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1.1.1 Complete Factorial Design

A complete factorial design is one in which all combinations of the different

factors are investigated (Figure 1.1). This allows straightforward modeling of

interactions between, for example, environmental factors influencing growth or

inactivation of microorganisms. The experimental design is simple, easy to set up,

and easy to handle statistically. The main disadvantage is the large increase in

number of experiments for every new factor/level added to the experiment. A
simple example of a complete 3x3x3 factorial design was applied by Chhabra

et al.
4 for investigating thermal inactivation of Listeria monocytogenes in milk.

The factors were milk fat content, pH, and heating temperature; the experiment

was performed in triplicate, resulting in 34 = 81 experiments. A complete factorial

experimental design was also used by Uljas et al.
5 for modeling the combined

effect of different processing steps on the reduction of Escherichia coli 0157:H7

in apple cider. The response variable measured was binary (whether a 5-log 10-unit

reduction was obtained or not), resulting in a logistic model. Three class variables

(cider from three different cider plants, a freeze-thaw treatment, and the preser-

vation agents potassium sorbate and sodium benzoate) and four continuous vari-

ables (cider pH, storage temperature, storage time, and preservation concentration)

were investigated. 5 This resulted in 1,596 treatments for each of the three types

of cider. As one type of cider was tested in duplicate and the other two in triplicate,

the total number of experiments was 12,768, which very clearly illustrates the

major drawback of complete factorial designs, namely, the very large number of

experiments required. However, complete factorial designs are still widely used

within predictive modeling of microorganisms, and have been used for different

purposes such as the effect of inoculum size, pH, and NaCl on the time-to-detection

(TTD) of Clostridium botulinum; 6 the effect of pH, NaCl, and temperature on

coculture growth of L. monocytogenes and Pseudomonas fluorescens;1 the effect

of temperature, NaCl, and pH on the inhibitory effect of the antimicrobial com-

pound reuterin on E. coli; s and the growth of L. monocytogenes under combined

chilling processes. 9
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FIGURE 1.1 Example of a complete factorial design for the simple case with two variables

(k = 2), e.g., temperature and pH, each at four levels.
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1.1.2 Fractional Factorial Design

In order to reduce the number of experiments, several different alternative experi-

mental designs can be applied. Among these are fractional factorial designs,

described in this section. In contrast to the complete factorial designs, the fractional

factorial designs are not as easy to construct, and thus different software packages

are often used for determining which combinations of the different parameters to

include in the experimental setup. Examples of software programs used for fractional

factorial designs are the Screening Design procedure from STATGRAPHICS Plus

(Manugistics, Rockport, MD) 10 and Modde (Umetri, Umea, Sweden). 11 Farber et

al.
10 used a fractional factorial design for modeling the growth of L. monocytogenes

on liver pate. The factors investigated were temperature, salt, nitrite, erythrobate,

and spice, each at two different levels. The fractional factorial design yielded a total

of 16 experiments (= 2
5_1

), where a complete factorial design would have resulted

in 32 different experiments. Juneja and Eblen 12 also obtained a large reduction in

number of experiments (compared to the number of experiments in a complete

factorial design) when they modeled thermal inactivation of L. monocytogenes. They

investigated 47 combinations of four different environmental factors (temperature,

NaCl, sodium pyrophosphate, and pH, each at five levels), where a complete factorial

design would have resulted in 54 = 625 experiments. Fractional factorial designs

have also been applied for investigating the heat resistance of E. coli 0157:H7 in

beef gravy. 13

A particular class of fractional factorial designs has been widely used for mod-

eling of bacterial growth, namely, the Box-Behnken designs. These designs are

formed by combining two-level factorial designs with balanced incomplete block

designs (Figure 1.2).
14 Often, more than one experiment is performed at the central

point of the experimental design in order to evaluate the repeatability of the model.

A Box-Behnken design was applied for three studies of spoilage of cold-filled ready-

to-drink beverages investigating the bacteria Acinetobacter calcoaceticus and Glu-

conobacter oxydans, 15 the molds Aspergillus niger and Penicillium spinulosum,16

and the yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida
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FIGURE 1.2 Example of a Box-Behnken design for the simple case with two variables

(k = 2), e.g., temperature and pH. The circle denotes the central point.
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UpolyticaP In each study, the effect of pH, titratable acidity, sugar content, and

concentrations of the preservatives sodium benzoate and potassium sorbate were

tested at three different levels each. 15-17 The Box-Behnken design was constructed

by using the JMP software (SAS Institute, Cary, NC), with two points at the center

of the design, resulting in 42 experiments. 15-17 A Box-Behnken design has also been

used to show that the C0
2
concentration in the water phase of a model food system

was the most important factor when describing modified atmosphere packaging and

its inhibitory effect towards microorganisms. 18 The C0
2
concentration in the water

phase was investigated as a function of gas/product ratio, initial C02
concentration

in the gas phase, temperature, pH, and lard content. 18

1.1.3 Central Composite Design

A central composite design consists of a complete (or fraction of a) 2k factorial design,

n center points, and two axial points on the axis of each design variable at a distance

of a from the design center (Figure 1.3). The number of experiments for k variables

is 2k + 2k + nQ , where n denotes the number of experiments at the central point (n

> l).
14 For k = 2 and 3 and n

Q
= 2, this results in 9 and 16 experiments, respectively.

In a validation study by Walls and Scott, 19 the effect of temperature, pH, and

NaCl on the growth of L. monocytogenes was described by the use of a central

composite design. The experiment was repeated six times at the design center in

order to estimate the experimental variance. Guerzoni et al.
20 used central composite

design to optimize the composition of an egg-based product in order to prevent

survival and growth of Salmonella enteritidis. The factors studied were pH, NaCl,

and pressure treatment. Lebert et al.
21 used a central composite design to study the

growth of L. monocytogenes in meat broth. Three variables were studied: pH, aw,

r
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FIGURE 1.3 Example of a central composite design for the simple case with two variables

(k = 2), e.g., temperature and pH.
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and temperature. Two experiments were performed at the central point, resulting in

16 experiments. Later, a similar design was used to study the mixed growth of

Pseudomonas spp. and Listeria in meat, where the three variables were NaCl,

temperature, and pH. 22

A combination of two central composite designs and a factorial design has been

applied to study the effect of osmotic and acid/alkaline stresses on L. monocytogenes.

The two central composite designs were set up in the acid and alkaline pH range,

i.e., one covered the pH range from 5.6 to 7 and the other from 7 to 9.5.
23,24 As

pointed out by Pin et al.,
2 the risk of extrapolation can be very high when using

central composite design as the vertices of the nominal variable space (the unit cube)

are far from the interpolation region (the minimal convex polyhedron). The shape

of the minimal convex polyhedron is determined by a convex linear combination of

the environmental factors at which the experiments were performed for the model

development. If a prediction is made randomly in the unit cube, the risk of extrap-

olation is as high as 75 %.2

1.1.4 Doehlert Matrix

The Doehlert matrix is another form of experimental design that to some extent

resembles the central composite design. The Doehlert matrices consist of points

uniformly spaced on concentric spherical shells, and are therefore also called uniform

shell designs (Figure 1.4).
14 The number of experiments for k variables is k2 + k +

n , i.e., for n = 1 this gives 13 experiments for k = 3 and 21 experiments for k = 4.

The experiment performed at the center of the experimental domain (n ) can be

repeated several times in order to estimate residual variance. An advantage of
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FIGURE 1.4 Example of a Doehlert matrix design for the simple case with two variables

(k = 2), e.g., temperature and pH.
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Doehlert matrices is that they are easy to expand. Expansion can be done both by

investigating new variables (provided that these variables were set to their central

point during the first experiments) and by enlarging the range of the parameters

tested without having to repeat the former experiments.25

The Doehlert matrix has been used by Terebiznik et al.
26 to investigate the effect

of combinations of nisin and pulsed electric fields on the inactivation of E. coli. The

experiments were designed with three variables, namely, nisin concentration, electric

field strength, and number of pulses. In a later study by the same group, the effect

of water activity in combination with nisin and electric field strength was studied. 27

Bouttefroy et al.
28 '29 used Doehlert design to study the inhibition of L. monocytogenes

at different combinations of NaCl, pH, incubation time, and the inhibitory effect of

the bacteriocins nisin and curvaticin 13, respectively. Doehlert design has also been

applied to investigate the conidial germination of Penicillium chrysogenum at dif-

ferent combinations of temperature, water activity, and pH. 30

1.1.5 Optimal Experimental Design

A new approach within mathematical modeling of growth or inactivation of micro-

organisms is optimal experimental design. The basic idea is to optimize the exper-

imental conditions with respect to parameter estimation by the use of an established

methodology from bioreactor engineering. 31 Ideally, the optimal design of dynamic

experiments will result in increased information content from each experiment, and

thereby to more accurate parameter estimates from a smaller number of experiments.

In the approach by Bernaerts et al.,
32 '33 the growth data are modeled directly by the

square root model of Ratkowsky et al.
34 (see Chapter 3) integrated into the dynamic

model of Baranyi and Roberts35 (see Chapter 2). Thus, the so-called secondary model

parameters are estimated directly from the population density data. Optimal dynamic

experimental conditions are then obtained by a stepwise change in temperature,

which is first shown with a one-step change32 and later with three smaller temperature

increments in order to avoid an intermediate lag phase. 33 The optimization process

was performed by designing the optimal step-temperature profile in order to mini-

mize the standard deviation of the parameter estimates and the correlation between

parameters. 3233 Grijspeerdt and Vanrolleghem36 used optimal experimental design

for optimizing sampling times for the Baranyi growth model. This resulted in lower

error on the parameter estimates and decreased correlation between them. 36

1.2 DATA COLLECTION

1.2.1 Strain Selection

There are several different approaches that one can use when choosing which strain

to use for model building purposes. Furthermore, there is the choice between using a

single strain or a mixture of different strains (i.e., cocktail). Before choosing which

strain to use it is important to clarify the intended use of the model: is the model going

to be used for prediction of possible growth of one particular pathogenic species, or

is it a model of the spoilage flora of a specific food product? Using a strain (type strain

2004 by Robin C. McKellar and Xuewen Lu
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or other) that has previously been used for several studies or maybe even modeling

purposes gives the benefit of the previously accumulated knowledge on the particular

strain. On the other hand, a strain isolated from the particular food product which is

the goal for the application of the model gives the advantage of relevance for the

product, and being able to grow the strain at the environmental conditions investigated.

A well-known strategy is to choose the fastest growing strain at the environ-

mental conditions investigated, as it is the fastest growing strain that will dominate

the growth in, e.g., food products. McMeekin et al.
37 recommended independent

modeling of several different strains before choosing the strain that grows fastest

under the environmental conditions of most interest. This strain then simulates a

worst-case scenario. 37 This strategy was followed by Neumeyer et al.
38 who, after

an initial screening of different Pseudomonas strains, chose the fastest growing strain

for modeling, and later during the validation stage confirmed that the chosen strain

was the fastest strain.
39 For modeling the growth of Bacillus cereus in boiled rice,

three different strains were examined and the fastest growing of the three chosen

for the modeling studies. 40 Miles et al.
41 examined four different strains of Vibrio

parahaemolyticus and found that one strain was the most resistant at all conditions

of temperature and water activity tested, and hence the growth data of this strain

were used for model development. A different method was employed by Lebert et

al.
22 who modeled the growth of three different strains, one fast and one slow growing

strain of Pseudomonas fragi and one slow growing strain of P. fluorescens. Any

growth was then assumed to be within a zone delimited by the predicted growth

curves of these three different organisms. 22 A similar approach was followed by

Benito et al.,
42 who initially investigated the resistance of six different strains to high

hydrostatic pressure and heat before choosing one pressure- and heat-resistant strain

and one pressure- and heat-sensitive strain for further analyses.

The strains used for model development can also be isolated from the food that

is under investigation. For modeling the spoilage of ready-to-drink beverages,

strains of Saccharomyces cerevisiae, Z. bailii, and C. lipolytica were used. 17 These

strains were all isolated from spoiled ready-to-drink beverages. 17 Oscar43 chose a

specific strain of Salmonella typhimurium as it exhibits the same growth kinetics

as Salmonella strains commonly found on chicken in the U.S. The use of strains

related to the food in question was also recommended by Hudson,44 who used

strains isolated from smoked mussels and sliced smoked salmon to investigate the

growth of L. monocytogenes.

The importance of using more than one strain of a species in order to assess the

influence of strain variation has also been stressed.
44-46 According to Whiting and

Golden,46 the between-strain variation should be equal to or smaller than the exper-

imental and statistical variation. However, when investigating the growth, survival,

thermal inactivation, and toxin production by 17 different strains of E. coli, they

found that the variations among the strains were larger than the uncertainties related

to the experimental error.
46 The variation among 58 strains of L. monocytogenes and

8 strains of Listeria innocua was examined by Begot et al.
45 Most of the strains had

been isolated from meat, meat products, and related industrial sites, and four addi-

tional strains that had been involved in outbreaks were also included. Large variations

in lag times were found between the strains, whereas the variations in generation
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times were less pronounced.45 The opposite conclusion was reached by Oscar47 when

studying 1 1 different strains of Salmonella. He found that the mean coefficients of

variation for four repetitions with the same strain were 11.7 and 6.7% for the lag

time (k) and the specific growth rate (|i), respectively, whereas the mean coefficients

of variation among the different strains were 9.4 and 5.7% for X and (I, respectively.47

Salter et al.
48 compared the growth of the nonpathogenic E. coli M23 with the

growth of different pathogenic strains of E. coli and found only little difference in

the growth responses of the different strains. They also found that the model based

on E. coli M23 was able to describe the growth of pathogenic strains of E. coli,

including E. coli 157 :H7.48 This result has practical value, as many research groups

do not have access to laboratory facilities suitable for work with E. coli 0157:H7.

However, the general suitability of nonpathogenic strains as models for the growth

or survival of pathogenic strains would have to be confirmed for each species.

Mixtures of different strains, so-called cocktails, have also been widely used.

The main arguments for using cocktails are as follows: first, that a mixture of several

different strains is more representative of the situation found in foods, where a flora

of strains is likely to be present. Second, it is not necessarily the same strain that

shows the fastest growth under all the investigated growth conditions, i.e., a strain

with a high salt tolerance might be the fastest growing at high salt concentrations

and high pH, but not necessarily at low salt and low pH conditions. For building

the Food Micromodel, which is a database software system for predicting growth

and survival of microorganisms in foods (see Chapter 6), it was decided to use a

cocktail of strains for the growth experiments, but a single strain for thermal inac-

tivation studies, as a cocktail of strains for the latter procedure could produce thermal

inactivation kinetics data that would be difficult to interpret.49

A cocktail of five strains of Staphylococcus aureus was used for the determina-

tion of growth/no growth boundaries by measuring turbidity in microtiter plates50

and Uljas et al.
5 used a mixture of three different strains to characterize the effect

of different preservation methods on the survival of E. coli in apple cider.

1.2.2 Viable Count

Viable count determinations by spreading on agar plates are still a very common
method for enumeration of microorganisms and it remains the method of reference.

To a certain extent it has been possible to automate viable count plating by the use

of automated platers such as the spiral plater and automatic colony readers.

Vast numbers of modeling studies have been based on viable counts. A few

studies have, however, observed problems with the viable count method compared

with other methods. As described in Section 1.2.3.2, enumeration of Brochothrix

thermosphacta by flow cytometry gave a more accurate result than with viable counts

when both were compared to manual counting by microscopy. 51

1.2.3 Novel Methods

Construction of models using viable count data is time-consuming and expensive,

and several alternative, more rapid methods for accumulating sufficient data for
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modeling have been explored. A novel method for data capture should either be

faster, cheaper, and less labor intensive or be able to provide more information on

the cells than do viable counts, e.g., physiological status or expression of different

phenotypic traits. In the following sections, four of these novel methods will be

described, namely, turbidity, flow cytometry, microscopy, and impedance. A num-

ber of other methods have been used to indirectly model bacterial growth, but

extensive development of these approaches has not been attempted. Some of these

include headspace measurements of evolved C02 by gas chromatography5253 and

bioluminescence. 54,55

1.2.3.1 Turbidity

One of the simplest methods for data collection is the use of optical density (OD),

where growth can be related to the increase in turbidity of a bacterial culture. OD,

or absorbance, is a measure of the amount of light that is absorbed or scattered by

a solution of bacteria. The bacteria absorb or scatter light depending on their

concentration, size, and shape. According to Beer's law, absorbance is proportional

to concentration, and is related to the percent transmitted light (%T) by the fol-

lowing equation:

OD = 2-\ogw {%T)

Some of the fundamentals of this approach have been discussed by McMeekin et

al.
37 There are some limitations associated with this approach to data collection.

Deviations from responses predicted by Beer's law occur at high cell densities,

requiring that dilutions be made to OD < 0.3 before accurate absorbance measure-

ments can be taken. 56 In addition, OD methods are comparative only, and cannot be

used to predict viable counts unless some attempt at calibration is made. Detectable

absorbance changes occur at a minimum bacterial concentration of 10 6 cfu ml-1
,

depending on the sensitivity of the instrument,56 and a linear relationship between

OD and viable count exists only between the detection limit and approximately 107 *5

cfu ml-1
. With the maximum cell density in most growth media limited to approx-

imately 109 cfu ml-1
, the |i measured using OD will represent the rate towards the

end of the growth phase, and this will be less than the maximum specific growth

rate (|imax ) experienced during the midexponential phase of growth. Another draw-

back is the inability to distinguish between dead and living cells, which can lead to

an overestimation of the cell concentration. Furthermore, bacterial cultures that

change cell morphology under different environmental conditions, e.g., elongated

cells of L. monocytogenes at high salt concentrations, again lead to an overestimation

of the cell number. 57 Hudson and Mott58 showed that the cell length of P. fragi

increased during lag phase, and consequently models based on OD measurements

underestimated X, unless a conversion equation was applied. 58 This method lends

itself particularly well to automation, and a number of studies have used automated

turbidimetric instruments such as the Bioscreen.5759 '60

A number of attempts have been made to calibrate OD data. McClure et al.
57

used a simple quadratic equation to relate OD to viable counts. Dalgaard et al.
56
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used two equivalent methods for calibration: one in which stationary-phase cells

were diluted to the appropriate OD, and the other in which samples for OD and

viable count were taken during growth. Predicted generation times were lower with

viable count data,56 and this factor has been taken into account in later studies.41

Similar methods have been used to relate turbidimetric and viable count data. 58 '61,62

In some studies, the Gompertz equation was fitted directly to OD data; however,

no data were available at below the minimum detectable OD (ca. 10 6 cfu ml-1
) and

thus the estimates for \i and |i.max should be questioned.44 '58 A form of calibration

was achieved by relating X determined using OD measurements to that determined

with viable counts by a regression equation. 58 McMeekin et al. have discussed the

correct way to fit the Gompertz function to % transmittance data (Appendix 2A.9

of their book37
), and this method has been used to calculate generation times. 38

Other studies have been carried out without any apparent calibration. 59 X values

have been estimated from OD data by extrapolation of the exponential portion of

the curve back to the initial cell numbers; 63 however, this method may be inaccurate

since the |i estimated from the OD data may be lower than that obtained during the

period of maximum growth. 37 Lebert et al.
21 estimated X values of L. monocytogenes

with OD data, but the inoculation level during these experiments was kept at 107

cfu ml-1
, i.e., above the detection limit. This procedure, however, gives only a very

small dynamic range of growth of about 2 log units.

Interestingly, the TTD approach has not been used to any great extent. The TTD
for a turbidimetric instrument can be defined as the time required for a detectable

increase in OD. The difference between TTD for serial twofold dilutions gives the

doubling time, from which |l can be determined. 60 '64 X can be calculated subsequently

by the difference between the predicted TTD based on X, and the observed TTD. 60 '64

This method was used to estimate X for individual cells. 65 This method was also

used by Augustin et al.
61 for estimating |i max of 10 different strains of L. monocyto-

genes. They, however, observed large variations in the time separating the two

successive growth curves (i.e., doubling time).

In spite of the problems associated with the use of turbidimetric data for mod-

eling, there appears to be some value in this approach. Models based on viable counts

were compared with those obtained using either OD or transmittance data, and it

was concluded that turbidimetric methods may be used for reliably estimating |imax .

56

OD measurements have been used extensively for modeling purposes. This

includes modeling of the growth boundaries of S. aureus at different levels of relative

humidity, pH, potassium sorbate, and calcium propionate50 and modeling the effect

of the antimicrobial compound reuterin on the growth of E. coli at different combi-

nations of temperature, pH, and NaCl. 8 OD has also been used to determine 5-log
10

-

unit reductions of E. coli in apple cider (see also Section l.l.l). 5 Cider inoculated

with 107 cfu ml-1 was exposed to the different treatments investigated, after which

a 10-J-il sample of the cider was transferred to a micro titer well containing Tryptic

Soy Broth and incubated. If a 5-log
10
-unit reduction occurred during the treatment,

the 10-J-il sample would contain <1 cfu and therefore no growth would be observed

in the well. 5

OD data have also been used for the determination of growth boundaries, i.e.,

the growth/no growth models (see Chapter 3). The growth boundaries of the spoilage
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organism Z. bailii were investigated at different combinations of salt, sugar, acetic

acid, and pH at a constant temperature of 30°C. Growth was measured by a Bio-

screen analyzer, but between measurements the Bioscreen plates were incubated in

closed containers in an incubator. 66 Masana and Baranyi67 studied the growth bound-

aries of B. thermosphacta in multi-well plates, but inspected the wells visually for

growth. The interface between survival and death of E. coli 0157:H7 in a mayon-

naise model system was studied by McKellar et al.
68 A cocktail of five strains of

E. coli 0157:H7 was inoculated at a level of 107 cfu ml-1
into 5-ml tubes under

different environmental conditions, and growth was observed visually. In the case

of no growth, the samples were diluted 100-fold into Tryptic Soy Broth and incu-

bated again. Continued absence of growth was interpreted as a >5.7 log reduction

in viable cell numbers under the test conditions. Survival was hence defined as a

<5.7 log reduction in viable cell numbers. 68

1.2.3.2 Flow Cytometry

Flow cytometry is a rapid technique for measurement of single cells in suspension.

Individual cells confined within a rapidly flowing jet of water pass a measuring

window, in which several parameters can be simultaneously measured for several

thousand cells per second with high precision.69 Light scattering reflects cellular size

and structure, while fluorescence measurements can determine the cellular content of

any constituent that can be labeled with a fluorescent dye.70 In this way flow cytometry

combines the advantages of being a single cell technique with the power of being

able to measure a very large number of cells in a very short time. The resulting data

are not a mere average of the measured cells but a distribution of the measured

parameters for the cells. The possibility of measuring the distribution gives an estimate

of the heterogeneity of the microbial population and thereby also the possibility to

detect subpopulations that, e.g., are resistant to a treatment under investigation. With

a flow cytometer equipped with a cell sorter it is furthermore possible to sort cells

out on the basis of the parameters measured. These cells can then be sorted into

microtiter wells and be used for new growth experiments to monitor, e.g., X for the

single cells as shown by Smelt et al.
71 In general a good correlation between the

number of cells determined by plate counting and by flow cytometry has been found

for both bacteria72 and yeast,73 with detection limits of approximately 104 and 102

cells ml-1 determined for L. monocytogenes and Debaryomyces hansenii, respectively.

The use of flow cytometry for predictive microbiology is still very limited.

S0rensen and Jakobsen73 used flow cytometry to enumerate viable cells of D. hans-

enii at different environmental conditions. The growth data were used to model X

and (lmax as a function of temperature, pH, and NaCl. Rattanasomboon et al.
51

compared flow cytometry, turbidimetry, plate counts, and manual counts by micros-

copy for enumeration of B. thermosphacta. They found that turbidimetry overesti-

mated the cell number as the B. thermosphacta cells changed morphology during

growth, whereas flow cytometry gave a more accurate cell count than did plate

counts when both were compared to manual counts. 51 This overestimation of cell

number and hence |l could not be confirmed by Dalgaard and Koutsoumanis,74 who

found that turbidimetric measurements estimated |i.max and X accurately.
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Possible applications of flow cytometry include enumeration of microorganisms

for both mono cultures and mixed cultures,72 '75 direct measurement of lag phase as

described by Ueckert et al.,
76 separation of intermediate states between dead and

culturable cells,77 and detection of cell injury caused, e.g., by bacteriocins.78

However, flow cytometry also has the potential to be used for gaining more

information on the microorganisms than just the number of cells. Garcia-Ochoa et

al.
79 recognized that in order to develop a structure kinetic model for the production

of xanthan by Xanthomonas capestris, they needed quantitative data on intracellular

compounds. They examined the DNA, RNA, and intracellular protein content by

flow cytometry and traditional biochemical methods, enabling them to set up stan-

dard curves and thereby quantify these intracellular compounds by flow cytometry.

It is also possible to determine other biochemical parameters such as intracellular

esterase, protease, glycosidase, and phosphatase activities. One of the limitations in

the use of flow cytometry is that it can be applied for liquid systems only. This

problem was, however, partly overcome by de Alteriis et al.,
80 who studied the growth

dynamics of Saccharomyces cerevisiae cells immobilized in a gelatin gel. When the

cells were sampled for analysis, the gelatin was enzymatically liquefied with trypsin,

thus enabling the cells to be analyzed by flow cytometry.

1.2.3.3 Microscopy and Colony Size

Microscopy is another method that is gaining interest as developments in image

analysis programs and software tools for automation make the method more fea-

sible. Microscopy enables direct studies of single cells, which give new opportu-

nities for following the same cells for longer periods of time. One of the main

advantages of microscopy and the measurement of colony size is the possibility of

studying solid systems, which more closely resemble the situation in most food

systems. It is, however, also possible to investigate growth in a liquid system. By
the use of a microscope coverslip coated with, e.g., poly-L-lysine, it is possible to

obtain immobilized cells in a liquid system, as has been demonstrated for both

yeast81 and bacteria. 82

Reports on the use of microscopy for predictive modeling of single cells are still

sparse. Wu et al.
83 recently compared the use of microscopy for determination of

lag phase duration for individual cells of L. monocytogenes with the TTD method

(described in Section 1.2.3.1). Microscopy has several advantages over the TTD
method for the determination of X of single cells. The method is a direct method

allowing visual observation of the first cell division, whereas the TTD method

depends on the time of detection, the growth rate, and extrapolation back to the

single cell. Furthermore, any treatment that results in cells not dividing will not be

detected by the TTD method. 83 A drawback when studying single cells by micros-

copy can be the difficulties in obtaining sufficient data for modeling purposes. Wright

et al.
84 used a gel-cassette in which bacteria grow as colonies immobilized in gelatin

gel, combined with a "laser gel-cassette scanner," to study the lag and doubling time

of Salmonella typhimurium at different concentrations of NaCl and pH. The inocu-

lated gel-cassette was continuously scanned, and the increase in fixed angle laser

light scattering intensity was related to the increase in diameter of the individual
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nearly spherical bacterial colonies within the controlled environment of the gel-

cassette. The system, however, needs extensive calibration; for example, it is nec-

essary to recalibrate for each new experiment in order to relate laser scattering

intensity to viable cell count. 84

Radial growth of L. monocytogenes and Yersinia enterocolitica was studied on

agar surfaces under different modified atmosphere conditions. 85 Growth of visible

colonies was followed by image analysis and viable count per colony. A linear

relationship was found between log 10 viable cell number per colony and log
10
colony

radius and (I.
85 Dykes86 used a similar method to investigate sublethal injury in L.

monocytogenes. Cells subjected to either starvation or heat stress were plated onto

Tryptic Soy Agar and incubated at 37°C for 48 h. The plates were photographed

using a digital camera and the areas (mm2
) of individual colonies were determined

using image analysis. The results were presented as histograms showing frequency

distribution of colony area. The colony areas from nonstressed cells were normally

distributed, whereas the colony areas from starved or heat-stressed cells had a skewed

distribution due to an increased proportion of small colonies.86 The growth of

Bacillus cereus was also measured as radial growth at different concentrations of

agar, NaCl, and potassium sorbate. 87 Agar plates were incubated at 30°C and pho-

tographs were taken at 30-min intervals. The colony diameters were measured on

the slides, and the time to reach a diameter of at least 0.1 mm was called "time to

visible growth." Growth was then evaluated as time to visible growth or radial growth

rate.
87 Time to visible growth was also measured by Salvesen and Vadstein88

,

although they defined a colony as visible when it reached a diameter of 2 mm. They

studied seawater isolates and found an inverse relationship between the |i max deter-

mined in liquid culture and the time necessary to form visible colonies on agar. 88

In contrast to bacteria, the growth of molds is usually always measured as radial

growth since molds are not unicellular. Gibson et al.
89

first modeled |l and the time

to visible growth (diameter > 3 mm) for fungi, where the growth of Aspergillus

flavus was modeled at different water activities. Valik et al.
90 also modeled the effect

of water activity but on Penicillium roqueforti. The diameter of the colonies was

fitted to the model of Baranyi et al.
91 (see Chapter 2), and X and |i modeled as a

function of water activity. Later Valik and Pieckova92 used the same approach to

model the effect of water activity on three different heat-resistant fungi, namely,

Byssochlamys fulva, Neosartorya flscheri, and Talaromyces avellaneus. Recently,

Rosso and Robinson93 proposed a model to describe the effect of water activity on

the radial growth of molds. The model is of the cardinal model family (see Chapter

3) and fitted successfully the radial \i of six different Aspergillus species as well as

Eurotium amstelodami, Eurotium chevalieri, and Xeromyces bisporus.

1.2.3.4 Impedance

Microbiological impedance devices measure microbial metabolism in medium by

tracking the movement of ions between two electrodes (conductance), or the storage

of charge at the electrode-medium interface (capacitance). For bacterial growth, the

conductivity of the growth medium increases with bacterial numbers because of the

production of weakly charged organic molecules. 37 This production of charged
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molecules is due to, for example, the conversion of proteins to amino acids, carbo-

hydrates to lactate, and lipids to acetate, all of which will increase the conductivity

(G) of the growth medium. 94 When electrodes are immersed in a conductive medium,

a dielectric field will build up at the electrode-solution interface. The medium will

display a capacitance due to the polarization of the electrode-solution interface. An
alternating sinusoidal potential applied to the system will therefore cause a resultant

current depending on the impedance (Z) of the system, which is a function of its

resistance (R, G = 1AR), its capacitance (Q, and the applied frequency (/).
94

Z =
\Gj

2

+
'

1 -

ylKfCj

Which signal should be measured (impedance, conductivity, or capacitance) depends

on the instrument, and the microorganism and its metabolism. Generation times may
be calculated based on TTD methods as described in Section 1.2.3.1, or from the

time required for a doubling of the change in conductance. 37 Impedimetric instru-

ments are often automated, allowing a large number of samples to run at the same

time. Conductance has been used for modeling the growth of Y. enterocolitica95 and

impedance and conductance have been used for modeling the growth of S. enteriti-

dis.
96 '91 An indirect conductimetry method, in which C02 evolved during growth was

trapped and measured, was proposed for the modeling of food spoilage by yeasts.98

1.3 CONCLUSION

It is important that a deliberate choice be made when choosing an experimental

design or a method of data collection. The outcome of an experiment, and the

ultimate value of the model, will be greatly influenced by the experimenter's choices.

Selection of a data collection method involves some trade-off. The novel methods

described above can roughly be divided into two groups, one that provides a possi-

bility of automation and thereby allows a higher number of experiments to be

analyzed, and another that gives additional information, e.g., on the physiological

state of the microorganisms compared with viable counts. Turbidity and impedimet-

ric methods are mainly in the first group, and flow cytometry and microscopy in the

second. Although the viable count method probably remains the method of reference

and of choice, it does not always give the correct answer, which was also pointed

out in Section 1.2.3.2. It is expected that novel techniques for data collection will

continue to increase in importance with the demand for more mechanistic models

based on microbial physiology.
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