THE SOLUTION OF A VARIABLE BOUNDARY PROBLEM

Co. H. Tran - Phong .T. Ngo
Faculty of Mathematics, University of Natural Sciences - VNU-HCM
coth123@math.com \& cohtran@math.com
Copyright 2007
August 162007

NOTE:

This worksheet demonstrates Maple's capabilities in researching the numerical and graphical solution of the variable boundary problem of a thick-walled cylinder of material enclosed in a thin metallic shell. All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed.

Abstract

: The relations between stress and strain in linear viscoelastic theory are discussed from the viewpoint of application to problems of stress analysis. This consideration includes some important differences from the estimation of linear viscoelastic laws for the representation of material properties, and the integral operators expressing the creep function or relaxation function can be applied. By using of the differential operator for the relation between stress and strain it is usually most convenient to solve some problems which have the variable boundary.

Problem Definition

We consider a thick-walled cylinder of material enclosed in a thin metallic shell . (Fig. 1)

CO HONG TRAN

(Fig 1).
The outer radius of cylinder : b; the thickness of the metallic shell : h.
The inner radius a is assumed by : $a(t)$, satisfied the condition $\frac{d a}{d t}>0$
. The varying pressure influences upon the inner surface is a given function $q(t)$.
Notice that the tube and shell are under the plain strain conditions and the material is incompressible.
By setting ${ }^{\sigma_{\gamma}}$: the radical stress , σ_{θ} : the circular stress ,
$u(r, t)$: the radical displacement,

$$
e_{r}=\frac{d u}{d r}, e_{\theta}=\frac{u}{r}
$$

are the deformation respectively .

The diferential equation of equilibrium:

Bywhat we introduce in (I) it follows that the diferential equation of equilibrium can be written consequently :

$$
\begin{equation*}
\frac{d \sigma}{d r}+\frac{\sigma_{r}-\sigma_{\theta}}{r}=0 \tag{1}
\end{equation*}
$$

In this case we have the law of viscoelasticity relation :

$$
\begin{equation*}
\sigma_{\theta}-\sigma_{r}=2 \tilde{G}\left(e_{\theta}-e_{r}\right) \tag{2}
\end{equation*}
$$

At the inner boundary : $\mathrm{r}=\mathrm{a}, \quad \sigma_{r}=-\mathrm{q}(\mathrm{t})$
The circular deformation of the cylinder of material obtained by integrating :

$$
\begin{equation*}
e_{\theta}(b)=-\frac{b}{h} \frac{1-v^{2}}{E} \sigma_{r}(b) \tag{3}
\end{equation*}
$$

Here E and ${ }^{v}$ are the elastic constants of the shell material .
The second boundary condition : $\mathrm{e}=e_{\theta}(\mathrm{b})$
Because of incompressibility of material and zero axial strain :

$$
\begin{align*}
& e_{\theta}+e_{r}=\frac{d u}{d r}+\frac{u}{r}=0 \quad u(r, t)=\frac{k(t)}{r}, e_{r}=-e_{\theta}=-\frac{k(t)}{r^{2}} \tag{4.29}\\
& \text { it follows that }: \\
& \text { From (2) we obtain : } \quad \sigma_{\theta}-\sigma_{r}=4 \widetilde{G} \frac{k(t)}{r^{2}} \tag{4}
\end{align*}
$$

By substituting (4) to (1), the deduction can be rewritten :

Integrating (5) gives :

$$
\sigma(r, t)=-\frac{2 \widetilde{G} k(t)}{r^{2}}+k_{1}(t)
$$

$$
\begin{equation*}
\frac{d \sigma}{d r}-4 \widetilde{G} \frac{k(t)}{r^{3}}=0 \tag{5}
\end{equation*}
$$

By using the condition : $r=a, \quad \sigma_{r}=-q(t)$
then

$$
\begin{equation*}
-q(t)=-\frac{2 \tilde{G} k(t)}{a^{2}(t)}+k_{1}(t) \quad \text { and } \quad k_{1}(t)=\frac{2 \tilde{G} k(t)}{a^{2}(t)}-q(t) \tag{7}
\end{equation*}
$$

The relation (6) becomes :

$$
\begin{equation*}
\sigma_{r}(r, t)=2\left[\frac{1}{a^{2}(t)}-\frac{1}{r^{2}}\right] \tilde{G} k(t)-q(t) \tag{8}
\end{equation*}
$$

Consider the second boundary condition :

$$
e=-\frac{b}{h} \frac{1-v^{2}}{E} \sigma_{r}(b)
$$

$$
\begin{equation*}
\frac{1}{c} \frac{k(t)}{b^{2}}=2\left[\frac{1}{a^{2}(t)}-\frac{1}{b^{2}}\right] \tilde{G} k(t)-q(t) \tag{9}
\end{equation*}
$$

inwhich we set up :

$$
\begin{equation*}
\frac{1}{c} \frac{k(t)}{b^{2}}=2\left[\frac{1}{a^{2}(t)}-\frac{1}{b^{2}}\right] \tilde{G} k(t)-q(t) \tag{10}
\end{equation*}
$$

. The equation (9) can be considered as especial case of the general formation :

$$
\begin{equation*}
K(t, \tau)=g(t) \phi(t-\tau) \tag{11}
\end{equation*}
$$

The authors of [2] have considered the simplest case of a viscoelastic body expressed by formular :

$$
\begin{equation*}
2 \widetilde{G}=\alpha \frac{\partial}{\partial t}+\beta \tag{12}
\end{equation*}
$$

Here α, β are the given constants defined by experiments on material. The equation (9) now becomes differential for $k(t)$.

$$
\begin{equation*}
\alpha\left[\frac{1}{a^{2}(t)}-\frac{1}{b^{2}}\right] \frac{d}{d t} k(t)+\left[\beta\left(\frac{1}{a^{2}(t)}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right] k(t)=q(t) \tag{13}
\end{equation*}
$$

From (13), we find out the solution $\mathrm{k}(\mathrm{t})$ correspondently with choosing the functions $a(t)$ and $q(t)$. For examples, some authors have taken :

$$
\begin{equation*}
a(t)=\frac{a_{0}}{\sqrt{1-\delta t}} \tag{14}
\end{equation*}
$$

Here $\mathrm{q}=$ const.$\left[\delta=\mathrm{E}\right.$ in case of elasticity,$\delta=3^{\eta}$ in case of Newton's fluid]. By integrating (13) we obtain the solution of the viscoelasticity problem. In generally the differential equation for $k(t)$ would be established in symbolic form by using the operator :

$$
\begin{equation*}
\widetilde{G}=\frac{B\left(I_{0}^{*}\right)}{A\left(I_{0}^{*}\right)} \tag{15}
\end{equation*}
$$

Numerical and graphical solution:

Here we have used the parameters :

$$
\begin{array}{llllll}
z_{v}:=6 & c:=1.2 & \delta:=0.00005 & s:=1.250000000 & h:=0.250000000 \\
\alpha:=0.5 & \dot{l}=1.5 & a_{n} \cdot 1 & \beta:=2 & q_{n} \cdot 1 & k(0)-0.1
\end{array}
$$

(13) canbe rewitten as the following :

$$
\epsilon q=\alpha\left(\begin{array}{cc}
1-\bar{b} t & 1 \\
a_{0}^{\lambda} & b^{2}
\end{array}\right)\left(\begin{array}{c}
d \\
d t \\
k(t)
\end{array}\right) \left\lvert\,\left(\begin{array}{cc}
\beta\left(\begin{array}{cc}
1-\delta t & 1 \\
a_{0}^{2} & b^{i}
\end{array}\right) \quad b^{2} c
\end{array}\right) \mathrm{k}(\rho)=\psi_{0}\right.
$$

The analytic solution :

$$
\begin{aligned}
& \left(-b^{2}+b^{2} \varepsilon t+a_{0}^{2}\right)^{\left(-\frac{q^{3}}{2 n n^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& b(!) \frac{\left.\int-4.20(-1.2)+(0.0112!)^{147} e^{(402)} d i-c i\right) e^{(-1.000)}}{(1.2) 10.0112!)^{168}} \\
& \text { from the given condition } k(0)=0.1 \text { we obtrin : }
\end{aligned}
$$

$$
\begin{aligned}
& \omega \mathrm{C} k:=0.454274202710^{-4} \mathrm{Cl} \quad 0.1 \\
& C l=0.2201310^{14}
\end{aligned}
$$

' NTRERICAL AND GRAPGCAI SOLUTION"

$$
\begin{aligned}
& \text { ' OUTPUT DATA } \\
& N:=10, M:=6 \quad d:=1
\end{aligned}
$$

' NTAERICAL AND GRAPACAI SOLUTION "

- outprt data'

$$
N=10
$$

$$
M \cdot 6
$$

$$
d \cdot 1
$$

$r-01 \%$

-	$k(6)$	ul2, ${ }^{\text {a }}$	= \| Live La \mid
0.0	C. 10000	0.00000	0.00640
1.0	1. 5717\%	0.01017	0.081.19
2.0	1.37028	0.07097	0.18770
3.0	1.39:98	0.01116	0.0892 s
$\div 0$	1. 515 cco	0.01132	$0.0 \leq 0 \leq 6$
5.0	1. 43504	0.01140	0.05104
$\therefore .0$	1. $5 / 4.8$	0.011 64	$0.0 ¢ 31 \%$
$r=0.290$			
-	18.it)	$12(\%,+)$	c [thet.n]
0.0	2. 10000	0.0004 C	9.00160
1.0	1.3\%1\%	0.00309	0.020 -
2.0	1. Jruzu	0.00544	0.02152
3.0	1. $39 / 68$	0.00558	0.02222
4.0	1. 51500	0.00566	0.02264
3.0	1. ¢3うく	0.00314	0.02256
5.0	1. $43 \leq 43$	0.003B2	0.02328
$r:=0.375$			
$=$	$k(t)$	-	el thetal
0.0	-. 10ncon	0.00027	0. 06071
1.0	1. 27172	0.00339	0.009 C 4
2.0	1. 31028	0.0036:	0.00974
3.0	1. $39<98$	0.00372	$0.0 \operatorname{cog} 2$
4.0	1. 2 5cn	0.00 .377	ก. O 100 E
5.0	1. 3556	0. 0n38.3	0.01020
5.0	1. $15 \div 93$	0.00388	0.01035
$r \cdot 08500$			
$=$	k (t)	u (z, t)	e[theta]
0.0	c. 10000	0.00026	0.00040
1.0	1. $2 \% 1 \%$	0.00264	U.ucbeg
$\therefore .0$	1. 1.7027	0.00274	9. 0.0548
3.0	1. $39<98$	0.00279	0.00558
4.0	1. 42500	0.04283	9.000t 6

CO HONG TRAN

Digitally signed by CO HONG TRAN DN: cn=CO HONG TRAN, $c=V N, o=V N U-$ HCM, ou=MMI, email=cohtran@math.com Reason: I am the author of this document Date: 2007.12.02 12:05:12 +07'00'

t.	$r(t$.	13 (r,t.)	-[thera]
0.0	C. 10000	0.0002 C	0.00040
1.0	1.2\%1\%	0.00234	9.00bcy
2.0	1. 31020	$0.002 / 4$	U.ucbab
2.0	1. $29<50$	0.00278	0.00550
- 0	1.1500	0.002 Br ?	0.0.0.5f F
5.0	1. 135 C :	0.00287	0.00571
3.0	1. $\leq 3 \leq \leq 3$	0.00291	U.ucse 2
$r: 0.625$			
$=$	k(t)	u (2.t)	e [the tal
ก.0	C. 10 nca	0.0no: 2	7. 0.001 s
1.0	1.27172	0.0017 C	0.00226
2.0	1.37028	0.00163	0.00244
3.0	1. $39 \leq 58$	0.0018 c	0.00248
$\div .0$	1. f2bcu	0.00105	0.00222
5.0	1. 135 C :	0.00191	0.00255
5.0	1. $5^{1 / 8.3}$	0.0919 .4	7. 10259
$r=(: \% / \%)$			
-	k(l)	$u(2, L)$	= [Lixe La ${ }_{\text {¢ }}$
0.0	C. 10000	0.00021	0.00013
1.0	1. $\times 717 \%$	0.003115	O.nctif
2.0	1. 37028	0.00157	0. 100179
3.0	1. $39<98$	0.00159	0.00182
4.0	1. 51500	0.00162	9.ucze
2.0	1. $53 \mathrm{JC} \mathrm{\%}$	0.00164	0.0028 ?
5.0	1. ${ }^{5 / 9} 8$	0.00167	A. nceas
$r:=1.00$			
$=$	kit)	$u(z, t)$	c[theta]
6.0	$0.1 \text { armo }$	0.05015	$\operatorname{c.cos} 10$
1.0	1.27172	0.00127	0.0 CL 27
2.0	1.37028	0.00137	0.00137
3.0	1. 39458	0.00136	0.00129
4.0	1. ≤ 1560	0.00141	0.00142
5.0	1. 135 C :	0.00111	0.00141
- 5.0	1. $\leqslant 5 \leqslant 93$	0.00145	0.00245
$r-112$			
-	k.16	412.6)	= \| Lhe La \mid
0.0	C. 10ncon	0.0nonc	0.ncocs
1.0	1. 27172	0.00114	0.002CL
3.0	1.37028	0.00122	0.00169
3.0	1.39 548	0.00122	9.90112
4.0	1. 21500	0.00126	0.00.113
5.0	1. 13501	0.00128	7. 10011
6.0	1. $45 \leq 93$	0.0013 C	0.00116
-	$\mathrm{k}(\mathrm{l})$	$u(2, l)$	$=[$ lhe La]
0.0	C. 10nca	0.0ก008	0. nomes
1.0	1. 27172	0.00102	0.0008:
3.0	1.37028	0.0012 C	0.0008
3.0	1. $39 \leq 58$	0.00122	0.00089
4.0	1. 51500	0.00112	0.00058
5.0	1. 3550	0.00115	0.0cosz
5.0	1. $15: 93$	0.00116	$0.0 \cos 3$

Fig A the diagram of a(t)

Fug-4 3D-graphical solution of $u(r, t)$

Fig. 5 . 3D-graphical solution of $e_{2}(v, t)$

Tig. 6 SD-graphecal soluturn of $\operatorname{tg}_{8}(1,1)$
> restart;
with(DEtools):
$a(t)=a[0] / s q r t(1-d e l t a * t)$;
eq:=alpha*(1/a(t)^2-1/b^2)*diff(k(t),t)+(beta*(1/a(t)^2-1/b^2)-
1/(b^2*c))*k(t)=q(t);
eq:=subs(a(t)=a[0]/sqrt(1-delta*t),eq);
$\mathrm{eq}:=\operatorname{subs}(q(t)=q[0], e q)$;
nok:=dsolve(eq,k(t));

$$
\begin{aligned}
& a(t)=\frac{a_{0}}{\sqrt{1-\delta t}} \\
& e q:=\alpha\left(\frac{1}{a(t)^{2}}-\frac{1}{b^{2}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t} k(t)\right) \\
&+\left(\beta\left(\frac{1}{a(t)^{2}}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right) k(t)=q(t) \\
& e q:=\alpha\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t} k(t)\right) \\
&+\left(\beta\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right) k(t)=q(t) \\
& e q:=\alpha\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t} k(t)\right) \\
&+\left(\beta\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right) k(t)=q_{0}
\end{aligned}
$$

CO DN: cn=CO HONG TRAN, c=VN, o=VNU-HCM, ou=MMI, email=coth123@math.com Reason: I am the author of this document
Date: 2007.12.02 12:05:46 +07'00'

$$
\begin{aligned}
& n o k:=k(t)= \\
& \\
& \left(\begin{array}{l}
-\frac{q_{0} a_{0}^{2} b^{2}\left(-b^{2}+b^{2} \delta t+a_{0}^{2}\right)}{\alpha}\left(-\frac{c \alpha b^{2} \delta-a_{0}^{2}}{c \alpha b^{2} \delta}\right) \mathrm{e}^{\left(\frac{\beta t}{\alpha}\right)} \\
\\
\\
\left.+\mathrm{C}_{-} C l\right) \mathrm{e}^{\left(-\frac{\beta t}{\alpha}\right)}\left(-b^{2}+b^{2} \delta t+a_{0}^{2}\right) \\
\left(-\frac{a_{0}^{2}}{c \alpha b^{2} \delta}\right)
\end{array}\right.
\end{aligned}
$$

> restart;

with(DEtools):
cof := 1000:
eq := alpha*(1/a(t)^2-1/b^2)*(diff(k(t), t))+(beta*(1/a(t)^2-1/b^2)1/(b^2*c))*k(t) = q(t);eq := subs(a(t) = a[0]/sqrt(1-delta*t), eq);
eq $:=\operatorname{subs}(q(t)=q[0], e q)$;
nok := dsolve(eq, k(t));
nok := evalf(subs(c = 1.2, delta = 0.5e-2, alpha = .5, b = 1.5, a[0] =1, beta = 2, q[0] = 1, nok), 3);
u $:=\mathrm{k}(\mathrm{t}) /\left(\mathrm{r}^{*} \operatorname{cof}\right)$;

$$
\begin{aligned}
& c o f:=1000 \\
& e q:=\alpha\left(\frac{1}{a(t)^{2}}-\frac{1}{b^{2}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t} k(t)\right) \\
&+\left(\beta\left(\frac{1}{a(t)^{2}}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right) k(t)=q(t) \\
& e q:=\alpha\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t} k(t)\right) \\
&+\left(\beta\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right) k(t)=q(t)
\end{aligned}
$$

$$
\begin{aligned}
& e q:=\alpha\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} t} k(t)\right) \\
& +\left(\beta\left(\frac{1-\delta t}{a_{0}^{2}}-\frac{1}{b^{2}}\right)-\frac{1}{b^{2} c}\right) k(t)=q_{0} \\
& \text { nok }:=k(t)= \\
& -\frac{b^{2}\left(-b^{2}+b^{2} \delta t+a_{0}^{2}\right)\left(\frac{-c \alpha b^{2} \delta+a_{0}^{2}}{c \alpha b^{2} \delta}\right)}{\alpha} a_{0}^{2} q_{0} \mathrm{e}^{\left(\frac{\beta t}{\alpha}\right)} \mathrm{d} t \\
& \left.+{ }_{-} C 1\right) \mathrm{e}^{\left(-\frac{\beta t}{\alpha}\right)}\left(-b^{2}+b^{2} \delta t+a_{0}^{2}\right)^{\left(-\frac{a_{0}^{2}}{c \alpha b^{2} \delta}\right)} \\
& n o k:=k(t)=\frac{1}{(-1.25+0.0112 t)^{148 .}}\left(\left(\int-\right.\right. \\
& \left.\left.4.50(-1.25+0.0112 t)^{147} \cdot \mathrm{e}^{(4.00 t)} \mathrm{d} t+{ }_{-} C 1\right) \mathrm{e}^{(-4.00 t)}\right) \\
& u:=\frac{1}{1000} \frac{k(t)}{r}
\end{aligned}
$$

> k(t):=(int(-4.50*(-1.25+.112e-
$\left.\left.\left.1^{*} s\right)^{\wedge 147 .}{ }^{*} \exp \left(4.00^{*} s\right), s=0 . . t\right)+.22013 e 14\right)^{*} \exp \left(-4.00^{*} t\right) /(-1.25+.112 e-$ 1*t)^148.:
plot(k(t),t=0..6,labels=[t,"k(t)"], color=blue, style=line, linestyle=4, thickn ess=2) ;

> plot3d(u, r = 0 .. 1.5, t = 0 .. 6, axes = boxed, labels = ["r", "t(s)", "u(r,t)"], grid = [40, 40]);

APPROVED

By CO HONG TRAN at 12:06 pm, Dec 02, 2007

> epsilon[r] := -k(t)/r^2;
plot3d(epsilon[r]/cof, $r=0$.. 1.5, $t=0$.. 6, axes = boxed, labels = ["r", "t(s)", "e[r](r,t)"], grid = [40, 40]);

By CO HONG TRAN at 12:06 pm, Dec 02, 2007

$>$ epsilon[theta] := $k(t) / r^{\wedge} 2$;
plot3d(epsilon[theta]/cof, r = 0 .. 1.5, t = 0 .. 6, axes = boxed, labels = ["r", "t(s)", "e[th](r,t)"], grid = [40, 40]);

$>$
> restart;
$k(t)=\left(\operatorname{Int}(-4.50 *(-1.25+0.112 e-1 * t) \wedge 147 . * \exp (4.00 * t), \quad t)+_C 1\right) * \exp (-$ 4.00*t)/(-1.25+0.112e-1*t)^148.;

$$
\begin{aligned}
& k(t)=\frac{1}{(-1.25+0.0112 t)^{148 .}}((\\
& \quad \int-4.50(-1.25+0.0112 t)^{147 .} \mathrm{e}^{(4.00 t)} \mathrm{d} t \\
& \left.\left.\quad+_{-} C 1\right) \mathrm{e}^{(-4.00 t)}\right)
\end{aligned}
$$

> k(t):=(int(-4.50*(-1.25+.112e-
1*tau)^147.*exp(4.00*tau), tau=0..t)+.22013e14)*exp(-4.00*t)/(-1.25+.112e1*t)^148.: ;k0:=subs(t=0,k(t));

$$
\begin{aligned}
k 0 & :=4.54274202710^{-15}\left(-2.72889637810^{14}\right. \\
& \left.+2.94902637810^{14} \mathrm{e}^{0 .}\right) \mathrm{e}^{0 .}
\end{aligned}
$$

> edk := k0 = .1;
C1 = evalf(solve(edk, _C1), 5);

$$
e d k:=0.09999938024=0.1
$$

$$
C 1=()
$$

> u:=k(t)/r/10^3:

```
epsilon[theta]:=k(t)/r^2/10^3:
```

epsilon[rt]:=-k(t)/r^2/10^3:
print(" NUMERICAL AND GRAPHICAL SOLUTION ");
print(" OUTPUT DATA ");

N:=10;
M:=6;
d:=1;
$>$ for m from 1 to N do
$r:=e v a l f(1.25 * m / N, 3) ;$
u:=k(t)/r/10^3:
epsilon[theta]:=k(t)/r^2/10^3:
epsilon[rt]:=-k(t)/r^2/10^3:
printf(" t k(t) u(r,t) e[theta]
\n\n");
for j from 0 to M do
printf("\%10.1f \%10.5f \%10.5f \%10.5f ${ }^{2}$ n", d*j, subs(t=d*j,k(t)), subs(t=d*j,u), subs(t=d*j,epsilon[theta]));
end do;
end do;

— $k(t)$-analysis solution

$>$
plot3d(u, r=0..1.5, t=0..6, axes=boxed, labels=["r", "t(s)", "u(r,t)"], grid=[40,4 0]);
cof:=10^3:
epsilon[r]:=-k(t)/r^2:
plot3d(epsilon[r]/cof, r=0..1.5, t=0..6, axes=boxed, labels=["r", "t(s)", "e[r](r ,t)"],grid=[40,40]);
epsilon[theta]:=k(t)/r^2:
plot3d(epsilon[theta]/cof,r=0..1.5,t=0..6, axes=boxed, labels=["r", "t(s)", "e[th](r,t)"],grid=[40,40]);
with(plots):
N:=3;
for \mathbf{j} from 0 to N do
a[0]:=1/(j+1):
plot([a[0]/sqrt(1-delta*t), a[0]/sqrt(1-
delta*t),1.25,1.5],t=0.(1.95+j)*3600, color=[blue, blue, black, red], thickness $=[1,2,2,2], s t y l e=[l i n e, p o i n t, p o i n t, p o i n t], l a b e l s=[" t(s) ", " a(t) "]$, symbol=[di amond, cross], linestyle=4, legend=[`a(t)`, a(t)`, \(\left.b-h=1.25 `, \mathfrak{b}=1.5^{`}\right]\));
od;

CO HONG TRAN

Digitally signed by CO HONG TRAN
DN: cn=CO HONG TRAN, $\mathrm{c}=\mathrm{VN}, \mathrm{o}=\mathrm{VNU}-\mathrm{HCM}$, ou=MMI, email=cohtran@math.com
Reason: I am the author of this document
Date: 2007.12.02 12:07:28 +07'00'

$$
\begin{aligned}
& N:=3 \\
& a_{0}:=1
\end{aligned}
$$

+	$a(t)$
+	$a(t)$
+	$b-h=1.25$
	$b=1.5$
	$a_{0}:=\frac{1}{2}$

$a(t)$
$a(t)$
$b-h=1.25$
$b=1.5$
$a_{0}:=\frac{1}{3}$

Date: 2007.12.02 12:07:57 +07'00'

$a(t)$
$a(t)$
$b-h=1.25$
$b=1.5$
APPROVED
By CO HONG TRAN at 12:08 pm, Dec 02, 2007

$$
a_{0}:=\frac{1}{4}
$$

$a(t)$
$a(t)$
$\mathrm{b}-\mathrm{h}=1.25$
$b=1.5$

APPROVED

By CO HONG TRAN at 12:08 pm, Dec 02, 2007
$>$
func_bankinhtrong(50, 5.2, 2, 7, Hh);

REFERENCES

APPROVED

By CO HONG TRAN at 12:09 pm, Dec 02, 2007
[1] Ю.Н. РАБОТНОВ , Ползучесть элементов конструкиий , издательство наука , МОСКВА 1966
[2] Lee E .H ., Radok J.R.M., Woodward W.B., Stress Analysis for Linear Viscoelastic Materials , Trans. Soc. Rheol., 3, 41-59 (1959)

Disclaimer: While every effort has been made to validate the solutions in this worksheet, the author is not responsible for any errors contained and are not liable for any damages resulting from the use of this material.

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.

