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Abstract— This work aims to increase reliability and reduce
cycle time in order to realize a commercially-viable vision-
guided robotic bin-picking system. We present a novel method
for two-fingered grasp generation and target selection for bin-
picking of randomized parts. We also propose a definition for
grasp robustness, and use this to formulate a new grasp quality
measure. A densely-sampled set of grasps is generated and
evaluated using our proposed quality measure. The highest-
quality grasps are then used to provide more valid picking options
in the context of a randomized pile of parts, and to determine the
best part to pick up. Our experimental results show a substantial
increase in the average number of valid picking options when
compared with a typical industrial approach for target selection.

I. INTRODUCTION

In recent years, there has been increasing interest in indus-
try towards developing a commercially-viable vision-guided
robotic bin-picking (VGRBP) solution. Such a system would
need to be highly reliable; that is, it must be able to continually
pick parts out of one or more bins without exceeding an
average cycle time per successful pick-and-place operation.
To be successful, it is estimated that a bin picking solution
should have an average cycle time of 10 seconds or less per
operation. Due to the nature of randomly-situated parts within
a bin, meeting this requirement is challenging, and is one of
the main reasons why randomized bin picking systems have
yet to be widely adopted by industry. For example, given a
set of pre-defined grasping points on a particular part and
a set of candidate parts within the context of a randomized
bin, in many cases the pre-defined grasps are obstructed by
neighbouring parts or by the walls of the bin. In such cases, the
grasps are not feasible since they result in collisions with the
gripper. If there is a limited number of pre-defined grasps, it
is possible that all grasps for all candidate parts are infeasible,
resulting in no viable options for picking.

In some systems, if no valid picking option exists, a second
attempt is made at locating a viable candidate; for example,
by taking a closer look at the pile, or by mechanically stirring
the parts [1] and then re-examining the pile. However, these
solutions increase the cycle time.

One can expect that increasing the number of grasping
options for a given cycle will reduce the probability of having

no feasible picking options, and consequently, reduce overall
time spent searching for more candidates. In VGRBP, one way
to increase the number of grasping options is to improve the
vision recognition system so that more parts are recognized
and localized during each cycle. Much research has already
been done in the area of computer vision for this purpose
(e.g., [2], [3], [4], [5], and [6]). However, once these parts are
found, the best candidate must be selected, an issue not widely
addressed in the bin-picking literature. A common approach is
to select the top-most object in the pile, as is done in [2], [3],
and [5]. This can be accomplished using image segmentation
methods described in [7] and [8]. Although this would likely
produce feasible targets for picking in many cases, it is not
clear which part to select when multiple parts are considered
to be on top, or when parts are entangled such that no part
can be clearly distinguished as being on top. Optimizing the
selection of a feasible target is one way to increase system
reliability, and is addressed in this work.

Another way to increase the number of picking options is
to increase the number of possible high-quality grasps for a
given part by sampling the grasp space. Grasp sampling of
a particular object has been addressed in [9] and [10]. In
[9], objects are represented as a collection of primitive 3-D
shapes, each of which is manually assigned a set of grasp
starting positions and pre-grasp shapes. In [10], objects are
represented by superquadratic decomposition trees in order to
reduce the space of possible grasps, and the surface of each
superquadratic is sampled at a uniform interval.

Herein, we present a novel method of generating and
evaluating a densely-sampled set of grasps, and describe a
way to use this set to select the best candidate part to pick up.
Grasp generation is tailored for a two-fingered gripper, such as
the one shown in Fig. 1, as such grippers are commonly used
in industry [11]. Our method is broken down into two stages:
(1) offline generation of many high-quality two-fingered grasps
for a given part, and (2) online evaluation of candidate parts
using these high-quality grasps to select the most desirable
target. For evaluating grasp quality offline, we combine the
quality measures generated from the simulator GraspIt! [12]
with our own measure of grasp robustness, which we define
as the insensitivity of the grasp to slight positional errors.



Robustness has been discussed in [13] by examining the effect
of rotational variation on grasp quality, although in general this
topic is not widely addressed in the grasping literature, and is
part of this paper’s contribution.

Fig. 1. Standard industrial two-fingered gripper using a nominal grasp to
grip a con-rod [14].

For the purposes of illustrating the proposed method in
subsequent sections, we have chosen a connecting rod, or
con-rod (a common automotive part) as our exemplar part.
This part is of a typical size and form of parts that would be
suitable for bin-picking applications. Other parts to consider
include screws, shafts, and caps, as they are simple in shape
and typically delivered to the assembly line jumbled in bins.

This paper is organized as follows: Section II describes
the offline grasp generation and evaluation process, Section
III describes the online candidate part evaluation process,
Section IV describes the experiment and results, and Section
V concludes the paper and discusses future work.

II. HIGH-QUALITY GRASP GENERATION

Generating an extensive list of grasps for a given part
can be computationally expensive, and is very difficult to
compute online within the required time constraints. Typically,
in the context of industrial bin-picking, a-priori knowledge
of the part to be picked is available. This allows for offline
generation and evaluation of grasps with minimal concern for
computation time.

This section is broken up into two parts. In part A, the
approach for generating an extensive list of grasps for a con-
rod is detailed. Part B describes how the quality of each grasp
is evaluated.

A. Densely Sampling the Grasp Space

For a standard industrial two-fingered gripper, grasps at mul-
tiple positions and orientations are generated by intersecting
the space between the gripper fingers with the part at uniform
intervals. To reduce the complexity of grasp generation, only
planar grasps are considered, i.e., the grasp contact points lie

in a plane. This choice enables us to model this space as a
bounded 2-D (planar) region located at the gripper fingertips
(see Fig. 2). To formally describe this intersection process, we
present the following definitions:
Ψg - the 2-D region of space between the fully-opened gripper
fingers, located at the gripper fingertips (see Fig. 2)
Sp - a collection of line segments that comprise a wire-frame
approximating the skeleton of the part (see Fig. 3)
Nsp - the number of line segments comprising Sp
si - a single line segment within Sp
Li - the length of si
d - linear translation parameter along a line segment
θ - axial rotation parameter about the z-axis of the current
part wire-frame line segment
φ - current-frame rotation parameter about the pinching (or
sliding) direction of the gripper, defined in the plane of Ψg; the
pinching direction is always perpendicular to the line segment
∆d - translational step-size for d
∆θ - rotational step-size for θ
∆φ - rotational step-size for φ

Fig. 2. Illustration of Ψg , the gripper, and the sampling directions.

Fig. 3. (a) Part model. (b) Corresponding wire-frame, Sp; Nsp = 5.

We define the wire-frame Sp manually (see Fig. 3), and
restrict the position of Ψg to points along Sp. The intersection
algorithm is described in Fig. 4; it involves translating the



fully-opened gripper (and correspondingly, Ψg) in discrete
steps along each si ∈ Sp, and at each translational step,
rotating Ψg through a sphere of discrete orientations. At each
new position of Ψg , the intersection between Ψg and the part
is computed, resulting in a 2-D cross-section. Grasp points are
defined at the extrema of the cross-section along the pinching
direction, within a tolerance, ε, to account for soft gripper
contacts (see Fig. 5). Only grasps that do not result in a
collision between the fully-opened gripper and the part are
stored.

Algorithm GRASP GENERATOR

Let move(si, d, θ, φ) represent a function that translates
and rotates gripper (and correspondingly Ψg) to the pose
defined by the input parameters

for i = 1 to Nsp
for d = 0 to Li; step ∆d

for θ = 0 to (2π −∆θ); step ∆θ
for φ = 0 to π; step ∆φ
move(si, d, θ, φ)
if fully-opened gripper does not collide with part

compute intersection between Ψg and part
compute grasp points from this intersection
store grasp data (contact points + gripper pose)

end if
end for

end for
end for

end for

Fig. 4. Grasp Generator algorithm, which describes the intersection of Ψg

with the part.

Parameterizing the rotation with θ and φ always ensures
that the pinching direction of the gripper is perpendicular to
the current wire-frame line segment. The justification for this
sampling space is that the generated grasps are (generally)
more stable if the forces applied by the gripper fingers are
perpendicular to the surfaces they contact, as this minimizes
the risk of slippage between the gripper fingers and the part.

The selection of the sampling step size is important to the
intersection algorithm. Although a dense sampling is desired,
there is a limit on the accuracy of the robot that would be used
to grasp the part; it would be superfluous to use a step-size
that is smaller than the positional error of the gripper. Thus,
we use the robot’s positional accuracy as a lower bound on
the positional step-size, ∆d.

To uniformly sample the grasp space, it is desirable to use
a similar step-size in all directions. This is complicated by the
fact that one sample direction is translational while the other
two are rotational. To address this, we select rotational step-
sizes ∆θ and ∆φ comparable to the translational step size ∆d
by requiring that the arc length spanned by each rotational
step-size at the average radius of the part is equal to ∆d.

This algorithm may be used to collect grasps for any object
that can be roughly approximated by a wire-frame skeleton
of line segments.

Fig. 5. Illustration of generating a single grasp from a 2-D cross-section. (a)
Sample grasp. (b) Minimal representation of grasp using T shape, which
depicts approach direction, pinching direction, and position of grasp. (c)
Contact points corresponding to sample grasp. Contacts are located at the
extrema of the cross-section (indicated by the arrowheads) along the pinching
direction of the gripper, within a tolerance, ε.

B. Grasp Evaluation

To evaluate grasps, we use the quality measures provided
by the simulator GraspIt! [12]. This simulator has been used
in [9], [10], [13], and [15] for grasp evaluation. The GraspIt!
quality measures are based on the magnitude of the largest
disturbance wrench that can be resisted by a unit-strength
grasp, as proposed by Ferrari and Canny [16]. Henceforth,
for a given grasp, gi, we will refer to this GraspIt! quality
measure as qi and describe grasps with large values of q as
being “highly stable”. A grasp is stable if qi is greater than
zero; therefore, we discard any grasps whose quality measure
is less than or equal to zero.

Herein, we consider a measure of robustness of a grasp gi,
which we denote as ri. This is a measure of the insensitivity of
qi to small variations in the position of the grasp. Robustness
is important to consider for VGRBP because of the gripper
position error as well as the pose estimation error of the target
part, i.e., the actual grasp is likely to be offset from the desired
grasp. We propose that the robustness, ri, of a grasp, gi, is the
the inverse of the standard deviation of q within a local region,
ρ, centered on gi. Thus, we present the following definition:

ri =
1√∑Nρ (qj−q̄)2

Nρ−1

(1)

Here, Nρ is the number of grasps within the local region ρ of
the grasp in question, and q̄ is the mean within this region.
The size of the region, ρ, to consider is an input parameter,
and is selected based on the position accuracy of the robotic
system.

A feasible, stable grasp is considered to be robust (and is,
therefore, accepted) if all neighbouring grasps: (1) exist, (2)
are feasible (i.e. they will not result in collisions with the
gripper), and (3) are stable (qi > 0).



Finally, we propose the following definition for the overall
quality measure, Qi, of a grasp gi:

Qi = qαi · ri (2)

where qi and ri have each been normalized between 0 and 1
using the maximum value for each from their respective data
sets, and α is a tunable “stability” parameter that is greater
than 1 in order emphasize grasp stability over robustness. For
the remainder of this paper, when we use the term “quality”,
we are referring to Q.

Equation (2) ensures that the best grasps are those that
both resist large disturbance wrenches and are insensitive to
slight position changes. The factors are multiplied rather than
weighted and summed, since grasp quality depends on both
factors simultaneously rather than either factor independently.

III. EVALUATION OF CANDIDATE PARTS

In VGRBP, a 3-D vision system is typically used to obtain
a topographical map of the pile surface, providing information
for part localization and obstacle avoidance. In our approach,
each localized candidate part is evaluated based on how many
pre-generated grasps are collision-free in the context of the
pile, using information about neighbouring parts and obstacles
obtained from the vision system. A candidate part is consid-
ered to be a valid picking option if there exists as least one
robust collision-free grasp for picking it up. For the purpose
of performing statistical trials to test our approach (detailed
in Section IV), we perform our evaluation in simulation, for
which we have complete knowledge of all obstacles in the
pile.

The process of evaluating candidate parts is performed
online, and is described below:

1) Select a set of candidate parts to pick from the pile.
2) For each candidate part:

a) Obtain the transformation that describes the part’s
pose in the world co-ordinate frame.

b) Apply this transformation to each potential grasp
(which describes the gripper’s pose) and check for
collisions between the gripper and all obstacles.

c) Tally the collision-free grasps. If no collision-free
grasps exist, eliminate candidate.

3) Rate the remaining candidates based on the number of
available grasps for each, and return this rating, along
with each candidate’s list of available grasps, to the robot
control system.

If only the part, the gripper, and the pile configuration were
considered, the best picking option would be the one that
provides the most available grasps in the context of the
pile. However, some grasps may be impossible due to robot
joint limits and workspace constraints. An additional step is
then required to process the rated candidate list to check for
feasibility with the robot’s limits before finally selecting the
highest-quality feasible grasp for the highest-rated candidate.

The generated grasp list contains only robust grasps. How-
ever, due to the limit on online computation time, we further

reduce this list to a set of the highest-quality grasps when
evaluating candidates. This results in many good grasping
options for the system, and ideally increases system reliability.

IV. EXPERIMENT AND RESULTS

The parameters that we used for grasp generation for a con-
rod are summarized in Table I. Our sampling step-size was
chosen to be 3mm. The region size for robustness calculations
was restricted to neighbours within one step-size in each of
the three directions (d, θ, and φ). This can be visualized as
a 3× 3× 3 array of grasp samples. We selected these values
based on what would be typical values for robot accuracy and
pose estimation accuracy: ±1mm and ±2mm, respectively. We
selected the tunable stability parameter, α = 2; future work
will investigate the optimal value of α.

Table II summarizes the results of the grasp generation using
the parameters shown in Table I. Out of 26650 grasps sampled,
4284 are labeled as robust.

TABLE I
SUMMARY OF INPUT PARAMETERS USED FOR GRASP GENERATION AND

EVALUATION.

Grasp generation Soft gripper Dimensions of region ρ
sampling size finger tolerance, ε for robustness α

(mm) (mm) calculation
3 3 3× 3× 3 2

TABLE II
GRASP GENERATION RESULTS. PERCENTAGES ARE IN RELATION TO

NUMBER OF GRASP SAMPLES.

# of grasp Feasible grasps Stable and Robust Grasps
samples feasible grasps

# % # % # %
26650 18041 67.7 15378 57.7 4284 16.1

Fig. 6 visualizes these grasps with respect to the con-rod
model from different viewing directions of the model. We have
chosen to visually represent each grasp using a T shape, which
is to be interpreted as follows:
• The location of the T along the wireframe represents the

position of the grasp (as described by d).
• The stem of the T represents the approach direction of

the gripper.
• The top bar of the T represents the pinching direction of

the gripper.
• The size of the T represents the quality, Q, of the grasp;

it has been uniformly scaled according to Q.
The grasp qualities depicted in Fig. 6 are consistent with what
one would expect: high quality grasps tend to be those for
which (a) there exist many points of contact between the grip-
per fingers and the part, and (b) forces applied at the gripper
finger contacts are generally normal to the part’s surface. As
expected, the best grasps are clustered near the centre of mass
of the part, where disturbance torque is minimized, and few
good grasps are found in regions of high surface curvature.



Since grasp stability, q, is dependent on the number of contacts
between the gripper fingers and the part, the final quality,
Q, is sensitive to the deformability of the gripper fingertips
(modeled in our system as ε), as well as imperfections in the
surface model of the part. The grasps depicted in Fig. 6 are
not perfectly symmetrical because the con-rod model used was
obtained from a laser scan of a physical con-rod.

Fig. 6. Visualization from different viewing directions of uniformly-spaced,
densely-sampled list of generated grasps with respect to wire-frame, Sp. Each
grasp is minimally represented using T shape to indicate both the approach
and pinching directions for that grasp. Each T is scaled according to the
corresponding grasps computed Q value. Only robust grasps are shown. In
(a), part model is overlaid onto wire-frame. In (b), just the wire-frame is
shown.

In our experiment, we evaluated candidates within a sim-
ulated randomized pile of con-rods using two sets of grasps:
(1) a set of top quality grasps from our generated grasp list,
{G}, and (2) a set of 6 nominal “intuitive” grasps, {N}, that
would typically be used in an industrial application. For the
first set, grasps were ranked based on Q, and the top µ = 10
were selected, although all grasps could potentially have been
included since all are robust. This quantity, µ, is a tunable
parameter, and optimizing this value depends on the quality
of grasps generated, as well as limits on online computation

time. The set of nominal grasps is illustrated in Fig. 7.
For each potential grasp, we checked for collisions with the
ground plane and all other parts in the pile using the efficient
hierarchical Oriented Bounding Box method described in [17].

Fig. 7. Visual description of the 6 nominal grasps used for experiments. (a)
side-view of part; arrows represent approach directions. (b) top-view of part;
arrows represent pinching directions.

We performed this evaluation with 100 different piles of 25
parts; for each trial, we selected the last 15 parts that had been
added to the pile as our candidate picks in order to approximate
the real-world situation wherein the candidates would be at or
near the surface of the pile. Table III summarizes the input
parameters for the experiment. Fig. 8(a) shows an example of
a pile of parts used in our experiment, with the candidates
highlighted in Fig. 8(b). Valid picking options are highlighted
and numbered according to their rating in Fig. 8(c)-(d) for the
grasp sets {G} and {N}, respectively.

The average number of valid picking options for the set
of top grasps, {G}, and the set of nominal grasps, {N},
were 8 and 5, respectively. A paired t-test analysis of the
null hypothesis that these two methods produce the same
distribution of valid parts for picking had a probability of
7.55×10−25, indicating that the distributions are significantly
different. These results are summarized in Table IV, and
confirm the alternate hypothesis that increasing the number of
possible grasps for the part results in an increased number of
valid picking options. However, the proposed evaluation does
not consider whether or not candidates are pinned down by
other parts, and if so, the extent to which they are buried. One
would expect that a candidate for which there is an available
grasp in the context of the pile, but is deeply embedded in
the pile, would be a poor option, and should be eliminated.
An example of this situation is illusrated in Fig. 8(c) for the
candidates rated 5th and 7th. Future work aims to address this
issue.

TABLE III
SUMMARY OF INPUT PARAMETERS USED FOR EXPERIMENT.

# of # of parts # of Percentage, µ, Resulting
piles per pile candidates of top robust number of

per pile grasps used grasps used
100 25 15 10% 428



Fig. 8. Comparison of the sets of valid picking options determined for an
example pile for grasp sets {G} and {N}. (a) The simulated pile of parts.
(b) Highlighted candidates. (c) Highlighted valid picking options found using
{G}, numbered according to their rating. (d) Highlighted valid picking options
found using {N}, numbered according to their rating.

TABLE IV
SUMMARY OF STATISTICAL RESULTS.

Average # of parts with at least
one valid grasp Probability that distributions

Generated grasps Nominal Grasps are the same (paired t-test)
{G} {N}

8 5 7.55× 10−25

In addition to using this evaluated densely-sampled set of
generated grasps to provide many grasping options online, we
can also use this data to establish high quality grasp regions,
enabling the selection of nominal grasps offline.

V. CONCLUSION

The main contributions of this paper include a novel method
for densely sampling the grasp-space of an object using a two-
fingered gripper, a method for evaluating grasp robustness, and
a new grasp quality measure. We have presented a way to use
the evaluated list of generated grasps in the context of VGRBP
to (1) increase the number of pickable candidate parts, and
(2) select the best part to pick. Our simulated experimental
results show that our approach increases the average number of
pickable candidates when compared with a standard industrial
approach, and leads to a reliable bin-picking system.

In future work, we will test our method against stereo
maps generated by real pile surfaces, and test our evaluation
in the context of a physical bin picking experiment. Other

future work includes optimization of input parameters, as well
as investigating additional factors that affect successful part
picking and how to include these factors in the evaluation of
candidate parts.
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