees as already bear fruit ; but pays no regard to the fock, into which they are to be inferted; and adds, that he believes, if fcions from a bearing walnut or mulberry tree were ingrafted on a feedling one, that it would produce fruit in two or three years; which otherwife would not occur in lefs than twenty. Treatife on Apple and Pear. Longman, London. And hence we fee the advantage of ingrafting on feedling orange or lemon-trees in our green-houfes the fcions taken from thofe, which bear fruit; as otherwife they would continue fo many years before the buds would acquire fufficient maturity to generate flowers.

Some have believed that young trees will bear fruit fooner, if they are not pruned, but permitted to grow quite wild in large bufhes. It is poffible, that this may occur either from the unfkilful horticultor pruning off all the terminal twigs, whofe buds were forwarder in refpect to age, than the lateral ones much beneath them. Or, becaufe the great number of new leaf-buds, proceeding from an exuberant branching head, may fo crowd the bark of the trunk with their

Sect. XV. i. i.

OF FRUITS.
their caudexes, that fome of them may fooner find a difficulty in forming their embryon caudexes, and may in confequence become flower-buds. But I much doubt, that this can frequently occur from either caufe, as I think, I have feen efpaliers bear fome years fooner than ftandards, which were ingrafted at the fame time, and from the fame trees. And I have been informed of other feedling apple-trees, which have born fruit in not much more than half the time above mentioned by Mr. Knight.
It is much to be wifhed, that proper experiments were made on feedling trees by planting them as efpaliers, or againft walls, and bending down their branches below the horizon, fince the difficulty of their generating leaf-buds might be thus increafed; as they could not fo eafily form their embryon caudexes on the compreffed bark of the bended branch; and the fap-juice for the nourifhment of fruit-buds would be thus rather increafed than diminifhed, according to an experiment of Dr. Walker, who found the buds at the extremities of bended branches to fwell fooner in the feafon, and to become larger, than thofe of an equal height on the more upright branches. Edinburgh Tranfactions, Vol. I.

Mr. Bradley has mentioned an apple, which was fweet and boiled foft on one fide, and four and boiled hard on the other; and afcribed it probably to the real caufe with much ingenuity in the year 1721, long before the publication of the fyftem of Linneus. He afcribe's it to the male farina of fome neighbouring harfh apple-tree affecting at the time of the impregnation the ftigma of the flower of a fweet one; and thus a production of different feeds might be generated in the fame pericarp, and a confequent different kind of nutriment prepared for each ; and thus the different parts of the apple become four or fweet, which is analogous to a bitch producing different kinds of puppies at the fame birth, refembling the different dogs with which fhe had cohabited. The fame circumfance is faid to have occurred in oranges and in grapes of different kinds.

$$
3 \mathrm{C} 2
$$

By this method of applying the farina of one good variety of fruit, as of apple or pear, to the ftigma of another good variety, it is very probable, that fome very excellent new varieties of fruit might be produced from the feeds, which might fupply for a century the orchards of the curious, inftead of our golden pippins, and nonpareils; which are faid to be fuperannuated, and fo liable to canker as not to be worth cultivation. It is probable alfo, that new varieties of tulips and hyacinths, and of melons and cucumbers, as well as of all other vegetables, might be thus produced.

The following obfervations are from Mr. Knight's treatife on Apple and Pear, p. 47. "Every feed, though taken from the fame apple, furnifhes a new and diftinct variety; and fome of thefe will grow with more luxuriance than others; and the fruits produced by the different plants will poffers different degrees of merit; but an eftimate may be made of their good and bad qualities at the conclufion of the firft fummer by the refemblance the leaves bear to the highly cultivated, or to the wild kinds; as has been remarked by the writers on this fubject of the laft century. The plants, whofe buds in the annual wood are full and prominent, are ufually more productive than thofe whofe buds are fmall and fhrunk into the bark; but their future produce will depend much on the power the bloffoms poffers of bearing cold; and this power varies in the different varieties, and can only be known from experience. Thofe, which produce their leaves and bloffoms rather early in the fpring, are generally to be preferred; for though they are more expofed to injury from froR, they lefs frequently fuffer from the attacks of infects, the more common caufe of failure.
"The leaves of young feedling plants annually change, become more thick and flethy, and affume more the character of the cultivated kinds. Thefe external changes indicate fome internal ones in the conftitution of the plant, which may poffibly be fimilar in their nature to thofe, which take place in animals tetween their in-
fancy and the time, when they become capable of propagating their fpecies.

2. Of Root-Jcions.

Root-fuckers from bearing bur-apples, or from bearing codlings, are believed to become fruitful as foon as grafts from thofe trees; becaufe they are a viviparous offspring, as well as the fcions or twigs from the branches; and are therefore not fimilar to the oviparous progeny, or the young trees produced from feeds. This mult neverthelefs in great meafure depend upon the age of the fucker; as thofe root-buds, which rife into fuckers, are not formed or generated in the bofom of a leaf, but from a part of one of the long caudexes of a branch-bud; and will therefore, I fuppofe, require a fucceffion of buds for fome years, before they will acquire fufficient maturity to produce a flower; as the central buds from the bofom of a leaf I fuppoie to be much forwarder than the lateral buds from the fame caudex; as is feen in the central or flower-bulb of a tulip, and its immature lateral bulbs from the fame caudex.

Root-fuckers from thofe trees, which have been ingrafted on the roots of other trees, as the robinia on the acacia, may arife above the grafted part, which is beneath the foil; but thofe root-fuckers, which arife from trees, which were grafted above ground, are fimilar to the fock, not to the fruit-bearing head; which might have been a wild pear or wild apple; and will in that cafe produce crab-pears, or crab-apples, with thorny ftems.

When a branch of a vine, or briar, or of many other trees, is bent down, and a part of it inferted into the ground with its fummit in the air, it will emit roots at the joints, and become a new tree. So the rough knobs on the bark of a bur-apple-tree, I am informed, will fhoot out roots, if furrounded with moilt earth; and the branch may be then cut off, and fuccefffully planted. And from almoft every joint of a fig-tree roots will protrude, if furrounded even with a woollen
woollen 'hred, which happens to be frequently mointened by the dews or rain ; and the branch may be fuccefffully bent down and planted in a garden-pot. All thefe, like fuckers from the roots of feedlingtrees, or like grafted fcions, will become fertile, as foon as the tree, from which they are the offspring; whether it be a feedling-tree or not.

This circumftance does not occur exactly fimilar in the infertion of buds from one tree into the bark of another ; as thofe buds, which do not arife from the bofom of a leaf, but from lower parts of the caudexes of a branch-bud, as from the bark of a branch, whofe fummit has been cut off, are lefs mature, I believe, than the fummit-buds, or thofe which arife from the bofom of a leaf; and will therefore require fome years before they can produce flowers; as is feen in thofe apple or pear trees, whofe fummits have been entirely lopped off. This is a new obfervation, I believe, and worth the attention of thofe, who inoculate the buds of one fruit-tree into another.
Root-fuckers may probably be liable to degenerate in refpect to their vigorous growth by hereditary difeafes, owing to the too great age of the original plant of that variety, like the ingrafted fcions from the branches. Whence it may be neceffary to procure root-fuckers of rafpberry-plants, and of goofeberries, and even of artichokes, and frawberries, from fuch as have been raifed from feed not too long ago, when any of thefe begin to degenerate.

3. Of Planted Scions.

The fcions taken from the branches of many trees, if planted in the earth, will emit roots, and flourifh in the fame manner, as when they are grafted on other trees. This fucceeds with great certainty, if an inverted glafs be put over them for a few days to prevent their perfpiring more at firft, than their abforbent veffels can fupply. See Sect. I. I. I have been informed, that a quickfet, or hawthorn 9
hedge, cratægus, was thus planted and became a goed fence confiderably fooner than from fowing the feed.

The Chinefe are faid by fir G. Staunton to be unacquainted with the art of ingrafting, and to produce dwarf fruit-trees, which are brought to table loaded with fruit at their feftivals, by furrounding a branch of a bearing fruit-tree at its' bifurcation with a bag of earth, which is kept moift for fome months ; till the branch puts out roots, probably from the lips of a wound in the bark, and is at length feparated, and tranfplanted into a pot. Embaffy to China, Vol. II. p. 54, $8 v o$. edition ; and it is then rendered a dwarf by repeatedly cutting out the central buds, as in the management of melons, as mentioned in No. 2. 5. and 3. 2. of this Section.

Vines pofferf fo vigorous a power of vegetation, that the prefent moft approved method of propagating them in grape-houfes confifts in planting their fcions. The late Rev. John Michel of Thornhill, in Yorkfhire, the philofopher, who difcovered to the world the art of making artificial magnets, which had been concealed by Mr. Knight; whofe friendhip I long poffeffed, and whofe lofs I have long lamented; amufed himielf and family at vacant hours in his hot-houfe. The obfervations of a man of fuch accurate and univerfal knowledge are always worth recording; and though his ideas on this fubject have already appeared in Mr. Speechly's Culture of the Vine, I hall here tranfcribe a part of one of his letters to me dated in May 1785.
" The way in which we raife our vines we account our own; for I don't know, that it was practifed by any body before we fet the example. It is now pretty generally adopted however by the gardeners and nurferymen in this part of the world. Inftead of leaving three or four eyes on the cuttings, as ufed formerly to be done, which made them awkward Atraggling things, we never plant more than a fingle eye to each, cutting them with as long a part below the eye as they can admit, without encroaching too much upon the next eye below ; that is to fay, we leave perhaps about half an inch,
or a little more, as it may happen, above it. There cuttings we plant by half a duzen or a dozen together, at the diftance of three, four, or five inches, in the bark-bed, where it is pretty warm, but not fo hot as to endanger the burning of the roots, when they fhall come out ; and where it is alfo pretty moift, or elfe we water them. We plant them floping fo as to make an angle of about thirty degrees perbaps, a little more or lefs, with the horizon, the eye being highert ; but taking care that it alfo flall be covered about an inch with the balk, which is a very neceflary precaution; for though it ought juft to finell the frefh air, it muft be kept moift, to prevent the bud and fhoot, when it comes, from drying; otherwife it will very frequently die àway prefently after it has fhot a little, or at beft it will grow unkindly, not having yet made roots fufficient to fupply it with the fap neceflary for its fupport; which will not be the cafe, if the bud is fufficiently covered at firft, and till it has acquired more roots.

We generally plant our vines in this way, about the begimning or middle of January ; and if the bark is pretty warm, and as moift as it hould be, the cuttings will begín to pufh both at top and bottom in about a fortnight or three weeks at the moft. When the vines have fhot a little, perhaps three or four inches, but before the roots are got too long, (in which cafe it would be impoffible to avoid breaking them by removing, on account of their extreme tendernefs and brittlenefs) we difplace a good deal of the bark very near them, till we can throw them down all together, which fhakes the bark very gently from their roots; fo that one may difengage them fufficiently eafy, and without much hurting them. We then plant three or four of the moft promifing and thriving ones out of the whole number fingly in fmall pots in earth, which has previoufly ftood in the hot-houfe a day or two to get warm, letting the roots drop down on a little earth at the bottom, at firt, as they conveniently can, and then covering them with more earth carefully, till the pot is properly filled, and the ftem about three or four inches long, as I faid before,
before, ftanding in the middle; and then plentifully watering the earth to fettle it to the roots. We now plunge them again in the bark, where in five or fix weeks, more or lefs, they will have filled their pots pretty well with roots; when they will begin to fhew by their little progrefs, and the fmallnefs of the fhoots, that they want more room. We then take them carefully out of thefe fmall pots, difturbing the ball of earth as little as poffible, and put it all together into larger pots, putting a little frefh earth at bottom and round about, and watering well as before; and we then again plunge them into the bark.
" By about the latter end of May, or beginning of June, the beft of them will be four or five, or perbaps fix feet high, and ought now to be removed, difturbing the roots as little as pofible, into the natural ground, where they are to remain. If this is done carefully, and the earth well watered about them to fettle it to their roots, they will frequently begin growing again almoft immediately, but at leaft in three or four days; and will then often fhoot in the hot-houfe two inches in a day, and by the end of the year will have fhot from eighteen or nimeteen, to three, four, or five and twenty feet. Though we approve of this as rather the beft, yet if thefe cuttings are planted in the fame way either fingly in fmall pots, or two or three together in each, with earth, inftead of planting them in the bark, deftroying all but the beft one, when they have fhot a little, and plunging them either in the bark, or in default of a bark-bed, in a common hot-bed, they will do equally, or nearly equally well; only taking care, that the hot-bed is not too hot, fo as to injure the roots, of which there is fometimes danger."

4. Of Ingrafted Scions:

The art of ingrafting trees is of great antiquity, and is attended with numerous well known advantages, but is not yet arrived to its

$$
3 \mathrm{D}
$$

utmoft
utmoft perfection ; for it is not yet certainly known, whether the ingrafted fcion gives or takes any property to or from the tree, which receives it, except that it acquires nourifhment from it.

There is one inflance recorded by Bradley, where the fcion of a variegated jaffamine gave variegation to the leaves beneath it of the unvariegated jaffamine, on which it was ingrafted, though the graft itfelf perifhed. See Sect.V. i. This feems to fhew, that a communication of juices exifts between the graft and the ftock; and that thus fome change in the colour of the leaves of the fock might be occafioned by the inofculation of the veffels of the new bud with thofe of other buds in its vicinity. Thus if a fcion of a purple grape was ingrafted on a white one, the leaves of the latter might probably become fomewhat red in the autumn, like thofe of the purplevine; but there are no inftances recorded, where this communication of juices from the graft to the ftock, or from the fock to the graft, has varied the flavour or the form of the flowers, or fruit of either of them.

For though the fame vegetable blood paffes along both the upper and lower part of the caudex of the new fcion, which extends from its fummit on the branch to its bafe in the earth; yet the molecules fecreted from this blood are felected or formed by the different glands of the part of the caudex, which was brought with the ingrafted fcion, and of the part of it which remained on the ftock, in the fame manner as different kinds of fecretions are produced from the fame blood in animal bodies.

Some have neverthelefs believed, that fcions, ingrafted on more vigorous trees of the fame genus, have acquired greater vigour in the growth both of their leaf-buds and fruit-buds. Mr. Speechly afferts; that he has improved many kinds of vines by ingrafting thofe, which bear fmall grapes, and which have generally weak wood, on ftronger ones, which he has often experienced; and recommends the Syrian vine to graft upon, and prefers thofe, which were raifed from feed
for this purpofe; and the contrary feems to appear, where more vigorous fcions have been ingrafted on lefs vigorous ftocks; as applefcions on crab-ftocks; where in a few years the part above the grafted joint becomes much larger in diameter than that below it.

Grafted fcions fucceed well in general on trees of the fame genus, as in the common ingraftment of fruit-trees; fo the laurel, prunus lauro-cerafus, will grow on the common cherry, prunus cerafus, and produce a tall evergreen tree. But there are faid to be inftances alfo of fuccefs in the ingraftment of trees not only of different genera, but even of different orders, and claffes; as I have been informed, that apple-fcions, pyrus malus, have grown, when ingrafted on hazels, corylus. And one of the fathers of the Carthufian order is faid to have fucceeded in grafting a vine, vitis, on a fig-tree, ficus; and a jaffamine on an orange. Travels in France and Italy, by E.Wright. It is hence probable, that many new difcoveries might be made by more frequent experiments on this fubject.

It neverthelefs appears, that in grafted trees, though the ftock annually becomes covered with a new bark, as well as the graft, yet it does not change its nature; fince any new buds, which come out from the ftock afterwards, are fimilar to the ftock, not to the graft ; and in many trees the graft grows fo much fafter as to become nearly of double the diameter of the fock, as is frequently feen in old cherry-trees, and is fpoken of in Sect. VII. 1. 7.

Thus the buds of fruit-trees, like the bulbs of tulips, when raifed from feed, annually improve in their colour, length, thicknefs, and often in the fhape of their leaves, for a certain number of years; and then acquire a male, or a female, organ of reproduction, as in the claffes of monœecia, and diœcia; or both, as in hermaphrodite flowers. After this period the central buds and bulbs annually produced are in every refpect fimilar to their parents, as mentioned in Sect.VII. i. 3. except in the nearer progrefs to old age of the tree, or of the bulb-progeny; and the confequent tendency to hereditary difeafes. But the
lateral buds from the lower parts of the caudex of the central ones, which are not generated in the bofoms of leaves, are of a more immature kind, and in that refpect do not refemble the central bud, or bulb; but require fome years before they flower.
Mr. Knight has obferved, that the grafts from thofe fruit-trees, which have been in public eftimation for a century or two, are now fo liable to canker, that they bear very little fruit, ${ }^{\circ}$ and are not worth cultivation; which he afcribes to the age of the tree; as a graft he fays is fimply an elongation of the parent tree. And as it demands fome years to acquire the puberty neceflàry for fexual generation, fo it may become weak and inirritable by age, and perifh about the fame time with the original tree; which is fomewhat countenanced by another remark of Mr. Knight, that the fummits, or long extremities of old trees, frequently die many years before fome fmaller branches from the trunk, which continue to flourifh, as is frequently feen in old oaks as well as in fruit-trees; and which he might fuppofe to be occafioned by the greater age of the terminal buds than of the lateral ones, as well as from the greater length of their abforbent veffels, and the confequent greater refiftance to the afcent of the fap-juice, which may alfo be fooner impeded, or totally ftopped by the inirritability of old age.

Neverthelefs as the buds of trees are fucceffive progenies, and cannot therefore be liable to old age, as they die annually; the degeneracy of the buds of very old trees, or of thofe which have-long fucceeded each other by their lateral, and not by fexual generation, muft arife from their bcing liable to hereditary difeafes only, and not to hereditary improvements, as obfervéd above in Sect. XIV. 1. 6.

That the degeneracy of fome plants is owing to hereditary difeafes, and not to old age, appears from their continuing for long uncounted periods of time after the production of thefe difeafes, as berberries without feeds, and vines without feeds, and ftrawberries without fruit, though probably with feeds, as the barren hautbois ftrawberries,

Atrawberries, which bear no fruit, fo called, have perfect ftamina and piftilla, as I this day obferved, with a good lens; to which may be added thofe female figs which have no aperture to admit-impregnation, and the monftrous double flowers, which have loft the power of feminal propagation, and fome mule-plants, which never pofferfed it.

We have nothing in the animal fyftem, except in the polypus, and a few obfeure infects, fimilar to lateral generation ; and cannot therefore decidedly argue on this fubject. Nor have we any thing fimilar to ingraftment in animals, except that of inflamed parts growing together, the tranfplantation of teeth, and conftruction of artificial nofes from the fkin of the patient's arm, ferioufly delivered by Talicotius, with many engraved plates in a work on that fubject. But this ingraftment of nofes was unfortunately burlefqued by the author of Hudibras ; alid perhaps this ingenious idea of Mr. Knight, that the ingratted ficion becomes difeafed by age, and perifhes about the tame time with the parent tree, may be liable to a fimilar ridicule by fome future writer on gardening.

> So learned Talicotius from
> The brawny part of Porter's bum
> Cut fupplemental nofes, which
> Would laft as long as parent breech;
> But when the date of Knock was out,
> Off drop'd the fympathetic fnout.

Canto I. 1.28 I .
There is an apple faid to exift at New York in America, which is afferted to be four on one fide of it, and fweet on the other fide; and to have been produced by flitting a fcion of a four apple, and another fimilar one of a fweet apple, taking care to cut the buds of each fcion with a very fharp knife exactly in half, and by applying them and binding them nicely together, and theri ingrafting this double
fcion on a tree. I mention this, as it is related by Mr.Jay in the communications to the Board of Agriculture, Vol. I. part 3 and 4, p. 3^{62}; and is referred to in the Memoirs of the American Academy, Vol. I. p. 386. But there muft undoubtedly have been fome miftake in refpect to the production of fuch an apple by any method of grafting, and which is fo well explained as above by Mr. Bradley.

It only remains here to add in refpect to grafting, that it is neceffary to apply the bark, which contains or confifts of the caudex of the young fcion, exactly to the bark of the branch, into which it is inferted, or applied; and then all fpecies of ingrafting fucceeds, whether it is performed on a branch or on a root; and whether by excifion, or inoculation, or inarching. But I fufpect, that where a fingle bud is inoculated, it has often failed from the unfkilful operator having felected a flower-bud intead of a leaf-bud; which probably unites its caudex to thofe of the ftock with lefs vigour, and certainly dies after it has ripened its feed; or by his imprudently holding the bud in his mouth, as he afcends the ladder, or while he makes the incifion, and thus deftroying it by heat, as I once obferved. A leafbud may in general be diftinguifhed from a flower-bud by its being fharper pointed and lefs fpherical.

Where the fummits of very young fcions of only a few weeks old are to be ufed to ingraft with and upon, it may be necefflary alfo to apply the pith exactly to the pith; as this fummit bud is yet a primary being, and not like a lateral one, whofe whole caudex exifts in the bark, which adheres to it, when it is taken off for inoculation.

The choice of buds for the purpofe of inoculation is probably of more confequence than has hitherto been imagined. As we have endeavoured to fhew, that buds from parts of the bark diftant from the central bud, and which are not generated in the bofom of a leaf, are in different ftates of maturity; they muft require more years before they can produce a fexual progeny of flowers, and a confequent feminal
feminal offspring, with the refervoir of nutriment, or fruit, which attends it. A fubject which is new, and merits to be further inquired into.

It is curious to obferve, that when harfher fruits become fweeter, that the bloffom becomes whiter, as is univerfally feen in thofe of our native crabs, and of our cultivated apples; and that the buds become larger, and the green leaves alfo become of larger area, and of paler complexion.

Thus Mr. Knight obferves, " that the width and thicknefs of the leaves generally indicate the fize of the future apple; and the colour of the black cherry and purple grape may be known by their autumnal tints; and that even in plants, which have fprung from feed in the preceding fpring; as the tinging matter in the leaves of thefe plants is probably of the fame kind as that, to which the fruits will in future owe their colour." The leaves of the purple grape become quite red in autumn, as well as thofe of the geranium robertianum, and many other kinds of foliage, which I fuppofe may be owing to their abundancy of acid, which uniting with the blue part of what conftitutes along with the yellow part the green colour of vegetable leaves, converts it to red; as it changes the colour of blue flowers into red ones.
5. A tranflation of the beautiful lines in Virgil's Georgics on ingrafting may amufe the reader.

> Where cruder juices fwell the leafy vein, Stint the young germ, the tender bloffom ftain;
> On each lop'd fhoot a fofter fcion bind,
> Pith preff'd to pith, and rind applied to rind.
> So fhall the trunk with loftier creft afcend,
> And wide in air robutter arms extend, Nurfe the new buds, admire the eaves unknown, And blufhing bend with fruitage not its own.

II. TO INCREASE THE NUMBER OF FRUIT-BUDS.

The terms frength and weaknefs, in their ufual acceptation, when applied to the vegetation of trees, are metaphorical expreffions, or denote the effect or confequence, rather than the caufe, of their bearing leaf-buds or flower-buds, as fpoken of in Sect.IX. 2. \%. For the production of leaf-buds, or flower-buds, though it may be faid to accompany the greater or lefs vigour of a tree, depends on the facility or difficulty, with which the long caudexes of the new buds, .which conftitute the filaments of the bark, can be generated.

Thus the new vegetable production formed in the axilla of a leaf about Midfummer, which is called a leaf-bud, confifts of many embryon buds, perhaps twenty or thirty, which are to form the next year's fhgot ; and each of thefe muft be furnihhed at the fame time with a long caudex in miniature, extending from the leaf or fummit to its radicle or bafe; which confifts of umbilical veffels for its vernal nutriment, and of a continuation of other abforbent veffels, and of arteries and veins, as defcribed in Sect.VII. 1. 7 . which paffes along the branches and trunk from the apex or leaf of the bud in the air to its bafe or radicle in the ground; and which thus forms the new bark, and contributes to thicken and ftrengthen the trunk and branches of the tree; becaufe each new leaf-bud with its fummit, caudex, and radicle, continues afterwards to adhere to the parent tree.

But the production in the axilla of a leaf, which is called a flowerbud, or fruit-bud, confifts only of an individual vegetable with the rudiments of a number of flowers, with one caudex for its growth and nutriment; for as the feed falls from the tree, when ripe, no new apparatus of caudexes in miniature for each individual feed, as for each individual embryon-bud, is required to pafs down the trunk into the ground to form a new bark; and thus to thicken and to ftrengthen the trunk and branches.

Add to this, that not only the feeds require no new caudexes to pafs down the trunk, but that probably the ftamina and coral of each flower frike their roots only into the blood-veffels, which communicate with the bractes, like moffes or fungufes, which grow on trees, or like cufcuta, dodder, vifcum, mifletoe, and tillandfia, and epidendrum; and therefore require no caudexes and radicles to pafs down into the ground.

Whence it appears, that by rendering it more difficult for new buds to acquire new caudexes along the branches or trunk from the fummit into the ground, the tree will be neceffitated to produce flower-buds in preference to leaf-buds; a theory, which was firft delivered in the Botanic Garden, Vol. I. canto 4. 1. 470, note, and explains the whole art of the management of fruit-trees.

Vegetables therefore in refpect to their mode of propagation are either viviparous or oviparous. The live progeny of vegetables confifts of the buds, which rife on their branches in the bofom of each leaf, or on its long caudex extending down the bark of trees; or which arife on the bulbs, knobs, wires, or fcions, from the broad caudex on the roots of herbaceous plants. The egg-progeny of vegetables confifts in their feeds, with the previous apparatus of the flower, and concomitant nutriment in the fruit and cotyledons. And as plants, or parts of plants, are faid to be in greater vigour, when the viviparous progeny is prevalent; as the caudexes of this adherent offspring form a new bark, and thence thicken and ftrengthen the trunk and branches; and to be in lefs vigour when the oviparous progeny is prevalent; as the feeds fall from the tree, and confequently require no caudexes to form a new bark, and thence to thicken and ftrengthen the tree. We fhall generally ufe the word viviparous inftead of vigorous, when applied to vegetables, which generate leaf-buds principally; and oviparous inftead of weak, when applied to vegetables, which generate flower-buds principally; for the

- words vigorous or weak may properly exprefs the greater or lefs health of vegetables in both thefe fituations.

The reader will pleafe to obferve, that in the Botanic Garden we have called the bark of trees an intertexture of the roots of each individual bud; but that this is not accurate language, as the filaments, which conftitute the bark, are each of them the caudex of a bud, or central part of it ; which has a leaf at its upper extremity, and a radicle at its lower one. And that each new caudex, or bark filament, is generated along the whole trunk of the tree by the caudex or bark filament beneath it ; as appears in thofe fruit-trees where one, or two, or three fcions have been ingrafted on each other, as mentioned in Sect.VII. 1. 7. for in thefe compound trees, when a bud arifes from any part of the trunk, it is feen to refemble that part of the ftock, and not to refemble the new grafted fcion above it. We finally fuppofe, that this whole long caudex of a new bud is generally generated all at the fame time by the fympathetic action of the parts of the parent caudex along with the bud in the bofom of the leaf of that parent caudex ; and that it is not gradually produced, as we firft fuppofed, by the elongation of the roots of each budlet in the bofom of the leaves.

The following methods will contribute to prevent the young buds from fo readily acquiring new caudexes on the trunk of the tree; and will therefore retard the generation of leaf-buds, and confequently affift the generation of fruit-buds; and thould be executed about Midfummer, or foon after, as at that time the new buds are formed.

1. The firft method conffts in bending the viviparous branches to the borizon, which converts them into oviparous ones, for by the curvature of fuch branches the bark will be compreffed on the under fide, and extended on the upper fide of the curve, and its veffels on both fides will be contracted in their diameters, and thus the difficulty of producing new caudexes for the generation of embryon leaf-buds will
be increafed, in whatever ftate of miniature they may be conceived to exift.

A curious fact feems to be eftablifhed by the experiments of Dr . Walker in the firft volume of the Edinburgh Tranfactions, which Thews, that the bending of a branch even below its infertion into the trunk does not impede the afcent or derivation of the vernal fap-juice into it ; but on the contrary, that it rather appears to affift it, refembling in fome meafure a capillary fyphon, as mentioned in Sect. III. 2. 4. which may be owing to the vernal fap-juice afcending principally, or entirely, in the fap-wood, as appears by the new leaves expanding to a certain degree on decorticated oak-trees, as fhewn in Sect. IX. 2.8. And as the veffels of this alburnum are more rigid, they may be lefs liable to contraction or coarctation by bending down the branch than the bark-veffels, as well as from their being placed within the latter, and therefore lefs liable to compreffion beneath the curvature, and to elongation above it.

Whence it appears, that the bending down a branch of a fruit-tree below the horizon does not diminifh the nutriment of the fruit-buds, but rather increafes it; as Dr.Walker obferved thefe buds to grow fooner and larger at the extremities of the bended branches than on other parts of equal height.

It was afferted by Mr. Lawrence, that the more the branches of any tree are carried horizontally, the more apt that tree is to bear fruit; and that the more upright or perpendicular the branches are led, the more difpofed is that tree to increafe in wood; which he afcribes to the bending down of the branches impeding the circulation of the fap. Art of Gardening. Mr_{r}. Hitt in his Treatife on Fruit Trees, affirms, that if a vigorous branch of a wall-tree be bent down to the horizon or beneath it, it lofes its vigour, and becomes a bearing branch; and therefore recommends his method of nailing the branches of wall-trees, and of tying thofe of efpaliers, in an horizontal diretion or ftill lower; as in this confrained fituation there

$$
3 \mathrm{E} 2
$$

muft
muft occur greater difficulty, I fuppofe, in the production of the new caudexes, neceffary for the embryon progeny of buds, upwards or horizontally along the bended branch contrary to their natural habits, as well as from the compreffion of the bark beneath the curvature of the branch, and its extenfion above it ; whence more flower-fhoots are produced, which do not require new caudexes to pafs along the bended branch ; but which permit their progeny, the feeds, to fall upon the earth, and penetrate it with their new roots.

In Lord Stafford's gardens at Trentham I remember to have feen many years ago fome ftandard dwarf apple-trees with all their branches bent down, and fixed on a flight frame-work about a foot from the ground; which feemed to be uncommonly prolific, as a circle of white and purple flowers twenty feet in diameter on branches radiated from a center, appeared to a diftant eye like a lunar halo, or a carpet of rich embroidery.

The greater production of fruit-buds on branches bended to the horizon muft contribute, I thould fuppofe, to the prolific effect of training nectarine and peach-trees on tiles laid on the ground, or on the gentle declivity of a bank of earth facing the fouth, which has lately been recommended by fome one, whofe name I do not recollect, who gained a patent for his difcovery. And it is indeed probable, that both thefe modes of training fruit-trees, one of which may be called an horizontal wall-tree, and the other an horizontal efpalier, would repay the labour of the horticultor; as they would be expofed to a more vertical fun in fummer, which might more certainly ripen their fruit; and would be kept fomewhat backwarder in the early fpring, by the greater obliquity of the fun-beams, and might be therefore lefs liable to injury from the vernal froft; and when in bloffom might eafily be covered in the night, when neceffary, by mats thrown over them fupported by fakes with horizontal poles on them.
2. Secondly. The twifing a wire, or tying a waxed fring, round
the viviparous branches of a tree, induces them to become oviparous, as obferved by Mr. Whitmill, who bound not only the viviparous fhoots of various wall-trees with ftrong wire, but alfo fome of their large roots, and thus increafed the product of his fruit. Bradley on Gardening, Vol. II. p. 155. And M. Buffon produced the fame effect by a tight cord round the branches, which previoully produced leafbuds inftead of flower-buds. Act. Paris. ann. 1738.
M. Buffon concludes from the above experiments, that an ingrafted branch bears fruit more copioully, and more certainly, from its veffels being compreffed by the callus around the ingrafted junction, which may have this effect, and at the fame time contribute by preventing the luxuriant growth of its leaf moots to render the tree of more dwarfifh ftature. I am informed that many dwarf apple-trees, which are now planted in garden pots both in France and England, bear much fruit, and are elegantly placed in the centre of a defert at luxurious tables; and that the principal art of producing them confifts in ingrafting them three or four times, fcion on fcion; fo that the ftem is compreffed by the callus of three or four ingraftments before the branches are permitted to divaricate; and the trees are thus rendered beautiful dwarfs.

The effect of thus compreffing the bark by a wire, or a cord, or by the callus round the junctures of the ingrafted fcions, is undoubtedly accomplifhed by the increafed difficulty oppofed to the production of the caudexes for each new embryon leaf-bud, as above explained, and the confequent generation of flower-buds inftead of them.
3. Thirdly. The wounding, or breaking a viviparous branch, or cutting away a ring of the bark, as of pear-trees, or a femi-cylinder of the bark of other fruit-trees, induces them to become oviparous.

Where young trees difcover too great vigour, Mr. Lawrence advifes to cut the moft vigorous fhoots two parts in three through, leaving a large notch, that the wound may not heal too foon ; which he adds will both render them fruitful, make them more readily con-
form to the wall or efpalier, and preferve fuch as are dwarfs from too much afpiring in very ftrong branches, efpecially of pears; he recommends two or more fuch incifions to be made in the fame branch.

Another method he propofes is to break the too vigorous branches half through with the hand, which he has practifed with fuccefs in apricots and peaches, when the branches were formed directly forward from the wall, and thefe branches have continued feveral years to bear fruit, though fome have occafionally died by effufing gum; and though thefe incifions and breaking the branches may be performed at any time of the year, he prefers the fpring on aocount of the wet or froft of winter. Art of Gardening.

A complete cylinder of the bark about an inch in height was cut off from the branch of a pear-tree againft a wall in Mr. Howard's garden at Lichfield about five years ago; the circumcifed part is now not above half the diameter of the branch above and below it, yet this branch has been full of fruit every year fince, when the other branches of the tree bore only fparingly. I lately obferved, that the leaves of this wounded branch were fmaller and paler, and the fruit lefs in fize, and ripened fooner than on the other parts of the tree; and another branch has the bark taken off not quite all round with much the fame effect.

The theory of this curious vegetable fat receives great light from the foregoing account of the individuality of buds. A flower-bud dies when it has perfected its feed, like an annual plant, and hence requires no place on the bark for new caudexes to pafs downwards; but on the contrary leaf-buds, as they advance into fhoots, form new buds in the axilla of every leaf; which new buds require new caudexes to pafs down the bark, and thus thicken as well as elongate the branch. Now if a cylinder of the bark be deftroyed, many of thefe new caudexes cannot be produced; and thence more of the buds will be converted into flower-buds.

In this curious circumftance the caudexes of the buds of the tree above the decorticated part feem to have emitted fhort radicles into the alburnum; the veffels of which muft thus have acted as capillary tubes between the upper and lower caudexes of thofe buds; as capillary tubes will raife water by the attraction of their internal furfaces nearly to their fummits, when they are not too high in proportion to their diameter; but water will in no cafe flow over their fummits, but will always fand with a concave furface below the uppermof rim of the tube, in which fituation it may readily be abforbed by vegetable radicles; and may be fupplied from beneath by the fap-juice raifed by the vegetable action of the abforbent veffels of the caudexes, whore radicles terminate in the earth.

It is cuftomary to debark oak trees in the fpring, which are intended to be felled in the enfung autumn; becaufe the bark comes off eafier at this feafon; and the fap-wood, or alburnum, is believed to become harder, and moredurable, if the tree remains till the end of fummer. The trees thus Atripped of their bark put forth fhoots as ufual with acorns on the fixth, feventh, and eighth joints, like vines $;$. but in the branches I examined the joints of the debarked trees were much thorter than thofe of other oak-trees, the acorns were more numerous, and no new buds were produced above the joints which bore acorns. From hence it appears, that the branches of decorticated oak-trees produce fewer leaf-buds, and more flower-buds. And fecondly, that the new buds of debarked oak trees continue to obtain moifture from the alburnum after the feafon of the afcent of the fap in other vegetables ceafes; which in this unnatural fate of the debarked tree may act as capillary tubes, like the alburnum of the fmall debarked cylinder of a pear-tree above mentioned; or as the veffels of the alburnum may not yet have foft their vegetable life, they may continue to abforb fap-juice or water from their radicles, and carry it to the buds at the fummits by their fpiral contractions as in the bleeding feafon.

It is probable, that if oaks were debarked in the fummer, that much fewer leaf-buds would appear amidft the flower-buds; becaufe many of the latter muft be advanced too far, when the trees are debarked in the fring, to be converted into flower-buds by preventing the production of their caudexes, or by impeding the afcent of the nutritive fap-juice; which in thefe trees is lodged principally I fuppofe in the alburnum, as fpoken of in Sect. IX. 2. 8. On the fame account, when much fap-juice is taken in the vernal months from the birch or maple for the purpofes of making wine in this country, or fugar in America, I am informed, that no great difference occurs in the refpective numbers of flower-buds or leaf-buds, which then fucceed; but that the general luxuriance of the tree is diminifhed; which evinces, that for the defign of generating more flower-buds and fewer leaf-buds by partial decortication, it fhould be performed about Midfummer.

The cylindrical or femicylindrical decortication of a large root of a tree, as well as of a branch, is faid to anfwer the purpofe of increafing the production of fruit-buds by leffening the number of leafbuds; but may be fubject to two inconveniences; firft, that the wounded root being near the furface of the ground may be liable to rot like the bottoms of hedge-ftakes ; or like timber, which is kept in moift cellars; or the pofts of wooden bridges, which are alternately expofed to water and to air. A fecond inconvenience may occur from terreftrial infects having accefs to the alburnum of the root, which is often full of fweet fap-juice to invite them, and is otherwife generally defended by an acrid rind.

The parts of a tree immediately below a decorticated or a ftrangulated branch or root. will generally become viviparous, and will thence be faid to be increafed in vigour ; that is, it will produce new leaf-buds, and thofe of a luxuriant appearance; becaufe the injury of the bark of the branch or root will prevent the parts above from receiving fo much of the nutritive fap-juice, as in their found ftate;
ftate; and confequently the parts beneath will poffefs more of it; and alfo becaufe thefe new buds are generated from a lower part of the caudex, and will thence be a few years before they will acquire that maturity, or puberty, which is neceffary for the generation of flower-buds, or the production of a fexual or feminal progeny; whence by frangulating or decorticating the alternate branches of a pear-tree they will bear for fix or eight years; and the other alternate ones will become in the fame time ftrong and vigorous, ready to undergo a fimilar operation, when the former ceafe to be of further ufe; but the fruit will become fmaller in fize, though in greater number; and ripen earlier in the feafon.

In the fame manner new root-fcions are faid to be produced by ftrangulating a branch of a root near the furface with a tight fring, or by flitting a root near the trunk, Evelyn's Sylva; as in thefe cafes the afcent of the fap-juice is impeded, and the part below becomes viviparous, or produces new leaf-buds for the reafons mentioned in the laft paragraph; as is frequently feen where the end of a branch is lopped, or beneath the fcar of the junction of an ingrafted fcion. On the fame account it is not uncommon to ingraft with fuccefs on roots taken out of the ground, and afterwards replanted; as the robinia on the root of acacia, and any other apples on the roots of the fuckers of bur-apple, or codling, mentioned in Sect. IX. 3. 5.

For the fame reafon the roots of fome plants, which are otherwife not eafily propagated, will thoot up buds; if a part of them next the ftem of the plant be half cut through, or raifed out of the ground, and expofed to the air ; as in pyramidal campanula, and geranium lobatum. And for the fame reafon the lateral branches of numerous Phrubs, as well as of herbaceous plants, will put forth roots, when they are bent down into the ground, if they are previoully wounded to prevent the free fupply of the vegetable nutriment in its ufual courfe, as in laying carnations, dianthus.

A method of converting the viviparous branches of pear and apple

$$
3 F
$$

trees into oviparous branches is defcribed by Mr. Fitzgerald in the Philofph. Tranfact. Vol. LII. and feems to be fuperior to the exfection of a cylinder of the bark above mentioned; as the alburnum is not left naked after the operation. In the month of Auguft he made a circular incifion round the principal branches of feveral pear-trees, apple-trees, plum-trees, and cherry-trees, near the ftems of each, quite through the bark. About three or four inches higher he then made another incifion round the bark, and then a perpendicular one, joining thefe two circular ones, and feparated the cylinder of bark nicely from the wood, covering it, and the bare part of the wood, from the air for about a quarter of an hour, when the wound began to bleed. He then replaced the bark with great exactnefs, and bound it round rather tightly with bafs, fo as to cover the wound entirely, and half an inch above and below the circumcifions.

In about a month the bark began to fwell above and below the bandages, he then unbound them, and found the parts quite healed. He rebound them flightly with bafs, and let them remain fo till the beginning of the next fummer, when he again took off the bandages; and found them all healthy; and every one of them bore plentifully that feafon, though it was in general reckoned a fcarce fruit year.

He treated two young pear-trees in this manner, which never had yet had any bloom; on one of them he operated on the main arms, and on feveral of the lefs branches. from thofe main arms; and on only one of the main arms of the other. The firf, he fays, bore a furprizing quantity of fruit in the next fummer ; and the circumcifed arm of the other bore a moderate quantity; though no other part of the tree had any appearance of bloom.

Mr. Fitzgerald afterwards took a cylinder of the bark from the branches of t wo young apple trees about the fame fize, as exactly as he could by meafure ; and changing them, bound them each on the other tree. The bark of one had a leaf-bud and two apples growing on it ; the barks of both of them healed perfectly, the leaf-bud put
forth leaves, and the apples remained on and ripened; and both the branches bore fo plentifully, that one broke with its load, and it was neceffary to prop the other.
The theory of the fuccefs of thefe curious experiments confirms that delivered above concerning the fcars made by the junction of ingrafted fcions with the ftocks; and it is probable, that three or four circular incifions through the bark on viviparous pear or apple trees, or a fpiral incifion, as defrribed in Sect.1X. 2. 8. might anfwer the purpofe without detracting and replacing the bark; as fcars or callous circles would be thus produced, which might render it more difficult for the new caudexes of the embryon leaf-buds to be generated, or their parts united, and confequently increafe the number of flower-buds.
Mr. Fitzgerald further obferves, that he changed cylinders of the bark with equal fuccefs of nectarine and peach trees; and that the branches thus operated upon were retarded in their general growth; which coincides with the idea of repeatedly grafting one fcion ahove another on the apple-trees defigned for dwarfs to be fet in garden pots, as defrribed in No. 2. 2. of this Section.
4. The tranfplanting a viviparous fruit-tree, or deftroying fome of its roots before Midfummer, or the confining its roots in a garden pot, or on a floor of bricks beneath the foil, will induce it to become oviparous.
Mr. Knight, in his treatife on the Culture of the Apple and Pear, p. 83, has the following paffage. "In the garden culture of the apple, where the trees are retained as dwarfs or efpaliers, the more vigoroufly growing kinds are often rendered unproductive by the exceffive, though neceffary, ufe of the pruning knife. I have always fucceeded in making trees of this kind fruitful by digging them up, and replacing them with fome frefh mould in the fame fituation. 1 The too great luxuriance of growth is checked, and a difpofition to bear is in confequence brought on." The fame obfervation was made by Mr. Lawrence, who took up trees which were too vigorous;

$$
3 \mathrm{~F} 2
$$

that
that is, which produced viviparous buds inftead of oviparous ones, and replanted them to render them fruitful. Art of Gardening. Lond. 1723.

In tranflanting trees for any purpofe it may be obferved, that they fhould not be replanted deep in the foil, fince the moft nutritive or falubrious parts of the earth are thofe within the reach of the fun's warmth, of the defcending moifture, and of the oxygen of the atmofphere. And as the root-fibres of trees, like thofe of feeds, al'ways grow towards the moifteft part of the foil, as the young fhoots and leaves grow towards the pureft air and brighteft light; it follows, that the root-fibres feldom rife higher in the ground than they were originally fet, and feldom elongate themfelves even perfectly horizontally; fo that when a fruit-tree is planted too deep in the earth, it feldom grows with healthy vigour, either in refpect to its leaf-buds or its flower-buds.

This curious effect cannot be produced by generally debilitating the tree from its want of due nourifhment; becaufe it is faid to fucceed beft in very good foil, or by the addition of new garden mould, as before directed; but by rendering more difficult the production of radicles from the caudexes of the embryon leaf-buds; which defcend to the fineft ramifications of the old roots, and elongate themfelves beyond the extremities of their ultimate fibrils; a great number of which roots being torn off by tranfplantation, or compreffed in a garden pot, the production or progrefs of many of the new radicles mult be impeded or prevented; and the numerous caudexes of new leaf-buds be in confequence formed with greater difficulty, whence an increafed tendency to generate flower-buds.

For the fame reafon if beans, vicia faba, which are but a few inches high, be tranfplanted; they do not become fo tall, but they flower and ripen their feeds fooner; becaufe they can not fo eafily generate new leaf-buds. The fame occurs in frequently tranfplanting brocoli, braffica; the plant does not grow fo tall, but has earlier flowers,
flowers, and in greater number ; and it is hence better to pluck them up, than to dig them up, for the purpofe of replanting them; as by that means more of the root-fibres are torn off, and the plants become almoft totally oviparous.

It is well known, that the veffels of animal bodies are lefs liable to bleed, when they are torn afunder, than when they are cut with a fharp inftrument; as their diameters are contracted, or their internal furfaces brought into contact with each other, in the act of extending them, till they break. Thus if the navel-ftrings of new born animals are cut inftead of torn, they are liable to bleed to death; and there is a remarkable cafe of a miller's fervant, who had his arm and fhoulder bone, or fcapula, torn off in a windmill without much lofs. of blood. This is mentioned to fhew, that it may alfo be better to tear up roots, which are tranfplanted for this purpofe, than to dig them up; as they may thence effufe lefs vegetable blood, and in confequence be lefs weakened by the operation.

In tranfplanting frawberries many of the roots being torn off, fewer leaf-buds, and confequent wires, are produced from the difficulty, which their embryon caudexes find in producing new radicles over the old ones to fupply nutriment to the wires, till they bend down. and protrude roots into the ground at their other extremities, whence a greater number of flower-buds are generated; on this account the roots of ftrawberries fhould generally be tranfplanted, or new ones from the wires thould be cultivated, every third or fourth year, to pret vent the too luxuriant growth of their wires; or a fimilar difficulty of producing wires or leaf-buds may be effected by crowding the roots of ftrawberries together, as fome gardeners recommend; but: I fuppofe by thefe means the fruit may become fmaller from fearcity of nutriment, though more numerous.

A floor of bricks, or of ftone, extended about two feet deep beneath the roots of wall trees, has been practifed in fome gardens from an idea, that the roots Thot themfelves too deep into fome unwhole-
fome ftratum of earth ; and it has been obferved, that the trees became better fruit-bearers. In fome fituations it is poffible, this might be the caufe of the new prolific property of the trees; but I fufpect it has occurred generally from the difficulty oppofed to the number and elongation of the root-fibres, and confequently to the generation of the new caudexes of the embryon leaf-buds; whence a greater production of flower-buds enfued.

In fimilar manner it is afferted by one of the Linnean fchool in the Amœnitates Academicæ, that fome bulbous rooted plants, which feldom produce feeds in Sweden, will produce prolific feeds, if their roots be confined in a garden pot, till they crowd each other; as thofe of the lily of the valley, convallaria. And that the orchis will bear prolific feeds, if the new root early in the feafon be fevered from the old one, which has put up the flower-ftem. This muft occur in the former cafe from the difficulty, which the plants find to generate new offsets at their roots, which are their viviparous progeny; and in the latter cafe from the new offset being deftroyed; whence in both fituations more nutriment is expended on the flower.

On the fame account it is probable, that confining the roots of cucumbers and melons in fmall garden pots would ftop the too luxuriant growth of their leaf-buds, and render them fooner oviparous, if care was taken to fupply them with water more frequently, and with fufficient nutriment by mixing with the water fome of the carbonic black fluid, which has drained from a manure heap.
5. If the central viviparous branches of a plant be cut away or fbortened, the lateral ones will fooner or more completely become oviparous. 1. There are many very fmall buds on the lower parts of large branches, which do not feem to grow to maturity, and in confequence produce neither new leaf-buds nor new flower-buds. There are other lateral thoots on many trees, which only puif out a few inches, and are called fpurs, and which bear fruit the fucceeding fummer at their extremities. In many other plants the lateral branches are oviparous,
except at the extremity, which is terminated with a viviparous bud; while the central branches continue long to genrerate only a viviparous progeny, as in vines and melons.

The firt of thefe, or the unprolific exiftence of the buds at the bottom of large branches, may be owing in part to their feebler efforts of pullulation from the want of fufficient funfhine and ventilation ; and alfo in part, like the fpurs, and other lateral branches, to the difficulty they encounter in producing the embryon caudexes of new leaf-buds along the trunk; which is already occupied by thofe of the more vigorous vegetation of the central branches, which poffefs a greater fhare of funfhine and ventilation.

But the principal caufe, which renders the fpurs and lateral branches oviparous, refults from the refiftance the embryon caudexes of leafbuds experience by the curvature of the lateral branch, where it joins the trunk, and the confequent coarctation of its veffels, added to the difficulty every lateral bud has to encounter from its own curvature at its exit from the parent twig; on which lant account the central bud at the extremity of an oviparous branch is generally viviparous, becaufe it has not any curvature at its exit. All this correfponds with the fact above defcribed, that when the viviparous arms of wall-trees are bent down to the horizon, they become oviparous. See No. 2. I. of this Section.
2. What then happens in all thefe fituations when the central parts are cut away or Chortened? Firft the dwarf buds at the bottom of thefe large viviparous branches, which are in part cut away, will find more room to pufh down the embryon caudexes of new leaf-buds; and will produce a viviparous progeny; and thofe at the bottom of oviparous branches, which are fhortened by cutting off their viviparous extremities, will alfo now pullulate, and produce flower-buds for the fucceeding year, owing to the derivation of fome of that nourifhment to them, which would otherwife have been expended on the fummit-bud. Secondly, the fpurs will generate an oviparous progeny,
geny, but will acquire more nutriment, becaufe all the veffels of plants inofculate, as mentioned in Sect. IX. 2. 10. and will thence produce larger fruit, and more certainly ripen it. Thirdly, the other lateral branches will receive more nourifhment, and become more vertical, and will thence find lefs oppofition to the production of the caudexes, both of their flower-buds and leaf-buds; eithet of which may become ftronger or more numerous according to the greater or lefs inclination of the branches to the horizon ; and both of them may be more vigorous properly fpeaking; , that is, they may become larger leaf-buds, or larger flower-buds, than others of the fame tree.
3. Thus in the management of melons, which would grow into branches much too extenfive for the artificial glafs-frames of our climate, and would not have time to ripen their later fruit in our thort fummers; it is neceffary firft to check the vigour, properly fo fpeaking, of the whole plant. This is done by walhing the feed from the ripe fruit, which fhould naturally contribute to nourifh it; and by keeping the feed four or five years, that the mucilaginous nutriment depofited in the cotyledons may alfo be in fome degree impaired; it is alfo probable, that confining the roots of melons and cucumbers in garden-pots, if they were well fupplied with nutriment, warmth, and water, might be advantageous for this purpofe.

Secondly, as foon as the leaf appears an inch in diameter, experienced gardeners pick out the central bud, which caufes an oviparous, though a more vigorous, lateral fhoot; which therefore fooner bears fruit, and that of a larger kind; as it acquires more nourifhment from the defuruction of the central one.

And as thefe lateral branches are liable to produce other viviparous fhoots at their extremities, after they have generated lateral flowerbuds, it again becomes neceffary to pinch off the viviparous extremities of them, not only to accommodate them to the fize of the glafs-frame, but alfo to fupply them with more nutriment, which would otherwife have been expended on the viviparous fummit.

The

The central bud, or fummit, of the lateral branches, is generally viviparous, as well as of the central branches; becaufe the embryon caudexes of its new offspring are oppofed in the production along the bark by only one curvature at the infertion of the branch into the trunk; whereas the lateral buds of the lateral branches have the progrefs of the embryon caudexes of their new buds oppofed by two curvatures, one of the bud to the branch, and another from the branch to the trunk.

There is another reafon, why the lateral buds of many plants produce flowers fooner than the fummit; which is, that the lateral buds of thofe plants, where the pith of the upright central fhoot is not divided, are propagated from the central fhoot, and are therefore one generation older; and have thus acquired the maturity neceffary for amatorial reproduction. In other plants, where the pith of the ftem is divided at every joint, the fummit bud has been preceded by more generations, and is therefore more mature for the purpofe of producing flowers, than the lateral ones, as in a ftem of wheat; and probably in the artichoke, and on the fpurs of fome fruit trees, as of pears.
4. It was obferved in Sect. IX. 3. 1. that in the ftems of wheat three or four joints are formed above each other previous to that, which bears the ear; and that in many other annual or biennial plants two or three viviparous lateral fhoots occur, as in artichoke, cinara; and falfafi, tragopogon, before the central one flowers. The fame happens to the vine-fhoots; two or three joints with a leaf and a viviparous bud at each are always firft produced; and as each of there have a divifion of the pith between every joint, as remarked in Sect. I. 8. I fuppofe, that there joints are feparate plants growing ou each other like the joints of the ftem of wheat; and that hence in vine-fhoots three or four fucceffive generations of leaf-fhoots muft exift, before the new fhoot can attain fufficient maturity to form a flower; as the amatorial generation of feeds was thewn to require

$$
3 \mathrm{G} \quad \text { higher }
$$

higher animation, if it may be fo called, than the lateral generation of leaf-buds. The fame mode of growth occurs in the young fhoots of oaks, and which is thus curioufly accquated for.

The lateral branches of many mature trees, though they bear flower-buds on their fides, are generally terminated with a leaf-bud, as above explained; but it happens in fome of them, and particularly to vines, that after two or three flower-buds are produced on a lateral. branch, that it fhall proceed to grow in length, and to produce leafbuds at every joint above the flower-buds, as well as at the fummit ; which may be thus perhaps fatisfactorily explained. After the third, and fourth, and fifth joints of a new lateral thoot have generated flowers, which require few or no more caudexes; room enough is left on the bark of the fhoot for thofe above them to acquire the numerous new miniature caudexes of embryon leaf-buds, and where the new caudexes of embryon buds can eafily be produced along the bark, and fufficient nutriment is fupplied; all vegetables are more liable to propagate themfelves by buds than by feeds.

Hence in the management of vines, as well as of melons, it is ufeful at two or three joints above the laft bunch of fruit to pinch off the viviparous end of the new branch, not fo much to accommodate the length of it to the houfe, as to fupply the growing fruit with more nourifhment from the inofculations of the veffels of the caudexes of thefe viviparous buds, which are now cut off, with thofe of the oviparous ones, which remain.

A curious vegetable fact, which appears in the cultùre of vines in hot-houfes here prefents itfelf to our notice. When a vigorous thoot advances without producing fruit-buds at the third or fourth joint, it is frequently permitted to grow in length to above twenty feet; but at every joint the new or fecondary bud is pinched off, either foon after its appearance, or after it has fhot out one or two joints. By this management of permitting the central fummit of the fhoot to grow till Auguft or September, the eyes, whofe buds have been
pinched off, do not put out a frelh during that fummer; but new buds are formed at each eye, which germinate the next fummer, and almoftall of them produce fruit.

If however fome of the fhoots in the bofom of thefe leaves are pinched off too foon after their appearance, they are occafionally liable to generate new leaf-buds, which fhoot out afrefh from the fame eye; and it is faid, that thefe eyes, which have thus produced two leaf-buds in fucceffion in one fummer, will not generally produce buds of any kind in the fucceeding fummer; for as feveral of thefe joints in vigorous vines bear two or three buds from the fame eye at the fame time, fo others bear them in fucceffion.
The theory of thefe important facts may not be eafy to invenigate ; it is commonly fuppofed, that pinching off the lateral fhoots at every bud of a new vine-branch ftrengthens the next year's expected bud, by not expending fo much nutritive juice; and that giving the vines a fortnight's artificial heat, after the fummer heat leffens, ripens the wood for the production of the next year's fruit; but thefe are words, I imagine, without accurate ideas. I fuppofe, when each lateral fhoot of this year's branch of a vine is pinched off, that its caudexes, which had already formed a part of the bark, coalefce; and may thus render it more difficult for the caudexes of the fucceeding embryon bud in the fame eye, which is to be expanded next fpring, to be produced along the bark, by having previounly occupied the fituation which thofe new caudexes would require; and that thus the fecondary buds of thefe eyes become flower-buds, which might otherwife have been leaf-buds.

The continued heat a week or two above the ufual time of fummer, which is faid to ripen the wood, may contribute to dry and harden it, as well as to forward the growth of the buds; and thus both to render the protrufion of embryon roots more difficult, and confequently to produce flower-buds, and thofe of a larger kind.

Whether a fimilar method to this pracifed on vines could be ap-

$$
3 \mathrm{G}_{2}
$$

plied with advantage in the management of other fruit-trees is a circumftance of great importance, and can only be determined by experiment. But as the firft foliage of euonymus is generally deftroyed by infects in this country, and yet a fecond growth of foliage is produced; and as I witneffed laft year, that the whole firft leaves of an apple-tree were deftroyed, as was believed, by lightning, and which yet put forth an entire new fet of leaves in a few weeks; is there not reafon to conclude, that if the leaf-buds were picked out early in the feafon from a frong thoot of peach or apricot, either new leaf-buds might be produced in that fummer, or flower-buds in the fucceeding one, as happens to the vine-fhoots above defcribed; and that ous wall-trees might be thus rendered more certainly prolific. And laftly, might not the clipping out with fine fciffars the extremities of young vine-fhoots, which would otherwife be barren ones, convert fome of their tendrils into bunches by thus fupplying them with additional nutriment, by preventing its expenditure in the elongation of the viviparous branch? This experiment might be the more readily tried, as fome affert, that the barren buds may be diftinguifhed from the prolific ones by their form before they expand.
6. Axts of producing fower-buds.

The following quotation, partly from the Botanic Garden, Vol. I. Canto 4.1.465, may amufe the reader, and conclude the fecond part of this Section.

If prouder branches with exuberance rude Point their green germs, their barren fhoots protrude; Lop with fharp fteel the central growth, or bind A wiry ringlet round the fwelling rind; Bifect with chifel fharp the root below, Or bend to earth the inhorpitable bough. So, while oppofed, no embryon leaf-bud fhoots Down the reluctant bark its fibre-roots;

Sест. XV. 3.1 .
 OF FRUITS.

New germs fhall fwell with amatorial power, And fexual beauties deck the glowing flower; While the clos'd petals from nocturnal cold With filken veil the virgin fitma fold, Shake into viewlefs air the morning dews, And wave in light their iridefcent hues; With graceful bend the antber by her fide Shall watch the blufhes of his waking bride, Give to her hand the honey'd cup, or fip Celeftial nectar from her fweeter lip, Hang in wild raptures o'er the yielding fair, Love out his hour, and leave his life in air.

It is believed by fome of the Linnean fchool, that flower-buds or leaf-buds may be converted into each other in the early ftate of their exiftence, as mentioned in Sect. IX. 2.8. It is indeed probable, that either a flower-bud or leaf-bud may be generated inftead of each other reciprocally, before either of them exifts; but after either of them has obtained a certain degree of maturity, fo as to be diftinguifhed by its form being more pointed or more fpherical; I fufpect no addition or detraction of nutriment, or of the facility of the production of its embryon caudexes down the bark and radicles beneath can change its deftination.

1. Sborten the oviparous branches, when the leaves fall off, by pruning their viviparous fummits, and cut away the root-fuckers. The fummits of the lateral branches, as well as the erect ones, are furnifhed generally with viviparous buds; which in many wall-trees fhould be cut off, after the leaves fall in autumn; that more nutriment may be derived to the fruit-buds, which may occafionally become fomewhat enlarged during the milder days of winter; as they are now certainly too far advanced to be changed into leaf-buds; and
if this pruning be deferred till late in the winter months, the flowerubds will not be quite fo forward, as if it be performed earlier. For the fame reafon the root-fuckers alfo thould be cut away in the autumn, that all the nutriment, which they would otherwife expend, may be derived to the flower-buds, and induce them early to enlarge themfelves.
2. Pinch or rub off all ufelefs viviparous buds in the fpring or fummer, as they occur. In thofe trees where the fruit-buds arife on the new leaf-fhoots along with the leaf-buds, and cannot therefore be fooner diftinguifhed or approached, as in figs and vines, the fummit leaf-buds fhould be pinched off two joints above the fruit-buds, as foon as they appear, that more nutriment may be conveyed to the fruit-buds. See No. 3.4. of this Section.

And in the hardier wall-trees the new leaf-buds, which appear during the fpring and fummer months in wrong places, where they cannot be trained properly againft the wall, or where they are too numerous, fhould be rubbed or pinched off, as they occur; whence more nourifhment will be derived to the ripening fruit, and to thofe new leaf-buds which are to remain to produce future flower-buds.

And if the new buds, which are feen in their young flate in the axilla of the leaves of the new fhoots, were picked out by the point of a knife, or pinched off, where they grow long enough for that purpofe, as the fecondary fhoots of vines in grape houfes are pinched; it might probably induce thofe eyes to produce flowers in the fucceeding year, as fpoken of in No. 2. 5. of this Section, as well as contribute to enlarge the prefent fruit by the expenditure of lefs nutriment on the leaf-buds, an idea well deferving the teft of experiment.

In the fame manner in the cultivation of melons and cucumbers after the central bud is pinched off, as mentioned above, No. 2. 5. the viviparous extremities of the lateral branches fhould be alfo deftroyed, as foon as a fufficient number of female flowers are impregnated;

Sect. XV. 3.3.

OF FRUITS.
that a greater thare of nutriment may be derived to them, inftead of crowding the frame with new branches, whofe fruit-buds would be too late to ripen in our thort fummers.
3. Thin all thofe fruits, which are too numerous; pluck off apricots, peaches, goofeberries; and cut out many grapes from each bunch with Jciffars. By the inofculation of the veffels of vegetables mentioned in Sect. I. 3, when any parts of a tree are deftroyed, thofe in their vicinity become more vigorous. On this account when part of the fruit is taken away as early as may be, the remaining part acquires more nutriment. Add to this, that, where fruit is crowded, fome of it becomes precluded from the fun and air, and in confequence does not perfectly ripen, and is liable to become mouldy; for mucor is a vegetable production, which like other fungi does not require either much light or air, as appears from the growth of fome funguffes in dark cellars, and of common mufhrooms beneath beds of ftraw, as mentioned in Sect. XIII. I. 4.

4. Prevent the production of new leaf-buds.

In fome pear trees the whole of the bloffoms become fterile, and fall off without any apparent injury from cold, and this for many fucceffive years. The fame occurs fometimes to chefnut trees, æfculus pavia, after the flower the fructification entirely falls off; fome of thefe might be male flowers, as Miller obferves, but the whole could not be fuch. The fame happens very frequently to the figtrees of this climate, fometimes the whole crop falls off, when they are about the fize of filberts; that is, while they are fill in flower, which though concealed within the fig, muft precede the fwelling of the feeds, whether thefe be impregnated or not.

A correfpondent fact occurred to me a few years ago. I had fix young trees of the Ifchia fig with fruit on them in pots in a ftove. On removing them into larger boxes the figs fell off, which I afcribed to the increafed vigour of the plants; as they protruded very vigorous thoots occafioned by the accumulation of new foil round their
roots. Perhaps thefe plants might rather be faid to have been in flower than in fruit, and perhaps thefe flowers were all male ones only, or accompanied only with imperfect female ones?

Whence I conclude, that about the feafon when the corals of thefe flowers with their ftamens and Atigmas die, the trees generate and nourifh too many new leaf-buds, owing to the facility with which they can produce the new caudexes of thefe young buds down the bark; and that by the whole of the vegetable fap-juice being derived to the new buds for their prefent growth, or to form refervoirs for their future growth, the pericarp and feeds, whether impregnated or not, are deprived of their due nutriment and fall off. See Sect. XVI. 1.4.

Hence I propofe to tie waxed thread or fine wire round the twigs of pear-trees, which have ufually mifcarried, as foon as they are in flower, fo as to comprefs, but not fo as to frangulate them; or to wound the bark by a circular or femicircular incifion, which might counteract their facility of procreating new leaf-buds; which I fufpect would be more effectual in preventing the flowers from falling off, than pinching off the new leaf-buds, as they appear; which is recommended by Dr. Bradley in the management of fig-trees, and is done to vines in hot-houfes; but which I found to be ineffectual on many fig-branches both in the natural ground and in pots, and afcribed its failure to the continuance of the efforts of the fig-tree to produce new leaf-búds; whereas in vines, I fuppofe, the grapes would ripen, whether the new leaf-buds remain or are deftroyed. See No. 3. 2. of this Section.

Pontedera obferved, that in the iflands of the Archipelago fome figtrees bear in the fpring many male flowers, and few female ones, the former of which fall off; and that they bear a fecond crop chiefly of female flowers in the autumn, which ripen in the enfuing fring. Anthologia. Can this occur in the fig-trees of this country?

Other figs are faid not to ripen but to fall off before their maturity, unlefs
unlefs they be wounded by infects in their caprification, or punctured by a ftraw. A further inveftigation of this fubject is much wanted to propagate figs with fuccefs in this climate. See Botanic Garden, Vol. II, note on caprificus. See alfo Milne's Botan. Dietion. Article cáprification.
5. Give additional moifure, manure, and warmth, during the early part of the growth of fruit. By additional moitture the fruit becomes larger; in hot-houfes this may be effected two ways, one by watering the earth on which the vegetables grow, and another by producing fteam by watering the warm flues or floors; which will afterwards in the colder hours be again condenfed, and fettle in the form of dew on the fruit and leaves.
By fupplying vegetables as well as animals with an abundancy of fluid, they are liable to increafe in bulk, both becaufe the external cuticle, which confines the growth of both of them, becomes relaxed, as is feen in the hands of thofe women, who have many hours been employed in wathing; and alfo becaufe the cutaneous abforbent veffels will thus imbibe more fluid from the external furface; and the cellular abforbents will therefore imbibe lefs from the internal cells, and confequently more mucus or fat will remain in them.

Thus in Lancafhire, where premiums are given for large goofeberries, I am told, that fome of thofe, who are folicitous for the prizes, not only thin the fruit of a goofeberry-tree, fo as to leave but two or three goofeberries on a branch, but then by fupporting a tea-faucer under each of thefe goofeberries, bathe it for fome weeks in fo much water as to cover about a fourth part of it, which they call fuckling the goofeberry.

In fome parts of the Carnatic, where rice is cultivated, they are faid not to derive the water on it, till it is in flower; becaufe that would induce the ftem to fhoot too luxuriantly, like our wheat-crops in wet-feafons; but, as foon as it is in flower, they find it expedient to flood it with water for the purpofe of filling and enlarging the 3 H ears,
ears, (Communications to Board of Agriculture, Vol. I. p. 355, which it may effect both by relaxing the cuticle of the grain, and preventing the too great internal abforption of the mucus or ftarch depofited in the cells of it ; and laftly by fupplying it with more nutriment.

There are two circumfances to be attended to in giving water to plants; which are, not to water them during the hot part of the day in fummer, nor in the evenings of fpring, when a froft may be expected ; in both thefe circumftances we may be faid to copy nature, as rain is generally preceded by a cloudy fky , and is never accompanied by froft; though that fometimes follows it, and is then very. injurious to vegetation.

When plants have been long ftimulated by a hot funfhine into violent action, if this ftimulus of heat be too greatly and too fuddenly diminifhed by the affufion of cold water, or by its fudden evaporation, their veffels ceafe to act, and death enfues; exactly as has too frequently happened to thofe, who have bathed in a cold fpring of water after having been heated by violent and continued exercife on a hot day. When fevere froft follows the watering of plants, they are rendered torpid, and die by the too great and fudden diminution of the ftimulus of heat ; which is equally neceffary to the activity of vegetable as to animal fibres; and in fome inftances the circulation of their fluids may be ftopped by the congelation of them; and in others their veffels may be burft by the expanfion attending the converfion of water into ice; or laftly, by the feparation of their different fluids by congelation. See Sect. XV. 4. i.

When an addition of manure can be procured, as where the black carbonic juice from a dunghill mixed with water, or foap-fuds, which have been ufed in wafhing, can be employed inftead of water alone ; it muft undoubtedly add to the nutriment, and confequently

Sect. XV. $3.5 \cdot$

OF FRUITS.
enlarge the fize of the fruit by that means alfo, as well as by the additional water.

Where too much mointure is given withbut at the fame time an addition of warmth, fome inconveniences are liable to nccur, as a lefs aromatic and faccharine flavour of the fruit. When therefore fruits become nearly ripe, lefs water fhould be given them, unlefs it is convenient at the fame time to increafe the heat, in which they are immerfed, as may be done in fome hot-houfes; and then the flavour of the fruit may be heightened, as well as its fize increafed, as fhewn by Mr. Baftard in the Philofophical Tranfact. who planted pine-apple plants in veffels of water, and placed thefe veffels near the top of the hot-houfe, or on the fire-flues, for the purpofe of fupplying them with a greater heat; and produced by thefe means both larger, as he afferts, and better flavoured pine apples.

On this important fubject I fhall tranfcribe his words, and fhall only add, that fteam from boiling water is now fuccefffully ufed in fome hot-houfes for the growth both of vines and of pines, but muft require fome attention in the application of it ; as it is occafionally conveyed through fmall apertures, which perforate a brick arch, which is conftructed fomewhat like the floor of a malt-kiln, where the water boils beneath the beds of bark or of foil; and is occafionally admitted into the room above, and thus fupplies moifture and heat both to the ground and to the air of the hot-houfe.
" My hot-houfe is covered with the beft crown glafs, which I apprehend gives more heat than the common fort of green glafs generally ufed for hot houfes. In the front part of the houfe, and indeed any where in the lowert parts of it, the pine-apple plants will not thrive well in water. The way in which I treat them is as follows. I place a fhelf near the higheft part of the back wall, fo that the pine-plants may ftand without abfolutely touching the glafs, but as near it as can be. On this Thelf I place pans full of water, about feven or eight inches deep; and in thefe pans I put the pine-apple

$$
3 \mathrm{H}_{2}
$$ planted in to be plunged into the bark-bed in the common way; that is, I put the pot of earth with the pine-plant in it in the pan full of water; and as the water decreafes, I conitantly fill up the pan. I place either plants in fruit, or young plants as foon as they are well rooted, in thefe pans of water, and find they thrive equally well; the fruit reared this way is always much larger, as well as better flavoured, than when ripened in the bark-bed. I have more than once put only the plants themfelves without any earth, I mean after they had roots, into thefe pans of water, with only water fufficient to keep the roots always covered, and found them flourih beyond expectation. A neighbour of mine has placed a leaden ciftern upon the top of the back flue, (in which, as it is in contact with the flue, the water is always warm, when there is fire in the houfe,) and finds his fruit excellent and large.

" The way I account for this fuccefs is, that the warm air always afcending to the part, where this fhelf is placed, as being the higheft part of the houfe, keeps it much hotter than in any other part. The temperature at that place is, I believe, feldom lefs than what is indicated by the 73 d degree of Fahrenheit's thermometer; and when the fun fhines, it is often at above 100°; the water the plants grow in feems to enable them to bear the greateft heat, if fufficient air be allowed; and I often fee the roots of the plants growing out of the holes in the bottom of the pot of earth, and fhooting vigoroufly in the water.
"It is not foreign to this purpofe to mention, that, as a perfon was moving a large pine-plant from the hot-bed in my houfe laft fummer, which plant was juft fhewing fruit, by fome accident he broke off the plant juft above the earth in which it grew, and there was no root whatever left to it ; by way of experiment I took the plant, and fixed it upright in a pan of water (without any earth whatever) on
the Chelf; it there foon threw out roots, and bore a pine-apple that weighed upwards of two pounds." Philof. Tranfact. Vol. LXVII.
6. Protect the early flowers and the late fruits from froft. The vernal frofts are very pernicious to the early bloffoms of apples and pears, and of all the tender wall-trees; various contrivances have been ufed to fheiter them, as mats fufpended before wall-trees; which in Dermark are faid to be ufed to fhelter them from the mid-day fun, as well as from the night-frofts; both to prevent them from flowering too early, and being thence expofed to feverer frofts; and becaufe vegetables fuffer more from great cold, as well as animals, after having been expofed to great heat, as explained in Sect. XIV. 2. 2.

Thofe parts of vegetables, which are moft fucculent, fuffer moft from froft, as the young tops of tender trees, as of the afh, fraxinus, and weeping willow, falix babylonica; and alfo all other vegetables after having been expofed to much moifture, as to rain or dews; which probably may occur in part from the greater fenfibility of the tender juicy fummits of the prefent year's growth, and partly from the expanfion of their frozen juices, which may burf the containing veffels.

An important queftion here occurs, is a low fituation to be chofen for a garden? The greater warmth of low fituations, and their being generally better fheltered from the cold north-eaft winds, and the boitterous fouth-weft winds, are agreeable circumftances; as the N. E. winds in this climate are the freezing winds; and S.W. winds being more violent, are liable much to injure ftandard fruit-trees in fummer by dafhing their branches againft each other, and thence bruifing, or beating off the fruit ; but in low fituations the fogs in vernal evenings, by moiftening the young fhoots of trees, and their early flowers, render them much more liable to the injuries of the frofty nights, which fucceed them, which they efcape in higher fituations. Thefe fogs, which are feen by the fides of rivers, and on damp plains or valleys after fun-fet, are converted into rime during the night. And as
at the time of there fogs there is generally no wind, the dew falls perpendicularly, and the rime is formed moft frequently on the upper furface of objects, which may then therefore be more readily fheltered from it than at other times, when the freezing fog is blown forwards by the wind, and the rime is formed on one fide of the branches of trees.

In fome circumftances the rime is believed to defend the vegetables on which it is formed, by the heat it gives out at the inftant of its freezing, and by covering them from the cold like fnow upon the ground; and thence the black frofts, which are not attended with rime, are faid to be more prejudicial. But where dew or mift defcends on vegetable leaves before the act of freezing commences, and is in part abforbed by them; they become more fucculent, and hence are deftroyed by their fluids being converted into ice, and burfting the velfels already difended with more water, than they would otherwife poffefs. See Sect. XIII. 2. 2.

Mr. Bradley gives a decifive fact in regard to this fubject. A friend of his had two gardens, one not many feet below the other, but fo different, that the low garden often appeared flooded with the evening mifts, when none appeared in the upper one; and in a letter to Mr. Bradley he complains that his lower garden is much injured by the vernal froft, and not his upper one. A fimilar fact is mentioned by Mr. Lawrence, who obferves, that he has often feen the leaves and tender fhoots of tall afh-trees in blafting mifts to be frozen, and as it were finged, in all the lower parts and middle of the tree; while the upper part, which was above the mift, has been uninjured. Art of Gardening. In confirmation of this idea I well remember many years ago to have travelled fixty miles, partly in the valley of the Trent, and partly over adjacent hills, on the fixth of May; and to have obferved that the new fhoots of all the afh-trees in the vallies had their young extremities entirely turned black by the frof of the preceding night; but that on the hills they had efcaped, which

I at firf afcribed to the trees being lefs forward on the hills, but believe it was more probably owing to the greater fucculence of thofe in the valleys, and to their having been previoufly expofed to the moifture of the evening mift.

The precipitation or adhefion of moifure to vegetables, when mifty air is blown againft them, is well defcribed by Mr. White in his hiftory of Shelborne; who obferved on a foggy day with fome wind, that fo much moifture was depofited on'a tree, that it ran down upon the ground, and filled the ruts of a lane beneath it, which was dry elfewhere. On the fame account in the early fpring the grafs is feen to become green fooner under the fpreading branches of trees than in their vicinity. See Botanic Garden, Vol. I. note 26.

It is hence evident, that very low and damp fituations are not to be preferred for gardens and orchards in this climate; and that it is in all gardens an object worthy attention to protect in the early fpring the bloffoms and the young fhoots from being moiftened by the defcending night dews; for this purpofe fome have put coping fones at the top of the fruit-walls, fo as to project fix or eight inches over the trees. By the fhelter of thefe coping ftones the defcending dews, which would moiften the young leaves and flowers, are prevented from falling on them, and in confequence no rime is feen in the morning on thefe trees. I had once an opportunity of obferving fome trees beneath a projecting coping to be much fafer in refpect both to their fruit and foliage, than thofe in their viciuity, and in the fame afpect, where there were no coping ftones over them.

But I am informed, that after the vernal frofts have ceafed, this kind of fhelter is certainly injurious to the growth and perfection of the fruit; which may arife from the fame caufe, namely, the want of the fummer night-dews to moiken the fruit, and alfo the perpendicular fun-beams to ripen it. On thefe accounts I have propofed to make temporary fheds of boards to project eight inches from the walls, to be held on by iron hooks, which might eafily be removed,
moved, as foon as the vernal frofts fhould ceafe; and in one experiment on a fingle apricot tree it appeared to fucceed well.

From fome experiments in a late volume in the Philofophical Tranfactions, it appears, that very much more rain was caught in glaffes placed on the ground near a high church, than was caught in fimilar glaffes on the roof of it; which evinces, that a much greater quantity of moifture exifts in the lower parts of the atmofphere, and is precipitated from it, than from the higher parts ; whence to protect the blofloms more effectually from the defcending dews coping boards might be placed at every two feet or lefs above each other, with their front edges pointing upwards to the meridian fun in March, and ledges nailed on the back edges to convey the rain or dews towards the central part of the tree, where by another crofs ledge at the end of each board it might be carried from the wall.

A fimilar inconvenience from autumnal frofts affects fome of the late fruits, as figs and grapes, which might alfo receive advantage from replacing the coping boards in the autumn.

Another method of effectually guarding againft the vernal frofts, and alfo the autumnal ones, is by building the garden-walls with fireflues in them, which is now frequently practifed. There is one fecret neceffary to be known, and well attended to, in the management of fire-flues; and that is in the firft place to plant trees, which will open their flowers about the fame time, againft the fame flue, and then diligently to obferve not to put fire into this flue, till the trees, it is defigned to affift, are in flower; fince if the fire be applied fooner, the flowers are forwarded, and in confequence expofed to more danger from the feverer frofts. One friend of mine, who diligently attends to this circumftance, affures me, that he never fails of producing a plentiful crop of excellent fruit.

And it is poffible that one ufe of covering apricot trees, before they flower, from the mid-day fun, which is faid to be practifed in Denmark, may be to protract their time of flowering, and thus expofe them

Sect. XV. 3.7.
 OF FRUITS.

them to lefs danger from frof, as well as to prevent their irritability from being exhaufted by the heat, and thus caufing the night air to be more injurious to them.
7. Fruits may be fooner ripened by wounding them, or by gathering them. The wounds inflicted by infects on many fruits promotes their more fpeedy ripening; as well as thofe inflicted by caprification, mentioned in Sect. XIV. 3. 3. and in No. 3.4. of this Section. It is faid that cutting the ftalk of a bunch of grapes half through, which has acquired its due fize, will expedite the ripening of it ; becaufe it will then be fupplied with a lefs quantity of new juices, and the change of its acerb juices into faccharine ones, which is partly a chemical, and partly a vegẻtable procefs, proceeds more rapidly. See Sect. X. 8. I. On the fame account the pears on a branch, which has had a circle of its bark cut away, will ripen it's fruit fooner ; and thofe annual plants, which are fupplied with lefs water than ufual, both flower fooner, and ripen their feed fooner.

To which may be added, that gathering pears from the tree before they are ripe, and laying them on heaps covered with blankets, is known confiderably to forward their ripening, by fomething like a chemical fermentation added to the living action of the fruit, which advances the faccharine procefs with greater rapidity.

I have feen apricots at table, which I was informed were plucked from the tree, and kept fome days in a hot-houfe, and thus became delicioufly ripe; in the fame manner as harfh pears ripen almoft into a fyrup during twelve or twenty hours baking in a flow oven; which occafioned the jeft of a French traveller, who on being afked on his return, what good fruit they had in England, anfwered, that the only ripe fruit he happened to tafte was the baked pear.
iv. The arts of preserving fruit, as they depend on the prevention of the chemical proceffes, which produce their diffolution, ought to be here mentioned.

1. As life whether animal or vegetable prevents putrefaction, and as many fruits exift long, after they are gathered from the tree, before they become ripe and die fpontaneoufly, and in confequence putrefy, as crabs, floes, medlars, and auftere pears. The art of preferving thefe confifts in foring them, where the heat is neither much above or below 48 degrees, which is the temperature of the interior parts of the earth; that is, in a dry cellar, or beneath the foil, or well covered with ftraw or mats in a dry chamber. As greater heat might make them ripen fooner, than they are wanted, by the increafed activity of their vegetable life; and froft by deftroying that life would fubject them to putrefy, when they become thawed; as perpetually happens to apples and potatoes, which are not well defended from froft. And laftly, the moitture would injure them many ways; firft by its contributing to deftroy their vegetable life; fecondly in promoting the chemical procefs of putrefaction; and thirdly by its encouraging the growth of mucor, or mould, which will grow in moift fituations. without much light or air.

Too great warmth deftroys both animal and vegetable life by fimulating their veffels into too great activity for a time, whence a fubfequent torpor from the too great previous expenditure of the living power, which terminates in death. After the death of the organization a boiling heat coagulates the mucilaginous fluids, and if continued would I beheve prevent the chemical fermentation of them; and that thus both vegetable and animal fubftances might be preferved. The experiment is difficult to try, and could not therefore be of much practical utility if it fhould fucceed.

Great cold on the contrary deftroys both animals and vegetables by. the torpor occafioned by the defect of fimulus, and a confequent temporary death. Afterwards if a great degree of cold be continued, in fome cafes the expanfion of their freezing juices may burft the vegetable veffels, and thus render the life of them irrecoverable. But there is another curious thing happens to many aqueous folutions, or
diffufions, which is, that at the time of congelation the diffolved or diffufed particles are pufhed from the ice; either to the centre, if the cold be applied equally on all fides, or into various cells, as mentioned in Sect. XIII. 2. 2.

This exclufion of falt is feen in freezing any faline folution in water; as common falt or blue vitriol expofed to fevere froft in a twoounce phial are driven to the center of it. Wine, vinegar, and even milk, may be thus deprived of much of their water. Very moift clay, when expofed to frofty air, hrinks and becomes much more folid according to the affertion of Mr. Kirwan. Mineralog. Vol. I. p. 9, the freezing water covering its furface with ice, and driving the molecules of clay nearer the centre. And laftly, the mucilage produced by boiling wheat flour in water, like book-binders pafte, if not too thick, lofes its cohefion by being frozen, the water driving, as it freezes, the flarch from its cryfallization; and from this circumAance probably is occafioned the change of flavour of apples, potatoes, and other vegetables, on being thawed after they have been frozen.

It is neverthelefs affirmed, I think, by Monf. Reaumeur, that if frozen apples be dipped in cold water repeatedly, and the ice thus formed on their furface be wiped off, or if they be left in a large pail full of very cold water, fo that they may not thaw too haftily, they will not lofe their flavour. If this be true, and the apples will keep found fome time afterwards, it would feem that the vegetable life was not deftroyed; but that, like fleeping infects, they were reanimated by the warmth; otherwife, if the flavour be not deftroyed, and they could be immediately eaten or ufed in cookery, it is ftill a valuable difcovery if true, and might lead us to preferve variety of fruits in ice-houfes, as ftrawberries, currants, grapes, and pines, to the great advantage of fociety. See Sect. XVII. 2. 4.

As the procefs of fermentation will not commence or continue, I believe, in the heat of boiling water, or 212 ; and as this degree of heat can be eafily preferved by fteam, or by the vicinity of veffels
containing
containing boiling water; it is probable, that fruits for the ufe of cookery might be thus preferved throughout the year, as the pulp: of boiled apples, goofeberries, \&c. put into bottles, and placed fo as to be expofed to the wafted fteam of fteam-engines, or immerfed in the hot water, which flows from the condenfing of it ; of near the boilers fixed behind fome kitchen fires; as I fufpect, that if fuch a degree of heat could be applied once a day, it would counteract the tendency to fermentation,
2. Another method of preferving fome fruits is by gathering them during their acid ftate, before that acid juice is converted into fugar, as lemons, oranges, goofeberries, pears, and fome apples; and if \sim a part of the water be evaparated by a boiling heat f a as to leave the acidity more concentrated, it is lefs liable to ferment; and in confequence will be longer preferved. For this purpofe the fruit thould be kept in a cellar, and corked in bottles, fo as to be precleded from the changes of air, and variations of heat ; goofeberries, and shubarb-ftalks, are thus fuccefsfully preferved for winter ufe; and if a tea fpoonful of brandy be put into each quart bottle, it will prevent the growth of mucor or mould upon them.
3. As fugàr will not pafs into fermentation unlefs diluted with much water, and lefs fo in low degrees of heat, many fruits may be thus preferved by impregnating them with fugar, and the better if they are kept in a dry cellar. Dr. Hales found that by inverting the end of a branch of a tree into a bottle of brandy for a few hours, that the whole branch died; hence it is ufual and ufeful to cover preferved fruits with a paper moiftened with vinous fpirit, which prevents the growth of mucor or mould upon their furfaces, which is a vegetable thus eafily killed by the intoxicating ftimulus.

If fweet fruits be dried by heat, not only the fuperfluous water becomes exhaled, but the faccharine procefs is alfo promoted, and much of the mucilaginous or acid particles are converted into fugar, as in baking pears, or in drying figs, dates, raifins, apricots; fo that

SEct.XV. 4.4. OF FRUITS. 429
by gradually drying them many fruits may be well preferved, and require afterwards fimply to be kept. dry.
4. Some fruits, as the olive, are preferved in their unripe ftate in falt and water; the unripe pods of kidney-beans, and the hats of mufhrooms, may be thus alfo kept for months in weak brine in a cool cellar enclofed in bottles without much change. But the oily kernels of nuts are well' preferved in cellars beneath the foil to preclude the variations of heat, and covered in jars to prevent their evaporation. Other fruits are converted into pickles and ${ }^{*}$ preferved in vinegar, but lofe their flavour; and others by being immerfed in vinous firit are preferved, as cherries, and thus tranfmuted from food to poifon, And when the kernels of apricots, cherries, or bitter almonds, are preferved in brandy, which is called ratafia, we poffers a mixture of two of the moft poifonous productions of the vegetable kingdom ; except perhaps the leaves of lauro-cerafus diftilled in alcohol, which was fold as ratafia in Dublin, and produced many fudden deaths in the gin-fhops.
v. The following lines are inferted to amufe the reader, and to imprint fome of the foregoing doctrine on his memory.

ART OF PRUNING.WALE-TREES.

Behead new-grafted trees in fpring, Ere the firt cuckoo tries to fing; But leave four fiwelling buds to grow With wide-diverging arms below; Or fix one central trunk erect, And on each fide its boughs deflect.

In fummer hours from fertile ftems Rub off the fupernumerous gems; But where unfruitful branches rife In proud luxuriance to the fkies,

Exfect the exuberant growths, or bind
A wiry ringlet round the rind;
Or feize with fhreds the leafy birth, And bend it parallel to earth.

When from their winter-lodge efcape
The fwelling fig, or cluttering grape;
Pinch off the fummit-fhoots, that rife, Two joints above the fertile eyes;
But when with branches wide and tall
The vine fhall crowd your trellis'd wall;
Or when from ftrong external roots
Each rafter owns three vigorous fhoots;
Watch, and as grows the afcending wood, Lop at two joints each lateral bud.
So fhall each eye a clufter bear To charim the next fucceeding year;
And, as the fpiral tendrils cling, Deck with feftoons the brow of fpring.

But when the wintry cold prevails, Attend with chifel, knife, and nails; Of pears, plums, cherries, apples, figs, Stretch at full length the tender twigs; Vine, nectarine, apricot, and peach, Cut off one third or half of each; And, as each widening branch extends, Leave a full fpan between the ends.

Where crowded growths lefs fpace allow, Clofe lop them from the parent bough; But when they rife too weak or few, Prune out old wood, and train in new. So, as each tree your wall receives, Fair fruits hall bluh amid the leaves.

Sect.XV. $5 \cdot$
 OF ERUITS.

ART OF PRUNING MELONS AND CUCUMBERS.

When melon, cucumber, and gourd, Their two firft rougher leaves afford, Ere yet thefe fecond leaves advance Wide as your nail their green expanfe; Arm'd with fine knife, or fciffars good, Bifect or clip the central bud; Whence many a lateral branch inftead Shall rife like hydra's fabled head.

When the fair belles in gaudy rows Salute their vegetable beaux; And, as they lofe their virgin bloom, Shew, ere it fwells, the pregnant womb; Lop, as each crowded branch extends, The barren flowers, and leafy ends. So with tharp ftings the bee-fwarm drives Their ufelefs drones from autumn hives.

But if in frames your flowers confin'd. Feel not one breezy breath of wind, Seek the tall males, and bend in air Their diftant lovers to the fair; Or pluck with fingers nice, and fhed The genial pollen o'er their bed. So fhall each happier plant unfold Prolific germs, and fruts of gold.

S E C T. XVI.

THE PRODUCTION OF SEEDS.

1. To produce feeds early. I. Sow before winter, or in warm fituations. 2. Tranyplant the roots. 3. Cut off fuperfluous 乃oots. 4. Give lefs water. II. To produce feeds in great quantity. 1. Sowe early, or when the feed ripens. 2. Tranfplant the roots deeper, or earth them up. Horje-boe and band-boe. Improved drill bufbandry. Dibbling. Corn lands laid level. Egyptian wheat with branching ears. 3. Deftroy the central fboot. Eat down wheat and roll it. This is fometimes injurious. 4. Pincb off ufelefs fumwits of beans. Eat down too vigourous wheat. 5. Roll it to leffen the fraw. 6. Give lefs water. III. To ripen feeds. 1. Warnth and dryne/s. 2. Frofy nights. 3. Lime forwards the ripening of jeeds. 4. Cut off bulbs and root-juckers of orchis. Heliantbus tuberofus. Rbeum palmatum. IV. To generate beft kinds of feeds." Cboose early plants infulated from others. "Impregnate the figmas of fome with the antber-dufl of - otbers. Whence peas may be produced of different colours. V. To collect good feeds. Cbange of Jeeds is ufelefs, unlefs for better kinds. Cbooje the earlieft jeeds. Pick out the largeft potatoes for planting, and the beft radibes for feed, and the earlieft ears of wheat. VI. To determine the goodnefs of feeds. Weigh a meafure of them. Caft them into falt water. Beans more economical than oats as provender. Seeds continue to improve during the water-months. VII. To preferve feeds. I. Collect before they Jhed naturally. Dry them before they are facked. Gluten of wheat deftroyed by fermentation. Make the corn-ftack bigheft in the middle. The great durability of Jeeds. Keep them dry. Not in contaEt with walls. Convenient oat-boves for fables. Wheat dried on a malt-kiln to preferve it. 2. Ventilation prevents mould. 3. Seclude them from beat, beneath the foil. In ice-houfes. 4. Magazines of grain fuffered to vegetate at top. Covetous -farmers. 5. Newo and ald Seeds. 6. Preferve feeds ini jugar, or in cbarcoal, for long voyages. And fleformeat in treacle:- VIII. To fow feeds advantageoully.

Native Jeeds, foreign ones. Sow foon after the ground is turned over, and early in the fpring, in the autumn. 2. Economy of fowing threc kinds of grafs-seeds, and two kinds of wheat. Kinds of foil. 3. Mix fand or foil wwith Jome Jeeds. Soak them in water, Salt and water, lime. Steep barley in dungbill water. Wood-a/bes. Sow wet as well as dry. 4. Bury the fruit woitb the feed. 5. Wafb the feeds of too luxuriant plants. Sore them early. IX. Queftion concerning general enclofure. Cain and Abel.

Many of the circumftances above related concerning the production and enlargement of fruit are applicable to the production of the feeds, which are included in them; but thofe feeds, which contribute moft to the nourifhment of mankind, many of which are the progeny of annual or biennial plants, require other modes of cultivation.

As an introduction to this fection it may be obferved, how much more ingenuity was required in the difcovery of nourifhing mankind by the fmall feeds of the graffes, which have probably been fince much enlarged by perpetual cultivation, than by the large roots of potatoes. The Ifis or Ofiris of Egypt feems to have invented the procefs of cultivating wheat, as well as flax, on the banks of the Nile; and afterwards Ceres and Triptolemus to have taught the former of thefe important difcoveries all over the known world. While in later ages the Incas or Motezumas of Peru and Mexico feem to have deftroyed the cannibals, or men-eaters, of that continent, and to have difcovered and taught their people to fupport themfelves by the cultivation of potatoes.
I. . To produce feeds early in the feafon.

Thofe plants, which are required to yield a forward crop, as the peas and beans of our gardens, and thofe which our cold and fhort fummers will not otherwife perfectly ripen, as wheat, fhould be fowed before the commencement of winter, either in natural ground, as in the
cultivation of wheat, or in fituations fheltered from the north-eaft, as in the garden cultivation of peas and beans; or they may be fowed very thick in hot-houfes, or under hot-bed frames, or under warm walls, and be tranfplanted, when they are one or two inches high, into the natural ground at due diftances, when the weather is milder, and the plants are become hardier or lefs liable to be deftroyed from their having longer acquired the habits of life.

When young plants of any kind are tranfplanted, the ground fhould be recently dug, as their expeditious growth depends fo much ou the atmofpheric air being buried in the pores or interftices of the earth by the production of carbonic and nitrous acids, and ammonia, and heat.

The fame advantage occurs by foaking feeds in water, or in the drainage from manure heaps, till they are ready to fprout, and then fowing them in a foil lately turned over; as their roots will then immediately put out by the newly generated heat, and newly produced carbonic acid in its fluid not its gaffeous ftate.
2. The tranfplanting of young roots, if they be fet no deeper than before, does not, I fuppofe, multiply the number of ftems, as occurs when wheat is tranfplanted fo deep as to cover the fecond joint ; but by tearing off feveral fmall extremities of the roots, the new production of many viviparous buds is prevented, and that of oviparous buds increafed in confequence, for reafons mentioned in No. 2. 4. of the preceding Section.

When the roots of wheat are tranfplanted and divided, not only a great increafe of the crop is produced, but I believe the feed is likewife ripéned earlier, as is afferted by Mr. Bogle. Bath Society, Vol. III. p. 494. And it is well known to gardeners, that tranfplanting gardenbeans forwards them in refpect to time, but fhortens the height of the ftem. Hence tranfplanted vegetables grow lefs in height, as tranfplauted beans, and lefs branchy, as tranfplanted melons, but produce and ripen their feeds earlier; which is a great advantage in the
the fhort fummers of this climate; and if the roots can be divided, as in wheat, or new fcions can be produced by their being tranfplanted deeper, as alfo occurs in wheat, the quantity of the feed may alfo be wonderfully increafed by tranfplanting. See Sect. XII. 6.
3. Another mode of forwarding the production of feeds, and of fooner ripening them, confifts in pruning off the viviparous tops or lateral fhoots, which will bear no feeds at all, or only fmall or imperfect ones, in our northern fummers. For this purpofe the cutting away the tops of beans and of peas, and the lateral branches of artichokes, after the fruit-buds are formed, both forwards and enlarges the flowers and feeds, which remain, as more nourihment is derived to them.
4. As a fuperfluous fupply of water is more friendly to the production of leaf-buds than to the generation of flower-buds, to derive lefs water than ufual to the roots, forwards the production of feeds, a fact well known in the gardens of warmer climates, which are perpetually watered from refervoirs or wheel-engines. But when the bloffoms appear, an addition of water muft forward their growth by fupplying nourithment, which fhould again be leffened when the fruit has acquired its full fize, both to expedite its ripening, and to increafe its flavour ; as the faccharine matter and effential oil will be lefs diluted with water.

In the dry fummer of 1799 I had the opportunity of flooding fome rows of beans in my garden, which by being done too frequently, or too copioully, occafioned them to grow to a much greater height than ufual, and in confequence to bring to perfection few feeds, and fome of them none. As I fuppofe the new fhoots of fig-trees in the begiming of fummer occafions the firft production of young figs to fall off from the want of that nourimment, which is now expended in the growth of new leaf-buds. See Sect. XV. 3. 4. Whence the facility of producing leaf-buds feems evidently to prevent the genera-
tion of flower-buds, and the ufe of cutting off the fummits of tall beans is thus explained, as directed above.
II. I. To produce feeds in great quantity from annual or biennial plants they fhould be brought forward in refpect to the feafon in our northern fummers; that a greater quantity of viviparous buds may arrive early at their maturity for the purpofe of generating oviparous buds foon enough in the fummer to ripen their feeds; on this account thofe fhould be fown in the autumn which will bear the feverity of the winter.

Neverthelefs the feeds of thofe plants, which are natives of this climate, fhould probably be fowed at the time they become perfectly ripe, as occurs to them in their natural ftate; that is, either when the feed is fhed upon the ground by the parent plant, or when the fruit or hufk, which enclofes it, becomes naturally ripe after it has fallen on the ground. Thus I have feen crabs covered with leaves in hedge-bottoms, which have not decayed till the early fpring. Many pears do not become ripe in our ftore-rooms till March or April; and ivy berries and holly berries hang on their refpective trees till the vernal months, and are not till that time eaten by the thrufhes. Hence it is probable, that the feeds in thefe durable fruits or berries continue to ripen, or to become more mature, and prepared for their future growth during the winter months.
2. It was fhewn in Sect. IX. 3. 7. that when wheat was tranfplanted fo deep as to immerfe the firft joint above the root into the foil, many new ftems would fhoot up and frike their roots into the earth ; and that thus four or fix new plants, or more, would be generated by the caudex of the leaf-bud, which conflitutes that joint. This mode of tranfplantation therefore will much increafe the quantity of the crop of feed, if it can be done foon enough for thefe additional ftems to ripen their corn, before the fummer ends.

There is another mode of increafing this product of additional ftems

Sect. XVI. 2. 2. OF SEEDS.

ftems without tranfplantation, which confifts in fowing the wheat in rows by what is called a drill-plough according to Mr. Tull's method; and when the firt ftems rife a few inches high, a horfe-hoe, made like a very fmall plough, is to be brought fo near each row, as to turn up fome earth againft the ftems, fo as to cover the firft joint above the root with foil; whence new ftems will be generated, and thoot up round the old one; and thus increafe the crop in the fame manner as by deep tranfplantation.

The theory of Mr.Tull's drill hurbandry is explained in Sect. IX. 3.7. and in XII. 5 . which is of late years fuppofed to have been improved by introducing the hand-hoe in place of the horfe-hoe, and thus giving an opportunity of fowing the rows or drills nearer together, as will be feen by the following method, now introduced into almoft general ufe in Norfolk by Mr. Coke; though Mr. Tull himfelf much prefers the horfe-hoe as turning over the earth much deeper than the hand-hoe, and thus rendering that part of it more expofed to the air, which was before more deeply fecluded from it; and alfo' rendering it more pervious to vegetable roots; to which may be added, that both kinds of hoeing render the furface more permeable to the rains and dews, and prevent the cracks in dry weather, which are very injurious to the roots of plants; both which advantages depend on the porofity of the foil, which muft extend deeper by the ufe of the horfe-hoe than the hand-hoe.

Mr.Tull makes other ingenious remarks on the ufe of horfe-hoeing. In the beginning of winter, when the wheat has obtained one blade like grafs, or two or three leaves, the horfe-hoe is brought near the rows and deep, and the earth turned from them fo as to form a ridge between them. By this ridge in level grounds he thinks the rows are fhaded from the cold winds in fome fituations, and that the roots of the wheat are kept drier, and thence lefs injured by frofts. In the fpring this ridge in the intervals between the rows is divided by the horfe-hoe, and turned back againft the rows of corn after it
has been fertilized by the air and rains, and dews of winter. See Tull's Hurbandry, Ch. IX. and Sect. XII. 5. of this work.
Mr. Coke of Holkham in Norfolk affured me, that in thirteen years experience on a farm of 3000 acres he had found the drill hufbandry in that country greatly fuperior to fowing feeds of all forts by the hand in what is termed the broad-caft method, but differs in the number and arrangement of his rows from the method of Mr. Tull in the following circumftances.

Mr. Tull drilled two rows of feed a few inches from each other, and then left a fpace of two or three feet, and then drilled two more rows near each other, for the purpofe of paffing a hoe between each double row drawn by a horfe, which was therefore termed a horfehoe ; but Mr. Coke drills all his rows of wheat and of peas nine inches from each other, and thofe of barley fix inches and three quarters from each other; this is performed by a drill plough made by the Rev. Mr. Cook, which drills fix rows at a time, and thus fows an acre of land in an hour, and is drawn by a fingle horfe; and the quantity of feed confumed is about fix or feven pecks to an acre, which is about half what is ufed in the fowing by the hand in the broad-caft method.

Early in March Mr. Coke ufes the hand-hoe, which for hoeing the rows of wheat and of peas is about fix inches wide, and for hoeing thofe of barley about four inches wide. By this hoe the furface is not only turned over, and the weeds between the rows rooted up, but it is alfo accumulated about the roots of the growing corn, and covers and confequently deftroys the low growth of poppies amongft them; which are a very frequent weed in that part of the country. A fecond hoeing is performed about the middle of May, and the foil is again not only cleared from weeds but accumulated againft the rifing corn, each of which hoeings cof about twenty-pence an acre.

Neverthelefs 1 am informed, that fome attentive agricultors ufe the horfe-hoe belonging to Mr. Cook's drill-machine, though the rows
of corn are but nine inches from each other; and affert, that this occafional trampling of the horfe on the young plants is of no very ill confequence, a circumftance well worth obferving, as it removes the principal difadvantage of the horfe-hoe, which confifts in the too great diftance of the alternate rows of the corn-plants.

By the earth being thus accumulated againft the roots of the corn it is faid to tiller or tellure much ; that is, to throw out four or fix ftems, or more, around the original fem, and thus to increafe the number of ears like tranfplanting the roots, infomuch that Mr. Coke obtains by this method between four and five quarters of wheat on every acre, which in the broad-caft method of fowing did not yield more than three quarters on an acre, befide faving a frike and half of the feed corn, unneceffarily confumed in the broad-caft method of fowing. To this fhould be added another advantage, that as the land is thus kept clear from weeds, and has its furface twice turned over, and thus expofed to the air, it is found to fave one ploughing for the purpofe of a fucceeding crop of turnips.

It is probable, that one hand-hoeing in the beginning of winter, fo managed as to turn the foil from the roots of the corn, and to leave it rather elevated between the rows, as Mr . Tull recommends to be performed by his horfe-hoe, might give a fimilar advantage to this mode of cultivation; and alfo if another hand-hoeing was applied, as. foon as the wheat is out of bloffom, to fupply more nourifhment to the young feed might increafe its plumpnefs and weight, as mentioned in No. 2. 3. of this Section.

The lands thus managed by Mr. Coke are laid level, and not in ridges and furrows, and can thus be ploughed crofswife; and the crop is equally good throughout the whole; whereas in the furrows of fome lands it is lefs forward or lefs prolific than on the ridges; whence much light corn is mixed with the good, which is obliged to be feparated from that, which is marketable, and ufed for hogs or poultry. Add to this, that in this mode of hurbandry the ftraw is believed
lieved to be larger and in greater quantity as well as the grain, and the land to be lefs impoverifhed, as no weeds ate fuffered to grow on it, and as its furface is fo frequently turned over, and expofed to the air.

In China the corn lands are laid on a level, not in ridges and furrows; which is fuppofed to be the moft advantageous plan in almoft every fituation, which is proper for the cultivation of corn, as by being thus rendered capable of being divided by crofs-ploughing, almoft any kind of foil may be rendered more proper for the ufe of the drill hufbandry, by which it is feen in the above account of the Norfolk management, that twelve ftrikes more of wheat are raifed on an acre, and one ftrike and a half faved in the confumption of feed-wheat, which at fix fhillings a frike arifes to a confiderable fum on a large farm.

Neverthelefs there feem to be many advantages attending the forming the furface of land into ridges and furrows; in wet lands with a fubftratum of clay the furrows are convenient channels to carry off the water, where there is a fufficient declivity, as treated of by Mr. Tull in his Horfe-hoeing Hufbandry, Ch. XVI. Add to this, that in fome fituations a deeper ftratum of the foil, where it is valuable, may be occafionally turned up, and expofed to the air, and to the roots of vegetables, by gradually changing the locality of the ridges; and laftly, in every fituation a greater furface both of the foil, and of the fummits of the ftems, or ears, are expofed to the influence of the air by means of ridges and furrows; for as the plants of wheat are but three or four feet high, the furface of a crop of wheat is increafed as well as the furface of the ground it grows upon, and not as the bafe on which the declivities or hills reft, as fome have erroneoufly fuppofed. See Sect. X. 3. 8.

There is another method of fowing wheat in rows ufed in fome counties, which is termed dibbling in the language of agricultors, and confifts in making perpendicular holes one inch and half or two inches
inches deep, as is commonly done in planting potato-roots; thefe holes are made by a man, who has a proper ftaff fhod with iron in each hand, and as he walks backwards is able by looking at the part of the row already made to keep nearly in a ftraight line, and to make two holes at once at about nine inches diftant from each other every way. Two or more children attend the man, and drop two, or three, or four feeds into each perpendicular hole, which are afterwards covered by drawing over them what is called a buth-harrow.

This method by fowing the wheat in rows adapts it for the ufe of the hand-hoe, as by fowing it by a drill machine, but muft be attended with greater expence, and I fufpect with lefs accuracy of the diftribution of the feed, owing to the hurry or fatigue of the children employed; and I alfo fufpect that fowing in drills is preferable, becaufe a greater quantity of earth is turned over, and much air in confequence included in its interftices; whereas in making perpendicular holes the fides of the holes are compreffed, and rendered more folid; whence potato-roots alfo might probably be more advantageoufly planted by making drills inftead of perpendicular holes.
A correfpondent of the board of agriculture afferts, that on looking over a field of potatoes near Leicefter, which had all been planted at the fame time, and on land equally manured, he obferved a great difference of the growth of one part of the field, which on inquiry he found to have been owing to the roots having been planted in drills, where the plants were fo much flronger; and by a fetting ftick in holes, where they were fo muchlefs vigorous; Englifh Enclyclopedia, Art. Hufbandry, p. $4^{8} 3$: which difference of growth I fuppofe to have been owing to the circumftances above mentioned.

A few ears of wheat were lately given me, which were branched, having four or five lefs ears growing out of each fide of the principal ear; it was procured at Liverpool, and was called Egyptian wheat, or Smyrna wheat. It is defcribed in the Supplem. Plantarum of the younger Linneus, as well as in the fecies Plantarum of the elder; and is faid to be a native of Egypt, and to be cultivated at Naples; it is called " triticum compofitum, or wheat with a compound ear, crowded with lefs ears; awned; and is faid to be related to triticum æftivum, fummer wheat; but the fipe is four times larger, a hand in length, compofed of lefs fipes, two faced, alternate, approximated, from nine to twelve, the lower ones being horter, and the top one folitary." Suppl. Plant. p. if 5.

The plant, which was given me, had five tall and thick ftems from one root, but feemed to have been plucked up before it was quite ripe, whence I cannot judge of the fize of the grain, but fhould imagine, that it is a fpecies well worthy of attention. The few ears, which I poffeffed, were fown in the fpring of this year, 1799, not having obtained them foon enough to fow in the autumn. When they were an inch or two high, they were tranfplanted into a moiftifh part of my garden ; and though the year has been uncommonly cold and wet, and a great part of the autumn-fown wheat of this country is blown down upon the ground, and is not yet ripe, yet almoft every root of the Egyptian wheat has from ten to twelve ftems, and ftands upright on ftrong ftraw about three and a half, or four feet high. The beft flems have one principal ear about five inches long, with five or fix fhorter ones branching out on each fide of it. They begin to appear brown, and I hope will ripen. I have fince found that this fpecies of wheat is mentioned in Tull's Hurbandry under the name of Smyrna wheat. He adds that it is highly productive, but on that account requires a good foil.
3. Another method of promoting the growth of lateral ftems confifts in deftroying the central fhoot; when this is done, other new ftems arife from the joint immediately above the root, which in wheat is in contact with the earth. On this account, when wheat plants are fufficiently forward in refpect to the feafon, it is thought to be advantageous to eat the firft ftem down by fheep to increafe the quantity
quantity of the fubrequent crop. See Sect. IX. 3. 7. It thould be neverthelefs obferved here, that the trampling of the theep on lands, which are not too adhefive, will prefs down the firft or fecond joint into the earth, and thus affift the production of many fide fhoots. But in very adbefive foils this trampling of the ftems into the ground may be injurious. See a paper in Bath Agriculture, Vol. I. Art. XV. In foils which are not too adhefive, when the crop appears thin, it is probable, that a roller drawn over it by preffing the firft or fecond joint into the foil, might promote the production of fide thoots, or make them tiller, or tellure, in the language of agricultors. And when grafs or clover feeds are defigned to be fown on the wheatland, it might firft be harrowed, and then either rolled or trampled by the fheep, which eat it ; either or both of which might prefs down the root-ftems of the corn, and cover the newly fown cloverfeeds with foil.

This mode of eating down forward wheat with fheep is analogous to cutting off the central buds of melons and cucumbers to make them produce earlier fruit, and in this climate perhaps in greater quantity; as thofe produced after the great extent and elongation of the central branches would be too late to ripen in this climate : and by their exuberant generation of a viviparous progeny would retard the fucceffion of lateral fhoots, and a confequent quicker production of flowers.

Neverthelefs where the crop is not too luxuriant or too forward, the eating down the firft ftem by fheep may be an injurious practice; as Mr.Tull thinks, that by thus deftroying the firft ftem, the ears of the later ones have not time to ripen, and thence become light in refpect to the fize or plumpnefs of the grain ; and that thefe fecondary ftems become weak, and are liable to fall down, both which he fays commonly occur where the crops are eaten by fheep.

Mr.Tull, whofe work is throughout a great effort of human genius, adds a very wife axiom, " that it is moft advantageous to haften,

$$
3 \mathrm{I}, 2 \quad \text { what }
$$

what we can, the time of bloffoming ; and to protract the time of ripening." Horfe-hoeing Hufbandry, Ch. XI. p. 147; for it is the farinaceous refervoir of nutriment laid up in the cotyledon of the new feed for the future growth of the corculum or new embryon, for which we cultivate the plant ; and this refervoir is formed between the bloffoming and ripening of the grain, either before or after the impregnation of the pericarp, or feed-veffels, and thus renders the grain plump and heavy. Mr. Tull in another part of his work recommends an additional horfe-hoeing immediately after the bloffom is over, to fupply more nutriment to the ripening grain. Ch.IX. p. i20. Mr. Tull efteems the eating down of wheat by fheep to be generally a very injurious practice in this climate, by rendering the ears light and the ftraw weak; by retarding the time of bloffoming, as well as the growth of the fems.
4. In the moift fprings of this climate many annual or biennial plants are liable to thoot out too many or too ftrong viviparous branches, which can not generate flower-buds foon enough to ripen their feeds in our cold and fhort fummers. This always happens to cucumbers and melons, which were brought from warmer countries, and to the peas and beans of our gardens, and fometimes to cornplants, which are liable in wet feafons to produce too ftrong ftems and foliage, which have not time to generate the flower-bud at their fummit foon enough to perfect and to ripen the feed. Melons and cucumbers have been mentioned in Sect. XV. 2. 5. and in refpect to garden beans their viviparous tops fhould be pinched off, which if not too old may be eaten as an agreeable vegetable, when well boiled; and thus more nutriment is derived to the oviparous buds beneath, which renders them larger, and perhaps more numerous. To prevent field peas from running into fraw in moift foils lefs manure fhould be ufed; and field beans may have their tops cut off by a feythe fixed into a ftraight fhaft.

Annual cotton plants are much cultivated in fome colder parts of
the Chinefe empire, and the cultivators lop off the tops to increafe the number of pods, and to haften their production ; and in the Welt Indies the flowers of the rofe tree are believed to be accelerated and increafed by topping the branches. Embaffy to China by fir G. Staunton, Vol. III. p. 202. 8vo. edit.

When the ftems and foliage of wheat are thus too vigorous, it may be advantageous to eat it down by fheep as above mentioned; which may not only deftroy the too vigorous viviparous central ftems, but alfo produce a greater number of lateral ones; which may fooner terminate in oviparous ones, fo as to produce more grain with lefs ftraw.
5. It is alfo probable, that rolling them as mentioned above, if it be done in a morning before the dew is off, might fo far bruife the ftems and roots, as to ftop their too great propenfity to nourifh the viviparous buds, and in confequence to favour the growth of the oviparous buds on their fummits; which might forward the harveft feafon, as well as increafe the product of grain in proportion to the quantity of ftraw. From rolling wheat in fpring on fields where the furface remains uneven or cloddy, another advantage may be derived, by breaking the clods or eminences, and thus earthing up many of the ftems above the fecond joint, and thus inducing a new fet of rootfcions to put forth, or tiller. See Sect. XII. 3.
6. The garden plants, which are too vigorous, in fituations where there is a command of water, as in the gardens of warm climates, fhould have lefs water derived to them, till the bloffoms appear ; becaufe a greater quantity of moifture facilitates the production of viviparous buds fo much as to retard that of oviparous ones, and thus diminifhes the quantity as well as retards the ripening of the crop. But in thefe fituations, as foon as the bloffoms appear, a greater fupply of water thould be allowed, which will contribute to nourith and enlarge them, as mentioned above; as is practifed in fome countries of the eaft, where they do not flood their rice-grounds, till they are in flower.
flower. See Sect. XV. 3. 4. But lefs water is again required, when the feed has arrived at its full fize, as before fpoken of.
III. I. To forward the ripening of feeds. A due degree of warmth and of drynefs feems to include the circumftances principally required. The warmth not only accelerates the various fecretions of vegetables by increafing their irritability and confequent activity, but, after the mucilaginous, ftarchy, faccharine, and oily matters are fecreted into proper refervoirs, may contribute perhaps chemically to their change into each other, or to their greater perfection. And the drynefs of the air, whether hot or cold, is neceffary to give perfect ripenefs to feeds; as otherwife the due exhalation of the aqueous parts of the fecreted fluids, which form the nutritive parts of feeds, does not properly proceed; and the feed gathered in this condition is liable to mildew in the barn or granary, or to become fhrivelled and wrinkled, as it dries.
2. It is believed in Scotland, that even the frofty nights of autumn contribute to ripen the late crops in that inclement climate, which fome have afcribed to the moonlight, but, which I have indeed fufpected, that the froft may in fome meafure effect by converting the mucilage of the grain fooner into farch. This I was induced to imagine by having obferved that bookbinder's pafte, made by boiling wheat-flour in water, loft its adhefion after having been frozen ; and alfo from a culinary obfervation, that when ice or fnow is mingled with flour inftead of water in making pancakes, that it much improves them; the truth of which I have heard boldly afferted, but never witneffed the experiment. See Sect. VI. 3. 3.

There is neverthelefs an experiment related by Dr. Roebuck in the Edinburgh Tranfactions, Vol. I. which feems to thew, that the grains of oats continue to fill and to become heavier even during the autumnal frofts; which may probably occur during the funfhine of the middle part of the day, as occurs in the vernal frofts of this part of the country. In 1580 near Borrowftonefs the oats were green

$$
\text { Sect. XVI. } 3 \cdot 3 . \quad \text { OF S E E D S. } 447
$$

even in October, when the ice was three fourths of an inch thick. He felected feveral ftalks of oats of nearly equal fulnefs, cut half of them, and marked the remainder, which continued fourteen days longer in the field; after being dry, the grains of each parcel were weighed; and eleven of thofe grains, which had remained in the field, weighed thirty of thofe which had been cut a fortnight fooner.

This important experiment fhould teach our farmers not to cut their peas and beans too early in inclement autumns; which are fo frequently feen to become fhrunk and fhrivelled in the barn or granary, and inclined to rot from deficient ripenefs, and confequent foftnefs or moifture ; and thus contain much lefs flour in proportion to the hufk or bran.
3. The wheat produced after land has been much limed, is believed to be thinner fkinned, and to yield more good meal, than other wheat, and to make better bread. See Sect. X. 6. 7. On this account I fuppofe one ufe of lime is to forward the ripening of feeds by converting their mucilage fooner into ftarch or oil; as according to the experiments of M. Parmentier the goodnefs of bread depends much on the quantity of ftarch contained in it; who found, that if the farch taken from eight pounds of raw potatoes, by grating them into cold water, was mixed with eight pounds of boiled potatoes, as good bread might be produced as from wheat flour. See Sect. VI. 3 .
4. The feeds of fome plants, which alfo propagate themfelves by bulbs at their roots, will not ripen in this climate naturally, as the orchis; but are faid to ripen, if the new bulb be cut off early in the feafon; or if the propagation by their roots be retarded or prevented by confining them in garden-pots, as the lily of the valley; and it is probable, that the feeds of potatoes might be rendered more perfectly ripe, and in confequence better for the cultivation of new varieties; if the young roots were taken away early in the feafon from that, which is to bear feed; or if they were confined in garden pots.

If the orchis could by thefe means be cultivated from feed on moift meadows or moraffes, it might become a profitable article of hufbandry; as when it is fcalded in boiling water, and the peel rubbed off, it is fold by the name of falep, and might become a nutritive article of diet, like fago and vermicelli, if it could be propagated at lefs expence.

It is alfo probable, that Jerufalem, or ground artichokes, helianthus tuberofus, might be induced to ripen its feeds in this country, if the new roots from a few of the forwardeft plants were taken away early in the feafon, or if they were confined in garden pots. And if this plant could be propagated by feed, it might make an ufeful product in agriculture, as horfes are very fond of the leaves, and fwine of the roots; both of which are produced in great quantity; and as the latter contain much fugar, they muft be very nutritive; and in refpect to their culinary ufe are remarkably grateful to moift palates, as well as nutritive, when cut into flices, and baked in beef or mutton pies; but are faid to be flatulent in the bowels of thofe whofe digeftion is not very powerful; a property which might be worthy attention, where the propenfity to fermentation is required, as in making bread with potatoes, or in the diftillery.

It is alfo probable, that if the large new root-fuckers of other perennial plants, which do not bear bulbous or tuberous roots, and which are late in ripening their feeds, or do not ripen them perfectly in this climate, were cut or torn off early in the feafon, as of the theum palmatum, palmated rhubarb, or rheum hybridum, mule rhubarb; or if their roots were confined in garden-pots, that they might be more liable completely to ripen their refpective feeds. See Sect. XV. 2. 4.
IV. I. To generate the beft kinds of feeds the moft healthy plants muft be chofen, and thofe which are moft early in refpect to the feafon; thefe fhould be fo infulated, as to have no weak plants of the fame fpecies, or even genus, in their vicinity, left the fecundating
dutt of weaker plants fhould be blown by the winds upon the fligmata of the ftronger, and thus produce a lefs vigorous progeny. Where new varieties are required, the male duft of one good variety, as of the nonpareil apple, fhould be fhed upon the fligmas of another good variety, as of the golden-pippin; and it is probable fome new excellent variety might be thus generated.

Mr. Knight has given a curious experiment of his impregnating the figmas of the pea-bloffoms of one variety with the farina of another. He fays, Treatife of Apple and Pear, p. 42, "Bloffoms of a fmall white garden-pea, in which the males had previoufly been deftroyed, were impregnated with the farina of a large clay-coloured kind with purple bloffoms. The produce of the feeds thus obtained were of a dark grey colour, but thefe having no fixed habits, were foon changed by cultivation into a numerous variety of very large and extremely luxuriant white ones; which were not only much larger and more productive than the original white ones, but the number of feeds in each pod was increafed from feven or eight to eight or nine, and not unfrequently to ten. The newly made grey kinds I found were eafily made white again by impregnating their bloffoms with the farina of another white kind. In this experiment the feeds, which grew towards the point of the pod, and were by pofition firft expofed to the action of the male, would fometimes produce feeds like it in colour, whilft thofe at the other end would follow the female.
" In other inftances the whole produce of the pod would take the colour of one or other of the parents; and I had once an inftance in which two peas at one end of a pod produced white feeds like the male, two at the other end grey ones like the female, and the central feeds took the intermediate fhade, a clay colour. Something very fimilar appears to take place in animals, which produce many young ones at a birth, when the male and female are of oppofite colours. From fome very imperfeat experiments I have made, I am led to fuf-
pect that confiderable advantages would be found to arife from the ufe of new or regenerated varieties of wheat, and thefe are eafily obtained, as this plant readily fports in varieties, whenever different kinds are fown together." See Sect. VII. 2. 6. of this work.
2. The white and blue peas fown in fields as well as in gardens fometimes poffers the property of becoming foft by boiling, at other times not. This circumftance is faid to depend on the nature of the foil, but has not yet been fufficiently invefligated; perhaps the greater or lefs maturity of the peas at the time of reaping them may have more or lefs contributed to fill their fibrous cells or divifions with mucilage or ftarch. The greater or lefs mealinefs produced by boiling potatoes feems to be an analogous circumftance, and is thought by fome to arife from the nature of the foil rather than from the fpecies or variety of the planted root.

The mealinefs of fome boiled potatoes, and the foftnefs of fome boiled peas, may occafionally be affected by the acidity of the fpring water, in which they are boiled; but is generally I fuppofe owing to the mucilage of fome of them being more or lefs coagulable by heat, than that of others. Something fimilar to which obtains in animal mucus, as the cryftalline humour of the eyes of filh become hard and opake by boiling; while the fkins of animals, and the tendons of their feet, become a foft mucus or jelly by boiling ; and fome of the liquids, which are found in the cells or cavities of the body in dropfies, are obferved to coagulate by heat, and others to become more fluid. The caufes of this difference merits further inquiry.
V. 1. To collect good feeds, according to the obfervations of Mr. Cooper of Philadelphia, confifts not in procuring new feeds from diftant places, as is generally fuppofed, but in felecting the beft feeds and roots of his own; which though he has continually fown or planted them in the fame foil, every article of his produce is greatly fuperior to thofe of any other perfon, who fupplies the market, and they feem ftill in a ftate of improvement. He believed that no kind of inceft
would degenerate the breeds of vegetables, and therefore adopted the plan of Mr. Bakewell in England in refpect to quadrupeds, who continued to improve his flocks and herds by the marriages of thofe, in which the properties he wifhed to produce were moft confpicuous without regard to confanguinity or inceft.

Mr. Cooper was led to his prefent practice, which he began more than forty years ago, by obferving that vegetables of all kinds were very fubject to change with refpect to their time of coming to maturity, and other properties, but that the beft feeds never failed to produce the beft plants. Among a great number of experiments he particularly mentions the following.
"A About the year 1746 his father procured feeds of the long watery fquath, and though they have been ufed on the farm ever fince that time without any change, they are at this time better than they were at the firft.
"His early peas were procured from London in the year 1756, and though they have been planted on the fame place every feafon, they have been fo far from degenerating, that they are preferable to what they were then. The feeds of his afparagus he had from New York in 1752, and though they have been planted in the fame manner, the plants are greatly improved.
" It is more particularly complained of, that potatoes degenerate, when they are planted from the fame roots in the fame place. At this Mr. Cooper fays, he does not wonder, when it is cuftomary with farmers to fell or confume the beft, and to plant from the refufe; whereas having obferved that fome of his plants produced potatoes, that were larger, better fhaped, and in greater abundance than others, he took his roots from them only; and the next feafon he found, that the produce was of a quality fuperior to any, that he had ever had before. This practice he ftill continues, and finds that he is abundantly rewarded for his trouble.
" Mr. Cooper is alfo careful to fow the plants, from which he raifes
his feed, at a confiderable diftance from any others. Thus, when his radifhes are fit for ufe, be takes ten or twelve, that he moft approves, and plants them at leaft one hundred yards from others, that bloffom at the fame time. In the fame manner he treats all his other plants, varying the circumftances according to their nature.
"About the year 1772 a friend of his fent him a few grains of a fmall kind of Indian corn, not larger than goofe fhot, which produced from eight to ten ears on a ftalk. They were alfo fmall, and he found, that few of them ripened before the froft. Some of the largeft and earlieft he faved, and planted them between rows of a larger and earlier kind, and the produce was much improved. He then planted from thofe that had produced the greatef number of the largeft ears, and that were the firft ripe, and the next feafon the produce with refpect to quality and quantity was preferable to any, that he had ever planted before.
"The common method of faving feed-corn by taking the ears from the heap is attended, he fays, with two difadvantages; one is the taking the largeft ears, of which in general only one grows on a ftalk, which leffens the produce ; and the other is taking ears that ripen at different times.
" Many years ago Mr. Cooper renewed all the feed of his winter grain from a fingle plant, which he had obferved to be more productive, and of a better quality than the reft; which he is fatisfied has been of great ufe. And he is of opinion, that all kinds of garden vegetables may be improved by the methods defcribed above, particular care being taken that different kinds of the fame vegetables do not bloom at the fame time near together; fince by this means they injure one another." Communications to the Board of Agriculture, Vol. I. part 3. Letter from Dr. Prieftley.
2. As the varieties of plants are believed to be produced by different foils and climates, which varieties will afterwards continue through many generations, even when the plants are removed to other foils other crops as well as his own; and thus wherever he can find a fuperior vegetation to collect feeds from it; which is more certain to improve his crops than an indifcriminate change of feed.

But where feed-corn is purchafed without a previous obfervation of its fuperior excellence, perhaps it would be more advantageous to take that from better kinds of foil, and from fomewhat better climates; as the good habits acquired by fuch feeds may be continued long after their removal to inferior fituations. And on the contrary, care fhould be taken not to collect a change of feeds from worfe climates or inferior foils, unlefs the agricultor is previoufly certain that they are of a fuperior kind.
VI. I. To determine the goodnefs of feeds, the weighing a given meafure of them may generally be efteemed a criterion; as it is known, that when feeds are put into cold water, thofe which are lefs perfect are liable to fwim, and the found ones to fink ; thus the imperfect feeds of rye-grafs and of clover may be detected by throwing a fpoonful of them into water; but the feeds of rye-grafs are faid to be frequently adulterated by a mixture of the feeds of twitch or dog's grafs, which can only be difcovered by an experienced eye. This even is faid to be a teft of the goodnefs of malt; as thofe grains, which are not perfectly germinated, will fwim with one end upwards, I fuppofe the root end ; and thofe which are perfectly germinated fwim on their fide, whilf the found ungerminated barley finks in water.

It is therefore a proper criterion of good feed-wheat to caft it into falt and water, juft fo faline as to float an egg; as the more falt is diffolved in the water, the heavier it becomes; and hence none but quite found grains of wheat will fink in this brine; and that which fwims is properly rejected. This rejection of the light grains by fteeping wheat in brine is probably of greater confequence to the enfuing crop, than the adhefion of any, falt to the grain, which has
been believed to deftroy the eggs of infects fuppofed to adhere to it, or to fertilize the foil.
2. The weight of a given meafure of corn will alfo with confiderable certainty difcover the quantity of hurk or bran contained in it, compared to the quantity of flour; as that grain, which is cut too early, or which is otherwife not quite ripe, as happens in wet feafons, thrinks in the barn or granary, and becomes wrinkled, and has thus a greater proportion of fkin or bran, than that which has been more perfectly ripened, and will hence weigh lighter in proportion.

A teft of this kind may enable us to determine whether peas and beans, or oats, are preferable in refpect to economy as provender for horfes. A frike or bufhel of oats weighs perhaps forty pounds, and a ftrike or bufhel of peas and beans perhaps fixty pounds; and as the fkin of peas and beans is much lefs in quantity than that of oats, I fuppofe there may be at leaft fifteen pounds of flour more in a ftrike of peas and beans than in a ftrike of oats. There is alfo reafon to believe, that the flour of beans is more nutritive than that of oats, as appears in the fattening of hogs; whence according to the refpective prices of thefe two articles I fufpect, that peas and beans generally fupply a cheaper provender for horfes than oats, as well as for other domeftic animals.
But as the flour of peas and beans is more oily, I believe, than that of oats, it may in general be fomewhat more difficult of digeftion; hence when a horfe has taken a ftomach full of peas and beans alone, he may be lefs active for an hour or two, as his frength will be more employed in the digeftion of them, than when he has taken a ftomach full of oats. According to the experiment of a German phyfician, who gave to two dogs, which had been kept a day fafting, a large quantity of flefh food; and then taking one of them into the fields hunted him with great activity for three or four hours, and left the other by the fire. An emetic was then given to each of them, and
the food of the fleeping dog was found perfectly digefted, whilft that of the hunted one had undergone but little alteration.

Hence it may be found advifable to mix bran of wheat with the peas and beans, a food of lefs nutriment, but of eafier digeftion ; or to let the horfes eat before or after them the coarfe tuffocks of four grafs, which remain in moift paftures in the winter; or laftly, to mix finely cut flraw with them.
3. Another way of diftinguifhing light corn from heavy is by winnowing; as the furface of the light grains being greater in proportion to their folid coutents, they will be carried further by the current of air, which is produced by the van; though the heavy grains would roll further on the floor after rolling down a grate to feparate the duft ; becaufe their vis inertix would carry them further, after they are put in motion; and their furfaces would be refifted by the air no more than thofe of the lighter grains.
4. Finally, there is reafon to believe that a progreffive improvement of many feeds exifts during the warmer days of winter in our granaries, which probably confifts in the procefs of the converfion of mucilage into ftarch ; in the fame manner as the harlh juices of crabapples, and of auftere pears, are continually changing into fugar during the winter; both which proceffes are probably in part chemical, like the flow but perpetual change of fugar into vinous fpirit, when the juices of fweeter apples and pears, or grapes, are put into bottles in the manufacture of cyder, perry, and wine.

This improvement of wheat, and of barley, and of oats, is well known to the baker, the maltter, and the horle-dealer; as better bread is made from old wheat, and barley is converted into better malt in the vernal months; and horfes are believed to thrive better, and to poffefs more vigour, when they are fed with old than with new oats.
VII. 1. The prefervation of feeds next demands our attention. Thofe feeds which are liable to lie upon the ground, as peas and
corn, when thrown down by ftormy or wet feafons, ihould be gathered rather earlier; left they fhould begin to germinate, as they lie upon the ground, and would hence become a kind of malt after drying. Other feeds fhould be gathered, before they would fpontaneoufly fall from their pericarps, to prevent the lofs which muft otherwife enfue in the reaping, or mowing, and carrying them to the barn, which often amounts to as much as is neceffary to fow the land, which produced it, as well as to fupply the depredations of birds, infects, and vermin.

Monf. B. G. Sage accufes the farmers of fome parts of France of collecting their wheat with many green weeds immediately after reaping it, and preffing it clofe together in their barns; by which the ftack undergoes a fermentation with great heat like fome hayftacks; and that the corn is by this fermentation killed, and will not grow when fown like hay-feeds from a fermented hay-ftack, mentioned in Sect. X. 11.7; and alfo that the gluten, or vegeto-animal matterof the corn, is deftroyed ; and it on that account makes lefs agreeable and lefs wholefome bread; and laftly, that the ftraw is much injured by becoming mouldy. Journal de Phyfique, Sep. 1794.

Monf. B. G. Sage adds, that the following procefs will difcover, whether wheat has been thus injured, which may be interefting both to the baker, and wheat-buyer, who wants it for feed-wheat. Make a pafte with flour and water, then wafh it with your hands under water, which muft be frequently changed, till it no longer becomes difcoloured. The fubftance remaining in the hands is the gluten; if the corn be good, this is elaftic, and will contract when drawn out ; if the corn has begun to heat, it is brittle ; if the corn has fermented, none of the gluten will be obtained.

In this country, where corn is feldom cut too early, or preffed together on the flack, the principal circumftance required is to keep it dry; as the ftraw is not liable to ferment like new hay made with young grafs, which contains fugar at every joint of the ftem. To
preferve a fack of wheat dry, a good cover of thatch may feem fufficient ; but as this is liable to injury by vermin, it would be an additional fecurity, if at the time of making the fack the fheaves were laid higheft in the middle, and lower on every fide, fo that if any wet fhould find its way into the ftack, it might drain onwards along the ftraw of the fheaves, which would thus act like thatch throughout the whole ftack.

There are inftances of great durability of feeds, which have been preferved dry, and fecured from either fo great heat or fo great cold, as might deftroy their life or organifm. Thus there is an account of the feeds of Indian wheat, which grew well in a hot-houfe after having been kept thirty-four years, as was accurately afcertained. Bath Society, Vol. V. p. 464. And it has beer lately afferted, that many feeds of more than a hundred years old, which were found in fome old herbarium at Vienna, have been made to germinate by the ufe of oxygenated muriatic acid and water. Philof. Magaz. But if the organic life of a feed be deftroyed by froft, or fire, or mechanic injury, putrefaction fucceeds, and decompofition; as when the organic life of an egg is deftroyed by violently agitating it, it is known foon to putrefy.

To preferve feeds in barns or granaries our principal attention fhould be firft to make them dry, and fecondly to keep them dry; becaufe no feeds can vegetate without moifture. The art of drying moft feeds muft confift in duly ventilating them, efpecially on dry days; which may be done by frequently turning over the heaps of them; and to preferve them dry in this climate the door and windows of granaries fhould open to the fouth to receive the warmth of the fun, with apertures round the building for fufficient ventilation; which muft be prevented from admitting rain or fnow by fheltering boards on the outfide.

The heaps of corn fhould be furrounded with boards to keep them from contact with brick or ftone walls; which, when warm moift
fouth-weft winds fucceed cold north-eaft winds, are liable to precipitate the moifture from the atmofphere by their coldnefs, and to communicate it to all bodies in contact with them. For a fimilar purpofe in fables fome have put up a tall wooden trunk from the chamber to the room below, three or four feet fquare, and ten or twelve feet high, with a fliding valve to draw out the corn below, which is poured in at the top; in three or four places a tin or wooden pipe full of holes is made to pafs horizontally through the box to give air to the corn, the whole of which, when any of it is drawn out below, is moved in defcending; and new furfaces of corn are applied to the air-holes of the horizontal tubes.

The moft fecure way of preferving a great quantity of wheat, according to Mr. Tull, is by gently drying it on a hair-cloth in a maltkiln, with no other fuel but clean ftraw, and no greater heat than that of the funhine. In this fituation the wheat remained from four hours to twelve hours, according to the previous dampnefs of it. Mr. Tull knew a farmer in Oxfordfhire who purchafed wheat, when it was cheap, and kept it by thus drying it for many years, and made a large fortune by felling it again in dearer feafons. The life of the feed was not deftroyed by this procefs; as he afferts, that fome of it grew, which had been kept in this manner feven years; whereas in drying potatoes on a malt-kiln fo great heat was employed as to deftroy their life, and violent putrefaction enfued, as mentioned in Sect. X. 9.2.
2. A due ventilation alfo, where corn is kept in the common warmth of the atmofphere in this climate, is neceffary, except in feafons of froft, and alfo the admiffion of light; as otherwife the vegetable mucor, called mould, is liable to grow upon the corn, and injure it ; as this mucor like fome other fungufes will grow, where there is little or no change of air, and without light, as in cellars, if there be fufficient moifture and warmth.
3. Another method of preferving feeds may confift in fecluding them
them from heat, as in granaries beneath the foil ; which are fo deep or fo well covered with earth, as not to be affected by the difference of feafons. Thus there have been inftances of muftard-feed producing a crop on digging up earth, which had not been removed for many years, and, as was believed, even for ages. And in ice-houfes it is probable, that not only feeds might be long preferved, but perhaps fruits alfo; if they were afterwards very gradually thawed by putting them into cold water, that they might not be deftroyed by the too great fimulus of fudden heat, as mentioned in Sect. XV. 4. I.
4. Where it has been neceffary fuddenly to collect and to preferve great heaps of corn without fhelter for the provifion of armies, fome have moderately moifted the upper furface of the heap daily, which has occafioned the upper grains to grow, and thus to produce a fward or turf over thofe below; which, it is faid, has thus preferved the lower part of the magazine. But in refpect to granaries for the purpofe of laying up very large quantities of grain to prevent famines in fcarce years, I fuppofe the facks of covetous farmers, who keep their corn in cheap years, hoping to fell it at a better price in fcarce ones, is a more certain method, and a cheaper one to the public, to keep up a fufficient ftock of corn, than by any other experiment that can be devifed.
5. Gardeners in general prefer new feeds to old for their principal crops, as they are believed to come up fooner, and with greater certainty, and to grow more luxuriantly. "But peas and beans of a year old," Mr. Marfhall obferves, " are by fome preferred to new, as not fo likely to run to ftraw. And cucumbers and melons are beft to be feveral years old, in order to their thooting lefs vigoroully, and thence becoming more fruitful. But this principle is carried too far by fome gardeners, who fay thefe feeds cannot be too old, and will allow ten years to be within bounds; three for cucumbers, and four for melons, however is age enough.
"As to the age of feeds, at which they may be fown, it is uncer-

$$
3 \mathrm{~N}_{2} \quad \text { tain }
$$

tain, and depends much upon how they are kept; thofe of cucumbers and melons are good a long time, becaufe very carefully preferved.
" Peas and beans will germinate very well at feven years of age; but the feeds of lettuces and kidney-beans, and fome others, are not to be depended upon after a year or two; and generally fpeaking the fmaller feeds are of the leaft duration." Marfhall on Gardening.
6. Where feeds of a perifhable nature are to be carried to, or brought from, diftant countries, I fufpect that covering them in fugar would be the moft certain and falutary method of preferving them; and even, that flefh meat cut into thin flices, and covered with fugar, or fyrup, or treacle, would be better preferved than in brine, and afford a müch more falutary nourifhment to our failors.

Since I wrote the above I have feen a paper in the Tranfactions of the Society of Arts, Vol. XVI. from Mr. Sneyde of Belmont in Staffordfhire, who having obferved fome feeds, which came accidentally amongft raifins; to grow readily, directed many feeds to be fent from the Weft Indies covered with raifins, and others in fugar, and others in the ufual manner of fending them, and found, that thofe immerfed in fugar or covered with raifins both looked well, and grew readily; whereas many of the others would not vegetate.

Since the powder of frefh burnt charcoal is known fo powerfully to abforb all putrid vapours, it is probable the feeds mixed with and covered with charcoal duft, which has been recently burnt, or not long expofed to the air, might be fuccefffully employed for the prefervation of feeds either in long voyages, or in domeftic granaries.
VIII. I. To fow feeds advantageouly it is probable, that thofe of our native plants might be fuffered to drop on the furface of the earth in the autumn, as they fall from their parent plants, covered only by their deciduous leaves; in which fituation their fruit might contribute to nourifh them, as our crabs and floes; or defend them from infects, as the acrid hulk of the walnut; or from birds, as the hard
ftones or fhells of nuts and cherries, fince this is the procefs of nature.

But when the feeds brought originally from other climates are to be fown, an attention is required to the circumftance of feafon and of foil. Thofe, which will ripen their feeds in the fame year, are to be fowed in the early fpring, and covered lightly with earth to preferve them from birds and infects; and thould be buried thus beneath the foil, foon after it has been ploughed or dug, as its interftices are then replete with atmofpheric air ; which may be neceffary to ftimulate into elevation the plume of the embryon plant; as the moifture of the earth is neceffary to ftimulate the root into its elongation downwards.

Thofe feeds neverthelefs, which will not perfect their vegetation in the fame year, mult be fown in the early autumn ; and though all feeds vegetate better, when placed but a little beneath the furface of the foil, as one inch, becaufe they have then a better fupply of atmofpheric air, which may be neceffary for their firft growth, before they have acquired leaves above ground; yet as many foreign feeds may not be fufficiently hardy to bear our inclement winters, it may be neceffary, as fome believe, to bury them an inch and a half, or two inches, deep in the foil, to prevent the frofts from doing them injury, as well as to preferve them from the depredation of birds. And the drill femination, or fowing all kinds of feeds in rows, is the moft convenient method for fowing them at a determined depth, and alfo for the purpofe of keeping the young plants clear from weeds by the more eafy application of the hoe.

To fow many feeds earlier than is ufually practifed is much recommended. There is a paper by Lord Orford in Mr. Young's Annals of Agriculture, Vol. IX. p. $3^{8} 5$, who feems to have found confiderable advantage by fowing barley fo early as the feventh of $\mathrm{Fe}-$ bruary, three and a half bufhels on an acre. But as much moifture with or without fubfequent froft is more liable to deftroy the em-
bryon in its very early fate in the feed, than after it has fhot out roots and a fummit, and thus acquired fome habits of life; this early fowing muft fometimes be practifed with caution. Seeds may neverthelefs be fown ftill earlier in hot-houfes, or in warm fituations, as peas, beans, wheat, and may be afterwards tranfplanted in the vernal months with fafety and advantage. See Sect. X. 3.6.

The difficulty of determining the beft feafon for fowing feeds in the fpring, owing to the variation of the weather in the fame latitude, as well as in laying down the exact feafons for fowing in different latitudes, occafioned Linneus to conftruct, what he terms a calendar of Flora ; which was afterwards adapted to this climate by Stilling: fleet; which confifted in obferving the firft appearance of the rootfcions, or flowers of the uncultivared native vegetables; with directions to fow the cerealia, or harveft feeds, when fuch plants or flowers became vifible. By attention to fuch obfervations on the uncultivated native plants in many climates, it is probable, that ingenious tables might be produced, which might direct the beft time of fowing the ufeful feeds in all latitudes, and in all fituations.

Another table of the climates, where plants grow naturally, and of their native fituations in refpect to moifture or drynefs, hill or valley, with the kind of foil where they were originally found, might alfo contribute to their fucceffful cultivation.
2. In the gardens near large towns, where the land is more valuable and better manured, gardeners fometimes fow two or three kinds of feeds on the fame ground for the purpofe of economy. Thus Mr. Marfhall obferves, that " on the fame ground they fow radifhes, lettuces, and carrots; the radifhes are drawn young for the table, the lettuces to plant out, and a fufficient crop of carrots is left ; for carrots, if you wifh them to be large, fhould not grow very near to each other."

In defence of this mode of culture it is faid, if one crop fails, the others may do well, and there is no lofs of ground or time; and if
all fucceed, they do very well. Radifhes and fpinach are commonly fown together by the common gardeners, and many manœeurres of inter-cropping are made by them, as the fowing or planting between rows of vegetables that are wide afunder, or prefently to come off, or in the alleys of things cultivated on beds.
"Thus if a piece of horfe-radifh be new planted, it may be topcropped with radifhes or fpinach, \&c.; or if a piece of potatoes be planted wide, a bean may be put in between each fet in every or every other row; a thin crop of onions upon new afparagus beds, is a common practice, drawing them young from about the plants." Introduc, to Gardening. Rivington.

The farmer likewife, in the cultivation of graffes for feeding fheep, finds an advantage in fowing a mixture of feeds on the fame ground, as rye-grafs, trefoil, and clover, which are faid to fucceed each other in refpect to the production or maturity of their herbage, as in Sect. XVIII. I. i. And for the purpofe of preventing fmut it may be ufeful, as I have before obferved, to fow in the fame ground in feparate rows two kinds of wheat, one of a forwarder nature than the other ; whence if the farina of one kind fhould be injured by wet weather, that of the other may impregnate the ears of both. The two kinds of wheat recommended are bearded wheat and fmooth-headed wheat, which are called by farmers cone wheat and Lammas wheat ; of both of which there are many varieties, and it is afferted that one third of cone wheat is frequently fowed with two thirds of Lammas wheat, and that the crops are much fuperior to either of them feparately. Hall's Encyclop. Art. Agriculture.

In refpect to kinds of foil thofe fhould be chofen, which have been found by obfervation to fuit particular feeds, both in regard to their nutritive properties, and the moifture and warmth of their fituations. And for thofe feeds, which produce tuberous roots within the earth previous to their flowering, as potatoes, parfnips, radifhes, a foil of lefs cohefion fhould be found or prepared.
3. Add to this, that there are fome feeds, as thofe of carrots, that are fo difficult to be diffeminated in uniform quantities, that it has been cuftomary to mix them previoufly with fand or garden mould, for the purpofe of giving them weight, or bulk, or to detach them from each other. And fome even fuffer them to begin to put forth their roots in fuch a mixture of moift fand or garden mould for the purpofe of more regularly difperfing them.

In dry feafons the foaking feeds in water, a day or two before committing them to the ground, will forward their growth, as well as by artificially watering the ground before or after fowing them; and the foaking them in a folution of falt and water may have another advantage of giving an opportunity of rejecting the light feeds, which float, and perhaps of deftroying fome infects which may adhere to them; the fprinkling fome kinds of feed with lime may alfo be of advantage for the purpofe of deftroying infects, if fuch adhere to them, and of attracting moifture from the air, or lower parts of the earth, or for its other ufeful properties; but where the feed, foil, and feafon, are adapted to each other, none of thefe condiments are required.

It may neverthelefs on other accounts be veryadvantageous to fteep many kinds of grain in the black liquor, which oozes from manure heaps. Mr. Chappel, in the papers of the Bath Society, found great benefit by fteeping barley in the fluid above mentioned for twentyfour hours, and fkimming off the light grains. On taking it out of the water he mixed wood-afhes fifted with the grain to make it fpread regularly, and obtained a much finer crop, than from the fame corn fown without preparation. To this we may add, that to fteep the feed in a folution of dung in water, as in the draining from a dunghill, is believed in China both to forward the growth of the plant, and to defend it from variety of infects, according to the information given to fir G. Staunton.

There is an old proverb, " fow dry and fet wet;" but where the 4 earth
earth has been lately turned over by the plough or fpade, there can be no bad confequence from fowing during rain in general; but in fome clay grounds much foftened by rain, if feed be put into holes, and a dry feafon fucceeds, an impenetrable cruft may fupervene by the exhalation of the water, and the fetting, as it is called, of the clay ; but even this could not frequently occur, when feeds are fown in the moift weather of the autumnal months; but generally in both cafes the growth of the feed would be forwarded by the moifture.
4. Where the fruit, which furrounds any kind of feeds, can be fowed along with them, it may anfwer fome ufeful purpofe. Thus the fruit of crabs, quinces, and fome hard pears, will lie all the winter uninjured covered only with their autumnal leaves, and will contribute much to nourifh their germinating feeds in the fpring. So the holly-berry and the ivy-berry remain during the winter months uninjured by the rairs or frofts, and undevoured by birds or infects, and contribute to nourifh their germinating feeds, when they fall on the ground in the fpring. The acrid hufk of walnuts fowed along with them preferves the fweet kernel from the attack of infects; the fame muft be the ufe of the acrid oil of the cafhew-nut. The hawthorn poffeffes both a nutritive covering and a hard fhell for the above purpofes ; and the feeds of rofes are armed with ftiff pointed briftles, as well as furnifhed with a nutritious fruit, fo long known as an agreeable conferve in the fhops of medicine, conferva cynofbati; the former conflitutes a defence againft infects, and the latter fupplies a refervoir of inutriment for the germinating feeds.
5. To this fhould be added, that in our fhort and cold fummers the viviparous buds of fome vegetables are too luxuriant, and do not produce oviparous buds foon enough to ripen their feeds, as melons and cucumbers, and many other plants, in thofe feafons which are moifter than common. It is believed, that by wafhing the feeds of melons and cucumbers from the faccharine and mucilaginous matter of their fruit, and by keeping the feed three or four years before it is ufed, 3 O that
that the viviparous buds become lefs vigorous, and the oviparous ones more numerous, and forwarder in their flowering; and for the production of earlier as well as of larger crops all fuch luxuriant vegetables fhould be fown early in the vernal feafon, or in the autumnal months, if they are not too tender to bear the winter frofts.

IX. Queftion concerning general enclofure.

The political advantage or difadvantage of the general enclofure of a country belongs to this place, as it more particularly affects the production of the cerealia, or corn-agriculture.

There can certainly be no objection to the enclofure of commons, or at leaft to the divifion of them into private property, as they are believed to produce more than tenfold the quantity of fuftenance to mankind, if they are employed in agriculture, or even in pafturage, than by nourifhing a few geefe, theep, or deer, in their uncultivated flate covered with fern, heath, or gorfe.
2. The advantage of enclofing pafture-lands, or meadows, can not be doubted; as the management of fattening cattle, of milch-cows, fheep, and horfes, becomes fo much eafier; as well as the more convenient ufe of the aftermath, when the hay is carried away.
3. The lands alfo appropriated to the production of garden vegetables and fruit, as well as to the production of other perennial plants, which are ufed in the arts, as hemp, flax, madder, woad, rhubarb; and of the efculent roots or herbage raifed for the confumption of eattle, as turnips, potatoes, carrots, cabbages, certainly require to be encloféd.
4. The political queftion therefore finally concerns only the arable lands, and afks fimply, whether a general enclofure of arable lands be favourable or unfavourable to the population, and confequent profperity of the country, which muft depend on the comparative quantity of nutritive provifion, which is likely to be produced from the different modes of its cultivation.

Now as pafturage requires fewer hands in the management of it, and lefs art and attention to conduct it, than agriculture ; and as its products in flefh, cheefe, butter, take a higher comparative price at market, and are articles of greater luxury, than the products of arable land in corn, we may conclude, that pafturage will prevail in all enclofed provinces over agriculture. And as perhaps tenfold the numbers of mankind can be fupported by the corn produced on an hundred acres of land, than on the animal food which can be raifed from it, it follows, that an enclofed province will afford fuftenance to a much fmaller population; and as the number of inhabitants of a country depends on the eafe, with which parents can procure fuftenance for their families, marriages will become fewer, and the people decreafe, when an arable country is converted into pafturage.

This laft circumftance appears already to operate in thefe realms, fince about half a century ago much corn was exported annually, but for feveral years laft paft great quantities of it have been annually imported for our own fuftenance; and that even though potatoes are much cultivated, and muft therefore leffen the confumption of grain, and the ungraceful farhion of covering the head with wheat-flour is much diminifhed. Is this to be folely afcribed to the numerous enclofures of arable lands, or in part to the confumption of corn in the diftilleries?

One very important confequence of any country producing a greater quantity of corn, than it confumes, and of thence exporting it to foreign nations, even by means of a bounty, confifts in its certainty of preventing famine, the moft dreadful of human calamities; as in years of fcarcity the ftream of exportation can be ftopped, and produce an ample fupply by its fagnation at home.

Hence when a great part of any tract of country becomes employed in pafturage inftead of agriculture, the inhabitants will become confumers of flefh inftead of confumers of grain, and will confequently decreafe in number from the want of fufficient fuftenance.

$$
3 \mathrm{O}_{2}
$$

Befides

Befides which the people of agriculture are more active and robuft than the people of pafturage, and more ingenious in the invention and ufe of machines neceffary for the more artful cultivation of the foil, as well as more numerous, and will confequently become fuperior to them in arms and arts, and may in procefs of time conquer them ; which reminds us of the Egyptian Dynafty of Shepherdkings, who were fubdued by their agricultural rivals; and alfo of the allegorical hiftory of Cain flaying Abel, which were probably the names of two political hieroglyphic figures reprefenting the ages of pafturage and of agriculture before the invention of letters.
It muft hence certainly be an object of good policy to encourage agriculture in preference to pafturage, which in this country might be effected by preventing the enclofure of arable lands, and alfo of thofe parts of commons, which are beft adapted to the growth of corn ; though the whole might be advantageoufly divided into private property. Unlefs fome other means could be devifed of preventing a nation from becoming too carnivorous, or of duly promoting the cultivation of grain, the former of which was heretofore produced by religious faft-days twice a week, and the latter by bounties on the exportation of corn. To which might be added a total prohibition of the deftructive manufactory of grain into fpirits, or into ftrong ale, and thus converting the natural nutriment of mankind into a chemical poifon, and thus thinning the ranks of fociety both by leffening their quantity of food, and Chortening their lives by difeafe.

In many villages, where much arable lands have been lately enclofed, the numbers of labouring people have quickly been much diminifhed both by the fcarcity of food, and want of employment.

> Worfe fares the land, to hattening ills a prey, Where wealth accumulates, but men decay; Princes or lords may flourih, or may fade, A breath can make them, as a breath has made;

$$
\text { SECT. XVI. } 8 . \quad \text { OF SEEDS. } 469
$$

But a bold peafantry, their country's fword, When once deftroy'd, can never be reftor'd.

Goldsmith's Deserted Village.
Mankind neverthelefs feems by nature to be defigned to fubfift on both vegetable and animal nutriment, which appears from the length of his inteftines, which like thofe of fwine are much longer than the inteftines of carnivorous animals, and much fhorter than thofe of the vegetable eaters; and which alfo appears from the ftructure of his teeth, which partakes of the ftructure of thofe of the carnivorous and phytivorous animals; and laftly, becaufe thofe people, who live folely on vegetables, as the Gentoo tribes, and thofe who fubfift folely on animals, as the filh-eaters of the northern latitudes, are undoubtedly a feebler generation than thofe of this country, who exift on a mixture of both. A due proportion therefore of the two kinds of nourifhment, fuch as perhaps at prefent exifts, or lately did exiff, in this nation, muft be decidedly the beft; the prefervation of which, with the prohibition of fpirits, or of ftrong fermented liquors, except occafionally as medicines, might probably render thefe kingdoms more populous, robuft, profperous, and happy, than any other nation in the world. But if the luxurious intemperance of confuming flefh-meat principally, and of drinking intoxicating liquors, fhould increafe amongft us, fo as to thin the inferior orders of fociety by fcarcity of food, and the higher ones by difeafe both of mind and body, it may hereafter be faid of Great Britain, amid her foreign conquefts, as formerly of ancient Rome,

> Sævior armis
> Luxuria incubuit, victumque ulcifcitur orbem.

S E C.T. XVII.

PRODUCTION OF ROOTS AND BARKS.

Barks of trees are fimilar to their roots. All roots now known were originally from feeds. I. 1. Tuberous or bulbous roots of turnip, carrot, parjnip, beet, are rejervoirs of nutriment for the future fem. Not jo in graffes. Sugar vifible in beet roots. Small beer from parfnip roots. Alcobol from carrots. The knobby root and flower-Aem are fuccefive plants. Select forward feeds from vigorous plants, and a foil not cobefive. Radihes on bot-beds. 2. Tuberous roots from fubterraneous wires, as potatoes. Pinch off the flowers. Make a cellular foil. Aerial potatoes. 'Curled leaf of potatoes. Sow the feed.' Plant large roots and wbole ones. Early potatoes. 3. Improve ground articboke and pignut by feed. 4. Onions, method to improve them. 5. Orchis, ripen the feeds of it. Snow drops. Hyacintbs. Crocus. Martagon lily. II. I. Palmated, or branching roots, not immediately from feed. Perennial roots, like barks of trees, continue to increafe in fize. Sbould remain four or five years in the ground, not longer, as rbubarb. 2. Pinch off the flowers, as in rbubarb. 3. Roots of aquatic plants. Nymphaa, butomus, cultivated for nutriment, wine, or vinegar. 4. Art to preferve roots. Keep them alive, between 32 and 48 degrees of beat, covered with pounded cbarcoal, sare-duft, and tbatch, or dry them by ventilation and beat. 5. Of m:'Jbcoms. Their gills are their lungs. Are animate beings witbout locomotion. Are of animal origin. Conduct galvanifm. Mufbroom flone, truffes, morels, mufbrooms weith acrid juice. Ear-fungus. III. I. Barks contain fugar and mucilage, and other ingredients. They fbould be taken off before the buds expand. 2. Oaks, why barked in fpring. 3. Barks of elm and maple migbt make fmall beer. Of bolly efculent. Bird-lime like caoutchouc. 4. Bitter, aromatic. Acrid barks. 5. Refringent and colouring barks for tanning and dying. 6. Fibrous barks of flax, papyrus, mulberry, and birch. 7. To increaje the bark pinch off the
flowers: 8: Rub off the mofs. Sprinkle with water. 9. Wounds of the bark. Paint the naked alburnum. 10. Canker. Bind on a new bark. Piant tbe. branch in a divided garden-pot.

As the barks of trees are compofed of a congeries of the long caudexes of the individual buds, which confift of the abforbent veffels, which imbibe nutriment from the earth, and of the arteries and veins, which fupply nutriment to the growing vegetable; of the glands, which fecrete from the vegetable blood the various acrid, aftringent, or narcotic, juices to defend them from the depredation of infects; and the various mucilaginous, oily, or faccharine, materials for the nourifhment of their embryon buds; and laftly, of the organs of reproduction. There exifts the ftrongeft analogy between the barks of the trunks of trees, and of their roots, in every refpect; except that the former poffeffes a cuticle adapted to the contact of the dry atmofphere, and the latter a cuticle adapted to the contact of the moilt earth, which differ from each other like the external kin , and the mucous membranes of animals. And finally, as thefe long caudexes of the buds of trees, which form the filaments of the bark, terminate in radicles beneath the foil, and in leaves in the air, like the broad caudexes with the radicles and afcending ftems, or foliage, of herbaceous plants, they exactly refemble each other.

We thall therefore divide roots for the purpofe of treating of their production into bulbous or tuberous roots, into palmated or branching roots, and into barks; obferving that though roots and buds might poffibly have exifted before feeds, and though a great number of the roots ufed for nutriment, or for the purpofes of medicine, or for the arts of dying and tanning, are immediately produced by buds, or bulbs; yet are they all, which we now poffefs, originally derived, I fuppofe, from feeds; becaufe thofe varieties, which have been propagated from buds or bulbs for many centuries, are believed to acquire hereditary difeafes, and gradually to perifh.

1. $O f$
i. Of tuberous and bulbous roots.
i. Some tuberous roots, as the turnip, braffica rapa, are immediately produced from feeds, but differ from the other plants, which are called annual or biennial, in this circumftance ; that, as they are generally fowed fo late in the feafon as not to have time to produce flowers and feeds in the fame year, they produce a knobby root, which confifts of a refervoir of nutritious matter for the fúture flower-ftem, which is to rife and flourifh in the fucceeding fpring and fummer; whereas the common annual graffes, as oats and barley, do not previoufly lay up a magazine of nutriment in théir roots, but in their joints, which are fweet; and therefore their roots are not ufed for culinary purpofes, or for provender.

Other tuberous roots are raifed in the fame manner from feeds, but are generally fown alfo fo late in the feafon as not to form their flower-ftems in the fame year; as the carrot, daucus carota; the parfnip, paftinaca fativa; and the beet, beta vulgaris; thefe alfo lay up a ftore of mucilaginous and faccharine matter in their roots for the growth of the future flowers. In the beet-root the cryftals of fugar are fometimes vifible by a microfcope; and I was well informed, that a labourer in Lincolnfhire made fmall beer from a decoction of parfnip roots, which was firituous enough, and not of difagreeable flavour; and Mr. Hornby of York, by boiling carrots, and fermenting the juice expreffed from them, produced two hundred gallons of proof fpirits from twenty tons of carrots. Edinb. Tranfact. Vol. II. p. 28. Now as all vinous firit has been fugar, there is foundation to hope that a method may be difcovered of producing and feparating fugar from thefe plants of our own climate in fufficient quantity for our demeftic confumption, or even for exportation.

Other tuberous roots are propagated from feeds in the fame manner: and though they are fowed early, and produce their flower-ftem and feeds in the fame year, yet they form a knobby root, which con-
fifts of a magazine of nutritious matter, previous to the elevation of the flower-ftem, as the radifh, rhaphanus fativus, and carrot, and beet, when fown early. I neverthelefs fufpect that thefe, as well as the preceding, confift in reality of two fucceffive plants; that which forms the knobby root, and that which is formed from it, as fpoken of in Sect. IX. 3. 6.

For the production of roots of thefe kinds, which are immediately or fecondarily propagated from feeds, our attention muft be applied to collect the forwardeft feeds, and from the beft plants of the kind; and to fow them at the proper feafon of the early fpring, or early autumn ; and in a foil which contains fufficient vegetable nourifhment, obferving, neverthelefs, that as carrots, parfnips, beets, and radifhes confift of knobs formed in the ground, a lefs adhefive foil is to be felected; as one abounding with filiceous or calcareous fand, as well as with carbonic earth. But as the turnips are formed chiefly above ground, this attention to the cohefion of the foil becomes lefs neceffary, fo that it is fufficiently penetrable by the fibres of their radicles.

There is another art of producing larger roots from feed, and at an earlier feafon, as of radifhes; which is by fowing them in hotbeds in the early fpring, and expofing the tops to the cold air during the day, as this prevents the luxuriant growth of the fummit, and increafes that of the root.
2. Other tuberous roots are generally propagated by fubterraneous wires, or root-buds, from the tuberous roots of their parents through a long generation, and not either primarily or fecondarily from feeds; as the potato, folanum tuberofum; and the ground artichoke, or tuberous fun-flower, helianthus tuberofus; and perhaps the pignut, bunium bulbocaftanum.

As the tuberous roots of the potato planted in the fpring not only produces many other fimilar tuberous roots, but flowers alfo during the fummer; I was led to fufpect, that pinching off the flowers, as

$$
3 \mathrm{P} \quad \text { they }
$$

they appeared, would contribute to increafe the number or enlarge the fize of the new roots; which experiment has been made on a fmall fcale by one, who believed it to fucceed in a degree decifive of its utility. See Sect. XIX. 3. I. and Sect. VII. I. 3, where it is faid, that pinching off the flower-ftems of bulbous-rooted flowers, when they firft appear on young bulbs only a few years from the feed, is believed to render the flower duplicate.

As the roots of potatoes are formed beneath the earth, the foil, in which they are planted, fhould be laid hollow and full of cells, or fhould poffers lefs cohefion than ufual, to facilitate the protrufion of their wires, and the enlargement of their roots. This fhould be done by burying fome long litter of ftraw and ftable dung under the foil; for as potatoes are believed to require more carbonaceous earth than carrots, a mixture of fand is lefs advantageous to them.

I was this day fhewn by my friend Major Trowel of Derby a new variety of the potato in his excellent new-made garden, the foil of which confifts of marl mixed with lime and ftable-manure. From one root there appeared to iffue fix or eight ftems three or four feet long, at every joint of which were produced new potatoes; at the lower joints there were three of thefe aerial potatoes, one large one the fize of a pullet's egg, and a fmaller one on each fide of it. At the upper joints only one new aerial potato adhered, and thefe became fmaller the further they were removed from the root; and finally, at the fummit there had been a flower-as there was now a feed-veffel, called a potato-apple. All thefe new potatoes at the joints of the ftems were green, becaufe they had not been etiolated by being fecluded from the light, but the terreftrial roots were white. The larger new tuberous roots had eyes on them like a common potato, but the fmaller ones had begun to fhoot out a new. ftem or leaves from their upper part. This variety, which may be termed an aerial potato, is analogous to the magical onion, and other fpecies of allium, which bear cloves, or roots on their fummits inftead of feeds,
and like the viviparous polygonum ; but differs in this circumftance, that in all thofe, I believe, the flowers are barren in refpect to bearing feeds, as thofe are on the fummit of the fike of polygonum viviparum; but in the aerial potato there was alfo a feed-bearing flower at the fummit of the ftem, and the new roots only at the lateral joints. I fhould hope this proliferous variety by cultivation may become permanent, and give rife to a new fpecies, which may produce both aerial potatoes and fubterraneous ones, a twofold viviparous progeny.

The curling of the leaves of potatoes, which is attended with fo great a diminution of the quantity and fize of the new roots, is fuppofed to be owing to their continued propagation by fubterraneous buds or root-wires, inftead of by feed; that hence they acquire hereditary difeafes, like the canker or gangrene of apple trees, which have for one or two centuries been propagated by grafting the feions, as mentioned in Sect. IX. 3.4. and XV. I. 4. Hence by fowing the feeds of potatoes, and cultivating the roots thus produced, new varieties may probably be foon acquired, exempt from the difeafe of the curled leaf, and which may be as good in other refpects as thofé which have been too long propagated by their roots. Some have neverthelefs affirmed, that they have feen curled potato-plants in the fecond year from the feed; and others, that they have feen numerous infects, on thefe curled leaves; and others, that the potato-root, the leaves of which are curled, remains hard, and lefs diffoluble in the foil, which I have myfelf witneffed. More obfervations are. wanted to elucidate this fubject.

Another caufe of the degeneracy of potatoes has arifen, I believe, from planting the leaft inftead of the largeft roots, fee Sect. XVI. 5. and which confequently poffefs lefs vigorous vegetation, as buds and bulbs fo exactly refemble the parent plant. Thus the fmall bulbs, which arife from tulip-roots, will produce a rather larger bulb antnually for three or four years, as I am informed; but it is the large

$$
3 \mathrm{P}_{2}
$$

new central bulb only, which will produce a flower the next fummer, and another large central bulb like itfelf. See Sect. IX. 3. r. Another caufe of the degeneracy of potatoes may arife from dividing the larger roots into too many fets, which muft deprive the embryon plant of much of its appropriated nutriment ; as the umbilical part of the root is generally thrown afide by thofe idly-ingenious diffecters of it ; for though the part, where the umbilical veffels were inferted, may not after the mature growth of the bulb appear to poffers new veffels from the embryon plants, fuch as are feen on the lobes of a growing garden-bean ; yet, as it becomes decompofed, it muft fupply mucilaginous or faccharine nutriment to the roots of the new plants.

As the potatoes raifed from feeds do not flower on the fecond or third year, refembling in this circumftance the bulbs of tulips and hyacinths; thefe new roots, I am told, are fold as early potatoes, and that they are forwarder in their growth from their being generally planted without being divided; and that they form their new roots fooner, as they do not flower. To improve the feeds of potatoes fee Sect. XVI. 3. 4.

The following method of planting whole potatoes is reeommended in Mr. Adam's Effays on Agriculture, and has a promifing appearance.
" The idea," fays he, "which I mentioned before, refpecting the culture of the Scotch and Anjou cabbages, might be fuccefsfully applied to that of potatoes. Let us fuppofe the ground, in which they are to be fet, is properly prepared by plowing: let then the furrows be drawn in it at four feet diftance all over the field, and croffed by other furrows at an equal diftance. Where thefe interfect each other lay in fome dung from a wheelbarrow, extending from the point of interfection fourteen or fifteen inches each way: let a man following fpread a little of the mould from the furrow over the dung; let a third hand put one whole found potato at the point of interfec-

Sect. XVII. 1. 3. ROOTS AND BARKS.
tion, and one in each furrow, at a foot diftance from the centre, which will make five in all: a fourth hand fhould now follow with a barrow full of leaves, and lay them over the plants; fhould then fprinkle fome mould lightly over them, and leave them fo till the plants fhoot.
". Thus the plants will occupy a fpace of two feet each'way, out of the four feet between the furrows; and the remaining intervals between the plants on each fide will alfo be two feet, which intervals I would horfe-hoe at the proper periods, firft one way of the field, and then acrofs, laying the mould upon the plants at each hoeing, fo that the fpaces which the plants occupied would by thefe means become little fquare hills filled with roots; and the intervals between being thus hoed and crofs hoed, would have the ufual good effects of pulverizing the foil, deftroying the weeds, and preparing the land in the beft manner poffible for a crop of wheat."
3. The ground attichoke, helianthus tuberofus, feldom ripens its feeds in this country, and might probably be much improved by ufing methods to ripen the feed, which are mentioned in Sect. XVI. 3.4 ; and by thus producing new varieties; and the pignut, bunium bulbocaftanum, might probably by cultivation from the feed fupply an agreeable and falutary root to be eaten like chefnuts either raw or roafted.
4. The feeds of the common onion, allium cepa, generally produce no flower-ftems the firft year ; but each feed produces concentric leaves, which gradually form a large bulb below them with oneor two, and fometimes three, lefs internal bulbs, included within three or four general concentric coats, befides the three or four coats. appropriated to the individual bulbs, as defrribed in Sect. IX. 3.2. On the next year fome fecies of this genus produce bulbs after their flowers inftead of feeds, as allium fativum and magicum; others produce not only flowers but alfo bulbs, as allium moly, and fpherocephalum. If the bulbs of thefe leaft kinds of allium were planted
with defign to produce other bulbs, and not to produce feeds; it is probable, that pinching off the flowers might enlarge the new bulbs, as the pinching off the flowers of potatoes; and that by fuch means a larger kind of bulbs of fome of this genus might be procured.
5. Another bulbous root, which might be well worthy cultivation in moift ground, is the orchis morio; which is fold under the name of falep, after it has been prepared by firft fcalding it in hot water to detract the fkin, and afterwards by drying it in an oven; and which then affords a nourihhing mucilage, which will long keep uninjured. And, if it was cheaper, might probably be brought into more extenfive ufe as a culinary vegetable, as mentioned in Sect. XVI. 3.4. The orchis morio produces one large new root annually, and probably fome fmaller offsets, as otherwife I do not perceive, how it could increafe in our meadows, as it does not ripen its feeds in this country.
If the new root be taken away from the old one early in the year, it is affirmed, that the feeds will ripen in Sweden; which are otherwife in that country, as in this, always unprolific ; this experiment might therefore be very advantageous to the cultivator. Another method of inducing orchis to bear prolific feeds may be by confining the roots in garden pots, which might be immerfed in a moift foil, and would probably bear ripe feeds; as the lily of the valley, convallaria, is faid to do by crowding its roots fo much as to prevent the production of more of them, Amenet. Academ.Vol.VI.p. 120. A third method of procuring feed from orchis might be by cultivating a few of them in a hot-houfe for that purpofe.

The root of the fnow-drop, galanthus, if dug up in winter, and prepared in the fame manner, might poffibly fupply a nutritious mucilage fimilar to that of the orchis; as I once boiled a few of them, and found on tafting them, that they had no difagreeable flavour. If prolific feeds could be procured from this plant, it might be worth cultivation for the fame purpofes as the orchis; and the roots of the hyacinth,
hyacinth, I am informed, are equally infipid, and might be ufed as an article of food; but the roots of crocus, which I boiled and tafted, had a difagreeable flavour, and might probably therefore be infalubrious.

Mr. Gmelin in his Hiftory of Siberia afferts, that the roots of the lilium martagon are ufed as food in that country; and it is probable, that the root of the arum, though it be acrid in its raw ftate, might fupply palatable and falutary nutriment by cookery; as Mr. White afferts in his Hiftory of Selborne, p. 43, that it is fcratched up and eaten by thrufhes in fevere fnowy feafons, and it is known foon to lofe its acrimony even by expofing its dry powder to the air ; we may add, that the root of the afphodelus ramofus is ufed to feed fwine in France, and that good ftarch is obtained from the roots of white bryony and of alftromeria licta.

Other bulbous roots are propagated by florifts with great attention for the beauty of their flowers, as tulips, hyacinths, lilies, and many others. For an account of fome of thefe fee Sect. 1X. 3. on the growth of bulbs, and Sect. XIX. 3. 1. on the production of flowers.

II. Palmated or brancbing roots.

r. The bulbous and tuberous roots already mentioned were either fuch, as were primarily derived from feeds, as the turnip, carrot, parfnip, radifh, beet, falfafi; or fuch as were fecondarily derived from feeds, but immediately from bulbs or knobs fimilar to themfelves, as potatoes, ground artichoke, orchis, pig-nut. But the branching or palmated roots, which are ufed as food, or in medicine, or in the arts of dying, are feldom produced immediately from feeds, but generally from preceding roats, and are hence the product not of annual but of perennial plants; as the root of liquorice, glycyrrhiza; of marfh mallow, alcea; of rhubarb, rheum ; and of made der, rubia tinctoria.

The roots of thefe perennial plants hoot out not only annual: fteme.
ftems with numerous flower-buds above ground, but alfo other new buds on their caudex, or upper part of the roots beneath the foil; all which buds protrude their new caudexes not only over thofe ftems, but alfo over the old root-branches; and thus form annually a new bark over the old root, which remains alive beneath the ground, though the ftem perifhes by the winter frofts. This happens exactly in the fame manner as the bark of trees, which annually is produced over the old bark of the root as well as of the trunk; but in trees the ftem-bark as well as the root-bark furvives the winter.

Hence thefe palmated or branching roots of perennial herbaceous plants, as of rhubarb, madder, liquorice, continue to increafe in fize by the fuper-addition of an annual new bark; but in four or five years the internal part begins to decay, and the roots therefore fhould be taken out of the ground for ufe before that time. It is faid in the tranfactions of the Society for Encouragement of Arts, Vol. XVI. p. 226, that thofe rhubarb roots, which were not taken up, till they were feven or more years old, were moft of them good for nothing from the decay of the internal part of the root. The fame is faid to happen to fome bulbous roots, as the hyacinth ; and occurs in all thofe roots, which are faid to be end-bitten, as a fpecies of fcabius called devil's-bit. See Sect. IX. 3.5-

They fhould then be taken up in the winter months, before the new buds or flower-ftems begin to acquire nourifhment from the root, by which it would be deprived of a part of the nutritious, colouring, or medical matters; which principally refide in the bark, or alburnum of it. On this laft account alfo thefe roots fhould not be permitted to continue in the ground a much longer time than that above mentioned, though the internal or woody part of the root may not decay ; as the woody part is lefs adapted to the purpofes expected than the bark and alburnum, which cover or conflitute the numerous branches of the root.
2. One method to increafe the fize of thefe palmated or branch-
ing roots may be by pinching off the flowers, as foon as they appear, when the feeds are not wanted; this I once faw practifed on the rheum palmatum with apparent advantage, as well as on potatoes, as meutioned above; as more nutriment may thus be derived to the new buds forming on the roots.

The colouring matter fold under the name of annottd, or arnotta, which is faid to be obtained from the fkin of the kernel of the bixa of South America, or of the enonymus fhrub cultivated in our gardens, is believed to be much adulterated with madder, rubia tinctoria; the root of which for the purpofe of colouring cheefe may be ufed inftead of arnotta, and is to my knowledge a perfectly harmlefs root, though it tinges the bones of young animals red, who eat it mixed with their food, and may be grown by cheefe-farmers in their own gardens, as it is a very hardy perennial plant, and requires no art of cultivation. It may be ufed either by pounding the frefh root and boiling it in water, or by drying the root for the purpofe of preferving it, and afterwards bruifing and boiling it.

For the cultivation of rubia tinctoria fee Miller's Gardener's Dictionary, who defrribes with feveral plates the manner of growing and of afterwards preparing this root in prodigious quantities in Holland; and adds, " that if the cultivation of madder was carried on properly in England, that it would not only fave to the nation the great annual fum now expended in the purchafe of it from the Dutch, but would employ a great number of hands, from the time harveft is over, till the fpring of the year, which is generally a dead time for labourers; and the parifhes might thence be much eafed of the poor's rates, which is a confideration well worthy public attention."

The external part of the root of rubia tinctoria is coloured red, and its internal part yellow, which diftinguifhes it from moft other roots, which are generally etiolated owing to their feclufion from the light; which liberates their fuperfluous oxygen, which otherwife deprives them of colour as in bleaching, by uniting with their colouring mat-
ter, and converting it into a colourlefs acid, except where the colouring matter abounds in too great quantity. This etiolation of moft roots is evidently owing to the want of light, becaufe many of them, as of white potatoes, become green if they grow above ground.
3. The roots of fome aquatic plants are ufed in medicine both of the bulbous and palmated kinds, as fcilla maritima, fquill or feaonion, and the iris luteus, yellow water flag, and the acorus calamus, aromatic flag. Other aquatic roots are faid to have fupplied food, as the ancient lotus in Egypt, which has been by fome writers fuppofed to be the nymphæa nelumbo. Herodotus affirms in his Enterpe, that the Egyptian lotus grows in the Nile, and refembles a lily; and that the natives dry it in the fun, and take the pulp out of it, which grows like the head of a poppy, and bake it for bread. The white-flowered and the yellow-flowered nymphæa of our ponds and rivers has a palmated root fometimes three inches in diameter. In Siberia the roots of the butomus, flowering rufh, are eaten; both which well deferve further attention, as they grow fpontaneoufly in our ditches and rivers, which at prefent produce no efculent vegetables, and might thence become an article of ufeful cultivation. See Sect. 1X. 2. 5.

Some other aquatic roots, as well as terreftrial ones, might probably become efculent and nutritive by boiling or roaffing them to deftroy their acrimony. Or it is probable, that a wholefome ftarch might be obtained from them, as from the roots of white bryonia, as is affirmed by M. Parmetier, by the fimple procefs of grating the root by a bread-grater of tinned iron into cold water, and depriving it of its acrid mucilage by frequent cold ablution. And laftly, that they might be fo managed as to undergo fermentation either by previous germination, or by adding yeft to the juice expreffed from them after boiling, and thus be converted into wine or beer, from which a fpirit might be difilled, or vinegar produced. See Sect. XI. 2. 5.
4. The art of preferving roots, when taken out of the ground, confifts
confifts either in keeping them alive during the winter without fuffering them to germinate, as life prevents the fermentation or putrefaction of their juices; or fecondly, by depriving them of their water. For the firft purpofe the roots, whether bulbous or palmated, fhould be kept in a degree of heat above the freezing point of 3^{2}; fince freezing them deftroys their life; whence they not only undergo a fudden change in their flavour and nutritive quality, but quickly tend to putrefaction in confequence of their lofs of life like the eggs of animals. Neverthelefs both vegetable and animal products, as fruits and flefh, as well as roots, may probably long exift unchanged in a frozen flate in ice-houfes; and if they are at length gradually thawed by covering them with melting ice, or immerfing them in cold fpring water, it is faid by Mr. Reaumure, who tried the experiment on apples, that they do not lofe much of their flavour, if they be afterwards foon made ufe of ; otherwife, I fuppofe, as the froft has deprived them of life, they foon begin to undergo chemical changes.

If thefe roots are kept in a degree of heat above 48 , which is the heat of the internal parts of the earth, and confequently of fpring water, they are liable to germinate, as happens to onions and potatoes in our ftore-houfes during the vernal months. And if they be expofed to a much greater heat, fo as to deftroy the life of the root, they foon run into fermentation or putrefaction, or become covered with mould; unlefs the water which they contain be quickly diffipated by evaporation. A friend of mine once fent many ftrikes of potatoes to be dried on a malt-kiln, hoping by that means to preferve them during the fummer ; but as the life of thefe roots was deftroyed by the degree of heat, and only about half of their water evaporated, they foon became fo putrid after being returned into his floreroom, that the ftench of them was intolerable, and even the fwine refufed to eat them. Neverthelefs I believe, if the parts either of vegetables or animals could be kept in an heat at or above the boiling point of 212 in clofe veffels, fo as not to fuffer their fluid part to eva-

[^1]porate, that neither fermentation nor putrefactiou would enfue ; but that they might be kept for years unchanged, as in the cold of 32.

The degree of heat required for preferving roots fecure from froft, and from the procefs of germination, which is that between the degrees of 3^{2} and 48 of Farenheit's thermometer, may be well managed by ftoring them beneath the foil in dry fituations, as in dry cellars, or in pits dug for that purpofe, or even in barns; but this requires more attention than is ufually employed in the common manner of ftoring potatoes, which are liable to be injured both by froft and by germination. Thefe pits in a dry foil fhould be covered with materials, which conduct heat ill, and alfo with fuch as might abforb any putrid exhalations, which may occur, and thus check the progrefs of putrefaction, if it fhould commence.

Air is a bad conductor of heat, if it be confined over the furface of any body, but not fo if it be perpetually changed; as it then carries away heat very rapidly, as any one may experience by being fanned on a hot day. Hence all fuch materials as poffefs large pores or interftices full of air, are bad conductors of heat; as blankets, fawduft, wood-havings, or ftraw ; and will thence preferve the bodies, they cover, both from external cold and from external heat. But as charcoal in coarfe porvder not only includes much common air in its pores, but alfo has the property, efpecially if recently burnt, of abforbing putrid exhalations; and is alfo itfelf of an unperifhable nature; it feems peculiarly adapted to the purpofes above mentioned. Hence the heaps of potatoes, or carrots, or parfinips, or ground artichokes, or even the roots of turnips or of beets, and the heads of cabbages, and perhaps pears, and apples, as well as nuts, almonds, and walnuts, might be well preferved in pits or cellars, or even in barns, if they were firft covered with powdered charcoal an inch or two in thicknefs, and over that a covering of faw-duft, and finally over thefe a thick impenetrable thatch of fraw; whence a fore of provender for the winter months and the fucceeding fpring

Sect. XVII. 2. 5. ROOTS AND BARKS.

may be preferved from any degree of cold or of warmth much above or below that of the internal parts of the earth, in which feeds are known to continue for ages even without germination or decay.

It is neverthelefs neceffary to dry many palmated roots, when they are taken out of the ground, either becaufe they will not continue to live in our barns or ftore-rooms, like the bulbous roots, or becaufe they require to be kept for fome years in the fhops of medicine. Some of thefe roots, as thofe of rhubarb, are faid like the bulbous roots of fcilla or fquill to contain five fixths of their weight of water, and therefore require confiderable care in the method of drying them; for unlefs they are properly dried, they are liable to contract mould or mucor ; which is a vegetable production, which will grow on putrefying materials without light or much air ; but might be prevented from growing by the vapour of perhaps a teafpoonful of firit of wine, as mentioned in Sect. XV. 2.3 .

There is neverthelefs fome precaution neceffary in exhaling the moifture of thefe roots, as they fhould be placed in a fituation, where they are ventilated as well as heated; for warmth alone is liable to forward the tendency of the faccharine and mucilaginous parts of them to pals into fermentation or putrefaction, and thence to deftroy them ; as the alburnum or fap-wood of timber trees is liable to decay by what is termed the dry rot.
With this defign drying houfes are conftructed for the preparation of madder, rubia tinctoria, as defcribed in Miller's Dictionary; and the rhubarb of the fhops has frequently large holes bored through it; which, it is fuppofed, were defigned to pafs cords through for the purpofe of fulpending it to dry, as it is conveyed on camels in a warm climate.
5. The cultivation of mufhrooms, morels, and truffles, agaricus, phallus, lycoperdon, fhould be here mentioned; as they are propagated by their roots. The fungi feem to conflitute an ifthmus between the two great continents of nature, the vegetable and animal kingdoms.
kingdoms. The odour of a fungus, when burning, approaches to that of burning feathers; and all of them putrefy like animal fleth ; fome of them as the phallus impudicus, ftink-horn, emits fuch a putrid fcent, as it grows, as to attract innumerable flefh-flies to depofit their eggs or fpawn in it. And thofe mulhrooms, which are cooked at our tables, as well as the catchup, made by preferving their juices in falt and water, poffers an animal flavour. Of this laft cirčumftance I was told a remarkable inftance, where a cook-maid in a family of invalids, who frequently wanted weak broth, perpetually deceived them by a mixture of a fmall quantity of good catchup with thin gruel, and with only the addition of Chred leaves of parfley, and a little falt.

Another thing in which the fungufes differ from vegetables, confifts in their growing perfectly well without light, which is fo neceffary to the health of vegetables. The fcarlet folds beneath the head of the common efculent mufhroom are fo like the gills of fifh, that they have in our language obtained the fame name. Thefe folds beneath the hat of the agarics, the pores beneath the boletus, and the thorny appearance beneath the hydnum, and the net-like pores of phallus, are all different means of expofing a larger furface to the air; and therefore undoubtedly conflitute the lungs of the fungufes, as leaves conftitute thofe of vegetables, and not their organs of reproduction, as fome have fuppofed.

The chemical analogy, which exifts between fome of the mufhroom tribe and animal matters, led Van Humboldt to inveftigate their conducting power of what he terms the galvanic fluid, which I believe to be fimply a minute fhock of the electric fluid; and he found, that morels and thofe fungi, which in a ftate of putrefaction emit a cadaverous animal fmell, are equally good conductors as real animal fubftances. Annals of Medicine for 1 798, Edinb. Van Humboldt afferts further, that by chemical analyfis they approach likewife to animal fubftances, as they contain much azote and phofphorus. He alfo afferts, that he converted morels into fat by means
of fulphuric acid diluted with water, which experiment he thinks is analogous to that of Gibbes, and of the burying ground of the Innocents, where fat was formed from mufcular flefh. Journal de Phyfique, Vol. IV. p. 67.

The fungi would hence appear to be animals without locomotion, whofe lacteal veffels are inferted into the earth, like thofe of vegetables; but whofe gills or lungs are covered from the light, like thofe of animals, but expofed to the open air like the leaves or lungs of vegetables. Another curious occurrence, which feems to affociate them with animals, if the truth can be depended upon, is that fome of them are of animal origin; as the common mufhroom is faid certainly to be procured from horfe-dung, as mentioned below; and may therefore have its embryon or early ftate in the inteftines of animals, and its maturer fate in the foil or atmofphere like other infects, as the bot-fly, and perhaps the tape-worm, and afcarides? as this production of muthrooms is otherwife contrary to all known analogy. Other fungi are found on the decayed parts of peculiar vegetables, from which they feem to take their origin, perhaps like worms in the inteftines of animals, as the agaric of the oak, of the beech, of the elder; the boletus of the beech, and of the willow; and many others mentioned by Limnew.

The lycoperdon tuber, or truffle, grows under ground without light, never rifing into day; and is propagated, I fuppofe, by only a paternal or lateral progeny, like the polypus of our ditches, and not by fexual connexion, or feminal progeny. The truffle is hunted by dogs probably from its poffeffing fomewhat of an animal fcent, like the perfpirable effluvia left upon the ground, by which they hunt their game or difcover the foot of their mafter.

The phallus efculentus, morel, and the agaricus, mufhroom of various kinds, will grow without light in cellars, or on beds covered with ftraw ; and are alfo, I fuppofe, propagated by a paternal or lateral progeny only, and not by a fexual or feminal one.

The ronts, or fpawn, or embryons, of the common mufhroom are faid by Mr. Kenedy and others to be certainly procured from horfedung laid unbroken in fmall heaps under cover. It is afferted, that in a few weeks during the fummer months thefe roots will appear like white threads; which on breaking the lumps have the mumhroom fmell. Thefe horfe-droppings are directed to be as little broken as poffible, and to be laid about three inches thick on a hot bed of moderate warmth, conftructed of alternate layers of tanner's bark and horfe-dung, and whofe uppermoft ftratum confifts of tanner's bark about two inches thick. The bed is then to be covered with a little manure, and about three inches of good foil, and finally with a thick coat of ftraw. The fhed behind moft hot-houfes is found to afford a convenient place for a mufhroom bed ; as no light is required, but only warmth, and occafional moifture. See Kenedy on Gardening, Vol. II. for a particular account of this procefs.

In the tanyards of Derby, I am well informed, that a production of muthroom fpawn always occurs in the path, where the horfe walks, which draws the rolling fone to grind the bark, which path confifts of powdered oak-bark and horfe-dung trampled together. Of this I was in one inftance an eye-witnefs, but whether the embryons of murhrooms were derived from the oak-bark or horfe-dung was not eafy to determine.

Mr. Ferber, in his Travels through Italy, tranflated by Rafpe, mentions the mufhroom-ftone. He fays "the pietra fungaia is a white calcareous ftalactite, or tuph-ftone, dug in the limeftone hills bordering on Romagna, and endowed with the quality to produce in any feafon of the year efculent mufhrooms, if kept in a moift cellar, and now and then fprinkled with water. This quality is owing to a great many roots, or vegetable fibres, together with the mufhroom feeds enclofed in its fubftance. They are ufed in fome great houfes in Naples and Rome. I faw an indurated mould from the fame place that mint of Florence."
From this account the mufhroom-ftone appears to confift of a porous tupha, like that with which the houfes are built at Matlock Bath; and which has been depofited from the water. But a later writer has fince analyfed one of thefe ftones, but does not mention how long it had been ufed for the vegetation of mufhrooms; which might in great meafure affect the refults of his analy fis. Mr. Gadd, in the Stockholm Tranfactions, fays, that this pietra fungaia defcribed firft by Ferber confifts of forty-five or forty-fix huidredth parts of filiceous earth, and twenty of a calx of iron, with a little magnefia and vegetable alkali. Analytic. Review, Dec. 179 9.

In this country the cellars would not be fufficiently warm to produce mufhrooms at any feafon of the year; but as this mufhroomftone is of calcareous origin according to Ferber, it fhews, that calcareous earth is friendly to the growth of mufhrooms; and a fimilar porous ftone from the vicinity of Matlock Bath might probably be permeated in a fimilar manner with the roots of them, as a convenient repofitory of them to be raifed into life occafionally by warmth and moifture.

Some of the fungi are believed to poffers an intoxicating quality, and are eaten for that purpofe by the peafants in Siberia. One fungus of the fpecies agaricus mufcarum eaten raw, or a decoction of three of them, produces intoxication for twelve or fixteen hours. Hiff. of Ruffia, Vol. I. Nichols, 1780. The Oftiachs alfo blifter the fkin by a fungus found on birch-trees, and ufe the officinal agaric for foap. Other fungi poffers a juice fo acrid in their raw ftate as immediately to blifter the tongue, as I once experienced on tafting a minute drop of the juice of a large mufhroom, which on breaking the hat poured out a yellow juice, which became purple or blue in a few feconds of time on its being expofed to the air; which I believed to be the fungus deliciofus of Linneus; the acrimony of which might never3 R thelefs
thelefs probably be deftroyed by a boiling heat. And it is alfo probable, that the common efculent mulhroom may fometimes difagree from their being not fufficiently ftewed, or by the incautious mixture of fome intoxicating furigi along with them.

Otherwife thofe in common ufe at our tables appear to fupply a wholefome and nutritive food, approaching towards an animal nature. Two or three kinds are faid to be eaten in France befides the redgilled ones which are eaten here; and it is probable many other kinds of fungi might be found agreeable to the palate, and wholefome food, if well boiled, which might deftroy their acrimony; and efpecially thofe which when broken have fimply the agreeable fmell of the red-gilled ones in common ufe; and fome of thefe, I fuppofe, might be eaten raw without injury, as many people eat the red gilled ones.

Befides fome mufhrooms with white gills, which when broken had the grateful fcent of the common red-gilled mufhroom, and which were faid to be more delicious, I have known the peziza auricula, or ear-fungus, which was formerly an article of the materia medica under the name of Jew's ear, to be ftewed and eaten in confiderable quantity with impunity ; and was efteemed an agreeable article at the fupper-table. And as this was efteemed a pernicious genus of fungi by Clufins, it is probable, that many other fungufes might lofe their acrimony by the heat of ftewing, and become wholefome and agreeable food; which are at prefent in difufe from their difagreeable acrimony in their raw ftate, or from the bad character they have accidentally acquired.

It fhould be added, that though thofe plants, which are fuppofed to poffefs an alkalefcent property, and to be liable to putrefaction fooner than other vegetables, lofe a part of their acrimony by a boiling heat, as water-creffes, cabbages, onions; yet that plants, whofe acrimony is of a different kind, as ginger, capficum, arum, do not become much milder by boiling. I this morning directed fome leaves
of common fpotted arum, and of arum arifiarum to be boiled, and on tafting them found my tongue and lips almoft excoriated. The nature of this kind of acrimony has not been fufficiently inveftigated by the chemifts, but probably depends on a fixed effential oil.

iII. Barks.

1. The barks of the trunks of trees are fimilar to thofe of their roots, and may be efteemed a part of them, as they confift of an intertexture of the veffels, which defcend from the plume of each individual bud to the radicle of it, and conftitute its caudex. The bark neverthelefs of the root is furnifhed with lymphatics to abforb water and nutritious juices from the earth, and is covered with a moifter cuticle; while the bark of the ftem is furnifhed with lymphatics to abforb moifture from the air, and is covered with a drier cuticle; the latter refembling the external 1 kin of animals, and the lymphatics, which open upon it; and the former refembling the mucous membrane of the ftomach, and its lacteals.

As the fap-juice rifes in all deciduous trees during the vernal months to expand their foliage, though probably in greater quantity in fome trees than in others, it muft confift not only of fugar and mucilage, as in the maple and birch, but of various other ingredients in different trees, which have not been attended to; as appears from the tafte of their young leaves, as of oak or afh. And as fome of thefe materials refide in the roots and fap-wood or alburnum, fo others of them may perhaps refide in the bark, where they have been depofited during the preceding fummer, and become lignified by the warmth of the fpring, or diffolved by the moifture abforbed from the earth and air, and conveyed upwards to the opening buds; whence it is evident, that the barks of trees fhould be taken off for ufe in winter or in early fpring, before their buds begin to expand; as then a part of thefe nutritious juices, or of the other materials, which are required for medicines, or in the arts of dying and tan${ }_{3} \mathrm{R}_{2}$ ning,
ning, are in part expended on the young leaves; which generally poffefs the tafte and qualities of the bark, though in a lefs degree.

It may neverthelefs be obferved, that all thefe aftringent, or other materials, may refide in the alburnum of the trunk or roots of all perennial vegetables, as well as in their barks; becaufe the young leaves, which pullulate on decorticated oaks, have the fame bitter flavour as the leaves on thofe, which have not been decorticated; which may in part be derived from the bark of the root, which is fill in the ground, and be carried up the veffels of the fap-wood to the new buds.
2. Hence the bark of oak-trees fhould be taken off during the winter; but when the fap-juice refiding or afcending in the veffels of the alburnum becomes more liquefied by the warmth of the fpring, or is mixed with more moifture, and pufhed up with great force by the abforbent veffels of the roots, it oozes out in fome degree between the alburnum and the bark; and thes the bark becomes fo much more readily feparated from the fap-wood; whence this bufinefs is generally done early in the fpring, and fhould be performed as foon as this facility of detracting the bark appears, as mentioned in Sect. III. 5 ; becaufe this procefs of the germination of the buds continues to injure the bark, whether the tree be cut down or not ; as the buds expand their foliage on new felled trees, as they lie on the ground.
3. The interior barks of fome trees, like the alburnum or roots above defcribed, contain much mucilaginous or nutritious matter; as the bark of elm, ulmús, and of holly, ilex ; and probably of all thofe trees or thrubs which are armed with thorns or prickles, which are defigned to prevent the depredations of animals on them, as the hawthorn, goofeberry, and gorfe, cretægus, ribes groffularia, ulex. The internal barks of thefe vegetables may be conceived to be their alburnum lefs indurated, and might probably all be ufed as food for ourfelves or other animals in years of fcarcity, or for the purpofe of fermentation ; as I doubt not but the inner bark of elm-trees, ul-

Sect. XVII. 3.3. ROOTS AND BARKS.

mus, detracted in the fpring by being boiled in water might be converted by the addition of yeft into fmall beer, as well as the alburnum of the maple and birch, acer et betula; all which are now fuffered to be eaten by infects when thofe trees are felled.

For the fugar, which is extracted from the vernal fap-juice of the maple and birch, as well as that found in the manna-afh, fraxinus ornus, feems to refide during the winter months in the root or alburnum, rather than in the bark properly fo called; and to become liquefied, as above mentioned, by the warmth of the fpring, or diffolved by the moifure abforbed from the earth, and conveyed to the opening buds; but refides folely in the roots of perennial herbaceous plants; and in the economy of graffes, and I fuppofe of the fugarcane, it is depofited at the bottom of each joint, which is properly the root of the ftem above it, as fhewn in Sect. IX. 3. i.

Of thefe the bark of the holly not only yields a nutritious mucilage, and thus fupplies much provender to the deer and cattle in Needwood-foreft by the branches being cut off, and ftrewed upon the ground, in fevere feafons of froft and fnow ; but contains a refinous material, which is obtained by boiling the bark, and wafhing away the othereparts of it. This refinous material poffeffes a great adhefivenefs to feathers and other dry porous bodies, and has hence obtained the name of bird-lime, and much refembles the caoutchouc or elaftic refin brought from South America, and alfo refembles a foffil elaftic bitumen found near Matlock in Derby/hire, both in its elafticity and inflammability. Hollies may be worth cultivating for this material befides the ufes of their wood, as I was informed, that thirty years ago a perfon, who purchafed a wood in York fhire, fold to a Dutch merchant the bird-lime prepared from the bark of the numerous hollies for nearly the whole fum given for the wood ; which if it could be hardened might probably be fold for the elaftic refin above mentioned. Whether this refembles the nutritive refinous material found
found in wheat flour, when the mucilage and ftarch are wathed from it, might be worth inquiry, as mentioned in Sect. VI. 8. 5.
4. Other barks contain bitter, refinous, aromatic, or acrid materials, which fupply the fhops of medicine, as peruvian bark, cafcarilla, cinnamon, and were defigned by nature to protect thofe vegetables from the depredations of quadrupeds or infects. Hence many trees, and even the wood of them, after it is dried, and made into domeftic furniture, is never devoured by worms, as the mahogany, cedar, cyprefs ; and hence many plants, as the foxglove, digitalis, houndstongue, cynogloffum, henbane, hyofciamus, and many trees, are not devoured by any animals; as their juices would be poifonous to them, or much difagree with their ftomachs, if their difgufful flavours to the nofe or palate did not prevent their eating them. The fame defence of the vegetable kingdom from human digeftion, except thofe which have in long procefs of time been felected and cultivated, appears from the relation of fome unfortunate fhipwrecked travellers, who have paffed fome hundred of miles along uninhabited countries almoft without finding an efculent vegetable production.
5. Other barks contain reftringent or colouring particles, employed in the arts of dying and tanning, as berberry, oak, and afh, berberries, quercus, fraxinus. The art of tanning confifts in filling the pores of the animal mucous membrane with thefe reftringent particles found in fome vegetables, which are believed to poffefs a quality of thortening animal fibres. Thus when a long hair is immerfed fome time in a folution of the bark of oak, or of the galls produced on its leaves by the punctures of infects, the hair is faid to be fhortened. Whether this procefs be occafioned by chemical coagulation of the mucus, of which thefe fibres totally or in part confift, or by capillary attraction tending to diftend thefe fibres in breadth, and thus to fhorten them, as a twifted ftring is fhortened by moifture, has not yet been well inveftigated. By thus impregnating the pores of animal fkins with vegetable particles, they become lefs

Sect. XVII. 3.6. ROOTS AND BARKS.
liable to putrefaction, as confifting of a mixture of animal and vegetable matter, as well as much better adapted to many domeftic or mechanical purpofes.

The art of dying confifts likewife in impregnating the pores of dry fubftances with a folution of the colouring matter extracted from vegetables by the capillary attraction of thofe pores to the coloured folution. And fecondly, by a chemical change of thofe colouring particles after they have been imbibed, and the water of the folution exhaled, by again fteeping them in another folution, which may chemically affect the former. Thus as green confifts of a mixture of blue and yellow, it may be beft produced by boiling the material defigned to be dyed firft in a decoction of one of thefe colours, as of indigo ; and then in that of another, as of the bark of berberry. And as a folution of iron becomes black when mixed with a decoction of oak-galls, by being in part precipitated; it is probable, that the particles of this combination of a folution of iron with reftringent matter may be larger than either of thofe particles feparately; and therefore that, if a dry porous fubftance be immerfed firft in a decoction of oak-galls, and after being fuffered to dry, is then immerfed in a folution of iron, the black tinge will penetrate into minuter pores, and thus become more intenfe, than if the fubftance had been immerfed in the black dye already prepared.
6. Other barks are ufed for apparel, paper, cordage, and for many mechanical purpofes, owing to the ftrength and tenacity of their fibres, or to the finenefs of them; as hemp, cannabis; flax, linum; for the purpofes of finning and weaving; an art invented by Ifis, queen of Egypt, who feems firft to have cultivated flax ; which was brought into Europe from the banks of the Nile. The bark or leaves of the papyrus, a flag of the Nile, was firft ufed for paper; and the bark of the mulberry-tree is fill made into cloth at Otaheite and other fouthern illands.

The art of feparating the fibres of the bark of plants, as they con-
fift of the caudexes of buds, or the connecting veffels between the plumules and the radicles of them, is performed by foaking them fome weeks in ftagnant water ; till the mucous membranes, which connect thefe fibres, are deftroyed by putrefaction ; and afterwards by drying them, and beating off with hammers, what may fill adhere.

Thefe fibrous parts of the barks of trees, as they contain no faccharine matter, like the alburnum, are much lefs liable to decay than the fap-wood, or perhaps than any part of the timber. Maupertuis, who'went to Lapland to meafure a degree of the meridian, fays, that among the numerous trees which lay upon the ground deftroyed by age, or blown down by the winds, many birch trees appeared whole, owing to the undecayed ftate of their bark; but crumbled into powder on being trod upon; and that the Swedes took the practice from this of covering their houfes with this unperimable bark, on which they fometimes lay foil, and thus poffefs aerial gardens. Voyages by Mavor, Vol. XII.
7. To increafe the quantity of bark it muft be remembered, that the leaf-buds, or viviparous offspring of trees, as they form new buds, acquire new caudexes extending down into the ground, and thus increafe the bark of the ftem in thicknefs; but the flower buds acquire no new caudexes, but die, as foon as they have ripened their feed, and confequently do not increafe the thicknefs of the bark. Whence one method of increafing the quantity of the bark is to increafe the number or vigour of the leaf-buds in contradiftinction to the flowerbuds, which may be done by pinching off the flowers as foon as they appear; and as the bark becomes gradually changed into wood, this may be one method alfo of forwarding the growth of timber trees, as mentioned in the next Section.
8. The method of preferving the bark of trees from mofs confifts in rubbing off that parafite vegetable in wet weather by means of a hardifh brufh ; which is faid to be ufed with advantage on the appletrees in the cyder countries; and may at the fame time give motion

SECT. XVII. 3. 9. ROOTS AND BARKS.
to the vegetable circulation, or forward the afcent of their juices $a b-$ forbed by the radical or cortical abforbents. In dry weather the brufh fhould be frequently dipped in water. Wathing the barks of walltrees by a water-engine may alfo facilitate the protrufion of their buds in dry feafons; and might poffibly prevent the canker, if applied to dwarf or afpallier apple trees. Other parafite vegetables muft be occafionally deftroyed, where they occur, as the lichens, fungi, mifletoes; with the ivies and other climbers, as fome kinds of lonicera, clematis, and fumaria, woodbine, virgin's bower, and fumitory.
9. When a wound is made in the bark fo as to expofe the alburnum to the air, the upper lip of the wound is liable to grow fatter downwards, than the lower one is to grow upwards, owing to the former being fupplied directly with nutritive juices fecreted from the vegetable blood, after its ventilation, and confequent oxygenation in the leaves; whereas the lower lip only receives thofe juices laterally by inofculation of veffels. Over thefe wounds the cuticle is liable to project, and to fupply a convenient hiding place for infects, which either eat the new fibres of the growing bark, and perforate the alburnum ; or by their moifture, their warmth, and their excrements, contribute to the decay of the alburnum, and prevent the healing of the wound. Thefe dead edges of the projecting bark or cuticle fhould be nicely cut off, but not fo as to wound the living bark.

Plafters of lime, or of tar with fublimate of mercury, have been recommended to preferve the wounded parts from the air, and from moifture, and from infects; but as all thefe materials are injurious to the fibres of the living bark, they fhould be ufed with caution, fo as not to touch the edges of the wound, but only to cover the alburnum; for this purpofe white lead and boiled oil, mixed into a thick paint, or with the addition of fublimate of mercury, or of arfenic, or of firit of turpentine, may probably anfwer the purpofe; and may be of real utility on the wounds of thofe trees, whofe wood
contains lefs acrimony, and , is therefore more liable to be bored into and eaten by a large worm or maggot almoft as thick as a goofequill : which I have feen happen to a pear-tree, fo as to confume the whole internal wood, till the tree was blown down.

In refpect to the caution neceffary to be obferved in not touching the living edges of the wounded bark with fuch materials as may injure the tree by their abforption, I remember feeing feveral young elm trees, which died by their boles having been covered, as I was informed, by quick-lime mixed with cow dung to prevent their being injured by horfes; and I have feen branches of peach and nectarine trees deftroyed by fprinkling thern, when in leaf, with a flight folution of arfenic, and others with fpirit of turpentine.
10. A more curious method of cure is faid to have fucceeded, where the bark of a tree has recently been torn off even to great extent, and that is by binding the fame piece of bark on again, or another piece from the fame tree, or from one of a fimilar nature, nicely adapting the edges of the bark to be applied to the edges of that, which furrounds the wound of the tree, which it is faid will coalefce in the fame manner, as the veffels of the bark of an ingrafted fcion unite with thofe of the bark of the flock ingrafted on; which is ftrietly analogous to the union of inflamed or wounded parts of animal bodies, as in the cure of the hare-lip, or the infertion of the living tooth from one perfon into the jaw of another, or the factitious nofes of Talicotius.

If the bark over the cankered parts of apple-trees could be thus renewed by paring the edges of the mortified bark to the quick, and then nicely applying a piece of healthy bark from an apple-tree of inferior value, and fecuring it with an eldfic bandage, as a fhred of flannel, it would be a very valuable difcovery.

Another method, where a branch of a valuable tree is in the progrefs of being deftroyed by canker, might be by inclofing the cankered part, and fome inches above it, in a garden-pot of earth previoully
XVII. 3. 10. be bored into as a goose. consume the
not touching Ils as may in. everal young red, as I Was vent their be. asch and nee. with a light
vie fucceeded, even to great on again, or Similar nature, o the edges of it is said will of an ingraft. ingrafted on; wounded pat ts e insertion of er, or the fac.
ald be thus 50° the quick, and pple-tree of in as a Three of

Sect. XVII. 3. 10. ROOTS AND BARKS. 499
vioufly divided, and fupported by fakes, and tied together round the branch ; which might then frize roots in the earth of the gardenpot, and after forme months might be cut off, and planted on the ground, and might thus be preferved, and produce a new tree; which experiment I have this fummer tried on two apple-trees, and believe it will fucceed.

S E. C T. XVIII.

PRODÚCTION OF LEAVES AND WOOD.

I. 1. Leaves are the lungs of vegetables. Graffes propagated by their roots., Some are viviparous. Foints of grafes are fuccefive vegetables. And their roots. Extract roots of twitch-grafs by a fcarifier with inclined teeth. Produce root-leaves. for grazing, and ftem-leaves for bay. Eat down the firft fem. Cut gras young for hay. Why young bay is liable to take fire. How to prevent it by fraw. Eat lowe meadows late. Sowe rye-grafs, trefoil, white clover, for fucceffive berbage. Other grafs feeds. Roll then in Spring. Effects of froft. Ufe more water as in rice grounds. Sow thick. Heavy cattle hould be ftall-fed. Howe to deftroy tuf: focks. How to make bay. 2. Some root-leaves eaten raw. Others previouly boiled. Upper part of fome roots and of fome ftems efculent. Apparagus. Art of cultivation of root-leaves and Jtem-leares. Of mulberry-leaves. 3. Etiolation of leaves lefens their acrimony. Etiolated flowers. Etiolated ladies. 4. Aromatic. and bitterifh leaves "used as tea, as of Jage. When to be gatbered. Tea recommended. 5. Leaves ufed in medicine. Bog-bean infiead of bops. Otbers for tanning, as oak, afb; and alder leaves. Otbers for dying, as indigo and woad. 6. Leaves will ferment and may make a kind of beer. II. I. Wood is produced from leaf-buds. To increase wood moiften the trees. Scratch the bark. How to fraigbten crooked trees. Pinch off the flowers. 2. To render timber trees tall without knots, or crooked for ßip-timber. Willows. Oziers. Sugar-maple. Scotch jirs. 3. Preferve wood from lightning, and from wood-peckers. 4. Woods differ in cobour. Ufed in dying. Differ in medical and chemical properties. 5. Oak corrodes lead. Sap-rvood rots under lead. How prevented. Whence the myfteries of Free Masonry. 6. Woods differ in their bardnefs and smootbnefs. Blocks for printing. 7. In their durability as cypress. Alder for piles. 8. In lateral cobefion. Hygrometer. Pendulum. 9. In Specific gravity. Rafts of bollow trunks. 10. In elaficity. Bows. i1. How to tranflant large trees. How
to prop them. 12. Time of felling timber after barking it. The concentric rings of timber. 13. Pith is brain. Does not communicate from bud to bud. Sagoe from articboke. From elder. 14. Boundary to the growoth of trees. Not to. coralline rocks.

1. Of Lieaves.

r. The buds of plants have already been thewn to be individual vegetable beings, and the leaves to conftitute the lungs of each individual bud. And laftly, that the new bud in the bofom of each leaf is the offspring from the caudex of that old bud, of which the leaf conftitutes the lungs.

The leaves of graffes are of great confequence, as they nourifh many of our domeftic quadrupeds; the cultivation of graffes has therefore been much attended to. Many of thefe propagate themfelves more by their roots than by their feed; efpecially where their ftems are perpetually deftroyed by the grazing of cattle, fheep, or geefe; and fome of them are faid to be viviparous, as the feftuca dumetorum, or fefcue grafs; that is, that they bear bulbs on their ftems after flowering inftead of feeds, which in time drop off, and ftrike root into the ground, like the polygonum viviparum, and the allium magicum; which circumftance is faid to obtain in many tlpine graffes, whofe feeds are annually devoured by fmall birds.

The ftems of the graffes confift in general of joint above joint without lateral branches; each joint of which feems to be a fucceffive plant growing on the preceding one, and generated in the bofom of the leaf, which furrounds it; the ftem may therefore be efteemed a fucceffion of leaf-buds, till at length a flower-bud is produced on the fummit, as thewn in Sect. IX. 3. 1. In fome graffes, as the agroftis canina, or triticum repens, dog's-grafs, twitch-grafs, or couch-grafs, the root confifts of joints as well as the ftem; which may be confidered as feparate individual plants, like the bulbs of potatoes, as every joint of thefe roots will grow into a new plant to the
great annoyance of the agricultor, which, when the ground is not hard, may be beft, I believe, drawn out by a deep harrow, or by Mr. Cook's fcarifier; as a plough turns them over under the foil, as it breaks them, and thus much increafes their number by in a manner tranfplanting them. The teeth of the harrow, or fcarifier, thould be inclined forwards towards the horfe for the purpofe of lifting up the roots, and that it may not too eafily rife out' of the foil ; and it fhould be fixed by wedges or fcrew-nuts to the wooden frame for the purpofe of occafionally lengthening them to adapt them to different foils, as the roots pierce deeper into lefs tenacious foils than into clayey ones.
Hence it appears, that a plant of grafs confifts not only of a tuft of leaves furrounding the root, but that the three or four lower joints of the ftem, as of a wheat-ftraw, are fo many fucceffive leaf-buds, which are generated by the caudex of the leaf, which furrounds each joint, and precede the flower-bud at the fummit; and that hence with the defign of producing much herbage for cattle, the propagation of new leaves from the root is principally to be attended to; but with the defign of producing hay, or winter fodder, the leaf-buds of the ftem are principally to be attended to.

For the former of thefe purpofes the ftem of grafs thould be eaten down as foon as it rifes ; whence more grafs leaves will arife from the root; as is well known to thofe who eat down the firft ftem of wheat, when it is too luxuriant. For the fecond purpofe the leafbuds, which conflitute the ftems of grafs, fhould be cut down, before the flower-ftem at the fummit has begun to ripen its feeds; as at that time the fweet juice lodged in the joint below the flower-ftem becomes expended on the feed; and the ftem becomes converted into ftraw rather than into hay.

From hence it is readily underftood, why thofe paftures, which are perpetually grazed, are fo much thicker or clofer crowded with grafs roots than thofe, which are annually mowed; and why grafs cut

SECT. XVYTY. ъ. I. LEAVES AND WOOD.

young makes fo much fweeter and more nutritive hay than that, which has ripened and thed its feed. And laftly, why the hay from grafs cut young is fo much more liable to take fire, if ricked too moift ; becaufe the greater quantity of fugar in the joints of the ftems produces fo violent a fermentation, when it has fufficient water to diffolve it, that it generates fo much heat as to burft into flame. This might beft be prevented, where chopped fraw is defigned to be given to horfes along with their hay, by laying alternately in the hayHack a ftratum of new hay and a ftratum of ftraw, or of clover and ftraw ; whence the rapid fermentation, which occafions combuftion, may be prevented, and the ftraw may be rendered eafier of digeftion by being impregnated with the fermentative infection, or yeft, of the fermenting hay.

The art of increafing the quantity of leaves round the roots of graffes confifts in eating off the central ftems by fheep, or horfes, or cattle, early in the feafon, as above mentioned; whence new ones are produced around the firft joint of the ftem thus bitten off, and from the diftant horizontal root-wires of fuch graffes, as produce them. In low meadows it is hence doubly profitable to eat down the early grafs till about the middle of May, as in moiff fituations there is no danger but a crop of hay will fucceed; which by this method will be finer and more copious; and at the fame time fome weeks provender of hay will have been faved by the ufe of the early grafs.

On land intended for pafture, as for theep, many people advife to fow three kinds of vegetables, which may in fome meafure fucceed each other in their growth. Mr. Parkinfon fows four buthels of the feed of rye-grafs, lolium perenne, ten pounds of trefoil feed, trifolium pratenfe, and ten of white clover, trifolium repens, on every acre; and adds, that the rye-grafs mould be eaten early, while the white clover is ftll concealed in the ground, and the trefoil makes only fome fmall appearance. That when the rye-grafs is eaten down
the trefoil fprings up, and becomes food for the fheep; after which the white clover fucceeds; and after this is confumed, the rye-grafs again fprings up, and fupplies food during the winter months, if the weather proves tolerably mild; and he further afferts, that a third more of theep at leaft may be thus nourifhed than by any other means. Experienced Farmer, Vol. I. p. 88.

For the production of a meadow much fuperior to thofe commonly feen Mr. Curtis recommends fix kinds of grafs and two of clover to be fowed; the feeds are to be mixed together in the following proportions. Meadow foxtail, alopecurus pratenfis, one pint ; meadow fefcue, feftuca pratenfis, one pint; fmooth ftalked meadow-grafs, poa pratenfis, half a pint ; rough ftalked meadow-grafs, poa trivialis, half a pint; crefted dog's-tail, cynofurus criftatus, a quarter of a pint ; fweet-fcented vernal grafs, anthoxanthum odoratum, a quarter of a pint; Dutch clover, trifolium repens, half a pint ; red clover, trifolium pratenfe, half a pint; thefe feeds are to be mixed together, and about three bufhels to be fown on an acre in rows for the convenience of hoeing them. About the end of Auguft or beginning of September they fhould be occafionally weeded and thinned, and rolled in the fpring, to prefs down into the ground fuch roots as may have been raifed by the froft.

Mr. Curtis thinks that meadow foxtail and rough falked meadowgrafs fuit moift foils the beft ; and that the fmooth ftalked meadowgrafs and crefted dog'stail fuit dry paftures; and laftly, that the meadow fefcue, and the fweet-fcented vernal grafs, fuit land either moift or moderately dry; and gives the following order of their times of flowering. I. Sweet-fcented vernal. 2. Meadow foxtail. 3. Smooth ftalked meadow-grafs. 4. Rough ftalked meadow-grafs. 5. Meadow fefcue. 6. Crefted dog's-tail. See Hall's Encycloped. Art. Agriculture.

Not only new fown graffes defigned for mendows, but the larger graffes, which have the names of corn, as wheat, oats, barley, may be advantageoufly rolled, when dry, after froft, which by expanding the
water in moift foils leffens the cavities, which are occupied by roots; and as roots or their branches are in general conical, they become puthed upwards; and fuch as are loofe rife quite out of the ground, as is often feen to happen to the roots of the frawberries, when a frofty night has occurred foon after their being tranfplanted. After a flight froft the larger pebbles of a gravel walk are feen below the furface, as if they had funk downwards during the night; whereas this is owing to a fimilar caufe, the expanfion of the moift foil or gravel an inch deep; but as the froft had not penetrated fo low as to fwell the ground beneath the large pebbles, thefe had not been lifted up like the fmaller ones, or the wet fand.
Secondly, both to increafe the quantity of leaves round the root, and to increafe the fize or vigour, as well perhaps as the number, of leaf-buds on the ftem, a greater fupply of water than ufual, where it can be done, would be advantageous; as is done to the rice-grounds in warm countries in the early part of its growth, and as in flooding our own meadows occafionally in the vernal months. Thus very moift feafons are well known to forward the luxuriant growth of the herbage, and ftems, in the cultivation of wheat, and to render the ears later, and lefs prolific.

Where plants are fown for the purpofe of confuming the firft foliage, as graffes or faint-foin, the feed fhould be fown thicker, than where the plant is grown for the purpofe of producing feeds, as in wheat or peas; becaufe the quantity of the firft foliage will be greater in refpect to number; and the central parts of the tuffocks, as is often feen in wheat and peas, when fown too thick, will rife two or three inches higher in their conteft for light and air, like the trees of thick planted woods; and will hence produce a forwarder pafture as well as a more copious one.

To which fhould be added, that the plants with fucculent ftems, as faint-foin, lucern, red clover, receive fo much injury from the trampling of heavy cattle, that they fhould be mowed, and given to

[^2]cows and horfes in their ftalls; which fhould neverthelefs have a yard or fold occafionally to run into with the convenience of water ; and if ftraw be chopped along with this green food, it might be a cheap and a falutary addition.

Where a piece of grafs land is overrun with tuffocks of four grafs, which often happens near towns, I have been informed, that lime or coal-afhes fpread on them would render the grafs fweeter, fo that horfes or cattle would eat it. But I fuppofe the more certain and advantageous management would confift in mowing it frequently, and giving it to the horfes or cattle in the ftable or ftall; as I believe they will eat it greedily after it has been a few hours withered, and thus the land will not only yield more provender at prefent, but after a few mowings a fweeter grafs will rife in the place of that which was of a bad kind, or of too luxuriant growth; for which purpofe it thould be mowed as near the ground as may be; or if it be frequently mowed during the fummer, and left on the ground, fome cattle will eat it, when it is withered to a certain degree; by which the difagreeable flavour of it is probably leffened or deftroyed.

The art of making hay confifts in evaporating about two thirds of the weight of it, as obferved by Young and Ruckert. Dr. Hales found a fun-flower plant, which weighed forty-eight ounces to lofe thirty-fix ounces by drying in the air during thirty days; and confequently to have loft three fourths of its weight. Vegetables to appearance perfectly dry contain three fifths or three fourths of their weight of water; a part of which water Mr. Kirwan thinks is not in its liquid ftate, but that it is by a lofs of much of its fpecific heat in a great meafure folidified. Kirwan on Manures, p. 37. Thus when water is thrown on frefh quick-lime, a part of it unites with the lime, and becomes folid, giving out much heat; which converts another part of it into fteam, as mentioned in Sect. X. 4. 4.

There are two methods of making hay practifed in different parts

Sect. XVIII. I. I. LEAVES AND WOOD.

of the country. In the more fouthern counties the fwarths are not turned over or fcattered for a day, or two, or three, but remain as they were left by the fcythe. In the more northern counties the hay-makers follow the mowers, and fcatter the grafs immediately, or on the fucceeding day. Perhaps a method between thefe may in general better fuit this climate.

Herbs collected for medicinal purpofes, as well as flowers, fhould be dried in the fhade; otherwife they become bleached, and lofe both their colour and their odour, by too great infolation, and exhalation. Now if the fwarth of cut grafs be only turned over once a day for three or four days, the internal parts of it may be faid to be dried in the fhade ; and afterwards if it be fpread over the ground for only a few hours on a fine day, I fuppofe it would become dry enough to ftack, and have loft confiderably lefs of its nutritive quality. Some advife a chimney to be left in the center of a ftack to prevent the hay taking fire, but there fhould then alfo be culverts under the flack to fupply that chimney with air ; which may be made by cut. ting three or four trenches in the earth, and covering them with boards or flicks with their apertures expofed to the wind in all directions. Perbaps the beft way would be to make the ftack narrow and long, and bent into a femicircle or crefcent to enable them the better to refift the winds, inftead of round or fquare, though a greater furface would indeed be afterwards expofed to the weather, and in fome degree injured, by this mode of conftruction.

When the grafs is fpread uniformly over the whole meadow, which is called tedding, it will fooner dry, as fo much larger a furface of it is expofed to the wind and fun; but it fhould certainly be put into fmall cocks or wind-rows at night, efpecially if the weather be moift ; becaufe it will otherwife receive much dirt and flime from the innumerable worms, which rife out of the ground always in moift warm nights, and generally when the furface is covered with moift

$$
3 \mathrm{~T}_{2}
$$

grafs at all feafons; and when they retreat into their fubterranean manfions in the morning, they are liable to draw in the ends of the grafs to ftop up the apertures of their holes, and by that means prevent the centipes from following them into their homes, and deftroying them. See Zoonomia, Vol. I. Sect. XVI. 16. Whence much of the new hay becomes injured by the foil, they previoufly puth before them out of their mines, and by that which adheres to the grafs, which was drawn in to ftop the apertures of them, as well as by the flime, which they leave behind them on the new hay, which they pafs through or over.

On this account hay-cocks fhould be made as high as may be in proportion to their bafe, that lefs furface may be in contagt with the ground, as well as that a greater furface may be expofed to the air for a quicker exhalation of its moifture, and for the purpofe of the better fecuring it from accidental fhowers.

In wet feafons, I fufpect, the beft method mult confift in turning over the rows of fwarth every day or every alternate day, or making it into fmall cocks, and turning them over in the fame manner, that the rain may not injure the whole of it by paffing perpetually through it, and wahing away its faccharine and mucilaginous fluids; and alfo that the part next the ground, and the central parts of the cock or fwarth, may not pafs into fermentation and putrefaction. And Jaftly, when it can be put into tall cocks, as the weather becomes drier, it will not only fooner exhale its moifture by the contact of the atmofphere, but a beginning fermentation will fet at liberty fome degree of heat, and thus contribute to dry it by increafing the eva poration; as the great heat generated in hay-ftacks which have been finifhed but one day or two, affifts much to dry the whole Aack in moint feafons, as is feen by the denfe fteam, which arifes from them.
2. Many root-leaves are confumed at our tables either in their raw fate, as thofe of water-crefs, fifymbrium nafturtium, lettuce, lactuca fativa, muftard, finapis, celery, apium ; many others are previoully
boiled to diminith their acrimony, and to coagulate their mucilage, as the root-leaves of fpinach, fpinacia, of cabbage, braffica oleracea, and even of turnips, braffica rapa; along with thefe ftem-leaves of many plants the flower-buds at their fummits are eaten, as thofe of mercury, mercurialis, and of fome of the cabbage kind called brocoli, braffica italica.
Many of thefe leaves not only confift of a refpiratory organ, but at the lower parts of them efpecially, or in their ftalks, there exifts a refervoir of nutriment for the rifing flower-ftem or for the ripening feed, as in rhubarb leaves, and in cabbage leaves, which is fimilar to that in the roots of other herbaceous plants, and which renders them both palatable and nutritive. Moft of thefe concentric leaves are fituated in contact with the earth, as thofe of lettuces, lactuca, and falfafi, tragopogon. But others of them, as the cabbages, are placed on a ftem at fome diftance from the ground; in the former the upper part of the root or caudex is palatable and nutritious, as well as the lower part of the leaves; and fome of them are of fuperior flavour when boiled. In the latter the refervoir of nutriment for the future flower-ftem and feed confifts in the lower part of the ribs of the concentric foliage, as in the concentric leaves or lamina, which cover the bulb of the onion, or even in the ftalks, as in cabbages, and artichoke, which are therefore not only efculent, but palatable and nutritive.

Other leaves are eaten in their early fate along with the ftem, which they furround, as afparagus, and the young fhoots of finach, and of fome kinds of brocoli, and of mercury ; which laft are fometimes fuffered to thew their flowers before they come to our tables, and are then treated of in Sect. XIX.

The art of cultivating all thefe confifts in fupplying them with abundant carbonic earth, and with abundant moifture, as thefe are more friendly to the luxuriant growth of root-leaves or ftem-leaves, than to the production of the flowers, or ripening of the feeds, as appears
pears by the too luxuriant growth both of herbaceous plants and of fruit trees in moift feafons.

Another method of forwarding the growth of the new leaves and ftem-fhoots of perennial herbaceous plants, as of afparagus, is annually to loofen or turn over the earth around and above the roots, for the purpofe of admitting air into its cells or cavities to convert a part of the manure or carbonaceous foil, with which they have been fupplied, into ammonia, or into carbonic acid, and thus both to afford them warmth and nutriment.

Add to this, that the leaves of trees may be increafed in fize by lopping off the branches, by which means the remaining buds acquire more nutriment; the black mulberry tree is thus kept low, and formed into extenfive Ahrubberies in China for the purpofe of feeding filkworms, as obferved by fir G. Staunton, who thinks the leaves are thus rendered both larger and more fucculent; and adds, that the alh.tree is alfo fometimes ufed for the fame purpofe.
3. Another method of deftroying the too great acrimony of leaves, befides that of boiling them, confifts in fecluding them from light, and is termed etiolation. This is chiefly practifed on cellery, apium, by earthing it up nearly to the top of the plant; and on fea-kale, crambe maritima, by covering the plant entirely with horfe-litter or ftraw, as defcribed in Sect. XIV. 3. 3 ; and on lettuces, and endive, by tying together the root-leaves with a bandage.

In many plants the central bud during its early growth feems to be naturally in a ftate of etiolation, as it is excluded from the light by the curvature of the furrounding foliage, as in cabbages, and particularly in fome fpecies of aloe, which are faid to confume nearly a century in opening their numerous concentric foliage. Thefe etiolated leaves, like flowers before the calyx is opened, are white; and the leaves become green, or the flowers of many other colours, when expofed to the light, as explained in Sect. XIII. 1. 3. It is probable that the foliage of many other plants might be rendered efculent by

Sect. XVIII. 1. 4. LEAVES AND WOOD.

thus deftroying their acrimony, and decreafing the tenacity of their fibres by etiolation, as well as the leaves of celery, apium; and cardoon', cinara ; and of endive, cichorium endivia.
A feclufion from the fun's light and from air has an effect fomewhat fimilar on animal bodies, rendering them pale and weak, as may be feen in the etiolated young ladies of fome boarding fchools; and in thofe who pafs their waking hours in unventilated parlours during more than half the night.
4. Other vegetable foliage has been brought into very extenfive ufe infufed in hot water for its agreeable aromatic or bitterifh flavour, as thofe of foreign tea, thea; ; and of the afh, fraxinus, of our own ifland, the leaves of which were collected, before they became expanded, and fold after being dried for the inferior kind of Bohea tea in fo. great quantity as to occafion an act of parliament to be paffed about forty years ago to lay a fine on any one, who fhould have accumulated more than fifty paunds of afh leaves, which were not the produce of his own trees. The leaves of many other of our domettic vegetables, as of mint, balm, and fage, mentha, meliffa, falvia, have been infufed in hot water as an agreeable diluent beverage both in health and ficknefs; the laft of which, the fage, poffeffes a very pleafant aromatic flavour; and if the infufion be poured from the leaves, before it has acquired too much of the bitter flavour, it is very grateful to the palate or ftomach, and has been efteemed falubrious. from high antiquity to the prefent times, whence the line of Horace :

Cur moriatur homo, cui falvia crefcit in horto?
All thefe infufions become nutritive, when drank with cream and fugar, and have certainly contributed to the health of the inhabitants of this ifland by decreafing the potation of fermented or firituous liquors; and to their morality by more frequently mixing the ladies and gentlemen in the fame fociety.

The leaves of thefe plants, as well as the aromatic or balfamic buds of fome other plants, as of myrica, gale; of tacamahaca, populus balfamifera; of balm of Gilead, amyris giliadenfis, and many others, fhould be gathered at the time of their greateft fragrance, as the effential oils, which conftitute their odorous exhalation, perpetually evaporate, as our fenfe of fmell informs us; and were apparently for the purpofe of defending the plants from the depredation of infects in their flate of infancy.
5. Other leaves have been ufed for medicinal purpofes, and for the arts of dying and tanning, like the barks before mentioned; as the leaves of carduus benedictus, cnicus acarna, as an emetic; thofe of foxglove, digitalis purpurea, as an abforbent in anafarca; thofe of bog-bean, menyanthes trifoliata, as a corroborant ; which laft might probably fupply the place of hops, humulus lupulus, in the breweries of malt-liquors; and as it might be plentifully cultivated on boggy grounds, which are not at prefent ufed for other purpofes, might be a cheaper bitter to the confumer, and fave to the public much more fertile foil for the cultivation of corn or other valuable vegetables.

The leaves of teucrium fcorodonia, wood-fage, are as bitter as thofe of menyanthes, bog-bean, and have been ufed with fuccefs; as I have witneffed, in the cure of agues; and, as it grows on dry barren foils, might poffibly be cultivated to fupply the place of peruvian bark in fome difeafes, or to fupply the ufe of hops in the breweries of malt-liquor.

The leaves of oak-trees, quercus robur, and of afh-trees, fraxinus excelfior, and of alder, betula alnus, even after they drop fpontaneoufly in the autumn, are faid to ferve the purpofe of tanning animal membranes, like the barks of the fame trees fpoken of in Sect. XVII. $3 \cdot 5$; and for the purpofes of dying, the leaves of indigo, indigofera tinctoria; and of wood, ifatis tinctoria; and of weld, refeda luteola,
have been much cultivated, and extenfively ufed; and a fpecies of polygonum is faid to be much cultivated in China for the fame purpofes as indigofera by fir G. Staunton; to which may be added the foliage of lichen fructicofus, or archil, a whitih lichen brought from the rocks of the Canary Iflands, which gives a beautiful bloom to other colours, but is itfelf 'very fugitive. Linneus afferts in the Swedifh Tranfactions, that this archil mofs is to be found on the weftern coafts of England; and it is faid, that the archil is now prepared by Meffrs. Gordens at Leith near Edinburgh from a fpecies found in the Highlands of Scotland. Encyclopedia Britannica. Art. Archil. The manner of cultivation and of the extraction of the colouring matter from the leaves of thefe plants may be alfo feen in Bomare's Dictionaire Raifonne, and in Chambers's Encyclopedia. It it probable, that many other plants, as hedyfarum, faintfoin, or the broad thick leaves of phytolacca, might yield a fimilar material to that of indigo, woad, and weld, if properly cultivated and prepared, as well as other kinds of moffes or lichens to that above mentioned.

The green colour of perhaps all vegetables, as well as of thofe from which indigo and woad are produced, is owing to the blue fe-cula, which has been obtained for the dyers principally from thofe plants ; and to a yellow material, which is more fugitive or more eafily decompofed, which yellow may poffibly be owing to iron. This blue fecula is fimply obtained from indigo, as it fubfides from the fluid, in which the plant is fuffered to ferment; and is obtained from woad along with the cellular parts of the leaves during their fermentation in water, and beaten into a mafs. It is probable that the blueft kinds of vegetables may contain the moft of this fecula.

For domeftic purpofes the juice of the fage-leaf, falvia officinalis, has been ufed both to give colour and flavour to cheefe; and the juice of fpinach is employed, 1 am informed, to colour the green ufquebaugh, a favourite dram with the Irifh vulgar. And it is probable, that the leaf of the vine, which bears purple grapes, might give
a fimilar colour and aftringent tafte to our domeftic wines, as the fkin of the fame grape gives to the foreign wines made from it ; fince the leaves of this vine always become quite red in autumn, before they fall, probably by the concentration of their acidity, as their water evaporates unfupplied; as all blue vegetable juices become green by an admixture of alkali, and red by that of ani acid.
6. Another ufe for which leaves are collected by fome gardeners, as they fall in autumn from any kinds of trees, is for the production of heat by fermentation in hot-houfes, or melon-frames, inftead of oak-bark, after its bitter particles have been much extracted by the tanner; and it is probable, that many leaves might be felected, as they will thus undergo fermentation, which might afford a fpirituous. drink like fmall beer without any difagreeable flavour, or unwholefome material ; which now ferve only for manure when gathered into heaps, or by their flow decay on arable lands; or encumber the: grafs lands, they fall upon.

II. Of Woods.

1. The leaf-buds of trees producing a viviparous offspring acquire new caudexes, extending from the branches to the ground, and the intertexture of thefe caudexes forms the new bark over the old one. But the flower-buds acquire no new caudexes down the bark, as their oviparous progeny does not adhere to the fide of the parent bud, but falls down when mature, and ftrikes root into the foil.

Now as the bark of trees is thus produced along with the leafbuds, and as it annually becomes alburnum or fap-wood; and that fap-wood gradually lofes all vegetable life, and becomes heart-wood, it follows, that the art of forwarding the growth of the wood of trees mult confift in producing and nourifhing the leaf-buds.'

For this purpofe the roots of trees fhould be fupplied with rather more water, than they generally poffefs in their moft natural ftate, or the branches hould be fprinkled by a water-engine; as moifture facilitates:

Sect. XVIII. 2. 1. LEAVES AND WOOD.

cilitates the production of the new caudexes of the leaf-buds probably by leffening the cohefion of the cuticle, or mechanically relaxing it, like the cuticle of our hands when long foaked in water, as well as by fupplying them with more nutriment.
It may fometimes occur, that the cuticle of trees, or exterior bark, may adhere too ftrongly, and by not opening in cracks confine the growth, or prevent the production of the caudexes of the new buds. There is annually a new cuticle produced beneath the old ones, as well as a new bark above the old ones; hence fome trees have as many cuticles as they are years old, others caft them more eafily, as a frake cafts its cuticle. When a number of cuticles thus exift one over another, it is ufeful to fcratch them longitudinally, which will admit the new bark beneath, confifting of the caudexes of the various buds to fwell out, and form a line more prominent than the other parts of the trunk of the tree. If crooked young trees be thus fcratched internally in refpect to the curvature, and this repeatedly, I am informed, that they will gradually become ftraight, by thus encouraging the growth within the curvature more than on its convex fide.

Another method of increafing the number and vigour of the leafbuds, and in confequence of enlarging the wood of a tree, confifts in pinching off the flowers, as foon as they appear; as the nourifhment is thus fupplied to the leaf-buds by the inofqulation of the veffels of the bark, which otherwife would have been expended on the flowers, fruit, and feeds. The truth of this circumftance is not only countenanced by gardeners, who pull off the flowers of fruit-trees lately planted to encourage their growth, but alfo from the appearance of fickly trees; which are liable to perifh, when in flower. In this cafe it often happens, that, after the flowers fade, fome of the leaf-buds continue to expand, or new ones put out, owing to the fupply of nutriment not being now expended on the flowers.
2. As tall timber trees without branches, and confequent knots in the timber, are moft valuable except for thip-building, this may be
certainly effected by planting them near each other; as then the powerful conteft with each other for light and air propels them upwards, inftead of producing many lateral branches; as may be feen in many woods, which have not been too much thinned. For this purpofe fome have planted trees of lefs value though of quicker growth, as pines, amongft oaks; which may be pruned or lopped, if they fhade the oaks too much, and may be finally removed, when the oaks are crowded by them; whence fingle trees feldom grow fo tall as thofe in woods, and appear ftunted, as it is called; which is generally afcribed to the cold feafons, or to their being expofed more to the winds; which may perhaps fometimes happen in this northern climate; or where trees are expofed to infalubrious air, as near the fea; or exift in colder fituations, as on the fummits of mountains.

Something fimilar to this may be feen in tuffocks of grafs, or where too many feeds of wheat have been fown near together. The central part of the knot of wheat or grafs grows much taller than the external part, fo as to give it a conical figure ; which has been by fome afcribed to the central part having been fheltered from the cold by the external ring, but is more generally owing to the fruggle of the internal ftems for the acquifition of light and air.

The Society of Agriculture at Copenhagen has propofed prizes conceraing the cultivation of timber for fhip-building. One queftion is, whether the neceffary form and degree of flexion can by any means be given to growing timber without injuring it? This I imagine may be done by annually fcratching the external bark or cuticle ei.ther longitudinally or horizontally on the fouth fide of the part of a tree, which is wifhed to be curved, as the fouth fide of trees are known to grow fafter annually than the north fide, as is feen by the greater thicknefs of the concentric rings of a tree, when felled and fawed into blocks; and becaufe the cuticle bounds the lateral growth of the trunks of trees, as the fkin of animals bounds the growth of
the cellular parts beneath it; and hence that fide of the tree, where the cuticle or exterior bark is frequently fcratched through, will become larger than the other fide of the tree, and tend to bend it into a curve with the fcratched fide outwards. Trees alfo on the outfide rows of woods will fpontaneoully bend outwards for light and air, and may I fufpect be more eafily formed into proper curves by the method above propofed. And where trees in a wood are at a proper diftance from each other, they may forcibly be bent by cordage towards each other, and then by wounding the exterior and interior bark longitudinally, or perhaps horizontally alfo on the exterior fide of the curved part of the tree, they may be brought into almoft any degree of flexure, which they will afterwards preferve as the tree advances.

Some of the quicker growing trees may be more valuable to the planter than oaks, and fome in different foils are more valuable than others; as willow-trees in the hedge-rows in moift grounds are faid, if headed once in ten years, on an average to produce each of them one fhilling a year. Perhaps the ozier for baiket making may be fill more advantageous in low grounds; there is a valuable paper on the planting of them and the choice of the kinds of them in the Tranfactions of the Society of Arts, Vol. XVI. p. 129, by Mr. Phillips. Perbaps the fugar-maple may alfo be cultivated in this climate to advantage on many barren commons, as on Cannock Heath. And certainly pines, as Scotch fir, might in thefe fituations fucceed aftonithingly, as appears by the plantations of Mr . Anfon on the barren mountains near his feat in Staffordhire; and alfo from the plantations of the marquis of Bath at the foot of Wilthire Downs near Warminfter, whofe fteward, Mr. Davis, has given a valuable account of the profit of planting Scotch fir in preference to other timber trees; and finally afferts, "that although fir-timber is worth individually more per tree than oak or beech of the fame fize, thefe trees will neverthelefs grow fafter and thicker together than any other trees. Four
firs will grow, where but one oak or beech will grow; for firs are the better, and deciduous trees the worfe, for being crowded." I fuppofe becaufe the branches of the latter are valuable, but the former is injured by the knots left in the trunk, where large branches have. exifted. Tranf. of Society of Arts, Vol. XVI. p. 126.
Mr. Davis adds further, I fuppofe from his own obfervation, that "the chalk-hills in Hampfhire are peculiarly proper for beech; the flinty loams and clays of the fame county for oaks and ath; the moffy fteep fides of the Wilthire Downs for hazel; the rugged and almoft naked rocks of Mendip in Somerfethire near Chedder produce the lime-tree and the walnut in the greateft luxuriance ; and on the higheft parts of the fame Mendip hills, where no other tree can ftand the fea-breeze, fycamore flourifhes as well as in the moft fertile vallies. But taking into confideration the general demand of countries, and the peculiarities of different foils, no kind of wood is fo generally profitable for planting in coppices as ahh." Ib.
3. Another thing concerning timber-trees, which ought to be attended to, is the injury, they are liable to receive from lightning; which, I am informed, is much more frequent than is generally fuppofed; infomuch that in felling moft woods, efpecially thofe which grow in wet fituations, very many of the trees are found to be cracked longitudinally to the great injury of the timber ; to prevent this, pointed wires, as thick as a goofe quill, fhould be attached to a few of the talleft trees of all flourifhing woods reaching above their fummits, as conductors of lightning. Add to this that the holes made by wood-peckers, I am told, are very numerous, and do much injury to the timber of our forefts, which can only be prevented by deftroying that beautiful and ingenious bird.
4. Woods differ from each other in many refpects, and are therefore ufed for many other purpofes befides mechanical ones; as in colour; whence particular woods are chofen for their beauty in the conftruction of the furniture of houfes, as rofe-wood, afpalathus;
others are ufed in the art of dying, as the Campechy wood, hæmatoxylum, and faunders, fantalum, and pterocarpus; and feveral others. Other woods differ in their medicinal properties, as guaicum, quaffia, Campechy wood, and faffafras. Others differ in their chemical properties, affording effential oils, as oleum rhodii, and turpentines or balfams, and tar; and in their reftringency, as the oak.
5. The oak probably contains much gallic acid, fuch as has been extracted from the galls occafioned on their leaves by the punctures of infects; whence oak boards are faid to corrode the theets of lead, which are laid on them, and are hence believed to be improper for the gutture-boards on the roofs of houfes. But the fap-wood, or external part of all timber, I fufpect, muft be improper for this purpofe on another account; as, when confined from much air by the fheet of lead over it, it muft lie for many months in the year in that fate of moifture, which will favour the fermentation of the faccharine matter, which all fap-wood contains; and will thence be fubject to the dry rot, as it is called by architects. This may be long prevented by leaving proper holes in the walls on all fides the building immediately under the roof, as has been generally done by thofe itinerant bodies of architects, who hewed fuch prodigies of genius in the conftruction of cathedrals in this ifland, and all over Europe; and whofe fecret identifying words, and confederate figns, which were neceffary to them in foreign countries, whofe language they had not time to acquire, feems to have given origin to the modern myfteries of Free-mafonry.

The rot of wood might probably be entirely prevented by foaking dry timber firlt in lime-water, till it has abforbed as much of it as may be; and then after it is dry by foaking it in a weak folution of vitriolic acid in water; which will unite with the lime already depofited in the pores of the timber, and convert it into gypfum ; which 1 fuppofe will not only preferve it from decay for many centúries, if
it be kept dry, but alfo render it lefs inflammable, a circumftance worthy attending to in the conftruction of wood-built houfes. I alfo conceive that beams fo impregnated would be lefs liable to fwag, and boards fo prepared lefs liable to warp. In the immenfe faltmines of Hungary many large wooden props, which fupport the roof, and are perpetually moiftened with falt-water trickling down them, are faid to have fuffered no decay for many centuries.
6. Woods alfo differ from each other in their hardnefs, or the general cohefion of their particles, whence one kind of timber has obtained the name of iron-wood, fideroxylum. Others differ in the finenefs of their conftituent fibres, which fhew a beautifully fmooth polifh, when planed, as rofe-wood, afpalathus.

Where thefe two properties of hardnefs and fmoothnefs exift together, as in box, buxus fempervirens, the wood muft be peculiarly valuable for the purpofe of making wooden printing blocks, fo well managed at this time by Mr. Bewick of Newcaftle in his books of Natural Hiftory of Quadrupeds and Birds.
7. Other woods differ in their durability, as cyprefs, cedar, mahogany, are faid to be indiftructible by time, or by the depredation of infects. The wood of the cedar of Bermudas, Juniperus Bermudiana, in which black-lead penciis are inclofed, is faid not to be eaten by either aerial, terreftrial, or marine infects, and is thence ufed in the Weft Indies for building veffels, whofe bottoms are not penetrated by fea-worms. The unperifhable chefts, which contain the Egyptian mummies, were of cyprefs, as well as the coffins in which the Athenians are faid by Thucydides to have buried their heroes. The gates at St. Peter's at Rome, which had lafted from the time of Conftantine to that of Pope Eugene the fourth, that is eleven hundred years, were of cyprefs, and had at that time fuffered no decay.

Of thefe fome are believed to endure longer in water than others, as alder, betula alnus, and is therefore efteemed preferable for piles to guard the banks of rivers. But Mr. Brindly, the conductor of the
grand trunk canal, affured me, that he believed from obfervation, "that red Riga deal, or pine-wood, would endure as long as oak in all fituations," owing perhaps to its being fo full of refin or turpentine.
8. Other woods differ in the degree of the lateral adhefion of their longitudinal fibres, as the fir-wood, or deal, pinus, whence the timber readily fplits by wedges. As the móifture of the atmofphere is abforbed into the pores of the dry cellular membrane, wheh connects the longitudinal fibres of thefe woods, more than into thofe of the longitudinal fibres themfelves, they become much more dilated laterally than extended longitudinally, by the change of a dry atmofphere to a moift one; whence by joining pieces of deal cut crofs-wife into a rod of fome feet in length, a very fenfible creeping hygrometer was made by Mr. Edgeworth, defcribed in the Botanic Garden, Vol. II. note on Impatiens. And as this wood is not liable to be much extended by low degrees of heat, when it is impregnated with boiling oil, or covered with varnifh, to prevent the accefs of aerial moifture, the pendulums of time-keepers have been conftructed of it, which have not perceptibly lengthened in any variations of the heat or moifture of the atmofphere.
9. Another circumftance of great confequence, in which woods differ, is their fpecific gravity, as many of them will fink in water, as oak after it has been long moiftened; and others will fwim with much of their contents above water, as deal, and hence have been ufed for the conftruction of rafts for the purpofes of rude navigation; and which are now faid to be conftructed in France as engine ${ }_{s}$ of war, probably for the defign of fuddenly landing troops, horfes, artillery, and provifions, from the fhips of invading armies on dangerous fhores, and for the certainty of re-embaiking them. Thefe neverthelefs can not carry great burthens fimply by their fecific levity; but if each piece of timber could be made hollow, and rendered water-tight, fo as to contain air, which might probably be done by

$$
3 \mathrm{X} \quad \text { boring }
$$

boring them, and plugging up the ends; or by joining thick boards together by means of paint and flannel, or caoutchouc, fo as to conftruct long fquare wooden troughs filled with air, perhaps eight or ten inches diameter within, and twenty or thirty feet long. If the junctions of thefe could be rendered water-tight, and a number of fuch hollow trunks could be chained loofely together, and laid crofs-wife three or four times over each other, they might carry very large burthens, not eafily to be deftroyed by ftorms, or funk by cannon fhot.
10. Another difference of the longitudinal fibres of timber confifts in their degree of elafticity, a circumftance of much greater confequence to our anceftors in refpect to the art of war than to the prefent generation; as their bows for dicharging arrows, and the catapulta, or engine for throwing ftones, depended on the recoil of rods or beams of timber forcibly bent into a curve. For the conftruction of bows the yew-tree, taxus, was ufed in this ifland, and was planted in church-yards, probably for the purpofe of fupplying the youth of the parifh with bows, that they might become expert in the ufe of them ; many of which have acquired extreme old age, and remain to this day.
II. When tall trees are defigned to be tranfplanted for the purpofe of ornamenting a pleafure-ground, it is proper to dig a circular trench round them two or three feet deep in the early fpring; whence many new roots will fhoot from thofe, which have their ends cut off, and thus the ball of earth will be better held together, when the tree is removed in the fucceeding autumn, and the tree by having previoufly produced fo many more fine abforbent radicles will be more certain to grow in its new fituation.

Hence when new grafted fruit-fcions on young ftocks are defigned to remain a few years in the nurfery, before they are defigned for fale, fome provident gardeners I am told tranfplant them every two years, that the root-fibres may be more numerous in a fmall com-

SECT. XVIII. 2. $12 . \quad$ LEAVES AND WOOD.

pafs, which occafions them to grow, when finally tranfplanted, with more certainty, and with greater vigour.

As tranfplanted trees fhould not be fet too deep in the ground, as their growth is then always much checked, as explained in Sect. XV. 2. 4. they generally require fome kind of props to prevent them from being overturned, or much fhook by the winds, before they have fufficiently extended their roots. As the bark is the only living part of the tree, it is liable to receive much injury from its contufion by the preffure of the props againft it, or by the ftrangulation of the bandage which holds it to them. Hence as the internal wood of a tree is not alive, I remember many years ago, that I faftened one prop by a ftrong nail to each fruit-tree of a fmall orchard, which I then planted; and found the tree fupported with much lefs apparent injury than in the ufual manner by three props and adapted cordage.
12. The time for felling timber has generally been in the winter feafon, when labourers could beft be fpared from other rural employments, and from the architecture of towns; but it was long ago obferved by Mr. S. Pepys in a paper publifhed in the Philofoph. Tranfact. Vol. XVII. p. 455, that the beft time for felling oaks for fhip-building was after having taken off the bark in the early fpring, and having fuffered the new foliage to put forth and die. For by the pullulation of the new buds the faccharine matter in the fapwood or alburnum is expended, and it then becomes nearly as hard and durable as the heart-wood, being both lefs liable to decay, or to be penetrated by infects; which was a curious and ingenious difcovery at that time, though the theory was not well underftood; the truth of which has now been eftablifhed, I believe, by the experience of a century.

As the bark of trees annually changes into alburnum or fap-wood, fo the alburnum annually changes into lifelefs wood; whence the concentric rings, which are feen in the trunks of trees, when they

$$
3 \times 2
$$

are felled, are annually produced ; and are faid generally to be thicker on that fide of the trunk, which grows towards the fouth, than on the northern fide, and thicker in the fummers moft favourable to vegetation than the contrary. Thefe rings, as they lofe their vegetable life, and at the fame time a part of their moifture by evaporation, or abforption, gradually become harder and of a darker colour ; infomuch, that by counting their number, it is faid, that not only the age of the tree, but that the mildnefs or moifture of each fummer during the time of its growth may be eftimated by the refpective thicknefs of the rings of timber.
13. In the fame manner the central pith alfo lofes its vegetable life, probably after the firft year; and then gradually becomes abforbed, or fo impregnated with ligneous particles, as not to be diftinguifhed from the furrounding wood. The pith of a young bud fo refembles the brain and fpinal marrow of animals in refpect to its central fituation, that it probably gives out nerves to every living fibre of the bud; though thefe have yet efcaped our eyes and glaffes; and thus furnifhes the power of motion, as well as of fenfation, to the various parts of the vegetable fyftem. One curious fact, which I have obferved, feems to countenance this conjecture ; which is, that the pith of a laft year's twig communicates to the leaves on each: fide of it, but not to the new buds in the bofoms of thofe leaves; becaufe thofe new buds are each an individual being, generated by the caudex of the leaf, and muft therefore poffefs a fenforium of its own. See Sect. I. 8. and IX. 2. $4 \cdot$

The pith of trees contains much mucilage, as well as the ftalks of annual and perennial plants, whether they are hollow or not ; the pith of a palm-tree, cycas circinalis, is foftened with water, and paffed through fieves, and thus forms the fagoe of our fhops; it is poffible the large pith of the ftalks of artichokes, cinara fcolymus, might be manufactured into a fimilar kind of taftelefs mucilage; and the pith of the young fhoots of elder, fambucus nigra, might alfo poffibly

Sect. XVIII. 2.14. LEAVES AND WOOD.

poffibly be made into taftelefs mucilage, if previoufly agitated in cold water to wafh away any acrid material, as in the preparation of ftarch.
14. When we contemplate the manner of the production of the internal wood of trees from the induration of the fap-wood, and the annual increafe of the fap-wood from the bark, which was previoufly generated by the caudexes of the numerous buds; there would appear to be no natural boundary to the growth of trees. But that their trunks, though a mile diftant from each other, might be enlarged, till they meet together; and cover the whole earth with ligneous mountains, conftructed by fucceffive generations of vegetable buds; as fome parts of the ocean are crowded with calcareous rocks, fabricated by the fucceffive generations of coralline infects !
"A very large tree is defcribed by Mr. Adanfon in Africa, which is called by Linneus Adanfonia, in honour of that philofopher; of which he fays the diameter of the trunk frequently exceeds twentyfive feet, and the horizontal branches are from forty-five to fifty-five feet long, and fo large, that each branch is equal to the largeft tree in Europe. The breadth of the top is from 120 to 150 feet; and one of the roots bared only in part by the wathing away of the earth by the river, near which it grew, meafured 110 feet long, and yet thefe ftupendous trees do not exceed 70 feet in height. Voyage to Senegal.

And in this Eountry, when the internal wood is gradually detached from the alburnum, as it decays, as in fome old hollow oaks and willows, fo that it does not deftroy the tree by the putrid matter being abforbed, there feems to be no termination of the growth of the external remains of the tree, till the wind blows it down from its want of folid wood to fupport it. Of this kind of hollow tree a remarkable inftance remains in Welbeck Park in Nottinghamihire, through the middle of which a coach is faid to have been driven. There is another oak of uncommon dimenfions in the foreft of Needwood,

But the caudexes of buds, which compofe the barks and afterwards the timber of trees, differ from the nefts or cells of the coralline infects, which compofe their calcareous rocks beneath the waves, in this circumftance. The cells of the coralline infects, like the fhells of other fea-animals, become harder by time, changing by flow degrees the phofphoric acid, which they contain, for carbonic acid; and fome of them afterwards for filiceous acid, and are thus converted into limeftone and flint, and remain eternal monuments of departed animal life.

Whilf the remaining vafcular fyftem, after the death of vegetable buds, like the flefh of animals, undergoes in procefs of time a chemical decompofition, and lofes by fermentation and putrefaction both their carbonic and phofphoric acids, which probably gave them their folidity, and crumble into duft; which is feen in the rotten trunks of trees, which lofe fo much of their carbon as they decay; and alfo become luminous, when expofed to the air by the efcape or production of phofphoric acid. And finally, their other component parts are feparated by elutriation, and form moraffes; whence coals, iron, clay, and fandfone ; all which are found on the lime-rocks, which were previoufly generated in the ocean, and remain eternal monuments of departed vegetable life. Whence it appears, that a boundary is fet to the fize of trees by their internal decay, but none to the growth of coral-rocks, which are fo formidable in the navigation of the fouthern ocean.

15. Queftion on the cultivation of Timber.

The political advantage or difadvantage of cultivating timber in this ifland fhould be here confidered. In the prefent infane ftate of human

ect．XVIII．2．＇ 5 ．LEAVES AND WOOD．

human fociety，when war and its preparations employ the ingenuity and labour of almoft all nations；and mankind deftroy or enflave each other with as little mercy，as they deftroy and enflave the be－ ftial world ；and may in time，for what appears to the contrary，re－ turn to their favage fate，and begin to eat each other again，as feems to have occurred at or before the commencement of almoft all civil focieties；the firft political attention fhould certainly in this pe－ riod of human infatuation be employed to ftrengthen the country， to enable it to repel the invafion of foreign enemies，and to defend its natural rights，when they are infringed by them；but not to attack or invade other nations for any predatory or ambitious pur－ pofe．The next important thing fhould be for this nation to fet a great example of juftice and humanity to all contending nations，and thence again to introduce truth and virtue into the world with peace and happinefs in their train．

Now as the power to refift invafion，and to defend our natural rights，when infringed by foreign enemies，muft depend more on the number of men than on the number of trees；there need be no hefitation in determining，that thofe lands，which can be employ－ ed in the prefent production of vegetable or animal food，fhould not be occupied in the tedious cultivation of future timber．

But that，as the fummits of this country confift principally of a ridge of mountains extending from fouth to north between the eaft－ ern and weftern feas，as thofe of the Peak of Derbythire and the Moorlands of Staffordfhire，which are fo bleak or fo barren as to be totally unfit for the plough or for pafturage，and yet might be em－ ployed for raifing variety of timbers；which from our great fucceffes in naval engagements may be termed with great propriety，when employed in building hips，the wooden walls of this ifland：All thofe unfertile mountains from the extremity of Cornwall to the ex－ tremity of Scotland，fhould be covered with extenfive forefts of fuch
fuch kinds of wood, as experience has thewn them to be capable to fuftain, and which may be beft adapted to the conftruction of thips.
16. The following addrefs to Swilcar oak in Needwood foreft, a very tall tree, which meafures thirteen yards round at its bafe, and eleven yards round at four feet from the ground, and is believed to be fix hundred years old, was written at the end of Mr. Mundy's poem on leaving that foreft, and may amufe the weary seader, aud conclude this Section.

ADDRESS TO SWILCAR OAK.
Gigantic $\mathrm{O}_{A K}$! whofe wrinkled form hath ftood, Age after age, the Patriarch of the wood!Thou, who haft feen a thoufand fprings unfold Their ravel'd buds, and dip their flowers in gold; Ten thoufand times yon moon relight her horn, And that bright ftar of evening gild the morn!-

Erft, when the Druid-bards with filver hair Pour'd round thy trunk the melody of prayer; When chiefs and heroes join'd the kneeling throng, And choral virgins trill'd the adoring fong; While harps refponfive rung amid the glade, And holy echoes thrill'd thy vaulted thade; Say, did fuch dulcet notes arreft thy gales, As Mundy pours along the liftening vales?

Gigantic O_{AK} !-thy hoary head fublime
Erewhile muft perifh in the wrecks of time;
Should round thy brow innocuous lightnings fhoot, And to fierce whirlwinds thake thy fteadfant root; Yet halt Thou fall !-thy leafy treffes fade, And thofe bare fhatter'd antlers ftrew the glade;

Sect. XVIII. 2. 16. LEAVES AND WOOD. 529

Arm after arm hall leave the mouldering but, And thy firm fibres crumble into dull !

But Mundy's verse fall confecrate thy name, And riling forests envy Swilcares fame; Green Shall thy gems expand, thy branches play, And bloom for ever in the immortal lay.

S E C T. XIX.

PRODUCTION OF FLOWERS.

I. Flowers from feeds. 1. Double flowers from feeds. Hereditary difeafes in plants. Full fowers bave no ftamina. Tbree kinds of double columbine. Vegetable monfters analogous to animal mules. The ftamen, pitil, and calys; are the moft unchangeable parts. Double flowers difinguifbed by the calyx, are mucb more durable than fingle ones. Double poppies yield more opium. Annual infects. 2. The colours of fingle flowers from feed bow varied. Variegation of foliage. Vegetable juices are byper-oxygenated. This fluid oxygen is converted into gas by the fun's ligkt; which therefore colours living vegetables, and bleaches dead ones. II. 1. Flowers from buds. Double ones howe caufed. Surround the bud werith water. Oil, and conferve of rojes. Tbeir double flowers. Acquired babits. 2. How to vary the colour of fingle ßbrub-flowers, by antber-duft, by inoculation. Trees kow variegated by ingraftment, or made into evergreens. 3. Howe to increage the number of flowers. III. I. Flowers from roots. Bulb-rooted flowers. To cause their duplicature, break off the fower, raije them out of the ground. 2. Single bulb-rooted flowers. To increafe them in fize or number, take away offsets, crowd their roots. Propagation by offsets. By feeds. How broken into colours. Plant them in different foils. Tulips break into colours from age. 3. Perennial brancbing roots. Duplicature of their flowers, propagated by offsets, by feeds. Thbeir fingle flowers. How broken into colours. By feeds, by tranflanting. IV. Efculent and medicinal flowers. Vegetable mucilage coagulated by boiling in water, in fteam. They lofe their green colour in fteam, Why? Articboke-ftalks. 2. Cultivation of brocoli. Knobs on its roots. 3. Hop. Camimile. Their duplicature. V. Flowers ufed in the arts. For dying, ornotto. For Jpinning, cotton, cotton-rult, cat's-tail. VI. Nutritious parts of vegetables. 1. Mufbrooms. Gluten of Wheat. Oils. 2. Sugar. Mucilage. Oil. 3. Starch. Meal. 4. Alburnum. Barks. Roots of fern and

Sect. XIX. i. 1.

and of bryony. 5. Immature flowers. Honey. Leaf-ftalks. Leaves. Refervoirs of nutriment. VII. Happinefs of organized nature. I. Seeds and eggs bave not fenfitive life. Milk gives two-fold pleafure. Dull animals and dijeafed vegetables perifh, and give life to more fenfible ones. Old age unknown before fociety. Mifery is not inmortal. 2. Animal abforption and fecretion is attended with agrecable fenfalion. Renders niatter more folid. The fame in vegetables. 3. Strata of limefone formed from animal hells. Tbofe of coal, clay, fand, from vegetable fecretions, gave pleafure at the time of their production; and are monuments of paft felicity, and of the benevolence of the Deity. VIII. Cultivation of brocoli, a poem.

The beautiful colours of the petals of flowers with their polithed furfaces are fcarcely rivalled by thofe of thells, of feathers, or of precious ftones. Many of thefe tranfient beauties, which give fuch brilliancy to our gardens, delight at the fame time the fenfe of fmell with their odours; yet have they not been extenfively ufed as articles either of diet, medicine, or the arts. For the purpofe of cultivation they may be divided into thofe immediately derived from feeds, thofe from buds, and thofe from roots; to which may be added the efculent and medicinal ones, and thofe ufed in the arts.

1. Flowers from Seeds.

1. The eye of the florift is frequently delighted with double flowers, which thew a greater blaze of colour in a fmall face, and continue fome weeks longer in blow than fingle ones; and, though they are properly called vegetable monfters by the botanifts, may give information to the philofopher in refpect to the fexual generation of vegetables. The method therefore of producing double flowers from feeds is a matter of importance, as well as the art of giving to both thefe and the fingle flowers their moft healthy expanfion, and the greatef brilliancy and variety of their colours.

$$
3 Y_{2} \text { Though }
$$

Though thofe multiplied flowers, which are faid to be full, poffefs no flamens, or piftils, and confequently can produce no feeds; yet are they frequently raifed immediately from feeds; for thofe flowers, which are cultivated with more manure, moifture, and warmth, that is natural, become more vigorous and larger, and at the fame time are liable to fhew a tendency to become double, by having one or two fupernumerary petals in each flower, as the flock July-flower, cheiranthus, and anemone. And what is truly cufious, this tendency to duplicature is communicated to the feeds of thofe individual bloffoms; infomuch that florifts are directed to tie a thread round fuch flowers, which have a fupernumerary petal, to mark them, and to collect their feeds feparately; which are faid uniformly to produce double or full flowers, if cultivated as above with rather more manure, moifture, and warmth, than thofe plants have naturally been accuftomed to.

The analogy of this circumftance with the hereditary difeafes of animals is truly wonderful; as the children of thofe parents, who have acquired the gout or dropfy by intemperance in the ufe of fermented or fpirituous potations, become afflicted with thofe difeafes, as I have frequently obferved, in a much greater degree by the fame quantity of intemperance, which originally produced them in their parents; or they acquire the fame quantity of thofe difeafes by a lefs degree of intemperance, than occafions them in others, whofe parents have not ufed fermented or firituous liquors to excefs.

The luxuriance of flowers, which is believed to arife from their cultivation in more nutritive foils with greater moifture and warmth, confifts in the increafe of fome parts of the flower, and the confequent exclufion of others; and is diffinguifhed by Linnæus into the multiplication and plenitude of flowers, and into proliferous ones. Multiplied flowers confift of double, triple, or quadruple corols; but full flowers are fo multiplied as to exclude the ftamina ; while in proliferous ones other flowers arife from within the

Sget. XIX.i. i, OF FLOWERS.
principal flower, and frequently from its center. Philof. Botan. p. 80.

It is fuppofed that the ftamina of fome double flowers are converted into petals; but on examination, I fufpect that the number of petals is increafed, and the famina prevented from growing by being compreffed by them in their nafcent ftate; as in many of them, I believe, the rudiments of fome famina may be feen, as in ranunculus. So when a new flower rifes in the center of the old one, it is fuppofed, that the piftillum is converted into the ftem of a new flower, as in proliferous daify, bellis prolifera; but I fufpect, that the piftillum is prevented from rifing by the immoderate growth of the new flower-ftem ; as in fome of them, I am told, the rudiment of the pifillum may be perceived.

Thus monopetalous flowers are doubled or multiplied by the increafed divifions of the limb, as obferved by Linnæus, Philof. Botan. p. 83, who adds, that the metamorphofis of Englifh foapwort is very fingular, as its five petals are transformed into one petal, and that in opulus flore globofo the central florets become fimilar to thofe of the circumference, acquiring wheeled corols, and being barren: in thefe cafes the flamens cannot be changed into corols, as the number of corols is not increafed. Afterwards, in p. 84, the fame ilJuftrious author obferves, that in double lychnis the rudiment of the common piftil is prefent.

The luxuriance of flowers therefore confifts in the multiplication of the corols or nectaries, which laft are properly an appendage to the former ; and the prevention of the growth of the male and femate organs is the confequence. Thus the flower of aquilegia, columbine, has three kinds of plenitude: i. the petals become multiplied, and the nectaries excluded; 2. the nectaries are multiplied, and the petals excluded; 3. the nectaries are multiplied, the petals remaining. So that there are five petals, and between each of thefe three nectaries, which exift within each other.

Acurious

A curious analogy here alfo exifts between thefe vegetable monfters and thofe of the animal world; as a duplicature of limbs frequently attends the latter, as chickens and turkeys with four legs and four wings, and calves with two heads. And in mules the parts fubfervient to generation become deficient, whence they cannot propagate their fpecies; exactly as in thefe full flowers, which can thence produce no feed. And in refpect to botanic fyftems, it may be obferved from thefe vegetables of luxuriant growths, that the ftamens and piftils are lefs liable to change than the corols and nectaries, and are therefore more proper parts for the claffification of plants; on which idea Linnæus has conftructed his unrivalled fyftem. And laftly that the calyx, or perianth, is the next moft unchangeable part of the flower, as this is feldom doubled or multiplied; and that hence by infpecting the calyx the genera of many double flowers may be detected; thus the double ranunculus poifeffes a calyx, but the double anemone is without one, like the fingle ones of thofe genera.

The greater duration of double flowers than fingle ones is fo remarkable in fome poppies, that their fingle flowers lofe the corolla in a few hours, while in the double ones it continues feveral days: this circumftance is well worthy the attention of thofe, who cultivate poppies for the purpofe of wounding the head, which inclofes the feeds, for the opium, which thus exfudes. As poppies with double flowers may probably be capable of yielding opium, before they thed their flowers, and as long as other poppies, after they fhed them, Dr. Smith afcribes this event to the organs of reproduction being obliterated, and the confequent want of impregnation; by the great ftimulus of which he thinks the vegetable irritability may be fooner exhaufted in fingle flowers: and adds, "that on the fame account many plants refift a greater degree of cold for feveral winters before flowering; but after that event they perifh at the firf approach of cold, and can by no art be preferved fo as to furvive the winter."

SEct. XIX. 1. 2. OF FLOWERS.

And repeats an obfervation from Linnæus, that the piftilla of the fernale hemp, cannabis, continued much longer to exift when not expofed to the male pollen, than thofe piftilla on which the pollen had been effufed. Tracts on Nat. Hift. po 177.

It may be obferved, that many infects may be called annual ones as well as many vegetables, and die, as foon as they have provided the eggs or feeds for the reproduction of their fpecies, as the filkworm, and, I fuppofe, all the kinds of moths and butterflies; many of which take no food at all, after they have acquired their organs of generation and their amatorial paffion, and yet appear fat and active; and others live only upon honey, and feem to die as foon as that paffion is gratified, probably from having no further pleafureable ftimulus to excite the animal power into activity, rather than from its total exhauftion; becaufe other animals, whofe exiftence is not naturally fo thort, are not iujured or deftroyed by the moderate ufe of the powers of reproduction; and that power leaves them long before their death. An experiment to fhew, whether the moths of filkworms would live longer if deprived of their paramours, might be worth the attention of naturalifts; and alfo, whether the butterflies of our climate might not be preferved during the winter, if fed with honey like bees,' and kept from exceffive cold. I directed fome honey to be offered to the filkworm-butterflies, which they would not attend to, though they may probably feek for it in their native climates.
2. Varieties in the colours of fingle flowers raifed from feeds may probably be generally acquired by fowing near together thofe of the fame fpecies, which already poffefs different colours; fo that during the difperfion of their anther-duft by the wind, or otherwife, they may intermix and adulterate each other. Or this may be more certainly effected by bending the flowers of one colour, and fhaking the anther-duit over thofe of another colour. In this manner, I fuppofe,
fuppofe, it happens, that the beds of centaurea cyanus become of fuch various and beautiful thades of blues, purples, and whites.

Another method of giving variety of colours to feedling flowers confifts in fowing them on natural foils, or on factitious compofts, which differ much from each other in refpect to vegetable nutriment, and perhaps in refpect to their colour, as fome animals change their natural colours when in different fituations of feil. As frogs much refemble the colour of the foil on which they live, and our domefticated horfes, dogs, cats, rabbits, pigeons, and poultry, change their colours into endlefs varieties, owing to the difference of their nutriment or fituation. But obfervations and experiments are wanting on this fubject in refpect to the colours of feedling flowers, as well as in refpect to the variegation of the leaves of fhrubs and trees; which laft originates probably from foil or fituation, and may be propagated by ingrafting.

As the origin of double flowers is believed to refult from the luxuriant growth of the plant, owing to too much nourifhment, moifture, and warmth, fo the origin of new colours in flowers, and of variegated foliage, is thought to occur from the innutrition of the foil, on which they grow, compared to that which they have naturally been accuftomed to, or from defect of moifture and of heat ; which is countenanced by the dwarfilh fize of fuch plants in general, and efpecially by the leffened fature of tulips, when their petals break into variety of colours.

The proximate caufe of the change of colours in flowers or foliage muft be fought from the modern acquifitions of aerial chemiftry. The prefence of oxygen gas deprives dead vegetable fibres, as cottonwool and the threads of flax, of their colour; that is, it bleaches them; 'which is probably owing to its uniting with the colouring matter and forming a new acid, which is tranfparent. Thus the hyper-oxygenated muriatic acid almoft inftantaneoully deprives cotton and linen of their colour; and the fun's light on moiftened

Sect. XIX. i. 2. OF FLOWERS.

linen fpread upon the ground feems to decompofe the water, and the oxygen thus detached whitens the linen. The etiolation or blanching of living vegetables on the contrary feems to originate from the want of the fun's light to convert into gas the fluid oxygen ; which, by diffolving their colouring matter, and forming new and perhaps taftelefs acids, deprives them of colour. Hence the water, which vegetables perfpire in the funhine, becomes hyperoxygenated, which has much puzzled philofophers to account for ; and the oxygen rifes from it without decompofing it; which laft circumftance is evinced by the total abfence of the fmell of hydrogen, which fo powerfully affects our noftrils, when a fpoonful of water is thrown on burning coals.

Now as plants, which grow lefs vigoroully from defect of nutriment, moifture, air, or warmth, may acquire or poffefs lefs oxygen to diffolve their colouring matter, their ftructure may approach towards that of dead vegetables; and hence they may become bleached inftead of coloured by the influence of the fun's light, efpecially in thofe parts where their vital functions are performed with lefs vigour; fo an etiolated vegetable, as a blanched plant of celery, apium graveolens, becomes green in a few days, when expofed to the light and air; and white again, if deprived of life, and expofed to the funthine and dews.

The immediate caufe of the various colours of fome flowers, as of poppies, might be a fubject of curious inveftigation. I once fuppofed, that the thinnefs of the pellicle of fome flowers might occafion them to reflect different colours, as is feen on dropping a drop of oil from a bridge on the water below on a bright day. But colours thus produced vary with the fituation of the obferver, in refpect to the obliquity or angle of reflection, in which they are feen; and are thence variable with every motion of them, as thofe colours feen on foap-bubbles, and on mother-pearl, and on the Labradore-ftone, and ou fome filks. For thofe colours depend on the thinnefs of the

$$
3 \mathrm{Z} \quad \text { reflecting }
$$

reflecting furface, which when feen more obliquely become thicker; and then reflects thofe colours, which paffed through thinner plates; in the fame manner as the red light of the fetting fun is reflected from glafs windows, feen very obliquely by the obferver.

The colours of flowers therefore, as they are not variable by the obliquity, with which they are feen, like thofe of mother-pearl cardfifh, do not depend on the thinnefs of their pellicle; but, I fuppofe, to the greater facility that fome parts of them poffefs in parting with their oxygen, when expofed to the fun's light, than other parts of them; for all flowers are more or lefs etiolated, before they firft open. In the filk manufactory a variable colour is produced by making the warp of one colour and the woof of another; perhaps the variable colour of a peacock's tail may be owing to a mixture of different coloured down placed in lines near each other.

iI. Flowers from Buds.

1. The flowers arifing from the buds of fhrubs or trees are liable to become double or full by the multiplication of their petals, as thofe of rofes, cherries, hawthorn, peach, rofa, prunus, cerafus, crategus oxyacantha, amygdalus perfica. Which tendency to dúplicature, as in the flowers of annual plants, is probably owing to the too vigorous growth of the bud from a too nutritious foil, or the combination of abundant moifture and warmth, and would probably be forwarded by furrounding the bud itfelf frequently with water; as is fo beautifully feen in thofe plants, which have a cup round their joints to preferve for a time the rain, which falls upon them, as round the joints of dypfacus, teafel, filphium, tillandfia, and nepenthes.

It is remarkable, that though the duplicature of many flowers believed to have bean owing to the more nutritious foil, in which
they have been cultivated, yet that, when tranfplanted into lefs fertile foils, or ingrafted on lefs luxurians trees, they fill retain their tendency to duplicature; which can only be aferibed to the continuance of an acquired babit, or to the fucceffion of hereditary difeafes; fo frequently obferved in the animal fyftem.

This duplicature of flowers from buds is generally propagated by ingrafting the fcions of fuch, as bear multiplied petals, on fimilar plants, which bear fingle flowers ; and may be of fervice not only for beauty, but for the purpofe of increafe in thofe plants, the petals of whofe flowers are confumed for any purpofe, as the leaves of rofes. A gentleman at Nottingham annually diftils a profitable quantity of effential oil of rofes, by collecting all of them he can purchafe in the neighbourhood during the feafon; and this by the ufual procefs, which is not difficult though tedious. And a furgeon at Stafford has introduced an agreeable and profitable kind of agriculture, by planting half an acre of ground with red rofes, and converting the flowers into conferve with fugar, or by fimply drying them for the London market.
2. It is probable, that numerous varieties of colour in the fingle flowers of fhrubs, as well as thofe of annual plants, might be obtained by thaking the anther-duft of one variety over the ftigma of another, where any difference of colour already exifts in the fame fpecies. And perhaps fome changes of colour of the flowers might be produced by inoculating the buds of a fhrub, whofe flowers are of one colour, into the branches of another variety of the fame fpecies or genus; as the variegation of the foliage of plants is faid to have been produced in this manner, according to the affertions of Mr. Bradley and Mr. Laurence, who budded a fpotted paffion-flower and a ftriped jafmine on thofe, which were not variegated, and produced a fimilar variegation of them, as related in Sect. V. I. This has been afcribed to the abforption of fome infectious matter from the inoculated bud, which propagated a fimilar difeafe to the whole tree; and-

$$
{ }_{3} \mathrm{Z}_{2} \quad \text { has }
$$

has thence been ufed as an argument in favour of a vegetable circulation of juices.

A fimilar fact is alfo afferted by Mr. Milne. He fays, that "an evergreen tree ingrafted on a deciduous one determines the latter to retain its leaves; this obfervation is confirmed by repeated experiments, particularly by grafting the laurel, laurocerafus, an evergreen, on the common cherry, cerafus; or the ilex, an evergreen oak, on the common oak." Botanical Dict. Art. Defoliatio. All thefe feem to want further experiments to authenticate the facts fo delivered on the authority of ingenious men.
3. To increafe the number of the flowers of Chrubs, all thofe arts are applicable, which are defcribed in Sect. XV. 2. for the production of fruit on wall trees; which, when the tree is of a proper age, confift, I. in bending down the viviparous branches to the horizon, which renders them oviparous; 2. by twitting a wire, or tying a cord round the viviparous branches; 3 . by wounding or cutting away a narrow cylinder of the bark; 4. by tranfplanting or cutting. off fome of the roots; 5. by cutting away the central or viviparous branches; 6. by ingrafting.

III. Flowers from Roots.

1. Many bulb-rooted flowers are defervedly in great eftimation by florifts, as the tulip, hyacinth, lily, colchicum, crocus, fritillary, \&c. and of thofe many are liable to become double, which adds in general fo much to their fplendour and to their duration, as narciffus, hyacinth, colchicum, tulip,

The immediate caufe of duplicature or multiplication of the petals of thefe flowers is probably fimilar to that of thofe above mentioned, and originates from their luxuriant growth, owing to the fertility
fertility of the foil, and the abundance of moifture and of warmth in combination.

Other circumftances, which may add to their luxuriant growth, may alfo contribute to their duplicature; fuch as by breaking off the flower as foon as it begins to fade; and thus, by preventing the nutritious vegetable juices from being expended in the growth of the feeds, more of it may be derived to the principal fucceeding bulb.

Thus it is afferted, that the preventing fome annual 'plants from flowering lengthens their lives, which it may effect by occafioning them to produce new root-fcions, and thus to become perennial vegetables. The very ingenious Mr. Bogle, in the papers of the Bath Society, believes that wheat, oats, and barley, may be made perennials, if they are eaten down by cattle or fheep, or cut by the fcythe or fickle, fo as to prevent them from producing ears.

As tulip-bulbs raifed from feed produce a larger bulb the fucceeding year, and again a larger with a different leaf on the third year, and fo on till the fifth or fixth, the bulbs thus annually improving till they flower ; and even after they flower they are believed to continue to improve for fome years, till the colour of the petals become ftriped: I fufpect that the art of procuring a great duplicature of the petals of thefe flowers confifts in breaking off the flowerftem on the fifth, fixth, and feventh years, from the fowing of the feed; that is, for a year, or two, or three, after the flower-ftem firft appears, as noted in Sect. VHI. I. 3. -And that the tendency to duplicature will continue in the fucceeding bulbs by the acquired habit, as in the hereditary difeafes of animals.

And fecondly, thefe flower-roots become more luxuriant by raifing them out of the ground, as foon as the leaves wither, which are the parents of the new bulbs; and then by taking away the fmaller or collateral new bulbs from the principal one, which might otherwife "incommode its growth by their vicinity, and confequent compreffon,
fion, both thefe methods are of equal ufe to enlarge and render more vigorous the fingle flowers of bulb-roots, as well as to increafe their tendency to duplicature.
2. The fingle flowers of fome of thefe plants may be probably not only enlarged, but fo frengthened as to ripen their feeds in this climate, by nicely laying bare the root, and taking from it the new progeny; whether a fingle new bulb, as in orchis mafcula, or the numerous ones of hyacinth, tulip, or lily of the valley; as by thefe means the vegetable nutriment is not expended on the new bulbs, and probably more of it may thence be derived to the flower. See Sect. XVII. 1. 3.
Another method of increafing the bulb-rooted flowers in fize or number confifts in crowding their roots in garden-pots, or by not annually tranfplanting them; and thus by preventing their offsets from being formed, or by decreafing the number or vigour of them; thus lily of valley, and jonquil, feldom afford large or numerous flowers, till they have remained three or four years in the fame fituation; but muft neverthelefs be then occafionally in part tranfplanted, leaft the roots fhould die from being fo orowded as not to form each of them one annual new bulb, which is their mode of reproduc. tion.

The ufual method of propagating bulbous roots has been by the fmaller offsets, which are formed annually round the principal or central new bulb, as in tulips; which central new bulb has commonly been miftaken for the old root ; by this mode of propagation the fimilarity of the new progeny to the parent is nicely preferved; and on that account fome of thefe new roots of tulips and hyacinths have been fold at extravagant prices. For the circumftance of this mode of reproduction fee Sect.IX. 3.2.

But in refpect to producing variety of colour in the fingle flowers of bulbous roots, the moft effectual method, I fuppofe, muft be by fowing their feeds, and waiting a few years, till their fucceffive bulbs
at length produce flowers, as defcribed in Sect. XVII. i. 2. and particularly if the anther-duft of one variety in refpect to colour be fhed on the ftigma of another variety.
Another method of producing a change or variety of colours in bulb-rooted flowers may be by planting them every year, till they flower, on very nutritious foil, with an abundant combination of moifture and of heat, as thefe two elements thould exift together to effect the mof luxuriant growth of vegetables. And after they have flowered, or on the year in which they are expected to flower, they Chould be tranfplanted on a lefs nutritive foil, with lefs heat and moifure. Or probably this lefs quantity of nutriment, heat, and moifture, might be ufed at the commencement of their growth, or even at fowing their feed, with fimilar effect of fooner breaking into variety of colours.
The beauty of the double yellow tulip, and its greater longevity, much recommend it to common eyes ; but the endlefs variety in the colours of fingle tulips has long and defervedly been the admiration of florits. The curious event of their breaking into various colours from an uniform purple, a year or two after their firft flowering, and at the fame time of their lofing nearly one third of the height of their ftems, feems to indicate, that this effect refults not from the debility of age, but from the acquifition of hereditary difeafes, as thefe new colours, into which they break, afterwards remain for uncounted generations, and may in this refpect be compared to the canker in apple-trees, mentioned in Sect. XIV. I. 3.

This change of colour from darker to lighter in tulips may probably be accelerated or increafed by keeping the roots Iong out of the ground in dry or warm apartments, fo as to harden their fibres, and diminifh the diameters of their fecreting veffels, and thereby hindering their abforption of colouring molecules, fimilar to grey hairs produced on animals by age or external injury of the part. This would feem to obtain in tulips, as when they break into colours,
they lofe one third of their fize, and confequently the diameters of their fecretory and of their abforbent veffels muft be much diminifhed.

New kinds of varieties in the fituations or production of white parts of the petals of flowers might be caufed, I fufpect, by compreffing fome parts of them before the flower opens, by tying fine threads round the calyx, which inclofes them; as many darker coloured cats and dogs have all thofe parts lighter or quite white, which have been compreffed together, as they lay in their fetus flate in the uterus; an inflance of which exifts in a black male cat, which now lies upon the hearth, and an inftance of a black terrier bitch is defcribed in Zoonomia, Vol. II. Clafs I. 2. 2. II. This may be worth the attention of florifts and flowerfellers; and it is probable, that the white ftreaks in dark flowers may have been thus produced by their greater compreffion in the calyx, before the flower opens.
3. The caufes of duplicature in perennial flowers'with branching roots, as ranunculus, caltha, hepatica, anemone, cheiranthus, dianthus, filene, wallflower, carnation, catchfly, are probably fuch as afford a general luxuriancy of growth to thofe vegetables, and may be certainly propagated by offsets from thofe̊ roots, or by laying their branches in the ground, fo as to exactly refemble their parents. Many of thefe double flowers may alfo be procured by collecting the feeds from fuch fingle flowers of the fame fpecies, as poffefs a fupernumerary petal ; which, if fowed on fertile ground, will prefent us with double or multiplied flowers, as the anemone and july-flower mentioned in No. I. I. of this Section.

The effect of breaking the fingle ones into varieties of colour, which, in anemones and poppies as well as in tulips, are uncommonly beautiful, is probably owing to the lefs fertility of the foil, or lefs fupply of heat and moifture, where they have happened to refide, and that more effectually if they were removed from more favourable fituations.

Sect. XIX. 4. $1 . \quad$ OF FLOWERS.

The varieties of the fingle flowers alfo of thofe roots may be propagated unchanged, as well as the double ones, by dividing the roots or tranfplanting the offsets, or by laying their branches in the ground, as of pinks and carnations. Other varieties may be procured by collecting feeds and fowing them in diffimilar foils and fituations ; and fuch flowers as are of approved beauty, may probably be occafionally ftrengthened and enlarged by depriving them in part of their offsets early in the feafon; or may be broken into colours by keeping the roots fome weeks or months out of the ground in the autumn in dry or warm apartments.

The colours of flowers of this kind, I believe, are frequently changed by fituation; in my garden fome roots of comfrey, fymphytum, with purple flowers had loig exitted on a moiftifh border; and laft year other roots, I fuppofe from the feeds of the former, grew in a dryer fituation, and bore white flowers. And Mr . Bradley afferts, in his Philof. Account of Nature, p. 7 I , that fome roots of purple hepatica, which were removed from Tothill-fields to Henley on the Thames, became white; and became purple again, when they were returned to their native fituation.

iv. Efculent and Medicinal Flowers.

I. The efculent flowers moft in ufe at our tables have their mucilage in fome degree coagulated by boiling them in water or in fteam, and are confumed before their maturity, as thofe of artichoke, cinara fcolymus; of mercury, mercurialis; of fea-cale, crambe maritima; and of brocoli and cauliflower, braffica oleracea, italica and botrytis. The flowers of the nafturtion, tropeolum majus, poffefs an agreeable acrimony, and are eaten raw, fhred with the freth leaves of lettuce, young muftard plants, or red cabbage. Other flowers are ufed for domeftic or medicinal purpofes, as thofe

$$
4 \mathrm{~A}
$$

of hops, humulus lupulus, camomile, anthemis nobilis, rofes, cardamine, violets.

The three foremoft of thefe, the artichake, and mercury, and fea-cale, are perennial plants; and, as they put forth numerous rootfcions or offsets, may have their principal ftem much invigorated, and will confequently produce larger flowers, by taking away many of thefe offsets, fo as to leave but two or three on a root. And as the ripening of the feed is no object, a greater abundance of moifture, than thefe plants have been naturally accuftomed to, with proportional increafe of warmth in refpect to fituation, will forward their growth, and increafe their fize.

A great part of the nutritious mucilage in the artichoke is placed in the upper part of the ftem, as well as in the pericarpium of the flower, which fhould therefore be boiled along with it for the purpofe of coagulation ; and might then probably be managed fo as to refemble fagoe, if granulated by paffing it through fieves.

The art of boiling vegetables of all kinds in fteam inftead of in water, might probably be managed to advantage, as a greater degree of heat might be thus given them, by contriving to increafe the heat of the fteam after it has left the water ; and thus the vegetable mucilage in roots and feeds, as in potatoes and flour-puddings, as well as in their leaves, ftems, and flower-cups, might be rendered probably more nutritive, and perhaps more palatable.

But many of the leaves of vegetables, as the fummits of cabbagefiprouts, lofe their green colour by being boiled in fteam, and look like blanched vegetables. This etiolation of fome vegetables by Ateam is probably owing to its diffolving their colouring matter, which may then become decompofed; and may reader them lefs agreeable to thofe who choofe by the eye rather than by the palate; which green colour is however heightened by boiling them in fome hard waters which contain diffolved lime or fea-falt, or by a light admixture of common falt with foft water. An effect which.

Sect.XIX. 4.2. OF FLOWERS

is owing to the evaporation of a part of the marine acid, and to the remaining alkali, which was the bafis of it, when applied to bluilh vegetables converting them into green, as in the common experiment of adding falt of tartar to fyrup of violets'; or, according to the cuftom of fome cooks, who add a little potafh, or fixed vegetable alkali, to the water, in which young peas are boiled to make them green, and afterwards a very little fugar to fweeten them.
The fame effect of making vegetables green, when boiled in other kinds of hard waters, is probably produced by the lime, which abounds in them; and which like the vegetable alkali when the aerial acid, which was united with it evaporates, is faid to convert bluik vegetable colours into green ones.
The nutritious mucilage refides likewife in the young ftems of mercury, which fhould therefore be eaten before the flower begins to open. The falks and immature flowers of fea-cale are fimilar to good brocoli, if eaten young; though many gardeners prefer the blanching them, which fupplies an early and agreeable repaft, dèfrribed in Sect. XIV. 3. 3. Afparagus does not perhaps properly belong to this fection, as the ftem is eaten, before the flower becomes vifible.
2. The cultivation of brocoli and cauliflower muft be very fimilar, except as to the feafons of the year, as they are varieties of the fame fpecies of plant of the cabbage family. The following directions for the cultivation of brocoli were fent me by Edward Tighe, Efq. an ingenious gentleman of Ireland, along with an elegant Latir poem on the fame fubject, a free tranflation of which is placed at the end of this fection.
" Brocoli may be fo managed as to fupply the table with a delicious and falutary vegetable during the months of November, December, January, Fébruary, March, April, and May.

$$
4 \text { Ä }_{2} \quad 1, \text { Pro- }
$$

1. Procure prime feed from Rome or Naples both for early and late fowing.
2. Sow at the ceffation of the vernal fnows, and repeat it once a month till the end of May, or longer.
3. When three leaves appear, tranfplant them; and when fix leaves appear, tranfplant them again. Afterwards in June, July, and Auguft, tranfplant them two or three feet afunder, to remain.
4. During September and October the ground muft be loofened, and repeatedly cleared from weeds and ftones; and the plants earthed up to preferve their roots from the froft, and to prevent their being injured by the equinoctial winds.
5. Water them occafionally with water impregnated with dung.
6. Sow and plant them far from hedges, trees, and walls.

The head is generally completed in five or fix days from its firft appearance, and fhould not remain much longer; the ftalk fhould be boiled with the flower, and peeled in the kitchen, before it is brought to the table."
Some kinds of Italian brocoli are faid to produce fome knobs or bulbs at their roots, which are fuppofed to be for the purpofe of raifing other ftems; if this laft circumftance be afcertained, they fhould be broken off, when the principal ftem is tranfplanted; like the new root of orchis to enlarge the flower, mentioned in Section XV. 2. 4. But they may be fimply a refervoir of nutriment for the principal ftem, as in carrots and turnips; in that cafe they fhould certainly remain, and be tranfplanted along with the ftem.
3. In refpect to the flowers of hop, humulus lupulus; and chamomile, authemis nobilis; as well as thofe of rofes, violets, cardamine, and the nafturtion above mentioned; as their petals only are required, it would add much to their quality, if they could be cultivated in their double or multiplied ftate, as is generally indeed practifed
SECT. XIX. 5. F. OF FLOWERS. 549
practifed in refpect to rofes and chamomile ; many acres of the latter of which are cultivated near Chefterfield in Derbyfhire, and are fold, I am informed, to mix with hops, when thofe crops are deficient, as well as for the purpofes of medicine. What might be the effect of endeavouring to introduce a duplicature or multiplication of the flowers of artichoke, fea-cale, cauliflower, and brocoli, has not, I believe, been experienced.

v. Flowers used in the Arts.

1. The beautiful membrane, which covers the feeds of euonymus, or fpindle-tree, and of the bixa of South America, is faid to be manufactured into the anotta, or arnotta, ufed in colouring cheefe; but I am told that madder, made from the root of rubia tinctoria, is fold frequently in its ftead, and may be readily grown by farmers in their own gardens. Few flowers are ufed in the art of dying, their colours are fo fugitive, as they readily bleach when expofed to the light, and cannot be kept long even in the herbariums of botanifts without lofing their colours; which is believed to be owing to the oxygen of the atmofphere being feparated from the aerial water by the fun's light, and converted into a gas combined only with heat or light, and in that ftate more readily uniting with the colouring matter of flowers, and producing a new acid, which is tranfparent, colourlefs, or white, or is diffolved and wafhed away by the dews or rains.

The blue colour of the flowers of violets has been extracted by water, and preferved by the addition of fugar converting it into fyrup for the purpofes of medicine in part, but chiefly for thofe of chemiftry, to thew the change of vegetable blues into greens by an admixture of fixed alkali, as falt of tartar or potath; and into red
by the admixture of an acid, as thofe of fulphur, nitre, or marine falt.
2. Another very important flower, which is fuffered to grow to maturity for the purpofe of ufing the fine fibres which wing or invelope its feeds, is that of the cotton plant, goffypium ; which, as it requires fo much lefs preparation than the fibres of the fems of flax and of hemp or nettles, is likely to become the principal clothing of mankind; and efpecially fince the art of fpinning it was brought to fuch wonderful perfection by the genius of Sir Richard Arkwright, who difcovered that two fets of rollers moving with different velocities would draw out the fibres of cotton into a fine thread more accurately than could be done by the human hand, as well as more expeditioufly, along with much other very ingenious machinery,
There are two bog or water plants in our moraffes, which produce much vegetable fibres attached to their feeds, one of thefe is the typha, or cat's-tail ; and the other eriophorum, or cotton-rufh. The fibres of the former are fhort and coarfe, but might ferve perhaps to ftuff cuthions, or even coarfe beds; thofe of the latter are longer, and perhaps fine enough to finin. And as both thefe only grow on bogs or in water, where we at prefent cultivate no ufeful vegetables, one, or both of them, might poffibly be worthy the attention of thofe, who poffefs aquatic or marfhy fituations. The cultivation of the cotton plant belongs to warmer climates, and may probably require abundant water for its vigorous growth, as well as the typha and eriophorum of this country.

vi. Nutritious parts of Vegetables.

1. Having treated of the cultivation of fruits, feeds, roots, barks, leaves, woods, and flowers, an important queftion prefents itfelf; which Wing or in. which, as he ftems of cipal cloth. ing it was Sir Richard ig with dif. into a fine aman hand, very ingeni. ich produce fe is the ty. rufh. The e perhaps to - are longer, ly grow on vegetables, attention of altivation of probably feas the typha

ScET. XIX. 6. 2. OF FLOWERS. $55 x$ which of ohem may fupply the moft nutrition to mankind; or to other animals?

It may be anfwered firft, that thofe vegetables, or parts of vegetables, which approach neareft to the nature of animal bodies, are moft likely to fupply them with the moft nutriment; as the efeulent mufhrooms, and the gluten of whent, and the oils of feeds and kernels. The former clafs of plants feems to comect the animal and vegetable kingdoms of nature, as fpoken of in Sect. XVII. 2. 5. and though many of them poffefs an acrid, and fome of them an in toxicating quality, it is probable that the former might be deftroyed, and the latter diminifhed, by the heat employed in cookery. This Chould neverthelefs be attempted with due caution; fince, though one kind of vegetable acrimony, as that of water-creffes and of cabbages, is much diminifhed or deftroyed by a boiling heat, yet that of the leaves of arum maculatum, and of arum arifarum, I found by experiment, was not decreafed by boiling. And a few grains of the powder of lycoperdon, puff-ball, have lately been recommended in epileptic fits, and may thence poffibly poffers a powerful narcotic quality. The gluten of wheat is fuppofed to approach towards the coagulable lymph of animal bodies, as referred to in Sect. XVI. 7. r. and was once, I believe, advertifed as an alimentary powder, and recommended as a nourifhment of the moft portable kind for the fuftenance of marching armies. And laftly the oits of vegetables approach much to a fimilitude with thofe of animal bodies.
2. Secondly, it may be anfwered, that fince the chyle of all redblooded animals is believed to be nearly fimilar, and to confift principally of fugar, mucilage, and oil; the laft of which ingredients renders it white by its infolubility in water, and thence diftinguifhes it from the vegetable chyle or fap-juice of trees, which is tranfparent, and is believed to confift principally of fugar and mucilage without oil; thofe parts of vegetables which contain the greateft quantity of
there ingredients which compofe animal chyle, or are convertible into them by the power of digeftion, may be fuppofed to contain the moft nutriment for red-blooded animals.

To this may be added, that the nutritive quality of fugar is inconteftably evinced from the known fact, that the flaves in the fugar inlands become in better condition during the fugar feafon, though they are compelled to labour harder. The nutritive quality of fimple mucilage was fhewn in a remarkable inftance on record; where a caravan by fome misfortune had confumed or loft all their other provifions, and lived many weeks on the gum arabic alone, which conftituted their principal merchandife. The nutritive quality of oil is obfervable in the procefs of feeding cattle with oil-cake, and in the habits of the natives of the northern latitudes, who ufe the oil of filh for both meat and drink, and derive from it their principal nourifhment.
Sugar is known to be the fame, from whatever vegetable it is extracted, whether from the fruit of the vine or apple-tree, from the joints of the fugar-cane, from the fap-veffels of the maple, from the alburnum of the manna afh, from the feeds of germinated barley and rice, from the roots of beets, carrots, and potatoes, or, laftly, from the nectaries of flowers. The expreffed oils of vegetables are alfo believed not much to differ from each other in refpect to the nutriment they contain, though fome of them may approach nearer to the nature of animal fat ; as the painters diftinguif them by their greater aptitude to dey, when mixed with their colours and expofed to the air. But the word mucilage has been ufed for ftarch, which will not diffolve in cold water, as well as for gum arabic, and other mucilages properly fo called, which will diffolve in cold water, and even for the gluten of wheat, which will not diffolve in either hot or cold water. We may therefore conclude, that thofe parts of vegetables, which contain the moft of thefe materials, are the moft nutritive,

SECT. XIX. 6.3. OF FLOWERS.
nutritive, if they do not contain along with them fome noxious materials united with their falutary ones, and which cannot be readily feparated from them.
3. Though the parts of vegetables, which poffefs much oil, fugar, or mucilage, may afford more expeditious nutrition, as they conftitute the ingredients of the chyle of all red-blooded animals; yet there are other materials, which appear to be fo readily convertible into fugar or into mucilage, as perhaps nearly to fupply an equal quantity of nutriment. Thus by the procefs of germination, as when feeds of barley are converted into malt, and when roots pullulate in our ftore-rooms, as of onions or potatoes; the farina, confifting of meal or ftarch, is in part converted into fugar, and in part into mucilage; fimilar to this procefs of germination appears to be that of ripening, by which the auftere juices of fruits are tranfmuted into fweet ones; and alfo the culinary proceffes of baking or boiling, by which the auftere juices of unripe pears are changed into fiveet ones by the application of heat, as mentioned in Sect. VI. 5. But another more expeditious converfion of vegetable materials into fugar is by the digeftion of animals, which may be truly termed a faccharine procefs; as appears in thofe, who labour under diabates, as by evaporating the urine of one of thefe patients, fixteen ounces of impure fugar were daily extracted for fome time. Zoonomia, Vol. I. Sect. XXIX. 4.

Hence, though the oily kernels of nuts, walnuts, almonds, and the oily feeds of flax, hemp, rape, may contain moft expeditious nutriment ; and next to thefe the faccharine fruits of figs, dates, raifins, and the fweet roots of beet, mungel-worfal, ground artichoke, helianthus tuberofus, parfaip, carrot, may contain expeditious nutriment. Yet the more farinaceous feeds, as of wheat, peas, rice, barley, oats, and buck-wheat, polygonum fagopyrum, and the roots of potatoes, which contain ftarch, and flour, and mucilage, which are convertible into fugar in the ftomachs of animals, and are pro-
bably by that digeftive procefs, and their previous maftication in the mouth, mingled with more animal coagulable lymph, as the faliva, gaftric, and pancreatic juices, and may thus fupply a more animalized nutriment than the former; and may on that account contribute more to ftrengthen the fyftem. Of thefe feeds and roots it appears probable, that thofe, which contain the moft ftarch or gluten, as wheat, afford the moft nourifhment, as they are believed to make the beft bread.
4. The alburnum, or fap-wood, of moft trees in the winter months probably contains much nutritious matter; whence it is fo foon deftroyed by fermentation or putrefaction when deprived of life; and by infects, when it is deprived of its protecting bark. This nutritious matter might be obtained by grating, or rafping, or pounding it, and boiling the powder or faw-duft thus procured. The bark of all thofe vegetables, which are armed with thorns or prickles, is believed to contain much nutritious matter, which their armour was defigned to protect; as the inner barks of elm, holly, goofeberry, whin or gorfe, contain much nutritive mucilage; thus the deer in Needwood Foreft greedily peel the bark from the branches of holly, which are' cut from the fummits of thofe trees, where they have no prickles, as mentioned in Botanic Garden, Vol. II. note on Ilex. And horfes are faid to be well nourifhed by gorfe, if the prickles are previounly deftroyed by rolling a ftone over it, as the tanners bruife their oak-bark ; and fome horfes are faid to be fo fond of it, and fo wife, as to bruife young gorfe-bufhes with their feet, and then to eat them.

Fern roots are faid to be eaten by the natives of New Holland, and in other countries in times of fcarcity; but as their farinaceous or mucilaginous matter is included in ligneous fibres too hard for maftication, the method of cooking it is faid to confift in boiling the root, and then extracting the fibres by hammering it to pieces. The root of white bryony, which grows to a great fize in our hedge-bot-
toms, is faid, by M. Permentier, to poffefs a quantity of starch, which was capable of being wathed from the acrid mucilage by grating it into cold water, and of being manufactured into an agreeable and falutary bread; like the bread made from the caffava, which is faid to undergo a fimilar procefs, by expreffing forme of the acrimonious mucilage previous to the application of the heat of cookery. Which however not only deftroys the acrimony of many vegetables, as of water-creffes, cabbages, and the fkins of potatoes, but is alfo believed to render fome of them more nutritive by coagulating: their mucilage, which was previoufly combined with too great a proportion of water.
5. It would appear therefore in general, that the feeds or kernels of vegetables afford the moft nutriment; next to thefe their fruits and roots; and afterwards the alburnum or bark. Some of the flowers alfo in their early fate before impregnation, as thofe of artichoke, cinara, and cauliflower, braffica, are nutritious from the mucilage, which they poffefs; and fome feeds already impregnated, but fill in their immature ftate, along with their hufks or capfules, as thofe of kidney-bean, phafeolus, and of very young peas, afford a falutary nutriment. And laftly all flowers after the expanfion of their corols fecrete honey; which fupplies food to innumerable infects, who plunder it, as well as to mankind. In the bafes of many leaves another faccharine or mucilaginous juice is fecreted, as at the joints of grafs, on the bulbs of onions, and at the lower parts of the leaves of cabbages, and around the ftems of afparagus, mercury, and hop-buds, during the early ftate of their flowers; but the leaves themfelves, like the lungs of animals, feem to poffefs lefs nutritious aliment than many other parts of their fyftem.
vir. The Happiness of Organic Life.
All organized nature may be divided into fationary organizations, and locomotive organizations; the former of which are called vegetables, and the latter animals. All thofe parts of vegetables, which are moft nutritious to animals, confift, as obferved above, of aliment fecreted from the vegetable blood, and laid up in refervoirs for the future fuftenance of their embryon or infant progeny; which refervoirs are plundered by locomotive animals, and devoured along with the progeny, they were defigned to fupport ! add to this, that the ftronger locomotive animals devour the weaker ones without mercy. Such is the condition of organic nature! whofe firft law might be expreffed in the words, "Eat or be eaten!" and which would feem to be one great flaughter-houfe, one univerfal feene of rapacity and injuftice !

1. Where fhall we find a benevolent idea to confole us amid fo much apparent mifery?-I hope the fympathizing reader will not think the following account of the happinefs, which organized beings acquire from irritation only, impertinently inferted in this place; their happinefs derived from imagination and volition may be treated of in fome future work.

It may firft be obferved, that the feeds of plants and the eggs of animals, when they have left the pericarp or uterus, and have not yet commenced their new growth upon the foil, or beneath the wings of the mother, exift in a torpid ftate, not poffeffed of fenfitive life; and cannot therefore at this time be fuppofed to fuffer pain, when they are deftroyed by other animals; though thofe animals obtain pleafure from the activity, into which their vafcular fyftems are excited by the ftimulus of the aliment thus fupplied.

Secondly, that the young of lactefcent animals both acquire and communicate pleafure to the enamoured mother, from whom they receive
receive their nutriment, as mentioned in Botanic Garden, Vol. I. Canto I. 1.278 , note; which conftitutes the moft beautiful and moft benevolent part of the great fytem of nature.

Thirdly, all animals, and, I fuppofe, vegetables, receive pleafure in the reproduction of their fpecies; and where feeds are difperfed on the foil, and the eggs of fome animals and of many infects are buried beneath it, to be revived and hatched by the warmth of the fun; there can be no pain in thefe cafes inflicted on the mother, when they are deftroyed by animals or by infects, as the is unconfcious of their deftruction.
Fourthly, as all animal exiftence muft perifh in procefs of time, by the inirritability and confequent debility occafioned by the repetition of ftimulus, which is termed habit, and appears to be an univerfal law of nature : it is fo ordered, that as foon as any organized being becomes lefs irritable and lefs fenfible, and in confequence feeble or fickly, that it is deftroyed and eaten by other more irritable and more fenfible, and in confequence more vigorous organized beings; as infects attack the weaker vegetable productions in preference to the healthy ones; and beafts of prey more eafily catch and conquer the aged and infirm, and the young ones are defended by their parents. By this contrivance more pleafureable fenfation exifts in the world, as the organized matter is taken from a ftate of lefs irritability and lefs fenfibility, and converted into a ftate of greater; that is in other words, that the old organizations, whether fationary or locomotive ones, are tranfmigrated into young ones: whence it happened, that before mankind introduced rational fociety, and conquered the favage world, old age was unknown on earth!

Finally, the aged and infirm, from their prefent ftate of inirritability and infenfibility, lofe their lives with lefs pain, and which ceafes inftantly with the ftroke of death; infomuch that death cannot fo properly be called pofitive evil, as the termination of good.

To this Thould be added, that a long continued or a great excefs of pain cannot afflict an organized being; as fyncope or fudden death, and confequent decompofition, attends very violent pains; and a lingering death attends the continuation of lefs violent ones. Hence it becomes a confoling circumfance, that mifery is not immortal.

A philofopher, whom I left in my library, has perufed the above paragraphs, and added the fubfequent one to my manufcript. " It confoles me to find, as I contemplate with you the whole of organized nature, that it is not in the power of any one perfonage, whether ftatefman or hero, to produce by his ill-employed activity fo much mifery, as might have been fuppofed. Thus, if a Ruffian army, in thefe infane times, after having endured a laborious march of many hundred miles, is deftroyed by a French army in defence of their republic, what has happened? Forty thoufand human creatures dragged from their homes and their connexions ceafe to exift, and have manured the earth ; but the quantity of organized matter, of which they were compofed, prefently revives in the forms of millions of microfcopic animals, vegetables, and infects, and afterwards of quadrupeds and men; the fum of whofe happinefs is perhaps much greater than that of the haraffed foldiers, by whofe deftruction they have gained their exiftence!-Is not this a confoling idea to a mind of univerfal fympathy?

* I well remember to have heard an ingenious agricultor boaft, that he had drained two hundred acres of moraffy land, on which he now was able to feed a hundred oxen ; and added, ' is not that a meritorious thing ?' 'True,' replied one of the company, 'but you forget, that you have deftroyed a thoufand free republics of ants, and ten thoufand rational frogs, befides innumerable aquatic infects, and aquatic vegetables.'
" Having written the above, I fear you may think me a mifanthrope, but I affure you a contrary fenfation dwells in my bofom; humani nihil a me alienum puto."

2. The vafcular fyftems of animal bodies are excited into action by the ftimulus of the fluids, which they abforb, circulate, and fecrete; and when this action is exerted in its natural or moft ufual quantity, it is attended with agreeable fenfation, which conflitutes the pleafure of organized exiftence. Thefe vafcular actions of animals, which perform digeftion, fanguification, and fecretion, convert the aliment, after its folution in the fomach, into more compounded and more folid materials; as into mufcles, membranes, nerves, bones, and fhells; at the fame time that pleafurable fenfation attends this activity of the fyftem. The vafcular actions of vegetables, which perform their digeftion, fanguification, and fecretion, convert the elements of air and water, or other aliments, which they receive from organized matter decompofing beneath the foil, into more compounded or more folid materials, as into vegetable veffels, mufcles, membranes, nerves, and ligneous fibres ; and a degree of pleafureable fenfation muft be fuppofed from the ftrongeft analogy to attend this activity of their fyftems.
3. Many of the materials, which have been thus produced by the digeftion and fecretion of organized beings, and have given pleafure in their production, have been flow in their decompofition after the death of the creature; as the fhells of fifh were originally thus formed, and were left at the bottom of the ocean, till they became wonderfully accumulated, were afterwards elevated by fubmarine fires, and conftitute at this day the immenfe rocks and unmeafured ftrata of limeftone, chalk, and marble. As mentioned in Sect. X. 10. 1.

The ftrata, which are incumbent on the calcareous ones, which confift of coals, fand, iron, clay, and marl, are all of them believed to have been originally the products chiefly of vegetable organization; whatever changes they have fince undergone in the long progrefs
progrefs of their decompofition, and that all thofe folid parts of the earth have been thus fabricated from their fimpler elements by vegetable and by animal life, and hadve given pleafure to thofe organized beings, which formed them, at the time of their production.

We hence acquire this fublime and interefting idea; that all the calcareous mountains in the world, and all the ftrata of clay, coal, marl, fand, and iron, which are incumbent on them, are Monuments of the past felicity of organized nature!-and consequently of the benevolence of the Deity!

viri. The Cultivation of Brocoli.

Tranilated in part from an elegant Latin poem of Edward Tighe, Efq.

There are of learned tafte, who ftill prefer Cos-lettuce, tarragon, and cucumber; There are, who ftill with equal praifes yoke Young peas, afparagus, and artichoke ; Beaux there are ftill with lamb and fpinach nurs'd, And clowns eat beans and bacon, till they burft.

This boon I afk of Fate, where'er I dine, O, be the Proteus-form of cabbage mine!Cale, colewort, cauliflower, or foft and clear If Brocoli delight thy nicer ear, Give, rural Mufe! the culture and the name In verfe immortal to the rolls of Fame.

When the bright Bull afcending firft adorns The Spring's fair forehead with his golden horns;

When the bright Bull, 19 th of April.

Italian feeds with parfimonious hand The watchful Gardener fcatters o'er his land; Quick moves the rake, with iron teeth divides The yielding glebe, the living treafure hides; O'er the fmooth foil, with horrent thorns befet,
Swells in the breeze the undulating net; Bright fhells and feathers dance on twifting ftrings, And the fcar'd Finch retreats on rapid wings.

Next when the Twins their lucid forms difplay, And hand in hand falute the lord of day; When climbs the Crab the blue ethereal plain,
Or fhakes the Lion his refulgent mane;
Each paffing month renew the grateful toil,
Upturn with hhining blade the fertile foil;
New feeds infert, whofe vegetable birth
May rife fucceffive from the womb of earth.
So fhall hibernal hours on frozen wing
View the green products of the breezy fpring;
Admiring nymphs the genial banquet fhare,
Smile on thy labours, and reward thy care.
But when three leaves the young Afpirer fhoots,
To other foils tranfplant the fhorten'd roots;
Where no tall branches form a vaulted glade,
Nor ivy'd tower projects a length of fhade;
There in wide ranks thy verdant realms divide, Parting each opening file a martial ftride.
There with charm'd words of fome poetic fpell
Call the blue Naiads from their fecret cell;
From filver urns in lucid circles pour
Round each weak ftem the falutary fhower.
Pants thy young heart to grafp the laurel'd prize, And fwell thy Brocoli to gigantic fize? -

The Twins, 20th of May. The Crab, 20th of June.
The Lion, 22d of July. ${ }_{4}$ C

Soon

Soon as each head with youthful grace receives
The verdant curls of fix unfolding leaves; O, fill tranfplant them on each drizzly morn, Oft as the moon relights her waining horn; Till her bright veft the ftar-clad Virgin trails, Or corn-crown'd Autumn lifts his golden fcales. Then ply the fhining hoe with artful toil, Ere the grey night-froft binds the ftiffen'd foil; And, as o'er heaven the rifing Scorpion crawls, Surround the fhuddering ftems with earthen walls. So fhall each plant erect its leafy form, Unhook by Autumn's equinoxial ftorm; And round and fmooth, with filvery veins embofs'd, Repel the dew-drops, and evade the froft. Thus on the Stoic's round and polifh'd brows Her venom'd thafts in vain misfortune throws; By virtue arm'd, he braves the tented field, The innocuous arrows tinkling on his fhield.

Hence when afcendant rules the watery Star, Or the celeftial Fifhes fwim in air, Thy guarded ftalks fhall lift their curled heads, And fringed foliage fhade thy ample beds, Gem with bright emerald Winter's tracklefs fnows, Or bind with leafy wreaths his icy brows.

When leads the Spring amid her budding groves The laughing graces, and the quiver'd loves; Again the Bull fhall fhake his radiant hair O'er the rich product of his early care;

The ftar-clad Virgin, 22d of Augult. Golden fcales, 22d of September.
Scorpion, 22d of October. Evade the frof. One advantage, which vegetables receive by repelling the water by the upper furfaces of their leaves, is, that it may not incommode their refpiration; but another is, that by not being thus moiftened they are lefs injured by froft.
Watery Star, 19th January. Celefial Fijhes, 19th February. The Bull, $19^{\text {th }}$ April.

Sect. XIX. 8. OF FLOWERS.

With hanging lip and longing eye fhall move, And Envy dwell in yon blue fields above.-
Oft in each month, poetic Tighe! be thine To difh green Brocoli with favory chine; Oft down thy tuneful throat be thine to cram The frow-white cauliflower with fowl and ham!--Nor envy thou, with fuch rich viands bleft,
The pye of Perigord, or Swallow's neft.
The pye of Perigord was made of the red-legged partridges before the French revolution ; and was fold in London at the price of a guinea for each bird it contained.

Swallow's nef. There is a fpecies of fwallow, that builds a neft on the banks of the Nile and Ganges, which confifts of ifinglafs ; which the bird collects from putrid fifh left on the fands; and which is efteemed a great delicacy, and enters the moft coftly foups at the luxurious tables of the eaft.

S E C T. XX.

PLAN FOR DISPOSING PART OF THE VEGETABLE SYSTEM OE LINNEUS INTO MORE NATURAL CLASSES AND ORDERS.
I. The clafles of plants difinguißed by the proportion or fituation of the ftamina are more natural thain thofe diftinguibled by their numbers. Many Linnean elafes thus difinguibed. Many of the orders are natural claffications. Ufe of natural claffes. 2. The fituation and proportion of the jexual organs are lefs liable to variation than their numbers. Great variation in refpect to number of the ftamina. From luxuriant growth. Some Jpecies bave but balf the number. Others bave part of them without anthers. The number of pifilla varies in different species of the fame genus. Progrefs of nature to greater perfection. Of the clafs Syngenefia. 3. Immutable parts dijcovered by reafoning as well as by obfervation. Filaments of Meadia uncbangeable, and of bemerocalis fulva, nigella, collinfonia, 」partium. 4. Some natural orders might become claffes. As the grafes, and the umbellate, and Atellate. Forms of the filaments, and of the antbers, as well as their fituations, lefs variable than their numbers. 5. Claffic eharacters. From fhort and long filaments. From their unequal beigbts. From their different infertions. Froms their refpective fituations. From their adbefions to each otber. Or to the corol, or fyle. From their exiftence in different flowers. From the connexion of the anthers, or from the forms of the flaments and antbers. 6. Uncertainty of the number of piffilla. Their proportions and figures lefs variable. And would define more natural orders. 7. CharaEters of orders from the length of the fyle. The curvature of it. The attitudes of it. Divifons of the Aigma. Abjence of the figma. Adbefions of the fylle. 8. Conclufion.
I. Often as I have admired the claffification of vegetables by the great Linneus deduced from their fexual organs of reproduction, fome

SECT. XX. 1.

NATURAL CLASSES.
fome of the claffes have appeared to me to be more excellent than others, as they feemed to approach nearer to natural onés. On further attention to this fubject, I perceived that thofe claffes, which were deduced from the proportions or fituations of the ftamina, or which included the number of the flamina along with their proportions and fituations, were more natural claffes than thofe, which were diftinguifhed fimply by the number of them.

Thus the claffes termed Dydynamia and Tetradynamia, which are derived from the proportions and fituations of the famina as well as their number, are wonderfully natural; to which may be added the claffes Icofandria, and Polyandria, as their diagnoftic character confirts in the fituation of the flamina on the calyx or petals in the former clafs, and on the receptacle in the latter, though the names of thefe claffes are not fo happy, as they fimply refer to their numbers, which are unfoitunately very variable.

Some other of the Linnean claffes are diftinguifhed by the fituation of the filaments, as the Monadelphia, Diadelphia, Polyadelphia, and Gynandria; all which approach towards natural claffes; and the Syngenefia, which is diftinguifhed by the adhefion of the anthers, is a clafs beautifully natural, except the laft order.

Many of the orders alfo in the fexual fyftem are natural claffifications, as the graffes in the clafs Triandria, the unibellated plants in the clafs Pentandria, and perhaps the cruciform plants in the clafs Tetandria; with many amongft thofe which are termed natural orders at the end of the Genera Plantarum ; all which might probably be difcriminated by fome fituation, or proportion, or form, of their refpective ftamina.

As the claffes deduced from the proportions or fituations of the flamina alone, or conjointly with their' refpective number, appear thus to produce more natural diftributions of vegetables, than thofe derived fimply from their number; it might have been more fortunate for the fcience of Botany, if the great author of the fexual
fyftem had turned his mind to have claffed all of them from the proportions, fituations, and forms of the ftamina alone, or from thefe conjointly with their number, and to have diftinguifhed the orders according to the proportions, fituations, or forms of the piftilla alone, or conjointly with their numbers.

The great ufe of diftributing plants into natural claffes is not only for the purpofe of more readily diftinguifhing them from each other, and difcovering their names, but alfo for that of more readily detecting the virtues or ufes of them in diet, medicine, or the arts; as for the purpofes of dying, tanning, architecture, fhip-building; which has already been happily experienced in attending to the genera or families of plants, which are all natural diftributions of them, whence the fame virtues or qualities generally exift among all the fpecies of the fame genus, though perhaps in different degrees.
2. But another great advantage would probably occur from deducing the characters of the claffes of vegetables from the fituations, proportions, or forms of the fexual organs rather than from their number; which is, that thefe criterions of the claffes and orders would be much lefs fubject to variation.

The variation of the number of famina not only frequently occurs from the too Juxuriant growth of many cultivated flowers, or by the duplicature or multiplication of their petals, or nectaries, which is liable much to inconvenience the young botanift; but feveral of the fecies of plants have but half the number of ftamina, which other fpecies of the fame genus poffefs. This occurs fo frequently, that the defect of number is expreffed as an effential character of the fpecies in many inftances. Thus the ceraftium pentandrum, and fpergula pentranda, diftinguifh thofe fpecies from the other plants of the genus, which poffefs ten flamens; fo tamarix floribus pentandris, tamarix floribus decandris, falix floribus diandris, falix triandra, falix pentandra, valeriana floribus monandris, valeriana floribus diandris, verbena diandra.

Sect. XX. 2. NATURAL CLASSES.

So the vernal flowers of the corchorus filiquofus have but four famina, but the autumnal ones have numerous flamina. The linum flax of this country has but five perfect ftamina, and five without anthers on their fummits; whereas the linum lufitanicum, Portugal flax, poffeffes ten complete ones. The verbena, vervain, of our country has four flamina, that of Sweden but two; the genus albuca, bignonia catalpa, gratiola, and hemlock-leaved geranium, have only half their filaments crowned with anthers; all which and many others evince the uncertainty of depending on numbers alone for diftinguifhing the claffes of plants.

Nor are-the number of piftilla more certain as a criterion of the orders. Thus there is nigella pentagyna, and nigella decagyna; hypericum floribus pentagynis, trigynis, and digynis, with innumerable other fimilar inftances, as mentioned in No. 6 of this Section. Which evince, that great confufion muft be occafioned by a reliance fimply on the number of the piftilla for defining the orders of plants.

I contend, that the number of the fexual organs in flowers is more liable to change by the influence of foil or climate, or by the progrefs of time, than their fituations or proportions, or forms, and might therefore probably be more advantageoully employed in diftinguifhing their claffes and orders from each other, as well as in rendering them more natural combinations.

This mutability or uncertainty of the number of the organs of reproduction belonging to individual flowers, would feem to arife from an attempt of all organized beings towards greater perfection. Whence as the fuccefs of the procefs of reproduction becomes more certain from the greater perfection of the vegetable being, the organs for the purpofe of reproduction feem to become fewer. Whence fome flowers have loft half the ftamina, and in others the anthers of thofe ftamina are yet only deficient, and in others the piftilla are deficient; all which in procefs of time may gradually become lefs numerous,
numerous, or feparate themfelves from hermaphrodite flowers into fexual ones, as in the claffes of monœecia and diœcia; and all of them finally, after a long procefs of ages, become of the orders monandria and monogynia of thofe claffes; whilft new kinds of vegetables may begin a fimilar progrefs from lefs to greater perfection. So in animals, the lefs perfect feem to poffefs organs for a more numerous reproduction, as filh and infects. Such would feem to be the perpetual progrefs of all organized being from lefs to greater perfection exifting from the beginning of time to the end of it ! a power impreffed on nature by the great Father of all.

Thus in the clafs fyngenefia, the tendency of thefe vegetables from more numerous to a more fimple organization for the purpofe of reproduction is wonderfully confpicuous. In the order polygamia æqualis, all the florets are furnifhed with male and female organs. In the order polygamia fuperflua, the florets in the centre have both male and female organs, thofe in the circumference have only female ones; and of thofe fome have loft the corol of the floret. In the order polygamia fruftranea the florets in the centre poffers both male and female organs, but thofe in the circumference have neither; though at the fame time the corols of thofe florets remain. And laftly, in the order polygamia neceffaria the central florets are fimply male florets, and thofe in the circumference fimply female ones; and thus approach to the clafs of monocia, having the male and female organs in feparate florets; and may in procefs of time exift in feparate flowers, and afterwards in feparate plants, like the two fexes of the more perfect animals. Something fimilar to this feems already to have occurred in the plant phytolacca, of the clafs decandria decagynia; which poffeffes one fpecies with twenty males, another with ten, another with only eight males and eight females, and laftly one of the clafs diæcia, or two houfes.
3. In many flowers fome circumflances of the fituations or proportions or forms of the filaments or anthers may be fhewn, by rea-
foning as well as by obfervation, to be lefs mutable than others; as the fhortnefs of the filaments of dodecatheon meadia, cyclamen, folanum, borago, fufchia, and others. As mentioned in Botanic Garden, Vol. II. note on Meadia. Thus in the flower of meadia the filaments are exceedingly fhort compared to the ftyle, and feem to have been in that circumftance immutable. Whence it became neceffary, firft to furnifh them with long anthers, which ftand pointed towards the diftant ftigma apparently endeavouring to reach it. Secondly, it was neceffary to bend the flower-ftalks, when the corols open into thofe graceful curves, which conftitute the uncommon beauty both of this flower and of the fufchia; that the ftigma by hanging down immediately beneath the anthers might thus receive, as it falls, the prolific farina. And that this was the evident defign of the curvature of the flower-ftalk appears from its rifing again, and becoming quite erect, as foon as the impregnation of the pericarp is accomplifhed. Thirdly, as the flower thus becomes perpendicularly pendent, it was neceffary to reflect the petals for the purpofe of admitting light and air to the fexual organs.

We may reafon from this ftructure of the meadia, that all this apparatus of long erect anthers to approach the ftigma ; of bending the flower-ftalk, that the fexual organs might become pendulous; and then of reflecting the petals to give light and air; might have all been fpared, if the filaments alone could have grown as long as the flyle; as occurs in moft other flowers. And that therefore in thefe flowers the filaments are the moft unchangeable parts of them; and that hence the comparative length of the filaments in refpect to the ftyle would afford the moft immutable mark of their effential character, or for the purpofe of claffification.

Another apparent inftance of the great unchangeablenefs of the length of the filaments exifts in the hemerocallis fulva, tawny daylily, in which I obferve the ftyle is crooked, or bent into a zigzag, about the middle of it, evidently for the purpofe of fhortening it,
that the anthers might approach the fligma; the ftalk of the flower not being fo flexible as to allow it to become pendent, as in the hemerocallis flava, or yellow day-lily.
In nigella, devil in the bufh, the ftyles are very long compared with the filaments, and bending down their ftigmas over the anthers in curves, give the flower a refemblance to a regal crown; which need not to have occurred, if the filaments could more eafily have been lengthened.

In collinfonia the two anthers ftand widely diverging on fhort filaments, and the tall capillary fyle bends its ftigma into contact firft with one of them, and afterwards with the other. In the fpartium fcoparium, common broom, the long fyyle bends round into a circle to accommodate the ftigma to the fhort fet of anthers, which great curvature need not have exifted, if the filaments could more eafily have grown longer. Other inftances of fimilar ftructure are related in Sect. VII. 2. 2. of this work.

It is probable, that fimilar obfervations, 'and a confequent reafoning on them, might be applied to many other kinds of flowers fo as to detect the moft unchangeable parts of them: but great time, labour, opportunity, and ingenuity, would be required to eftablifh from them the moft invariable and moft natural claffes of vegetation.
4. Many different proportions and fituations and forms of the filaments are enumerated in the Philofophia Botanica of Linnæus; fome of which might poffibly have become claffical characters, if he had turned his attention to them, and given them adapted names; as he has done to thofe claffes, which he has derived from the fituations of the fexual organs, as didynamia, tetradynamia, fyngenefia, and others, which approach nearer to natural claffes, and are fubject to lefs variation than the numerical ones.

Some of thofe collections of plants, which Linnæus has termed natural orders, and fome of thofe of Ray, and Tournefort, might

$$
4 \quad \text { perhaps }
$$

SECT. XX. 4 .

NATURAL CLASSES.
perhaps have had names affixed to them, denoting the fituations or proportions or forms of their ftamina, and have thus conftituted natural claffes in the Linnæan fyftem. Thus for example the natural order of graffes might perhaps have had a name denoting their long capillary filaments. The natural order of graffes is fo confpicuous, as to have ftruck all beholders; they conftitute, it is faid, nearly a fixth part of the vegetable kingdom, efpecially in open countries; the leaves are not eafily broken by being trampled on, but die in winter, becoming yellow and dry; but what is wonderful, they are faid to revive in the fpring, and become green again. This natural order of plants has been divided into cerealia and gramina, corn and graffes; which however only differ in refpect to the fize of the feeds. It is much difunited by the numerical diftinctions of the fexual fyttem, as fome grafles belong to the clafs monandria, diandria, triandria, and hexandria; and thofe of the triandria, and hexandria, are either hermaphrodite, or monœcious, or polygamous plants. Of thefe a very curious and extenfive table is given in the Prælectiones in Ordin. Natur; a Gifeke Hamburg. 1792, p. 138.

A great part of the natural order of caryophyllei, in which the number of the ftamina is very variable, are obferved by Mr. Milne to have their filaments alternately attached to the claws of the petals and to the receptacle, and might poffibly have a claffical denomination from that circumftance. Botan. Dic. Art. Caryophyllei.

The five ftamina of the umbellated plants in the clafs of pentandria digynia, with five petals, two feeds, above; which are termed umbellatæ in the natural orders of Linnæus; as they diverge from each other, might perhaps be called five ftarred, or cinque-pointed famina from this fituation. And in part the natural order of plants termed ftellatæ by Linnæus, as galium, and afperula; which belong to the clafs tetandria monogynia with one petal, two berries, above; the four diverging flamina might perhaps be termed cruciform; as they oppofe each other. And thus thefe natural collections of vege-

$$
{ }_{4} \mathrm{D}_{2}
$$

tables
tables might acquire a claffical denomination from the fituations of their ftamina, or perhaps from the form of their filaments or anthers.

To thefe fituations and proportions of the ftamina, with many others, might be added the form of the filaments, as capillary, flat, wedgeform, fpiral, awled; and alfo the forms and fituations of the anthers, as globular, oblong, arrowy, angular, horned. Which may be feen in the Philofophia Botanica of Linnæus, p. 65 ; or a tranflation of them in Miln's Botanical Dictionary, under the titles of filament and anther. All which, I fuppofe, are much lefs variable by foil or climate, than the numbers of their refpective fexual organs, and would in the hands of an ingenious botanift form more natural claffifications.
5. Claffical charackers might perhaps be taken from the length of the filaments compared to that of the ftyle, with fome other concomitant circumftances; as firft where they are fomewhat fhorter than the ftyle, as in the pendent bell-flowers of lily, fritillaria, campanula. Secondly where the filaments are more than twice as fhort as the fyyle, as in meadia, cyclamen, folanum, borago, fufchia. Or thirdly where the filaments are more than twice as long as the ftyle, and in the natural order of graffes.

Secondly, the unequal heights of the filaments at the firft opening of the corol. In many flowers the inferior fet of ftamina rife up to the ftigma, when the higher fet have difcharged their pollen. To thefe fituations of the ftamina may alfo be added their number, as in the two very natural claffes of Linnæus, the didynamia and the tetradynamia. One of thefe might be termed two higher than two ; the other four higher than two. To which might perhaps be added a third clafs, of many higher'than many; as fix above fix in lithrum falicaria, five above five in lychnis.

Thirdly, the different infertions of the filaments, as firft on the calyx, which principally diftinguifhes the clafs icofandria of Lin-
næus, and which thus approaches towards a natural clafs. Secondly on the receptacle, which diftinguifhes the clafs polyandria of Linm næus, which alfo approaches toward a natural clafs. And thirdly, the infertion of the filaments alternately to the claws of the petals, and to the receptacle; which diftinguifhes a part of the natural order of the caryophyllei, in which the number of the ftamina is very various.

Fourthly, the fituation of the filaments in refpect to each other; as firft in the natural order of Linnæus termed ftellatæ, or a part of the tetrandria monogynia; the diverging filaments oppofe each other, and might be termed cruciform, as in galium, afperula. Or fecondly, where five diverging filaments affume the appearance of a ftar, as in the natural order of umbellatæ, or a part of pentandria digynia, and might have a name borrowed alfo from their number, like five-ftarred, or cinque-pointed, applied to the filaments, as mentioned above.

Fifthly, the adhefions of the filaments to each other at their bafe: This has given names to three claffes of the Linnæan fyftem, which approach to natural ones, under the term of brotherhoods; as firft, where the filaments all adhere at their bafe, as in the clafs monadelphia; fecondly, where they adhere in two fets, as in the clafs diadelphia; and thirdly, where they adhere in many fets, as in the clafs polyadelphia.

Sixthly, the adhefions of the filaments to the corol, as where they adhere more than half their length to the internal part of it; as in many monopetalous flowers, as primula, auricula; or where the filament arifes from the petal, or where the anthers adhere to the margin of the petal, as in many of the natural order of fcitaminex, as obferved in the Prelect. in Ord. Natur. a Gifeke, p. 189.

Seventhly, where the filaments adhere to the ftyle, as in the clafs gynandria, which approaches to a natural one.
Eighthly, the fituations of the ftamina not in the fame flowers
with the piftillum. This has alfo given names to three claffes of the Linnæan fyftem, monœcia, diœecia, polygamia.

Ninthly, the connexion of the anthers, which has given the name to the clafs fyngenefia, which excepting the laft order, is a wonderfully extenfive and natural clafs.

To thefe varieties of fituation, proportion, and adhefion, of the filaments, may be added thofe of the anthers on their fummits; which to an attentive obferver may perhaps be as numerous as thofe of the filaments, and to thefe may again be added the various forms of the filaments, as capillary, flat, wedgeform, fpiral, feathered, \&c. and alfo the various forms of the anthers, as oblong, globular, arrowy, angular, horned. All which are defcribed in the Philofophia Botanica. And by an adoption of fome of thefe feparately or in conjunction for claffical characters, I fhould hope that new claffifications might be difcovered inftead of thofe, which are fimply numerical. Which might be more natural ones, lefs fubject to variation, eafier to be diftinguifhed from each other, and more fimilar in their good or bad qualities; and might thus add to the great beauty and utility of the prefent wonderful arrangement of fo many thoufand vegetables in the Linnæan fyftem.
6. The fame obfervations and mode of reafoning are applicable to the various orders of the fexual fyftem. Which if the great Lirtnæus had fortunately deduced them from the proportions, fituations, or forms of the ftyles and ftigmas, the characteriftic figns might have been lefs liable to change by foil or climate, and many of the orders have been more natural collections of vegetables, than thofe are, which he has derived fimply from their number.

The uncertainty of the number of piftilla, and the confufion, which might be occafioned by a reliance on it, was mentioned in No. 2 of this fection; there is a nigella pentagyna, and a nigella decagyna; there is an hypericum floribus pentagynis, trigynis, and digynis; and in the whole order of fruftraneous polygamy in
the clafs fyngenefia the florets of the ray are furnifhed with a fyle and no fligma, as in the funflower.
The flowers of the polygonum, whofe claffical character is octandria, and its order trigynia, affords many inftances of the uncertainty of the number of the fexual organs, both in refpect to the famina and piftilla. Thus the fpecies $4,5,6,7$, poffefs but five ftamina in each; the fpecies $8,9,10$, have each of them fix famina, and the eleventh fpecies has feven flamina. And laftly the fpecies $4,5,6,8,9,11,12$, have each of them but two piftilla, and all the reft three piftilla.
From thefe and other innumerable inflances there is reafon to conclude, that the proportions, fituations, and forms of the fyle and ftigma, to which might be added their number conjointly, would have made effential characters for the orders, which would have been lefs variable thian thofe derived only from the number of them, and would have rendered them more natural collections.
7. The characters of the orders might be deduced firft from the length of the ftyle compared with that of the filaments; as where the fyle is more than twice as long as the filaments, as in meadia, cyclamen, folanum, fufchia. Secondly, where the fyyle is about one third longer than the filaments, as in lilium, fritillaria, campanula, and many other bell-flowers. Thirdly, where the ftyle is very fhort compared to the filaments, as in poppies.
2. The characters of the orders might be deduced from the curvatures of the fyle. As firft; where the fyle bends into a curve over the anthers to bring the ftigma into contact with them, as in nigella, devil in the bufh. Secondly, where the ftyle bends into a circle like a french-horn to accommodate the figma to two fets of ftamina in fucceffion, firft the lower, and then the higher, as in fpartium fcoparium, common broom. Thirdly, where the ftyle is crooked in the middle of it, making a kind of zigzag, to lower the
ftigma to the anthers beneath it, as in hemerocallis fulva, tawny day-lily.
3. Characters might be deduced from the attitude of the ftyle; as where it is pendent, that the ftigma may be accommodated to the anthers above it, as in many bell-flowers. Secondly, where it is inclined at a confiderable angle to accommodate the ftigma to the inclined anthers, as in epilobium, willow-herb, and gloriofa fuperba. Thirdly, where the ftyle is erect, to adapt the ftigma to the upright anthers, as in many flowers.
4. Where the divifions of the ftigma expand, and bend down toward the anthers beneath them, as in fome kinds of dianthus, pink, and in epilobium.
5. The total abfence of the fyle might mark an order.
6. The total abfence of the figma, which is a characteriftic mark of the florets of the ray in the order fruftraneous polygamy of the clafs fyngenefia.
7. Where the ftyle adheres to the ftamina, as in the natural order of Linnæus termed calamarix, as obferved in Philof. Botanica, No. 102, on the Piftilla, p. 68.
8. Where the ftyle fupports the ftamina as in the clafs gynandria.
9. Where the ftyle appears to exif both above and below the germ, as in capparis, euphorbia.
10. The lateral adhefion of the ftyle to the germ, as in one of the natural orders of Linnæus, which he has termed fenticofæ, or briers, which includes the rofe, rafpberry, ftrawberry, agrimony, alchemilla, and many others, which might be named from the lateral adhefion of the ftyle to the germ, which Linnæus afferts to exift both in the natural order above mentioned, and in the order Icofandria polygyna. Philof. Botan. p. 67.
If to thefe proportions or fituations of the fyle were added the varieties
rieties of its figure, as cylindrical, angular, awled, capillary; and to thefe were again added the divifions of the figma, as convolute, revolute, fix-parted, many-parted. And to thefe were again added the various forms of the ftigma, as globular, egged, end-nicked, cruciform, feathery, \&c. which are enumerated in the Philofophia Botanica; there is great reafon to believe, that characteriftic marks of all the orders of plants might be deduced and named from fome of thofe circumfances feparately or conjointly; which might diftinguifh them from each other with greater eafe and certainty, and by marks lefs variable by foil or climate, than by the number alone ; and by rendering them more natural add to the beauty and utility of the Linnæan fyftem.

Conclufion.

Neverthelefs I am well aware of the great general inconvenience of altering fo extenfive a fyftem once eftablifhed, and am forry to fee fome idle efforts to add the claffes already deduced from fituation or proportion to thpre, which are fimply numerical; and thus rather to deteriorate than to improve the prefent fyftem of the great mafter.

I profefs myfelf incapable to execute the plan, which I have here fuggefted, as it would require a moft exact knowledge of the detail of botany, as well as of the outline; would require many years of unremitted application, with every opportunity of vifiting botanic gardens, or examining dry collections, and infpecting prints and drawings of vegetables; and would demand a genius, which few poffefs, capable of reducing the complex and intricate to the fimple and explicit.

But if the fyftem of the great Linnæus can ever be intrinfically improved, \mathbf{I} am perfuaded, that the plan here propofed of ufing the fituations, proportions, or forms, with or without the numbers of

$$
4 \mathrm{E}
$$

the
the fexual organs, as criterions of the orders and claffes, muft lay the foundation; but that it muft require a great architect to erect the fuperftructure. And my principal defign in adjoining this imperfect fketch at the end of this work was to warn thofe botanifts, who have began to interweave fome of the Linnæan claffes deduced from fituation or proportion of the fexual organs into thofe diftinguifhed fimply by number, that they fo far contribute to deteriority the great fyftem, which they mean to amend.-At the fame time I much applaud, and beg leave to recommend to the attention of the public, the fuperb pictorefque botanical coloured plates now publifhing by Dr. Thornton, which I fuppofe have no equal.

ADDITIONAL NOTES.

1. To be inferted before the laft paragraph of Sect. IV. 2. 1. at p. 45, line 22.

In the prefent year 1799, Auguft 18, there was an uncommon fummer-flood on the Derwent, which covered my garden above three feet deep with muddy water. Many plants of the rheum hybridum, mule rhubarb, which were tranfplanted in the fpring, and had not flowered, had their large pointed leaves covered with mud, fo as to render the green colour totally invifible after the water fubfided. They appeared ftrong as before for a day or two, and then every one withered and dropped down. The fame happened to the leaves of many other vegetables, and to efpallier apple-trees, as high as they were immerfed; which was doubtlefs owing to their refpiration being precluded by the veil over them of a fine tenacious mud. See Sect. VII. 2.6.
2. To be inferted in Sect. VII. 2.6. at $p .115$, after line 23.

The rheum hybridum, mule rhubarb, defcribed in Murray's Syftema Vegetabilium, edition the fourteenth, I believe, to be produced between the palmated rhubarb, and the common rhubarb of our gardens, or rheum rhaphonticum; as it appeared both in my garden 4 E2 and
and my neighbours amongft a mixture of thofe two kinds of rhubarb, without being previoufly placed or fown there. The leaf is very large and pointed, without being palmated, and is a week or two forwarder in the fpring than either of the other rhubarbs, and the peeled ftalks are afferted by connoiffeurs in eating to make the beft pofible of all tarts, much fuperior to thofe of the palmated or raphointic rhubarb; and are fo much more valuable as a luxury, as they precede by a month the, goofeberry and early apple; and may be well propagated by dividing the roots, as they do not produce feed in all fummers. See Sect. IV. 2. i.

$$
\text { 3. To be inferted at the end of Sect. X. 4. 9. p. } 207 .
$$

Mr. Ruckert planted two beans in pots of equal fize filled with garden-mould'; the one was watered almoft daily with diftilled water, and the other with water impregnated with carbonic acid gas, in the proportion of half a cubic inch to an ounce of water; and both of them were expofed to all the influence of the atmofphere except to the rain. The bean treated with the carbonic acid water appeared above ground nine days fooner than that moiftened with diftilled war ter, and produced ewenty-five beans; whereas the other pot produced only fifteen. The fame experiment was made on ftock-july. flowers, and other plants with equal fuccefs. An. Chym. 1788.

$$
\text { 4. Ta be inferted at the end of Seci. X. 7.7. p: } 228 .
$$

Befides which the vitriolic acid abounding in many clays, when brought into contact with mild calcareous earth, by the various operations of agriculture, muft unite with it, and fet at liberty the carbonic acid either in a fluid form, or a gaffeous form beneath the foil;
which is known to be fo friendly to vegetation, when applied to the roots of plants; and at the fame time a gypfum will be produced, which is now alfo believed to be ufeful in agriculture.
Mr. Kirwan afferts, "That the gypfum ufed with fuccefs in agriculture is of a fibrous texture; and that clay lands, he believes, to be more improved by it than calcareous ones. The time of fpreading it is in February or March, and it is then to be thinly flewed on grafs-land at the rate of about eight bufhels to an acre; as more he fays would be hurtful. He further adds that the theory of its effects is to be deduced from its extraordinary fceptic power; as it is found to accelerate putrefaction in a higher degree than any other fubftance, (Hiftoire de Putrefaction, p. 36), whence it is not to be: ploughed in, but barely to be ftrewed on the furface of the land in the month of February, to convert the old grafs quickly into coal to nourih the young growths."

I have tranfribed the above from Mr. Kirwan's Treatife on Manures, but am liable to doubt the experiments concerning bodies promoting putrefaction; as the progrefs of that procefs has generally been only judged of by the odour; which may poffibly be altered or deftroyed by many bodies, by their uniting with it without otherwife affecting the tendency to diffolution. Add to this another circumftance, fhewing the uncertainty of thefe deductions, that fome of thefe antifeptic materials, as fea-falt, and lime, are faid to promote putrefaction, when ufed in fmall quantities; and to fupprefs it_{2}, when ufed in large ones.
5. To be inferted in Sect. XIII. 2.2. at the end of the paragraph which mentions Mr. Lawrence's letter to Mr. Bradley:

Another thing, which renders low fituations lefs proper for gardens, is, that I believe them to be much more liable to be infefted
by the aphis; as leaves of the nut-trees in my garden on the banks of the Derwent are every year crowded with innumerable aphifes on their inferior furfaces, and yet I have feen few, if any of them, on nut-trees in fome higher fituations, which I happened to infpect. Add to this, that the great honey-dew, mentioned in Sect. XIV. I. 7. was produced on a row of willows by the fide of water. This may neverthelefs be in part afcribed to fome other local circumftance; as I this year obferved numerous large black aphides round the ftalks of garden-beans on a clayey foil, which did not exift in my garden, which may be called a carbonic foil. Though on the peach and nectarine trees, againft the walls in my low garden, and on fome plumtrees, the aphides exift almoft every year in fuch deftructive multitudes as to prevent the fruit from fucceeding, and thence to render them not worth cultivation ; and to render the leaves of the nuttrees lefs in fize, and lefs prolific than other nut-trees on a more elevated and clayey foil, with which I this year compared them.

Why the aphis fhould be fo much more numerous in moift fituations is a curious fubject of inquiry, but is fo fimilar to another animal fact, that they may illuftrate each other. The cough and confequent confumption of fheep, which occurs annually in moilt fituations, is owing to an infect called a fleuk-worm, about the fize and thape of a child's finger-nail, which creeps up the gall-ducts from the inteftines, and preys upon the livers of theep; as may be feen in moift feafons in our fhambles. This feems to occur from the bile becoming too dilute from fo much watery nourifhment in thofe animals, and that thence it does not poffefs fufficient bitternefs or acrimony to prevent the depredation of thefe infects, as in drier feafons. On the fame account I fufpect the juices of nut-trees and of willows planted in very moift fituations may be rendered too dilute ; but that in higher fituations they may poffefs fufficient acrimony or bitternefs mixed with the fap-juice to prevent the depredations of the aphis. See Sect. XIV. 2. 8.
6. To be inferted at the end of Sect. X. 5.3.

Phofphorated lime is faid to be found in the greateft quantity in wheat, where it contributes to the formation of the gluten, which is thence not improperly denominated by fome writers animal gluten; which in rainy years has been obferved by Witwer to be in fmaller quantity. Differt. II. p. 103. Hence the ufe of bone-afhes as a manure for wheat, as obferved by Mr. Kirwan. Effay on Manures; p. 53°
7. To be inferted at the end of Sect. VI. 10.

Befides the various fecretions above defcribed Brugmanns is faid by Humbolt to have fhewn, that plants void an excrement like animals, which might be noxious to them, if retained; that he put the plant, lolium, ray-grafs, into a glafs of water, and obferved daily at the extremities of the roots a fmall drop of a vifcous material; which he detached and found to be renewed on the next day. But this I fufpect to have been produced by the death and confequent decompofition of the extremities of the roots in their unnatural fituation. Journ. de Phyfique Delametherie, T. IV. p. 388.

8. To be inferted at the end of Sect. XIV. 4. 2.

In the Tranfactions of the American Philofophical Society there is a paper fhewing, that the water-rats of that part of the country are fo liable to be affected with tape-worm, as is fuppofed much to diminith their numbers. In this country many animals, as I believe dogs, cats, and geefe, as well as the human fpecies, are afflicted with this inteftine enemy. Could fome of thefe difeafed American rats be
imported into this country, and propagate their malady amongft the native rats of this climate?

9. To be inferted at the end of Sect. X. 7. 8. p. 228.

Having now fpoken of carbon, of lime, and of clay, which with filiceous fand conftitute the principal ingredients of fertile foils, fome rules may be required for diftinguifhing the goodnefs of foils by the purchafer, as well as by the poffeffor. For this purpofe the chemical analyfis would firft prefent itfelf, as attempted by Fordyce, many years ago, and lately by Giobert, Bergmen, Kirwan, and others.
M. Giobert found, that one pound of a fertile foil in the vicinity of Turin contained of carbonic matter, which would burn and flame, about twenty-five grains, of flinty fand about 4400 grains, of clay about 600 grains, of lime about 400 grains, and laftly, of water about 70 grains. The fame author found that one pound of fome barren foils was compofed of filiceous earth about 3000 grains, of argillaceous earth about 600 grains, and of calcareous earth about 400 grains, and I fuppofe without any carbonic matter.

Mr. Kirwan ingenioully obferves, that the quantity of moifture, which fome countries are more liable to than others, fhould be nicely attended to, at the fame time that you eftimate the fertility of land by its analyfis, as moift climates or fituations may require more fand than drier ones; and therefore the fame component parts of foil would not be the moft fertile, on both the weftern and eaftern coafts of this ifland ; as the former experiences more rain than the latter; nor on the fummit, declivity, and bafe of moft mountains, which differ in their degree of moitture.

It appears from hence, that the chemical analyfis of foils is not yet arrived at fufficient accuracy to be depended upon with certainty to difcover their degrees of fertility. But as the carbonic part of foil
probably contributes moft to the growth of vegetables, and next to that the calcareous part; there is reafon to conclude, that if a few pounds of different foils are dried by the fame degree of heat, and then weighed, and afterwards expofed to a red heat in an open fire; that the foil, which lofes moft weight, is probably the moft fertile; becaufe the carbonic matter will almoft all efcape in flame, and almoft half the weight of the calcareous earth in carbonic acid.

Another method of giving fome conjecture concerning the fertility of a foil may be by examining its fpecific gravity; as the fpecific gravity of garden-mould is faid by Mufchenbroek to be 1,630 , compared to 1,000 of water. And Fabroni found the fpecific gravity of barren fandy land to be 2,210 to 1,000 of water. This experiment would not be difficult to try with fufficient accuracy by drying two different foils at an equal diftance from a fire, or in the fame oven, and then weighing a pound of each in a thin bladder with apertures near its top or neck; and then letting the bladder fink fo low into water, as to admit the water through the apertures amongft the foil ; and laftly, obferving the difference between their refpective weights in air, and in water.

Neverthelefs the method moft in ufe by the purchafers of land to judge of its value is by attending to the growth and colour of the vegetables, which cover it ; which requires an experienced eye, and cannot be eafily defcribed in words. Add to this that vegetables, which grow wild on foils, will in fome meafure indicate the nature of them. As the digitalis, and arenarea, are found generally on fandy foils, the veronica becabunga, and creffes of fome kinds, belong to moift fituations, and others to mountainous ones. A particular catalogue of fuch plants, as fpontaneoully grow in different fituations, might affift in difcovering the degree of fertility, and the nature of the foil; as other flowers by the time of their opening in each climate, which is termed the Calendar of Flora, may teach the temperature of the feafon."
In fome parts of the country the fpontaneous production of many
docks, rumex, has been reckoned the mark of an inferior foil, and the production of thiftles, ferratula arvenfis, to be a fign of a good one; which explains a fory in a black letter book on hufbandry, which fays, "A blind man went to purchafe a farm, which was offered to fale, and riding over the pafture land, and hearing the goodnefs of the foil much applauded by the poffeffor, at length difmounted, and faid to his fervant, 'Tie my horfe to a thiftle!' 'Here are no thiftles,' replies the fervant, ' but I can tie him to a dock.' ' Then I will not purchafe the land,' fays he, and mounting his horfe with a good morning to you, Sir , left the owner of the eftate in great furprife."

10. To be inferted at the end of Sect. XV. 3.7.

'To difcover when the feeds of herbaceous plants are ripe, as of wheat, the drynefs or ftraw-colour of the ftem is in general a good criterion ; as when the ftem dies, and becomes bleached by the oxygen of the atmofphere, no more nutriment can be conveyed to the mature feed. And to determine at what time to collect thofe fruits, which never ripen on the trees in this climate, as crab-apples, and baking-pears, change of colour or fall of the leaf fhews, that they can acquire no more nourifhment, and may receive injury from the approaching froft.

But to determine when our beft or earlieft apples and pears are ripe enough to gather, that is, when they will acquire no more nutriment from the tree, depends on a very curious circumftance of the colour of the fkin of the feeds. During the infant flate of the feed there is no cavity round them, but the feed is in contact with the feed-veffel, as may be feen on cutting an unripe pear or apple; and the feed therefore is perfectly etiolated, as it cannot part with any of its oxygen. Afterwards when there is no more depofition of nutri-
tious matter to enlarge the fruit, the cells, in which the feeds are contained, become hollow, producing an air-veffel for the living embryon ; of what purity the air may be, which is produced in thefe cells, has not I believe been tried, and may differ as the em-bryon-feed grows older; but the oxygen, which it contains, feems to have been difengaged from the membranes, which cover the feeds, which thence become coloured; whence the dark colour of the feeds of apples and pears is a proper criterion of the time, when they fhould be gathered; as it indicates, that the fruit will no longer increafe in fize, as it now waftes and becomes hollow by abforbing fome of the mucilage from the central parts of it.

11. To be inferted at the end of Sect. VI. 5.5.

Sugar is not only afforded by the fap-flow of trees, as the maple, birch, and vine, but alfo I fuppofe from that of herbaceous vegetables, as heracleum fpondilium, cow parfnip, and ferratula arvenfis, field thifte; when the former of thefe plants has been cut off near the ground in the vernal months, the fap-juice from the fump I have obferved to flow in fuch quantity for many days, that I have doubted whether by a proper apparatus for catching it the plant might not be advantageoully cultivated for the purpofe of making wine, or of extracting the fugar as from the maple of America. This circumftance has been faid to thew a proper time for deftroying the weeds, as if they be mowed in the bleeding' feafon, they are believed to perif by the lofs of fap-juice.

As all fpirit is the fame, when nicely diftilled, whether it be found in wine, ale, cyder, brandy, rum, gin, and is the product of fugar by the chemical procefs of fermentation; and as all fugar is the fame, when nicely cleaned, whether it be obtained from fruits, grains, roots, canes, or fap-juice; there is reafon to believe, that fugar as well as

$$
4 \mathrm{~F}_{2}
$$

fpirit
fpirit may fome time or other be economically procured from the ve: getables of this climate, as Margraff extracted it from the beet-root, and from potatoes. For the ftrength of common ale, which is produced from the fugar contained in malt, is faid to be about the fame as that of fome domeftic wines, which owe their fpirit to prepared fugar. And as in the former a bufhel or ftrike of malt is ufed to about fix gallons of water, and in the latter about twenty pounds of fugar to fix gallons of water, it follows, that one ftrike of malt contains about twenty pounds of fugar; which if an eafy method of cleaning it from the mucilage and from the effential oil of the feed could be difcovered, it may fome time be manufactured at home cheaper, than it can be procured from abroad.

We may add, as all fugar is the fame, and all fpirit is the fame, from whatever plant they are procured; that the flavours of wines differ from each other folely in the effential oil, which they contain, or the quantity of acidity, or of fugar not yet fermented; and that in refpect to wholefomenefs wines only differ from each other in their ffrength or quantity of fpirit, unlefs where fome noxious material has been ufed to fine them, or to counteract their tendency to the acetous fermentation, as lead has been employed in fome of the cyders of our country, and in fome of the white wines of France, to correct their acidity ; and it is faid that arfenic is occafionally employed for the purpofe of fining white wines.

The injurious methods of fining wines, and of fopping their tendency to acidity having been mentioned, the innocuous ones ought to be fubjoined; for the former it has been propofed to filter muddy wine through fine fand laid on a fieve; but this I am told does not fucceed, as the mucilage of the foul wine foon fills up the interfices of the grain of fands; but that an efficacious method is to fhower the fine fand on the wine through a fieve; which as it paffes down by its own weight will carry the mucilaginous mud of the wine along with it. And lafty, if fome colouring particles cannot thus be

ADDITIONAL NOTES.

made to fubfide, a little more fimple mucilage muft be added, as gum arabic or whites of eggs, and a fand-hower be again paffed through it.

In refpect to the tendency of wines to become vinegar, this I am informed may be prevented by not expofing the fermenting material to the air more than can be eafily prevented, as it is the union of the oxygen of the atmofphere with the firit that converts it into vinegar ; and though the vinous fermentation proceeds flower, when fecluded from the air, yet it finally becomes more perfect; as the fugar in fweet wines continues to become fipirit, after it is corked up in bottles, though the procefs is flower, and the wine confequently becomes fronger as it grows older, and the fweetnefs vanifhes.

Hence I obferve the manufacturers of raifin-wines fet them to ferment in large cafks with only the bung-hole open, that they may not be too much expofed to the atmofphere; and foon ftop them up or bottle them, before the fweetnefs vanihes, which they judge of by the tafte.

I was once told by a gentleman, who made a confiderable quantity of cyder on his own eftate, that he had procured veffels of ftronger confruction than ufual, and that he directed the applejuice, as foon as it had fettled, to be bunged up clofe; and that though he had had one veffel or two occafionally burf by the expanfion of the fermenting liquor, yet that this rarely occurred, and that hiscyder never failed to be of the moft excellent quality, and took a confiderably greater price at market.

Nor fhould this account of fermentation be concluded without obferving, that it converts fugar, which is a wholefome nutriment both to young and old, into firit, which is a poifonous material to all; as it flimulates the whole fyftem into too violent exertion for a few hours, and leaves it afterwards in confequence torpid and inactive; and hence that the ftrongeft wines are the moft pernicious, and that all of them fhould be diluted with water. As thofe in general, who drink
drink ale to excefs, acquire the gravel ; thofe, who drink wine to excefs, acquire the gout; and the drinkers of fpirits die of the drop-fy!-but it is the cuftom of moft of the inebriates of this country to begin their unfortunate career with the firft, and terminate it with the laft.
12. To be inferted at the end of Sect. X. 6. B.

An important paper concerning lime is this year publifhed in the Philofophical Tranfactions by Mr. Tennant, who having been informed, that two kinds of lime were ufed in agriculture, which differed greatly in their effects, one of which it was neceffary to ufe fparingly, and to fpread very evenly over the land; for it was faid, that a large proportion of it diminifhed the fertility of the foil; and that wherever a heap of it had been left on one fpot, all vegetation was prevented for many years. And that of this kind of lime fifty or fixty bufhels on an acre were as much as could be ufed with advantage; while of the other fort of lime a large quantity was never found to be injurious; and that the fpots, which were entirely covered with it, became remarkably fertile, inftead of being rendered barren.

Mr . Tennant having analyfed thofe two kinds of lime found, that the latter confifted folely of calcareous earth; but that the former contained two parts of magnefia with three parts of calcareous earth. He afterwards obferved, that though vegetable feeds would grow equally well in both thefe kinds of limeftone, when fimply reduced to powder; yet that, when they were calcined fo as to become lime, and both of them ftrewed about the tenth of an inch thick on garden mould, that the magnefian lime prevented nearly all the feeds, which had been fowed, from coming up; while no injury was oceafioned by the calcareous lime ufed in the fame manner.

This important difcovery feems to explain the caufe of fuch variety of opinion about the ufe of lime, which fome have believed to be of
no advantage, and even injurious to land; which has probably been owing to their having ufed the magnefian lime, and having laid on too much of it.
Mr. Tennant firft found magnefian lime near the town of Doncafter, and afterwards at York, at Matlock in Derbyfhire, and at Breeden in Leicefterfhire, and at Workfop in Nottinghammire. He obferves, that the cathedral and walls of York are built with this magnefian limeftone; and that at Matlock the magnefian and calcareous limeftones are contiguous to each other; the rocks on the fide of the river Derwent, where the houfes are built, being magnefian, and on the other fide calcareous. He obferved alfo here, that the magnefian limeftone was incumbent on the calcareous; for in defcending into a cave formed in that rock, he found a feparate vein of calcareous limeftone, which was full of fhells, but contained no magnefia; and obferves in general, that magnefian limeftone may be readily diftinguihed from the calcareous by its fo much flower folution in acids, and that it contains generally very few fhells, but that thofe alfo are impregnated with magnefia.

As all limeftone may be divided into three kinds; the roeks, which remain, where they were formed from hells beneath the ocean, except that they were afterwards elevated by fubmarine fires; and fecondly into alluvial limeftone, as thofe which have been diffolved ia water, and fimply precipitated, as the beds of chalk, which contain only the mof infoiuble remains of fea-animals, as the teeth of fharks; and thirdly thofe which after having been diffolved and precipitated, have been long agitated beneath the fea, till the particles have been rolled fo againft each other, as to acquire a globular form, which is faid to refemble the roe, or fpawn, of fiff, and which contain very few fhells or none, as the Ketton ftone, and that which I have feen on Lincoln Heath extending almoft from Sleaford to Lincoln.

Now as the falts of the fea confift of only two kinds, commor falt
falt, or muriate of foda, and vitriolated magnefia, commonly called Epfom falt, which in the fea-waters furrounding this ifland were found at a medium to exift in the proportion of one thirtieth part of common falt, and one eightieth part of vitriolated magnefia compared to the quantity of water. And fecondly as thefe falts are believed by many philofophers to have been formed by vegetable and animal matters, which principally grew upon the furface of the dry land, after it was raifed out of the primeval ocean; and that in confequence the faltnefs of the fea was pofterior to the formation of the primeval rocks of limeftone; and from hence we underftand, why thofe limeftone Itrata, which have not been diffolved or wafhed in fea-water fince the fea became falt, are not mixed with magnefia.

The chalk muft have been diffolved and precipitated from water, as it exactly refembles the internal part of fome calcareous ftalactites, which I have in my poffeffion; yet there is no appearance of its component particles having been rubbed together into fmall globules, and may not therefore have been removed from the fituation, where it was produced, except by its elevation above the furface of the ocean.

But that alluvial limeftone, which confifts of fmall globules adhering together, called Ketton limeftone, and of which there appears to be a bed ten miles broad from Beckingham to Sleaford in LincolnThire, and twenty miles long from Sleaford to Lincoln, I fufpect may probably confift of magnefian limeftone; which is alfo faid in that country to do no fervice to vegetation ; for this alluvial limeftone by having evidently been long rolled together beneath the fea, by which the fmall cryftallifed parts of it have had their angles rubbed off, is moft likely to have thus been mixed with the magnefia of the fea-water, which is faid to contain one eightieth part of its weight of vitriolated magnefia, as above mentioned.
-At the lime-works at Ticknal near Derby there appears a fratum
of alluvial limeftone, like Ketton limeftone, which they do not burn for fale, over the bed of the calcareous limeftone, which they get from beneath the former, and calcine for fale. It is probable, that the fuperior bed may contain magnefia, which has rendered it not fo ufeful in agriculture.

It is more probable, that alluvial limefone has acquired its mixture of magnefia from the fea-water; as magnefia in its uncalcined fate will precipitate lime from water, as obferved by Dr. Alfton; who thence propofes to render water pure and potable, which has been long kept at fea free from putridity by having lime mixed with it, by precipitating the lime by the addition of mild magnefia ; which is a fubject now perhaps worthy the attention of the court of admiralty, fince magnefian limeftone appears to be fo plentifully diffufed over the earth. See Dr. Black's Exper. on Magnefia in the Effay Philofo and Literary, Edinb.

The lime from Breedon is magnefian, that from Ticknal (which is fold) is calcareous lime I believe; and fome farmers in the vicinity of Derby affert, that two loads of Breedon lime will go as far, that is will apparently do as much fervice to their land as three loads of Ticknal lime. Breedon lime, I am alfo informed, is preferred in architecture, and is faid to go further in making mortar; which I fuppofe means, that it requires more fand to be mixed with it. Mr. Marfhall in his account of the agriculture of the Midland counties fpeaks of lime made at Breedon near Derby as deftructive to vegetables when ufed in large quantities. And in Nottinghamfhire it is afferted, that the lime from Critch in Derbyfhire is fo mild, that thifles and grafs fpring up through the edges of large heaps of it, when laid in the fields. Dr. Fenwick of Newcaftle obferves, that the farmers in that country divide lime into hot and mild; which Mr. Tennant believes to mean magnefian and calcareous lime.

By experiments which were made by Mr. Tennant by fowing feeds of colewort on various mixtures of calcined magnefia with foil, and

$$
4 G
$$

of calcareous lime with foil, he found that thirty or forty grains of lime did not retard the growth of feeds more than three or four of calcined magnefia; from hence what can we conclude? but that, as they both injure vegetation in large quantities, they may both affit vegetation in fmall ones? and that this is more probable, as the farmers believe, that they find both of them ufeful, though in different quantities; and as the magnefia would form Epfom falt, if it meets with vitriolic acid, which Dr. Home found from his experiments to be friendly to vegetation, when ufed in very fmall quantities. More accurate obfervations and more numerous experiments on this fubject are required, which this important difcovery of Mr . Tennant's will I hope foon occafion.
13. To be inferted at p.286, 7. 16, at the end of No. 2 of Sect. XII.

Another method has been attempted by fome for the purpofe of ameliorating clayey lands, which were unfit to be turned up deeper than they had been accuftomed to be ploughed, on account of their acidity or tenacity being very injurious to vegetation; as the white faggar clays over many coal countries; or fome very tenacious red clays, which may contain a vitriol of iron; not an oxyde, or oxygenated calx of it.

The method I allude to confifts in firt turning over a ridge of earth, as in common ploughing; and then with a plough, made on purpofe, to penetrate fome inches deeper into the clay fo injurious to vegetation; this plough is to be fo contrived, as to raife up the clayey foil about the breadth of the furrow recently made, and three or four inches deep, or more ; but not to turn it over, fo that it may ftill lie under the fertile foil, which is to be turned over it with the common plough, in making the adjoining furrow. So that this plough

ADDITIONAL NOTES.

plough is only to pafs under the foil, and thus loofen it, and mix it with atmofpheric air without turning it over.
By this manœuvre the clay a few inches deep beneath the fertile foil becomes broken in its texture, and obtains fome air intercepted in its pores; from the former circumflance it may contribute to retain the vernal fhowers, which would otherwife run off over the clayey furface beneath the more fertile one, and might thus in drier feafons prevent the upper furface from being fo much indurated, and might gradually become lefs injurious by the frequent admixture of atmofpheric air, and at length even falubrious to the roots of vegetables.

APPENDIX.

IMPROVEMENT OF THE DRILL PLOUGH.

The firft experiment I tried to improve this valuable machine was that mentioned in Sect. XII. 5. of this work; by enlarging the axis of Mr. Tull's feed-box into a wheel of fixteen inches diameter, with excavations in the rim to raife portions of the corn above the furface of that in the feed-box. But I found to my furprife the friction of the corn to be fo much greater than expected, when'fix fuch large wheels were immerfed in it, that an additional hopper became neceffary to deliver the feed flowly into the feed-box, as in Mr. Cook's drill plough; which, as it would add much to the intricacy and expence of the machinery, and to the inaccuracy of the quantity of feed delivered, occafioned me to relinquifh that idea, and after many defigns and many experiments to conftruct the following machine, which I believe to be more fimple, and confequently lefs expenfive to conftruct, and lefs liable to be out of order, and to deliver the feeds of all kinds with greater accuracy than any drill plough at prefent in ufe; and that it poffeffes every other advantage that they can boaft. The fcale of the three following plates is half an inch to ten inches.

Confruction of the Carriage Part.

Plate X. Fig. 1. a a , are the fhafts for the horfe, which are fixed to the center of the axle-tree by a fimple univerfal joint at z, whence,
if the horfe fwerve from a ftraight line, or is purpofely made to pafs obliquely to avoid treading on the rows of corn in hoeing; the perfon, who guides the plough behind, may keep the coulters of the plough or hoe in any line he pleafes; which is thus performed with much fimpler mechanifm, than that ufed in Mr. Cook's patent plough for the fame purpofe, which has many joints like a parallel rule.
$b b$ are the horns or fhafts behind, for the perfon who guides the drill coulters or hoes; they are fixed to the axle-tree before, and have a crofs piece about fix inches from it at g g for the purpofe of fupporting the feed-box defcribed below. Behind this about a foot diftant from it is another crofs piece at $c c$; called the coulter-beam, which is fifty inches long, fix inches wide, and two inches thick; it is perforated with two fets of fquare holes, fix in each fet, to receive the coulters in drill-ploughing, and the hoes in horfe-hoeing.

The fix light fquare holes are nine inches from cach other, and are to receive the coulters or hoes in the cultivation of wheat, the rows of which are defigned to be nine inches from each other, and the fix dark fquare holes are placed feven inches from each other to receive the coulters or hoes for the cultivation of barley, the rows of which are defigned to be but feven inches diftant from each other.

Befides there there are fix round holes through this coulter-beam at one part of it, and fix iron circular ftaples fixed into the edge of the other part of it; thefe are to receive the ends of the tin flues, which crofs each other, and convey the feed from the bottom of the feed-box into the drills or furrows, when the coulters are difpofed in the fquare perforations before them.

Thefe coulters or hoes the perfon, who guides the machine, can raife out of the ground in turning at the ends of the lands, or in paffing to or from the field, and can fufpend them fo raifed on the iron fprings $d d$, which at the fame time fo fixes the fhafts to the axle-
tree that the wheels will then follow in the fame line with the horfe.
$e e$ are wheels of four feet in diameter, the nave of one which has on it a caft-iron wheel at $f f$, for the purpofe of turning the axis of the feed-box, which has a fimilar wheel of one fourth its diameter; whence the axis of the feed-box revolves four times to one revolution of the wheel.

Confruction of the feed-box. Plate XI. Fig. 2.

This confifts of boards about an inch in thicknefs, is forty eight inches long within, t welve inches deep, twelve inches wide at top, and fix inches wide at bottom ; it is divided into fix cells, in which the corn is to be put, as reprefented in Plate XI. Fig. 2. and fhould alfo have a cover with hinges to keep out the rain, and is to be placed in part over, and in part before, the axle-tree of the carriage, at g g. Plate X. Fig. I.

Beneath the bottom of the feed-box paffes a wooden cylinder, at $b b$, Plate XI. Fig. 2. with excavations in its periphery to receive the grain from the fix cells of the feed-box, $\operatorname{lm} n \circ p q$, and to deliver it into the fix oblique flues $i i$, which are made of tin, and crofs each other, as reprefented in the plate. The ufe of the feed flues thus interfecting each other is to increafe the length of the inclined furface, on which the feed defcends, that if fix or eight grains be delivered together, they might fo feparate by their friction in defcending, as not to be fown together in one point, which might be liable to produce tuffocks of corn.

As there feed flues crofs each other, before they pafs through the coulter-beam at $c c$, Plate X. Fig. I. it was neceffary to make three of the round holes of the coulter-beam at one end backwarder than thofe at the other end; and on that account to ufe iron ftaples or
rikgs at one end iniftead of perforations, as at $w w$, Plate X. Fig. I. Thefe tin flues deliver the feed at the time of fowing into the fmall furrows or drills, which are made by the coulters before them.

Thefe feed-flues have a joint at $z z$, where one part of the tin tubes flides into the other part, and they by thefe means can be occafionally fhortened or lengthened to accomodate them to the coulters, when placed at feven inches diftance for fowing barley, or at nine for fowing wheat.

At the bottom of this feed-box are fix holes, one in each cell, to deliver the corn into the excavations of the cylinder, which revolves beneath them. Thefe holes are furnifhed on the defcending fide, as the cylinder revolves, with a ftrong bruth of briftles about three fouths of an inch long, which prefs hard on the tin cylinder. On the afcending fide of the revolving cylinder the holes at the bottom of the feed-box are furnifhed with a piece of ftrong fhoe-foal leather, which rubs upon the afcending fide of the cylinder. By thefe means the corn, whether beans or wheat, is nicely delivered, as the axis revolves, without any of them being cut or bruifed.

Confruction of the iron axis and wooden cylinder beneath the feed-box: Plate XI. Fig. $3 \cdot$

An iron bar is firft made about four feet fix inches in length, and an inch fquare, which ought to weigh about fifteen pounds; this bar is covered with wood, fo as to make a cylinder four feet long, and two inches in diameter, as at $k k$, Plate XI. Fig. 3. 'The ufe of the iron bar in the centre of the wood is to prevent it from warping, which is a matter of great confequence.

This wooden cylinder paffes beneath the bottom of the feed-box, and has a caft-iron cog-wheel at one end of its axis, as at $r r$, which is one fourth of the diameter of the correfpondent caft-iron wheel, which
which is fixed on the nave of the carriage-wheel, as in Plate X. Fig. 1. $f f$, fo that the axis of the feed-box revolves four times during every revolution of the wheels of the carriage.
In the periphery of this wooden cylinder are excavated four lines of holes, fix in each line, as at $n n n n n n$. A fecond line of excavations is made oppofite to thefe on the other fide of the cylinder, and two other lines of excavations between thefe; fo that there are in all twenty-four excavations in the wooden part of this axis beneath the feed-box, which excavations receive the corn from the feed-cells, as the axis revolves, and deliver it into the flues fhewn in Plate XI. Fig. 2. 0.01 , not unfimilar to the original defign of the ingenious Mr. Tull.

The fize of thefe excavations in the wooden cylinder to receive the feed are an inch long, half an inch wide, and three eighths of an inch deep; which are too large for any feeds at prefent employed in large quantities except beans, but have a method to contract them to any dimenfions required, by moving the tin cylinder over the wooden one, as explained below in Plate XI. Fig. 4 .

Confruction of the Tin-cylinder. Plate XI.

A B at Fig. 4. reprefents a cylinder of tin an inch longer within than the wooden cylinder on the iron axis at Fig. 3. and is of two inches diameter within, fo as exactly to receive the wooden cylinder, which may flide about an inch backwards or forwards within it. CD are two fquare tin fockets fixed on the ends of the tin cylinder to fit on the fquare part of the iron axis, which paffes through the wooden cylinder at $l l$, Fig. 3 . on which they dide one inch backwards or forwards.

The following directions in making the holes in this tin cylinder, ${ }_{4} \mathrm{H}$ and
and thofe in the wooden cylinder, which are to oorrefpond with them, mult be nicely attended to.

Firft, when the tin-cylinder is foldered longitudinally, and one end of it foldered on, as at A, fix holes through it muft be made longitudinally on four oppofite fides of it, each hole muft be exactly half an inch wide, and five eighths of an inch long, the length to be parallel to the length of the cylinder.

The centre of the firft of thefe holes muft be five inches diftant from the clofed end A, the centre of the fecond hole muft be eight inches diftant from the centre of the firft, and fo on till fix holes are made longitudinally along the cylinder. Then another fuch line of fix fimilar holes is to be made on the oppofite fide of the cylinder, and then two other fuch lines between the former, in all twenty-four; and the fize of all thefe holes muft be nicely obferved, as well as their diftances.

Secondly. The wooden cylinder fixed on the axiṣ is now to be introduced into the tin cylinder, but not quite to the end of it, but fo as to leave exactly one inch of void face at the clofed end A, and then the fize of all thefe apertures through the tin cylinder, each of which is exactly half an inch wide, and five eighths of an inch long, are to be nicely marked with a fine point on the wooden cylinder, which muft not previoully have any excavations made in it.

Thirdly. The twenty-four holes thus marked on the wooden cylinder are now to be excavated exactly three eighths of an inch deep, but with an addition alfo of three eighths of an inch at that end of every one of them which is next to A; fo that, when the wooden cylinder is again replaced in the tin cylinder as before, with one inch of void fpace at the clofed extremity of it, the excavations in the wooden cylinder will be three eights of an inch longer, than the perforations in the tin cylinder over them. Thefe excavations in the wooden cylinder muft alfo be rather narrower at the Bottom than at

THE DRILL PLOUGH.

the top, to prevent with certainty any of the grain from fticking in them, as they revolve.

Fourthly. A fcrew of iron about three inches long, with a fquare head to receive a ferew-driver, is to pafs through the end A of the tin cylinder on one fide of the axis, as at x, Fig. 4. The ferew part of this is to lie in a hollow groove of the wooden cylinder, and to be received into a nut, or female fcrew, which is fixed to the wooden cylinder. The head part of the fcrew, which paffes through the end A of the tin cylinder at x, muft have a fhoulder within the tin cylinder, that it may not come forwards through the end of it; and a brafs ring muft be put over the fquare end of the ferew on the outfide of the tin cylinder, with a pin through that fquare end of the fcrew to hold on the brafs ring.

Thus when the fquare head of the fcrew is turned by a fcrewdriver, it gradually moves the tin cylinder backwards and forwards one inch on the wooden one, fo as either to prefs the end A of the tin cylinder into contact with the end of the wooden cylinder within it, or to remove it to the diftance of one inch from it, and leave a void fpace at the end A.

Fiftbly. The ends of all the holes of the tin cylinder, which are next to the end A of it, are now to be enlarged, by flitting the tin three eighths of an inch towards A, on each fide of the hole; and then that part of the tin, included between thefe two flits, which will be half an inch wide, and three eighths of an inch lengthways in refpect to the cylinder, is not to be cut out, but to be bent down into the excavations of the wooden cylinder beneath, fo as to lie againft that end of the excavation which is next to A.

But thefe projecting bits of tin, before they are bent down into the excavations of the wooden cylinder, muft be filed a little lefs at the projecting end, which is to be bent down, than at the other end; as the excavations of the wooden cylinder are to be rather narrower $4 \mathrm{H}_{2}$
at the bottom than at the top, and thefe pieces of tin, when bent down, muft exactly fit them.

Lafly. When all thefe holes through the tin-cylinder are thus enlarged, and the bits of tin filed rather narrower at their projecting ends, and then bent down into the excavations of the wooden cylinder, the other end of the tin cylinder with its fquare focket may be foldered on.
And now when the end of the tin cylinder at A is preffed forwards upon the wooden cylinder towards \mathbf{B}, by turning the fcrew at x above defcribed; every excavation of the wooden cylinder will be gradually leffened, and finally quite clofed; by which eafy means they may be adapted to receive and deliver feeds of any fize from horfe-beans and peas to wheat, barley, and to turnip-feed, with the greatef accuracy, fo as to fow four, five, or fix pecks on an acre, or more or lefs, as the agricultor pleafes, by only turning the fcrew a few revolutions one way or the other.

Obfervations.

1. In the conftruction of the tin and wooden cylinders beneath the feed-box another fmall improvement may be neceffary in fowing very fimall feeds, which is this: As the fcrew at the end A is turned, fo as to contract all the excavations of the wooden cylinder, the furface of the wooden cylinder for one inch from the end of each excavation towards the end B, Plate XI. Fig. 4. will become bare without being covered by the tin cylinder; and on thefe bare parts of the wooden cylinder, which will be one inch long, and half an inch wide, fome fimall feeds may chance to ftick, and evade the brufhes, which fhould prevent them from paffing, as the cylinders revolve.

To prevent this, when the wooden cylinder is fo placed within the tin cylinder, that all the holes are quite open, let a piece of the tin cylinder

THE DRILL PLOUGH.

cylinder about an inch and a half long, and half an inch wide, be cut out from the extremity of each hole next to the end B , and let this piece of the tin cylinder thus cut out be fixed by a few fprigs on the wooden cylinder exactly in the fame place, which it covered before it was cut out of the tin one, by which contrivance, when the tin cylinder is afterwards pufhed forwards by turning the fcrew at its end, fo as to contract the excavations of the wooden cylinder beneath, the bare parts of the wooden cylinder will exift an inch and a half from the extremities of the excavations next to the end B, and thus will not pafs under the bruhhes, and in confequence no fmall feeds can lodge in them.
2. Some kind of iron faple fould be fixed at each end of the feedbox on the outfide, which when the hinder part of the carriage is raifed up by the perfon who guides it, might catch hold of the two iron fprings at $d d$ in Plate' X. Fig. I. for the purpofe of fufpending the coulters out of the ground, and connecting the hinder part of the machine with the fhafts before; that in turning at the ends of the lands, or in paffing from or to the field, the wheels may not fwerve at the joint z, at the centre of the axle-tree, but may follow in the fame line with the fhafts.
3. The feed-box muft alfo be fupported on upright iron pins paffing through iron ftaples, with a lever under the end of it next to the wheel r r, Plate XI. Fig. 3. for the purpofe of eafily lifting that end of the feed-box about an inch high, to raife the teeth of the iron cog-wheel on its axis out of the teeth of the correfpondent iron. wheel on the nave of the carriage-wheel.
4. The conftruction of the coulters, which make the drills, and of the rakes, which again fill them, after the feed is depofited, and alfo of the hoes, are not here delineated; as they are fimilar to thofe fo often defcribed or ufed by Mr. Tull and his followers.
5. When the lower ends of the feed-flues are placed through the holes in the coulter-beam, Plate I. Fig. 1, at nine inches diftance from
from each other, the rows of wheat or beans will then be fown nine inches from each other; and as the wheels of the carriage are four feet in diameter, and therefore travel about twelve feet at each revolution; and as there are four excavations round the axis of the feedbox, which revolve four times for one revolution of the carriagewheels ; it follows, that the feeds contained in the excavations of the cylinder beneath the feed-box will be fown at nine inches diftance in each drill or furrow, as the plough proceeds; and as there rows are nine inches afunder, any defired number of feeds may be depofited in every fquare of nine inches, which are contained in the furface of the field.
6. Mr. Coke of Norfolk acquainted me, that on his very extenfive farm the wheat fown on an acre was fix or feven pecks by the Rev. Mr. Cook's drill plough, which was about half the quantity generally ufed in broad-caft fowing. If the wheat was nicely depofited in the drills, I fufpect one bufhel would be quite fufficient for an acre, as the rows are at nine inches diftant from each other; for there would in that cafe be about eight grains or nine grains depofited in every nine inches of the drill-furrow; that is, in every fquare of nine inches contained in the furface of the land fo cultivated.

Which may be thus eftimated. Mr. Charles Miller, in the Philofophical Tranfactions, Vol. LVIII. p. 203, has eftimated the number of grains in a bufhel of wheat to amount to 620,000; and Mr. Swanwick of Derby has lately eftimated them to be 645,000 . We may fuppofe therefore, that a bufhel may at an average contain 635,000 grains of wheat. Now as a ftatute acre contains 4840 fquare yards, and there are fixteen fquares of nine inches in every fquare yard, 4840 multiplied by 16 gives 77,440 , which is the number of fquares of nine inches in fuch an acre. If 635,000 grains in a buthel be divided by 77,440 , the number of fquares of nine inches in an acre, the quotient will fhew, that rather more than eight
eight grains of wheat will thus be depofited in every nine inches of the drills.
7. Now if eight or nine grains were dropped altogether in one inch of ground, they would be too numerous, if they be all fuppofed to grow, and would form a tuffock; but by making them flide down an inclined plane, as in the tin-flues, from the feed-box to the coulters, which are croffed for the purpofe of lengthening them, as feen in Plate XI. fig. 2. fome of the feeds will be more delayed by their friction in defcending than others, and the eight or nine feeds will thence be difperfed over the whole mine inches of the drill; which renders drill-fowing fuperior to dibbling, as in the latter the feeds are dropped all together.
8. When the holes in the wooden cylinder are completely open, they are about a proper fize for fowing horfe beans or peas: when they are completely clofed, there will remain a fmall niche at the end of the excavation in the wooden cylinder next to B, Plate XI. fig. 4 . for turnip-feed, or other fmall feeds.

For wheat and barley and oats, a wooden wedge fhould be made of the exact fhape of the area of the hole, which the director of the plough requires; who will occafionally infert it into the holes, when he, turns the fcrew at the end of the cylinder to enlarge or to leffen them to thefe exact dimenfions.
Thefe wedges fhould be written upon with white paint, wheat, barley, oats, \&c. which will much facilitate the adapting the fize of the excavations to each kind of grain, and may be altered, if required, to fuit larger or lefs feeds of the fame denomination.
9. In fome drill-ploughs, as in Mr. Cook's, there is an additional machinery to mark a line, as the plough proceeds, in which the wheel neareft the laft fown furrow may be directed to pafs at a proper diftance from it, and parallel to it. But in fowing wheat or peas and beans this may be done by making the wheels, as they run upon the ground, to be exactly fifty-four inches from each other;; and
then at the time of fowing to guide the wheel next to the part laft fown exactly in the rut, which was laft made; by which guide the rows will all of them be accurately at nine inches diftant from each other.

THe Simplicity of this Drill-PTough.

1. The fimplicity of this machine confifts firft in its having only a feed-box, and not both a hopper and a feed-box, as in the Rev. Mr. Cook's patent drill-plough.
2. The flues, which conduct the feed from the bottom of the feed-box into the drill-furrows, are not disjoined about the middle of them to permit the lower part to move to the right or left, when the horfe fwerves from the line, in which the coulters pafs, as in Mr. Cook's patent drill-plough; which is done in this machine by the fimple univerfal joint at z, Plate I. fig. I.
3. In this machine the horns or fhafts behind, between which the perfon walks, who guides the coulters, are fixed both to the coul-ter-beam, and to the axle-tree; whereas in Mr. Cook's patent plough thefe are all of them moveable joints like a parallel rule, for the purpofe of counteracting the fwerving of the horfe; which in this machine is done by the fimple univerfal joint at z, fig. I, Plate I. before mentioned.
4. The altering the dimenfions of the holes in the axis of the feed-box by only turning a fcrew, fo as to adapt them to all kinds of feeds, which are ufually fown on field-lands.
5. The flrong brufh of briftles, which fweep over the excavations of the cylinders beneath the feed-box, ftrickle them with fuch exactnefs, that no fupernumerary feeds efcape, and yet none of them are
in the leaft bruifed or broken, as I believe is liable to occur in Mr. Tull's original machine.

Laftly it fhould be obferved, that the lefs expence in the conftruction, the lefs propenfity to be out of repair, and the greater eafe of underftanding the management of this machine, correfpond with its greater fimplicity; and will, I hope, facilitate the ufe of the drillhufbandry.

Mr. Swanwick's Seed-Box.

As the dibbling of wheat, defcribed in Sect. XVI. 2. 2. is a very flow and laborious method of depofiting the corn, and is yet coming, as I am informed, more and more into fafhion in fome counties, I fufpect this muft be owing to the expence of procuring, and the difficulty of managing the drill-ploughs now in ufe, or to the greater inaccuracy, with which they deliver the feed. I flatter my felf therefore, that I am doing a benefit to fociety in endeavouring to fimplify this machine, and to increafe its accuracy as much as poffible: and thall therefore here defcribe another method of delivering the feed from the feed-box, which was invented by Mr. Swanwick, an ingenious teacher of writing and arithmetic, with fome branches of natural philofophy, in Derby; and "who will not be averfe to fhew the working models of the feed-boxes, or to give affiffance to any one, who wifhes to conftruct either this drill machine, or the preceding one.

Mr. Swanwick's feed-box is forty-eight inches long within, is divided into fix cells for the purpofe of fowing fix rows of feeds at the fame time, like that above defribed. And at the bottom of each cell is a hole a, a, \&c. Fig. i. Plate XII. for the feed to pafs

$$
41
$$

through
through into the feed-flues, as in the machine before defcribed : but in this there is no revolving axis, but a wooden or iron bar B B, fig. 3. Plate XII. about two inches broad, and about four feet eight inches long, and exactly three eighths of an inch thick. Through this bar there are fix perforations, e ee, \&c. which are each of them exactly one inch long, and half an inch wide; and three eighths of an inch deep, which is the thicknefs of the bar. The centres of thefe holes are exactly eight inches diftant from each other, correfpondent to the holes at the bottom of the feed-box ; over which it is made to flide backward and forwards in a groove. By this fliding motion it paffes under fliff bruhhes, which are placed over it on each end of the holes at the bottom of the feed-box, and ftrickle off the grain, as the holes in the fliding-bar pafs under them, which thus, meafure out the quantity with confiderable accuracy.
In order to increafe or diminifh the quantity of grain delivered the flider is covered with a cafe of tin C C, fig. 4, Plate XII. which has fix perforations exactly correfponding with the holes in the flider; but inftead of the bit of tin being cut out the whole length of the hole, part of it is left at the end i, fig. 6, equal to the thicknefs of the flider, and is bent down as at b, after the flider is put into the cafe, like the tin cylinder in the preceding machine. This cafe is moveable about one inch backward and forward by turning the finger ferew 5 , fig. 4 and 5 ; and thus the holes are made larger or lefs to fuit various forts of grain, or different quantities of the fame fort, exaetly as in the wooden and tin cylinders in Plate XI. The flider is moved forwards by a bent iron pin b attached to it, which paffes into a ferpentine groove Y, fig. 5 , fixed to the nave of the wheel: and backwards by a fteel fpring at the other end of the feed-box, which is not reprefented in the plate.

Fig. 5 is a bird's eye view of the parts before defribed:- E.E.the feed-box divided into cells by the partitions $d d, \& c--c c c$ the flider,

THE DRILL PLOUGH.

with a part of the apertures feen juit appearing from under the brumes. X the axis of the wheel.

Fig. 6 is a drawing of part of the tin cafe, nearly of the full dimenfions as to breadth and thicknefs, but only a fmall portion of the length; and is intended to thew more diftinctly the conftruction of it.

Fig. 2 reprefents a fide-view of one of the fix bridges lying over the holes at the bottom of the feed-box, on each fide of which the brufhes are fixed, which Arickle the holes, when they are full of corn, as the bar flides backwards and forwards.

The fimplicity of this flider at the bottom of the feed-box may be in fome refpects greater, than that of wooden and tin cylinders in the former machine; as this has but fix holes to meafure out the corn, and the other has twenty-four. But perhaps in other refpects lefs fo ; as in this twelve brumes are ufed, one on each fide of each of the fix holes; whereas there are only fix brufhes rub upon the tin cylinder in the former machine. And the reciprocating motion of this flider muft be quick, as it muft act once every time the periphery of the wheel of the carriage has paffed nine inches forward; which may not be fo eafy to execute as the cog-wheel, and uninterrupted movement of the axis and cylinder in the preceding machine.

I have only to add, that the facility of adapting the holes to the dimenfions required in both thefe machines, and their not bruifing or breaking the grain in their operation of delivering it, as well as their not being encumbered with an additional hopper, which muft deliver the quantity of feed with great inaccuracy from the unequal fhaking of the machine, adds much to the excellency and fimplicity of them both. And I hope will render more general the ufe of the drill hufbandry invented by the ingenious Mr. Tull; who was on

612 IMPROVEMENT, \&c.
that account an honour to this country, and ought to have a fatue erected to his memory, as a benefactor of mankind, like Ceres and Triptolemus of old.

Ille Ego, qui quondam gracili modulatus avena Carmen, et egreffus fylvis vicina coegi, Ut quamvis avido parerent arva colono.

Plate X .

Plate XI

Fig. 2

Fig. 1. c

Pig. ${ }^{1}$
 堍. 3 .

Pig. 4 .

Fig. 5

w

I N D E X.

A.

Absorbent veffels of vegetables, ii
…............. . have rigid coats, ii. 3 .
. confift of a Spiral line, ii. 5 . and 7 .
ii. 6

Alum refifts putrefaction, x.7.8.
Ammonia, x. 2.6. x 7.8.
Animals diftinguifhed from vegetables, x. IV.
4. X. 12. 4 .

Animalcules microfcopic, xiv. 3.2.
Annuals converted into perennials, xix.3.I.
Anthers and figmas live on honey, iv. 5.6.
bend to the ftigmas, vii. 2.2.
Aorta of plants, v. I.
Appetencies and propenfities, vii. $3 \cdot 7^{\circ}$
.......... formative and nutritive, vii. 3. 7.

Aphis, iii. 2. 8. vii. 1. 5. ix. 3. 1. xiv. I. 7. and 3.2. add. note v.

Apple four on one fide; xv. I. I. xv. I. 4.
..... tree fpread horizontally, xv. 2: 2.
Archil, xviii. I. 5.
Armour of vegetables acquired, xiv. 3.2.
Arnotto, xvii. 2.2.
Artichoke ground, xvi. 3. 4. xvii. I. 3.
Arfenic to poifon flies and wafps, vi.6. 3. xiv. 3 . 3 .

Affociation vegetable, viii. 5:
Afh-tree ufed to feed filkworms, xviii. I. 2.
Afh-leaves ufed for tea, xviii. I. 4 .
Afhes of plants contain phofphorus, x.5.6. of bones, x. 5. 4 .
Afparagus, xviii. 1. 2.
Attractions and aptitudes, vii. 3. 6.
Azote forms ammonia, x. 2.6.
Azotic gas, x. 2. 8 .
\ldots.... in fpring water, $\mathrm{X} \cdot 3 \cdot 5$:
Alum, ufe of it in bread, vi. 3. T.
.... how detected in bread, vi. 3. 2 .
..... falutary in the bread of London, vi. 3. 2.
..... ufe in making hair-powder, vi. 3 .
..... unfriendly to vegetation, x.7.8. x. I1. 9.

I N D E X.

Barks veffels of inofculate, ix. 2. 10.
.... exterior annually renewed, ii. 4
.... interior of elm, xvii. 3. 3 ,
.... fcratched longitudinally, xviii. 2. I.
\therefore … unperifhable, xvii 3. 6.
Barley freeped in dunghill water, xvi. 8.3 .
..... three buflels and an half on an acre, xvi 8. 1.
Beans ufed for provender, xvi. 6. 2.
...... injured by cold water, xi. 3. 4 .
..... injured by too much water, xvi. I. 4 .
..... enrich clayey foils, x. 7.7.
Bees injure vegetation, vi. 6.3 xiv. 3.7.
.... how to fave them when attacked, xiv.
3.7.
.... how to place their hives, xiv. $3 \cdot 7$.
Beefles, xiv. 3. 5
Bird-lime, xvii. 3.3.
Bitter juices of plants, vi. 9. I. xvii, 3. I.
Bloffon's whiter as fruits become fweeter, xv. 1.4 .

Bogbean ufed for hops, xviii. I. 5. xi. 2. 5.
Bone-arhes, ufe of, x. 5.4.
Bounties on exportation of corn, xvi. 9. I.
Bows from yew, xviii. 2. II.
Brain of vegetables, viii. 1. and 9 .
Branches, lower ones firft in leaf, iii. 5.
Bread and beer made from hay, x. 9.4.
Bredon-lime is half magnefia, x. 6.8.
Briftles on mofs-rofes, ufe of, xiv. 3.2.
....... on young hoots of nut-trees, xiv. 3. 2.

Brocoli, cultivation of, xix. 4.2. poem on, xix. 8.
Broth from mufhrooms, xvii. 2. 5.
Buds, parts of, ix 2. 12.
..... of different maturity, xv. 1.3.
.... lateral and fummit ones, xv. 2. 5 .
..... converted into each other, ix. 2. II.
Budding on roots, ix. 3.5.
Bulbs, ix. 3 .
..... produce other bulbs, ix. 1.5.
Bunium pignut, xvii. I. 3 .
Burying-grounds, x. ii. 3.
Butomus flowering ruih, svii. 2. 3. xi. a. 5 .
C.

Cain and Abel, xvi. 9. r.
Calamine for manure, x.7.I. x. 9. 4.

Calcareous earth. See Lime, x. 6
Calender of Flora, xvi. 8, 1. add. note ix, Canker, xiv. i. 6 .
…... propofed cures of, xvii, 3. 10 .
Caoutchouc, vi. 8. 5. xvii. 3. 3.
Capillary attraction in alburnum, ix. 2. 10. xv. 2.3.

Caprification, xiv. 2.9.
Carbon, x. 4 .
....... diffolved by lime, x. 4. 7.
.............. by ammonia, x. 4.3.
Carbonic acid, x. 2. 5.
........ incompaffes the earth, x. 4. 1.
….... compofes mountains, x. 4. I.
Caterpillars in apple-bloffoms, xiv. 3.3 .
.......... to deftroy, xiv. 3. 3.
efculent and poifonous, xiv.3.6.
Caudex of a bud, i. 2.
...... of buds of trees, vii. 1. 7. xv. 2. I.
...... multiplied by dividing, vii. 3.4.
....... buds from every part of, vii. 1. 7 .
...... triple, vii. 3. I .
Chiarcoal injected with quickfilver, v, 4.
........ . to preferve feeds, xvi. 7. 6.
Chick in the egg, iii. I. 4. vii. I. 2.
Chorion of the chick, iii. 1. 4.
Chyle of animals, x. \mathbf{I}.
Circulation of vegetables, v. 1. xix. 2.2.
.......... . without a heart, v. 2 .
.......... in fifh, v. 2.
.......... in the veins, $v .3$.
fels, v. 5 .
Clavus or ergot, xiv. I. 4.
Clay, x. 7. Add. note xii.
.... effervefces, x. 7-2.
\ldots. has a fmeli when breathed ón, x. 7.3.
..., burnt for manure in coal countries, x. 7.4.
.... is condenfed by froft, xv. 4. I. xiii. 2. 2. X. 7 . I.
... . acidity of, injurious, xiv. 2.5.
Coals, origin of, vi. 8. 2.
Coke, his drill hufbandry, xvi. 2. 2.
Colchicum autumnal, iv. 5.4.
Cold after heat more injurious, xiii. 2.4. xiv. 2. 2.
.... excefs of, xiv. 2. 2.
Colouring, matters of, xviii. 1. 5. xvii. 2 . 1. xvii. 3 . 5 .

Colouring

I NDEX.

Colouring for chiefe, xvii. 2: 1:
Colours of flowers, xix. I. 2.
...... how to change, xix. 3. 2 .
...... white owing to compreffion, xix. 3. 2.

Condiments, xiv. 2. 8.
Congelation condenfes clay, xv. 4. I. x. 7. 1.

ㄱ..
............ repels mucilage, xv. 4. I.
Coping of ftone, x. 3.8. xx. 3:6. xiiii,
2. 2. . temporary of boards, xv. 3. 6 .

Coralline recks, xviii. 2. 14 .
Corn ripened in froft, xvi. 3. 2.
\ldots... ripened fooner by lime, xv. 3. 3:
Corols are refpiratory organs, iv. 5^{5} 1. vii. 23.

Cotyledons of feeds, ix. 1. 3
Couch-grafs, xviii. I. I.
Crambe fea-cale, xiv. 2. 4 xviii. 1. 3. xix. 4. I.

Crooked trees to ftraighten, xviii. 2. 1.
Cuticle, or exterior bark, xviii. 2. 1.
...... may be fcratched, xviii. 2: 1 .
Cyder, xivi 2. 9. additional note xi.

D.

Deity, benevolence of, xix. 7.3.
Degeneracy of grafted trees, vii. 1. 3. xv. I. 4. xiv: 1.6.

Dew-drops, form of, xiii. 1. 5.
Dibbling wheat, xvi. 2.2.
Digeftion, experiment on, xvi. 6.2.:
Difeafes of plants, xiv.
...... hereditary, xv. I. 4.
Dogs, experiment on their digeffion, xvi. 6. 2.

Double flowers, duration of, xix. If I.
.............. to produce, vii. I. 3: xix. 3. I.

Draught, excefs of, xiv. 2. 1\%
Draining lands, xi. I.
Drill-machine improved,' xii. 5\% and Ap. pendix.
............ print of, Appendix at the end of the work.
Drill-hufbandry, ix. 3. 7. xui, 2. 2.

Drill-hufbandry, advantage of, \mathbf{x}. 12. 2. xii. 5.
for turnips, xiv. 3.5 .
Dry-rot of timber, to prevent, xviii. 2. 5. Dunghill water, xvi. 8 : 3 .
Dwarf fruit-trees, xv. 1. 3. xv: 2. 2.
Dyeing matters, xvii. 3.5 . xvii 2. 1.

E.

Ear fungus, xvii. 2. 5.
Egypt, its fertility from want of rain, x. II. 1.
wheat from, xvi. 2. 2.
Elaftic refin, vi. 8: $5 \cdot$
EleCtricity, xiii. 3 .
.......... affeets plants, viii. r. xiv. 2. 3.
3. 4 .
..... pendulum doubler of, xin. 3.5
Elm-tree, bark of, xvii. 3. 3 .
Ergot, clavus, xiv. i. 4.
Elyfiphe, mildew, xiv. I: 2.
Efpallier, horizontal, xv. 2.I.
Etiolation of leaves, xiii. I. 3. xiv. 2. 4.
......... of flowers, xviii. I. 3 .
......... of ladies, xviii. I. 3 .
. of roots, xvili، 1. 2. xvii. 2. 2 .
Evaporation of water injurious, x. 3.8 .
Evergreens have no bleeding feafon, ix. 2. 20° made by ingraftment, xix. 2.2.
Excrement of plants, add. note vii.
Exportation of grain, xvi. 9. 1.
Exfudatio miliaris, xiv. 1. 8.

F.

Fallowing, ufe of, xii. 3 .
Faft-days, ufe of, xvi. 9. I.
Fatnefs, how to produce, xiv. 2. 8.
Fermentations, x. 8. 2. xvi. 3. 4 -
Figs fall off in flower, xv. 3.4.
.... pinch off their fummits, xvi. I. 4 .
.... comprefs them with wire belows xv.
34
.... wound them with a flraw, xv. 3.4.
Fire-flues in garden walls, xv. 3.6.
Fih propagated for manure, $\mathrm{x} .10 .4^{4}$ Flax

I N D E X.

Flax, finum, xvii. 3.7.
Flewk-worm in fheep, xiv. 2.8. additional note \mathbf{v}.
Flies, how to poifon, vi.6.3. xiv. 3. 3 .
Floods injurious, x. 3.7.
Flooding meadows, art of, xi. 3 .
Flower-buds terminal, ix. 2 . In.
........... converted into leaf-buds, ix. 2. II.

Flowers require lefs water, x. 3.9. xvi. I. 4 .
...... enlarged by deftroying the leaves, iv. 5.4.
....... caufes of their colours, xix. 1. 2 .
....... to render double, xix. 3. I.
...... double ones from feeds, xix. I. I.
Fluor, cubic fpar, x. 5. 3.
..... ufeful in agriculture, \times. 5. 4.
Fluxus umbilicalis, fap-flow, iii. 2.2.
…... difeafe of, xiv. I. 9 .
Fogs injurious, xv. 3. 6.
..... dafhed againft trees, xv. 3.6.
Food of plants or manures, x.
.... of young vegetables, x. I. 3.
.... of adult vegetables, x. I. 4 .
Fowls, how fattened, xiv. 2. 8.
Free-mafons, xviii. 2.5.
Froft ripens corn, x. 3:9.
.... . black or rimy, xiii. 2. 2.
.... deftroys by expanding fluids, xiii. 2. 2.
.... by feparating fluids, xiii. 2. 2. xv. 4. 1 . by decreafing irritability, xiii. 2. 2. and 2. 3. xiv. 2. 2.
...... ftops the fap juice, xiii. 2,3 .
.... deftroys the old and infirm, xiii. 2. 2.
..... and the children of the poor, xiii.
2. 2.
.... how to be faved in fnow, xiii. 2. 2.
..... its effect on folutions, xv. 4. I. xiii. 2. 2. x. 7.1.
..... how it deftroys life, xv. 4. 1. xiii. 2. 3 .
.... raifes roots out of the ground, xviii. I. 1.
.... raifes the fmall pebbles of gravel walks, xviii. 1 . I.
.... makes clay` more folid, xv. 4. 1. x. 7. 1 .
\ldots. prevented from injuring meadows, xi. 3.1.

Fruit wounded, ripens fooner, x. 8. 1. xv. 3. 7. xiv. 2. 9 .
.... to preferve in ice-houfes, xvii. 2. 4. xvi 7.3.
.... to raife good from feed, xv. I: I.
.... to preferve by heat, xv. 4. I.
.... when ripe, to difcover, Add. note x.
..... deftroyed by hafty thawing, why?
xvi. 7.3 .

Fungi, xvii. 2. 5.
... grow without light, xiii. I. 4. xv. 3. 3. xix. 6. 1.
....-are of animal origin, xvii. 2. 5.
.... are animals without locomotion, xvii.
2. 5. xiii. I. 4.
.... are nutritious, xix. 6. I.
Furrows and ridges, xvi. 2.2.

G.

Gangrena, canker, xiv. I. 6.
Garden, beft fituation- of, xiii, 2. 2. xv. 3. 6.

Garden-walls with flues, xv. 3.6.
Garden-mould, x.4.3.
Generation, vegetable, vii. 3.
........... lateral, vii. 1. 1. vii. 3.9.
............ fexual, vii. 2. I. vii. 3 . 10.
Glands of vegetables, vi.
Glafs, x. 7. 2.
\ldots.... fine fand for, xi. I. 3 .
Gluten of wheat nutritious, xix. 6. I.
...... deftroyed by fermentation, xvi. 7. 1.
Goofeberry-trees, to protect, xiv. 3.3.
............... to fuckle, xv. 3. 5.
Gout, xix. I. I.
Granaries, xvi. 7. I.
Grain, prefervation of, xvi. 7.
Grafts and ftocks fecrete from the fane blood, xv. I 4.
Graffes forwarded by flooding, xi. 3 .
....... preferved from froft by flooding, xi. 3 .
....... when beft for hay, xi. 3. I.
....... flems and roots of, ix. I. 6. ix. 3. I.
...... have no nectary, ix. I. 6 .
...... fix kinds for meadows, xviii. I. I.
...... three kinds for paftures, xviii. I. I.
...... feeds of, xvi. 2. 3. xviii. x. I. Growth

I N D E X.

Growth of turnips does not impoveriih land, xii. 3.
....... of trees, its boundary, xviii. 2. 14.
Gum, effufion of, to prevent, xiv. I. 10.
Gypfum, x. 5. 3. x. 5. 4.
........ with magnefia, x. 6. 8.
....... how to be ufed, Add. note iv.

H.

Habits of plants, xiv. I. I. xix. 2. Y, Hair-powder, vi. 3.
Happinefs of organized nature, xix. 7. 1.
Harrogate water as a manure, x. $4 . \%$.
Harrow to extract roots, xviii. I. I.
Harrowing wheat in fpring, xii. 7 .
Hawthorn-hedge from fcions, i. I. xv. I. 3.
Hay fhould be cut young, xi. 3.2. xviii, I. I.
... lofes two thirds of its weight, xviii. I. I.
... injured by worms, xviii. I. I.
... making, xviii. I. I.
Heart-wood is lifelefs, ix. 2. 10.
......fmall force of, v. 3 .
Heat, ufe of in vegetation, ix. 1. 3. xiii. 2. 3. xiv. 2.2.
..... internal of vegetables, xiii. 2. 3 .
.... from dunghills, x. 2. I.
.... combined, xiii. 2. I.
.... variations of, wholefome, xiv. I. I.
.... above 212 preferves flefh, xvii. 2. 4 .
Hedgehogs-ufeful in gardens, xiv. 3. 6.
Helianthus tuberofus, xvi. 3. 4.
Hepar of carbon with lime, x. 4.7.
Hereditary difeafes of plants, xix. I. I. xix. 2. I.

Hills ploughed horizontally, x. II. I. x. 3. 7.

Hoeing after the corn has bloffomed, $x v$. 2. 3 .
...... horfe-hoeing, ix. 3. 7. xii. 5.
...... . hand-hoeing, xii. 5. xvi. 2. 2.
Honey, vi. 6.
....... differs from fugar, v. 6. 4.
....... food of anthers and fligmas, vii. 2.4
…... dew, iii. 2. 8. xiv. 1. 7. xiv. 3.2.
Hops, bogbean inftead of, xviii. I. 5 .
Hotbeds turned over heat again, x. 8. 2.
Hydrocarbonate gas, x. 8. 3.

I. \& J

Inclofures if politically good? xvi. 9. r.
Indigo, xviii. 1. 5 .
Individuality of leaf-buds, i. r.
........... of flower-buds, i. 4 .
Ingrafting, iii. 2. 7. xv. I. 4
........ . why in fpring, iii. 2. $\%$.
......... on roots, ix. 3. 5.
......... Atriped plants, v. I. xix. 2. 2:
......... of different genera of plants, XV. I. 4.

Inoculation, i. 3. ix. 2. 10.
........... why in fummer? iii. 2. \%.
.......... on roots, ix. 3. 5.
. not by flower-buds, i. 4 .
........... with mature buds, xv. x. 2.
xv. I. 4.

Infects propagated for manure, x. 10. 3.
..... depredations of, xiv. 3 .
..... generation of, ix. 3. I.
\ldots.... to dettroy, xiv. 3. 3 .
Joints of graffes, ix. 3. I. xvii. 3. 3.
Jonquil, xix. 3.2.
Irritability, vegetable, viii. 2.
......... difeafes of, xiv. I. I.

L.

Land to eftimate. See Soil.
Lateral progeny, vii. I. I.
....... refembles the parent, vii. I. 3 .
$\ldots . .$. degenerates, vii. I. 3 .
Lead corroded by oak-boards, xviii. 2. 5.
Leaf-buds converted into flower-buds, ix. 2. II.

Leaves are lings,
..... deftroyed to produce flowers, ix. 2. II.
..... withered ones firft eaten, xiv. 3.2.
..... enrich foil by carbonic acid, X. 77.
\ldots.... turn red in autumn, xv. 1.4.
Lemon-trees ingrafted, xv. I. I.
Lichen rangiferinus, xiii. 2. 2.
Light, ufe of in vegetation, xiii. I
..... excefs of injurious, xiv. 2. 4.
..... from rotten wood, x. 2. I.
...... from refpiration, x. 2. 7 .
...... defect of, injurious, xiv, 2. 4
4 K Lightning

I N D E X.

Lightning injures wheat fields, xiv. 2. 3 .

2. 3

......... by burfing vegetable veffels, xiv.
2.3.
......... how to prevent, xiv. 2. 3.
Lime, ufes of, x. 6. Add. note xi.
..... promotes putrefaction, x. 6.5.
. \therefore. promotes the ripening of grain, x. 6. 7. xvi. 3.
..... dififilves carbon, x. 4. 7.
...... contains phofphorus, x. 5. 5. x. 6. 3.
..... ufe of burning it, x. 4. 8 .
.... emits heat, x. 4. 4.
..... flaked with boiling water, x. 4. 4.
..... broken into powder by fteam, x. 4. 4.
..... on new walls is long moif, why? x.
4.5.x.6.5.
..... nourithes plants, x. 4. 6.
..... approaches to fluidity, x. 4. 8. x. 6.6.
..... of Breedon is half magnefia, x. 6. 8. Add. note xi.
..... decreafes the cohefion of clay, x. 7.7.
Livers of geefe, xiv. 2.8.
Loamy foill, x. 4. 3 .
Lop nut trees early in fummer, ix. 2.9.
Lolium perenne, xviii. I. I.
Lycoperdon, puff-ball, xix. 6، I.
Luxury in flefh-food and ale, xvi. 9 I.

M.

Machines for raifing water, xi. 3.6.
......... by Hiero's fountain, xi. 3. 6 .
....... by new horizontal windmill, xi
3. 6

Madder for colouring cheefe, xvii. 2. 2.
Magnefia with gypfum, x. 6. 8.
Malt, its goodnefs difcovered, how? xui. 6. I.

Manganefe as a manure, x.7.2.
Manures, fpontaneous, x.8. I.
........ chemical, x. 9. 1.
......... by infects, x. 10,1 .
........ application of, x. 12. I.
......... when to be applied, x. 12. 2.
........ economy of its application, x 12. 2.
........ which molt nutritive, X. 12. 4,

Marle, production of x. 4.3 .
..... fhell, x. 5. 5 .
$\ldots .$. crumbles in the air, why? x. $7 \cdot 3$.
Marine acid, x. 7 . 1 .
plants project a liquid, vii. 2. 2.
Mafonry, whence the myfterics of, xviii 2. 5 .

Meadows, flooding of, xi. 3 .
........ eat late in fpring, xviii. I. I.
Menyanthes ufed for hops, xviii. 1. 5. xi. 2. 5

Mice-field, xive 4. I.
Michel's method of raifing vines, xv. I. 3.
Mildew, to prevent, xiv. I. 2.
Mifery is not immortal, xix. 7. 1.
Mifts injurious, xv. 3. 6.
\ldots dafhed againft trees, xv. 3. 6 .
Moifture, ufe of in vegetation, ix. I. 3 .
......... excefs of, xiv. 2. I.
Moles, to deftroy, xiv. 4. 3.
Mole-plough, xi. r. 7. Add. mote xii.
Monfters, vegetable, ix. 2. II. xv. I. 4 .
......... vegetable and animal, vii. 2. 8.
xix. I. 1

Monuments of paft felicity, xix. 7, 3.
........... of paft animal life, xviii. 2. 14.
........... of paft vegetable life, xviii. 2. 14 ,

Moraffes, x. 4. 3 .
Morels approach to animals, xwii. 2. 5.
converted into fat, xvii. 2.5
Mofs-rofe, its armour, xiv. 3.2.
Mould, xiv, 1. 2. See Mucor.
Mucilage, vi. I.
Mucor, or mould, grows without light, xiv. $\mathbf{I}, \mathbf{x v}: 3.3$.
....... poifoned by vinous fpirit, xv. $4 \cdot 3$. xvii. 2. 4.

Mulberry leaves, xviii. I. 2
......... fruit by ingrafting, xv. I. I.
Mule-beans, vii. 2. 6.
..... cabbage, vii. 2.. 6 .
.... . peas, xvi. 4. I.
..... triple vegetable, vii. 3.3 .
Mules, animal, vii. 2. 7
...... vegetable, vii. 2.6.
Mufcles of vegetables, viii. r .
Mufhrooms, of animal origin, xvii. 2. 5\%
. approach to animal nature, xix. 6. I.

Mufhrooms

N DE X.

Mufhrooms conduct Galvanifm, xvii. 2.5. ftone, xvii. 2. 5 .

N.

Nerves of vegetables, viii. 1 .
Nevil-Holt water, x. 7.8.
Nitre, prorluction of, x.7.4.
Nutritious parts of Vegetables, xix. 6. 1.
Nut-tree twigs their armour, xiv. 3. 2.
Nymphæa alba, ix. 2. 5. xvii. 2. 3 .
........ nelumbo eaten in China, xi. 2.5.

Oxygen in vegetable fluids, whence x. 4. 8.
..... from decompofed carbonic acid, \mathbf{x}.
4. 8. xiii. I. 2.
........ from decompofed water, x. 3. 3 . xiii. I. 2.
....... loofely combined in nitre, x. 8. 4.
....... promotes vegetation, x. 2. 8 .
....... abounds by etiolation, xix. I.
........ deftroys plants by excefs, xiv. 2. 7.
$\ldots . .$. . as a caufe of irritability, xiv. 1. I.
Oxygenated muriatic acid, x. 2.8. xiv. 2.5.perfpirable matter, xiii. 1. 2.
xiii. 1. 4.

0

Oaks and willows why barked in fpring, iii. 5 . xvii. 3 . 2.
... fhould be felled in winter, iii. 5 . ix. 2.
8. xviii. 2. II.
.... barked produce more flower-buds, ix. 2.8. xv. 2. 3.
.... planted with pines, xviii. 2. 2.
…. 600 years old, xviii. 2. 16.
Oats lefs profitable provender than beans, xvi. 6, 2 .
.... improve by keeping, xvi. 6. 4.
Ochre red, as a manure, x.7. 1.
Oils effential, agreeable or poifonous, vi. 8. 3.
.... . fixed in a boiling heat, xvii. 25
.... ufed to poifon weapons and pools of water, vi. 8. 3 .
. ... expreffed, not narcotic, vi. 4. 2 .
Old corn preferable to new, xvi. 64 .
Onions, roots of, ix. 3. 2.
...... magical, ix. 3.4.
Orange bears by ingrafting, xャ. 1. 1.
Orchis for falep, xvi. 3.4 . xvii. 1. 5 .
. ... how to ripen the feeds, ix. 3.2. xi. 2.4.

Organs of reproduction, vï.
...... . lateral in buds, vii. r.
....... fexual in flowers, vii. 2.
Owls fhould be encouraged, xiv. 4. 1.
Oxydes of metals, x. 2. 3. x. 7. 1.
Oxygen, x. 2. x. 7. 2.
....... abounds in rain water and in frow, xiii. 2. 2.

P.

Papin's digefter, x. 9. 3
Papyrus, xvii. 37.
Paring and burning; x. 7.4.
Pafturage compared to agriculture, xvi. 9.1.
Paufe in vegetation at Midfummer, iii. 2. 8. ix. 2.9.

Pear-tree in part decorticated, ix. 2. 10. xiv. 2. 3.
........ compteffed by wire, xv. 3.4.
....... bears at the extremities, why? ix. 2. 7.
....... ripens by baking, x. 8. 1 .
Peas grow in water, xi. 3. 4.
.... rows of from fouth-ealt to north-weft, xiii. 2 ، 2.
.... contain moré meal than oats, xví. 6. 2 .
... . . boil foft, xví. 4. 2.
.... mule, vii. 2. 6. xvi. 4. I.
. . . . their pods nutritious, xi, 3. 2 .
.... economical provender, xvi. 6، 2.
Penetrability of foils, x. 3. 6
Perfpiration vegetable oxygenated, xiiii. 1. 4.
Petals are refifitatory organs, iv. 5. 1. viii. 2. 3 .

Phofphorus in rotten wood, x. 5 . i.
.......... in all vegetables, $\times .5 \cdot 3$
. he her of, x. 6. 3 .
......... gives folidity to timberf, x. 5. 6 .
Phofphate of lime, x. 5. 5.x.7.6.
........ in the glaten of wheat. Additional note vi.
Pignut, bunium, xvii. 1. 3.
4 K 2
Pine-

I N D EX.

Pine-apple cultivated in water, xv, 3. 4. Piping buds, ix, 2. I.
Pith like brain or fpinal marrow, i. 8, ix. 2. 4. xviii. 2. I3.

Placental veffels of buds, ii. 4. iii. 2,6.
. of feeds, iii. I. 3.
........ of eggs, iii. I. 4 .
Plants live longer if prevented from flowering, vii. I. 3 .
Plant trees fhallow in the foil, xv. 2. 4.
Plough for draining, xi. I. 7.
...... drill, xii. 5 .
...... mole, xi. I. 7. Add. note xii.
Ploughing if in ridge and furrow, x-3. 8. wheat in fpring, xii. 7 .
Plume of feed afcends, why? ix. 1. 3 .
Poems. See Verfes.
Points liberate air from water, xiii. I. 5.
Poifon of yew leaves, xiv. 3. 2.
..... of euphorbium, vi. 8. 3.
..... to vegetables, xiv. 2. 7.
Poifonous exhalations, xiv. 2.6.
Polypus, ix. 3. I.
Potatoes, early ones, xvii. I. 3 .
....... curled ones, ix. 3. 4. xvii. I. 2.
. aerial ones, xvii. I 2.
....... increafed by tranfplanting, ix. 3.7.
....... increafed by pinching off the flowers, ix. 3. 3. xvii. I. 2.
. better fet in drills, xvi. 2. 2 .
....... to ripen the feed, xvi. 3.4.
. how to improve, xvi. 5. I.
........ to boil in fteam, x. 9.2.
....... to boil mealy, xvi. 4 . 2 .
....... . killed by drying on a kiln, x. 9. 2. xvii. 2. 4 .
. bread of, vi. 3 .
....... may be planted whole, xvii. I. 2.
Pottery, Breedon-lime for, x. 6. 8.
Prefervation of fruits, xv. 4. I.
. of feeds, xvi. 7. I.
......... of roots by cold and by heat, xvii. 2. 4.

Progrefs of nature to perfection, xx. 2. xiv. 3. 2.

Propagation of good trees, ix. 3.7 .
Props for tranfplanted trees, xviii. 2. II.
Puberty of plants, ix. 3. I. xv. I. I.
Pulmonary organs, iv.
Putrefaction, x. 8. 3.
Putrid exhalations, X. 4.3 x. 7. 8.

R.

Raddle as a manure, x.7. x.
Radifhes to procure early, xvii. I. I.
Rafts of hollow timber, xviii. 2. 10.
Rain contains oxygen, xiii. 2.2.
injures the anther-duft, x.3.9.
R ats to deftroy, xiv. 4. 2.
.... are liable to the tape-worm, xiv. 4.2.
Red leaves in autumn, xv. I. 4.
Rein-deer mofs, xiii. 2. 2.
Refin elaftic from bark of holly, xvii. 3.3.
..... of wheat-flour, vi 8.5. xvii. 3.3.
Refpiration of animals, x. 2. 7.
.......... of plants requires light, xiii. 1.4.
......... of plants not in their fleep, iv. 5.
5. xiii. I. 4 .
........ of glow-worms is luminous, X.2.7.
Rheum hybridum, mule rhubarb. Additional notes i. and ii.
Rhubarb roots when to be taken up, xvii. 2. I.
....... leaves deftroyed by mud. Additional note i .
Rice in Valencia, xi. 3. 4.
.... grounds, x. 3.9.
Ridges and furrows, $x \cdot 3 \cdot 7 \cdot x v i .2 .2$.
..... advantages of, xvi. 2. 2.
Rime perpendicular or lateral, xv. 3.6.
..... frofts and black frofts, xiii. 2. 2.
Rings of timber concentric, xviii. 2. 12.
Ripening of fruit by wounding it, xiv. 2. 9 x. 8. I. xv. 3. 7 .
........ to difcover. Additional note x.
Roll wheat in fpring, xii. 8.
Roots defcend, why? ix. 1. 3. xv. 2.4.
..... . at Mydfummer, ix. 2. 9.
..... decay internally, ix. 3.5.
. end-bitten, ix. 3. 5.
..... Should be plucked up for tranfplant ing, xv. 2. 4.
\ldots.... from wounds of the bark, ix. 3.7.
...... etiolation of, xvii. 2. I.
Root-grafting, ix. $3 \cdot 5$.
.... inoculation, ix. 3. 5 .
.... propagation, ix. 3. 5.
.... fcions for planting, XV. I. 2.
Rofe plaintain, ix. 2. II.
Rofes to forward, xvi. 2.5.
..... double ones, xix. 2. 1.
Rot of timber, iii. 2. 3. ix. 2, 8. xviii. 2. 5.

I N D E X.

Rot of theep, xiv, 2. 8. Additional note v. Rubia tinctoria to colour cheefe, xvii. 2. 2. Rubigo, ruft, a difeafe, xiv. 1. 3 . Rye-grafs, xvi. 6. 1. xviii. 1. 1.

S.

Saccharine procefs in malt, x. 8. y.
8. 1.
......... in baked pears, x. 8. I.
......... how haftened in fruit, xiv. 2. 9.
Sage-leaves for tea, xviii. I. 4 .
Sagoe from the palm, xviii. 2. 13.
..... from artichoke flalks, xix. 4. 1 .
Salep, orchis, xvi. 3.4 xvii. I. 5 -
Salt marine as a manure, x. 7. 5.
... as a condiment, xiv. 2. 8.
Sand fine white near Derby, xi. I. 3.
Sap-flow, a difeafe of, xiv. I. 9 .
... juice, great force of, v. 3 .
.... flows in fpring, iii. 2. 2. ix. 2. 8.
... at Midfummer, iii. 2. 8 .
... from herbaceous plants. Add note x.
... component parts of, x. I. I.
Scarcity, food in times of, x. 9. 4.
Scarifier, xviii. 1. I.
Scions from roots, xv. I. 2.
..... for grafting, xv. I. 4 .
...... for planting, xv. I. 3 .
Sea-cale, how to cultivate, xiv. 2. 4.
Secretions of vegetables, vi.
........ of the graft and flock different, xv. 14.
$\ldots . .$. ... of gum, a difeafe of, xiv. I. I0.
Secret concerning fruit-trees, ix. 3.2.
Seeds before impregnation, vii. 2. I. vii. 2. 5 .
.... growth of, ix. 1.
..... plume grows upwards, why? ix. I. 3 .
.... root downwards, why ? ix. I. 3 .
.... production of, xvi.
…. fteeped in dunghill-water, xvi. 8. 3.
.... of hay fpoiled by fermentation, x.
II. 7.
.... of wheat fpoiled by fermentation, xv. 7.1
.... of wheat, how to preferve, xvi. 7. 1.
.... of wheat, how improved, xvi. 5. I.
$\ldots .$. of potatoes and orchis to ripen, xvi. 3.4 .

Seeds difperfion of, vii. 2. 5
.... change of not neceffary, xv. 5. 1.
$\ldots .$. when ripe to difcover. Add. note x.
..... how to preferve, xvi. 7.6.
.... fhould be fown foon after ploughing,
x. 7.5 .
.... require oxygen, xiii. I. 5 .
Seedling trees, xv. I. I.
x. Senfes of vegetables, viii. 6 .

Senfibility of vegetables, viii. 3 ,
Sexual generation, vii.' \mathbf{I}. 7 -
..... progeny, viii. 2.
..... of infects, ix. 3. I.
Sheep, flewk worm of, xiv. 2. 8.
Showers injurious, x. II. I.
Shepherd kings, xvi. 9. r.
Shrubberies of mulberries, xviii. I. 2.
Silkworms fed with afh-leaves, xviii. I. an
Situation for a garden, xv. 3.5 . xiii. 2. 2 .
Slaughter-houfe of nature, xix. 6.5.
Sleep of plants, iv. 5.5 .
Slugs, xiv. 3.5.
Smoke and fteam of poifonous plants, xiv.
3. 2.

Smut of wheat, vii. 2. 2. xiv. I. 5. xvio
8. 2.

Smyrna wheat, xvi. 2.2.
Snails and Slugs, xiv. 3. 5.
Snow contains oxygen, xiii. 2.2.
Soap-ftone fteatites, x. 6.8.
Soils to analize. Add. note ix.
.... by burning them. Add. note ix.
.... by their fecific gravity. Add. note ix.
.... by their native plants. Add. note ix.
.... . cracks in them, to prevent, xvi. 2. 2.
Soup lefs nutritive than the folid meat, x. 9. 4.

Sour grafs, how to deftroy, xviii. I. i.
Sow thick for herbage, xviii. I. I.
.... early on wet foils, x. 3.6. xvi. 8. I
.... foon after the plough, $x=6,5$.
.... wet, xvi. 8. 4 .
Spirituous liquors, xvi. 9. I. Add. note xi.
......... from roots, xvii. I. I.
......... from barks, xvii. 3. 3.
......... from leaves, xviii. I. 6 .
Springs, origin of, xi. I. 2.
...... wall-fprings and pipe-fprings, xio
I. 3.
....... how to difcover, xi. I. 12.

I N D EX.

Spur of rye, ergot, xiv. I. 4 :
Stacks of hay, X. II. 7. xviii. I. I.
\ldots.... of grain, to preferve, xvi. 7.1.
Starch, vi. 3. xvi. 3. ix. I. 4
Steam, ufe of in cookery, xix. 4. I.
..... etiolates fome vegetables, xix. 4. I.
Steatites foap-ftone, x. 6. 8 .
Stigma bends to the anther, vii. 2. 2.
Straw chopped with green food, xviii. I. I.
Strawberries, xv. 2. 4.
............ barren, ix. 3, 4. xv. I, 4.
Suffufio mellita, honey-dew, xiv. 1. 7.
Sugar, vi. 5. x. 8. I. xix. 6. 2.
..... fugar from fap-juice of herbs. Additional note $x i$.
. may injure the teeth, vi. 5. 2
. exifts in malt. Add. note x.
\ldots feparated from mucilage, vi. 5. 3. x. 8. 2.
..... from beats and carrots, xvii. I. I.
..... converted into ftarch, v. 5.5.
..... preferves feeds, xvi. 7.6.
..... nutritious, xix. 6. I.
Sweat miliary, xiv. 1. 8.
Swine-troughs moveable, x. 1x. 6.
Swilcar oak, xviii. 2. 16.

T

Tennant on limes, Add. note xi.
Tanning, xvii. $3 \cdot 5$.
Tape-worm in water-rats. Add. note viii.
Tar-water deftroys fome infects, xiv. 3. 5 .
Tea recommended, xviii. 1. 4.
Tellure or tiller, xvi. 2. 2. xvi. 2. 3 . xii. 7.

Teucrium fcorodonia, wood fage, xviii. I. 5 .

Thiftles, to deftroy, xiv. 1. 9. Additional note xi.
Thunder fhowers, xiii. 3. 3.
Tiller, or tellure, xii. 7. xvi. 2. 2.
Timber, concentric rings of, xviii. 2. 12.
....... rot of, to prevent, xviii. 2. 5.
. how decompofed, xviii. 2. I4.
...... political to cultivate, xviii. 2. 15 .
....... durability of, xviii. 2. 7.
....... See Trees.
Tranfplantation of wheat, is. 3.7. xii. 6.

Tranfplantation of trees at Midfummer, ix. 2. 9 .
. of fruit trees, xv. 2.4. xviii. 2. II.
............ of timber trees, xviii. 2. 1 I. not too deep, why? xv. 2. 4.
............ of turnips, ix $3 \cdot 5$. xii. 6 .
............. of brocoli, xv. 2. 4. xix.
4. 2.
$\therefore \ldots . . .$. of ftrawberries, xv. 2. 4 .
Trees crooked, how to Itraighten, xviii. 2. 1 .
..... fmeared with pitch die, iii. 2, 6 .
..... do not bleed in fummer, iii. 2. 5 .
. triple by ingraftınent, vii. 3. 1.
.... . their fize bounded, xviii. 2. 14 .
..... to make tall and ftraight, xviii. 2. 2.
..... to make them crooked, xviii. 2. 2.
. when to fell, iii. 2. 3. ix. 2. 8. xviii. 2. 12.
$\therefore .$. . tranfplanted when large, how, xviii. 2. 11 .
..... tranfplanted, how to prop, xviii. 2. II.

Trefoil, xviii. r. 1
Trifolium pratenfe \& repens, xviii. I. \mathbf{x}.
Truffle, lycoperdon tuber, xvii. 2. 5.
Tulip, xv. I. I.
. feed is five years before it flowers, ix. 1.5. ix.3. 1
..... lefs when coloured, xix. I. 2.
Tull's hufbandry, 9. 3. xvi. 2. 2.
..... advantages of, xii. 5 .
Turnips fowed deep in drills, xiv. 3. 5
...... do not impaverifh the foil, why, xii. 3 .
...... tranfplanted, ix. 3. 5. xii. 6.
...... affected by the ly, xiv. $3 \cdot 5$
Turpentines, vi. 8
Tuffocks of grafs, how to deftroy, x. 6.7. xviii. I. I.
. of wheat, xii. 6. xiv. 4. I. of trees, xviii. 2. 2.
Twitch-grafs, xviii. I. I.

1 N D E .

U.

Umbilical veffels of vegetables, iiti.
. in feeds, iii. 1. 3.
.......... in eggs, иii. 1.3 -
......... of buds, iii. 2.2.
......... of the alburnum, ix. 2. 9.
........ live after the arterial ones, ix. 2. 10.

Uredo frumenti, xiv. I. 3 .
Uftilago, fmut, xiv. I. 5 .

V.

Variegation by ingrafting, v. I. xv. E. 4 xix. 2. 2.

Vegetables differ from animals, is 5^{5}
........ refemble animals, i. 6.
......... how to boil them green, xix.

4. 1.

Vegetation, paufe of at Midfummer, iii. 2.8. ix. 2. 9 .

Verfes on ingrafting, xv. I. 5.
...... on producing flower-buds, xv. 2.6.
...... on cultivation of brocoli, xix. 8.
$\ldots .$. on pruning wall trees, xv. 5 .
$\ldots .$. on pruning melons, xv. 5 .
..... on Swilcar oak, xwiii. 2. 16.
Vigorous and weak trees, x. 2. I.
Vines, art of raifing, xv. I. 3 .
...... management of, xv. 2. 5^{-}
...... to ripen the grapes, xiv. 3.3.
..... leaves to colour wine, xviiii 1. 5.
Vitrification, x.7.2.
Volition, vegetable, viii. 4 .

W.

Wall-trees horizontal, xv. 2. r.
Walls long in drying, why, x. 4.4. Walnut bears hy ingrafting, xv. I. I. Wafps, to poifon, vi. 6.3.
Water, ufes of in agriculture, x. 3 folidified, xviii. I. I. x. 4 4. is an acid, x - 2. 6 .

Water is decompofed in vegetables, x. 3.3 .
...... of fome frings contains limefone,
x.6.2.x.3.5.
....... of rain contains oxygen, xihi. 2. 2,
Wat poifoned by euphorbia, vi. 8.4.
Watering meadows, xi. 3 .
........ plants, x v. 3. 4. xviii. 2. 1.
........ not in funfhine, why, xi. 3.4.
......... nor in froft, why, xv. 3.4.
$\ldots . .$. mult be repeated, xi. 3. 4 .
Wax, vi. 7.
Weeds, to deltroy. Add. note xi.
Wet feafons injurious, x. 3.9.
..............inure wheat, vi. 7. I.
foils, fow and reap early in, x.3.6.
Wheat, ix. 1.6. ix - 3. 1. xii. 5.
...... with branching ears, xvi. 2. 2 .
........ number of grains from one, ix.
3.7.
tranfplanted, xii 6. xvi. I. 2. ix. I.
6. ix. 3.7. xiv. 4. r.
...... rolled in fpring, xii. 8. xvi. 2. 2 xvi. 2. 5
...... harrowed in fpring, xii. \%.
$\ldots . .$. confifts of feparate plants, ix. 3. F .
....... gluten of, vi, 8. 5. xvi-7. f. xvii.
3. 3. xix.
...... has no nectary, ix. x. 6 .
....... injured by wet feaforis, vis. 7. 1.
...... fowed but one inch deep, xiv.
3. 6.
..... how to difcover its goodnefs, xwi.
6. 1 .
fow two kinds of, xvi. 8. 2.
....... caudex of produces other Items, ix ${ }_{\text {. }}$ 1. 6.
...... caudex injured by infects, xiv. 3. 6.
....... dibbling of, xvi. 2. 2 .
....... eaten down by fheep, ix. 3.7. xivi. 2. 3 .
...... dried on a kiln, xvi. 7. 1.
...... hoarded by mice, xiv. 4. I.
White parts of flowers from compreffion, xix. 3.2.

Willow-bark, ix. 2. 10.
Winds, fouth-weft falubrious, xv. 3. 6.
....... north-eaft injurious, xv. 3.6 .
Wines.

I NDEX.

Wines, means to fine them. Add. note x . Worm of fheep, xiv. 2. 8. Add, note v . Woad, xviii. I. 5.

Wounds of trees bleed in fpring, iii. 2. 2.
Wood, to increafe, xviii. 2. I. v. 3 .

- durability of, xviii. 2. 7. xviii. 2. 14.
©..... triturated for food, x. 9.4.
........ imbibe fluids in fummer, v. 3 .
Wood-fires impoverifh a country, x. II. 5 .
Wood-fage, teucrium fcorodonia, xviii. I. 5 .
Woods chould be planted on hills, xviii. 2 . 15.
........ of the bark, xvii. 3. 10.
........ upper lip only grows, i. 3.
....... of fruit by infects, xiv. 2. 9 . $\ldots \ldots$ by caprification, xiv. 2. 9 .

THE END.

ERRATA.

Page 139, line laft but one, read diftinguifhes, for diftinguifh.
-121, line 14, for from, read form.

- 528, line laft but two, for fo, read no.

DIRECTIONS TO THE BINDER.

Pleafe to put Plate I. and the Explanation of it, facing each other, at the end of Section I. between pages 8 and 9.
Plate II. at the end of Sect. II. between p. 18 and 19. Plate III. at the end of Sect. III. between p. 38 and 39. Plate IV. at the end of Sect. IX. between p. 182 and 183 . Plate V. VI. VII. at the end of Sect. XI. between p. 282 and 283. Plate VIII. at the end of Sect. XIII. between p. 314 and 315° Plate IX. at the end of Sect. XIV. between p. 372 and 373.
Plate X. XI. XII. at the end.

BOOKS ON AGRICULTURE AND RURAL AFFAIRS,

b. SIR JOSEPH BANKS's ESSAY on the DISEASE in CORN, called by Farmers, the Blight, the Mildew, and the Rust, with Plates.
2. CULLEY's OBSERVATIONS on LIVE STOCK; containing Hints for choosing and improving the best Breeds of the most useful kinds of Domestic Animals. A new Edition, with Plates. Price 6s.
3. EARL of DUNDONALD's TP.EATISE on the Nature and Application of the different Sorts of MANURES. A new Edition, 4to. Price 10s. 6d.
4. DICKSON's SYSTEM of PRACTICAL HUSBANDRY, with Plates. 2 vols. 4to. Price 41. 4s.
5. The FARMER's MAGAZINE ; a Periodical Work, exclusively devoted to Agriculture and Rurał Affairs, 5 vols. Price 43s. 6d.
6. GARRARD's PLATES, descriptive of IMPROVED BRITISH CATTLE, folio-plain, 21. 12s. 6d.; coloured, 51. 5s.
7. LOUDON's OBSERVATIONS on PLANTA'TIONS, LANDSCAPE GARDENING, EMBANKING, \&c. with Plates. Price 10s. 6d.
8. MarSHaLL's TREATISE on the Purchase, Improvement, and Management of LANDED PROPERTY, 4to. Price 21. 2s.
9. MARSHALL's PRACTICAL TREATISE on PLANTING and RURAL ORNAMENT. New Edition, 2 vols. Pricc 16s.
10. TREATISES on RURAL ARCHITECTURE, by Barber, Crunden, Elsam, Gandy, Laing, Lugar, Malton, Middleton, Miller, Plaw, Pocock, Soane, Wood, \&c. \&c. \&c.
11. YOUNG's FARMER's CALENDAR, 8vo. Price 10s. 6d. boards.
12. \qquad ANNALS of AGRICULTURE, and other Useful Arts. Price 2s.
13. The AGRICUL'IURAL MAGAZINE. Price 1s. 6d.
14. COMMUNICATIONS to the BOARD of AGRICULTURE, on Subjects relating to the Husbandry and Internal Improvement of the Country, 3 vols. 4to. Price 31.
15. GAME BOOK; enabling the Sportsman to keep an Account of Game killed, in the form of a Journal for the Pocket. Price 7s.
Where also may be had, a Variety of other New Publications relating to Agriculture, Husbandry, Landscape Gardening, and Rural Economy in general.

On the 10th of May will be pullished, in Royal Quarto, ANOTHER VOLUME

 DESIGNS

 DESIGNS FOR
 COTTAGES AND FARM BUILDINGS, WITH SOME PLANS FOR

 ENTRANCE GATES AND LODGES.sy
THE AUTHOR OF THE PRESENT WORK.
arto,

G S,

*

4n!

[^0]: O animals,

[^1]: 3. Q 2
 porate,
[^2]: 3 T
 cows

