OPTICS

Robort A, İillikan
Duanc Rollor
Earncst C. Tatson
Carl D. Anderson
Tolfeang Ii. Panofsky

## CHAPTER ONE

BASIC FACTS AND CONCEPTS IJ GEOMEIRICAI OPTICS

The manifestation of light is one of the most obvious of physical phenomena, and optical effects such as the rainbow, halos, the mirage and oven the sunny sky -. Which is "as a molten looking glass" -. must have provided eariy man with some of his most vivid experiences. Familiarity With many simple optical phenomena is implied in all the astronomical lore of the ancient world, and mirrors of polished metal and "burning glasses" are among the oldest of devices. Thus it is natural that optics, which treats of the properties and nature of light and vision, should be one of the oldest branches of physics. Growing out of practical jore, optics progressed more rapidly as the invention of instrumentis such as the microscope and telescope increased the demands for optical knowledge; and it developed into an accurate and significant science when controlled, quantitative investigation came to be a basic and integral part of its methods.

1. Rectilnear Pronagation in a Fomogeneous Medium. In the early ages when windows were without glass, and dust avounded, a straight shaft of brilliant sunlight piercing the dusty atmosphere of a habitation was one of the most common of sights. Thus doubtless rose the notion that licht travels in straight lines so long as it remains in the same medium. It was tacitly assumed in the astronony of the ancients, and acquired the

1 Job, Chap. 37, verse 8.
status of a principle in the Optics of Fuclid. ${ }^{2}$ (c. 300 B.C.) This principle of the rectilinear propagation of light in a homogeneous medium has innumerable modern applications, for example, in all measurements of


Fig. 1. If the observer moves from $P$ to $P{ }^{\prime}$, the nearer object $S_{I}$ will appear to be displaced an angular distance of $\phi+\phi$, to the left with reference to the farther objiect $3_{2}$.
ancles made vith astronomical and surveying instruments, and in the explanation of the phenomenon of parallax, or apparent displacement of an object due to an actual displacement of the observer (Fig. 1). Another sirple illustration is rumished by the pinhole camera, ${ }^{2}$ in which a small hole takes the place of the usual lens, As indicated in Tig. R, a narrot cone of light from

1 Euclidis Optica (Teubner, Leipzis, 1895); this is Vol. 7 of the authoritative edition of Euclidis opera onnia, ed. by G. J. L. Feiberg and H. Menge ( 8 vols., 1883-1916). It is aifricult to attribute a book containing so many inaccuracies to one whose goometry is characterized by accurate reasoning and lucidity; however, the logical structurc of all the ancient Forks on physics is vexy loose, and not to be compared with that of the mathematical aritings.

A brief summary of the Optics will be found in *T. L. Heath, A Manual of Greel Mathematics (Oxiord, 1931), pp. 267~268, and also in an article on "Optics" in the Incyclopaedia Metropolitana (London, 1845), Vol. III, p. 394. It, together 7ith the Catoptrica (theory of mirrors), which is also usually attributed to Fuclid but is really a compilation made much later from ancient works on the subject, Gives a good idea of the viems regarding light that prevailed among the Greeks.

2 Although the photographic plate was not invented untill the nineteenth century, the principle here discussed -- that of the pinhole camera or "camera obscura" -- mas discovered early in the sixteenth century and is described in detail by F. B. Porta (1536-1615) in his Magia naturalis (1553).


Fig. 2. Tomation of an image by a pinhole camera.
a point $S_{1}$ of the object $S_{1} S_{2}$ passes through the pinhole 0 and illuminates a snall spot $\mathrm{SI}^{\prime}$ on the photographic plate. Cones of litht from other points of the object illuminate other corresponding spots on the plate. The result is an inverted inege $S_{1}{ }^{\prime} S_{2}$ '. This image is said to be more clearly defined the more nearly the points of the image and of the object approach a one-to-one correspondence. The definttion of the image accordingly mill be lessened when the pinhole is made larger, or when the object or plate is brought closer to the pinhole, for them points on the object will register on the plate as overlapping $s_{2 j}$ ots. But the definition will also be lessened if the pinhole is made too smail, for then spots will again overlap, but now for an entirely different reason; namely, because the cones of light after passing through the pinhole spread out laterally through angles, which, while small, bocome appreciable as the size of the pinhole is decreased. In other Hords, light exhibitis the sane phenonomen of diffraction as do sound and water waves, ${ }^{1}$ although the effect in the case of light is relatively small (Chap. 4). Latersi spreading of a beam of Ifht always occurs, even in a homogeneous medium, but it is small enough to be ignored in treating certain important classes of problems.

1 See, for exarple, ifillikan, Roller and Watson, Mechanies, Molecular Physics, Heat and Sound (Ginn, 1937), pp. 387, 389. This book will be designated herearter by the abbreviation MRH.

With effects due to difirraction ignored, and the principle of rectilinear propagation thus accepted as generally valid, it is possible to develop a spectal division of optics in which descriptions in terms of geometricai relations are the most natural and simple. This division, called geometrical optics or, sometimes, the theory of optical instruments, enables one to trace the passage of light through optical instmments in detail, and thus to determine the principles of their construction. Despite the simplifyine assumptions which form its basis, geometrical optics has proved to be of enormour practical value, and its concepts and methods have so permeatea the whole science or optics that it is essential to have an understandine of then. is we shall see later, ceonetrical optics is able to deal with phenomena the can be troated cuccessfully rithout, taking into account any acfinito hypothesis concerning the nature of light or of its interactions with matter. It is thus to be contrasted with physical optics: the division that deals with theories of the nature of light and of its interactions with matter, and with the experinental bases and verifications of these theories. A third main division of the scionce -- physiological optics -- is concerned with the phystology and physics of vision. ${ }^{1}$

In geometrical optics, the basic concept is the ray, which we may best define as the purely fictitious axis of a naxrom cone of light. It is also sometimes useful to think of a ray of light as a path of enerey-

1 Since we shall be concerned mainly with Geometrical and physical optics in this book, the student tho is interested in problems of physiological optics should consult the textbooks and treatises devoted primarily to that field. A cood elementary treatment mill be found in J. P. C. Southall's Introduction to Physiological Optics (Oxford University Press, 1937). By far the most iraportant treatise in the field is Helmholtz's physiological Optics (1856-1866); an English translation of this ereat mork was published in 1924-1925 by the Optical "society on Anerica.
transfer. This of course involves the nodern conception or light as a form of onergy, a conception that was not clearly enouch fommatated so as to be very userul until the midale oi the nineteenth century, when energy became a clear-cut concept of fundamental importance in mechanics and heat. ${ }^{1}$

Today we have no difficulty in conceiving of licht as a form of energy, because of our fariliarity with the energy concept, and with such phenomena as the increases of temperature or the chenical chances observed to occur in various boiles then they are exposed to a soumee of light.
2. The Principle of Superposition. An important notion implicit in early optical lore pas that light from various sources traverses the common region between the sources mithout getting mized up, as it were. An obvious example is the fact that two people carl soe each other simultaneously without cistortion. This notion, stated more precisely, becomes the important, basto principle that, if light rays from two or more sources intersect, each till thereafter be the same -- that is, will be able to produce the same effects -- ass if it had traversed the region alone; the rays while intersectine acquire no properties by virthe of their number that they do not already possess individually. Any phenonena for which this latter is true ane said to be superpossile, and hence the roregoing principle is referred to as the principle of sunerposition for light. ${ }^{2}$

1 Warit (1937), p. 76.
2 An juportant example or superposable phemomena in mechanice is evidently that or forces acting simultaneously on a particie, for each force produces its own effect independently of the action olt the other forces; in other thords, the principle of the independence of forces 1 I.FW (1937), 0.53 ) is merely a special case of the general principle of superposition. Another special case arising in mechanics is the Fourder theorem [ink (1937), p.332]. In general, any effect is superposable if it call be described by means of a linear difforential equation; that is, a diferential equation in which neither the dependent variable nor its derivatives enter in any power higher than the first porfer. The principle or superpowition is a clearly defined

The concept of the ray, the principles of: rectilinear rropagation and of superoosition, and the tro lams of reflection and of refraction treated in the remainder of this chapter proride the entire basis of geometrical optics. Then effects due to diffraction must be taken into consideration, they must be treatea separately, by means of the theory of diffraction (Chap. 4).

## Retriar Reflection

Iight arriving at a surface separatine tro different meduns is, in general, partly reflected into the medium into which it orisinally was travelling and partly transmitted into the nery medium. The percentage of lifht reflected increases as the rays strike the surfoce at more mearly grazing incidence; for example, when Iight is incident perpendicularly on a smooth surface of water, only about is percent of it is reflected, whereas, for nearly grazine incidence, about 72 percent is reflected. Another factor Which may be easily observed to affect the percentace reflected is the character of the two mediums at whose interface the reflection occurs; for example, a piece of gless inmersed in water reflects much less light than it mould in air under the same ciscunstances.

Light reflected from a snooth surface does not appear to the eye to come from the suxface but from an image located behind or in front of the surface; the rays are reflected in definite directions and hence are said
property of such an equation: for we kam that $1: y$ is a function of $x$ that satisfies any given linear differentiul equation, and if $z$ is another function of $x$ that satisfies the same enuation, then $\underset{\sim}{x} \underline{z}$ is a function of $x$ that satisfios it; or, more enerally, the sun of any number of individual solutions of a given linear differentlal is alco a solution. Superposable phenomena are relatively easy to investigate and thus have usually been the first to be studied in physical science. In dealinc with phenomena that cannot be treated as superposable, a nonlinear differential equation, which Involves so-called conbination tems, or some other mode of treatment must be employed.
to be regularly reflected. On the other hand, rays reflected from a very rough surface pass out from it in oll directions, as if the surface itself were the original source of the light, and hence objects are not seen reflected in it; the light from a rough surface is diffusely reflected. Fiven the mnoothest obtainable mirror reflects some of the light diffusely, because of slight irregularities due to the nolecular structure of the surface. Contrariwise, most mat surfaces, buch as yough paper, reflect an appreciable part of the light regularly, the percentage reflected inereasing as the rays strike the surface at more nearly grazing inctidence.
3. The Law for Recular Peflection. Fxperiment shors that the law for regular reflection is the sarac as that for sound; namely, (a) the incident and rerlected rays male equal angles $\theta$ and $\theta^{\prime}$ with the nomal drawn to the surface at the point of incidence, and (b) the two rays and the nomal lie in one plane. This specification of the plane in which the reflected ray lies appears to have been first emphasized by Alhazen (c. 9651039), in his Treasury of optics. ${ }^{2}$ But that the ancle of incidence $\theta$ and the angle of reflection $\theta^{\prime}$ are equal certainly was known to the Greoks, ${ }^{3}$ and Feron of Alexandria ${ }^{4}$ even deduced this equality from a more general

1 MRTM (1937), pp. 386, 390.
2 This treatise mas translated from Arabian into Latin in 1270 and printed at Bâle in 1572 under the title, Opticae thesaurus Alhazeni 1ibri VII, cum ejusdem libro de crepusculis of nubium ascensionibus. It remained a standard authority on optics down to the seventeenth century. Alhazen was the greatest fluslim physicist and one of the greatest students of optics of all time.
${ }^{3}$ See Euclid's Opties, Prop. 19, and the Catoptrica.
4 Heron lived sometime in the period betreen $150 \mathrm{~B} . \mathrm{C}$, and $250 \mathrm{~A} . \mathrm{D}$. The Capotrica, a treatise on reflection ascribed to him, appears in Latin and German translations in the authoritative edition of his works, feronis Alexandrini opera quae supersunt omnia, ed. by W. Schmid (Leipzig, 1801), Vol. II. A brief sumary of its contents mill be found in *r. L. Heath, A Manual of Groek Mathematics (Oxford, 1931), p. 433.
assurption; namely, that light in travelind from one point to another follors the shortest patr. AIthough the rectilincar mopagation or light obviously is also deducible from it, re shall see in Sec. 4 that the assumption is by no means generally valid. It holds oniy if the medium is homo geneous; moreover, in cortain cases on reflection from a concave mirror; the path is a maximum instead of a minimum. The histoxical significance of Heron's principle of the shortest path is that it represents an early attempt to describe a physical situation in terms of some minimum value. Minimal principies of various forme tolay provide methods of ereat power and elegance for attackinf a variety of involved problems.

## Refraction

The phenomenon of refraction, or change in direction of a bean of licht when it is transmitted rrom one medium into another, was familiar to the Alexandrian astronomers, who realized that a corroction for atnospheric refraction enters into the important practical problem of computing times of rising and settinz of heaventy bodies from observations of their earlier positions in the sly. In an attempt to dotermine hor much change in direction occurs in refraction, Ptolcrus ${ }^{2}$ (c. 70-147 A.D.) made exporiments on the passage of light from air into mater and other substances, and compiled tables shoming corresmonaing observen valuet for the angle of incidence $\theta_{1}$

[^0]

Fig. 3. Ray of light passing from dir to wator.
ard the angle of refraction $\theta_{2}$ (Fig. 3). These data from one of the feu recorded experimental investigations of antiquity enabled Ptolemy to make mpirical corrections for effects involving refraction. He also concluded that the ratio $\theta_{1} / \theta_{2}$ is always the same value for a particular pain of mediuns. Ptolemy's own data (Table I) fail to substantiate this rule; yet it was not until some nine mundred yoars later that Alhazon, performing similaz oxperiments on refroction, recognized

Table I. Ptolony's values of angles of incidence and refracuion for white lizht nassine rrom air to water.

| $\theta_{1}$ | $\theta_{2}$ | $\theta_{1} / \theta_{2}$ |
| :--- | :--- | :--- |
| $0^{\circ}$ | $0^{\circ}$ | 1.3 |
| $10^{\circ}$ | $151 / 2^{\circ}$ | 1.3 |
| $20^{\circ}$ | $221 / 2^{\circ}$ | 1.3 |
| $30^{\circ}$ | $29^{\circ}$ | 1.4 |
| $40^{\circ}$ | $35^{\circ}$ | 1.4 |
| $50^{\circ}$ | $401 / 2^{\circ}$ | 1.5 |
| $60^{\circ}$ | $451 / 2^{\circ}$ | 1.3 |
| $70^{\circ}$ | $50^{\circ}$ | 1.6 |
| $80^{\circ}$ |  | 1.3 |

1 J'ottica di Claudio Tolmec
G. Govi, Torino, 1885 , Bli. $V$, p. 142. that the rule holds only for small angles. Although the fenerel relation betwoon the anglos oscaped him, Alhazen succeedod in formulatIng one part of tho law of refraction as wo now know it; nanoly, that the rofracted and incident rays 1 i 0 in tho plane contrining the normal to the retractires surfoce. ${ }^{2}$

All of Alhtazon's work had Great intluonce on Furopoan thought and was inown to Kcpler. When tho telescopo whe inventad, in 1609 , Keplor became intorosted in finding a frometrical explanation for this instrumont. To oxperimontal date on
refraction ho applicd the inductive mothod that ho had employed so successfully in arrivine at the lans of plunotiry motion, ${ }^{2}$ but he was unable to arrive at the genoral lab connocting anelos of incidenco and refraction. Nevortholoss, by using tho rulo that, for angles less than about $30^{\circ}$, $\theta_{1} / \theta_{2}$ is practically constant for a given pair of modiums, ho was able to predict the course of light rays through various types of lonses and lens combinations, including the astronomical tolescone, and to obtain on approximate geometrical thoory of their netion. ${ }^{2}$ So notable are these advanconents over the achievenents of his predecoasorsithat Kepler moy bo rogarded as the founder of modorn geonetrical optics.
4. The Lar of Pefraction. It remained for Willobrord Snel van Royon (1580-1626), a Dutch physicist, geodisist and mathenaticion, to formulate the completo quantitativo lam of refraction. ${ }^{3}$ In the course of experinents on refraction, Snel observed that the בength of path $O S_{2}$ of a ray $S_{1} O S_{2}$ passing from ajr to wator (Fig. 4) and falling on the vertical side of the containing vessel, bears a constant proportion to tho path $0 S_{2}{ }^{\prime \prime}$ which the ray rould hnve

1 MRW (1937), p. 61.
2 Kepler's tro works on optics were Au Vitullionera pralipomona, quibus Astronomise Pars Ontica traditur (Prankfurt, 1604), containing important discovories in the thoory of vision and a atatonont of the approximate rula for diffraction, and tho more important Dioptrico (Augsburg, 1611), on the theory of lensers. Both books appoar in Joanis Keplor opern omnia, ed. by C. Frisch (8 vols., Frankfurt, 195e-1871), and in the nore recont Johannes Kopior Gosamelte Ferke, ed. by M. Caspar' (Munich, 1938-). English sumaries of thoir contents $\mathbb{F} 111$ bo found in *A. Wolt, A History of Science, Technology, and Philosophy in the 16 th and $17^{\text {th }}$ Conturies (Allon is Un:in, 1935), Dp. 245250, and in WE. Nach, The Principles oi' Physical optics, tr. by J. S. Anderson and A. F. A. Young (Dutton, 1925), pp. 13, 29-32, 43-47, 53-54.

3 His discovery is doseribed in on unpublibhod manuscript uritten in 1621. Huygens, tho sarr this manuscript, credits Sncl with tho discovory in his Dioptica (1653) Opora posthume (Ioydon, 1703) , p. 2. A French translation, in parallel with the original Latin, rill bo found in the oeuvres Completes de Christiaan Fuygons (Nifhorf, The Kiogue, 1888-1927), Vol. 13, pp. 6-8.


Fig. 4. Snel's latiof refraction.
traversod had tho water not been prosent. He corroctly concludod that, for any particular pair of mediums, tho ratio, $\mathrm{OS}_{2} / \mathrm{OS}_{2}$ is constant for all anglos $\theta_{1}$ and $\theta_{2}$. Thin being tho case, a number $\mu_{2}$ may bo ussigned to some one medium, taken as thr standra modiurn, and a corrosponding number the mey be dofined for any other modium by menns of the equation

$$
\begin{equation*}
0 S_{2} / 0 S_{\Omega} \cdot=\mu_{2} / u_{1} \tag{1}
\end{equation*}
$$

The number $u$ is called the refractive
index of tho medium. Solocting a vecuum as the itundard "medium", we. arbitrarily mako its rofractive index unity. The rerractive index of any substanco reforred to a vacuun as the standard medium is sometimes called tho absolute reiractive index of the substance.

As is ovident from Fig. 4, $0 \operatorname{Sa}_{2} / 0 S_{2}=\sin \theta_{1} / \sin \theta_{2}$, and honce Snel's conclusion is equivalent to the statemont that the ratio of the simes of corresponding angles of incidence and refrection is constant for any tro givon mediuns. Tris noro uscful and olegant formulation is due to Descartes. 1 Wo may, therefore, sumarize the complete law of refraction in the folloming statement:

I Whether Descartes arrived at the lav indopendontly, or had seon Snel's menuscript, is not knomn. Nevertholoss, tho fijrst published stetement of the gencral lan of refraction appens in Is Dioptrique (1637), "Discours II", an essay propared by Desentes to illustrate the system of mothodology oxpoundod in his erent mork, Diccours de Ia Motlode, and publishod es a supplonent to that book. An extrnct from the ossyy appeurs in *A Source Book in Physics (1035) pp. 265-273. Doscartes' complete norks aro coliected in Douvies de Doscartes, ed. by C. Adem and P. Tannory ( 13 vols., Paris, 1897-1911).

Whon a ray or licht passes from a mediur 1 into a rodium $2,(a)$ the angles $\theta_{1}$ and $\theta_{2}$ which the rays male $\quad$ rith the normal to the surface separating ther aro rolated by the equation

$$
\begin{equation*}
\mu_{1} \sin \theta_{2}=\mu_{3} \sin \theta_{2}, \tag{2}
\end{equation*}
$$

$\mu_{1}$ and $\mu_{2}$ bening the rospective nefractive indexes of the modiuns, and (b) 18 the mediums are isotropic, the rays in tinc tro medium lie in the sarne plane with the normal, ind on oprosite sides of the nomal.

If a substance is in tho solia nr liquid state: $\mu$ obvionsily may bo dotemuned directiy, by placing o sample of the substance in a vacuu: , for which $\mu$ is 1 , moasuring tho anclos $\theta_{2}$ and $\theta_{2}$, and appiying Eq . (2). Verious indirect but more accurate metrods mill becorto evident as we mroced.

The refrective inder of a eas or ilquid varies approciably fin the termarature. Foy all substances, as was first shom by Nowton (Sec. 9), the refractive indox also dopends to a mall, though important, extent on the color of the light used to deternine it (Tablo II). This phenomonon is known as the dispersion of light.

Table II. Retractive indexes relative to air.

| Substance | $\begin{aligned} & \text { Refractive indoxes rolativo to air } \\ & \mu^{+} C^{(r o d)} \mu^{\prime}{ }^{(\text {yellow })} \mu^{\prime} \mathrm{F} \text { (blue) } \mu^{\prime} \mathrm{G}^{(\text {violet })} \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Water ( $20^{\circ} \mathrm{C}$ ) | 1.3:312 | 2.3330 | 1.12372 | 1.3404 |
| Ethyl nlcohol (200 0 ) | 1.5605 | 1.3618 | 1.3606 | 1.3700 |
| Carbon alculpide (20 ${ }^{\circ} \mathrm{C}$ ) | $1.618 \%$ | 1.6276 | 1.6525 | 1.6748 |
| Crome clase, Vo. 123* | 1.51458 | 1.5171.f | 1.52325 | 1.52859 |
| Flint Elass, light, No. 138* | 1.557638 | 1.58038 | 1. 59029 | 1.59831 |
| Flint glass, dense. Wo. 76 * | 1.65007 | 1.65548 | 1.66911 | 1.68181 |

*rational Burenu of Standerds melting numbor.

In the case of gases, the refractive indexes listed in tables are alWays absolute indexes. In the case on solws and liquids, on the other hand, much of the practicel work is carried out in air, and then it is usually more convenient to select air at $0^{\circ} \mathrm{C}$ and $1 \mathrm{~A}_{\mathrm{S}}$, rather than a vacuum, as the standard medium to which the value unity for the refractive index is assigned. For this reason the value for a solid or liquid listed in tables such as Table II is usually the mefractive inder relative to air, ${ }^{\prime}$ '. Since the refractive index of air itself is approximately 1.0003 , at $0^{\circ} \mathrm{C}$ and $1 A_{S}$, the absoluto rofractive index $u$ of any substance evidently is $1.0003 \mu^{\prime}$. For most purposes it is sufficiently accurato to consider $\mu$ and $\mu^{\prime}$ for any substance as equal.

Example 1. If a ray of licht is passed from air through a serios of glass platos, or other transparent mediuns with parallel foces (Fig. 5), tho ray is observed to omerge into tho ait parallel to its original direction, althouch it undergoss a lateral displecment. Show that this fact is predicted by the law of retraction.


Fig. 5. When a ray of light passes through any number of inediuns bounded by plano parallel refractint surfaces, the andio betweon the ray and the nomral in anj one nodium is independent of all the intermediato modiums passed throuth.

Solution. Application of Eq. (2) cuccessrully to the conditions existing at each of the refracting surraces yields

$$
\begin{aligned}
& \mu_{1} \sin \theta_{1}=\mu_{2} \sin \theta_{2} \\
= & \mu_{3} \sin \theta_{3}=\cdots=\mu_{1} \sin \theta_{n} .
\end{aligned}
$$

Therciore, $\theta_{n}=\theta_{1}$; thet is, tho total deviation, or total change in the angular direction of the ray, is zoro. In fact, the ancle between the ray and the norms in ony medium is seen to be independent or all the internodiate modiuns passed through.

In the caso of the foregoing example, the direction in wich the light is propagated clearly may be revorsed without changing the path of the ruy. That this is Eencrally true
both for reflcetion ant rafraction was first cmpensizod by Alhnzen and is noferrod to ns tho principio of the reversibility of light rug.
 both the primesple of roctilincar propagation and the lew of reflection aro deducibze from the assumption trat, in a homogenocus acdium, iight follows Gither the shorticet or the longssit peth botacen tra mointa. But any attempt to doduce the lat oir rufuction from this assumption feils. The reason for the failury becme clear men Femat, domonstroten, in loce, that it is tho time required for lisht to pass butweor two points, rathor then the leneth of the geomotrical puth, thet is alrays oithor a mesimum or a minimum. Applial to the coso of refraction illustrated in 218 . 6 , for cxmple, the Fernat principle asserts that the poth licht notually will take in trawcing


Fie. 6. The Femnat principlo applied to refraction at a plano surface.
botwon points $\underline{S}_{7}$ and $\underline{S}_{\Omega}$ is suoh that the time is smaller or, in smo enson, larger than it would be for any other path comncoting the taro points. If the wefrecting surfaco is planc, as ir Pik. 0 , it turns out that tho time is almays a miniman. If the rufracting surfaco is curved, the time is in some cases a nimimatand in athers fa merinum.

Bimilar rowsurs apply to roflcotion from plane ama curvod rimrors.

Let us see that lar: of refraction cun be doducca from tho pormat principle. Dencte by $t_{1}$ and $t_{i}$ the tines requirod for the light to traverse the patis $S_{1} 0$ and $03_{2}$, reapoctively. Since tho roiracting wurfece $X X^{\prime}$ in

Fig. 6 is plane, $t_{1}+t_{2}$ is oninimun; or, if $y_{1}$ and $y_{i}$ be the reapective constant, but dififerent, spocds in the two mediums,

$$
\begin{equation*}
\frac{S_{1} 0}{v_{1}}+\frac{0 S_{2}}{v_{Z}}=\text { minimum } \tag{3}
\end{equation*}
$$

Since $S_{1} 0=\sqrt{x^{2}+y_{1}^{2}}$ and $\mathrm{oin}_{2}=(\sqrt{1}-x)^{2}+y_{2}^{2}$, mo have

$$
\frac{\sqrt{x^{2}+y_{1}^{2}}}{v_{1}}+\frac{\sqrt{(i-x)^{2}+y_{2}^{2}}}{v_{22}}=\text { minimum. }
$$

The left-hand member of this equation bring a minimun, its partial derivative with respoct to $x$ rast necosamily bo mora. porfomnance of the differentiotion yields

or, finally,

$$
\begin{equation*}
\frac{\sin \theta_{1}}{v_{1}}=\frac{\sin 9_{2}}{\nabla_{a}} \tag{4}
\end{equation*}
$$

If this cquation, which expresses tho law of refraction darived from the Format prineiplo, bo comparod with Er. (2), winc Ian Di Snol and Doscartos, no find thetr

This extrenoly important flation, cecordine to mich the opect of lieght in different mekiuns raries inversoly as the rextectiva index, was finally confimed in lebz, when Jeain Bernara Lóon Pouctult ${ }^{2}$ (1319-1808), in a crucial

1 permet's eriginal paper on the dorivation or tho law refraction copears in his colleotod monts, ed. By ?. Tamory and C. Henry (Paris, 189.11894); it is reproducod in *A Source Book in Thypics (1035), pp. 278-280. Sco
 (anamillan, 1912).

2 Comptos Rendus 55, 501 (1062); roproducod in *A Source Book in Physics (1955), pp. $3 \leq 3-544$.
experiment, measured the speod of light in rater and shomed it to bo less than that in air.

Since the refractivo index varies with the color of tho light, Eq.(5) also predicts that the sped of light in any particular modium is difforent. for differont colors, In any one of the substancos listod in Tablo II, for instance, the spood of rod light should be largor than that of blue light, the oxact ratio of those uperds being the ratio or the rofractivo indoxes for the tho colers. Mis prodiction mas firis confirmed by Albert Abrahom Kichslson ${ }^{1}$ (1852-1931), who masured the speads of red and blue light in carbon disulfide, and also in bater and in rix. As reference to tables of refractive indexos will sher, the difforencos in the speods for difforent colors may be consiacmblo in tho case of a solid ar a liquid, but are inapprociablo in tho case of a yas. In a vacuum tho speed of light is ${ }^{2}$ $(2.99776 \pm 0.00004) \times 10^{8} \mathrm{~m} \cdot \mathrm{scc}^{-1}$, regardloss of the color. That the spood in a vacuum is indepandent of color is confimed by jbscrvations or verious typos, both torroctrial and astronomical; fox jestence, by observations on variable stars, and by the fact that of stan aocs not change in oclor at the romont before or after its eclipse by the moon.

If the light remains in a homogenenus modiun, ans it does in the caso of reploction, the spoed $V$ remains constant and Eq. (3) reduces to Heron's principle. All the principles and lams of gometricnl optica are thus
2. Renort of the British Assuciation for the idvancoment of Scionce (1884), p. 654 ; U. 5 . Nautical Almanac offict, Astronomy Paners 2 (1891), Part IV: pp. 235-258 (1885).

2 This value is based on a careftul revien made by R. T. Biree [Naturo 154, 77. (1934)] of the data from varivus oxporimontal determimations. For general accounte of the various mothods for determining speeds of light, from tho flust astronomical mothod of 010 Romor (16'70) to the itt. Filson deterainations of Nicholson (1924-1026) sec: *A. A. Wichclson, articlo "Volocity of Limht". Encrelonacaia Britanicu (ca. 14); *A, A. Nichclson, Studics in Optics (Univ. Of Chicuso Pross, 1927); *T. Prestor, The Theory of Eicht (od. 5 , Facmillan, loas), Chav. XIX. Tho roport on tho mono-lilo Eivacuatod Pipe Experimont", which was becun in 1929 by richelson, Peaso and Pearson but not completed until aftor Mchelson's noath, oprears in Astrophysical Jcurmal 82, 935 (1935).
deducible from the Format principle of oxtrers time. If the light passes through more than two mediums in traveling between two points, then it is ovidentily tho quantity $t_{1}+t_{i}+\cdots t_{n}$, or $\sum_{i=1}^{i=n} s_{i} / v_{i}$, that is extreme. If tho mohur is continuously nominogencous, so that tho rerroctivo index and, hence, the speed of lift changes continuously from ono point to the next, then $\int_{S_{2}}^{S} d s / v$ is oxtreme, as being the colorant of path, $\underline{v}$ the spool in that element, and $S_{1}$ and $S$ the initial and terminal points of tho path. This is the Fermat principle in its most general form.

Combination of Eqs. (3) and (5) yiolds the expression

$$
\begin{equation*}
\mu_{1} \cdot S_{1} 0+u_{2} \cdot 0 S_{2}=\text { minitnur or maximum } \tag{6}
\end{equation*}
$$

for light traveling betrocn the points $S_{1}$ and $S_{8}$ in Fig. 6. Since tho quanttidy $u_{1} \cdot S_{1} 0$ or, in general, us, is the length of the geometrical path multiplied by tho refractive inge of tho radian, it is appropriately called the optical loneth on tho georiotrical path. Hence, Eq. (6) leaks to a very usefurl altomativo statement of the Fermat principle; namely, that the actual. path taken by light in passing between to points is that one whoso optical length, $\sum_{j=1}^{i=n}, \mu_{i} s_{i}$, will be smallest or lergost; or, more generally $\int_{S_{1}}^{S} u d s=$ extreme. $\quad$ 6. Total Perfection. When


Fig. 7. The phenomenon of total reflection.
a. ray of light posses obliquely from a medium of refractive index, $u_{1}$ to a moltiun or smaller refractive index $\mu_{2}$, sse from water to air, the ray is observed to bend always array from the normal. Thus, if $S_{1}$ in Fig. ? is a source of light under motor, a ray from it such as $S_{1} 0$ strikes the
mater-air intorface at sonc anglo $\partial_{1}$ and omorges into the air at sone largor angle $\theta_{2}$. This obscrvation is in accordanco rith Eq. (2), wich uny now bo conveniently remittors in the form

$$
\begin{equation*}
\theta_{1}=\sin ^{-1}\left(\frac{u_{2}}{\mu_{1}} \sin \theta_{2}\right) \tag{7}
\end{equation*}
$$

But $\theta_{2}$ camot oxcoce $90^{\circ}$, and honce $\theta_{1}$ has a waximuri linit $\theta_{c}$ such that

$$
\begin{equation*}
\theta_{c}=\sin ^{-1}\left(u_{2} / u_{l}\right) \tag{0}
\end{equation*}
$$

No ray incidont on tico hatereco at an medo andor thar, $\theta_{c}$, which is knomn
 inetond, to bu tutaly refloctel, tho usual law of refloction boine applicablo. 1 Roflection of courec cecurs for all velues et the anglo of incidonco $\theta_{1}$, tho porecntage of roflocted light inereasing at tho exvonso ef the rafracted lithten $\theta_{1}$ increabos from $0^{\circ}$ to $\theta_{C}$; mit rux nagios of incilance larger than the critical onsto $\theta_{\mathrm{c}}$, all the licht is rofloctan and thore is no rerracted baer. Since $\theta_{c}$ is detcrinod by the reinetive indexes, it differs for different jairs of veltuo, and also for difioront coloxs. Totally Poflected rays oi', say, Hite lizt ho not poparate into colors, homever, since angles of reflection aro ininopencont of the color. For water in a vacuurs on in contect \#ith air, $\mu_{i} / \mu_{1}$ is apnroximately wqual to $1.00 / 1.33$
 is approximatoly $48.8^{\circ}$ for any color. ${ }^{2}$ wectous stones are charactorizod by very mall critical ancies, am the large abunt if light accoringly totally roflectod by thon accounts for their brilliancy.

1 Keplar (bloperico, MTIl) Ths the fiwst wownoct tho shonomon of total reflection can also the first to dmunstrato it experimentaly. His argunont is reproducech and discusser in *To Tach, Tho Trincigho of Plysical Ontice, pp. 30-32.

2 An interesting discussion of ho7 the oxtornal :7orl appeare when vioned fron under mater, illuatrated with "fish-eyo vions" made with a pinhole camera, will be found in *R. W. Wood, physical Onticg (Bomillan, 1954) pp.37-


Fig. 8. Total reflection interpreted as due to refraction.


Fig. 9. Ono tye of mirace.


FiE. 10. A total-reflection 2rim.

The interfaco of a pair of modiuns may sametimes consist of a transition layer of finite thickness, which is the result of the interpretation of the tivo nediu:is, or of occlusion at tho surface. In this case it is reasonable to assume that the rofractive index changes gradunlly, rother than abruptly, fror $\mu_{1}$ to $\mu_{2}$. Thereforo certain rays passing from the modiun of the greator index of refraction into the transition layer may be doviated surficiently so as to return into the more rerractive medius, in a mamer similar to that indicated in Fig. 8. A large seale phenomenon that is similarly oxplainod is the type or mirage soon on a hot doy in the desert or on a paved hichroy. Since tho hoated air noxt to the ground has a smaller refractive index than the cooler air inmedintoly above it, rays from above that ordinarily mould strike the groun are turned uprords and reach the oyc. Thu! a distant object may be soon directly and also due to the rofracted rays on imaco of it hay appear boletr the lovel of the ground.

Total rofloction has many appli-
cations in motical devicos, a rofract-
infs modium or prisnatic form being most suitablo ror such purposes. For most kinds of elass in contact with air the rotio $\mu_{2} / \mu_{1}$ in Eq. (8) exceeds 1.0/1.5, and herec the critical angle of refrac.. tion orecode $42^{\circ}$. Thus, if a beam of 1icht enters a $45^{\circ}-90^{\circ}$ elass prime at nomel incidenco (Fib. 10) it mill strike the class-air interface RR' at $45 \%$, will be totally reflocted and
 into colors. The intensity of the beam is not sensibly dininished, as is often the case fith a metallic mirror, whose reflection factor, or ratio of the light reflected by a surfece to that incident upon it, is usually far from unity, varies with the color and decreasos as the mirror corrdocs. ${ }^{\text {I }}$ Total reflection prisms are therefore often used in place of mirrors in field glasses, submarine periscopes and many optical instrunents of precision.
7. Determination of Refractive Indexes by :eans of Total Reflection. The phenomenon of total reflection provides a means for determinine the refractive index $\mu_{s}$ of any solid that can be put into the form of a prism


Firj. 11. liethod of determining the refractive index by total reflection. with three polished faces. One face of the prism is illuminated with a broad, nonparallel beam of light of some particular eolor -- say, the yellow lisht from a sodium burner -so that the light will be reflected and refracted to a telescope $T$ in the manner indicated in Fig. 11. Those rays from the scurce that strike the second face hit of the prism at angles larcer than the critical angle $\theta_{C}$ rill be totally reficcted, while those that strike RRY' at ancles smaller than $\theta_{C}$ Will be partially reflected and partially transmitted. If goo' is the ray incident on RR ${ }^{\prime}$ at exactly the critical ancle of reflection, all the light that comes to the telescone If Irom the portion RO' of the face RR' will have undergone total reflection; and all the light that comes to from the

1 For a discussion of various types of total-reflection prisms, see I. C. Gardner, Bureau of 3tandards Scientific 3aper iTo. 550 (19,77).
remaining portion o' $R^{\prime}$ of $R R^{\prime}$ will have undercone only partial roficction, the othor part havinf; been transmitted. Honce the surface Ris' as seen by an observer at $I$ shoula appear to consist of tho parta of uncqual brichtness. Since the line of domercation of the tro portions is quito sharp, the angle $\theta_{2}$ (Fice. 11) may bo necurately measured by setting a erass hair of the toloscono $\underline{T}$ on this dividing line and then rotatin, the tolescono until it is at risht ancles to the prism faco R 'R".

To obtain tho equation for computine for tho rofractivo inacx of the prism matcrial forlight of the colcr ormpyon, wo noto that the oquations that doscribe tho jath of the ray $500+0$ mere

$$
\begin{gather*}
\sin \theta_{c}=\mu_{\mathrm{f}} / \mu_{\mathrm{s}}  \tag{9}\\
u_{s} \sin \theta_{1}=\mu_{\mathrm{f}} \sin \theta_{2}, \tag{10}
\end{gather*}
$$

Where $\mu_{f}$ is the refractive indar of the Iluid surroundine the prism. Moreover, as an bo wasily provod fren the coonetry of Fic. 11 ,

$$
\begin{equation*}
\alpha=\theta_{1}+\theta_{c} \tag{11}
\end{equation*}
$$

Where $\mathcal{\alpha}$ is the oncla RR'R" of the mism, which can bo oasily noasured. From those three equetions we have only to ciminato $\theta_{c}$ an? $\theta_{1}$ in order to obtrin an expression for $\mu_{s}$ in temas of measurable quantitics; nemely,

$$
\begin{equation*}
\mu_{E}=\mu_{\mathrm{I}} \sqrt{1+\left(\frac{\sin \theta_{2}+\cos \alpha}{\sin }\right)^{2}} \tag{12}
\end{equation*}
$$

If the prism is in air, $\mu_{\mathrm{f}}$ is unity to tho aorce of accuracy with which the other quantitios involvod usually can bo moasured; that is, $\mu_{s}=\mu^{\prime} s$. After the refrective index of the solid materiol fomin: the prism has beon determined, the rerractive inded $\mu_{\mathrm{f}}$ of any fluid can be found by performing the forocoing oxperiment wile tho prism is imorsed in the fluid and then applyins Eq. (12).
8. Rofractive Index Detorminer by the Doviation Proluced by a Prism. Suppose that a beam of parallel rays of a singlo color is passed throurh a prisn in the maner indicates in Fic. 12. At the first face of the prism the deviation, or chanco in ancular direction, of any ray of the bean is $\theta_{1}-\theta_{2}$; at the sacond face tho acviation is $\theta_{4}-\theta_{3}$. Henco the total deviation f pronuced by beth faces is $\theta_{1}-\theta_{2}+\theta_{4}-\theta_{3}$. From cometry of

Fig. 12 it is assily provod

$$
\begin{equation*}
\theta_{2}+\theta_{3}=\alpha \tag{13}
\end{equation*}
$$



Fig. 12. Deviation produced by a prisra.
whero $\alpha$ is the oncle between the two refractine faces, called the refracting ancle of tho prisu. Therefore, the expres. gion for the total deviation bocomes

$$
\begin{equation*}
\delta=\theta_{1}+\theta_{4}-\alpha \tag{14}
\end{equation*}
$$

If the direction of the bearn were reversed it mould travel over exactiy the same path and would under to the same total Cleviation $\delta$. Hence there are tro values for the ancile of incidence of the ray $S 0$ on tho dirst face, narsely $\theta_{1}$ and $\theta_{4}$, such that $\dot{b}$ is the sarme. Suppose then that the inciaent bear 50 is kopt fixed in airection, and the prisn is rotated so as to cause the ancle of incidence to vary from a value $\theta_{1}$ to a value $\theta_{4}$. It follons, since the deviation $\dot{s}$ is observed to chanco continuously betwoen these tro values, that $\%$ mast pass throuch either a maximum or a rinimum. Both experiment and theory ${ }^{l}$ shon that it passes throurh a minimum. Furthemore, since this minimurl deviation frin mat occur for an uncle of incidonce mose value lies betreen $\theta_{1}$ and $\theta_{4}$, no matter

1
Soo Problern 16, p. 33.
how slitehtly these two ancles difer, it rust actually occur when $\theta_{1}$ equals $\theta_{4}$ (Fig. 13). Thus, for minimurn deviation, $\theta_{1}=\theta_{4}, \theta_{2}=\theta_{3}$ and Eqs. (13) and (14) reduce to $\theta_{2}=\alpha / 2$


Fif. 13. The conditions for mimimur deviation.
and $\bar{\sigma}_{\text {min }}=2 \partial_{1}-\infty$. Substitut. ing these values for $\theta_{1}$ and $\theta_{2}$ in the equetion $\mu_{1} \sin \theta_{1}=$ $\mu_{2} \sin \theta_{2}$, wo obtain, after roarrancomont,

$$
\begin{equation*}
\mu_{R}=\mu_{1} \frac{\sin \frac{1}{2}\left(d_{\min }+(x)\right.}{\sin \frac{1}{2} x} \tag{15}
\end{equation*}
$$

This equation form the basis of a conveniont method for dotomining the refrctive index $\mu_{2}$ of a solid substance for licht of a particular color. A bears of the desired colof is sent through a prisrl of the substance to be tosted, and the prism is rotatod until the omorcont boan is the least doviated. The ancles $\Rightarrow$ min and can then be measured with crent accuracy by moans of a spoctronetor, ${ }^{l}$ and, since $\mu_{1}$, the refractive indox of the surrounding air, is knomm, $\mu_{2}$ or $\mu_{z},\left(=\mu_{2} / \mu_{1}\right)$ can be computed by means of Eq. (15). A liquid can also be tosted by plocinc it in a hollon class prism, for the malls, providea they are plane-paralzal, do not affect the total deviation (Sec. 4).
9. Prioms ani the Disporsion of Licht. Since the refractive index of any particular substance varies with tho color (Sce. 4), the deviation produced by a civen prism trill not be the same for all colors. This gives riso to striking color offects that were doubtless fuailiar to the ancionts Tho possessed rlass orneraents of prismatic form. That the colors thus

[^1]formed aro similar to tho colors of the rainbon ampears to havo been noticed by the Roman philosomer Sonoca; and that thoy are caused by refraction thas probably rocosnized as oarly as the fourtcenth contury. But color phenomona did not receive ruch serious attention until the time of Doseartos and Nowton, thon optical instrurionts of hich magniPication were conin? into use and the elimination of the color fringes whick biurred the imaces producod by these instrumente becane an in roortant problera. Norton's first expertnents on licht dete back to his student days, in 1664, and his classical rosearches on tho analysia and cynthesis of thite light wore becun tro yeurs later whon bo procured "a Triane ular islass-Prime, to try theranith the calebrated phaenomona of colours." The experiments winich he rade formed the basis of all explanations of the phenorana of colors for tro centuries to come.



Fin. 14. The anslysis and synthesis of licht.

1 These celebrated exporiments were described by Nenton in his first scientific papor, written they ho was 25 years uld anc published in the Philosophical Transactions of the Royal Society, Wo. 80 (3.672); the papor is roproduced in * Moberts \& E. M. Thonas, Norton and the Oricin of Colours (G. Bell, 1034), pr. 72-91 and in *A Source Book in Physics (1935), pp. 298305. An excelient account of the oxperiments mater fiven by Nerton in his classical Opticks: or, A Preatise of the Roflections, Refructions, Inflections and Colours of Light (1704), Book Onc, Part I. The fourth edition, corrected (1730), hes recontly been roprintcd. (MeGrat-Hili, 1931).

The experimonts consistod first of all in adritting sunlicht throuch a small circular aporturo O (Fif. 14a) into a darkenca room and observinc, that the round image $S$ of the sun which appeared on the screen before the prism P ras placel in the path of the beara bocarie roplaced upon the interposition of the prism by the band of colors RV. This band, which Newton called a spectrum, was rod at the end which corresponis to tho smallest amount of deviation, and chanced throuch an infinite variety of yollors, greens and blues into violet at the other end. Nerton further placed a second upricht prism bohind a second aperture o' in the screen and observed that it was impossible to decompose any one of the spectral colors into more elementary parts. But when he inverted this second prism (P', Fig. l4b) he found that the colors were recombined on the wall into mhite light.

In view of these experiments it has been customary, since the time of Nowton, to regard white light as composed of a mixture of light of all conceivable colors betreen that of the extreme red and that of the extreme violet. As a matter of fact, Nerton's axperiments show, not that white light actually consists of all those colored lichts, but merely that white light is decomposod by a prism into bcams of those colors, and that by recombining the beams wo do actually reproduco upon the retina of the oye the offect of Thite light. Horrovor, 70 aro not led to any conclusions that are at varianco With experiment if $r e$ adopt Nowton's point of viers as to the nature of Thite light, and wo shall therefore make it the besis of much of our reasoning. Wo shail return to a morn critical analysis of this subject in Chap. 4.
10. Production of Purer Spectra; the Fraunhofor Lines. Nonton's arrangoment in Fi . 14 mas ossentially a pinhole camera (Sec, 1) combincd With a prism, and thus his spectrum consisted morely of a row of overlapping circular inaces of tho sun in different colors; the color at any point thus
mas impure, beines a combination of tro or more colore. Later he replaced the ciroular aperture by a narro slit placed parallel to the refracting edge is of the prism and thus mas able to obtain a somerhat purer spectrum It mas in the purer spectrum of sunlight obtained with a slit that illiam Hyde Tollaston ${ }^{2}$ (1766-1828) first noticed the existence of a number of dark lines Which Fere parallel to the slit. IJe did not follow up the matter and it was left for Joseph Fraunhofor ${ }^{3}$ to rediscover these dark lines, to make careful measurements of their positions with greatiy improved apparatus, and thus to uncover a fact of the greatest importance for optical procress; namely, that they correspond to definite colors in mich sunlicht is almays deficient, and hence can be usea, instead of vaguely defined colors, as standard reference Iines for measurements of refractive indexes and spectra. It is from his time that acourate knomledge of refractive indexes dates.

Fraunhofor pas a skilful manufacturer of ine optical Elsss and ingtrumonts, and he was able to produce prisms giving much purer spectra than Newton and Tollaston vere able to obtain. Furthermore, he used a telescope to vien the spectrun. Addition of a lens to render the light rays from the narrou slit parallel before they enter the prism is all that is needed to make this arrangement the same as ve use today in prism spectrographs (Fig. 15). The spectrum thus produced is not a rot of overlapping colored images of the sun but a rom of adjacent line images, in different colors, of the slit. Fence $1 t$ is a very pure spectrum, although never perfectly pure, of

1 Nemton's Opticks (ed. 4 reprinted, 1931), p. 70.
2 Philosophical Transactions (1802), p. 378.
3 "Bestimmung des Brechungs - und Farbenzerstreuungs - Vermoegens verschiedener Glasarton", Denleschriften der Koniglichen Akademie der :liasenschaften zu ituenchen fur die Jahre 1814 und 1815, Vo1. 5 (1817).


Fig. 15. Essontial elenents of a spectrograph.
course, since no slit can be made infinitosimally narrom. It is merely because a straight slit is most gonerally usod that tro speak of spectrum linos.

Fraunhofor mapped tho positions of sonc 700 dark lines in the solor spectrum, labelled tho most prominont
onos bithletters of the alphobot, and measurod the refractivo indexes of various substancos for the definite and roproduciblo colors which are absent in sunlight and thich corraspond to theso linos (Tablo II). In Chap. 2 we shall soc hon Gustav Kirchoff (1824-1887) was able to shon that most of tho Fraunhofer lines are due to the absorption of the light of the corresponding colors by vapors in the sun's atmosphare. Theso discoverios by Nowton, Wollaston, Fraunhefor and Kirchorf lad the foundations for the sciencos of spectrum analysis and of astrophysics.

Example 2. Rays or wite light, renderod parallel by means of a lons: are incident on arism of rofracting anglo $60^{\circ} 0.0^{\circ}$ which has been rotated into the position of minimum deviation for D-Iight. The prism is made of Burcau of Standards No. 188 light flint glass (TRble II). Calculate (a) the angle betroon the omoreing $D$ - and $F$-rays and (b) the doviation of the D-rays.

Solution: We will omploy tho notation indicatod in Fie. 12. For the D-light, since tho doviation is a minimum, $\theta_{2}=\theta_{3}=30^{\circ} 0.0$ and $\theta_{4}=\theta_{1}=$ $\sin -1\left(\mu_{D} \sin \theta_{2}\right):=\sin ^{-1}\left(1.53038 \sin 30^{\circ} 0.0^{\prime}\right)=52^{\circ} 12.2^{2}$; for the $\mathrm{F}-1 \mathrm{i}$ ght, since the rays of the incident boan are parallel, $\theta_{1}=52^{\circ} 12.2^{1}$. But, sinco the prism is not in the position of minimum deviation for F-light, $\theta_{4}$ must bo computed by dealine with the refruction at ach prism face separately: at the first face, $\theta_{Z}=\sin ^{-1}\left(\frac{1}{\mu F} \sin \theta_{1}\right)=\sin ^{-1}\left(\frac{1}{1.59029} \sin 52^{\circ} 12.2^{\prime}\right)=29^{\circ} 47.6^{\prime}$; at the scoond faco, $\theta_{4}=\sin ^{-1}\left(\mu_{I} \sin \theta_{3}\right)=\sin ^{-1} 1.59029 \sin \left(60^{\circ} 0.0^{1}-29^{\circ} 47.6^{1}\right)=$ $53^{\circ} 8.4^{\prime}$. Theroforo, the required angle betmoon the emereant D- and F-rays is $53^{\circ} 8.4^{\prime}-52^{\circ} 12.2^{1}=0^{\circ} 50.4^{\prime}$. (b) The dovietion of the D-rays, sineo it is minimurn, is $2 \theta_{1}-\alpha=44^{\circ} 24.4^{\circ}$.
11. Achromatic and Direct-Vision Prism Combinations. A prisa that produces large doviations in the rays pussod tirough it doos not necessarily produce a correspondingly large spreading of the colors. In other mords, a substance of large refractive index does not alinay give a spectrum of large angular width; although Nerton sumposed, from his carly investigation of the subject, that such ras inveriably the case. Moreover, the reds and the yollows generally aro relatively little soparated, While the bluos and the violets are spread considerably. Nor, indeed, are the spoctra of prisms made of difforont matorials found to aeroe mith ono another, the red c-lieht and blue F-light, for example, sufforinc a largor relative separation in one case than in another; the spectrum produced by the one prisn is not simply a largor or a smaller copy of that formon by the othor prism (Fis. 16).

This so-called irrationality


Fig. 16. Illustratine the irrationtality of prisratic dispersion. If photographs of spectruns nroducod by tro prisms or differont materiols are raduced to tho samo size, a given color dons not uccupy oxactly the samo position in both photogranhs, and the relativo spacing of the colors is not the same.
or prismatic disporsion can bost be made clear by quantitative examples. In goneral, the calculations must be carriod out as in Examplo 2. But in the specinil, thouch practically important. casc of a prim of srall rofracting anfle $\alpha$, a much simpler, approxfmeto method is available; for, if $\alpha$ is malle then $\delta_{\min }$ for rays of any givon color uill be small, and Er. (15) roluces approximately to


Where $\mu^{*}$ is the refractive inder of the prismaterial, relative to air and for the given color.

Dxample 3. Calculate the approximate anfular separation of red Cand blue F-rays produced by a prism having a refracting angle of $10^{\circ}$ and made of Bureau of vtandards No. 76 heavy flint glass (Table II). (b) liake the same calculation for a $10^{\circ}$-prism made of No. 123 cromn glass.

Solution: Ve will assume that the prism in each case is in the position forminimum deviation, so that Iq. (16) applies. (a) For the flint giass prism, $\partial_{C}=10^{\circ}(1.6501-1)=6.5^{\circ}$ and $\delta_{F}=10^{\circ}(1.6691-1)=6.7^{\circ}$; therefore, $\delta_{F}-\delta_{C}=0.2^{\circ}$. (b) For the crown Elass prism, $\delta_{C}=10^{\circ}(1.5146-1)$ $=5.1^{\circ}$ and $\delta_{\mathrm{T}}=10^{\circ}(1.5233-1)=5.2^{\circ}$; therefore $\delta_{\mathrm{T}}-\delta_{\mathrm{C}}=0.1^{\circ}$. Thus Fe ne see that the flint glass prism spreads out the C- and P-rays approxmately trice as much as does the crom glass prism of the same refracting angle; but the deviations produced in these rays are only slightly larger in the case of the flint glass prism.

It is possible to combine tro prisms of different kinds of glass, mith their refracting angles turned in opposite directions, so that the combination

rig. 17. A direct-vision prism. mill not produce any deviation in rays of some chosen color, and yet mill spread out the colors into a spectrum (Fig. 17), Such a combination is called a directvision prism, and is often used in an optical instrument in which, for the sake of corapactness, say, it is desired to
keep the axis of the vieming telescope in approximately the same straight

Example 4. That refracting ancle of must be chosen for a prism of No. 76 dense flint glass if it is to be combined \#ith a $10^{\circ}$-prism of No. 123 crorn glass (Table II) so as to form a combination that mill not produce any deviation in D -light.

Solution: The requirement is that the tro prisms produce equal but opposite deviations in the D-rays; or, if me assume that the prisms are kept in approximately the position for minimum deviations, trat $10^{\circ}$ (1.5171 - 1) $-\alpha(1.6555-1)=0$. Therefore, $\alpha=7.9^{\circ}$. This direct-vision combination mill, of course, produce some deviation in rays of other colors; but, since D-light is near the midale of the spectrum, a beam of thite light sent through the combination mill not undergo much deviation as a whole, although it will be spread out into a spectrum.

Tho irrationality of prismatic dispersion also makes it possible to combine two prisms of different kinds of glass so that parallel rays of any two chosen colors will still be parallel after passing through the combination, but will undereo a net deviation (Fig. 18). Such a combination, which produees deviation without spreading


Fig. 18. A combination achromatized for C- and F-light. the chosen colors into a spectrum,
is said to be achromatic for the two chosen colors.

Example 5. A prism of No. 76 donse flint glass is to be combined with a $10^{\circ}$-pirism of No. 123 crom elass so that a parallel beam of C - and F -light incident on one facc of the combination will emerge as a parallol bean from the other face. (a) What refracting angle ox must bo chosen for tho flint glass prism? (b) Compute the net deviation produced in tho beam.

Solution: If the deviations produced aro close to minimurn, Eq: (16) is applicable. (a) For the crown glass prism alone, the angle $\mathrm{h}_{\mathrm{p}}$ - ob between the emerging $F$ - and $C$-rays is $10^{\circ}(1.52326-1.51458)=0.087^{\circ}$. If tho invertod flint glass prisin in to render these rays parallol, the ancle $\delta_{F}-\delta_{C}$ which it producos must be $0.087^{\circ}$; that is, its refracting anclo $\alpha$ must be such that $0 \times(1.66911-1.65007)=0.087^{\circ}$. Therofore, $x=4.6^{\circ}$. (b) The net deviation or the boan is $10^{\circ}(1.52325-1)$ $-4.6^{\circ}(1.66911-1)=2.1 .5^{\circ}$.

Combinations intended for visual observation ars usually conromatized for $C$ - and $F$-light, since all rays of othor colore will then cmerge with only a slight amount of spraading. A combination of threo different prisms can be chosen that mill be achromatic for rays of threc portions of the spectrum, and thon the remaining colors will bo spread still less than bofore. AIthough very little practical use is found for uchrometic prisms, wo shall find that the principle involved 11 then is of groat importance in comection With achrometic lenses (Chap. 2).

## Problems

1. From tho lan of reflection deduce tho fact that a rotating mirror turns through one-half tho angle through which the reilocted ray is rotated.
2. A ray of light of fixed direction is incident on a plane mirror that is rotatine about a vertical axis ath an ancular spocd of a radians por unit timo. Shor that the speod of the spot of light medo on a vertical gercen by the reflected ray in $201 \mathrm{~s} \mathrm{sec}^{2} \phi$, Fherc $s$ is the length of the shortost line from the mirror to tho screen, and $\phi^{\prime \prime}$ is the angle betreen this line and the reflected ray.
3. (a) If tho anflo betrecn tro plene mirrors is $90^{\circ}$, is it possiblo to diroct a parallel bearn of light onto no of them so tinat tho beam aftor tre refloctions rill not be parallci to its oricinal direction? (b) What must bo the anglo betmoon two plane mirrors iff a roy that is initially parallol to one mirror is, after tho reflections, parallcl to the othor mirror?
4. Prove thet any rey of light incident upon a system consisting of throe planomirrors joined together to form the insicie corner of a cubo till energe from tho aystem parallal to its uriginal path.
5. Vorify the truth of the folloning statenonts, tho assurntions in cach case boing tinat the mirror is geomotrically and optically perfoct, and. that the source of light employod is very sniml in size as conpared nith the size of tine mirrors: (a) If a source is placed at one focus of an ollipsoidal mirror, the rays aftor rellection will all pass throngh the othor focus of the cllipsoid; (ט) if a source is placed at the focus of a paraboloidel mirror, the rays after reflection will be parallcl to the axis of the paraboloid; (c) if a source is placed at onc fineus of a conver or conceve hyporboloidal mirror, the roys after reflection will be si: directed as to appear to have como directly from the othor focus of the hyperboloid. Discuss the case of a source placed at one focus of an ollipsoid whose foci are a very large distance apert, and also the casc mhero the foci of tho cllipsoid coincido.
6. Prove that a rey passing from air throuch a transparent plate having plane, parallel faces undergoos a latorul displaconent of amount
 $\mu$ is the refractive indox of the material composine the plate and $\theta$ is the angle of incidence of the ray.
7. When a parallgl bearn of white light is passed obliquoly throuell a thick glass plato hevince plano parallol faces, the odgos of the cmorging boam are cbserved to bo colorod. Explain with the help of a diagram. Do the Fidths of the colorod cdegos vary with tho thicknoss of the plate and the ancle of incidonco?
8. (a) In computine the total deviation producad in a ray of starlight durine its pasmage through the atrasphere, why is it umecessary to knor the refractive index of the air for any point other then tho one at
which the position of the star was obscrved? (b) What is the true elevation of a star above the horizon if its apparent elevation $1325^{\circ}$, as coserved at a point there the refractive index of the air is 1.0003 ?
9. Prove that if the deviation $\delta$ produced in a ray by refraction at a single surface is smald, then

$$
\delta=\left(1-\frac{\mu_{l}}{\mu_{2}}\right) \tan \theta_{1},
$$

where $\theta_{1}$ is the ancile of incidence, and $\mu_{1}$ and $\mu_{2}$ are the respective refractive indexes of the first and second mediums.
10. Is it possible to find a pair of meduras such that light incident on their interface at any angle whatever will be totally reflected?
11. A parallel beam of light is incident nomally from air on the plane surface of a glass horaisphere of refractive index $\mu$. At what distance from the center of the surface must a ray of the beam strike in order to be totally reflected?
12. (a) If S is the optical length of the actual licht path $\mathrm{S}_{1} \mathrm{O} \mathrm{S}_{3}$ in Fig. 6, Sec. 5, Bhon that

$$
\frac{d S}{d x}=\frac{\mu_{1} x}{\sqrt{x^{2}}+y^{2}} \quad \frac{\mu_{2}(l-x)}{\sqrt{(l-x)^{2}+y_{2}}}
$$

With the help of Eq . (2), which has been verified experimentally, shom that the right-hand member of the foregoing equation is zoro, thus proving that the Fermat principle is valid for the case of refraction at a plane surface.


Fig. 19. Any ray SO incident on a transparent plate having planc, parallel faces gives rise to a series of reflected and refracted rays of rapidy decreasing intensity.
13. Prove (a) that the optical length of the path 000" in Tig. 19 is $2 \mathrm{~m}_{\mathrm{e}} \mathrm{t}$ sec $\theta_{2}$, where $t$ is the thickn=s of the plate,
(b) that the optical length of the path $O R$ is $\mu_{1} \cdot O R$, or $2 \mu_{2} t \sec \overline{\theta_{2}} \sin ^{2} \theta_{2}$, and, hence
(c) that the difference in the optical lengths of these two paths is $2 u_{2} t \cos \theta_{2}$. (d) Express this difference in terms, not of $\theta_{2}$, but of the angle of incidence $\theta_{1}$.
14. (a) For any ray of light passing through a prism as in Fis. 12, Sec. 7, show that

$$
\frac{d \delta}{d \theta_{1}}=1+\frac{d \theta_{4}}{d \theta_{1}}=1-\frac{\cos \theta_{1} \cos \theta_{3}}{\cos \theta_{2} \cos \theta_{4}}
$$

(b) In order for $\delta$ to be a minimum or a maximum, it is necessary that $\mathrm{d} \delta / \mathrm{d} \theta_{1}=0$; shom that this will be the case if $\theta_{1}=\theta_{4}$. (c) Obtain the
second derivative, $d^{2} \delta / d \theta_{1}^{2}$ and show that it is positive when $\theta_{1}=\theta_{4}$, thus proving that this condition gives a minimum instead of a maximum value for है.
15. Calculate the minimum deviation produced in a beam of light from a sodium burner whon it passes through a light flint-glass prism that is immersed in water. The refracting angle of the prism is $60^{\circ} 38.7^{\prime}$, and the refractive indexes $\mu$ of the water and glass are 1.3335 and 2.6085 , respectively.
16. Glven a prism having a small refracting angle 0 , show that all rays incident on the first face at a small angle mill undergo approximately the same total deviation, $\propto\left(\mu_{2}-\mu_{1}\right) / \mu_{1}$.
17. Prove that the refracting angle $\alpha$ of a prism must be less than $\sin ^{-1}\left(\frac{\mu_{1}}{\mu_{2}} \sin \theta_{1}\right)+\sin ^{-1}\left(\frac{\mu_{1}}{\mu_{1}}\right)$ if a ray of light incident on the first face at an angle $\sigma_{1}$ is to be transmitted through the second face.
18. A ray of light SO (Fig. 20), incident from air on the surface of a spherical raindrop in a plane through the center of the drop is refracted at 0 , reflected at $0^{\prime}$ and refracted into the air at $0^{\prime \prime}$. (a) Show that ted at 0, reflected at
the deviation $\delta$ produced in the ray is $\pi-\phi$, or $\pi-\left(4 \bar{\theta}_{2}-2 \theta_{1}\right)$ (b) Shorr
that $d \delta / d \theta_{1}=-4\left\{d \theta_{2} / d \theta_{1}\right)+2=$


Fig. 20. Refraction and reflection of light by a spherical raindrop.
$\left(-4 \cos \theta_{1} / \mu \cos \theta_{2}\right)+2$, where $\mu$ is the refractive index of nater. (c) Show that minimuna deviation occurs then $e_{1}=\cos ^{-1}\left(\frac{1}{2} \mu \cos \theta_{2}\right)=$
$\cos ^{-1} \sqrt{\left(\mu^{2}-1\right) / 3}$. (d) Shorr that the minimun deviation for red light ( $\mu=1.329$ ) is $137.2^{\circ}$ and for violet light ( $\mu=2.343$ ), $139.2^{\circ}$. The foregoing results provide the basis for the explanation of the primary rainbor, given first by Descartes and Newton.
19. A parallel beam of whte light is incident from air at an angle of $45^{\circ}$ on one face of a prism of refracting angle $60^{\circ} 0^{\prime}$. If the refractive indexes $\mu^{\prime}$ of the prim material are 1.622 and 1.635 for $D-$ and $F$-llght, respectively, at what angles do the $D$ - and the F-rays emerge from the prism?
20. Then a certain $60^{\circ}$-prism is set in the position of minimum deviation for C-light, the angular separation of emerging C- and F-rays is observed to be $2^{\circ}$. The refractive index $u^{\prime}$ of the prism material is 1.58 for C-light. Calculate (a) the minimum deviation for C-light, (b) the refractive index $u^{\prime}$ for $F-l i$ ght and (c) the minimum deviation for F-light.


Fig. 2.1 A constant-deviatioa prism, as used in a monochromator, which is a device for illuminating an aperture with the different colors of the spectrum in succession.
21. A parallel beam of white light is incłdent on the prism shown in Rig. 2l, which is a single piece of blass but which may be thought of as consisting of two prisms of refracting angle $30^{\circ}$, together with a total reflecting prism PP "P". (a) Show that the ray which undergoes a total deviation of $90^{\circ}$, and which thus passes through the center of the aperture $\mathrm{S}^{\prime}$, consists of that single color for which the angle of incidence $\theta_{l}$ is the correct asgle for minimum deviation for a $60^{\circ}$ prism of the same material. (b) Show that if the prism be rotated about an axis perpendicular to the paper thile the aperture $\underline{S}^{\prime}$ and the incident bean are kept fixed in position, the aperture will be illuminated in succession by the different colors of the spectrim. (c) What value must be given to $\theta_{1}$ in order that the aperture be illuminated with D-light, the refractive index of the glass, relative to the air, being 1.58038 for this color?
22. If the direct-vision combination described in Example 4, Sec. 11, is set approximately in the position for minimum deviation and white light is passed through it, what will be the angular width of the spectrum between the Fraunhofer C- and G-lines?


Fig. 22. A widely used type of direct-vision prism.
2.) In the combination shown in Fig. 22, the two outside prisms consist of crown glass for which $\mu^{\prime} \mathrm{D}$ is 1.520 . (a) That must be the refractive index $\mu$ ' $D$ of the material in the middle prism if a parallel beam of D-light is to enter and emerge from the combination parallel to its base? (b) that is the
function of the second cromn glass priam? Thy would one expect this combination to produce a apectrum of relatively large angular width?
24. The combination described in Example 5, Sec. 21, is achromatized for $C$ - and F-light. Show that it is not perfectly achromatized for G-light.
25. (a) Calculate the refracting angle of a prism of No. 76 fint glass if it ia to be used with a $5.0^{\circ}$-prism of No. 123 cromn glass to provide a combination that is achromatic for C- and F-light. (b) If a parallel bean of white light is sent through this combination fhen it is set in the position of minimum deviation for $C$ - and F-light, what will be the deviation of the $C-$, the $D-$, the $F-$ and the $G$ rays?
26. The ratio $\left(\mu_{F}-\mu_{C}\right) /\left(\mu_{D}-1\right)$ is defined as the dispersive porrer $\omega$ of a aubstance for the apectral region between the Fraunhofer $C$ - and Tlines. (a) Prove that, for a prism having a amall refracting angle, the diaperalve poner of the prism material is equal to $\left(\delta_{F}-\delta_{C}\right) / \delta_{D}$, where $\delta_{D}$ evidently is the minimum deviation for a line near the middle of the spectral region considered. (b) Compute the diaperaive powera of No. 123 crom dlass and No. 76 dense flint glass. (c) Tro prisms of the crown and of the filint glass have small refracting angles so chosen that each prism produces the aama minimua deviation in $D$-light; compare the angular vidthe $\delta_{F}-\delta_{C}$ of the apectra which the two priams will produce.

## CHAPTER THO

## FORMATION OF IMAGES

Since reflecting and refracting surfaces are employed as parts of optical instruments for the purpose of forming images, it is essential to investigate the rules and other predictions concerning image formation that are deducible from the basic generalizations of geometric optics, and to determine the extent to which these deductions are compatible with experience and realizable in practice. It will be found helpful if we first gain clear ideas as to what is meant by an optical image.
12. Object-Point and Image-Point. Any object that is visible, alther because it is self-luminous or because light is being reflected from


Fig. 25. In (a) the pencil of rays emitted at the object-point $\mathrm{S}_{\mathrm{S}}$ is refracted at the tro surfaces of the lens so as to produce a real inage-point at S'. In (b) the image-point g' is virtual, for it is not the rays thernselves, but only their directions produced backward, that pass through S'. In the case of either lens, an observer stationed on the right-hand side at E mould see the image $S^{\prime}$, not the object $\underline{S}$.
it diffusely, may be regarded, for purposes of study, as a collection of luminous object-points distributed over a surface. From any particular object-point, rays of light diverge in all directions. If, as in Tig. 25 (a), two or more of these rays from an object-point $\underline{S}$ are intercepted by an optical system which, by reflection or refraction, changes the course of the rays so that they converge and eventually intersect one another at some point $S^{\prime}$, the rays will
appear to the eye which afterwards recelves them to have actually originated at this point of intersection. Any such point at which two or more of the rays intersect is called a real image-point of the object-point. On the other hand, if the rays diverging from an object-point are intercepted by an optical system which, although it changes the courses of the rays, does not render them convergent, then the rays cannot intersect to form a real image-point. Nevertheloes; as can be seen in Figs. $25(\mathrm{~b})$ and 26 , the rays will appear to the eye which receives them to have diverged from a point or points generally different in location from the object-point. Such a point, from which two or more of the rays merely appear to diverge without having actually passed through it, may be conveniently thought of as a virtual inage-point. The essential difference between a real and a virtual image is that the former can be received on a screen and made visible, whereas the latter cannot.

An obvious requirement for ideal image formation is that the rays from any particular object-point either all converge to and aftermards diverge from a single real image-point, or else all appear to diverge from a single virtual image-point.

By a real image of an object of inite size is meant the aggregate of the real image-points of the component object-points. Similarly, a virtual image of a finite object is the aggragate of the virtual image-points of the component object-points. Now, any finito image might be regarded as perfect, in the ordinary sense of the word, if a one-to-one correspondence existed between the points of the image and object and if, moreover, the spatial distribution of the image-points were precisely the same as that of the objectpoints; or, to restate the latter requirement, if the magnification, which is
the image to the corresponding dimension of: defined as the ratio of any Incar dimension of the object, mere exactly the same for every part of the image. However, we shall see that it is not possible to produce such a literally perfect image of a finite object except under special circumstances of very limited practical value. Thus there has arisen in optical practice the concept of an optically perfect image, which meets the somewhat more modest requirements that points, lines and planes of the object have corresponding to them points, lines and planes of the image. Any departure from these requirements for an optically perfect image is called aberration.

Formation of Images by Mirrors
The mirrors used in optical instruments are either silvered on the front surface or are made of black glass, thus climinating all refraction of light with its attendant complications. That this is givantageous was foreseen by Nemton when he invented the first reflecting telescope in 1668, ${ }^{1}$


Fig, 26. Character of the image formed by a plane mirror as determined by an actual graphical construction based on the laws of reflection.

Experiment and theory shor that a flat mirror, if it is accurately plane, forms images that are entirely free from aberration, no matter how large the object may be or where it is placed in front of the mirror. But, as also can be easily demonstrated or deduced from the laws of reflection (Fig. 26), the image formed by a plane mirror always is virtual, alvays is at

1 Newton, Opticks (ed. 4 reprinted, 1931), p. 102 ff. The first reflecting telescope actually was proposed by James Gregory in 1663 , but he had not succeeded in constructing the instrument practically.
the same distance behind the mirror as the object is in front of it, and always has a magnification equal to unity. Thus the utility of any plane mirror as part of an optical instrument is extremely limited. Curved mirrors, on the other hand, are generally not free from aberration but have other distinctive properties that make them highly useful for optical purposes. Some of these properties apparently have long been known, for we find it noted in the optics of Buclid that concave mirrors turned towara the sun will ienite objects situated at the image-point, ${ }^{1}$ and Archimedes is said to have thus utilized them in the defense of Syracuse against the Romans.
13. Spherical Niprors. Mirrors whose surraces are portions of spherical surfaces are or great importance, not merely because the geometry involved in their theory is relatively simple, but because they are comparatively easy to construct and test. A spherical surface is attained automatically When two surfaces are rubbed together, since they will fit together in all positions only when they have acquired a uniform curvature. On the other hand, an aspheric surface -- that is, one that is neither plane nor spherical, being usually some quadric surface -- can be obtained with precision only by local grinding with continual testing. Aspheric mirrors of relatively crude construction are used in searchlights, motion-picture projectors and other similar devices where the image-forming requirement is not very severe; and aspheric mirrors of the highest accuracy are employed in astronomical telescopes of the reflecting type. But in commercial instruments of precision quality, spherical surfaces are the most practicable and are used almost exclusively.

In Fig. 27, MM represents a central cross-section of a concave spherical mirror of radius $\underline{R}$, the center of curvature being at $\underline{C}$. The point $\underline{O}$ at the

1 Euclid's Optics, theor. 30.
center of the reflecting surface is called the vertex of the mirror,


Fig. 27. A concave spherical mirror.
and the straight line imagined dramn through the vertex 0 and center of curvature $C$ is the axis of the mirror. Suppose that an object-point $S$ is placed on the axis at a distance $c$ from the center of curvature 0 . Let $S 0$ and SP represent two rays diverging from $S$, the former along the axis so that it is incident on the mirror at $\underline{0}$, and the latter to any other point $P$ of the mirror such that the arc $P O$ subtends an angle $\alpha$ at $\underset{\sim}{C}$. After reflection, the two rays intersect and thus form an image-point S' which is on the mirror axis at some distant $e^{\prime}$ from the center of curvature $\underline{o}$. Our problen is, first, to derive an expression that will enable us to compute the position of this imge-point $S$, and, second, to determine whe her or not all. the other rays from the object-point $\underset{\sim}{S}$ are reflected to this same image-point $S^{\prime}$; that is, to determine whether $c^{\prime}$ is the same for all values of the angle $\alpha$.

Nor, any curved surface may be regarded as made up of an infinite
number of plane surfaces to each of which the latn of regular reflection applies. Thus, in Fig. 27, $\angle \overline{S P C}=\angle \overline{S P C}=\theta$. By the lam of sines,

$$
\begin{aligned}
& \frac{R}{c}=\frac{\sin (\alpha-\theta)}{\sin \theta}=\operatorname{ain} \alpha \cot \theta-\cos \alpha \\
& \frac{R}{c^{\prime}}=\frac{\sin (\alpha+\theta)}{\sin \theta}=\sin \alpha \cot \theta+\cos \alpha
\end{aligned}
$$

therefore, $(\mathrm{R} / \mathrm{c})-\left(\mathrm{R} / \mathrm{c}^{\prime}\right)=-2 \cos \alpha$, or

$$
\begin{equation*}
c^{\prime}=\frac{R c}{R+2 c \cos \alpha} \tag{27}
\end{equation*}
$$

This is the desired expression, and from it we learn that $c^{\prime}$ is not the same for all values of the angle $\alpha_{;}$the larger is the value of $\alpha$ correspondine to a particular incident ray, the nearer to the vertex $\underline{O}$ does it intersect the axial ray after reflection. Thus the various rays from a given object-point $\underline{S}^{\prime}$ are reflected so as to form with the reflected axial ray, not a single image-point $\underline{S}^{\prime}$, but a short line of image-points $X^{\prime \prime} X^{\prime \prime}$ (rig. 28). That is more, any two rays reflected from neighboring points P' and P" of the mirror surface intersect each other before they reach the axis. Thus, for a single object-point on the axis there exists a whule family of extra-axial image-pointa, in addition to the image-points foxmed along the axis (Fig. 23).

Since Eq. (1\%) can be shomn to hold for an object-point located anywhere on the axis of either a concave or a convex (Tig. 29) spherical mirror, it follows that no spherical mirror is entirely free from aberration, and that this would be true even if the mirxor surface were perfectly spherical. These predictions from theory are fully confimed by experiment.


Fig. 29. A convex spherical mirror.


Fig. 30. This diagram differs from that of Fig. 28 in that only the reflected rays from near the margin and near the vertex of the mirror are shown.

The end-points $X^{*} X^{3 s}$ of the short line of axial imagepoints in Fig. 28 or 30 are seen from Eq. (1.7) to correspond to rays reflected, respectively, from the margin of the mirror, for which o' is maximum, and from points very close to the vertex 0 , for which $\alpha$ is very small. Thus the distance $X^{\prime} \mathrm{X}^{11}$ may be regarded as a measure of the aberration of the marginal ray, and is termed the longitudinal spherical aberration. As for the extra-axial image-points, formed by pairs of rays reflected from neighboring points on the mirror and intersecting before they reach the axis, they are found to lie on a curve called a caustic curve, the form of which varies with the position of the object-point $S$ on the axis. Figures 28 and 30,'it must be remembered, are drawn in a single plane, whereas the mirror actually is a portion of a spherical surface. But, by imagining either figure to be rotated about the axis $O C$, we can invisage the complete situation; namely, a solid cone of light diverging from the objectpoint $S$ to illuminate the whole race of the mirror, and any two neighboring rays of this cone so reflected that they intersect on the caustic surface which was traced out by the caustic curve during the imagined rotation of the diagram. The cusp of the caustic surface is at $x^{\prime \prime}$ and is evidentiy the image-point formed by rays corresponding to very small values of the angle $\alpha$.

In Fig. 30, imagine a small screen held between the mirror and the object-point so as to intercept the reflected rays. The disk of intercepted light evidently mould be smallest in diameter when the screen was held in the plane YY', where the rays reflected from the margin of the mirror cut the caustic surface. Hedd nearer to the mirror, the screen would intercept a
larger disk having a bright edge; held farther away, also a larger disk, but in this case with a bright center. The smallest disk, at YX', is called the circle of least confusion. It is the nearest approach to a single imagepoint obtainable with a spherical mirror.

These ideas regarding spherical aberration also pertain when the image-points are virtual, instead of real, except that they cannot be demonstrated by placing a screen at the image-points; the reflected light does not actually pass through a virtual image-point and hence nothing is there to illuminate a screen.
14. The First-Order Theory of Spherteal Mirrors; Paraxial Rays. If the radius $R$ of a spherical mirror is very large, or if an opaque plate containing a small opening, called a stop, is placed centrally between the mirror and the object-point (FiG. 31), then only those rays that correspond to small values of the angle $\alpha$ rill reach the mirror and be


Fig. 31. If only paraxial rays are allowed to reach the mirror, the spherical aberration is greatly reduced, although at the expense of the brightress of the image.
reflected from it. If the largest value of $\propto$ does not exceed $2^{\circ}$ or $3^{\circ}$, the resulting image is found to be quite mell defined, ${ }^{1}$ for the only rays now incident 0: the mirror are those that are reflected so as to intersect near the point $X^{\prime \prime}$ (Ficg. 28 and 30). This result is predicted by eq. (I7); for, by Maclaurin's theorem,

1 This case appears to have been first discussed by Alhazen, opticae thesaurus, Bks. 4-6. Alhazen also clearly had an understanding of loncitudinal spherical aberration in spherfcal mirrors.

$$
\begin{equation*}
\cos \alpha=1-\frac{x^{2}}{2!}+\frac{\alpha^{4}}{4!}-\frac{\alpha^{6}}{6!}+\cdots, \tag{18}
\end{equation*}
$$

and hence, then © Is small, Eq. (17) reduces approximately to

$$
\begin{equation*}
c^{\prime}=\frac{R c}{R+2 c} \tag{19}
\end{equation*}
$$

Thus, when $\alpha$ is sufficiently small, c' has practically the same value for all the rays from a given object-point on the axis. These rays that produce a sharp image are seen not only to make very small angles mith the axis of the mirror but to lie close to the axis throughout their length. Any ray that fulfills both of these conditions is said to be paraxial.

In our further treatment of spherioal mirrors we shall find it convenient to employ a rectangular coordinate system, with the vertex of the mirror taken as the origin, and the axis of the mirmor on the reflecting side taken as the positive $X$-axis. In hamony with this convention, the radus of curvature of any conceve mirror is to be regarded as positive, and that of any convex mirror, as negative. If the distances os and os' from the vertex to the object-point and image-point, respectively, are denoted by $x$ and $x^{\prime}$, so that $c$ and $c^{\prime}(F i g .27)$ become $x-R$ and $R-x$, respectively, then $E q$. (19) can be transformed into the simple and useful relation,

$$
\begin{equation*}
\frac{1}{x}+\frac{1}{x}=\frac{2}{T} . \tag{20}
\end{equation*}
$$

Thus, for the comparatively sharp images tlat can be obtained with a spherical mirror when only paraxial rays are utilized, the sum of the reciprocals of the object distance and the image distance is equal to toice the curvature of the mirror.

Example 6. A concave mirror of radius of curvature 0.20 m is provided with a stop suitably placed to exclude rays that are not paraxial. Determine the position and character of the image-point when the object-point is located on the axis and at a diatance fram the mirror of (a) 0.30 m , (b) 0.15 m , (c) 0.05 m .

Solution. The mirror is concave and therefore R in Eq. (20) is always positive: $(\mathrm{a})(\mathrm{I} / 0.30)+\left(1 / \mathrm{x}^{\prime}\right)=2 / 0.20$, or $\mathrm{x}^{\prime}=0.15 \mathrm{~m}$. Since this image distance is positive, the image-point is on the same side of the mirror as the object-point, and hence is real; the reflected rays actually pasa through and diverge from it, as if the object-point itself were thera.
(b) $(1 / 0.15)+\left(1 / x^{\prime}\right)=2 / 0.20$, or $x^{\prime}=0.30 \mathrm{~m}$. This unage-point also is real. Comparison of (a) and (b) shows that the image-point and object-point in these two cases have simply exchanged places, which could have been anticipated, In view of the principle of reversibility of light rays (Chap. I).
(c) $(1 / 0.05)+\left(1 / x^{\prime}\right)=2 / 0.20$, or $x^{\prime}=-0.10 \mathrm{~m}$. Siace this image distance it negative, the image-point is behina the mirror, and therefore is virtual; the reflected rays diverge from the mirror, but if produced backward, intersect at a point on the axis 0.10 m behind the mirror.

Example 7. Solve Example 6 for the case of a convex infror of radius -0.20 m , the other conditioas beine the same as before.

Solution. (a) $x^{\prime}=-0.075,(b) x^{\prime}=-0.060 \mathrm{~m},(c) x^{\prime}=-0.033 \mathrm{~m}$. In every case the image is bohind the mirror and is virtual.

Instead of describing a particular mirror in terms of its curvature $1 / R$, it is often convenient to employ another constant of the mirror called the focal length, which is obtained by considering the limiting case of an object, such as the sun, that is practically at an infinite distance from the mirror. If the object is at inrinity on the axis, $1 / \underline{x}$ is zero and $I^{\prime}$ is equal to $\mathrm{R} / 2$. All the incideat rays are thea parallel (Why?), and after reflection those that are paxaxial coaverge to, or apper to diverge from, a point Finidway between the vertex and center of curvature of the mirror (Tig. 32). This point Fis called the focal point of the mirror, and the distance OF, usually denoted by $f$, is known as the focal length. By aubatituting $I$ for $R / 2$ in Eq. (20), we obtain the mirror equation
for paraxial rays in the useful alter-

(a) Concave mirror

(b) Convex mirror

Fig. 32. Illustrating the concepts of focal point $F$ and focal length 1 . native form,

$$
\begin{equation*}
\frac{1}{x}+\frac{1}{x^{\prime}}=\frac{1}{f^{\prime}} . \tag{21}
\end{equation*}
$$

The reciprocal of the focal length, namely, $1 / \mathrm{f}$, is termed the dioptry, or "focal power;" of the mirror. A conraonly employed unit of dioptry ia $1 \mathrm{~m}^{-1}$, which is called 1 diopter. For example, a convex mirror of radius of curvature -0.50 m has a dioptry of -4.0 diopters.

## 15. Images of Finite Objects

Formed by Paraxial Pays; Mannification.
So far only axial object-noints have been considered. If the object-point is not on the axis, its image will also be extra-axial and can always be located graphically, by drawing a bundle of rays diverging from the object-noint and tracing the corresponding reflected rays with the help of the law of reflection. In practical cases Where the object-point is close to the axis ond only paraxial rays are allowed to reach the mirror, Eq. (20) or (21) usually is adequate for locating the position of the image-point. However, errors of sign are sometimes made in this computation, so it is better not to rely on it solely, but to check the result by graphical construction. This can be done quickly if it will
be remembered that at least tro of the rays diverging from any object-point on or close to the mirror axis have paths after reflection that are immedlately predictable: (1) the ray that passes through, or $1 s$ directed tonard, the center of curvature $\underline{C}$, since it is always reflected on itself; (2) the ray that is parallel to the axis, since it is always reflected so as to pass, or appear to pass, through the focal point E (Fig. 33).


Fig. 33. A rapid graphical method for determining the zosition and character of an image formed by paraxial rays.

If an object-point is at a small distance $\underline{y}$ from the mirror axis, the foregoing construction gives the distance $\underline{y}$ ' of its image-point from the axis (Fig. 33) ; this enables one to compute the ratio $\underline{y} 1 / \bar{y}$, which is known as the lateral magnification. A formula for this ratia can also be deduced. from the geometry of, say, Fie. $33(\underline{a})$,

$$
\frac{-y^{\prime}}{y}=\frac{R-x^{\prime}}{x-R}=\frac{x^{\prime}\left(\frac{R}{x^{\prime}}-1\right)}{x\left(1-\frac{R}{x^{\prime}}\right)},
$$

and this, in viey of Eq. (20), reduces to

$$
\begin{equation*}
\frac{y^{\prime}}{y}=-\frac{x^{\prime}}{x} \tag{22}
\end{equation*}
$$

Thus the lateral magnification'is equal to the negative ratio of the image distance and object distance. The negative sign in Eq. (22) indicates that the image rill be inverted if $x$ and $x^{\prime}$ have the same sign, and exect ir they have opposite signs.

Example B. Verify the information given in Table ItI by making the appropriate graphical constructions, and also by employing Eqs. (20), (21), and (22) whenever possible.

Table III. Classification of the images formed by spherical mirrors

| Position of object | Position of image | $\begin{gathered} \text { Magnification } \\ y^{1} / y \end{gathered}$ | Character of image |
| :---: | :---: | :---: | :---: |
| Concave mirrors |  |  |  |
| At $\infty$ | At F | 0 | Real |
| Between $\infty$ and $C$ | Betrreen F ${ }^{\text {and }}$ C | $<0,>-1$ | Real, inverted |
| At C | At C | -1. | Real, inverted |
| Betrreen C and F | Between $\underline{C}$ and ${ }^{\text {cos }}$ | $\ll-1$ | Resin, inverted |
| At. ${ }^{\text {F }}$ | At $\infty$ |  |  |
| Betrreen T ${ }^{\text {F }}$ and 0 | Between $-\infty$ and 0 | $\geq 1$ | Virtual, exect |
| Convex mirrors |  |  |  |
| At $\infty$ | At F | 0 | Virtual |
| Between $\infty$ and 0 | Betrreen F and O | $>0,<1$ | Virtual, erect |

16. Concernine Third-Order Aberrations. Z̈q. (17) holds strictly only for object-pointa situated on the axis of a spherical mirror, so that at best it gives a cood approximation then all the points of the object and imace lie very close or the axis. By. setting $\cos \alpha$ equal to unity in Eq. (17), the first-order theory of Secs. 14 and 15 is obtained; it holds only for paraxial rays and shoms. that the inages formed by such rays practically meet the requirements for an optically perfect image (Sec. 12).

In practice, however, a large part of the image-foming rays may we nonparaxial, and qucstions arise as to what extent the resulting images depart from optical perection, and that can be done to a mirror system to reduce or eliminate these departurcs. Nor, in vier of the liaclaurin theorem Eq. (18), if $\cos \alpha$ in $\Xi q$. (17) were set equal, not tc unity, but to $1-\frac{\alpha^{2}}{2}$, the resulting equation should provide the basis for a more accurate theory, although still applicable only to object-points on or very close to the mirror axis. In fact, Ludrig von Seidel (1821-1896), by proceeding along such lines, and also taking into account object-points distinctly off the axis and the rays from them that never intersect the axis, morked out in 1855 the so-called third-order theory for both reflecting and refracting surfaces. The quantitative deductions and applications of this theory are so extensive and detailed as to be mastered only after prolonged study and experience rith optical instruments, and hence are far beyond the scope of this book. The third-order theory predicts, and observetions confirms, that an image formed by a spherical mirror is subject to five different types of aberration. Four of these types -- coma, asticnatism, curvature of the inage and distortion of the image ---occur, or become important, only for extraaxial object-points. The remaining type - spherical aberration - has
already been shorn in Sec. 13 to occur for object-points lying on the axis. These aberrations are not due to lack of shhericity or to mechanical defects in the mirror surface, for all of them could exist in a mirror that was perfect in these respects. However, they can often be minimized by choosing a mirror of suitable radius of curvature, by introducine stops at suitable places, by changing the location of the object, or by employing a mirror of nonspherical form.
17. Mronspherical puadric infrors. Althoush no curved mirror, spherical or othervise, will produce an imare that is entirely free from spherical aberration for every position of the object-point on the axis, such a perfect inage is possible with certain curved mirrors for a limited number of positions of the object-point. In fact, this is true of a spherical mirror for the sinele case of an object-point located at the center of curvature, but the case lacks utility because the image-point and object-point coincide. Or real utility in this respect, homever, are the following quadric surfaces, each of mich can easily be shown to produce an image that is entirely free from spherical aberration for certain definite positions of the objectpoint. ${ }^{1}$
(a) An object-point located at either focus of an ellipscidal mirror has a single, real image-point at the other focus. Although elippsoidal mirrors have found limited use in theatrical lifhting, in a special type of projection lantern and in the nom obsolescent Gregorian telescope, ${ }^{2}$ they are not well adapted for use in optical instruments because other aberrations exist for object-points that are even a short distance from the focus.

1 See Prob. 5, Chap. One.
2 For a brief description of various types of telescopes, see D. Gill and A. S. Eddington, article "Pelescope," Encyclopaedia Britannica, ed. 14.
(b) When an object-point is located at the focus of a parabolical mirfor, all the reflected rays are parallel to the axis; conversely, an object-point a great distance away on the axis has a single real image-point at the focus. Paraboloidal mirrors are used in headights and searchlights, and in all modern reflecting telescopes. ${ }^{3}$
(c) An object-point located at one focus of either a convex or a concave hyperbolotdal mirror has a single virtual image-point at the other focus. A small convex hyperbolosdal mirror is used in conjunction with the large paraboloidal mirror in the Cassegrain telescope. ${ }^{1}$

Formation of Images by Refracting Surfaces
Refracting surfaces have also long been used to produce images. Magnifying glasses seem to have been used by the ancient Chaldeans; "burning" glasses are described in Greek and Roman writings, and convex lenses have been found in Pompeii and among Roman ruins in England. The fact that a segment of a glass sphere will produce magnified images was known to Alhazen ${ }^{2}$, Who appears also to have been the first to recognize that the eye is, in modern words, a tiny canera rith a transparent lons producing an image on the retina. Before the end of the thirteenth century tools for grinding spherical surfaces had come into use, and with them the first spectacles made their appearance. Some three centuries later Kepler worked out many valuable

I
For a brief description of various types of telescopes, see D. Gill and A. S. Eddington, article "Telescope", Encyclopaedia Britannica, ed. 14.

2 Alhazen, Opticae thesaurus, vii, 48.
and interesting properties of refracting surfaces while developing the theory of the telescope and, as we already know (Chap. I), aid this without benefit of the exact law of refraction or of the lams of image formation familiar to us today. Kepler was aware of the complications now classed as spherical aberrations, and both he and Descartes suggestea that they could be reduced by making the surfaces of lonses hyperbolic, instead of spherical, in shape. But hyperbolic surfaces are difficult to construct; noreover, Newton soon showed thet the most troublesome defects of the opticel instruments then in use were to be attributed less to spherical aberration than to effects - thet could not be corrected simply by resorting to a lens of another shape. Nowadays lenses with spherical surfaces, or some-
 times cylindrical surfaces, are still the most widely used and provide geometrical optics with its most importent problems.
18. Formation of Images by a Single Spherical Interface. Let L工 in Fig. 34 be the central cross section of e convex spherical surface that separates a medium of
l Kepler, Dioptrice. For a brief account of Kepler's work on refracting surfaces see *H. Crem, The Rise of Modern Physies (Williams \& W11kins, 1935), pp. 100-102.
refractive index $\mu_{1}$ on the left from one of refractive index $\mu_{2}$ on the right. Let $\underline{R}$ be the radius of curvature of the refracting surface, the point $C$ being the center of curvature. Suppose that an object-point $\underline{S}$ is situated on the axis of symmetry $O C$, at a distance $\underline{x}$ from the vertex $\underline{O}$. Let $S O$ and SP represent two rays diverging from the object-point, the former along the axis so that it is incident nomally on the refractine interface at 0 , the latter to any point $P$ on the interface such that the arc Po subtends an angle O at the center of curvature C. After refraction, the tmo rays intersect at some point $S$, on the axis and at a distance $x^{\prime}$ from $\underline{0}$. Our problem is to determine how the object distance $x$ and image distance $x$ are related. As in Sec. 14, We shall employ rectangular coordinates, with the vertex $\underline{0}$ taken as the origin. The axis of the interface in the medium from which the light comes just before striking the interface is taken as the positive X-axis.

If $\theta_{1}$ and $\theta_{3}$ are the angles of incidence and refraction of the ray penetrating the interface at $P$, then, according to the law of rafraction,

$$
\begin{equation*}
u_{1} \sin \theta_{1}=\mu_{2} \sin \theta_{2} \tag{23}
\end{equation*}
$$

In triangles SPC and CPS', by the law of sines,

$$
\begin{equation*}
\frac{\sin \theta_{1}}{\sin \alpha}=\frac{x-R}{P S} \text { and } \frac{\sin \theta_{2}}{\sin \alpha}=\frac{x^{\prime}-R}{P S} \tag{24}
\end{equation*}
$$

Where the angles $\theta_{1}, \theta_{2}, \alpha$ are all taken as positive quantities. By the sign convention above, $\dot{x}$ and $\bar{P}$ S are positive, and $\dot{x},, R$ and $\overline{P S}$ ' are negative. Hence $\frac{\bar{x}_{-}-R}{\overline{P S}}$ and $\frac{X^{\prime}-\underline{R}}{\bar{P} S^{\dagger}}$ are both positive quantities, since $\dot{x}-R$ is a positive and $\quad x$ ' $-R$ a regative quantity. By eliminating $\sin \theta_{1}$ and $\sin \theta_{2}$ from Iqs. (23) and (24), We obtain, after rearrangement,

$$
\begin{equation*}
\mu_{1}\left(\frac{1}{R}-\frac{1}{x}\right) \cdot \frac{\pi}{P S}=\mu_{2}\left(\frac{1}{R}-\frac{1}{x^{\prime}}\right) \cdot \frac{x^{\prime}}{P S^{\prime}} \tag{25}
\end{equation*}
$$

The quantitios $\overline{P S}$ and $\overline{P S}$, also can be expressed in terns of $\underline{x}, \underline{x}^{\prime}, \underline{R}$ and $\alpha$, by means of the cosine law; thus

$$
\begin{aligned}
\overline{P S} & =\left\{R^{2}+(x-R)^{2}+2 R(:-R) \cos \alpha\right\}^{1 / 2} \\
& =x\left\{1-\frac{2 R^{2}}{x}\left(\frac{1}{R}-\frac{1}{\bar{x}}\right)(1-\cos \alpha)\right\}^{1 / 2} \\
\overline{P S} & =\left\{R^{2}+\left(x^{\prime}-R\right)^{2}+2 R\left(x^{\prime}-R\right) \cos \alpha\right\}^{1 / 2} \\
& =x^{\prime}\left\{1-\frac{2 R^{2}}{\bar{x}^{\prime}}\left(\frac{1}{R}-\frac{1}{x^{\prime}}\right)\left(1-\cos \left(X^{\prime}\right)\right\}^{1 / 2}\right.
\end{aligned}
$$

and

Substituting these expressions for $\overline{\mathrm{PS}}$ and $\overline{\mathrm{PS}}$, in Eq. (25) we have finally,

$$
\begin{align*}
& \mu_{1}\left(\frac{1}{R}-\frac{1}{\dot{x}^{\prime}}\right)\left\{1-\frac{2 R^{2}}{\dot{x}}\left(\frac{1}{R}-\frac{1}{x}\right)(1-\cos (x)\}^{-1 / 2}\right. \\
= & \mu_{2}\left(\frac{1}{R}-\frac{1}{x^{\prime}}\right)\left\{1-\frac{2 R^{2}}{x^{\prime}}\left(\frac{1}{R}-\frac{1}{\dot{x}^{\prime}}\right)(1-\cos (x)\}^{-1 / 2}\right. \tag{26}
\end{align*}
$$

This equation is rigorously exact for an object-point located anywhere on the axis of symmetry of any spherical interface.

Example 9. Show that there are tmo values of the object distance $\underline{x}$ for which $\alpha$ disappears from Eq. (2'6); namely, in the trivial case where the object-point is situated at the center of curvature $\underline{C}$, and in the case when

$$
\begin{equation*}
\frac{1}{x}+\frac{1}{x^{\prime}}=\frac{1}{R} \tag{27}
\end{equation*}
$$

Except for the two positions of the object-point found in Example 9, the ancle $\alpha$ is always present in Eq. (2). In general, then, the various rays diverging from a given object-point on the axis of a spherical interface are refracted so as to intersect the axial ray, not at a single point S', but in a short line of axial image-points. This is the same phenomenon of spherical aberration as is encountered in the case of reflection (Sec. 13).
 mirrors, contains the refractive indexes $\mu_{1}$ and $\mu_{2}$, a fact that becomes especially significant when we recall that the refractive index of a substance varies with the color of the IIght (Secs. 4 and 9, Chap. I) and hence that the image distance $x^{\prime}$ must vary vith the color as well as with
the angle $\alpha$. In other words, if the light from a given object-point on the axis is heterochromatic -- that is, composed of more than one, distinct color -- then even those rays that make a given angle ox with the axis will fail to meet in a common point after refraction; each heterochromatic ray will be dispersed at the interface into as many different rays as there are distinct colors involved, and these will cross the axial ray SOC (Fig. 34) at as many different points. If the light from the object-point is white, the rays corresponding to any definite value of $\alpha$ will be refracted so as to form with the white axial ray a short line of image-points. This general type of aberration, which is due to the dispersion of light and therefore is not encountered in mirrors, is called chromatism, or chromatic aberration. One obvious although often impractical way to eliminate chromatim is to employ monochromatic light.
19. The First-Order Theory for a Spherical Interface. If the rays allowed to reach a spherical refracting interface from an axial object-point are all paraxial, then $d \cong 0$ and, in view of the Maclaurin theorer, Eq. (E6) becomes, after rearrangement,

$$
\begin{equation*}
\frac{\mu_{2}}{x^{\prime}}-\frac{\mu_{1}}{x}=\frac{\mu_{2}-\mu_{1}}{R} . \tag{28}
\end{equation*}
$$

This special but extremely important equation contains the refractive indexes, but not $\alpha$; hence we can conclude that the image formed by paraxial rays refracted at a spherical interface are subject to chromatism, but not to spherical aberration. These predictions are confirmed by experience; only when the rays from a given axial object-point are both monochromatic and paraxial mill they be observed practically to converga to or diverge from a single image-point, real or virtual.

Suppose that the objectpoint $\underline{\underline{S}}$, instead of being on the axis of symmetry, is


Fig. 35. The lateral magnification is $y^{1} / \mathrm{y}$. Notice that the ray SC passing through the center of curvature is incident normally on the interface and therefore suffers no deviation.
located at a small distance $y$ from the axis, so that its rectangular coordinates are ( $\underline{x}, \underline{y}$ ). Then, if $\underline{y}$ is not too great, the image-point $S^{\prime}$ of S will be found to be at ( $x^{\prime}, y^{\prime}$ ) where $x$ ' is determined by Eq. (28). An expression for the lateral maenilication $y^{\prime} / y$ can be obtained by writing the equation -
$-y^{\prime} / y=\left(R-x^{\prime}\right) /(x-R)$, which.follows from the geometry of Fig. 35, and combining it with Eq. (28). The desired result is

$$
\begin{equation*}
\frac{y^{\prime}}{y}=\frac{\mu_{1} x^{\prime}}{u_{2} x} . \tag{29}
\end{equation*}
$$

Notice that this expression, unlike Eiq. (22) for mirrors, does not contain the negative sign. Thus the image in the present case of refraction will be erect or inverted, accordingly as $x$ and $x$ ' have the same or opposite signs.

The theory of image fomation which has been treated in this section is known variously as the firstmorder theory, since it involves setting porers of the angle $x$ higher than the first equal to zero, and as the Gauss the ory, after Karl Friedrich Gauss (1777-1855), who was the first to develop it. ${ }^{1}$


Fig. 36. Example 10 , for the case where $x$ is 15 cm .

Example io. One face of a large block of No. 188 light flint glass is ground as shown in Fig. 36 to form a spherical convex surface of radius of curvature 12.0 cm . A small source of yellor Di-light is placed in the air in front, and on the axis of symmetry, of the spherical interface. If a stop is arranged in each instance so as to exclude the nonparaxial rays, what is the location, magnification and character of the image formed by the interface then the object distance is (a) $90.0 \mathrm{~cm},(b) 41.0 \mathrm{~cm}$, (c) 32.0 cm, (a) 20.7 cm , (e) 15.0 cm ?

Solution. Here R is -12.0 cm and, from Table II, Chap. I, $\mu_{m} / \mu_{\text {, }}$ is 1.580 ; therefore Eqs. (20) and (29) become, respectively, (1.58/x') $(1 / x)=-1,0433$ and $y^{\prime} / y=x^{\prime} / 1.59 x$.
(a) $\left(1.58 / x^{\prime}\right)-(1 / 90.0)=-.0483^{\prime}$, or $x^{\prime}=-42.5 \mathrm{~cm} ; y^{\prime} / y=$ $-42.5 /(1.58 \cdot 90.0)=-.30$. The image in this instance is located in the glass, on the axis and at a distance of 42.5 cm from the vertex. The image is reduced, inverted and real; the refracted rays converge to and pass throuch the image, after which they diverge as if from an actual source placed at the point.
(b) $x^{\prime}=-66.2 \mathrm{~cm} ; y^{1} / y=-1.02$ The image is slightly enlarged and is inverted and real.
(c) $x^{\prime}=-92.5 \mathrm{~cm} ; y^{\prime} / \mathrm{y}=-1.83$. The image is enlarged, inverted and real.
(d) $x^{\prime}=-\infty$. The rays after refraction are paralled to the axis.
(e) $x^{\prime}=86.1 \mathrm{~cm} ; y^{\prime} / y=3.63$. The image in this instance is enlarged, crect and virtual. The rays are still divergent after the refraction and hence never actually meet (Fig. 36); but the paths of the refracted rays, produced backard, meet in front of the interiace, so this is the region in which they appear to have originated.
20. Images Formed by a Plane Interface. Since Eqs. (28) and (20) do not become indeterminate when $\underline{R}$, the radius of curvature, becomes infinite, they may be used to prodict the location and character of the images formed by paraxial rays refracted at a plane interface. The equations become in
this special case,

$$
\begin{equation*}
\frac{\mu_{2}}{x^{\prime}}-\frac{\mu_{1}}{x}=0 \text { and } \frac{y^{\prime}}{y}=I \tag{30}
\end{equation*}
$$

Thus the sign of $\underline{x}$ ' will always be the same as that of $\underline{x}$, and the magnification will always be unity; in other words, sn image formed by refraction at a plane surface will always be virtual, erect and the same size as the object. If the object is situated in the medium of smaller refractive index ( $\mu><\mu_{2}$ ), as when an object in air is viewed by a swimer under water, the image will be in the air and farther from the surface than the object; but if the object is in the medium of larger reiractive index $\left(\mu_{1}>\mu_{2}\right)$, as when an object under water is observed from the air, the image will be in the water and nearer to the surface than the object. If the image-forming rays are not confined to the paraxial region, the image will be afflicted with other aberrations in adtition to chromatism. For example, when a small sphere immersed in water is viewed from a point in the air not directly above the sphere, the image is indistinct and also distorted, the vertical diemeter appearing shortened as compared with the horizontal. ${ }^{1)}$

Example 11. The dovelopment of parallel sets of equations for the phenomena of refiection and refraction becomes unnecessary if the assumption is made thet reflection is a special case or refraction for which $\mu_{2}=-\mu_{1}$. Thus show that, for the special case of reflection, (a) Snell's law of refraction [Eq. (2), Chap. I] reduces to the law of reflection, $\theta_{2}=\theta_{1}$; (b) Eqs. (29), (28) and (27) reduce, respectively, to Eqs. (22), ( 50 ) and (17).

1) As has already been mentioned (Sec. 16), the third-order theory developed by Seidel includes consideration of object-points that are distinctly off the axis, and of the rays from them that do not intersect the axis; and, for such points and rays, the four third-order types of aberration known as coma, astigratism, curvature of the field and distortion are found to occur or to become of importance. When the tileory is extended to include povers of $\alpha$ higher than the third, still other, higher-order types of aberration are predicted. Moreover, if the light is heterochromatic, chromatism also is present, this being true even when the first-order theory is applicable (Sec. 18). Chromatism is by far the nost troublesome of all the types of aberration, and corrections are made for it in all but the crudest of iefracting systems.
21. Systens of Coaxial Spherical Surfaces. Practically every optical instrument consists of a series of refracting mediums aeparated by spherical surfaces whose centers of curvature lie on a common line called the axis of the syster. The paths of selected rays in such a system can be traced through each interface in turn by applyiag the law of refraction and taking into account the geometry involved. In this way the real or virtual inage formed by the first interface is located, this image is then taken as the object for the second interface, and so on until the final image formed by the sygtem as a whole has beea determined.

The foregoing method of ray-tracing becomes unnecesaary if stops are introduced into the system so as to eliminate all but the paraxial rays or if the aberrations have been otherwise sufficiently corrected; for then Eqs. (28) and (29) hold, and may be applied directly to each interface in turn. If it is found that the image formed by a particular interface lies beyond the next


Fig. 37. In a case where the rays emerging from one interface are convergent and also are intercepted by the next interface before they intersect, then the object distance for the latter interface is $\overline{O_{2} S_{1}^{\prime}}$ and heace must be regarded as negative.
interface, then the object
aistance for this next x interfsce must be regarded as negative in applyiag Eq. (28) to it (Fig. 37).

A simple lens is a portion of a transparent medium, such as glass, bounded by two coaxial spherical surfaces or by one spherical surface and
a plane aurface (Fig. 38). Such a system obviously may be treated by the atep-bystap procodure already described, no new equations therefore being ( $\quad \therefore$ nagasaary. However, lenses must be dealt

(a)

(d)

(b)

(a)

Fig. 38. Common typee of Ienser. With ao frequentiy that apecial formulas for them are edvantageous; and theas can eaaily be obtained by applying Eqs. (28) and (29) suacessively to the two faces of a lens in generqi, thua rendering it unneceasary in subsequent computations to employ this more tedious step-by-step method.
In Fig. 39, let $\mu^{\prime}\left(=\mu_{2} / \mu_{1}\right)$ be the refractive index, relative to the surrounding medium, of the material composing the lens. Let $\underline{r}_{4}$ and $\underline{P}_{3}$ be the radii of curvature of the front and back faces of the lens, and let

$t$ be the distance between the faces at the axis. Suppose that the object-point S is at a distance $x_{\text {, }}$ from the vertex $\underline{0}$, of the front face. The corresponding imaga-point. $\mathbf{S}^{\prime}$, if the front face were the only reiracting surface present, would be at a distance $\mathrm{X}_{1}{ }^{\prime}$ from the vertax 0 , Dinis distance $\underline{Z}_{f}$, is given by Eq. (28), which here becomes

$$
\begin{equation*}
\frac{\mu^{4}}{x_{1}^{\prime}}-\frac{1}{x_{i}}=\frac{\mu^{\prime}-1}{\Omega_{1}} \tag{31}
\end{equation*}
$$

since $\mu_{2} / \mu_{1}=\mu^{\prime}$. If we now regard the image-point $\underline{S}_{1}$, as the object-point $S_{2}$ for the back face of the lens, then the object distance $x_{0}$, measured from the vertex $\underline{O}_{2}$, is equal to $\underline{x}_{\prime}^{\prime \prime}+t$. Moreover, the light is now passing from the interior of the lens to the gurrounding medium, and the refractive index of the latter, relative to the lens material, is $1 / \mu^{\prime}$. Thus Eq. (28), applied to the back face, becomes

$$
\frac{\left(1 / \mu^{\prime}\right)}{x_{2}^{\prime}}-\frac{1}{x_{1}^{\prime}+t}=\frac{\left(1 / \mu^{\prime}\right)-1}{R_{2}}
$$

or

$$
\begin{equation*}
\frac{1}{x_{2}^{\prime}}-\frac{u^{\prime}}{x_{1}^{\prime}+t}=\frac{1-\mu^{\prime}}{R_{2}} . \tag{33}
\end{equation*}
$$

Eqs. (31) and (32) surfice to give the relation between image distance and object distance for any simple lens, provided the rays are paraxial.

If the object-point is not on the axis but is a short distance from it, at ( $x_{1}, y_{1}$ ), then the corresponding image-point formed by rerraction at the front face alone will be at a distance $\underline{y}^{\prime}$ ' from the axis, given by $y_{1} \cdot / y_{1}=\left(1 / y^{\prime}\right)\left(x_{1} / x_{1}\right)$, from Eq. (29). Similarly, the final image is at a distance $y_{2}$ ' from the axis given by $y_{z^{\prime}}^{\prime} / y_{1}{ }^{\prime}=\mu^{\prime} x_{2} \prime /\left(x_{1} \prime^{\prime}+t\right)$. But the product of the left-hand mernbers of these two equations is seen to be $\mathrm{y}_{2} / / y_{1}$, and this is the lateral magnification produced by the lens as a whole. Thus the latter is equal to the product of the lateral magnifications produced at the tro faces, ox

$$
\begin{equation*}
\frac{y_{2}^{\prime}}{y_{1}}=-\frac{x_{1}^{\prime}}{x_{1}^{\prime}} \cdot \frac{x_{3}^{\prime}}{x_{1}^{\prime}+t} . \tag{33}
\end{equation*}
$$

We see that when the mediums on both sides of the lens have the same refractive index, as in the present case, the reiractive index does not appear in the expression for the magnification.
22. Thin Lenses. If the distance $t$ between the faces of a lens is negligibly.small in comparison with $\underline{x}_{!}^{\prime}$ in Eqs. ( 32 ), ( 32 ) and ( 33 ), the. lens is sald to be thin. In this case $t$ can be set equal to zero in Eq . (3i) , and $\underline{x}_{1}$ ' eliminated between it and Eq. (31), thus yielding one simple equation that is sufficient for locating the irage; namely,

$$
\frac{1}{x_{2}}-\frac{1}{x_{1}}=\left(\mu^{\prime}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) .
$$

Inasmuch as the origins of coordinates 0 and $\underline{O}_{2}$ coincide in the lens when $t$ is assurned to be zero (Fig. '40), the subscripts, and 2 lose their significance, and the foregoing


The expression for the lateral magnification obtained by setting $t$ equal to zero in Eq.

Fig. 40. One type of thin lens.

$$
\begin{equation*}
\frac{y^{\prime}}{y}=\frac{x^{\prime}}{x} \tag{35}
\end{equation*}
$$

Thus, for a thin lens, the Lateral dimensions of the image and object are in the same ratio as the image and object distances (Fig. 40). Eqs. (34) and (35) are applicable only if a lens can be regarded as thin. If the magnitude of the error introduced by neglecting the thickness $t$ is too large, then Eqs. (31), (32) and (33) should be used instead.

(a) A converging lens.

(b) A diverging lens.

Then the object-point is at infinity on the axis the incident rays are parallel to the axis, and those in the paraxial region converge to, or appear to diverge from, a single image-point $F$ which is called the focal point (Fig. 41). The corresponding image distance OF is the focal length of the lens, and its reciprocal, $1 / \underline{f}$, is the dioptry D. Setting $1 / x$ in Eq. (34) equal to zero, we obtain

$$
\frac{1}{f}=D=\left(\mu^{\prime}-1\right)\left(\frac{1}{R_{i}}-\frac{1}{R_{2}}\right) \cdot(36)
$$

The paraxial equation which relates
the image and object distances for a thin lens, accordingly can be written in the alternative forms

$$
\begin{equation*}
\frac{1}{x^{\prime}}-\frac{1}{x}=\left(\mu^{\prime}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{1}{\mathrm{I}}=\mathrm{D} . \tag{37}
\end{equation*}
$$

The importance of the concepts of focal length and dioptre evidently lie in the fact that they are independent of the object and image distances, being constrat for a given lens and given surrounding medium.

A particular lens is said to be convergent if it increases the convergence of the rays incident upon it, and this will be the case if the focal point $F$ is situated on the other side of the lens from the incident light and hence is a real image-point. It is said to be divergent if it
decreases the convergence of the incident rays, in which case the focal point is on the same side as the incident light, and hence is virtual. As can easily be deduced from Eq. (36), if the surrounding mediun is air or any other substance of smaller refractive index than the lens material ( $\left.\mu^{\prime}>1\right)$, the lens will be convergent or divergent accordingly as it is thicker at the center, as in Fig. $38(\underline{a})$, (b), (c), or thicker at the edges, as in Fig. 38(ㅁ), (e), (́). But if the surrounding medium has the larger refractive index (u'<1), the opposite will be true; for instance, a double concave lens is convergent when immersed in the medium of larger refractive index.

Example 12. The thin double convex lens shom in Fig. 40 is made of glass of refractive index 1.50, relative to air. The radii of curvatrre of the faces are of magntudes 0.30 and 0.20 m . (a) That are the focal length and dioptry when the surrounding medium is air? (b) Determine the position and character of the image of a small object placed on the axis and 0.50 m from the lens, it being assumed that a suitably placed stop excludes all but the paraxial rays. (c) Make the foregoing computations for a converging meniscus lens [Ficg. 38(c)] made of the same glass and having radii of curvature of the same magnitude.

Solution. (a) In Eq. (36), $\mu$ ' is $1.50, \underline{R}_{\text {t }}$ is -0.30 m and $\mathrm{P}_{2}$ is 0.20 m ; therefore, $\underline{f}$ is -0.24 m and $\underline{D}$ is $-4.2 \mathrm{~m}^{-1}$, or -4.2 diopters. The result is the same when the light is considered to be incident on the opposite face, in which case $\mathrm{R}_{1}$ is -0.20 m and $\mathrm{R}_{2}$ is 0.30 ma .
(b) From Eq. ( 37 ), $\left(I / x^{r}\right)-(I / 0.50)=-4.2$, or $x^{2}=-0.45 \mathrm{~m}$; and from Eq. (35), $y^{\prime} / \mathrm{y}=-0.45 / 0.50=-0.9$. Thus the image is real, inverted and slightly reduced.
(c) For the converging meniscus lens, $u$ is $1.50, \mathrm{E}_{1}$ is 0.30 m and $\underline{R}_{2}$ is 0.20 m ; therefore, $\underline{f}$ is -1.2 m and $\underline{D}$ is -0.83 diopter. When $\underline{x}$ is $0.50 \mathrm{~m}, \mathrm{x}^{\prime}$ is 0.85 m and $\mathrm{y}^{\prime} / \mathrm{y}$ is 2.7 ; thus the image is virtual, erect and enlarged.

A graphical method similar to that employed with mirrors (Sec. 15) enables us to verify the position and nature of the image when the object does not lie entirely on the axis. It is based on the facts that (I) any
ray which pasnes through the optical center 0 of a lens emerges undeviated and, if the lens is thin, without appreciable lateral displacement (Fig. 42), and (2) any incident ray parallel and close to the axis is refracted by the lens so as to pass through, or appear to diverge from, the focal point F .

(a) A thick lens

(b) A thin lens

Fig. 42. (a) A ray SOS' will emerge from a lens undeviated if the planes tengent to the faces at the points of incidence and emergence are parallel (Example 1, Chay. I). Since the radii $R_{1}$ and $H_{2}$ dram to these points also will be parallel to each other, $\mathrm{OC}_{1} / \overrightarrow{O C}_{2}=R_{1} / R_{2}$. Thus the fixed distance $\mathrm{C}_{1} \mathrm{OC}_{2}$ between the centers of curvature of the faces is divided in the fixed ratio $R_{1} / R_{L}$, and 0 , callod the optical center of the lens, is a fixed point on the axis. (b) If the lens is thin, the aforementioned tangent planes will be very close together and any ray through 0 will be straight, having no appreciable lateral displacement as well as no deviation.

## Summary of the Convention as to Siens

1) The positive direction at a reflecting or refracting surface is taken as the direction from which the light rays come just before strikine the surface in question. For example, the positive direction at the first refracting surface is the direction from the surface to the object.
2) The radius of curvature of a sur face is considered positive if the center of curvature lies in the positive direction from the surface in question.
3) For thin lenses or for mirrore the focal length is defined as the image distance corresponding to an infinite object distance. Under the above system this means that:
a) The focal length of a concave or converging mixror is positive;
b) The focal length of a convex or diverging mirror is negative;
c) The focal length of a converging lens is negative;
d) The focal length of a diverging lens is positive.
4) Since the dioptric power of a lens or mirror is defined as the reciprocal of the focal length in meters, this means that in this systern:
a) A converging mirror has a positive dioptric pomer;
b) A diverging mirror has a negative dioptric power;
c) A converging lens has a negative dioptric power;
d) A divergine lens has a positive dioptric power.

Please note that contrary to this convention most opticians refer to a convergine lens or mirror as havinc a positive focal length or dioptric power, while a diverging lens or mirror has a negative focal length or dioptric porer.
5) In problems involving a single refracting surface, $\mu$ refers to the object space, where the object may either be a physical object or the image from a previous optical si"sten.
6) In morking optics problens, it is always wise to check ecometrically your algebraic solutions.
23. Combinations of Lenses. In treating a system consisting of a combination of tro or more lenses a method similar to that outlined in Sec. $2 l$ can be follomed. One first determines the image-point of the first lens treating it as if it were acting alone. The image point of the first lens is then taken as the object-point of the second ?ens and its image point determined. This procedure can then be carried through step-by-step until the position of the final image-point of the combination has been determined.

In the special case where the lenses are in contact and can be considered thin, a simple relationship holds. For example consider three lenem in contact, of focal lengths respectively $f_{1}, f_{2}$ and $f_{3}$. Applying Eq. 37 to each of the three lenses, we find

$$
\begin{align*}
& \frac{1}{x_{1}}-\frac{1}{x_{1}}=\frac{1}{f_{1}} \\
& \frac{1}{x_{2}}-\frac{1}{x_{2}}=\frac{1}{f_{2}}  \tag{38}\\
& \frac{1}{x_{3}}-\frac{1}{x_{3}}=\frac{1}{x_{3}}
\end{align*}
$$

Where the subscripts designate the respective image and object distances of the three lenses. Because the image-point of the first lens is the objectpoint of the second, etc., me have $x_{1}{ }^{\prime}=x_{2}$ and $x_{2}{ }^{\prime}=x_{3}$. Substituting these values into Eqs. (38) and adding we obtain

$$
\frac{1}{x_{3}{ }^{1}}-\frac{1}{x_{1}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}
$$

But the focal length $\vec{F}$ of the combination is given by

Hence

$$
\begin{gather*}
\frac{1}{x_{3}}-\frac{1}{x_{1}}=\frac{1}{F} \\
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}} \tag{39}
\end{gather*}
$$

24. Achromatic Lenses. In Sec. Il, Chap. I, it was shown that two prisms of different kinds of glass can form an achromatic combination. Such a combination produces deviation for any two ehosen colors in a beam of light without producing dispersion. The problem of eliminating chromatic aberration in a lens is obviously analogous to the problem of constructing an achromatic prism. This is accomplished by combining into one lens a convex lens of cromn glass and a concave lens of flint glass as show in Fig. 43. The dispersion produeed by


Fig. 43. An achromatic lens. one lens is then exactly neutralized by the other lens for any two chosen colors. The condition is reached if the imagepoints of $C$ and $F$ light coincide. In other words the focal length of the combination should be the same for $C$
light as for $F$ light. Hence from 3 . (39),

$$
\begin{equation*}
\left(\frac{1}{f}+\frac{1}{f^{\prime}}\right)=\left(\frac{1}{f}+\frac{1}{f^{\prime}}\right)_{F} \tag{40}
\end{equation*}
$$

where the unprimed quantities refer to the first lens and the primed quantitics to the second lens. Substituting from $\mathbb{I q}$. (37) for $1 / 5$ and $I / f^{\prime}$, we obtain
$\frac{1}{\vec{F}}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+(\mu C-1)\left(\frac{1}{R_{1}{ }^{\prime}} \cdots \frac{1}{R_{2}{ }^{\prime}}\right)=\left(\mu_{\mathrm{F}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\left(\mu \frac{1}{R_{1}}-1\right)\left(\frac{1}{R_{1}{ }^{\prime}}-\frac{1}{R_{2}{ }^{\prime}}\right)$
whare $\mu_{0}$ and $\mu_{\mathrm{F}}$ refer to the indices of refraction for $C$ and $F$ licht respectively. If the radii of curvature of the inner surfaces of the two lenses are the same, then $R_{2}$ is equal to $R_{1}$ ', and after rearranging terms we obtain,

$$
\begin{equation*}
\left(\mu_{T}-\mu_{C}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\left(\mu_{F^{\prime}}-\mu_{C}\right)\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right)=0 \tag{42}
\end{equation*}
$$

Eq. (41) then states the condition that the lens shall be achromatic for $C$ and F light, and gives the focal length $F$ of the combination. Achromatic lenses are used in the construction of all high-grade optical instruments.

Example 13: Given that an achromatic combination consisting of a concave lens of $\overline{\mathrm{N} O}$. 188 flint flass and a convex lens of No. 123 crown glass shall have a focal length of -30 cm for $C$ and If light. If the outer surface or the concave lens is a plane compute the radius of curvature of the surface common to the tro lenses and of the outer surface of the convex lens.
25. Simple Optical Instruments. In the use of most simple optical. instruments such as telescopes, microscopes, simple magnifying glasses, etc., the human eye usually forms part of the optical system. The essential components of a human eye are indicated in 7ig. 44. The outer front surface of the eye is covered tith a tough, transparent membranc $C$ known


Fig. 44
as the cornea. The cornea together with the lens of the eye $I$ produce a real, invertad image of an object, upon a sensitive membrane $R$ known as the retina. An opnque dinphragm, celled the iris, regulates the size of the pupil which is the apcrture through which the light passes into the eye. The size of the pupil is varied through muscular action, which action is governed by the intensity of the light which strikes the eye. Muscular action also changes the shape of the lens of the eye and thus its focal length. A person with normal eyes can see objects in sharp focus for distances which vary from infinity to approximately 15 cm from the eye. Usually, however, sustained viewing of objects as close as 15 cm will strain the eye muscles and cause fatigue. The process of focusing the eye on objects of varying distances is known as accommodation; the pomer of nccommodation usually decreasing with increasing age.

The detail of an object is more clearly seen the closer the object is to the eye, for the image on the retina increases with decreasing object distance. However, the power of accomodation places a limit on this distance of approach, and because of the ruscular strain which occurs for very close distances, the distance of most distinct vision is usually taken to be about 25 cm . The shall call this distance $D$, and arbitrarily take it as the milnimum object distance for normal vision.

## Simple Microscope or Magnifying Lens

As can be seen in rig. 45 the accommodation of the eye can be effectively increased simply by vieming an object through a convex lens which is placed close to the eye. The eye will then see the virtual image of the object formed by the converging lens, and in general the image will


Fig. 45.
appear larger than would the object alone if it were viewen without the aid of the lens. Hence a converging lens may be called a magnifying glass.

The magnifying power $M$ of a magnifying glass is defined as the ratio of the angle subtended at the eye by the inace to that subtended by the object alone if it were viewed at the distance or most distinct vision $D$.

One must be careful to distinguish between magnifying power as here defined and lateral macnification as defined in Sec. 2\&, which is simply the ratio of the actual linear dimension of an image measured lateraly to the corresponding dimension of the object.

The magnifying power of a lens is then given by

$$
\begin{equation*}
M=\frac{\theta}{\theta_{0}} \tag{43}
\end{equation*}
$$

where $\theta$ and $\Theta_{0}$ are the angles subtended at the eye by the image and object, respectively, as defined above. If the lateral dimensions of the object and image are $y$ and $y^{\prime}$ respectively, then,

$$
y^{\prime}=\bar{\alpha} \tan \theta \quad \text { and } \quad y=D \tan \theta_{0}
$$

where $d$ is the distance from the image to the eye (Fig. 45) and $D$ is the distance of most distinct vision ( 25 cm ). Since in general $\theta$ and $\theta_{0}$ are
small angles we may take the angles themselves for the tangents and we obtain

$$
\begin{equation*}
M=\frac{y^{\prime} \cdot D}{y M} \tag{4}
\end{equation*}
$$

The ratio $\mathrm{y}^{1 / y}$ may be computed by using Eq, (35) and (37), p. 27 and 28 , and we obtain

$$
\frac{y^{\prime}}{y}=\frac{r^{\prime}-x^{\prime}}{f}
$$

where from Fig. $45, x^{\prime}=d-c$; hence,

$$
\begin{equation*}
\frac{y^{\prime}}{y}=\frac{f-d+c}{f} \tag{45}
\end{equation*}
$$

Since the lens is usually held close to the eye, $c \lll d$, and we find,

$$
\begin{equation*}
\frac{y^{\prime}}{y}=\frac{f-\alpha}{f} \tag{46}
\end{equation*}
$$

Substituting into Eq. (44),

$$
\begin{equation*}
\mathrm{M}=\frac{\mathrm{D}(\mathrm{f}-\mathrm{d})}{\mathrm{df}} \tag{49}
\end{equation*}
$$

Now ir the position of the lens is such that the image is formed at the distance of most distinct vision $D$, then $d=D$, and

$$
\begin{equation*}
M=\frac{\mathrm{E}-\mathrm{D}}{\mathrm{f}} \tag{48}
\end{equation*}
$$

Since tho focal length $f$ of a convex lens according to the slen convention is a negative number, if $H \theta$ let $|r|$ represent the absolute value or $r$, then Eq. (43) becomes

$$
\begin{equation*}
M=\frac{i P \mid+D}{|\mathrm{I}|} \tag{4e}
\end{equation*}
$$

If the imace is formed at infinity then in Eq. (.47) d becomes infinite and the equation reduces to

$$
\begin{equation*}
M=-\frac{D}{f}=\frac{D}{i f} \tag{50}
\end{equation*}
$$

The focal length $f$ of a manifying glass is usuaily small compared with $D$,
so that the values of $M$ in Eqs. (49) and (50) do not differ much from one another, and the magnifying power of the lens does not vary greatly as the image distance is changed.

## Compound Microscope

It is clear from the above discussion that a magnifying glass in order to have high magnifying power must have a very short focal length and must be bold very close to the object and to the eye. These inconveniences and the additional fact that it is difficult to obtain a lens of very short focal length sufficiently free of aberrations place a practical limit of about twenty on the magnifying power of a simple magnifying glass.

For higher magnifying powers an instrument known as a compound microscope is employed. It consists essentially of two lenses. The first lens, known as the objective, is a convex lens which produces a real and greatly enlarged image of the object. The second lens, known as the eyepiece or ocular, is simply a magnifying glass used for viewing the real image produced by the objective. A compound microscope is show sebematically in Fig. 46.


The magnifying power of a compound microscope is defined as the product of the magnifying poners of the objective and the eye-piece. The magnifying power of the objective, since it produces a real image, is equal simply to its lateral magnification which from Eq. (35) is equal to $x / x$. Fence if $M$ is the magnifyint pomer of the compound microscope, and if $\mathrm{m}^{\circ}$ is the magnifyi ing power of the eye-piece, we see that,

$$
\begin{equation*}
M=\frac{x^{\dagger}}{x} M \tag{51}
\end{equation*}
$$

Let $F_{1}$ and $F_{2}$ be the tro focal points of the objective and $F_{1}$, one of the focal points of the eye-piece (Fig. 46). From the relation $\frac{1}{x^{\prime}}-\frac{1}{x}=\frac{1}{A^{\prime}}$, Eq. (37), p. 28, applied to the objective, it is easily shomn that $\frac{x^{\prime}}{x}=\frac{f_{1}-x^{\prime}}{f_{1}}$. If now we let $I$ represent the distance between $F_{2}$ and the position of the real image formed by the objective, and take $L$ as a positive quantity, then $I=-x^{\prime}+f_{1}$ and $\frac{x^{\prime}}{x}=+\frac{L}{f_{1}}$. Substituting this value for $x^{\prime} / x$ into $\mathrm{Eq} .(51)$, and since from $\mathrm{Eq} \cdot(50), \mathrm{M}^{+}=-\frac{\mathrm{D}}{\mathrm{f}_{2}}$, we obtain,

$$
\begin{equation*}
M=-\frac{L D}{f_{1} f_{2}} \tag{52}
\end{equation*}
$$

as the magnifying power of the compound microscope of Fig. 46. It is the usual practice to construct microscopes of such dimensions that $L=18 \mathrm{~cm}$ and since we have previously taken $D=25 \mathrm{~cm}$, we obtain,

$$
M=-\frac{450}{f_{1} f_{2}}
$$

The objective of a high-grade microscope consists of a combination of several lenses, in some cases as many as ten, designed so that correction is made for chromatism, spherical and other aberrations. The focal length of the objective for a high-poner instrument may be only 2 mm or less. Five is a common figure for the magnifying power of the eye-piese.

## Telescopes

An astrononical telescope in its simplest form consists essentially of a converging objective fens of long focal length and an eye-piece for viewing the real image formed by the objective (Fig. 47). If the eye-piece is so adjusted that the image as seen by the eye is at infinity, then the focel point $F_{1}$ ' of the eye-piece will colncide with the real image. The lines dram in Fig. 47 are not rays of light but are merely construction lines.

The magnifying pormer $M$ of a telescope is defined as the ratio of the ancle $\theta$, subtended by the real image at the eye-piece to the angle $\theta$ subtended by the real image at the objective, hence,

$$
\begin{equation*}
M=\frac{\theta^{\prime}}{\theta} . \tag{54}
\end{equation*}
$$

And since both $\theta$ and $\theta^{\prime}$ are in general small, this may be written,

$$
\begin{equation*}
i=\frac{1_{1}}{l_{2}} \tag{55}
\end{equation*}
$$

where $1_{1}$ and $l_{2}$ are the distances from the image to the objective and eye-piece respectively. It is customary to assign a negative sign to the magnifying power of a telescope which producos an inverted inage such as that shomn in Fig. 47. The negative sign is taken case of by the sign convention for is a

negetive and $I_{2}$ a positive quantity. It will be noted that if the object is far amay the ratio $\theta^{\prime} / \theta$ is practically equal to the ratio of the angular dimension of the image seen by the eye through the teleacope to that seen by the unaided eye.

Thile an inverted image is not a disadvantage in a telescope used for astronomical mork, it is decidedly so when terrestrial objects are viewed. Various means have been devised for producing upright inages as for example by the insertion of a third lens known as an erecting lens. The erecting lins is placed behind the real image formed by the objective at such a distance as to form a second real image of approximately the same aize as the first. The second real image is erect and is viewed in the usual manner by means of the eye-piece. Since the minimum distance between an object and a real image formed by a convex lens is four times its focal length, the use of an erecting lens will increase the length of a telescope by an amnt equal to four times the focal length of the erecting lens. This increase in length makes the telescope unvieldy and is therefore not often enployed. A second method of producing an erect image is simply to use a diverging instead of a converging lens as the eye-piece. A telescope so constructed is known as a Galilean telescope, and is the usual way in which the compact opera glass is constructed.

Various types of eye-pieces consisting of more than one simple lens are often employed, but we shall not discuss these in detail.

## Spectroscope

For precise measurement of the angle of deviation of a ray of light through a prism an instrument known as a spectroscope is employed. The essential features of a spectroscope are represented diagramatically in


Fig. 48. A circular table K, the edge of which is graduated in degrees, is supported upon a mounting which carries also a telescope 2 and a so-called collimator C. The latter consists merely of a tube carrying a slit so mounted that it may be placed in the principal focal plane of a lens $L$ '. The object of this arrangement is to make it possible to regard sas an infinftely distant source of light, for waves which originate at $\underline{s}$ become plane maves after passing through the lens L.' The telescope $T$ is mounted so as to rotate about the axis of the table K . The angular position of the telescope with reference to the graduations on the table may be read with the aid of a vernier $V$ attached to the telescope. Attached to the circular table is a
second smaller circuiar plate called the prism table, which may be leveled by means of the leveling screms $\mathbb{E}$. This table carries the prism $\underset{F}{ }$. The telescope may be clamped to the mounting, and the circular table, with the attached prism table, rotated. The rotation with reference to the fixed telescope may then be read with the aid of the vernier V. A small piece of plane transparent class $\underline{m}$ is Inserted in the eye-piece $\underline{e}$ so as to make an ansle of $45^{\circ}$ with the axis of the telescope. The purpose of this arrangement is to make it possible to illuminate the cross hairs at $x$ by throwing a beam of light from a flame or other source I into the eye-piece through the circular opening $\underline{0}$, and thence, after reflection from the surface of $\underline{m}$, domn the axis of the telescope tube. An eye-piece provided with the opening O and the glass plate II is called a Gauss eye-piece.

## PROBLEMS

1. A mnall object is located on the axis and 35 cm from the vertex of a concave spherical mirror of dioptry $10 \mathrm{~m}^{-1}$. Determine the location, lateral macnification and character of the inage formed by the paraxial rays.

$$
\text { Ans. } x^{\prime}=14 \mathrm{~cm}, y^{\prime} / y=-0.4 \text {, real image. }
$$

2. Hon far from a concave spherical mirror of radius of curvature 1 m must a small object be placed in order that its image may have a lateral maenification (a) of 3 , (b) of -3 ? What is the character of the image in each case?
3. A plane mirror may be regarded as a spherical mirror of infinite radius. (a) Find the focal length of a plane mirror. (b) That do Eqs. (20) and (22) reduce to in the case of a plane mirror, and what information do these resulting equations give concerning image formation by plane mirrors?
4. A small object is situated on the axis and at a distance of 1.0 ft from a convex spherical mirror of focal length -10 in . How far from the object must a plane mirror be placed in order that the images formed by the two mlrors lie adjacent to each other in the same plane? Ans. 8.7 in.
5. A concave spherical mirror of curvature $2.5 \mathrm{~m}^{-1}$ and a plane mirror are placed 1.0 m apart, facing each other. A luminous particle is placed on the common axis of the two marrors, at a distance of 10 cm from the plane mirror. Compute the diatance behind the plane mirror, and the lateral magnification, of each of the first three images.
6. Two convex spherical mirrors $A$ and $B$ of radii of curvature numerically equal to 12 in . and $7.8 \mathrm{in} .$, respectively, are arranged 9.8 in . apart, facing eack other. An objoct 4 in . long is placed at richt angles to the comon axis of $A$ and $\underset{B}{ }$, and at a distance of 3.9 in . from $A$. Determine the position, length and character or the inage formed by paraxial rays that have been reflected first at $\underline{B}$, and then at $\underline{A}$.
7. Letting $\xi$ and $\xi^{\prime}$ denote the object distance and imace distance, respectively, measured from the focal point of a spherical mirror, shom that the equation for paraxial rays becomes $\overline{\rho^{\prime}}=\tilde{\varepsilon}^{2}$, which is knom as the Newtonian form of the mirror equation for paraxial rays.
8. By the longitudinal magnification of an image is meant the quantity $\mathrm{d} x / / \mathrm{dx}$, where $\mathrm{d} \mathrm{x}^{\prime}$ is a very short elenent of length of the image in the direction of the axis and $d x$ is the corresponding element of length of the object. Prove that, if the image formine rays are paraxial, the longitudinal magnification produced by a spherical mirror is equal to -x, ${ }^{2} / \underline{x}^{2}$.
9. A hemispherical, polished metal bom of radius of curvature 4.0 ft is placed concave side upvard on the floor of a room having a 10 -ft ceiling. A marble dropped from the ceiling traverses the axis of the bowl. Compute the velocity of the image of the marble formed by the borl at the moment when the distance of the marble belor the ceiling is (a) 4.0 ft , (b) $8.0 \mathrm{ft},(\mathrm{c}) 9.0 \mathrm{ft}$.
10. Substitute $1-\left(\alpha^{2} / 2\right)$ for $\cos \alpha$ in Eq. (17) and employ the resulting third-order equation to compute the magnitude of the longitudinal spherical aberration that exists when an object-point is located at infindty on the axis of a spherical concave mirror of dioptry $10 \mathrm{~m}^{-1}$, the diameter of the face of the mirror beine 10 cm .
11. Solve Ixample 10, sec. 19, for the case where the object-point is situated in the glass, instead of in the air, the other data being as originally given.
12. Solve Example 10 , Sec. 19, for the cases where the refracting interface is concave toward the air, instead of convex, and the objeet-point is situated in (a) the air, (b) the glass.
13. Solve Example 10, Sec. 19, for the case therc the light from the object is a mixture of violet G-light and yellow D-licht.
14. A vat filled to a depth of 5.2 ft with water is vieved from directly overiead. That displacement will the bottom of the vat appear to undergo if enough water is removed to reduce the depth to 2.6 ft ?

Ans. 0.6 ft dornward
15. A small source of light is in the air at such a distance above a vessel containing ethyl alcohol that the image of the source produced by reflection at the surface of the alcohol appeara to coiacide with the bottom of the vessel. When enough alcohol if: ndded to the vessel to increase the depth by 7.0 cm , it is found that the source must be raised 22 mm in order to bring its image again into coincidence with the bottom of the vessel. Compute the refractive index of the alcohol.

Ans. 1.4.
16. Prove that if the object-point is located on the axis and at a distance equal to $R\left(\mu_{1}+\mu_{2}\right) / \mu_{1}$ from the vertex of any spherical refracting interface, ( $a$ ) the image distance will be equal to $R\left(\mu_{1}+\mu_{2}\right) / \mu_{2}$, (b) the lateral magnification for a small object placed at the object-poiat in queation will be $\left(\mu_{1} / \mu_{2}\right)^{2}$.
17. In the case of refracting surfacea, as with mirrors (Sec. 14), the image distance correspondag to an infinite object distance is termed the focal length I. (a) Show that $f=\mu_{R} R /\left(\mu_{2}-\mu_{1}\right)$ and hence that Eq. (28) may be written in the alternative form, $\left(\mu_{2} / x^{\prime}\right)-\left\{\mu_{2} / x\right)=\mu_{2} / \mathrm{f}$. (b) Show that a given refracting surface has two focal lengths, depending upon which side of the interface the object is placed, and that each of these is subject to chromatism. (c) Compute the focal length of the interface in Example 10, Sec. 19, for the conditions described there.


Fig. 49 (a). According to the Abbe sine condition, $\mu_{2} y \sin \psi \psi^{\prime}=\mu_{2} y^{\prime} \sin \psi^{\prime}$ or, for paraxial rays, $\mu_{1} y Y=u_{2} y^{\prime} Y^{\prime}$.
18. Considering the general case of an object-poiat located anywhere on the axis of symmetry of any apherical refracting interface [Fig. 49 (a)], prove with the help of the law of sines and Snel's lat of refraction that $\mu_{1} \overline{C S} \sin \psi^{\prime}=\mu_{2} \overline{C S}, \sin \psi^{\prime}$ where 4 and $\psi^{\prime}$ are the angles which the incident and refracted rays make with the axis. (b) Given a second objectpoint located at a distance $y$ off the axis from the first, show thet $y^{\prime} / y=\overline{C S} / \overline{C S}$. (c) Hence show that
$\mu_{1} y \sin \psi^{\prime}=\mu_{2} y^{\prime} \sin \Psi^{\prime}$. Developed independently in 1873 by Ernst Abbe (1840-1905) and Feimholtz, this equation was later derived by Clausius and others from the first law of thermodynamics, and hence ranks as one of the most fundamental principles of optics. (d) If all the rays intercepted by the refracting aurface are paraxial, show that the Abbe sine condition then reduces to $\mu_{j} y \psi=\mu_{2} y^{*} \psi^{\prime}$, which is known variously as the Lagrange law and the Smith-Felmholtz lam. (e) Derive the Lagrange lav directiy from Ell . (29), the expression for the lateral magnification.
18. Lake a table for converging and diverginc thin lenses similar to Fable IV for mifrors; indicate in it the position, lateral marnification and character of the imafe then the numerical value of the object distance is infinity, between infinity und $2 f, 2 f$, bet:een $2 f$ and $f$, $f$, between $f$ and zero. (b) Toint out the similarities thet exist botween the images forned by concave rairrors an! convergine lenses, and bet:een these formed by convex mixrore and divereine lonses. (c) "nuld it be appropriate to desicnate all concave hilrors as converoins, and all convex mirors as diverginc? (d) Shom that rhenevar a reat imatre is fomed by a thin lens nr a mirror, it is alvays possible to interchange the cbject und imace.
20. Construct graphs showine the imege distance $x^{\prime}$ and the lateral manification $y^{*} / \mathrm{y}$ plotted as functions rithe object distance $x$ for (a) a thin convergine lens, (b) a thin diverging lens.
21. Prove that, for any thin converging lens, the distance between the object-point and the corresponding real image-point is never less than four ti.les the focal laneth of the lens.
22. The querta composing a certain thin plano-convex lens has a refractive index, relative to air, of 1.61 at $18^{\circ} \mathrm{C}$ and for ultraviolet Hght of a certain specifled "color". The curvature of the onc face of the lems is $0.040 \mathrm{~cm}^{-1}$. Compute the focsl length and dioptry in air, for the temperature and "color" syecified.



Fig. 51. Problem 25.
23. Then a certain thin lens is placed either at $I_{1}$ or at $I_{2}$ in Tif. 50 a real image of 3 is fommed at the same point $S^{\circ}$. ( $\left.\bar{a}\right)$ Find the focal length and poper of the lens. (b) Is the lens convergent or divergent?
24. A thin-double convex lens is made of No. 123 crom class. If the focal length in air is $30 \%$ cril for red C-licht, What will it be for violet G-lieht?
25. In F1G. 51, sunllght passes throurh two openings a and $b$ in a screen placed in front of thin double concave lens $L$ and 1lluminates a second screen at g' and b'. The distance between the second sereen and the lens is 15 cin. The distances ab and $a^{\prime} b^{\prime}$ are 5.0 cm and 7.5 cm respectively. Find the focal length and dioptry of the lens.
26. Prove that the longitudinal manification $d x$ /dx produced by any thin lens is equal to the square of the lateral manificetion.
27. Find the focal length of the double convex lens described in Txamle l2, jec. 22, rhen it is immersed in (a) rater, (b) a liquid of refractive index 1.7 .
28. A thin तouble convex fens is made of class of refractive index 1.5, relative to air, the curvatures of the to faces bave the same numericul value, $1 / R$. If the lens is sealed to the end of a tube containing water, That is the image distance rhen paraxiul rays parallel to the axis are incident on the lens (a)from the air, (b) from the mater?

30. Find the longitudinal magnification produced by the system described in Problem 29.
31. In Problem 29, suppose that the refractive index of the lens material is 1.5 , relative to air, and that the curvatures of the lens faces have the same numerical value $\underline{C}$. There would the image of $\underset{S}{S}$ be formed if the whole lens-mirror system mere under matex?
32. Tro thin lenses of focal lengths filand $f_{a}$ are mounted coaxially and at a distance dapart. (a) Show that the image of an object at infinity on the axis vill be located at a aistance from the second lens equal to $f_{2}\left(f_{1}+d\right) /\left(f_{1}+f_{2}+d\right)$. (b) Hence shor that if the distance betreen the lens is small compared mith the focal leneths, the equivalent focal length of the system is $\left\{(I / f)+\left(1 / f_{2}\right)\right\}^{-1}$, and the equivalent power is $D_{1}+D_{2}$.
33. Tro thin converging lenses, each of focal length of magnitude 12 cm , are mounted on a common axis. (a) If the lenses are in contact with each other, That is the equivalent focal length of the system? Find the position, lateral magnification and character of the image of an object situated 20 cm in front of one of the lenses for the casc there the lenses are (b) in contact, (c) 21 cm apart, (d) a distance apart equal to the numerical sum of their focal lengths.
34. Determine the location and character of the image formed when a
 a No. 123 crom glass sphere of diameter 12 cm , (b) on a hemisphere of the same material and diameter.
35. An achromatic combination is formed of a converging and a diverging lens of different kinds of glass. If the combination is to be converging which lens must have the greater dispersive power? Thy?
36. An achromatic combination consists of a No. 123 cromn glass converging lens of focal length -20 cms , and s No. 76 dense flint glass lens. Find the focal length of the flint glass lens required to produce a combination achromatic for $C$ and $F$ light. Find alsc the facal length of the combination in D light.
37. It is desired to construct a convorging achromatic combination (for C and $F$ light) of -50 cm focal length. The common surface between the converging lens of No, 123 crown glass and the divereine lens of No. 76 flint glass, has a radius of curvature equal to 25 cm . Find the radus of curvature of each of the other faces of the tro lenses.
38. The focal length of a magnifying glass is -3 cm . An observer whose eye is accomodated for a distance of 25 cm views an object through this glass. Fow far from the glass should the object be placed? That is the magnifying porer of the glass?
39. That is the magnifying porer of a ball 3 cm in diameter, made of $2 \pi 0.123$ cromn elass, if $D$ light $1 s$ employed?
40. Tith a certain compound microscope tro objectives are supplied, of focal leneths 3 mm and 8 mm , and tro eye-pleces of magnifying pomers, 5 and 7.5 respectively. That possible magndfying powers are obtainable with this microscope and rhat are the focal lengths of the eye-pieces?
41. The objective of a certain telescope has a focal length of -30 cri. Then the tolescope is focussed at infinity its magnifying poter is -4.0 . That is the focal length of the eye-piece? If the telescope is focused on an object 1.5 meters away what then will be its magnifying power?
42. A luminous object situated on the axis and 40 cm from a certain thin lens in alr, is found to produce a sharp, real image at a distance of 25 cm from the lens. (a) Compute the focel length and dioptry of the lens. (b) Should this lens be classified as converging or divorging? If the length of the object in a direction normal to the axis is 3 cm , what vill be the position, size and character of the image when the distance of the object from the lens is (c) 30 cm , (d) 20 cm , (e) 15 cm , (f) 5 cm ? Ans. (a) $-15 \mathrm{~cm}-6.5$ diopters.

## GARPMER TITEAT

## 

> I ${ }^{0}$ Intengity of illumination is directily proportional to the murabor of candies, or lamp, or omiting moints. whick ijlurinato a card or other plane objoct.
> II ${ }^{\circ}$ It is invorsoly proportionel to tho sumaro of tho distanco of the illuminatod yano from tho luminous body.
> IIT ${ }^{\circ}$ It varies as the sine of tho anizio of incidonce.
> The throe fundazontal principlos of photoxiotry as stratod by J. Ii. Iramoret in I7CO. Thenslatod from tho Photonoticin, Fart I, Bk. III, Soc. 2NO, p. 105.

The foundations on sciontilic photomtry woro laid am carly as tho eightwonth contury by tho Fronch phybicist, Fiorro Bouguor ${ }^{1}$ (16981758), and tho Goman physicist, rathamoticion and entronomor, Johann Hoinrich Lamiort ${ }^{2}$ (2728-1777). Yot only in comparntively recont yoars havo attompts boon succoseful to introduco photomotric menauromonts into

1 Bournor winst doscrinod his methods in tho Basaj d'ontiquo sur

 antor his dcath.

2 J. H. Lantont, Photonctrio, siva do nonsura ot eradibus lumina,
 the troation mill be foum in ontrathea Weasilor dor Exokton WissomSchatton (Ingolmman, Lotpais, l892), Nos. 31-33. Trion digosts of both Bouguerts and Lembort's work appean in* E. Wench, 'The Prinoiplos of Physical Optics, tr. by T. S. Anduxeon and A, F. A. Yonne (inuton, 1926), pp. 13-20 and in ${ }^{\text {a }}$. Wolf, $\triangle$ History of Scionce, Tocimology and prilusophy in the
 primarily $c$ good oxporimontor, but ono who rustricted hinale to obsorvations and drove fror: those only tho noro obvious inforonces, Lamort gavo a comploto solution for oach problom and, by critically invostigating his fundarantal postulatos, croatod tho concopts of photomotry and built thon into anathomatical syatom.
the unt of Ifinting, and thus to panco this art on the quantitative basis charactaristlo of genuine physical scicnec. Tonay the ocicnoo providing end dirocting ligit to supply a eront varioty of humen noodis inas roacho? a. hisg stag of develoment, althoueh we still havo far to go bofore architoctis, docorators and tho consurucrs of liknt como to tako full advantago of this knowlodse in conserving human oyosifht and lite, and in promoting oconomical lighting. Dofectivo lifhting hes boon consorvativoly sotimatod to be the cause of: at least 15 poxemt of induetrina acciconts, and is ono of the oausos of doioctive vision. I

The scioneo on lifhting is complicatod in that it involvo not onist the physics of If ght goncuation, moasmereat and control, bitt alco tho physiolory and paycholoey of vision, and tho oconmios on light protuction and conswemtion. Enotomatry, tho part that doals with mosurementa of laght, is assontially a branch of gometrical. opties, altiough additiond facts and concopto ontor bocauso its concorn is with moosurominte that aro all busod Litimately on judgononts of tho visuaj orfonta of Light. Becauso somo of tho important concopta and unite used in pinotomotry havo buen developod comparativoly roconty, and unsystomationly, in onmoction with spocific onginouring noute, tho tronthonte of thor in auch of tho litomtom amona to the physicint as still luckine to sora artont the losicol structure ena consistont tominology charuetoristio of most branches of mysies. ${ }^{2}$

1. A ctudy of more than belia a mijuson indivizuels mado about 2 nes by tho Eyosight Conscrvation Councti of Arorica ahows thet 20 porecit of grado-school ohildron hevo dofoctivo vishon, and that tho proportion is 40 porcent by tho timo thoy gradunto from collogo.

2 As tex as has socmod to bo precticablo in e physical troationt, tho dorintitora, torms and symbols omployed in this chaptor aro thoso givon in tho "I.E.B. Fioport of Cumittoc on "Oannclatura and Stundends",


1. Rojant Pux and Spocral hodint Plux: Last may bo roceriod phyaically as a flot of radiaut oncray U, this radiont onstay boine expross1blo in toma of tho joulo or any cthor oranary orsery undt. Tho quantitiv ati/nt, mish in tho tima-rato on flom wir raliant oncray, is termar the
 ordinary porox unit; that is, the rord Elus, as it ju uacd huro, is equivalont to the tom power In photomotiy, mo sholl gonorally find it simplor to deal in torma of ralient flux, fothar then xaldant cnoray, becauso Visuel offocte do not fopond noxely on the quentity af wanint onorgy ortoring tho gyo but on itis timorato or ontrumo.

Host litht sourcos aro hetorochrometic; that is, tho radiant flux orittod by tho sourco coneista of viriond, distinctily afforont, colors. Moreovor, if such a sourco is ongrated undex oonstant conditions, cach color prosont is foum to bo associatod fith a constant frection of tho total radiant flux onitted by tho souxce. This assoxtion may bo verified by passine tho lidht from the sourco through a jurisn, so as to form a spoctrun, and dotominime the relativo fux arriving in cach rocion of this spoctruat by moans of a sonsitive thomopilo. If the source is the filament of an olectrice larm, or any othor incannoncont mubstanco kopt at somo tomperaturo oxocoding about $800^{\circ} \mathrm{K}$, the shoctrum in fomat bo gontinucus that is, to exhibit cal ecmedvable colors in a continuns variation fros oxtronc violot to extreche rod - and the rentent riux is found to bo distributed anome those colors in sorm roghiar maner (fice. I) Which romains fixod as long as tho toraporature of the aburea is kopt oonstant. in a frluxdistribution curvo of tho typo chom in $T$ Tia. 1 wo whall tonoto any point (color.) on tho abscissa by $t$, and any cornosponainc ordinate of tho curvo Dy PA. Tho quantity PA is calloz the nonochromatio, or Byontral, zodient Alux.

In Chapter 4: TC wall seo thet $\lambda$ ctar be intorproted ss a "ravolencth fin vocuma". An miquo value of $\lambda$ oxista for ary fiveri color or', moro spocilicolly, for eny given lino


Fife. l. THie distribution of radient flue in the spectrur of a tunceton-filamont lemp overated c.t $24.50^{\circ} \mathrm{K}$. In photorntiry aro concomor? only eith the filur omittod in tho visibje region of tho spoctrurt, Hhich i.s tho narrory rocion included betwoon tho tro dotted ordinete-lines. of tho apoctrun (Chap. 1, Goc. 10 ), and this valuo Forios continuously from Iine to lino, trom ons ond of the grectrua to tho otion. For tho Visible portion of tho spoctruit, win Thich wo aro concomen in photomotry, A varion from about $4 \times 10^{-5} \mathrm{~cm}$, for oxtrimc violet, to about ? a $10^{-5}$ cry, for oztrune red. In Chaptos: 1. To sam how the ajscovary of the Fuunhoror linos mano it possiblo thoncorortiz to wofor to curtain Cofinito linos of tho moctrum, rathor ting heving to swouk in terms of
varuoly dofinol colora. Of stinn ercator utility is the dosimation or spootral linoa by thoir atavo-lancting, for $\varepsilon$ value of $\lambda$ oxists for ovoxy point in tho apoctrum ant it varios continumaly frox point to point.

Wo can nor dorine monochromatic rodiant raur Pi, procisoly, by Beying that the radiant thux which a sourco and ta in tho infinitogimn wevo-longth ranco from $\lambda$ to $\lambda+a_{0} \lambda$ is given by $P_{,} A \lambda$. Thus the total radiant flux Ponithad by any sourea is civon by the rolation

$$
\begin{equation*}
P=\left\{_{\lambda=\infty}^{\lambda=0} P_{\lambda} d \lambda ;\right. \tag{1}
\end{equation*}
$$

that is, $P$ is pronomtional to the total aroa bonocth tho silux-aistribution
 megion or tho mpoctmm ofiluntig is citen by

$$
P=\left\{\begin{array}{l}
\lambda=7 \times 10^{-5} \mathrm{~cm}  \tag{2}\\
\lambda=4 \times 10^{-5} \mathrm{~cm} P_{\lambda} h_{2} .
\end{array}\right.
$$

this beine propertional wo the gert of the aroe ir mis. 3 . thet is bonoath the dietribution owro and botroon the tro dottot ordinatc-1.nos.
 wavo-lonctin $Q A$ to buid to bo mhochromatie. It is frmoabiblo to hovo a soure that is monockromtic in tho lit toma sonse of tho tom; that is, ond Which onits radiant 12 ux of a shato mevomoneth $A$. But many sourcos,
 $P=\int_{\lambda}^{\lambda+\Delta \lambda} P_{\lambda} a_{i} \lambda$, whoro $\Delta \lambda$ is finito in valuc, but very smal.1.


 present; tho cyo is not oqually nonutive of all reave.lon-tes, botne
 source that is onstame gellow D-12 int at the reto of 50 watts mpoars
 violot G-11 ant ot tho mente nis wotta.

In orcher to soo just home tho acnsetion or briohtrose varioa with color, or ravo-icngth, considor a numbor of ronochwomatio sources, oach of

 from violot to rod, tho avorare obscrvos looking at acely in turn mill


Hics. 2. The juthantional Iurimosit. ty curvo adontod by tho Intornational Corrission on Inlunination (Rovort of tho X.C.I. Coneress 1192tI.

Tenle I. Telutivo Lumnosity fectombin ror

|  | $\lambda\left(\mathrm{c}_{2}\right)$ |
| :---: | :---: |
| $4.00 \times 10^{-6}$ | 0.0004 |
| 4.50 | 0.038 |
| 5.00 | 0.323 |
| 5.60 | 0.335 |
| 5.55 | 1.000 |
| 6.60 | 0.995 |
| 6.00 | 0.631 |
| 6.30 | 0.107 |
| 7.00 | 0.0041 |
| 7.50 | 0.0001 |

*avatractod from Burocta of Standardo Sotentitide Bnopr 20. $275: 17.174$.
 in tho manom ahom in Fie. 2 , Thoro jutezontas of rolativo Dxithtnoss wro yotzod as a furetion of thavelonoth A. Byon skiliod onourvers aitior slahtily in thoir jublugnts of rolativo brichtrobsoc, Dut the poxformace ot tho "evornco oyo" can io totomano ly averarini: the judranta of a largo mumor eompotant obsorvors. Theus tho date fivon in rablo I erg obtainod, an". feor thor tho lumingsity curvo Bhown in Fien e mas elotod. is tho data nu curve shom, the licrmel oyo is wont nonsitive to ficht ef wavo-10neth $5.55 \times 10^{-5}$ cra, which is yolionish-groon in solore Lieht of tion colow has tho hidwost poosing visuel offetomes, end nonco :roult so tho inonl "coll li, wht" in It wowe nos for the fact that a yollomiahFrom colur is unationtotory for marnoms of Exnorat 11turination.

Fin foctor F , in Thalo I cma Fip. 2 is a mono numor which is callod the relalito lumosity factor for 1 i , hts of mive-lunath $\lambda$. Its valuo from tho yollorish-groon color secuutime tho
maximu: risuaz offocb is arbitranily mano unity. The rociprocal of $K_{\lambda}$ onviously citos tho rolative marnituro of daciant flux roquiro: to produco 2) elven brightnuss sonsation.
B. Envircas Flux. At was shom In Soc. 1 , licht confinor to an infintorimel rane of wero-lonethe from $\lambda$ to $\lambda+$ d has a radiant flux

 this erprossion bo fntograted ovor afi fravo-lousthe, a guantity is obtainod that clematy is a moasure of tho totea whel offoct producon by all the litht from a soureo. This quantity which rocusures the officery of radiant
 itis dofirinc oquation is

$$
\begin{equation*}
F=\operatorname{comax}^{\max } \int_{\lambda=0}^{\lambda=\infty} I_{i=1} P \lambda d \lambda, \tag{B}
\end{equation*}
$$

Whoro Gany is a constant of proportionality the volun of ribich depends on tho unfts ongloyod to oxrocs If ind PA. Tho Ifriatie of Intogration in Eq. (3) may durges bo mado 0 and co, Anathat of the valucs of $\lambda$ corrosponding to the ondo oy tho spectruri; wis in hecause If in zoro for all
 Will bo suro for any weva-loneths thet aro ontiroly misoinf, In the light Prom a partictiar aroureo.

Although luninous fluck in the tax:-mate of flon of padant oncray ovaluatod according to ith caracity to aroduco vibucl soncation, tho unit In tomes of which it is moanmod is not ono of the oximary pomer unito, as in the caso with radiant flux P, but a grociei photonotric unit colluc. tho lumen (abrevintion "lu"). Locicnily, Fo shoula oxpoct to dofino the Iuren sy moans of TR. (3), tho dofininc aquation for Iwinous rluw; mot,
for roaens de a hatomicel charactor ent of corvonionco in mocouromenta, tho unit acturliy is dofinor in timm of a cortan standard ifent-sourco and anothor platomotric concopt which wo will aiscuss in Sec, 5. Thorcfore, It must sumfico to sey at this point tinat 2 watt of nonochronatic podiant flux of the yollowish-croon color $\left(\lambda=5.552 \pi 10^{-5} \mathrm{~cm}\right)$ which protucas tho maxdrun visual offoct is foum hy the riost raliciblo enporimonts to be




$$
\begin{equation*}
\tilde{F}=\left.6821\right|_{\lambda=0} ^{\lambda=0} \tilde{x}_{\lambda} P_{\lambda} d \lambda \tag{1}
\end{equation*}
$$

 hotorocironatic lisht for when the rlur-motrinution curve (Fif. I) is
 Pra. in in watta.
 Licht-sources jilist bocario a sciontifle moblow, it mes the wractice to coscribo ony source as oquivalont to nome nurbor of urdincly cantios. Lator' in the intorate of accuray, candios of spocitioc cormosition, dirmonsions and rato of consurition wors aroptod as otriularia. But candios as standeres could bo oniy aproximatoly uniform, at vosu, wat thoy woro oventmally roplacoit by verious kinds on flane lemp. Fhare lames aso subjoot to the
 satisfectory standerds urtil about tho tino tho cerbor-ithitunt aloctric
 chission of light then the moiden soureos mitch wore to wo comerod uith
them. This rusultcd in th adoption of an inturnational standard ${ }^{l}$ consísting of sroups of carbon-filcmsnt lamps of specifisd construction and operation which arc depositud at the various national physical laboratorics throughout the morld. Thosu groups of lamps constitutc the primary standards, and vorking standards are calibratu by comparison uth them. Since clictric lamps arc not roproduciblo, which makis thom unsatisfactory as a physical standard, a now reprociucibl. standard has since bocn devilopid that consists of a "black body: madc of fusod thoria and imorsed mhile in usc in a bath of purc, froczing platinum. ${ }^{2}$ A lone surics of tuste carrica out at the National Burcau of Standards, Tashington, has shom that cach time this sourco is set up ancw, it emits iight mhich is thi sami, as compared with the olectric lamp standards, Within 1 part in 1000. This is about the limit of accuracy at presunt required in the most procise photometry. Fortunatily, the color of the light cmittod by the now standard is mactically identical with that of the oid standard carbon-filamnt lana, ${ }^{3}$ mich groatly facilitatos visual comparison of the tro standards.
5. Luminous Intunsitios of a Point-Sourco. Ivcry source of light is of coursc finitc in sizo, and hunce cmits flux from cycry point of its surfacc. In a grad many practical situations, homov-r, We dual with lightsources whosi diminsions, thilu finit, are negligibly small in comparison

1 Eydo, Transactions of th, Illuminating anginciring Socicty 2, 426 (1907); Burcau of Standards Bulictin 3, 65 (1007).

2 This primary standard mas suggestud by Jaidnur and Burgcss, Elcetrical Morld 52, 625 (2008). For an account of the cxperimental rork involvod, soc tinsol and co-iorkers, Burcau of Standards Journal of Roscarch 6, 1103 (1931).

3 Scicned, Aus. 1, 1930, p. 109.

With tho aiduncon from minch zo obsorvo theri. in sourco thus shsorvor or usod may bo rognodod 2, point-sourco, a concopt that wo ofn ofton orploy to groat ndvantaco ns in moanis of simplifyina our celculetione. Anotroar complicetion oncountorod in doaling with lifht mources arison fron tho fact thet the flux thoy onit is usuelly not uniformy diotributoc in atl diroctions, and this makes it nocossury to doviso a may to ormese the flux onittod in any spocifiod diroction.

 solita anclo Ab rith its aroy at S. Tha: inarinary cono wontans a port 4 IT of the luminous flut $T$ arittod by E .

ric. 3. Dofinition of luminous intonsity.

A noasuro of the immincus max onittod ly $I$ in tho diaction $L_{x}$ can bo notton by forming the ratto $\Delta \mathrm{F} /$ Aw and takine this ratio is the limt when $\Delta u$ boconos Vandshingly amal. Tho rosulting quantity is sailod tho luninous intonsity, I, of the pointmoureo gin the diroctlon spocifuct. Ita actining oquation
ovidontly is

$$
\begin{equation*}
I=\lim _{\Delta u \rightarrow 0}-\frac{\Delta F}{\Delta U}=\frac{d F}{C U!} \tag{5}
\end{equation*}
$$

In mords, tho iminous intonsity of a point-source, in any arecifiod dirocm tion, is equal to tho luminous few omitod por unit solic anclo in that diroction. 1

1 Similarly, tho radiant indencity, or stomadianco, I, of a pointsourco is definoct as tho raciant fiur Pomitod por unit aolid ancio w in a spooifiod cirection. Its defininc: ountion ovidontly is $I=$ ap/du, and the unit usually omployod is the watt par storadan.

Tho storudian, tho most convoniont anct wictoly omployor unit of aolit onclo, in deftinod as the aolit angle sultondod at tho contor of en shoro of unit radius by unit area of tho sphorical surfoec. Thus tho nolld antio al subtondod at tho contor of a sphore of radus ry by portion of tho ghtcricol surface of aroe $\leq$ is isivon by tho oquetion, $\omega^{-2}: \Delta \underline{r}^{2}$ storadisns. A complote sphoro ovidentiy subtonds at its oontor a solia ansig of $4 \pi$ stcreadians.

The unit or laminoud intonsity in most fonoral uso is the cande, (absvoviation "ea") which mas dotirod oririmilly as the luminous intonsity, in a horizontal diroction, of a standard canclomeurec. I is a cortain light-aurec is gaid to heve a Luminous intonsity of 10 ca in a cortain diroction, this reans thet its iverinous intonsity in the diroction spositiod
 Todoy the maghitude of tho unit callod tho cantio is prosorvod by moans of tho Grcups of carbon-filamont hems mantainca $e t$ the variun atandardication laboratorion (Soc. 4), a spociric fraction on thoir avoraro luminous intonsity In a dovinito ainoction boin dotinod an tho intornational cencio, ${ }^{2}$
6. Tho Unit of Luminous Flux. Amit of Imanous fins (Gce, B)


$$
\begin{equation*}
a=\int X d \omega \tag{0}
\end{equation*}
$$


 1 und of Iwinous intomaty $x$ I unit of senilamplo. Thus, it is






1 Bocauso tho cando is so fidaly usod as a unit of lamincus intornsity, the oxprossion "candioporre" is cftor usce an a substitute tor tho corroct tom, Inaincus intonsity. It is an risloadne substituto, for luminous intonsity io not simply poror, but is Imanoue flux por unit solis anslo.

2 In accomanco fith an arponont afreceted in I900 hetroon the
 ant the Netional Pbysical La?oratory (Enctand, wad achent lin loal hy tha Intomationel ocmaisgion on ILlumination.

Supeso that trio lumincur intonsity on a particular wint-source de measurod for oech of a laric number of diperont dircotions in apece, and that the evorare value $I_{\text {ns }} 2 a$ computch. Thon, in viom of $\mathrm{Eq} .(0)$, the total luminous ilur emitton by this point-sourcc is eiven by

The quantity Ins ia onflol tho nown aphorical dumbous intonsity or, lons aptly, tho "moan aphorical candlopowat". For ozamplo, moasuromonts shom that a photorlaw lamp has amean apherical Ixainous intonsity of $3.0 \times 10^{5}$ candes at the monent of maximus output'; hence the lumirous ilux which it emita at that momant is $4.5 \times 10^{6}$ cardseatoradians, or Imana.

Eq. (6) cam also be amployed to compute the lunisbun floz onittod Within a conc having its apor at tho point-bourco ant enclosine a solid
 described by spocifying the plame ancle $\phi$ wado by the surfoce of the conc with its axis of symotry, thon, ais can ousily bo shom, Eq. (i) way bo conveniently exprosaed in the from:

$$
\text { Fi }=\int \begin{align*}
& \omega_{2}=2 \pi(1-\cos \phi)  \tag{3}\\
& \omega_{1}=0
\end{align*} I \operatorname{ain}=0
$$

Of course, this cquation ean be used to cormut If orly if the ratation of the luminous intensity I of tho point-anure to tho dixoction $\phi$ is revresentable by a mathomatical function Fortwatoly, thio is pongibai, aj loast epproximataly, in tinc caso of sevoral types of acurecs.

1 a math of similar dato fox may afrereat tymed of light sources and fixturea, together mith troatmonto of all the various practical
 Calculations (W1Ioy, 1.954).

Exande 1. Cortain monces, wach as a Photorlask laray or a hichily
 (Chap.), bave mproximately the same lamons intonaity Io in all directions. Show thet, for then,

$$
\begin{equation*}
T \phi=\sin _{\mathrm{c}}(1-\cos \phi) \tag{i}
\end{equation*}
$$

 cent bulio in a white-branclod metal reflector of the shape shom in


Fig. A. Incemesamt lamp With metal risilnctos. Hes. 4, the distribution of luninous intomaty is doscribed fairly closoly by the cquation $I_{\phi}=I_{0} \cos \phi$, whore $p$ is the plane anelc between the 2 rof or Iuminous intonsity I $I_{\phi}$ and the autal ray of maximum Iminous intonsity Io Darive axpresejons Fon (a) tho lumanous ilux Fif and tted withkinn $n$ comie, the surface of which makers es prove ancio $\phi_{1}$ with the axtal ray, and (b) the total luainous flux E coniticis by the lighting unit.
7. IIIWingtion To shall nor turn to o conisiduratisu of surfeck thet rocoive lidet from point-sources, for illwinntod aurfucos aro of


 flue inciant on this elomont. mine rotio AISA is tomad tho average

 point in the surrano olememi A A that is

$$
\begin{equation*}
E=\lim _{\Delta A \rightarrow 0} \frac{\Delta T}{\Delta A}=\frac{W}{\Delta A} \tag{10}
\end{equation*}
$$

 Which is usualy colled tho lux, and tho lungen pow ghar foot.
 that the illuaination on a cortain circutax toblo ton of aroa A nd radius
 at the odgo. Assumine that, the illumanetion decreesos uniroriny in all
diroctions radially fron the center to the edge, derive mprossicts for (a) tho total flux incident on the tablo top and (b) the averaere illuminathon.

Solution. (a) Since the jalumination is the sames at all pointa cquidstant fresil the conter of the table top, the aren rasy bo convoniontly dividod, by mens of concontric cfrcles, into annular zonos of inf indtesinal miath ar. If $x$ is the mean distorec of ony amulus from the contur, the illumation $\underset{E}{E}$ on tho annulus is

$$
E_{0}-\frac{E_{0}-E_{i}}{\mathrm{R}} r
$$

and the area chat of annulus is arrur. Theretora, tho total flum incident on the tabla top is, in vich of Fq . (10),

$$
I=\int_{r=0}^{r=1} \mathrm{BA}: \frac{1}{3} \Lambda\left(\mathbb{B}_{0}+2 m_{1}\right)
$$

(b) The averago inlumination is $-\frac{1}{3}\left(5_{0}+2 \mathrm{E}_{\mathrm{R}}\right)$.

Wo shall nor dorlve an oquation that will canblo ws to compute tha illusination produced on a surfoce by a aingio point-izource. Ary particulex clement $\Delta \Delta$ of the illuminetod


Fig. 5. A ourfoco olment $\Delta \therefore$ illuminatod by a single point-isource s.
surfoce nubtonde some solid englo Aw at the source S (Fig. 5). If the 1umincus intenatity of $s$ thouchout this solid anglo has the avcrase value $I_{\text {ap }}$ the flux AF inciant on $A \leq 1 E$, by Fq. (6) Inev $\Delta$. Hence tho avgrage Illuriation a $F / \dot{A} A$ on $\triangle A$ Ic $I_{\text {av }} A \omega / \infty$ is

Suppose that the aistance or the aloment is from the sourco B is $\underline{3}$, and thet the olement is so oxiented thet tho noman to it makes a plane anele Q With the incident light rays. The solid anglo AW thon has the manitudo $\Delta \sin ^{\cos \theta / 3^{2}}$, and the expression for tha average Liluminntion on the elomont becones

$$
\begin{equation*}
E_{D V}=\frac{\Delta V^{*}}{\Delta A}=\frac{I_{n v} \cos \theta}{s^{2}} \tag{11}
\end{equation*}
$$

By taking the lirits of the nembers of this oquation, so obtain

$$
\begin{equation*}
E=\frac{I \cos \theta}{s^{2}} \tag{12}
\end{equation*}
$$

in minch $I$ is the lumous intensity of the poirt-source in the direction or the line connecting it to the point on the surfacc mere the illumination ㅌ is producod.

Eq. (12) oxncosses three of the nost frequently ormployed lans of photonetry; namoly, thet the illumination at a point on a surface
(i) in enversely propertional to the square of the distance betreen the point and the source producing the illurination; (This is the inverse-square lat for illurination),
(is) is directly pronortional to the cosine of the angle betwecn the nomal to the surface at the point and the Ino connecting the point with the source of the fllurination; (This is tho cosine lan for illumation),
(iii) is directly proportional to the luwinous
intensity of the source in the direction of the point.
The first of theso three gonoralizations - tho inverse-square lat - was clearly formulated by Keplcri, although only by an appeal to intuition, and qualitative statorenta of all threo eerc given by Leonardo da Vinci in his book on paintin ${ }^{2}$. They mere all advanced by Larbort ${ }^{3}$ mo troated thern as already known, but nevertheless derivod ther theorotioolly and teatod them experimentally.

1 Kepler, La V1tcllioner Daraliponena (Fraakfurt, 160d).
2 Uber tic ilalerei (German od. by Ludate, Vicnna, 1882), i. 308.
3 Iambert, Photometria, Part I, Chap. 1. Lanbert's Ecometrical domonstration of the cosine latr is used in rany roocern teatbooks of physics.

Bocauso Bq. (12) is so irequently employen in photonetric meosuremonts and calculations, it is cosontial to noto that ite dorivation involves the assuriptions that the light travels in otraight lines rron the pointsource to the surface illurinated and that nono of its enersy is converted into other forms zuring the tranamission. Honce the oquntion and the three lans implicit in it apply accurntely only to situations in which: (a) the dimensions of the sourco aro nozligibly amall comprod with the distanco betreen the scurce and the point illwaneter I; (b) overy purt or the medium between tho source and the point illurinetod has the saro rofractive index, since othernise refraction and partial replection of the light mould occur (Chep. 1); (c) the mudiu:i does not eboorb aily appreciable quantity of the Iuminous onorgy.

Example i. is lighting unit of the typo describod in Exarmple 2 is installed at a hoisht habove the conter on a floor. issumine that is large comparca mith the dimensions of tho lidting unit, and that the walls and ceiling of tho roon are covored ath a liglit-absorbing raterial, cevelop an expression for tioc illumination at a point on the floor rivioh in at a horizontal aistance from the center oi tho room.

Solution: For a lichtinic uait of tris type the lu:unous intensity I $\phi$ of any lay majeine an andio $p$ mith tho vertical is Jo cos $\phi$. Fron Eq. (11), $\mathrm{E}=I_{\phi}^{\prime} \cos \phi / \mathrm{s}^{2}=I_{0} \cos ^{2} h /(\mathrm{h} / \cos \phi)^{2}=I_{0} \cos h / h^{2}=I_{0} h^{2} /\left(h^{2}+r^{2}\right)^{2}$.

Exarnles. Shos that tho Lumen per gquare foot, Thich is a unt of illurnnation defined by Eq. (10), Fy Do coninci altarnativoly as the illurination on a surface, all points or thich aro at a diatance of I ft froma point-courco harime a iuninous intonsity of 1 candle in overy aroction. Because the untit can bo defined in this ray, iliwannting enginocrs usually call it the "foot-conile", which is a risleading toma since it incorrectly imples that illumination'is the moauct of the luminous intonsity of tho source and ita distenco from the surface.

1 If an extonded source iä concontratod ospentially in a plane at richt anglos to the lino comnecting its centor to tho point illusinated, and tho leneth s of this connectind lino is 15 timus tho maximm dimeter of tr:e sourco, the orror incurrod by enployine; $\mathrm{dq} .(12)$ in about 0.2 percont. If the leneth $g$ is 5 thenes the raximun dianetor of the source, the orror is about 1 percent, but ovon this is loss than tho oxpcrimental error involvod in iliumination reesuroments unless tho phetoretrist is vary erneriencod and employe oquipmont cf hien precision. When a suurce is ontiruly tou lareo to bo troated as a point-sourco, the illumation it produces can be conputed by inasining the arce of tho scurce divided into infinitosiral parts, and thon findin tho tetal illumhation due to ain those parte by the metion of the intercal calculus.
8. Mensurgent of Lurinoue Intonsity. Wo have doforred considexe. ation of fon to measure the Iumpous intensities of a point-source (sec. 5) until after our discussion of illurination, for this measurenent, and most photometric monsurerionts, ultinately depends upon a determination of tho illumanetion at a surfaco.

The firgt affective photometer mo constructod by Boncuor. ${ }^{2}$ \& fon yoars later Lambort ${ }^{2}$ used an instruncnt that was vory winilar in principio to tho typo nor knom as tho Tumforl sindon motometer. Whay, the method widely craloyod consiats in illumatine tro white, diffuscly roflectinc screens, the one with lidet from the aurce to be measured, the
 and cormarine the brikthess of theoe rofloctine surfacos by means of the eye. The oyo cannot be user to estimato degroe of brichtness accuretcly, but it can bo used to judge equality of brichtnesses, provided tiat the photomoter is so arranged that the refloctinc screcns aro prosonted to the oye side by side aith the finest possible line of dorarcation, a socond essential provision is that the colornuantity of the light fron the tro sources be nearly tho eanc, for otlicmise the improssion of color contrast is so strone that the obscrver will be unable to cuplicute closoly his Judgnent of equality of brichtness, and difforent observers will rake midely aifferont judgonts. Any method that finvolves judgent of brientnoss is, thoreforo, practically limited to the comarison or licht-sources of the sane type, though of different power; for oxample, any tho ovacuatod tungeten-filament larms or any two carbon-filanent lamps.

1 Easai dontique sur la cradation ho la lubière (Paris, 1720).
2 Photomatria, Part I, Chap. 2.

It is also important for the accurate comparison of two sources that only tho licht directly emitted from each source ginall reach its rospective screon, and that a rethod be prorided for varying the fllumination of the screens acoording to some knom law. The sirmiest woy to vary the illurination is to rave cach souree tonard or array from its respective sereen alone a ling nomal to the sereen at itis conter, almays kocping the distanco betrecn serech and source larso cnourh for the latter to be troatod as a point source. Thon the la of variation of illurination is the inverse-square lat (Soc. 7). Sungose that the sources have luminous intensitios of mantudes $I_{\text {, }}$ and $I_{2}$, respectively, and that their respective diotances from the screme have to be made $s_{1}$ and $s_{2}$ in order for the screens to appear cqually bricht. Ther, by Hq. (12)

$$
\begin{equation*}
I_{1} / s_{1}^{2}=I_{2} / s_{2}^{2}, \tag{13}
\end{equation*}
$$

provided it can bo assured that aquality of brijhtnoss of the tro reflectinc scroons implics equality or illumation 5 . Since this assumption is nevor safe, tho followine subatitution mothod is onjzoyed in all accurate photometry. A thifu "comparison" acuree of comstant luminous intencity Is placed at a fixel distence from ong of the rofloctine screens. The two sources of luminous intonsitios $I_{\text {s }}$ Is are thon ileced one at a tiro in front of the oticr serecn and their roppective distances $s_{\text {, }}$ and $S_{2}$ from : this scroen are in cach case adjusted until the brichtnoss appears to match that producal on the first screon by the comparison lemp. The illuminations preducod on the second screen must thon have the same value IE, and nence Eq. (13) is applicable. If oithor $I_{\text {, or }} I_{2}$ is the lurnincus intencity of the sub-standard source, the lunincus intensity of the other lomp can be conputed at once.
9. Tho Lurror Brodhun Photometcr Head. In carryinc cut the visual, diroet comarison motrod doscribed in tho procedin: soction, the instrument alrost universally used is the Larmor-Brodhum photoreter head ${ }^{\text {l }}$, shown

diagramatically in Fig, 6. The tro refloctin soreens are simply tho opposite sides of a single, matt White sereon Ss. They are viowed throurh oyepiece at e with the aid of two plane mirrors, or two total reflection prisms, placed at Mand M. In order to brines the tro sidos of the sercon gs inte imodiate juxtapoaition, as scon by the oye at c , the phenomonon of total reflection (Chat. I) is made use of in the dosion of the cubo PP'. This cubo consists of tro ri:thennlod misme, $P$ and $P$ ', with adjacent racos that aro made to onn into as perfoct contact as possiblc in cortein places, but not to ccine into eontact in other places; this is accomplishod by laving aefinite parts of contactine face of one prism either etchod, sand-blasted or curvoi, so thet whon the tro prisms are fimly prossed tonethor, only cortan portions rake compete contact with the face of the othor prisn. The ligt coanc to the eye at

10 . Iurwar ond $E$. Brodhun, Zatschrift fur Inctrumentenkunde 9, 23 (1889). Llthou'h this instrument wis inverted by Tillia: Sman in 1859 (Transactions of tho Eoyal Socioty of Edinburch, Vol. 21), accurate photonetry was not noodod in his time and the instrument ras not broucht into use until Iurricr and Brothun invented it intopendently in about 18e8. Tho instruant employs the sario principli, but in a much roore rofined form, as the "freasc-spot" photoreter, dosicnod in le4t by Robort Wilhelri ponBunson (1811-1899) for use in doterminin: the luminous intensities of electric aros.
-
throuth the portions which rake completo contact is lifgt that cmes fron the source $S$, undergoca reflection at 1 and then is transritted throuph the cube $E P$, just as if there were no intcrface in it. On the other hend, the lifht coning to the cye at efron the portions of the inturface whore an air film exists, is composod ontirely of rays that hovo cons fros the sourco $s$ ' by woy of the reflector ${ }^{1 \prime}$, and then have undergono total roflection at the surface of tho air film in pp'. Fence, if the tro sides of the
 roflecturs, it is only necsesary to set the sereen se at such a point between tho sources $S$ and $S^{\prime}$ that the whole curfaco PP , $[F i g .6(3)]$ appears unifomily brifht, aith the linc of donarcation botween its portions rade as nearly inviaibla as possiblo, und thon to apply Eq. (13). However, sinco the instrument eanot be poriectly wymutrical, it is bost to onicy the sulutitution nothod (Sce. 8), or she to rotate the photonctor head throuth $180^{\circ}$ about on axte passine throufh the sereon os, thus interehancine the tro sides of the percona and alao the raflectoris, and take tho rean of tho sottina boforc and arter reverval as the correct acting.
10. Keacurciont of Illuanation. Probluts of Illumatine encinecrine more frequently involve the moasurame of illumination (Sec. 7) than any othor photactric quantity, and this has led to the develoniont of various typos of pertable illwimation photonetors, or 11luminor:oters. ${ }^{\text {l }}$ Altheurh the docrec of precision required in these illwinoneters is not hich, the more accurate of then alrays involve thres parts: a diffucly reflectinf test sereen mifin con be placa at the spot fineru the illumination is to be measured; a sinilur seroen installed internally in the

1 For descriptions of the various types, see J. W. T. Walsh, Photometry (1920), Chap. 12. This exccilent and comprchonsive treatise deals with all phases of photonctric neasurcients and instruments, and includes on extensive bibliocraphy.
instru:ent and illwinatod by a battery lam in such a way that its brichtnoss can bo variod; and scrie dovico, such as a smoll Iurmor-Brodhun cubo (Soc. 9), for judeine when the brifhtness of the intornal sercen has boen adjusten to match that of the external test screan. The scale of an illumnonetor ta usually calbrated to ivo readins directly in temas of the lumon per square foot (foot-candle) or tho lux (neter-canale). This callmation, thich shoula bo chocked at frequent inturvals can be carried out by producine: calculablo arounts of illurination on the tost ecreon with the ald of a sub-standard acureo of knevn Iurineus intonsity.

Rocuitly it has becn found possiblc to dovolop various extremely compact forms of nonvisual or phyisical illuminometers; that is, flluminom rueters that do not involve visuml comparisons of brifhtnosecs. They conslot essentially of eithor a selenium celi or a copper-oxtdo photovoltaic coll (Chap. ) comectod to a sensitive calvenometor, the dial of mhich is calibrated to Givc dircet roadncs of illuanation. dilhough the lightsensitive matorials usod in theso physical illuminorators have wave-loneth verous responss curves that aiffor s.ecenhat irom the luninostty curvo for the oye (Fic. 2), it is possible tomak the formor curve arroe rith the lattor fairly well by havins the lint pass inte the instrunent throurh a sultably chosen filtor.
11. Brichtneis of an Intonden Source. Thus far wo have been concorned nith point-sourcos rhereas nodera lintinw wrolens often involvo. sources of dimensions ao larec compared with tho diatances from thich thoy are neasured that neither the concopt cf luminous intensity (See. 5) nor the lat of inverse squares (Sec. 7) is diroctly applicaislo. The use of sourcos of lareer area, althourig of lower brichtness, is the tendency in rodurn lichtine; for example, incandescont lomps are now often enclosed in diffusinc zass clobes of laree surface area, the filmonts of the molern loms
boine so brieht that uiroct viow of theri mould be unbearable. Vision may be inpaired if the bri. Ftness of a surface, or the contrast betreen its bri-htness and that of the backround, is excossive. Now, to be able to judge the qquality of brichtness of two adjacent surfaces of the same color is not alfficult, as he have alrondy noted in Sec. 8; but if we are to bo able to express a particular brichtness quantitatively, ro rust define the concopt in terms of physical operations and deterrine its rolation to other physical quantitics.

Irasine the surface of an extended source divided into elements, each small onourl in area to be treated as a point-source. Let ar in Fi $\because .7$ be the area of such on elonent, let $\theta$ be the jlane an:le between the nomal to it and the direction of the obsorver, and let $\Delta I$ be the luminous intensity of the oloncit in tho diroction $\theta$. Tho brishtnoss $B$ at a point In the oloriont so and in the diroction $\theta$ is defined by the equation

$$
\begin{equation*}
B=\lim _{\Delta \alpha^{\circ} \rightarrow 0} \frac{I}{\Delta \sigma \cos \theta}=\frac{a I}{\partial \sigma \cos \theta} \tag{14}
\end{equation*}
$$

Evidently, air $\cos \theta$ is the area $b y$ projected on a plane porpondicular to the direction $\theta$. Hence, in Fords, the brichtnoss in a particular direction


Fic. 7. Definition of brichtness. at a point in any gurface elenont is the ratio of the luminous intonsity in tho iven diroction and the arca of the clomont projected on a Mame perpendicular to the siven afrection. Brirhtness at a point is expressed in conales por unit area of efluttine surfoce perpondicular to the direction of fiun; that is to say, in lurens por steradian per unit area of nominl orittins surface.
12. Highly Diffusing Sources. The brightness of a source may vary from point to point of its surfece and, at any point, may vary with the direction from which the point is observed. However, many light sources are in uso for which the brightness at any given point on the surface is practically independent of the angle of view. This is true, for example, of a deep, narrow cavity in a plece of incandescent metal, or of cpal or alabaster glass from which transmittoa light is onerging. Any such surfaco is aad to bo highly diffusing end, in the idoal caso where the brightnoss at coch point is ontirely indepondent of the onglo of wiom, is tormed perfectly diffusing. Now, as an inspection of Eq. (14) will show, if the brightness $B$ at any point of a surface does not change with the angle of View $\theta$, this must be because the luminous intensity aI at any point varies directily as $\cos \theta$; that is, the luminous intensity in any direction $\theta$ is equal to the iuminous intensity in the direction of the rormal to the surface element multiplied by $\cos \theta$. This statemont, that the luminous intensity is proportionel to the cosine of the anglo of view, is known as the Iambert cosinc larf. Tho lan applico only eppromimately to most actual surfaces and honce it is almays bost to specify anglos of obsurvation in giving data on brightness.

Howover, an advantage rosults then the brightness is nearly enough the aame for every angle of obscrvation to make it possiblo to rogard the surface as perfectly diffusing, for then a simplo relation is found to exist between the brightness at any point and the luminous flux per unit area, $d F /$ or onitted in all directions fron that point. To find this relation considor that the luminous flux dF (omitted by a surface olement do (Fig. 7)) through a solid anglo ads in the dircetion $\theta$ is, in vien of Eq. (5), Idu; and this, per unit aren of the oritting surface, is

$$
\frac{d}{d a} d F=\frac{d I}{d d^{2}} d a
$$

Introducing the brightness into this expression by mans of Eq. (14), te have

$$
\begin{equation*}
\frac{d}{d T} d B=B \cos \theta d \omega \tag{15}
\end{equation*}
$$

Mow $\underline{(d E / d \sigma}$ ) axprosces the lurninous flux por unit area cmitted through an Infiniteaimal solid anlo in the direction $\theta$, whercas wo wish our final result to be an oxprescion for $\alpha$ ag/ar, the luminous flux por unit arca emitted in all dircctions from $d y$; that is, in tho wholo dolid anclo an stcradians throueh mich do is orittaing light. Ail easy may to approach this integration of Eq. (15) is to imagine a hemiophericol surface of radius $\underline{D}$ describod about der as a center (Fie. B), since all the light emitted by dor must pass through this homispherical surface. The licht is erittcis symactricolly about the normal to $d \theta$ and honce tro may choose as the olonent of aren of the hamisphers an infinitesimal ring: all portions of which mako the seme planc anclo $\theta$ with the nomal. If the Hilti of the rine subtends a plane anele de then this ariath must be ado. The loneth of the rine is $2 \pi \cdot \leq \sin \theta$. Mnerefore, the area of the ring is $2 \pi s^{2} \sin \theta d \theta$. This oxpression dividod by $\underline{g}^{2}$ Gives the solid angle dos that thus ring subtends at ay. Honco a substitution for de. may be made in - - - (15), yioldine

$$
d\left(\frac{d F}{d A}\right)=2 \pi B \cos \theta \sin \theta d \theta .
$$

If this equation be integrated from $\theta=0$ to $\theta=\pi / 2$, thus covering the entire surface of the hemisphere, He obtain for the total luminous flux per unit aroa of ã,

$$
\frac{d F}{d \theta^{\prime \prime}}=2 \pi B \int_{\theta=0}^{\theta=\pi / 2} \sin \theta \cos \theta d \theta=2 \pi B\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{\pi / 2}
$$

or

$$
\begin{equation*}
\frac{d F}{d u}=\pi 3 . \tag{16}
\end{equation*}
$$

The quantity dF/an is tomed the flux-brightness at a point on a perfoctly defusine surface, and we have found it to be equal to $\pi$ tirlos the brightness at the point. If $B$ is expressed in, say, condes por square centimeter, then $\alpha F / d r$, or $\pi B$, will be expresset in canille storadians per square centimeter; that is, in lumans por square centimeter. This unit of fauxbrightness, 1 lu • $\sin ^{-2}$, is in practice callod the larbert. When a highly diffusing surface has the seme brightness at every point, as io usually the
 is the total area of the surface.

Exanglo 6 . When a 100-7 cas-fillor tungsten-filament lamp is operated under tho conditions for minch it :as designod, its light-source officiency (cofinct as the ratio of the luninous flux from a sclf-Iminous source to the porer required to raintain it) is found to be $12.5 \mathrm{lu} \cdot \mathrm{u}^{-1}$. A certain rlobo of diameter 30 cri made of diffusing glass, surrounds such a lamp. The surface of this globe is found by direct reasurenents to have a flux-brightness that is fairly unfform fros point to point and for various angles of vior, the average valu being . 3 f lamberts. Shory by computation that (a) the lumincus flux tranmatted by the flobo is $9.9 \times 10^{2} \mathrm{Iu}$, (b) the perountaise of luminous elux transmittod by the clobe is 79 percent, and (c) the average brichtness of the surface of the slobe is $0.11 \mathrm{ca} \cdot \mathrm{ch}^{-12}$.

As Examplo 6 iliustratos, a transparent matorial froc which licht is onaring in all atrections moro or less in accordance with tho Lanbert cosinc lan may bo treatud as if it itsolf rere the source of light. The
flux-brightness of such a socondary sourse evidontly is equal to $t \mathrm{E}$, there Is the illumation, or ilux per unit area, incilent on the rear surface of the material from the primary source, while $\hat{\mathfrak{c}}$ is the fraction of this incident lumincus flux that is transinttod by the material so as to eneree diffuscly frem the front surface. If E is exprossed in lunens per square


A surface that reflects light dirfusely may also be rogardod as a secontary source. No reflocting surface is perfectly aiffusing al though e matorial such as \#hite blottine paper provides $x$ fair cprroxifation. The flux-brightness of a diffusely refloctinc surface cvidontiy is equal to $\because \mathrm{E}$, whero $E_{i}$ is the illumination on the surface and $y$ is the fraction of the incident lurincus flux that is roflecton diffusely.

Tric fractions $\because$ ' and $f$ aro called, respectively, the transmission factor and the roflection factor. A thith fraction $\%$ colled the absorntion factor, is derinci ass the fraction of the incidont lurinous filux that is absorbed by a matorial. It is foun that tho velucs of $r^{\prime}, \alpha$ and dopend not only on the churacter of the suriace but cencrally risc on tho ancle of incidence and wave-length of tho licht. For any given material, $p+\alpha_{1}+i=1$. Sinco either $;$ or $\gamma$ for any matorial is almays less than unity, the flux-briehtress of any diffuocly refloctine or diffusciy transritting surface is almay loss than the illumination that produces this flux-brichtness. This lattor statiment should sorve to cmphasize the essential distinction bet:een the conconto of rlux-brishtness and illumination; the formor exprosses the lunincus flur por unit aroa ernereine at a point of a surface, and the lattor exprosses tio lurinsuo filux per unit area received at a point of a surface fron external scurcos.

If a surface is not highly diffusing, its flux-brigbtness is given by the expression $\left\{B_{\theta} \cos \theta\right.$ dux, where $B_{\theta}$ is now a function of the angle of observation $\theta$. The flux mbrightness is no longer simply $\pi \mathrm{B}$, for for a transmitting or a reflecting surface is it simply $\tilde{i} E$ or oE, and consequently the concept loses most of its utility. Hovever, in practical work with poorly diffusing surfaces, it is customary to make use of the idea of apparent flux-brightness, a poorly tiffusing surface which has a brightness Bo when observed from a particular angle $\theta$ being said to have an apparent Tlux-brightness $\pi B_{\theta}$ for the angle of view $\theta$. Its actual flux-bidghtness is of course smaller or larger then $\pi B_{\theta}$. More specifically, the statement that the apparent flux-brightness at point of the surface is 1 lambert for a particular direction means that if the surface were perfectly diffusing, it would emit $1 \mathrm{lu} \cdot \mathrm{cm}^{-2}$ at this point.
13. Measurement of Brightness and Flux-Brightness. Any illuminometer that is equipped with a detachable external test screen (Sec. 10) con be recalibrated so as to five direct readingg of brightness rather than of illumination. The illuninometier, as originally calibrated, gives direct readings of the illumination $\mathrm{E}_{\mathrm{t}}$ of the external test screen furnished with the instrument, and the corresponding flux-brightnesses can be computed by multiplying these readings $E_{t}$ by $\rho_{t}$, the rerlection factor for the test screen (Sec. 12). Hence, to measure the flux-brightness of any other diffusing surface, it is only necessary to detach the test screen from the instrument, sight the latior on the surface in question, take the reading E , and then compute the flux-brightness ot E . If the brightness is desired it can be computed by means of the relation $\underline{B}=\rho+E / \pi$.

The reflection factor , ot may be determined as follows. A pointsource of knom, high luminous intensity is placed at a measured distance from the illuminometer test screen and, considering this screen ag a secondary source, its luminous intensity $I_{t}$ is determined in the usual manner (Sec. 8). At the same time the illunination ${\underset{E}{t}}^{\text {of }}$ of the test screen is measured witb the illuminometer. Tben ot can be computed by means of the relation, $\rho_{t}=M I_{t} /$ Et $_{t} t$, where At is the area of the test screen.
14. Measurement of Total Luminous Plux. The earlier practice in photametry was to rate any prinary source in terma of its luminous intensity in same specified direction, the measurement being carried out by the
method described in Sec. 8 ; but today, ratin.s in terms of the total lurincus fluk emitted are of nore sienificence, bocause of tho practico of usinf modern primary sourcos in connction rith man sart of aifusing globe or its equivelent. The lurincus flux call of ceurse be found incircetly, by measurine the luminous intonsity in eoch if a laree nurbor of directions about the sourco and then, say, compting; the avoraci valuc Ims and omploying Eq. (7). Fhny ways to facilitato such computations hove boon dovised, but the process as a whole is laboricus an'. is selam: used. Another possible netros is to surrouns the primary sourco with o hi hly difusing globe of knom transmission factor ' 6 ", wasure the brichtness of this rlobo and compute the total luminoue flux; but this hethed lack the accuracy that is often roquires An ratime wimary somreos.

The alrost universal proctice, nonehays is to neasure luminous flux with tha aid of an important photometric dovice kncon as the interrotine, or Ulbricht, anhore. It involves a simple arinciplel.; normy, if e seurce of licht is placed within a hallow sphare mhose intcrmal mall is porfoctly diffusince, the sone illurination is prolucul at cevery puint of the roll by 11/rht reflectod frow the reminter oi the anall. In truth, tho jillumination due to tho cirect light fran the sauree dovends upon the aistribution of Iurinous intonciby about the source, the yosition of the source and tho size of tho aphere. But the illumination Et any joint, in so far as it is due to multiple roflections from the rest of the sphere's surface, is (1) unifore over the thole surface and (2) Jorents only on the total luninous flux F of the source, tho raflection foctor $p$ of the $s_{2}$ hore's wall and the ranius $R$ of the sphere.

1 This principle tos first fomulated by Sumen, in 1802, in connceticn with an invostration of the ruflecticn factors of various raturials. The propusel to use the spherw in pinctonctry mas first nade by Ulbricht, in 1900, and the theory and tochnic of tho devico have been atuati. oxtongively sinco that tine. See Buronu if Stameris Sciuntific paper No. 4 .

To prove the first of thesi tho asscritions, considir thi crossscetion of such a hollow sphure shom in fic. 9. Any infinitesimal surfacc olcment d $\sigma$ of the sphore's wall


Fig. 9. Thoory of the integrating sphere. acts as a secondary sourco becausc it rcflects diffuscly tho light incidont upon it from tho sourco S. Bince the rall is assumed to bo porfcetly diffusing, tho clemont do has the same brightness $B$ in overy diroction, and henco its luminous intcnsity dI in any direction $\theta$ is Bdo $\cos \theta$, by Iuq. (14). Now any ray reflectod from do at an anglo $\theta$ is incident on a point $P$ or the wall at the angle $\theta$ ( $\mathbb{P} i$ B. 9 ), and therefore the illumination at 2 , duc to tho light from d $\sigma$, is

$$
\begin{equation*}
d E=\frac{d I \cos \theta}{s^{2}}=\frac{B d \sigma \cos ^{2} \theta}{(2 R \cos \theta)}{ }^{2}=\frac{B d \sigma}{4 R^{K}}, \tag{17}
\end{equation*}
$$

whore $\underline{R}$ is the radius of the sphoro. Since $d$ if is thus secn not to dupond on $\theta$, and honce is indopondent of tho location of $\underline{\underline{p}}$, the conclusion is that d $\sigma$ produces the same illumination at crory point $P$ of tho sphere's mall. Thus the total illumination $\mathbb{E}$ duc to light reflectcd from the tholc mall is the samo at every point of the sphero"s surface.

Noxt wo shall prove that $E$ depends only on $\overline{\underline{I}}$, the total iuminous flux from the source $s$, on $\rho$, the roflection factor for the sphere's surface and on R. Since E is the same at evury point of the wall,

$$
E=\frac{\text { Total luminous flux rcflectcd }}{\text { Area of wall }}
$$

or

$$
\begin{aligned}
\mathbb{E} & =\frac{T P+T j^{2}+F \gamma^{3}+\cdots+T f^{2}}{4 \pi R^{2}} \\
& =\frac{T}{4 \pi R^{2}}\left(1+\rho+\rho^{2}+\cdots\right) .
\end{aligned}
$$

Shece $f^{2}<1$, this bocorics

$$
\begin{equation*}
\mathrm{E}=\frac{\mathrm{F}}{4 \pi \mathrm{~F}} \cdot \frac{\dot{y}}{1-\rho} \tag{18}
\end{equation*}
$$

This is tho ralation that no set nut to prove. What doos $\# / 4 \pi H^{2}$ represent? The forofoinf theory aprios ricorcusly to a completely diffusincs Wail in on arrety sphero, and hence prectutions rust be takon in practice to minfizo dopartures from thesc ideal coneith.ns. Tho shores employod are sevcral foot in diametor. They are coated on the inaide with a special, hichly diffusine paint of laree reflection factor and inaprociablo selectivity as resaris the colors it rerlocts. Coverin a swall ppenin: at one
 transmits lioht iffuacly and phose transmission foctor $\tau$ is practically indoponent of the color of the lirht.

In order to compare the total lurintur filux $\mathbb{F}_{1}$ of a source with that, $F_{i}$, of a sub-atontard lamp, it is only necoseary to place the lams in turn within the sphere, to sereen the sindow from the airoct licht, and to reasure in cach case the lurninous intensity of the outer surfaco of the Tindor in the nomal diruction. The ratio of these measurod lumbus intenoftics is cqual to the ratio $\mathrm{E}_{\mathrm{w}}$ of tho illurinations on the inner surface
 lurinous intensities of the windors in the tro cesos neod not be absolute, since only a ratio is involved; any typo of plotonster head, such os the Iumor-Brodhun, way lo omployod, althoumh in comereial work it is ofton the
practice to use a physical


Fig. 10. The window if the integrating sphere is shielded from the direct light by the small screen c.
photometer in which a photoelectric cell, rather than the eye, is the detecting device. The luminous flux $F_{2}$ emitted by the substandard lamp must of course be determined by the older method of finding its mean spherical luninous intensity Ins and employing Eq. (7). ${ }^{1}$

1 For a brief discussion of the dirficult subject of heterochramatic photometry, or the comparison of light of different colors, and of spectrophotometry, in which the light beams from different sources are dispersed into spectra and compared prave-iength by wave-iength, see, for example, *iardy and Perrin, The Princioles of Optics (MeGraw-Hill, 1932), pp. 285-892, or *J. W. T. Walsh, article "Photometry", Encyclopaedia Britannica, ed. 14.

Table II. Surmary of Rahiation and Photchetric Quantitigs*

| Quantitios | Definition | Unit |
| :---: | :---: | :---: |
| Sclid arsle, $w$ | $\omega=\lambda / r^{2}$ | Steralian |
| Radiant Enercy, U | Tnercy transmitted in the form of cloctroratratic radiation | J.ule, ote. |
| Padiant flux, P | $P=3 U / d t$ | Watt, ete. |
| Monochromatic radiant flux, $P_{\lambda}$ | Iq. (1) | Watt per unit wavelenct th |
| Radiant intensity, J | $J=d P / d \omega$ | Watt per steradian |
| Monochroratic raliant intensity, J $\lambda$ | $J_{j}=2 J / d \lambda$ | Watt per steradian per unit of wave-leneth |
| Relative Iurinosity factor, $\mathrm{K}_{\text {, }}$ | See Soc. 2. | $\triangle$ numeric |
| Imminosity factor, Ci, | $C_{\lambda}=F_{\lambda} / P_{\lambda}$ | Iumen per matt |
| Luminous flux, F | ITq. (3) or (4) | Lumen |
| Monochrenatic luminous flux, Fis | $F_{\lambda}=\frac{d T}{d \lambda}$ | Lumon ner unit waveleneth |
| Luminous encriy, Q | $Q=\int_{t_{1}}^{t_{2}}, \text { Tdt }$ | Lunen $x$ unit of time |
| Lurninous intcroity, I | Eq. (5) | Cande |
| Illunination, E | Eq. (10) | $\begin{aligned} & \text { Lurien por unit area } \\ & \text { (I Iurin } ¥ \text { I lux; } \\ & \text { I Iu•ft }{ }^{2} \neq 1 \text { foot- } \\ & \text { candic) } \end{aligned}$ |
| Brichtness, 旦 | Tiq. (14) | condic per unit area |
| Flux-bridhtness | dis/do. | Lambert |
| Reflection factor, ${ }^{\text {f }}$ | E reflectod/E incilant | is nupleric |
| Absorption factor, ${ }^{\text {d }}$ | F absorbed/E incident | is numoric |
| Transmiosion factor, ? | E tramenttod/T1uctiont | A numeric |
| Iifht-sourco | F/operatins power | Lumen per ratt |

* For purpeses of future reference, certain quantities are this chayter.


## PRCBLEGS

1. A cortein moncohromatic scurce enits 30 Wof radiant flux, all in the gove-lencti rucion very close to $6.0 \times 10^{-5}$ en. Compute the luninous fluz entited.

Lns. $1.2 \times 10^{4} \mathrm{lu}$.
2. Is the totel lumous flur enitted by a stenderd cande-sourco defforont in value from that enitted by a wax candlo which has a mean sphorical luminour intonsity of 1 ca?
3. State the conditions under ainch tho followine statericnt is true: "The lumincus intensity of a lis ht-cource, in a civon arection, is the luminoue flux incinent on a surface placed nertial to the fiven diroction aivilec by the solid arle which this curfoce subtonds at the source."
4. A 40-n evaouated tuneston-filarent lemp is fount to erit 400 lu of luanous flux when operater under the conditions fer mich it is losienel. Computc its nean spherical lurinous intonsity.

4ns. 31.8 ca .
5. Computo the lurinous onery $Q$ (defined in Table II) onittod in 3.0 hr by the source doccribed in (a) Prob. 1, (b) Prob. 4.

$$
\text { Ins. (a) } 3.6 \times 10^{4} \mathrm{Iu} \cdot \mathrm{hr} \text {; (b) } 1.2 \times 10^{3} \mathrm{Iu} \cdot \mathrm{hr} \text {. }
$$

6. in tas first shoma by J. E. Furkyné (1787-1869), for 10 r levels of illurination aproachin that of tirilicht the sonsitivity of the eyo chifts toward the bluc end of the spectrun. It is now known Sce Walch, Photwetry (1926), p. 65 that the luninosity curven for lon levels of illumination are sinilar in sencral shope to that for ordinary levels (Fi. . 2) but have their peaks shifter towaril the bluish ereen region, being at about $5.1 \times 10^{-5}$ cri for trilicht illuanation. Juded from the point of view of this Furkyń phonomonon alo:o (a) ghould one expect a road-sigh painted blue or cne painted rod to be easier to see at trilietht? (b) mat should be the rolative merits of sedium vapor are lemps and rercury vapor are lompe for strest lightin- where illurinations and brichincsses aro lo:, and alsu for factory lishtine, therc illuminations ond brichtnesses are much hidher? The mercury vapor are lam is deficiont in radient flux in the red recion of the spectrum.
7. Eq. (3) is ofton writton in the form

$$
F=\int_{0}^{\infty} C_{i} p_{i} d \lambda,
$$

There Q is $_{\text {is }}$ a quantity temen the luminosity fretor for rainant flux of rave-len th $\lambda$. (a) How is E. rulato to the rclative luminosity factor
 $5.55 \times 10^{-5} \mathrm{cr}$ and $6.00 \times 10^{-E} \mathrm{~cm}$, roppoctivily.
8. Eq. (3) ray often bo conveniently written in the form

$$
F=\int_{0}^{\infty} F_{\lambda} d \lambda
$$

tho quantity Fi beine terned the onochronatic Iumnous flux. (a) Frame an accoptablo dafinition for Pr that :ill bo analacous to that for PA givon in Sce. l. (b) Plot a curve shorang the atstribution of Zunanous flux in the apoctrum of tho tumeten-filanent larap doscribod in Fie. 1.
9. Tro incandescent lame wich are at a fixod distance of 200 cri anart have lumincus intonsitien of 16 and 32 ca , rospectively, in the direction of the straioht line connectins then. Deturmine the point wherc a sorcon placed nomal to the connocting linc will be equally illuminated by both laxs.
10. As screcn and the amall lamp thich illuminatos it are oricinaliy 25 In , apart, but when a cortain sheet of clear slass is placed betweon thom the lamp must bo moved 2.5 in. nearer to the screen in order to produco the saric illumfation as hefore. What fraction of the incident lunincus flux is transinittec by this class?
11. The illumination on a circular table top of ilimetor 100 cri io observed to have a maxinum value of 550 lux at the centor of tho table and to decrease uniformy at the rate of 690 Iux for cach meter of radial distance from the center. (a) Pina the total luminous flux incident on the table top. (b) Corpute the averaco 111 minetion and explain thy it differs from thic arithnetic men of the values at the conter and odece, ovon thoull tho illuaination acercased uniformy from the onc point to the othor.

$$
\text { inc. (o) } 251 \mathrm{Iu} \text {; (门) } 320 \mathrm{Iux} \text {. }
$$

I2. 2 The nare phot is often civen to the unit of illumnation equal to $I \cdot I \mathrm{~cm}^{-2}$. (a) To hocmany foet-erurges is l phot equivalont? (b) Which is the more conveniont unit for mast practical purpeses, the phot or the milliphot?
13. A suchl list-source havine a lumincus intensity of 32 ca in Gvery direction is placed it the focal point of a thin lens of focal length-8 ow. (c) If the lune trancrite 85 percunt of the luanous flux incidont on it, that illumimation is preucer on amall werwon pace: in the path of the refractod lisht ant normal to the axis of the 2ons? (b) In order to produce the sanc illumination on tho scrocn :"ith ut the use of the lons, rhat is the fortrost distanch that the sercen can be froin the. source?
14. A singe lightne unit of the typo duscribod in Example 2, Scc. 5 , 1 s susperdeal 12 ft vurtically above onc corncr ai a hurizantal table top of arixnsions $5 \times 5 \mathrm{f}^{\mathrm{t}} \mathrm{t}$. The lumin:ue interasity I of its vortical, axial ray is 1000 ca . (a) Find the illumination at vach corner of the table top. (h) If one of theso lows more subnondos la ft. vartically above each corncr of the table, what wuld bo the illwiration at the contor of the taje top? State all tho assumptions arpleyed in arriving at the answers.
15. A sincle lifhting unit of relatively small sizo ic to bo so designor that it will produce the same illuwination $\mathbb{E}$ at all peints of a floor above which it is susponder at a vertical hoint h. Prove that the necessary distri'ution of lurinous tlux is $I_{e}=\operatorname{Enf}^{2} / \cos ^{3} \theta$, thore $\theta$ is the plane anfle between the verticsl, axial ray ant the ray of lunincus intensity Io.
16. The remection factor cif a cortain hiehly diffusinf; wall is 0.5. If tho illurination at a cortain print on tho :all is 6 ft-candles ( 5 lu.ft ${ }^{2}$ ), what is tho flux-briehtness at this point?

$$
\text { Lns. } 3.2 \text { :alliflamert }
$$

17. A cortain ephorical alon of hifhly iffusine flaus is 15 cr In ciameter and conteins a $200-\mathrm{m}$ incandoscont lary. The lole transiats 80 percont of tho lurinous flux cmittol by the larip, an: its surface has a fairly uniform brichtweas irur noint to point, of avorase value 0,3
 (3) the total luminous flux tmasititod by tho lobe, and (c) the lifhtscurce officiency of the larip for the conditions under thich it was operated.
18. If the flobe in Prob, if wore roplaced by are made of tho surie kind of flase but 30 c.in in dimeter, what mould be the avorae brirhtness of its surface?

$$
\text { A.s. } 0.07 \mathrm{ca} \cdot \mathrm{cri}^{-2}
$$

19. A flux-brifhtmose of I Iu.fte ${ }^{2}$ is usuaily reforrot to in practice as 1 ft-lanbert. (a) Shom that 1 ft-lamert is appreximatoly equivalent to l millidartert. (b) If the reflection factor of a perfectly difluainf seroen wero urity, what rould be tho flux-mrighess of the screen ohon the illumation on it is lytennlo?
ins. (i) I ft-lambert.
20. Describo hot the calibration of an fluwinonotor can bo checkea with the help of a sub-stondari bource of knom lwinous intensity and a photenoter bonch.
21. The external tist scroon furnishod fith an illwinoneter is remover, the instrument is wightoll at an illurinator wall mat the seale on the inetrument is rial. Shon thet the ratio of this roanine to the actual illuanation on the vall iv $\because / \rho_{t}$, wherc $p$ and $p_{t}$ are the refloction factors of the mall and iniminozoter gorocn, robsectively.
22. is cortain incanducont rioce of motal which is in the form of a sphore of ralius $\underline{R}$ is observer to lave tho sunc brishtness at overy point of ito surface, reeralose of the anile of vici, (a) Prove that if this incandescont sphore io viowod from a dintance that fis lare comparod with the dioneter of the anhore, it rill appear as a flat aisk of unirom bridhtnesa. (b) Prove that the illunination producea by the ophore on a plane surface placel normal to the radius is invorsciy propertional to the square of the distance si the surince from the contcr of the ephere, for all values of $\operatorname{B}$ betweon $\underline{R}$ an inflaity.
23. Photo raphs of the sun shar cloarly that it is darker at the edees than at the conter, this beine axplained by the fact that the atmosFherc surrouncing the bun absorbs inore lurinous oncrey in an onlique than in a normal diroction. (a) Does thio irmply that the Larabert cosine lay doos not apply to the orniosion of sunlight, cr that the bri, hatness is not the sumb for all points of the sun'c surfoce, or both? (b) When the sun is at zonith, the brimtness at the center of its surface is $1.0 \times 10^{6}$ ca. $\ln ^{-2}$. What is tho apparent flux-brishtnoss at the conter, for this ancto of victo (c) Io tho forecoind value larcer than, oraller than, or oqual to the actual luninous faxk per unit area orittor at thic centor?

$$
\text { Ens (i) } 3.1 \times 10^{6} 1 u \cdot 1 n^{-2} \text {. }
$$

24. Instear ,ft specifying the bri htnoss of an extonder souree, the practice sometrion is to opecify the dyarent luminous intonsity for a opecifiod distance and ciraction, thid boin ropinol as equal to the lurimous intensity ap a point-ssurec that mula procuce the anme 1llumination at that aistanco. Measurenerts aith an illurinoneter shom that a cortain morcury are lamproduces an illunation of $32 \mathrm{lu} \mathrm{fft}^{*}{ }^{2}$ on the test sercen placod nomal to fits rays and at a distance of 5 ft vertically bolow tho unit. Compute tho aparont lusinous intonsity.
ind. 800 ca at 5 ft vartically downrterat
25. The inofde wall of an interratin. sphere is evaton with paint for mhich the reflection and absorption factors aro $p$ and $x$, respectively. is sall incondescont lam is places within the sphero but no sereon is placod between the lam and the translucont Wincor. (a) Shori that tho illurination producod on the inner surface of tho mindor by the light
 avoraje illumilation produced on the mall by lisht cotime directly from the larp. (b) Hence shor that the avorace illumination produces on tho windor
 thero anythin: in the thony of the interratine apherc that requires that the lamp bo located at the center of the ophore? (?) Is it truc that the ratio of the total luainous sius received by the sphore's mall to that. owitted by the low is $1 / x$ ans honco larsur than unity? Roconcilo your anawer with the principle of conservation of enery.
26. is 60 - 7 evacuater tun aton-filtment larm on lisht-source efficioncy $102 u \cdot \pi^{-!}$is placod in on intoratin" sphere of insido dinacter 45 in, The reflection factor of the inaide contins: of the sinhere is 0.95 . $C$ mpute (a) tice luminous fluy orittor by the larp, ( 3 ) the illumination on the ephoro's wall produced solely by the lifht rorloctca froil it, (c) the averare illunination on the wall pronucud jointly by the reflocted and dircet lisht, (a) the total lumirous flux incident on tho mall, (0) the lurinous flux àsorbod by the rall, (f) the hri.hntnose of tho mall at any point and for any ando of vier, and (e) the flux-brifutness at any point of the wall.
27. In doalin: with photonotric promerns by dinensionsl nothods, it is uscful to introduce t:ro fundamental units in addition to thowe of lencth
 are o conveniont choice, their dimensions beine bonotua by the symbols [F] and $[2]$, respectivoly. Writo tho dinensional fomman for: ench of tho quantities listea in Table II. (i) D: the two mermers of Iq. (12) have the sarne dinensional formula? Explain.

## CHAPTAR FOUR

## INTMRTERENCE ATD DIFFRACTION

Suppose a number of equal waves of mater to move upon the surface of a stagnant lake with a certain constant velocity, and to enter a narrom channel leading out of the lake; suppose then, another similar cause to have excited another equal series of waves which arrlve at the same channel $: 1$ th the same velocity and at the same time as the first. One series of waves will not destroy the other, but their effects will be combined. If they onter tho channol in such a manner that the olevations of the one scries coincide with the other, they must together produce a serics of greator joint olevations; but if the elcvations of one serios are so sttuated as to correspond to the depressions of the othor, they must exactly fill up those doprossions, and the surface of the mater must romain smooth -- at $20 a s t$, I can discover no altornative, aithor from thoory or experiment. Now, I maintain that similar effects take place whencver two portions of light are thus mixa, and this I call the gonoral law of the interforence of light.

Thomas Yound, quotation from Bekerian Lecture before the Royal Socioty in 1801.

In our treatriont of light in the previous chapters we have found
it convenient to confine our attention to the lines along which the light
trevela. Such lincs we have called rays, and therefore up to this point our description of lielt has been in toms of ray-optics or geometrical optics. Although it is possible in terms of geometrical optics alone to obtain quantitative descriptions of many proparties of light, including a number which havo found wito application in prectico, such a description homover must bo considorod as only an approximation to a truo doscription of light, and limitod in its application. There is a large class of phenomena which can be understood only in torms of the rave properties of
light. A description of those phenomon which rill bo treated in the present chaptor form tho subjoct mattor of yhat is known as physical optics as distinct from geonotrical optics.

Two thoories of Iight. In Sir Isaic irenton's day (1642-1727) two rival theorios of light moro struggling for recosnition. The one, the wave thoory, fathorod and charmioned by the Dutch phycicist, Christion Huygons (1628-1695), rogarded light, like sound, as some sort of a mave motion, the chiof difforonco betroon the tro being, according to his theory, thet, while sound is propagatod through the agency of ordinary matter, light is a wave motion in some all-pervading medium to which tho name of "the ethor" was Eiven.

The rival thoory, cullod tho corpuscumar theory, regnraed light as due to tho omission from all luminous bodes of minute coxpusclos which travol in straicht linos and fith enormous velocitios through spaco and produce the sensation of Iteht when they impinge upon the retima of the eyo. This thoory had its most fomous and most brilliont adrocate in Sir Isane Nerton himself.

Norton'e chiuf reacon for rejocting tho rave thoory lay in the fact that he ras unabis to undorstand riny, if licht is a mave motion, it is alrays propagatod in etraight lincs post the cages of opaque objects, instead of undergoing diffraction, that is, beine bont around such objocts, as aro sound waves, rator maves, and alk the other types of raves with which Nertion fas familiar. What is cormonly rogarded as the ducisive test betreen the tro theoris was made in the your 1800 by thonms Yomg, and consisted In showing that it is possible to produce with light waves the diffraction phenomena which are to be discusscd in this chapter, and which it does not
seem possible to account for from the standpoint of the corpuscular theory. It is the coject of the present discussion and of the succecding oxperiments to show both theoretically and experimontally that, under suitable conditions, lieht doos bera around cornore. More explicitly stated, our aim will be to shom that the phenomonon of straicht-lino propagation is characteristic of any and all typos of rave motion, provided only the aperture through whici tho waves pass is large in comparison witn the nove length of the waves. If this proposition can bo proved, it will bo ovident that the fact of tho straight-line propagation of light does not furnish any argument against the mave thoory, providud the wave length of ordinary light paves is very minute in comparison mith tho dimensions of ordinary aporturea. Berore proceoding to this propesition it is necessary to consider rurthor the nature of a Have motion in a modium of indefinite oxtent, and the conditions for interforonce in such a medium.

1. Definition of Wave-Front, Consider 5 in Fig. 1 to be the point source of a wave motion in an isotropic medium; that is, a medium in Thich the disturbance is propagated with


Fig. 1. equal speod in all directions. When the disturbance which originetes at $\underline{5}$ has just reached 2 , it has also thon just roached all other points, such as $\underline{b}$, $\underline{\text { a }}$, and $\underset{\text {, whit }}{ }$ are at the seme distance from $\underline{S}$. The sphorical surface passing through these points is known as the weve front of the disturbanco. In general, the mave front may be definod as the
surface passing through all the paxticlos ahich are in the same phaso of vibration.

The form of the reve front under the conditions just mentioned is spharical, but conditions may arise in mhich it has not this form. Furthor, It will also bo ehnom that under preper conditisne a sphorical mave may be convargerg, i.0. concave torard the diroction in which it is traveling, instond of diverging, as in the case just considerod. If tho sourco is far onough aroy any mall portion of the wave wili bo sensibly plane. A trave having a plaze wavo inont is colled a plano rave.
2. Muysen's Principlo -- Construction of E Wave Front, In Scc. 2 of Chap. I it pas pointed sut that the principle of suporposition is fundemontal in tho study of light. According to this principlo tho net ofrect rosulting from the wetion of scvoral rays of light moy bo dotemincd by conadorins tho sur of tho offocts of the various individual rays. This principle can bo carriod cror to all considoratitus in which light is trontod is a mave motion. Fence the ariplitudel of a wave cit any point is the vector sum on tho amplitudce of ril the olemontary waves ohich act at that point. Usa is mado on this fect in tho appliention of Huygon's principle for the purpose of rolloring the propagtion is a wo by constructing o non mave front in tomas an a kmorlodge of the wave front which was prosont at in carliox instant of time. Euygon's principle wes discussed in Chap. 25 of Mrw, and wo bhall hero morely sumprize the principle es follows:

Huygon's principlo statos that at any instant of time the wove front of a disturbance is the onvelope of all tho socondery gave surfocos ifich are duc to tho action ne soparato surcos of all the varicue particlos that at somo provicut instant constituted the rave front.

1 For an introductory troatment on nave mation soe MRW, Chap. 1.5.

For cxamplo considor the particlun $\ddot{-}, \underline{b}, \underline{c}$, and $\underset{-}{d}$ in the pleme ravo roprosentod in $\mathrm{Hi}_{\mathrm{i}} \mathrm{E}$. 2. A short

A


Fís. 2. timo after tho disturbance has renched those particles let the spherical mave surfaces duc to them have tho forms shown in the figure. If the number of those net contors is very large,
it ia ovident fron the ligure there for clearness only four have been representod, that the disturbance along the onvelono AD is very much greater than at uny othor points, for this envolope ropresenta the locus of points all of which are in the same phase of vibration. It is not inmodiately apparent that a disturbanco should not also be propazatod back in the direction from? Which the incident plane mave noves, but a mathematical analysis, in which acocunt is taken of tho magnitudes and arections of the cinplitures of the socondary maves, as rell as of tho phase rolationships betroon therk, shors that tho secondary faves from the individual sources do actually destroy one ancther except at the surface AD. We shall not here atternt a rigormu demonstration of the principle, but merely apply it in the simplifiod form givon in the summrized statoment above.
3. Conditions of Interforence of Tro wave 2rains in a Moaium of Indorinito Extent. From the fact that the resultant amplituac at a given point is equal to the vector surn or the malitudes of all the socondery raves, one mould expoct that at sone points the emplitures of tho scoondary Taves might add togother to producc a disturbanco of considerablo amplitude Whereas at other points thair affocts might wholly cancel one another.

Experiment shows that such phenomena actually occur, and points such as the former are called points of constructive interference, and the latter points of destructive interference. The variations in amplitude with position which result from the combined action of two or more waves are called interference effects.

Let us consider for example two particles A and B (Fig. B) vibrating


Fi . 3.
in the same plane, in phase with one another, and with equal amplitudes. From each of these points is propagated a disturbane having a spherical wave front. Let similar wave fronts be constructed for each particle. Thus the circular arcs a and a' represent the position of particles at the same distance from their respective sources and therefore in the same phase. The ares b and br represent the Have fronts when the disturbances have traveled one half a wave
length farther; that is, aah of them represents tho locus of a series of particles which are exactly opposite in the phase of their vibration to the particles of and $a^{\prime}$. The ares $\underline{c}$ and $c^{\prime}$ represent tho wave fronts when they have traveled a whole wave length beyond a and $\underline{a}^{\prime}$. Their particles are in similar phase to those or $\underline{2}$ and $a^{\prime}$ and opposite to those of $\underline{b}$ and $\underline{b}^{\prime}$.

The particles in the linc dotcrained bre the pointe markod $Z_{1} X_{2}, X_{3}$ have suporimposce upon them vibratory motions of the same phesc from both sourecs. Alon this linc therc is therifore a maximum disturbance or constructive interforcnco. Alon the linc detcrmincd by the points markcd Q $\rho_{2}, Q_{3}$, on the othir hand, the vibraitons superimposed ari opposite in phasc, and there is a minimum disturbance or dostructivi interfercnco. Further, along the linc detcrminod by the points $X_{2}$, $\mathbb{X}_{4}$, $\mathrm{X}_{5}$ thoro is acain recnforcoment. From the construction of the figure it is cridont that the condition for a maximum at any point is the cxistonce of a differince in length of path betwoen the point and the sourcos A and B ruppcetivcly of some intcgral multiplc of a Thole wave length. Thus at $x$ the differcnce in path is zoro wavc longths, at $x_{1}$ it is ono wave length, ote. idmilarly, for a minimum the difforence in distance must $b$, an odd multiple of a halr mave loneth. At 2l, $\varrho_{2}, Q_{3}$, cto., it is $I / 2$ wavc longht. Additional maxima and minima may bc found by oxtendine the lines $a, a^{\prime}, \underline{b}, b^{\prime}$, otc.

Tie. 3 indicatcs the intcreferne pattorn at a givin instant of time. A study of the ficure mill shom, howover, that as the tho spherical vavcs originating at $A$ and B travei outrard, the linos or maxinum disturbance $x, x_{2}, x_{3}$ and $x_{1}, x_{4}, x_{5}$ and also the lincs of minimum disturbance $g_{1}, g_{2}$, Qa, 7131 maintain the samo position ith rcspet to $A$ and $B$ at every instant of time. Tho interferenco pattirn thereforc romains fixud in position althouth the tho sets of spherical raves mich produco it travel outrard from the tro contors A and B respcetivcly.

It ic imoortant to noticc that the linos of minimum aisturbanco s., $\rho_{2}, Q_{3}$, ctc., move farther and farthcr anray from the contral line of maximum disturbance $\underset{\sim}{x}, X_{2}, X_{B}$, the smaller the distance $A B$ becomes in comparison with
a wavo longth. Thus if $A B$ is very largo in compariscy with a wavo longth, the linc $\Omega_{I}, O_{2}, O_{3}$ is very closo to the $I I n=x, x_{2}, x_{3}$, and sinilarly the lino $X_{1}, x_{4}, X_{5}$ is close to tho lino $\Omega_{1}, o_{2}, \Omega_{3}$. But as $A B$ b.comcs smaller and smalicr thoso lines diverge more and more. Then $A B$ is just cqual to a Wave length the linc $X_{1}, X_{4}, X_{5}$ is in tho prolongation of $A B$, sinco it is only points in this line thich can then differ by one rave luncth in their distancos from 4 and $B$ rospoctivcly. Thon $A B$ is equal to a half wavc length the Ino $o_{2}, o_{2}, O_{3}$ is in the prolongation of $A B$, and thero aro thon no points of quiesconce at all to the right of AB. Thon $A B$ is loss than a half wavo length there are no pointe of quiosconco anymoro.
an interforince pattcrn such as that of TiE. 3 can readily be producod With wavcs on the surface of a iiquid or with sound mavcis.
4. Intorioroncc of Light Taves. An exporiment showing tho intorforcnec of licht mas first porformed by Young about 1800. Wo observed an interforcnec pattorn producca on a sercen $P$ whon sunlight was allored to pass through a pinhole 5 in onc opaque serocn and then throuth two pinholes $S_{1}$ and $S_{2}$ in a scoond scroon (Ifs. 4). If the distance from $S_{5}$ to $S_{1}$ is oqual to tho


FIG. 4.
distance from $\mathcal{F}$ to $\mathcal{F}_{2}$, then $\mathcal{G}_{2}$ and $\mathcal{F}_{2}$ may bi considered as tro sourccs of light which arc vibrating in phase rith onc another, and an intorfcrenco pattern which is just like that indicatcd in Fig. 3 is producod in the region to the right of $S_{1}$ and $S_{2}$, and which results in the production of an interforonco pattcrn roprosentod by altcrnatc lisht and dark regions on the seroen p.

In the casc of light thore ars cortain conditions to be fulfilled in order that intorforence may bo oboorved mith usually are not present in experiments rith sound wavcs. A source of light whother it bc the sun, an Incandescent body, or mhatevcr clsc, usually consists of a very largo number of atoms cach acting soparatcly as a sourcc of licht. Now exporiment has show that tho length of time during which an individual atom radiatcs light is of the ordor of $10^{-8} \mathrm{soc}$, and since the velocity of light is cqual to $3 \times 10^{10} \mathrm{~cm} / \mathrm{scc}$, the lengeth of the wavi train of the light omitted by an atom is about $3 \times 10^{10} \times 10^{-8}$ erns or 3 motcrs. This is to be contrastod, for cxampli, With the length of the train of wavos of sound emittod by a vibrating string or organ pipe. In this cas: a wave train can bs produced Which is Indcfinitcly long si ply by causine the strine or the organ pipe to crit sound at a definifo froquency for an indefinitcly lone timo.

This fact, as will be shorm later, hac important conscquencos in the production of intorference phonomene in light. A sccond important chajacteristie of a light boam is that, since many million atoms usually contributc to its orfain, it thercfore consists of the superposition of many millions of clcmentary wave trains, no two of thich bear a fixed phasc rclationship to onc anothor. Tro or more wave trains whose phascs do not bear a fixed rclationship to one anothcr are callcd incohcrent, and wave trains thosc phasos do bear fixed relationships to onc anothor aro callod cohcrint. Henco
tro olcmentary mave trains represcning light which orisinatos in tivo difforont atoms arc incohcront aith rospect to one another.

Now it is olear from the discussion of Scc. 3 that in order that an intorforonce pattorn will bo produced tho waves omanating from the tro sourcos must be cohoront. A coherency of the maves can be achiovcd in the case of light by a devicc such as that represontod in Fig. 4. For considcr tho light omittod by a single atom of the sourec. It ontore the pinhole gil and thon cmerges on the othir side of the scrocn as a spherical wave if the pinholo is sufficiontiy small. This spherical wave strikes both the pinholcs $\underline{S}_{2}$ and $S_{2}$, and produces two new spherical maves of light which, siaco they aro both dorivod from the samo elcmontary wavc-train, do boar a dofinito phaso rclationship to onc anothor, and are thorofore cohorent and capable of forming an intorforenco pattorn. The same \#ilr be tru. of all the othor alcmentary wavo trains in the beam. The interferenco pattern is produced thon by the combination of two beams milich have taken difforent paths but which have originatod in the same atom. Obviously thoreforc if tro indopendent point sources of light are substituted for $\mathcal{S N}_{1}$ and in Fie. 4 no interforence pattorn will rosult.

In ano. 3 it was statod that a peint of deatructuve intorforonco will result if the difference in length of the two paths is an odd multiple of a half wave length. Now the fact that wave trains of light are imitod in length placos an upper limit on the difforcnce in leneth of the tro paths, for in order that two weve trains can combinc to produco interference the diffcronec in path length cannot oxcced an amount about cqual to the longth of a rave train itsclf. Actually the path differcnec must bo shortor than the longth of a mave train, and oxporimontally the groatost porraissibic difforcnec in path iongth is found to be somowhat loss than ono half motor.

In order that a cloarly dofinod intcrforenco pattern will bo formed, the light must also bo monochroratic or nearly so, sinec othermise the dift ferenco in path longth moasured in units of half a mavo longth varios \#ith the color of the light. For example, if whito light is used a point of destructive intcrfcrence for one color may coincido with a point of constructive interferenco for a sccond color. It is apparcht also that if the path difforcnce is very small, of the order of a fum wave leneths, thon fairly sharp pattcrns rill be formed oven though the lieht is not monochromatic.

## itoasurcment of Tave length by Intcriccrenco

By measurcments made on an intcrference pattcrn the rave leneth of tho light usca can be dotcrminca dircetly in a vcry simple manner, In Fig.
5 Ict $S_{1}$ and $\mathbb{S}_{2}$ ropresent tro coherent point sources of light such as those indicatcd in Tics. 4, and lot the point $\%$ on the serocn represcnt the position of the contral bright fringe or ecntral maximum. Then

$$
s_{1} \theta=s_{2} O
$$

Let $P_{1}$ ropresent the position
ncxt bright fringe or point of maximum disturbance. This.mill occur when the differenco in path leneth measurcd to the tro sources is onc wave longth. Ionce

$$
S_{2} P_{1}=S_{1} P_{1}+\lambda
$$

Choose the point A so that $S_{1} P_{1}=A P_{1}$, then $S_{2} A^{\prime}$ is qqual to $\lambda$. If now the
distance $S_{2} S_{z}$ betrecn the two point sources is made large compared with $\lambda$, and if $I$ is largo compared with $S_{1} S_{2}$, then from Fig. 5,

$$
\theta=\frac{\lambda}{S_{1} S_{2}}=\frac{O P_{1}}{I}
$$

Letting the distance botween $S_{1}$ and $S_{2}$ be $d$, then the soparation between the central bright fringe and the one adjacent to it, becomos

$$
O P_{1}=\frac{\lambda I}{d}
$$

Furthermoro bright fringes will occur at all points whoro the difference in peth longth is an integral number of mave lengths, honce tho distance 杀 from the contral maximum to the nth bright fringe is

$$
\begin{equation*}
x=\frac{n A L}{d} \tag{1}
\end{equation*}
$$

Thus by making very simple measuremonts the wave longth of the light can be dotorminod.

Various devices have been omployod for obtaining interferenco pattorns from a single point source of light. Two of these devicos, first used by Frosnal, arc knorm as Frosncl's mirrors and Frcsnol's bi-prism. In tho formex light from a point source $\$\left(\mathrm{Fi}_{\mathrm{E}}, 6\right)$ is raflocted from two


Fig. 6 plane mirrors, $M_{2}$ and $M_{2}$, whose surfaces make a very small anglo with each other. Two virtual images $\underline{S}_{1}$ and $\underline{S}_{2}$ are formed, Whichberve as the two sources which produce the
interference pattern on

Tho serocn P. A similar rocult is obtained by means of the bi-prism (Fie. 7) which consists osscntially of a doulo prism with a vcry small rofracting anglc. Again the light reachine the screen $P$ apparently comos from the two

virtual souroes ${\underset{S}{1}}$ and $S_{\mathcal{N}}$. Wither of theso mothods, wecause of the rela-, tivoly large solid ancle from which the light is gathered, will produce fringes which are much brichter than those formed by the pin holo arranfcment cmploycd by Young.

Interforence Pattcrns Produced by Planc Parallel Surfaces and Thin Pilms
In our discussion so far whe have considcrod intcriorcnce patterns produced only by the supcrposition of t:o disturbances thich have traveled over tho differont pathe but which have had incir origin in the same point source. It ras cssential in those cascs that the source or light bo essontially a point, for otherwisi scveral pattorns displaced in position from one another would have beon produced, and tho ovcrlapping of thesc mould havo resulted in uniform illumination. To shall now consider othcr pays in

Which intorfercnec patterns may bo produced for the obscrvation of which an oxtended sourco of light is required.

Let us first consider a plato of class those sides aro accuratciy planc and parallcl to onc anothor. A poncil of parallcl rays from a medium of refractivo index $\mu_{1}$ is incident at an anglo in upon one surface of the glass plate of refractive indcx $\mu_{2}$, as injioatod in Fig. 8. The incident rays aro in part roflcetcd and in part refractod at the surface of the plato. Tho refractod rays aftor roflection from the second surface of the plate


$$
7 i \mathfrak{c} \cdot 8
$$

omerge. from the platc in a dirction parallel to the roflcctod rays and honce is in a postition to interfers fith the roflectod rays. Sithor constructivo or dostructiv: intorforeno occurs dopendine upon the phasc rolationship of the tro rays. A mavo front of the incident rays is ab. From the position of this waye front the refisctecl ray trevels a distance ou to reach o. Tho refractod ray travcls a distance be plus co to roach o. If $I_{1}$ and $I_{2}$ represcnt the optical paths of theso two rava, respectivily, then from the figure,
and

$$
\begin{gathered}
I_{2}=2 l_{\mu_{2}} \\
L_{1}=\mu_{1} \circ b \sin 1=2 \mu_{\lambda} l \operatorname{ain} r \sin 1
\end{gathered}
$$

Where $l=b c$, and where for the optical path wo take the product of the goometrical path and the refractive index (Sce. 5, Chap. I). The difference in optical path is thus givon by

$$
\begin{gathered}
I_{2}-I_{1}=2 l\left(\mu_{2}-\mu_{1} \sin r \sin i\right) \\
\mu_{1} \sin 1=\mu_{2} \sin r \\
I_{2}-I_{1}=2 l \mu_{2}\left(1-\sin ^{2} r\right\rangle=2 l \mu_{2} \cos ^{2} r
\end{gathered}
$$

Since $\ell$ cos $r$ is cqual to tho thickness $t$ of the film,

$$
\begin{equation*}
I_{2}-L_{1}=2 t \mu_{2} \cos T \tag{2}
\end{equation*}
$$

It is nccossary to add a second term to the richt hand sido of Eq. (1) sinco
a change in phasc of $\pi$ radians occurs upon reflection if the waves impinge
upon a medium of greatcr optical density. ${ }^{l}$ This will be true for roflection at the point o since we shall take $\mu_{2}$ to be ervater than $\mu_{1}$. A change in phaso of $\pi$ radians is equivalent to an increaso in the path difference by an amount $\lambda / 2$, where $\lambda$ is the wave longth of the light. Hence Sq. (2) becomes

$$
\begin{equation*}
I_{2}-I_{1}=2 t \mu_{2} \cos r-\frac{\lambda}{2} \tag{3}
\end{equation*}
$$

Noy it till be remombored from Soc. 3 that if the difforence in path length is an even multiple of a wave longth constructive intcricrenco occurs, and if it is an odd multiplo of a half wave lensth the intcrforence is destruetive. Thus if :"c write Eq. (3) in the form

$$
\begin{align*}
2 t \mu_{2} \cos r & -\frac{\lambda}{2}=k \lambda \\
\text { or } \quad 2 t \mu_{2} \cos r & =\left(k+\frac{1}{2}\right) \lambda \tag{4}
\end{align*}
$$

1 If the waves strike a medium of lessor optical dunsity no chancc in phasc occurs. A corresponding relationship holds when a sound wave is roflectod from a modium of difforont donsity (Sec IRT, p. 391).
the interforcnec will be constructive for $k=0,1,2,3 \ldots$ and destructive for $k=\frac{2}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$.

Actually, homever, each incident fay can suffcr soveral partial roflcetions githin the plate, and morge as a sorics of parallol rays as indicatod in Fig. 8. Furthermore, since the incident planc paraliel wave


Fig. 9.
front will in gonoral be broad, broad bcam of parallel light will bo rerlected from the plate which may then bo obscrvod oithor by cyo or by means of a telescope ri, cithor of which must bo focused for infinity. By considerations similar to those above it is apparent that betreen adjacent pairis of rays of FIS. 8 thorc Will be the same path difforcnec, $2 t \mu_{2} \cos r-\frac{\lambda}{2}$, Eiven by Eq . (3). It follows thon that the intensity obscrved oither by cyo or by the tclescope $T$ will depond unon the anglo $x, 1 f t$ and $\mu_{2}$ aro kopt constant. Now if plane parallcl light is incidont on the plate at all anclos, and if the plate is not too thin, i.c., if its thickness corrosponds to a sufficiontly large number of wave longths of the light omployed, then a sot of darik and bright fringes will bo observod corresponding to different anglcs of Incidonce of tho incident light. This can roadily bo soen by fi. (3) since

If the plate is sufficiontly thick only a small change in the anclo $x$ will bo sufficient to chango the difforence in path by $\lambda / 2$. For example, if $2 t \mu_{z}=10,000 \lambda$, thon a change in cos $T$ of ono part in $20,000 \mathrm{will}$ corrospond to a chanco in path differcuce of $\lambda / 2$, and the ajacont bright fringos such as $P_{2}, P$, and $P_{2}$ of $F i 6,8$ will bo sufficicntly closo to onc another so that scvoral fringos arc encompassed by toc image of the cye or the telescope. Now if the thicknoss of the platc is considerod to decrease then the angular soparation betwoon adjacent bright fringes rill inereaso until for a plato thickness of only a fow wavo loneths the anglo of separation betwoen adjacont fringes rill cxcecd the ficld of viov or the oyc or telescope and a set of fringes can no longer be obscrvcd. As indicatcd in Fig. 8 the same offcets can also bo obsorvci in the lifht transmitted by the plates. Fringes of this typo arc knom as fringes of cqual inclingtion.

Intorforonce offecte, hovover, can also be obscrved in the canc of a transparont modium whose thickncss is of the order of only a wave longth of 11Eht. Examplos of thesc offcets aro the phenomene of color and the lieht and dark bands often scen in soap bubblos, thin films of oll, or in vary thin flakes of slans. Intericrinco offocts of this typc are in some respects quito difforent from those aiscussed above, and sets of interfcronco fringos can bo obscrvod in thin films only if the bounding surfacos are not parallol to onc anothor. Color effecte, howevcr, arc obscrvod in thin films bounded by parallol surfaces.

In a mannor similar to our brevious treatment wo non consider light incident upon a ncdiwn of inacx of refraction $\mu_{2}$ bounded by two ncarly paral101 surfacos :rhich make a small anclo $\delta$ with ono anothcr: In Fig. 10 lot Rl be a ray of 21 ght from the source Sh, which is rofloctod from the uppor


Fig. 10
surface at Q, and entcrs an cye or the teloseope I. The cyo or tolescope In this casc is focuscd on the point 0 or the film. Let in be a sccond ray from tho source which is so chosen that it also passes through tho point $Q$, but only after passing through the film and being reflocted at its lower surface. Since the anglo $\oint$ is smali this ray $\begin{aligned} & \text { till bo noarly parallel to } R_{1}\end{aligned}$ and sinco the telescope and will also cnter the toloscopeinis focused on the point $\underline{Q}$, both $R_{1}$ and $R_{2}$ will bo brought to focus at the same point $P_{1}$. Fow at tho point $P_{1}$ wo may have either constructive or acstructivc intcrferonce depending upon the phase relationship of the two disturbances at that point due to the tro rays $B_{1}$ and $H_{2}$. If the path differcnce botween $P_{1}$ and $R_{2}$ is an even interral multiple of $\lambda / 2$ constructive interference vill occur, and if it is an odd integral multiplc of $\lambda / 2$ the interference will be destructive.

To have found in our previous treatmont where parallel light was incidont on a plate of plano parallel sides (fig. 9) that the difforence in
path longth botwoon adjacont rays was givon by Iq . (3) as

$$
\begin{equation*}
I_{2}-I_{1}=2 t \mu_{2} \cos r-\frac{\lambda}{2} \tag{5}
\end{equation*}
$$

For the case we are hore considering it can bc shown that the samo oxprossion is a sufficiontly vailid approximation if $t$ is taken to bo tho thickness of the plate at $Q$, and $X$ is the angle of refraction of either $R_{2}$ or $I_{2}$, provided that the thicknoss of the plate is small compared with the distance from $Q$ to the sourco $S_{2}$ and provided that $\&$ is a small anglc. The oxact oxprossion diffors from the above only in neglietbly small torms of tho second or hithor order in $\oint$. The trigonometric details of the derivation, however, will not be given horo.

It is apparent that in order to obtain an extonded image of an interforence pattorn in the telescope by this method an extended sourco of licht must be omploycd, for if thore wore only a singlo point-soureo Si then the light which is reflectod from tho film and cnters the tolcscope can come only from a mall rogion of tho ill in tho immeliate ncighborhood of $Q$. Thus, with reforoncc to $\operatorname{Fig}$. 10 , let $\$ 2$ bo a socond point of an extendod source of light, and consider two rays from $\underline{G}_{2}$, corrcsponding to the rays $\mathrm{R}_{1}$ and $R_{2}$ from $S_{1}$, thich are brought to focus in the tolcscope at $P_{2}$ after having passed throuch a point $Q$ ' in the surface of the film. For theso rays tho vaiues of both $t$ and $r i n \mathrm{Eq}$. (5) will diffcr from tho corrosponding valuos for the raye from $\mathcal{S}_{1}$, and honce the phasc rolationship of the two disturbances focusod at $P_{R}$ will differ from that of the two disturbances focusod at $P_{1}$. Let us assume first that the thicknoss of the film doos not vary betweon 0 and $0^{\prime}$. Thon tho chanco in the path differonco betmoon the roflectod and refracted rays at 0 as comparod with that at 0 , wll depend
only upon the amount by whicb $\cos$ r changes botwein $\rho$ and $\rho^{\prime}$. As previously pointod out for tho casc of a plato of constant thickncss, a rolativoly large change in $\cos r$ is required to produce a chance in the path difforonce by an ariount $\lambda / 2$, ir the plato is thin. Fonco ono pould not oxpoct in this casc to obscrve a set of interference fringos for then the soparation betweon adjacent fringes in the image formed in the tolcscopo mould corraspond to a distance greator than tho size of the image itsolf.

This, howover, is not the caso if the film is of a variable thickncss, for thon a change in the thicknoss $\ddagger$ could be sufficiont by itscle to praduce a change of $\lambda / 2$ in the path differenco botvecn tho roflected and rofracted rays at $Q$ as compared with those at $Q$ '. Thus the distance betwoen a bright frimeo and an adjacent dark onc in the image of the tcloscope could, for examplo, bo equal to a relativciy small distance $P_{2} P_{2}$, and the obscrvation of a set of fringos mithin the ricid of vion of the telcscopo becomes possible.

Example 1. Planc waves of Na-D light arc incident at all anglos upon a thin shoot of glass ( $\mu=1.500$ ) of constant thickncss $10^{-4}$ cm. Computo the angles oith respect to the plane of the glass plate of those dircetions for which complcto constructivo and complete dcstrictivo interferonce occurs. Treat also the case wher the class plato 1 a 1 cm thick, and compare the angular soparation of the dircetions which correspond to constructive and destructive interference in the two cascs.

Cuito brilliant patterns of color aro ofton seen when a thin film of a transparent modium is obsorvod in whitd 11 Ght . Theso offects aro woll known in tho caso of soap bubbles, oil films on water, ote. The appearance of color arisos from the fact that, bocause of the difforont wave lengths corrosponding to difforont colors of lieht, dostructive interferonco may occur for onc portion of the spectrum and constructivo interforcnec occur for another. From the discussion given above it will bo clear phy a thin film whose thickness is unform ovor a civen region will appar a unform color over that rogion, whercas if the film is wedge-shaped a pattcrn of
colorcd bands :1Il appar. A thin film of an cvaporating liquid will appear black just boforo it broaks. Why?

## Newton's Rings

An exporiment porformed by Iforton affords a bcautiful cxamplo of the interforenco of light. A plano-convox lons of large radius of curvature is pressed against a plane glass plato. The space botwoen tho Ions and tho plate then consists of a thin laycr of air of varying thickncss. Interforence is produced in this layor on air which atves woc to an interforence pattern of concontric circular dark and licht bands. The pattern is known as Nowtons Rings.

By an application of the principlos outlinca abovo mo can obtain a rolationship amon the radii of the intcrercnce rings $r$, the radius of curvature of tho surface of the lons $\underline{R}$, and tho mave lonsth of tho light, (Fig. 1l).


Fig. 11

From the figure we have

$$
t=r(1-\cos \theta)=2 R \sin ^{2} \frac{\theta}{2}
$$

If the ancle $\theta$ is small thon $\sin ^{2} \frac{\theta}{2}$ may be sct aqual to $\left(\frac{\theta}{2}\right)^{2}$ or $\frac{\theta^{2}}{4}$, and $\theta$ may bo sot equal to $a / R$. Fonce

$$
\begin{equation*}
t=2 R \cdot \frac{a^{2}}{4 R^{2}}=\frac{a^{2}}{2 R} \tag{6}
\end{equation*}
$$

If light is incidont from above the lons and if tho interforonco pattcrn is viewcd from above, then the conditions arc analargous to those which obtainod
in the thin film of $\operatorname{Fig}$. 10 , and WC can apply Zq . (4). In the prosent case since tho layor of air is optically loss donse than the layore of glass which bound it, a chenge of phasc will occur in the rofloction from the lewer surface of the layer of afr but not in the reflection from its uppor surface. This is opposite to the formor casc, but tho student can easily domonstratc
tho validity of Iq. (4) for both cascs, :To may tako the rofractivo index of air equal to unity, and if Do substituto for $t$ from Iq . (6) into Jq . (4), wo obtain ( $\mu_{2}=2$ for air film)

$$
\begin{equation*}
\frac{a^{2}}{R} \cos T=\left(k+\frac{1}{2}\right) \lambda \tag{7}
\end{equation*}
$$

If the interforonce pattern is vicwod in a dircetion Thich is nearly normal to the surfaco cos may be sct cqual to unity, thua,

$$
\begin{equation*}
\frac{a^{2}}{R}=\left(k+\frac{1}{2}\right) \lambda \tag{8}
\end{equation*}
$$

Where from $\mathrm{Lq} .(4)$ the condition for bricht rings is obtained whon $k=0,1,2,3 \ldots$ and for dark ringe when $k=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$

If the rings ars viorod in thite light then ono obtains a suporposition of many pattorns where tho radii of the corresponding rings of cach pattorn are proportional to $\lambda^{2 / 2}$, henco givinc risc to color cffects.
5. The Propagation of "lavos through Apertures. is proviousiy montioned therc are cortain conditions under which light is obsorved to bend around cornors. This phonomenon is usually concerncd with interforonce offects produced when an opaque objoct is placed so as to intcrecpt a portion of tho eross soction of a vave front. Such effects arc callca diffraction effects. Diffraction Pattorn Dre to a Sinclc gitt

We shall treat first the diferaction pattcrn produced by a singlo slit in an opaque sereen. Consider the casc of a train of short waves, Which, proceoding from a distant source, passes throueh an opening $\frac{a c}{p_{6}}$ (FYS.12) and falls upon a screen mm . A distant source is chosen so that the $p_{5}$


Wave front of the disturbance which reaches the aporture ac may be practically a plano, and thus admit of the consideration of all the particlos lying in the plane of the aporture az beine in the pance phase of vibration.

The linos no and cr ero doan from the sourco, sosumod to bo a point, past the odecs of the openine se to the scroen; i.c. they are the lines which mark tho limits on tho gocnetrical bem. Suppose thet the wovo longth and tho opening ge uro so relatod thut the point $P_{\mathrm{A}}$ on tho seracn, for which the
 outside the limita of the guonchriccl bom, i.c. above the point 0 . Then the
 the vibratione produced at $p_{2}$ by the ise t:o particles matually noutrolize each othor. Similarly tha diaturbance originating in the first perticlo bolorta will at $p_{R}$ be just one half wave lemeth ahoad of tho disturbance coming from the first particiu bolon b. Tmus every particlo betweon a and binay be paired of with a correspondine particlo botroon b and c such thet the offects of tho tro particlos neutralize oach othor at $p_{2}$. Fonce the total oricet at $p_{8}$ of tho disturbances comine from tho portion an of tho opering is completoly noutralized by tho offect of the dieturbencos comine from the portion be of the opining.

Consider moxt a point $p_{4}$ Thici in su situated that tho distanco cpa is tro nave longthe more than tho distrane apa. The oneninge ge may nor bo dividod into four parts, no. CD , $\mathrm{bf}_{\mathrm{f}}$, fe, such that eb noutralizon at $\mathrm{p}_{4}$ the crect of ao, sinco op4 is one nolf wave loneth more thail tw, wnd feutrolizes the effect of of, since frpe is onc haly whe lengtin more than bpt There is therefore no disturbinec at all at p4.

At some point $p_{2}$, botwocn $p_{4}$ and $\underline{p}_{4}$, the distanco $\mathrm{cp}_{3}$ winl bo ono and
a half wave lengths more then $\mathrm{ap}_{3}$. If we not divide ae into throu cqual parts, the offect of tho upper third trill be complotoly neutralized at pos by that of the noxt lorer third, but the crifoct of tho lomest third has nothing to noutralize it at $p_{3}$; honco there is a aisturbance ot $\mathrm{p}_{3}$ which is due simply to ono third of the particles botrocn $a$ and $c$, and oven tho offocts of the particles in this third partially neutrilize one another at $p_{3}$, since they differ somorhat in phese. It is obvious that botweon $p_{2}$ and $p_{4}$ the disturbanco incronsos from zere nt $p_{2}$ to 0 raximum at $p_{3}$, and then falls gradwally to zero nt $p_{4}$; that, furthor, thare are othor points of zoro disturbanco, E6. cte., so situated then the distence from $c$ to the point in quostion is any oven number of half vave lengthe mors than the distance from of to this point; and that betreon these pointe of zoru disturbonco are points of maximum disturbance, $P$, cte, so situatod that tho distance from $\underset{f}{ }$ to the point in question is any odd number of helf mave lengths moro then tho distence from a to this point. But it ifill also be noticed thet the successive maxima, $P_{3}, p_{5}$, otc, diminish ropidy in intcusity, since, while but tion thirds of the particlos betroon a and o oomplotoly noutralizo ono another's effecte at $p_{3}$, four fifths of those particles noutralizo one anothor's effocts at $p_{5}$, six seyonths at $p_{7}$, ote. Honce it is not nocessary to go a groat distance above $o$ in order to reach a region in which there are no points at which there is any approcioblo disturbance. Fuxther, it to consider rave lengtha which are shortor and shorter in comparison tith ac, the pointa of maximum disturbance $\underline{o}_{3}, p_{5}$, ate., draw closer ant closor together, and som some of them begin to fell inside the limits of the geometrical borm, i.e. belon tho point o. Hence those that are loft above of aro moker and moneremombers of the series. It follows, thorefore, that :hen the wave length bcoomes vory
short in comprison with ac, the disturbonce will kavo beconc practically zoro at a vory short distance above the point o. In othor aords, a zave motion should bo propagatod in straight lines through ari opening, or past an obstacle, and should not bond around approcicoly into the roginn of the geometrical shador, mhen and only when tho Twat lencth is vory minuto in comparison With the size of the cpening; for ill this caso tho disturbances from the various elements of the openine must interfore in such a way as completely to destroy one another at practically all points outside tho limits of tho goometrical bucm. The analysis of the conditions which exist inside the limits of tho egometrical beam when $p_{2}$, Ph, ctc., fall belon o rill not hore be taken up, since tre aro not concorned at this point with shoring what happons inside of or so much as with proving that fractically nothing happons outside of or, Suflice it to say that caperiment and theory both shor that under the conditions assumed thore is practically uniform disturbance within the rogion or.

No:: since ordinary sound wroves havo a wave length of trom 1 to 8 foct, it will bo scon from the above analysis that in passing through n window or any ordinary opening they may be expectod to spread out in all directions boyond the oponing, as in fact re know that thoy do. Indeed, if the aporture is less than one ravo longth in ridith, it should bo impussiblo to find any point of quiescence whatover on the side or the seroen which is atray from the sourco. It is clear, then, that fe rust uso oxtremcly short sound waves, if We are to hope to observe mith any ordinary openings the diffraction phonomona prosentod in the abovo theory.

In Iifgt, howover, sinec the avorage mave loneth is only about . 00005 cm, to should expect that with oxdinary openings the maxima $\mathrm{p}_{3}, \mathrm{P}_{5}$, etc.,
would lic so near to the odges $O$ and $x$ of the geometrical beam as not to be easily discorniblc, or indecd inside the geometrical beam. In order, then, to bring them into cvidence at all, we should oxpect to bo obliged to work With cxcocdingly small oponings.

Diffraction phenomena of the typo discussed in this soction, in which a diffracting seroon is placed botween the sourco and the observing sereen, but in which no lenses or mirrors aro used is knomn as Frosncl diffraction. On the other hand, if a diffracting screen is placed in the path of a plane Wave of incidont light and then the diffracted waves observed. by moans of a tolescope focused at infinity tho diffraction pattern formed is known as a Fraunhofor diffraction pattorn. Both types of diffraction, homever, ariso from the same basic phenomenon and can both be treated by means of Huygon's principle.

The Nature of the Rcel Image of a Point Source
Lot us consider as in wig. 13 a lonc narron slit of widh ac upon which light is incident from a point sourco a groat distance away so that we may consider tho incident light plano parallci light. A convorgine lige I


Fig. 13
is placed as shom so that plano parallcl light is brought to focus at the point $p$ on the screen. Mo will thorofore direct our attontion to that light which cmorges from the slit ae as plane parallcl light and which is propageted in a given direction. Let us consider fyrst the lirht emergine from tho slit in a direction parallel to the incident light. All the particlos along tbe line ac aro in the same phase of vibration, and since the optical path longths from oach point on ac, through the lons $L$ to tho point $P$ on the sorecn, are equal, all tho rays emerging from the slit parallel to tho axis of tho lene will roinforce ono another at $P$, and $P$ will bo a point of constructive interferenco and appoar bright on the screen.

But wo expect light to emerge from the slit in other directions as Well, for tho linc ac is a wave front of the incident light, and thercfore by Huygens' principlo oach point on ac ropresonts a new source of disturbance from thich light is radiated spherically in all directions. Consider that direction porpendicular to the line ad in the figure where the distance ed is made equal to one wave length $\lambda$. Light having this direction pould be brought to focus at some point $P_{2}$. By similar roasoning to that omployed in the previous section it is apparont that the disturbanco originating at the point mid-point $b$ has a path to travel which is just one-half wavo longth loss than that of the disturbance originatine at $\underline{C}$, bofore reaching $\mathbb{Z}$. Honce the disturbance from $\underline{b}$ and $c$ will cancol one anothor at $p_{2}$. And by reasoning similar to that omployed in the provious soction it is cloar that for every point betweon $\underline{a}$ and $\underline{b}$ there is a point betrreon $\underline{b}$ and $\underline{c}$ such that the two disturbances from these points cancel one anothor at $P_{2}$. .The intorference at $\mathcal{E}_{2}$ therefore will bo completoly dostructive and no light will appear at $P_{2}$. This will bo truc also for othor points $P_{3}, P_{4}, P_{5}, \ldots$ etc. on
the sereon corresponding to a distance ed equal to any intcerral number of wave lengths. For points on the sercen in betteen those points completo destructive interforcneo mill not occur and a sorios or bright and dark bands Will appoar, with tho briधht bands wakor in intonsity the farther they aro from the contral point p.

The pattcrin on the sercon, howevor, is in ruallty an imago of the remote point soures in mich the liphthas its origin. Flo soc then that the image of a point is not in reality a point, but consists of a sorios of maxima and minima. Similar roasoning sinovs that this is true ovon if the point soures is not far removed from tho slit, i.c., oven if the incident light is not planc parallol light.

In the optical system we are hero considerjng, a slit has beon placed ovor the lens whosc width is suall compared to the diamotor or the lens. Tho diffraction pattorn therofore will closcly approximate a sorics or stradeht and parallcl bricht and dark bands.

In Fig. 13 , if we dosignatc the tro equal anglos dac and $P b P_{\Omega}$ by $\theta$, and the width of tho slit by $d$, wo sec that

$$
\sin \theta=1 / d
$$

Wherc $Q$ is the angle moasured from the ecntral dircetion out to the first minimum or the first dark band. Likcrisc the angle out to the nth dark band is given by

$$
\begin{equation*}
\sin \theta=\mathrm{n} \lambda / \mathrm{d} \tag{9}
\end{equation*}
$$

wherc n is any intogor.
For simplicity the ions in $\mathbb{F i}$. 13 was taken to be fixed. This is pormissablc if $\theta$ is a small antc, i.c., if the widt of the slit is considcrably groater than one wave longth. From the reasonine cmployod in this
soction it is clear that Eq. (9) is not rostricted to small anglos. A moro adequato arrangonent of the apparatus to demonstrate the effect at larger ancles would bo to rotate the lens about a lino through the midpoint of the slit so that it mould be porpondicular to tho direction of tho particular rays undor inviotigation. Also the sereen should thon be in the form of a spherical surface those contor is at $b$ in order that a rixcd distanco from the lons to the soroen is maintainca.

If not: 70 imaginc the slit to be widenod, i.c., tho distance ac is increased, tho anglos out to any of th: diffraction bands, say the nth band, would decroasc, and for slits thosc midth is lares compared to $\lambda$, wo can use the approximation $\sin \theta \approx \theta$, and $E q$. (9) becomos

$$
\begin{equation*}
\theta=\frac{n \lambda}{d} \tag{10}
\end{equation*}
$$

If in place of a long narrow slit an aperturo which has an opening of circular cross-soction is placed in front of the lons it is clcar from symmetry that the diffraction pattorn will consist of a circular bright disc surroundod by a sot of concentric dark and bricht rings. A calculation of the position of the successivo maxima and ninima for a circular aperture is considcrably more difficult than that for a long and narro:t slit and will not bo attemptod hore. The result, howctor, is similar, and the anglo subtended by the first dark ring at the eentcr of the aperature is given by

$$
\begin{equation*}
\theta=1.22 \frac{1}{\mathrm{~d}} \tag{11}
\end{equation*}
$$

if the diameter $\mathbb{d}$ of the aperture is large comparcd with $\lambda$.
TVCr if no aperture whe placed in front of the lens, the boundaries of the lons itscif corrospond to an aporture of finito sizo, and therofore the image of a point source producca by any lens will be a diffraction pattern and not a simple point.

This phonomenon placos a limitation on tho clearncss of the detail Which can bo brought out in an image producod by any optical system. For example, considor tro point sources Si and Si, which subtend a small angle $\alpha$ at the contor of a lons, or at the contor of a circular apcrture if one is placed in front of the lons, as shown in Fic. 14. Lot $P_{1}$ and $P_{2}$ roprescnt


Pig. 14
the ecnters of tho diffraction pattorns which arc, rospoctivcily, the imagos of the tro point sources $S_{1}$ and $S_{2}$. Obviously if the to diffraction pattorns $P_{1}$ and $P_{2}$ aro sufficiontly olose to on: another thore may bo over-lappine to such an oxtont
that they would appoar as the image of a sincle point instead of two. Exporionce has shown that if two diffraction pattornc aro superposod and spaced such that the contral bright discs of one falla at the ecnter of the first dark band of the other, ther thoy arc just distin ujeshable as tro separate patterns, and they aro thon said to be resolvod. An ancle cx thich corresponds to a spacing botreon images of this amount is known as tho limit of resolution of a fens, and by 3 Bq . 11 is oqual to $1.22 \frac{\lambda}{\mathrm{~d}}$, whero d is the diameter of the aperturo of the lons. In some applications, as for cxample, of microscopos Whore a vory high magnification is desircd, and theroforo making necessary a high resolving powor, ultraviolet light is uscd beceusc of tho smallor value of $\lambda$ for ultraviolct as compared vith visiblc lifht.
6. The Diffraction Grating The phenomona of diffraction arc most strikingly cxhibited tith the aid of an instrument dovised in 1821 by the celebrated German optician Fraunhofor, and known as tho diffraction grating. Such a grating consists essentially of an opaque screen in which arc placed at regular intervals small parallel slits for the transmission or reflection of light. Thus in Fig. 15 gq ' reprosents a cross soction of the grating, and the

source of light bo so far distant that the wavo surfacc which falls upon the grating is practically plane. If no grating wore present, a lens intorposed in the path of the wave YWW' Would form an image of the distant sourco $\underline{S}$ at some point $\underline{a}$, while at ail othcr points on the screen uv there would bo destructive interference and thererore total darknoss. Let us see how this conclusion mould be modified if wo take out cortain portions of tho wave front WW' by means of the grating. Then the mave my' reaches the grating qq the points $\underset{m}{m} \underline{\underline{p}}$, $\underline{s}$ become now sources of spherical waves, and if we draw the envelope to all theso wavos after the disturbanco has travcled a small distance
formard, we shall obtain procisely the samo surface $A B$ which to should have had if tho crating had not been presont, the only dirference beine that the intensity of disturbance in the plane AB is much less then before, sinco now but a fory points, namely In, $\underline{p}, \underline{s}$, otc., arc sonding out sphorical maves to $A B$, Whilc before all the points in qg' woro so doing. The lens will take this planc mave $A B$, consistine of vibrations all of which aro in the same phaso, and bring it to a focus at $\underline{a}$, so that an enfeebled irage of tho distant soureo Swill bo formed at this point. Thus far, then, the only effect of the grating has boen to diminish the intensity of the image at a.

But $A B$ is not now tho only surface which can be drawn to the right of the grating so as to touch points all of which are in the samc phaso of vibration, for a surfaco mD , so taken that the distance from $p$ to it is one wave langth, that from $\underline{s}$ two wave lengths, and so on, satisfios this condition quite as woll as does the surface $A B$. Henco mi may bo regarded as anothor plane wavo, which, after passage through the lons, will be brought to a focus at some point $\underset{\sim}{c}$ in tho line drawn perpendicular to mD through the eenter of the lens, in procisely the same way in which the planc wave AB was brought to a focus at a. Here, as bofore, wo shall rotate the lens about an axis in the grating indicated in the figuro by $Q$ so that the plang of the Ions is parallel to the wave front mD. It follows, then, that an image of the source should be formed at $\underline{c}$ as woll as at $\underline{a}$. Frecisoly the same line of reasonine will show that anothor image of tho distant sourco should be formed at e' as far bcion a as $e$ is above it. But $\underline{a}, \underline{c}$ and $c^{\prime}$ arc not tho only points at which images of the sourco will be formed, for it is possiblo to pass a plane through much that the distance from $\underline{q}$ to this planc is $2 \lambda$ instoad of $\lambda$, that from $\underline{s}, 3 \lambda$, ctc. It is obvious that all points in this plane

Will be in the same phase of vibration, and honce that the rosulting plane wave will bo brought to a focus at some point $\underline{d}$ on the perpendicular drawn from the plane through $\underline{O}$, and at tho same distanco from $\underline{\underline{0}}$ as arc $\underset{\text { a }}{ } \underline{E}$. Similarly, thore will be other images whose direction from 0 is determined by the simplo condition that the suecessive distancos from the slits to the wave front diffor by a whole multiplo of a wave length; thus po $=\lambda, 2 \lambda, 3 \lambda, 4 \lambda, 5 \lambda$, etc. Tho rirst imace, namcly that at c , whore this difforence is onc wave longth, is called the image of the first order. Similarly, that at $\underset{\alpha}{ }$ is the imago of the second ordor, and so on. In a word, then, a lons and grating disposod as in Fig. 15 should produco a mhole sories of images of any distant source of light. This means, of course, that under these conditions light waves will bend far around into the region of the geometrical shador and bo discornible at a large numbor of difforont points instcad of simply at a.

These theoretical doductions from the wave thoory of light are completely confirmed by exporiment. Furthermore, tho exporimonts illustrating them arc so simplo and so much a part of overyday expericnce that the wonder is that thoy escaped detection and explanation for so lone a time. Thus if one looks through a handkerchicf held close to the oye at a distant arc light, gas flame, or bright star, one can always sec nine and sometimes as many as Cighteen or more images of the light. Thesc are duc to the two sets of gratings formed by the two sets of threads which rum at right angles to each other. It is usually possiblo to soe as many as threc distinct images by simply squinting at a distant light through the oyolashes which act in this case as a vory imporfoct grating. In those exporimonts the rotina of the eye takes the place of the screen uv, and the lens of the oye the place of I.

In its simplest practical from tho gratine consists of a planc pieco of glass unon which are ruler with a dionond point, say, a thousand lines to the contimeter. The eroovos cut by the fiarona point constitute the opaque spaces in the grating, for tho light which falls upon these crooves is scottered in all airoctions, so that noclisible jart of it passos through in the dircction in which the licht is traveling. The clear class betreent the rulincs correspomie to the openings $\mathrm{m}, \mathrm{D}$, 으 in the screen of Fic. 15 . If such o. grating is hald inmadately beforo tho oye and a sourco of monochromatic light viered through it, the serios of imases formod at a, $c$, $\underline{d}$, ote. on the retina are apprehended by the obscrver as a sories of irages of the sourco lyine in the proloncations of the lines ao co a ote. The fmacen may be throm upon a serow, if sereon, lons, gratine, and sourco are Eiven the relative positions shom in Fig. IS..

In Fig. 15 if the ancle betroen the grating and tho dircction of the mave front WDich forms tho imace of the first order is denoted by $\theta$, and If a is the distance betwoon successive openings -- the gretine syace or grating constant, as it is called, thon tho obvious relation exists,

$$
\sin \theta=\lambda / a
$$

In general, if $n$ represents the order or any indec and $\theta$ the anglo betmeen the crotine oni the wavo iront formine that irage, then

$$
\begin{equation*}
\sin \theta=n \lambda / \lambda \tag{12}
\end{equation*}
$$

Eq. (12) is knomi as tho grotinf; oquation.

## The Gratine Spoctrum

If the source sonds out, not nonochroratic licht, but, instead, white Ifich, the serios of sharply defined imeges of tho source is found to bo
replacod by a sincle contral inage of the source in whito light at $\underline{s}$, bordered on ofther side by broad bants of colored light. In the first band tho ond farther from the source is red. From tho red the colcr isrados into orange, yellor, ercen, blue-creen, blue, and finally into violet at the end noarer to the source. The bani of lidht thus produced is collod in geoctrurn, and the phenomonon of 1 ts protuction is knom as disporsicn.

Tho action of the gratine in producine aispersion is then ensily seon; for since the position of evory lmace oxcopt the contral one is detormined by tho condition $\sin \theta=n / a$, it is ovident that thero is a different valuo of $\theta$ correspendine to each value of $\lambda$. Nuw the mave lencths which compose White liuht vary from about .000076 in the rod to about. 000039 in the violet.

Hence when the sourco is whito litht the inaco of cach ordor as it appears With monochromatic lift is replaced by a sorics of adjacent imaces in dipferort colors, oach iriaco correspondin; to a particular wive lencth or color. This series of adjacent iriages constitutes the colorea band or spectrum or ach particular order. Tho contral imaco is wite ana sharply definod bocause the wave front $A B$ ( $F i G$. $1_{5}$ ) which fives rise to this irace is at the somo distance frem each of the openina, and in conscquance this mave front is the same for all wave leneths.

The spectrum of tho first ordor is the only puro spoctrum which a cratine can produce, for it can be shown that the syectra of higher orders ovcriap. Thus, since fur the rod of the second rdor $\sin \theta=2 \times .00007 / \mathrm{d}$, approximately, and since for the violet of the third ordor $\sin \theta^{\prime}=3 \times .00004 /$ d, it will bo seen that $\sin \theta$ is rreater than $\sin \theta^{\prime}$, and honce that a part of the third violet overleps $a$ part of tho socond rod. It is on account of this ovorlappins that che never scos incro than tho or
threo spectra on a side, for in the higher orders the overlapping is so complete as to reproduce white light.

## Tho Disporsivo Poricr of a Grating

It will bc cvident at onec from Fig. 15 that the smallor tho distance betmeen openings, the farthcr epart will bc the successive images a, e, d; in other mords, that tho angular scparation of differont orders produced by a grating, and honce, also, the angular soparation of different colors in tho same order, increases as the distance between the lincs of the grating decreases. Tho ratio of the angular soparation of tio beams of difforent wave lengths to the differcnce in thelr wave longths is known as the disporsivc porror of a grating. Thus the dispersive powor is equal to $\frac{d \theta}{d \lambda}$, and by a simplo difrerontiation of Eq . (12), wo obtain

$$
\begin{gather*}
\cos \theta d \theta=\frac{n d \lambda}{d} \\
\frac{d \theta}{d \lambda}=\frac{n}{d \cos \theta} \tag{13}
\end{gather*}
$$

The disporsive pomer of a grating, thorefors, increases with the ordor of the spectrum, and is greater tho smaller the grating constant. A grating which contains a large number of incs por continctcr has a groator disporsive power than one with a lossor number of lincs por contimoter.

## The Resolving Powcr of a Grating

A second important characteristic of a grating is its ability to produce images which aro sufficiently sharp so that the images formed for tro spectral lines of almost gqual wavc loneth aro clearly alstinct from ono another. From the theory of Soc. 5 we must oxpcet that the image of cach
spoctral linc mill bo a diffraction pattern with a bricht central band and a scrics of altomating dark and bright bands on citbor side. This, of coursc, would be truc ovon thoush the light ropresontod by tho spectrai linc Were 1tscli strictly monochromatic. To shall hore toko as the limit of rosolution of tho imagos of tro spoctral lincs a critorion simflar to that amployod in Sce. 5; 1.c., two images arc said just to be rasolved if the central bright maximum of onc coincides mith the first dark band of the othor.


Fig. 16

In Tig. 16 arc roprcsented a erating and the wave fronts in the nth ordcr spectrum corresponding to two spectral lincs of wave longth $\lambda$ and $\lambda^{\prime}$ rospoctivoly. Tho first opening is roprescnted by $\underline{m}$, the socond by $\underline{\underline{q}}$, ote. Tho aistance po will thoreforc be nd for ono spectral linc and $n \lambda$ ' for the socond linc. If the grating contains a total numbor of Incs $\mathbb{N}$, and if $\underline{u}$ reprosents the last opening, thon tho distance from the opening $\underline{u}$ to the two wave fronts will bo Nind and $\operatorname{NnA}$, respectively. The first dark band of onc image will coincide with tho
contral bright band of the other if the nave fronts have the relative positions shown in the figure, i.c., if $W$ is equal to $\lambda$. .. For With reforonce to the wave front mP and to the light of wavc longth $\lambda$, the disturbanco from $\underline{u}$ will
be just one-half :ravo length out of phase rith the disturbance frori that opening just midway betrow the rirst and last openings, and therefore the tro disturbancos will cancel one another's offects. Similarly the disturbance from cach opening in the upper half of the gretine will be cancellod by the disturbance for of corrcsponding opening in the loner half. Thas tho rive front me corrobronds bath to the firct dark band for tho light of wave length $\therefore$, and to the central bright band for tho light of rave leneth i.

From Fic: 26,

$$
\begin{align*}
& \mathrm{NJ}_{2}+\therefore=\mathrm{Nn} \mathrm{~A}^{\mathrm{A}} \text {, } \\
& \text { and setting } \\
& \because=\lambda+A \lambda \text { wo tind } \\
& \lambda=\sin A \lambda \\
& \text { O. } \frac{\lambda}{\lambda \lambda_{1}}=N n \tag{14}
\end{align*}
$$

The magnitude $\% / 0$ is taken as the moasuro or the resolving porer of a Greting, and from Eq. (14) wo woe that the rosolving porer is proportional both to the order on the apectrum and the total number of lince.

Effects of finito ridth of glit on guries of images produced in monochromatic light. In tio use or a Gritins one witen observes that the image of the thixd order, for example, rijul bo brichter then that of the second, that of the fifth oriantor than that of the fourth, ote. The eause of this lios in the finito riath of the open spaces which have heretoforo boen considered to be mere lines.

In order to underatand the offoct of a finito midth in the ononings upon tho relative brielthess of the succossive images, consider FiE. IT, in which is shoin on a larce scale a soction of a portion of a practical greting, mo, pr, and ou reprooontin; the finito oponings, and op, rs, otc, the opaque spaces. The points ma $_{\text {m }}^{2}$, and correspond to tho line openings of the
precedine diseussion (Tis, 15). The line meprosents the wave front which Gives the imaje of the first onder. It is dram as the envelope to the

distances fror these anticlos by a phole wave lenteln. The disturbences duc to thoso pointe will therofore ramionce wan other at c. And ainilarly, for all the othor poiat: in the ucnine mo there will be cerrcopondine points in
 be noticed that the disturbanecs wich start from the different parts m, $n$, and of of the some openins cre not in quite the scrice phase of vibiation thon thoy roach the plame and and further that the rider the pening the groctor bocomes this phase dilforence. Surpose, then, that the open swacos mo, ete, are just equal to tice cyaque upaces up, cte, and timat wo arc considering the imajo of tho socond ordor. Te have soon that the condition thich must hold
for this image is that $p_{2}=2$, $\frac{s k}{}-y_{h}=2 \lambda$, otc. Since, then, mo $=0$, Wo havo of $=\therefore$. Eut when this condition orists the disturbance from $\underline{n}$ is one hale wave lonsth behind that from m, and thorefore competcly destroys it at c. Similarly, the disturbaneos from all tho points betroen in and o destroy
 other menimes. Thus the imago of the socond arder itill be entirely missing, and also, for axactly the waxe roason, the imenes of the fourth, sixth, ete., orders. If the monine is one third of the rating space instead of one hell, the missine imeces rill be those of tho third, sixth, ninth, ote., orders. If conditions of this sort are only aproximatuly rulfilled, as is usually the case, the immos omsidered will be simply :rokened but not entirely cut out.

Reflcotion ratinge. By rar the eroator part of sectroscopic work is now donc whth the aid eratincs, but in actual rork refloction grating are auch more conion then troncmission jratinas like that mich has beon stodica. These rofloction ratings are rade by ruline vory fine lincs on a refloctin; metal surfaco, pather than on a transritting rlass surface. The Erooves destroy tho light, thilo tho $\beta_{\text {joces }}$ betroon then roflect it regulariy. The light from any whito source which is rerloctod from such a. crating and then broutht to a jocus by meons or a lans shows a contral whito inge at a position such that tho ancilo of incidenco oquan the ancio of rofloction. On efther side of this contril ina erefound syoctre of the first, socond, and third orders, rocisely as in the tranmission erntins. The thoory of the two eruting is in all rospocts identical, wor it obviously mases no diffor-
 whethor by roflectins or by trancinttine a aisturbance from soric other source.

A form of cratinie wich has renderea possible some af tho must important of advances in suactroscopy is the concave grating invented by tho late Professor Henry A. Ronland of Johns Hopkins University. The egsential difforoned between this and thon ratines is that the lincs are ruled won the surface of a concave suherical mirror of $l a r$ ro rudus of curvature, for exampe 20 feet. Under sucin conditions the mirror itself foms the series of images corrosyondinf to a, e, $\underline{a}$, etc. (soc Fis. 14), so that it is not necossury to intorpose a lens. This olioinates all dirficultios arisine from the absorption of the waves by the lons, difficultios which are especially pronouncod in the ultre-viclot and infra-red rowions of the spectrun.

## Problems

1. In FiE. 4 assune that $S_{1}$ and $S_{2}$ represcit long narrow alits perpendeular to the plane of the figure. Take the separation of the slits to be 0.05 rm and the distance from the olita to tho sereon $P$ to be 60 cm . Compute tho distance apert of the central tro derk bands on the seroen for light of rave loneth 4500 A .
2. What thicknoss moter film will produce a strong first ordor reflection oi' No-D light which is incident normally on tho film? What is the mave lenigth of tho light inside the mator filn?
3. A vorticel soap filu, obsorved by reflected light, bocones bleck at tho ton just before it breaks. Explain.
4. A thin wodero of alr ia formod betneen tro nerron pieces of plato glabs which touch at one and end are separated by a thin piece of papor at the other ond. Then the medee is vierod nomplly by monochromatic reflected light an interforenco pattora oi' altemato light and dark bonds is seon. If tho distance apart of the dank bends in a rim when Nem light is used, cclculate the angle of the medec.
5. If tho cir space in Problen 4 is nor ropleced by mater and tho medge viemed in a similar manor, whet mill be tho separation of adjacent dark bends in the interferonce pattern?
6. Iforton's Rings aro formed by a convex lons rosting on a plano surface. Tho $20 t h$ dark ring is 1.5 cre from the center when No-D lifht is used. What is tho radius of curvature of the lons, and what is the thickness of the air film at that point?
7. If in Froblem 6 the space beneath the lens is filled with water What fill be the distance from tho 20 th dark ring to the conter? What is the distance frem the 15 th dark ring?
8. A convex lens of radius of curvature 60 cr resting on a planc surface is illuminated with light consisting of tiro wave lengthe $\lambda_{1}=5.4 \times 10^{-5} \mathrm{~cm}$ and $\lambda_{z}=4.5 \times 10^{-5} \mathrm{~cm}$. Tho nth dark ring for $\lambda_{1}$ is scen to coincide with the $(n+1)^{\text {th }}$ dark ring for $\lambda_{\mathcal{E}}$. What is the diametor of the nth dark ring for $i_{l}$, and what is the value of $n$ ?
9. A long slit 0.01 man wide is illuminated nomally by a plane mave of $\lambda_{1}=7.0 \times 10^{-5} \mathrm{~cm}$ and $\lambda_{2}=4.5 \times 10^{-5} \mathrm{~cm}$. A lens of rocal length 90 cm is placed imediately behind the slit and rocusod. On a sereen. Find the distance betweon the tro imemost dark bands for $\lambda_{1}$ and $\lambda_{2}$ on the sereen.
10. Mizar, the larger of the two stars at the bond of the handle of the Great Dippor, is a doublo star. Its two components are separated by 14.5 " ol are. What is the smaliest aperture of teloscope that can resolve this doublet?
11. The objective lons of an astronomical telescope hes a diametor of 40 cms and a focal longth of -300 cmi. What should be the focal length of the eye-piece if by visual obscrvation it is desired to distinguish as tro separate inages the images of two stars mich are just aithin the limit of resolution of tho tolescopo objoctive? Asaumo an unaided oye is able just to distinguieh two images when thoy subtend an angle of 2 ' at the eye.
12. Na - D light is incident nommally on a grating ruled with 4000 lines por cm. What is the diffraction angle in the third order? Hors many orders are pregunt?
13. In Problon liz what is the disporsive portor in oach order?
14. If a gratine is rulod with 2000 linas per cric hor far must the ruingss oxtond in ordor that the D-lines of Na (5990 and 5896 A$)$ will be just rosolved in the and ordor? In the 3rd order?
15. The nem Pelomar tulescope has a aiamotor of 200 inches. Estimete the smallest angular soparation two stars can have and atill bo resolved, for $\lambda=4000 \mathrm{~A}$ and 6000 A .
16. Desien a grating which will just resolve the tro magnesium linos of 5184 and 5173 Anestroms, and which wili produce a separation of ono minute of ore in the diffracted boans, when used in the third order.
17. A grating has slits ono hale as mide as tho grating snace. Hor many orders will be present if the weve leneth is 5000 Anestroms and the grating is rulod with 2000 lines per cm ?
18. Parallel white light is incident nomally on a slit .05 cm wide placed directly in front or a lens of-1 meter focal length. In a screen placed at the focal plane there is a pin hole 0.3 cm from the axis of the system. What wave lengths between 3000 and 8000 Angstroms are missing in the spectrum of the light observed through the hole?
19. Deduce the grating formula which is applicable for light which strikes the grating at other than nomal incidence.
20. A bi-prism (Fig. 18) is a piece of glass in the form of an isosceles triangular cylinder. A bi-prism with a $3^{\prime}$ angle is placed in a parallel bcam of light originating from a point source placed at the focus of a collimating lens. A screen $S$ is placed at a distance of one meter from the plane or the prism. Describe the interference pattern produced at $S$ assuming the light is Na $D$ light and the prism is made of \#123 crown glass. Calculate the separation betweon the interference bands.


Fig. Il
21. Wonochromatic Iight $(\lambda=5000 \mathrm{~A})$ from a point source strikes a mirror at nearly grazing incidonce. The reflected light then interferes wi th the diroct beam from the sourcc. Mre perpendicular distanco from the source to the plane of the mirror is $d=$. im . A screcn $S$ is placcd at a distance $D=2$ meters from the source. Let $\alpha ; 11$. Calculate the separation of the fringes. Such an arrangement is known as a Fresnel mirror.


$$
\text { Fig. } 19
$$

22. A converging luns of -1 m rocal lencth is sawed into two halves and the halves are separated by 1 mm . A monochromatic source $\mathrm{A}(\lambda=5000 \mathrm{~A})$ is placed at a distance of 2.5 m from the plane of the lens, forming two imacos, $B_{1}$ and $B_{\Omega}$. A scroen $S$ is placed at a distance of 3 m frort the lens. Describe the intorforenco pattern and calculate the separation of the fringes. Assume that $\overline{\bar{B}_{1} B_{2}} \lll \overline{\mathrm{SB}_{1}}$.


## CHAPTER FIVE

## POLARIZED LIGHT

1. Polarization by Rofloction. All of the phenomena of light which have been thus far studied have been found to be explicable upon the basis of the same rave theory mich applies to the phenomena of sound. In other Fords, so far as the fundamental facts of reflection, refraction, diffraction, mission, and absorption are concerned, sound and light are identical in all respects except in the lengths of their waves and in the nature of the media which act as their corriors.

There is, however, a class of phenomena, knots as tho phenomena of polarization, Which dirforcntiate light completely from sound, and show that light raves are not compressional waves at all as are sound raves, but are


Fig. 1.
instead transverse naves similar to those which clastic solids are able to propagate by virtue of their rigidity. Those phenomena are so far removed from ordinary observation that they will be hor presented in connection with a sorios of experiments. The facts presented in the first experiment Fore discovered in 1830 by the French physicist Minus (1775-1812).

Experiment 1. Set the plano glass roflector $m$ of tho so-called Nörrenbere polariscope of Fig. 1
so that its plano makos an anglo of about $33^{\circ}$.iith tho verticna. Adust the position of i horizontal slit $s$ (about 5 mm ride) and a sodium flamo in so that then you romove tho black glass mirror $\mathrm{m}^{\prime}$ and look vertically dom upon the midale of 㠫you sce a portion of the fleme. In this experimont the mirror n may be covered with a pioce of black paper. place m' in position and tural it so that it is cxactly parsllol to m , that is, so that its plano also makos an rnelo of $33^{\circ}$ rith the vartical. Placo tho oyo at Ein buch a position that whon you look at the miadle of myou soe the tilice-roflocted image of the sodiun flome. Then rotate $\mathrm{m}^{\prime}$ in its frame about a vartical axis and observe the image of the ilame as you do so. Then you have turnod in through $90^{\circ}$, that is, into the position shom in Fig. 1, 2, the imege of tho flame :ill havo completely disappoarod.


Fig. 2,

The experiment shoms that Light Wavos cannot bo longitudinal, for if the particles of the medium which transinits the light from $m$ to $\mathrm{m}^{\prime}$ vibretod in the direction of propegation of tho light, then the conditions of symotry would domand that tho wavo be reflected in precisely the samo ray artor $m^{\prime}$ has beon rotatod through $90^{\circ}$ as beforc. But :He can understond the experiment if we assumo that lint consists of waver in Which tho direction of vibration or the particles of tho modiur is altays transverso to the direction of monegation of the veves. Tie shall condider again that $a$ bearn of light is mado up of $s$ largo munbor oí clomentary wavo trains, and that a spocifica diroction of vibration can be associated mith oach elementary wave train. We assumb further that the airections of vibration nssocinted with the elomentary wave trains axo orionted at rendom with respect to onc anothor, Honco in Tis. 2 lot ab, ca, of, gh, otc. each roprosont tho direction of vibration to be associatod 7 ith a particular elemontary ravo train. If then tho beam of Iight consists ox a lare numbor of clamentary
wave trains the diagram corresponding to Fig. 2 would consict of a Iarge number of directions distrbbuted Bymmetrically about tho ecnter point of the diagram. In othar words a beam of natural or unpolarizod light has a constant amplitude of vibration thon moasurod in any direction perpendicular to the direction of propagation of the light.

All the vibrations of unpolarized light can bo resolvod into two component vibrations, the one perpendicuIar to the planc of incidenco smm (Fig. 3), that is, at right angles to the planc of the page, and ropresontod by the dots in the line sm, and the other in the plane of incidence and represented ky
the straight lines dram across the path of tho ray sm.
Then the ray an strikes the mirror thore is ono ancle of incidence such that the rofractod ray $m$ and tho rofloctod ray $\mathrm{mm}^{\prime}$ arc at right angles to each othor. Now when this condition is fulfllled oxperiment shows that then the reflected ray consists only of vibrations which are perpondicular to the plano of incidence. The ray ma is said to be a ray of plane polarized light, and tho anglo of incldenco at which the ray sm must fall upon the mirror in ordor that tho reflected ray mrn may consist only of vibrations in this onc planc is callcd tho polarizine ancle. That
this angle is alows the anlo for wich the roflected and rafracted are at richt angles was discoverod in 1815 by Sir David Brcister (1701-1868), and is known as Brenstor's law. It may casily bo shorn that another form of statcment of the samc lars is the follouing: the angle of complote polarization is the angle tho tangont of which is the index of refraction of the reflocting substance. This is the form in which Brorster announced his lam. That the two forms of statement represent one and the same physical rclation may be seen from the following:

If the angle cod (Fig. 4) is $90^{\circ}$, then wo have $90^{\circ}-\underline{i}+90^{\circ}-i=90^{\circ}$

$$
\text { or } \underline{i}+\underline{x}=90 ; \text { hence }
$$

$$
\sin \underline{r}=\cos \underline{\underline{j}} \text {; hence the }
$$

$$
\text { index } \mu_{i}(=\sin 1 / \sin x)
$$

may be writton in the form

$$
\begin{gather*}
\mu=\frac{\sin i}{\cos i}=\tan i, \\
\text { or } \\
i=\tan ^{-1} \mu . \tag{1}
\end{gather*}
$$

The reason that wo originally sot the mirror in so as to make an anglo of $33^{\circ}$ Tii th the vertical was that the index of refraction
of crom füsss ic about 1.55, and the ang? 3 the tengent of thich is 1.55 is $57^{\circ}$. In orar ilat the anglo of incidence nicht be $57^{\circ}$ it was necessary to make the angle wetreen the plane of the mirror and the vertical $33^{\circ}$.

It $\quad$ till not be obtious why mo obtaincd no refloctod licht at all
from $\underline{m}^{\prime}$. When wo had rotatud it from position 1 to position 2 (Ifs. 1). For in this lattcr position $\underline{m}^{\prime}$ bore precisoly the same rolation to the vibration of the ray $\mathrm{mm}^{\prime}$ as did the mirror $m$ to the component of sm which Has vibratine in the planc of incidcnee smm'.

Licht is said to be plane polarized if the vibrations associated With it all lic in onc planc, and this planc is knorn as the plane of

## polarization.

Expcriment 2. Now sot $m$ and $m$ again so that there is no light from $I$ reflcctod at $m$ and thon rotato $m$ about a horizontal axis, observing tho middle of $\mathrm{m}^{\prime}$ all the while. You will find that there is always some of tho light ray $\mathrm{mm}^{\prime}$ roflected from $\mathrm{m}^{\prime}$ except when $\underline{m}^{\prime}$ is set exactly at the polarizing anele. The gmount of the light thus reflocted aill be found to increase rapldiy as the position of the mirror departs in either direction from the polarizine angle.


Fic. 5

Experiment 3. Roplace the glass mirror $\underline{m}^{+}$by a pile of about fifteen thin glass plates sot at tho polarizing ancle (soe Fig. 5), and then obsarvo not only, as above, the reflected ray c, but also the ray $c^{\prime}$, transmitted by the plates as the pile is turned about a vertical axis. You mill find that when the pilc of platos is in position 2 (Fig. 2), that is, in the position such that the rcflected ray disappears, the transmittod ray is of maximum brightnoss, and whon the piates are rotatcd into position 1 (Fig. 1), that is, into a position such that the reflected ray is of maximum briehtness, the transmitted ray has almost cnifely disappeared.

In explanation of thoso effects consider that an incident bean sm
(Fig. 6) of ordinary light is rusolvcd into two components, ono vibrating
in, and ons normal to, the plane of incidence. Lot the intensity of caoh of those compononts be reproscntid by 50 (see Fig. 6). At the polarizing angle nonc of the 50 parts which vibrate in tho planc of incidence are refloeted, Whilc photonctric masurcments show that about 16 per cont of tho licht Which is vibratine perpondicular to the plano of incidonce is reflectod; that is, 8 per cont of tho incidont beam is reflccted at the polarizing angle. Hence, aftor the first refraction, the transmitted lieht consists of 50 parts vibrating in the pianc of incidence and 42 parts vibratine in the planc porpendicular to the plano of incidonco. After the socond refraction these numbers have become 50 and 35.3 ; aftor the third rofraction, 50 and 29.7 ; after the fourth, 50 and 25 , and so on. Aftor passage through twolvo or thirteon plates the transmittod ifght has bocome noarly plano polarized by this process, the planc of its vibrations obviously being at right angles to the planc of vibration of the reflectcd light. A pile of plates of this sort furnishos a very incxponsive moans of obtaining plang polerized light, but it suffers from tho disadvantage that the polarization is not quitc


FIE. 6
complete. If no light whatever were absorbed or scottored by the glass, tho transmitted ray woujd becomo morc and more neariy plane polarized the largor the numbor oil plates, but in practice there is found to be no advantage in incroasine tho number of plates boyond trirteen or fourtegn.


Tig. 7
2. Polarization by Double Rerrection. The phenomona which will be prosented in tho folloring experimento waro discovered in 1070 by tho Dhnisl: physicist Eresmus Bartholimus ( $2825-1598$ ), who first moticed the fact of doublo repraction in Iceland sper, ant by huygons (1629-1695) in 1690, when frirst noticod the polarization of tho dqubly refractod boaras produced by the Iceland spar, and first offered an orplatation of double rafraction fron the standpoint of the mave theory.

Experimat 5. Nisc a sinhole in piece of black cordboard, and lay the cardboard on a picee of plane glass on the frane h (fis. 1). Scme frehes boneath this, for examplo on the plato ris turned into the horizontel poaition, lay a pieco of thito papes and illuminate it vell. Then lay a orystal if


Tig. B

Icoland spar (Fig. 8) over the halo in the caraboard. Ronove $\mathrm{m}^{\prime}$ and look vertically domn upon the crystal. You Will see tro holes instoad of ono. Rotate the crystal about a vortical axis. onc image rill remain staticnary, thile the other rill rotate about it.

That the inage which rerains stationary is protuced by lieht which has follurod tho usual lews of rofraction is ovident frorl the fact that it bohaves in all respects as it would if viewod through a glass plato. The innge which rotatos, howevor, rust bo producod by light which has follomed sone extraurtinary lan of refraction; for althoukh it has massod into the crystel in a diruction nornal tu the bottom face, and out of it in a direction nomal to the top face, it ruist have sufforod bending inside tion orystal, since it morgos fron the crystal at a point dirforcnt from that at which the othor ray onerges. We must conclule, then, that a ray of liget which is incicent won the lowor face of such a crystal of Icoland spar is split inte tro rews by the spar: and that these t:70 rays travel in afferent directions throuth the crystal. The ray which follovs the ordinary lats of refraction 1 s colled the ordinary ray, the othor tho oxtroordinary ray.

Experiment 6. To find the diroction in thich tho cxtraordinary ray travels, retato tho erystal about a vertical axis abovo the pin hole and noto thet tho extraordinary inage always lios in the line connocting tho ordinary image and the solid obtuse angle of the face which is boine vioved, and, furthor, that the oxtraordinary imace is alvays on that sido of the ordinary which is aray from this solis obtuso angle.

It will bo evident, thon, from these oxperinonts that is Fis. 9 represents a section of the crystal mado by passine a plano norral to the tor

and bottom faces and through the verticos.
of the tro solid obtuse angles of a erystal all of moso sides aro equal, tho Ino 10 will represent tho path of the ordinary ray through the rhomb, while the broken linc imno will ropresent the path of the extraordinary ray.

Experiment ?. In order to determine thether tho ordnary or the extraordiny ray travils tho faster through the rhomb, obscrve açain the tro pin holos, or, botter, observo at close rango a dot on a piece of whitc paper upon which the crystal lios, and note thich image, tho ordinary or the oxtraordinary, appears to be the nearer to the upper face.

This mill evidently correspond
FiE. 9
to the ray which has suffored tho largest
ehange of voloctty in omorging into the air; that is, it uill correspond to the ray which travels more slorly in the crystal. This will be found to bo the ordinary ray.

Exporiment 8. If you can obtain a erystal Which has been cut so that its top and bottom faces are plancs mich are at right angles to the Ine ab (Fig. 8) which conncts the troo obtusc angles of a perfeet rhomb, that is, a rhombohedron having all of its faces equal, viow the pin hole normally throuch this crystal. You will observe that there is now but one rey, and that this ray doos not change position upon rotation; that is, that it behaves in the ordinary way.

The direction of the lino connectine the two obtuse solid ancles of a crystal all of thoso sidis are oqual is the optic axis of the crystal. This axis is not a line, but rather a direction. Any ray of licht whioh passes throuch the erystal in a direction parallel to tho line ab (Fig. 8), that is, parallel to tho optic axis, does not suffer double refraction.

Exporiment 9. Place tho Iccland spar again ever the pin holo in the manner indicated in Experimont 5, and viev the two images throuch the Miol
prism as the latter is rotated about a vertical axis. You gill find that both the ordinary and the extraordinary images consist of plane polarized light, but that the planes of vibration of the waves which produce the two images are at right aneles to one another.

Hence we may conclude that the Iccland spar has in some way scparated the incident light into tro sets of vibrations, one of which consists of all the components of the indial vibrations which merc parallel to particular planc in the crystal, Thile the othcr consists of all of the components of the initial vibrations which mero porpendicular to this plane.

Experiment 10. With the aid of the Nicol, tho transmitting plane of which you determined in Exporiment 4, find whethor the ordinary or the extraordinary ray consists of vibrations which arc parallel to the plane Which includes the optic axis of the crystal.

You will find that it is the cxtraordinary ray tho wibrations of which are in this planc, whilo the vibrations of the ordinary ray aro perpendicular to this planc (sce Fig. 9).
3. Thcory of Double Rofraction. The foregoing oxporiments can be understood in torms of tho optical anisotropy of Iccland spar. In crystalline substances many physical proportios may bo difforent in difforont dircetions. Therefore, sinco the volocity of propagation of a light wave in a crystal depends upon certain physical propertios of the crystal, one would expoct the velocity to have difforent valuos deponding upon the orientation of the planc of vibration of the light nave :ith respect to directions fixed In the crystals. This is actually the case and gives rise to tho many important and boautiful optical phonomena which oceur when lieht passes it through crystals.

7 mentioncd above in connection with Exp. 8 that a crystal may have a certain preferred direction which is knom as the optic axis. In many crystals there is more than onc such preforred dircetion, but we shell
rostrict oursolves to a discussion of the rolativoly simple caso of uniaxial crystals, i.e., crgstals rhich contain only ore preforrod direction. Iculand apar, boncitimes called calcite $\left(\mathrm{CaCO}_{3}\right)$, id buch a uniuxinl cryatal. Tho offects doscribed in mane 5-10 can be undorstood if it io assunced that woon mose vibratione are perpendicular to the optic axib travel Fith a valodig cormuchonding to an inder of rofrcetion $u_{0}$, the socalled orainery inder of rarraction. Fonce the volocity in the crystal for maver of this tywo is c/mo, there c is the velocity of light in free space. On the othor hand, waves whonc vibrations aro parmilel to the optic axis travel with i volocite corresponding to in index of refroction $\mu_{0}$, or tho oxtriordinary index of rufraction. For wuch waves tho volocity in the crystal is equel to e/po. Valuen of the ruirschtre indexes for Iceland spor and quartz aro siven in roble I.

Table I
Rofractive Indicos for Diftorunt Colorb

|  | $\operatorname{Red}(6)$ | Yollori(D) | Bluc(F) |
| :---: | :---: | :---: | :---: |
| Ordinury ray | 1.6545 | 1.6595 | 1.6670 |
| Iccland spar <br> IExtraoridnary roy | 1.4946 | 1.4864 | 1.4908 |
| Oowdimary ray | 1.541 .8 | 1.5442 | 1.5496 |
|  | 1.6509 | 1.5553 | 1.5589 |

Consiacr a caystal cut with four of ita sidos narallel to the optie axis, and tho other tro sides porpondicular to tho optie axis as indicatod in $\operatorname{Fig}$. 10. A coordinate system is chosen with its axcs parallul to the edges of tho crystal and \#ith the $y$-azis parallul to the optic axis.

Considcr not a planc polar-


Fig. 10
izod nave travoline in the positivo diroction of the $z-a x i s$. If its plane of yolarization is the xz plene thu viomations are perpendicular to the optic axis ard $\mu_{0}$ is the inder of refraction. If the plane of polarization of the reve is the yz planc tho vibrations aro jarallel to the ortic aris and the refractive
index is $\mu_{0}$. A plaro polarized atave whose plouo of polarization makos an ingle $\phi$ with the $x$ plane may be resolved into tro component move the ono, Fhose plane of polarization is tho $x z$ plane, and tho other whose plane of polarization is the yz plane. In Fig. ll if the orvititude of the incidont Wave is A itu displacement $r$ at any


Fug. 11
instant on time $t$ is siven by

$$
\begin{equation*}
r=A \sin : \quad: t \tag{2}
\end{equation*}
$$

and the diaplacemunts of the two component revos arc Givon by

$$
\begin{align*}
& x=A \cos \phi \sin u t  \tag{3}\\
& y=A \sin \phi \sin t t
\end{align*}
$$

$\because h e r e A \cos \phi$ and $A \sin \phi$ aro thoir
rospective anyitudes. These two componert wares which repmoscnt vibraticus in phase as thoy entor the erystal will travcl at difforent speods corresm ponding to tho two indexes of refraction and thorefore will not in genoral be in phase whon thoy emerge from the other side of tho crystal. Lot us
conger throe mpocial cases.
In order to compute the phase difference betioen the fro emerging mach it is necessary to calculate the distance by which one wave lags bofind the other due to its slower speed in the crystal. Let $\underline{h}$ in Fig. 12


Fig. 12 represent the distance the faster wave has traveled in the air after merging from tho crystal at tho instant of time that the slower wave has just passed through the crystal. If $\underset{\text { d }}{ }$ is the thickness of the orystal then the time $t$ Which has elapsed since the waves entered the crystal is given by,

$$
\begin{equation*}
t=\frac{d}{c / \mu_{0}}=\frac{d}{c / \mu_{0}}+\frac{h}{c} \tag{4}
\end{equation*}
$$

In Iceland spar $\mu_{0}$ is greater than $\mu_{0}$ and the ordinary wave is the slower of the two. Crystals in which $\left.\mu_{0}\right\rangle \mu_{0}$ are called negative unixial, and those in which $\mu_{0}<\mu_{\rho}$ are called positive uniaxial.

From Eq. (4) the distance $h$ is given by

$$
\begin{equation*}
h=\alpha\left(\mu_{0}-\mu_{0}\right) \tag{5}
\end{equation*}
$$

The two waves upon emerging will in general differ in phase. The phase difference* $\delta$ is equal to $2 \pi \mathrm{~h} / \lambda$ where $\lambda$ is the wave length in air. Fence the phase difference $\delta$ is given by

$$
\begin{equation*}
\delta=\frac{2 \pi \alpha}{\lambda}\left(\mu_{0}-\mu_{0}\right) \tag{6}
\end{equation*}
$$

If the Eqs. (3) represent the components of the wave incident on the cryatal, the components of the emergent wave are represented by

[^2]\[

$$
\begin{align*}
& x=A \cos \phi \sin \sin  \tag{7}\\
& y=A \sin \phi \sin (\sin t+\dot{y})
\end{align*}
$$
\]

The mave omcreing from tho erystal iss then given by the combination of these tho componcmt marod, and the kind of polarizatim oxhibitod by tho omorgont light mill depond uron the valuo of ${ }^{2}$. In eonoral the omergont light i: clifntically nolumizod. To shell troat here only throe rbecial chses, i.e., thow $h=1 / 4, x / 2$ and $\hat{y}$, and tho corresnonding mhace differw
 dfaforoncon of theso anounts aro knoon as quartor-have, hiolformve ind fullmave jatos, respectively.

## Qucrtor-wave Plote



$$
\begin{gather*}
x=a \cos \phi \sin \omega t  \tag{8}\\
y=\dot{A} \sin \phi \text { :is }\left(\omega t+\frac{\pi}{\gamma}\right)=A \text { sin } \phi \cos \sin
\end{gather*}
$$

Fac form of polaxizaticn roprosentcel by tas, (8) is knom as olliptim cal polarization. To obtain tho patil of the vibration im tho modium me novo morely wo aliminte the paranoter t rrom Eqs. (8). Tuis is rendily dome by squaring ond mdding. Thus

$$
\begin{equation*}
\frac{x^{2}}{A^{2} \cos ^{2} \phi}+\frac{y^{2}}{4^{2} \sin ^{2} \phi}=1 \tag{9}
\end{equation*}
$$

trlich is a common form for the oquetion of an allipho. In tho spocial cusc Whono $\phi=\pi / 4$, cos $\phi$ ana gin $\phi$ are both oqual to $\sqrt{2} / 2$ and $\mathrm{Fg}_{\mathrm{g}}$, (8) takes the form,

$$
\begin{equation*}
x^{2}+y^{2}=x^{2} / 2 \tag{10}
\end{equation*}
$$

whach reprosonts circalurly polarisod dight,

Example 1. How toulf you diatirguish botwcon circularly polarizod Iherht and umpolarizod light?

## Hal frover Plate

If tho cerstal has o thicknoss to correspond to a half-wne plate tho emergitu component waves are desoted by;

$$
\begin{align*}
& x=A \cos \phi \sin \cdot n  \tag{11}\\
& y=A \sin \phi \sin (1 \cdot t+\pi)=-A \sin \beta \sin \sin t
\end{align*}
$$

Again to obtain the path of the vioration in the medium ne oliminate $t$, and obtain

$$
\begin{equation*}
y / x=-\tan \phi \tag{12}
\end{equation*}
$$

Which is the equation or a straisht line whoso dircotion is shom in Fig. 13. Who omergets trave is then plane polarizod,


Fig. 15 but its ilano of polarization has boen rotatod through an angle $2 \phi$. The arpli-tude of viruntion of the cmorent izavo is Givon from Eus. (11), by

$$
r=x^{2}+y^{2}=A 3 i n \ldots t
$$

which is the amilit tullo of the inciant
nate, Eq. (2). In tho spocial choo whero $\phi=\pi / 4$, the plone of polarization is rotatod through an ancie of: $\pi / 2$.

## Pull-itue pleto

In the carse of a full-wave plate the wase difforanco between the component inaves umon Gnorenco is ent and the oquations roprosenting the omergont lignt aro iacntical with thoso for the incident light. Thus the emorgent lisht is planc polarized, and the phano of colarization is the same as thet 1 in inc incident light.

## Plate of Any Arbitrary Thickonss

In the goncrel case There the whase aifforonce of the onergent revos has the arbitrery valup $\delta$, tho emergent lignt is elliptically polarized. The emorgent wavos are thon reprosontod by the following equations,

$$
\begin{align*}
& x=A \cos \not \subset \sin \sin  \tag{15}\\
& y=A \sin \phi \sin (\sin +\quad)
\end{align*}
$$

Theso moy bo whitom in the form

$$
\begin{align*}
& x=\dot{A} \cos \phi \sin u t  \tag{14}\\
& y=i \sin \phi(\sin n t \cos z+\cos t t \sin \rangle)
\end{align*}
$$

Eliminstinco $t$, wo ztoir,

$$
\begin{equation*}
y^{2}-2 x y \tan \phi \cos 6+x^{2} \tan ^{2} \phi=x^{2} \sin ^{2} \phi \operatorname{cin}^{2} \dot{c} \tag{15}
\end{equation*}
$$

i gonoml sccond dogroc countion suc) as Fq . (15) roproscnts on olliuse if tho coorficiana setiony the followine rolatisaship:

$$
\tan ^{2} \phi \cos ^{2} S<\tan n^{2} \phi
$$

This condition is hero satisricd aineo cons is lose then unity.
Examplo in Shom that Eq. (15) Ioase to the errroct posults thon it is applica to the throc spoctal casco consincra ebovo, i.e., whor applioit to a quartor-tiavo, halicmeve and full wove neto.

In Fige 10 if the diraction of ronagetion of the light is parallel to the optic axis, that ia mones tho $y-n z t s$, tie indor of rerraction has only a sinele value $\mu_{0}$ for nll manes of nolarization, and double rofraction dacs not oocur.

## Ligett Intonsity

For a piane polarized renvo of a zivon fruquency the avornge enerew flux (oress $/ \mathrm{cm}^{2} / \mathrm{sec}$ ) or intengity is rogortiona to tho squaro of tho athintude $A^{*}$. Heace the relativo intuasity of tho Manc aolerizod zive, Eq, (i)

* Sco as an uxampo the comptation of the Energy of a vibrating atring, j:5RT, 12.376.
incident on the erystal in Tics. 10 in

$$
\begin{equation*}
\mathrm{I}=\mathrm{k} \mathrm{~h}^{2} \tag{10}
\end{equation*}
$$

The two component raves miok emorec fror the cryatal (tags. 13) heve the rolative intoncitios $I_{X}$ and $\mathrm{I}_{\mathrm{y}}$ as folloms,

$$
\begin{align*}
& I_{x}=k N_{x}^{2}=k A^{2} \cos ^{2} \phi  \tag{17}\\
& I_{y}=k A_{y}^{2}=k A^{2} \sin ^{2} \phi
\end{align*}
$$

or the total intensity I of the omorgont mevo is

$$
\begin{equation*}
I=I_{x}+I_{y}=k_{L^{2}}^{2} \tag{18}
\end{equation*}
$$

Which is cqual to that of the incident wro.

## oblique Inciunoc

If, as in Experimenta 5, $6, Y$, 9 and 10, the light is incident on a surface minch is nothon momiol to now japendicular to the optic axis, then tro refracted bermb are fomed insido the orystal. Thooe boms travol in different direotions and lenco may bo complety sonarotod frorn anothom if thcy aro sufficiontily narron. This monownon may ulso be unconstord in
 tivoly perallal to ane parponlicular to the atic axis.

For tho saice of simpicity fermil eaning attontion to the mape form in a single plang in tho exystal, nowsy the plane which is perpondienina to tho wpar and lowor natural cleavago Pnoos or the erystal and includes the ontic axio. This is culled tho puncing plano. It is tho plano or tho pajer in Figs. 14 and 15. has :"o heve ulrondy soen, nyy incident borun of light which passes nomell: into the crystall throueh tho hole in the card-

vibrations in two planes, ono porenaicular to the plano of the paryor and the othor maralcl to tids Manc. Lot u; consider these tro vibrnticns au suparatod, so that we may treat of one in Pic. 14 and tho other in Fig. 15. hny vibrations mich are parellal to the diroction ot tino optic axis ab pass through tho ceystal with rroetcr spocd, than do vibre" tions thich are perpendicular to this dircetion. The conponent in tho plano ol tho papcr ( BO Fie, .14) of tho incidont vibretions till Give riso at tho boundery min of tho exyotill t: transverse aisturbancos fincl iall trerche ontiand in all diroctins throu'h the eryatal.

The portion of the wave front, howover, which trovels at right angles to the axis ab,
that is, in tho direction (Fig. 14), will heve its vibrations paraliol to the optie axis, While the portion of the fove front which travels in tho direction mg nill have its vibrations porpendicular to this axis. If, thon, Wibrations parallel to ab travol fastor then do such as aro porpendicular to $a b$, the rave which originatos at any point on ruill truvel fastor in the diroction man in tho direction as, and will consequently have on elliptical rather than a spherical furm, the longor axis of the cllipse baincs in the airoction at right nagles to the optic axis ab. Tho onvelopo of all the ellipses which originate in the pointis on WinI bo the line min : The bearn Will thorefore travol throurch the crystal in a direction other than that of the norms to its wave front; that is, in the diruction wran . For the roason civer in Soc. 5, Chap. A, thore will be iostuctive interference at all points outaide or tho parmilels INI', wis"

On. tho othor hand, the wevos which atart out from ench point on win because of the proparation into the crystal of the vibretions mhich wero porpendiculur to the planc of the parer (soc Fie. 15) :iill bo every hero perpondicular to tho optic axis, and honce will travol mith oqual spoeds in all directions. 'fro bean will thergin follot the wasi lav of refraction and will travel in a Mroction at rinht ancles to its wave front, the raves from each point boing non sphores instoan of ulipses.
4. Construction of the Nicol Sxism. In order that thu lient maich is transinitted by a erystal of Iccianh spar any consist of vibletions in mo plane only, it is necussary to dispuse in som way either of the ordinary or extraordinary bear so as to prevent it frow passins through tho crystal. This was first accomplished in 1828 by the Goman physicist Nicol fin the iolloring nay. If tho boum be (Fig. 16) is rade to onter the face of the
crystal at a cortain oblique ancle, the ordinary ray, beine refracted more than the oxtmordinary (see Erp. 7), will traval in the cryotal in the airection co, for exmple, rhile the extraorinary ray will take tho direction co.
 Mors Nicol cut the crystal into two parts alone tho plene an, and thon comentod the parto toethor ajain rith Canadta baluati. Thit balsem hras an index of rofraction wich is mallor than the: of tho ordinary ray, but lareov than that of the extracsininery rey; honco it was possible, by uetne a long eriotal like thet shown in the figure, to choosc tho plane an so that the crdinny ray rould be totally rorloctod :the aboorbod in the blackoned Doiln at tho crystal, while tho oxtrourianary roy gould paos through.
5. Dichroic Crystale; Polaroid Cortain uniaxiat exystalo of which
 polarizol alung the pptic aris, but at the dano tinc absorbine lisht thoue plane of polarization is jurpmicular to the outic axis. Such crystals aro collot dichroie. A Fichroic crystul, ir whol as in Big. 10, with the diroction of propagation of tho light along tho z-axio, romas a vexy simplo polarizer simes tre maros polarizel alon tho s-watio are absorbed by the crystal itsolf, but the reve polarizon alons the y-axiss are trandrittod through the crystal.

A comercial prowet known as polaroid takes advantage of this property. It consiote of a film of collulose acotato thich ham imbedded in it a very lerge number of minute synthetically forned dichroic erystals. Those cryetale aro all civon tho proper ariontation, by atrotching the film in one arcetion during the manufacturing procoss. in outatanaing edvantage of polaroid over other poleriseres in that polaroid film can rondily be produced which aro sevoral beuare root in area. They have alroady found Hide comeroial applications.
6. Effocts produced by the paubago of polarizod light through thin cryotals.

Frporinont 11. insuage the polarizing amoratus wrocisely as in Fig.
 the flare is completely oxtinsuioher. Then obtain fron the instructor a halr-atave plote (for scitum light) of nicu or solonito amplaco it on the slide holdor bo you all find that. in gonoral, tio insertion of the mica causes the lint to reappear. Rotato the rica about a vertical axis and note that in ono revolution thero are four pobitions, just $90^{\circ}$ apart, at which thoro is extinction. These aro the poutions in mhich the plame of vibration of the light mhich is incilont upon the mica is eitbor paralel to or poxpondicular to tho plane conteinine the ontic axis of the rica. Rotate the wica in a horizontal plane unisil fit is just $45^{\circ}$ from onc of thobe poutions of extinction. Ther rotatc the Nleol. The iriace of the ilamo Tili. be fount to disappear whon the Nicul han bech rotated through $90^{\circ}$.

This exporiment can bo underatoo? in tems on the wrojertios of the half-mave plate diccusises in Scc. 3. The arorent licht is plane polarized With ite wane of polarization perpendicuror to that or the incident light.

Exjeriment 12. Foplace tho halforave late by ono half as thich, that is, by a quater-wave plate. Set it at first so that it is $45^{\circ}$ from the point of extiaction, the Wicol boing oet in the ponition corresponding to extinction then no panto is jnterpace:l; then rotate tho Nien and note that no chunge takos viace in the intemotty of tho transmittoil lisht becauso of this rotation.

Wo chanee in intersito roculte from rotutine the inicol since in this caso the licht is circularly polarizod. If now the quarter-ivue plate


The major and minor axes of tho ollipse may cnsils be found oy observine in What aroction the anolyzinf Nical mat bo tumas in order to obtain a maximur or a minirum of transmitton light.
7. Coloro Produced by Thin Cryotals in polarizod Light,

Exporiment 13. Sot the polariscopo in a $\quad$ nindor in the position shom in Tis. 17. the blacle rapor being ramoved from the nixror n. If mas precisely tho sano inclination which mas Given it in Exp. $\dot{\text { a }}$ (Tig. 1), then, then the polariscope is 30 turned that the prolongetion of the line ma rocte the cloar sky, the white licht from the sky will strike the lotor side of II at the polarkzing anglo, bo roflectod to the norcury minror n, and return with little loss au a plano polarizod bear to the Nicol N. Set N so that this bear is oxtinguishot. Placo a shoet of mica about trice as thick as a halforave plato for oodiwn light mon $h$ ans turn it until it is just $45^{\circ}$ from a position ol extinction. Whon viened through the Nicol it allll be foun to be brilliantly colorod. Fotatc the Ficol :3m:ly and notice that a rotation of $45^{\circ}$ causcs the color to eismppear, but the:t a rotation of $90^{\circ}$ causes a color which is the cormberant of the first color to chacul. Turther rotation through $90^{\circ}$ 7ill cauro tho first color to roturn, and so on. Then ahoote of mica of iliftorent thicknesses are used atifurunt colors till be produced, but a rotation of the Nicol throuch $90^{\circ}$ :ill alvays causo the color to chenge to thet of the corsplment of the orisluad color.
in the same phase, ani these convonents :"ill rocombine into a plane vibration proctacly like that which ontered the cryatel. The red ray, horrover, pill cmorgo Trom the cryathel fith one of its convonents one-holit wave Iongth behfry the other, and those t:: comonents will recombinc into o vibration at rifght angion to that or the onterine ray. If, then, the Nicol is in the poaition for extinction thon no eryotal in intorposed, it nill cut out all
 that if theso ruch and virlat water fical al ono upon the crystal, a retation of the Nicol :ould couse red and violet to arour altumetely, is a mattor of fact, herrovor, if the incilent lisht is :hitito, all of the culoris botreen tho rod and the violet will be precont, an? flo vibrations of the trenserittol light which corrospond to then aill be ollijeen of sone fom. Ho:fover, tho mavo loniths which are clese to the rod, nemely orange ma yoilot, zill be lareoly transattod by the ivicol alons aith the ron, and will have but omall compononts to be trangritted aith the violot, whilo the ware lencthas nocr tho violot, namely the bluos and tho shortor recns, will bo manly transmittod githe the wiolot. Honce the light thicl passes therough the Micol in its first position sill be some sheno of rod, because it rill have most of the shorter wave lenftre olubractel fron it; wilc: when the wicol is turned throuch $90^{\circ}$, all oft the wevo lensthe whioh more beforo cut out aill bo trancrittea. Tho enlor will thorofirs bo exactly tho comploment of the first enzor, that is, it fill of sonc phaie of blue.

A cmyotal which is toc thin to motuco one-half wave loneth retardation of tho shartest visimis raye, wamely the violet, cannot shon cny majbud color effects in praxized lint, aince no maro loxetry can be entirely cut out for any wosition of the Ificul. On the ation hand, a cerstal which is
se thick as to produco rotardation of very hany wave lenet tho of any cno color will proluce also a rotardation of an exact number of tave leneths for each of many othor colors seattorod throurhout the spectrun. Theso colors will all be cut cut by the Nicol, and the transriatted lieht will likeriso consist of wave lencths winch aro taken from all parts of the spectrun, end will therofore roproduce the offoct of white lifith. Fence thase color phonomonn in polarizod licht can be observer only with cryotals mhich produce a small numbor of wave longthe of retardation. By serapine crystals iown to proper thiclnosscs in different parta, color fattorns of fuch beauty aro often producod when the crystals so truator aro vienol in the molarized lifht. All the colors, of courso, chance to tho complenonts apon rotation of the Nicol through $90^{\circ}$.

Experinant lis. Place a numincr of theas dosiens in selonito or mica upon the slite holtor $h$, and observe the apenrance or the complonentary colors in uifforent particns of the tosich as the lificol is rotated.

Experinot 15. Obsorve in convorcent polarizod licht a crystal of Iccland byar, say ing tiack, the upyor and dawer faees of thion are planos peracheicular to the oytic axcs. Tha bona af convorcont lioht is anst oasily obtained by placinc the crystal very closo to tho Nion in the arrencoment of Fics. 17, so that tho obocryor lonss lown through tho crystal upun a ifold of considorable aiath, fros all parts which polarized licht is approaching the eye. If the Nicol was orisinally sat for artinetion, you fill obsorro a derk conter surroundod by a scriou of brillitatly colorea rincs unon which is sunemosed a black croiss (soe (His. 18). Rotatine the Nicol mill cunse the bleck cross ti: chanfo to a wite one, and all of the culors to change to their cormpementis (See Fis. 19).

These offects riay be exylaince as folloys. The cuntral rays arse throuch the crystal in a dircetion parallol to the optic
axis. They therefori buffor no rosolution into ordinaxy and extroordinary compononts, and honce no chance in the charactor of their vibration. Thoy are cut out by the analyzing ificol, hance the black center. The rays, horover, which convcree upen tho eye aitor passinc throunh tho outor odes of the crystal have trarcher in arecticns slichtiy oblique to the axis, and have therefore suffored decomosition into orinary and extranrinary rays, which have undergone differont rotardations. A Givon rotardation of one ray With respoct to tho athor comesends to a civon color prucisely as explained above. A Given color must, of ccurso, be syractrically distributed about the axis of the convereine boara, since the thickasss or tho erystal is so distributce; hence the concentric rings of color. Tho blaci= cross is surcrosod
 incilant vibration is monoctively in and wrocnifoular to the phano contain1ne tho nwis and the ray, ovon those oblique rays aro not split unto corn-

 thoso extincuighod roys aro, of course, tranemitted; honce tho whito eross.

## 8. Rotary Polarization,

 thet ma is ronlacon by aricol, and incoe unch ha oryotal of quarti, say 5 riri thick, the wiper and Ionor faces or athen aro made by plonos mich are at richt anflos to tho bytie axis ol tho querta. When the Nicol is sot for extinction the introduction of the quartz into the gatil of the bown rill bo found, in ceneral, to causes the oxtinenibher iniac of tho flamo to rempear. Rotate the Nieol, and mcasure the amount of rotntion requires to causo tho yollow finmo to disappear a;ain. Aocorlin: wo coconted rosults this rotation for sodium lidtt shoula oo $21.7^{\circ}$ por millinctar of thickngss of the quartz. Roplace the soliun flate by the ordinery rolet there of the Bunson burnor and rojoat, rotntian this timo until all trace of the violot color in the flame has diompearon. The rotation aill bo found to be nearly aomble that found for sotim lidati. The rotition in the caso or light filtorol through ret elass rill be fround to bo 10.3 than that in the case of yollon licht.

Those orperinonts shor, first, that vianc nolarizod light which passec through quarta in the Firection of its optic axis reracins ylane polarizol aftor transmission, and, beona, that tho pluno of polarization of the lieht iss rotated by tho guartz, the wrount of the rotation being Erater for the bhort wave langthe thas for the lone. Tho discovory that quartz is ablo to mosuce those offects nas mado by irsego in 183.1.

Fron the aiffurcnce in the anown of rotation of aifferent eolors it follond that ift planc polarized whte light is incifont upon tho lomer facc of the cryatal of quartz, the licht mhich is transmitted by the analyzine Wicol will be colored, since this Wicol will extinguich competely only those vibrations which aro perpendicular to ito transmitting pleno. It follows, furthor, that if the Nicol is rotatol through $90^{\circ}$, wll of the compononts of the white light whoh aro before extinuiche widi be now transmater and rico verua, ama hence that the rotation through $90^{\circ}$ mill causo tho color to chance the the cors?anent oi the izet color.

Beparinont 17. Vorify the above profictions by oottine the polariscope as that light frorl the oky fuln won it in the monner indeatod in Fic. 17. To show that the lideta trunctitod by the ambizer in planes $90^{\circ}$ apart are componentury, it is bout to replace the wicol by a thek cryotal of Iccland arar; or bowe othor form ff actible-imigu prishi, iso that both of the lients to bo comared way be trammitten int onco. ds the analyacr is
 tho calor of wite liont, ohile the opouste non-overleppine portions will be of complamantary culore.

It has boen foum that there wro the kinle of querte crystris, onis of thich wrolucas rotation the right, the otrer to the loft. This afrerFnce in optical butorior corresponat also to a differonce in crystallino
 from the loit-handol quarte cryetale without actually makin; the opticul test.

Furthermore, it was discovered by Biot, in 1815, that there are cortain liquids minch possoss the same proporty shom in the above experiments by quartio of these, solutions of cano susar have rccoived most attention, for th:e rcason that tho amount of rotation produced by a colum of sugar solution of fixod lonkth is thken as tho comercial tost of tho atrength of the solution. As in tho casc of quartz, there are found to be two kinds of canc sugar of prociscly tho amo chomical constitution, but of sli, fhtly different crystallinc form, which rotato tho plano of polarization in opposito diroctions. The form which rotetos to the rient is calrod aextrose, the other levuloso. It is possible to convert doxtroso to levulose sugar by acting upon it thth hydrochloric acia. mije conversion is actually mado in suagar testing, the rotation due to the convaresion being the quantity directiy moasurer.

## Probloms

1. At what anfilo Inust a bedn bo incident upon is inooth wator surface in order that the roflected botm shall bo pland polurized?
2. Wonbchromatic light is inciont, at Erewstertis ancle upon mediur: (i) fro: the loss denso modiurl (1). Diecuis end conclude whethor or nut $(a)$ ensjo $\theta$ it Bremster"s anclo of incidence apon madiun (1) from modiun: (2), and (b) whothor or not anglo $A$ is ercator or loou then the critical anclo for istal rofloction at tho lower surfaco.

3. A thin piece of quartz is sut so tis fecos are paralicl to tho optic axis. If plane molerized light is incident nomanly on the quartz and if its plane of palarizetion rakes an angle of $45^{\circ}$ with the optic ario, what is the minimum thicknos of quarty required to produce (a) a rotation of the plano of polarization throded $00^{\circ}$, (b) cmorent light anich is plang polarisos in the samo plane as the incidont light, and (c) circularly polerizgd light?
4. Circularly nolarizod light is inciaent nomaly on (a) a hali-wave plate and (b) a quarter-wave plate? Whet is the atate of polarization of the emorgont light in oach case? optic axes are parallel to one another. The inetdent light is plano polarized mith its planc of polarization at $45^{\circ}$ mith the optic axcs. (a) That type of polarization docs the light emorging from the $\lambda / 2$ platc exhibit? (b) Rotate the $\lambda / 4$ plate throuch $45^{\circ}$ about the 11 cht ray as an axis so that its optic axis becomes parallol to the planc of polarization of the incident ray. Ansuer quostions as in (a).
5. Elliptically polarized light $\begin{aligned} & x=A \cos u t \\ & y=-B \sin \text { unt of intonsity } I_{0} \text { is }\end{aligned}$ incident upon a $\lambda / 4$ platc with its optic axis in tho $y$ dircetion. Deseribe the nature of the cmergont light with rospect to its polarization, intensity, and oricntation.
6. It is desired to construct a Nicol prism which will opcratc satisfactorily for Na-D light. Tro pioces of Iccland spar aro joinod by Canada Balsam coment $(\mu=1,53)$. The and faces aro cut at $20^{\circ}$. What angle $\theta$ would bo proper for the interface $F$ ?

7. Two Nicol prisms are placod in linc. The intensty of the cmergent light from onc source of light is equal to that from a socond source when the anglos between the principal planes of the Nicols arc $30^{\circ}$ and $45^{\circ}$ respectivoly in the tro casos. That is the ratio of the intensities of the original sourees?
8. Throc Nicol prisms arc placed in linc. Tho principal planc of the last prism is at richt anclos to the principal planc of the first and the principal plene of the second makos an anclo $\theta$ with the principal planc of the first. Ordinary licht of intensity $I_{0}$ is incident on the first Nicol. That is the intensity of the lieht encrging from the last ITicol?
9. Two Nicol prisms aro placod in linc with thcir principal planos making an angle $\theta$ with ono anothor. That is the chance in intensity of the emergent light if the anglo $\theta$ is made $\phi$ ? The incidont light is unpolarized.
10. Na-D light, plane polarized at an ancle of $30^{\circ}$ \#ith the optic axts of a quartz plato 0.6 mm thick, is incident normaliy on a surface which is cut parallel to tho optic axis. Descrith quantitatively the stato of polarization of tho cmergent light.
11. Two INicol prisms arc placed mith their principal plancs at an angle of $45^{\circ}$ with one another. A $\lambda / 2$ plate cut rith its optic axis in its plane is placed between the tro Nicols nomal to the boam. (a) Find the angular positions of the $\lambda / 2$ plate for which the intensity of the emergent light is a maximum. (b) Find the ratio of the intonsity of the emergent licht When the $\lambda / 2$ platc is in placo and oricnted for maximum intensity, to the intensity then the $\lambda / 2$ plate is removed.
12. A thin plate of quartz, cut with its optic exis porpendiouiar to the plane of its large facos, is placed betmoen tmo Nichols. The plane of its larec faces is normal to the axis of the itichois. For what thickness of quartz plato will no Fia-D light emeree from the second Nicol? The ineldent light is unpolarized and the prineipal plencs of the two Nicols arc parallol to one anothor.

[^0]:    I The Catoptrica attributed to Euclia notes that a coin in a cup can be lifted into sight by pauring in mater.

    2 Claudius Ptolemaeus was an Alexandrian astronomer, mathematician and geographer or extremely great ability, his influence during the first sixteen centuries, A.D., being second only to that of Aristotle's. Ptolemy's work on refraction is described in the rifth, and last, book of his Optics, the text of which is known only through a trelith century Latin translation from the Arabic; the modern reprint of this translation is L'ottica di Claudio Tolomeo (G. Govi, Torino, 1885).

[^1]:    1
    Soe spectrometer experiment.

[^2]:    * See MRT, p. 376, for a discussion of phase differonoe.

