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Abstract— In dextrous hand control, the implementation of
manipulation movements still is a complex and intricate un-
dertaking. Often, a lot of object physics and modelling effort
has to be incorporated into a controller working only for a
restricted task specification and performing quite artificially look-
ing movements. In this paper, starting from our representation for
dextrous grasping, theGrasp Manifold, we motivate and present
adaptations which enable the new manifold – theManipulation
Manifold – to robustly represent manipulation movements which
have been recorded from human demonstration. It facilitates
later application and promotes natural motion. We use manifolds
of hand postures embedded in the finger joint angle space which
are constructed such that manipulation parameters including the
advance in time are represented by distinct manifold dimensions.
This allows for purposive navigation within such manifolds. We
present the manifold construction using the Unsupervised Kernel
Regression (UKR) and our first results of representing the turning
movement of a bottle cap.

I. I NTRODUCTION

During the last decades, researchers and engineers have
made huge advances in constructing and building anthropo-
morphic robot hands which have become more and more
sophisticated as one can see for example in the Utah/MIT
Hand [6], the DLR II Hand [2] and the Shadow Dextrous
Hand [22]. Together with these developments, researchers
are facing the question of how to dexterously control such
complex robots with up to 20 degrees of freedom in up
to five fingers and a wrist. It quickly became clear that
implementing fixed grasp and manipulation programs does
not lead to satisfying results as it is very time consuming
on the one hand and not robust against or generalisable to
differences in the grasping or manipulation situation. Thus,
several sophisticated approaches have been presented to realise
more robustness and generalisability.

In the domain of dextrousgrasping, most of the published
approaches focus on one of the two most obvious aspects
of the grasping task - either the object geometry or the
tactile impressions during the grasp. Concerning the geometry
aspect, several approaches have been presented to incorporate
explicit object geometry models to calculate (optimal) contact
points and plan grasp postures to realise them [1, 11, 14].
On the other side, the grasping approaches involving tactile
information do not plan beforehand, but close the fingers
around the object solely based on the tactile feedback of the
hand until stable object contact is detected [13, 21, 17].

In recent years, alternative ways of thinking about grasping
have been presented that aim at finding less complex represen-
tations of the grasping problem. To this end,eigengraspshave
been taken into account [3] or lower-dimensional manifolds

embedded in the hand posture space are used asexperience
basis for a grasp strategy [20, 19] or in order to facilitate
manual grasp control [23].

When it comes to dextrousmanipulation, the task is more
complex and the fundamental ideas of the approaches be-
come more distinct and diverse. Michelman and Allen [10]
implemented simple object translations and rotations with the
Utah/MIT Hand and combined them to more complex tasks.
In this manner, they achieved to remove a child-proof bottle
top with two fingers exploiting a decomposition into subtasks
and explicit force and position control schemes. Zhang et
al. [26] define a graph of vertices representingcanonical
grasps consisting of topological hand/object feature pairs
having contact when the associated grasp is achieved. Directed
edges between two grasps represent possible transitions which
have to be designed as lower-level control laws. Manipulation
planning then is implemented as path planning in the graph
between defined start and end vertices. Fuentes and Nelson
[4] learn a mapping fromperceptual goals– consisting of
targeted object position/orientation and applied finger forces
– onto robot commands realising these goals using an evo-
lution strategy. Afterwards, manipulation can be performed
by defining the task-specific perceptual goal and applying
the learned mapping. Han et al. [5] propose a pure contact
wrench analysis approach. They use a planner to generate a
path in the space offeasible configurations of the manipulation
systemrespecting hand/object constraints. A controller then
incorporates sensor readings and system kinematics and statics
to properly actuate the planned path. Platt et al. [15] address
dextrous manipulation by sequencing concurrent combinations
of hierarchical organised closed-loop controllers each derived
from potential functions and realising force-related objectives.
By dint of operating subordinated controllers in the nullspace
of superiors, higher-level conditions like wrench closure can
be prioritised and thus sustained.

To a certain extent, all these approaches require the manual
design of (lower-level) controllers from scratch. In [18], Schaal
argues that learning without incorporating prior knowledge
is a mostly artificial approach rarely taken by humans and
analyses the benefit of learning from demonstration. He applies
reinforcement learning on balancing a pole with an anthro-
pomorphic robot arm to find an optimal policy and solves
the problem based on data from a 30 second demonstration.
Nevertheless, he concludes that not every learning problem
can profit from prior knowledge in the same the way.

Although these approaches all realise robust dextrous grasp-
ing or manipulations to a certain degree, their implementations



require considerable effort in problem modelling on the level
of task definition and object characteristics. In addition, to our
knowledge, none of the mentioned grasping approaches could
be generalised to the manipulation task, nor vise versa.

In this paper, starting with a review of our previous approach
of representing grasp postures as manifolds in the hand joint
angle space [20, 19], we propose a modification of this
approach to represent manipulation movements as well. The
main idea is to construct manifolds – again embedded in the
finger joint angle space – which represent the subspace of hand
postures associated with a specific manipulation movement.
Instead of learning these representations in a purely unsuper-
vised manner yielding unpredictable, ”undirected” manifolds,
we want to construct them such that specific movement
parameters – and especially the advance in time – are explicitly
represented by specific and distinct manifold dimensions.
For our initial experiments, we focus on the manipulation
movement of turning a bottle cap incorporating the advance
in time and the cap radius as manipulation parameters.

The paper is organised as follows: In Section II, we review
the basic principle of our manifold representation for dextrous
grasping. Section III addresses the differences in the repre-
sentational requirements for grasp postures and manipulation
movements, Section IV concerns the computational means
that we chose for the implementation, namely theUnsuper-
vised Kernel Regression. In Section V we describe our first,
constructional approach to fulfilling the stated requirements
followed by the results in Section VI. Finally, we end up with
a conclusion and an outlook on future work in Section VII.

II. T HE GRASPMANIFOLD

In our previous work [20, 19], we presented a new approach
to dextrous robot grasping that combines the advantages
of geometry-based and tactile-driven grasping employing an
implicit representation of grasping experience using a self-
organising map (SOM, cf. [20, 16]). The SOM lattice is trained
with previously recorded hand postures which led to successful
grasps. In this manner, it forms a discrete approximation of a
smoothGrasp Manifoldrepresenting the subspace of the hand
joint angle space described by the training data and thus by
the set of known grasp postures. Using tactile information to
infer implicit knowledge about the object position and shape,
the algorithm dynamically exploits the SOM to adapt the
grasping motion to the actual situation. According to observed
finger contacts, the most suitable hand posture is selected from
the grasp manifold represented by the SOM nodes’ reference
vectors. Fig. 1 visualises a 10x10 SOM-based Grasp Manifold.
Each hand picture represents one of the adapted reference
vectors of the SOM and thus one point on the Grasp Manifold.
Notice that this representation ofgrasp posturesconsists only
of hand postures in the final grasp positions in which the hand
is in contact with the object.
For further details, please refer to [20, 19].

Fig. 1. A two-dimensional 10x10 SOM-baseddiscrete Grasp Manifold
trained with 4220 cylinder grasp postures. Each hand picture represents a
reference vector of a single SOM-node and a point on the Grasp Manifold
respectively. Represented are only hand postures in the final grasp position.

III. F ROM GRASPING TO MANIPULATION

Grasping and manipulation are closely related. Nevertheless,
the targeted aims usually are quite different: in the case of
grasping, we want to fixate the object, whilst when thinking of
manipulation, we rather aim at performing a certain movement
with it. In terms of our manifold representation, this can be
formulated as follows:

Grasping corresponds to ”pulling” the current hand posture
onto the manifold such that the resulting posture isone point
on it which causes a stable immobilisation of the object.
Hence, the goal is one specific final hand posture.

Manipulation in contrast is not the search for only one
specificpoint onthe manifold, but rather for a wholetrajectory
throughan adequate manifold. Thus, the goal is a sequence of
several intermediate hand postures which result in the targeted
manipulation when actuated sequentially. Notice, that in the
initial phase, the hand posture needs to be pulled onto the
manifold similar to the grasping process, but the resulting
posture causes not necessarily an object immobilisation or not
even object contacts.

The Grasp Manifold is a good starting point for the con-
struction of theManipulation Manifolds, but the conditions
which have to be fulfilled need to be adapted to the new task.
The basic ideas of theGrasp Manifoldrealised in [20] are:

a) every point on the manifold is agrasp posturebeing
a hand posture that realises a grasp in combination with the
corresponding object in the corresponding position.

b) the manifold spans over the whole targeted workspace
or over all targeted grasping contexts, respectively. Obviously,



the grasp algorithm would not be able to perform well in all
targeted contexts otherwise.

c) the manifold representation needs to support theas-
sociative completionmechanism [20, 24] which enables the
projection of partially specified data points onto the manifold
resulting in the completed hand postures lying on the man-
ifold. This allows for a dynamic incorporation of the tactile
information.

d) the sample resolution in the represented manifold re-
alised by prototypes or reference vectors need to be high
enough. Nevertheless, a continuous manifold representation is
not necessary because a generic closing algorithm is able to
terminate the grasp starting from a hand posture near a final
grasp posture.

In the case ofManipulation Manifolds, we modified these
conditions in order to fit to the new task:

a) To represent the pure manipulation phases – thus only
those moments in which the hand is in direct interaction
through contacts with the object – it is again necessary that
every point corresponds to a contact situation. However, in
our approach, we aim at representing whole manipulation
movements possibly containing non-contact phases. Hence, we
can soften the previous requirement to: the resulting manifold
consists only of points corresponding to hand postures gener-
ated by the manipulation movement to be represented. Notice
that thegrasppostures demanded by theGrasp Manifoldcon-
ditions are comprised herein. Additionally, remark that only
hand postures representing contact situations (not necessarily
grasp postures) implicitly inhere object information and thus,
only these postures can be used later on to infer object-specific
parametrisation of the manipulation movement.

b) For manipulation, it is still necessary to represent the
whole subspace of the aimed manipulation movement to
enable an algorithm to reproduce it.

c) In the grasping case, the associative completion is used to
”pull” the current hand posture onto the manifold. Basically,
this is not needed to perform the manipulation movement by
navigating through the manifold. Nevertheless, to find a good
starting point, it is a good approach to perform an initial
”pulling” onto the manifold similar to grasping. Hence, we
aim at manifold representations again allowing for associative
completion.

d) As we do not target only one specific point but need
to navigate through the manifold following a trajectory where
every intermediate hand posture lies on the manifold, a discrete
approximation like the SOM lacks the necessary precision.
Instead, we use a continuous manifold representation, namely
the Unsupervised Kernel Regression(cf. next section).

Notice that – if we guarantee condition c) and specially
mark the regions of the manifold described by hand postures
in the training data that effect object contacts – theGrasp
Manifold is a subset of theManipulation Manifold and we
can combine grasping and the reproduction of manipulation
movements in one representation. In this combination, the
initial grasping can be seen as object-specific parametrisation
of the subsequent manipulation movement.

IV. U NSUPERVISEDKERNEL REGRESSION

Unsupervised Kernel Regression(UKR) is a recent approach
for learning continuous manifold representations. It has been
introduced as an unsupervised formulation of the Nadaraya-
Watson kernel regression estimator by Meinecke, Klanke et
al. in [9] and further developed by Klanke in [8, 7]. It
uses the Nadaraya-Watson estimator [12, 25] to find a lower-
dimensional (latent) representation of the original data and a
smooth mapping from that latent space back to the original
data space at the same time. The original Nadaraya-Watson
estimator defines a mapping

~y = f(~x) =
∑

i

~yi
K(~x− ~xi)∑
j K(~x− ~xj)

(1)

which realises a smooth, continuous generalisation of the
functional relationship between~x and ~y described by given
data(~xi; ~yi). Here,K(·) is a density kernel. UKR now treats
Eq. (1) as a mapping from a lower dimensional latent space
X to the data spaceY which is described by a set of observed
dataY = {~yi}. Here, the correspondingX = {~xi} play the
role of latent parametersof the regression function:

~y = f(~x;X) =
∑

i

~yi
K(~x− ~xi)∑
j K(~x− ~xj)

. (2)

The training of the UKR manifold thus can be realised by
gradient-based minimisation of the reconstruction error

R(X) =
1
N

∑
m

‖ ~ym − f(~xm;X) ‖2 . (3)

As special benefit, the UKR efficiently performs Leave-K-Out
Cross-Validation by using a modifiedf(~xm;X) in Eq. (3):

fm(~x;X) =
∑

i 6∈Nm

~yi
K(~x− ~xi)∑

j 6∈Nm
K(~x− ~xj)

(4)

whereNm are the neighbours excluded for reconstructing~ym.
For further details, please refer to [9, 8, 7].

V. M ANIFOLD CONSTRUCTION

The problem using unsupervised manifold learning methods
often is that there are usually only limited means of incorporat-
ing partial task knowledge or of controlling the way of how
”the manifold is laid into the underlying data” respectively.
On the other side, we can not provide completely specified
training data that enable us to perform a purely supervised
approach. Thus, our goal was to develop a mechanism that
renders us possible to learn a manifold representation of the
data in a partly unsupervised manner and additionally imprint
specific meanings into the directions within the manifold. In
terms of our scenario, the representation shall provide that
every point on the manifold corresponds to one moment in
time of a motion trajectory and additionally that the directions
within the manifold, and especially its single dimensions,
inhere the meaning of one specific motion parameter. Thus,
in the example of turning a bottle cap, the goal is to realise
a manifold in which one dimension controls the progress in



(a) Equidistant initialisation of the latent pa-
rameters (blue) respecting the order of the hand
posture samples in the movement trajectory
(red). The black circles in latent space depict
possible displacements of the latent parameters
due to the UKR optimisation.

(b) Procedure of incrementally adding new
sequences by projecting new samples into the
latent space of the previously trained manifold.
The new manifold consisting of the combina-
tion of old and new data samples and latent
parameters gets retrained afterwards.

(c) Synchronising different radiirk and
r(k+1) by projecting new samples correspond-
ing to r(k+1) into the latent spaceXrk,.

corresponding tork. The projections then are
used as initialisation ofXr(k+1),1 for the
subsequent training ofMr(k+1),1.

Fig. 2. Schematic description of different steps in the manifold construction process.

time of the turning movement and another dimension specifies
the radius of the cap. Then, performing the movement reduces
to modifying the time component of the latent parameter.

A simple but - as presented in the following - effective
approach to achieving this is to construct the final manifold
out of several sub-manifolds each realising a manipulation
movement of one motion parameter set.

In this first approach, we incorporate two parameters, the
time and the cap radius. As training data, we recorded se-
quences of hand postures during cap turning movements for
five different cap radii (r = 1.5cm, 2.0cm, 2.5cm, 3.0cm
and 3.5cm). For each radius, we produced five sequences
each of about 30 to 45 hand postures. Each hand posture
consists of a vector of the 24 joint angles corresponding to
our anthropomorphic roboticShadow Dextrous Hand[22].
The construction of the final manifold is performed itera-
tively starting with training sequences corresponding to the
minimal cap radius successively increasing the radius of the
subsequent sequences. For the first sequence of hand postures
Y r1,1 = {~y r1,1

i } corresponding to the minimal cap radius
r1 , we manually distribute the latent parameters of a 1D-
UKR manifold equidistantly in a predefined interval of the
latent space according to the intra-sequence order of the hand
postures and perform the UKR training to optimise the latent
parametersXr1,1 = {~x r1,1

i } afterwards (cf. Fig.2a). We
denote the resulting UKR manifold asMr1,1. The incorpo-
ration of the second sequence (corresponding to the same
radius) is performed in an iterative manner: the hand posture
vectorsY r1,2 of this sequence are projected pointwise into
the latent space of the previously trained 1D-manifoldMr1,1

resulting inXr1,2 (cf. Fig.2b). By dint of this projection, we
approximate a synchronisation of the temporal advance of the
two movements. In the next step, we combine these data to
a new manifoldMr1,{1,2} with observed dataY r1,{1,2} =

Y r1,1∪Y r1,2 and latent parametersXr1,{1,2} = Xr1,1∪Xr1,2.
A subsequent UKR training optimises the latent parameters
subject to the whole combined data set.

By performing this procedure for all sequences of hand
postures corresponding to similar cap turning movements for
one specific cap radius, a 1D–UKR is trained representing a
generalised radius-specific movement. Thus, by applying this
method to all sets of radius-specific sequences, we generate
one 1D–UKR per radius. To promote the synchronisation
of the temporal advances also between the different radius-
specific manifolds, we only initialise the first manifoldMr1,1

with equidistant latent parameters as describes above. When
proceeding with sequencesY r(k+1),1 of a new radiusr(k+1),
we project the sequence onto the previously trained manifold
Mrk,{1,..,n} (as with sequences for the same radius) and utilise
the resulting latent parameters as initialisationXr(k+1),1 of
the new manifoldMr(k+1),1 instead of combining them to a
manifoldMrk,{1,..,n+1} (cf. Fig.2c). The training then contin-
ues as described above. Notice that each first sequence used
to initially train a new 1D-manifold plays a special role and
determines the relevant subspace in the hand posture space.
Therefore, it is important that these first sequences represent
complete movements rather than only specific phases.

The subsequent combination of all 1D-manifoldsMri,· to
one 2D-manifoldM representing the complete movements
for all radii ri covered by the training data then is performed
manually and without UKR training.M then consists of
all incorporated training data{Y ri,j}i,j together with the
corresponding latent parameters{Xri,j}i,j and represents the
whole manipulation movement described by the training data.
Therefore, we denote it asManipulation Manifold. The exten-
sion to two dimensions is realised by expanding each latent
parameter~xi by a second dimension denoting the appropriate
radius corresponding to the associated training sequence.



VI. RESULTS

We applied the method described in Section V to
all recorded training sequences. After having trained
one 1D-manifold for each of the training radiir =
1.5cm, 2.0cm, 2.5cm, 3.0cm and 3.5cm in the described
synchronised manner, we added the corresponding radius
values as second dimension to the latent parameters. The
distribution of the latent parameters in the new latent space
is depicted in Fig. 3. As constructed, the horizontal dimen-
sion represents the temporal advance within the cap turning
movement and the vertical dimension denotes the associated
cap radius. As no further UKR training is performed, the latent
parameters only lie on the previously set discrete radius values.

To get a more distinct impression of the movements repre-
sented by the manifold and its generalisation abilities, Fig.
4 depicts a matrix of hand postures corresponding to the
positions in a regular grid covering the latent space of the
manifold. Again, the temporal advance is depicted in the
horizontal and the radii in the vertical direction. To facilitate
the comparison, a bottle cap(r = 1.5cm) is depicted in
each sub-figure. As shown in Fig. 3, only the radiir =
1.5cm, 2.0cm, 2.5cm, 3.0cm and 3.5cm are directly sup-
ported by training data. Thus, the depicted intermediate radii
r = 1.75cm, 2.25cm, 2.75cm and3.25cm in Fig. 4 visualise
the generalisation ability of the constructed manifold to new
cap radii. The corresponding movements for the intermediate
radii are clearly similar to the training sequences. Secondly, it
illustrates the effect of the temporal synchronisation between
the different 1D-manifolds by projecting new sequences into
the latent space of the previously trained manifolds before
newly training as described in Section V. The most distinct
picture of this synchronisation can be seen in columns 3-
5 where the fingers are shown in the moments (virtually)
contacting the cap (or in the video referenced in Fig.4). Addi-
tionally, those columns give an impression of the smoothness
in the 2nd manifold dimension. Remark the smooth finger
opening with increasing cap radius in the column direction. In
the row direction, all rows depict smooth transitions from left
to right indicating a smooth manifold also in the row direction.

One effect of the presented training method is not directly
obvious in Fig. 4. When reaching the manifold border in the
temporal dimension while performing the turning movement,
the temporal position has to be reset to the beginning (go back
from 100% to 0%) to restart the turning movement. As by now,
there is no regulation for border synchronisation incorporated
in the training, the 100%- and 0%-postures usually signifi-
cantly differ from each other yielding an abrupt non-smooth
hand movement when jumping back to the 0%-posture. As the
beginning and the end of the movement are the phases where
the fingers are the farthest away from the cap, the motion
artifact resulting from the missing border synchronisation does
not effect the cap turning and thus is not of particular relevance
for the success of the cap turning manipulation. Nevertheless,
we will address this issue in future work to optimise the natural
impression of the manipulation.
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Fig. 3. Distribution of the latent parameters ofM.

VII. C ONCLUSION

We presented the first steps towards a new approach in
dextrous manipulation that uses sequences of hand postures
recorded from human demonstration to learn and construct
Manipulation Manifoldsin which distinct dimensions repre-
sent distinct parameters of the associated manipulation. With
the example of turning a bottle cap, we provided a proof of
concept by incorporating two parameters in a manifold. From
our experiments, we conclude several subjects and aims for
our future work. The most important for us will be to change
the learning and construction mechanism such that it works
in a more unsupervised fashion with the goal of completely
replacing the manual construction part by an unsupervised
learning. For this, we have several ideas in mind of how
to modify the UKR learning to better fit to the problem
of chronologically ordered data sequences. Other important
objectives are to explicitly incorporate contact conditions and
to remove artifacts due to the missing border synchronisation.
While following our goals, we want to sustain our main prin-
ciple of this work of constructing manifolds in which distinct
dimensions have imprinted distinct and specific meanings like
the radius of a bottle cap and the temporal advance within the
manipulation movement.
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