RECORDS

OF THE

SOUTH AUSTRALIAN MUSEUM

VOLUME 16

Published by the Museum Board, and edited by the Museum Director

CONTENTS

No. 1. A synopsis of the frogs of the genus Hyla of north-western Australia, with the description of a new species. Michael J. Tyler. pp. 1-11.
(Issued 5th December 1969)
No. 2. An annotated catalogue of the Otitidae (sens. lat.) (Diptera) recorded from Australia, Indonesia and the Pacific Islands. Harry F. Lower. pp. 1-93.
(Issued 6th March 1970)
No. 3. The Rhodacaridae (Acari: Mesostigmata); classification, external morphology and distribution of genera. David C. Lee. pp. 1-219.
(Issued 22nd July 1970)
No. 4. A revision of the Australian pentatomid bugs of the genus Cephaloplatus White. (Hemiptera-Pentatomidae-Pentatominea). Gordon F. Gross. pp. 1-58.
(Issued 23rd October 1970)
No. 5. Cyatholaimidae (Nematoda) from the Coast of Western Australia. W. Grant Inglis. pp. 1-13.
(Issued 1st December 1970)
No. 6. The genus Ctenotus (Lacertilia, Scincidae) in South Australia. G. M. Storr. pp. 1-15.
(Issued 18th February 1971)
No. 7. Acarine and other microfossils from the Maslin Eocene, South Australia. R. V. Southcott and R. T. Lange. pp. 1-21.
(Issued 1st June 1971)
No. 8. Nematode parasites of Oceanica. XII. A review of Heterakis species, particularly from birds of Taiwan and Palawan. W. Grant Inglis, Gerald D. Schmidt and Robert E. Kuntz. pp. 1-14.
(Issued 7th October 1971)
No. 9. Superficial mandibular musculature, vocal sacs and the phylogeny of Australo-Papuan leptodactylid frogs. Michael J. Tyler. pp. 1-20.
(Issued 12th May 1972)

No. 10. Planigale gilesi (Marsupialia, Dasyuridae); a new species from the
interior of south-eastern Australia. Peter F. Aitken. pp. 1-14, (Issued 12th June 1972)
No. 11. An annotated checklist of the native land mammals of the Northern Territory. Shane A. Parker. pp. 1-57.
(Issued 8th January 1973)
No. 12. Morethia (Lacertilia, Scincidae) South Australia. Michael Smyth. pp. 1-14.
(Issued 31st August 1972)
No. 13. A new species of Troposodon Bartholomai; from the Early Pleistocene Kanunka fauna, South Australia. (Macropodinae; Marsupialia.) Colin R. Campbell. pp. 1-18.
(Issued 1st February 1973)
No. 14. Rhodacaridae (Acari: Mesostigmata) from near Adelaide Australia. I. Systematics. David C. Lee. pp. 1-36.
(Issued 1st March 1973)

INDEX

Number
Acari, Rhodacaridae, genera, world 3
eriophyid, microfossil, South Australia 7
Rhodacaridae, near Adelaide 14
Aitken, Peter F.-
Planigale gilesi, Marsupialia, new species 10
Anura, Hyla, north-western Australia 1
leptodactylid frogs, Australo-Papuan 9
Bugs
See Hemiptera 4
Campbell, Colin R.-
Troposodon, Marsupialia, new species, fossil 13
Cephaloplatus, Hemiptera, generic revision 4
Ctenotus, Lacertilia, South Australia 6
Cyatholaimidae, Nematoda, coast, Western Australia 5
Diptera, Otitidae, Australia, Indonesia, Pacific Islands 2
Flies
See Diptera 2
Fossils, mite, rotifer, invertebrate debris, Eocene, South Australia 7
Troposodon kenti, Marsupialia, new species, Pleistocene, South Australia 13
Frogs
See Anura 1,9
Gross, Gordon F.-
Cephaloplatus, Hemiptera, generic revision 4
Hemiptera, Cephaloplatus, generic revision 4
Heterakis, all species, particularly from birds, Taiwan, Palawan 8
Hyla, Anura, north-western Australia 1
Inglis, W. Grant-
Cyatholaimidae, Nematoda, coast, Western Australia 5
Inglis, W. Grant, Schmidt, Gerald D. and Kuntz, Robert E.-
Heterakis, all species, particularly from birds, Taiwan, Palawan 8
Kuntz, Robert E.-
See Inglis, W. Grant 8
Number
Lacertilia, Ctenotus, South Australia 6
Morethia, South Australia 12
Lange, R. T.-
See Southcott, R. V. 7
Lee, David C.-
Rhodacaridae, genera, world 3
Rhodacaridae, near Adelaide 14
Leptodactylidae, Anura, Australo-Papuan, musculature, phylogeny 9
Lists, Cephaloplatus, species (all Australian) 4
Ctenotus, species, South Australia 6
Heterakis, species, world 8
Hyla, species, north-western Australia 1
Mammals, native, land, Northern Territory 11
Otitidae, species, Australia, Indonesia, Pacific Islands 2
Rhodacaridae, genera, world 3
Lizards
See Lacertilia 6, 12
Lower, Harry F-
Otitidae, Australia, Indonesia, Pacific Islands 2
Mammals, Planigale gilesi, Marsupialia, new species 10
native land, checklist for Northern Territory 11
Troposodon kenti, Marsupialia, new species, fossil 13
Mites
See Acari 3, 7, 14
Morethia, Lacertilia, South Australia 12
Musculature, Australo-Papuan, leptodactylid frogs 9
Nematoda, Cyatholaimidae, coast, Western Australia 5
Heterakis, all species, particularly from birds, Taiwan, Palawan 8
New taxa, family-group, Acari 3
genus-group, Acari 3, 14
Hemiptera 4
species-group, Acari 3, 7, 14
Anura 1
Hemiptera 4
Lacertilia 6
Mammalia 10, 13
Nematoda 5,8
Otitidae, Catalogue, Australia, Indonesia, Pacific Islands 2
Parker, Shane A-
native land mammals, checklist, Northern Territory 11
Phylogeny, Australo-Papuan, leptodactylid frogs 9
Planigale gilesi, Marsupialia, new species, South Australia 10
Rhodacaridae, genera, world 3
near Adelaide 14
Rotifer, ? Keratella sp., fossil 7
Roundworms
See Nematoda 5,8
Schmidt, Gerald D.
See Inglis, W. Grant 8
Smyth, Michael-
Morethia, Lacertilia, South Australia 12
Southcott, R. V. and Lange, R. T.- microfossils, Eocene, South Australia 7
Storr, G. M.-
Ctenotus, Lacertilia, South Australia 6
Troposodon, Marsupialia, fossil, revised generic diagnosis 13
Tyler, Michael J
Hyla, north-western Australia 1
leptodactylid frogs, Australo-Papuan 9
Vocal Sacs, leptodactylid frogs, Australo-Papuan 9

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

A SYNOPSIS OF THE FROGS OF THE GENUS HYLA OF NORTH-WESTERN AUSTRALIA, WITH THE DESCRIPTION OF A NEW SPECIES

By MICHAEL J. TYLER
Honorary Associate in Herpetology
South Australian Museum

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

A SYNOPSIS OF THE FROGS OF THE GENUS HYLA OF NORTHWESTERN AUSTRALIA, WITH THE DESCRIPTION OF A NEW SPECIES

BY MICHAEL, J. TYLER, HONORARY ASSOCIATE IN HERPETOLOGY, SOUTH AUSTRALIANMUSEUM

Abstract

Summary

In comparison with studies undertaken in other parts of Australia, the hylid frog fauna of the northwest has received little attention. The most recent checklists of the species of Hyla are those compiled by Moore (1961), recognizing six species in northern Western Australia and nine in the Northern Territory The majority of species listed are wîdely distributed in Australia, but the recorded presence of Hyla aurea and H. adelaidensis in the Northern Territory evoked comment from Moore because the disjunct distribution conflicted with existing knowledge. In a recent study Tyler (1968a) investigated the taxonomic status of the members of the H. lesueuri complex occurring in north-western Australia and described a new species apparently confined to the area. The possible existence of an endemic element within the hylid frog fauna has been reinforced by the subsequent collection of a further undescribed species. This study has endeavoured to establish the number of species of Hyla occurring in the north-west and to compare their distribution patterns.

A SYNOPSIS OF THE FROGS OF THE GENUS HYLA OF NORTH-WESTERN AUSTRALIA, WITH THE DESCRIPTION OF A NEW SPECIES

By MiChael J. Tyler, Honorary Associate in Herpetology, South Australian Museum

INTRODUCTION

In comparison with studies undertaken in other parts of Australia, the hylid frog fauna of the north-west has received little attention. The most recent checklists of the species of Hyla are those compiled by Moore (1961), recognizing six species in northern Western Australia and nine in the Northern Territory. The majority of the species listed are widely distributed in Australia, but the recorded presence of Hyla aurea and H. adelaidensis in the Northern Territory evoked comment from Moore because the disjunct distribution conflicted with existing knowledge.

In a recent study Tyler (1968a) investigated the taxonomic status of the members of the H. lesueuri complex occurring in north-western Australia and described a new species apparently confined to the area. The possible existence of an endemic element within the hylid frog fauna has been reinforced by the subsequent collection of a further undescribed species.

This study has endeavoured to establish the number of species of Hyla occurring in the north-west and to compare their distribution patterns.

MATERIALS AND METHODS

The specimens reported are lodged in museum collections which are abbreviated in the text as follows:-British Museum (Natural History): B.M.; Museum of Comparative Zoology: M.C.Z.; National Museum of Victoria: N.M.V.; South Australian Museum: S.A.M.; United States National Museum: U.S.N.M.; Western Australian Museum: W.A.M. Letters preceding registration numbers are departmental catalogue references.

Methods of measurement and descriptive techniques conform to those used by Tyler (1968b). The following abbreviations appear in the text:-E-N/IN (ratio of the eye to naris distance to the internarial span); HL/HW (head length to head width ratio); HL/S-V (head length to snout to vent length ratio); TL/S-V (tibia length to snout to vent length ratio).

Hyla meiriana new species
Hyla adelaidensis, Mitchell (1955) p. 405, (1964) p. 339.
HOLOTYPE: S.A.M. R. 9082. An adult female collected at a rock pool 98 miles north of Mainoru, Northern Territory, by A. Fleming, R. Edwards and H. Bowshall on August 19, 1967.

FIG. 1.
Hand and foot of Hyla meiriana sp. nov.
DEFINITION: An extremely small species with a maximum snout to vent length of 22.5 mm , characterised by an extremely high $\mathrm{E}-\mathrm{N} / \mathrm{IN}$ ratio (1.286-1.600), short and unwebbed fingers with prominent, transversely oval discs, and extensively webbed toes (the webbing reaching the base of the discs of all toes except the fourth).

DESCRIPTION OF HOLOTYPE: The head is longer than broad (HL/HW 1.097) ; its length equivalent to considerably more than one-third of the snout to vent length (HL/S-V 0.383). The snout is not prominent; it is rounded when viewed from above and rounded and projecting slightly in profile. The nares are high and oblique, their distance from the end of
the snout less than that from the eye. The distance between the eye and the naris is considerably greater than the internarial span (E-N/IN 1600). The canthus rostralis is poorly defined and slighty curved. The loreal region is concave. The cye is not prominent, its diameter slightly greater than the eye to naris distance. The tympanum is prominent, its diameter equivalent in two-thirds of the eye diameter and separated from the eye by a distance equivalent to approximately one-third of its own diameter. The vomerine teeth are in two raised and slightly oblique series. A line on a level with the posterior margins of the choanae would biseet them. The tongue is roughly circular and lacks a posterior indentation.

The fingers are rather short and are equipped with extromely narrow lateral fringes; in decreasing order of length $3>4>2>1$. There is no inter-digital webbing. The terminal dises are prominent and transversely oval in shape (Fig. 1).

The hindlimbs are long and slender with a TL/S-V ratio of 0.539. Tues in decreasing order of length $4>5>3>2 \geqslant 1$. The interdigital wehbing reaches the base of the terminal dises of all tous except the fourth where it extends as far as the subaticular tubercle at the base of the penultimate phalanx, and is united to the disc by a narrow lateral fringe (Fig. 1).

There are numerous broad, flattened, very poorly developed tubercles over the entire dorsal surface of the head and body. Each tubercle is composed of numerous small granules, particularly conspicuous in the satral region. There is a very weak supratympanic fold obscuring the superior margin of the tympanic annulus. There is a prominent oval inner and a small but prominent rounded outer metatarsal lubercle. The throat, chest and lower surfaces of the limbs are smooth and the abdomen is granular.

DIMENSIONS: Snout to vent length 20.6 mm ; tibia length 11.1 mm : head length 7.9 mm ; head width 7.2 mm ; cye to naris distance 2.4 mm ; internarial span 1.5 mm ; eye diameter 2.5 mm ; tympanum diameter 1.6 mm .

In preservative the dorsal surface is dark brown with indistinct black markings surrounding the individual tubereles. When the skin is moist the granular ateas within the tubercles posess a distinct metallic irrideseence. The canthus rustralis bears a short blackish stripe, and heavy stippling on the mandibular margins produces a pattern of light and dark patches. The anternor and posterior surfaces of the thighs and the posterior surface of the tibiat are strikingly variegated with black on a cream background. The throat and chest are uniformly stippled with black on a pale cream background and there is irregular stippling on the ventral surface of the thighs.

VARIATION: There are 32 paratypes collected at the type locality with the holotype:-S.A.M. R. 9014-34, 9074-81, 9083-8.5.

FIG. 2.
H. meiriana sp. nov.

Adult mate paratypes have snout to vent lengths ranging from 16.2 mm to 18.2 mm , whilst the range for females is $17.6-20.7 \mathrm{~mm}$. None of the females are gravid. In their proportions they exhibit only slight variation. The E-N/IN ratio is consistently high with a range of $1.286-1.563$ and the mean 1.4()7. The head is longer than broad in all specimens with an HI. HW range of 1.057-1.222 and the mean 1.132. The TL/S-V range is 0.541-0.640 and the mean 0.584.

The colouration and pattern of markings of the paratypes closely resembles those of the holotype. Divergences worthy of note are the presence of a dark transocular bar in some specimens, and the fact that variegations on the laterat surfaces of the thighs frequently extend on to the dorsal surface.

An additional 34 specimens also represent this species: S.A.M. R. 3235, 9734; U.S.N.M. 12870-25, Oenpelli Creek, 5 miles S.S.E. of Oenpelli, N.T. S.A.M. R. 9097-9100, Kununurra, W.A. N.M.V. D. 10773-74. 10811-16, 10818-26. Jaspers Gorge, N.T. W.A.M. R. 13758. 13758 G-J, Kalumburu. W.A.

The four specimens from Kununurra have $\mathrm{E}-\mathrm{N} /[\mathrm{N}$ and $\mathrm{HL} / \mathrm{HW}$ ranges within those of the paratypes, but the hind legs are shorter (the TI./S-V range being $0.476-(0.556$ with a mean of (0.515). One of these specimens (S.A.M. R. $9 / 00$) is the largest representative of the species being a gravid female with a snout to vent length of 22.5 mm . Another menber of this series is depicted in Fig. 2.

The specimens from Jaspers Gorge differ from the type series in having more extensive webbing of the feet (reaching mid-way up the penultimate phalanx of the fourth toe), and in their colouration. The dorsum in this serices is a much darker brown, with the dorsal surface of the thigh similar to the colour of the head and back (the light marhings on the posterior face do not extend upon it). The ventral surfaces are much more heavily and extensively marked; the throat is usually a uniform dark brown and only infrequently stippled with brown, and the ventral surface of the thighs is suffused with brown in most specimens.

COMPARISON WITH OTHER SPECIES

Of the Australian species with completely unwebbed fingers the only one whose adults are within the size range of H. meiriana is H. microbelus of Queenstand. A single specimen has been available for comparison (M.C.Z. 70013), an adult male collected at Cooktown which is approximately 100 miles north of the type locality (Cairns).

Hyla meiriana may be distinguished by the presence of vomerine teeth and outer metatarsal tubercles (absent in H. microbelos) and by its more extensively webbed toes. In preservative H. meiriana has a dark brown dorsal ground colouration and striking post-femoral markings, whereas H. microbelos is a very pale grey and lacks these markings.

Of the Papuan species H. dorsalis attains a similar adult size but may also be distinguished by having less extensive webbing between the toes, as revealed by comparison of Fig. I with the illustration of H. dorsalis provided by Tyler (1968b, Fig. 25). The shape of the snout differs in being evenly rounded and not particularly prominent, whereas in H. dorsalis it is pointed and projecting. None of the 62 specimens of H. meiriuna examined bear the median, longitudinal, pale brown band visible on the dorsum of H. dorsulis.

HABITAT

The type locality is an aboriginal ceremonial wind-dreaming site 98 miles north-east of Mainoru in an area where the annual rainfall is approximately 50-60 inches. The pool is located on a sandstone plateau on which there are occasional outcrops of exposed quartzite. The vegetation surrounding the pool consists predominantly of sparse cucalypts and clumps of coarse grasses near the water, with occasional Pundanus and paper bark trees on the periphery. The bed of the pool is completely free of silt and the water is described as crystal clear and extremely soft.

Messrs. J. Coventry and C. Tanner, who obtained the series at Jasper's Gorge, noted that there the species was living in red silt in rock pools.

FIELD NOTES

The type scries was collected at night at the edge of the water. The collectors noted that whereas other species occurring at the same site (Hyla latopalmata and H. wotjulumensis) jumped into the water when disturbed, the H. meiriana moved away from the water on to the dry slopes where they sought refuge amongst the vegetation.

DISTRIBUTION

Hyla meiriana is currently known from five localities in the Northern Territory and Western Australia. The nature of the terrain is such that this species probably occurs in numerous disjunct populations completely isolated from one another.

NORTHERN TERRITORY RECORDS OF HYLA AUREA AND H. ADELAIDENSIS

Moore (1961) reported the presence in the British Museum collection of seven specimens of H. aurea raniformis from Port Essington that had previously been examined by Gunther (1858), Boulenger (1882) and Parker (1938). Moore (1961, p. 319) stated. "I would not believe the locality to be correct, were it not for the fact that Copland (1957) has seen specimens from Darwin, and Loveridge (1949) had specimens from Knuckey's Lagoon, which is 9 miles from Darwin".

The Darwin specimens which Copland (1957, p. 58) includes 10 his list of the H, aurea raniformis which he examined are N.M.V. D5529-30. The former bears a tag labelled "Phractops sp.," but lacks an identification in the muscum register. The latter is labelled, "Hyla sp. young," and is registered ats, "Hyla sp.". For reasons which are not apparent both were despatched to Copland in 1956 as examples of Hyla aurca. D5529 is a representative of Limnodynastes ornatus, and D5530 a Crinia sp. As there are $n 0$ other frogs in the N.M.V. collection from the vicinity of Darwin labelled aurea, the inclusion of these registration numbers in Copland's list can be attributed to a clerical error, and this particular record discounted.

Loveridge (1949) provided a brief description of the specimens from Knuckey's Lagoon (M.C.Z. 25994-5) commenting that they were to shrivelled to merit measuring. Examination has shown them to be examples of Cyclurana dahli.

The presence of Hy/a aurea in the Northern Territory therefore rests solely on the British Muscum series (B.M. 1936. 12.13.135-141). This is not the only species whose presence in the Northern Territory has been queried (Glatuert. 1947), and it is pertinent to note that all of the specimens involved were reported to have come from the same locality (Port Essington) and the same source (Dr. Fleming). In view of the identity of the specimens on which the subsequent reports were based it would seem justifiable to now remove H. aurea from the Northern Territory checklist.

With the exception of the reports of aurea from the Northern Territory considered above, the only additional record for any of the species first cited by Gunther (1858) is probably that of Hyla adelaidensis reported by Mitchell (1955, 1964). The specimens involved have been examined and are considered to represent the new species Hyla meiriana.

FIG. 3.
Distribution patterns of north-western Hylu.

REVISED HYLID CHECKLIST

(All specics occur in northern Western Australia and the Northern Territory)

Hyla bicolor (Gray).
Hyla cacrulea (White).
Hyla coplandi Tyler.
Hyla latopalmata (Gunther).
Hyla meiriana new species.

Hyla nasuta (Gray).
Hyla peroni (Tschudi).
Hyla rubella Gray.
Hyla wotjulumensis Copland

PATTERNS OF DISTRIBUTION

The hylid frogs oceurring in north-western Australia can be divided into three groups according to their respective patterns of distribution. The groups and their member species are as follows:

GROUP A: Species which are confined to areas with an annual rainfall exceeding 30 inches (H. bicolor, H. meiriana, H. nasuta).

GROUP B: Species which extend from the coast to approximately the level of the twenty-inch isohyett (H. coplandi, H. latopalmata, H. peroni, H. wotjulumensis).
GROUP C: Species which are widely distributed throughout the entire area and extend into the arid parts of Central Australia with an annual rainfall of less than ten inches (H. caerulea, H. rubella).

The first two groups form quite distinctive units but the third consists of a pair of species which are so widely distributed and so morphologically variable that each may ultimately merit sub-division.

The paucity of specimens from north-western Australia permits only the broadest generalisations concerning distribution. At localities such as Wotjulum, north of Kings Sound in Western Australia where several fairly extensive collections have been made, eight of the nine species listed above have been found, and the general pattern appears to be one of a gradual reduction in the number of species away from the high rainfall coastal localities. Thus all species occur in the area to which GROUP A are confined, and members of GROUP C share the area occupied by GROUP B (Fig. 3). The rather ubiquitous distribution of the species in GROUP C affects the interprctation of these patterns. It is therefore relevant to briefly summarize the problems involved.

The status of the Central Australian population of Hy/d colernler has been the subject of controversy. Spencer (1896) considered it a distinet species which he described as H. gilleni. Copland (1957) relegated it as a sub-species of cuerulea, and Moore (1961) failed to find grounds for even the recognition of sub-species. The most recent contributor (Mertens, 1964) has resurrected caerilea gilleni.

A comparable situation exists in the case of Leptodactylid with a similar distribution pattern (Limmodynastes ornatus). Parker (1940) described L. spenceri from Central Australia, distinguishing it from the coastal ormams by its more extensive toe webbing. Moore (1961) suppressed spenceri, but subsequent contributors (with the exception of Warburg, 1967) have not adopted this proposal.

Another species which hats at similar distribution is H. rubella. Specimens from low rainfall areas tend to be larger, have broader heads and more highly developed lateral digital fringes than those from peripheral highrainfall areas. However, there has not been any proposal that they should merit taxonomic recognition at the specific or sub-specific level.

Examination of north-western specimens of caeruled and rubella indicate that if distinct central and peripheral populations are recognized, the southern boundary of the latter is similar to that of the species in GROUP B, but for the purpose of the present discussion no subspecies are recognized.

The hylid fauna of the north-western Australiat has hitherto (by implication if not by specific statement) been regarded as simply an extension of the fauna of the north-cast, with a gradual westward reduction in the number of species. Utilizing the basic zongeographical patterns of distribution of frogs adopted by Moore (1961), the north-western Hyla would be divided into the Centralian species (corresponding to GROUP \dot{C}), and those confined to the "north-cast crescent" (all remaining species). Of those in the latter category, only latopalmata and peroni exhibit a continuous range across the north of the continent, and then southwards along the eastern seaboard. Hy/a bicoler and masuta range over the same areat but (as suggested by Moore, 1961) they are probably separated into tivo disjunct populations, having yet to be reporied from the southern margin of the Gulf of Carpentaria, This area may not be a barrier to wotjulumensis, and it is possible that this species oceurs in north-western Queensland.

There is now an indication that the north-west possesses a distinctive endemic clement in its hylid frog fauna. Intensive collecting is needed to establish the geographical distribution of the endemic species more precisely, but at present potential support for the recognition of north-western Australia as al separate unit within the Torresian zone is indicated.

SUMMARY

Hyla meiriana new species is described and reported from five localitics: in the Northern Territory and Western Australia. Recent records of H. adelaidensis and H. aurea in the Northern Territory are demonstrated to he based on misidentified specimens. A checklist of north-western Hyla is presented and distribution patterns of the component species are discussed.

ACKNOWLEDGMENTS

For the loan of the specimens cited in this paper 1 am indebled to Miss J. M. Dixon (National Mhseum of Victoria), Dr. J. A. Pelers (United States National Museum), 1). G. Storr (Western Australian Museum), and Dr. F. E. Williams (Museum of Comparative Loology). I am further indebted to Miss Dixon for absiracting data from her departmental registration catalogue.

Mr. W. Harrington generously undertook the preparation of Fig. 3 and I am also indebted to Mr. R. Ruehle for Fig. 2.

I "ould lihe to express my thank, to Mr. K. Cole and Messrs. R. Edwards. H. Bowshall and A. Fleming for their cullections obtained at Kununurra and Arnhem Land respectively, and for detailed information on the type locality of the new species.

Finally niy thanks are due to the Director and Board of the Suuth Australian Museum for the provision of laboratory and secretarial facilities, and to Mr. F. J. Mitchell fur adivice and constructive criticism of the manuseript.

REFERENCES

Boulenger, G. A., 1882: Caralogute of the Batruchia Salientia 3. Ecaututh in the collection of Ihe British Musemm. 2nd ed., British Museum, London, 503 pp .
Copland, S, J., 1957: Australian tree-frogs of the genus Hyha. Prove. Limm Sove. N.S.W, 82:
Ghauert, L.., 1947: Some unfortunate errors in collecting localities. W. Aust. Nat, 1: 48.
Gunther. A., 1858: Couatorue uf the Batruchia Salientia in the collection of the Brmish Mrisetum. London, xvi +160 pp .
Loveridge, A.. 1949: On sume reptiles and amphibians from the Northern Territory, Trans. Roy. Soc. S. Aust. 72: 208-215.
Mertenk, R., 1964: Die systematische Stellung des zentraltustralischen Laubfrosehes Mylu gilleni. Senck. biol, 45: 15-21.
Mitchell. F. J. 1955: Preliminary account of the Reptilia and Amphibia collected by the National Geographic-Commonwealth Government-Smithsonian Institution Expedhtion to Amhem Land (April to Novernber, 1948). Rec. S. Aldst. Mus. 11: 373-41)8.
-._ 1964: Reptiles and Amphibians of Amhem Land. IN: Records of the AmericanAustralian Scientific Expedition in Arnhem Land. 4. Zontogy, Ed, R. L. Specht, Neltournc Univ. Press. pp. 309-343.
Moore, 1. A., 1961: The frogs of eastern New South Wales, Bull. Amer, Mus. Nat, Hist. 121 (3): 149-386.
Parker, H. W, 1938: The races of the Australian frog Hyla nurea Lesson. Ann. Mag. nat. HiHst, (10) 17: 66-93.
Spencer, B., 1896: Report on the work of the Horn Scientific Expedition to Central Australla. 2: Amphibia 2: 152-175. London, Dulau.
 in north-western Australia. Rec. S. Jusf. Mus. 15: 711-727.
1968b: Papuan hylid frogs of the genus Hylu. Zowl Verh. 96: 1-203.
Warburc. M. 1967: On thermal and water balance of three Central Australian frogs. Comp. Buachem. Physson, 20: 2704.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

AN ANNOTATED CATALOGUE OF THE OTITIDAE (sens. lat.) (DIPTERA) RECORDED FROM AUSTRALIA, INDONESIA AND THE PACIFIC ISLANDS

By HARRY F. LOWER

Formerly of the Waite Agricultural Research Institute,
University of Adelaide, South Australia

AN ANNOTATED CATALOGUE OF THE OTITIDAE (sens. lat.) (DIPTERA) RECORDED FROM AUSTRALIA, INDONESIA AND THE PACIFIC ISLANDS

By HARRY F. LOWER, FORMERLY OF THE WAITE AGRICULTURAL RESEARCH INSTITUTE, UNIVERSITY OF ADELAIDE, SOUTH AUSTRALIA

Summary

The aim of this catalogue is to provide a list of all the described species of Otitidae recorded from the area detailed below, together with all published taxonomic references to them. The catalogue inclues all species described up to the end of 1964, and every reference mentioned has been read by the author.

AN ANNOTATED CATALOGUE OF THE OTITIDAE (sens. lat.) (DIPTERA) RECORDED FROM AUSTRALIA, INDONESIA AND THE PACIFIC ISLANDS

By HARRY F. LOWER
Formerly of the Waite Agricultural Research Institute, University of Adelaide, South Australia*

1. INTRODUCTION

The aim of this catalogue is to provide a list of all the described species of Otitidae recorded from the area detailed below, logether with all published taxonomic references to them. The catalogue includes all species described up to the end of 1964 , and every reference mentioned has been read by the author.

Although it is well uver 100 years since the first species were described from the area, confusion of genera, species, and their respective distributions still exists. The vast taxonomic literature on the family is scattered both in time. and in a wide range of publications, and is in a variety of European languages: few collections of otitid material in institutions have received modern taxonomic study; and some types of genera and species were described, at the time, in a few lines sufficient for their validation, but wholly inadequate for recognition purposes. Where such genera and species necur in this catalogue, a note at the end of each points out the difficulties encountered and directs attention to the most fruitful lines to be followed in order to clear up doubts. As would be expected with small insects, practically every large collection of the family contains undescribed species.

The selected area corresponds with no accepted geographic region. It was chosen primarily because of the author's interest in the sub-family Platystominae which appears to have evolved in the area, and lo which, most of its members are naturally confined. The area is extensive: on the West and east, it is bounded by the 90 E and 1.35 W meridians, respectively; its north and south limits are latitudes $30^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$. No part of mainland Asia is included; where such is referred to, it is because the distribution of certain species extends from adjacent land masses to the mainland. The land masses of the area are thus Australia and New Zealand, Indonesia, the Australian mandated territories of Papua and New Guinear. the Philippine Islands, and the numerous scattered islands of the western Pacific Ocean.

2. SOURCES

This catalogle is based on the work of Hendel who, in several fascictes of Cienera Insectormm (notably No. 157, Hendel, 1914a) and in his Die Arten der Platystominen (Hendel, 1914b), reviewed all the species of which he was aware up to that time. To these, I have added species overlooked by hin, corrected names where these have later been shown to be in error, and have added species described since then chielly by American and Furopean workers to whom material was submitted for identification either by private persons or scientific expeditions. The results of several European scientific surveys have also been incorporated.

Comparison of Hendel's two texts referred to above shows that he intended publication of Die Arten der Platwatominen to precede that of fancicte 157 of Ciemera Insectorum, since, in the former he described his new genera and species, and referted to them in the latter as already published. As it so happened, however, fascicle 157 of Genera Insechorum was published on 15 th April. 1914 while Die Arten der Platystominten was not published until 15 th June of the same year. This resulted in all of Hendel's new names in General Insectorum being nomina nuda which were not validated until the later publication of Die Arten der Plenystominen (Abh, zool-bot Ges. Wien S'). The possihility of prior publication by others therefore exists. While this possibility is a remote one, it still should be borne in mind by anyone working on the family.

Hendels work laid the foundation on which later taxomomists have built. His ability to find morphological characters for delimiting genera, and to make clear the relation of one genus to another, were gifts of a high order, He did, however, have occasional lapses, as, for example, in re-allocating some of the earlier workers species to the genera he ascepted. Ho seems, not infrequently, to have seen neither the types, nor specimens known to be conspecific with them, and the original descriptions, which he often quotes verbatim, were his only guide. These deseriptions, written before modern concepts of generic and specific limits had been elaborated. were, all too frequently, insufficient for identification purposes. Such blemishes may possibly be allributed to the disturbed conditions prevailing in Ellope at the tome he was preparing his works for puhfocatoon. While these doubtful specien are here included as Hendel placed them, they shoukd preferably be treated as "genus unknown", until their placement is wither confirmed, or they can be placed in their correct gencrat by future workers.

To avoid repetition, citation of Hendel's two major works, in the body of the text, indicates that references to a genus or species published before 1914 will be found therein. Die Arlen der Platyronminen is abbreviated oo Hendel 1914a and fasciele 157 of Genera Insectormen to Hendel 1914b.

The number following each corresponds with the pagination. This has enabled me to reduce references to works published just before 1914, too late to be included by him, and to those which have been published since.

Students of the Otitidae of Australia and New Guinea will find the series of papers by J. R. Malloch in Proc. Linn. Soc. N.S.W. essential. In addition to the genera and species from this area listed by Hendel, Malloch includes a considerable number of genera and species described by himself and others after 1914.

3. NOMENCLATURE

At the present time the nomenclature of the Otitidae is receiving new study. Hendel treated the group as a single family consisting of several subfimilics: the modern trend, as exemplified by Steyskal in the U.S.A., is In ratise some, at least, of these to family status. To what extent this lead will be followed, the future alone can decide. In these circumstances, the author has retained the Hendelian system; in practice, this will catuse no diflicullies for workers in the group.

The sub-family, Platystominae (family Platystomatidae of Steyskal), with 423 described species, is the dominant one in the area, to which nearly all of these species are endemic. In addition, 19 species of other sub-familics (Otitinae, 1; Ulidinae, 18), have been recorded.

Of these 19 species, six are known to be introductions, and some degree of doubt attaches to the remainder. The position is further confused by misidentifications through which species not oceurring in the area have been recorded as so doing. The probability is high that some recoids may still be based on misidentifications.

In this catalogue, the arrangement and numbering of genera atte those used by Hendel in fascicles 157 (1914. Platystominat) and 106 (1910. Ulidimac) of Gemord Insectorum. Missing numbers represent genera mone of whose species have been recorded from the area. This applies, for example, in the Platystominae, to the first eight genera: the list thus begins with Hendel's genus No. 9.

A letter following a number indicates that the genus has been erected since llendel's work was published, or is one of which he was unaware when he wrote. An asterisk preceding a specific name indicates an "Austrahan" species, thut is, one recorded from Australia, or New Guinea and its adjacent islands.

Within genera, species are arranged in alphabetical order.
Family: OTITIDAE
Type genus: Otites Latreille, 1804 Nouv, Dict. Hist. not. 24: 196.

I. Sub-family: Platystominae

Type genus: Platystoma Meigen, 1803 Mag. Insektenkunde (Illiger) 2: 277.
NoTE: Both Curran (1934) and Malloch (1939) claimed that Platystoma was not available for use in the Diptera since it "is pre-occupied in Mollusca." Neither gave any reasons for making this assertion, nor referred to any authority. In Neave (Nomenclator Zoologicus 3: 802-803), Platystoma Meigan, 1803 pre-dates, by many years, the carliest of the six later applications of Platystoma to other animal groups. Steyskal in all his publications uses Platystoma without any query as to the correctness of such usage, and the name was accepted by workers who preceded Curran (e.g., Williston, 1888 and later editions; Hendel A, B). In these circumstances, Curran's statement appears to be incorrect; Malloch apparently followed him without checking the correctness of the statement since he used the exact wording of Curran.

Genera

9. Genus: POECILOTRAPHERA Hendel, 1914

Hendel, 1914a Gen. Ins. 157: 33.
Type species: Urophora taeniata Macquart, 1843.

1. P. taeniata (Macq. 1843)

Urophora tacmiata Macq., 1843 Dipt. exot. 2: 222 Pl. 30, Fig. 6. Bezzi, 1913 Mem. Indian Mus. 3: 80 (No. 259).
Poccilotraphera taeniata (Macq. 1843), Hendel, 1914b:21; 1914a:33. Enderlein, 1924 Mitt. Zool. Mus. Berlin 11: 100.

Distribution: Borneo, Java, China.
The only other described species is P. comperei (Coq. 1904) from India.

L1. Gcnus: X1RIA Walker, 1857
Xiria Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 36.
Type species: Xiria antica Walk., 1857.
Hendel, 1914b:24; 1914a :35.

1. X. antica Walker, 1857

Xiria antica Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 36 PI. 2, Fig. 2. Bezzi, 1913 Mem. Indian Mus. 3: 67 (No. 20). Hendel, 1914b :24; 1914a:37.

Distribution: Sumatra.
2. X. clarissa Frey, 1930

Xiria clarissa Frey, 1930 Notul. ent. Helsingf. 10: 62 Pl. 1, Fig. 7.
Distribution: Philippines.
3. X. Iavinia van der Wulp, 1898

Xiria lavinia v. d. Wulp, 1898 Tijd. Ent. 51: 210 Pl. 10, Figs. 8, 9. Enderlein, 1912 Zool. Jahrb. 33: 361. Hendel, 1914b :25; 1914a:37.

Distribution: Java, Sumatra.
4. X. limbata de Meijere, 1924

Xiria limbata de Meijere, 1924 Tijd. Ent. 67 (Suppl.): 40.
Distribution: Sumatra.
5. X. obliqua Osten-Sacken, 1881

Xiria obliqua Osten-Sacken, 1881 Ann. Stor. nat. Mus. Genova 16: 463. Hendel, 1914b :25; 1914a :37.

Distribution: Sumatra.
*6. X. papuana Hennig, 1940
Xiria papuana Hennig, 1940 Arb. morph. Taxon. Ent. Berl. 71: 316.
Distribution: New Guinea.
*7. X. strigata Hennig, 1940
Xiria strigata Hennig, 1940 Arb. morph. Taxon. Ent. Berl. 71: 317.
Distribution: New Guinea.
8. X. violacea (Wied., 1830)

Trypeta violacea Wied., 1830 Ausser. Zweifl. Ins. 2: 476. Bezzi, 1913 Mem. Indian Mus. 3: 81 (No. 281).
Xiria violacea (Wied., 1830) Hendel, 1914b :26; 1914a :37.
Distribution: Java, Sumatra.
12. Genus: LASIOXIRIA Hendel, 1914 (Monotypic)

Hendel, 1914a Gen. Ins. 157: 37.
Type species: L. hirsuta Hend. 1914.
Hendel, 1914b :28.
*1. L. hirsuta Hendel, 1914
Lasioxiria hirsuta Hendel, 1914b :28; 1914a :37. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 101.

Distribution: New Guinea.
Malloch, 1939 suggested that Lasioxiria might be a synonym of Dasyortalis Hendel, 1913.
13. Genus: CONICIPITHEA Hendel, 1914 (Monotypic)

Hendel, 1914a:40.
Type species: Dacus addens Walker, 1860.

1. C. addens (Walker, 1860)

Dacus addens Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 149. Bezzi, 1913 Mem. Indian Mus. 3: 66 (No. 5).
Conicipithea addens (Walk., 1860) Hendel, 1914b :29. Malloch, 1939 Proc, Linn. Soc. N.S.W. 64: 103. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 163.

Distribution: Amboina (Moluccas), Macassar (Celebes).
14. Genus: PHILOCOMPUS Osten-Sacken, 1881

Osten-Sacken, 1881 Ann. Soc. ent. France (6th Ser.) 1: 134.
Type species: Philocompus cupidus Osten-Sacken, 1881. Hendel, 1914b:30; 1914a:42. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 104.

1. P. aeneus de Meijere, 1906

Philocompus aeneus de Meijere, 1906 Ann. Mus. nat. Hıng. 4: 187 Pl. 2, Fig. 16. Hendel, 1914b:30; 1914a:42.

Distribution: Bali, Java.
2. P. cupidus Osten-Sacken, 1882

Philocompus cupidus Osten-Sacken, 1882 Berl. ent. Zeit. 26: 217. Hendel, 1914b :30; 1914a :42. Frey, 1930 Notul. ent. Helsingf. 10: 46.

Distribution: Philippines.
3. P. divergens (Walk., 1860)

Dacus divergens Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 149. Bezzi, 1913 Mem. Indian Mus. 3: 70 (No. 84).
Philocompus divergens (Walk., 1860) Hendel, 1914b:42; 1914a:42. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 170.

Distribution: Macassar (Celebes).
15. Genus: ANTINEURA Osten-Sacken, 1881

Osten-Sacken, 1881 Ann. Soc. ent. France (6th Ser.) 1: 134.
Type specics: Antineura stolata Osten-Sacken, 1882. Hendel, 1914b :32: 1914a:400. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 104.
*1. A. biroi de Meijere, 1906
Antineura biroi de Meijere, 1906 Ann. Mus. nat. Hung. 4: 188 Pl. 2, Fig. 17. Hendel, 1914b:33; 1914a :41. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 104.

Distribution: New Guinea.
*2. A. devia (Walk., 1861)
Dacu.s devius Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 250. Bezzi, 1913 Mem. Indian Mus. 3: 70 (No. 78).
Antineura devia (Walk., 1861) Hendel, 1914b :36; 1914a:41. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 169.

Distribution: New Guinea.
3. A. grandis (Dol., 1858)

Herina grandis Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 126.
Antineura grandis (Dol., 1858) Hendel, 1914b:35; 1914a :42. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 104.

Distribution: Moluccas.
*4. A. kerteszi de Mcij., 1906
Antineura kerteszi de Meijere, 1906 Ann. Mus. nat. Hung. 4: 189 Pl . 2, Fig. 18. Hendel, 1914b:34; 1914a:42. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 110. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 104 Pl. 4, Fig. 4.

Distribution: New Guinea.
5. A. pubiseta (Walk., 1861)

Dacus pubiseta Walker, 1861 J. Proc. Linn. Soc, Lond. 5: 294. Bezzi, 1913 Mem. Indian Mus. 3: 78 (No. 214).
Antineura pubiseta (Walk., 1861) Hendel, 1914b :36; 1914a: 42. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 181.

Distribution: Moluccas.
6. A. sericata Osten-Sacken, 1882

Antineura sericata Osten-Sacken, 1882 Berl. ent. Zeit. 26: 216. Hendel, 1914b:33; 1914a:42. Bezzi, 1917 Philippine J. Sc. (D) 12: 133.

Distribution: Philippines.
7. A. Stolata Osten-Sacken, 1882

Antineura stolata Osten-Sacken, 1882 Berl. ent. Zeit. 26: 215. Hendel, 1914b :32; 1914a :42. Frey, 1930 Notul. ent. Helsingf. 10: 49.

Distribution: Philippines.
8. A. strigifer (Walk., 1862)

Dacus strigifer Walker, 1862 J. Proc. Linn. Soc. Lond. 6: 13. Bezzi, 1913 Mem. Indian Mus. 3: 80 (No. 252).
Antineura strigifer (Walk. 1862) Hendel, 1914b :37; 1914a :42. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 183.

Distribution: Moluccas.
I have rejected Hendel's sub-division of this genus into the two subgenera, Antineura (sens. str.) and Adantineura. At least two species were described from single specimens and neither species has since been recorded; the genus is not well known, and still awaits revision.

15A. Genus: PSEUDOCLEITAMIA Malloch, 1939 (Monotypic)
Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 104.
Type species: Pseudocleitamia setigera Malloch, 1939.

* 1. P. setigera Malloch, 1939

Pseudocleitamia setigera Malloch, 1939 ibid.
Distribution: New Guinea.
16. Genus: XENASPIS Osten-Sacken, 1881

Osten-Sacken, 1881 Ann. Soc. ent. France (6th Ser.) 1: 134.
Type species: Xenaspis polistes Osten-Sacken, 1882.

1. X. extranea Bezzi, 1917

Xenaspis extranea Bezzi, 1917 Philippine J. Sci. (D) 12: 134. Frey, 1930 Notul. ent. Helsingf. 10: 49.

Distribution: Philippines.
2. X. homichlodes Hend., 1914

Xenaspis homichlodes Hendel, 1914b:41; 1914a :44.
Distribution: Borneo.
3. X. pietipennis (Walker, 1849)

Oxycephala (?) pictipennis Walker, 1849 List. Dipt. Brit. Mus. 4: 1162. Xenaspis vespoides de Meijere, 1904 Bijd. Dierk. 17: 107, Figs. 19, 20. Polistomima gigantea Enderlein, 1912 Zool. Jahrb. 33: 353, Fig. C. Hendel, 1914b :39; 1914a :44.

Distribution: India, Indonesia.
4. X. polistes Osten-Sacken, 1882

Xenaspis polistes Osten-Sacken, 1882 Berl. ent. Zeit. 26: 220. Hendel, 1914b :38; 1914a :44. Bezzi, 1917 Philippine J. Sci. (D) 12: 134. Frey, 1930 Notul. ent. Helsingf. 10: 49.

Distribution: Philippines.
5. X. stigma (Enderlein, 1912)

Polistomima stigma Enderlein, 1912 Zool. Jahrb. Syst. 33: 352 Fig. B.
Xenaspis stigma (End., 1912) Hendel, 1914b :42; 1914a:44,
Distribution: Sumatra.
6. X. walkeri (End., 1912)

Polistomima walkeri Enderlein, 1912 Zool. Jahrb. Syst. 33: 350 Fig. A. Xenaspis walkeri (End., 1912) Hendel, 1914b:42; 1914a:45.

Distribution: Sumatra.
This is a widely-dispersed genus: of its fifteen described species, six have been recorded from India as far north as the Himalaya, one from Burma, three from the Indonesian islands, two from the Philippines, two from Taiwan, and one occurs both in India and Indonesia. It is likely that new species will yet be found in New Guinea.

16A. Genus: XENASPOIDES Frey, 1930
Frey, 1930 Notul. ent. Helsingf. 10: 49.
Type species: Xenaspoides ichneumonea Frey, 1930

1. X. cyanea Frey, 1930

Xenaspoides cyanea Frey, 1930 Notul. ent. Helsingf. 10: 50 Pl. 1, Fig. 2. Distribution: Philippines.
2. X. ichneumonea Frey, 1930

Xenaspoides ichneumonea Frey, 1930 Notul. ent. Helsingf. 10: 50 Pl .1, Fig. 1.

Distribution: Philippines.
17. Genus: LAMPROPHTHALMA Portschinsky, 1892

Portschinsky, 1892 Horae Soc: ent. Rossicae 26: 225.
Type species: L. metallica Ports., 1892.

1. L. cavenda Bezzi, 1917

Lamprophthalma cavenda Bezzi, 1917 (? publication) Frey, 1930 Notul. ent. Helsingf. 10: 46.

Distribution: Philippines.
I have been unable to find Bezzi's original description. My only reference to the species is the specific name, author and date given in a list by Frey (loc. cit.).
2. L. doleschalli (End., 1912)

Senopterina doleschalli Enderlein, 1912 Zool. Jahrb. Syst. 33: 357.
Lamprophthalma doleschalli (End., 1912) Hendel, 1914b :49; 1914a :45.
Distribution: Sumatra.
3. L. meijereana (End., 1912)

Senopterina meijereana Enderlein, 1912 Zool. Jahrb. Syst. 33: 356.
Lamprophthalma meijereana (End., 1912) Hendel, 1914b :49; 1914a :45. Distribution: Sumatra.
4. L. sepedonoides (Walk., 1864)

Dacus sepedonoides Walker, 1864 J. Proc. Linn. Soc. Lond. 7: 228.
Lamprophthalma sepedonoides (Walk., 1864) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 181.

Distribution: Moluccas.
5. L. tuberculifrons de Meijere, 1933

Lamprophthalma tuberculifrons de Meijere, 1933 Tijd. Ent. 76: 111.
Distribution: Java.
17A. Genus: APACTONEURA Malloch, 1930 (Monotypic)
Malloch, 1930 Ins. Samoa 6 (5): 223.
Type species: Apactoneura flavicornis Malloch, 1930.

1. A. flavicornis Malloch, 1930

Apactoneura flavicornis Malloch, 1930 Ins. Samoa 6 (5): 223 Fig. 3.
Distribution: Samoa.
18. Genus: PLAGIOSTENOPTERINA Hendel, 1914

Hendel, 1914a Gen. Ins. 157: 46. Malloch, 1931 Proc. U.S. nat. Mus. 78: 12.

Type species: Dacus aeneus Wiedemann, 1819.
*1. P. aenea (Wied., 1819)
Dacus aeneus Wiedemann, 1819 Zool. Mag. 3: 29; 1830 Ausz. zweifl. 2: 512.

Plagiostenopterina aenea (Wied., 1819) Hendel, 1914b :54; 1914a :48. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 107. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 353; 1939 ibid 64: 114.

Distribution: Java; Krakatau; Sumatra; Borneo; Philippines; New Guinea; Queensland (Aust.) ; Bismarck Archipelago; Ceylon; India; Taiwan.

A wide-spread common species. See Meringomeria Enderlein, 1924 (Genus No. 18a).
2. P. armata Malloch, 1931

Plagiostenopterina armata Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 20.
Distribution: Philippines.
*3. P. basalis (Walk., 1849)
Dacus basalis Walker, 1849 List Dipt. Brit. Mus. 4: 1072. Bezzi, 1913 Mem. Indian Mus. 3: (No. 29).
Plagiostenopterina basalis (Walker, 1849) Hendel, 1914b :64: 1914a:49. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 164.

Distribution: Northern Territory (Australia).
4. P. calcarata (Macq., 1843)

Herina calcarata Macquart, 1843 Dipt. exot. 2: 207 Pl. 28, Fig. 3.
Plagiostcnopterina calcarata (Macq., 1843) Hendel, 1914b :63: 1914a: 49. Bezzi, 1913 Philippine J. Sci. (D) 8: 321. Malloch, 1931 Proc. U.S. nat. Must. 78 (15): 20.

Distribution: Indonesia; Philippines.
5. P. diptera Malloch, 1931

Plagiostenopterina diptera Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 18.
Distribution: Philippines.
6. P. discolor Malloch, 1931

Plagiostenopterina discolor Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 21.
Distribution: Philippines.
7. P. dubiosa Malloch, 1931

Plagiostenopterina dubiosa Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 15.
Distribution: Philippines; Ceylon; Singapore.
8. P. egregia de Meijere, 1924

Plagiostenopterina egregia de Meijere, 1924 Tijd. Ent. 67 (Suppl.): 41. Distribution: Sumatra.
*9. P. enderleini Hendel, 1914
Plagiostenopterina enderleini Hendel, 1914b :56; 1914a :49. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 108. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 114 Pl. 4, Fig. 14.

Distribution: New Guinea; Sumatra; Ceylon.
10. P. farinosa Hendel, 1914

Plagiostenopterina farinosa Hendel, 1914b:68; 1914a :49.
Distribution: Moluccas.
11. P. hebes Hendel, 1914

Plagiostenopterina hebes Hendel, 1914b:70; 1914a :49.
Distribution: Singapore.
12. P. imitans (Walk., 1860)

Dacus imitans Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 150. Bezzi, 1913 Mem. Indian Mus, 3: 73 (No. 132).
Plagiostenopterina imitans (Walk., 1860) Hendel, 1914a:49. Hardy, 1959 Bull. Brit. Mus (nat. Hist.) Ent. 8 (15): 175.

Distribution: Celebes.
13. P. inapta (Walk., 1860)

Dacus inaptus Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 151. Bezzi, 1913 Mem. Indian Mus. 3: 73 (No. 135).
Plagiostenopterina inapta (Walk., 1860) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 175.

Distribution: Celebes.
14. P. inermis Malloch, 1931

Plagiostenopterina inermis Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 21. Distribution: Philippines.
*15. P. lativentris (Walk., 1859)

Dacus lativentris Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 115. Bezzi, 1913 Mem. Indian Mus. 3: 74 (No. 144).

Plagiostenopterina orbitalis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 114 Pl. 4, Fig. 15. Plagiostenopterina lativentris (Walk., 1859) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 177.

Distribution: New Guinea.
16. P. Iongivitta (Walk., 1859)

Dacus longivitta Walker, 1859 J. Proc, Linn. Soc. Lond. 3: 115. Bezzi, 1913 Mem. Indian Mus. 3: 74 (No. 158).
Plagiostenopterina longivitta (Walk., 1859) Hendel, 1914a: 49. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 108. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 178.

Distribution: Aru Islands; India.
17. P. marginata (v. d. Wulp, 1880)

Senopterina marginata v. d. Wulp, 1880 Tijd. Ent. 23: 179 Pl. 10, Fig. 13. Plagiostenopterina marginata (v. d. Wulp, 1880) Hendel, 1914b :66; 1914a:49.

Distribution: Java; China.
See Meringomeria Enderlein, 1924 (Genus No. 18a).
18. P. medionotata de Meijere, 1924

Plagiostenopterina medionotata, 1924 Tijd. Ent. 67 (Suppl.): 40.
Distribution: Sumatra.
19. P. neurostigma Bezzi, 1928

Plagiostenopterina neurostigma Bezzi, 1928 Diptera . . Fiji Islands: 89. Distribution: Fiji.
20. P. nigricostata (Doleschall, 1858)

Herina nigricostata Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 126.
Plagiostenopterina nigricostata (Dol., 1858) Hendel, 1914b:70; 1914a:49.
Distribution: Moluccas.
21. P. pallidipes Frey, 1930

Plagiostenopterina pallidipes Frey, 1930 Notul. ent. Helsingf. 10: 51.
Distribution: Philippincs.
*22. P. parva Mall., 1931
Plagiostenopterina parva Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 15; 1939 Proc. Linn. Soc. N.S.W. 64: 114.

Distribution: New Guinea.
23. P. plagiata (Bezzi, 1917)

Elassogaster plagiata Bezzi, 1917 Philippine J. Sci. (D) 12: 135. Frey, 1930 Notul. ent. Helsingf. 10: 46.
Plagiostenopterina plagiata (Bezzi, 1917) Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 19.

Distribution: Philippines.
24. P. planidorsum (Walker, 1860)

Charax planidorsum Walker, 1860) Trans. ent. Soc. Lond. 5: 325. Hendel, 1914b :53 (footnote).
Plagiostenopterina planidorsum (Walker, 1860) Frey, 1930 Notul. ent. Helsingf. 10: 51.

Distribution: Philippines; Burma.
25. P. rutila Hendel, 1914

Plagiostenopterina rutila Hendel, 1914b:61; 1914a :49.
Distribution: Lombok.
26. P. samoaensis Malloch, 1930

Plagiostenopterina samoaensis Malloch, 1930 Ins. Samoa 6 (5): 230; 1931 Proc. U.S. nat. Mus. 78 (15): 15.

Distribution: Samoa.
27. P. trivittata (Walk., 1849)

Dacus trivittatus Walker, 1849 List Dipt. Brit. Mus. 4: 1072. Bezzi, 1913 Mem. Indian Mus. 3: 80 (No. 266).
Plagiostenopterina trivittata (Walk., 1849) Hendel, 1914b:65; 1914al :49. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 183.

Distribution: Singapore; Malacca; Hongkong; Philippines. See Meringomeria Enderlein, 1924 (Genus No. 18A).
28. P. trivittigera Malloch, 1931

Plagiostenopterina trivittigera Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 17.

Distribution: Singapore.
18A. Genus: ?MERINGOMERIA Enderlein, 1924
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 108.
Type species: Dacus trivittatus Walker, 1849 List Dipt. Brit. Mus. 4: 1072.

The status of this genus is doubtful. It was erected by Enderlein in 1924 for four species. Thrce of these he transferred from Plagiostenopterina, namely P. trivittata (Walker, 1849); P. marginata (v. d. Wulp, 1880); and P. aenea Hendel (sic), 1914. The latter species is unknown to me; it is possibly a lapsus calami for P. acnea (Wied., 1819). The fourth species was Meringomeria interrupta Enderlein, 1924, which he described from Sikkim in India-Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 109. This genus is inserted here to draw attention to the need for a thorough investigation of the four species. It is probable that all four will eventually be placed in Plagiostenopterina.

18B. Genus: ?PERONOTROCHUS Enderlein, 1924
This genus was erected by Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 109 for the single species Plagiostenopterina calcarata (Macq., 1843). The status of the genus is in doubt.

Frey, 1930 (Notul. ent. Helsingf. 10: 52) accepted the genus as valid and described the following species:

1. P. inermis Frey, 1930

Peronotrochus inermis Frey, 1930 Notul. ent. Helsingf. 10: 52.
Distribution: Philippines.

18C. Genus; IMUGANA Enderlein, 1937
Enderlein, 1937 S.B. Ges. naturf. Fr. Berl. (year 1936): 435.
Type species: Inugana pompiliformis Enderlein, 1937.

1. I. metallica Enderlcin, 1937

Imıgana metallica Enderlein, 1937 S.B. Ges. naturf. Fr. Berl. (year 1936): 436.

Distribution: Philippines.
2. I. pompiliformis Enderlein, 1937

Imugunu pompiliformis Enderlein. 1937 S.B. Ges. naturf. Fr. Berl. (year 1936): 435.

Distribution: Philippines.
19. Genus: ELASSOGASTER Bigot, 1859

Bigot, 1859 Ann. Soc. ent. Fr. (Ser. 3) 8: 546.
Type species: Elassogaster metallicus Bigot, 1859.
*1. E. albopilosus de Meijere, 1915
Elassogaster albopilosus de Meijere, 1915 Tijd. Ent. 58: 133.
Distribution: New Guinea.
*2. E. didymoides Hendel, 1914
Elassogaster didymoides Hendel, 1914b :76: 1914a :52. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 117.

Distribution: New Guinca.
*3. E. didymus (Osten-Sacken, 1881)
Senopterina didyma Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genova 16: 465.

Elassogaster didymus (Osten-Sacken, 1881) Hendel, 1914b :75; 1914a :51. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 116.

Distribution: New Guinea.
*4. E. evitta Malloch, 1939
Elassogaster evitta Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 116 Pl. 4, Fig. 16.

Distribution: New Britain.
5. E. flavipes (Schiner, 1868)

Senopterina flavipes Schiner, 1868 Novara Dipt. :288.
Elassogaster flavipes (Schiner, 1868) Hendel, 1914b :78; 1914a :52.
Distribution: Singapore.
6. E. hyalipennis Malloch, 1931

Elassogaster hyalipennis Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 23. Distribution: Philippines.
*7. E. lineatus de Meijere, 1915
Elassogaster lineatus de Meijere, 1915 Tijd. Ent. 58: 132.
Distribution: New Guinea.
*8. E. marginalis Malloch, 1940
Elassogaster marginalis Malloch, 1940 Ann. Mag. nat. Hist 6: 68.
Distribution: Solomon Islands.
*9. E. nigripes Malloch, 1940
Elassogaster nigripes Malloch, 1940 Ann. Mag. nat. Hist. 6: 70.
Distribution: Solomon Islands.
10. E. potens Frey, 1930

Elassogaster potens Frey, 1930 Notul. ent. Helsingf. 10: 52.
Distribution: Philippines.

> *11. E. sepsoides (Walker, 1861)

Dacus sepsoides Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 163. Bezzi, 1913 Mem. Indian Mus. 3: 79 (No. 236).
Elassogaster sepsoides (Walker, 1861) Hendel, 1914b :82; 1914a :52. Bezzi, 1913 Philippine J. Sci. (D) 8: 321. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 351 Fig. 4. Frey, 1930 Notul. ent. Helsingf. 10: 52. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 22; 1939 Proc. Linn. Soc. N.S.W. 64: 115. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 181.

Distribution: New Guinea; Taiwan; Amboina; Ceylon; Queensland (Australia).
12. E. signatipes (Walker, 1861)

Dacus signatipes Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 163.
Elassogaster signatipes (Walker, 1861) Hendel, 1914a :52. Bezzi, 1913 Mem. Indian Mus. 3: 79 (No. 239). Hardy, 1959 Bull. Brit. Mus (nat. Hist.) Ent. 8 (5): 181.

Distribution: Amboina.
13. E. simplex Frey, 1930

Elassogaster simplex Frey, 1930 Notul. ent. Helsingf. 10: 53.
Distribution: Philippines.

> *14. E. sordidus (Walker, 1861)

Dacus sordidus Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 251. Bezzi, 1913 Mem. Indian Mus. 3: 79 (No. 244).
Dacus varialis Walker, 1865 Bezzi, 1913 ibid. 3: 79 (No. 275). Elassogaster sordidus (Walker, 1861) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 182.

Distribution: New Guinea.
Dacus varialis Walker, 1865 is a synonym of Dacus sordidus Walker, 1861. Hendel, 1914a Gen. Ins. 157: 52 refers to it as Elassogaster varialis (Walker, 1865). Hardy, 1959 showed the synonymy.

*15. E. terrae-reginae Malloch, 1928

Elassogaster terrae-reginae Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 352; 1931 Proc. U.S. nat. Mus. 78 (15): 22; 1939 Proc. Linn. Soc, N.S.W. 64: 116.

Distribution: Queensland; New South Wales (Australia).
19A. Genus: PICROMETOPUS Frey, 1930 (Monotypic)
Frey, 1930 Notul. ent. Helsingf. 10: 53.
Type species: Picrometopus bicolor Frey, 1930.

1. P. bicolor Frey, 1930

Picrometopus bicolor Frey, 1930 (loc. cit.).
Distribution: Philippines.
20. Genus: MICROEPICAUSTA Hendel, 1914 (Monotypic)

Hendel, 1914a Gen. Ins. 157: 52.
Type species: Microepicausta gracilis Hendel, 1914.
*1. M. gracilis Hendel, 1914
Microepicausta gracilis Hendel, 1914b:85; 1914a :52.
Distribution: New South Wales (Australia).
21. Genus: SCELOSTENOPTERINA Hendel, 1914 (Monotypic)

Hendel, 1914a Gen. Ins. 157: 54.
Type species: Scelostenopterina femorata Hendel, 1914.

1. S. femorata Hendel, 1914

Scelostenopterina femorata Hendel, 1914b:86; 1914a :55. Bezzi. 1917 Philippine J. Sci. (D) 12: 136. Frey, 1930 Notul. ent. Helsingf. 10: 51. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 24.

Distribution: Sula Islands (Indonesia); Philippines,
21A. Genus: MINDANAIA Malloch, 1931. (Monotypic)
Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 25.
Type species: Mindanaia latifasciata Malloch, 1931.

1. M. latifasciata Malloch, 1931

Mindanaia latifasciata Malloch, 1931 ibid 78 (15): 25.
Distribution: Philippines.
22. Genus: ICTERACANTHA Hendel, 1912

Hendel, 1912 Supp. Ent. Berlin 1: 14.
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 112.
Type species: Trypeta chalybeiventris Wiedemann, 1830.

1. I. chalybeiventris (Wied., 1830)

Trypeta chalybeiventris Wiedemann, 1830 Auss. zweif. Ins. 2: 479.
Dacus bicolor Walk., 1849 List Dipt. Brit. Mus. 4: 1071.
Dacus bicolor Walk., 1849 Bezzi, 1913 Mem. Indian Mus. 3: 68 (No. 52).
Trypeta chalybeiventris Wied. 1830 Bezzi, 1913 ibid 3: 69 (No. 52).
Icteracantha chalybeiventris (Wied., 1830) Hendel, 1914b:87; 1914a :55. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 165.

Distribution: Type locality unknown.
2. 1. cyaneiventris (v. d. Wulp, 1881)

Herina cyaneiventris v. d. Wulp, i881 Dipt. Sumatra Exp. Leiden: 51 Pl. 3, Fig. 6.
Scelacanthina cvanciventris (v. d. Wulp, 1881) Enderlein, 1912 Zool. Jahrb. 33: 349.
Icteracantha cyaneiventris (v. d. Wulp. 1881) Hendel. 1914b :88; 1914a :55.

Distribution: Sumatra.
23. Genus: DUOMYIA Walker, 1849

Walker, 1849 List Dipt. Brit. Mus. 4: 800. Hendel, 1914a, Gen. Ins.
157: 56. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 350; 54: 506.
Type species: Duomyia obscura Walker, 1849.
*1. D. annulipes Hendel, 1914
Duomyia annulipes Hendel, 1914b :98; 1914a :57.
Distribution: Western Australia.
*2. D. azurea Hendel. 1914
Duomyia azurea Hendel, 1914b:97; 1914a:57.
Distribution: Western Australia.
*3. D. decora (Macq., 1846)
Senopterina decora Macquart, 1846 Dipt. exot. Supp. 1: 208 Pl. 18, Fig. 10. Ortalis punctifrons Macquart, 1847 ibid Supp, 3: 61 P1. 7, Fig. 4.
Duomyia decora (Macq., 1846) Hendel, 1914b :95; 1914a:57. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 112. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 510 .

Distribution: New South Wales (Australia).
4. D. fidschiensis Enderlein, 1924

Duomyia fidschiensis Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 112. Bezzi, 1928 Dipt. Fiji: 91.

Distribution: Fiji.
5. D. grandis (Schiner), 1868

Senopterina grandis Schiner, 1868 Novara Dipt.: 289.
Duomyia grandis (Schiner), 1868 Hendel, 1914b:95; 1914a:57.
Distribution: Chile (sic.).
*6. D. irregularis Malloch, 1929
Duomyia irregularis Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 509 Fig. 16. Distribution: Northern Australia.
*7. D. laeta (Walk., 1849)
Lamprogaster laeta Walker, 1849 List Dipt. Brit. Mus. 4: 805.
Duomyia laeta (Walk., 1849) Hendel, 1914b ;96; 1914a:58.
Distribution: Australia (sic.).
See Lamprogaster laeta (Guerin, 1830).
*8. D. maculipennis Hendel, 1914
Duomyia maculipennis Hendel, 1914b :93; 1914a:58. Matloch, 1929 Proc. Linn. Soc. N.S.W. 54: 511 Fig. 2C.

Distribution: Queensland; New South Wales (Australia).
*9. D. mithrax Hendel, 1914
Duomyia mithrax Hendel, 1914b :92; 1914a :58.
Distribution: Queensland (Australia).
*10. D. nigricosta Malloch, 1929
Duomyia nigricosta Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 511.
Distribution: Queensland (Australia).
*11. D. nigripes (Macq., 1850)
Senopterina nigripes Macquart, 1850 Dipt. exot. Supp. 4: 283 Pl. 26, Fig. 6. Urophora nigripes (Macquart, 1851) Mem. Soc. Sci. Lille: 260 P1. 26, Fig. 13.
Urophora nigripes (Macquart, 1851) Bezzi, 1913 Mem. Indian Mus. 3: 76 (No. 184).
Duomyia nigripes (Macq., 1851) Hendel, 1914a:102.
Distribution: Tasmania (?).
*12. D. obscura Walker, 1849
Duomyia obscura Walker, 1849 List Dipt. Brit. Mus. 4: 800.
Senopterina gigas Macquart, 1850 Dipt. cxot. Supp. 4: 282 Pl. 26, Fig. 4. Duomyia obscura Walk., 1849 Hendel, 1914b :90; 1914a :58. Malloch. 1928 Proc. Linn. Soc. N.S.W. 53: 351; 1929 ibid 54: 510.

Distribution: Queensland; New South Wales (Australia).
*13. D. punctifrons Malloch, 1929
Duomyia punctifrons Malloch, 1929 Proc. Limn. Soc. N.S.W. 54: 510.
Distribution: New South Wales (Australia).
*14. D. scutellaris (Macq., 1850)
Senopterina scutellaris Macquart, 1850 Dipt. exot. supp. 4: 282 Pl. 26, Fig. 5.
Duomyia scutellaris (Macq., 1850) Hendel, 1914b:102.
Distribution: New South Wales (Australia).
*15. D. sericea Hendel, 1914
Duomyia sericea Hendel, 1914b:99; 1914a :58.
Distribution: Queensland (Australia).
*16. D. spinifemorata Malloch, 1929
Duomyia spinifemorata Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 508 Figs. 1a, 1 b.

Distribution: Northern Territory (Australia).
*17. D. thalassina Walker, 1849
Duomyia thalassina Walker, 1849 List Dipt. Brit. Mus. 4: 801. Hendel, 1914b :92; 1914a :58. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 112. Malloch, 1929 Proc. Lirn. Soc. N.S.W. 54: 511.

Distribution: Queensland (Australia).
*18. D. tomentosa Hendel, 1914
Duomyia tomentosa Hendel, 1914b:100; 1914a :58. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 507 Fig. 2b.

Distribution: Queensland (Australia).
Note: Evidence favours the opinion that this genus is confined to the Australian mainland. No species have been recorded from New Guinea or New Zealand, and there is no authentic record of any from Tasmania. The four species, D. grandis Schiner 1868, D. fidschiensis Enderlein 1924, D. nigripes (Macq. 1850) and D. scutellaris (Macq. 1850), which have been recorded from other places, are all suspect in varying degrees.

The status of D. grandis is extremely doubtful. It was described by Schiner from Novara material labelled "Chile". It is the only Duomyia ever to have been recorded from South America, and the species has never been recorded since. Hendel (A) queried the type locality; Malloch (1928) suggested that the species did not belong to Duomyia. Malloch's suggestion appears to be much the more probable. Were D. grandis an Australian species wrongly labelled as having been collected in Chile, it is not unreasonable to expect that it would since have been recorded from Australia, which it has not. If, on the contrary, it is a member of a South American genus superficially resembling Duomyia then all difficulties disappear.
D. fidschiensis may be an introduction from Australia into Fiji, and the name is possibly a synonym; alternatively, the species may not belong to Duomyia. Some of Enderlein's work is marred by superficiality and lack of a critical approach, and decisions arrived at by him have often been shown to be wrong by later workers. A detailed examination of the type of D. fidschiensis, and a careful comparison with all known species of Duomyia, will have to be undertaken before finality can be arrived at.
D. nigripes and D. scutellaris were collected by the Verreaux brothers, between 1842 and 1846, for the Musée d'Histoire Naturelle de Paris. They formed part of the 140 species of Diptera described by Macquart in the fourth supplement of his Dipteres Exotiques. The type locality of all the material was given as "Tasmania". It is significant that these are the only species of Duomyia ever to be recorded from Tasmania. Hardy (1929, Proc. Linn. Soc. N.S.W. 54: 61-64), assembled evidence which strongly suggests that all 140 species were collected in a coastal area round Sydney, New South Wales. The types are no longer in existence. Hendel (B) merely quotes Macquart's descriptions verbatim with the comment "Die Arten D. nigripes Macquart und scutellaris Macquart konnten nicht in die Tabelle aufgenommen werden." Malloch (1928, 1929) mentions neither in his revisions of the genus.

There can be little doubt that species yet await description, particularly in Western Australia.

25. Genus: PSEUDEPICAUSTA Hendel, 1914

Hendel, 1914a Gen. Ins. 157: 62; 1914b :112. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 115. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 118. Type species: Herina chalybea Doleschall, 1858.
*1. P. angulata Hendel, 1914
Pscudepicausta angulata Hendel, 1914b :118. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 115. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 26; 1939 Proc. Linn. Soc. N.S.W. 64: 119.

Distribution: New Guinea; Celebes.
*2. P. apicalis Malloch, 1939
Pseudepicausta apicalis Malloch, 1939 Proc. Limn. Soc. N.S.W. 64: 119 Pl. 4, Fig. 17.

Distribution: New Guinea.
3. P. bataviensis (Schiner, 1868)

Senopterina bataviensis Schiner, 1868 Novara Dipt. :288.
Pseudepicausta bataviensis (Schiner, 1868) Hendel, 1914b:115; 1914a:64. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 115. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 26.

Distribution: Java.
*4. P. chalyben (Doleschall, 1858)
Herina chalybea Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 125.
Dacus obtrudens Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 116. Bezzi, 1913 Mem. Indian Mus. 3: 76 (No. 191).
Pseudepicausta chalybea (Dol., 1858) Hendel, 1913 Gen. Platy. Figs. 119. 120; 1914b :113; 1914a :64 Pl. 6, Figs. 119, 120. Bezzi, 1917 Philippine J. Sci. (D) 12: 136. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 115. Frey, 1930 Notul. ent. Helsingf. 10: 54. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 26; 1939 Proc. Linn. Soc. N.S.W. 64: 118. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 179.

Distribution: Amboina; Ternate; Deslac and Nusa Islands; Sunda Islands; New Guinea.

5. P. contrahens (Walker, 1860)

Dacus contrahens Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 151. Bezzi, 1913 Mem. Indian Mus. 3: 69 (No. 62).
Pseudepicausta contrahens (Walk., 1860) Hendel. 1914a:64. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 168.

Distribution: Macassar.
*6. P. detrudens (Walker, 1865)
Dacus detrudens Walker, 1865 J. Proc. Linn. Soc. Lond. 8: 135. Bezzi, 1913 Mem. Indian Mus. 3: 70 (No. 77).
Pseudepicausta detrudens: (Walk., 1865) Hendel, 1914a :64; 1914b:113.
Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 169.
Distribution: Indonesia; Salawatty Is. (New Guinea).
Both Hendel and Hardy found differences between the assumed type and Walker's description. There is some uncertainty as to whether Walker's specimen labelled "? type" was the specimen on which he based his description.
7. P. exigens (Walker, 1860)

Dacus exigens Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 151. Bezzi, 1913 Mem. Indian Mus. 3: 71 (No. 95).
Pseudepicausta exigens (Walk., 1860) Hendel, 1914a :64. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 171.

Distribution: Macassar.

8. P. experta (Walker, 1862)

Dacus expertus Walker, 1862 J. Proc. Linn. Soc. Lond. 6: 12. Bezzi, 1913 Mem. Indian Mus. 3: 71 (No. 97).
Pscudepicausta experta (Walk., 1862) Hendel, 1914a :64. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 171.

Distribution: Halmahera Is. (Moluccas).
9. P. geniculata (v. d. Wulp, 1898)

Senopterina geniculata v. d. Wulp, 1898 Tijd. Ent. 41: 206. de Meijere, 1911 Tijd. Ent. 54: 369.
Pseudepicausta geniculata (v. d. Wulp, 1898) Hendel, 1914a :64; 1914b :114.

Distribution: Jatva.
10. P. limpidipennis (Doleschall, 1858)

Herina limpidipennis Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 126.
Pseudepicausta limpidipennis (Dol., 1858) Hendel, 1914a:64; 1914b:117. Distribution: Amboina.
*11. P. mutilloides (Walker, 1859)
Dacus mutilloides Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 115. Bezzi, 1913 Mem. Indian Mus. 3: 76 (No. 176).

Pseudepicausta mutilloides (Walk., 1859) Hendel, 1914a:64; 1914b:116. Frey, 1930 Notul. ent. Helsingf. 10: 54. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 119 ("multilloides") (sic.). Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 178.

Distribution: New Guinea.
*12. P. pompiloides (Walker, 1859)
Dacus pompiloides Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 116. Bezzi, 1913 Mem. Indian Mus. 3: 77 (No. 210).
Pscudepicausta lagarosia Hendel, 1914a:64; 1914b:118. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 118.
Pserulepicausta pompiloides (Walk., 1859) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 180.

Distribution: New Guinea.
P. pompiloides was the species described by Hendel as new under the name of P. lagarosia. Hardy showed the synonymy.
13. P. quadrisetosa (de Meijere, 1911)

Senopterina quadrisetosa de Meijere, 1911 Tijd. Ent. 54; 368.
Pseudepicausta quadrisetosa (de Meij., 1911) Hendel, 1914a:64; 1914b $: 115$.

Distribution: Java.
*14. P. solocifemur Enderlein, 1924
Pseudepicausta solocifemur Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 115.
Distribution: New South Wales (Australia).
*15. P. wallacei Hendel, 1914
Pseudepicausta wallacei Hendel, 1914b :117; 1914a :64. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 119.

Distribution: New Guinea.
26. Genus: SCOTINOSOMA Loew, 1873

Loew, 1873 Mon. N. Amer. Dipt. 3: 45.
Type species: S. bistrigata Hendel, 1914.
In 1873, Loew summarized the characters of his new genus, Scotinosoma but named no species nor designated a type species. S. bistrigata hence became the type species by subsequent designation by Hendel in 1914.

Hendel, 1914a :65; 1914b :120. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 117.
*1. S. attenuata (Malloch, 1931)
Pseudepicausta attenuata Malloch, 1931 Proc. U.S. nat. Mus. 78: 27. Scotinosoma attenuata (Malloch, 1931) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 117.

Distribution: Queensland (Australia).
Malloch first placed this species and No. 3 in Pseudepicausta but later transferred them to Scotinosoma.
*2. S. bistrigata Hendel, 1914
Scotinosoma bistrigata Hendel, 1914b:120;1914a:65. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 117.

Distribution: Qucensland (Australia).
*3. S. completa (Malloch, 1931)
Pseudepicausta completa Malloch, 1931 Proc. U.S. nat. Mus. 78: 27.
Scotinosoma completa (Malloch, 1931) Malloch, 1939 Proc. Limn. Soc. N.S.W. 64: 117.

Distribution: Queensland (Australia).
*4. S. erasa Malloch, 1939
Scotinosoma crasa Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 117.
Distribution: Queensland (Australia).
5. S. typicum Bezzi, 1917

Scotinosoma typicum Bezzi, 1917 Philippine J. Sci. (D) 12: 136. Frey, 1930 Notul. ent. Helsingf. 10: 46.

Distribution: Philippines.
26A. Genus: GUAMOMYIA Malloch, 1942 (Monotypic)
Type species: Guamomyia fascipennis Malloch, 1942.
Malloch, 1942 Insects of Guam B. P. Bishop Mus. Bull. 172: 206, Fig. 3.

1. G. fascipennis Malloch, 1942 ibid

Distribution: Guam.
27. Genus: RHYTIDORTALIS Hendel, 1914

Hendel, 1914b :121; 1914a :66. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 106.

Type species: Rhytidortalis cribrata Hendel, 1914.
*1. R. rugifrons (Thomson, 1868)
Senopterina rugifrons Thomson, 1868 Dipt. Eugen. Resa: 577.
Rhytidortalis rugifrons (Thomson, 1868) Hendel, 1914b:122; 1914a :68. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 106.

Distribution: Australia (sic.).
Two species only have so far been recorded. The type species is from Taiwan.

27A. Genus: CLEITAMOIDES Malloch, 1939
Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 106.
Type species: Cleitamoides kerteszi (Hendel, 1914).
*1. C. kerteszi (Hendel, 1914)
Cleitamia kerteszi Hendel, 1914b :130. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 117.
Cleitamoides kerteszi (Hendel, 1914) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 107.

Distribution: New Guinea.
*2. C. Iatifascia (Walker, 1859)
Dacus latifascia Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 114. Bezzi, 1913 Mem. Indian Mus. 3: 74 (No. 146).
Cleitamia latifascia (Walk., 1859) Edwards, 1915 Trans. Zool. Soc. Lond. 20: 415.
Cleitamoides latifascia (Walk., 1859) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 107. Hardy, 1959 Bull. Brit. Mus (nat. Hist.) Ent. 8 (5): 177.

Distribution: New Guinea.

> *3. C. liturata (Walker, 1861)

Dacus lituratus Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 251.
Cleitamia liturata (Walk., 1861) Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genota 16: 468. de Meijere, 1913 Nov, Guin. 9: 375. Hendel, 1914 a :73; 1914b :129.

Clcitamoides liturata (Walk., 1861) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 107. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 178.

Distribution: New Guinea.
30. Genus: CLEITAMIA Macquart, 1835

Macquart, 1835 Suites à Buffon 2: 440. Hendel, 1914a Gen. Ins. 157: 71. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 107.

Type species: Ortalis astrolabei Boisduval, 1833.
${ }^{*}$ 1. C. amabilis Osten-Sacken, 1881
Cleitumia amabilis Osten-Sacken, 1881 Ann. Mus. Stor, nat. Genova 16: 468. Hendel, 1914b:127; 1914a :72. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109.

Distribution: New Guinea.
*2. C. astrolabei (Boisduval, 1833)
Ortalis astrolabei Boisduval, 1833 Voy. Astrolabe :688 Pl. 12, Fig. 17.
Cleitamia astrolabei (Boisd., 1833) Macquart, 1833 Suites à Buffion :440 Pl. 19, Fig. 4. de Meijere, 1913 Nov. Guin. 9: 375. Hendel, 1914a :72; 1914 b :125. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109 Pl. 4, Fig. 8.

Distribution: New Guinea.
*3. C. biarcuata (Walker, 1865)
Poticara biarcuata Walker, 1865 J. Proc. Linn. Soc. Lond. 8: 133.
Cleitamia biarcuata (Walk., 1865) Hendel, 1914b :133; 1914a :73. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 110.

Distribution: New Guinea.

$$
\text { *4. C. catharinae de Meijere, } 1913
$$

Cleitamia catharinac de Meijere, 1913 Bijdr. Dierk. 19: 63; 1915 Tijd. Ent.
58: 129. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 107 (footnote).
Distribution: New Guinea.
In his 1915 paper, de Meijere synonymized his species with Poticara (-Cleitamia) tricurvata Walker, 1864. Malloch (1939) pointed out that there were considerable differences in the descriptions of the two species. In view of these, he accepted both catharinae and tricurvata as distinct until both types had been compared. So far as I know this has not yet been done, but the two descriptions differ sufficiently for catharinae to be regarded as a valid species until the contrary is shown.
*5. C. cheesmanae Malloch, 1939
Cleitamia cheesmanae Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 110 Pl. 4, Fig. 10.

Distribution: West Irian (formerly Dutch New Guinea).
*6. C. cyclops Malloch, 1939
Cleitamia cyclops Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 110 Pl .4 , Fig. 9.

Distribution: West Irian (formerly Dutch New Guinea).
*7. C. delandi Malloch, 1939
Cleitamia delandi Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 111 Pl. 4, Fig. 12.

Distribution: New Guinea.
*8. C. excepta Malloch, 1939
Cleitamia excepta Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 111 P1. 4, Fig. 11.

Distribution: West Irian (formerly Dutch New Guinea).
*9. C. gestroi Kertesz, 1899
Cleitamia gestroi Kertesz, 1899 Ann. Mus. Stor. nat. Genova 19: 566 P1. 7, Fig. 8. Hendel, 1914a :73; 1914b :133. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109.

Distribution: New Guinea.
*10. C. insignis de Meijere, 1915
Cleitamia insignis de Meijere, 1915 Tija. Ent. 58: 128 Pl. 1, Fig. 14. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 110.

Distribution: New Guinea.
*11. C. orthocephala Hendel, 1914
Cleitamia orthocephala Hendel, 1914b:126; 1914a :73. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109.

Distribution: New Guinca.
*12. C. ostensackeni Kertész, 1898
Clcitamia ostensackeni Kertész, 1898 Tcrm. Fiiz. 21: 494; 1899 Ann. Mus. Stor, nat. Genova 19: 563 Pl. 7, Fig. 5. Hendel, 1914b :131; 1914a:73. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109.

Distribution: New Guinea.
*13. C. rivellioides Osten-Sacken, 1881
Cleitamia rivellioides Osten-Sacken, 1881 Anm. Mus. Stor. nat. Genova 16: 469. Kertész, 1899 Ibid 19: 564 Pl. 7. Fig. 6. Hendel, 1914b :130; 1914a:73. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 110.

Distribution: New Guinea.
*14. C. roderi Kertész, 1899
Cleitamia roderi Kertész, 1899 Aım. Mus. Stor. nat. Genova 19: 565 Pl. 7, Fig. 7. Hendel, 1914a:73; 1914b :132. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 110.

Distribution: New Guinea.
*15. C. similis Kertész, 1899
Cleitamia similis Kertész, 1899 Ann. Mus. Stor. nat. Genova 19: 652 Pl. 7, Fig, 4. Hendel, 1914a:73; 1914b :128. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109.

Distribution: New Guinea.
*16. C. tricurvata (Walker, 1864)
(See C. catharinae de Meijere, 1913).
Poticara tricurvata Walker, 1864 J. Proc, Linn. Soc. Lond. 7: 227.
Cleitamia tricurvata (Walk., 1864) Hendel, 1914a:73; 1914b :33. de Meijere, 1915 Tijd. Ent. 58: 129. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 116. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 109.

Distribution: New Guinea.
:17. C. trigonalis de Meijere, 1913
Cleitamia trigonalis de Meijere, 1913 Nov. Guin. 9: 375; 1915 Tijd. Ent. 58: 129. Hendel, 1914a:73; 1914b :130. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 112.

Distribution: New Guinea.
30A. Genus: XENOGNATHUS Malloch, 1930
Malloch, 1930 Ins. Samoa 6 (5): 225.
Type species: Xenognathus bryani Malloch, 1930.

1. X. bryani Malloch, 1930

Xenognanthus bryani Malloch, 1930 Ins. Samoa 6 (5): 226 Figs. 4, 5.
Distribution: Samoa.
2. X. inermis Malloch, 1930

Xenognanthus inermis Malloch, 1930 Ins. Samoa 6 (5): 228 Fig. 6.
Distribution: Samoa.
31. Genus: LAGLAISIA Bigot, 1880

Bigot, 1880 Ann. Soc. ent. France (5th Scr.) 10: 92.
Type species: L. caloptera Bigot, 1880.

1. L. biroi Hendel, 1914

Laglaisia biroi Hendel, 1914b:136;1914a:75. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 112.

Distribution: New Guinea.
*2. L. caloptera Bigot, 1880
Laglaisia caloptera Bigot, 1880 Ann. Soc. ent. France (5th Ser.), 10: 92. Hendel, 1914a: 75; 1914b :134. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 112.

Distribution: New Guinea.
*3. L. fascipennis de Meijere, 1915
Laglaisia fascipennis de Meijere, 1915 Tijd. Ent. 58: 134 Pl. 1, Fig. 15. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 112.

Distribution: New Guinea.
*4. L. kochi de Meijere, 1907
Laglaisia kochi de Meijere, 1907 Tijd. Ent. 50: 120 Pl. 4, Fig. 1; 1913 Nov. Guin. 9: 374. Hendel, 1914a :75; 1914b :135. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 112.

Distribution: New Guinea.
*5. L. stylops Enderlein, 1924
Laglaisia stylops Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 116. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 113.

Distribution: New Guinea.
*6. L. telescopica Enderlein, 1924
Laglaisia telescopica Enderlein, 1924 Mitt. Zool. Mus. Berlin 11: 116. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 113.

Distribution: New Guinca.
32. Genus: LORIOMYIA Kertész, 1899 (Monotypic)

Kertész, 1899 Ann. Mus. Stor. nat. Genova 39: 567.
Type species: L. guttipennis Kertész, 1899.
*1. L. guttipennis Kertész, 1899
Loriomvia guttipennis Kertész, 1899 Ann. Mus. Stor. nat. Genora 39: 567. Hendel, 1914a:75; 1914b :137. Malloch, 1939 Proc. Limn. Soc, N.S.W. 64: 113.

Distribution: New Guinea.
35. Genus: LOXONEUROIDES Hendel, 1914 (Monotypic) Hendel, 1914b:141.
Type species: L. varipennis Hendel, 1914.
*1. L. varipennis Hendel, 1914
Loxoneuroides varipennis Hendel, 1914b :141; 1914a :80.
Distribution: Australia (sic.).
38. Genus: POGONORTALIS de Meijere, 1911
de Meijere, 1911 Tijd. Ent. 54: 370.
Type species: Trypeta doclea Walker, 1849.
*1. P. commoni Paramonov, 1957
Pogonortalis commoni Paramonov, 1957 Ann. Mag. nat. Hist. (Ser. 12) 10: 780.
Distribution: Western Australia.
This species was described from a single specimen (0) caught at Albany, Western Australia. No other specimens have been recorded.
*2. P. doclea (Walker, 1849)
Trypeta doclea Walker, 1849 List Dipt. Brit. Mus. 4: 1035.
(Syn.) P. harbata, P. barbifera Hendel, 1914a:84; 1914b :144.
Pogonortalis barbifera Hendel, 1914 Bezzi, 1913 Mem. Indian Mus. 3: 71 (No. 87). Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 612.
Pogonortalis doclea (Walk. 1849) Malloch, 1930 ibid 55: 429; 1939 ibid 55: 429; 1939 ibid 64: 120. Paramonov, 1957 Ann. Mag. nat. Hist. (Ser. 12) 10: 779. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 213.

Distribution: All Australian States except Tasmania.
3. P. fulvofemoralis Malloch, 1942

Pogonortalis fulvofemoralis Malloch, 1942 Bernice P. Bishop Mus. Bull. 172: 205.

Distribution: Guam.
*4. P. howei Paramonov, 1957
Pogonortalis howei Paramonov. 1957 Ann. Mag. nat. Hist. (Ser. 12) 10: 780.

Distribution: Lord Howe Island (Australia).
*5. P. similis Hendel, 191.4
Pogonortalis similis Hendel, 1914b:143; 1914a:85. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 120.

Distribution: New Guinea.
*6. P. uncinata de Meijere, 1911
Pogonortalis uncinata de Meijere, 1911 Tijd. Ent. 54: 370. Hendel, 1914a :85; 1914b :145. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 119 (included in key but no further details).
Plagiostenopterina aberrans (Frey, 1930) Hennig, 1941 Arb. morph. taxon. Ent. Berl. 7: 315.

Distribution: Java.
39. Genus: RIVELLIA Robineau-Desvoidy, 1830

Robineau-Desvoidy, 1830 Essai Myodaires : 729.
Type species: Musca syngenesiae Fabricius, 1781 (The type species is of European origin).

Curran, 1934 N. Amer. Dipt. :281. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 120.

1. R. abana Curran, 1929

Rivellia abana Curran, 1929 Amer. Mus. Nov. No. 339: 11.
Distribution: New Caledonia.
2. R. aequifera (Walker, 1862)

Ortalis aequiferus Walker, 1862 J. Proc. Linn. Soc. Lond. 6: 15.
Rivellia aequifera (Walk., 1862) Hendel, 1914a :89; 1914b :182.
Hendel regarded this species as doubtful.
Distribution: Moluccas.
3. R. affinis Hendel, 1914

Rivellia affinis Hendel, 1914b:161; 1914a:87. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121.

Distribution: New Guinea.
*4. R. basilaris (Wiedemann, 1830)
Trypeta basilaris Wiedeman, 1830 Auss. zweifl. Ins. 2: 510.
Rivellia basilaris (Wied., 1830) Bezzi, 1913 Mem. Indian Mus. 3: 68 (No. 32); 1913 Philippine J. Sci. (D) 8: 321. Hendel, 1914a :87; 1914 b :155. Bezzi, 1928 Dipt. Fiji :91. Frey, 1930 Notul, ent. c

Helsingf. 10: 54. Malloch, 1930 Ins. Samoa 6 (5): 221. Curran, 1936 Proc. Calif. Acad. Sci. (4th Ser.) 22 (1): 23.

Distribution: Sumatra; Java; Singapore; Taiwan: Japan; Fiji; Solomon Islands.
5. R. concisivitta (Walker, 1862)

Ortalis concisivitta Walker, 1862 J. Proc. Linn. Soc. Lond. 6: 16.
Rivellia concisivitta (Walk., 1862) Hendel, 1914a:88; 1914b :182.
Distribution: Moluccas.
Hendel regarded this species as doubtful.
*6. R. connatal (Thomson, 1868)
Herina connata Thomson, 1868 Dipt. Eug. Resa :575.
Rivellia connata (Thomson, 1868) Hendel, 1914a: 88; 1914b:152. Bezzi, 1928 Dipt. . . . Fiji :91. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 351; 1930 ibid 55: 491 Fig. 1; 1930 Ins. Samoa 6 (5): 221; 1939 Proc. Linn. Soc. N.S.W. 64: 120.

Distribution: Australia; Samoa; Fiji; a common, widely-spread species in all parts of Australia.
*7. R. connexa Hendel, 1914
Rivellia connexa Hendel, 1914b:163; 1914a:88. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121.

Distribution: New Guinea.
8. R. decatomoides (Walker, 1862)

Ortalis decatomoides Walker, 1862 J. Proc. Linn. Soc. Lond. 6: 16.
Rivellia decatomoides (Walk., 1862) Hendel, 1914b :182. Hendel, (1914a, 1914b) regarded this species as doubtful.

Distribution: Moluccas.
*9. R. dimidiata de Meijere, 1908
Rivellia dimidiata de Meijere, 1908 Tijd. Ent. 51: 122 PI. 4, Fig. 2. Hendel, 1914a :88; 1914b:164. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121 Pl. 4, Fig. 19.

Distribution: New Guinca.
*10. R. distobasalis Hardy, 1959
Trypeta basalis Walker, 1859 (nec. Trypeta basalis Walker, 1852) J. Proc. Linn. Soc. Lond. 3: 120. Bezzi, 1913 Mem. Indian Mus. 3: 67 (No. 30). Rivellia distobasalis Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 211.

Distribution: Aru Islands (New Guinea).
*11. R. ferruginea Hendel, 1914
Rivellia ferruginea Hendel, 1914b:159; 1914a:88. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121.

Distribution: New Guinea.

* 12. R. fulvescens Malloch, 1940

Rivellia fulvescens Malloch, 1940 Proc. R. ent. Soc. Lond. (B) 9: 72.
Distribution: Solomon Islands.
*13. R. fusca (Thomson, 1868)
Herina fusca Thomson, 1868 Dipt. Eug. Resa:575.
Rivellia fusca (Thomson, 1868) Osten-Sacken, 1882 Berl. ent. Zeit. 26: 211. Bezzi, 1913 Philippine J. Sci. (D) 8: 321. Hendel, 1914a :89; 1914b :156. Frey, 1930 Notul, ent. Helsingf. 10: 55. Curran, 1936 Proc. Calif. Acad. Sci. (4th Series) 22: 23. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121.

Distribution: Java; Philippines; New Guinea; Solomon Islands; Taiwan.
14. R. hendeliana Bezzi, 1917

Rivellia hendeliana Bezzi, 1917 Philippine J. Sci. (D) 12: 138. Frey, 1930 Notul. ent. Helsingf. 10: 55.

Distribution: Philippines.
15. R. imitans Malloch, 1930

Rivellia imitans Malloch, 1930 Ins. Samoa 6 (5): 220.
Distribution: Samoa.
*16. R. isolata Malloch, 1930
Rivellia isolata Malloch, 1930 Proc. Linn. Soc. N.S.W. 55: 492 Fig. 2.
Distribution: New South Wales (Australia).
17. R. lavata Hendel, 1914

Rivellia lavata Hendel, 1914b:165; 1914a:89. Malloch, 1930 Ins. Samoa 6 (5): 221.

Distribution: Samoa.
18. R. marina Malloch, 1940

Rivellia marina Malloch, 1940 Proc. R. ent. Soc. Lond. (B) 9: 19.
Distribution: Admiralty Islands.
19. R. obliqua (Walker, 1861)

Ortalis obliqua Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 297.
Rivellia obliqua (Walk., 1861) Hendel, 1914b :172; 1914a :89.
Distribution: Moluccas.
Hendel was doubtful of this species.
20. R. pipartita Hendel, 1933

Rivellia pipartita Hendel, 1933 Dtsch. ent. Z. (year 1933):42.
Distribution: Java.
*21, R. polita Hendel, 1932
Rivellia polita Hendel, 1932 Mem. Mus. Hist. nat. Belg. 4: 30,
Distribution: New Guinea.
*22. R. radiata Hendel, 1914
Rivellia radiata Hendel, 1914b:161; 1914a :90. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121.

Distribution: New Guinea.
*23. R. rufibasis Malloch, 1939
Rivellia rufibasis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121 Pl. 4, Fig. 18.

Distribution: New Guinea.
24. R. sauteri Hendel, 1914

Rivellia sauteri Hendel, 1914b :158; 1914a :90. Frey, 1930 Notul. ent. Helsingf. 10: 55.

Distribution: Taiwan; Philippines.
*25. R. similis Hendel, 1914
Rivellia similis Hendel, 1914b:157; 1914a:90.
Distribution: New Britain.
26. R. sumbawana Hennig, 1941

Rivellia sumbawana Hennig, 1941 Arb. morph. taxon. Ent. Berl. 8: 23.
Distribution: Sumbawa Island.
27. R. vacillans (Walker, 1860)

Ortalis vacillans Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 157.
Rivellia vacillans (Walk., 1860) Hendel, 1914a :90; 1914b :182.
Distribution: Celebes.
Hendel was doubtful of this species.
*28. R. virgo Hendel, 1914
Rivellia virgo Hendel, 1914b:167; 1914a :90. Malloch, 1930 Proc. Linn. Soc. N.S.W. 55: 492 Fig. 3.

Distribution: New South Wales (Australia).
*29. R. viridis Hendel, 1914
Rivellia viridis Hendel, 1914b:152; 1914a:90.
Distribution: New South Wales (Australia).
Hendel suggested that this species was possibly synonymous with Ortalis mentissa Walker, 1849 List Dipt. Brit. Mus. 4: 991.

39A. Genus: ZEALANDORTALIS Malloch, 1930
Malloch, 1930 Rec. Canterbury (N.Z.) Mus. 3: 243. Harrison, 1959 N.Z. Dept. Sci. ind. Res. Bull. 128: 176.
I. Z. interrupta Malloch, 1930

Zealandortalis interrupta Malloch, 1930 Rec. Canterbury (N.Z.) Mus. 3: 243. Harrison, 1959 N.Z. Dept. Sci. ind. Res. Bull. 128: 176 Fig. 209.

Distribution: New Zealand.
2. Z. philpotti Harrison, 1959

Zealandortalis philpotti Harrison. 1959 N.7. Dept. Sci. ind. Res. Bull. 128: 178 Fig. 210.

Distribution: New Zealand.
These are the only species of Otitidae recorded from New Zealand.
42. Genus: EUXESTOMOEA de Meijere, 1913
de Meijere, 1913 Nov. Guin. 9: 377. Hendel, 1914a:91; 1914b :187. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 105.

Type species: Ortalis promptus Walker, 1859.
*1. E. bipunctata Hendel, 1914
Euxestomoea bipunctata Hendel, 1914b:188; 1914a:93. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 106 Pl. 4, Fig. 6.

Distribution: New Guinea.
*2. E. discifera de Meijere, 1913
Euxestomoea discifera de Meijere, 1913 Nov. Guin. 9: 377. Hendel, 1914a :93; 1914b : 189. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 106.

Distribution: New Guinca.

Ortalis promptus Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 118. Euxestomoea prompta (Walk., 1859) de Mcijere, 1913 Nov. Guin. 9: 377; 1915 Tijd. Ent. 58: 135. Hendel, 1914a:93; 1914b:187. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 106.

Distribution: New Guinca.
Although the section on Euxesfomoea in de Meijere, 1913 Nova Guinea was the work of Hendel, and de Meijere used the wording "Euxestomoea Hendel, Euxestomoea remained a M.S. name until de Meijere validated it by his publication of it in Nova Guinea. As Neave (Nomenclator Zoologicus 2: 383) points out, the correct citation is therefore Euxestomoea de Meijere, 1913.
44. Genus: LOXONEVRA Macquart, 1835

Macquart, 1835 Suites Buffon 2: 446 PI. 19, Fig. 10.
Loxoneura Hendel, $1914 \mathrm{a}: 96 ; 1914 \mathrm{~b}$: 190.
Type species: Dictya decora Fabricius, 1805.
Because the letters v and u in Macquart's Suites à Buffon are somewhat alike in print, authors have mistakenly adopted the spelling Loxonewra. Inspection of Macquart's work shows beyond all doubt that he named the genus Loxonevra. Loxonevra Macquart. 1835 is the only spelling recognized by Neave (Nomenclator Zoologicus 2: 1003).

1. L. decora (Fab., 1805)

Dictya decora Fabricius, 1805 Syst. Antl. :327.
Loxonevra decora (Fab., 1805) Macquart, 1835 Suites Buffon 2: 446 Pl. 19, Fig. 10. Bezzi, 1913 Mem. Indian Mus, 3: 81 (No, 280). Hendel, 1914a :98; 1914b :191. Bezzi, 1917 Philippine J. Sci. (D) 12: 138. Enderlein. 1924 Mitt. zool. Mus. Berlin 11: 118. Frey, 1930 Notul. ent. Helsingf, 10: 55.

Distribution: Java; Sumatra; Nepal (India); Philippines.
2. L. fascipemnis Hendel, 1914

Loxonevra fascipermis Hendel, 1914b :195; 1914a:98.
Distribution: Borneo.

3. L. perilampoides Walker, 1858

Loxonevra perilampoides Walker, 1858 Trans. ent. Soc. Lond. (new ser.)
4: 226. Hendel, 1914a :98; 1914b:198.
Distribution: Sumatra; Sikkim (India).
46. Genus: ACHIOSOMA Hendel, 1914

Hendel, 1914b:200; 1914a :100. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 130.

Type species: Achias dacoides Walker, 1865.
*1. A. aspiciens (Walker, 1864)
Dacus aspiciens Walker, 1864 J. Proc. Linn. Soc. Lond. 7: 229.
Achiosoma aspiciens (Walk., 1864) Hendel, 1914a :101; 1914b :201.
Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 130.
Distribution: New Guinea.
*2. A. costalis Malloch, 1939
Achiosoma costalis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 130.
Distribution: New Guinea.
*3. A. dacoides (Walker, 1865)
Achias dacoides Walker, 1865 J. Proc. Limn. Soc. Lond. 8: 133.
Achiosoma dacoides (Walker, 1865) Hendel, 1914a:101; 1914b :200. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 130.

Distribution: New Guinea.
*4. A. nigrifacies Malloch, 1939
Achiosoma nigrifacies Malloch, 1939 Proc. Linn. Soc. N.S.W'64: 131 Pl. 5, Fig. 26.

Distribution: New Guinea.
47. Genus: ACHIAS Fabricius, 1805

Fabricius, 1805 Syst. Antl. :247. Hendel, 1914a:101; 1914b :201. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 351; 1939 ibid 64: 132.

Type species: Achias oculatus Fabricius, 1805.
*1. A. albertisi Osten-Sacken, 1881
Achias albertisi Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genova 16: 473. Hendel, 1914a :103; 1914b:210. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 137.

Distribution: New Guinea.
*2. A. amplividens Walker, 1859
Achias amplividens Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 122. Hendel, 1914a :103; 1914b :272. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 135.

Distribution: Aru Island (New Guinea).
*3. A. apictipennis Hennig, 1940
Achias apictipennis Hennig, 1940 Arb. morph. taxon. Ent. Berl. 7: 316. Distribution: Queensland (Australia).
*4. A. australis Malloch, 1939
Achias australis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 137 P1. 5, Fig, 28.

Distribution: Queensland (Australia).
*5. A. brachyophthalmus Walker, 1865
Achias brachyophthalmus Walker, 1865 J. Proc. Linn. Soc. Lond. 8: 119. Hendel, 1914a :103; 1914b :218. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 135 Pl. 5, Fig. 27.

Distribution: New Guinea.
*6. A. diversifrons de Meijere, 1913
Achias diversifrons de Meijere, 1913 Nov. Guin. 9: 371. Hendel, 1914 a :103; 1914b :214. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 136.

Distribution: New Guinea.
*7. A. fulviceps de Meijere, 1913
Achias fulviceps de Meijere, 1913 Nov. Guin. 9: 373. Hendel, 1914a:103; 1914b :205. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 134.

Distribution: New Guinea.
*8. A. furcatus Hendel, 1914
Achias furcatus Hendel, 1914b:216; 1914a:103. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 136.

Distribution: New Guinea.
*9. A. gjellerupi de Meijere, 1915
Achias gjellerupi de Meijere, 1915 Tijd. Ent. 58: 130.
Distribution: New Guinea.
*10. A. kurandana Hennig, 1940
Achias kurandana Hennig, 1940 Arb. morph. taxon. Ent. Berl. 7: 315.
Distribution: Queensland (Australia).
*11. A. Iatividens Walker, 1859
Achias latividens Walker. 1859 J. Proc. Linn. Soc. Lond. 3: 121. Hendel, $1914 \mathrm{a}: 103 ; 1914 \mathrm{~b}$:208. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 126. Malloch, 1939 Proc. Linn. Soc. Lond. 64: 137.

Distribution: New Guinea.
*12. A. longividens Walker, 1859
Achias longividens Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 121. Hendel, 1914a:103; 1914 b :210. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 137.

Distribution: Aru Island (New Guinea).
*13. A. macrocephalus Hendel, 1914
Achias macrocephalus Hendel, 1914b :215; 1914a :104. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 137 (as microcephalus (sic.)).

Distribution: New Guinea.
14. A. oculatus Fabricius, 1805

Achias oculatus Fabricius, 1805 Syst. Antl. :247. Hendel, 1914a:104; 1914b :203.

Distribution: Java (sic.).
This and A. australis Malloch are the only species not recorded from New Guinea. All the other described species are endemic to New Guinea. But see *15. A, platychirus Hendel (below).
*15. A. platychirus Hendel, 1914
Achias platychirus Hendel, 1914b :204; 1914a:104. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 134.

Distribution: New Guinea.
Hendel (1914b:202 (footnote)) suggested that his A. platychirus might be a synonym of A. oculatus Fab., 1805. Should this be demonstrated, A. oculatus would be a New Guinea as well as a Java species.

$$
\text { *16. A. punctulatus de Meijere, } 1913
$$

Achias punctulatus de Meijere, 1913 Nov. Guin. 9: 372. Hendel, 1914a :104; 1914b :215. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 137.

Distribution: New Guinea.
*17. A. rothschildi Austen, 1910
Achias rothschildi Austen, 1910 Novit. Zool. 17: 459 Pl. 15, Figs. 5-9. Hendel, 1914a :104; 1914 b :206. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 137.

Distribution: New Guinea.
*18. A. strigatus de Meijere, 1913
Achias strigatus de Meijere, 1913 Nov. Guin. 9: 372. Hendel, 1914a:104; 1914 b :205. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 134.

Distribution: New Guinea.
*19. A. subnudus Malloch, 1939
Achias subnudus Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 134.
Distribution: New Guinea,
*20. A. thoracalis Hendel, 1914
Achias thoracalis Hendel, 1914b:213; 1914a:104. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 136.

Distribution: New Guinca.
*21. A. venustulus Walker, 1865
Achias venustulus Walker, 1865 J. Proc. Linn. Soc. Lond. 8: 119. Hendel, 1914a:104; 1914b :219. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 134.

Distribution: New Guinea.
48. Genus: LAMPROGASTER Macquart, 1843

Macquart, 1843a Mem. Soc. R. Sci. Lille (1842) :368; 1843 b Dipt. exot. 2: 211. Hendel, 1914a :104; 1914b :220. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 348; 1929 ibid 54: 513; 1930 ibid 55: 432; 1939 ibid 64: 138.

Type species: Lamprogaster flavipennis Macquart, 1843.

1. L. amitina Frey, 1930

Lamprogaster amitina Frey, 1930 Notul. ent. Helsingf. 10: 55.
Distribution: Philippines.
2. L. angusta Enderlein, 1924

Lamprogaster angusta Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 128.
Distribution: Moluccas.
*3. L. apicalis (Walker, 1849)
Chromatomyia apicalis Walker, 1849 List. Dipt. Brit. Mus. 4: 804.
Lamprogaster apicalis (Walk., 1849) Hendel. 1914a:107; 1914b :227.

Helocnemia apicalis (Walk., 1849) Enderlein, 1924 Mitt. zool. Mus'. Berlin
11: 128. Lamprogaster apicalis (Walk., 1849) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 138.

Distribution: Western Australia.
*4. L. austeni Sharp, 1900
Lamprogaster austeni Sharp, 1900 Willey Results 4: 391 Pl. 35, Figs. 11-11c. L. xanthoptera Hendel, 1914a :107; 1914b :220; (footnote) ibid :225. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 127. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 349; 1929 ibid 54: 515.
L. austeni Sharp, 1900, 1939 ibid 64: 143.

Distribution: Bismarck Archipelago.
*5. L. basalis Walker, 1861
Lamprogaster basalis Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 248. Hendel, 1914a :107; 1914b :229. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 127. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 144.

Distribution: New Guinea.
*6. L. bicolor Macquart, 1847
Lamprogaster bicolor Macquart, 1847 Dipt. exot. Supp. 2: 89. Hendel, 1914a : 107; 1914b :237. Enderlcin, 1924 Mitt. zool. Mus. Berlin 11: 127. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 349.

Distribution: New South Wales (Australia).
7. L. celebensis Enderlein, 1924

Lamprogaster celebensis Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 127. Distribution: Celebes.
*8. L. costalis Walker, 1861
Lamprogaster costalis Walker, 1861 J. Proc. Limn. Soc. Lond. 5: 247. Hendel, 1914a :108; 1914b :231. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 141.

Distribution: New Guinea.
*9. L. decolor Malloch, 1939
Lamprogaster decolor Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 144 Pl. 5, Fig. 30.

Distribution: New Guinea.
*10. L. elongata v. d. Wulp, 1885
Lamprogaster clongata v. d. Wulp, 1885 Tijd. Ent. 28: 228. Hendel 1914a : 108; 1914b :223. Enderlcin, 1924 Mitt. zool. Mus. Berlin 11: 126. Non Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 515 (L. pseudelongata Malloch, 1930) see note. 1930 ibid 55: 432 Fig. 1, 1939 ibid 64: 144.

Distribution: New Guinea and surrounding islands.
In the 1929 reference above, Malloch misidentified as L. elongata a species sent to him from Queensland. He corrected this mistake in his 1930 reference where he described the Queensland species under the name of L. pseludelongata. It is to this species, therefore. that the 1929 reference actually applies.

*11. L. flavipennis Macquart, 1843

Lamprogaster flavipennis Macquart, 1843 Dipt. exot. 2: 211 Pl. 28, Fig. 7. Hendel, 1914at:108; 1914 b :234. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 127. Bezzi, 1928 Dipt. . . Fiji :91. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 349.

Distribution: Victoria and New South Wales (Australia); Fiji.
Bezzi's identification of L. flavipennis from Fiji requires confirmation.
12. L. fulvescens Malloch, 1931

Lamprogaster fulvescens Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 11. Distribution: Philippines.
*13. L. fulvipes Malloch, 1939
Lamprogaster fulvipes Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 145 Pl. 5, Fig, 31.

Distribution: New Guinea.
*14. L. fuscibasis Malloch, 1930
Lamprogaster fuscibasis Malloch, 1930 Proc. Linn. Soc. N.S.W. 55: 433. Distribution: Queensland (Australia).
*15. L. grossa Malloch, 1939
Lamprogaster grossa Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 142.
Distribution: New Guinea.
*16. L. hilaris (Walker, 1849)
Chromatomyia hilaris Walker, 1849 List Dipt. Brit. Mus. 4: 804.
Lamprogaster hilaris (Walk., 1849) Hendel, 1914a: 108; 1914b :244.
Distribution: ? Australia (sic.).

This is a very doubtful species. It is represented by the remains of Walker's type, and has apparently not been collected since. Hendel (1914b) quotes Walker's description verbatim without further comment; Malloch does not refer to the species at all. Even the type locality is uncertain.
*17. L. indistincta Malloch, 1928
Lamprogaster indistincta Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 349. Distribution: Northern Australia.

$$
\text { *18. L. instabilis (Walker, } 1861 \text {) }
$$

Dacus instabilis Walker, 1861 I. Proc. Limn. Soc. Lond. 5: 250. Bezzi, 1913 Mem. Indian Mus. 3: 74 (No. 140).
L. gracilis Hendel, 1914 b :225. Malloch, 1939 Proc. Linn. Soc. N.S.IW. 64: 141. L. instabilis (Walk., 1861) Hardy, 1959 Bull. Brit. Mıs. (nat. Hist.) Ent. 8 (5): 177.

Distribution: New Guinea.

> 19. L. jucunda (Walker, 1849)

Chromatomyia jucunda Walker, 1849 List Dipt. Brit. Mus. 4: 802.
Lamprogaster jucunda (Walk., 1849) Hendel, 1914a :108; 1914b :238.
Enderlein, 1924 Mitt. zool. Mus, Berlin 11: 127.
Distribution: New South Wales (Australia).
Although not referred to by Malloch, Enderlein had specimens sent to him from Sydney, N.S.W.
*20. L. laeta (Guérin, 1830)
Platystoma lacta Guérin, 1830 Voy. Coquille :299.
Lamprogaster laeta (Guérin, 1830) Hendel, 1914a:108; 1914b :244.
Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 516.
Distribution: New South Wales (Australia); Queensland (Australia).
This species is not Chromatomyia laeta Walker, 1849 (List Dipt. Brit. Mus. 4: 805), a confusion for which Hendel was responsible. In his 1914b publication, although he had seen neither the type nor specimens con-specific with it, he transferred Walker's species to Lamprogaster but stated that he believed it to be Duomyia sp.! In the same publication, he also transferred Platystoma lacta Guerin, 1830 to Lamprogaster. By so doing, he produced L. laeta (Guérin, 1830) and L. laeta (Walker, 1849).

In 1929, Malloch (Proc. Limm. Soc. N.S.W. 54: 516) established the validity of L. lacta (Guerin, 1830). He received specimens of it from

Queensland (Australia). In his paper, he provided a modern description and commented that this was "the first known record since the original description".

Walker's species has no definite status until critical examination of the type enables it to be correctly placed generically.
*21. L. Iepida Walker; 1857
Lamprogaster lepida Walker, 1857 Trans. ent. Soc. Lond. (new series) 4: 226. Hendel, 1914a:108; 1914b :235. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 349; 1929 ibid 54: 516.

Distribution: Queensland (Australia); Celebes.
*22. L. macrocephala Hendel, 1914
Lamprogaster macrocephala Hendel, 1914b :230; 1914a :108. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 145.

Distribution: New Guinea.
*23. L. maculipennis Macquart, 1847
Lamprogaster maculipennis Macquart, 1847 Dipt. exot. Supp. 2: 89 P1. 6, Fig. 5. Hendel, 1914a :108; 1914b :231. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 143.

Distribution: Eastern Australia.
24. L. obliqua Frey, 1930

Lamprogaster obliqua Frey, 1930 Notul. ent. Helsingf. 10: 56.
Distribution: Philippines.
*25. L. patula Walker, 1861
Lamprogaster patula Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 247. Hendel, 1914a :107; 1914b :222. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 128 (as Ceratopelta patula (Walk., 1861). Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 140.

Distribution: New Guinea.
26. L. placida (Walker, 1849)

Chromatomyia placida Walker, 1849 List Dipt. Brit. Mus. 4: 802.
Lamprogaster placida (Walker, 1849) Hendel, 1914b :243; 1914a :109. Bezzi, 1917 Philippine J. Sci. (D) 12: 139. Frey, 1930 Notul. ent. Helsingf. 10: 46. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 11. Distribution: Philippines.
*27. L. poecila Hendel, 1914
Lamprogaster poecila Hendel, 1914b :239; 1914a :109.
Distribution: Northern Australia.
*28. L. pseudelongata Malloch, 1930
Lamprogaster pseudelongata Malloch, 1930 Proc. Linn. Soc. N.S.W. 55: 432 Fig. 2; 1929 ibid 54: 515.

Distribution: Queensland (Australia).
Malloch, 1929 referred this species to L. elongata v. d. Wulp, 1885. He corrected the mistake in his 1930 reference where he described L. pseudelongata as sp. nov. His 1929 reference is hence to L. pseudelongata.
29. L. pumicata v. d. Wulp, 1885

Lamprogaster pumicata v. d. Wulp, 1885 Tijd. Ent. 28: 230 Pl. 7, Fig. 12. Hendel, 1914a :109; 1914b :238. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 516; 1939 ibid 64: 143.

Distribution: New Caledonia.
*30. L. quadrilinea Walker, 1859
Lamprogaster quadrilinea Walker, 1859. Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 111. de Meijere, 1913 Nov. Guin. 9: 370. 1915 Tijd. Ent. 58: 132. Hendel, $1914 \mathrm{a}: 109 ; 1914 \mathrm{~b}: 242$. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 142.

Distribution: New Guinea.
*31. L. rufipes Hendel, 1914
Lamprogaster rufipes Hendel, 1914b :233; 1914a :109. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 143.

Distribution: New Guinea.
*32. L. severa Hendel, 1914
Lamprogaster severa Hendel, 1914b :240; 1914a :109. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 143.

Distribution: New Guinea.
*33. L. stenoparia Hendel, 1914
Lamprogaster stenoparia Hendel, 1914b:227; 1914a:109. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 350; 1929 ibid 54: 515; 1939 ibid 64: 144.

Distribution: Queensland (Australia).
34. L. superna Walker, 1862

Lamprogaster superna Walker, 1862 J. Proc. Linn. Soc, Lond. 6: 12. Hendel, 1914a :109; 1914b :240.

Distribution: Moluccas.
35. L. taeniata v. d. Wulp, 1885

Lamprogaster taeniuta v. d. Wulp, 1885 Tijd. Ent. 28: 229 Pl. 7, Figs. 10 and 11. Hendel, 1914a :109; 1914b :241. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 145.

Distribution: Moluccas.
*36. L. trisignata v. d. Wulp, 1885
Lamprogaster trisignata v. d. Wulp, 1885 Tijd. Ent. 28: 231 Pl. 7, Fig. 13. de Meijere, 1913 Nov. Guin. 9: 370. Hendel, 1914a 109; 1914b :232. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 143.

Distribution: New Guinea.
*37. L. unimacula Hendel, 1914
Lamprogaster unimacula Hendel, 1914b:239.
Distribution: Queensland (Australia).
*38. L. vella (Walker, 1849)
Chromatomyia vella Walker, 1849 List Dipt. Brit. Mus. 4: 803.
Lamprogaster vella (Walker, 1849) Hendel, 1914a :109; 1914b :233.
Distribution: Queensland (Australia).
*39. L. viola Malloch, 1929
Lamprogaster viola Malloch, 1929. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 515.

Distribution: Queensland (Australia).
*40. L. violacea (Macquart, 1843)
Cryphocera violacea Macquart, 1843 Dipt. exot. 2: 212 Pl. 29, Fig. 4.
Lamprogaster violacea (Macq., 1843) Hendel, 1914a:109; 1914b :244.
Distribution: New Guinea.
*41. L. zelotypa Hendel, 1914
Lamprogaster zelotypa Hendel, 1914b :226; 1914a:110. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 350; 1929 ibid 54: 515; 1939 ibid 64: 141.

Distribution: Quensland (Australia); New Guinea.
Lamprogaster is essentially a New Guinea-Australian genus. Inspection of otitid collections in Australian museums shows that many species await description.
49. Genus: MONTROUZIERA Bigot, 1860 (Monotypic)

Bigot, 1860 Ann. Soc. ent. France (3rd series) 8: 224.
Type species: M. lifua Bigot, 1860.

1. M. lifua Bigot, 1860

Montrouziera lifua Bigot, 1360 Ann. Soc. ent. France (3rd series) 8: 224. Hendel, 1914a : 110; 1914b :245.

Distribution: New Caledonia.
49A. Genus: RHEGMATOSAGA Frey, 1930 (Monotypic)
Frey, 1930 Notul. ent. Helsingf. 10: 63.
Type species: Rhegmatosaga latiuscula (Walker, 1857).

1. R. Iatiuscula (Walker, 1857)

Noecta latiuscula Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 133.
Syn.: Rhegmatosaga insignis Frey, 1930 Notul. ent. Helsingf. 10: 63 P1. 1, Fig. 8; 1932 Ann. Mag. nat. Hist. 10: 256.
Rhegmatosaga latiuscula (Walker, 1857) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 10: 256.

Distribution: Philippines.
Frey designated his insignis as the type species of his gen. nov., Rhegmatosaga. Since insignis is a synonym of Noceta latuscula Walker, latiuscula is the type species of Rhegmatosaga.

49B. Genus: TYLOPTERNA Bezzi, 1917
Bezzi, 1917 Philippine J. Sci. (D) 12: 131.
Type species: Tylopterna monstruosum Bezzi, 1917.

1. T. monstruosum Bezzi, 1917

Tylopterna monstruosum Bezzi, 1917 Philippine J. Sci. (D) 12: 133. Frey, 1930 Notul. ent. Helsingf. 10: 64.

Distribution: Philippines.
51. Genus: LENOPHILA Guérin-Ménéville, 1843

Guérin-Ménćville, 1843 Rev. Zool. 6: 200.
Celetor Loew, 1873 Mon. N. Amer. Dipt. 3: 41. Hendel, 1914a :113; 1914 b:246. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 505.

Lenophila Guerin, 1843 Bezzi, 1913 Mem. Indian Mus. 3: 70.
Type species: Orfalis dentipes Macquart, 1843.

```
*1. L. caerulea (Macquart, 1846) (conj, nov.)
```

Tephritis caerulea Macquart, 1846 Dipt. exot. Supp. 1: 212 Pl. 18, Fig. 15. Trypeta cluana Walker, 1849 List Dipt. Brit. Mus. 4: 1019.
Lamprogaster caerulea (Macq.. 1846) Schiner, 1868 Dipt. Novara Reis. :285.
Celetor caerulea (Macy., 1846) Loew, 1873 Mon. N. Amer. Dipt. 3: 41. Hendel, 1914a;115; 1914b :247. Malloch, 1929 Proc, Linn. Soc. N.S.W. 54: 506. Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 211.

Distribution: Most Australian States.
This species has the peculiar habit of resting on the long, sharp-edged, siliceous leaves of "grass-trees" (Xanthorrhoea spp.) with the outspread wings pressed flat against the lcaf surface. This habit, aided by the markings on the wings, gives the insects the appearance of spiders. When the plant is approached, the insects make no attempt to fly; they merely close their wings rapidly, and drop down in the spiny centre of the plant where they are more than adequately protected. This behaviour has been noted by several entomologists, but the association between insect and plant is unknown.
*2. L. dentipes (Macquart, 1843)
Ortalis dentipes Macquart, 1843 Dipt. exot. 2: 210 Pl, 28. Fig. 5.
Ceratitis? dentipes (Macq., 1843) Guérin, 1843 Rev. zool. 6: 200,
Lenophila dentipes (Macq., 1843) Guérin, 1843 ibid 6: 200.
Tephritis strigipennis Macquart, 1850 Dipt. exot. Supp. 4: 290 PI. 27, Fig. 2.
Lamprogaster dentipes (Macq., 1843) Schiner, 1868 Dipt. Nowara Reis. 285.

Celetor dentipes (Macq., 1843) Loew. 1873 Mon. N. Amer. Dipt. 3: 41.
Lenophila dentipes (Macq., 1843) Bezzi. 1913 Mem. Indian Mus. 3: 70 (No. 75).
Celetor dentipes (Macq., 1843) Hendel, 1914a :115; 1914b :246. Enderlein, 1924 Mitt, zool. Mus. Berlin 11: 120. Malloch, 1929 Proc. Limn. Soc'. N.S.W. 54: 506.

Distribution: New South Wales (Australia).
This genus has long been wrongly known as Celetor. When Loew erected Celctor, he designated Celetrr caerulea (Macq. 1846) as the type species, being uatware that Guérin (1843) had already proposed Lenophila, and by giving a full re-description of Lenophila dentipes (Maca., 1843) had made it the type species of the genus. Bezzi (1913) was aware of Guerin's
work but in his paper in Mem. Indian Mus. he merely cited the correct name without comment, so that the incorrect Celetor has hitherto been used by almost all earlier workers in the Otitidae. The above facts necessitate the transfer of both species to Lenophila with Ortalis dentipes Macq.. 1843 as the type species of the genus.
52. Genus: SCHOLASTES Loew, 1873

Loew, 1873 Mon. N. Amer. Dipt, 3. 38. Hendel, 1914a:117; 1914b :248. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 127.

Type species: Platystoma cinctum Guérin, 1830.
*1. S. aitapensis Malloch, 1939
Scholastes aitapensis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 128, Pl. 5, Fig. 24; 1940 Ann. Mag. nat. Hist. 6: 20; 1942 Bernice P. Bishop Mus. Bull. 172: 207: 1946 ibid 189: 199.

Distribution: New Guinea; Guam; Solomon Islands; Shortland Island; Admiralty Islands.
*2. S. bimaculatus Hendel, 1914
Scholastes bimaculatus Hendel, 1914b :252; 1914a:117. Enderlein, 1924 Mitt. zool, Mus, Berlin 11: 121. Bezzi, 1928 Dipt. . . Fiji :92. Malloch, 1930 Ins. Samoa 6 (5): 223; 1939 Proc. Linn. Soc. N.S.W. 64: 129.
S. solomonensis Curran, 1936. Malloch, 1940 Ann. Mag. nat. Hist. 6: 73.

Distribution: New Britain; Fiji; Samoa; Hawaii.
3. S. carolinensis Enderlein, 1924

Scholastes carolinensis Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 121.
Distribution: Caroline Islands.
*4. S. cinctus (Guérin, 1830)
Platystoma cinctum Guérin, 1830 Voy. Coquille Znol. :299 Pl. 21, Fig. 9. Scholastes cinctus (Guérin, 1830) Hendel, 1914b:249: 1914a:117. Bezzi, 1913 Mem. Indian Mus. 3: 71. 72 (Nos. 99 and 102): 1917 Philippine J. Sci. (D) 12: 139; 1928 Dipt. . . Fiji:91. de Meijere, 1915 Tijd. Ent. 58: 132. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 120. Malloch, 1930 Ins. Samoa 6 (5): 22; 1939 Prac. Linn. Soc. N.S.W. 64: 128 PI. 5, Fig. 23.
S, whitneyi Curran, 1936. Malloch, 1940 Ann. Mag. nat. Hist. 6: 73.
Distribution: New South Wales (Australia); New Guinea; New Britain; Java; Philippines; Fiji.
5. S. frauenfeldi (Schiner, 1868)

Dacus frauenfeldi Schiner, 1868 Dipt. Novara Reis. :285. Bezzi, 1913 Mem. Indian Mus. 3: 72 (No. 114).
Scholastes fratucnfeldi (Schiner, 1868) Hendel, 1914a :117: 1914b :251. Enderlcin, 1924 Mitt. zool. Mus. Berlin 11: 121.

Distribution: Java; Caroline Islands.

6. S. furcatifascia Enderlein, 1924

Scholastes furcatifascia Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 121. Distribution: Borneo.
7. S. hirtiventris Malloch, 1942

Scholastes hirtiventris Malloch, 1942 Bernice P. Bishop Mus. Bull. 172: 208. Swezey, 1946 ibid 189: 199.

Distribution: Guam.
8. S. Ionchifera Hendel, 1914

Scholastes lonchifera Hendel, 1914b :253; 1914a:117. Bezzi, 1928 Dipt. . . Fiji :92. Malloch, 1932 Bernice P. Bishop Mus. Bull. 98: 205; 1939 Proc. Linn. Soc. N.S.W. 64: 129.

Distribution: Cook Islands; Society Islands; Fiji.
*9. S. palmyra Curran, 1936
Scholastes palmyra Curran, 1936 Proc. Calif. Acad. Sci. (4th Ser.) 22 (1): 24 Pl. 1, Fig. 5.

Distribution: Solomon Islands.
10. S. sexvittatus (Walker, 1861)

Lamprogaster sexvittata Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 261.
Scholastes distigma Hendel, 1914b :252. Frey, 1930 Notul. ent. Helsingf. 10: 56 (as S. distigma, Hendel).
Scholastes sexvittatus (Walker, 1861) Malloch, 1940 Ann. Mag. nat. Hist. 6: 74.

Distribution: Java; Admiralty Islands.
*11. S. taylori Malloch, 1939
Scholastes taylori Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 129 PI. 5, Fig. 25.

Distribution: New Guinea.

12. S. trifasciatus Enderlein, 1924

Scholaste's trifasciatus Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 122.
Distribution: Mariana Islands.
58. Genus: PSEUDORICHARDIA Hendel, 1911

Hendel, 1911 :21 (footnote); 1914b :267; 1914a :123.
Although Hendel gave no complete description of Pseudorichardia until 1914 b :267 his footnote in Gens. Ins. (113: 21) complies with the minimum requirements of Article 25 (a) of the Rules.

Type species: Richardia flavitarsis Macquart, 1850.

1. P. aristalis Bezzi, 1928

Pseudorichardia aristalis Bezzi, 1928 Dipt. . . Fiji :93. Fig. 27. Steyskal, 1952 Occas. Pap. Bernice P. Bishop Mus. 21: 64.

Distribution: Fiji.

2. P. bezziana Steyskal, 1952

Pseudorichardia bezziana Steyskal, 1952 Occas. Pap. Bernice P. Bishop Mus. 21: 64.

Distribution: New Hebrides.
3. P. flavitarsis (Macquart, 1850)

Richardia flavitarsis Macquart, 1850 Dipt. exot. Supp. 5: 121 Pl. 7, Fig. 3. Pseudorichardia flavitarsis (Macquart, 1850). Hendel, 1911 Gens. Ins. 113: 21 (footnote); 1914a ibid 157: 124; 1914b :267. Bezzi, 1928 Dipt. . . Fiji :92 Fig. 26. Malloch, 1929 Ann. Mag. nat. Hist. (ser. 10) 4: $100 ; 1930$ Ins. Samoa 6 (5): 222; 1932 Bernice P. Bishop Mus. Bull.: 206. Steyskal, 1952 Occas. Pap. Bernice P. Bishop Mus. 21 (5): 66.

Distribution: Malay Archipelago; Samoa; Tahiti; Marquesa Islands; Society Islands.

> 4. P. interrupta (Bezzi, 1928)

Pseudorichardia flavitarsis (Macq., 1850) var. interrupta Bezzi, 1928. Dipt. . . . Fiji. :92 Fig. 26.
Pseudorichardia interrupta (Bezzi, 1928) Steyskal, 1952 Occas. Pap. Bernice P. Bishop Mus. 21: 66.

Distribution: Fiji.
59. Genus: BREA Walker, 1859

Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 117. Hendel, 1914a :125; 1914b :260. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 123.

Type species: Brea contraria Walker, 1859.
*1. B. angustilimbata de Meijere, 1915
Brea angustilimbata de Meijere, 1915 Tijd. Ent. 58: 129.
Distribution: New Guinea.
*2. B. basalis Enderlein, 1924
Brea basalis Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 129. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 125.

Distribution: New Guinea.
*3. B. contraria Walker, 1859
Brea contraria Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 117. Hendel, $1914 \mathrm{a}: 126 ; 1914 \mathrm{~b}: 269$. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 124 Pl. 4, Fig. 21.

Distribution: Aru Islands (New Guinea).

*4. B. discalis Walker, 1859

Brea discalis Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 117. Hendel, 1914a :126; 1914b:272. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 124.

Distribution: Aru Islands (New Guinea).
*5. B. discifera Hendel, 1914
Brea discifera Hendel, 1914b:270; 1914a:126. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 124.

Distribution: New Guinea.
*6. B. flavipes de Meijere, 1913
Brea flavipes de Meijere, 1913 Nov. Guin. 9: 371; 1915 Tijd. Ent. 58: 130. Hendel, 1914a :126; 1914 b :272. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 124.

Distribution: New Guinea.
*7. B. magnifica Hendel, 1914
Brea magnifica Hendel, 1914b :271; 1914a :127. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 125 Pl. 5, Fig. 22.

Distribution: New Guinea.
*8. B. nouhuysi de Meijere, 1913
Brea nouhuysi de Meijere, 1913 Nov. Guin. 9: 370 Pl. 10. Fig. 42; 1915 Tijd. Ent. 58: 130. Hendel, 1914a :127; 1914b :270.

Distribution: New Guinea.
*9. B. ralumensis Enderlein, 1924
Brea ralumensis Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 129. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 125.

Distribution: New Britain.
61. Genus: CHAETORIVELLIA de Meijere, 1913 (Monotypic)
de Meijere, 1913 Nov. Guin. 9: 376. Hendel, 1914a :128; 1914b
:276. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 127.
Type species: Ortalis trifasciata Doleschall, 1859.
*1. C. trifasciata (Doleschall, 1859)
Ortalis trifasciata Doleschall, 1859 Nat. Tijd. Ned. Ind. 17: 121.
Chactorivellia trifasciata (Doleschall, 1859) de Meijere, 1913 Nov. Guin. 9: 376; 1915 Tijd. Ent. 58: 132. Hendel, 1914a :129; 1914b :276. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 127.

Distribution: New Guinea.
62. Genus: DASYORTALIS Hendel, 1914

Hendel, 1914b :277; 1914a :129. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 506; 1939 ibid 64: 102.

Type species: Ortalis complens, Walker, 1859.
*) D. angustifrons Hendel, 1914
Dasyortalis angustifrons Hendel, 1914b :279; 1914a :131. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 103.

Distribution: New Guinea.
*2. D. barbata Hendel, 1914
Dasyortalis barbata Hendel, 1914b:279; 1914a:131. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 103.

Distribution: New Guinea.
*3. D. complens (Walker, 1859)
Ortalis complens Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 118.
Dasyortalis complens (Walker, 1859) (Nom. nud.) de Meijere, Nov. Guin. 9: 378. Hendel, 1914b :277; 1914a :131. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 506; 1939 ibid 64: 102 Pl. 4, Figs. 1, 2.

Distribution: New Guinea; Solomon Islands; Moluccas.
Curran, 1936 (Proc. Cal. Acad. Sci. 22: 54) and Malloch, 1939 (Proc. Linn. Soc. N.S.W. 64: 103) have described two doubtful varieties of this species-var. fasciata Curran, and var. separata Malloch. Both require further study before their status can be determined.
*4. D. goniceps Hendel, 1914
Dasyortalis goniceps Hendel, 1914b:281; 1914a :131. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 103.

Distribution: New Guinea.
5. D. ? leucomera (Walker, 1863)

Ortalis leucomera Walker, 1863 J. Proc. Linn. Soc. Lond. 7: 219.
Dasyortalis leucomera (Walker, 1863) Hendel, 1914a :131; 1914b :277 (footnote).

Distribution: Moluccas.
Examination of the type will be necessary to determine the genus to which this species belongs.
6. D. signifacies (Walker, 1861)

Trypeta signifacies Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 165. Bezzi, 1913 Mem. Indian Mus. 3: 79 (No. 240).
Dasyortalis signifacies (Walker, 1861) Hardy, 1959 Bull. Brit. Mus. (nat. Hist.) Ent. 8 (5): 223.

Distribution: Moluccas.
7. D. ? tarsalis (Walker, 1861)

Ortalis tarsalis Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 296.
Dasyortalis tarsalis (Walker, 1861) Hendel, 1914a :131; 1914b :277 (footnote).

Distribution: Moluccas.
Examination of the type will be necessary to determine the genus to which this species belongs.
65. Genus: TROPIDOGASTRELLA Hendel, 1914 Hendel, 1914b :285; 1914a :134.
Type species: Tropidogastrella tropida Hendel, 1914.

1. T. cristiventris (Gerstäcker, 1860)

Gorgopsis cristiventris Gerstäcker, 1860 Stett. ent. Zeit. 21: 135.
Tropidogastrella cristiventris (Gerstäcker, 1860) Hendel, 1914b :287; 1914a
:136. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 130. Bezzi, 1913
Philippine J. Sci. (D) 8: 321. Frey, 1930 Notul. ent. Helsingf. 10: 56. Distribution: Moluccas.
2. T. decora (de Meijere, 1911)

Zy'gaenula decora de Meijere, 1911 Tijd. Ent. 54: 371.
Tropidogastrella decora (de Meijere, 1911) Hendel, $1914 \mathrm{a}: 136 ; 1914 \mathrm{~b}$
:289. Frey, 1930 Notul. ent. Helsingf. 10: 56.
Distribution: Java.
The type species was recorded from Taiwan.
66. Genus: ASYNTONA Osten-Sacken, 1881

Osten-Sacken, 1881 Ann. Soc, ent. France (series 6) 1: 135. Hendel, 1914a:136; 1914b :290. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 121.

Type species: Lamprogaster tetyroides Walker, 1859.
*1. A. flaviceps Hendel, 1914
Asymtona flaviceps Hendel, 1914b:291; 1914a:138. Malloch, 1939 Proc.
Linn. Soc. N.S.W. 64: 122.
Distribution: New Guinea.
*2. A. tetyroides (Walker, 1859)
Lamprogaster tetyroides Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 112.
Asyntona tetyroides (Walker, 1859) Hendel, 1914b:290; 1914a :138. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 130. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 122 Pl. 4, Fig. 20.

Distribution: New Guinea.
67. Genus: ZYGAENULA Doleschall, 1858

Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 117. Hendel, 1914a :138:
1914b:292. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 123.
Type species: Zygaenula paradoxa Doleschall, 1858.
See note at end of Mesoctenia, No. 67A.
*1. Z. coalescens Hendel. 1914
Zygaenula coalescens Hendel, 1914b :293.
Mesoctenia coalescens. (Hendel. 1914) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 123.

Distribution: New Britain.
*2. Z. hylaris Hendel, 1914
Zygaenula hylaris Hendel, 1914b Abh. zool. -bot. Ges. Wien 8: 294.
Mesoctenia hylaris (Hendel), 1914 Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 123.

Distribution: New Guinea.
3. Z. paradoxa Doleschall, 1858

Zygaenula paradoxa Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 118. Hendel, 1914a:139; 1914b :292. Enderlein. 1924 Mitt. zool. Mus. Berlin 11: 130. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 123.

Distribution: Moluccas.
67A. Genus: ? MESOCTENIA Enderlein, 1924 (Monotypic)
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 130. Mallcch, 1939 Proc. Lirn. Soc. N.S.W. 64: 123.

Type species: Mesoctenia ralumensis Enderlein, 1924.
*1. M. ralumensis Enderlein, 1924
Mesoctenia ralumensis Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 131. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 123. (A possible synonym of Zygaenula coalescens.)

Distribution: New Guinea.
Note: Although Zygaenula and Mesoctenia are shown in this catalogue as being distinct genera, the status of neither can at present be defined, nor species allotted to either with certainty. All that can be done is to detail the events that have led to the confusion, leaving clarification of the situation to the future.

Doleschall (1858 Nat. Tijd. Ned. Ind. 17: 117) erected Zygaenula for the reception of his species, paradoxa. By monotypy Z. paradoxa is the type species of the genus, Zygaenula.

Hendel (1914a) revised the genus. He began by synonomizing Gorgopsis bucephala Gerstäcker, 1860 (misprinted in A as G. hucephala), with Z. paradoxa, quoting verbatim, Gerstäcker's description of G. hucephala as that of paradoxa (Hendel 1914a: 292). To Zygaenula, he transferred

Lamprogaster celyphondes Walker. 1859. He also suggested that "Vielleicht gehört hieher auch Orfalis dispila Thomson, 1808 " (ibid: 292 footnote), though he omitted this species from his key to, and discussion on, the genus. He described two species Z. coalescens and Z. hilaris. Thus, as he saw it. Zygaemula comprised the species, paradowa (type species of the genus). celyphoides, coalescens and hlaris, with O, dispila in abeyance. Hendel must have considered that the species he added to Zygaemula had the generic characters of paradoxa.

In 1924. Enderlein (Mits. zool. Mus, Berlin 11: 130) erected the monotypic genus, Mesoctenia for his new species, ralumensis (ihid :131) which he designated as the type species of Mesoctenia. He distinguished his genus from Zygacmula (of which he clamed to have three males and one female of paradowa from Amboinat "durch die Anwesenheit einer Längsreihe kurzer kräftiger dornartiger Borsten auf der Unterseite (aufsen) der etwas verdickten Mittelschenkel".

In 1939, Malloch (Proc. Linn. Soc. N.S.W. 64: 123) discussed both general. From Enderlein's description, he synonomyzed M. raltmensin with 2. coalescens. But he accepted Mesoctenia as a valid genus with 2. conlescens (. M. ralumensis) as its type species. To Mesocternia he transperred Z. celyphoides and Z. hilaris. He left paradoxa in 7.ygacmula as "it is unknown to me", and he ignored O. dispild.

As revised by him, Zygaenula regained its monotypic status with Z. paradora ats its type species, while his enlarged Mesoctenia contained roulescens (type of the genus), celyphoides, and hilaris. Since he admitted knowing nothing of Z. paradoxa, it is difficult to understand how Malloch could distinguish between Zygaenula and Mesoctenia. His reliance on Enderlein appears to be his only reason. His ignoring of O. dispila would seem to indicate that he regarded it as too doubtful for placement in a genus.

Because of the impossibility of making correct decisions based on the above facts alone, the author has been forced to adopt a makeshift arrangement: Zygacmula, as revised by Hendel, is, for the lime being, accepted; Mesoctenia is of doubtful validity.

68. Genus: NAUPODA Osten-Sacken, 1881

Osten-Sacken, 1881 Amm, Soc. ent. France (Ser, 6) 1: 135. Hendel, $1914 \mathrm{a}: 140$: 1914b:295. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 513: 1939 ibid 64: 122.

Type species: Naupoda platessa Osten-Sacken 1882.

$$
\text { *1. N. insularis Paramonov, } 1957
$$

Namperda insularis Paramonov, 1957 Ann. Mag. nat. Hist. (Ser. 12) 10: 781. Distribution: Lord Howe Island (Australia).
2. N. platessa Osten-Sacken, 1882

Naupoda platessa Osten-Sacken, 1882 Berl. ent. Zeit. 26: 223 Fig. 6. Bezzi, 1913 Philippine J. Sci. (D) 8: 321. Hendel, 1914a :141; 1914b :296. Frey, 1930 Notul. ent. Helsingf. 10: 57.

Distribution: Philippines.
*3. N. regina Hendel, 1914
Naupoda regina Hendel, 1914b:298; 1914a:141. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 513. 1939 ibid 64: 122.

Distribution: New Guinea; Queensland (Australia).
4. N. simmondsi Bezzi, 1928

Naupoda simmondsi Bezzi, 1928 Dipt. . . . Fiji :95.
Distribution: Fiji.
5. N. strigifera de Meijere, 1919

Naupoda strigifera de Meijere, 1919 Bijdr. Dierk. 21: 33 Pl. 2, Fig, 13. Bezzi, 1928 Dipt. . . . Fiji :95.

Distribution: Sumatra.
6. N. unifasciata Bezzi, 1917

Naupoda unifasciata Bezzi, 1917 Philippine J. Sci. (D) 12: 141. Frey, 1930 Notul. ent. Helsingf. 10: 57.

Distribution: Philippines.
*7. N. ventralis Curran, 1936
Naupoda ventralis Curran, 1936 Proc. Calif. Acad. Sci. (Ser. 4) 22: 26. Distribution: Solomon Islands.
8. N. ypsilon v. d. Wulp, 1898

Naupoda ypsilon v. d. Wulp, 1898 Tijd. Ent. 41: 206 P1. 10, Fig. 2. Hendel, 1914a :141; 1914b :297.

Distribution: Java.
9. N. ypsilonoides de Meijere, 1924

Naupoda ypsilonoides de Meijere, 1924 Tijd. Ent. 67 (supp.) :42.
Distribution: Java.
69. Genus: PTEROGENIA Bigot, 1859

Bigot, 1859 Rev. Mag. Zool. (Ser. 2) 11: 315 Pl. 11, Figs. 2a-2c. Hendel, 1914a:141; 1914b:304. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 513: 1939 ibid 64: 125.

Type species: Pterogenia singularis Bigot, 1859.

1. P. basilutea (Walker, 1857)

Lamprogaster basilutea Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 131.
f'terogenia basilutea (Walker, 1857) Hendel, 1914a :145; 1914b :329.
Distribution: Borneo.
2. P. bifasciata Enderlein, 1924

P'terogenia bifasciata Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 133.
Distribution: Sumatra.
3. P. boettcheri Frey, 1930

Picrogenia boettcheri Frey, 1930 Notul. ent. Helsingf. 10: 58.
Distribution: Philippines.
*4. P. brevis (Walker, 1865)
Platystoma breve Walker, 1865 J. Proc. Linn. Soc. Lond. 8: 120.
Pierogenia brevis (Walker, 1865) Hendel, 1914a :145; 1914b :325.
Distribution: New Guinea.
5. P. centralis Bezzi, 1917

Pterogenia centralis Bezzi, 1917 Philippine J. Sci. (D) 12: 148. Frey, 1930 Notul. ent. Helsingf. 10: 60.

Distribution: Philippines.
6. P. dayak Bigot, 1859

Pterogenia dayak Bigot, 1859 Rev. Mag. Zool. (Ser. 2) 11: 316 P1. 16. Fig. 2. Hendel, 1914a :145; 1914b:314.

Distribution: Borneo.
7. P. divisa (Walker, 1857)

Lamprogaster divisa Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 131. Pterogenia divisa (Walker, 1857) Hendel, 1914a :146; 1914b :324.

Distribution: Borneo.
8. P. flavicornis Frey, 1930

Pterogenia flavicornis Frey, 1930 Notul. ent. Helsingf. 10: 59.
Distribution: Philippines.
*9. P. fuliginosa Hendel, 1914
Pterogenia fuliginosa Hendel, 1914b:309; 1914a:146. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 126.

Distribution: New Guinea.
10. P. glabra (Walker, 1857)

Lamprogaster glabra Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 30.
Pterogenia glabra (Walker, 1857) Hendel, 1914a :146; 1914b :324.
Distribution: Singapore.
11. P. glabrella Hendel, 1914

Lamprogaster glabra Walker, 1857 pp. J. Proc. Linn. Soc. Lond. 1: 131. Pterogenia glabrella Hendel, 1914b:310; 1914a :146.

Distribution: Sarawak,
12. P. glabrina Hendel, 1914

Lamprogaster glabra Walker, 1857 pp. J. Proc. Linn. Soc. Lond. 1: 131. pterogenia glabrina Hendel, 1914b:318; 1914a:146.

Distribution: Sarawak.
Walker, 1857, under the name of P. glabra included three closelyrelated species-P. glabra, P. glabrella and P. glabrina. Hendel, 1914b distinguished the three species, naming the two which were distinct from glabra.
13. P. guttata (Walker, 1857) (No. 1)

Lamprogaster guttata Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 31. Pterogenia guttata (Walker, 1857) Hendel 1914b :325; 1914a :146.

Distribution: Singapore.
13a. P. guttata (Walker, 1857) (No. 2)
Lamprogaster guttata Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 132.
Plerogenia guttata (Walker, 1857) Hendel, 1914b :326; 1914a:146.
Distribution: Borneo.
In 1857, Walker (loc. cit.) applied the name Lamprogaster guttata to two of his $s p$. now. Whether these are one and the same species, or whether they are distinct, can be determined only after the types have been examined. It will then be possible to place them generically. I know of no evidence to justify Hendel's transference of them to Pterogenia, but this is accepted here for convenience.
14. P. hamifera Frey, 1930

Pterogenia hamifera Frey, 1930 Notul. ent. Helsingf. 10: 58 Pl. 1, Fig. 3. Distribution: Philippines.
*15. P. latericia Hendel, 1914
Pterogenia latericia Hendel, 1914b:312; 1914a:146. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 126.

Distribution: Queensland; New South Wales (Australia).
16. P. laticeps Bezzi, 1917

Pterogenia laticeps Bezzi, 1917 Philippine J. Sci. (D) 12: 145; 1928 Dipt. Fiji :97. Frey, 1930 Notul. ent. Helsingf. 10: 59.

Distribution: Philippines.
17. P. luteipennis Bezzi. 1917

Pterogenia luteipennis Bezzi, 1917 Philippine J. Sci. (D) 12: 147. Frey, 1930 Notul. ent. Helsingf. 10: 59.

Distribution: Philippines.
18. P. niveitarsis (Bigot, 1859)

Agastrodes niveitarsis Bigot, 1859 Rev. Mag. Zool. 11: 312.
Pterogenia niveitarsis (Bigot, 1859) Hendel, 1914b:307; 1914a:146.
Distribution: Ceylon; Borneo.
*19. P. nubecula Hendel, 1914
Pterogenia nubecula Hendel, 1914b:34;1914a:146. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 126.

Distribution: Queensland; New South Wales (Australia).
*20. P. nudiseta Bezzi, 1928
Pterogenia nudiseta Bezzi, 1928 Dipt. Fiji. :97.
Distribution: Lord Howe Island (Australia).
21. P. parva Bezzi, 1917

Pterogenia parva Bea>i, 1917 Philippine J. Sci. (D) 12: 144. Frey, 1930 Notul. ent. Helsingf. 10: 59.

Distribution: Philippines.
*22. P. pectoralis Hendel, 1914
Pterogenia pectoralis Hendel, 1914b:316; 1914a:146. Malloch, 1939 Proc. Lintr. Soc. N.S.W. 64: 126.

Distribution: New Guinea.
23. P. punctata (Walker, 1857)

Lamprogaster punctata Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 132. Pterogenia punctata (Walker, 1857) Hendel, 1914 b :324; 1914a : 146. Distribution: Borneo.
24. P. ruficrus Hendel, 1914

Pterogenia ruficrus Hendel, 1914b :321; 1914a:146. Distribution: Java.
*25. P. scutellaris (Walker, 1859)
Lamprogaster scutellaris Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 112. Pterogenia scutellaris (Walker, 1859) Hendel, 1914b :327; 1914a :146. Distribution: New Guinea.
*26. P. similis Malloch, 1939
Pterogenia similis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 126.
Distribution: Queensland (Australia).
27. P. singularis Bigot, 1859

Pterogenia singularis Bigot, 1859 Rev. Mag. Zool. (ser. 2) 11: 315 Pl .11. Figs. 2a-c. Hendel, 1914a:146; 1914b:305.

Distribution: Amboina, Celebes.
28. P. subcruciata Frey, 1930

Pterogenia subcruciata Frey, 1930 Notul. ent. Helsingf. 10: 60 Pl. 1, Fig. 4. Distribution: Philippines.
29. P. tristis Bezzi, 1917

Pterogenia tristis Bezzi, 1917 Philippine J. Sci.(D) 12: 143. Frey, 1930 Notul. ent. Helsingf. 10: 59.

Distribution: Philippines.
30. P. truncatula (Walker, 1857)

Lamprogaster truncatula Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 31. Pterogenia truncatula (Walker, 1857) Hendel, 1914b :325; 1914a :146.

Distribution: Singapore.
31. P. valida Bezzi, 1917

Pterogenia valida Bezzi. 1917 Philippine J. Sci. (D) 12: 142. Frey, 1930 Notul. ent. Helsingf. 10: 58.

Distribution: Philippines.
32. P. variipennis Walker, 1861

Pterogenia variipennis Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 292. Hendel, 1914a :146; 1914b :326.

Distribution: Moluccas.
33. P. vittata (Walker, 1857)

Lamprogaster vittata Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 31.
Pterogenia vittata (Walker, 1857) Hendel, 1914b :328; 1914a :146.
Distribution: Sumatra; Singapore.
34. P. vittifinis Walker, 1861

Pterogenia vittifinis Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 292. Hendel, 1914a :146; 1914b:327.

Distribution: Moluccas.
35. P. zonata (Walker, 1857)

Lamprogaster zonata Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 30.
Pterogenia zonata (Walker, 1857) Hendel, 1914a :146; 1914b:328.
Distribution: Singapore.

69A. Genus: NEOHEMIGASTER Malloch, 1939
Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 126.
Type species: Hemigaster albovittatus Rondani, 1875.

1. N. albovittata (Rondani, 1875)

Hemigaster albovittatus Rondani, 1875 Ann. Mus. Stor. nat. Genova 7: 431.
Pterogenia albovittata (Rondani, 1875) Hendel, 1914b:322.
Neohemigaster albovittata (Rondani, 1875) Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 127.

Distribution: Borneo.

69B. Genus: CHAETOSTICHIA Enderlein, 1924
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 133.
Type species: Chaetostichia aduncivena Enderlein, 1924.

1. C. aduncivena Enderlein, 1924

Chaetostichia aduncivena Enderlein, 1924 (ibid) 11: 134.
Distribution: Java.
70. Genus: EUPROSOPIA Macquart, 1847

Macquart, 1847 Dipt. exot. supp. 2: 89. Hendel, 1914a:147; 1914b :329. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 136. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 343; 1928 ibid 53: 612; 1929 ibid 54: 512; 1939 ibid 64: 145; 1931 Proc. U.S. nat. Mus. 78 (15): 1.

Type species: Euprosopia tenuicornis Macquart, 1847.

1. E. albifacies (Doleschall, 1858)

Pachycephala albifacies Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 117.
Euprosopia albifacies (Doleschall, 1858) Hendel, 1914a :149; 1914b :360.
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 136.
Distribution: Amboina.
*2. E. albolineata de Meijere, 1913
Euprosopia albolineata de Meijere, 1913 Nov. Guin. 9: 367 Pl. 10, Fig. 39. Hendel, 1914a : 149; 1914b:345.

Distribution: New Guinea.
*3. E. alticeps Malloch, 1940
Euprosopia alticeps Malloch, 1940 Ann. Mag. nat. Hist. 6: 81.
Distribution: Solomon Islands.
4. E. atomaria (Walker, 1861)

Platystoma atomaria Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 293. Euprosopia atomaria (Walker, 1861) Hendel, 1914a:149.

Distribution: Moluccas.
*5. E. aureovitta Malloch, 1939
Euprosopia aureovitta Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 151 Pl. 5, Fig. 42.

Distribution: New Guinea.
*6. E. australis (Walker, 1849)
Platystoma australe Walker, 1849 List Dipt. Brit. Mus. 4: 1061.
Euprosopia australis (Walker, 1849) Hendel, 1914a :149; 1914b :363.
Distribution: Australia (sic.).
7. E. basalis (Walker, 1860)

Platystoma basale Walker, 1860 J. Proc. Linn. Soc. Lond. 4: 148.
Euprosopia basalis (Walker, 1860) Hendel, 1914a :149; 1914b :361.
Distribution: Celebes.
*8. E. biarmata Malloch, 1929
Euprosopia biarmata Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 512; 1930 ibid 55: 431.

Distribution: Queensland (Australia).
*9. E. bilineata de Mcijere, 1906
Euprosopia bilineata de Meijere, 1906 Nov. Guin. 5 zool. Dipt. :92 Pl. 1, Fig. 14. Hendel, 1914a :149; 1914b :349. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 149 Pl. 5, Fig. 35.

Distribution: New Guinea.
10. E. brevicornis Hendel, 1914

Euprosopia brevicornis Hendel, 1914b :335; 1914a :149.
Distribution: Borneo.

11. E. calypterata Enderlein, 1912

Euprosopia calypterata Enderlein, 1912 Zool. Jahrb. 33: 359 Fig. D. Hendel, 1914a : 149; 1914b :350.

Distribution: Sumatra.
12. E. chalybea Frey, 1930

Euprosopia chalybea Frey, 1930 Notul. ent. Helsingf. 10: 60 Pl. 1, Fig. 6. Distribution: Philippines.
*13. E. conjuncta Hendel, 1914
Euprosopia conjuncta Hendel, 1914b :339; 1914a :149. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 345; 1929 ibid 54: 512; 1930 ibid 55: 429. Distribution: Queensland; Northern Territory (Australia).
*14. E. connexa Malloch, 1940
Euprosopia connexa Malloch, 1940 Ann. Mag. nat. Hist. 6: 79. Distribution: Solomon Islands.

> 15. E. curta (Osten-Sacken, 1882)

Notopsila curta Osten-Sacken, 1882 Berl. ent. Z. 26: 210.
Euprosopia curta (Osten-Sacken, 1882) Hendel, 1914a:149; 1914b:332. Bezzi, 1917 Philippine J. Sci. (D) 12: 149. Frey, 1930 Notul. ent. Helsingf. 10: 62.

Distribution: Philippines; Taiwan.
*16. E. depressifrons Malloch, 1940
Euprosopia depressifrons Malloch, 1940 Ann. Mag. nat. Hist. 6: 86.
Distribution: Solomon Islands.
17. E. dorsata Hendel, 1914

Euprosopia dorsata Hendel, 1914b:340; 1914a:149. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 9.

Distribution: Ceylon, Philippines.
*18. E. dubitalis Malloch, 1939
Euprosopia dubitalis Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 149 Pl. 5, Fig. 33.

Distribution: New Guinea.
19. E. frontalis (Walker, 1861)

Platystoma frontale Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 268.
Euprosopia frontalis (Walker, 1861) Hendel, 1914a :149; 1914b :362.
Distribution: Celebes.
*20. E. fusifacies (Walker, 1859)
Platystoma fusifacies Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 113.
Euprosopia fusifacies (Walker, 1859) Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genova 16: 473. Hendel, 1914a :149; 1914b :347. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 151 Pl. 5, Fig. 41.
Euprosopia squamifera de Meijere, 1913 Nov. Guin. 9: 368 Pl. 10, Fig. 40.
Distribution: New Guinea.
21. E. gigas Bezzi, 1917

Euprosopia gigas Bezzi, 1917 Philippine J. Sci. (D) 12: 151. Frey, 1930 Notul. ent. Helsingf. 10: 62.

Distribution: Philippines.
*22. E. impingens (Walker, 1865)
Platystoma impingens Walker, 1865 J. Proc. Linn. Soc, Lond. 8: 134.
Euprosopia impingens (Walker, 1865) Hendel, 1914b :345; 1914a :149. Edwards, 1915 Trans. zool. Soc. Lond. 20: 416. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 151 Pl. 5, Fig, 40.
Lepidocompsia impingens (Walker, 1865) Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 137.

Distribution: New Guinea.
The status of Enderlein's monotypic genus, Lepidocompsia, cannot at present be determined.
*23. E. innocua Malloch, 1939
Euprosopia innocua Malloch, 1939 Proc. Limn. Soc. N.S.W. 64: 152 Pl. 5, Fig. 43.

Distribution: New Guinea.
Malloch (ibid) suggests that this species is possibly Tetrachaetina burgersiana Enderlein, 1924 q.v.
*24. E. insulicola Malloch, 1940
Euprosopia insulicola Malloch. 1940 Ann. Mag. nat. Hist. 6; 84.
Distribution: Solomon Islands.
*25. E. lepida Curran, 1936
Euprosopia lepida Curran, 1936 Proc. Calif. Acad. Sci. (4th Scr.) 22 (1): 25 Pl. 1, Fig. 2.

Distribution: Guadalcanal Islands (Solomon Islands).
26. E. Iepidophora Bezzi, 1917

Euprosopia lepidophora Bezzi, 1917 Philippine J. Sci. (D) 12: 153. Frey, 1930 Notul, ent. Helsingf. 10: 47.

Distribution: Philippines.
27. E. Iongicornis Bezzi, 1917

Euprosopia longicornis Bezzi. 1917 Philippine J. Sci. (D) 12: 154. Frey, 1930 Notul. ent. Helsingf. 10: 62. Malloch. 1931 Proc. U.S. nar. Mus. 78 (15): 9.

Distribution: Philippines.
*28. E. macrotegularia Malloch, 1928
Euprosopia macrotegularia Malloch, 1928 Proc. Linn. Soc. N.S.IV. 53: 345 Fig. 1; 1929 ibid 54: 512; 1930 ibid 55: 430.

Distribution: Queensland (Australia).
*29. E. maculipennis (Guérin), 1831
Platystoma maculipennis Guérin, 1831 Voy. Coquille Liv. 24, PI. 21, Fig. 8, p. 299.
Euprosopia maculipennis (Guérin, 1831) Hendel, 1914b:358; 1914a :149. Enderlein, 1924 Mitt, zool. Mus. Berlin 11: 136. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 346; 1928 ibid 53: 612; 1930 ibid 55: 430.

Distribution: Queensland (Australia).
For details of publication date of E. maculipennis see Musgrave, 1932 Bibliography of Australian Entomology 1775-1930 p. 133.
30. E. metallica Malloch, 1931

Euprosopia metallica Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 6.
Distribution: Philippines.
*31. E. miliaria? Hendel, 1914
Platystoma pectorale Walker, 1862 J. Proc. Lirtn. Soc, Lond. 6: 13.
Euprosopia miliaria Hendel, 1914b:353; 1914a :149. Malloch, 1928
Proc. Linn. Soc. N.S.W. 53: 346; 1929 ibid 54: 512; 1939 ibid 64: 148. Distribution: New Guinea; Queensland (Australia).
Some doubt attaches to the specific name. Walker (1862) described this species as Platystoma pectorale. Although Hendel (b) was aware of this, when he transferred the species to Euprosopia, he substituted the specific name miliaria for pectorale, but gave no reasons for doing so. Neither Malloch (1928) could, nor Steyskal (in correspondence) can, give any explanation for his action.

Since attempted restoration of pectorale would only further cloud the issue, miliaria is here temporarily retained.
32. E. millepuncta Bezzi, 1917

Euprosopia millepuncta Bezzi, 1917 Philippine J. Sci. (D) 12: 152. Frey, 1930 Notul. ent. Helsingf. 10: 62. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 10.

Distribution: Philippines.
*33. E. minor Malloch, 1940
Euprosopia minor Malloch, 1940 Ann. Mag. nat. Hist. 6: 82.
Distribution: Solomon Islands.
*34. E. minuta Malloch, 1939
Euprosopia minuta Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 148 Pl. 5, Fig. 32.
Distribution: New Guinea.

> 35. E. mohnikei (Doleschall, 1858)

Pachycephala mohnikei Doleschall, 1858 Nat. Tijd. Ned. Ind. 17: 116.
Notopsila mohnikei (Dol. 1858) Osten-Sacken, 1882 Berl. ent. Z. 26: 209.
Oncoscelia molnikei (Dol. 1858) Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 136.
Euprosopia mohnikei (Dol. 1858) Hendel, 1914a:150; 1914b :359.
Distribution: Amboina.
See note under Notopsila.
*36. E. multivitta (Walker, 1859)
Platystoma multivitta Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 113.
Euprosopia multivitta (Walker, 1859) Hendel, 1914b :362; 1914a:150.
Distribution: New Guinea.
37. E. nobilis Frey, 1930

Euprosopia nobilis Frey, 1930 Notul. ent. Helsingf. 10: 61 Pl. 1, Fig. 5. Distribution: Philippines.
*38. E. penicillata Hendel, 1914
Euprosopia penicillata Hendel, 1914b:343; 1914a :150. Edwards, 1915 Trans. zool. Soc, Lond. 20: 416. Malloch, 1939 Proc. Linn. Soc, N.S.W. 64: 151.

Distribution: New Guinea.
*39. E. potens (Walker, 1862)
Platystoma potens Walker, 1862 J. Proc. Linn. Soc. Lond. 6: 12.
Euprosopia potens (Walker, 1862) Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genova 16: 472. de Meijere, 1913 Nov. Guin. 9: 369. Hendel, 1914a:150; 1914b:341. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 150 Pl. 5, Fig. 37.

Distribution: New Guinea; Moluccas.
40. E. producta (Walker, 1861)

Platystoma productum Walker, 1861 J. Proc. Linn. Soc. Lond. 5: 293.
Euprosopia producta (Walker, 1861) Hendel, 1914a :150; 1914b :361.
Distribution: Moluccas.
*41. E. protensa (Walker, 1864)
Platystoma protensa Walker, 1864 J. Proc. Linn. Soc. Lond. 7: 228.
Euprosopia protensa (Walker, 1864) Hendel, 1914a:150; 1914b :344.
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 136. Malloch, 1939 Proc.
Linn. Soc. N.S.W, 64: 150 Pl. 5, Fig. 36.
Distribution: New Guinea.
*42. E. punctifacies Malloch, 1928
Euprosopia punctifacies Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 346 Fig. 2; 1929 ibid 54: 512; 1930 ibid 55: 430.

Distribution: Queensland (Australia).
*43. E. rufiventris Hendel, 1914
Euprosopia rufiventris Hendel, 1914b :334; 1914a : 150. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 148.

Distribution: New Guinea.
*44. E. scatophaga Malloch, 1930
Euprosopia scatophaga Malloch, 1930 Proc. Linn. Soc. N.S.W. 55: 431; 1931 Proc. U.S. nat. Mus. 78 (15): 7.

Distribution: Queensland (Australia).
45. E. semiarmata Malloch, 1931

Euprosopia semiarmata Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 3.
Distribution: Philippines.
*46. E. separata Hendel, 1914
Euprosopia separata Hendel, 1914b :338; 1914a :150. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 344. 1929 ibid 54: 512.

Distribution: Queensland (Australia).
*47. E. setinervis Malloch, 1939
Euprosopia setinervis Malloch. 1939 Proc. Linn. Soc. N.S.IT. 64: 149 Pl. 5, Fig. 34.

Distribution: New Guinea.
48. E. sexpunctata (Osten-Sacken, 1882)

Notopsila sexpunctata Osten-Sacken, 1882 Berl. ent. Z. 26: 210.
Euprosopia sexpunctata (Osten-Sacken, 1882) Hendel, 1914b :359; 1914a :150. Bezzi, 1917 Philippine J. Sci. (D) 12: 149. Frey, 1930 Notul. ent. Helsingf. 10: 61. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 8.

Distribution: Moluccas; Philippines.
49. E. tarsalis (Walker, 1864)

Platystoma tarsale Walker, 1864 J. Proc. Linn. Soc. Lond. 7: 237.
Euprosopia tarsalis (Walker, 1864) Hendel, 1914b :360; 1914a:150.
Distribution: Moluccas.
*50. E. tegularia Malloch, 1928
Euprosopia tegularia Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 346. Fig. 3. Distribution: Solomon Islands.

*51. E. Tenuicornis Macquart, 1847

Euprosopia tenuicornis Macquart, 1847 Dipt. cxot. supp. 2: 90 Pl. 6, Fig. 4. Hendel, 1914a :150; 1914b :336. Enderlein, 1924 Mitt, zool. Mus. Berlin 11: 136. Malloch, 1928 Proc. Linn. Soc. N.S.W. 53: 612; 1930 ibid 55: 430; 1931 Proc. U.S. nat. Mus. 78 (15): 7.

Distribution: Queensland; New South Wales (Australia).

*52. E. tigrina Osten-Sacken, 1881

Euprosopia tigrina Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genowa 16: 473. Hendel, 1914a:150;1914b:331. Malloch, 1929 Proc. Linn. Soc. N.S.W. 54: 513; 1939 ibid 64: 147.

Distribution: New Guinea.
53. E. trivittata Bezzi, 1917

Euprosopia trivittata Bezzi, 1917 Philippine J. Sci. (D) 12: 150. Frey, 1930 Notul. ent. Helsingf. 10: 61. Malloch, 1931 Proc. U.S. nat. Mus. 78 (15): 10.

Distribution: Philippines.
54. E. '? Truncata (Enderlein, 1924) (conj. nov.)

Oncoscelia truncata Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 137.
Distribution: Celebes.
See note at end of '? Notopsia.
*55. C. ventralis (Walker, 1859)
Lamprogaster ventralis Walker, 1859 J. Proc. Linn. Soc. Lond. 3: 131.
Euprosopia ventralis (Walker, 1859) Hendel, 1914b:343: 1914a :150. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 150 Pl. 5, Figs. 38, 39.

Distribution: New Guinea.
70A. Genus: ? NOTOPSILA Osten-Sacken, 1882
Osten-Sacken, 1882 Berl. ent. Z. 26: 209.
The validity or otherwise of this genus has yet to be determined. It was erected by Osten-Sacken (loc. cit.) as a nom. nov. for Pachycephala Doleschall, 1858 (Nat. Tijd. Ned. Ind. 17: 116-Pachycephala molnikei) which was pre-occupied in Aves by Pachycephala Vigors, 1825.

Having overlooked Osten-Sacken's change, Enderlein in 1924 (Mitt. zool. Mus. Berlin 11: 136) erected his genus Oncoscelia to replace Pachycephala Doleschall, designating P. mohnikei Dol., 1828 as the type species. At the same time, he transferred the Ceylonese species. Euprosopia
nigropunctata Hendel, 1914 (Ahh. zool.-bot. Ges. Wien 8: 356) to Oncoscelia and described as sp. nov. O. truncata from the Celebes (ibid 11: 137).

As N. nigropunctata does not occur in the area covered by this catalogue, no further consideration of it is necessary. Hendel's placement of mohnikei is accepted, and a new combination, Euprosopia truncata is proposed for Oncoscelia truncata Enderlein, until the matter has been cleared up.

70B. Genus: ? TETRACHAETINA Enderlein, 1924 (Monotypic)
Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 138.
Type species: T. burgersiana Enderlein, 1924.
*1. T. burgersiana Enderlein, 1924
Tetrachactina burgersiana Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 138.
Distribution: New Guinca.
This genus is doubtful. Malloch, 1939 (Proc. Linn. Soc. N.S.W. 64: 153) claimed that it "is not tenable"; he also suggested that his own Euprosopia innocua (Malloch, 1939 ibid) might be a synonym of T. burgersiana. Tetrachaetina will probably later be rejected as a synonym of Euprosopia.
76. Genus: EUTHYPLATYSTOMA Hendel, 1914

Hendel, 1914b :398.
Type species: Platystoma rigidum Walker, 1857.

1. E. plumatum Hendel, 1914

Euthyplatystoma plumatum Hendel, 1914b :399; 1914a :160.
Distribution: Singapore.
2. E. rigidum (Walker, 1857)

Platystoma rigidum Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 32.
Euthyplatystoma rigidum (Walker, 1857) Hendel, 1914b:398; 1914a ; 160 Pl. 15, Fig. 284. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 153.

Distribution: India; Singapore; Celebes.
3. E. superbum (v. d. Wulp, 1881)

Platystoma superbum v. d. Wulp, 1881 Dipt. Sumatra Exped. :50 PI. 3, Fig. 5.
Euthyplatystoma superbum (v. d. Wulp, 1881) Hendel, 1914b:401; 1914a $: 160$.

Distribution: Sumatra.
77. Genus: VALONIA Walker, 1857 (Monotypic)

Walker, 1857 J. Proc. Linn. Soc. Lond. 1: 34.
Type species: Valonia complicata Walker, 1857.

1. V. complicata Walker, 1857

Valonia complicata Walker, 1857 J, Proc. Linn. Soc. Lond. 1: 34 Pl. 1, Fig. 6. Hendel, 1914a:161; 1914b :402. Enderlein, 1924 Mitt. zool. Mus. Berlin 11: 150.

Distribution: Singapore.

II. Sub-family: Otitinae

Type genus: Otites Latreille, 1804 Nouv. Dict. Hist. nat. 24: 196.

1. Genus: CERATOXYS Rondani, 1861

Rondani, 1861 Dipt. Ital. Prodr. 4: 10. Curran, 1934 Fam. Gen. N. Amer. Dipt. :281.

Ceratoxys was proposed by Rondani to replace Meckelia R.-D., 1830 (Mém. Prés. Acad. Sci. Paris 2: 714) which was pre-occupied by Meckelia Leucart, 1828 (Vermes). Anacampta Loew, 1868 (Z. Naturw. Berlin 32: 7) is a synonym.

> 1. C. latiuscula (Loew, 1873)

Anacampta latiuscula Loew, 1873 Smithson. misc. Coll. 11 (3): 130.
Distribution: North America (introduced into Hawaii).

III. Sub-family: Ulidinae

Type genus: Ulidia Meigen, 1826 Syst. Beschr. Eur. zweifl. Ins. 5: 385.
3. Genus: PHYSIPHORA, Fallén, 1810

Fallén, 1810 Sp. Ent. nov. Dipt. Dispon. Methodus:11.
Syn.: Chrysomyza Fallén, 1817 Dipt. Suec. Scenopinii :3.
Type species: Musca demandata Fabricius, 1798.
Until recently this genus has been wrongly known as Chrysomyza Fallén, 1817. After crecting Physiphora in 1810, Fallén thought that it was pre-occupied (which it was not), and suggested Chrysomyza in 1817 as a substitute. Since Physiphora is valid, Chrysomyza is to be rejected as a synonym.
*1. P. aenea (Fabricius, 1794)
Musca aenea Fab., 1794 Ent. Syst. 4: 335.
Chrysomyza aenea (Fab., 1794) Hendel, 1910 Gen. Ins. 106: 21 (for all references up to 1909).
Chrysomyza sp. Grimshaw, 1902 Fauna Hawaiiensis 3 (2): 85 (probably C. aenea).

Chrysomyza aenea (Fab., 1794) Bezzi, 1913 Philippine J. Sci. (D) 8: 321. Knab, 1916 Brooklyn ent. Soc. Bull. 11: 43 Fig. 1. Hardy, 1920 Proc. Linn. Soc. N.S.W. 45: 472 (? Identification). Malloch, 1930 Ins. Samoa 6 (5): 215. Curran, 1934 N. Amer. Dipt. :277 Figs. 27, 46. Hennig, 1941 Ent. Beihefic 8: 117. Malloch, 1942 B.P. Bishop Mus. Bull. 172: 205.
Physiphora acnea (Fab., 1794) Steyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 285.

Distribution: India; Java; Sumatra: Borneo; New Guinea; New South Wales; Queensland; Northern Territory (Australia): New Calcdonia; New Hebrides; Solomon Islands; Philippines; Taiwan; Samoa; Marshall Islands: Marianas Islands; Guam; Hawaii.

All records of this species need careful checking since it is easily confused with P. demandata (Fab., 1798).
*2. P. aperta Steyskal, 1952
Physiphora aperta Steyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 285 Figs. 1a, b.

Distribution: Solomon Islands.
*3. P. demandata (Fab., 1798)

Musca demandata Fabricius, 1798 Ent. Syst. (Suppl.) :564.
Chrysomyza demandata (Fab., 1798) Hendel, 1910 Gen. Ins. 106: 21. Knab, 1916 Brooklyn ent. Soc. Bull. 11: 41 Fig. 2.
Physiphora demandata (Fab., 1798) Steyskal, 1952 Occ. Pap. B.P. Bishop Mirs. 20 (15): 284.

Distribution: Cosmopolitan: Europe; Africa: North America; Australia.

The one Australian record for this species consists of specimens caught and identified by me in various parts of South Australia. I have also reared adults from larvae infesting wet. badly-made ensilage. Despite wide collecting over more than forty years, I have not seen, in South Australia, a single specimen of aenea. These facts suggest to me the possibility that some at
least of the specimens recorded from Australia as aenea may well be misidentifications. The two species may be readily distinguished by the wing venation. Knab, 1916 (Brooklyn ent. Soc. Bull. 11: 43 Figs. 1, 2) gives good illustrations of the wings of both.

4. Genus: EUXESTA Loew, 1867

Loew, 1867 Berl. ent. Zeit. 11: 297 Pl. 2, Figs. 7-20. Hendel 1910 Gen. Ins. 106: 22 (see for all references prior to 1909). Malloch, 1930 Ins. Samoa 6 (5): 215; 1932 B.P. Bishop Mus. Bull. 98: 208. Curran, 1934 N. Amer. Dipt. :277 Figs. 64; 85.

Type species: Urophora quadrivittata Macquart, 1835.

1. E. hyalipennis Malloch, 1932

Euxesta hyalipennis Malloch, 1932 B.P. Bishop Mus. Bull. 98: 209. Steyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 280.

Distribution: Marquesas Islands.
2. E. lafooni Steyskal, 1952

Euxesta lafooni Steyskal. 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 280. Distribution: New Hebrides.
3. E. pruinosa Malloch, 1932

Euxesta pruinosa Malloch, 1932 B.P. Bishop Mus, Bull. 98: 210. Steyskal. 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 282.

Distribution: Marquesas Islands.
4. E. quadrivittata (Macquart, 1835)

Urophora quadrivittata Macquart, 1835 Hist. nat. Dipt. 2: 456.
Euxesta quadrivittata (Macquart, 1835) Knab, 1916 Brooklyn ent. Soc.
Bull. 11: 44. Stcyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 282. E. exilis Knab, 1916 (loc. cit.).

Distribution: Florida; Cuba; Jamaica (introduced into Hawaii and Philippines).
5. E. semifasciata Malloch, 1930

Euxesta semijasciata Malloch, 1930 Ins. Samoa 6 (5): 216 Fig. 1.
Distribution: Ellice Islands.
The possibility that one or more of the species, hyalipennis, lafooni, pruinosa, and semifasciata may be introductions from Central America or the Caribbean area should not be overlooked.
7. Genus: PSEUDEUXESTA Hendel, 1910

Hendel, 1910 Gen. Ins. 106: 30.
Type species: Pseudeuxesta prima (Osten-Sacken, 1881).
*1. P. prima (Osten-Sacken, 1881)
Pseudeuxesta prima Osten-Sacken, 1881 Ann. Mus. Stor. nat. Genova 16: 470.

Euxesta semifasciata Malloch, 1930 Ins. Samoa 6 (5): 216.
Pseudeuxesta prima (Osten-Sacken, 1881) Hendel, 1910 Gen. Ins. 106: 32;
1931 Verh, zool.-bot. Ges. Wien 81: 4. Malloch, 1939 Proc. Linn. Soc. N.S.W. 64: 98. Steyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 286.

Distribution: Celebes; Seychelles; Ceram; New Guinea; Solomon Islands; Palau Islands; Truk Islands; Marshall Islands; Marianas Islands; Hawaii.

17. Genus: ACROSTICTA Loew, 1867

Loew, 1867 Berl. ent. Z. 11: 293 Pl. 2, Fig. 5; 1873 Smithson. misc. Coll. 11 (3): 151. Hendel, 1910 Gen. Ins. 106: 50.

Type species: Acrosticta scrobiculata Loew, 1867.

1. A. apicalis (Williston, 1896)

Euxesta apicalis Williston, 1896 Trans. ent. Soc. Lond. 12: 375 PI. 12, Fig. 128.
Acrosticta pallipes Grimshaw, 1901 Fauna Hawaiiensis 3 (1): 44; 1902 ibid 3 (2): 85. Hendel, 1910 Gen. Ins. 106: 52. Bezzi, 1928 Dipt. Fiji :89. Acrosticta apicalis (Williston, 1896) Malloch, 1930 Ins. Samoa 6 (5): 217; 1932 B.P. Bishop Mus. Bull. 98: 206. Bryan, 1934 Proc. Haw. ent. Soc. 8 (3): 430. Steyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20 (15): 279.

See Steyskal, 1952 for complete bibliography.
Distribution: West Indies; (introduced into Hawaii).
21. Genus: NOTOGRAMMA Loew, 1867

Loew, 1867 Berl. ent. Z. 11: 289; 1873 Smithson. misc. Coll. 3: 148. Hendel, 1910 Gen. Ins. 106: 58.

Type species: Notogramma cimiforme Loew, 1867.

1. N. cimiforme Loew, 1867

Notogramma cimiformis Loew, 1867 Berl, ent. Z. 11: 289. Loew, 1867 described N. cimiformis; in 1873 (Smithson. Misc. Coll. 11 (3): (148) he mistakenly synonymized it with N. stigma (Fab., 1798). Since then, both species have been confused. Steyskal, 1963 (Proc. ent. Soc. Wash. 65: 196) has distinguished the two species and emended cimiformis to cimiforme in conformity with the gender of Notogramma. N. stigma has never been correctly recorded from any Pacific Island; all such records should be referred to N. cimiforme. (See Steyskal, loc. cit. for complete bibliography.)

Distribution: West Indies; Central and South America. (Introduced into the following places: Hawaii; Marianas Islands; Guam; Palau Islands and Wake Island.)

APPENDIX

GENERA OF ULIDIINAE ERECTED AFTER 1910

Hendel's work on the sub-family, Ulidiinae, appeared in 1910 (Gen. Ins. fascicle 106). Since that year, three new genera were erected by Malloch who, however, did not refer them to Hendel's arrangement of genera. In these circumstances, I am unable to do so, and therefore present them in this appendix.

1. Genus: HETERODOXA Malloch, 1932

Malloch, 1932 B.P. Bishop Mus. Bull. 98: 211.
Type species: Heterodoxa uapouae Malloch, 1932.

1. H. fatuhivae Malloch, 1932

Heterodoxa fatuhivae Malloch, 1932 ibid 98: 214 Fig. 49d.
Distribution: Marquesas Islands.
2. H. hivaoae Malloch, 1932

Heterodoxa hivaoae Malloch, 1932 ibid 98: 213 Fig. 49b.
Distribution: Marquesas Islands.
3. H. uahukae Malloch, 1932

Heterodoxa uahukae Malloch, 1932 ibid 98: 214 Fig. 49c.
Distribution: Marquesas Islands,
4. H. uapouac Malloch, 1932

Heterodoxa uapouae Malloch, 1932 ibid 98: 212 Fig. 49a.
Distribution: Marquesas Islands.
2. Genus: NEOEUXESTA Malloch, 1930

Malloch, 1930 Ins. Samoa 6 (5): 218.
Type species: Neoeuxesta fumicosta Malloch, 1930.

1. N. fumicosta Malloch, 1930

Neoeuxesta fumicosta Malloch, 1930 ibid 6 (5): 218. Steyskal, 1952 Occ.
Pap. B.P. Bishop Mus. 20: 283.
Distribution: Samoa.
2. \mathbf{N}. guamana Steyskal, 1952

Neoeuxesta guamana Steyskal, 1952 ibid 20: 283 Fig. 1d.
Distribution: Guam.
3. Genus: PERISSONEURA Malloch, 1932

Malloch, 1932 B.P. Bishop Mus. Bull. 98: 207.
Type species: Perissoneura diversipennis Malloch, 1932.

1. P. diversipennis Malloch, 1932

Perissoneura diversipennis Malloch, 1932 ibid 98: 207 Fig. 28. Steyskal, 1952 Occ. Pap. B.P. Bishop Mus. 20: 284.

Distribution: Marquesas Islands.

INDEX TO GENERA

Achiosoma
Antineura
Acrosticta
A pactoneura
Asyntona
Brea
Ceratoxis
Chaetorivellia
Chaetostichia
Cleitamia
Cleitamoides
Conicipithea
Dasyortalis
Duomyia
Elassogaster
Euprosopia
Euthyplatystoma
Euxesta
Euxestomoea
Guamomyia
Heterodoxa
Icteracantha
Imugana
Laglaisia
Lamprogaster
Lamprophthalma
Lasioxiria
Lenophila
Lepidocompsia
Loriomyia
Loxoneuroides
Loxonevra
Meringomeria
Mesoctenia
Microepicausta
Mindanaia
Montrouziera
Naupoda
Neoeuxesta
Neohemigaster
Notogramma
Notopsila
Perissoneura
Peronotrochus
Philocompus
Plysiphora
Picrometopus

Achias Fabricius, 1805 39
Page
Hendel, 1914 39
Osten-Sacken, 1881 6
Locw, 1867 78
Malloch, 1930 10
Osten-Sacken, 1881 57
Walker, 1859 54
Rondani, 1861 75
de Meijere, 1913 55
Enderlein, 1924 65
Macquart, 1835 28
Malloch, 1939 27
Hendel, 1914 6
Hendel, 1914 55
Walker, 1859 19
Bigot, 1859 15
Macquart, 1847 66
Hendel, 1914 74
Loew, 1867 77
de Meijere, 1913 37
Malloch, 1942 26
Malloch, 1932 80
Hendel, 1912 19
Enderlein, 1937 15
Bigot, 1880 30
Macquart, 1843 42
Portschinsky, 1892 9
Hendel, 1914 5
Guérin, 1843 49
Enderlein, 1924 68
Kertész, 1899 31
Hendel, 1914 32
Macquart, 1835 38
Enderlein, 1924 14
Enderlein, 1924 58
Hendel, 1914 18
Malloch, 1931 18
Bigot, 1860 49
Osten-Sacken, 1881 59
Malloch, 1930 80
Malloch, 1939 65
Loew, 1867 78
Osten-Sacken, 1882 73
Malloch, 1932 81
Enderlein, 1924 15
Osten-Sacken, 1881 6
Fallen, 1810 75
Frey, 1930 18
Page
Plagiostenopterina Hendel, 1914 10
Poecilotraphera Hendel, 1914 4
Pogonortalis de Meijere, 1911 32
Pseudepicausta Hendel, 1914 23
Pseudeuxesta Hendel, 1910 78
Pseudocleitamia Malloch, 1939 8
Pseudorichardia Hendel, 1911 53
Pterogenia Bigot, 1859 61
Rhegmatosaga Frey, 1930 49
Rhytidortalis Hendel, 1914 26
Rivellia Robineau-Desvoidy, 1830 33
Scelostenopterina Hendel, 1914 18
Scholastes Loew, 1873 51
Scotinosoma Loew, 1873 25
Tetrachaetina Enderlein, 1924 74
Tropidogastrella Hendel, 1914 57
Tylopterna Bezzi, 1917 49
Valonia Walker, 1857 75
Xenaspis Osten-Sacken, 1881 8
Xenaspoides Frey, 1930 9
Xenognathus Malloch, 1930 30
XiriaWalker, 18574
Zealandortalis Malloch, 1930 37
Zygaenula Doleschall, 1858 57

INDEX TO SPECIES

Page
A
abana Curran, 1929 (Rivellia) 33
addens (Walker, 1860) (Conicipithea) 6
aduncivena Enderlein, 1924 (Chaetostichia) 65
aenea (Wiedemann, 1819) (Plagiostenopterina) 11
aenea (Fabricius, 1794) (Physiphora) 76
aeneus de Meijere, 1906 (Philocompus) 6
aequifera (Walker, 1862) (Rivellia) 33
affinis Hendel, 1914 (Rivellia) 33
aitapensis Malloch, 1939 (Scholastes) 51
albertisi Osten-Sacken, 1881 (Achias) 39 39
albifacies (Doleschall, 1858) (Euprosopia) 66
albolineata de Meijere, 1913 (Euprosopia) 66
albopilosus de Meijere, 1915 (Elassogaster) 16
albovittata (Rondani, 1875) (Neohemigaster) 65
alticeps Malloch, 1940 (Euprosopia) 66
amabalis Osten-Sacken, 1881 (Cleitamia) 28
amitina Frey, 1930 (Lamprogaster) 42
amplividens Walker, 1859 (Achias) 39
angulata Hendel, 1914 (Pseudepicausta) 23
angusta Enderlein, 1924 (Lamprogaster) 42
angustifrons Hendel, 1914 (Dasyortalis) 55
angustilimbata de Meijere, 1915 (Brea) 54
annulipes Hendel, 1914 (Duomyia) 19
antica Walker, 1857 (Xiria) 4
aperta Steyskal, 1952 (Physiphora) 76
apicalis Malloch, 1939 (Pseudepicausta) 23
apicalis (Walker, 1849) (Lamprogaster) 42
apicalis (Williston, 1896) (Acrosticta) 78
apictipennis Hennig, 1940 (Achias) 40
aristalis Bezzi, 1928 (Pseudorichardia) 53
armata Malloch, 1931 (Plagiastenopterina) 11
aspiciens (Walker, 1864) (Achiosoma) 39
astrolabei (Boisduval, 1833) (Cleitamia) 28
atomaria (Walker, 1861) (Euprosopia) 66
attemuata (Malloch, 1931) (Scotinosoma) 26
aureovitta Malloch, 1939 (Euprosopia) 66
austeni Sharp, 1900 (Lamprogaster) 43
australis Malloch, 1939 (Achias) 40
nustralis (Walker, 1849) (Euprosopia) 66
azurea Hendel, 1914 (Duomyia) 19
B
barhata Hendel, 1914 (Dasyortalis) 55
basalis (Walker, 1849) (Plagiostenopterina) 11
basalis (Walker, 1860) (Euprosopia) 66
basalis (Walker, 1861 (Lamprogaster) 43
Page
basalis Enderlein, 1924 (Brea) 54
basilaris (Wiedemann, 1830) (Rivellia) 33
basilutea (Walker, 1857) (Pterogenia) 61
hataviensis (Schiner, 1868) (Pseudepicausia) 23
bezziana Steyskal, 1952 (Pseudorichardia) 53
biarciata (Walker, 1865) (Cleitamia) 28
biarmata Malloch, 1929 (Euprosopia) 67
bicolor Macquart. 1847 (Lamprogaster) 4.3
bicolor Frey, 1930 (Picrometopus) 18
bifasciata Enderlein, 1924 (Pterogenia) 61
bilineala de Meijere, 1906 (Euprosopia) 67
bimaculatus Hendel, 1914 (Scholastes) 51
bipunctata Hendel, 1914 (Euxestonoea) 37
biroi de Meijere, 1906 (Antineura) 7
biroi Hendel, 1914 (Laglaisia) 31
bistrigata Hendel, 1914 (Scotinosoma) 26
boettcheri Frey, 1930 (Plerogenia) 61
brachyophthalmus Walker, 1865 (Achias) 40
brevicomis Hendel, 1914 (Euprosopia) 67
brevis (Walker, 1865) (Pterogenia) 61
bryani Malloch, 1930 (Xenognathus) 3()
burgersiana Enderlein, 1924 (Tetrachaetina) 74
C
caerulea (Macquart, 1846) (Lenophila) 50
calcarata (Macquart, 1843) (Plagiostenopterina) 11
caloptera Bigot, 1880 (Laglaisia) 31
calypterata Enderleín, 1912 (Euprosopia) 67
carolinensis Enderlein, 1924 (Scholastes) 51
catharinae de Meijere, 1913 (Cleitamia) 28
cavenda Bezzi, 1917 (Lamprophthalma) 10
celebensis Enderlein, 1924 (Lamprogaster) 42
celyphoides Walker, 1859 (Mesoctenia) (Sce Zysraenula) 58
centralis Bezzi, 1917 (Pterogenia) 61
chalybea (Doleschall, 1858) (Pseudepicausta) 23
chalyhea Frey, 1930 (Euprosopia) 67
chalybeiventris (Wiedemann, 1830) (Icteracantha) 19
cheesmanae Malloch, 1939 (Cleitamia) 28
cimiforme Loew, 1867 (Notogramma) 79
cinctus Guérin, 1830 (Scholastes) 51
clarissa Frey, 1930 (Xiria) 5
coalescens Hendel, 1914 (Zygaenula) 58
commoni Paramonov, 1957 (Pogonortalis) 32
complens (Walker, 1859) (Dasyortalis) 56
completa (Malloch, 1931) (Scotinosoma) 26
complicata Walker, 1857 (Valonia) 75
concisivitta (Walker, 1862) (Rivellia) 34
conjuncta Hendel, 1914 (Euprosopia) 67
connata (Thomson, 1868) (Rivellia) 34
connexa Hendel, 1914 (Rivellia) 34
P age
connexa Malloch, 1940 (Euprosopia) 67
contrahens (Walker, 1860) (Pseudepicausta) 23
contraria Walker, 1859 (Brea) 54
costalis Walker 1861 (Lamprogaster) 43
costalis Malloch, 1939 (Achiosoma) 39
cristiventris (Gerstäcker, 1860) (Tropidogastrella) 57
cupidus Osten-Sacken, 1882 (Philocompus) 6
curta (Osten-Sacken, 1882) (Euprosopia) 67
cyanea. Frey, 1930 (Xenaspoides) 9
cyaneiventris (v. d. Wulp, 1881 (Icteracantha) 19
cyclops Malloch, 1939 (Cleitamia) 29
D
dacoides (Walker, 1865) (Achiusoma) 39
dayak Bigot, 1859 (Pterogenia) 61
decatomoides (Walker, 1862) (Rivellia) 34
elecolor Malloch, 1939 (Lamprogaster) 43
decora (Fabricius, 1805) (Loxonevra) 38
decora (Macquart, 1846) (Duomyia) 20
decora (de Meijere, 1911) (Tropidogastrella) 57
delandi Malloch, 1939 (Cleitamia) 29
demandota (Fabricius, 1798) (Physiphora) 76
dentipes (Macquart, 1843) (Lenophila) 50
depressifrons Malloch, 1940 (Euprosopia) 68
detrudens (Walker, 1865) (Pseudepicatsta) 24
devia (Walker, 1861) (Antineura) 7
didymoides Hendel, 1914 (Elassogaster) 16
didymus (Osten-Sacken, 1881) (Elassogaster) 16
dimidiala de Meijere, 1908 (Rivellia) 34
diptera Malloch, 1931 (Plasiostenopterina) 11
discalis Walker, 1859 (Brea) 54
discifera Hendel, 1914 (Brea) 54
discifera de Meijere, 1913 (Euxestamoea) 37
discolor Malloch, 1931 (Plagiostenopterina) 11
dispila Thomson, 1868 (?Zygaenula) (sec note) 58
distobasalis Hardy, 1959 (Rivellia) 34
divergens (Walker, 1860) (Philicompus) 6
diversifrons de Mcijere, 1913 (Achias) 40
diversipennis Malloch, 1932 (Perissonewra) 81
divisa (Wilker, 1857) (Pterogenia) 61
doclea (Walker, 1849) (Pogonortalis) 32
ado'schalli (Enderlein, 1912) (Lamprophahalma) 10
slorsata Hendel, 1914 (Euprosopia) 68
dubiosa Malloch, 1931 (Plagiostenopterima) 11
dubitalis Malloch, 1939 (Euprosopia) 68

E

egregia de Meijere, 1924 (Plagiostenopterina) 12
elongata v. d. Wulp, 1885 (Lamprogaster) 44
enderleini Hendel, 1914 (Plagiostcmopterina) 12
Pige
crasa Malloch, 1939 (Scotinosoma) 26
evitta Malloch, 1939 (Elassogaster) 16
excepta Malloch, 1939 (Cleitamia) 29
exigens (Walker, 1860) (Pserrdepicausta) 24
experta (Walker, 1862) (Pseudepicausta) 24
extranea Bezzi, 1917 (Xenaspis) 8
F
farinosa Hendel, 1914 (Plagiostenopterina) 12
fascipennis Hendel, 1914 (Loxonevra) 38
fascipennis de Meijere, 1915 (Laglaisia) 31
fascipennis Malloch, 1942 (Guamomyia) 26
fatuhivae Malloch, 1932 (Heterodoxa) 80
femorala Hendel, 1914 (Scelostenoplerina) 18
ferruginea Hendel, 1914 (Rivellia) 35
fidschiensis Enderlein, 1924 (Duomyia) 20
flaviceps Hendel, 1914 (Asymona) 57
flavicornis Malloch, 1930 (Apactoneura) 10
flavicornis Frey, 1930 (Plerogenia) 61
flavipenmis Macquart, 1843 (Lamprogaster) $4+$
flavipes (Schiner, 1868) (Elassogaster) 16
flavipes de Mcijere, 1913 (Brea) 54
flavitarsis (Macquart, 1850) (Pseudorichardia) 53
frauenfeldi (Schiner, 1868) (Scholastes) 52
frontalis (Walker, 1861) (Euprosopia) 68
fuliginosa Hendel, 1914 (Pterogenia) 62
fulvescens Malloch, 1931 (Lamprogaster) $+4$
fulvescens Malloch, 1940 (Rivellia) 35
fulviceps de Meijere, 1913 (Achias) 40
fulvipes Malloch, 1939 (Lamprogaster) 44
fulvofemoralis Malloch, 1942 (Pogonortalis) 32
fumicusta Malloch, 1930 (Neocuxesta) 80
furcatifascia Enderlein, 1924 (Scholastes) 52
furcathes Hendel, 1914 (Achias) 40
fusca (Thomson, 1868) (Rivellia) 35
fuscibasis Malloch, 1930 (Lamprogaster) 4.4
fusifacies (Walker, 1859) (Euprosopia) 68
G
geniculatu (v. d. Wulp), 1898 (Pseudepicausta) 24
gestroi Kertész, 1899 (Cleitamia) 29
gigas Bezzi, 1917 (Euprosopia) 6is
gjellerupi de Meijere, 1915 (Achias) 40
glabra (Walker, 1857) (Pterogenia) 62
glabrella Hendel, 1914 (Pterogenia) 62
glabrina Hendel, 1914 (Pterogenia) 62
goniceps Hendel, 1914 (Dasyortalis) 56
gracilis Hendel, 1914 (Microepicausta) 18
grandis (Doleschall, 1858) (Antineura) 7
Page
grandis (Schiner, 1868) (Duomyia) 20
grossa Malloch, 1939 (Lamprogaster) 44
guamana Steyskal, 1952 (Neocuxesta) 81
guttata (No. 1) (Walker, 1857) (Pterogenia) 62
guttata (No. 2) (Walker, 1857) (Pterogenia) 62
guttipennis Kertész, 1899 (Loriomyia) 31
H
hamifera Frey, 1930 (Pterogenia) 63
hebes Hendel, 1914 (Plagiostenopterina) 12
hendeliana Bezzi, 1917 (Rivellia) 35
hilaris' (Walker, 1849) (Lamprogaster) 44
hirsufa Hendel, 1914 (Lasioxiria) 5
hirtiventris Malloch, 1942 (Scholastes) 52
hivaoae Malloch, 1932 (Heterodoxa) 80
homichlodes Hendel, 1914 (Xenaspis) 8
howei Paramonov, 1957 (Pogonortalis) 32
hyalipennis Malloch, 1931 (Elassogaster) 16
hyalipennis Malloch, 1932 (Euxesta) 77
hylaris Hendel, 1914 (Zygaenula) 58
I
ichneumonea Frey, 1930 (Xenaspoides) 9
imitans (Walker, 1860) (Plagiostenopterina) 12
imitans Malloch, 1930 (Rivellia) 35
impingens. (Walker, 1865) (Lepidocompsia) (See Euprosopia) 68
inapta (Walker, 1860) (Plagiostenopterina) 12
indistincta Malloch, 1928 (Lamprogaster) 45
inermis Malloch, 1930 (Xenognathus) 30
inermis Frey, 1930 (Peronotrochus) 15
inermis Malloch, 1931 (Plagiostenopterina) 12
imnocua Malloch, 1939 (Euprosopia) 69
insignis de Meijere, 1915 (Cleitamia) 29
instabalis (Walker, 1861) (Lamprogaster) 45
insularis Paramonov, 1957 (Naupoda) 59
insulicola Malloch, 1940 (Euprosopia) 69
interruptet Bezzi, 1928 (Pseudorichardia) 53
interruptat Malloch, 1930 (Zealandortalis) 37
irregularis Malloch, 1929 (Duomyia) 20
isolata Malloch, 1930 (Rivellia) 35jucunda (Walker, 1849) (Lamprogaster)45
K
kerteszi de Meijere, 1906 (Antineura) 7
kerteszi (Hendel, 1914) (Cleitamoides) 27
kochi de Meijere, 1907 (Laglaisia) 31
kurandana Hennig, 1950 (Achias) 40
Page
L
laeta (Guérin, 1830) (Lamprogaster) 45
leta (Walker, 1849) (Duomyia) 20
lafooni Steyskal, 1952 (Euxesta) 77
lutericia Hendel, 1914 (Pterogenia) 63
laticeps Bezzi, 1917 (Pterogenia) 63
latifascia (Walker, 1859) (Cleitamoides) 27
latifasciata Malloch, 1931 (Mindanaia) 18
latiuscula (Walker, 1857) (Rhegmatosaga) 49
latiuscula (Locw, 1873) (Ceratoxys) 75
lativentris (Walker, 1859) (Plagiostenopicrina) 12
latividens Walker, 1859 (Achias) 40
lavata Hendel, 1914 (Rivellia) 35
lavinia v. d. Wulp, 1898 (Xiria) 5
lepidra Walker, 1857 (Lamprogaster) 46
lepida Curran, 1936 (Euprosopia) 69
lepidophora Bezzi, 1917 (Euprosopia) 69
lencomera (Walker, 1863) (Dasyortalis) 56
lifua Bigot, 1860 (Montrouziera) 49
limbata de Meijere, 1924 (Xiria) 5
limpidipemis. (Doleschall, 1858) (Pseudepicausta) 24
lineatus de Meijere, 1915 (Elassogaster) 16
liturata (Walker, 1861) (Cleitamoides) 27
lonchifera Hendel, 1914 (Scholastes) 52
longicornis Bezzi, 1917 (Euprosopia) 69
longividens Walker, 1859 (Achias) 41
longivitta (Walker, 1859) (Plagiostenopterina) 13
luteipennis Bezzi, 1917 (Pterogenia) 63
M
macrocephala Hendel, 1914 (Lamprogaster) 46
macrocephalus Hendel, 1914 (Achias) 41
macrotegularia Malloch, 1928 (Euprosopia) 61)
maculipennis (Guérin, 1831) (Euprosopia) 69
maculipennis Macquart, 1847 (Lamprogaster) 46
maculipennis Hendel, 1914 (Dıomyia) 20
magnifica Hendel, 1914 (Brea) 54
marginalis Malloch, 1940 (Elassogaster) 16
marginata (v. d. Wulp, 1880) (Plagiostenopterina) 13
marina Malloch, 1940 (Rivellia) 35
medionotata de Meijere, 1924 (Plagiostenopterina) 13
meijereana (Enderlein, 1912) (Lamprophthalma) 10
metallica Malloch, 1931 (Euprosopia) 70
metallica Enderlein, 1937 (Imugana) 15
miliaria Hendel, 1914 (Euprosopia) 70
millepuncta Bezzi, 1917 (Euprosopia) 70
minor Malloch, 1940 (Euprosopia) 70
minura Malloch, 1939 (Euprosopia) 70
mithrax Hendel, 1914 (Duomyia) 20

Page

mohnikei (Doleschall, 1858) (Notopsila) 70
monstruosum Bezzi, 1917 (Tylopterna) 49
multivitla (Walker, 1859) (Euprosopia) 71
mutilloides (Walker, 1859) (Pseudepicausta) 24

N
neurostigma Bezzi, 1928 (Plagiostenopterina) 13
nigricosta Malloch, 1929 (Duontyia) 20
nigricostata (Doleschall, 1858) (Plagiostenopterina) 13
nigrifacies Malloch, 1939 (Achiosoma) 39
nigripes (Macquart, 1850) (Duomyia) 21
nigripes Malloch, 1940 (Elassogaster) 17
niveitarsis (Bigot, 1859) (Pterogenia) 63
nobilis Frey, 1930 (Euprosopia) 71
nouhuysi de Mcijere, 1913 (Brea) 55
Mubecula Hendel, 1914 (Pterogenia) 63
nudiseta Bezzi, 1928 (Pterogenia) 63

O

obliqua (Walker, 1861) (Rivellia) 36
obliquı Osten-Sacken, 1881 (Xiria) 5
obliqua Frey, 1930 (Lamprogaster) 46
obscura Walker, 1849 (Duomyia) 21
oculatus Fabricius, 1805 (Achias) 41
orthocephala Hendel, 1914 (Cleitamia) 29)
ostensackeni Kertész, 1898 (Cleitamia) 29
P
pallidipes Frey, 1930 (Plagiostenopterina) 13
palmyra Curran, 1936 (Scholastes) 52
papuanu Hennig, 1940 (Xiria) 5
paradoxa Doleschall, 1858 (Zygaenula) 58
parva Bezzi, 1917 (Ptcrogenia) 63
parva Malloch, 1931 (Plagiostenopterina) 13
patula Walker, 1861 (Lamprogaster) 46
pectoralis Hendel, 1914 (Pterogenia) 63
penicillata Hendel, 1914 (Euprosopia) 71
perilampoides Walker, 1858 (Loxonevra) 38
philpoti Harrison, 1959 (Zealandortalis) 37
pictipennis (Walker, 1849) (Xenaspis) 8
pipartita Hendel, 1933 (Rivellia) 36
placida Walker, 1849 (Lamprogaster) 46
plagiata (Bezzi, 1917) (Plagiostenopterina) 14
planidorsum (Walker, 1860) (Plagiostenopterina) 14
platessa Osten-Sacken, 1882 (Naupoda) 60
platychirus Hendel, 1914 (Achius) 41
plumatum Hendel, 1914 (Euthyplatystoma) 74
poecila Hendel, 1914 (Lamprogaster) 47
Page
polistes Osten-Sacken, 1882 (Xenaspis) 9
polita Hendel, 1932 (Rivellia) 36
pompiliformis Enderlein, 1937 (Imugana) 15
pompiloides (Walker, 1859) (Pseudepicausta) 25
potens (Walker, 1862) (Euprosopia) 71
potens Frey, 1930 (Elassogaster) 17
prima (Osten-Sacken, 1881) (Pseudeuxesta) 78
producta Walker, 1861 (Euprosopia) 71
prompta (Walker, 1859) (Euxestomoen) 38
protensa (Walker, 1864) (Euprosopia) 71
pruinosa Malloch, 1932 (Euxesta) 77
pseudelongata Malloch, 1930 (Lantprogaster) 47
pubiseta (Walker, 1861) (Antineura) 7
pumicata V. d. Wulp, 1885 (Lamprogaster) 47
punctata (Walker, 1857) (Pterogenia) 64
punctifacies Malloch, 1928 (Euprosopia) 71
punctifrons Mulloch, 1929 (Duomyia) 21
punctulatus de Meijere, 1913 (Achias) 41
Q
quadrilinea Walker, 1859 (Lamprogaster) 47
quadrisetosa (de Meijere, 1911) (Pseudepicausta) 25
quadriviltata (Macquart, 1835) (Euxesta) 77
R
radiala Hendel, 1914 (Rivellia) 36
ralumensis Enderlein, 1924 (Brea) 55
ralumensis Enderlein, 1924 (Mesoctenia) 58
regina Hendel, 1914 (Naupoda) (1)
rigidum (Walker, 1857) (Euhhyplatystoma) 74
rivellioides Osten-Sacken, 1881 (Cleitamla) 29
roderi Kertész, 1899 (Cleitamia) 30
rothschildi Austen, 1910 (Achias) 41
rufibasis Malloch, 1939 (Rivellia) 36
ruficrus Hendel, 1914 (Pterogenia) 64
rufipes Hendel, 1914 (Lamprogaster) 47
rufiventris Hendel, 1914 (Euprosopia) 72
rugifrons (Thomson, 1868) (Rhytidortalis) 27
rutila Hendel, 1914 (Plagiostenopterina) 14
S
samonensis Malloch, 1930 (Flagiostenopterina) 14
sauteri Hendel, 1914 (Rivellia) 36
scatophaga Malloch, 1930 (Eiuprosopia) 72
sculellaris (Macquart, 1850) (Duomyia) 21
scutellaris (Walker, 1859) (Pterogenia) 64
semiarmata Malloch, 1931 (Euprosopia) 72
semifasciata Malloch, 1930 (Euxesta) 77
separata Hendel, 1914 (Euprosopia) 72

Page

sepedronoides (Walker, 1864) (Lamprophthalma) 10
sepsoides (Walker, 1861) (Elassogaster) 17
sericata Osten-Sacken, 1882 (Antineura) 7
sericea Hendel, 1914 (Duomyia) 21
setigera Malloch, 1939 (Pseudocleitamia) 8
setinervis Malloch, 1939 (Euprosupia) 72
severa Hendel, 1914 (Lamprogaster) 47
sexpunctata Osten-Sacken, 1882 (Euprosopia) 72
sexvittatus (Walker, 1861) (Scholastes) 52
signatipes (Walker, 1861) (Elassogaster) 17
signifacies (Walker, 1861) (Dasyortalis) 56
similis Kertész, 1899 (Cleitamia) 30
similis Hendel, 1914 (Pogonortalis) 33
similis Hendel, 1914 (Rivellia) 36
simullis Malloch, 1939 (Pterogenia) 6.4
simmondsi Bezzi, 1928 (Naupoda) 60
simplex Frey, 1930 (Elassogaster) 17
singularis Bigot, 1859 (Pterogenia) 64
solocifemur Enderlein, 1924 (Pscudepicausta) 25
sorditus (Walker, 1861) (Elassogaster) 17
spinifemorata Malloch, 1929 (Duoymia) 21
stenoparia Hendel, 1914 (Lamprogaster) 47
stigma Enderlein, 1912 (Xemaspis) 9
stolata Osten-Sacken, 1882 (Amineura) 7
strigata Hennig, 1940 (Xiria) 5
strigatus de Meijere, 1913 (Achias) 42
strigifer (Walker, 1862) (Antineura) 8
strigifera de Meijere, 1919 (Naupoda) 60
stylops Enderlein, 1924 (Laglaisia) 31
subcruciata Frey, 1930 (Pterogenia) 64
subnudus Malloch, 1939 (Achias) 42
sumbaw'ana Hennig, 1941 (Rivellia) 36
superbum (v. d. Wulp, 1881) (Euthyplatystoma) 74
superna Walker, 1862 (Lamprogaster) 48
T
taeniata (Macquart, 1843) (Poecilotraphera) 4
taeniata v. U. Wulp, 1885 (Lamprogaster) 48
tarsalis (Walker, 1861) (Dasyortalis) 56
farsalis (Walker, 1864) (Euprosopia) 72
taylori Malloch, 1939 (Scholastes) 52
tegularia Malloch, 1928 (Euprosopia) 72
telescopica Enderlein, 1924 (Laglaisia) 31
tenuicornis Macquart, 1847 (Euprosopia) 73
ferrae-reginae Malloch, 1928 (Elassoguster) 18
tetyroides (Walker, 1859) (Asyntona) 57
thalassina Walker, 1849 (Duomyia) 21
phoracalis Hendel, 1914 (Achias) 42
tigrina Osten-Sacken, 1881 (Euprosopia) 73
tomentosa Hendel, 1914 (Duomyia) 22
Page
tricurvata (Walker, 1864) (Cleitamia) 30
trifasciata (Doleschall, 1859) (Chactorivellia) 55
trifasciatus Enderlein, 1924 (Scholastes) 53
trigonalis de Meijere, 1913 (Cleitamia) 30
trisignata v. d. Wulp, 1885 (Lamprogaster) 48
tristis Bezzi, 1917 (Plerogenia) 64
trivittata (Walker, 1849) (Plagiostenopterina) 14
trivittata Bezzi, 1917 (Euprosopia) 73
trivittigera Malloch, 1931 (Plagiostenopterina) 14
truncata (Enderlein, 1924) (Notopsila) 73
truncatula (Walker, 1857) (Pterogenia) 64
tuherculifrons de Meijere, 1933 (Lamprophhalma) 10
typicum Bezzi, 1917 (Scotinosoma) 26
U
mahukae Malloch, 1932 (Heterodoxa) 80
uapoune Malloch, 1932 (Heterodoxa) 80
uncinata de Mcijere, 1911 (Pogonortalis) 33
unifasciata Bezzi, 1917 (Naupoda) 60
unimacula Hendel, 1914 (Lamprogaster) 48
V
vacillans (Walker, 1860) (Rivellia) 36
valida Bezzi, 1917 (Pterogenia) 64
variipennis Walker, 1861 (Pterogenia) 65
varipennis Hendel, 1914 (Loxoneuroides) 32
vella (Walker, 1849) (Lamprogaster) 48
ventralis (Walker, 1859) (Euprosopia) 73
ventralis Curran, 1936 (Naupoda) 60
venustulus Walker, 1865 (Achias) 42
viola Malloch, 1929 (Lamprogaster) 48
violacea (Wiedemann, 1830) (Xiria) 5
violacea (Macquart, 1843) (Lamprogaster) 48
virgo Hendel, 1914 (Rivellia) 37
viridis Hendel, 1914 (Rivellia) 37
vittata (Walker, 1857) (Pterogenia) 65
vithifinis Walker, 1861 (Pterogenia) 65
W
walkeri (Enderlein, 1912) (Xenaspis) 9
wallacei Hendel, 1914 (Pseudepicausia) 25
Y
ypsilon v. d. Wulp, 1898 (Naupoda) 60
ypsilonoides de Meijere, 1924 (Naupoda) 60
Z
zelotypa Hendel, 1914 (Lamprogaster) 48
zonata (Walker, 1857) (Pterogenia) 65

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

THE RHODACARIDAE (ACARI: MESOSTIGMATA); CLASSIFICATION, EXTERNAL MORPHOLOGY AND DISTRIBUTION OF GENERA

By DAVID C. LEE

SOUTH AUSTRALIAN MUSEUM

THE RHODACARIDAE (ACARI: MESOSTIGMATA); CLASSIFICATION, EXTERNAL MORPHOLOGY AND DISTRIBUTION OF GENERA

by David C. LEE

Abstract

Summary

The Rhodacaridae is redefined and considered to contain six subfamilies (Rhodacarinae, Gamasiphinae, Laelaptonyssinae, Olgamasinae, Sessiluncinae and Tangaroellinae), of which one (Ologamasinae) is divided into two tribes (Ologamasini and Gamasellini), and 45 genera, of which six are divided into subgenera or species-complexes. Keys to the adults, diagnoses, morphology and distribution data are given for all the above taxa. Separate descriptions, mainly in the form of figures, are given for 63 of the 223 nominal species of Rhodacaridae. Three species are not placed in genera but are considered as incertae sedis

(LEE-RHODACARIDAE)

THE RHODACARIDAE (ACARI : MESOSTIGMATA); CLASSIFICATION, EXTERNAL MORPHOLOGY AND DISTRIBUTION OF GENERA

By DAVID C. LEE
CONTENTS

Page
Synopsis ... 2
Introduction 2
Material and Methods 3
History of Classification 5
Morphology 7

1. Ventral Sclerotization 8
2. Leg Chaetotaxy 10
3. Dorsal Sclerotization and Chaetomorphy 13
4. Spermathecal System 14
Classification
Rhodacaridae 17
Key to Subfamilies 20
Rhodacarinae 23
Key to Genera 25
Gamasiphinae 39
Key to Genera 41
Laelaptonyssinae 72
Ologamasinac 74
Key to Tribes and Genera 78
Ologamasini 83
Gamasellini 127
Sessiluncinae 172
Key to Genera 174
Tangaroellinae 201
Species Incertae Sedis 203
Supraspecific Taxa Sizes and Distribution 204
Changes in Nomenclature 208
Included Available Genus-Group Names 210
Excluded Genera 211
Acknowledgments 212
References 212

SYNOPSIS

The Rhodacaridat in redefined and considered to contain six subfamilies (Rhodacarinae, Gamasiphinate, Latelaptonyssinae, Ologamasinac. Sessilancinac and Tangaroellinaed. of which one (Ologamasinac) is divided into two tribes (Ologamasini and Gamasellini), and 45 genera, of which six are divided into subgenera or species-complexes. Keys to the adults, diagnoses, morphology and distribution data are given for all the above taxa. Separate descriptions. mainly in the form of figures, are given for 63 of the 223 nominal species of Rlodacaridate. Three spectes are not placed in gentera but are considered as incertue sedis.

INTRODUCTION

The Rhodacaridae is a group of mainly frec-living. predatory mites octuring in ground habitats and, although the lamily as a whole is cosmopolitan, the majority of its genera and species have only been found in the Southern Hemisphere.

A number of concepts of the family have been put forward during the last 15 years. The most similar to that delineated by the diagnosis given bere would either be that of the "Rhoducurns-group" genera proposed by Evans (1963), being distinguished from another group of genera (including Asca. Digamasellus and Halolaelaps) within the Rhodacaridae sonsn Ryke, 1962b by their leg chaetotaxy, or a combination of the two famizies Rhodacaridae and Cyrtolaclapidac as recognized by dohnston (1968).

Oudemans (1902a) established the Rhodacarinac with one, monospecific genus. Rhodacarms, while Halbert (1915) wats the first (or regard the taxon as a family. Only a few genera were added to the family before 1955. but since then the number of genera refered to the family, ats detined below. has risen rapidly, initially by transferfing established genera from other families and more recently by establishong new genera whin the family.

In the present study, as in the past, the taxonomic characters used to classify categories within the Rhodacaridae are mostly external morphological structures of the adults. The external morphology of the immature stages has been used in gamasine classifiation, but for rhodacarids there is not usually enough of this kind of data for it to be useful.

Soon after I started to study the Australian members of the Rhodacaridat it became clear that this could not he done satislactorily without a more gencral, prior survey of the family, hecause the origmal descriptions of the type-species of many nominal rhodacarid genera and subgenera are meagre by present standards and only in some cases have they since been improved. As a consequence, it is often difficult to decide how to apply many of the available genus-group names; the placement of new or even
fonge since extablished ypecies within a genus is often uncertain. on He validity of a new genus recognied 10 contain such a species is often dubious. In an atempt to overonme this difficulty, the type-species of nearly all nominal gencra of bubgenera have been examined. As a result it is possible to mate a conservative decision as to which genus-group names can be regaded as valid and to base the diagnosis of the taxat to which they are applicable on the chartacters of the type-species.

Having based the definitions of rhodacatid genera and subgenera on their types. I considered it desirable to extend these defintions without embarking upon a project that wouk too long delay my study of the Australian rhodacarid fauna. Therefore. although care has been taken in tiy and ensure that most nommal youter are placed within the correct gente, and that any consequent adjustments to the generic diaunosis are made. this survey is not sufficiently extensive to ensure the validity of all such species. The conservative approach of trying to seter all nominal species to previously established genera has usually been possible, sometimes by recognizing species-compleves within a gentu and sometames by considering species as incertae sedis, but some new generi have been establistred. Nlso. from amonert the many umaned upecies seen only al few are entablintied it new ypeciers, matly, cither so that their descriptions will illustrate the same of characters withon a genus, or in order to rename rhodacarid mites that hase been mindentified in the literature. But, in order to evtend the general usefulness of this work, I have referred several of these unamed species to genera so that their locality data can be used to give a more complete indication of the geographical occurrence of the supraspecific taxa,

As a tesult 45 genera are recognized as valid within the Rhodacaridae and are placed in a framework of suprageneric taxa in order to facilitate the further study of the fumily. The genera are grouped in six subtamilios and the exenera of one subfamily, the Ologamatinac, are further groupod in two tribes. Althongh the delimitation of the sublamilises should not be considered limal and wome genera are only provisionally relerred to them. I hatse combatence in the viability of the basie concepth of the ee groupinge and would regard them as an indication of the phylogeny of rhodacarid mites. In contrast, even if the tribal names used within the Ologamasinate continue in use in the future, the present concepts of these two tixat are used here largely for convenionce, particularly as they reflect a previous, widely held, concept for which a reliable alternative has not yel been found.

MATERIAL AND METHODS

Some mites lave been mounted in lactic acid, bofore being drawn with the aid of a camera lucida, while others were mounted in a gum chorat mediam and mav have been more squashed when drawn.

The material described or examined is deposited as listed after the locality data of the species, using the following abbreviations. BBM: Bernice P. Bishop Museum, Honolulu, Hawaii. BM(NH): British Museum (Natural History). London, England. LAEHE: Laboratoire d'Acarologie, Ecole Practique des Hautes Etudes, Paris, France. NRS: Naturhistoriska Riksmuseum, Stockholm, Sweden. PUSA: Potchefstroom University, South Africa. SAM: South Australian Muscum. SEAF: Stazione di Entomologia Agraria, Florence, Italy. ZMH: Zoologisches Museum, Hamburg, Germany.

Generally, the terminology follows that used by Evans and Till (1965), but using a change in nomenclature for tarsal chaetotaxy (Evans, in press) which regards this segment as carrying four instead of three whorls of setate (see Fig. 1 for abbreviations used). The names for parts of the female spermathecal system are Anglicized terms derived from those used by Michael (1892). Under the heading "Diagnosis" the following terms are used for categories of adult mites having an idiosomal length within the particular ranges given; "minute" for less than 400μ, "small" for 400μ to 600μ, "average sized" for 601μ to 800μ, "large" for 801μ to $1,200 \mu$ and "gigantic" for more than $1,200 \mu$. Under the heading "Sclerotization" the word "shield" is omitted, as is "seta" under "Chactotaxy". A map (Fig. 427) of Zoogeographical regions of the world is given as a key to abbreviations used for the distribution of the members of each genus.

TARSUS III

Fig. 1. Setal nomenclature for tarsus III.

Previously (Lee, 1966), I used the term "species-group" for a supraspecific category within a genus, but in the text below the alternative term "species-complex" is used in order to avoid confusion with the use of "species-group" for a species and infraspecific category in the Internation Code of Zoological Nomenclature, 1961. Particular complexes of species, named after characteristic species, as for example in falciger-complex, follow this system.

HISTORY OF CLASSIFICATION

Oudemans (1902a) exaggerated the importance of some characters of Rhodacarus roseus when he established the species in a new subfamily-the Rhodacarinae-within the Parasitidae, a family then equivalent to the present Mesostigmata. As a result in 1923 he incorrectly allied the Rhodacaridae (still containing only one genus) by placing it in the Sejina and not the Gamasina, and also maintained an inadequately narrow concept of the family when he (Oudemans, 1939a) transferred Rhodacarellus to the Gamasolaelaptidae leaving only Rhodacarus and Rhodacaropsis as rhodacarid genera.

Berlese (1913b) used a systematic framework in which the arrangement of the genera, considered here as belonging to the Rhodacaridae, fits the concept of the family used here much better than that of Oudemans. Berlese referred nearly all the then nominal rhodacarid genera (exceptions being Heydeniella, then considered a junior synonym of Gamasiphis, and Stylochirus) to either his tribe Cyrtolaelaptini or to the tribe Gamasini. Although neither of these family-group names are regarded as available here, Cyrtolaelaptini can be regarded as equivalent to the Veigaiidae, while Gamasini can be regarded as equivalent to the Parasitidae. Gamasellus, Heterogamasus, Protolaelaps (junior objective synonym of Cyrtolaelaps), Rhodacarus and Sessiluncus were grouped with what are now considered to be veigaiid genera and Euryparasitus, Gamasiphis, Hydrogamasus, Laelogamasus and Ologamasus were grouped with what are now considered to be parasitid genera.

Vitzthum (1941) maintained nearly as narrow a concept of the family as that of Oudemans, but included Rhodacarellus, and was followed in this by Baker and Wharton (1952). In the latter publication, genera that are here grouped in the Rhodacaridae were referred to five other families (Ascaidae, Gamasolaelaptidae, Macrochelidae, Neoparasitidae and Pseudoparasitidae).

The concept of the Rhodacaridae was broadened by Evans (1955 and 1957) in his classification of the British Mesostigmata, when he included in the family those members of the Gamasina with a three-pronged apotele (without an associated hyaline flap) and a divided dorsal shield. By
including Sessiluncus (entire dorsal shield) and Digamasellus (two-pronged apotele) in the Rhodacaridae, Ryke (1958) implied a further extension of the limits of the family. When he later redefined the family (Ryke, 1962b), he recognized 37 genera or subgenera within it, of which 11 are not regarded here as belonging to the Rhodacaridae. His broad definition appears to only exclude, with certainty, those members of the Gamasina without a divided dorsal shield in the deutonymph and a ventro-anal shield in the female. In the latter publication, Ryke recognized two subfamilies within the Rhodacaridae; the Rhodacarinae with a divided dorsal shield in the adult and the Ologamasinae with an entire dorsal shield in the adult. A grouping of genera within the Rhodacaridae similar to that for the Rhodacaridae sensu Evans, 1957, was used by Karg (1961), while Athias-Henriot (1961b) apparently used a grouping similar to that for the Rhodacarinae sensu Ryke, 1962b.

During the last decade, two main schools of thought have developed on the classification of the Mesostigmata, originating cither from the work of Hirschmann (1957 and 1959) or that of Evans (1963). Hirschmann (1957 and 1959) based his "Gangsystematic" studics on morphological characters which are preferred if they are similarly expressed at all stages of their ontogenetic development, but which must be distinctive throughout this development so that any postembryonic instar of a species can be correctly placed in a supraspecific category. The characters Hirschmann used are the nature of the dorsal sclerotization, the chaetotaxy of the idiosoma, and the structure of the appendages and ventral surface of the gnathosoma. Evans (1963) introduced a new diagnostic character, the leg chaetotaxy, which is not similarly expressed during ontogenetic development and is usually only distinctive for a taxon in the later-stages of development (i.e., in the deutonymph and adult). Although Evans rightly emphasized that the leg chaetotaxy must not be used in isolation from other characters, it has proved of considerable importance because of its usefulness. Since I follow Evan's usage of morphology, I will only consider the further history of the classification of the Rhodacaridae as it has been affected by acarologists using leg chaetotaxy as an important taxonomic character. After which I will indicate the approximately equivalent groupings of genera by other acarologists.

Evans (1963), after pointing out that his analysis of the leg chaetotaxy of free-living Gamasina supported familial concepts based on other morphological criteria, noted that the Rhodacaridae (sensu Ryke, 1962b) was an exception in containing two groups of genera, one of which he called the "Rhodacarus-group", which could be accommodated in the Rhodacaridae, while the other group of genera, containing Asca, Digamasellus and Halolaelaps, did not appear to be confamilial with the first group. This gave rise to the concept of a "Rhodacaridae sens. lat." equivalent to the

Rhodacaridae sensu Ryke, 1962b, and a "Rhodacaridac sens. str." equivalent to the "Rhodacarus-group" genera of Evans (1963).

The above concept of "Rhodacaridae sens. lut." with uncertain limits wath retained longer than necessary. When genera not belonging to the "Rhoderarms-group" had been Iransferred either to the Ascidac or Digamasclladae (Lindguist and Evans. 1965) or to the Halolaclapidate (Karg. 1965), the Rhodacaridac could be delined on the basis of other morphologicall criterial 45 well as the leg chaetotaxy. The unnecessay reference to the "Rhondurarns-group" gencrat an if they were a category within an undefinable Rhodacaridae rehs. lat. can be seen in my own work (Lee 1966 and 1967).

I (Lee. 1966) did not accept the division of genera into two subfamilies whitho the Rhodacaridac as established by Ryke (1962b). Instead. as a temporary measure recognized as unsatisfactory at the time, I used two unnamed groups of senera, the members of which were distinguished by the structure of the dorsal setae.

Johnston (1908) transfered all those genera containing speces with seta $1 / 4$ present on tarsus. IV from the Rhodacaridac to a new family, the Cyrtolatapidar. The resulting narrow concept of the Rhodacaridac in equivalent to that for the Rhodacarinace as defined below.

Within Horschmann: (1962) chassification. We reference of generat to higher taxil indicates that his concept of the Gamasellimi within the Eagamasinae chosely approximates to that used here for the Rondabardate. The other tribe in his Eugamasinate. the Eugamasmi. contains genera that were referted to the Parasitidae und Veigaidace by Vitathum (1941), at refercoce accepted by most acarologists since then. On the other hand kary (1965) places most hodatarid genera, generat that Johnston (1968) has grouped in the Cyrtolatapidae, in the Gamasellinate, a subfamily within the Eugamasidae, while Rhodacurns. Rhodacarellus, Dendrolaclaps (syn. Digamasellus), and Progosamavelles ate grouped in the Rhodacaridate. The other sublamilies in Kares Eugamasidae are the Parasitina and Velgainac. Bregetova (1967). on the basis of the ontogenesis of the dorsal sclerotization, group in the Rhodacaridac approximately those genera that were grouped by Ryke (1962h) in the Rhodacarinat and prenumably. gencra from Ryke"s Ologamasinace would be refersed to the Parasitidae.

MORPHOL.OGY

Λ comparative study of all the morphological characters used in the clasilication given below hats not been made. But a study hats been made of the following four sets of characters that atre important in the dagnoses of suprageneric rhodacarid liaxa. The ventral sclerotization of the adult idiosonnat which is ued in diagnosing sublamilies, ats is the deutomymph and aduit leg chatotary. The dorsal selerotization of the adult idosomat and the
form of the dorsal setue which are used in diagnosing the lwo tribes in the Ologamasinae because of precedence and convenience, and the location of the external aperture of the spermathecal system which may in the future be more important in the diagnoses of these two tribes.

1. VENTRAL SCILEROTIZATION

In the past, the ventral sclerotization has been used to distinguish genera, for example the fusion of the ventro-inal shield with the opisthonotal shicld has been considered diagnostic for Gamasiphis and Ologamasns, but I use it here for diagnosing suprageneric taxa. The following two characters of the ventral sclerotization are considered of value: the fusion of the ventroanal shield with other shields and the fusion of the posterior end of the peritrematal shield with other shiclds. Two monogeneric subfamilies, Laclaptonyssinae and Tangaroellinae, are not considered in this section, because, atthough their ventral sclerotization is somewhat atypical, alternative characters are more useful in distinguishing them from other rhodacarid subfanilies.

The four major groups of genera which I treat as subfimilies are largely characterized by the fusion or lack of fusion of the ventro-anal shich to wher shields and, ignoring the exceptions, they can be distinguished as follows: Rhodacarinae, female ventro-anal shield diserete, mate ventro-anal shield fused to opisthonotal sheld hut not to peritrematal shield: Gamasiphinae, female and male ventro-anal shield fused to opisthonotal shield but not to peritrematal shield; Ologamasinae, femate ventro-anal sheld discrete, male ventro-anal shield fused to opisthonotal and peritrematal shield; Sessiluncinae, lemale and male ventro-anal shield not fused 10 opisthonotal or peritrematal shield,

These differences atre illustrated in Figure 2, and the importance of knowing both sexes of a species in the use of this character for diagnosis should be noted. However, even if only one sex of a species is known. members of the Rhodacarinae can be distinguished from other rhodacarid species by the chatotaxy of tarsus IV and females of the Ologamasinae can be distinguistaed from females of the Sessituncinate by the fusion of the peritrematal shidd to other shiclds. As a result, diagnoses of the sublamilies would be relatively easy if there were no exceptions to the characteristic fusion of the ventro-anal shield to other shields, but this is not so.

Within the subfamilies Rhodacarinae. Gamasiphinae and Sessiluncinae. the extent of the fuston of the ventro-anal shield to the opisthonotal and peritrematal shieds shows only a few, simple exceptions to the above characteristic forms, thus: some males of the Rhodacarinac have a discrete ventro-anal shield: some species of Camasiphoides within the Gamasiphinate have females and males with a discrete ventro-anal shield: all species of

Fig. 2. Ventral sclerotization of the adults of the lype-species of the type-genera of rhodacarid subfamilies, excepting Laclaptonyssinae for which Laclapfunyssus chinensis is illustrated and Ologamasinae for which the type of Cyrrolachaps is illustrated.

Stylochirus within the Sessiluncinate have kemales alld males with the ventroanal shield fused to the notal shield. On the other hand. within the Ologamasinate there are many exceptions to the chatacteristic fusion of the ventro-anal shield with other shields, and in some lightly sclerotized (o.g.. Achgamasms corsor) or heavily selerotiad (e.g.. Himiphis himmas) peciees this character is not sexually dimorphic,

Two general statements without exceptions, to which I altach considerable importance, can be made about the fusion of the ventro-inal shield to other thelds. Only members of the Rhodacarinate and Ologamasine ever have sextal dimorphisnt of the fusion of the ventro-anal shield to the opisthonotal shield. and only members of the Ologamasinate ever have the ventro-anal shied fused to the peritrematal shied and when this is the calse it usually only occurs on the male.

Members of the Sessiluncinac cim ustatly be further diagnosed by the peritrematal shied not being fused to exopodal shield IV. but species of
 are exceptions. It is possible that the fusion in these latter cases is different in origin from the apparently similar fusion in most members of the other three large subfamilies. A visible difference in such a fusion on members of the Sessiluncinate is that there is no fissure between the peritrematal and exopodal shieds posterior to the stigma. This in true also for a few members of the other suhbamilies (some Ciamasiphis spectes and Hmmphis hinmms), but thene particular thodacarid mites are ushatly heavily solerotized and I consider them to have relatively recent ancestors in which the above fisulles oceurred behind the stigmas.

2. LEG CHAETOTAXY

The first analysis of the leg chactoraxy of the free-living Gamasina, as well as at system of setal nomenclature for individual leg segments, was introduced by Evans (1903) who considered the seta as being in patterns based on the numbers distributed amongst six zones on the surface of a leg segment. According to which \%one they are in, the setae are naned ether antero-lateral. antero-dorsal, postere-dorsal, antero-ventral, postero-ventral or postero-lateral as indicated in the accompanying diagram (Fig. 1). For most ley segments, the setal pattern or chatotaxy varies in the deutomymples and adults of the Gamasina, Evans (1963) showed that this variation provides a valuable taxonomic criterion for the classification of these mites and he listed the bypes of chatotaxy that he had observed on each leg segment excepting tarsus 1. Which, because of it large number of setace, bas not yer been deseribed for any gamanine mites. Although Evans refers w "types of chactotaxy" and Costa (1908) uses the term"chatotatetic variants". here I refer to "kinds of chaetotaxy".

I have confirmed that for the majority of species the leg chactotaxy is the satme as that descrobed by Evans (1963) for the "Rhodecarm-group" gencra. This hind of leg chactotaxy has been illustrated in at previous paper (1.ee, 1966, Fig. 1) for Gomasellos discufaths and is lermed here the "commonest hiad of rhodacarid leg chactotaxy" or as being "as Gamasellus" or "us Camaselltis discutatus.".

While Evans (1963) mainly demonstrated that the chactotaxy of legs I and 11 are valuable in the diagnosis of gamasine families, bater publications ,hom that ley chatentaxy, expectially of leg. 111 and IV, is a valuable diagnostic character for genera: for example in the Ascidae (Lindepist and Evams. $19(15)$ and Dermanyssidate (Evans and Till, 1965). Leg chactotaxy has atho proved useful in the diagnosis of rhodacarid taxa. There atse at fail number of podacarid species with a different kind of leg chactotixy to the commonest one, and emongst them 1 have observed 18 kinds of leg chamolaxy, if a kind of leg chatotaxy is recognized by differences ats mall as the presence or absence of one seta from amongst atl the leg setae.

To give a general indication of the variability of rhodacarid leg chatotaxy, I have made a visual presentation of the data (Fig, 3) that provide at smple measure of the variability of particular setate in different subfamilies and tribes. Labels are attached to all the setae (Fig. 3) that sometmes do not oceur (present or absent) as in the commomest kind of leg chacturaxy.

The symbols used on the dagram (Fig. 3) have the following meaning. A "-1-ve" indicates that the sed is sometimes present, but is absent in the commonest leg chactotaxy, and "-ve" indicates that the seta is sometimes absent hut is, present in the commomest leg chatetotaxy The letters indicate the sublathilies or trite in which the particular setab oceurrence difers from that in the commonest ley chactotaxy. The figures associated with these letter indicate the number of kinds of lege chatetataxy, found in these taxit. Which include an uncommon occurrence of the particular setal, and this gives a meamure of the seta s variability. The actual hinds of total lege chatetotaxy are given under the different subfamily headings later in this paper.

An example of the use of Figure 3 is given as follows. If a rhodacarid species is examined and found to lack seta m on genu 111 , Figure 3 is nefersed to und this seta is seen to be labelled " $4 \mathrm{G}: 3 \mathrm{~S}: 1 \mathrm{G} . \mathrm{S}^{\prime \prime}$. This means that the seta is present on most nominal rhodacarid ypeces but absent in at keat shme membere of both the Gamasphinate and Sessifuncinae and it is
 differing from the commonest modacarid kind. Also, since 4 of these kinds of chactotaxy occur on some members of the Gamusiphinae, 3 on some members of the Sessiluncinac and 1 on some members of both the Gamiaiphinate and Sessiluncinace, the seta lends to equally variable in both sublamilies.

Fig. 3. Setation of adult rhodacarid appendages. Unlabelled setac and labelled setae accompanied by a"- ve" sign indicate chaetotaxy of Gamasellus discutatus. Labelled setae accompanied by a "+ve" sign occur in certain rhodacarid laxa but not in G. discutatus. The labels to setae are explained in the text (p. 11). The symbols used for setal position and first appearance are as in Fig. 1.

Costa (1968) compared the number of kinds of chatotaxy for different Ieg segments on frew-living Gamasinat (using the data of Evans. 1963) and on a gamasine parasite (Hemipterasems adleri) which has inraspecific variation of leg chactotaxy, and showed that in both cases there is a similar gradient of variability depending on the location of the leg segments. The setal patterns are more stable on the segments of legs I and II than on legs III and IV, and on the proximal ley segments and tarsi than on the genua and tibiae. The numbers of different hinds ol chactotaxy for particular adult rhodacarid leg segments usually support Costa's observation if the aberrant leg chaetotaxy of Lachaptonsswas is ignored, and there also appears 10 be a gradient around the surface of the leg segments. For example. although there are 34 antero-lateral. 69 dorsal. 30 postero-laterall and 62 ventral setace on the adult Gamasellus legs (excluding tarsus I) of one side, the variability of setae from these zones, as measured by the addation of the number of kinds of leg chactotaxy in which a particular seta does not occur as on Gamasellus. is 1 for the antero-lateral. 9 for the dorsal, 17 for the postero-lateral und 23 for the ventral setac.

The point. emphasized by Lindquist and Evans (1965). that leg chatetaxy is not at taxonomic panacea, but is another set of characters which. when regarded alone, may have exceptions among related species, is well illustrated in the Rhodacaridac. For example. the setal pattern on tarsus IV has been regarded ats stable amonget free-living Gamasina, but variations in the occurrence of setae on the tarsi IV of rhodacarids can be used in the diagnosis of the Rhodacarinae (45 nominal species). Fangaroelfinac (1 nominal species). Gamasellopsis (4 nominal species). Giamasiphoides propincua and Laelaptonyssus mithis.

3. DORSAI. SCLEROTIZATION AND CHAETOMORPHY

Amongst members of the Rhodacaridae, the attributes of three characters are often associated as follows: some complex dorsal setaedivided dorsal shield-dull selerotization", or "all simple dorsal setat--entire dorsal shield-shiny sclerotization'. Two groups of mites. distingusshed by this association of attributes, were placed in either Gamasellas or Hydrosumasess by carlier acarologists, or the subgenera Gamasellus or Ifydrademmaselles by Hirschmann (1966). From amongst these three characters. the presence or absence of a division of the dorsal shield was Haed by Ryke (19(2)b) in dividing the family into the Rhodacarinae and Ologamasinate. and latter the dorsal chaetomorphy was used by Lee (1966) in a temporary division of the family into two unnamed groups of genera.

A comparison between species of Eimpicrints and characteristic species
 is followed. the above atsociations of attributes should be regarded as
relatively superficial within this family. Despite this, I recognize the two groups of genera within the Ologamasinae, referred to as the tribes Ologamasini and Gamasellini, by such attributes. The character given the most importance here is the dorsal sclerotization as used by Ryke (1962b) in his division of the whole family: most adults of the Ologamasini have an entire dorsal shield, while on adults of the Gamasellini the dorsal shield is usually divided. Species in the Ologamasinae which do not have the dorsal sclerotization characteristic of their tribe, are members of genera (Geogamasus, Heydeniella, Hydrogamasellus and Gamasellus discutatuscomplex) in which this character varies between species or sexes of the same species and occasionally males of two of these genera (Geogamasus and Hydrogamasellus) have a partially divided dorsal shield, a rare attribute in this family. Of these genera with varying adult dorsal sclerotization, Geogamasus, Heydeniella and Hydrogamasellus have simple dorsal setae and are placed in the Ologamasini, while the Gamasellus discutatus-complex species have some pilose dorsal setae and are placed in the Gamasellini. The concepts used here for the two Ologamasinae tribes are mainly to provide a convenient division of this large subfamily that follows some precedence. But it is interesting that the resulting grouping of genera is similar to one based on the location of the external spermathecal aperture (see below). Therefore, although the present tribal taxa are tentative, a similar, stable grouping may be made later which is an indication of the phylogeny of the included mites.

4. SPERMATHECAL SYSTEM

In the Gamasina, male gametes are transferred to the female in a spermatophore, and Michael (1892) considered it likely that these gametes reached the spermatheca and ova through the vagina in some species, and through special tubes, the "tubuli annulati" (here termed "spermathecal ringed tubes") with an external aperture distinct from that of the vagina, in other species. Michael's evidence included the presence of a possible spermathecal sacculus and ringed tubes in the female only, the connection of these structures with the ovaries, the similarity of their contents to the contents of the spermatophore and observations of mites copulating.

Although evidence supporting Michael's (1892) work on gamasine reproduction is meagre, Camin's (1953) description of vaginal insemination for Ophionyssus natricis and Dosse's (1958 and 1959) description of direct spermathecal insemination for Typhlodromus zwolfcri, as well as some more recent work by others, establish that the two kinds of insemination suggested by Michael do occur in different members of the Gamasina. Costa (1966) implies that the members of a particular family would all have the same kind of insemination, but this may not be true for this family or for the included

Ologathasinate. Spermathecal ringed qubes are present in many species Erouped in these Laxa, but Michael (1892) presents evidence that the insemsination of a member of the Ologamasinate. Emrypurasitus amurgmatm. is though the vatuima and I have been unable to find spermathecal ringed tubes in Asheamonms kemales despite my examination of many earefully cleared specimens.

By describing the spernathecal ringed tube and saceulus in a large number of gimmasine mites, Athias-Henriot (in press) demonstrates the varicy of their form and kation of acess aperture, especially amonget rhodacaridh. One two or, in a single instance, three locations of the spermat thecat rimed tube aperture are deseribed on the fermates of unnamed speetes that Athias-Henriol considers ats belonging to the same rhodacard genus. From my awn work there usatly appears. for any particular rondacarid gentus. Lo be only one lacality for the external aperture of the spermathecal ringed whe. Therefore, I suggest that Athias-Henriot (in press) allots some Southern Hemisplere rhodacarids to the wrong genera. If the asumptoon that there in one locality for the external aperture of the spermathecal ringed lube in most rowdearid genera is substantated in the future, ther the consicherahle vartiely of this chatacter will make it an important taxnombic criterions.

Because of the possibility of confusing astructure (e.g., dicts of coxal and femoral glands. described by Fain. 1906. or even the gental apodeme and mucters. descritiod by Treat. 1965) wath the spermathecal ringed fube it is necessary to have some andicalion of the relability of such an identification. When there is a connection between the lube in question and a central sacculus. I regard it as certain that this whe is at spermathecal ringed ube. On thas basis as spermathecal singed tube opens near the posterior paraxial cade of acctabuhm IV just ventral to the genital apodeme in the followinge genera: Camasiphis. Caliphis, Emapicrius, Gamaselliphas. Gamasiphoudes. Jaclaptiellar. P'arasitiphns, Gamasellas falciger-complex. Periscims (Psammomsella). Amimmolachaps and Quecnshamdolaclaps. Observations (to be published later) al copulation in Emepicroms filamentosus and Gamasellus. tragardhi endorse lhis, and similar observations for Meydeniella demtata endorse the identification of a tube upening near the dorsal distal margin of trochanter 111 as a spermatheeal ringed tube. In other cases I aish, tor a number of reasons, fairly sure that I have correctly identified the spermathecal ringed tube and in the text below the "probable" location of its external aperture is refered to. This is true for the following genera with the ringed tube probably opening near the posterior paraxial edge of acetabulum IV: Rhodacarellus. Hydrogamasus, Gamasellus sliscmatascomplex. Perisems (Periseius). Pitellus and Paragamasellevans. This is also true for some species of Afrogamaselles where the opening is probably on the metapodal shield and for the following genera in which he roged

Fig. 4. Probable location of access to spermatheca on rhodarid females.
tabe probably opens on the proximal segments of legs III and IV: Ologamasus, Cymiphis, Gcogamasus, Hydrogamasellus, Rykellus, Pyriphis and Laclogamasus. On female Cyrtolaclaps and Euryparasitus there is a tube opening on the sternal shield between seta st 3 and acetabulum III, other than the sternal pores which also occur on the male. But, because of Michacl's (1892) observation that the spermatophore is applied to the vagina of Euryparasitus emarginatus (as Gamasus terriblis) and spermatozoa are found in a domed recess in the vagina, I regard the identification of the above sternal tubes of Cyrtolaclaps and Euryparasitus as spermathecal ringed tubes as dubious. Also, on one of the three known females of Neogamaselle1ans berlesei (described under species incertae sedis), a tube apparently opening near the genital apodeme has been blown partly out of the idiosoma by the clearing process and may be a spermathecal ringed tube. Therefore, there are 23 rhodacarid genera, subgenera or species-complexes of which 1 have not seen members or in which I have been unable to locate a possible spermathecal ringed tube. Amongst these latter genera, Athias-Henriot (in press) has located a possible spermathecal ringed tube opening on femur III of a Rhodacarus species and on coxa III and coxa IV of two Sessiluncus species.

On the assumption that only one location for the aperture of the spermathecal ringed tube usually oceurs in a particular genus, I summarize my observations in Figure 4. All genera with the spermathecal ringed tube probably opening on the proximal segments of legs III and IV are listed on the right hand side of the diagram and, excepting Laelogamasas, they all belong to the Ologamasini. Therefore, it is possible that the diagnosis of the Ologamasini may later be based on the location of the aperture of the spermathecal ringed tube.

CLASSIFICATION

Family RHODACARIDAE Oudemans

Rhodacarinac Oudemans, 1902a, p. 48 .
Rhodacaridate Oudemans, Halbert, 1915, p. 81.
Cyrtolaclaptini Berlese, 1913b, p, 11.
(This name is considered to be based on a misidentified type-genus and therefore is not available by the terms of the International Code of Zoological Nomenclature (1961). The evidence put forward for misidentification is that later (p .86), in the paper where this family-group nanme was tirst published, Cyrtoleelaps is redelined with "species typica

Gamasas memorensis K", indicating that Berlese had overlooked the type-designation by monotypy (Berlese, 1887b) of Gamasus mucromullus (i. and R. Cancstrini for Cyrolaelaps and the type-designation by Oudemans (1905) of Gomasus nemorensis Koch for Veigaia.)

Cytolackptinar Berlese, 1920, p. 166.
Rhodacaridae Oudemans, sehau Evans (in part), 1957, p. 221.
Rhodacaridae Oudemans, sensu Ryke (in part). 1962b, p. 155.
Gamasellini Hirschmann, 1962. p. 39.
Rhodacarns group Evans, 1963, p. 302.
Rhodacaridae Oudemans, sensa Karg (in part), 1965, p. 295.
Rhodacaridac Oudemans, sensi Bregetova (in part), 1967, p. 472.
Type-genus: Rhodacaris Oudemans, 1902a.
DIAGNOSIS. Sclerotization very variable, but always separate podenotal and opisthonotal shields on deutonymph and a posteriorly truncated female genital shield separated from a conspicuous ventro-anal shicld. Female metasternal seta, s/4, usually on a sterno-metasternal shield. Leg chactotaxy usually as for the "Rhodacarns-group" genera referred to by Evans (1963). Apotele usually three-pronged, never with associated hyaline flap, and if two-pronged then there are four ventral setate on tibia I. Male
with distally free spermadactyl, presternal genital oritice and seta ar on femur Il bateer than that of female and usually considerably modified to a conspicuous spur.

MORPHOLOGY.

Sceerotization. There are always separate podonotal and opis. thonotal shields on the deutonymph, and on the aldults they may or may mot be fused together. On the male of Geogamasus delamarei and an unnamed Hydrogemasellus mate there are lateral incosions partially separating the podonotal and opisthonotal shields. The ventro-anal bhicld and the posterior hall of the peritrematal shied maty or may not be fused to other shied a wee "Morphology", p. 8). The female genital shicld is rounded anterionly or hats a pointed byaline flap, and is truncated posteriorly. There are no associated parasternal shieds, but there is usually a central vaginal shichd. and sometimes small intergenito-ventral shields posteriorly. There is always a continuous mate sternito-genital shich. The extent of the fusion between the pre-endopodal, jugutar, sternal, metasternal, endopodal and expodal shicld varies. In some subfamiles there is conspicuous sexual dimorphasm of the sclerotization.

Chaletoraxy. Idiosoma: There are usually 20, 21 and 22 pairs of setae on the podonotum. But there may be 23 pairs (Rhodacarus and Rhoducaropsis) or there may be hypertrichy of the podonotal setace as in some members of the Gamasiphinae or Gamasellini. The two monogeneric subfamilies have an unusually low number of podonotal setae; Laclaptonyssinate having 13, 19 or 20 pairs and Thngurocllinac having 16 pairs. The setation of the opisthonotum is very variable. There are usually four pairs of setate on a sterno-metaternal shield and one pair on the genital shiedd. but setace stl and st 4 may be on separate shields, and seta stat may be on striated cuticle or it may be absent as in Evanssellus medersa and Laclaptonyssus mitis. Setae $J v 2, J V 3, Z v 2$, a pair of paranals and an unpaired postanal are always on the ventro-anal shied. There are no cuanal setae on the adult anal valves.

Legs: The commonest chactotactio pattern is that found on the legs of Giamasellos species where the complement of setace sh citch ley segment is: coxac I to $1 \mathrm{~V}, 2-2-2-1$: Irochantera 1 to IV, 6-5-5-5: femora I to IV. 13-11-6-6: genua 1 to IV, 13-11-9-10; tibiae 1 to IV, 14-10-8-10: tarsi If to IV. 18-18-18. Eighteen variants from this pattern ate known, usually with fewer setale. Only lwo genera have less than the maximum complement of 14 sctac on tibia 1: Hydrogamastes has 13 setae (2-6/3.2) and Laclap)fonyssus has 9 setue (1-4/3-1) or 11 setac (2-4/3-2).

Other Characters. Apotele three-pronged; except for the twopronged apotele of Tangarochlss porosus, and without an associated hyaline flap. Conspicuous salivary styli lie ventro-laterally to chelicerae Movable
digit on male chelicera carries a distally free spermadatyl, atthough the two are fused into what appears to be a single process in some species of Afregamasellus. (hatemorphy of most setac sarics through a wide range of shapes. and there are thin walled sensory setate at the distal tip of timstas I. strong. growning setac on the antero-lateral margin of the palp genn and cabarged, spur-like setae on the male leg II. The spermatlecal sysem on the femade is either closely associated with the vagina or there ate is patit of finged tubes opening on the idiosoma or proximal keg segments, level or mearly keve with genital shick, and leading to a single central satcoulus. The male genital oritice is prestermal and level with the anterior edge of acetabulum II, atthough it may be encloned by the fused sternat and preendopodal shields.

DISTRIBUTION. The limily an a whote is cosmopolitan, having been found in every magor zongeographical region, although sone of the individat genera have this wide distribution and their geographical range varies considerably. Taxa within the family are more numerous and morphologically diverse in the extra-holaretic regions. For example, 5 generat de Known only from the holatio regon. white there are 31 genera from anly the extanthatictic regions, with 9 found in both hotarctic and extraholarctic regions.

This distribution of the Rhodacaridate hath resulted in it being comsidered as replacing the Parasitidac, when is more numerous in the Northern Hemisphere, an free-fiving predators in the ground habitath of the Southern Hemisphere (Athias-Henriot, 1968 and Batogh, 1963a) or the exthapalatactic regions (Sheals. 1902). Members of the Rhondacardae are very mbth rarer than those of the Parasitidat in Palacarctic regions but are probably a common in Nearetic regions, commoner in lropical reyons and very much commoner in Southern Temperate regions. But, the enomons. diversty in form of rhadacarid mite in Southern Temperate regions sugesests that they replace more than the mophologeally conservative Parastidae.

The phodacarid fauna of the Northern Temperate regions is smilar
 to the Palatearetic region. The Trepical regions show some of the diflerencen that are found between the rhodacarid fithats of the major Southern Temperate regions. but becatse wo well represented thodatatid teberat. Rhederaras and Geamasiphis. have a pantropical diatribution and may be the only rhedacared genera present in some localities, the rhodatarid batanas af these regions are lairly similar throughout. In the Southern Temperate regons, there are considerable differences in the rhodacard fanas of the Neotropical. Ethiopian and Abstratian reginns indicatting that they hate been evolving in isolation from each oller for some time. On the ather hand, in the Subantaretic and Antaretic regions, there appeats to have been a
relatively recent circumpolat distribution because of the similarity between the rhodacarid faunas.

A table summarizing the size and distribution of supraspecific taxa, as well as a map of the zoogeographical regions used, is given at the end of this paper (p. 204 and Fig. 427).

REMARKS. The concept of the Rhodacaridae used here is based on the Rhodacarus-group of Evans (1963). The approximately equivalent taxa in other systematic frameworks would be Hirschmann's (1962) Gamasellini, Johnston's (1968) Rhodacaridae and C'yrtolatapidae, Karg's (1965) Rhodacaridac (in part, excluding the Digamasellidac) and Gamasellinac: and Ryke's (1962b) Rhodacaridac (in part, excluding some Ascidae, the Digamasellidae and Halolaelapidae). Bregetova (1967) places Rhodacarus, Asca, Digamasellus, Halolaclaps and Crrolaclaps in the Rhodacaridae, and appears to exclude by definition all species with a holonotal shied in the adult.

The Rhodacaridae is probably closely allied to both the Parasitidate and Veigaiidac, with the same type of leg chactotaxy, and the Digamasellidate and Halolaelapidae, with a reduced leg chaetotaxy. Although the Rhodacaridat is almost certainly not similarly allied to the Ascidae, some species. which would be atypical of either of these families, are placed in one of them with little certainty. Finally, on superficial examination, some members of the Pachylaelapidae, Parholaspidae and Zerconidac (females only) may be thought to be rhodacarids.

Within the family, ats recognized here, there are six major subgroups, which I recognize formally as sublamilies. The mames Rhodacarinae Oudemans. 1902a, Lataptonyssinae Womersley, $1956 a$ and Ologamasinae Ryke, $1962 b$ are already available for three or these groups and below I propose the names Gamasiphinae. Sessiluncinate and Tangarocllinae for the other three groups. Adults of these groups can be distinguished by using the following key.

KEY TO SUBFAMILIES OF RHODACARIDAE

1. Fenme I with less than 13 setac, having only 2 or 3 ventral setac 2

Femur I with 13 setue, having 4 ventral setac 3
2. Apotele 2-pronged. Leg chatotaxy as for Gamasellus, except femur I with 12 setae (one ventral seta less), femur IV with 7 setae (one ventral seta more) and tarsus IV with 16 setae (two dorsal setae less)..

Tangarocllinae

Apotele 3-pronged. Chactotaxy of many leg segments differs from Gamasellus, for example tibia I has only 9 or 11 setac .

Laelaptonyssinae
3. Tarsus IV with 17 setac, seta pl4 absent. An exception, with 18 setae because seta pl4 is present on tarsus IV, is one Afrogamasellus sp. which has seta st 1 on an area of sternal shield with punctate selerotization
Tarsus IV with 18 setae or, if 17 setae, seta $p d 4$ absent. Seta st 1 on an evenly sclerotized area of sternal shield.
4. Peritrematal shield not fused to exopodal IV shicld or, if fused, then completely merged with exopodal shields behind stigma. Ventro-anal shield rarely fused to notal shicld and when it is (as in Stylochirus), seta al on palp femur is in central third. Peritreme extends in front of anterior edge of acetabulum III (except in some species of Stylochirus) and setae on male tarsus II are never enlarged into tubercles
. . . .
Peritrematal shield generally fused to exopodal IV shield, but usually it is also partly separated from the exopodal shields behind the stigma by al fissure running backwards from between the anterior parts of the peritrematal and exopodal shields. On palp femur, seta al is in proximal third (except in some species of Litogamasus). If peritrematal shield is completely merged with exopodal shields behind stigma (as in some species of Gamasiphis and Hiniphis), ventro-anal shicld is fused to notal shield. Or, if peritrematal shield not fused at all to exopodal shields then ventro-anal shield is either fused to notal shield (as in some species of Caliphis, Hydrogamasus and Geogamasus males), or the mite is minute, with a short peritreme not extending in front of anterior edge of acetabulum III (as in Neogamasellevans and Notogamasellus), or it is the male of a littoral mite with an
enlarged leg IV and seta av2 on tarsus II enlarged into tubercle (as in Litogamasus and Parasitiphis)
5. Discrete genital shield covering genital orifice which is posterior to sternal shield. Female

Sternito-genital shield with genital orifice close to its anterior margin. Malc
6. Ventro-anal shield fused to notal shield except on some females of Gamasiphoides. On sterno-metasternal shield a line joining setac $s t 2$, st 3 and st 4 would enclose atn angle of less than 95°, except in Hydrogamasus which has 13 setac (2-6/3-2) on tibia I. Some females of Gamasiphis and Caliphis (e.g., G. concilator and C. calvus) have seta $s t 3$ so far forward that it could be mistaken for seta st 2 , so that they may be confused with Ologamasinae females on which the ventro-anal shield is fused to the notal shield (compare Fig. 64 and 233). But, the absence of a split in exopodal III shield and having the combination of less than two lateral prongs on palp genu seta all, a peritrematal shield not fused to the ventro-anal shield and the sternal shield continuous with endopodal IV shield distinguishes Gamasiphis and Caliphis females from such Ologamasinae females

Gamasiphinae
Generally ventro-anal shield not fused to notal shield, but there are various exceptions. On sterno-metasternal shield a line joining setac $s t 2, s t 3$ and $s t 4$ is usually nearly straight, and never encloses an angle of less than 95°, except on some females of the Gamasellus discutatus-complex, which can be distinguished by having complex notal setae and a ventro-anal shield that is not fused to notal shield. Chaetotaxy of leg I always as for Gamasellus, with 14 setae (2-6/4-2) on tibia

Ologamasinac
7. Ventro-anal shield fused to notal shield except on some males of Gamasiphoides, but not to peritrematal shield. Gamasiphoides males with ventro-anal shield not fused to notal shield have simple idiosomal setae, no lateral prongs on palp genu seta all,2 pairs of pre-endopodal shields and a holonotal shield. Idiosomal sclerotization always similar to that of femate
Ventro-anal shicld either not fused to notal shield or, if fused, also fused to peritrematal shield. Exceptions with a ventro-anal shield fused to notal shield and not to peritrematal shield are found in the Gamasellus discutatus-complex and pyriformis-complex which can be distinguished by having both the podonotal seta $j 4, z 5$, and $r 3$ obviously pilose amongst simple or lanceolate sctae and 2 or 3 pairs of pre-endopodal shields. Also some males of Parasitiphis are similar exceptions but can be distinguished by having seta av2 on tarsus II modified into a tubercle. If ventro-anal shield not fused to notal shield or peritrematal shield then, either some idiosomal setac are complex, or palp genu seta all has more than 2 lateral prongs, or there is a single pair of pre-endopodal shields or there are separate podonotal and opisthonotal shields. Idiosomal sclerotization often differing considerably from that of female

Gamasiphinae
正

Ologamasinae

Subfamily RHODACARINAE Oudemans

Rhodacarinac Oudemans, 1902a, p. 48. Type-genus: Rhodacarus Oudemans, 1902a.

DIAGNOSIS: Minute or small mites which are generally lightly sclerotized, except for Afrogamasellus, a genus restricted to the Ethiopian region. which contains a number of average sized, heavily sclerotized species. The sclerotization is often conspicuously sexually dimorphic. Only very rarely are opisthosomal shields fused to those of the podosoma. Seta pl4 is absent on tarsus IV, except on one unnamed species.

MORPHOLOGY.

SClerotization. The shichs on the podosomu are not usually fused to those on the opisthosoma, but on Alrogumasellus luberaensis the podonotal is fused to the opisthonotal (although a distinct groove marks the line of fusion), and in an umamed species described by Loots (thesis, 1967) the female (the male is unknown) metapodal is completely merged with the peritromatal. In most species, except the heavily selerotized Afrogamasellus species, parts of the shieds have punctate solerotization. Rarely are there free pre-endopodals as in Rhodacaropsis, although the jugular may be diserete from the stemal. The mate selerotization is usually more extensive than that of the female (except in some species of Afrogamascllus and Rhodacaropsis where it is similar in both sexes) with the ventro-anal fused posteriorly w the opisthonotal, the metapodal sometimes enlarged or in lightly sclerotized species fused to the opisthonotal by punctate sclerotization and, in some Afrosamasellus species. the peritrematal is enlarged. Unlike the Ologamasinae, the other subfamily with many species having sexuatly dimorphic selerotization, the male ventro-anal is never fused to the peritrematal.

Chartoraxy. Idiosoma: There are 22 or 23 pairs of podonotal setac, except on one species of Afrogamasellws where there are 18 pairs. If there are 23 pars they are regarded as being in rows with Gi, 6e, or, $5 r$. unlike Lindquist and Evans (1965, p. 14) who would regard the podonotal setae of Rhedacarus as being in rows with $60,6-55$, or, naming the four pairs of setae on the anterior edge of the podonotal shield $j 1, z 1$, s. . rl. Here, row j is considered to be compressed forward in Rhodacarns (compare Figs. 5, 14 and 20) so that $j 1, j 2,21, s 1$ are on the anterior edge of the podonotal shield, and therefore, as in other Gamasina, rl does not exist. $6 j, 5$ or $6 z, 3,5$ or $6 s, 4$ or $5 r: 5 \%, 5 Z, 5 S, 2,4$ or $5 R: 5 s t=3 \%, 3 Z v$. 0 or 151 .

Legs: Unique amongst rhodacarids. and Gimasina, is the absence of p/4 on tamsas IV, execpt for anc umamed species of Afrogamasellers dencribed by Loots (thesis, 1967) where it is present on the adult but absent on the deutonympli. The only other variant from the Gamaselhas leg chactutaxy is the absence of some dorsal setac on femur II and III on at least one species of Rhodacaropsis.

Other Characters, On palp femur, seta al is on central third, is in Laelopmonyssus and a number of Sessiluncinae genera, in contrast to nearly all members of the Ologamasinate. Gamasiphinate and Tangaroefloss where it is on the proximal third. Dorsal setace are usually simple and setose but in vome Afrogamasellins species they are spatulate and/or pilose. The spermadactyl is unusual in cither being recurved (Rhodacarms, Rhodacarchlos and

Rhodacoropsis) or being merged with it reduced movable digit (Afrogamasellus). A recurved spermadactyl does occur on members of other subPamilies (Pyriphis and Sessiluncus). Pulvilli II-IV with paired lateral, short lanceolate jobes and paired central circular lobes.
 Rhoducoropsis when more collecting is done) is cosmopolitan except that it has not yet heen collected from the polar regions or the southern Neotropical regions; is commonest in the deeper soil layers and the littoral zone and is constant in form as well as being small and lightly sclerotized. Alfogamascllus. is confined to the Elhopian region, is more often collected from plant litter or upper soil layers and is varmble in form, as well as sometimes being larger and heavily sclerotized.

REMARKS. Athough the concept of this subfamily is smilat to that of the Rhodacaridat up until 1955, the important diagnostic characters used here are largely those which will be used by Loots (in press), ass are the characters used to distinguish the genera it contains. The addition of a new genus. Afrogemasellus I.oots and Ryke (1968), is important in claritying which characters of the previous nominal members of the Rhodacarinae are absent when a species is not spectalized for living in the high humidity and matl spaces between soil particles; for example, small size, light selerotization and products of an articulated narrow idiosoma that allows the separate movements of the opisthosoma needed to circumambulate narrow soil pore spaces. Butt. although the larger species of Afrogamasellas are heavily sclerotized and probably hemiedaphic. the opisthosomal shields are rarely fused so those of the podosoma, and when they are there is a line of dematration suggesting that the fusion is secondary. This indicates that the ancestors of these Afrogamasellus species may have been euedaphic like Rhoducarns and had an articulated idiosoma.

The removal of Rhodacaroides [rom the Rhodacarinae to the Gamasellimi depends partly on the characters of unnamed species that I consider to be congeneric with the type species (which I have not seen). But on Willmann's (1959) original description there can be little doubt that this genus is not closely allied to Rhodacarns.

I recognize 4 genera within this subfamily, Rhodacarus. A Jragramasellens. Rhedecarellus and Rhodacaropsis. Adults of these genera can be disfinguished by using the following key.

KEY TO GENERA OF RHODACARINAE

1. Four pairs ($j 1, j 2,21$ and, 11) of setac on anterior edge of podonotal shiold. Third hypostomal seta approximately halfway between hyp 2 and hyp 4
(capitular) setae. On ventral surface of podonotal shicld, 3 light-refractile structures between
setae $j 5$ and $j 6$

2
Two or 3 pairs (always $j 1$ and $z 1$, sometimes $j 2$) of setae on anterior edge of podonotal shicld. Third hypostomal setiz approximately level with hyp2. On ventral surface of podonotal shield, 4 or more light-refractile structures between setae $j 5$ and $j 6$

3
2. No pretarsus 1. No pre-endopodal shiclds of normal sclerotization, although anterior edge of sternal shield may be separated from the rest by punctate sclerotization and there may be separate shiclds of punctate sclerotization

Rhodacarus

Prctarsus I present, consisting of a pair of strong, sessile claws. Normally sclerotized preendopodal shields separated from sternum by striated cuticle

Rhodlacaropsis
3. Arthrodial process at base of movable cheliceral digit is a simple coronet. Spermadactyl separates from normal movable cheliceral digit at level of single tooth and is recurved, enclosing an angle of less than 100

Rhodacarellus
Arthrodial process at base of movable cheliceral digit is produced into a conspicuous brush. Spermadactyl curves in the same way as movable cheliceral digit, which is reduced and may be entirely merged with it

A frogamasellus

Genus RHODACARUS Oudemans

Rhodacarus Oudemans, 1902a, p. 50. Type-species: Rhodacarus roseus Oudemans, 1902 a , by monotypy.

DIAGNOSIS. Minute or small mites, with lightly sclerotized, slim, centrally articulated idiosoma and a relatively large, well sclerotized gnathosoma. Third hypostomal seta approximately halfway between second and fourth hypostomal setac. Podonotal shield has 4 pairs of setae on antcrior margin and 3 light-refractile structures. Pre-endopodal shields absent. Spermadactyl recurved. Pretarsus I absent.

MORPHOLOGY.

Sefir:kotizailion, Female: Separate podonotal (may be fragmented into three or four smatler shieds) and opisthonotal. On ventral surface of podonotal, 3 light-refractile structures between setae $j 5$ and $j 6$ (usually on thoulacarids there are 4 such structures, if present, but Rhodacaropsis also has 3). Discrete ventro-anal (bearing ariculac posterior to (anus) wadely separated from genital and exopodal IV. Diserete metapodal which may be fragmented and have punctate sclerotization. Intergentoventral shicd present. Peritrematal reduced and may or may not be narrowly fused to protonotal and exopodal IV. If present, exopodals only between of at posterion edge acetabula. Sterno-metastermal fused to endopodal 11 and part of 111 . Pre-endopodals absent, although anterior edge of sternal may be normally selerotized and separated from similarly sclerotized areas by punctate selerotwation. Areas of punctate sclerotization on edges of many shiclds, seta stl usuatly on such an area.

Male: Ventro-inal fused to opisthonotal, but widely separated from sternito-genital, exopodat IV and peritrematal. Metapodal may be broadly fused to opisthonotal by punctate sclerotization.

Chabiotaxy, Idiosoma: $6 j, 6 z, 6 s, 5 r ; 5 J, 5 Z, 5 S, 5 R: 5 s t=$ 3.1. 37v.

Legs: As Gamuscllus, except tarsus IV lacks pl4.
Othir Charactars. Female: Size of gnathosomat relative to idiosom?a is unusually large and chelicerae are long and heavily selerotized. Deutosternal denticles in 7 horizontal rows with a longitudinal und a horizontal deulosternal ridge anterior to denticles. Tectum anterior margin bisically trispinate, but the large central spine, and more darely the latteral spines, may carry spinules distally. Hypostomal setac almost in a longitudinal line (unique to this rhodacarid genus and Rhodacaropsis). Movable cheliceral digit with 3 leeth. On palp genu, setae all and al2 almost level and very slightly spatulate. On palp femur, seta al in central third. Sclerotization is pale, and may be pinkish with a red gnathonoma. Idiosoma is constricted between podosoma and opisthosoma. Dorsal setae simple, setose. Pretarsus I absent. Spermathecal ringed tube not located in this study, but Athias-Henriot (in press) states that it opens on fomur 111. Pretarsus 1 absent. Amongst dorsal setae on tarsus IV, seta phl3 is the longest.

Male: Movable chelicera] digit with one tooth and [used at base to recurved. spatulate spermadactyl. On leg 11 . femur setac av and pvl. genu seta as, thibia seta aw, enlarged into spurs.

Figs. 5-13. Rhodacarus rosens Oudemans.
5-9. female: 5, soma, dorsum; 6, idiosoma, venter; 7, gnathosoma, venter; 8. leg IV (part), dorsal setae only; 9, tarsus I , distal tip. 10-13, male: 10 , leg 11 (part), antero-latus; 11, chelicera; 12, opisthosoma, Jatus: 13, idiosoma, venter.

DISTRIBUTION Nn, Na: NTa, NTb: Ew, Ec, Es: Pe, Pm: Oi, Om: AII. Ait. Besides the locality records published with the original descriptions of nominal species or forms there are records of Khodacarus species from North Americal (Emberson. thesis. 1968; Fox, 1967. Haq, 1965; Rodriguez. and lharta, 1967). Alrical (Loots, in press). Istael (Costa, 1966a) and numerous records from the curopean Palacaretic region. I regard as Jubious the record of a Rhodacurus sp. from the (rozel Islands (Sk) by Richters (1907) and it should be noted that Rhodacaros costai from Argentina has heen removed from this genus. The specimens from Neotropical regions (from damaica, Trinidad and British Guiana) and the Oricntal and malayan Australian regions (from Nepal. Malaya and Solomon Islands) are before me and to be dep. BM(NH). It will be interesting if Rholacarus continues Io be absent from col.ections taken from southern Neotropical regions.

Found amongst plant litter and soil (particularly deeper layers below 3 inches) and in littoral zone

REMARKS. The concept of Rhodacarns wats broader when Ryke (1962b) included Rhodacarellus, Rhoducaropsis and Rhodacaroides as subgenera. It is possible that Rhodacaropsis should be synonymized with Rhodacurus. Previously species have usually been correctly placed in this genus, but I consider Rhodacarus costai a species incertae sedis and not a member of the Rhodacarinae, while the tramser of Rhoducarellus minimus 10 this genus by Hirschmann. 1962, is incorrect. The following 17 nominal species are, therefore included in this genus: R. Fesens Oudemans. 1902a; R. amanasi Ryhe。1962a; R. angustiformis Willmann, 1951: R. calcarulans Berlese. 1420 (syn. R. pallidus in Sheals. 1958): R, clawalams AthiasHeuriot. 1961b; R. cormahas Berlesc. 1920; R. comeatus Athats-Henriot. 1961b; R. demiculatus Berlene, 1920; R. lameti Athias-Henriot. 1961b; R. mandibularis Berlene, 1920 (syn. R. roseus in Sheals, 1958): R. markanee Dommow, 1957: R. pallidus Hull, 1918: R. recondims Athias-Henriot. 1961b: R. thodacaropsis Ryke, 1962a, R. stenzkei Willmann, 1957; R. sublapideus Ryke, $1962 \mathrm{a} ; \mathrm{R}$. mihacularms Atbias-Henriot, 1961t. Two new species ase described by Loots (in press). Also there are simplex forms of R. rosems (in Sheals. 1958), R, coromatus (in Athas-Henriot. 1961 b) and R. pallidus (in Sheals. 1958, referred to as calcarulatur formi) in which the pedonotal shicld is not split into anterior and posterior sections by a V-shaped lissute.

Rhodacarus roseus Oudemans

Rhodecarns rosem Oudemans, 1902a. p. 50.
HEMALE. Fig. 5-9. Idosomal length. 450). The punctate sclerotizafonn is usually an atrea where thickes sclerotization is limited to spots on a thin shield, hat at the anterior of the ventro-anal shield there are areas where the thicker sclerotization has spots of thin sclerotization in it. The anterior
end of the peritreme is joined to the smath hameral section of the podonotat shield by at thin strip of thickened sclerotization.

MAL.E. Fig. 10-13. Idiosomal length, 410μ. In Fig. 11, looth on movable cheliceral digit is mainly obscured by spermadactyl,

LOCALITY, Three females (N196879-N196881) and 4 males (N196882-N196885) drawn or examined: Australia: I.F58, grass and leaf litter under Eacalyptur comahlulensis, Heywood Pirk, Adelatide. South Australia, 6.6.1965, col. R. V. Southcotl, dep. SAM.

REMARKS. R. roseus is the best name for the above specimens, although there are slight differences between them and the prevous descriptions of this species, particularly in the extent of the punctate sclerotization.

Genus AF゙ROGAMASELLUS Loots and Ryke

Afrogamasedlas l.oots and Ryke, 1908, p. 2. Type-species: Cyrolachaps (Gamasellus) franzi, Loots and Ryke, 1966, by original designation.

DLAGNOSIS. Minute to average sized mites, with light to heavy selerotization. Idiosomat is often ellipsodat without central articulation. Second and third hypostomal setae nearly level, both henge a simila distance from hypostomal seta 4. Podonotal shield has 2 or 3 pairs of setae on anterior margin and 4 light-refractile structures. Pre-endopodal shelds absent. Spermadactyl not recurved but broadly merged with reduced movable digit of chelicera. Pretarsus I present.

MORPHOLOGY.

Sclerotization, Female: Usually separate podonotal and opisthonotal. but may be holonotal with groove across shicld where split is normally. On ventral surlace of podonotad, 4 light-refractile siructures between setace $j 5$ and 76 . Discrete ventro-anal (sometimes bearing actoulae posterion to athus) sometimes fused to metapodal and anterior margin maty or may not lie close to genital and exopodal IV. Usually discrete metapodal. Intergenito-ventral shield absent. Peritrematal usually fused to exopodal IV, and rarcly to metapodal as well, but may be reduced and not fused to any shields ponteriorly. Split in exopodals II, III and IV. Sterno-metasternat fused to endopodals 11 and III, and rately to endopodal IV as well. May be separate jugular, or punctate anterior area of sternum which may or may mot carry seta st 1 . Pre-endopodals absent, although anterior edge of sternometasternal may be normally ackerotized and separated from similarly sclerotized areas by punctute sclerotization.

Male: May be similar to female, or metapodal is enlarged, or metapodill and peritrematal atre enlarged with the peritrematal and ventro-anal fused to the notals and in one species the metapodal is joined to the opisthonotal by punctate sclerotization. Unatly an entire sternite-genital, but section
carrying sela wh may be separated from reat and fused to endopodal IV. Alhough ventro-anal shicld is always separate from sternito-genital it is usually close to it.

ChAETOTAXY, Idionoma: $6 j, 5$ or $6 z, 3,5$ or $6 s, 4$ or $51: 51,52,53$, 4 or $5 R$: $5 \mathrm{st}: 3 \mathrm{Jv}, 3 \mathrm{Zv}, 15 \mathrm{v}$.

Legs: As Gamasellus. except tarsus IV backs p/4 (other than in one unnamed species where it is present on the adult but missing on the (deutonymph),

Othis Characters. Female: Relative size of gnathosoma compared to idiosoma is average. Deutosternal denticles in 7 horizontal rows with a horizontal deutosternal ridge anterior to denticles. Tectum anterion margin may be basically unispinate or trispinate, and usually also has spindes and sometimes the central spine broadens out at its tip. Third liypostomal seta nearly level with seta hyp2, both being a similar distance from seta hypt. Muvable cheliceral digit with 3 teeth. Cheliceral athrodial process at base of movable digit is extended into bhort brush. uswally about halt the length of the movable digit, while in most other genera it is a simple coronel. On palp genu, seta all and seta al2 may both be spine-like or spatulate or seta all may be spatulate and seta al2 slightly pilose. On patp lemur, setat al in central third. Sclerothation usually shiny. Dorsal setae usually tapering and simple, may be slightly pilose or pilose and spatulate. On the basis of my examination of female A. tetrastigma and A. mitigatus. I consider it probable that the pore at the anterior end of the metapodal bhick (see Figs. 17 and 22) is the opening of the spermathecal ringed tubc. This pore is referred to as the "quasi-stigma" by Loots (1969). The strongest evidence supporting my homology is the description of the temale and mate of an monamed upecies by Loots (thesss, 1967): the female has a long, internal chitinized tube attached to the pore, which is absent on the mate and the male spermadatyl is tunsually long and narrow. If this homology is correct, then the pore drawn on the male metapodal shield of A. Actrasigima by Loots (1969) would be homologous to the pore near the posterior, paraxiat margin of the female metapodal shied (sce Fig. 17). Further evidence is reguited before the locations of the aperture of the ypermathecat ringed tube is eonsidered to be probably on the cemale metapodit shied of Afrogramasellus species other than those belonging to the tifrastigma-complex or the umnamed species mentioned above. Pretarsus I may be pedfuculate with smaller claws than other pretarsi or broadly fused 10 tarsus. Leg I often thicker than other legs. Femur II may have ventral process. Amongst dorsal setac on tarsus IV, setac pd3 and pd4 are the longest being subequal in length.

Male: Movable cheliceral digit reduced and merged into spermadactyl, sometimes to the extent that only the grooved spermadactyl appears present. but often there is a comspicuous dossal tooth which could be bomologous

Figs. 14-22, Afrogamasellus Loots and Ryke.
14-19, A. fetrastigma (Berlese), female: 14, soma, dorsum; 15, pretarsus 1 and tarsus I (part): 16, Jeg IV (part), dorsal setac only; 17, idiosoma, venter: 18 , libia I. II, III and IV, ventral setae only; 19, gnatbosomid, venter. 20 , nominate species of cumaxiloensis-complex Loots (1969), podonotal chactataxy. 21, A. sitccinchus (Berlese), parts of idinsoma, venter. 22. A. mitigalus (Berlese), acetabulum IV and surroundings.
with the female teeth or could represent the tip of the muvable digit. On tarala I. in one species, one of the distal, hollow setae is ovoid, being swollen compared with the equivalent female seta. On ley II. seta dr on fentur and genu enlarged into spurs. May be other spurs on these segments and on libia 11. but their homologies are not known.

DISTRIBUTION: Ew. Ee, Es. Besides the locality records published with the original descriptions of nominal species, there are other records of unnamed species described by I.oots (thesis, 1967). Members of this genus have not been collected south of 30 S .

Found in plant litter und soil.
REMARKS. Before 1968 the species now included in Afrogamasellas were placed in Gumaselless (as subgenus of Cyrtoladaps). Lerots (1969) states that this is a heterogenous taxon and divides it into the following \& species-complexes. which contain 18 nominal species and 7 unamed species (Loots, in press).

1. quadrisigillatus-succinctus-complex (includes the type-species of the genus).

The following り nominal species, plus a subupecies distinguished from a nominate subspecies, are included in this species-complex: A. yuadrisigillatns (Berlese, 1916a): A. succinctus (Berlese, 1916a); A. fromzl (Ryke and Lools, 19(66): A. Kilimanjaroensis (Ryke and Loots, 1966); A, kivuensis (Ryke and Loots. 1906): A. lelenpi (Ryke and Loots, 1966) : A. lumsuemis (Ryke and Loots, 1966); A. maskamensis (Ryke and Loots, 1966): A. Invachsis (Ryke and L.oots, 1966): A. Ifviraensis comgocmai (Rykie and Loots, 1966).

Jugular shield may be present, or seta sil may be on the sternal shicld or on punctate selerotization. If punctate sclerotization is present in region of seta stl, it either bears this setae when it may or may not separate a nommally selerotized anterior edge of the sternal shield from the rest (Fig. 21), or it separates off a jugular shield. FEMALE. Metupodal shicld :Haller thath anus, sometimes with one or lwo small elongate shields between it and the ventro-anal shield. Striated cuticle between ventro-anal shield and podal shelds never more than moderately extensive so that anterior edge of ventro-anal shield is never much further (more than 10μ) from sternal seta st 4 than the distance between both setae st4. MALE. Ventro-anal whield fused to notal shield posteriorly, and the metapodal shied is much larger that the anus, with a triangular outline wedged between the lateral margins of the ventro-anal and notal shields. Sternito-genital shield undivided and broudly fused to endopodal IV shield.

2. camaxiloensis-complex.

I bave only seen the descriptions of 7 ummmed species belonging to this species-complex by Loots (thesis, 1467), although. since at diagmosis is given for this species-complex by Loots (1969). names for these ypecies must now be formally recognized and the descriptions by Loots (in press) published.

Jugular shicld absent, but always an area of punctate sclerotization in this region, which may or may not bear seta st, and which never separates a normally sclerotized anterior edge of the sternal shield from the rest. FEMALE. Metapodal shield smaller than anus, and with a smatl elongate shield between it and ventro-anal shield. Extensive area of striated cuticle between ventro-anal shick and podal shieks; the anterior margin of ventroanal shield is much further from sternal seta sf4 than the distance between both setas stt. Posterior margin of gental shich ustally bordered by punctate selerotization. MALE. Ventro-amal shied fused to notal shied postermely. Metapodat shietd larger than anos with a triamgular ontline wedged between the lateral margins of the ventro-anal and notal shiches. Sternito-genital shield around seta $s t 5$ is separate from the rest of the shield and fused to endopodal IV shicld, while the rest of the sternito-genital shield is separated by punctate acterotization or striated cuticle from emdopodal IV shield.

3. luberoensis-complex.

The following single nominal species, plus a subspecies distinguished from the nominate subspecies, is included in this species-complex: A. luheroensis Loots, 1968; A. luberoensis kalibuensis Loots, 1968.

This is the only species in the Rhodacarimae on which adult podosomal and opisthosomal shields are funed together; the podonotal and opisthonotal shields are fused to form a holonotal shield and the metapodal is fused to the peotrematal shick, and only on the female to the ventro-inal shied in well. Otherwise this species ss similar to members al the fetrastigma-complex, except that in the nominate subspecies the metapodal is smaller than the anus. The male ventro-anal shied is not fused to the notal shived.

4. terrastigme-complex.

The following X nominal species are included in this species-complex: A. tetrastigma (Berlese. 1916a); A. celisi Loots, 1969: A. evansi Loots. 1969; A. Kahusiensis loots, 1969; A. mitigatus (Berlese, 1923) \& A. muhiensis Loots, 1969; A. rugegensis Loots, 1969; A. nyinabitabuensis Loots, 1969.

Jugular shicdel present and discretc. FEMALE. Metapodal shied larger than anus. ustally discrete, but marrowly fused to ventro-anal shicid on A. mitigallis. Usuatly etriated cuticke inconspicuous between ventro-inal
shield and podal shields and never more extensive than on the females of the quatrisigillatus-suncinchas-complex. MALE. Ventro-anal shield may or may not be fused to notal shield posteriorly; if it is not fused then the metapodial shield is smaller than the ants, but if it is fused then the metapodal bield is much larger than the anus with a triangular outline wedged between the lateral margins of the ventro-anal and notal shields. Sternito-genital shield undivided and broadly fused to endopodal IV shield.

Two further species-complexes, each including a single unnamed species, were recognized by Loots (thesis, 1967). One of these unnamed species has a conspictous spermathecal ringed tube as mentioned above.

Afrogamasellus mitigatus (Berlese)

Gamasellos mirigatus Berlese, 1923, p. 250.
FEMALE. Fig, 22. Idiosomal length, unknown. The sketch (Fig. 22) shows that the metapodal shield bears a pore leading to an internal sac and not an external process as in the drawing (Fig. 125) in Ryke, 1962c. This internal sac is probably part of the spermathecal ringed tube.

MALE. Not known.
LOCAIITY. The "tipico' female (221/11), sketched and examined. East Africa: col. Alluaud and Jeannell, dep. SEAF.
Afrogamasellus succinctus (Berlese)

Gamasellus succinctus Berlese, 1916a, p. 160.
FEMALE. Fig. 21. Idiosomal length, unknown. The 3 sketehes (Fig. 21) given, show that this species is more like Afrogamasellus franzi than the drawing (Fig. 3) of it (named C. (Gamasellus) succinctus) given by Loots and Ryke (1966) indicates. The pore on the metapodal shield may be bomologous to the pore near the posterior, paraxial marein of the metapodal shield of A. tetrastigna (see Fig. 17), or it may homologous with the pore enosidered to be the aperture of the spermathecal ringed tube.

MALE. Not known.
LOCALITY. A "tipico" female (175/35), and a "cotipico" female (197/46), sketched or examined; East Africa; col. Alluaud and deamell. dep. SEAF.

Afrogamasellus tetrastigma (Berlese)

Gamasellus tetrastigma Berlese, 1916a, p. 161.
FEMALE. Fig, 14-19. Idiosomal length, 520 $)_{\text {. . The pore at the }}$ anterior end of the metapodial shiek. here considered to be the aperture of the spermathecal ringed tube, is drawn by loots (1969) on similar females refersed to this specien. On the mate the pore that in drawn by Loots (1969) on the metapodal shied is probably homologous to the pore near the posterior.
paraxial margin of the female metapodal shield. Pretarsus I hats claws subequal in size to those of other pretarsi, and in a selerotized sheath that is broadly fused to the tarsus. Leog I is relatively large as drawing (Fig. 18) of tibiae shows.

MALE. Specimens relerred to this species described by L.oots (1969).
LOCALITY. Two "tipico' females ($175 / 38$) and a 'cotipico' female (197/4.5) drawn or examined: Last Africa: col. Alluad and Jeamell. dep. SEAF.

Genus RHODACARELLUS Willmann

Rhodacarcllus Willmann, 1935, p. 429. Type-species: Rhodacarellus subterrathens Willmann, 1935, by original designation.

D/AGNOSIS. Minute or small mites, with lightly selerotized, centrally articulated idiosoma and a relatively average sized gnathosoma. Second and third hypostomal setae nearly level, both being a similar distance from hypostomal seta 4. Podonotal shield has 2 or 3 pairs of setae on anterior margin and 4 light-refractile structures. Pre-endopodal shields absent. Spermadactyl recurved. Pretarsus I present.

MORPHOLOGY.

Scifrotizailon. Female: Separate pudonotal (may be fragmented into four smaller shields) and opisthonotal. On ventral surface of podonotal, 4 light-refractile structures between setal j_{5} and $j 6$. Discrete ventro-anal (bearing aciculate posterior to anus) widely separated from genital and exopodal IV. Discrete metapodal. Intergenito-ventral shield or shields present. Peritrematal reduced but may or may not be narrowly fused (6) podonotal and exopodal IV. If present, exopodals only between or at posterior edge of acetabula. Sterno-metasternal fused to endopodals II and 1II. Pre-endopodals absent, seta stl on punctate sclerotization at anterior cnd of sternal.

Male: Ventro-anal fused to opisthonotal, and metapodal enlarged and fused to anterior end of this line of fusion. Ventro-anal widaly separated from sternito-genital and peritrematal.

ChaETOTAXY. Idiosoma: $6 j, 6 z, 5 s, 5 r: 5 J, 5 Z, 5 S, 5 R: 5 s t: 3 J v$. $3 \% v, 0$ or $1 S v$.

Legs: As Gamasellus, except tarsus IV lucks p/4.
Other Characters. Female: Relative size of gnathosoma compared to idiosoma is average or smaller. Deutosternal denticles in 7 horizontal rows, with a horizontal deutosternal ridge anterior to denticles. Tectum anterior margin basically trispinate or quinquispinate. with the longer spines nearor the centre, and spinules on or lateral to spines. Third hypostomal seta nearly level with seta hyp2, both being a similar distance
from seta hyp4. Movable cheliceral digit with 3 teeth. On palp genu, setace all and al? ahmost level and slightly spine-like. On palp femur, seta al in central third. Idiosoma is constricted between podosoma and opisthosoma. Sclerotization is pale. Dorsal setae simple, setose. Usually setace dil and Z.1 ons striated cuticle anterior to ventro-anal shield but either both of them (e.g., R. corniculanns), or just seta ZV! (c.g.. R. krewzi) may be on shich. Spermathecal ringed tube probably opens near posterior paraxial edge of acetabulun: IV. Pretarsus I pedunculate or broadly attached to tarsus, and smaller than other pretarsi. Amongst dorsal setate on larsus IV, seta pdo is the longest.

Male: Movable etheliceral digit with one tooth and fused at base to recurved, pointed spermadactyl. On leg 11 , femur seta an, genu seta av, tibia seta aly, and distal setac on tarsus colarged into spurs.

DISTRIBUTION. Nn: Pe, Pm: Aa. The distribution of this gents may be considerably more extensive than the records indicate. There are a number of Palacartic records besides those published with the original descriptions of nominal species, but the record from Israel (Costa, 196(a,) is outside this established range. The records from North America are from Fox (1967) and Emberson (thesis, $19(18)$ and a female (N1968280) from South Australia is dep. SAM.

Found amongst plant litter and soil (particularly deeper layers below 3 inches).

REMARKS. The appearance of Rhodecarellus species is simular to the lightly selerotired species of Alrogamascllas, but the cheliceral armodial process and spermadactyl are like those of Rhodacares and Rlodecaropsis. The following 9 nominal species are included in this genus: R. arcams (Ablas-Henriot, 19016); R. corniculatus Willmann, 1935; R. eppigynalis Sheals, 1956; R. francescac Alhias-Henriot, 1961b; R. hrewzi Kare, 1965; R. minimus Karg, 1961: R. silesiacus Wilmann, 1936; R. subterranneus Willmann, $1935 ; R$. vervacti (Athias-Henriot, 1961b). There is one subspecies: R. epigynialis perspicuus Halasková, 1959.

Genus RHODACAROPSIS Willmann

Rhodacaropsis: Willmann, 1935, p. 426. Type-species: Rhoducaropsis inexpectatus Willman, 1935, by original designation.

D/AGNOSIS. Minute or small mites, with lightly selerotized, slim, centrally articulated idiosoma and a relatively large gnathosoma. Third hypostomal seta approximately half-way between second and fourth hypostomal setace. Podonotal shied has 4 pairs of setac on anterior margin and 3 light-refractile structures. Pre-endopodal shelds present. Spermadacty! recurved, Pretarsus I present.

MORPHOLOCY.

Solerotization. Female: Separate podonotal (may be frigmented into smaller shields) and opisthomotat. On ventral surface of podomotal. 3 light-refractile structures between setae $j 5$ and $j 6$. Discrete ventro-anal (bearing aciculate posterior to anus) widely separated from genital and exopodal IV. Discrete metapodal. Intergenito-ventral shields absent. Peritrome reduced and peritrematal absent. If present, exopodals only between or at posterior edge of acetabula: Sterno-metasternal fused to endopodals II and III. Two pairs of pre-endopodals, but posterior pair may be commected to sternal by punctate sclerotization. althorgh seta wl is never on such an area.

Male: Ventro-anal discretc. Sternito-genital is divided, a single discrete posterior section carrying both setae st5.

Cimartotaxy, Idiosoma: 6i, 6z, 6s, $5 r: 5 J, 52,55,4 R: 5 s t: 3 J \%$ 3\%1. 15:.
I.egs: As Gamasellus, except tarsus IV lacks p/4 and femur II lacks one dorsal seta ($2,4 / 3,1$) and femur III lacks 2 dorsal setae ($1,2 / 1,0$) on in unnamed species for which the leg chatetotaxy wat examined by loots (in press).

Other Characters. Female: Relative size of gmathosoma to idiomma is unusually large and the chelicerae are long and beavily sclerotized. Nathre of deutosternal denticles or ridges unknown. Tectum anterior margin basically unispinate, but may be spmales at tip or base of spine and if the latter are large enough. the tectum is similar to that of Rhodacurus species. Hyponomal setae almost in a longitudinal line. seta hyp 3 being approximately half-way between seta hyp 2 and hapt. Movable cheliceral digit with 3 Weeth. Shape of setae on palp femur and genu unknown. Sclecotization pale, idiomoma constricted between podosoma and opisthosoma. Dorsal setae -imple. setose. Position of spermathecal ringed tube not known. Pretarsun I redmed except for large clans that are attached ahmost directly on to tarsus.

Male: Movable cheliceral digit with one tooth and fused at base to recurved, spatulate spermadactyl. On leg 11 , femur seta ab enlarged into a spur and genu seta av may be spine-like.

DISTRIBUTION. Na: Es: Pe. The single palaearetic record was published with the original deseription of the type-species. The record from Vorth Americat is of the type-species and is from Hay (1905), and that Jrom Soutl Africa is of an unnamed species (Loots, in press).

Found in the littoral zone in sandy rather rocky areas.
REMARKS. Rhorlacaropsis is closely allied to Rhoducoms. The following single nominal species is included in this erenus: R. incexpectathes Willmann. 1035. A new species is described by Loots (in press).

The 5 Rhodractropsis species listed by Athas-Henriot (1961b) belong chewhere: 3 species were transferred to Protogamasellus by Lindquist and Evans (1965) and the 2 spectes listed above under Rhodacurellus are referred to that genus by Loots (in press).

Subfamily GAMASIPHINAE subf.n.

Type-genus: Gamusiphis Berlese, 1904it.
DIAGNOSIS. Minute to large mites, usually with extensive, well solerotized shiclds and often the idiosoma is strongly convex dursally. Hohonotal shotd or separate podonotal and opisthonotal shields. Vemero-anal shield fused to the notal shied except on some Gamasiphoides species. Peritrematal shied usdally fused to exopodal IV shied and never fused to ventro-anal shich. Selerotization not conspicuously sexually dimonphic. On the female sterno-metasternal shield a line joining setate at2 st 3 and $1 / 4$ would enclose an angle of less than 95° except in Hydrogamusus.

MORPHOLOGY.

Sclirothation. The extent of the fusion between shields is fairly constam amoness species of this subfamily, and except for the rusion of the genital with other shields it is the same amongst temales and males of the same species. In five genera there is always a holonotal, but in Pimepicrims and Gamaselliphis there is a separate podonotad and opisthonotal. The ventro-anall is fused to the notal, except on some Gamasiphoides species. and is either fused to exopodal IV or lies very close to it. Intergenitoventail sheded are only present on H ydrogamasuis specties. The peritrematal is fused to the notal anteriorly and, althongh posterionly it in never fused to the ventro-anat, it is usually fused to exopodal IV. except on Caliphis, LaclapHollos and Hedrosumastis. In many species there is a trangular posterior cotension of the apparent peritrematal. posterior to its fusion with exopodal IV. which may be homologous with the metapodal and is refered to here as the metapodal. The exopodats lend to be fused together; the exopodals completely encasing the peraxial margin of acetabulum III, except on Ciomaselliphis and Ciamasiphoides species. The sternometasternal is fused 10 endopodal iV on Gamasiphis, Caliphis and Ënepicrius species, and one Gamasiphoides species. The pre-endopodal may be fused to the sternometasternal or it may be one or two patirs of discrete shiedds.

Chaf:otaxy. The number of setae on the notum is variable, although there are never less than 21 pairs on the podonotum. Caliphis and Efrepicrins species may be hypertrichous on the notum, and Gamasiphis species are sometimes hypotrichous on the opisthonotum. The leg chactotaxy in as Coamavellus in Caliphis, Gamascllphis and latapticlla, but amonest the other four genera there are eight kind of chatetaxy differing from this
pattern. On riamasiphis. Enepicrius and Geamasiphmides species there is aluays at least nate ventral less on genu IV (2.51. 1) than in Gamasellus.

Ofner Characters. Tectum anterior margin always more complex Han unispinate. Setae all and al2 on palp genu usually simple, although may be spine-like or spatulate, and in Caliphis, Gamaselliphis and Caliphis seta all may have one or two small lateral prongs. On palp femur, seta al always in proximal third unlike Rhodacarinac, Fangarocllinace and some Sessiluncinat species. Setac are lisually simple and sclerotization shiny on species with a holonotal shicld. while in Ellepicrius and Gamaselliphis species the selerotization is dull, being cosered by a thichexudate, and always some dorsal setace are complex. On female stemo-metastermal shede a line foining seta st2, st and sta would enclose an angle of less than 95 , except in Hydrogamastas species. While in some Ciamasiphis (${ }^{\prime}$.g.. (g . concilator) and Colliphis (e.g., C. collohs) spectes seta sta is positioned so far forward that it can be mistathen for seta st 2 and these sternal setace appear to be in a straight line. Spermathecal ringed tube opens near posterior paraxial edge of acctabulum IV and its junction with a single central satculus is often quite clear. If pretarsas I present it is often pedanedate and similar in size to other pretarsi. Pulvilli II-IV with pared latteral, short lameolate lobes and paired central, circular lobes except in Hydrogamasus (see Fig. 96).

IBSTRIBUTION. None of the genera are restricted to the Northern Hemisplere, while five of the genera are only found in the Southern Hemisphere. Excluding the discontinuous distribution of Ifadrogamasus. containing species which are found in the littoral zone, only Gamasiphis and Gumusiphoides have a wide distribution and they have been collected from all thee of the Southern Hemisphere temperate regions (Neotropicall, Elliopian and Australian),

REMAKKS. I have confidence in my grouping of Camasiphis, C aliphos. Fellepicribs. Gamasiphovides and Laelaptiella as elosely allied generat, although at superficial examination can lead to somse species of Gamaniphoides with a disctete ventro-athal shick being confused with some species of Ologamasini. Giamasclliphis species have chatracters Wat are unusually similar to those of Gamancllus species and, since the Gamasellos discotatus-complex contains fermates on which the sternall setate are lecated ats in Gamasiphinac femates. the placing of this genus an closely allied to Comeasiphis is tentative. Hedrogamasus is not closely allied to the above genera, and is placed in the Cramasiphinae in preference to any other subfamily.

1 recognize 7 genera within this subfamily; Gamasiphis, Caliphis,
 Members of these genera can be distinguished by using the foilowing key.

KEY TO GENERA OF GAMASIPHINAE

1. Tibia I with 3 ventral setae $(2,6 / 3,2)$. On female sterno-metasternal shield a line joining setae $s t 2$, st 3 and st 4 would be nearly straight and sternometasternal shield not fused to endopodal IV shield. Male scta st5 on ventro-anal and not sternito-genital shield

Hydrogamasus

Tibia I with 4 ventral setae $(2,6 / 4,2)$. On female sterno-metasternal shield a line joining setae $s t 2$, st 3 and st 4 would enclose an angle of less than 95°, and if seta st 3 positioned so far forward that it can be mistaken for seta st 2 , then sternometasternal shield is fused to endopodal IV shield. Male seta st5 is on sternito-genital shield
2. Separate podonotal and opisthonotal shields. Always some complex dorsal setae; notal shields
dull

3
Holonotal shield. Usually dorsal setae simple and notal shield shiny

4
3. Pretarsus I absent. Pre-endopodal shield fused to sterno-metasternal shicld. Behind stigma, there are 3 conspicuous pits opening along peritrematal ridge. Genu IV with 1 ventral seta ($2,5 / 1,1$)
Pretarsus I present. Pre-endopodal shields in single, discrete pair. Behind stigma, only one conspicuous pit opening beside peritrematal ridge near stigma. Genu IV with 2 ventral setae ($2,5 / 2,1$)

Euepicrius

Gamaselliphis
4. Pre-endopodal shields in 2 pairs (anterior one may be fragmented). Either peritrematal shield separate from exopodal IV shield or exopodal III shield is split

5
Pre-endopodal shields in single pair, or if 2 pairs, peritrematal shield fused to exopodal IV shield and exopodal III shield is not split

6
5. Palp genu three-times longer than broad. Peritrematal shield separate from exopodal IV shield and exopodal III shield not split. Genu IV with 2 ventral seta $(2,5 / 2,1)$

Palp genu less than two-times longer than broad. Peritrematal shield fused to exopodal IV shield and exopodal III shield split. Genu IV with 1 ventral seta $(2,5 / 1,1)$

Gamasiphoides
6. Peritrematal shield either separate from fused metapodal and exopodal IV shields or narrows behind stigma before its fusion with enlarged triangular metapodal which is usually fused to exopodal IV shield. Exopodal II shield undivided. Genu IV with 2 ventral setae $(2,5 / 2,1)$

Caliphis

Peritrematal shield broadens behind stigma to fuse with the fused metapodal and exopodal IV shields. Exopodal II shield split. Genu IV with 1 ventral seta ($2,5 / 1,1$ or $2,5 / 1,0$)

Gamasiphis

Genus GAMASIPHIS Berlese

Gamasiphis Berlese, 1904a, p. 261. Type-species: Gamasus pukchellus Berlese, $1887 a$, by original designation.
Micriphis Berlese, 1914, p. 140, syn.n. Type-species: Gamasiphis gamasellus Berlese, 1913 a, by monotypy.
Heteroiphis Triigärdh, 1952, p. 55. Type-species: Gamasiphis (Hetcroiphis) arctutus Trägărdh, 1952, by original designation.
Neagamasiphis Trägirdh, 1952, p. 57, syn.n. Type-species: Neogamasiphis hamifer Trägărdh, 1952, by original designation.

D/AGNOSIS. Minute to large mites, always with extensive. well sclerotized shields and often the idiosoma strongly convex dorsally. Ventroanal shield fused to a holonotal shield. Peritrematal shield fused to exopodal IV shield. Exopodal III shield never split. Sterno-metasternal shield fused to endopodal IV shield. Female movable cheliceral digit has 4 teeth. Pretarsus I usually subequal in size to other pretarsi. but may be smaller. Genu IV with one ventrall seta.

MORPIIOLOGY.

Sclerotization. Female: Holonotal fused to ventro-anal, which hears aciculac posterior to anus. Peritrematal fused to exopodal IV and to a triangular metapodal posteriorly. Always split in exopodal II, sometimes split in exopodal IV, but never split in exopodal III. Sterno-metasternal fused to endopodals II, III and IV. One or 2 pairs of pre-endopodals.

Male: Sternito-genital, otherwise as female.
Chaetotaxy. Idiosoma: $6 j, 6 z, 4-5 s, 5 r: 3-5 J, 3-5 Z, 3-5 S, 3-5 R$. O-2UR: 5st: 3Jv, $3 Z v, 15 v$.

Legs: Following segments may (genu IV always difiers) differ from Ciamasellus: genu $111(2,4 / 1$ or 2 is for Gumasellus, 1$)$; genu iv $(2,5 / 1$. 0 or 1 as lor Gommallus); tibia IV (1 or 2 as for Gomasellus, 4/2, 1 or 2 as for (iommarllas). The species with only one antero-kateral seta on tibia IV $(1,4 / 2,1)$ is unnamed and from the Nearctic region (Emberson, thesis. 1968%.

Other Characters. Female: Deutosternal denticles in 7 or fewer borizontal fows. Tectum anterior margin basically trispinate but it may be complicated by spinules and central spine may also be spattlate, Mowable cheliceral digit with 4 teeth. On palp genu, setae all and al2 spine-like. Dorsal netac simple or rarely with lyatine flaps making them spatulate or lanceolate. Shields shony and often reticulated. Spermathecal ringed tube opens near posterior paraxial edge of acetahulum IV, passing back to single central sacculus. Pretarsus I usually similar in size to other pretari, but may be conspicuously maller. Amongst dorsal setace on tarsus IV. setae ad2. $1 / 33$ or pd 4 may be the longest.

Male: ('orniculi attennated and long compared with femate. Movable cheliceal digit with one tooth, fused at base to spatulate spermadactyl that is subequal in longth, or up four limes as long. On leg II. femur seta av and sometimes seta ppl, genu seta ow and sometimes seta pr, tibia seta ${ }^{2}$. enlarged into spur or stout spine. On tarsus II, seta at3 maly be on small tubercle.

D/STRIBUTION. Nc, Na: NTa, NTb, NTc: Ew, Es, Em: Pm, Pc: Oi, O. Om: Am, Aa, Ap, An. Besides the locality records published with the origimal deacriptions of nommal species there are records of Gomasiphis species from North America (Emberson, thesis, 1968; Pearse, 1946: Rodrigue and thatra, 1967). South Africat (loots, thesis, 1967), Pyenees in Framee (Trigardh, 1912), Isratel (Costa, 196(a)), India (Bhattacharyya, 1968) and Hawaii (Butter and Usinger, 1963). Specimens from many other regions. Jamaica (NTa), Trinidad (NTb), British Guiana (NTb), Arecntioa (NTC). Annobon Island (Liw). Seychelle Islands (Em), Nepal (O) . Malaya (Om), Borneo) (Om) and Solomon Istands (All), are betore me and wo be dep. BM(NH), while yet others dep. SEAF are listed under G. pulchellos. The genus is distributed right round the tropics, is less common in temperate regions, and has not been found north of $50^{\prime} \mathrm{N}$, or south of 50 'S.

Found amonget mos.s. plant litter and upper soil layers. A single female was found on it rat in Puerto Rico (Fox, 1949).

RENARKS. Gamusiphis has sometmes been ineorrectly associated with Ologamasus as mentioned below under that genus. Three subgenera, Periphis, Epiphis and Megaliphis, which were established within Gamasiphis. I here transfer to Solochirus, a genus in the Sessiluncinade. The synonymy

Figs. 23-31. Garnasiphis pulchellus (Berlese).
23-27, female: 23, idiosoma, venter; 24, leg IV (part), dorsum; 25, tectum; 26. gnathosoma, venter: 27, pretarsus I and tarsus 1 (pari). 28-31, mate: 28 , corniculus;

29, leg II (part), antero-latus; 30, chelicera; 31, idiosoma, venter.

$\left.\begin{array}{c}\text { No Scole } \\ 40 \\ 38 \\ 39 \\ 33 \\ 34 \\ 35 \\ 37\end{array}\right] 50 \mu\left[\begin{array}{l}100 \mu \\ 36 \\ 32 \\ 41\end{array}\right.$

Figs. 42-50. Gamusipliis aussralicus Womersley.
42-45, female: 42, soma, dorsum; 43, idiosoma, venter; 44, snathosoma, venter: 45. leg IV (part), dorsum, 46-51), male: 46, idiosoma, venter: 47, idiosomia, latlas; 48. Ieg II (part); 49, chelicera; 50, corniculus.

Figs. 51-54. Gammiphis fornicatms $\frac{\text { p.n.. femate. }}{}$
51. 勺uma. dorsum; 52. leg IV (part), dorsum: 53, gnathosoma, venter; 54. idiosoma, venter.

Figs. 55-61. Gamasiphis fornicutus sp.n..
55-58, male: 55, idiosoma, venter: 56, leg II (part), antero-latus: 57, chelicerit; 58 , corniculus. 54, female, idiosoma, latus. 60 und 61, dettonymph: 60, idiosoma. dorsum: 6l. idiosoma. latlis.
af Hatcoiphis with Gamasiphis was established by Ryke (1902b), and atgred with here, since G. arcoutus is very like G. setosus, although eonsiderably larger. The synonymy of Micriphis and Neogamasiphis with Gamasiphis is new, and made becaluse the charateres clamed by Berlese (1914) and Trigardh (1952) as distinguishing the type-species of these genera from the bype-species of Gamasiphis are in fact similar and no other suitable distinguishing characters have been found. Womerstey (1956a) freated Nengamasiphis ats a subgentus of Gamaniphis and plated species in Ci. $^{\text {. }}$ (Neogamasiphis) that are bere either retained in Gamasiphis or transferfed to a new genus, Caliphis. The following 16 nominal species are, therefore, included in this genus: G. pulchellus (Bertese, 1887a): G. arcuatus 'Trägärdh, 1952; G. australicus Womersley, 1956a; G. bengalensis 13hatacharyya, 1966; G, conciliator Berlese, 1916a; G. elegamellus Berkese 191) a: G. chomsutellis, Berlesc. 1910b; G. fomoralis (Banhs, 1916): G. fomi(ath.s sp.n., (B. gamasellus Berlese, 1913a; G. hamifer (Trügardh, 1452): G. illotux Fox, 1949, G. pilosellus Berlese, 1913a; G. producrellus Berlese, 1923; G. scrosus Womersley, 1956a; G. uncifer Trägardh, 1931. Two unnamed specics are described by Loots (thesis, 1967). Twa unnamed apecies are listed by Emberson (thesis. 1968) and the unusual leg setation af one of these species is described.

Gumasiphis puldellus (Berlese)

Gamashas mulhellus Berlese, 1887a, XXXIX, 4.
FEMALE. Fig. 23-27. Jdiosomal length, 410 , Dorsal idiosoma nut clear enough to be dritwn. Most dorsal setate seen, but not drawn. appear Io be smimar 10 seta 703 . except the humeral setae which are more like sela R5. Latcral suture (using Triggardlis (1952) term in describing Hoteroiphis arcoutls. although this line is not a break in the shield, but a thichened ridge beside a line of weath selerotization, similar to a strong reticulation lines follows lissure at edge of holonotal shield. Chactotaxy differs from Camasellas on the following leg segments: genu III (2.4,1.1): genu IV $(2,5 / 1,0)$; tibia IV $(2,4 / 2,1)$. On some specimens. setate adl and pdl on tursi II-IV appear to have liyaline Dap.

MALIE. Fig. 28-31. Idiosomal length, 360μ.
LOCALITY. Femate (29/39) and male $(29 / 38)$, that appear to be conspecific with the type specimens, were drawn faly: leaver, Cavemod Strada, dep. SEAF.

Female, 2 males and a deutonymph on one slide ($8 / 10$. "tipico') which, becanse some of their characters were obseured, were only examined: Italy: humus, Botanic Gardens. Padova, dep. SEAF.

Gamasiphis specimens labelled G. pulchellus from North America (103.17). South Americal (103, 18. 103/19 and 151,34) and South Arrica
(103/20, 103, 21, 136,24, 136, 35): specimen. labelled 'speciosellus' (04,7, 140/18, 147/14.221/12) from Japan; and G. clongatellus (130/6. 136/20), 136/23, 148/21) from Java and G. prouluctelles (221/14) from China, dep. SEAF, examined and all considered here to be similar to (; pulchellm.s. A careful study of these specimens. is needed before making a decision ats to which of them belong to G. pulchelles and which, if any, should belonge w different species.

Gamasiphis anstralicus Womersley

Gamasiphis (Heteroiphis) australicus Womersley, 1956a, p. 521.
FEMALE. Fig. 42-45. Idiosomal length, 360$)_{\mu \text {. The lateral suture }}$ is longer than ats described by Womersley (1956a), since it continues posteriorly beside the ventro-holonotal fissure, and, after the latter stops just behind setal $S v 1$, it continues on to behind setat Zy3. In the drawing of the dorsum (Fig. 42) the lateral suture is shown merging with the only reticulation line drawn from amongst many such lines; this is not a fissure separaning the holonotal shield into two parts. Chatotavy differ from Gamaschus on the following leg segments: genu III (2, 4/i, 1); genu IV (2, 5/1, (0),

MALE. Fig. 46-50. Idiosomal Jenyth, 350_{μ}.
LOCALITY. Three females (N196886-N196888) and 2 males (N196889-N196890) drawn or exammed: Australia; L.F58. grans and leal litter under Eucolyptus camaldulensis. Heywood Park, South Austaalia. 6.6.1965, col. R. V. Southcott, dep. SAM.

The holotype female (N196891) examined: Australia; moss, Mylor, South Australia, 27.6.1948, col. G, F. Gross, dep. SAM.

REMARKS. Gamasiphis australicus: Domrow, 1957 is more like the female G. setosus (male is a dermanyssid) than this species, the laterat sutures being similarly placed. although Womersley (195 (a) does not record their presence. Therefore, 1 regard the Gamasiphis specimens described by Domrow (1957) as being G. setosus in preference to any other nominal species.

Gamasiphis concilator Berlese
Gamasiphis (Periphis) concilator Berlese, $1916 a$, p. 159.
FEMALE. Fig. 35-37. Idiosomal length, 910μ. In this species seta st 3 is so far forward that it is anterior to seta sh2 and may be mistaken for it.

MALE. Not known.
LOCALITY. The "tipico' female (175/42) drawn: New Caledonia: $500 \mathrm{ml}$. on Mt. Panié, col. Sarrasin and Roux, dep. SEAF.

REMARKS. This species is a typical Gamasiphis ind clearly not congeneric with the type-species of Periphis which is here transferred to Stylochirus in the Sessiluncinac.

Gamasiphis fornicatus sp.n.

FEMALE. Fig. 51-54 and 59. Idiosomal length, 500 . Genital shield has a group of 4 oval depressions on it and the ventro-anal shield is reticulated. There is a large pore-like structure, with a raised dlange on its posterior rim, which may be a modified seta 54 (Fig. 59). The drawings of the lateral surface of the idiosoma (Fig. 59) and the deutonymph in Fig. 61) are of squashed specimens and what is drawn ventral to setal rows r and S would not be visible normally since the venter is flat. Chactotaxy diflers from Giamasellus on genu IV $(2,5 / 1,1)$.

MALE. Fig. 55-58. Idiosomal length, 490 p.
DEUTONYMPH. Fig. 60 and 61. Idiosomal length, 450μ. The idiosomal setaton has been drawn in attempt to make the labelling of the lateral notal setac more accurate. It supports the above suggestion about the modification of seta $S 4$, but the labelling of setal rows, r, R and $U R$ is still uncertain.

LOCALITY. The holotype female (N196892), allotype male (N196893) and morphotype deutonymph (N196894) drawn. and 6 parat type females (N196895-N1968100), 3 paratype males (N1968101N1968103) and one paratype deutonymph (N1968104) examined: Australia; LF 142, moss amongst bracken and gum trees in gully, Mt. Remarkable, South Australia, 9.8.1966, col. H. M. Cooper, dep. SAM.

REMARKS. This unusually globular species with its long dorsal setace and long permadactyl is easily distinguishable from other nominal species.

Gamasiphis gamasellus Berlese

Gamasiphis gamasellus Berlese, 1913a, p. 80.
FEMALE. Not known.
MALE Fig. 32-34. Idiosonal length, 310 $\mu_{\text {. }}$ Leg chatotaxy as G. pulchellus. Dorsal setae on leg IV with similar lengths relative to cach other as the equivalent setac on G. australicus (Fig. 45), except Hat seta ad 2 on genu IV is as long as the genu.

LOCALITY. The 'tipico' male $(144 / 11)$ dratwn: dava; humus. Samarang, dep. SEAF.

REMARKS. This species is the type, by monotypy, of Micriphis (initially a subgenus of Ologamasus, then Ologamascllus), but is clearly congeneric with G_{-}. pulchellus.

Gamasiphis pilosellus Berlese

Gamasiphis pilosellus Berlese, $1913 \mathrm{a}, \mathrm{p}, 81$.
FEMALE. Fig. 38 and 39. Idiosomal length, 590 . As on Gamasiphis elegantellus Berlese, 1910a, the peritrematal shield is mot separated from the exopodal shields posterior to stigma, in contrast to

Berlese's drawing (191.3a. Fig. 27) of the latter. Other similarities between these species are also closer than suggested by Berlese's drawings. The lateral suture nearly reathe to the anterior end of the peritrematal-holonotal fissure (Fig. 38) and seta R5 is nearly as short as the paramal setae (Fig. 39). An unnamed species (labelled (8 , pulchellms, male (37:34) . from dava, dep. SEAF) has a lateral suture which extends anteriorly almost as lar as in this species and also a dorsal branch (Fig. f()) similar to the anterior end of the lateral suture on G. australicus. This umamed species also has a short seta $R 5$ and those dorsal setae which are relatively long (e.go, seta $\$ 5$. Fig. 41) have a hyaline flap at the tip. Leg chatotaxy as Gi. pulchellus.

MALE. Not figured, Idiosomal length, $490_{\mu_{3}}$ Corniculi, spermadactyl and leg If (even seta av3 of tarsus on small fuberele) are similar to those of G. pulchellus.

LOCALITY. The 'tipico' female (136/17), and tipico' male $(136 / 14)$ drawn or examined (other four specimens in collection are difficult to observe): Java; humus, Samarang, dep. SEAF.

Genus CALIPHIS gen.n.

Type-species: Caliphis calvus sp.n.
DIAGNOSIS, Small to lurge mites, always with extensive, well sclerotized shiclds and idosoma which is strongly convex dorsally. Ventroanal shied fused to a holonotal shield. Peritrematal shield eithor separate from fused metapodal and exopodal IV hields or narrows behind stigma before its fusion with an enlarged triangular metapodal, which may or may not be fused to exopodal IV shield. Exopodal III shield never splat. Sternometasternal shield fused to endopodal IV shield. Female movable cheliceral digit has 3 teeth. Pretarsus I subequal in size to other pretarsi. Genu IV with 2 ventral setae.

MORPHOLOGY.

Scleromzation. Female: Holonotal fused to ventro-anal, which bears aciculate posterior to anus. Peritrematal usually fused to combined exopodal IV and metapodal, hut peritrematal may be separate (C. hickmani and C. quecenslandicus) or exopodill IV may be separate (C. qumborinensis). Exopodals II, III and IV fused into continuous strip. Sterno-metasternal has a short axis, but laterally a narrow strip extends a long way backwards fusing with endopodals II. III and IV. Single pair of pre-endopodals.

Male: Sternito-genital, otherwise as female.
Criatrotaxy. Idiosoma: $6 j, 6 z, 5 s, 5 r$ or, as for the new species described here, podonotum is hypertrichous: opsthonotum apparently always hypertrichous although there maly he as few an 48 netae: 5 st: $3 / \mathrm{s}, 3 \mathrm{Zv}, 2 \mathrm{~Sv}$.

Legs: As Gamasellus.

Othar Characthrs. Fenale: Deutostemal denticles in 7 horizomat rows. Tectum anterior margin basically trispinate but there may be spinules between lhe spines. Movable cheliceral digit with 3 teeth. On palp genu, setit all with single lateral prong. both setae all and a/2 slighty lanceolate on spatulate. Dorsal setace tapering and simple. Shields shiny and covered with reticulations. On sternal shield. seta st3 may be placed anterior to st2. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV. passing back to single central sacculus. Pretarsus I subegual in siee (0) other pretarsi. Amongst dorsal setae on tarsu.s IV. seta pela is the longest.

Malc: Corniculi proportionately slightly longer than in femate. Movable cheliceral digit with single tooth and fused along proximal half with simuous spermadactyl which is subequal in length or up to twice is long, On leg 11, femur setac ar and pri. genu seta a w and tibia seta ar enlarged into a spur or spine.

DISTR/BUTION.. Ad, An: Sa, All published records are with the original descriptions of mominal species. Specimens have been eoflected from Lord Howe Island, dep. SAM. Found in plant litter and moss.

REMARKS. Caliphis is similar to Gamasiphis, but can be distinguished from it as indicated in the key to Gamasiphinac. The following 6 nominal species are included in this genus: Caliphis callus spen.: Caliphis hickmami (Womersley) comb.n. tor Gamaviphis (Neoggamasiphis) hickmani Womeraley, 1956a; Caliphis novaselandiue (Womersley) combon. for Camasiphis (Neosamasiphis) nowee-zelandiae Womersley, 1956at Caliphis queconslandicus (Womersley) comb.n. for Gamasiphis (Ncogamasiphis) quecnstandicus Womersley, 1956a: Culiphis schmsteri (Hirschmann) comb.n. for Gamaselles (Jlydrogamanellus) schusteri Hirschmann. 1966; C'aliphis tamborimensis (Womersley) comb.s. for Gamasiphis (Neogramasiphis) hickmani var. tamborinensis Womersley. 1956a,

Caliphis calums sp.n.

FEMALE. Fig. 62-64, 69. Idiosomal kength, 430μ. Idiosoma covered in reticulations as figured for male (Fig. 65). The spermathecal ringed lube and anterior edge of ataculus can be clearly seen and are shown by dotted lines in drawing of venter (Fig. 64),

MALE, Fig, 65-68. Idiosomal length, 410 . .
LOCAI-ITY. The holotype female (N1968231), allotype malc (N1968232). 19 paratype females (N1968233 and N1968235-N1968252) and 3 paratype males (N1968234, N1968253. N1968254) drawn or cxamined: Australia; L.F 191, moss, Lena Valley Track, 800ft. Mt. Weilington, near Hobart. Tasmania, 14.12.1966. col. L. W. Miller, dep. SAM.

Figs. 62-69. Caliphis culous sp.n..
62-64 and 69, female; 62, soma, dorsum; 63, leg IV (part), dorsal setae only; 64, idiosoma. venter; 69, gnathosoma, venter. 65-68, male: 65. idiosoma, venter; 66. leg II (pirt), antero-latus; 67. chelicera; 68, corniculus.

REMARKS. The large number (more than 150) of uniformly short dorsal setate distinguishes this specien from other nominal species, and it alko differs from C. hickmani, C. queenslandicus and C. tamborinensis in having it peritrematal shield fused to a combined exopodat IV and metapodal shied.

Genus EUEPICRIUS Womersley

 Womersley. 1942, by original designation.

DIACNOSIS. Small to average sized mites, always with extensive, well whonlized shelds and idiosoma which is strongly convex dorsally. Ventroanal shied fused to the opisthonotal shied which is separated from the podonotal shield. Peritrematal shield is fused to all the exopodal shields. which are themselves fused into a strip of undivided shield. Sternometabternal shied fused to both endopodial shield IV and the pre-endopodal shiclds. I-cg I long and slender with long setae distally on tarsus. Female movable cheliceral digit has 3 teeth. Pretarsus I is absent. Genu IV with one ventral seta.

MORPIIOLOGY.

Scimbotization. Female: Separate podonotal and opisthonotal, the latter is fused to ventro-anal which bears aciculac posterior to anus. Periticmatal appears to be fused to the complete strip of undivided exopodals and 10 a triangular metapodal posteriorly. Sterno-metasternal fised to condopodals II. III and IV as well as to pre-endopodals.

Male: Sternito-genital, otherwise as female.
Chaftotaxy. Idiosoma: Hypertrichous on notum: 5sf: 3/1, 32 Z, SS:

Legs: As Gumasellus except that there is only one ventral on genu IV (2,5/1, 1).

Other Characters. Female: Deutosternal denticles in 8 horizomtal rows. Tectum anterior margin basically trispinate with spinules between lateral spines. Movable cheliceral digit with 3 teeth. On palp genu, setae all and al2 spine-like or slightly lanceolate. Ginathosoma has distinct lateral notch and tubercle. Dorsal setae may be simple and tapering, but usually, cither simuous and slightly spatulate or straight and pilose with clearly spatulate tip. Shiclds ridged, pitted and dull, being covered by a thick exudate. Peritreme with lateral pockets and corrugated ridge outside it, which runs to posterior edge of peritematal shield and borders 3 conspicuous pores behind stigma. Spermathecal ringed tube upens near posterior paraxial edge of acetabulum IV passing back to a single central sacculus. Levg I long and slender, tibia may be up to 16 -times longer than its breadth. Tip

Figs, 70-78, Euepicrius footsi sp.n..
711-72, 74. 77 and 78, female: 70, soma, dorsum: 71, idiosoma, latus: 72, idiosoma. venter; 74. larsus IV. dorsum; 77, tarsus 1: 78, gnathosoma, venter. 73. 75 and 76 , male $=73$, ithosoma, venter: 75, chelicera; 76, leg 11 (part), antero-latus.
of tarsus I with long setac but no pretarsus. Amonget dorsal setale on tarsus IV, the slightly spatulate seta pd3 is the longest.

Male Movable cheliceral digit with one looth. fused along its entire length (o) spatalate spermadactyl which is longer, and may be up to t-times the length of the digit. On leg II, femur seta ar, genu seta $a v$. tibia setat $a v$ enlarged intes spurs.

DISTRIBUTION. Ait. An: Sat. Besides the locality records published with the orgeinal descriptions of nominal species there are specimens before me from Auckland and (ampbell Istands (Sat) to be dep. BBM, and Lord Howe Istand and New Caledonia, dep. SAM.

Found in moss and plant litter.
REMARKS. Euepicrias was orginally placed in the Macrochelidate. 1 (1.ce, 1906) transferred it to the Rhodacearidac, but was uncertain ats to which genera it was related. I now consider it to be quite a close ally to Ciomasiphis despite the differences in superficial appearance. Members of Encopistins have a very characteristic appearance, so there is no doubt that Ho now species described here is congeneric with the type-species. The following 3 nominal species are included in this genus: E. filumentosus Wonnersley, 19 i2: E. loonsi sp.n.; E. queenslandicus Womersley, 1956b.

Eucpicrius Iootsi sp.n.

FEMALE. Fig. 70-72. 74, 77, 78. Idiosomal length, 610 4 . This species has an unusually large number of idionomal setae, the number on the podonotum and opisthonotum in Fig. 70 indicates the number of setale in one half of these regions. excluding those on the centre linc. Only part of threc long setae on distal end of tarsus I are drawn (Fig. 77).

MALE. Fig. 73, 75, 76. Idiosomal length, 550 p.
LOCALITY. The holotype female (N1968138), allotype male (N1908139) and 4 paratype females (N1968140-143) and 3 males (N1968144-N1968146) drawn or examined: Australia: LF127, moss and grass beside Wannon River, near Yarram Gap, Grampians, Victoria, 14.5.1966, col. D. C. Lee, dep. SAM.

REMARKS. This species can be distinguished from the other two mominal species by the stortness of the two terminal pairs of spatalate setae on the opisthosoma, which are less than three-times the length of the anal valves, and the relatively short spermadactyl. the free part of which is less than two-times the length of the movable digit and is straight, having mo bends ats in the other nominal species.

Genus GAMASELLIPHIS Ryke

(iamasclliphia Ryke, 1901a, p. 99. Type-species: Cyrlolaclaps (Ciamaselliphis) potchefstroomensis, Ryke, 1961a, by origimal designation.

DIAGNOSIS. Minute to average sized mites, always with extensive, well selerotized shield and idiosoma which is fairly comver dorsally. Ventroanal sheld fused to opisthonotal shield which is separated from the modonotal shield. Peritrematal shield fused to exopodal IV shield. Exopodal Ill shield split. Sterno-metasternal shield not fused to endopodal IV shiedd. Female movable cheliceral digit has 3 teeth. Pretarsus I smatler than other pretarsi. Genu IV with 2 ventral setac.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal, the latter is fused to ventro-anal, which bears aciculae posterior to anus. Peritrematal fused to exopodal IV and to a triangular metapodal posterionly. Always a split in exopodals II, III and IV. Sterno-metasternal fused to endopodals 11 and $11 I$. One pair of pre-endopodals.

Male: Sternito-genital, otherwise as female,
Chaetotaxy, Idiosoma: 6j, 6z, 5s, 5r: 5J, 5\%. 5s, 5R, 0-2UR: 5st: 3Jv. $3 \mathrm{Zv}, 2 \mathrm{~Sv}$.

Legs: As Gamasellus.
Other Characters. Female: Dcutostemal denticles in 7 horizontal rows. Tectum anterior margin is trispinate. Movable cheliceral digit with 3 teeth. On palp genu, seta all spatulate with 2 small lateral prongs and seta al2 is lanceolate. Dorsal setace on idiosoma and legs rarely simple, usually at least lanceolate, may be pilose as well, or spatulate and pilose. Shiclds dull being covered by thick exudate. Single pore. which is comspicwous in one specimen (N1968275), opens beside peritrematal ridge, level with stigma, and may homologous with one of the three similarly placed pores on Eucpicrius species. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV, passing back to single central sacculus. Pretarsus I smaller than ohter pretarsi especially in one species (G. grahamstowni) which has an unusually long leg I, with long distal setate. Amongst dorsal setae on tarsus IV, seta pd3, which is setose or lanceolate, is the longest.

Male: Movable cheliceral digit with one tooth and fused at base to sinuous spermadactyl, which is slightly longer or up to four times as long as digit. On leg II, femur seta av, genu seta av, tibia seta av enlarged into spurs. Genu and tibiä II sctae py may be stubby spines.

DISTRIBUTION. Ew, Ee, Es, All the published records alle with the uriginal descriptions of nominal species from Sinth Λ frica. Records from Congo, Kenya, Rwanda and Tanzania are from Loots (thesis. 1967).

The males of Gamaselliphus recorded from Nobska Beach, Massachusetts, U.S.A. (Na) by Haq (1965) are Parasitus species according to Emberson (hesis, 1968).

Found in plant litter.
REMARKS: Gamaselliphis was established as a subgenus of Cyrtofaclap: by Ryke (190)a). Because of the extensive sclerotization without fusion ol the broad peritrematal to the ventro-anal shield on Gamasclliphis males. ats well as other characters, 1 am now treating this taxon as a genus and consider if most like Euepicrius. Species in this genus have a lot of charaters similar to those of some Camasellas discotatus-complex specien whose femakes have the sternal setae located as in Gamasiphinae females. Therefore, the alliances I have indicated for this genus depend on the importance I have given to the lack of sexual dimorphism of the ventral selerotioation. I have examined three non-type femites of this genus dep. SAM.: one G. potchefstrocomensis (N1968275) and two similar to G. monlancllw (N1968276 and N1968277) from South Africa. The following 5 nommal species are included in this genus: G. potchefstromensis Ryke. 1961a; G. callkini Ryke, 1961a; G. grahamstowni Ryke, 1961a; G.
 the specimen with the manuseript name "Laelogamasus inguinalis". slide 222/16. East Alrica, dep. SEAF, and confirm Ryke's (1962c, p. 51) placing on it in this genus hut have not established whether or not it belonge (o) at mominal species.

Genus GAMASIPHOIDES Womersley

Ciomasiphoides Womersley, 1956a, p. 528. Type-species: Gamasiphis (ramaviphovales) propinaua Womersley, 1956a, by original designation.

DIAGNOSIS. Small to average sized mites, often with extensive, well selerotized shiclds. The ventro-anal shield may or may not be fused to a holmotal sthold. The peritrematal shield fused to exopodal IV shield. The exopodill 111 shield is split. The sterno-metasternal shield rarely fued in endopodal IV sheld. Female movable cheliceral digit has 3 teeth pretursus I usually subequal in size to other pretarsi, but may be smaller. Genu IV with one ventril seta.

MORPIOLOGY

Scuerontzation. Female: Holonotal, which may or may not be fused (o) ventro-inal that bears aciculae posterior to the anus. Peritrematal fused to exopodal IV and only sometmes is there a posterior Iriangular metapodal extension of this merged shield. There is often a discrete, subcrrcular shicld posterior to acetabulum IV which Womersley (1956a) terms
the metapodal. Exopodal II, III and IV split. Sterno-metasternal fused to endopodals II and III, and rarely to IV. Two pairs of pre-endopodals. anterior pair may be fragmented.

Male: Sternito-eenital. Subcircular shield posterior to acetabulum IV is merged in ventro-anal. Otherwise similar to female of same species.

ChaETOTAXY. Idiosoma: Variable, usually setae on striated cuticle between holonotal and ventral shields, and between levels of setac 184 and Z12, and these are included in peripheral dorsal rows. although they might be better regarded as a separate row. $6 j, 5$ or $6 \approx, 5 s, 5$ or 6 or: 4 or $5 J, 4$ or $5 \%, 4$ or $5 S, 4,5 \mathrm{or} 8 \mathrm{R}: 5 \mathrm{st}: 3 \mathrm{~s}, 3 \mathrm{Vv}, 1 \mathrm{si}$.

Legs: Mose Australian species dille from Ciamasellass only by having one less ventral on genu IV $(2,5 / 1,1)$. But, G. propimqua also has no pd 4 on tarsus \mathbb{V}, and an unnamed Gamasiphoides female from Tasmania (dep. SAM, N1968280) differs on genu III (2, 4, 1, 2) and tibia III (2, 3/2, 2) in having an extra postero-lateral. African and South American species differ from Gamasellus in having one less ventral on genu III (2, 4/1, 1) and genu IV (2,5/1, 1). The species from the Subantaretic regions may have a ventral seta less on genu IV or on genu III and IV.

Other Characters. Female: Deutosternal denticles in 8.9 or 10 rows. Tectum anterior margin is trispinate, Movable cheliceral digit with 3 teeth. On patp genu, sctae all and al2 spatulate. Dorsal setac simple and tapering. Shields shiny and often reticulated. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV, passing back to single central sacculus. Pretarsus I usually similar in size to other pretarsi, but may be conspicuously smaller. Amongst dorsal setae on tarsus IV, heta mds is the longest.

Male: Palp femur has small tubercle in one species (Fig. 91). Movable cheliceral digit with one tooth. and fused along proximal half to slightly longer, spermadactyl. On leg II femur seta a and sometimes seta m'l. genu seta ar, tibia setat ard tarsus seta an 2 enlarged (o) spines or spurs.

DISTRIBUTION. NTe: Es: Aa: Sm. Sit. Besides the locality records publeshed with the original descriptions of nominal species, two unnaned species from South Africal were deseribed by Loots (thesis, 1967), and specimens have been collected from Tierra del Fuego, dep. BM(NH) and from Lord Howe Island and New Caledonia. dep. SAM.

Found in moss and plant litter.
REMARKS. Gamosiphoides was originally it subgenus within Giamasiphis but it was given the rank of genus by Ryke (1962b). An unnamed species from Victoria, Australia, dep, SAM (fenale, N1968282; mate. NI968283), hats more extensive shicelds and is similar to Gamasiphis species in having a female metasternal shield that is fused to endopodal IV

Figs, 79-85. Gamasiphodes propinqua Womersley.
74.81 and 85. female: 79. soma, dorsum; 80. leg IV (part), dorsum: 81, idiosoma, venter; 85 , gnathosoma, venter. $82-84$, male: 82 idiosoma, venter; 83 , leg 11 (part);

84, chelicera.

Figs. 86-92. Gamasiphoides aikeni sp.n..
86-88 and 92. female: 86. soma, dorsum: 87. leg IV (parl), dorsum; 88. idiosoma, venter; 92. gnathosoma, venter. 89-91, mate: 89, jdiosoma, venter; y0, leg 11 (part): 91 , chelicera, plus palp trochanter and femur, venter.
shiek, hut because of the eplit exopodal IV shield, the three teeth on the movatble dipit of the female chelicera and the short, non-spatulate spermadactyl. it is placed in thin genus. Another unnamed species from Tasmania, Australia, dep. SAM (female, N1968281) is mentioned above because of its unusual leg chatotaxy. Gamasiphoides species with a reduced sclerotizattion may be mistaken for members of the Ologamasini when superficially examined. The following 4 nominal species are included in this genus: (i. Prumnqua Womersley, 1956a; G. aitkeni sp.n.; (i. gamasiphioides (Sheals) combs. For Wydrosamavas gamasiphioides Sheals, 1962: G. macanariensis (Himchmann, 19(3) comb.n. for Gamasellus (Hydrogamasellus) macyuariensis Hirschmann, 1966. Two unnamed species are described by Loots (thesis, 1967).

Gumasiphoides propinqua Womersley

Gamasiphis (Gamusiphoides) propinqua Womerslcy, 1956a, p. 528.
FEMALE. Fig, 79-81, 85. Idiosomal length, 780p. On dorsum, seta $j 1$ is so small that it is difficult to discern. On tarsus IV, seta pel4 is absent (Fig. 80). and leg chacotaxy also difters from Gamascllus on gent IV $(2,5 / 1,1)$

MALE. Fig. 82-84. Idiosomal length, 760 m .
I.OCAIITY. Female (N1968151) and male (N1968152) drawn: Australia: LFIG, rotting wood and lichen, near Mi. Lofty summit, South Austrulia, 20.11.1964, col. G. F. Gruss, dep, SAM. The paratype female (N1968153) and paratype male (N1968154) examined: Australia: muss. National Palk. Belair, Suuth Australia, 9.1938. coll. H. Womersley, dep. SAM.

Gumusiphoides aitkeni sp.n.

FEMALE, Fig. 86-88, 92. Idiosomal length, 420μ. Leg chactotaxy differs from Gamasellus on genu IV $(2,5 / 1,1)$.

MAI-E. Fig. 89-91. Idiosomal length, 400μ. Small process on ambero-ventral edge of palp femur (Fig. 91). Ventro-anal shield not funed (o) notal shield although this is not clear in Fig. 89.

LOCNLITY. The holorype female (N1968155), allotype male (N1968156), paratype lemale (N1968157) and paratype male (N1968158) drawn or examined; Australia; LF36, moss and litter, under Shrubs att lop of 100 ft , cliff near Glenelg River, near Nelson, Victoris, 28.1 .1965 ; col. P. F. Aitken and N. B. Tindale, dep. SAM.

REMARKS. The only other nominal species in this genus on which the ventro-imal shield is separate from the holonotal shield is G. macquariensis, and specimens to be dep. $B 13 M$ and apparently belonging to that species have
only one ventral seta on genu ill, while on this species there are two ventral setae on genu III. Also G. macguariensis is a much bigger species. Hise female idiosomal length being about $760 p$,

Genus HYDROGAMASUS Berlese

Hydrogamasus Berlese. 1892b, LXVIII, 5. Type-species: Gamasus littoralis G. \& R. Canestrini. 1881, designated by Vitzthum, 1941, p. 756 ath the junior synonym of Gomasues salinus Laboulbene, 1851, a synonymy which is revoked below.

DIAGNOSIS. Small to large mites with shields not so extensive and dorsal idiosomal surface not so convex as most members of this subfamily. Ventro-anal shield fused to holonotal shield. Peritrematal shield usually fused to exopodal IV shield. Exopodal III shield continuous, but has a longitudinal split. Sterno-metasternal shield not fused to endopodal IV shield. Female movable cheliceral digit hats 3 teeth. Pretarsus I smaller than other pretarsi. Setation of tibia I (2, 6, 3, 2) differs from Garnasellas in having only three ventral setac.

MORPHOLOGY.

Sclerotilation. Female: Holonotal, fused to ventro-anal posterior to seta Svl. Peritrematal usually fused to exopodal IV in varying degrees (Hirschmann, 1966. driaws II. lithoralis, using the revohed symonymy II. salimus, without such a fusion) and to a triangular metapodal posteriorly. Exopodals II and III not split, but in Palacaretic specion the broad shichd is incised parallet to part of the edge of atcetabulum III. Exopodal IV is split. Intergenito-ventral is present. Sterno-metastemal fused to endopodal II and part of III. Two pairs of pre-endopodals.

Male: Sternito-genital fused to endopodals II. III and IV or only 10 endopodal It and part of HI. Since seta st5 is on ventro-anal, part of sternito-genital might be regarded as being represented in this shick. Otherwise similar to female.

Chaletotaxy. Idiosoma: 6j, 5z, 4s, 5r: 5J, 5Z, 5S, 1-3R: 5st: $3 / v, 3 Z v, 15 v$.

Legs: Following segments differ from Gamasellos in having a postorolateral or ventral seta missing: tibia $1(2,6 / 3,2)$; genu IV $(2,5 / 2,0)$: fibia IV (2, 4/2, 1).

Ofher Characters. Female: Dentosternal denticles in 8 horizontal rows. Tectum anterior margin trispinate, with stout central spine and 2 small lateral spines. Movable, cheliceral digit with 4 conspicuous tecth and sometimes with series of small teeth distal to these. On palp genu, seta all slightly lanceolate with one lateral prong and seta al2 slightly spatulate.

Figs. 93-99. Hydrogamasus littoralis (G. \& R. Canestrini).
95-97 and 99, female: 93. soma, dorsum; 94, idiosoma, venter; 95, leg IV (part) dorsum; 96, pretarsi 1 and IV; 97, gnathosoma, venter. 99, distal tip of barsus 1 . 98. mate, chelicera.

Figs. 100-106. Hydrogramustas limorulis (G. \& R. Canestrini).
100-102, male: 100, idiosoma, venter; 101, idiosoma, latus; 102. leg II (part), 103-105, deutonymph: 103, idiosoma, dorsum; 104, idiosoma, venter; 105, pretarst I and IV. 106, motonymph. idiosoma, venter.

Figs. 107-115. Hydrogamasus Jittoralis (G. \& R. Canestrini).
107-109, protonymph: 107, soma, dorsum: 108, gnathosoma, venter; 109, leg IV
(part), dorsum. 110-114, lirva: 110, soma. dorsum; 111, idiosoma, venter; 112, las III (part), dorsum; 113. gnathosoma. venter; 114, pretarsus I. 115, egg.

Dorsal setae long and tapering, may be slightly pilose. Shields with reticulations (mainly on ventro-anal shield, but also around edges of other shiekls). Spermathecal ringed tube probably opens near posterior paraxial edge of acetabulum IV. Pretarsus 1 pedunculate and smaller than other pretarsi. Lobes of pulvillus II-IV attenuated and long with extra, skirt-like lobe around base of claws. On tarsus IV all four dorsal setac in whorls 3 and 4 are subequal in length.

Mate: Tectum may differ slightly from femate Movable cheliceral digit with series of more than 3 teeth, and fused at hase to slender spermadactyl, which loops over back on itself level with digit tip. Seta st5 on ventro-anal shield. On leg II. femme seta ar. genu seta ar, and tibia seta as colarged into spurs. In Hirschmamn's (1966) drawings. H. vizathumi appears to have ventral process on tarsus 11 ,

DISTRIBUTION. Pe, Pm: An: Sa. Besides the locality records published here and with the original descriptions of nominal species there are records of Hydrogamasas species from the North Allantic coastline of Eurupe, the furthest north being from Anglesey, North Wales (GlynneWillianss and Hobart, 1952). Also, specimens have been found as far east in the Mediterranean as Israel (Costa, 1966a).

Usually found in rock crevices of the upper littoral zone, but may be found alsewhere on the marine shore.

REMIRKS. Ifylrogamasus has in the past included many modacarids which have a holonotal shield that is not fused to the ventro-anal shield of the female, but they have been transferred to Gamasiphoides, Geogamasus, Heydeniella and Hydrogamasellos by Hirschmann (1966) of myself (sce below). Hirschmann (1966) restricted the genus and divided it into 2 subgencra. One subgenus. Austrohydragamasiss, is here newly regarded is synonymous with Parasiriphis, and the genus is considered restricted to his other subgenus. The resulting genus is casy to diagnose, and I consider its closest relationship is with the Gamasiphinace although it is allypical within the subfamily. The following 4 nominal species are included in the genus: H. littoralis (G. \& R, Canestrini, 1881): H. giardi (Tromessart, 1888): H. kensleri Luxton. 1967: H. vitalhmmi Hirschmann, 1966.

Hydrogamasus lifloralis (G, \& R, Conestrini)
Gamasus lifnoralis G. und R. Canestrini. 1881, p. 107\%.
FEMALE. Fig. 93-97 and 99. Idionomal length; 860 p
MALE, Fig, 98 and 100-102. Idiosomal length, 780μ.
DEUTONYMPH. Fig. 103-105. Idiosomal length, 660μ.
PROTONYMPH. Fig. 106-109, Idiosomall lengits 630μ.

L \triangle RVA. Fig. 110-114. Idiosomal length. 450 p .
EGG. Fig. 115. Longest axis length. 390μ.
LOCALITY. Female (N196859), male (N196860)), deutonymph (N196861), protonymph (N196862), harva (N190863) , and unlaid egg (N196864) drawn: Channel Islands (English Channel): rock below high tide, Belerouts Bay, Jersey, 18.7.1950, col. E.B., dep. SAM.

The 'tipico' female ($34 / 25$) and "tipico" male ($34 / 26$) examined: Italy; the Lido, Venice, dep. SEAF,

REMARKS. In figured chatotaxy patterns, filled in circles represent setae considered to have been added at the previous moult. Characters of the immature stages have not been used in the classification given here. The extensive drawnges of these stages are given only to increase this type of data, which is $\mathbf{t} 00$) limited from this family for satisfactory comparative studies. Similar drawings are made in this paper of the immature stages of Ileydeniella dentuta and Gamaselhts tragardhi.

The adult H. littoralis specimens in the Berlese collection agree with the figures here. but disagree with Hirschmann's (1966) drawings which show a peritrematal shield completely free of the exopodal shields.

Gamasus litroralis is usually regarded as a junor synonym of Gamasus solimus Laboulbene after Oudemans (1902). Not many characters of G. salinus can be gleaned from Laboulbene's (1851) description, but the (al sctac on the palp femur and genu are drawn (enlarged copy, Fig, 317) and commented on in the text. The position and shape of seta al on the palp femur in this description is not similar to that of any rhodacarid, but it is similar (0) seta al on the palp femur (Fig. 316) of Hydrogamasus silvestri Berlese, 1904b which Berlese, in the catalogue of his collection, has placed under Pergamasus hamaths (K). I have, therefore, revoked Oudemans' (1902. p. 280) synonymy of G. salinus with G. littoralis and made a new combination. Persamasus valinus (Laboulbene. 1851), and resarded the original descraption an being of the deutonymph and G, maritimus Laboulbène, 1851 as being the adult female.

Hydrosamusus kensleri Luxton

Hydrogamasus kensleri Luxton, 1967. p. 76.
LOCALITY. Three females (N196865-N196867). two males (N190868 and N196869), two protonymphe (N196870 and N196871) and al larva (N190872) examined: Macquaric Istand; rotting kelp, between lide marks, Lusitania Bay, 4.12.1931, col. B.A.N.Z.A.R. Expedition, no. 1668, station 82, dep. SAM.

REMARKS. Adults, protonymphs and a larva considered an belonging (1) this species. which was originally described from New Zealand, have been
collected as above. The larva appears to be comspecitic with the larval which
 1966 (syn. Parasitiphis jeamneli (André)).

Genus LAELAPTIELLA Womersley
Lachapliclla Womersley, 1956a, p. 512. Type-species: Lachapticlla ammala Womersley, 1956a, by original designation.

D/AGNOSIS. Minute to small mites with shields not so extensive and dorsal idiosomal surface not so convex an most members of this subfamily. Ventro-inal shield fused to holonotat shield. Peritrematal shield not fused to exopodal IV shield. Exopodal III shield not split. Sterno-metasternal shied not fused to endopodal IV shicld. Female movable cheliceral digit has 3 teeth. Pretarsus I subequal in size to other pretarsi. Genu IV with two ventral setae.

MORPHOLOGY

Scierotization. Female: Holonotal fused to ventro-inal posterior to seta Zv 3 , anterior to which holonotal is widely separated from the ventro-anal. Discrete subeireular shed posterior to acetabulam IV. Peritrematal reduced, narrowly boardering peritreme and not fused to exopodal IV. Metapodal may be represented as part of small triangular posterior extension of exopodal IV. Exopodals without any splits. Sternometasternal fused to endopodals II and part of III. Two pairs of pre-encopodals.

Male: Sternito-genital. Subcircular shield posterior to acetabulum IV is merged into ventro-anal. Otherwise as femate.

Chaetotaxy. Idiosoma: $6 j, 6 z, 5 s, 6 r: 5 J, 5 Z, 5 S, 5 R: 5 s l: 3 J$. 37. 1sw.

Legs: As Gamasellus.
Ojher Characters. Female: Deutosternal denticles in 7 horizontil rows of what are either single, large denticles or ridges without denticles that are acutely bent in the middle. Tectum anterior margin has a central process, with spinules along its broad, convex distal edge which is ats wide as its base. Movable digit with 3 teeth. Palp attenuated and long. On patp genu, setie all and alz spine-like. Dorsal setae simple, slightly lanceolate. Hoknotal shield dimpled but not reticulated. while venter is reticulated, and all shields are shiny. Spermathecal ringed tube opens near posterior paravial edge of acetabulum IV. passing back to single, central satcculus. Pretarsus I similar in size to other pretarsi. Amonest dorsal setae on tarsus IV. seta pel3 is only just the longest.

Male: Movable cheliceral digit with one tooth, fused at base to longer spermadacty. On leg II. femmerstan, genu seta ar, tibia seta a enlarged into spurs.

Figs, 116-122. Laclapticlla amomata Womersley.
116-118, 122, femate: 116, soma, dorsum; 117, Jeg IV (part), dorsum; 118, idiosoma, venter; 122. gnathosoma, venter. 119-121. male: 119. idiosoma, venter; 120 . chelicera; 121. leg II (part).

DISTRIBUTION. Ail. All published records are with the original descriptions of nominal species. Specimens have been collected from Lord Howe Island and New Calledonia, dep. SAM.

Found in moss and plant litter.
REMARKS. Originally Laelaptiella had genus rank and was placed in the Ascidac. Domrow (1957b) transferred it to Gamasiphis as a subgenus, while Ryke (1962b) treated it as having genus rank when he included Gomasiphis and Laclapticlla in the Ologamasinac. The following 2 nominal species are included in the genus: L. anomula Womersley, 1956a; L. mackerrasae Domrow. 1957.

Laclaptiella anomala Womersley

Laclaptiella anomala Womersley, 1956a, p. 512.
FEMALE. Fig. $116+118,122$. Idiosomal length, 420_{μ}.
MALE. Fig. 119-121. Idiosomal length, 370p.
LOCALITY. Three females (N1968147-N1968149) and one male (N1968150) drawn or examined: Australia; LF30), litter under epacridaceous shrub amongst 'Bottle Brush' bushes and Eucalyptus. 8 miles north of Apsley, Victoria, 17.12.1964, col. D. C. Lee, dep. SAM.

The holotype (N1968278) and paratype (N1968279) females examined: Australia; Adelaide, South Australia, 6.1935, col. H. Womersley, dep. SAM.

Subfamily LAELAPTONYSSINAE Womersley

Laelaptonyssidae Womersley, 1956a, p. 543. Type-genus: Laclaptonyssus Womersley, 1956 a.

REMARKS. Since this subfamily contains only two species grouped in a single genus, and the main function of this paper is to give diagnoses for genera, the characters of the known material are listed under the genus heading.

Gents LAELAPTONYSSUS Womersley

Jachuptonvssus Womersley, 1956a, p. 543. Type-species: Lataptonysus mitis Womersley, 1956a, by original designation.
Puchihlungia Samsinák, 1964, p. 39, syn.n. Type-species: Puchihhungia chinensis Samsinák, 1964, by original designation.

DLAGNOSIS. Average sized mites. Separate podonotal and opisthonotal shields. Reduced ventral shields; ventro-anal shield being narrow with a pair of small discrete shields posterior to metapodal shields and peritrematal shield reduced and discrete. The setation of the notum and legs reduced.

All setate are simple, tapered. Cheliceral digits attenuated and spermadactyl strongly recurved. Location of spermathecal ringed tube, if present, is unknown. Pretarsus I pedunculate and larger than other pretarsi.

MORPHOLOGY.

Sclerotization. Female; Separate podonotal and opisthonotal. Discrete, narrow ventro-anal, from which two small lateral shields have split off at level of seta J13. Discrete metapodal. Inconspicuous peritrematal around the peritreme and stigma which are subequal in size. Exopodals do not completely encase peraxial edges of acetabula. Sterno-metasternal cither fused to endopodal II and part of III or discrete. Single pair of preendopodals, or they may be absent. L. chinensis illustrated in Fig. 2.

Male: Sternito-genital and more extensive peritrematal, otherwise as female.

Chaf rotaxy. Unusually variable and the homologies are uncertain. On the legs the variations from the chaetotaxy of Gamasellas do not follow the gradients indicated in the section on Leg Chactotaxy (p. 13). For the leg chaetotaxy only numbers of setae on a segment are given below.

Idiosoma. L. mitis: $6 j .7$ or $8 z, 6 s$, ()r: 4 or 4 plus an unpaired J. $5 Z, 4 S, 0 R: 4 s t: 3 J v, 3 Z v, 0 S v$.
L. chinchsis: $5 \mathrm{j}, 5 z, 3 \mathrm{~s}$, Or: 5J, 5Z, 5S, 0R: 5st: 3Jv, $3 \% v, 2 S v$.

Legs. L. mitis: palp, 1t. 3f. $5 \mathrm{~g}:$ leg I, 2c, $5 t, 11 \mathrm{f}, 12$ or $13 \mathrm{~g}, 9 \mathrm{fi}:$ $\operatorname{leg} 11,2 c, 6$ or 71, 10\%, 10g, 7if, 17ta: leg 1II, 2c, 5t, 8f, 9g, 6ti, $17 \mathrm{ta}:$ leg IV. 1c, $5 t, 7 \%, 10 g, 7 t i, 17 t a$ (seta av3 absent).
L. chinensis; palp, 2t, 5f, 6g: $\operatorname{leg} 1,2 c, 5 t, 11 f, 11 g, 11 t i: \operatorname{leg} 11,2 c$,
 8ti, 18 fa.

Othir Cinaracters. Female: Tectum anterior margin with a long, barrow, central spine. Cheliceral digits unustally attenuated and movable digit with only 2 fine teeth or edentate. On palp genu, setae all and al2 are simple, lapered. On palp femur, seta al in proximal third or absent. Dorsal setae simple, tapered. No noticeable spermathecal ringed lube. Pretarsus I pedunculate and larger than other pretarsi. Pulvilli I-IV appear to have at single, large, bell-like lobe and claws are inconspicuous. Dorsal setae on farsus IV subequal in length and selose.

Male: Movable cheliceral digit with one tooth or edentate and fused at base to strongly recurved spermadactyl that is similar length or more than three times as long. On leg 11, femur setal ar enlarged into a spur.

DISTRIBUTION. Os: Aa, Only records from Western Australia and Kanton Province, China.

Found associated with insects; L. mitis in a fly culture and L ch chinensis on termites or in their nest.

REMARKS. When Womersley (1956a) established liactaptonyssidae. containing only Laclapronysuses milis, he refered to it as bemg a "lataptid". Samsinath (1964) deseribed I. chinensis as the only specien in Puchilhlongio. which wats regarded as belonging to the Rhodacatridate. Deppite the reduced setation and, in one species, the reduced stemal selerotization (cf. Halolaclapidac). I have retained Samsimak's (190t) concept of this gemus being at rhodacarid on the basis of the apotele, idiosomal sclerotization and atming of the male leg IJ. But, Laclaptonyssus is considered unusual enough to be placed in a separate subfamily. The following 2 nommat specier are included in the genus: L. miris Womersley. 1950 ba: I chinemsis (Samsinak, 1964) comb.n. Altotype femate (N 1968284), three paratype females (N1968285-N1908287). holotype male (N146828S) and three paratype males (N1968289-N1968291) of L. mitis have been examined: Australia, from fly culture, Zoology Department. University of Western Australia, 10.1950, col. E. P. Hodgkin, dep. SAM. Paratype female, paratype malc (N1968269) and paratype protonympli (N1968270) have been examined: China; off Copfotermes formonamm Shiraki, near Koi-fo. Kiaton Province, 1903 , col. K. Samsinat, dep, male and protonymph SAM. female in the collection of K. Samsinák.

Subfamily OLOGAMASINAE Ryke

Ologamasinae Ryke, 1962b (1st August), p. 159.
Gamasellinae Hirschmann, 1962 (August, assumed 31 st by tems of the International Code of Zoological Nomenclature, 1961), p. 39.

Cyrtolaelapidae Berlese, sensh Johnston (in part). 1968. p. 14.
Type-genus: Ologamasus Berlese, 1888.
D/AGNOSIS. Minute to gigantic mites, with shields that range from being limited in extent and loghtly solerotized. to being expensive and heavily selerotired. Iholonotal hied or separtale (or very rarely partiatly separated) podonotal and opisthonotal shiclds, in some cases both attributes of this character oceur in members of the same genus or sexen of the salme species. Ventro-anal shied may or may not be funed to the notal shiek and this also varies within a genus or species. Peritrematal shield usually fused to the exopodal IV shield and often to the ventro-anal shield, although in most cases the latter fusion only occurs on males. Sclerotization often compacuously sexuatly dimorphic. On the femate sterno-metasternal sheded a line joining setae st2, st 3 and sta would never enclose an angle of less than $95^{\prime \prime}$ except in some Gamasellus discouatus-complex species.

MORPIOLOGY

Setfrotization, 'The size of shields and extent of the fusion between them vartes considerably hetween spectes and often between the females and mates of the same specios. This sexual dimorphism usually appears ans at more extensive sclerotization of the male venter, but in Gamasellns sfisconatus, some Geogumasas species and an unnamed Heydericlle ypectes the lemate hats a holonotal. While the male has a narrow fissure hetween the podonotal and opisthonotal, and on the male of Ciengamashas delamarei and an umamed Hydrosamasellows specien there are lateral incisions partly separating the polonotal and opisthonotal, while in some males of the Achgamasas funcfatus-complex a humeral section of the podomonal is partly separated from the rest and fused to the peritrematal. Compicuous. wide spead sexual dimorphism of this lype only oceurs in veccies ol this subfamily and the Rtoredacarinat, and an atspect of it most commonly found in this subfamily, but not in other ithotacarids, is the fusion af the ventro-itnal to the peritrematal of the mate. Also the femate of some species of ologamasmae difter from atl the females in the other subtamilies Within the Rhadacardac by having the ventero-anal fused to the peritrematal (Ciminhis. Hinphis. Pernseits, and some Ceamaselles falriger-complex and disemtans-cemplex species). The lollowing other selerotwation characters are fairly constant within the subfamily. Although the mate ventro-anal is often fused to the notal, in the femate this is not so except for the following groups: Ologumans, Cymiphis, some Heydentelle con-etcnsis-complex and Ilydrogamasellms species, and Himiphis and Prriphis species. Small intergenito-ventrals oceur on some members of a number of genera. The peritrematal is fused to the notal anteriorly and exopedial iv posteriorly except for sonte species with unusually short peritrenes (Notogamaxellus and Neoganusellevans species) and for the males of most species of Ciensramanas, Parasitiphis ambl Litegamanus. Exopodal 111 alluays split. The demate metasternal is not fued to endopodal IV except for the following groups: Cimiphis, Hiniphis, and some Heydemella eronetensis-complex species.

CHancoraxy. The number of setae on the idiosoma is very variable especially on the opisthosoma, which may also be hypertrichous or hypotrichous. The podosomat usually has betiveen 20 and 22 pairs of setate dasially and 5 pairs of setac ventrally, the few exceptions being for some species of Gambancllini. The leg chatotaty is fatirly comstant, but compared with Gommasillus, some species of Gatmasellini maty have an extra one of two setac on lex IIf and some Ologamasina may have one seta less on leg IV.

Othear Charac'rers. Tectum anterior margin can have many different stapes and may be sexually dimorphic. On palp genu, setat all is offen pectinate or spatulate with it single lateral prong and seta al2 is offen spatulate, as for the antero-lateral setite on the palp genu of some
species of Sessiluncinat. On palp femur, seta al is gencrally on proximal third in contrast to Rhodacarinace Tangarocllinat and some Sessiluncinae species, but on an unnamed Lilogarmasts species it is on central third. On the ventral surface of the podonotal shield of some species there are 4 light-refractile structures between seta j_{5} and $j 6$. These structures also oceur in the Rhodacarinate and may be strengthened areas of sclerotization to which muscles are attached. The female sternal seta st2, st 3 and , 14 are usually nearly in a straight line and the smallest angle that would be comanned by such a line is 95 except in some species of the famasellas discutathescomplex. The method of introduction of sperm into the fensale may vary considerably in this subfanily. According to Michael (1886 and 1892) the sperm is introduced directly into the vagina of Euryparasimis cmarginaths: and becaluse of the similarity of the spermadactyls the same could be true for Cirpolaclaps. On the other hand many species of Ologamasinate have structures looking like spermathecal ringed tubes wholl usually open near the posterior paraxial edge of acetabulum IV, but on a number of other species (usually members of the Ologamasini) they open on the proximal segments of leg III and leg IV. Since these tubes camot always be seen to be attached to a saceulus. datat is needed to support their spermathecal function and this is not yet available in many cases.

As commented on in the general section on Morphology (p. 13), within the Rhodacaridat there is often an association of three sets of attributes as follows: some complex dorsal setac-divided dorsal sheld- dull selerotization", or "all simple dorsul setac-entire dorsal shichd-shony sclerotzations. This is particularly obvious in the Ologamasinat and although some spectes dos but have atn association of the attributes ats given. these characters are the basis for distinguishing two tribes in thin subfamily. The dullness appears to be caused by a eovering of adhesive exudate with attached detritus and fungal hyphae in older specimens. In species where the exudate is thich, smple or lanceolate setae run parallel io the body surface, imbedded in the exudate. White pilose setac slick ont through the extadate at right angles to the body surface. On upecies with a shiny solerotization, the dorsal seta are rarely complex and detritus and fungal hyphate are not found attached to the mite.

Besdes the conspicuous sexual dimorphism in selerotiation many other structures vary between the sexes in this sublamily, most of which are probably concerned with assisting the make keep its grip on the lemale during sperm transference The male gnathosoma may have attentated corniculi which are often on a protuberance of the hypostome, also there may be a ventral process on the palp (Hydrogamasellus and Acugemasus natalensiscomplex) and the tectum may be different (Ologamasus and Geogamosus species). The anterion edge of the male podonotal shield may extend forward over the ghathosoma (some Heydeniclla and Euryparasitus species). The
entargement of setac on leg 11 is usually more extensive than in other subfamilies and tarsus 11 may have ventral setale (Parasimphis, Cyrmhelaps, Euryparasitus and Litogumasus species) or dorsal setae (Cymiphis. Geogamasus and I/ydrozamasellms species) enlarged into lubercles. Two littoral genera (Parasitiphis and Litogamastrs) have the mate legs 111 and IV enlarged and carrying setous or non-setous processes. Often the cuticular processes on the distal margins of the proximal segments of female legs 111 and IV are enlarged. but sometmes there are more conspicuous processes on the fomale legs (Cymphis and some Hoydeniella and Gamasellus discrumthes-complex species).

DASTRIBUTION. The sublamily is cosmopolitan, with 17 genera found only in the Southern Hemisphere. Three gencra (Cyrtolataps. Allosermasellos and Eirrypanasitms) are only found in the Northern Hemisphere. The Commasellos falciger-complex is the only group of closely related specien found in moss. plant litter and soil that has a large number of specten in both the Northern and Southern Hemispheres. Periscins and probably Rhoducarovides oceur in both of these hemispheres. Heydeniclla godi from the British listes is the only species belonging to the Ologamasini that is not rentricted to the Southern Hemisphere. Species are usually found in moss. plant-littee and soil, but some genera (Cvrolachans and Fimyparasims) are unatilly lound in animal nests or roosting place of bats while other genera (Parashiphns. Litosganassiss and Perviseitas) are usually found in the litioral sone and Rewoturwoides is cither littoral or probably commoner in deeper soil Jaycrs.

REMARKS. Among the rhodatarids some members of the Ologamasimat are the most smilar to be Parasitidae and Vegatidae and therefore 1 would regard them as more like the ancestoral rhodacarts. Also, on the basis of the presence or absence of conspicuous sexual dimorphism, I would regard this subfamily at more clesely allied to the Rhodacarinae than to the (iamasiphinate and Scessilancintic. Therefore I disagree with Johnston's (1908) transtor of members of this subtamily to another family. Cyrtolaclapidare, with the members of the Gamasiphinate and Sessiluninac, kaving only what are here regarded as members of the Rhodacarinae in the Rhodacaridat. This subfamily has the most species and genera, and its genera are the most difficult to delineate. The division of the subfamily into two tribes in presented bere is probably no indication of its phylogenv but it is convenem and the use of the adult dorsal sclerotization to distingush the groups resulting from such a division has precedent.

I recognize 2 tribes walan this subfamily; Ologamasim and Gamancellini. Adults of thene tribes. and the genera grouped in then, cam be distinguished by the following key. The 3 specien incortue acdis commented on at the end of this paper belong to the Ologamasinate and key out to their correct tribe,
but not necessarily to the genus which they have been placed in for convenience.

KEY TO TRIBES AND GENERA OF OLOGAMASINAE

1. Usually holonotal shield. If separate or partially separate podonotal and opisthonotal shields (some Geogamasus, Heydeniella and Hydrogamasellus species), then single pair of preendopodal shields (as for all other members of this tribe except for Neogamasellevans berlesei), all dorsal setae superficially simple (may carry inconspicuous lateral prongs, but never have conspicuously pilose podonotal setae $j 4, z 5$ and r3 amongst simple setose or lanceolate setae which is also the case for all other members of this tribe except for Pyriphis species), pretarsus I pedunculate and seta all on palp genu has more than 5 lateral prongs

Ologamasini, 2
Usually separate podonotal and opisthonotal shields.
If holonotal shield (some Gamasellus discutatuscomplex species) then 2 or 3 pairs of preendopodal shields and podonotal setae $j 4,25$ and $r 3$ are conspicuously pilose amongst simple setose or lanccolate setae. No species in this tribe has all the following characters: single pair of pre-endopodal shields; all dorsal setac superficially simple; pretarsus I pedunculate and seta all on palp genu with more than 5 lateral prongs
2. Seta all on palp genu is spine-like or spatulate and never has more than 2 lateral prongs

Gamasellini, 10

Setal all on palp genu always has more than 2 lateral prongs
3. Pretarsus I not pedunculate. Peritrematal shield reduced; on female narrows behind stigma before fusing with exopodal IV shicld, on male terminates behind stigma without fusing to other shields

Parasitiphis

Pretarsus I pedunculate. Peritrematal shield substantial; on femate broadens behind stigma before fusing with exopodal IV shield, on male extends back behind stigma to fuse with both exopodal IV and ventro-anal shields
4. Dorsal setae all simple. Female ventro-anal shield separate from notal shicld and male ventro-anal shield fused to sternito-genital shield. Spermadacty! straight, running parallel to movable cheliceral digit
Rykellus

Some dorsal setac conspicuously pilose. Female ventro-anal shield fused to notal shield and if male ventro-anal shield fused to sternito-genital shield then spermadactyl recurved from point of attachment to movable cheliceral digit so that it nearly points in the opposite direction
5. Female sterno-metasternal shield fused to endopodal IV shield. Male sternito-genital shield not fused to ventro-anal shield. Spermadactyl approximately parallel to movable cheliceral digit . .
Female sterno-metasternal shield not fused to endopodal IV shield. Male sternito-genital shield fused to ventro-anal shield. Spermadactyl recurved from point of attachment to movable cheliceral digit so that it nearly points in the opposite direction
6. Single pair of female pre-endopodal shields have paraxial margins subequal in length to distance between sternal setae $s t 1$ and $s t 2$, and ventroanal shield not fused to notal shicld. Peritreme short, not reaching forward to level of anterior margin of acetabulum III. Peritrematal shield not conspicuously fused to exopodal shields. Spermadactyl nearly straight
If female pre-endopodal shield with paraxial margin subequal in length to distance between sternal setae $s t 1$ and st2, then ventro-anal shield fused to notal shield. Peritreme reaches forward beyond anterior margin of acetabulum III. If peritrematal shield not conspicuously fused to exopodal shields (some Geogamasus males), then spermadactyl able to coil up around 3 hinges
7. Podonotal setae in 22 pairs. Spermathecal ringed tube opens on coxa III or proximally on trochanter III. On male tarsus II, seta ad3 modified to tubercle

Cymiphis

Pyriphis

Neogamasellevans

Podonotal setac in 20 or 21 pairs. Spermathecalringed tube opens on coxa IV or distally ontrochanter III. On male tarsus II, seta ad3 issetose9
8. Spermathecal ringed tube opening proximally on posterior surface of trochanter III, often coiling in coxae III. Spermadactyl able to coil up around 3 hinges Geogamasus
Spermathecal ringed tube opening distally on dorsalsurface of coxa III. Spermadactyl unable tocoil up around 3 hinges
Hydrogamasellus
9. Spermathecal ringed tube opening distally on dorsal surface of female trochanter III. If femaleventro-anal shield fused to holonotal shield thensterno-metasternal shield fused to endopodal IVshicld. Central spine on anterior edge of tectumcomes to a single point. There are 20 pairs ofpodonotal setae. On male tarsus II, seta av2may be modified to a spine
Heydeniella
Spermathecal ringed tube opening distally on ventralsurface of female coxa IV. Female sterno-metasternal shield not fused to endopodal IVshield although ventro-anal shield is fused toholonotal shield. Central spine on anterior edgeof tectum is bifurcate at tip. There are 21 pairsof podonotal setae. On male tarsus II, seta av2is setose .
Ologamasus
10. Podonotal shicld conspicuously larger than opistho- notal shield and bearing 56-65 setae. Unpaired pre-anal seta about as close to anus as paranal setale Notogamasellus
Podonotal shield subequal in size to opisthonotalshield, or fused to it, and bearing up to 48 setaealthough usually 22 pairs of setae or less. Nounpaired pre-anal seta near anus.11
11. Well developed leg I, bearing stout spines (enlarged ventral and antero-lateral setae) on genu and tibia 12
Setae on genu and tibia of leg I not enlarged to stout spines 13
12. Anterior spine on genu 1 is seta all. Pretarsus I absent. Single postero-lateral seta on genu III $(2,4 / 2,1)$ and tibia III $(2,3 / 2,1)$. Vertical setae ($j 1$) on prominent protruberances
Anterior spine on genu I is seta av2. Pretarsus I present, although small compared with other pretarsi it has 2 claws. Two postero-lateral setae on genu III $(2,4 / 2,2)$ and tibia III $(2,3 / 2$, 2). Vertical setae (j1) not on prominent protruberances
13. Ventro-anal shield separate from opisthonotal shield, but fused to peritrematal shield in both sexes. In female, metasternal shield fused to endopodal IV shield, although it may be separate from sternal, and in male, sternito-genital shield fused to ventro-anal shield
Rarely is ventro-anal shield both fused to peritrematal shicld and separate from opisthonotal shield, and then only in females with metasternal shield separate from endopodal IV shield and in males with ventro-anal shield separate from sternito-genital shield14
14. Pretarsus I present but not pedunculate. All dorsal setae with tapering tip. Female sclerotization reduced ventrally; sterno-metasternal shield never fused to more than endopodal II shield and the anterior half of endopodal $1 I I$ shield; discrete metapodal shields; peritrematal shield usually narrows behind stigma or at least is not so broad that it has a truncated posterior margin. Male chelicerae atypical: either fixed digit with dorsal groove (Fig. 362), or movable digit fused along its entire length to longer, stout spermadactyl (Fig. 331 and 343)
Pretarsus 1 , if present, usually pedunculate, if not, (Gamasellus pyriformis-complex) then some dorsal setac with spatulate tip, and female sclerotization not reduced ventrally as above. The male chelicerae not atypical as above 17
-
15. One or more pairs of pre-endopodal shields, if only one pair then female metasternal seta (st4) is on small discrete shield. Male fixed cheliceral

Evanssellus

Heterogamasus

Periseins
digit has dorsal groove, and spermadactyl is slim and fused to the movable digit at its base only

Litogamasus
If pre-endopodal shields present, then one pair only and metasternal seta (st4) is on sterno-metasternal shicld. Male fixed cheliceral digit without dorsal groove, and spermadactyl is stout and fused to the movable digit along the digit's entire length
16. Clearly defined pre-endopodal shields absent. Paranal seta anterior to centre of anus. Female setae $J v 1$ and $Z v 1$, or just setal $J v 1$, are anterior to ventro-anal shield. Male tibia and tarsus II with articulated connection

Cyrtolaclaps

Clearly defined pre-endopodal shields present. Paranal setae posterior to centre of anus. Setac $J \nu 1$ and $Z v 1$ are on ventro-anal shield. Male tibia and tarsus II are rigidly fused together
. . .
17. Female ventro-anal shield fused to dorsal shield, and sterno-metasternal shicld fused to endopodal IV shield. Male ventro-inal shield fused to sternito-genital shield. Two pairs of preendopodal shields. Peritrematal shield completely merged with the exopodal shields behind stigmat

Hiniphis
Female ventro-anal shield never fused to dorsal shield, and sterno-metasternal shield never fused to endopodal IV shield. If male ventro-anal shield fused to sternito-genital shield then there is a single pair of pre-endopodal shields and a fissure separates peritrematal from part of exopodal IV shield behind stigma

18
18. All dorsal setae simple, setose or spine-like, except
that setae $j 1$ and z.l may be slightly pilose . . 19

At least some dorsal setate conspicuously pilose, and often lanceolate dorsal setae present20
19. Dorsal setae, short, spine-like, with setae $j 1$ and $z 1$ the longest and slightly pilose. Three pairs of pre-endopodal shields
Dorsal setae, fine and setose. One or two pairs of pre-endopodal shields
20. One pair of pre-endopodal shields 21

Two or three pairs of pre-endopodal shields 22
21. On opisthonotal shield there are 60 or more setae, not all of which are paired, and there is at least one accessory seta between the J rows of setae. Male sternito-genital shield fused to ventro-anal shield

Pilellus

On opisthonotal shield there are 58 or fewer setae in pairs, and no accessory setae between the J rows of setae. Male sternito-genital shield not fused to ventro-anal shield

Acugamasus

22. All dorsal setae on idiosoma and genu and tibia of legs II, III and IV are densely pilose along their entire length

Laelogamasus

Only some dorsal setae on idiosoma are densely pilose, and usually for only part of their length, while the dorsal setae on the genu and tibia of leg II, III and IV are not pilose.

Gamasellus

Tribe OLOGAMASINI Berlese

Ologamasinae Ryke, 1962b, p. 159. Type-genus: Ologamasus Berlese, 1888.

DIAGNOSIS. Minute to large mites. The following characters usually occur on adults of this tribe (exceptions are given in parenthesis). Holonotal shield (some Geogamasus, Heydeniella and Hydrogamasellus species). One pair of pre-endopodal shields (Neogamasellevans berlesei). Simple dorsal setae or, if complex, then single conspicuously complex setae are not surrounded by simple setae (Pyriphis species). Spermathecal ringed tube opens on proximal segments of legs III and IV (Parasitiphis and possibly Neogamasellevans species).

MORPHOLOGY.

Sclerotization. Usually holonotal, but may be separate or partially separate podonotal and opisthonotal as on some Geogamasus, Heydeniella, and Hydrogamasellus adults. Rarely more than one pair of pre-endopodals but may be 2 pairs as on Neogamasellevans berlesei.

Chaetotaxy. Setation of the legs is as that of Gamasellus, except for many Heydeniella species and some Hydrogamasellus species which have only one ventral seta on genu IV $(2,5 / 1,1)$.

Other Characters. Usually, all dorsal setae are simple and setose, but they may be slightly pilose, while in some Ologamasus and all Cymiphis and Pyriphis species a number of dorsal setae are conspicuously
pilose and maty be spaltulate. The tendency in the former two genera is for lateral and posterior dorsal setale to be larger and more pilose, and podonotial setac $z 3, z 4$ and $r 3$ are never pilose amongst simple setae as in Pyriphis specien. Female sternal setae are usually nearly in a straght line but never ats on most (iamasiphinae speetes. Spermathecal ringed fubes mity open near the posterior paraxial edge of femate acetabulum IV (Parasiriphis and possibly Neogamasellevans species) hut ustally opening is prohably on the proximal segments of legs 111 or IV.

DISTRIBUTION. Only onc species, Heydeniella goei, belonging to this tribe has been found in the Northern Hemisphere. Many species have been lound in the Southern Hemisplere. It is common in the Austratian region, while its species constitute the bulk of rhodacard material collected from the Neotropical iegion.

REMARKS. The Ologamasini is intended mainly for species with adults that have a single holonotal shield and usually simple dorsal setae. There is a precedent for this concept although it probably given litte indication of the phylogenetic rehationship of the species. It may later prove mote useful to limit this tribe to species in which the spermathecal ringed tube opens on the proximal segments of female legs III or IV. At the moment it is not easy to distinguish the females of three genera, Ologamasus, Heydeniella and IVdrogumanellus, becaluse their diagnoses are based on the location of the external opening of the spermathecal ringed tube, a chatracter which can be dillicull to oberve. But if both females and males of a species belonging to these generat ane kown, the placong of the species in the correct genus is much easier.

I recognize 9 genera within this tsibe, Ologamusus, Cymiphis, Geongamasus, Heydeniella. Hydrosamanallas. Neagamasellerams. Paranitiphis, Pyriphis, and Rykellus. Also, two species, incertae sedis (Neogramasellevans herlesei and Hyalrogamasellus whathbamsis). commented on at the end of this paper, are plated in this tribe. Membere of these genera can be distinguished by using the above key ($p, 78$),

Gents OLOGAMASUS Berlese

Ologamasis: Berlcse, 1888 , p. 194 (not Berlese, 1906, p. 242 and lapsus: Hologamasus Berlese, 1892 d , inter page ol et 62 (bound between page 60 and 61). Type-species: Gamasms aborruns Berlese. 1888 , by monotypy.
Ologamasellus Berlese, 1914. p. 139. Type-species: Gamasus aberrans Berlese, 1888 , by original designation.

D/AGNOSIS. Smill to average sized mites, always will extensive. well selerotized shichls. Always bolonotal shield fused to ventro-imal shiold. atthough the evtent of thin fusion may be limited. Male ventro-anal wield
always fused to the exopodal IV shield and peritromatal shiedd. Stermemetatsernal shich is nut fused to endopodat IV shield. Dorsal setate maty be simple. pilose, ypatulate or pilose and spatulate. Spermathecal ringed tube apens distally on ventral surfate of coxa IV. Pretarsus I pedunculate and smaller than other pretarsi. On male tarsus II, setate all setose.

MORPHOLOGY.

Scabrotization. Female: Holonotal fused to ventro-amal, although fusion may be limited to area bearing aciculac posterior to anus. No discrete metapodal. Peritrematal fused to exopodal IV and may extend pusterion to this as triangular shield which may be homologous with the metapodal. Splot in exopodals II, III and IV. Sterno metasternal fused to endopodal II and part of III. Single pair of pre-endopodals.

Male: Fusion of ventro-anal to holonotal similar to female or stightly more extensive. Peritrematal and exopodal IV fused to ventro-anal. Sternito-genital not fused to ventro-anal,

Cimafotaxy. Idiosoma: 6j, 6z, $4 s, 5 r: 51,57,55,5 R: 5 s t: 3 N$, $32 B_{1}()$ or $1 S n$

Legs: As Gamasellus.
Othar Chakacthrs. Femate: Deutosternal denticles in 8 or 9 lorizontal rows. Tectum anterior margin basically unispinate, hut spime is bifurcate at lip and hats a spinule on eath side. Movable, chelieeral digit with 3 teeth. On palp genu, seta all pectinate with 5 lateral prongs and seta c/2 spatulate. Dorsal setae may be simple or spatulate or spatulate and pilose at tip. Shields apparently shiny. Usually genital and sometimes sternal shicld with longitudinal striae. On coxa IV, fust distal to ventral seta, there is the aperture of what is probably the apermathecal ringed tube. Pretarsal sheath I on slim peduncle of similar length. Pulvilli II-IV with lateral lobes that are attenuated and long. Amongst dorsal setate on tarsus. IV. seta pdo is the longest, being either setose or spatulate.

Male: Corniculi proportionately longer than on female. Tectum may be more complex than on femate. Movable cheliceral digit with one tooth. and it may have a ventro-lateral groove opposite a spermadactyl that is subequal in length to digit. Sternito-genital hield with longitudinal stritu. On ley II. femur seta an and sometimes seta $1 \mathbf{l}$, genu seta a^{\prime} and sometimes tibia selat ay enlarged into spur or spine. May be non-setous processes on these segments.

DIST'RIBUTION. NTb, NTe. All records are from al region between the Mato Gooso in Brazil and La Plata in Argentina, occurring in a range simitar to that covered by the locality records publibhed with the original descriptions of nominal species in this genus.

Found dmongst plant litter on soil, or under stones or the bark of trees.

Figs. 123-133. Ologamusus alsermins (berlese).
123-128, female: 123, idiosoma, venter: 124. Ieg IV (part), dorsunt: 125, pretarsus I? 12h, coxae IV, plus trochanter IV (part): 127, lectun: 12K, gnathosoma, venter. 129-133, male: 129, podosoma, venter. 130. leg II (part), postero-latus; 131, corniculus: 132, tectum; 133, chelicera.

Figs. 134-141. Ologamasus simplicior (Berlese).
134-137 and 141. femile: 134, soma, Jorsum; 135, idiosoma, venter: 136, coxue 111 and IV plus trochanters (parts); 137, leg IV (part), Jorsum; 141, gnathosoma, venter. 138-140, male: 138, idiosoma, venter; 139, chelicera; 140, leg 11 (part).

Figs. 142-151. Olingumasus striohatus (Berlese).
$142-145$ and 151, female: 142, soma, dorsum; 143, idiosoma, venter; 144 , coxae 111 and IV plus trochanters (parts); 145, leg IV (part), dorsum; 151, gnathosoma. venter. 146-150, male: 146, idiosoma. venter; 147, chelicera; 148, leg If (part): 149, comiculus and palp Irochanter: 150, pretarsus I plas tarsus I (part).

REMARKS. Because of the fusion of the female ventro-anal strield to the motal shicid. Ologamasus has been confused with a very different genus. Gamasiphis, as indicated by a reference to the 'Ologamasas-Gamasiphis group in Ryke (1961b). Lee (1966) redelined this genus, placing in it species with a single holonotal shield in the female, complex dorsal setae and in some canes without fusion between the ventro-anal shield and the notal shield. This definition is revoked here. and the genus is used to contain species with females having what is probably a spermathecal ringed tube opening ventrally on coxa IV. So far the females of all the nominal species have the ventro-anal shield fused to the notal shield, but the extent of this fusion varies considerably and may be very limited. The form of the dorsal setate is also very variable and they may be mostly simple with only a few setae being inconspicuously pilose. Since some species of Ilydrogamasellus are similar to species an Ologamasus and other Ifalrogamasellas species are similar to Heydeniclla species. alloting a species to one of these three genera can be difficult, especially when only the female is known and the probable spermathecal ringed tube is indistinct. The following 3 nominal species are included in this genus: O. aberrans (Berlese, 1888): O, simplicior (Berlese. 1914): O. striolatus (Berlese, 1916a).

Ologamasus aberrans (Berlesc)

Gamusus abervans Berlese, 1888 , p. 194.
FEMALE, Fig, 123-128. Idiosomal length, 730p, Dorsal setac difficult to examine, but podonotal setae mostly shaped as seta 2×2, or simpler, while opisthonotal setae as seta 75 . Proximal segments of leg IV drawn (Fig. 124) belong to the right side while the tarsus belongs to the left side.

MALE, Fig. 129-133. Idiosomal length, 700~. On leg 11, only seta dy on femur and genu are enlarged into spurs. The posterior process of fomur sela on is quite thick although lightly sclerotized. All setae on tarsus II are setose.

LOCALITY. The "tipico' lemale (9/16), and "tipico' male (9/1), drawn, also "cotipico' female (215/28), and 2 'tipico' males (9/16), examined: Brazil: under the bark of trees, Mato Grosso, col. A. Balzan. dep. SEAF:

Ologamasus simplicior (Berlese)

Otogamaselhes simplicior Berlese. 1914, p. 140.
FEMALE. Fig, 134-137 and 141. Idiosomal length, 620 4 . Pretarsus I with peduncle that is proportionately shorter and broader than that of O. aberrans.

MALE. Fig. 138-140. Idiosomal length, 580_{μ}. Tectum similar to that of female.

LOCALITY. Female (N1968255) and male (N1968256) drawn, and fomale and 3 males examined: Argentina; in dark place among humus. fallen leaves and rotten wood, 9 de Julio Park, Tucumán City, 1953. col. P. Wygodzynsky dep. SAM (N1968255 and N1968256) and BM(NH) (other 4 specimens).

The "tipico' female ($165 / 45$) and 'tipico" male ($165 / 45$) examined: Argentina; La Plata, col. Bruck, dep. SEAF.

Ologamasus striolatus (Berlese)

Ologamasellus striolatus Berlese, 1916a, p. 163.
FEMALE. Fig. 142-145 and 151. Idiosomal length, 750μ. Three raised, oval areas on podonotal shield anterior to seta $r 2$, appear to have many fine pores. Berlese's specimens have peritrematal shicld more completely fused to exopodal shield IV and processes on coxale III and IV are not so big.

MALE. Fig. 146-150. Idiosomal length, 720 . Tectum similar to that of female. On Berlese's specimens, seta $p v 1$ on femur II shorter and fatter.

LOCALITY. Female (N1968257) and male drawn, and 2 females examined: Argentina; rotten vegetable matter (chiefly corn stalks, grass and twigs), vacant lot, Tucumán City, 1.1953, col. P. Wygodzynsky, dep, SAM (N1968257) and BM(NH) (other 3 specimens).

The "tipico' female $(170 / 16)$. 'tipico' male ($170 / 16$), and female (170/49), and three males (170/49, 170/17 and $215 / 27$) examined: Argentina; under stones, La Plata, col. Bruck, dep. SEAF.

Genus CYMIPHIS gen.n.

Type-species: Ologamasus cymosus Lee, 1966.
DIAGNOSIS. Minute to large mites, always with extensive, well sclerotized shields. Holonotal shield always extensively fused to ventroanal shield. Male and sometimes female peritrematal shield fused to ventro-anal shield. Sterno-metasternal shield is fused to endopodal IV shield. Dorsal setae may be simple, pilose or pilose and slightly spatulate. Spermathecal ringed tube probably opens distally on antero-lateral surface of coxa IV. Pretarsus 1 pedunculate and smaller than other pretarsi. Conical. non-setous spur on ventral surface of female femur II and sometimes on femur III and, or IV. On male tarsus II, seta ad3 modified to a short spine or tubercle.

MORPIIOLOGY.

Sclerotization, Female: Holonotal fused to ventro-anal. Perificmattall fored to exopodal IV and it extends to point posterior to this as framgular sheld which may be homologous with the metapodal. Peritrematal may also be fused to ventro-ianal. Split in exopodals II, III and IV. Sternometasternal fused to endopodals II. III and IV. Single pair of pre-endopodals.

Mate: Peritrematal fused to ventro-anal. Sternito-genital not fused to ventro-amal.

Chaetoraxy. Idiosoma: 6j, 6e, $5 s, 4 r .4$ or $5 \Omega, 52,4 S, 4,6$ or

Legs: As Gamavellus.
Orhar Cinarachtrs. Fenale: Deutosternal denticles in 7 horizontal rows. Tectum anterion maryin is basically trispinate but may have lateral spinules, which may be large enough to make margin quinquispinate. Movable cheliceral digit with 3 teeth. On palp genu, seta all with single lateral promes and both setac all and al2 slightly spatulate. Some dorsal setac may be simple. but pilose or pilose and spatulate setac alway present. Shieds dull and usually covered with reticulations. Spermathecal ringed tube is often not easy to locate, but in some species a tube clearly opens distally on the antero-lateral surface of coxa IV. Pretarsus I pedunculate and smaller than other pretarsi. Conical. non-setous spur on temur Il and sometimes on femur 1 II and, or IV. Pulvilli II-IV with lateral lobes that are allenuated and long. Amongst dorsal setac on tarsus IV, seta pel3 is the longest. and at least slightly Jancolate or pilose.

Male: Corniculi may be proportionately longer them in lemale. Movable cheliceral digit with 1 woth or 3 teeth as in female, and fused att base to stout, slightly longer spermadactyl. On leg II. femur setae as and $\boldsymbol{\prime \prime}$, gentu seta ar and sometimes tibia seta an enlarged into spurs, while on tarsus, seta ad3 modified to a short spine or tubercle.

DISTRIBUTION. An: Sar. All published records are with the original descriptions of nominal species.

Found in moss and plant litter.
REMARKS. Six out of the seven Cymiphis species were originally deveribed as belonging to the "cymostrs-group' in Olngamasus by Lee (1966). Cymiphis is similar to Ologamasus, but there are a number of morphological dilferences, besides the absence of lateral prongs on seta all on the palp genu used in the key to Ologamasinate genera, which are found only on these species from New Zealand and near by islands. The following 7 nominal species are included in this genus: C. cymosus (Lee, 1966) comb.n.: C. drmmsus (Lee, 1966) comb.n.; C. leptosceles (Lee, 1966) comb.n.;
C. munsoni (Lece, 1966) comb.n.; C. mucilis (Lee, 1966) comb.n.: C. Validus (Lee, 1966) comb.n.; C. watsoni (Hirschmann, 1966) comb.n. fos Gamasiphis wassomi Hirschmann, 1966.

Genus GEOGAMASUS gen.n.

Type-species: Geogamasus skoshi sp.n.
D/AGNOSIS. Minute or small mites. only the male having extensive shields. May be holonotal shield or separate or partially separate podonotal and opisthonotal shiclds. Female ventro-anal shield never fused to notal shield and peritrematal shied only fused to notal shield by a narrow anterior strip. Male ventro-anal shield and peritrematal shield broadly fused to notal shicld. Sterno-metasternal shiold is not fused to endopodal IV shield. Dorsal setae simple or larger setac may be inconspicuously pilose. Spermathecal ringed tube opens at proximal end of trochanter III. Spermadactyl able to coil up around three hinges. Pretarsus I pedunculate and smatler than other pretarsi. On male tarsus II, seta ad3 modified to a tuberele.

MORPHOLOGY.

Sclerotization. Female: Holonolal or separate podonotal and opisthonotal. Discrete ventro-anal. Small, discrete shield only bearing aciculac. Small shield with pore, which is either discrete or fused to exopodal IV. may be regarded ats metapodal. Peritrematal reduced and narrowly fused to exopodal IV. Split in exopodal III and there may be split in exopodal IV. Sierno-metasternal fused to endopodal II and part of 111. Single pair of pre-endopodals.

Male: Notal may be as female, or, if holonotal on female, male may have separate or partially separate podonotal and opisthonotal. Ventro-anal fused to opisthonotal. exopodal IV, sometimes to peritrematal, but not sternito-genital. Peritrematal fused to notal along its entire length.

ChaEiotaxy. Idiosoma: $6 j, 6 z, 4$ or $5 s, 4$ or $5 r i 5 J, 5 Z, 5 S, 5 R$: 5st: 3.1n, 3Z1, 1Sn.

Legs: As Gamasellis.
Other Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin basically trispinate with central spine broader distally, and spinules may make the margin complex. Movable digit with 3 or 4 teeth. On palp genu. seta all with 5 to 10 laterall prongs, and seta al2 spatulate. Dorsal setac tapering. simple or slightly pilose. Shields thiny or pale. Spermathecal ringed tube probably opens proximally on postero-lateral surface of trochanter III and usually coils around within coxa lll. Pretarsus I pedunculate and smaller than other pretarsi. Pulvilli

Figs. 152-161. Geogamars15 shoshi sp.n..
152-155 and 159, female: 152, soma, dorsum; 153, idiosoma, venter; 154, leg JV (part), dorsum: 155, gnathosoma, venter; 159, spermathecal ringed tube in coxa and trochanter III. 156-158, 160 and 161, mate: 156, idiosoma, venter; 157, chelicera; 15x. lectum; 160, leg II (part): 161. gnathosoma and paip (part), venter.

Figs. 162-171. Giengomasiss howardi sp.n..
162-165 and 169, female: 162 , soma, dorsum: 163 , idiosoma. venter: 164 , pmathosoma. venter: 165, leg IV (part), dorsum. 169, spermathecal ringed iube in coxa and trochanter LII. $166-168,170$ and 17 I, males 166 , idiosoma, venter, 167, chelicera: 16x, gnathosoma and palp (parl), venter: 170, leg 11 (part); 171. tectum.

H-IV with lateral lobes lanceolate and slightly longer than central circular Whes, or short and inconspicuous. Amongst dorsal setate on tarsus IV, seta pel 3 is the longest and setose.

Matle: Comiculi attenuated and long compared with femade. Tectum differs from temale. Movable cheliceral digit with single tooth or no teeth and hrowdy fused to long simoous spermadactyl. which can coil up around 3 hinger. Palp setac may be moditied compared with female. On leg II, fomur setalab, gent seta av, tibia seta av and tarsus seta ad3 enlarged to spurs or tubercles, hiere are atso non-setous processes. and other setae may be modilied.

DISTRIBUTION, NTC: Ail. All published records are with the original descriptions of nominal species.
found in moss and plant litter.
REMARKK. Of the first two Gengamasus species described. the one with a single adult holonotal shield was placed in Hydrogamasas and the one with separate podonotal and opisthonotal shields was placed in Gumasellus. both specion were placed in Gamasellus (Hydrogamasellos) by Hirschmann (190(0) who defined the subgenus Hydrogamasellos as having females and males with one dorsal shield. Athias-Henriot (in press) refers to species of D"ecenskunduluclaps from South America which probably belong to this genas. The location of the opening of the spermathecal ringed tube and the form of the spermadacty in this genus ate unique among rhodacarid. If these charaters are distegarded there are many smbarities between this genus and Nowsamasellevans. The following 4 nominal species are included in this genus: G. skoshi spon.: G, corulis (Sheals, 1962) comb.no; G. slelumarei (Steals, 1962) combono; G. howardi sp.n..

Geogamasus skoshi sp.n.

FEMAI.E. Fig. 152-155, 159. Idiosomal length. 450μ.
MALE. Fig. 156-158, 160, 161. Idiosomal length, 410μ. The notal shield is similar to the female excepting that the podonotal and opisthonotal shield are separate the lateral extremity of the fissure being shown on the drawing of the venter (Fig. 156). Seta ad3 (Fig; 160) is labelled "ad2"」

LOCALITY. The holotype female, allotype male, paratype female (N1968215) and paratype malc (N1968216) drawn or examined: South America: University grounds, Tucuman, Argentina, 11.1957, col. P. Wyeodrynsky. dep. holotype and allotype in BM(NH) paratypes in SAM.

REMARKS. The female of this species can be distinguished from G. cowalis and G. howardi by its entire dorsal shield, and from G. Achamarea by ith eterno-metasternal shield whath is more extensive posteriorly, lying close to endopodal IV shield. The male is very simitar in the distribution
of slitelds to both of the other two nominal males (paratype male of G. dolamarei, 196!.6.20.18, dep BM(NH), has been examined and it has the podonotal shield and opisthonotal shield partially separated by lateral incisions and the peritrematal sheeld is separate from the exopodal shiclds except posterior to stigma). The male can be distinguished from that of G. delamare by the podonotal and opisthonotal shields being completely separated by a fissure, and also by having a tooth on the movable cheliceral digit and lacking the process on the spermadactyl and movable digit which is present on G. delamarei. The male can be distinguished from that of G. howardi by seta al on femur II not being enlarged, hent and spatulate.

Geogamastes howardi sp.n.

FEMALE. Fig, 162-165, 169. Idiosomal length, 300μ,
MALE. Fig, 166, 168, 170, 171. Idiosomal length, 270 μ, The inset drawing of the region around the stigma in Fig. 166 , shows part of a less sclerotized specimen. Seta ad3 (Fig. 170) is labelled "ad2".

LOCALITY. The bolotype female (N1968217), allotype male (N1968218), 3 paratype females (N1968219. N1968220) and another) and 2 paratype males (N1968221 and another) drawn or examined: Australia; plant litter and soil, Pimus radiata forest, Mt. Burr, South Australia, 30.5.1966, col. G. W. Howard. dep. SAM (N1968217-N1968221) and $\mathrm{BM}(\mathrm{NH})$ (other 2 specimens).

REMARKS. The female of this species can be distinguished from G. skoshi and (B. delamarei by its having separate podonotal and opisthonotal shiceld and from Cs. covalis by the complex coiling of its spermathecal ringed lube. The mate in easily recognized by seta al on femme Il being enlarged. bent and sputulate.

Genus HEYDENIELLA Richters

Heydeniclla Richters, 1907, p. 281. 'Type-species: Heydeniella crozerensia Richters, 1907, by monotypy.

DIAGNOSIS. Small to large mites, with a considerable range in the extent and selerotizatoon of shields. Holonotal shied except for the male of an unnamed species belonging to the croedensis-complex, which has a separate podonotal and opisthonotal shield. Usually ventro-anal shich of female not fused to the notit shield, while on male it is fused to notal shiche. but such a fusion may not occur in either sex or it may occur in both sexes. If female ventro-anal shield fused to the notal shicld, then the sternometasternal shield also fused to the endopodat IV shield. Male ventro-anal shield always fused Io the exopodal IV shield and peritrematal shield. Dorsal setac always simple. Spermathecal ringed tube opens distally on dorsal
surface of trochanter III. Pretarsus I pedunculate and conspicuously smatler than other pretarsi. On male tarsus I_{5} seta av2 may or may not be spine-like.

REMARKS, Heydeniella was established to contain one species. H. crozetonsis, and was regarded as synonymous with Gamasiphis by Jriagardit (1907) when he described the male of a new species as Gamasiphis loricalls. In fact, neither of these species belong to Gamasiphin, and they probably both belong to Heydeniella. Unfortunately, the type-species of this genus has been lost, but the description of it (Richters, 1907) is complete enough for it to be likely that a neotype can be designated when lurther collections have been made on the Crozet Islands. It is certain that the bype-species belongs to the Ologamasini and it is likely that it is closely allied to at group of species with less extensive shields on the female, the dentatucomplex. that are common in Australia and New Zealand. All temates of the dentata-complex have a spermathecal ringed tube that opens distally on trochanter III. Species have been examined from the antipodean Subantarctic: Islands that appear to have a spermathecal ringed tube opening distally on trochanter III, are similar to the dentata-complex species, and in some casses have extensive shields on the temale similar to those descrited for 11 . croedensis. I have, therefore, assumed that the spermathecal ringed tuhe opens distally on the female trochanter III of H. crozetensis, and I am using Ilevdentella to contain only species with this character though it also occurs in Pyriphis species.

1 recognize 2 species-complexes whithin this genus, crozerensis-complex and dentata-complex, which can be distinguished by the following key. The morphology and distribution of what are assumed to be members of this genus are given under the species-complex headings.

KEY TO SPECIES-COMPLEXES OF HEYDENIELLA

1. On palp genu, if seta all2 broadens distally it is spatulate, broadening out to suboval shape, and seta all often has less than 12 lateral prongs
cronetensis-complex
On palp genu, seta al2 cuncate, broadening out iff distal half to inverted subtriangular shape, and seta all always has at least 12 tateral prongs
dentata-complex

CROZETENSIS-complex

DIAGNOSIS. As for genus. On palp genu, seta al2 lanceolate of patulate. Spermadactyl always fused in movable cheliceral digit throughout section level with proximal tooth.

MORPHOLOGY.

SClerotization. Female: Holonotal which may or may not he fused to ventro-anal. If ventro-inal is fused to holonotal then it is usually also fused to peritrematat. Aciculat may be on ventro-anal or on small discrete shield. There is sometimen a small shield lateral to anterior maryin of ventro-anal which maty be regarded as a metapodal. Exopodals II, III and IV split. Sternon-metasternal fused to endopodal II and part of 111 or, in species with ventro-anal fused to holomotal. it is fused to endopodal II, III and IV.. Single pair of pre-endopodals.

Male: Rarely there is a separate podonotal and opisthonotal. Ventroanal may or may not be fused to motal, and aternito-genital, but it is alwatys fused to peritrematal and exopodal IV.

Chaetoraxy. Idiosoma: $6 j, 6 z, 4 x, 4 r: 5 J, 5 Z, 5 S, 5 R: 5 s t: 3.11$. $3 Z v, 1 S v$.

Legs: As Gamasellus or rarely with one less ventral on genu IV $(2,5,1,1)$.

Other Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin either basically unispinate with lateral spinules or trispinate. Movable cheliceral digit with 3 teeth. On palp genu. seta all pectinate with 3 to 12 lateral prongs and seta al2 is usually spatulate but may be lanceolate. Dorsal seta simple, tapering. Shiclds shiny. Spermathecal ringed tube is considered to open distally on dorsal surface of trochanter III. Pretarsu I pedunculate and smaller than other pretarsi. Pulvilli II-IV with lateral lobes that are usually attenuated and longer than central circular lobes. Antongst dorsal setae on tarsus IV, setace pd3 is setose and at lcast twice as long as any other seta.

Male: Corniculus shghtly attenuated compared with female. Movable cheliceral digit with 1 tooth. or rarely 2 teeth, and fused to similarly shaped spermitdactyl that is subequal in length or slightly longer or shorter. The spermadactyl is fused to the movable digit along mont of its length in some species, and always as far as section level with proximal tooth. On leg II, femur seta ar is always enlarged into a compicuous spur, but femur seta pla, genu seta ar and tibiat seta ar maly be culareed into a spine or spur. Seta an2 on tarsus II is not conspicuously spine-like.

DISTRIBLITION. Smi. Sk, Sia. Besides the locatity records published with the original descriptions of the two nominal spectes I have examined unnamed species from Altekland and (amphell bands to be dep. BBM. Found amongst lichens, moss or planil litter, or under stones.
REMARKS, The crosetensix-complex contains species that maty have much more extensive shictds on the female than on the females of the dentata-complex, while other spocies may be difficult to distinguish from

Figs. 172-181.
172-177. Heydeniella foricata (Traigardh), male: 172. idiosoma, venter; 173. gnathosoma, venter; 174, fentur and genu 11; 175, pretarsus I and larsus I (part): 176, tectum: 177. tarsus IV, antero-latus. 178-181. Neogamaselfevans berlesei (Womersley), female: 178, soma, dorsum, 179, idiosoma, venter; 180, tarsus IV. dorsum; 181, gnathosoma, venter.
members of the dentata-complex. The unnamed species tron Aucktand and Campbell lslands, which I have examined and regard hete as being members of the croactenses-complex, are a morphologically diverse eroup of species. When the latter specties. the type-species and possibly other unknown species have been described or redescribed, it may be found that it is not expedient to split this genus into the two species-complexes delineated here. The reason for the division given here is to separate the well known nominal species. which represent is successfully, Jarge group of species in the Australian region, from the poorly known species from the Subantanctic region, which I may have incorrectly allied to H . crozeromsi because I know so few of the latter's characters. The following 2 nominal species are included in this specien-complex: H. crozentensis Richters. 1907: H. loricata (Trigardh) combon. Lor Gamasiphis loricalus Trägardh, 19()7. Six unnamed specien from Auckland and Camphell tstands are described by Hunter and Lee (manuseript), dep. B13M.

Heydemiella erozetensis Richters

Heydenieller crozetensis Richters, 1907. p. 281.
FEMALE. Fig. none. Approximate length, 1,120 . Tectum anterior margin basically unispinate with lateral spinules. Movable cheliceral digit with 3 tceth. Holonotal shield fused to ventro-anal shield. Peritrematal shicld fused to exopodal shicld and although it extends posterior to this fusion it does not fuse with ventro-amal as in two unnamed species with fused holonotal and ventro-anal shields from Auckland and Camphell Islands. Split in exopodals 11, III and IV Sterno-metanternal shich fused to exopodal shields 11. Ill and IV. Single pair of pre-endopodal shields. Idiosomall setae short.

MAI.E. Fig none. Approximate length. 1,120, Movable cheliceral dogit with 1 footh and fused at base to similarly shaped but slimmer and shorter spermadactyl. Ventro-alnat shield broadly fused to atl surrounding shiclds except perhaps the sternito-genital shield. On leg 11 , komur seta a is enlarged into a spur which is not wide th the distal end as on the Hydrogamasellus males, and some setae on the genu and tibia are spine-like.

LOCALITY, Possession Istand, one of the Crozet islands in the kerguelenian Suhantarctic region, col. German Antarctic Expedition. 1901-1903.

REMARKS. The types of this species, and other mutes collected by the same Expedition, were prohably destroyed with the rest of Richter"s collection, by the British Army occupying Gormany just after the Second World War (Sellnick, personal communication, 24.4.1966). The above description is based only on Richter's original description, which is accompanied by a photograph of the female venter.

Hevdeniella loricata Trügairdh, combs.

Gamasiphis loricaths Trägảrdh, 1907, p. 10.
FEMALE. Not known.
MALE. Fig. 172-177. Idiosomal length, 810μ. The sclerotization is similar to that of H. crozetensis except that the sternito-genital shield is certainly not fused to the ventro-inal shield. The chaetotaxy of the holonotuml hats not been reconstructed from the fragments of this part of the idiosomat. All idiosomal setace are simple and the range of their lengths does not extend beyond that of those drawn (Fig. 172). Except for the centre of the podonotal shield most shields bear reticulations. Setae on tibia and tarsus II are simple, unmodified.

LOCALITY. The holotype male drawn: Falkland Islands; under stone, east of Port Stanely, 25.2.1902, col. Swedish South Polar Expedition of 1901-1903, dep. NRS.

DENTATA-complex

DIAGNOSIS. As for genus, except there is always a holonotal shield, and the female ventro-anal shield always discrete and sterno-metasternal shield never fused to endopodal IV shield. On palp genu. seta al2 cuncate. Spermadactyl never fused to movable cheliceral digit throughout section level with proximal tooth.

MORPHOLOGY.

Sclerotization. Female: Holonotal. Ventro-anal discrete. Aciculae on small discrete shield. Metapodal may be discrete or included in ventroanal. Peritrematal fused to exopodal IV. Exopodals II, III and IV split. Sterno-metasternal fused to endopodal II and much of III. Single pair of pre-endopodals.

Male: Ventro-anal usually fused to holonotal, always fused to peritrematal and exopodal IV, and separate from sternito-genital,

CHatromaxy, Idiosoma: 6j, 6z, $4 s, 4 r: 5 I, 5 Z, 5 S, 5 R: 5 \mathrm{st}: 3 / \mathrm{m}$, 3 Zv ISv.

Legs: Only on the single species from the Northern Hemisphere is it as Gamasellirs, usually there is one less ventral on genu IV $(2,5 / 1,1)$.

Other Characters. Female: Deutosternal denticles in 6,7 or 8 horizontal rows. Tectum anterior margin unispinate with prominent, narrow central spine, and spinules on or near spine. Movable cheliceral digit with 3 teeth. On palp genu, seta all pectinate with at least 12 lateral prongs and setu al2 broadly cuncate in distal half. Dorsal setue simple. tapering. Shields hiny, usually reticulated, but may be smooth centrally on sternum and podonotum. Spermathecal ringed tube opens distally on

Figs. 193-199. Jeydeniella dentsta (Womersley).
193-196, mate: 193, idiosoma, venter: 194, idiosoma, latus: 195, gnathosoma, venter: 196, 1cg \$1 (part), 197-199, deutonymph: 197, idiosoma, dorsum; 198, idiosuma, venter; 199, pretarsus 1 and IV .

Figs. 200-209. Heydeniella dentata (Womersley).
200-203, protonymph: 200, soma, dorsum; 201, idiosoma, venter; 202, gnathosoma. venter: 203, ley IV (part), dorsum. 204-208, larva: 204, soma, dorsum; 205, pretarsus $[; 206$, idiosoma, venter; 207, leg 111 (part), dorsum; 208, gnathosoma,
venter. 209, egg.
dorsal surfice of trochanter III. Pretarsus I pedunculate and smaller tham other pretarsi Pulvilli II-IV with lateral lobes always attenuated and longer than central circular lobes. Proximal segments on legs 111 and IV often have mon-selous processes. Amongst dorsal setae on tarsu. IV seta pelh is setose and at least rwice as long as any other seta.

Mate: Corniculus slightly attenuated compared with femate. and on a raised base. Movable digit usually with 1 looth, but it has 2 lecth on a single ypecie, from the Northern Hemisphere, and fused at base to upermatdactyl of amilar length, but may be slightly longer or shonter. Spermadactyl is never fused with movable digit as far as section level with proximal tooth. On Ieg II, femur seta av and pVl. genu seta ar: libia seta ar and tarsus seta ar2 enlarped into spurs or 4 pmes, may also be non-setous spurs on femur. gent ind tibia.

DISTRIBUTION. Pe: Aa, An. All Tecords are published with the origioal deherptons of the nominal species. Many unnamed species have heen seen Prom Australia. Lord Howe 1sland. New Caledonia and New Zealund, dep. SAM.

Found in moss, plant lither and soil. The single species from the Northern Hemisphere was found amongst mould in a chalk mine.

REMARKS. The first fout dentata-complex species described were plased in Hydrosamosers, then Horschmann (1966) realized that these species are bot congeneric with the sype of that genus and placed them in at new subgenus, Giamasellus (Hydrogamasellus), for which the type was G. (H.) antarcticas. The species of the dentana-complex difter from H . antarcticus in having the spermathecal ringed tube spening distally on trochanter III and the dorsal seta ads on the male tarsus If not being enlarged. Since only a few characters of H. crozetensis (type-species of Heydeniclla) are known. the placing of the dentata-complex in Hevedenclla is tentative and results from the study of unnamed species from Auckland and Campbell Islands which are here considered as belonging to the crozetensis-complex. The following 6 nominal species are included in this species-complex: H. dentata (Wumersley. 1942) comb.n.; H. ansiralica (Womersley, 1942) comb.n.: I1. goci sp.n.: H. markmitchelli sp.n.: H. relata (Womersley, 1942) comb.n.: 11. ralicta (Womersley. 1942) comb.n. The species H. relicta has a) varicty maior Womersley, 1942.

Heydenidla dentata (Womersley) comb.n.

Hedrogamasus dentatus Womersley, 1942. p. 149.
FEMALE. Fig. 182-186, 188-190 and 192. Idiosomal length 700 p . The leg chactotaxy differs from Giamasellus in having only one ventral seta on gent IV $(2,5 / 1,1)$. Specimens from the Flinders Ranges and the

Figs. 220-226. Heydeniella markmitchelli sp.n..
220, 221, 224 and 225, femate: 220, soma, dorsum: 221 , idiosoma, venter: 224. grathosoma, venter; 225, leg [V (part), dorial setac only, 222, 223 and 226, male: 222, idiosoma, venter: 223 , leg II (part): 226 . chelicera.

Hummock Ranges (localities which are 80-180 miles north-west of the type locality) have it shorter 'tooth' on trochanter IV (Fig. 190).

MALE. Fig. 187, 191 and 193-196. Idiosomal length, 690μ. There is a conspicuous rugose tubercle on the distal edge of the ventral surface of the palp femur and genu which do not show clearly in the drawing (Fig. 195).

DEUTONYMPH. Fig. 197-199. Idiosomal length, 580μ.
PROTONYMPH. Fig. 200-203. Idiosomal length, $480 \mu_{1}$
LARVA. Fig. 204-208.. Idiosomal length, 360μ.
EGG. Fig. 209. Longest axis length, 200μ.
LOCALITY. Two females (N1968108 and N1968109), males (N1968110 and N1968111), deutonymph (N1968112), 2 protonymphs (N1968113 and N1968114), larva (N1968115) and egg (N1968116) dratwn: Australia; LF134, moss and litter, near tree-fern at edge of pond. Watcrfall Gully, Mt. Lofty Ranges, near Adelaide, South Australia, 30.5.1966, col. D. C. Lee, dep SAM (immature stages not collected direct. but bred from females in this sample.).

The holotype female (N1968117), allotype male (N1968118), deutonymph (N1968119) and protonymph (N1968120) examined: Australia: moss, Long Gully, Mt. Lofty Ranges, near Adelaide, South Australia 8.1938. col. H. Womersley, dep. SAM.

Female (N1968121) and male (N1968122) examined and base of leg IV drawn: Australia; LF133, moss off rocks. Stony Creck, Flinders Ranges. nr. Wilmington. South Australia. 25.5.1966, col. H. M. Couper, dep. SAM.

REMARKS. In figured chactotaxy patterns, filled in circles represent setale considered to have been added at the previous moult. Characters of the immature stages have not been used in the classification given here. The extensive drawings of these stages are given only to increase this type of data which is too limited from this family for satisfactory comparative studies. Similar drawings are made in this paper of the immature stages of Ilydrogamasus littoralis and Gamasellus tragardhi.

Heydeniella goci spon.

FEMALE. Fig. 210-214. Idiosomal length. 690f. The spermathecal ringed tube opens in a similar position to that of Heydeniella dentata (Fig. 185). Leg chaetotaxy differs from all other dentata-complex species that ! have seen, in being as Gamasellus, having 2 ventral setae on genu IV $(2,5 / 2,1)$.

MALE. Fig. 215-219. Idiosomal length, 620_{μ}. Unusual for Heveleniclla in having 2 teeth on movable, cheliceral digit, the anterior one bsing associated with a lateral process on the digit. The posterior process on genu It is non-setous.

LOCALITY. The holotype female and allotype male drawn: England: under mats of fur-like mould, on decaying wooden pit props, in chalk-mine. Clislehurst Caves, Kent, 20.2.1955, col, P. N. Layrence, dep. BM(NH).

RLMARKS. This species can be distinguished from other nominal species in the demata-complex by the chactotaxy of genu IV, the proximal protuberance on the temale femur III and the two teeth on the mate novable cheliceral digit.

Heydeniella markmikchelli sp.n.

FEMALE. Fig. 220, 221, 224 and 225. Idiosomal length. 50()$_{\mu}$. The spermathecal tube opens in a similar position to that of Heveleniella demata (Fig. 185). The leg chactotaxy differs from Gamascllus in having only one ventral seta on genu IV $(2,5 / 1,1)$.

MALE. Fig. 222, 223 and 226. Idiosomal lengits, 400μ.
LOCAIITY. The holotype female (N1968123) and 2 paratype Cemales (N190812t and N1968125) drawn and examined: Australia; moss. 2.000ft. Flinders Ranges, near Wilmington, South Australia, 25.9.1958. col. H. M. Cooper, dep. SAM.

The allotype mate (N1968127) and 2 paralype mates (N1968128 and N1968129) drawn and examined: Australia: Hoss, 1,064ft. Hiammock Ranges, near Bute, South Australia, 9.9.1958, col. H. M. Cooper, dep. SAM.

A paratype female (N1968126) and paratype male (N1968130) examined: Alstraliat: 1-1133. mons off rocks, Stony Creek, 1.200ft, Hinders Ranges. neal Wimington, South Australis, 25.5.1966, col. H. M. Cooper, dep. SAM.

A female (N1968131) examined: New Zealand; oft Uloma fimbrionoides (tenebrionid beelle). Kaitoke, North Istand, 3.7.1960. col. D.C.M. Manson, dep. SAM.

REMARKS. The gnathosomat of this species is relatively large while the sclerolization is reduced. This species can be distinguished from other amminal species in the dentata-complex by setal row R being on the striated cutucle instead of the holonotal shield and by the male ventro-anal. which is separate from the holonotal shield. Since making the dratwings. I have seen the female and mate specimens from Stony Creeh that indicate that at the foxality wher the holotype female was collected members of this species are larger than at the locality where the allotype male was collected.

Genus HYDROGAMASELLUS Hirschmann

Hidrosamasellus Hirschmann, 1966, p. 7. Type-specien: Hydrogamasas antarcticus Tragairdh, 1907, by original designation.

DIAGNOSIS. Small to large mites, with a considerable range in the extent and sclerotization of shields. Usually holonotal shield, but may be separate or partially separate podonotal and opisthonotal shiclds. Usually ventro-anal shield of the female not fused to the notal shield, while on male it is fused to the notal shield, but such a fusion may not occur in either sex or it may occur in both sexes. If female ventro-anal shield is fused to the notal shield then, as on other females in this genus, sterno-metasternal shield not fused to endopodal IV shield. Male ventro-anal shield always fused to exopodal IV shield and peritrematal shield. Dorsal setae always simple. Spermathecal ringed tube opens at distal end of coxat III. Pretarsus I pedunculate and conspicuously smaller than other pretarsi. On male tarsus II, setal ad3 modified, not setose.

MORPHOLOGY.

Sclerohization, Female: Holonotal or rarely a separate podonotal and opisthonotal. Ventro-inal may or may not bear aciculae, include metapodal or be fused to notal. Aciculae may be on small discrete shield. Peritrematal fused to exopodal IV, and may extend well behind this point. Exopodals II, III and IV eplit. Sterno-metasternal fused to endopodal II and part of III. Single pair of pre-endopodals.

Male: Notal as above, except that on the male of an unnamed species the podonotal and opisthonotal are partially separated. Ventro-anal usually fused 10 notal, always fused to peritrematal and exopodal IV, and separate from sternito-genital.

Chafiotaxy. Idiosoma: 6j, 6z, 5s, 5r: 5J, 5Z, 5S, 5R: $5 s t=3 \mathrm{fy}$, $3 Z \mathrm{w}, 2 \mathrm{~Sv}$

Legs: Usually as Gamaselliss, but there is one less ventral on genu IV $(2,5 / 1,1)$ in an umnamed species.

Other Charactisrs, Female: Deutosternal denticles in 8 or 9 horizontal rows. Tectum anterior margin basically unispinate, with broad base $(0$ spine which bears small spinules or rarely (as in H. richtersi) quinquispinate with complex, broad tip to central spine. Movable, cheliceral digit with 3 teeth. On palp genu, seta all pectinate with 5 or 6 lateral prongs, and seta al2 spatulate. Dorsal setae usually simple, slightly spatulate or tapered. may be slightly pilose. Shields shiny and usually reticulate, while
sternal shied may have longitudinal striae. Spermathecal ringed tube probably opens distally on dorsal surface of coxa III. Pretarsus I pedunculate and smaller than other pretarsi. Pulvilli H-IV with attenuated lateral lobes which may be shorter or much longer than central circular lobes. Amongst dorsal setae on tarsus $I V$, seta $p d 3$ is setose and at least twice as long as any other seta.

Male: Corniculus attenuated and on raised process which may have paraxial tubercle carrying seta hypl. Movable cheliceral digit with one tooth, attached at base to slim spermadactyl which may be subequal in length or up five times as long. Tectum anterior margin may differ from female and be trispinate. Often process on ventral surface of palp trochanter or femur. On leg II, fentur seta $a v$ and usually seta $p \nu 1$, genu seta $a v$, tibia seta ar enlarged into spur or spine, while tarsus seta ad3 and sometimes seta al2 enlarged into a hollow spine or spur, or a rimmed pit. Non-setous processes also occur on tibia and tarsus II.

Figs. 227-231. Iydrogamasellus antarcticus (Trägărdh), female.
227, pretarsts I and tarsus I (part). 228, soma, dorsum. 229. leg IV (part). dorsum. 230, gnathosoma, venter. 231 . idiusomat, venter.

Figs. 232-238. Hydrogamasellus cavei (Sheals).
232-234 and 238, female: 232, soma, dorsum; 233, idiosoma, venter; 234, leg IV (part), dorsum: 238, gnathosoma, venter. 235-237, male: 235, idiosoma, venter; 236, leg II (part); 237, chelicera, and gnathosoma and palp (part), venter.

Figs. 239-247. Ifylrogamasellus coleophrarus (Berlese).
239-242, female: 239. idiosoma, venter; 240, tectum; 241, leg IV (part), dorsum: 242. gnathosoma, venter. 243-247, male: 243, chelicera; 244, lectum; 245, gnathosoma tand palp (part), venter; 246. leg 11 (part); 247. idiosoma, venter.

Figs. 248-257. Hydrogamasellus fucuvirasi (Tronessart).
248-254, 256 and 257. female: 248, soma, dorsum; 249, idiosoma, ventert 250, leg IV (pari), dorsum; 251, trochanter III and IV, and other segments (parts); 256, gnathosoma, venter; 257, pretarsus I. 252-255, nale $\ddagger 252$, tectum; 253, idiosoma. venter; 254, chelicera, and gnathosumat and palp (part), venter; 255, leg 11 (part).

DISTRIBUTION, NTe: Sm, Sk. Sa: ACs. Besides the records published with the original descriptions of the nominal species. It. racowitzat is reconded from many other focalities in the sootian Antaretic region. 11. untarctions is recorded from Macquaric Island (Hirschmamn, 1966) and unnamed males have been collected in Tierra del Fuego, dep BM(NH).

Found in moss, lichens, algate, plant litter and soil, and under stones.
REMARKS. Gamasellus (Hydrogamasellus) was originally diagnosed (Hirschmamm, 1960) as being Gamasellus-like. but having an entire dorsal shistl and simple dorsal setac. As diagnosed here, with generic staths. Hydrogamasellus has members with a considerable range in the extent and degree of fusion of their idiosomal shields, including an entire or divided dorsal shick, and with all simple or some slightly spatulate or pilose dorsal setac but the location of the spermathecal ringed tube aperture and the male gnathosomis and leg II characters are similar. Therefore, an unusually high number of species hatve been removed from (see "Changes in Nomenclature"). or transfersed to this genus. Because Hydrogamasellus is similar to Heydeniclle (type-species: H crosetensis) both crozetensis species transferred to Hydrogamasellus have been given new names. The following 8 nominal species are included in this genus: H. amtarcticus (Trägardh. 1907): 11. carei (Sheals) comb.n. for Ologamasas carai Sheals, 1962; H. colcoptraths (Berlese) comb.n. for Ologamasus coleopratas (Berlese, 1888); II. Gumsi nom.n. for Neoparasitus crozetensis Richters, 1907; H. raconirana (Troucssart, 1903) comb.n. for Gamasellas racovitai (Trouessart, 1903); II. richtersi nom.n. for Gamasellus crozetensis Richters. 1907: H. striatus (Sheals. 1962): 11. topali (Balogh, 1963b). Two unmamed species (from Argentina: Province of Neuquen or Tucumán, 3 or 4. 1959, col. C. Delamare Deboulteville, dep. BM(NH)) which belong to this genus are listed so that theit chatracters, not found on nominal species of this genus, can be listed. One mmamed species (single female) has only one ventral seta on genu IV. white the other (single male) has the podonotal and opisthonotal shields partially separated by lateral incisions. Hydrogamasellus wbatubuensis, incerlae sedis, has been left in this genus for convenience.

Hydrogamasellus antarcrictes (Tragitrdh)

Hydrogamashs antarcticus Triggardh, 1907, p. 12.
FEMALE. Fig, 227-231. Idiosomal length, 750μ. On right side, seta $S \cdot 1$ is oll ventro-anal shield.

M ALE. Fig. none. No mates seen from Naturhintoriskat Ricksmuseum. Stocklobm, but a full description is given in Hirschmann (1966) of conspecific specimens.

LOCALITY. The holotype female with two legs missing drawn: Antarctica; wet moss, Paulet Island, between South Shetland Islands and Palmer Peninsula, 15.1.1902, col. Swedish South Polar Expedition of 1901-1903. dep. NRS.

Hydrogamasellus cavei (Sheals) comb.n.

FEMALE. Fig. 232-234, 238. Idiosomal length, 510μ. Dorsal surface strongly convex. Lateral longitudinal split in holonotal shield. On tarsus IV, setae $p / 2$ and $p / 4$ are simple and not spine-like and pilose as in 11. racovitzai.

MALE. Fig. 235-237. Idiosomal Iongth, 510ر. Slight thickening on ventral, distal edge of palp femme which may be equivatlent to proces in H. racovitzai. On tarsus II, seta ad3 uppears to be a hollow spine.

LOCALITY. A paratype female (1961.6.20.22) and three males examined or drawn: Argentina; litter under Nothophagus dombeyi, Nahuel Huapi Reserve, Puerto Blest. 7.3.1959. col. (`. Delamare Deboutteville. dep. $B M(N H)$.

Hydrogamasellus colcoptratus (Berlese) comb.n.

Hypoaspis coleoptratus Berlese, 1888, p. 199.
FEMALE. Fig. 239-242, Idiosomal length, 700μ. Dorsal setae difficult to examine, but opisthonotal setae mostly slightly lanceolate and as long as the peripheral setae that are drawn, while podonotal setae (except seta $r 2$ which is similar to the peripheral opisthonotal setae) are shorter and tapering like seta Zv 1 .

MALE. Fig, 243-247. Idiosomal length, 620μ. Small process on palp trochanter. Tarsus If has a row of steeply rimmed pits on its dorsal surface, the larger 2 pits are considered homologous with setae al2 and ad3.

LOCALITY. The 'tipico' female (34/32), 'tipico' male (34/32) and female and male (202/15) examined or drawn: Argentina; under the bark of trees, Buenos Aires, dep. SEAF.

Hydrogamasellus racovitaai (Trouessart) comb.n.

Gamasus racovitzai Trouessart, 1903, p. 8.
Zercon tuherculatus Traigärdh, 1907, p. 17.
FEMALE. Fig, 248-251, 256 and 257. Idiosomal length, 960 p. Pre-endopodal shields appear to be connected to sternal shield by a lightly sclerotized and reticulated shiekl. Seta p/4 (Fig. 250) is labelled "p/3".

MALE. Fig. 252-255. Idiosomal length, 870 . Large process on palp femur. Distinct process on hypostome bearing seta hypl. On tarsus II, seta ad3 appears to be a hollow cone, with thick vertical ridge in posterior wall.

LOCALITY. Three females (N1968132-1968134) and three males (N1968135-1968137) examined or drawn: South Orkneys; under stones on shore, station 1089, Michelsen Island, 3.1.1933, col. Discovery Investigations (British) of 1931-1933, dep. SAM.

REMARKS. The above locality is close to Laurie Island where Gamasellus racovitzai neorcadensis Trouessart, 1912, was collected. Probably this should not be a subspecies, the structure of seta $a v$ on the male femur II (the character used to distinguish the subspecies) would appear as the nominate subspecies if viewed laterally, and as the other subspecies if viewed ventrally.

Genus NEOGAMASELLEVANS Loots and Ryke

Neogamasellevans Loots and Ryke, 1967a, p. 13. Type-species: Neogamasellevans preendopodalis Loots and Ryke, 1967a, by original designation.

DIAGNOSIS. Minute mites, only the male having extensive shields. Holonotal shield. Discrete ventro-anal shield on the female, but it is fused to the holonotal, peritrematal and exopodal IV shields on the male. Female peritrematal shield joined only by a slight thickening of striated cuticle to exopodal IV shield. Male peritrematal shield separated from exopodal IV shield and notal shield at level of acetabulum IV, although all 3 shields are fused to ventro-anal shield. Female sterno-metasternal shield not fused to endopodal IV shield. Dorsal setae simple and tapered. Spermathecal ringed tube opening not known. Spermadactyl short and straight. Pretarsus I pedunculate and smaller than other pretarsi. On male tarsus II, all setae are setose.

MORPHOLOGY.

Sclerotization. Female: Holonotal. Discrete ventro-anal. Posterior to ventro-anal there is a small discrete shield only bearing aciculae. Backward extension of exopodal IV, may have included metapodal. Peritrematal reduced, joined by a slight thickening of striated cuticle to exopodal IV. Exopodals II, III and IV split. Sterno-metasternal fused to endopodals II and III. Single pair of large pre-endopodal shields, paraxial margins being equal in length to distance between setae st 1 and st 2 .

Male: Ventro-anal is fused to exopodal IV, peritrematal and holonotal. Peritrematal is not fused to exopodal IV, nor to holonotal between levels of setae st 4 and $Z v 1$. Sternito-genital shield separate from ventro-anal and from anterior section of endopodal II.

Chaetotaxy. Idiosoma: $6 j, 6 z, 5 s, 5 r: 5 J, 5 Z, 5 S, 5 R$: $5 s t: 3 J v$, $37 v, 1 S v$.

Legs: As Gamasellus.
Other Characters. Female: Deutosternal denticles in at least 6 horizontal rows. Tectum anterior margin basically trispinate with lateral
spinules and central spine broader distally with spinules making the margin complex. Movable cheliceral digit with 3 teeth. On pilp genu, seta all pectinate with 5 lateral prongs, and seta a/2 slightly lanceolate. Dorsat setac. simple tapering. Shields slightly shiny and reticulated. Peritrome short, not extending anterior to mid-acetabulum III. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and smaller than other pretarsi. Pulvilli $11-1 \mathrm{~V}$ with attenuated lateral lobes that are slightly longer than central circular lobes. Amongst dorsal setae on tarsus IV, seta pd3 is the longest and setose.

Male: Tectun anterior margin with the central spine shortel but broader and more complex than on femate, while the two lateral spines are reduced tos spinules. Movable cheliceral digit with one tooth, fused at base to shorter similarly shaped spermadactyl. Dorsal setac on palp femur are enlarged to spines. On leg II, femur, genu and tibia seta a enfarged into spurs, also seta pill on femur is a spine and there are non-setous processes on the tibia.

IISTRIBUTION. NTC. The only published record is with the original description of the single, nominal species.

Found in plant litter on soil.
REM.ARKS. Neogamascllevans is not here regarded as closely allied to Gamaselle'tans as might be assumed from its name. Hirschmann (19(08) considers N. pricondopodalis similar to Gamasellus (Hydrogamasellus) delamarel (transferred above to Geogamasus) and therefore makes Neogamaselleverns a junior synonym of Hydrogamasellas. I would agree it is similat to Gengamastas, but regard the probable differences in location of the aperture of the female spermathecal ringed tube and in the structure of the male spermadactyl sufficient to refer the species to different genera, and to suggest that these genarat may not in fact be closely allied. Some of the characters given for the genus were obtained by examination of 2 paratype females and 3 paratype mates (1967.9.7.39-43), dep. BM(NH), of the single nominal species, N. preendopodalis Loots and Ryke, 1967 a, included in this genus. Queenstandolaclaps berlesei, incertae sedis, has been transferred to this genus becaluse it should be in the Ologamasini, although it is improbable that it belongs to this genus.

Genus PARASITIPHIS Womersley

Parasitiphis Womersley, 1956a, p. 535. 'Type-species: Parasitiphis litloralis Womersley, 1956a, by original designation.
Austrohydrogamasus Hirschmann, 1966, p. 10. syn.n. Type-species: Hydrogamasus (Anstrohydrogamasus) watsoni Hirschmann, 196o, by original designation.

DI:IGNOSAS. Average sized to large mites. Holonotal shield. Discrete ventro-anal shied in both sexes, except on some males where metapodal shields and/or holonotal shisld may be fused to the ventro-anal shicld. Peritrematal shield fused io exopondal IV shield on temale but not on male. Female sterne-metasternal shield not fused to endopodal IV shield. Dorsal setac simple and tapering. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV. Movable cheliceral digit of male always with more than one tooth and parallel spermadactyl that is subequal in length. Pretarsus I not pedunculate and at least as large as the other pretarsi. On male tarsus 11, seta av2 modified into a spur or tuberele,

MORPHOLOGY.

Scal-Rofication. Female: Holonotal. Diseretemetapodal and ventroanal bearing aciculae posterior to anus. Peritrematal narrowly fused to exopodal IV. Exopodals do not completely encase peraxial edge of acetabulum II mor usuatly of actabulum III. Sterno-metasternal fused to endopodal II and part of III. Single pair of pre-endopodals.

Male: Discrete sternito-genital shield. which tends to be unusually narow posterionly. Ventro-anal posterior to seta Z.3 may or may not be fused to holonotal. Metapodals may or may not be fused to the ventro-anal. Peritrematal not fused to exopodal IV.

Chatitotaxy, [diosoma: $6 j, 5 z, 5 s, 4 r: 5], 5 Z, 4$ or 55,0 or $3 R$. IUR: 5st: 3.Jw, 3Zv, 2Sv.
L.egs: As Gamasellus or differs in being without a postero-literal on genu IV (2,5/2.0).

Other Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin unispinate: the spine being large and having central ridge. Movable cheliceral digit with 4-7 teeth. On palp genu, seta all and seta a/2 spatulate. Dorsal setae simple. lapered. Shields shiny and reticulated. Spermathecal ringed lube opens near posterior paraxal edge of acetabulum IV. Pretarsi sheath 1 not pedunculate, only being long enough to contain the retracted claw-complex. which is large, heing subequal in size to other claw-complexes. Pulvilli II-IV with lateral lobes attentated and subequal in length to central circular lobes. Amongst dorsal setate on tarsis IV, setat pd3 is either just the longest or both setac pul and ad3 are the longest, and the former may be slightly pilose.

Mule: Movable cheliceral digit with $2-5$ teeth and fused at base to spernatalactyl of similar length. On leg 11 femur seta an. genu seta ar, tibia seta (1) and tarsus seta an2 enlarged into spurs. Bases of leg III and IV may have conspicuous non-setous processes.

Figs. 258-266. I'arasitiphis limmolis Womersley.
258-262, female: 258, soma, dorsum: 259, idiosoma, venter; 260, len 1V (part). dorsum: 261, pretarsus 1 and part of tarsus; 262, gnathosoma. venter. 263-266, male: 263 , idiosoma, venter: 264, chelicera; 265, leg 11 (part): 266, trochanter and fiemur 111 . and trochanter IV.

Figs. 267-271. Parasiniphis amom sp.n., female.
267. somit dorsum. 268, pretarsus I and tarsus I (part). 269, leg iV (part), dornum. 270, idiosoma, venter. 271, gnathosoma, venter.

DISTRIBUTION. Aa, An: Sm, Sk, Sa: ACs, Besides the locality records published with the original or the below descriptions of the nominal species. Hunter (manuscript) records P. jeanneli (as H. (A.) watsoni) from South Georgia. Found in or near the littoral zone.

REMARKS. Previously Parasitiphis contained one species, but I now include specics or misidentified specimens from IIydrogamasus, Gamasellus and Laclaps. Laclaps brammetws Kramer is referred here on the basis of the few characters given in the original description, because the only two specimens (females). collected from the sea shore, Tierra del Feugo, by Michaelsen, dep. AMH, cannot be found (Rack, personal communication, 21.4.1967). The only genus that can be considered a close ally is Litogamasus, a new genus in the Gamasellini, which occurs in similar habitats. Hirschmann (1966) described Parasitiphis jeamneli adults and nymphs as Hydrogamasus (Austrohydrogamasus) watsoni; a new species that wats the type of the subgenus. Parasitiphis is quite unlike Hydrogamasus, but the larva described as H. (A.) watsoni was that of IIydrogamasus kensleri. The following 4 nominal species are included in this genus: Pa littoralis Womersley, 1956a; P. aurora sp.n.; Po brumeus (Kramer) comb.n. for Laclaps brumneus Kramer, 1898; P. jeanneli (André) comb.n. lor Gamasellus jcanneli André, 1947.

Figs. 272-280. I'arasiniphis jéthneli (André).
272-276, female; 272, soma, dorsum; 273, idiosoma, venter; 274, leg IV (part). dorsum+ 275 , pretarsus 1 and tarsus I (part): 276, gnathosoma, venter. 277-280, matc: 277, idiosoma, venter; 278, chelicera: 279, leg II (part): 280, irochanter III and IV.

Parasitiphis littoralis Womersley

Parasitiphis litroralis Womersley, 1956a, p. 536.
FEMALE. Fig. 258-262. Idiosomal length, 770μ. Claw complex I (Fig. 261) is shown partly extended, when retracted it appears to be similar (1) that of the other nominal species (e.g., Fig. 268). Leg chatotaxy as Gamasellus.

MALE. Fig. 263-266. Idiosomal length, 740 μ. Idiosomal length of allotype mate, 760%.

LOCALITY. The holotype female (N1968160) drawn, 4 paratype females (N1968162-N1968165) and allotype male (N1968161) examined: Australia; littoral zone, mouth of American River, Kangaroo Island, South Australia, 1.1946, col. H. Womersley, dep. SAM.

Two males (N1968166 and N1968167) drawn or examined: Australia: un scitweed covered rocks, littoral zone, Myponga Cove. South Australia. $30,10.1966$, col. D. C. Lec, dep. SAM.

Parasitiphis aurora sp.n.

Hydrogamasms anfarcticus: Womersley, 1937 (not Trägärdh, 1907), p. 17. synis.

FEMALE. Fig. 267-271. Idiosomal length, 860μ. Leg chaetotaxy as Gamasellus except for genu IV $(2,5 / 2,0)$. Female from Gough Island has 4 setac, and not just 3 . in row R.

MALE. Not known when drawing made, but since seen from Auckland and Campbell Islands, to be dep. BBM. Will be described later. The male of this species is unusual in having the ventro-inal shield posterior to seta Zv3 fused to the holonotal shield.

DEUTONYMPH. On the basis of the lengths of the notal setae, form of the dorsal setae on leg IV and the chatotaxy of genu IV, the deutonymph drawn with the description of H. antarcticus: Womersley, 1937, belongs to this species. but the other deutonymph (N1968184), in the same collection. belongs to P. jeanneli.

LOCALITY. The holotype female (N1968182) drawn and morphotype deutonymph (N1968183) examined: Macquarie Island; between tidemarks, 28.11.1913, col. T. H. Johnston (on Australasian Antarctic Expedition, 1911-1914), dep. SAM.

Female examined: Tristan da Cunha Group; with Pertorgunia sp., Archway Point, Gough Island, col. M. W. Hollgate (Gough Island Scientific Survey, 1955-56), dep. BM(NH).

REMARKS. This species can be distinguished from the other two nominal species by the lack of a postero-lateral seta on genu IV (2, 5, 2, 0), and by the two antero-dorsal setae on femur IV being spine-like. The male also differs in having the ventro-anal shield fused to the notal shield and in lacking conspicuous non-sctous processes on the proximal segments of legs III and IV.

Parasitiphis jeanncli (André) comb.n.

Gamasellus jeunncli André, 1947, p. 70.
Hydrogamasus (Austrohydrogamasas) watsoni Hirschmann. 1966, p. 7 syn.n.

FEMALE. Fig. 272-276. Idiosomal length, 920. . Leg chactotaxy as Gamasellus.

MALE. Fig. 277-280. Idiosomal length, 890μ. Dorsal setae $Z 3$ and 75 longer than on female. Ventro-anal shied in Heard Island mates have an unsclerotized patch. lateral to seta Z12 (sec Fig. 277), which maty be more extensive than on specimen drawn, nearly separating off antero-fateral corner as a metapodal shield. In Macquarie Island specimens the metapodal shield is separated completely from the ventro-anal shield.

LOCALITY. Two females (N1968168 and N1968169) and 2 males (N1968170 and N1968171) drawn or examined: Heard Island, on vegetation, Rogers Head, 31.1.1952, col. K. Brown (on Australian National Antarctic Research Expedition, 1947-1955), dep. SAM.

Four females (N1968172-N1968175) examined: Kerguelen lslands; under stones, between tidemarhs, 16.11.1929. col. British-Australian-New Zealand Antarctic Research Expedition, 1929-31, dep. SAM.

Two females (paratypes of Hydrogamasus (Austrohydrogamasus) watsoni, N1968176 and N1968177) examined: Macquarie Island: Pucinellia, 1sthmus or Mid Royal Penguin rookery. North Head, 1961, wol. K. Watson, dep. SAM.

Two females (N1968178 and N1968179) and two males (N1968180) and N1968181) examined: Macquarie Island; Isthmus, 12.1949. col. T.M. (on Australian National Antarctic Rescarch Expedition, 1947-1955), dep. SAM.

Onc deutonymph (N1968184), previously named Hydrogamasus amtarcticus: Womersley, 1937, examined: Macquaric Island; between tidemarks, 28.11.1913. col. T. H. Johnston (on Australasian Antarctic Expdition, 1911-1914), dep. SAM.

REMARKS. Although there are differences in size and slight morphological differences between specimens collected in different parts of the Subantarctic region, I consider that all the specimens with their collection data given above are members of this one species.

Genus PYRIPHIS gen,n.

'「ype-species: Ologamasus pyrenoides Lee, 1966.
DIAGNOSIS. Avcrage sized mites. Holonotal shield. Ventro-inal shield broadly fused to notal and exopodal IV shield on female and notal, peritrematal, exopodal IV and sternito-genital shield on male. Single pair of pre-endopodal shields. At least two pairs of setae (25 and $r 3$) on podonotum are conspicuously pilose and surrounded by mainly simple or lamecolate setate. Spermathecal ringed tube opens distally on dorsal surface of trochanter III. Spermadactyl strongly recurved. Pretarsus I pedunculate and smatler than other pretarsi. On male tarsus II all setae are setose.

MORPHOLOGY.

Sclerotization, Female: Holonolal, broadly fused to ventro-anal which bears aciculac posterior to anus. Ventro-anal and peritrematal fused to exopodal IV. Split in exopodals II, III and IV. Sterno-metasternal fused to endopodal 11 only, Single pair of pre-endopodals.

Male: As female but peritrematal and sternito-genital also fused to ventro-anal.

Chaletotaxy: Idiosoma: $6 i, 6 z, 5 s, 5 r: 5 \%, 4 Z, 5 S, 8 R, 6 U R: 5 s t$: $3 \mathrm{Jv}, 3 \mathrm{Jv}, 2 \mathrm{~Sv}$.

Legs: As Gamasellus.
Othit Characters. Female: Deutosternal denticles in 7 horizontal rows. Movable cheliceral digit with 3 conspicuous teeth and a series of smaller teeth. On palp genu, seta all with single lateral prong while both setate all and $a / 2$ are slightly spatulate. There are three pairs of podonotal shield protruberances (bearing setac $j 1, z .5$ and $r .3$). Some dorsal setac may be simple, tapering, but some are lanceolate, or pilose and spatulate. Shields are dull. Spermathecal ringed tube probably opens distally on dorsal surface of trochanter III. Pretarsu.s I reduced and pedunculate. Lateral lobes of pulvilli I-IV attenuated and longer than central oval lobes. Amongst dorsal setae on tarsus IV, setae adl and pdI are the longest.

Male: Movable cheliceral digit with one tooth, fused at base to strongly recurved spermadactyl. On leg II, femur setae and and genu setae a and p, tibia seta ay enlarged into spurs or spines.

DISTRIBUTION. Aa. Besides the locality published with the original description of the type-species, members of this genus have been found in other forests on the coastal ranges of Victoria, southern New South Wales and T'asmania, dep. SAM.

Found in leaf litter.
REMARKS. Pyriphis is established for one species originally described (Lec. 1966) as the only species in the Ologamasus pyrenoides-group. At least two unnamed species have been seen since, dep. SAM, with the same extensive selerotization and unusual, strongly recurved spermadactyl. As in some Gamasellus discutatus-complex species, members of this genus are unusual in having both a holonotal shield and conspicuously pilose dorsal setae amongst simple setae. Besides the holonotal shield, the single pair of pre-endopodal shields and, more important, the location of the spermathecal ringed tube aperture on the proximal leg segments support the placing of Pyriphis in the Ologamasini. The following single nominal species is included in this genus: P. pyrenoides (Lee, 1966) comb.n.

Genus RYKELLUS gen.n.

Type-species: Cyrtolaelaps (Gamasellus) darglensis Ryke, 1962c.
D/AGNOSIS. Large mites. Although there is a clear line on the dorsal shield dividing it into podonotal and opisthonotal regions, it is more like a strong reticulation marking than a fissure, and I would consider that a holonotal shield was present. Ventro-anal shield of the female discrete. while on male it completely merges with all the surrounding shields. Single pair of pre-endopodal shields. Dorsal setae all simple. Spermathecal ringed tube opens distally on postero-lateral surface of coxa IV. Pretarsus I pedunculate and smaller than other pretarsi. On male tarsus II all setac are setose.

MORPHOLOGY.

Sclerotization. Female: Holonotal, with groove between podonotal and opisthonotal regions. Discrete ventro-anal bearing aciculae posterior to anus. No discrete metapodal. Peritrematal fused to exopodal IV. Exopodals II and IV split. Sterno-metasternal fused to endopodal II. Single pair of pre-endopodals.

Male: Ventro-anal is fused to all the surrounding shields.
Chaetotaxy, Idiosoma: 6/, 6z, 4s, 4r: 5J, 5Z, 5S, 5R: 5st: 3Jv, $37.2 S v$.

Legs: As Gamasellus.

Othir gharacters. Female: Deutostemal denticles in 7 horizontal rows. Tectum anterior margin has single contral spine with multispinulate proximal sides. Movable cheliceral digit with 3 teeth. On palp genu, seta $a l l$ is spine-like or spatulate and seta al2 is spatulate. Dorsal setae simple, tapering. Shields shiny and reticulated. Spermathecal ringed lube probably opens distally on postero-lateral surface of coxa IV. Pretarsus I peduncluate and smatler than other pretarsi. Pulvilli II-IV with attenuated lateral lobes that are longer than central circular lobes. Non-setous spur maty be present on postero-lateral surface of trochanter IV. Amongst dorsal setae on tarsus $I V$, seta pd3 is the longest and setose,

Male: Corniculi on raised hypostomal process. Movatble cheliceral digit with 1 tooth and fused at base to slim, similarly directed spermadactyl that is subequal in length. On leg II. femur setal ar, genu seta ar and tibia seta ar enlarged into spur, while femur seta $p y l$ is spine-like and there may be small non-setous processes on leg II segments.

DISTRIBUTION. Es. All records are published wilh the original descriptions of the nominal species.

Found in plant litter.
REMARKS. Both Rykellus species were originally placed in Cyrolaelaps (Gamasellus). Hirschmann (1966) transferred them to Gamascllus (Hydrogamaselles). Because of the holonotal shield, simple dorsal setate with only 20 podonotal pairs, spermathecal ringed tube aperture on proximal keg segments and single pair of pre-endopodal shields, they clearly belong to the Ologamasini in my classification. Because of the simple dorsal setate and seta all on palp gent. the unique location of the spermathecal ringed tube aperture and the fusion of the male ventro-anal shicld to the sternito-genital shield, I have established a new genus for them. I have examined two patitype femalles of R. nkandhlaensis, dep. PUSA. The following 2 nominal species are included in this genus: R. darglensis (Ryke, 1962c) comb.n.: R. nkandhlacnsis (Ryke, 1962c) comb.n.

Tribe GAMASELLINI Hirschmann

Coyrtolaclaptini Berlese, 1913b, p. 11.
(As indicated with the synonyms of the family name, this family-group name is not considered avaitable.)
Gamasellini Hirschmann. 1962, p. 39.
Cyrtoluelapidac Berlese, sensu Johnston (in part). 1968. p. 19.
Type-genus: Ciamasellas Berlese, 1892d
D/AGNOS/S, Minute to gigantic mites. The following chatacters usmally accur on adults of this tribe (exceptions are given in parenthesis).

Separate podonotal and opisthonotal shields (some Gamasellus discutamecomplex species). One or more pairs of pre-endopodal shields. Form of dorsal setae very variable and if only some setac are pilose on podonotum then usually they include seta $j 4, z 5$ and $r 3$ surrounded by simple or lanceolate setac. Spermathecal ringed tube if recognized opens on idiosoma (Laelogamasus species).

MORPHOLOGY.

Scar rorization, Usually podonotal and upisthonotal atre sepatate but they are fused together on most Gamasellas diseutatus-complex adults. Often there is more than one pair of pre-endopodals as in Allogamasellis. Gamasellus. Laclogamasus., Hiniphis, Periseins and Rhoducaroides species.

Chabtotaxy. Setation of the legs is as that of Gamasellus except for some Cyrolachaps species which have an extra postero-lateral setia on tibia 111, while other Cyrtolachaps spectes and Hetcrogumasus and Nobogamasellus (Notoggemasellus) species have an extra postero-lateral seta on genu III $(2,4 / 2,2)$ and tibia $I 11(2,3 / 2,2)$.

Other Charac"rfrs. Often some dorsal setate are conspichously pilose, lanceolate or spatulate. Species which have only setose dorsal setae (that may sometimes be slightly pilose) occur in the following groups: Allegumasellus, Euryparasitus, Hiniphis, Litegamasus, Periscius (H'sammonvella) and Rhodacaroides. When only some podonotal setae are pilose and. or spatulate, they are often setac $11, i 4,25$, and $r 3$, as in Cyroluelaps and Gamasellas species. Some females of the Gamasellns discutatus-complex have the sternal setac positioned as in the Gamasiphinae, but usually they are in a pair of nearly straght rows. If spermathecall ringed tubes are recognized they usually open on the idiosoma, hat in Laelogamasus species they open on coxa III.

DISTRIBUTION. Species of Gamasellini and the Rbodacarinate make up most of the rhodacarid fauna of the Northern Hemisphere, but atout lwo-thirds of those belonging to this tribe were collected in the Southern Hemisphere.

REMARKS. The Gamasellini is intended manly for the many species with adults that have two subequal dorsal shield and often some complex dorsal setae. There is a precedent for this concept, although it probably gives litte indication of the phylongenetic relationships of the species.

I recognize the following 14 genera within this tribe: Gamasellus, Acogramasans. Allogamasellas, Cverolachaps, Euryparasitus, tivanssallus Heterogamasus, Hiniphis, Laclogamasus. Litogamasus, Notogamasellas, Periseins, Pilelless and Rhoducaroides. Membern of these genera can be distinguished by using the above key (p.78).

Genus GAMASELLUS Berlese

Giamasellus Berlese, 1892 d , p. 60. Type-species: Gamasus faldiger G. \& R. Canestrini, 1881, designated by Berlese, 1906, p. 101.

DAGNOSIS. Small to large mites, with a considerable range in the extent and sclerotization of shields. Usually separate podonotal and opisthonotal shields, but most females and some males of the discutatus-complex spectes have a holonotal shield. Ventro-anal shield on the female rarely (as in the anal region of pyiformis-complex species) fused to notal shicld. while on male it may be fused to the notal shield. Two or three pairs of pre-endopodal shields. Some dorsal setae always complex. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV. Pretarsus I either pedunculate and conspicuously smaller than other pretarsi, or not pedunculate and claws subequal in size to claws of other pretarsi.

REMARKS. There is a distinctive group of nominal species, similar to the type-species of Gamasellus to which I refer to as the falciger-complex. A very similar pyriformis-complex is recognized from East Africa and a discututus-complex is recognized from Australia. Most members of the latter complex are conspicuously different from the falciger-complex because of their idiosomal selerotization while one species is quite similar to the falciger-complex.

The 3 specics-complexes that I recognize within this genus can be distinguished by the following key. The morphology and distribution of members of this genus are given under the spectes-complex headings.

KEY TO SPECIES-COMPLEXES OF GAMASELLUS

1. less than 23 pairs of opisthonotal setae, and fewer than 6 pairs of setae on striated cuticle between ventroanal and opisthonotal shield other than the setae in row R. Male ventroanal shield rarely fused to opisthonotal shield, or, if it is, also fused to peritrematal shield..
falciger-complex
With either 25 or more pairs of opisthonotal setae, or, if 23 or 24 pairs, there are more than 6 pairs of setae on striated cuticle between ventro-anal and opisthonotal shield while setae in row R are on opisthonotal shicld. Male ventro-anal shield usually fused to opisthonotal shield but not peritrematal shield
2. Seta all, on palp genu, is pectinate with at least 5 literal prongs. Pretarsus I not pedunculate, sheath being only long enough to contain retracted claw-complex. Female ventro-anal shield not fused to exopodal IV shield, but fused in its anal region to opisthonotal shicld

pyriformis-complex

Seta all, on palp genu, is spatulate with a single lateral prong. Pretarsus I is pedunculate. Female ventro-anal shield is fused to exopodal IV shield, but not to opisthonotal shield

discutatus-complex

FALCIGER-complex

DIAGNOSIS. Small to average sized species. Separate podonotal and opisthonotal shield. Ventro-anal shield never fused to notal shield, exopodal IV shield or peritrematal shield of femake, and rarely fused to notal shield and peritrematal shicld on male, but quite often fused to male exopodal IV shield. If male ventro-inal shield fused to notal shield it is also fused to peritrematal shield. Less than 23 pairs of opisthonotal setae. Spermadactyl subequal in length to movable cheliceral digit of male, or slightly longer. On palp genu, seta all spine-like with 2 to 6 lateral prongs. Pretarsus I pedunculate.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal. Ventro-anal usually discrete, but may bear aciculae posterior to amus. May be small discrete shield only bearing aciculac. No discrete metapodal. Peritrematal fused to exopodal IV. Split in exopodals II, III and IV. Sterno-metasternal fused to endopodal II and part of III. Three pairs of pre-endopodals.

Male: Ventro-anal cither discrete but extending closer to exopodal IV than on female. or more rarely it is fused to exopodal IV, and on G. falciger and G. nepotulus it is fused to sternito-genital. exopodal IV. peritrematat and notal.

Chaetotaxy. Idiosoma: 6j, 6z, $5 r, 5 r: 5 J, 5 Z, 5 S, 5 R, 0-2 U R$: 5st: 3.Jv, 3Zv, 0-2Sv.

Legs: As Gamasellus discutatus (see Fig. 3).
Other Characters. Female: Deutosternal denticles in 7 or 8 horizontal rows with 1 or 2 horizontal deutosternal ridges anterior to denticles. Tectum anterior margin is basically trispinate but usually with a number of spinules around the two smaller lateral spines, which may be large
enough to make the margin quinguispinate. Movable cheliceral digit with 3 teeth. On palp genu, seta all spine-like with 2 to 6 lateral prongs, and seta al2 slightly yatulate. Some dorsal setate on mominal species atre alsays pilose and often spatulate as well, and usually many are lanceolate, only a fen being setose. Shields usually dull being covered in an adhesive exudate. Spermathecal ringed tube opens near posterior paraxial edge of atetabulum IV. Pretarsus I pedunculate, and smaller than other pretarsi. Lateral lobes of pulvilli II-IV much shorter than central, circular lobes. Amongst dorsal setac on tarsus IV, seta pd3 is the longest and is spatulate.

Mile: If there is a ventral protruberance on palp, there is also one on female palp. Movable cheliceral digit with one tooth, and fused an base to smilarly bhaped spemadactyl, that is subequal in length or slightly longer. On leg II, fomur seta ab, and sometimes seta $p v 1$, genu seta $a b^{3}$, and somelimes tibia seta av and tarsus seta av2 enlarged into spurs or spines. Sometimes non-setous spurs on leg II (see Fig. 318).

DISTRIBUTION. Nn, Ne, Nr, Na: Es: Pe, Pm. Ps, Pc: Os: An, An. The lexality records with the original descriptions of nominal spectes are Irom the following major regions.

Ncarctic region: G. leggetti Ryke, 1962c; G. vibrissatms Emberson, 1967: G. bellavistac Emberson, 1967.

Ethiopian region: G. deephalensis Ryke, 1962c: Gs, shongmiensis Ryke, 1902 C

Palacarctic region: Gamasellus borcalis (Koch, 1879) combon.: G. falciger (G. \& R. Canestrini, 1881): G. Iumusus Ishikawa, 1969: G. neporalus Berlese, 1908; G. montanus (Willmanm, 1936): G. sertatus (Willmann, 1941) (G. faleiger, syn. Ryke, 1962c); G. alpintus Schweizer, 1949; G. nimalis Schwcizer, 1949; G. silvestris Halasková, 1958 (G. monfanus, syn. Hirschmann, 1962): G. spivicomis (G.\& R. Canestrini, 1882).

Australian region: G. concinnus (Womersley, 1942); G. tragardhi (Womersley, 1942); G. cooperi (Womersley, 1961).

My new combination for Gamasus borealis from the siberian Palaearetic region is only based on the original, brief description. Ten umamed species from all four oogeographical regions of North America are described by Bmberson (thesis, 1968). The specimens from the Oriental region were from Nepal and are to be dep. $\mathrm{BM}(\mathrm{NH})$. Specimens from New Zcaland and New Calcdonia are dep. SAM.

Found amongst moss, plant litter and upper soil layers. A single femate of (s. spiricornis was found on a carabid beetle, Belgium (Cooreman, 1943).

Figs. 281-288. Gamasellus tragardhi (Womersley).
281-285 and 287, female: 281, soma, dorsum; 282, idiosoma, venter: 283, Jeg IV (part), dorsum; 284, pretarsus 1 and $1 V$; 285, coxac and trochanter III and IV; 287, gnathosoma, venter. 286 and 288, male: 286 , chelicera: 288 , idiosoma, venter.

Figs. 289-294. Gamasellus tragarthi (Womerslcy).
289 and 290, male: 289, idiosoma, latus; 290, leg If (part), 291-293, deutonymph: 291, idiosoma, dorsum; 292, idiosoma, venter; 293, pretarsus I and IV. 294, protonymph, somia, dorsum.

Figs. 295-304. Gamasellus ragardhi (Womersley).
295-297, protonymph $\ddagger 295$, idiosoma, venter: 296, gnathosoma, venter: 297. leg IV (part), dorsum. 298-302, larva: 298, pretarsus 1: 299, soma, dorsum; 300), gnathosoma, venter; 301, leg III (part), dorsum; 302, idiosoma, venter, 303, female, tarsus I, dorsum, 3()4, egg.

REMARKS. Of the Cyrtolaelaps (Gamasellus) species listed by Ryke (1962) but not listed here in this genus, or in Acugamasus, Cyrtolaelaps, Parasitiphis or Rykellus, I have seen those described by Berlese and they are not rhodacarids. The same is probably true for the Gamasellus species described by Cooreman and Vitzthum, although I have not seen them, and for G. grabouwensis Ryke, 1964. The 18 nominal species included in this species-complex are listed in the 'Distribution' section.

Gamasellus tragardhi (Womersley)
Digamasellus tragardhi Womersley, 1942, p. 161.
FEMALE. Fig. 281-285, 287 and 303. Idiosomal length, 610μ.
MALE. Fig. 286 and 288-290. Idiosomal length, 600μ. Note process on genu II is seta $a v$, while on G. falciger (Fig. 318) and G. nepotulus in the Berlese Collection, it is non-setous.

DEUTONYMPH. Fig. 291-293. Idiosomal length, 540μ.
PROTONYMPH. Fig. 294-297. Idiosomal length, 360μ.
LARVA. Fig. 298-302. Idiosomal length, 260μ.
EGG. Fig. 304. Longest axis length, 230μ.
LOCALITY. Female (N196843), male (N196844), deutonymph (N196845), protonymph (N196846), larva (N196847) and egg (N196848) drawn: Australia; LF133, moss off rocks, Stony Creek, nr. Wilmington, South Australia, 25.5.1966, col. H. M. Cooper, dep. SAM (immature stages not collected direct, but bred from females in this sample except the egg which was dissected from a female).

Holotype female (N196849) examined: Australia; moss, Adelaide, South Australia, 6.1935, col. H. Womersley, dep. SAM.

Allotype male (N196850) examined: Australia; moss, Bridgewater, South Australia, 8.1942, col. J. S. Womersley, dep. SAM.

REMARKS. In figured chaetotactic patterns, filled in circles represent setae considered to have been added at the previous moult. Characters of the immature stages have not been used in the classification given here. The extensive drawings of these stages are given only to increase this type of data which is too limited from this family for satisfactory comparative studies. Similar drawings are made in this paper of the immature stages of Hydrogamasus littoralis and Heydeniella dentata.

DISCUTATUS-complex

DAAGOSIS. Small to large mites. Both sexes may have either a holonotal shich or separate podonotal and opisthonotal shields, or female may have a holonotal shield and male of the same species have separate podonotal and opisthonotal shields. Ventro-anal of the female fused only to exopodal IV shield and ratrely to peritrematal shield as well, while on male it is fused to exopodal IV shield and either to part of the peritrematal shield, or to notal shield. More than 22 pairs of opisthonotal setac. Some females differ from all other Ologamasinae species in that a line joining sternal setae st 2 , st 3 and $s t 4$ would enclose an angle of just less than 95. Spermadactyl sinuous and conspicuously longer thin movable cheliceral digit of male. On palp genu, seta all spatulate with a single lateral prong. Pretarsus I pedunculate.

MORPHOLOGY.

Sclerotization, Female: Usually holonotal but bas separate podonotal and opisthonotal in one nominal species (G. tasmanicus). Ventreanal is fused to the exopodal IV along the posterior rim of acetabulum IV and may also be fused to peritrematal. Posterior to ventro-anal there is a small, discrete shield bearing aciculate. No discrete metapodal. Peritrematal fused to exopodal IV. Split in exopodals II. III and IV. Sternometasternal fused to endopodal II and III. Two or three pairs of pre-cndopodals.

Male: Usually notal is as in the female but in one nominal species (G_{s}. discutatus) the male hals separate podonotal and opisthonotal while the female has a holonotal. Ventro-inal may be fused to notal, in a species (G. southcotti) where it is not, its fusion to the podal along the posterior rim of acetabulum IV may extend to part of the peritrematal. Peritrematal usually broader and as a result may carry setar $\cdot 4$, which is on striated cuticle in the femate.

Chaetotaxy. Idiosoma: $6 j, 6 z, 5 s, 5 r: 6 J, 4$ or $6 Z, 4$ or $6 S, 5$ or $6 R, 4,6$ or $9 U R: 5 s t: 3 J v, 3 Z v, 3 S v, 4$ or $5 R v$. In some species setac belonging to row $R v$ are on the notal shield. The 'post-lateral' setate referred to as present on these species by myself (L.ee, 1966), are here regarded as belonging to row $S v$ or $R v$.

Lees: As Gamasellus discutatus (sec Fig. 3).
Other Characters. Female; Deutosternal denticles in 8 horjrontal rows with one horizontal deutosternal ridge anterior to denticles. Tectum interior margin basically unispinate with lateral spinules, which may be large enough to make the margin quinquispinate. Movable cheliceral
digit with 4 teeth. On palp genu, setia all spatulate with single lateral prong and seta $1 / 2$ slightly spatulate. Most dorsal setae are lanceolate. but always some setac are pilose or pilose and spatulate. Shields dull being covered by an adhesive exudate. Spermathecal ringed tube probably opens near posterior cdge of acetabulum IV. Pretarsus I pedunculate and smaller than other pretarsi. Lateral lobes of pulvilli II-IV atternuated and conspicuously longer than central, circular lobes. Amongst dorsal setac on tarsus IV, seta ad2 is the longest and is setose.

Male. Movable cheliceral digit with one tooth and fused all base to slimmer and longer spermadactyl which is sinuous and spatulate at tip. On leg II, fomur setue $a \prime$ and $p \mathrm{I}$, genu setac a and p, tibia seta $a p$ and tarsus setit a.2 enlarged to spurs or spines. I (Lee, 1966) incorrectly drew seta an 2 on tarsi 31 of males as being setose:

DISTRIBUTION. Aa. All records are from the south eastern states of Australia including Tasmania and are published with the original descriptions of the nominal species.

Found in moss and plant litter.
REMARKS. Five species from the discutatus-complex were originally described in the "dischtanns-group' of Ologamasus (Lee, 1966). Characters such its the 2 or 3 pairs of pre-endopodal shields. the pilose setae amongst the simple dorsal setae and the spermathecal ringed tube aperture on the idiosoma are now regarded as more important than the female holonotal shield, and, therefore, this species-complex has been transferred to Ciamasellus and G. Lasmanicus, which has a separate podonotal and opisthonotal shield in both adults and was transferred to Gamasellus by Ryke (1962c). has also been included. The following 6 nominal species are, therefore included in this species-complex: G. discutatus (Lee, 1966) comb.n.; G. litoprothris (I.ec, 1966) comb.n.: G. soulhoomi (L.ee, 1966) comb.n.: G. tasmumicus (Womersley, 1956a); G. tindalic (Lee, 1966) comb.n.: G. virgosms (I.ce. 1966) comb.n.

PYRIFORMIIS-complex

DIA(jNOSAS. Small to average sized mitus. Separate podonotal and opisthonotal shields. Ventro-anal fused to notal shield only in anal region on lemale but extensively on mate. Male ventro-anal shield also fused to exopodal IV shield, but there is a conspicuous fissure between it and the peritrematal shield. More than 22 pairs of opisthonotal setae. Spermadactyl straight and subequal in length to movable cheliceral digit of male. On palp genu, seta all spine-like with 5 lateral prongs. Pretarsus I not pedunculate, sheath being broadly fused to tarsus and only long enough to contain retracted claw-complex.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal, Ventro-anal bearing aciculae posterior to anus and in this limited region fused to opisthonotal, but not fused to any other shields. No discrete metapodal. Peritrematal fused to exopodal IV. Split in exopodals II, 111 and IV. Sterno-metasternal fused to endopodal II and part of III. Three pairs of pre-cndopodals.

Male: Ventro-anal is fused to opisthonotal and to exopodal IV around posterior edge of acetabulum IV, but there is a fissure between it and peritrentatal.

Chabtotaxy, Idiosomai $6 j, 6 z, 5 s, 5 r: 6 J, 5 Z, 5 S, 5 R, 7 U R: 5 s t:$ $3 \mathrm{~J}, 3 Z v, 15 v$.

Legs: As Gamasellus discuratus (see Fig. 3).
Other Characters. Female: Deutosternal denticles in 8 horizontal mow. Tectum anterior margin is basically unispinate, but multispinulate laterally. Movable cheliceral digit with 3 teeth. On palp geniu, seta a! 1 with 5 lateral prongs and seta al2 slightly spatulate. Dorsal setae vary in form as for falciger-complex. Spermathecal ringed tube opening not known. Pretarus I not pedunculate, with sheath that is only long enough to contain retracted claw-complex.

Male: Movable cheliceral digit has two small denticles (these may represent the edges of base of broken off single tooth) and is fused at base to similarly shaped spermadactyl which is slimmer but subequal in length. On leg II, femur seta av, genu seta av, tibia seta av and tarsus seta av2 are enlarged into spurs or spines.

DISTRIBUTION. Ee. The only published record is from East Africat with the description of the nominate species, while an unnamed species from this region is described by Loots (thesis, 1967).

Found in plant litter and soil.
REMARKS. The members of the pyriformis-complex are very similar to the falciger-complex, but differ in having it large number of opisthonotal setac, a short large clawed pretarsus I and a slightly unusual ventral selerotization on both sexes. There is one nominal species (only the female is known) included in this species-complex, G. pyriformis Berlese, 1916a, and Loots (thesis. 1967) describes the femate and mate of an unnamed species.

Gamasellus pyriformis Berlese
Gamasellms pyriformis Berlese, 1916a, p. 161.
FEMALE. Fig. 312-315. Idiosomal length. 590μ. Pretarsus I broudly fused with tarsus, so that claws appear retractable into tarsus,
pulvillus may he present, although not drawn. This specimen contains an egy, with larva (legs and setae visible) inside.

MALE. Not known.
LOCALITY. Single specimen in SEAF collection. Female ($175 / 37$) drawn: East Africa; soil and litter, col. Alluaud and Jeannell, dep. SEAF.

Genus ACUGAMASUS gen.n.

Type-species: Digamasellus punctatus Womersley, 1942.
DIAGNOSIS. Small to average sized mites. Scparate podonotal and opisthonotal shields. Ventro-anal shield on female never fused to notal whetd, peritrematal shield or exopodal IV hield, but on male may or may not be fused to these shields. Single pair of pre-endopodal shiclds. Some or most dorsal setae pilose and/or spatulate. Spermathecal ringed tube opening not known. Spermadactyl shorter than movable cheliceral digit of male. Pretarsus I pedunculate.

REMARKS, When Ryke (1962c) redefined Gamasellus, as a subgenus of Cytolaclaps, he included in it a wide variety of species. While some of these species are conspicuously different from Gamasellus falciser (e.g., those now referred to Afrogamasellus (Rhodacarinae) and Rykellus (Ologamasini)), the majority of species not congeneric with the type of Gamasellon belong to the same tribe (Gamasellini) and have only a single pre-endopodal shield. I have established this group of species ats a new genus; Acugamasus.

I recognize two species-complexes within this genus, punctatus-complex and matalensis-complex, which can be distingushed by the following key. The morphology and distribution of member of this genus are given under the species-complex headings.

KEY TO SPECIES-COMPLEX OF ACUGAMASUS

1. Seta of row R off opisthonotal shield. Excluding anal setae, at least 6 pairs of setate on ventroanal shield. No ventral spurs on male palp. Male ventro-anal shield never fused to opisthonotal shicld punctatus-complex
Setae of row R on opisthonotal shield. Excluding anal setae, sometimes 6 pairs but often 5 pairs of setac on ventro-anal shield. Ventral spur on proximal palp segments of male or at least 1 ventral setac of palp femur enlarged into spine. Male ventro-inal shicld usually fused to opisthonotal shield natalensis-complex

PUNCTATUS-complex

DIAGNOSIS. Ventro-inal shield not fused to notal shield and widely separated from exopodal IV shield on both sexes. Usually most dorsal setae are pilose and sometimes also spatulate. Between 19 and 24 pairs of opisthonotal setae, with at least anterior 2 setac of row R on striated cutucle. and 6 pairs of setac on ventro-anal shield (excluding anal setac). Male chelicera and spermadactyl is smooth. Male palp similar to female, being without ventral spurs or spines.

MORPHOLOGY

Sceerotization. Female: Separate podonotal and opisthonotal. Ventro-anal discrete and bearing aciculae posterior to anus. Discrete metapodal. Peritrematal fused to exopodal IV. Exopodals not completely encasing peraxial edges of acetabula. Stemo-metasternal fused to endopodal II and a small part of 111. Single pair of pre-endopodals.

Male: Except on A. watsoni, a section of the podonotal carrying at least seta r^{2} and $r 4$, is split away posteriorly from the rest of shield and fused to peritrematal. Ventro-anal separate from opisthonotal, but broader than in female (setae $Z v 1$ and $Z v 2$ being well in from edge) probably including metapodal. Sternito-genital separate from ventro-anal and may be separate from endopodal IV leaving st5 cither on striated cuticle, or on small discrete shield or on shield fused to endopodal IV.

Chaetotaxy, Idiosoma: $6 j, 6 z, 5 s, 5 r: 5 J, 5 Z, 5 S, 5 R, 0-3 U R: 5 s t$: 3.v.3Zv. 2Sv。

Legs: As Gamasellus.

Other Characters. Female: Deutosternal denticles in X horizontal rows with one deutosternal ridge anterior to denticles. Tectunn anterior margin having a central spine with a multispinulate lateral margin. Movable cheliceral digit with 3 teeth. On palp genu, seta all spatulate, seta al2 slightly lanceolate. Three forms of dorsal setae always present, simple, pilose, and pilose and spatulate (size increases through this series), but att the most there are only four pairs of simple setae. Spermathecal ringed tube opening not known. Pretarsus I similar to that of Gamasellus Pragardhi. Pulvilli II-IV may be as A. cursor or with lateral lobes longer than central circular lobes. Amongst dorsal setae on tarsus IV, setat ad2 is just the longest and is setose.

Male: Movable cheliceral digit with one tooth, and fused at base to shorter (may be only half length) spermadactyl. On leg II, femur setae aw and $p w^{\prime}$ sometimes genu setas w and $p w$ and sometimes tibia seta $a v$. enlarged into spur or spine. May be non-sctous process on genu II.

Figs. 305-311. Acugamasus cursor sp.n..
305-307 and 311, female: 305, soma, dorsum; 306, leg IV (part), dorsum; 307.
idiosoma, venter, 311, gnathosoma, venter. 308-310, male: 308, jdiosoma, venter:
309, leg 11, antero-datus: 310, chelicera.

DISTRIBUTION. Aa, Am, An: Sa. The distribution in the australian Australian region is wider than the records published with original descriptions of nominal species would indicate. I have seen specimens from the Australian Capital Territory, Lord Howe Island and New Caledonia, dep. SAM, and from the Solomon Islands, dep. BM(NH). There is one male, closely allied to A. semipunctatus, from Wellington, New Zealand, dep. SAM. A. watsoni has been collected from Auckland and Campbell Islands, dep. BBM.

Found amongst moss, plant litter and upper soil layers.
REMARKS. The punctatus-complex contains the type of Acugamasus which is superficially similar to Gamasellus because of its two dorsal shields and pilose dorsal setae. Members of the punctatus-complex can be distinguished from Gamasellus by having only one pair of pre-endopodal shields, a short spermodactyl and a setose seta $a v 2$ on the male tarsus II. The following 4 nominal species are included in this species-complex: A. cursor sp.n.; A. punctatus (Womersley, 1942) comb.n.; A. semipunctatus (Womersley, 1942) comb.n.; A. watsoni (Hirschmann, 1966) comb.n..

Acugamasus cursor sp.n.

FEMALE. Fig. 305-307 and 311. Idiosomal length, 510μ. Opisthonotal shield has reticulations but neither notal shield has raised punctations. The cells drawn in Fig. 305, near seta J2, belong to a piece of fungal hypha in the exudation layer. On one paratype female (N196855), seta st 4 is on striated cuticle.

MALE. Fig, 308-310. Idiosomal length, 460μ. The lateral edge of the podonotal shield extends as far forward as seta $s 3$, as a fissure separating off part of the podonotal shield bearing setae $r 2, r 3$ and $r 4$, and this is fused to peritrematal shield.

LOCALITY. Holotype female (N196851) and allotype male (N196852) drawn, and 3 paratype females (N196853-N196855) and 3 paratype males (N196856-N196858) examined: Australia; LF99, moss on rocks and rotting tree stumps, by Beauchamp Falls, near Beech Forest, Otway Ranges, Victoria, 9.12.1965, col. D. C. Lee, dep. SAM.

REMARKS. Although the number of setae on the opisthonotal shield appears to vary between members of the same nominal species in this speciescomplex, this species is unusual in having at least 18 pairs of setae, including seta $S 1$, on this shield. This species can also be distinguished from the other two nominal species from Australia in not having raised punctations covering most of the podonotal shield.

NATALENSIS-complex
DIAGNOSIS. Ventro-anal shicld discrete on female, but rarely so on male where it is usually extensively fused to all the surrounding shichds except the sternito-genital. Dorsal setae may be mostly pilose and/or spatulate as on punctatus-complex species or only a few dorsal setak may be pilose and,'or spatulate as on Gamasellus falciger-complex species. Between 21 and 25 pairs of opisthonotal setae, with all setae of row R on opisthonotal whield, and usually only 5 pairs of setae on ventro-inal shield (excluding anal setace). Male chelicera and spermadactyl often gnarled. Mate palp always has a ventral spur or spine on femur or trochanter that are not present on female.

MORPHOLOGY.

Sclerotization. Female; Separate podonotal and opisthonotal. Discrete ventro-anal. May be small discrete shield only bearing aciculac. May be diserete metapodal. Peritrematal fused 10 endopodal IV. Siemometasternal fused to endopodal II and part of III. Single pair of preendopodals.

Male: Ventro-anal may be discrete, but usually fused (o) all surrounding whields except the sternito-genital. In the latter case the perteremattal is broader and extensively fused to podonotal.

Cilaftotaxy. Idiosoma: Podosoma has 6i, 6z, 5s, 5r: 5st. The setation of the opisthosoma is uncertain, but in most species it probably conforms to $5 J, 5 Z, 5 S, 5 R, 2-4 U R: 3 J, 3 Z v, 15 v$.

Legs: Unknown.
Other Characters. Female: Tectum anterior margin is trispinate or quinquispinate, or basically trispinate with spinules on and around the spincs. Movable cheliceral digit with 3 teeth. The dorsal setae may be either nearly all pilose or all spatulate, or pilone and spatulate, or there may be pilose setae amongst simple setae. In speces with a number of row UR sctae, there are only 5 pairs of setate on the ventro-anal shield. excluding anal setae, seta $Z_{1} 3$ being on the striated cuticle.

Male: Tectum anterior margin is usually more claborate thin in femate, Ventral spur or spine on proximal segments of palp that is not present in the female. Movable cheliceral digit with 1 footh and fused at base to similaty shaped, but slightly shorter spermadactyl. Both chelicera and spermaductyl may be gnarled. On femur II, seta av enlarged into a spur. lisually other spurs also present on leg II.

DISTRIBUTION. Es. All records are from Cape Province and Natal, South Africa and are published with the original descriptions of the nominal species.

Found in plant litter and soil.
REMARKS. I have not seen any members of the matalensis-complex so that fewer characters are mentioned. Because its members have only a single pair of pre-endopodal shields, I have transferred this species-complex from Gamasellus to Acugamasus, but I an uncertain of its relationship to the puncoratus-complex in latter genus. The following 8 nominal species are included in this species-complex: A. drakenshergensis (Ryke, 1962c) comb.n.; A. grahumi (Ryke, I962c) comb.n.; A, hhhlumensis (Ryke. 1962c) comb.n.; A. knysnacnsis (Ryke, 1962c) comb.n.; A. macrovetosus (Ryke. 1962c) comb.n.; A. matalensis (Ryke, 1962c) comb.n.; A. neotasmanicus (Rykc. 1962c) comb.n.: A. paranatalonsis (Ryke, 1962c) comb.n.. An unnamed species was described by Loots (thesis. 1967).

Genus ALLOGAMASELLUS Athias-Henriot

Allogamasellus Athias-Henriot, 1961b, p. 473. Type-species: Allogamasellus aquafortensis Athias-Henriot, 1961b, by original designation.

DIAGNOSIS. Minute mites only known from females. Separate podonotal and opisthonotal shiekls. Discrete ventro-anal and metapodat shields. Three pairs of pre-endopodal shields. Dorsal setae short and spinelike, except setae $j 1$ and $z 1$ which are longer and slightly pilose. Spermathecal ringed tube opening not known. Pretarsus I pedunculate.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal Aciculae not observed. Discrete ventro-anal and metapodal. Peritrematal fused to exopodal IV. Exopodals not completely encasing peraxial edges of acetabula. Metasternal fused, although it may be narrowly, to sternal. Sternal fused to endopodal 11 and 111 . Three pairs of pre-endopodals.

Chaetotaxy, Idiosoma: $6 \%, 6 z, 5 s, 5 r: 5 \%, 5 \%, 5 s, 5 R, 2$ or $4 U R$: 5st: 3Jv, 3Zv, 1Sv.

Legs: As Gamasellus.

Other Cilaracters. Fiemale: Deutosternal denticles in 7 horizontal rows plus a single, anterior, horizontal deutosternal ridge. Movable cheliceral digit with 3 or 4 teeth. On palp genu, seta all and a/2 slightly spatulate. Smatl pore-like structure posterior to capitular seta hypt on hypostome. Most dorsal setae. short, spine-like, but setae $j 1$ and $z 1$, longer and slightly pilose. Large pore between setac $s 5$ and $r 5$ on polonotal shield. Peritreme short. less than twice the diameter of the spiracle. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and smaller than other pretarsi.

Figs. 312-322. Gamaselhus Berlese, Laelogamasus Berlese and parasitid (ex-Hydrugamasas) species.
312-315. G. pyriformis Berlese. female: 312, soma, dorsum; 313, iclosoma, venter: 314, palp genu; 315, pretarsus I and tarsus I (part). 316 and 317, ex Hydragumasus, at setac on palp femur and genu: 316, H. silvestri Berlese; 317, /1. salinus. (Laboultène). 318, G_{+}falciger ($G_{*} \& R_{\text {. Canestrini), male, genu II. 319-322, }}$ L. simple. (Berlese), male: 319, mid-tectum; 320, chelicera; 321, palp trochanter.

DISTRIBUTION. Pm. The only records are with the original descriptions of the nominal species from Algeria.

Found amongst plant roots and litter.
REMARKS. Allogamasellus males are unknown. The females are similar to those of the Gamasellus falciger-complex but there would have to be new intermediate species for it to be preferable to regard this genus as congeneric with Gamasellus. The following 2 nominal species are included in this genus: A. aquatortensis Athias-Henriot, 1961 b: A. squalidus AthiasHenriot 1961b. Two syntype females (C988 and C991) of A. aquafortensis and the holotype female (C 464) of A. squalidus; dep. MNHN, have been examined.

Genus CYRTOLAELAPS Berlese

Cyrtolaclaps Berlese, 1887b, XLIV, 5 (not Berlese, 1892a, LXIV, 3). Type-species: Gamasus mucronatus G. \& R. Canestrini, 1881, by monotypy.

Protolaelaps Trägardh, 1912. p. 563. Type-species: Gamasellus ! brevispinosus Trägardh, 1910 (syn. Gamasus mucronatus G. \& R. Canestrini. 1881), by original designation.

DIAGNOSIS. Average sized to large mites. Separate podonotal and opisthonotal shields. Ventro-anal shield discrete on female, while on the male it may or may not be fused to notal, but it is always fused to peritrematal and exopodal IV shields. Clearly defined pre-endopodal shields absent. Usually. at least one pair of conspicuously pilose setae on podonotal shield and on opisthonotal shield. Spermathecal ringed tube may open on sternometasternal shield. Spermadactyl stout and fused to shorter movable cheliceral digit along its entire length. Pretarsus I not pedunculate, sheath being broadly fused to tarsus and only long enough to contain retracted claw complex.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal. Aciculae may be on separate shield or on ventro-anal. Discrete ventro-anal and metapodal. Peritrematal fused to exopodal IV. Exopodals not completely encasing peraxial edges of acetabula. Metasternal diserete or fused to sternal. Sternal fused to endopodal II and sometimes to part of endopodal III. Pre-endopodals absent, or are smatl and ill defined as described for C. paraster by Costa (1961).

Male: Ventro-anal cither entirely lused to opisthonotal, peritrematal and exopodal IV, but sepurate from sternito-genital, or fused only 10 peritrematal and exopodal IV as described on C. aster by Schweizer (1061).

ChaETOTAXY, Idiosoma: 7j, 6z, 5-6s, 5r: 5J, 5Z, 5S, 5R, 2UR or hypertrichous with up to 100 or more setae: $5 s t: 3.1 v, 4 Z v, 2-4 S v$.

Legs: As Gamasellus with 1 postero-lateral on tibia 111 and genu 111 , or 2 postero-laterals on tibia $111(2,3 / 2,2)$ genu $111(2,4 / 2,2)$, or an extra postero-lateral on tibia III only.

Other Charactiss. Female: Deutostemal denticles in 10 or II horizontal bows. Tectum anterior margin has large central spine with multispmutate sides. Movable cheliceral digit with 3 or 4 teeth. On palp genu, seta all and al2 simple or very slightly spatulate. Vertical seta. il. usually stout spine. Always. some dorsal setae are conspicuously pikse on nominal species, but Emberson (thesis, 1968) records atn unnamed species from the califorman Nearetic region. which is probably referable to this genus, with simple dersal seta. Shields are dull. Spermathecal ringed tube maly upen hetween sternal seta st 3 and acetabulum III. But. considering the similarity of the spermadacty on mates of this genus to the unusually powerful looking spermadactyl of Euryparasitus emarginatus, which Michace (1892) clams is used to lift female genital plate so that the spermatophore cath be applied direetly to the vagina, it maty be that vaginal fertilization occurs in this genus abso, instead of fertilization through spermathecal rimed tubes. Petarsus I not pedunculate, only being long enough to contain retracted dan-complex. Putvilli II-IV have lateral lobes whoh are smatler but similar in shape to central lobes, and a pair of streamer-like lobes ventral 10 claws. Amongst dorsal setae on tursus IV. seta ad2 is the longest and is setose.

Male: Cormicuti proportionately longer than in female. Movable cheliceral digit with one tooth and fused to longer. stout permadactyl alonge its entire length. On leg 11, at least femur setae al and pll, genu seta ay. tibia seta "A' and tarsus seta av2 enlarged into spurs or spines.

DISTRIBUTION. Nn, Ne, Nr: Pe, Pm, Ps, Pe. Besides the locality recend publistaed with the original descriptions of nominal species there are many published records from the european and mediterranean Palacartio regions, ranging from Scothand and the Russian Karclian lsthmas in the north, to Spain, Sardinia and Israel in the south, There are also records Prom the Kemerovo (Tagil'tsey and Men Yan-Tsuy, 1963) and South Primoryc regions (Aksenenhe, 196.3 and Khudyakov, 1963) of Russia, and the western Canadian prairies and Catifornia (Emberson, Thesis. 1968) in North America showing that this genus has a Holarctic range.

Figs. 323-332. Cyrtolaclaps mucronalus (G. \& R. Canestrini).
323-327 and 332, female: 323, soma, dorsum; 324, leg IV (part), dorsum; 325, pretarsus 1V: 326, pretarsus 1 plus tarsus I (part): 327. idiosoma, venter; 332. gnathosoma, venter. 328 -331, male: 328, idiosoma, venter; 329. leg It \{part): 330, corniculus; 331, chelicera.

Figs. 333-337. Cyrtolaelaps Berlese.
333-335, C. aster (Berlese), female: 333, sona, dorsuni; 334, idiosoma, venter: 335, coxa IV. 336 and 337 , C. rectus (Berlesc). female: 336, idiosoma, dorsum: 337, idiosoma, venter.

Usually found in the nests of rodents and moles, but also found on these animals, in the nests of other Insectivora and birds, on ferrets, in caves (sometimes near bat roosts), under stones or fallen leaves, amongst leaf mould, grain spill, rotting potatoes and manure.

REMARKS. Cyrtolaelaps is similar to Erryparasitus, and if it is shown that both are unusual within the Rhodacaridae in having females that are fertilized either through the vagina or a spermathecal ringed tube opening on the sterno-metasternal shield. it may be preferable to regard them as synonymous. Euryparasitus was included in Cyrtolaclaps as a subgenus by Ryke (1962c), but he also similarly included Gamascllus, Digamasellas. and Gamaselliphis. The following 6 nominal species are included in this genus: C. mucromatus (G.\& R. Canestrini, 1881); C. aster (Berlese, 1918): C. minor Willmann, 1952; C. paraster Costa, 1961; C. rectus (Berlese, 1920): C. spurius (Holzmann. 1969) comb.n.. Gamasellus spalacis Oudemans, 1912, probably belongs to this genus, but may well be synonymous with C. mucronatus. An unnamed species from California is partly described by Emberson (thesis, 1968).

Cyrtolaelaps mucronatus (G. \& R. C'anestrini).
Gamasus mucronatus G. \& R. Cunestrini, 1881. p. 1081.
FEMALE. Fig. 323-327 and 332. Idiosomal length, $1,0000_{p .}$ Chaetotaxy of genu III $(2,4 / 2,2)$ and tibia III $(2,3 / 2,2)$ differs from Gamasellus in having two instead of one postero-lateral seta.

MALE. Fig, 328-331. Idiosomal length, 960μ.
LOCALITY. Fenale (N196841) and male (N196842) drawn: Scotland; mole's nest (4), Roxburgh, East Lothian, 1964, col. R. M. Emberson, dep. SAM. Female idiosoma (34/17, designo in A.M.Sc.it.) examined and considered conspecific with female (N196841) drawn: Italy: manure, Old College, Padova, dep. SEAF.

Cyrtoluelaps aster (Berlese)

Gumaselliss (Promoluelaps) aster Berlese, 1918, p. 137.
FEMALE. Fig. 333-335. Idiosomal length, 700μ. Note following differences to Ryke (1962c) Fig. 9 and 11; seta z5 is posterior to $j 6$, seta $J v 3$ and $S v 2$ are pilose, peritrematal shield is fused to exopodal IV. The sctal characters, as in Ryke (1962c), were used in Costa (1961) to distinguish this species from C'. paraster, but. although they cannot now be
used, being inaccurate, the difference in stoutness of vertical seta ($j 1$) holds, and the capitular seta (hyp4) is not pilose and a posterior accessory seta ($p x$) is present on the opisthonotal shield in this species. Ventral shields are reticulated. Broken line in Fig. 334 indicates extent of opisthonotal shield on right side. There is a small process on coxa IV. Chaetotaxy of genu III $(2,4 / 2,1)$ is as for Gamasellus while on tibia III $(2,3 / 2,2)$ there is an extra postero-lateral seta.

MALE. Not figured. Idiosomal length, 680μ. Corniculi proportionately longer than in female. Spermadactyl viewed ventrally seems similar to that of C. mucronatus, but shorter. Sclerotization as C. mucronatus (and not with ventro-anal shield separate from notal shield as drawn by Schweizer, 1961), but sternito-genital shield extends back closer to ventro-anal shield. Leg II similar to C. mucronatus but on genu, seta $p v$ is a spur half the size of seta $a v$. Process on coxa IV smaller than in female.

LOCALITY. Only two specimens in SEAF collection. Female (190/37) examined: Sardinia; field-mouse's nest, Asuni, col. Krausse, dep. SEAF.

Cyrtolaelaps rectus (Berlese)

Gamasellus (Protolaelaps) rectus Berlese, 1920, p. 163.
FEMALE. Fig. 336 and 337. Idiosomal length, 850μ. Gnathosoma similar to that of C. mucronatus but seta hyp3 proportionately shorter. Aciculae, unlike those of other species, are on discrete shield posterior to ventro-anal shield. Vertical seta, $j 1$, setose, not a short spine. Chaetotaxy of genu III $(2,4 / 2,1)$ and tibia III $(2,3 / 2,1)$ is as for Gamasellus.

MALE. Not known.
LOCALITY. The single 'tipico' female (40/17) drawn: North America; leaf mould, Columbia, Missouri, U.S.A., 1904-1906, col. C. R. Crosby, dep. SEAF. (For justification of this data, see Hammen, 1959, p. 24.)

Genus EURYPARASITUS Oudemans

Euryparasitus Oudemans, 1902a, p. 30. Type-species: Gamasus terriblis Michael, 1886 (syn. Gamasus emarginatus C. L. Koch, 1839), by monotypy.
Eurylaelaps Oudemans, 1902a, p.8. Lapsus for Euryparasitus Oudemans, 1902a.

DIAGNOSIS. Gigantic mites. Separate podonotal and opisthonotal shields. Ventro-anal shield discrete on female, but fused to peritrematal and exopodal IV shield on male. Single pair of clearly defined pre-endopodal
shields. Dorsal setae mostly simple, tapered, although some setac near anterior edge of podonotal shield may be slightly pilose. Spermatheca may open direct into vagina. Spermadactyl stout and fused to shorter movable cheliceral digit along its entire length. Pretarsus I not pedunculate, sheath being broadly fused to tarsus and only long enough to contain retracted claw complex.

MORPHOLOGY.

Scoerotization. Female: Separate podonotal and opisthonotal. Discrete metapodal and ventro-anal (bearing aciculate posterior to anus). Peritrematal fused to exopodal IV. Exopodals narrow, inconspicuous. Sterno-metasternal fused to endopodal II. Single pair of pre-endopodals.

Male: Ventro-anal fused to peritrematal and exopodal IV, but separate from opisthonotal and sternito-genital.

Chaetotaxy. Idiosoma: 6j, 6z, 5s, 5r: 5r, 5Z, 5S, 5R, 7UR: 5st: 3.Nv, 3Zv, 3Sv, 3Rv.

Leys: As Gamasellus,

Othar Cimaracters. Female: Deutosternal denticles in 16 horizontal rows. Tectum anterior margin basically trispinate, with central spine being the largest and with a number of spinules lateral to the 2 lateral spines. Movable cheliceral digit with 3 teeth. On palp genu, setat all slightly pilose and seta al2 stightly spatulate. On palp femur, seta al in proximal third, unusually long, being sub-equal in length to ventral setac on palp trochanter. Dorsal setae simple (or slightly pilose), tapered. Shields are dull. Peritreme fairly short, not extending anteriorly to mid-acctabulum II. Michacl (1892) clains that the spermatophore is applied directly to the vagina, which has a domed recess (spermatheca) in its roof that stores the sperms. But, there is a lube opening between sternal seta st 3 and acetabulum III, apparently on the female only, as for Cirtolaclups, ind this may be a spermathecal ringed tube. Pretarsus I not pedunculate, only being long enough to contain retracted claw-complex. Pulvilli II-IV with central lobes enlarged and merged into a single pleated flap with a fimbriated distal margin, while lateral lobes are inconspicuous. Amongst dorsal setace on tarsus IV. seta pd3 is the longest and is setose.

Male: Corniculi with paraxial flap. Movable cheliceral digit without tooth and fused to much longer, stout spermadactyl along its entire length. Antertor edge of podonotal shield is more heavily sclerotized than in fenale and produced forward (in E. calcarator it covers the gnathosoma). On trochanter I. seta d large and hnob-like. On leg II, femur seta as, genu seta av, tibia seta ar, tarsus seta aw enlarged into spurs; while femur scta pol and genu seta $p \prime$ are spines. Tibia and tarsus II are fused together.

Figs. 338-347. Euryparasilus emarginatus (Koch),
338-341 and 347, female: 338, soma, dorsum; 339. leg IV (part), dorsum; 340, pretarsus 1 and tarsus I (part): 341, idiosoma, venter: 347, gnathosoma, venter. 342-346, male: 342, trochanter I (part), dorsum: 343, chelicera; 344, venter: 345, leg II (part): 346, corniculus.

DISTRIBUTION. Nc, Na: Pe, Pm, Ps, Pc. Besides the locality records published with the original descriptions of the two nominal species there are many published records from the european Palaearctic region, ranging from Scotland and the Russian Karelian Isthmus in the north to Spain and Corsica in the south. There are also records from Kemerovo (Tagil'tsev and Men Yan-Tsuy', 1963) and South Primorye (Aksenenko, 1963 and Khudyakov, 1963) regions of Russia and from British Columbia and Oregon in North America (Emberson, thesis, 1968).

Usually found in nests of rodents, moles and sometimes other Insectivora, but also found on these animals, in caves (sometimes near bat roosts), in moss on soil and in forest soil.

REMARKS. There are a number of similarities between Euryparasitus and Cyrtolaelaps, some of which probably reflect a close phylogenetic relationship as well as the occupation of a similar ecological niche. As suggested in the remarks on Cyrtolaelaps, it may be preferable to transfer members of this genus to Cyrtolaelaps. The following two nominal species are included in this genus: E. emarginatus (C. L. Koch, 1839); E. calcarator (Banks, 1910).

Euryparasitus emarginatus (C. L. Koch)
Gamasus emarginatus C. L. Koch, 1839, 24.17.
Gamasus terriblis Michael, 1886, p. 265.
FEMALE. Fig. 338-341 and 347. Idiosomal length, $1,800 \mu$.
MALE. Fig. 342-346. Idiosomal length, $1,780 \mu$. The anterior edge of the podonotal shield is more heavily sclerotized than in female and produced forward to cover more of the gnathosoma.

LOCALITY. Two females (N196875 and N196876) and two males (N196877 and N196878) drawn or examined: Scotland; mole's nest (4), Roxburgh, East Lothian, 1964, col. R. M. Emberson, dep. SAM.

Subgenus EVANSSELLUS Ryke
Evanssellus Ryke, 1961b, p. 17. Type-species: Evanssellus foliatus Ryke, 1961b, by original designation.

DIAGNOSIS. Small to average sized mites. Separate podonotal and opisthonotal shields. Ventro-anal shield discrete on female, while on the male it is fused to the peritrematal shield and exopodal IV shield and sometimes to the sternito-genital shield. Single pair of pre-endopodal shields. Dorsal setae sinuous, lanceolate or spatulate and sometimes pilose, rarely setose. Spermathecal ringed tube opening not known. Pretarsus I absent. Large leg I bearing stout spines (anterior spine on genu I is seta all).

MORPIOIOGY.

SClerotization. Female: Separate podonotal and opisthomotal. Discrete ventro-intal. Posterior to ventro-anal there is a small diserete shield only bearing acioulate. Peritromatal fused to exopodal IV. Exopodats atim or absent atound middle of peraxial margins of acetabula II and III. Sternometasternal fused to endopodal II. Single pair of pre-endopodals.

Male: Ventro-anal not fused to opisthonotal, but fused to peritrematal and exopodal IV, and may or may not be fused to sternito-genital.
(Halsoriaxy. Idiosoma: $6 j, 6 z, 5 s, 5 r: 5,1,5 \%, 55,5 R: 4$ or $5 s t$: $3.11,3 / 13$.

Legs: As Gumasellus.
Other Characturs. Female: Deutosternal denticles in 8 horizontal rons. Fefum anteror margin batsically unispinate but with lateral spinules. Movable cheliceral digit with 2 tecth. On palp genu, seta all pilose with over 11 lateral prongs and seta al2 spine-like. Dorsal setae are sinuous. lanceolate or spatulate and sometimes pilose as well. Vertical seta, $/ 1$, on prominent protuberance. Sternal seta, stt. may be absent. Shields dull and covered by an adhesive exudate. Spermathecal ringed tube opening not known. Pretarsus I absent. The following setac on leg I developed into large
 pulvilli II-IV attenuated and longer than central oval lobes. Amongst dorsal setac on tarsus IV, seta prd or ad2 is the longest and both are lanceolate or spatulate.

Mite: Movable cheliceral digit with 1 tooth, and lused at base to slighty longer spermadactyl. On femur II, seta av enlarged into a spur which may be quite inconspicuous.

DISTRIBUTION. Aa, An: Sa: NTe, Besides the published records of nominal species which are all from Australia or New Zealand south of 30 South. I have seen specimens from Auckiand Island to be dep. BBM, and Athias-Henriot (personal communcation. 20.3.1964) informs me that Fiomsishlus specimens were collected on the fla de Chiloc. Chile, 1961-62. during a study directed by Professor F. di Castri.

Found in moss or plant litter.
REMARKS, I (Lce, 1967) transferred Evanssellus to Hetcrogamasins giving it the rank of sutgenus. I here revoke this change in rank, once more regarding Evanssellus as a genus. The consistent differences between the two groups of species (Heterogamasus and Evanssellus), the fen individual members of which exhibit a fair range of character in both cases, suggest that these laxa have had a separate evolution considerable enough to be comparable with that of other rhodacarid genera. The following two nominal species are included in this genus: E. foliatus Ryke, 1961: E. medusa Lee, 1967.

Genus HETEROGAMASUS Trägĩrdh

Heterogamasus Trägairdh, 1907, p. 2. Type-species: Heterogamasus claviger Trügârdh, 1907, by monotypy.

DIAGNOSIS. Small to average sized mites. Separate podonotal and opisthonotal shields. Ventro-anal shield discrete on female, while on male it is fused to peritrematal and exopodal IV shields and sometimes to sternitogenital shield. Single pair of pre-endopodal shields. Dorsal setae spatulate or lanceolate and sometimes pilose, rarely setose. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and small. Large leg I bearing stout spines (anterior spine on genu I is seta ay2).

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal. Discrete ventro-anal bearing aciculae posterior to anus. Peritrematal fused to exopodal IV and extends backwards from this point as well as dorsally, to broadly fuse with podonotal. Split in exopodals II, III and IV, Sternometasternal fused to endopodal II. Single pair of pre-endopodals.

Male: Ventro-anal not fused to opisthonotat, but fused to peritrematal, exopodal IV and sternito-genital.

Chaetotaxy, Jdiosoma: 6j, 6z, $5 s, 5 r: 5 J, 5 Z, 5 S, 6 R, 0$ or $3 U R$: 5st: 3Jv, 3Zv, 0-2Sv.

Legs: Differs from Gamasellus in having an extra postero-lateral on genu $111(2,4 / 2,2)$ and tibia $111(2,3 / 2,2)$.

Other Cuaracters. Female: Deutosternal denticles in 7 horizontal rows. Tectum anterior margin basically unispinate, but spine is bifurcate at tip and there are a series of lateral spinules. Movable cheliceral digit with 3 or 4 teeth. On palp genu, seta all slightly pilose over distal half and seta al2 simple. Most dorsal setac spatulate or lanceolate and maty be pilose. Vertical seta, $j 1$, not on prominent protruberance. Shields dull and covered by an adhesive exudate. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and smaller than other pretarsi. The following setae on leg I developed into large spines; setae a 2 and P on genu, setae av2 and pr2 on tibia. Lateral lobes of pulvilli $11-1 \mathrm{~V}$ attenuated and longer than central oval lobes. Amongst dorsal setac on tarsus IV, seta ad2 is the longest and is setose.

Male: Movable cheliceral digit with 1 tooth, and fused at base to spermadactyl of similar length. On leg II. femur seta and and genu seta ar enlarged into spurs.

DISTRIBUTION. NTc: Sm. All records are from near the southern end of South America and are published with original descriptions of nominal species.

Found amongst plant litter or under stones.
REMARKS. Previously I (I.ee, 1967) redefined Heterogamasus and included Evanssellus as a subgenus. As remarked on under Evanssellas, that taxon is again regarded as a genus. The following three nominal species are included in this genus: H. clavger Trägairdh, 1907: H. calcarcllus Lee, 1967: H, spinosissimus (Balogh, 1963b).

Genus HINIPHIS gen.n.

Type-species: Hiniphis himms sp.n.

D/AGNOSIS. Minute mites. Separate podonotal and opisthonotal shields. Ventro-anal shield is broadly fused to opisthonotal shield, peritrematal shield and exopodal IV shield on both sexes and to the sternito-genital shield on the male. Two pairs of pre-endopodal shields. All dorsal setae are simple and tapered. Spermathecal ringed tube opening not known. Pretarsus I pedunculate.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal. Ventro-anal fused to opisthonotal, peritrematal and exopodal IV, and bearing aciculat posterior to anus. Peritrematal fused to exopodal III and IV. Split in exopodals II and III. Sterno-metasternal fused to endopodals II, III and IV. Two pairs of pre-endopodals.

Male: Sternito-genital fused to ventro-anal, otherwise as female,
Cilatototaxy. Idiosoma: $6 j, 6 z, 5 s, 5 r: 5 J, 57.5 S, 5 R: 5 \mathrm{st}: 5 \mathrm{v}$. $3 \% v .2 S v$.

Legs: As Gumasellus.
Othis Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin is unispinate. Movable cheliceral digit with 3 teeth. On palp genu, seta all tapering spine and seta al2 is slightly spatulate. Dorsal setae are simple and tapered. Shields are slightly shiny. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and maller than other pretarsi. Lateral lobes of pulvilli II-IV attenuated and longer than central oval lobes. Amongst dorsal setae on tarsus IV, seta pd3 is the longest und is setose.

Male: Movable cheliceral digit with 1 tooth and fused along proximal lalf with spermadactyl of similar length. On leg II, femur seta av, tibia seta (N' enlarged into spurs, and femur and genu setae $p J^{\prime}$ are small spines, while tarsus seta av2 is a large spine.

DISTRIBUTION. Aa. Collected from a number of locations in southern Vietoria, Australia, besides the locality given below with the description of the type-species.

Found in moss.
REMARKS. Hiniphis is unusual in having a divided dorsal shiek but considerable fusion of other shields on the female as well as the male. The following single nominal species is included in this genus: H. himnus sp.n.

Hiniphis himnus sp.13.

FEMALE. Fig, 348-351, 355. Idiosomal Iength, 390μ. Trochanter IV has a non-setous spur.

MALE. Fig. 352-354. Idiosomal length, 360μ. Trochanter IV has a spur that is about half as long at that figured for the female.

LOCALITY. Holotype female (N1968222), allotype male (N1968223), 4 paratype females (N1968225-N1968228) and 3 paratype males (N1968224. N1968229. N1968230) drawn or examined: Australia; 1,F104. moss, Pinus radiata plantation, near Beech Forest, Otway Ranges. Victoria, 9.12 .1965, col. D. C. Lec, dep. SAM.

Genus LAELOGAMASUS Berlese

Laelogamasus Berlese, 1905, p. 167. Type-species: Gamasus (Laelogamasus) simplex Berlese, 1905, by original designation.

DIAGNOSIS. Small mites. Separate podonotal and opisthonotal shiedds. Ventro-anal shied discrete on female. but fused to exopodal IV and peritrematal shield on male. Two or 3 pairs of pre-endopodal shields. Most dorsal setae on idiosoma, and genu and tibia II. III and IV, are densely pilose along their entire length. Spermathecal ringed tube opens distally on dorsal surface of coxa III. Pretarsus I pedunculate or absent.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal. Discrete ventro-anal bearing aciculac posterior to anus. No discrete metapodal. Peritrematal fused to exopodal IV. Split in exopodals II, III and IV. Sterno-metasternal fused to entire endopodal II and part of III. 'Two or three pairs of pre-endopodals.

Male: Ventro-anal is not fused to stemito-genital or notal but it is fused to peritrematal and exopodal IV.

Chaetotaxy. Idiosoma: 6j, 6z, $5 s, 5 r: 5 J, 5 Z, 5 S, 5 R, 5 U R: 5 s t$: $3 J v, 3 Z v, 3 S v, 2$ or $3 R v$.

Legs: As Gamasellus.

Other Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin having a central spine with multispinulate lateral margin. On palp genu, seta all pilose with more than 5 lateral prongs and seta al2 setose or spine-like. Dorsal idiosomal setae all densely pilose. Shields are dull. Spermathecal ringed tube probably opens distally on dorsal surface of coxa III. Pretarsus I pedunculate and smaller than other pretarsi or absent. Lateral lobes of pulvilli II-IV are attenuated and shorter or subequal in length to central circular lobes.

Male: Movable cheliceral digit with I tooth, and fused near base to similarly curved spermadactyl which is subequal in length or slightly longer. On leg II, femur seta ay enlarged into a spur while most ventral setae on more distal segments are enlarged into spines.

DISTRIBUTION. Om. Published record of single nominal species is from Java, but unnamed specimens have been seen from Borneo, Malaya and Sumatra, dep. $\mathrm{BM}(\mathrm{NH})$.

Found amongst plant litter on soil.
REMARKS. Having seen at least 3 conspicuously diflerent species, with the unusually pilose dorsal setac on the legs as well as the idiosoma, with the probatble, unusually location of the spermathecal ringed tube for Gamasellns-like mites, and from a limited geographical region, I consider that Laelogamasus is a distinct genus, possibly relatively unrelated to Gamasellus. There is 1 nominal species in this genus, L. simplex Berlese, 1905, but at least 2 unnamed species have been collected from the localities listed above, dep. BM(NH).

Laelogamashs simplex (Berlese)

Gamasellus (Laelogamasus) simplex Berlese, 1905, p. 167.
FEMALE. Redescribed by Berlese, (1906, p. 115).
MALE. Fig. 319-322. Idiosomal length, 440μ. Apparently all that remains of the types is on the slide listed below. Most of this material (that can be seen without remounting) is drawn.

LOCALITY. Some of the 'cotipico' male (33/4), slide has gnathosoma and parts of legs only, drawn: Java; Istand of Iaba, Buitenzorg.

Genus LITOGAMASUS gen.n.

Type-species: Cyrtolaclaps setosus Kramer. 1898.
DIAGNOSIS. Small to gigantic mites. Separate podonotal and opisthonotal shields. Ventro-anal shield diserete on female and make. Peritrematal shied always fused to exopodal IV shield on lemale but maty
not be on mate. May be single pair of pre-endopodal shields, but more often there are a number of small shelds posterior to the main pair of shields. Dorsal setate tapered and may or may not be slightly pilose. Spermathecal ringed tube opening not known. Male fixed cheliceral digit has conspicuous ridges dorsally, ench side of a groove in which the pilus dentilis is located. Pretarsus I not pedunculate, sheath being broadly fused to tarsus and only long enough to contain retracted claw complex.

MORPHOLOGY.

Scteroifation, Female: Separate podonotal and opishonotal. Ventro-anal discrete, may be narrow (bearing less than the 6 pairs of setac in setal rows $J y$ and $Z v$) and may or may not bear aciculae. Posterior to ventro-anal there may be a small discrete shiek only bearing aciculae. Discrete metapodal. Peritrematal reduced and narrowly joined to exopodal IV. Fxopodak slight and not split around peraxial edge of acetabula 111 and IV. Sterno-metasternal fused to endopodal II. Usually 2 pairs of pre-endopostals with the posterior or both pairs fragmented, but may be only single pair.

Male: Ventro-anal discrete. Sternito-genital not fused to ventro-anal or endopodal IV. Peritrematal may or may not be fused to exopodal IV.

Chaltotaxy. Idiosoma: 6j, 6二, 5s. 5r: 5J, 52, 4 or $5 S, 3$ or $5 R$: 5st: 3/s, $3 Z v, 1$ or $2 S v$.

Legs: As Gamascillus.
Other Characters. Female: Deutosternal denticles in 7 or 8 horirontal rows. Tectum anterior margon basically unispinate. but may have a few lateral spinules. Movable cheliceral digit with 3 teeth. On palp genle, seta all tapered and slightly pilose, and seta al2 spatulate or spinelike. On palp femur, seta al usually in proximal third, but in one unnamed species from South Georgia it is in central third (the only species of Ologamasinate for which this is true). Dorsal setac tapered and sometimes inconspicuously pilose, Shields shiny, Spermathecal ringed tube opening not known. Pretarsi sheath I not pedunculate only being large enough to contain retracted chaw-complex. Pulvilli JI-IV have a pair of streamer-like lobes ventral to claws, while dorsally there may be attenuated centrat and lateral lobes or a single patir of large circular lobes. Amongst dorsal setace on tarsus IV , setae ad 4 and pd 4 may be the longest, or they may be short and spine-like and seta pd 3 the longest,

Male: Movable cheliceral digit with single tooth and fused at bise (0) allenatad spermadactyl or similar length. Fixed cheliceral digit ridged worsally. On leg II, femur setac ar and m, genu seta ar, libia seta ay, tarsus seta ar2 modified into spurs or spines. Other legs may have modified setous. or non-setous processes.

Figs. 356-364. Litogumasus setosus (Kramer).
356-358 and 364, female: 356, soma, dorsum; 357, gnathosuma, venter; 358, idiosoma, venter: 364 , pretarsus 1 and 111. 359-363, male: 359, leg II (part), anteru-latus:

DISTRIBUTION. Sm, Sa: AC's. Besides the published record of the single nominal species from Tierra del Feugo, I have seen an unnamed species and L. setosus from Auckland and Campbell Islands to be dep. BBM, and another unnamed species from South Georgia, dep. SAM.

Found in or near to littoral zone.
REMARKS. Excepting the division of the dorsal shield Litogamasus hats a number of characters in common with Parasitiphis, but these may only be all indication that they occupy a similar habitat. The following single nominal species, previously in Cyrtolaclaps, is included in this genus: L. setosus (Kramer, 1898) comb.n. Two unnamed species have been described, one from South Georgia by Hunter (manuscript), some dep. SAM. and the other from Auckland and Campbell Islands by Hunter and Lee (manuscript) dep, BBM.

Litogamasus setosis (Kramer) comb.n.

Cyrfolaelaps setosus Kramer, 1898, p. 22.
FEMALE. Fig, 356-358, 364. Idiosomal length, 1,410p.
MALE. Fig. 359-363. Idiosomal length, 1,420r. Tectum is slightly broader and more heavily selerotized than on female. The processes on larsus. III are non-setous. On leg IV, genu ventral setac are spine-like as are those on the tibia. Leg IV is enlarged to a similar extent to that of leg II.

LOCALITY. Type female (137) and type male (117) drawn: South America: under stone, at mouth of brook above high tide mark or scashore, Uschuaia, Tierra del Fuego. Argentina, 27.10.1892, col. Michaelsen, dep. ZMH.

Genus NOTOGAMASELLUS Loots and Ryke

Notogamasellus I.oots and Ryke, 1966b, p. 30. Type-species: Notogamuvellus (Nonegamusellus) vandenhergi Loots and Ryke. 1906b. by original designation.

DIAGNOSIS. Minute mites. Separate podonotal and opisthonotal shields, podonotal shield being conspicuously larger than opisthonotal shield. Ventro-anal shield discrete on the female and male, but on male it is larger extending anteriorly to carrying more setae. Peritrematal shield reduced and may or may not be narrowly connected to exopodal IV shield. Setation of podonotum hypertrichous. Single pair of pre-endopodal shields. The short dorsal setae may all be pilose or most of them are peg-like with a central spherical dilation. Location of spermathecal ringed tube, if present, unknown. Pretarsus 1 absent.

REMARKS. Notogamasellus was originally defined with two subgenera. Notogamasellus and Podonotogamasellus, which may be distinguished by the following key. The morphology and distribution of the members of this genus are given under the subgeneric headings.

KEY TO SUBGENERA OF NOTOGAMASELLUS

1. Two postero-lateral setae on genu III (2, $4 / 2,2)$ and tibia III $(2,3 / 2,2)$. Podonotum with 32 pairs of setae and one unpaired seta
N. (Notogamasellus)

One postero-lateral seta on genu III (2, $4 / 2,1)$ and tibia III $(2,3 / 2,1)$. Podonotum with 28 pairs of setae . . N. (Podonologamasellus)

Subgenus NOTOGAMASELLUS Loots and Ryke
Notogamasellus Loots and Ryke, 1966b, p. 30. Type-species: Notogamasellus (Notogamasellus) vandenbergi Loots and Ryke, 1966b, by original designation.

DIAGNOSIS. As for genus with the addition of the characters given in the relevant half of the couplet in the key to subgenera of Notogamasellus.

MORPHOLOGY.

Sclerotization. Female: Podonotal and opisthonotal. Discrete ventro-anal bearing aciculae posterior to anus. Peritrematal reduced, narrowly connected to exopodal IV. Exopodals inconspicuous. Sternometasternal fused to endopodal II and part of III. Single pair of pre-endopodals.

Male: Discrete sternito-genital and ventro-anal, but the latter extends further anterior than in the female so that it also carries setae $/ v 1 . / 22$ and $Z v^{\prime \prime}$ 。

Chaetotaxy. Idiosoma: 1 unpaired, $9 j, 8 z, 8 s, 7 r: 5 J, 5 Z, 5 S, 5 R$: $5 s t: 1$ or 2 unpaired, $3 J v, 3 Z v, 1 S v$.

Legs: Differs from Gamasellus in having an extra postero-lateral on genu III ($2,4 / 2,2$) and tibia ILI ($2,3 / 2,2$).

Other Characters. Female: Deutosternal denticles in 7 horizontal rows. Tectum anterior margin is basically unispinate, the spine being narrow and parallel sided for most of its length, but most of the margin, including the tip of the spine, is multispinulate. Movable cheliceral digit
with 3 teeth. Form of setae on palp genu unknown. All dorsal setae are pilose. Shiclds dull with adhesive exudate so that fragments of the nymphal exoskeleton and other detritus cover the idiosoma of the specimens described. Pretarsus I absent.

Male: Movable cheliceral digit with 1 tooth, and fused at base to attenuated spermadactyl of similar length. On leg 11 only femur seta $a v$ is enlarged into spur.

DISTRIBUTION. Es. The single nominal species has only been recorded from the Transvaal, South Africa.

Found in plant litter on forest floor.
REMARKS. The following single nominal species is included in this subgenus: N. (N.) vandenbergi Loots and Ryke, 1966 b.

Subgenus PODONOTOGAMASELLUS Loots and Ryke
Podenotugamasellus Loots and Ryke, 1966, p. 471 . Type-species: Notosamasellus (Podonotogamasellus) magoebaensis Loots and Ryke, 1966, by original designation.
DI.AGNOSIS. As for genus with the addition of the characters given in the relevant half of the couplet in the key to subgenera of Notogamasellus. Males of this subgenus are unknown.

MORPHOLOGY.

Scifrotization. Female: Similar to that of the subgenus Notogamasellus, except that peritrematal is not narrowly connected to exopodal IV.

Chabrotaxy. Idiosoma: $7 j, 7 z, 7 s, 7 r: 5 J, 5 Z, 5 S, 5 R: 5 s \%: 1$ unpaired, $3 \mathrm{Jv}, 3 \mathrm{Zv}, 1 \mathrm{~Sv}$.

Legs: As Gamasellus.

Otifer Characters, Female: Similar to that of the subgenus Nofogamasellus, except that the form of setae on palp genu is known and the form of the dorsal setae is different. On palp genu, seta all is pilose with 6 short lateral prongs and seta al2 is simple, setose. The dorsal setae are mostly short and peg-like with a central spherical dilation, and the proximal half of the seta is covered by a membranous flap. The vertical seta $j 1$ is lanccolate with a serrate edge and with 1 proximal tooth enlarged so that it is nearly as long as the whole seta.

DISTRIBUTION. Es. Transvaal.
Found in plant litter on forest floor.
REMARKS. The following single nominal species is included in this subgenus: N. (P.) magoebaensis Loots and Ryke, 1966b.

Genus PERISEIUS Womersley

Periseins Womersley, 1961, p. 198. Type-species: Periseius littorale Womersley, 1961 (syn. Cyrtolaclaps hammeni Womersley, 1961), by original designation.
Psammomsclla Haq, 1965, p. 413. Type-species: Psammonsella nobshae Haq, 1965, by monotypy.

DIAGNOSIS. Minute to small mites. Separate podonotal and opisthonotal shields. Ventro-anal shield separate from notal shield but fused to peritrematal and exopodal IV shields on both female and male, and also fused to sternito-genital shield on male. Three pairs of pre-endopodal shields. Some dorsal setae may be pilose or all dorsal setae may be simple, tapered. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV. Pretarsus I pedunculate and smaller than other pretarsi.

REMARKS. Hirschmann (1966) redefined Periseius and transferred Psammonsclla to it with subgeneric status. This concept is followed here, and members of the two subgenera can be distinguished by the following key. The morphology and distribution of members of this genus are given under the subgeneric headings.

KEY TO SUBGENERA OF PERISEIUS

1. Dorsal setae $r 3$ and $Z 5$, and postanal seta, are pilose and spatulate. Female metasternal shield is fused to sternal shield P. (Periseitus)
Dorsal setae $r 3$ and 25 , and postanal seta, are simple and tapered. Female metasternal shield is not fused to sternal shield P. (Psammonsella)

Subgenus PERISEIUS Womersley
Periseíus Womersley, 1961, p. 198. Type-species: Periseius littorale Womersley, 1961 (syn. Cyrtolaelaps hammeni Womersley, 1961), by original designation.

DIAGNOSIS. Small mites with some pilose dorsal setae and female metasternal shield fused to sternal shield.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal, Ventro-anal fused to peritrematal, and both are fused to exopodal IV. Aciculae on ventro-anal, posterior to anus. Exopodals II, III and IV are split. Sterno-metasternal fused to endopodals II, III and IV. Three pairs of pre-endopodals.

Male: Ventro-anal fused to peritrematal, exopodal IV and sternitogenital.

Chal rotaxy. Idiosoma: $6 j, 5$ or $6 z, 5 s, 5 r: 5 J, 5 Z, 5$ or $6 S, 6 R$: $5 s t: 3 / v, 3 \% v, 15 v$.

Legs: As Gamasellus on type-species but an extra postero-lateral on genu $111(2,4,2,2)$ and tibia $111(2,3 / 2,2)$ of an unamed species from North America.

Other Characters. Female: Deutosternal denticles in 7 horizontal rows. Tectum anterior margin basically uninspinate with spinules on sides. Movable cheliceral digit with 3 teeth. On palp genu, seta all spatulate with single prong each side and setal al2 slightly spine-like. Some dorsal setac maty be simple and tapering. but there are always pilose, and piloce and yatulate setace present. Spemathecal ringed tube probably opens neal pontenior paraxial margin of acetabulam IV. Pretarsus I pedunculate and smaller than other pretarsi. Lateral lobes of pulvilli II-IV attenuated and longer than central oval lobes. Amonest dorsial setae on tarsus IV, seta pl 3 is the longest and is lanceolate.

Male: Movable cheliceral digit, with 1 tooth, tind fused at base to slightly longen, but attenuated spermadactyl. On leg II, seta femur as, sometimes seta $p \prime i$, and genu seta a enlarged into spur. Sometimes nonsetous processes on leg II.

DISTRIBUTION. Na: NTb: Am. The three known records are from between the latitudes 25 N and 10 S , being from Biak Island off the north coast of New Guineat. Recile on the Brazilian coast and a record (Emberson, thesis, 1968) of an unnamed species from the Florida Keys, only just north of the tropic of Cancer.

Found in or near littoral zone.
REMARKS. This taxon, when originally established as a genus, contained only the type-species, P. littorale, apparently only known from the deutonymphs. but Cyrfolachaps hammeni adults described in the same paper are now recognized as conspecific with those deutonymphs and hammeni has been chosen as the valid name. The following two nominal species are included in this subgenus: P. (P.) hammeni (Womersley, 1961) combon.: P. (P_{0}) braziliensis Hirschmann, 1966. An umamed species is partly described by Emberson (thesis, 1968).

Periscius hummeni (Womersley) comb.n.

Cyrtolaclaps Itammeni Womersley, 1961, p. 190.
Periselus litnorale Womersley, 1961 , p. 198, synn.
SCI-EROTIZATION. Womersley's (1901) dratwings of the distribution and fusion of the shields on the adults and deutonymphs are inaccurate.

The drawings by Hirschmann (1966) of P. brasiliensis are very similar to the actual sclerotization on P. hammeni. The main differences are to Hirschmann's drawing (Fig. 22VW, 1966) of the female venter. On the venter of the female of P. hammeni there is a narrow fissure of striated cuticle between the genital and the ventro-anal, and there is no indentation on the posterior edge of sterno-metasternal running in behind pore 4, just anterior to seta st4. The important differences between P. hammeni and Womersley's (1961) drawings are that the ventro-anal is fused to the peritrematal in both sexes, the female metasternal is fused to the sternal and the male sternito-genital is fused to the ventro-anal. Also, the deutonymph has a widely separated podonotal and opisthonotal.

LOCALITY. Paratype female (N1968212), paratype male (N1968213) and paratype deutonymph (N1968214) examined: New Guinea; Cladophora socialis and red algae, on stones, intertidal zone, Biak Island, 10.12.1953, col. L. V. D. Hammen, dep. SAM.

REMARKS. A comparison between C. hammeni described only from adults, and P. littorale (should be changed to littoralis because Seius is masculine) described only from deutonymphs in the same collection, as well as a comparison between this material and the drawings of the adults and deutonymph of P. brasiliensis, leaves no doubt about the synonymy of the first two species names. I have chosen hammeni as the valid name for three reasons: it is the name for the adult; the name littoralis is valid for the type species of two other rhodacarid genera (Hydrogamasus and Parasitiphis); the name hammeni has precedence of position in the text. Therefore, despite the name littorale being the first name used for specimens on which the genus was originally based, I have made it invalid.

Sugenus PSAMMONSELLA Haq

Psammonsella Haq, 1965, p. 413. Type-species: Psammonsella nobskae Haq, 1965, by monotypy.

DIAGNOSIS. Minute mites with no pilose dorsal setae and female metasternal shield separate from the sternal shield.

MORPHOLOGY.

Sclerotization. Similar to that of the subgenus Periseius, except that female ventro-anal is more narrowly fused to the peritrematal and the metasternal is entirely separate from the sternal.

Chaetotaxy. Idiosoma: $6 j, 6 z, 5 s, 5 r: 5 J, 5 Z, 5 S, 5 R: 5 s t: 3 J v$, $3 Z v, 1 S v$.

Legs: As Gamasellus.

Othmr Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin basically unispinate with spinules on sides. Movable cheliceral digit with 3 teeth. On palp genu, seta all spatulate with single prong on each side and seta al2 slightly lanceotate. Dorsal setac simple, tapered, and podonotal setae $s, s 2$ and $r 3$ much longer and stouter than other notal setae. Spermathecal ringed tube opens near posterior paraxial margin of acetabulum IV. Pretarsus I pedunculate and smaller than other pretarsi. Lateral lobes of pulvilli II-IV attenuated and mare than twice as long as central oval lobes. Dorsal setae on tarsus IV short except for sela ad2 which is long and setose.

Male: Movable cheliceral digit with 1 tooth (may be small second looth) and fused at base to spermadactyl of similar length. On leg 11. femur scta ay, genu scta ay, tibia seta av enfarged into spurs.

DISTRIBUTION. Na: Pin. All records are from the northem mediterranean coastline or from a smilar latitude on the east coas of North America (Massachusetts).

Fotind in littoral zone.
REMARKS, Hirschmann (1966) transferred Psammonsella to Periserins with subgeneric status. It may later be preferable not to recognize subgenera within this genus. I have seen paratypes of the two species (P. nobske dep. Mrs. Haq's personal collection, P. whusteri dep. SAM, NI968258-N1968268) and Hirschmann's key (1966. p. 5) does not distinyuish between them, so they may be conspecific. The following 2 nominal species are included in this subgenus: P. (P.) mobskele Haq. 1965: $P^{2} .\left(P_{+}\right)$. sehusteri Hirschmann, 1966.

Gicnus PILELLUS gen.n.

Type-species: Cyrtolaclaps (Gamasellus) rykei Hunter, 1967.

1) 1 diNOSIS. Small to average siad mites. Separate podonotal and opisthonotal shields. Ventro-anal shield discrete on female, but lused to stermen-gental, exopodal IV and peritrematal shields on male, and may aho be fused to notal shield. One pair of pre-endopodal shields. Most dornal setice are short and lanceolate, and at least one pair of dorsal setae are pilose. Sctation of both podonotum and opisthonotum is hypertrichous. Spermat thecal ringed tube opens near posterior paraxial edge of acetabulum IV. Pretarsus I pedunculate.

MORPHOLOGY.

Scimbotization. Female: Separate podonotal and opisthonotal. Discrete ventro-anal bearing aciculae posterior to anus. No discrete metapodal. Peritrematal fused to exopodal IV. Split in exopodals II, III
and IV. Stermometavermal fused to endopodal 11 and part of 111 . Single pair of pre-endopodals.

Male: Ventro-anal may be either separate from or fused to opisthonotal, but always fused (0) sternito-genital, exopodal IV and peritrematal.

Chaetotaxy. Idiosoma: 6j, 62 plus 16 or 17: over 60 opisthonotal setac, some paired, some single accessory setac: 5 st : $3 / \mathrm{s}, 3 \mathrm{Z}$, plus 0 or 9 or more.

Legs: As Gamasellus.
Other Characters. Female: Dentosternal denticles in 7 horizontal row's. Tectum anterior margin with central spine with uneven, lateral spinules. Movable cheliceral digit with 3 teeth. On palp genu, seta all with 1 or 4 lateral prongs and seta al2 spine-like or lanceolate. Dorsal setate either lanceolate, pilose of pilone-lanceolate. Shields are dull. Spermathecal ringed tube probably opens near posterior paraxial edge of acetabulum IV. Pretarsus I pedunculate and smaller than other pretarsi. Lateral lobes of pulvilli II-IV are attenuated and longer than central, circular lobes. Amongst dorsal setac on tarsus IV, seta $a d 2$ is the longest and is setose.

Male: Movable cheliceral digit with 1 tooth, and lused at base to similarly shaped spermadactyl, that is subequal in length or longer. On femur II, seta a is enlarged into a spur. while pla is spine-like. Setate of other leg II segments are similar to those on female.

DISTRIBUTION. Sa: ACs. The single nominal species is recorded from Candlemas Island and South Sandwich dalands, but an unnamed species is recorded from Auckland and Comphell Istands by Hunter and Lee (manuscript), dep. BBM.

Found in moss mats.
REMARKS. The only noninal species in Pilellus was previously in Gamasellus. Although it is not congeneric with G. falciger. I could have tramsferred this species to a special species-complex in Achsamasus. Instead, a new genus is established for it, distinguishable from fougamasus by the chatotaxy and form of its dorsal setae. There is one nominal species included in this genus. P. rykei (Hunter, 19(17) comb.n., and an unnamed species is described by Hunter and Lee (manuseript), dep. BBM.

Genus RHODAC'AROIDES Willmann

Rhodacararoides Willmann, 1959, p. 97 Type-species: Rhodacaroides: acgypriacus Willmann. 1959, by original designation.

DlAGNOSIS. Small mites. Separate podonotal and upisthonotal shields. Ventro-anal shield discrete on both sexes. Two pairs of preendopodal shields. Dorsal setate all simple. Location of the spermathecal
ringed tube, if present. is unknown. Spermadactyl fused to base of movable cheliceral digit and runs parallel to it as on most Gamasellini males. Pretarsus I pedunculate.

MORPHOLOGY.

Sclerotization. Female: Separate podonotal and opisthonotal. Discrete ventro-inal. Peritrematal fused to exopodal IV by a narrow strip. Exopodals do not completely encase the peraxial edges of the acetabula. Sterno-metasternal fused to endopodals II and III. Two pairs of pre-endopodals.

Male: Sternito-genital shortened posteriorly so that it does not carry seta $s 15$.

Chaetotaxy. Idiosoma: 6j, 6z, 6s, 5r: 5J, 5Z, 5S, 6R: 5st: 3Jw, $37 v .15 v$.

Legs: Not known, but assumed to be ats Gamasellus.
Other Characters. Female: Nature of deutosternal denticles is unknown. Tectum anterior margin trispinate with large central spine. Movable cheliceral digit with 4 teeth. Although the rows of podonotal setae contain the same numbers as Rhodacarus, their positions are more like some Afrogamasellus, especially in seta $s 1$ being well posterior to seta -1 thereby leaving only 3 pairs of seta on the anterior margin of the podonotal shield. Dorsal setae simple, tapered. Spermathecal ringed tube aperture not known. Pretarsus 1 reduced, but pedunculate and with pulvillus.

Male: Movable cheliceral digit with 1 tooth and fused at base to similarly shaped, but attenuated and longer, spermadactyl. On leg II, femur seta $a v$ genu seta $a s^{\prime}$ and tibia seta av enlarged into spurs.

DISTRIBUTION. Pm. Single record with the original description of the type-species is from the Red Sea coast line, Egypt.

Found in moist soil bordering sea.
REMARKS. Because of a number of characters on the type-species not being known, the diagnosis of Rhodacaroide's is difficult. Neither Willmann nor Schulz (personal communications, 8.1967) were able to locate the types of R. aegyptiacus, but they are now in the possession of Dr. W. Hirschmann who will soon be publishing a redescription of this species. The placing of Rhodacaroides in the Ologamasinae rather than the Rhodacarmae (the members of which it was previously allied to) is speculative. The speculation is made partly because of a number of unnamed species (two partly described by Emberson, thesis, 1968, and two collected by myself in South Australia) which are Rhodacarus-like, but clearly belony
in the Ologamasinae, and do have characters similar to those of R. aegyptiacus. The following single nominal genus is included in this genus: R. aegyptactus Willmann. 1959. Rhoducarus costai, incertae sedis, has been transferred to this genus because it should be in the Ologamasinate, but if is improbable that it belongs in this genus.

Subfamily SESSILUNCINAE subf.n.

Type-genus: Sessiluncus G. Canestrini, 1898.
DIAGNOSIS. Minute to gigantic mites, usually with moderately well selerotized and extensive shiclds. Holonotal shield or more rarely separate podonotal and opisthonotal shields. Ventro-anal shield only fused to notal in one atypical genus; Stylochirus. Peritrematal shicld often separate from exopodal IV shield but if fused to this shield, then it is completely merged with it from level of stigma back. Sclerotization not conspicuously sexually dimorphic. On the female sterno-metasternal shield a line joining setae $s / 2$. 573 and 514 would or would not enclose an angle of less than 95°.

MORPHOIOGY.

Sclerotization. The extent of the fusion between shields is fairly constant amongst species of this subfamily, and except for the fusion of the genital with other shiclds it is nearly always constant amongst females and males of the same species. In cight genera there is a holonotal, although Gamasellevans has a line of demarcation hetween the podonotum and opisthonotum. Paragamasellevems is the only genus with a separate podonotal and opisthonotal, and the opposing edges of these shields are touching. Except in Stalochirus the ventro-anal is separate from the notal. but in some undescribed mates of Amennolataps, where the aciculae are on the ventro-anal, it lies so close to the notal in the region pusterior to the anus that it appears tw be fused to it on superficial examination. Usually the ventro-anal is separate from the exopodals, but in Gamasellevans, where the peritrematal is always reduced and tree posteriorly, a posterior extension of exopodal IV (which may represent the metapodal) may be broadly or narowly fused to the ventro-inall. The peritrematal is free posteriorly in Sessiluncus, Antennolaclaps, Gamasellevans, Gamasitus, the Onchogamasns pumilio-complex and Paragamasellevans. In Solochirus the peritrematal may be free posterinrly or fused to the notal along its entire length. In Gommasellopsis, Onchogamasus commumis and Queenslandolaclaps.s the peritrematal is fused to at least exopodal IV. The exopodals may form a continuous strip, but in Gamascllopsis, Onchogamases commanis and Queconvandolatap:s there is a split in exopodial II. and in Gamasellevans, Giamasitus, the Onchogamasus pumblio-complex and Parugamasellevans there
is a splat in exopodal $1 /$ and 111 . The sterno-metasternal is separate from endopodal IV in most Gamasellopsis species, Paragamasellevans and Siylochirus, but usually it is fused to endopodal IV. There may be a single pair of pre-endopodals or they may be fused to the sterno-metasternat.

Chaetotaxy. Idiosoma: $6 j, 6 z, 5 s, 4$ or $5 r: 5 J, 5 Z, 5 S, 4$ or $5 R$. () or 2 UR: 5 st: $3 J v, 3 Z v, 1$ or $2 S v$. Siylochirus species are exceptional in that they bave a hypertrichous opisthosoma.
1.egs: As Gamasellus except in Sessiluncus, Ciamasellopsis and Gamasitus where there may be between 2 and 7 setae less, and there is always only 1 ventral on genu 111 and IV.

Otmer Charactars. Tectum anterior margin varies from basically unispinate with lateral sponules to trispmate with spinules making structure complex. Fixed cheliceral digit of mates of Sessilumeas, Gamasellevans, P'arasamasellowans and Quecnstandolaelaps carrien tuberele or prosess dorsally. Usually on palp genu seta all is pectimate and seta alz is setose or spatulate, a combination often found in Ologamasinate especially Ologamasini. On palp femur. seta al is on central third in Sessihmems. Giamaschlevans, Gamasellopsis, Onchogamasess commmmin and Stylechirus as in the Rhodacarinae and Tangaroellinate. but oherwise it is on the proximal third as in most Rhodacaridae. The female sternal seta st2. wh and sta are usually nearly in a straight line an in mos Ologamasmae but in Antemnoluclaps. Onchogamasus communis and Qucenskandulachaps a line foining these setac would enclose an angle of less than 95° as in the Gamariphinace. Usually idiosomal and leg setat are simple, setone, but although they are never spatulate they may be pilose. Some Antennoladaps species are the only rhodacarde with pilose sternal setae. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV in Antamolachops and Queenslandoluelaps and probably so in Paragamasellevans species. If pretarsus I present it may be pedunculate or in Sessiluncus, Gamasellevans and Paragamasellevans. the pretarsal sheath I is only long enough to contain retracted clat-complex and is often broady altached at base so that it merges into tarsus.

DISTRIBUTION. Only one genus. Stylechirus, has species oceurring in the Nearetic region and no members of the subfamily lave been colleeted from the Neotropical region. Except for Sessilumens, the other getera are contined to the Southern Hemsphere and apparently only oceur in elther the Ethiopian or the Australian region.

REMARKS. I have confidence in my grouping together of all but one of the geneta in the Sessilmeinae, and that is Sfyluchirus; which is not closely allied to the other genera and is placed in the Sessiluncinae in preference to any other subfumily.

I recognize 9 genera within this subfamily; Sessiluncus, Antennolaelaps, Gamasellevans, Gamasellopsis, Gamasitus, Onchogamasus, Paragamasellevans, Queenslandolaelaps and Stylochirus. Adults of these genera can be distinguished by the following key.

KEY TO GENERA OF SESSILUNCINAE

1. Ventro-anal shield fused to posterior end of notal shield

Stylochirus
Ventro-anal shield separate from notal shield .. 2
2. One ventral seta on genu 1 II $(2,4 / 1,1)$ and genu IV (2, 4 or $5 / 1,1$)

3
Two ventral setae on genu III $(2,4 / 2,1)$ and genu IV (2,5/2, 1) 5
3. Two ventral setae on genu I $(2,6 / 2,2)$ and peritrematal shield fused to exopodal IV shield
Three ventral setae on genu I $(2,6 / 3,2)$ and peritrematal shield separate from exopodal IV shield

4
4. Pretarsus I pedunculate. Exopodal III shield split level with centre or acetabulum
Pretarsus I not pedunculate, having sheath only long enough to contain retracted clawcomplex. Exopodal shield 111 continuous around peraxial edge of acetabulum
5. Peritrematal shield never extends backwards posterior to level of mid-acetabulum IV . ..
Peritrematal shield extends backwards to level of posterior margin of acetabulum IV
6. Peritreme with a series of lateral pockets. Line joining female sternal setae $s t 2$, st 3 , and $s t 4$ would enclose an angle of less than 95°. Male chelicerae normal with spermadactyl running parallel to digits from point of attachment near base of movable digit

Peritreme without a series of lateral pockets. Line joining female sternal setae st 2 , st 3 and st 4 would enclose an angle of more than 110°. Male cheliceral fixed digit with tubercle or process and spermadactyl curving away from movable digit at point of attachment near distal tip
7. Separate podonotal and opisthonotal shields. Seta st 5 on female genital shield is posterior to acetabulum IV. Male seta st5 off sternitogenital shield

Paragamasellevans

Holonotal shield, but usually with clear demarcation line between podonotal and opisthonotal areas. Seta st5 on female genital shield level with posterior edge of acetabulum IV

Gamasellevans

8. Single conspicuous pore posterior to stigma on peritrematal shield. Tectum anterior margin basically trispinate, with central spine narrow at base and spreading to broader, fimbriate tip. Male cheliceral fixed digit with dorsal process and spermadactyl curving away from movable digit at point of attachment near distal tip

Queenslandolaelaps

Two conspicuous pores posterior to stigma on peritrematal shield. Tectum anterior margin basically unispinate although there may be lateral spinules on spine which is broad at base, narrowing to a pointed tip. Male unknown

Onchogamasus

Genus SESSILUNCUS G. Canestrini

Sessiluncus G. Canestrini, 1898, p. 486. Type-species: Gamasus heterotarsus G. Canestrini, 1897, by original designation.

DIAGNOSIS. Small to large mites. Holonotal shield. Ventro-anal shield separate from notal shield but apparently fused to exopodal IV shield on both sexes. Peritrematal shield not fused to exopodal shields. Sternometasternal shield fused to endopodal IV shield and a line joining sternal setae st 2 , st 3 and st 4 would enclose an angle of more than 110°. Spermadactyl fused to base of male movable cheliceral digit and strongly recurved.

One ventral seta on genual III and IV. Pretarsus I not pedunculate, sheath being broadly fused to tassus and only long enough to contain retracted claw complex.

MORPHOLOGY.

Sclerotization. Female: Holonotal. Ventro-anal separate from notal. bearing aciculate posterior to anus and apparently fused to exopodal IV. No discrete metapodal, may be represented in posterior extension of peritrematal. Peritrematal not fused to exopodals. Exopodals II, III and IV form continuous strip. Sterno-metasternal usually fused to endopodals II, III and IV. but may be separate from endopodal IV (as on an unnamed species from Nepal, dep. 13M(NH)), and sometimes fused to the single pair of pre-endopodals.

Male: Sternito-genital. otherwise as female, except peritrematal may extend further back.

ChaETOTAXY, Idiosoma: 6\% $6 \pi, 5 s, 4 r: 5 J, 5 Z, 5 S, 5 R: 5 s f:$ 3Jv.32v.

Legs: Following segments differ from Gamasellus in having ventral or sontimes at postero-lateral seta missing: genu III. (2. 4/1. 1): genu IV. (2,5/l, 1); tibia IV. (2, 4/2, 1 or 2 as for Gamasellus).

Othir Characters. Female: Deutosternal denticles in 8 or 9 horizontal rows. Corniculus may be simple or it may have a paraxial hyaline flange. Tectum anterior margin is trispinate, the central spinc being the largest. Movable cheliceral digit with 3 teeth. On palp genu, seta all finely pilose and nearly level with a simple or slightly spatalate seta al2, On palp femur, al in central third. Dorsal setac, simple or slightly pilose and tapering tip may be coiled. Shields often strongly reticulated or pitted but are shiny Poritreme maly be simoous and also have lateral pockets. On sternum a line joining setac s 22,473 and stt would enctose an angle of more than 110 . Spermathecal ringed tube opening not located in this study, but Athias-Henriot (in press) states that it opens on coxa 111 or coxa IV. Pretarsus I not pedunculate but broadly lused to tarsus and selerotized, so that the large claws appear retractable into tarsus. Lateral lobes of pulvilli II-IV attenuated and shorter than central circular lobes. Amongst dorsal setae on tarsus IV, seta ad2 is the longen. There may be spurs on the femur of leg III and the 1 rochater and femur of leg IV.

Male: Corniculus with hyaline paratial ilange similar to that of femate. Movable, cheliceral digit with 1 or 2 teeth, and fused at base to strongly recurved spermadactyl. Fixed cheliceral digit may have dorsal process. On leg 1I, setae av on femur, genu and tibia enlarged into spurs. Postero-ventral setate on femur and genu may be spines. There may also be spurs on the femur, genu and tibiat of leg III and the trochanter and femme of leg IV.

Figs. 365-372. Sessihuncus heterotarsus (Canestrini).
365.368 and 372. female: 365, soma. dorsum; 366. leg IV (part), dorsum; 367. pretarsus I and tarsus 1 (part): 368 , idiosoma, venter; 372. grathosoma, venter. 369-371, male: 369, idiosomi, venter; 370, leg II (part): 371, cheliceri,

DISTRIBUTION. Em: Pe, Pm: Oi, Om: Am, Ap. From the records of nominal species the distribution of this genus appears to lie around a line running south eastwards from Karg's (1964) record from Hungary (Pe) to Vitathum's (1935) record from the Socicty Islands (Ap), Unnamed species from Nepal, Seychelles, Malaya, Sumatra, Borneo and the Solomon Islands are to be dep. $\mathrm{BM}(\mathrm{NH})$, while Bhattacharyya (1965 and manuscript) has recorded S. oculatus and four unnamed species of Sessilumous from West Bengal, India.

Found amongst plant litter and upper soil layers. One species from cave in the Balkans (PII).

REMARKS. Sessiluncus is perhaps most like the two other genera. Gamasellopsis and Gamasitus, that have a reduced leg setation compared to Gamasellus, but it is atso similar to Onchogamasus. The following 4 nominal species are included in this genus: S. hetcrotarstes (Canestrini, 1897); S. ocularus Vitzthum, 1935; S. cavensis Willmann. 1940; S. hungaricus Karg. 1964. Berlese's S. eremita. S. solitarius and S. latus are not rhodacarids. Four unnamed species are described by Bhaltacharyya (manuseript).

Sessiluncus heterotarsus (Canestrini)

Gamasus heterotarsus Cinestrini, 1897, p. 473.
FEMALE. Fig. 365-368 and 372. Idiosomal length, 620μ. Some of the longer dorsal setae are very slightly pilose, although not figured as such. Leg chaetotaxy differs from Gamasellis on the following leg segments: genu 1II, (2,4/1, 1); genu IV, $(2,5 / 1,1)$: tibia [V, (2, 4/2, 1).

MALE. Fig, 369-37!, Idiosomal length, 620 μ.
LOCALITY, Female (1956.1.22.1) and male (1956.1.22.2) drawn: Indonesia; Bogor, 10-12.1.1954, col. A. H. G. Alston, dep. BM(NH). Male ($37 / 28$ and $37 / 29$) examined: Java, dep. SEAF.

Sessihnncus hmngaricus Karg
Sessilhmous humgaricus Karg, 1964, p. 73.
MALE. Spermadactyl recurved. Leg chactotaxy differs from Gamascllus on the following leg segments: genu III, (2,4/1, 1), genu IV. (2, 5/1, 1).

LOCALITY, Two males (N196873 and N196874) (M. Costa determined associated females as being this species or very similar) examined: Israel; forest litter (Wadi). Mishmar Haenck, 24.4.1967. col. M. Costa, dep. SAM.

Genus ANTENNOLAELAPS Womersley
Antemmaclaps Womersley, 1956b, p. 112. Type-species: Intemnolachaps affinis Womersley; 1956b, by original designation.
Stylogumasus Womersley, 1956b, pr 113, syn.n. Type-species: Sfylogamasus convexa Womersley, 1956b, by original designation.

DIACNOSIS. Small or average sized mites. Holonotal shield, Ventroanal shield separate from notal shield. but closely abuts on exopodal IV shidd or on some males fused to this shied. Peritrematal shield limited in evtent and not fused to exopodal shields. Sterno-metasternal shield fised 10 endopodal IV hield and a line joining sternal setae $s t^{2}$, st 3 and $s t+$ would enelose an angle of less than 95°. Spermadactyl fused to base of male movable cheliceral digit, and if strongly recurved then only datally near tip. Two ventral setae on genua III and IV. Pretarsus I pedunculate or absent.

MORPHOLOGY.

Sclitrotization. Female: Holonotal. Discrete ventro-inal which closely abuts on genital and exopodal IV shield. Small discrete shield bearing only aciculae lies posterior to ants. Peritrematal free posteriorly and limited in extent, not reaching back to level of mid acetabulunt IV. All exopodals fused into continuous strip. Sterno-metasternal fused to endopodals II. III and IV and sometimes to pre-endopodats. Which are a single pair if separate.

Male: Sternito-genital and exopodal IV may be fused or not fused in ventro-imal. Otherwise as female.

Chaetotaxy. Idiosomai 6j, 6z, 5s, 5r: 5J, 5Z, 4.5S, 1.5R: 5sm: $3 \mathrm{~J}, 3 Z \mathrm{v}, 0-2 S \mathrm{~V}$.

Legs: As Gurnasellus.

Other Characters. Female: Deutosternal denticles in 6 to 9 horizontal rows. Corniculus has paraxial flange. Tectum anterior margin is either trispinate or there maly be spinules on lateral spines and centail spine may be trident-like. Movable cheliceral digit with 3 teeth. On palp gena, seta a/l pectinate with 8 lateral prongs and seta al2 spatulate. On palp lemur, seta al in proximal third. Dorsal setae tapering may be simple or pilose. Shields may be pitted or reticulated and usually there is at strongly raised centrat ridec and peripheral rim on sternum, also shields may be either shiny or dull, heing covered by an adhesive exudate. Peritreme with lateral pockets. On sternum, a line joining setae $s t 2$, st 3 and st 4 would enclose an angle of less than $95^{\prime \prime}$. Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV. Pretarsus I pedunculate or absent. Leg setae may have strong spines and av on femur Il and one species is a spine set on a tuherete. Lateral lobes of putvilli II-IV attentated and shomer than central circular lobes. Amongst dorsal setae on tarsus IV, setae ad2, ad3. pd3 and ad 4 may be subequal in length, or seta ad2 or seta pd3 may be the longest and these seta may be simple or pilose.

Figs. 373-382.
373-378, Ahsennoluelups affinis Womersley, male: 373, soma, dorsum; 374, tarsus I, distal lip; 375 , idiosoma, venter: 376 , tarsus IV, dorsum: 377, leg II (part), anterolatus: 378, gnathosoma, venter, 379 and 380 . Gamasitus obscurus Womersley. fenale: 379, stigma and surroundings; 380 , seta $p y^{\prime}$ on femur 11 and setac all and a/2 on palp genu. 381 and 382. Onchogamasus communis Womersley, female: 381. Sligmis and surroundings: 382. corniculus and setae all and a/2 on palp genu.

IEE—RHODACARIDAE

Figs. 383-390. Antennolaclaps convexus Womersley.
383-385, 388 and 390, female: 383 , soma, dorsum; 384, leg IV (part), dorsum; 385, idiosoma, venter; 388, femur II, antero-latus; 390, gnathosoma, venter. 386, 387 and 384 , male: 386 , idiosoma, venter; 387, leg 11 (pari); 389, cheliceta.

Figy. 391-398. Antemmolataps testuthe sp.n..
391-393, 396 and 398, femalc: 391, somd, dorsum; 392, leg IV (part), dorsum; 393, idiosoma, venter; 396, pretarsus I and tarsus [(part): 398 , gnathosoma, venter. 394. 395 and 397. nale: 394. idiosoma. venter: 395. leg 11 (part); 397, chelicera,

Male: Corniculus with paraxial flange or on A. affinis (female not known) it is attenuated and without flange. Movable cheliceral digit with I tooth, fused at base to longer spermadactyl which may be hook-like at tip. On leg If femur seta as, and sometimes $p \cdots 1$, and genu seta av clearly enlarged into spurs. Tibia seta av may be a spine but not so stout as some of the dorsal setae on that segment.

DISTRIBUTION. Aa, An. Besides the records of nominal species there are two females of a possibly unnamed species from near Auckland. New Tealand, and specimens from Lord Howe Island and New Caledonia, to be dep. SAM.

Found in moss and plant litter.
REMARKS. Antemnolaelaps is a distinctive genus, rather different from its most closely allied genera. Although the type-species is unusual compared to the species that was previously placed in Stylogamasus and to the new species, I have preferred to group them all in one genus, because of the similarities in the structure of the peritreme and the ventral selerotization. The following three nominal species are included in this genus: A. affinis Womersley. 1956: A. convexus (Womersley) comb.n. for Stylogamasus convexa Womersley, 1956b; A. testudo sp.n.

Antennolaclaps affinis Womersley

Antennolaclaps affinis Womersley, 1956b, p. 112.
FEMALE. Not known.
MALE. Fig. 373-378. Idiosomal length, 470μ.
LOCALITY. Male (N1968193) drawn: Australia; LF172, moss and plant litter. Brookfield. near Brisbane, Queensland, 7.9.1966, col. D. C. Lee, dep. SAM.

The holotype male (N1968194) and paratype male (N1968195) examined: Australiat: litter, Brookfield, near Brisbane, Queensland, 31.510.6.1949, col. E. H. Derrick, dep. SAM.

Antennolaelaps convexus (Womersley) comb.n.

Stylogamasus convexa Womersley, 1956b, p. 113.
FEMALE. Fig. 383-385, 388, 390. Idiosomal length, 550μ. There is a conspicuous adhesive exudate on the idiosoma and legs of this species. Also the legs bear reticulations dorsally.

MALE. Fig. 386, 387, 389. Idiosomal length 540μ.

LOCALITTY, One female (N1968196) and two males (N1968197 and N1968198) drawn or examined: Australia; LF171, moss. Brooklield, near Brisbane, Queensland, 7.9.1966, col. D. C. Lee, dep. SAM.

The holotype female (1968199) and allotype male (1968200) exammed: Australia: soil litter, Brookfield, near Brisbane, Queensland. 31.5-1.6.1949. col, E. H. Derrick, dep. SAM.

Anternolaclaps testudo sp.n.

Sessilhnces heterotarsus: Domrow, 1957, p. 204, syn.n.
FEMALE. Fig. 391-393, 396, 398. Idiosomal length, 550μ.
MALE. Fig. 394. 395, 397. Idiosomal length, 450\%. Movable cheliceral digit not longer than tixed digit, but has been drawn (Fig. 397) pushed forward by clearing process.

LOCALITY. The holotype female (1968201), allotype male (N1908202), 6 paratype females (N1968203-N1968208) and 3 paratype males (N1968209-N1968211) drawn or examined: Australia; LFI71. moss, Brooklield, near Brisbane, Queensland. 7.9.1966. col. D. C. Lec. dep. SAM.

REMARKS. Note that the new synonymy above is only based on a comparison of this material with Domrow's (1957) drawings, but I have little doubt that the specimens are conspecific and no doubt that they are congeneric.

Genus GAMASELLEVANS Loots and Ryke

Gamaselletans Loots and Ryke, 1967b, p. 212. Type-species: Giamasellevans epigynialis Loots and Ryke, 1967b, by original designation.

DIAGNOSIS. Minute or small mites. Holonotal shield (but there is a complete or broken demareation line between podonotal and opisthonotal parts). Ventro-anal shield separate from notal shield, and may be either separate from all other shields or narrowly fused to a posterior extension of exopodal IV shield (that may in fact be either homologous with the metapodal shield or the posterior extension of the peritrematal on, for eximple, Gamasellopsis, since it bears a pore) or broadly fused to exopodal IV sheld. Peritrematal shield reduced and free posteriorly. Sterno-metasternal shield fused to endopoditl IV shield and a line joining sternal setae $s t 2$, st 3 and st4 would enclose an angle of more than 110 . Spermadactyl fused to male movable cheliceral digit on distal third, where it points away from the tip of digit as an attenuated, curving process. The arthrodial process on the male cheliceral enlarged and spoon-like, being subequal or longer than movable digit. Two ventral setae on genua III and IV. Pretarsus I not pedunculate, sheath being only long enough to contain retracted clatw complex.

MORPHOLOGY.

Scierotization. Female; Holonotal (there is complete or broken linc across middle of shield between podonotal and opisthonotal parts, but holonotal does not break allong it). Ventro-anal may be cither discrete or narrowly fused to a posterior extension of exopodal IV (since this extension bears a pore, it may in fact be homologous with the metapodal or part of the peritrematal) or broadly fused to exopodal IV. Peritrematal reduced and free posteriorly. Exopodals II and III may or may not be split. Stemo-metasternal fused to endopodals II, III and IV. Metasternal region may be partially separated from sternal region by split from posterior margin to near seta st4. Single pair of pre-endopodals.

Male: Sternito-genital not fused to ventro-inal. Ventro-imal fused or not fused to exopodal IV as in female.

Chaetotaxy, Idiosoma; $6 j, 6 z, 5 s, 5 r: 5 J, 57,5 S, 6 R: 5 \mathrm{st}: 5 \mathrm{lv}$, 3Zv. 2 Su 。

Legs: As Gamasellus.
Other Characters. Femate: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin usually basically unispinate with lateral spinules hut may be trispinate, with spinules on lateral spines. Movable cheliceral digit with 3 teeth. On palp genu, chaetomorphy unknown. On palp fomm, seta al in central third. Dorsal setac simple and tapering. P'eritreme whthoul conspicuous lateral pockets. On sternum, a line joining setate st2. st.3 and st 4 would enclose ant angle of more than 110 . Anterior hyaline flap on genital sheld extends forward, with point reaching anterior to seta 4.3 and sometimes nearly reaching seta stl. Spermathecal ringed lube opening not known. Pretarsus I not pedunculate, sheath only long enough to contain retracted claw-complex. Often small processes on femur II.

Male: Corniculus attenuated and longer than on female. Movable cheliceral digit with 1 tooth or no teeth, and fused for most of its length will long curving spermadactyl. Dorsal process distally on fixed cheliceral digit. Arthrodial membrane long and spoon-like (this may be homologous with the extra, fimbriated flap in Qurens/andolaelaps vitathmi). On femur, genu and ibia of leg If there are spurs which are probably modilied antero-ventral selate.

DISTRIBUTION, Es, All nominal species recorded from the Transvaal, South Africa.

Found in pasture soil and evergreen lorest litter.
REMARKS. The Jong anterior hyatine flap on the genital shield and the reduced peritrematal shield in all species, as well as the extensive fusion of the exopodal IV shield to the ventro-anal shield in some species would
seem to make Gamasellevans quite distinctive but two of these three attributes do not oceur in the elosely allied Paragamasellevans, while the unusual male chelicera is very similar to that of Paragamasellevans and Queconslandolaclaps. Therefore Gamaselle'sans may be more closely allied to Qucenstandolaelaps than the characters of the idiosomal venter would suggest. The following 7 nominal species are included in the gemus: G. epigynialis Loots and Ryke, 1967b; G. bispermadactylus Loots and Ryke, 1967b; G. clansi Loots and Rykc. 1967b; G. magoebaensis Loots and Ryke. 1967b: G. reticulatus Loots and Ryke, 1967b; G. spermadacry/us Loots and Ryke, 1967b; G, vandenbergi Loots and Ryke, 1967b.

Genus GAMASELLOPSIS Loots and Ryke

Gamasellopsis Loots and Rykc, 1966a, p. 551. Type-species: Ciamasellopsis curripilus Loots and Ryke, 1966a, by original designation.

D/AGNOSIS. Minute or small mites. Holonotal shield. Ventro-anal shield discrete, being separate from notal hicld. although it may elosely abut on exopodal IV shield. Peritrematal fused to exopodal IV shield. Sternometasternal shield may or may not be fused to endopodal IV shield and a line joining seta 512,513 and $s t 4$ would enclose an angle of more than 110 . The spermadactyl fused to the mate movable cheliceral digit for at least iwo-thirds of its length, and is longer than the digit but similarly shaped. One ventral seta on genua III and IV. Pretarsus I pedunculate.

MORPHOLOGY.

Sclirotization, Female: Holonotal. Discrete ventro-anal bearing aciculate posterior to anus. Peritrematal fused to exopodal IV. No split in exopodal III or IV. Sterno-metasternal either fused to endopodal IV or Io single pair of pre-endopoduls but not to both.

Male; Sternito-genital not fused to ventro-anal.
Chaetotaxy. Idiosoma: 6j, 4 or $5 z, 5 s, 4 r: 5 J, 5 Z, 5 S, 1$ or $2 R$: 5st: 3/v, 3Zv, 1Sv。

Legs: There are 6 or 7 setac less than in Gamasellus, the following segments being different: genu I (2, 6,2,2) , genu III (2, 4/1, 1) ; genu IV (2, 4 or $5 / 1,1$); tibia IV $(2,4 / 2,1)$; tarsus IV $(3,6 / 5,3)$. The seta missing on tarsus IV is pelt.

Other Characters. Female: Detitosternal denticles in 8 horizontal rows. Tectum anterior margin quinquispinate. Movable cheliceral digit with 3 teeth. On palp genu, seta all pilose with over 10 short, lateral prongs and seta a/2 simple, tapering. On palp femur, al in central third. Dorsil setate simple, tapering. Peritreme without conspicuous lateral pockets.

On sternum, a line joining setae st 2 , st 3 and stt would enclose an angle of more than 110°. Tibia I is swollen ventrally and seta $p=1$ may be on a small protuberance. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and smaller than other pretarsi.

Male: Movable digit with 1 tooth, may be considerably shorter thun fixed digit. fused along two-thirds of its length to spermadactyl which is: all least half as long again. On leg II, femur seta ar enlatged into spur. may the other protuberances on femur and genu, but their homologies are unknown.

DISTRIBUTION. Es. All nominal species recorded from Transvaal, Soull Africa.

Found in evergreen forest litter.
REMARKS. Members of Gamasellopsis are very similar to the Sessilamous species of the Pataearctic region although there are a mumber of conspicuous differences such as the spermadactyl hape. the fusion of the peritrematal shield to the exopodal shield IV, the pedunculate pretarsus I and the leg chactotaxy. There are also similarities to Gamasims and Onchogamasus, but the males of those genera are not yet known. The following 4 nominal species are included in this genus: G. curtipilus Loots and Ryke, 1966a: G. Iongipilus Loots and Ryke, 1966a; G. magoebuensis Loots and Ryke, 1966a; G. vandenbergi Loots and Ryke, 1966a.

Genus GAMASITUS Womersley

(iamasitus Womersley, 1956a, p. 531. Type-species: Gamasitms ohscarus Womersley, 1956a, p. 531.

DIAGNOSIS. Large mite. A single female is the only known member of this genus. Holonotal shield. Ventro-inal shield separate from notal shield, but closely abuts on exopodal IV shield. Peritrematal shield not fused to exopodal IV shield and extends as far posteriorly as that shield. Sterno-metasternal shield fused to endopodal IV shicld and pre-endopodal shields, and a line joining sternal setate st 2 , st 3 and stt would enclose an angle of more than 110°. One ventral seta on genual 111 and IV. Pretarsus I pedunculate and subeyual in size to other pretarsi.

MORPHOLOGY.

Sclerotization. Female: Holonotal. Discrete ventro-anal. Small discrete shield bearing only aciculae lies posterior to anus. Peritrematal free posteriorly and reaching back to level of posterior edge of acetabulum IV. Exopodals II and III split, while IV is not split. Sterno-metasternal lused to endopodal II, III and IV, and to pre-endopodals.

Chal:totaxy. Idiosoma: Notum too fragmented to recognize chatolaxy: $5 s t: 3 J v, 2 Z v$.

Legs: Following segments differ from Gamasc/hus in having a ventral seta missing: genu III $(2,4 / 1,1)$: genu IV $(2,5 / 1,1)$.

Oiffr Characters. Female: Movable cheliceral digit with 4 tcelh. Tectum anterior margin trispinate, the lateral spines being quite small. On palp genu, seta all with 7 lateral prongs and seta al2 slightly spatulate. On palp femur. seta al in proximal third. Dorsal setae simple. tapering. Shields shiny. Pcritreme without conspicuous lateral pockets. On sternum, a line joining setae $s t 2, s t 3$ and $s t 4$ would enclose an angle of more than 110 . Spermathecal ringed tube opening not known. Pretarsus I pedunculate and subequal in size to other pretarsi. Femur II with seta $p{ }^{1} 1$ spine-like and on process. Lateral lobes of pulvilli H-IV attenuated and longer than central, circular lobes. Amongst dorsal setae on tarsus IV setae pd. 3 and pelt are the longest and subequal in length.

DISTRIBUTION. Aid. The only record is of the single female from Tasmania, Australia.

Found in moss.
REMARKS. Male Gamasitus are unknown and only one incomplete and fragmented female is known. As observed by Womersley when he established this genus, it is similar to Sessiluncus. The following single nominal species is included in this genus: G. obscurus Womersley, 1950 a.

Gamasilus obscurus Womersley, 1956a
Gamasitus obscurus Womersley, 1956a, p. 531.
FEMALE. Fig. 379, 380. Idiosomal length, 940μ.
MALE. Not known.
I.OCALITY. The holotype fomale (N1968159) drawn and examined: Australia; muss, Mt. Wellington, Tasmania. 2.12.1934, col. V. V. Hickmann, dep. SAM.

Genus ONCHOGAMASUS Womersley

Onchogamasms Womersley, 1956b. p. IOs. Type-species: Onchogamasus communis Womersley, 1956b, by original designation.

DIAGNOSIS. Minute or small mites, only known from the females. Holonotal shicld. Ventro-anal shicld separate from the notal shield, but fused to exopodal IV shield. Peritrematal shield may or may not be fused to exopodal IV shield and a line joining st 2 , st 3 or st 4 would or would not enclose an angle of less than 95 . Two ventral setae on genua III and IV. Pretarsus I pedunculate and subequal in size to other pretarsi.

REMARKS. Onchogamasus was originally established for a single female specimen, similar to members of Gamasellopsis and Gamasitus, and also to the Palaearctic members of Sessiluncus, but, unlike those three generat, its leg chaetotaxy is as for Gamasellus. Unfortunately no males of the two Australian genera (Gamasitus and Onchogamasus) are known and therefore the relationships within this group of genera are unusually uncertain. When trying to place two species, pumilio and quasicurtipilus, in a genus. I decided to put them in Onchogamasus mainly because of their leg chaetotaxy, but as a separate species-complex because of their characters which are different to those of Onchogamasus and similar to those of other genera. Therefore, I recognize the following two species-complexes within this genus, communiscomplex and pumilio-complex, which can be distinguished by the following key. The morphology and distribution of members of this genus are given under the species-complex headings.

KEY TO SPECIES COMPLEX OF ONCHOGAMASUS

1. Peritrematal shield is fused to exopodal shields, which are unsplit. Line joining setae st 2 , st 3 and st 4 would enclose an angle of less than 95°
commmis-complex
Peritrematal shield is not fused to exopodal shields, of which II and III are split. Line joining setae st 2 , st 3 and st 4 would enclose an angle of more than 110
pumilio-complex

COMMUNIS-complex

DLAGNOSIS. Limited within generic diagnosis to small mites. With peritrematal shield fused with all exopodal shields into a single shield, and a line joining sternal setae $s t 2, s t 3$ and st4 would enclose an angle of less than 95°.

MORPHOLOGY.

Sclerotization. Female: Holonotal. Ventro-anal separate from notal but fused to exopodal IV. Aciculae are on small, discrete shicld posterior to anus. Peritrematal fused to all exopodals forming a single shield. Sterno-metasternal fused to endopodal II, III and IV. One pair of pre-endopodals.

Chaftotaxy. Idiosoma: Nolum too fragmented to recognize chactotaxy: 5st: 3Jv, 3Zv, 1Sv.

Legs: As Gamasellus.

Other Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterion margin is unispinate. Movable cheliceral digit with 3 teetl. On palp genu, seta all pectinate with 7 lateral prongs and seta al2 slightly spatulate. On palp femur, seta al in proximal third. Dorsal seta tapering. maty be simple or slightly pilose. Shields slightly shiny. Exopodal process between coxae II and III has dorsal hap. Peritreme without lateral pockets. On sternum a line joining seta st2, st 3 and st 4 would enclose an angle of less than 95 . Spermathecal ringed tube opening not known. Pretarsus I pedunculate and subecual in size to other pretarsi. Laterall lobes of pulvilli II-IV attenuated and longer than central oval lobes. Amongst dorsal setae on tarsus IV. seta pd3 is the longest and slightly pilose.

DISTRIBUTION. Aa. The only record is of the single female from Queensland, Australia.

Found amongst plant debris and soil.
REMARKS. Males of the communis-complex are unknown. Only one squathed and fragmented femate is known. This femate has similarities to Sessiluncus, Gamasellopsis and Gamasitus. The following single nominal species is included in this species-complex: O. commmmis Womersley, 1956 b .

Onchogramasus communis Womersley

Onchogamasus communis Womersley, 1956b, p, 108.
FEMALE. Fig. 381, 382. Idiosomal length, $560 \mu_{.}$Idiosoma covered in reticulations which often consists of wavy lines because of punctattions beside them. Tarsus Il bears comspicuous spines, one is seta ar2, while the two at the distal tip are non-setous. Some leg setae are on slight protruberances, seta ad2 on genu 11 is on a conspicuous protruberance.

MALE. Not known.
I OCALITY. The holotype female (N1968185) drawn and examined: Australiat: soil and plant debris, Brooktield. near Brisbane. Queensland. 21.5.1949-2.6.1949. col. E. H. Derrick, dep. SAM.

PUMLLIO-complex

DIAGNOSIS. Limited within generic diagnosis to minute mites. with peritrematal shield separate from all exopodals, and a line joining sternal setae $s t 2$, st 3 and st 4 would enclose an angle of more than 110°.

MORPHOLOGY.

Sclerojization. Female: Holonotal. Ventro-inal separate from notal but fused to exopodial IV. Aciculac on umall discrete shield posterior to ants. Peritrematal not fused to exopodats or any other shiedds ponteriorly.

Exopodals II and III are split. Sterno-metasternal fused to endopodal II, III and IV. One pair of pre-endopodals which may be fused to sternal.

Chariotaxy. Idiosoma; 6j, 6z, $5 \mathrm{~s}, 5 \mathrm{r}: 5 \mathrm{~J}, 5 \mathrm{Z}, 5 \mathrm{~S}, 5 \mathrm{R}, 2-3 \mathrm{UR}$: $5 s t: 3 J 1.3 \% \nu, 1 S \nu$.

Legs: As Gamasellus.
Ofher Characters. Female: Deutosternal denticles in 6 horiaontal rows. Tectum anterior margin basically unispinate with lateral spinules. Movable cheliceral digit with 2 or 3 teeth. On palp genu, seta all pectinate with 7 lateral prongs and seta al2 slightly spatulate. On palp femur, seta al in proximal third. Dorsal setae simple and tapering. Shields pale. Peritreme without lateral pockets and does not extend anterior to mid acetabulum II. On sternum a line joining setae st 2 , st 3 and $s t .4$ would enclose an angle of more than 110°. Spermathecal ringed tube opening not known. Pretarsus I pedunculate and subequal in size to other pretarsi. Tibia I is dilated distally in area of ventral setac. Lateral lobes of pulvilli 11-IV attenuated and shorter than central oval lobes. Amongst dorsal setae on larsus IV, setae ad2, ad3 and pd3 subequal in length.

DISTRIBUTION. Aa. As recorded below the nominal species are from South Australia and Victoria. Australia.

Found in moss and plant litter.
REMARKS. Males of the pumilio-complex are unknown. The females are similar to those of the Onchogamasus commumis-complex, but there are enough differences, including characters which are similar to those of Gamasitus, for me to consider it worth while to keep them in a separate complex until more is known about these mites. The following two nominal species are included in this species-complex: O. pumilio sp.n.: O. quasicurtipilus sp.th.

Onchogamasus pumilio span.

FEMALE. Fig. 399-404. Idiosomal length, 320μ. The chelicera (Fig. 402) is drawn from a postero-lateral angle, while viewed laterally it would probably appear similar in shape to the chelicera (Fig. 408) of O. quasicurtipilus. Seta Zv3 of the right side is on ventro-anal shicld.

MALE. Not known.
LOCALITY. The holonotal female (N1968186) drawn: Australia: LF97 moss beneath White Mallee scrub, overlooking Formby Bay, Yorke Peninsula. South Australia, 3.11.1965, col. N. McFarland and N. B. Tindale, dep. SAM.

Figs. 399-410. Onchugamasus Womersley.
399-404, pumilio, sp.n., femate: 399, soma, dorsum: 400, pretarsus JI and tarsus 11 (pait): 401, leg IV (part), dorsum; 402, gnathosoma, venter, 403, idiosoma, venfer: 4(1). genu 1, ventral setae only. 405-411, quasicurlipihus sp.n.o female: 405, pretarsus. II and tarsus II (part); 406, soma, dorsum: 407. leg IV (part), dorsum: 408, gnathosoma, venter: 409 , genu 11 ventral setae only: 410 , jdiosoma, venter.

Onchogamasus quasicurtipilus sp.n.

FEMALE. Fig. 405-410. Idiosomal length, 430μ. Instead of the three non-setous spurs at distal tip of tarsus II being equally increased in size, as on O. pmimilio, only the central one is enlarged (Fig, 405).

MALE Not known.
LOCALITY. The holotype female (N 1968187) and paratype female (N1968188) drawn and examined: Australia: LF79, moss and litter beneath tree ferns and Eucolyptus. Otway Ringes. Victoria, 28.8.1965, col. F. J. Mitchell. dep. SAM.

Genus PARAGAMASELLEVANS Loots and Ryke

Paragamasellevams Loots and Ryke, 1968. p. 3. Type-species: Paragamasellevans michaeli Loots and Ryke, 1968, by original designation.

DIAGNOSIS. Minute mites. Separate podonotal and opisthonotal shields. Ventro-anal shield widely separated from all other shields in both sexes, but broader on male where it may include metapodal shields. Peritrematal shields reduced to slim strip between anterior end of peritreme and podonotal shield and therefore not fused to exopodal IV shield. Sternometasternal shield not fused to endopodal IV shield and a line joining sternal setae st2, st3 and st 4 would enclose an angle of more than 110°. Spermadactyl fused to male movable cheliceral digit on distal third, where it points away from the tip of digit as an extremely long, attenuated process. The arthrodial process on the male chelicera similar to that on female. Two ventral setae on genua III and IV. Pretarsus I not pedunculate.

MORPHOL.OGY.

Sclerotization. Female: Podonotal and opisthonotal with facing edges closely apposed. Discrete ventro-anal bearing aciculate posterior to inus. Discrete metapodal. Peritrematal reduced to slim strip between anterior end of peritreme and podonotal. Exopodals do not completely encase peraxial edges of acetabula. Sterno-metasternal fused to endopodal II and part of III. Single pair of pre-endopodals.

Male: Sternito-genital not fused to endopodal IV and not broad enough posteriorly to bear seta st5.

Chaetotaxy. Idiosoma: $6 j, 5 z, 5 s, 5 r: 5 \%, 5 Z, 5 S, 3$ or $5 R$: $5 s t$: $3 \mathrm{~J}, 3 \mathrm{Zv}, 1 \mathrm{~Sv}$.

Legs: As Gamasellus.

Figs. 411-418. Stylochirus G. and R. Canestrini.
411 and 412, S.hatmisphatricus (Koch), female: 411, idiosoma, venter: 412 , gnathosoma, venter. 413-415, S. ratior (Berlese), female: 413, tectum; 414, gnathosoma, venter: 415 , idiosoma. venter. $416-418, S$. ampulliger Berlese, male: 416. tarsus 1, distal tip: 417, femur II, venter; 418, idiosoma, venter.

Other Characters. Female: Deutosternal denticles in 7 horizontal rows. Tectum anterior margin is basically unispinate with lateral spinules. Movable cheliceral digit with 3 tecth. Shape and position of anterolateral setat on palp femur and genu unknown. Dorsal setac tapering. simple or shghtly pilose. Peritreme without lateral pockets. On sternum, a line joining setae $s t 2, s t 3$ and $s t 4$ would enclose an angle of more than 110 What is probably a long, conspicuous spermathecal ringed tube opens near ponterior paratial edge of acetabulum IV. Pretarsus I not pedunculate.

Male: Tectum anterior margin is without lateral spinules ats in female. Movable cheliceral digit with 1 tooth, fused to extremely long spermadactyl along its entire length. When at rest. Iong spermadactyl loops back into pouch lying immediately dorsal to sternum, and reaching back to just posterior to stemal seta st4. Corniculi are longer than on female. On ley II. seta af on femur, genu and libia is enlarged into spur.

DISTRIBUTION, Es. All nominal species recorded from Tramsvaal. South Alrica.

Found in forest soil.
REMARKS. Paragamascllevans is closely allied to Gamasellevans, but with a morphology that is beller adapted for life in the lower soil layers. The following two mominal species are included in this genus: P. michoch Loots and Ryke, 1968; P, vandenhergi Loots and Ryke。1968.

Genus QUEENSLANDOLAELAPS Womersley

Qucenstandulatlup. Womersley. 1956b, p. 109. Type-species: Ome'n.skudelaclaps vitathumi Womersley, 1956b, by original designation.

DIAGNOSIS. Small or average sized mites. Holonotal shield. Ventroamal shield separate from notal shield and fused to exopodal IV sheld on both sexes. Peritrematal shield fused to exopodal IV shield. Sternometasternal shield fused to endopodal IV shiek and line joining sternal setae st2, st3 and 574 would enclose an angle of less than 95°. Spermadacty] fused to male movable cheliceral digit on distal third. Where it points away from the tip of digit as an attenuated, curving process with lateral hyaline llaps. Hyaline process with fimbriated border between arthrodial process and movable cheliceral digit male. Two ventral setae on genual III and \mathbb{N}. Pretarsus I pedunculate and smaller than other tarsi.

MORPHOLOGY.
Sclerotilation, Fenale: Holonotal. Ventro-amal fused only to cxopodal IV. Aciculac on small discrete shield posterior to unus. Nos
separate metapodal. Peritrematal fused to exopodal IV. Exopodal II and III not split. Sterno-metasternal fused to endopodal II. III and IV. Single pair of pre-endopodals.

Mate: Separate sternito-genital.
Chaetotaxy, Idiosoma: 6j, 6z, $5 s, 5 r=53,5 Z, 5 S, 5 R: 5 s t: 3 J \%$ $3 Z v, 2 S v$.

Legs: As Gamasellis.

Other Characters. Female: Deutosternal denticles in 8 horizontal rows. Tectum anterior margin trispinate with central process narrow at base, spreading out to broader fimbriated tip. Movable cheliceral digit with three teeth. On palp genu, seta all pectinate with 7 lateral prongs and seta al2 slightly lanceolate. On palp femur, seta al in proximal third. Dorsal setae tapering, simple or slightly pilose. Exopodal process between coxae II and III has dorsal flap. Peritreme without lateral pockets. On sternum, a line joining setae $s t 2$, st 3 and st 4 would enclose an angle of less than 95 . Spermathecal ringed tube opens near posterior paraxial edge of acetabulum IV, and its junction with a single central sacculus is clear. Pretarsus I pedunculate and smaller than other pretarsi. Lateral lobes of pulvilli II-IV attenuated and shorter than central circular lobes. Amongst dorsal setae on tarsus IV, set pd3 is the longest and setose.

Male: Movable cheliceral digit with 1 tooth, and fused for much of its length with a long, sinuous spermadactyl with lateral flaps. Extra, fimbriated flap between arthrodial process and movable cheliceral digit, and there is a dorsal process distally on fixed cheliceral digit. On leg II, femur setae $a v^{\prime}$ and $p v^{1}$, genus setae $a v$ and $p v$, tibia seta $a v$, modified into spurs or spines. On tarsus II, setal av2 is slightly enlarged into a spine.

DISTRIBUTION, Aia. The only records are from Queensland. Australia.

Found in plant debris and soil.
REMARKS. Although there are differences between the ventral sclerotization of the idiosoma of the single species in Queenslandolaelaps and Gamasellevans, the similarities between the unusual male chelicera suggest that the two genera may be closely allied. The following single nominal species is included in this genus: Q. vitathumi Womersley, 1956 b.

Figs, 419-426. Quecenslantolaelaps vizthumi Womersley.
419-421, 425, 426, female: 419, soma, dorsum; 420, gnathosoma, venter; 421, idiosoma, venter; 425 , spermatheca; 426 , tarsus IV, dorsum. 422-424, male: 422 . idiosoma, venter; 423 (two parts), leg II: 424, chclicera.

Queernslandolaclaps virsthumi Womersley

Queenslandolaclaps vitathumi Womersley, 1956b. p. 109.
FEMALE. Fig. 419-421, 425, 426. Idiosomal length, 630μ.
MALE. Fig. 422-424. Idiosomal length, 550p.
LOCALITY. Females (N1968189) and male (N1968190) drawn: Australia; L,F200, leaf litter, Brookfich, near Brisbane, Quecnstand. 10.5.1967, col. J. A. Herridge, dep. SAM.

The holotype female (N1968191) and allotype male (1968192) cxamined: Australia: soil debris. Brookfield. near Brisbane. Oueensland, 31.5-10.6.1949, col. E. H. Derrick, dep. SAM.

Genus STYLOCHIRUS G. and R. Canestrini
Stylnchirus G. and R. Canestrini, 1882, p. 56. Type-species: Stilochimus rovennensis G. and R. Canestrini, 1882, by monotypy.
Phyiallolacelaps Berlese. 1908, p. 13, syn.n. Type-species: Physalloluelaps. ampulliger Berlese, 1908 , by original designation.
Periphis Berlese, 1914, p. 142, syn.n.. Type-species: Iphis /uemisphuerwems Koch, 1839, by original designation,
Fpiphis Berlese, 1916b, p. 302, syn.n. Type-species: Gamasiphis (Epiphis) rarior Berlese, 1916b, by original designation.
Megaliphis Willmann, 1938, p. 161, syn.n. Type-species: Gamasiphis (Megaliphis) giganteus Willmann, 1938, by monotypy.

DIAGNOSIS. Average sized to gigantic mites. Holonotal shield. Ventro-anal shield fused to notal shield on both sexes. Peritrematal extending well posterior to acetabulum IV, and either free posteriorly or fused to notal shield. Sterno-metasternal shield not fused to endopodal IV shield and a line joining sternal setae st 2 , st 3 and st 4 would enclose an angle of more than $110^{\prime \prime}$. Male cheliceral digits reduced and edentate, the movable digit being fused along its entire length to a much longer, tapering spermadactyl. Two ventral setae on genua III and IV. Pretarsus I is pedunculate.

MORPHOLOGY.

Sclerotization. Female: Holonotal fused to ventro-anal, which is otherwise discrete but closely abuts on exopodal IV shield. Peritrematal only fused to holonotal, sometimes along its entire length. Usually no splits in exopodals but the female of S. minor is drawn with exopodals not completely encasing the peraxial edges of the acetabula. Metasternal may be discrete or narrowly joined to sternal which is only fused to endopodal II. Single pair of pre-endopodals.

Male: Discrete sternito-genital.
Char roisasy. Idiosoma: Not known. other than Sst and opisthosoma is hypertrichous.

Legs: As Giamasellus.
Other Characters. Female: Globular mites, pointed posteriorly, atid with a relatively smatl gnathosoma and attenuated chelicerac, the latter being about as long as the distance from anterior edge of atcetahulun If to posterior edge of acetabulum IV. Movable cheliceral dight with 3 or + teeth. Tectum anterior margin with triangular shaped central proces. On palp genu, setat all and al2 slightly pilose or lanceolate but not simple. On palp lemur, seta al in central third. Dorsal betae simple and short. Shiclds extensively reticulated. Peritreme without lateral pockets and shourt not extending anterior to mid-acetabulum II and may be only as long ath vigma width. On sternum a line joining setace $s / 2, s / 3$ and $s t+$ would enclose an angle of more than 110°. Spermathecal ringed lubes not recognised. Pretarsus I is pedunculate and may be reduced compared to other pretarsi.

Mate: The single well described male is that of S. ampulliger for which the femate is not known (unless S. revennensis is conspecific). so it is diticult 10 compare the sexes. The ditated, bubbous seta at the distal end of tarsus 1 (Fig. 416) maty occur only in the male since this is true for the male of an umbamed Afrogamasellus species described by Lonts (thesis, 1967). The male choliceral digits are reduced and edentate, and the movable digit is lused along its entire length to a stout, tapered spermadactyl which may be lonerer than palps. On leg 11. Remur seta an and tibia seta ay are enkarged into as spur while all the other setae appear setose, and seta ar on the genu is certainly setose although slightly stouter and blunter than seta pe.

DISTRIBUTJON. Na: Pe, Pm. Beside the locality records published with the original descriptions of nominal species. Athias-Henriot (1961a) records S. ampulliser from the Appennino Ligure Mountains. Italy and the Pyrenees Mountains, France.

Found in moss and plant litter.
REMARRS. There is little doubt about the close relationship between all the members of this genus except for one. Unfortunately, the exception is the lype assochated with the oldest available generic name for this taxon, i.e., S. romemonsis. Athias-Henriot (1961a) has pointed out the resemblance hetween the meagre description of S. rovennensis and her thorough redescripdion of Phwallolaclaps ampulliger, suggesting that they might be the same yectien, but not formally recognizing theor synonymy. It can be argued that Berlese should have noticed this resemblance. but the male So mennensis What Pofessor Camestrini sent to him was obscure and fragmented (Berlese,
18926). I have here formally recognized S, momenswis and P. ampulliger as congeneric and therefore Styluchirms is the valid name for this taxon. If any division into subgenera was used, then the ex-members of Megaliphis. the $(w o l$ largest species with the peritreme no bigger than the stigma, would be the best to group into a separate subgenus. This genus is not closely allied to the other Sessiluncinae genera and is placed here for convenience. The following 6 nominal species are included in this genus: S. rowemensis G. and R. Cancstrini, 1882; S. ampulliger (Berlese) comb.n. for Physallolaelups ampulliger Berlese, 1908; S. giganteus (Willmanm) comben. for Mesaliphis giganteus Willmann, 1938: S. huemisphuericus (Koch) comb.n. for Periphis haemisphacricus (Koch. 18.39) ; S. minor (Willmann) comb.n. for Megaliphis minor Willmann, 1953; S. rarior (Berlese) comb.n. for Epiphis rarior Berlese, 1916 b.

Siylochirus rovennensis G. and R. Canestrini

Stilochirus rovennensis G. and R. Canestrini, 1882, p. 56.
FEMALE. Nof figured. Idiosomal length, 940_{μ}. Cheliceral fixed digit is multidenticulate and the movable digit is tridentate, the posterior woth being the largest. Tectum anterior margin with single triangular process. Palps close together, the hypostome being constricted and clearly separated from the base of the palps. Corniculi small ("absent"). Idiosoma strongly convex and pointed posteriorly. with smooth surface and short setae ("unprovided with setac"). Holonotal shield. Ventro-anal shield semicircular. Peritreme short. Reddish brown.

MALE. Not figured. Idiosomal length, 800μ, Cheliceral digits reduced and with elongated spermadactyl directed forward past palps. Leg Il with medium sized process on femur and a small process on tibia.

LOCALITY, Italy; moss, ficlds of Tridentini, Non Valley, Mt. Rovenna, Trentino District, Alps.

REMARKS. This description is culled from G. and R. Canestrini's (1882) and Berlese's (1892c) descriptions of this species,

Stylochirus ampulliger Berlese

Physallolaelaps ampulliger Berlese, 1908, p. 13.
FEMALE. Not known.
MALE. Fig. 416-418. Idiosomal length. 890μ. From the single specimen in Berlese Collection it is difficult to observe any finer detail than what is drawn here. Athias-Henriut $(1961$ at) given a detailed description of conspecitic males.

LOCALITY. The 'tipico' male (75/9, two slides, one leg I being mounted separately) drawn: Italy; Vallombrosa, dep. SEAF.

Stylochirus haemisphaericus (Koch) comb.n.

Iphis haemisphaericus Koch, 1938, 27.16.
FEMALE. Fig. 411, 412. Idiosomal length, 910μ. Gnathosoma bent ventrally, probably obscuring seta hyp4. Part of ventro-anal shield obscured (shown by hatched shading on Fig. 411).

MALE. Not known.
LOCALITY. Two females (148/23 and $151 / 35$, legs, palps and gnathosoma fragments) drawn: Italy; moss in pasture, Cunsiglio, dep. SEAF.

Siylochirus rarior (Berlese) comb.n.

Gamasiphis (Epiphis) rarior Berlese, 1916b, p. 303.
FEMALE. Fig. 413-415. Idiosomal length, 950μ. Holonotal and ventro-anal seta may be hypertrichous. Some dorsal setae on legs as spiny as sternal seta $s t 2$ and slightly pilose at tip.

MALE. Not known.
LOCALITY. The "tipico' female (175/43) drawn: North America; leaf mould, Columbia, Missouri, U.S.A., 1904-1906, col. C. R. Crosby, dep. SEAF (for justification of this data, see Hammen, 1959. p. 24).

Subfamily TANGAROELLINAE subf.n.

Type-genus: Tangaroellus Luxton, 1968.
REMARKS. Since this subfamily contains only a single species and the main function of this paper is to give diagnosis for genera, the characters of the species are listed under the genus heading.

Genus TANGAROELLUS Luxton

Tangarocllus Luxton. 1968, p. 497. Type-species: Tangarocllus porosus Luxton, 1968, by original designation.

DIAGNOSIS. Small mites. Separate podonotal and opisthonotal shiclds. Discrete ventro-anal shields on both sexes, although on male there is no discrete pair of metapodal shields so they may be merged into ventroanal shield. Peritrematal shield not fused to exopodal IV shield. Setation of legs unique within Rhodacaridac in having one ventral seta less than Gamavellas on femur I, one ventral seta more on femur IV, and two dorsal setae less on tarsus IV. Only rhodacarid genus with 2-pronged apotele. Location of spermathecal ringed tube, if present, unknown. Pretarsus I not pedunculate.

MORPIIOLOGY

Sclerotization, Female: Separate podonotal and opisthonotal. Diserete ventro-anal and metapodal. Peritrematal not lused to any other shields posteriorly. Exopodals do not completely encase peraxial edges of acctabulat. Sterno-metasternal fused to endopodal II. Single pair of pre-endopodals.

Male: Sternito-genital. Ventro-anal larger and probably inchuding metapodals. Fusion of peritrematal to podonotal anteriorly is more extensive.

Chaetotaxy, Idiosomat 6j, 4z, 3s, 3r: 4, 4Z, 4S. OR: 5sl: 3JM 2Zv, USv.

Legs: Differs from Gamaseflus in having one less ventral on fenmir I $(2,5 / 3,2)$ and one more ventral on femur IV (1,4/2,0), and in having two dorsal setac (setae ad3 and pd4) less on tarsus IV.

Other Characters. Female: Tectum anterior margin unispinate, Movable cheliceral digit with 3 teeth. On palp genu, setac all and al2 are simple, setose. On palp femur, seta al in proximal third. Apotete 2-pronged in contrast to all other rhodacarid mites which have a 3 -pronged apotele. Most dorsal setac are simple, setose, but some are spatulate No noticeable spermathecal ringed tube. Pretarsus i not pedunculate, shatth only being long enough to contain the retracted claw-complex. Pulvilli II-IV bave two oval lobes. Amongst dorsal setae on tarsus IV, seta phls is the longest and is spatulate,

Male: Movable cheliceral digit with I tooth and fused at base to longer. tapered spermadactyl. Seta plon palp genu is modified into at spur. On leg II, setate ar on femur, genu and tiba are spurs and other setae may be robust spines, larger than the same setae on the female.

DISTRIBUTION. An. Only records are from New Zealand. Found in litioral \%one, usually in the crevices between barnacle cirrapaces.

REMARKS: Tangaroellus is unusual in having both a 2 -pronged apotele and 4 ventral setac on tibia 1 . The chaetotaxy of tibia I is given more weight and the genus is retained in the Rhodacaridae. Because of the structure of the apotele, the unusual ley setation, the reduced idiosomal setation and the ventral selerotization of the idiosomathis genos is considered unusual enough to be placed in at separate subfamily. Luxton (1968) pointed out that there was a good case for establishing a new family group for Tangaroellas. The following singte nominal species is included in this genus: 7 poresus Luxton, 1968. Two paratype fimales (N1968271 and N1968272) and two paratype males (N1968273 and N1968274) examined: New /ealand; among barnacles, littoral zone, Magarine Pont, near Nebon, 5:6.1967. col. G. W. Ramsay, dep. SAM.

SPECIES INCERTAE SEDIS

Nengamasellevans berlesei (Womersley) comb.n.

Qucenslandolaclaps berlesei Womersley, 1956b, p. 111.
FEMALE. Fig. 178-181. Idiosomal length, 520 4 . All shields strongly reticulated. Spermathecal ringed tube possibly opens near the posterior paraxial edge of acetabulum 1 V .

MALE. Not known.
LOCALITY. Two females (N1968105 and N1968106) drawn or examined: Australia: LF171, moss, beside Gold Creek, Brookfield, near Brisbane, Queensland, 7.9.1966, col. D. C. Lee, dep. SAM.

The holotype female (N1968107) examined; Australia; soil litter, [3rookfield, near Brisbane, Queensland, 31.5.1949-10.6.1949, col. E. H. Derrick, dep. SAM.

REMARKS. This species belongs to the Ologamasinae and not the Sessiluncinate which contains Quechslandolaclaps, the genus it was originally placed in. Beyond this I am uncertain of its relationships, but I have referred it to Nergamasellowns as a temporary measure until more data, especially the male morphology, is available.

Rhodacaroides costai (Sheals) comb.n.

Rhodacaris costai Sheals, 1962, p. 85.
FEMALE. The following characters not noted in the original descripfion are listed here. Peritrematal shield is connected by a thickened striation on cuticle to exopodal IV shield. Both tarsi IV are missing, so the setation of this segment is unknown, but otherwise the leg chaetotaxy is as for Gamasellus. Third hypostomal seta nearly level with seta hyp2, both being a similar distance from seta hyp4. On palp genu, seta al2 has a number of lateral prongs. On palp lemur, seta al in proximal third. Spermathecal ringed tube opening not located.

MALE. Not known.
LOCALITY. Holotype female (1961-6-20-2) examined: South America: surface soil, Los Arrayanes, Nuhuel Huapi Reserve, Andes Mountains, Argentina, 2-5.1959, col. C. Delamare Deboutteville, dep. BM (NH).

REMARKS. This species belongs to the Ologamasinate and not the Rhodacarinat which contains Rhodacorus, the genus it was originally plated in, Beyond this I am uncertain of its relationships, but I have referred it to Rhodacaroides as a temporary measure until more data is ávailable.

Hydrogamasellus ubatubaensis Hirschmann, 1966
Gamasellus (Hydrogamasellus) wbatubaensis Hirschmann. 1966, p. 25.
REMARKS. This species from the rocky shoreline, Recife, Brazil, cannot be placed in any established genus with confidence and I have been unable to borrow the type material in order to decide whether or not a new genus should be erected for it. Despite the fact that the peritrematal shield is not fused to exopodal IV shield, I would regard this species as belonging to the Ologamasinate and therefore have left it in Hydrogamasellus as a temporary measure until it is more fully described.

TAXA SIZES AND DISTRIBUTION

Table 1 summarizes the number of species in the supraspecific taxa and the distribution of those taxa amongst the major zoogeographical regions. In the map (Fig. 427) of the zoogeographical regions the minor regions and the abbreviations used for them are given, but these are only referred to in the text under the genera headings. Kerguelenian is mis-spelt in Fig. 427. It should be remembered that the rhodacarid fauna of South America is probably as morphologically diverse as that of Australia, rather than that of North America as suggested by the table. The unnamed species enumerated include only species that have been described but not formally named.

TABLE 1
Sizes and distribution or rhodacarid supraspecific taxa

Taxa	Number of known species		Major Zoogeographical Regions								
	Nominal	Unnamed	N	P	NT	E	0	A	S	AC	Page
RHODACARIDAE (52 distinct genus-group taxa)	220	49	$\underset{(10)}{\mathrm{N}}$	$\underset{(14)}{P}$	$\begin{aligned} & N T \\ & (10) \end{aligned}$	$\underset{(16)}{E}$	$\begin{gathered} \mathrm{O} \\ \text { (6) } \end{gathered}$	$\underset{(27)}{A}$	$\underset{(13)}{S}$	$\underset{(4)}{\mathrm{AC}}$	17
RHODACARINAE	45	12	N	P	NT	E	0	A	-	-	23
Rhodacarus .	17	2	N	P	$N T$	E	0	A	-	-	26
Afrogamasellus.	18	9			-	E	-		-	-	30
Rhodacarellus	9	-	N	p	-	E	-	A	-	-	36
Rhodacaropsis	I	1	N	P	-	E	-	,	-	-	37
GAMASIPHINAE	40	6	N	P	NT	E	0	A	S	-	39
Gamasimhis	16	4	N	P	NT	E	0	A			
Castiphis.	6	-		-	-	-	O	A	S	-	52
Euepicrius	3	-	-	-	-	-	-	A	S	-	55

Table 1-continued
Sizes and distribution or rhodacarid supraspecific taxa-continued

Taxa	Number of known species			Major Zoogeographical Regions							
	Nominal	Unnamed	N	P	NT	E	O	A	S	AC	Page
Gamaselliphis	5		-	-	-	E	-	-	-	-	57
Gamasiphoides	4	2	-	-	NT	E	-	A	S	-	59
Mydrogamasus	4	-	-	P	-	-	-	A	S	-	64
Liclaptiella.	2	-	-	-	-	-	-	A	-	-	70
LAELAPTONYSSINAE.	2	-	-	-	-	-	O	A	-	-	72
Laelaptonyssus	2	-	-	--	-	-	O	A	-	-	72
OLOGAMASINAE	101	20	N	P	NT	E	O	A	S	AC	74
OLOGAMASINI	38	8	-	P	NT	E	-	A	S	AC	83
Ologamasusi......	3	-	-	-	$N T$	-	-	-	-	-	84
Cymiphis .		-	-	-	NT	-	-	A	S	-	90
Geogamasus	4	-	-	-	$N T$	-	-	A	-	-	92
Heydeniella-crozetensis-complex	2	6				-	-	-	S	-	97
dentatus-complex....	6	\bigcirc	-	P	NT	-	-	A	S	C	101
Hydrogamasellus.	8	2	-	-	NT	-	-	-	S	$A C$	110
Neogamasellevans	1	-	-	-	$N T$	-	-	-	-	-	117
Parasitiphis	4	-	-	-	-	-	-	A	5	$A C$	118
Pyriphis	1	-	-	-	-	-	-	A	-	-	125
Rykellus	2	-	-	-	-	E	-	-		-	126
GAMASELLINI	63	19	N	P	NT	E	0	A	S	AC	127
Gamasellus-											
falciger-complex discutarus-complex	18 6	10			二	E		$\begin{aligned} & A \\ & A \end{aligned}$	-	-	130 136
pyriformis-complex.	1	1	-	-	-	E	-	-	-	-	137
Acugamasus-											
punctarus-complex.	4	1	-	-	-	-	-	A	S	-	140
natalensis-complex.	8	1	-	-	-	E	-	-	-	-	143
Allogamasellus	2	-	-	ρ	-	-	-	-	-	-	144
Cyrtolaelaps	6	1	N	P	-	-	-	-	-	-	146
Euryparasitus	2	-	N	P	-	-	-	-	s	-	151
Evanssellus	2	-		-	$N T$	-	-	A	S	-	154
Heterogamasus	3	-	-	-	NT	-	-	-	S	-	156
Iliniphis . . .	1	-	-	-		-	-	A	-	-	157
Laelogamasus	1	2	-	-	-	-	o	-	-	-	159
Litogamasus	1	2	-	-	-	-	-	-	S	$A C$	160
Notogamasellus-											
(Notogamasellus),	1	-	-	-	-	E	-	-	-	-	164
(Podonorogamasellus) .	1	-	-	-	-	E	-	-	-	-	165
Periseins- (Periseius)											
(Periseius) (Psammosella)	2	1	$\stackrel{N}{N}$	$\bar{\rho}$	$N T$	-	-	A	-	-	166
Pilellus.	1	1	-	-	-	-	-	-	S	$A C$	169
Rhodacaroides	,	-	-	P	-	-	-	-	S		170

Table 1-continued
Sizes and distribution or rhodacarid supraspecific taxa-continued

Taxa	Number of known species		Major Zoogeographical Regions								
	Nominal	Unnamed	N	P	NT	E	O	A	S	AC	Page
SESSILUNCINAE	31	4	N	P	-	E	O	A	-	-	172
Sessiluncus	4	4	-	P	-	E	O	A	-	-	175
Antennolaelaps	3	-	-	-	-	-	-	A	-	-	178
Gamasellevans	7	-	-	-	-	E	-	-	-	-	184
Gamasellopsis	4	-	-	-	-	E	-	-	-	-	186
Gamasitus	1	-	-	-	-	-	-	A	-	-	187
Onchogamasus-communis-complex \qquad	1	-	-	-	-	-	-	A	-	-	189
pumilio-complex	2	-	-	-	-	-	-	A	-	-	190
Paragamasellevans	2	-	-	-	-	E	-	-	-	-	193
Queenslandolaelaps	16	-	\bar{N}	\bar{p}	-	-	-	A	-	-	195
Stylochirus............	6	-	N	P	-	-	-	-	-	-	198
TANGAROELLINAE .	1	-	-	-	-	-	-	A	-	-	201
Tangaroellus	1	-	-	-	-	-	-	A	-	-	201

Jig. 427. Zoogeographical Regions (after Vercammen-Grandjean, 1966).

CHANGES IN NOMENCLATURE

The author and date of publication are only given for names that were misidentifications or are preoccupied.

NEW TAXA.
Subfamilies: Gamasiphinae; Sessiluncinae; Tangaroellinae.
Genera: Acugamasus; Caliphis; Cymiphis; Geogamasus; Hiniphis: Litogamasus: Pilcllus; Pyriphis; Rykellus.
Species: Gamasiphoides aitkeni; Parasitiphis aurora; Caliphis calvus; Acugamasus cursor; Gamasiphis fornicatus; Heydeniella goei; Hiniphis himmus; Geogamasus howardi; Euepicrius lootsi; Heydeniella markmitchelli; Onchogamasus pumilio; Onchogamasus quasicurtipilus; Geogamasus skoshi; Antennolaelaps tesíudo.

NOMINA NOVA.
Species: Hydrogamasellus gaussi for Neoparasitus crozetensis Richters 1907; Hydrogamasellus richtersi for Gamasellus crozetensis Richters, 1907.

NEW RANK.
Subfamily: Laelaptonyssinae.
Tribe: Ologamasini.
Genera: Gamaselliphis; Hydrogamasellus; Laelogamasus.
Species: Caliphis tamborinensis.

NEW SYNONYMS.

Genera: Austrohydrogamasus under Parasitiphis; Epiphis under Stylochirus; Megaliphis under Stylochirus; Micriphis under Gamasiphis; Neogamasiphis under Gamasiphis; Periphis under Stylochirus; Physallolaelaps under Stylochirus; Puchihlungia under Laelaptonyssus; Stylogamasus under Antennolaclaps.
Species: Hydrogamasus antarcticus sensu Womersley, 1937 under l'arasitiphis aurora; Gamasiphis australicus sensu Domrow. 1957 under Gamasiphis setosus; Sessihncus heterotarsus sensu Domrow, 1957 under Antennolaelaps testudo; Periseius littorale under Periseius hammeni; Hydrogamasus (Austrohydrogamasus) watsoni under Parasitiphis jeanneli.
REVOKED SYNONYMS.
Genus: Heydeniella not under Gamasiphis; Laelogamasus not under Gamasellus; Neogamasellevans not under Hydrogamasellus. Species: Hydrogamasus littoralis not under Gamasus salinus.

NLW COMBINATIONS. ampulliger (ex Phavallohetaps) widh stylochiras: australied (ex Hydrogumasellus) with Joydeniella; borlesef (cx Quecnstandelaelaps) with Neosumasellowme (undes species incortac sedis) : borcalis (ex Gamasus) with Gamasellus: hrunteus (ex Laclaps) with Parasitiohis: carei (ex Ologamasus) with Ilidhogamaselles; colcoptratus (ex Ologamasus) with Hidrogamaselhes; comexus (ex Sologamasus) with Antomolnelaps; costat (ex Rhodacorus) with Rhodacaroiles (under species incerface sedis): conalis (cx Hydrogamasellas) with Googamasus: croredonsis (ex (iamasollus) with Hydrogamasellns; crosetensis (cx Neoparasimes) with Hydregamaselhns; cymosus (ex Ologamasus) with C.vmiphis: darstensis (ex Gamasellus) with Rykellus: delamarei (ex HydresR(emaselhas) with Geogamasus: dentata (cx Hydrogamaselhns) with Ileydenichla; discutatus (ex Ologamasus) with Gamaselhas: drakins. hergensis (ex Gumasellns) with Acugammsus; dumosus (ex Ologammens) with C'ymiphis: gamasiphioides (ex /lydroganaselless) with Gammaphorales: giganteus (ex Mesaliphis) with Stwhochimes: srahami (cx Gamasellus) with Acusamasus: haemisphaericus (ex Perthbis) with Stylochirus; hammeni (ex Cyrolaclaps) with ferisefles: hickmani (ex Noogamasiphis) with Caliphis; hhhhawcnsis (ex Gomasellus) with Acugamaxus: jeamneli (ex Gamuselless) with Parasiliphis: knysmacrasis (ex Gamasellus) with Acugamasas; leproscele's (ex Ologanamas) with Cymiphis; lisonrothrix (ex Ologgmashs) with Gitmusellus: loricala (ex Gamasiphis) with Heydeniella: macquariensis (ex Hydrognmasellus) with Gumasiphoides; macmanetosus (ex Giamasellus) with Acugamasus; mansoni (ex Ologamuszes) with Comiphis: minor (ex Megaliphis) with Stylochirns: natalensis (ex Cinmmsellus) with Acugramastes: neolasmanicus (ex Gamasellns) will Acusumasus; nkandhlaensis (ex Gomasellus) with Rvkellus: novaeelandiae (ex Neogamasiphis) with Caliphis; mucilis (ex Olngamasus) with Cymiphis; paranatalensis (ex Gamasellas) with - fougamasns; punctatus (ex Gomasellus) with Acugamasus: pyrenoides (ex Ologamasus) wills Pyriphis; aneenslandicts (ex Neogamasiphis) with Caliphis: racovirai (ex Gamasellus) with Hydrogamasellus; rarior (ex Epiphis) with Stylochirns; relara (ex Hydrogamasellus.) with Heydeniella; relicta (ex Hydroganusellus) with Hevdeniclla: rykei (ex Gamusellus) with Pilellus: salimus (ex Hydrogamasus) with Pergamasus (Parasitidne); schusteri (ex llydrosumascllus) with Caliphis; semipunctatus (ex Gemasellus) with Acugamusus: setosus (ex Cyroolechaps) with Litugamasws; somthcoth (ex Ologamasus) with Gamasellus: spurius (ex Euryparasitus) with Cyrtolaelaps; tamborinesis (ex Neogamasiphis) with Caliphis: tindalei (ex Ologamasus) with Gamasellus: salidus (ex Ologamasus) with Cymiphis; virgosus (cx Ologamasus) with Gamasellas: watsoni (ex Ciamaselles) with Acngamasus; matromi (ex (iamasiphis) with Cymiphis.

INCLUDED AVAILABLE GENUS-GROUP NAMES

The names are in alphabetical order. The reference in parenthesis indicates when the genus was first placed in this family if this wats after the name was made available.
Page
Acugamasus new genus 139
Afrogamasellus Loots and Ryke, 1968 30
Allogamasellus Athias-Henriot. 1961 b 144
Antennolaelaps. Womersley, 1956 (Ryke, 1962b) 178
Austrohwdrogamasus Hirschmann, 1966 (newly included) 118
Caliphis new genus 52
Cymiphis new genus 90
Cyrtolaclaps Berlese, 1887 (Evans, 1957) 146
Epiphis Berlese, 1916 (Ryke, 1962b) 198
Euepicrius Womersley, 1942 (Lee, 1966) 55
Euryparasitus Oudemans, 1902 (Evans, 1957) 151
Evanssellus Ryke, 1961b 154
Gamasellevans Loots and Ryke, 1967 184
Gamasellopsis Loots and Ryke, 1966 186
Gamaselliphis Ryke, 1961a 57
Gamasellus Berlese, 1892 (Ryke, 1958) 129
Gamasiphis Berlese, 1904 (Ryke, 1962b) 42
Gamasiphoides Womersley, 1956 (Ryke, 1962b) 59
Gamasitus Womersley, 1956 (Ryke, 1962b) 187
Geogamasus new genus 92
Heterogamasus Traigårdh, 1907 (Lee, 1966) 156
Hetcroiphis Trägărdh, 1952 (Ryke, 1962b) 42
Heydeniella Richters, 1907 (Ryke, 1962b) 96
Hiniphis new genus 157
Hydrogamasellus Hirschmann, 1966 (newly included) 110
Hydrogamasus Berlese, 1892 (Ryke, 1962b) 64
Laelapticlla Womersley, 1956 (Ryke, 1962b) 70
Laelaptonyssus Womersley, 1956 (newly included) 72
Laelogamasus Berlese, 1905 (Ryke, 1962b) 159
Litogamasus new genus 160
Megaliphis Willmann. 1938 (Ryke, 1962b) 198
Micriphis Berlese, 1914 (Ryke, 1962b) 42
Neogamasellevans Loots and Ryke, 1967 117
Neogamasiphis Trägảrdh, 1952 (Ryke, 1962b) 42
Notogamasellus Loots and Ryke, 1966 163
Ologamasellus Berlese, 1914 (Ryke, 1962b) 84
Ologamasus Berlese, 1888 (Ryke, 1962b) 84
Page
Onchogumasus Womersley, 1956 (Ryke, 1962b) 188
Paragamasellevans Loots and Ryke, 1968 193
Parasitiphis Womersley, 1956 (Ryke, 1962b) 118
Periphis Berlese, 1914 (Ryke, 1962b) 198
Periseius Womersley, 1961 (Lee, 1966) 166
Phy'sallolaelaps Berlese, 1908 (Ryke, 1962b) 198
Podonotogamasellus Loots and Ryke, 1966 165
Protolaclaps Trügảrdh, 1912 (Evans, 1957) 129
Psammonsella Haq, 1965 168
Puchihlungia Samsinák, 1964 72
Pilellus new genus 169
Pyriphis new genus 125
Queenstandolaclaps Womersley, 1956 (Ryke, 1962b) 195
Rhodacarellus Willmann, 1935 36
Rhodacaroides Willmann, 1959 170
Rhodacaropsis Willmann, 1935 37
Rhodacarus Oudemans, 1902 26
Rykellus new genus 126
Sessiluncus Canestrini, 1898 (Ryke, 1958) 175
Stylochirus G. and R. Canestrini, 1882 (newly included) 198
Stylogamasus Womersley, 1956 (Lee, 1966) 178
Tangaroellus Luxton, 1968 201

EXCLUDED GENERA

The following genera were placed in the Rhodacaridae when made available or in the publication referred to in parenthesis, but have since been regarded as belonging to other families, a transfer followed here. Panteniphis is the only genus newly regarded as belonging to another family.

Antennoseius Berlese, 1916 (Ryke, 1962b), to Ascidae.
Asca Heyden, 1826 (Ryke, 1961c), to Ascidae.
Digamasellts Berlese, 1905 (Ryke, 1958), to Digamasellidae.
Gamasellodes Athias-Henriot, 1961b, to Ascidae.
Halolaelaps Berlese and Trouessart, 1889 (Evans, 1955), to Halolaelapidae.
Leineria Evans, 1957, to Halolaelapidae.
Longoseius Chant, 1961 (Ryke, 1962b), to Digamasellidae.
Pachyseius Berlese, 1910a (Ryke, 1962b), to Pachylaelapidae.

Pantheniphis Willmann, 1949 (Athias-Henriol, 1968) to Ascidae. This genus was not placed in any family when originally described. but has since been allotted to the Rhodacaridae by Athias-Henriot (1968). It contains one species, P, mirandus, only the female being described when the name was made available (Willmann, 1949), but the mate hats since been thoroughly described by Athias-Henriot (1969). I have preferred to exclude this genus from the Rhodacaridae, transferring it to the Ascidac, mainly on the basis of three characters (reduced leg setation with only 12 setae on tibia 1 , 2 -pronged apotele, inconspicuous enlarging of setae on male leg II with only setat an on femur slightly enlarged to a short, blunt spine) which all occur on members of the Rhodacaridae, but rarely, and never logether.
Protogamasellus Karg, 1962 (Karg, 1965), to Ascidae.
Saimdidicria Oudemans, 1939b (Ryke, 1961), to Halolaelapidac.
Saprolaclaps Leitncr, 1946 (Evans, 1957), to Halolatapidac.
Trachygamasus Berlese, 1904. (Ryke, 1962b), to Parasitidae.

ACKNOWLEDGMENIS

1 lm indebted tu Dr. R. V. Sultheoth, Messrs. P. F. Aitken. H. M. Cooper, G. P. Gruss, G, W. Howard E, J. Marlyn, I. W. Miller, N. MeFartand, 1², J, Mitchell, N. B. 'Tindale and Miss J. A, Herridge for kindly collecting litter and moss containing mites, and to Drs. S. K. Bhattacharyya, M. Costa, J. Haq, W. Hirschmann. I'. E. Hunter, K. H. Hyall. D. E. Juhnstun, E. Kjellander, M. Luston, D, Macfarlane, M. Mrciak, F. Pegaraamb, G. Rack. K. Samsinák. E. Schulz. J, G. Sheals, M. Sellnick, C. Willmann and T. G. Wood for theit generous assistance and in some cascs for either making available mites for study or for their gifts of mites.

1 unt also grateful to the Science and Indusiry Fndowment Fund of the Commonwealth Scientilic and Indmstrisl Research Organization and to the Mark Mitchelt Research Foundation for putting at my disposal funds which allowed me to travel to Europe, and to Professor R. Zocchi, Director of the Stazione de Eintomologia Agraria. Florence and The Trustees of the lsilish Muscum (Natural History). London fur permitting me to work in their respective establishments.

Special thanks for their encouragement, assistance, discussion and eriticism during the preparation of this paper are due to Drs. C. Athias-Henriot. W. P. Crowernft, R. M. Emberson, G. O. Evans, W. G. Inglis, G. C. L.oots and Mr. G. R., Gross.

My greatest debt of gralitude is to Mrs. Brendat Head for inking in all my drawings of particular species and for drawing Figs, I 2, 3, 4 and 427, and also to Mr8, Joan Murphy for patienlly typing this manuscript.

REFFRENCES

André, M. 1947: Croisiêre dlf Bougainville sux îles australes fruncaises, XVII. Acaricns. Me'm. Mfsis. nath. Hist, mur, Havis, 20: 65-100.
Aksenenko. G. Re, 1963: Fauna of ectoparasites of rodents and insectivores in the Kula Peninsula. Trudy. vocmmo-med. Akod. im. Kirosus 149: 98-107 (in Russian).
Alhiasolfenriot, C.. 1961a: Physalluinclaps ampulliger Berl.. et Gamasudes cabylus n.sp. (Parasitiformes: Laclaplidae. Patasitidne). dewrolugia, 3 (3): 256-264.

Alhias-flenriot. C., 1961b: Mesustigmates (Urop.excl.) édaphiques méditerranćens (Acaromorpho, Anactinotrichida) (collect. Prof. H. Franz et C. Athias-Henriol), Première Série, Acarologia, 3 (4): 381-509.
Athias-Hentiot, C., 1968: Observations sur les Pergamasus IV. Un essai de coordination de le taxonomie et de la chorologie du sous-genre Pergamanus s.s. (Acariens Anacinotriches, Parasitidae). Acarolugia. 10 (2): 181-190.
Athias-Henriot, C. 1969: Coniribution aux peuplements acarologiques des hotopes terrestres humides medioeuropéens: Observations sur le genre Panteniphis Willm (Mésostigmates, Rhodacaridae). Rev. Ecol. Biol. Sol., 6 (1): 69-78.
Athia-Henriol, (${ }^{\circ}$, (in press): L'appareil d'insémination laclapoide (Acariens anatinotriches: Lielopoidea). Premiere observations. Possihilité d'emploi à des fins laxonomiques. Bull. scient. Bowrgogne, 25.
Baker. LE. W. and Whaton, G. W. 1952. An Introduction to Acarology. Macmiltan Co.e New Yurk. $\mathrm{f}: 1-465$.
Halugh. J., 1963:2: Soil mites, equivalent for the northern and southern hemispheres. Jhb. Cimgr. Zonh., 16, Washingtom, P. 237.
Bafogh, J., 1963b: The Zoological results of Gy. Topatls Collectings in South Argentina. Abmis hisp.-nat. Mius, nath. hung., 55: 487-496.
Banke, N. 1910: New American Acarina, Proc. chn. Soc. Wash., 12: 2-12.
Banks, N., 1916: Acarians from Australian and Tasmanian Ants and Ant-nests, Iranso R. Sine. S. vilust. 40: 224-240.
Berlese, A., 1887 a, b or $1892 \mathrm{a} . \mathrm{b}$, c: Acari, Myriopoda el Pseudoscorpiones hucusque in ltalia reperta. Padua. 1887a: Fasc. 39, No. 4. 1887b: Fasc. 44, No. 5. 1892a: Fasc. 64. No. 3. 1892b: Fasc. 68. No. 5. 1892c: Fasc. 70, No. 13.
Berlese. A., 1888: Acari Austro-Americani quos collegit Aloysius Balzan. Bull. Suce ent. imil: 20: 171-222.
Benlesc. A. 1892d: Acari Myriopoda et Scorpiones bucusque in ltalia Reperta. Ordo Mesostigmata (Gamasidae). Padua.
Herlesc. A., 1904a: Acari nuovì. Manipulus II. Rerlia, 2: 257-280.
Berlese, A.e 19()4b: Diagnosi di alcune nuove specie di Acan italiani, mirmecolili e liberi Zonol. Ans. 27: 12-28.
Hetlese. A., 1905: Acari movi. Manipulus IV. Redia, 2: 154-174.
Berlese. A., 1906: Munographia del genere Gamasus Lalr. Redia, 3: 65-304.
Berlese. A. 1908: Elenco di generi e specie nuove di Acari. Redia. 5: 1-15.
Rentese, A. 1910a: linta di nuove specie e nuovi generi di Acari, Redia, 6: 242-271.
Berlese, A., 1910b: Brevi diagnosi di generi e specie nuovi di Acari. Redia, 6: 346-388.
Berlese, A., Iश13a: Acari nuovi, Manipulus Vdf-VIlf. Norliw, 9: 77-111.
Berlese, A., 1913b: Acarotheca Italica. Fasc. 1-2. M1. Risci, Firenze.
Berlese. A. 1914: Acari nuovi Manipulus 1X. Redla, 10: 113-150.
Berlese. A.4 1916a: Centuria seconda di Acari nuovi. Reclia, 12: 125-177.
Berlese, A., 1916b: Centuria terza di Acari nuovi. Redid, 12: 289-338.
Berlese, A. 1918: Centuria quarta di Acari noovi. Rediu, 13: 115-192.
Berlese, A., 1920: Centuria quinta di Acari nuovi. Redia, 14: 143-195.
Rerlese. A., 1923: Centuria sesta di Acari nuovi. Redia. 15: 237-262.
Berlese. A. and Trouessart, E., 1889: Diagnoses d'Acarjens noveaux on peus connus. Bull. Bihlioth. Sci, Owest, 2: 121-143.

Bhathacharyya, S. Ko. 1965: Studies on Indian Mites (Acarina: Mesomigmata), Parl 1. Proce, zont, Sore, Calculfer, 18: 149-154,

Bhattachatyya, S. K. 1966; Studies on Indian Mites (Acarina; Mesostigmata), Part 3. Zool. Anを... 177: 151-157.

Bhattacharyya. S. K., 1968: Studies on Indian Mites (Acarina: Mesostigmata), 6. Six records and descriptions of nine new species. Accrofogia, 10 (4): 527-549.
Bregetova, N. (i., 1967: Ontogenesis in the Gamasid Mites as a criterion for the execution of their natural system. Farazifologiga, 1 (6): 465-479 (in Russian).
Hotier, G. D. and Usinger, R, L., 1963: Insects and other invertebrates from Laysan Indand. Aloll Reseath Bull, 98: 1-30.
Camin. .I. H. 1953: Observations on the Life History and Sensory Behavior of the Snake Mite, Ophomysas matricis (Gervais) (Acarina: Materonyssidae). Chicoged Acoul. Se', spece, Publs, 10; 1-75.

Cancstrini, G., 1897: Nuovi Acaroidei della N. Guinead. Termesactr. Fiioi. 20: 461-474.
Cunestrini. G., 1898: Nuovi Acaroidei della N, Guinca. Természerr. Fiba, 21; 480-487.
Canestrini, G, and Canestrini. R., 1881: Nuove specie del genere Gramasus. Ahi Jsf. veneto Sci. (5), 7: 1077-1086.
Canestrini, G. and Canestrini, R., 1882: 1 Gamasi italiani. Monogratia, Padua, pi 1-80,
Chanf, 1). A., 1961: A new genus and species of smite in the family Digamasellidae Fivans (Acarina). Accrologier, 3 (1): 11-13.
Conreman. J., 1943: Note sur la faune des HauterFagnes en Relgique (I), XI. Acariens (Parasitiformes) (2). Bull. Mus. X. HiM. naf. Betga 19 (63): 1-2K.
Costia. M.. 1961: Mites recovered from the nests of the Levant vole (Micromus gucnthenl) in Isracl. Ann. Mag. nat. Hist. Ser. 13, 4: 257-282.
Conta, M., 1966a: The present stage of knowledge of Mesostigmatic Mites in Isfacl (Atari, Mesostigmata). Isruel J. Zoote, 15 $+69-82$,
Costa, M.. 1966b: Notes on Macrochelids associated with manure and coprid beetles in Israel. I. Matrocheles rubustulus (Berlese, 1904), Development and Biology Acorcologier, 8 (4): 532.548.

Costa, M, 1968: Notes on the genus /femipheroveims Evans (Acari: Mesostigmata) with the description of a new sprecies from Israch, J. mat. Hisp., 2: 1-15.
Domrow, R.。1957: Some Acarina Mesostigmata from the Great Barrier Recf. Proc. Linn Sere. N.S.lV., 81 (3): 197.216.
Dosve, G.. 1958: Die Spermathecae, ein zusätzliches Bestimmungsmekmal hei Rathmilben (Acar., Phytoseidae.) Pflanacnschutarerichte, 20 (1-2): 1-11.
Dosse, G. 1959: Uber den Kopulationsvorgang bei Rathbmilben aus der Galtung Typhledfomms (Acar., Phytoseidae). I'flanzenschuzherichte, 22 (8-9): 125-133.
Emberson. R. M.. 1967: Two new species of Gumaselfon Berlese (Mesostigmata: Rhoda. caridae) from Canada. Acarologia, 9 (2): 293-303.
Limberson, R. M.. (thesis, 1968): The Mesostigmata of certain coniferous forest sorls in Western Quebec, with it preliminary accumat of the North American Rhudacaridac (Acarina), Unpublished Ph.D. thesis, McGill University, Montreal, Cithada.
Evans, G. O., 1955: A revision of the British mites of the genus Veigaia Oudemans (Mesostigmata-Veigaiaidate). I'roc. zool. Soc. Lund., 125: 569-586.
Evans. C. O., 1957: An Introduction to the British Mesostigmata (Acarina) with keys 10 families and genera. J. Linn. Suc. (Kout.). 43: 203-259,
Evans, O. O., 1963: Observations on the chactotaxy of the legs in the frec-living Gamasina (Acari: Mesostigmata), Hulh. Rr, Alms, Muh, His\%. (Zerol,), 10 (5): 277-303.

Evans, G, O, (in press): The chaefotaxy of tarsi of legs II-IV and the classification of the Mesostigmala. Proceedings of the InH_{4} Congr Acarology, 2, Nominghrun.

Evams. G, O. and Till, W. M2, 1965: Studies on the British Dermanyssidas (Acurit Mesostigmata) part I Extemal Morphology, Bull. Br. Mfus. hut. /l/ar. (Zomo), 13 (8): 249-294.
Fain. A1, 1966; Glandes coxales ef fémorales chez les acariens du groupe des mesostigmates. Acorrologia, \& (1): $1-8$.
Fux. C. J. S.. 1967: Effects of several chlorinated hydrocarion insecticides on the springtails and mites of grassland soil. J. ecoh, EHf. 60: 77-79.
Fox. 1., 1949: Five new mites from rats in Puerto Rico. Florida Ent., 32 (1): 37-40.
Glynne-Willitios, J. and Hobart, J., 1452: Studies on the crevice fatina of a selected shore in Anglesey. Prone. zexol. Soc. loond., 122: 797-824,
Halherf, J. No. 1915: Clare Island Survey, Part 39. Arachnida. Section II Terrestrial and Marine Acarina. Prone K. If. Acoul., 31: 45-136.
Halaskova. V., 1958: Gamavellus siherstris n.sp. eine neue Mibenart aus der Tschechoshowakei (Acari). Vésf. csl. zuol. Spol., 22 (4) $\div 347-352$.
Halaskova, V., 1959: Zur Kenalnis der freilebenden Gamasiden der Tschechoslowakei I. (Acarina, Parasitiformes). Cas. est. Spol. ent., 56 (1): y7+108.
Hammen, L. Vits der, 1959: Berlese's primitive oribatid mites. atoh Ferf. Leriden, 40: 1-93.
H1iq, J. 1465: Records of some interstitial mites from Nobska Beach logether with a description of the New Genus and Species Psammonschla nobskac, of the family Rhodacaridate (Acarina Mesostigmata). Acarolosia, 7 (3): $411-419$.
Heyden, G. vos, 1826: Versuch einer systematischen Eintheilung der Acariden. 1sis, 18 : (61)X-613.

Hirschmann, W. 1957: Gangsystematik der Parasitiformes. Teil 1. Rumptbehaarung und Ruckenliaichen. Acarolugic, SchrReihe vergl. Milbenk., Fïrth, 1: 1-20.
Hinschmann. W. 1959: Gangsystematik der Parasitiformes. Teil 2. Mundwerkheuge und Hypostombestimnungstafeln. Acarologie. SchrReihe Vergh, Mibonk., Firsh, 2: 1-23.
Hirschmann. W., 1962: Gangsystemathik der Parasitiformes. Tcil S. Gamasiden. Abaroleght', SchrReihe vergl. Milherk.. Fiomh. 5: 1-56,
Hirschmann. W., 1966: Gangsystematik der Parasitiformes. Teil 10-15. Acurohenie, SchrRethe vergl. Milbenk.. Fiarth. 9: 1-25.
Hirschmann. W., 1968: Gangsystematik der Parasitiformes. 'Teil 32-36. Acarolegire. SchrRethe vergh. Milhenk., Fïrth, 11: 1-23.
Holymann. Chro. 1969: Die Familie Parasitidac Oudemans, 1901. Acarologit. SchrReile vergl. Milhenk., Fiirth, 13: 3-54.
Mull. I. Fi.., 1918: Terrestrial Acari of the Tyne Province, Traths, Mas. Ms\% Sire, Nermhumb, N. Ser., 5: 13-88.

Honter. 1P. 12. 1967: Rhodacaridae and Parasitidac Mites (Acarina: Mesosligmata) collected by the British Antarctic Survey, 1961-64. Br. Alltare. Surl. Bull. 13: 31-39.
Ishikawn, Ki, 1969: Taxonomic Investigations of Free-living Alite, in the Subalmine Fores of Shiga Heights IBP Area. 1. Mesostigmata (Pitl 1). Bull. Muln. Sci. M1/14. Tokyo. 12 (1): 39-64.
Johnstun. D. 12. 1968: An Allas of Acari. Part 1, The Fumilies of Parasititormes and Opilioacariformes, Acarology Laboratory, The Ohio State University, Columbus, p: 1-110.
Karg, W., 19til: Zus Systematik der Rhodacaridae Oudemans, 1902 (Acarina, Parasitiformes). Zoul. Auz, 166: 127-135.

Kirg. W., 1962: Zur Systematik und postembryonden Entwisklung der Gamasiden (Acarina, Parasitiformes) landwirtschaftlich genutzter Boden. Alilf. zowh. Mus. Berl., $38 \div 23-119$.

Karg, Wo, 1964: Systematische Untersuchungen zwei eigenarliger neuer Gamasiden-Arlen (Acarina, Parasitiformes) ats der Bodenkrume. Opusce zereol, Butupest, 5 (1): 69.75.

Karg, W., 1965: Larvalsystematische und Phylogenetische untersuchung sowie revision des systems der Gamasina Leach, 1915 (Acarina, Parasitiformes), Miff. iunl. M1us. Bert., 41 (2): 193-340.
Khudyakov, 1. S., 1963: Fauna of ectoparisites of mammals in the foets of infectious hatmorthagic nephroso-nephritis in the south Primorye. Trmly srmmon-med. Aknd. im. Kirova, 149: 108-121 (in Russian).
Kuch, C. L... 1839; Deutschlands Crustaceen, Myriapoden und Arachniden. Heft 24. F. Pustet, Regensburg.
Koch, L.. 1879: Arachniden aus Sibirien und Novaja Semlja. K. sernska Vmonskikad. IIandl. 16 (5): 1-136.

Kramer, P., 1848: Hamburger Magahaensische Sammelreise. Acaridén. T.. Friederichsen, Hamburg, $p=1-40$.
Laboulbène, A. 1851: Description de quelques Acariens et dithe Hydrachne. Anmls inc. confo, Fr., (2): 295-303.
Lee, D. C., 1966: New species of Ologamusus Berlese (Acari: Rhodacaridae) from Australía and New Zealand. Reco. So fust. Mhe. 15 (2):205-235.
Lee, D, C. 1967: Hérerogemasus Trägardh (Acari: Rhodiacaridae), including the subgenus. Fivmiscllus Ryke, stat.n.+ Rec. S. Aust. M1us., 15 (3): 497-512.
Leitner, E., 1946: Zur Kenutnis der Milbenfauna auf Dïngerstitlen. Zenthf, Gesamrgeh. E゙ルA., 1: 129-156.
Lindquist, E. E. and Eivans, G. O. 1965: Taxonomic concepts in the Ascidae, with at modified setal nomenclature for the idiosoma of the Gamasina (Acarinat Mesostigmatit). Mem. Ent. Suc. Can. 47: 1-64.
Lnots, G. C., (thesis, 1967): Die samestelling en verspreiding van die Rhodacaridae (Acari) in the Etiopiese wyk. Unpublished D.Sc. thesis, Potchefstroom University for C.H.E., South Africa.

Loots, G, C., 1968: Afrosumesellus leberochsis, a new rhodacarid mite (Acari: Mesostignlata) from Central Africal. Revile Zosit. Bot. afr., 78 (3-4): 365-373.
Luots, Q. C. 1969: The Iefrasfigma species group of the genus A/ragamasellus (Acarri: Rhodacaridae) from Central Africa. Revae Zool. Buf. ufro. 79 (3-4): 359.385.
l.oots. G. C. (in press): Notes on khoducarus Oudemans and its related genera with descriptions of new species from the Ethiopian region. Publo cult. Co. Diam. Ahg., Lishon.

Loots, G. C. and Ryke, P. A. J. 1966a: Gumasellopsis, a new genus of Rhodacaridae (Acasi) from Forest Soil in South Africit. Acrombgin, \& (4):55I-565.
Lnots, G. C. and Ryke, P. A. J., 1966b: A new genus and two new subgenera of Rhodacaridae (Acari) from South Arrican Forest Soils. Anh. Mag. nat. Hirp. Ser. 13. 8: 465-475.
I.oots, G. C. and Ryke, P. A. Jo, 1967a: Neogamaselferams, is new genus of Rhodacaridac (Acari) from Argentina. Neotropica. 13 (40): 13-18.
Loust, G. C. and Ryke, P. A. J., 1967b: Gamascllevans, a new gents of Rhodacaridate (Acari) from South African soil. Jo cht. Sise. sth. Afro, 30 (2): 212-241.
Loots, G. C. and Ryke, P. A. J. 1968: Two new genera of phodacarid mites (Mesostignata: Acari) from soil in the Ethiopian Region. Werenskaplike lisdretes van dis Poll. Dive C.ll.O., Reeks B: Namumerenshappe, 1: 1-16.
l.uxton, M. 1967: Two new mites Prom the rocky shore of North Auckland. N.Z. J1. mur. Freshard. Ress, 1: 76-87.

Luxton, M., 146x: A new genus and species of litioral mite (Acari: Mesostigmata) from New Zealand. N.Z. J. mur. Freshwat. Res.. 2: 497-504.
Michacl, A, D. 1886: Observations upon a species of Gamasus supposed to be unrecorded, J. Quekent microsc. Club (2), 2: 260-268.

Michacl, A. D., 1892: On the variations in the internal anatomy of the Gamasina espectally in that of the genital organs; and their mode of coition. Trans. Limu. Sens. Limd. (Zonol., 2) 5: 281-317.

Oudemans, A. C., 1902a; New list of Dutch Acari, second part. Tijdsthe Eut., 45: 1-52.
Oudemans, A.C., 1902b: Notes on Acari, fourth series. Tijdschr. Ned. dirkk. Vereen. (Series 2). 7 (34): 276-311.

Oudemans, A. C., 1905: Acarologische Aanteekeningen Xix. Ems. Bert, Amsi., 2: 4-12.
Oudemans, $A_{i} \mathbb{C}_{1}$, 1912: Acarologische Aanteekeningen XLII. Emt. Ber., flmy. 3: 260-265.
Oudemans, A. Cu4 1923: Studie over de sedert 1877 ontworpen systemen der Acari: nienwe classificatic; phylogenetische beschouwingen. Tijulschi. EMH., 66:. 49-85.
Oudemans, A. Cor 1939a: Neu Funde auf dem Gebiete der Systematik und der Nonenklitur der Acari. III. Zool. Anzer 126 (1-2): 20-24.
Ondemans. A, C., 1939b: Neue Funde auf dem Gebiete der Systematik und der Nomenklatur der Acari, IV. Zonol. Anz.. 126 (7-8): 195-201.
Hearsc. A. S. 1946: Observations on the microfauna or Duke Forest. Ecol. Momogr., 16t $127-150$.
Richters. F., 1907: Die Fauna der Mousrasen des Gausbergs und ciniger Sudicher Inseln. VIII. Milbeth. Deutsche Sudpolar-Expedilion 1901-1903. 9, Zoul., 1: 278-302.

Rodigucz, J. Gi. and Ibarra, E. L.. 1967: Ecological studies of mites found in sheep and cattle pastures. 11. Distribution patterns of mesostigmatid mites. Am月. inh. Six. Am. 60: x08-812.
Ryke, K. A. J., 1958: On the identity of Gamasellus falaiger (\mathcal{O}, if $\mathrm{R}_{\text {. Cimn. }}$) the type species of the genus (Acatina: Mesostigmata). Enfomologisp's mon. Mag. 94: 121-124.

Ryhe, J. A. 1, 1961a: Gamaselliphis, it new subgenus of the genus Cyrtoletaps Berlese (Acarina: Mesossigmatat Rhodacaridae). Anh. Natal Mfus., 15: 99-108.
Ryke. P. ^. J. 1961b: Rivanswllus, a new genus of the family Rhodacaridae (Acarina: Mesostigmata). Acurologide, 3 (3): 245-244.
Ryke. P. A.J., 1961e: A review of the genus Asca von Heyden with descriptions of new specics (Acarina: Mesostigmata: Rhodacaridae). Zionl. Anze; 167 (3-4): 127.135.

Ryke. P. A. J. 1962it: The interpretation of the genus Rhodacaras Oudemans with descrip, lions of new species from South Africa (Acarina: Rhodacaridae). Rever Blol., Lourence Marq.. 3: 81-86.
Ryke, P. A, J., 1962b: The subfamily Rhodacarinae with notes on at new subfumily Ologamasinac (Acarina: Rhodacaridae). Emf. Ber., Amst, 22: 155-162.
Ryke, P, A. J., 1962c: A revision of the subgenera Cyrbolaclaps Berlese and Gumasellus Berlese of the genus Cyrolaelaps Berlese (Acarina: Rhodacaridae) and descrip. lion of new species. Mem. ent. Soc. sth. Afr:, 7: 1.59.
Ryke. P. A. J. 1964: Acarina associated with Protea flowers in the Cape Province. J. em. Suc. sth. Afris 26 (2) $+337-354$.

Ryke, I. A. J. and Loots, G. C. 1966: The quadrisigillatus-stuccinchus spectes group of the subgenus Ganasellus (Acari: Rhodacaridae). Revue Zool. Bor. afr., 73 (1-2): 121-151.

Samsinák, K., 1964: Termitophile Milben aus der VR China. I. Mesostigmata. Lint. Abh., Dresclen. 32 (3): 33-52.

Sheals, J. G., 1956: Notes on a collection of soil Acari, Entomologist's mon. Mag., 92: 99-103.

Sheals, J. G., 1958: A revision of the British species of Rhedracarus Oudemans and Rhodacurellus Willmann (Acarina, Rhodacaridae). Ann. mag, nut. Hist., ser. 13, 1: 298-304.

Sheals, J. G., 1962: Mesostigmata: Gamasina (Acari). Biologie de l'Amerique Australe, Ruenos-Aires and Paris. 1: 83-110.

Schweizer, J., 1949: Die Landmiben des Schweizerischen Nationalparkes I. Parasitiformes. Ergehn, wiss, Unters. Schwciz. NatnIorks, 2 (NF): 1-99.
Schweizer, J.. 1961. Die Landmitben der Schweiz. Parasiliformes. Derthschr. schweiz. naturf. Ges., 84: 1-207.

Tagil'tsev, A. A. and Men Yan-Tsuy", 1963: Fauna and ecology of Gamasid mites, animals and their nests in the Tajik district of the Kemerovo Region. Vop. med. parazit.. Moskied, p: 276-300 (in Russian).
Trigiardh, I.。 1907: The Acari of the Swedish South Polar Expedition. Wiss, Ergebn+ schwed. Sutpolarexped., 5 (11): 1-34.

Tragithth. I., 1910: Acariden aus dem Sarekge birge. Naturw. Unters. Serrekgeding.. 4 (4): 375-586.

Träghirdh, J., 1912: Biospeologica XXII, Acari (First series). Archs, Zorol. exp. ken., (5) $8: 514-620$.

Triggirdh, I., 1931: Acarina from the Juan Fernander. Islands. Nat. Hist. of the Juan Fernandez and Easter Islands. (Uppsala), 3 (4): 553-628.
Trägärth, I. 1952: Acarina, collected by the Mangarevan expedition to South Eastern Polynesia in 1934 by the Bernice P. Bishop Museum, Honolult. Hawaii. Mesostigmata. Ark, Zrool., 4: 45-90.
Treat, A. E. 1965: The genital musculature of the femate moth ear mite Dicrocheles phalaenudectes. Acarologia, 7 (3): 420-429.
Trouessart, E., 1888: Note sur les Acariens marins recueillis pars M. Giard au laboratoire maritime de Wimereux. C. r. hehd. Sérme. Acal. Sci., Paris, 107: 753-754.
Trousssart, E. 1903: Acariens. Késult. Voyage S.Y. Belgica. Zool., p: 1-11.
Trouessart, E., 1912: Acariens de l'Expédition Antarctique Nationalle Ecossaise. Rep. scient. Results Scott. Hath. antare't. Ex.xped., 6: 81-86.
Vilzthum. H., 1935: Terrestrische Acarinen von den Sociely-Inseln. Bull. Bernice P. Bishup Mus. (emt.), 113: 149-156.

Vitzihum, H., 1940-43: Acarina, Bronn's Kl. Orda, 「ierreichs 5. Abt. 4. Buch. 5. 1011 pp. in 7 Lief.

Willmann. C. 1935: Ueber eine eigenartige Milbenfauna in Küstengrundwasser der Kieler Bucht. Schr. naturw. Ver. Schlesw-Holst., 20: 422-434.

Willmann, C., 1936: Netie Acari aus schlesischen Wiesenböden. Zorsh. Anz.. 113: 273-285.
Willmann, C. 1938: Beitrag zur Kenntnis der Acarofauna des Komitates Bars. Amis hist. nat. natn. hung., 31: 144-172.
Willmann, Co+ 1940: Neu Milben aus Hühlen der Balkanhalbinsel (2. Mítlg.). Zool. Anz., 130: 209-218.

Willmann, C. 1941: Die Acari der Höhlen der Balkanhalbinsel. Studie Oboru vseob. kras. Nauky, Biol., 8: 1-80.

Willmann, C. 1949: Uber eine Milbenausbeute aus dem Naturschutzgebiet "Verlorenes Wasser" bei Panten (Kr. Liegnitz). Abh. naturw. Ver. Bremen, 32 (2): 339-358.

Willmann. C., 1951: Untersuchungen uber die terrestrische Milbenfauna im pannonischen 'Klimagebiet Ostereichs. Sber. öst. Akad. Wiss. (Mathem.-naturw. Kl., Abt. 1), 160 (1-2): 91-176.

Willmann. C., 1952: Parasitische Milben an Kleinsäugern. Z. ParasitKde, 15: 392-428.
Willmann. C., 1953: Neu Milben aus den östlichen Alpen. Sber. öst Akad. Wiss. (Mathem.naturw. Kl., Abt. l), 162 (6): 449-519.

Willmann, C., 1957: Revision einiger Milbengattungen und arten von den Küsten der Nord und Ostsee. Abh. naturw. Ver. Bremen, 35 (1): 162-188.

Willmann, C., 1959: Zwei neue Milben aus dem Kiistengrundwasser des Roten Meeres. Kieler Meeresforsch., 15 (1): 97-104.

Womersley, H., 1937: Acarina. Scient. Rep. Australas. Antarct. Exped. (Ser. C), 10 (6): 1-24.

Womserley, H., 1942: Additions to the Acarina-Parasitoidea of Australia. Trans. R. Soc. S. Aust., 66: 142-171.

Womersley, H., 1956a: On some new Acarina-Mesostigmata from Australia, New Zealand and New Guinea. J. Linn. Soc. (Zool.), 42: 505-599.

Womerslcy, H., 1956b: Some additions to the Acarina-Mesostigmata of Australia. Trans. R. Soc. S. Aust., 79: 104-120.

Womersley. H., 1961: New species of Acarina from the intertidal zone in Netherlands New Guinea. Zool. Melled., Leiden, 37 (12): 189-209.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

A REVISION OF THE AUSTRALIAN PENTATOMID BUGS OF THE GENUS CEPHALOPLATUS WHITE

(Hemiptera—Pentatomidae—
Pentatominea)

By GORDON F. GROSS

A REVISION OF THE AUSTRALIAN PENTATOMID BUGS OF THE GENUS CEPHALOPLATUS WHITE (HEMIPTERA-PENTATOMIDAEPENTATOMINEA)

BY GORDON F. GROSS

Summary

The genus Cephaloplatus White 1842 as now understood includes 15 species. The genus is easily recognized because, excepting C. minor Distant which is blackish brown, the species are yellowish, yellowish brown or reddish brown moderately sized Pentatomine bugs. They have the juga of the head broad and flattened and extending forward well past the apex of the anteclypeus. The anterolateral margins of the pronotum are explanate and are usually crenulate or dentate. The anterolateral margins exterior to the true anterior angles of the pronotum are usually produced forward as angulate flattened lobes. These processes are indicated in the descriptions as the "regions of the anterior angles". The species are found in the tropical north of Australia and southwards of this into the arid desert areas and the semi arid desert fringes, they rarely occue in the moister regions of the south. The genus is known only from Australia.

A REVISION OF THE AUSTRALIAN PENTATOMID BUGS OF THE GENUS CEPHALOPLATUS WIITE

(Hemiptera - Pentatomidae - Pentatominae)

By GORDON F. GROSS

INTRODUCTION

The genus Cephaloplarus White 1842 as now understood includes 15 species. The genus is casily recognized because, excepting C. miner Distant which is blachish brown, the species are yellowish, yellowish brown or reddish brown moderately sized Pentatomine bugs. They have the juga of the head broad and flattened and extending forward well past the apex of the anteclypeus. The anterolateral margins of the pronotum are explanate and are ustally crenulate or dentate. The anterolateral margins exterior to the true anterior angles of the pronotum are usually produced forward as angulate flattened lobes. These processes are indicated in the descriptions as the "regions of the anterior angles". The species are found in the tropical nouth of Australia and southwards of this into the ard desert areas and the semi arid desert fringes, they rarely occur in the moister regions of the south. The genus is known only from Australia.

The species are quite difficult to separate if not illustrated. Untorfunately the previous descriptions are all verbal with the consequence that only one or two of the more distinctive species could be named confidently by a worker in this country who did not have recourse to the types,

With the assistance of the Sir Mark Mitchell Trust and the C.S.I.R.O. Science and Industry Fund, I was able recently to visit Europe to help complete the first part of a projected descriptive Handbook of the South Australian Heteroptera and in so doing was able to see the Cephatoplathes types halged there. The type of Cephaloplatrs muhifer Bergroth was found unmarked as such in Helsinhi and has been selected and labelled as a lectotype, the types of Cephaloplatus gramulatus: Bergroth and Cephaloplatus reticulatus Bergeth were located on my return amongst material lent for the purpose of this study by the National Museum. Melbourne, similarly not marked as lypes, these also have been selected and labelled as lectotypes.

I am indebted to the Directors of entomological staffs of the following institutions who permitted me to examine their collections, to make notes on type material and in matny cases lent critical and unsorted material to fasmed 23rd cronber. 1970)
the completion of this project. The letters in brackets before each Institution are the abbreviation used to designate the respective Institution in which material is lodged in the "Distribution" section under each species.

.)	The Queensland Muscum, Brisbanc.
(U.Q.)	The collections of the Department of Entomology, the University of Qucensland, Brisbane.
(A.M.)	The Australian Museum, Sydney.
(A.N.I.C.)	The Australian National Insect Collection, c/o C.S.I.R.O., Canberra.
(N.M.)	The National Museum, Melbourne.
(S.A.M.)	The South Australian Museum, Adelaide.
(Helsinki)	Universitetets Zoologiska Museum, Helsingfors.
(Stockholm)	Naturhistoriska Riksmuseum, Stockholm.
(Paris)	Muséum d'Histoire Naturelle, Paris.
(B.M.)	The British Museum (Natural History), London.
(A.M.N.H.)	American Museum of Natural History, New York.
(U.S.N.M.)	The Smithsonian Institution, The United States National Museum, Washington.
(Snow)	The Snow Entomological Collection, The University of Kansas, Lawrence.
(C	The California Academy of Sciences, San Francisco.
(Bishop)	he Bernice P. Bishop Museum, Honolulu.

My especial thanks go to Drs. W. Hackman and M. Mcinander (Helsinki), Professor L. Brundin and Dr. P. I. Persson (Stuckholm), Dr. Knight, Mrs. J. M. Black, and Mr. L. Mound (B.M.), Dr. J. Rozen (A.M.N.H.). Drs. R. Frocschner and J. Herring (U.S.N.M.). Dr. P. Ashlock (Kansas), Drs. E. Ross and P. Arnaud (C.A.) and Miss S. Nakatal (Bishop) for the very special efforts on their part to see that all material relevant to this project in particular was available for me to see and/or borrow at the time I passed through.

SYSTEMATIC TREATMENT

Genus Cephaloplatus White 1842

Dryptocephalus? (Cephaloplatus) White, 1842, Trans. ent. Soc. Lond., 3:91. Cephaloplatus Dallas. 1851, List of the Specimens of Hemipterous Insects in the Collection of the British Museum 1:131, 148.
Cephaloplatys Stal, 1867, Ofvers. Kongl. svenskai Vetensh Ahad Fürh.. 507. 1876, Kongl. svenska Vetensk Akad Handl., 14(4):55.71. Lethierry \& Severin, 1893, Catalogue génèral des Hémiptères 1:113.

Rather oval moderate sized Pentatominate, reddish brown, yellowish brown, or blackish brown in colour.

Head comparatively large, basally stightly swollen, apically flattened or even concatve. Lyes moderately promment, very close to the anterior margin of the pronotum in the subgenus Caphaloplams and Dolichoplatus subgen. Hew., well separated in Melamoplatos swheren. nov. Juga laterally expanded, produced well in front of the anteclypeas and their apical and lateral margins sometmes strongly rellexed. Anteriorly their margms maty be truncate or rounded, laterally usually sinuate, in some species thrown into a tlattened spine or process in front of the eyes. Antemnate very slender, first segment not teaching the apices of the joge antemophore usually with a short blunt hooked process laterally.

Pronotum fairly flattish, the anterior margin strongly concave, the latcral margins explatnate and the anterior angles produced angulately and in the subgencta Cemholoplarus and Dolichoplatus reaching forward to in front of the cyses, in some species of Cephaloplatus sens, ster, markedly so (C. (C.) explanalus sp. nov.). The lateral angles are acute or ingulate, the posterolateral margins are sinuate with a low tumescence just behind the lateral angles, the posterior margin is fecbly concave.
scitellum more or less triangular and a litte larger than usual in Pratitominate, mily very feebly raised basally ind its apex rounded, often broadly so.

Hemelytra always wider than the abdomen in their basal half, in most bul not all species narrowing in their apical hall to expose some or all of the connexivum. Veins of the membrane straightish, or apically forled. or reticulate. The laterolergites are unarmed anterionly and posteriorly,

Bencath the buccula are sinuously elevated and do not reach the base of the leate. the rostrum reaches about the hind coxale. The prostermum is only shatlowly depressed, the mesosternom is very feebly convex and has the median longitudinal ridge or raised line characteristic of groups of Pentatominate fom more of less the Halse group onwards in arrangements of genera such as letherry and Severin. The metasternum appears 10 be almost llat. The embolium of the hemelytra is well developed over the thorax but is concealed behind this point. The legs are normal and the abdomen fairly convex.

Type: Dryprocephalus'? (Cephaloplatus) pertyi White 1842, monobasic.

Ramarks: White did not give ageneric diagnosis and the only descriptions in Dallas and Stal form part of their respective Keys to genera. The often used spelling Cephatoplatys dates from Stal but is not vallid, it is not striculy a lapsus.s caldumi as Stal knew very well what the was doing-vide his 1876 citation of reterences under "Cephatoplarys".

Fifteen species can be recognized as belonging to this genus and they may be separated by the following Kcy.

Key to subgenera and species of Cephaloplatus White.

1. Smaller ($7-8 \mathrm{~mm}$.), blackish brown; anterolateral explanate margins of pronotum concave, only minutely crenulated, anterior angle produced into a rather curved triangular outwardly directed flattened process which does not reach in front of the eye ..

Subgenus Melanoplatus
nov. (one included species C. (M.) minor Distant)
Larger or smaller, yellowish brown or reddish brown. Anterolateral margins of pronotum straight, angulately concave (spurcatus Walker) or convex, generally strongly crenulated, at least anteriorly, the anterior angles rather lobately or triangularly produced forward, reaching to, or well in front of, the eyes
2. Smallish ($7-8 \mathrm{~mm}$.), elongate; anterior angles of pronotum produced into a lobate anteriorly directed flattened process which reaches the anterior margins of the eyes, anterolateral margins of the pronotum not explanate or depressed behind these lobes .

Subgenus Dolichoplatus
nov. (one included species C. (D.) elongatus Distant)
Larger (more than 8 mm .), obovate; anterior angles of pronotum produced into an angulate process which reaches or surpasses the anterior margins of the eyes, anterolateral margins explanate and depressed (at least anteriorly) behind these lobes

3
(Subgenus Cephaloplatus White)
3. Juga relatively narrow across at the level of the apex of the anteclypeus, not as wide as width of head across eyes; lateral margins of head produced into an obvious laterally directed flattened tooth or triangular process just in front of the eyes
Either juga relatively wide across at the level of the apex of the anteclypeus, as wide as width of head across eyes and/or lateral margins of head not produced into an obvious flattened tooth like or spinous process in front of cyes $[C$. (C.) pertyi has expanded juga and something of a produced tooth in front of the eyes]
4. Membrane reticulate; generally over 11 mm .
in length
C. (C.) reticulatus

Bergroth
Membrane not reticulate; generally under 11 mm . in length
5. Margins of head just in front of eyes produced into a broad triangular process which is strongly convex above6

Margins of head just in front of eyes produced into a spine or tooth like process 9
6. Anterior angles of pronotum exteriorly produced forward to about anterior margins of cyes
Anterior angles of pronotum exteriorly produced forward well in front of anterior margins of eyes, reaching to anterior margin of produced triangular process on lateral margin of head
C. (C.) clementi

Distant
7. Small (8.0-9.5 mm.) ; greyish; occurring in the gulf of Carpentaria region
C. (C.) pellewensis
sp.nov.
Larger (9.75-11.0 mm.); reddish or greyish; occurring in Western and Central Australia
8. Greyish; juga at their apices rather widely separated; anterolateral margins of pronotum rather strongly angulately concave just behind the middle
C. (C.) australis Dallas

Reddish; juga at their apices contiguous: anterolateral margins of pronotum only slightly concave near their middle
C. (C.) mubifer Ber-
groth
9. Anterolateral margins of pronotum almost straight, slightly convex anteriorly, if denticulate or serrate then so very minutely that the margin appears to be entire .
Anterolateral margins of pronotum angulately concave, the angulation nearer the lateral angle than the anterior; the anterolateral margins strongly denticulate or crenulate . .
10. Anterolateral margins of pronotum strongly angulately concave just behind the middle, anteriorly to this angulation with four or more strong denticulations; juga apically only shortly surpassing the apex of the anteclypeus and usually their apices clearly divaricate; occurring in the North of the Northern Territory and Western Australia, and in Cape York Peninsula and the Torres Strait Islands
C. (C.) darwin

Distant
Anterolateral margins of pronotum not so strongly and angulately concave behind the middle, anteriorly to this angulation crenulate, the crenulations all of the same size; juga apically more longly surpassing the apex of the anteclypeus and usually their apices not divaricate (although they may not be contiguous): occurring in Queensland south of Cape York Peninsula and in New South Wales
C. (C.) spurcatus

Walker
11. Juga markedly expanded and foliaceous, apically widely divaricate; near the apex of the anteclypeus the width of the head across the juga is as wide or wider than the width across the eyes.

Juga not markedly expanded and foliaceous, apically widely divaricate or not; at the level of the apex of the anteclypeus the width of the head across the juga not equal to or wider than its width across the eyes 13
12. Antcrolateral margins of the pronotum and the basal third of the exterior margin of the corium strongly serrate or denticulate
C. (C.) pertyi (White)

Anterolateral margins of the pronotum and the basal third of the exterior margin of the corium nearly entire, only very minutely denticulate or crenulated
C. (C.) explanatus sp. nov.
13. Anterior angles of the pronotum produced well in front of the eyes; a pair or more longitudinal ochraceous or luteous stripes on the scutellum

14

Anterior angles of the pronotum produced about to the front of the eyes, no longitudinal paler stripes on the scutellum
C. (C.) pallipes

Walker
14. Three longitudinal ochraceous or luteous stripes on scutellum composed of a broad one on each side not reaching apex (and margined with dark) and an obsolete median one; membrane brownish liyaline with piceous veins; no transverse ridge between the lateral angles of the pronotum
C. (C.) granulatus Bergroth
More than three longitudinal ochraceous or luteous stripes on scutellum composed of a narrow one on each side not reaching apex (and margined with dark) and two or three median ones divaricating basad; membrane milky hyaline with brown veins: a conspicuous transverse ridge running between the lateral angles of the pronotum
C. (C.) fasciatus

Distant

Subgenus Melanoplatus nov.
This subgenus is being erected for one species, Cephaloplatus minor Distant, which shows a number of differences from the species which are placed here in the subgenus Cephaloplatus sensu stricto. Cephaloplatus
minore is a piceous colour whereas these species of Cephaloplames sensu stricto atre reddish or yellowish in appearance, the lateral mateims of the pronotum although produced are shaped quite a lot diflerently. The lateral matgins are very little explanate from the lateral angles lorward until a point just in front of the catli where they suddenly are produced as explanate triangular processes which are directed forward and outwards, the processes are strictly processes of the anterolateral margins becaluse the anterior angles are distincly evident lying helbind the eyes and meriorly to these structures. In Mlelanoplaths the anterior lobe of the pronotum is also rased and very rugulose whereas in Cephaloplathes sensus stricon it is declivous. Otherwise the ypecies seems to belong in the one genus with other Coplatoplatus species and does not metit the erection of a new genus purcly to accommodate it.

Type: Cephaloplanss minor Distant 1910.

Cephaloplatus (Melanoplatus) minor Distant

Cephalophatys minor Distant, 1910, Ann. Mag. nat. Hist. (8)6: 474.
Fig. 1
Smatlish, suboval, strongly piccous in dorsal view with one or two lighter areas. Demsely and linely punctate, the punctations concolorous.

Head with juga somewhat foliaceously developed and produced forward fast the apex of the anteclypeus. though not much. Lateral margine of the juga in fromt of the evers produced into a blunt triangulat process which is trongly concatic above. I ateral margins of juga in front of this process at first incised then broidly and semicereatarly conves to their shortly rounded anterior angles. Inner margins of juga shortly trancate, divaricate. Lateral margins of the juga somenhat raised so that the bead in from of the eyes is somewhat convex. Head between the ocelli somewhat ratised, eyes moderately prominent, in most specimens fairly well separated from the anterior margin of the pronotum (this does not appear in the drawing). facets occupying most of the anterior surface. That part of the juga lying in tront of the insertions of the antennate tending to be somewhat pater that the rest of the boly. sometimes also some pale pots on the anteclypeus. Antennophore with a short refleved spine exteriorly; antennae moderate sized, dive segmented, the segments progressively longer from one through to five, the first not reaching the apices of the juga.

Pronotum with the anterior and ponterior loben slighly ransed with a faint depression between the two. Anterior margin concave hehind the collum. the anterior angles subacute and located just behind the inner margins of the eyes. Anterolateral margins beginning at the lateral anglen, wnly slightly produced and reflexed concave ats they ran forward to just in front of the calli whore they abruptly turn oumathe 10 form ann outwardly and forwardly

Fig. 1. Cephaloplanus (M.) minor Distant.
directed, somewhat recurved, spinous process which is flat on lop, between this process and the anterior angles truncate. Liateral angles subacute. posterolateral margin angulately convex. posterior margin nearly truncate. The raised portion of the anterior lobe of the pronotum and to a certain extent some of the posterior lobe rather rugulose.

The scutellum shaped very much as other members of the genus, the concave angulation of the lateral margins a little nearer the midde thata in some of the others, tip broadly rounded. In each basal angle a somewhat clongate concolorous fascia, interiorly to this margined by a callous or smooth raised granule, a light point at the base of the scutellum medially and in some specimens a short streak on the ventral margins on either side just before the apex. Base of the scutellum rather triangularly raised, apical half tlatter, somewhat rugulose.

Hemelytra wider than the body only in the anterior quarter, the exterior margin of the corium fomming a smooth gently convex curve, entire, not irregular. This eurve leaves about half of the laterotergites exposed. Hind margin of the corium somewhat convexly produced exteriorly, then more or less truncate becoming broadly convex interiorly. Membrane with slighly darker veins, several of the veins forked, one or two closed cells hasally. Laterotergites yellowish or yellowish brown with at transverse bar immediately behind wach incisure which is piccous and which runs into a narrow longiLudinal piceous area along the inner edge ol the comexivum.

Beneath concolorous with above, if anything somewhat darker, The following yellowish areas ate present: the anteror underside of the head (and the bucculae) save for a longitudinal piceous stripe immediately in front of the insertion of the antennat; the base of the head; the rostrum; all legs: the extreme exterior of the athdominal ventrites making the edge of the abdomen appear as if it has a yeltowish stripe: the male lerminalia. On the thorax the epimera and episterna and most of the pleura atre somewhat lightened.

Length: 7.5-8.5 mm.
Disrrihution: Queensland Holorype of and 1 other, Peake Downs (B.M.); 1 s, 2 q i. Peake Downs (Stockholm): 1 §. Flinders Island.
 (S.A.M.): 2\& d, 3%, Clermont, coll. Dr, K. K. Spence: 2 \& 9. no precise locality, 25 August 1929. coll. Dr, K. K. Spence (A.M.): 3 호. Gin Cin. 13 October 1901. coll. W. W, Froggatt (A.N.I.C.): 18. Mutchilba, Fet. 1933, coll. A. D. Selby (N.M.) 1819. Mount Carbine, 20 July, 1932, coli. Darlington on Harvard Expd. (A.M.N.H.). Nerthern Territory 1 (abdonmen missing). Horn Islet in Sir Edward Pellen Group, 15-21 November 1968, coll. B. Cantrell (U.Q.). Western Alustrulien 15. Derby, coll. W. D. Dodd (S.A.M.).

Remark: The species is very easy to recognize in the genus Cephatoplaths sem"l lato. Its conspicuous piceous colouration, its relatively small sike and the face that the anterolateral margins of the pronotum are formed into ann outwardly directed triangular process which does not reach forward much behind the hind margin of the eye distinguishes it from all members of the subgenus Cephaloplatus sensu stricto.

Subgenus Dolichoplatus nov.

This subgenus is being erected to accommodate the one species Cephaloplanus elongormes Distant. which shows certain differences to those species placed here in the subgenus Cephaloplatus. sensus stricto. Species placed in the last mentioned subgenus are all rather otal whereas C. elongatus is a lot more elongate; the anterolateral margin of the pronotum in C. elongedns is not expanded and laminate, only the anterolateral margin just exterior to the anterior angle is produced as a roundish lobe projecting to in front of the eyes whereas in species of Cephaloplatus sensu stricto the anterolateral margins of the pronotum are expanded and more or less laminate at least in their anterior half and the produced portions outside of the anterior angles are atwatys acute at their anterior apices. The pronotum of (. clongatus has about 12-20 large granules on the dise, in other Cephaloplatus species these are either very much smaller and very much more numerous or absent.

Type: Cemhaloplatus elongatus Distant 1899.

Cephaloplatus (Dolichoplatus) elongatus Distant
Cephaloplans clongatus Distant. 1899. Ann. Mag. natt. Hist., 7(4):433.
Fig. 2
Smallish, chongate ovate, rather pale brownish in macroseopic dorsal view. The ground colour in fact is light brownish yellow in front of about the middle of the pronotum and yellowish behind thi., puint but this is obecured somewhat by a moderately dense and fairly regular brown punctafion.

Head with juga moderately foltaceously developed, produced to about the level of the apex of the anteclypeus. Lateral margins of the head in front of the eyes produced into a blunt triangular process which is only fatintly concine above and then only anteriorly. Lateral margins of juga in front of this forming a segment of a convex curve to their comparatively broadly rounded apices, the latter failly wadely separated and the imner margins of the jugat tending to be a little obliquely rounded in front of the point where they touch the anteclypeus. The anteclypeus is rather declivous from a point just in front of the produced triangular lobes of the margin of

Fig. 2: Cephaloplatus (I).) elongafus Distant.
[Photograph by courtesy of the 'rustees of the Eritinh Maseum (Natural Hintury)
the head forwards, the inner pat of each jugum lends to be depressed commesurately on either side se that the head is anteriorly depressed in the middle, apex of anteclypers well below the apices of the juga. Head between the ucelli feebly ratsed, cyen moderately prominent and very close to the anterior margin of the pronotum, facets occupying all but the flattened posterior surface. Antennophore: with a short reflexed spine externorly, athtemate live segmented and rather shorter than in most other species of the genus, second third and founth segments nearly subequal and each one longer than the fist, fifth the longest, first not reaching apex of jugum. Third and fourth brown in apical one half, fifth brown except in basal fifth.

Pronotum with the posterior lobe raised and sloping declivously anteriorly to the anterion magin. Anterom margin concave behind the eyes and collom. anterion angles and part of the anterolateral margin of the pronotum produced into an apicall rounded anteriorly produced lobe which extends forward to nearly the level of the anterior margin of the eyes. Anterolateral margins behind this structure hardly or not explanate or laminate somewhat concatvely exceavate and somewhat irregular though not denticulate of crenulate. posboced a little in front of the lateral angles. Lateral angle comparatively broadly rounded, posterolateral margin somewhat concave; posterior margin almost straighL. Dise of pronotum with between 12 and 20 callous raised areas or very large grantlations.

Scutelfom compatativels longer than in other members of the genus, the concave angalation of the lateral matgins very nearly at the mid point of the length of the seutellum. Aper tending to be acuminately rounded, the dse from somewhat in tront of the apex to the base progressively though not very raised, depresed on either side just in front of the angulation of the lateral margin and again in each hasal angle where there is a brownish mpression bordered on its immer side by a luteous callous arca, traces of other such areas on the scutellum.

Hemelytra wider than the budy only 11 thenr anterior quarter, the exterion margin of the cormm anternorly rather concane then forming a smonth convex curve to its apex, the margin a litte irregular anteriorly. Hind margen of corium almost straight or only vely beghtly concave, its inner angle broadly rounded. Membrane whitish with only slighly darher veins, the later (at least distally apparently mainly parallel. Latterotergites concolorous except for at subanarginal fine brown stripe, their posterior angles somewhat bluntly projecting.

As the unique specimen is carded not a great deal is visible of the underside. The punctation and colouration seents much the same as that above. A shost brown stripe in front of each antenniter. the usual somewhat curved brown stripe on the propleuron on the muscle scar. on the mesopleuron, metapleworn, and the sides of abdominal segments III-VI the
punctations tending to be concentrated to form a denser and darker sublateral line, a brown spot anteriorly and laterally on each abdominal sternite. Femora and tibiae coarsely niaculated with brown.

Length: 7 mm .
Distribution: North Western Australia Holotype if S. Heywood I., 90-126 (B.M.).

Remarks: The holotype is the only specimen of this species to hand; it came from a very poorly collected area and it is not practicable to predict its possible range.

Subgenus Cephaloplatus White

'To include species which are are elongate oval or ovate but which have the anterior angles and the anterior part of the anterobateral margins of the pronotum extending forward ats angulate processes to at least the level of the anterior margins of the eyes. The anterolateral margins of the pronotum are also rather explanate, particularly anteriorly.

Type: Dryptocephalus? (Cephaloplatus) pertyi White 1842, monobasic.

Cephaloplatus (C.) pallipes Walker

Cephaloplatus pallines Walker. 1868, Cat. Hem. Het Brit. Mus., 3:541. Cephuloplatys pallipes Distant, 1910, Ann. Mag. nat. Hist., (8)6:472.

$$
\text { Fig. } 3 .
$$

Rather smaller than average for the genus, strongly greyish in macroscopic appearance although the ground colour is actually luteous or light yellowish with numerous brown or blackish brown punctations. The hinder patts of the pronotum, scutellun, and the coriaccous parts of the hemelytra densely covered with small luteous or light yellowish granules.

On the head the juga are expanded somewhat though not as foliaceous as in some of the succeeding species, extending somewhat in front of the apex of the anteclypeus. Anterior margins of juga oblique, shortly rounded to join the parallel lateral margins which immediately in front of each eye are convex. inner margins divaricate. short. Dise of head rather rugulose and coarsely punctate, head slightly raised behind. Eyes moderately prominent and the facets occupying nearly all of the optic process save the oblique and flattened hind margin. Antennae moderately slender, first segment the shortest, third segment the second shortest, second and fourth segments subequal, fifth segment slightly longer, first segment not reaching the apices of the juga,

Pronotum rather strongly raised posteriorly, Hatter and more declivous anteriorly, the anterolateral margins explanately produced progressively from posteriorly to anteriorly. Region of the anterior angles shortly triangular but

Fig. 3: Cephaloplams (C.) pultipes Walker.
only extending to aboul the tevel of the anterior margin of the eyes. Anterior margin convex behind the collum, shontly truncate behind each cye, then slightly diverging to the apice of the produced angles. Anterolateral mateins. almost straight or perhaps very slightly concave, irregulat and kending somewhat crenulate in their anternor third. Latteral angles irregularly truncate, posterolateral margins nearly atratgh, posterior margin very slightly concave. Hinder portion of the dise of the pronotum densely covered with small lutenus granules, these grambes between the lateral angles tending to be more concentrated and to form in more or less eontinuous sinuate line.

Scutellum substantially trangular, with the ustal slight concavity somewhat behind the middle. Banal half rather raised. apical half rather flat, lip broadly rounded. In each hasal angle a smmewhat elongate black fovea inward of which lies a rather promment luteons large granule or small lumescence. Apex of scutellum sometinus with at darkened medial longitudinal line. Scutellum densely covered with small luteous granules.

Hemelytra wider than the body in their basal quarter, this portion of the corial margin slightly irregular. Behind this point the lateral margins of the corium smoother and gradually converging posterions leaving some of the connexivum exposed, the degree of convergence is not so marked ats in any of the preceding species. Hind marein of corimm somewhat sinuate. Corium and parts of the clavus coverad with small lutenus granules. Membrane milky hyaline, veins the same colour, eeveral of them forked. Laterotergites with their posterior angles not prominent, incisures between the laterntergites infuscated as is the inner half of each laterotergite.

Bencath mainly concolorous with the dorsal surface, punctations latger and darker on the head and promorax, liner and much denser on the abdomen. Head just inward of the lateral margin infuscated, all the thoracic sternat hrown. Femora with some spaltered brown granules. sometimes the tibiac also. Mate genitalia with the posterior ridge convexly curved rather as in Fig. 6B, its lateral angles strongly prominent and directed pooteriorly.

Length: 9.5-10.75 mm.
Distribution: Untocalized. Ifolorype z (B.M.). N'estern Abstralio. 1 : Junction of Fitzroy and Margare Rivers. 1896 , coll. Calvert Expedition (S.A.M.). Northern Territory. 18. Horn lslet in Sir Edward Pellew Group, 15-21 November 1968. coll. B. Cantrell (U.O.); a series, Alexandra (B.M.): 2 \& q. Newcastle Waters. 2 dune 1929. coll. T. G. Campbell (A.M.): 3 of \%, 2 \& ¢, Neweastle Waters, 2-5 June 1929, coll. T. G. Campbell: $2 \therefore \therefore$ Brumetle Downs. 20 March 1908 , coll. L. Hall; 1 P. 1 ?. 2 miles South of Barrow Creek. 13 fehruary 1960 , coll. Britton, Upton \& Molnnes; 1 ©, 22 miles South of Alice Springs, at light on railway, 15 February 1906. coll. E. Brithon (A.N.I.(.): large series. 28 miles South of

Remer Springs, at ultraviolel light, coll. N. McFarland; 1 \therefore, unlocalized, coll. S.A. White (S.A.M.), Somth Australia 1 is. 4 \& 9 , Oodnadatta: 1 \&. North East Corner of state, coll. F. Parsons (S.A.M.). Qucenstand. 13.2 옹. Winton-Longreach, 15-24 August 1963, coll. T. E. Woodward; 1 \&. Mi. Isa, 23 January 1968 , coll. B. Cantrell; 1 s. 2 \% 7.1 ? Cloncurry, 15 April 1947, coll. H. Bell (U.Q.) ; 1 ô. 1 , Cato Station.
 10n, 3-4 May 1963, coll. P. Aithen \& N. B. Tindale; 1 \& at light Mornington Isand Mission. 12 May 1963, coll. P. Aitken \& N. B. Tindale (S.A.M.).

Remarhs. This is the first of the species of the Subgenus Cephaloplatus sensth stric\% to be treated and the first of a section within the subgenus which does not hate a prominent and acute spine on the lateral margins of the juga in tront of the eyes. This species can be recognized quite easily from the other members of its section in that the anteriorly produced angulate portions of the promotum do not protrude in front, or only very little in front of the anterior margin of the eyes. Its greyish colouration is similar to that of C. (C.) grammlatms Bergroth but it lacks the strong luteous fasciac on the scutcllum and is also rather smaller. All of the localities cited are in moderately urid to very arid regions.

Cephatoplatus (C.) fasciatus Distant

Cephaloplatys fasciaths Distant, 1881, Trans. ent. Soc. Lond., 212.
Fig. 4, 6A
Average size for the gemus and rather elongate, ground colour luteous with brown and some patches of blackish punctations, the latter along the anterior half of the lateral margin of the scutellum, and a number of small lateons granulations on the hind margin of the pronotum, the sedtellum and the coriaccous parts of the hemelytra.

Head with juga as flattened or foliaceous structures which however, are not unasuatly extensive in relation to the area of the rest of the head, at their widest they do not extend much past the inner margin of the eyes nor anteriorly much in front of the apex of the anteclypeus. Anterior margins of the jugat at lime oblique then rounding broadly onto the virlually straight lateral margins, latter incised just in front of anterior margin of the eyes, sonewhat reflexcd. Inner margins short, sometimes touching, sometimes nut Eyes moderately prominent and the facets occupying nearly all of the optic process satve the obligue and thattened hind margin. Antennate slender and five segmented, fourth and fifth segments the longest and suhequal in length, bromnish or yellowish, apices of the fourth and fifth segments sometimes infuscated.

\longrightarrow

Pronotum somewhat raised posteriorly, flater and more declivous anterinty, between the lateral angles a continuous line of raised contiguous granules. Anterolateral margins progressively more explanate from posseriorly to atoteriorly, the region of the anterior angles forming a curved miangular process which extends somewhat in front of the eyes. Anterior matrgin of the pronolum concavely excavate behind collum, shorty truncate behind the eyes, margins then virtually parallel anteriorly to the apices of the anterior processes. Anterolateral margins somewhat crenulate, at lirst conver anterionly then becoming slighty and angulately concave ab about half their length back. Lateral angles irregular. posterolateral margins almost straight, posterior margins straight.

Scutellum substantially triangular with the lateral margins gently angulately concave, the tip more or less rounded. Basally somewhat raised. flattened in the pesteror hatl. Dise with five rather difluse luteous stripes. outer pair reaching only to the angle of the lateral margins, the median one reaching to only about the same level. thereafler obsotete, the exterior pair margened on their outhide by a dense streak of black punctations, this streat becoming more obsolete as it approaches the angle of the lateral margims.

Hemelytra wider than the body in their basal quarler, this portion of the corial margin slighty istegular. Behind this point the lateral margins of the corime smoother and gradually converging posteriorly leaving proErensively more of the connexivum exposed, hind margin of corimm sinuate. conver interiondy. Membrane subhyaline with veins and spots between the vemin only shghtly darker, several of the veins forked. Laterotergites with their posterior angles somewhat prominent.

Bencath matioly concolurous with the dorsal surface, covered with dense dark punctatums, these punctations finer on expanded lateral margins of the pronotum and on the athdonen. Head beneath with a short black streak beginning on the upper insertion of the antennae and proceeding forward for a shori distance on either side. Prothorax on either side with a black or piceras longitudinal bar extending from the anterior margon thee yuater of the way to the posterior margin, at the base of the epimeron and episternum sometimes a patch of darker punctations. The dark line continued though much more narrowly onto the lateral areas of the mesothorax and metathorax and then becoming wider and extending to about the middle of the sixth ventrite. A small black patch at the extreme base of the head and all thoracie sterna blach or piccons, iwo semicircular piceous areas on the third abclominal segment immediately behind each metacoxa. a small median spot near the base of both the lifth and sixth abdominal segments and a median longitudinal brown stripe running from the base of the seventh to three quarters of the distance posteriorad piceous.

Length: $10.0-12.3 \mathrm{~mm}$.

Fig. 5: Cophaloplatus (C.) sranmatmes Bergtolls

Distribution：Quecnslund．Holotype q，Rockhampton（B．M．）；4．
 Cairns（1918），at jight（1920），coll．J．F．Illingworth（Bishop）：1 古，I 果， Kuranda，coll．1F．P．Dodd： 2 우．Bowen，coll．A．Simpson；1 it， 2 q i ，at light，Normanton． 4 Maty 1963．coll．P．Aitken \＆N．B．Tindate； 1 古， 3 9 9． Momington lshand（Birri），\＆\＆ 12 Maty 1960．coll．P．Aitken \＆N．B． Tindale；1：2早，att light．Mornington Island，Mily 1963，coll．P．Aitken \＆ N．B．Tindale（S，A，M．）；13，Coen，14－28 May，1951，coll．C．Oke； 1 o； unlocalized，donated F．P．Spry， 5 October 1922 （N．M．）．Northern Tervitory：Series Adelade River and Stapleton（B．M．）：I \＆．Darwin，coll． W．K．Hunt； 1 \％，Batchulur，coll．G．F．Hill；I o，Daly River，coll．H． Wesselman，1 ，untocalised，1875．coll．Tepper（S．A．M．）；I P．Pt．Denison （A．M．）； 3 is s． 49 多．Sixty Mile，on rice（Oryza sativa L．）， 23 March 1956．coll．L．D．Crawford（A．N．I．C．），Western Austrulia．I b，Lenpold Downs，coll．W．R．Richardson；I \＆，Iunction of the Fiteroy and Margaret Rivers，1896，coll．Calvert Expedition（S．A．M．），New Somth Wales．1\％． No． 393 （A．M．N．H．）．

Remorks：This species is mote clongate and browner than C．gramulatus Bergroth．the lateral margins of the pronotum are vaguely excavate，and there are five pale luteous bars on the pronotum．

Cephaloplatus（C．）gramulatus Bergroth

Cephaloplatys gramulatus Bergroth．1895，Proc．R．Soc．Vict．，7：288． Cephaloplatus sramulums lity，1906．Pap．Dep．Ent．Univ．Qd．．2（4）：76． figs．

> Fig. 5. oB.

Average sized for the genus，ground colour luteous with brown and backish punctations，the latter finer and denser on the hind lobe of the pronotum，and a mumber of small loteous gramulations on the hind portion of the pronotum and on the scutellum and coriacenus parts of the hemelytra．

Head with juga an llattened of foliaceous structures which however，are not unusually eatensive in relation to the area of the rest of the head，at their widest they do not extend much past the inner margin of the eye nor anteriorly much in front of the apex of the anteclypens．Anterior margins of the juga at first slightly oblique then rounding broadly onto the lateral margims，latter at first stratgh then gently convex in front of the eyes．some－ what rellexcd．Inner margins short，sometimes louching．sometimes not． Eyes moderately prominent and the facets occupying nearly all of the optic process save the whlyue abd flattened hind margin．Antennate stender and five segmented，seennd，fourth and tilth segments subequal in length．first not reaching the apex of the jugum，light brownish in colour．

Pronotum rather strongly raised posteriorly, latter and rather declivous anterowly, the anterolateral margins explanately produced, at least on the anterior half, and the region of the anterior angles produced forward as a rather triangular process which does not reach much in front of the eyes. From the apices of the anterior angles the anterior margin of the pronotum is convexly excavate, though shortly truncate just behind each eye. Anterolateral margins distinctly crenulate, the lateral angles obtuse. Posterolateral margins rather convevly angulate, the hind matgon almost straght.

Scutellum substantially triangular with the lateral margins gently angulatcly concave, the tip more or less rounded. Basally somewhat elevated and on each side an ohligue broad luteous, impunctate (but gramolate) streak rumning from the base to about the angle of the lateral margins. Punctations bordering this streak much darker and denser than elsewhere, particularly basally.

Hemelytrat wider than the body' in their basal gharter, this portion of the corial margin sightly irregular. Behind this point the lateral margins of the corium smoother and gradually converging posteriorly leatving more of the connexivan exposed, hind margin of corium more or less straight. Membrane milky with brownish veins, a number of the latter forked, and brown maculae between the vens. I aterotergites with their posterior angles only slightly produced.

Beneath mainly concolorous with the dorsal surface, the punctations larger and darker on the head and prothorax. Thoracic sterna and last segment of rostrum piceous or dark brown as is also the base of the third abdominal segment. Fourth and fifth also may be darker along the incisures. Male genitalia from below Fig. 6B.

Length: $10.5-13.5 \mathrm{~mm}$.
Distribution: Queensland, Lectotype \& (Reg. No. T'4117), unloculized, numbered 63, donated C. French Jun. 15 November 1911: 1', Mulgowie Well, 8 September 1953. coll. Smith; I \& Rymple. I6 November 1955 (N.M.). Somth Australia, 2 옹, Lake Calabonna, cull, A. Zietz. (A.M. \& S.A.M.); If Innaminka, at light, 18 October 1962, coll. J. Findley; 1 b Trouda Bore (Murnpeowic Station), at light. 24 August 1967. coll. Ci. F. Gross: 1:599. Cooper Crossing. at light, 12 November 1955, coll, E, T. Giles; 2 \& $\delta, 38 \%$. Coopers Crossing, it light. 21 Fobruary 1956, coll. G. F. Gross; 1 s, 2 p p, Clayton Crossing, at light. 13 November 1955. coll. E. T. Giles; 2 s aे, 1 of. Marree, coll. L. Reese; 1 京, 1 ㅇ, Muloorina Station, $18-19$ February 1956, coll. G. F. Gross: 1 is. 6 \% . . Lake Eyre, 22 April 1955, coll. G. F. Gross; large serics. Madigan Gulf area of Lake Eyre, al light, 3-6 November 1955, coll. E. T. Giles: $1 \therefore 1$ \& found dead on salt surface of 1 ahe Eyre (Madigan Gulfi, 8 November 1966, coll. G. F. Gress: I ? attracted to light.

Fig. 6: Ventral (and slighlly posterior) aspect of the male pygophore of A. Cephaloplarus (C.) fasciatus Distant; B. Cephosloplatus (C.) granulatus Bergroth; (C.) Cephutoplatus drrwini Distant; D. Cephaloplatus (C.) explanatus sp . nov.; E. Ccplatoplaths (C.) reticulatus Bergroth.

Prescott Point, Lake Eyre, 30 September 1967, coll. (i, F. Giross; 1 \&, Prescott Point on Madigan Gulf Lakce Fyre, at light, 22 February 1908. coll. G. F. Gross; 4 \& ถ. 1 ․ Wirraminna, 27 October 1953, coll. N. B. Tinditle (S.A.M.): $3 \therefore 2$ of Coopers Creck, 12 August 1958, coll. R. A. Stirton; 2 ot $^{\circ}$, 3 와, Lake Palankarinna, 28 July 1953, coll. R. A. Stirton; 1 r. Neales River at Agebuckina, 10 May 1953, coll. R. A. Stirton \& R. H. Tedford (C.A.). New Somf Wales. 1 . Broken Hill. 22 November 1943, coll. C. E. Chadwick (A, M,),

Remarks: An examination of the material in the National Museum. Melbourne where much of the \mathbb{C}. French Jun. collection is to be found or the collections of the Zoological Institute in Heksink where a large part of Bergrowthis awn collection is lodged faled to reveal any of the material described by Bergroth in this genus marked ats lypes. Drs. Hackman and Meinander were able to inform me that on the basis of their experience with the Mascarene material of the Bergroth collection that the latter had frequently returned the material the deseribed to whoever had sent it to him. malabelled but possibly accompanied by some sort of list. No specimen in Helsinki could be located to fit Bergroth's description of this species or having French is at collector on it (athough-vide infra-some other material considered to be types of other Bergroth species was found). However, a single male specimen in the National Muselm of Victoria fits Bergrothis description (even to having only the first antennat segment remaining) and has a Queensland-French indication on the label. I have every reason to believe that this specimen is in fact the type of "Cephaloplarys gramulatus" Bergroth deseribed from Uuecosland from a collection sent to Bergroth by French. Accordingly this specimen is here selected as the lectotype mate of "Cephaloplatys granulatus" Bergroth.

Although described from Queensland the spectes appears to be rather rate there and also in New South Wales. Its main eentre of occurrence appears to be in the region of the lake Eyre dratiage basin in South Australia. Many of the specimens to hand were collected itt lights.

Cephaloplatus (C.) clementi Distant

Cephaloplatys clementi Distant, 1910. Ann. Mag. 1at. Hist. (8)6:473.
Fig. 7
Average sized for the genus, rather reddish in matroscopic apperarance. the ground colour reddish yellow with numerous brown punctation and rather sparse small concolorous granules on the hinder part of the pronotum, scutellum, and the coriaceous parts of the hemelyta.

Head with juga strongly and totiaccously developed, extending well in front of the anteclypeus, at their widest, however, not wider than the width of the head across the eyes. Luteral margins of the juga just in front

「í. 7: C'pplulaplatus (C:) clement Distami.
of the eyes produced into a blunt convex process which is distinctly concave above, lateral margins in front of the convexity almost semicircular, forming a broad sweep to the shortly rounded interior angles of the apices of the jugh, interior margins of juga more or less straght, separated or not, Dise of the juga somewhat concale particularly anteriorly. Base of head between the ocelli somewhat elevated. Eyes moderately prominent, facets occupying most of the anterior portion. Antennate slender and five segmented, though none of the specimens to hand has the fifth segment. First segment not reaching apices of the juga, third and fouth segments subequal, second somewhat shorter than either, brownish or reddish brown.

Pronotum anly slightly mased posteriorly, declivous anteriorly, anterolateral margins progressively more explanate from posterionly to anteriorly, regions of the anterior angles projecting forward as somewhat recurved processes extending well in frent of the eyes and to in front of the convex process on the lateral margins of the juga. Anterior margin truncate behind the collum. oblique behind each eye then somewhat convergent to the apices of the antcrior processes. Anterolateral margins slightly convergent anteriorly. thence nearly straisht to the lateral angles hut with a slight more or less angular coneavity behind the midline of the pronotum, fincly denticulate or crenulate. Lateral angles irregular or irregularly rounded, posterolateral margins somewhat sinuate, posterior margin truncatc.

Scutellum very similar in shape to most other Cephuloplames with the slight angulate concavity just behind the middle and the tip hroadly rounded. Batsally slightly raised, apically more Inattened, in each batsal angle a somewhat clongate black fovea inward of which lies a concolorous callous area or point.

Hemelytra in their basal quarter wider than the abdomen, this margin of the corium slightly sinuate, not denticulate or crenulate. Behind this point hemelytra graduatly narrowing and keaving more or less half of the connexivum exposed. Outer and maner parts of the hind margin of the corium convex, the outer angle of the corium somewhat produced. Membrane opayue with only slightly darker light brown veins and add sattered brown maculate in the cells between the veins, some of the veins forked and some closed cells at the hase of the membrane. I.aterotergites concolorous, not infuscated, their posterior angles not prodiced.

Beneath sather darker than the dorat surface, the area around the opening of the seent glands brown with concolorom punctatons, punctations on the rest of the thorax and on the underside of the head eoarse and piceous. on the abdomen liner, denser. piceous. On the head there is a short piceous bar in the front of the antennifers and a piceous patch at the base of the head behind the bucculas. On the pronotum all thoracic stemat are plesous and there is a semicircular piccous bar in line with the eyes on the propleuron and
a shorter one on the metapleuron behind the evaporative area. On the abdomen there are piceous or infuscated areas as follows; a pair of semicircular patches at the base of the abdomen behind cach metacoxa, a rather difluse lateral line on either side extending from the base of the abdomen to nearly the apex of the fifth abdominal segment, and a broken line ventrally made up of basal bars on the fifth, sixth and seventh abdominal segments. Rostrum and legs yellowish, the latter with scattered brown rained maculae on the femora and tibiae. Male pygophore from below similar to fig. 6B.

Length: $10.25-11.5 \mathrm{~mm}$.

Distribution: Western Alasiralia. Holotype q. Nicol Bay District, coll. Dr. Clement: 1 \&. Onslow, donated C. Frencli Jun. 15 November 1911 (B.M.): 3 \& 8.7 \& 9 . Onslow, some donated C. French Jun. 15 November 1911, others F. P. Spry. 5 October 1922, (N.M.): I P, Onslow; $1 \therefore$ Onslow. donated F. P. Spry, 5 Octoher 1922 (A.M.) : 1 \&. Wittenoom Gorge, $475 \mathrm{~m}, 9$ Oclober 1962, coll. E. S. Ross \& D. Q. Cavagnaro; i it Milly Milly, 600 m .6 October 1962, coll. E. S. Ross \& D. Q. Cavagnaro (C.A.).

Remarks: This species appears restricted to Western Australia, in fact possibly only the Central West of Western Australia. It is a ruddy brown species with a remarkably even colour pattern on the dorsal surface. It is the lirst of a series of species (or taxa) in the subgenus C ephaloplatus whach have the lateral margins of the head produced into a small but conspicuous triangular process just in front of the cyes.

Cephaloplatus (C.) australis Dallas

Cephuloplanns umstralis Dallas, 1851. List of specs. Hem. Ins. Coll. Brit. Mus. 1:138.

Fig. 8
Average ste for the genus. appearing rather greyish and variegated in macroscopic view. Ground colour yellowish, punctations brown, in some parts of the pronotum and scutellum rather blackish. Some fine luteous granules present on the dorsum particularly in the hind portion of the pronotum between the lateral angles. Three fuscous maculate across the base of the head and one shaped rather like a U on its side around the inner margin of each callus on the pronotum.

Head with juga foliaceously expanded and rather acutely produced in front of the anteclypeus like the next taxon (mubifar Bergroth). Lateral margins of juga immediately in front of the eyes produced into an angulate process which is vaguely concave dorsatly and direeted somewhat upwards, this process not so strongly developed as to constitute a spine but is rather

Fig. 8: Cephatoplatin ($(\mathrm{B}$) amstralis Dallas.

an equilateral triangle. Lateral margins of juga in front of this point broady curved to their relatively acute apices. this part of juga not extending much in width beyond the inner margin of the eyes. Juga apically shortly and
mandedy acule, inner margins parallel and relarnely widels warated. (conliguous in mbifer). Dise of head wightly maned between the acelli, behind eath seellus and medially. on the land marein a hack patch. punctations in the batal half of the anteclypeas stongly blackish, belind them a glatrous patch. Antennate in type represented by only the first three segments, apparently slender. first segment somewhat orange and not reaching the apex of the jugum, second longer thatn the third, yellowish in ith batsal $2: 3$ then with a preapical brown ring. third segment blackish brown except basally.

Pronotum rather more ratised posterionly than mobiter and anteriorly to this dectivous and with it shallow transverse depression just behind the collum. Anterolateral margme progrensively more explanate from ponteriorly (o) anteriorly and rather depressed. The regioms of the anterior angles are produced forward as angular processes which reach about the anterior margins of the eyes. Abtetior margon trongly rechamsular behind the collum and behind the even shorsly truncate (for obligucly so its in mbifer) and then diverging th the apical processes. Anterolateral mateins almost stratght, of only very slightly concave anteriorly, a litte behind the midde turning out rather angulately (this concave angulation much more conspicuous than in mhifer) to the shortly and triangulately produced paler lateral angles. The true lateral angle lies bebind this process and is rounded. The anterolateral angles in front of the concave angulation are conspicuously (though the serrations are rather sumall) serate. (In motifer they are virtually entire). Posterolateral margin smate, posteroor margin entire. On the dise of the promotum anteriorly the inner margins of the calli suttined in black, on the posterior lobe a sinmous whitish line mate up of more than usuatly dense granules rumnen between the hateral angles, hehind this line a similar line made up of black punctations. a dense patch of black punctations also in the anterolateral margins at the angulation.

Scutellum very much as in other species of Cephatoplaths with the usual slight concavity of the lateral margins just behind the middle. Anteriorly somewhat raised (in mebifer a lot more strongly raised). In each basal angle of the scutellum the watal bach fovea mareined on its inner side by a glabrous point.

The hemelytra wider than the body in their basal quarter, this portion of the corial margin nearly entire, Behind the basal quarter the lateral margins of the coria sather strongly eonverging to leave most of the connexivunt exposed, apical margin of the corimm almost straight, rounded broadly at each end (in mbhifar rathe concave medially). Membrane milky White or opague with light brown veins and light brown maculac between the veins. Latcrotergites mainly comendorous but whth a blach spot meterionly just on front of each incisure and a laree triangular one exteriorly fust behind cach incisure.

Beneath concolorous with above, punctation coarse and evenly distributed, areats more infuscated or blackish are, a patch on the head beneath behind the bucculae, the thoracic sterna, a short shining bar anteriorly and exteriorly on the propleuron and the mesopleuron and metapleuron obscurely, a small patch on the lateral margin of each abdominal segment just behind each moisure and a medial streak in the basal half of the ninth abdominal segment; the femora and tibiac are coarsely maculated with black, the latter onily exteriorly.

Length: Il mm. (approx.),
Distribution: "Western Anstralia. Holotype ? (B.M.)
Remarks: The type does not now bear any indication of provenance but Dallas in has original description indicated the North West Coast of the continent.

The status of this taxon and the three which follow (mubifer Bergroth, pellewensis sp. nov. and bellus sp. nov.) is still rather uncertain. Nubifer could be an arid region subspecies of australis; it is about the same size though rather reddish but has many of the same dirk markings. The anterolateral margins of the pronotum are not so incised but this probably a rather variable character and could be subspecific. Pellewensis on deseription fits australis rather well although it is conspicuously smaller but could be the subspecies found in the Culf of Carpentaria region. Bellus looks very like perlewensis and is about the same sire and could be a subspecies of anstralis from Central Australia chosest to pellemensis, abhough it is conspictously reddish it has the same colour patterns as pellewensis, however the lateral margins of the pronotum are hardly serrate (in pellewensis they are conspicuously so), and in bellus the triangular lobe in front of the eye has become a distinct spine like process. The relative lengths of the antennal segments and their almost identical colouration in the four taxa would lend to support the same hypothesis as does the structure of the male pygophore from both dorsal and ventral aspects (the allstralis type unfortunately is a female). The femate external genitalia also appear not to differ on shape or colour pattern.

However, the above cannot be the correct explanation for mubifer and bellus cocxist in the Alice Springs region of Central Australia.

Alternatively a case could be made out that dustralis Dallas and mubifer Bergroth are the Northern and more Southern subspecies of one single species in the 9.75-11.0 mm, range and that pellewensis sp, nov, and bellus sp. nov. are subspecies, Northern and Southern respectively of a more Eastern species in the $8.0-9.5 \mathrm{~mm}$, size range.

For the moment the only really satisfactory method appears to be to regand these taxa ats distinct species until more material, especially from the Northern coastal regions of the continent, is available,

Cephaloplatus (C.) nubifer Bergroth

C'ephaloplatus nubifer Bergroth. 1916, Proc. R. Soc. Vict., 29:25.

Fig. 9

Average size for the genus, appearing rather reddish and varicgated in matcoscopic view. Cround colour reddish yellow or yellow, punctations brown, lending to be rather finer and sparser on the head and pronotum than in sonme of the other species. Some fine concolorous granulations present (an the dorsun particularly in the extreme hind portion of the pronotum, the hind part of the seutellum and the hind quater of the coriaccous parts of the hemelytra.

Head with juga expanded somewhat foliaceously, but rather more acutely produced in fromt of the apex of the anteclypers than in other spectes of this genus. Lateral margins of juga immediately in front of the eyes produced into an angulate process which is concave dorsally, this process is not so strongly developed as to constitute a spine, it is more in the shape of an equilateral triangle. Lateral margins of juga in front of this point broadly curved to their relatively acute apices. this part of juga not extending much beyond the inner margins of the eyes. Anterion angles of jugae more acute than other species, inner margins convex contiguous anteriorly but leaving a small gap inmediately in front of the anteclypeus in the three specimens available. Head slightly raised basally between the ocelli, Eyes prominent, ficets occupying only the anterior facing surfaces, hind surface Hattened and whape. Antennate relatively long and slender. five segmented. fint segment not reaching the apices of the jugi, second, hard and fourth segments subequil, filth segment somewhat longer. Antennate brownst or reddish brown in colour, the apical halves of the third, fourth and fifth segments infuseated.

Pronotum only very stightly raised posteriorly, anteriorly to this somewhat declivous but with a tight transverse convexity between the anterior margm and the hinder portion. Anterolateral margins progressively more explanate from posteriorly to anteriorly. The region of the anterior angles shortly produced as angular processes but reaching only to about the anterior margins of the cyes. Anterior marein thallowly concatve behind the collum. obligucly truncate behind each eye and diverging to the apices of the anterior processes. Anterolateral margins somewhat curved anteriorly thence more of less straight with perhaps a shght concavity between this point and the literal angles, almost entire. with only very fine irregularities.

Fig. 9: Cephulophatus (C.) muhifer Bergroth.

Lateral angles obliquely truncate, posterolateral margin sinuate, posterior margin truncate. On the dise of the anterior lobe of the pronotum the calli relatively conspocuous, on the hind lobe at trace of a sinuous line ruming between the lateral angles made up of rather more than waally denscly eoncentrated granules.

Scutellum very much an in other species of Cephatoplatus with the usual slight concavity of the lateral margins just behind the middle. Anterionly somewhat biased. this anteror portion continuing as a slighty raised atrea to the lup thas giving the impression of a llask shaped raised areat on the scutellum. In each basal angle of the scutellum the usual rather elongate hlack lovea margined on its inner side by a concolorous glabrous. area or point.

The hemelytra wider than the body in their basal quarter, this portion of the corial margin nearly enture. Behind this point the lateral margin of the corium rather more strongly converging posteriorly than in some other apectes and leaving most of the connexivum exposed. apical margin of corium slightly concave exteriorly, broadly rounded interiorly, the outer angle of the corium very slightly prominent. Membrane milky white or opaque with almost concolorous veins and some light brown maculae in the cells between the veins. veim apparently mot forked apically. Laterotergites concolorous but with an infuscation on each just behind the incisure.

Underside concolorous with above, punctations comparatively sparse and coarse. On the underside of the head a piceous short bar just in front of the inseltom of the antennae and a piceous spot on either side of the base of the head just behind the bucculae, in some specimens the buceulae infuscated, in others not. Thoracic sterna piceous, a piceous somewhat irregular line present near the exterior of the propleuron and thinner and shorter fanes present in much the same position on the metapleuron and mesopleuron. Abdemen all base with a small semicireular piceous areat behind each metacoxa, incisures somewhat darkened and a distinct fuscous spot exteriorly immediately behind where each reaches the lateral margin. On the venter of the abdomen faint traces of an interrupted scries of fuscous spots or short small bars. Male genitalia from below similar to Fig. 6B.

Lenzelt: 9.75-10.0 mm .
Diswiburion: Northern Territory, Lectompe io, Medonnell Ranges: 1 ?. Alice Springs (Helsinki); 1 \&. Alice Springs, 31 August 1936. coll. H. O. Fletcher \& W. Barnes; 1 \& 1 \%. 14 miles North of Tyon Station. August 1936. coll, H. O. Fletcher of W. Barnes (A.M.): 1 ₹, Hermannsburg. 1908, coll. H. I. Hillier (B.M.), Western Australia. I, Hermite Is., coll. H.M.S. (impania, accessed 1952 (B.M.): 1 \&. Filaroy Crossing, 4 September 1953, coll. N. B. Tindale: 1 i. Derby, coll. W. D. Dodd. (S.A.M.). Unlocaliaed. 18 (N.M.).

Remarks: Bergroth in his original description of muhifor mentions two localities "Mcdonnell Ranges" and "Alice Springs" the material being collected on the Horn Expedition into Central Australia. In Helsinki I was able to find a section of Horn Expedition material which Bergroth had worked over but no types were marked. Amongst it were a male from Mcdonnell Ranges and one other from Alice Springs of a species of Cephaloplatus which fit the description of mebifer. The Mcdonnell Range male fits the description very well and there can be no doubt that this is the type, this specimen is accordingly selected here as the lectotype of Cephaloplatus mubifer Bergroth.

Cephuloplutus muhifer appears to be a fairly rare species probably ditributed over a fairly narrow belt of arid country stretching from about. Alice Springs to approximately the same latitude on the Western Austatian coast and off shore islands.

The possibility that mbifer is a subspecies of australis Dallas is discussed in the remarks section inder the latter.

Cephaloplatus (C.) pellewensis sp. nov.
Fig. 10
A little smaller than the average size for the genus, usually appearing greyish and variegated in macroscopic view. The ground coloration is actually rather whitish with coarse brownish black punctations, many of them forming clusters. The hind part of the pronotum, scutellum and the coriaccous parts of the hemelytra with sparse concolorous small granules

Head with juga strongly and foliaceously developed, produced well in front of the apex of the anteclypeus. Anterior margins of juga oblique, then rounded smoothly into the lateral margins of the head which are produced into a prominent slightly curved eriangular process in front of each eye, inner margins stratght or curved, contiguous or not. Eyes moderately prominent. facets oceupying all but the posterior flattened surfaces. Antennac moderately slender. first segment not reaching apex of head. third somewhit shorter than second: second, fourth and fifth subequal. yellowish, on the second segment a subapical darkened ring, apical two thirds of third, fourth, and fifth segments darkened.

Pronotun somewhat raised posteriorly, more depressed anterolaterally. the anterolateral margins progressively more explanate from the lateral angles forward, the region of the anterior angles produced forward as a triangular process to about the level of the convex spine in front of the eyen. Anterior margin of pronotum truncate behind the collum and agan bchind each eye then diverging forward to the apex of each anterior process. Anterobateral margins at first father convex then concave, distinctly finely serrate. Lateral

Fig. 10: Cephatoplatus (C.) pellewensis sp. nov.
angles distinctly prominent as small triangular flattened lobes, posterolateral margin strongly sinuate. posterior margin truncate. The hind quarter of the pronotum with moderately sparse small concolorous granules. Just in front of these a simuous thinnish line of more than ustally concentrated blackish punctations and in front of this a broad sinuous transverse bar, in front of this again rather darker with odd patches of denser punctations. especially at the inner edges of the calli, punctations on the expanded anterolateral margins quite sparse.

Scutellum substantially triangular with the usual angulate concavity somewhat behind the middle. Basal half somewhat raised, apex depressed. Dise only moderately densely covered with small gramales. in each apical angle an clongate black fovea margined interiorly by a small glabrous pateh, another glabrous patch medially on the base, a pater less punctite broad longitudinal streah medially, lateral areas with symmetrically placed darkibh areas of more densely concentrated punctations. Tip rounded.

Hemelytra wider than the body in their basal quarter, behind thas point converging rather strongly to leave the more posterior laterotergites completely exposed, whole corial exterior margin rather irregular. Hind margin of coritun straight exteriorly, broadly curved at its inner angle. On the dise of the coriunn patches of impunctate areas and areas of dense punctation. Membrane whitish hyaline with light brownish veins and a number of brown maculae in the cell between the veins (which do not appear to be forked). Laterotergites with is brown patch at each posterior inner angle and eath anterior outer angle.

Beneath mainly concolorous with the dorsal surface, punctations on the metapleura rather liner. Strongly infuscated areas are present to a greater or lesser degrec, in the darkest specimens they occur as follows, a narrow line on the side of the head immediately in front of the insertion of the antennae, a large spot at the base of the buccalae, all thoracic sternites. lateral bars on the thoracic pleura, on the third abdominal sternite immediately behind each metacoxa. mose of the abdominal incisures, medially at the base of at least the sixth and seventh sternites, exteriorly at the anterior angle of each sternite and on the apices of the first valvifers of the female genitala, Male pygephore from below similar to fig. 6B. Leess with coarse brownish maculations.

Length: 8.5-9.5 mm.
Dismihution: Northern Tervitory: Holotype \& (T600s) Horn Islet, Pellen Group, 16-23 May 1968, coll. B. (iantrell (Q.M.), allotype P. paratype s, paratype ? Horn Islet, Sir Edward Pellew Group, 25-31 Janaary 1968 , coll. B. Cantrell: 1 a doubtful. Horn Islet, Sir Edward Pellew Group. 22-28 February 1908, coll. B. Cantrell: 1 i doubtlul. Horn Islet, Sir Edward Pellew Group, 15-21 February 1968, coll. B. Cantrell (U.Q.).

Remarks: The possibility of a subspecific relationship existing between pellemenses and either dustralis Dallas or bellus sp. nov. is discussed in the remarks section under australis (p. 30). The last two males mentioned. under the detribution preceding above are only provisionally referred to this species for the moment. They are very similar to each other but show at rather different facies to the type series of pellewensis. They are both in the same size range as pellewensis, have the triangular lobe in front of the eyes, the same structure and coloration of the antennate and the male and femate genitalia appear to be identical and the same general colour pattern. However, they are both very much smoother, the anterolateral margins of the pronotum are virtually straight and they lack all but a few of the dense patches of back punctations above They may represent an extreme of the variatoon to be found in pellewensis or alternatively yet another species in the complex from australis through to bellus. It is worth noting in the balter context that three other species of Cephaloplarus also oceur on Horn Islet. namely ((M.) minor Distant C. (C.) pallipes Walker and C. (C.) pertyi (White).

Cephatoplatus (C.) bellus sp. nov.

Fig. 11
A lille smaller than the average size for the genus, often appearing tather reddish and variegated in macroscopic view The variegation in some parte in lutenus of even almost whitsh, in other parts reddish, in other parts pinkish or even ferrugincous. Punctations in the main brownish but small patches on the head, pronotum and soutellum blackish. The hind parts of the pronotum, scutellum and the coriaceous parts of the hemelytra with numerous concolorous small granules.

Head with jug: strongly and foliaceonsly developed. produced well in front of the apex of the anteclypeus. Anterior margins of the juga oblique, lurning shorlly into the sinuous lateral margins which are produced into a prominent slighly curved clongate triangular or spinous process in front wh cach eye, inner margins of the juga curved, sometimes contiguous, sometimes not. Figes moderately prominent. facets occupying only the anterior half. Antennac moderately slender, list segment not reaching the apex of the head. third segment relatively short, second, fourth, and fifth segments subecgat, on the second segment a subapical darkened ring, apical two thitds wh third segment infuscated, apical hatf of fourth infuscated, apical two thirds of fifto infuscated.

Pronotum somewhat raised posteriorly, more depressed anterolaterally, the anterolateral margins progressively more explanate from the lateral angles forward, the region of the anterior angles produced as a triangular process forward to about the level of the apex of the spine in front of the eves.

Fjs. I1. Cephulophums (C.) bellus \&p. nov.

Anterior margin of pronotum concave behind the collum, truncate behind each eye, then parallel forward to the apex of each anterior process. Anterofateral margins almost straight or very slightly convex, irregular but definitely not crenulate or serrate. Lateral angles shortly truncate, posterolatesal margin somewhat siouate, postertor margin truncate. Hind area of the pronotum failly densely covered with small concolorous granules. The areas of darker punctations tending to vary in position from specimen to specimen but always symmettically placed on either side of the midline.

Scutellum substantially triangular with the usual angulate concavity well behind the middle. Basal half somewhat raised, apical half somewhat depressed. Dise fairly densely covered with small granules, in each apical angle a somewhat clongate black fovea margined interiorly by a small glatorous atea. Patches of dark punctations on the scutellum likewise differently placed in different specimens but tending to be symmetrical about the middle. Tip bruadly rounded.

Hemelytra wider than the body in their basal quarter, this portion of the corial margin smooth. Behind this point the lateral margins of the corium smoother and gradually converging posterionly leaving more of the connexivanl exposed, hind margin of corium more or less straight exteriorly, broadly curved at its innter angle. On the dise of the corium and clavis various patches of concolorous impunctate areas. Membrane milky white with light brownish veins and a number of brown maculae in the cells between the veins, some of the veins forked. Laterotergites with a brown patch at each anterior angle, this brown patch sometimes extending inwards lurther towards the inner margin of the connexivum.

Bencath mainly concolorous with the dorsal surface. the punctations tending to be finer only on the metapleura. Strongly infuscated areas are present 10 a greater or lesser degree: in the darkest specimens they oecur as follows: on the sides of the head immediately in front of the insertions of the antemate, a spot on either side of the babal ends of the bueculac, all thoracic sternites. lateral bars on the thoracic pleura, and the incisures of all abdominal sternites. In other specimens there are only the thoracic stenites, a difluse lateral line on either side of the abdomen and a broken line of infuscations along the midline of the venter. Legs with brownish granulations or maculations. Male pygophore somewhat like fig. 6 A .

L.ength: $9.5-10.0 \mathrm{~mm}$

Distribution: Northern Territory. Holotype s (Reg. No. 120,549) 2 paratype P 5, 1 paratype ? sex (as abdomen is missing) (Reg. Nos. 120.550-2), Haast Bluff Station, 2, (000 feet 69 Fahrenheit at Mercury Vapor Light, + September 1957. coll. N. B. Tindale; 1 paratvpe a. 3 paratypa' of (Reg. Nos. 120.553-6) Haast Bluft Station, 2,000 feet. 62 Fahrenheit at Mercury Vapor Light. 5 September 1957. coll. N. B. Tindale; 2 paratype
Q. (Reg. Nos, 120,557-8), near Ayers Rock, 20 August 1900, coll. R. Garnell; paratype \& (Reg. No. 120,562), Yuendemu, February 1968:1 puratype ㅅ, 2 paralype of (Reg. Nos, 120,569-71). Yuendemu, February 1968. coll. C. Watts: puratype i: (Reg. No. 120,56,3), Devil's Marbles 7 miles North of Wauchope, 22 April 1906, coll. N. McFarland (S.A.M.): allolyphe +2 paratype if ${ }^{\circ}(1$ at light) 4 paratype of 9 (2 at light), Stanley Chasm, 31 miles West of Alice Springs, 9 February 1966, coll. Britton, Upton \& McInnes: I paratype 8.48 miles WSW of Alice Springs, 10 February 1966, coll. Britton, Upton \& Melnnes; 2 paratypi : . near Reedy Reckhole. Amadeus Basin at 2420 S 131 35't. o June \& 8 September 1962, coll. R. Ranford; 1 paratype i. Amadeus Basin, 15-16 September 1962, coll. R. Ranford (A.N.I.C.) ; 1 paratype 9 . Mt. Gillen near Alice Springs. 1,500 feet, 31 August 1936, coll. H. O. Fletcher \& W. Barnes (A.M.); 1 paratype \&, 11 miles North of Alice Springs 625 m , at 15 watt ultrat violet (black) light, 28 October 1962, coll. E. S. Ross \& D. O. Cavagnaro: 1 paratype \&. Devil's Marbles, 350 m, 27 Octoher 1962, coll. E. S. Ross \& D. Q, Cavagnaro (C.A.) Western Australia. 2 paratype \& \& (Reg. Nos. 120.560-1). Pilgangoora Well. Pilbara District. 6 \& 7 June 1953. coll. N. B. Tindale; 1 pararype 9 (Reg. No. 120,559), Coolgardic (S.A.M.). Quecnsland. 1 pararype do, Split Rock 30 miles East of Camooweal, September 1936, coll. H. O. Ficteher is W. Barnes (A.M.). South Australia. 1 paratype $\frac{1}{}$ and 1 paratype $\rho^{\text {, (Reg. Nos. 120,564-5), found dead on }}$ salt of Lathe Eyre North (Madigim Cillf), 27 October and 4 Nevember 1963, coll. G. F, Gross (S, A, M.).

Remarks: The possible relationship of this species with the series beginning with ('. (C.) anstrulis is discussed on page 30. fis centre of distribution is elearly in the southern part of the Northern Territory extending out East and West into Qucensland and Western Australia and South into South Australia.

It is the first of a series of species in which the lateral margin of the head is produced into a distinet spine like process just in from of each eye.

Cephatoplatus (C.) spurcatus Walker
Cephatoplatus spurcame Walher, 1867 Catt. spec. Het.-Hem. Coll. Brit. Mus.. 1:191.
Cephuloplutys spurculus Van Duzee, 1905, Bull. Amer. Mus. nat. Hist.. 21:201.

Fig. 12
Average size of the genus, in macroscopic view tending to appear grey, light or dark. Ground colour light yellowish or lutenus with mumerous coarse brown punctations which are not evenly disposed over the dorsum of the animal. Pronotum, scutellum and coriaceous parts of the hemelytra covered with sparse lutenus granules.

Fig. 12: Cephuloplarus (C.) spurcarns Walker.

Head with juga rather foliaceously developed and produced forward in front of the apex of the anteclypeus. their apices broadly rounded. running back to a prominent flattened spine between the base of the antennifer and the eye which projects forwards and outwards to about the level of the outer margin of the eye. Just in front of this spine the lateral margins of the juga strongly incised, their inner margins in front of the apex of the anteclypeus rather conven, contiguous or not. Lateral and anterior margins of juga somewhat raised so that the anterior portion of the head is somewhat concave. Eyes moderately prominent, facets occupying only the anterior half to two thirds. Antennate moderately stender. first segment not raching the apices of the juga, second and thire segments subequal. fourth about 30 'r longer than them and lifth about 25 e. longer than fourth. Diatal antennal segments brownish with segments basally yellowish, the first segment yellowish and sometimes also the second.

Pronotum only somewhat raised posteriorly, depressed athterolaterally. the anterolateral margins progressively more explanate from the lateral angles forwated, the region of the anterior angles prodaced anterionly ats at trianguar process to about the level of the apea of the spinc in front of the eyes. Anterior margin of pronotum truncate behind collum, rather oblique behind each eye, rounded, straight of oblique to the apex of each anterior process. Anterolateral margins fechly to strongly angulately concave a little behind the middle. clearly crenubate or serrate in front of the angle of the concavity. the crenulations or serrations a! the same length, lateral angles subacute (strictly speaking the acute projection lies a litte in from of the true lateral angles which are obtusangulately rounded), posterolateral margin almosi straight beloind the true lateral angles. posterior margin straght to rather concave. Luteous granules on the pronotam rather sparse and mainly confinced to the posterior half. Punctations quite sparse son the expanded anterolateral margins. on the dise sometimes more concentrated in a sinuous line extending between the lateral angles.

Seutellum substantally triangular with the usual angulate coneavity behind the middle. Basial half raised only medially, apecal angle very broadly rounded. Dise with scattered smatl luteous granules, punctations not evenly disposed, in each apical angle a black fovea mateined interiorly by a small glabrous point,

Ilemelytra wider than the body in their basal third, this part of the cormal margin clearly crenulate. Behind this pornt the lateral margins of the corium smoother and gradually converging poteriorly leaving about half or more of the connexivum exposed, hind margin of corium exteriorly rather concave, rounded at its inner angle. On the dise of the cortaceous portion of the hemelytrat small scattered luteous granules and the punctations not evenly disposed. Membrane a very pale brown with light brown veins and
somic faint brown maculate in the cells between the veins, some of the veins forked and neat the base of the membrane some cloned cells. Laterotergites concolorous and punctate only interiorly, black in each anterior angle and along their hind margins, their hind angles a little protuberant.

Beneath much darker that the dorsal surface, the punctation much demer, the jugit, the explanate anterolateral margins of the pronotum, the epmerna and epmera, the embolium and the sides of the athomen pale with relatively few punctations. A large brownsh black spot on the head beneath at the base of the buceutace in some specimens a line on the side of the head in front of the antemilers, the thoracic sterna. a smonth somewhat curved longitudinal line exteriorly on the propleuron, another on the metapleuron. at spot near the lateral angles. a large area at the base of the abdomen at eath side behind each metacoxa, a longitudinal broad line on either side of the abdomen on segments II-V and a medial spot at the base of segments III-VII all blackish or piccous. The anteror half of the lateral margin of each abdominal segment and a spot near the edge of each incisure immediately in front of the former blackish. Femorit and tibiae with coarse brown or piceous maculac, sparsely distrobuted. Male pygophore with apical angles prominent, otherwise similar in appearance to fig 6C.

Lenglt: 8.5-11.0 mm.
Distribution: North Abstralia. Hohotype is 1 is elc. (B.M.):
 1961. coll, A. J. Hiley: 1 , Brisbanc, 10 March 1962. coll. D. Schoorl; 1 \&. Toowoomba, 3 February 1963. coll, J. C. Curdale; 1 ó, 288. Carnarvon. 29 May 1959, coll. T. E, Woodward: 1 9. Sunnybank, 6 Fchruary 1906, coll. F. R. Wylie; 1 \&. Mt. Elliot via Townsville, 24 May 1968. woll. G. Monteith: 1 \&. Mt. Etna, 29 April 1967, coll. J. Bluhdorn. 1 \&. Mt. Jsat, 23 January 1968, coll. B. Ciantrell; 1 \&. Highvale, 28 May 1958. coll. T, E. Woodward (U.Q.); 1 \& 3 오. ("lermont, April and December 1928. coll. Dr. K. K. Spence, $2+\therefore 19$. Almaden, March 1928 \& 1929. coll. W. D. Campbell: 1 \&, Gayndah, coll. Masters (A.M.): 1 : Brisbatme. 15 Matrell 190x, woll. W. W. Froggatt; 1 ․ . 50 miles SW Ayr。 9 October 1950, coll. E. F, Riek (A.N.I.C.): 1 ㅇ, Toowong, 3 May 1408, (N.M.): $1 \leq 1$ \& Bowen, coll. A Smpson; 1 \& Normanton, coll. R. Kemp: 17, Muryburbuglı, coll. E. W. Fischer (S.A.M.); 1 if. Brisbane, 23 Novemhor 1915. coll. H. Hacker; 1 g, Brinhane, 11 July 1926: 1 , Brasbane. K May 1937, coll. R. I. Lamgdon (B.M.): 19. Reckhampton (Stockholm): $2: \quad 2$ \& P. Townsville, January 1945. B. Malkin (U.S.N.M.); 1 , 32 Km South of Ayr, 6 November 190t, coll J. Sedlacek; 1: 88 Km East Chaters Towers. 18 January, 1969, coll. I. Sedlacek (Bishop). Northern Territory, 5 is 10 \& \& Borroloola, November 1911, coll. G. F. Hill on Barclay Expedition (N.M.):1:,1 马. Borroloola. 28 February

1968, coll. B. Cantrell (U.Q.). New Sonth Wales, 1 甲. (B.M.); 1 ㅇ. Irom E. P. Van Duzec collection (C.A.). Unlocalized. 2 of P. 1 ? (A.M.).

Remarks: This species is very close to the one following (darwini). The salient features distinguishing the two and it possible subypecies relationship between them is discussed under the remarks section of the latter. C. (C.$) spurcatus occurs over most of Eastern Queensland except the Cape$ York areas, part of the Gulf of C'arpentaria region of both Queensland and the Northern Territory, and some part of Now South Wales, possibly the North East Coast of that state. Its distribution therefore, lies in the centre then East and South of the darwini distribution with areas of probable contact with the range of the latter across the base of Cape York Peninsula, near the Queensland-Northern Territory border, and in the region of the southern section of the shores of the Gulf of Carpentariat.

Cephaloplatus (C.) darwini Distant.
Cephaloplaths spurcatus (non Walker 1867) Carpenter, 1891, Sci. Proce. R. Dublin Soc. 7:139.

Cephaloplatus darmimi Distant 1910. Ann. Mag, nat. Hint., (8)6:473.
Fig. 13. 6C.
Rather variable in size but large specimens average sized for the genus, in macroscopic view tending to appear rather greyish. Ground colour light yellowish or luteous with numerous moderately coarse brown punctations which are not evenly disposed over the dorsum of the animal. Pronotum, scutellum and coriaceons parth of the hemalytra covered with sparse luteous granulations.

Head with juga rather foliaceously developed and produced forward in front of the apex of the anteclypeus, their apices obligue, then broadly rounded just in front of the antennifer then rumning back to a prominent spine between the base of the antennifer and the eye which projects outwards and forwards to about the level of the outer margin of the eye. In front of this spine lateral margins of the juga strongly incised. their inner margins in front of the apex of the anteclypeus rather straight, ustatly well separated from each other and in many cases divaricate. the apex of the anteclypeus therefore free. Lateral and anterior margins of juga somewhat raised so that the anterior portion of the head is rather concave. Eyes moderately prominent, facets occupying only the anterior half. Antennac moderately slender, first segment not reachang the aples of the juga, the second and fourth segments subequal, the fith segment longer than either, the third segment shorter than either. In some specimens the antennae in the main reddish, in others brownish or brownish with the apical halves of the third, fourth and fifth segments infuscated.

Fig. 13: Head and pronotunt of Cephaloplatus (C.) darwini Distant.

Pronotum only somewhat raised posteriorly. depressed anterolaterally, the anterolateral margins progressively more explanate from the lateral angles forward, the region of the anterior angles produced as a triangular process forward to about the level of the apex of the spine in front of the
cyes. Anterior margin of pronotum truncate behind the collum. Iruncale behind each eye. then diverging somewhat forward to the apex of each anterior process. Anterolateral margins strongly angulately concave a lille behind the middle. with four to seven very marked denticulations in front of the angle of this concavity, in front of the lateral angles subacutely produced. Irue laterall angles rounded, posterolateral margin at first rabler convex then obliquely concave, posterior margin trancate. I.utcous granules on the pronotum very sparse and mainly confined to the posterior half. Between the lateral angle in a vestige of a sinuous transverse line made up of rather more than usually densely concentrated luteous granules.

Scutellun substamtially triangular with the usual concavity somewhat behind the middle. Basal half samewhat ratised, apical halt somewhat depressed, apical angle rounded and marrower than that of $C,(C$. spurcalus. Dise with scattered small luteous granules, in each apical angle a somewhat elongate black fovea margined interiorly by a small glabrous area or point, another glabrous point medially on the base.

Hemelytra wider than the body in their basal quarter, this porton of the corial margin fandy denticulate. Behind this point the lateral margins of the corium smoother and gradually converging posteriorly leaving about half of the connexivan exposed, hind margin of cormom exteriorly more or less straight, broadly curved at its inner angle. On the dise of the coriaceous parts of the hemelyta small scallered luteous grannles and the punctations not disposed evenly. Membrane opaque with light brownish veins and a number of light brown maculate in the cells between the veins, some of the veins forked and near the base of the membrane some choned cells. Laterotergites concolorous. generally only lightly infuscated at the incisutes. their hind angles slightly protruding, lightly punctate and that only in their inner portion.

Bencath tending to be darker and more reddish than the dorsal surface. the punctitions on the underside of the head and on the thoratx coarse and dense. Piccous are: a longitudinal streak in from of cach antennifer, a large spot at the base of the bucculac, the thoracic sterna (with the exception of the yellowish heel on the mesosternum), sundry darker patches above the epimeron and episternum, two large semi-circular areas at the base of the abdomen behind eath metacoxa, an interrapted line on the atodomen made up of triangular median bars on the fourth. fifth, sixth and seventh ventrites. a hroad to very broad lateral band on either side extending from the base of the ahdomen to the apex of the fifth ventral segment. All femora and tibiate with coarse brown or piceous raised coarse maculac, fairly sparse in distribu. tion, these spots not present on the Murray Island specimen. Make pygopore with apical ungles prominent (Fig, 6C),
l.ength: 8.0.11.0 mm

Dintrihution: Northern Territory. Holotype 9 , Port Datwin, coll. Walksr: 1 , Darwin 7 April 1913. coll. G. F. Hill (B.M.): 1? Darwin. Januaty, 1939. coll. M. Kamper; $1 \therefore 1$ §, 1 ? Burnside, 23 March 1929. coll, 'T, G. (ampbell (A.M.) 18 . bame data; 1 P, Brocks Cocek, Murch 1933, coll. T. C'impbell (A.N.1.C.): 1 \& , 1 \&, Darwin, coll. G. F. Hill; 29?. 30 miles East of Darwin, coll. G. [F. Hill; 1\%, Croker Jsland Misson, 28 March-5 April 1961: 1 S. Oenpelli, December 1918, coll. D. P. Cahill (N.M.): 13.1早. Darwin. 12 March 1913, coll. G. F. Hill: 13, 4 오. Darwin. coll, G. F. Hill; 1 q, Darwin: 1 , Darwin March 1956, coll. D. Groves; 1 os, 3 o. 8 , Darwin by sweeping in cleared monsoon forest, 7 January 1961, coll. G. F. Gross; 1 오, Melu Island near Darwin, coll. Gi. F. Hill: 2 o $6, G$? ? 30 miles East of Darwin, coll. G. F. Hill: 1 \& Batchelor, coll. Gi. F. Hill: 1 i, Roper River, coll. $N B$ Tindale (S.A.M.): 2 \& s. 2 \& \&. Datwin. 11 February 1945, coll, B. Malkin: 3 \& 8,3 . 8. Darwin, 25 March 1945, coll. B. Malkin; 1 \&. Batchelor, coll. G. F. Ilill (U.S.N.M.):18.2\%8.3-7 December 1963. 2 o d. 1 ?. 1-8 Jamuary 1964. Darwib, at m.v. light trap, coll. J. Sedlacek; 2 \& \& 1 is, Darwin, coll. J. Sedlacek: 248 , Berry Springs. 50 Km South-East of Darwin, 12 March 1966. coll. J. L. \& M. Gressitt (Bishop). Senth Australio. I f, donated (. Frenclo lun.. 15 November 1911 (N.M.). The Northern Territory was formerly part of South Australia politically and it is reasonably certain that this specimen would have come from what is now a Northern Territory locality.) Western Anstraliar. 1 P. Wyndham. 15 December 1930-8 Janwary 1931: ? Chumooli near Wyndham, Ii January 1930-12 February 1931. coll H. J. Willings (A.N.I.C.): 1o. Junction of Fitzroy and Margaret Rivers. 1896, coll. Calvert Expedition; 13, Derby (S.A.M.),
 G. B. Monteith. 1 i. Honnestead. Silver Plains via Coen, 11 December, 1964. coll. (i. Monteth: 1 \& Bamaga, Cape York Peninsula, May 19o8. coll. R. Trundle (Cl.O.): 2 : 1 \&. Bamaga, (ape York Peninsula, 5 April 1964. coll. I, F, B, Common \& M, S. Upton (A, N.I.C.) 2 \& $\&$. Stewart River, Jan-umy-Rebruary 1927, coll. Hale \& Tindate (S.A.M.); 1 o. Weipa, 15 June 1969. coll. (. Mccubbin (N.M.); 1 9. Rochy Scrub, Mcllwraith Range, Cape York Pen. 28 June 1932. coll. Darlington on Harvard Expd. (A.M, N, II.), Torres Strait Lstands. 18. Murray Island (A.M.): 3o ? Murray Istand. coll, A. M. Lea (S.A.M.): I neanide, Thursday Istand. 5 Itme 1969, coll. A. Neboiss; 19 . Prince of Wales Istand, 29 May 1969. coll. A. Neboiss (N.M.); 1 i. Prince of Wales Island, 27 January 1939, coll. R. G. Winl ($\mathrm{C}, \mathrm{A}_{0}$).

Remarks: 'This species is to be found in North Western Australia, north of approximately the latitude of the Fitzroy River, in the Darwin and Amhem Land tegions of the Northern Territory, in the Northern part of the Cape Yorke Peninsula and Torres Straight lstands arean of North Queensland.

The Northern Territory and Queensland populations appear to be separated by an extension of C. (C.) spurcutus which runs up through Mt. Isa to the south coast of the Gulf of Carpentaria. $\quad\left(, C_{1}\right)$ spurcoutes and $C_{1}\left(C_{0}\right)$ darwini are very close to each other in general appearance, distinctions are (1) in sparcatus the anterolateral margins of the pronotum are fairly finely crenulate with many small teeth. in darmini this margin is coarsely serrate with about 4-7 much larger teeth, the latter of unequal length and some are doubled. (2) the second segment of the antemate is very nearly the same length as the third (15:15) in spurcatus whereas in durwini the second is usually about 30) $;$ longer than the thard (20:15) although some variation does exist. (3) the dark bands on the sides of the abdomen in spurcutus tend to be narrow but very broad in darwini. The male pyguphore is apparently virtually the same in both species.

It could be argued that darwini is as subspecies of spurcatus. Evidence to the contrary is that darwini is made up of two populations west and east divided by an extension of spmocaths (which is hardly to be expected of subspecies) and that transitional lorms are very rare. only the Derby and one or two (not all) of the Murraty Istand specimens of damini approach spurcatus, these being from localities quite remote from any areas of possible spurcatus-darnini contact or overlap whereas if they were subspecies these forms would be expected along the zones of contaty, i.e., the region of the (iulf of Carpentatia. As far as can be determined from the material at hand the two species are allopatric. It could also be argued that darwini is an impressed variation of spurcatus to be found in fotter and or more humid areas. It can hardly be the more humid factor ats many of the localities for spurcatus are from quite wet areas of Eastern Queensland. On the evidence presented here the series of spurcatus referred to by Curpenter from the Torres Strait region are more likely to be darwini, unfortunately I did not see this series when in Europe.

Cephatophatus (C.) pertyi (White)

Dryptocephalus: (Cephalophatms) partyi White, 1842, Trams, ent. Soc: Lond.. 3:90.
Cephaloplatus pertyi Datlas. 1851 . List spec. Hem. Ins. coll. Brit. Mus., 1:148.
Cephaloplarys perryi Distant. 1899. Ann. Mag, nat. Hist. (7)4:43.3.
Fig. 14
Average sized for the genus, light yellowinh or lucerns with light brown punctations, sometimes with a redelish tinge. Dorsal hurface with seattered granulations.

Head with juga developed into folsaccous structures though these at their widest do not extend outwards past the level of the eyes. Lateral margins of the expanded juga slightly concave and convexly tlexed laterally, then convexly rounded in tarn becoming the relatively long oblique anterior margins, these anterior angles shortly rounded and the imner margins of the produced portion more or less stratight and well separated from each other. though not divaricate. Eyes not very prominent and the facets ocenpying only the anterior half of the uptic process which is inclined posteriorly. Antennae slender and five segmented, the lifth segment the longest. the tirst segment not taching the apex of the jugum. yellowish but the third and fourth segments in their apical half and the whole of the fifth somewhat infuscated.

Pronotum very moderately convex on the dise, the lateral margins strongly explanately produced and the regton of the anterior angles produced forward as a somewhat triangular process to almost the apex of the dorsal aspect of the anteclypeus. Anteror margin of the pronotum convexly excavate, anterolateral margins coarsely dentate or servite, lateral angles irregularly rounded, posterolateral margins almost straight with a prominent but small tumescence just inward of the lateral angles. hind margin nearly straight.

Scutellum substantially triangular, the lateral margins raller angulately concave, the maximum concavity oceurring behind the mid point, apex narrowly rounded, the dise basally somewhat raised.

Hemelytra wider than the body in their basal yutrter, thes porton of the corial margin denticulate or coarsely cremulate. Behind this point the lateral margins of the cormom smooth and gradually converging posteriorly leaving progressively mote of the connexisum expased, hind marein of corium mere or less straight. Membrane greyish hyaline with brown, mostly longitudinal. veins and some brown spots between them. Latcrotergites with their posterior angles rather angulate and appearing to be somewhat produced.

Bencath mostly concolorous with the upper surface, punctations on the head and thorax coarser and sparser, those on the abdomen finer and denser. Mesosternum, metasternum, two patches at the base of the abdomen. one just behind each metacoxa, and a narrowing lateral band on the first few visible abdominal sternites infuscated. Male pygophore similar to fig. oC.

Length: 9.75-11.0 mm.
Distribution: Unlocalized. Holotype \& (B.M.) : 1 ¢. from C. French Jun. donated 15 Noventber 1911 (N,M.): i i (S.A.M.). Northern Tervitory, 1 ㅇ, 25-31 January 1968, 2 s 3,4 오, 1-7 February 1968. 1 ?. 8-14 February 1968. Horn Isket, Sir Edivard Pellew Group, coll. B. Cantrell (U.Q.): 1 s. Port Denison: 2 古 5 . Dip Yard Liggoon via Brock's

Creek, 8 April 1929, coll. T. G. Campbell; 1 ㅇ, Roper River, SeptemberDecember 1910, coll. E. D. Frizelle; 1 t̀, Pt. Keats, 26 June 1952, coll Australian Museum NW Australian Party (A.M.) ; 2 ô ô, Manbullo Station, Katherine, 8 July 1929, coll. T. G. Campbell; 1 ô, Marrakai Station, coll. 28-31 July 1929, coll. I. M. Mackerras \& T. G. Campbell; 1 ô, Green Ant Creek near Dip Yard via Brock's Creek, 9 April 1929, coll. T. G. Campbell; 1 오, Ladysmith Yard, Turn-off Lagoon, 17 September 1930, coll. T. G. Campbell (A.N.I.C.); 1 \&, 30 miles East of Darwin, coll. G. F. Hill; 1 ô, 1 ㅇ, Borroloola, 2 October 1911, coll. G. F. Hill on Barclay Expedition; 1 ㅇ, King River, 24 December 1915 (N.M.); 1 ㅇ, Port Darwin; 1 t., 2 우 ㅇ. Darwin, coll. G. F. Hill; 1 î, 30 miles East of Darwin, coll. G. F. Hill; 2 ti ô, 1 ¢, Daly River, coll. H. Wesselman; 1 ô, 2 ̊ㅜ, Groote Eylandt, coll. N. B. Tindale; 1 ô, Finke River, coll. Dr. H. Basedow; 1 ㅇ, unlocalized, coll. S. A. White; 1 ô, 1 ㅇ, unlocalized (S.A.M.); 1 ?, Darwin (Paris); series, Darwin; series, Adelaide River; 1 of Stapleton, coll. G. F. Hill (B.M.); 2 के of on grass, 7 March 1961, 1 to, 21 March 1961, Maningrida, 5 m , Arnhem Land, coll. J. L. \& M. Gressitt; I 오, 128 Km South of Darwin, 11 January 1964, coll. J. Sedlacek; 1 ô, 30 miles East of Darwin (Bishop). Western Australia. 1 \&, Lulingui Station near Derby, West Kimberly, 26 August 1929, coll. I. M. MacKerras \& T. G. Campbell (A.N.I.C.) ; 1 \&, Roebuck Bay, 19 April 1892, coll. Kraptan (S.A.M.); 1 ㅇ, Wyndham, coll. Helms (Bishop). Queensland. 1\%, McIlwraith Range, 31 May 1932, coll. Darlington on Harvard Expedition; 1 \& Coen, Cape York Peninsula, 6 July 1932, coll. Darlington on Harvard Expedition (A.M.N.H.); 1ㅇ, Yarra, June 1959, coll. J. Guerassimoff; 1 ô, 2 우 우, Breakfast Creek, Silver Plains, East Coast of Cape York Peninsula, 10 August 1963, coll. J. L. Wassel; 1 b, 2 와 ㅇ, Charters Towers, 15 January 1964, coll. G. Monteith (U.Q.) ; 1 ò, Retro Station near Capella, August 1929, coll. J. R. Sleven (A.M.) ; 2 कิ ô, 1 오, Eidsvold, 28 September $1929 ; 1$ 오, 8 miles WNW of Mt. Carbine, 20 September 1956, coll. M. J. D. White; 2 ㅎ ô, 5 오오, Bamaga, Cape York Peninsula, 27 March-4 April 1964, coll. I. F. B. Commen \& M. S. Upton (A.N.I.C.); 2 우, Bluff, coll. A. M. Lea; 2 와 오, Mutchilba, February 1933, coll, coll. A. D. Selby (S.A.M.); 3 o ô, Rockhampton (Stockholm) ; 1 ?, Somerset (Paris); $1 \hat{\delta}, 2 \nrightarrow \circ$, at light, Mornington Island, May 1963, coll. P. Aitken \& N. B. Tindale; 1 ô, 2 화. Appel Channel, Mornington Island, 2 June 1960, coll. P. Aitken \& N. B. Tindale (S.A.M.). Torres Straits Islands. 1 古, Prince of Wales Island, August 1920, coll. J. A. Kusche (Bishop).

Remarks: The species appears to occur in the Kimberly Division of North Western Australia, the whole of the Northern Territory and in those parts of Queensland North of the latitude of the Northern Territory-South Australian border and in the Torres Straits Islands. It is much more abundant in the North of its distribution than in the South. The Finke

River specimen clearly belongs to this species but the locality label unfortunately does not indicate which state, it could have come from the North of South Australia as the Finke: River runs, from the Northern Territory into South Australia. It has been assumed to have come from the Northern Territory section of the river's course.

This species and the next (exphanalus n. sp.) belong to a small section of the subgenus Cephaloplatus in which the juga are quite markedly expanded laterally in comparison to the preceding groups of species, reaching laterally to at least the level of the outer surfacen of the eyes. Portyi is casily distinguished from explanatus in that the anterolateral margins of the pronotum are strongly crenulate or denticulate (finely crenulate in explanatus) and that there is a triangular lobe in front of the eyes (absent in explanatus).

Cephaloplatus (C.) explanatus sp, noy.
179. 15, 6D

Moderate to rather large in size, yellowish with brown punctations above and below.

Head with juga strongly developed into foliaceous structures which at their widest extend at least to the level of outer margins of the eyes, the lateral margins vagucly semicircular in outline and raised above the general level of the head so that the juga ate rather inclined towards the midline. The apical angles of the juga sharply rounded, the inner margins in front of the anteclypeus almost straight, contiguous or not. Eyes not very prominent and the facets occupying only the anterior half of the uptic process which is inclined posteriorly. Antennace slender and five segmented, the fourth and fifth segments the fongest and subequal. the lirst segment not reaching the apex of the jugum, yellowish, but the fouth and fifth segments infuscated apically.

Pronotum fairly lattish, raised only a litte posteriorly, the lateral margins strongly explanatory produced and the region of the anterior angles produced forward as a broad triangular process almost to the level of the apex of the anteclypeus (as seen from above). Anterior margin of the pronotum rather rectangularly excavate. anterolateral margins finely crenulate, almost entire. Lateral angles broadly rounded, posterolateral margins almost straight, hind margin also.

Scutellum substantially triangular, the lateral margins rather angulately concave, the maximum concavity occurting about the midpoint or a little behind, the apex tending a litle fowards being lanceolate. Scutellum basally somewhat raised and somewhat granulate on the disc.

Fig. 15: Cephaloplans (6.) explanatus sp. nov.

Hemelytra in their basal quarter wider than the body, thrn part of the corial margin somewhat produced and feebly crenulate. Behind this point the lateral margins of the corium gradually converging ponteriorad leaving progressively more of the connexivum exposed, hind margin of corium father convex. Membrane hyaline with veins almost the same color and mostly longitudinat. Laterotergites rectangular, posteriorly coasely punctate.

Beneath concolorous with brown punctations, coarser and denser on the thorax, fine and sparse on the underside of the head, same on the underside of the jugat where they are coarser and denser. Fenora with a few brown gramulations. Male pygophore with the apical angles produced (Fig. 6D).

Length: $10.5-13.5 \mathrm{~mm}$.
Distribution: Northern Territory. Holotype \& (Reg. No. ANIC9421), Katherinc, 17 April 1962, coll. I. F. B. Common (A.N.I.C.); allotype op. Daly Waters, 26 October 1962 , coll. E. S. Ross \& D. Q. Cavagnaro (C.A.S.) U'estern Australia. 2 paratype \& 9 , Upper Ord River. East Kimberley, coll. Helms (B.M.); I paratype \div (Reg. No. T4116), North West Australia (N.M.). Unlocalized. 1 pararype z, presented by Commonwealth Institute of Entomology 1948 (B.M.).

Remarks: The species seems rather rate and is easily recognized by the very foliaceonsly produced juga and the strongly developed laminate lateral maryins of the pronotum which are strongly produced forward but not conspicuously crenulate.

Cephaloplatus (C.) reticulatus Bergroth

C'phuloplarss reticulatus Bergroth, 1895. Proc. R. Soc. Vicl. 7:288. Distant, 1910, Ann. Mag, nat. Hist., (8)6:472.
Cophuloplatus raticulans: Tay. 1966, Pap. Dep. Ent. Univ. Qd. 2(4):76-77. ligs.

Fig. $16,6 \mathrm{E}$.
A very distinctive and rather large species of the genus. In macroscopic appearance reddish or orange, the ground colour is actually pinkish yellow or orange, and the punctations black or dark brown. There are small to moderate sized granular structures on the hind lobe of the pronotum. the scutellum. and the hemelytra; these are rather different in appearance and form to those of the species we have treated prevorosly, they may be better described as rugulosities.

Head with juga conspicuously and rather foliaceously expanded. produced forward well in front of the anteclypeus. Latteral margins of juga immediately in front of eye formed into a broadly triangular lobe which reaches outwards to about level of the nuter margin of the eyes, this lobe

rather strongly convex above. Lateral margins of the juga anterior to this process broadly semicircularly curved to the shortly rounded apices, this curvature sometimes somewhat sinuate, interior margins of juga only slightly convex widely separated or contiguous. Lateral and anterior margins of juga somewhat raised so that the anterior portion of the head in front of the eyes is rather concave. Head moderately raised between the ocelli. Eyes fairly prominent, facets occupying all of the anterior facing surface, only the hind rather concave surface bare and somewhat flattened. Antennae a little more robust than in the other species, first segment not reaching the apices of the juga, second, fourth, and fifth segments subequal, third segment somewhat shorter. Antennae reddish or yellowish in colour all but the apex and base of the third segment and the apical half of the fourth and fifth infuscated.

Pronotum raised posteriorly, more depressed anteriorly, the anterolateral margins progressively more explanate from the lateral angles forward, the region of the anterior angles produced as a triangular process forward to about the anterior portion of the convex process on the margins of the juga (just in front of the eyes). Anterior margin of pronotum strongly concave behind the collum, just behind the eyes forming a slight angle then concave again and diverging to the apices of the anterior processes. Anterolateral margins rather sinuate, strongly denticulate, crenulate, or serrate, in many specimens tending to be somewhat flexed a little in front of the lateral angles. Punctations on the explanate lateral margins of the pronotum much larger and much less dense than on most other parts of the body. Lateral angles produced as a rather blunt lobe, posterolateral margins angulately convex, posterior margin straight or somewhat concave. Disc of the posterior part of the pronotum with scattered rugulosities, these rugulosities tending to appear in the form of short raised lines and some of these lines tending to be raised as an incipient sinuous transverse line extending across the pronotum between the lateral angles.

Scutellum much the same shape as in the other species of the genus but the angulation in the lateral margins behind the middle somewhat more pronounced, tip broadly rounded. In each basal angle of the scutellum the usual elongate black fovea, but this fovea not margined on its interior side by a smooth callous area. Whole disc of the pronotum rather irregularly rugulose in contrast to all preceding species which have been in the main granulate.

Hemelytra in their basal quarter wider than the abdomen, this portion of the corial margin formed as a convex angle in contrast to other species and interiorly and forward of this angle and between the first and outer visible vein strongly concave. Behind this point the corial margins relatively straight then strongly converging leaving almost all of the connexivum exposed. Disc of the corium covered with rugulose and raised glabrous
areas. Hind marein of corium exteriorly somewhat convexly prominent. thence slighty concave interiorly, broadly convex. Membrane with veins strongly reticulate, byaline, the veins brownish, no trace of raised brownish spots of maculate between the veins. Abdomen relatively much wider than in the other species, laterotergites concolorous but with a prominent infuscatted marking exteriorly hehind each incisure. Hind angle of the laterotergites strongly prominent.

Bencatly concolornus with the dorsat surlace, punctations more evenly distributed and somewhat denser. On the underside of the head there is a short infuscated bar immediately in front of the insertion of each antennat and a fuscous area at the base of the head behind the bucculae. All thoracie sterna are brown or piceous save the ked on the mesosternum Which is jellow, A small fuscous point just above the junction between the epimeron and the episternum on each thoracic segment. On the abdumen the base of the third segment narmowly and transversely darkened. strongly punctate, medially at the bane of the fourth. fifth, sixth and seventh abdominal sternite a shor brownish line or bar, ruming longitudinally, and giving the impression of an interrupted line running the length of the abdomen medially. There is no sign of any areas of lateral infuscation. Lege reddish yellow or yellominh with on the the femora and tibia largish somewhat raised brown spats, some of those on the femora bearing a hair, Male pyguphore figured (fig. 6E).

Lengeth: 12.0-14.0 min.

Distribulion: Queensland. Lectotype (Reg. No. T4115), donated C. French Jun., 15 November 1911 (N.M.). New Somih Wales. Tibooburra, 23 May 1949, coll. K. H. L. Kcy (A.N.I.C.) Victoria. I q. Hattah, 16 June 1948 , coll. C. Oke (N.M.). South Australia, 3 多吕, Leigh Creek; 3 오. South of Ediacara, 5 November 1959, coll. P. Aitken (S.A.M.). Western Mustrulis. 3 ty 9. Lennaville; 1 s, Wiluna, 29 August 1968, coll. F. H. Uther Bather; 1 i, Mullewa, coll Miss F. May (S.A.M.); series, Violet Range, E. Murchison, accessed 1904 (B.M.). Unlocalized. I \%. donated by F. P. Spry, 5 October 1922 (N.M.).

Remarks: As for $C_{1}\left(C_{1}\right)$ gramulatus Bergroth the type of this species. was not found in Helsinki, nor indeed any examples of this species. However. there was agatin in the collection of the Nattional Museum of Victoria a male yecimen from the C. French collection which fits Bergroth's deseription of Cephalloplatis raticulatus even to the missing fifth antennal segment, although the specimen no longer carries an indeation that it came from Queenstand. This mak: specimen in accordingly selected as the lectotype of "Cephatophatis reliculatus" Bergroth and marked accordingly.

Because of its larger size and conspicuously reticulate membrane the species is one of the easiest of Cephaloplatus species to recognize. From the data available it appears to be restricted to drier habitats but with a rather more southern distribution than the other species.

The male and female genitalia were discussed by Tay (1966).

BIBLIOGRAPHY

Bergroth, F., 1895: Contributions to a knowledge of the Rhynchota of Australia. Proc. R. Soc. Vict., 7:287-302.
___ 1916: Heteropterous Hemiptera collected by Professor W. Baldwin Spencer during the Horn Expedition into Central Australia. Proc. R. Soc. Viet., (N.S.) 29(1):19-39.

Carpenter, G. H., 1891: 15. Reports on the Zoological Collections made in Torres Stratits by Professor A. C. Haddon, 1888-1889. Rhynchota from Murray Island and Mabuiag. Sci. Proc. R. Dublin Suc. 7(3):137-146, 2 plates.
Dallas, W. S., 1851: List of the Specimens of Hemipterous Insects in the Collection of the British Museum. Brit. Mus. Puh,, Pt. /:1-368, 11 plates.
Distant, W. L., 1881: Rhynchota from the Australian and Pacific Regions. Trans. R. ent. Soc. Lond., 211-18.

- 1899: Rhynchotal Notes-III. Heteroptera: Discocephalinae and Pentatominae (part). Ant. Mag. nat. Hist. (7) 4: 421.445.
-_ 1910: Rhynchotal notes-52. Australasian Pentatomidae. Amm. Mag. nat. Mist., (8) 6:369-386, 465-481, 585-603.

Lethierry, L. \& Severin, G., 1893: Catalogue general des Hemipteres, Bruxelles. $1: i-x$, 1-286.
Stäl, C., 1867: Ofvers. Kongl. svenska Velenska Akad. Förh., 491-560.
1876: Enumeratio Hemipterorum 5. K. swenska Vetensk Akad. Handl. 14(4): 1-162.
Tay, E. B., 1966; Morphology of the External Genitalia of Some Pentatominae (Heteroptera). Pap. Dep. Ent. Univ. Qd. 2(4):75-84, 5 plates.
Van Duzee, E. P., 1905: Notes on Australian Pentatomidae with descriptions of a few new species. Bull. Amer. Mus. Mat. Hist., 21:187-214. Pl. 8.
Walker, F., 1867: Catalogue of the Specimens of Heteropterous-Hemiptera in the Collection of the British Museum. Brir. Mus. P'ub., Pt. 1:1-240.
—_ 1868: Catalogue of the Specimens of Hemiptera Heteroptera in the Collection of the British Museum. Brit. Mus. Pub. Pt. III:1-599.
White, A., 1842: Description of Hemipterous Insects of the Section Heteroptera. Trans. R. ent. Soc. Lond. 3:84-94.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

CYATHOLAIMIDAE (NEMATODA) FROM THE COAST OF WESTERN AUSTRALIA

By W. GRANT INGLIS

VOLUME 16

CYATHOLAIMIDAE (NEMATODA) FROM THE COAST OF WESTERN AUSTRALIA

By W. GRANT INGLIS

Summary

The five species described here were collected on the coast of Western Australia and represent on new species of Praeacanthonchus, and four species of Paracanthonchus, of which three are new. Both genera are referable to the family Cyatholaimidae of the Order Chromadorida, an Order in which most of the classification is based on the structure of the cuticle, the shape of the amphids and the form of the dorsal onchium in the oesophastome. However a study of Euchromadora de Man, 1886 and apparently similar species, all referable to the Chromadorida, has raised doubts as to the value of some of the characters, and to the way in which they have been used (Inglis, 1969).

CYATHOLAMMDAE (NEMATODA) FROM THE COAST OF WESTERN AUSTRALIA

By W. GRANT INGLIS

South Australian Museum, Adelaide S.A. 5000

the five species described here were collected on the const of Western Australia and represent one new species of Prasacumhonchas, and four species of Paractminonchus, of which three are new. Both genera are referable to the fimmly Cyatholamidae of the Order Chromadorida, an Order in which most of the classification is based on the structure of the cuticle, the shape of the amphids and the form of the dorsal onchium in the asesophastome. However a study of Euchromadora de Man, 1886 and apparently simitar species, atl referable to the Chromadorida. has raised doubts as to the value of some of the characters, and to the way in which they have been used (Inglis, 1969).

Bractly. the difficulty arsses because much of the classification of the family C'hromadoridac, of which Eiluchromadora is a member, has been based on the distinction between a solid or a hollow dorsal onchium in association with features of the cuticle and the shape of the gubernaculum and on assumed en-vintiances between these characters. The previous stady (lnglis. 1969) has shown that a solid dorsal onchim is associated with a number of oher characters. particularly with the presence of small denticles along the anterior edge of the dorsal wall of the vesophastome and a serics of transverse rows of denticles on the lateral and ventral walls of the oesophastome. In contsats, when the dorsat onchium is hollow there are no dorsal dentieles and instead of transverse rows of lateral and ventral denticles there are a small nomber of conical denticles laterally. in one row and two or four similar ventral denticles. Other features, particularly of the cuticle are associated with the two groups while the shape of the gubernaculum is not convariant with these characters.

In some specinens it was diflicult to decide if the dorsal onchium was uncequivocably solid of hollow but in some in which it appeared solid the dentition and characters of the cuticle were similar to those otherwise only found in lorms with hollow anchia. It in, therefore, likely that there are several convergent groups within the (hromadoridat which culminate in superlicially imilar forms with complicated cuticles, solid dorsal oncha and similar gubernacula. This implies the possibility that forms wath simple punctate cuticles, which are currently classified together, may also be grouped on convergent characters. All the species described here have such simple punctate cuticles and it appeared possible that their head structure would help to resolve this problem.

COMPARATIVE ANATOMY

CuTicle:

In all the species described below, with one exception, the cuticle is marked by distinct, round punctations but the occurrence and kind of lateral differentiation is variable. The amphids are spital and "porecomplexes" are present in some species. As a result of Wright and Hope's (1968) study of the "campaniform-type" organ I use their term "porecomplex" while stressing that two typer exist (Inglis. 1963). The Type-1, which Wright and Hope studied appears as a pit in the cuticle transversed by an elongate opening while the Type-2, which is generally a larger form. is similarly a pit but with a circular opening (or dome?) in the centre. The distribution of these two types still appears to be of significance.

Type-2 pores have only been found in files posterior to the amphids or on the lateral surface of the body at the level of the cloacal opening. In P. marsaretue, which is described below, there is a file of Type-1 pores funning posteriorly to the amphids. This raises the possibility that Types-1 and -2 are two expressions of the same type. This must await confirmation as such an implied distortion has never been seen when specimens of the same species are compared.

HEAD

The mouth opening is bounded by the usual twelve rugae and leads into an oesophastome through a cheilostome which appears to be circular in transverse optical section. There is a hollow dorsall onchium in all species. In the three species of Paraconthonchus in which en face preparations were studied the oesophastome is triangular in transverse section with two small onchia borne on a muscular pad on cach ventro-lateral oesopharhabdion (Figs. 2, 8 and 14). The apparent differences are probably due to the degree to which the oesophastome is open. If this is so the condition shown for P. margaretae (Fig. 14) may be interpreted as the fully open condition, that for P, cheynei (Fig. 8) as fully closed while that for P. kartanum (Fig. 2) is intermediatc.

The structure of the oesophastome in the three species studied corresponds to the grouping formed on other characters and the conditions are different from those described for the Euchromadora and Euchromadoralike species studied before (Inglis, 1969), particularly in the triangular wsophastome in transverse section. Nevertheless the conditions correspond more closely to those in the "hollow-toothed" forms than those in the "solid-toothed". Further work is certainly warranted and likely to be of value in clarifying the classification of the Chromadorida.

Male
In all the species there is a series of pre-cloacal supplements on the mid-ventral surface anterior to the cloacal opening. In all four species of Paraconthoncluss the supplements are rod-like while in the Praeacanthonchus: species they are indistinct and tube-like. However in all cases they do not appear to open on the surface of the body, in so far as I can tell with the light microscope.

In addition to these supplements, in all species. two other structures lie close together immediately anterior to the cloacal opening which are usually called supplements but which are structurally different. In all five species these are in the form of pits in the cuticle into which a cuticular process projects from the anterior edge (Figs. 5, 20 and 23). That these "supplements" are different from those more anteriorly is not, of course, a new discovery and they occur in a wide range of Chromadorida. It appears likely that they ate of taxonomic importance as they differ in shape and their function must be different from the other more anterior supplements. I propose, therefore, to call them "cloacids" about which more information is needed.

Female

In two of the species described below there is a distinet pit in the cuticle both anterior and posterior to the vulvar opening. They are probably sense organs as a nerve process appears to project into the bottom of each.

DESCRIPTIVE SECTION

Holotype males will be deposited in the Western Australian Museum and paratypes in that institution and in the British Museum (Natural History) where unsorted samples are also held. All localities are in Western Australia.

In agreement with previous policy (Wieser and Hopper, 1967: Inglis, (1969) only absolute measurements are given in the descriptions.

Paracanthonchus kartanum (Mawson, 1953)
(Figs. 1-5)

Synonomy

Harveyjohnstonia kartanum Mawson. 1953: Pennington Bay, Kangaroo Island, South Australia.

Figs. 1-5. Paracanthonchus kartanum. Fig. 1. Lateral view of head, dorsal to right. Fig. 2. Oesophastomal dentition, sketch. Fig. 3. Cloacal region. Fig. 4. Spicules and gubernaculum, ventral view. Fig. 5. Cloacid, sketch. Figs. 6-11. P. cheynei. Fig. 6. Lateral view of head, dorsal to left. Fig. 7. Head, en face. Fig. 8. Oesophastomal dentition, sketch. Figs. 9-10. Spicules and gubernaculum. Fig. 11.

Lateral view, male tail.

Locaritirs

Among weed and associated sand in hold fasts on exposed rocks. Goode Beach, Albany.

Among weed and mussels in rock pools exposed at low tide, Hall's Head, Mandurah.

Among weed and associated hold fasts and sand on is silty sheltered beach, Cheyne Beach, near Albany,

Among sea-weeds and associated sand in rock pools, Bunker Bay, Cieographe Bay.

Mensuremtents (mm).
MALE. Bondy length: 0.87: 0.91: 0.99; 1.04, Body breadth: $0.043 ; 0.043 ; 0.050 ; 0.044$. Oesophagus length: $0.152 ; 0.159 ; 0.152$; 0.155. Diameter of head: $0.017 ; 0.017 ; 0.018 ; 0.017$. Lengths of cephalic setac: $0.005 ; 0.005 ; 0.004 ; 0.004$. Excretory pore from anterior end of body: 0.068; 0.066; 0.070; 0.069. Diameter of body at amphid: 0.024; 0.022: 0.023: 0.024. Diameter of amphid: 0.009; 0.009; 0.009: 0.009. Length of spicules: $0.027 ; 0.023 ; 0.025 ; 0.029$. Length of gubernaculum: $0.033 ; 0.026: 0.033 ; 0.036$. Length of tail: $0.078 ; 0.097 ; 0.079 ; 0.086$. Cloacal diameter: 0.043; 0.039; 0.040; 0.036.

The cuticle is marked by fine punctations and there is no lateral differentiation. There are two lateral files of setae running the length of the body but no "pores" ware seen. No dome-like Type-2 "pores" occur behind the amphids or lateral to the cloacal opening.

The six inner sense organs are setose, and there are twelve equal setae in the outer circle. The amphids are spiral with $4 \frac{1}{4}$ to $4 \frac{1}{2}$ turns. The dorsal onchium is very small and there are two similar onchia, which arise from a raised musular pad on each ventro-lateral wall of the oesophastome. The cheilostome and oesophastome are triangular in transverse section although I am not certain whether this reflects a constant feature or simply the degree of muscle contraction.

The tail is fairly slim. There are four well cuticularized, tubular pre-cloacal supplements on the mid-ventral surface of the body anterior to the cloacal opening which increase in size anteriorly. In addition there are two circular cloacids immediately anterior to the cloacal opening into each of which projects a small cuticular process.

The spicules are fairly massive with narrow alae. The gubernaculum is about the same width along its length with a rounded slightly swollen region ponteriorly. which bears a series of four small denticles and from which arises a pair of obvious finger-like postero-dorsally directed processes.

DISCUSSION

The only marked difference between the specimens from Western Australiat and those described by Mawson (1953) is in the number of turns in the spiral amphids. Mawson refers to $3 \frac{1}{2}$ while 1 count $4 \frac{1}{2}$ to $4 \frac{1}{2}$, on different specimens. The difference is probably due to the method of counting.

It is worth noting that Mawson comments specifically on the increase in size of the pre-cloacal supplements anteriorly and this feature is very obvious in the Western Australian specimens.

Paracanthonchus cheynei sp. nov.
(Figs. 6-11)

Localities

Among sea-weed and hold-fasts with associated sand in 20 cm of silty, sheltered water. Cheyne Beach, near Albany. Type locality.

Among sea-weed on exposed reef in 10 cm of clear water. Radar Reef, Rottnest Island.

Measurements (m m) .
MALE. Body length: $1.24 ; 1.28$. Body breadth: $0.052 ; 0.052$. Oesophagus length: $0.198 ; 0.203$. Length of cephalic setae: $0.005 ; 0.005$. Diameter of head: 0.021: 0.023. Distance of excretory pore from anterior end of body: 0.057; 0.059. Amphid diameter: 0.010; 0.009. Length of spicules: $0.046 ; 0.048$. Length of gubernaculum: 0.039; 0.042. Cloacal diameter: $0.046 ; 0.049$. Length of tail: $0.125 ; 0.131$.

FEMALE. Body length: 1.09. Body breadth: 0.059. Oesophagus length: 0.173. Length of cephalic setae: 0.005. Diameter of head: 0.025 . Distance of excretory pore from anterior end of body: 0.057. Amphid diameter: 0.009. Anal diameter: 0.038. Length of tail: 0.103. Distance of vulva from anterior end of body: 0.60. Eggs: 0.062×0.036.

The cuticle is marked by fine punctations without lateral differentiation. There are two tiles of transverse Type-1 "pores" on each lateral surface of the body and four circular Type-2 "pores" in a file posterior to each amphid.

The mouth is bounded with the usual twelve rugae, the inner sense organs are six papillac and the twelve members of the outer circle are short setae all of the same length. The amphids have $4 \frac{1}{4}$ spirals. The dorsal onchium is small and there are two smaller, sharp onchia on each ventrolateral wall of the ocsophastome. No ocelli were seen.

The tail is relatively stout and bears a pair of long ventral setale about one quarter tail length posterior to the cloacal opening.

Figs. 12-18. Paracanthonchus margaretae. Fig. 12. Lateral view of head, dorsal to left. Fig. 13. Head, en face. Fig. 14. Oesophastomal dentition, sketch. Fig. 15. Oesophastomal dentition, lateral view, sketch. Fig. 16. Spicules and gubernaculum, lateral view. Fig. 17. Gubernaculum, ventral view. Fig. 18. Detail of spicule. Figs. 19-21. P. hartogi. Fig. 19. Male tail, lateral view. Fig. 20. Ventral view of gubernaculum and cloacids. Fig. 21. Lateral view of head, dorsal to right.

MALE. There are four very prominent, strongly cuticularized precloacal supploments and two cloacids with the usual cuticular processes projecting into them. The spicules are slightly bowed with sharp posterior ends and broad alae, confirmed by dissection. The gubernaculam is massive and slightly L-shaped. The posterior end is swollen with small denticles along the postero-ventral edge. In ventral view this region curves laterally and the denticles run along the posterior edge.

Female. The reproductive system is double, opposed and reflexed. There are small vulvar pits in the cuticle, into which sensory processes appear to project through the batse.

DISCUSSION

This species is very similar to P-platypus Wieser and Hopper, 1967, particularly in the shape of the gubernaculum. It differs in the series of small denticles on the posterior edge of the gubernaculum, the strongly alate spicules, the greater number of spirals in the amphids, and the absence of a spine on the anterior lip of the cloacal opening.

Paracanthonchus margaretae sp. nov,
(Figs. 12-18)

Localities

Among weed and associated hold-fasts and sand in 20 cm of silty, sheltered watcr. Cheyne Beach, near Albany, Type Iocality.

Among weed and associated sand and silt on partly exposed, fairly sheltered rocks. Windy Harbour.

Among weed and hold-fasts on rocks in 10 cm of water. Bunker Bay, Cape Naturaliste.
Measurements (mm).
MALE. Body length; 1.28; 1.48. Body breadth: 0.048; 0.055. Oesophagus length: $0.25 ; 0.34$. Length of cephalic setae, long/short/inner; $0.012 / 0.009,0.003 ; 0.011 / 0.008 / 0.003$. Amphid diameter: $0.010 ; 0.010$. Distance of excretory pore from anterior end: 0.069: 0.071. Spicule length: 0.048; 0.047. Gubernaculum length: 0.044; 0.045. Tail length: 0.100; 0.102. Cloacal diameter: $0.039 ; 0.046$.

FEMALE. Body length: 1.21. Body breadth: 0.059. Oesophagus length: 0.30. Length of cephalic setae, long/short/inner: $0.013 / 0.011 /$ 0.004 . Amphid diameter: 0.011 . Distance of excretory pore from anterior end: 0.069. Tail length: 0.101. Anal diameter: 0.036. Distance of vulva from anterior end: 0.64 .

The cuticle is marked by fairly strong punctations and the lateral differentiation is well developed as large, regularly arranged dots anteriorly
which become less obvious posteriorly. There are eight files of transverscly ridged Type-1 pores, two on the lateral, two on the dorsal and two on each ventral surface. There are three very prominent, elongate Type-1 pores, with antero-posterior openings, at the level of the cloacal opening on the mates.

The ceplatice sense organs of the inner circle are setac and the outer circle of ten setace consists of six long and four short. The amphids have 4: spirals. The oesophastome is a prominent, deep cavity which is triangular in transverse section. The dorsal onchium is large and bollow and there are fwo small unchia un each ventro-lateral wall of the ocsophastone arising from it muscular pad. The tail is short and stout.

Male. The four pre-cloacal supplements are relutively short and tod-like white the (wo cloacids have somewhat arrow-shaped processes projecting into them. The spicules bear fairly broad abae, are massive and even in width. The anterior ends are swollen and rounded while the posterior end bear distinct rounded swellings before narrowing rapidly to at shap posterior tip. The gubernaculum is also massive and apparently ends posteriorly in atraight dentate edge from the centre of which arises a latcrally ditected tooth. In ventral view however each half of the gubernaculum folds laterally at the posterior end as a triangular curved portion which has small denticles along both outer edges. The impression of a large median tooth in lateral view is due to studying the folded region from the side.

Fimalt. The reproduction system is opposed and reflexed with sensory pits anterior and posterior to the vulva.

DISCUSSION

This species is similar to P. calcus (Bastian, 1865) and P. tyrrhenicus (Bruncti, 19.49) but differs from them, and all others in the genus, in the posterior end of the gubernaculum, the small number of spirats in the amphid and in the lateral differentiation.

Paracanthonchus hartogi sp, nov.
(Figs. 19-22)

Locaidity

Among mud and weed from trawl in 35 metres. Shark Bay.
Mi:asurl:mfints (mm).
MALE. Body length: 1.24; 1.42. Body breadth: 0.066; 0.072. Oesophagus length: 0.22; 0.20. Length of cephalic setae, long short; 0.0038 / (0.00220; 0.0039/0.0026. Diameter of amphid: 0.013; 0.012. Distance of everetory pore from anterior end: 0.056: 0.049. Spicule length: $0.049 ; 0.044$. (iubernaculum length: 0.044: 0.039. Length of pre-cloacal supplements: 0.026; 0.024. Length of tail: $0.010 ; 0.011$. Cloacal diameter: 0.049: 0.049.

The cuticle is marked by fine striations and there is no lateral differentation or indication of punctations. Two files of stout setae run the length of each lateral surface of the body but no "pores" were seen.

The inner circle of cephalic sense organs was not seen and the outer circle of twelve setae consists of six long and four short. The spiral amphids consist of 3! spirals. No en face view was prepared and from the lateral aspect only a small dorsal onchium could be seen. The oesophagus is simple club-shaped and expands evenly and slightly posteriorly.

The short stout tail is curved ventrally and the four pre-cloacal supplements are prominent. well sclerotized tubes. The two cloacids are circular pits into which project arrow-head-like processes. The spicules are relatively small with narrow alae and distinctly set off semi-spherical proximal ends. The gubernaculum is L-shaped with a massive distal end which bears four prominent teeth.

DISCUSSION

The relationships of this species are a little uncertain because the culticle is marked by fine striations with no indication of punctations. On the other hand the shape of the gubernaculum and the form of the pre-cloacal supplements is so similar to that found in some species referred to Paracanthonchus, that I bave little hesitation in referring this Western Australian species to that genus.

In particular P. hartogi resembles P. serrutus Wieser 1959 but differs from it in the square distat end of the gubernaculum and the prominent teeth on the same region, in addition to the form of the cuticle.

Pracacanthonchus cygnis sp. nov.

(Figs, 23-28)

Locality

Among rocks and sea-weed in 10 cm water, Woodman's Point, Fremantle.
Misasurements (mm) .
MALE. Body length: $1.60 ; 1.69 ; 1.85$. Body breadth: 0.079; 0.075: 0.068. Oesophagus length: $0.22 ; 0.23 ; 0.23$. Length cephalic setae, long/short: $0.008 / 0.009 ; 0.009 ; 0.011 ; 0.010 / 0.012$. Distance of excretory pore from anterior end: $0.12 ; 0.13 ; 0.12$. Diameter of amphid: $0.013 ; 0.012: 0.013$. Diameter at amphid: 0.039; 0.039; 0.035. Spicule length: 0.047: 0.048; 0.046. Gubernaculum length: 0.057; 0.061; 0.056 . Length of tail: $0.15 ; 0.17 ; 0.19$. Cloacal diameter: $0.073 ; 0.066 ; 0.057$.

The cuticle is marked by regular punctations with a slight lateral differentiation where the punctations are irregularly arranged. The body

Fig. 22. Paracanthonchus hartogi. Detail of spicules and gubernaculum. Figs. 23-28. Praeacanthonchus cygnis. Figs. 23-24. Ventral and lateral views of cloacid, sketch. Fig. 25. Lateral view of head, dorsal to right. Figs. 26-27. Detail of spicules and gubernaculum. Fig. 28. Male tail, lateral view.
bears a number of short sctac, and eight files of transverse Type-1 pores. A wholly lateral file of four circular Type-? pores runs posterior to each amphid and there is a file of six such pores on cach lateral surface of the body at the level of the cloacal opening.

The head is typical with an inner circle of six papillate sense organs and an outer circle of ten setate of which six are short and four are long. The amphids are spiral with $3 \frac{1}{2}$ to $3 \frac{3}{3}$ turns each and lie relatively far posterior to the anterior end of the head. I have been unable to prepare a satisfactory enf face view of the head but there is a smatl dorsal onchium and ne indication of any lateral or ventral onchia in lateral view.

The tail is short and stout. There are six indistinet midventral, tubular pre-cloacal supplements. The two cloacids lying just anterior to the cloacal opening are small ovoid depressions into each of which projects at small finger-like process.

The slim spicules are about threc-quarters the length of the massive gubernaculum and bear slight alate. The gubernaculam is massive distally with four strongly developed teeth. Proximally the guberculum is stim in lateral view. The spicules run in a groove between the four-toothed posterior heads and a pair of lateral processes which arise from the main body of the guhernatculum. The body of the gubernaculum is split for almost its whole length and consists of a well selerotized rod which bears a thin. less well sclerotized region dorsally and internally.

DISCUSSION

The combination of a typically Cyaholaimus-type gubernaculum, slight lateral differentiation on the cuticle, and indistinct tubular pre-cloacal supplements is diagnostic of the genus Praeacanthonchus Micoletzky. 1924b acoording to Wieser (1954). The only previously known species of this genus is P. munctatms (Bastian, 1865) if De Man's (1890) redescription is accepted.
P. cygnis diflers from P. pilnctatus in several ways, particularly in the shape of the proximal end of the gubernaculum which is stim in P. cygnis but stout in P. Punctutns; the spicules of the latter species have very wide atate while those of P. cygnis are narrow and the spicules of P, punctatus are longer thatn those of \ddot{P}. cygnis relative to the length of the gubernaculum.

ACKNOWI.L:DGMENTS

The specimens described here were collected in Western Australia while 1 was ans exchange curator at the Western Australian Muscum. It thank the Director and stall of that Muscum for their assistance during my stay. Miss E. Mitchell issisted in sorting material in the British Museum (Natural History) ind Mrs. B. K. Head. South Australian Muscum. prepared the illustrations.

REFERENCES

Bastian, C. H., 1865: Monograph of the Anguillulidae or free nematoides, marine, land and fresh-water: with descriptions of 100 new species. Trans. Linn. Soc. Loml., 25: 73-184.
Brunetti, B., 1949: Contributo alla conoscenza dei Nematodi del M. Tirreno 1I. Alcune specie appartenenti alle famiglie: Enoplidac, Cyatholaimidae, Chromadoridae, Axonolaimidae. Monitore zool. italiano, 57: 41-59.
Inglis, W. G., 1963: "Campaniform-type" organs in the Nematoda. Nature, 197: 618.
Inglis, W. G.. 1969: Convergence in the structure of the head and cuticle of Euchromadora and apparently similar nematodes. Bull. Brit. Mus. nat. Hist., 17 (5): 149-204.
de Man, J. G., 1886: Anatomische untersuchungen ïber freilebende Nordseenematoden. Leipzig.
de Man, J. G., 1890: Quatrième note sur les nématodes libres de la Mer du Nord et de la Manche, Mém. Soc. zool. Fr., 3: 169-194.
Mawson, P. M., 1953: Some marine freeliving nematodes from the Australian coast. Trans. roy. Sore. S. Aust., 76: 34-40.
Micoletzky, H., 1924: Letzter Bericht über freilebende Nematoden aus Suez. Sitzungsber. Akat. Wiss. Wien. Math.-Naturw. Kl., 133: 137-179.
Wieser, W., 1954: Reports of the Lund University Chile Expedition 1948-49. 17. Freeliving marine nematodes. 11. Chromadoroidea. Acta, Univ. lund. N.F., 50 (16): 1-148.
Wieser, W., 1959: Free-living nematodes and other small invertebrates of Puget Sound beaches. Univ. Washington Publ. Biol., 19: 1-179.
Wieser. W. and Hopper, B., 1967: Marine nematodes of the East Coast of North America. I. Florida. Bull. Mus. comp. Zool. Marl:, 135: 239-344.

Wright, K, A. and Hope, W. D., 1968: Elaborations of the cuticle of Acanthonchus duplicatus Wieser, 1959 (Nematoda : Cyatholaimidae) as revealed by light and electron microscopy. Canad. J. Zool., 46: 1005-1011.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

THE GENUS CTENOTUS (LACERTILIA, SCINCIDAE) IN SOUTH AUSTRALIA

By G. M. STORR

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

THE GENUS CTENOTUS (LACERTILIA, SCINCIDAE) IN SOUTH AUSTRALIA

BY G. M. STORR

Summary

Examination of the material in Australian museums reveals that 17 species and subspecies of Ctenotus occue in South Australia, including two new species, C. brachyonyx and C. regius, and two new subspecies, C. uber orientalis and C. brooksi euclae. A key is provided.

TIIF GENUS CTENOTUS (IACERTILIA, SCINCIDAE) IN SOUTH AUSTRALIA

By G. M. STORR

Curator or Birds and Reptides, Western Australian Musieum

SYNOPSIS

Examination of the material in Australian museums reveals that 17 species and subspecies of Ctenotus occur in South Australia, including two new species, C. brachyonyx and C. regius, and two new subspecies, C. wher orientalis and C. brooksi cuclae. A key is provided,

INTRODUCTION

Of the 14 species of Ctenotus known from South Australia, all but two occur in neighbouring parts of Western Australia or the Northern Territory. My papers on the Ctenottas of the Eastern Division of Western Austratiat (Stor 1969) and of the Northern Territory (Storr 1970) thus serve ats an introduction to the South Australian fauna. The reader is also referred to those papers for descriptions of the seven species and subspecies restricted in South Australia to the far north and west; they are represented by foo few South Australian specimens to warrant a local description.

As the foregoing remarks imply, the arid northwest of South Australiat is much richer in Cenotus than the humid southeast. 'The differences are probably still greater than is apparent here. for much of western South Australiat is virtually unexplored, and a further six laxal could eventually be found there: dhas and colletti nasumes in the far northwest: grandis, pianhai and calurus in the Great Victoria Desert; and 11. uber on the Nullarbor Plain. Users of the key will need to bear this in mind when identifying western specimens.
C. impar has been omitted from this paper. This species is certanly known only from southwestern Australia, and the provenance of a specimen from Ooldea (SAM 9980) requires confirmation.

For the loan of specimens in the South Australian Museum (SAM), National Muscum of Victorial (NMV), Australian Museum. Sydney (AM). Quensland Museum (QM), Arid Zone Research Institute. Alice Spring (NTM). and the Piankia Collection (ERP), I am grateful respectively ${ }^{\text {Io }}$ Mr. F. J. Mitchell. Miss J. M. Dixon. Dr. H. G. Cogger. Miss I. Covacevich. Mr. B. L. Bolton, and Dr. E. R. Pianka.

I dedicate this paper to the memory of Francis John Mitchell, late Curator of Reptiles in the South Australian Museum.
Assucd 18 fiobruary, 1971

Key to Species and Subspecies

1. Pattern consisting of longitudinal stripes and/ or series of spots, but no ocelli; natal weakly or not grooved; midbody scale rows 22-34
Pattern consisting solely of black-and-white ocelli; nasal strongly grooved; midbody scale rows 32-38
pantherinus ocellifer
2. Adults large $(S V L=$ snout-vent length up to 95 mm .) ; toes slightly or not compressed; subdigital lamellae smooth or broadly callose; second supraocular longer than first; nasals separated; prefrontals usually forming median suture-lesuetrii group

Adults small to moderately large (SVL up to
80); toes moderately or strongly com
pressed; subdigital lamellae keeled or
narrowly callose

6
3. Vertebral stripe distinctly pale-edged 4

Vertebral stripe with little or no indication of
pale edge 5
4. White midlateral stripe extending forward to lores; vertebral stripe nearly as wide as a paravertebral scale; brow subacute
robustus
White midlateral stripe extending forward only to arm; vertebral stripe much narrower than a paravertebral scale; brow obtuse

saxatilis

5. White dorsolateral and midlateral stripes moderately well developed; claws very short White dorsolateral and midlateral stripes absent or barely discernible; claws moderately long
brachyonyx
6. Ground colour brownish; pattern consisting of dark and pale stripes and longitudinal series of pale spots-leonhardii group
Ground colour blackish; pattern consisting solcly of pale stripes-taeniolatus group.10
7. White midlateral stripe well developed (broad, straight, and extending forward to ear) ; blackish vertebral stripe moderately wide and narrowly margined with white; midbody scale rows 24-28
White midlateral stripe absent or poorly developed (not extending forward to arm); dark brown vertebral stripe narrow, with or without pale brown margin; midbody scale rows 26-34
8. White midlateral stripe absent or scarcely indicated: dark laterodorsal stripe enclosing a series of pale spots; nasals usually separated; prefrontals contiguous or separated
White midlateral stripe well defined posteriorly; dark laterodorsal stripe not enclosing pale spots; nasals usually forming median suture; prefrontals usually separated
9. Pale lines and stripes totalling 8 or 10 , with only one line on each side between midlateral and dorsolateral stripes
Pale lines and stripes totalling 14 or 16 , with at least 2 lines on each side between midlateral and dorsolateral stripes
10. Pattern consisting of stripes, spots, blotches and variegations: tail less than twice as long as SVL-schomburgkii group
Pattern consisting solely of alternating dark and pale stripes; tail bright red, more than 2.3 times as long as SVL
leonhardii
wher orientalis
atlas
quattuordecimlincatus
leae
11. Nasals usually separated (occasionally in short contact) ; prefrontals in contact or narrowly separated; ear lobules short to moderately long; lamellae under fourth toe 19-28; hindleg $41-56 \%$ of SVL 13
Nasals usually forming a median suture; pre-
frontals widely separated; ear lobules very
short; lamellae under fourth toe 16-20;
hindleg $33-41 \%$ of SVL strauchii
12. Usually only one presubocular; plantars opposite fourth toe enlarged and keeled; prefrontals usually in contact14

Presuboculars 2; plantars uniformly granular;
prefrontals usually separated
schomburgkii
schomburgkii
14. Head and back bright red in life (fading to pale green in alcohol)15
Head and back pale pink or brown 16
15. Blackish vertebral stripe and laterodorsal variegations persistent in adults; lamellae under fourth toe usually fewer than 23 ; hindleg usually less than 47% of SVL . .
Dorsal pattern obsolescent; lamellae under fourth toe usually more than 23 ; hindleg usually more than 47% of SVL
16. Head and back pinkish white; blackish upper lateral stripe enclosing a series of pale spots
Head and back pale brown; blackish upper lateral stripe reduced to a series of vertically elongate, rectangular blotches
brooksi aranda
brooksi aranda
brooksi brooksi
brooksi euclae
brooksi enclae
brooksi taeniatus

Ctenotus pantherinus ocellifer (Boulenger)

Synonymy, diagnosis and description: See Storr (1969, 1970).
Distribution: Northwestern interior. [Extralimital in Western Australia and Northern Territory.]

South Australian material: Mt. Davies (AM 17316); Erliwunyawunya, Musgrave Range (AM 17245); 98 mi . N of Cook (WAM 34522).

Ctenotus robustus Storr

Diagnowis: A member of the lestellifi group, distinguishable from sandritis and helente by sharper brow and more strongly developed pattern, e.s.. white midateral stripe extending forward unbroken to car aperture. whence if continues natrowly forward to lores.

Distribufion: Southeastern and central districts, north and west to Bute. |Extralimital in eastern Austablia from mortheast Queensland to Victoria and in Northern Territory,

Description: Snout-vent length (mm): 40-82 (62.7). Length of appendayes (''SVI.): tail 167-204 (188), foreleg 24-28 (26.2), hindley 37-47 (42.6).

Nasals separated, not grooved. Prefrontals in contact (except in two specimem where separated by azygous scale). Supraoculars 4, tirst 3 in contact with frontal, first much samaller than second. Supraciliaries 8-11 (8.8), fourth to penultimate very small and tending to be concealed by moderately sharp brow. Palpebrals 9-14 (10.7). Second loreal 1.2-2.1 (1.44) times as wide as high. Upper labals 8 (rarely 9), second to fourth about twice as high as wide. Lar fobules 3-5 (3.6), acute in adults. first or scond largest. Nuchals 3 or 4. Midbody scale rows 28-34 (30.4). Lameltae finder fourth toe 14-23 (20.9): proximal lamellate divided and subtubercular, remainder smooth or widely callose.

Dorsally olive brown, darker on head, puler on tail. Black vertebral atripe from nape to proximal part of tail, mearly as wide ats a paravertehral scale. narmwly edged with creamy white. Whitish dorsolateral line from brow to middle of tail (on which it is wider and suffused with brown). margined above by black baterodorsal stripe. Upper lateral zone blacksish brown, enclosing a series of moderatlely large brownish-white spots: represented on tail by pale, dark-edged stripe. Whitish midateral stripe from eat aperture to middle of tail. partly interrupted by thigh and sending down branch to imsertion of arm: anteriorly represented by line line curving under eye to lores. Lower lateral zone narrow, greyish, Hecked with whitish marks,

Sonth Alestration material: Bute (SAM 1705); M1. Osmond (SAM 1000(6), Waterfall Gully (SAM 9983-6. 9992. 9994-6); Encounter Bay (SAM 1697, 10010); Avenue Range (SAM 3789).

Ctenotus saxatilis Storr

Diognosis: A member of the lesueurii group with dark yertebral stripe considerably narrower than a paravertebral scale and very narrowly paleedged: white dorsolateral tine; dark upper lateral gone with indistinct whitish motling: white midateral stripe seldom extending anteriorly ats far as atm.

Distribution: Far north, [Extralimital in the Northern Terbitory.|
Somth Australian material: Erliwunyatwnya. Musgrave Range (AM 17246-7): Oodmadat!a (SAM 43).

Ctenotus brachyonyx sp. nov.
Holorype: D 13944 in National Museum of Vichoria, collected by J. I.. Hatyward in June, 1969, at Annuello, Victoria (34 52'S. $1424^{\prime} \mathrm{E}$).

Diagnosis: A member of the lestuentii group with reduced colous patlern and extremely short chaws. Further distinguishable from saxatilis by unmargined vertebrat stripe and by some indication of pale subocular line. from helenur by presence of darh laterodorsal stripe and pale dorsolateral and midateral stripes, and from rohustos: by number and nature of supraciliaries (fewer than 8 , fourth to penultimate not greatly smaller than others and not tending to be hidden by brow).

Distribution: Valley of the Murraly River. [Extralimital in northwestern Victoria.]

Description (based on all specimens): Snout-vent length (mm): 73-83 (79.4), Length of appendages (\% SVL): tail 181-214 (194), forcleg 23-25 (24.3), hindleg 38-40 (39.3).

Nasals narrowly separated. not gronved. Prefrontals usually in contact (very narrowly separated in one specimen). Supraoculars 4, first 3 in contact with frontal. Supraciliarics 6 or 7 . Palpebrals 8-12 (10.5). Second loreal 1.4-2.0 (1.62) times as wide as high. Upper labials 8 or 9. Ear lobules 2-5 (3.8), subacute or truncate, rather small. Nuchals 2 or 3. Midbody scale rows $30-32$ (30.6). Lamellae under fourth toe 22-24 (23.2). widely callose.

Dorsally (South Australia) brown or (Victoria) olive grey. Black vertebral stripe moderately wide, beginning narrowly on nape and ending abruplly at base of tail; little or no indication of palc edge. Indistinct dorsolateral stripe individually varying from whitish to nearly as dark as ground colour, margined above by narrow black laterodorsal stripe beginning well behind vertebral stripe and usually ending a little before it. Upper lateral zone a little darker than ground colour. with or without blackish dots or whitish flecks. Pale midlateral stripe, indistinet owing to suffusion with ground colour, extending back on to base of tail after being wholly or almost wholly interrupted by thigh; represented anteriorly by short fine line curving below eye. Lower lateral zone paler than ground colour.

P'aratypes: South Australia-Purnong (NMV D 3074, 5295-6). Victoria-Cowangie (NMV 1) 12026): Hattah lakes (NMV D 14213).

Ctenotus helenae Storr
Diagnosis: A greenish member of the lesueurii group with dark vertebral stripe very narrow and not pale-edged, and little or no indication of white dorsolateral and midlateral stripes.

Distribution: Extreme northwest (Tomkinson Range). [Extralimital in Western Australia and Northern Territory.]

South Australian material: Mt. Davies (SAM 5317, 10016).

Ctenotus regitus sp. nov.

Holotype: R 24492 in Western Australian Museum, collected by G. M. Storr and A. M. Douglas on 4 October 1964 at Kingoonya, South Australia, in $30^{\circ} 54^{\prime} \mathrm{S}, 135^{\circ} 19^{\prime} \mathrm{E}$.

Diagnosis: A member of the leonhardii group differing from C. leonhardii and uber by fully developed white midlateral stripe (extending forward to lores) and low number of midbody scale rows (28 or fewer). Distinguishable from the superficially similar robustus by grooved nasal and nature and number of subdigital lamellae.

Distribution: Interior of South Australia and northwestern Victoria.
Description (based on all specimens): Snout-vent length (mm): 37-74 (60). Length of appendages (\% SVL): tail 191-252 (219); foreleg 24-30 (26.9); hindleg 44-58 (51.3).

Nasals separated (rarely in short contact), weakly grooved. Prefrontals in contact. Supraoculars 4, first 3 in contact with frontal. Supraciliaries 7 (rarely 8). Palpebrals 9-14 (11.3). Second loreal 1.0-2.1 (1.64) times as wide as high. Upper labials 8 (rarely 7 or 9). Ear lobules 3-6 (4.7), acute in adults, obtuse in juveniles, second or third largest. Nuchals 3-6 (4.0). Midbody scale rows 26 or 28 (rarely 24). Subdigital lamellae slightly compressed, 23-30 (26.0) under fourth toe, each with a dark brown obtuse keel or narrow callus.

Dorsally brown, darkest on back, more olive on head, paler and reddish on tail. Narrow blackish-brown vertebral stripe from nape to base of tail, narrowly margined with white. Narrow but conspicuous white dorsolateral line from brow to about middle of tail (on which it gradually merges with background), widely or narrowly margined above with blackish brown (this margin or laterodorsal stripe rarely enclosing a series of pale dots or short dashes). Upper lateral zone dark brown or reddish brown, enclosing two (occasionally one) longitudinal series of whitish dots or small longitudinally elongate spots; represented on tail by pale, dark-edged stripe. White
midlateral stripe from lores to middle of tail, straight and moderately broad, interrupted by ear aperture and partly by thigh; margined below (on body) by a brown stripe which occasionally encloses some spots.

Paratypes: South Australia-Lambina (NTM 1552); Lake Eyre (NMV D3115, 3118); Killalpaninna (SAM 759); Goyders Lagoon (SAM 10342): I.ates Mulligan and Callabonna (SAM 9988-91): 6 mi . E of Vokes Hill (WAM 36605): Ooldea (NMV D3.52): "Overland Railway" (NMV D3()45): Kingoonya (WAM 24493): Andamooha Ranges (SAM 27x8, 10024-6): Yudna Swamp. Moralatal (SAM 3177, 10013-4); Mern Mernat (SAM 2657. 10028-9, 10031-3). "Waterfall Gully" (SAM 9993). Victoria-Cowangie (NMV D12027): Irymple (NMV D8406): Karawinnat (NMV D5651): Mildura (NMV D813*): Red ('lifls (NMV D8546).

Ctenotus leonhardii (Sternfeld)

Diagnosis: A member of the leonhardii group with nasals usually in contact and prefrontals usually separated. Further distinguishable from regins by dailure of white midlateral stripe to extend forward to level of arm (let alone to ear aperture); and from uler by absence of laterodorsal series of pale spots.

Distriburion: Far north. [Extrallmital in Northern Territory and Western Australia.]

Soutl Australian material: Erliwunyawunya, Musgrave Range (AM 17248): "50 miles south of South Australian border" |presumably between Granile Downs and De Rose Hill] (SAM 9956).

Ctenotus uber orientalis subsp. nov.
Holotype: D825 in National Museum of Victoria, collected by W. A. Hall in 1911 at Ouyen, Victoria, in $35^{\circ} 05^{\prime} \mathrm{S}, 142^{\prime \prime} 19^{\prime} \mathrm{E}$.

Diagnosis: Differing from C. w. wher of Western Australia (Storr 1969) in its well-developed vertebral stripe and shorter tail. Distinguishable from leomhardii by presence of laterodorsal scries of pale spots and absence or feeble development of white midlateral stripe.

Distribution: Northern interior, cast of the Nullarbor Plain and Great Victoria Desert, south to central Eyre Peninsula and the Murray Mallee. [Extralimital in northern Victoria, western New South Wales and south of Northern Territory.]

Description (based on all specimens): Snout-vent length (mm): 36-80 (58.5). Length of appendages (\% SVL): tail 15I-214 (186); foreleg 23-30 (27.1); hindleg 39-55 (48.8).

Nasals separited. Prelrontals separated or in contact. Supraoculars 4, first 3 in contact witls frontal. Suptaciliaries 7 or 8 (6 in two Eyre Peninsula specimens). Palpebtals 9-1.3 (10.4). Second loreal 1.0-1.8 (1.42) timer as wide as high. Labials 8 (oceasionally 7 or 9). Ear lobules $3-7(4.6)$. acute in adults, obtuse in juvenifes, second or third usually largest. Nuchals 1-7 (3.9). Midbody scale rows 28-3.4 (31.3). Lamellate under fourth toe 19-29 (24.1), slightly to moderately compressed. Lach with a narrow dark callus.

Head and back olive grey, olive brown or dark brown; tail pale brown. Blackish verlebral stripe fiom nape to base of tat, narowly edged with greyish white or pale brown. A lateredorsal series of pate dots or shore dathes. White dorsolateral line extending from brow back for varying distances before breaking up into a serice of short dashes or small spots. Broad upper lateral rone dark brown or blackish, enclosing white tlecks. dots or short dashes which tend to align in three longitudinal series; upper lateral zone represented on tail by dark stippling. White midateral stripe absent or indistinct on body (resulting from conlescence of fourth series of dathes). Lower lateral zone greyish brown, enclosing one or lwo series of whitish spots, dots or dashes, or llecked with white and pale grey.

Paratypes: Northern Territory-Macdonnell Ranges (SAM 10055). Bunth Australia-Dathousie Springs (SAM 97.35): between Pernatly and South (Sap Homesteads, Andamooka Ranges (SAM 2789, 9466-9): Lake Gilles (NMV D9 499): Bluc Range Creek, Eyre Penimsula (SAM 10122): Lake Palamkarinna, 62 mi . N of Marree (SAM 3618): Mern Merna (SAM 10017. $10027,10(130)$: Panaramitee near Ýunta (SAM 57.38): "Buchsfeht. near Adelaide" (Berlin 4719 cod): Turners Well (SAM 23-4): Pinnaroo (SAM 1507). New South Walen-Milparinka (SAM 10()44). VictoriaRed Clifts (NMV D2681, 2734): Ouyen (NMV D283-4, 826. 10032): Mangalore (NMV D3433): Bright (NMV D5578),

Ctenotus atlas Stort

Diaghosis: A member of the tamolatus group with a lotal of 10 whitish dorsal and lateral stripes and lines on a blackish ground. Distinguishable from cumatuordecimlincours by single pate line between midlateral stripe and dorsolateral line, and no pale dorsal line between patavertebral and dorsolateral lines.

Distribution: Southern sector of Creat Victoria Desert (mallee-spinifex (onc) boutheast through similar country round Lake Everard to eastern interoor of Eyre Peninsula. [Eetralimital in Western Australia and New South Wales (central-west). 1

Description: Snout-vent length (mm): 38-69 (58). Length of appendages (5 SVL.): tail 160-221 (204), foreleg 26-30 (27.9), hindleg $35-51$ (42.7).

Nasals in short contact. Prefrontals in long contact. Supraoculars normally 1 , with first 3 contacting frontal (5 with 4 in one specimen). Supraciliaries 7 (occasionally 8). Palpebrals 10-12 (11.0). Second loreal 1.2-2.0 (1.52) times as wide as high. Labials 8 or 9 . Ear lobules 3-7 (5.5), first 2 or 3 usually very small and acute. Nuchals $1-3$ (2.2). Midbody scale rows $28-34$ (30.3). Lamellae under fourth toe 20-28 (23.7.), compressed, cach with a narrow dark brown callus or obluse keel.

Head dark brown; tail brown. Back and sides blackish brown with a total of 10 white or brownish stripes and lines: on each side a paravertcbral line from occiput to base of tail; dorsolateral line from brow to proximal quarter of tail; upper lateral line from orbit to proximal quarter of tail: narrow midateral stripe from ear nearly to end of tail, partly interrupted by thigh, extending forward indistinctly below eye to lores; ventrolateral stripe from below and behind ear to groin, partly interrupted by arm.

Remarks: Apart from minor differences in coloration and number of midbody scales. C. atlas is very similar to C. quattuordecimlineatus, which it replaces in slightly less arid regions. The two forms could therefore prove to be conspecific. The specimen of atas from 100 miles north of Cook has the beginning of a pale line between the midlateral and dorsolateral stripes, and the beginning of one between the midlateral and ventrolateral stripes; it is thus an intergrade with quulluordecimlincatus which was collected only 25 miles further north.

South Australian muterial: 100 mi . N of Cook (WAM 31863): 73 mi . N of Cook (WAM 36003); 2 K mi. NE of Maralinga (WAM 36645); 10 mi . S of Everard (IVAM 2451.5): Mt Wedge (SAM 9979): Hincks National Park, Blue Range and Verran Hill (SAM 10123-8).

Ctenotus quattuordecimineatus (Sternfeld)

Diagnosis: A member of the raeniolatus group with a total of 14 pale dorsal and lateral stripes and lines on a blackish ground.

Distribution: Great Victoria Desert. [Extralimital in Western Australia and the Northern Territory.]

South Austrulam material: Near the Serpentine Lakes (WAM 34521), 125 mi . N of Cook (WAM 31856-7).

Ctenotus leae (Boulenger)

Dingmosis: A moderately small Ctenotus with dorsal and lateral pattern consisting of alternating dark and pale stripes; tail bright red and very long: midbody seale rows usually 22 or 24 . Distinguishable from all members of the tacholaths group by its sharply keeled, mucronate subdigital lamellac.

Distribution: Great Victoria Desert. [Extralimital in Western Australia.)

Somih Anstralian material: 10 mi . E of Golden Well (NMV D1565): "Adclaide" (holotype).

Ctenotus schomburgkii schomburgkii (Peters)

Diagnosis: A member of the sehomburgkii group with nasals usually separated and back strongly striped with black. Further distinguishable from strauchii by its longer appendages and less widely separated prefrontals, and from brooksi by its two presuboculars and homogeneous plantars.

Distribution: Northern interior. [Extralimital in Western Australia, Northers Territory and western New South Wales. I

Description: Snout-vent length (mm): 25-50 (41). Length of appendages (r; SVL, : tail 165-213 (196), foreleg 25-33 (27.8), hindleg 14.55 (49.4).

Nasals narrowly separated (occasionally widely separated or in very short contact). Prefrontals narrowly separated or in short contact. Supritoculars 4 . first 3 in contact with frontal. Supraciliaries usually 7 , often 6. Palpebrals 7-11 (9.3). Second toreal 1.5-2.3(1.98) times as wide an high. Labials 7 (occasionally 8). Ear lobules 2-4 (3.2), short and obtuse, first usually much the largest. Nuchals 3-5 (3.7). Midbody scale rows 24-28 (25.9). Lamellae under fourth toe 20-26 (22.5), each with a fine. shatp. dark. mucronate keel.

Head, foreback and forelegs bright reddish brown (changing to greenish in alcohol). Hindback, tail and hindlegs yellowish brown. [3lack vertebral line from nape to proximal quarter of tail. Black dorsal line from nape to base of tail, often breaking up into a series of dots or dashes. White dorsolateral line from brow to base of tail, margined above with black. Black upper lateral zone enclosing an irregular series of spots similar in colour to corresponding part of dorsum: represented anteriorly by a narrow Joreal streak. White midlateral stripe from snout to base of tail, interrupted by ear aperture and partly by thigh. Lower lateral zone like upper but narrower and less distinctly spotted.

Soulh Anstralian material: Mt, Davies. Tomkinson Range (SAM 5318, 1(H)15): Ernabella (\triangle M 17526): Gmi. E of Vokes Hill (WAM 31827.8); 15 mi . E. of Emut (WAM 36609) : 24 mi . NE of Maralinga (WAM 36640): $15(1$ mi. N of (conk (WAM 366()7-8): 1.44 mi . N of Cook (WAM 36604): 103 mi . N of (0 ooh (WAM 36061); Ooldeal (SAM 679, 10012); "Overland Railway" (NMV D2667. 3063.3, 3065): 10 mi . of Golden Well, Overland Railway (NMV D495, 1567); Kychering Soak (NMV D2671): Kingoonya (SAM 09t. 103.11): Bitthday Will (SAM 3050): Mullaroo Peninsula (SAM 305t): Moralam (SAM 3182): Blesmer Reverve (SAM 9190): "Buchsichd, near Adelade" (lectotype and paralectotype, Berlin 4713 a-h).

Ctenotus strauchii (Boulenger)

Diagnosis: A member of the whomburgkii group with extremely shot appendages and cur lobules, and little or no dorsal pattern.

Distriburion: Northeastern interior, west to Lambina and south to Mern Merna. |Extrallmital in Northern Territory, Queensland and New South Walles.]

Description (based on all specimens cited below): Snout-vent length (mm): 41-52 (46). Lengll of appendages (\%SVL): tail 126-160 (148), foreleg 21-27 (23.9), hindleg 33-41 (37.3).

Nasals forming a median suture (narrowly separated in one specinten). Prefrontals moderately to whely separated. Supranculats normally 4, with first 3 in contact with frontal (5 with + in one specimen). Supraciliaries 6 or 7 (9 in one specimen). Palpebrals 8-11 (9.2). Second loreal 1.4-1.9 (1.59) times as wide as high. Labials 8 (occasionally 7 or 9). Ear lobules 1-4 (usuatly 3: mean 2.9), very short and whtuse, first or second basally much wider tham others. Nuchals 2-4 (3.2) Midhody scale rows 26-30) (27.9), Lamellac under fourth toe $16-20(18.0)$, each with a sharp, mucronate keel.

Dursally reddish brown. Vertebral stripe faint, narrow and pale-edged; or ahsent. Dark laterodorsal markings variable: sometimes arranged as small blotehes or cros-bars, sometimes as a stripe enclosing a series of pale spots. Whitish dorsolateral line from brow to base of tail. Upper lateral one variable: essentially consisting of narrow vertical or oblique, alternating dark and pale blotches; but fine transwerse connections between dark blotehes so frequent that zone could often be described as a darh stripe enclosing two series of pate spots. White madateral stripe extending narrowly forward to below eye after bending shaplly up and down around top of ear aperture. Lower lateral zone reduced to a narrow faint streak or absent.

Material: Northern Territory-Tempe Downs (NMV D280); Charlotte Waters (NMV D946). Queensland-Birdsville (OM J9743). South Australia-Lambina (NTM 1548): 10 mi . N of Clifton Hills (SAM 10345); Mern Merna (SAM 2611.2646.10018-23). New South WalesMilparinkil (SAM 9930, 10042-3).

Ctenotus brooksi brooksi (Loveridge)

Diagnosis: Species brooksi distinguishable from all other members of schomburgkii group by single presubocular and enlarged. keeled plantars opposite fourth toe. Subspecies brooksi distinguishable by red head and back, and little or no indication of dorsal and lateral pattern apart from an upper lateral series of small, blackish, rectangular blotches.

Distribufion: Great Victorial Desert. [Extratimital in Western Australia and Northern Territory.]

South Australian material: Ooldea (SAM 3217): 10 mi . E of Golden Well, Trans-Australian Railway (NMV D1566).

Ctenotus brooksi aranda Storr

Diagnosis: Agreeing with C. b. brooksi in red head and back, but differing in fewer subdigital lamellat and stronger pattern (including paleedged vertebral stripe and blackish laterodorsal variegations).

Distribution: Sand dunes of the Lake Eyre Basin, west to Dathousie and south to Marree. |Extratimital in adjatent deserts of Queensland and Northern Territory.]

Description: Snout-vent length (mm): 28-55 (46). Length of appendages (os SVL): tail 140-163 (150), foreleg 24-32 (27.1), hindleg 41-50 (44.4).

Nasals in short contact or narrowly separated. Prefrontals forming a median suture. Supraoculars 4, first 3 in contact with frontal. Supraciliaries 6 or 7 (6.3). Palpebrals 9-11 (9.6). Second loreal 1.6-2.5 (2.15) times as wide as high. Usually only one presubocular, oceasionally 2. Labials 7 or 8. Ear lobules 3 or 4, obtuse or subacute, second usually largest. Nuchals $2-8$ (mostly 3 or 4 ; mean 3.7). Midbody scale rows 26. Lamellae under fourth toe 19-22 (20.2).

Sonth Anstralian material: Dalhousic (NMV D207): Lake Eyre shoreline. including Hunt Peninsula and Madigan Gulf (SAM 3338. 3732. 3769, 9921, 10007, 10041, 10051, 10058-9): Marree (SAM 4704).

Ctenotus brooksi taeniatus (Mitchell)

Diagnosis: Gencrally similar to C.b. aranda, including relatively short appendages. Iow number of subdigital lamellac, and colour pattern; but differing in brown (rather than red) dorsal ground colour, separated (rathen than contiguous) prefrontak, and weakly keeled subdigital lamellae.

Distribution: Lake Torrens Basin.

Remurks: More material is required for determining whether the high number of supraoculars (5) and supraciliaries (8) in the only known specimen (SAM 2803) is diagnostic for this taxon. Each of these counts can occur in other subspecies of brooksi, but only rarely and singly.

A specimen of C. schomburgkii from Alice Springs (NMV D166) with the unique combination of 5 supraoculars, 8 supraciliaries and 8 labials was wrongly identified as tacniatus by Storr (1970: 107): in so doing taeniatus was wrongly described as having two presuboculars.

Ctenotus brooksi enclae subsp. nov.
Holotype: R287 in Western Australian Museum, collected in 1914 by W. B. Alexander at Eucla, Western Australia, in $31^{\circ} 43^{\prime} \mathrm{S}, 128^{\circ} 53^{\prime} \mathrm{E}$.

Diagnosis: Differing from all other subspecies of brooksi by whitish back strongly patterned with black, upper lateral zone a black stripe enclosing whitish spots, and broad white midlateral stripe.

Distribution: White sand dunes bordering the Great Australian Bight between Eyre, Western Australia, and Point Sinclair, South Australia.

Description: Snout-vent Jength (mm): 26-51 (43). Length of appendages (": SVL): tail 153-193 (173): foreleg 24-31 (26.8): hindleg 45-54 (48.3).

Nasals narrowly separated (occasionally in short contact). Prefrontals in contact or narrowly separated (sometimes by a small azygous scate). Supraculars 4 . with first 3 contacting frontal (5 with 4 in one specimen). Supraciliaries usually 7, occasionally 6, rarely 8. Palpebrals 9 or 10 (occasionally 11). Second loreal 1.4-2.3 (1.84) times as wide as high. Labials 7 or 8 . Ear lobules 2-5 (3.6): obtuse in juveniles: acute, subacute and truncate in adults; second or third usually largest. Nuchals usually 3 ; occasionally 0,2 or 4 . Midbody scale rows 26 or 28 , rarely 24 or 30). Lamellate under fourth toe 19-25, each with a line, sharp, dark, mucronate keel.

Dorsally a very pale flesh colour in life (E. R. Pianka, pers. comm.), fading in alcohol to creamy white. Narrow, black, white-edged vertebral stripe. On each side of dorsum two more blackish stripes, as wide as vertebral but anteriorly wavy and posteriorly breaking up into variegations. Upper lateral zone blackish with an irregular series of pale spots variable in size and shape; upper edge of zone continuing forward through orbit to nostril as a dark narrow streak. Broad white midlateral stripe from ear aperture to hindleg. Lower lateral zone narrow, variably marked with pale grey. Upper surface of limbs boldly streaked with black.

Paratypes: Western Australia-4 mi. N of Eyre (WAM 34478-80); Eucla (WAM 288; ERP 13702, 13704, 13713-4, 13716, 13721-2, 13729-33, 13735-6, 13738-40, 13745, 13750-1, 13753, 13761, 13763-6, 13788). South Australia-Point Sinclair, 13 mi . S of Penong (WAM 36559).

REFERENCES

Storr, G. M., 1969: The genus Ctenotus (Lacertilia, Scincidae) in the Eastern Division of Western Australia. J. Roy. Soc. W. Aust., 51: 97-109.
Storr, G. M., 1970: The genus Ctenotus (Lacertilia, Scincidae) in the Northern Territory. J. Roy Soc. W. Aust., 52: 97-108.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

ACARINE AND OTHER MICROFOSSILS FROM THE MASLIN EOCENE, SOUTH AUSTRALIA

By R. V. SOUTHCOTT and R. T. LANGE

ACARINE AND OTHER MICROFOSSILS FROM THE MASLIN EOCENE, SOUTH AUSTRALIA

by R. V. Southcott and R. T. Lange

Abstract

Summary

The animal (invertebrate) component of a microfossil assemblage from a carbonaceous clay deposit, North Maslin Sands, South Australia, is described. The deposit is placed in the Lower Middle Eocene. The assemblage contained, among numerous fungal, pollen and leaf cuticular remains, many setae similar to those of modern Acarina and other arthropods. Also there were a number of claws, probably mainly tarsal, from the same fauna. The deposit contained a fossil eriophyid mite, the first fossil of this family to be described. This rust mite is placed in a modern genus, and described as Aculops keiferi sp. nov. A fossil rotifer is also recorded from the same assemblage, and briefly described as ?Keratella sp.

ACARINE AND OTHER MICROFOSSILS FROM THE MASLIN EOCENE, SOUTH AUSTRALIA

By R. V. SOUTHCOTT' AND R. 'T. LANGE

SUMMARY

The amimal (invertebrate) component of a microfossil assemblage from a carbonaceous clay deposit. North Maslin Sands, South Australia, is described, The deposit is placed in the Lower Middle Eocene,

The assemblage contained, among numerous fungal, pollen and leaf culicular remains, many setae similar to those of modern Acarina and other arthropods. Also there were a number of claws, probably mainly tarsal, from the same fauna. The deposit contained a fossil eriophyid mite, the fiat fossil of this family to be described. This rust mite is placed in a madern genus, and described as Aculops keiferi sp. nov. A fossil rotifer is also recorded from the same assemblage, and briefly described as 'Kicratellasp.

INTRODUCTION

The first part of this paper, by R. T. Lange, reports the discovery, isolation and preparation of the fossils, and their palatentological associations and age. The second part, by R. V. Southeott, deals with the systematics of the fossils and related issues.

PART I-DISCOVERY, ISOLATION AND AGE OF THE FOSSILS

The present microfossils were included in a lens of carbonaceous clay which was uncovered during 1966 by excavating machinery in a deep sand guarry of the A.B3.M. Company at Maslin Beach, South Australia. The clay, discatded in dross, was observed by visiting geologists and brought to the allention of Adelaide University palaeontologists. Collections were then bagged in polythene for storage at Adelaide University, where they remain available for study.

Investigations of the clay were immediately undertaken, and are continuing. Research collections were assembled in the Botany Department, where most renciarch on the lens is proceeding. Different fossils are revealed ats different technigues are applied to the clay. When particular fossits are revealed which are within the field of local specialists, such fossils are submitted for spectalist attention. Thus poltens from the lens have been dealt with by the palynological section of the South Australian Department of Mines. The present fossils, in view of their main affinity with mites, were submitted to Dr. R. V. Southcott.

The geological section in which the lens necurred is not yet the subject of publication, but is discussed in a Ph.D. thesss of the University of Adelaide (Stuart. 1969). The lens was within the North Maslin Sands, which are merred to be of Eocene age by downward extrapolation from the Tortachilla limestone (Lindsay, 1969). Palynological studies of the lens itself (Harris, 1966) indicate a correlation with the Burrungule Member of the Kught Formation in the Gambier Embayment of the Otway Basin, southeast Soutlo Australia. The burrungule Member in turn correlates with the Hambenina arogonensis \%one of the lowest midde Eovene, on the basis of planktonic foraminifera (McGowran. Harris and Tindsay, 1969) hence good evidence is provided for carly midde Eocene age of the present microfossils.

Patacontologicatly the pecsent microfossils ate a minor but significant part of a complex mierofossil assemblage which is itself intimately associated with plant macrofossil beds. Many compoments of the total assemblage are demonstrably of close ecological assoctation. The present microfosils are significant ats the only animal remains thus far detected, and because they correlate in part with fossils in the Moorlands coal.

The assemblage to which they belong is dominated by a mixed angiosperm-gymosperm llora represented by inflorescences, fruits and seeds, anthers, pollen sacs, in situ and dispersed pollen. perianth parts. iwigs and leaves. There is no word, and pteridoplave macrofonsils ater nor yet recovered. Angiosperm keaves are mostly simple and net-veined, and the spectrom of their morphologics is not comparable with that of any present dary South Australian communities; similarly gymonopern kiaves are not compatatble with those in the South Austratian region. Notably, there is a fich assemblage of leaf-inhabiting cryptogams 1 Latnge, 1969) comparable WHth that descritued by Ruinen (1961) from the phyllosplaere of Surinam jungle. and with that described from Eocenc leaf heds in Tennessee by Dikcher (1965). This in sith microllora is dominated by foliscolous ascomycetes of a nature described from present-day material by Hansford (19.46). Microthyriaceous germlings are almont wbiquitous, and palynological preparations are almost dominated by dispersed fungal spores. particularly of Dematiaceae.

It is premature to propone definite bingraphical allinities and ecological parallels for the ascmblage, but some important points seem well entablished. In the independent major respects ispectrom of leaf morphologies, nature and mixture of angiosperm and gymnosperm remains, development and morphology of the phyllosphere liora) the assemblage most resembles foor litter from wet forest in which "typien"" Australian elements such as Fucalyphes and Callitris are poorly represented in the angoseperm and gymmosperm thonas respectively, yet where taxa like Casterina are justaponed
with plants of ranalian alinity. Of the comparisons thus far made with forest floor litters of the Australian region, the assemblage most resembles litters from wet forest such as is found in Queensland north of Brisbane.

The present suite of microfossils was revealed by palynological mehods. and was observed to be almost ubiquitous in spore and pollen preparitions. Io which it gives a characteristic appearance. Fragments of clay about 2 cm . spuatre were pared to expose the uncontaminated core. Cores were submerged for 24 hours in a mixture of equal volumes of HNO : and HCI (commercial strongth) sprinkled with KClO . . The resulting sludge was washed three times by centrifugation in distilled water. Situdge samples of 1 ce. were dispersed by agitation in saturated ZnCl, solution and centrifuged 10 partiton organic particles from the claty and float them to the surface. Suatl samples of the surface layer were transferred to slightly acidified water and washed three times by centrifugation, safranin being added before the final centufugation. Very small samples of the final precipitate, which wats contirely of organic fragments, were dispersed in phenol glycerine jelly for microscopy. As a precaution against contamination, laboratory space was mist-sprayed before use. As a check on contamination, the isolation procedure was run blank, and slides filmed with parallin oil were exposed alld ohserved microscopically. Occasional winged pollen were contaminants on such slides, but no spores were detected in blank runs.

The entire procedure has been repeated in laboratories in South Australia and in Germany. with very different enviromments for contamination. No setae were ever detected in blank runs; indeed, deliberate scarch for such structures in preparations from nearby gardens and leaf litter have failed to reveal similar structures.

REFERENCES

Dilcher, D. I. (1965): Epiphyllous fungi from cocene deposits in Western Iennessec, U.S.A. Paldeenthographical B., 116: 1-54.
Hansford, C. Ci. (194h): the fulicolous Ascomycetes their parasites and associated fungi. Imp. Mycol. Inst. Kew. Mycol. Pap. 15, 240 pp.
Hirris, W. Ki. (1966): Quart. geol. Notes geol. Sury. S. Aust., No, 20, 1.
Lange, R. T. (196y): Recent and fossil fungi of the Manginulc-Shortansis group. dust. J. 1301. 17: 565-574.

Lindsily, S. M. (1969): Bull. Gcol. Surs. S. Adw户. 42.
MeCowran. B.. Iduris. W. K., and Lindsay, J. M. (1969): Lisrly Middle Eocene Age of the Maslin Kity Flora South Australia, S.A. Dept. Mines.
Ruinen. I. (19h1), The Phyllosphere I. An ecologically neglected milien. Plant de Soil, 15: sl-109.
Start. W. J. (196)): Stratigraphic and structural development of the St. Vincent Tertiary Basin, South Ansiralia. Ph.D. Thesis, University of Adelaide,

PART II-SYSTEMATIC DESCRIPTION OF THE FOSSILS, AND RELATED ISSUES

A. INTRODUCTION

The present study deals with a number of microfossils, some of them recognizably acarine.

The finest specimen wats a minute eriophyid mite, one of a specialized family of mites which commonly cause rusts and blisters anong present-day plants. The state of preservation of this minute fossil (less than 100 p long) allows generic and specific placing. It is recorded as a new species of the genus Aculops Kcifer.

Among the assemblage was a large number of setace so similar in form to those of modern Acarina that there does not appear to be any reason why they should not be allotted to this Order with confidence. Some of them in fact are so similar to setae of the modern superfamilies Erythraenidea and Trombidioidea of the superfamily Trombidiformes that it is considered that this is the correct placement of these structures. In others however. it is not possible to allot them with the same degree of precision, and some appear to belong elsewhere among the arthropods, $e^{2} . g .$, possibly Insecta. A number of varieties of setate are present, e.g., clavate sctac, plumose setate, a squame. sensory hairs and others.

In addition to the specimens mentioned, the assemblage included a number of hairs which, as far as the present author is aware, do not correspond to the hatirs of modern arthropods. nor do they seem to be of botanical origin. On the advice of botanical colleagues. It is proposed to describe them also in this paper, so that they may be brought to the attention of other workers.

B. REMARKS ON FOSSILIZATION OF ACARINA

It is unusual for Acarina and other small arthropods to be found as fossils, and this may be attributed to their small size, fragile nature. and presumably to their residual food content making them acceptable to microscavengers, or susceptible to degradation by moulds or bacteria. In the case of the Acarima the most extensive fossil faunal known is for the Baltic amber (Oligocene), the mites and other small arthropods being preserved by envelopment in the aromatic and indigestible resin of the pines. with in low solubility in water. There is also one fossil erythracoid larval mite recorded for the Cretaceous amber of Canada (see Ewing, 1937; Southcott. 1961:1, pp. 373-4).

Alternative methods of preservation against destruction by scavenging or degradation are believed to have occurred. Thus for the Australian Permian insect tauna the excellent preservation of a number of primitive winged insects has been attributed to suffocation and preservation in fine volcanic dust (Tillyard, 1926, p. 470). However, these fossils are wings only, and so far no acarine fossils have been reported from this Permian fanmal. Some small arthropods have been discovered in the Rhynie chert deposit of the Middle Devonian Old Red Sandstone, and among these was the carliest mite so far described, Protacarus crani Hirst, 1923. The mode of fossilization of these arachnids is speculative, but presumably there wats originally a carbonaceous deposit, later silicilied. Nevertheless, it is not unworthy of notice that very few acarine fossils have been recorded for the coal deposits of the Carboniferous period, this being possibly partly due to the conditions preceding fossilization not being conducive to the entombment and ultimate preservation of these primarily terrestrial animals, or ponsibly. simply hecause they have not been adequately looked for. Overall. the Known records of fossil Acarina are not numerous. making phylogenctic speculation about the Acarina a somewhat fruitless subject (see Andere and Limy. 1937, pp. 34-5; Southcott. 1961a, pp. 373-4).

The material submitted contained many specimens, in fact too many for it to be possible to describe every one, and where types of setae are evtemively replicated, the paper has been limited to representative specime"s of each hind.

In addition there was present al fossil rotifer, identified as ? Ǩcratella sp., which is illustrated and briefly described.

All specimens have been deposited in the South Australian Museun (section of Acarology, as all slides contain setae).
('. SYSTEMITIC DESCRIPTION OF A FOSSIL ERIOPHYID MIT: Acarina
Family ERIOPHYIDAE Nalcpa 1898

Genus ACULOPS Keifer 1966

Aculops. keiferi sp. nov.

Гigs. 1. 2: Plate 1
Description of dentogyine ?
Length 97μ. width 38μ. Colourless, in saframin-stained mountant on receipl. Rostrum not clearly visible. Antapical rostral setae 5μ. long. Shicld 39 , long by 17 , wide. more or less triangular in outline but somewhat distorted in the preparation: shied lobes rather long and sharp. Median line
of shield not discernible, but there is some indication of an admedian or submedian line. Dorsal tubercles 22μ apart, dorsal setae 30μ long. Foreleg present, length uncertain. Patellar seta (genuala) 20; long; tibia 5μ long, with tibial seta obscured; tarsus $c a 10 \mu$ long; featherclaw identifiable, 4μ long. Hindleg obscured. Coxate obscured. Abdominal thanosome with about 18 strong resistant tergites, lacking granules or microtubercles. Sternites possess ventral granules (microtubercles), which are pointed. Lateral seta ca $10 p$ long; first ventral seta ca 30μ long, second ventral seta 5μ long; third ventral seta $c a 10 \mu$ long. Accessory scta $c a 32 \mu$ long. Genitalia not recognizable. Genital setae 14μ apart, 16μ long.

Locality

Maslin fossil beds, North Maslin Sands, South Australia.
Age
Lower middle Encene.

Remarks

Although certain parts of this rust mite are lost, sufficient of its structure has been preserved, for classification to the species level.

Figs. 1, 2. Aculops keiferi sp. nov., Holotype. 1. Dorsal view, entire. 2. Ventral view, entire. Two pollen grains are also illustrated.

The specimen, by virtue of the fact that it lacks granules (microtubercles) on the lergites, is considered ats a deutogyne 9 . The deutogynes (which are femates) lach the more specialzed processes of the protogynes, and are therely less sutable for taxomomic description. However, as only one specimen is available and as not only is it the first fossil eriophyid to be discovered, but is also recognizably different from any modern known species "f erioplyyd, it requires deseription and appropriate taxonomic status. On the advice of Mr. Keifer it is placed in the genus Actops and described as a new specics. This is a genus whose armities within the Eriophyidae are somewhat uncertain, and which may later receive lurther subdivision.

The species diflers from other known species of Aculops in the following features: long rather sharp anterior shield lobe, rather long dorsal setate, tergites brong and resistant (without granules) and with pointed ventral granules.

The fossil came from a mixed gymnosperm and anyioperm deposit, and at. Mr. Keifer advises that deuterogyny is unknown from conifers it is deduced it is a rust mite issociated with angiosperms.

The present author wishes to place on record his indebtedness to Mr. 11. H. Keifer. wf San Francison, the great authority on eriophyid mites. for very considerable help with the taxonomy and other aspects of the eriophyid specimen, and it is with pleasure that the species is dedicated to him.

D. OTHER ARTHROPOD REMNANTS. INCLUDING ACARINE

Figs. 3-56
The preparations made from the deposit include a large number of arthroped remmats, many of them appearing to be recognizably acarine. Most of them are of selac, but a few are of clatws or of other structures. Reference to Fige, 3.56 shows that most of these are setae, many appearing in be normal acarine body setate with varying degrees of ciliation. These normal budy setite include forms which are tapering and sword-like, while whers are parallel-sided and terminally blunted while others show varying degree of terminal expansion. Some of the setae have a distinct angubation near their origin. Some of the setae, however, are more specialized. Setate ligured in Figs. 24-34, 47-53 are possibly varying types of sensory setac, not atl of them corresponding to forms known to the present athor from Acarina ot whet arthropods. The ansemblage contains several specimens of tarsal clatws. reambling in some degree those of modern Acarina. although not certainly placeable in that Order. One specimen shows a claw in a normal brientation to a set of tarsal setae, and some of the tarsal cuticle is faintly visible (Fig. 38).

14

Figs. 3-26. Setae from the Maslin assemblage, some of them appearing to be of acarine origin. for detailed description see text.

The athor's familiarty with certain groups of Acarina possibly tends (1) bias him towards an acarine origin of many of these setac. Thus the setae ligured in Figs. 3-26 resemble so strongly those of modern Erythracoidea and Trombidisidea (Trombidiformes) that no particular difficulty is seen in altributing them to mites of these superfamilies. The other structures depicted, however, camot be placed so readily (assuming the former attribution is correct), and probathly these figures should be examined by a large number of specialists of various groups of organisms in attempt to place them. Whereas, for example, Fig. 46 represents a squame or squamous setal similar to those of certain Acarina, it is nevertheless a distinct possibility that it has come from some other arthropod group. e.g., insects such is (oleopteria or Lepidopterit. On the other hand, the seta shown in Fig. 30 does not correspond to anything the author is familiar with among the Acarinit, but is matched by setat the author has noted on a colcopteron (fanily Curculionidac, see later in the present paper and Fig. 66).

As the placement of these setae, or structures, is to a large extent a matter of opinion, it has been decided to deal with them in a purcly deacriptive lashion, until more definitive remnants are obtained. Thus those figured will be considered seriatim:

(1) Describion of Sittae or Setae-like Structuris Figured in ithe Present Paper

Figs. 3. 4. These are parts of the shafts of scobalae (sce Southeott 1961: b; 1963 for terminology employed), more or less cylindrical, with lightly outstanding or adnate barbs.
[ig. 5. Scobala, 191, long, sword-shaped, angled at base, lightly barbed.
Fig, 6. Scubala, $153 / 2$ long, complete, barbed, blunt-tipped,
Fig 7 Tapering blunted scobala, 1.32\% long, with blunt barbs, set slightly swollen near base.
Figes. 8-11. Barbed scobalae, Nos. 10 and 11 being incomplete. In Fig. 11 lise shading shows the degree of staining with the safranin.
Fig. 12. Blunted strongly barbed scobala, 215μ long.
Figs. 13-16, 18. 19. Barbed scobalae with angled bases.
Fig. 17. Similar to No. 7.
Figs. 20-26, Clavate scobake, of varying lengths and degree of clavation. In some, e.g.. 23, 26 there is some tendency to angulation near the origin of the seta.
Pigs. 27, 28. Barbed scobalae, somewhat unusual in appearance,
Figs, 29-31. Sensory setae (sensalke) with terminal constricted piece of presumed specialized function.

Figs. 27-56. Further microfossils from the Maslin assemblage, comprising setae, claws and other, not fully identified, structures. For detailed description see text.

Fig. 32. Seta, possibly of sensory function, with swollen proximal part. Seta 96μ long.
Fig. 33. Clavate sensilla-type of seta.
Fig. 34. Another clavate seta, possibly a modified sensilla; 54μ long.

Fig. 35. Two plumose scobalac, similar to those commonly seen in modern Trombidiidae.
Fig, 36. Burr-like seta, 48μ long. This seta is similar to one figured later (sce Fig. 66), from a modern coleopteron.
lig. 37. Scobala with few ciliations, 46μ long.
Fig, 38. Group of scobalae outlining a tarsus of a leg, with a tarsal claw in sittr (also figured in Plate 4).
Fig. 39. Tarsal claw, 41μ long, with two ventral spurs.
Fig. 40. Tarsal claw 31μ long, with 8 lateral ciliations.
Fig. 41. Simple tarsal claw.
Fig. 42. Tarsal claw 14μ long.
Fig. 43, Tarsal claw 38μ long.
Fig. 44. Tarsal claw 30μ long.
Fig. 45. Tarsal claw 39μ long.
「ig. 46. Scobala, i squame or squamala, 38μ long (also figured in Plate 3).
1ig. 47. Spinous presumably sensory seta, 102μ long. Four-fifths of the seta is optically active.
Fig. 48. As $47,50 \mu$ long, One-third of the seta is optically active.
Fig. 49. As 47, 68μ long.
Fig. 50. As $47,57 \mu$ long (tip apparently incomplete).
Fig. 51. As 47 , curved, 64μ long. About four-fifths of its length is optically active.
Fig. 52. A more strongly curved seta, 81μ long. About two-thirds of the seta is optically active.
Fig. 53. Similar seta, apparently broken off. Specimen is 66μ long, and the whole of the specimen figured is optically active.
Fig. 54. Robust seta with light protuberances, classified as a scobala; 61 μ long.
Fig. 55. Apparently similar to last, 45μ long.
Fig. 56. Structure of uncertain affinity, ?seta, 75μ long.

(2) Other Microfossil Hairs of Uncertain Origin

Bicorned structures

Figs. $57-59$ show some peculiar bicorned optically active hairs, which are not certainly identifiable as to origin. Some variety of structure is seen within these. Thus Fig. 59 shows a more or less symmetrical hair, rather like a pickhead in shape, and 121μ across. In Fig. 58 is shown a similar
structure but with one of the branches extended to about three times the length of the other, so as to be filiform. In Fig. 57 unother variation is shown. In this damaged specimen only one arm is present, this residual arm being attenuated. but ending in at small projection like an elongated acorn. It is not known where these structures have originated nor have several biologists to whom they have been shown been able to place them. For the present the non-committal term "birema" is proposed for them, for the purpose of reference, pending more precise placement.

Lincar hair-like structures

Another group of undentilied structure from the Mastin assemblage is shown in Figs. 60-65. These are all strongly optically active. They are lisear, and ciliated or ornamented, and some are segmented.

Figs. 60-62 show unsegmented barbed hairs (Fig, 61 is shown as broken for the purposes of the illustration). Fig, 60 shows at form 375μ long; Fig, 61 represents a specimen 710μ long; Fig. 62, 325μ long.

Figs, 63-64 represent segmented linear hairs, the joints being expanded in some cascs to a head of three projecting angled lobes on whe side the proximal side), but more distally to pointed ypurs or cilations at the distal end of the segments ($=$ proximal side of the joints). Fig. 63 shows a hair 670 . long: Fig. 64 shows one 184μ long.

Fig. 65 shows a fine linear structure with enlatgements, but without ciliations or angulations, 200 p long.

(3) Comments on the Idinthicnition of thes Sbtar, and Combarison wheit Modern Material.

It would appear unlikely that a fossil deposit originating from terrestrial arthropods would be restricted to a marrow tixonomic range, such as, for example, a single order or even class of these amimals. Since the material submitted contained a good deal of vegetable material which had survived the treatment in Schultz solution-pollens, fungal hyphate and spores, as well as leaf cuticular remmants (many with stomata), etc.-it would be reasonable to expect it to contain chitinous remmants of a diversity of animals such as are found on leaves of tropical and temperate angiosperms as well as of the leaf and other litter below such a flora. Any worker who has examined the leaf litter of temperate and tropical angiosperm forests must have been struck by the varicy of small inimal life present, e.g. mites, collembola, other insects, small spiders (or even larger ones), centipedes, millipedes, also polychactes, not to mention small molluses, leeches, opilionids, and a varicty of other creatures. Among the living leaves of the forest the invertebrate fauna tends 10 be more restricted in its taxonomic

Figs. 57-59. Bicornuate hairlike microfossils or "biremae" (sing.: birema) from the Maslin assemblage. For description see text.

Figs. 60-65. Linear hair-like structures, of uncertain origin, from the Maslin assemblage. For description see text.
range. and perhaps insects, mites and small spiders are the commonest small animals present. While it is impossible to guess with any accuracy as to what microfauna may have been present in al particular tropical Eocenc Austratian forest, nevertheless it may have been expected that by the Encene all modern groups of arthropods favouring a similar habitat would have heen represented.

As most of the animal remants among the assemblage were of setae, the author has attempted to widen his knowledge of setal forms among the arthropods by examining. for this paper, various small modern arthropods and other possible sources of such hairs. Since rather similar setae maly be found in widely differing groups of arthropods, it would be minustifiable to erect new taxa where all that is available is a seta or claw, or some cuticular fragments. Thus although a number of the setae depicted have the appearances of acarine setac, this does not identify them an such for certain, and even if so, it does not allow generic or specific placement. Squames, for example, are found in various insect groups, such as Coleoptera and

Fig. 66. Setae from trochanter of leg of modern curculionid beetle (family Curculionidae, sf. Cryptorhynchinac), ?l) iethusn 5 s 0 from Mitcham, South Australia. Compare with Fig. 36 of the Maslin assemblage (see further in text).

Lepidoptera, as well as Acarina. In Fig. 36 was drawn a seta from some unidentified group of arthropods. Examination of various modern Australian insects has revealed a rather similar set of setae upon the trochanters of a weevil, ?Diethusa sp. (identified G. F. Gross). specimen RVS: A1178, from Mitcham, South Australia, 8.i.1970, R. V. Southeott (family Curculionidae, subfamily Cryptorhynchinae), of which some are drawn in Fig. 66.

The student of these remnants cannot but be struck by the faithful preservation of the physical structure of these minute fossils over this immense period of time, these remarks applying not only to the external shape, but also to such a physical characteristic as the preservation of the optical activity of the specimen. Such a finding immediately prompts the question as to what extent the chemical structure of these fossils is also preserved.
E. DESCRIPTION OF A FOSSIL ROTIFER, ?KERATELLA sp.

Text Fig. 67; Plate 4
In the Maslin assemblage was a structure accepting the safranin stain. identifiable as a loricate rotifer and provisionally allotted to the genus Keratella.

Fig. 67. ?Kerafella sp., al fossil rotifer (Order Monogonata, superfamily Brachionoidea) from the Maslin assemblage. The structure e appears to be a parthenogenelic egg at the posterior pole of the animal, and possibly there is a larger one in a lower plane (see stippled outline, f).

Description: Length (overall) 75μ, width 32μ. The specimen consists of a central part which is a prolate spheroid, about $36, \mu$ long, and with spines projecting from each end. The structure is thus a horny lorica, smooth evternally, no sculpturing being identifiable. Five spines occur at the anterior end (uppermost in Fig. 67), and there are three lorical spines at the posterior end (lowermost in Figure). The spines are strong, curved inwardly, and more or less pointed toward the tip. No corona is visible. Between the three posterior spines is a clear rounded structure, which appears to be a parthenogenctic egg (e), or possibly there are even two of these, one larger (f) than the other (compare with eg.g. Hyman. 1951, p. 142 (her Fig. 67F)). A fracture runs transversely across the main part of the lorica.

Remarks

The specimen described appears to belong to Keratella or to some allied genus of the superfamily Brachionoidea (order Monogonata). The genus Keratella has been recorded as having the tendency for the lorica to show great diversity of form, even within a single species, and in the past many of such divergent forms have been described as different species. Many members of the Keratella are marine species. The material studied in the Maslin assemblage does not have a marine facies, even if we omit such characteristic elements as pollens and angiosperm leaf stomata. However loricate rotifers not unlike Keratella, speaking in a general sense, are not uncommon in fresh water.

REFIERENC:ES

 (Authors: Pallis).
Bakes, E, Wo, and Wharton, G. W. (1952): An Introductom tor Acorohegy (Macmillan: New York)
Eiwinge H. L. (1937): Insecss and arachnids from Cianadian amber: Arachnida, Order Acarina. I/min, Tommen Simh Gerol. 40: 56-62,
Hirsl. S. (1923): On some arachnid remains from the Old Red Sandstone (Rhynic Ches Bed, Aterdeenshire). AnM, Nog. Maf, //is\%, (9) 12: 455-74.
Hymatn, labbie 11. (1951): "The Inventebrates: Acanthucephalit, Aschelminthes and Einloprocta. "The pseudocoelomate Bilateria" (Vol. Ill) (Mccisaw Hill: New York)
keiter. H. H. (1952): 'The eriophyid mites of Calitormia (Acarima: Eriophyidae. Bull. C'alif. Inscet Sumey 2(1): 1-123.
Keiter. H. H. (1953): Eriophyid sludies-XXI, Bull. Calif. Dept. Agric., 42: G8 (heste Kefer. 19(6), 万. 9).
Keiler, H. H. (1966): Elfophyid studies B-21. Special Publ., Bureat IEmom. Calif. Dept. Agric.
Soulthent. R. V. (196lat): Studies on the systematics and biology of the Eryh racoidea (Acarina), with a critical revision of the genera and subfamilies. dust. J. Zool. 9(3): 367-610.
Soulhooth, R. V. (196(b): Description of two new Australiarn Smardidae (Acarina), with remsirks on chactotaxy and geographical distribution. Trans. Roy. Sinc. Si Amsf. 85: 133-53.

Southcott, R. V. (1963): The Smarididae (Acarina) of North and Central America and some other countries. Trans. Roy. Soc. S. Autst., 86: 159-245.
Tillyard, R. J. (1926): The Insects of Australia and New Zealand (Angus and Robertson: Sydney).

Plate 1. Aculops heiferi sp. nov. Holotype. Photorraphed in three optical planes by phase contrast (1.), and normal illumination (R). 500X.

Pate 2. Various setac from the Maslin assemblage, by phave contrast. so0X some of these setae are also shows in the text illustrations

Plate 3. Various setae. at claw and other structures from the Maslin assemblage, by phase contrast. 500) Some of these are figured also in the text-ligures.

Pate 4. Above: ? Kerotella sp ., a Joricate rotifer from the Maslin assemblage. See further in text. By phase contrast, 500x. Threc optical planes are shown. Below: Tarsal setae and claw, by phase contrast, at differing contrists. 500X. (Also figuted in Fig. 38, and commented on in text. 1

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

NEMATODE PARASITES OF OCEANICA.
 XII. A REVIEW OF HETERAKIS SPECIES, PARTICULARLY FROM BIRDS OF TAIWAN AND PALAWAN

By
W. GRANT INGLIS, GERALD D. SCHMIDT and ROBERT E. KUNTZ

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

NEMATODE PARASITES OF OCEANICA.
 XII. A REVIEW OF HETERAKIS SPECIES, PARTICULARLY FROM BIRDS OF TAIWAN AND PALAWAN

by W. Grant Inglis, Gerald D. Schmidt and Robert E. Kuntz

Summary

The following species of Heterakis are recorded from Taiwan and Palawan: H. variabilis Chandler, 1926, from Lophyra swinhoii, Bambusicola thoracica, and Syrmaticus mikado, Taiwan; H. vulvolabiata Chandler, 1926, from Arborophila crudigularis, Taiwan; H. isolonche Linstow, 1906, from Lophura swinhoii, Taiwan; H. beramporia Lane, 1914, from Gallus gallus, Taiwan; H. spumosa Schneider, 1866, from (?) Rallina eurizonoides, Taiwan; and H. indica Maplestone, 1932, from Surniculus lugubris minimus, Palawan; H. vexans sp. nov, is described and H. variabilis and H. vulvolabiata are redescribed.

NEMA'TODE PARASITES OF OCEANICA. XII. A REVIEW OF HETERAKIS SPECIES, PARTICULARLY FROM BIRDS OF TAIWAN AND PALAWAN

By
IV. GRANT InGLis, The South Australian Museum, Adelaide, South Australia
GERALD D. SCHMIDT, Department of Biology, University of Northern Colorado, Greeley, Colorado 80631, and Nato Fellow, South Australian Museum

and
ROBERT E. KUNTZ, Department of Parasitology, Southwest Foundation for Research and Education, San Antonio, Texas and U.S. Navy Medical Research Unit No. 2, Talpei, Talwan, Republic of China

ABSTRACT

The following species of Hetcrakis are recorded from Taiwan and Palawan: H. variahilis Chandler, 1926, from Lophura swinhoii, Bambusicola thoracica, and Syrmaticus mikado, Taiwan; H. vulvolabiata Chandler, 1926, from Arborophila crudigularis, Tawan; H. isolonche Linstow, 1906. from Loplura swinhoii. Tawan: H. beramporia Lane, 1914, from Gallus gallus, Taiwan; H. spumosa Schneider, 1866, from (?) Rallina eurizonoides, Taiwan; and H. indica Maplestone, 1932, from Surniculus lugubris minimus, Palawan: H. vexans sp. nov. is described and H. variabilis and H. vulvolabiata are redescribed.

INTRODUCTION

The limits of the superfamily Heterakoidea are fairly well established. The genera, with minor exceptions, are reasonably stable while even the families and subfamilies are recognizably the same groups in the various treatments of the superfamily. A major area of disagreement, however, continues to be the division of the genus Heterakis s.l. into two genera on the equality or otherwise of the spicules.

López-Néyra (1947) first used equality and inequality of the spicules as a way of delimiting groups which he called Heterakis and Ganguleterakis and has been followed in this by Skrjabin and his co-workers in several publications (most recently Skrjabin, Schikhobalova, and Lagodovskaja, 1961). Because of criticism of the artificiality of this simple criterion.

Freitas (1956) attempted 10 refine the distunction by defining uncqual spicules as those in which the difference in length of the spicules is at least one third the length of the shorter and on this basis introduced a new name. Raillictakis, for species with "equal" spicules. an argument accepted by Yamaguti (1961). Madsen (1950), Inglis (1958, 1967) and Chabaud (1965) do not comsider inecuality of spicule length sullicient for the delmitation of genera, even ats refined by Freitas, although all recognize that the structure and relative lengths of the spicules can be valuable in delimiting species.

The disagrecment is partly because of the uniformity of the structures of the male tail in Heterahis, which supply almost all the characters useful in delimiting species, and partly, we suspect, because of a feehng that the genus is ton diverse to be left as one taxon. However the inequality of spicule length is so obviously a bibliographic character that its value mast be considered dubious. However, those who, like us, oppose its use have not established their calse in detail. and the opportunity to do so has now arisen following the study of specimens of Heterakis, particularly from birds in Taiwan and Palawan, as well as specimens, particularly type materiat, from other hosts from other localities.

The former specimens were eollected by R.E.K. and his associates of NAMRU-No. 2 during investigations of the parasite fathas of Taiwan and Palawan. The specimens were fixed in hot 70 per cent alcohol, stored in alcohol and glycerine, and cleared in glycerine or lactophenol.

MORPHOLOGICAL GROUPS

The posterior ends of male Heferakis are very similar, with an obvious circular pre-cloacal sucker on the mid-ventral surface of the male hody anterior to the cloacal opening. The sucker hats a distinct cutcular rim, with a papilliform sense-organ on the posterior margin. There are broad caudal alac supported by wo pairs (sometimes three) of long pedunculate papillac lateral to the sucker (parasuctorials), four pairs of such papillac lateral to the cloacal opening (paracloacals) and one pair roughly half-way between the cloacal opening and the tip of the tail (posteloacals). In addition there are two pairs of sessile papillae around the cloacal opening (pericloacals) and a group of two pairs at the posterior end of the tail, with the phasmids immediatcly anterior to them. Variation in these papillac is usually restricted to a reduction in the number of para-cloacals or to the presence of in additional pair of pedunculate papillae between the para- and posteloacal papillae.

Attempts have been made to delimit species on the basis of the distribution of these papillae and on the presence or absence of an additional pair. but in most cases this has later been shown to be unsound.

In contrast, the structure of the spicules supplies the most obvious characters which delimit species and there has never been any doubt about its value. Similarly, there is no doubt that groups of spectes exist in which the spicules are either equal or unequal; the disagreement is about the value of separating such groups and the way in which the groups should be diagnosed The major argument about such groupings, other than simple belief statements, is that other groups can be recognized on other features of the spicules. as was pointed out very brielly by Inglis (1967). This is now considered in detail and three major groups can be recognized.

Heterakis dispar-Group

This group consists of the nominal species H. altaica Spaul, 1929; H. brevispicalum Gendre, 1911; II. caudata Linstow, 1906; H. carcumballata Linstow, 1906; H. dispar (Schrank, 1790) Dujardin. 1845: H. heperherees Swinyard, 1931: H. papillosa (Bloch. 1782) Cram, 1927: H. stlindere Sandground, 1933; H. skurbilowitschii Kassimov, 1946; H. stylosa Linstow. 1907; H. tenuicauda Linstow, 1883; H. travassosi Klatil, 1932.

In all these nominal species the spicules are nonalate, equal in length and identical in structure with spiral flamges on their posterior ends (Figs. 1-3:5-7). These spiral Hanges, which are dificult to see at low magnification, have been overlooked in some descriptions and have been described as hooks or barbs in others. In all cases, however, they are cuticular expansions of the spicules which spiral round the tip.

Within this group of twelve names there appear to be only three actual species: one characterized by a large goblet-shaped pre-cloacal sucker which lies relatively close to the cloacal opening, and by a relatively long tail; a second characterised by a similar sucker lying relatively far anterior to the cloacal opening, and by a short tail so that the para-cloacal papillac appear bunched together: and a third characterized by a long, narrow tail, relatively long spicules and by a small pre-cloacal sucker which lies low on the surface of the body.

The earlicst names for these species are H. altaica, H. brewispiculam and H. papillosa respectively with the synonyms listed below. However the problem is by no means resolved and it is possible that more species can be recognized or even that there is only one, particularly as "dlatica" is somewhat intermediate in form between the other two.

Provisional synonomies are (the name of an institution in parentheses indicates that type specimens are lodged there and have been studied):

Heterakis altaica Spaul, 1929. (British Museum (Nat. Hist.)) Synonymy: H. skarbilowitschii Kassimow, 1946.

Spaul overlooked the spicula flanges, which are well figured by Kassimow: it is possible that H. maromma Linstow, 1883, is this species. Freitas (1956) refers II. altaica to Odontotarakis but this is completely wrong.

Heterakis brevispiculum Gendre, 1911

Synonymy: H. trovassosi Khalil. 1932 (Tropeninstitut, Hamburg). H. silimdue Sandground, 1933 (Museum of Comparative Zoology, Harvard).

Heterakis dispar (Schrank, 1790) (Naturhistorisches Museum, Vienna)
Synonymy: "Ascaris papillosa Bloch, 1782. H. caudata Linstow, 1906: H. circumballata Linstow, 1906: H. Myperborea Swinyard, 1931; (?) II. monticelliama Stossich, 1892; 11. stylosa Linstow, 1907 (Instit. fiir Spe\%. Zoo., Berlin): H. tenuicauda Linstow, 1883 (Brit. Mus. (Nat. Hist.)).

In the most recent redescription of Π. papillosa to be published, Madsen (1950) failed to see the spiral flanges on the posterior ends of the spicules. However one of us (W.G.I.) has examined Madsen's material, as well as specimens from the type host (Otis tarda) in captivity and in the wild. and flanges are present on the spicules of all mates stadied. As there are no other obvious differences between the two nominal species H. dispar is almost certainly indistinguishable from $/ 7$. papillonsa. However, H. dispar is a name very widely used, particularly in veterinary literature and it is preferable that it remains unchanged. Further, the problem of delimiting the species of this group is ant fully resolved. We therefore prefer to retain 11 . dispar and to treat H. papillosa only as a probable synonym.

In addition to these species we later describe a fourth. H. wexams sp. nov. which is mest appropriately accommodated within this H. dispar-group. although the flanges on the posterior ends of the identical spicules are nonspiral.

Heterakis gallinarum-Group

This group contains H. beramporia Lane, 1914; H, bonasae Cram. 1927: II. hosia Lane, 1914; H. caudebrevis Popovat. 1949; II. gallinurum (Schrank, 1788) Madsen, 1949 (H. pediocetes Mawson, 1956 (Institute of Parasitology. MeDonald (ollege)): H. indica Maplestone, 1932; H. isolonche linstow. 1906; H. paromi. Maplestone, 1932 (H. yamadori Yamaguti. 1941); H. putaustralis Lane. 1914; H. variahilis Chandler. 1926: H. Vulvolahiata Chandler, 1926.

In all these species the left spicule at least, and in some both, is alate or ohviously different from the right. The most diagnostic character of the various species is the shape of the left spicule, of which the tip can be elaborate.

The major problem in this species group is the relationships between and the delimitation of those species in which the right spicule is long and slim while the left is usually short hut always with broad alae and a relatively simple posterior end. These worms appear to form a cline from species wilh markedly unequal spicules at one extreme to species with equal spicules at the other. At one extreme is H. gallinaram in which the left, terminally hooked, spicule is much shorter than the right, and at the other extreme is H. isolonche in which the spicules atre about the same length. Intermediate between the extremes are H. variahilis Chandler, 1926 (redescribed below). II. putanstralis Lance, 1914 and \boldsymbol{H}. bonasue Cram, 1927. Basically similar to 11. sullinurnm in having a short, left spicule are 11. paronis Maplentone. 19.32 and $/ 1$. indica Maplestone, 1932, but in both species the left spicule hats an elaborate tip.

This problen still awaits resolution but is the major reason we do not accept a split of the genus Hetcrokis on the basis of the relative lengtios of the spocules. The remaining species listed are less happily included in this group and might warrant treatment as a foerth species-group. Nevertheless we leave them here it present as a matter of convenience.

Heterakis alata-Group

This group contains H. bancrofti Johnston, 1912; H. alata Sclancider 1866 ($=$ H. aryuata Schneider, $1866=$ H. skrjabini Cram 1927); II. brasiliana Linstow, 1899 (Instit. fiir Spez. Zoo., Berlin): H. mattereri Tratvassos. 1913.

In all the species of this group the spicules are without alae and, in mose species, are stim. In none is there an claboration of the tip of the left spicule and all occur in hosts in South America, except H. bancrofti which was found in an Australian host.

REMAINING SPECIES

Ainong the remaining species usually referred to Hetcrakis. H. spumosa Shneider, 1886 , is probably the most widespread and best known. It is the only species of Heterakis which occurs in mammals and is widespread in rats throughout the World. It is characterised by equal and identical needle-like spicules. Horee pairs of para-chatal papillae and no "post cloacal" pair or. another interpretation, has only two pairs of para-cloacal papillae of which the more anterior pair is very large and may represent three fused papillace. Because of haese differences Lane (1914) described this species is Sanguleterakis gangula, having over-looked Schneiders earlier description. Since then the generic name Ganguldtorakis has been used by some authors for a group containing so-cealled "equal spicule" species of Herorahis. This.
as argued above, we do not accept but recognize that 11 . spummand is very different from the typical Ileterakis of birds and the recognition of at genus for it alone could be accepted if one so desired.
H. macrospiculum Ortlepp, 1939. H. spalacis Marçu 1930 and Ganguleterak is spalas Kozlov and Yangolento, 1967, do not appear to be species of Heterahis. It is possible that $I I$. matrespiculam is an Africama species and that the other two, which are probably indistinguishable, are Ascaridia.

HOST AND GEOGRAPHICAL DISTRIBUTIONS

Species of the genus Hetorakis occur widely in the catecum of ground. feeding, grain-eating birds throughout the world, with some species in water fowl and afew other hosts. The members of the H. alafa-group are restricted (o) birds in South America while the other two groups oecur in birds in the rest of the world. The sole exception is H. bancrofti Johnston, 1912, which occurn in Australia but is morphologically a member of the South American aluta-group. Such a geographical relationhip is interesting in reinforcing other Australian-Neotropical faunal relationships and so does not destroy the promarily South American relationships of the alata-group. It would, therefore appear that the groups of species have arisen in response to gengraphical separation.

Support for this in given by the genus Odomtoterakis, restricted to South America, in which the spicules are alwatys simple, needle-like, and identical in structure. In this its members resemble the South American H. alatagroup. The genus Pseldospidedera, in contrast, is restricted to India and related countries and the spicules are uncqual with the right long and thin and the left stort with broad alate (except in P. jnanendrae Chakravarty, 1938: but this species is in need of redescription), as in the H. gallinarum-group.

It is probable that Odontoterakis arose from the Heterakis species found in South American hosts while Psemdaspidedera arose from the H. gallinarumgroup of species in South Asta. To this extent the species groups recognized in Heterakis are supported not only by the morphological and geographical data within the genus atself but also by the similar evidence supplied by the species grouped in Pseudaspidodera and Odontoterakis.

If the genus Heterakis is to be fragmented on the basis of spicule structure, rather than on the relative lengths of the spicules, part of it the gallinarmm-group) could be grouped with Psendaspidedera species, part of it (the alata-group) with Odontoterakis while the remaining part (the dispargroup) would be left as a distinct genus. Such groupings might reflect the evolution of the group more accurately than the classification of laglis
(1907), since Odontaterakis and Pseudaspidodera probably evolved from Heterakis species. Nevertheless, it is more reasonable and convenient to leave the generic groupings as they stand with Heterakis as one cosmopolitan genus.

The relationships of the brevispiculum-group remain uncertain as they could have arisen from either of the other groups. No decision on this is possible at this time although the new species described below (H. vexans) suggests an intermediate between the dispar-and alata-groups.

DESCRIPTIVE SECTION

Afl measurements are in microns unless otherwise stated and all specimens have been deposited in the collections of the U.S. National Museumi Helminthological Collection, Beltsville, Maryland.

Heterakis vexans sp. nov.
(Figs. 8 and 14)
A single male was found among several H. vulvolabiata Chandler, 1926, wbtained from the caecum (?) of a Formosan hill partridge. and appears to represent a new species.

DESCRIPTION

Morphology typical for genus. Lips (Fig. 8) rather small, with conspicuous papillac. Lateral alae prominent. Anterior end curved dorsid.

Male: 5.0 mm . long, 280 greatest width (1.0 mm . posterior to anterior end). Oesophagus (excluding pharynx) 665 long, with posterior bulb 112 greatest width. Pharynx (measured from flange tooth to junction with vesophagus) 48 long. Excretory pore 330 from anterior end. Nerve ring 216 from anterior end. Precloacal sucker (Fig, 14) 51 long, 48 wide (measured across outer margins of sclerotized wall), posterior edge 64 from anus. Tail 340 long. Spicules (Fig. 14) subequal, very stout, with similar tips, each with sharp, recurved hook at tip and subterminal inflation in lateral view. Spicules lacking alac, but each with narrow longitudinal flange along subterminal swelling. Right spicule 450 long, left spicule 380 long. Caudal papillae lypical of genus but with only three pairs of paracloacals.

Female: Unknown.
Type host: Formosan hill partridge, Arborophila crudigularis (Swinhoc, 1864). (Phasianidae: Galliformes.)

Location: Probably caecum.
Type localiry: Sun-Moon Lake, Nan-tou Hsien, Taiwan.
Type specimen: USNM Helm. Coll. holotype male no. 63228 .

Figs. 1 and 2. H. altaica; 3 and 7. H. dispar; 4, H. variabilis; 5 and 6. H, brevispiculum; 8 and 14. H. vexans; 9 and 13. H. vulvolabiata; 10. H. alata; 11 and $12 . \mathrm{H}$. indica; 15 and 16. H. beramporia; 17 and 18. H. isolonche.

Remarks: In spicule length, Heterakis vexans sp.n. is most similar to Hetrakis parva Maplestone, 1931, but the spicules of that species atre more slender and lack the terminal flanges characteristic of the H . brevispiculumgroup found on H. vexams. The shapes of the spicules are closest to Heterakis altaica Spaul, 1929, from Asian galliform birds. Syntypes of this latter species were studied by one of un (W.G.I.) and the spicules are not as robust as those of H. wexans and they also lack the terminal hooks. Neither H. parva nor H. altaica are known to have three lateral paracloacal papillae. These papillae are variable in other specien; it is common for one pair to be lost through fusion with an adjacent pair. On the other hand, H. psophiae Travassos, 1913. consistently has only three pairs. It will remain for subsequent diseoveries of H. vexans to prove if this is a consistent feature of the species.

Heterakis variabilis Chandler, 1926
(Fig. 4)
The following redescription is based on twenty males and nine females from three species of gallinatcous hosts. All specimens are in excellent condition.

DESCRIPTION

Morphology typical for genus. Lips large, with characteristic papillae. Adelitional pair of inconspicious papillat occasionally present on each side. posterior to lips. Lateral alat prominent. Anterior end ustally curved dorsad.

Male: 6.0 to 9.4 mm . long, 290 to 335 greatest width (1.0 mm . posterior to oesophagus). Oesophagus (excluding pharynx) 0.850 to 1.15 mm . long, with posterior bulb 150 to 180 greatest width. Pharynx (measured from anterior tooth to junction with oesophagus) 50 to 65 longExcretory pore 320 to 400 from anterior end. Nerve ring 230 to 325 from anterior end. Precloacal sucker (Fig. 4) 70 to 85 long, 60 to 90 wide (measured across outer margins of selerotized wall), posterior edge 105 to 150 from amus. Tail 410 to 670 long. Right spicule 1.20 to 1.97 mm . long, latcking alae. Left spicule 410 to 900 long , with well-developed alac. Caudal papillae typical of genus, but variable in number and location. Occasionally, a supernumerary single or pair of small, sessile papillae is present anterior to sucker.

Femule: (all specimens gravid). 7.0 to 11.0 mm . long, 265 to 360 greatest width (1.0 mm . posterior to oexophagus). Oesophagus (excluding pharynx $) 0.960$ to 1.15 mm . long, with posterior bult 150 to 180 greatest
width. Pharynx 65 to 80 long. Excretory pore 350 to 480 from anterior end. Nerve ring 240) 10.325 from anterior end. Tail 0.912 to 1.3 mm . long. Vulva salient or not. 3.35 to 5.57 mm . from posterior end. Ovijector with distal loop. Eggs (measured in ovijector) 60 to 76 by 35 to 40 . Two (rarcly one or three) tandem, large, postvulvar papillae.

Hosts: Swinhoes blue pheasant, Lophura swinhoii (Gould, 1863); bamboo partridge, Bambusitola thoracica somoricor Gould. 1862: mikado pheasant, Symmates mikado (Ogilvie-Grant, 1906). (Phastanidac: Galliformes.)

Location: Caecum and large intestine.
Localities: Wu-lai, Tai-pei Hsien; Pu-li and Wu-sheh, Nan-tou Hsien: Tia-fu, Hua-lien Hsien: Hsin-sheh, Tai-chung IIsien: I-lan. I-lan Hsien: Taiwan.

Specimens deposited: U.S.N.M. Helm. Coll. nos 63221-63223.

REMARKS

Chandler (1926) described this species from specimens recovered from three peacock pheatsints, Polyplectrum bicalcaratum (L), which had died in the Calcutta Zoological Gardens. Maplestone (1932) recorded this species Prom the type host in India. and Inglis (1958) found it in the type host in the London Zoological Gardens. Baylis (1936) and Madsen (1950) consider this species to be a synonym of Heterakis isolonche Linstow, 1906, but that species has spocules roughly equal in length while they are markedly unequal in II. 'ariabilis. Inglis (1958) suggested that Hettrakis parva Maplestone. 1931. may be a synonym of $I I$. variahilis, but the present study shows this not to be the case (see below). Heterakis variabilis can easily be recognized by the sizes and shapes of the spicules.

The tiny papillae behind the head have not been reported previously for this species although we hatve seen them repeatedly on other species. Their structure and function remain problematical. Postvulvar papillat are present on every specimen of H. varishilis that we have studied, including subadults, where they are small and appear to be developing. They always appear in tandem, are transversely clongate, and have hypodermis intruding into them. No mervous element could be seen. It seems to us unlikely that they were formed by the sucker of the male during copulation, because of their size, shape, and location. Possibly they aid in locating the male genital pore. Similar structures are known in the hookworm genus. Arthrostoma Cameron. 1926.

Heterakis vilvolabiata Chandler, 1926
(Figs. 9 and 13)
The following redescription is based on fifteen males and ten females from six Formosan hill partridges. All specimens are in good to excellent condition.

DESCRIPTION

A small, slender heterakid, with morphology typical for genus. Lateral alae narrow. Anterior end usually curved dorsad.

Male: 4.3 to 5.1 mm . long, 168 to 196 maximum width (1.00 mm . posterior to oesophagus). Oesophagus (excluding pharynx) 530 to 650 long, with posterior bulb 80 to 120 greatest width. Pharynx 40 to 50 long. Excretory pore 240 to 300 from anterior end. Nerve ring 200 to 235 from anterior end. Precloacal sucker (Fig. 9) 31 to 40 long, 32 to 40 wide: posterior edge 30 to 50 from anus. Tail 200 to 230 long. Right spicule 460 to 570 long, very slender, needle-like, lacking alae, with simple tip. Left spicule (Fig. 13) 290 to 335 long, stout, alate, with blunt. slightly bifid tip. Catad papillae typical of genus, but variable in number and location. Supernumerary papillae anterior to sucker not observed.

Female: (All specimens gravid). 5.0 to 7.0 mm . long, 190 to 265 maximum width (1.0 mm . posterior to oesophagus). Oesophagus (excluding pharynx) 575 to 865 long, with posterior bulb 100 to 140 greatest width. Pharynx 40 to 64 long. Excretory pore 260 to 388 from anterior end. Nerve ring 205 to 330 from anterior end. Tail 335 to 695 long. Vulva salient or not, 2.4 to 3.4 mm . from posterior end. Post vulvar papillae absent. Ovijector with tight, distal loop. Eggs (measured in uterus) 66 to 70 by 36 to 40 .

Host: Formosan hill partridge, Arburophila crudiguluris. (Phasianidae: Galliformes).

Location: Caecum and large intestine.
Localities: Pu-li, Sun-Moon-Lake, Nan-tou Hsien; Shih-men, Ping-tung Hsien, Taiwan.

Specimens deposired: U.S.N.M. Helm. Coll. no. 63220.

REMARKS

Chandler (1926) described this species from specimens recovered from Arborophila torqueola (Valenc.) which had died in the Calcutta Zoological Gardens. Our specimens are somewhat smaller than those of Chandler. although the spicule sizes are similar. Chandler apparently reversed the left
and right spicules, for he stated the left was longer. Maplestone (1932) simply referred to a longer and shorter spicule, but he did figure the characteristically-tipped short spicule for the first time. Baylis (1936) described the right spicule as longer.

The present record is the first outside India, and the host record is also new. The species is readily recognized by its small size and the very characteristic delicate right spicule.

Heterakis beramporia Lane, 1914
(Figs. 15 and 16)
Several specimens were found in a domestic fowl, Gallus gallus (L.) from Tai-pei, Tai-pei Hsien, Taiwan. This is a common parasite of fowls in Asia, but appears not to have been reported previously from Taiwan. These specimens were overlooked in a previous report (Schmidt and Kuntz. 1970).

Specimens deposited: U.S.N.M. Helm. Coll. no. 63225.

Heterakis spumosa Schncider, 1866
Our data record this species from a banded crake, Rallina curizonoides formosana Seebohm, 1894 (Rallidae) from Chiao-chi, I-lan Hsien, Taiwan. Since this is a cosmopolitan parasite of domestic rats and other rodents, the record seems dubious and should be viewed with suspicion. The occurrence of this parasite on Tuiwan should be noted, however.

Specimens deposited: U.S.N.M. Helm. Coll. no. 63226.

Heterakis indica Maplestone, 1932
(Figs, 11 and 12)
Two males, one incomplete, were found in a drongo cuckoo, Sumiculus lugubris minimus Baker (Cuculidae), at Terabanan Concepcion, Palawan, Republic of the Philippines. This is a new host record, although it has been reported from domestic fowls from Palawan by Schmidt and Kuntz (1970). The species was adequately described by Maplestone (1932) and by Li (1933) (as H. lingnamensis). Inglis (1958) hesitated to recognize this species, since specimens were not available for study. The present study fully supports the status of the species.

Specimens deposited: U.S.N.M. Helm. Coll. no. 63227.

Heterakis isolonche Linstow, 1906
(Figs. 17 and 18)
(Syn. H. mutanstralis Maplestone, 1922; H. tragopamis Lal, 1942.)
Several specimens were found in the caecum and large intestine of a Swinhoe's blue pheasant, Lophura swinhoii, from Chun-ych, Ping-tung Hsien, Taiwan. These are new host and locality records. This well-known parasite has been recorded from a wide range of galliform birds in Asia, Europe and North America and was adequately redescribed by Li (1933).

Specimens deposized: U.S.N.M. Helm. Coll. no. 63224.

ACKNOWILEDGFMENTS

The authors wish to acknowledge the ficld kupport by Dr. D. S. Rabor, Department of Biology, Siltiman University, Dumaguetc City, Negros Oriental, Republic of the Philippines, and the teclanicians of the Parasitology Department of Naval Medical Research Unit No, 2 for gencral assistance in obtaining and examining hosts. Dr. B. J. Myers aided in preliminary processing of specimens.

Initial work for this study way supported by funding under Public Law 480, Section 104 (c). by funds provided by the United States Burcau of Medicine and Surgery, Navy Department Work Unit MR 005.20-0098, and by Contract No. NR 103-690/N0014-66-C0094. belween the United States ollice of Naval Research. Department of the Navy, ond the Sonthwest Foundation for Research and Edincation.

Final ctlorts were sponsored by United States Depariment of the Army. Contract No. DADA 17-68-C-8094.

Wurh in South Australia way completed while one of us (O.D.S.) was a visiting NA'IO Fellow and was supported by funds to W.G.I. from the Mark Mitchell Foundation and the Allstralian Grants Committec.

REFERENCES

Baylis, H. A. 1936: The fanme of Bribish India. Nematode I. |Ascaridoidea and Strongyloidea). Taylor and Francis. London.
Chabitud, A. G., 1965: Superfamille des Heterakuidea, in Traike de Zootogio 4 (3): 1010. 1016.

Chundler. A. Cu. 1926: New ITeterakidae from Indian galliform birds. Indian J. med. Res 13: 617-623.
Fseitas, J, $\mathfrak{F}_{\mathrm{ra}}$ Teixeria de, 1956: Notas siobre "Heterakidae". Railliet and Henry, 1914. (Nematoda, Subuluroidcat). Rev. hrus, Biol, 16: 461-482.
Inglis. W: Gis 1958: A review of the nematode superfimily Heterakoidea. Anh. Afug, nat. Mist. (12) 10: 905-912. (N.B. This paper is misdated 1957 as printed but was published 4th June, 1958.)
Inglis, W, G., 1967: The evolution, host relationships and classification of the nematode superfamily Heterakoidea, Hull, Bhit, Mhs, Maf, Hisf. (Zoology) 15 (1): 1.28 .
Li, H. C. 1933: Parasitic nematodes mainly from North China, Part IV. Oxymroideat. Chinese Med. J. 47: 1307-1325.
Ióper-Neyra. C. R., 1947: Helminsos ele los vertehrades thericos 11. Ciranada.
Madsen, II. 1950 F Sudies on species of Heremkhs (Nematoda) in birds. Damish Rev, Liamer Bioh. 1: 1-42.
Maplestone, 18. A., 1932: The gencra Hoverakls and Psewdespadodera in Indian hostso. Rec: Indient Mins. 20: 403-420.
Schmidt. G, D. and R. E. Kuntz 1970: Nematode parasites of Oceanica VII. New records from wild and domestic chickens (Ciullus gallus) from Palawan (Ihilippine Islands). Sabah (Malaysia). and linwar. Aloun Diseasey 14: 184.187.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

SUPERFICIAL MANDIBULAR MUSCULATURE, VOCAL SACS AND THE PHYLOGENY OF AUSTRALO-PAPUAN LEPTODACTYLID FROGS

By MICHAEL J. TYLER

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

VOLUME 16
NUMBER 9
12th May, 1972

SUPERFICIAL MANDIBULAR MUSCULATURE, VOCAL SACS AND THE PHYLOGENY OF AUSTRALO-PAPUAN LEPTODACTYLID FROGS

BYMICHAELJ. TyLER

Abstract

Summary

Two major groups of genera can be distinguished among Australo-Papuan leptodactylid frogs on the basis of the presence or absence of attachments of the Musculus intermandibularis upon the M. submentalis. These groups correspond to the Cycloraninae and Myobatrachinae respectively except that Cyclorana cannot be associated with either. Cyclorana lacks the attachments of the intermandibularis upon the submentalis, characteristic of the Cycloraninae, and differs from the Myobatrachinae and Cycloraninae in have the intermandibularis differentiated into separate elements at the apex of the mandibles.

SUPERFICIAL MANDIBULAR MUSCULATURE, VOCAL. sacs and tie phylogeny of australo-papuan LEPTODACTYLID FROGS

By MICHAEL J. TYLER

SYNOPSIS

Two major groups of genera can be distinguished among AustraloPapuata leptedactylid frogs on the basis of the presence or absence of attachments of the Musculus intermandibularis upon the M. submentalis. These groups correpond to the Cycloraninae and Myotatrachinae respectively except that Credorana camot be associated with either. Cyolorana lacks the attachments of the intermandibularis upon the submentalis, characterstic of the Cychranmale, and differs from the Myobatrachimae and Cycloraninate in having the intermandibularis differentiated into separate clements at the apex of the mandibles.

In the majority of genera the vocal sac is a unilobular submandibular structure but in Notuden it is bilobular and supramandibular. Helecoporus and Neohatrochmes lack vocal sacs, but it is concluded that the buccal cavity is an effective resonance chamber because in these genera the floor of the mouth can be depressed to further increase the capacity of a lirge buceal cavity. It in argued that the ancestral stock from which the Australo-Papuan genera are derived lacked a vocal sac.

Morphological divergence in hyomandibular structures currently uned to distinguish leptodactylid sub-families is reported, and the different cevolutionary mehamsms by which such divergenee may have arisen are discusted.

INTRODUCTION

Parker (1940), in his monograph of the leptodactylid frogs of the Australian Geographical Region, recognises two sub-families, the Myohatrachmac and the Cycloraninae, largely from a study of the thigh musculature. hyoid and tongue. supplemented by data from Trewavas (1933) on the hyoid and larynx. Although features of the hyoid, larynx, and tongue supported such a clear-cut division Parker nevertheless acknowledged that the Myobatrachinae might be, "a group of frogs derived from the Cyctoraninac by the evolution of the same type of feeding mechanism on more than one occasion".

Because the superficial mandibular musculature often provides a reliable index of generic and sub-familial relationships in the Hylidae (Tyler, 1971a), I made smilar studies to establish the extent of divergence and taxonomic and phylogenetic significance of such structures in the Australian leptodactylid suh-families.

In the course of these studies data were also recorded for a few genera on some of the characters considered by Parker (1940) to be, "possibly of considerable taxonomic value" (e.g., site of attachment of the Mm, sternohyoideus and petrohyoidei upon the hyoid plate. and the shape of the hyoid alary processes). These data permit a reassessment of Parker's suggestion.

MATERIALS, METHODS AND TERMINOLOGY

Representatives of the following genera and species were examined:

Adelotus brevis.

Crinia georgiana, C. glanerti, C. haswelli, C. Laevis, C. Leai, C. parinsignifera, C. riparia, C. signifera, C. victoriana.

Cyclorana alboguttatus, C. australis, C. brevipes, C. cultiripes, C. duhli, C. platycephahus.
Glanertia orientalis, G. russelli.
Heleioporus albopunctatus, H. barycragus, H. eyrei, H. inornatus, H. psammophilus.
Kyarranes sphagnicolus.
Lechriodus papuanus, L. platyceps.
Limnodynastes convexiusculus, L. dorsalis, L. fletcheri, L. ornatus, L. peroni, L. spenceri, L. tasmaniensis.
Metacrinia nichollsi.
Mixophyes fasciolatus.
Myobatrachus gouldi.
Neobatrachus centralis, N. pelobatoides, N. pictus, N. sutor, N. wilsmorei.
Notaden bentetti, N. melanoscaphus, N. nichollsi.
Philoria frosti.
Pseudophryne bibroni, P. corroboree, P. dendyi, P. semimarmorata.
Taudactylus acutirostris, T. diurnus,
Uperoleia rugosa.
The methods employed, muscle terminology, descriptive synonymy and a description of the generalised anuran superficial mandibular musculature and vocal sac structure are presented in detail elsewhere (Tyler, 1971a). That terminology is therefore only summarised here so that this paper can be considered alone.

The anuran superficial mandibular muscles consist of (1) the M. submentalis which is an ovoid and customarily araphic muscle at the apex of the mandibles, so described in the following text as "normal". (2) The M.
intermandibulatis which arises as a thin fat sheet from the lateral lingual surface of the mandibles between the submentalis and the jatw articulation, and (3) the M . interhyoideus which arises principally from the anterior cornu of the hyoid and unites anteriorly with the posterior border of the intermandibularis.

In some genera the intermandibularis is differentiated by the presence of supplementary dements which lie ventral to the customary sheet of muscle. The nomenclature of the supplementary clements is derived from the position on the mandible from which they arise, e.g., "ilpical" or "lateral".

The term "vocal sac" is here restricted to the epithelium lined chamber developed as an extension of the floor of the mouth, and customarily lying dorsal to the superficial mandibular munelen and ventral to the hyoid plate (see Fig. 1). The vocal sac and the superficial mandibular muscles comprise the "vocial sac structure".

COMPARATIVE MORPHOLOGY OF SUPERFICIAI. MANDIBULAR mUSCULATURE AND VOCAL SACS

Adelotus (Fig. 2A)

The M. submentalis is normal but partially obscured by the intermandibularis which attaches upon its ventral surface. The interhyoideus is poorly developed and anteriorly underlies the intermandibulatis. The interhyoideus arises from the anterior cornu and there is a slender ligamentous attachment to the posterior face of the squamosal.

The vocal sac apertures extend along the lingual margin of the mandibles for almost the entire length of the intermandibulatis. The vocall sac lies almost completely above the intermandibularis.

Crinia

The submentalis and intermandibularis are normal except that the latter is reduced postero-medially in association with an increased development of the interhyoideus. During the embryology of C. georgiana and C. huswe lli the anterior development of the intermandibularis is arrested so that this muscle remains separate from the posterior border of the submentalis. The interhyoideus arises partly from the anterior cornua and partly from the squamosal; it is well developed posteriorly with a large median Johe extending far beyond the post-articular extremities of the mandibles.

The vocal sac lies above the intermandibularis and interhyoideus (Fig. 1). The apertures are relatively long, extending approximately one half of the total length of the mandibles.

Fig. 1. Mandibular region of male Crinia signifera in sagital section,
Key to abbreviations-A - heart (auricle); genhy. = Musculus geniohyoideus; genioglo. = Musculus genioglossus; hyoglo. $\overline{=}$ Musculus hyoglossus; hyoid pi. $=$ hyoid plate; imand. - Musculus intermandibularis; interhy. \approx Musculus interhyoideus; L. $\overline{=}$ larynx; Li. $=$ liver; mand. $=$ mandible at symphysis; $\mathrm{O} .=$ oesophagus; P.L.S. = pectoral lymphatic sac; rect. = Musculus rectus abdominus; $\mathbf{S .}=$ stomach; S.L.S. $=$ submandibular lymphatic sac; st. $=$ sternum; submen. $=$ Musculus submentalis; T. - tongue; V. = heart (ventricle); V. S. = Vocal sac.

Cyclorana

The submentalis is small in all members of the genus and normally araphic. (A distinct median raphe occurred in a single individual of C. cultripes.) The intermandibularis is differentiated by the development of an apical element arising on each side of the submentalis, an element similar to that characterising the Australian hylids (Tyler, 1971a, Fig. 4A). In C. alboguttatus and C. dahli, a small group of the most anterior fibres of this apical element are directed forwards and attach medially upon the ventral surface of the submentalis, but in the remaining species there is neither overlap nor attachment.

The interhyoideus is extremely well developed posteriorly, particularly in C. platycephalus where there is a conspicuously large posterior lobe. There is, however, considerable variation in the site of origin of that muscle. In C. australis, C. brevipes and C. dahli this muscle arises entirely from the anterior cornua with an extensive region of attachment extending to a point beneath the eustachian tubes. In C. alboguttatus and C. cultripes although the majority of the fibres are attached to the anterior cornua, approximately
ten per cent of them attach on the posterior arm of the squamosal. The extreme condition is exhibited by C. platycephalus where such fibres arise in equal proportions from the squamosal and anterior cornua.

The slit-like vocal sac apertures are short, extending for less than onequarter of the length of the mandibles, with their anterior margins almost on a level with the posterior limit of the apical element of the intermandibularis. and the posterior margins near the fusion of the interhyoideus with the customary elenent of the intermandibularis.

In male C. phatycephalus the corium of the skin in contact with the superficial mandibular muscles is frequently intensely pigmented black, and the dull greyish external appearance of the submandibular skin would appear to be entirely caused by this deep pigmentation.

Examination of a series of tadpoles and transforming juvenile specimens of $($. austrulis (stages 41-46), revealed that the sequence of ontogeny of the mandibular muscles is similar in alf respects. to that reported from AustraloPapuan hylids by Tyler (1971a).

Glatertia

The submentalis is normal but the intermandibularis does not extend anterionly to meet $i t$, so that small portions of the geniohyoideus are exposed. The interhyoideus is well developed extending posteriorly beyond the postarticular portions of the mandibles: this muscle arises in a broad sheet from the squamosal ind anterior cornua.

The vocal sac apertures are long and broad, bordered by the anterior cornuat on one side and the geniohyoideus on the other, and extending for a distance equivalent to one half of the total length of the mandibles. The vocal sac is extensive and occupies almost the entire area above the intermandibularis and interhyoideus.

Heleioporus (Fig. 2D)

The submentalis is extremely large but completely covered ventrally by the intermandibularis which is firmly attached to it medially. The interhyoideus arises from the anterior cornua with an intimate proximal attachment to the inferior surface of the eustachian tubes.

Members of this genus lack vocal sacs. The lining of the mouth on each side of the tongue is markedly pleated and the geniohyoideus extremely loose.

Fig. 2. Superficial mandibular musculature.
$\mathrm{A}=$ Adelotus brevis; $\mathrm{B}=$ Myobatrachus gouldi; $\mathrm{C}=$ Notaten nichollsi; $\mathrm{D}=$ Neobatrachus centralis. Key to abbreviations-imand. = Musculus intermandibularis; interhy. = Musculus interhyoideus; submen. $=$ Musculus submentalis.

Kyarranus

The submentalis is of moderate size and partially obscured by the attachment of the anterior fibres of the intermandibularis. Direct attachment of the intermandibularis fibres to the mandible is confined to the posterior half of the latter. Anteriorly the fibres run initially parallel to and then diverge from the mandible, and the attachment to the mandible is via transparent connective tissue. The interhyoideus is well developed.

The vocal sac apertures lie parallel to the posterior half of the prearticular portion of the mandible. The vocal sac lies above the entire surface of intermandibularis and interhyoideus.

Lechriodus.

The submentalis is of moderate size and its posterior border is partially obseured by the attachment of fibres of the intermandibularis upon it, The intermandibularis bears a median aponeurosis. The interhyoideus is not well developed.

Vocal sac and vocal sac apertures are present in L. fletcheri and L. papuanus, but not in L. platyceps. The vocal sac is extensive, occupying most of the area above the interhyoideus and intermandibularis.

Limnodynastes

The submentalis is broad and partially obscured by the intermandibularis. The extent to which the intermandibularis intrudes upon the ventral surface of the submentalis varies from species to species, being most extensive in L. chorsalis where only a V-shaped portion of the submentalis is visible behind the apex of the mandibles. The other extreme is exhibited by L. ornatus and L. spenceri, in which the anterior fibres of the intermandibularis are transversely directed so that the visible segment of the submentalis is larger and alnost semicircular.

In most species the interhyoideus arises solely from the anterior cornua but in a few individuals of L. dorsalis and L. tasmaniensis slender attachments to the squamosal occur. Postero-medial development of the interhyoideus is most pronounced in L. ornatus and L. spencert, and overlies a portion of the pectoral musculature.

Vocal sac apertures extend for almost the entire length of the intermandibularis. The vocal sac lies above the intermandibularis and interlyyoideus.

For illustrations of the superticial mandibular musculature and inflated vocal sac structure of L. tasmaniensis see Tyler (1971b).

Metacrinia

The submentalis is normal and completely visible. The intermandibularis is not differentiated into separate elements but individual superficial fibres, particularly those arising at the anterior ends of the mandibles, are directed obliquely and posteriorly and thus overly those directed transversely. The interhyoideus arises solely from the anterior cornua. In the mid-line there is a bell-shaped aponeurosis at the junction of the intermandibularis and interhyoideus.

On their dorsal surfaces the intermandibularis and interhyoideus are directly attached to the broad geniohyoideus. The vocal sac apertures are short and located close to the mandible directly anterior to the posterior limit of the intermandibularis. The vocal sac is confined to the area above the interhyoideus.

Mixophyes

The submentalis is large, its posterior border hidden by transversely directed fibres of the intermandibularis. The intermandibularis bears a median aponeurosis near the junction with the narrow interhyoideus. The interhyoideus arises partly from the anterior cornua and partly from the squamosal.

The vocal sac apertures are long, equivalent to more than one third of the length of the mandible. The vocal sac is large, laterally extending along the entire length of the intermandibularis and interhyoideus, medially to the apex of the aponeurosis.

Myobatrachus (Fig. 2B)
The submentalis is small and normal. The most anterior fibres of the intermandibularis are directed anteriorly but do not appear to underly the submentalis. The interhyoideus is extremely thin and extends posteriorly into a large median lobe. The segment of the interhyoideus lying behind the post-articular portion of the lower jaws is not entirely muscular but consists of muscle fibres broadly separated by connective tissue.

The vocal sac apertures are approximately one-quarter of the total length of the mandibles. The posterior border of the aperture is on a level with the posterior limit of the intermandibularis. The vocal sac lies above almost the entire intermandibularis and interhyoideus and there are slight lateral extensions following the anterior cornua behind the jaws.

Neobatrachus

The submentalis is large and, in those species in which the tip of the mandibles is particularly blunt (e.g., N. wilsmorei), it is almost semi-circular in shape.

Anteriorly the intermandibularis overlies the submentalis and attaches to it in the midline. The interhyoideus arises entirely from the anterior
cornua. On their contigunus border the only evidence of interpenetration of libres of the interhyoideus and intermandibularis occurs medially.

Vocal sacs are absent in all members of the genus, and the intermandibularis and interlyodeus closely adhere to the muscles lying dorsall to them The lining of the mouth between the mandible and lateral border of the tongue is extensively folded (Fig. 3) as in Helcioporis.

Notaden (Fig. 2C)

The submentalis is elongated. compressed and partly whoured by the attachment of the intermandibularis upon its ventral surface. In N. hemmefti and N. mishollsi the interhyoideus arises solely from the anterior cornua but in N. melanoscapthis the muscle arises in equal portions from the anterion cornuat and the tympanic annulus. The interhyoideus is unusually well devehped proximally, the fibres being directed posteriorly from the anterior cornua creating a lateral extension to the vocal sac. In adult males the interhyoidens is markedly convoluted and the gian bundes of fibres are not alway contigums being separated, particularly in the median portion, by comnective tissuc.

The vocal sac appertures are bounded by the anterior cormua, commencing at the point where these pass above the geniohyoidens, and extending for a distance equivalent to now third of the total kength of the mandibles. The developonemt of bilobulas supramandibular pouchen to the vocal bat in members of this gentus is unifue amongst Australo-Papuan leptodactylds, and may be assonetated with the extremely obtuse mandibles and the associated redaction of the site of attachment for the superficial mandibular muscles.

Phileria

The submentalis is large and composed of two separate transverse segments of which the smatler anterion is attached solely to the promment mento-meckelian bones, whiks the larger posterior segment arises from the dentaries.

The internamdibularis is an extensive muscle whose anterior fibres diverge from the transvere path, passing forwards to attach upon and almost completely obscure the posterior segment of the submentalis. On the anterior one-third of the jaw there is thus no direct attachment of muncle fibres to the mandibles, and contact is mantained by connective tissue. The interbyoidens arises solely from a particularly extensive region of the anterior cormaa and terminates distally at a point midway between the mandible and the geniohyodeus lateralis. The interhyoideus hats a prominent posterior lobe.

The vocal sac anertures are rather oblique. extending anteriorly from the point where the anterior cornua pass above the geniohyodeus lateralis, and posterionly to the posterior limit of the intermandibularis on the mandible.

B

Fig. 3. Mandibular region of malc Neobatrachus pictus in transverse section.
Sectioned posterior to tongue; skin removed. $\mathrm{A}=$ entire mandibular region; B. = enlargement of floor of mouth lateral to mandible (position indicated by arrow in figure 3 A).

The vocal sac is large, occupying the posterior half of the intermandibularis and the entire interhyoidcus.

Pseudophryne

The submentalis is normal. The intermandibularis is not differentiated but anteriorly the superficial ventral fibres are directed obliquely and posteriorly, so that they overly the deeper and transversely directed fibres. The interhyoideus arises entirely from the anterior cornua and is well developed posteriorly.

The vocal sac apertures are long, extending for a distance equivalent to approximately one-half of the total length of the mandible and are obliquely situated. The vocal sac is rather posterior in position and largely confined to the vicinity of the interhyoideus.

Taudactylus

The submentalis is composed of two segments in T. acutirostris, a small anterior portion arising solely from the mento-meckelian bones, which partly overlies the larger segment arising from the dentaries. No such separation occurs in T. diurnes.

There is an elongate, median, longitudinal aponcurosis to the anterior half of the intermandibularis adhering completely to the deep musculature. The interhyoideus arises partly from the anterior cornua and partly from the posterior arm of the squamosal.

In T. acutirostris the vocal sac apertures are rather oblique and posterior in position, being bounded by the anterior cornua and extending medially to the point where the cornua pass above the geniohyoideus. The vocal sac is largely confined to the interhyoideus. Neither vocal sac apertures nor vocal sac were detected in the T. diurnus examined.

Uperoleia

The superficial mandibular musculature is similar to that of Glatertia. The only difference of note is that in Uperoleia the vocal sac apertures are slit-like and bounded solely by the anterior cornua.

HYOMANDIBULAR FEATURES AND LEPTODACTYLID PHYLOGENY

Although Parker (1940) considered a wide varicty of morphological characters, the only ones that supported the recognition of two major groups of genera were features of the larynx, tongue and hyoid. Laryngeal chatacters however were not examined by Parker who relied on the observations of Trewavas (1933). As the latter examined only single representatives of one myobatrachine and three cycloranine genera, the value of laryngeal anatomy as a source of taxonomic criteria is unknown in this group.

The tongue of the Myobatrachinae was found by Parker to be a slender organ in contrast to the broad cycloranine tongue. The characteristic features of the hyoid noted by Trewavas (1933) were summarised by Parker as follows:
"Cycloraninae (Heleiaporws, Limmodynastes and Mirophyes).
(1) Alary process narrow proximally, but expanded distally (pedunculate).
(2) M. omohyoideus present.
(3) Mm. sternohyoideus and petrohyoidej attached at the lateral edges of the lyyoid plate.

Myobatrachinae (Crinia),
(1) Alary process of the hyoid a wing-like expansion of almost the whole lateral margin of the hyoid plate, without narrow stalk.
(2) M. omoliyoideus absent.
(3) Mm . sternohyoideus and petrohyoideus anterior inserted on the ventral surface of the hyoid, reaching the middle line in the posterior part of this insertion."
In this summary Parker employed a certain amount of licence because the Mixophyes differed from the above cycloranime definition in the following respects: the alary process is simply a small, triangular protuberance in the figure (Trewavas, 1933, Fig. 28), and the sternohyoideus is attached to the body of the hyoid plate; at no point does that muscle reach the lateral borders of that plate. Parkers justitication for ignoring such discrepancies was that Trewavas examined a juvenile specimen.

Parker noted that loss of the omohyoideus is believed to have occurred many times in the Anura. Accordingly he considered it to be of little taxonomic significance. and did not report its presence or absence in genera other than those examined by Trewavas. He did examine the shape of the alary processes and the sites of attachment of the petrohyoideus and sternohyoideus on the hyoid, and reported that their conditions in the different
genera corresponded to the above subfamilial definitions. Current delimitation of these subfamilies therefore really depends upon these two characters in conjunction with that of the tonguc.

In the study reported here I examined these characters in a few genera, and in Notaden and Philoria my observations conflict with those of Parker. Subsequently, I analysed the structures in terms of their function, and considered the various ways in which such morphological divergence could have arisen, before attempting to re-evaluate the phylogenetic significance of the characters.

Fig. 4. Hyoid plate and variation in alary processes.
A. generalised hyoid plate, B-F alary processes, for explanations see text on page 14. Key to abbreviations-alary proc. $=$ alary process; ant. cornu $=$ anterior cornu; hyoglo. membr. =- hyoglossal membrane; post.-lat. proc. $=$ postero-lateral process* post.-med. proc. = postero-medial process.

The hyoid plate is a thin shee lying in a borizontal plane belween and pusterior to the mandibles. It is customarily entirely cartilaginous and extremely plable in life. Occasionally however it may be parlly or entirely calcificd, or partly ossified. Up to four pairs of distinct processes arne from the borders of the plate: anterior cornatiom the anterior surface, alary and postero-medial processen from the lateral margan, and postero-lateral from the postero-lateral comer (Fig. $4 \wedge$). Loss of one or more pairs of the first three of these has occurred in many anuran genera.

In the litcrature the term "alary process" is applied to two quite different hyoid structures: (1) a broad "wing-like" extension of the entire lateral edge of the plate such ath oecurs in myobatrachine gencra (Fig. 4B) , or (2) a more restricted. diserete process extending from part of the lateral border on a level with the superior margin of the plate. This latter type can be a simple extension rounded terminally. which may be as broad proximatly ats dintally (Fig. 4C), or may be pedunculate with a circular (Fig. 41)), oval (Fig. 4E) or even irregular (Fig. 4F) terminal margin.

The Mm. petrohyoideus and sternohyoidens attach upon the liyod plate af one of two positions: either along the lateral border of the plate or upon the body of the plate.

In both subfamilies the lateral, lingual margin of the musles follows the axis of the proximal portion of the antetior cornua. If the wing-like alary processes in the Myobatrachinae are regarded as "optonal extras", the lateral lingual borders of the stas of masile attachment are seen to be similar to these in the Cycloranimac.

There are no muscles attached to wing-like alary processes whilst, in contrast, the petrohyodels attaches to the proximal porton of the pedunculate type which thus provides an increase on the site avaibable for attachment. In contrast I think that the wing-like processes only support the floor of the mouth, I only arrived at this conclusion by the elimination of all other possibilities. I have, however been unable to demonstrate a consistent association between the presence of this process and broad mandibles: a feature which might conceivably influence the evolution of such a structure, while temembering Gitns (1966) stricture that the present architecture of a structure is not necessarily moulded by its present function.

In eycloranine genera such as Helcioporis in which the distal portion of the pedunculate alary process is extremely large a structurally supporting mole similar to that proposed for the myobatrachine alary process is indicated. Where it is small its ability to perform a similar function is considered unlikely. From at consideration of the available data the possibility that wing-like and pedunculate alary processes are not homologous structures amnot be dismissed. However, (o) regard the presence or absence of wing-
like alary processes a character of taxonomic value appears justified. Thus although the fact that I have not seen distal dilations to the discrete processes in Notaden and Philoria necessitates a change in the diagnosis of the subfamily Cycloraninae to accommodate the variation in the alary processes, it does not materially affect the taxonomic value of the character.

The differences in the positions occupied by hyoid muscles, as described here, may have been the result of two independent evolutionary mechanisms. One, a major alteration of a skeletal component providing attachment, as exhibited by the gross structural change of the mandibles of Notaden, and the other ontogenetic heterochrony.

A

B

Fig. 5. Anterior mandibular musculature showing association between Musculus submentalis and Musculus geniohyoideus.
A. generalised anuran in veniral aspect; \mathbf{B}. Notaden michollsi. Musculus intermandibularis removed. Key to ahbreviations: genhy, 1. = Musculus geniohyoideus lateralis: genhy. m. = Musculus geniohyoideus medialis: mand. = mandible; submen, = musculus submentalis. The ligamentous portion of the geniohyoideus lateralis of N. michollsi is represented by broken lines.

The M. geniohyoideus lateralis of all anurans previously reported in the literature is attached upon the lateral lingual surface of the mandible immediately posterior to or dorsal to the submentalis (Fig. 5A). But for a very slight, initial mediad inclination the tibres of this musele follow the longitudinal axis. In Notaden the mandibles are exeeptionally blant anteriorly, and the submentatis is extremely elongate. If in this genus the geniohyoidens lateralis remained in its customary position in relation to the fateral end of the submentalis, the fibres of the muscle would follow a path at ath acute angle to the longitudinal axis,

It is evident that Notaden has retained the ancestral conditions the muscte remains attached to the mandible near the mandibular symphysis, but by means of a membrane, and the submentalis: now passes partly beneath this membrane, and partly bencath the geniohyoideus latteralis (Fg. 5B). The major influence here has evidently been that of retention of direct opposition of sites of muscles origin and attachment. suggestive of an incvitability in these sites to maintain functional efliciency.

Ontogenetic heterochrony must be regarded as a potential source of und dification to the positions occupied by adjasent musces. During ontogeny the retardation of the development of one or the aceeleration of another occupying an adjacent site, could clearly permit tibee of one for motrode upon and occupy a portion of the site normally occupied by the other. In generat such is Gilanctios such a process could be responsible for the more inferior matgin to and exposure of the mandibular site of the geniohyoidens, associated with the arrested development of the intermandibulatis.

Parker (1940) noted that in the Myobattachinae the sternohyoidens reaches the mistline in the posterior purtion of the insertion on the hyod plate, contrasting with the eychanane condition where it is a more slender muscle and does not. My observations on Notaden do not agree with those of Parker. In atl specimens examined the stermohyodeus is at massive muscle which occupies almost the entire ventral surface of the hyoid plate (reaching the midline throughout its lengh). In the face of such marked variation between the material we have exammed, the medial limit of the site of the sternohyoideus upon the hyoid plate does not constilute a character by which the two subtamilies can be distinguished,

SUPERFICIAI. MANDIBUI.AR MUSCUI ATURE AND VOCAI. SACS AS INDICES OF LEPTODACTYLID PHYLOGENY

The (wo subtamilies of Australo-Papuan leptodactylid froges curnently recognised eatl now be distinguished on the hasis of one consistent difference in the superficial mandibular musculature. In the Cycloraninate the mont anterion fibes of the intermandibulatis attach upon the ventral surface of the submentals, while cuch atlachments are absent in the Myobatrachinate (Table
1). Unfortunately Cyclorana differs from other cycloranine genera in lacking the attachments otherwise characteristic of the subfamily. The genus differs further from both cycloranine and myobatrachine genera by having the intermandibularis differentiated into separate elements.

In all the eycloranine genera except Cyclorana the nature of the attachments is similar, involving transversely oriented fibres of the intermandibularis. The differences existing between genera are the extent to which these fibres underly the submentalis, but it is dillicult to express quantitatively the proportion of the submentalis so hidden from view. This is unfortunate because the data presented here indicate that the extent of such altachment is taxonomically significant, because there is a close similarity in this character in genera currently considered to have a close phylogenetic relationship on the basis of other evidence. For example, Noohatrachus is recognized as a valid

TABLE 1

Subfamily	Genus	Intermandihularis/ Submentalis connection	Supplementary elements of Intermandibularis	Vocal Sac
Myobatrachinae. .	Crinia	Abseni	Absent	Unilobular and
Myobatrachinac.	Glanerties	Absent	Absent	submandibular Unilobular and
Myobatrachinac. .	Metacrinia	Absent	Absent	submandibular Unilobular and
Myobatrachinae. .	Myobatrachus..	Absent	Absent	submandibular Unilobular and
Myobatrachinac..	Pseudophryme. .	Absent	Absent	submandibular Unilobular and
Myobatrachinae.	Tuudactsh	Absent	Absent	submandibular Unilobular and submandibular or absent
Myobatrachinac. .	Uperuleia	Absent	Absent	Unilobular and
Cycloraninae	Adeloms	Present	Absent	submandibular Unilobular and
Cycloraninae	Cychrrana	Absent	Present	submandibular Unilobular and
Cycloranimac	Heleioporus	Present	Absent	submandibular Absent
Cycloraninae . . .	Kyarrames	Present	Absent	Unilobular and
Cycloraninac	Lechrindus	Present	Absent	submandibular Unilobular and submandibular or absent
Cycloraninac	Limnodymastes .	Present	Absent	Unilobular and
Cycloraninae	Mixophyes	Present	Absent	submandibular Unilobular and
Cycloraninae .. Cycloraninac...	Neobatruchus Notaden	Present Present	Absent Absent	submandibular Absent Bilobular and
			Absent	supramandibular
Cychoraninae	Philoria	Present	Absent	Unilobular and submandibular

genus largely on biological data, and Parker (1940) did not distinguish it muphologically from Heleioporns. Correspondingly, the ventral surface of the submentalis is completely covered by the intermandibularis in both genera, a feature not shared by any of the others.

Vocal sacs are present in all genera except Heleioporiss and Neobarmelus, one species of Lechrosdus) (L. platyceps) and one species of Fandactylus (T. dimmens). Atrsence of vocal sac may be considered a primary feature when it is characteristic of a family (e.g., Ascaphidae and Discoglossadale) or secondary in genera where the vast majority of species possess vocal sitcs, but one or two do not (Hyla and Liroria. see Tyler, 1971a), In the former case there is nu eviderne that vocal sace have ever evolved, whereats in we latter the interpretation is one of loss.

The vocal sat structures of the other Australo-Papuan leptodactylid genera are unibobular in form and submandibular in position. except in Notrden, where they are bilobular und supramandibular.

Heleioporus and Neobarachus in which there are no vocal sacs, have large dumed buecal cavilies which ean evidently be further enlarged by depression of the floor of the mouth, as indicated by the presence of longitudinal pleating of the floor. The capacity of the buccal cavity in theretore adequate to ate as an effective resonance chamber and wo performs the role of the vocal sate. Both groups of evidence sugee that resomathe chambers have evolved independently at leath twice amonget Australo-Pappan keptodactylids, and that the ancertral stock from which this family is derived lached them.

In summary the myological data demonstrates that the superticial mandibular musculature of Australo-Papuan leptodactylids indicate the existence of two major groups of genera, which correspond to the two subfamilice recognised by Parker (1940), but with nether of which Cyelorana is readily associated. Within these groups the muscle architecture of the Myobattrachinate represents the primitive condition and that of the Cycloraminae a derived state in which the path of some of the fibres has been modified. Thus this evidence does not support Parker's (1940) tentative suggestion that the Myobatrachinac could have been derived from the (yeloraninae.

It has been demonstrated elsewhere (Tyler. 1971:1). (i) that superficial mandibular muscles are conservative in the evolutionary sense: (ii) that differentiation of the intermandibulatis is a derived state constituting a major evolutionary development, and (iii) that some hylid sub-families are charateterised by possession of similar supplementary elements of the intermandibularis.

Therefore the presence of supplementary elements of the intermandibularis in Cyclorama and their absence from other cycloranine genera are grounds for questioning the sub-familial disposition of Cyclorana. In contrast the form on the supplementary celements in Cydroma is identical to
that possessed by all Australo-Papuan hylids with which it shares other morphological and behavioural characteristics (Tyler, 1970). Further comparative studies of leptodactylids and hylids are currently being undertaken to clarify the familial disposition of Cyclorana, and redefinition of the Cycloraninae and the Myobatrachinae is deferred pending completion of these studies.

Note added in proof.
Since the above was written a reassessment of the evolutionary relationships of the Australo-Papuan genera has appeared in a revision of the Leptodactylidac by Lynch (Misc. Publ. Univ. Kansas Mus. Nat. Hist. (53): 1-238(1971)). Lynch supports recognition of the sub-families proposed by Parker (1940) and maintained here, but has proceeded a stage further in recognizing two tribes within the Cycloraninae. He associates Cyclorana with Heleioporus, Mixophyes, Neobatrachus and Notaden as the members of one, and considers this tribe the most primitive. Therefore our conclusions differ principally in that I dispute the sub-familial disposition of Cyclorana, but Lynch does not.

ACKNOWLEDGMENTS

For the provision of species not represented in the South Australian Museum collections 1 wish to express my thanks to Dr. M. J. Littlejohn, Dr. A. A. Martin and Mr. J. Loftus-Hills (University of Melbourne), Dr, R. Endean (University of Queensland), Mr. J. M. de Bavaly (University of New England) and Dr. J. L. Hickman (University of Tasmania).

I am also indebted to the Director of the South Australian Museum, Dr. W. G. Inglis, for his encouragement throughout the project and criticism of the manuscript, to Miss T. Mannik (University of Adelaide) who prepared the histological sections, and Dr. J. Fanning for the photomicrograph used in Fig. 3.

REFERENCES

Gans, C., 1966: Some limitations and approaches to problems in functional anatomy. Folia Biotheoretica 6: 41-50.
Parker, H. W., 1940: The Australasian frogs of the family Leptodactylidae, Novit. Zool. 42 (1): 1-106.

Trewavas, E., 1933: The hyoid and larynx of the Anura. Phil. Trans, Roy. Soc. Lond., Ser. B 222 (10): 401-507.
Tyler, M. J., 1970: Patterns of distribution and the origins of the Papuan hylid frog fauna. Search 1 (4): 246-247.
Tyler, M. J., 197la: The phylogenetic significance of vocal sac structure in hylid frogs. Univ. Kans. Publs, Mus. nat. Hist. 19 (4): 319-360.
Tyler, M. J., 1971b: Voluntary control of the shape of the inflated vocal sac by the Australian leptodactylid frog Limnodynastes tasmaniensis. Trans. Roy. Soc. S. Alust. 95 (1): 49-52.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

PLANIGALE GILESI (MARSUPIALIA, DASYURIDAE); A NEW SPECIES FROM THE INTERIOR OF SOUTH EASTERN AUSTRALIA

By PETER F. AITKEN

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

VOLUME 16
NUMBER 10
12th June, 1972

PLANIGALE GILESI (MARSUPIALIA, DASYURIDAE); A NEW SPECIES FROM THE INTERIOR OF SOUTH EASTERN AUSTRALIA

By PETER F. AITKEN
South Australian Museum

SUMMARY

Planigale gilesi a new species of dasyurid marsupial is described and figured. Field notes on the specimens examined are included.

PLANIGALE GILESI*

Diagnosis: A robust Planigale (plate 1) differing from all other species of Planigale by the possession of only two premolar teeth in each upper and lower jaw.

Holotype: South Australian Museum no. M8406; adult male puppet skin and skull with torso in spirit, collected on 29 June 1969 by Messrs. P. Aitken, A. Kowanko, J. Forrest and J. Howard.

Type Locality: No. 3 Bore, Pastoral Property of Anna Creek, South Australia (lat. $28^{\circ} 18^{\prime} \mathrm{S}$., long. $136^{\circ} 29^{\prime} 40^{\prime \prime} \mathrm{E}$.).

Paratypes: No. 3 Bore, Anna Creek, South Australia. Male puppet skins and skulls: South Australian Museum nos. M8407, 25 July, 1969, P. Aitken, A. Robinson and M. Stanley; M8408 and M8409, 26 November 1969, P. Aitken, J. Forrest and J. Glover. Male in spirit: SAM no. M8410, 27 July 1969, P. Aitken, A. Robinson and M. Stanley. Female in spirit with skull extracted: SAM no. M8411, 25 August 1970, A. Kowanko and J. Glover.

Bellata, New South Wales (lat. $29^{\circ} 55^{\prime}$ S., long. $149^{\circ} 47^{\prime}$ E.). Female in spirit with skull extracted; Australian Museum no. M7033, 27 February 1945, J. Kirkby. Male in spirit with skull extracted: AM no. M7393, May 1948.

Brewarrina, New South Wales (lat. $29^{\circ} 57^{\prime}$ S., long. $\left.146^{\circ} 51^{\prime} \mathrm{E}.\right)$. Male in spirit with skull extracted: AM no. M7819, 1954, K. Turnbull. Female in spirit with skull extracted: AM no. M7820, 1954, K. Turnbull.

Lake Cawndilla, Kinchega National Park, New South Wales (lat. $32^{\circ} 30^{\prime}$ S., long. $142^{\circ} 18^{\prime}$ E.). Male in spirit: AM no. M9190, 20 May 1969, M. Gray.

Descriptive Methods: Pelage colour nomenclature follows the standards of Ridgway (1912). All body weights are in grams and all anatomical measurements are in millimetres with the terminology, unless otherwise stated, after Cockrum (1955). Skull measurements were taken with Helios dial

[^0]calipers under a binocular microscope at various magnifications up to $x 20$. Flesh dimensions were obtained from freshly killed material in the case of South Australian Museum specimens and from spirit preserved material in the case of Australian Museum specimens. All measurements were made by the author.

External Features: Dorsally the soft, dense fur is 8 mm long on the rump where the basal 5 mm are sooty black, the median 2.5 mm are pinkish cinnamon and the apical 0.5 mm are fuscous. The fur is 4 mm long on the crown and 1 mm long on the muzzle where it becomes more bristly with virtually no sooty black base. Interspersed with the fur are mediallythickened fuscous black spines 10.5 mm long on the rump reducing to 2 mm on the muzzle. The back is thus a brindled cinnamon colour from rump to rhinarium, although two of the skins examined (SAM nos. M8408 and M8409) have much paler spines and, in consequence, less brindled appearances. A single ring of fuscous black hairs is present around each eye and there is a dark patch in front of each eye where the tips of the fur are fuscous black. Mysticial vibrissae number approximately 16 on each side, are up to 12 mm long and are predominantly fuscous black. Other vibrissae per side are: supra-orbital, 2 , fuscous black; genal, 8 , some fuscous black, others white; ulnar carpal, 3, white; anconeal, 1, white; median antebrachial, 1, white; submental, 4, white. In addition there are 4 white, interramal vibrissae.

On the cheeks, flanks and shoulders, behind the ears and inside the ears, the fuscous tips of the fur are markedly reduced and spines are virtually absent. These areas are thus pinkish cinnamon in colour.

Ears rounded and slightly fleshy, each with a weak ventral lobe defined by a shallow notch in the posterior margin, an antero-dorsal overfold and a posteriorly concave, anteriorly pointed, untwisted supratragus 3.5 mm long by 2.5 mm broad. Externally, the basal segment of each ear is naked with a surrounding apical area thinly covered by short pinkish cinnamon hairs. Internally, the concha and supratragus of each ear carry irregularly spaced, fine white bristles and each pinna has two thick tufts of pinkish cinnamon hairs originating on the postero-internal margin, one immediately above the ventral lobe the other at crown level. The remainder of each pinna is more thinly covered with short, pinkish cinnamon hairs.

Rhinarium naked, fuscous black with a complete median groove, no philtrum and semicircular nostrils directed antero-laterally,

Ventrally the fur is soft with no spines and is 5 mm long on the belly where the basal half is dark mouse gray and the apical half is pinkish buff. On the interramal region the fur is 1.5 mm long and pinkish buff throughout. Two of the skins examined (SAM nos. M8408 and M8409) have paler ventral fur, basally deep mouse gray and apically pale olive buff. The fur on their interramal regions is also pale olive buff.

Scrotum pendulous with fuscous black pigmented skin and a thick covering of pinkish buff hairs (pale olive buff on SAM nos. M8408 and M8409).

Pouch equipped with 12 teats and filled with fine, white hairs up to 6 mm long. It varies in development amongst the three females examined. In one (SAM no. M8411) it is an oval depression approximately 4 mm long by 3 mm wide with scarcely perceptible antero-lateral lips. In another (AM no. M7033) it is an anteriorly deepened pocket with a transverse postero-ventral opening 3.5 mm wide. In the third (AM no. M7820) it is an irregular, mammary area up to 18 mm in diameter with a fleshy, peripheral lip 2.5 mm deep.

Tail slightly incrassated, tapering towards the tip and sometimes fattened for two-thirds of its length, in which cases basal incrassation is more obvious (SAM nos. M8407, M8408 and M8410). It is bicoloured with a thin covering of stiff hairs 3.5 mm long, increasing to 4.5 mm on the distal third of the underside, but with no brush. Dorsally the hairs are pinkish cinnamon with fuscous tips, although fuscous tipping may be much reduced or absent (SAM nos. M8407 and M8408) and some totally fuscous hairs occur at the distal extremity. Ventrally the hairs are the same colour as the apical half of the belly fur, either pinkish buff or pale olive buff throughout. The hairs of the tail tend to grow in ragged whorls based between 4 and 5 mm apart and in those specimens with fattened tails the whorl hairs become very divergent, producing a rather sparse covering at their apices through which the fuscous black pigmented tail skin can clearly be seen. In such specimens, therefore, the tails exhibit faint patterns of alternating light and dark transverse bands (SAM nos. M8407 and M8408).

Both fore and hind feet well covered above by short pinkish cinnamon hairs with a fringe of silvery hairs bordering each naked sole. Soles of fore feet fuscous, soles of hind feet fuscous black (colours fade in spirit). Fore feet each 4 mm broad with 5 strongly clawed digits (formula: $3>4>2>5>1$) and 6 well developed pads. Soles and pad-bases coarsely granular with granules up to 0.3 mm across. Each pad-base is surmounted by a finely striated apical pad: 1st interdigital round, 0.6 mm in diameter; 2nd and 3rd interdigitals oval, $0.5 \times 0.9 \mathrm{~mm}$; 4th interdigital oval, $0.6 \times 0.8 \mathrm{~mm}$; hypothenar proximo-internally flattened and shaped like a bulbous hook with an external shaft, greatest breadth 0.8 mm by 1.6 mm long; thenar proximally flattened, demi-oblong, 0.8 mm broad. Hind feet (plate 2) each 3.5 mm broad across the bases of digits $2-5$ with 4 clawed digits and a clawless hallux (formula: $3>4>2>5>1$) plus 6 well developed pads. Soles and pad-bases coarsely granular with granules up to 0.4 mm across, although one larger granule, 0.5 mm in diameter, is usually present near the external margin of each sole between the 3rd interdigital and hypothenar pads and a few others of similar size occur on each heel. Each
pad-base is surmounted by a finely striated apical pad. 1st (hallucal), 3rd and 4th interdigitals oval, $0.7 \times 1 \mathrm{~mm}$; 2nd interdigital oval, $0.7 \times 1.1 \mathrm{~mm}$; hypothenar oval, $1.4 \times 0.8 \mathrm{~mm}$; thenar disto-internally bulbous crescentic, greatest breadth 0.9 mm by 1.5 mm long.

Dimensions of the soles and pads were obtained from a specimen that had been preserved in 70% spirit for approximately 6 months (SAM no. M8410). Some other specimens, examined after much longer immersion in spirit, had apparently narrower hind feet and shrunken pad-bases that had become confluent with the soles.

Flesh dimensions of selected specimens are presented in Table 1. Spirit preserved specimens with extracted skulls were not measured.

Table 1. Flesh Dimensions of Planigale gilesi

Measurement	Holotype M8406 (SAM) Anna Creek	0^{3} M8407 (SAM) Anna Creek		© M8409 (SAM) Anna Creek	σ M8410 (SAM) Anna Creek	$\delta^{*} *$ M9190 (AM) Kinchega	
Body length	71.5	79	78	73	77	63	58
Tail length....	72	72	60	-	69	63	59
Length of hind foot (without claws)	10.8	11.4	11	10.5	10.8	10.4	9.6
Height of ear (from notch)	9.2	10.5	10.3	10.4	10.5	8.7	9.5
Weight	$\begin{gathered} 9 \\ \text { (starved) } \\ \hline \end{gathered}$	17	15	-	15	-	-

* Measured from spirit

Skull Characters (plates 3a, b, c, d): Dorsal aspect of cranium flat with extremely thin bones, a minute sagittal crest and insignificant lambdoidal crests. Zygomatic arches evenly convex. Interorbital region flat and unridged with bevelled edges, a slight median depression at the posterior extremities of the nasals and the anterior half of the median frontal suture irregularly dentate. Post-orbital processes barely discernible or absent with no pronounced post-orbital constriction. Anterior halves of nasals either parallel sided or marginally expanded in front, posterior halves flared, the greatest width across the nasals being at their points of contact with the fronto-maxillary sutures. Postero-dorsal tips of premaxillae truncated.

A pair of slim, anteriorly pointed, incisive foramina pierce the palate with their posterior extremities between the canines. Two narrow, sometimes dissimilar, posterior palatal vacuities are also present with their anterior margins between \mathbf{M}^{2-2} and their posterior margins between \mathbf{M}^{3-3}. Pterygoid hamulae slender and deeply hooked behind. Alisphenoid bullae bulbous, the greatest breadth of each bulla being approximately equal to the minimum
distance between both bullae. Each periotic bulla with a markedly inflated distal crescent separated by a shallow sulcus from a less inflated proximal segment and abutted on its postero-mesial wall by the anteriorly flanged, blunt para-occipital process.

Dental formula: $\quad \frac{4}{3}: \quad \mathrm{C} \frac{1}{1}: \quad \mathrm{P} \frac{2}{2}: \mathrm{M} \frac{4}{4}$. Teeth, upper jaw: I^{1} prominent, set apart from I^{2-4}, which are smaller with I^{2} equal in size to I^{3} and both larger than I^{4} by crown height but not crown length. I^{2-4} each with a buccal and a lingual cingulum and a minute talon that is most marked on I^{\dagger}. Canine bucco-lingually flattened with a complete cingulum and three times as high as I^{4}, from which it is separated by a diastema of 0.5 mm . In three specimens examined (SAM no. M8501, AM nos. M7033 and M7819) a distinct talon is also present on each canine. Premolars bucco-lingually flattened, each with a buccal and a lingual cingulum, a minute anterior cusp and a relatively longer talon. The anterior cusp is most obvious on the first premolar and the talon is largest on the second premolar. First premolar set apart from the canine and two thirds as large as the second premolar by both crown height and crown length, second premolar offset longitudinally in line with the posteriorly broadened rostrum. Molars moderately high cusped with M^{4} lacking the entire posterior half. M^{1-4} each with a dorsally displaced protocone. M^{1-3} each with a posterolingual cingulum, a dominant metacone, a relatively much lower paracone and a parastyle, mesostyle and metastyle, of which the parastyle in M^{1} is antero-dorsally displaced and the mesostyle in M^{3} is reduced in height compared with the same cusp in either M^{1} or $\mathrm{M}^{2} . \mathrm{M}^{2-4}$ each with an anterior cingulum.

Teeth, lower jaw: Incisors slightly procumbent, each with a buccolingually flattened incisal edge and a lingual cingulum. I_{1} not set apart from and twice as high as I_{2}, which in turn is a little larger than I_{3} by both crown height and crown length. A minute talonid is present on I_{3}. Canine twice as high and three times as long as \mathbf{I}_{3} with a lingual and a buccal cingulum plus a talonid. Pre-molars bucco-lingually flattened, the first two-thirds as large as the second by both crown height and crown length, each with a talonid and a buccal and a lingual cingulum. Molars high cusped with M_{+}lacking the postero-buccal quarter. M_{1-4} each with an antero-buccal cingulum, a posterior cingulum and a dominant protoconid, plus a metaconid and a paraconid, both of which are relatively much lower, the latter being particularly low in \mathbf{M}_{1}. Each also with a minute entoconid plus a hypoconid and a hypoconulid, of which the hypoconid is almost totally suppressed in M_{4}, is highest in M_{1} and decreases evenly in height through $\mathbf{M}_{\mathbf{2 - 3}}$, whereas the hypoconulid is highest in \mathbf{M}_{4} and equal and lower in height through M_{1-3}.

Skull and tooth dimensions are presented in Table 2.
TABLE 2. Skull and Tooth Dimensions of Planigale gilesi

Measurements				$\begin{gathered} 8 \\ \begin{array}{c} \text { M808 } \\ \text { MAM) } \\ \text { SAnd And } \\ \text { Creek } \end{array} \end{gathered}$		$\begin{gathered} \text { ¢ } \\ \substack{\text { M8411 } \\ \left(\begin{array}{l} \text { AAnd } \\ \text { Creak } \end{array}\right.} \end{gathered}$	$\begin{gathered} \substack{\text { M7033 } \\ \text { Bellata } \\ \text { Bela }} \\ \hline \end{gathered}$	$\begin{gathered} \text { M M 3 3) } \\ \text { Bellata } \\ \text { Belata } \end{gathered}$	$\begin{gathered} \text { M7819 } \\ \text { Brewartina } \end{gathered}$	$\begin{gathered} \text { M8820 } \\ \begin{array}{c} \text { M78N) } \\ \text { Brewarina } \end{array} \end{gathered}$
Condylo-premaxilla length Zygomatic breadth Palatilar length (including spine)		${ }^{20.6}$	${ }^{20.6}$	${ }^{20.4}$	19.6	${ }_{174}^{17.6}$	19.7	${ }^{20.8}$	${ }^{21.0}$	
		10.2 11.5	${ }_{11.5}^{10.4}$	${ }_{10.1}^{10.1}$	19.7	${ }_{9.8}^{8.4}$	${ }_{10.5} 9$	${ }_{10.8}^{10.0}$	${ }_{11.7}^{10.7}$	
Cygomati breath.............		9.9	${ }_{9} 9.6$	9.5	${ }_{4}^{9.4}$	8.8 4.8	9.4	9.4	${ }_{4.4}^{9.6}$	4.6
Least interorbital constriction		4.6. 3.8 .8	4.6 3.6 3.6	¢ .3 .5	¢ .0 .0	${ }_{3.3}^{4.5}$	${ }_{3.4}^{6.4}$			${ }_{6.3}^{4.6}$
Maxiolarreareath at first pre-										
molars Greatest width across upper molars Depth of cranium in front of bullae		${ }_{4.3}^{6.5}$	${ }_{4.3}^{6.5}$	${ }_{4.3}^{6.6}$	${ }_{4.1}^{6.3}$	${ }_{3.8}^{6.0}$	${ }_{4.1}^{6.5}$	${ }_{3.9}^{6.8}$	${ }_{4.4}^{6.6}$	6.7
Length of incisive foramen Length of palatal vacuity		1.5	${ }_{1}^{1.5}$	1.3	${ }^{1.2}$	1.2	1.5	${ }_{1.1}^{1.5}$	1.7	1.4
		${ }_{0} 1.5$	${ }_{0.4}^{1.3}$	${ }_{0.4}^{1.0}$	${ }_{0.3}^{1.2}$	${ }_{0.3}^{1.1}$	${ }_{0.4}$	${ }_{0.4}^{1.1}$	${ }_{0.4}^{1.7}$	${ }_{0}^{1.4}$
Width of palatal vacuityLength of bullae (alisphenoid		4.9	5.0	5.0			4.8	5.0	5.1	
		3.0	2.8	2.8	-	-	2.6	2.7	2.6	-
		3.6	3.4	3.7	3.4	${ }_{2} .9$	3.2	3.2	${ }_{3.2}^{8.4}$	3.6
			${ }^{14.4}$	${ }_{2.6}^{14.3}$		${ }_{2}^{12.0}$				2.4
(Lenght of maxiliary tooth row		${ }_{9.2}^{2.2}$	9.3	${ }_{9.1}$	${ }_{8.9}^{2.4}$	8.1	9.2	9.8	${ }_{9.4}^{2.4}$	2.4
Lenthot mandibular tooth row		7.8	8.1	7.9	7.5	7.2	8.1	8.4	8.0	8.0
		4.5	4.4	4.3	4.3	4.1	4.6	4.9	4.5	4.5
$\underset{\substack{\text { Crown lengst of } \\ \text { premolar }}}{\text { st }}$	upper	0.7	0.6	0.7	0.6	0.6	0.7	0.7	0.7	0.7
	lower	0.7	0.7	0.7	0.6	0.6	0.7	0.7	0.6	0.7
$\underset{\substack{\text { Crown length of 2nd } \\ \text { premolar }}}{ }$	upper	0.9	0.9	0.9	0.8	0.8	0.9	0.9	0.9	0.9
	lower	0.9	0.9	0.9	0.9	0.8	0.9	1.0	0.9	0.9
$\underbrace{}_{\substack{\text { Crown height of } 1 \text { st } \\ \text { premolar }}}$	uppe	0.4	0.4	0.5	0.4	0.4	0.5	0.5	0.5	0.4
	lower	0.5	0.4	0.5	0.5	0.5	0.5	0.4	0.4	-
Crown height of 2 nd premolar	upper	0.7	0.7	0.8	0.6	0.6	0.7	0.7	0.7	-
	lower	0.8	0.7	0.8	0.7	0.7	0.6	0.7	0.7	-

Field Notes: No. 3 Bore, Anna Creek, is situated at the north-eastern tip of an isolated belt of sandridges, which transect the stony desert tableland south of the Neales River on the western side of Lake Eyre North, approximately 70 km north-east of Anna Creek homestead. The bore was originally sunk in 1917, but was redrilled in 1966 when an unsuccessful attempt was made to control its output with casing. No mound has formed around the bore-head through which $3,337,000$ litres of water erupt daily via a circular hole 7 m in diameter. On leaving the bore-head the water flows down a meandering bore-drain for about 300 m before spreading out to form a shallow swamp. Beyond the swamp the water continues to trickle across the tableland for up to 600 m through an expanding system of branched, attenuating channels, in which the water depths are variable. In consequence, the extremities of the channels are often dry, but on such occasions the water table has never been found more than 15 cm below their beds. Water temperature at the bore-head is $48^{\circ} \mathrm{C}$ cooling to below $40^{\circ} \mathrm{C}$ at the entrance to the swamp. Water salinity is 3,614 parts per million in the bore-drain, which is flanked by a thin, white mineral crust deposited on its banks. Desert gobies (Chlamydogobius eremius) and hardyheads (Craterocephalus eyresii) abound in both the bore-drain and the swamp.

The tableland adjacent to the bore, where the average rainfall is less than 125 mm per annum, is vegetated by a well spaced, shrub steppe community dominated by nitre-bush (Nitraria schoberii) with salt-bushes (Atriplex velutinella and A, angulata) plus another chenopod (Babbagia dipterocarpa).

The area influenced by the bore is vegetated by a separate community comprising three distinct plant associations.

1. A bulrush association (plate 4), not found more than 1 m from surface water, growing in mud along the edges of the bore-drain and both in and around the swamp. This association is dominated by tall, dense stands of bulrush (Typha angustifolia) basally augmented with tussocks of a small sedge (Cyperus laevigatus).
2. A sand-spurry association growing in periodically inundated clearings along the channels. This association is dominated by low mats of sand-spurry (Spergularia marina) admixed with love grass (Eragrostis dielsii) and scattered examples of a small sedge (Scirpus maritimus), pop salt-bush (Atriplex spongiosa) and an "everlasting" (Helipterum floribundum).
3. A sedge association (plate 5) growing around the bore-head, over the moist ground between the channels and flanking the bullrushes along the bore-drain. This association is
dominated by thick, interwoven clumps of umbrella sedge (Cyperus gymnocaulus) occasionally entangled with bushes of a samphire (Arthrocnemum leiostachyum). Odd examples of a bindyi (Bassia ventricosa) and ruby salt-bush (Enchlaena tomentosa var. glabra) are also found throughout the association.

All specimens of Planigale gilesi collected at No. 3 Bore were trapped in Sherman live animal traps baited with a mixture of rolled oats, honey, peanut paste and beef dripping. Two captures were made in the bulrush association along the bore-drain and four others in the sedge association, two within 2 m of the bore-head and two between the channels less than 3 m from an inundated sand-spurry clearing. Both the bulrush and sedge associations offer superb sanctuaries for small mammals since each provides a formidable barrier against aerial and terrestrial predators, an internal supply of food and nesting materials and an effective insulation against extremes of temperature and humidity. In August, 1969, a comparison of ambient temperatures with those in a natural runway under the sedge association revealed that over a 24 hour period temperatures under the sedge remained fairly constant between $9^{\circ} \mathrm{C}$. $(0630 \mathrm{~h})$ and $15^{\circ} \mathrm{C} .(1400 \mathrm{~h})$, whereas ambient temperatures fluctuated between $1^{\circ} \mathrm{C} .(0630 \mathrm{~h})$ and $21^{\circ} \mathrm{C} .(1100 \mathrm{~h})$ (M. Stanley, unpublished). It is probable that the high humidity resulting from moist conditions under both the bulrush and sedge associations remains equally constant.

In captivity examples of Planigale gilesi do not display either distinct nocturnal or distinct diurnal rhythms, but exhibit short bursts of acitvity spread throughout each 24 hour period and in view of the protection and insulation afforded by their habitat it is feasible that their activity patterns might be similar in the wild. Brown desert mice (Pseudomys desertor), which are abundant throughout the sedge association at No. 3 Bore, appear to be most active at night, but can also be trapped quite readily during the day. Thus indicating that in this habitat they too are not strictly orientated to either nocturnal or diurnal activity.

Other mammals inhabiting No. 3 Bore are stripe-headed sminthopses (Sminthopsis frogatti), which are fairly common throughout the sedge association; long-haired rats (Rattus villosissimus), which have a permanent breeding colony confined to the bulrush association; house mice (Mus musculus) of which a few occur in the sedge association around the bore-head; and rabbits (Oryctolagus cuniculus), which fluctuate in numbers and burrow on the fringes of the sedge association and around the nitre-bushes in the surrounding tableland. Visiting mammals observed at or near the bore have been numerous dingoes (Canis familiaris dingo), some red foxes (Vulpes
vulpes), occasional feral domestic cats (Felis catus) and small mobs of feral Arabian camels (Camelus dromedarius), feral donkeys (Equus asinus) and brumbies (Equus caballus). Domestic cattle (Bos taurus) also water at the bore.

Damage to the bore vegetation by rabbits appears to be insignificant and damage to the ground by the hooves of the other introduced herbivores is slight and limited to the edges of the swamp, which is the only place where the water is cool enough and still of sufficient depth for comfortable drinking. Other bores and springs in the surrounding region are not so free of hoof damage, their vegetated banks being stamped regularly into inhospitable bogs of mud and dung. No small native mammals have been captured at any of these sites despite intensive trapping. The introduced carnivores probably prey on Planigale gilesi occasionally, but in all the dingo and red fox scats examined rabbits remains were the only mammalian residue. No cat scats were found. Possible avian predators observed over the bore have been whistling eagles (Haliastur sphenurus), fork-tailed kites (Milvus migrans), brown hawks (Falco berigora) and barn owls (Tyto alba). Possible reptilian predators caught in the sedge association have been King brown snakes (Pseudechis australis) and sharp-snouted snakes (Pseudonaja acutirostris).

Scats of Planigale gilesi removed from traps in which their producers had been captured contained fragments of insects exoskeletons, indicating that these planigales are at least partially insectivorous. In captivity they consumed meal beetle larvae, early instar locusts and small moths with avidity. Chopped lambs liver was also accepted, but with less enthusiasm. Habitat data for examples of Planigale gilesi captured other than at No. 3 Bore are confined to the Kinchega specimen (AM no. M9190), which according to the collector was also taken from a sedge association adjacent to water.

The breeding period for members of Planigale gilesi has yet to be determined. Of the three females examined two have undeveloped pouches. One of the latter (SAM no. M8411) was collected in winter (25 August) and the other (AM no. M7033) was obtained in late summer (27 February). The third female (AM no. M7820) has a lactating pouch, but the exact date of her collection is unknown. Males in the series examined show insufficient variation in scrotal size for this character to be used as a reliable guide to breeding activity.

Relationships: Four species of Planigale have been described previously: P. ingrami (Thomas), 1906, from the north of the Northern Territory, but known also from eastern and northern Queensland (Troughton, 1928); P. subtillissima (Lönnberg), 1913, from the Kimberly district of Western Australia; P. tenuirostris Troughton, 1928, from north-central and northwestern New South Wales and south-western Queensland, but known also
from east-central South Australia (SAM no. M8405); and P. novaeguineae Tate and Archbold, 1941, from Papua. The range of Planigale gilesi overlaps that of P. tenuirostris in north-western New South Wales. All four species differ from Planigale gilesi by the possession of 3 premolar teeth in each upper and lower jaw. Lönnberg (1913) actually described P. subtillissima as lacking P_{4-4}, but Tate (1947) in a review of the genus corrected this error after re-examining the holotype.

ACKNOWLEDGEMENTS

I am indebted to the Director and staff of the South Australian State Herbarium for plant identification; to Miss Meredith Stanley of the Department of Zoology, Monash University for ecological data pertaining to No. 3 Bore; to Messrs. Alex Kowanko and John Glover of the South Australian Museum, James Forrest of the C.S.I.R.O. Soils Division, Tony Robinson of Monash University and John Howard of Wirrula, South Australia for assistance in the field; to Mr. Roman Ruehle of the South Australian Museum for the photographs; and to Mrs. Joan Murphy of the South Australian Museum for typing the manuscript.

I am particularly indebted to Mr. Michael Archer of the Western Australian Museum for supplying me with unpublished information from his current research on the taxonomic characters defining the genus Planigale; and to Mr. Basil Marlow of the Australian Museum for the loan of specimens in his care.

REFERENCES

Cockrum, E. L., 1955: "Manual of Mammalogy". (Burgess: Minneapolis.)
Lönnberg, E., 1913: Results of Dr, E. Mjöbergs Swedish Scientific Expeditions to Australia 1910-13. K. svenska Vetensk-Akad. Handl. 52 (1): 9-10.
Ridgway, R., 1912: "Colour standards and Colour Nomenclature". (Author's publication: Washington.)
Tate, G. H. H., 1947: On the Anatomy and Classification of the Dasyuridae (Marsupialia). Bull. Am. Mus. nat. Hist. 88 (3): 133-135.
Troughton, E. LeG., 1928: A New Genus, Species and Subspecies of Marsupial Mice (Family Dasyuridae). Rec. Aust. Mus. 16 (6) 281-288, pl XXXIX.

Plate 1. Planigale gilesi ふ; M8410 (SAM), Anna Creek, South Australia. (Photo by
Roman Ruehle.)

Plate 2. Hind foot of Planigale gilest; M8410 (SAM). (Photo by Roman Ruehle.)

Plate 3. (a) Skull of Planigale gilesi; dorsal view of cranium and upper jaws (holotype). (Photo by Roman Ruehle.)

Plate 3. (b) Skull of Planigale gilesi; ventral view of cranium and upper jaws (holotype). (Photo by Roman Ruehle.)

Plate 3. (c) Skull of Planigale gilesi; lateral view of cranium and upper jaws (holotype). (Photo by Roman Ruehle.)

Plate 3. (d) Mandible of Planigale gilesi; lateral view (holotype). (Photo by Roman Ruehle.)

Plate 4. Bore-drain and bullrush association; No. 3 Bore, Anna Creek, South Australia. (Photo by the author.)

Plate 5. Sedge association; No. 3 Bore, Anna Creek, South Australia. (Photo by the author.)

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

AN ANNOTATED CHECKLIST OF THE NATIVE LAND MAMMALS OF THE NORTHERN TERRITORY

By SHANE A. PARKER

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide Sourh Australia 5000

VOLUME 16

AN ANNOTATED CHECKLIST OF THE NATIVE LAND MAMMALS OF THE NORTHERN TERRITORY

BY SHANE A. PARKER

Abstract

Summary

Until now, the Northern Territory has lacked a checklist of its native land-mammals. To fill this gap I offer the present compilation. It is modelled on Dr. G. M. Storr's List of Northern Territory Birds, and based mainly on records derived from the literature and from unreported material in museums, especially that in the Northern Territory Museum, Alice Springs. All records used have been carefully considered, and a number of critical and seemingly anomalous specimens re-examined. Those responsible for the identification of material are gratefully acknowledged below.

AN ANNOTATED CHECKLIST OF TIIE NATIVE LAND MAMMALS OF THE NORTIIERN TERRITORY

Isy SHANE A. PARKER
Hon. Research Worker, South Australian Museum, Adelaide 5000 (formerly Arid Zone Research Institute, Alice Springs)

INTRODUCTION

Until now, the Northern Tertitory has lacked a checklist of its native landemammals. To fill this gap I offer the present compilation. It is modelled on Dr, G. M. Storr's List of Northern Territory Birds; and based matinly on records derived from the literature and from unreported material in musums, especially that in the Northern Territory Museum. Alice Springs. All records used have been carefully considered, and a number of critical and seemingly anomalous specimens re-examined. Those responsible for the identification of material are gratefully acknowledged below.

The text is straghtforward and needs few words of introduction. Under Range all hoown localities are listed unless the species is common and wideapread, when range limits only are detailed. The distribution maps, however. show as atcurately as possible all records used; records from Bathurst and Melville islands and a few from Groote Eylandt. laching further localization, have merely been plotted within the boundaries given. Under Status appear What lew remarks on abundance and habitat seem justified. Under Taxenomy will be found notices of recent taxonomic changes and a perfunctory coverage of trinomial nomenclature.

My purpose throughout has been to provide a summary of the available information, by which further records may be readily evaluated.

LIST OF SPECIES

With a few exceptions the scientific nomenclature follows Ride (1970). Where a lncality record is unqualified by a bibliographical reference or the abbreviated name of an institution, it has been taken from one of the two main references, Finlayson (1961) and Johnson (1964).

Abbreviations of Institutions-

AM: Australian Museum, Sydney.
AMNH: ^merican Museum of Natural History, New York.
BMNH: British Muscum (Natural History), London.
CSIRO: CSIRO Division of Wildlife Research, Canberra.
MCZ: Muscum of Comparative Zoology, Harvard University, Cambridge, Mass.

Assuod X Jitmury, 1973

MVZ: Museum of Vertebrate Zoology, University of California, Berkeley.
NMV. National Museum of Vietoria, Melbourne.
NTM* Northern Territory Muscum (Zoology), Alice Springs (at present housed at the Arid Zone Research Institute).
QM: Queensland Muscum, Brisbane.
SAM: South Australian Museum. Adelaide.
USNM: United States National Museum, Smithsonian Institution, Washington DC.
WAM: Western Australian Museum, Perth.

MONOTREMES

Tachyglossus aculeatus (Shaw, 1792). Spiny Ant-eater
Range and Status: Rocky areas and isolated outcrops throughout. In the Tanami Desert, recorded amongst the giant mounds of Nasutitermes triodiae (NTM files, 1965).

Taxonomy: The northern populations were referred to the race T.a.acanthion (Collett. 1884) by Johnson (1964); see also Grifliths (1968).

MARSUPIALS

Antechinus bellus (Thomas, 1904). Fawn Antechinus
Map 1
Range: South Alligator district; Coburg Peninsula (NTM 1961, CSIRO 1905): between Mount Borradaile and Oenpelli (NTM 1968): Cape Arnlien Peninsula.

Status: Fairly common in some areas, inhabiting woodland.
Because Antechinus flavipes is similar to A. bellus, the specimen from Port Essington recorded by Thomas (1888:292) and a second from the Daly River recorded by Collett $(1897: 334)$ as "Phascogale flavipes lencogaster" may be referable to A. bellus, and not to the quite different A. bilarni as suggested by Johnson (1954:78).

Antechinus maculatus Gould, 1851. Pigmy Antechinus

$$
\text { Map } 2
$$

Range: King River, north-east of Oenpelli (NMV 1915): Humpty Doo (AM. WAM) : Groote Eylandt. |Bentinck Island, north-western Queensland (SAM 1962).]

Status: Unknown. Of the five specimens from Groote Eylandt only one is accompanied by habitat notes: "[Umbakumba]. . . near the crest
of a sandy ridge paralleling the shore, where wattle scrub is the dominant vegetation" (Johnson 1964:440). P. F. Aitken, in litt., reports that he secured the Bentinck Island specimen in conditions similar to those recorded by Johnson.

The specimens collected in pandanus fringes, paperbark fringes and thorn scrub on the floodplain of the Adelaide River at Humpty Doo, listed as Planigale ingrami by Davies (1960) are referable to the present species (M. Archer, in litt.).

Taxonomy: The race A.m. sinualis (Thomas, 1926) was described from Groote Eylandt. Archer, pers. comm., plans to transfer this species to the genus Planigale, in which case the present vernacular name will be inappropriate.

Antechinus macdonnellensis (Spencer, 1896). Red-eared Antechinus Map 1
Range: North to The Granites (AM 1952), Helen Springs (AM, reg'd 1928), Alexandria and North Island, Sir Edward Pellew Group (Keith 1968), east in the south to Ringwood (NTM 1959).

Status: Widespread, and in some areas, e.g., the Petermann Ranges, common, becoming rarer and more scattered in the northern part of its
range; mainly amongst rocks, frequenting major ranges and isolated outcrops alike. Two specimens from the Tanami Desert, however (NTM 1964, 1970) were trapped at the bases of the giant mounds of Nasutitermes triodiue in belts of Melalenca glomerata.

Taxonomy: Ride (1964:62) placed A. mimulus (Thomas, 1906, lype-locality Alexandria) in the synonymy of A. macdomellensis.

Antechinus bilarni Johnson, 1954. Harney's Antechinus

$$
\text { Map } 1
$$

Range and Status: Uncommon, amongst rocks in rugged sandstonc country of the western escarpment of Arnhem Land: Oenpelli; Mount Borradaile (NTM 1968); Deaf Adder Creek (NTM 1969).

Taxonomy: Ride (1970) placed bilarni in the synonymy of A. macdonnellensis, but Michatel Archer (pers. comm.) on the basis of further studies, considers that for the present it is best maintained as a separate species.

Planigale ingrami (Thomas, 1906). Ingram's Planigale Map 2
Range: Gulf of Carpentaria drainage and the Barkly Tableland: |I awn Hill Creek area, north-western Queensland, vide Troughton 1965:29-30 and remarks under A. de Lestang in Appendix If Red Bank Mine (AMNH 1959): upper Nicholson River (NTM-CSIRO 1967): Alexandria; Brunette Downs (NTM 1970): Newcastle Waters (AMNH 1960).

Status: Apparently not uncommon; blacksoil plains, dry swamps and the perennial watercourses of the Gulf drainage. One of the Nicholson River specimens was trapped amongst rocks at Block Waterhole. Remains of this species were freçuent in bird of prey pellets collected on the cracking blacksoil plains of Brunette Downs in 1970. See Van Deusen (1969).

Phascogale calura Gould, 1844. Red-tailed Phascogale

$$
\text { Map } 5
$$

Range and Status: Alice Springs (Spencer 1896b: 30); Barrow Creek and Tennant Creek (NMV 190), two specimens obtained by Spencer \& (iillen). No other records.

Phascogale tapoatafa (Meyer, 1793). Grey-tailed Phascogale Map 5
Range: Upper South Alligator River; Oenpelli (NTM 1957); near Patonga at 13 00', 132 22', one dead on road (NTM); Patonga, others inside buildings at night, June 1969 (D. Egan, pers. comm.): Yirrkala (1 M 1946).

Status: Widespread but not common. The Oenpelli specimen was caught by a cat. The Yirrkala specimen, collected by W. Harney, bears the comment "climbs and sleeps in trees". The Patonga district is one of lightly-wooded country with laterite ridges.

Taxonomy: The NT populations are generally referred to P. t. pirata Thomas, 1904.

Sminthopsis crassicaudata (Gould. 1844). Fat-tailed Sminthopsis

$$
\text { Map } 4
$$

Range: North to Willowra and the Bundey River drainage.
Status: Widespread, and following good seasons locally common. Prefers more densely vegetated areas and softer soils than the next species (sandhills, seasonal swamps, bore overflows and creeks).

Taxonomy: The NT populations are generally referred to $S . c$. centralis Thomas, 1902.

Sminthopsis froggatti (Ramsay, 1887). Stripe-faced Sminthopsis Map 3
Range: North to Tanami (Glauert 1933:21) and Brunette Downs (NMV 1968, NTM 1970).

Staftes: Widespread and scasonally common; amalyss of a large number of pellets of Letter-winged Kite, Elamus soriptus and Barn Owl. T yo alba collected on Brunctte Downs in April 1970 showed that S. froggatli had been ann abundant prey species. It appears to prefer more open habitats and hasder ground than does S. crassicaudata. On the Barkly Tableland in April 1970 it was found on trecless blacksoil plains, living in cracks in the earth (P. K. Latz and D. Howe, pers. comm.) ; P. Byrne (in Spencer 1896b: 34) wrote that around Charlote Waters S. froggatti seemed to prefer the stony tablelands whilst S. crassicathdata preferred the softer ground near the crecks and amongst the sandhills.

Taxonomy: Ride (1970) placed Sminthopsis larapinta Spencer, 1896 in the synonymy of S. frosgatii. Troughton (1965. 36; see also 1964:318) placed Sminthopsis stalkeri, Thomas, 1906 (based on two specimens from Alexandria and Alroy Downs) in the synonymy of S. crassicaudata. Dr. Ride, however (in litt.), regards stalkeri as a synonym of S. froggatti.

Sminthopsis hirtipes Thomas, 1898 . Hatry-footed Sminthopsis

$$
\text { Map } 5
$$

Range: Station Point. Charlote Waters; Lake Mackay area.
Staths: Unknown, No recent localized material from the NT. There is in the SAM a specimen collected 10 miles north of Warburton Mission. castern WA, in May 1968.

Sminthopsis pammophila Spencer, 1895. Large Desert Sminthopsis Mup 3
Range and Status: The holotype (NMV) was collected by the Horn Expedition on 18 June 1894 between Kurtitinat Well and Ayers Rock, in sandhill-Triodia country with groves of desert oak Casuarina decarsmedna in the swales (Spencer 1896a:84). E. Cowle, one of the collectors, professed to having seen the same species in the James Range, though on habitat this may be doubted,

Remains of this species have recently been identified by Michael Archer in owl pellets (NTM) collected in August 1962 from a cave at Ayers Rock. In 1969 P. F. Aitken obtained four live specimens from two localitie:s in the Lock and Kyancutta districts of the Eyre Peninsula, SA, in sandhill country with Triodia and mallee (Aitken 1971).

Sminthopsis murina ooldea Troughton, 1964. Troughton's Sminthopsis

$$
\text { Mup } 4
$$

Michael Areher, in litr., hats referred specimens from the Petermann Ranges (WAM 1970), Ayers Roch (NTM 1962). Curtin Springs (NTM
1970) and (harlotte Waters (NMV) to this taxon, which he is elevating to specific rank. The possibility that Sminthopsis murina constricta Spencer, 1896 is referable to this taxon should be investigated.

Sminthopsis rufigenis Thomas, 1922. Red-cheeked Sminthopsis

$$
\text { Map } 3
$$

Range and Status: Specimens known from Oenpelli (WAM, donated 1960), and Melville Island (SAM 1913) (Michacl Archer, in litt.).

Troughton (1964:319), under S. lumholtzi, listed specimens from the open blacksoil plains of the Barkly Tableland, NT, and western-central Oueensland. In view of the fact that all Australian specimens of S. rufigenis so far seen by Archer are from wooded localities in the coastal drainage, Troughton's material should be re-examined.

Taxonomy: Ride (1970) relegated Sminthopsis lumholtzi Troughton \& Iredale. 1934 to the synonymy of S. rufigenis, which was described from the Aru Islands. The type-locality of lumholtzi is Herbert Vale on the Herbert River of eastern Queensland, not to be confused with Herbert Vale on the Herbert River north-west of Camooweal, north-western Queensland.

Map 5

Map 6

Sminthopsis nitela Collett, 1897. Daly River Sminthopsis.
Map 3
Range and Status: Described from the Daly River. Michael Archer, in litt., has provisionally referred to this taxon a specimen from the Four-mile Hole, Wildman River (NTM 1968).

Antechinomys laniger (Gould. 1856). Eastern Antechinomys Map 6
Range: Lidicker \& Marlow (1970) gave the range of this species as south-central NSW north to the Cunnamulla district of south-central Queensland, with an isolated record from Cedar Bay, north Oueensland.

Material in NMV and SAM not examined by these athors shows that A. laniger occurs also in the NT: Tarlton Downs (NMV, 18 November 1955): Tobermorey (SAM, coli. (. Watts, 21 September 1968); between Mangajera and Wajelai billabongs, Roper River (SAM, 4 specimens, coll. N. Tindale, 1921). In the QM there are specimens from Cheepie and Charleville, Queensland; a further example in the QM labelled A. laniger, from Matbon, north-western Queensland, is mounted and not available for study.

Status: In the NT, unknown. The Roper River specimens were apparently from a salt-marsh near the siver's mouth (see Gazetteer). These specimens and the Cedar Bay example, which represents an equally isolated oceurrence, should be critically compared with material from further south to see whether they really belong to A. laniger or merely resemble that species in the small size of the auditory bullae.

Antechinomys spenceri Thomas, 1906. Western Antechinomys Map 6

Range: North to [Canning Stock Route near Sturt Creek, WA] Tennant Creek, east to Tarlton Downs, [Sandringham, south-western Queensland].

Status: Not uncommon following good seasons, in a varicty of country, including sandhills, mulgat and gidgea woodland, mitchell grass plains and gibbers.

Taxonomy: See Lidicker \& Marlow (1970).
Dasyurus geoffroii Gould, 1841. Western Native-Cat Map 7
Range: [Well 46, Canning Stock Route, WA, vide Glatuert 1933: 18]

Barrow Creck (NMV 1901) and Alice Springs (NMV donated by Spencer in 1916).

Stathe: Finlayson (1961) considered this species to have been formerly widespread in Central Australia, but now a rare and vanishing form. Spencer (1807:5) recorded an incomplete skin probably of this species from Crown P oint.

Turonoms: The NT populations are generally referred to the nominate race. Ride (1970) relegated Dasyurinus to the synonymy of Dasyurus.

Dasyurus hallucatus Gould, 1842. Nothern Native-Cat
Map 7
Range: Mainly coastal and subcoastal, from the Daly River east to (ape Arnhem Peninsula, inland to the Pine Creek district; Groote Eylandt. There is an isolated occurrence at Alexandria*.

Status: Inhabits rocky areas, in which it is sometimes abundant, and cucalypt woodland.

Taxonomy: The race D, h. nesaens (Thomas, 1926) has been described from (iroote Lylandt; populations from the NT mainland are gencrally refered to the nominate race. Ride (1970) relegated Satancllas to the synonymy of Dasyurns.

Dasycercus cristicauda (Krefft, 1867). Mulgaria
Map 2
Range: North to [Hall's Creek, WA, vide Glauert 1933: 20] 20"09', $130^{\circ} 15^{\prime}$ in the Tanami Desert (AM 1965) and Tennant Creek, east to Tiarlton Downs (SAM 1956).

Status: Not uncommon following good seasons, mainly in sandhill Iriodia country, though the specimens from the Tanami Desert were trapped in a belt of Melalenca slomerata around a claypan.

Dasyuroides bymei Spencer, 1896. Kowari

Map 7

Ranser and Staths: Inhabits gibber-sandhill associations of the Lake Byre basin, occuring marginally in the NT at Charlotte Waters (NMV 1895. AM 1895). Four specimens from "Illamurta" (NMV 1895) and one from "Barrow (reek" (NMV 1901) have almost certamly been abusively labelled, for neither of these localities lies near gibber-sandhill country.

Although the species has not been recorded in the NT since 1901, it has for the last three or four years been tolerably conmon in areas of southwestern Queensland and north-eastern SA: Sandringham (NTM 1970, a pair, retained in captivity) and Cordillo Downs (Aitken 1970*44).

* Five specimens from this locality in the BMNH, collected by W. Stalker in 1905-06, were kindly cheched is to species by Miss P. D. Jenkins, in lift.
[Myrmecobius fasciatus Waterhouse, 1836. Numbat
As this species occurred formerly in WA west of the Petermann Ranges, and in the extreme north-western part of SA, it almost certainly occurred also in the adjoining south-western NT, although no record exists from this area.]

Notoryctes typhlops (Stirling, 1889). Marsupial Mole Map 17
Range: North to [Sturt Creek, WA] Napperby (R. Darken, pers. comm.), east to Charlotte Waters. The reports from Wauchope and Arltunga may be doubted in view of the absence of sandhills at these localities.

Status: Inhabits sandhills; widespread but rarely encountered.
Isoodon macrourus (Gould, 1842). Brindled Bandicoot Map 8
Range: Mainly coastal and subcoastal, from the Daly River cast to Cape Arnhem Peninsula, inland to Mount Shoobridge and Mount McMinn (NMV 1912); Elcho Island: Groote Eylandt; Sir Edward Pellew Group (Keith 1968). The specimen in the MCZ from The Granites, listed by Titte (1948) as of this species, represents such an isolated record that it should be re-examined for possible confusion with 1 . auratus.

Stumb: Not uncommon, frequenting thick grass and other dense undergrowth. with or without tree cover.

Isuodon auratus (Ramsay, 1887). Golden Bandicoot Map 8
Rembe: |Northern Canning Stock Route; Hall's Creek, WA| Victoria River (Depot No. 1?; collected by Elsey, vide Thomas 1904: 228): South Alligitor River: Mount McMinn (NMV 1912): The Granites (MC7. 1932. S AM 1936. AM 1952); Lake Mackay and Ethel Creek (SAM 1932); Tennant Creck and Barrow Creek (NMV 1901): Alice Springs (Burt Plain), Henbury and (harlotte Waters (NMV, donated by Spencer in 1916).

Stomus: According to Finlayson (1961) this species in Central Australia "survives in considerable numbers" within an area north of Lake Ambdeus north to about Winnecke Creek and cast to the lower Sandover River. This is no longer so. The last authentic record appears to be of the specimen collected at The Granites in May 1952 by the Australian Muscum. Thin species was most frequent in the extensive sandplain-spinifex areas.

Little is known of its status in the northern part of its range, where it appears to be marginally sympatric with I. macrourus.

Perameles eremiana Spencer, 1897. Desert Bandicoot

$$
\text { Map } 10
$$

Range: Burt Plain, and sandhills about 40 miles north-east of Charlote Waters (Spencer 1897).

Stutus: This species, perhaps never common, has declined to vanishingpoint since the 1930 s. Finlayson (1961:160) stated that it still persisted in "sectors 5 and 7 ", i.e., the Tanami Desert. There appears to be no atulhentic record of its occurrence in this area; the vague records from The Ciranites mentioned by Finlayson and Troughton (1965:67) atre probably referable to Isoodon auratus.

Macrotis lagotis (Reid, 1837). Bilby
Map 9
Range: North to [Sturt Creek, WA] Lake Buck (NTM files, 1965). Attack Creck (NMV 1966) and Dalmore Downs (NTM 1969).

Status: Once common, now generally rare, though still not uncommon in certain areas: mainly on sandy soils. In the Tanami Desert Wildlife Sanctuary it freguents the Melaleuca glomerata thichets associated with the Old Marsh Bed, where it burrows both in the level ground and into the bites of the giant mounds of Nasutitermes triodiae. See Newsome (1902), Smyth \& Philpott (1968) and Watts (1969).

Taxonomy: The NT populations are generally referred to M. l. sagitta Thomas, 1905.

Macrotis leucura (Thomas, 1887). Lesser Bilby
Map 9
Range and Status: Sandhills about 40 miles north-east of Charlotte Waters (NMV 1895); "Barrow Creek" (NMV 1901). A skull with lower jaw was recently found in a nest of the Wedge-tailed Eagle Aquila audar amongst sandhills 14 miles south-south-east of Steele Gap, in January 1967, by P. Hanisch (NTM). The nest was not in use and there is no simple way of dating the skull. This species appears to be restricted to sandhills; Finlayson (1932, 1935b) who collected 12 specimens near Cooncherie, north-eastern SA in December 1931, found its burrows only in sandhills, while in the same area M. lagotis burrowed only in the flat ground. The three specimens in the NMV labelled "Barrow Creek" probably came from further afield, as there are no sandhills close to this locality (see Gazetteer).

Taxonomy: Troughton (1965) and Ride (1970) placed Macrotis minor (Spencer, 1897) in the synonymy of M. leucura.

Chaeropus ceaudatus (Ogilby, 1838). Pig-footed Bandicoot Map 10
Range: Ryan Well (SAM 1891); 40 miles north-east of Charlotte Watters (NMV 1895): Alice Springs (NMV, donated by Spencer in 1916).

Status: No recent records. I can find no basis for the Barrow Creek record given by Finlayson (1961).

Petaurus breviceps Waterhouse, 1839. Sugar Glider
Map 10
Range: Mary River east to Cape Arnhem Peninsula and inkand to the Kaherine River; Bathurst Island (AM): Melville Island; Eleho Island; Groote Eylandt.

Stutus: Generally uncommon, though Johnson (1964:452) found it comparatively abundant in the vicinity of Port Langdon. Groote Eylandt. in 1948. Woodland.

Taxonomy: The NT populations are generally referred to P. b. ariel (Gould, 1842).

Petropsendes dahli (Collett, 1895). Rock-haunting Ringtail
Map 11
Range: Mary River; Oenpelli; Union Town; Nellie Creek; South Alligator River: Red Bank Mine near Wollogorang (AMNH 1959): Groote Eylandt (NTM, specimen in captivity obtained by Miss D. Levitt. 1970).

Stattos: A rock-frequenting species, widespread and locally common. Dahl recorded it as farly numerous in Arnhem Land: Tunney collected eight ypecimens from Nellie Creek and 16 from the South Alligator; the SpaldingPeterson Eypedition found it "abundant" at Red Bank Mine in 1959 (Hosmer. in litt.).

Trichosurus vulpecula (Kerr, 1792). Brush-tailed Possum
Map 11
Range and Status: Spencer (1896b:16-17) mentioned this species as "occurring everywhere amongst the eucalypts which border the tiver-beds" in Central Australiu. Davidson (1905a:8) recorded that while he was in the Murchison and Davenport Ranges (November 1897-February 1898) "mmall opossums [were] found by the natives in the gums atong the creck banks". Tery (1937 : 100) found one in a hollow log west of the McEwin Hills in 1932.

Finlayson (1961) considered that an inexplicable collapse in its numbers in Central Australia had occurred since the 1930° s. At present it is a rare but persistent and possibly increasing specios in this area, recent records
being: Arthur Creek and Plenty River (Finlayson 1961); Glen Helen Station, 1959 (NTM files); Hatches Creek, two captured on trunks of river redgum, Eucalyptus camaldulensis, and released, 1968 (R. Berry, pers. comm.); Charley Creek (NTM 1968); Bushy Park (CSIRO 1966, 1969). Other, carlier, records given by Finlayson are from Wollara and Lake Mackay, the latter possibly referring to Terry's 1932 record.

Taxonomy: Spencer (loc. cit.) referred to the Central Australian populations as "var. typicus". Although it seems likely that they do belong to the nominate race, this has yet to be demonstrated.

Trichosurus arnhemensis Collett, 1897. Northern Brush-tailed Possum

$$
\text { Map } 11
$$

Range: South to [Hall's Creek, WA] Katherine River and Alexandria*; Bathurst Island; Melville Island (AM); Croker Island; Elcho Island.

Status: Not uncommon, in woodland with hollow roosting-trees available. In Darwin it is sometimes found in gardens and buildings.

Taxonomy: Once regarded as a well-marked race of T. vulpecula, this form has now been accorded the rank of species (Ride 1970).

Map 11

* Twa specimens in the BMNH from Alexandria (collected by Stather) were kindly cheched for me by Mr. J. Calaby.

Bettongia lesueur (Quoy \& Gaimard, 1824). Burrowing Rat-Kangaroo

Map 12

Range: North to northern Lake Mackay, a point between the western Macdonnell Ranges and the Stuart Blufl Range, the Elkedra district and the Sandover dratinge, east to between the Tarlon and Toko Ranges; porsibly norts to the '1anami Desert (Finlayson 1958b, based mainly on native reports and records of abandoned warrens).

Stathr: No authenticated records since the 1930 s. If the species survives at all in the area, which is doubtful, it may do so in the Lake Amadeus-atie Mackay regions and in the Elkedra-Sandover River-Plenty River arrea.

Once locally common, with colonies living in large warrens; in grassy and herbaceous loam flat, within the major ranges, open mulga and ironwood park: shinting the ranges, and in sandridge areas, where, as elsewhere, its warsens were usually made in firm loan at slight elevations on undulating swale and not in the sandridges proper. Giles (1889:280) found seat numbers of this species honeycombing low limestone ridges in the dry bed of Lake Christopher, eastern WA, in late January 1874, and Finlayson ($19586: 213$) noted a smilar occurrence between the Stuant Bluff Range and the wentern Macelonadl Ranges in 1950, though the amimad had long been extinet there.
". . . The large "rabbit" warrens recorded by M. Terry in 1929 in the T'mami district in approximately 28° South and 129" 51° East, would allome certanly be warrens of Bettongia lesucturi doubtully parasitized by mbbits" (Jinlayson 1958b: 241). This rendering is pecularly Finlaycon's. Cerry in betes apply to the year 1928 , not 1929 . 28 S does not run through Ho NT. Furthermore. Terry gave details of two areas in the Tanami district where he observed large warrens:
(1) [Between Larrangannic Bluff and the "westward mate of Killi-Killi", ic., at ca. $19^{\circ} 40^{\prime}, 128^{\circ} 58^{\prime}$.WA near the NT border] ". . Iow cant-west sandhills and rabbit warrens amongst travertine la kind of limestonel mounds on the plain in between. The presence of either so far noth was news.
"From this time onwards, increasing as we worked away south, indications of the northward migration of the rabbit were continually found. But not one solitary bunny did we see till long after, close to Alice Springs. Despite burrows dug out where droppings seemed fresh, we got no nearer to solving the problem as to whether they were hibernating, unusually by, or killed oll by the drought" (Terry 1930:133).
(2) TBetween hill 47 (Johnson's Hill) and hill 49 (Murdoch Cliff:), i.e., at ca. $\left.20^{\prime \prime} 44^{\prime}, 129^{\circ} 59^{\prime}\right]^{\prime \prime}$. . . we came to a huge rabbit warren hacked about and gouged out like a battlefiedd. eloguent testimony to many a busy black fellow getting a cheap feed. This great sandmound. intermingled with travertine. was distinctive for numerous native orange trees. down by whese roots the bunnies had burrowed" (Terry 1930: 178).

Terry recorded secing rabbits only once in the Tanami Desert, a pair between Mount Solitaire and the Lander River.

Taxonomy: Wakefield (1967) synonymized Bettongia penicillata anhedra Finlayson. 1957 with B. lesucur. The specimen upon which anhydra was. based cume from the Lake Mackay area at ca $22^{\prime \prime} 02^{\prime \prime}, 129^{\prime \prime} 47^{\prime}$.
[Bettongia penicillatar Gray, 1837. Beush-tailed Ratt-Kangarou
As B. 1. anhydra Finlayson. 1957 has been placed in the synonymy of b. lesmern, no specimens of this species are known from the NT. In view of the similarity, in form and habit of nesting, between B. penicillata and Lagomehestes spp., I camot aceept as unequivocal the evidence adduced by Finlayson (1958b) for the existence of B. pericillata in the NT, past or present. It is probable that the northern records from the Barkly Tableland and Gulf dramage listed by finlayson are referable to the Spectacled Hare-Wallaby. Lesorchestes comspicillentes, which is there widespread and not uncommon.]

Lagorchestes conspicillatus Gould, 1842. Spectacled Harc-Wallaby

$$
\text { Map } 13
$$

Range: Daly Waters, Borroloola and upper Creswell Creck districts south to the Macdonnell Ranges. Huckitta and Tarton Downs (sce below). A neglected record is of a specimen collected by G. F. Hill "so miles N of Chewings Well" (i.e., about 105 miles west of Banka Bankit) in July 1911 (NMV).

Stums: Formerly common in dense Acacia and other shrub thickets amongst the central ranges, but now apparently absent Irom this area. Still fairls common. howerer, in Acacia thickets in the northem parts of its range, notably in low thickets amidst taller woodland such as Atactar shirleyi, lancewood: G miles south of Dummarra (NTM 1961): upper Creswell Creck, $8($) mules north of Alevandria (captured and released, 1964), 33 mike morth of Newcastle Waters (NTM 1968); 18 miles west of Dummarra (NTM 1968): Daly Waters area (NTM 1968): 42 miles ivest-south-west of Bonmolodat (NTM 19(0)): all the musemm specimens were road-casualties.

Finlayson's records of Bettonsigu penicillata from Tanumbirini. Nutwood and other northern localities are probably referable to this species.

Taxonomy: The NT populations are generally referred to L. c. leichhardti Gould, 1853.

Map 13

Map 14

Lagorchestes hirsutus (Gould, 1844). Western Hare-Wallaby Map 14
Range: [Canning Stock Route between wells 28 and 43, and north of Sladen Waters. WA; south of Tomkinson, Mann and Musgrave Ranges, northern $S \wedge \mid$ Docker Creck; Mount Jenkins; Lake Amadeus area; between Mount Conner and Murrachurra, 20 miles to the cast; Dare"s Plain, George Gill Range; Wytookarri; northern Lake Mackay; McEwin Hills: Mount Doreen: west of Warburton Creek; north of the Sandover about 40 miles west of the Bundy junction; west of Banka Banka; Tanami Desert (NTM, see below).

Status: Formerly locally common in spinifex-sandridge country, occurring in often widely separated colonies, this species has declined drastically since the 1930's. The only recent records are of two small colonies on isolated sandhills in the Tanami Desert Wildlife Sanctuary (observations 1958, 1966 (dead animal found), 1967 and 1970). Little of the extensive sandridge country north of Lake Amadeus and east of Lake Mackay has been zoologically surveyed recently, however, and it is there that this species may still be found in some numbers.

Taxonomy: The NT populations are generally referred to the nominate race.

Lagorchestes asomatus Finlayson, 1943. Least Hare-Wallaby Map 13
Range and Status: Known only from the holotype (skull) in the SAM; from an animal taken in the flesh by Michael Terry a fow miles east of northern Lake Mackaly in 1932. Finlayson (1943) gave the position as 22 $15^{\prime}, 129^{\circ} 30^{\prime}$, but Terry's route strikes $129^{\circ} 30^{\prime}$ at $22^{\circ} 04^{\prime}$.

Onychogalea lunata (Gould, 1840). Crescent Nail-tailed Wallaby Map 15
Range: [South of Tomkinson, Mann and Musgrave Ranges, northern SAJ south of Basedow Range; north of Ehrenburg Range; Red Bank, near Mount Sonder: Bond Springs: Alice Springs; Huckitta; between Jervois Range and Tarlton Range; |near the Warburton Range, WA, 1964, vide Ride 1970|.

Stutus: Extremely rare and little-known; few recent records.
Taxonomy: Frith \& Calaby (1969) suggested that this species may be conspecific with the next.

Onychogalea unguifera (Gould. 1841). Northern Nail-tailed Wallaby

$$
\text { Map } 15
$$

Range: [Sturt Creek, northern WA] Tanami (NTM 1959, 1970); Katherine (1967): 15 miles N of Katherine (SAM 1966): Marrakai, Adelaide River plains (1968): Broch's Creek: Roper River Mission (1966); Banka Banka (NTM 1965); Elliott area (NTM 1961, 1962. 1968. SAM 1966): Beetaloo (NTM 1959); Borroloola (NMV 1911); near ('ape (rawford (NTM 1969); "north-eastern corner of Arnhem Land" (Thomson 1949: 65).

Stans: Widespread and not uncommon: lightly-wooded floodplains in the north, and open long-grass woodland and shrub-savannah in the south; occasionally on rocky slopes, as in the Tanami Range.

Taxonomy: The NT populations are generally referred to the nominate race.

Petrogale penicillata (Grillith, 1827) sensu Ride 1970. Brush-tailed Rock-Wallaby

Map 16
Range: Central Australia: Petermann Ranges, Mount Olga, Ayers Rock. Mount Conner, Gcorge Gill Range, Macdonnell Ranges, east to the Sandover and Bundey River drainages, north to the Kintore Range, Mount

Doreen (25 miles west of), Cockatoo Creek and the Davenport Range (Finlayson 1961 and NTM records).

Arnhem Land: north-western escarpment: King River Range; Mount Borradaile (NTM 1968); Oenpelli; Deaf Adder Creek (NTM 1969).

Status: In Central Australia, widespread and locally fairly common. in rocky hills and ranges, especially in the vicinity of shady gaps and gorges with an abundance of rock ledges and serce slopes. In Arnhem Land locally common on sandstone cliffs, outcrops and scree (talus) slopes.

Taxonomy: The Central Australian populations have yet to be subspecifically assessed (Finlayson 1930:179) but are generally referred to P. p. lateralis Gould, 1842. The Arnhem Land form ventustula Thomas, 1926, resembles the Central Australian one in colour and patterning but is smaller.

Ride (1970) included two other nominal taxa within P. penicillata: P. wilkinsi Thomas, 1926 and P. longmani Thomas, 1926. Each is known only by two specimens collected in 1925, wilkinsi from the Roper River Mission and longmani from Groote Eylandt. More material is needed before a clear pieture can be obtained of the taxonomy and distribution of these northern Petrogale.

Petrogale brachyotis Gould, 1841. Short-cared Rock-Wallaby
Map 12
Range: [Forrest River, WA (AM 1952)] Daly. South Alligator and Mary River drainages (Thomas 1926); Gimbat, headwaters of the South Alligator (AM 1969): Macarthur River and the Sir Edward Pellew Group (Kcith 1968); Red Bank Mine (AMNH 1959).

Status: Apparently local but fairly common where found. Inhabits low rockfaces and low rocky hills with large tumbled boulders rather than the more rugged escarpment country of P. P. venustula. (For a photograph of its habitat in the Pellews see that given for the habitat of Zyzomys argurus in Keith 1968, fide Keith, in litt.).

Taxonomy: The populations of the Daly, Mary and South Alligator rivers were described as P.b. signata by Thomas (1926).

Peradorcas concinna (Gould, 1842). Little Rock-Wallaby

$$
\text { Map } 14
$$

Range: Datly River; Brock's Creck, Nellie Creek; Mary River: King River, north-east of Oenpelli; Milingimbi, Crocodile Istands; Mount Borradaile-Cooper Creek (NTM 1968): Deaif Adder Creek (NTM 1969); East Alligator River (NMV, purchased 1922).

Status: Locally common, in rocky areas. The NTM specimens were taken on open rock flats and lables with seattered boulders (P. p. vernustula, when it occurred in the same areas, was usually found on seree and boulderstrewn slopes and cliffs).

Tatonomy: The NT populations are generally referred to P. c. canescens Thomas, 1909.

Unidentified rock-wallabies have been reported from Mount Alexander, north-eastern Arnhem Land (Wilkins 1928: 260) and in the high sandstone ranges of the Macarthur River between Clyde and Western creeks (Barnard 1914: 211).

Macropus agilis (Gould, 1842). Agile Wallaby

$$
\text { Map } 17
$$

Range: [Forrest River Mission (AM 1952)] Victoria River east to the Macarthur River, inland to the Katherine River: Bathurst lshand (NMV 1912); Crocodile Islands; Elcho Island; Sir Edward Pellew Group (Keith 1968); straggling to Elliott area (NTM 1961).

Status: Locally abundant on subcoastal plains and flood-plains of the larger rivers; grass-pandanus association, grassy forest; recorded also in mangrove swamps and on beaches.

Taxonomy: See Ride (1970) for the transfer of this species from Wallabia to Macropus. The NT populations are generally referred to the nominate race.

Macropus robustus (Gould, 1841). Euro
Map 18
Range and Status: Throughout the NT; fairly common, on slopes of ranges and isolated hills.

Taxonomy: B. Richardson, in litt, considers the northern populations referable to M.r.woodwardi Thomas, 1901 (syn. M.r. alligatoris Thomas, 1904), and the central populations to M.r. erubescens Sclater, 1870.

Macropus bernardus (Rothschild, 1904). Small Black Wallaroo Map 18
Range: Western escarpment of Arnhem Land: Mary River (SAM 1913); King River Range (Wilkins 1928: 168); Oenpelli (NMV 19121914): Deaf Adder Creek (NTM 1969); head of the South Alligator River.

Status: Locally not uncommon, in rugged sandstone and granite ranges.

Taxonomy: Previously considered by some workers to be a race of M. rohustus, with which, however, it is now known to be partly sympatric (Parker 1971a).

Macropus antilopinus (Gould, 1842). Antilopine Wallaroo Map 19
Range: South to [the Negri River, WA] Victoria River, Edith River and Wimul Swamp (SAM 1966), and cast to Cape Arnhem Peninsula,

Status: Less common than M. robustus; on grassy and wooded plains, often in the vicinity of hilly country into which it retreats when disturbed.

Taxonomy: See Frith \& Calaby (1969).
Megaleia rufa (Desmarest, 1822). Red Kangaroo
Map 19
Ranige: North to the Pedestal Hills (Davidson 1905b: 42), 50 miles north-west of Lake Surprise (NTM files, 1964). Dally Waters (S. A. Parker, ms., 1969) and Alexandria.

Status: Widespread and locally common; mainly associated with mulga (Acacia ancura) and lancewood (Acacia shirleyi) on plains, avoiding the extensive spinifex-sandridge areas.

RODENTS
 Hydromys chrysogaster Geoffroy, 1804. Water Rat
 Map 23

Range: Daly River cast to Cape Arnhem Peninsula, inland so Brock's Creck; Melville Island; Groote Eylandt; Sir Edward Pellew Group (Keith 1968).

Status: Not uncommon, in lagoons and crecks (mainly freshwater),
Taxonomy: Tate (1951) assigned the NT populations to the smallmolared race $H . c$. beccarii Peters, 1874. The large-molared race H. c. reginae Thomas \& Dollman, 1909 may possibly enter the NT from western Queensland.

Xeromys myoides Thomas, 1889. False Swamp-Rat
Map 23
Range and Status: One specimen collected on the South Alligator River by Tunney in 1903; otherwise known only from six specimens taken in the Mackay area of Queensland, five from a permanent swamp thickly covered with tall grass, shrubs and pandanus (Ride 1970).

Tunney's specimen is dated 5 September (J. Mahoney, in litt.). For most, if not all, of the period 24 August-19 October 1903 Tunney worked the coastal plain and tidal section of the South Alligator (Storr 1966:64).

Map 19

Map 20

Pseudomys desertor Troughton, 1932. Brown Desert-Mouse Map 20
Range and Status: Rare and little-known. Waite (1898:128) listed specimens. from "Porcupine Sandhills. Wycliffe Creck", "Barrow Creek" and "Untaünua, Porcupine Grass, Alice Springs"*. The only subsequent records are: specimen trapped on claypan amongst sandhills east of the Bonython Range at $23^{\circ} 42^{\prime}, 129^{\circ} 02^{\prime}$ (BMNH 1967) ; specimen dug from a Notomys burrow at Y'uendumu (SAM 1968) : remains from recent owl pellets found in cave 64 miles south-south-west of The Granites in the Highland Rocks, low lateritic rises and outcrops in sandhill country (NTM 1970).

Waite's remarks indicate that some of the specimens were taken in spinifex, at Wycliffe Creek on sandhills. Finkayson (1941) recorded the habitat of specimens from northern SA as "sandy loam covered by giant spinifex". P. F. Aitken, in litt., considers this species to be normally an inhabitant of sandhill country, but mentions finding a thriving colony in tussocks of the perennial sedge Cyperus gymnocaulos growing on the margins

[^1]of a bore-drain near The Neales, western Lake Eyre: the popu'ation was possibly living on a nearby sandhill when the bore was put down.

The term "Untaiunua" relating to the Alice Springs specimen is probabiy the Aranda name for the species rather than a locality (see note under Notomys longicaudatus).

Pscudomys gracilicaudatus (Gould, 1845). Chestnut Native-Mouse Map 20
Range: Humbert River (CSIRO 1968): Nourlangie area (CSIRO 1962): 50 miles north-cast of Pine (reek on the South Alligator River (MVZ 1964): upper Nicholson River and Tin Creck (NTM-CSIRO 1967): South West lskand, Sir Edward Pellew Group (Keith 1968, as IP. nanus).

Status: Widespread and locally not uncommon; rocky wooded areas usually near or along watercourses.

Pseudomys fieldi (Waite, 1896). Alice Springs Mouse Map 20
Range and Status: Known only from the damaged holotype collected at "Alice Springs" in June 1895.

Taxonomy: Sec Troughton (1937).
Psendomys forresti (Thomas, 1906). Forrest's Mouse Map 22
Range* Springvale and George Creck (NTM-CSIRO 1967); Alexandria; Brunctte Downs (NTM 1966, 1970); Alroy Downs (NTM 1970): (ieorgina Downs (NTM 1970): Frazer River: Harts Range: Hamilton Downs (NTM 1961, 1962); Alice Springs; Burt Creck (NTM 1961); Wollara.

Status: Seasonally fairly common on the open blacksoil plains of the Barkly Tableland. Elsewhere uncommon or rare: caught on an open grascy plain on Hamilton Downs, in the bases of Triodia clumps at Wollara, and in the vicinity of soakages with stands of tall dense paperbark and eucalypt at Springvale and George Creck.

Taxonomy: P. waitei (Troughton, 1932) has been relegated to the synonymy of P. forresti by Ride (1970).

Pseudomys delicatulus (Gould. 1842). Little Native-Mouse

$$
\text { Map } 21
$$

Range: South to Delamere (SAM 1966) and Elliott (NTM 1968): We. Istand. Sir Edward Pellew Group (Keith 1968): Groote Eylandt.

Status: Widespread and fairly common, on sandy soils with cover varying from sparse herbage to shrubby woodland.

Taxonomy: The nominate race inhabits the mainland while P. d. mimulus Thomas, 1926 occurs on Groote Eylandt (Johnson 1964).

Pseudomys hermannsburgensis (Waite, 1896). Sandy Inland Mouse
Map 21
Remge: North to Tanami (AM 1952), Banka Banka and Alexandria, east to Manners Creek (NTM 1969).

Status: Widespread and seasonally common, generally in the same areas as the Brown Hopping-Mouse, Notomys alexis (q.v.).

Leporillus apicalis (Gould, 1853). Whitc-tipped Stick-nest Rat Map 25
Range and Status: Stick-nest rats were first reported in the Centre by Giles: nests found in dense mulga-dominated scrubs between Mount Peculiar and Mount Udor in September 1872 (Giles 1889:57); nest noted in dense scrub near Mount Squires, eastern WA, in October 1873, "not the first we have seen by many on this expedition" (Giles 1889:209), a remark that Finlayson (1941:228) rendered as "along the 26° parallel between Ayers Range and the Cavanagh Range"; nest in dense scrub in the vicinity of Lightning Rock, castern WA, in late November 1873 (Giles 1889:232).

The Horn Expedition of 1894 apparently did not encounter this species at first hand; Spencer, who received two specimens from Field of Alice Springs, wrote (1896b: 11) that it was evidently a rare form. Probably the
last record from the (entre is of a pair captured eight miles west of Mount Crombic, north-western SA, in 1933. Finlayson (1941:228) attributed the species decline mainly to overhunting by aborigines.

Notomys aquilo Thomas, 1921. Northern Hopping-Mouse Map 23
Range and Status: Groote Eylandt, where it is not uncommon in sandy areals: Umbakumba (Johnson): 'open forest between Angurugu River and Umbakumba' (D, Levitt, in litt.).

Taxonomy: Ride (1970) considered N. carpentarius Johnson, 1959 to be conspecific with N. aquilo, which was described from the Cape York Peninsula.

Notomys alexis Thomas, 1922. Brown Hopping-Mouse Map 23
Range: North to the Tanami Desert, Bankia Banka, Alroy and Alexandria.

Status: The most widespread member of the genus in the NT, seasonally very common. Occurs on loamy to sandy soil with various plant associations, usually Triodia and light shrub cover, but also mulga and dense melaleuca (Melaleuca slomerata).

Taxonomy: See Finlayson (1940); Aitken (1968). N. a. alexis occupies most of the range described above. N. a. everardensis Finlayson, 1940 has been collected in the south at Henbury and N. a. alexis $><$ everardensis in the Basedow Range.

Notomys cervinus (Gould, 1853). Fawn-coloured Hopping-Mouse Map 22
Range and Status: Charlotte Waters (SAM no date, from P. Byrne). See note below.

Taxonomy: See Aitken (1968).
Notomys fuscus (Wood Jones, 1925). Dusky Hopping-Mouse Map 22
Range and Stutns; Charlotte Waters (NMV 1895). See note below. Taxonomy: See Aitken (1968).
Notomys longicaudatus (Gould, 1844). Long-tailed Hopping-Mouse Map 22
Range: "Urwaitcha burrows", Burt Plain; Mount Burrell: Barrow Creek:。

Status: No records since 1901-2, when Spencer and Gillen obtained a large series from Barrow Creek.

[^2]Spencer (in Waite $1898: 121$) considered that the species he had refersed to an Ilapalotis mitcholli in the Horn Report wats in fact Nobomys lomestanlatms. This would not be wholly truc. however. as be collected 13 specimens of N. alexis on the expedition at Reedy Rocklole and Bagot's (rech (NMV), which he would have listed as mitchelli in the Horn Report. In this report Spencer (1896b: 10) wrote under Mapalotis mitchelli "The native name at ('harlotte Waters is Ulabaiga", which Troughton (1965: 320) mispunted as "the aboriginal name about Burl Plams wats given ats Ulabaiya' by Batdwin Spencer". Untortunately there are no specimens of N^{\prime}. ale ais from (harlofte Waters collected by Spencer himsell, and no extant specimens ol N. lengicumburns from this locality att all, so the ascociation by Finkason (1901) al Spencer's Llabaiya (which Vanlayson misspelt Ulubaian) with N. lomgicalulams is unsatisfactory. Finlayson (loc. cit.) further gave
 specifically identified".

The signidicance of "Urwaitchat burrows" in connexion with the Burt Platin specomens (Wate 1898) hats not been appreciated. Arandat of the Alice Springs district gave me a similar name "Uratritha" for a large loppong mouse, This apart, it is reasonable to assume that in writing "Urwatitha" Giallen was ferordin! the aboriginal name of the species. (T. "Oorathic". the Wonkanooroo name given by Finlayson (1961) for No cervimus.

I camot trace the Mount Rurrell specimen listed by fialatyon. Pamsibly it was collected by T. W. Cornock in 1891 (see Appendix I), and is the spirit specimen without data in the SAM.

Notomys amplus Brazenor. 1936. Shot-tailed Hopping-Mouse Map 22
Rambe and Stallas: Known only from the two specimens collected at Chatutic Waters in 1896 (NMV). Sce note below.

Notti: Notomys cervimus and N. fuscus apparently have their headfuarters, in the sandhill-claypan-gibber atsociations of the southern lake Eyre Basin, the tormer burowing mainly in claypans and the latter in sandbilk (an ceondogical separation found also between Marrotis lagenfis and M. ledterlit) (Finlayson 1939; Aitken 1968 and in lift.). Both species occur marginally and sporadically in the NT (('harlotte Wates 1895. 1896) during periods al incease. Byme (in Spencer 1896b: 11) wrote in July 1805, after gond raims. "The jerbou-like rodents are coming from the eastwards and bley almost amount to a plague here", and in September 1895 "they hate attain beeome so searee that the blach hate difliculty in securing at specimen". Nofoms: amplas may similarly have its centre of distribution outside the NT. Mitche:I's Hopping Mouse Notombs mitchellii (Ogilby, 1838) has been taken at Birdovilk in south-western Oucensland (Tate 1951:259) and may. With the erther species discussed here, appear in the whthernmost NT during good seasons.

Map 23

Map 24

Zyzomys argurus (Thomas, 1889). Common Rock-Rat Map 24
Range: [Parry's Creek, near Wyndham, WA] Cooper Creek (NTM 1968); Deaf Adder Creek (NTM 1969); Oenpelli; Boroloola (NMV 1901-2); upper Nicholson River and Springvale (NTM-CSIRO 1967): Groote Eylandt; Sir Edward Pellew Group (Keith 1968).

Status: Common, amongst boulders and on rocky substrate areas at the bases of rocky hills.

Zyzomys pedunculatus (Waite, 1896). Waite's Rock-Rat Map 24
Range: Alice Springs and Illamurta (1890's); Hugh Creek (1935); Napperby Hills (1950); The Granites (AM 1952); Davenport Range (1953); Haast's Bluff Settlement, Derwent River (NTM 1960).

Status: Rare and little-known; range country and isolated rocky outcrops. The Haast's Bluff specimen was caught raiding a stock-camp. See Finlayson (1961).

The vernacular name employed by Ride (1970), Macdonnell Range Rock-Rat, is considered no longer appropriate.

Zyzomys woodwardi (Thomas, 1909). Woodward's Rock-Rat
Map 24
Range and Status: Rare and little-known; rocky sandstone outcrops of the north-western escarpment of Arnhem Land: Oenpelli; Mount Borradaile (NTM 1968). [Parry's Creek, near Wyndham, W.A.]

Mesembriomys gouldii (Gray, 1843). Black-footed Tree-Rat

$$
\text { Map } 25
$$

Range: Daly River area north-east and east to Cape Arnhem Peninsula, inland to Katherine River; 5-mile bar, Macarthur River (NMV 1911); Melville Island.

Status: Not uncommon in tall woodland with hollow trees, especially along watercourses and near the coast.

Taxonomy: The race M. g. melvillensis Hayman, 1936 was described from Melville Island; see Johnson (1964).

Mesembriomys macrurus (Peters, 1876). Golden-backed Tree-Rat Map 25
Range: Nellie Creek (1903); Deaf Adder Creek (NTM 1969); Balanbrinni (NMV 1901).

Status: Much less frequently collected than M. gouldii; wooded watercourses.

Conilurus penicillatus (Gould, 1842). Brush-tailed Tree-Rat
Map 26
Range: Daly River area noth-east and east to the South Alligator River and Coburg Peninsula; Roper River Mission (AMNH 1959); Bathurst Island (NMV 1916); Melville Island; Groote Eylandt: Centre Island, Sir Edward Pellew Group (Keith 1968).

Status: Not uncommon, along the coast and on the subcoastal plains, with hollow tress; recorded on Coburg Peninsula actually on the tideline and amongst hollow beach-casuarinas (Casuarina c'fuisetifolia) (Gilbert, in Troughton $1965: 311$).

Taronomy: The race C. p. melibius Thomas, 1921 has been described from Melville Island. The provenance of the Elsey specimen upon which the name Comilurns hemilencturus Cray, 1858 was based has yet to be precisely determined: most of Elseys zoological material was collected at the Victoriat River Depot No. 1.

Melomys Thomas, 1922. Mosaic-tailed Rats
Map 22
Range: Port Keats, north-east and cast to Cape Arnhem Peninsula, imand to Douglas River and Brock's (reek: Bathurst Iskand (NMV 1916):

Melville Island; Elcho Island; Groote Eylandt; Sir Edward Pellew Group (Keith 1968).

Status: Not uncommon, especially near the coast; grassy pandanus fringes of fresh- and salt-water streams and lagoons, and the edges of monsoon forest, in the vicinity of damp ground: mangroves. On Groote Eylandt, reported entering occupied houses (D. Levitt, in litt.).

Taxonomy: See Tate (1951); Johnson (1964). Tate considered most of the above range to belong to forms of Melomys cervinipes (Gould, 1852), with the exception of Groote Eylandt, occupied by M. lutilhus mixtus Troughton, 1935. Ride (1970) and Calaby, in litt., ate of the opinion that the NT populations of the genus are in need of a thorough revision before a clear picture of their taxonomy and nomenclature can be obtained.

Rattus tunneyi (Thomas, 1904). Tunney's Rat
Map 27
Range: Donglas River: Mary River: Brock's Creek; Oenpelli; Cohurg Peninsula (CSIRO 1965); Melville Island: Sir Edward Pellew Group (Keith 1968) ; Calvert River (QM 1969); Tennant Creek; Alice Springs.

Status: Widespread but apparently local. In the Pellews this species is the most numerous and widespread rodent, burrowing extensively in the
welldrained sandy ridges (Keith 1968). Elsewhere it has been trapped along erecks. There have been no records of the Central Australian populations. subsequent to Spencers donation to the NMV in 1916; the dates of collection of Spencer's specimens are not precisely known but some at least were obtained during the period 1894-1897. Of the female from Fennant Creek listed by Waite (1898: 124). which could not be traced by Brazenor (1936), the skull without skin is in the SAM reg. no. M. 2411).

Taxomomy: The race R. t. melvilleus Thomas. 1921 has been described from Melville lstand, and R.t. dispar Brazenor. 1936 from Alice Sprongs.

Rattus collelli Thomas. 1904. Northern Territory Dusky Fiold-Rat Map 27
Range: Kirgg River, north-cast of Oenpelli (BMNH, coll. Wilkins, 1924): South Alligator River; Beatrice Hill (NTM 1961, 1967).

Shatus: Very local but not uncommon where found; clay flats and marshy areas.

Taronomy: Ride (1970) synonymized R. colletti with R. sordidus ((iond. 1858) but subsequent chromosome studies have suggested that the formor should for the present be maintaned as a sepatate species (J. Mahoney. in lim.).

Kattas villosissimus (Waite, 1898)雨. Long-haired Rat Map 26
Rellese culd Stalles: This species appears, from its distribution during the less favourable seamons. Wo hatve its headquarters in the Lake Eyre basin(icomematDiamantina dramage, where it occurs in highly-localized colonies aromad boredtaims, reedy springs and other wet, densely-vegetated spots (P. F. Aitken, in litt., P, K, Latz and D. Howe, pers. comm,). At intervals (of five lo seven years according to Finlayson 1939, 1941) that may be cortelated with the amselionation of conditions by one or successive seasons of good rains. the specion undergoes a spectacular increase, reaching plagie proportions in the Georgina drainage and on the Barkly Tableland, generally on upen plains in the vicinity of creeks and bores. It may swarm for several years hefore declining in numbers ats spectacularly as it increased. Such phatues are accompanied by cqually notable build-ups of predators, especially the Letter-winged Kite, Eilams scriptus, whose movements appear to be closcly-ticd to those of the rat (Parker 1971b), and the Barn Owl, Tyou alha.

In the N'l'. peripheral localities reached by the rat are: South-West Mhand. Sir Edward Pellew Group (Keith 1968), Katherine (CSIRO 1968); Htmhert River (CSIRO 1968): Mongrel Downs (1968, J. Mahood, pers.

- Date of puhtiention given incorrectly as 1897 by 1redale \& Troughton (1934:73) and Ride (1970 : 227).
comm.) ; Napperby Creek; Delny (NTM 1968); Tarlton Range; Marqua (NTM 1968); Pituri Creck; New Crown (possibly from the Dalhousie Springs colony, fide P. F. Aitken, in litt.).

CARNIVORES

Canis familiaris Linnaeus, 1758. Dingo
Range and Status: Widespread and locally common.
Taxonomy: Australian populations are generally referred to C.f. dingo Meyer, 1793. The earlier name Canis antarticus [sic] Kerr, 1792 was suppressed in Opinion 451 of the International Commission on Zoological Nomenclature, 1956.

BATS

Pteropus scapulatus Peters, 1862. Little Red Flying Fox
Map 28
Range: Mainly coastal districts, inland to Deaf Adder Creck (NTM 1969), Wimul Swamp (SAM 1966) and Borroloola (NMV 1912); Elcho Island. With the flowering of eucalypts it may move much further south, and has been reported from Buchanan Creek and Playford Creek on the Barkly Tableland (regularly), Banka Banka, Frew River and Davenport and

Murchison Ranges (frequently; specimen from McLaren Creek, NTM December 1965) and Arthur Creek, Pituri Creck and Sandover River (occasionally). In adjoining western Qucensland it moves scasonally down the Georgina (D. Howe, pers. comm,).

Status: A blossom-feeder, common in the northern part of its range, usually in cucalypt and eucalypt-pandanus woodland, in a variety of country from coastal flats to sandstone gorges. Observed roosting beneath the dry shitts of pandanus (S. A. Parker, $m s$.) and in paperbarks (Melalcuca) along watercourses (J. L. McKean, in litt.).

Pteropus alecto Temminck, 1837. Black Flying Fox

 Map 28Rennee: Mainly coastal and subcoastal: Victoria and Daly Rivers east to the South Alligator River and Cape Arnhem Peninsula; sometimes further inland, as at McColl's Bore, Armstrong River (NTM 1958).

Status: More of a fruit-eater than the preceding; recorded in large numbers from monsoon forest, riverine thickets and mangroves.

7 anonomy: The Australian populations belong to the race P. a. gouldii Peters, 1867 (Johnson 1964).

Macroglossus lagochilus Matschie, 1899. Northern Blossom Bat Map 29
Range: Darwin area (W. P. Walsh, in litt.); Melville Island (SAM 1913): Coburg Peninsulat (CSIRO 1965): Tortilla Flats, Adelaide River (NTM 1967).

Statns: "Sometimes locally abundant. Present throughout the year in Darwin Butanicall Gatrdens, with apparent peak in spring and early summer (up) to 20 seen feeding in same tree). At Rapid Creek, species taken in Tristania luctiflua forest fringing stream margin" (W. P. Walsh, in litt.). The Tortilla Flats examples, three, were mistnetted in an arcade in dense riverine bamboo.

Taxonomy: The Australian popalations belong to the race M. I. narus Matschie, 1913 (McKean, in litt.).

Taphozons georgianus Thomas, 1915. Common Sheath-tailed Bat Map 30
Rellmge dund Stutux: Throughout the NT; common, roosting in caves and mineshafts.

Taxonomy: McKean \& Price (1967) regarded the northern populations ats I. g. troughtoni Tate, 1952, and suggested that the central populations may represent the nominate race.

Map 29

Map 30

Taphozous flaviventris Peters, 1867. Yellow-bellied Sheath-tailed Bat Map 30
Range: Point Charles (NMV 1938); Darwin; Lake Deane (W. P. Walsh, in lift.); Cobury Peninsula (CSIRO 1965); Deaf Adder Creek (NTM 1969); Cape Arnhem Peninsula; Groote Eylandt; Block Waterhole, upper Nicholson River (NTM-CSIRO 1967); Tanami Desert at 20 09', 130 15' (NTM, AM 1965); Newcastle Waters (NTM 1959); Banka Banka (CSIRO 1968); Warburton Creek-Tower Creek junction; Temple Bar Creek (CSIRO 1968); Petermann Ranges and Bonython Range (BMNH 1967).

Status: Widespread but possibly less common than T. georgianus. Roosts in hollow trees; several of the above specimens were shot over water.

Macroderma gigas (Dobson, 1880). Ghost Bat Map 29

Range: Macallum Creek area (Finlayson 1958a); Darwin; Mount Wells, Pinc Creek, Cutta Cutta and Owenia Rockshelter, colonies (W. P. Walsh, in litt.); Oenpelli (MCZ, NMV 1918); King River, north-cast of Oenpelli (NMV 1915); Elcho Island (J. McKcan, in litt.); Deaf Adder Creek (NTM 1969); Ronans Cave (SAM 1966); Groote Eylandt (AM); Red Bank Mine (AMNH 1959); Frazer River, Field River, Alice Springs, Mount Conway, Ellery Creek (Finlayson 1958a: 923).

Status: Rare and vanishing in Central Australia, but locally abundant in the north. A cave-dweller.

Taronoms: M. g. saturata Douglas, 1962 is available for the darker northern populations.

Hipposideros ater Templeton, 1848. Dusky Horseshoe Bat Map 32
Range: Owenial Rockshelter (W. P. Walsh, in litt.); Douglas River; Oenpelli: King River, north-east of Oenpelli (NMV 1915): Deaf Adder Creck (NTM 1969): Cutta Cutta (SAM 1966, CSIRO 1969).

Stafus: Uncommom, apparently needing pitch-dark caves with humidity near saturation-point (W. P. Walsh, in litt.). Mainly in sandstone areas.

Tasonomy: Sce McKean \& Price (1967). The Australian populations belong to H. a. aruensis Gray, 1858.

Hipposideros diadema (Geoffroy, 1813). Diadem Horseshoe Bat Map 32
Range: and Seatus: Known front the NT by 13 specimens mistnetted almongst tall paperbarks (Melaleuca) in a sandstone gorge on Deaf Adder (ieck in Siptember 1969 (NTM, CSIRO). Doubtless a cave-dweller, as it is in Qucensland.
l'axonomy: This isolated population has been described as a new subspecies, I1. d. imornatins McKean, 1970.

Hipposideros stenotis Thomas. 1913. Lesser Warty-nosed Horseshoe Bat Map 32
Range and Status: Three of the four NT records are from the western escapment of Arnhem Land: Mary River, two collected from caves in May 1895 by Dahl, who found the species not uncommon: King River north-east of ()enpelli, two collected from "sandstone cliffs" in 1915 by McLennan (VMV): Deal Adder Creek, one taken by hand from crevice high in sandstone cliff in September 1969 by D. Howe (NTM). The fourth record is from the Gull dramage: specimen from Red Bank Mine area near Wollogorang in 1959 (AMNH).

Rhimonicteris auramtius (Gray, 1845). Orange Horseshoe Bat Map 33
Range: Darwin (AM); Port Essington; Adelaide River (NMV 1912); Oenpelli; Maranboy (AM) : Cuttat Cutta and Smokey Creek (W. P. Walsh, in litt.).

Stutus: "Widespread and common near the coast; distribution may change seasonally. The Cutta Cutta population is $c .50,000$ at present unless I have seriously miscalculated the ratio of Rhinonicteris to Hipposideros ater there" (W. P. Walsh in litt., 1970).

Gould quoted the following observation (requoted in Johnson 1964: 474), that on the Coburg Peninsula this bat "retires during the daytime to the hollow spouts and holes of the various species of Eucalypti". All subsequent observations of the roosting of this species, however, indicate that it is a cave-dweller.

Tadarida australis (Gray, 1839). White-striped Bat Map 31
Range: Scattered localities from the Petermann Ranges (BMNH 1967) north-east to the Stuart Bluff Range (NTM 1961) and Allambi (NTM 1968).

Status: Locally common.
Tadarida loriae (Thomas, 1897). Little Northern Scurrying Bat Map 31
Range: Coburg Peninsula; Mount Borradaile (NTM 1968); Seven-Ten Waterhole, upper Nicholson River (NTM-CSIRO 1967).

Status: Uncommon; the NTM specimens were shot or netted over waterholes at dusk.

Taxonomy: T. l. cobourgiana Johnson, 1959 was based on specimens from the Coburg Peninsula.

Map 31

Map 32

Tadarida planiceps (Peters, 1866). Little Flat Bat
Map 31
Range: Lasseters Cave, Petermann Ranges (NTM 1969); Alice Springs area (NTM 1955. 1960, 1969); 14-mile Bore, Alcoota (CSIRO 1968); Maryvale (NTM 1970); Ross River (NTM 1970): Tea Tree Well (NTM 1963).

Status: Widespread but apparently uncommon; roosting in hollow logs and branches.

Tadarida jobensis (Miller, 1902). Northern Mastiff Bat

$$
\text { Map } 31
$$

Range: Darwin (AM); near White Stone Creek, Marrakai (NTM 1969): Alexandria; Seven-Ten Waterhole, upper Nicholson River (NTM(SIRO 1967); [Doomadgee, north-western Queensland (SAM 1963)].

Status: Apparently uncommon; roosting in tree-hollows.
Taxonomy: The Australian populations belong to the race T. j. colonica (Thomas, 1906).

Myotis adversus (Horsfield, 1824). Large-footed Myotis

$$
\text { Map } 35
$$

Range: Coburg Peninsula (CSIRO 1965); Seven-Ten Waterhole, upper Nicholson River (NTM-CSIRO 1967): Melville Island (NMV 1938).

Status: Uncommon and local. Recorded roosting close to water, in caves and culverts (within smaller crevices rather than on the bare walls) and in hollow trees.

Taxonomy: The Australian populations belong to the race M. a macropus (Gould, 1855); see McKean \& Hall (1965).

Chalinolobus gouldii (Gray, 1841). Gould's Wattled Bat

$$
\text { Map } 34
$$

Range and Status: Widespread and common in the south, north to the upper Nicholson River (NTM-CSIRO 1967) and Banka Banka; further north only two isolated records: Douglas River (Johnson 1964) and Coburg Peninsula (NTM 1961). Roosts in tree hollows and amongst leaves.

Taxonomy: The name C. g. venatoris Thomas, 1908 (type-locality Alexandria) is employed for the northern populations. Central Australian populations are variable and represent a cline between C.g. venatoris and the nominate race (J. L. McKean, in litt.).

Range and Status: In the NT known with certainty only by six specimens netted over Quarantinc Bore, 12 miles south-south-west of Alice Springs, in 1969 (NTM). Finlayson (1961) listed "Chalinolobus cf. morio" from Wollara.

Chalinolobus nigrogriseus (Gould, 1856). Hoary Bat Map 33
Range: Brock's Creek; Coburg Peninsula (CSIRO 1965); Cape Arnhem Peninsula; Groote Eylandt; Sir Edward Pellew Group (Keith 1968); Red Bank Mine (AMNH 1959); China Wall and Block Waterhoic, upper Nicholson River (NTM-CSIRO 1967); 47 miles north of Daly Waters (NTM 1961).

Status: A northern species. Widespread but uncommon. Recorded roosting in rock crevices.

Taxonomy: The NT populations belong to the race C. n. rogersi Thomas, 1909 (H. M. Van Deusen, in litt.).

> Eptesicus Rafinesque, 1820. Little Bats
> Map 35

Range and Status: Throughout the NT, common; roosting in caves and mineshafts.

Taxonomy: The name E. pumilus caurinus Thomas, 1914 is generally used for the NT populations of this genus. In view of the remarks of McKean \& Price (1967) and McKean, in litt., concerning the need for a revision of Australian Eptesicus, no specific name is here used.

Nycticcius balstoni (Thomas, 1906). Broad-nosed Bat Map 36
Range: [Forrest River Mission (AM 1952); Sturt Creck, WA] Darwin; Fogg Dam (CSIRO 1964); Marrakai HS (NTM 1963); 46 miles south-east of Adelaide River town (NTM 1958); Red Bank Mine (AMNH 1959); Border Waterhole (NTM-CSIRO 1967); Alexandria; Tennant Creek; Napperby (reek (NTM 1969); Karanji Bore (NTM 1963); Alice Springs area (NTM 1960, 1965, 1969); Horseshoe Bend.

Status: Widespread and locally common. A specimen from Wire Creek was one of live roosting in a hollow tree-limb with two Tadarida planiceps.

Taxonomy: The northern populations are generally referred to $N . b$. caprenus (Troughton, 1937) and those of Central Australia to nominate N.b.bahtomi. J. L. McKean, in litt., considers that the type of Scotophilus .rreyii Gould, 1858 (type-locality Port Essington) may prove to belong to the taxon at present known as $N . b$. caprenus.

Miniopterus schriebersii (Kuhl, 1819). Bent-wing Bat Map 34

Range: Darwin area; Tortilla Flats (NTM 1967); Virginia Mine (W. P. Walsh, in litt.); nine miles west of Katherine (SAM 1966): Deat Adder Creek (NTM 1969); Timber Creek (NMV 1963).

Status: Locally common, in deep caves, mineshafts and abandoned buildings. W. P. Walsh, in litt., estimated the Virginia Mine colony to number more than 50,000 bats. The nine Deaf Adder Creek specimens were shot in sandstone gorges, six over a waterhole.

Taxonomy: The NT populations are generally referred to M. s. orianue Thomas, 1922.

Nyctophilus geoffroyi Leach, 1821. Lesser Long-eared Bat
Map 37
Range: North to False Smoke Hills (AM 1965), Tennant Creek, Alexandria and Springvale (NTM-CSIRO), with an isolated record from the Katherine area (NTM).

Status: Scattered but locally not uncommon. Roosts in trees, occasionally in caves and rock-crevices.

Taxonomy: The NT populations are generally referred to $N . g$, pallescens Thomas, 1913.

Nyctophilus bifax Thomas, 1915. North Queensland Long-eared Bat Map 37

Range: Daly River; Brock's Creek; Melville Island; Coburg Peninsula (CSIRO 1965).

Status: Unknown. Dahl found it abundant around the Uniya Mission on the Daly River in 1894. Of the Brock's Creek specimens, one was flying over a waterhole, the other clinging to the bark of a tree in daylight (Johnson 1964: 479).

Taxonomy: The NT populations belong to the race N. b. dacdalus Thomas, 1915 (Johnson 1964).

Nyctophilus arnhemensis Johnson, 1959. Arnhem Land Long-cared Bat Map 37
Range: King River, north-east of Oenpelli (NMV 1915); Tortilla Flats, Adelaide River (NTM 1967); Brock's Creek; Cape Arnhem Peninsula; Groote Eylandt; Sir Edward Pcllew Group (Keith 1968); Springvale (NTM-CSIRO).

Status: Little-known but probably not uncommon; in dense tall paperbark woodland, passages in monsoon forest and the gloomy arcades of dense riverine bamboo. Found roosting beneath the bark flaps of large paperbarks.

Taxonomy: There is a possibility that Nyctophilus arnhemensis is a junior synonym of Nyctophilus walkeri Thomas, 1892, which name was based on a single specimen from the Adelaide River (J. L. McKean, in litt.).

ACKNOWLEDGMENTS

To the following mammalogists my most grateful thanks are due: Mr. P. F. Aitken, South Australian Museum, for the loan of material, for details of specimens in his care and for some most fruitful discussions on vernacular names; Mr. M. Archer, Western Australian Museum, for identifications in the Dasyuridae* and for allowing me to include some of his unpublished conclusions concerning this family; Dr. J. L. Bannister, also of the Western Ausiralian Museum, for details of material collected by Mr. H. Butler for the British Museum (Natural History) in 1967; Mr. J. H. Calaby, C.S.I.R.O. Wildlife Research, Canberra, for
seactously allowing mo fo instade defaik of material colleced on the Cobarg feninsulat (1965) and for his valuable comments on nomerous points of Lasonomy and momenctature: Miss 1. Covacevich, Queensland Muscum, for tho loan ot material and for details af ohen specinens in her cate Miss J. M. Dixum. National Musenmy uf Viclontit for the lain of matlerial and for delaik of her entive holdings of N.'. mammals; Mr. J, Edwards Hill and Miss P. D. Jenkins. British Mukeum (Natural Hiskory), fop their writical comments an specimens collected by Stalker and Wilkins; Mr. C. W. Mack, Mlmeum of Comparative Zoology, Harvard University, for supplying detaily of material: Mir. J. Lo Mekean, C.S.I.R.O. Wildile Rescurch, Canberrat, for identifications in the Chiromeraw and for his gudamee in the taxonomy and nomenclature of this order; Mir, J. A, Mahoncy, University of Sydney, for identifications in the Muridae ${ }^{\text {a }}$ und for many helpful comments: M16, Basil Mathow. Australian Museum, for details of material in his care: Mr. B. Richardson. University of New South Wales, for his comments on the Orphemper-group in the gentus Mfarppun; Dr. IJ. M. Van Deusen, American Moserm of Nistural History, fon details of material in his sare.

Mr. R. Ilart. Director. Primary Industrien Branch. No.Tre kindly allowed the id the the records and files of the Northern. Vervitury Museum, includine the resuls of the momerous faunall surveys undertaken by the Branch.

For additionall records and comments 1 um indebted 10: Ms, R. Berty, Darwin; Mr, R. Darken, Alice Springs; my colleagues Messes. D. Fegan, D. Howe and P, K. Latz:
 Centre, Darwin. Who allowed me to gute from his sxtensive lieldnotes on the Chitoptern of the northern N.T.
for lach with biographical delatils oll collectots I lhank:- Ar, and Mrs. D. Bucmers

 Lands ant Survey Brunch, NTA. Dankina and Dr. H. M. Van Deustr

My thanks also to colleagues past and present whose ellous have helped to build upt the zoological collections of the Northern Testrity Museum: Mr. B. So, Bulton, Mr. L. (othett,
 Mr. A. O, Nicholls, Mr. T, Ryan, Mr, A. K. Shipway, Mr. K. R. Slater. Mr. D.. R. Stephens, Mr. P. Sullivan and Mı, H. Waksfield. Mr. Ifome nate manv valuable contrihutions io the draft.

1 owe special thanks to Mr. P. Newalan and Mra, K, Clark, whace exsellent typing was matched only by their forbeatance,

1 ITFRATURE (ITEJ)

Ses alko Johnson (1964: 508-15) and Ride (19718: 213-35).
 Pseudnmyinae) with nutes on at new symonym, is duse. Vist. 83: 37-45.
 9. Commonwealth Bureat of Census and Statistics, Adelates.
 Spencer) an Eyre Penimsulia, Suth Australia. Vict. Nafo, Alcht., 88: 103-1L.
Burnard, H. Ci. 1914. Search for the eges of Coblumicincla weodnewti. Emm. 13: 210-12.
 з- ※。
Campbell, A. J. and kershaw, J. A. 1913. Nutes on at sathl collection ol bitdoskine from the Nurthern Territory, Eunt, 12: 274-X.
Chisholm, A. Ha 1964. .1. R. Elscy. Supteon, Natturalist, Explorer: ght. Nato 17: Ribl-7h,
 312-23.
Colleti, R., 1897, On a cullection of mammale froon North and Nurtlowest Amarata. Prove. Senet. Sire, Lond, |897: 317.36.
Dahl, K., 1926. In satvage Austablit, An awcount of "bintiog und corlscting expedition to Arnhem Land and Dampier 1.and. I.ondon: Philip Allun.
Davidson, A. A. 1905a. Explurations in Central Australian. Mr. Davidson's nomes mis country explared cast uf Telegraph Lituo. So. sush. park. popers, 27: 3-1\%
Davidsun, A. A., 1905b. Journal of the Wastern lispedition. Mhid.: 18-71.
 Alust. 43: 43-6.

[^3]Dixom, J. M., 1970. Catalogue of mammat types (Class Mammalia) in the National Muscum af Victoria. Mem. Nat. Mins. Vict, 31: 105-14.
Ewall. A. I., mad Davics. O. B.. 1917. The flora of the Northern Perritory Melbourne: McCiarmon, Bird \& Co.
Finlayson, 11. 11., 1930. Notes on same South ind Central Nustralian mammals. Pl. I:
 Aluse, 54: 177-80.
Finlaykun, 11. H.. 1932. Preliminary description of two new mammals from South Australia, lhiu., 56: 168-71.
Finlayson. 11. H.. 1935a. Miscellaneous notes on Some Species of Birds in Central Australin. S. Jlast. Orn, 13: 88-91 (July).

Fimlitysun, 11, H1., 1935b. On mammals from the Lake Eyre Basin. Pt 11 -The Peramelidac. Trans. R. Soc. S. Ausp, 59: 227-36 (23 December).
Fimblysun. 11. H. 1935c. The Red Centre. Man and beast in the heart of Australia, Sydney: Angus \& Robertson. (The date given by Johnson (1964:509), 1943, is that of a reprint).
Fintuynon. H. H., 1939. On the mammals from the Lake Eyre Basin. Pl. A: The Monodelphia. Trums. R. Sioce s' Aust. 63: 88-118.
Finlaysun. H. 11., 1940. On Centual Australian mammals. Pt 1: The Muridace Ibide, 64: 125-36.
Finlayson. H. 17., 1941. On Ceniral Austratian mammals, PL. 2: The Muridae. Ibid., 65: 215-32.
Pinlayson, H. H., 1943. A mew species of Leigenthestes (Marsupialia). Bhid., 67\% 319-21.
Finlayson, [T. H.. 195xit. "Recurtence" of Mncroserma gigas Dobson. Nature, 4613: 923 (29) March).

Pinlaysun. H. H. 1958b, On Central Austratian marmmals (with nolice of related species from adjacent tracts). Pt. III-The Potorvinte. Rec. S. Aust. Mise, 13: 235302 (15 ^ugust).
Jionlaysun. H. H.4 1961. On Central Australian mammals. Pt \&V-The distribution and stitus of Central Australian species. Ibid, 14: 141-91.
Fiitl. H. J., and Colaby, J. H. 1969. Kiangaroos. Melbournes F. W. Cheshire.
Cisc, T. C. F.., 1910. 'Tanami Goldfedd and District. S. Alust. punt. papers, 31: 5-22.
Giles, İ. IXBy, Australia twice traversed, being a narrative compiled from the journals of five texpeditions into central South Australia and Weatern Australia, 1872-76. Vol. 1. Lundon: Sampson Law. Marston. Searle \& Rivington Limited.
Citatuett, L., 1933, The distribution of the marsupials in Western Australia. J. R. Soc: W. 1/1.s., 19: 17-32. (Date incorrectly given as 1934 by Johnson, 1964.)
Gritilhs, M., 19fX. Echitnas. Ins. Sed Monogr: pure and appl. Bioh., Zool. Wis, vol, 38. Fid. G. A. Kerkut. Oxford: Pergamon Press.
llill, Ci, 1:., 1913. Ornithological notes, Barelay Expedition. Eimb, 12: 238-62.
Ingitm. C. 1907, On the birds of the Alexandra district, northern lerritory of South Austratian, Jhis. (9) 1: 387-415.
Iredite. I', and Troughton, E. Le G.. 1934. A checklist of the mammals recorded from Australia. Mem. Allsf. Mfrso, 6: $\mathrm{i}-\mathrm{x} 1,1 \times 122$.
Johnsun. D. 11.- 1954. A new marsupial of the genus sintechinus 1 rom Northern Australia. Proke hiol. Sinc. Wash., 67=77-80.
Johnson, 1J. H., 1964. Mammals, in: Records of the American-Austrulion Sciontific Expedition (1) Aruhem Land, \& (Zoology): 427-515. Ed: R. L. Specht, Melbourne: Mstbourne University Press.
Kocht K, 190k. Mummals of the Pellew Islands. Mimug (Mount Isa Mines Magazine). June 1968.
Lidicker, W. K, and Marlow, H, J, 1970. A review of the dasyurid matrapial genas Anochinumys Kreft. Alammatia, 34: 212-27.
Loversdge, A_{1} 1934. Ausbralian replifes in the Museum of Comparative Zoology, Cambridge,

Mindonald, J. D., and Colston, P. R., 1966, J. R. Eilsey and His Bird Observations on Gregory's Overland Expedition, Australia, 1856. Kiml, 65: 255-78,
MeKear, J. L.. 1970. A new subspecies of the horseshne bat Ifipposideros diadema from the Northern Territnry, Australia. W. Aush. Nal., 11: 138-40.
McKean, J. L. and Hall, L. S., 1965. Distribution of the Large-footed Myotis, Myonts whersus, in Australia. Vice. Nuh., Mchb, 82: 164-8.
Mckean, J. L., and Price, W, J.. 1967, Notes on some Chiroptera from Qucenstand, Australia. Mommalid. 31: 101-19.
Mclennan. W, R., 1917. North Australian birds. Emu, 16: 117-58, 205-31 (Conmmoicated by M. L. White).
Newsome, A, E., 1962. Rabbit-eared bandicouts or hilhies, Aus\%, mut. Hist., 14+ 97.\%.
Parker, S. A., 1969, New and interesting records of Central Australian birds. S. Aust. Orn. 25: 59-71.
Jarker, S. A., 1971a. Notes on the Small Black Wallaroo Mocropus hermarilus (Rothschild, 1904) of Arribem Land. Virt. Nur. Melb., 88: 41-3.

Parker, S. A., 1971 . Critical notes on the status of some Central Austratian birds. Eimm, 71: 99-102.
Peterson, R. Fe, 1964, Silently by night. New York: McGraw-Hill.
Ride. W. D. I.., 1964. Amechinus rosamundae, as new species of tasyurid marsupial from the Pilbara District of Western Australia: with remarks on the classification of Amtechimus. 11', Alus. Nut., 9: 58-65.
Ride, W. D. L., 1970, A Guide to the Native Mammals of Australia. Melhourne: Oxford Universily Press.
Smyth, D. R., and Philpoth, C. M., 1968. Field notes on rabbit bandicouts, Mormis lagotis Reid (Marsupialia), from central Western Australia. Troms: R. Soc. S. Austo, 92: 3-14.
Specht, M. M., 1964. The history of zoological collections made in and on the shores of the Arnhem Land Aboriginal Reserve, in: Records of the American-Anssmalion Scientific Expedition to Arahem Land, \& (Loology): P-7. Ed, R. L. Specht. Mclbourne: Melbourne University Press.
Spencer. W. B., 1896 a . Narrative, int Report ont the work of the Horn Scientife Expertitiont (co Centrul Australid, Ht. 1:1-136. Ed. W. B. Spencer. London: Dulau (September 1896).
Spencer, W. B., 1896b, Mammalia, int: 16ik., Pb. 2 (Zoology): 1.52 (Fichruary 1896),
Spencer. W. H., 1897, Description of two New Species of Miarsupials from Central
Australia. proc. K . Soc, Vich, 9 (new series): $5-11$.
Spencer, W. B., 192x. Wanderings in Wild Australia. 2 vols. London: Macmiltan \& Co. Lid.
Spencer, W. B., and Gillen, F. J., 1912. Across Alustratia. 2 vols. T_ondon: Macmillian \& Co. Lid.
Story, G. M., $\begin{gathered}\text { 1966. J. T. Tunney"s ltinerary in Northern Australia } 1901-1903 \text {. Eimu. Gif: }\end{gathered}$
Storr, G. M., 1967, list of Northern Territory Rirly. Spece. Publ. Wh. Ausp, Mus., A. Perth: Government Printer.
Tate, G. H. H., 1948. Results of the Archbeld Expeditions. No. 60. Studies in the Peramelidae (Marsupialias). Bulh. Amer. Mius. nar. Mist., 92; 313-46.
Thate, G. H. H., 1951. Results of the Archbold Expeditions. No. 65. The roulents of Australia and New Guineat Thid. 97: $183-430$.
Terry, M. 1925 . Acrass Unknown Ausiraliat. London: Herbert Jenkins Lidd. (frons Winton
to Derby).
'Terry, M. 1927. Through A Lind Of Promise, Lundon: Herbent lenkins Jid. from Katherine to Broome).
Terry, M, 1930. Hidden Weatsh and Hiding People. Jondun: Putnam. (mainly Tanami Deseri).
Jerry, Mo, 1931. Untok Miles. London: Selwyn \& Blount Idd. (Mainly Petermann Ranges
area).

Terry, M., 1937. Sand nind Sun, London* Michael Joseph Limited. (Lake Mackay-Tanami (1rea).
Thumaty, (0, 1888 . Catalogue of the Marsupialia and Monotremata in the collection oll the British Minscum (Natural History). London: British Muscum (Natural History')
Thomis, O., 190t.. On in collection of mammals made by Mr. J. T, Tunrey in Arnhem I.and, Norihern Terriory of South Austratiat. Novif. zonlo, 11: 222-9.

Ihomas, O. 1926. On various mammals obtained diriog Capt, Wilkins's Expedition in Australiu. Ahm, Mug. nat. Hisf., (9) 17: 625-35.
Thomson, D. Li.. 1!4y, Arnhem Land: explorations amung itn unknown people. Pt. IIt. On toot across Arnhem Land. Geogr. J. 114: 53.67.
Tindate, N. Ba. 1925.. Natives of Groote Eylandt and of the west cuast of the Golf of Carpentaria. Rece, S. Aush. Mus., 3: 61-102.
Proughton, E. Le Ci. 1937. The Status of Mus novadollandine and Allied Forms. Rece. disto Mriss, 20: 188-9.
limughton. Li. Le Gi., 1964. A review of the marxupial genus Smimhopsis (Phascogalinae) and diagnoses of new forms. Proce Limu Sue. N.S.W. 89: 307-21.
Troughton, tio lie Cin 1965. Furred animals of Australia (8th edition); Sydney: Angus \& Künerson.
Van Densell. H. Ma 1969. Feeding habits of' P'unigrale (Marsupialia, Dasyuridate). J. Mammo, 515: 6,16-8.
Walte, 4. R. 18y\%. Observalions on Muridae from Central Australià. Ifoc. R. Soce Vict., 10 (new scries): 114-28.
Waketictd, N, A., 1967. Some taxonomic tevision in the Austrathan marsupial genus Mefthmght (Macropodidac), with description of a new species. Vict. Nal. Melto. 84: K-22.
Walls. C. H, S. 1969 Distribution and habits of the rabbil bandicoot. Trans. R. Ser...S. AwM.. 93: 135-41.
Whittell, H_{1} N1. 1954. The literature of Australian birds: a history and a bibliography of Anstralian urnithology. Perth: Paterson \& Brokenshat Limited.
Wilkins, C. H.. 1928.. Undiscovered Australia, being an accuunt of an expedition to tropical Abstralia to vollect specimens of the rater native fanma for the British Musenm, 1923-1925. London.
Winnecke, C. Ci, A., 1897. Sournat of the Horn Scientilic Pxploring Expedition, 1894. Adelaide: Government Peinter.
Zietz, 1914is. The sivlfouna of Melville Island, Northern Territory, S, Aust. Orn, I (1): 11-8.
Ricla, 1914h. Melville Ishand birds. Whel, 1 (2): 17-8,

Appendix I
 NOTES ON COLLECTORS AND COLLECTIONS

These notes bfe not exhastive In the main they treat new information and obscure puinti, chemmoted during the clechlimis preparation, that would be of salue in the compilalion uf it eunmprelensive bibliugraphy. See also Whitcll (1954) and M. Specht (1964).
('ithill. P.). Belween 1912 and 1920 Cahill collected birds in the Oenpelli-End Alligath Raserara, mow of these are now in the NAIV. In 1 'g13 he donated a pecimen
 specimens of Miseropos bernardus and one of Pervitercas empimma collected by Cahill.
Cornock. Thomsas W. () Wen as an ussistant with Edward (later sir) Charles Stirling (then lfon. Director, Somith Australian Muscum) in 1890-91 when bliting accompanical the Governor of South Austrafia, the Earl of Kintore, to the NT, In the SAM there sre a fen bird pecimens of Cornoch's, Jabelled "Mount furrell, bsys" and "Port Dumwint. Mareh 1891". Possibly lic abtained the Mount Burrell specimen of Nommys longicarntafos (a.1.).
Dihl. K. ($1871-1951$). Victoria River-Daly River-Mury River-Soulh Alligaror River. 1894.1846 (Daht 1926). Dahb'4 notebooks and the great majority of his collections atre
 supsersede the piecemeal accounts by Collett and Thomas.

De Teliga, G. W. 1 - J. Sce Schevill, W. E.
Dodd, Walter Dempsey (189(-1969). Bnon 27 Aarch 7891 at "Tonwony. Qucenstand, in 1913 Dodd collected mammals and hirds (now in SAM) on Nolville ksand, Ballurst Island und the upper Mary Rivec. His Melville lishand birds were wsitcon up by Ziek (19/4a. 1914b); his mammals have never formed the subject of a reporf. Dodd diad 17 May 1969 at Rrisbane.
Elsey, J, R. (1634-1858). Accompanicd A.C. Ciregory"s 1855-1856 expedition ucross morthem Alstralia. Most of his zoulogical material (now in the BMNH) was dhtaned at the Viçtoria River Depol. No. 1. Although Elsey concentated on hirds, he oblained it fex mammats, forst of which sare now without their datas. See Chistuln (1964 , 1966) ind Macdomald \& Colsun (196ti).
Finlayson, 11. H. (1895.) An unthority on the mammals of Conrral Ausiralia, Honority Curbtor of Nammals at the Soulh Austratian Muselim fom 1940 io lyoti, he amassed at large private collection. the inaccessibility of which is a source of eegred Fanongst matmmatogints. Fimlayson's crowaing pupel on Centril Australian smummat appesared in 1461.
CBillen, F. 1. (1855-1412). Burn 28 Octobes 1855. Actompnatied W. Radwin Spencer on several expeditions. Some, if not all, of the early material from the Bull Plain north of Alice Spromes was obtained by Gullen. Gillen died of fmyotrophic lateral seleroxis on 5 Junte 1912
Itill. Ci. (1880-1954), Naturalist on the Barchay Lxploring IExpedition meremtral Australia and the Northern Territory, 1911-1912; Government Lintomukgist. NT. 1412-1417. No complete report was cver pobbabed eoneerning the results of the lsarclay Expedition, an which Hill made collections (now in the NMV) of birds, mimmaty, leptiles, insects and platrats. For at dated itinemary of the ourward stage of this expedition (Dodnadatias the the Macarthur River) see Ewari ic Davies (1917. mar). Oithes notes may be found ils Hill (1913) and Camplett \& Kershaw (1913). Hill's notehoaks of 1911-1912. anostly in shorthand, logether with those of 11 . Vere barelay, are in the Commonwealth Archives, Canbera; the journal of the expeditionss surveyor. R. Merphernon, is in the ullice of tbe Lands and Survey Branch. Northern Ternitory Administration. Darwin. The slady and publication of materiat refating to this expedition would he it mest valdable thedertaking. lijll died al Sydncy on (x Jinvary 1954.
Hosmer, William I. (ion. 1930-). Bern is Ireland. An Australian-based hergeologist, leader of the lygu Spalding-flomer Expedition, which visited the N'I (specimens. inclading in few manmats, in AMNH), Also on the 1959 Spalding-Peterson Fexpediaiors.
IHyy, C. M. () Dougtas River and Brack's Creck. 1920, Hay's specimens are in the USNM ind were detuiled by Johnsan (1964).
Julinom. David Hurn (1912- 1. Bom Albany, Oreqon, 9 Suplember 1912. Curatur wh Mammals. Unitcd States Natomal Muscumt IV4l-6x. Mammatogiat on the 1948 American-imberalian 1:xpedition to Amhem Iand (Juhman 1964).
Iestang, Abhert de 1 . A Frenchman, an amateur naturalibt who Jived on a smail property mamed Adel's Girove some 90 miles quath-west of Burketown on 1 , awn Hill Crech. north-westerin egreensland. His main interest appears to bave heen bosany, and he sent plant collections to the Quecmatand IIcrtantun. Brisbanc. Trunghtan (1965: $2!-30$) mentioned is setice of lfanigate ingremi (4.1.) in the AM collected by de lestans.
Mclennam, W, R. ($1882-1935$) . Constat NT west to the King River (norlfecist of Oefpellil, 1915 (NAcLennan 1917). Altheugh Meldmnan concentrated on bidde, be whtaincd it few manmals (now in the NMI) from the sandstune banges of the King River, which Withins
 Maclennan ($火$.g- Whitell 1954) and M'lemall. However. Alelenman is the form appearing on his birth-certilicato und used by him in his Iellerk (Mrs: 'I'. Kloot. Arehivist. Royal Australisian Ocnithologist Union, in filf.).
Ieferson, Russell firancis (1922 -). Kurn 11 Dine 1422 at Monkelair, Now Jemey. Mammalogist assuctited with the AMNH 1952.59. I.ed the 1959 Siphlding-Pelerton Expedition to Qucensland and the N^{\prime} (spec mens in ANNH). Now a free-fance catitor, asthor and arlist livisus in damestown. Rhode Jytand. LI.S.A. Hia several borsh include a popular work on bais ([elepson 1964).
Sillovill, W.E (). Member of the $1931-32$ Harvand Australiath Fixpedilome. In the NICZ. Itsere is a coltection of 48 mammat specimens collected in the tlernannsbure, Barmow Creek and Teatrec Well areay in 1932 by Schevill \& (3. W, De Jeliga. Although I'ate mentioned afew of these specimens in his revisiuns. the eallection was never reported in ils contrely. Sce loveridge (1934:24.4.5).

Spalding. Ihilip (cne 1903-), Financed the 1959 Spalding-pererson Expedition and the 1960 Spaldun-Hosmer Expedition.
Spance.. W. 13. (1860-1929). Zoulogist on the Horn Expedition to Contral Australia in 1894. He made sevegal subsequent trips to the NT, some with $\%$. J. Gillen isee Spencer \& Gillen 1912, Spencer 1928). Spencers contacts of 1894 (P. Byme of Charlothe Walers. 1.. Cowle of llamurla, et at,) continued sending him mammals for some sears. "The Snencer mammal collection is a vallubble one of both historical und seientific signiticance. However, the fisssage of lime has sesulted in considerable dillictlty in identification of much of the lype materipl. Some specimenc have vanished, possibly destroyed, whise othern have loat most of their datit" (Dixon 1970:105). One might add that in other case's, iss with the "barrow Creek" material (see Gizetteer), some of the specimens secm (o) have heen ineorrectly localized. Details of the Hurn lixpedition finerary more precise than those lound in the Horn Report appear in Winnecke (1897).
Staker, W. (1879-1910), Atroy Downs. Alexandria Station. 1905-1906. At that time N(exandfit coverded a Far greater area than now (see Ingram 1907). Restriction of the frovenames of Statiers material to plesent-day Alexandria is therefore mosatisfactory, and llork needs lo fe carried ont on it dated itinerary. Stalkers material is in tho BMNE,
Tiersy. M. (189y,), In the 1620 s and 1930 's Tergy exploted large tracts of Central Custratis, nutably the Tanami Desert and the Lake Mackay lake Amadeus regions, He olatninest marnmills fur 11. H, Finlaysom, amongy them the holotypes of lagemehestes nscmbans ind Berfongin penicillota amhydra. 'Tery's books on these surveys (1925. 1927, 1930. 1931. 1937) are full of the most interesting detait.
'Thumson, D. F (1901-1970). "Donatd Thomson went in 1935 to Arnhem Iand He made an exkensive zoolegical collection, now at Melbourne University, pimatily as is backgonnd io the study of the ecology and food-gathering hahits of the shorigines. The material has been worked upon, but no systematic publication has been made nf the collections, mainly mammats, reptiles and anphibians" (M. Spech 1964:5). Duringe 'Thomsun's later years at least, these collections wero not avablable to workers. Their critical examination and publication is at matter of the lirst importance.

Thomsorn died on 13 May 1970 :11 Flham, Victuiti. His ashes were scattered from a platre over Cialedon lzay in northeastern Armhem Land.
Findale, N, 33. (1900-). Roper River 1921: Groote Eylandt 1921-1922, Tindale colltecterl it few mimmals (now in the SAM), which have mot been reported. See "lindale (1925).
lunkey, 1.F. (1871.7929). Armbem Tand, 1902-1903. 'Tunney's large bird ind mammal cenlections atre dispersed amonght the BMINH. WAM, USNM and AMNH. Sterr (196f). wsing infornation from 'Tunncy's bird specimens, clacidaled much of 'Tunney's ifincraty in the N'I. A sudy of the mammal labels. in conjunction with Storn's findings: would rove it most frofitable exercize.
Wilkjas. Sil (berge Hubert (18x8-195K). Fol Wilkins' activities in the northern NT during 1924 and 1925, consult his bouk (1928). His collections. which inelude a pood number of mammal specimens, were debosited in the 13 MNH , alihough paratypes of several mew forms were presented to the Qsteensland Muscum. Widkins" "King River" is not the tribulaly of the Katherine River as Thomas (1926) thought, but the King River norlh-east of ()erpetli and south of the Goubbun Islands (Wilkins 1928: 200); Juhnson 1964: 455), Wilkims collections have not yet been filly reported.

Wilkins died overnipht 30 November-J December 1958. Some months Juter Combmander Jimes Calvert. U.S. Navy, earried his ashes north heacath the Polar Ice where they were scallered on 17 March 1959.

Appendix II
 GAZETTEER OF HLACE-NAMES

 thations irre thuse bif the prexent homesteadse see also sior $1967=71.83$

Adelaide Rives, fown on the Adelaide River where it in erosacd by stuat Highway 72 uthes 5 of Datwin, at 130 15', 131 07°

Alexandria, calle station on Burkly Tableland, $19^{\circ} 03^{\prime \prime} 136^{\circ} 42^{\circ}$, See Appendis 1 undes W. Stilker.

Alice Springa, fown on the Todd River, $23^{\circ} 42^{\prime}, 1333^{\circ} 51^{\prime}$, Early miterial lahelled "Alice Springsi" sometimes cane from fusther afield: vome of Gillen's specimens so labelled were actually from the Burt Plain.
Allambi, cattle station, $24^{\circ} 13^{\prime}, 134^{\circ} 25^{\prime}$.
Alroy (Downs), cattle station on Barkly Tableland, $19^{\circ} 17^{\prime}, 136^{\circ} 03^{\prime}$.
Angurugu River, Groote Eylandt, estuary it $13^{\circ} 58^{\prime}, 136^{\circ} 24^{\prime}$.
Arllunga, former gold town, $23^{\circ} 25^{\prime}, 134^{\circ} 43^{\prime}$.
Arnherm Land, formerly denoted the far north of the NT between the 'finoe sea and the Ciblf of Carpentaria; now senerally restricted to the Aboriginal Rewerve in the eastern two-thirds of this area. The greater part is occupied by the preduminantly sandvone Arrihent Land Platean, the llanks of which we known as the Nrohern Iand lisearpment.
Arhtur Cresk, crossed by Jervois Slock Route at $22^{\circ} 41^{\prime}, 136^{\circ} 41^{\prime}$.
Altack Creck, crossed by Stuarl Highway st $19^{\circ} 02^{\prime}, 134^{\circ} 08^{\prime}$.
Ayers Range. $25^{\circ} 55^{\prime}, 133^{\circ} 09^{\prime}$.
Ayers Rack, $25^{\circ} 21^{\prime}, 131^{*}$ (02^{\prime}.
Bagot Creek (Camp 23 of the Horn Eixpedition. 1894), leaves George Gill Range al $24^{\circ} 24^{\prime}$ $131^{\circ} .48^{\prime}$. Not to be confused with the Bagot Creek 9 miles W of Hermannsburg
Balunbrinni (on label of Mesembriomys mucrurus. NMV): Spencer (1928:552) referted to "it small waterhole on the Leila Creck, called Ballanbrini" Leila Creck is a tributary of the upper Macarthur River. I have falled 10 find it waterhole of this name. loying on Spencer de Gillen's route between O.T:. Downs and Leila Creck there is a Balambrini Creek (a tributary of the Limmen Bight River) crossed at $16^{\circ} 35^{\prime}, 135^{\prime \prime} 20^{\prime}$. Pending further research, one must Jeave the Ballanbrini Waterhole of Spencer \& Cillen on the track between O.T. Downs and the Leila-Macarlhur jurnction,

In the NMV there are several bird specimens from this expedition labolled "Ballanginie", possibly is variant spelling of the above.
Banka Banka, cattle station on Stuart Highway, $18^{\circ} 47^{\circ} .134^{\circ} 03^{\circ}$.
Barkly Tableland, north-castern region of plains of great pustorat value, about 300 miles long by 100 miles wide, orientated NW-SE between 17° and $20^{\circ} \mathrm{S}$; bounded in the N and NE by the Gulf of Carpentaria drainage (Carpentaria fall), in the W and S by semidesert, and in the SE by the Georgina basin.
Bartow Creek, small town on Sluart Highway, $21^{\circ} 31^{\prime}$, 133° 53'. Spencer \& Gillen called here in 1901 and 1902; sume of their specimens lahelled "Bsarrow Creck", however, maty have come from elscwhere (see remarks under Dasyurobics bymei and Mocrofis lawnat) Indeed, it is possible that material collected further south and further north was despatched from Barow Crech and so labelted upon its receipt in Melbournc. Similarly, "Alice Springs" and "Pennant Creek" may often have denoted points of despatch tather than of provenance. (Dr. G. M. Storr, in lifl., now considers that the seven specimens of Ctemons rohustus Storr (Scincidac) ubtained by Spencer and labelled "Harrow Creek" were actually collected considerably further nurth.)
Busednw Range, $25^{\circ} 05^{\circ}, 132^{\circ} 05^{\circ}$.
Rathurst Island, immediately W of Melville Island, $11^{\circ} 40^{\prime}$. $1300^{\circ} 211^{\prime}$
Bearice Hill. 35 miles ESE of Darwfa, $12^{\circ} 39^{\prime}, 131^{\circ} 19^{\prime}$.
Bectalon, cartle station, $17^{\circ} 14^{\prime}, 133^{\circ} 47^{\prime}$.
Bentinck lsland, Qld, in Gulf of Carpentaria al $17^{\circ} 03^{\prime}, 139^{\circ} 30^{\prime}$ 。
Isirdsville, Qld, town at $25^{\circ} 54^{\prime}+139^{\prime \prime} 21^{\prime \prime}$.
Block IVaterhole, upper Nicholson River. $17^{\circ} 56^{\prime} .137^{\circ} 0 y^{\prime}$,
Bobby's Well = Kurtitinit Well. Gob.
Bond Springs, cattle station, $23^{\circ} 33^{\prime}, 133^{\circ} 56^{\circ}$.
Bonython Range, WA near the N'I border, $23^{\circ} 38^{\prime} .128^{\circ} 54^{\prime}$
Border Waterhole, NT/Qld border, $1 x^{\circ} 36^{\prime}, 138^{\circ} 00^{\prime}$
Horroloola, small town on the Macathut River, $16^{\circ} 04^{\prime \prime}, 136^{\prime \prime} 18^{\prime}$.

Brock's Creek, station on North Australian Railway, 27 miles SE of Adelaide River, $13^{\circ}{ }^{\circ} 28^{\circ}$. 131° 25'.
Brumette Downs. cattle station on Barkly Tableland, $18^{\circ} 38^{\circ}$, $135^{\circ} 57^{\circ}$.
Buchanain Creck, left-bank tributary of the Playford 12 miles SE of Alcxandria.
Bundey River, begins at $22^{\circ} 50^{\prime}, 134^{\circ} 35^{\prime}$, flows NE into the Sandover at $21^{\circ} 45^{\circ}, 135^{\circ} 37^{\prime}$.
Burt Crech, crossed by Stuart Highway 37 miles N of Alice Springs. $23^{\circ} 12^{\prime} .133^{\circ} 45^{\circ}$.
Burt Plain, in broadest sense the entire plain immediately N of the western and central Macdonnell Ranges, but usually restricted to sector N of Alice Springs. Some of Gillen's "Alice Springs" matcrial came from the Butt Plain.
Bushy Park, cattle station, $22^{\circ} 54^{\prime}, 133^{\circ} 56^{\prime}$.
Calvert River, flowing NE into Gulf of Carpentaria at $16^{\circ} 16^{\prime}, 137^{\circ} 45^{\circ}$.
Camooweal, Qld, town, $19^{\circ} 55^{\circ}, 138^{\circ} 08^{\circ}$.
Cantyleina Well $=$ kurtitina Well, as.
Cape Arnhem Peninsula, $12^{\circ} 20^{\prime}, 136^{\circ} 50^{\prime}$.
Cape Crawford, norithern point of an inland sandstone range, $16^{\circ} 39^{\circ}, 135^{\circ} 48^{\prime}$.
Camichael('s) Crag', western George Gill Range, $24^{\circ} 13^{\prime}, 131^{\circ} 33^{\circ}$.
Cavanagh Range. WA, $26^{\circ} 13^{\prime}, 127^{\prime \prime} 56^{\circ}$.
Cavenagh Range $=$ Cavanagh Range.
Cediar Bay, Old. $15^{\circ} 49^{\prime}, 145^{\circ} 22^{\circ}$.
Central Atstralia, officially (formerly) the NT south of 20°.
Centre Istand, Sir Eidward Pellew Group, $15^{\circ} 41^{\prime}, 536^{\circ} 46^{\prime}$.
Churteville, Qld. tawn, $26^{\circ} 24^{\prime}, 146^{\circ} 15^{\prime}$.
Chirley Creek, begins S of Mount Hay at $23^{\circ} 34^{\prime}, 133^{\circ} 06^{\prime}$, flowing N to floodout at $23^{\circ} 07^{\prime}$, $132^{\circ} 59^{\prime}$.
Charlotte Waters, waterhole on Coglin Creek at $25^{\circ} 55^{\prime}, 134^{\circ} 54^{\prime \prime}$, with the Cormer telegraph station half a mile to the S at Station Point. Coglin Creek divides sandhilt country to the N from gibber plains to the S. Only here do the Lake Eyre basin gibber associations intrude into the $N \Gamma$. which nay explain the occurrence bere and nowhere else in the NT of Dasylurodes hyrnei, Notomys fuseas, N. cerbintes and the bird Ashbjia lovensis (Gibher Bird).
(heopie, Qld, small town, $26^{\circ} 38^{\prime}, 145^{\circ} 01$ '.
Chins Wall, escarpment on Jeft bank of upper Nicholson River, $17^{\circ} 46^{\prime}, 137^{\circ} 13^{\prime}$.
Clyde Creck (marked Gilyde River on current $1: 250,000$ sheet), right-bank tributary of the Macarthur River which it joins at $16^{\circ} 25^{\prime}, 136^{\circ} 08^{\prime}$.
Cohurg (Cobourg) Peninsula, north-western extremity of mannland at $11^{\circ} 20^{\circ}, 132^{\circ} 15^{\prime}$.
Corkatoo Creck, $22^{\circ} 06^{\prime}, 132^{\circ} 08^{\prime}$.
Cooncheric, SA, waterhole at cos. $26^{\circ} 48^{\prime \prime}, 139^{\circ} 29^{\prime}$, cot. 18 miles S of Old Clifton Downs H1S.
Cooper Creek, rises in the NW escarpment of Arnhem Land, flows into estuary of East Alligator River at $12^{\circ}\left(07^{\prime}, 132^{\circ} 41^{\prime}\right.$. NTM collections were formed within $2-3$ miles of Mount Burradaile (g.s.).
Cooper Creek, drainage channels from the junction of the Barcoo and Thomson rivers in SW Qld at $25^{\circ} 10^{\prime}$, $142^{\circ} 55^{\prime}$, flowing SW intu Lake K゙opperamanna, NE $\mathrm{S} \Lambda$, at $28^{\circ} 35^{\circ}$. $138^{\prime \prime} 45^{\prime}$.
Couthard's Well =Kuritina Well, g.i.
Creswell Creek, begins $17^{\circ} 44^{\prime}, 136^{\circ} 40^{\prime}$, floods out at $18^{\circ} 18^{\prime}, 135^{\circ} 05^{\prime}$.
Crocodile Istands, off N coast, centred on $12^{\circ} 00^{\prime}$. $135^{\circ} 00^{\circ}$.
Croker Island, off N coast, $11^{\circ} 10^{\prime}, 132^{\circ} 35^{\circ}$.
Cruwn Poini, table-topped hill on the Finke River at $25^{\circ} 30^{\prime}, 134^{\circ} 23^{\prime}$. The site of Old Crown Station is 2 miles SSW at $25^{\circ} 32^{\circ} .134^{\circ} 23^{\circ}$.
Curtun Smings, cattle station, $25^{\circ} 19^{\circ}, 131^{\circ} 45^{\circ}$.
Cuttit Cutta (Katherine Caves), 16 miles S of Katherime.
Dithousie Springs, SA, hot springs and permanent swamps, $26^{\circ} 31^{\prime}, 135^{\circ} 29^{\circ}$

Dalmore Downs, catte station on Barkly Tableland, $19^{\circ} 45^{\prime} .135^{\circ} 5 y^{\prime}$. Nol 16 be cunlused with Delmore Downs on the Bundey River.
Daly River, flowing NW from the confluence of the Katherine and the Flora at $14^{\circ} 25^{\circ}$ $131^{\circ} 39^{\prime}$ into the Timor Sea at $13^{\circ} 23^{\prime} .130^{\circ} 18^{\prime \prime}$.
Daly River Mission (formerly Uniya), on the lower Daly at $13^{\circ} 45^{\prime} .130^{\circ} 41^{\prime}$.
Dily Waters, town near Stuart Highway, $16^{18} 15^{\prime} 133^{\circ} 20^{\prime}$.
Dare's Plain, 17 miles NW of King's Canyon, $24^{\circ} 01^{\prime} .131^{\circ} 35^{\prime}$.
Darwin, city on NW coast, $12^{\circ} 28^{\circ}, 130^{\circ} 51^{\circ}$.
Davenport Range, centred un $20^{\circ} 50^{\prime}, 135^{\circ} 00^{\prime}$.
Deaf Adder Creek, rises on Arnhem Land Patcau, llows W into Nourlangic Creek at $12^{\circ} 59^{\prime}$. $132^{\circ} 48^{\prime}$. NTM collections were mainly from the sumdsione escarpment at ca. 13" $06^{\prime \prime}$ $132^{\circ} 56^{\circ}$.
Delamere, cattle station in Victoria River basin, $15^{\circ} 44^{\prime}, 131^{\circ} 32^{\prime}$.
Delny, cattle station, $22^{\circ} 33^{\circ} .134^{\circ} 4 y^{\prime}$.
Desert I3lock (formerly part of Nipperby), part of Amburla station, $23^{\circ} 04^{\prime}, 133^{\circ} 04^{\prime}$.
Diamantina River, flows SW through SW Qld, into the Iake Fyre basin.
Docker Creek = Docker River.
Docker River, aboriginal settement on watercourse of same name. Petermann Ramgen, $24^{\circ} 48^{\prime}$, $129^{\circ} 02^{\prime}$.
Douglas River, rises NW of Pine Creek. flows W into the Dally River at $13^{\circ} 41^{\prime}$, $131^{\circ} 09^{\prime}$
Dunmarra, cattle station an Stuarl Highway, $16^{\circ} 40^{\prime}, 133^{\circ} 23^{\prime}$.
East Alligator River, rises on Arnhem Land Platcau, flows NW to the coisst al $12^{\circ} 10^{\prime}$, $132^{\circ} 35^{\prime}$.
Edith River, siding on North Australinet Railway where il eroshes the lidith River it $14^{\circ} 12^{\prime}$. 132° (2).
Ehrenburg Range, $23^{\circ} 17^{\prime}+130^{\circ} 21^{\prime}$.
Elcho Island. off N coast. $11^{\circ} 57^{\prime} .135^{\circ} 44^{\prime}$.
Elkedra, cattle station, $21^{\circ} 10^{\prime}, 135^{\circ} 2 \mathrm{~K}^{\prime}$.
Lillery Creek: Finlayson (1958a) gave a locality for Macroderma pigas "ts "the Ellery Creek gorge in the James Range at about lat. $24^{\circ} 5^{\prime} \mathrm{S}$. and long. $132^{\circ} 5^{\prime} 9^{\prime} \mathrm{E}$.". This places us on the Finke River near its junction with Eltery Creek; $24^{\circ} 05^{\prime}$ strikes Ellery Creck at $132^{\circ} 50^{\prime}$.
1:lliott, town on Stuart Highway. $17^{\circ} 34^{\prime}, 133^{\circ} 31^{\prime}$.
Ethel Creek, begins at western end of 'Ireuer Range, flows W to floodout at $22^{\circ} 122^{\prime}, 130^{\circ} 114^{\prime}$.
Dialse Smoke Hills: I have submitted this name to the NT Geographical Nomenclature Committee, to be used for the feature at $200^{\circ} 04^{\prime}, 130^{\circ} 10^{\prime}$ in the Tanami Desert incorrectly named Smoke Hills on a recent $1: 250,000$ The Granites sheet. The true Smoke llills, named by Davidson (1905b:55) and referred to by Terry (1930), are at 20" 15'. $129^{\circ} 55^{\circ}$. and are matked as Cave Hill on some recent matps. I overlooked this error when drawing up a previous gazelteer (Barker 1969:71\%. Material affected is that collected in the vicinity of "Smoke Hills" $\{=$ False Smoke Hills $\}$ by the Australian Museum in 1965.
Field River: Finlaysun (1958a) under Macroderma gigas, gave the position of "caves on the Field River" as about $23^{\circ} 34^{\prime}, 137^{\circ} 53^{\prime}$. This places us anongst sand dunes, most unlikely country for caves. L. Corbelt, who visited the Field River in 1968, way told by station hands at Tobermorey that bat caves existed in hills to the westward of Smith:s Bore. The hills in question are almost certainly the Mount Knuckey group at $23^{\circ} 32^{\prime}$, $137^{\circ} 42^{\prime}$.
Fagr Dum, $12^{\circ} 34^{\prime}, 131^{\circ} 18^{\prime}$.
Forrest River Mission, WA, 26 miles NW ul Wyndhan. it $15^{\circ} 11^{\prime} .127^{\circ} 51^{\prime}$.
Four-mile Holc, Wildman River, $12^{\circ} 36^{\circ} .132^{\circ} 13^{\prime}$.
Fourteen-mile Bore, Alcoota Station, $23^{\circ} 011^{\prime} .134^{\circ} 29^{\prime}$.
Frozer River (Frazer Creek), right-bank trihutary of the Bundey, which it joins at $22^{\circ} 22^{\circ}$, $135^{\circ} 15^{\prime}$

Frew River, begins in Davenport Range at $21^{\circ} 00^{\prime}, 135^{\circ} 00^{\prime}$, Ilows NE towards Barkly 'Tableland in moodout at $19^{\circ} 58^{\prime}, 135^{\circ} 40^{\circ}$.
George Creek, south of upper Nicholson River, crossed by track at $18^{\circ} 15^{\prime}, 137^{\circ} 16^{\prime}$. Not to be conflised with creeks of the same name in the Victoria and Mary River drainages.
George Gill Range, $24^{\circ} 20^{\circ} .131^{\circ} 45^{\prime}$.
Georgina Downs, cattle stution, $21^{\circ} 07^{\prime}, 137^{\circ} 39^{\prime}$.
Georginat River, begins SE of Barkly Tableland, flows SSE through W Queensland.
Gimbal, homestead on the South Alligator at $13^{\circ} 34^{\prime}, 132^{\circ} 36^{\circ}$.
Glen Helen, cattle station, $23^{\circ} 25^{\prime} .132^{\circ} 15^{\prime}$.
Groote Eylandt, large island in the Gulf of Carpentaria, $14^{\circ} 00^{\prime}, 136^{\circ} 40^{\prime}$.
Hatast's Blall, ahoriginal settement in western Macdonncll Ranges, $23^{\circ} 27^{\circ}, 131^{\circ} 53^{\prime}, 10$ miles SW of mountain of same name.
Hall's Creek, WA, old township at $18^{\circ} 15^{\prime}, 127^{\circ} 47^{\circ}, 8$ miles E of new Hall's Creek.
Hamilton Downs, cattle station, $23^{\circ} 32^{\circ}, 133^{\circ} 16^{\circ}$.
Harts Range (Depôt), former mining camp at $23^{\circ} 00^{\prime}, 134^{\circ} 55^{\prime}$. The present police station is cm. 2 miles to the N .
Hatches Circh, mining lownship, $20^{\circ} 56^{\circ}+135^{\circ} 12^{\prime}$.
Henbury, catlle station, $24^{\circ} 33^{\circ}, 133^{\circ} 15^{\prime}$.
Hermannsburg, mission station on the Finke River, $23^{\circ} 57^{\prime}, 132^{\circ} 47^{\circ}$.
Horsestroe l3end, cattle station, $25^{\circ} 13^{\prime}, 134^{\circ} 13^{\circ}$.
Huchittia, cattle station. $22^{\circ} 54^{\prime}, 135^{\circ} 27^{\prime}$.
Hugh Creek $=$ Hugh River.
Hugh River, begins in western Macdonnell Ranges, dlows SE into the Finke River at $25^{\circ} 02^{\prime}$, $1.34^{\circ} 11^{\prime}$.
Humbert River, catle station, $16^{\circ} 29^{\circ}, 130^{\circ} 39^{\prime}$.
illamurta, former police camp 26 miles S of Hermannsburg it $24^{\circ} 21^{\prime}, 13^{\circ} 41^{\prime}$.
James Range. $24^{\circ} 15^{\circ}, 133^{\circ} 05^{\circ}$. In broader sense includes the Krichauff Range.
Jervois Kange, $22^{\prime \prime} 37^{\prime}+136^{\circ} 15^{\prime}$.
Karanji Bore, $23^{\circ} 17^{\prime}, 133^{\circ} 08^{\circ}$ 。
Katherine, lown on Stuart Highway and Katherine River, $14^{\circ} 28^{\prime \prime}, 132^{\circ} 16^{\circ}$.
Katherine Caves $=$ Cutta Cutta (q.v.).
Katherine River, rises on Arnhem Land plateau, flows W into the Daly River at $14^{\circ} 25^{\circ}$, $131^{\circ} 39^{\prime}$.
King River, rises on Arnhem Land Plateau, flows NE to the coast at $11^{\circ} 50^{\prime}, 133^{\circ} 32^{\prime}$. This is the river worked by Mclennan in 1915 and Wilkins in 1924; it has been conlused by Thomas and other with the King River that flows into the upper Kitherine.
King River Range, a name used by Wilkins (1928) for rocky hills 15 miles up the river from its mouth. Johnson ($1964: 455$) reckoned this camp to be at $11^{\circ} 56^{\prime}, 133^{\circ} 25^{\prime}$. According to Mclennan (1917) the ranges along the King River are of sandstonc.
King"s Canyon, George Gill Range, $24^{\circ} 15^{\prime}, 131^{\circ} 34^{\circ}$. A "tourist" name, which some diebard Central Australians refuse to use. The native name for this remarkable canyon and the ereck that issues from it is Wudalka.
King's Creck. strictly speaking, the creck that flows SW out of King's Canyon to floodout at $24^{\circ} 25^{\prime}, 131^{\circ} 25^{\prime}$. Formerly used also for the feature now known as King's Canyon.
Kinture Range, $23^{\circ} 21^{\circ}, 129^{\circ} 23^{\circ}$ 。
Kurtitina Well, a native well (now probably quite obliterated) between lake Amadeus and Ayers Rock all $25^{\circ} 02^{\prime}, 131^{\circ} 14^{\prime}$.
Kyancutta, SA, township, $33^{\circ} 08^{\prime}, 135^{\circ} 34^{\prime}$.
Lake Amadeus. large salt-lake, $24^{\circ} 50^{\circ}, 131^{\circ} 00^{\prime}$.
Iake Ruck: Tinami Desert, $19^{\circ} 38^{\circ}, 130^{\circ} 20^{\circ}$.

Lake Christopher, WA, salt-lako, $24^{\circ} 44^{\prime}, 127^{\circ} 34^{\prime}$,
Lake Deane, $12^{\circ} 44^{*}, 131^{\circ} 01^{\circ}$.
Lake Eyre, SA, huge salt-lake, $28^{\circ} 30^{\prime}, 137^{\circ} 20^{\circ}$.
Lake Mackay, large salt-lake on WA/NT border, $22^{\circ} 20^{\prime}, 129^{\circ} 00^{\prime}$.
Lake Surprise. Tanami Desert, on the Lander River at $20^{\circ} 12^{\prime}, 131^{\circ} 49^{\prime}$.
Lasseter's Cave (incorrectly Lassiter's), Hull River, Petermann Ranges, $25^{\circ} 05^{\prime}, 129^{\circ} 2^{\prime} 4^{\prime}$
Lightning Rock, WA, $26^{\circ} 04^{\prime}, 127^{\circ} 45^{\circ}$.
Lock, SA, township, $33^{\circ} 34^{\prime}, 135^{\circ} 46^{\prime}$.
Macallum Creek: Finlayson (1958a) under Macroderma gigas, gave the locality "the tableland scarp in the Macallum Creek area at about lat. $13^{\circ} 6^{\circ} 6^{\prime}$ S. and long. $130^{\circ} 44^{\prime}$ E. ${ }^{\circ \prime}$ This places us a little SE of a Macallum Creek in the Reynolds River area. As the "tableland scarp" referred to is probably meant to be that of the Arnheni Land Plateau, the Macallum Creek in question may be the one further east (at tributary of the Margarel River), crossed by a track at $13^{\circ} 16^{\prime}, 131^{\circ} 27^{\prime}$.
Macarthur River (incorrectly McArthur), begins on the Barkly-Carpentaria divide, flows NE into the Gulf of Carpentaria at $15^{\circ} 50^{\circ}, 136^{\circ} 40^{\circ}$.
McColl's Hore, Armstrong River att cas. $16^{\circ} 39^{\prime}, 131^{\circ} 51^{\prime}$.
Macdonnell Ranges, collcctive name for ranges along $23^{\circ} 40^{\prime}$, between $131^{\circ} 00^{\prime}$ and $135^{\circ} 00^{\circ}$.
Mcewin Hills, $22^{\circ} 00^{\prime}$, $124^{\circ} 35^{\circ}$.
Mackay. Qld, town on E coast, $21^{\circ} 09^{\prime} .149^{\circ} 11^{\prime}$.
McLaren Creek, crossed by Stuart Highway at $20^{\circ} 20^{\circ}$, $134^{\circ} 14^{\prime}$.
Malbon, Qld, small town, $21^{\circ} 04^{\circ}, 140^{\circ} 18^{\prime}$.
Mangajera Billabong, Roper River ('Indale), probably Mungejirri Yaalput Waterhole, $14^{\circ} 32^{\prime}$. $135^{\circ} 15^{\prime}$, on the Wukointyarra Plains, a salt-marsh area near the mouth of the Roper,
Mann Range, NT/SA border, centred on $26^{\circ} 05^{\circ}, 130^{\circ} 000^{\prime}$.
Manners Creek, cattle station, $22^{\circ} 07^{\prime}, 137^{\circ} 59^{\circ}$.
Maranboy, siding on North Australian Railway 30 miles ESE of Katherine at $14^{\circ} 40^{\circ}$. $132^{*} 39^{\prime}$. Maramboy police station is 14 miles NE.
Marqua, catte station, $22^{\circ} 49^{\prime}, 137^{\circ} 21^{\prime}$.
Marrakai, catlle station, $12^{\circ} 48^{\circ}+131^{\circ} 22^{\prime}$.
Mary River, rises on Arnhem Land Plateau Li of Pine Creck, flowing NNW to the coast at $12^{\circ} 17^{\prime}, 131^{\circ} 40^{\prime}$. The species collected on this river by Dahl and Dodd indicate that the two collectors worked the rugged country of the upper reaches.
Melville Island, large island W of Coburg Peninsula, $11^{\circ} 35^{\prime}, 131^{\circ} 00^{\circ}$.
Milingimbi, mission station on island of same name ofl N coast at $12^{\circ} 05^{\circ}, 134^{\circ} 55^{\prime}$, one of the Crocodile Islands.
Mongrel Downs (Tallalah Downs). caltle station, $20^{\circ} 34^{\prime}, 129^{\circ} 44^{\circ}$.
Mount Alexander, $12^{\circ} 11^{\prime} .136^{\circ} 40^{\prime}$.
Mount Borradaile, $12^{\circ} 04^{\prime}, 132^{\circ} 51^{\prime}$.
Mount Burrell. former overland telegraph depot on the Hugh River at $24^{\circ} 36^{\prime}, 133^{\circ} 55^{\circ}$. Later became Old Maryvale HS. A hill of the same mame lies 4 miles SE. See Appendix I, under Cornock.
Mount Conner, $25^{\circ} 30^{\prime}, 131^{\circ} 53^{\prime}$.
Mount Conway, $23^{\circ} 45^{\prime}, 133^{\circ} 26^{\circ}$.
Mount Crombie, $S \Lambda .26^{\circ} 39^{\prime} .130^{\circ} 50^{\circ}$.
Mount Doreen, cull!e station, see Vaughan Springs.
Mount Heughlin, $23^{\circ} 21^{\prime}, 132^{\circ} 14^{\prime}$,
Mount Jenkins, $25^{\circ} 39^{\prime} .129^{\circ} 40^{\circ}$.
Mount McMinn (Spencer, 1911), right bank of the Roper River at $14^{\circ} 43^{\prime}, 134^{\circ} 22^{\prime}$ 。
Mount Olga, $25^{\circ} 16^{\prime}, 130^{\circ} 44^{\prime}$.
Mont Peculiar, $23^{\circ} 26^{\prime}, 131^{\circ} 16^{\prime}$.
Mount Razorback, $23^{\circ} 32^{\prime} .132^{\circ} 27^{\prime}$.

Mount Riddoch, eatte station, $23^{\circ} 02,134^{\circ} 40^{\prime}$.
Mount Riddock $=$ Mount Riddoch.
Mount Shocbridge $=$ Mount Shoobridge.
Mount Shoobridge, $13^{\circ} 32^{\prime}, 131^{\circ}$ 19'. Tinfiedds of same name 2 miles W.
Mount Solitaire. Tanami Desert, $20^{\circ} 32^{\prime}, 131^{\circ} 14^{\prime}$.
Mount Sonder. $23^{\circ} 35^{\prime}, 132^{\circ} 34^{\prime}$.
Mount Squires, WA, $26^{\circ} 13^{\prime}, 127^{\circ} 29^{\prime}$. Not to be confused with Mount Squire(s), NT, $25^{\circ} 19^{\prime}, 134^{\circ} 18^{\prime}$.
Mount Udor. $23^{\circ} 30^{\prime} .131^{\circ} 01^{\prime}$.
Mount Wells. $13^{\circ} 30^{\prime} .131^{\circ} 43^{\circ}$.
Murchison Runge, centred on $20^{\circ} 15^{\prime}, 134^{\circ} 25^{\prime}$.
Murtachurrit (Murrathurra) Springs, $25^{\circ} 27^{\prime}, 132^{\circ} 14^{\circ}$.
Musquave Ranges, SA. $26^{\circ} 15^{\prime}, 131^{\circ} 30^{\prime}$.
Napperby, cattle station, $22^{\circ} 31^{\prime}, 132^{\circ} 45^{\prime}$.
Napperby Creek, cronsed by North-West Stock Route at $22^{\circ} 49^{\prime}, 132^{\circ} 35^{\circ}$.
Napperby Hills, those running W-E past Napperby HS.
Negri River, rises al $17^{\circ} 40^{\prime}, 129^{\circ} 25^{\prime}$, flows NW into the Ord River, WA.
Nellic Creck, 17 miles NE of Pine Creek.
Newcastle Waters, small town 17 miles NW of Elliott at $17^{\circ} 22^{\prime}, 133^{\circ} 22^{\prime}$.
New Crown (Point), cattle station on the lower Finke River at $25^{\circ} 42^{\prime}, 134^{\circ} 50^{\prime}$ 。
Nicholson River, hegins at $17^{\circ} 35^{\prime}, 137^{\circ} 00^{\prime}$, flows E into Qld.
Nourlangie, safuri camp, $12^{\circ} 46^{\prime}, 132^{\circ} 39^{\prime}$.
Nutwood (Downs), cattle station, $15^{\circ} 49^{\prime}, 134^{\circ} 09^{\prime}$.
Oenpelli, mission station on western escarpment of Arnhem Land 6 miles \mathbf{E} of the lower East Alligator River at $12^{\circ} 20^{\prime}, 133^{\circ} 03^{\prime}$.
Old Marsh lsed, a great depression in the Tanami Desert containing a chain of salt-lakes and claypanc, chatacterized by dense stands of Mefaleuca glomerata and the giant mounds of
 SI: and I:) 10 cor. $20^{\circ} 50^{\prime} .130^{\circ} 37^{\prime}$.
Oqualpi Plain, 35 miles NW of Hermannsburg, a once-famous haunt of the Oqualpi, Lagarchestes comspicillatus (Finlayson 1961:167).
Owenia Rockshelter, $13^{\prime \prime} 30^{\prime}+131^{\circ} 12^{\prime}$.
$\mathrm{l}^{\text {'ainter Spring, }} 14$ miles NW of Alice Springs. $23^{\circ} 35^{\prime}, 133^{\circ} 42^{\prime}$.
Palmer Creek $=$ Palmer River.
Palmer Rives, right-bunk tributary of the Finke, which it joins at $24^{\circ} 46^{\prime}, 133^{\circ} 23^{\prime}$.
Parry", Creek, WA, small watcreourse 17 miles SE of Wyndham.
Patonga, $12^{\circ} 55^{\circ}, 132^{\circ} 43^{\prime}$.
Pedestal Hills, Tanami Desert, $20^{\circ} 34^{\prime} .129^{\circ} 17^{\circ}$.
Petermann Ranges, $25^{\circ} 00^{\circ}, 129^{\circ} 30^{\prime}$.
Pine Creek, lown on Stuart Highway. $13^{\circ} 50^{\prime}$, $131^{\circ} 50^{\circ}$.
Bituri Creck, llows past Tobermorey HS, crossing the NT/Old border 2 miles SSW.
I'ayford Creck = IPlayford River.
Playford River, begins on Carpentaria-Barkly divide, fowing SW and W past Alexandria.
Plenty River, hegins in Mount Riddoch area, flows E and SE to floodout in northern Simpson Desert it $24^{\prime \prime} 20^{\prime}, 137^{\circ} 00^{\prime}$.
Point Charles, on coast 15 miles WNW of Darwin.
Port Essington, inlet on N coast of Coburg Peninsula, $11^{\circ} 15^{\prime}$, $132^{\circ} 10^{\prime}$. Also used for former settlement on its shores, ollicially known as "Victoria",
Port Keats, missinn station on W coast at $14^{\circ} 14^{\prime}, 129^{\circ} 32^{\prime}$.
Purt langdon, inlet on NE coast of Groote Eylandt.
Quadjinta (Quajinta), see Yaringa.

Quarantine Bore, 12 miles SSW of Alice Springs.
Rapid Creck, 7 miles NNE of Darwin.
Red Bank (Redbank), gorge in the western Macdonnell Ranges halfway hetween Mount Razorback and Mount Sonder.
Red Bank (Redbank) Mine, ca. 18 miles W of Wollogorang at $17^{\circ} 11^{\prime}$, $137^{\circ} 45^{\prime}$.
Reedy Kockhole, George Gill Range, $24^{\circ} 18^{\prime}, 131^{\circ} 36^{\prime}$.
Ringwood, cattle station, $23^{\circ} 50^{\prime}, 134^{\circ} 56^{\prime}$.
Ronans Cave, near Katherine, $14^{\circ} 28^{\prime}, 132^{\circ} 13^{\prime}$.
Roper River, rises near Maranboy, flows E into Culf of Carpentaria in $14^{\circ} 43^{\circ} .135^{\circ} 23^{\circ}$.
Roper River Mission, on the lower Roper at $14^{\circ} 44^{\prime}, 134^{\circ} 44^{\prime}$.
Ross River, lourist camp, $23^{\circ} 36^{\prime}, 134^{\circ} 29^{\circ}$.
Ryan(s) Well, on Stuart Highway, $22^{\circ} 43^{\prime}, 133^{\circ} 23^{\prime}$.
Sandover River formed by junclion of Muller Creek and Waite Creek at $22^{\circ} 30^{\prime}$ 。13 4 ${ }^{\circ} 31^{\prime}$. flows NE to tloodout at $\mathrm{ce} .21^{\circ} 30^{\prime}, 137^{\circ}$ U1'.
Sandringham, Qld, cattle station, $24^{\circ} 03^{\prime} .139^{\circ} 04^{\circ}$.
Seven-Ten Waterhole, on the upper Nicholson River, $18^{\circ} 106 \gamma_{+} 137^{\circ} 17^{\circ}$.
Sir Edward Pellew Group, islands in Gulf of Carpentaria opposite the Macarthur River esturaty, centred on $15^{\circ} 35^{\prime}, 136^{3} 56^{\prime}$,
Sladen Waters (incorrectly Sladden). WA, a short watercourse flowing through the lass of the Abencerrages, Rawlinson Ranges, at $24^{\circ} 58^{\circ}, 128^{\circ} 17^{\prime}$, about 5 miles N of Giles metcorological station.
Smokey Creck, $13^{\circ} 10^{\prime}, 131^{\circ} 06^{\prime}$.
South Alligator River, rises on Arnhem Land Plateau, flows N to the coast at $12^{\circ} 12^{\prime}, 132^{\circ}$ 23^{\prime}.
Sonth West Island, Sir Elward Peliew Group, $15^{\circ} 35^{\prime}, 136^{\circ} 52^{\prime}$.
Springvale, south of the upper Nicholson River, $18^{\circ} 30^{\prime}, 137^{\circ} 32^{\prime}$. Not to be confused with the Springvale 4 miles SW of Katherine.
Station Point, sec Charlote Waters.
Stecle Gap, in castern Rodinga Range, $24^{\prime \prime} 24^{\prime}, 135^{\circ} 05^{\circ}$, leading south into the Simpson Desert.
Stuart Bluft Range, centred on $22^{\circ} 46^{\prime}, 132^{\circ} 30{ }^{\prime}$.
Sturt Creek, WA, cattle station on watercourse of same name. $19^{\circ} 09^{\prime}, 128^{\circ} 09^{\prime}$.
l'anami, at gorge containing two long-lasting sockholes (the Camel Waterholes of A. A. Davidson), in the range of the same name, $19^{\circ} 58^{\prime \prime}, 129^{\circ} 40^{\prime}$. The main Tanami goldfields are three miles E .

The correct (aboriginal) pronunciation is Tanami (Gec 1910:5). Nowadays the name is frequently pronounced Tanamai, however (Italian transcription).
「amami Desert (Tanami semi-desert), a shrub-savannah area lying roughly between $18^{\circ} 00^{\prime}$ $22^{\circ} 0()^{\prime}$ and $129^{\circ} 00^{\prime}-134^{\circ} 00^{\prime}$. First explored by A. A. Davidson, to whose account (Davidson 19(15b) readers are referted.
P'anami Desert. Wildife Sanctuary, an area of 14,490 square miles in the Tranami Desert. Holds good numbers of Macroris lagotis and contains the only extant colonies of Laporchestes hirsums known in Central Australia.
Tunumbirini, cattle station. $16^{\circ} 099^{\circ}, 134^{\circ} 51^{\prime}$.
Tarlton Downs, cattle station, $22^{\circ} 39^{\prime}, 136^{\circ} 54^{\prime}$.
Tarlton Range, hills to the S of Tarlton Downs HS.
Teatree Well, small town on Stuart Highway, $22^{\circ} 08^{\prime}, 133^{\circ} 25^{\circ}$.
Temple Bar Creck, crossed by Adelaide Road 12 miles SSW of Alice Springs.
Tennant Creek, town on Stuart Highway, $19^{\circ} 3 y^{\prime}, 134^{\circ} 11^{\prime}, 7$ miles S of watercourse and former telegraph station of same name.
The Granites, former goldfield. $20^{\circ} 34^{\prime}, 130^{\circ} 21^{\prime}$, Tandmi Desert.
The Neales, SA, Jrainage channels entering NW Like Eybe.
Timber Creek, police station, $15^{\circ} 39^{\prime}, 130^{\circ} 28^{\circ}$, near A. C. Circgory's Victoria River Depit No. 1.

Iin Creck, south of upper Nicholson River, crossed by track all $18^{\circ} 38^{\prime}, 137^{\circ} 47^{\circ}$.
Tohermorey, cattic station, $22^{\circ} 17^{\prime}$. $137^{\circ} 56^{\prime}$.
' Coho Range, lies actoss NT/Qld border at ca. $22^{\circ} 4^{\prime}$. $138^{\circ} 00^{\circ}$.
'Tomhinson Ranges, extreme NW comer of SA, $26^{\circ} 10^{\prime}, 129^{\circ} 20^{\prime}$,
Fortilla Flats (Upper Adclatide River Experimental Station), 13^{5} 1)5', (31" $13^{\prime \prime}$.
Tower Creek, begins N of Napperby, flows into Warburlon Creeh all $22^{\circ} 12^{\prime}, 132^{\circ} 33^{\prime}$.
Umbakumba, mission station on NE part of Groote Eylandt.
Union (Town), former gold town 8 miles NNW of Pine Creek at $13^{\circ} 43^{\circ} .131^{\circ} 49^{\circ}$.
Uniya, former name of Daly River Mission (q.v.).
Vaughan Springs, site of the new Mount Doreen HS, at $22^{\prime \prime} 18^{\prime}, 130^{\circ} 52^{\prime}$. 'The old HS is att $22^{\circ} 03^{\circ} .131^{\circ} 19^{\prime}$.
Victoria River, rising at ero. $18^{\prime \prime} 00^{\prime}, 130^{\prime \prime} 00^{\prime}$, llowing. NW into tho Joseph bunaparte Gulf at $15^{\circ} 00^{\prime}, 129^{\circ} 35^{\prime}$.
Victoria River Depot No. 1, on the lower Victoria River at $15^{\prime \prime} 37^{\prime}, 130^{\circ} 27^{\prime}$. The provenance of most of Elsey's zoological collections.
Virsinia Mine. $13^{\circ} 10,131^{\circ} 03^{\prime}$.
Wajelaj Billabong (Tindale), not found but probably on the Wukointyarra Plains near the mouth of the Roper River; near Mangajera Billahong (see Antechinomys laniger),
Warbutun Creck, begins NW of Napperby, flows into Crown Crech at $22^{\circ} 03^{\prime}, 132^{\circ} 30^{\prime}$.
Wurhurton Mission. WA. 26° 似, $126^{\circ} 32^{\circ}$.
Watchope, sntall luwn un Stutirt lighway at $20^{\circ} 39^{\circ} .134^{\circ} 13^{\prime}$.
Well 28, Canning Stock Koute, W $\wedge, 22^{\circ} 39^{\prime}, 123^{\circ} 45^{\prime}$.
Well 43 (Billowaggi Well), Canning Stock Route, WA, $21^{\circ} 12^{\prime}, 125^{\prime \prime} 58^{\prime}$.
Well 46 (K'iduara Well). Canning Stock Route. WA. $20^{\circ} 08^{\prime}, 126^{\circ} 17^{\prime}$.
Went Inland, Sir Fidward Pellew Group, $15^{\circ} 35^{\prime}, 136^{\circ} 34^{\prime}$.
Western Creck, lett-bank tributary of the Macarthur River, which it joins at $16^{\circ} 16^{\circ}$, $136^{\circ} 12^{\prime}$.
White Stone Creek, Marrakai plains, isolated watercourse crossed by the Woolner Irack at $12^{\circ} 33^{\prime} .131^{\circ} 29^{\prime}$. Not to be confused with creek of same name in Tortilta Flats area.
Willowrit, cattle station on the Lander River at $21^{\circ} 14^{\prime \prime} 132^{\circ} 3 \mathrm{~K}^{\prime}$,
Wimul swanm, on Wilton River at car. $13^{\circ} 36^{\circ}, 134^{\circ} 18^{\prime}$.
Winnecke Creck, northern "Tanami Desert, begins ca. $18^{\circ} 56^{\prime}, 130^{\circ} 02^{\prime}$, floods out $18^{\circ} 32^{\prime}$. $131^{\circ} 39^{\circ}$.
Wire Creek, censed by Adelaide Road 14 miles SSW of Alice Springs at $23^{\circ} 50^{\circ}$, $133^{\circ} 49^{\circ}$.
Wollara (Wallara), now a tourist ranch, $24^{\circ} 38^{\prime} .132^{\circ} 17^{\prime}$, Not located by Lidicker \& Marlow (1970:222).
Wollogurang, cattle station, $17^{\circ} 13^{\prime}, 137^{\circ} 57^{\prime}$.
Wyelitle creck, crosied by Stuurt Highway 11 miles S of Wauchope.
Wyouham, WA, Iown, $15^{\circ} 28^{\circ}, 128^{\circ} 06^{\prime}$.
Wyluokarmi (Wylookarri), rackhole at $23^{\circ} 36^{\circ}$, $129^{\circ} 46^{\circ}$. Also called Marnpie, which, according to 'lerry ($1937: 139$), is a native name for the Common Bronzewing, I'taps. whicruplerv.
Yaringal (specimen of Betmmyia lesueur oblained by Finlayson): variously cited as: "Yaringit, 12 miles S.W, of King's Creck in the George Gill Range" (Finlayson 1958b:245). "Yitringat (reck, at the western end of the George Gill Range" (Finlayson 1958b: 249) and "f water called Yaringat a few miles south of Quadjinta", the later being "15 miles west of Carmichacl's Crag. on the eastern border of the Central Australian Reserve" (Finlayson 1935h: 91). On the map in Finlayson (1935c), Quadjinta (Quajintis) ind Yaringal are marked on what is probably laurie's Creek, the next watercourse W from King's Creck. If it is Laurie's Creek then it has been extended much fou fut St. Yaringa would therefore be W to NIV of King's Creek, not SW.
Yipthata, mission station on NE coast at $12^{\circ} 15^{\circ}$ 。136 $6^{\circ} 53^{\circ}$.
Yiventumu, aboriginal settloment, $22^{\circ} 15^{\prime}, 131^{\circ} 48^{\circ}$.

KEY TO MAPS

Map 1

- Antechinus bellus

A A. macdonnellonsis
Map 2

- Antechinus macularus

Planigale ingrami
Dasycercus cristicauda
Map 3

- Sminthopsis rufigenis
S. nitela

A S. jroggalti

* S. psammophila

Map 4
A Sminthopsis crassicuudata
S. murina ooldea

Map 5

- Sminthopsis hirripes
* Phascogaic calura
P. tapoatafa

Map 6
(1) Antechinomys spenceri
\triangle A. laniger (sensu lato)
Map 7

- Dasyurus hallucatus
- D. geoffroii

A Dasyuroides bymei
Map 8

- Isoodon macrourus
I. auratus

Map 9
중 Macrotis lagotis
M. leucura

Map 10
\triangle Chacropus ecaudatus
$\stackrel{\nabla}{\nabla}$ Perameles eremiana

- Petatrus breviceps

Map 11

- I'richosurus arnhemensis
\triangle T. vulpecila
Petropsendes dahli
Map 12
Bettongia lesucur
A specimens
\triangle peripheral localities of repiorted
range
- l'etrogale brachyoris

Map 13

* Lagorchestes asomatus L. conspicillatus
\triangle Finlayson (1961) and earlier
A 1961 onwards
Map 14
* Lagorchestes hirsutus
- Peradorcas concinna

Map 15

- Onychogalea unguifera
\triangle O. Iunala

Map 16
61 Petrogate penicillata lateralis

- P. p. venustula

A P. longmani

* P. wilkinsi

Map 17

- Macropus agilis

V Notoryctes typhlops
Map 18

- Macropus bernardus

A M. robustus
Map 19

- A1acropus untilopinus
- Megaleia rufa northernmost records
Map 20
* Pserudomys fieldi
- P. gracilicaudatus
$\triangle P^{2}$. desertor
Man 21
- Psendomys delicatulus

A P. hermannsburgensis
Map 22
E Psendomys forresti

- Melomys sp(p)
* $\left\{\begin{array}{l}\text { Notomys amplus } \\ N . \text { cervinus } \\ N . \text { fuscus }\end{array}\right.$
∇N. iongicaudatus
Map 23
E Notomys alexis
- N. aquilo

A Hydromys chrysogaster

* Xeromys myoides

Map 24
A Zyzomys woodwardi
∇ Z. argurus

- Z. pedunculatus

Map 25
(1) Mesembriomy's gouldii
∇ M. macrurus
\& Leeporillus upicalis
Map 26

- Conilurus penicillatus

중 Rathus villosissimus
Map 27
∇ Rattus colletti
Δ. funneyi
Map 28

- Pteropies scapulatus
- P. alecto

Map 29
3 Macroderma gigas

- Macroglossus lagochilus

Map 30
\triangle Taphozous Reorgianus
T. flaviventris
T. flaviventris

Map 31

- Tadarida loriae
∇ T. australis
T. jobensis

A T. planiceps
Map 32
\triangle Hipposideros stenotis
H. diadema
(H. ater
Map 33

- Rhinonicteris aurantius
∇ Chalinolobus morio
A C. nigrogriseus

Map 34
A Chalinolobus gouldii

- Miniopterus schriebersii

Map 35

- Eptesicus $\operatorname{sp}(\mathrm{p})$
- Myotis adversus

Map 36
Nycticeius balstoni
Map 37

- Nyctophilus bifax
- N. arnhemensis
$\triangle N$. geoffroyi

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

MORETHIA (LACERTILIA, SCINCIDAE,) SOUTH AUSTRALIA

By MICHAEL SMYTH

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

MORETHIA (LACERTILIA, SCINCIDAE), SOUTH AUSTRALIA

By MICHAEL SMYTH

Summary

The genus Morethia Gray, 1845 was formerly part of Ablepharus Lichtenstein, 1823 (Fuhn, 1969). As more knowledge has accumulated about our local skinks, it has become obvious that the genus needs revision; the collection of the South Australian Museum contains many specimens under the name M. lineoocellata (Dumeril and Bibron, 1839) which can in fact be easily distinguished from it. This paper gives diagnostic characters and, where necessary, descriptions for M. adelaidensis (Peters), M. boulengeri (Ogilby), M. butleri (Storr), M. lineoocellata and M. taeniopleura (Peters). I dedicate this paper to the memory of John Mitchell, late Curator of Herpetology in the South Australian Museum, who was for several years my mentor as I learned herpetology.

THE GENUS MORETHIA (LACERTILAA, SCINCIDAE) IN SOUTH AUSTRALIA

By MICHAEL SMYTH

Department of Zoology, University of Adelaide, S. Australia 5001

INTRODUCTION

The genus Morethia Gray, 1845 was formerly part of Ablepharus Itichtenstein, 1823 (Fuhn, 1969). As more knowledge has accumulated about our local skinks, it has become obvious that the genus needs revision; the collection of the South Australian Muscum contains many specimens under the name M. lineoocellata (Duméril and Bibron, 1839) which can in fact be easily distinguished from it. This paper gives diagnostic characters and, where necessary, descriptions for M. adelaidensis (Peters), M. boulengeri (Ogilby), M. butleri (Storr), M. lineoocellata and M. tacniopleura (Peters).

I dedicate this paper to the memory of John Mitchell, late Curator of Herpetology in the South Australian Museum, who was for several years my mentor as I learned herpetology.

Genus MORETHIA Gray

Morethia Gray, 1845, Catalogue of the specimens of lizards in the collection of the Brilish Museum, p. 65.

Type-species: Ablepharus lineoocellatus Duméril and Bibron, 1839.
I have accepted Fuhn: (1969) distinction of this genus from Ablepharus on the basis of skull structure. All members are without moveable eyelids, the eye being covered by a transparent disc. All are pentadactyl. The two frontoparictals and the interparietal are fused into a single seale. The parietals meet in the mid-line.

Morethia adelaidensis (Peters)

Figs. 1, 6
Ablepharts (Morethia) amomalus (adelaidensis) Peters, 1874, Sber. Dt. Akad. Wiss., Phys.-Math. Klasse, Juni 1874, 376 (formerly Monatsb. K. Preuss. Akad. Wiss. Berlin).

Ahlepharna lineoroncollatus var. adelaidensis Boulenger, 1887, Catalogne of the lizards in the British Masetum, 3: 349. (Part). "S. Australia."

Lectotype: Kat. Nr. 4733 in the Museum für Naturkunde. Berlin. Adelaide. Schomburgk. Snout-vent length 5.05 cm . (This is the largest of the three specimens under this catalogue number.)

Issuct 31 Augusf: 1972.

Diagnosis: Five supraciliaries; the third, fourth and fith all penetrate between the supraoculars.

Subdigital lamellae acutely unicarinate or tricarinate. Palmar tubereles elongate, apically acute.

Descripfion: Snout-vent length up to 55 mm . Intact tail $120-165 \%$ of snout-vent length.

Supranasals present, widely separated, separate from or fused to a small postnasal. Prefrontals narrowly separated. Frontonasal wider than long, Frontal longer than wide, in contact with first and second supraoculars. Four supraoculars, the second the largest. Frontoparictals and interparietal fused into a single large seale as wide as long, in contact with the second, third and fourth supraoculars. One pair of nuchals. Seven

Fig. 1. Head of Morehice adeladensis, Wingfield, S. Aust.
labials. the fifth the largest, entirely subocular. Eye entirely surrounded by granules. Five supraciliaries. the second the smallest. the third, fourth and fifth about equal in size and all penetrating between the supraoculats (Fig. 1).

Subdigital lamellate acutely unicarinate or, in some specimens, tricarinate. There are 18-24 under the fourth toe, mean 19.5, mode 19. Patmar tubercles clongate and apically ateute. The forelimhs when adpressed bately reach the eye.

Midbody scale rows 26-34, usually 28 or 30; mean 29.4.
Colour in life, grey or olive-grey above; some specimens are browner, and specimens from Ooldea are distinctly fermeineous. There are usually wow broad black interrupted dorso-lateral lines from the back of the head ante the anterion patts of the tail, sometimes continued down the tail its a singe midedorsal line. Along each side is an interrupted and irregubat white lime extendng from the upper labials, through the ear, above the forefmb. and along the side to the hindlimb. Above this is a darker band, often stromgly speckled with lighter markings; below is a weaker, speckled dark band. Ventral surface white. The males in breeding condition develop an orange colour all around the edges of the ventral surfaces, extending onto the inside surfaces of both fore and hind limbs and being particularly prominent around the vent and under the anterior part of the tail.

Specemens from the Lake Eyre Basin are distinctly pater, and in some the dorsal and lateral black bands are barely visible.

Distribution: In South Australia, so far recorded from the arid nortircias. extending south into the coastal habitat along the edges of the fulfs and west across the Nullarbor Plain into Western Australia (Fig. 6).

Remarks: Peters (1874), in deseribing M, faeniopletra, compared it with specimens of what he called Ableplarus (Morethios) anomalus (ededaidensis). The specimens available to Peters at the time moluded thee from Adelade: which are clearly M, adelademsis as described above. If is froms ammen these that I have designated a lectotype.

Boulenger (1887) distinguished adelaidensis as a variety of M. limaoncellata, and his bricf deseription fits Peters's specimens. But the arecimens. Boulenger lists under this name include, as well as M, adeldedensis. severat bunlengert as well. The inadeguacy of both Peters's and Boulengers descriptions. hate compelked me to redeseribe M. adelaidensis in detail.

Specimens examined; In the South Australian Museum: R1018 Hughes, S.A. (30" $\left.42^{\prime} \mathrm{S}, 129^{\prime \prime} 31^{\prime} \mathrm{E}\right)(2$ specimens); R2585 Price, S.A. (34 $\left.18^{\circ} \mathrm{S}, 130^{\prime \prime} 00^{\prime} \mathrm{E}\right) ; \mathrm{R} 3076$ North Tent Hill. S.A. (32" $20^{\circ} \mathrm{S}$, $1377^{\circ} 27^{\prime}$ E) R 3186 Yudua Swamp, Moralanal Stri. S.A. (31. 32^{\prime} S, 138. 21^{\prime} E) (2 specimens): R3323 Lake Eyre North, Lake Eyre South (2 specimens): R3431 Lake Callabonma, S.A. (29"45'S. $140^{\circ} 04^{\prime} \mathrm{E}$); R350) ((oward Springs. S.A. (29 24'S. 13049^{\prime} E); R 38.36 south end of Lake Tortens, S.A. ($31^{\prime \prime} 00^{\circ} \mathrm{S}, 137^{\prime \prime} 50^{\prime} \mathrm{E}$) (2 specimens): R3842 Kokatha Hills, S.A. ($3116^{\circ} \mathrm{S}, 135^{\prime \prime} 15^{\prime} \mathrm{E}$): R4014 Accalana Crossing. Strzelecki Ck., S.A. (29 14' S, $139^{\prime \prime} 58^{\prime}$ E); R499() Lake Coongic. S.A. (27 $11^{\circ} \mathrm{S}$. (4() 1(0'E): R5281 Abracurrie, 30 mi . (54 km) W. Eucla, W.A. (31 - $48^{\prime} \mathrm{S}$. 128. 23° E): R25283 Ceduna, S.A. (32. 07° S, $\left.133^{\prime \prime} 4\right)^{\prime}$ E): R5347

Nullarbor HS, S.A. (31 $\left.26^{\circ} \mathrm{S}, 130^{\circ} 55^{\prime} \mathrm{E}\right):$ R5864 St. Kilda, S.A. ($34^{\circ} 45^{\prime} \mathrm{S}, 138^{\circ} 31^{\prime} \mathrm{E}$) ; R5946 "Palmerston, N.T." (now Darwin: this locality is probably in error) (16 specimens); RIOss2, R1088.3 Ooldea, S.A. (30* $30^{\prime} \mathrm{S}, 131^{\prime \prime} 50^{\circ} \mathrm{E}$); R11945 Pt. Gcrmein. S.A. (33 ()1' S, $\left.13801{ }^{\prime} \mathrm{E}\right)$; R12013 Edithburgh, S.A. (35 $06^{\prime} \mathrm{S}, 137$ +4'E): R12689-91. $6 \mathrm{mi} .(10 \mathrm{~km}) \mathrm{N}$. Pt. Pirie, S.A. ($33^{\circ} 05^{\prime} \mathrm{S}, 138^{\circ} 00^{\prime} \mathrm{E}$); R12692-3 Wingfield, S.A. (34 51'S. 138 32' E); untegistered. "Reuther Collection" (10) specimens) no locality (probably from Killalpaninna or Kopperamana Missions, S.A., respectively $28 \quad 36^{\prime} \mathrm{S}, 138^{3} \quad 33^{\prime} \mathrm{E}$ and $\left.28 \quad 34^{\prime} \mathrm{S}, 138 \quad 40^{\prime} \mathrm{E}\right)$.

In the British Museum (Natural History): 64.10.27.9 and 10 "S. Australia"; 1905.10 .31 .35 and $36,100 \mathrm{mi} .(161 \mathrm{~km}) \mathrm{S}$. Lake Eyre. S.A.

In the Museum für Naturkunde, Berlin: Kat. Nr. 4733 Adelaide,
I have also seen specimens from Pt. Gibbon S.A. (33' $47^{\prime \prime} \mathrm{S}$, $136^{\circ} 47^{\circ}$ E) 。

Morethia boulengeri (Ogilby)
Figs. 2, 6
Ablepharus boulengeri Ogilby, 1890, Rec. Aust. Mus., 1: 10-11.
Lectotype: R690) in The Australian Museum, Sydney. Presumably collected by McCooey at Brawlin. New South Wales ($34^{\prime \prime} 44^{\prime} \mathrm{S}, 148^{\circ} 02^{\prime} \mathrm{E}$).

Diagnosis: Six supraciliaries; the first and third are the largest, and the third, fourth, fifth and sixth are successively smaller.

Subdigital lamellate obtusely unicarinate, palmar tubereles rounded.
This species closely resembles M. butlert. but is distinguishable by its latger third anpraciliary, its much less acutcly keeled subdigital lamellate, and its rounded palmar tubercules.

Description: Snout-vent length in adult males $35-55 \mathrm{~mm}$, in adult females $40-57 \mathrm{~mm}$. Intact tail $125-165 \%$ of snout-vent length.

Supranasals present, widely separated, often fused with the small postmasal. Prefrontals usuatly separated. Frontonasal wider than long. Frombat longer than broad, contacting the first and second supracoculars. Four supraoculars. the second the largest. Frontoparietals and interparietal lused into a single large scale about as long as broad. contacting the second, third and fourth supratoculars. (Ogilby deseribes a separate interparietal, but all three syntypes, and all other specimens I have examined, have the interparietal fused with the frontoparietals.) One pair of nuchals.

Seven labials (sometimes eight). the fith the largest. entiocly ubbocular. Eye surrounded by granules. Supraciliaries six, the first and third the largent, the first penetrating between the prefrontal and first suprancular. the third
fenctrating between the first and second supraoculars. The fourth, fifth and steth nupratciliaries do not penetrate between the supratoculars, and decline regularly in sis so that their medial margins form a regular slightly curving line (Fig. 2). Ear suboval, usually with smaller granules more or less projecting Irom the anterior edge.

Five fingers and toes. Lamellae under the fourth toe 15-23, mean 19.5, mode 19, obtusely unicarimate. Palmar tubereales rounded. The forclimbs when adpressed reach just beyond the eye.

Midbody scale rows 26-32, mean 29.7, mode 3().

Pige, 2. Hearl of Morember brmengrif. Salter Springs. S. Nust.
Colour almost identical to M. butleri. A uniform brown above: most or all of the dorsal scales have 2-5 (usually 3) fine black lines running along theon. diverging posteriorly; often these lines are expanded and merge into a back spot or streak, sometimes giving the appearance of interrupted lines of sponts or streaks down the back, but more often distributed irregularly.

A pure white stripe on each side begins on the upper labials and runs under the eve, through the car, above the forelimb and along the flank to the hindlimb. This white stripe is very prominent, being edged above and usually below by black stripes. The upper of these black stripes, usually three scate rows wide, is usually very regular and clearcut on its lower margin,
and runs fiom the eye to the hindimb or a litte beyond, frepuently becoming less prominent posteriorly. The lower black sidestripe is natrow, irregular and often interrupted.

Ventral surfaces solver-white. In adult males in breeding conditon the throat becomes bright orange.

The tail of juveniles is pale fawn.
Distribution: Throughout the north of the State and as far south as a little north of Adelaide and the Murray Mallee south of the River Muraty (Fig. 6). Occurs in the interior of all mainland States.

Remarks: This species is remarkably unifom in colour and morphology over its range in South Australia. It is sympatrio with M. adeladensis over much of us ranges, with M. temiopleura in the Northern Territory, and with M. limeoncellata in several parts of South Australiat. It is not yet known to be sympatric with M. butleri, which it closely resembles,

Specimens examined: In the South Australian Muscum: R524 Mooloolon Stn., S.A. (30" 59^{\prime} S, $138^{\prime \prime} 35^{\prime}$ E): R721 "Victorial" (3 specimens): R870 Wynbring, S.A. (30 33' S, 133' 32' E) ; R1573 Hermannsburg. N.T. ($23^{\circ} 57^{\circ} \mathrm{S}$. $132^{\circ} 45^{\prime} \mathrm{E}$) (2 specimens); R26()2 (2 specimens) R2648 Mernmerna, S.A. (31" $36^{\circ} \mathrm{S}, 138^{\prime \prime} 23^{\circ} \mathrm{E}$): 123159 "Black Swamp, S.A." (an unidentifiable locality): R.318í Ýmdna Swamp, Moralana Stn., S.A. ($31^{\prime \prime} 32^{\prime}$ S. $138^{\circ} 21^{\prime} \mathrm{E}$); R3304 Wilpena Pound, S.A. (31 $30^{\prime} \mathrm{S}$, $\left.138^{\prime \prime} 37^{\prime} \mathrm{E}\right)$ (5 specimens); R3313 Wonoka Ck. S.A. $\left(31^{\circ} 50^{\circ} \mathrm{S}, 138^{\prime} 24^{\prime} \mathrm{E}\right): \mathrm{R} 320^{\circ} \mathrm{Mt}$. Aroona. S.A. (30'34' S. $138^{\circ} 21^{\prime} \mathrm{E}$): R3426 6 mi . (10 km) S.W. Wooltana HS., S.A. ($30^{\prime \prime} 25^{\prime} \mathrm{S}, 139^{\prime \prime} 25^{\prime} \mathrm{E}$): R.36s.3 no locality: R 3767 Lake Eyre, S.A. (2K $40^{\prime} \mathrm{S}$, 137 ($\mathbf{O}^{\prime} \mathrm{E}$): R38.49 Kondoolkil HS., S.A. ($32^{〔}$ O1' S, 134' 53^{\prime} E) (2 specimens): R3938 S. branch Balcanoona Ck.,S.A. ($30^{\circ} 37^{\circ} \mathrm{S}, 139^{\prime \prime} 38^{\prime} \mathrm{E}$) (3 specimens); R4011 Cordillo Downs HS., S.A. ($26^{3} 43^{\prime} \mathrm{S}, 140$) $38^{\prime} \mathrm{E}$) (5 specimens): R4012 Innaminckal HS., S, A. ($27^{\circ} 43^{\prime} \mathrm{S}, 140^{\prime \prime} 45^{\prime} \mathrm{E}$): R4352 Wangoroh HS., Balranald N.S.W, ($34^{\prime} 38^{\prime}$ S, $143^{\circ} 34^{\prime}$ E): R4990 Lake Coongie, S.A. ($277^{\circ} 11^{\prime} \mathrm{S}, 140^{\circ} 10^{\prime} \mathrm{E}$) (2 specimens): R5484 "Murray Scrub, S.A." (5 specimens): R5526-7 Loxton, S.A. ($34^{\prime \prime} 27^{\prime} \mathrm{S}, 140^{\prime \prime} 34^{\prime} \mathrm{E}$): R5946 "f'almerston, N.T." (now Darwin: this locality is probably in crror): R 600 s St. Mary Peak, S.A. ($31^{\prime \prime} 30^{\prime} \mathrm{S}, 138$ 33' E); R10359 Goyders Lagoon, S.A. ($26^{n} 52^{\prime} \mathrm{S}, 139^{\circ} 00^{\prime} \mathrm{E}$) (2 specimens): R10360 (3 specimens): R10361 Glengyle HS., Qucensland (24. $48^{\circ} \mathrm{S}, 139^{\circ} 31^{\prime} \mathrm{E}$) ; R10936 Paralanat Hot Springs. S.A. (30 12' S. 139 27'E); R10962 Y'udnamutanat Gorge, S.A. ($30^{\circ} 12^{\prime} \mathrm{S}, 139^{\circ} 17^{\prime} \mathrm{E}$); R11745 Cradock, S.A. ($32^{\prime \prime} 05^{\prime} \mathrm{S}$, $138^{\circ} 30^{\circ}$ E); R11936 North Mulga HS., S.A. (30 17^{\prime} S, $139^{\circ} 32^{\prime}$ E): R11942-4 Wertaloona HS., S.A. (30 38 S, 1.39 21 E); R11947-51 Bibliando HS.. S.A. ($31^{\prime} 51^{\prime} \mathrm{S}, 139^{\circ} 07^{\prime} \mathrm{E}$) : R12477 Lincoln Gap Stn.,
S.A. $\left(32^{\circ} 37^{\prime} \mathrm{S}, 137^{\circ} 35^{\prime} \mathrm{E}\right) ; \mathrm{R} 12677,8 \mathrm{mi} .(13 \mathrm{~km}) \mathrm{W}$. of Purnong, S.A. ($34^{\circ} 52^{\prime} \mathrm{S} .139^{\circ} 32^{\prime} \mathrm{E}$); R12678-9. 4 mi . (7 km) E. of Mantung, S.A. ($34^{\prime \prime} 36^{\prime} \mathrm{S}, 140^{\circ} 03^{\prime} \mathrm{E}$); R12680 Eba, S.A. ($34^{\circ} 04^{\prime} \mathrm{S}, 139^{\circ} 36^{\circ} \mathrm{E}$) ; R12681-2, $1 \mathrm{mi} .\left(2 \mathrm{km1}\right.$) W. of Telowic, S.A. ($33^{\circ} 02^{\prime} \mathrm{S}, 138^{\circ} 04^{\prime} \mathrm{E}$); untegistered. Moorilyanna Well, S.A. ($\left.26^{\circ} 51^{\prime} \mathrm{S}, 132^{\circ} 59^{\prime} \mathrm{E}\right)$.

In the Australian Museum, Sydney: R687-9 presumably from Brawlin, N.S.W. ($34^{\prime 2} 44^{\prime} \mathrm{S}, 148^{\circ} 02^{\prime}$ E).

In the British Muscum (Natural History): 74.4.29.1286-8 "Sandhurst, Victoria": 90.9.1.4-6 "Brawlin. N.S.W.".

Fig. 3. Head of Morethid butcri, Western Australia. Drawn in prolile; the others are drawn from slightly above.

Morethia butleri (Storr)
Fig. 3
Ableplarus butleri Storr, 1963, West Aust. Nat., 9: 46-7.
Diagnosis: Supraciliaries form "a straight-sided series of 6 scales, the first of which is largest" (Storr, 1963) (Fig. 3). Subdigital lamellae acutely unicarinate, palmar tubercles apically acute.

Remarks: This species was described from the arid eastern part of Western Australia. Its range probably extends into western South Australia, and If have tentatively ascribed a single specimen from Ooldea (S.A. Museum

K687) to this species. In this specimen the supraciliarien are not as linear as in the Western Australian specimens, and the line separating them from the supratoculars is curved rather than straight. As a result the supraciliary ridge, so prominent in the Western Australian specimens, is absent, and the suproorbital area is slightly convex rather than tlat.

Morethia lincoocellata (Duméril and Bibron)

Figs. 4, 6
Ablephartus lineo-ocellatus: Dumeril and Bibron, 1839. Erpetologie général, 5: \$17. "Nouvelle-Hollande."

Cryptoblepharus line o-ocellatus Ciray, 1845. Cataloguc of the specimens of lizards in the collection of the Bribish Musetum, p. 65. "Swan River."
Morethia anomalus Gray, 1845, Ibid. p. 65. "W. Australia."
Diagnosis: Six supraciliaries; the fourth is the largest, and the third. fourth, and sometimes the fifth penetrate between the supraoculars.

Subdigital lamellac obtusely keeled; palman tubercles apically rounded.
Description: Snout-vent length up to 53 mm . Intact tail 120-160 of snout-vent length.

The head shields are very similar to those of M. boulengeri, except for the supraciliaries. In nearly all South Austratian specimens only the third and fourth penetrate between the supraoculars: the fourth, fifth and sixth are successively smaller (Fig. 4). But in two specimens from west of Spencer Gulf, namely from Wynbring and from the Hundred of Nicholls, the fifth supraciliary is very nearly as large as the fourth and penetrates between the third and fourth supranculars: and in a juvenile from St. Francis Island the fifth supraciliary, though smaller than the fourth, does penetrate.

Supranasal shields are present in all South Australian specimens.
Subdigital lamellae obtusely keeled; there are 14-22 under the fourth toe, mean 18.4, mode 19. Palmar tubercles apicatly rounded.

Midbody scale rows 24-31, mean 27.1, mode 28.
Colour: grey above, The dorsal ocellations which give this species its name consist each of a single scale, the middle third of which is white and the two outer thirds black. The ocellation is very variable. On one specimen from central Eyre Peninsula (R 10143) ocellations are quite absent, but on specimens from the islands off the west coast of Eyre Peninsula they are bold and numerous, extending from the neck to the end of the tail, and onto the fore and hindlegs.

There is an irregular black stripe along each side, above an irregular white stripe, sometimes faint, running through the ear, over the forelimb and back as far as the hindlimb. These lateral stripes are also very variable, but are never as even or as bold as in M. boulengeri. In some specimens they are scarcely visible beyond the foreleg. They are best expressed in the most ocellated individuals.

The male in the breeding season develops a bright orange or orangepink throat.

Fig. 4. Head of Morethia lineoocellata, Mallala, S. Aust.

Distribution: This is a southern species, confined to the cooler parts of the State (Fig. 6) including many of the offshore islands. It also occurs in Western Australia and Victoria.

Remarks: Gray (1845) described Morethia anomala from "W. Australia", distinguishing it from M. lineoocellata because the former, but not the latter, had supranasal scales. All South Australian specimens have supranasals, but I have not used the name anomala for them because the the presence or absence of supranasals is unlikely, by itself, to be a good specific distinction.

Most South Australian specimens of M. limenocellata apparently differ from many Western Australian specimens in that in the former the fifth supraciliary is smallet than the fouth and does not ponetrate between the supranculars. Whether this is a good specific distinction, or merely a variant, I cannot judge on the South Amstralian material: a carelul study of the material from Western Austaliat, where both forms are apparently common. is required.

Meanwhile it should be noted that Loveridees (19.3.t) use of the name Morethia lineoocellata amomale for "the eastern skinks which are characterized by the almos invariable presence of supramamals and a higher than average number of mid-body scate rows". is invallid; he was doubtless reterring to M. adelaidensis or M. bowlengeri, more likely the latter.

Specimens extmined: In the South Australian Museum: R4, R5 between Tanunda and Murray llats. S.A.; R558 Pumong. S.A. (34 52' S. $139^{\circ} 37^{\circ} \mathrm{E}$) : R870 Wynbring, S.A, (30'33' S, $133^{\prime \prime} 32^{\prime} \mathrm{E}$); R968 Wilkawatt. S.A. $\left(35^{\circ} 23^{\circ} \mathrm{S}, 140^{\circ} 22^{\circ} \mathrm{E}\right) ; \mathrm{R} 1699$ Encounter Bay, S.A. (35 $35^{\prime} \mathrm{S}, 138^{\circ} 36^{\prime} \mathrm{E}$) : R2456 Davenport ($\mathrm{k}_{1}, \mathrm{~S}, \mathrm{~A} .\left(32^{\circ}\right.$ I($\gamma^{\prime} \mathrm{S}$, $133^{\circ} 26^{\prime}$ E) : R2457 "Pammerston N.T"" (now Darwin; this locality is probably in error) (35 specimens) ; 22458 Kanyarools.. S.A. (5 specinens) : R2473 Flinders Is., S.A. ($\left.33^{\circ} 44^{\prime} \mathrm{S}, 134^{\prime \prime} 31^{\prime} \mathrm{E}\right):$ R2482 St. Francis Is., S.A. ($32^{\circ} 30^{\prime}$ S. $133^{\prime \prime} 18^{\prime \prime}$ E); R2585 Pricc. S.A. $34^{\circ} 18^{\prime}$ S, $138^{\circ} 00^{\prime}$ E); R3060 North of Bucklehoo, S.A. (32 55° S, $136^{\prime \prime} 12^{\prime}$ E): R3271 Naracoorte, S.A.
 1356° E) : R9005 the southeast of Comnty Chandos, S.A. (35 16' S, $140^{\circ} 47^{\prime}$ E): R9262-5 Bascombe Well National Park. S.A. (33 37 S. $135^{\prime \prime} 21^{\prime}$ E); R9509 Flinders Is., S.A.; R10143, R10159 Hd, of Nicholls, Hincks National Park. S.A. (33 51'S, 135 51' E); R10155, R10167 Hincks Nationall Park. S.A.: R10196. R10218 Flinders Is., S.A.: RI(1216. R10217 Pcurson Is. S.A. (33 $53^{\circ} \mathrm{S}$, $\left.134^{\prime \prime} 16^{\circ} \mathrm{E}\right):$ R10299, R10300 Franklin Is.. S.A. ($\left.32^{\circ} 27^{\prime} \mathrm{S}, 133^{\circ} 39^{\prime} \mathrm{E}\right) ; \mathrm{R} 10881$ Moonlight ${ }^{\circ}$ Tank, Victoria ($35^{\prime \prime} 45^{\prime} \mathrm{S}, 1413^{\prime} 23^{\prime} \mathrm{E}$) ; R12444 Streaky Bay. S. $1 .\left(32^{\prime} 48^{\prime} \mathrm{S}\right.$. $134^{\prime \prime} 13^{\prime}$ E); R12610 Big Heath National Park. S. $\Lambda .\left(37^{\circ} 03^{\prime} \mathrm{S}\right.$. 140' 33^{\prime} S) (5 specimens): R12683 Aldinga Scrub. S.A. (35' 19^{\prime} S, $\left.138^{\prime \prime} 27^{\circ} \mathrm{E}\right):$ R12684 Spalding Cove, Port Lincoln. S.A. (34" 47^{\prime} S. 135 54'E) (2specimems), R12685 Mallala, S.A. (3+ $26^{\prime} \mathrm{S} .138$ 31' F.): R12686 $6 \mathrm{mi} .\left(10 \mathrm{~km}\right.$) N.E. Renmark.S.A. (34 $09^{\prime} \mathrm{S} .140^{\prime \prime} 48^{\prime} \mathrm{E}$): unregistered, Eyre's Sand Patch. W.A. (32 $\left.16^{\circ} \mathrm{S}, 126^{\prime \prime} 18^{\prime} \mathrm{E}\right)$ (3 specimens),

In the British Muscum (Natural History): 1946,8.15.75 "W Australia" (syntype of M. amomala Gray).

In the Museum (uir Naturkunde, Berlin: Kat.-Nr. 1355-7. Anstralia.

Morethia taeniopleura (Peters)

Figs. 5, 6
Ahephurns (Morethia) tacnioplemras Peters. 1874. Sber. Dt. Akad. Wiss.. Phys.-Math. Klasse, Juni 1874, 375-6. (Formerly Monatsb, K. Preuss. Akad. Wiss. Berlin.) Port Bowen, N.E. Australia.

Diugnosis: Four supraciliaries, the third the largest.
A bold white dorsolateral stripe on each side, from rostral shield to the tail: uncecsively below it a dark band, another white band, and usually a natrow dark line.

Descriphion: A relatively small member of the genus, obviously flattened dorsoventrally. Snout-vent length up to 42 mm . Tail $130-160 \%$ of snoutvent length (3 specimens only).

Supranasals present, widely separated, A small postnasal. Erontonasal wider than long. Prefrontals well separated. Frontal longer than wide, combating the first and second supraoculars. Four supraoculars, the second

2 mm

-ig. S. Head of Merthial lumiontema. Hermannshurg, N.T.
the largest. Frontoparietals and parictal fused into a simgle seale about ats bood as long. with rather concave bodere, contacting the second, third and fourth supraoculars. Parietals mecting in the midline. One pair wi muchats. almost as large as the parietals.

Seven labials, the fifth the Jargest. Eye surrounded by granules. Four supracilaries, the first penetrating between the prefontal and the first supraocular. the second penetrating between the first and seoond supraocutars. the third, which is the largest, penctrating botween the second and third supranculars. The fouth. whish is the smallest, deres mot perettate (Fige, 5).

Five fingers and toes, Lamellae under the fouth toe 17-21, mean 19.2. mode 19, acutely untarinate. Palmat tubereles somewhat elongated.

Midbody scale rows 26-28, mean 26.5.
This species is very distinctively patterned. In old specimens in aleohol the back is dark brown-black: Peters, however, described it as olive-green. and I ucas and Frest (1895) give it as greenish-black. In Nothern Territory specimens there is a fant pale vertebral stripe. In specimen from the Pilbara in Western Australia, however, thin stripe is silvery white, extending from the middle of the frontal shicld onto the tail. I wo prominent silvery-white bands orne seale row wide meet acros the rostral shed and extend bath through the suptaciliaries and dorsolaterally down the body onto the kail. Bckow catch of these is a black lateral hand two soate rows wide, running back from the roseral to a little behind the hindtimot it includes the eye and passes atome the ear and the limbs. getting pater as at goes. Below it is another white band extending along the upper lip. tahing in the ear, running over the forelimb and alone the side. Its lower margin is bounded by a narrow. imegular. spotted black line which often does not extend far behind the forelimb. Legs pale. spotted with back. Tail pale fawn in apirit specimens, but might be red in life (Lucas and Frost, 1895). Undersurface white,

Distribution: So far not recorded from South Australia, but it undoubtedly oceurs in the Far North of the State. Apparently widerpread in the Northern Terntory; Mitehell (1955) record it from Ainhem Land. Also in northern Western Australiat and Queensland.

Remarks: Lucas and Frost (1895) described A. lineoocellams var. ruficaudus from Goyder River ($25^{\prime} 45^{\prime} \mathrm{S}, 134^{\prime} 30^{\prime} \mathrm{E}$) and Bagot Creek (24-40 $\mathrm{S}, 131^{\circ} 45^{\prime} \mathrm{E}$), both in the Northern Territory. Later they gave a coloured illustration of it (Lucas and lrost 1896). These pecimens were clearly M. taeniopleura. On the other hand. Werner's (1910) deseription
 description of M, bulleri.

Fig. 6. The known distributions of M. adelaidensis (©), M. boulengert (O), and M. lineoocellata () in South Australia.

Specimens examined: In the South Australian Museum: R1573 Hermannsburg, N.T. ($23^{\circ} 57^{\circ} \mathrm{S}$, $133^{\circ} 32^{\prime} \mathrm{E}$) (3 specimens); R1684 Cockatoo Creek, N.T. ($\left.15^{\circ} 46^{\prime} \mathrm{S}, 129^{\circ} 08^{\prime} \mathrm{E}\right) ;$ R2181 Darwin, N.T.; R3463 Pilgangoora Well, W.A. ($\left.20^{\circ} 33^{\prime} \mathrm{S}, 119^{\circ} 00^{\prime} \mathrm{E}\right)$; R4658 Tambrey HS., W.A. ($21^{\circ} 38^{\prime} \mathrm{S}, 117^{\circ} 36^{\prime} \mathrm{E}$); R4659 Mt. Herbert, W.A. ($21^{\circ} 19^{\prime} \mathrm{S}$, $\left.117^{\circ} 12^{\prime} \mathrm{E}\right)$; R10321 $6 \mathrm{mi} .(10 \mathrm{~km}) \mathrm{N}$. Yuendumu, N.T. ($22^{\circ} 16^{\prime} \mathrm{S}$, $\left.131^{\circ} 49^{\prime} \mathrm{E}\right)$.

ACKNOWLEDGMENTS

I wish to thank Miss A. G. C. Grandison of the British Museum, Dr. Harold Cogger of the Australian Museum, Dr. Terry Houston of the South Australian Museum, Dr. Gifither Peters of the Berlin Museum. and Dr. Glen Storr of the Western Australian Museum, for the loan of specimens. Keith Newgrain and Beverley Jones drew the profiles and the map. Glen Storr and Dr. Derek Duckhouse patiently advised me on nomenclature.

REFERENCES

Boulenger, G. A. 1887: Catalogue of the lizards in the British Miuseum. Second edition. Vol. 3. British Muscum. London.
Fuhn, I. E., 1969: The "polyphyletic" origin of the genus Ablepharus (Reptilia, Scincidae): a case of parallel evolution. Z. Zool. Syst. Evolutionsf., 7: 67-76.
Loveridge, A., 1934: Australian reptiles in the Muscum of Comparative Zoology, Cambridge, Massachusetts. Bulh, Mus. Comp. Zool., 77: 243-383.
Lucas, A. H. S. and Frost, C., 1895: Preliminary note of certain new species of lizards from Central Australia. Proc. R. Soc. Vict. 7: 264-269.
Lucas, A. H. S. and Frost, C., 1896: Reptilia. In Report on the work of the Horn Scientific Expedition to Central Australia, Part 11. Zoology: Pp. 112-151. Ed. by B. Spencer. Melville, Mullen and Slade, Melbourne.

Mitchell, F. J., 1955: Preliminary account of the reptilia and amphibia collected by the National Geographical Society-Commonwealth Government-Smithsonian Institution expedition lo Arnhem Land (April to November, 1948). Rec. S. Aust. 11tts., 11: 375-408.
Ogilby, J. D., 1890: Redescription of an Ablepharus from Australia. Rec. Aust. Mus, 1: 1-10.
Peters, W., 1874: Uber einige neue Reptilien (Lacerta, Eremias, Diploglossus, Euprepes, Lygosoma, Sepsina, Ahlepharus, Simotes, Onychocephalus). Sber. Dt. Akad. Wiss, Phys.-Math, Klasse, Juni 1874.
Storr, G., 1963: Ablepharus butleri, a new scincid lizard from Western Australia. W. Aust. Nat., 9: 46-47.
Werner, F., 1910: Reptilial (Geckonidac und Scincidae). Die Fauna Südwest-Austruliens, Vol. 2, part 25. Ed. by W. Michaclsen and R. Hartmeyer. Gustav Fischer, Jena.

REGORDS OF THE SOUTH AUSTRALIAN MUSEUM

A NEW SPECIES OF TROPOSODON BARTHOLOMAI; FROM THE EARLY PLEISTOCENE KANUNKA FAUNA, SOUTH AUSTRALIA (Macropodinae; Marsupialia)

By COLIN R. CAMPBELL

SOUTH AUSTRALIAN MUSEUM North Terrace, Adelaide South Australia 5000

VOLUME 16

A NEW SPECIES OF TROPOSODON BARTHOLOMAI; FROM THE EARLY PLEISTOCENE KANUNKA FAUNA, SOUTH AUSTRALIA (Macropodinae; Marsupialia)

by Colin R. Campbell

Summary

The genus Troposodon was proposed by Bartholomai (1967) for Sthenurus minor Owen, 1877 and its synonym Halmatrurus vinceus De Vis, 1895 (lectotype QM F3577), the designated holotype (Sthenurus minor, BM (NH) 48409) being from late Cenozoic deposits in Talbragar Country, County Bligh, New South Wales. Bartholomai (ibid.) has adequately discussed the taxonomic history of the genus and it will not be repeated here.

A NEW SPECIES OF TROPOSODON BARTHOLOMAI; FROM THE EARLY PLEISTOCENE KANUNKA FAUNA, SOUTH AUSTRALIA (MACROPODINAE; MARSUPIALIA)

By COLIN R. CAMPBELL
Depratment of Paleontology, University of California. Berheley

INTRODUCTION

The genus Troposodon was proposed by Bartholomai (1967) for Sohemurus minor Owen, 1877 and its synonym Halmaturus vinceus. De Vis, 1845 (lectotype QM F3577), the designated holotype (Sthenurus minor, BM(NH) 48409) being from late Cenozoic deposits in Talbragar Country, County Bligh, New South Wales. Bartholomai (ihid.) has adequately discussed the taxonomic history of the genus and it will not be repeated here.

Material from Lake Kanunka (Katipiri Sands, Kanunka Fauna). South Australia in the collections of the Museum of Paleontology, University of California. Berkeley includes a complete mandible and some isolated upper teeth of a new species of Troposodon, herein designated as T. henti. This form reveals the previously unhnown complete morphology of the lower incisor and details of the coronoid area.

Specimens of 7 . minor available for comparative study included a single $P_{:}$(AM F4069), a cast of the holotype (UCMP 55822), and a cast of an incomplete mandible of BM(NH) 50063a (UCMP 55829). In May 1971 I was able to examine the extensive collections of T. minor in the Quecnsland Museum, and I thank Mr. Alan Bartholomai for his courtesy at that time, and for his valuable comments on the manuscript of this study.

Thanks are also due to Drs. W. A. Clemens and R. H. Tedford for their comments on the manuseript, and to Mrs. Pat Lufkin and Mr. Owen Poe for the figures.

All measurements are in millimetres unless otherwise stated.
Family MACROPODIDAE Owen, 1839
Subfamily macropodinais Thomas, 1888
Genus TROPOSODON Bartholomai. 1967
Type Species Sthenurus minor Owen, 1877

REVISED GENERIC DIAGNOSIS

Moderately large to large; palate entire; upper incisors unknown. P' subrectangular to subtriangular in basal outline: longer anteroposteriorly relative to $P^{\text {: }}$ than in known specien of Protmmodon; longitudinal crest
slightly labiad of midline, with cusps anteriorty, posteriorly, and posterolingtally: latter two cusps joined by transverse ridge: lingnal basin and lingual cingulum well developed: broadest posteriorly. ap: molariform. low crowned, subrectangular in hasal outline: swollen laterally att lingual extremity: forelink and midlinh reduced: welf-like areas behind lophe more completely developed than in Macropus, Megreleo and Sthomorus. pi with main crest labiad of midline, subtriangular approathing subrectangular in hasal outline: well delined lingual basin and cingulum; posterolingual cosp connected to posterior cusp) of main erest by transverse ridge. Eruption of p^{3} coincides with that of M^{1} in T, minor. Upper molas with essentially constant pattem: forelink weak or absent, moterately low to high midlink. Mandible with moderately deep, elongate symphysis; prominant genial erest (1) below $P_{\text {: }}$ geniohyal pit shallow (on medetcly deep: damus with definitive groove laterally, from acute diastemal crest to befow anterior molars: pterygoid fossal deep; inferior dental canal extending forward to below P:: temporal erest at right angles to horizontal ramms. I, small, oval in section, encircled by chand: large, llat. horisontal wear facet dorsally: known completely only in \% henti. Pe slender, shom, subtriangular appoaching subrectangular in basal outline: weak labial and longual vertical ridges: main crest L-shaped in 7, minor: tooth unknown in 7'. kenfi. AP: molariform, subrectangular, slightly constraced across median valley; shelf-like areas anterior to lophid crests in T. minor: tooth unknown in T. Kemti. Pa, clongate. robust, subtriangular in babal outline: main cese a litte labiad of medlane. (-shapped: lingeat base of crown variably sawollen: vertical lingual and labial ridges produce conpules along crest. L.ower molars relatively low-crowned, subrectangular; anterion cingulam well developed: pasterior cingulum ived developed in I. minor, pororly su in T. hemri. Ornamented shelf-like areas present anterior to lophid crests in T. minor, minimally ornamented in I'. kenti, Forclink and midink strong: anteru-labial fossette present in trigonid basin of T. minor: weak ridge descend from entoconid to posterior cingulum in T. kenti, but not in T. minor.

DISCUSSION

The reason why Owen (1877) failed to recognize Troposodon as a genus distinct from Sthemurus was due to his long standing conlusion of the upper dentition "I Protemmedon with that of Sthemmrm (Stirton. 1963). Proposodon appears more elosely allicd to Protemmodon and those species of Marropms bearing large promolars than to any athe macropodid group (Tedford, 1966).

It is here considered probable that the ancestry of Tropeoseden was close to the commen mid-late Tertiary origin of Prolemnoden, Sthemurns, and Wallabia as envisaged by Stirton (1903) and Woodhurne (1907), and passibly reprecented by the late: Miocene Itadromomas Wendburne. 1467. The
evidence is lareely derived from comparison of the premolars, and to some extent the molats. In p^{2} of frotemmedon there are strong vertical labial and lingual ridges, a variably developed lingual cingulam terminating opposite the high anterior cusp and enclosing a lingual basin: Jonger than any upper molar and usunlly wider posteriorly. All these features are found in Iroposoton, and the major structural change required to produce a Troposedent structure is development of a crest connecting the posterior and postero-lingual cusps, at right angles to the main erent. Such a change is alleady intimated or present in some specien of Protemnodon where in P_{2} the main crest is slightly inturned postero-lingually or complete.

The upper molats ol Protemmodon (and Mesuleia) have suggestions of apical basins above the loph crests, a feature quite characteristic of Troposondon The midlink in these two genera is lower and dose not turn so abruptly powterionly an in Troposodon, and the paracone spur does not furn shargly lingually but runs up into the median valley directly posteriorly from the patacome and only near the hase of the protoloph does it furm inwated to the bottom of the valley. Thus a basin is not formed on the posterior face of the protoloph in these genera. but its structural elements are present. A comparable condition prevails on the metaloph.

Tropowodon, with its omamented brachy-hypsodont molars and broad, crented premolars, plus the vertical ascendeng ramus modified basatly for the attachment ol heavy jaw musculature probably occupied a grazing or grame-browsing miche. The extension of the inferior dental canal forward to a point below P : indicates that the mandibles could be peecisely manipulated in actions felated to cropping with the incisers and cutting with the premolar (Ride, 1959). The relatisely shont diastema probably reflects feeding on heavicr vegetation which reguires leas manipulation in the mouth to form an ingestible bolus than is the case for soft grasses.

It will be most instructive to discover the nature of the posteranial skeleton, and that of the cramiun and upper incisor dentition in Troposodon. Seemingly, Whe Pleistocenc Katipiri Sands in South Nustralia offer the best hopes for such a find at present.

Troposodon kenti sp, nov. ${ }^{3}$
Hypodigm: The entire known sample.
Holotype: SAM P14507: complete adult left mandible with $\mathrm{l}_{3}, \mathrm{P}_{3}-\mathrm{M}_{1}$. collected by the late Ruben A. Stirton in 1961. Teeth fully erupted and well worn. Figs. 1-3.

[^4]

Fig. 1. Troposodon kenti Campbell, n. sp., holotype (SAM P14507), UCMP locality V5772, Stirton Quarry (Lake Kanunka); Kanunka Fauna, Katipiri Sands. Left mandible with $\mathrm{I}_{1} ; \mathrm{P}_{3}-\mathrm{M}_{4}$, complete but for tip of coronoid process. Labial view. Scale in cms.

Fig. 2. Troposodon kenti Campbell, n. sp., holotype (SAM P14507), UCMP locality V5772, Stirton Quarry (Lake Kanunka); Kanunka Fauna, Katipiri Sands. Left mandible with $\mathrm{I}_{1} ; \mathbf{P}_{3}-\mathrm{M}_{4}$, complete but for tip of coronoid process. Lingunl view. Scale in cms.

Fig. 3. Troposodon kenti Campbell, n. sp., holotype (SAM P14507), UCMP locality V5772. Stirlon Quarry (Lake Kanunka); Kanunka Fauna, Katipiri Sands Left mandible with $I_{1} ; \mathrm{P}_{33}-\mathrm{M}_{4}$, complete but for tip of coronoid process. Occlusal view. Scale in cms.

Paratypes: UCMP 56898, LdP3"; UCMP 56907, RM: or Mis, two LM ${ }^{2}$ or $\mathrm{M}^{3}, \mathrm{RM}^{1}$; UCMP 56920 , RP ${ }^{2}$; UCMP 56921 , RM ${ }^{3}$; UCMP 60805, RM 3, LM^{3}; UCMP 60825, LP ${ }^{3}$, RM ${ }^{3}$ or M^{4}. Figs. 4 and 5.

Fig. 4. Troposodon kenti Campbell, n, sp., paratypes. Top row: RP2, UCMP locality V5772, No. 56920, Centre row: LdP3, UCMP locality V5772, No. 56898. Lower row: LP3, UCMP locality V5773, No. 60825. Labial, lingual, and occlusal views (left to right). Anterior to right. Scale $\times 1.5$ natural size.

Fig. S. Troposodon kenti Campbell, n. spe, paratypes. Top row: RM $1-3$, labial view. Centre row: RM ${ }^{1+3}$, lingual view. Lower row: RM1-3. occlusal view. RM¹ (left column) UCMP 56907. I.A² (middle column) UCMP 56907, drawn reversed. RMi (right column) UCMP 56921. All from UCMP locality V5772. Scale $\times 1.5$ natural size.

Type locality: UCMP locality V5772, Lake Kanunka site 1 or Stirton Quarry. A quarry in the basal Katipiri Sands (Stirton, Tedford, and Miller, 1961) at foot of the northern bluffs forming the western side of Lake Kanunka, eastern Lake Eyre Basin, South Australia.

Age: ?Early Pleistocene, Kanunka Fauna (Stirton, et al., ibid.).
Other localities: UCMP locality V5773 only. This includes a number of local accumulations of fossil material at base of Katipiri Sands along its contact with the Etadunna Formation around an isolated hill immediately cast of the type locality.

Specific diagmosis: Troposodon henti can be distinguished from 7. minor via the following diagnostic eharacters. Larger dental dimensions; I -shaped fongitudinal erest of P_{a} swollen postero-lingually, conspicunus paraconid bearing lingually descending ridge. M_{1} hypolophid approximately equal in width to promophid: accessory ridge from metaconid to forelink weatier than in T. minur. Two or more weak vertical ridges between paracone and metacone on P^{-1} cf. Lwo which are low and broad on T. minor, shatlow lingual hasin travesed by anterior low, broad ridge; labial base of erown swollen. On dp. the anterior cingulum is narrow. midlink weak, transverse valley V-shaped, lingual stylar cusp absent, apical shelves above loph crests poorly ormamented, all these in contradistinction to T. minor. P" brodest medially. paracone apex close to anterior extremity of Jongitudinal erest, metacone higher than hypocone, hypocone rounded, posterior comgulam absent. posterior fossette absent. lingual cingulum well developed, anterolingual pil in lingual basin. lingual basin laching transverse ridges, anterion fossette present. Accessony limes in upper molars paralleling forelink absent, apical shelves above loph crest minimally ormanented. See Tables 4 and 5.

The most ueful of these characters dagnostically are the greater dental dimensions than $\%$, mimor and the apical shelves on the molars being mintmally ornamented. The broader diagonsis affered above should aid in identification of limited dental samples of T. kenti.

Description of holotype:

1: exposed portion short, vertically oriented flattened ovat in section: chongate elliporid wear face oceupies almost full exposed length dorsally: enamel extends around circumference except for dentine exposed dorsatly on horizontally mattened wear facet. Figs. 1-3.

$$
P_{2} \text { and } \mathrm{UP}_{3} \text { unknown. }
$$

P_{a} clongate, robust, longitudinal erest curves sharply lingually att posterior end of lowth; prominent vertical linglal ridge descends from a comspicunus cony at the anterior apex of the erest; belind this three or four less pominemt vertical lingual and labol ridges are present, wath originating at monor cuspules on crest: postero-lingual expansion reasonably prominent. Major wear face an elongate strip labial to and dorsally common with longitudimal crest, indreating P.: ocduded with lingual face of P. Tooth heavily worn occlusally, Fig. 3.
$\mathrm{M}_{1}<\mathrm{M}_{3}<\mathrm{M}_{:}<\mathrm{M}_{\text {: }}$ molars subrectangular in basal outline; hypobophid is broad is protolophad in M_{1} and M , almost on in $\mathrm{M}_{\text {.. }}$, but narrower in M, Width of trigonid basin (area between protolophad crest and anterior cinguluar) a litte less than distance between lopind crests. Forelink moderately bigh and strong, deseending antero-lingually from the protoconid
to a point a little labial of the longitudinal midine where it turns anteriorly and runs to the reasonably well developed anterior cingulum, contacting its approximate midpoint. Forclink occasionatly with subsidiary rodging similar to $\%$. minor. No antero-labial fossette in trigonid besin; subsidary ridge from forelink near point of anterior gexion rans lingually across anterior face of protolophid, fading out before reaching metaconid on M_{1}. probably reaches metaconid on M : where it creates an unormamented shelf-like area on foreslope of protolophid. Moderately strong midlink descends anterolingually from hypoconid to point midway down hypolophid foreslope, there turning anteriorly to meet very short ridge which vertically descends the midline of protolophid hindslope. atcessory ridge from point of midlink Bexion extends lingually in shallow downewre, fades out belore meeting entoconid on M :, shorter and abrupty downeursed in M_{1}. but creates a small shelf-like area on hypolophid foreslopee in $\mathrm{M}_{\text {: }}$ and $\mathrm{M}_{1}: \mathrm{M}_{1}$ and $\mathrm{M}_{2} \mathrm{t}(\mathrm{x})$ worn to reveal nature of this ridge. Talonst hasin broadly $(1-s h a p e d$ labiatly, somewhat less broadly lingually; small deep pit on basin floon immediately lingual to midlink on M_{3} and M_{1}, again not visibte on M_{1} and M_{2} due to wear. No ornamentation on lophid fitces. Posterion cingulam present but less developed than anterior cingulum. Shost, poorly developed ridge dencends vertically from entoconid to posterior cingulum. Figs. 1-3

TABLAS 1 Standard Mandibutar Measurements of I ropmonelon A.enfi

N. B.- l'arentheses indicate estimated measurencots. After Plane (ly67) Hig. 5

1. Length of horizontal ramus lrom incisor atvenhus to postalycolar procuss 124.0

2, Length of incisor $-\boldsymbol{P}_{3}$ diastem. 45.0
3. Depth of ramus below $M_{w_{*} \text {, }}$ bitken between roots 31.0
4. Depth of ramus below \mathbf{M}_{3}, taken between roots 33.0
5. Length of cheek tuoth row, $f_{x}-M_{s}$, takest at hasc of crown. 69.5

6, Distance trom posterior edge of mental formmen to $P_{s} \ldots \ldots$. 9.0
7. Height of hypoconid on unwurn $\mathrm{M}_{\text {d, }}$ measured from base of enamel 5.0
8. Height of condyle above alveolar border .. 61.0
9. Leight of ascending ramus above alveolar border 88.5)
10. Depth of mental foramen below dorsal border of ramus.......................... 2.5
11. Width of jaw below M. taken between ronts 17.5

Mandible: Figs. 1-3. Table 1. Horizontal ramus deep, relatively thick; symphysis large, not ankylosed, extremely rugose posteriorly, extending from anterior extremity of mandible at base of I and expanding posteriorly as a skewed ellipsoid to terminate below the ponterion end of P : flanged postero-ventrally into a distinct genial creat below P\%, basal margin atute. Geniohyal pit slightly indents ponterion margin of symphysis; very shallow, indistinct. Diastema moderately short, about three fourthe lengths of cheek tooth row. slightly convex upwand in lateral view, erest sharply rounded;
miental foramen very close to erest, almost ebreular, in posterior thrd wi diastema longth. Short eminence present labially at level of mental foramen. not reathing foramen or anterior extremity of symphyseal region; underlying ballow trough fades posteriorly into mental foramen. Shallow labial depreshan extend from between mental foramen and Papostero-ventrally ${ }^{(1)}$ Side out below posterion end of $\mathrm{M}:$ about midway down horizontal ramus. D)gatric fossal well developed, extending from below transverse valley of M :
 where it fades into a very hallow post-digastric sulcus bounded anterionty by a very weak digastric process. Shallow depression opens posteriorly into ntoryond lossa but is not conlluent with digastric fossat antero-ventrally. Hnere heing a low, rounded intervening region of the lingual ramus wall post. atheolar thelf short. Well developed postalveotar process postero-lingrably. and low postalveolar ridge medially which turns upward to traverse the mesiad watl of the ascending ramus and meet the temporal erest about michway along its Length, ahome large mandihular foramen. Pterggid fossa well developed. decply excanated lathatly for insertion of superficial portoon of medial parygond musele: medial border greatly expanded for insertion of deep punton of madal parygoid muscle, forming fanged edge of fossa, especiall! mean angular poncess. Condyle well developed, atticular surface roughly alliphoal with long axis oriented antero-lingually to postero-dabially: extending latially 10 Eevel of posteriof masseteric eminence. but slightly damaged limgoally. Fonea pterygondea for lateral pterygodedemporalis musele insertion a trangular pit beneath condyle on mesial face of condyle neek; bounded datero-dorailly by shon sharp erest originatiog on condyle in region of mandibular notch. Perpendicular to alveolar margin the temporat erest ancends to top of slightly damaged coronod process: posterior slope of coronoid process a slightly concave curve deseending into matndibulat noteh Masseteric crest ratised to about level of alveolar margin: masseteric forsa moderately large, vertically elongated hattened oval in shape with large masseteric foramen on ventro mesial wallf leading into short masseteric canal where deep anterow fibee of the medial masseter and a slip of the deep masseter insert. Nature and extent of inforior dental canal not visible, but it peobably reaches to beneath the sectorial P; (Ride. 1959; Abhic, 1939).
 a wine-glass shape al region of angle.

Dencriphon el manarypes:

lCMf'shり20, $\mathrm{P}^{\prime \prime}$: Гig. 4. Subtriangular approaching subrectangular In hasal watione; broader posteriorly than anterionly; longitudinal erest concave in side view, straight. Aper of paracone about one quarter distance allong crest from anteriormost point: labial and lingual vertical tidges expremely weah, transect erest, two very small cuspules present but probably
more visible in less wors state. Metacone high, at posternor end of erest: hypocone low. worn, connected in metacone by fow Transverse crest which descends lingual tace of metacone, passes thoongh hypocone and turns anteriorly as a low simus lingual cingulum being highest a little anterior tor the midpoint of the longitudinal crest; cingulum and crest converge antorionly but with cingulum expanding lingually and paralleling crest for a shore distance before terminating at a vertical longual ridge descending firmon patatome apex and matehed by a similar labial ridge. Langual basin shallow, subtriangular tending subrectangular in shape, Iraversed antermily by a low broad ridge cmanange from the highest point of the lingual cingulum. Labial base of crown moderately swollen, not yute to extent that would justify deseription ats a labial cingulum. Posterior ridge from metacone descends vertically and turns lingually to fade out on posterior wall of hypocone, Na posterior cingulum, but attrifion with M^{1} has produced a wear face in this location. No posterior fossette,

UCMP 56898. $1 P^{3}$: Fig. 4. Molariform, subrectangular in basal untime, uncomstricted across median valley, swollen at lingual extremity: Gopls low, bowed athteriorly, metaloph slightly wader than protolopho. Anterior aingulum low, narrow, short, extending from ridge descending vertically from paracone to athterion base of protocone whth slighty developed forchonk meeting it all longitudnal axis of crown. Midlink weah, deseending pomero-labially from apex of paracone then turning posteriorly to meed metaloph low down and linguth to modine, a little labiad of bypocone apere. Small shelf-like area with minor omamentation present posterior to protoloph orest: short ridge passing posteriorly from paracone apes descends abmost velically to floor of V-shaped median valley to meet a bmilar ridge descending anteriorly from apex of metacone. Relatively strong ridge descends postero-labially from apex of hypoonne forminate below apex of metacone. forming a small posterior cingulum; met by ridge descending almost vertically from metacone, and by secondary ridge descending from crest of metaloph latiad of midlone, thus delimiting shelf-like area below metalopherest. No lingual stylar cusp below protocone in single known specimen.

UC'MP 60825, P": Fig. 4. Subrectangular in batsal untline, broadest puint midway along length; longitudinal crest almost stranght, lower than apices of paracone and metacone, slightly concave labially; apen of paratome close to anterior extremity of cown on longitudinal crest: three sets of very weak vertical labial-lingual ridges transect crest. producing small cuspules. Metacone haghest cusp. near pusterior extremity of crown on longitudinal crest, united to kower rounded hypocone by low posterior transverse ridge: ma definitive posterior cingulum, this area bearing a wear facet produced by allrition with M^{\prime} : no posterior fossette. Anterior ridge from hypuonte devends sharply and continues anteriurly to form a well developed lingat
cingulum, highest pornt just posterior to paracone; converges slighty with longitudinal erest anteriorly to enclose subrectangular, shallow lingual basin with somewhat sinuous floor profile and bearing small pit-like indentaton as antero-lmgual comer: small antero-lingual fossette anterior to erest connectmy patacone and lingual cingulum. Labial cingulum weakly developed, bearing two prominem swellings midway between paracone and metacone at base of crontr: poorly delined stylar cusp at anterior extremity of erown on base of anterior paracone stope. Major wear facet along full lengh of lingual shope of longitudinal crest.

Hppor molars. UCMP 60805, LM: RM", LCMP 56907. 1wo LM" no M'. RAI': LCMP 56921, RM". Fig. 5. Closely resemble those of T. minor. Subnoctanglar in basal outline very shghtly constricted across median valley: Wophe low. bemed anteriorly: metaloph slightly broader than protoloph in M^{\prime}, equal or slightly narrower in M^{2} and M^{3} 。 M^{3} unknown. Anterior cingultum low, broad, ascending labially: forclink absent in six teeth known: labial evtremity of congulam unted to paracone by slight vertical ridge ancending athero-fabial face of protoloph; two or three faint parallel ridges nocamionally persent in labial moiety of anterior cingulum shelf and protohoph lace. L.mgual margin of median valley sometimes variably swollen laterally. Moderately strong ridge descends postero-labially from protocone, turning pootesmoly across broadly U-shaped median valley as a moderately fow midtonk to unite with extremely short ridge from near midpoint of metaloph. weaker redge from paracone descends postero-lingually to furn posteriorly alld closely paralle midlink into hoor of median valley, delimiting a shelflike area hehw protokoph crest which is variably but minimally omamented by subsidiary ridges and tuhercles in M^{\prime} (o $\mathrm{M}^{\prime \prime}$, M^{\prime} unk inown. Strong lidge curves postero-dabially from hypocone to near postero-labial base of erown whele it terminates in a minor swelling of weak posterior cingulum in M . ore in that position in M^{\prime} and M^{2} where posterior cingulum is absent; weake ridege descend postero-lingually from metacone towards ride from hypocone. delmitites a shelf-like area below metaloph erest which is variably but minimally manmented by subsidiary ridges and tubercles in M^{1} to $\mathrm{M}^{\text {a }}$. Base of protoloph below protocone usually with variable stylar cusp,

DISCUSSION

The occurrence of Troposodon at Lake Kanunka in the ?early Pleistocenc constitutes an important extension of the known geographic lange of the genlus. The Katipiri Sands in which the specimens described were found is composed of chamnel and foodplain deposits resting dinconformably unon the unfossiliferous Tirari Formation at the type locality. Katupri Waterhole on Coopers Creck, and also at Lake Palankarinna and Lahe Pitikanta where the channels oceasionally cut into the top of the

Eladuna Formation (?late Oligocene). The deposits at Lake Kanunka produced Troposodon, and are of further interest because the fauna contained is apparently somewhat older than the fauna at the type locality of the formation, called the Malkuni Fauna, and considered to be late Pleistocene in age.

The Kanunka fanna contains a diverse assemblage of invertebrates and vertebrates, including craylish. lungfish, teleosts. turtles, lizards, crocodiles, cormorants, ducks, swans, a murid, dasyurids, a thylacoleonid. two vombatids, potornine, sthenurine, and macropodine macropodids, and a diprotodontid smaller than Diprotodon, possibly Enowenia (Stirton. Tedford and Miller. 1961).

This fatuna, yet to be fully studied and dencribed. contains a diversity of carnivores and herbivores indicative of a situation characterized by ateas of forest and grasstand. possibly in the form of savannah, and probably riparian atteas since the existence of watercourses is amply evidenced geologically. Potoromes, macropodines, and sthenurines are browsing-grazing forms favouring savannah locales; the murids. dasyurids, and possibly vombattids indicate the presence of low cover in the form of shrubs or grasses, and if their present distribution 1s a fathful guide. a rainfall of $20-30$ inches per armum in a seasonal climate such as prevaik over much of the east coast of Australia today.

As discussed earlier, Troposodon probably occupied a Shenturns-like miche, that of a large grazing of grazing-browsing berbivore probably favouring the savannah areas and travelling to water (0) drink.

STATISTICS

The statistics performed require some discussion. In all cases the samples involved are too small (i.e. <10) for reliable conclusions derived from stabstical comparison to be made. Bartholomai (1967) showed that populations of T. minor from eastern and western Darlong Downs were not separable on the basis of dental dimensions. His samples were adequatte for Student's t Test, and the data for his eastern population were chosen for comparison with the samples here studied (Table 2) because the dental representation was more complete than in the western population. In numerous cases in the present study only one specimen was available for comparison, and although the test applied is perfectly valid (Simpson, Roe and Lewontin, 1960. pp. 182-3), its limitations due to the lack of variation considered are selfervident, as are the limitations of Students t Test on samples of less than ten.

Thus the statistics are not intended for use as definitive taxonomic tests, but rather ats indications of trends which may be better revealed when larger samples become available for statistical comparison.

In the case of T. kenti, of twenty tests performed, sixteen involved one specimen, two involved two specimens, and two involved four specimens. In twelve of these the values of $\mathrm{P}(>0.05$ at 5% level of significance) indicate that the null hypothesis of no difference must be accepted, and that the teeth tested fall into the dimensional range of teeth from the eastern Darling Downs sample of 7 . minor. In eight cases the values of $\mathrm{P}(<0.05$ at 5% level) indicate the null hypothesis must be rejected, and the teeth concerned be considered as members of a different population (Table 3). The ratio of acceptances to rejections is taken to indicate that given a larger sample, the probability for consistently testable significant differences is reasonably high. This, plus the morphologic differences best represented in Tables 4 and 5 are considered adequate grounds for the designation of new specific rank, in the purely morphologic sense available to palaeontology. The facts of geographic and possible temporal isolation of the populations compared are supporting grounds which cannot be quantified, but are real none-the-less.

TABLE 2 Dental Measurements of Truposodon spp.

Specimen and Species	Length	Width Posteriorly	Width Protoloph	Width Protolophid
Troposodon kemi-				
P^{23} UCMP 56920.	12.0	6.2		
(1P3 UCMP 56898	9.5		8.7	
$\mathrm{p}^{3} 3$ UCMP 60825.	15.2	7.7		
M' UCMP 56907	13.0		10.9	
M: UCMP 56907.	14.0		11.0	
M ${ }^{3}$ UCMP 56907.	14.5		10.1	
UCMP 60805	$15.3 .14 .9$		$10.7,10.0$	
UCMP 56921	15.7		11.2	
A' UCMP 60825.	15.7		11.4	
P, UCMP 56897,	13.8	6.5		
M, UCMP S6897	11.3			8.9
M: UCMP 56897.	12.9			10.7
M, UCMP 56897.	15.0			12.3
UCMP 56907.	16.0			10.8
M. UCMP 56897.	16.0			12.6
cf. Troposodan minar-				
P_{2} UCMP 45192	8.4	4.8		
dP's UCMP 45192.	9.5			6.0
P UCMP 45149.	12.0	6.5		
M_{1} UCMP 45192	11.0 11.0			7.6
Me_{e} UCMP 45192.	13.0			9.0
UCMP45149	12.6			8.9
M_{3} UCMP 45192.	13.8			10.0
UCMP 45149.	14.7			10.3
M_{1} UCMP 45149.				10.6

TABLE 3 Comparison of Means of Samples of Troposodon Bartholomai, from Eastern Darling Downs and Kanunka Fauna

Character	Troposodon minor (Owen)					Troposodon kenti nov.					Comparison of Means	
	N	\bar{X}	OR	$\mathrm{s}^{\text {a }}$	s	N	$\overline{\mathrm{X}}$	OR	s^{2}	S	t	P
P^{2} length	1	11.60				1	12.0					
Width metaloph	0					1	6.2					
DP^{3} length.	3	10.83	10.7-11.0			1	9.5					
Width protoloph	2	7.75	7.7-7.8			1	8.7					
P^{3} length	12	14.45	13.3-16.4	0.9027	0.9501	1	15.2				0.7583	$0.4-0.5$
Width metaloph	11	7.51	6.6-8.5	0.4268	0.6533	1	7.7				0.0027	- 0.9
M^{1} length	14	11.83	10.1-13.8	0.7930	0.8905	1	13.0				1.2680	$0.2-0.3$
Width protoloph	11	9.27	8.0-9.8	0.3281	0.5728	1	10.9				1.6558	$0.1-0.2$
M^{2} length	14	13.44	11.8-14.7	0.9734	0.9866	1	14.0				0.5483	0.6
Width protoloph	14	10.49	9.2-11.5	0.6098	0.7809	1	11.0				0.6309	0.5
M^{3} length . . .	11	14.90	12.8-15.9	0.9799	0.9899	4	15.1	14.5-15.7	0.2666	0.5163	0.3794	0.7
Width protoloph	11	11.36	10.2-12.3	0.5566	0.7461	4	10.5	10.0-11.2	0.3133	0.5597	2.9432	0.01-0.02
M^{1} length ...	3	14.23	13.7-15.1	0.5742	0.7578	1	15.7				1.6798	0.2
Width protoloph	2	11.30	11.2-11.4	0.0200	0.1415	1	11.4				0.4707	0.7
P_{3} length	11	11.35	10.8-12.1	0.1268	0.3561	,	13.8				6.5869	$\bigcirc 0.001$
Width posteriorly	11	5.53	4.7-6.0	0.1473	0.3839	1	6.5				2.4191	0.02-0.05
M_{1} length +.....	23	11.83	10.8-12.4	0.1584	0.3980	1	11.3				1.3035	0.2
Width protolophid	20	7.44	6.8-8.1	0.1278	0.3575	1	8.9				3.9854	0.001
M_{3} length	27	13.22	11.8-14.3	0.3348	0.5787	1	12.9				0.5429	0.6
Width protolophid	25	9.18	8.5-10.7	0.2215	0.4707	1	10.7				3.1661	0.01-0.001
M_{3} length.	30	13.98	12.8-16.0	0.7057	0.8399	2	15.5	15.0-16.0	0.5000	0.7071	2.4898	0.02
Width protolophid	27	10.23	9.5-11.4	0.2713	0.5208	2	11.6	10.8-12.3	1.1300	1.0630	3.3956	0.01-0.001
M_{4} length....	21	15.35	14.0-16.5	0.4695	0.6852	1	16.0				0.9266	$0.3-0.4$
Width protolophid	20	10.48	9.8-11.7	0.2819	0.5310	,	12.6				2.0584	0.05

TABLE 4 Summary and Comparison of Diagnostic Dental Characters in the lower
Teeth of the Species of Troposodon

	Character	Troposodon minor	Troposodon kenti
P_{3}		Longitudinal crest turns abruptly postero-lingually Crest Lshaped i.e. no postero-labial ridge	Tooth unknown
dPP_{3}		Hypolophid much broader than protolophid	Tooth unknown
P_{3}		Longitudinal crest turns abruptly postero-lingually; thus crest L-shaped. Variably swollen lingually	Longitudinal crest L-shaped. Swollen postero-lingually. Conspicuous paracone with lingually descending ridge
Lower Molars	Relative width of lophids	Hypolophid>protolophid \mathbf{M}_{1}; $\mathbf{M}_{2^{-} 3^{\prime}}:<\mathbf{M}_{4}$	Hypolophid = protolophid $\mathrm{M}_{1^{-2}}$; almost equal $\mathbf{M}_{3} ;<\mathbf{M}_{4}$
	Forelink ornamentation	Occasionally with subsidiary ridging	Without subsidiary ridging
	Accessory ridge from metaconid to forelink	Present, moderately strong	Present, weaker than in T. minor
	Apical shelves below lophid crests.	Present, ornamented $\mathrm{M}_{1^{-}}$with ridges and tubercles	Present, unornamented

TABLE 5 Summary and Comparison of Diagnostic Dental Characters in the Upper Teeth of the Species of Troposodon

	Character	Troposodon minor	Troposodon kenti
p ${ }^{2}$	Vertical ridges ．．．．	Two，low and broad，between paracone and metacone	rwo or more，weak
	Lingual cingulum ．．	Unites with base of crown below paracone	Low，sinuous，terminates at vertical lingual ridge des－ cending paracone
	Lingual basin．	Shallow，unornamented	Shallow，traversed by anterior low broad ridge
	Labial cingulum．．．．	Absent	Labial base of crown swollen
$\mathrm{dP}^{\text {1 }}$	Anterior cingulum．．	Broad	Narrow
	Midlink．．．．．．．．．．．	Strong	Weak
	Transverse valley．．．	U－shaped	V－shaped
	Lingual stylar cusp．．	Present below protocone	Absent in single known tooth
	Anical shelves above loph crests	Present，variably ornamented	Present，less ornamented than T．minor
$18:$	Width ．．．．．．．．．．．	Broadest posteriorly	Broadest medially
	Paracone apex ．．．．	$\frac{1}{4}$ length along longitudinal crest from anterior point	Close to anterior extremity of longitudinal crest
	Vertical ridges tran－ secting crest	Up to five sets	Three or four sets
	Cusp heights	Hypocone approximately same height as metacone	Metacone highest，hypocone low and rounded
	Posterior cingulum．	Narrow，short	Absent
	Posterior fossette．．．	Present，between posterior cingulum and ridge connect－ ing hypocone and metacone	Absent
	Lingual cingulum．．．	Low	Well developed
	Lingual basin．	Shallow，traversed by low broad ridges	Shallow，with antero－lingual nit
	Anterior fossette	Absent	Present，antero－lingual to crest connecting paracone and lingual cingulum
	Labial cingulum ．．．	Labial base of crown slightly swollen	Wcak，with two prominent swellings midway along length
$\begin{aligned} & \text { 号 } \\ & \text { 号 } \\ & \sum_{0} \\ & \text { 号 } \end{aligned}$	Representation ．．．	$\mathrm{M}^{\text {L－4 }}$ known	$\mathrm{M}^{1,3}$ known
	Forelink	Reduced or absent，labiad to crown axis	Absent
	Accessory links ．．．．	Slight，parallel forelink in labial moicty of anteriot cingular shelf	Absent

SUMMARY AND CONCLUSIONS

A new species of Troposodon Bartholomai, 1967 is described and named T. Kenti. It is from the ?early Pleistocene Kanunka Fauna at Lake Kanunka (UCMP localities V5772 and V5773) in the basal Katipiri Sands of the Lake Eyre Basin, South Australia (Stirton, Tedford and Miller, 1961). It can be consistently differentiated on morphologic grounds from T. minor (Owen), 1877, but is represented too poorly numerically for definitive statistical differentiation. A large left mandible with $\mathrm{M}_{:=1}$ (OM F4378) from the ?late Pliocene Chinchilla Formation and Fauna on Darling Downs, Queensland, falls into the size range of T. kenti and is morphologically very similar. It may represent the presence of T. kenti sympatrically and approximately contemporancously with T. minor, but the possibility of its being a very large specimen of T. minor cannot be ruled out with the particular morphology available.

Stratigraphic representation of this genus is too poor to allow a phylogenctic sequence to be established. T. minor is present in both the ?late Pliocene Chinchilla Fauna and the ?early Pleistocene Darling Downs Fauna on Darling Downs in south-eastern Qucensland, a time range overlapping the ?early Pleistocene provenance of the Kanunka Fauna in South Australia.

The ancestry of Troposodon is considered to have been close to the mid to late Tertiary divergence of Protemnodon, Sthenurus, and Macropus from a common ancestor, possibly similar to the ?late Miucene macropodid Hadronomas Woodburne, 1967 from the Alcoota Fauna (Northern Territory).

LITERATURE CITED

Abbie, A. A., 1939: A masticatory adaptation peculiar to some diprotodont marsupials. Proc. Zool. Soc. Lond., ser. B, no. 109, pp. 261-279.
Bartholomai, A., 1967: Troposodon, a new genus of fossil Macropodinae (Marsupialia). Mem. Qd. Mus., 15, pt. 1, pp. 21-33, 3 figs.
De Vis, C. W., 1895: A review of the fossil jaws of the Macropodidae in the Queensland Museum. Proc. Linn. Soc. N.S.W., 10, pp. 75-133, 5 pls.
Owen, R. 1877: On a new species of Sthenurus, with remarks on the genus Dorcopsis Muller. Proc. Zool. Soc. Lond. 1877, pp. 352-361, 2 figs.

Plane, M. D., 1967: Stratigraphy and Vertebrate Fauna of the Otibanda Formation, New Guinea. Bur. Min. Resour. Aust. Bull., 86, 15 figs, 5 pls.

Ride, W. D. L., 1959: Mastication and taxonomy in the Macropodine skull. in "Function and Taxonomic Importance", Ed. A. J. Cain, pp. 33-59, Systematics Association; London.
Simpson, G. G., Roe, A., and Lewontin, R. C., 1960: Quantitative Zoology. Rev. Ed. (New York: Harcourt, Brace and CO.).
Stirton, R. A., 1963: A review of the macropodid genus Protemnodon. Uniy. Calif. Publ. geol. Sci., 44, pp. 97-162, 15 figs.

Stirton, R. A., Tedford, R. H., and Miller, A. H., 1961: Cenozoic stratigraphy and vertebrate paleontology of the Tirari Desert, South Australia. Rec. S. Aust. Mus, 14, No. 1, pp. 19-61, 4 figs.
Tedford, R. H., 1966: A review of the macropodid genus Sthenurus. Univ. Calif, Publ. geol. Sci., 57, pp. 1-72, 20 figs.
Woodburne, M. O., 1967: The Alcoota fauna, Central Australia. Bur. Min. Resour. Aust. Bull., 87, pp. 1-187. 34 figs. 7 pls.

RECORDS OF THE SOUTH AUSTRALIAN MUSEUM

RHODACARIDAE (Acari: Mesostigmata) FROM NEAR ADELAIDE, AUSTRALIA

I. SYSTEMATICS

By DAVID C. LEE

VOLUME 16

RHODACARIDAE (Acari: Mesostigmata) FROM NEAR ADELAIDE, AUSTRALIA

By DAVID C. LEE

Summary

Twenty-five species of Rhodacaridae belonging to 14 genera are listed as collected from the environs of Adelaide, South Australia. Two new genera (Athiasella and Solugamasus) and 12 new species (Gamasiphis lenifornicatus, G. saccus, Geogamasus minimus, Gamasellus cophinus, G. grossi, Acugamasus elachyaspis, Hiniphis bipala, Rhodacaroides minyaspis, Solugamasus mustela, Antennolaelaps aremenae, A. celox, Onchogamasus virguncula) are described. The description of adult Gamasellus concinmus (Womersley, 1942) is extended and measurements are given for adults of all listed species. The larvae of 4 species (Gamasiphoides propinquus, Gamasellus concinnus, G. cophinus, Acugamasus semipunctatus) are described.

RIIODACARIDAE (ACARI: MESOSTIGMATA) FROM NEAR ADELAIDE, AUSTRALIA

I. SYSTEMATICS

By DAVID C. LEE.
South Australian Museum. Adelaide

Abstract

Twenty-five species of Rhodacaridae belonging to 14 genera are listed as collected from the environs of Adelaide. South Australia. Two new genera (Athiasella and Solıgamasus) and 12 new species (Gamasiphis lenifornicatus, G. saccus, Geogamasus minimus, Gamasellus cophinus, G. grossi, Acugamasus chachyaspis, Hiniphis bipala, Rhodacaroides minyaspis, Soluganavas mustela, Antennolaclaps aremenae. A. celox, Onchogamasus virguncula) are described. The description of adult Gamasellus concinnus (Womersley, 1942) is extended and measurements are given for adults of all listed species. The larvac of 4 species (Gamasiphoides propinquus, Gamasellus concinnus, G. cophinus, Acugamasus semipunctatus) are described.

INTRODUCTION

The Rhodacaridat is a group of mainly frec-living, ground inhabiting, predatory mites, most common and diverse in form in Southern Temperate regions.

The present study on Systematics formed part of a thesis for the degree of M.Sc.. University of Adelaide, on rhodacarids from the environs of Adelaide, South Australia. Further papers will deal with the Ecology (part II) and Behaviour (part III) of these mites.

The rhodacarids studied were from 4 sites between the summit of Mount Lofty and the coast-line of the Adelaide Plain. The "Sites", to be described more fully in part II, are as follows:-
(1) Summit. Approximately 18 km from the sea. Near the summit of Mount Lofty (715 m), the highest hill overlooking the Adelaide Plain.
(2) Foothills. Approximately 16 km from the sea. Near the First Waterfall, at the head of the deepest stretch of Waterfall Gully which has recently eroded back from where First Creek flows from the foothills below Mount Lofty on to the Adelaide Plain.
(3) Plains. Approximately 8 km from the seal. Heywood Park Unley; a suburban park on the Adelaide Plain.
(4) Coastal. Approximately 1.5 km from the sad. Grange Golt Course.

The terminology and diagnoses of taxa are as used by Lee (1970) except when otherwise indicated. Measurements are in micrometres, to the nearest 5 for lengths and 2.5 for breadths. The idiosomal length given is the average followed in parentheses by the number of specimens measured and the range of their lengths. Other measurements given for a specimen near to the average length are the lengths and breadths of the movable cheliceral digit ($c h$), the palp ($p a$) and the legs (I,II, III or IV).

Specimens selected for description have been registered in the collection of the South Australian Museum.

Family RHODACARIDAE Oudemans, 1902
Subfamily RHODACARINAE Oudemans, 1902
Genus RHODACARUS Oudemáns, 1902
Rhodacarus roseus Oudemans
Rhodacarus roseus Oudemans, 1902, p. 50.
FEMALE. Not figured.
Measurements: idiosomal length—275 (1 from Summit Site) of 490 (3 from Plains Site. 450-510, measured for appendage lengths and genu breadths); appendage lengths-ch 100, pa 140, I 405, II 285. III 245. IV 360; genu breadths-pa 22.5, I 25, II 32.5, III 27.5, IV 32.5. The female from the Summit Site differs from previously described specimens from the Plains Site in being smaller with very indistinct punctations on the idiosoma and an opisthonotal seta $Z 3$ of similar length to seta 72 rather than to $Z 5$.

MALE. Not figured.
LOCAL. Summit Sitc-female (197061), moss, 26.4.1968. Plains Site-3 females (N196879-N196881).

REMARKS. Specimens of R. roseus from the Plains Site have already been described (Lee, 1970, p. 29). One smaller female, differing from these as indicated above, was collected from the Summit Site and is for the time being regarded as belonging to the same species. This species has also been recorded from the Palaearctic region.

Genus RHODACARELLUS Willmann, 1935
Rhodacarellus silesiacus Willmann
Rhodacarellus silesiacus Willmann, 1936, p. 282.
FEMALE. Not figured.
Measurements: idiosomal length—305 (1); appendage lengths-ch 30, pa $90, I 230, I / 140$, III 115, IV 200; genu breadths—pa 17.5, I 22.5. I/ 27.5, III 22.3, IV 25. The general appearance is as given for this species by Sheals (1958), but at the posterior end of the idiosoma the setal lengths and markings on the shields conform to those figured for this species by Athias-Henriot (1961, 1igs. 283, 284 and 291).

MALE. Not collected.
LOCAL. Foothills Site-female (N197062), moss, 9.5.1968.
REMARKS. The only previous record of Rhodacarellus occurring in Australia is of a female (N1968280) from Millicent, about 400 km south of Adelaide (Lee, 1970), which I have since identified as R. silesiacus. This species has also been recorded from the Nearctic and Palaearetic regions.

Subfamily GAMASIPHINAE Lee, 1970
Genus GAMASIPHIS Berlese, 1904
Gamasiphis australicus Womersley
Gamasiphis (Heteroiphis) australicus Womersley, 1956a, p. 521.
FEMALE. Not figured.
Measurements: idiosomal length 390 (3 from Foothills Site, 360-430); appendage lengths-ch 40 , pa 100, / 290, // 250, III 190, IV 265; genu breadths-pa 17.5, I 22.5, II 30, III 22.5, IV 22.5.

MALE. Not figured,
LOCAL. Foothills Site-3 females (N197063-N197065), moss or plant litter, 7.1968-2.1969. Plains Site.

REMARKS. G. australicus from the Plains Site is described (Lee, 1970, p. 50) and appears to be identical with specimens from the Foothills Site. The only other record of this species is of the type which was collected at Mylor, about 8 km south of the Summit Site.

Gamasiphis fornicatus Lee

Ganasiphis fornicatus Lee, 1970, p. 51.
FEMALE. Not figured.
Measurements: idiosomal length—500 (20, 480-510): appendage lengths-ch 72, pa $165, / 360, / / 310,1 / / 305$, IV 385 ; genu breadthspa 20, I 25, II 42.5, III 30, IV 30.

MALE. Not figured.
Measurements: idiosomal length-490 (6, 470-490),
LOCAL. Summit Site-10 females (N197066-N197075) and 3 males (N197076-N197078). moss or plant litter. 1968-1969. Foothills Site14 females (N197079-N197092) and 4 males (N197()93-N197096), moss or plant litter. 1968-1969.

REMARKS. G. fornicatu, is also recorded from Mount Remarkable, about 260 km north of the Summit Site. No differences were noticed between the type specimens and those from near Adelaide.

Gamasiphis lenifornicatus Lee, n.sp.
FEMALE. Fig. 1; A,B,C,D,E.
Measurements: idiosomal length-390 (1): appendage lengths-ch 40. pa 135, I 305. I/ 225, III 220, IV 305; genu breadths-pa 17.75, I 22.25. II 30, III 25, IV 25. One pair of pre-endopodal shields. Split between exopodal and peritrematal shields does not extend posterior to stigma, and the peritrematal shield is broadly fused to the notal shield. No conspicuous lateral fissure on notal shield. Leg chactotaxy is abnormal for rhodacarids (not as Gamusellus) in lacking 3 setae on leg IV; seta pl on the genu $(2,5 / 2,0)$; setae $p d 2$ and $p l 2$ on the tibia $(2,4 / 2,1)$. The tectum is conspicuously fimbriated. The idiosoma is acutely convex dorsally and the dorsal setac are unusually long. Sternal setae are nearly in a straight line so that a line joining setae $s t 2$, st 3 and $s t 4$ enclose an angle of more than 95 ; excepting the atypical Hydrogamasus this is a unique attribute within the Gamasiphinae. On legs II-IV, tarsal setae adl and pdl are subequal in length to pretarsus and bear a broad hyaline flap.

MALE. Fig. 1: ${ }^{F}, \mathrm{G}, \mathrm{H}$.
Measurements: idiosomal length-350 (6, 340-370). The distribution of shields is as for the female except on the venter of the podosoma. The spermadactyl is slightly longer than the movable cheliceral digit, and has a hyaline, spatulate tip. On leg II, setae av on the femur and genu are modified to spurs.

Fig. 1. Gamasiphis lenifomicatus n.sp.
A-E, female: A, soma, dorsum; B , idiosoma, venter; C , pretarsi 1 and IV; D, gnathosoma, venter* E, leg IV (part), dorsal sctac.
Fi.H, male: F. leg II (part), antero-lateral: G. chelicera: H, idiosoma, venter.

Fig. 2. Gamasiphis saccus n.sp.
A-E, female: A, soma, dorsum; B, gnathosoma. venter; C, idiosoma, venter; D, pretarsi 1 and IV; E, leg IV (part), dorsal setae.
F-H, male: F, chelicera: G, idiosoma, venter; H, leg II (part), antero-lateral.

LOCAL. Summit Site-holotype female (N197097) and allotype male (N197098), plant litter, 24.4.1969; and 5 paratype males (N197099N(970103), moss or plant litter, 6-8.1968.

REMARKS. The idiosoma of G. lenifornicatus is globular, but to a lesser degree to that of G. fornicatms. The leg chaetotaxy is unique amongst rhodacarids in lacking seta $p d 2$ on the adult tibia IV. The male tibia II is unusual within the genus (G. saccis n.sp. is the only other species of Gamasiphis with this attribute) in having a setose seta $a v$.

Gamasiphis saccus Lee, n.sp.
Female. Fig. 2; A,B,C,D,E.
Measurements: idiosomal length $-350(3,350-360)$: appendage lengths-ch $40, \mathrm{pa} 120,1270$, I/ 210, III 190, /V 240 , genu breadthspa 15. / 22.5, II 32.5, II/ 25, /V 25. One pair of pre-endopodal shields. Split between exopodal and peritrematal shields extends backward from stigma to divide exopodal IV. Lateral fissure runs almost parallel to edge of opisthonotal shield. Leg chaetotaxy is normal for rhodacarids (as Giamasellas). The idiosoma is unusually flattened dorsally for a species of Gamasiphis. There is a conspicuous pit on the anterior edge of the ventroanal shield bordering acetabulum IV. This pit appears to be lined by a fine pilc. On legs II-IV, tarsal setae adt and pdl are simple and less than a quarter of the length of the pretarsus.

MALE Fig. 2; F, G, H.
Measurements: idiosomal length-340 (3, 330-350). The distribution of shields is as for the female except on the venter of the podosoma. Spermadactyl is slightly longer than the movable cheliceral digit and, although blunter, similar in shape. On leg 11, setae av on the femur and genu are modified to spurs.

LOCAL. Summit Site. Foothills Site-holotype female (N1970104), allotype male (N1970105), 2 paratype females (N1970106 and N1970107) and 2 paratype males (N1970108 and N1970109), moss, 21.6.1968.

REMARKS. G. saccus is easily recognized by the large pit on the posterior edge of acetabulum IV. It is also unique amongst species of Gormasiphis in having the same leg chaetotaxy as Gamasellus. Specimens from the Summit Site are indistinguishable from those described.

Genus EUEPICRIUS Womersley, 1942
Euepicrius filamentosus Womersley
Eucpicrius: filamentosus Womersley, 1942, p. 170.
FEMALE. Not figured.
Measurements: idiosomal length—500 (10, 470-550): appendage lengths-ch 60, pa $140, I 755, / / 445, / I / 440, / V 490$; genu breadthspa 22.5, I distal 25, II 45, III 42.5, IV 47.5.

MALE. Not figured.
Measurements: idiosomal length-490 (10, 460-530).
LOCAL. Summit Site. Foothills Site- 10 females (N1970110N1970119) and 10 males (N1970120-N1970129), moss or plant litter, 1968-1969.

REMARKS. The above specimens of E. filamentosus are indistinguishable from the type specimens (N1970130)-N1970139) which are from Glen Osmond and Long Gully (2 localities within 8 km of the Foothills Site). A female of an undescribed species from Waimamaku, New Zealand, was incorrectly listed as belonging to E. filamentosus in the original description.

Genus GAMASIPHOIDES Womersiey, 1956a

Gamasiphoides propinquus Womersley
Gamasiphis (Gamasiphoides) propinqua1 Womersley, 1956a, p. 528.
FEMALE. Not figured.
Measurements: idiosomal length—800 (5. 780-840, measured for appendage lengths and genu breadths) or 600 (2); appendage lengthsch 80, pa 220, I 570, II 430, III 420, IV 550; genu breadths-pa 35, I 47.5. // 60. III 50, IV 55.

MALE. Not figured.
Measurements: idiosomal length - $730(4,720-730)$ or 540 (1).
LARVA. Fig. 3; A,B,C,D,E,F.
Measurements: idiosomal length $-320(4,270-350)$. Seta al on palp genu is spatulate. Tectum anterior margin is basically trispinate with numerous spinules, and the three spines are of approximately equal size. idiosomal shields clearly defined. Idiosomal setae are simple. Opisthonotal seta $Z 3$ ($Z 1$ and $Z 2$ are absent) is about half as long as seta $Z 4$.

[^5]

Fig. 3. Gamasiphoides propinquas (Womersley)
A-F, larva: A, soma, dorsum; B, leg IlI (part), dorsal setae; C, idiosoma, venter:
D. pretarsus \mathbf{I} : \mathbf{E}, chelicera; \mathbf{F}, palp femur and genu, venter.

LOCAL. Summit Site-5 normal-sized females (N1970145, N1970146, N1970150-N1970152), 4 normal-sized males (N1970147, N197()148. N1970153, N1970154) and 4 larvae (N1970159-N1970162), plant litter, 5.1968-1.1969; 2 small females (N1970142 and N1970143) and 1 small male (N1970144), plant litter, 2-4.1969.

REMARKS. Most of the above specimens are indistinguishable from the types of G. gamasiphoides, collected from Belair National Park about 8 km south of the Summit Site, and from specimens described by Lee (1970,
p. 63), collected higher up Mount Lofty than the Summit Site. Specimens only distinguishable by their smaller size were collected at the end of the summer dry season, a period during which normal-sized adults have not. ats yet, been found.

Subfamily OLOGAMASINAE Ryke, 1962
Tribe OLOGAMASINI
Genus ATHIASELLA Lee, n.gn.
Heydenieltis Richters, dentata-complex: Lee, 1970. p. 101.
Type-species: Hydrogamasus dentatus Womersley, 1942.
DIAGNOSIS. Small to large mites. Holonotal shield. Ventro-anal shield of female discrete, while on male it is usually fused to the notal shield and always fused to peritrematal and expodal IV shields. Sterno-metasternal shield of female never fused to endopodal IV shield. Single pair of pre-endopodal shields. Twenty pairs of podonotal setac. Leg chaetotaxy may be normal for rhodacarids (as Gamasellus) but usually there is one less ventral seta on genu IV $(2,5 / 1,1)$. On palp genu, seta all pectinate with at least 12 lateral prongs and seta al2 broadly cuneate in distal half. Dorsal setae all simple, tapering. Spermathecal access duct opens distally on dorsal surface of trochanter III. Spermadactyl is never conspicuously longer than the movable cheliceral digit and lies parallel to it. The male corniculus is slightly attenuated and on a raised base. On the male leg II at least setae ar on the femur, genu and tibia are modified to spurs. Pretarsus I is pedunculate and conspicuously smaller than other pretarsi. Legs I and IV are long (0.9 () or more of idiosomal length) and there is considerable variation in leg thickness (using breadth of genu: I is 0.65 or less of II; III is 0.85 or less of IV).

REMARKS. Nominate species of Athiasella were grouped (Lee, 1970) in the dentata-complex of Heydeniella. These species are however distinguishable from species of Heydeniella by the recognizable location of the orifice to the spermathecal access duct, the discrete female ventro-anal shield and the modification of seta $a v$ on the male tibia II to a spur.

Athiasella dentata (Womersley)

Hydrosamasus dentattis Womersley, 1942, p. 149.
Heydeniella dentata (Womersley): Lee, 1970, p. 105.

FEMALE. Not figured.
Measurements: idiosomal length—740 (14, 720-780); appendage lengths-ch 125, pa $270, / 750$, II 570, III 520, IV 790; genu breadthipol 35, I 42.5, II 82.5, III 47.5, IV 60.

MALE, Not figured.
LOCAL. Summit Site. Foothills Site-14 females (N1970163N1970176), plant litter, 27.3.1969. Plains Site.

REMARKS. All stages of A. dentata from the Foothills Site have been described (Lee, 1970), and except for slight variations in their size are indistinguishable from specimens from the other sites. So far, specimens with a long "footh" on trochanter IV (includes types) have only been collected on the Adelaide Plain or in the Mount Lofty Ranges. A form with a shorter "tooth" is found in the Flinders Ranges and the Hummock Ranges at localities $120-280 \mathrm{~km}$ north-west of the Foothills Site (Lee, 1970).

Athiasella relata (Womersley)

Iydrogamasus relatus Womersley, 1942, p. 151, not Hydrogamasus relatus: Womersley, 1956a, p. 530.

FEMALE. Not figured.
Measurements: idiosomal length -540 ($8,510-570$); appendage lengths-ch 95, pa 205, I 540, I/ 390, III 345, IV 510: genu breadthspa 27.5, / 30, II 50, III 32.5, IV 42.5.

MALE. Not figured.
Measurements: idiosomal length -540 (9, 520-550).
LOCAL. Summit Site and Foothills Site-8 females (N1970181N1970188) and 9 males (N1970189-N1970197), moss or plant litter. 4-9.1968. Plains Site.

REMARKS. A. relata is similar to A. dentata, but smaller and the female lacks a conspicuous "tooth" on trochanter IV. while the male has a straight, needle-like spermadactyl (Womersley, 1942, fig. 6A). A. relata has only been previously recorded from Gien Osmond which is close to the Foothills Site. Specimens of an undescribed species from Taringa, Queensland, were incorrectly listed as belonging to A. relata by Womersley (1956a).

Genus GEOGAMASUS Lee, 1970

Geogamasus howardi Lee

Geogamasus howardi Lee, 1970, p. 96.
FEMALE. Not figured.
Measurements: idiosomal length-330 (10, 310-340); appendage lengths-ch 40, pa 125, I 300, II 220, /II 180. /V 295; genu breadthspa 15, I 17.5, II 33, III 22.5. IV 25.

MALE. Not figured,
Measurements: idiosomal length-310 (10, 300-320).
LOCAL. Summit Site-10 females (N1970198-N1970207) and 10 males (N1970208-N1970217), plant litter, 9.1968. Foothills Site.

REMARKS. The above specimens are slightly larger than the types from Mount Burr, about 400 km south of the Summit Site, which is the only other locality record of the species.

Geogamasus minimus Lee, n.sp.
FEMALE. Fig. 4; C.
Measurements: idiosomal length—260 (10, 250-270); appendage lengths-ch 25, pa 95, I 245, II 170, III 140, IV 200, genu breadthspa $12.5, / 15, / 127.5$, I/I 17.5, IV 22.5. Similar to Gcogamasus howardi but two characters are conspicuously diflerent. There is a broad strip of striated cuticle between the ventro-anal shield and the exopodal IV shield, which is subequal to the distance between the genital seta (st5) and the posterior margin of the genital shield. On genu IV there is no seta pv.

MALE. Fig. 4; B,D.
Measurements: idiosomal length-240 (10, 220-250). Similar to G. howardi but three male characters are conspicuously different. The spermadactyl has no elaborate hinge, although it can coil up. On trochanter II, seta al is enlarged, bent into an " L " shape and spatulate, but the distal limb is less than twice the length of the proximal limb. On tarsus II, the ridge that is regarded as homologous to seta ad3 borders a conspicuous ventro-lateral depression.

LOCAL. Summit Site-holotype female (N1970218), allotype male (N1970219), 11 paratype females (N1970220-N1970230) and II paratype males (N1970231-N197()241), moss or plant litter, 1968-1969. Foothill.s Site.

REMARKS. G. minimus is smaller, and more like the only other nominal species of Geogamasus from Australia-G. howardi-than the South American species. G. minimus is unique in Geogamasus in having fewer leg setae than Gamasellus. Specimens from the Foothills Site are indistinguishable from those described.

Fig. 4. Gamatsellus grossi n.sp. and Geogamasus minimus n.sp.
A, G. grossi, female, soma, dorsum.
B-D, G. minimus: B, male leg II (part), antero-lateral; C, female idiosoma, ventral; D, male chelicera.

Fig. 5. Gamasellus concinuus (Womersley)
A-E. female: Λ, soma, dorsum; B, gnathosoma, venter; C, idiosoma, venter* D, tarsus IV, dorsal setac; E, region of acetabulum IV, showing spermathecal access tuhe.
F-H, male: F. idiosoma, venter; G. leg II (part), antero-lateral: H, chelicera.

Tribe GAMASELLINI Hirschmann, 1962
Genus GAMASELLUS Berlese, 1892
FALCIGER-complex

Gamasellus concinnus (Womersley)
?Digamasellus concina Womersley, 1942, p. 159.
Disamasellus concinna Womersley: Womersley, 1956a. p. 537.
Cyrtolaclaps concinnus (Womersley): Womersley, 1961, p. 194.
FEMALE. Fig. 5 ; A, B, C, D, E.
Measurements: idiosomal length-500 (10. 490-510): appendage lengths-ch ! 05 , pa $180,1550,11400,111340$. IV 475: genu breadthspa $25,127.5$, I/ 52.5 . III 37.5, IV 47.5 . Three pairs of pre-endopodal shields: the anterior and posterior pairs are slim and inconspicusus, the former so much so that it was not noted in the original deseription. The peritrematal shield is separate from the ventro-anal shield; this agrees with original description but not with my examination of the holotype which has a narrow strip of shield connecting the posterior point of the peritrematal shield to the ventro-anal shield. There is a reduction in the extent of the opisthosomal sthields so that the dorsal setae in row R and ventral seta 7.1 .3 are on strialed cuticle. Podonotal seta -1 is setose and inconspicuous, ithd not similar to $i l$ as originally described. Seta all on the palp genu has 6 lateral prongs. The dorsal setae on the tarsi are cither setose or slightly lamseolate in combrast to most such setate on other Austratian species in the (iamasellus fulciger-complex which are conspicuously spatulate.

MALE. Fig. 5; F, G,H.
Measurements: idiosomal length--470 (10, 450-480). Posterior pair of pre-endopodal shields is as large as the central pair. The ventro-anal shield is fused to exopodal IV shield and is larger than on the female since it carries 2 more pairs of setac ($Z v 3$ and $S v 1$). On leg II, setae av or av2 on the femur, genu, tibia and tarsus are modified to spurs; seta p on the femur and genu are spine-like; and there are non-setous spurs on the gent and tibia.

LARVA. Fig, 7; A,B,C,D,E,F.

Measurements: idiosomal length-230 (10, 210-250). Seta al on palp genu is spine-like with 6 lateral prongs. Tectum anterior margin is batsically trispinate with spinules, and central spine is longer than lateral epunes. Sternal shield not clearly defined. Idiosomal setae are simple or. if long. fainlly pilose. Opisthonotal seta 73 ($Z 1$ and $Z 2$ are absent) is subequal to seta 24 . There are 12 or more teeth on tixed cheliceral digit.

Fig. 6. Gamasellus cophinus n.sp.
A-F female: A, soma, dorsum; B, gnathosoma, venter; C, idiosoma, venter; D, leg IV (femur-tibia), antero-lateral: E, tarsus IV, dorsal setac; F, region of acetabulum IV, showing spermathecal access tube.
G-I, male: G, idiosoma, venter; H, les II (part), intero-lateral; I, chelicesa.

LOCAL. Summir Sile-10 females (N1970244-N1970253), 10 malen (N197025t-N1970263), tarva containing protonymph (N197026t) and 16 wher larvac (N197()265-N1970280), moss or plami litter. I'968 and 1909 . Fonthills Site.

REMARKS. The above specimens are indistinguishable from the holotype female ($N 19702+2$) and allotype male (N1970243) collected from Rolair National Park (the only other locality record of this species) abrut 8) Kom south of the Summit Site, except that the peritrematal shield on the femate is separate from the ventro-anal shield. The unequal leg proportions of G. concimmes resemble those of Athasella rather than of characteristic species of (iamasisllm (e.g.. (i. tragardlu) in which the keg are subequal in sic. The larval is eatily distinguighed from the thodacarid larvae collected near Adelade by its large number of cheliceral teeth.

Gamasellus cophinus Lee, n,sp,
FEMALE. Fig. 6; A.B,C,D,E,F
Measurcments: idiosomal length-310 (10, 290-310); appendage longths-ch 45, pa 90,1265, II 180, /II 160. IV 220; genu breadthspll 15.120. /1 27.5. III 20. IV 27.5. The distribution of ventral idiosomal shadds in similar to other members of the faleiger-complex, hut less extensive In that the peritrematal shield is slim, and the ventro-inal shield does not evend laterally to merge with the metapodal shich nor anteriorly to carry sera fol. The chatotaxy is as for the falciger-complex except on the uphthosoma where the homologies are not clear (possibly the extrat seta in row S_{y} is homologous with the seta previously labelled URI-se I Lee, 1970, fig 281). Seta all on the palp genu has 6 lateral prongs as in Gamaschlns soncinnms, hut the prongs are proportionately larger. The jdiosomat is durseventrally flattened and sub-rectangular in outline. At the pesterior end of the opinthomomat there is a ridge on both the dorat and ventral shields. The ventral ridge is the most heavily sclerotized and convoluted. G. cophimms is unique within the genus in having only setose dorsall setae on the adult with no recognizable adhesive exudate on the notum. Leg IV is large and has a number of stout, spinc-like ventral setae.

MALE. Fig. $6 ; G, H, I$.
Measurements: idiosomal length-280 (10, 27(0-290). The ventroanal shield extends futher forward than in the female so that it carries seta A.1. but there is still a substantial strip of striated cuticte between it and the ventral shichls on the podosoma. The spermadactyl lies close to the movable cheliceral digit, but distally to the single toon they are separated. On leg. 11. sctac af on the femar, genu, tibia, seta ar2 on the tarsus, seta $p^{\prime \prime} 1$ on the fenur and seta m on the genu ure enlarged into spurs or spines.

Fig. 7. Gamasellus larvae
A-F, G. concinnus Womersley: A, soma, dorsum; B, idiosoma, venter; C, leg IV (part), dorsal setae; D, pretarsus I; E, palp femur and genu, venter; F, chelicera.
G-K, G. cophinus n.sp.: G, soma, dorsum; H, idiosoma, venter; I, leg IV (part), dorsum; J, pretarsus I; K, palp femur and genu venter.

I_ARVA. Fig. 7: G, H, I, J,K.
Measurements: idiosomal length-210 (1). Seta al on palp genu is spine-like with 6 lateral prongs. Tectum anterior margin is basically trispinate with numerous spinules, and the central spine is longer than lateral spines although the spines are not so well developed its in Gamasellus: roncinmus. Idiosomal shields not clearly defined. Idiosomal setac are simple. Opisthonotal seta $Z 3$ (21 and 7.2 are absent) is about half as long as seta $Z 4$. There are 4 or 5 teeth on fixed cheliceral digit.

LOCAL. Summit Site-holotype female (N1970281), allotype male (N1970282), 14 paratype females (N1970283-N1970296) and 9 paratype males (N1970297-N1970305), moss, 7.6.1968-12.9.1968. The morphotype larval (N1970306) was bred from adults from Summit Site, moss, 9.8.1968. Foothill:s Site.

REMARKS. G. cophinus is an atypical species of Gamasellm: I group it in the falciger-complex because of the distribution of idiosomal shields (especially the 3 pairs of pre-endopodal shields). the chaetotaxy, the location of at comspicuous spermathecal access duct, the spine-like seta arz on the mate firsus If and the pronged setat all on the palp genu which is simblar to the homologous setat on G. concinnus. Attributes dissimular to those of other species of Gamasellus are regarded as having evolved relatively recently. being adaptive to living in the narrow pore spaces of the more mineral soil layers. Such attributen are the dorso-ventral flattening of the idiosona, with no fusion between the podosomal and opsthosomal shields in the mate in well as the female, the short, simple idiosomal setae and the large, spiny leg IV. I regard the resemblance of G. cophimus to the type of species of Rhoderaroides its superficial. Specimens from the Foothills Site are indislinguishable from those described.

Gamasellus grossi Lec, n.sp.
FEMALE. Fig. 4; A.
Mcasurements: idiosomal length— 550 (24, 540-560): appendage kengths-ch 55. pa 130, / 365. I/ 310, /I/ 295, IV 420; genu breadth$\operatorname{pa} 25,142.5, / 150, I / I 40,1 \mathrm{~V} 42.5$. On the notum only 3 pairs of podenotal setace ($1,-5$ and r^{2}) and 2 pairs of opisthonotal seta (75 and $S 4$) are pilose and spatulate, standing out at right angles to the cuticle.

MALE. Not figured.
Measurements: idiosomal length-520 (3, 510-530).
LOCAL. Coastal Site-holotype female (N1970307). allotype mate (N1970308), paratype remale (N1970309) and 2 paratype mates (N1970310 and N1970311), moss, 10.6.1965.

REMARKS: G. grossi is very similar 10 two other species of Gamasellus from South Australiat G. tragardhi and G. cooperi. G. grossi can be distinguished from these species by the number of pilose and spatulate dorsal setae. Otherwise it is su similar to G. tragardhi (see Lee, 1970, p. 135) that a complete description has not been given. G. grossi has also been collected from Eyre Peninsula, South Australia-2 females (N19715 and N19716) and 2 males (N19717 and N19718), moss, Mount Wedge, col. G. F. Gross. 26.9.1964.

Gamasellus tragardhi (Womersley)
?Digamasellus tragardhi Womersley, 1942, p. 161.
Cyrtolaelaps tragardhi (Womersley): Womersley, 1961, p. 194.
Gamasellus tragardhi (Womersley): Lee, 1970, p. 135.
FEMALE. Not figured.
Measurements: idiosomal length—640 (10, 620-670); appendage lengths-ch 60, pa 150, I 390, II 345 , III 320, IV 450 ; genu breadtnspa 25, I 52.5, II 60. III 47.5, IV 50.

MALE. Not figured.
Measurements: idiosomal length— 620 (10, 560-660),
LOCAL. Summit Site- 10 females (N1970312-N1970321) and 10 males (N1970322-N1970331), plant litter, 16.8.1968. Foothills Site.

REMARKS. G. tragardhi is also recorded from Adelaide. Bridgewater (abeut 6 km southeast of the Summit Site) and near Wilmington (about 280 km north of Summit Site). The specimens from the Summit and Foothills Sites are indistinguishable from the types.

Genus ACUGAMASUS Lee, 1970
PUNCTATUS-complex
Acugamasus punctatus (Womersley)
?Digamasellus punctatus Womersley, 1942, p. 160.
Cyrtolaclaps punctatus (Womersley): Womersley, 1961, p. 194.
FEMALE. Not figured.
Measurements: idiosomal length-605 (4, 560-630); appendage lengths-ch 105 , pa $180, I 550$, // 425, /I/ 385, IV 500: genu breadthspa $27.5, I 42.5$, II 55 , III 45, IV 47.5.

MALE. Not figured.
Measurements: idiosomal length $-580(5,560-600)$.
LOCAI. Summit Site-4 temales (N1970332-N1970335) and 5 males (N1970336-N1970340), plant litter, 10.4.1969.

REMARKS. A. punctutus is also recorded from Adelaide and the Belair National Park about 8 km south of the Summit Site. The specimens from the Summit Site are indistinguishable from the holotype female (N1970341) and the allotype male (N1970342).

Acugamasus elachyaspis Lee, n.sp.

FEMALE. Fig. 8; A, B, C, D, E.

Measurements: idiosomal length-470 (3, 460-480); appendage lengths-ch 85, pa $170, I 505$, II 350, III 305 , IV 400 ; genu breadthsра $25, / 30, / / 37.5, / 1 / 30, / V$ 32.5. The idiosomal shiclds are distributed as on other females of the punctatus-complex, but they are the least extensive. for example the opisthonotal shield is so narrow that it only carries setal row J and Z and one seta from row S. The chactotaxy only difiers from other pecies in the punctatus-complex in having 4 setae in row $/ / R$. None of the setate on the idiosoma and legs are spatulate and only a few are pilone. No spermathecal access duct is visible (the structure on the adaxial edge of atetabulum IV-fig. SC-is the genital apodeme and attached muscles.

MALE. Fig. 8; F,G,H.

Measurements: idiosomal length-430 (2, 420 and 440), The distribution of idiosomal shields is as on the female except on the venter of the podosoma. This contrasts with other Australian members of the punctatns-complex in which the males have a section of the podonotal shield. carrying at least setae $r 2$ and $r 4$, that is split away posteriorly from the rest of the shiceld and fused to the peritrematal shield. Setal st5 is on striated cuticle. The spermadactyl is short and twists under the movable cheliceral digit so its spatulate tip lies close to the adaxial surface of the digit. On leg II, sctate af on the femur, genu and tibia are enlarged into spurs while setace $p v 1$ on the femur and $p v$ on the genu are spine-like.

LOCAL, Coastal Site-holotype female (N1970343), allotype malco (N1970344). 2 paratype females (N1970345 and N1970346) and I paratype male (N1970347), moss, col.: M. Fagg, 23.5.1965.

REMARKS. A, clachyospis is the smallest species in the punctatuscomplex, hat the simplest setae and is the most sparsely covered by shields.

Fig. 8. Acugamasus clachyaspis n.sp.
A-E, female: A, soma, dorsum; B, pretarsi I and IV; C, idiosoma, venter: D. gnathosoma, venter; E , leg IV (part), dorsal setae.
F-H, male: F, leg II (part), antero-lateral; G. idiosoma, venter; H, chelicera.

Acugamasus semipunctatus (Womersley)

?'Digamasellus semipunctatus Womersley, 1942, p. 163.
Digamasellus semipunctatus Womersley: Womersley, 1956a, fig. 20.
FEMALE. Not figured.
Measurements: idiosomal length -725 (4, 700-760); appendage lengths-ch 135, pa $240, I 710$, II 480, III 450, IV 620 ; genu breadthspa 30, I 55, II 65, III 52.5, IV 55. Opisthonotal shield is reticulated and the podonotal shield is rugose, but neither shield has the raised punctations that are characteristic of the notal shields of A. punctatus.

MALE. Not figured.
Measurements: idiosomal length—670 (4, 650-690). On leg II, setae ar on the femur, genu and tibia are modified to spurs, while seta $p v 1$ on the femur and seta $p v$ on the genu are spine-like. There is a non-setous spur on the antero-lateral surface of genu II.

Fig. 9. Acugamasus semipunctatus (Womersley) larva
A. soma, dorsum; B, idiosoma, venter; C, pretarsus I; D, leg III (part), dorsal setae;

E, chelicera; F, palp femur and genu, venter.

LARVA. Fig. 9; A,B,C,D,E,F.
Measurements: idiosomal lengtl-340 (3, 320-360). Seta al on palp genu is lanceolate with one basal prong as in the adult. Tectum anterior margin is basically trispinate with numerous spinules, and central spine is longer than dateral spines. Idiosomal shieks clearly defined. Idiosomal setae simple. Opisthonotal seta $7.3(7.1$ and 7.2 are absent) subequat in length to seta $Z 4$.

LOCAL. Summit Site-larva (N1970397), Jitter, 24.4.1969 and larva (N1970398) bred from adults from this Site. Foothills Site-4 females (N1970350-N1970353) and 4 males (N1970354-N1970357), moss, 24.5 .1968 , and larva (N1970399) containing protonymph, moss, 5.8.1968.

REMARKS. A.semipunctatus is the largest species in the punctatuscomplex. Its name is misleading, since it does not bear any notal punctations similar to those on A. punctutus. Womersley ($19+2$) describes these punctations on the podonotal shield, but has drawn this shield as being rugnse. The females from the Summit and Foothills Sites are indistinguishable Irom the holotype female (N1970348), moss, Bridgewater (about 6 km south-east of the Summit Site). A male (N1970349) labelled "allotype", moss, Muston. Kingaroo Istand (about 65 km south-west of the Summit Site and separated from the mainand by 11 km of sea) is probably the specimen drawn by Womeraley (1950a) with no text dencription. This male differs from those from near Adelaide in not having a non-setous spur on genu II, but is otherwise indistinguishable.

Genus HINIPHIS Lee. 1970
Hiniphis bipala n.sp.
FEMALE. Fig. 10; A,B,C,D.
Measurements: idiosomal length-300 (3, 300); appendage lengthsch 35, pa 100, I 205, II 185, III 140, IV 190; genu breadths-pa 15, I 20, II 27.5, III 17.5, IV 17.5. The notal shield is divided in two. The metasternal shield is fused to the endopodal IV shield. The dorsal and ventral hields are widely separated by striated cuticle except for the narrow anterior fusion of the peritrematal and podonotal shields. Exopodal III shield is not split. The idiosomal chactotaxy is as for Hiniphis himms except that there are 3 setae in row Sv. Leg chactotaxy is normal for rhodacarids (as

Fig. 10. Hiniphis bipala n.sp..
A-D, female: A, soma, dorsum: B, tarsi I and IV, dorsal setae; C, idiosoma, venter; D , gnathosoma, venter.
R-G, male: E, idiosoma, venter; F, leg II (part), antero-lateral; G, chelicera.

Gamasellus). On the palp genu, seta all is spine-like with about 4 pairs of short, fine lateral prongs. On the palp femur there is a conspicuous nonsetous tubercle near the ventro-distal edge. There is a pair of conspicuous pits near the anterior margin of the opisthonotal shield. No recognizable spermathecal access duct.

MALE. Fig. 10: E,F,G.

Measurements: idiosomal length-290 (2, 280-300), Idiosoma is encased in a single continuous shield with a dorsal split, except for the discrete pre-endopodal and anterior exopodal shields. The spermadactyl lies close to the movable cheliceral digit but distally to the single tooth they are separated. There is a tubercle on the palp femur similar to that of the female. On femur II, setat $a v$ is enlarged to a lumpy tubercle and seta $p v 1$ is modified (0) a small, globular tubercle. Seta ar on tibia Il is spine-like, but seta av on genu II is only very slightly stouter than the other setac.

LOCAI.. Summit Site-holotype female (N1970358), allotype male (N1970359), 2 paratype females (N1970360 and N1970361) and one paratype male (N1970362), plant litter, 5 or 12.8.1968.

REMARKS. H. bipala is the only species allotted to Hiniphis other than the type (H. himms). The males of these two species are similar, but the distribution of idiosomal shields on the females differ in that the dorsal shields are extensively fused to the ventral shields of H. hinnus. On the other hand females of both species have two attributes (fusion of the metasternal and endopodal IV shiclds, and separate podonotal and opisthonotal shields) not found together on other females of Ologamasinae, although they occur together in Enepicrins (Gamasiphinae) and Onchogamasus virguncula (Sessiluncinate).

Genus RHODACAROIDES Willmann, 1959

Rhodacaroides minyaspis Lee, n.sp.
FEMALE. Fig. $\|_{5}=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.
Measurements: idiosomal length-300 (5, 300-310); appendage lengths-ch 80 , pa $115, I 310$, I/ 250. III 220, IV 280; genu breadthspa 25, 125, /| 27.5, I// 25, /V 32.5. The extent of the idiosomal shiclds is unusually reduced; only part of setal row J and Z are on the opisthonotal shicld; the peritrematal shield hardly exists; there is no ventral shield so that
setae in row $J v$ and $Z v$ are on striated cuticle. The dorsal chactotaxy of the idiosoma is reduced, with only 12 pairs of setae on the opisthonotum. Leg chatotaxy is normal for rhodacarids (as Gamasellus). On the palp genu, seta all is spine-like with 4 prongs on one side and 2 prongs on the other side. On the palp femur there is a small, non-setous tubercle on the midventral surface. No spermathecal access duct is visible. Pretarsus I is absent.

Fig. 11. Rhodacaroides minyaspis n.sp., female
A, soma, dorsum; \mathbf{B}, gnathosoma, venter; C, tarsi 1 and IV, dorsal setae; D, idiosoma, venter.

MALE. Not known.

LOCAL. Summit Sire-holotype female (N1970363) and 4 paratype females (N1970364-N1970367), plant litter, 12.8 .1968 (holotype) or 10 or 24.4.1969.

REMARKS. R. minyaspes is mique amongst rhodacarids in having only an anal shield on the venter of the opisthosoma. Because I have no males of this species it is tentatively grouped in Rhoducaroides. There are 3 nominal species in the genus, and R. minyaspis is more similar to R. costal from South America than to the type (R, acgyptiactus) from Egypt.

Genus SOLUGAMASUS Lee, $n, g n$.
Type-species: Solugamasus mustela Lee, n.sp.
DIAGNOSIS. Small mites. Separate podonotal and opisthonotal hiedt. Ventro-anal shield discrete in both sexes. Sterno-metasternal shied of female never fused to endopodial IV shield. Two pairs of pre-endopodal shields (in series rather than parallel). Tiwenty-two pairs of podonotal setae. leg chactotaxy is normal for rhodacarids (as Gamasellus). On palp genu. seta all has iwo pairs of lateral prongs and seta al2 is lanceolate. Dorsal setale all simple, lapering. Location of spermathecal access duct is unknown. The spermadactyl is strongly recurved. On the male leg 11 at least setae ar on the femur, genu and tibia are modified to spurs. Pretarsus 1 sometimes absent. Legs I and IV are long (0.9 or more of idosomal length) and there is medium variation in leg thickness) using breadth of gentu: I is approximately 0.8 of II: III is approximately 0.75 of IV).

REMARKS. Solugamasus is similar to Rhorlacaroides, but I recognize it as a distinet genus because of the strongly recurved spermadactyl in the mate. A recurved spermadactyl oceurs in widely differing rhodacarid generat such as Rhodacarns, Pyriphis and Sessiluncos but its occurrence never varies within a genus. The female of the only nomimal species in Solugamasus is casily distinguished from the 3 nominal species of Rlodataroides by, among other attributes, its unusually short idiosomal setac. On the other hand. I do do not specify any female attributes as distinguishing these two genera.

Solugamasus mustela Lee, n.sp.

FEMALE. Fig. 12; A,B,C,D,
Measurements: idiosomal length -290 ($7,270-300$); appendage lengths-ch 50, pa 90,1280, II 240 , III 200, IV 290 ; genu breadthsра $17.5, I 20, / / 25, / / / 20, / V 27.5$. The extent of the idiosomal shields is reduced so that setale r-3.14. RI and Zwl are on striated cuticle. The opisthonotal chactotaxy is reduced to 12 pairs of setae. On the patp genu. seta ull has two pairs of lateral prongs very near the tip. On the palp trochanter. seta dw is spine-like and set on a tubercle. The idiosontal setae are simple and very short. Pretarsus 1 is absent.

Fig. 12. Solugamasus mustela n.sp..
A-D, female: A, soma, dorsum; B, tarsi I and IV, dorsal setae: C, idiosoma, venter: D, gnathosoma, venter.
E-G, male: E, idiosoma, venter; F, leg 11 (part), antero-lateral; G, chelicera.

MALE. Fig. 12; E,F,G.
Measurements: idiosomal length-270 (3,270-280). The distribution of idiosomal shields is similar to the female, but the anterior shoulders of the ventro-anal shield extend forward to carry seta Zul. The spermadactyl is strongly recurved and there is a small dorsal process on the fixed digit. On leg II, seta av on the femur, genu and tibia are enlarged into spurs while some other ventral setae are long and spine-like.

LOCAL. Foothills Site-holotype female (N1970368), allotype male (N1970369), 6 paratype females (N1970370-N1970375) and 2 paratype males (N1970376 and N1970377), moss and plant litter, 9.5.196830.1.1969.

REMARKS. See remarks on genus.

Subfamily SESSILUNCINAE Lee, 1970

Genus ANTENNOLAELAPS Womersley, 1956b
Antennolaelaps aremenae Lee, n.sp.
FEMALE. Fig, $13 ; \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$.
Measurements: idiosomal length-745 (3, 720-760); appendage lengths-ch 75, pa $210,1870 . / 1570$, III 525, IV 730 ; genu breadthspa $32.5, I 55$, II 75, III 52.5, IV 55. Horizontal outline of idiosoma is nearly parallel-sided. The pre-endopodal shields lie very close to the sternometasternal shield but are probably separate from it. The opisthonotal chaetotaxy is reduced to 15 pairs of setac (as Antennolaclaps testudo). Leg chaetotaxy is normal for rhodacarids (as Gamasellus). On the palp genu, seta all has 4 pairs of lateral prongs, and seta al2 is lanceolate. On the gnathosoma, the fourth hyposternal seta is pilose. The idiosomal setae are all simple and some podonotal setae are very small. Pretarsus I is pedunculate.

MALE. Fig. 13; F,G,H.
Measurements: idiosomal length—690 (4, 670-710). Ventro-anal shield is not fused to the sternito-genital or exopodal IV shield; on the other hand it is more extensive than in the female so that posteriorly there is hardly any striated cuticle between it and the notal shield. The tectum bears an extra pair of spinules on the central spine that are not present on the females.

Fig. 13. Antennolaclaps aremenae n.sp..
A-E, female: A, soma, dorsum; B, pretarsi I and IV: C. leg IV (part), dorsal setac; D, idiosoma, venter; E , gnathosoma, venter.
$\mathrm{F}^{2}-\mathrm{H}$, male: F , idiosoma, venter: G. chelicera; H, Jeg II (part), antero-lateral.

The spermadactyl is of similar shape to the movable cheliceral digit except that the tip is almost spatulate. On leg II, setae $a v$ on the femur and genu are enlarged into spurs, while seta av on the tibia is spine-like.

LOCAL. Summit Site-allotype male (N1970380), 2 paratype females (N1970381 and N1970382) and 3 paratype males N1970383N1970385). moss or plant litter, 9.5.1968-12.8.1968. Foothills Siteholotype female (N1970379), moss, 24.5.1968.

REMARKS. A. aremenae is the largest species in the genus and its idiosoma is nearly-parallel sided, as for A. celor, in contrast to the 3 species described from Queensland which are suboval or subcircular in horizontal outline. There are many attributes which distinguish this species from the 3 previously described species (see Lee, 1970), amongst which is the variable size of the podonotal setae with both very small and averaged sized setae in rows j and 2. A. aremenae is unusual amongst species of Sessiluncinae in having sexual dimorphism in the size of the ventro-anal shield.

Antennolaclaps celox Lee, n.sp.

FEMALE. Fig. 14; A.
Measurements: idiosomal length-545 (5, 530-560): appendage lengths-i $\% 55$, pa $160, I 600$, I/ 460, III 400 , IV 580 ; genu breadthspa $25, I 40, I / 50$, III $37.5, \mathrm{~V} 40$. A. celor is similar to A. aremenae. The following attributes differ: it is smaller; the fourth hypostomal seta is not pilose; there is a semicircular ridge around sternal pore 2 and seta st 2 (as on male see fig. 14B); there are 18 pairs of opisthonotal setae; the longer opisthonotal setae are pilose and more of the dorsal setae are very small, including some on the opisthonotum.

MALE. Fig. 14; B and D.
Measurements: idiosomal length 505 (3,500-510). Ventro-anal shicld is of similar size to that of the female so that posteriorly there is a conspicuous strip of striated cuticle between it and the dorsal shield. On leg II, seta m on the genu is pilose and of a similar length to seta $p y$ on the tibia.

DEUTONYMPH. Fig. 14; C.
Measurements: idiosomal length—415 (2, 410-420). The majority of dorsal setac are nearly as long as the distance between their setal bases in contrast to their small size in the adult.

Fig. 14. Antennolaelaps celox n.sp..
A, female, soma, dorsum; B, male, idiosoma, venter; C, deutonymph, soma, dorsum; D, male, leg II, anteru-lateral.

LOCAL. Summit Site-holotype female (N1970386), allotype male (N1970387), 4 paratype females (N1970388-N1970391), 2 paratype males (N1970392 and N1970393), one morphotype deutonymph (N1970394) and one paratype deutonymph (N1970395), moss or plant litter, 9.5.19684.7.1968. Foothills Site.

REMARKS. A. celox is similar to A. aremenac, but smaller and more dorsal setae are very small. Specimens from the Foothills Site are indistinguishable from those described.

Genus ONCHOGAMASUS Womersley, 1956b
Onchogamasus virguncula Lee, n.sp.
FEMALE. Fig. 15; A,B,C,D,E,
Measurements: idiosomal length-310 (1); appendage lengthsch 40 , pa 110, I 275, II 200, III 175, IV 255 ; genu breadths-pa $15, I 20$, II 30, III 17.5, IV 25. Separate podonotal and opisthonotal shield, with opposing edges touching. Three pairs of pre-endopodal shields. The sternometasternal shield is fused to endopodal IV shield. Ventro-anal shield is discrete, but its anterior edge lies very close to the ventral podosomal shields. Exopodal II and III shields are split. The peritrematal shield is free posteriorly. Idiosomal chaetotaxy-6j, 6z, 5s, 5r: 5st: $3 \mathrm{Jv}, 3 \mathrm{Zv}, 2 \mathrm{sv}$, 3 anal. Leg chaetotaxy is abnormal for rhodacarids (not as Gamasellus) in lacking seta $p d 4$ on tarsus IV. Movable cheliceral digit has at least 5 teeth. On palp genu, seta all pilose with 5 pairs of lateral prongs and seta al2 is spine-like. Dorsal setae simple and tapering. On the sternum, a line joining setae $s t 2, s t 3$ and $s t 4$ would enclose an angle of less than 95°. Pretarsus I present but not pedunculate. Femur IV with 2 non-setous tubercles on ventral surface.

Fig. 15. Onchogamasus virgancula $\mathrm{n}_{+} \mathrm{sp}$., female
A, soma, dorsum; B, gnathosoma, venter; C, tarsi I and IV; D, idiosoma, venter; E, femur IV.

MALE. Not known.

LOCAL. Summit Site-holotype female (N1970396), plant litter, 5.8 .1968

REMARKS. Amongst species of Sessiluncinae, O. virguncula is unique in having 3 pairs of pre-endopodal shields, and the only other species with a divided dorsal shield belongs to Paragamasellevans. The chaetotaxy is unique amongst rhodacarids; combining the absence of seta pd 4 on tarsus IV (as Camasellopsis) with an otherwise normal leg chatotaxy (as Gamasellus). Because of the position of the female sternal setae (which would be diagnostic of communis-complex) and the absence of fusion between the peritrematal and exopodal shields (diagnostic of pumilio-complex), I revoke my previous concept (Lee, 1970, p. 189) of Onchogamasus including two speciescomplexes. Furthermore, the attributes of O. virguncula lessen the gap between the attributes of Onchogamasus and those of Gamasellopsis and Gamasitus, so that if males of the types of these 3 genera prove to be similar the possibly synonomy of these names should be considered.

ACKNOWLEDGMENTS

I am fadebied to Dr. K. E. Lee for permitting me to use the core sample dessicating funmels it the Soil Zoology Section of the C.S.I.R.O. Soils Division, Glen Osmond, in order to collect some of the mites described here. I wish to acknowledge the helpful advice and criticism received from Dr, D. A, Duckhouse, University of Adelaide. during the preparation of the M.Sc. thesis which formed the basis of this study.

1 am most grateful 10 Mrs . Citrol Aitken for preparing some drawings (Figs. 1. 2, 3, 4, $7,8,9,13$ and 14) and to Mrs. Brenda Head for preparing the other drawings (Figs, 5,6 , 10, 11, 12, 13 part, 15), as well as to Mrs. Joan Murphy for carefully typing this manuscript.

REFERENCES

Athiss-Henriot, Cy 1961: Mesostigmates (Urop. exel.) èdaphiques méditerranéens I Acurcmorpho. Anactinotrichida): Acurologia, 3: 381-509.
Berlese. A. 1892; Acari Myriopoda el Scorpiones bucusque in Halia Reperta. Ordo Mesci Ligmata (Gamasidac). Padua.
Berlese, A., 1904: Acari nuovi, Manipulus 11. Redia, 2: 257-280.
Hirschmanm, W. 1962: Gangsystematik der Parasitiformes. Teil 5, Gamasiden, Acarologic, SchrRethe vergl. Mibenh, Füth. 5: 1-56.
Lee. D. C., 1970: The Rhodacaridate (Acari: Mesostigmata), classification, external morpholagy and distribution of genera- Rec. S. Aust. Mus., 16: 1-219.
Lec, D. Ci, thesis, 1970: The taxonomy and general biology of the Rhodacaridae (Acari: Mesostigmata), Unpublished M.Sc. thesis, University of Adelaide, Australia.
Oudemans, A. C. 1902: New list of Dutch Acari, second part. Tijdschr. Ent., 45: 1-52.
Ryke. ${ }^{3}$. A. J., 1962: The subfamily Rhodacarinae with notes on a new subfamily Ologamasinae (Acarina: Rhodacaridae). Emf. Rev., Amat., 22: 155-162.
Shesis, J. G., 1958: A revision of the British species of Rhodacarus Oudemans and Khodacorellus Willmano (Acarina. Rhodacaridae). Antr. mag, nat. Hist., ser. 13. 1: 298-304.
Willmann. Co 1935; Ueber eine eigenartige Milbenfauna in kustengrundwasser der Kieler Buchi. Schr. naturw. Ver. Schlesw:-Holsi., 20: 422-434.

Willmann, C., 1936: Neue Acari aus schlesischen Wiesenböden. Zool. Anz., 113: 273-285.
Willmann, C., 1959: Zwei neue Milben aus dem Küstengrundwasser des Roten Meeres. Kieler Meeresforsch., 15: 97-104.
Womersley, H., 1942: Additions to the Acarina-Parasitoidea of Australia. Trans. R. Soc. S. Aust., 66: 142-171.

Womersley, H., 1956a: On some new Acarina-Mesostigmata from Australia, New Zealand and New Guinea. J. Linn. Soc. (Zool.), 42: 505-599.
Womersley, H., 1956b: Some additions to the Acarina-Mesostigmata of Australia. Trans. R. Soc. S. Aust., 79: 104-120.
Womersley, H., 1961: New species of Acarina from the Intertidal zone in Netherlands New Guinea. Zool. Meded., Leiden, 37: 189-209.

[^0]: * In honour of Ernest Giles (1835-97) the most intrepid of Australian explorers and, like this planigale, an accomplished survivor in deserts.

[^1]: The Alice Springs record was inadvertently omitted from map 20.

[^2]: * Amongst recent owt pellets from a cave 64 miles SSW of The Granites in the Highland Rocks area is a premavillary-maxillary fragment of at large Notomys considered by J. Mahoney, ift lifr., to belong to either N. bungicatedatus or N. sumphus.

[^3]: - Tmoluding all NTM upecimens.

[^4]: I In memory of the four studente shot at kent Sinte University, Ohio, U.S.A. on May \mathcal{A}_{1} 1970. This paper was in preparation at that tirne and the event served to remind that the frecdum of lhonght so mecessary to human progiess, including science, is not yet gtaranteed. and that scientists alonge with alt people should strive to mathe irrevocable that guarantee,

[^5]: (Mr. R. Domrow of Queensland has pointed out (private cortespondence: 30.9.1970) that atcording to the International Code of Zoological Nomenclature, Art. 30 (a) (ii), oides is masculine and therefore the original ending of this species name should be changed.

